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The space of state vectors: A hyperfinite approach
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We present a version of the formalism of Dirac based on nonstandard analysis,
allowing us to deal with state vectors and operators using the resources of finite-
dimensional linear algebra. The space of state vectors is a nonstandard Hilbert
space with hyperfinite dimension, which includes all square-integrable functions,
together with vectors representing states of definite position or momentum. Every
vector is normalizable, even when its norm is infinite. Observables are represented
by Hermitian operators, which are always~hyper!bounded and defined on the
whole space. The connection with the standard theory is established by postulating
the existence of ‘‘hyper-observables’’ and nonstandard states. Each observable in
the usual sense appears as a kind of standard-scale approximation of some hyper-
observable. We show that the probabilistic predictions are consistent with those
of the standard theory. Consistency extends to time evolution, in the sense that
if an initial nonstandard state is ‘‘near-standard,’’ then the state after a finite time
shall be infinitely near the standard state obtained through the Schro¨dinger
equation. ©2004 American Institute of Physics.@DOI: 10.1063/1.1631394#

I. INTRODUCTION

A. Preliminaries

The essential features of the general formalism of quantum mechanics can be summar
follows: To a quantum system a complex Hilbert space can be associated such that every p
state of the system is represented by a normalized vector and every observable is represe
a Hermitian operator on the same space. The outcome of a measurement of an observab
sented by an operatorA upon a state represented by a vectoru is necessarily an eigenvalue ofA.
The probability to obtain a particular eigenvaluea is u(uuPau)u2, where Pa is the projection
operator onto the subspace spanned by the eigenvectors belonging to the eigenvaluea. Further-
more, the state of the system after the measurement is represented by a vector belongin
same subspace.~A stronger postulate states that such vector isPau/iPaui .)

In order to completely specify the Hilbert space associated with a particular system, it su
to postulate its Hilbert dimension, since any two Hilbert spaces with the same Hilbert dime
are necessarily isomorphic. To establish the physical meaning of concrete vectors one can
along the following lines: A complete set of compatible observables is chosen~see Ref. 6! and the
set of all its possible outcomes is identified. A Hilbert basis is then introduced by namin
vectors after those possible outcomes. Thereafter the coordinates of any vector in tha
provide a link to physical reality, through the relation of the corresponding state to the base
Furthermore, the basis induces a unitary isomorphism from the abstract space to a concret
which constitutes a representation of the abstract space: Every vectoru admits a unique expressio
asu5( i PIciui , where (ui) i PI is the set of base vectors indexed on some setI andci5(ui uu) for
everyi . The indexed family (ci) i PI of coordinates is such that all valuesci are zero except at mos
at a countable subset ofI and that( i uci u2,1`, where the sum extends over all values ofi PI for
which ciÞ0. The set of all families satisfying these conditions constitutes a Hilbert space~when

a!Electronic mail: jalmeida@math.ist.utl.pt
b!Electronic mail: jteix@math.ist.utl.pt
10022-2488/2004/45(1)/1/20/$22.00 © 2004 American Institute of Physics

                                                                                                                

http://dx.doi.org/10.1063/1.1631394


t that
as the

corre-

to the
the

stitutes

wave

r,

lism,
ther
tegral

sym-

if
is and
ics of
is not

ess,

rs cor-
formu-

tive
ust be
ther an

h of

2 J. Math. Phys., Vol. 45, No. 1, January 2004 J. Almeida and J. Teixeira

                    
the algebraic operations and inner product are defined in the obvious way! for which the mapping
u°(ci) i PI is a unitary isomorphism. In this space, any observable belonging to the se
induced the representation is represented by a ‘‘multiplication operator:’’ If the observable h
valueai in the stateui , then the corresponding operatorA maps (ci) i PI to (aici) i PI .

This general framework requires modification even in such a simple case as the one
sponding to a one-dimensional, nonrelativistic, spinless particle. In this case, the spaceL2(R)
would appear as a concrete Hilbert space corresponding to the observable ‘‘position,’’ due
probabilistic interpretation of wave functions and the role of the operator of multiplication by
independent variable, together with the experimental fact that the position observable con
by itself a complete set. Thus, one is tempted to assume the existence of a Hilbert basis (xx)xPR

of vectors that would correspond to the states of definite position, in such a way that the
function w associated with a vectoru satisfies the identityw(x)5(xxuu), at least whenw is an
element ofL2(R) representable by a continuous function@for otherwisew(x) is not well-defined#.
However, this is clearly impossible, since the spaceL2(R) is known to be separable. Moreove
such a family (xx)xPR cannot be a Hilbert basis for any Hilbert space extendingL2(R): If
u5(xPRcxxx , we would have (xxuu)5w(x)5cx ; sincecx50 except at countable values ofx,
this would imply thatw50 as an element ofL2(R).

To overcome these difficulties while preserving as much as possible of the original forma
Dirac assumed the existence of (xx)xPR such that vectors could be expressed as integrals ra
than sums; this was supported by the fact that wave functions yield probabilities through in
expressions, as well as by the continuous nature of the parameterx. If u is a vector associated with
the wave functionw, thenu5*2`

1`w(x)xx dx, and for everyx0 ,

~xx0
uu!5E

2`

1`

w~x!~xx0
uxx! dx5w~x0! . ~1!

Since the physical meaning of (xx)xPR demands that (xx0
uxx)50 wheneverx0Þx, Dirac attrib-

uted an infinite value to (xx0
uxx0

), for otherwise one would obtainw(x0)50. Thus the ‘‘function’’

d such thatd(x02x)5(xx0
uxx) appears as a continuous-case counterpart of the Kronecker

bol.
It is presently understood that formulas with thed of Dirac can be interpreted rigorously

L2(R) is embedded in some space of distributions in the sense of Schwartz. However, th
other similar approaches depart considerably from the original formalism, the mathemat
which is essentially basic, finite-dimensional, linear algebra. In fact, the extended space
endowed with abona fide inner product; in particular, a vectorxx cannot be multiplied by
itself—vectors with ‘‘infinite norm’’ certainly do not have place in a Hilbert space. Neverthel
the ‘‘vector’’ xx0

, understood as the distributiond(x2x0) ~wherex is the variable andx0 is fixed!,

behaves like an eigenvector of the operator of multiplication byx belonging to the eigenvaluex0 .
On the other hand, even classical functions of interest may not be inL2(R), as it is the case with
the exponentials representing eigenvectors of the momentum operator. Moreover, operato
responding to observables are often defined on a strict subspace of the Hilbert space. The
lation of von Neumann14 achieves mathematical rigor at the cost of renouncing the primi
simplicity: It is no longer allowed to say, in general, that the outcome of a measurement m
an eigenvalue of the operator associated to the observable. However, to determine whe
observableA has a value in an interval is to determine whether the observablef (A) has value 1,
where f is the characteristic function of the interval. Thus, even within this framework muc
the original formalism is present.
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B. Nonstandard approach

Whether or not one attributes physical meaning to a state of definite position, for examp
considerations above suggest that it would be desirable to be able to work within the or
intuitive framework of Dirac, as it is usually done at an informal level. We propose a nonstan
version of the formalism of Dirac that makes it applicable rigorously, without change of f
even in cases where operators with continuous spectra arise in the standard theory. The sH
associated with a system is now a*complex Hilbert space.~See the Appendix.! The inner product
of two vectors is a*complex number, finite or infinite but always well-defined. Every non-n
vector is normalizable, even when its norm is infinite. Furthermore, the spaceH has *finite
dimension, and thus the features of finite-dimensional linear algebra are present, by transf

In order to obtain the spaceH associated with a particular system, we start from a Hilb
spaceH0 assigned to the system by the standard theory according to the formulation o
Neumann. We then defineH as a hyperfinite subspace of the hypercomplex Hilbert space*H0 .
Moreover, to eachwPH0 we shall associate, in a canonical way, a vectorw̄PH. The mapping
w°w̄ is linear and one-to-one, and preserves inner products up to infinitesimals. Thus,H0 is
identifiable to a linear subspace, but not to a Hilbert subspace, ofH.

For the purpose of assigning a consistent semantics to this ‘‘hyperfinite model,’’ we may
the point of view that the system can be subjected~in principle! to * physical actions, some o
which are associated with* experimental setups of finite or infinite~nonstandard! precision. An
* action may correspond to the* measurement of an* observable, yielding* real outcomes. The
system is always found in some* state, which influences the way the system responds to
* action, and in turn can be determined by a* measurement of a complete set of* observables.

The hyperfinite formalism relates to these* states and* observables in exactly the same wa
as the standard formalism: To each* observableb corresponds a Hermitian operatorB:H→H
such that (uuBu) is to be interpreted as the expected value ofb upon* measurement on the syste
in the* physical state represented by the normalized vectoruPH. ~In particular, any* observable
is represented by a* bounded Hermitian operator, defined on the whole space.! Moreover, if f (b)
denotes the* observable obtained by measuringb and then substituting the outcomeb by f (b),
wheref is an internal* real-valued function defined on the set of all possible outcomes ofb, then
the operator corresponding tof (b) is f (B), defined in the usual way by means of the spec
theorem.

The outcome of a* measurement is necessarily an eigenvalue, standard or nonstandard,
corresponding operator, and the* state following the* measurement is represented by an eig
vector of the same operator. The* probability of a particular eigenvalue may be infinitesimal, b
is always expressed in the usual way. As to the* probability of complex events, it is obtained a
a * sum, since the set of possible outcomes is* finite. The integral in the formula of Dirac give
way to a* sum.

Some* states are standard, being identical to the states of the standard theory; a state
sented bywPH0 shall be represented in the hyperfinite model by the vectorw̄PH. In the same
way, some* actions are standard; in particular, some* actions constitute standard measurements
observables~in the usual sense!. Observables are represented in the standard theory by self-ad
operators inH0 , whereas* observables are represented in the hyperfinite theory by Herm
operators onH. An observable shall be viewed as associated with the standard experimental
that can be used, in principle, to measure it. Hence an observable is never a special c
* observable, since the* measurement of the latter upon nonstandard* states requires nonstanda
setups. Nevertheless, the relation between an observablea and an* observableb may be such that
the knowledge of the probabilistic behavior ofb provides all the necessary information about t
probabilistic behavior ofa. We shall see that this kind of relation exists for every observable
each self-adjoint operatorA in H0 we shall associate, in a canonical way, a Hermitian operatoÃ

on H such that a* measurement of the* observable corresponding toÃ can be viewed as a kind
of generalized measurement of the observable corresponding toA.

To accept the idea that the outcome of a physical measurement can be a nonstandard
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one must recall that the numerical outcome of a measurement is just a mathematical entity
associate—according to some criterium previously specified—with the physical situation fo
ing the measurement. One can produce an example of nonstandard~or imaginary! measurement by
choosing some standard measurement and multiplying the real-valued outcome by 11« ~or by
11 i , respectively!, where« is some infinitesimal constant. The real question would be whe
the ultimate nature of a given observable~like position! is such that it is better described by
nonstandard formalism.~For the position observable, this would imply that the physical spac
discrete at an infinitesimal scale of order much larger than the one associated with known qu
phenomena.! As to nonstandard probabilities, recall that a probability is just a number attribut
an event, supposed to convey information that can be confronted with experience through
tion. A probability can be an irrational number, although relative frequencies are neces
rational numbers. Likewise, one can accept a probability that is a hyper-real number~necessarily
between 0 and 1!, it being understood that its standard part must be taken before submitting
experimental verification.

Other approaches to quantum mechanics using nonstandard analysis have been de
before. We mention in particular M. O. Farrukh,7 who replaces the usual Hilbert space by
nonstandard counterpart. In this fashion the elements of a continuous spectrum are vie
‘‘almost’’ eigenvalues, in the sense that forl in that spectrum there exists a vectorf such that
A f5l f up to an infinitesimal error, whereA is the nonstandard counterpart of a classical opera
The essential point of our approach is the use of a smaller, hyperfinite-dimensional, state
which allows us to representall states by eigenvectors in a strict sense. This is possible bec
the mathematics of hyperfinite-dimensional Hilbert spaces amounts to linear algebra.

We note also that there has been recent interest in applying hyperfinite methods to qu
physics, namely with regard to Feynman integrals and quantum field theory. See Refs. 11–1
18.

II. THE SPACE OF STATE VECTORS

In this section we introduce the state vector spaceH corresponding to the caseH05L2(R).
The idea behind the construction ofH is that a continuous square-summable function can
approximated by a piecewise-constant function with compact support, which can be obtain
dividing a large enough compact interval into subintervals of equal length and by samplin
function on each subinterval. Moreover, each such approximation lies within a finite-dimens
space. The original function appears as a kind of limit as the length of the subintervals appr
zero. The issue is how to formalize this idea, since no obvious way to define the notion of lim
a sequence of finite-dimensional Hilbert spaces is available. Nonstandard analysis provi
easy way to introduce a* finite-dimensional space including the approximations correspondin
subintervals of infinitesimal length, wherein, furthermore, vectors with infinite norm have a le
mate place. This space is, in essence, the same as the one considered by M. Kinoshita in
and 9, who constructs representations of the usual~standard! distributions as elements of thi
space of functions.

A. Definition

The construction ofH depends on the choice of some arbitrary infinite* natural number.
Henceforth, we consider that a numberwP* N\N has been chosen and we denote byJw the set
$kP* N:k<2w2%. For eachkPJwø$0% we write xk52w1 k/w. The interval@2w,w# is thus
divided into 2w2 subintervals of length 1/w. For eachkPJw , let xk be the element of* H0

defined by

xk~x!5H w for xk21,x<xk ,

0 otherwise.
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Finally, we defineH as the 2w2-dimensional subspace of* H0 spanned by the family (xk)kPJw
.

The elements ofH are the internal functions from* R to * C that are constant in each interva
(xk21 ,xk#, wherekPJw , and are null outside the interval (2w,w#. For everyk,mPJw ,

~xkuxm!5E
2`

1`

xk~x!xm~x! dx5dk,mE
xk21

xk
w2 dx5wdk,m .

Thus, the family (xk)kPJw
constitutes an orthogonal basis ofH, with ixki5Aw for every

kPJw .
For uPH, let (uk)kPJw

be the family of coordinates ofu in the basis ((1/w) xk)kPJw
:

u5
1

w (
kPJw

ukxk .

It is readily seen that

um5u~xm!5~xmuu!

for everymPJw . Comparison with~1! shows that the function that mapsxk to u(xk) corresponds
to the wave function of the standard theory. In a similar way the vectorsxk ~with kPJw) corre-
spond to the ill-defined vectorsux& ~where xPR) of the formalism of Dirac. Observe that a
points of the real line are identifiable to points of the set$xk :kPJw%: To xPR we associate
xk , where k5max$nPJw :n<w(x1w)%. Then x'xk , since from xk<x,xk11 it follows that
0<x2xk,xk112xk51/w '0. Therefore the mapping is one-to-one, for ifx°xk and y°xk ,
thenx'xk'y, andx'y implies x5y.

A vectoruPH shall be represented, in ket notation, asuu&. We shall also writeuxk& instead of
uxk&.

B. Representation of standard wave functions

We denote byP the projection operator of* H0 onto H. Let wP* H0 . Then, for each
kPJw ,

~xkuPw!5~xkuw!5E
2`

1`

xk~x!w~x! dx5wE
xk21

xk
w .

Since 1/w is the length of@xk21 ,xk#, the value ofPw on any point of (xk21 ,xk# equals the
average ofw on the same interval. We shall also writew̄ instead ofPw. Thus,w̄(xk)5w*xk21

xk w

for everykPJw .
We shall see that the restriction ofP to H0 is one-to-one, which allows us to identify the line

spaceH0 to a subspace ofH. Moreover, such identification preserves inner products up to infi
tesimals. Actually, we prove a more general result: Every locally summable function ca
considered as an element ofH.

Proposition 1: Letw,cPL loc
1 . If w̄(xk)'c̄(xk) for all finite xk , then w5c almost every-

where.
Proof: By linearity, it suffices to prove the casec50. Let w be a locally summable function

such thatw̄(xk)'0 for all finite xk . We shall show that* Iw50 for every bounded intervalI . This
implies that* Iw50 for every measurable setI , whereby we conclude thatw50 up to a set of null
Lebesgue measure.

Let a,bPR, with a,b. There existm,nPJw such thata'xn and b'xm , andxk is finite
whenn<k<m. Let «PR1. By hypothesis,uw̄(xk)u<« for all finite xk . Thus,

U E
xn

xm
wU5U (

k5n11

m E
xk21

xk
wU< (

k5n11

m
«

w
<«

m2n

w
.
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Since« is arbitrary and (m2n)/w is finite ~as the latter value is infinitely close tob2a), we
obtain*xn

xmw'0.

On the other hand,

E
a

b

w5E
xn

xm
w1E

a

xn
w1E

xm

b

w.

The last two summands are also infinitesimal, since limy→x*x
yw50 implies *x

yw'0 for y'x.
Therefore,*a

bw'0, whence*a
bw50. h

In the following, we shall need the lemma below, concerning a property of convergen
L2(R). Previously, for eachnPN we define Jn5$kPN:k<2n2% and xn,k52n1 k/n for k
PJnø$0%.

Lemma 1: LetwPL2(R), and for each nPN let wn be the element of L2(R) defined by

wn~x!5H n*xn,k21

xn,k w ~ i f xn,k21,x<xn,k , with kPJn!,

0 ~otherwise!.

Then, the sequence(wn)nPN converges in L2(R) to w.
Proof: For eachnPN, denote byPn the projection operator that maps eachw to wn . Let

wPL2(R). Given «PR1, there existscPL2(R) such thatiw2ci,« andc is continuous and
has bounded support. We have

iw2Pnwi,iw2ci1ic2Pnci1iPn~c2w!i,2«1ic2Pnci .

Hence, it suffices to prove that

lim
n→`

ic2Pnci50,

since this implies limniw2Pnwi<2«, whencePnw→w.
Choose NPN such that @2N,N# contains the support ofc. Then ic2Pnci2

5*2N
N uc(t)2(Pnc)(t)u2 dt for everynPN. Let n>N. For eachkPJn ,

E
xn,k21

xn,k
uc~ t !2~Pnc!~ t !u2 dt5E

xn,k21

xn,k
uc~ t !u2 dt2

1

n
uak,nu2,

whereak,n5n*xn,k21

xn,k c. Hence,

ic2Pnci25 (
k5(n2N)n11

n(n1N) E
xn,k21

xn,k
uc~ t !2~Pnc!~ t !u2 dt5E

2N

N

uc~ t !u2 dt2
1

n (
k5(n2N)n11

n(n1N)

uak,nu2.

Sincec is continuous,(k5(n2N)n11
n(n1N) uak,nu2 is a Riemann sum of the functiont°uc(t)u2, corre-

sponding to the decomposition of@2N,N# in subintervals of length 1/n. Hence,

lim
n→`

1

n (
k5(n2N)n11

n(n1N)

uak,nu25E
2N

N

uc~ t !u2 dt.

This completes the proof. h

Lemma 2: For every fPL1(R),

E
R

f '
1

w (
k51

2w2

f̄ ~xk!.
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Proof: Let f PL1(R). Since*Rf 5 limn*2n
n f , we have*Rf '*2w

w f .
Since

E
2n

n

f 5 (
k51

2n2

E
xn,k21

xn,k
f

for all nPN, we obtain, by transfer,

E
2w

w

f 5 (
k51

2w2

E
xk21

xk
f 5 (

k51

2w2

f̄ ~xk!

w
.

h

Proposition 2: For everyw,cPH0 ,

~wuc!'~w̄uc̄ !'~wuc̄ ! .

Proof: Let w,cPH0 and let (wn)nPN and (cn)nPN be the sequences associated withw andc
as in Lemma 1. Thenwn→w and cn→c in H0 . By the continuity of the inner product
(wnucn)→(wuc), whence (wuc)'(wwucw). Therefore, (wuc)'(w̄uc̄), since ww5w̄ and cw

5c̄.
Similarly, (wucn)→(wuc), whence (wuc)'(wuc̄). h

Proposition 3: For everywPH0 ,

w'w̄ .

Proof: Let wPH0 . We have

iw2w̄i25~wuw!2~wuw̄ !2~ w̄uw!1~ w̄uw̄ !'0

by Proposition 2. h

Corollary: For everywPH0 ,

iwi'iw̄i .

Proposition 4: Let wPH0 . If w is continuous on a neighborhood of xPR, then
w(x)'w̄(xk) for xk'x.

Proof: For xk'x, the interval@xk21 ,xk# is contained in every standard neighborhood ofx.
Thereforew is continuous on@xk21 ,xk#, whence, by the mean value theorem,

w̄~xk!5wE
xk21

xk
w5w~c! ,

wherecP@xk21 ,xk#. Sincec'x, it follows from the continuity ofw at x that w(x)'w(c), and
this completes the proof. h

Proposition 5: Let u,v be vectors ofH such that

^xkuu&'^xkuv&

for all finite xk . If iu2vi is finite, then

^w̄uu&'^w̄uv&

for all wPH0 .
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Proof: Let u andv be as in the proposition. We assume without loss of generality thatv is the
null vector. LetwPH0 and let (wn)nPN be the sequence defined as in Lemma 1.

For everynPN, the estimate

u^w̄nuu&u<
1

w (
k51

2w2

uw̄n~xk!^xkuu&u<
«

w (
k51

2w2

uw̄n~xk!u

holds for all«PR1. Moreover, the value of (1/w) (k51
2w2

uw̄n(xk)u is finite, by Lemma 2, since the
function wn is summable. Therefore,

u^w̄nuu&u'0.

By the principle of Cauchy~also known as Robinson’s sequential lemma; see Ref. 3; see also
5!, this holds for alln<n, for somenP* N\N. Then,

u^w̄uu&u<u^w̄2w̄nuu&u1u^w̄nuu&u&iw̄2w̄ni iui .

By Lemma 1,w̄'w̄n , and thereforew̄'w̄n , by Proposition 3. Sinceiui is finite, we conclude
that u^w̄uu&u&0. h

Remarks:

~1! Proposition 5 extends Proposition 1, in the sense that even whenuu& and uv& are not repre-
sentatives of locally summable functions the hypothesis that they have the same poi
behavior~up to infinitesimals! ensures that their relationship with the usual wave-function
also the same~still up to infinitesimals!.

~2! The thesis of Proposition 5 may not hold wheniu2vi is infinite. Consideruu&5uxm&, where
xm5nP* N\N, with n<w1/4. Let w be the function such thatw(x)5n for n2 1/n4 <x<n
~for everynPN) andw(x)50 otherwise. ThenwPL2(R) and^xkuu&50 for all finite xk , but

^uuw&5w̄~xm!5wE
n2 1/w

n

w5w~n!5nÞ0.

III. OPERATORS

A. A position operator

Switching to the bra–ket notation, we define a ‘‘position operator’’ onH by

Xh5
1

w (
k51

2w2

xkuxk&^xku.

The operatorXh is Hermitian, since the basis (uxk&)kPJw
is orthogonal and all coefficientsxk are

* real. It can be shown in the usual way that$xk :kPJw% is the set of eigenvalues ofXh and that
the eigenspace corresponding toxk is spanned byuxk&. We have^xkuXhuu&5xk^xkuu& for all k
PJw anduPH. ~HenceXh is the restriction toH of the multiplicative operator in* H0 .)

The present example illustrates some of the notions introduced in Sec. I C. Assuming the
interpretation ofH0 , the multiplicative operatorX in H0 corresponds to the position observablea,
andXh corresponds to an* observableb. We shall see thata behaves as a kind of standard-sca
version ofb insofar as probabilities are concerned, assuming that physical states are repre
by continuous wave functions.

Proposition 6: Let f:R→R be a bounded function, continuous except at most at a finite s
points. For everywPH0 , if w is continuous and belongs to the domain of f(X), then

~wu f ~X!w!'^w̄u f ~Xh!uw̄&.
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Proof: Let c(x)5 f (x)w(x) for all xPR. For finitexk such thatf is continuous at st(xk), the
function c is continuous on a neighborhood ofx, wherex5st(xk). By Proposition 4,̂ xkuc̄&
5c̄(xk)' f (x)w(x). On the other hand, for the samexk ,

^xku f ~Xh!uw̄&5 f ~xk!w̄~xk!' f ~x!w~x!,

becausef (xk)' f (x), w̄(xk)'w(x), and all these values are finite.
Let S be the set of standard points at whichf is not continuous. Let«PR1, and denote byu«

the vector ofH such that̂ xkuu«&5 f (xk)w̄(xk) if xkPøxPS(x2«,x1«) and such that̂xkuu«&
5c̄(xk) otherwise. Hencêxkuu«&'^xku f (Xh)uw̄& for all finite xk . Moreover,iu«2 f (Xh)w̄i is
finite, since

iu«2 f ~Xh!w̄i<ic̄2 f ~Xh!w̄i<ic̄i1Aiw̄i ,

whereA is any upper bound ofu f u. Therefore,̂ w̄uu«&'^w̄u f (Xh)uw̄&, by Proposition 5.
On the other hand,

uu«2c̄&5
1

w (
k

~ f ~xk!w̄~xk!2c̄~xk!!uxk&,

where the sum extends only over those values ofk such thatxkPøxPS(x2«,x1«). Thus,

^w̄uu«2c̄&5
1

w (
k

f ~xk!uw̄~xk!u22
1

w (
k

w̄~xk!c̄~xk!.

An upper bound of the former sum isA(1/w) (kuw̄(xk)u2, and

1

w (
k

uw̄~xk!u2'(
xPS

E
x2«

x1«

uw~ t !u2 dt.

Similarly,

1

w (
k

w̄~xk!c̄~xk!'(
xPS

E
x2«

x1«

w~ t !c~ t ! dt.

Hence, givendPR1, there exists«PR1 such thatu^w̄uu«2c̄&u,d. For such«,

~wu f ~X!w!'^w̄uc̄&'^w̄uc̄2u«&1^w̄uu«&'^w̄uc̄2u«&1^w̄u f ~Xh!uw̄&.

Since u^w̄uc̄2u«&u,d and d is an arbitrary element ofR1, we conclude that
(wu f (X)w)'^w̄u f (Xh)uw̄&. h

When f is the characteristic function of a standard intervalI , Proposition 6 shows that th
probability probw(aPI ) that a measurement ofa upon the state represented byw will yield an
outcome in the setI is the standard part of the* probability * probw̄(bP* I ) that a* measurement
of b upon the same* state will yield an outcome in the interval* I . In other words,

probw~aPI !5st^w̄u f ~Xh!uw̄&.

Other operators can replaceXh in the statement of Proposition 6. For example, ifXh8 is defined by
the identityXh8uxk&5(xk1 1/w)uxk&, then it is easy to reproduce the proof of Proposition 6. T
example shows that there is no such thing as ‘‘the position* observable, ’’ but there are sever
* observables that behave at standard scale like the standard position observable, at least
only probabilities are concerned.
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B. Representation of observables

We shall associate to any self-adjoint operatorA in H0 a Hermitian operatorÃ in H. We must
deal first with bounded operators. To each* bounded operatorT:* H0→* H0 we assign the opera
tor T̄:H→H such that

T̄u5PTu

for everyuPH. WhenT is self-adjoint,T̄ is Hermitian, sinceT̄u5PTPu for all uPH.
Proposition 7: Let T be a*bounded operator on* H0 with finite norm. For everywPH0 ,

T̄w̄'Tw̄'P~Tw!.

If, moreover, TwPH0 , then P(Tw)'Tw.
Proof: We havew̄'w, by Proposition 3. ThenTw̄'Tw, becauseT has finite norm. SinceP

also has finite norm,T̄w̄5P(Tw̄)'P(Tw). Finally, Tw'P(Tw) whenTwPH0 , by Proposition
3. h

The conditions of Proposition 7 are satisfied, in particular, whenT is a bounded operator o
H0 .

When the domain of a self-adjoint operatorA is not the whole spaceH0 , we cannot defineĀ
as above. However, the spectral theorem for self-adjoint operators in a Hilbert space yiel
equality

A5E
2`

1`

l dEl,

where (El)lPR is the spectral family associated withA. For everynP* N, the operator

An5E
2n

1n

l dEl

is a* bounded operator on* H0 . We shall define a Hermitian operatorÃ:H→H by Ã5Ān , where
n is an element of* N\N satisfying the conditions of Proposition 8, below; these conditions en
that an appropriate relation between the spectral families ofA andÃ can be obtained. WhenA is
bounded, we haveÃ5Ā, sinceA5An in such case.

Given a * bounded self-adjoint operatorT on * H0 , we write X(T)5$(uuTu):uP* H0 ,
iui51%, and m(T)5 inf X(T), M (T)5supX(T). For uPH we have (uuT̄u)
5(uuPTu)5(PuuTu)5(uuTu). Hence X(T̄) is a subset of X(T), and therefore

@m(T̄),M (T̄)#,@m(T),M (T)#. Hence, if f is a * real-valued function continuous o

@m(T),M (T)#, both operatorsf (T) and f (T̄) are well-defined. Moreover, it is known that th
norms thereof satisfy the conditions

i f ~T!i<sup$u f ~l!u:lP@m~T!,M ~T!#%,

i f ~ T̄!i<sup$u f ~l!u:lP@m~ T̄!,M ~ T̄!#%.

Therefore, iff (T) has finite norm, thenf (T̄) also has finite norm.
Proposition 8: There existsnP* N\N such that: For every sequence(Tn)nPN of bounded

self-adjoint operators onH0 and every sequence( f m)mPN of real-valued functions such that eac
f m is continuous on@m(Tn),M (Tn)# whenever n>m,

f m~ T̄n!w̄' f m~Tn!w,

for everywPH0 and every m,nP* N such that m<n<n.
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Proof: Let (Tn)nPN , ( f m)mPN andw be as in the proposition. Letn,mPN, with m<n. If u is
an element ofH such thatu'w, then T̄nu5PTnu'PTnw, since the norm ofPTn is finite. By
Proposition 3,PTnw'Tnw, and thusT̄nu'Tnw. This is readily extended top(T̄n)u'p(Tn)w,
wherep is an arbitrary standard polynomial.

Let «PR1. Choose a standard polynomialp such thatu f m(l)2p(l)u<« for all l in the
interval @m(Tn),M (Tn)#. Then

i f m~Tn!w2p~Tn!wi5 I E
2`

1`

~ f m~l!2p~l!! dElw I<«iwi ,

where (El)lPR is the spectral family associated withTn . Similarly,

f m~ T̄n!w̄2p~ T̄n!w̄5(
i

~ f m~l i !2p~l i !!Pi w̄,

where the sum extends over all eigenvaluesl i of T̄n and Pi is the projection operator onto th
eigenspace corresponding tol i . Taking into account that everyl i is in the interval
@m(Tn),M (Tn)#, we obtain

i f m~ T̄n!w̄2p~ T̄n!w̄i25(
i

u f m~l i !2p~l i !u2iPi w̄i2<«2iw̄i2.

Finally,

i f m~ T̄n!w̄2 f m~Tn!wi<i f m~ T̄n!w̄2p~ T̄n!w̄i1ip~ T̄n!w̄2p~Tn!wi1ip~Tn!w2 f m~Tn!wi

<«iw̄i1 infinitesimal1«iwi .

Sinceiw̄i and iwi are finite, and« is arbitrary, this proves that

f m~ T̄n!w̄' f m~Tn!w.

Given sequences (f m)mPN and (Tn)nPN , and j PN, wPH0 , write a5(( f m)m ,(Tn)n ,w, j ) and let

Sa5$kP* N : k> j ,;m,nP* N,m<n<k i f m~ T̄n!w̄2 f m~Tn!wi,n21%.

For kPN, the condition i f m(T̄n)w̄2 f m(Tn)wi,n21 holds for m<n<k, since f m(T̄n)w̄
' f m(Tn)w. Hence, anykPN such thatk> j is an element ofSa . Moreover, the family of all sets
Sa with a as above has the finite intersection property~see the Appendix!—it suffices to choose
for k the greatest value ofj . Therefore, by saturation,

ù
a

SaÞB,

and anynPùaSa satisfies the conditions of the proposition. h

Henceforth we consider that a valuen as given by Proposition 8 has been chosen. For ev
self-adjoint operatorA we defineÃ5Ān .

Proposition 9: Let A be a self-adjoint bounded operator onH0 . For every real-valued func-
tion f continuous on@m(A),M (A)#,

f ~A!w' f ~Ā!u
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for all wPH0 and uPH such that u'w.
Proof: Considering the constant sequences determined byA and f , Proposition 8 yields

f ~A!w' f ~Ā!w̄

for everywPH0 . If u'w, with uPH, then f (Ā)w̄' f (Ā)u, since

i f ~Ā!~ w̄2u!i<i f ~Ā!i iw̄2ui

and the right side above is the product of a finite number by an infinitesimal. h

Proposition 10: Let A be a self-adjoint operator inH0 . For every continuous function f:R
→R, the condition

f ~A!w' f ~Ã!w̄

holds for everywPH0 belonging to the domain of f(A).
Proof: Let (El)lPR be the spectral family associated withA. We have

f ~A!w5 lim
n
E

2n

1n

f ~l! dElw5 lim
n

f ~An!w' f ~An!w.

By Proposition 8, makingf n5 f for all n,

f ~An!w' f ~Ān!w̄.

SinceĀn5Ã, this completes the proof. h

The following proposition relates the spectral families associated withA and Ã. ~A related
proposition, for bounded operators, is found in Ref. 4.!

Proposition 11: Let A be a self-adjoint operator inH0 , and let(El)lPR and (Fl)lP* R be the

spectral families associated with A and A˜ , respectively. Let aPR. The conditions

Eaw'Fa1«u,

Ea2w'Fa2«u

hold for every infinitesimal«>n21 and everywPH0 and uPH such that u'w.
Proof: Let aPR. For mP* N, we denote bygm,a the continuous function defined on* R such

that ~i! gm,a(l)51 for l<a1(m11)21, ~ii ! gm,a(l)50 for l>a1m21, and ~iii ! gm,a drops
linearly from 1 to 0 in the interval@a1(m11)21, a1m21#. Moreover, forxP* R let hx be the
function such thathx(l)51 for l<x andhx(l)50 for l.x. Then

gm,a~l!<ha1«~l!<gm22,a~l!

for all m, l, « such thatm.2 andm21<«<(m21)21. For every Hermitian operatorB on H,
the operational calculus yields

igm22,a~B!u2ha1«~B!ui<igm22,a~B!u2gm,a~B!ui

for all uPH. Given an infinitesimal «>n21, consider the uniquemP* N such that
m21,«21<m. From«>n21 it follows thatm<n. Moreover,m21<«,(m21)21. Therefore,
we may particularize the inequality above with suchm and«, andB5Ān and withu5w̄, where
wPH0 :

igm22,a~Ān!w̄2ha1«~Ān!w̄i<igm22,a~Ān!w̄2gm,a~Ān!w̄i .
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We now show that the right side of this inequality is infinitesimal. We ha
gm22,a(Ān)w̄'gm22,a(An)w andgm,a(Ān)w̄'gm,a(An)w, by the definition ofn. We must show
that gm22,a(An)w'gm,a(An)w: For fixeda, the sequence (gn,a)nPN is a decreasing sequence
non-negative continuous functions that converges pointwise to the functionha . The operational
calculus ensures that

lim
n

gn,a~A!w5ha~A!w

for everywPH0 . Since« is infinitesimal,m is infinite, and hence

gm22,a~A!w'gm,a~A!w'ha~A!w.

On the other hand,

gm22,a~A!w5E
2`

a

gm22,a~l! dElw

5gm22,a~An!w1E
2`

2n

dElw

5gm22,a~An!w1E2nw'gm22,a~An!w.

In a similar way,gm,a(A)w'gm,a(An)w. Thus, we have shown thatgm22,a(Ān)w̄'ha1«(Ān)w̄.
Therefore, taking into account the definition ofn,

ha~A!w'gm22,a~A!w'gm22,a~An!w'gm22,a~Ān!w̄'ha1«~Ān!w̄.

Finally, ha(A)w5Eaw and ha1«(Ān)w̄5Fa1«w̄; furthermore, ifuPH is such thatu'w, then
Fa1«w̄'Fa1«u, since the norm of the projection operatorFa1« is finite.

The proof of the second condition in the thesis is similar. FormP* N, denote bygm,a the
continuous function defined on* R such that (i ) gm,a(l)51 for l<a2m21, (i i ) gm,a(l)50 for
l>a2(m11)21, and (i i i ) gma drops linearly from 1 to 0 in the interva
@a2m21, a2(m11)21#. For xP* R, denote byhx the function such thathx(l)51 for l,x
andhx(l)50 for l>x. Proceeding as in the first part of the proof, we obtain

ha~A!w'ha2«~Ān!w̄.

We have ha2«(Ān)w̄5Fa2«w̄; on the other hand,ha(x)5ha(x)2u(x) for all x, where
u(a)51 andu(x)50 for xÞa. Hence,ha(A)w5Eaw2u(A)w. A straightforward computation
yields *2`

1`u(l)dEl5Ea12Ea2. Therefore,

Eaw2Ea1w1Ea2w'Fa2«w̄.

Finally, Eaw2Ea1w50, since the functionl°El is necessarily continuous on the right. h

Corollary: Let A be a self-adjoint operator inH0 , and let (El)lPR and (Fl)lP* R be the

spectral families associated with A and A˜ , respectively. For aPR, if the functionl°El is
continuous at a, then Eaw'Fau, for everywPH0 and every uPH such that u'w.

Proof: We have Eaw'Fa1«u and Ea2w'Fa2«u for «'0 such that«>n21. Since
Ea2w5Eaw, it follows thatEaw'Fa1«u'Fa2«u. Since

iFa1«u2Fa2«ui25iFa1«u2Faui21iFau2Fa2«ui2,

we obtainFa1«u'Fau andFau'Fa2«u. h
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IV. PROBABILITIES AND CONSISTENCY

A. Nonstandard and standard probabilities

A * measurement of an* observableb will yield a * real outcome, finite or infinite. By taking
its standard part when the outcome is finite one obtains a standard outcome. For every b
Borelian subset ofR, the event stbPS amounts tobPMonS, where

MonS5$xP* R : 'yPS y'x%.

~The restriction to bounded sets is due to the possibility that the outcome be infinite.! The question
that now arises is that of how to attribute a standard probability to the event stbPS. Given a
* probability measureP on the class Bor(* R) of Borelian subsets of* R, we shall define a finite
s-additive measure pr on the class Bor~R! of Borelian subsets ofR. If P is the * probability
measure associated with the* measurement of an* observableb upon a given* state, then prS can
be viewed as the probability that a* measurement ofb will yield a finite outcome with standard
part in the Borelian setS. It may happen that prR,1, as it was to be expected since an infin
outcome of the* measurement ofb does not correspond to an outcome inR. We cannot define prS
as stP(MonS), since MonS is not in general an internal set. Nevertheless, the mapping st+P can
be extended as a standard probability measurePL to thes-algebraAL spanned by Bor(* R) ~The
measurePL is known as a Loeb measure; see Ref. 16. Note that this construction would re
valid even ifP were onlyfinitely additive.! We can easily see that MonS is in AL for everyS in
Bor~R!: If S5@a,b#, with a<b, we have

MonS5ù
nPN

* Fa2
1

n
,b1

1

nG ,
whence MonSPAL . Moreover, the mapping Mon is an isomorphism ofs-rings. Hence,
Mon~Bor~R!! is the smallests-ring including every MonS whereS is a compact interval ofR.
Therefore, Mon~Bor~R!! is contained inAL , sinceAL is a s-ring including such sets. Thus, w
define

prS5PL~MonS!,

for every boundedS in Bor~R!, and we extend pr to Bor~R! in the canonical way. Due to the
properties ofPL and Mon, it is clear that pr is as-additive measure, with pr(R)<1.

WhenS5@a,b# with a<b, we have

prS5PLS ù
nPN

* Fa2
1

n
, b1

1

nG D 5 inf
nPN

PL* Fa2
1

n
, b1

1

nG5 infnPN stP* Fa2
1

n
, b1

1

nG . ~2!

Since a measure on Bor~R! is determined by its values on intervals, there can be no other mea
satisfying~2!. The considerations above are resumed in the following proposition:

Proposition 12: Let P be a* probability measure on the Borelian subsets of* R. There exists
a unique positives-additive measurepr on the Borelian subsets ofR such thatpr@a,b# is given by
Eq. (2) for all a,bPR with a<b. Furthermore, prR<1.

In the remainder of this section, we consider thata is an observable represented by a se
adjoint operatorA in H0 and thatb is an* observable corresponding toÃ. We now see howb can
be viewed as a kind of nonstandard ‘‘extension’’ ofa.

Proposition 10 entailŝw̄uÃuw̄&'(wuAw) for everywPH0 . Moreover, it is readily seen tha
if b5^w̄uÃuw̄& anda5(wuAw), then^w̄u(Ã2b)2uw̄&'(wu(A2a)2w). Recalling thatiw̄i'iwi ,
we see that on standard states the expected values and uncertainties ofa andb are identical up to
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infinitesimals. If Ãuw̄&5buw̄& with wPH0 , iwi51 and bP* R, then b is finite, because
b'(wuAw). Settinga5st(b), we obtainAw'bw'aw, whenceAw5aw. Therefore, a standard
state whereb has a definite valuec ~necessarily finite! is also a state wherea has the definite value
st(c). ~On the other hand, ifa has a definite value on a standard state, thenb has an ‘‘almost
definite’’ value, in the sense that the uncertainty ofb is infinitesimal.! Thus,a is similar in status
to a function of the* observableb; however, the functionc°st(c) is not internal, and therefore
we cannot say thata is a function ofb in the strict sense.

The similitude ofa to a function ofb extends to states on whicha has a value in an interval
In fact, given wPH0 and a,bPR with a,b, Proposition 11 ensures that the conditio
w5Ebw2Ea2w is equivalent tow̄'Fb1«w̄2Fa2«w̄, where «'0, «>n21 and (El)lPR and
(Fl)lP* R are the spectral families ofA and Ã, respectively. This means that on a standard s
represented byw the observablea is in @a,b# if and only if on the same state~or on a* state
represented byu'w, as it can be easily seen! the * observable b is ‘‘almost’’ in
* (a2«,b1«#—in the sense thatf (b)u'u, where f is the characteristic function of* (a2«,b
1«#. In particular, if a* measurement ofb ensures thatb is in * (a,b# and if the state following
the * measurement is standard, thena is in @a,b#, which agrees with the interpretation ofa as
‘‘standard part ofb.’’ However, it may happen that such a state is not standard. Suppose now
the initial state is represented byvPH and that a* measurement off (b) is performed, withf as
above. If v'cPH0 , then, assuming the postulate of Lu¨ders, the state following the
* measurement is represented by the vector

u5Fb1«v2Fa2«v'Fb1«c̄2Fa2«c̄'Ebc2Eac.

@This presupposes that the* measurement off (b) involves a minimal perturbation, in that it doe
not constitute a* measurement of any* observableg such thatf (b) is function ofg but g is not
function of f (b).]

B. Consistency with the standard theory

We shall now deal with the problem of relating the probabilistic behaviors ofa and b.
Suppose that a* measurement ofb is performed upon a standard state, yielding the outcomec. If
the state following the* measurement is standard, the* measurement can be considered as
measurement ofa yielding the outcome st(c). When such a state is not standard, it seems nat
to assume that the* measurement can still be viewed as a generalized measurement ofa, yielding
perhaps the outcome ‘‘infinite.’’ Insofar as only probabilities are concerned, the meaning o
last statement can be made precise by saying that the probability measure associated w
measurement ofa upon a standard state coincides with the measure pr associated~according to
Proposition 12! with the * measurement ofb upon the same state. The following propositio
shows that this is indeed the case.

Proposition 13: Let A be a self-adjoint operator inH0 and letwPH0 , with iwi51. Let P be

the*probability measure associated with the operator A˜ and the state represented byw̄, and letpr
be the standard measure associated with P. For all a,bPR such that a,b,

pr ~a,b#5~wu f ~A!w!,

where f is the characteristic function of(a,b#.
Proof: Let (El)lPR and (Fl)lP* R be the spectral families associated withA and Ã, respec-

tively. For somer'1 dependent onw, we have, fora<b andnPN,

P* ~a21/n,b11/n#5rE
a2 1/n

b1 1/n

d~ w̄uFlw̄ !'^w̄uFb1 1/nuw̄&2^w̄uFa2 1/nuw̄&.

By overspill, this holds for somenP* N such that 1/n 5«>n21. By Proposition 11,

P* ~a2«,b1«#'~wuEbw!2~wuEa2w!,
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whence

stP* ~a2«,b1«#5~wu f ~A!w!1~wuEaw!2~wuEa2w!.

The special casea5b yields the equality

stP* ~a2«,b1«#5~wuEaw!2~wuEa2w!.

On the other hand, from

* Fa2
1

n11
, b1

1

n11G,* S a2
1

n
, b1

1

nG,* Fa2
1

n
, b1

1

nG
it follows that

pr @a,b#5 infnPN stP* S a2
1

n
, b1

1

nG'stP* ~a2«, b1«#,

where

pr @a,b#5~wu f ~A!w!1~wuEaw!2~wuEa2w!.

Considering once more the special casea5b, we obtain

pr $a%5~wuEaw!2~wuEa2w!,

and from the equality

pr @a,b#5pr ~a,b#1pr $a%

it follows that pr (a,b#5(wu f (A)w). h

Whenb is * measured upon a nonstandard state it would be meaningless to ask wheth
standard measure pr coincides with the probability measure associated witha. Nevertheless, when
a state is represented by a vectoruPH such thatu'w, with wPH0 , the vectorw is necessarily
unique, and it is readily seen that the function pr associated withb and u coincides with the
probability measure associated witha andw.

C. Time evolution

The Schro¨dinger equation in the hyperfinite model assumes the same form as in the sta
theory: Time appears as a continuous parameter; to each value oft corresponds a vectorut

representing the state of the system at timet; time evolution is determined by a Hermitian operat
Hh , in such a way thatut5e2 i tH h u0 for all t. We must show that the predictions of the hyperfin
model regarding time evolution are consistent with those of the standard theory. If at timet50 the
system is in a standard state represented byw0PH0 , then, according to the standard theory,
time t the system is in a standard state represented byw t5e2 i tHw0 , whereH is a self-adjoint
operator inH0 . According to the hyperfinite model, the state is represented byw̄0 at t50 and by
ut5e2 i tH h w̄0 at time t. We consider thatHh5H̃. Consistency demands that at timet the vector
ut be ‘‘equivalent’’ to w t , in the sense that all standard-scale predictions concerning probab
and further time evolution should be the same regardless of whether the state at timet is repre-
sented byut or by w t . To ensure this it suffices thatut'w̄ t : In such a case, the standa
probability associated with measurements uponut or w t are the same~Proposition 13 and subse
quent considerations!; as to the time evolution after timet, Proposition 14 below shows that it als
leads to infinitely near states, since the hypothesis isu0'w̄0 rather thanu05w̄0 .

Proposition 14: Let H be a self-adjoint operator inH0 and let u0PH, w0PH0 . If
u0'w0 , then
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ut'e2 i tHw0

for every finite tP* R, where ut5e2 i tH̃u0 .

Proof: Set w t5e2 i tHw0 , ut5e2 i tH̃u0 , andv t5w t2ut , for all tP* R. Taking into account

that e2 i tH ande2 i tH̃ are unitary operators onH0 andH, respectively, we obtain

~v tuv t!5~w0uw0!1~u0uu0!2~e2 i tH̃u0ue2 i tHw0!2~e2 i tHw0ue2 i tH̃u0!.

Hence,

d

dt
~v tuv t!5~ iH̃ e2 i tH̃u0ue2 i tHw0!1~e2 i tH̃u0u iHe2 i tHw0!1~ iHe2 i tHw0ue2 i tH̃u0!

1~e2 i tHw0u iH̃ e2 i tH̃u0!.

We have

~H̃e2 i tH̃u0ue2 i tHw0!5~PH̃e2 i tH̃u0ue2 i tHw0!5~H̃e2 i tH̃u0uPe2 i tHw0!5~e2 i tH̃u0uH̃Pe2 i tHw0!.

Moreover, (e2 i tH̃u0uHe2 i tHw0)5(e2 i tH̃u0uPHe2 i tHw0). Let f5e2 i tHw0 . It follows from
Propositions 10 and 3 thatH̃f̄'Hf'PHf. ThusH̃Pe2 i tHw0'PHe2 i tHw0 , whence

~e2 i tH̃u0uH̃Pe2 i tHw0!'~e2 i tH̃u0uPHe2 i tHw0!,

since the norm ofe2 i tH̃u0 is finite. Thus, (d/dt) (v tuv t)'0 for all tP* R, whence

u~vtuvt!2~v0uv0!u5U E
0

t d

dt
~v tuv t! dtU,t«

for every tP* R and every«PR1. For finite t, this entails (vtuvt)'(v0uv0). By hypothesis,
(v0uv0)'0. Therefore, for every finitetP* R,

~v tuv t!'0,

v t'0,

w t2ut'0.

This completes the proof. h

It is easy to see that the proof of Proposition 14 depends on the definition ofH̃ only through
the propertyH̃f̄'Hf ~wherefPH0); thus, the statement of Proposition 14 still holds whenH̃
is replaced by any Hermitian operatorH satisfying that condition.

V. THE MULTIDIMENSIONAL CASES

Until now we have considered the simple case ofH05L2(R). It is not difficult to extend the
previous results to the Hilbert space associated with a system constituted by a finite num
distinguishable particles.

When H05Cn, with nPN, we defineH5* Cn. Thus, we can associate withwPH0 the
vector w̄5wPH. Every normalized vector ofH is a finite superposition of standard vector
with finite coefficients. Moreover, every such vector is near-standard: Ifu5( j 51

n cjw j , with
w1 , . . . ,wnPH0 and c1 , . . . ,cn finite * complex numbers, then it is readily seen thatu'w
PH0 , wherew5( j 51

n st(cj )w j . Hence, the features ofH are essentially the same as those ofH0 .
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The spaceH0 in the general case is a tensor product^ iHi of a finite number of Hilbert
spaces; moreover, one can assume that eachHi is eitherL2(R) or C. @Recall that, for example
L2(R2)>L2(R) ^ L2(R).]

Denote byH̄i the space* C ~if Hi5C) or the space defined in Sec. II A~if Hi5L2(R)). For
eachi , the spaceHi is a subspace of* Hi , andH̄i is also a subspace of* Hi . Hence, the tenso
product^ iH̄i is a subspace of* H05 ^ i* Hi , which we denote byH. We consider henceforth th
case of a tensor product of only two factors, for ease of notation.

The mappingw°w̄ is defined byw̄5Pw, whereP is the orthogonal projector of* H0 onto
H. We can see thatP5P1^ P2 , where eachPi is the orthogonal projector of* Hi onto H̄i : Let
w5w1^ w2 , with w1P* H1 andw2P* H2 . Then,

w5~ w̄11w̄1
'! ^ ~ w̄21w̄2

'!5~ w̄1^ w̄2!1~ w̄1^ w̄2
'!1~ w̄1

'
^ w̄2!1~ w̄1

'
^ w̄2

'!.

Recalling the definition of inner product on a tensor product of Hilbert spaces,15 we observe that
the first term in the sum above is orthogonal to the other three terms—for example,

~ w̄1^ w̄2uw̄1^ w̄2
'!5~ w̄1uw̄1!~ w̄2uw̄2

'!5~ w̄1uw̄1!•0.

Therefore,Pw5w̄1^ w̄2 , and henceP5P1^ P2 .
The identityw̄5w̄1^ w̄2 entailsw̄'w, sincew̄1^ w̄2 equalsw1^ w2 plus three infinitesimal

terms, which are tensor products of infinitesimals by finite normed vectors. The relationw̄'w
extends immediately to finite superpositions of vectors of the above form. Let noww be a general
element of H0 . There exists a sequence (wn)nPN of vectors of H0 such thatwn→w and
Pwn'wn . Given«PR1, we haveiw2wni,« for somenPN. On the other hand,

Pw2w5P~w2wn!1~Pwn2wn!1~wn2w!.

Sinceiw2wni,«, iPi51, andiPwn2wni'0, we obtainiPw2wi<3«, whencePw'w. Thus
we see that Proposition 3 holds whenH05H1^ H2 . Proposition 2 is a simple consequen
thereof. Another obvious consequence is that the mappingw°w̄ is one-to-one.

Given be a self-adjoint operatorA on H05H1^ H2 , the definition of Sec. III B still makes
sense: ForuPH̄1^ H̄2 ,

Ãu5PE
2n

n

l dElu.

Observe that the constantn introduced in Sec. III B depends on the Hilbert space considered
we may assume without loss of generality thatn is the same for the spacesH0 , H1 and H2 .
Propositions 7–14 hold in the multidimensional case, as the proofs thereof depend on Propo
2 and 3.

It remains to see how the operator representing an observable in a given system relate
operator representing the same observable in a compound system~see Ref. 15!: Given a self-
adjoint operatorA1 in H1 , consider the self-adjoint operator inH1^ H2 defined by

B15E
2`

1`

l d~E1l ^ 1!,
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where (E1l)lPR is the spectral family associated withA1 . ~WhenA1 is bounded,B1 is simply the
tensor productA1^ 1.) We show thatB̃15Ã1^ 1; it suffices to prove thatB̃1u5(Ã1^ 1)u for
u5u1^ u2 with u1PH̄1 and u2PH̄2 : Recalling the linearity and continuity properties of th
tensor products of vectors and operators, we have

B̃1u5PE
2n

n

l d~E1l ^ 1!~u1^ u2!5E
2n

n

l~P1^ P2! d~E1lu1^ u2!5E
2n

n

l d~P1E1lu1^ P2u2!

5E
2n

n

l d~P1E1lu1^ u2!5S E
2n

n

l d~P1E1lu1! D ^ u25P1E
2n

n

l dE1lu1^ u25Ã1u1^ u2

5~Ã1^ 1!u.
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APPENDIX

We work in a superstructurêV(R),* V(R),* &. Elements ofV(R) are calledstandard, and are
mapped by* to elements of* V(R). As usual, we omit stars when denoting the images under* of
standard functions or binary operations and relations. Elements of standard sets are calledinternal,
and noninternal sets inV(* R) are calledexternal. We recall that the prefix ‘‘hyper’’ is used as
substitute for ‘‘* . ’’

A numberxP* R is saidfinite if there existsmPN such thatuxu,m. Each finitexP* R can
be uniquely decomposed asx5r 1«, wherer PR and« is infinitesimal;r is called the standard
part ofx and is denoted by st(x). If x,yP* R are such thatx2y is infinitesimal, then we say tha
x is infinitely close toy, and writex'y. More generally, ifx andy are in a* Hilbert space we say
that x'y when ix2yi'0. We writex&y wheneverx,y or x'y.

Recall that a family of sets satisfies the finite intersection property if all finite intersectio
elements of the family are nonempty. We assume the superstructure^V(R),* V(R),* & to be satu-
rated, i.e., given any familyA of internal sets with cardinality less than the cardinality ofV(R),
if A has the finite intersection property, thenùAÞB.

For a survey of nonstandard analysis, see Refs. 10, 17, and 2.
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Dissipative Schro ¨ dinger–Poisson systems
M. Baro,a) H.-Chr. Kaiser, H. Neidhardt, and J. Rehberg
Weierstrass Institute for Applied Analysis and Stochastics,
Mohrenstr. 39, D-10117 Berlin, Germany

~Received 30 May 2003; accepted 18 September 2003!

We deal with a stationary, dissipative Schro¨dinger–Poisson system which allows
for a current flow through an open, spatially one-dimensional quantum system
determined by a dissipative Schro¨dinger operator. This dissipative Schro¨dinger op-
erator can be regarded as a pseudo-Hamiltonian of the corresponding open quantum
system. The~self-adjoint! dilation of the dissipative operator serves as a quasi-
Hamiltonian of the system which is used to define physical quantities such as
density and current for the open quantum system. The thus defined charge density
in its dependence on the electrostatic potential is the nonlinear term in Poisson’s
equation. We prove that the dissipative Schro¨dinger–Poisson system always admits
a solution and all solutions are included in a ball the radius of which depends only
on the data of the problem. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1628385#

I. INTRODUCTION

Schrödinger–Poisson systems describe, e.g., the nonlinear interaction between an elect
and charged carriers, electrons and holes in a semiconductor device, within this electric fiel~see,
e.g., Refs. 28, 21, 22, and 10!. In the form considered in this article a Schro¨dinger–Poisson system
can be regarded as a nonlinear Poisson equation

2¹•~e¹w!5q~C1N1~V1!2N2~V2!!, V65V0
66qw, ~1!

wherew denotes the electrostatic potential andV0
6 are prescribed potentials, the band edge o

sets;e is the position-dependent permittivity tensor;q is the magnitude of the elementary charg
andC is a position-dependent density of fixed charges~ionized dopants!. N6 are operators which
associate a density of positive and negative charges~electrons and holes! to a potential which
essentially is the electrostatic potential. We will regard a system confined to a bounded
domainV and~1! has to be supplemented by boundary conditions modeling the way the elec
field insideV is contacted to its environment~see Refs. 28 and 10!.

In the framework of van Roosbroeck’s system which describes the motion of electron
holes within a semiconductor device due to drift and diffusion, the nonlinear Poisson equati~1!
has been regarded with Nemytzkii operatorsN6 of the form

N6~V!~x!5c6~x!FS 1

T
~qf6~x!6V~x!! D ~2!

~see Refs. 28 and 10!; Boltzmann’s constant is scaled to 1. In this context we assume tha
temperatureT, the density of statesc6 , and the electrochemical potentialsf6 are given functions
andF is a statistical distribution function, e.g., the exponential function

F~z!5exp~z! ~3!

a!Supported by the DFG research center ‘‘Mathematics for key technologies’’~FZT 86! in Berlin.
210022-2488/2004/45(1)/21/23/$22.00 © 2004 American Institute of Physics
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or Fermi’s integral to the index12

F~z!5
2

Ap
E

0

`

dj
Aj

11exp~j2z!
, zPR. ~4!

With Boltzmann and Fermi–Dirac statistics,~3! and ~4!, respectively,~1!, ~2!, are an operator
equation in a Sobolev space which is determined by the boundary conditions imposed
electrostatic potential. The nonlinear Poisson operator involved is strongly monotone and b
edly Lipschitz continuous, hence, the nonlinear Poisson equation has a unique solution. Obv
this result does neither depend on the Nemytzkii structure~2! of the operatorsN6 nor the special
functions~3!, ~4!. If N6 are anti-monotone and boundedly Lipschitz continuous operators,
the nonlinear Poisson equation~1! has a unique solution~see, e.g., Ref. 11, Chap. III.2.1!.

Statistical distribution functions like~3!, ~4! are based upon the assumption that the carrier
charge, electrons, and holes can move freely in all space directions. However, in nanostru
materials~quantum-wells, -wires, and -dots! this model of a three-dimensional electron-hole gas
not adequate any more. Instead the densities of charge carriers have to be directly comp
quantum mechanical expressions from the spectral representation of an appropriate Ha
operator~see, e.g., Refs. 6, 29, 10, and 23!.

Let us first consider the case of closed quantum systems situated in the bounded domaiV for
the system of positively and negatively charged carriers. These systems can be descri
one-electron Hamiltonians in effective mass approximation~Ben–Daniel–Duke form! with an
effective potentialV:

H6~V!c52 1
2¹•~m6

21¹c!1Vc, ~5!

where dom(H6) is a Sobolev space which is determined by self-adjoint~homogeneous! boundary
conditions, including mixed ones, on]V. m6 denotes the position-dependent effective mass ten
of holes and electrons, respectively;\ is scaled to 1. In generalV is a Kohn–Sham potential~see
e.g., Refs. 13, 14, and 27 and the references cited there!. The collective behavior of holes an
electrons is described by density matrices%6 . In this article we investigate stationar
Schrödinger–Poisson systems, i.e., we regard density matrices which are steady states. If th
equilibrium distribution functionsf 6 such that the operators

%6~V!5 f 6~H6~V!!

are self-adjoint, non-negative, and nuclear, i.e., density matrices for all admissible potentiV,
then the densitiesN6(V) of positively and negatively charged carriers, respectively, are give
the Radon–Nikody´m derivative of the absolutely continuous measures~with respect to the Le-
besgue measure!

E
v
dx N6~V!~x!5tr~ f 6~H6~V!!xv!, ~6!

respectively, wherexv denotes the indicator function of a setv,V. If the functions f 6 are
positive, strictly monotone, and sufficiently rapidly decreasing, then one can prove that th
responding nonlinear Poisson equation~1! with ~6! has a unique solution~see Refs. 5, 24, and 25!,
even for heterogeneous material compositions and mixed Dirichlet and Neumann boundar
ditions for Schro¨dinger’s operator~see Refs. 13 and 14!. If the Schrödinger operators~5! include
in addition to the electrostatic potential an exchange-correlation potential, then one still obta
existence of solutions of the corresponding Schro¨dinger–Poisson system~see Refs. 13 and 14!.

Up to this point we have supposed that the systems of positively and negatively ch
carriers are in equilibrium, i.e., the corresponding quantum systems on the bounded d
occupied by the device are closed. In order to describe semiconductor devices operating fa
equilibrium, we pass to open quantum systems on the bounded device domain~see also Refs. 9, 4
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and 26!. In Refs. 13 and 14 we proposed non-self-adjoint boundary conditions for the Schro¨dinger
operators~5! which are induced by a potential flow acting on the spatial boundary of the o
quantum system; the spectral theory for the associated non-self-adjoint Schro¨dinger-type operators
has been developed in Ref. 15. For these non-self-adjoint Schro¨dinger-type operators the notion o
carrier density as sketched above is not valid anymore. However, if the boundary conditio
such that the operator becomes dissipative~see Ref. 15!, then one can use the dilation theory f
dissipative operators to overcome difficulties arising from the non-self-adjointness. Indee
dissipative Schro¨dinger-type operator can be regarded as a pseudo-Hamiltonian~see Ref. 7, Chap
4.1! and its dilation, i.e., minimal self-adjoint extension, as a quasi-Hamiltonian. The q
Hamiltonian describes a closed quantum system containing the original open one, which is
tionally, in some sense minimal. Then steady states, carrier and current densities can be
with respect to that larger closed system but have in fact the same meaning as above. In pa
the density matrix describes now the collective behavior of electrons and holes in the larger
system and not only in the open system. Based upon an explicit representation of the dilatio~see
Ref. 16!, we have established the notion of carrier and current density for this kind of non
adjoint Schro¨dinger-type operator in the spatially one-dimensional case~see Ref. 17!. We prove in
this article that the corresponding stationary dissipative Schro¨dinger–Poisson system~see Problem
4.4 for the rigorous setup of the problem!, i.e., the nonlinear Poisson equation with the charg
carrier densities associated with the quasi-Hamiltonian of some dissipative Schro¨dinger-type op-
erators, always has a solution in the spatially one-dimensional case. However, we do n
uniqueness of solutions.

At first glance the dissipative Schro¨dinger–Poisson system seems to be an artificial mo
with little reference to applications in science. This is not so, however, as the following close
reveals. In Ref. 1 we have investigated the widely used Schro¨dinger–Poisson system with quan
tum transmitting boundary conditions~see also Refs. 9 and 4!. The quantum transmitting
Schrödinger–Poisson system decomposes into dissipative Schro¨dinger–Poisson systems~see Ref.
1!. More precisely, there is a dissipative Schro¨dinger–Poisson system affiliated to each energy
the continuous scale of the quantum transmitting Schro¨dinger–Poisson system. Thus the bounda
coefficients of the Schro¨dinger operator depend on the energy, which leads to a family of d
pative Schro¨dinger-type operators labeled by the energy. The boundary conditions for Sc¨d-
inger’s operator with respect to which we investigate the Schro¨dinger–Poisson system in thi
article serve as a single energy approximation of a corresponding Schro¨dinger–Poisson system
with quantum transmitting boundary conditions~see Ref. 1!.

We note that dissipative Schro¨dinger–Poisson systems also have been considered in a
stationary setup~see Refs. 12 and 19!. In Ref. 2 a dissipative Schro¨dinger-type operator has bee
investigated which includes additional terms modeling generation and recombination of par

The article is organized as follows: In Sec. II we rigorously define the Schro¨dinger-type
operators~see also Ref. 15!, briefly introduce their dilations and generalized eigenfunction exp
sions~see also Ref. 16!, and recall the definition of the carrier density given in Ref. 17. In Sec
we introduce, following Ref. 13, the~nonlinear! carrier density operator assigning to the poten
in a Schro¨dinger operator the corresponding carrier density. The carrier density operator is
tinuous; the proof is based upon a relation between the generalized Fourier transform a
Lax–Phillips wave operator. Section IV deals with the rigorous setup of the dissip
Schrödinger–Poisson system,a priori estimates, and, finally, the existence of solutions.

II. NOTIONS AND DEFINITIONS

In this section we provide essential notions which are needed in the next sections to in
gate the carrier density operator and to give a precise definition of the dissipative Schro¨dinger–
Poisson system and its solution.

A. Notations

The Schro¨dinger–Poisson system will be regarded on the intervalV5(a,b). By L1 we
denote the space of real-valued, Lebesgue integrable functions on the interval@a,b#. The space of
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real-valued, Lebesgue measurable, and essentially bounded functions on@a,b# will be denoted by
L`. In order to avoid confusion we denote the space of complex-valued, square integrable
tions on the interval@a,b# by H and write~•,•! for the scalar product inH. Furthermore, we denote
by W1,2 the usual complex Sobolev spaceW1,2(a,b) and byC@a,b# the space of complex-valued
continuous functions on@a,b#.

If H1 ,H2 are Hilbert spaces, thenL1(H1 ;H2) denotes the space of nuclear operators fromH1

into H2 and L2(H1 ;H2) denotes the space of Hilbert Schmidt operators, each with its can
norm. We abbreviateL1(H;H)5L1(H) andL2(H;H)5L2(H). For Banach spacesX andY, we
denote byB(X;Y) the space of all linear, continuous operators fromX into Y. If X5Y, we write
B(X).

B. Poisson’s equation

One ingredient of the Schro¨dinger–Poisson system is, of course, Poisson’s equation w
determines the electrostatic potentialw on the interval (a,b):

2
d

dx S e~x!
d

dx
w~x! D5q~C~x!1u1~x!2u2~x!!, xP@a,b#, ~7!

whereu1 andu2 are the densities of holes and electrons, respectively,q is the magnitude of the
elementary charge,C is the doping profile of the semiconductor device, ande is the dielectric
permittivity. We regard the following mixed boundary conditions for Poisson’s equation~7!,

w~x!5wG~x!, if xPG,
~8!

2e~x!
d

dx
w~x!5k~x!~w~x!2wG~x!!, if xP$a,b%\G,

whereG#$a,b%. The functionwG , defined on@a,b#, represents the boundary values given onG
and the inhomogeneous boundary conditions of third kind on$a,b%\G. The functionk>0 is
defined on$a,b%. These boundary conditions describe the coupling of the semiconductor dev
its environment. In particular, the Dirichlet boundary part represents Ohmic~metal! contacts of the
semiconductor device~see, e.g., Refs. 28 and 10!.

C. Schrö dinger-type operators

The densitiesu1 andu2 of holes and electrons appearing on the right-hand side of Poiss
equation~7! are determined by density matrices%1 and %2 on the one hand and the spectr
properties of Schro¨dinger-type operatorsH1 andH2 on the other. Following the proposal in Re
13 we consider for each species~holes and electrons! a non-self-adjoint Schro¨dinger-type operator
H(V) ~we drop here the index ‘‘1’’ and ‘‘ 2’’ ! on the Hilbert spaceH. It is defined by

dom~H~V!!55 gPW1,2:

1

m
g8PW1,2,

1

2m~a!
g8~a!52kag~a!,

1

2m~b!
g8~b!5kbg~b!

6 ~9!

and

~H~V!g!~x!5~ l ~g!!~x!, gPdom~H~V!!, ~10!

where
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~ l ~g!!~x!ª2
1

2

d

dx

1

m~x!

d

dx
g~x!1V~x!g~x! ~11!

~see Refs. 15 and 16!. With respect to the coefficients in~9!–~11! we assume the functionm, i.e.,
the effective mass, is positive and obeysm, 1/mPL`; the boundary coefficientska , kb are from
the upper half-planeC1ª$zPC:I(z).0%. Furthermore, it is assumed hereafter that the occur
potentialsV are fromL`. We already know the following about the operatorsH(V).

Proposition 2.1: (See Ref. 15, Sec. 5, in particular Theorem 5.2.) The operator H(V) is
maximal dissipative and completely non-self-adjoint. The spectrum of H(V) consists of isolated
eigenvalues in the lower half-plane with the only accumulation point at infinity. Since the ope
H(V) is completely non-self-adjoint there do not exist real eigenvalues.

In order to prove resolvent estimates for the Schro¨dinger-type operatorH(V) we regard the
quadratic form associated withH(V) as a perturbation of a quadratic form which is independ
of the potentialV and we derive relative bounds with respect to the latter. To this end we intro
the sesquilinear formh0 ,

h0@g, f #ªE
a

b

dxH 1

2m~x!
g8~x! f 8~x!1g~x! f ~x!J , f ,gPdom~h0!5W1,2

~see Ref. 15!. The formh0 is symmetric and non-negative. Sinceh0 is closed there is a uniqu
self-adjoint operatorH0 with the representation

h0@g, f #5~H0g, f !, gPdom~H0!, f Pdom~h0!. ~12!

This operatorH0 can be explicitly described by~9!–~11! specifyingka5kb50 andV[1. Obvi-
ously, there isH0>I . In order to obtain further properties of the operatorsH(V) we introduce
certain quadratic forms in terms of whichH(V) can be understood as a~form! perturbation ofH0 .
We start with the boundary formt]V defined by

t]V@g, f #ª2kag~a! f ~a!2kbg~b! f ~b!, f ,gPdom~t]V!5W1,2.

Next we define the potential formtV ,

tV@g, f #ªE
a

b

dx V~x!g~x! f ~x!, f ,gPdom~tV!5W1,2,

and the form sum

t]V,Vªt]V1tV , dom~t]V,V!5W1,2.

As usual, we will denote the corresponding quadratic forms by the same symbols with a
argument. In the following we will supply relative form estimates fort]V , tV , and t]V,V with
respect toh0 .

Proposition 2.2: (See Ref. 15, Sec. 2, in particular 2.14–18.) The quadratic formt]V,V is
infinitesimally small with respect toh0 , i.e., there is a constant c such that for eachd .0

ut]V,V@ f #u<dh0@ f #1S c

d
1iViL`D i f iH

2 . ~13!

Hence, the quadratic form corresponding to the sesquilinear formhV given by

hV@g, f #ªh0@g, f #1t]V,V@g, f #2~g, f !5h0@g, f #1t]V,V21@g, f #, f ,gPdom~hV!5W1,2,
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is closed and sectorial. Consequently, there is a (unique) maximal sectorial operator H(V) such
that the representationhV@g, f #5(H(V)g, f ) is valid for gPdom(H(V)) and fPdom(hV). In
particular, the thus defined operator H(V) coincides with the operator given by (9)–(11).

Remark 2.3: The constant c in (13) can be specified as

c:5
~ ukau1ukbu!2g1

4m̃

2
, m̃:5max$1,imiL`%, ~14!

whereg1 is the Gagliardo–Nirenberg constant, i.e.,

iciC@a,b#<g1iciW1,2
1/2 iciH

1/2 for all cPW1,2. ~15!

Next we introduce an operatorBm(V) in order to give a factorization of the resolvent ofH(V)
~see Lemma 2.5!. For VPL` andm>0 the sesquilinear form

bm~V!@ f ,g#ªt]V,V21@~H01m!21/2f ,~H01m!21/2g#, f ,gPdom~bm~V!!5H,

defines a bounded operatorBm(V) onH. For the following considerations the norm of the opera
Bm(V) is of fundamental interest.

Lemma 2.4: If VPL` and m>0, then

iBm~V!iB~H)<d1S c

d
111iViL`D 1

11m
for all dP~0,1! ~16!

with c according to (14). In particular, if

m>4c1212iViL`, ~17!

then iBm(V)iB~H),1 and

i~ I 1Bm~V!!21iB~H)<
2~m11!

m2124c22iViL`
. ~18!

Proof: Equation ~16! follows from ~13!. Setting d51
2 we get from ~16! and ~17! that

iBm(V)iB~H),1. The last assertion follows from~16!, ~17! and the representation of the resolve
by Neumann’s series. h

Lemma 2.5: If VPL` and m>4c1212iViL` with c given by (14), then

~H~V!1m!215~H01m!21/2~ I 1Bm~V!!21~H01m!21/2. ~19!

Proof: For any f ,gPW1,2 andm.0 one has

hV@g, f #1m~g, f !5~~H01m!1/2g,~H01m!1/2f !1t]V,V21@g, f #,

which yields

hV@g, f #1m~g, f !5~~ I 1Bm~V!!~H01m!1/2g,~H01m!1/2f !.

From Lemma 2.4 we getiBm(V)iB~H),1. Hence, the inverse operator ofI 1Bm(V) exists and is
bounded. Therefore, the definition

Rm~V!ª~H01m!21/2~ I 1Bm~V!!21~H01m!21/2

is justified. SinceRm(V)gPW1,2 for all gPH we have
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hV@Rm~V!g, f #1m~Rm~V!g, f !5~~H01m!1/2Rm~V!g,~H01m!1/2f 1t]V,V21@Rm~V!g, f #,

gPH, f PW1,2.

Consequently, we obtain

hV@Rm~V!g, f #1m~Rm~V!g, f !5~~ I 1Bm~V!!21~H01m!21/2g,~H01m!1/2f !

1~Bm~V!~ I 1Bm~V!!21~H01m!21/2g,~H01m!1/2f !,

which shows that

hV@Rm~V!g, f #1m~Rm~V!g, f !5~g, f !, gPH, f PW1,2. ~20!

The relation~20! implies thatRm(V)gPdom(H(V)) and (H(V)1m)Rm(V)g5g for any gPH.
Similarly, one proves thatRm(V)(H(V)1m)g5g for any gPdom(H(V)). Hence, (H(V)
1m)215Rm(V). h

D. Dilations

In the conceptual framework of quantum mechanics, physical quantities, such as the de
of electrons and holes regarded here, are derived from a Hamiltonian, i.e., a self-adjoint op
on some Hilbert space. This procedure cannot be directly applied to open quantum sy
Instead we proceed as follows: first we embed the open quantum system into an appropriate
one and define physical quantities with respect to the closed system; finally one makes
‘‘projection’’ onto the open~sub-!system~see Remark 2.6!. This section deals with the construc
tion of the covering closed system. In Sec. II C we have stated the spectral properties
~completely non-self-adjoint! pseudo-HamiltonianH(V). Based upon these results we will no
derive a Hamiltonian on an appropriate Hilbert space which serves as a quasi-Hamiltonian
open quantum system under consideration. SinceH(V) is a maximal dissipative operator there
a larger Hilbert spaceK$H and a self-adjoint operatorK(V) on K such that

PH
K~K~V!2z!21uH5~H~V!2z!21, I~z!.0, ~21!

where PH
K denotes the projection fromK onto H ~see Ref. 8!. The operatorK(V) is called a

self-adjoint dilation of the maximal dissipative operatorH(V). Obviously, from the condition~21!
one gets

PH
K~K~V!2z!21uH5~H~V!* 2z!21, I~z!,0.

If the condition

clospan
zPC\R

~K~V!2z!21H5K

is satisfied, thenK(V) is called a minimal self-adjoint dilation ofH(V). Minimal self-adjoint
dilations of maximal dissipative operators are determined up to an isomorphism, that mea
minimal self-adjoint dilations are unitarily equivalent.

A special feature of the spatially one-dimensional case is that the resolvent of the di
K(V) of H(V) can be described by the characteristic functionUH(V)(z) of H(V) ~see Ref. 8!. The
definition of the characteristic function relies on the boundary operatorsT(V)(z):H→C2,
zPres(H(V)), andT* (V)(z):H→C2, zPres(H(V)* ) which we will introduce now. To that end
let us define the operator

a:H→C2, a f 5S abf ~b!

2aaf ~a! D , f Pdom~a!5C@a,b#,
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where

ka5qa1
i

2
aa

2 and kb5qb1
i

2
ab

2, qa ,qbPR, aa ,ab.0.

Now the boundary operators are given by

T~V!~z! fªa~H~V!2z!21f , T* ~V!~z! fªa~H~V!* 2z!21f , f PH. ~22!

The characteristic functionUH(V) of the maximal dissipative operatorH(V) is a two-by-two
matrix-valued function which satisfies the relation

UH~V!~z!T~V!~z! f 5T* ~V!~z! f , zPres~H~V!!ùres~H~V!* !, f PH.

It is a holomorphic function on res(H(V))ùres(H(V)* ) and contractive onC2øR, i.e.,

iUH~V!~z!iB~C2!<1 for zPC2øR.

The characteristic function ofH(V) is given by

UH~V!~z!5I C22 iaT~V!~ z̄!*

~see Ref. 16!. We now explicitly describe the resolvent of the minimal self-adjoint dilationK(V)
of the maximal dissipative operatorH(V) ~see Ref. 16!. The dilation spaceK is given by

K5D2 % H% D1 , ~23!

whereD6ªL2(R6 ,C2). In accordance with~23! we write fW5( f 2 , f , f 1)PK. The resolvent of
K(V) is given by

~K~V!2z!21~ f 2 , f , f 1!5H ~g2 ,g,g1! if I~z!.0,

~h2 ,h,h1! if I~z!,0,
~24!

where

g2~x!5 i E
2`

x

dy ei ~x2y!zf 2~y!, xPR2 ,

g~x!5~~H~V!2z!21f !~x!1 i S T* ~V!~ z̄!* E
2`

0

dy e2 iyzf 2~y! D ~x!, xP~a,b!,

g1~x!5 i E
0

x

dy ei ~x2y!zf 1~y!1 ieizx~T~V!~z! f !~x!1 iUH~V!~ z̄!* E
2`

0

dy ei ~x2y!zf 2~y!,

xPR1 ,

and

h2~x!52 i E
x

0

dy ei ~x2y!zf 2~y!2 ieizx~T* ~V!~z! f !~x!2 iUH~V!~z!E
0

`

dy ei ~x2y!zf 1~y!,

xPR2 ,

h~x!5~~H~V!* 2z!21f !~x!2 i S T~V!~ z̄!* E
0

`

dy e2 iyzf 1~y! D ~x!, xP~a,b!,
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h1~x!52 i E
x

`

dy ei ~x2y!zf 1~y!, xPR1 .

The self-adjoint operatorK(V) is absolutely continuous and its spectrum coincides with the
axis, i.e., spec(K(V))5R. The multiplicity of its spectrum is two. For more details, see Ref.

E. Eigenfunction expansions

We are interested in an explicit expression for the densities of electrons and holes.
spatially one-dimensional open quantum system with a quantum transmitting boundary9 the par-
ticle density can be expressed in terms of a density matrix, describing the collective beha
the particles, and of certain generalized eigenfunctions of a Schro¨dinger operator~see Refs. 4 and
1!. An analogous concept is on the agenda of this article~see Sec. II F!. In pursuit of this goal we
recall the properties of the generalized eigenfunctions of the quasi-HamiltonianK(V) which has
been defined in Sec. II D. The generalized eigenfunctionscW (V)(•,l,t), lPR, t5a, b, of K(V)
are given by~see Ref. 16!

cW ~V!~x,l,t!ª5
c2~V!~x,l,t!ª

1

A2p
eixlet , xPR2 ,

c~V!~x,l,t!ª
1

A2p
~~T* ~V!~l!!* et!~x!, xP~a,b!,

c1~V!~x,l,t!ª
1

A2p
eixlUH~V!~l!* et , xPR1 ,

where the argumentx has to be interpreted in the sense of~23! and

ebªS 1
0D , eaªS 0

1D .

The generalized eigenfunctions ofK(V) are orthogonal~see Ref. 16!, and their linear span
~modulo the scalar, continuous, compactly supported functions! is dense inK. We note that the
generalized eigenfunctionscW (V)(•,l,t) are usually called the incoming eigenfunctions. Using
incoming eigenfunctions one defines a transformationF(V):K→L2(R,C2)

~F~V!gW !~l!5..ĝ~l!5S ĝb~l!

ĝa~l! D ,

where

ĝt~l!ªE
R2

dx^g2~x!,c2~V!~x,l,t!&C21E
a

b

dx g~x!c~V!~x,l,t!

1E
R1

dx^g1~x!,c1~V!~x,l,t!&C2,

andgW 5(g2 ,g,g1), t5a, b. F(V) is unitary and called the incoming Fourier transformation. T
inverse incoming Fourier transformationF(V)21 is given by

~F~V!21ĝ!~• !5E
R
dl (

t5a,b
cW ~V!~•,l,t!ĝt~l!, ĝPL2~R,C2!.

We note that

F~V!K~V!F~V!215M ,
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whereM is the multiplication operator by the independent variablel on L2(R,C2), i.e.,

~Mĝ!~l!ªlĝ~l!, ĝPdom~M !, lPR,
~25!

dom~M !ª$ĝPL2~R,C2!:MĝPL2~R,C2!%.

The representation~25! induced byF(V) is called the incoming spectral representation ofK(V).
Finally, we note that each bounded self-adjoint operatorG on K, which commutes withK(V),
corresponds to a measurable functionĜPL`(R,B(C2)). The multiplication operator onL2(R,C2)
generated byĜ, which we also denote byĜ and which is defined by

~Ĝĝ!~l!ªĜ~l!ĝ~l!, ĝPdom~Ĝ!, lPR,
~26!

dom~Ĝ!ª$ĝPL2~R,C2!:ĜĝPL2~R,C2!%,

is unitarily equivalent toG, which meansF(V)GF(V)215Ĝ ~see Ref. 3, 4.4.2. Proposition 18!.
The representation~26! is called the incoming spectral representation ofG. The incoming Fourier
transformF(V) is related to the Lax–Phillips wave operators~see Ref. 17, Remark 5.2!. Since

e2 i tK ~V!D2#D2 , t<0,

e2 i tK ~V!D1#D1 , t>0,

as well as

ù
tPR

e2 i tK ~V!D25ù
tPR

e2 i tK ~V!D15$0%,

~27!

ø
tPR

e2 i tK ~V!D25ø
tPR

e2 i tK ~V!D15K

the subspacesD2 andD1 are called incoming and outgoing subspaces with respect toe2 i tK (V)

~see Ref. 3, Chap XII or Ref. 20!. Further, introducing the Hilbert spaceK0 ,

K0ªL2~R,C2!5D2 % D1#K5D2 % H% D1 ,

and the self-adjoint differentiation operatorK0 ,

~K0f !~x!52 i
d

dx
f ~x!, f Pdom~K0!5W1,2~R,C2!,

one easily verifies thatD2 andD1 are incoming and outgoing subspaces with respect toe2 i tK 0.
The Lax–Phillips wave operators are defined by

W6~K~V!,K0 ;J6!ªs2 lim
t→6`

eitK ~V!J6e2 i tK 0,

with identification operatorsJ6 :K0→K given by

J2 fª~PD2

K0 f ,0,0!, f PK0 ,

J1 fª~0,0,PD1

K0 f !, f PK0 ,

where PD2

K0 , PD1

K0 denote the projection fromK0 onto D2 and fromK0 onto D1 , respectively.

Since
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e2 i tK ~V!uD25e2 i tK 0uD2 , t<0,

e2 i tK ~V!uD15e2 i tK 0uD1 , t>0,

the wave operators exist. Using~27! one proves the completeness of the wave operators,
ran(W6(K(V),K0 ;J6))5K. For details~see Ref. 3, Chap. XII or Ref. 20!. Defining the Fourier
operatorF:L2(R,C2)→L2(R,C2) by

~Ff !~l!ª
1

A2p
E

R
dx e2 ixl f ~x!, f PL2~R,C2!, lPR,

one gets the representation

F~V!5FW2~K~V!,K0 ;J2!* ~28!

~see Ref. 17, Remark 5.2!.

F. Carrier densities

Following Ref. 17, we now introduce the particle density and express it in terms o
generalized eigenfunctions~see Sec. II E! of the quasi-Hamiltonian associated with a dissipat
open quantum system~see Sec. II D!. An operator%PB~K! is called a density matrix if% is
non-negative and self-adjoint. The operator% is a steady state, if% commutes withK(V). Thus
any steady-state% is unitarily equivalent to a multiplication operator%̂ on the Hilbert space
L2(R,C2) induced by a measurable function from the spaceL`(R,B(C2)); we denote this func-
tion by the same symbol%̂ as the multiplication operator. In the following we assume that
function %̂ is fixed, i.e., the function%̂ does not depend on the potentialV. This leads to a steady
state of the form

%~V!5F~V!21%̂F~V!, ~29!

which depends onV. In order to define the carrier densityu%̂(V) one has to introduce the carrie
density observable in terms of the generalized eigenfunctions as defined in Sec. II E:

D~V!~x,l!ªS uc~V!~x,l,b!u2 c~V!~x,l,a!c~V!~x,l,b!

c~V!~x,l,b!c~V!~x,l,a! uc~V!~x,l,a!u2 D .

With respect to the carrier density observableD(V)(x,l) one defines the carrier density atx
P@a,b# and at energylPR by

u%̂~V!~x,l!ªtr~ %̂~l!D~V!~x,l!!>0.

The carrier densityu%̂(V) is given by

u%̂~V!~x!5E
R
dl u%̂~V!~x,l!. ~30!

If the function %̂ satisfies the condition

C%̂ª sup
lPR

Al211i%̂~l!iB~C2!,`, ~31!

then the definition~30! makes sense for a.e.xP@a,b#. Moreover, in this caseu%̂(V) is a non-
negativeand integrablefunction. Furthermore,PH

K(K(V)2 i )21PL1(K) and the estimate
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iu%̂~V!iL15tr~%~V!PH
K!<C%̂i~K~V!2 i !21PH

KiL1~K! ~32!

is valid ~see Ref. 17!. Let us introduce the operator

~M ~h! fW !~x!ª~0,h~x! f ~x!,0!, fW5~ f 2 , f , f 1!Pdom~M ~h!!5K,

for functionshPL`. If the condition~31! is satisfied, then

E
a

b

dx u%̂~V!~x!h~x!5tr~%~V!M ~h!! ~33!

for any hPL` ~see Ref. 17!.
Remark 2.6: In order to express the carrier density via the density matrix, only the acti

the density matrix%(V) on multiplication operators on the small Hilbert spaceH is of interest
[see (33)]. This is exactly what we have addressed as ‘‘projection’’ onto the open quantum s
in the introduction of Sec. II D.

III. THE CARRIER DENSITY OPERATOR: BOUNDEDNESS AND CONTINUITY

As in Refs. 13 and 14 we introduce the~nonlinear! carrier density operatorN%̂ :L`→L1

defined by

N%̂~V!ªu%̂~V!, VPdom~N%̂!5L`, ~34!

whereu%̂(V) is the carrier density defined by~30!. The dissipative Schro¨dinger–Poisson system i
essentially a nonlinear Poisson equation~1! with density operators of the form~34! for electrons
and holes as nonlinearities on the right-hand side of~1!. In Sec. IV we prove the existence o
solutions of the dissipative Schro¨dinger–Poisson system by means of Schauder’s fixed p
theorem. To that end we need bounds of the carrier density operator and its continuity. Let
give a bound for the carrier density operator.

Theorem 3.1:Suppose VPL`. If the spectral representation%̂ of a density matrix%(V) [see
(29)] obeys (31), then

iN%̂~V!iL1<C%̂~814A2~b2a!AimiL`A8c1514iViL`

18A2g1~aa
21ab

2!1/2iH0
21/2iB~H;W1,2)

1/2
~8c1514iViL`!1/4!, ~35!

where c is defined by (14).
Proof: In view of ~32! it suffices to estimatei(K(V)2 i )21PH

KiL1(K) . Using ~24!, we obtain
the equation

~K~V!2 i !21PH
K fW5~0,~H~V!2 i !21f ,ie2•T~V!~ i ! f 1!,

where fW5( f 2 , f , f 1). Thus, one can estimate

i~K~V!2 i !21PH
KiL1~K!<i~H~V!2 i !21iL1~H!1i ie2•T~V!~ i !iL1~H;D1! . ~36!

We estimate the first addend on the right-hand side. Letm be a sufficiently large positive numbe
~to be specified later!. We write

~H~V!2 i !215~H~V!1m!21~11~m1 i !~H~V!2 i !21!. ~37!

SinceH(V) is a maximal dissipative operator one hasi(H(V)2 i )21iB~H)<1. Thus,~37! implies

i~H~V!2 i !21iL1~H!<~21m!i~H~V!1m!21iL1~H! . ~38!
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Applying the factorization formula~19! one gets

i~H~V!1m!21iL1~H!<i~H01m!21/2iL2~H!
2 i~ I 1Bm~V!!21iB~H) .

The first factor of the right-hand side can be estimated~see the Appendix!

i~H01m!21/2iL2~H!
2 <

1

11m
1AimiL`

b2a

A2

1

A11m
.

Hence,

i~H~V!2 i !21iL1~H!<S 21m

11m
1AimiL`

b2a

A2

21m

A11m
D i~ I 1Bm~V!!21iB~H)

<~21A2AimiL`~b2a!A11m!i~ I 1Bm~V!!21iB~H) .

Settingm52(4c1212iViL`) and taking into account~18! one gets

i~ I 1Bm~V!!21iB~H)<4,

which finally implies

i~H~V!2 i !21iL1~H!<814A2~b2a!AimiL`A8c1514iViL`. ~39!

Now we are going to estimate the second term on the right-hand side of~36!. Since
ie2•

^ I C2iL1(C2;D1)5A2, we get, using Eq.~22!, that

i ie2•T~V!~ i !iL1~H;D1!<A2~aa
21ab

2!1/2i~H~V!2 i !21iB~H;C@a,b#) .

It remains to estimatei(H(V)2 i )21iB~H;C@a,b#) . Taking into account~37! one obtains@analogous
to ~38!#

i~H~V!2 i !21iB~H;C@a,b#)<~21m!i~H~V!1m!21iB~H;C@a,b#) .

As in the previous part of the proof we putm52(4c1212iViL`) and afterwards substitut
(H(V)1m)21 via the factorization formula~19!. This leads to the following estimate:

i~H~V!2 i !21iB~H;C@a,b#)<~m12!i~H01m!21/2iB~H;C@a,b#)i~H01m!21/2iB~H;C@a,b#)

3i~ I 1Bm~V!!21iB~H)i~H01m!21/2iB~H) .

By i(I 1Bm(V))21iB~H)<4 andi(H01m)21/2iB~H)<1/A11m one gets

i~H~V!2 i !21iB~H;C@a,b#)<4
21m

A11m
i~H01m!21/2iB~H;C@a,b#) . ~40!

We estimate the last factor in this inequality by the Gagliardo–Nirenberg inequality~15!. For any
cPH one has
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i~H01m!21/2ciC@a,b#<g1i~H01m!21/2ciW1,2
1/2 i~H01m!21/2ciH

1/2

<g1iH0
21/2iB~H;W1,2)

1/2 i~H01m!21/2iB~H)
1/2 iciH

<g1

iH0
21/2iB~H;W1,2)

1/2

~11m!1/4
iciH .

This yields

i~H01m!21/2iB~H;C@a,b#)<g1

iH0
21/2iB~H;W1,2)

1/2

~11m!1/4
.

Together with~40! this gives

iH~V!2 i )21iB~H;C@a,b#)<8g1iH0
21/2iB~H,W1,2)

1/2
~11m!1/4.

Inserting the chosenm52(4c1212iViL`), we obtain for the second addend on the right-ha
side of ~36!:

i ie2•T~V!~ i !iL1~H;D1!<8A2g1~aa
21ab

2!1/2iH0
21/2iB~H;W1,2)

1/2
~8c1514iViL`!1/4.

Fitting together~32!, ~36!, ~39!, and the last estimate completes the proof of~35!. h

Remark 3.2: One can prove that the carrier density operator takes its values not only in L1 but
in L2. Additionally, one can prove estimates similar to (35). These facts are not needed i
article; they become, however, essential if one wants to include recombination effects of ele
and holes into the model.

Our next aim is to verify the continuity of the carrier density operator. To this end we nee
continuity of the incoming Fourier transformation in dependence of the potentialV.

Lemma 3.3: If V, VnPL`, n51,2,...,and Vn→
L`

V asn→`, then

s2 lim
n→`

F~Vn!5F~V!. ~41!

Proof: The potentialsV and Vn define self-adjoint multiplication operators on the Hilbe
spaceH. We denote these operators by the same symbols and extend them to the dilation sK
setting

V̂5~0,V,0! and V̂n5~0,Vn,0!, n51,2,... .

Obviously, one has

K~V!5K~0!1V̂ and K~Vn!5K~0!1V̂n ,

n51,2,... . Hence

~K~Vn!2 i !212~K~V!2 i !215~K~Vn!2 i !21~V̂2V̂n!~K~V!2 i !21,

n51,2,... . Using (V̂2V̂n)5(V̂2V̂n)PH
K , n51,2,..., we obtain the representation

~K~Vn!2 i !212~K~V!2 i !215~K~Vn!2 i !21~V̂2V̂n!PH
K~K~V!2 i !21, ~42!

n51,2,... . Since PH
K(K(V)2 i )21 is a nuclear operator the resolvent differen

(K(Vn)2 i )212(K(V)2 i )21 is a nuclear operator, too. By Ref. 18, Theorem X.4.12, the w
operators
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W2~K~Vn!,K~V!!5s2 lim
t→2`

eitK ~Vn!e2 i tK ~V!

as well as

W2~K~V!,K~Vn!!5s2 lim
t→2`

eitK ~V!e2 i tK ~Vn!, n51,2,...,

exist and are complete. Note thatW2(K(Vn),K(V))* 5W2(K(V),K(Vn)). Using the chain rule
for wave operators~Ref. 3, Theorem III.21! we find the representation

W2~K~Vn!,K0 ;J2!5W2~K~Vn!,K~V!!W2~K~V!,K0 ;J2!

for n51,2,..., which yields

W2~K~Vn!,K0 ;J2!* 5W2~K~V!,K0 ;J2!* W2~K~V!,K~Vn!! ~43!

for n51,2,... . Furthermore, from~42! one gets the estimate

i~K~Vn!2 i !212~K~V!2 i !21iL1~K!<iV2VniL`iPH
K~K~V!2 i !21iL1~K! ,

n51,2,..., which implies

lim
n→`

i~K~Vn!2 i !212~K~V!2 i !21iL1~K!50. ~44!

Therefore~see also Ref. 18, Remark X.4.17!,

s2 lim
n→`

W2~K~Vn!,K~V!!5W2~K~V!,K~V!!5I K ,

which yields

w2 lim
n→`

W2~K~Vn!,K~V!!* 5w2 lim
n→`

W2~K~V!,K~Vn!!5I K .

SinceW2(K(V),K(Vn)), n51,2,..., is a sequence of unitary operators we obtain

s2 lim
n→`

W2~K~V!,K~Vn!!5I K .

Finally, from ~28! and ~43! we get the representation

F~Vn!5F~V!W2~K~V!,K~Vn!!, n51,2,... .

Using s2 limn→` W2(K(V),K(Vn))5I K we complete the proof. h

Now we can verify the continuity of the carrier density operator.
Theorem 3.4: Let VPL`, VnPL`, n51,2,... . If %̂ satisfies the condition (31) an

Vn→
L`

V as n→`, then u%̂(Vn)→
L1

u%̂(V) as n→`, i.e.,

lim
n→`

E
a

b

dx uu%̂~Vn!~x!2u%̂~V!~x!u50, ~45!

i.e., the carrier density operatorN%̂ :L`→L1 is continuous.
Proof: By ~33! we have the representation

E
a

b

dx~u%̂~Vn!~x!2u%̂~V!~x!!h~x!5tr~~%~Vn!2%~V!!M ~h!! ~46!
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for eachhPL` andn51,2,... . Since

tr~%~V!M ~h!!5tr~%~V!~K~V!1 i !~K~V!1 i !21M ~h!!,

one gets

tr~~%~Vn!2%~V!!M ~h!!5tr~%~Vn!~K~Vn!1 i !$~K~Vn!1 i !212~K~V!1 i !21%M ~h!!

1tr~~%~Vn!~K~Vn!1 i !2%~V!~K~V!1 i !!~K~V!1 i !21M ~h!!

~47!

for n51,2,... . By~31! we have

i%~Vn!~K~Vn!1 i !iB~K)<C%̂

and therefore

utr~%~Vn!~K~Vn!1 i !~~K~Vn!1 i !212~K~V!1 i !21!M ~h!!u

<C%̂i~K~Vn!1 i !212~K~V!1 i !21iL1~K! ~48!

for n51,2,... . We set

k̂~l!ª%̂~l!~l1 i !, lPR,

and identify this matrix-valued function with the multiplication operatork̂ induced by k̂ on
L2(R,C2). In this notation there is

%~Vn!~K~Vn!1 i !5F~Vn!21k̂F~Vn!, n51,2,...,

%~V!~K~V!1 i !5F~V!21k̂F~V!.

Hence the representation

%~Vn!~K~Vn!1 i !2%~V!~K~V!1 i !5~F~Vn!212F~V!21!k̂F~Vn!1F~V!k̂~F~Vn!2F~V!!
~49!

is valid. From~49! we deduce the estimate

utr~~%~Vn!~K~Vn!1 i !2%~V!~K~V!1 i !!~K~V!1 i !21M ~h!!u

<C%̂i~F~Vn!2F~V!!PH
K~K~V!2 i !21iL1~K;L2~R,C2!!ihiL`

1C%̂i~F~Vn!2F~V!!~K~V!1 i !21PH
KiL1~K;L2~R,C2!!ihiL`. ~50!

Taking into account~47!, ~48!, and~50! we finally get the estimate

utr~~%~Vn!2%~V!!M ~h!!u<C%̂~ i~K~Vn!1 i !212~K~V!1 i !21iL1~K!

1i~F~Vn!2F~V!!PH
K~K~V!2 i !21iL1~K;L2~R,C2!!

1i~F~Vn!2F~V!!~K~V!1 i !21PH
KiL1~K;L2~R,C2!!ihiL`!.

Sinceh is arbitrary we obtain from~46! the estimate
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E
a

b

dx u~u%̂~Vn!~x!2u%̂~V!~x!!u<C%̂~ i~K~Vn!1 i !212~K~V!1 i !21iL1~K!

1i~F~Vn!2F~V!!PH
K~K~V!2 i !21iL1~K;L2~R,C2!!

1i~F~Vn!2F~V!!~K~V!1 i !21PH
KiL1~K;L2~R,C2!!!.

According to ~44! the first addend on the right-hand side goes to zero asn→`. Since
PH

K(K(V)2 i )21 is a trace class operator, one gets by~41! that the second addend on the righ
hand side tends to zero, too. Similarly one proves that the third addend tends to zero. h

IV. THE DISSIPATIVE SCHRÖDINGER–POISSON SYSTEM

In this section we first give a rigorous definition of the dissipative Schro¨dinger–Poisson
system. The solution of the dissipative Schro¨dinger–Poisson system is defined as a self-consis
solution of the nonlinear Poisson equation~1! with density operators of the form~34! for electrons
and holes as nonlinearities on the right-hand side of~1!. We show that the existence problem of
solution can be reformulated as a fixed point problem for a certain nonlinear map. App
Schauder’s fixed point theorem we find that a solution always exists. From the technical po
view one has to ensure that this map is continuous and compact and has an invariant boun
convex set. Let us first introduce some further notations:

Definition 4.1: We denote the real part of W1,2 by WR
1,2. Let G,$a,b% be the (possibly empty

Dirichlet boundary of Poisson’s equation. We define

WG
1,2
ªWR

1,2ù$c:c~G!,$0%%.

By WG
21,2 we denote the dual space of WG

1,2 and by ^•,•&1 the dual pairing between WG
1,2 and

WG
21,2. In the following we denote the embedding operator from L1 into WG

21,2 by E1 and its norm
by «1 . Moreover, we denote by Èthe dual to E1 , i.e., the embedding operator of WR

1,2 into L` the
norm of which is also«1 .

Following Ref. 17 we deal with a dissipative Schro¨dinger–Poisson system constituted by tw
dissipative Schro¨dinger-type operatorsH6(V6):

H6~V6!52
1

2

d

dx

1

m6

d

dx
1V6 ,

one for electrons~indexed ‘‘2’’ ! and one for holes~indexed ‘‘1’’ ! and Poisson’s equation~7!;
please note that\ is scaled to 1. The dissipative Schro¨dinger-type operators are determined by t
effective massesm6 , the boundary coefficientska

6 , kb
6 and the potentialsV6 which are of the

form

V65V0
66qw,

where V0
6 are external potentials representing the band-edge offsets andw is the electrostatic

potential which is determined by Poisson’s equation. To formulate Poisson’s equation one
the dielectric permittivitye, the doping profileC, and the functionsk andwG @see~8!#.

Assumption 4.2: With respect to the data of the problem we assume the following:
(A1

6) The effective masses m6 are positive and obey m6 , 1/m6PL`.
(A2

6) The boundary coefficientska
6 , kb

6 are from the upper half-planeC1 .
(A3

6) The external potentials V0
6 belong to L`.

(A4
6) The matrix-valued functions%̂6PL`(R,B(C2)) satisfy (31).

(A5) The doping profile C belongs to WG
21,2.

(A6) The dielectric permittivitye is positive and obeyse, 1/ePL`. We set
ẽªmax$1,i1/eiL`%.
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(A7) The setG is not empty, or at least one of the numbers k(x)>0, xP$a,b%\G, is
strictly positive.

(A8) The functionwG is from the space WR
1,2.

To each Schro¨dinger operatorH6(V6) corresponds a minimal self-adjoint dilationK6(V6).
As in Sec. II F the functions%̂6 define steady states%6(V6), i.e., non-negative self-adjoin
operators which commute withK6(V6). The carrier densitiesu

%̂6

6 (V6) for electrons and holes

are defined as in Sec. II F. Notice that the electron densityu
%̂2

2 (V2) is determined by the electro

quantitiesm2 , ka
2 , kb

2 , andV0
2 , while the hole densityu

%̂1

1 (V1) refers tom1 , ka
1 , kb

1 , and

V0
1 . The corresponding carrier density operators are denoted byN

%̂2

2 andN
%̂1

1 , respectively.

A. Rigorous setup of the problem

First we give a rigorous definition of Poisson’s equation and afterwards define what we
solution of the dissipative Schro¨dinger–Poisson system.

Definition 4.3: The linear Poisson operatorP:WR
1,2→WG

21,2 is defined by

^Py,§&15E
a

b

dx e~x!y8~x!§8~x!1 (
xP$a,b%\G

k~x!y~x!§~x!, yPWR
1,2, §PWG

1,2.

The restriction ofP to the subspace WG
1,2 will be denoted byP0 .

We have

u^Py,§&1u<S ieiL`1 (
xP$a,b%\G

k~x!«1
2D iyiWR

1,2i§iW
G
1,2.

HenceP is continuous. Furthermore, we get

iwiW
G
1,2

2
<~11gk!S E

a

b

dx uw8~x!u21 (
xP$a,b%\G

k~x!uw~x!u2D ,;wPWG
1,2, ~51!

with

gkª sup
0ÞcPWG

1,2

E
a

b

dx c~x!2

E
a

b

dx uc8~x!u21 (
xP$a,b%\G

k~x!uc~x!u2
.

Because the case of purely homogeneous Neumann conditions is excluded by (A7), see Assump-
tion 4.2, the constantgk is indeed finite. Thus,~51! implies

iwiW
G
1,2

2
<ẽ~11gk!u^P0w,w&1u.

Therefore, we get by the Lax–Milgram lemma that the inverse ofP0 exists and its norm does no
exceedẽ(11gk). We now state what is a solution of the dissipative Schro¨dinger–Poisson system

Problem 4.4: Let us assume that u6PL1. We saywPWR
1,2 satisfies Poisson’s equation (7)

w2wGPWG
1,2 satisfies

P0~w2wG!5D1qE1u12qE1u2,

where DªqC2w̃G andw̃G is the linear formy °*a
bdx e(x)wG8 (x)y8(x), on WG

1,2. We say a triple
(w,u1,u2)PWR

1,23L13L1 satisfies the dissipative Schro¨dinger–Poisson system ifw satisfies
Poisson’s equation as well as

u15u
%̂1

1
~V0

11qE`w! and u25u
%̂2

2
~V0

22qE`w!.
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B. Existence of solutions and a priori estimates

We now prove that the dissipative Schro¨dinger–Poisson system always admits a solution
investigate these solutions. Following Ref. 13, we define a mapping the fixed points of w
exactly determine the solutions of the dissipative Schro¨dinger–Poisson system.

By J:L13L1→WR
1,2 we denote the map which assigns to (u1,u2)PL13L1 the solution of

Poisson’s equation. Obviously, the mapJ is continuous. Further, we defineC:L`→WR
1,2 by

C:W→~N%̂1

1
~V0

11qW!,N
%̂2

2
~V0

22qW!!→J~N
%̂1

1
~V0

11qW!,N
%̂2

2
~V0

22qW!).

Since the mapJ:L13L1→WR
1,2 is continuous and by Proposition 3.4 the mapsN6:L`→L1

are also continuous, the mapC:L`→WR
1,2 is continuous, too. WithC we associate the ma

C` :L`→L`,

C`ªE`C,

which is also continuous. Moreover, sinceE` is compact, the mapC` is also compact.
Lemma 4.5: An element WPL` is a fixed point ofC` if and only if the triple

~C~W!,u1,u2!5~C~W!,u
%̂1

1
~V0

11qW!,u
%̂2

2
~V0

22qW!!

satisfies the dissipative Schro¨dinger–Poisson system.
The proof is obvious. Notice thatE`C(W)5C`(W)5W for any fixed pointW. To prove the

central results of this chapter, we also need the following technical lemma.
Lemma 4.6: Lets1 , s2 , s3 be three strictly positive numbers and let x0 be the smallest

positive root of the polynomial p:x°x42s1x22s2x2s3 . Then for all x.x0 one has
p(x).0. In particular, p does not admit other positive roots.

Proof: It is clear that at least one positive rootx0 exists. Then one has forx5tx0 with
t.1:

p~x!5t4x0
42s1t2x0

22s2tx02s3

5t4~s1x0
21s2x01s3!2s1t2x0

22s2tx02s3

5s1t2~ t221!x0
21s2t~ t321!x01s3~ t421!.0.

This shows that a positive root larger thanx0 does not exist. h

Let c6 be the constants defined by~14!. We specifys1 , s2 , s3 to

s1ª8A2q3/2~b2a!«1
2ẽ~11gk!~C%̂1

Aim1i1C%̂2
Aim2i !, ~52!

s2ª16q5/4g1«1
2ẽ~11gk!~C%̂1

p11C%̂2
p2!, ~53!

s3ª«1~ iwGiWR
1,21 ẽ~11gk!~ iDiW

G
21,21q«1~C%̂1

r 11C%̂2
r 2!!!, ~54!

whereC%̂6
are according to~31!, c6 according to~14!, and

p6ª~~aa
6!21~ab

6!2!1/2i~H0
6!21/2iB~H,W1,2)

1/2 , ~55!

r 6ª814A2~b2a!Aim6iL`A8c61514iV0
6iL`

18A2g1~~aa
6!21~ab

6!2!1/2i~H0
6!21/2iB~H;W1,2)

1/2
~8c61514iV0

6iL`!1/4. ~56!

Theorem 4.7:The following statements are true:
(1) The mappingC` :L`→L` always has a fixed point.
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(2) If x0 is the (unique) positive root of the polynomial p:x→x42s1x22s2x2s3 , then for
any fixed point W ofC` the inequality

iWiL`<x0
4 ~57!

holds.
Proof: One has

iJ~u1,u2!iWR
1,2<iwGiWR

1,21iP0
21~D1qu12qu2!iW

G
1,2

<iwGiWR
1,21 ẽ~11gk!iD1qu12qu2iW

G
21,2

<iwGiWR
1,21 ẽ~11gk!~ iDiW

G
21,21q«1~ iu1iL11iu2iL1!!,

which implies

iE`J~u1,u2!iL`<«1iwGiWR
1,21«1ẽ~11gk!~ iDiW

G
21,21q«1~ iu1iL11iu2iL1!!. ~58!

Sinceu65N
%̂6

6 (V6) one gets from~35! the estimate

iu6iL1<C%̂6
~814A2~b2a!Aim6iL`A8c61514iV6iL`

18A2g1~~aa
6!21~ab

6!2!1/2i~H0
6!21/2iB~H,W1,2)

1/2
~8c61514iV6iL`!1/4!.

By V65V0
66qW we obtain

iu6iL1<C%̂6
~814A2~b2a!Aim6iL`A8c61514iV0

6iL`14qiWiL`

18A2g1~~aa
6!21~ab

6!2!1/2i~H0
6!21/2iB~H,W1,2)

1/2
~8c61514iV0

6iL`14qiWiL`!1/4!.

~59!

Using the estimates

A8c61514iV0
6iL`14qiWiL`<A8c61514iV0

6iL`12AqiWiL`

and

~8c61514iV0
6iL`14qiWiL`!1/4<~8c61514iV0

6iL`!1/41~4qiWiL`!1/4

we get

iu6iL1<s1
6iWiL`

1/2
1s2

6iWiL`
1/4

1s3
6 , ~60!

with

s1
6
ª8C%̂6

~b2a!A2qim6iL`,

s2
6
ª16q1/4g1C%̂6

p6 ,

s3
6
ªC%̂6

r 6 ,

wherep6 and r 6 are defined by~55! and ~56!, respectively. Inserting~60! into ~58! we obtain

iE`J~u1,u2!iL`<s1iWiL`
1/2

1s2iWiL`
1/4

1s3 ,
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wheres1 , s2 , s3 are the constants defined under~52!–~54!. Hence we get the estimate

iC`~W!iL`<s1iWiL`
1/2

1s2iWiL`
1/4

1s3 . ~61!

If x0 is the~unique! positive root of the polynomialx→x42s1x22s2x2s3 andiWiL`<x0
4, then

by ~61! one obtains

iC`~W!iL`<s1~ iWiL`
1/4

!21s2iWiL`
1/4

1s3<s1x0
21s2x01s35x0

4.

This means, thatC` maps the ball$W:iWiL`<x0
4% continuously into itself. SinceC` is compact

the image of this ball underC` is precompact inL`. Thus, by Schauder’s fixed point theoremC`

must have a fixed point. This proves the first assertion.
Assume that the second assertion is false and a fixed pointW satisfying iWiL`.x0

4 exists.
Then ~61! would give

~ iWiL`
1/4

!45iWiL`5iC`~W!iL`<s1~ iWiL`
1/4

!21s2iWiL`
1/4

1s3 .

On account ofiWiL`
1/4

.x0 this is a contradiction to Lemma 4.6. h

Now we can state our main result:
Theorem 4.8:Under Assumption 4.2 the dissipative Schro¨dinger–Poisson system (see Prob

lem 4.4) always has a solution and any solution(w,u1,u2) of the dissipative Schro¨dinger–
Poisson system satisfies the a priori estimates

iwiL`<x0
4, iu6iL1<C%̂6

r̂ 6 , ~62!

where x0 is the unique positive root of the polynomial x→x42s1x22s2x2s3 with coefficients
given by (52)–(56) and

r̂ 6ª@814A2~b2a!Aim6iL`A8c61514iV0
6iL`14qx0

4

18A2g1~~aa
6!21~ab

6!2!1/2i~H0
6!21/2iB~H,W1,2)

1/2
~8c61514iV0

6iL`14qx0
4!1/4#.

Proof: The first assertion follows from Lemma 4.5 and Theorem 4.7. The first inequalit
~62! is implied by~57!, while the other estimates are obtained from~59! and the first inequality.h

V. CONCLUSION

Let us comment the results.
~i! We have shown~see Theorem 4.8! that the dissipative Schro¨dinger–Poisson system~see

Problem 4.4! alwayshas a solution, if the Assumptions 4.2 are satisfied.
~ii ! The solutions (w,u1,u2) of a dissipative Schro¨dinger–Poisson system have boun

which only depend on the datam6 , ka
6 , kb

6 , V0
6 , C, e, wG , k, and the steady states%6 . In

particular, the bound for the electrostatic potentialw may be directly calculated from the data b
Cardano’s formula.

~iii ! In contrast to self-adjoint Schro¨dinger–Poisson systems dissipative ones allow in gen
nontrivial currentsj

%̂6

6 which are independent fromxP@a,b# provided the steady states%6 are

determined by~29! with

E
R
dl tr~ %̂6~l!!,`

~see Ref. 17!.
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~iv! The last fact allows us to couple dissipative Schro¨dinger–Poisson systems to drift diffu
sion models acting outside the interval@a,b# via a current continuity condition. In a forthcomin
paper we will show how this can be done and we will prove that the coupled system has a so

~v! It is an open problem under which conditions the solution, guaranteed by Theorem 4
unique. This situation is similar to that of the stationary Van Roosbroeck system~see Ref. 21, 3.4!,
or that of the Kohn-Sham equations~see Refs. 13, 14, and 27 and the references cited there!.

~vi! The present article solves the dissipative Schro¨dinger–Poisson system in one spat
dimension; the two- and three-dimensional problems remain open.

~vii ! The density matrices%6 determine the statistical properties of the quantum syst
Therefore, they change from system to system.

APPENDIX: RESOLVENT ESTIMATE FOR H0

For the operator~12! there is

i~H01m!21/2iL2~H!
2 5(

l 50

`
1

z l111m
,

where the numbersz l are the eigenvalues of the operatorH021. Let Ĥ0 be the self-adjoint
operator~12! wherem is specified tom(x)[1. Obviously, there is 1/imiL`(Ĥ021)<H021. The
eigenvalues ofĤ021 are given byp2l 2/(2(b2a)2), l 50,1,... . Thus the minimax principle
implies

~1/imiL`!@p2l 2/~2~b2a!2!#<z l ,50,1,... .

Hence,

i~H01m!21/2iL2~H!
2 <(

l 50

`
1

~1/imiL`!@p2/~2~b2a!2!# l 2111m
.

For anyl>1 we have

1

~1/imiL`!@4p2/~b2a!2# l 2111m
<E

l 21

l ds

~1/imiL`!@p2/~2~b2a!2!#s2111m
.

Thus,

i~H01m!21/2iL2~H!
2 <

1

11m
1(

l 51

` E
l 21

l ds

~1/imiL`!@p2/~2~b2a!2!#s2111m
,

which yields

i~H01m!21/2iL2~H!
2 <

1

11m
1AimiL`

b2a

A2

1

A11m
.
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A polymer expansion for the quantum Heisenberg
ferromagnet wave function

Paul Federbusha)

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
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A polymer expansion is given for the quantum Heisenberg ferromagnet wave func-
tion. Working on a finite lattice, one is dealing entirely with algebraic identities;
there is no question of convergence. The conjecture to be pursued in further work
is that effects of large polymers are small. This is relevant to the question of the
utility of the expansion and its possible extension to the infinite volume. In them-
selves the constructions of the present paper are neat and elegant and have surpris
ing simplicity. © 2004 American Institute of Physics.@DOI: 10.1063/1.1627958#

This paper assumes the fundamentals of the Heisenberg model but is basically self-con
it arises from the work in Refs. 1 and 2, but these references need not be referred to. We in
continue the work in the present paper, to obtain bounds on polymer contributions en
extension to the infinite lattice.

Unpublished preprints~Refs. 1 and 2! are the previous works by the author, directly related
the current paper. Reference 1 is an experimental study of a number of approximations for
spin expectations. Incidentally, one of the formal constructs studied below was introduced
some properties there stated without proof, which are in the present paper. This is detailed
We do hope that the present cluster expansion can be used to justify some of the approxim
of Ref. 1; this is a line of theoretical interest for future work. In Ref. 2 there is an alter
construction of a cluster expansion to our present one. Therein there is also proof of conve
in the t small region. Our present construction is much simpler. Whether patent or latent, u
lying all our work on the Heisenberg model is the hope that it eventually leads to a proof o
phase transition.

Equation~16! is the representation of the Heisenberg wave function we devote this p
towards developing. It is in the form commonly called a ‘‘polymer expansion’’ or ‘‘cluster exp
sion’’ in statistical mechanics nomenclature. At the end of the paper we give a brief phy
discussion addressing usual interpretations of such expansions.

We work with a finite rectangular lattice,V, in d-dimensions,V the set of its vertices. The
Hamiltonian is taken as

H52(
i; j

1

2
~si•sj21!52(

i; j
~ I i j 21!, ~1!

where I i j interchanges the spins at nearest neighbor sitesi and j . The Hilbert spaceH is con-
structed from basis elementsiS , basis elements in 1–1 correspondence with subsetsS of V, used
for their labeling. In a spin-up spin-down representation

iS5 ^
i PS

S 1
0D

i

^
j ¹S

S 0
1D

j

. ~2!

A vector f in H may be expanded as

a!Electronic mail: pfed@umich.edu
440022-2488/2004/45(1)/44/7/$22.00 © 2004 American Institute of Physics
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f5(S f ~S!iS. ~3!

For two setsS andS8 we write S;S8 if S8 is constructed fromS by replacing some single
element ofS by one of its nearest neighbors. That is,S;S8 if there is a setF and elements ofV,
i and j , so that

S5Fø i ,
~4!

S85Fø j ,

wherei; j and the unions in~4! are disjoint. If we write

f~ t !5e2Htf5(S f ~S,t !iS , ~5!

it is easy to see that thef (S,t) satisfy the differential equations

]

]t
f ~S,t !5 (

S8;S
~ f ~S8,t !2 f ~S,t !!. ~6!

This is the graph heat equation, corresponding to a graph with vertices the subsets ofV, and with
an edge connecting verticesS1 andS2 if and only if S1;S2 . Physically, Eq.~6! is the imaginary
time Schro¨dinger equation corresponding to the quantum Heisenberg Hamiltonian given in~1!. ~In
Ref. 1 as in many other places the Heisenberg model has been experimentally studied by
the coupled differential equations of~6! numerically.!

We now writeH as direct sum

H5 %
n50

#(V)

H n, ~7!

where as indicatedn ranges from 0 to #~V!. H n is spanned by the basis elementsiS , where
#(S)5n. H n is then spin-wave vector of the Hilbert spaceH. TheH n are invariant subspaces o
H. We writeHn for H restricted toH n.

We introduce operatorsTr ,s, whereTr ,s is a linear mapping fromH r to H s. They are defined
as follows:

~1! Tr ,r is the identity onH r ;
~2! If s.r ,

T r,s50;
~3! If s,r let g be in H r ,

g5(S g~S!iS , ~8!

whereg(S) is nonzero only if #(S)5r . Let

h5Tr ,sg5(S h~S!iS . ~9!

Thenh(S)50 unless #(S)5s, and
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h~S!5 (
S8.S

g~S8! if # ~S!5s. ~10!

We note that ifr .s.k, then

Ts,kTr ,s5
~r 2k!!

~s2k!! ~r 2s!!
Tr ,k. ~11!

This is easy counting.
A nice result is thatTr ,s intertwinesHr andHs. That is

Tr ,sHr5HsTr ,s, ~12!

where both sides of~12! are viewed as mappings fromH r to H s. This is treated in Appendix A.
The formalism of the mappingsTr ,s was introduced in Sec. II of Ref. 1, without proofs therein. W
know of no earlier references to these operators. They may also be studied as a direct cons
of the global rotation invariance of the Heisenberg model, a viewpoint we do not pursue
From any view, upon familiarlity theTr ,s and their properties soon become trivial. A similar mo
complex parallel theory is given in Ref. 3 for random walks on the permutation group, inste
subspaces of a lattice.

We start presenting the polymer expansion forf(t) of Eq. ~5!. We assumef(t) is normalized
so that

(S f ~S,t !51. ~13!

We note that if at any time this equation holds, the heat equation, Eq.~6!, preserves the identity
We do not consider the possibility that the sum on the left-hand side of~13! be zero, so no such
normalization is possible.

We let P be a partition ofV. We writeSa,P for a subsetSa of the partitionP. One has

SaùSb5B, aÞb, ~14!

ø
aPI P

Sa5V. ~15!

We will have ~summing over all such partitions!

f~ t !5(P ^
Sa,P

u~Sa ,t !, ~16!

where

u~Sa ,t !5S f i~ t !
12f i~ t ! D

i

~17!

if Sa5$ i %.
If #(Sa)5r .1,

u~Sa ,t !5ur~Sa ,t ! ^
i PSa

S 1
21D

i

. ~18!

We also write
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u~S,t !5ur~S,t ! if # ~S!5r ~19!

and, for the special caser 51,

u~S,t !5u1~S,t !5f i~ t ! if S5$ i %. ~20!

We write f(t) as a sum of its different spin-wave number components

f~ t !5 (
n50

#(V)

fn~ t !, ~21!

fn~ t !PH n. ~22!

We set

cr~ t !5 (
n50

#(V)

Tn,r fn~ t ! ~23!

and

cr~ t !5(S cr~S,t !iS . ~24!

~Notice that thecr satisfy the graph heat equation,~6!.! Then we find that Eq.~16! is satisfied if
the u(S,t) are chosen to satisfy:

cr~S,t !5ur~S,t !1(P )Sb,P
u~Sb ,t !, ~25!

where here theP are all proper partitions of S and #(S)5r . r will range from 1 to #~V!.
Equations~16! and ~25! are prototype cluster-expansion/polymer-expansion equations. Bu
form of Eq. ~18! is perhaps surprising. Appendix B treats the consistency of the formalism;
there is a unique solution for theu’s from ~25!, and they yield Eq.~16!.

We present in bold strokes the conventional ways of thinking about cluster expansions lik
~16!. In the second term in Eq.~5! as one expands the exponent in powers ofH, eachI i j that
appears represents a ‘‘collision’’ and interchanges spins ati and j . We can neglect interchange
when both spins are the same. Then we have a picture where spins ‘‘collide’’ and change
The evolution yields a sequence of collisions and corresponding motions of the spins. This
rally leads to a ‘‘random-walk’’ picture of spins moving and colliding.ur(S,t) is related to a
process where the spins at the sites inS at time t have had a history in which they have a
mutually collided, and where spins in no smaller subset ofS has not collided with spins in the
complementary portion ofS.

Reference 4 is a standard general treatment of cluster expansions, and Ref. 5 a treatment of the
random walk picture sketched above. However knowledge of these detailed technical dire
will not simplify our derivation above; and further, starting from Refs. 4 and 5, I think it unlik
that many researchers would find our ‘‘simple’’ result. However to get the estimates on tur

needed for applications, these references will be useful.
The proof of convergence in the infinite volume, commonly referred to simply as ‘‘con

gence of the cluster expansion,’’ depends on obtaining appropriate bounds on theur . Convergence
in the ‘‘small t ’’ region was proven in Ref. 2 for a different construction of a cluster expansio
proof for the ‘‘small t ’’ region can certainly be greatly simplified over that in Ref. 2. The aut
believes that the expansion converges also in the ‘‘larget ’’ region, i.e., for t.T0 for someT0

~possibly even for allt). This will be difficult to prove. It seems that the proof for larget will
depend on incorporating unusual probabilistic estimates, exhibiting probabilistic cancellatio
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certain sums involving many terms. One may hope that the compact form of the present co
tion of the cluster expansion may simplify some details of a proof, still a substantial theor
challenge.

APPENDIX A: INTERTWINING RESULT

In virtue of Eq.~11! it is enough to showTr ,r 21 intertwines. We choose to show equivalent
that Tr ,r 21 carries a solution of the heat equation into a solution of the heat equation. Letf (S,t)
satisfy the heat equation, and be zero unless #(S)5r . We define

g~s,t !5(
j

f ~sø j ,t !, #~s!5r 21. ~A1!

We wish to showg satisfies the heat equation. Writing the heat equation forf :

] f

]t
~sø i ,t !5 (

S8;(sø i )
~ f ~S8,t !2 f ~sø i ,t !!. ~A2!

We sum the two sides of~A2! over i ,

]

]t
g~s,t !5(

i
(

S8;(sø i )
~ f ~S8,t !2 f ~sø i ,t !!. ~A3!

The right-hand side splits into two termsI 1 and I 2 ,

I 15(
i

(
s8;s

~ f ~s8ø i ,t !2 f ~sø i ,t !! ~A4!

and

I 25(
i

(
j ; i

~ f ~sø j ,t !2 f ~sø i ,t !!. ~A5!

It is easy to see

I 15 (
s8;s

~g~s8,t !2g~s,t !! ~A6!

and just a little harder to see

I 250

and the result is proved.

APPENDIX B: IN THREE PARTS

We divide the demonstration of consistency into three parts:

~i! We first note that Eq.~25! has a unique solution for theur ~these are the unknowns!. One
solves inductively overr , the r th equation uniquely determiningur .

~ii ! Once theu’s are determined from Eq.~25!, we substitute them in the right-hand side of E
~16! which we callX(t), so Eq.~16! becomes

f~ t !5X~ t !. ~B1!

~Of course we do not know whether~B1! is true, that is what we are trying to show.! We
decomposeX(t),
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X~ t !5 (
n50

#(V)

Xn~ t !, ~B2!

Xn~ t !PH n, ~B3!

and define

dr~ t !5 (
n50

#(V)

Tn,rXn~ t !, ~B4!

dr~ t !5(S dr~S,t !iS . ~B5!

The result we seek to now show is the following: Ifdr(S,t)5cr(S,t) all S,r , then f(t)
5X(t).

This we also show by induction overr , but in the opposite direction, fromr 5#(V) down to
r 50. At the stepr 5r we clearly get

fr~ t !5Xr~ t !. ~B6!

~One only needsTr ,r5I , andTr ,s50 if s.r .)
~iii ! We are left with the task of showing

dr~S,t !5cr~S,t !. ~B7!

We first do a preliminary investigation.
Let

h~ t !5( h~S,t !iS ~B8!

5 (
n50

#(V)

hn~ t !, ~B9!

hn~ t !PH n ~B10!

and define

gr~ t !5(
n

Tn,rhn~ t ! ~B11!

5(S gr~S,t !iS . ~B12!

We then find the following expression forgr(S,t):

gr~S,t !5 (
S8

S8ùS5f

h~SøS8,t !, ~B13!

where #(S)5r .
Now when we computedr(S,t) using expression~B13! with X replacing h (X(t)

5(SX(S,t) iS), the only terms in the expression forX(t) from ~16! which will contribute are of
the form

S ur~S,t !1(P ^
Sb, P

u~Sb ,t !D ^
i ¹S

S f i~ t !
12f i~ t ! D

i

~B14!
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using the notation from Eq.~25!. That is because the sum overS8 in ~B13! may be written as an
iterated sum, summing for each vertex not inS, whether the vertex is inS8 or not. This amounts
to summing over spin-up and spin-down at that vertex. At vertexk this sum applied to the term in
the tensor product

S fk~ t !
12fk~ t ! D

k

yields 1, and applied to

S 1
21D

k

yields 0. We get from the terms inX(t) in ~B14! that

dr~S,t !5cr~S,t !. ~B15!

Q.E.D.

1P. Federbush, ‘‘For the quantum Heisenberg ferromagnet, some conjectured approximations,’’ math-ph/010101
2P. Federbush, ‘‘For the quantum Heisenberg ferromagnet, a polymer expansion and its high T conver
math-ph/0108002.

3Robert T. Powers, Lett. Math. Phys.1, 125 ~1976!.
4David C. Brydges, ‘‘A Short Course in Cluster Expansions, Phenomenes Critiques, Systems Aleatoires, Theo
Gauge, Part I, II,’’ Les Houches, 1984~North–Holland, Amsterdam, 1986!, pp. 129–183.

5Joseph G. Conlon and Jan Philip Solovej, J. Stat. Phys.64, 251 ~1991!.
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On the Pauli operator for the Aharonov–Bohm effect
with two solenoids

V. A. Geyler
Department of Mathematics, Mordovian State University,
Bolshevistskaya 68, Saransk 430000, Russia

P. Št’ovı́ček
Department of Mathematics, Faculty of Nuclear Science, Czech Technical University,
Trojanova 13, 120 00 Prague, Czech Republic

~Received 23 June 2003; accepted 18 September 2003!

We consider a spin-1/2 charged particle in the plane under the influence of two
idealized Aharonov–Bohm fluxes. We show that the Pauli operator as a differential
operator is defined by appropriate boundary conditions at the two vortices. Further
we explicitly construct a basis in the deficiency subspaces of the symmetric opera-
tor obtained by restricting the domain to functions with supports separated from the
vortices. This construction makes it possible to apply the Krein’s formula to the
Pauli operator. ©2004 American Institute of Physics.@DOI: 10.1063/1.1629395#

I. INTRODUCTION

The goal of the present paper is to provide a more detailed analysis of the Pauli op
describing a spin-1/2 charged particle under the influence of two Aharonov–Bohm~AB! fluxes.1

We consider the idealized setup when the magnetic fluxes are concentrated along two paral
so that the problem effectively reduces to a two-dimensional quantum system living in a pe
dicular plane. In what follows we call the intersection points of the fluxes with the plane vort

To define the Pauli Hamiltonian with singular fluxes we use the Aharonov–Ca
decomposition.2 It makes it possible to introduce the two diagonal components of the P
operator corresponding to spin up and down as the unique self-adjoint operators associ
appropriate quadratic forms. Since the magnetic field vanishes outside of the vortices th
components of the Pauli Hamiltonian as well as the spinless AB Hamiltonian are self-a
extensions of the same symmetric operator. In the case of one AB flux all the self-adjoint
sions are known to be defined by appropriate boundary conditions at the vortex.3,4 Thus our first
goal was to distinguish the boundary conditions defining the two components of the Pauli H
tonian.

The second goal was to construct a basis in the deficiency subspaces in the two-vorte
In this case as well the two diagonal components of the Pauli Hamiltonian and the sp
Hamiltonian are self-adjoint extensions of a common symmetric operator. We show tha
deficiency indices of this symmetric operator are~4,4!. The construction is based on the observ
tion that the coefficientsc(x) standing at singular terms in the asymptotic expansion in
variablex0 at a vortex of the Green functionGz(x,x0) belong to the deficiency subspace wi
spectral parameterz. Here we make use of the explicit knowledge of the spinless two-vo
Green functionGz(x,x0).5

The next and final goal which naturally follows is a construction of the two-vortex Gr
function for the Pauli Hamiltonian with the aid of the Krein’s formula. Even this problem is so
explicitly. Surprisingly many features can be again derived from the asymptotic analysis n
vortex.

The paper is organized as follows. In Sec. II we summarize some basic facts and for
concerning the spinless AB Hamiltonian with one and two vortices. In Sec. III we introduc
Pauli operator with one and two AB fluxes and derive the boundary conditions at a vortex de
510022-2488/2004/45(1)/51/25/$22.00 © 2004 American Institute of Physics

                                                                                                                

http://dx.doi.org/10.1063/1.1629395


basic
t of the
n VI is

consult
t

-

This

efs. 3

ds

52 J. Math. Phys., Vol. 45, No. 1, January 2004 V. A. Geyler and P. Št’ovı́ček

                    
the spin up and down components of the Pauli Hamiltonian. In Sec. IV we provide a
asymptotic analysis near a vortex of functions from the deficiency subspaces as well as tha
spinless Green function. In Sec. V we construct a basis in the deficiency subspaces. Sectio
devoted to the application of the Krein’s formula to our problem.

II. PRELIMINARIES. THE AB HAMILTONIAN FOR A SPINLESS PARTICLE

The AB Hamiltonian with one vortex and describing a spinless particle,H0 , was introduced
in Ref. 1 and studied in a long series of papers by many authors. For example, one can
Ref. 6 for some mathematical details. It acts inL2(R2, d2x) and is nothing but the self-adjoin
operator associated to the closure of the positive quadratic form

E
R2

S US ]x1
2 i

a x2

uxu2 DwU2

1US ]x2
1 i

a x1

uxu2 DwU2D d2x , ~1!

defined on the space of test functionsD(R2\$0%). In other words,H0 is the Friedrichs extension
of the corresponding symmetric operator with the domainD(R2\$0%). Owing to the gauge equiva
lence we can assume thataP(0,1).

We shall use the polar coordinates (r ,u) with the angleuP(2p,p). This implies a cut along
the negativex1 half-axis. Sometimes it is convenient to apply the unitary operator

~Uaw!~r ,u!5ei a uw~r ,u!

and work with the unitarily equivalent operator

H5UaH0Ua
21 .

In particular this unitary transformation is useful when constructing the Green function.
means that

Dom~H !5Ua~Dom~H0!! .

Formally, as a differential operator,

H52D .

The domain ofH is determined by the boundary conditions at the cut, namely,

c~r ,p!5e2p i ac~r ,2p!, ] rc~r ,p!5e2p i a] rc~r ,2p! . ~2!

In addition, one should take care about boundary conditions at the vortex. As analyzed in R
and 4, the domain ofH0 is characterized by the boundary conditionw(0)50. Sincec(r ,u)
5exp(iau)w(r,u) the same is true for Dom(H), namely the boundary condition at the vortex rea
c(0)50.

The generalized eigenfunctions ofH,

H 1

A2p
Jun1au~k r ! ei (n1a)uJ

k.0, nPZ

,

form a complete normalized set,

E
0

`

Jn~k x! Jn~k y! k dk5
1

x
d~x2y! .

This makes it possible to write down the Green function and the propagator as integrals,
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Gz~r ,u;r 0 ,u0!5
1

2p (
nPZ

ei (n1a)(u2u0)E
0

` Jun1au~k r ! Jun1au~k r0!

k22z
k dk ~3!

and

Kt~r ,u;r 0 ,u0!5
1

2p (
nPZ

ei (n1a)(u2u0)E
0

`

e2 i k2tJun1au~k r ! Jun1au~k r0! k dk . ~4!

They are related by the Laplace transform,

Gz~r ,u;r 0 ,u0!5E
0

`

ez t K2 i t~r ,u;r 0 ,u0! dt .

Starting from~4! one can derive the following formula for the propagator:5

Kt~r ,u;r 0 ,u0!5H 1
e2p i a

e22p i a
J 1

4p i t
expS 2

1

4i t
ux2x0u2D2

sin~p a!

p E
2`

` 1

4p i t

3expS 2
1

4i t
R~s!2D e2a s1 i a (u2u0)

11e2s1 i (u2u0) ds , ~5!

where

ux2x0u25r 21r 0
222r r 0 cos~u2u0!, R~s!25r 21r 0

212r r 0 cosh~s!,

and the phase factor in front of the first term depends on whether

u2u0P~2p,p!, ~p,2p! or ~22p,2p!.

The Laplace transformation results in a formula for the Green function,

Gz~r ,u;r 0 ,u0!5H 1
e2p i a

e22p i a
J 1

2p
K0~A2zux2x0u!

2
sin~p a!

p E
2`

` 1

2p
K0~A2z R~s!!

e2a s1 i a (u2u0)

11e2s1 i (u2u0) ds . ~6!

The second term on the RHS of~6! can be given still another form with the aid of the identity

E
2`

`

Ki t~a! K2 i t~b!
ef t

sin~p~a1 i t!!
dt 5 E

2`

`

K0~Aa21b212 a b cosh~u! !
e2a(u2 i f)

11e2u1 i f du

for a.0, b.0, 0,a,1, andufu,p. This way we get

Gz~r ,u;r 0 ,u0!5
1

2p
K0~A2zux2x0u!

2
sin~p a!

2p2 E
2`

`

Ki t~A2z r! K2 i t~A2z r0!
e(u2u0) t

sin~p~a1 i t!!
dt ~7a!

for u2u0P(2p,p),
                                                                                                                



ify fact.

d

54 J. Math. Phys., Vol. 45, No. 1, January 2004 V. A. Geyler and P. Št’ovı́ček

                    
Gz~r ,u;r 0 ,u0!5e2p i aS 1

2p
K0~A2zux2x0u!

2
sin~p a!

2p2 E
2`

`

Ki t~A2z r! K2 i t~A2z r0!
e(u2u022p) t

sin~p~a1 i t!!
dt D ~7b!

for u2u0P(p,2p), and

Gz~r ,u;r 0 ,u0!5e22p i aS 1

2p
K0~A2zux2x0u!

2
sin~p a!

2p2 E
2`

`

Ki t~A2z r! K2 i t~A2z r0!
e(u2u012p) t

sin~p~a1 i t!!
dt D ~7c!

for u2u0P(22p,2p).
Despite this threefold description depending on the value ofu2u0 the Green function should

be continuous, even real analytic, in its domain of definition ifxÞx0 . Checking the limits from
the right and left foru2u056p one finds that the continuity is guaranteed by the identity

E
2`

`

Ki t~a! K2 i t~b! dt5p K0~a1b! for a.0, b.0.

Let us add a remark on deficiency subspaces. First we recall a general and easy to ver
Let A be a self-adjoint extension of a symmetric operatorX. Denote byN(z)5Ker(X* 2z) the
deficiency subspaces, ImzÞ0. Then it holds

f PN~w! ⇒ f 1~z2w!~A2z!21f PN~z! .

This can be illustrated on our problem. We chooseH @the one-vortex AB Hamiltonian define
by the boundary conditions~2!# for A, and X is a restriction ofH obtained by requiring the
supports of functions from the domain ofX to be separated from the singular point~the origin!.
The deficiency indices are known to be~2,2!. For a basis inN(z) we can choose the vectors

c21,z~r ,u!5K12a~A2z r!ei (a21)u, c0,z~r ,u!5Ka~A2z r!ei a u . ~8!

HerezPC\R1 , ReA2z.0. As shown in Ref. 3 it holds true that

E
0

`S E
2p

p

Gz~r ,u;r 0 ,u0! c0,w~r 0 ,u0! du0D r 0 dr 0

5
1

z2w
ei a uS S A2z

A2w
D a

Ka~A2z r!2Ka~A2w r !D ,

hence

c0,w1~z2w!~H2z!21c0,w5S A2z

A2w
D a

c0,z . ~9!

Similarly,

c21,w1~z2w!~H2z!21c21,w5S A2z

A2w
D 12a

c21,z . ~10!
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Let us now focus on the case of two vortices but still considering a spineless particle
vortices are supposed to be located in the pointsa5(0,0) andb5(r,0), r.0. Let (r a ,ua) be the
polar coordinates centered at the pointa and (r b ,ub) be the polar coordinates centered at the po
b. The two-vortex AB HamiltonianH0 is the unique self-adjoint operator associated to the q
dratic form

E
R2

~ u~2 i ]x1
2A1!wu21u~2 i ]x2

2A2!wu!2 d2x , ~11a!

where

A52a dua2b dub . ~11b!

Again, owing to the gauge equivalence, we can assume thata,bP(0,1).
Also in this case one can pass to a unitarily equivalent formulation. The plane is cut alon

half-lines,

La5~2`,0!3$0% and Lb5~r,1`!3$0%.

The valuesua56p correspond to the two sides of the cutLa and similarly forub andLb . The
geometrical arrangement is sketched in Fig. 1. The unitarily equivalent HamiltonianH is formally
equal to2D and is determined by the boundary conditions along the cut,

c~r a ,ua5p!5e2p i ac~r a ,ua52p!, ] r a
c~r a ,ua5p!5e2p i a] r a

c~r a,ua52p! ,

~12!
c~r b ,ub5p!5e2p i bc~r b ,ub52p!, ] r b

c~r b ,ub5p!5e2p i b] r b
c~r b,ub52p! .

In addition, one should impose a boundary condition at the vortex, namely,c(a)5c(b)50.
A formula for the Green function of the HamiltonianH is known also in the case of two

vortices.5 For a couple of pointsx,x0PR2\(LaøLb) we set

za51 or za5e2 p i a or za5e22 p i a

depending on whether the segmentx0x does not intersectLa , or x0x intersectsLa andx0 lies in
the lower half-plane, orx0x intersectsLa andx0 lies in the upper half-plane. Analogously,

zb51 or zb5e2 p i b or zb5e22 p i b

depending on whether the segmentx0x does not intersectLb , or x0x intersectsLb andx0 lies in
the upper half-plane, orx0x intersectsLb andx0 lies in the lower half-plane. Furthermore, let u
set

za5ei a ha, zb5ei b hb, where ha ,hbP$0,2p,22 p%.

FIG. 1. Geometrical arrangement. Choice of the cutsLa , Lb and choice of the angle variablesua , ub .
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Remark:Notice that ifzaÞ1 then necessarilyzb51 and vice versa.
The formula for the Green function reads

Gz~x,x0!5zazb

1

2 p
K0~A2zux2x0u!

2 za

sin~p a!

2p2 E
2`

`

Ki t~A2z ra! K2 i t~A2z r0a!
e(ua2u0a2ha)t

sin~p~a1 i t!!
dt

2 zb

sin~p b!

2p2 E
2`

`

Ki t~A2z rb! K2 i t~A2z r0b!
e(ub2u0b2hb)t

sin~p~b1 i t!!
dt1

1

2p

3 (
g, n>2

~21!nE
Rn

Ki tn
~A2z r!Ki (tn212tn)~A2z r!

3¯3Ki (t12t2)~A2z r!K2 i t1
~A2z r0!

sin~p sn! exp~u tn!

p sin~p~sn1 i tn!!

3
sin~p sn21!

p sin~p~sn211 i tn21!!
3¯3

sin~p s2!

p sin~p~s21 i t2!!

sin~p s1! exp~2u0t1!

p sin~p~s11 i t1!!
dnt .

~13!

Here the sum(g, n>2 runs over all finite alternating sequences of length at least twog
5(cn ,cn21 ,...,c1), such that for allj , cjP$a,b% and cjÞcj 11 , and s j5a ~respectively,b!
depending on whethercj5a ~respectively,b). In addition, (r ,u) are the polar coordinates of th
point x with respect to the centercn , (r 0 ,u0) are the polar coordinates of the pointx0 with respect
to the centerc1 ~the dependence ong is not indicated explicitly!.

III. THE PAULI HAMILTONIAN WITH AB FLUXES

According to the Aharonov–Casher ansatz2 the two diagonal components of the Pauli Ham
tonian with the third component of spin equal to61/2 can be factorized,

H65~p2A!27B5P6* P6 ,

where

P65~p12A1!6 i ~p22A2!.

Using the complex coordinatez5x11 i x2 one can rewrite the Pauli Hamiltonian as follows:

H154~2 i ]z2Az!~2 i ] z̄2Az̄!,

H254~2 i ] z̄2Az̄!~2 i ]z2Az!.

We start our discussion from considering the situation with one vortex. Then

A5
a

r 2 ~x2 dx12x1 dx2!52a du5
i a

2
e22i u de2i u5

i a

2

z̄

z
d

z

z̄
5

i a

2 S dz

z
2

dz̄

z̄ D .

Hence

Az5
i a

2z
, Az̄52

i a

2z̄
,

and we can write
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H1524S ]z1
a

2zD S ] z̄2
a

2z̄D , H2524S ] z̄2
a

2z̄D S ]z1
a

2zD .

In fact, these are formal expressions. More precisely, the operators are defined as the
self-adjoint operators associated, respectively, to the positive quadratic forms

q1~w!54E
R2
US ] z̄2

a

2z̄DwU2

d2x , q2~w!54E
R2
US ]z1

a

2zDwU2

d2x , ~14!

with their natural maximal domains of definition.
Since the magnetic field vanishes onR2\$0% the operatorsH6 coincide with the spinless AB

HamiltonianH0 on the domainD(R2\$0%) ~D is the space of test functions!. This means that all
three operatorsH1, H2, andH0 are self-adjoint extensions of the same symmetric operatoX̃.
From Refs. 3 and 4 it is known that all self-adjoint extensions can be described by appro
boundary conditions at the origin. The method used to derive the boundary conditions w
spired by the description of point interactions in the plane given in Ref. 7. Let us also not
analogous boundary conditions have been derived in Ref. 8 for the model with additional h
geneous magnetic field. The Dirac operator has been discussed, for instance, in Ref. 9.

To describe the boundary conditions one introduces four functionals,

F1
21~w!5 lim

r↓0
r 12a

1

2p E
0

2p

w~r ,u! ei u du,

F2
21~w!5 lim

r↓0
r 211aS 1

2p E
0

2p

w~r ,u! ei u du2r 211aF1
21~w! D ,

F1
0~w!5 lim

r↓0
r a

1

2p E
0

2p

w~r ,u! du,

F2
0~w!5 lim

r↓0
r 2aS 1

2p E
0

2p

w~r ,u! du2r 2aF1
0~w! D .

Each boundary condition is determined by a couple of matricesA1 ,A2PMat(2,C) fulfilling @the
symbol (A1 ,A2) designates a 234 matrix#

rank~A1 ,A2!52, A1D21A2* 5A2D21A1* ,

where

D5S 12a 0

0 a D .

The boundary condition takes the form

A1S F1
21~w!

F1
0~w! D 1A2S F2

21~w!

F2
0~w! D 5S 0

0D .

Two couples of matrices,$A1 ,A2% and $A18 ,A28%, determine the same boundary condition if a
only if there exists a regular matrixGPGL(2,C) such that (A18 ,A28)5G(A1 ,A2).

For example, the domain of the spinless AB HamiltonianH0 is determined by the boundar
conditions at the vortexF1

21(w)5F1
0(w)50 and so by the couple of matrices
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A15S 1 0

0 1D , A25S 0 0

0 0D .

We wish to derive the boundary conditions for the HamiltoniansH1 andH2. According to
the well-known construction, the operatorA associated to a semibounded quadratic formq is
determined by the condition

; f PDom~A!,Dom~q!, ;wPDom~q!, ^w,A f&5q~w, f ! .

This is to say thatf PDom(q) belongs to Dom(A) if and only if there existsgPH such that the
equality ^w,g&5q(w, f ) holds true for allwPDom(q). In that caseg is unique andA f5g. We
are going to apply this prescription to the quadratic forms~14!. This amounts to integration by
parts.

More precisely, the Green formula implies that

E
R2

~]zf !g d2x52E
R2

f ~]zg! d2x2 lim
a↓0

a

2 E
0

2p

~ f g!~a cos~u!,a sin~u!! e2 i u du .

Thus one finds thatf PDom(X̃* ) belongs to Dom(H1) if and only if for all wPDom(q1),

lim
a↓0

aE
0

2pS w̄ S ] z̄2
a

2z̄D f D ~a cos~u!,a sin~u!! e2 i u du 50,

or, when expressing (z,z̄) in the polar coordinates,

lim
a↓0

E
0

2p

~w̄ ~ r ] r1 i ]u2a! f !~a cos~u!,a sin~u!! du 50.

Any f PDom(X̃* ) asymptotically behaves like

f 5~F1
21~ f ! r 211a1F2

21~ f ! r 12a!e2 i u1~F1
0~ f ! r 2a1F2

0~ f ! r a!1regular part.

Hence

~r ] r1 i ]u2a! f ;2~12a!F2
21~ f ! r 12ae2 i u22a F1

0~ f ! r 2a1¯ .

Notice that

~r ] r1 i ]u2a!r 211ae2 i u5~r ] r1 i ]u2a!r a50

and so any function of the formr 211ah(r )e2 i u or r ah(r ), with hPC`(R1), h(r )[1 in a
neighborhood of 0 andh(r )[0 in a neighborhood of1`, belongs to Dom(q1). Therefore a
sufficient and necessary condition forf to belong to Dom(H1) is

F2
21~ f ! 5F1

0~ f !50. ~15!

The corresponding couple of matrices can be chosen as

A15S 0 1

0 0D , A25S 0 0

1 0D .

The other component of the Pauli Hamiltonian,H2, can be treated similarly. One finds th
f PDom(X̃* ) belongs to Dom(H2) if and only if for all wPDom(q2),
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lim
a↓0

E
0

2p

~w̄ ~r ] r2 i ]u1a! f !~a cos~u!,a sin~u!! du50,

which turns out to be equivalent to

F1
21~ f !5F2

0~ f !50. ~16!

The corresponding couple of matrices can be chosen as

A15S 1 0

0 0D , A25S 0 0

0 1D .

The generalization to the case of several vortices is quite straightforward. One simply im
the above derived boundary conditions at each vortex. Let us consider the case of two vortic
the sake of simplicity we assume that the vortices area5(0,0) andb5(1,0). The Pauli Hamil-
tonian formally reads

H1524S ]z1
1

2 S a

z
1

b

z21D D S ] z̄2
1

2 S a

z̄
1

b

z̄21D D ,

H2524S ] z̄2
1

2 S a

z̄
1

b

z̄21D D S ]z1
1

2 S a

z
1

b

z21D D .

We still assume that 0,a,b,1 ~in virtue of the gauge equivalence!.
The Pauli Hamiltonian with two vortices is known to have zero modes.10 They can be com-

puted with the aid of the Aharonov–Casher ansatz since it effectively enables to reduce the
order differential equation to a first order one. Explicit solutions are even known in some e
tially more complicated situations~see, for example, Ref. 11!. Just for the sake of illustration le
us verify that the zero modes actually satisfy the above derived boundary conditions~15! or ~16!.

If a1b,1 then the function

w~z!5
uzuauz21ub

z~z21!

is L2 integrable and solves

S ] z̄2
1

2 S a

z̄
1

b

z̄21D Dw50.

So it is a zero mode ofH1. It is elementary to compute its asymptotic behavior forr a→0,

w5r a
211ae2 i ua1S 12

b

2 D r a
a2

b

2
r a

ae22 i ua1O~r a
11a!.

Hencew obeys~15!. The boundary condition at the vortexb is analogous.
Similarly, if a1b.1 then

w~z!5
1

uzuauz21ub

is a zero mode ofH2 and

w52
b

2
r a

12ae2 i ua1r a
2a2

b

2
r a

12aei ua1O~r a
22a!.

Hencew obeys~16!.
                                                                                                                



sub-
an

60 J. Math. Phys., Vol. 45, No. 1, January 2004 V. A. Geyler and P. Št’ovı́ček

                    
IV. ASYMPTOTIC BEHAVIOR NEAR A VORTEX

Our first task in this section is the asymptotic analysis of functions from a deficiency
space. To simplify the discussion we shall use the symbolO(r g) in a sense somewhat weaker th
it is common. The equalityf (r ,u)5O(r g) for r↓0 will mean thatf (r ,u)5(nPZf n(r )einu and for
all n it holds f n(r )5O(r g).

Lemma 1: Assume that R.0, zPC\R1 , 0,a,1 and wPL2(B(0,R), d2x) satisfies in the
weak sense the differential equation

~Y2z!w50

on B(0,R)\$0% ~the disk centered at0 with the radius equal to R) where@using the polar coor-
dinates(r ,u)]

Y52e2 i a uD ei a u 5 2~]x1
1 i a ]x1

u!22~]x2
1 i a ]x2

u!252S ]2

]r 2 1
1

r

]

]r
1

1

r 2 S ]

]u
1 i a D 2D .

Then there exist constants c0 , d0 , c21 , d21 , such that

w~r ,u!5c0r 2a1d0r a1~c21r 211a1d21r 12a!e2 i u1O~r g! for r↓0 , ~17!

whereg5min$22a,11a%.
Proof: For all nPZ, hPD((0,R)) ~the space of test functions! it holds true that

05^~Y2 z̄!h~r ! ei n u,w&52 K S ]2

]r 2 1
1

r

]

]r
1 z̄2

~n1a!2

r 2 Dh~r ! ei n u,w L .

Hence

w~r ,u!5 (
n52`

`

f n~r ! ei n u ,

where

;nPZ, S ]2

]r 2 1
1

r

]

]r
1z2

~n1a!2

r 2 D f n~r !50 on ~0,R!

in the weak sense. This implies that the generalized derivative] r(r ] r f n(r )) belongs to
L loc

1 ((0,R)) and consequentlyf nPAC2((«,R)) for all 0,«,R. Therefore necessarilyf n(r ) is a
linear combination of the modified Bessel functions,

f n~r !5an Kn1a~A2z r!1bn I un1au~A2z r!.

Let us recall the asymptotic behavior of the Bessel functions. If 0,n andn¹N then

I n~r !5
1

G~n11! S r

2D n

1O~r n12!

and

Kn~r !5
G~n!

2 S r

2D 2n

~11O~r 2!!2
G~12n!

2n S r

2D n

~11O~r 2!!.

This implies thatf nPL2((0,R),r dr ) if and only if eitheran50 or nP$0,21%. This is to say that
an can be nonzero only forn50,21. So if nÞ0,21 then f n(r )5O(r un1au). This proves the
lemma. h
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Let H be the two-vortex spinless AB Hamiltonian defined by boundary conditions~12!. The
symbolX below stands for the symmetric operator obtained by restricting the domain ofH so that
functions from DomX vanish in some neighborhood of the vortices. The deficiency subspace
denoted byN(z)5Ker(X* 2z).

Corollary 2: If zPC\R1 and cPN(z) then there exist constants ca,0 , ca,21 , cb,0 , cb,21 ,
such that

c~x!5ca,0 r a
2a ei a ua1ca,21 r a

211a ei (a21)ua1o~1! for r a↓0 ~18!

and

c~x!5cb,0 r b
2b ei b ub1cb,21 r b

211b ei (b21)ub1o~1! for r b↓0. ~19!

Proof: The property cPN(z) means that cPL2(B(0,R), d2x), (2D2z)c50 on
R2\(LaøLb) in the weak sense andc satisfies the boundary conditions~12! on LaøLb . Then the
function exp(2i a ua)c obeys the assumptions of Lemma 1 and relation~17! implies~18!. Relation
~19! can be shown similarly. h

Corollary 3: Assume that zPC\R1 , cPN(z) and c(a)5c(b)50. ThencPDom(H) and
hencec50.

Proof: We use once more the fact that exp(2i a ua)c obeys the assumptions of Lemma 1 a
hence

exp~2 i a ua!c~x!5c0r a
2a1d0r a

a1~c21r a
211a1d21r a

12a!e2 i ua1O~r a
g! for r a↓0 .

Since c(a)50 it holds c215c050. Let U be the unitary operator onL2(R2, d2x) acting via
multiplication by the phase factor exp(iaua1ibub). Then w5exp(2iaua2ibub)c belongs to
Ker(X̃* 2z) whereX̃5U21XU. The functionub(x) is real analytic in a neighborhood ofa and

ub~x!5sin~ua!
r a

r
1O~r a

2! for r a↓0 .

A straightforward computation gives the asymptotic behavior ofw and one finds that

F1
21~w!5c21 , F2

21~w!5d211
bc0

2r
, F1

0~w!5c0 , F2
0~w!5d02

bc21

2r
.

So one finds that the boundary conditionF1
21(w)5F1

0(w)50 is satisfied at the vortexa. Analo-
gously, the same boundary condition is fulfilled at the vortexb. As recalled in Sec. III, these
boundary conditions determine the domain ofH0 . HencewPDom(H0) andcPDom(H). But H
is positive,z¹R1 , and therefore Dom(H)ùN(z)5$0%. This shows thatc50. h

Further we are interested in the asymptotic behavior near a vortex of the Green functio~7!
and~13!. It is easy to see that in the spinless case the Green function vanishes in each vort
example, in the case of two vortices it holds true thatGz(a,x0)50. This can be derived from~13!
with the aid of the relation

Ki t~r !→p d~t! for r↓0 ~20!

and some simple combinatorics. It is also obvious that

K0~A2zux2x0u!5K0~A2z r0a!1O~r a! for r a↓0

~herer 0a5ua2x0u) and

Kin~A2z rb!5Kin~A2z r!1O~r a! for r a↓0.
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To get additional information we shall need an asymptotic formula for the integral

E
2`

`

Ki t~A2z ra! Ki (n2t)~A2z r!
sin~pa! exp~ua t!

p sin~p~a1 i t!!
dt . ~21!

Such an asymptotic analysis can be carried on with the aid of the following lemma.
Lemma 4: Suppose that r.0, uuu,p and 0,a,1. Then

E
2`

`

e2r cosh(s)
e2a(u2s2 iu)

11e2u1s1 iu ds5
p

sin~p a!
2

G~a!

12a S r

2D 12a

e(12a)(u2 iu)

2
G~12a!

a S r

2D a

e2a(u2 iu)1Z~r ,u! , ~22a!

where

;r P~0,1!, ;uPR, uZ~r ,u!u<Kr cosh~u! ~22b!

and K depends onu and a but does not depend on r and u.
Proof: The LHS of ~22a! equals

E
u

`

e2r cosh(s)
e2(12a)(s2u1 iu)

11e2s1u2 iu ds1E
2u

`

e2r cosh(s)
e2a(s1u2 iu)

11e2s2u1 iu ds . ~23!

Therefore it suffices to study integrals of the form

E
u

`

e2r cosh(s)
e2g(s2u1 iu)

11e2s1u2 iu ds5eg(u2 iu)E
u

`

e2r cosh(s)2gs ds2E
u

`

e2r cosh(s)
e2(g11)(s2u1 iu)

11e2s1u2 iu ds

~24!

for 0,g,1. The second integral on the RHS of~24! can be treated easily and one finds that

E
u

`

e2r cosh(s)
e2(g11)(s2u1 iu)

11e2s1u2 iu ds5
e2 igu

g
2E

0

` e2g(s1 iu)

11e2s2 iu ds1Z1~r ,u! ,

whereZ1(r ,u) satisfies estimate~22b!. To treat the first integral on the RHS of~24! we note that

e2r cosh(s)5expS 2
r

2
esD (

k50

`
1

k! S 2
r

2D k

e2ks

and therefore

E
0

`

e2r cosh(s)2gs ds5 (
k50

`
1

k!
22g2kr g1k GS 2g2k,

r

2D S 2
r

2D k

52
G~12g!

g S r

2D g

1
1

g
1

g

12g2 r 1O~r 2! .

Furthermore,

E
u

0

e2r cosh(s)2gs ds5
e2gu21

g
1Z2~r ,u! ,

whereZ2(r ,u) satisfies estimate~22b!. Thus we have derived that
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E
u

`

e2r cosh(s)
e2g(s2u1 iu)

11e2s1u2 iu ds52
G~12g!

g S r

2D g

eg(u2 iu)1E
0

` e2g(s1 iu)

11e2s2 iu ds1Z3~r ,u! ,

~25!

whereZ3(r ,u) satisfies estimate~22b!. To conclude the proof it suffices to apply~25! to both
integrals in~23! and to take into account that

E
0

` e2(12a)(s1 iu)

11e2s2 iu ds1E
0

` e2a(s2 iu)

11e2s1 iu ds5E
2`

` e2a(s2 iu)

11e2s1 iu ds5
p

sin~pa!

for uuu,p. h

Corollary 5: Under the same assumptions as in Lemma 4 it holds true that

E
2`

`

Ki t~A2z r! Ki (n2t)~A2z r!
sin~pa! exp~u t!

p sin~p~a1 i t!!
dt

5 Kin~A2z r!2
sin~p a!

p

G~a!

12a SA2z r

2 D 12a

ei (a21)uKin211a~A2z r!

2
sin~p a!

p

G~12a!

a SA2z r

2 D a

ei a uKin1a~A2z r!1O~r ! ~26!

for r↓0.
Proof: Using

Ki t~a!5
1

2 E2`

`

ei s t2a cosh(s) ds for a.0, tPR, ~27!

and applying the equality

E
2`

`

ei t(u2s)
exp~u t!

sin~p~a1 i t!!
dt52

e2a(u2s2 iu)

11e2u1s1 iu

we find that~21! equals

sin~p a!

2p E
2`

`

e2A2z r cosh(u)2 i n uS E
2`

`

e2A2z r cosh(s)
e2a(u2s2 iu)

11e2u1s1 iu dsD du .

Now it suffices to apply~22! to the inner bracket and then to use the integral form~27! in the
reversed sense. h

First let us apply~26! to the case of one vortex. In fact, the following observation about
asymptotic expansion of the Green function~7! near the vortex will be crucial for the subseque
analysis. We get either the asymptotic expansion ofGz(r ,u;r 0 ,u0) for r↓0, or, since in general it
holds true that

Gz̄~r ,u;r 0 ,u0!5Gz~r 0 ,u0 ;r ,u!, ~28!

the expansion forr 0↓0 as well, namely,

Gz~r ,u;r 0 ,u0!5
sin~p a!

2p2

G~a!

12a SA2z r0

2 D 12a

K211a~A2zr! ei (a21)(u2u0)

1
sin~p a!

2p2

G~12a!

a SA2z r0

2 D a

Ka~A2zr! ei a(u2u0)1O~r 0! . ~29!
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One observes that the coefficients standing atr 0
12ae2 i (a21)u0 and r 0

ae2 i a u0 are, respectively,
proportional to

K211a~A2z r! ei (a21)u and Ka~A2z r! ei a u.

But these functions are nothing but the basis functions in the corresponding deficiency sub
see~8!.

Next we shall consider the case of two vortices. Applying~26! to ~13! we get

Gz~x,x0!5
sin~pa!

2p2

G~a!

12a SA2z ra

2 D 12a

ei (a21)uaLa21~x0!

1
sin~p a!

2p2

G~12a!

a SA2z ra

2 D a

ei a ua La~x0!1O~r a! ~30a!

for r a↓0 where

Ln~x0!5Kn~A2z r0a! e2 i n u0a1 (
g, n>2, cn5a

~21!n21E
Rn21

Ki tn211n~A2z r!

3 Ki (tn222tn21)~A2z r!3¯3Ki (t12t2)~A2z r!K2 i t1
~A2z r0!

3
sin~p sn21!

p sin~p~sn211 i tn21!!
3¯3

sin~p s2!

p sin~p~s21 i t2!!

sin~p s1! exp~2u0t1!

p sin~p~s11 i t1!!
dn21t

~30b!

@and, again, (r 0 ,u0) are the polar coordinates of the pointx0 with respect to the centerc1]. The
convergence of the series in~30b! will be discussed later in Sec. V.

V. DEFICIENCY SUBSPACES FOR THE CASE OF TWO VORTICES

In this section we are going to construct a basis in the deficiency subspaces in the two-
case. SoH designates the two-vortex spinless AB Hamiltonian described by the boundary c
tions ~12!, X is the symmetric operator obtained by restricting the domain ofH as described in
Sec. IV andN(z)5Ker(X* 2z) is a deficiency subspace.

Asymptotic expansion~29! for the one vortex case suggests that also in the two vortex
one may extract from the Green function a basis in the deficiency subspace. From~30! and ~28!
one derives immediately a candidate for such a basis. It is formed by the functions

cu,n,z~x!5 (
n50

`

Sn~u,n,z;x! , ~31a!

where

S0~u,n,z;x!5Kn~A2z ru! ei n uu, ~31b!

Sn~u,n,z;x!5~21!nE
Rn

Ki tn
~A2z rn!3 Ki (tn212tn)~A2zr!

3¯3Ki (t12t2)~A2zr!K2 i t12n~A2zr!

3
sin~p sn! exp~un tn!

p sin~p~sn1 i tn!!

sin~p sn21!

p sin~p~sn211 i tn21!!
3¯3

sin~p s1!

p sin~p~s11 i t1!!
dnt

~31c!
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for n>1, the indices are restricted to the range

uP$a,b%, nP$v21,v% where v5a if u5a, andv5b if u5b, ~31d!

and to eachnPN one relates the unique alternating sequence (cn ,cn21 ,...,c1), cjP$a,b% and
cjÞcj 11 , such thatc1Þu. Correspondingly,s j5a if cj5a and s j5b if cj5b. As usual,
(r n ,un)5(r cn

,ucn
) are the polar coordinates with respect to the centercn , (r c ,uc) are the polar

coordinates centered at the pointc.
Let us show that the series~31a! actually converges. In the Hilbert spaceL2(R, dt) we

introduce the vectors

fu,z~x;t!5Ki t~A2z ru!exp~uut!
sin~p s!

p sin~p~s1 i t!!
, gn,z~t!5K2 i t2n~A2z r!,

and the operatorsKz andDu with the generalized kernels

Kz~m,v!5Ki (v2m)~A2zr!, Du~m,v!5
sin~p s!

p sin~p~s1 im!!
d~m2v!,

where

uP$a,b%, s5a if u5a, ands5b if u5b.

For uP$a,b% let v be the complementary vortex, i.e.,$u,v%5$a,b%. For the sake of brevity we
shall use the matrixlike notation in the following paragraph. Thus the transposition will in
indicate an integration, i.e.,fTg5*Rf(t) g(t) dt.

We can rewrite the summands in Eq.~31a! using this notation~heren>1),

S2n21~u,n,z;x!52fv,z~x!T~Kz Du KzDv!n21gn,z ,

S2n~u,n,z;x!5fu,z~x!TKz Dv~Kz Du KzDv!n21gn,z .

These formulas make it possible to estimate the summands. Note thatKz acts as a convolution
operator and so it is diagonalized by the Fourier transform. Since

E
2`

`

ei x tKi t~a! dt5p e2a cosh(x),

we get

iKzi5p e2Re(A2z)r.

The operatorDu is already diagonal. Therefore

iDui5 sup
mPR

U sin~ps!

p sin~p~s1 im!!
U5 1

p
.

Jointly this implies that

uS2n21~u,n,z;x!u<ifv,z~x!iign,zi e2(2n22) Re(A2z) r ,

uS2n~u,n,z;x!u<ifu,z~x!iign,zi e2(2n21) Re(A2z) r .

The estimates show that the series~31a! converges absolutely at least as fast as a geometric se
Even one can rewrite the formula forcu,n,z(x) in a compact form, namely,
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cu,n,z~x!5Kn~A2z ru!ei n uu1~ fu,z~x!TKz Dv2fv,z~x!T!~I2Kz Du KzDv!21gn,z . ~32!

Here the inverse operator (I2Kz Du KzDv)21 exists with the norm estimated from above by
2exp(22 Re(A2z) r))21.

Altogether we get four functions:ca,a21,z , ca,a,z , cb,b21,z , andcb,b,z . Our goal is to show
that they actually form a basis in the deficiency subspace. Obviously

~D1z!cu,n,z50

since

~D1z!Kn~A2z r!e6 i n u50 on R2\$0%

for all nPC, zPC\R1 , and therefore all the summands satisfy the equation (D1z)Sn(u,n,z)
50 in the domainR2\(LaøLb).

Let us verify thatcu,n,z obeys the boundary conditions~12!. For the sake of definiteness w
shall consider the functionca,n,z , nP$a21,a%. First we shall show that

e2 i a pca,n,zuua5p2ei a pca,n,zuua52p50. ~33!

If n52m21 is odd thencn5b. Moreover, ifua56p thenub50 andr b5r a1r. Hence

e2 i a pS2m21~a,n,z!uua5p2ei a pS2m21~a,n,z!uua52p

5 E
R2m21

Ki t2m21
~A2z~r a1r!!3¯3Ki (t12t2)~A2z r!K2 i t12n~A2z r!

3
2 i sin~p a!sin~p s2m21!

p sin~p~s2m211 i t2m21!!
3¯3

sin~p s1!

p sin~p~s11 i t1!!
d2m21t .

If n52m, m>1, is even thencn5a and

e2 i a p exp~p tn!2ei a p exp~2p tn!522 i sin~p~sn1 i tn!!

hence

e2 i a pS2m~a,n,z!uua5p2ei a pS2m~a,n,z!uua52p

52E
R2m

Ki t2m
~A2z ra!Ki (t2m212t2m)~A2z r!3¯3K2 i t12n~A2z r!

3
2i sin~p a!

p

sin~p s2m21!

p sin~p~s2m211 i t2m21!!
3¯3

sin~p s1!

p sin~p~s11 i t1!!
d2mt .

The integration int2m can be carried on with the aid of the identity

E
2`

`

Ki t~a! Ki (n2t)~b! dt5p Kin~a1b! for a.0, b.0. ~34!

This way we get the equality

e2 i a pS2m~a,n,z!uua5p2ei a pS2m~a,n,z!uua52p

52~e2 i a pS2m21~a,n,z!uua5p2ei a pS2m21~a,n,z!uua52p!
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valid for all m>1. Obviously,

e2 i a pS0~a,n,z!uua5p2ei a pS0~a,n,z!uua52p50.

The last two equalities imply~33!.
Similarly one can show that

e2 i b pca,n,zuub5p2ei b pca,n,zuub52p50. ~35!

Equality ~34! again turns out to be useful but this time when treating the odd summands. W
aid the dimension of the integration domain is reduced by 1 and one obtains the equality

e2 i b pS2m21~a,n,z!uub5p2ei b pS2m21~a,n,z!uub52p

52~e2 i b pS2m22~a,n,z!uub5p2ei b pS2m22~a,n,z!uub52p!

valid for all m>1. This shows~35!.
Finally we note that the remaining two boundary conditions,

e2 i a p
]ca,n,z

]r a
U

ua5p

2ei a p
]ca,n,z

]r a
U

ua52p

50,

e2 i b p
]ca,n,z

]r b
U

ub5p

2ei b p
]ca,n,z

]r b
U

ub52p

50,

can be verified in exactly the same way.
Next we wish to examine the asymptotic behavior of the functionscu,n,z near the singular

pointsa andb. We shall again focus on the functionsca,n,z , the functionscb,n,z can be treated
similarly. First notice that

ca,n,z~b!50. ~36!

Actually, for the even summands in~31a! the limit x→b just means settingr a5r. To treat the odd
summands one applies the limit procedure~20! for r b→0 and finds that

S2m21~a,n,z;b!52S2m22~a,n,z;b! for all m>1.

This shows~36!.
Let us make this result more precise. The even summands in~31a! simply satisfy

S2m~a,n,z;x!5S2m~a,n,z;b!1O~r b! for x →b.

Asymptotic behavior of the odd summands can be obtained with the aid of relation~26!. We get
@hereS2m21(a,n,z;b)52S2m22(a,n,z;b)]

S2m21~a,n,z;x!5S2m21~a,n,z;b!1
sin~p b!

p

G~b!

12b SA2z rb

2 D 12b

ei (b21)ub

3E
R2m22

Ki t2m22211b~A2zr!3¯3Ki (t12t2)~A2z r!K2 i t12n~A2zr!

3
sin~p s2m22!

p sin~p~s2m221 i t2m22!!
3¯3

sin~p s1!

p sin~p~s11 i t1!!
d2m22t
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1
sin~p b!

p

G~12b!

b SA2z rb

2 D b

ei b ub E
R2m22

Ki t2m221b~A2z r!

3¯3Ki (t12t2)~A2z r!K2 i t12n~A2zr!
sin~p s2m22!

p sin~p~s2m221 i t2m22!!

3¯3
sin~p s1!

p sin~p~s11 i t1!!
d2m22t1O~r b!

for x →b. Jointly this means that

ca,n,z~x!5 (
m P $b21, b%

sin~pumu!
p

G~12umu!
umu SA2z rb

2 D umu

ei m ub Sm,n~a,b;z!1O~r b! ~37!

for x →b where

Sv,n~a,b;z!5Kv2n~A2zr!1 (
m51

` E
R2m

Ki t2m1v~A2z r! Ki (t2m212t2m)~A2z r!

3¯3Ki (t12t2)~A2z r!K2 i t12n~A2z r!
sin~p s2m!

p sin~p~s2m1 i t2m!!

3¯3
sin~p s1!

p sin~p~s11 i t1!!
d2mt ~38!

with (s2m ,...,s2 ,s1)5(a,...,a,b).
The functionca,n,z has a singularity at the pointa. Nevertheless it holds true that

(
n51

`

Sn~a,n,z;a!50. ~39!

The verification is similar to that of equality~36!. This time it holds true that

S2m~a,n,z;a!52S2m21~a,n,z;a! for all m>1.

This shows~39!. A more precise result can be derived as follows. Note that

S2m21~a,n,z;x!5S2m21~a,n,z;a!1O~r a! for x →a.

Asymptotic behavior of the even summands can be obtained with the aid of relation~26!. We get

S2m~a,n,z;x!5S2m~a,n,z;a!2
sin~p a!

p

G~a!

12a SA2z ra

2 D 12a

ei (a21)ua

3E
R2m21

Ki t2m21211a~A2z r!3¯3Ki (t12t2)~A2z r!K2 i t12n~A2z r!

3
sin~p s2m21!

p sin~p~s2m211 i t2m21!!
3¯3

sin~p s1!

p sin~p~s11 i t1!!
d2m21t

2
sin~p a!

p

G~12a!

a SA2z ra

2 D a

ei a ua E
R2m21

Ki t2m211a~A2z r!

3¯3Ki (t12t2)~A2z r!K2 i t12n~A2z r!
sin~p s2m21!

p sin~p~s2m211 i t2m21!!
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3¯3
sin~p s1!

p sin~p~s11 i t1!!
d2m21t1O~r a!

for x →a. The asymptotic behavior of the Macdonald function is given by the formula12

Kn~x!5
p

2 sin~n p! S 2n

G~12n!
x2n2

22n

G~11n!
xnD1O~x2n12!

5
G~n!

2 S x

2D 2n

2
G~12n!

2n S x

2D n

1O~x2n12! for 0,n,1.

Finally we arrive at the expansion

ca,n,z~x!5
G~ unu!

2 SA2z ra

2 D 2unu

ei n ua

2 (
m P $a21, a%

sin~pumu!
p

G~12umu!
umu SA2z ra

2 D umu

ei m ua Tm,n~a,b;z!1O~r a!

~40!

for x →a where

Tv,n~a,b;z!5
p

2 sin~pa!
dvn1 (

m51

` E
R2m21

Ki t2m211v~A2z r! Ki (t2m222t2m21)~A2z r!

3¯3Ki (t12t2)~A2z r!K2 i t12n~A2z r!
sin~p s2m21!

p sin~p~s2m211 i t2m21!!

3¯3
sin~p s1!

p sin~p~s11 i t1!!
d2m21t ~41!

with (s2m21 ,...,s2 ,s1)5(b,...,a,b).
Remark:As a consequence one can show that

(
n51

`

Sn~u,n,z;x!5 (
n51

`

Sn~u,2n,z;x!. ~42!

Actually, a short inspection of the above derivation shows that the functions

c̃u,n,z~x!5 (
n50

`

Sn~u,2n,z;x!

also satisfy the boundary conditions~12! and solve the equation (D1z)c̃u,n,z50. Therefore the
function

f ~x!5 (
n51

`

Sn~u,n,z;x!2 (
n51

`

Sn~u,2n,z;x!

satisfies the boundary conditions~12! as well and solves (D1z) f 50. In addition, f (a)5 f (b)
50. Consequently,f PDom(H) and (H2z) f 50. Necessarilyf 50.

Lemma 6:dimN(z)<4.
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Proof: In virtue of Corollary 2, for any five-tuple of functions fromN(z) there exists a
nontrivial linear combination of these functions vanishing both ata andb. By Corollary 3, such
a linear combination equals 0. h

Proposition 7:dimN(z)54.
Proof: Owing to Lemma 6 it suffices to show that dimN(z)>4. But in relation~31! we have

constructed four functionsca,a21,z , ca,a,z , cb,b21,z and cb,b,z from the deficiency subspac
N(z). The asymptotic expansions~37! and ~40! show that these functions are actually linea
independent. h

We conclude that the functions$ca,a21,z ,ca,a,z ,cb,b21,z ,cb,b,z% form a basis inN(z).
Remark:Formula~32! is well suited for numerical computations. To give the reader an i

about the behavior ofcu,n,z we have plotteduca,a21,i u in Fig. 2 anducb,b,i u in Fig. 3, with a
51/3, b52/3 andr51. Note that the former function vanishes in the vortexb while the latter one
vanishes in the vortexa.

VI. THE KREIN’S FORMULA

We would like to emphasize once more that we are using two unitarily equivalent form
tions. The operatorsH6, H0 are, respectively, associated to the quadratic forms~14! and~11!. Let
U be the unitary operator inL2(R2, d2x) acting asUw5exp(iaua1ibub)w. The Green function
~13! corresponds to the operatorH5UH0U21 defined by the boundary conditions on the cut~12!.

Set

FIG. 2. Functionca,a21,i from the deficiency subspace for the values of parametersa51/3, b52/3, r51.

FIG. 3. Functioncb,b,i from the deficiency subspace for the values of parametersa51/3, b52/3, r51.
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f u,n,z5~A2z! unucu,n,z . ~43!

Let us enumerate the basis$ f a,a21,z , f a,a,z , f b,b21,z , f b,b,z% in N(z) as $ f z
1 , f z

2 , f z
3 , f z

4% ~in this
order!. Set f̃ z

j 5U21f z
j , Rz5(H02z)21, Rz

65(H62z)21. According to the Krein’s formula

Rz
62Rz5(

j , k
~Mz

6! j ,k f̃ z
j ^ f̃ z̄

k ,•& ~44!

or, in terms of Green functions,

G z
6~x,x0!5Gz~x,x0!1(

j , k
~Mz

6! j ,k f z
j ~x! f z̄

k~x0! , ~45!

whereMz
6 is a holomorphic matrix-valued function defined onC\R.

An operator-valued functionRz
6 constructed this way will be the resolvent of a self-adjo

operator if and only if it satisfies~Ref. 13, Chap. 5.2!

;zPC\R, ~Rz
6!* 5Rz̄

6 ~46!

and ~the Hilbert identity!

;z,wPC\R, Rz
62Rw

65~z2w!Rz
6Rw

6 ~47!

@it follows from ~44! that KerRz
65$0% for all zPC\R]. Let us analyze conditions~46! and ~47!.

It is straightforward to see that~46! is satisfied if and only if

Mz* 5Mz̄ . ~48!

In equality ~52! below we shall show that

;z,wPC\R, ; j , f̃ w
j 1~z2w!Rzf̃ w

j 5 f̃ z
j .

With the aid of this identity it is just an easy computation to show that~47! is equivalent to the
condition

;z,wPC\R, Mz2Mw5~z2w! MzP~ z̄,w! Mw , ~49!

whereP(z,w) is the 434 matrix of scalar products,

P~z,w! j ,k5^ f z
j , f w

k &.

Equality ~49! was presented in Ref. 14 and was applied to problems similar to ours, for exa
in Refs. 15 and 3.

According to formula~30! and definition~31! of cu,n,z(x) we have

Gz~x,x0!5
sin~p a!

2p2

G~a!

12a SA2z r0a

2 D 12a

e2 i (a21)u0aca,a21,z~x!

1
sin~p a!

2p2

G~12a!

a SA2z r0a

2 D a

e2 i a u0a ca,a,z~x!1O~r 0a! ~50!

for r 0a↓0. Using this asymptotic behavior and the Hilbert identity written in terms of Gr
functions,
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~z2w!E
R2

Gz~x,y! Gw~y,x0! d2y5Gz~x,x0!2Gw~x,x0! ,

we obtain an equality valid foru5a, namely,

~z2w!~A2w! unu E
R2

Gz~x,y!cu,n,w~y! d2y5~A2z! unucu,n,z~x!2~A2w! unucu,n,w~x! . ~51!

This means that

cu,n,w1~z2w!~H2z!21cu,n,w5S A2z

A2w
D unu

cu,n,z

for nP$a21,a% andu5a. The same argument naturally applies also to the vortexu5b. Using
notation~43! we find that

f u,n,w1~z2w!~H2z!21f u,n,w5 f u,n,z ~52!

holds true for allw,zPC\R.
We wish to compute the 434 matrix of scalar productsP(z,w). Using~28! and applying the

asymptotic behavior~50! once more, this time to equality~51!, we find that the integral

E
R2

cv,m,z~y! cu,n,w~y! d2y

equals the coefficient standing at

sin~pumu!
2p2

G~12umu!
umu S r v

2 D umu

ei m uv

when taking the asymptotic expansion of the expression

1

z̄2w S 1

~A2w! unu
cu,n,z̄~x!2

1

~A2 z̄! unu
cu,n,w~x!D

for x→v, i.e., r v↓0. In virtue of ~40! and ~37! we get

E
R2

ca,m,z~y! ca,n,w~y! d2y522p
1

z̄2w S S A2 z̄

A2w
D unu

Tm,n~a,b; z̄!2S A2w

A2 z̄
D umu

Tm,n~a,b;w!D
and

E
R2

ca,m,z~y! cb,n,w~y! d2y5 2p
1

z̄2w S S A2 z̄

A2w
D unu

Sn,m~a,b; z̄!2S A2w

A2 z̄
D umu

Sn,m~a,b;w!D .

In particular,

E
R2

uca,n,z~x!u2 d2x52
2p

Im~z!
ImS S A2z

A2 z̄
D unu

Tn,n~a,b;z!D .

This means that, when passing to functions$ f z
j % instead of$cu,n,z%,
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~ z̄2w! P~z,w!

522pS ~A2 z̄!222aTa21,a21~a,b; z̄! A2 z̄Ta,a21~a,b; z̄!

A2 z̄Ta21,a~a,b; z̄! ~A2 z̄!2aTa,a~a,b; z̄!

2~A2 z̄!22a2bSa21,b21~b,a; z̄! 2~A2 z̄!11a2bSa,b21~b,a; z̄!

2~A2 z̄!12a1bSa21,b~b,a; z̄! 2~A2 z̄!a1bSa,b~b,a; z̄!

2~A2 z̄!22a2bSb21,a21~a,b; z̄! 2~A2 z̄!12a1bSb,a21~a,b; z̄!

2~A2 z̄!11a2bSb21,a~a,b; z̄! 2~A2 z̄!a1bSb,a~a,b; z̄!

~A2 z̄!222bTb21,b21~b,a; z̄! A2 z̄Tb,b21~b,a; z̄!

A2 z̄Tb21,b~b,a; z̄! ~A2 z̄!2bTb,b~b,a; z̄!

D
2 ~ z̄↔w! . ~53!

The Green functionsG z
6(x,x0) should satisfy the corresponding boundary conditions in e

variablex, x0 . Let us first consider the case ofH1. Recall that the boundary conditions whic
determine the domain ofH1 areF2

215F1
050 @see~15!#. Let us check the asymptotic behavior

G z
6(x,x0) for x0→a. Asymptotic behavior ofGz(x,x0) is given in~50! and asymptotic behavior o

f z
j (x0) follows from ~40! and~37! jointly with definition ~43!. The conditionF1

050 means that the
coefficient standing at (r 0a/2)2aexp(2iau0a) vanishes. This term occurs only in the asympto
expansion off z

2(x0) and so

(
j

~Mz
1! j ,2 f z

j ~x!50 .

The set of functions$ f z
j % is linearly independent and thus we get a condition on the matrixMz

1 :
(Mz

1) j ,250 for all j . Considering the limitx0→b one similarly derives the condition (Mz
1) j ,4

50. In view of ~48! one obtains more, namely,

~Mz
1! j ,k50 wheneverj 52,4 ork52,4. ~54!

Let us denote byMz
1,red the reduced 232 matrix obtained by omitting the vanishing rows an

columns, i.e.,

Mz
1,red5S ~Mz

1!1,1 ~Mz
1!1,3

~Mz
1!3,1 ~Mz

1!3,3D .

The condition F2
2150 for x0→a means that the coefficient standing at (r 0a/2)12a

3exp(2i(a21)u0a) vanishes. Using~54! we get

sin~p a!

2p2

G~a!

12a
f z

1~x!1(
j

f z
j ~x!S 2~Mz

1! j ,1
sin~p a!

p

G~a!

12a
~A2z !2(12a) Ta21,a21~a,b;z!

1 ~Mz
1! j ,3

sin~p a!

p

G~a!

12a
~A2z !22a2b Sa21,b21~b,a;z! D50.

This is equivalent to the couple of equations

1

2p
2~Mz

1!1,1~A2z !2(12a) Ta21,a21~a,b;z!1 ~Mz
1!1,3~A2z !22a2b Sa21,b21~b,a;z!50,

2 ~Mz
1!3,1~A2z !2(12a) Ta21,a21~a,b;z!1 ~Mz

1!3,3~A2z !22a2b Sa21,b21~b,a;z!50.
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Analogously, another two equations are obtained when considering the limitx0→b, namely,

1

2p
2~Mz

1!3,3~A2z !2(12b) Tb21,b21~b,a;z!1 ~Mz
1!3,1~A2z !22a2b Sb21,a21~a,b;z!50,

2 ~Mz
1!1,3~A2z !2(12b) Tb21,b21~b,a;z!1 ~Mz

1!1,1~A2z !22a2b Sb21,a21~a,b;z!50.

The four equations can be jointly rewritten in the matrix form,

Mz
1,red5

1

2p S ~A2z!222aTa21,a21~a,b;z! 2~A2z!22a2bSb21,a21~a,b;z!

2~A2z!22a2bSa21,b21~b,a;z! ~A2z!222bTb21,b21~b,a;z!
D 21

.

~55!

It is straightforward to verify that the derived matrixMz
1 actually obeys conditions~48! and

~49!. The former one follows from the equalities

Tm,n~a,b;z!5Tm,n~a,b; z̄!, Sm,n~a,b;z!5Sm,n~a,b; z̄!

and

Tm,n~a,b;z!5Tn,m~a,b;z!, Sm,n~a,b;z!5Sn,m~b,a;z!.

The latter one follows from the form ofP(z,w) given in ~53!. In fact, ~53! and~55! jointly imply

~ z̄2w! P~z,w!red5~Mw
1,red!212~Mz̄

1,red!21.

The other component of the Pauli operator,H2, can be treated similarly. The bounda
conditions readF1

215F2
050 @see~16!#. The conditionF1

2150 for x0→a means that the coef
ficient standing at (r 0a/2)211a exp(2i(a21)u0a) vanishes. Hence

(
j

~Mz
2! j ,1 f z

j ~x!50 ,

or equivalently, (Mz
2) j ,150. Similarly for x0→0 we derive that (Mz

2) j ,350, hence

~Mz
2! j ,k50 wheneverj 51,3 ork51,3. ~56!

Set

Mz
2,red5S ~Mz

2!2,2 ~Mz
2!2,4

~Mz
2!4,2 ~Mz

2!4,4D .

The conditionF2
050 for x0→a means that the coefficient standing at (r 0a/2)a exp(2iau0a) van-

ishes. Using~56! we get

sin~p a!

2p2

G~12a!

a
f z

2~x!1(
j

f z
j ~x!S 2~Mz

1! j ,2
sin~p a!

p

G~12a!

a
~A2z !2 a Ta,a~a,b;z!

1 ~Mz
1! j ,4

sin~p a!

p

G~12a!

a
~A2z !a1b Sa,b~b,a;z! D50.

This is equivalent to the couple of equations

1

2p
2~Mz

2!2,2~A2z !2a Ta,a~a,b;z!1~Mz
2!2,4~A2z !a1b Sa,b~b,a;z!50,
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2 ~Mz
2!4,2~A2z !2a Ta,a~a,b;z!1~Mz

2!4,4~A2z !a1b Sa,b~b,a;z!50.

For x0→b one derives other two equations,

1

2p
2~Mz

2!4,4~A2z !2b Tb,b~b,a;z!1~Mz
2!4,2~A2z !a1b Sb,a~a,b;z!50,

2~Mz
2!2,4~A2z !2b Tb,b~b,a;z!1~Mz

2!2,2~A2z !a1b Sb,a~a,b;z!50.

Jointly the four equations mean that

Mz
2,red5

1

2p S ~A2z!2aTa,a~a,b;z! 2~A2z!a1bSb,a~a,b;z!

2~A2z!a1bSa,b~b,a;z! ~A2z!2bTb,b~b,a;z!
D 21

. ~57!

Let us note that the inverted matrices on the right-hand side of~55! and~57! are actually well
defined. This is because the matrices in question depend onz analytically in the domainC\R1 and
tend exponentially fast to invertible diagonal matrices for ReA2z→1` as one can easily deduc
from the discussion of the formula~32! related to the convergence of the series~31a! and from the
form of matrix entries~38! and ~41!.

VII. CONCLUDING REMARKS

Having a formula for the Green functionG z
6(x,x0) it would be, of course, desirable to use

for a more detailed analysis of the Pauli operator, first of all for its spectral analysis. This
would assume, however, a more detailed analysis of the functionsSv,n(a,b;z) andTv,n(a,b;z).
In particular, it would be important to know what happens in the limit ReA2z→0, i.e., whenz
approacheslPR1 from the upper or lower half-plane. Recall that bothSv,n(a,b;z) and
Tv,n(a,b;z) are expressed as infinite series whose convergence is guaranteed for ReA2z.0. Our
first attempts in this direction suggest that such an analysis might be rather complex and sh
considered as an independent problem in its own right.
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Nonadiabatic holonomy operators in classical
and quantum completely integrable systems
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Given a completely integrable system, we associate to any connection on a fiber
bundle in invariant tori over a parameter manifold the classical and quantum ho-
lonomy operator ~generalized Berry’s phase factor!, without any adiabatic
approximation. ©2004 American Institute of Physics.@DOI: 10.1063/1.1627957#

I. INTRODUCTION
At present, holonomy operators in quantum systems attract special attention in conn

with quantum computation~see, e.g., Refs. 1–3!. They exemplify the non-Abelian generalizatio
of Berry’s geometric phase by means of driving a finite level degenerate eigenstate of a H
tonian over a parameter manifold. The key point is that a geometric phase depends only
geometry of a path executed and, therefore, provides a possibility to perform quantum ga
erations in an intrinsically fault-tolerant way. The problem lies in separation of a geometric p
factor from the total evolution operator without using an adiabatic assumption. First, holo
quantum computation implies exact cyclic evolution, but exact adiabatic cyclic evolution a
never exists. Second, an adiabatic condition requires that the evolution time must be long e

A nonadiabatic Abelian phase was discovered by Aharonov and Anandan who consid
loop in a projective Hilbert space instead of a parameter space.4 Non-Abelian generalization of the
Aharonov–Anandan phase has been studied under rather particular assumption.5 Moreover, a
non-Abelian Aharonov–Anandan phase fails to be separated from the dynamic one in g
Recently, several schemes using the Aharonov–Anandan phase were proposed for nona
geometric gates.6–8

In a general setting, let us consider a linear~not necessarily finite-dimensional! dynamical
system] tc5Ŝc whose linear~time-dependent! dynamic operatorŜ falls into the sum

Ŝ5Ŝ01D5Ŝ01Da] tj
a, ~1!

wherej(t) is a function of time taking its values in a finite-dimensional smooth real param
manifold S coordinated by (sa). Let us assume that~i! the operatorsŜ0(t) andD(t8) commute
for all instantst and t8, and ~ii ! the operatorD depends on time only throughj(t). Then the
evolution operatorU(t) can be represented by the product of time-ordered exponentials

U~ t !5U0~ t !+U1~ t !5T expF E
0

t

Ŝ0dt8G +T expF E
0

t

Ddt8G , ~2!

where the second one is brought into the ordered exponential

a!Electronic mail: giovanni.giachetta@unicam.it
b!Electronic mail: luigi.mangiarotti@unicam.it
c!Electronic mail: sard@grav.phys.msu.su
760022-2488/2004/45(1)/76/11/$22.00 © 2004 American Institute of Physics
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U1~ t !5T expF E
0

t

Da~j~ t8!!] tj
a~ t8!dt8G5T expF E

j[0,t]
Da~s!dsaG ~3!

along the curvej@0,t# in the parameter manifoldS. It is a nonadiabatic geometric factor depen
ing only on the trajectory of the parameter functionj. Accordingly,D is a holonomy operator. The
geometric factor~3! is well defined ifDadsa is an Ehresmann connection on a fiber bundle o
a parameter manifoldS. Then this factor is a displacement operator along an arbitrary c
j@0,t#,S.

A problem is that the above mentioned commutativity condition (i ) is very restrictive. More-
over, it need not be preserved under time-dependent transformations.

For instance, let us consider a Hamiltonian system of dynamic variables (q,p). Written with
respect to the initial data coordinates (q0 ,p0), its HamiltonianH(q0 ,p0) vanishes. Given these
coordinates (q0 ,p0), let one introduce a perturbed HamiltonianHj(q0 ,p0 ,j(t)) which depends
on parameter functionsj(t) and generates a holonomy operatorD ~1!. Then the evolution operato
of the perturbed Hamiltonian system reduces to the geometric factor~3!. Relative to the original
variables (q,p), a Hamiltonian of this perturbed Hamiltonian system is

H85H~q,p,t !1Hj~q0~ t,q,p!,p0~ t,q,p!,j~ t !!.

However, the corresponding evolution operator does not fall into the product~2! because a Hamil-
tonianH is not a function under time-dependent transformations and, consequently, the P
bracket$H,Hj% with respect to original variables (q,p) need not vanish.

Nevertheless, basing on this example, we can essentially extend the class of dynamic
tems admitting a nonadiabatic geometric phase. We aim to describe dynamical systems wh
commutativity condition (i ) is not satisfied, but a part of dynamic variables is driven only b
holonomy operator. These are completely integrable Hamiltonian systems.

Let us consider a completely integrable Hamiltonian system~henceforth CIS! of m degrees of
freedom around its invariant toriTm. We show that, being constant under an internal evolution
action variables are driven only by a perturbation holonomy operatorD which can be associated t
an arbitrary connection on a fiber bundle

S3Tm→S. ~4!

This holonomy operator is defined with respect to the initial data action-angle coordinates w
any adiabatic approximation. Then we return to the original action-angle coordinates. Th
point is that both classical evolution of action variables and mean values of quantum
operators relative to original action-angle coordinates are determined in full by the dynam
initial data action and angle variables.

The plan of the paper is as follows. Section II addresses classical time-dependent CI
key point is that any time-dependent CIS ofm degrees of freedom is extended to an autonom
CIS of m11 degrees of freedom9–11 and, as a consequence, can be provided with action-a
variables around a regular instantly compact invariant manifold.10,11

In Sec. III, we introduce the holonomy operator in a classical CIS by use of the fact t
generic Hamiltonian of a mechanical system with time-dependent parameters contains
which is linear both in momenta and the temporal derivative of a parameter function.12,13 This
term comes from a connection on the configuration space of the system fibered over a par
manifold.

Section IV is devoted to geometric quantization of a CIS with respect to the angle pola
tion. This polarization leads to the Schro¨dinger representation of action variables in the separa
Hilbert space of smooth complex functions onTm.10,14 We show that this quantization both wit
respect to the original action-angle variables and the initial data action-angle variables is e
lent.

In Sec. V, the classical holonomy operator of Sec. III is quantized with respect to the i
data action-angle variables.
                                                                                                                



lds

an

s

uipped

bracket

he

78 J. Math. Phys., Vol. 45, No. 1, January 2004 Giachetta, Mangiarotti, and Sardanashvily

                    
The symbolsc and b below stand for the left and right interior products of multivector fie
and exterior forms, respectively.

Let us recall that, given a fiber bundleY→X coordinated by (xl,yi), a connectionK on Y
→X is defined by a tangent-valued form

K5dxl
^ ~]l1kl

i ] i !

on Y.15 A connection on a fiber bundleY→X is said to be an Ehresmann connection if, given
arbitrary smooth curvej(@0,1#),X, there exists its horizontal lift through any point ofY over
j~0!.

Let X be a real axisR provided with the Cartesian coordinatet possessing transition function
t85t1const. A connectionK on a fiber bundleY→R is uniquely represented by a vector fieldK
on Y such thatK cdt51.12 This is the case of time-dependent mechanics.

II. CLASSICAL TIME-DEPENDENT CIS

Recall that the configuration space of time-dependent mechanics is a fiber bundleQ→R over
the time axisR. Let it be equipped with the bundle coordinates (t,qk), k51,...,m. The corre-
sponding phase space is the vertical cotangent bundleV* Q of Q→R endowed with the induced
coordinates (t,qk,pk) relative to the holonomic coframes$dqk%.12,16The cotangent bundleT* Q of
Q→R plays a role of the homogeneous phase space of time-dependent mechanics. It is eq
with the induced coordinates (t,qk,p,pk) relative to the holonomic coframes$dt,dqk%. With
respect to these coordinates, the canonical symplectic form and the corresponding Poisson
on T* Q read

V5dp∧dt1dpk∧dqk,

$ f , f 8%T5]pf ] t f 82] t f ]pf 81]kf ]kf 82]kf ]kf 8, f , f 8PC`~T* Q!.

There is the one-dimensional trivial affine bundle

z:T* Q→V* Q. ~5!

As a consequence, the phase spaceV* Q of time-dependent mechanics is provided with t
canonical Poisson structure

$ f , f 8%V5]kf ]kf 82]kf ]kf 8, f , f 8PC`~V* Q!, ~6!

given by the relations

z* $ f , f 8%V5$z* f ,z* f 8%T , f , f 8PC`~V* Q!.

The corresponding Poisson bivector onV* Q readswV5]k∧]k.
A Hamiltonian of time-dependent mechanics is defined as a global section

h:V* Q→T* Q, p+h52H~ t,qj ,pj !, ~7!

of the affine bundlez ~5!.12,16 Given the pull-back formh* V, the relationsgHcdt51, gHch* V
50 define a unique Hamilton vector field

gH5] t1]kH]k2]kH]k ~8!

on V* Q and the corresponding Hamilton equations

q̇k5]kH, ṗk52]kH. ~9!
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Note that, given a connectionG5] t1G t
i] i on Q→R, any HamiltonianH ~7! admits the decom-

positionH5piG t
i1H̃ whereH̃ is a function onV* Q.

An integral of motion of the Hamilton equations~9! is a smooth real functionF on V* Q
whose Lie derivative

LgH
F5gHcdF5] tF1$H,F%V

along the Hamilton vector fieldgH ~8! vanishes. A time-dependent Hamiltonian system ofm
degrees of freedom is a CIS if there existm independent integrals of motion$Fk% in involution
with respect to the Poisson bracket$,%V ~6!. Their Hamiltonian vector fields

q i52wVbdFi5]kFi]k2]kFi]
k

and the Hamilton vector fieldgH ~8! generate a smooth regular distribution on the phase sp
V* Q and the corresponding foliation ofV* Q in invariant manifolds.

One can associate to any time-dependent CIS onV* Q an autonomous CIS on the homog
neous phase spaceT* Q as follows.

Given a Hamiltonianh ~7!, let us consider an autonomous Hamiltonian system on the s
plectic manifold (T* Q,V) with the Hamiltonian

H5] tc~J2z* h* J!5p1H.

Its Hamiltonian vector field

gT5] t2] tH]p1]kH]k2]kH]k ~10!

is projected onto the Hamilton vector fieldgH ~8! on V* Q so that

z* ~LgH
f !5$H,z* f %T , f PC`~V* Q!.

An immediate consequence of this relation is the following.

~i! Given a time-dependent CIS (H;Fk) on V* Q, the Hamiltonian system$H,z* Fk% on T* Q
is a CIS.

~ii ! If M,V* Q is an invariant manifold of the time-dependent CIS$H;Fk%, thenh(M ),T* Q
is an invariant manifold of the homogeneous CIS (H,z* Fk).

Hereafter, let the Hamilton vector fieldgH ~8! be complete, i.e., the Hamilton equations~9!
admit a unique global solution~a trajectory ofgH) through every point of the phase spaceV* Q.
The trajectories ofgH define a trivial bundleV* Q→V0* Q over the fiberV0* Q of V* Q→R at t
50. Then any invariant manifoldM of $H;Fk% is also a trivial bundleM5R3M0 over M0

5MùV0* Q.
If M0 is compact, one can introduce action-angle coordinates around an invariant manifM

by use of the action-angle coordinates around the invariant manifoldh(M ) of the corresponding
autonomous CIS onT* Q.10 Namely,h(M ) has an open neighborhood which is a trivial bund

U85V83R3Tm→V83R→V8 ~11!

over a domainV8,Rm11 with respect to the action-angle coordinates (I 0 ,I i ,t,f i). Herewith, the
following holds. (i ) I 05H. (i i ) The integrals of motionz* Fk depend only on the action coord
natesI i . (i i i ) The symplectic formV on U8 reads

V5dI0∧dt1dIi∧df i .

The symplectic annulusU8 ~11! inherits the fibration structure~5! over the toroidal domain
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U5V3R3Tm, V,Rm. ~12!

Coordinated by (I i ,t,f i) and provided with the Poisson structure~6!, the toroidal domain~12! is
a phase space of the time-dependent CIS (H;Fi) around its instantly compact invariant manifo
M . SinceH5I 0 , the Hamilton vector field~10! is gT5] t , and so is its projectiongH ~8! ontoU.
Hence, the above-mentioned action-angle coordinates (I i ,t,f i) are the initial data coordinates.

These action-angle coordinates are by no means unique. LetH be an arbitrary smooth func
tion on Rm. Then the canonical transformation

I 085I 02H~ I j !, I i85I i , t85t, w i5f i1t] iH~ I j ! ~13!

gives new action-angle coordinates corresponding to a different trivialization ofU8 ~11! @andU
~12!#. Accordingly, the Hamilton vector fieldgH takes the form~8!, and the Hamilton equation
~9! read

ẇk5]kH, İ k50.

These are the Hamilton equations of an autonomous CIS with a time-independent HamiltonH
on the toroidal domainU ~12!.

III. CLASSICAL HOLONOMY OPERATORS

The phase space of a Hamiltonian system with time-dependent parameters is a compos
bundleP→S3R→R, whereP→S3R is a symplectic bundle andS3R→R is a parameter
bundle whose sections are parameter functions.12,13,17,18 In the case under consideration, a
bundles are trivial and their trivializations hold fixed. Namely, the phase space is the produ

P5S3U5S3~V3R3Tm!→S3R→R,

equipped with the coordinates (sa,I k ,t,fk). Let us suppose for a time that parameters are a
dynamic variables. The phase space of this system is the fiber bundle

P85T* S3U→S3R3Tm

coordinated by (sa,sa ,I k ,t,fk). A generic Hamiltonian of such a system is

HS5saS t
a1I k~L t

k1La
k S t

a!1H̃~sb,I j ,t,f j !, ~14!

where

] t1S t
a]a1~L t

k1La
k S t

a!]k

is a composite connection on the fiber bundleS3R3Tm→R generated by a connection] t

1S t
a]a on the parameter bundleS3R→R and a connection

L5dt^ ~] t1L t
k]k!1dsa

^ ~]a1La
k ]k! ~15!

on S3R3Tm→S3R.12,13,18 Then a Hamiltonian system with a fixed parameter functionsa

5ja(t) is characterized by the Hamiltonian

Hj5I k@L t
k~ t,f j !1La

k ~jb,t,f j !] tj
a#1H̃~jb,I j ,t,f j ! ~16!

on the pull-back bundleU5j* P ~12!.
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Let (I k ,t,fk) be the initial data action-angle coordinates of a time-dependent CIS. Its H
tonian H with respect to these coordinates vanishes. Therefore, we can introduce a desir
lonomy operator by the appropriate choice of the connectionL ~15!. Let us putL t

k50 and assume
that coefficientsLa

k are independent of time, i.e., the part

LS5dsa
^ ~]a1La

k ]k! ~17!

of the connectionL ~15! is a connection on the fiber bundle~4!. Then the Hamiltonian of a
perturbed CIS reads

Hj5I kLa
k ~jb,f j !] tj

a. ~18!

Its Hamilton vector field~8! is

gH5] t1La
i ] tj

a] i2I k] iLa
k ] tj

a] i . ~19!

It leads to the Hamilton equations

] tf
i5La

i ~j~ t !,f l !] tj
a, ~20!

] tI i52I k] iLa
k ~j~ t !,f l !] tj

a. ~21!

Note that

V* LS5dsa
^ ~]a1La

i ] i2I k] iLa
k ] i ! ~22!

is the lift of the connectionLS ~17! onto the fiber bundleS3(V3Tm)→S, seen as a subbundl
of the vertical cotangent bundleV* (S3Tm)5S3T* Tm of the fiber bundle~4!. It follows that
any solutionI i(t), f i(t) of the Hamilton equations~20! and ~21! @i.e., an integral curve of the
Hamilton vector field~19!# is a horizontal lift of the curvej(t),S with respect to the connectio
V* LS ~22!, i.e., I i(t)5I i(j(t)), f i(t)5f i(j(t)). Thus, the right-hand side of the Hamilto
equations~20! and ~21! is the holonomy operator

D5~La
i ] tj

a,2I k] iLa
k ] tj

a! ~23!

@cf. ~1! whereŜ050]. It is not a linear operator, but the substitution of a solutionf(j(t)) of the
equation~20! into the Hamilton equation~21! results in a linear holonomy operator on the acti
variablesI i .

Let us show that the holonomy operator~23! is well defined. Since any vector fieldq on R
3Tm such thatq cdt51 is complete, the Hamilton equation~20! has solutions for any paramete
function j(t). It follows that any connectionLS ~17! on the fiber bundle~4! is an Ehresmann
connection, and so is its lift~22!. Therefore, any curvej(@0,1#),S can play the role of the
parameter function in the holonomy operatorD ~23!.

Now, let us return to the original action-angle coordinates (I k ,t,wk) by means of the canonica
transformation~13!. Relative to these coordinates, the perturbed Hamiltonian reads

H85I kLa
k ~j~ t !,w i2t] iH~ I j !!] tj

a~ t !1H~ I j !,

and the Hamilton equations~20! and ~21! take the form

] tw
i5] iH~ I j !1La

i ~j~ t !,w l2t] lH~ I j !!] tj
a~ t !2tI k]

i]sH~ I j !]sLa
k ~j~ t !,w l2t] lH~ I j !!] tj

a~ t !,

] tI i52I k] iLa
k ~j~ t !,w l2t] lH~ I j !!] tj

a~ t !.
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Their solution isI i(j(t)), w i(t)5f i(j(t))1t] iH(I j (j(t))) whereI i(j(t)), f i(j(t)) is a solution
of the Hamilton equations~20! and ~21!. It is readily observed that the action variablesI k are
driven only by the holonomy operator, while the angle variablesw i have a nongeometric sum
mand.

Let us emphasize that, in the construction of the holonomy operator~23!, we did not impose
any restriction on the connectionLS ~17!. Therefore, any connection on the fiber bundle~4!
generates a holonomy operator in a CIS. However, a glance at the expression~23! shows that this
operator becomes zero on action variables if all coefficientsLl

k of the connectionLS ~17! are
constant, i.e.,LS is a principal connection on the fiber bundle~4! seen as a principal bundle wit
the structure groupTm.

IV. QUANTUM CIS

There are different approaches to quantization of CISs.19 Their geometric quantization wa
studied at first with respect to the polarization spanned by Hamiltonian vector fields of integr
motion.20 For example, the well-known Simms quantization of the harmonic oscillator is of
type. In this approach, the problem is that the associated quantum algebra includes affine fu
of angle coordinates which are ill defined. As a consequence, elements of the carrier space
quantization fail to be smooth, but are tempered distributions. In recent works,10,14 we have
developed a different variant of geometric quantization of CISs by use of the angle polariz
spanned by almost-Hamiltonian vector fields]k of angle variables. This quantization is equivale
to geometric quantization of the cotangent bundleT* Tm of a torusTm with respect to the vertica
polarization. The result is as follows.

Given an autonomous CIS on a symplectic annulus

P5V3Tm, VP5dIi∧dw i

equipped with the action-angle coordinates (I i ,w i), its quantum algebraA with respect to the
above mentioned angle polarization consists of affine functions

f 5ak~w j !I k1b~w j !

of action coordinatesI k . They are represented by self-adjoint unbounded operators

f̂ 52 iak]k2
i

2
]ka

k2aklk1b ~24!

in the separable pre-Hilbert space of complex half-forms onTm. If coordinate transformations o
Tm are only translations, this space can be identified with the pre-Hilbert spaceC`(Tm) of smooth
complex functions onTm. Different tuples of real numbers (l1 ,...,lm) and (l18 ,...,lm8 ) specify
inequivalent representations~24!, unlesslk2lk8PZ for all k51,...,m. These numbers come from
the de Rham cohomology groupH1(Tm)5Rm.

In particular, the action operators~24! read Î k52 i ]k2lk . They are bounded. By virtue o
the multidimensional Fourier theorem, an orthonormal basis forC`(Tm) consists of functions

c (nr )
~w!5exp@ inrw

r #, ~nr !5~n1 ,...,nm!PZm. ~25!

With respect to this basis, the action operators are brought into countable diagonal matrice

Î kc (nr )
5~nk2lk!c (nr )

, ~26!

while functionsak(w) are decomposed in Fourier series of the functionsc (nr )
, which act on

C`(Tm) by the law
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ĉ (nr )
c (n

r8)5c (nr1n
r8) . ~27!

It should be emphasized thatâkÎ kÞakI k̂ÞI ka
k̂.

If a HamiltonianH(I k) of an autonomous CIS is an analytic function onRm, it is uniquely
quantized as a Hermitian elementĤ(I k)5H( Î k) of the enveloping algebra ofA. It is a bounded
self-adjoint operator with the countable spectrum

Ĥ~ I k!c (nr )
5E(nr )

c (nr )
, E(nr )

5H~nk2lk!, nkP~nr !. ~28!

In order to quantize a time-dependent CIS on the Poisson toroidal domain (U,$,%V) ~12! equipped
with action-angle coordinates (I i ,t,w i), one may follow the instantwise geometric quantization
time-dependent mechanics.21 As a result, we can simply replace functions onTm with those on
R3Tm.10 Namely, the corresponding quantum algebraA,C`(U) consists of affine functions

f 5ak~ t,w j !I k1b~ t,w j ! ~29!

of action coordinatesI k represented by the operators~24! in the space

E5C`~R3Tm! ~30!

of smooth complex functionsc(t,w) on R3Tm. This space is provided with the structure of th
pre-HilbertC`(R)-module with respect to the nondegenerateC`(R)-bilinear form

^cuc8&5S 1

2p D mE
Tm

cc̄8dmw, c,c8PC`~R3Tm!.

Its basis consists of the pull-back ontoR3Tm of the functionsc (nr )
in ~25!.

This quantization of a time-dependent CIS is extended to the associated homogeneous
the symplectic annulus (U8,V) in ~11! by means of the operatorÎ 052 i ] t in the pre-Hilbert
moduleE in ~30!. Accordingly, the homogeneous HamiltonianH is quantized asĤ52 i ] t1Ĥ.
The corresponding Schro¨dinger equation is

Ĥc52 i ] tc1Ĥc50, cPE. ~31!

For instance, the quantum Hamiltonian of the original autonomous CIS is

Ĥ52 i ] t1H~ Î j !.

Its spectrumĤc (nr )
5E(nr )

c (nr )
relative to the basis$c (nr )

% for E in ~30! coincides with that of the
autonomous Hamiltonian~28!. The Schro¨dinger equation~31! reads

Ĥc52 i ] tc1H~2 i ]k2lk!c50, cPE.

Its solutions are the Fourier series

c5(
(nr )

B(nr )
exp@2 i tE (nr )

#c (nr )
, B(nr )

PC.

Now, let us quantize this CIS with respect to the initial data action-angle coordinates (I i ,f i). Its
quantum algebraA 0,C`(U) consists of affine functions

f 5ak~ t,f j !I k1b~ t,f j !. ~32!
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The canonical transformation~13! provides an isomorphism between Poisson algebrasA andA0 .

Functionsf in ~32! are represented by the operatorsf̂ in ~24! in the pre-Hilbert moduleE0 of
smooth complex functionsC(t,f) onR3Tm. Given its basisC (nr )

(f)5exp@inrf
r#, the operators

Î k and ĉ (nr )
take the form~26! and ~27!, respectively. The Hamiltonian of a quantum CIS wi

respect to the initial data variables isĤ052 i ] t . Then one easily obtains the isometric isomo
phism

R~c (nr )
!5exp@ i tE (nr )

#C (nr )
, ^R~c!uR~c8!&5^cuc8&, ~33!

between the pre-Hilbert modulesE andE0 which provides the equivalence

Î i5R21Î iR, ĉ (nr )
5R21Ĉ (nr )

R, Ĥ5R21Ĥ0R ~34!

of the quantizations of a CIS with respect to the original and initial data action-angle varia

V. QUANTUM HOLONOMY OPERATORS

In view of the isomorphism~34!, let us first construct a holonomy operator for a quantum C
(A0 ,Ĥ0) with respect to the initial data action-angle coordinates. Let us consider the pert
homogeneous Hamiltonian

Hj5H01H15I 01] tj
a~ t !La

k ~j~ t !,f j !I k

of the classical perturbed system~18!. Its perturbation termH1 is of the form~29! and, therefore,
is quantized by the operator

Ĥ152 i ] tj
aD̂a52 i ] tj

a@La
k ]k1 1

2 ]k~La
k !2 ilkLa

k #.

The quantum HamiltonianĤj5Ĥ01Ĥ1 defines the Schro¨dinger equation

] tC1] tj
a@La

k ]k1 1
2 ]k~La

k !2 ilkLa
k #C50. ~35!

If a solution exists, it can be written by means of the evolution operator which reduces t
geometric factorU1 in ~3!. The latter can be viewed as a displacement operator along the c
j@0,1#,S with respect to the connection

L̂S5dsa~]a1D̂a! ~36!

in the C`(S)-moduleC`(S3Tm) of smooth complex functions onS3Tm.13,15,18,22Let us study
the existence of this displacement operator.

Given a connectionLS in ~17!, let F i(t,f) denote the flow of the complete vector field] t

1La
i (j,f)] tj

a] i on R3Tm. It is a solution of the Hamilton equation~20! with the initial dataf.
We need the inverse flow (F21) i(t,f) which obeys the equation

] t~F21! i~ t,f!52] tj
aLa

i ~j,~F21! i~ t,f!!52] tj
aLa

k ~j,f!]k~F21! i~ t,f!.

Let C0 be an arbitrary complex half-formC0 on Tm possessing identical transition functions, a
let the same symbol stand for its pull-back ontoR3Tm. Given its pull-back

~F21!* C05detS ]~F21! i

]fk D 1/2

C0~F21~ t,f!!, ~37!

it is readily observed that
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C5~F21!* C0 exp@ ilkf
k#

obeys the Schro¨dinger equation~35! with the initial dataC0 . This function is well defined only if
all the numberslk equal 0 or6 1

2. Note that, if some numberslk are equal to6 1
2, then

C0 exp@ilkf
k# is a half-density onTm whose transition functions equal61, i.e., it is a section of

a nontrivial metalinear bundle overTm.
We thus observe that iflk equals 0 or6 1

2, then the displacement operator always exists a
D5 iH1 is a holonomy operator. A glance at the action law~27! shows that this operator i
infinite-dimensional.

For instance, letLS in ~17! be the above mentioned principal connection, i.e.,La
k 5const.

Then the Schro¨dinger equation~35! wherelk50 takes the form

] tC~ t,f j !1] tj
a~ t !La

k ]kC~ t,f j !50.

Its solution~37! is

C~ t,f j !5C0~f j2~ja~ t !2ja~0!!La
j !.

The corresponding evolution operator reduces to Berry’s phase multiplier

U1C (nr )
5exp@2 in j~ja~ t !2ja~0!!La

j !]C (nr )
, njP~nr !.

It keeps the eigenvectors of the action operatorsÎ i .
In order to return to the original action-angle variables, one can employ the morphismR in

~33!. The corresponding Hamiltonian readsH85R21HjR. The key point is that, due to th
relation ~34!, the action operatorsÎ i have the same mean values

^I kcuc&5^I kCuC&, C5R~c!,

with respect both to the original and the initial data action-angle variables. Therefore, these
values are defined only by the holonomy operator.

VI. CONCLUSIONS

We have shown that any CIS around its compact invariant manifold admits a perturb
dependent on parameters by means of a holonomy operator associated to a connection on
bundle~4!.

Since action variables are driven only by a holonomy operator, one can use this oper
order to perform a dynamic transition between classical solutions or quantum states of an
turbed CIS by an appropriate choice of a parameter functionj. The key point is that this transition
can take an arbitrary short time because we are entirely free with time parametrization ofj and can
choose it quickly changing, in contrast with slowly varying parameter functions in adia
models. For instance, one can choosej a step function; then its time derivative is ad-function of
time. This fact makes nonadiabatic holonomy operators in CISs promising for several applica
including classical and quantum scattering in integrable Hamiltonian systems,23 quantum control
operators,24,25 and the above mentioned quantum computation. It also looks attractive that
tum holonomy operators in CISs are essentially infinite-dimensional, whereas both the e
quantum control theory and the theory of quantum information and computation26 involve only
finite-dimensional operators.
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Weak coherent state path integrals
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Weak coherent states share many properties of the usual coherent states, but do not
admit a resolution of unity expressed in terms of a local integral. They arise, e.g.,
in the case that a group acts on an inadmissible fiducial vector. Motivated by the
recent Affine Quantum Gravity Program, the present article studies the path integral
representation of the affine weak coherent state matrix elements of the unitary
time-evolution operator. Since weak coherent states do not admit a resolution of
unity, it is clear that the standard way of constructing a path integral, by time
slicing, is predestined to fail. Instead a well-defined path integral with Wiener
measure, based on a continuous-time regularization, is used to approach this prob-
lem. The dynamics is rigorously established for linear Hamiltonians, and the diffi-
culties presented by more general Hamiltonians are addressed. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1627959#

I. INTRODUCTION

Unlike the standard phase space path integrals constructed by the time slicing meth
path integral with Wiener measure invented by Klauder, Daubechies, and others uses a cont
time regularization factor.1–5 This path integral is* exp$2i*@qdp1dG(p,q)1h(p,q)dt#% dmW

n ,
whereG is an arbitraryC1 function andh is the classical Hamiltonian in a sense which will b
explained later. The pinned Wiener measuredmW

n is defined with the help of the heat kern
*dmW

n
ª@exp$nTDLB%#(p9,q9,q8,p8). Thus, by way of the Laplace–Beltrami operatorDLB , a

metric is introduced. The formal phase space path integralNn* exp$2i*@qṗ1Ġ(p,q)
1h(p,q)#dt%exp$2 (1/2n) *(ds2/dt2)dt%DpDq can be given meaning by equating it to the abo
Wiener measure path integral. Here,Nn is a formal normalization constant, andds2 is the metric
mentioned above. The variablesp and q in the well-defined Wiener measure path integral a
stochastic variables describing Brownian Bridges. The integral*qdp has to be interpreted as

stochastic integral. The rule adopted here is the Stratonovich midpoint rule*qdpª lim ( 1
2(ql 11

1ql)(pl 112pl), which guarantees that the ordinary rules of calculus still apply. It was sho
first for the case of a flat and spherical phase space metric,1 then for a hyperbolic metric,2 that the
limit of diverging diffusion constantn exists for a wide set of quantum HamiltoniansH, including
at least all Hamiltonians polynomial in the basic quantum kinematical operators. The limit is
to the coherent state matrix element^p9q9uexp$2iTH%up8q8& of the unitary time-evolution opera
tor and the specific metric determines the coherent states in question: The flat metric is ine
connected with the coherent states of the Heisenberg–Weyl group~and in the canonical, Cartesia
form, it is connected to the canonical coherent states!, the spherical metric is associated with th
coherent states of the SU~2! group, and the hyperbolic metric leads to the coherent states o
affine group. And with each group comes a set of quantum kinematical operators. Thus, o
say that in these three cases the choice of geometry augmenting the classical phase space
determines the quantum kinematical operators uniquely! Furthermore, the classical Hami
that goes with the quantum HamiltonianH is given by the lower symbol~other authors call this
symbol the upper symbol, since it is involved in an upper bound in the Berezin–Lieb inequa!
870022-2488/2004/45(1)/87/13/$22.00 © 2004 American Institute of Physics
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h, implicitly defined by the relationH5*h(p,q)upq&^pqudm(p,q). Here,dm(p,q) is the left-
invariant group measure of the group which defines the coherent states. This measure is
ized such thath(p,q)[1 leads toH51, and, thus, provides the usual resolution of unity. Sin
the Stratonovich rule is used, and since the coherent states merely change labels under c
~coordinate! transformations, apart from possible phase factors, the path integral^p9q9u
3exp$2iTH%up8q8&5 limn→`* exp$2i*@qdp1dG(p,q)1h(p,q)dt#% dmW

n is covariant under ca-
nonical ~coordinate! transformations and the quantization is fully geometric in nature.3,4 The
foregoing has been extended to arbitrary geometries of the phase space.6

In an attempt to quantize gravity,7,8 Klauder was led to consider affine rather than canon
commutation relations for the field operators~the spatial part of the metric and its partner field!. In
the simplest case of constant fields, the problem reduces to a toy model of just one deg
freedom, namely, the affine coherent states. To be more precise, it includes the affine co
states, which fulfill a fiducial vector admissibility condition,2,5,9but also those states which viola
it. These latter states do not resolve unity anymore and, therefore, are called weak coheren
The Affine Quantum Gravity Program has provided the motivation to raise the question o
existence of path integrals for these weak coherent states.

It is clear that a path integral cannot be constructed with weak coherent states in the st
way, since the resolution of unity is the key to the time-slicing approximation. However
extension of the well-defined path integral with Wiener measure introduced above to the sit
of weak coherent states could still be possible, and this is the goal of the present article
different methods to extend the Wiener measure path integral will be introduced: the first is
on the spectral decomposition of certain operators and will therefore be called the ‘‘sp
approach.’’ Unfortunately, it is limited to one very special case. The second uses an extra
larization parameter and is consequently called the ‘‘regularizing approach.’’ In both case
path integral for zero Hamiltonian is studied first, while the dynamics is introduced as a s
step.

II. WEAK COHERENT STATE PATH INTEGRALS

A. General definitions

Coherent states are defined by two properties:10

~1! Continuity: The statesu l & are a strongly continuous vector-valued function of the labell .
~2! Resolution of unity:There exists a positive measured l on the label spaceL such that the

identity operator1 on H can, upon integration overL, be represented as

15E u l &^ l ud l .

A more general class of states can be obtained by relaxing the second property:
(28) Completeness:The family of vectors (u l &) is total, i.e., the closed linear span of (u l &) is the
whole Hilbert spaceH.

States which share properties~1! and (28) have been named Klauder states.11 They are the
disjoint union of the coherent states in the sense above and the weak coherent states, whic
possess a resolution of unity.

B. Affine weak coherent states

The affine group (M 1 ,+) is the set M 1ªR13R with the group law (q,p)+(q8,p8)
5(qq8,p1q21p8) and has two nontrivial, inequivalent, irreducible, unitary representatio2

U6(p,q)5e6 ipQe2 i ln qD, where the generatorsQ.0 andD obey the affine commutation relatio
@Q,D#5 iQ. The uncertainty product of the irreducible, self-adjoint operatorsQ and D is
DQDD> 1

2^Q&. Setting^Q&51 leads to a one-parameter family of minimum uncertainty sta
given in x-representation by5 hb(x)5Nbxb21/2e2bx with normalizationNb5(2b)bG21/2(2b).
The affine coherent states are defined asupq&ªU1(p,q)uhb&. The group acts on admissibl
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fiducial vectors, which fulfill2,5,9 ^Q21&5*0
`x21uhb(x)u2dx,`. Namely, these are the states wi

b.1/2. Weak coherent states, on the other hand, are generated by the same group ac
fiducial vectors with 0,b<1/2. For the whole parameter range 0,b, the overlap reads

^pqurs&5~qs!2b22b@~q211s21!1 ib21~p2r !#22b.

The construction of the affine coherent state path integral with Wiener measure2 is based on a
linear complex polarization condition. For the minimum uncertainty fiducial vectors, (Q21
1 ib21D)uhb&50 holds. Hence, all functionsc(p,q)ª^pquc& are annihilated by the operato
B52 iq21]p111b21q]q . The same is true for the second-order differential operator

Aª 1
2 bB†B5 1

2$2b21]qq2]q2bq22]p
2211b22ibq21]p%

which is a non-negative, self-adjoint operator with spectrum

spec~A!5$~b2 1
2!

22~b2 1
2 2n!2;nPN,n,b2 1

2%ø@~b2 1
2!

2,`!.

For b.1/2, the operatorA has a discrete eigenvalue 0 and it follows, forT.0, that
limn→`@e2nTA#d(p2p8)d(q2q8)up5p9,q5q95@P0#(p9,q9;p8,q8), where the expression on th
right-hand side is the kernel of the projection operator onto the ground state. But this kernel
given by (2p)21(12 (1/2b))^p9q9up8q8&. This is the key part of the construction, since the r
follows by the Feynman–Kac–Stratonovich representation of the kernel ofe2nTA, which is
N n*e2 i *qṗdt2 (1/2n) * [b21q2ṗ21bq22q̇2]dtDpDq. As stated in the Introduction, this formal expre
sion makes sense as a Wiener measure path integral, and so finally

^p9q9up8q8&5 lim
n→`

2pS 12
1

2b D 21

enT/2E e2 i *q dp dmW
n ~p,q!,

which is a well-defined expression.~The path integral for a nonzero Hamiltonian is constructed
much the same way. The only difference is thatnA must be replaced by an operator involving t
Hamiltonianh, namelynA1 ih.)

For 0,b<1/2, i.e., in the weak coherent state case, the operatorA has only a continuous
spectrum, and the limit of diverging diffusion constant of the operatore2nTA is zero. Thus, the
whole construction outlined above breaks down. To prevent this collapse to a trivial resul
different approaches will be discussed.

C. Spectral approach

The idea in this approach is to determine an-dependent rescaling factor, such that the limit
diverging diffusion constant will be nontrivial. This was proposed by Klauder.5

1. The general case

Let X be a non-negative self-adjoint operator on a certain Hilbert space and assume ze
its continuous, but not in its discrete, spectrum. The operatorX generates a semigroupe2nTX,
which has a spectral representatione2nXT5*0

`e2nlTdE(l) or ^x9ue2nTXux8&
5*0

`e2nlTd^x9uE(l)ux8&.
Since only well-behaved potentials will eventually be of interest, the reasonable assump

made that the measured^x9uE(l)ux8& has an absolutely continuous, but no singularly continu
part. Then the spectral family can be written as a~weighted! integral over one-dimensional pro
jection operatorsE(l)5*2`

l uE&^Eur(E)dE. @For a singularly continuous measure this would n
be possible:msc(x)5*2`

x dmsc(y)Þ*2`
x (dmsc/dy)dy50 sincedmsc/dy50 almost everywhere.#

If the generalized eigenstatesuE& ared-orthonormalized, thenr(E)51.
The matrix element ofe2nTX can then be written as
                                                                                                                



t-

g

n
ro. The

not

he

product

tely,
e case

be
herent

e
ions

n

90 J. Math. Phys., Vol. 45, No. 1, January 2004 L. Hartmann and J. R. Klauder

                    
^x9ue2nTXux8&5E
0

`

e2nlTcl~x9!cl* ~x8!r~l!dl ~1!

and thecl are continuous inl. Moreover, r—being part of the measure—is at least righ
continuous. Ford-orthonormalized wave functions,r(l)[1.

The goal is to find the rescaling factor which saves Eq.~1! from becoming trivial in the limit
of diverging diffusion constantn. Since, for very largen, the factore2nTl suppresses everythin
but the values for very smalll, the behavior off x8,x9(l)ªcl(x9)cl* (x8)r(l) nearl50 is all
that matters. To give an example, assume thatf x8,x9(l)}la for smalll. Now, the proper rescaling
factor can be determined, and in the example it is

E
0

`

dl lae2nlT5
G~a11!

~nT!a11 . ~2!

After rescaling with the inverse one gets@(nT)a11/G(a11)# lae2nlT →
n→`

d(l) which represents
a d-function weight onl50.

The rescaling factor can be computed self-consistently, and the general formula reads

E
0

`

e2nlTcl~x9!cl* ~x8!r~l!dl

E
0

`

e2nlTcl~0!cl* ~0!r~l!dl

⇀n→` c0~x9!c0* ~x8!

c0~0!c0* ~0!
. ~3!

The numerator of the last expression,c0(x9)c0* (x8), is the kernel of the desired projectio
operator onto the ground state, and we have assumed that the denominator is nonze
convergence is in a distributional sense~denoted by the symbol⇀!. If the functional form of
c0(x9)c0* (x8) is known to be continuous, then the convergence is pointwise.

Observe, in the example withf x8,x9(l)5la, one must havea.21, or else the rescaling
factor would be identically zero~since the integral would be infinity!. But, since the rescaling
factor can be determined self-consistently, i.e., by the denominator of Eq.~3!, which always exists,
there is no hidden ‘‘trap’’ to look out for. Moreover, the evaluation of the denominator need
necessarily be at the pointx95x850. It could be at any pointx95x85b, bPR, or evenb
56`, as long as the functioncl(x) is not 0 atb. Whatever gives the easiest result is t
preferred choice. And the arbitrariness of this choice is not critical: AssumeK to be the reproduc-
ing kernel of some reproducing kernel Hilbert space, and leta be a positive constant. Then,aK is
just as good a reproducing kernel, since the same class of functions arises, only the inner
has to be redefined.

2. The affine case

The foregoing is now applied to the case of the affine weak coherent states. UnfortunaA
matches the required properties, namely that 0 be in the continuous spectrum, only in th
b51/2! This is true in spite of the fact thatA^pquc&50 ~for arbitrary uc&!, since an equation
Ac5ac need not necessarily implyaPspec(A). In fact, thec(p,q)5^pquc& are not general-
ized eigenvectors except in the caseb51/2.11 Consequently, the isolating procedure can only
performed forb51/2, and the general theory above ensures the existence of the weak co
state path integral.

For the case at hand a connection between the operatorA and the one-dimensional Mors
operatorHMorse exists2 and makes the explicit functional form of the generalized eigenfunct
available. With the aid of these, the rescaling factor can be computed explicitly.

The problem to find the eigenfunctions of the operatorA is first reduced to a problem o
L2(R1) and then to a problem onL2(R), leading to the Morse operator,
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A^U~p,q!fuc&5^A* U~p,q!fuc&

5 1
2 ^@2b21]qq2]q2bq22]p

222ibq21]p1b21#eipQe2 i ln qDfuc&

5 1
2 b21^eipQe2 i ln qD$D21 iD 1b2Q222b2Q1b22b%~Q1/2f8!uc&

5 1
2 b21^eipQe2 i ln qDQ1/2$D21b2Q222b2Q1~b21/2!2%f8uc&, ~4!

wheref5Q1/2f8.
Under the unitary transformation

~Ũc!~x!5ex/2c~ex!, ~5!

the operator in braces in the last line of Eq.~4! ~calledH in Ref. 2! is transformed to the Morse
operator,

HMorse52
d2

dx2 1b2~e2x22ex!1S b2
1

2D 2

. ~6!

The eigenfunctions of the Morse operator can be found in Ref. 12, and, forb51/2, they are
given in momentum representation~andd-orthonormalized! by

cl~x!5S l sinh~2pl!

p2 D 1/2

G~ il!e2x/2W1/2,il~ex!, ~7!

whereW is a Whittaker function. With a massm51/2, one has the relationE5l2 for energy and
momentum, and thed-orthonormalized eigenfunctions in energy representation are

cE~x!5S sinh~2pAE!

2p2 D 1/2

G~ iAE!e2x/2W1/2,iAE~ex!. ~8!

Since the Whittaker functionW1/2,0(z)5e2z/2z1/2, the x-dependence ofcE50(x) is e2ex/2.
Thus, the rescaling factor can best be determined with the choicex95x85b52` where this
function is equal to one. For smallE, the function f 2`,2`(E)5cE(2`)cE* (2`)r(E)
'p21E21/2 because sinh(2pAE)'2pAE, uG( iAE)u2'1/E. Inserting thisE-dependence into the
general formula„r(E)51 because ofd-orthonormalization…, one finds the inverse rescaling fact

E
0

`

e2nTEf 2`,2`~E!dE5~pnT!21/2. ~9!

Because of the connection between the ‘‘Morse’’-level and the original problem@Eqs.~4! and
~5!#, this is already the proper rescaling factor for the original problem as well.

The sought-for weak coherent state path integral forb51/2 and vanishing Hamiltonian is thu

^p9q9up8q8&5 lim
n→`

KnE e2 i *q dp dmW
n ~10!

with rescaling factorKn5(pnT)1/2.

D. Introducing dynamics

Since the only case in which the spectral approach worked wasb51/2, this value is assume
throughout the remainder of this subsection. Dynamics are introduced by the quantum H
tonianH, which is a function of the basic kinematical operatorsQ andD. The goal is to represen
the propagator̂p9q9uexp$2iTH%up8q8& as a~weak coherent state! path integral. The expressio
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^p9q9ue2 iTHup8q8&5 lim
n→`

KnN nE e2 i * [qṗ1hw(p,q)]dte2 ~1/2n! * [b21q2ṗ21bq22q̇2]dtDpDq

5 lim
n→`

KnE e2 i * [q dp1hw(p,q)dt] dmW
n ~11!

was proposed5 as the path integral for a class of Hamiltonians which contains at least all Ha
tonians polynomial inQ and D. The new symbolhw(p,q), interpreted as the classical Hami
tonian associated with the quantum Hamiltonian, is implicitly given by

^p9q9uHup8q8&5 lim
n→`

KnE e2 i *q dp FT21E hw~p,q!dtG dmW
n ~12!

and will be called the weak symbol.
The whole conjecture is based on the observation that, for a linear HamiltonianRQ1SD, the

propagator can be reduced to a mere overlap:5,11

^p9q9ue2 i (RQ1SD)Tup8q8&5^p9eST1R/S•~eST21!,q9e2STup8q8&. ~13!

Consequently, the problem is already solved for a linear Hamiltonian, and what remain
determine the weak symbol associated withH5RQ1SD. According to Eq.~10! the path integral
for this Hamiltonian is

lim
n→`

KnE
p8,q8

p9eST1R/S•(eST21),q9e2ST

e2 i *q dp dmW
n . ~14!

Since this is a well-defined functional integral, one can change integration variables

p~ t !→p~ t !eSt1R/S~eSt21!,

q~ t !→q~ t !e2St,

and obtain exp$2i*(qe2Std@peSt1R/S(eSt21)#%5exp$2i*@q dp1(Rq1Spq)dt#% as the new inte-
grand. The new measure is@(¯) " means the time derivative of the expression in parenthese#

dm̃W
n 5Nn expH 2

1

2n E Fb21~qe2St!2S peSt1
R

S
~eSt21! D "21b~qe2St!22~qe2St!"2GdtJ

3DFpeSt1
R

S
~eSt21!GD~qe2St!.

But, since the measure is actually

DFpeSt1
R

S
~eSt21!G5 lim

e→0
)
k51

N

dF p~ t !eStu t5ke1
R

S
~eSt21!u t5keG

5 lim
e→0

)
k51

N

@dp~ t !eStu t5ke1~pSeSt1ReSt!dtu t5ke#

5 lim
e→0

)
k51

N

@dpke
Ske1~pkSeSke1ReSke!e#5 lim

e→0
)
k51

N

dpke
Ske5Dp)

t
eSt,
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and analogousD(qe2St)5Dq) te
2St, the new measure can be expressed in terms of the old

as

dm̃W
n 5e2 ~1/2n! * [b21q2((Sp1R)212(Sp1R) ṗ)1bq22(S2q222Sqq̇)]dt dmW

n

5e2 ~1/2n! * [b21q2((Sp1R)2dt12(Sp1R)dp)1bq22(S2q2dt22Sqdq)] dmW
n .

The first equality is again formal and gains meaning by the second line, where the stoc
integrals are understood in the Stratonovich sense, as usual. The change of variables ha
duced additional terms in the exponent of the formal expression, which are at most linear iṗ or
q̇, respectively. These terms are not critical since, in the limit of diverging diffusion constan,
they will vanish. This means that the total change of the measure disappears in the limit. Thu
can write the path integral with the old measuredmW

n instead of with the newdm̃W
n :

^p9q9ue2 i (RQ1SD)Tup8q8&5 lim
n→`

KnE
p8,q8

p9,q9
e2 i * [q dp1(Rq1Spq)dt] dmW

n . ~15!

Now, the weak symbol can be read off:

hw~p,q!5Rq1Spq. ~16!

The generalization to other Hamiltonians is based on the linearity, completeness, and ir
ibility of the basic operatorsQ and D by virtue of which limJ→`( j 51

J a je
2 i (RjQ1SjD) weakly

converges to any~bounded! operator such ase2 iHT. Thus,

^p9q9ue2 iHTup8q8&5 lim
J→`

^p9q9u(
j 51

J

a je
2 i (RjQ1SjD)up8q8&

5 lim
J→`

lim
n→`

KnE e2 i *q dpF (
j 51

J

a je
2 i *(Rjq1Sj pq)dtG dmW

n ~17!

and the question, on which the next steps depend, is: Can the two limits be interchanged?
of some effort this question is not yet answered. Assuming that they can, however, one ob

^p9q9ue2 iHTup8q8&5 lim
n→`

KnE e2 i *q dpF lim
J→`

(
j 51

J

a je
2 i *(Rjq1Sj pq)dtG dmW

n . ~18!

The expression@ limJ→`( j 51
J a je

2 i *(Rjq1Sj pq)dt#5..F@*qdt,*pqdt# is, unfortunately, not of the
form e2 i *hw(p,q)dt for a general, local Hamiltonianhw , e.g.,e2 i *q2dt with Hamiltonianq2. To
produce local Hamiltonians, one would need distributionsR(t) andS(t) instead of the constant
R and S. Then, taking, e.g.,R(t)5d(t2t), one gets a local expressionq(t) and, by forming
functions thereof, local Hamiltonians. This was proposed in Ref. 5. However, the construct
distributions from piecewise constant functions would require yet another limiting process
again, the interchangeability of the limits is questionable.

In the case of a linear Hamiltonian, the weak symbol was shown to behw(p,q)5Rq
1Spq. This is exactly what one would expect since the connection of the basic operatorsQ and
D to classical variables is, according to the weak correspondence principle,q and pq, respec-
tively. But, the correspondence for a more general Hamiltonian is not immediately clea
remains to be determined.
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E. Regularizing approach

The idea for this second approach is the introduction of an additional regularization f
which will reintroduce a discrete ground state with eigenvalue zero. Then, the construction
path integral moves along the same lines as in the coherent state case (b.1/2). The limit to
remove the regularization is taken as the last step.

For largeq, the overlap̂ pqup8q8& is proportional toq2b. Because 0,b<1/2, a regulariza-
tion factor which is effective at infinity is required to produce Hilbert space vectors again. S
for 0,b<1/4, *2`

` (c21p2)22bdp5` ~wherec is a constant!, one must in this case regulariz
in p, too. For 1,4b,2 this is not required. A regularization inp will make a regularization inq
~for small q) necessary as well.11

Case 1/4,b<1/2: Let

^pqurs&«ªN«^pqurs&e2(q1s)« ~19!

be a normalized vector inL2(M 1) with normalization constantN« . The extra factore2(q1s)«

goes to one in the limit«→0. For arbitraryxPR, yPR1, the overlap̂ xyuxy&« equalsN«e22y«.
Hence, one can writêpqurs&5 lim«→0^xyuxy&«

21^pqurs&« in a self-consistent way without ex
plicitly referring to the normalization constant. The following notation is used:

^xyuxy&«5..cb,« .

The new operatorB« , which annihilates the modified kernel, is derived by exploiting ana
ticity: @(q211s21)1 ib21(p2r )#22b5..Y is analytic, so ] (q212 ib21p)Y5 1

2(2q2]q1 ib]p)Y
50. Write Y as e(q1s)«(qs)b^pqurs&« , and moveeq«(qs)b to the left of this operator. Then
eq«(qs)b can be canceled since the expression is everywhere nonzero. The result is th
operator

B«5~b21q]q1b21q«112 iq21]p!

for which B«^pqurs&«50. DefineA«ª
1
2bB«

†B« , then

A«5 1
2 b~2 iq21]p112b21]qq1b21q«!~2 iq21]p111b21q]q1b21q«!

5 1
2 $b@2 iq21]p111b21q«#22b21]qq2]q2122b21q«%. ~20!

A« can be shown to be essentially self-adjoint since the deficiency index equation@(A«
†

6 i )c#(p,q)50 has no solution.11 In a slight abuse of notation the closure of this operator will
denoted byA« as well. It is a self-adjoint, non-negative operator with zero in its discrete spect

The Feynman–Kac–Stratonovich representation of the kernel of the operatore2nTA« is ~see
Appendix for the derivation!

e2nA«Td~p2p8!d~q2q8!up5p9,q5q95enT/2E e2 i *(q1b21q2«)dp1n*b21q«dt dmW
n

and it follows that

^p9q9up8q8&5 lim
«→0

cb,«
21^p9q9up8q8&«5 lim

«→0
lim

n→`

cb,«
21enT/2E e2 i *(q1b21q2«)dp1n*b21q«dt dmW

n .

~21!

The stochastic processes involved are still Brownian bridges, and, when the stochast
grals are interpreted in the Stratonovich sense, canonical~coordinate! transformations can be mad
in the same way as before. Thus, the geometric nature of the quantization is preserved.
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Case 0,b<1/4: For a parameterb<1/4, a regularization for largeq is not enough. It turns
out that an additionalp-regularization will even make a regularization for smallq necessary
~otherwise the overlap would be square integrable, but not in the domain ofA«).

In the present case, let

^pqurs&«ªN«^pqurs&e2(q1s)«2(q211s21)«2(p21r 2)«, ~22!

where^pqurs&5(qs)2b22b@(q211s21)1 ib21(p2r )#22b is the ~weak coherent state! overlap
which is analytic in the complex variablezªq211 ib21p, apart from the factor (qs)2b. One can
write the analytic part~previously calledY) as e(q1s)«1(q211s21)«1(p21q2)«(qs)b^pqurs&« , and
let the differential operator]q212 ib21p5 1

2(2q2]q1 ib]p) act on this expression. Using]z* f
50 ~valid for an analytic function!, this results in the new operator

B«5b21q]q111b21q«1b21q21«22ipq21«2 iq21]p

for which B«^pqurs&«50. As before, defineA«ª
1
2bB«

†B« , then

A«5 1
2$b~2 iq21]p111b21q«b21q21«!222bq22«14ip]q«

14bp2q22«22b21]qq2]q2122b21q«%. ~23!

Instead of trying to solve the deficiency index equation for the ‘‘new’’A« , one can avoid the
question about self-adjointness altogether.

AssumeA« is not self-adjoint. The~sesquilinear! form s«(x,y)ª^xuA«y& generated byA« is
closable sinceA« is symmetric and bounded below.13 There is a bijection between the set of a
~densely defined! closed, below-bounded forms and the set of all self-adjoint, below-boun
operators. Lets̄« be the closure of the form generated byA« andAs̄«

be the self-adjoint operato
associated withs̄« . Then,As̄«

preserves the lower bound and is called the Friedrichs’ extensio
the operatorA« . @It is the unique extension fulfillingD(As̄«

),D( s̄«).13#

In a slight abuse of notationAs̄«
will be written asA« . So from now on,A« denotes the

Friedrichs’ extension~which is trivial in the case thatA« is already self-adjoint!. Then it is clear
that A« is non-negative.

The Feynman–Kac–Stratonovich representation of the kernel of the operator exp$2nTA«% is
derived in much the same way as before~see Appendix!

enT/2e2 ib21«(p92p8)E e2 i * [(q1b21q2«) dp22bpq22« dq] 1n* [bq22«1b21q«]dt dmW
n .

Partial integration, i.e., 2b«*pq22dq522b«*pd(q21)522b«pq21u(p8,q8)
(p9,q9)

12b«*q21dp,
leads to

enT/2e2 ib21«(p92p8)22ib«(p9q9212p8q821)E e2 i *(q1b21q2«22bq21«)dp1n* [bq22«1b21q«]dt dmW
n .

~24!

The phase factors in Eq.~24! aren-independent, so they come outside of then-limit, where
the «-limit renders them unity. Finally, one gets

^p9q9up8q8&5 lim
«→0

lim
n→`

cb,«
21^p9q9up8q8&«

ª lim
«→0

lim
n→`

cb,«
21enT/2E e2 i *(q1b21q2«22bq21«)dp1n* [bq22«1b21q«]dt dmW

n . ~25!

This is the path integral representation for 0,b<1/4.
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F. Introducing dynamics

Dynamics is introduced in the same way as for the spectral approach. For a linear Hamil
H5RQ1SD, the problem is already solved as it reduces to an overlap with modified en
points. What remains to do is to write down the path integral. This is straightforward s
everything stated previously concerning the measure, etc., remains valid and the formula
,b<1/2 is

^p9q9ue2 i (RQ1SD)Tup8q8&5 K p9eST1
R

S
~eST21!,q9e2STUp8q8L

5 lim
«→0

lim
n→`

cb,«
21enT/2E

p8,q8

p9eST1~R/S!(eST21),q9e2ST

3expH 2 i E ~q1b21q2«!dp1nE b21q«dtJ dmW
n ,

5 lim
«→0

lim
n→`

cb,«
21enT/2E

p8,q8

p9,q9
expH 2 i E ~qe2St1b21q2e22St«!

3dFpeSt1
R

S
~eSt21!G1nE b21qe2St«dtJ dmW

n

5 lim
«→0

lim
n→`

cb,«
21enT/2E

p8,q8

p9,q9
expH 2 i F E ~q1b21q2e2St«!dp

1E ~q1b21q2e2St«!~Sp1R!dtG
1nE b21qe2St«dtJ dmW

n . ~26!

Introducing the new variable q«ªq1b21q2e2St«, and the new measuredmW
n,«

ªexp$n*b21qe2St«dt% dmW
n , the complexity of the final expression can be hidden. The new m

sure is equivalent to the old Wiener measure because the factor exp$n*b21qe2St«dt% serves as a
Radon–Nykodym derivative. Then, the formula resembles the path integral for coherent sta
reads

lim
«→0

lim
n→`

cb,«
21enT/2E

p8,q8

p9,q9
e2 i [*q«dp1(Spq«1Rq«)dt] dmW

n,« . ~27!

The «-modified Hamiltonian is given by the weak modified symbolhw,«ªRq«1Spq« .
The same procedure for 0,b<1/4 leads to

^p9q9ue2 i (RQ1SD)Tup8q8&5 lim
«→0

lim
n→`

cb,«
21enT/2E

p8,q8

p9,q9
expH 2 i F E ~q1b21q2e2St«

22bq21e2St«!dp1E ~q1b21q2e2St«22bq21e2St«!~Sp1R!dtG
1nE ~b21qe2St«1bq22e2St«!dtJ dmW

n

5 lim
«→0

lim
n→`

cb,«
21enT/2E

p8,q8

p9,q9
expH 2 i F E q̃«dp1E ~Spq̃«

1Rq̃«!dtG J dm̃W
n,« . ~28!
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Here, the variableq̃«ª(q1b21q2e2St«22bq21e2St«) and the Radon–Nykodym measu
dm̃W

n,«
ªexp$n*(b21qe2St«1bq22e2St«)dt% dmW

n were used. The weak modified symbol is no
hw,«5Rq̃«1Spq̃« .

The problem of how this can be extended to, say, all polynomial Hamiltonians was al
discussed in the spectral approach. Here, on the other hand, there could be a second poss
proceed. With the discrete ground state artifically reintroduced, it seems possible to constr
path integral in essentially the same way as for zero Hamiltonian. The operatornA« has to be
replaced bynA«1 ihw,« , and the conditions required for the construction will imply restrictio
for the functionshw,« ~see Ref. 2 for a guideline to the proof!. Observe, that this weak modifie
symbol does not necessarily have to be the same as the one mentioned in the previous par
subsection.
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APPENDIX: FEYNMAN–KAC–STRATONOVICH REPRESENTATION OF THE OPERATOR
A «

The case 1 Õ4ËbÏ1Õ2

The Feynman–Kac–Stratonovich representation of the kernel of the operator exp$2nTA«% is
derived in the following way:

exp$2nTA«%d~p2p8!d~q2q8!up5p9,q5q9

5exp$2 1
2 nT@b~2 iq21]p111b21q«!22b21]qq2]q2122b21q«#%

3E eix(p2p8)2 ik(q2q8)
dxdk

~2p!2 U
p5p9,q5q9

5enT/2 lim
N→`

@exp$2 1
2 nd@b~2 iq21]p111b21q«!222b21q«#%

3exp$2 1
2 nd~2b21]qq2]q!%#NE eix(p2p8)2 ik(q2q8)

dxdk

~2p!2 U
p5p9,q5q9

5 lim
N→`

enT/2E expH i( xl 11/2~pl 112pl !2 ik l 11/2~ql 112ql !J
3expH 2

1

2
nd( @b~ql

21xl 11/2111b21ql«!222b21ql«#J
3expH 2

1

2
nd( b21kl 11/2

2 ql
2J )

l 50

N
dkl 11/2dxl 11/2

~2p!2 )
l 51

N

dpldql

5..enT/2NE expH i E ~xṗ2kq̇!dtJ
3expH 2

1

2
nE $b~q21x111b21q«!222b21q«1b21k2q2%dtJDxDkDpDq

5enT/2NE expH i E @~x2q2b21q2«! ṗ2kq̇#J
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3expH 2
1

2
nE ~bq22x222b21q«1b21k2q2!dtJDxDkDpDq

5enT/2NE expH 2 i E ~q1b21q2«!ṗdtJ expH 1

2
nE 2b21q«dtJ

3expH 2
1

2n E @b21q2ṗ21bq22q̇2#dtJDpDq

with N5T/d. The Lie–Trotter product formula was used to go from the second to the
equality. The indicesl 11/2 andl serve to emphasize that the temporal lattice points must
coincide forx,p or q,k, respectively.~This would violate the Heisenberg uncertainty principle!
For the endpoints, the definitionsp0ªp8, pN11ªp9, q0ªq8 and qN11ªq9 were made. Note
that exp$21

2nd(2b21]qq
2]q)%exp$2ik(q2q8)%'exp$21

2ndb21k2q2%exp$2ik(q2q8)% only to first or-
der ind, but that is good enough for the path integral. In the second to last line,x was substituted
by x2q2b21q2«, and thex- andp-integrations were carried out.

The case 0 ËbÏ1Õ4

The Feynman–Kac–Stratonovich representation of the kernel of the operator exp$2nTA«% is
derived in much the same way as before, and, with the same conventions for notation, it r

exp$2nTA«%d~p2p8!d~q2q8!up5p9,q5q9

5exp$2nT/2@b~2 iq21]p111b21q«1b21q21«!222bq22«14ip]q«14bp2q22«2

2b21]qq2]q2122b21q«#%E exp$ ix~p2p8!2 ik~q2q8!%
dxdk

~2p!2 U
p5p9,q5q9

5enT/2 lim
N→`

@exp$2nd/2@b~2 iq21]p111b21q«1b21q21«!222bq22«22b21q«#%

3exp$2nd/2~2b21]qq2]q!%exp$2nd/2•4ip]q«%exp$2nd/2•4bp2q22«2%#N

3E exp$ ix~p2p8!2 ik~q2q8!%
dxdk

~2p!2 U
p5p9,q5q9

5 lim
N→`

enT/2E expH i( xl 11/2~pl 112pl !2 ik l 11/2~ql 112ql !J
3expH 2nd/2( @b~ql

21xl 11/2111b21ql«1b21ql
21«!222bql

22«22b21ql«#J
3expH 2nd/2( b21kl 11/2

2 ql
2J expH 2nd/2( 4ipl~2 ik l 11/2!«J

3expH 2nd/2( 4bpl
2ql

22«2J)
l 50

N
dkl 11/2dxl 11/2

~2p!2 )
l 51

N

dpldql

5..enT/2NE expH i E ~xṗ2kq̇!dtJ
3expH 2n/2E $b~q21x111b21q«1b21q21«!222bq22«

22b21q«1b21k2q214pk«14bp2q22«2%dtJDxDkDpDq
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5enT/2NE expH i E @~x2q2b21q2«2b21«! ṗ2kq̇#dtJ
3expH 2n/2E ~bq22x222bq22«22b21q«1b21k2q214pk«

14bp2q22«2!dtJDxDkDpDq

5enT/2NE expH 2 i E ~q1b21«1b21q2«! ṗdt1 i E 2bpq22«q̇dtJ
3expH n/2E ~2b21q«12bq22«!dtJ
3expH 21/~2n!E @b21q2ṗ21bq22q̇2#dtJDpDq.
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Expansions about free-fermion models
Saibal Mitraa)

Instituut voor Theoretische Fysica, Universiteit van Amsterdam, 1018 XE Amsterdam, The
Netherlands
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A simple technique for expanding the free energy of general six-vertex models
about free-fermion points is introduced. This technique is used to verify a Coulomb
gas prediction about the behavior of the leading singularity in the free energy of the
staggered F-model at zero staggered field. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1626270#

I. DEFINITION OF THE STAGGERED F-MODEL

The staggered F-model is a special case of the six-vertex model. The six-vertex model
defined as follows: place arrows on the edges of a square lattice so that there are two
pointing into each vertex. Six types of vertices can arise~hence the name of the model!. These
vertices are shown in Fig. 1. By giving each vertex type an~position-dependent! energy the model
is defined. These models were first introduced to study~anti-!ferroelectric systems. Later it wa
shown that six-vertex models can be mapped to solid-on-solid models.4 Only a few of these
models can be solved exactly. These include the free-fermion models5,14 and models that can b
solved using the Bethe ansatz.3,8–10,2To define the staggered F-model, we divide the lattice i
two sublattices A and B, such that the nearest neighbor of an A vertex is a B vertex. The vertex
energies are chosen as indicated in Fig. 1. When the staggered field (s) vanishes the mode
reduces to the F-model, which has been solved by Lieb.9 At zero staggered field the model
critical. In this case the groundstate is twofold degenerate consisting of vertices of type
sublattice A and vertices of type 6 on sublattice B, or vice versa. Forbe.0 a nonzero staggere
field lifts this degeneracy, and forces the model into an ordered state.13

II. COULOMB GAS RESULTS

By assuming that the F-model renormalizes to the Gaussian model, it is possible to fin
behavior of the staggered F-model in infinitesimal staggered fields.11 It is found that the leading
singularity in the free energy is

Fs~be,bs!'~bs!2/~22 p/4j (be) !, ~1!

where

j ~be!5 1
2 arccos~12 1

2 exp~2be!!. ~2!

At the point be5 1
2 ln(22&)'20.2674 the exponent becomes infinite. Below this poin

finite staggered field is necessary to force the model to an ordered state. In this case the tr
to the ordered state happens via a Kosterlitz–Thouless~KT! transition. The existence of a line o
KT transitions intersecting the point (be5 1

2 ln(22&), bs50) has been verified by combining th
results of transfer matrix studies with scaling arguments.11

In this article we will verify ~1! by expanding around Baxter’s exact solution on the l
be5 1

2 ln 2.

a!Electronic mail: saibalm@science.uva.nl
1000022-2488/2004/45(1)/100/7/$22.00 © 2004 American Institute of Physics
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III. BAXTER’S SOLUTION OF THE STAGGERED F-MODEL

Baxter has solved the staggered F-model atbe5 1
2 ln(2).1 Later it was found that this solution

could be generalized to other models if a certain condition involving the vertex weights is
This condition is called the free-fermion condition because for eight-vertex models satisfyin
condition the problem leads to a problem of noninteracting fermions in the S-matrix formula
Let wi be the vertex weight for a vertex of typei ~see Fig. 1!. Then the free-fermion condition fo
six-vertex models is

w1w21w3w42w5w650. ~3!

The weightswi may be chosen inhomogeneous. We now proceed by presenting Baxter’s so
of the staggered F-model.

Divide the lattice into two sublattices A and B. Choose the vertex energies as indicated i
1. Consider the ground state in which all A vertices are vertices of type 6, and all B vertices
type 5. Any state can now be represented by drawing lines on the lattice where the arrow
oppositely to the ground state configuration. In terms of these lines the six vertices are repre
by vertices with either no lines, two lines at right angles, or four lines. The energies of
vertices are respectively2s, e ands. The next step is to replace the original lattice by a decora
lattice by replacing each original vertex by a ‘‘city’’ of four internally connected points~see Fig.
2!.

The lines on the original lattice are regarded as dimers on the external edges of the de
lattice. For any configuration on the original lattice, it is possible to place dimers on the int
edges of the decorated lattice, so that the lattice becomes completely covered. Now asso
each dimer a weight as indicated in Fig. 2. Demanding that the closed-packed dimer pr
formulated on the decorated lattice is equivalent to our original problem yields

C5exp~2 1
2 bs!, ~4!

u5 1
2& exp~ 1

2 bs!, ~5!

be5 1
2 ln~2!. ~6!

FIG. 1. The six vertices and their energies. The upper and lower signs respectively correspond to sublattices A

FIG. 2. The ‘‘cities’’ on the decorated lattice. A and B refer to the two sublattices. The meaning of the orientations
edges is explained in the text.
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To solve the close-packed dimer problem, we use the Pfaffian method.6,7,12 This method
expresses the partition functionZ for a closed packed dimer model on anN by M planar lattice:

Z25detR. ~7!

Here R is an N3M by N3M antisymmetric matrix, defined as follows. Enumerate all theN
3M vertices on the decorated lattice. If vertexi is not connected to vertexj via an edge,Ri , j

50, elseRi , j56 fugacity of dimer at edge connectingi to j . The way the signs have to be chos
is explained in Ref. 7 These signs define an orientation of the edges. PositiveRi , j is indicated by
an arrow pointing fromi to j .

To set up a perturbation theory aboutbe5 1
2 ln(2), we also need the inverse ofR. Both the

determinant and the inverse ofR are easily calculated by performing a similarity transformat
~see Ref. 1 for details!. The determinant yields the following expression for the reduced
energy per vertex~i.e., the free energy times2b), denoted asFBaxter, for an infinite by infinite
lattice:

FBaxter5 lim
N,M→`

1

2NM
ln detR5

1

8p2 E
0

2pE
0

2p

ln@2 cosh~2bs!12 cos~u1!cos~u2!#du1du2 .

~8!

IV. PERTURBATION THEORY

We now proceed with the derivation of a perturbation theory about the free-fermion line
six-vertex model. The Hamiltonian of a general six-vertex model can be defined as follows
assigns an energye(p,i ) to a vertex in statep ~see Fig. 1! and positioni . The configuration of the
lattice can be specified by a functionc which maps a position of a vertex to a number, 1,...
which is to be interpreted as the state of the vertex at that position. The reduced HamiltoniaH)
is defined to be the functional that assigns to each statec its energy times2b. We can thus write

H~c!52b(
i

e~c~ i !,i !. ~9!

For H a Hamiltonian of a general six-vertex model andH0 a Hamiltonian of a free-fermion
model, a perturbationV can be defined so that we have

H5H01V. ~10!

The partition functionZ can be written as

Z5(
c

exp~H0~c!1V~c!!5Z0^exp~V!&. ~11!

Here Z0 is the partition function of the free-fermion model. The reduced free energy ca
expressed as

F5F01 ln^exp~V!&5F01^V&1 1
2 ^~V2^V&!2&1¯ . ~12!

HereF0 is the reduced free energy of the free-fermion model. Now writeV5( iVi with Vi(c( i ))
a perturbation of the vertex energy times2b at positioni . Equation~12! can be rewritten as

F5F01(
i

^Vi&1
1

2 (
i j

@^ViVj&2^Vi&^Vj&#1¯ . ~13!
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To compute a free-fermion average^Vi 1
Vi 2

¯Vi n
&, we can proceed as follows: Introduce a co

straint in the free-fermion model by requiring the vertices at the positionsi 1¯ i n to be in the states
x1¯xn . The partition function of this model is denoted byZi 1¯ i n

(x1¯xn). We can then write

^Vi 1
Vi 2

¯Vi n
&5 (

x1¯xn

Zi 1¯ i n
~x1¯xn!V~x1!¯V~xn!

Z0
. ~14!

It now remains to calculateZi 1¯ i n
(x1¯xn). It is convenient to reformulate this problem a

follows: Denote the state of an arrow located at the edgej by sj . Put sj51 if the arrow points
oppositely to the ground state configuration andsj50 otherwise. Define a constrained fre
fermion model by requiring the arrow at the edgej r to be in statesj r

for 1<r<m. We then want
to evaluate the partition function of this model, which we denote asZcons(sj 1

¯sj m
). The idea is to

perturb the weights of the dimers on the edgesj r infinitesimally. We redefine the weight of th
dimer on the edgej r by multiplying it by (11e r). The partition function of the redefined free
fermion model (Z(e1¯em)) can be written in terms of the constrained partition functions as

Z~e1¯em!5(
$s%

Zcons~sj 1
¯sj m

!)
k51

m

~11sj k
ek!

5Z01(
k

Zcons~sj k
51!ek1(

k, l
Zcons~sj k

51,sj l
51!eke l1¯ . ~15!

Z(e1¯em) can be calculated using~7!, by making the necessary changes toR. We can write

R5R01 (
k51

m

ekR(k) . ~16!

HereR0 is the original unperturbed matrix;R(k) is defined as follows:

R(k),i j 5R0,i j

if i and j are connected byj k , and

R(k),i j 50

if i and j are not connected byj k .
Note that theR(k) have only two nonzero matrix elements. Inserting~16! in ~7! and expanding

gives

Z~e1¯em!5AdetR

5AdetR0 expS 1

2
Tr lnF11(

k
ekR0

21R(k)G D
5AdetR0F11

1

2 (
k

ekTr~R0
21R(k)!1

1

4 (
k,l

eke lF1

2
Tr~R0

21R(k)!Tr~R0
21R( l )!

2Tr~R0
21R(k)R0

21R( l )!G1¯G . ~17!

Using ~17! and ~15! we can directly read off the constrained partition functions if all the c
strained arrows point oppositely to the ground state configuration. To calculate a genera
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strained partition function one can apply the principle of inclusion and exclusion, e.g., consid
evaluation ofZ(s1 ,s2 ,s3 ,s4 ,s5), with s15s251 ands35s45s550. Putt35t45t551. Accord-
ing to the principle of incusion and exclusion, we can write

Z~s1 ,s2 ,s3 ,s4 ,s5!5Z~s1 ,s2!2@Z~s1 ,s2 ,t3!1Z~s1 ,s2 ,t4!1Z~s1 ,s2 ,t5!#1Z~s1 ,s2 ,t3 ,t4!

1Z~s1 ,s2 ,t3 ,t5!1Z~s1 ,s2 ,t4 ,t5!2Z~s1 ,s2 ,t3 ,t4 ,t5!. ~18!

V. FIRST ORDER COMPUTATION FOR THE STAGGERED F-MODEL

For the staggered F-model the expansion can be simplified. The vertex in the ground s
a particular point will be referred to as an a-vertex. A b-vertex is obtained by reversing the a
of an a-vertex. An a-vertex~b-vertex! is thus of type 5 or 6 and has an energy of2s (s). The
constrained partition function corresponding to the model with one vertex constrained to
a-vertex~b-vertex! is denoted asZa (Zb). Note that under the transformations→2s the role of
vertices a and b are interchanged. We thus have

Za~bs!5Zb~2bs!. ~19!

If we put be5 1
2 ln(2)1U, we have, according to~13! and ~14!, to first order inU

F5F02
Z02Za2Zb

Z0
U1O~U2!. ~20!

HereF is the reduced free energy per vertex of the staggered F-model, andF05FBaxter in ~8!. To
calculateZb we only have to constrain two opposing arrows of one vertex to point oppositely
a-vertex. Using the formalism of the previous section, we have obtained

Zb

Z0
5

1

64p4 F E
0

2pE
0

2p

du1du2

exp~22bs!1cos~u1!cos~u2!

cosh~2bs!1cos~u1!cos~u2! G2

. ~21!

Using this, the first order expansion of the free energy can be written as

F5F01
1

2 F S ]F0

]bsD
2

21GU1¯ . ~22!

VI. SINGULAR BEHAVIOR IN THE VICINITY OF THE FREE-FERMION LINE

We will now verify the Coulomb gas result~see Sec. II!:

Fs;~bs!2/~22 p/4j (be) ! ~23!

where

j ~be!5 1
2 arccos~12 1

2 exp~2be!!, ~24!

to first order about the free-fermion line. Putting

be5 1
2 ln~2!1U, ~25!

and expanding in powers ofU yields
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Fs5A~U !~bs!2F2
8

p
~U1O~U2!!ln~bs!1

32

p2 ~U21O~U3!!ln2ubsu1¯G , ~26!

where the amplitudeA(U) is a meromorphic function. If we compare this with the nonanalyti
behavior atU50 @see~A11! in the Appendix#, we find

A~U !5
1

4U
1O~1!. ~27!

It then follows that the amplitude of the term (bs)2ln2ubsu is (8/p2) (U1O(U2)). It is now a
simple matter to verify this using~22! and~A11!. From~A11! and~22! it follows that the orderU
contribution to the singular part of the reduced free energy,F1,s(bs), can be written as

F1,s~bs!5@B1~bs!lnubsu1B2~bs!ln2ubsu#U ~28!

with B1 andB2 regular functions ofbs. Inserting~A11! in ~22! gives

B2~bs!5
8

p2 F ~bs!22
2

3
~bs!41

79

90
~bs!61¯G . ~29!

We have thus verified~24! to first order inU.

VII. CONCLUSIONS AND OUTLOOK

We have presented a simple technique for expanding the free energy of six-vertex m
about free-fermion points. Applying this technique to the staggered F-model has enabled
verify a Coulomb gas prediction about the singular part of the free energy of this model. It w
be interesting to perform such computations to higher order in the free-fermion expansion
possible that such an undertaking might lead to proofs of certain Coulomb gas results.

APPENDIX: SINGULAR PART OF THE FREE ENERGY

In this appendix we calculate the singular part of the free energy of the staggered F-mo
bs50 on the free-fermion line. Expanding the logarithm in~8! yields

FBaxter~bs!52
1

8p2 E
2p

p E
2p

p

du1du2(
n51

`
cosn~u1!cosn~u2!

n coshn~2bs!

52
1

2 (
n51

`
1

2n cosh2n~2bs! F ~2n!!

4nn! 2G2

. ~A1!

Using the asymptotic expansion

n! 5nn exp~2n!A2pn expS (
k51

`
B2k

2k~2k21!

1

n2k21D , ~A2!

where theBr are the Bernoulli numbers, we find

FBaxter~bs!52
1

4p (
n51

`
1

n2 cosh2n~2bs! F12
1

4n
1

1

32n2 1
1

128n3 1¯G . ~A3!

We can find the nonanalytical part of the function(n51
` 1/np cosh2n(2bs) as follows: Put t

5 ln(cosh2(2bs)). We then have to find the nonanalytical part of the functionUp(t) with
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Up~ t !5 (
n51

`
exp~2nt!

np ~A4!

at t50 for p>2. From~A4! it follows that

dUp11

dt
52Up . ~A5!

We denote the nonanalytical part ofUp by Ũp . It then follows from~A5! that

dŨp11

dt
52Ũp . ~A6!

For p51 the sum in~A4! is easily evaluated:

U1~ t !52 ln~12exp~2t !!, ~A7!

and we see thatŨ1(t) is given by

Ũ1~ t !52 ln~ t !. ~A8!

From ~A8! and ~A6! it then follows that

Ũp~ t !5~21!p
tp21

~p21!!
ln~ t !. ~A9!

Inserting this in~A3! gives

Fs~bs!52
1

4p S t1
t2

8
1

t3

192
2

t4

3072
1¯ D ln~ t !, ~A10!

whereFs(bs) is the singular part of the free energy andt52 ln(cosh(2bs)). Expanding~A10! in
powers ofbs gives

Fs~bs!52
2

p F ~bs!22
1

6
~bs!41

23

180
~bs!62

593

5040
~bs!81¯G lnubsu. ~A11!
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Quantum study of the spin inversion
P. Moretti,a) M. Lantieri, and L. Cianchi
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Spin motion is studied by means of the direct use of the Schro¨dinger equation. The
solution is found in terms of Lommel’s polynomials. An expression of the tunneling
splitting is obtained, in good agreement with the results coming from other
calculations. ©2004 American Institute of Physics.@DOI: 10.1063/1.1630704#

I. INTRODUCTION

In quantum mechanics the direct solution of a problem by means of the Schro¨dinger equation
can be often applied in a lot of different physical situations. For instance, the results conc
the double harmonic oscillator can be suitably used in the study of transitions in a genera
state system;1 the wave functions of a particle in a constant force field are useful when, de
with the Wentzel–Kramers–Brillouin~WKB! method, a turning point is crossed;2 and so on. On
the ground of these considerations, we think it advisable to present here the study of a kind
motion using directly the Schro¨dinger equation. An entire spinS in a static magnetic field is
considered, performing transitions between neighboring states. The solution turns out to
pressed in terms of Lommel’s polynomials, and an application to a practical case is discus

II. MOTION EQUATION FOR THE SPIN

The Hamiltonian has the form:H5H01V, whereH0 is a static Hamiltonian~e.g., a magnetic
field! andV is the term responsible for the transitions between spin states.

Starting from the discrete set of theN (N52S11) spin eigenstatesun& of H0 with energies
En , we can write the wave function as

c~ t !5 (
n51

N

an~ t !un&exp~2 iEnt/\!. ~1!

From the Schro¨dinger equation, the coefficientsan(t) result:

i\ȧn~ t !5(
l 51

N

al~ t !Vnl exp~ ivnlt !, ~2!

with Vnl5^nuVu l & andvnl5(En2El)/\. Some simplifications are in order. First, we can assu
that V connects only neighboring states, and does not have diagonal elements; mo
uvn,n61u5v, independent ofn, andVn,n11* 5Vn,n215k. Consequently, system~2! becomes

i\ȧn~ t !2k* an11~ t !e2 ivt2kan21~ t !eivt50, ~3!

with the obvious boundary conditions

i\ȧ1~ t !2k* a2~ t !e2 ivt50, ~4a!

i\ȧN~ t !2kaN21~ t !eivt50. ~4b!

a!Electronic mail: p.moretti@ifac.cnr.it
1070022-2488/2004/45(1)/107/7/$22.00 © 2004 American Institute of Physics
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The initial conditions of interest are

a1~0!51, ~5a!

an~0!50, n52,3,...N, ~5b!

which correspond to the spin up~or down!.
The substitution

bn~ t !5an~ t !e2 invt, ~6!

leads to

i\@ ḃn~ t !1 invbn~ t !#2k* bn11~ t !2kbn21~ t !50, ~7!

and to the following boundary and initial conditions, respectively,

i\@ ḃ1~ t !1 ivb1~ t !#2k* b2~ t !50, ~8a!

i\@ ḃm~ t !1 imvbm~ t !#2kbm21~ t !50 ~8b!

b1~0!51, ~9a!

bn~0!50, n52,3,. . . ,m. ~9b!

After the Laplace transform@bn(p)5*0
`dtbn(t)exp(2pt)#, introducing the further simplification

k5k* .0 and with the following substitutions:

r5\v/k, t5v21, ~10!

we obtain the recursive equation

bn11~p!5r~ i tp2n!bn~p!2bn21~p!, ~11!

where conditions~8! and ~9! become

r~ i tp21!b1~p!2b2~p!5 irt, ~12a!

r~ i tp2N!bN~p!2bN21~p!50. ~12b!

At this point, let us recall that the Bessel functions3 Zn(z) ~with Z5J,Y) satisfy a recurrence
relation similar to~11!. In the original definition,n andz are independent quantities, but this do
not preventn5n(z), provided that derivatives with respect toz are not performed. In particular
if n5n(z), these functions are not the solution to Bessel’s differential equation, and a
properties obtained using this fact are lost. By rewriting this recurrence relation as

Zn11~z!5
2n

z
Zn~z!2Zn21~z!, ~13!

it has the form~11! by making the following identification

bn~p!5Zi tp2n~2/r!, ~14!

where

z52/r, n~z!5 i tp2n. ~15!
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So, with the substitution

Jn~z!5Ji tp2n~2/r!5J~p,n!, ~16a!

Yn~z!5Yi tp2n~2/r!5Y~p,n!, ~16b!

the general solution of~11! can be written as

bn~p!5A~p!J~p,n!1B~p!Y~p,n!, ~17!

whereA andB are found by using~12!. By applying the relation~13! and introducing the quantity

D~p,N!5J~p,0!Y~p,N11!2Y~p,0!J~p,N11!, ~18!

we obtain

bn~p!5 irt@J~p,n!Y~p,N11!2Y~p,n!J~p,N11!#D21~p,N!5
i\

k
Bn~p!. ~19!

This expression can be simplified. It is obvious that the recurrence formula~13! may be used to
expressZm1n linearly in terms ofZm and Zm21 ; the coefficients in this linear relation ar
polynomials in 1/z, known as Lommel’s polynomials3 and indicated asRn,m(z). In our case
(2m5 i tp)

Z2m2n~z!5~21!n@Z2m~z!Rn,m~z!1Z2m11~z!Rn21,m11~z!#. ~20!

By introducing~20! into ~19!, it follows that

Bn~p,z!5~21!n
Rn,m~z!RN,m11~z!2Rn21,m11~z!RN11,m~z!

R0,m~z!RN,m11~z!2R21,m11~z!RN11,m~z!
. ~21!

By taking into account the relations3

R0,m51, R21,m50 ~22!

and

Rn,m~z!RN,m11~z!2Rn21,m11~z!RN11,m~z!5RN2n,m1n11~z!, ~23!

this noteworthy result is obtained

Bn~p,z!5~21!n
RN2n,m1n11~z!

RN,m11~z!
. ~24!

If n5N, corresponding to the spin inversion, we have

BN~p,z!5~21!N@RN,m11~z!#21. ~25!

From the explicit expression of Lommel’s polynomials@see~27!#, it is easy to see thatRN,m11 is
a polynomial of degreeN in p, which has exactlyN complex zerosps .

Heaviside’s expansion theorem4 gives, therefore,

bn~ t !5
i\

k
~21!n(

s51

N FRN2n,2 ip/v1n11up5ps

RN,2 ip/v118 up5ps

Gepst, ~26!

where, obviously, the8 denotes the derivative with respect top.
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It is now interesting to study the behavior ofbn(p) when v→0 ~remember thatm
52 ip/v, z52k/\v). By using the explicit expression of Lommel’s polynomials to expr
RN2n,m1n11(z),3

RN2n,m1n11~z!5 (
l 50

<(N2n)/2
~21! l~N2n2 l !!G~m1N2 l 11!

l ! ~N2n22l !!G~m1n1 l 11! S 1

2
zD 2N1n12l

, ~27!

and by observing that

G~m1N2 l 11!

G~m1n1 l 11! S 1

2
zD 2N1n12l

5S 2
i\

k
pD N2n22lF11

iv

p
~N2 l !G

3F11
iv

p
~N2 l 21!G¯F11

iv

p
~N1 l 11!G , ~28!

in the limit v→0 we finally obtain

RN2n,2 ip/v1n11uv→05 (
l 50

<(N2n)/2
~21! l~N2n2 l !!

l ! ~N2n22l !! S 2
i\

k
pD N2n22l

. ~29!

This finite sum is simply the Chebyshev polynomial of the second kindUN2n(j), j
52 i\p/2k.4 By posingj5cosu

RN2n,2 ip/v1n11uv→05UN2n~cosu!5
sin~N2n11!u

sinu
, ~30!

so that~19! can be written

bn~p!uv→05
i\

k
~21!n

sin~N2n11!u

sin~N11!u
. ~31!

Since the distinct zeros of the denominator are

ps5
2ik

\
cos

sp

N11
, s50,1, . . .N, ~32!

Heaviside’s expansion applied to~31! gives, in the limitv→0 and after straightforward calcula
tion

bn~ t !522
~21!n

N11 (
s51

N

sin
sp

N11
sin

nsp

N11
expS 2ik

\
t cos

sp

N11D . ~33!

This result can be obtained in a simple way by using the difference Eqs.~11! and~12! directly with
v50, which can now be solved using the standard method.

Although ps’s cannot be explicitly calculated forvÞ0, an expression for small values ofv
can be found. By approximating the square brackets in~28! with exponentials and performing th
sum in the exponent, it follows that

G~m1N2 l 11!

G~m1n1 l 11! S 1

2
zD 2N1n12l

'F2
i\

k
p expS iv~N1n11!

2p D GN2n22l

. ~34!

Thus,~27! becomes
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RN2n,2 ip/v1n11' (
l 50

<(N2n)/2
~21! l~N2n2 l !!

l ! ~N2n22l !! F2
i\

k
p expS iv~N1n11!

2p D GN2n22l

. ~35!

Proceeding as before, we pose

j52
i\

k
p expS iv~N1n11!

2p D5cosu,

giving ~to the first order inv!

ps' i Fa cos
sp

N11
2

v

2
~N11!G , ~36!

wherea5 2k/\. By performing the same standard calculation as before to obtain the La
transform of~31!, in spite of the more complicated relation connectingp andu, it turns out that the
p-derivative of sin(N11)u retains its old form. Therefore, the coefficientbn is again given by~33!
within a phase factor only; thus, ifv is not too large, it is nearly insensitive to its variation.

III. CALCULATION OF THE INVERSION TIME

The first maximumt5 t̄ of bn as a function of time indicates when the system, in the stateu1&
for t50, first ‘‘goes’’ into the stateun&. A study of the function~33! is, therefore, in order. It is
easy to show that, for large values ofN, the sum can be written as an integral, provided than
!N andat!N:

bn~ t !.~21!n
1

p E
0

p

dj@cos~n11!j2cos~n21!j#eiat cosj ~37!

and

bn~ t !.~ i !2n11
2n

at
Jn~at ! ~38!

is obtained as a final form, whereJn is the Bessel function of the first kind, of ordern.4 The first
maximum ofbn(t) obviously corresponds to the first zero of d/dt @Jn(at)/at#. Thus, by indicat-
ing at[t, we must solve the following equation:

dJn~t!

dt
2

Jn~t!

t
50. ~39!

Since the first zero of dJn(at)/dt is found to be a good first approximation of the solutiont̄ of
~39!, this solution can be found by using a Taylor expansion. A straightforward calculation
to the result

t̄.n10.8n1/320.55n21/3. ~40!

This solution was obtained from the ‘‘continuous’’ form~38! of bn(t), but it also works very well
for the true form~33! whenn5N, at<N.

The result thatt̄;n can be found in a more intuitive way by observing thatbn(t) has the form
of a standing wave given by the sum of a progressive wave packet and a regressive o
retaining only the progressive component fort.0 and performing the standard analysis,5 bn(t)
takes the form
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bn~ t !}E
2p/2

p/2

djA~j!ei (n2at)j, ~41!

that is, the maximum of the packet travels with the group velocityvg5a; ‘‘position’’ n is reached
at the timet̄ 5n/a.

We could approach the same result directly by using the sum~33!. A constructive interference
is obtained only in the neighborhood of the values ofs where the phase is stationary, and a sh
calculation immediately gives the leading term of~40!.

IV. AN EXAMPLE: Fe8 CLUSTER

We were interested in applying the result expressed in Eq.~40! ( t̄;n) to a cluster with
8 Fe13.6 We deal with spin dynamics only at very low temperatures, where the tunnel e
consists essentially~or, better, exclusively! of coherent jumps between the two spin states of
ground doublet~which, for this cluster, corresponds toS510).

The main terms of the spin Hamiltonian for the ground state are

Hs5DSz
21

«

2
~S1

2 1S2
2 !1Hh.o., ~42!

whereHh.o. indicates fourth-order terms in the spin components. See Ref. 6 for further deta
this case, by diagonalizingHs in the space of the ground spin stateu10,M &, we have six quasi-
degenerate lowest doublets fromM5610 to M565, corresponding merely to the axial term
Hs , and a strong mixing of the nine highest singlets with^M &50, due to the transverse term o
Hs .

In order to evaluate the quantum tunneling frequenciesvM ~i.e., for a givenM , the frequen-
cies of the coherentM↔2M jumps! as functions ofM and «/uDu, it is useful to apply the
Brillouin–Wigner perturbation theory. As shown in Ref. 6, the following expression forvM is
obtained:

vM5F~M !S «

2uDu D
M uDu

\
, ~43!

whereF(M ) is independent of« and uDu, and is calculated by means of the perturbation the
~for the inversion210↔10 F(M ).1.093105).

The frequencyvM can be calculated also by means of the theory explained in the prev
section, since the two states corresponding to the spin inversion (M5610) are quasi-degenerat
and it is possible to pass from one to another only by means of the matrix element be
neighboring states. On the other hand, we have seen that the coefficientbn shows only little
dependence on the energy differences. Therefore, by comparing~43! with the relation~40!:

DM ,2M5\vM5
2p\

t̄
.

4pk

2M11
, ~44!

wherek[VM ,M215«, we finally obtain

«

D
5F4pS 2M

2M11D 1

F~M !G
1/M21

. ~45!

In our case, the inversion210↔10 takes place by means of six jumps (M56) between the
quasi-degenerate doublets withM5610,68,66 and the mixing of the highest singlets wit
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^M &50 by running across the path: 10↔8↔6↔^M &50↔26↔28↔210. In solving Eq.~45!
with M56 andF(M ).1.093105, we obtain«/D;0.25, which can be considered to be in go
agreement with the experimental result of 0.16.

1E. Merzbacher,Quantum Mechanics~Wiley, New York, 1970!.
2N. Fröman and P. O. Fro¨man,JWKB Approximation~North-Holland, Amsterdam, 1965!.
3G. N. Watson,A Treatise on the Theory of Bessel Functions~Cambridge University Press, Cambridge, 1944!.
4Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun~Dover, New York, 1965!.
5A. Sommerfeld,Optics ~Academic, New York, 1954!.
6L. Cianchi, F. Del Giallo, G. Spina, W. Reiff, and A. Caneschi, Phys. Rev. B65, 064415~2002!, and references therein
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We consider the problem of setting up the Wigner distribution for states of a
quantum system whose configuration space is a Lie group. The basic properties of
Wigner distributions in the familiar Cartesian case are systematically generalized to
accommodate new features which arise when the configuration space changes from
n-dimensional Euclidean spaceR n to a Lie groupG. The notion of canonical
momentum is carefully analyzed, and the meanings of marginal probability distri-
butions and their recovery from the Wigner distribution are clarified. For the case of
compactG an explicit definition of the Wigner distribution is proposed, possessing
all the required properties. Geodesic curves inG which help introduce a notion of
the midpoint of two group elements play a central role in the construction. ©2004
American Institute of Physics.@DOI: 10.1063/1.1631393#

I. INTRODUCTION

The method of Wigner distributions1 as a description of states of quantum mechanical syst
appeared in 1932, quite early in the history of quantum mechanics. For systems whose kine
is based upon a set of Heisenberg canonical commutation relations, it gives a way of des
both pure and mixed states in a classical phase space setting, at the level of density operato
it must be sharply distinguished in mathematical structure from the Hilbert space state vec
wave function description of states, which highlights the superposition principle of qua
mechanics. In the Wigner distribution language, this principle is not obvious or manifest, b
somewhat hidden in the formalism. On the other hand, the formation of convex classical sta
mixtures of general states to generate new states becomes much more obvious. Somewha
was appreciated that the Wigner distribution way of describing quantum mechanical states
to, or is naturally accompanied by, the Weyl ordering rule2—a convention by which one can set u
a one-to-one correspondence between operators in quantum theory~in the case of the Heisenber
commutation relations! andc-number dynamical phase space variables for the comparison
sical system. Thus expectation values for general quantum dynamical variables in genera
tum states can be faithfully expressed in the full operator-state vector language, or equally

a!Electronic mail: nmukunda@cts.iisc.ernet.in
b!Present address: Department of Physics, Carnegie Mellon University, Pittsburgh PA 15213 USA
c!Electronic mail: xarvind@andrew.cmu.edu
d!Electronic mail: scsp@uohyd.ernet.in
e!Electronic mail: simon@imsc.res.in
1140022-2488/2004/45(1)/114/35/$22.00 © 2004 American Institute of Physics
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a completelyc-number classical phase space language. In this general scheme, the
Sp(2n,R) of linear canonical transformations forn Cartesian degrees of freedom, and the rela
two-fold covering group Mp(2n), play prominent roles.3

An important property of the Wigner distribution for a general quantum state is that wh
is a real function on the classical phase space, it is not always pointwise non-negative. Th
it is usually called a quasi probability distribution, and cannot be interpreted as a phase
probability density in the sense of classical statistical mechanics. However, the Wigner distri
does have the attractive property that the marginal distributions, obtained by integrating
either the momentum or the position variables, do reproduce the correct non-negative p
space and momentum space probability distributions respectively as specified by quantu
chanics. This recovery or reproducibility of correct marginal distributions is of course mainta
even after unitary action by any Mp(2n) element.

There have been several attempts4–15 over the years to generalize the method of Wign
distributions to handle quantum mechanical situations where the basic kinematics is defin
by Heisenberg-type canonical commutation relations, but by some Lie group which acts
covariance group of the system of interest.~As will become clear in the sequel, the traditional ca
is also governed by a group, namely the Abelian groupR n of translations inn-dimensional
Euclidean space.! A commonly studied group is SU~2!, in the context of spin systems as well a
two-level atoms. One of the important early efforts at providing a general group theoretical s
for the Wigner distribution is due to Stratonovich.16 In this context we should also mention th
comprehensive monograph of Dubinet al.17 It seems to us, however, that in most of these attem
the requirement that certain marginal probability distributions be recovered in a natural way
the Wigner distribution corresponding to a general quantum state, which as mentioned abov
important feature of the usual Cartesian case, is not discussed in a satisfactory manner; in s
these works this important aspect is not considered at all.

The aim of the present paper is to develop from first principles the basic features of qu
kinematics for a system whose configuration space is a general non-Abelian Lie groupG rather
than a Cartesian spaceR n, and then set up a corresponding Wigner distribution formalism wh
respects the requirement that natural marginal probability distributions are reproduced in a
manner. This involves several extensions or modifications of the familiar formalism in the C
sian case. The role of Schro¨dinger wave functions is of course now played by complex squ
integrable functions onG, and after normalization each such wave function determines a p
ability distribution overG. The meaning and definition of canonical momentum variables,
determination of the momentum space probability distribution for a given state, are how
nontrivial questions in which the many structural features associated withG play important roles.
In particular for a non-AbelianG canonical momenta in quantum theory become noncommu
operators, leading to deep changes in the meaning of momentum eigenstates, momentum
values and momentum space, etc. It is here that the unitary representation theory ofG plays an
important role. We show that all these features can be properly taken into account, and
satisfactory Wigner distribution can be set up as a function of carefully chosen arguments
turns out to have simple transformation properties underG action and also to reproduce th
marginal position and momentum space probability distributions properly.

It needs to be emphasised that our interest in developing a Wigner distribution formalis
systems whose configuration space is a non-Abelian group is not purely academic. In fact
are many familiar systems which fall in this category. A general rigid body which has the g
SO~3! as its configuration space is a case in point. Another well studied example in this cat
is the relativistic spherical top18 whose configuration space is the noncompact group SO~3,1!.

The material of this paper is arranged as follows. In Sec. II we recall the main definition
properties of Wigner distributions in the Cartesian situation. We emphasize several familia
tures in this case: the possibility of use of the classical phase space as the domain of defin
Wigner distributions; the roles of the groups Sp(2n,R) and Mp(2n); the reality but in general loss
of pointwise positivity of Wigner distributions; and the recovery of the coordinate space
momentum space probability distributions for a given state by integrating over half the argu
                                                                                                                



s in
the
eplace-
ect
ace that
al

tions are
lassical
ed on

tion
epts of
d with
on the
igner
ments
l
ixed
ies. We
rties of
our

angle
ually to
nd

ls so
ortant
ntioned.
dix A

,
are set

endix
ion set
group

istri-
atures
hanics

rg

r

116 J. Math. Phys., Vol. 45, No. 1, January 2004 Mukunda et al.

                    
of the Wigner distribution. Section III describes briefly the properties of Wigner distribution
the angle-angular momentum case.19 This brings out some new features, namely, loss of
classical phase space as the domain of definition of Wigner distributions, and absence of r
ments for the groups Sp(2n,R) and Mp(2n), which indicate the type of changes we should exp
in the case of a general Lie group. Section IV analyzes in some detail the classical phase sp
goes with a non-Abelian Lie groupG as configuration space. Both global intrinsic and loc
coordinate based descriptions are given, and the associated classical Poisson bracket rela
developed and described in several ways. In particular a careful analysis of the concept of c
canonical momenta in this case is provided. The transition to quantum mechanics, bas
Schrödinger wave functions overG, is then outlined. It is emphasised that a naive generaliza
of the usual canonical Heisenberg commutation relations is not possible, and all the conc
position operators, momentum operators and their commutation relations have to be treate
care. A brief Sec. V indicates the kinds of new features we may expect to appear, based
results and discussions of Sec. III and IV. In Sec. VI we pose the main problem of defining W
distributions in a suitable way, with suitable choice of arguments, subject to the main require
already mentioned above: reasonable transformation laws underG action, recovery of margina
probability distributions, and capturing the full information contained in a general pure or m
quantum state. We propose a solution to this problem, possessing all the desired propert
find that our solution uses in an essential and interesting manner the concept and prope
geodesics inG leading to the notion of a midpoint of two group elements, a key ingredient in
construction. For definiteness we confine ourselves to the case of compactG. Section VII shows
how the known results of Secs. II and III, for Cartesian quantum mechanics and for the
angular-momentum pair, are easily recovered from the general case. They correspond act
the choicesG5R n and G5SO(2), which are both Abelian and, respectively, noncompact a
compact. The case ofG5SU(2) is then briefly considered, giving adequate background detai
that the structure of the Wigner distribution can be easily appreciated. Some of the imp
differences compared to the Cartesian case, as well as to earlier approaches, are me
Section VIII contains some concluding remarks. We have included two appendices. Appen
recollects basic results from the theory of the regular representation ofG in the compact case
based essentially on the Peter–Weyl theorem. In addition certain useful operator structures
up, which help us understand better the construction of Wigner distributions in Sec. VI. App
B discusses the question of completeness of the information content in the Wigner distribut
up in Sec. VI, and generalizations of the Weyl exponential operators to the non-Abelian Lie
case.

II. THE WIGNER DISTRIBUTION IN THE CARTESIAN CASE

It is useful to recall briefly the usual definition and the basic properties of the Wigner d
bution in the case of Cartesian quantum mechanics, and to highlight those important fe
which are likely to need generalization when we later take up the treatment of quantum mec
on a general Lie group.

We consider a quantum system whose kinematics is based on 2n Hermitian irreducible Car-
tesian position and momentum operatorsq̂r ,p̂r ,r 51,2,...,n, obeying the standard Heisenbe
commutation relations

@ q̂r ,p̂s#5 i\d rs , @ q̂r ,q̂s#5@ p̂r ,p̂s#50, r ,s51,2,...,n. ~2.1!

It is useful to express these relations more compactly by defining a 2n-dimensional column vecto
with Hermitian operator entries,

ĵ5~ ĵa!5~ q̂1 ...q̂n p̂1 ...p̂n!T, a51,2,...,2n, ~2.2!

and a real antisymmetric nondegenerate 2n dimensional symplectic metric matrixb as
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b5S 0n3n 1n3n

21n3n 0n3n
D . ~2.3!

Then Eq.~2.1! can be written as

@ ĵa ,ĵb#5 i\bab . ~2.4!

These commutation relations and the Hermiticity properties are preserved when we subj
operatorsĵa to a real linear transformation by any matrix of the symplectic group Sp(2n,R):

Sp~2n,R!5$S52n32n real matrix uSbST5b%, ~2.5a!

S P Sp~2n,R!: ĵa→ ĵa85Sabĵb ,

@ ĵa8 ,ĵb8#5 i\bab . ~2.5b!

On account of the Stone–von Neumann theorem, such linear transformations must be u
induced; i.e., for eachS P Sp(2n,R), there exists a unitary operator U(̄S), determined up to a
phase, such that

ĵa85Sabĵb5Ū~S!21ĵaŪ~S!. ~2.6!

These unitary operators give a unitary representation of Sp(2n,R) up to phases which cannot b
totally eliminated, but can at best be reduced to a sign ambiguity:

S8,S P Sp~2n,R!:Ū~S8!Ū~S!56Ū~S8S!. ~2.7!

This situation may be expressed by the statement that one is actually dealing here with
representation of the group Mp(2n) which is a double cover of Sp(2n,R). These objects will be
seen to play important roles in the theory of Wigner distributions in the present case.

Vectors in the Hilbert spaceH on which theĵa are irreducibly represented may be describ
by their Schro¨dinger wave functions in the usual manner,

uc&PH:c~qI !5^qI uc&,

^qI 8uqI &5d (n)~qI 82qI !, ~2.8!

^cuc&5ici25E
R n

dnquc~qI !u2.

The ~ideal! kets uqI & are simultaneous eigenvectors of then commuting position operatorsq̂r ,r

51,...,n. Alternatively we may describe them by their momentum space wave functionsc̃(pI ) by
taking the overlap with simultaneous eigenvectors of the commuting momentum operatorp̂r ,r
51,...,n:

c̃~pI !5^pI uc&5E
R n

dnq

~2p\!n/2c~qI !exp~2 i pI •qI /\!,

^qI upI &5~2p\!2n/2 exp~ i qI •pI /\!, ~2.9!

^cuc&5E
R n

dnpuc̃~pI !u2.
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Given a pure stateuc& of the above quantum system, the corresponding Wigner distributio
a functionW(qI ,pI ) of 2n classical real variables, i.e., a function onR 2n. In analogy with Eq.~2.2!
we assemble the argumentsq1¯qn p1¯pn into a real 2n-component column vectorj5(ja)
5(q1¯qn p1¯pn)T, and thenW(j) is defined by a partial Fourier transformation:

W~j!5~2p\!2nE
R n

dnq8 c~qI 2 1
2qI 8!c~qI 1 1

2qI 8!* exp~ i pI •qI 8/\!. ~2.10!

Here the dependence ofW(j) on c is left implicit. For a general mixed state we defineW(j)
through the configuration space matrix elements of the density operatorr̂,

W~j!5~2p\!2nE
R n

dnq8^qI 2 1
2qI 8ur̂uqI 1 1

2qI 8&exp~ i pI •qI 8/\!, ~2.11!

once again leaving the dependence onr̂ implicit. It is clear by construction thatW(j) is a real
phase space function. The recovery of the proper non-negative marginal probability distribut
demonstrated by

E
R n

dnp W~j!5uc~qI !u2,

~2.12!

E
R n

dnq W~j!5uc̃~pI !u2.

On the other hand, ifW(j) andW8(j) correspond, respectively, tor̂ and r̂8, it is easily shown
that

Tr~ r̂8r̂ !5~2p\!2nE
R 2n

d2nj W8~j!W~j!>0. ~2.13!

But since it is easy to construct cases where the trace on the left-hand side actually vanish
can expect that in generalW(j) becomes negative in some regions ofR 2n. Indeed, the simples
explicit example showing this is the expression for the Wigner function for the first excited
of the harmonic oscillator in one dimension. Takingn51 and setting\51 for simplicity, we have

c~q!5
&

p1/4q e2q2/2→W~j!5
2

p S q21p22
1

2D e2q22p2
. ~2.14!

In this context it is interesting to recall the following two results~again in one dimension! as
indicative of the characteristic features of Wigner distributions.

~i! Hudson:20 For a pure statec(q) the Wigner function is pointwise non-negative if and on
if c(q) @and henceW(j) as well# is a ~complex! Gaussian.

~ii ! Folland-Sitaram:21 If W(j) has compact support inR 2, it must vanish identically.
Under the unitary action of Mp(2n) on r̂, W(j) experiences a simple point transformatio

r̂85Ū~S!r̂Ū~S!21⇔W8~j!5W~S21j!, SPSp~2n,R!. ~2.15!

Thus we have covariance under the group Sp(2n,R) which is the maximal linear homogeneou
group mixingq’s andp’s. This combined with the results of Eq.~2.12! shows that we recover th
correct marginal probability distributions by integrating over half the variables inW(j) even after
action by any Sp(2n,R) transformation.

The sense in which the definitions~2.10! and~2.11! of the Wigner distribution are dual to th
Weyl ordering rule is as follows. The latter rule associates with each elementary classical
nential a corresponding elementary operator exponential,
                                                                                                                



ier

ntum

h
use of

al

et of

uch

esult of
g the
the
hese

entum
n the

r:

nd

119J. Math. Phys., Vol. 45, No. 1, January 2004 Wigner distributions and quantum mechanics

                    
exp~ i lI •qI 2 i mI •pI !→exp~ i lI •qÎ 2 i mI •pÎ !, ~2.16!

wherelI andmI are arbitrary real vectors inR n; and this is then extended by linearity and Four
transformation to general classical functions, say

f ~qI ,pI ![ f ~j!→F̂. ~2.17!

Then the dual relationship is expressed by the equality of two ways of computing qua
expectation values,

Tr~ r̂ exp~ i lI •qÎ 2 i mI •pÎ !!5~2p\!2nE
R 2n

d2nj W~j!exp~ i lI •qI 2 i mI •pI !,

~2.18!

Tr~ r̂F̂ !5~2p\!2nE
R 2n

d2njW~j! f ~j!.

The definition~2.10! givesW(j) for a given pure statec(qI ). By polarization we can obtain
a sesquilinear expression: for any two pure statesc, w we can set up a~generally complex! Wigner
distribution

Wc,w~j!5~2p\!2nE
R n

dnq8 c~qI 2 1
2qI 8!w~qI 1 1

2qI 8!* exp~ i pI •qI 8/\!, ~2.19!

linear in c and antilinear inw. Under complex conjugation we have

Wc,w~j!* 5Ww,c~j!, ~2.20!

and both the formula~2.13! and the Mp(2n) covariance law~2.15! can be easily extended for suc
objects. For some purposes such expressions may be useful, but we do not make much
them.

While all of the foregoing is quite familiar, it is useful to make the following addition
remarks. It is characteristic of the Heisenberg commutation relations~2.1! that even after quanti-
zation, i.e., within quantum mechanics, the possible~sets of simultaneous! eigenvalues of the
~commuting! momentap̂r by themselves do not suffer any quantization. Thus a general s
eigenvaluespr ,r 51,...,n for p̂r determines a general point inR n, just as the eigenvaluesqr of
the position operatorsq̂r do. It is ultimately this that allows us to describe quantum states for s
systems via Wigner distributions over the classical phase spaceT* R n.R 2n, a general point
(qI ,pI ) of which is made up of~nonsimultaneous! eigenvalue setsqI ,pI for the ~noncommuting!
operator setsq̂r ,p̂r . The appearance and use of the classical phase space here is not as a r
taking the classical or semiclassical limit of the quantum theory, but is a way of expressin
exact content of the quantum theory in a fullyc-number language. The role and relevance of
groups Sp(2n,R),Mp(2n) in Cartesian quantum mechanics can really be traced back to t
facts; it makes sense to form canonical linear combinations of Cartesianq̂’s and p̂’s. The impor-
tance of these remarks is seen from a comparison with the case of an angle-angular mom
pair,19 and the proper way to set up Wigner distributions in that case. We recall this briefly i
next section, emphasizing the differences compared to the Cartesian situation.

III. THE WIGNER DISTRIBUTION IN THE ANGLE-ANGULAR MOMENTUM CASE

For a classical angle variableuP(2p,p), the configuration spaceQ is the circleS1; so at the
classical level the phase space or cotangent bundle is the cylinderT* S1.S13R. This contains, in
addition to the coordinateu, a generalized momentum,pu say, which can be any real numbe
puPR. Now in the quantum situation we have an angle operatorû with eigenvaluesu

P(2p,p), and a conjugate angular momentum operatorM̂ whose eigenvalues are quantized a
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are m50,61,62,..., i.e.,mPZ and not mPR. It is unnatural in this case to write down

commutation relation betweenû andM̂ ; rather their mutual relationship is best expressed thro
these eigenvalue and eigenvector statements,

ûuu&5uuu&, uP~2p,p!,

^u8uu&5d~u82u!, ~3.1a!

M̂ um&5m\um&, mPZ,

^m8um&5dm8m , ~3.1b!

^uum&5~2p!21/2exp~ imu!, ~3.1c!

E
2p

p

duuu&^uu5 (
mPZ

um&^mu51. ~3.1d!

The Hilbert spaceH relevant here isL2(2p,p).,2. Now we define the bounded unitary exp
nentials~Weyl exponentials!

U~n!5exp~ in û !, nPZ,
~3.2!

V~t!5exp~2 i tM̂ !, tP~2p,p!.

@We do not need to define the more generalU(s),V(t) for s,tPR.] In contrast to the Cartesian
case where bothq̂ and p̂ are unbounded, here onlyM̂ is unbounded. Then, for a given pure sta
uc&P H with wave functionc(u)5^uuc&, the Wigner distribution is a real functionW(u,m) of
an angleu and an integerm defined as follows:

W~u,m!5
1

2p E
2p

p

dt c~u1t/2!c~u2t/2!* e2 imt, ~3.3!

the arguments ofc andc* always being in the range (2p,p) via shifts of amounts62p. We
note that the pair (u,m) is not a point in the classical phase spaceT* S1, just because the
‘‘momentum’’ eigenvaluem is quantized. The definition~3.3! reproduces the marginals correctl

E
2p

p

du W~u,m!5u^muc&u2,

~3.4!

(
mPZ

W~u,m!5u^uuc&u2.

There is an accompanying dual Weyl operator correspondence as well: it takes elementa
sical exponentials onS13Z into specific products of theU ’s andV’s of Eq. ~3.2!:

exp~ inu2 i tm!→U~n!V~t!e2 int/25V~t!U~n!eint/2,
~3.5a!

nPZ, tP~2p,p!,

^cuU~n!V~t!e2 int/2uc&5E
2p

p

du (
mPZ

W~u,m!ei (nu2tm). ~3.5b!
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@The operator exponentials in~3.5a! cannot be combined into single exponentials.# It is the case
that the operatorsU(n)V(t)e2 int/2 for all nPZ and tP(2p,p) do form a complete~trace
orthonormal! basis for all operators onH; and what the Weyl rule here does is to place a
operatorF̂ on H in correspondence with a classical functionf (u,m) on S13Z, not on T* S1

.S13R.
One appreciates that here a certain amount of quantization is already incorporated in

classical phase space structure, before the Wigner distribution can be defined in a reasona
There is also no room for the groups Sp(2,R) and Mp(2).These characteristic differences com
pared to the Cartesian case will get magnified in the case of a general Lie group.

The replacements for Eqs.~2.11! and ~2.13! of the Cartesian case turn out to be as follow

W~u,m!5
1

2p E
2p

p

dt^u1t/2ur̂uu2t/2&e2 imt,

~3.6!

Tr~ r̂8r̂ !5 (
mPZ

E
2p

p

du W8~u,m!W~u,m!.

Thus from the latter we can see again that in generalW(u,m), though real, can becom
negative for some arguments.

In concluding this section, we mention one interesting case which has no Cartesian ana
SinceM̂ has a discrete spectrum, its eigenvectors are normalizable, and in that case we fi

uc&5um0& : W~u,m!5
1

2p
dm,m0

. ~3.7!

Clearly both of Eqs.~3.4! are satisfied.

IV. CLASSICAL AND QUANTUM MECHANICS ON PHASE SPACE OF A LIE GROUP

As a preliminary step towards setting up the Wigner distribution formalism for quan
systems with kinematics based on a general Lie group, we first briefly recall the important fe
of the corresponding classical situation.22

Let G be a connected Lie group of dimensionn, and let us regard it as the configuration spa
Q of a classical dynamical system. Then the generalized coordinate for the system is a v
elementgPG. The corresponding phase spaceT* Q is the cotangent bundleT* G. We can de-
scribeT* G in intrinsic purely geometric terms, which has the advantage of being globally
defined. However from the point of view of facilitating practical calculations in any partic
case, and so as to avoid being too cryptic, it is also useful to develop local coordinate
descriptions ofT* G. We outline the former first, and then turn to the latter.

Intrinsic descriptions of T* G: As is well known, every Lie group is a parallelizable differe
tiable manifold. Therefore, if we denote the Lie algebra ofG by GI , and the dual toGI by GI * , it
turns out thatT* G is essentially the Cartesian productG3GI * . This equivalence can be esta
lished in two equally good ways, neither of which is preferred. For definiteness we identifyGI and
GI * as the tangent and cotangent spaces toG at the identitye,

GI 5TeG, GI * 5Te* G. ~4.1!

The Lie groupG automatically brings with it the set of left translationsLg and the set of right
translationsRg . These are mutually commuting realizations ofG by mappings ofG onto itself.
Their definitions and main properties are

Lg :g8PG→gg8PG,
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Lg1
+Lg2

5Lg1g2
;

Rg :g8PG→g8g21PG, ~4.2!

Rg1
+Rg2

5Rg1g2
;

Lg1
+Rg2

5Rg2
+Lg1

.

The corresponding tangent maps and pull backs act as nonsingular linear transformations
tangent and cotangent spaces respectively at general points ofG, according to the following
scheme:

~Lg!* :Tg8G→Tgg8G,
~4.3a!

~Rg!* :Tg8G→Tg8g21G,

Lg* :Tg8
* G→Tg21g8

* G,

~4.3b!
Rg* :Tg8

* G→Tg8g
* G.

Now introduce dual bases$er%,$e
r%,r 51,2,...,n for TeG, Te* G,

GI 5TeG5Sp$er%, GI * 5Te* G5Sp$er%,
~4.4!

^er ,es&5ds
r , r ,s51,2,...,n.

By applying the tangent maps to$er% at e, we obtain two sets of bases at eachTgG, in fact two
bases for general vector fields onG,

Xr~g!5~Rg21!* ~er !,

X̃r~g!5~Lg!* ~2er !, ~4.5!

TgG5Sp$Xr~g!%5Sp$X̃r~g!%.

@The negative sign in the second line is to secure common commutation relations in Eq~4.6!
below.# The vector fields$Xr% are right invariant and are the generators of the left translationsLg ,
while the vector fields$X̃r% are left invariant and generate the right translationsRg . Each set
obeys the commutation relations~commutators among vector fields!! characterizing the Lie alge
bra GI of G and involving structure constantsf rs

t ,

@Xr ,Xs#5 f rs
tXt ,

@X̃r ,X̃s#5 f rs
tX̃t , ~4.6!

@Xr ,X̃s#50.

We naturally have two dual bases for the cotangent spacesTg* G:

Tg* G5Sp$u r~g!%5Sp$ũ r~g!%,

^u r~g!,Xs~g!&5^ũ r~g!,X̃s~g!&5ds
r ,
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u r~g!5Rg* ~er !,

ũ r~g!5Lg21* ~2er !. ~4.7!

In terms of these forms, the commutation relations~4.6! appear as the Maurer–Cartan relation

du r1 1
2 f st

rus∧u t50,

~4.8!
dũ r1 1

2 f st
r ũs∧ ũ t50.

At eachg P G the two sets of objects are related by then3n matricesD(g)5(D s
r(g)) of the

adjoint representation ofG (superscript5row, subscript5column index!:

X̃r~g!52D r
s~g!Xs~g!,

~4.9!
u r~g!52D s

r~g!ũs~g!.

The important point is that all these maps, objects and relationships are globally well defin
With this geometric preparation, we can easily see in two ways why the phase spaceT* G is

essentially the productG3GI * . A general point inT* G is a pair (g,v) where gPG and v

PTg* G. But we can expandv in either of the two bases$u r(g)%,$ũ r(g)% for Tg* G, and use the
expansion coefficients to synthesize elements inTe* G5GI * ,

v5v ru
r~g!5Rg* ~v re

r !PTg* G⇔v05v re
rPGI * , ~4.10a!

v52ṽ r ũ
r~g!5Lg21* ~ṽ re

r !PTg* G⇔ṽ05ṽ re
rPGI * . ~4.10b!

Each of these ways of setting up correspondences gives a globally well-defined method o
tifying T* G with G3GI * . For givenvPTg* G, v0 andṽ0 are related by the coadjoint represe
tation of G, since

ṽ r5D r
s~g!vs . ~4.11!

The above development displays the structure of the classical phase spaceT* G in an intrinsic
and globally well-defined manner; in particular it brings out the fact that as a bundle over the
G, T* G is trivial. ~In contrast, for example,T* S2 is nontrivial!. Now, as stated earlier, we link u
to local coordinate based descriptions more suited to practical computations and statem
Poisson bracket relations.

Local coordinate descriptions of T* G: In general the elements of a Lie groupG cannot be
described with the help of coordinates in a globally smooth manner. In particular this is so iG is
compact. One has to work with charts or locally defined coordinates, with well-defined tran
rules in overlaps, etc. For simplicity we will work within a single chart over some open ne
borhood of the identity; the setting up of a suitable notation to handle a collection of charts
principle quite straightforward but is omitted.

Let the elementgPG be labeled byn real independent continuous coordinatesqr ,r
51,2,...,n; as a convention we setqr50 at e. Theseq’s are numerical generalized coordinate
especially in caseG is compact, each of them is expected to be an angle type variable. To th
of coordinatesqr corresponds the elementg(q)PG. We identify the basis elementser ,er for TeG
andTe* G, Eq. ~4.4!, as

er5S ]

]qr D
0

, er5~dqr !0 . ~4.12!
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For practical convenience it is often useful to work with some faithful matrix representation oG.
This has nothing to do with quantization per se, but is just a convenient way of handlingG less
abstractly than otherwise. In this sense letA(q) be some faithful matrix representation ofG; we
identify its generator matrices and commutation relations by

A~dq!.12 idqrTr ,
~4.13!

@Tr ,Ts#5 i f rs
tTt .

The product of two elementsA(q8),A(q) is written as

A~q8!A~q!5A~ f ~q8;q!!, ~4.14!

where then functions f r(q8;q) of 2n real arguments each express the composition law inG.
Certain important auxiliary functions play an important role; their definitions and some prop
are summarized here,

hs
r~q!5S ] f r

]q8s ~q8;q! D
q850

,

~4.15a!

h̃s
r~q!5S ] f r

]q8s ~q;q8! D
q850

,

~js
r~q!!5~hs

r~q!!21,
~4.15b!

~ j̃s
r~q!!5~ h̃s

r~q!!21,

f ~dq;q!.q1h~q!dq,
~4.15c!

f ~q;dq!.q1h̃~q!dq,

hs
r~q!

]A~q!

]qr 52 iTsA~q!,

~4.15d!

h̃s
r~q!

]A~q!

]qr 52 iA~q!Ts .

@For matrix operations here, superscripts~subscripts! are row~column! indices.# The vector fields
and one forms in Eqs.~4.5! and ~4.7! have the following local expressions:

Xr5h r
s~q!

]

]qs , X̃r52h̃ r
s~q!

]

]qs ,

~4.16!
u r5js

r~q!dqs, ũ r52 j̃s
r~q!dqs,

and the adjoint representation matricesD(g) are given by the product

D~g~q!!5j~q!h̃~q!. ~4.17!

In the sense of classical canonical mechanics when we go toT* G we have~local! canonically
conjugate momentum variablespr ,r 51,2,...,n; and the basic classical Poisson bracket~PB!
relations are

$qr ,ps%5ds
r , $qr ,qs%5$pr ,ps%50. ~4.18!
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As for the ranges of these variables, while the structure ofG determines the nature of theqr , it is
generally assumed that eachpr ranges independently over the entire real lineR. In other words,
Tg* G.R n at eachgPG.

While both the coordinatesqr and the momentapr have so far a local character, it is possib
to replace the latter by certainq-dependent linear combinations which are then globally w
defined. They express the structure of the phase spaceT* G in a much more natural way. We ge
a clue to their definitions by noticing, upon combining the PB relations

$A~q!,pr%5
]A~q!

]qr ~4.19!

with Eq. ~4.15d!, that

$A~q!,hs
r~q!pr%52 iTsA~q!,

~4.20!
$A~q!,2h̃s

r~q!pr%5 iA~q!Ts .

These relations lead us to define generalized canonical momentum like variablesJr ,J̃r as follows:

Jr5h r
s~q!ps , J̃r52h̃ r

s~q!ps . ~4.21!

The connection between the two sets is

J̃r52D r
s~g~q!!Js , ~4.22!

and, consistent with Eqs.~4.13! and ~4.15d!, their PB relations are

$Jr ,Js%5 f rs
tJt ,

$J̃r ,J̃s%5 f rs
tJ̃t , ~4.23!

$Jr ,J̃s%50.

The complete coordinate-based description of the basic PB relations obtaining onT* G can now
be given in many equally good ways, and we list all of them~allowing for some repetition!:

$qr ,qs%50, ~4.24a!

$qr ,Js%5hs
r~q!,

$qr ,J̃s%52h̃s
r~q!,

~4.24b!
$A~q!,Jr%52 iTrA~q!,

$A~q!,J̃r%5 iA~q!Tr ,

$Jr ,Js%5 f rs
tJt ,

$Jr ,J̃s%50, ~4.24c!

$J̃r ,J̃s%5 f rs
tJ̃t .

It is thus best to view the set ofJr ~or J̃r) as the covariant momentum canonically conjugate to
group elementgPG as a generalized coordinate.
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At this point, in the present framework, we recognize that the Lie group underlying
kinematic structure of Cartesian quantum mechanics forn degrees of freedom, expressed by t
Heisenberg commutation relations~2.1! and ~2.3!, is the Abelian translation groupG5R n in n
real dimensions. In this case, the coordinatesqr ,r 51,2,...,n denoting an element ofR n are
globally well defined, andT* G5T* R n.R 2n, corresponding to the Cartesian phase spaceq’s
and p’s. Due to the group being Abelian, the structure constants vanish; then3n matrices
h(q),j(q),h̃(q),j̃(q) of Eq. ~4.15a! and~4.15b! all reduce to the identity matrix; the momentaJr

and J̃r essentially coincide asJr52 J̃r5pr ; and the PB relations~4.24! reduce to the familiar
classical forms for which the Heisenberg relations~2.1! are the quantized version. We have n
difficulty in principle in postulating quantum kinematics through these commutation relation

However the angle-angular momentum case briefly described in Sec. III corresponds
groupG5U(1).SO(2) which is of course also Abelian. But one immediately sees new fea
emerging. For instance, the angle variableu is not a globally well-defined coordinate overG. It is
also not very satisfactory, due to operator domain problems, to postulate simple m
Heisenberg-type commutation relations betweenû and its canonical conjugateM̂ in the quantum
case. This is over and above the fact that nowM̂ is quantized. Thus in theG5SO(2) case, it is
better to base the treatment on the set of relations for operators, eigenvalues, and eigen
collected in Eqs.~3.1!.

Turning to a general Lie groupG where the classical PB structure onT* G is conveyed by any
of the forms given in Eqs.~4.24!, it should be evident that we should not base the quan
kinematics on a naive set of commutation relations for operator forms of the group coordinaqr

and the momentaJr ,J̃r . Rather, while the latter can be satisfactorily handled~and this just
involves the representation theory ofG), the treatment of the abstract group elementg as a
coordinate operator after quantization has to be handled somewhat differently.

Quantum kinematics for the Lie group case: We now motivate the forms of the replacemen
for the Heisenberg canonical commutation relations~2.1! and~2.4! when we consider a quantum
system whose configuration spaceQ is a Lie group G. Just as we identifiedG5R n for
n-dimensional Cartesian quantum mechanics, where we know that the Schro¨dinger wave functions
are complex valued square integrable functions onR n, we should now expect that the Schr¨-
dinger wave functions should be complex valued square integrable~in a suitable sense! functions
on G. The question now is: with what algebraic operator relations do we replace the e
canonicalq̂– p̂ commutation relations?

If we try to avoid the use of~local! coordinates for group elements, in the interests of being
intrinsic as possible, we might be tempted to imagine the following: upon quantization, the
sical generalized coordinategPG is replaced by an ‘‘operatorĝ’’ for which the possible ‘‘eigen-
values’’ are the classical abstract group elements. However this seems excessively formal.
reasonable strategy would be to first set up a classical commutative algebraA, say, of all smooth,
i.e., C `, real valued functionsf (g) on G,

g P G→ f ~g! P R: f P A,
~4.25!

f 1 , f 2 P A⇒c1f 11c2f 2 , f 1f 2 P A.

Here thec’s are real numbers, and the above choice of functionsf PA captures the differentiable
manifold structure ofG. The left and right translationsLg ,Rg of Eq. ~4.2! now act onA as
follows:

Left action, g8PG: f ~g!→ f ~g821g!,
~4.26!

Right action, g8PG: f ~g!→ f ~gg8!.

Upon quantization we ask for an Abelian operator algebraÂ, say, consisting of Hermitian opera
tors such that in a natural way we ensure
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f PA→ f̂ PÂ,

f 1 , f 2 PA⇒c1f 11c2f 2→c1 f̂ 11c2 f̂ 2 , ~4.27!

f 1f 2→ f̂ 1 f̂ 2 .

This is the replacement for theq̂– q̂ part of the canonical relations~2.1!, and is the quantized
version of the PB relations$qr ,qs%50 in Eq. ~4.24a!, in a globally well-defined form.

Turning to the quantization of the remaining PB relations in Eqs.~4.24b! and~4.24c!, we can
work either with finite group elements or with infinitesimal generators. In the former, we as
unitary operator familiesV(g),Ṽ(g) realizing the left and right translation groups onG, and
producing onÂ the effects implied by Eq.~4.26!,

f ~g!PA→ f̂ PÂ⇒

f ~g821g!→V~g8! f̂ V~g8!21, ~4.28a!

f ~gg8!→Ṽ~g8! f̂ Ṽ~g8!21, g8PG,

V~g1!V~g2!5V~g1g2!,
~4.28b!

Ṽ~g1!Ṽ~g2!5Ṽ~g1g2!,

V~g1!Ṽ~g2!5Ṽ~g2!V~g1!. ~4.28c!

The operator relations~4.28a! are the quantized and finite forms of the PB relations in~4.24b!
involving $qr or A(q), Js or J̃s%; while the operator relations~4.28b! and~4.28c! are the integrated
forms of the result of quantizing the PB relations~4.24c! keeping track of course of the globa
connectivity properties ofG. The latter can also be expressed at the generator level. If

generators ofV(g),Ṽ(g) are Ĵr , Ĵ̃r , respectively, we require them to be Hermitian and to obe

@ Ĵr ,Ĵs#5 i f rs
tĴt ,

@ Ĵ̃r , Ĵ̃s#5 i f rs
tĴ̃t ,

~4.29!
@ Ĵr , Ĵ̃s#50,

Ĵ̃r52D r
s~g!Ĵs .

In comparison to the canonical commutation relations~2.1!, we see that Eq.~4.28a! corre-
spond to theq̂– p̂ part, and Eqs.~4.28b!, ~4.28c!, and~4.29! correspond to thep̂– p̂ part, respec-
tively. Thus the complete set of algebraic relations expressing quantum kinematics for qu
mechanics on a Lie group as configuration space are Eqs.~4.27!, ~4.28a!–~4.28c!, ~4.29!. These
have to be realized irreducibly on a suitable Hilbert space.

A clarifying remark may be made at this point. If we were looking only for a unitary rep
sentation~UR! or unitary irreducible representation~UIR! of G, the only commutation relations to
be satisfied would be those among the Hermitian generators,Ĵr say, of such a UR or UIR. Bu
these comprise only a part—thep̂– p̂ part—of the complete set of algebraic relations develop
above; and do not include the operators inÂ which represent smooth functions onG and which
capture the notion of position operator in this case. Conversely, a single UIR ofG on some Hilbert
space, over which theĴr act irreducibly, is here the analogue of a single simultaneous~ideal!
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eigenvector of all the~commuting! momentap̂r . The latter is always one dimensional becauseR n

is Abelian—there is just one~ideal! eigenvectorupI & of the p̂r for given eigenvaluespr . With a
general non-Abelian Lie groupG, the analogue of a ‘‘momentum eigenstate’’ is a~finite or infinite
dimensional! UIR of G.

A natural representation of all the algebraic relations imposed above is via the regular
sentation ofG. We will hereafter always assume that there is a unique~up to a factor! left and
right translation invariant volume element dg on G, the Haar measure, which in the compact ca
will be normalized so thatG has total volume unity,

f PA:E
G

dg f~g!5E
G

dg f~g821g!5E
G

dg f~gg8!,

~4.30!

E
G

dg51 if G compact.

In local coordinatesqr for G, apart from a normalization factor, this volume element involves
determinants of the matricesj(q), j̃(q) defined in~4.15b!,

dg5det~j~q!!dnq5det~ j̃~q!!dnq. ~4.31!

Then the Hilbert spaceH5L2(G) is defined, in the ‘‘Schro¨dinger representation,’’ as

H5H c~g!PCuici25E
G

dguc~g!u2,`J . ~4.32!

On this space the required operatorsf̂ PÂ,V(g8),Ṽ(g8) are easily defined,

f ~g!PA→ f̂ PÂ: ~ f̂ c!~g!5 f ~g!c~g!,

~V~g8!c!~g!5c~g821g!, ~4.33!

~Ṽ~g8!c!~g!5c~gg8!.

This is indeed an irreducible representation of the complete algebraic system as is sho
Appendix A.

In local coordinates if we writec(g) asc(q), the generatorsĴr , Ĵ̃r are immediately obtained
as

Ĵr52 ih r
s~q!

]

]qs ,

Ĵ̃r5 i h̃ r
s~q!

]

]qs , ~4.34!

V~dq!.12 idqrĴr , Ṽ~dq!.12 idqr Ĵ̃r .

Thus these generators are essentially the vector fieldsXr ,X̃r defined earlier in Eqs.~4.5! and
~4.16!, but now interpreted as Hermitian operators onL2(G).

It is for the elementsuc& in the Hilbert spaceH of Eq. ~4.32! that we wish to set up a Wigne
distribution formalism with natural properties.
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V. NEW FEATURES TO BE ACCOMMODATED

For Cartesian quantum mechanics we have the well-known Stone–von Neumann th
which states that up to unitary equivalence there is only one irreducible representation of H
ian operatorsq̂r ,p̂r obeying the Heisenberg relations~2.1!. This irreducible representation is o
course describable in many ways—position representation withq̂r diagonal; momentum represen
tation with p̂r diagonal; Fock basis; coherent states, etc. WhenR n here is replaced by a gener
Lie groupG, we have already appreciated that the basic building block for the quantum the
not a UIR of G, but an irreducible representation of the entire algebraic system consistin
Â,V(•) and Ṽ(•). A single UIR ofG is too small to support the action of a group element a
generalized coordinate. To achieve this many UIR’s ofG have to be put together in a caref
manner.

As for UIR’s of G, we recall several familiar facts. IfG is compact, every UIR is finite
dimensional. IfG is noncompact simple, then every nontrivial UIR is infinite dimensional; ev
finite-dimensional representation is nonunitary; and in addition there are infinite dimens
nonunitary representations.

We will for the most part and for definiteness consider the case of a compact simple Lie
G. A natural irreducible representation of the entire algebraic structure we are interested
given, as we have seen, by the regular representation. The main features and auxiliary op
associated with it, and some notations, are given in Appendix A.

In passing we mention the fact that while for compactG every UIR is seen in the regula
representation, in the noncompact case there are UIR’s~the exceptional series! not contained in the
regular representation.

One last general comment is important before proceeding. As we have seen in gene
momenta of our problem are noncommuting operators. This is a genuine new feature ab
Cartesian quantum mechanics, and it has significant consequences. We have seen hints o
the angle-angular momentum case in Sec. III, even though there was only one momentM̂

involved. For generalG, the momentaĴr , Ĵ̃r cannot all be simultaneously diagonal and th
spectra undergo quantization. Therefore the space of arguments of the Wigner distribution
be carefully chosen; it is definitely not a function on the classical phase spaceT* G in general. By
the same token, there are in general no analogues to the groups Sp(2n,R),Mp(2n) which are so
important in the Cartesian case.

VI. THE WIGNER DISTRIBUTION IN THE REGULAR REPRESENTATION

Let uc&PH5L2(G) be a normalized state vector. The corresponding ‘‘position space’’ p
ability density is a probability distribution on the groupG given by @cf. Eq. ~A5!#,

uc~g!u25u^guc&u2. ~6.1!

The complementary ‘‘momentum space’’ probability distribution is~assumingG to be compact! a
discrete set of probabilities indexed by the quantum numbersJMN and given by@cf. Eq. ~A14!#

ucJMNu25u^JMNuc&u2. ~6.2!

The common normalization states that

ici25E
G

dguc~g!u25 (
JMN

ucJMNu251. ~6.3!

At first glance we might suppose that, givenuc&, the corresponding Wigner distributionW(¯)
should be a real function withg and JMN ~coordinates and quantized momenta! as arguments,
bilinear inc ~more precisely involving onec factor and onec* factor!, such that integration ove
g yields ucJMNu2 while summation overJMN yields uc(g)u2. This would be a natural way in
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which the marginals~6.1! and ~6.2! are reproduced. However, we should also require covaria
under both~left and right! actions byG on c: the choice of the arguments inW(¯) should allow
for a natural linear transformation law under each of the changesc(g)→c(g1

21g) and c(g)
→c(gg2) in c. Now the momentum space amplitudescJMN of c transform linearly as follows
@cf. Eq. ~A14!#:

uc8&5V~g1!uc&, c8~g!5c~g1
21g!,

cJMN8 5(
M8

D MM8
J

~g1!* cJM8N ,

~6.4!

uc9&5Ṽ~g2!uc&, c9~g!5c~gg2!,

cJMN9 5(
N8

D N8N
J

~g2
21!* cJMN8 .

Thus in each case there is a linear mixing of the componentscJMN for fixed J at thec level.
Remembering thatW(¯) should involve the bilinear expressionscc* , a little reflection shows
that it would be too narrow to imagine that the Wigner distribution should be some real fun
W(g;JMN): there would be too few momentum space arguments to support the changes~6.4! in
c in a reasonable manner.

There is another way in which this situation could be described. As we have already p
out in Sec. V, an essential new feature is that now the analogue of the single momentum e
upI & in Cartesian quantum mechanics is a multidimensional object, an entire UIR ofG; actually in

the regular representation even more since bothĴ’s and Ĵ̃’s have to be represented. In this sen
with a general Lie groupG different fromR n, there is a genuine asymmetry between positio
and momenta. While the analogue of position eigenstate remains one dimensional,uqI & being

replaced byug&, the momentum operators constitute the noncommutative algebra ofĴ’s and Ĵ̃’s,
leading to the quantum numbersJMN where onlyJ remains fixed.~Incidentally the first part of
this statement is not in conflict with the fact thatG itself may be non-Abelian. In local coordinate
qr for G, the ideal ketug& may be written asuqI &, and all theq’s are simultaneously diagonal.! Out
of all the momentum operators, a complete commuting set consists of the~shared! Casimir op-

erators formed out of theĴ’s, and separately out of theĴ̃’s, accounting forJ in the setJMN; a
maximal commuting subset of theĴ’s, supplying some of the labels inM ; a similar maximal

commuting subset of theĴ̃’s supplying the analogous labels inN; and further nonlinear mutually

commuting expressions inĴ’s ~respectively,Ĵ̃’s) to account for the remaining labels inM ~re-
spectively,N). The main point is that in the process of obtaining the marginal distribution~6.2!
upon integrating the Wigner distribution with respect to its argumentg, we should expect at firs
to get something like a density matrix within theJth subspace of momentum labels, and then up
going to the diagonal elements recover the probabilitiesucJMNu2. The transformation laws~6.4!
can already be written in a matrix form~at the level ofc, not of the density matrix! thus,

c (J)5~cJMN!:uc&→V~g1!Ṽ~g2!uc&⇒c (J)→D J~g1!* c (J)D J~g2
21!* . ~6.5!

Since the individual probabilitiesucJMNu2 do not transform linearly among themselves under s
G actions, but do bring in off-diagonal quantities, the structure of the Wigner distribution
inevitably reflect this fact.

Based on these considerations we now list the basic desired properties for the Wigner
bution W(¯) associated with a given normalizeduc&PH ~for simplicity the dependence of th
former on the latter is left implicit! initially as
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c~g!PH→W~g;JMN M8N8!,
~6.6a!

W~g;JMN M8N8!* 5W~g;JM8N8 MN!,

E
G

dg W~g;JMN MN!5ucJMNu2,

~6.6b!

(
JMN

W~g;JMN MN!5uc~g!u2,

c8~g!5c~g1
21g!→W8~g;JMN M8N8!

5 (
M1M18

D MM1

J ~g1!DM8M
18

J
~g1!* W~g1

21g;JM1N M18N8!, ~6.6c!

c9~g!5c~gg2!→W9~g;JMN M8N8!

5 (
N1N18

W~gg2 ;JMN1M 8N18!D N1N
J ~g2

21!D N
18N8

J
~g2

21!* . ~6.6d!

One can see that the covariance conditions~6.6c! and~6.6d! are compatible with the transforma
tion laws ~6.4! for cJMN and the requirement~6.6b! for reproduction of the marginals. Actuall
one has little option but to extend the requirement in the first of Eq.~6.6b! to read

E
G

dg W~g;JMN M8N8!5cJMN* cJM8N8 . ~6.7!

Upon then settingM 85M ,N85N here one recovers the true probabilitiesucJMNu2. To all of the
above we add a natural condition thatW be of the general structurecc* .

We now propose the following form for the Wigner distribution:

W~g;JMNM8N8!5NJE
G

dg8E
G

dg9 d~g21s~g8,g9!!D MN
J ~g8!c~g8!* D M8N8

J
~g9!* c~g9!.

~6.8!

This involves a group elements(g8,g9)PG depending on two arguments also drawn fromG,
which must have suitable covariance and other properties. The set of conditions~6.6a!–~6.6d!, and
~6.7! now translates into a set of requirements on this functions:G3G→G which are

g8,g9PG→s~g8,g9!PG,

s~g8,g9!5s~g9,g8!,
~6.9!

s~g8,g8!5g8,

s~g1g8g2
21 ,g1g9g2

21!5g1s~g8,g9!g2
21 .

Any choice of a function s(g8,g9) obeying these conditions leads to an acceptable definition
Wigner distribution for quantum mechanics on a (compact) Lie group G.

The second and third lines of Eq.~6.9! suggest that we views(g8,g9) as a kind of symmetric
square root of the product of two~generally noncommuting! group elementsg8,g9PG. The
covariance conditions in the last line help us simplify the problem to the choice of a su
function s0(g8) of a single argument drawn fromG, obeying conditions that ensure~6.9!,
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s~e,g!5s0~g!,

s~g8,g9!5g8s0~g821g9!,

s0~e!5e, ~6.10!

s0~g21!5g21s0~g!,

s0~g8gg821!5g8s0~g!g821.

It is a consequence of these conditions ons0(g) that

s0~g!g5gs0~g!. ~6.11!

We now present a solution to the above problem in the case of a compact simple Lie groG.
Any such group carries a unique Riemannian metric defined in terms of the structure con
and possessing left and right translation invariances. We shall content ourselves with a
coordinate description and use the notations of Eqs.~4.12!–~4.17!. Admitting the over use of the
letter g, at the identity the metric tensor has components

grs~0!52 f ru
v f sv

u, ~6.12!

the negative sign ensuring that the matrix (grs(0)) is positive definite. This tensor is checked to b
invariant under the action by the adjoint representation

D r
u~g!D s

v~g!guv~0!5grs~0!. ~6.13!

At a general pointg(q)PG we obtaingrs(q) by shifting grs(0) as a tensor tog(q) using either
left or right translation; on account of~6.13! the two results are the same and we find

grs~q!5ju
r~q!jv

s~q!guv~0!5 j̃u
r~q!j̃v

s~q!guv~0!. ~6.14!

Geodesics inG are curves of minimum length with respect to the above Riemannian me
As is well known, both left and right translations,Lg andRg , applied pointwise map geodesic
onto geodesics. Thus ifg(q(s))PG is a solution to the variational problem

dE
s1

s2
dsS grs~q~s!!

dqr~s!

ds

dqs~s!

ds D 1/2

50, ~6.15!

where we assume an affine parametrization is chosen so that

grs~q~s!!
dqr~s!

ds

dqs~s!

ds
5const, ~6.16!

then bothLg1
g(q(s)) andRg2

g(q(s)) are solutions to the same variational problem.
We now use geodesics inG to construct the functions0(g). It is a fact that for almost allg

PG ~i.e., except for a set of measure zero!, there is a unique geodesic@minimizing the functional
appearing in Eq.~6.15!# running from the identitye to g. We assume the affine parametrization
normalized so that the geodesic passes throughe at s50 and throughg at s51,

gPG:g~q~0!!5e, g~q~1!!5g. ~6.17!

We then takes0(g) to be the half-way point reached ats51/2,

s0~g!5g~q~1/2!!. ~6.18!
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It is a matter of easy verification that all the conditions~6.10! are indeed obeyed: one has
exploit the natural covariance and other properties of general geodesics. With this we have
the problem of defining Wigner distributions for quantum mechanics on a~compact! Lie group,
possessing all the properties listed in Eqs.~6.6a!–~6.6d!, and~6.7!. The fact thats0(g) is defined
everywhere except possibly on a set of vanishing measure causes no problems in carry
integrations overG, or in recovering the marginals.

It may be pointed out that for a general pair of elementsg8,g9PG ~except in cases amountin
to a set of vanishing measure! there is a unique geodesic running fromg8 to g9, normalized so that
the affine parameter has valuess50 ands51 at start and at finish. This geodesic is the result
applyingLg8 to the geodesic frome to g821g9, or equally well of applyingRg821 to the one from
e to g9g821. In either view,s(g8,g9) is the midpoint of this geodesic, reached ats51/2. More-
over, geodesics passing through the identitye are one-parameter subgroups inG. If we define
s0(g) in Eq. ~6.18! to be the square root of the elementg, we can write the general quantit
s(g8,g9) in these suggestive ways,

s~g8,g9!5g8~g821g9!1/25g9~g921g8!1/25~g9g821!1/2g85~g8g921!1/2g9. ~6.19!

The definition~6.8! of the Wigner distribution associated with a pure statec(g) generalizes to
a mixed state with density operatorr̂,

W~g;JMN M8N8!5NJE
G

dg8E
G

dg9 d~g21s~g8,g9!!^g9ur̂ug8&D MN
J ~g8! D M8N8

J
~g9!* ,

E dg W~g;JMN M8N8!5^JM8N8ur̂uJMN&, ~6.20!

(
JMN

W~g;JMN MN!5^gur̂ug&.

We now verify thatW(g;JMN M8N8) is a faithful representation ofr̂ in the sense that it
contains complete information concerningr̂. This will be shown by developing analogues to t
previous Eqs.~2.13! and ~3.6!; in fact we will find two separate analogues.

The Wigner distribution in Eq.~6.20! transforms according to Eqs.~6.6c! and ~6.6d! under
independent left and right translations. By settingN5N8 and then summing overN, we obtain,
using ~A9!, a slightly simpler function,W̃ say, corresponding to the density operatorr̂,

W̃~g;JMM8!5(
N

W~g;JMN M8N!

5NJE
G

dg8E
G

dg9 d~g21s~g8,g9!!^g9ur̂ug8&D MM8
J

~g8g921! . ~6.21!

This auxiliary function is invariant under right translations except for a change of argumeg
→gg2 , while under left translations it transforms in a manner similar to Eq.~6.6d!. Now consider
two density operatorsr̂1 andr̂2 , with associated functionsW̃1 andW̃2 . It can then be shown tha
we can obtain Tr(r̂1r̂2) from W̃1 andW̃2 by summing over all the arguments,

(
JMM8

NJ
21E dg W̃1~g;JMM8!W̃2~g;JM8M !5Tr~ r̂1r̂2!. ~6.22!

The proof is presented in Appendix B. Since any density operatorr̂1 is fully determined by the
traces of its products with all other density operatorsr̂2 , we can see that even the simpler functi
W̃(g;JMM8) fully characterizesr̂.
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Obviously another analogue to Eqs.~2.13! and ~3.6! can be obtained by interchanging th
roles of left and right translations in the above. If in place of~6.21! we define

W5 ~g;JNN8!5(
M

W~g;JMN MN8!

5NJE
G

dg8E
G

dg9 d~g21s~g8,g9!!^g9ur̂ug8&D N8N
J

~g921g8!, ~6.23!

then for two density operatorsr̂1 , r̂2 we have

(
JNN8

NJ
21E dg W5 1~g;JNN8!W5 2~g;JN8N!5Tr~ r̂1r̂2!. ~6.24!

The conclusion we can draw, in interesting contrast to the Cartesian and Abelian cases,
In order to be able to recover the marginal probability distributions^gur̂ug&, ^JMNur̂uJMN& in
natural ways and also to have simple transformation behaviors under both left and right tr
tions onG, we need to define the Wigner distribution as in Eqs.~6.8! and~6.20! with independent
argumentsg J M N M8 N8. However, this object captures information contained inr̂ in an over
complete manner, sincer̂ is in fact completely determined in principle already byW̃(g;JMM8)
@or W5 (g;JNN8)]. All this is traceable to the fact that for non-AbelianG, the UIR’s are in genera
multidimensional, so the concept of momentum eigenstate is also a multidimensional set o
tors.

VII. RECOVERY OF THE CARTESIAN AND ANGLE-ANGULAR MOMENTUM CASES,
AND THE SU„2… CASE

We now indicate briefly how the known earlier results of Secs. II and III can be immedi
recovered from the definitions of the preceding section. The expression~6.8! for the Wigner
distributionW(g; JMNM8N8) uses the functions(g8,g9) depending symmetrically on the grou
elementsg8,g9, and is itself a group element obeying the conditions in~6.9!. For the case of a
compact simple Lie groupG with nontrivial Cartan–Killing metric and associated geodesics,
have found a solution fors(g8,g9) in terms of the mid point rule. If howeverG is Abelian we can
directly give an elementary solution fors(g8,g9) not using the geodesic construction at all.

For Cartesian quantum mechanics we haveG5R n, which is Abelian. Consequently eac
UIR of G is one-dimensional and corresponds to a definite numerical momentum vector

qI PG→eiqI •pI /\,pI PR n. ~7.1!

We can regard the continuous vectorpI PR n ~actually dual toG, the space of characters! as
the analogue of the labelJ of the preceding section, and as each UIR is one dimensional the
no need and no room for the labelsM N M8 N8. If we present the usual definition~2.11! in the
form

W~qI ,pI !5~2p\!2nE
R n

dnq8E
R n

dnq9 d (n)~qI 2sI~qI 8,qI 9!!^qI 9ur̂uqI 8&

3exp~ iqI 8•pI /\!exp~2 iqI 9•pI /\!,

~7.2!
sI~qI 8,qI 9!5 1

2 ~qI 81qI 9!,

we see that all the conditions~6.9! are indeed obeyed and this familiar case is seen to be a sp
case of our general construction.
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The key point is that our construction of the Wigner distribution only depends on finding
group elements(g8,g9). We may use the geodesic construction if it is available, but can use
other method if a metric onG and geodesics are not available.

Turning to the compact caseG5SO(2), this is again Abelian, so each UIR is one dime
sional,

uPG→eimu, m50,61,62,... . ~7.3!

We can now write the Wigner distribution~3.6! as

W~u,m!5
1

2p E
2p

p

du8E
2p

p

du9 d~u2s~u8,u9!!^u9ur̂uu8&exp~ imu8!exp~2 imu9! ,

s~u8,u9!5 1
2 ~u81u9! mod 2p, ~7.4!

and again see that it falls into our general pattern.
Finally we present briefly the structure and some significant features of Wigner functio

the caseG5SU(2), in asense the simplest yet archetypal compact non-Abelian Lie group.
the method of geodesics is essential for the construction. We recall very rapidly the basic
tions and notations concerning SU~2!, emphasizing the four-dimensional geometric aspects av
able in this case

The defining representation of SU~2! is via 232 unitary unimodular matrices, which lead
immediately to the identification of the group manifold withS3, the real unit sphere in four
dimensional Euclidean spaceR 4. We shall exploit this way of picturing SU~2!. We denote group
elements in the abstract bya,b,a8,b8,... , these symbols also standing for points onS3:

a5~am!PS3, m50,1,2,3,
~7.5!

amam5a0
21aI •aI 51.

The spatial part (a1 ,a2 ,a3) of (am) is denoted byaI . Inverses and products of group elements
denoted bya21,ab, respectively.~The group elementab is to be carefully distinguished from th
four vector inner producta•b which is a real number.! Then in the defining representation th
matrix corresponding toaPSU(2) is

u~a!5a0•I 2 i aI •sI 5S l m

2m* l* D ,

~7.6!
l5a02 ia3 , m52~a21 ia1!.

HeresI 5(s1 ,s2 ,s3) are the Pauli matrices. The inverse arises by reversing the sign ofaI ,

u~a!215u~a21!5u~a0 ,2aI !5a0•I 1 iaI •sI . ~7.7!

The group multiplication law is subsumed in the description of left and right translations, ea
which is realized by elements of SO~4!:

u~a!u~b!5u~ab!5u~L~a!b!,

L~a!5S a0 2a1 2a2 2a3

a1 a0 2a3 a2

a2 a3 a0 2a1

a3 2a2 a1 a0

D PSO~4!, ~7.8a!
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u~b!u~a21!5u~ba21!5u~R~a!b!,
~7.8b!

R~a!5S a0 a1 a2 a3

2a1 a0 2a3 a2

2a2 a3 a0 2a1

2a3 2a2 a1 a0

D PSO~4!;

L~a!L~b!5L~ab!, R~a!R~b!5R~ab!,
~7.8c!

L~a!R~b!5R~b!L~a!.

Each of these mutually commuting sets$L(a)%,$R(a)% faithfully represents SU~2! via SO~4!
matrices. The only common elements correspond toa5(61,0I ) leading to the two matricesZ2

5$6I % within SO~4!. This leads to the familiar statement

SO~4!5SU~2!3SU~2!/Z2 . ~7.9!

We mention these details since the general covariance requirements in Eqs.~6.6c! and ~6.6d!
require them.

The relation to the Euler angles parametrization is given by

u~a!5e2 ~ i /2! as3e2 ~ i /2! bs2e2 ~ i /2! gs3,

a02 ia35cosb/2 e2 i (a1g)/2,
~7.10!

a21 ia15sinb/2 ei (g2a)/2,

0<a<2p, 0<b<p, 0<g<4p.

We can regarda, b, g as angular coordinates overS3, though because of the occurrence of h
angles they are not quite the natural generalization of spherical polar angles fromS2 to S3. The
invariant line element (ds)2 on S3, the invariant normalized volume element da on SU~2!, and the
element of solid angle dV(a) on S3 can all be easily worked out,

~ds!25dam dam5ud~a02 ia3!u21ud~a21 ia1!u2

5 1
4 ~~da!21~db!21~dg!212 cosb da dg!, ~7.11a!

da5
1

2p2 dV~a!5
1

16p2 da sinb db dg. ~7.11b!

It is clear that the above line element onS3 is the one induced from the Euclidean line eleme
in R 4, hence the corresponding geodesics are great circle arcs. Such arcs are carried i
another by both left and right SU~2! translations—the SO~4! invariance of (ds)2 along with Eq.
~7.9! make this obvious. Therefore, ifa,b are any two points ofS3 @any two elements of SU~2!#
which are not diagonally opposite one another@u(a)Þ2u(b)#, the~shorter! geodesic connecting
them is the affinely parametrized curve

a~u!5a cosu1~b2a a•b!sinu/A12~a•b!2,
~7.12!

0<u<u05cos21~a•b!P@0,p!.

Along this geodesic we have (ds)25(du)2, and the midpoint is given by
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aS u0

2 D5~a1b!/A2~11a•b! ~7.13!

which is geometrically obvious.
The Dirac delta function accompanying the volume element da on SU~2! may be written as

d(a,b) involving two group elements, or in a more compact form asd(a21b). Its properties are
summarized by

E
SU(2)

db d~a,b! f ~b![E
S3

dV~b!

2p2 d~a,b! f ~b!5 f ~a!,

i.e.,

E
S3

dV~b! d~a,b! f ~b!52p2f ~a! ~7.14!

for suitable test functionsf (b). We can equally well regardd(a,b) as a delta function on SU~2!
or on S3. In terms of Euler angles we have

a→~a,b,g!, b→~a8,b8,g8!,
~7.15!

d~a,b!516p2d~a82a!d~b82b!d~g82g!/sinb.

The last item in this resume concerns the matricesDmm8
j (a) representing SU~2! elements in

the various UIR’s. The ranges of the UIR labelj and magnetic quantum numbersm,m8 are, as
usual,j 50,1/2,1,3/2,..., m,m85 j , j 21,...,2 j . Then with canonical basis vectorsu jm& in the j th
UIR and Hermitian generatorsJ1 ,J2 ,J3 we have from the quantum theory of angul
momentum,23

Dmm8
j

~a!5^ jmue2 iaJ3e2 ibJ2e2 igJ3u jm8&5e2 ima2 im8gdmm8
j

~b!,

dmm8
j

~b!5^ jmue2 ibJ2u jm8&

5A~ j 1m8!! ~ j 2m8!!

~ j 1m!! ~ j 2m!! S sin
b

2 D m82mS cos
b

2 D m81m

Pj 2m8
(m82m,m81m)

~cosb!, ~7.16!

where theP’s are the Jacobi polynomials. The orthogonality and completeness properties of
D-functions are

E
SU(2)

da Dmm8
j

~a!* Dm9m-
j 8 ~a!5~2 j 11!21 d j j 8dmm9dm8m- ,

~7.17!

(
j 50,1/2,1,...

(
m,m852 j

j

~2 j 11!Dmm8
j

~a! Dmm8
j

~b!* 5d~a,b!5d~a21b!.

With these details in place we can proceed to the definition of the Wigner distribution.
Hilbert space of Schro¨dinger wave functions is

H5L2~SU~2!!5H c~a!PCUaPSU~2!,ici25E
SU(2)

da uc~a!u2,`J . ~7.18!

GivencPH, the corresponding Wigner distribution is obtained by specializing Eqs.~6.8!, ~6.10!,
and ~6.18! to this case and using Eq.~7.13! above,
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W~a; jmn m8n8!5
~2 j 11!

4p4 E
S3

dV~a8!E
S3

dV~a9! dS a,
a81a9

A2~11a8•a9!
D

3Dmn
j ~a8!c~a8!* Dm8n8

j
~a9!* c~a9!. ~7.19!

The occurrence of the midpoint of the geodesic froma8 to a9 within the delta function is to be
noted. We see immediately that the marginals are properly reproduced,

E da W~a; jmn m8n8!5c jm8n8c jmn* ,

c jmn5
A2 j 11

2p2 E dV~a! Dmn
j ~a!* c~a!, ~7.20a!

(
jmn

W~a; jmn mn!5uc~a!u2. ~7.20b!

Since the integrations involved in Eq.~7.19! are nontrivial, we limit ourselves to pointing ou
some qualitative features of the SU~2! Wigner distribution~7.19! which distinguish it from the
Cartesian case as well as from earlier treatments of this problem.

~a! The appearance of all the argumentsa jmn m8n8 in the Wigner distribution is essentia
to be able to satisfy the covariance laws~6.6c! and~6.6d! under independent left and right SU~2!
translations, and to reproduce the configuration space and momentum space marginal pro
distributions as in Eq.~7.20!. In this respect the situation is markedly different from earl
approaches to the SU~2! Wigner distribution problem,4 where attention was limited to states with
some fixed~finite dimensional! UIR of SU~2! and the density matrix was expanded in the co
plete set of unit tensor operators within that UIR.

~b! If we consider as an idealized limit the case ofc(a) becoming a position eigenstate, th
Wigner distribution simplifies as follows:

c~a!→d~a,a(0)!,
~7.21!

W~a; jmn m8n8!5
~2 j 11!

4p4 d~a,a(0)! Dmn
j ~a(0)! Dm8n8

j
~a(0)!* .

This retains a dependence on the momentum variablesjmn m8n8. This is in contrast to the
~one-dimensional! Cartesian case where from Eq.~2.10! we find

c~q!→d~q2q0!, W~q,p!5
1

h
d~q2q0!, ~7.22!

showing nop dependence.
~c! Similarly if we considerc(a) to be a~normalized! linear combination ofDm0n0

j 0 (a) over

m0 n0 for some fixedj 0 , the Wigner distribution has a nontrivial dependence on all its ar
ments, andin particular is generally nonvanishing for jÞ j 0 . In the Cartesian case, in contrast, w
have, similar to Eq.~7.22!,

c~q!→ 1

h1/2eip0q, W~q,p!5
1

h
d~p2p0!, ~7.23!

concentrated atp5p0 and independent ofq.
All these features can be attributed to the non-Abelian nature of SU~2!.
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VIII. CONCLUDING REMARKS

We have discussed the problem of setting up Wigner distributions for the states of a qu
system whose configuration space is a general non-Abelian Lie groupG, and have given a
complete solution for the case thatG is compact. Many new features compared to the fami
Abelian case whereG5R n have appeared. For emphasis we repeat some of them here: whi
classical phase spaceT* G associated toG already brings in interesting structural aspects, in
quantum case the Wigner distribution is not a function defined on the classicalT* G. Instead it is
a function of a classical unquantized group elementgPG playing the role of coordinate variable
and quantized momenta consisting of labelsJ M NM8 N8 associated with all the UIR’s ofG. The
analogues of the familiar Heisenberg canonical commutation relations are now much more
cate, and the ideas of momentum eigenstates and momentum eigenvalues have to be un
with some care. While the distributionW(g; JMN M8N8) associated with a givenr̂ transforms
nicely under left and right group actions, and reproduces the marginal probability distribu
satisfactorily, it describesr̂ in an over complete manner.

The points of view of the present work suggest that we also consider quantum systems
covariance group is a given Lie groupG, even if G is not the configuration space. These ar
naturally if the configuration space is a coset spaceG/H, whereH is some Lie subgroup ofG. In
that case there is only one~say left! action ofG on G/H, rather than two independent mutual
commuting actions. Action byG remains significant, and we would like to set up Wigner dis
butions for wave functions belonging toL2(G/H). Such UR’s ofG are typically much smaller
than the regular representation.

Going beyond coset space representations, we have yet other physically interesting
typified for example by the Schwinger oscillator representation of SU~2!. Similar constructions are
easily made for SU~3!, etc.24 These are not representations on spacesL2(G/H) for any choice of
H; yet because of their use in various physical problems it is worthwhile to be able to s
Wigner distributions for them too.

We intend to examine some of these problems elsewhere.

APPENDIX A: THE REGULAR REPRESENTATION AND ASSOCIATED STRUCTURES

We assemble here some familiar facts concerning the regular representation of a comp
group, to settle notations and as preparation for setting up further operator structures. We
that the Lie groupG under consideration possesses a left and right translation and inve
invariant volume element, dg say, so that the integral of a~complex valued! function f (g) overG
has the properties

E
G

dg f~g!5E
G

dg ~ f ~g21! or f ~g8g! or f ~gg8!!, ~A1!

whereg8 is any fixed element inG. For the compact case we normalize dg so that

E
G

dg51. ~A2!

With such a measure the carrier space for the unitary regular representation ofG is the Hilbert
spaceH5L2(G) defined as in Eq.~4.32!,

H5H c~g!PCUici25E
G

dguc~g!u2,`J . ~A3!

A Dirac delta function can be defined with suitable invariance properties,
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E
G

dg f~g! d~g!5E
G

dg f~g! d~g21!5 f ~e!,

~A4!

E
G

dg f~g! d~gg821 or g21g8 or g821g or g8g21!5 f ~g8!.

We can introduce a convenient set of ideal basis vectors forH such that the wave functionc(g)
is the overlap ofuc& with one of these,

c~g!5^guc&,

^g8ug&5d~g8g21!,

E
G

dgug&^gu51 on H. ~A5!

The groupG can be unitarily represented onH in two mutually commuting ways, by left o
by right translations. We denote the corresponding operators byV(g),Ṽ(g) and define them by

V~g8!ug&5ug8g&,
~A6!

Ṽ~g8!ug&5ugg821&.

Both of them are unitary and obey the composition and commutation relations

V~g2!V~g1!5V~g2g1!,

Ṽ~g2!Ṽ~g1!5Ṽ~g2g1!, ~A7!

V~g1!Ṽ~g2!5Ṽ~g2!V~g1!.

On wave functions the effects are as given in Eq.~4.33!,

~V~g8!c!~g!5c~g821g!,
~A8!

~Ṽ~g8!c!~g!5c~gg8!.

These are infinite dimensional reducible UR’s ofG; and in the compact case, according to t
Peter–Weyl theorem, each of them contains every UIR ofG as often as its dimension. Motivate
by the notations in the case of SU~2!, we shall use symbolsJ,J8,J1 ,J2 ,... to label the various
UIR’s of G ~some of which may not be faithful!; so in fact J stands for several independe
discrete or quantized labels, as many as the rank ofG. Within the Jth UIR, in some chosen
orthonormal basis, we label rows and columns by indicesM ,N,M 8N8,... . Once again each o
these stands for a collection of discrete labels: for instance the eigenvalues of as many com
generators as the rank ofG, plus further eigenvalues of chosen commuting nonlinear polynom
in the generators. In theJth UIR, we writeD MN

J (g) for the unitary representation matrices. The
obey composition, orthogonality and completeness relations:

(
M8

D MM8
J

~g8!D M8N
J

~g!5D MN
J ~g8g!, ~A9!

E
G

dg D M8N8
J8 ~g!* D MN

J ~g!5dJ8JdM8MdN8N /NJ , ~A10!
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(
JMN

NJD MN
J ~g!D MN

J ~g8!* 5d~g21g8!. ~A11!

HereNJ is the dimension of theJth UIR. With the help of these matrices we can introduce anot
orthonormal basis forH which explicitly accomplishes the simultaneous reduction of both U
V(•),Ṽ(•) into irreducibles. These basis vectors and their main properties are

uJMN&5NJ
1/2E

G
dg D MN

J ~g!ug&,

^guJMN&5NJ
1/2D MN

J ~g!,
~A12!

^J8M 8N8uJMN&5dJ8JdM8MdN8N ,

(
JMN

uJMN&^JMNu51 on H.

Under action byV(•),Ṽ(•) they transform among themselves conservingJ,

V~g!uJMN&5(
M8

D MM8
J

~g21!uJM8N&,

~A13!

Ṽ~g!uJMN&5(
N8

D N8N
J

~g!uJMN8&.

Therefore inuJMN& the indexN counts the multiplicity of occurrence of theJth UIR in the
reduction ofV(•), and the indexM performs a similar function in the reduction ofṼ(•). A
generaluc& can be expanded in either basis and we have

uc&5E
G

dg c~g!ug&5 (
JMN

cJMNuJMN&,

cJMN5^JMNuc&5NJ
1/2E

G
dg D MN

J ~g!* c~g!,

ici25E
G

dg uc~g!u25 (
JMN

ucJMNu2. ~A14!

Towards getting projections onto individual vectorsuJMN& we set up the Fourier componen
of V(•) and Ṽ(•) as follows:

PJMN5NJE
G

dg D MN
J ~g!V~g!,

P̃JMN5NJE
G

dg D MN
J ~g21!Ṽ~g!. ~A15!

With respect to Hermitian conjugation the indices get interchanged,

PJMN
† 5PJNM , P̃JMN

† 5 P̃JNM , ~A16!

and their composition and multiplication laws are
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PJ8M8N8PJMN5dJ8JdN8MPJM8N ,

P̃J8M8N8P̃JMN5dJ8JdM8NP̃JMN8 , ~A17!

PJMNP̃J8M8N85 P̃J8M8N8PJMN .

Their actions on the two complementary bases forH are immediate,

PJ8M8N8uJMN&5dJ8JdN8MuJM8N&,

P̃J8M8N8uJMN&5dJ8JdM8NuJMN8&,
~A18!

PJMNug&5NJ
1/2(

N8
D N8N

J
~g21!uJMN8&,

P̃JMNug&5NJ
1/2(

M8
D MM8

J
~g21!uJM8N&.

Therefore the projections ontouJMN& are

uJMN&^JMNu5PJMMP̃JNN , ~A19!

and we have the completeness identities

(
M

PJMM5(
M

P̃JMM ,

~A20!

(
JM

PJMM5(
JM

P̃JMM51 on H.

Now we proceed to a construction of certain operators directly relevant to the Wigner d
bution problem. Here we will be guided by analogy to what is done for the~one degree of
freedom! q̂– p̂ pair and theû –M̂ pair, as recounted in Secs. II and III. In these cases we know
the unitary Weyl exponentialsU(s)5exp(isq̂), V(t)5exp(2itp̂) and U(n)5exp(inû), V(t)
5exp(2itM̂) play important roles. It is seen that it is natural here to regards(n) as a typical
eigenvalue ofp̂(M̂ ) andt @in R or in (2p,p)] as a typical eigenvalue ofq̂( û). Now the operator
V(t) has been generalized in the Lie group situation to thetwo families V(g),Ṽ(g). These are
indeed exponentials of the ‘‘momentum operators:’’ if the group elementg is expressed as th
exponential of an element inGI , then V(g) and Ṽ(g) are corresponding exponentials in the
generators~4.34! obeying~4.29!:

g5exp~t r er !:V~g!5exp~2 i t r Ĵr !,

Ṽ~g!5exp~2 i t r Ĵ̃r !. ~A21!

With t r as coordinates forg, these are precisely exponentials in momenta. To genera
U(s),U(n) we recall on the other hand that now a typical ‘‘momentum eigenvalue’’ is
collection of quantum numbersJMN associated with a subspace ofH supporting a UIR of the

Ĵr , Ĵ̃r . This suggests that the generalization ofU(s),U(n) must be an operator diagonal in th
‘‘coordinate’’ or ug& basis, and labeled byJMN: it must be a function of the coordinates alon
Based on this reasoning, we define operatorsUJMN by
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UJMNug&5D MN
J ~g!ug&,

~A22!
^guUJMN5D MN

J ~g!^gu.

Their adjoints are also diagonal in this basis,

UJMN
† ug&5D MN

J ~g!* ug&,
~A23!

^guUJMN
† 5D MN

J ~g!* ^gu,

and unitarity is expressed in a matrix sense,

(
M

UJMN
† UJMN85(

M
UJNM

† UJN8M5dN8N•1 on H. ~A24!

Being simultaneously diagonal, the commutators vanish,

@UJMN ,UJ8M8N8#5@UJMN ,UJ8M8N8
†

#50. ~A25!

Completeness of theD-functionsD MN
J (g) as expressed in Eq.~A11! now means that the operato

$UJMN% form a ~linear! basis for the commutative algebraÂ. In fact the map~4.27! from the
classical algebraA to the quantizedÂ can be made explicit,

f PA: f ~g!5 (
JMN

f JMND MN
J ~g!→

f̂ 5 (
JMN

f JMNUJMNPÂ. ~A26!

The relations connecting$UJMN% to V(•),Ṽ(•) are easily worked out,

V~g!UJMNV~g!215(
M8

D MM8
J

~g21!UJM8N ,

Ṽ~g!UJMNṼ~g!215(
N8

D N8N
J

~g!UJMN8 . ~A27!

What remains are expressions for the product of twoU ’s, and the action of aU on uJMN&. For
both these, the Clebsch–Gordan coefficients forG have to be brought in.

Let the reduction of the direct product of theJth andJ8th UIR’s of G contain various UIR’s
J9 with various multiplicities. This means that we have a family of Clebsch–Gordan coeffic
carrying three sets ofJ–M labels and in addition a multiplicity indexl, say; and they obey two
sets of unitarity conditions,

(
M ,M8

CMM8M9
JJ8J9l* CMM8M-

JJ8J-l8 5dJ9J-dll8dM9M- ,

(
J9lM9

CMM8M9
JJ8J9l* CNN8M9

JJ8J9l
5dMNdM8N8 . ~A28!

Using these coefficients the product of twoD-functions decomposes into a sum
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D MN
J ~g!D M8N8

J8 ~g!5 (
J9lM9N9

CMM8M9
JJ8J9l* CNN8N9

JJ8J9lD M9N9
J9 ~g!. ~A29!

In all these relations the multiplicity indexl accompanying the ‘‘final’’ UIRJ9 runs over as many
values as the number of timesJ9 occurs in the product ofJ andJ8; and at each stage we hav
manifest unitary invariance under changes in the choice ofl’s. Combining Eq.~A29! in turn with
Eqs. ~A12! and ~A22! we immediately get the results for the products of twoUJMN’s and the
action of aUJMN on a stateuJ8M 8N8&,

UJMNUJ8M8N85 (
J9lM9N9

CMM8M9
JJ8J9l* CNN8N9

JJ8J9lUJ9M9N9 ,

UJMNuJ8M 8N8&5 (
J9lM9N9

ANJ8
NJ9

CMM8M9
JJ8J9l* CNN8N9

JJ8J9luJ9M 9N9&. ~A30!

The unitary invariance with respect tol is manifest.
Thus we have expressions~A6! and ~A22! for the actions ofU,...,V(•),Ṽ(•) on ug&, and

expressions~A30! and ~A13! for their actions onuJMN&.
Last we consider the question of setting up in a natural way a complete trace orthonorm

of operators onH5L2(G), involving theU ’s, V’s, andṼ’s in a ‘‘symmetrical’’ manner. In the
Cartesian case the phase space displacement operators

ei (sq̂2t p̂)5eisq̂e2 i t p̂e2 ist/25e2 i t p̂eisq̂eist/2 ~A31!

give us such a system, and they are basic to the Weyl correspondence. Already in theû –M̂ case
we know from Eqs.~3.5a! and ~3.5b! that we have to work with the operators

ein ûe2 i tM̂e2 int/25e2 i tM̂ein ûeint/2, ~A32!

which are again complete and trace orthonormal, but we can no longer write these as
exponentials. In the case of generalG, this latter trend continues. Generalizing from the kno
examples, we now define a family of operators labeled bygPG together withJMN, as follows:

D̂~g;JMN!5V~g!UJMN5(
M8

D MM8
J

~g21!UJM8NV~g!. ~A33!

It is easy to show trace orthogonality, using Eqs.~A6! and ~A22!,

Tr~D̂~g8;J8M 8N8!†D̂~g;JMN!!5E
G

dg9^g9uUJ8M8N8
† V~g8!21V~g!UJMNug9&

5E
G

dg9 D M8N8
J8 ~g9!* D MN

J ~g9!^g9uV~g821g!ug9&

5d~g821g!dJ8JdM8MdN8N /NJ . ~A34!

As for completeness we begin with

D̂~g;JMN!ug8&5D MN
J ~g8!ugg8&, ~A35!

multiply both sides byNJD MN
J (g9)* , sum onJMN and use Eq.~A11! to get
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(
JMN

NJD MN
J ~g9!* D̂~g;JMN!ug8&5d~g921g8!ugg8&5ugg9&^g9ug8&. ~A36!

Peeling offug8& and then replacinggg9 by g8 we get

ug8&^g9u5 (
JMN

NJD MN
J ~g9!* D̂~g8g921;JMN!. ~A37!

This shows, albeit in a somewhat formal manner, that any operator onH can be linearly expanded
in the setD̂(g;JMN). If in Eq. ~A33! we useṼ(•) in place ofV(•) we get the alternative results

D̂̃~g;JMN!5Ṽ~g!UJMN5(
N8

D N8N
J

~g!UJMN8Ṽ~g!, ~A38!

Tr~ D̂̃~g8;J8M 8N8!†D̂̃~g;JMN!!5d~g821g! dJ8JdM8MdN8N /NJ , ~A39!

ug8&^g9u5 (
JMN

NJD MN
J ~g9!* D̂̃~g9g821;JMN!. ~A40!

One can ask whether similar completeness statements can be developed for outer pro
vectors of the formuJMN&^J8M 8N8u. This is indeed possible, but the expressions are somew
unwieldy and involve the Clebsch–Gordan coefficients explicity, so we omit them.

The results~A38!–~A40! prove that the representation ofÂ,V(•) andṼ(•) on H5L2(G) is
irreducible, since any operator onH is expressible as a linear combination of the operat

D̂(g;JMN) @or D̂̃(g;JMN)].

APPENDIX B

Here we briefly outline the proofs for Eqs.~6.22! and ~6.24! and also derive some usefu
relations similar in form to those known in the Cartesian and angle-angular momentum ca

To prove~6.22!, consider its left-hand side~LHS!:

(
JMM8

NJ
21E dgW̃1~g;JMM8!W̃2~g;JM8M !. ~B1!

On substituting forW̃ using~6.21! and carrying out the summation overJMM8 using~A11!, this
expression becomes

E dgE dg18E dg19E dg28E dg29^g19ur̂1ug18&

3^g29ur̂2ug28&d~g21s~g18 ,g19!! d~g21s~g28 ,g29!! d~g19g18
21g29g28

21!. ~B2!

Using the fact thatd(gg8)5d(g8g), the third delta function in the integrand can be written
d(g18

21g29g28
21g19) or asd((g29

21g18)
21g28

21g19) which in turn implies that the integral vanishe
unlessg195g28•h;g185g29•h, hPG. This, together with the other two delta functions implies th
h5e. The three delta functions above are therefore equivalent
d(g21s(g18 ,g19)) d(g18

21g29) d(g19
21g28). On carrying out the integrals in~B2! with the help of

these delta functions one obtains the right-hand side~RHS! of ~6.22!.
A similar line of argument can be used to establish the relation~6.24!. Next we show that, in

analogy with the Cartesian and angle-angular momentum cases, the Wigner distribution in~6.20!
corresponding to a density operatorr̂ can be written in the following compact form:
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W~g;JMN M8N8!5Tr@ r̂Ŵ~g;JMNM8N8!#, ~B3!

where the Wigner operatorŴ(g;JMNM8N8) can be expressed in terms of operators related
D̂(g;JMN) as follows:

Ŵ~g;JMNM8N8!5NJD̂1~g;JMN! D D̂1
†~g;JM8N8!. ~B4!

Here

D̂1~g;JMN!5UJMNV~g! ~B5!

5(
M8

D MM8
J

~g!D̂~g;JM8N!, ~B6!

D5E dg (
JMN

NJD MN
J ~e!* D̂0~g;JMN!, ~B7!

D̂0~g;JMN!5(
M8

D MM8
J

~s0~g!!D̂~g;JM8N! ~B8!

5(
M8

D MM8
J

~s0~g21!!D̂1~g;JM8N!. ~B9!

Note that the operatorD̂0(g;JMN) introduced here can be regarded as the analogue ofeipq̂2 iqp̂

[e2 iqp̂eipq̂eipq/2 or of e2 i tM̂ein ûeint/2 in the angle-angular momentum case.
To show~B3!, we note that the RHS of~B3! can be written as

Tr@ r̂Ŵ~g;JMNM8N8!#5E dg1E dg2^g2ur̂ug1&^g1uŴ~g;JMNM8N8!ug2&. ~B10!

Now

^g1uŴ~g;JMNM8N8!ug2&5NJE dg3E dg4^g1uD̂1~g;JMN!ug3&^g3uDug4&

3^g4uD̂1~g;JMN!ug2&, ~B11!

and from the definitions~B5!–~B9! of the operators that occur here it can easily be shown th

^g1uD̂1~g;JMN!ug2&5D MN
J ~g1!d~g1~gg2!21!, ~B12!

^g1uD̂0~g;JMN!ug2&5D MN
J ~s~g1 ,g2!!d~g1~gg2!21!, ~B13!

^g1uDug2&5E dg (
JMN

NJD MN
J ~e!* ^g1uD̂0~g;JMN!ug2&

5E dg (
JMN

NJD MN
J ~e!* D MN

J ~s~g1 ,g2!!d~g1~gg2!21!

5d~s~g1 ,g2!!. ~B14!

Using these in~B11! one obtains
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^g1uŴ~g;JMN,M 8N8!ug2&5NJd~g21s~g1 ,g2!!D MN
J ~g1!D M8N8

J
~g2!* , ~B15!

which when substituted in~B10! yields ~B3!.
On settingN5N8 (M5M 8) in ~B3! and summing overN (M ) we obtain the following

formulas for the simpler Wigner distributions in terms of simpler Wigner operators:

W̃~g;JMM8!5Tr@ r̂ W̃̃
ˆ

~g;JMM8!, ~B16!

W5 ~g;JNN8!5Tr@r W̃̃
ˆ

~g;JNN8!#, ~B17!

where

Ŵ̃~g;JMM8!5(
N

Ŵ~g;JMNM8N!, ~B18!

W̃̃
ˆ

~g;JNN8!5(
M

Ŵ~g;JMNMN8!. ~B19!

The relations~B16! and~B17! can be inverted with the help of~6.22! and~6.24!, respectively,
to obtain

r̂5E dg (
JMM8

1

NJ
W̃~g;JMM8!Ŵ̃~g;JM8M !, ~B20!

r̂5E dg (
JNN8

1

NJ
W5 ~g;JNN8!W̃̃

ˆ
~g;JN8N!. ~B21!

This can be seen as follows. Settingr̂1[r̂ and r̂25ug2&^g1u in ~6.22! and using~B16! for the
second Wigner distribution one obtains

^g1ur̂ug2&5E dg (
JMM8

1

NJ
W̃~g;JMM8!^g1uŴ̃~g;JM8M !ug2&, ~B22!

which on peeling off^g1u and ug2& gives ~B20!. Equation~B21! can be derived in a simila
fashion.
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Latticef2
4-quantum field models with different lattice cutoffs in the free and inter-

acting parts are constructed and their continuum limits are studied. A comparision
with previously constructed continuum limits is given, in the spirit of a discussion
on how limit models depend on chosen regularizations. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1626807#

I. INTRODUCTION

The usual~continuum! fd
4-quantum field theory1,2 is heuristically described by the following

probability measure:

Nl1 ,l2 ,l3

21 )
xPRd

df~x!expS 2E
Rd

~l1u¹f~x!u21l2f2~x!1l3f4~x!!dxD , ~1.1!

whereNl1 ,l2 ,l3
is the normalization constant,l1 , l2 , andl3 are real strictly positive coupling

constants, andf is the real-valued field. There have been many approaches to the proble
giving a meaning to the above heuristic measure ford52 andd53 ~see Refs. 3–15 and refe
ences therein!. The lattice approximation is an important tool in constructing and studying
continuum fd

4 field, Let us set aZd5$ax: xPZd%, a.0. Heuristically, the quantities
* u¹f(x)u2dx, *f2(x)dx, and *f4(x)dx can be approximated, respectively, b
ad22( ux2yu5a;x,yPaZd(fx2fy)

2, ad(xPaZdfx
2, andad(xPaZdfx

4 , asa tends to zero. Thus heu
ristically ~1.1! can be approximated by the following heuristic probability measure:

Na
21 )

xPaZd
dfx

3expS 2l1ad22 (
ux2yu5a;x,yPaZd

fxfy2~l2ad14dl1ad22! (
xPaZd

fx
22l3ad (

xPaZd
fx

4D ,

~1.2!

*Deceased.
1490022-2488/2004/45(1)/149/30/$22.00 © 2004 American Institute of Physics
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whereNa is the normalization constant.~1.2! is still just a heuristic expression, because of t
sums over the infinite setaZd, but it is indeed not hard to give a rigorous sense to~1.2! ~see Refs.
3, 5, 11, and 12 and references therein!. By using a natural embedding ofaZd in Rd, the so
obtained probability measurema can be realized on the distribution spaceS8(Rd).11 We call this
the latticef2

4-field measure. Fromma by deriving suitable bounds on its moments and choos
subsequences if necessary one gets limit measures ford51,2,3, by weak convergence~in the
sense of moments of probability measures!. These are then the continuumfd

4-field measures,
realized as probability measures onS8(Rd), d51,2,3. For suitable choices ofl1 , l2 , andl3 one
has indeeed even weak convergence ofma to a unique probability measurem, asa↓0 ~Refs. 5, 11,
and 13! for a ‘‘simplicial approximation approach’’ to the continuum limit.

In this paper we consider a new lattice approximation to~1.1!. For this we choose a ‘‘new
cutoff’’ a85a8(a).0 satisfying lima→01 a8(a)50. For convenience we assumea8>a.0 so
thata8Zd,aZd. Heuristically, the quantity*f4(x)dx can also be approximated bya8d(xPa8Zdfx

4

as a tends to zero. Thus the heuristic measure~1.1! can also be approximated by the followin
heuristic probability measure:

Na,a8
21 )

xPaZd
dfx

3expS 2l1ad22 (
ux2yu5a;x,yPaZd

fxfy2~l2ad14dl1ad22! (
xPaZd

fx
22l3a8d (

xPa8Zd
fx

4D ,

~1.3!

whereNa,a8 is the normalization constant. We denote the latter heuristic probability measu
na,a8 and call it, for simplicity, ‘‘the new latticef2

4-fields model.’’ This measure can be thought
describing a latticef4-field theory with different lattice cutoffs in the free and interacting pa
Similarly as for~1.2! one can give a rigorous sense to~1.3!. The basic question discussed in th
paper is to what extent the continuuum limit depends on the chosen regularizationa,a8. Since
a8>a, the interaction part appears only on a subseta8Zd of the lattice pointsaZd. It is however
also present in the normalization termNa,a8 , so that we can expect that the procedure of choos
a8Þa might enhance the singular behavior of moments at coinciding points, with respect
casea85a. It is natural to think that the continuum limit, without additional counterterms, o
exists for a suitable dependence ofa8 on a. In fact we will prove in Theorem 2.1 that i
lim supa→01a8u logau5/4,1` and the couplingl is weak, then the continuum limit of the lattic
f2

4 given by ~1.3! exists and the probability measure associated to the distribution-valued
satisfies all the Osterwalder–Schrader axioms of the Euclidean quantum field, except possi
rotation invariance. For such a result we follow the approach in Ref. 5. First we will constru
action in the finite volumeL as a finite-difference approximation to the continuum action. Th
we will define a renormalized total action in bounded lattice regionsL5aZdùL and L8
5a8ZdùL with Dirichlet boundary conditions. The bare massm will be expressed in terms o
counterterms depending on botha anda8, as a perturbation of the massm0 , corresponding to the
mass for the free lattice field model. By the second Griffiths inequality we will extend this a
to the whole latticesaZd anda8Zd. By the Schwinger–Dyson field equation we will express t
interacting 2-points function, i.e., the interacting propagator, in terms of the interacting 4-
function, and by skeleton inequalities we will estimate the latter 4-point function from above
from below by the 2-point function, so that we will get upper and lower bounds for the 2-p
function in terms of itself. Since we will prove that the 2-point function is continuous with res
to l, and hence for a weak coupling it is close to the free propagator, we will get a uni
estimate with respect to the variablesa anda8 of the 2-point function. Further we will estimate th
2n-point function from above and from below by the 2-point function, and hence by the
propagator. Therefore we will prove that its limit is nontrivial and that the distribution assoc
with the continuum field is uniquely determined by its moments.
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In the Appendix the proof of the existence of the continuum limit is extended from the ca
the above condition lim supa→01a8u logau5/4,1` to the one where lim supa→01a8u logau7/6

,1`. For this proof general skeleton inequalities are used. It is also remarked that our m
might be further extended so that we might prove the existence of the continuum limit und
more general condition lim supa→01a8u logau11e,1`, with e.0 ~in this case new counterterm
are required which might modify the continuum limit!.

Another basic result of the paper is stated in Theorem 2.2. It says roughly that in the pre
of a space cutoff and under the assumption thata8u logau2 stays bounded~a situation where no new
counterterm is needed, as compared to the usual lattice model! the new constructed continuumf2

4

model coincides with the old one. This result also implies that for models with space cutoff
interaction performing first the infinite volume limitL↑R2 and then the continuum limit leads t
the same result as taking the limits in the opposite order. The proof uses the properties o
powers and estimates on then-point functions of the relevant measures, in order to prove that
have the same asymptotic behavior~such measures being uniquely determined by their mome!,
one gets the result. We also discuss the question whether in generalna,a8 andna,a might have the
same limit points. We give motivations for this not to be the case in general~this is in analogy with
the situation in the discrete Edward model in two dimensions16!.

The paper is organized as follows. In Sec. II we will give a rigorous definition of the
latticef2

4-field model given by the measurena,a8 . We also state the main results of this paper.
Sec. III we will first state some skeleton inequalities for the new latticef2

4-field model and then
derive some estimates of the corresponding two point functions. In Sec. IV we will us
Schwinger–Dyson field equation and some skeleton inequalities to derive uniform bounds o
point functions. In Sec. V we will first derive some bounds on the 2n-point functions and then
construct the newf2

4 fields by approximating from the corresponding 2n-point functions associ-
ated with the new latticef2

4-field measurena,a8 . In Secs. VI and VII we will prove that$na,a8% is
weakly convergent to theoriginal continuum f2

4 field @described heuristically by~1.1!, con-
structed, e.g., in Refs. 2, 8, and 11# if lim supa→01a8u logau2,`. In Sec. VIII we will discuss some
properties of the continuumf2

4 field in the case where lima→01 a8u logau25` and propose some
open problems which further illustrate the interest to study the new lattice approximationf2

4

fields given in the present paper. In the Appendix we will derive a correlation inequality up t
third order in the coupling constantl and apply it to prove the convergence of scaled mom
functions for an interaction with a suitable mass counterterms to the moment functions of a
probability measure, in the case where lima→01 a8u logau7/6,`.

II. MODELS AND MAIN RESULTS

To construct our newf2
4-field models, we first constructf2

4 models in a bounded lattice
region, with different lattice cutoffsa anda8 in the free, respectively, interacting parts. We th
use the strategy of Ref. 5, applying the second Griffiths inequality11,17 to take the ‘‘infinite-
volume’’ limit, and then pass to the continuum limit as the lattice spacingsa,a8 go to zero. We
note, however, that in many previous references, the continuum limit of the latticef2

4 fields was
taken before performing the infinite-volume limit.8,11 In casel3 is small, we show that under som
assumptions on the termsa,a8→0 the continuumf2

4 fields constructed by the above two a
proaches coincide. For convenience we will call the continuumf2

4 field, obtained by one of the
above approaches, the original continuumf2

4 field ~in the infinite-volume case, i.e., without
spatial cutoff!. We remark that the approach given in Ref. 5 is also suitable for the constructi
the continuumf2

4 field with spatial cutoffs.
Let L be a given regular bounded region inR2 ~for its definition, the reader is refered to Re

11, p. 267! and set

L5aZ2ùL,R2, L85a8Z2ùL,R2,
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where a85a8(a) is assumed to satisfy the assumptions given in Sec. I, so that in parti
L8,L. Let g>0 be a given function inR2 which is bounded and Borel measurable. Define
action in the finite volumeL,Z2 with Dirichlet boundary condition

SL,D~f!5
1

2 (
^xy&;x,yPL

~fx2fy!21
1

2
m2a2(

xPL
fx

21
l

4
a82 (

xPL8
g~x!fx

4 , ~2.1!

where^xy& represents the set$(x,y): ux2yu5a; x,yPaZ2%. Then the probability measure

ZL,D
21 )

xPL
e2SL,D(f)dfx ~2.2!

is well defined, whereZL,D is the normalization constant. Heuristically, the lattice actionSL,D(f)
is a finite-difference approximation to the continuum action,

SL,C~f!5E
L
H 1

2
@¹f~x!#21

1

2
m2f~x!21

l

4
g~x!f~x!4J dx,

and the probability measure~2.2! can be thought of as a finite-difference approximation to
measure on continuum fields which is heuristically given by

ZL,C
21 e2SL,C(f) )

xPL
df~x!.

Let Ga be the probability measure for the free lattice field model of massm0 on aZ2 @i.e.,
l50, m25m0

2 andL5aZ2 in ~2.1! and~2.2!# and let^•&Ga
denote the expectation with respect

Ga . Let

C(a)~x2y!5^fxfy&Ga
.

Ga is thus the~lattice! Gaussian measure with mean zero and covarianceC(a). It is easy to show
that8,11

C(a)~x2y!5~2p!22E
[ 2p/a,p/a] 2Fm0

212a22(
j 51

2

~12cosakj !G21

eik(x2y)dk1dk2 ,

wherek5(k1 ,k2). Let

Ga,L5Na,L
21 expS 2

1

2 (
^xy&;x,yPL

~fx2fy!22
1

2
m0

2a2(
xPL

fx
2D )

xPL
dfx ,

whereNa,L is the normalization constant. Let

CL
(a)~x,y!5^fxfy&Ga,L

.

By Ref. 11, Chap. VIII, we know that

C(a)~x2y!5 lim
L→aZ2

CL
(a)~x,y!.

One can also check thatC(a)(x2y) is bounded bycu logux2yuu for a<ux2yu<1, andC(a)(0)
behaves likecu logau for some constantcP(0,̀ ), as a tends to zero.18 We now introduce the
counterterms which are necessary to define rigorously~1.1!. Let dm1

2523lC(a)(0) and set
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dm2
25H 6l2a82C(a)~0!3, lim supa→01a8u logau3/2P~0,̀ #,

0, otherwise.

It is clear that lim supa→01dm2
251` if lim supa→01a8u logau3/251`. We define the normalized

actionSL in the bounded regionL with Dirichlet boundary condition by setting

SL~f!5
1

2 (
^xy&;x,yPL

~fx2fy!21
1

2
m0

2a2(
xPL

fx
21

1

2
dm1

2a82 (
xPL8

g~x!fx
2

1
1

2
dm2

2a82 (
xPL8

g~x!2fx
21

l

4
a82 (

xPL8
g~x!fx

4 .

The expectation̂•&L is defined, for any real measurable functionF on R for which the right-hand
side ~RHS! is finite, by

^F&L5ZL
21E )

xPL
e2SL(f)F~f!dfx ,

whereZL
21 is the normalization constant. If we set

VL85
l

4 E
L8

8
g~x!fx

4dx1
1

2
dm1

2E
L8

8
g~x!fx

2dx1
1

2
dm2

2E
L8

8
g~x!2fx

2dx,

then we have

^F&L5
^Fe2VL8&Ga,L

^e2VL8&Ga,L

.

If F(f) is a polynomial in$fx , xPL% with positive coefficients andL̃,aZ2 is a lattice contain-
ing L, then we know by the second Griffiths inequality11,17 that

^F&L<^F& L̃ .

Moreover,^F&L is bounded uniformly inL,aZ2. Thus we can define the limit

^F& (a)5 lim
L→aZ2

^F&L .

For convenience we let the integral*Ldx denote the lattice sum onL with weight a2 and the
integral *L8

8 dx denote the lattice sum onL8 with weight a82. For short we denote*aZ2dx and
*a8Z2dx, respectively, by*dx and *8dx, and write shortlyV for Va8Z2. The expectation̂ F&
ª^Fe2V&Ga

/^e2V&Ga
is then equal to ^F& (a). The 2n-point function S(x1 ,...,x2n)

ªS(a,a8)(x1 ,...,x2n) is defined by

S(a,a8)~x1 ,...,x2n!5
^fx1

¯fx2n
e2V&Ga

^e2V&Ga

. ~2.3!

We will call S(a,a8)(x1 ,...,x2n) the 2n-point function corresponding to~the spatial cutoff! g.
As in Ref. 5,~5.6!, one can derive the following field equation for the 2-point function:
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S~x,y!5C(a)~x2y!2dm1
2E8

dzg~z!C(a)~x2z!S~z,y!

2dm2
2E8

dzg~z!2C(a)~x2z!S~z,y!2lE8
dzC(a)~x2z!g~z!^fz

3fy&. ~2.4!

We remark that in the case of infinite volume@i.e., g(x)51,;xPR2] we haveS(x,y)5S(0,y
2x), and so in this caseS(x,y) can be denoted byS(x2y).

Before stating the main theorems, let us first recall some basic results about the originf2
4

field nl,g with spatial cutoffg. For simplicity we shall also denotenl,g shortly by nl . Let g
PC0(R2) be a given function andm0 be the Gaussian measure, ‘‘free field measure,’’ onS8(R2)
with covariance

^f~ f 1!f~ f 2!&m0
5^ f 1 ,~2D1m0

2!21f 2&.

Let : : denote the Wick power with respect tom0 and setU(g)5*R2g(x):f(x)4:dx ~for its
definition, the reader is referred to Ref. 11!. Then the originalf2

4 field nl,g with spatial cutoff
g>0 is given by

dnl,g5S E exp~2lU~g!!dm0D 21

exp~2lU~g!!dm0 .

This is a well-defined probability measure onS 8(R2) absolutely continuous with respect tom0

~Refs. 11 and 19!.
The main results in this paper are as follows.
Theorem 2.1:Let g>0 be a given bounded continuous function. Then there existsl0.0 so

that for all l<l0 there are sequences$an%n>1 , $an8%n>1 with limn→` an50 and
limn→` an8u loganu5/4,`, and $gn%n>1,C0(R2) with limn→` gn(x)5g(x), xPR2, such that for
any givenf 1 ,...,f 2mPS(R2) andm>1 the following limit exists:

S~ f 1 ,...,f 2m!5.. lim
n→`

(
x1 ,...,x2mPanZ2

S(an ,an8)~x1 ,...,x2m!)
i 51

2m

an
2f i~xi !,

whereS(an ,an8)(x1 ,...,x2m) is the 2m-point function corresponding to the functiongn , defined by
~2.3!. Moreover, there is a probability measureml,g on S8(R2) satisfying

E
S8(R2)

f~ f 1!¯f~ f 2m!ml,g~df!5S~ f 1 ,...,f 2m!, f 1 ,...,f 2mPS~R2!, m>1.

Remark: If g(x)51, ;xPR2, then ml,g given in the above theorem is a continuu
f2

4-quantum field in the infinite-volume case~i.e., without a spatial cutoff!. If g(>0)PC0(R2),
thenml,g given in the above theorem is a continuumf2

4-quantum field with spatial cutoffg. For
simplicity we shall also denoteml,g shortly byml .

If lim supa→01a8u logau11e,` for some eP(0,1/4), then with an analogous procedure
should be possible to define new counterterms and prove the existence of the continuum l
the new latticef2

4 fields ~by subsequences! with these new counterterms. In the Appendix we w
discuss the case lima→01 a8u logau7/6,`.

Remark:Our construction of a continuum limit for a lattice model yields models satisfying
Euclidean axioms,20–23 except possibly for the axiom of rotation invariance~this is a problem
common to all constructions of Euclidean quantum field models starting from lattices!. In case the
limit can be identified with some models constructed in other ways, the rotation invariant c
verified; see below.
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The next theorem tells us that the continuumf2
4 field ml,g in many cases coincides with th

original f2
4 field nl,g .

Theorem 2.2:Assume thatgPC0
1(R2) is non-negative,*R2gx

2dx is strictly positive, andl
.0 is sufficient small. If limn→` an8u loganu25AP@0,̀ ), then the measureml,g given in Theorem
2.1 coincides with the originalf2

4 field measurenl,g .
Remark:The measureml,g in the case where lima→01 a8u logau251` constructed in Theorem

1.1 is believed to be different from the measurenl,g for l.0 @see the discussions~iii ! and ~v!
given in Sec. VIII below#. The proof of Theorem 2.2 forA50 is much easier than the one fo
A.0. We will prove Theorem 2.2 forA50 andA.0 in Secs. VI and VII, respectively.

III. SKELETON INEQUALITIES

In this section we first give some correlation inequalities and then use these inequali
derive some estimates of the 2-point functionS(x2y). In Sec. VII below we will give a more
precise correlation inequality for the four point function. As in Refs. 14 and 24–26 we consi
model of one-component classical spins on a finite latticeL whose partition function is defined b

Z5E e(f,Jf)/2)
j PL

g~ j !~f j
2!df j ,

whereJ5(Ji j ) is a symmetric matrix, i.e.,Ji j 5Jji , i , j PL, f jPR, (f,Jf)5( i , j PLJi j f if j . We
only consider the ferromagnetic caseJi j >0, ; i , j , and set

g~ j !~f2!5expS 2
l j

4!
f42

Bj

2
f2D ,

for some constantsl jPR1 , Bj.0.
Let

^fx1
...fxn

&5Z21E fx1
¯fxn

e(f,Jf)/2)
j

g~ j !~f j
2!df j ,

xiPL, i 51, . . . ,n ~from now on we indicate sums and products overL simply by ( j , respec-
tively, ) j ).

Set

U4~x1 ,x2 ,x3 ,x4!5^fx1
fx2

fx3
fx4

&2^fx1
fx2

&^fx3
fx4

&2^fx1
fx3

&^fx2
fx4

&2^fx1
fx4

&

3^fx2
fx3

&.

For the special case where the constantsl j andBj are independent of the sitej , Brydgeset al.24

already derived some inequalities forU4(x1 ,x2 ,x3 ,x4) in terms of the 2-point functions. The
proof of these skeleton inequalities is based on the random walk representation of the corr
functions.3,26–28As remarked in Ref. 24, p. 123, the arguments given in Ref. 24 are still sui
for the general cases wherel j andBj depend on the sitej . Also instead ofU4 one can consider
Un for generaln, but for simplicity we will only give the inequalities forU4 . In fact we can use
the arguments given in Ref. 24 to derive the following correlation inequalities:

U4~x1 ,x2 ,x3 ,x4!<0, ~3.1!

U4~x1 ,x2 ,x3 ,x4!>2(
z

lz^fx1
fz&^fx2

fz&^fx3
fz&^fx4

fz&, ~3.2!
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U4~x1 ,x2 ,x3 ,x4!<2(
z

lz^fx1
fz&^fx2

fz&^fx3
fz&^fx4

fz&1
1

2 (
j ,k

l jlk^fx1
f j&^fx2

f j&

3^f jfk&
2^fx3

fk&^fx4
fk&1

1

2 (
j ,k

l jlk^fx1
f j&^fx3

f j&^f jfk&
2^fx2

fk&

3^fx4
fk&1

1

2 (
j ,k

l jlk^fx1
f j&^fx4

f j&^f jfk&
2^fx2

fk&^fx3
fk&. ~3.3!

The inequality ~3.1!, which is usually called the Lebowitz inequality, was first obtained
Lebowitz.29 A further correlation inequality up to the third order will be given in the Append
The inequalities~3.1!, ~3.2!, and~3.3! hold first for the finite latticeL. However, as in Sec. II we
can use DLR equations and Griffiths’ first and second inequalities to show that~3.1!, ~3.2!, and
~3.3! also hold withL replaced byaZ2, for anya.0. In particular,~3.1!, ~3.2!, and~3.3! can be
used to discuss the models introduced in Sec. II. For this purpose we set

l j5H 0, j PaZ2\a8Z2,

6lg~ j !, j Pa8Z2,

whereg>0 is a given bounded Borel measurable function. By~3.1!, ~3.2!, and~3.3! we can get
the following estimates ofS(x,y), x,yPL, from Eq. ~2.4!:

S~x,y!>C~x2y!2dm1
2E8

dzC~x2z!g~z!S~z,y!

2dm2
2E8

dzg~z!2C~x2z!S~z,y!23lE8
dzC~x2z!g~z!^fz

2&^fzfy&, ~3.4!

S~x,y!<C~x2y!2dm1
2E8

dzC~x2z!g~z!S~z,y!2dm2
2E8

dzg~z!2C~x2z!S~z,y!

23lE8
dzC~x2z!g~z!^fz

2&^fzfy&

16l2E8
dzC~x2z!g~z!E8

dz1g~z1!^fzfz1
&3^fz1

fy&, ~3.5!

S~x,y!>C~x2y!2dm1
2E8

dzC~x2z!g~z!S~z,y!2dm2
2E8

dzgz
2C~x2z!S~z,y!

23lE8
dzC~x2z!g~z!^fz

2&^fzfy&16l2E8
dzC~x2z!g~z!E8

dz1g~z1!

3^fzfz1
&3^fz1

fy&,254l3E8
dzC~x2z!g~z!E8

dz1E8
dz2g~z1!g~z2!

3^fzfz1
&2^fz1

fz2
&2^fzfz2

&^fz2
fy&, ~3.6!

whereS(x,y) was defined in Sec. II andC(x2y)5C(a)(x2y).
Some Gaussian inequalities19 will also be useful in the present paper. By means of the rand

walk representation,19 Th. 7, and Ref. 24 one can also derive the following relation:
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S~x1 ,...,x2n!<(
i 52

2n

S~x1 ,xi !S~x2 ,...,xi 21 ,xi 11 ,...,x2n!, ~3.7!

for any xiPL, i 51, . . . ,2n.

IV. RECURSIVE ESTIMATES FOR THE 2-POINT FUNCTION

Without loss of generality, in this section we assume that the bare massm0 is equal to 1. In
fact, if m0Þ1 @but m0P(0,̀ )] and if some statements given before Proposition 4.2 are cha
accordingly, then the discussions given in this section are still suitable for the case of generm0 .
For convenience, in this section we assume thatg is a given function fromaZ2 to R such that

0<g~x!<1, ;xPaZ2.

As in Ref. 5 we introduce the notation

ui f iu5i f i11i f i`5a2 (
xPaZ2

u f ~x!u1 sup
xPaZ2

u f ~x!u.

We also introduce the exponentially weightedLp norms

i f ip,a5S E
R2

ucosh~ax1! f ~x!updxD 1/p

, ui f iua5i f i1,a1i f i`,a ,

wherex5(x1 ,x2). Let

E(a,a8)~x,y!5S(a,a8)~x,y!2C(a)~x2y!,

whereS(a,a8)(x,y) andC(a)(x2y) were defined in Sec. II. We will only consider the case wh
both conditions

lim sup
a→01

a8u logau5/4,`, lim inf
a→01

a8u logau3/25`

are satisfied. The discussion for the other relevant case~i.e., where lim supa→01a8u logau3/250) is
easier@the case where lim supa→01a8u logau3/2P(0,̀ ) is trivial#.

In this section we denoteC(a)(x2y) andS(a,a8)(x,y), respectively, byC(x2y) andS(x,y).
One of the main results in this section is as follows.

Proposition 4.1: Assume lim supa→01a8u logau5/4,`. Then there exist polynomials
Pi ,Qi , 1< i<3, with positive coefficients, independent ofa, except for the constant term ofQ2 ,
such that

sup
x

uiEx
(a,a8)iu<(

i 51

3

l i Pi~sup
x

uiEx
(a,a8)iu!, ~4.1!

sup
x
UIEx

(a,a8)26l2E dzC~x2z!g~z!E dz1g~z1!C~z2z1!3C~z12y!IU
<(

i 51

3

l iQi~sup
x

uiEx
(a,a8)iu!, ~4.2!
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for all a,a8P(0,1), whereEx
(a,a8)(y)5E(a,a8)(x,y). Moreover, the polynomialsP1 andQ1 have

zero constant term, andQ2 has a constant term which goes to zero asa→01.

Proof: For short we denoteE(a,a8) and Ex
(a,a8) , respectively, byE and Ex . Let Cx* S(y)

5*8dzCx(z)S(z,y), whereCx(y)5C(x2y). It is easy to show by Young’s inequality that

iCx* Ei1<E8
dzCx~z!sup

z
iEzi1<O~1!sup

z
iEzi1 , iCx* Ei`<O~1!sup

z
iEzi` ,

which implies that

uiCx* Siu<uiCx* Ciu1uiCx* Eiu<O~1!~11sup
z

uiEziu!.

By ~3.5! and ~3.6! we know that the term of orderl in the expressionS(x,y)2C(x2y) can be
bounded by

sup
x

iExi`•uiCx* Siu<O~1!sup
x

uiExiu•~11sup
x

uiExiu!.

To consider the term of orderl2 in the expressionS(x,y)2C(x2y), we set

f 1~x,y!56l2a82E8
dzC~x2z!g~z!2^fzfy&^fz

2&3,

f 2~x,y!56l2a82E8
dzC~x2z!g~z! (

z1Pa8Z2\$z%

g~z1!^fzfz1
&3^fz1

fy&.

From the assumption lim supa→01a8u logau5/4,` we can see that lim supa→01a8C(a)(0)50 and
so $a8C(a)(0)% is bounded for allaP(0,1). For any fixedxPaZ2, by Young’s and Ho¨lder’s
inequalities we have

UI f 1~x,• !2dm2
2E8

dzC~x2z!g~z!2^fzf•
& IU

<sup
z

idm2
226l2a82^fz

2&3i`•uiCx* Sui

<6l2sup
z

iEzi`a82@C2~0!1C~0!^fz
2&1^fz

2&2#•uiCx* Siu

<O~1!l2sup
z

@a82C2~0!1a82iEzi`
2 #iEzi`~11sup

z
uiEziu!

<cl2 sup
zPaZ2

uiEziu~11 sup
zPaZ2

uiEziu3!, ~4.3!

where the constantcP(0,̀ ) is independent ofxPaZ2. It is clear that this constantc can be
chosen to satisfy lima→01c50.

Let f 2,x(y)5 f 2(x,y). Since lim supa→01a8u logau5/4,` and C(x2y) behaves likecu logux
2yuu as ux2yu goes to zero, we can easily show that

sup
xPaZ2

ui f 2,xiu<6l2 sup
xPaZ2

UI E8
dzC~x2z!a82 (

z1Pa8Z2\$z%

S~z,z1!3S~z1 ,y!IU
<O~1!l2~11 sup

zPaZ2

uiEziu4!.
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Finally we consider the term of orderl3 on the right-hand side of~3.6!. We denote this term by
f 3,x(y). We remark that f 3,x is the summation of the functionC(x2z)g(z)g(z1)g(z2)
3^fzfz1

&2^fz1
fz2

&2 ^fzfz2
&^fz2

fy& on the set$(z,z1 ,z2): z,z1 ,z2Pa8Z2%. Then this summa-
tion can be decomposed as

(
z5z15z2Pa8Z2

1 (
z5z1 ,z2Þz

1 (
z5z2 ,z1Þz

1 (
z15z2Þz

1 (
z2Þz1 ,z2Þz,z1Þz

.

Using this expression we get

i f 3,xi`<54l3I E8
dzC~x2z!a84^fz

2&5^fzfy& I
`

154l3I E8
dzC~x2z!a82^fz

2&2 (
z2Þz

^fzfz2
&3^fz2

fy&I
`

154l3I E8
dzC~x2z!a82^fz

2& (
z1Þz

^fzfz1
&4^fzfy&I

`

154l3I E8
dzC~x2z!a82 (

z2Þz
^fz2

2 &2^fzfz2
&3^fz2

fy&I
`

154l3I E8
dzC~x2z! (

z1Þz,z2Þz,z1Þz2

^fzfz1
&2^fz1

fz2
&2^fzfz2

&^fz2
fy&I

`

.

Using the assumption lim supa→01a8u logau5/4,` and the above estimate we show that

sup
xPaZ2

i f 3,xi`<O~1!~11 sup
xPaZ2

iExi`
6 !.

By a similar argument as above we obtain

sup
xPaZ2

i f 3,xi1<O~1!~11 sup
xPaZ2

iExi1
6!.

Therefore,

sup
xPaZ2

ui f 3,xiu<O~1!~11 sup
xPaZ2

uiExiu6!,

which proves~4.1!.
If lim supa→01a8u logau5/4,`, then we see that there existse(a)P(0,̀ ) with lima→01 e(a)

50 such that

UI E8
dzC~x2z!g~z!a82 (

z1Pa8Z2\$z%

g~z1!C~z2z1!3C~z12y!

2E dzC~x2z!g~z!E dz1g~z1!C~z2z1!3C~z12y!IU<e~a!.

Using this estimate we derive the inequality
                                                                                                                



on

n

160 J. Math. Phys., Vol. 45, No. 1, January 2004 Albeverio, Bernabei, and Zhou

                    
UI E8
dzC~x2z!g~z!a82 (

z1Pa8Z2\$z%

g~z1!^fzfz1
&3^fz1

fy&

2E dzC~x2z!g~z!E dz1g~z1!C~z2z1!3C~z12y!IU
<UI E8

dzC~x2z!g~z!a82 (
z1Pa8Z2\$;z%

g~z1!^fzfz1
&3^fz1

fy&

2E8
dzC~x2z!g~z!a82 (

z1Pa8Z2\$z%

g~z1!C~z2z1!3C~z12y!IU
1UI E8

dzC~x2z!g~z!a82 (
z1Pa8Z2\$z%

g~z1!C~z2z1!3C~z12y!

2E dzC~x2z!g~z!E dz1g~z1!C~z2z1!3C~z12y!IU
<e~a!1Cl~11 sup

xPaZ2

uiExiu4!.

Thus, by~4.3! we know that

UI f 1~x,y!1 f 2~x,y!26l2E dzC~x2z!g~z!E dz1g~z1!C~z2z1!3C~z12y!IU
<@e~a!1C sup

xPaZ2

uiExiu~11 sup
xPaZ2

uiExiu3!#l21Cl3~11 sup
xPaZ2

uiExiu4!, ~4.4!

where the constantCP(0,̀ ) is independent ofxPaZ2. On the other hand, using the assumpti
lim supa→01a8u logau5/4,` we prove that

ui f 3,xiu<Cl3~11 sup
xPaZ2

uiExiu6!.

Combining this with~4.4! we can get the desired result~4.2!. The proof of Proposition 4.1 is the
complete. j

To state the next result, we letm0
(a).0 be the unique solution of

112a22~12cosh~am0
(a)!!50.

By a Paley–Wiener theorem,30 C(a)(x) decays roughly as exp(2m0
(a)ux1u) in the x1 direction. One

can show thatm0
(a),m051 for aP(0,1) and lima→01m0

(a)5m051.
The other result in this section is as follows.
Proposition 4.2:Let dP(0,1) be given. There are polynomialsPi ,Qi for 1< i<3 with posi-

tive coefficients, independent ofa, except for the constant term ofQ2 , such that

sup
x

uiEx
(a,a8)iua<(

i 51

3

l i Pi~sup
x

uiEx
(a,a8)iua!

3sup
x
UIEx

(a,a8)26l2E dzC~x2z!g~z!E dz1g~z1!C~z2z1!3C~z12y!IU
<(

i 51

3

l iQi~sup
x

uiEx
(a,a8)iua! ~4.5!
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for all a,a8P(0,1) andaP(0,(12d)m0
(a)), where the polynomialsP1 andQ1 have zero constan

term, andQ2 has a constant term which goes to zero asa→01.
Some technical points in the proof of Proposition 4.2 were mentioned in the proof of R

Theorem 7.2. The detailed proof of Proposition 4.2 is quite similar to that of above Propo
4.1, hence it is omitted.

V. CONTINUUM LIMIT

In this section we always assume lim supa→01a8u logau5/4,`. The main aim of this section is
to complete the proof of Theorem 2.1. Let us first introduce a notation. In Sec. II we alr
introduced the countertermsdm1

2 anddm2
2, and defined a quantityVL8 by means ofdm1

2 anddm2
2.

By means of thisVL8 we defined in Sec. II a lattice field onaZ2 whose covariance function~i.e.,
2-point function! is S(a,a8)(x,y). Now we replacedm1

2 anddm2
2, respectively, by the real-value

variablese1 and e2 . We can then construct a corresponding lattice field onaZ2 and we shall
denote the covariance function of this new lattice field byS(l,e1 ,e2)(x,y).

We will first use Propositions 4.1 and 4.2 to derive some estimates onS(a,a8)(x,y). To this
end, as in Ref. 5 we need to prove the continuity ofS(a,a8)(x,y) with respect tol.0. Sincedm1

2

anddm2
2 are continuous with respect tol.0, it suffices to prove the continuity ofS(l,e1 ,e2)(x,y)

with respect to (l,e1 ,e2). Let

B5$~l,e1 ,e2!: l.0,e1 ,e2PR%ø$~l,e1 ,e2!: l50,e1 ,e2.0%.

We first state two lemmas.
Lemma 5.1:Let the lattice spacingaP(0,1) and the functiong(>0)PC0(R2) be given. Then

the following statements are true.
~i! The set

B05$~l,e1 ,e2!PB: sup
xPaZ2

iS(l,e1 ,e2)~x,• !i1,`%

is a nonempty, connected, and open subset ofB.
~ii ! The map (l,e1 ,e2)→supxPaZ2iS(l,e1 ,e2)(x,•)i1 is continuous fromB to @0,1`#, and

also continuous fromB0 to @0,̀ !.
Since we already assumed in Lemma 5.1 that the functiong>0 has a compact support~i.e.,

that we are in the finite-volume case!, this lemma can easily be proven~see the proof of Ref. 5
Proposition 5.1!. For the infinite-volume case, the corresponding result was proven in Ref
Proposition 5.1. In that case, the 2-point functionS(l,e1 ,e2)(x,y) only depends onx2y ~since it is
translation invariant!.

Similarly, we have the following result.
Lemma 5.2:Let the lattice spacingaP(0,1) and the functiong(>0)PC0(R2) be given.

Then, for eacha>0, the following statements are true.
~i! The set

Ba5$~l,e1 ,e2!PB: sup
xPaZ2

iS(l,e1 ,e2)~x,• !i1,a,`%

is a nonempty, connected and open subset ofB.
~ii ! The map (l,e1 ,e2)→supxPaZ2iS(l,e1 ,e2)(x,•)i1,a is continuous fromB to @0,̀ # and also

continuous fromBa to @0,̀ !.
Some technical points in the proof of Lemma 5.2 were already mentioned in the proof o

5, Proposition 7.1, so we will also omit the proof of Lemma 5.2.
For short, in this section we shall denoteC(a)(x2y) andS(a,a8)(x,y), respectively, byC(x

2y) andS(x,y).
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By Lemma 5.1 and Lemma 5.2 we know that supxPaZ2uiExiu and supxPaZ2uiExiua are con-
tinuous with respect tol.0 if aP(0,1) andg(>0)PC0(R2) are fixed. Using these continuit
properties together with Proposition 4.1 and Proposition 4.2 we can easily prove the follo
results~for their proofs, the reader is referred, respectively, to the proofs of Ref. 5, Theorem
and Theorem 7.2!.

Proposition 5.3:There exist universal constantsl0.0, c1 ,c2P(0,̀ ) such that, for 0<l
<l0 ,

sup
xPaZ2

uiS~x,• !2C~x2• !iu<c1l2,

sup
xPaZ2

UIS~x,• !2C~x2• !26l2E dzC~x2z!g~z!E dz1g~z1!C~z2z1!3C~z12• !IU
<c2l31e~a!l2,

wheree(a).0 satisfies lima→01e(a)50, andgPC0(R2) satisfies 0<g<1.
Proposition 5.4: Let dP(0,1) be given. There exist universal constantsl0.0, c1 ,c2

P(0,̀ ) such that, for 0<l<l0 andaP(0,(12d)m0
(a)#,

sup
xPaZ2

uiS~x,• !2C~x2• !iua<c1l2,

sup
xPaZ2

UIS~x,• !2C~x2• !26l2E dzC~x2z!g~z!E dz1g~z1!C~z2z1!3C~z12• !IU
a

<c2l31e~a!l2,

wheree(a).0 satisfies lima→01e(a)50, andgPC0(R2) satisfies 0<g<1.
Remark:We remark that the polynomialsPi ,Qi for 1< i<3 given in Proposition 4.1 and

Proposition 4.2 do not depend on the choice ofg with gPC0(R2) and 0<g<1. Hence, the
constantsl0 , c1 , andc2 given in Proposition 5.3 and Proposition 5.4 do not depend on the ch
of g, if gPC0(R2) and 0<g<1.

Having these propositions, we can now prove Theorem 2.1.
Proof of Theorem 2.1:By Proposition 5.4 we know that fora,m051 there arec(a),` and

la.0 such that

sup
xPaZ2

uiS~x,• !2C~x2• !iua<c~a!l, 0<l<la ,

if gPC0(R2) and 0<g<1, whereS(x,y) is the 2-point function corresponding to the functiong,
which was defined in Sec. II. Thus,S(x,y) behaves likeC(x2y) for ux2yu→0. By the Gaussian
inequality ~3.7! we know that~for S defined in Sec. II, with the giveng)

S~x1 ,...,x2m!< (
pPQ2m

)
i 51

m

S~xp(2i 21) ,xp(2i )!,

with Q2m the set of all pair partitions of$1,2,. . . ,2m%. By the bound

uS~x,y!u<K C~y2x!

for some constantKP(0,̀ ) and for allx,y, we have thus

S~x1 ,...,x2m!< (
pPQ2m

)
i 51

m

Km C~xp(2i )2xp(2i 21)!.
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By applying the inequality for the functionC(y2x), cited in Sec. II, we obtain

C~y2x!<c u loguy2xuu,

wherec is a positive constant. Finally we get

S~x1 ,...,x2m!< (
pPQ2m

)
i 51

m

C Km u loguxp(2i )2xp(2i 21)uu. ~5.1!

For any given continuous functiong with 0<g<1, we can find a series$gn%n>1,C0(R2)
with 0<gn<1 such thatgn increases tog asn increases tò . By Eq. ~5.1! we can find sequence
$an%n>1 , $an8%n>1 with limn→` an8u loganu5/4,` and $gkn

%n>1 with limn→` gkn
(x)5g(x), such

that the limit

lim
n→`

(
x1 ,...,x2mPanZ2

S(an ,an8)~x1 ,...,x2m!)
i 51

2m

an
2f i~xi ! ~5.2!

exists for all f 1 ,...,f 2mPS(R2) and m>1, whereS(an ,an8)(x1 ,...,x2m) is the 2m-point function
corresponding to the functiongkn

~of compact supports!. We denote the limit~5.2! by
S( f 1 ,...,f 2m). On the other hand, by the second Griffiths inequality one gets that@see Ref. 5,
~8.3!#

S(a,a8)~x1 ,...,x2m!>
1

~2m21!!! (
pPQ2m

)
i 51

m

S(a,a8)~xp(2i 21) ,xp(2i )!.

This fact tells us that the continuum limits forS(a,a8)(x1 ,...,x2m) are not identically zero. Thus, b
~5.1! and Ref. 31, Theorem 1.1, we know that there is a probability measure uniquely deter
by its momentsml on S8(R2) such that

E
S8(R2)

f~ f 1!¯f~ f 2m!ml~df!5S~ f 1 ,...,f 2m!, f 1 ,...,f 2mPS~R2!, m>1.

This then completes the proof of Theorem 2.1. j

VI. PROOF OF THEOREM 2.2 FOR AÄ0

Let us first introduce some notations. As in Ref. 31, let~,! andi i denote the inner product an
the norm inL2(R2), respectively, andHn be the Hermite polynomial of ordern. For n>0, the
Hermite function of ordern is given by

hn~x!5cnHn~x!expS 2
x2

2 D , xPR,

wherecn is a constant for whichihni51. Then$hn%n>0 is an orthonomal base inL2(R2). For
b5(b1 ,b2) with b1 ,b2>0, the functionhb : R2→R is defined by

hb~x1 ,x2!5hb1
~x1!hb2

~x2!.

Then$hb , b>0% is an orthonormal base inL2(R2). Them-norm i•im in S(R2) is defined by

i f im
2 5(

b
~ f ,hb!2~2~b11b2!12!m, f PS~R2!, m>0,
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with b5(b1 ,b2). Let Fm5$ f PS(R2): i f im,`%. The (2m)-norm i•i2m in S8(R2) is defined
by

ifi2m
2 5(

b
f2~hb!~2~b11b2!12!2m, fPS8~R2!.

One checks easily that

ifi2m5sup$uf~ f !u: f PS~R2!, i f im<1%.

Let Fm8 denote the dual space ofFm .
In this section we letg>0 be a given function inC0

1(R2) such that*R2ug(x)udx.0. The main
aim of this section is to complete the proof of Theorem 2.2 in the case whereA50. In other
words, we will prove thatml for small l.0 is equal to the original continuumf2

4 field nl if
lima→01 a8u logau250. For this purpose we first prove a weak convergence~see Lemma 6.1 be
low!.

As in Sec. II, we letm0 be the Gaussian measure onS8(R2) with the covarianceC5(2D
1m0

2)21. We define the functionf x,a(•) whose Fourier transform is

f̂ x,a~k!5H ~2p!21e2 ikxma~k!21m~k!, if uki u<p/a,

0, otherwise,

wherem21(k)5(uku21m0
2)21 andma

21(k)5(m0
212a22( j 51

2 (12cos(akj)))
21. It is easy to check

that ~see Ref. 11, Sec. VIII.1!

^f~ f x,a!f~ f y,a!&m0
5^fxfy&Ga

.

Thus we can realize the Gaussian fieldfx on aZ2 by fx5f( f x,a), which is well defined on
S8(R2).

For l.0 we set

dma,a8,l5Na,a8,l
21 expS 2

l

4 E8
g~x!:fx

4 :dxDdGa ,

whereNa,a8,l is the normalization constant such thatma,a8,l is a probability measure. The lattic
field ma,a8,l on aZ2 can be thought of as a field onS8(R2):

dma,a8,l5Na,a8,l
21 expS 2

l

4 E8
g~x!:f4~ f x,a!:dxDdm0 .

It is easy to show that

S(a,a8)~x1 ,...,x2n!5^f~ f x1 ,a!¯f~ f x2n ,a!&ma,a8,l
.

Assume thatl.0 is sufficient small. By Theorem 2.1 we know that there are subsequences$an%
and$an8% with limn→` an8u loganu5/4,` @here we already assumedgPC0

1(R2)] such that

Sn~q1 ,...,q2m!ªa4m (
x1 ,...,x2mPaZ2

q1~x1!¯q2m~x2m!S(an ,an8)~x1 ,...,x2m!

is convergent asn→`, where q1 ,...,q2mPS(R2) for m>1. It is clear thatman ,a
n8 ,l can be

thought of as a probability measure onS8(R2).
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The correlation function̂ f(q1)•••f(q2m)&man ,an8 ,l
is well defined, but it is not equal to

Sn(q1 ,...,q2m). Let us first prove a lemma.
Lemma 6.1:Assume limn→` an8u loganu5/4,`. For sufficiently smalll.0, $man ,a

n8 ,l% is

weakly convergent toml asn→`.
Proof: From the proof of Theorem 2.1 we see that

lim
n→`

Sn~q1 ,...,q2m!5^f~q1!¯f~q2m!&ml
.

Thus it suffices to prove thatSn(q1 ,...,q2m) and ^f(q1)•••f(q2m)&man ,an8 ,l
have the same

asymptotic behavior.
By Ref. 11, Theorem VIII.5~a!, p. 263, we know that

^~f~qi !2fa~qi !!2&m0
<ca2

for some constantcP(0,̀ ), wherefa(qi)5a2(xPaZ2qi(x)f( f x,a). Using the hypercontractivity
~see Ref. 11, Theorem I.22, p. 38! we show that

^uf~qi !2fa~qi !up&m0

1/p<~p21!1/2^~f~qi !2fa~qi !!2&m0

1/2<c~p21!1/2a ~6.1!

for some constantcP(0,̀ ). It is easy to show that

Sn~q1 ,...,q2m!5^fa~q1!¯fa~q2m!&man ,an8 ,l
.

By the Hölder inequality we have

uSn~q1 ,...,q2m!2^f~q1!¯f~q2m!&man ,an8 ,l
u

<Nan ,a
n8 ,l

21 K expS 2
p

p21

l

4 E8
g~x!:f4~ f x,an

!:dxD L
m0

121/p

3^ufa~q1!¯fa~q2m!2f~q1!¯f~q2m!up&m0

1/p . ~6.2!

We now choosep5a21/2m. It is not difficult to show that there exists a constantM,` such that
2*8g(x):f4( f x,an

):dx<M u logau2. Thus

K expS 2
p

p21

l

4 E8
g~x!:f4~ f x,an

!:dxD L
m0

121/p

<cK expS 2
l

4 E8
g~x!:f4~ f x,an

!:dxD L
m0

5cNan ,a
n8 ,l .

Therefore, the left-hand side of~6.2! is less than

c^ufa~q1!¯fa~q2m!2f~q1!¯f~q2m!up&m0

121/p ,

which by ~6.1! goes to zero asa→01. This then proves that̂f(q1)¯f(q2m)&man ,an8 ,l
and

Sn(q1 ,...,q2m) have the same asymptotic behavior fora→01. By Proposition 5.3 we know tha
for any givenf PS(R2) there are constantsc,c8P(0,̀ ) such that
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E
S8(R2)

uf~ f !uml~df!< lim sup
n→`

an
4 (

x1 ,x2PanZ2
f ~x1! f ~x2!S(an ,an8)~x1 ,x2!

<clim sup
n→`

an
4 (

x1 ,x2PanZ2
f ~x1! f ~x2!C(an)~x22x1!<c8. ~6.3!

Using this we show following, e.g., Ref. 31, Proposition 3.7, that there aren0>1 andcP(0,̀ )
such that, for allf PS(R2),

U E uf~ f !upml~df!U1/p

<ci f in0
,

and there existsn1.n0 such that

ml~Fn1
8 !51.

By ~6.3! and Ref. 31, Theorem 2.1, we then know thatman ,a
n8 ,l is weakly convergent toml for

sufficiently smalll.0, whereml was constructed in Theorem 2.1. j

We now prove thatml coincides withnl if lim a→01 a8u logau250. For this purpose we firs
prove a lemma.

Lemma 6.2:If lim a→01 a8u logau2,`, then there are constantsC,l1P(0,̀ ) such that

K expS 2l/4E8
dxg~x!:fx

4 : D L
Ga

<C, ;aP~0,1!,lP@0,l1!, ~6.4!

where*8dx was defined in Sec. II.
Proof: Let

j15E8
dxg~x!:fx

4 :, j25E dxg~x!:fx
4 :,

where *dx was also defined in Sec. II. ForsP@0,1# and l.0, we define a new probability
measureG(s,l) by

^•&G(s,l)5

K •expS 2
sl

4
j12

~12s!l

4
j2D L

Ga

K expS 2
sl

4
j12

~12s!l

4
j2D L

Ga

.

As in the proof of Proposition 5.3 we can easily show that there is a constantl2.0 such that

u^fxfy&G(s,l)2C(a)~x,y!u<O~1!l, lP@0,l2!,

for anyx,yPaZ2 andsP@0,1#. By the skeleton inequalities given in Sec. III@see, e.g.,~3.1! and
~3.2!#, we know that

^fx
4&G(s,l)<3^fx

2&G(s,l)
2 ,

^fx
4&G(s,l)>3^fx

2&G(s,l)
2 26slE d jg~ j !^fxf j&G(s,l)

4 26~12s!lE8
d jg~ j !^fxf j&G(s,l)

4 .

~6.5!

We remark that
                                                                                                                



nt

oited

167J. Math. Phys., Vol. 45, No. 1, January 2004 Lattice approximations and continuum limits

                    
:fx
4
ªfx

426^fx
2&Ga

fx
213^fx

2&Ga

2 .

Hence, there are constantsc1 ,c2 ,c3P(0,̀ ) such that

^:fx
4 :&G(s,l)<3^fx

2&G(s,l)
2 26^fx

2&Ga
^fx

2&G(s,l)13^fx
2&Ga

2

<3~^fx
2&G(s,l)2C(a)~x,x!!2

<c1l2, sP@0,1#,

^:fx
4 :&G(s,l)>3~^fx

2&G(s,l)2C(a)~x,x!!22O~1!lE d jg~ j !C(a)~x, j !4

2O~1!lE8
d jg~ j !C(a)~x, j !4>c2l22c3l, sP@0,1#,

if lP@0,l2). It follows that there is a constantc4P(0,̀ ) such that

U K E8
dxg~x!:fx

4 :2E dxg~x!:fx
4 : L

G(s,l)
U<c4l, ;sP@0,1#,lP@0,l2!.

Therefore, iflP@0,l2),

U K expS 2
l

4
j1D L

Ga

2 K expS 2
l

4
j2D L

Ga

U5
l

4 U E0

1

~j22j1!expS 2
sl

4
j12

~12s!l

4
j2DdsU

<
c4l2

4 E
0

1K expS sl

4
j12

~12s!l

4
j2D L

Ga

ds

<
c4l2

4 K expS 2
l

4
j1D L

Ga

K expS 2
l

4
j2D L

Ga

~by Hölder’s inequality!. ~6.6!

On the other hand, it follows from Ref. 11, Theorem VIII.5, p. 263, that there is a constac5

P(0,̀ ) such that

K expS 2
l

4
j2D L

Ga

<c5 , ;lP@0,l2!. ~6.7!

Thus, by~6.5! we can easily show that~6.4! is true. The proof of Lemma 6.2 is then complete.j

If lim a→01 a8u logau250, by ~7.1! below we can easily show that there is a constantc6

P(0,̀ ) such that

K S E8
dxg~x!:f4~ f x,a!:2E dxg~x!:f4~ f x,a!: D 2L

m0

5^~j12j2!2&Ga
<c6~a82u logau41a8!

~6.8!

goes to zero asa→01. Thus, by~6.4! and ~6.6! we know thatma,a8,l andma,a,l have the same
asymptotic behavior asa→01, if lim a→01 a8u logau250, which proves Theorem 2.2 forA50.j

Remark: We guess that the left-hand side of~6.4! is also bounded onaP(0,1) if
lim supa→01a8u logau2,`. This assertion can probably be proven by using the approach expl
in Ref. 6 or 9, where a continuumf3

4 field was constructed.
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VII. PROOF OF THEOREM 2.2 FOR AÌ0

Let us first recall some properties of Wick powers~see Ref. 11, Sec. I.1!. If fx is a Gaussian
random variable~under the Gaussian measureG), then

:exp~ tfx!ªexp~ tfx2 1
2 t2^fx

2&G!,

which implies

)
i 51

n

:exp~ t ifxi
!ªexpS (

i 51

n

t ifxi D expS 2
1

2 (
i 51

n

t i
2^fxi

2 &GD
5..expS (

i 51

n

t ifxi D :expS (
1< i , j <n

t i t j^fxi
fxj

&GD .

We remark that exp((1<i,j<ntitj^fxi
fxj

&G) is not random and

K :expS (
i 51

n

t ifxi D :L
G

51.

Therefore,

K )
i 51

n

:exp~ t ifxi
!:L

G

5expS (
1< i , j <n

t i t j^fxi
fxj

&GD . ~7.1!

In this section we also letg>0 be a given function inC0
1(R2) such that*R2ug(x)udx.0. We

always assume in this section that lima→01 a8u logau2P(0,̀ ). The main aim of this section is to
prove Theorem 2.2 forA.0. Many combinatorial results will be used in the following discu
sions.

We set

j15E8
dxg~x!:fx

4
ªE8

dxg~x!:f4~ f x,a!:,

j25E dxg~x!:fx
4
ªE dxg~x!:f4~ f x,a!:.

Let

s54!E
R2

g~x!2dx lim
a→01

a82C(a)~0!4,

whereC(a)(x2y) was defined in Sec. II. Leth be a random variable with the normal distributio
N(0,s) and P be a probability measure under whichh is independent ofU(g) and $f( f ), f
PS(R2)%, whereU(g) was defined in Sec. II.

The following proposition will play a key role in the proof of Theorem 2.2 forA.0.
Proposition 7.1:~i! For anyxPR we have

lim
a→01

Ga~j1<x!5P~U~g!1h<x!.

~ii ! Assume thatl.0 is sufficient small. For anyf 1 ,...,f mPS(R2) we have
                                                                                                                



is a

ith

169J. Math. Phys., Vol. 45, No. 1, January 2004 Lattice approximations and continuum limits

                    
lim
a→01

^f~ f 1!¯f~ f m!e~2l/4! j1&m0
5^f~ f 1!¯f~ f m!e~2 l/4![U(g)1h]&P ,

where^•&P denotes the expectation with respect toP.
It is easy to show that

lim
a→01

a2m (
x1 ,...,x2mPaZ2

f 1~x1!¯ f m~xm!^fx1
¯fxm

j2
k&Ga

5^f~ f 1!¯f~ f m!U~g!k&m0
.

Therefore

lim
a→01

^~j21h!k&P5(
i 50

k S i
kD ^U~g! i&P^hk2 i&P ,

lim
a→01

a2m (
x1 ,...,xmPaZ2

f 1~x1!¯ f m~xm!^f~ f x1 ,a!¯f~ f xm ,a!~j21h!k&P

5^f~ f 1!¯f~ f m!~U~g!1h!k&P ,

where (k
i )5 @k(k21)¯(k2 i 11)#/ i ! . Thus, by Lemma 6.2 we can see that Proposition 7.1

consequence of the following relations:

lim
a→01

~^j1
k&Ga

2^~j21h!k&P!50, ~7.2!

lim
a→01

~^fx1
¯fxm

j1
k&Ga

2^fx1
¯fxm

~j21h!k&P!50 ~7.3!

for all k>0, wherex1 ,...,xmPaZ2 with #$x1 ,...,xm%5m. We prove only~7.2! in detail;~7.3! can
be proven by a similar argument.

To prove~7.2! we need to compute the quantity^j1
k&Ga

. We remark that

^j1
k&Ga

5a82k (
x1 ,...,xkPa8Z2

g~x1!¯g~xk!^:fx1

4 :¯:fxk

4 :&Ga
.

Thus, it suffices to computê:fx1

4 :¯:fxk

4 :&Ga
. For this purpose we now compare the terms w

the coefficient) i 51
k t i

4 on both sides of~7.1!. In general, the term with the coefficient) i 51
k t i

4 on the
right-hand side of~7.1! can be expressed as a sum of some quantities of the following form

qa,a8~x1 ,...,xk!ªCk)
j 52

k

^fx1
fxj

&Ga

l 1,j)
j 53

k

^fx2
fxj

&Ga

l 2,j
¯ )

j 5k21

k

^fxk22
fxj

&Ga

l k22,j^fxk21
fxk

&Ga

l k21,k,

whereCk is just the coefficient,l i , jP$0,1,2,3,4%, ( j 52
k l 1,j54, and

(
j 51

i 21

l j ,i1 (
j 5 i 11

k

l i , j54, i 52,...,k21.

We remark that there is a one-to-one correspondence between the quantityqa,a8 and the set ofl i , j .
For convenience we will use the set ofl i , j to represent the quantityqa,a8 .

Let

Qa,a8~x1 ,...,xk!5 (
l i , j ,4

qa,a8~x1 ,...,xk!,
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where the sum is taken over alll i , j with l i , jP$0,1,2,3%. If there is no suchl i , j , then we set
Qa,a8(x1 ,...,xk)50. Let

Qk5 lim
a→01

a2k (
x1 ,...,xkPaZ2

g~x1!¯g~xk!Qa,a~x1 ,...,xk!.

It is easy to prove that the latter limit indeed exists and is equal to

lim
a→01

a82k (
x1 ,...,xkPa8Z2

g~x1!¯g~xk!Qa,a8~x1 ,...,xk!.

Let us first prove a lemma.
Lemma 7.2:For anyk>2 we have

lim
a→01

^j2
k&Ga

5^U~g!k&m0
5 (

m50

[k/2] S 2m
k D ~2m21!!! ^U~g!2&m0

m Qk22m ,

where (2m21)!! 5(2m21)¯331.
Proof: The first equality is easy to prove. We only prove the second equality. As expla

before, we use the set$ l i , j% to represent the quantityqa,a8(x1 ,...,xk). Let m5#$( i , j ): l i , j54%
and

Fm~a,a8!5 (
#$( i , j ): l i , j 54%5m

a82k (
x1 ,...,xkPa8Z2

g~x1!¯g~xk!qa,a8~x1 ,...,xk!.

Then,^j2
k&Ga

is equal to

a2k (
x1 ,...,xkPaZ2

g~x1!¯g~xk!^:fx1

4 :¯:fxk

4 :&Ga
5 (

m50

[k/2]

Fm~a,a!.

We already know that

lim
a→01

F0~a,a!5 lim
a→01

a2k (
x1 ,...,xkPaZ2

g~x1!¯g~xk!Qa,a~x1 ,...,xk!5Qk .

We now considerFm(a,a) for mP@1,@k/2##. For mP@1,@k/2## we can choose a subse
$ i 1 ,i 2 ,...,i 2m21 ,i 2m% from the set$1,2,...,k% such thatl s,t54, if s,tP$ i 1 ,...,i 2m%. It is clear that
there are (k

2m) choices of such subsets. For such a fixed subset$ i 1 ,i 2 ,...,i 2m21 ,i 2m% we can
constructm pairs (j 1 , j 2),...,(j 2m21 , j 2m) with $ j 1 ,...,j 2m%5$ i 1 ,...,i 2m%. It is clear that there are
(2m21)!! choices of such pairs. Moreover, by~7.1! we easily prove that

lim
a→01

a4 (
x1 ,x2PaZ2

g~x1!g~x2!^:fx1

4 ::fx2

4 :&Ga

5 lim
a→01

4!a4 (
x1 ,x2PaZ2

g~x1!g~x2!^fx1
fx2

&Ga

4

5^U~g!2&m0
.

From the above discussions we see that lima→01^j2
k&Ga

is equal to
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lim
a→01

(
m50

[k/2] S 2m
k D (

l j 1 , j 2
5¯5 l j 2m21 , j 2m

54
a4m~4! !m (

xj 1
,...,xj 2m

PaZ2
g~xj 1

!¯g~xj 2m
!^fxj 1

fxj 2
&Ga

4
¯

3^fxj 2m21
fxj 2m

&Ga

4 a2k24m (
xt1

,...,xtk22m
PaZ2

g~xt1
!¯g~xtk22m

!Qa,a~xt1
,...,xtk22m

!

5 (
m50

[k/2] S 2m
k D ~2m21!!! ^U~g!2&m0

m Qk22m ,

where$t1 ,...,tk22m%5$1,2,...,k%\$ j 1 , j 2 ,...,j 2m%. This then completes the proof of Lemma 7.2.j

We now turn to the proof of~7.2!. It is clear that~7.2! holds fork50 and 1. Let us first prove
~7.2! for k52. By ~7.1! we know that̂ :fx

4 ::fy
4 :&Ga

54!C(a)(x2y)4. Hence

^j1
2&Ga

5a84 (
x,yPa8Z2

g~x!g~y!^:fx
4 ::fy

4 :&Ga

54!a84 (
x,yPa8Z2

g~x!g~y!C(a)~x2y!4

54!a82C(a)~0!4a82 (
xPa8Z2

g~x!214!a84 (
x,yPa8Z2,xÞy

g~x!g~y!C(a)~x2y!4.

Since lima→01 a8u logau2P(0,̀ ), it is easy to show that

lim
a→01

4!a84 (
x,yPa8Z2,xÞy

g~x!g~y!C(a)~x2y!4

5 lim
a→01

4!a4 (
x,yPaZ2

g~x!g~y!C(a)~x2y!4

5^U~g!2&m0
.

In other words, we have

lim
a→01

S 4!a84 (
x,yPa8Z2,xÞy

g~x!g~y!C(a)~x2y!42^j2
2&GaD 50.

Moreover,

lim
a→01

4!a82C(a)~0!4a82 (
xPa8Z2

g~x!25^h2&P5s.

Therefore,

lim
a→01

~^j1
2&Ga

2^h2&P2^j2
2&Ga

!50,

which implies~7.2! for k52, since^(h1j2)2&P5^h2&P1^j2
2&Ga

.
We now prove~7.2! for the general case. From the proof of Lemma 7.2 we see that
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^j1
k&Ga

5 (
m50

[k/2]

Fm~a,a8!

5 (
m50

[k/2] S 2m
k D (

l j 1 , j 2
5¯5 l j 2m21 , j 2m

54
a84m~4! !m (

xj 1
,...,xj 2m

Pa8Z2
g~xj 1

!¯g~xj 2m
!

3^fxj 1
fxj 2

&Ga

4
¯^fxj 2m21

fxj 2m
&Ga

4 a82k24m

3 (
xt1

,...,xtk22m
Pa8Z2

g~xt1
!¯g~xtk22m

!Qa,a8~xt1
,...,xtk22m

!.

From the proof of~7.2! for k52 we also see that

lim
a→01

4!a84 (
xj 2i 21

,xj 2i
Pa8Z2

g~xj 2i 21
!g~xj 2i

!^fxj 2i 21
fxj 2i

&Ga

4 5^h2&P1^U~g!2&m0
.

Using this we easily show that

lim
a→01

~4! !ma84m (
xj 1

,...,xj 2m
Pa8Z2

g~xj 1
!¯g~xj 2m

!^fxj 1
fxj 2

&Ga

4
¯^fxj 2m21

fxj 2m
&Ga

4

5(
l 50

m S l
mD ^h2&P

l ^U~g!2&m0

m2 l .

It is clear that

lim
a→01

a82k24m (
xt1

...,xtk22m
Pa8Z2

g~xt1
!¯g~xtk22m

!Qa,a8~xt1
,...,xtk22m

!5Qk22m .

It follows, inserting this result in above expression for^j1
k&Ga

,

lim
a→01

^j1
k&Ga

5 (
m50

[k/2] S 2m
k D ~2m21!!! (

l 50

m S l
mD ^h2&P

l ^U~g!2&m0

m2 lQk22m . ~7.4!

By computation we know that the right-hand side of~7.4! is equal to

(
l 50

[k/2]

(
m5 l

[k/2] S l
mD S 2m

k D ~2m21!!! ^h2&P
l ^U~g!2&m0

m2 lQk22m

5 (
l 50

[k/2] S 2l
k D ~2l 21!!! ^h2&P

l (
m5 l

[k/2]
~k22l !¯~k22m11!

2m2 l~m2 l !!
^U~g!2&m0

m2 lQk22m

5 (
l 50

[k/2] S 2l
k D ~2l 21!!! ^h2&P

l (
m50

[(k22l )/2] S 2m
k22l D ~2m21!!! ^U~g!2&m0

m Qk22l 22m ,

which is equal by Lemma 7.2 to

(
l 50

[k/2] S 2l
k D ~2l 21!!! ^h2&P

l ^U~g!k22l&m0
5^@h1U~g!#k&P .
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This then completes the proof of~7.2!, since lima→01^(h1j2)k&P5^@h1U(g)#k&P . Thus we
also have completed the proof of Proposition 7.1. j

Proof of Theorem 2.2 for A.0: By Lemma 6.1 and Lemma 6.2 we easily show that ifl
.0 is sufficient small,

lim
a→01

K expS 2
l

4
j1D L

Ga

5 K expS 2
l

4
@U~g!1h# D L

P

5 K expS 2
l

4
U~g! D L

m0

K expS 2
l

4
h D L

P

,

lim
a→01

K f~ f 1!¯f~ f m!expS 2
l

4
j1D L

Ga

5 K f~ f 1!¯f~ f m!expS 2
l

4
@U~g!1h# D L

P

5 K f~ f 1!¯f~ f m!expS 2
l

4
U~g! D L

m0

K expS 2
l

4
h D L

P

.

Therefore, ifl.0 is sufficiently small, we have

lim
a→01

^f~ f 1!¯f~ f m!&ma,a8,l
5^f~ f 1!¯f~ f m!&nl,g

.

Since the original continuumf2
4-quantum field measurenl,g is uniquely determined by its mo

ment functions,31 we have actually provedml.g5nl,g , if l.0 is sufficient small. This ends th
proof of Theorem 2.2 forA.0. j

VIII. SOME REMARKS AND OPEN PROBLEMS

In this section we give some remarks on the new lattice approximation of the contin
f2

4-quantum field. In the following we always assume thatgPC0
1(R2) is given such that,g>0,

*R2g(x)dx.0.
~i! Coincidence with the original field. Assume lima→01 a8u logau2,`. In this case, we believe

that ml,g as given in Theorem 2.1 is well defined also forall l>0 ~without the restriction 0
<l<l0). If one could prove this, then from the proof of Theorem 2.2 we would have tha
measureml,g with lP@0,̀ ) also coincides with the originalf2

4-field measure with cutoffg, nl,g ,
for all l,g. Unfortunately, we are not yet able to prove the former assertion onml,g . The main
difficulty is that we are not able to prove the boundedness of the sequence$^e2lVan8Z2&Gan

%n>1 for

all l>0 ~we have only a control for 0<l<l0).
~ii ! A general existence result. In Theorem 2.1 we already constructed a continu

f2
4-quantum fieldml,g if lim a→01 a8u logau5/4,`. From the discussion given in the Appendix w

can see that we can also construct a continuumf2
4-quantum fieldml,g if lim a→01 a8u logau7/6

,`. In general, if there iseP(0,1
4) such that lima→01 a8u logau11e,`, then with similar tech-

niques it should be possible to show that we could use the general skeleton inequalities g
Ref. 25 to define latticef2

4 fields with new counterterms and then construct a~nontrivial! con-
tinuum f2

4-quantum fieldml,g by approximation from these latticef2
4 fields with the new coun-

terterms. Since the main idea for constructing the new continuumf2
4 field has been already

explained in the proof of Theorem 2.1, we are not going to state and prove the general ex
theorem.

~iii ! Singularity with respect to the Gaussian measure. Consider the case

lim
a→01

a8u logau25` lim
a→01

a8u logau11e,`
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for someeP(0,1
4). The originalf2

4-field measure with spatial cutoffg ~i.e., the measurenl,g

given before Theorem 2.1! is absolutely continuous with respect to the Gaussian measurem0 . It is
easy to show that̂(*8dxg(x):fx

4 :)2&Ga
goes to infinity asa→01, if lim a→01 a8u logau25`. In

another paper18 we have proved that*8dxg(x):fx
4 : satisfies the central limit theorem asa

→01, if lim a→01 a8u logau25`. In other words, we proved in Ref. 18 that there is a constanc
P(0,̀ ) such that

lim
a→01

GaS c~a8u logau2!21E8
dxg~x!:fx

4 :<yD5~2p!21/2E
2`

y

e2uzu2/2dz, ;yPR.

Using this fact one might try to prove that there are Borel measurable setsDn , n>1 such that

lim
n→`

m0~Dn!50, lim inf
n→`

ml,g~Dn!.0.

It then would follow that the new measureml,g ~constructed forl.0 sufficiently small! is not
absolutely continuous with respect to the Gaussian measurem0 if lim a→01 a8u logau25` and
lima→01 a8u logau11e,`.

~iv! Quasi-invariance. Assume lima→01 a8u logau25` and lima→01 a8u logau3/2,`. In this
case, we believe that the new measureml,g is k quasi-invariant for a linear subset ofk in S(R2)
~for the definition ofk quasi-invariance the reader is referred to Ref. 11, 32–34, or 35;
corresponding property in the standardf2

4 model was discussed, e.g., in Refs. 35–37!. In this case
it should be possible to use the approach by Dirichlet forms,35,36 as a tool, to study the stochast
quantization of the field measureml,g ~similarly as it was done in Refs. 35 and 36 for the origin
f2

4-field measure and in Ref. 38 for the three-dimensional polymer measure!.
~v! No quasi-invariance. Assume lima→01 a8u logau3/25` and lima→01 a8u logau11e,` for

someeP(0,1/2). In this case we believe thatml,g with smalll.0 is not quasi-invariant for any
kPS(R2). We remark that the original continuumf2

4 field is k quasi-invariant for somek
PS(R2).11,32Thus in particularml,g would be different from the originalf2

4 field measurenl,g .
The original continuumf3

4-field measure with spatial cutoff is believed to be notk quasi-invariant
and also singular with respect to the Gaussian measurem0 on S8(R3) ~cf. Ref. 39 for partial
results!. In this sense, the new fieldml,g in the present case might behave like the originalf3

4-field
measure.

~vi! No Borel summability. Assume as in ~v! lima→01 a8u logau3/25` and
lima→01 a8u logau11e,` for someeP(0,1/2). If the conjecture we made in~v! holds, we have
that ml,g is different fromnl,g . In this case we expect that the expansion in powers ofl of the
n-point functions ofml,g is not Borel summable~whereas it is for those of the standardnl,g ~Ref.
40!.

~vii ! Triviality. Assume lima→01 a8u logau,` and lima→01 a8u logau25`. In this case, we
believe that any latticef2

4-field model measure with or without counterterms is weakly converg
to a Gaussian field measure~if the limit exists!. This conjecture is based on an intersecti
~restricted to the subsetmnZ2, with mnPN) property of independent random walks inZ2. Let
$Xn% and $Yn% be two independent simple random walks inZ2 with probability measureP8.
Assume thatX05xn , Y05yn and uxn2ynu>O(1)n1/2. Then we can easily prove that limn→`P8
~there arek>1 andl>1 such thatXk5YlPmnZ2)50, if limn→`mn

2n21(logn)25` ~cf. Ref. 41,
Theorem 1.3 and Lemma 4.5!. It seems possible to prove the above conjecture by using
approach given in Ref. 1 or 42, where the latticefd

4 fields ford>5 with the same cutoff in the free
and interacting parts were proved to be weakly convergent to the Gaussian field~if the limit
exists!.

~viii ! Convergence without subsequences. Following Ref. 5, one can show that a
Osterwalder–Schrader axioms, except perhaps for rotation invariance, are satisfied for thef2

4

fields in the infinite-volume limit defined by Theorem 2.1. The continuumf2
4 andf3

4 fields are
also constructed in Ref. 5 as subsequence limits of some lattice field theories. It is believe
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these fields given in Ref. 5 are also continuum limits of the corresponding lattice theories w
involving subsequences. In Ref. 5, Sec. 9, Eq.~2!, a way was suggested to prove that the abo
assertion is correct. According to this suggestion one has to formulate thefd

4 fields on two
different lattices~with different lattice meshesa1 ,a18 anda2 ,a28 , respectively! as a field on one
lattice and then try to interpolate between the two fields in two stages@i.e., try to estimate the
differences given by Ref. 5, Eq.~9.4!#. From Theorem 2.1 given above, however, we can see
each difference given in Ref. 5, Eq.~9.4!, is not always convergent to zero asai ,i 51,2, go to
zero, although the summation of the two differences given in Ref. 5, Eq.~9.4!, is believed to be
convergent to zero. to It would also be very interesting to prove the existence of the cont
limit of na,a8 asa,a8→01 without involving subsequences.

Finally, we remark that one can also use the approach given in Ref. 5 to discuss th
convergent lattice approximation for thef3

4-quantum field.
Note added. A first version of this paper was prepared in 1995. Due to the untimely depa

of Xian Yin Zhou, the revised version had to be completed by the two first named authors, w
the essential precious help of Xian Yin. These authors deeply mourn the departure of their
whose work and inspiration were at the basis of the whole present paper.

Note added in proof.An earlier version of the present paper, with the title ‘‘A new converg
lattice approximation for thef2

4-quantum field’’ has appeared in ‘‘Collection Papers of Zh
Xianyin,’’ Beijing Normal University, Press, Beijing~Vol. II, pp. 778–810!, 2002.
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APPENDIX

In this appendix, we give an estimate ofU4 ~see Sec. III! up to the third order in the coupling
constantl. As in Ref. 24, Sec. 3, we writeU4 with the help of a functionF(x1 ,x2ux3 ,x4) in the
form

U4~x1 ,x2 ,x3 ,x4!5F~x1 ,x2ux3 ,x4!1F~x1 ,x3ux2 ,x4!1F~x1 ,x4ux2 ,x3!.

Let

I k1 ,k2 ,k3
~x1 ,x2!5 (

i 1 ,i 2 ,i 3
^fx1

fki 1
&^fki 1

fki 2
&^fki 2

fki 3
&^fki 3

fx2
&,

where the sum is taken over all the permutations (i 1 ,i 2 ,i 3) of the set$1,2,3%. Using the random
walk representation we can show that there isI (x1 ,x2ux3 ,x4) such that

F~x1 ,x2ux3 ,x4!>lc1~xW !1l2c2~xW !1l3c3~xW !1l5I ~x1 ,x2ux3 ,x4!,

with xW5(x1 ,x2 ,x3 ,x4), I (x1 ,x2ux3 ,x4) does not depend onl, and
                                                                                                                



176 J. Math. Phys., Vol. 45, No. 1, January 2004 Albeverio, Bernabei, and Zhou

                    
c1~xW ![26E8
d jg~ j !^fx1

f j&^fx2
f j&^fx3

f j&^fx4
f j&,

c2~xW ![18E8
d jg~ j !E8

dkg~k!^fx1
f j&^fx2

f j&^fx3
fk&^fx4

fk&^f jfk&
2

118E8
d jg~ j !E8

dkg~k!^fx3
f j&^fx4

fk&^f jfk&
2~^fx1

f j&^fkfx2
&

1^fx1
fk&^f jfx2

&!,

c3~xW ![28E8
d jg~ j !^fx3

f j&^fx4
f j&E8

dk1g~k1!E8
dk2g~k2!^fx1

fk1
&^fk1

fk2
&2^fk2

f j&

3^f jfk1
&^fk1

fx2
&212E8

d jg~ j !^fx3
f j&^fx4

f j&E8
dk1g~k1!E8

dk2g~k2!^fx1
fk1

&

3^fk1
f j&^f jfk2

&^fk1
fk2

&2^fk2
fx2

&28E8
d jg~ j !^fx3

f j&

3^fx4
f j&E8

dk1g~k1!E8
dk2g~k2!^f jfk1

&^fx2
fk2

&^fk1
fk2

&2~^fx1
fk1

&2^fk2
f j&

1^fx1
fk2

&^fk1
f j&!212E8

d jg~ j !E8
dk1g~k1!E8

dk2g~k2!^fx1
fk1

&^fk1
f j&

2^fk1
fx2

&

3^fx3
fk2

&^fx4
fk2

&^f jfk2
&228E8

d jg~ j !E8
dkg~k!^fx3

f j&^fx4
fk&^f jfk&

3F ^fkfx2
&E8

dlg~ l !^fx1
f l&^fkf l&^f jf l&

21^f jfx2
&E8

dl g~ l !~^fx1
f l&^f jf l&

3^fkf l&
2!1E8

dlg~ l !^fkf l&^f lfx2
&^f lf j&~^fx1

f l&^f jfk&1^fx1
f j&^f lfk&!

1E8
dlg~ l !^f jf l&^f lfx2

&^f lfk&~^fx1
f l&^f jfk&1^fx1

fk&^f lf j&!G236E8
d jg~ j !

3^fx1
f j&^f jfx2

&E8
dk1g~k1!E8

dk2g~k2!^fx3
fk1

&^f jfk1
&

3^fk1
fk2

&2^fx4
fk2

&2^fx4
fk2

&^f jfk2
&218E8

d jg~ j !^fx1
f j&

3^f jfx2
&E8

dk1g~k1!E8
dk2g~k2!^fx3

fk1
&^fx4

fk1
&^fk1

fk2
&2^f jfk2

&2

2
8

3 E8
d jg~ j !E8

dk1g~k1!E8
dk2g~k2!^fx3

fk1
&^f jfk1

&^fx4
fk2

&^f jfk2
&

3I j ,k1 ,k2
~x1 ,x2!26E8

d jg~ j !E8
dk1g~k1!E8

dk2g~k2!^fx4
fk1

&^f jfk1
&2^fx3

fk2
&

3^fk1
fk2

&^f jfk2
&~^fk2

fx2
&^fx1

f j&1^f jfx2
&^fx1

fk2
&!

26E8
d jg~ j !E8

dk1g~k1!E8
dk2g~k2!^fx3

fk1
&^f jfk1

&2^fx4
fk2

&^fk1
fk2

&^f jfk2
&
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3~^fk2
fx2

&^fx1
f j&1^f jfx2

&^fx1
fk2

&!212E8
d jg~ j !E8

dk1g~k1!E8
dk2g~k2!

3^fx3
fk1

&^fx4
fk1

&^f jfk1
&^f jfk2

&2^fk1
fk2

&~^fk2
fx2

&^fx1
f j&1^f jfx2

&^fx1
fk2

&!

236E8
d jg~ j !E8

dk1g~k1!E8
dk2g~k2!^fx4

f j&^fx3
fk2

&^f jfk2
&^fk1

fk2
&2^f jfk1

&

3~^fk1
fx2

&^fx1
f j&1^f jfx2

&^fx1
fk1

&!236E8
d jg~ j !E8

dk1g~k1!E8
dk2g~k2!

3^fx3
f j&^fx4

fk2
&^f jfk2

&^fk1
fk2

&23^f jfk1
&~^fk1

fx2
&^fx1

f j&1^f jfx2
&

3^fx1
fk1

&!224E8
d jg~ j !E8

dk1g~k1!E8
dk2g~k2!^fx3

f j&^fx4
fk1

&^f jfk2
&

3^fk1
fk2

&I j ,k1 ,k2
~x1 ,x2!224E8

d jg~ j !E8
dk1g~k1!E8

dk2g~k2!^fx4
f j&^fx3

fk1
&

3^f jfk2
&^fk1

fk2
&I j ,k1 ,k2

~x1 ,x2!. ~A1!

Define

dm2
35254l3a84C(a)~0!5

and

V̄5
l

4 E8
g~x!fx

4dx1
1

2
dm1

2E8
g~x!fx

2dx1
1

2
dm2

2E8
g~x!2fx

2dx1
1

2
dm3

2E8
g~x!3fx

2dx,

S̄(a,a8)~x1 ,...,x2n!5
^fx1

¯fx2n
e2V̄&Ga

^e2V̄&Ga

.

Then, proceeding as in the proof of Theorem 2.1 we can use~A1! to prove that there are sequenc
$an%, $an8% with limn→` an50 and limn→` an8u loganu7/6,`, and $gn%,C0(R2) with
limn→`gn(x)5g(x), such that for any givenf 1 ,...,f 2mPS(R2) and m>1 the following limit
exists:

S̄~ f 1 ,...,f 2m!5.. lim
n→`

(
x1 ,...,x2mPanZ2

S̄(an ,an8)~x1 ,...,x2m!)
i 51

2m

an
2f i~xi !.

Moreover, there is a probability measurem̄l,g on S8(R2) satisfying

E
S8(R2)

f~ f 1!¯f~ f 2m!m̄l,g~df!5S̄~ f 1 ,...,f 2m!, f 1 ,...,f 2mPS~R2!, m>1.
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Effective Lagrangians for scalar fields
and finite size effects in field theory
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We first discuss the approach of effective field theory in ad-dimensional Euclidean
space. We consider a model with two interacting scalar fields (Lint(w1 ,w2)
5 (l2/2) (w1w2)2) with massesm1 andm2 . Assumingm2@m1 we show that there
is a decoupling in the effective theory describing the dynamic of the light mass
field. Furthermore, we consider the presence of two parallel hyperplanes which
break translational symmetry, with a natural cutoff satisfyingm2@L.m1 . Then
imposing Dirichlet and also Neumann boundary conditions, we study the perturba-
tive renormalization of the effective theory (lw4) in a region bounded by the two
parallel hyperplanes in the one-loop approximation. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1629138#

I. INTRODUCTION

The quantum field theory of a self-interacting scalar field has long served as a laborato
developing methods of analysis that can be applied to theories of more direct physical inter
this paper we consider a theory with a light mass fieldw1(x), and a heavy mass fieldw2(x) with
massesm1 andm2 , respectively. Our purpose is to investigate first the effective theory assoc
with these two interacting scalar fields defined in ad-dimensional Euclidean space. After th
construction of an effective theory for the light field, we show that, in some limit, there
decoupling between the light and heavy mass fields as stated by the Appelquist–Car
theorem.1 Additionally, we impose boundary conditions on the resulting theory in order to s
finite-size effects and the renormalization program in systems where translational symm
broken. The interest in the study of quantum fields in the presence of boundaries appears a
problem investigated by Casimir more than 50 years ago.2 Complete reviews of this effect can b
found in Refs. 3–5.

In 1948, Casimir showed that neutral perfectly conducting parallel plates in vacuum a
each other. The effect can be interpreted as follows: the presence of metallic plates chan
vacuum fluctuations of a quantized electromagnetic field. Consequently, the zero-point ene
the electromagnetic field becomes a measurable quantity. In the absence of any classica
ground, the renormalized vacuum expectation value of the Hamiltonian operator can be co
defined by the Wick-ordered product. The main support for this procedure comes from the
that for a relativistic field theory, the vacuum expectation value of the stress-energy tensor
vanish. This fact is necessary to ensure that the realization of the Poincare´ generators in terms o
the fields of the theory satisfy the correct commutation relations.6 On the other hand, where
external fields or macroscopic structures are present in the domain where the field is defined
elaborated methods must be used to find the renormalized vacuum energy of the quantized

a!Electronic mail: mcaicedo@usb.ve
b!Electronic mail: nfuxsvai@cbpf.br
1790022-2488/2004/45(1)/179/18/$22.00 © 2004 American Institute of Physics
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avoid undesirable divergences. A cutoff regularization that identifies the divergent contributio
the vacuum energy, or any regularization procedure, followed by a renormalization, is mand
The fundamental idea of the Casimir renormalization procedure is the following: althoug
zero-point energy of a system with infinite degrees of freedom is formally divergent, the diffe
between the zero-point energies of two different physical configurations, in some situations,
shown to be finite.

In quantum electrodynamics there is a standard argument used to support the impleme
of a regularization procedure followed by renormalization. Both procedures are necess
obtain the renormalized vacuum expectation value of the stress-energy tensor associated
Maxwell field in the presence of boundaries. At high frequencies no real material is a p
conductor and a wavelength cutoff corresponding to the finite plasma frequency must be in
in the model. High energy modes are insensitive to the boundaries and only the low energy
are affected by them. Consequently, in the study of quantum electrodynamics in the prese
conducting boundaries, starting from the generating functional for then-point correlation func-
tions, one may integrate out all the Fourier modes associated with the Dirac field and obt
effective theory for the Maxwell field.

We are investigating a theory describing two massive interacting scalar fields
d-dimensional Euclidean space. Assuming different mass scales, we are obtaining the e
action for the light mass field. One could, theoretically, envision a theory with two massive
with different mass scales on which the mass of the heavy field is much smaller than the n
cutoff of the boundary,L. In this paper we are not interested in discussing this situation.

It is important to keep in mind that in order to construct an effective action that gives a
description of the physics of the light mass field in the presence of the boundaries, the F
modes associated with both fields with wavelength smaller thanL21 must be integrated out~note
that we are always assuming a sharp cutoff!. Since dealing with functional integrals with cutof
in general models is quite complicated, we will limit ourselves to a heavy mass field with
self-interacting term in the action. We are studying finite size effects for the light mass fie
three steps. First, we integrate over the modes of the heavy mass field, obtaining an ef
action for the light mass field. Second, we are taking the limit in which the decoupling theor
valid (m2→`), with regard to the effective action as the fundamental action and we are assu
boundary conditions over the remaining light field. Finally, combining different analytic reg
ization procedures, followed by a renormalization, one is able to eliminate the usual bulk an
the additional surface divergences that appear in the theory. The final result of our proced
that we have the effect of the compactification of one dimension, breaking the transla
invariance of the original theory. In this situation we have an effective field theory of the
mass field, with finite size effects. Due to our choice~two-parallel hyperplates!, the region outside
the boundaries is the union of two simply connected domains. The renormalization of the
acting field theory in such a region must be carried out along the same lines as for the in
region. For simplicity we are considering only the interior region.

There are many papers in the literature discussing quantum field theory in the prese
boundaries or of macroscopic structures. The radiative corrections to the renormalized
density associated with the Maxwell field, in the presence of perfectly conducting plates, ass
no boundary conditions for the Dirac field, was performed by Bordaget al.7 Temperature correc
tions for this model were analyzed by Robaschiket al.8 Bordaget al.9 also studied the leading
radiative correction to the renormalized energy, assuming that the parallel plates are repre
by delta function potentials. Using the approach of effective field theory, the radiative corre
to the Casimir effect integrating out the fermionic degrees of freedom was examined by Kon
Ravndal and Ravndal and Thomassen.10 A different approach was used by Falomiret al.11 These
authors used a sharp cutoff to study scalar fields in the presence of a spherical shell. They
that the boundary is transparent to the heavy modes while for the soft modes they as
Dirichlet boundary conditions. Actor12 studied two interacting scalar fields in the presence
macroscopic boundaries assuming that only one of the fields satisfies classical boundary
tions. Using the generalized zeta function method13 the one-loop effective action was presente
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More recently, Melnikov14 investigated the low-energy effective action in a model with two sca
fields and also in quantum electrodynamics. Our treatment is very similar to that of Melniko
the study of the low-energy effective action for a theory with two interacting scalar fields.

It is important to point out that the combination of effective field theory and finite size eff
can produce unexpected new phenomena. A well-known example of this situation is the S
horst effect.15 Studying quantum electrodynamics between perfectly conducting plates, Sc
horst concluded that the speed of light normal to the plates exceeds light speed in va
Nevertheless, parallel to the plates, light travels as in unbounded space, i.e., with its v
speed. Further calculations by Barton16 and also by Barton and Scharnhorst17 confirmed the
original result. The Scharnhorst effect is a consequence of the use of the Euler–Heis
Lagrangian density18,19 in the presence of the plates. The central feature of this effective Lagr
ian is a derivative expansion of the photon effective action obtained by integrating out the f
onic field in the Maxwell–Dirac action. For an interesting discussion concerning the veloci
propagation of signals in different effective field theory models, see Ref. 20.

Finite size effects that do not break translational invariance in quantum field theory also
been extensively studied in the literature.21,22For translationally invariant systems, we can chan
from coordinate space to momentum space representation. The latter is a more convenien
work to analyze the divergences of then-point Schwinger functions, on which translational i
variance is realized through conservation conditions. For systems where the translational
ance has been partially broken~so there is still translational invariance along certain direction! a
more convenient representation for then-point Schwinger functions is a mixed momentum
coordinate representation. Important references discussing the renormalization program
presence of boundaries are the Symanzik23 and also Diehl and Dietrich24 papers.

In this paper we are studying the one-loop renormalization program in the presence o
faces where a self-interacting scalar field satisfies boundary conditions. We are interes
investigating a very simple model where we can construct an effective field theory for the
mass field on which the decoupling theorem holds. Furthermore, we consider a self-inter
field theory in the presence of boundaries. We will consider a Casimir-type configuration w
one of the coordinates,z, lies in the interval@0,L# imposing Dirichlet–Dirichlet boundary condi
tions. For the sake of completeness we will also study the Neumann–Neumann boundary
tions.

The organization of the paper is as follows: in Sec. II we introduce a simple model of
Euclidean interacting scalar fields. By integrating out the heavy mass field in the func
integral, we are able to build the effective action for the light mass field. In Sec. III we disc
scalar field theory with finite size effects assuming boundary conditions over hypersurface
thus build the two-point and four-point functions, both for Dirichlet–Dirichlet and Neuma
Neumann boundary conditions. In Sec. IV we discuss the surface divergences of the on
two-point and also four-point function. In Sec. V we discuss the global approach, used to
the Casimir energy associated with a field in the presence of boundaries with well define
metric shapes. Finally, Sec. VI contains our conclusions. In this paper we are using\5c51.

II. THE EUCLIDEAN FUNCTIONAL INTEGRAL AND THE EFFECTIVE ACTION

The goal of this section is to study a very simple model of two interacting scalar fields de
in a d-dimensional Euclidean space. After the construction of an effective action,25–28 the decou-
pling theorem holds. This can be done imposing the infinite mass limit for the heavy field. Fo
purpose we start from a model with two different mass scales. We consider two real inter
massive scalar fieldsw1(x) and w2(x) with massesm1 and m2 , respectively, and regard fiel
w2(x) as the heavy field (m2@m1). For this theory, we will rederive the Euclidean version for t
Appelquist–Carazzone theorem. For a particular self-interactingw1(x) part, in the limit m2

→`, there is a decoupling in the effective theory. The only effects of the heavy fieldw2(x) are a
modification of the value of the renormalized mass and the coupling constant of the light
w1(x).
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The Schwinger functional~the generating functional of then-point Schwinger functions!
associated with two massive real fields in ad-dimensional Euclidean space given by

Z@ j 1 , j 2#5NE @dw1#@dw2# e2S[w1 ,w2] 1(source terms), ~1!

where @dw1#@dw2#5)xPRddw1(x)dw2(x) is an appropriate measure,S@w1 ,w2# is the classical
action associated with the Euclidean fields, and in the generating functional,N is a normalization.
As usual, then-point Schwinger functions of the theory can be obtained by functional diffe
tiation with respect to the external sourcesj 1(x) and j 2(x). Since in this section our interest is i
constructing the effective theory for the light field, the introduction of the external sources i
functional integral is not important for our discussion. We consider the theory described b
following Lagrangian density with two real scalar fields

L~w1 ,w2!5L0~w1 ,w2!1Lint~w1 ,w2!, ~2!

where the free part of the Lagrangian density is given by

L0~w1 ,w2!5 1
2 ~]mw1!21 1

2 m1
2w1

21 1
2 ~]mw2!21 1

2 m2
2w2

2 , ~3!

and the interacting part is given by

Lint~w1 ,w2!5V~w1!1
l2

2
~w1w2!2. ~4!

Note that the precise form ofV(w1) is not important for the construction of the effective actio
As we will see later in this section, the form of theV(w1) is important to implement the
Appelquist–Carazzone decoupling theorem.

The action of the model is given by

S@w1 ,w2#5E ddx L~w1~x!,w2~x!!, ~5!

and using Eq.~3! and Eq.~4! can be conveniently split up as

S@w1 ,w2#5S@w1~x!#1Sw2
@w1~x!,w2~x!#, ~6!

S@w1(x)# being thew2(x)-independent part of it. In order to obtain a derivative expansion of
effective actionGeff@w1#, we have to assumem2@m1 . The operators (2D1m1

2)21 and (2D
1m2

2)21 must be used to define the free two-point Schwinger functions of the fieldsw1(x) and
w2(x). As usual,D is the Laplacian operator inR d. The free two-point Schwinger functions o
both fields can be represented by

G~x2y;mi !5^xu~2D1mi
2!21uy&, i 51,2 ~7!

and they satisfy

~2D1mi
2!G~x2y;mi !5dd~x2y!. ~8!

To obtain an effective action for the light mass field of the theory, we integrate out the heavy
w2(x) in the functional integral. The effective action of the light mass fieldGeff@w1# is defined by

e2Geff[w1]5E @dw2# e2S[w1 ,w2] . ~9!
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Using Eq.~6! it is possible to write Eq.~9! as

e2Geff[w1]5e2S[w1]E @dw2# e2Sw2
[w1 ,w2] . ~10!

The first step in our calculation is straightforward, sinceSw2
@w1 ,w2# is given by

Sw2
@w1 ,w2#5E ddxS w2~2D1m2

2!w21
l2

2
~w1w2!2D . ~11!

Using Eq. ~11! the functional integral appearing in Eq.~10! can be performed by means o
Gaussian integrations, yielding

e2Geff[w1]5e2S[w1]~detO!2 ~1/2!, ~12!

where we have

O~x,y;m2!5^xuOuy&5~2Dx1m2
21l2w1

2~x!!dd~x2y!. ~13!

Consequently, the effective action for the light mass fieldw1(x) is given by

Geff@w1#5S@w1#1 1
2 tr ln O. ~14!

Dropping a term that contributes trivially to the effective actionGeff@w1#, we get

Geff@w1#5S@w1#1 1
2 tr ln~11l2~2Dx1m2

2!21w1
2!. ~15!

There are many ways to evaluate the Fredholm determinant, defined by the above equation
a series expansion, it is possible to rewrite Eq.~15! as

Geff@w1#5S@w1#2
1

2 (
k51

`
~21!k

k
tr~l2~2Dx1m2

2!21w1
2!k, ~16!

or, in a more compact notation,

Geff@w1#5S@w1#1 (
k51

`

G (k)@w1#, ~17!

where each term of the seriesG (k)@w1# is given by Eq.~16!. Let us study the first nontrivia
contribution of this series, namely, the termk51 which corresponds to a one-loop diagram. It
explicitly given by

G (1)@w1#5
l2

2 E ddx G~x2x;m2! w1
2~x!. ~18!

Using the Fourier representation of the two-point Schwinger function associated with the
mass fieldw2(x), and defining a new coupling constants5l2m42d, wherem is the usual dimen-
sional parameter that appears in the dimensional regularization procedure, we readily obta

G (1)@w1#5
s

2~2Ap!d
GS 12

d

2D ~m2!d22E ddx w1
2~x!. ~19!
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Now, the Gamma functionG(z) is a meromorphic function of the complex variablez with simple
poles at the pointsz50,21,22,... . In the neighborhood of any of its polesz52n, for n
50,1,2,...,G(z) has a representation given by

G~z!5
~21!n

n!

1

~z1n!
1V~z1n!, ~20!

whereV(z1n) stands for the regular part of the analytic extension ofG(z). Note that for odd
dimensionsG (1)@w1# is completely regular while in even dimensions (d52, ,51,2,. . . ) there
are singularities in the dimensional regularized quantity. By using the standard dimensiona
larization prescriptiond52,2e and since Eq.~19! is quadratic in the fieldw1(x), the divergence
can be absorbed in the renormalized mass of thew1(x) field. Consequently, we define the reno
malized mass for the light field as

m1R
2 5m1

22
sm2

d22

~4p!d/2F ~21!~d/2! 21

S d

2
21D !

2

e
1VS e

2D G . ~21!

Note that for odd-dimensional cases there are no poles. We have thus shown that at the o
approximation, the first correction to the effective action given byG (1)@w# that we obtain inte-
grating out the heavy mass fieldw2(x) is just a modification of the value of the renormalized ma
associated with the light field.

We will now show that the second correction to the effective action given byG (2)@w1# only
modifies the value of the coupling constant of the fieldw1(x). To this end, let us study the secon
term of the series in Eq.~17!. It corresponds to a one-loop diagram and is actually given by

G (2)@w1#52
s2

4 E ddxE ddy G~y2x;m2!G~x2y;m2!w1
2~x!w1

2~y!, ~22!

which, upon substitution of the free two-point Schwinger function associated with thew2(x)
heavy field and the introduction ofI (p2,m2

2) as

I ~p2,m2
2!5

1

~2p!d E ddq
m2

42d

~q21m2
2!~~p1q!21m2

2!
, ~23!

can be written as

G (2)@w1#52
s2

4~2p!d E ddxE ddy w1
2~x!w1

2~y!E ddp e2 ip(y2x)m2
d24I ~p2,m2

2!. ~24!

In the regularization and renormalization procedure we have to eliminate the poles and
residues adding counterterms in the Lagrangian density. To this end, let us study the q
I (p2,m2

2). Using the Feynman parametrization,29 it is possible to writeI (p2,m2
2) as

I ~p2,m2
2!5NdS 2

1

e
1O~e! D S 12

d

2D E
0

1

dtS p2

m2
2 t~12t !11D ~d/2! 22

, ~25!

whereNd is the area of the sphereSd21 /(2p)d. The expression given by Eq.~25! contains a
power of a binomial. In ad-dimensional Euclidean space, whend is even, the power is an intege
and the use of Newton’s binomial theorem gives us a direct way of evaluatingI (p2,m2

2). Whend
is odd, the expansion of (11 (p2/m2

2) t(12t))(d/2) 22 yields an infinite power series. Since we a
using dimensional regularization we have an infinite power series. Note that the generaliza
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the binomial series is valid for any complex exponentp. In other words, we have an everywhe
convergent power series inp, hence a continuous function onp in the complex plane.30 If we
define

Cr
051, Cr

15
r

1!
, Cr

25
r ~r 21!

2!
, ¯ ~26!

until

Cr
k5

r ~r 21!¯~r 2k11!

k!
, ~27!

wherer 5 (d/2) 22, it is possible to writeI (p2,m2
2) as

I ~p2,m2
2!5S 12

d

2DNdS 2
1

e
1O~e! D (

k50

`

C~d/2! 22
k p2k

m2
2k E

0

1

dt~ t~12t !!k. ~28!

Let us use Euler’s integral of first kindB(a,b) given by31

B~a,b!5E
0

1

dx xa21~12x!b215
G~a!G~b!

G~a1b!
, Rea.0,Reb.0. ~29!

Substituting Eq.~28! and Eq.~29! in Eq. ~24!, we find that the second term of the series th
represents the effective action,G (2)@w1#, can be written as

G (2)@w1#52
s2

4~2p!d E ddxE ddy w1
2~x!w1

2~y!E ddp e2 ip(y2x)m2
d24S 12

d

2D
3NdS 2

1

e
1O~e! D (

k50

`

C~d/2! 22
k p2k

m2
2k B~k11,k11!. ~30!

If we choose the self-interacting part of the fieldw1(x) to bel1w1
4(x), it is possible to define the

renormalized coupling constantlR subtracting the polar part. Consequently, the effective ac
for the w1(x) field is given by

Geff@w1#5
1

2 E ddx w1~x!~2D1m1
2!w1~x!1lRE ddx w1

4~x!1
s2

4!~4p!2m2
2

3E ddx w1
2~x!~2D1m1

2!w1
2~x!1OS D

m2
2D 2

. ~31!

Note that the termsk53,4,... are not divergent~in a four-dimensional theory! and although they
contribute to the effective action, in the limitm2→`, the heavy mass fieldw2(x) decouples from
the light mass fieldw1(x). The effect of the heavy mass field appears only modifying the va
of the renormalized massm1R and the coupling constantlR . We showed that the Euclidea
version of the Appelquist–Carazzone decoupling theorem works in this specific model. An
well known example where the decoupling theorem can be used is in quantum electrodyn
where for energies much lower than the electron mass it is possible to construct a der
expansion of the Maxwell field effective action integrating out the Dirac field. This is an expe
result, since we known that the Appelquist–Carazzone theorem is valid for renormalizable th
without spontaneous symmmetry breaking or chiral fermions. The above discussion justifi
approach used by some authors that have been using the Euler–Heisenberg Lagrangian d
investigate the radiative correction to the Casimir effect,10 although these radiative correction
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are of no phenomenological significance as pointed out by Melnikov.14 For a careful discussion o
effective Lagrangians in quantum electrodynamics and finite temperature field theory, see R
and 33, respectively.

In the next section we will study the massive (lw4)d theory in the presence of two paralle
hyperplanes. Consequently, going back to the Schwinger functional, we are assuming th
functional integral must be taken over the space of the functions that vanish on the boun
One way to implement this is to introduce delta functions in the functional integral. Th
equivalent to evaluate the functional integral over a space of functions that satisfy the bou
conditions. This is the procedure that we are adopting. It is clear that this procedure will intro
additional surface divergences that can be eliminated by surface counterterms. In the end, w
the effective model for the light mass field that satisfies boundary conditions over some su

III. FINITE SIZE EFFECTS AND THE TWO AND FOUR-POINT SCHWINGER FUNCTIONS
IN THE ONE-LOOP APPROXIMATION

In the last section, we studied a very simple model of two massive scalar fields whe
decoupling theorem holds after the construction of an effective theory of the light mass fiel
have shown that in our model of two massive interacting scalar fields, the heavy modes ass
with the w2(x) field completely decouple from the light ones associated with the light mass
w1(x) in the limit m2→`. In the case of al1w1

4(x) self-interacting part, the only effect of th
heavy mass field is a modification of the massm1 and of the coupling constant of the light ma
field. We are reducing the problem in this manner since we are able to concentrate in such
field theory, i.e., we will consider al1w4(x) self-interacting model. We will consider that the fie
w(x) depends ond21 unbounded coordinates that we callr , and one bounded coordinate whic
we will refer to asz that will be assumed to lie in the interval@0,L#. If we exclude the possibility
of periodic or antiperiodic boundary conditions, this choice obviously breaks the full translat
invariance because we have to assume boundary conditions on the hyperplanesz50 andz5L.

To write the full renormalized action for the theory with boundaries we need two regula
the first one is the usuale that is introduced in the dimensional regularization procedure and
second one, that we callh, represents the distance to a boundary. According to this the
renormalized action must be given by24

S~w!5E
0

L

dzE dd21r S A~e!

2
~]mw!21

B~e!

2
w21

C~e!

4!
w4D1E dd21r ~c1~h!w2~r ,0!

1c2~h!w2~r ,L !!1E dd21r ~c3~h!w4~r ,0!1c4~h!w4~r ,L !!, ~32!

whereA(e), B(e), andC(e) are the usual coefficients for the bulk counterterms and the co
cientsci(h) i 51,...,4, which depend on the boundary conditions for the field, are the coeffic
for the surface counterterms. As usual all of these coefficients must be calculated order by o
perturbation theory. We are considering two different possibilities for the boundary condi
namely Dirichlet–Dirichlet~DD! and Neumann–Neumann~NN! boundary conditions. Thes
boundary conditions are given, respectively, by

w~r ,z!uz505w~r ,z!uz5L50, ~33!

and

]

]z
w~r ,z!U

z50

5
]

]z
w~r ,z!U

z5L

50. ~34!

The system we are interested in is invariant only under translations along the direction para
the plates. This implies that what is conserved is not the full momentum but the (d21) dimen-
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sional parallel momentump. For such conditions, a more convenient representation of then-point
Schwinger functions is a mixed (p,z) representation. A Euclidean scalar fieldw(x) satisfying
certain homogeneous boundary conditions onz50 andL can be expanded in Fourier series a

w~r ,z!5
1

~2p!~d21!/2 (
n

un~z!E dd21p fn~p! eip.r, ~35!

where p is the continuum parallel momentum, andun(z) stands for the eigenfunctions of th
operator2 (d2/dz2),

2
d

dz2 un~z!5kn
2un~z!, ~36!

wherekn5np/L , n51,2,... for DD b.c., andn50,1,2,... for NN boundary conditions, respe
tively. The main difference between the boundary conditions is the presence of the zero mod
free two-point Schwinger function of the theoryG0

(2)(r ,z,r 8,z8) can be expressed as

G0
(2)~r ,z,r 8,z8!5

1

~2p!d21 (
n

un~z!un* ~z8!E dd21p
eip.(r2r8)

~p1kn
21m2!

. ~37!

Note that we have changed the notation in this section as follows:m1→m and also
G(x,x8;m1)→G0(x,x8). It is useful to define alsor5r2r 8. When considering DD boundar
conditions, one finds that the free two-point Schwinger function is explicitly given by

G0
(2)~r,z,z8!5

2

L (
n51

`

sinS npz

L D sinS npz8

L D I n~L,m,d,r!, ~38!

where

I n~L,m,d,r!5
1

~2p!d21 E dd21p
eip.r

S p21S np

L D 2

1m2D . ~39!

It is clear that the family ofI n(L,m,d,r) functions can be thought of as the free propagators
tower of massive scalar fields in (d21) dimensions, the effective mass of each mode being g
by Mn

25m21(np/L)2. This is to be expected since our theory has been formulated in a com
tified space. From an even simpler point of view,I n(L,m,d,r) is nothing but the Fourier transform
of a ‘‘spherically’’ (SO(d21)) symmetric function of the parallel momentump.

We begin the study of the interacting theory by building the one-loop correc
(G1

(2)(l1 ,x,x8)) to the bare two-point Schwinger functionG0
(2)(x,x8), for both the DD and NN

boundary conditions. Using the Feynman rules we have

G1
(2)~l1 ,r1 ,z1 ,r2 ,z2!5

l1

2 E dd21r E
0

L

dz G0
(2)~r12r ,z1 ,z!G0

(2)~0,z!G0
(2)~r2r2 ,z,z2!.

~40!

Here we point out that even though the functionsG0
(2)(r12r2 ,z1 ,z2) andG0

(2)(r22r3 ,z2 ,z3) are
singular at coincident points (r15r2 , z15z2) and (r25r3 , z25z3), the singularities are inte
grable for points outside the plates. Using the notationG0

(2)(0,z)5TDD(L,m,d,z), a straightfor-
ward substitution yields the orderl1 correction to the bare two-point Schwinger function in t
one-loop approximation for the case of Dirichlet boundary conditions:
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G1
(2)~l1 ,r12r2 ,z1 ,z2!5

2l1

~2p!d21L2 E
0

L

dz (
n,n851

`

sinS npz1

L D sinS npz

L D sinS n8pz

L D sinS n8pz2

L D
3E dd21p

eip(r12r2)

S p 21S np

L D 2

1m2D S p 21S n8p

L D 2

1m2D TDD~L,m,d,z!.

~41!

Note that since we use dimensional regularization techniques, we have introduced a dime
parameterm, defining a dimensionless coupling constantl5l1m42d. The expression for the
amputated one-loop two-point functionTDD(L,m,d,z) is given by

TDD~L,m,d,z!5
2

~2p!d21L (
n51

`

sin2S npz

L D E dd21p
1

S p 21S np

L D 2

1m2D . ~42!

In the case of Neumann–Neumann boundary conditions the expression for the amputated o
two-point function can also be found following the same procedure, and it is given by

TNN~L,m,d,z!5
1

~2p!d21L E dd21k
1

~k21m2!

1
2

~2p!d21L (
n51

`

cos2S npz

L D E dd21p
1

S p 21S np

L D 2

1m2D . ~43!

Both TDD(L,m,d,z) andTNN(L,m,d,z) diverge in their continuum momenta integrals and also
the discrete mode summation. Using the Feynman rules,G2

(4)(l,x1 ,x2 ,x3 ,x4), i.e., theO(l2)
correction to the bare one-loop four-point Schwinger function, is given by

G2
(4)~l,r1 ,z1 ,r2 ,z2 ,r3 ,z3 ,r4 ,z4!5

l2

2 E dd21r E dd21r 8E
0

L

dzE
0

L

dz8 G0
(2)~r12r ,z1 ,z!

3G0
(2)~r22r ,z2 ,z!~G0

(2)~r2r 8,z,z8!!2

3G0
(2)~r 82r3 ,z8,z3!G0

(2)~r 82r4 ,z8,z4!. ~44!

Again, all G0’s are singular at coincident points, but the singularities are integrable for p
outside the plates, except forG0

(2)(r2r 8,z,z8).
In the next section we will begin the renormalization program for the massless one

two-point Schwinger functions for the case of Dirichlet–Dirichlet boundary condition. The
point Schwinger function for the case of Dirichlet–Dirichlet boundary conditions is IR finite
m50. The study of the complementary set of boundary conditions, namely, NN boundary c
tions, can be performed along the same lines. When the field satisfies NN boundary cond
infrared divergences appear and such divergences come from the zero mode contribution.
case of NN we must have a finite Euclidean volume to regularize the theory in the infr
Another possible solution to the problem of the infrared divergences in the case of Neum
Neumann boundary condition is to perform a resummation of the daisy diagrams.34–37 This pro-
cedure is standard in the study of scalar models where the translational invariance is main
as for example finite temperature field theory. For systems where the translational invaria
broken, the problem of how to carry out the resummation program still remains open.
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IV. THE REGULARIZED ONE-LOOP TWO AND FOUR-POINT SCHWINGER FUNCTIONS

In this section we would like to discuss how to implement the one-loop renormaliza
program in finite size systems where flat surfaces break the translational invariance. Thus, t
of this section is first to analyze the structure of the divergences associated with the one-lo
and four-point functions for the case of Dirichlet–Dirichlet boundary conditions.

The amputated one-loop two-point Schwinger functionTDD(L,m,d,z) can be decomposed i
a translational invariant part and another one that breaks the translational invariance. Indeed
algebraic identities as in Refs. 31 and 38, one gets

TDD~L,m,d,z!5 f 1~L,m,d!2 f 2~L,m,d,z!, ~45!

where the functionsf 1(L,m,d) and f 2(L,m,d,z) are given, respectively, by

f 1~L,m,d!5
1

2~2p!d21L (
n52`

` E dd21p
1

S p 21S np

L D 2

1m2D ~46!

and

f 2~L,m,d,z!5
1

2~2p!d21 E dd21p
1

Ap21m2

cosh~~L22z!Ap21m2!

sinh~LAp21m2!
. ~47!

The amputated one-loop two-point Schwinger function for the Neumann–Neumann bou
conditions,TNN(L,m,d,z), can be similarly split up as

TNN~L,m,d,z!5 f 1~L,m,d!1 f 2~L,m,d,z!. ~48!

The above decompositions ofTDD(L,m,d,z) andTNN(L,m,d,z) have the same functional form
Some divergences come purely from the bulk, while others depend on the distance to the
aries. Indeed, sincef 1(L,m,d) does not depend onz, it contains only bulk divergences. Thes
divergences occur not only in the discrete sums but also in the momentum integrations. Af
identification: b[2L, the term f 1(L,m,d) is formally proportional to the amputated one-loo
two-point function of the theory assuming that the system is in thermal equilibrium with a r
voir at temperatureb21. To deal with the divergences off 1(L,m,d), or equivalently, the one-loop
two-point Schwinger functions at finite temperature we have to do frequency sums and (d21)
dimensional integrals for the continuum momenta. One way to perform the integrals with
subara sums is to analytically extend away from the discrete complex energies down to re
with the replacement of the energy sums by contour integrals.39,40Another way is to use dimen
sional regularization and afterwards to analytically extend the modified Epstein zeta fun
which appears after dimensional regularization. Direct use of dimensional regularization ide
and the analytic extension of the modified Epstein zeta function in the sum given by Eq~46!
which definesf 1(L,m,d), gives us a polar part~size independent! plus a size-dependent analyt
correction. The mass counterterm~the principal part of the Laurent series of the analytic regu
ized quantity! generated byf 1(L,m,d) is size independent, in the same way that the finite te
perature field theory has no temperature dependent counterterm. Observe that the nontran
invariant part of the amputated one-loop two-point Schwinger function expressed
TDD(L,m,d,z) andTNN(L,m,d,z) has the samez dependence in modulus but with opposite sig

We have shown that theTDD(L,m,d,z) and TNN(L,m,d,z) can be split into two functions
f 1(L,m,d) and f 2(L,m,d,z) and since as we have just discussed the behavior off 1(L,m,d), we
can now turn our attention to the study of the divergences contained inf 2(L,m,d,z). We begin by
an angular integration (dd21p5pd22dp dVd21 and * dVd5@2p (d/2)#/@Gd/2#) that leads to an
alternative expression for the nontranslational invariant partf 2(L,m,d,z), namely,
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f 2~L,m,d,z!5
1

2
h~d!E

0

`

dp
pd22

Ap21m2

cosh~~L22z!Ap21m2!

sinh~LAp21m2!
. ~49!

Using the change of variabless5Ap21m2 in the above expression yields the following formu
for f 2(L,m,d,z):

f 2~L,m,d,z!5
1

2
h~d!E

m

`

ds~s22m2!~d23!/2 cosh~~L22z!s!~sinhLs!21, ~50!

whereh(d) is an analytic function ofd given by

h~d!5
1

2~2Ap!d21

1

GS d21

2 D .

We now start studying the massless case following Fosco and Svaiter.41 In fact, we are particularly
interested in examining the limits (z→01 andz→L2) which obviously contain the information
about the effects of the boundaries. In order to fulfill this goal we introduce two new varia
x5Ls andq5zs, in terms of which we can writef 2(L,m,d,z)um50 as

f 2~L,m,d,z!um505
h~d!

2Ld22 E
0

`

dx xd23~cothx21!coshS 2zx

L D1
h~d!

2zd22 E
0

`

dq qd23e22q.

~51!

The second term of Eq.~51! gives us the well known result that for a massless scalar fieldd
54 the one-loop vacuum fluctuations diverge as 1/z2 if we approach the boundary atz50.42 The
other term of Eq.~51! should behave as 1/(L2z)d22. To see this let us investigate the behavior
the first integral off 2(L,m,d,z)um50 near the boundary atz5L. In order to do this, we make us
of two formulas involving the definition for the Gamma function, and also another well kn
integral representation for the product of the Gamma function times the Hurwitz zeta fun
given by

E
0

`

dx xm21e2bx~cothx21!5212mG~m!zS m,
b

2
11D Re~b!.0, Re~m!.1, ~52!

wherez(z,a) is the Hurwitz zeta function defined by31

z~z,a!5 (
n50

`
1

~n1a!z , Re~z!.1, aÞ0,21,22, . . . . ~53!

From the definition of the Gamma function and using Eq.~52! in Eq. ~51! we may write the
following closed expression:

f 2~L,m,d,z!um505
h~d!

2Ld22 F222dG~d22!S zS d22,
z

L
11D1zS d22,2

z

L
11D D G

1
1

~2z!d22 h~d!G~d22!. ~54!

From this last expression and using the definition of the Hurwitz zeta function given by Eq~53!
it is evident that the regularizedf 2(L,m,d,z)um50 has two poles of order (d22), one atz50 and
another atz5L.
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To study the massive case, from the expression given by Eq.~50! it is possible to write
f 2(L,m,d,z) in a more convenient way by

f 2~L,m,d,z!5 f 21~L,m,d,z!1 f 22~L,m,d,z!, ~55!

where f 21(L,m,d,z) and f 22(L,m,d,z) are

f 21~L,m,d,z!5
1

2
h~d!E

m

`

ds~s22m2!~d23!/2e22zs, ~56!

and

f 22~L,m,d,z!5
1

2
h~d!E

m

`

ds~s22m2!~d23!/2~cothLs21!cosh 2zs. ~57!

Using an integral representation of the Bessel function of third kind~Macdonald’s function! it is
possible to find the following closed expression forf 12(L,m,d,z):

f 21~L,m,d,z!5
1

2

1

~2Ap!d21 S m

z D ~d22!/2

K ~d22!/2~2mz!. ~58!

For smallz and finitem we have the asymptotic formulaKn(z)'2n21G(n)z2n, which means that
for z→01, the functionf 21(L,m,d,z) diverges as 1/zd22. To calculatef 22(L,m,d,z) we will use
the same method that we used in Sec. II. Making use of the generalized binomial formula

S 12
m2

s2 D ~d23!/2

5 (
k50

`

~21!kC~d23!/2
k S m

s D 2k

, ~59!

and introducing a new variableu5Ls, we obtain

f 22~L,m,d,z!5
h~d!

2Ld22 (
k50

`

~21!kC~d23!/2
k ~Lm!2kE

Lm

`

du ud2322k~cothu21!coshS 2zu

L D .

~60!

Our next step is to show that this result can be expressed in terms of the Hurwitz zeta functio
split f 22(L,m,z,d) as a sum of two terms

f 22~L,m,d,z!5 f 22
, ~L,m,z,d!1 f 22

. ~L,m,z,d!, ~61!

where

f 22
, ~L,m,z,d!52

1

4Ld22 (
k50

k,~d23!/2

C(1)~d,k!~Lm!2kE
Lm

`

du ud2322k~cothu21!coshS 2uz

L D ,

~62!

and

f 22
. ~L,m,z,d!52

1

4Ld22 (
k> ~d23!/2

`

C(1)~d,k!~Lm!2kE
Lm

`

du ud2322k~cothu21!coshS 2uz

L D .

~63!

Here we have introducedC(1)(d,k)5(21)kC(d23)/2
k h(d) and also C(2)(d,k)[ @G(d22

22k)/2d2322k# C(1)(d,k). Thus it is possible to write Eq.~62! in the following way:
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f 22
, ~L,m,z,d!52

1

4Ld22 (
k50

k,~d23!/2

C(2)~d,k!~Lm!2kS zS d2222k,2
z

L
11D

1zS d2222k,
z

L
11D D1

1

4Ld22 (
k50

k,~d23!/2

C(1)~d,k!~Lm!2k

3E
0

Lm

du ud2322k~cothu21!coshS 2uz

L D , ~64!

where the singularities off 22
, (L,m,z,d) appear atz→L. Turning our attention tof 22

. (L,m,z,d), it
is clear that in the expression above we see that the surface divergences are the same as w
before in the massless case.

We now turn our attention back to the four-point Schwinger function in the one-loop app
mation. Introducing new variables asu6[z6z8, the two-point Schwinger function in the tree
level can be split into

G0
(2)~r,z,z8!5G1

(2)~r,u1!1G2
(2)~r,u2!, ~65!

where making use of the definition ofI n(L,m,d,r) given by Eq.~39! we have

G6
(2)~r,u6!57

1

L (
n51

`

cosS npu6

L D I n~L,m,d,r!. ~66!

Before we continue, let us present an explicit formula of the free two-point Schwinger functi
terms of Bessel functions. Defining an analytic functiong(d) by

g~d!5
1

Ap~2p!~d21!/2

GS d22

2 D
GS d23

2 D , ~67!

it is possible to show that we can writeG6
(2)(r,u6) as

G6
(2)~r,u6!57

g~d!

r~d23!/2L (
n51

`

cosS npu6

L D S S np

L D 2

1m2D ~d23!/4

K ~d23!/2S rS m21S np

L D 2D 1/2D .

~68!

Using Eq. ~65! and the above formula we obtain the explicit expression for the two-p
Schwinger function in a genericd-dimensional Euclidean space confined between two flat par
hyperplanes where we assume Dirichlet–Dirichlet boundary conditions. It is hard to use the
expressions forG6

(2)(r,u6) to investigate the analytic structure of the four-point function given
Eq. ~44! G2

(4)(l,r1 ,z1 ,r2 ,z2 ,r3 ,z3 ,r4 ,z4), for both the bulk and near the boundaries. Nevert
less from Eqs.~38! and ~39! it is clear that the divergences of the four-point function in t
one-loop approximation appear at coincident points and, therefore, the singular behavior
coded in the polar part ofM (l,L,m,d) given by

M ~l,L,m,d!5l2E dd21r E dd21r 8E
0

L

dzE
0

L

dz8F~r ,r 8,z,z8!~G0
(2)~r2r 8,z,z8!!2, ~69!

whereF(r ,r 8,z,z8) is a regular function. Exactly as in the one-loop two point function, the ab
equation has two kinds of singularities: those coming from the bulk and those arising from
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behavior near the surface. As before, the behavior in the bulk is that of thermal field th
Consequently we will only discuss the singularities that arise from the boundaries. This c
done by studying the polar part ofM̃ (l,L,m,d) given by

M̃ ~l,L,m,d!5
l2

2 E
0

L

dzE
0

L

dz8F~z,z8!~G0
(2)~0,z,z8!!2, ~70!

whereF(z,z8) is a regular function. Now, we recall that the form ofG6
(2)(r,u6)ur50 is given by

G6
(2)~r,u6!ur5057

1

~2p!d21L (
n51

`

cosS npu6

L D E dd21p
1

S p21m21S np

L D 2D , ~71!

from which one can show that the free correlation function is given by

G0
(2)~r,z,z8!ur505 f 2S L,m,d,

u2

2 D2 f 2S L,m,d,
u1

2 D . ~72!

For the sake of simplicity we will discuss only the massless case, since the singularities
massive case have the same structure as the massless one. The functionf 2(L,m,d, u1/2) is
nonsingular in the bulk, i.e., in the interior of the interval@0,L#, while f 2(L,m,d, u2/2) has a
singularity along the linez5z8. Indeed, closer inspection shows that for 0<z,z8<L the only
singularities are those atu150, u152L and alsou250. The former two are genuinely bounda
singularities~the two conditions implyz,z8→0 or z,z8→L), while the one coming fromz5z8 in
the whole domain is just the standard bulk singularity. One finds that the counterterms forM̃ are
given by

2poleE
0

L

dzE
0

L

dz8F C1

~z1z8!d22 1
C2

~2L2z2z8!d22 1
C3

~z2z8!d22 1¯G2

, ~73!

whereCi ,i 51,...,3 are regular functions that do not depend onz nor onz8. From this discussion
it is clear that in order to render the field theory finite, we must introduce surface terms i
action. This is a general statement. For any fields that satisfy boundary condition that brea
translational invariance, in addition to the usual bulk counterterms, it is sufficient to intro
surface counterterms in the action to render the theory finite.

V. BOUNDARY EFFECTS AND RENORMALIZATION

In the last section we presented the one-loop renormalization of thelw4 model, and also
considered that the fieldw(x) depends ond21 unbounded coordinates that we callr and one
bounded coordinate defined in the interval@0,L#. The boundary conditions on the hyperplanesz
50 andz5L are the usual Dirichlet–Dirichlet and also Neumann–Neumann boundary c
tions.

In this section we would like to discuss briefly the global approach, used to define the Ca
energy associated with any field in the presence of surfaces with well defined geometric sha
a updated discussion of the problem, see Ref. 43. The crucial conceptual question is the m
of the renormalized vacuum energy associated with any field in the presence of any macro
structure that divides the space into the internal and the external region. It is important to
separate different situations. In the case of the parallel plates, the region outside the plate
union of two simply connected domains and both have the same geometry of the internal r
In this situation the Casimir renormalization procedure is well defined and the renorma
vacuum energy is unambiguously defined. In the case of the spherical or a cylindrical she
contribution of the exterior modes are not cancelled out in the Casimir renormalization proc
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It is not difficult to understand the origin of the problem, which has been extensively discuss
the literature. If we are assuming perfectly reflecting boundaries, by the Weyl theorem we
that the asymptoptic distribution of eigenvalues of some elliptic differential operator is re
with the geometric invariants associated with the surface where the field satisfy some bou
condition.44,45 Consequently, in the regularized energy, we have divergent terms proportion
the volume, area, etc. In the Casimir definition of the renormalized vacuum energy, it i
possible to cancel the area contribution for a generic surface. The generalization of the
expansion can be done investigating the trace of the heat kernel on a specified manifol
boundary. We conclude that the assumption of perfect conducting static boundaries with a g
shape introduces new problems to define the renormalized vacuum energy of a quantum sy
the presence of these macroscopic objects.46–49 If someone insists in the assumption of perfe
conducting boundaries there are different ways to solve the problem of infinite energy asso
with the field in the presence of this configuration. One is to introduce counterterms concen
on the boundaries, as discussed by the authors that use the generalized zeta function met50 A
different approach is to smooth out the plate surface by a classical potential.51,52 It is clear that the
introduction of a classical potentialV(x) does not solve the problem of surface counterterms s
in this situation we have to renormalize the potential. A very simple situation is the case
background field where to compute the effective action we have to evaluate the following
holm determinant, where we are assuming that the positive potential is a large quantity

D~V!5det~2D1m21V~x!!~2D1m2!21. ~74!

For sufficient regular but largeV(x), it is possible to show that ford54 a counterterm quadrati
in V is required in order to eliminate the divergences of the model.53 Thus the introduction of a
classical potentialV(x), in trying to improve the unphysical boundary condition, does not so
the problem of surface counterterms since in this situation we have to renormalize the po
Instead of smoothing plate surfaces, an alternative approach to avoid surface divergenc
cussed by Kennedyet al.,50 is to treat the boundary as a quantum mechanical object. This
proach was developed recently by Ford and Svaiter54 to produce finite values for the renormalize
^w2(x)& and other quantities that diverge as one approaches the classical boundary. We wo
to stress that there will not be any surface divergences in a more exact treatment; however,
still make the case that surface counterterms are a useful phenomenological approach for
with the apparent surface divergences without going into the complexity of the more exa
proach.

VI. CONCLUSIONS

In this paper we discussed the approach of effective theory to perform calculations in
theory in the presence of macroscopic structures. We first assumed the theory of two inte
massive scalar fieldsw1(x) and w2(x) with massesm1 and m2 satisfying the conditionm2

@m1 . Integrating out the modes of the fieldw2(x) we obtained an effective action for thew1(x)
field. In the limit m2→` the fieldw2(x) decouples fromw1(x), the only effect ofw2(x) being
modifying both the value of the renormalized massm1 and the coupling constant of the light fiel
w1 . Thus we considered the (l/4!) w1

4 model on ad-dimensional Euclidean space, where all b
one of the coordinates are unbounded. Translation invariance along the bounded coordinz,
which lies in the interval@0,L#, is broken because of the boundary conditions~BC’s! chosen for
the hyperplanesz50 andz5L. Two different possibilities for these BC’s boundary conditions
considered: DD and NN, where D denotes Dirichlet and N denotes Neumann. The renormal
procedure up to one-loop order was implemented. The main result of our investigations is
the presence of boundaries where the field satisfies some boundary condition, the aug
action with surface counterterms can deal with the surface divergences that appear in the o
Feynman diagrams.

There are several directions for future research in field theory in the presence of surfac
of which we would like to emphasize two. The first one is to implement the renormaliza
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program beyond the one-loop approximation, where overlapping divergences emerge. The
one is related to the infrared divergences. As we discussed, one way to deal with the in
divergences in the case of Neumann–Neumann boundary condition is to perform a resum
of the daisy diagrams. Although this procedure is standard in the study of scalar models a
temperature, for systems where translational invariance is broken, the resummation program
an open problem. Both subjects are under investigation by the authors.
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Free field dynamics in the generalized AdS „super …space
V. E. Didenkoa) and M. A. Vasilievb)

I.E.Tamm Department of Theoretical Physics, Lebedev Physical Institute,
Leninsky prospect 53, 119991, Moscow, Russia

~Received 2 June 2003; accepted 26 September 2003!

Pure gauge representation for general vacuum background fields~Cartan forms! in
the generalized AdS superspace identified with OSp(L,M ) is found. This allows us
to formulate dynamics of free massless fields in the generalized AdS space–time
and to find their~generalized! conformal and higher spin field transformation laws.
Generic solution of the field equations is also constructed explicitly. The results are
obtained with the aid of the star product realization of ortosymplectic
superalgebras. ©2004 American Institute of Physics.@DOI: 10.1063/1.1633022#

I. INTRODUCTION

In the recent papers1,2 it was shown that infinite multiplets of massless higher spins in 4d flat
Minkowski space–time admit description in terms of 10-dimensional space–timeM4 with real
symmetric bispinor matrix coordinatesXab5Xba (a,b51, . . . ,4). A single scalar fieldc(X) in
M4 describes massless fields of all integer spins in 4d Minkowski space–time upon imposin
field equations found in Ref. 1. Half-integer spin massless fields are described analogous
spinor fieldca(X). That massless fields of all spins have to admit some formulation inM4 was
argued by Fronsdal in the pioneering paper3 where it was also stressed that such infinite sets
massless fields have to form representations of the extension of the 4d conformal group su~2,2! to
sp(8uR). Then in Ref. 4 it was found that world-line particle models based on sp~8! give rise to
massless higher spin excitations of all spins. The explicit realization of the sp~8! symmetry by
local transformations was given in Ref. 1 as well as the generalization of the proposed~8!
covariant dynamical equations toMM with arbitrary evenM .

Properties of the Sp(2M ) invariant space–timeMM were analyzed in Ref. 2. It was show
that the classical solutions of the field equations define a causal structure and give rise to
quantization in a positive definite Hilbert space. Usuald-dimensional Minkowski space–tim
appears as a subspace of the generalized space–time. The analysis of Refs. 1 and 2 was p
for the case of flat space–time although the formalism as a whole works in any~generalized!
conformally flat background. In particular it is interesting to extend this analysis to the gener
anti-de Sitter space–time which was argued in Ref. 1 to be the group manifold Sp(M ) (M is even!
having Sp(M )3Sp(M ),Sp(2M ) as the group of motions realized by left and right group actio
on itself. Since the analysis of Sp(2M ) invariant higher spin systems is most naturally perform
in terms of star product algebras, for its extension to the generalized AdS space–time it is
sary to built star-product realizations of left invariant Cartan forms~i.e., flat connections! on
Sp(M ). This is the primary goal of this paper. Obtained results will allow us to present exp
formulas for symmetries and solutions of the massless field equations in the generalize
space–time. The analogous construction will also be given for the supersymmetric case ass
with OSp(L,M ).

Let us note that since the star-product formalism we apply leads to compact expressio
OSp(L,M ) Cartan superforms, apart from the higher spin problem, the results obtained i
paper may have applications to other problems where left-invariant forms of OSp(L,M ) appear.
For example, in Ref. 5 it was shown how OSp(1,M ) Cartan forms can be used to constru

a!Electronic mail: didenko@lpi.ru
b!Electronic mail: vasiliev@lpi.ru
1970022-2488/2004/45(1)/197/19/$22.00 © 2004 American Institute of Physics
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twistorlike actions for superparticles and possible applications to superbranes were dis
while in Ref. 6 a toy model ofM theory based on osp~1,64! was suggested.

A. Generalized conformal symmetry

The generatorsLmn ,Pm ,Km ,D of the conformal algebra o(d,2) satisfy the following com-
mutation relations:

@Lab ,Lcd#5hacLbd2hbcLad1hadLcb2hbdLca ,

@Lab ,Pc#5hacPb2hbcPa , @Lab ,Kc#5hacKb2hbcKa ,
~1.1!

@Lab ,D#5@Pa ,Pb#5@Ka ,Kb#50 ,

@Pa ,Kb#52~habD1Lab! , @Pa ,D#5Pa , @Ka ,D#52Ka ,

m,n50,...,d21, hmn5diag(1,21,...,21). The conformal algebra can be realized by the vec
fields

Lab5hacx
c

]

]xb 2hbcx
c

]

]xa ,

Pa5
]

]xa , D5xa
]

]xa , ~1.2!

Ka52hacx
cxb

]

]xb 2hbcx
bxc

]

]xa .

The Poincare subalgebra is spanned byLmn andPm . Km andD are the generators of speci
conformal transformations and dilatations, respectively. To embed the AdSd algebra o(d21,2)
into the d-dimensional conformal algebra o(d,2) one identifies the AdSd translations with the
mixture of translations and special conformal transformations in the conformal algebra

PAdSd

a 5Pa2l2Ka . ~1.3!

The generatorsPAdSd

a and Lab form the AdSd subalgebra o(d21,2),o(d,2). This embedding

breaks down the manifest o~1,1! dilatation covariance because it mixes the operatorsPa andKa,
which have different dimensions.l is the dimensionful Wigner–Ino¨nu contraction parameter to b
identified with the inverse AdSd radius.

The sp(2M ) algebra admits analogous description in terms of the generatorsLa
b,Pab ,Kab,

andD, where indicesa,b,... range from 1 toM andLa
b is traceless. The commutation relation

are

@Kab,Kgd#50 , @Pab ,Pgd#50 , ~1.4!

@D,Pab#52Pab , @D,Kab#5Kab , @D,La
b#50 , ~1.5!

@La
b,Pgd#52dg

bPad2dd
bPag1

2

M
da

bPgd , ~1.6!

@La
b,Kgd#5da

gKbd1da
dKbg2

2

M
da

bKgd , ~1.7!
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@Pab ,Kgd#5La
ddb

g1Lb
dda

g1La
gdb

d1Lb
gda

d1
4

M
D~da

ddb
g1db

dda
g! , ~1.8!

@La
b,Lg

d#5da
dLg

b2dg
bLa

d . ~1.9!

Note that the generalized Lorentz subalgebra generated byLa
b is slM . Analogously to the usua

conformal algebra, generalized translations generated byPab form Abelian subalgebra o
sp(2M ). Generalized special conformal transformations generate a dual Abelian subalgeb
us note that as shown in Ref. 2 sp(2M ) contains conformal algebra o(d,2) which acts in the usua
d-dimensional Minkowski space as subalgebra. In the higher spin field-theoretical models,
contain infinite towers of fields, o(d,2) acts individualy on every massless field while the gene
tors in sp(2M )/o(d,2) mix different massless fields. We therefore will call sp(2M ) as generalized
conformal algebra.

The commutation relations~1.4!–~1.9! can be realized by the vector fields

Pab5
]

]Xab , Kab54XagXbh
]

]Xgh , ~1.10!

La
b52Xbg

]

]Xag 2
2

M
da

bXbg
]

]Xbg , D5Xbg
]

]Xbg , ~1.11!

whereXab5Xba are coordinates ofMM .
The simplest way to see that the commutation relations~1.4!–~1.9! are indeed of sp(2M ) is to

use its oscillator realization.7 Actually, let âa andb̂a be oscillators with the commutation relation

@ âa ,b̂b#5da
b , @ âa ,âb#50 , @ b̂a,b̂b#50 . ~1.12!

The generators of sp(2M ) are spanned by the bilinears

T̂a
b5 1

2 $âa ,b̂b% , P̂ab5âaâb , K̂ab5b̂ab̂b . ~1.13!

Instead of working in terms of operators it is convenient to use the star-product operat
the algebra of polynomials of commuting variablesaa andba,

~ f !g!~a,b!5
1

p2M E f ~a1u,b1t !g~a1s,b1v !e2(sata2uava) dMu dMt dMs dMv . ~1.14!

The star-product defined this way, often called Moyal product, describes the product of sy
trized~i.e., Weyl ordered! polynomials of oscillators in terms of symbols of operators. The integ
is normalized in such a way that

1

p2M E e2(sata2uava) dMu dMt dMs dMv51 , ~1.15!

so that 1 is the unit element of the algebra. Equation~1.14! defines the associative algebra with t
defining relations

@aa ,bb#!5da
b , @aa ,ab#!50 , @ba,bb#!50 ~1.16!

(@a,b#!5a!b2b!a). The star-product realization of the generators of sp(2M ) is

Ta
b5aabb , Pab5aaab , Kab5babb , ~1.17!
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where the gl(M ) generatorTa
b decomposes into the sl(M ) ‘‘Lorentz’’ and o~1,1! ‘‘dilatation’’

generators

La
b5aabb2

1

M
da

bagbg , D5 1
2 aaba . ~1.18!

The bilinears of oscillators fulfil the commutation relations~1.4!–~1.9!.
The embedding of the generalized AdS subalgebra into the conformal algebra sp(2M ) is

achieved by identification of the~generalized! AdS translations with the mixture of translation
and special conformal transformationsPab

AdS5Pab1l2habgdKgd with some bilinear formhabgd .
~Note that keeping the same number of translation generators we keep dimension of the g
ized space–time intact.! As argued in Ref. 1,habgd has to have the factorized form:habgd

5VagVbd , whereVab is some nondegenerate antisymmetric form~thus requiringM to be even!.
In what follows the formVab will be used to raise and lower indices according to the rule

Aa5VbaAb , Aa5VabAb , VabVag5db
g . ~1.19!

Thus, the generalized AdS translations have the form

Pab
AdS5Pab1l2VagVbdKgd5Pab1l2Kab . ~1.20!

The commutation relations ofPab
AdS have the form

@Pab
AdS,Pgd

AdS#52l2~VbgLad
AdS1VbdLag

AdS1VagLbd
AdS1VadLbg

AdS! , ~1.21!

where Lab
AdS5Lba

AdS are generators of the sp(M ) subalgebra of glM which leaves invariant the
symplectic formVab . The full generalized AdS subalgebra is sp(M ) % sp(M ),sp(2M ). Its Lor-
entz subalgebra spl(M ) identifies with the diagonal sp(M ) while AdS translations span sp(M )
% sp(M )/spl(M ). Note that the generalized dS algebra obtained from~1.20! by virtue of the sign
changel2→2l2 is Sp(M ,C)R.

B. Fock space and Sp „2M… covariant equations

The sp(2M ) invariant equations of all massless fields in three and four dimensions are
rally described8,1 in terms of sections of the Fock fiber bundle overMM . In other words, conside
functions onMM taking values in the Fock moduleF,

uF~buX!&5C~buX!!u0&^0u , ~1.22!

whereC(buX) is some ‘‘generating function,’’

C~buX!5 (
m50

`
1

m!
cb1¯bm

~X!bb1
¯bbm, ~1.23!

and u0&^0u is the Fock vacuum defined by the relations

aa!u0&^0u50 , u0&^0u!ba50 . ~1.24!

u0&^0u can be realized as an element of the star-product algebra

u0&^0u5e22aaba
. ~1.25!

Note that the Fock vacuum is the space–time constant projector

du0&^0u50 , u0&^0u!u0&^0u5u0&^0u , ~1.26!
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whered is de Rahm differential

d5dXab
]

]Xab , d250. ~1.27!

As shown in Ref. 1 the relevant flat space Sp(2M ) covariant equation can be formulated in th
form

duF~buX!&2w0!uF~buX!&50 , ~1.28!

where

w05 1
2 dXab aaab . ~1.29!

That the equation~1.28! does indeed describe all conformal field equations ind53 andd54 was
shown in Refs. 8 and 1 for the cases ofM52 and M54, respectively. In this paper we wil
consider the general case of any evenM . It is worth to mention that the cases ofM58, M
516, andM532 were argued in Ref. 2 to correspond to conformal systems ind56, d510, and
d511, respectively.

The Fock fiber bundle realization of the higher spin equations guarantees generalized c
mal symmetry of the system along with its infinite-dimensional higher spin extension. Actual
w0 be some one-form, taking values in the higher spin algebra identified with the star pr
algebra~i.e., the algebra of regular functions of oscillators acting on the Fock moduleF)

w0~X!5 (
m,n50

`
1

m!n!
w

0 b1¯bm

a1¯an~X!aa1
¯aan

bb1
¯bbm , ~1.30!

which satisfies the zero-curvature condition

dw05w0!∧w0 . ~1.31!

The equations~1.28!, ~1.31! are invariant under the gauge transformations

dw05de2@w0 ,e#! , ~1.32!

duF~buX!&5e!uF~buX!& , ~1.33!

wheree(a,buX) is an arbitrary infinitesimal gauge parameter. Any fixed vacuum solutionw0 of
the equation~1.31! breaks the local higher spin symmetry to its stability subalgebra with
infinitesimal parameterse0(a,buX) satisfying the equation

de02@w0 ,e0#!50. ~1.34!

Consistency of this equation is guaranteed by~1.31!. As a result,~1.34! admits locally a pure
gauge solution

w0~X!52g21~X!!dg~X! , ~1.35!

where g(a,buX) is some invertible element of the star-product algebra. The global symm
parameters satisfying~1.34! then have the form

e0~X!5g21~X!!j!g~X! , ~1.36!
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where an arbitraryX-independent elementj5j(a,b) of the star-product algebra describes para
eters of the global higher spin symmetry which acts on the solutions of the equation~1.28! ~for any
givenw0). In particular, the sp(2M ) subalgebra spanned by bilinears of oscillators is thus sh
to be a symmetry of the equation~1.28!. ~See Ref. 9.!

Analogously one solves the equation~1.28! in the form

uF~buX!&5g21!uF~buX0!& , ~1.37!

whereuF(buX0)& plays a role of initial data. The meaning of this formula is that the Fock mod
uF(buX0)& parametrizes all combinations of the derivatives of the dynamical fields atX5X0

which are allowed to be nonzero by the field equations. The formula~1.37! plays a role of the
covariantized Taylor expansion reconstructing generic solution in terms of its derivativesX
5X0 . Note that the Fock moduleF is not unitary because it decomposes into an infinite sum
finite-dimensional~tensor! representations of the generalized noncompact Lorentz algebra slM(R).
Nevertheless, the fact that initial data of the problem are formulated in terms of the Fock m
F is closely related to the fact~see, e.g., Refs. 3 and 4! that the collection of unitary massles
representations corresponding to this dynamical system ind54 is described by the unitary Foc
moduleU known as singleton representation of sp~8!. ~It is also well known that unitary repre
sentations of the 4d conformal algebra associated with massless fields admit Fock realizati
terms of appropriate oscillators.10! As shown in Refs. 8 and 1, the modulesU andF are related by
some Bogolyubov transform.

The formulas~1.35!, ~1.37! will play the key role in our analysis. They allow one to solve t
equations of motion explicitly provided that the gauge functiong(X) is found that corresponds t
a chosen zero-curvature connectionw0 . This program for the flat connection~1.29! was accom-
plished in Ref. 1. In this paper we will find a family of such gauge functionsg(X) that all
nonvanishing components ofw0 take values in the AdS subalgebra osp(LuM ) % osp(LuM ) of
osp(2Lu2M ).

II. Sp„M… AND STAR PRODUCT

As argued in Ref. 1, the generalized AdS space is identified with Sp(M ). Let us note that the
generalized conformal group Sp(2M ) does not act globally on Sp(M ) analogously to the usua
conformal group acting in the Minkowski space–time by Mo¨bius transformations which hav
singularities. Recall that usual Minkowski space–time is the big cell of the compac
Minkowski space. Analogously, the generalized Minkowski space–time is the big cell in
compactified generalized space–timeMM . The universal covering space of Sp(M ) can be
thought of as a sort of deformation of the generalized Minkowski space–time being the big c
MM .

The group Sp(M ) is realized by theM3M matricesUa
b satisfying

Ua
bUg

dVag5Vbd , ~2.1!

whereVab is some nondegenerate antisymmetric formVab52Vba (M is even!. The manifold
Sp(M ) is @M (M11)/2# dimensional. It can be described by local coordinatesXab5Xba. The
simplest parametrization is

Ua
b5~exp~lX!!a

b, ~2.2!

wherel is inverse ‘‘radius’’ of Sp(M ) introduced to compensate the space dimensionality ofXab.
Note that a particular value oflÞ0 is irrelevant unless there are some other dimensional pa
eters in the theory~e.g., the gravitational constant!. The exponential in~2.2! is matrix exponential
of

Xa
b5VgaXgb . ~2.3!
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It is elementary to see that the parametrization~2.2! solves the group equation~2.1!. The expo-
nential parametrization~2.2! provides the universal covering space11 of Sp(M ) @metaplectic group
Mp(M )] topologically equivalent toR@M (M11)/2#, the big cell ofMM .

Sp(M ) is invariant under the action of Sp(M )3Sp(M ) generated by left and right actions o
Sp(M ) on itself. Using the oscillator realization of sp(M ) % sp(M ),sp(2M ) we can set

w0~X!5vab~X!aabb1hab~X!~aaab1l2babb! , ~2.4!

where the ‘‘Lorentz connection’’vab(X) and the ‘‘frame’’hab(X) have the form

vab52 1
2 ~d~U21!a

gUgb1dUa
g~U21!gb! , ~2.5!

hab5
1

4l
~dUa

g~U21!gb2d~U21!a
gUgb! , ~2.6!

which guarantees thatw0 satisfies~1.31!. In the exponential parametrization~2.2! one gets

vab5
l

2
dXmnS E

0

1

exp~lXt!mb exp~lXt!na dt2E
21

0

exp~lXt!mb exp~lXt!na dt D , ~2.7!

hab5
1

4
dXmnE

21

1

exp~lXt!mb exp~lXt!na dt , ~2.8!

where we used the identitydeA5*0
1eAtdAeA(12t) dt valid for an arbitrary matrixA. As expected,

in the flat limit l→0 one recovers~1.29!.
Let us now present the star-product pure gauge form~1.35! of the connection~2.4!–~2.6!. The

final result is

g5
1

detI ch
lX

2 I expS 2
1

l S th
lX

2 D ab

~aaab1l2babb! D , ~2.9!

g215
1

detI ch
lX

2 I expS 1

l S th
lX

2 D ab

~aaab1l2babb! D . ~2.10!

This formula is derived as follows. Let sp(M ) be realized in terms of bilinears of oscillato
aa satisfying the commutation relations

@aa ,ab#* 52Vab , ~2.11!

with the star product,

~ f * g!~a!5
1

pM E f ~a1u!g~a1v !e2uava
dMu dMv . ~2.12!

Consider star-product algebra elementsg1 andg2 of the form

g15r 1e1/2 f 1
abaaab , g25r 2e1/2 f 2

abaaab ~2.13!

with somea-independentr 1 , r 2 , f 1
ab , and f 2

ab . Elementary evaluation of the Gaussian integr
shows that

g1,25g1* g25r 1,2e
1/2(f 1+ f 2)abaaab , ~2.14!
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where

r 1,25
r 1r 2

Adeti f 1f 211i
~2.15!

and

f 1+ f 25
1

11 f 2f 1
~11 f 2!2

1

11 f 1f 2
~12 f 1! ~2.16!

@with the usual matrix multiplication on the right-hand side,AB→Aa
gBg

b, (1/A) B
→(A21)a

gBg
b]. Let us look for a map

g~U !5r ~U !e1/2 f ab(U)aaab ~2.17!

of Sp(M ) into the star-product algebra, such that

g~U1!* g~U2!5g~U1U2!5r ~U1U2!e1/2 f ab(U1U2)aaab . ~2.18!

Equivalently, one can use the inverse mapU( f ) requiring

U~ f 1!U~ f 2!5U~ f 1+ f 2! . ~2.19!

As shown in the Appendix, the multiplication law~2.16! requires

Uab~ f !5S 11 f

12 f D
ab

. ~2.20!

The inverse formula is analogous

f ab~U !5S U21

11U D ab

. ~2.21!

The normalization factor is

r ~U !5
2M /2

AdetiU11i
. ~2.22!

To derive ~2.9! it remains to use~2.2! and to observe that the two sp(M ) subalgebras of
sp(2M ) are generated by the two mutually commuting sets of oscillators

aa
65

aa

Al
6AlVbabb5

1

Al
~aa6lba! , ~2.23!

satisfying the commutation relations

@aa
6 ,ab

6#* 562Vab . ~2.24!

The map~2.20! has a number of interesting properties. In particular,

U21~ f !5U~2 f ! , ~2.25!

U~ f !52U21~2 f 21! . ~2.26!
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The property~2.25! is a consequence of the elementary fact~see, e.g., Ref. 12! that the star
product ~2.12! admits an antiautomorphismr(g(a))5g( ia), i.e., r(g1)* r(g2)5r(g2* g1).
From ~2.17! it follows that r(U( f ))5U(2 f ). The natural group antiautomorphism isr(U)
5U21. The formula~2.25! identifies the antiautomorphismr in the star-product algebra with tha
of the group Sp(M ).

The formula~2.26! is more interesting. It does not have a global interpretation within Sp(M )
being singular at degeneratef ab ~in particular for f ab50 and, therefore,U5I ). However, these
maps are expected to have global meaning inMM where one can define inversion by analogy w
the flat case considered in Ref. 2,

I ~ f !52 f 21 , I ~U !52U21 . ~2.27!

The formula~2.26! implies that these two definitions are consistent with each other. Note
inversion defined this way maps unit element of Sp(M ) to the central element2I which does not
belong to the connected component of unity PSp(M ),Sp(M ).

III. ARBITRARY COORDINATES

The gauge function~2.9! corresponds to the exponential realization of Sp(M ), thus yielding
global coordinates which cover the metaplectic group Mp(M ). Our formalism allows one to write
down explicit form of vacuum gauge connections~Cartan forms! in arbitrary coordinates, how
ever. Indeed, let us consider a gauge function of the form

g5Adeti12l2f 2~X!i exp~2 f ~X!ab~aaab1l2babb!! ,
~3.1!

g215Adeti12l2f 2~X!i exp~ f ~X!ab~aaab1l2babb!! ,

where f ab(X)5 f ba(X) is an arbitrary function of matrix coordinatesXab. The zero-curvature
connection~1.35! can be written in the form

w052g~2 f !!S dXab
] f 1

gl

]Xab

]

] f 1
gl g~ f 1! D U

f 15 f

. ~3.2!

Direct computation leads to the expressions for the ‘‘Lorentz connection’’ and ‘‘frame’’

hab5dXrsS 1

12l2f 2D agS ] f g
l

]Xrs 2l2f g
m

] f m
n

]Xrs f n
lD S 1

12l2f 2D
l

b

, ~3.3!

vab52l2 dXrsS 1

12l2f 2D agS ] f g
m

]Xrs f m
l2 f g

m
] f m

l

]XrsD S 1

12l2f 2D
l

b

. ~3.4!

Note that from these formulas it follows that

vab52hag f g
b22 f aghg

b1l2f agvg
l f l

b . ~3.5!

An arbitrary functionf ab(X) parametrizes various coordinate choices in Sp(M ). A relation-
ship with the coordinates of the exponential parametrization obviously is

f ~X̃!5
1

l
th

lX

2
, ~3.6!

which implies locally
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sh
lX

2
5

l f ~X̃!

A12l2f 2~X̃!
, ch

lX

2
5

1

A12l2f 2~X̃!
. ~3.7!

The formulas~3.3! and ~3.4! thus provide a representation for Cartan forms in arbitr
coordinates associated with one or another functionf ab(X). Consider now a few particular ex
amples. Letf ab(X) be of the form

f ab~X!5f~detiXi !Xab . ~3.8!

The corresponding connections are

hab5f•S 1

12l2f2X2D ag

~dXg
l2l2f2Xg

m dXm
n Xn

l!S 1

12l2f2X2D
l

b

1f̃•dXrs~X21!rsS X

12l2f2X2D ab

, ~3.9!

vab52l2f2
•S 1

12l2f2X2D ag

~dXg
mXm

l2Xg
m dXm

l!S 1

12l2f2X2D
l

b

, ~3.10!

where

f̃5
]f

] ln detiXi . ~3.11!

Another useful example results from

f ab
6 ~X!5S X

17A12l2X2D
ab

. ~3.12!

The corresponding gauge function is

g65detI11lX6A12l2X2

lX
IexpS 2S X

17A12l2X2D ab

~aaab1l2babb!D . ~3.13!

In these ‘‘stereographic’’ coordinates the ‘‘frame’’ gets the following simple form:

hab5
1

2 S 1

A12l2X2D ag

dXg
lS 1

A12l2X2D
l

b

. ~3.14!

Let us now compare this formula with those obtained in Refs. 8 and 9 to describe massles
in AdS3(M52) and AdS4(M54).

Let us first consider the caseM52. Using, for example,g1, from ~3.13! one obtains

g5
2Az

11Az
expS 2

1

11Az
xab~aaab1l2babb!D , ~3.15!

g215
2Az

11Az
expS 1

11Az
xab~aaab1l2babb!D , ~3.16!

wherez511 1
2l

2xabxab. The ‘‘frame’’ and the ‘‘Lorentz connection’’ are
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hab5
1

2z
dxab , vab5

1

2z
~dxa

g xgb1dxb
g xga!. ~3.17!

To derive this result, which reproduces that of Ref. 8, we used a simple fact that, whenM52, any
antisymmetric matrix is proportional toVab and, therefore, any polynomial of matrix coordinat
P(x)ab decomposes into a combination of its symmetric partPS(xmnxmn)xab and antisymmetric
part PA(xmnxmn)Vab. From ~3.17! it follows that the metric tensor is

gmn5
1
2 hab,nhab

,m5
1

4

hmn

~11l2xkx
k!2 , ~3.18!

where

xn5sn
abxab , xab5 1

2 sab
nxn , ~3.19!

andsn
ab is a set of basis symmetric real matrices normalized to satisfy

sn
absmab52hmn , ~3.20!

wherehmn is the flat Minkowski metric.
To consider the 4d case we embed AdS4 space–time intoM4 as follows:

Xab5S 0 xāb̄
˙

xb̄ ǡ 0
D , ~3.21!

whereā,b̄51,2, ǡ,ḃ̄53,4, andxāb̄
˙

are local AdS4 coordinates which can be expressed via

vector coordinatesxn (n50, . . . ,3) with the aid of Pauli matricessn
āb̄

˙
5(I ,s1

āb̄
˙
, . . . ,s3

āb̄
˙
) as

xn5sn
āb̄

˙ xāb̄
˙

, xāb̄
˙
5 1

2 xnsnāb̄
˙

, snāb̄
˙ sm

āb̄
˙
52hmn . ~3.22!

The gauge function and gravitational fields resulting from~3.13! and ~3.14! are

g5S 2Az

11Az
D 2

expS 2
1

11Az
xāb̄

˙
~aāab̄

˙ 1l2bābb̄
˙ !D , ~3.23!

hāb̄
˙ 5

1

2z
dxāb̄

˙ , ~3.24!

vāb̄5
1

2z
~dxā

ġ̄xb̄ ġ̄1dxb̄
ġ̄ xā ġ̄ ! , v̄ ǡb̄

˙ 5
1

2z
~dxḡ

ǡ xḡb̄
˙ 1dxḡ

b̄
˙ xḡ ǡ), ~3.25!

wherez511 1
2l

2xāb̄
˙ xāb̄

˙
511l2xnxn. These AdS4 gravitational fields coincide with those foun

in Ref. 9.

IV. SYMMETRIES

Having fixed some vacuum solutionw0 of ~1.31!, the local higher spin symmetry is broke
down to the global one with the parametere0(a,buX) satisfying~1.34!. Once the vacuum solution
w0 is fixed in the pure gauge form~1.35! with some gauge functiong, it is easy to find the gauge
parametere0(a,buX) of the leftover global symmetry. Indeed let the generating param
j(a,b;m,h) in ~1.36! be of the form

j5j0 exp~aama2baha! , ~4.1!
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where j0 is an infinitesimal constant whilema and ha are constant parameters. An arbitra
symmetry with star-product polynomial parameters can be obtained via differentiation ofj with
respect toma andha . Substitution of~2.9! into ~1.36! gives

e0~a,b;m,huX!5g21!j!g5j0 exp~aam̂a2baĥa! , ~4.2!

where

m̂a5ch~lX!abmb2
sh~lX!ab

l
hb , ĥa5ch~lX!abhb2l•sh~lX!abmb . ~4.3!

According to~3.7!, in the arbitrary coordinates associated with the functionf ab(X) of Sec. III, we
have

m̂a5S 11l2f 2~X!

12l2f 2~X! D
a

b

mb2S 2 f ~X!

12l2f 2~X! D
a

b

hb , ~4.4!

ĥa5S 11l2f 2~X!

12l2f 2~X! D
a

b

hb2l2S 2 f ~X!

12l2f 2~X! D
a

b

mb . ~4.5!

The global symmetry transformation of the higher spin generating function

duF~buX!&[e0!uF~buX!&5j0 exp~2ĥaba1 1
2ĥ

am̂a!•C~b1m̂uX!!u0&^0u ~4.6!

implies

dC~buX!5j0C~b1m̂uX!exp~ 1
2ĥ

am̂a2baĥa! . ~4.7!

The dynamical fields are associated with the scalarc(X)5C(0uX) and vector ca(X)
5 (]/]ba) C(buX)ub50 in the expansion~1.23!. @All other fields in C(buX) are expressed via
derivatives of the dynamical fields.1# Their transformation laws are

dc~X!5j0C~m̂uX!exp~ 1
2ĥ

am̂a! , ~4.8!

dca~X!5j0S ]

]ba C~b1m̂uX!U
b50

2ĥaC~m̂uX! D expS 1

2
ĥam̂aD . ~4.9!

Differentiating over the parametersma and ha and setting them then equal to zero one obta
explicit expressions for the higher spin symmetry transformations associated with any sym
parameterse0(a,buX) polynomial in the oscillatorsa andb. In particular, the transformation law
with the parameters bilinear in the oscillators reproduces the Sp(2M ) generalized conforma
transformations in the generalized AdS space–time Sp(M ).

V. LIGHTLIKE SOLUTIONS

Once the gauge functiong is known one solves the system of free field equation~1.28! for all
massless fields via~1.37!. Let us consider basis lightlike solutions generated by the initial dat
the form

C~bu0!5C0 exp~kaba! , ~5.1!

whereC0 is an arbitrary constant andka is some space–time constant spinor. According to~1.22!
the Fock representation of the initial data has the form
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uF~bu0!&5C0 exp~kaba!!u0&^0u. ~5.2!

So the dynamical problem is solved by

uF~buX!&5g21~X!!uF~bu0!&5
C0

detI ch
lX

2 I e~1/l![th ~lX/2)#ab(aaab1l2babb)!ekaba
!e22aaba

.

~5.3!

Elementary evaluation of Gaussian integrals gives the following result:

C~buX!5
C0

AdetichlXi
exp~ tab~l2babb1kakb!1pb

akabb! , ~5.4!

where we use notations

ta
b5S th~lX!

2l D
a

b

, pa
b5~ch21~lX!!a

b , ~5.5!

equivalent by virtue of~3.7! to

ta
b5S f ~X!

11l2f 2~X! D
a

b

, pa
b5S 12l2f 2~X!

11l2f 2~X! D
a

b

. ~5.6!

Let us stress that, according to Refs. 1 and 2, for the particular case ofM54 the obtained
expressions describe solutions of massless equations for all spins in AdS4, constructed in Ref. 9.
Using ~3.23!, these solutions take the form

C~bux!5z expS xāb̄
˙

2
~kākb̄

˙ 1l2bābb̄
˙ !1AzkabaD . ~5.7!

For the case ofM52 we get solutions of the AdS3 massless equations discussed in Ref. 8 of
form

C~bux!5Az expS xab

2
~kakb1l2babb!1AzkabaD . ~5.8!

Here we make use of the gauge function~3.15!.
For the dynamical fields we obtain

c~X!5C0AdetI12l2f 2~X!

11l2f 2~X!
I exp~ tabkakb! , ~5.9!

ca~X!5C0AdetI12l2f 2~X!

11l2f 2~X!
I pa

bkb exp~ tabkakb! . ~5.10!

Substitution ofe0 into ~1.33! gives the global higher spin symmetry transformation of
solution ~5.3!,
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dC~buX!5C0j0AdetI12l2f 2~X!

11l2f 2~X!
I

3expS tabl2~ba1m̂a!~bb1m̂b!1tabkakb1pb
aka~bb1m̂b!2ĥaS ba1

1

2
m̂aD D .

~5.11!

The flat limit l→0 gives

dC~buX!5C0j0 exp~ 1
2 Xab~kakb22kahb1hahb!1ba~ka2ha!1kama1 1

2 maha!.
~5.12!

For the dynamical fields we get the plane wave solutions

cplane~X!5C0e1/2Xabkakb
, ca

plane~X!5C0kae1/2Xabkakb
, ~5.13!

with the twistorial ‘‘wave vector’’Kab5 1
2kakb .

The solution deformed to the AdS case is not strictly speaking plane wave. Howeve
‘‘conformally plane wave’’ in the sense that it has still leftover generalized conformal invaria
identified with such global symmetry transformations that

de0
uF~buX!&50 . ~5.14!

It is easy to see using~4.2! that this condition is solved by any parameter of the form

j5 f ~a,b!!~raaa! , ~5.15!

wherer is an arbitrary parameter such thatraka50 and f (a,b) is an arbitrary function. Indeed
according to~1.37!,

de0
uF~buX!&5g21!j!C~bu0!!u0&^0u5g21! f !~raaa!!ekaba

!u0&^0u50 . ~5.16!

VI. SUPEREXTENSION

The star-product formalism we use admits a straightforward generalization to the supe
metric case associated with OSp(Lu2M ) whereL is an arbitrary integer. To describe osp(Lu2M )
superalgebra let us introduce the Clifford elementsc i ( i 51, . . . ,L) satisfying the anticommuta
tion relations

$c i ,c j%* 5h i j , ~6.1!

where h i j 5h j i is some nondegenerate symmetric form. The Clifford star product in~6.1! is
defined~see, e.g., Ref. 12! according to

~ f * g!~c!5
1

2L E f ~c1f!g~c1x!e22x if i dLf dLx , ~6.2!

wherex i andf i are anticommuting variables. The supercharges

Qia5aac i , Si
a5bac i , ~6.3!

satisfy

$Qia ,Qib%* 5h i j Pab , $Si
a ,Sj

b%* 5h i j K
ab . ~6.4!

Let the Grassmann odd coordinatesu ia be associated with theQ-supergenerators. It is convenie
to require the differentialdu ia to anticommute todXab andu ia.
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It is easy to see1 that the gauge function

g5e2Xabaaab2u iaaac i ~6.5!

reproduces the flat superspace vacuum one-form

w05~dXab1 1
2 du ia u i

b!Pab1du ia Qia . ~6.6!

The left Fock moduleuF(b,c1uX,u)& satisfies the osp(Lu2M ) supersymmetric equation

~d2w0!!uF~b,c1uX,u!&50 , ~6.7!

where the supersymmetric Fock vacuumu0&^0u in addition to~1.26! is annihilated by the1
2L ~in

case of evenL) or 1
2(L21) ~in case of oddL) annihilation Clifford elementsc2 and, whenL is

odd, it is an eigenvector of the central elementCL5c1 , . . . ,cL ,

CL!u0&^0u56u0&^0u .

Let us now consider free field dynamics in the generalized AdS superspace. The corre
ing supersymmetry algebra is osp(L,M ) % osp(L,M ) while the superspace is osp(L,M ). To de-
scribe background fields~i.e., Cartan forms! in such a space we follow the same procedure as
Sp(M ).

The OSp(LuM ) supergroup is realized by (M1L)3(M1L) matrices UA
B, where A

5(a,i )(a51, . . . ,M , i 51, . . . ,L), satisfying the group condition

UA
BUC

DVAC5VBD , ~6.8!

whereVAB52(21)pApBVBA and

pA5H 1 , A5 i ,

0 , A5a.

It can be described by the local supercoordinatesXAB5(21)pApBXBA with the aid of the expo-
nential parametrization

UA
B5exp~lX!A

B . ~6.9!

Let us introduce the superoscillatorsaA , bA satisfying the~anti!commutation relations

aA!bB2~21!pApBbB!aA5dA
B , ~6.10!

with respect to the star product,

~ f !g!~a,buX!5
1

22LpM E f ~a1u,b1t !g~a1s,b1v !e2(tAsA2vAuA) du dt ds dv , ~6.11!

where the statistics of the integration variables is defined according to

uAuB5~21!pApBuBuA .

The integration measure is chosen so that 1 is the unit element of the star-product algebra~6.11!.
Using the oscillator realization of osp(LuM ) % osp(LuM ),osp(2Lu2M ) we can set

w05vABaBbA1hAB~aBaA1l2bBbA! . ~6.12!

The analysis analogous to that of Sec. II shows that the gauge function
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g5As deti12l2f 2~X!i exp~2 f AB~X!~aBaA1l2bBbA!! ~6.13!

provides the ‘‘Lorentz connection’’vAB and the ‘‘frame’’hAB of the form

vAB5 1
2 ~dUA

C~U21!CB1d~U21!A
CUCB! , ~6.14!

hAB5
1

4l
~dUA

C~U21!CB2d~U21!A
CUCB! , ~6.15!

where

UA
B5S 11l f ~X!

12l f ~X! D
A

B

. ~6.16!

The relationship betweenhAB andvAB is analogous to~3.5!,

vAB52hA
Cf CB22 f A

ChCB1l2f A
CvC

Df DB . ~6.17!

Here is the list of the gauge functions and corresponding Cartan forms in different co
nates.

~1! The exponential parametrization~6.9!,

g5
1

s detI ch
lX

2 I expS 2S th
lX

2 D AB

~aBaA1l2bBbA! D , ~6.18!

vAB5
l

2 S E
0

1

exp~lXt!A
C dXC

D exp~lXt!DB dt2E
21

0

exp~lXt!A
C dXC

D exp~lXt!DB dt D ,

~6.19!

hAB5
1

4 E21

1

exp~lXt!A
C dXC

D exp~lXt!DB dt. ~6.20!

~2! f AB5f(s detiXi)XAB,

g5As deti12l2f2
•X2i exp~2fXAB~aBaA1l2bBbA!! , ~6.21!

hAB5f•S 1

12l2f2X2D
A

C

~dXC
D2l2f2XC

M dXM
NXN

D!S 1

12l2f2X2D
DB

2f̃•S X

12l2f2X2D
AB

~X21!M
N dXN

M ,

vAB52l2f2
•S 1

12l2f2X2D
A

C

~dXC
MXM

D2XC
M dXM

D!S 1

12l2f2X2D
DB

, ~6.22!

where

f̃5
]f

] ln s detiXi . ~6.23!

~3! The ‘‘stereographic’’ coordinatesf AB(X)5(X/(17A12l2X2))AB,
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g65As deti12l2f 2~X!i expS 2S X

17A12l2X2D AB

~aBaA1l2bBbA!D , ~6.24!

hAB5
1

2 S 1

A12l2X2D
A

C

dXC
DS 1

A12l2X2D
DB

. ~6.25!

In the supersymmetric case, the global higher spin symmetry transformation law fo
generating functionC(buX) with respect to infinitesimal parameter,

j5j0 exp~mAaA2bAhA!

is analogous to~4.7!,

dC~buX!5C~b1m̂uX!exp~2~bA1 1
2m̂

A!ĥA! , ~6.26!

where

m̂A5ch~lX!ABmB2
sh~lX!AB

l
hB , ĥA5ch~lX!ABhB2l•sh~lX!ABmB . ~6.27!

It is straightforward to extend the rest of the analysis to the dynamics in the genera
superspace. Also, having found left invariant forms it is elementary to write down world
particle actions~see, e.g., Refs. 4, 5, and 1 for more details and references!. The form of the
world-line particle Lagrangian suggested in Ref. 1 is

L5ẊABw0AB~a,buX!1aAḃA , ~6.28!

where dXABw0AB(a,buX)5w0(a,buX) is the vacuum one-form satisfying the zero-curvature eq
tion ~1.31! and dot denotes the derivative with respect to the world-line parameter. Applyin
Stokes theorem and using~1.31! the particle action~6.28! can be rewritten in the string form as a
integral over a two-dimensional surface bounded by a particle trajectory and parametrizeds l ,

S5E
S2

S w0~a,buX!!∧w0~a,buX!1daA∧dbA1S daA

]

]aA
1dbA

]

]bAD∧w0~a,buX! D ,

~6.29!

where the pullback is defined as usual

w0~a,buX!5ds l
]XAB

]s l w0AB~a,buX!, daA5ds l
]aA

]s l , dbA5ds l
]bA

]s l . ~6.30!

The problem of calculating Cartan superforms in osp(1u2M ) superspace was considered
Ref. 5 where a particular parametrization was found with bosonic Cartan forms being at
bilinear in fermionic coordinates. Note that the star-product algebra formalism simplifies so
the computational problems being reduced to evaluation of elementary Gaussian integral~See
Ref. 13.!

VII. CONCLUSIONS

It is demonstrated how the star-product algebra formalism can be applied to the calcula
the vacuum of fields of the generalized AdS space associated with sp(M ) % sp(M ) subalgebra of
the recently proposed in Ref. 2 generalized conformal symmetry Sp(2M ). The method is univer-
sal working equally well for the supersymmetric case of OSp(L,M ) with any M and L. The
formalism of star-product algebra is shown to be very efficient for solving free field equatio
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nontrivial ~generalized conformally flat! geometries inMM and calculating Cartan forms in arb
trary coordinates. Hopefully it may have applications to formulations of world-line~super!particle
dynamics as well as~super!string actions inM theory backgrounds.
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APPENDIX

Let us prove that the formula

g~U !5
2M /2

AdetiU11i
expS 1

2 S U21

U11D ab

aaabD ~A1!

respects the group multiplication law of Sp(M ), i.e., that the formula~2.20! solves the equation
~2.19!. Let us look forU( f ) in the form

U~ f !5 (
n50

`

anf n , ~A2!

where an are some coefficients. HenceU( f 1)U( f 2)5(m,n50
` amanf 1

mf 2
n . Since this expression

contains allf 1 on the left-hand side, andf 2 on the right-hand, we have to find such a functi
U( f ) that U( f 1+ f 2) containsf 1 and f 2 in the correct order. We have

U~ f 1+ f 2!5 (
m50

`

amH (
n50

`

an~21!n~~ f 1f 2!n~11 f 1!2~ f 2f 1!n~11 f 2!!J m

. ~A3!

All terms of wrong order must vanish. The analysis of a few first terms ofU( f 1+ f 2) gives a hint
that the coefficients arean5$a0 ,a,a,a, . . . %, i.e.,

U~ f !5a02a1
a

12 f
. ~A4!

The substitution ofU( f ) into the equationU2( f )5U( f + f ) fixes a051,a52 so that

U~ f !5
11 f

12 f
. ~A5!

To prove that the obtained solution satisfies the equation~2.19! one has to check the identity

~11 f 1+ f 2!
12 f 2

11 f 2
5~12 f 1+ f 2!

11 f 1

12 f 1
~A6!

equivalent to the relation

H 11 (
n50

`

~21!n~~ f 2f 1!n~11 f 2!2~ f 1f 2!n~12 f 1!!J S 112 (
m51

`

~21!mf 2
mD

5H 12 (
n50

`

~21!n~~ f 2f 1!n~11 f 2!2~ f 1f 2!n~12 f 1!!J S 112 (
m51

`

f 1
mD , ~A7!

which is elementary to check.
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The normalization factor solves the equation

r ~U1!r ~U2!

Adeti f 1f 211i
5r ~U1U2! , ~A8!

which is obviously true after the substitution~2.20!,

2M /2

AdetiU111i
•

2M /2

AdetiU211i
•

1

AdetIU121

U111

U221

U211
11I

5
2M /2

AdetiU1U211i
. ~A9!

This completes the proof of Eq.~2.20!. The proof for the supersymmetric case is analogous.
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String theory extensions of Einstein–Maxwell fields:
The stationary case

Alfredo Herrera-Aguilara) and Oleg V. Kechkinb)

Instituto de Fı´sica y Matema´ticas, Universidad Michoacana de San Nicola´s de Hidalgo,
Edificio C–3, Ciudad Universitaria, CP 58040. Morelia, Mich., Me´xico

~Received 3 October 2003; accepted 10 October 2003!

We present a new approach for generating solutions in heterotic string theory com-
pactified down to three dimensions on a torus withd1n.2, whered andn stand
for the number of compactified space–time dimensions and Abelian gauge fields,
respectively. It is shown that in the case whend52k11, andn is arbitrary, one can
apply a solution-generating procedure which consists of mapping seed solutions of
the stationary Einstein theory withk Maxwell fields to the heterotic string realm by
using pure field redefinitions. A novel feature of this method is that it is precisely
the electromagnetic sector of the stationary electrovacuum that mainly gives rise to
a nontrivial multidimensional metric. This approach leads to classes of solutions
which are invariant with respect to the total group of three-dimensional charging
symmetries of the heterotic string theory, i.e., to allfinite transformations which
generate charged solutions from neutral ones and preserve the asymptotics of the
starting field configurations. As an application of the presented approach we gen-
erate a particular extension of the stationary Einstein–multi-Maxwell theory ob-
tained on the basis of the Kerr–multi-Newman–NUT special class of solutions and
establish the conditions under which the resulting multi-dimensional metric of the
heterotic string theory is asymptotically flat. ©2004 American Institute of Phys-
ics. @DOI: 10.1063/1.1631080#

I. INTRODUCTION

Symmetry based approaches used for the construction of solutions in the framework of
tive field ~low-energy! limits of string theories play an important role.1–3 In this article we develop
a new approach which allows one to extend the solution space of the stationary Einstein–
Maxwell ~EmM! theory to the realm of heterotic string theory compactified down to three sp
dimensions on a torus. Namely, we show that a new charging symmetry invariant subsp
solutions of heterotic string theories~with d52k11 toroidally compactified space–time dime
sions and arbitrary numbern of original Abelian vector fields! can be generated from the solutio
spectrum of the stationary Einstein theory withk Maxwell fields by making use of pure field
redefinitions. In particular, for the critical cases of heterotic (d57) and bosonic (d523) string
theories one must start from the EmM theory withk53 andk511 Maxwell fields, respectively
Thus, the nontrivial multidimensional gravitational sector~the metric! of the heterotic string
theory is mainly generated from the electromagnetic sector of the stationary EmM theo
interesting fact that establishes a relationship between gravity and matter fields.

The toroidal compactification of heterotic string theory with arbitrary values ofd andn was
performed in Refs. 4 and 5, whereas the special case when the resulting theory is
dimensional was originally studied in Refs. 6 and 7. There, the corresponding symmetric
model was identified and an explicit representation in terms of a null-curvature matrix was
~see Ref. 8 for such models and their classification!. In this article we exploit the general forma

a!Electronic mail: herrera@itzel.ifm.umich.mx
b!Author on leave from Institute of Nuclear Physics of M.V. Lomonosov Moscow State University, Vorob’jovy G

119899 Moscow, Russia. Electronic mail: kechkin@ginette.ifm.umich.mx, kechkin@depni.npi.msu.su
2160022-2488/2004/45(1)/216/14/$22.00 © 2004 American Institute of Physics
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ism developed in Refs. 9–11 as a natural matrix generalization of the stationary Einstein–M
~EM! theory written down in terms of potentials which are closely related to the Ernst ones~see
Refs. 12–14!. In the framework of this formalism, the subgroup of charging symmetry trans
mations~all finite transformations which generate charged solutions from neutral ones and
serve the asymptotic characteristics of the seed field configurations15! acts as a linear and homo
geneous map; this fact allows one to work with the solution spectrum of the theory
transparently charging symmetry invariant form. In particular, all the results of this article
automatically invariant with respect to the action of the total three-dimensional subgrou
charging symmetries SO(2,d21)3SO(2,d211n) of the heterotic string theory compactified o
a torus.10

In this article we continue our investigation on string theory extensions of EM fields.
previous work16 we have studied two theories withd1n52; here we deal with theories withd
1n.2. Such a split of the effective theories which arise upon toroidal compactification
arbitrary parametersd andn, in the framework of the low-energy limit of heterotic string theo
follows from the study of the general Israel–Wilson–Perje´s ~IWP! class of solutions of this theory
performed in Ref. 11. The new formalism allows one to construct, in particular, a contin
generalization of the extremal IWP families of solutions in the corresponding string theories
field of nonextremal ones. In Ref. 16 it was shown that thestatic EM theory plays the role of
starting system for two theories withd1n52; in this article we show that for the theories wi
d1n.2 such starting systems can be related to thestationary EmM theory and illustrate the
developed general approach by considering an extension of the Kerr–multi-Newman–NUT
tion to the realm of heterotic string theory.

II. NEW FORMALISM FOR 3D HETEROTIC STRING THEORY

In this section we review the necessary elements of the new formalism developed in R
for the D-dimensional (D5d13) heterotic string theory withn Abelian gauge fields.

We start with the action for the bosonic sector of the low-energy heterotic string theory a
level:1,2

SD5E dDXudetGMNu1/2e2FS RD1F ,MF ,M2
1

12
HMNKHMNK2

1

4
FMN

I FI MND , ~2.1!

where HMNK5]MBNK2 1
2AM

I FNK
I 1 cyclic $M ,N,K% and FMN

I 5]MAN
I 2]NAM

I (M51, . . . ,D).
HereXM is theM th coordinate of the physical space–time of signature (2,1, . . . ,1), GMN is
the metric, whereasF, BMN and AM

I (I 51, . . . ,n) are the dilaton, Kalb-Ramond and Abelia
gauge fields, respectively. In order to determine the resulting theory after the toroidal com
fication on Td down to three dimensions, let us setD5d13, Xm5(Ym, xm) with the extra-
dimensional coordinatesYM5Xm (m51, . . . ,d) and the dynamical onesxm5Xd1m (m51,2,3).
In Ref. 11 it was shown that, after the toroidal compactification of the firstd dimensionsYm, the
resulting theory can be expressed in terms of the pair of field variables (Z, hmn) which describes
three-dimensional gravity, with metrichmn5hmn(xl), coupled to a matter sector parametrized
the (d11)3(d111n)-matrix field variableZ5Z(xl); its effective dynamics is given by th
action

S35E d3xh1/2~2R31L3!, ~2.2!

whereR35R3(hmn) is the curvature scalar for the line elementds3
25hmndxmdxn and the matter

sector of the theory reads

L35Tr @¹Z~J2Z TSZ!21¹Z T~S2ZJZ T!21#, ~2.3!
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whereS5diag(21,21;1, . . . ,1) is a (d11)3(d11)-matrix andJ5diag(21,21;1, . . . ,1) is a
(d111n)3(d111n)-matrix.

This s-model representation of the theory is the most compact one because of the dime
of the matrix variableZ. In order to come back to the original field components of the heter
string theory from thiss-model description, it is convenient to introduce three doublets of po
tials (Ma ,VW a) (a51,2,3) which are constructed on the basis of the field variables (Z, hmn)
according to the following equations:

M15H 21, ¹3VW 15JW ,

M25H 21Z, ¹3VW 25H 21¹Z2JWZ, ~2.4!

M35Z TH 21Z, ¹3VW 35¹Z TH 21Z2Z TH 21¹Z1Z TJWZ,

whereH5S2ZJZ T andJW5H 21(ZJ¹Z T2¹ZJZ T)H 21. In Eq. ~2.4! the scalarsMa are
off-shell defined magnitudes, whereas the vectorsVW a are defined on-shell. The scalar and vec
potentials that conform each doublet have the same matrix dimensionality; let us represent t
the following block form:

S 131 13d

d31 d3dD , S 131 13d 13n

d31 d3d d3nD , S 131 13d 13n

d31 d3d d3n

n31 n3d n3n
D , ~2.5!

for a51,2,3, respectively, where, for example, the ‘‘13’’ block components of the potentialsM2

and VW 2 are 13n matrices, the ‘‘32’’ block components of the potentialsM3 and VW 3 are n3d
matrices, etc. Afterwards let us define the set of magnitudes which are directly involved
solution-generating procedure that will be exposed in Sec. III; these include the following s
matrix fields,

Sa5Ua1S0
21W1

TWa , ~2.6!

where

S052M1,1112M2,112M3,11,

U15G0M1,22G01G0M2,221~M2,22!
TG01M3,22,

U25G0M1,222G0M2,22G01~M2,22!
T2M3,22G0 ,

U35&~G0M2,231M3,23!, ~2.7!

W152M1,12G02M2,121~M2,21!
TG01M3,12,

W25M1,122M2,12G01~M2,21!
T2M3,12G0 ,

W35&~M2,131M3,13!,

whereG05diag(21;1,. . . ,1) is ad3d-matrix, and the matrix vector fields

VW 15@2VW 1,12G01VW 2,121~VW 2,21!
TG01VW 3,12#

T,

VW 25@2VW 1,122VW 2,12G01~VW 2,21!
T2VW 3,12G0#T, ~2.8!
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VW 35&~VW 2,131VW 3,13!
T.

In the language of these matrix variables the heterotic string theory fields read

dsD
2 5dsd13

2 5~dY1V1mdxm!TS1
21~dY1V1ndxn!1S0ds3

2 ,

eF5uS0 detS1u1/2,

Bmk5
1
2 ~S1

21S22S2
TS1

21!mk ,

Bm d1n5$V2n1 1
2 ~S1

21S22S2
TS1

21!V1n2S1
21S3V3n%m , ~2.9!

Bd1m d1n5 1
2 @V1m

T ~S1
21S22S2

TS1
21!V1n1V1m

T V2n2V1n
T V2m#,

Am
I 5~S1

21S3!mI ,

Ad1m
I 5~2V3m1S3

TS1
21V1m! I .

From Eq.~2.9! it follows that, apart from the magnitudesS0 , Sa andVW a , we also must compute
detS1 and S1

21 in order to obtain explicit expressions for the field components of the hete
string theory~2.1!. Therefore, after some algebraic calculations it can be proved that

detS15~11S0W1U1
21W1

T!detU1 ,
~2.10!

S1
215U1

212
S0

21U1
21W1

TW1U1
21

11S0
21W1U1

21W1
T .

Finally, let us point out that the magnitudesS0 , Ua , Wa andVW a can be used to explicitly write
down any solution of the theory under consideration. As it was indicated above, these magn
are directly involved in the solution-generating technique that will be developed in the
section, and in Sec. IV we shall calculate them in order to obtain a concrete extension
stationary EmM theory to the realm of the low-energy heterotic string theory.

At the end of this section let us notice that the transformation

Z→C1ZC2 , ~2.11!

whereC1 andC2 obey the orthogonal group conditions

C 1
TSC15S and C 2

TJC25J, ~2.12!

is a transparent symmetry of the Lagrangian~2.3! since it remains invariant under such a tran
formation. In Refs. 10 and 11 it was shown that this symmetry transformation coincides wit
total group of three-dimensional charging symmetries SO(2,d21)3SO(2,d211n). As it was
mentioned before, the above reviewed formalism, based on the use of the matrix potenZ,
constitutes asigma-model representation of the theory~2.3! with the lowest possible matrix
dimension and is, in fact, a O(d11,d1n11)/O@(d11)3(d1n11)# symmetric space model o
dimension (d11)(d1n11) according to the classification of~Ref. 8!. From Eq.~2.11! it also
follows that the general transformation of the charging symmetry subgroup of the theory ac
linear and homogeneous map, a fact that was just discussed in the Introduction. Since th
metry subgroup preserves the asymptotic properties of the seed solutions when one ap
solution-generating procedure, this formalism is especially convenient for the study of asym
cally flat solutions of heterotic string theory toroidally compactified down to three dimens
because all the results can be obtained in a transparent charging symmetry invariant form
                                                                                                                



rotic
solu-
EM
tring
ian

the

nd
xact

ng

meter

nce
e

220 J. Math. Phys., Vol. 45, No. 1, January 2004 Alfredo Herrera-Aguilar and Oleg V. Kechkin

                    
III. STRING THEORIES FROM STATIONARY EINSTEIN–MULTI-MAXWELL SYSTEM

In this section we show how to map solutions of the stationary Einstein theory withk Maxwell
fields into solutions to the three-dimensional heterotic string theory withd52k11 toroidally
compactified space–time dimensions and arbitrary numbern of Abelian gauge fields.

First of all, let us formulate the main idea of our approach; it is related to the hete
string/Einstein–Maxwell theory correspondence and the explicit form of the IWP class of
tions in both of these theories.11 In order to achieve this aim, let us represent the stationary
theory in a very similar form to the three-dimensional effective field theory of the heterotic s
represented by Eq.~2.3!. Namely, it is well known that the effective three-dimensional Lagrang
of the stationary EM theory reads

L35LEM5
1

2 f 2 u¹E2F̄¹Fu22
1

f
u¹Fu2, ~3.1!

wheref 5 1
2(E1Ē2uFu2), andE andF are the conventional Ernst potentials. Let us introduce

132 matrix potential

z5~z1 z2! ~3.2!

with

z15
12E

11E
, z25

&F

11E
. ~3.3!

Then

LEM52
¹z~s32z†z!21¹z†

12zs3z† , ~3.4!

wheres35diag(121). By comparing Eqs.~2.3! and ~3.4! it follows that the correspondence

Z↔z, J↔s3 , S↔1, ~3.5!

together with the interchange of operationsT↔†, relates three-dimensional heterotic string a
stationary EM theories; the factor ‘‘2’’ in~3.4! can be understood as a consequence of the e
matrix representation of complex magnitudes~see below and Ref. 11 as well for details!. It turns
out that the IWP class of solutions of the EM theory17 can be rewritten in terms of thez-potential
asz5lq, wherel5l(xm) is a complex harmonic function (¹2l50), q is a 132-matrix con-
stant parameter and when the parameterk5qs3q† vanishes; in this case, the correspondi
three-dimensional metrichmn is flat. It is clear that, in view of the correspondence~3.5!, the IWP
class of solutions of the heterotic string theory arises in the framework of the ansatz

Z5LQ, ~3.6!

whereL5L(xm) is a real harmonic (d1132)-matrix function andQ is a constant (23d1n
11)-matrix parameter. In Ref. 11 it was shown that this fact actually takes place if the para

k5QJQ T ~3.7!

vanishes and the three-metrichmn is flat again, in complete accordance with the corresponde
~3.5!. There, it also was shown that the restrictionk50 completely fixes the dimensionality of th
matricesL andQ: for two theories withd1n52, such matrices have dimensions (d11)31 and
133, respectively, whereas for the theories withd1n.2 the dimensions are (d11)32 and 2
3(d1n11), respectively, as it was pointed out above.
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A crucial point in our approach consists of removing thek50 restriction in order to conside
the generalization of the IWP class of solutions of heterotic string theory to the subspace
nonextremal solutions. This means that we shall preserve the form of the ansatz~3.6! and the
dimensions of the matricesL andQ, but we shall allow arbitrary values of the parameterk defined
by Eq. ~3.7!. Such a procedure can be applied in a very natural way in the framework o
stationary EM theory, where it defines, for instance, a continuous extension of the ext
Kerr–multi-Newman–NUT solution to the corresponding nonextremal one.14 Such an extension is
really interesting from the point of view of physical applications since the example given a
concerns black hole physics in EM theory.18 In view of the correspondence~3.5! the same moti-
vation for the study of the ansatz~3.6! with kÞ0 must be valid for the low-energy heterotic strin
theory; thus, the study of such an ansatz is also interesting since it is related to black hole p
in the framework of string theory.3,19

In this article we consider string theories withd1n.2, whenk is a symmetric 232-matrix.
By straightforwardly substituting the ansatz~3.6! into the equations of motion derived from Eq
~2.2! and ~2.3!, one obtains

¹2L12¹LkLT~S2LkLT!21¹L50,
~3.8!

R3 mn5Tr@L ,(mk~12LTSLk!21L ,n)
T ~S2LkLT!21#.

It is obvious that in the casek50 we recover the extremal case studied in Ref. 11, whereas
kÞ0 we have the above mentioned continuous extension of the formalism to the nonex
case. Below we study the situation whenk is nonzero and, moreover, nondegenerate matrix w
signatureS̃5diag(21,21). The reason for considering such a particularization of the ansatz~3.6!
is that, in this case, the effective system defined by Eqs.~3.8! corresponds to some new hetero
string theory by itself. Actually, Eqs.~3.8! are the equations of motion for the action~2.2! with the
matter Lagrangian~2.3! replaced by

L̃35Tr@¹Lk~12LTSLk!21¹LT~S2LkLT!21#. ~3.9!

Then, as an algebraic fact it follows that there exists a nondegenerate matrixK such that

k5KS̃KT. ~3.10!

Let us introduce the new matrix potential

Z̃5KTLT ~3.11!

and setJ̃5S. We claim that it is possible to rewrite the effective LagrangianL̃3 ~3.9! in terms of

Z̃, S̃ and J̃; the resulting Lagrangian exactly coincides with the relation~2.3! up to the tilde.
Thus, the effective system~3.9! is nothing else than the heterotic string theory withd̃51 com-
pactified dimensions andñ5d21 Abelian gauge fields. From Eqs.~3.6! and~3.11! it follows that

Z5Z̃TT, ~3.12!

whereT5K21Q. Equation~3.12! maps the space of solutions of the theory in terms ofZ̃ into that
of the theory in terms of the potentialZ, so that the matrixT plays the role of a symmetry
operator. Let us now calculate the general explicit form of such symmetry operator using
~3.6! and ~3.10!. Without loss of generality~see Ref. 11 for details!, the matrixQ can be param-
etrized in the form

Q5S 1 0 n1
T

0 1 n2
TD , ~3.13!
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wherena (a51,2) are two (d1n21)31 columns. Thus, the extremal case corresponds to
restrictionna

Tnb5dab , i.e., it is realized by the unit orthogonal columnsna . Our generalization of
the extremal ansatz corresponds, in this geometric language, to the case of columns with a
length and arbitrary angle between them, which is compatible with the signatureS̃ of the matrix
k.

Now we are able to compute the matrixk and to determine the quantityK using, for example,
the orthogonalization procedure of the theory of quadratic forms. A special solution reads

K5S A12n1
Tn1 0

2
n1

Tn2

A12n1
Tn1

A12n1
Tn12n2

Tn21~n1
Tn1!~n2

Tn2!2~n1
Tn2!2

12n1
Tn1

D . ~3.14!

In order to obtain a general solutionK to the quadratic equation~3.10! one must generalize th
special solution~3.14! through the mapK→KC whereC TS̃C5S̃, i.e., CPO(2). However, this
map is effectively equivalent to the transformationZ̃→(C T)21Z̃ as it follows from Eq.~3.12!. It
is clear that (C T)21 is nothing more than an alternative notation for the ‘‘left’’ matrixC1 of the
charging symmetry transformation~2.11!, thus, it can be omitted when considering chargi
symmetry invariant classes of solutions represented byZ̃. Thus, without loss of generality one ca
takeQ andK in the form given by Eqs.~3.13! and~3.14! when constructing a symmetry operat
according to Eq.~3.12!. It is worth noticing that the definition ofK is consistent with the assume
signature ofk.

Now let us consider a special situation withd52k11, when the potentialZ̃ can be split into
k11 different 232-matrix blocks:

Z̃5~Z̃1 , Z̃2 , . . . , Z̃k11!. ~3.15!

Let us consider a consistent ansatz with

Z̃P5S zP8 2zP9

zP9 zP8
D , ~3.16!

whereP51,2,. . . ,k11. Let us introducek11 complex functionszP5zP81 izP9 . Our statement is
that the heterotic string theory field equations corresponding to the special subsystem~3.15! and
~3.16! can be derived from the effective Lagrangian

L35LEmM52
¹ z̃~ s̃32 z̃†z̃!21¹ z̃†

12 z̃s̃3z̃† , ~3.17!

where z̃5( z̃1 ,z̃2 , . . . , z̃k11) and s̃35diag(1,21,21, . . . ,21). It is clear that in the casek51
one recovers Eq.~3.4!, i.e., one deals with the stationary EM theory. It is natural to suppose
in the case of arbitraryk one obtains the stationary Einstein theory withk Maxwell fields. In order
to verify this statement it is convenient to introduce new variables@compare to Eq.~3.3!#

E5
12 z̃1

11 z̃1
, Fp5

& z̃p11

11 z̃1
, ~3.18!

wherep51,2,. . . ,k. In terms of these variables the effective Lagrangian adopts the form

LEmM5
1

2 f 2 u¹E2F̄p¹Fpu22
1

f
u¹Fpu2, ~3.19!
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where f 5 1
2(E1Ē2FpF̄p), thus, the potentialsE andFp can be interpreted as the convention

Ernst potentials of the classical four-dimensional Einstein theory withk Maxwell fields in the
stationary case.

The theory~3.17! can be studied in a form which is very close to that of the heterotic st
theory ~see Sec. II! by using the correspondence~3.5! modified to the case ofk Maxwell fields,
i.e., by making the following replacement:

z→ z̃, s3→s̃3 ~3.20!

@see Eqs.~3.4! and ~3.7!#. Namely, it is convenient to introduce the doublets (m̃a ,vW̃ a) with

m̃15h̃21, ¹3vW̃ 15 jW̃,

m̃25h̃21z̃, ¹3vW̃ 25h̃21¹ z̃2 jW̃ z̃, ~3.21!

m̃35h̃21z̃†z̃, ¹3vW̃ 35h̃21~¹ z̃†z̃2 z̃†¹ z̃!1 jW̃ z̃†z̃,

where h̃52(12 z̃s̃3z̃†) and jW̃52h̃22( z̃s̃3¹ z̃†2¹ z̃s̃3z̃†) @compare with Eq.~2.4!#. It is clear
that the doublet (m̃1 ,vW̃ 1) consists of complex functions, whereas the doublets (m̃2 ,vW̃ 2) and
(m̃3 ,vW̃ 3) consist of 13(k11) – and (k11)3(k11)-matrices, respectively. From Eqs.~3.15! and
~3.16! we extract a rule for reconstructing the heterotic string theory described by the potenZ̃
of dimension 23@2(k11)#. Further, from Eqs.~3.12!–~3.14! one obtains the explicit form of the
symmetry mapZ̃→Z. It is interesting that this map is nonholomorphic due to the transpositio
Z̃ in Eq. ~3.12!, which is equivalent to the Hermitian conjugation ofz̃ in view of the correspon-
dence~3.20! discussed above.

Thus, a symmetry transformation that maps the space of solutions of the stationary E
theory withk Maxwell fields into the corresponding subspace of solutions of the heterotic s
with d52k11 toroidally compactified dimensions andn arbitrary Abelian gauge fields is estab
lished by the following procedure:

~i! First of all, one must calculate in explicit form three doublets of potentials (m̃a ,vW̃ a) for the
stationary EmM theory.

~ii ! After that one must rewrite them in the form (M̃a ,VW̃ a) using the exact matrix represent
tion of complex magnitudes.@Equations~3.15! and~3.16! give, in fact, an example of suc
a representation of the complex potentialz̃ in terms of the real potentialZ̃.]

~iii ! The next step consists of calculating the matrix potentials (Ma ,VW a) for the heterotic string
theory which is an image of the EmM system according to the map~3.12!.

~iv! Afterwards, one must obtain the explicit form of the magnitudesS0 , Wa , Ua and VW a ,
using the found potentials (Ma ,VW a).

~v! Finally, by using ~2.9! one gets explicit expressions for the original field variables
heterotic string theory.

At the end of this section let us compute the doublets (Ma ,VW a). By making use of Eqs.~2.4!
and ~3.12!, after some algebraic calculations, one obtains

M15S1SM̃3S, VW 152SVW̃ 3S,

M252SM̃ 2
TT, VW 252SVW̃ 2

TT, ~3.22!

M35TT~M̃111!T, VW 352TTVW̃ 1T.
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In the next section we shall exploit these formulas in order to construct a subspace of solutio
the heterotic string theory withd52k11 and arbitraryn starting from the stationary Einstei
theory withk Maxwell fields.

IV. SOLUTIONS VIA KERR–MULTI-NEWMAN–NUT FAMILY

In order to calculate the potentialsS0 , Wa , Ua andVW a for the heterotic string fields, which
correspond to the EmM ones, according to the scheme developed in the previous section
parametrize the potentialZ̃ and the symmetry operatorT in the appropriate form. ForZ̃ is
convenient to set

Z̃5~Z̃I Z̃II !, ~4.1!

whereZ̃I is a 231-column andZ̃II is a 23(2k11)-matrix that read

Z̃I5S z̃18

z̃19
D , Z̃II 5S 2 z̃19 z̃11p8 2 z̃11p9

z̃18 z̃11p9 z̃11p8
D . ~4.2!

Therefore, forT we choose the following segmentation,

T5~TI TII TIII !, ~4.3!

whereTI is a 231-column,TII is a 23(2k11)-matrix, andTIII is a 23n-matrix, i.e.,

TI5K 21QI , Q̃I5S 1
0D ,

TII 5K 21QII , QII 5S 0 r 1
T

1 r 2
TD , ~4.4!

TIII 5K 21QIII , Q̃III 5S l 1
T

l 2
TD ,

where we have naturally decomposedna
T5(r a

T l a
T) into the rowsr a

T andl a
T of dimension 132k and

13n, respectively. It is worth noticing that the block representation~4.1! and ~4.3! of the mag-
nitudesZ̃ andT is directly related to the number of compactified dimensions and Abelian ve
fields (2k11 andn, respectively! and, thus, is actually fruitful for the application of Eqs~2.9!.
Thus, after some algebraic computations, Eqs.~2.7! yield the following expression for the scala
S0 :

S0512TI
TTI2h̃21~Z̃I2TI !

T~Z̃I2TI !, ~4.5!

whereas for the columnsWa one obtains

W15TI
TTII 1h̃21~Z̃I2TI !

T~Z̃II 2TII !,

W252@TI
TTII 1h̃21~Z̃I1TI !

T~Z̃II 1TII !#G0 , ~4.6!

W35&@TI1h̃21~Z̃I1TI !#
TTIII ;

finally, for the matrix potentialsUa one gets
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U15G01TII
T TII 1h̃21~Z̃II 2TII !

T~Z̃II 2TII !,

U252@TII
T TII 2h̃21~Z̃II 2TII !

T~Z̃II 1TII !#G0 , ~4.7!

U35&@TII 2h̃21~Z̃II 2TII !#
TTIII .

On the other hand, the vector matricesVW̃ a possess the following parametrization,

VW̃ 15vW e, VW̃ 25~VW̃ 2,I VW̃ 2,II !, VW̃ 35S 0 VW̃ 3,I II

VW̃ 3,II I VW̃ 3,II II

D , ~4.8!

where vW 5vW̃ 19 ~the magnitudevW̃ 1 is purely imaginary, i.e.,vW̃ 1850), e is the antisymmetric

232-matrix with e12521, the block components ofVW̃ 2 read

VW̃ 2,I5S vW̃ 2,18

vW̃ 2,19
D , VW̃ 2,II 5S 2vW̃ 2,19 vW̃ 2,11p8 2vW̃ 2,11p9

vW̃ 2,18 vW̃ 2,11p9 vW̃ 2,11p8
D , ~4.9!

whereasVW̃ 3,II I 52VW̃ 3,I II
T , VW̃ 3,II II 52VW̃ 3,II II

T (VW̃ 352VW̃ 3
T) and

VW̃ 3,I II 5~2vW̃ 3,1 19 vW̃ 3,1 11p8 2vW̃ 3,1 11p9 !. ~4.10!

Note that, in view of Eqs.~2.11! and ~3.22!, only the magnitudesvW̃ , VW̃ 2,I , VW̃ 2,II andVW̃ 3,I II are
necessary for the explicit construction of the potentialVW a . Finally, the explicit expressions fo
these vectors read

VW 15vW̃ TII
T eTI2VW̃ 2,II

T TI1TII
T VW̃ 2,I2VW̃ 3,I II

T ,

VW 252G0~vW̃ TII
T eTI1VW̃ 2,II

T TI1TII
T VW̃ 2,I1VW̃ 3,I II

T !, ~4.11!

VW 35&~vW̃ eTI1VW̃ 2,I !
TTIII .

At this stage some remarks are in order: Eqs.~4.5!, ~4.7!, and~4.11! also possess another param
etrization which is based on the identitiesKK T52k andKeK T5Adetke. In both representations
the potentialsS0 , Wa , Ua andVW a become trivial (S051, U15G0 and other fields vanish! for a
starting EmM solution corresponding toZ̃50. This fact reflects the underlying property of th
primordial symmetry map~3.12! in the language of the potentials which define the component
the physical fields of string theory. As a last remark let us point out that the appearance
(2k11)3(2k11)-matrix G05diag(21,1,1,. . . ,1), which describes the flat metric correspon
ing to extra dimensions, in Eq.~4.7! is very natural.

As a matter of fact, our solution-generating procedure, based on the use of Eq.~3.12! and the
special choice of the starting matrix potentialZ̃ in an EmM form@see Eqs.~4.1! and~4.2!#, breaks
the complex structure of the starting theory. Actually, in the general case,
23@2(k11)1n#-dimensional symmetry operatorT does not represent any complex magnitudt
of dimension 13(k111n/2). In particular, the number of Abelian gauge fieldsn can be odd.
However, if n is even, i.e.,n52J, and alsor 2,2p5r 1,2p21[r p8 , r 2,2p2152r 1,2p[r p9 , l 2,2j

5 l 1,2j 21[ l j8 , l 2,2j 2152 l 1,2j[ l j9 (p51,2,. . . ,k; j 51,2,. . . ,J), then
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T5
1

A12N 2 S 1 0 r p8 2r p9 l j8 2 l j9

0 1 r p9 r p8 l j9 l j8
D , ~4.12!

whereN 25n1
Tn15n2

Tn2 . In this special case, vectorsn1 and n2 have the same length and a
mutually orthogonal (n1

Tn250). Therefore, from Eq.~4.12! it immediately follows that the op-
erator T is a real matrix representation of the complex 13(k111J) row t5u1
2N 2u21/2(1 r p l j ) where r p5r p81 ir p9 and l j5 l j81 i l j9 . Notice that in the special case und
consideration it is possible to express Eq.~3.22! in a complex form by substitutingMa→ma ,
M̃a→m̃a , T→t and S→s̃3 . Thus, in this special case it is possible to keep pure comp
notations.

As an example of a concrete class of solutions of the EmM theory one can consid
solution which arises in the framework of the ansatz

z̃5lq̃, ~4.13!

wherel is a complex function andq̃ is a 13(k11) constant complex row. The correspondin
effective system is related to the Lagrangian

L352k̃
u¹lu2

~12k̃ulu2!
, ~4.14!

in the case ofk̃Þ0, where

k̃5q̃s̃3q̃†. ~4.15!

When k̃50 one obtains a decoupled three-dimensional flat space and a harmonic fieldl. The
parameterk̃ plays the role of a coupling constant between three-dimensional gravity an
complex scalar fieldl. We claim that the following concrete choice of the scalar field and the t
metric

l5
1

R2 ia cosu
,

~4.16!

ds3
25DS dR2

R21a22k̃
1du2D1~R21a22k̃ !sin2 udw2,

whereD5R21a2 cos2 u2k̃ anda is a constant, gives a solution of the corresponding equation
motion. Note that in Eq.~4.16! the value of the parameterk̃ is arbitrary. In what follows, this
concrete class of solutions will be considered as the typical starting one in the framework
developed solution-generating scheme.

To start with, we need explicit expressions for the magnitudesm̃a and vW̃ a . For the scalar
sector one immediately gets

m̃152S 11
k̃

D D ,

m̃252q̃
R1 ia cosu

D
, ~4.17!

m̃352q̃†q̃
1

D
,

whereas for the vector one, after the corresponding integration, one finds that
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vW̃ 1 w52 i
ak̃ sin2 u

D
,

vW̃ 2 w5q̃S 2cosu1 ia sin2 u
R1 ia cosu

D D , ~4.18!

vW̃ 3 w52 i q̃†q̃
a sin2 u

D
,

and other vector components vanish. These relations define the extension of the solution~4.16! to
the realm of the heterotic string theory according to the relations~2.6!–~2.8!, ~4.5!–~4.7!, and
~4.11!. Let us discuss both, the starting EmM family of solutions and the resulting heterotic s
theory fields.

First of all, let us compute the Ernst potentials~3.18! corresponding to the solution~4.16!:

E512
2~M1 iN !

r 1 i ~N2a cosu!
,

~4.19!

Fp5&
~ep1 igp!

r 1 i ~N2a cosu!
,

where

q̃15M1 iN, q̃11p5ep1 igp , ~4.20!

and r 5R1M and k̃52M22N21(p(ep
21gp

2). It is clear that our starting solution is precise
the Kerr–multi-Newman family of solutions with nontrivial NUT parameter. Thus, (r ,u,w) stand
for conventional oblate spheroidal coordinates, whereas the parametersM , N, ep andgp are the
mass, NUT, electric and magnetic charges, respectively. Another interesting issue conce
asymptotical flatness of the resulting multidimensional field configuration in the framework o
solution-generating method in the general case. It turns out that the generating field configu
contain the so-called ‘‘Dirac strings’’ and are not asymptotically flat, i.e., they contain a
which is proportional to cosu at spatial infinity (R→`). The same situation takes place for th
starting four-dimensional metric of the EmM theory: the corresponding term is proportional t
NUT parameter and it vanishes ifN50. Thus, in the starting solution this Dirac string peculiar
is removable. From Eqs.~4.11! and ~4.18! it follows that the Dirac string for the metric~i.e., for
the magnitudeVW 1) is absent if one imposes the restriction

Q̃I
TTII 5TI

TQ̃II ~4.21!

on the starting charge configuration and the operator of the symmetry transformation. HereQ̃I and
Q̃II are, respectively, 231 and 23(2k11) block components of the charge matrixQ̃
5(Q̃I Q̃II ) which realizes a real matrix representation of the complex charge parameterq̃. Notice
that all the relations which involve the matrixQ̃ can be obtained from the relations forZ̃ by
replacingzP→qP in Z̃; notice that we have used a decomposition ofQ̃ similar to that of Eqs.~4.1!
and ~4.2!.

It is possible to solve the algebraic restriction~4.21! for the general case. However, for th
special case~4.12!, when the symmetry operator can be represented in complex form, this c
done in an easy and elegant way. Actually, a simple algebraic analysis shows that in this ca
~4.21! leads toN50 and the relations

ep5r p8M , gp5r p9M , ~4.22!
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i.e., to the NUT-less starting solution and to hard relations between the electromagnetic c
and the nonelectromagnetic sector of the symmetry operatorT. In this special case, up to con
struction, the resulting metric is asymptotically flat at spatial infinity. Notice that the resu
matter fields of heterotic string theory also contain Dirac strings. In order to remove them
must impose the corresponding restrictions on the magnitudesVW 2 andVW 3 ~to eliminate, in turn, the
terms proportional to cosu). Here we will not discuss these pure algebraic topics; thus, our
solutions will include, for instance, magnetically charged field configurations.

At the end of this section let us note that our solution-generating procedure, based o
~3.12!, maps the full EmM theory into the pure bosonic string theory sector in the casel a[0.
Actually, this last restriction can be imposed independently of our generation scheme. This
also reflected in the number of compactified space–time dimensions, which is equal to 2k11,
wherek is precisely the number of starting Maxwell fields. Thus, a surprising fact is tha
Abelian gauge field sector of heterotic string theory is not related to the Maxwell sector o
starting EmM theory: all the string theory gauge fields depend only on the structure o
symmetry operatorT. Namely, one obtainsn Abelian vector fieldsU(1) if one chooses the
parameterl a of heightn.

V. CONCLUSION AND DISCUSSION

The main result of this article is the presentation of a new and explicit scheme of gene
of heterotic string theory solutions from stationary fields of the EmM theory. Namely, one can
with an arbitrary stationary solution of Einstein theory coupled tok Maxwell fields and obtain a
solution of heterotic string theory withn Abelian gauge fields which lives in 2(k12) dimensions
by making use of the procedure developed in this article. It is worth noticing that our symm
approach is based on pure algebraic calculations only as far as all the potentials of the s
EmM theory have been already computed.

Let us make two remarks concerning the properties of the underlying symmetry map~3.12!
@or ~4.5!–~4.7! and ~4.11! in an equivalent and physically meaningful form#. First of all, it is
interesting to notice that for the casek53, the resulting heterotic string theory becomes t
dimensional. However, the complete theory withk53 ~we refer to a theory with arbitrary poten
tial Z̃ of dimension 238, not to the Einstein theory with three Maxwell fields! corresponds to the
bosonic sector ofN54 supergravity in four dimensions. Thus, whenn516, our procedure relate
N5D54 andN51, D510 supergravities in a transparent form. Keeping this in mind, it will
interesting to study the problem of supersymmetric, and therefore BPS saturated, solutions
framework of the established correspondence. Namely, a question that naturally arises is w
or not supersymmetric solutions of the four-dimensional theory map into supersymmetric
tions of the ten-dimensional one. If they do so, how many supersymmetries will preserve
this correspondence? Notice that some classes of four-dimensional supersymmetric solutio
been extensively studied during last several years~see, for instance, Refs. 20 and 19!; some special
classes of ten-dimensional supersymmetric solutions have also been obtained~see Refs. 21 and 3!
and the topic is still under active investigation now.

Our second remark is related to the level of generality of the map~3.12!. We consider this
issue in the framework of asymptotically flat field configurations in the three-dimensional s
Namely, we consider that the fields which are encoded in the potentialZ vanish at spatial infinity.
In this sense our map~3.12! is complete with respect to the total group of three-dimensio
charging symmetries, i.e., to the transformations that preserve the asymptotical triviality
matrix potentialZ. Thus, if in Eq.~3.12! the potentialZ̃ and the symmetry operatorT have the
most general form, our procedure is nongeneralizable by making use of hidden symmetries
in the subspace of three-dimensional asymptotically flat field solutions. However, if one start
the potentialZ̃ and the symmetry operatorT given in the matrix representation which correspon
to the complexz̃ andt, one partially loses the charging symmetry self-invariance of the resu
solutions of the heterotic string theory. In fact, one loses the part of the total charging sym
group of the heterotic string theory which breaks the special~complex! structure of the matrix
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potentialZ̃ and the symmetry operatorT given by Eqs.~4.2! and~4.12!. This lost symmetry secto
is evidently nontrivial and can be used for the further generalization of the solutions obtain
the framework of the pure complex generating scheme developed at the end of the pr
section.

In this article we have constructed as well the string theory extension of the Kerr–m
Newman solution of the EmM theory. This extension was presented as some simple and
application of the developed general formalism. It was also shown how to remove all the
string peculiarities from the resulting multi-dimensional metric field, so that the resulting sp
time of the heterotic string theory is asymptotically flat. Note that the constructed fami
solutions constitutes the first example of extension of the Kerr-multi-Newman solution to
realm of the heterotic string theory. The obtained class of solutions is really interesting fro
point of view of black hole physics and can be studied in detail in a conventional manner.3,18,19
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Holography and SL „2,R… symmetry in 2D Rindler
space–time
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It is shown that it is possible to define quantum field theory of a massless scalar free
field on the Killing horizon of a 2D Rindler space–time. Free quantum field theory
on the horizon enjoys diffeomorphism invariance and turns out to be unitarily and
algebraically equivalent to the analogous theory of a scalar field propagating inside
Rindler space–time, no matter the value of the mass of the field in the bulk. More
precisely, there exists a unitary transformation that realizes the bulk-boundary cor-
respondence upon an appropriate choice for Fock representation spaces. Second,
the found correspondence is a subcase of an analogous algebraic correspondence
described by injective*-homomorphisms of the abstract algebras of observables
generated by abstract quantum free-field operators. These field operators are
smeared with suitable test functions in the bulk and exact one-forms on the horizon.
In this sense the correspondence is independent from the chosen vacua. It is proven
that, under that correspondence, the ‘‘hidden’’ SL~2,R! quantum symmetry found in
a previous work gets a clear geometric meaning, it being associated with a group of
diffeomorphisms of the horizon itself. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1626271#

I. INTRODUCTION

This article deals with some holographic properties of quantum field theory~QFT! in a
manifold that admits a~Killing ! horizon. The holographic correspondence holds between QF
the manifold and QFT suitably defined on the horizon itself. It is shown that these hologr
properties enjoy a nice interplay with the hidden SL~2,R! symmetry found in Ref. 1.

In the context of the problem of the microscopic origin of black-hole entropy, hologra
principle2–4 arose by the idea that gravity near the horizon should be described by a low d
sional theory with a higher dimensional group of symmetry. On the other hand, in a very fa
paper, Brown and Henneaux5 described the entropy of an asymptoticallyAdS3 black hole in terms
of diffeomorphisms preserving the space–time structure at spatial infinity. After that, the c
spondence between quantum field theories of different dimensions was conjectured by Mal
in his celebrated work aboutAdS/C f t correspondence.6 Using the machinery of string theory, h
argued that there is a correspondence between quantum field theory in an asymptoticallyAdS,
d11-dimensional space–time—the ‘‘bulk’’—and a conformal theory in ad-dimensional
manifold—the~conformal! ‘‘boundary’’ at spacelike infinity. Afterwards, Witten7 described the
above correspondence in terms of relations of observables of the two theories. See also Re
further details. The correspondence in the two dimensional case was studied in Ref. 9. Resu
arose from those works were proven rigorously by Rehren for local quantum fields in anAdS
background, establishing the existence of a correspondence between bulk observables and
ary observables~usually called algebraic holography! without employing string technology.10,11

Finally, Strominger12 proposed to enlarge the found results by showing that there is an analo

a!I.N.d.A.M., Istituto Nazionale di Alta Matematica ‘‘F.Severi,’’ unita` locale di Trento and I.N.F.N., Istituto Nazionale d
Fisica Nucleare, Gruppo Collegato di Trento. Electronic mail: moretti@science.unitn.it

b!Electronic mail: pinamont@science.unitn.it
2300022-2488/2004/45(1)/230/27/$22.00 © 2004 American Institute of Physics
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correspondence betweendS space and a possible conformal field theory on its timelike bound
In another work,13 making use of the optical metric, the near horizon limit of a massless theo
Schwarzschild-like space–time has been intepreted as a theory in an asymptoticAdSspace–time,
giving rise to holographic properties.

A crucial point to explain the holographic correspondence in Rehren’s version is tha
AdSd11 space, the conformal group which acts ind dimensions can be realized as the group of
isometries of theAdSd11 bulk. In this way, from a pure geometric point of view, the nature of
bulk-boundary correspondence has a straightforward explanation. This is not the case of ma
with bifurcate Killing horizon such as Kruskal and Minkowski space–times. In Schwarzs
space–time embedded in Kruskal manifold, the proper boundary relevant to state holog
theorems~dropping the boundary at infinity! seems to be made of the event horizon of the bla
hole. Obviously a first and intriguing problem is the definition of a quantum field theory o
manifold—as an~event or Killing! horizon—whose metric is degenerate. This problem is con
ered in this article among other related issues. To approach the general issue in the s
version, we notice that two-dimensional Rindler space–time embedded in Minkowski space
approximates the nontrivial part of the space–time structure near a bifurcate horizon as th
Schwartzschild black hole embedded in Kruskal space–time. The remaining transverse man
not so relevant in several interesting quantum effects as Hawking’s radiation and it seems
can be dropped in the simplest approximation. In that context, we have argued in a recent1

that free quantum field theory in two-dimensional Rindler space presents a ‘‘hidden’’ SL~2,R!
symmetry. In other words the theory turns out to be invariant under a unitary representat
SL~2,R! but such a quantum symmetry cannot be induced by the geometric background
enjoys a different group of isometries. SL~2,R! is the group of symmetry of the zero-dimension
conformal field theory in the sense of Ref. 14, so, as for the case ofAdSspace–time, it suggest
the existence of a possible correspondence between quantum field theory in Rindler spac
conformal field theory defined on its~Killing ! horizon. In fact, as it is shown within this work, th
found hidden symmetry becomes manifest when one examines, after an appropriate defi
quantum field theory on the~Killing ! horizon. That theory enjoys diffeomorphism invariance a
the SL~2,R! symmetry represents, in the quantum context, the geometric invariance of the t
under a little group of diffeomorphisms of the horizon.~We stress that invariance under isometr
makes no sense since the metric is degenerate.! We address in Sec. II technical details concern
the structure of quantum field theory on the horizon that, in a sense, is the limit of the bulk t
toward the horizon. We only say here that, generalizing the symplectic approach valid in the
the theory can be built up by defining a suitable quantum field operator smeared with
one-forms, which are defined on the horizon, to assure the invariance under diffeomorp
moreover the causal propagator~which involves bosonic commutation rules! is naturally defined
in spite of the absence, shared with other holographic approaches in other contexts, of any
evolution equation. The appearance of a manifest quantum SL~2,R! symmetry on the horizon is
only a part of the results established in this article. In fact, the manifest SL~2,R! symmetry on the
horizon is nothing but a simple result which follows from a holographic boundary-bulk corres
dence established in this article for 2D Rindler space–time either in terms of unitary equiva
or in terms of* -algebra homomorphisms of free field observables. This operator algebra
clear geometric interpretation in terms of vector fields defined on the horizon and generati
group of ~orientation preserving! diffeomorphisms of the horizon itself. Some overlap with o
results could be present in the literature. Guido, Longo, Roberts, and Verch15 discussed from a
general point of view SL~2,R! covariant local QFT defined on a bifurcate Killing horizon a
obtained by restriction on the horizon of the net of local~Von Neumann! observables~referred to
a Hadamard state with respect to the Killing field! given in the manifold. Along a similar theme
Schroer and Wiesbrock16 have studied the relationship between QFTs on horizons and QFTs o
ambient space–time. They even use the term ‘‘hidden symmetry’’ in a sense similar to we d
and in Ref. 1. In related follow-up works by Schroer17 and Schroer and Fassarella,18 the relation
to holography and diffeomorphism covariance is also discussed.

This work is organized as follows: the next section is devoted to review and briefly impr
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a few results established in Ref. 1, also giving rigorous proofs, concerning hidden SL~2,R! sym-
metry for a free quantum scalar field propagating in 2D Rindler space–time. In the third se
we present the main achievement of this work: We build up a quantum field theory for a ma
scalar field on the horizon which, in a sense, is the limit toward the horizon of the analo
theory developed for a~also massive! field propagating in the bulk. Moreover, we show that a
free quantum field theories in the bulk and on the horizon are unitarily and algebraically eq
lent ~no matter the value of the mass!. In other words, there exists a unitary transformation t
realizes the bulk-boundary correspondence upon an appropriate choice for Fock represe
spaces. In particular, the vacuum expectation values of observables of the free-field theo
invariant under the unitary equivalence. Actually, as we said, the found correspondence is v
an algebraic sense too, i.e., it is described by injective*-homomorphisms of the abstract algebr
of observables constructed by products of free-field operators smeared by suitable test fun
one-forms. In this sense the correspondence is independent from the chosen vacua. In th
section we show that, as we expected, hidden SL~2,R! invariance found in Ref. 1 become
manifast on the horizon. In a forthcoming work19 we show that the found manifest SL~2,R! unitary
representation defined for the horizon QFT can be extended into a full positive-energy u
Virasoro algebra representation with nonvanishing central charge which represents the Lie a
of vector fields on the~compactified! Killing horizon. In the last section we make some remar
and comments on the extension of our result to more complicated space–times conta
bifurcate Killing horizon.

II. HIDDEN SL„2,R… SYMMETRY NEAR A BIFURCATE KILLING HORIZON

A. Rindler space

In Ref. 1 we have proven that quantum mechanics in a 2D space–time which approx
the space–time near a bifurcate Killing horizon enjoyshiddenSL~2,R! invariance. This has bee
done by using and technically improving some general results on SL~2,R! invariance in quantum
mechanics.14 Let us review part of the results achieved in Ref. 1 from the point of view
quantum field theory in curved space–time~essentially in the formulation presented in Refs.
and 21 but using*-algebras instead ofC* -algebras!.

Remark:We illustrate the construction of quantum field theory in the considered backgr
in some detail because the general framework will be useful later in developing quantum
theory on a horizon and holography.

Consider a Schwarzschild-like metric

2A~r !dt^ dt1A21~r !dr ^ dr1r 2dS2, ~1!

whereS denotes angular coordinates. LetR.0 denote the radius of the black hole. As the horiz
is bifurcate,A8(R)/2Þ0 and we can use the following approximation in the limitr→R,

2k2y2dt^ dt1dy^ dy1R2dS2, ~2!

wherek5A8(R)/2 andr 5R1A8(R)y2/4. Dropping the angular partR2dS, the metric becomes
that of the space–time called(right) Rindler wedgeR which is part of Minkowski space–time:

gRª2k2y2dt^ dt1dy^ dy, ~3!

with global coordinatestP(2`,1`), yP(0,1`). That space–time is static22 with respect to the
timelike Killing vector] t and spacelike surfaces at constantt. Later we shall make use ofRindler
light coordinates u,vPR which coverR and satisfy

uªt2
log~ky!

k
, vªt1

log~ky!

k
, where tPR ,yP~0,1`!. ~4!
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B. One-particle Hilbert space

As R is globally hyperbolic,22 in particulart-constant surfaces are Cauchy surfaces, quan
field theory can be implemented without difficulties.21 There is no guarantee for the validity of th
approach to quantum field theory for static space–times based on the quadratic form indu
the stress energy tensor presented in Ref. 21 since2gR(] t ,] t) has no positive lower bound
However, we build up quantum field theory of a real scalar fieldf with massm>0 propagating
in R by following a more direct stationary-mode-decomposition approach. In fact,a posteriori it
is possible to show that our procedure produces the same quantization as that in Ref. 2
Klein–Gordon equation reads

2] t
2f1k2~y]yy]y2y2m2!f50. ~5!

If m.0, S denotes the vector space ofreal wave functions, i.e., C` real solutionsc which have
Cauchy data with compact support on a Cauchy surface. Ifm50, ~5! reduces to

~] t1ky]y!~2] t1ky]y!f ~5~2] t1ky]y!~] t1ky]y!f!50 ~6!

and the space of real wave functions we want to consider is defined asSªSout1Sin whereSout and
Sin are, respectively, the space of realC` solutions of (] t1ky]y)c50 and (2] t1ky]y)c50
with compactly supported Cauchy data. The compactness requirement does not depend
Cauchy surface.21 There are solutions of~5! with m50 which do not belong toS in spite of
having compactly supported Cauchy data.@With the notation used in (7), it is sufficient to fi
compact-support Cauchy datac,nm]mc on a t-constant Cauchy surfaceL such that
*L]mc nmdsÞ0.] Define inS3S the followingsymplectic form,21 which does not depend on th
used spacelike Cauchy surfaceL with induced measureds and unit normal vectorn pointing
toward the future:

V~c,c8!ªE
L

~c8¹mc2c¹mc8!nm ds. ~7!

The definition is well-behaved for a pair of complex-valued wave functions, too, and also if o
these has no compactly supported Cauchy data. Equipped with these tools we can de
one-particle Hilbert spaceH associated with the Killing field] t . To this end, consider the two
classes ofC`(R;C), ] t-stationary solutions of~5! whereKa is the usual Bessel–McDonald func
tion:

FE~ t,y!ªA2E sinh~pE/k!

p2k
KiE/k~my!

e2 iEt

A2E
with EPR1, if m.0 , ~8!

FE (out)
(in)

~ t,y!ª
e2 iE(t6k21 ln (ky))

A4pE
with EPR1, if m50 , ~9!

whereR1
ª@0,1`). ModesFE

~in! are associated with particles crossing the future horizont
→1`, modesFE

~out! are associated with particles crossing the past horizon att→2`.
We have a pair of propositions whose proof is straightforward by using properties ofKia ,

Fourier transform and Lebedev transform.23

Proposition 2.1 (completeness of modes): If m.0 and cPS, the function onR1,

E°c̃1~E!ª2 iV~FE,c!, ~10!

satisfiesc̃1(E)5AEg(E), and c̃1(E)52AEg(2E), for some gPS(R;C) (space of complex-
valuated Schwartz’ functions on the wholeR). Moreover,
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c~ t,y!5E
0

1`

FE~ t,y!c̃1~E! dE1E
0

1`

FE~ t,y!c̃1~E! dE for ~ t,y!PR3~0,1`!.

~11!

If m50 and cPS, the functions onR1 with a5 in, out,

E°c̃1
(a)~E!ª2 iV~FE

(a),c!, ~12!

satisfyc̃1
(a)(E)5AEg(a)(E), c̃1

(a)(E)5AEg(a)(2E), where g(a)PS(R;C). Moreover, for(t,y)
PR3(0,1`)

c~ t,y!5E
0

1`

(
a

FE
(a)~ t,y!c̃1

(a)~E! dE1E
0

1`

(
a

FE
(a)~ t,y!c̃1

(a)~E! dE. ~13!

Proposition 2.2 (associated Hilbert spaces): IfcPS, define the one-to-one associate
positive-frequency wave function for m.0 and m50, respectively, as

c1~ t,y!ªE
0

1`

FE~ t,y!c̃1~E! dE , c1~ t,y!ªE
0

1`

(
a

FE
(a)~ t,y!c̃1

(a)~E! dE. ~14!

With that definition, forc1 ,c2PS it results thatV(c11 ,c21)50, whereas

^c11 ,c21&ª2 iV~c11,c21! ~15!

is well-defined (at least on t-constant surfaces). Notice that, at least for m50, positive/negative
frequency wave functions cannot have Cauchy data with compact support due to known ana
properties of Fourier transform. Moreover, for m.0 and m50, respectively,

^c11 ,c21&5E
0

1`

c̃11~E!c̃21~E! dE , ^c11 ,c21&5E
0

1`

(
a

c̃11
(a)~E!c̃21

(a)~E! dE.

~16!

The one-particle HilbertspaceH is defined as the Hilbert completion of the space of fin
complex linear combinations of functionsc1 , cPS, equipped with the extension of the scal
product (15) to complex linear combinations of arguments. It results thatH>L2(R1,dE) if m
.0 or, if m50, H>H~in!% H~out! with H~a!>L2(R1,dE), a5 in,out.

C. Quantum field operators: Symplectic approach

As usual, the whole quantum field is represented in the symmetrized Fock spaceF~H!—that
is >F(H~in!) ^ F(H~out!) in the massless case—and referred to a vacuum stateCR—namely,
CR

~in!
^ CR

~out! in the massless case—called theRindler vacuum state. CR does not belong to the
Hilbert space of Minkowski particles in the sense that quantum field theory in Rindler spac
the Minkowski one are not unitarily equivalent.21 Thequantum fieldV( •,f̂) associated with the
real scalar fieldf in ~5! is the linear map21

S{c °V~c,f̂ !ª ia~c1!2 ia†~c1!, ~17!

wherecPS anda(c1) anda†(c1), respectively, denote the annihilation@the conjugation being
used just to the get a linear mapc1°a(c1)] and construction operators associated with
one-particle statec1 . The right-hand side of~17! is an essentially self-adjoint operator defined
the dense invariant subspaceF0,F(H) spanned by all states containing a finite arbitrarily lar
number of particles with states given by positive-frequency wave functions. Equation~17! is
formally equivalent via~11! to the nonrigorous but popular definition
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f̂~x!‘‘ 5’’ E
0

1`

FE~x!aE1FE~x!aE
† dE. ~18!

The given procedure can be generalized to any Klein–Gordon scalar field propagating in~not
necessarily static! globally hyperbolic space–time provided a suitable vacuum state is given.21 Let
D~R! denote the space of real compactly supported smooth functions inR, in the massless cas
these functions being also assumed to have zero integral on the Rindler space, andJ(A) the union
of thecausal pastandcausal futureof a setA,R. As R is globally hyperbolic, there is a uniquel
determinedcausal propagator E:D(R)→S of the Klein–Gordon operatorK of the field f.21 E
enjoys the following properties. It is linear and surjective, supp(E f),J(suppf ), E f50 only if
f 5Kg for somegPD(R) andE satisfies for allcPS, f ,hPD(R),

E
R
c f dmg5V~E f ,c! and E

R
h~x!~E f !~x! dmg~x!5V~E f ,Eh!, ~19!

mg being the measure induced by the metric inR. Equation~19! suggests to define21 a quantum-
field operatorsmeared with functions fof D(R) as the linear map

f °f̂~ f !ªV~E f ,f̂ !. ~20!

It is possible to smear the field operator by means of compactly supported complex-valued
tions, whose space will be denoted byD~R;C!, simply by definingf̂( f 1 ih)ªf̂( f )1 i f̂(h) when
f ,hPD(R). Equation~20! entails21

@f̂~ f !,f̂~h!#52 iE~ f ,h!ª2 i E
R
h~x!~E f !~x! dmg~x!, ~21!

that is the rigorous version of the formal identity@f̂(x),f̂(x8)#52 iE(x,x8). As a further result21

@f̂( f ),f̂(g)#50 if the supports off and g are spatially separated, that is, suppf úJ(suppg)
@which is equivalent to suppgúJ(suppf )].

All that we said holds form>0. Let us specialize to the massless case giving further det
In Rindler light coordinates~4! the decompositionS5Sin1Sout ~see Sec. II B! reads, ifcPS,
c(u,v)5c(v)1c8(u) where cPSin and c8PSout are compactly supported. Trivial conse
quences are thatc vanishes on the past horizonv→2`, andc8 vanishes on the future horizo
u→1` ~see Sec. III A! andV(c,c8)50. In the considered case

E5Ein1Eout, ~22!

where, in terms of bi-distributions interpreted as in~21!,

Ein~~u8,v8!,~u,v !!5 1
4 sign~v2v8! whereas Eout~~u8,v8!,~u,v !!5 1

4 sign~u2u8!. ~23!

The mapsf °Ein/out f from D~R! to, respectively,Sin/out are surjective andEin/out f 50 if and only
if, respectively, g f 5]ug or g f 5]vg for some compactly-supported functiong and gdudv
5dmg.

In the Fock space associated with Rindler vacuumCR , we have the natural decomposition

f̂~ f !5f̂ in~ f !1f̂out~ f ! with f̂ in/out~ f !ªV~Ein/out f ,f̂ ! ~24!

and the two kinds of field operators commute, i.e.,@f̂ in( f ),f̂out(g)#5 iV(Einf ,Eoutg)50.

D. SL„2,R… symmetry

If m.0 and thusH>L2(R1,dE), the one-particle (Rindler) Hamiltonian His the self-
adjoint operator
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~H f !~E!ªE f~E! with domain D~H !5H f PL2~R1,dE! U E
0

1`

E2u f ~E!u2dE,1`J .

~25!

If m50 and thusH>L2(R1,dE) % L2(R1,dE)>C2
^ L2(R1,dE), the HamiltonianH readsI

^ H8, H8 being the operator defined on the right-hand side of~25! referred toL2(R1,dE) andthe
identity operator I being referred toC2.

In Ref. 1 it was argued that the one-particle system enjoys invariance under a unitary
sentation of SL~2,R! as a consequence of the form of the spectrum ofH which is s(H)5@0,
1`) with no degeneracy formÞ0 and double degeneracy ifm50. Let us state and prove
rigorously some of the statements of Ref. 1 in a form which is relevant for the remaining p
this work. First of all, one has to fix a real constantb.0,1 with the physical dimensions
energy21, that is necessary for dimensional reasons in defining the relevant domain of ope
as it will be clear from the proof of Theorem 2.1.We assume to use the same value ofb throughout
this work. Fix reals k,m.0 and define the dense subspaceDk,H>L2(R1,dE) spanned by
vectors:

Zn
(k)~E!ªAG~n2k11!

E G~n1k!
e2bE~2bE!kLn2k

(2k21)~2bE!, n5k,k11,... , ~26!

whereLp
(a) are modified Laguerre’s polynomials.24 Notice thatDk,D(H). Moreover,Dk is in-

variant under the linearly independent symmetric operators defined onDk :

H0ªH�Dk
, Dª2 i S 1

2
1E

d

dED , Cª2
d

dE
E

d

dE
1

~k2 1
2!

2

E
, ~27!

which enjoy the commutation relations of the Lie algebra of SL~2,R!, sl~2,R!,

@ iH 0 ,iD #52 iH 0 , @ iC,iD #5 iC , @ iH 0 ,iC#5 22iD . ~28!

iH 0 ,iC,iD are operatorial realizations of the basis elements of sl~2,R!

h5F0 1

0 0G , c5F 0 0

21 0G , d5
1

2 F1 0

0 21G . ~29!

As a consequence, one expects that operators in~27! generate a strongly continuous unita
representation of SL~2,R!. A complete treatment of the representations of SL~2,R! can be found in
Ref. 25–27. LetL indicate the space of finite real linear combinations of operators in~27!, let
r:sl(2,R)→ iL be the unique Lie algebra isomorphism withr(h)5 iH 0 , r(c)5 iC, r(d)5 iD ,

and let SL̃(2,R) denote the universal covering of SL~2,R!.
Theorem 2.1: The operators ofL are essentially self-adjoint, H05H in particular, and we

have the following.

(a) H is irreducible under the unique unitary strongly continuous representation ofSL̃(2,R),
g°Ug :H→H such that U(exp(tx))5eit r(x) for all xPsl(2,R), tPR. If (and only if ) k

P$ 1
2,1,32,... .%, U is a representation ofSL~2,R! and it is faithful only if k51/2. U does not depend

on b.0.
(b) $Ug%gPSL̃(2,R) is a group ofsymmetriesof the quantum system, that is, for every tPR and

gPSL̃(2,R), there is g(t)PSL̃(2,R) such that

eitH Ug A Ug
† e2 i tH5Ug(t) eitH A e2 i tH Ug(t)

† , ~30!

for every observable (i.e., self-adjoint operator) A. If g5exp(uh1vc1wd), with u,v,wPR,
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g~ t !5exp~~u1tw1t2v !h1~w12tv !d1vc!. ~31!

(c) For every tPR, consider the linearly independent elements ofL
H0~ t !ªH0 , D~ t !ªD1tH, C~ t !ªC12tD1t2H. ~32!

The time-dependent observables generated by those operators are constants of motion, i.,

eitH uH0~ t !1vC~ t !1wD~ t ! e2 i tH 5 uH01vC1wD , for every t,u,v,wPR. ~33!

Proof: ~a! $Zn
(k)%n5k,k11,... ~26! is a Hilbert base of eigenvectors of the operatorK5 1

2(bH0

1b21C).1 Moreover, X5b2H0
21b22C212D2 is essentially self-adjoint inDk because

$Zn
(k)%n5k,k11,... are analytic vectors forX sinceX54K21cI from ~28! wherecPR. SinceX is

essentially self-adjoint, general results due to Nelson~Theorem 5.2, Corollary 9.1, Lemma 9.1 an
Lemma 5.1 in Ref. 28! imply that the operators iniL are essentially self-adjoint onDk , moreover,
they imply the existence and uniqueness of a unitary representation onH of the unique simply
connected group with Lie algebra given by the space generated bybh,b21c,2d @that is SL̃(2,R)]
such thatd/dt u t50U(exp(tx))5ir(x) for all xPsl(2,R). The derivative on the left-hand side
evaluated in the strong operator topology sense on a suitable subspaceG ~Gȧrding space28! and
gives a restriction of the Stone generator of the strongly continuous unitary one-paramete
groupR{t°U(exp(tx)). As G contains a dense set of analytical vectors for the elements ofL,28

2 i d/dt u t50U(exp(tx)) is essentially self-adjoint and thus its closure coincides with the u
Stone generator andU(exp(tx))5eit r(x). As Dk,D(H), the unique self-adjoint extension ofH0 ,
H0 must coincide withH itself. Suppose thatP is the orthogonal projector onto an invaria

subspace for eachUg . P must commute witheitK̄ in particular. Using Stone8s theorem and the
fact that the spectrum ofK is not degenerate, one has that~in strong operator topology sense!
P5( i PMZn

(k)^Zn
(k) , • & where M,N. Similarly, P must commute with every element ofL

1 iL, A6ª7 iD 1 1
2(bH02b21C) in particular. Using the fact that, for everym,nPN with m

.0, Zn11
(k) 5cnA1Zn

(k) and Zm21
(k) 5cmA2Zm

(k) for some realscn ,cm.0,1 one proves thatM5N,
that isP5I and so the representation is irreducible. The proof of the fact that the represen

of SL̃(2,R) reduces to a representation of SL~2,R! iff kP$ 1
2,1,32,...% and that the representation

faithful only for k5 1
2 is based on the representation of the subgroup$expt(h1c)%tPR,SL̃(2,R),

which is isomorphic to SO~2! and is responsible for the fact that SL˜(2,R) is multiply connected.
The proof has been sketched in Sec. 6.2 and footnote 4 in Ref. 1. The self-adjoint extension
elements inL do not depend on the value ofb.0 — and thus it happens for the representationU

itself since everygPSL̃(2,R) is the finite product of elements of some one-parameter subgr

because, ifb8Þb, there is a subspaceD containing, with obvious notation, bothD k
(b) andD k

(b8)

where each element ofL ~which is essentially self-adjoint on bothD k
(b) andD k

(b8)) determines the

same symmetric extension no matter if one starts withD k
(b) or D k

(b8) . That extension is essentiall
self-adjoint sinceD k

(b) is a dense set of analytic vectors inD. To prove~b! and ~c! notice that
eitH5U(exp(th)). So, if gPSL̃(2,R), g(t)ªexp(th)g(exp(th))21 fulfills ~30! by application of the
representationU. Defineh(t)ªr21(H0(t)), c(t)ªr21(C(t)), d(t)ªr21(D(t)). These matri-
ces satisfy the commutation rules~28! for every t. Using ~28! and uniqueness theorems fo
matrix-valued differential equations one gets, fors,t,u,v,wPR,

exp$th%exp$s~uh~ t !1vc~ t !1wd~ t !!%~exp$th%!215exp$s~uh1vc1wd!%,

which is ~31! if s51. Applying U on both sides one get
exp(itH) exp@is uH0(t)1vC(t)1wD(t) exp(2itH)5exp(is uH01vC1wD), which is equivalent to
exp@isexp$itH%uH0(t)1vC(t)1wD(t) exp$2itH%]5exp(is uH01vC1wD). Stone’s theorem entails
~33! by strongly differentiating both sides ins. h

The generalization to the casem50 is trivial: The theorem holds true separately in each sp
L2(R1,dE) of H>L2(R1,dE) % L2(R1,dE).
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Remarks:~1! From now on we assume to work in theHeisenberg representation. Within this
picture, by~33!, H, C̄, D̄ coincide with the Heisenberg evolution of, respectively,H0(t), C(t),
D(t) at timet. Moreover, in this picture,e2 i tHc1 must not be seen as the time evolution~at time
t! of the statec1 ~given at time 0!, but it must be considered as a different state altogether.
turns out to be in accordance with the relationship between states and wave functions~see Sec.
II E!: c anda

2t
(] t)(c) are two different wave functions. This point of view will be useful shortly

a context where time evolution makes no sense at all.
~2! The found SL~2,R! symmetry is only due to the shape of the spectrum ofs(H) which is

@0,1`). The absence of degeneracy implies that the representation is irreducible. From a p
point of view, invariance under the conformal group SL~2,R! could look very unexpected ifm
.0 since the theory admits the scalem. However, that scale does not affect the spectrum ofH. In
physical terms this is due to the gravitational energy which is encompassed byH itself since the
Rindler frame represents the space–time experienced by an accelerated observer.

~3! It is clear that the found SL~2,R! symmetry can straightforwardly be extended to t
free-field quantization by defining multi-particle operators generated byH,C,D.

~4! GeneratorsiH 0 ,iD , differently from iH 0 and iC, define a basis of the Lie algebra of
subgroup of SL~2,R!, SL1

n(2,R), made of real 232 upper triangular matrices with unitary dete
minant and positive trace. Equation~30! holds for Ug , gPSL1

n(2,R), giving rise to another
smaller symmetry of the system. The subgroup generated byiH 0 trivially enjoys the same fact.

E. Hidden and manifest symmetries

A differentiable group ofgeometricsymmetries of a classical Klein–Gordon field inR ~how-
ever, everything we say can be extended to any globally hyperbolic space–time along the
dures presented in Ref. 21! is defined as follows. Take a differentiable, locally bijective, rep
sentation,G{g°dg , of a connected Lie group,G, where dg :R→R are isometries. The
representation automatically induces a group of transformations$ag%gPG of scalar fieldsf :R
→R ~or C!, with (ag( f ))(x)ª f (dg21(x)). As dg are ~orientation-preserving! isometries,ag

define geometric symmetriesof the field in the sense that they transform elements ofS into
elements ofS not affecting the symplectic form. If quantization is implemented, solutions of
equation of motion inS are associated with one-particle quantum states through the decom
tions ~11! and~13!. Consider a group of quantum symmetries in the sense of~30!, described by a
strongly continuous representation of a Lie groupG in terms of unitary operators$Ug%gPG . In
this picture, the one-parameter unitary group generated by the Hamiltonian is assumed t
subgroup of$Ug%gPG . If the symmetry ‘‘does not depend on time,’’ i.e.,g(t)5g in ~30!, that
assumption can be dropped or, equivalently, the subgroup generated by the Hamiltonian
considered in the center of$Ug%gPG ~i.e., it commutes with the other elements of the group!. If
$Ug%gPG is related, by means of~11!, ~13!, and ~14!, to a group of geometric symmetrie

$ag%gPG , that is (ag(c )̃ )15Ugc̃1 for all gPG andcPS, we say that the symmetry ismanifest.
Otherwise we say that the symmetry ishidden. In Rindler space, the quantum symmetry gro
$ei tH%tPR gives rise to manifest symmetry because it is associated with the geometric gro
symmetries$at%tPR , induced by the one-parameter group of isometries generated by the K
vector ] t . The situation changes dramatically if considering the whole SL˜(2,R) symmetry. The
space of Killing fields ofR has a basis] t ,]X ,]T with $]T ,]X%50, $]T ,] t%5]X and $]X ,] t%
5]T . (X and T are the spatial and temporal coordinates of a Minkowski frame with] t5X]T

1T]X .) It is trivially proven that no Killing fielda] t1b]X1c]T enjoys, with respect to] t , the
commutation rule thatD enjoys with respect toH0 in ~28! so that no Killing field corresponding
to C makes sense. Summarizing,R cannot support isometry representations of SL~2,R! @or
SL̃(2,R)] or the subgroup SL1

n(2,R) generated byH0 ,D. Hence the whole SL~2,R! symmetry and
that associated withD arehidden.
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III. CONFORMAL FIELD ON THE HORIZON

A. Restriction to horizons

In Ref. 1, a similar analysis is performed forAdS2 space–time since the spectrum of t
Hamiltonian of a particle has the same structure as that in Rindler space. However, as a r
able difference, SL~2,R! is a manifestsymmetry of a quantum particle moving inAdS2 because
SL~2,R! admits a representation in terms ofAdS2 isometries.

Coming back to Rindler space viewed as a~open! submanifold of Minkowski space–time,
natural question arises: ‘‘Regardless the foundSL~2,R! symmetry is hidden, does it become ma
fest if one considers quantum field theory in an appropriate subregion ofRø]R?’’

We shall see that investigation on this natural question has several implications with h
raphy because it naturally leads to the formulation of a quantum field theory on the horizon
is algebraically and unitarily related with that formulated in the bulk, but also it suggests tha
symmetry of the theory is greater than SL~2,R!, it being described by aVirasoro algebra. It is
clear from Sec. II E that the only region which could give a positive answer to the question
boundary]R of the Rindler wedge, i.e., abifurcate Killing horizonmade of three disjoint parts
FøPøS. S ~a point in our 2D case! is the spacelike submanifold of Minkowski space–time wh
the limit of the Killing field ] t vanishes whereas the lightlike submanifold of Minkowski spac
time F andP ~the former in the causal future of the latter! are thefuture and thepasthorizons,
respectively, where the limit of] t becomes lightlike but doesnot vanish. Since the induced metri
on FøP is degenerate, the diffeomorphisms ofFøP can be viewed as isometries and the quest
about a possiblemanifestSL~2,R! symmetry on the horizon must be interpreted in that sense:
unitary representation has to be associated with a group of diffeomorphisms induced by
algebra of vector fields defined on the horizon.

To go on, let us investigate the limit of wave functions when the horizon is approache
Rindler-time evolution. To this end, consider the Rindler light coordinates~4!. F is represented by
u→1`, vPR, whereasP is given byv→2`, uPR. Coordinatesu,v actually cover the Rindler
space only, but, separately, the limit ofv is well defined on the lightlike submanifoldF and the
limit of u is well defined on the submanifoldP and they define well-behaved global coordina
frames on these submanifolds.@It holds in the2D case. For greater dimension, v ~resp., u)
together with other ‘‘transverse’’ coordinates defines global coordinates onF ~resp., P! as well.#
This can be proven by passing to Minkowski light coordinatesUªT2X,VªT1X which satisfy
V5ekv, U5e2ku in R. So, from nowv and u are also interpreted as coordinates onF and P,
respectively. We have the following remarkable technical result~where, ifaPC, ‘‘ a1c.c.’’ means
‘‘ a 1complexconjugation of a’’ !.

Proposition 3.1: TakecPS, with associated (Rindler) positive frequency partsc̃1 or c̃1
(a) as

in (11) and (13) and consider the evolution ofc in the whole Minkowski space–time. In coordinate
vPR, the restriction ofc to F reads, respectively, for m.0 and m50,

c~v !5E
R1

e2 iEv

A4pE
Nm,k~E!c̃1~E! dE1c.c., c~v !5E

R1

e2 iEv

A4pE
c̃1

(in)~E! dE1c.c. ~34!

In coordinate uPR, the restriction ofc to P reads, respectively, for m.0 and m50,

c~u!5E
R1

e2 iEu

A4pE
Nm,k~E!c̃1~E! dE1c.c., c~u!5E

R1

e2 iEu

A4pE
c̃1

(out)~E! dE1c.c. ~35!

The function Nm,k @that is restricted toR1 in (34) and (35)# can be defined on the wholeR as

Nm,k~E!ªe2 i ~E/k!log~m/2k! sign~E! GS iE

k DA E

kp
sinh

pE

k
. ~36!
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It belongs to C`(R) and satisfiesuNm,k(E)u51 and Nm,k(E)52Nm,k(2E) for all EPR.
Proof: As t50 is part of a Cauchy surface in Minkowski space–time,c can uniquely be

extended into a smooth solution of the Klein–Gordon equation in Minkowski space–time. T
fore it makes sense to consider its restriction toP or F. As c is smooth, those restrictions can b
computed by taking the limit of the function represented in light Rindler coordinates. First
sider the case m50 and u→`. One has FE

(out)(t(u,v),y(u,v))5e2 iEu/A4pE and
FE

(in)(t(u,v),y(u,v))5e2 iEv/A4pE. Insert these functions in~13! and extend each integration o
the wholeR axis by definingc̃1

(a)(E)50 for E<0. Using the properties ofc̃1
(a) stated in Propo-

sition 2.1 before~13! one sees thatc(u,v) can be decomposed as a sum of two functions~one in
the variableu and the other in the variablev) which are the real part of the Fourier transform
a couple ofL1(R) functions. Taking the limitu→1` the function containing only modesout
vanishes as a consequence of Riemann–Lebesgue lemma and~34! with m50 arises. The case
m50 andv→2` is strongly analogous. The casem.0 is based on the following expansion24 at
x→0 with v fixed in R:

Kiv~x!5
ipepv/2

2 S ix

2 D iv 11Ov~x2!

G~11 iv!sinh~pv!
2

ipe2pv/2

2 S ix

2 D 2 iv 11Ov8 ~x2!

G~12 iv!sinh~pv!
,

~37!

where, for v fixed, uOv(x2)u<Cvuxu2 and uOv8 (x2)u<Cv8 uxu2 for some real finiteCv ,Cv8 ,
whereas forx fixed in R, v°uOv(x2)u andv°uOv8 (x2)u are bounded. Inserting the expansio
above in the expression~8! and taking the limit asu→` in ~11!, Riemann–Lebesgue’s lemm
together with some trivial properties ofG function24 produces~34! for m.0. The function~36! is
nothing but sign(E) exp@2iE(log(m/2k))/k#G( iE/k)uG( iE/k)u21 ~Ref. 24! and souNm,k(E)u
51 for EÞ0 is trivially true.G( ix) is smooth along the real axis with a simple pole inx50 that
is canceled out by the zero of sign(x)Ax sinhx that is smooth in the wholeR. Thus Nm,k

PC`((2`,1`)). uNm,k(E)u51 for E50 is trivially valid by continuity. Nm,k(E)52Nm,k

(2E) is a straightforward consequence ofG( ix)5G(2 ix) for xPR. The casev→2` can be
proven similarly. h

From a pure mathematical point of view perhaps straightforwardly extending known re
~see Chap. 5 of Ref. 21!, Proposition 3.1 shows that a solution inS of the massive Klein–Gordon
equation in 2D Rindler space is completely determined by its values oneither the futureor the
past horizon, whereas, in the massless case, a solutionS is completely determined by its values o
both the futureand the past horizon.

As uNm,k(E)u51 we can writeNm,k(E)5exp@irm,k(E)# where the phaserm,k(E) is real-
valued. The restriction ofc to the horizonF ~the other case is analogous! depends from the mas
of the field through the phaserm,k only. As a trivial result we see that two~free scalar QFT!
theories inR with different strictly positive massesmÞm8 and Rindler vacuaCm ,Cm8 turn out
to be unitarily equivalent. This is due to the unitary operatorU:F(Hm)→F(Hm8) naturally defined
by the requirementUCm5Cm8 and induced by the scalar-product-preserving map between p
tive frequency wave functions,

c1°c18 , with c18 ~E!ªexp@1 i (rm,k(E)2rm8,k(E))#c1~E! for all E>0,

where c1PHm and c18 PHm8 . Similarly, each theory is unitarily equivalent to the massle
theory built up using onlyin modes. Avoiding any choice for the mass, one is naturally lead
consider the class of the ‘‘fields defined on the horizon,’’

c~v !5E
R1

e2 iEv

A4pE
c̃1~E! dE1E

R1

e1 iEv

A4pE
c̃1~E! dE, ~38!
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as the object which makes possibles all those crossed unitary identifications and exists in
dently from the quantum fields defined in the bulkR with their own masses. We want to try t
consider this object as aquantumfield in a sense we go to specify.

B. Local quantum field theory on F and P

Following the procedure presented in Secs. II B and C we want to show that it is possi
define a local quantum field theory onF which matches with that defined in the bulk.~That idea
is not new in the literature and it has been used in important works such as Ref. 29!. First of all
define the space of ‘‘wave functions’’S~F!. A suitable definition, which will be useful later, is th
following: S~F! is the spaceS~R;R! of the real-valued Schwartz’ functions onR where R is
identified withF itself by means of the coordinatev. Actually the name ‘‘wave function’’ is not
appropriate because there is no wave equation to fulfill in our context. As a consequen
correct point of view to interpret the formalism is the Heisenberg’s picture.S~F! has a natural
nondegenerate symplectic form which isinvariant under the diffeomorphisms ofF which preserve
its orientation:

VF~w,w8!ªE
F
w8dw2wdw8. ~39!

To define the one-particle Hilbert space, consider the modes

FE~v !ª
e2 iEv

A4pE
with EPR1. ~40!

Analogous definitions can be given with analogous notations for the past horizonP using modes
as in ~40! with 2 iEv replaced for2 iEu. The following pair of propositions can be simpl
proven using Fourier transform theory for Schwartz’ functions.

Proposition 3.2 (completeness of modes): Ifw belongs toS~F!, the function

R1{E°w̃1~E!ª2 iVF~FE,f! ~41!

satisfiesw̃1(E)5AEg(E), w̃1(E)5AEg(2E), where gPS(R,R). Moreover, forvPR (38),

w~v !5E
0

1`

FE~v !w̃1~E! dE1E
0

1`

FE~v !w̃1~E! dE. ~42!

Similar results hold replacingF for P everywhere.
Proposition 3.3 (associated Hilbert spaces): Ifw belongs to eitherS~F!, define the one-to-one

associatedpositive-frequency wave function

w1~v !ªE
0

1`

FE~v !w̃1~E! dE. ~43!

With that definition and forw1 ,w2 in S~F!, it results thatVF(w11 ,w21)50 whereas

^w11 ,w21&Fª2 iVF~w11,w21!, ~44!

is well-defined and

^w11 ,w21&F5E
0

1`

w̃11~E!w̃21~E! dE. ~45!
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The one-particle Hilbert spaceHF is defined as the Hilbert completion of the space of fin
complex linear combinations of functionsw1 , for all w in S~F!, equipped with the extension of th
scalar product (44) to complex linear combinations of arguments. It results thatHF
>L2(R1,dE). Similar results and definitions hold replacingF for P everywhere.

Definition 3.1 (quantum field operators on horizons): Consider the symmetrized Fock
FF(HF) with vacuum stateCF and scalar product̂ ,&F . The quantum field operator onF,
VF( .,f̂F), is the symmetric-operator-valued function

w°V~w,f̂F!ª iaF~w1!2 iaF
†~w1!, ~46!

wherewPS(F). Here aF(w1) and aF
†(w1), respectively, denote the annihilation and constructi

operators associated with the one-particle statew1 which are defined in the dense invaria
subspaceF0F spanned by all states containing a finite, arbitrarily large, number of particles w
states given by positive-frequency wave functions. An analogous definition is given replacingF for
P everywhere.

OperatorsVF(w,f̂F) andVP(w,f̂P) are essentially self-adjoint onF0F andF0P, respectively,
since their elements are analytic vectors.

We want to define an analogous procedure to that in the bulk@see~20!# for smearing field
operators by means of ‘‘functions’’ instead of ‘‘wave functions.’’ The issue is however rele
because it permits us to introduce the analogEF of the causal propagatorE in spite of having no
equation of motion inF. The idea is that something like~19! should work also in our context. A
clear difficulty is that there is no diffeomorphism invariant measure which can be used i
analog of~19! in place of dmg . On the other hand, integration ofk-forms is diffeomorphism
invariant on ~oriented manifolds!. Therefore, we aspect that the space of ‘‘functions’’ used
smear quantum fields should properly be a space of one-forms rather than functions. To go
notice thata posteriori EF has to fulfill something like@f̂F(v),f̂F(v8)#52 iEF(v,v8). By a
formal but straightforward computation which uses@aE ,aE

† #5d(E2E8) and the analog of~18!

with FE replaced forFE , one finds thati @f̂F(v),f̂F(v8)#5 1
4sign (v2v8). This v-parametrized

distribution actually defines a well-behaved transformation from the space of exact~smooth!
one-forms inF with compact support to the space of smooth functions onF. As the functionsf
PS(F) vanish~with all of their derivatives! asv→`, if h5d f ,

E
v8PR

sign ~v2v8!h~v8!5 f ~v !2~2 f ~v !!52 f ~v !.

In the following,D~F! is the real space of the one-formsh5dw such thatwPS(F).
Definition 3.2 (causal propagator and associated quantum field on horizons): With the

notations, thecausal propagatorin F is the mapping EF :D(F)→S(F) with

~EFh!~v !ª
1

4 Ev8PR
sign ~v2v8!h~v8!, ~47!

and the quantum-field operator onF smeared with formsh of D~F! is the mapping

h°f̂F~h!ªVF~EFh,f̂F!. ~48!

Analogous definitions are given replacingF for P and v for u everywhere.
The given definitions are good generalizations of the analogous tools in the usual qu

field theory@see~19! and~21! in particular# as stated in the following pair of propositions who
proof is trivial. The second item in Proposition 3.5 shows that the theory enjoyslocality in a
suitable way

Proposition 3.4: IfwPS(F), v52dw is the unique element ofD~F! such thatw5EF(v).
Moreover, ifh,vPD(F),
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E
F
wh5VF~EFh,w! and E

F
~EFv!h5VF~EFh,EFv! . ~49!

An analogous result holds replacingF for P everywhere.
Proposition 3.5: IfwPS(F) and h,vPD(F),

@f̂F~h!,f̂F~v!#52 iE~h,v!ª2 i E
F
~EFh!v. ~50!

In particular, the following locality property holds true:

@f̂F~h!,f̂F~v!#50 if supphùsuppv5B.

An analogous result holds replacingF for P everywhere.

C. The algebraic approach

To state holographic theorems it is necessary to reformulate quantum field theory
algebraic approach either in the bulk and on the horizon. In globally hyperbolic space–
linear QFT can be formulated independently from a preferred vacuum state and Fock repre
tion. It is worthwhile stressing that21 physics implies the existence of meaningful quantum sta
which cannot be represented in the same Hilbert~Fock! representation of the algebra of obser
ables. In this sense the algebraic approach is more fundamental than the usual Fock app
QFT in curved space–time. Let us summarize the procedure inR which, at least form.0, could
be replaced by any globally hyperbolic space–time. The basic tool is an abstract* -algebra,AR ,
made of the linear combinations of products of formal field operatorsf( f ),f( f )* ( f

PD(R;C)) and the unitI , which enjoy the same properties of operatorsf̂( f ),f̂( f )† ~and the
identity operatorI ). From a physical point of view, the Hermitian elements ofAR represent the
local observablesof the free-field theory. Form.0, the required properties are

~1! f( f )* 5f( f̄ ) for all f PD(R;C),
~2! f(a f1bg)5af( f )1bf(g) for all f ,gPD(R;C), a,bPC,
~3! @f( f ),f(g)#52 iE( f ,g)I for all f ,gPD(R;C), and
~4! f( f )50 if ~and only if! f 5Kh for some compactly-supported smooth functionh.

AR is rigorously realized as follows. Consider the complex unital algebraA0R , freely generated
by the unitI , and abstract objectsf( f ) andf( f )* for all f PD(R;C). The involution* on A0R
is the unique antilinear involutive function* :A0R→A0R such thatI * 5I , (f( f ))* 5f( f )* . Let
J,AR be the double-side ideal whose elements are linear combinations of products contai
least one of the following factorsf( f )* 2f( f̄ ), f(a f1bg)2af( f )2bf(g), @f( f ),f(g)#
1 iE( f ,g)I , and f(Kg) for f ,gPD(R;C), a,bPC. AR is defined as the space of equivalen
classes with respect to the equivalence relation inA0R , A;B iff A2BPJ andAR is equipped
with the *-structure induced byA0R through;. If, with little misuse of notation,f( f ) and I ,
respectively, denote the classes@f( f )# and @ I #PAR , the properties~1!–~4! are fulfilled.

If m50, there are two relevant algebrasA R
( in) and A R

(out) . A R
( in) is the unital * -algebra

generated byI , f in( f ) andf in( f )* for every f PD(R,C) whereasA R
(out) is the unital* -algebra

generated byI , fout( f ) andfout( f )* for every f PD(R,C). By definition these algebras satisf
the constraints~1!–~4! with the difference that, in~3!, E must be replaced forEin or Eout,
respectively, and, in~4!, K must be replaced byg21]u or g21]v , respectively. The rigorous
definitions can be given similarly to the casem.0, by starting from freely generated algebras a
passing to quotient algebras. We recall that ifA, B are*-algebras with fieldC and unitsI A , I B ,
A^ B denotes~see p. 143 of Ref. 30! the*-algebra whose associated vector-space structure is
tensor productA^ B, the unit is IªI A^ I B , and the involution and the algebra product a
respectively, given by ((kAk^ Bk)*ª(kAk* ^ Bk* and ((kAk^ Bk)(( iAi8^ Bi8)ª(kiAkAi8
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^BkBi8 with obvious notation. Assuming~24! as the definition off( f ), the whole field algebraAR
is definedasARªA R

( in)
^ A R

(out) . That unital* -algebra satisfies~1!–~4!.
An algebraic stateon a*-algebraA with unit I is a linear mapm:A→C that is normalized

@i.e., m(I )51] and positive@i.e., m(A* A)>0 for APA]. The celebrated GNS theorem~e.g., see
Ref. 21! states that for every algebraic statem on A there is a triple (Hm ,Pm ,Vm) such that the
following facts hold.Hm is a Hilbert space, andPm is a* -algebra representation ofA in terms of
operators onHm which are defined on a dense invariant subspaceDm,Hm and such that
Pm(A* )5(Pm(A))†�Dm

. Finally Dm is spanned by all the vectorsPm(A)Vm , APA, and

m(A)5^Vm ,Pm(A)Vm& for all APA, ^ , & denoting the scalar product inHm . If ( Hm8 ,Pm8 ,Vm8 ) is
another similar triple associated with the samem, there is a unitary operatorU:Hm→Hm8 such that
Vm8 5UVm andPm8 5UPm . If A5AF , by direct inspection one finds that quantum field theory
R in the Fock spaceF~H! with CR as vacuum state coincides with that in a GNS representa
of AR associated with the~quasifree21! algebraic statemR completely determined by
mR(f( f )f(g))ª^CR ,f̂( f )f̂(g)CR& via Wick expansion of symmetrizedn-point functions.
Moreover, it results inDm5F0 .

All the procedure can be used to give an algebraic approach for QFT onF ~or P!: Define
D(F;C)ªD(F)1 iD(F) and definef̂F(v1 ih)ªf̂F(v)1 i f̂F(h) when v,hPD(F). Finally,
consider the abstract* -algebraAF with unit I , generated byI , fF(v), fF(v)* for all v
PD(F;C), such that, for alla,bPC andv,hPD(F;C),

~1! fF(v)* 5fF(v̄),
~2! fF(av1bh)5afF(v)1bfF(h), and
~3! @fF(v),fF(h)#52 iEF(v,h)I .

~The rigorous definition is given in terms of quotient algebras as usual.! From a physical point of
view the ~Hermitian! elements ofAF represent the(quasi) local observablesof the free-field
theory on the future horizon. By direct inspection one finds that quantum field theory inF in the
Fock space referred to the vacuum stateCF and coincides with that in a GNS representation
*-algebraAF associated with the~quasi-free! algebraic statemF completely determined, via Wick
expansion, bymF(fF(h)fF(v))ª^CF ,f̂F(h)f̂F(v)CF&F andDm5F0F .

Everything can be similarly stated for quantum field theory onP with trivial changes in
notation.

D. Two holographic theorems

Here we prove twoholographictheorems for the observables of free fields, one in the a
braic approach and the latter in the Hilbert space formulation under the choice of suitable va
states. The former theorem says that, in the massive case, there is a one-to-one transfo
from the algebra of the fields in the bulkAR—that is, the local observables of the free field in t
bulk—to a subalgebra of fields on the future horizonAF—that is, the observables of the free fie
in the future horizon. The mapping preserves the structure of the*-algebra and thus the two
classes of observables can be identified completely no matter the value of the mass of the
the bulk and the fact that there is no mass associated with the field on the horizon. Rema
this identification does not require any choice for reference vacuum states since it is give
pure algebraic level. To build up the said mapping, take any compactly supported functionf in the
bulk, consider the generated wave functionc f5E( f ) ~that is assumed to be defined in the who
Minkowski space!, restrictc f on F obtaining a horizon wave functionw f and associate with tha
function the unique formv f with w f5EFv f . Finally, definexF(f( f ))ªfF(v f). The next step is
to extendxF to the whole algebraAR by requiring that the*-algebra structure is preserved, that
I is mapped inI , f( f )* is mapped intoxF(f( f ))* , products of fieldsf( f )f(g) are mapped
into xF(f( f ))xF(f(g)) and so on. In the massless case, the procedure is similar but one h
consider also the past evolution of wave functions toward the past horizonP. The theorem says
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that the required extensions into algebra homomorphisms actually exists, are uniquely dete
and are injective so that the observable algebra in the bulk can be seen as a observable su
on the horizon.

Theorem 3.1 „algebraic holography…: In a 2D Rindler spaceR viewed as immersed in a
corresponding2D Minkowski space–time, consider quantum field theory of a scalar field w
mass m>0 satisfying Klein–Gordon equation (5). Consider the algebraAR (including A R

(out) ,
A R

( in) if m50) of local observables in the bulk and the algebrasAF andAP of the observables on
the horizonsF and P. The following statements hold.

(a) If m.0, there is a unital-* -algebra homomorphismxF :AR→AF uniquely determined by

xF :f~ f !°fF~v f ! with v fª2d~~E f !�F! for all f PD~R!, ~51!

(E f )�F denoting the limit of E( f ) on F. xF turns out to be injective.
An analogous statement holds replacingF for P.
(b) If m50, there are two unital-* -algebra homomorphismspP :A R

(out)→AP and pF :A R
( in)

→AF uniquely determined by

pF :f in~ f !°fF~h f ! with v fª2d~E~ f !�F! for all f PD~R!, ~52!

pP :fout~ f !°fP~v f ! with h fª2d~E~ f !�P! for all f PD~R!. ~53!

pF and pP turn out to be injective.
(c) pF(A R

( in)),AF is the subalgebra generated by I and abstracts field operators smeare
the elements ofD~F,C! with compact support. The analogous statement holds forpP(A R

(out)).
Proof: ~a! The uniqueness of the homomorphism is trivially proven by noticing that

elements ofAR are of the form A5aI1(kbkf( f k)1(hchf(gh)* 1( lsdlsf(hl)f(ps)1¯

where the overall summation as well as every partial summation is finite. AsxF is a homomor-
phism, xF(A)5aI1(kbkxF(f( f k))1(hchxF(f(gh))* 1( lsdlsxF(f(hl))xF(f(ps))1¯ .
Moreover, xF(f(h))5xF(f(Reh))1ixF(f(Im h)) and thus the valuesxF(f( f )) with h real
determine the homomorphism provided it exists. Let us prove the existence of the homomor
Take f PD(R) and considerc f5E f and the associated functionc̃ f 1

5c̃ f 1
(E). It holds c̃ f 1

(E)

5AE f(E) with f PS(R,C) such that f (E)52 f (2E) as stated in Proposition 2.1 andNm,k

PC`(R) @with uNm,k(E)u51] and Nm,k(E)52Nm,k(2E) as stated in Proposition 3.1. As
consequenceNm,k(E)c̃1(E)5AEh(E) where h(E)5h(2E) and hPS(R,C). Passing to the
function v°c f(v) in Proposition 3.1 and using these results one gets

c f~v !5const3E
0

1`

e2 iEvh~E!dE1c.c.5const3E
2`

1`

e2 iEvh~E!dE.

As h belongs to Schwartz’ space,c f belongs to the same space because the Fourier trans
preserves Schwartz’ space. Moreover,c f is real sinceh(E)5h(2E). We have found thatc f

PS(F) and thusv fª2dc f52d@(E f )�F# is an element ofD~F!. Using f PD(R,C), the result is
preserved trivially by the linear decomposition in the real and imaginary parts. Assume once
that f PD(R). Notice thatv f contains the same information asc f becausec f(v)52*2`

v v f . In
turn c f determines the functionc̃ f 1

which determinesE f . As we said in Sec. II C,E f determines
f up to a termKh with hPD(R). We conclude thatv f5vg if and only if f 5g1Kh with h
PD(R). The same result arises for functionsf ,gPD(R,C) by linearity and from the fact thatE
transforms real functions into real functions. We have found that there is a well-defined linea
D(R,C){ f °v fPD(F,C) that transforms real functions in real forms and such thatv f5vg if
and only if f 5g1Kh. Now we definex0F(f( f ))5fF(v f) and xF(I )5I and xF(f( f )* )
5fF(v f)* . That map extends straightforwardly from the*-algebraA0R freely generated byI ,
f( f ), f( f )* ~with involution uniquely determined as said in Sec. II D! to the analogous free
*-algebra onF giving rise to a*-algebra homomorphismx0F . However, it is not injective since i
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results inx0F(f( f ))5x0F(f(g)) wheneverf 5g1Kh, and, more generally, injectivity failure
arises for any pair of elements of the algebra which are different from each other because
presence of factorsf( f ) and f(g) with f 2g5Kh. The injectivity is, however, restored if we
take the quotient* -algebraA1R in A0R with respect to the both-side ideal containing line
combinations of products with at least one factorf(K f ) or f(K f )* for any f PD(F,C) and
redefine the injective mapx1F :A1R→A0F as the map induced byx0F through the canonica
projection ofA0R onto A1R . By constructionx1F is an injective*-algebra isomorphism. In this
context and from now on, it is convenient to think of the objectsf( f ) as smeared by the
equivalence class@ f # rather thanf itself, where@ f # belongs to the complex vector space obtain
by taking the quotient ofD~R,C! with respect to the subspaceKD(R,C). The map@ f #°v f is a
well-defined injective vector space isomorphism that preserves the complex conjugation. T
clude we have to extract the algebrasAR andAF by the procedure outlined in Sec. II D, based
the projection on suitable quotient spaces, and prove that the*-homeomorphismx1F induces a
*-homeomorphismxF :AR→AF . To this end we have to consider the double-side idealJ,A1R
whose elements are linear combinations of products containing at least one of the foll

factors: f( f )* 2f( f̄ ), f(a f1bg)2af( f )2bf(g), @f( f ),f(g)#1 iE( f ,g)I , for f ,g
PD(R;C), a,bPC. AR is defined as the space of equivalence classes with respect to the e
lence relation inA1R , A;JB iff A2BPJ and AR is equipped with the*-algebra structure
induced byA1R through the canonical projection. The analogous procedure must be used foA1F
with respect to an analogous idealJF,A1F in order to produceAF . Then the injective
*-homomorphismx1F induces an injective*-homomorphismxF :AR→AF if the equivalence re-
lations induced byJ and JF are preserved byx1F itself, i.e., A;JB if and only if x1F(A)
;JF

x1F(B). We leave the simple but tedious proof of this fact to the reader, proving the

nontrivial point which concerns factors@f( f ),f(g)#1 iE( f ,g)I . It is simply found that, among
other trivially fulfilled conditions, the preservation of the equivalence relation arise
x1F(@f( f ),f(g)#1 iE( f ,g)I )5@fF(v f),fF(vg)#1 iEF(v f ,vg)I , which is equivalent to
E( f ,g)5EF(v f ,vg). ~Notice that, by the known properties of the causal propagator, both s
are invariant under the addition of a termKh to f or g.) E( f ,g)5EF(v f ,vg) is equivalent to,
with obvious notations,V(c f ,cg)5VF(w f ,wg). It is sufficient to prove that identity for realf ,g.
By Propositions 2.2 and 3.3 one finds2 iV(c f ,cg)5^c f 1 ,cg1&2^c f 1 ,cg1& and
2 iVF(w f ,wg)5^w f 1 ,wg1&F2^w f 1 ,wg1&F. Passing in energy representation, where the sc
product is simply that ofL2(R1,dE) in both spaces,c f 1 and cg1 are represented by som

E°c̃ f 1(E) andE°c̃g1(E), respectively, whereas, by Proposition 3.1,w f 1 andwg1 are repre-

sented byE°Nm,k(E)c̃ f 1(E) and E°Nm,k(E)c̃g1(E), respectively. SinceuNm,k(E)u51, it
results that^c f 1 ,cg1&5^w f 1 ,wg1&F that entailsV(c f ,cg)5VF(w f ,wg) and concludes the
proof. ~b! Following a proof very similar to that as in the case~b! ~but simpler since the phase
Nm,k disappear when one uses Proposition 3.1! one sees thatA R

(in) is isomorphic toAF under the
unique extension, into an injective*-algebra-with-unit homomorphism, of the ma
pF :f in( f )°fF(v f) with v fª2d(Ein( f )) and this is equivalent to the thesis becauseEinf
5E( f )�F sinceEout( f )�F50 andEin( f )�F5Einf , for smooth compactly supportedf defined in
R ~these facts are consequences of Proposition 3.1!. The case ofA R

(out) is strongly analogous.~c!
Consider the case ofpF , the other being analogous. Iff is smooth and compactly supported inR,
Einf is a compactly supported function ofv and thusv f52d(E( f )�F)52d(Einf ) is compactly
supported onF. Conversely, ifv5dwPD(F,C) is compactly supported onF, w must be com-
pactly supported andf (u,v)ª2g21(u,v)w(u)h(u) is smooth, compactly supported inR for
every smooth compactly supported functionh:R→R andv52d(Ein( f )) if *Rh(u)du51. h

Remarks:~1! We stress that QFT on the horizon is the same no matter the value of the
of the field in the bulk: Different choices of the mass determine different injective*-algebra
homomorphisms from the algebra in the bulk to thesamealgebra of observables on the horizo
~2! There are strong differences between the casesm.0 andm50. If f is compactly supported in
the bulk, the horizon restriction ofE f is compactly supported ifm50 but that is not the case whe
m.0. For that reason we have definedS~F! @andD~F!# as a space of rapidly decreasing functio
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~one-forms! rather than a space of compactly supported functions~one-forms!. Moreover, if m
.0, AR is isomorphic to a subalgebra ofAF ~or equivalentlyAP). Conversely, ifm50, AR
(5A R

(in)
^ A R

(out)) is isomorphic to a subalgebra ofAF^ AP by means of the injective unital-* -
algebra homomorphismpP^ pF :AR→AP^ AF .

~3! The existence of the*-homomorphismsxF andpF/P implies that, for allf ,gPD(F,C) or
D~F,C! and, respectively, form.0 or m50,

@f~ f !,f~g!#5@fF~v f !,fF~vg!# or @f in/out~ f !,f in/out~g!#5@fF/P~v f !,fF/P~vg!#. ~54!

As a consequence, thecausal propagator and the symplectic forms are preserved, too.
The second theorem concerns the unitary implementation of the*-homomorphism given in

Theorem 3.1. This theorem states that, if one realizes the algebras of observablesAR andAP , AF
in terms of proper field operators in the Fock spaces constructed over, respectively, the R
vacuumCR and CP , CF , then the injective homomorphisms presented in Theorem 3.1
implemented by unitary operators which preserve the vacuum states. In other words,with the said
choice of the vacuum states and Fock representation of the algebras of observables, the theory in
the bulk and that on the horizon areunitarily equivalent. As an immediate consequence, it aris
that thevacuum expectation valuesare preserved passing from the theory in the bulkR to the
theory on the horizonF ~or P!.

Theorem 3.2.„unitary holography…: In the same hypotheses as in Theorem 3.1, conside
realization of the algebra of the local observables of the bulkAR , in the Fock spaceF~H! with
Rindler vacuumCR (5CR

(out)
^ CR

(in) i f m50), and the realizations of the algebras of obser
ables of the horizonsAP , AF in the Fock spacesF(HP), F(HF) of Definition 3.1 with horizon
vacuaCP ,gWF . With these realizations, the homomorphismsxP/F and p

P/F
can be implemented

by unitary transformations which preserve the vacuum states. More precisely, we have the
ing.

(a) If m.0, the map that associates a positive frequency wave functionc1 in Rindler space

with the element ofHF>L2(R1,dE), f:E°Mm,k(E)c̃1(E) extends into the unitary operato
UF :F(H)→F(HF) such that

UFCR5CF , ~55!

xF~Â!5UFÂUF
21 for all ÂPAR . ~56!

The analogous statement holds replacingF for P.
(b) If m50, the maps which associate positive frequency wave functionsc1

(in) and c1
(out) in

Rindler space with respective elements ofHF>L2(R1,dE) and HP>L2(R1,dE),
f (in):E°c̃1

(in)(E) and f (out):E°c̃1
(out)(E), extend into unitary operators VF :F(H(in))→F(HF)

and VP :F(H(out))→F(HP), such that

VFCR
(in)5CF , VPCR

(out)5CP , ~57!

pF~Â!5VF Â VF
21 for all ÂPA R

(in) , ~58!

pP~Â!5VP Â VP
21 for all ÂPA R

(out) . ~59!

Proof: ~a! We consider the case ofF, the case ofP being similar. Under the identification
H>L2(R1,dE) ~Proposition 2.2! and HF>L2(R1,dE) ~Proposition 3.3!, consider the map
V:H{c°fPHF where we have definedf(E)ªNm,k(E)c(E) for all cPH. V is a unitary
transformation by construction sinceNm,k is a smooth function withuNm,k(E)u51 for all E as
stated in Proposition 3.1. That unitary transformation can be extended into a unitary trans
tion UF :F(H)→F(HF) by defining UFCRªCF and UF�H

s
^ nªU1^¯^ Un for all n

51,2,3,..., whereH s
^ n indicates the symmetrized tensor product ofn copies ofH andUk5V for
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k51,2,...,n. UF preserves the vacuum states by construction and induces a unital-* -algebra ho-
momorphismr:AR→AF such thatr(A)5UFAUF

21 for everyAPAR . To conclude the proof, by
the uniqueness ofxF proven in Theorem 3.1, it is sufficient to show thatr(f̂( f ))5xF(f̂( f )) for
every f PD(R). To this end, takef PD(R) and consider the positive-frequency part ofcªE f ,
c1 . The construction used to defineUF implies that UFa†(c1)UF

215aF
†(Vc1) and

UFa(c1)UF
215aF(Vc1) and thus, by Definitions 3.1 and 3.2,UFf̂( f )UF

215f̂F(v f) where
v f52dw f with w f(v)5*R1 (e2 iEv/A4pE) Nm,k(E)c̃1(E) dE1c.c.. By ~a! of Proposition 3.1,
w f5(E f )�F and thus it holdsr(f̂( f ))5UFf̂( f )UF

215xF(f̂( f )), which concludes the proof
~b! The proof is strongly analogous to that in the massive case with obvious changes. h

Remark:Once again, the crucial difference between the massive and the massless case
the Hilbert space of the bulk field is isomorphic to either the Fock spacesF(HF) andF(HP) if
m.0, whereas it is isomorphic toF(HF) ^ F(HP) if m50. In the latter case the unitary transfo
mation VF^ VP :F(H)→F(HF) ^ F(HP) satisfies (VF^ VP)CR5CP^ CF and (pF^ pP)(B̂)
5(VF^ VP) B̂ (VF

21
^ VP

21) for all B̂PAR .

IV. HORIZON MANIFEST SYMMETRY

A. SL „2,R… unitary representations on the horizon

Consider QFT on the future horizonF in the Fock representation of the algebraAF referred to
the vacuum stateCF . The one-particle spaceHF is isomorphic toL2(R1,dE). An irreducible
unitary representationSL̃(2,R), g°UF

(F)(g), generated by the operators~27!, HF0, CF andDF,
with

HF0ªE, DFª2 i S 1

2
1E

d

dED , CFª2
d

dE
E

d

dE
1

S k2
1

2D 2

E
, ~60!

can uniquely be defined inHF as proven in Theorem 2.1. The operators~60! are defined on the
dense invariant subspaceD k

(F),L2(R1,dE)>HF which has the same definition asDk . If m
.0, that representation induces an analogous representation in the one-bulk-particle spH
through unitary holography. That isSL(2,R){g°Ug

(F)
ªUF

21UgUF whose generators ar
UF

21HF0UF , UF
21DFUF andUF

21CFUF . We stress thatg°Ug doesnot coincide with the analo-
gous representation given in Theorem 2.1, but it is unitarily equivalent to that and thus~a! of
Theorem 2.1 can be restated with trivial changes. Moreover~see below!, UF

21HF0UF still coin-
cides with the HamiltonianH of the bulk theory. As a consequence, also the analogs of point~b!
and ~c! in Theorem 2.1 can be restated for the representationg°Ug

F which, in turn, defines a
SL̃(2,R)-symmetryof the system in the bulk by unitary holography. We are interested inthat

SL̃(2,R)-symmetrywhich is induced by the SL˜(2,R) unitary representation on the horizon QF
via ~unitary! holography no matter the mass of the field in the bulk. We stress that
SL̃(2,R)-symmetry ishiddenin the bulk because the same argument used in Sec. II E appli
this case, too; however, it could be manifest, in the sense of Sec. II E, when examined
horizon. That is the issue we want to discuss in the following.

Everything we have said forF can be restated forP with obvious changes. Ifm50 and using
~b! of Theorem 3.2, everything we said above concerning the representations of SL˜(2,R) in HF
and those induced onH by means ofUF can be restated concerning the triplesHF , H(in) , VF and
HP , H(out) , VP separately. Moreover, by the comment after Theorem 3.2, one sees that a p
SL~2,R! representations inHF andHP naturally induces areducibleSL~2,R! on H by means of
VF^ VP .
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B. Horizon analysis of the bulk symmetry associated with HF0

Let us focus attention on the first generatorHF0 in the casem.0. Concerning QFT onP and
the casem50, there are completely analogous results. From now on we use the following
ventions referring to a representation of an algebra of observablesA in a symmetrized Fock spac
F~H!. If X is a self-adjoint operator in the one-particle Hilbert spaceH and ÂPA, Ât

(X)

ªei tXÂe2 i tX, whereXª0% X% (X^ I 1I ^ X) %¯ is the operator naturally associated withX in
the Fock spaceF(H)5C% H% (H^ H)s%¯ . In other words,Ât

(X) is theHeisenberg evolutionof
Â at time t with respect to the noninteracting multiparticle HamiltonianX induced by the one-
particle HamiltonianX. We have the following theorems.

Theorem 4.1: Unitary holography associates the self-adjoint operatorHF0 with the one-
particle Hamiltonian in the bulk H (25), i.e.,

UF
21HF0UF5H. ~61!

Defining HFªHF0, the following further statements hold.
(a) Referring to Fock representations of algebras of observablesAR andAF on vacuum states

CR and CF , Heisenberg-like evolution is preserved by unitary holography:

UFÂt
(H)UF

215~UFÂUF
21!t

(HF) . ~62!

(b) $ei tHF%tPR induces, via (42), a group of transformations$at
(]v)

%tPR of horizon wave
functionsw such that

~at
(]v)

~w!!~v !ªw~v2t! for all wPS~F! andvPR. ~63!

That is the same group of transformations of functions induced by the group of diffeomorphis
F generated by the vector field]v .

(c) If $at
(] t)%tPR denotes the one-parameter group of Rindler-time displacements of Ri

wave functions (see Sec. II D),

at
(]v)

~c�F!5~at
(] t)~c!!�F for all cPS. ~64!

Proof: Consider the self-adjoint operator onHF>L2(R1,dE):

~HFf !~E!ªE f~E! for f PD~HF!5H hPL2~R1,dE! U E
0

1`

E2uh~E!u2dE,1`J . ~65!

SinceD k
(F),D(HF) andHF05H in D k

(F) whereHF0 is essentially self-adjoint, it must holdHF

5HF0. The definition ofUF ~its restriction toH is sufficient! given in~a! in Theorem 3.2,~25! and
~65! entail ~61!. ~a! is an immediate consequence of~61!. ~b! By Proposition 3.2 and~42!, w
PS(F) is the Fourier~anti!transform of a Schwartz’ functionf with w̃1(E)5AE f(E) if E>0 and
the application ofei tHF on w̃1 changesf into R{E°eiEt f (E) which still is a Schwartz’ function.
Hence,at

(] t)(w) is constructed by~1! Fourier transformingw into f , ~2! replacing f (E) by

eiEt f (E) and ~3! transforming back that function intoat
(] t)(w) via Fourier transformation. By

direct inspection one finds (at
(] t)(w))(v)5w(v2t) trivially. ~c! In H>L2(R1,dE) and HF

>L2(R1,dE), ~61! states that bothei tH and ei tHF are represented by the same multiplicati
operatorei tE in the respective spaces. Then~14! and ~34! imply ~64!. h

Remark:Since the one-parameter unitary group generated byHF turns out to be associate
with a vector field ofF, ]v , which induces a group of~orientation-preserving! diffeomorphisms,
the bulk-symmetry generated byHF via unitary holography ismanifestalso on the horizon.

The machinery can be implemented at algebraic level. To this end, using the relatio~see
Proposition 3.4! v52dEFv, define the one-parameter group of transformations of formsv
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PD(F) $bt
(]v)

%tPR , where (bt
(]v)(v))(v)ª2d(at

(]v)(EFv)). Finally, define the action ofbt
(]v) on

quantum fields asgt
(]v)(fF(v))ªfF(b

2t
(]v)(v)), for vPD(F,C). One has the following result.

Theorem 4.2:The transformationsgt
(]v) , tPR, uniquely extended into a group of automo

phisms ofAF , $gt
(]v)

%tPR such that

(a) if $gt
(] t)%tPR denotes the analogous group of automorphisms of the bulk algebraAR

generated by Rindler time-displacements,

~xF+gt
(] t)!~A!5~gt

(]v)
+xF!~A! for all APAF and tPR. ~66!

(b) In the Fock space realization ofAF referred toCF ,

~B̂!t
(HF)

5gt
(]v)

~B̂! for all B̂PAF and tPR. ~67!

Sketch of proof:at
(]v)(EFv)5EFbt

(]v)(v), the preservation of the symplectic form under t

action of at
(]v) and Proposition 3.4 entailEF(bt

(]v)(v),bt
(]v)(v8))5EF(v,v8). This property

trivially extended to complex valued forms.gt
(]v) must be extended on the whole algebraAF

requiring the preservation of the unital* -algebra structure. The proof of the existence of such
extension is based on the preservation of the causal propagator established above. IfA5f( f ),
~66! is an immediate consequence of~64! and the definition ofxF in Theorem 3.2. Then~66!
extends to the whole algebra sincegt

(]v) , gt
(] t) andxF are homomorphisms. Equation~67! is an

immediate consequence of the fact thatgt
(]v)(f̂F(v)) is the Heisenberg-like evolution off̂F(v)

induced by the ‘‘Hamiltonian’’HF and evaluated at ‘‘time’’t. h

C. Horizon analysis of the bulk symmetry associated with DF

Let us examine the properties of the unitary one-parameter group,$ei mDF%mPR .
Theorem 4.3:The unitary one-parameter group, $ei mDF%mPR enjoys the following properties.
(a) If w̃PL2(R1,dE)>HF , for all mPR andEPR1,

~eim DFw̃ !~E!5em/2w̃~emE!. ~68!

(b) By means of (42), $ei mDF%mPR induces a group$am
(v]v)

%mPR of transformations of horizon
wave functionsw with

~am
(v]v)

~w!!~v !ªw~e2mv ! ~69!

for all wPS(F) and mPR. $am
(v]v)

%mPR is the same group of transformations of functions as
ciated with the group of diffeomorphisms ofF induced by the vector fieldv]v .

Sketch of proof:~a! Consider the one-parameter group of unitary operators$Vm%mPR with
Vm(w̃)(E)5em/2w̃(emE), for w̃PL2(R1,dE). For everyf PD k

(F) , ^ f ,Vmw̃&5^V2m f ,w̃&. On the
other hand, using the definition of Schwartz space and Lebesgue’s dominated-convergenc
rem, it is simply proven thatV2m f→ f as m→0 and so^ f ,Vmw̃&→^ f ,w̃& as m→0 for every f
PD k

(F) which is dense inL2(R1,dE). As a consequence$Vm%mPR is weakly continuous, and thu
strongly continuous it being made of unitary operators, and Stone’s theorem can be used.
similar procedure~also using Lagrange’s theorem to estimate an incremental ratio! one gets that,
if w̃PD k

(F) and interpreting the derivative in the topology ofL2(R1,dE), d/dm um50(Vmw̃) can be
computed pointwisely. A straightforward calculation of the pointwise derivative g
d/dm um50(Vmw̃)5 i (DF)w̃. Stone’s theorem implies that generatorG of Vm5eimG is well-defined
on D k

(F) and coincides withDF therein. SinceDF is essentially self-adjoint on that domain it mu
be G5DF and this proves~a!. ~b! TakewPS(F), use the decomposition~42! as in the proof of
Theorem 4.1, and transformw̃1PL2(R,dE) under the action ofei mDF taking ~68! into account.
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With a trivial change of variables in the decomposition~42! one sees that, ifw belongs to
Schwartz’ space, the obtained transformed wave function is justw(e2mv) which still is in S~F!.h

Remark:Since the one-parameter unitary group generated byDF turns out to be associate
with the vector field ofF, v]v , which induces a group of~orientation-preserving! diffeomor-
phisms, the bulk-symmetry generated byDF via unitary holography ismanifeston the horizon.

Once again the machinery can be implemented at algebraic level. We consider the
associated withv]v only. Define the one-parameter group of transformations of formsv
PD(F), $bt

(v]v)
%tPR , with (bt

(v]v)(v))(v)ª2d(at
(v]v)(EFv)). Finally, extend the action o

bt
(v]v) on quantum fields asgt

(v]v)(fF(v))ªfF(b
2t
(v]v)(v)), for vPD(F,C). The following re-

sult, whose proof is essentially the same as that of the relevant part of Theorem 4.2, hold
Theorem 4.4: Transformationsgt

(v]v) uniquely extended into a one-parameter group of a

tomorphisms ofAF , $gt
(v]v)

%tPR such that in the Fock space realization ofAF referred toCF ,

~B̂!t
(DF)

5gt
(v]v)

~B̂! for all B̂PAF and tPR. ~70!

D. Horizon analysis of the unitary group generated by CF

The analysis of the action of the group generated byCF is much more complicated than th
other considered cases. The point is the following. A necessary condition to associate
transformed stateei tCFc (cPHF) a wave function ofS~F! by ~43! ~with w̃15ei tCFc and taking
the real part of the right-hand side! is thatei tCFc belong to the domain ofHF

21/2. Indeed in the
general case~43! must be interpreted as the Fourier–Plancherel transform of theL2(R,dE) func-
tion given by 0 ifE,0 and ((4pHF)21/2ei tCFc)(E) if E>0. Notice that this is the unique unitar
extension of the Fourier transform defined onL2(R,dE). That requirement is, in fact, fulfilled
concerningeiuHF1vDFc if cPS(F) becauseeiuHF1vDFcPS(F) and so the usual Fourier transfo
mation is sufficient to interpret the formalism. ConcerningCF the situation needs a careful trea
ment and the spaceS~F! must, in fact, be changed in order to assure thatei tCFc belongs to the
domain ofHF

21/2. There are several possibilities to do it at least in the casek51 in the definition
of CF . To go on we need some preliminary results. Ifk51, focus attention on the operato

analogous toK in the proof of Theorem 2.1,KFª( 1
2)(bHF01b21CF). It is known1 that s(KF)

5$1,2,...% ~no matter the value ofb.0) with corresponding eigenvectorsZ1
(1) ,Z2

(1) ,... ~which do
depend onb! given in ~26!. Thus definingQªeipKF one also getsQ5Q†5Q21. $Q,I % is the
image underUF of the discrete subgroup$q,q252I ,q352q,q45I %,SL(2,R) with

q5F 0 b

2b21 0G5ep(bh1b21c)/2 . ~71!

Proposition 4.1: Fix k51 in the definition (60) so that the representation ofSL̃(2,R) is in fact
a representation ofSL~2,R!. For everyb.0,

Q bHF Q5
1

b
CF , Q DF Q52DF , ~72!

2Q is nothing but the J1-Hankel unitary transform:

~2Qc!~E!ªb lim
M→1`

E
0

M

J1~bA4EE8!c~E8!dE8, for all cPL2~R1,dE!, ~73!

where the limit is computed in the norm of L2(R1,dE) and coincides with the L1 integral overR1

if E°E21/4c(E) belongs to L1(R1,dE) and E°AEc(E) belongs to L1(@0,1#,dE).
Sketch of proof:By Stone’s theorem, identities in~72! are equivalent to analog identities wit

self-adjoint operatorsHF , CF andDF replaced by the respectively generated one-parameter
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tary groups. In that form, the thesis can be proven, first for the corresponding one-para
groups in SL~2,R!, using simple analytic procedures based on the uniqueness theorem
matrix-valued solutions of differential equations, and then the result can be extended to u
operators using the representation introduced in Theorem 2.1. The second part arises stra
wardly from Chap. 9 in Ref. 31 with trivial adaptations of the definitions. h

Proposition 4.2: TakewPS(F) using notation as in (42), definew̃b1ªQw̃1 and

wb~v !5wS 2
b2

v D2w~0! for all vPF. ~74!

(a) w°wb is the transformation induced byQ on wave functions, i.e., (42) holds by replacin
w for wb and w̃1 for w̃b1 .

(b) If Xª(b/2) ]v1 (1/2b) v2]v and ae
(X)(w) denotes the natural action of the local on

parameter group of diffeomorphisms generated by X onw, the first term in the right-hand side o
(74) is

lim
e→p

~ae
(X)~w!!~v ! , for all vPF. ~75!

Sketch of proof:By hypothesesw̃1 satisfies the conditions which enables us to representQw̃1

as in~73!. In that case, by the expansion ofJ1(x) at x50, one sees that theL2, and continuous on
(0,1`), function E°(Qw̃1)(E) is O(E1/2) as E→01 and thus it belongs to the domain o
HF

21/2. Using Fubini–Tonelli’s and dominated convergence theorems we have thatwb(v) reads
~where the limit in the left-hand side is in theL2-convergence sense!

lim
e→01

E
0

`

e2 iE(v2 i e)
~Qw̃1!~E!

A4pE
dE52bE

0

`

lim
e→01

S E
0

`

e2 iE(v2 i e)
J1~bA4EE8!

A4pE
dED w̃1~E8!dE8.

The limit on the right-hand side can explicitly be computed by using known results,24 obtaining
that it is (eiE8b2/v21)/A4pE8. This result produceswb(v)5w(2b2/v)2w(0). Concerning the
second statement, it is simply proven that, foreP(2p,p),

~ae
(X)~w!!~v !5wS 2b2 tan~e/2!1bv

b1v tan~e/2! D .

With our hypotheses forw, the limit ase→p is well defined for everyvPR and proves the
statemet in~b!. h

By direct inspection and using~74! one sees that, ifwPS(F), usually wb¹S(F), but wb

PW`(R) in any case, the latter being the Sobolev space of theC` complex-valued functions
which areL2(R,dv) with all of derivatives of every order.

Now, using~72!, the geometric action ofeil CF5Qeilb2HFQ can easily be computed for wav
functionsw of S~F! such thatw(0)50 andv°w(21/v) still belongs toS~F!. Take such aw,
extractw̃1 and applyQ. The resulting wave function is an element ofS(F) by Proposition 4.2.
The application of the one-parameter group generated byb2HF , eilb2HF, gives rise to wave
functions~see Theorem 4.1! v°w(2b2/(v2b2l)) which still belongs toS(F). Finally, since it
is possible, applyQ once again. All that procedure is equivalent to applying the groupeil CF

5Qeilb2HFQ, on the initialw̃1 . By this way one gets that the following theorem.
Theorem 4.5: Consider the horizon wave functionswPS(F) such that w(0)50 and

v°w(21/v) still belongs toS~F!. The unitary group, $eil CF%lPR induces a class$al
(v2]v)

%lPR of
transformations of the said wave functions by means of (42), with

~al
(v2]v)

~w!!~v !ªwS v
11lv D2wS 1

l D , for all lPR. ~76!
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The transformation of wave functions defined by the first term on the right-hand side of (76)
generated by thelocal group of diffeomorphisms ofF associated with the fieldv2]v .

Remarks:~1! In our hypotheses,al
(v2]v)(w)PW`(R), but in generalal

(v2]v)(w)¹S(F) so that
the class of transformations does not define a group of transformations of wave functions inS~F!.
It is worthwhile stressing that these transformations define a group when working on the spEF
of complex wave functionsc5c(v) whose positive-frequency and negative-frequency parts
Fourier transform are linear combinations of functionsE°Zn

(1)(uEu)/A4puEu. In factEF is invari-
ant under~76!. On the other hand,EFù(S(F)1 iS(F))5B.

~2! The integral curves of the fieldv2]v , v(t)5v(0)/(12tv(0)), have domain whichde-
pends on the initial condition: That is,R\$1/v(0)%, andv(t) diverges ift approaches the singula
point @barring the initial conditionv(0)50 that produces a constant orbit#. Thus the one-
parameter group of~orientation-preserving! diffeomorphisms generated byv2]v is only local.
However, as the functions inS~F! vanish at infinity with all their derivatives, the singular point
the domain is harmless in~76!.

~3! It makes sense to extend the definition of symplectically smeared field operator whw
PW`(R) by means of Definition 3.1. Indeed the Fourier–Plancherel transform ofw, f satisfies
*R1(11uEuk)2u f (E)u2dE,`, for k50,1,2,..., and soR1{E→w̃1(E)ªA4pE f(E) is a one-
particle quantum state ofL2(R1,dE). With the same hypothesesEFdw is well-defined, in par-
ticulardkw(v)/dvk→0 asv→6` for k50,1,2,...: byelementary calculus and Cauchy–Schwa
inequality, everydkw(v)/dvk is uniformly continuous. Ifdkw(v)/dvk→” 0 asv→6` for somek,
there aree.0 and a sequence of intervalsI n with * I n

dv5 l .0 and udkw(v)/dvk� I n
u.e. Thus

*Rudkw(v)/dvku2dv5` which is impossible. Moreover,EFdw enjoys the relevant propertie
stated in Proposition 3.4 and 3.5. Then enlargingD~F,C! to include elementsv5dw wherew is
real and belongs toW`(R), one can definef̂(v) as in Definition 3.2, not affecting the relevan
properties stated in Proposition 3.4 and 3.5. By this way, the algebraic approach can be
mented in terms of formal quantum fields smeared by functions ofW`(R).

The action of the one-group generated byCF can be implemented at algebraic level. Ifv

PD(F) @without the enlargement said in the remark~3! above#, one can define (bt
(v2]v)(v))

ª2d(at
(v2]v)(EFv)). By direct inspection one sees that eachat

(v2]v) preserves the symplecti

form VF and eachbt
(v2]v) preserves the causal propagatorEF . Notice that these results are n

evidenta priori since the action ofat
(v2]v)

~76! is not that canonically induced by a vector fiel

Finally, extend the action ofbt
(v2]v) on quantum fields asgt

(v2]v)(fF(v))ªfF(b
2t
(v]v)(v)), for

vPD(F,C). The following result, whose proof is essentially the same as that of the relevan
of Theorem 4.2, holds.

Theorem 4.6: Transformationsgt
(v2]v) uniquely extended into a one-parameter class of

tomorphisms ofAF , $gt
(v2]v)

%tPR such that in the Fock space realization ofAF referred toCF ,

~B̂!t
(CF)

5gt
(v2]v)

~B̂! for all B̂PAF and tPR. ~77!

E. The full SL „2,R… action

To conclude we show the general action of$Ug
(F)%gPSL(2,R) on horizon wave functions. With a

strightforward generalization of the notion of manifest symmetry due to the appearance
addend on the right-hand side of~79! below, the symmetry associated with the whole gro
SL~2,R! can be considered asmanifest. We leave possible comments on the field algebra exten
to the reader. Remind thatqªep(bh1b21c)/2PSL(2,R) and consider

A5Fa b

c dGPSL~2,R!. ~78!
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Referring to~71! and generators~29!, only one of the following facts holds for suitablel,m,t
uniquely determined bya,b,c,d in the examined cases: Ifa.0, A5elcemdeth or, if a,0, A
5qelcemdeth, or, if a50 andb.0, A5qemdeth, or, if a50 andb,0, A5q3emdeth. Using
these decompositions, part of Theorems 4.1, 4.3, and 4.5, and Proposition 4.2, the followin
theorem can simply be proven.

Theorem 4.7: TakewPS(F) such thatw(0)50 and v°w(21/v) still belongs toS(F). If
APSL(2,R) has the form (78), leta (A)(w) denote the right-hand side of (42) withw̃1 replaced
for UA

(F)w̃1 wherew̃1 is defined as in~41!. For vPR it holds

~a (A)~w!!~v !5wS dv2b

a2cv D2wS 2
d

cD . ~79!

The second term on the right-hand side disappears if either d50 or c50. Finally, the transfor-
mation of wave functions defined by the first term on the right-hand side of (79) is that gene
by the local group of diffeomorphisms ofF generated by the basis of fields]v ,v]v ,v2]v .

Remark:From a pure geometric point of view, the SL~2,R! symmetry is associated to the Li
algebra of fields]v , v]v , v2]v . This suggests to focus on the set of fields defined onF, $Ln%nPZ
with

Lnª2vn11]v , nPZ. ~80!

By direct inspection one gets that, if$ , % denotes the Lie bracket of vector fields,

$Ln ,Lm%5~n2m! Ln1m , ~81!

that is, the generatorsLn span a Virasoro algebra without central charge. We remark that, in
the fieldsLn with n,0 are not smooth since a singularity arises atv50. It is anyway interesting
to investigate the issue of the quantum representation of that Lie algebra in terms of one-p
operators of a quantum field defined on the horizon perhaps in the whole Fock space. At qu
level a central charge could appear. This is just the main goal of the subsequent paper.19 In that
paper we show that, in fact, a suitable and natural enlargement in the Fock space of the
SL~2,R! symmetry gives rise to a positive-energy unitary Virasoro algebra representation.
representation has quantum central chargec51. The Virasoro algebra of operators gets a manif
geometrical meaning if referring to the holographically associated QFT on the event horizon
nothing but a representation of the algebra of vector fields defined on the event horizon eq
with a point at infinity. All that happens provided the Virasoro ground energyhªm2/2 vanishes
and, in that case, the Rindler Hamiltonian is associated with a certain Virasoro generator. It
that forh5 1

2 the ground state of the generatorK corresponds to a thermal state when examined
the Rindler wedge with respect to the Rindler evolution. Moreover, that state has inverse tem
ture equal to 1/~2b!. Finally, under Wick rotation in Rindler time, the pair of QF theories which
built up on the future and past horizon defines a proper two-dimensional conformal quantum
theory on a cylinder.

V. DISCUSSION, OVERVIEW AND OPEN PROBLEMS

In this article we have rigorously proven that it is possible to define a diffeomorphism in
ant local quantum field theory for a massless free scalar field defined on the Killing horizon
Rindler space–time. Actually all of the procedure could be implemented in a manifold diffeo
phic toR without fixing any metric structure. The diffeomorphism invariance is a consequen
the fact that the field operators and the symplectic form act on exact one-forms instead of s
smearing functions and thus they do not need a metric invariant measure. Moreover, wh
theory is realized on the~future and/or past! Killing horizon in Rindler space–time, there is
natural injective* -algebra homomorphism from any quantum field theory of a~generally massive!
                                                                                                                



terms
. In this
imated
rzschild
y.
–time
the
have

re

as the
atural

t
of the
s

Had-

has a
pos-
epre-
oups of

eless,
s some
nifold
lutions
har-

aces.

e
sive

same

e drop-
lein–
gular
of the

nly
opriate
dealing

edure
‘‘

255J. Math. Phys., Vol. 45, No. 1, January 2004 Holography and SL(2,R) symmetry

                    
scalar field propagating in the bulk. This holographic identification can be implemented in
of unitary equivalences if the algebras of the fields are represented in suitable Fock spaces
case the vacuum state in the bulk is that associated to Rindler quantization. In an approx
picture where Rindler space corresponds to the space–time near the horizon of a Schwa
black hole, Rindler particles are just the Poincare´-invariant particles we experience everyda
Conversely, if the Rindler background is taken seriously as part of the actual space
~Minkowski space–time! without approximation, the Rindler vacuum has to be thought of as
vacuum state of an accelerated observer in Minkowski space–time and Rindler particles
nothing to do with ordinary Poincare´ invariant particles. Actually a problem arises from a pu
physical point of view and it deserves further investigation in relation with theunitary holographic
theorem where vacuum states play a relevant role. Indeed, the Rindler vacuum as well
Boulware vacuum in the Schwarzschild manifold are states which cannot be defined in the n
extension of the manifold~respectively, Minkowski space–time and Kruskal space–time!. Essen-
tially speaking, this is due to the behavior ofn-point functions on the Killing horizon which is no
Hadamard. In this context it would be interesting to investigate the holographic meaning
Hadamard states~Minkowski vacuum and Hartle-Hawking state! also to make contact with result
found in Refs. 15–18 where the net of Von Neumann algebras are defined with respect to
amard states.

Another achieved result in this work is that the hidden SL~2,R! symmetry of the bulk theory
corresponds to an analogous symmetry for the horizon theory and this horizon symmetry
clear geometric interpretation in terms of invariance under diffeomorphisms. However, it is
sible to show that this symmetry can be enlarged to include a full Virasoro algebra which r
sents, in the Hilbert space of the system, the algebra of generators of one-parameter gr
local diffeomorphisms of the horizon. That is the subject of another work.19

All the work has been developed in the case of a two-dimensional space–time. Neverth
we expect that the result obtained for this simple case can be generalized to encompas
four-dimensional cases. Considering a four-dimensional Schwartzschild black hole ma
within the near horizon approximation, angular degrees of freedom are embodied in the so
of Klein–Gordon equation by multiplication of a two-dimensional solution and a spherical
monic Ym

l (u,f). All field states are elements of an appropriate tensor product of Hilbert sp
For instance, in the massive case, the final space is the direct sum of spacesC2l 11

^ L2(R1,dE)
with l 50,1,... . ~The ‘‘square angular momentum’’ eigenvaluel defines an effective mass of th
field when considered at fixed value ofl . In this way the massless theory behaves as the mas
one whenlÞ0.) With simple adaptations@e.g., the appropriate causal propagator onF reads

EF~x,x8!5~ 1
4!sign ~v2v8!d~u2u8!d~f2f8!Ag S2~u,f!

and the horizon field operatorf̂F has to be smeared with 3-forms asd f(v,u,f)∧du∧df] all the
results found in this article can be restated for that apparently more general case. The
conclusion can be achieved when considering a four-dimensional Rindler space–time.

Some comments can be supplied for the case of the exact Schwartzschild space–tim
ping the near-horixon approximation in spite of the absence of exact solutions of the K
Gordon equation. By the analysis of the effective potential—which depends on the an
momentum—of either a massive or massless particle propagating in the external region
black hole space–time, one sees that the energy spectrum iss(H)5@0,1`) once again for any
values of the angular momentum. If the particle is massive, no degeneracy affects a valueE of the
energy if the mass is greater thanE; otherwise twice the degeneracy arises. That is the o
possible case for a massless particle. Therefore, we expect that our results, with appr
adaptations, may hold for the massless case but they could need some substantial change
with the massive case.

Another interesting topic that deserves investigation is if, and how, the holographic proc
can be extended in order to encompass a larger algebra of fields containing Wick monomialsfn’’
which naturally arise dealing with perturbative interacting quantum field theory.
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Virasoro algebra with central charge cÄ1
on the horizon of a two-dimensional-Rindler space–time
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Using the holographic machinery built up in a previous work, we show that the
hidden SL(2,R) symmetry of a scalar quantum field propagating in a Rindler
space–time admits an enlargement in terms of a unitary positive-energy represen-
tation of Virasoro algebra defined in the Fock representation. That representation
has central chargec51. The Virasoro algebra of operators gets a manifest geo-
metrical meaning if referring to the holographically associated quantum field theory
on the horizon: It is nothing but a representation of the algebra of vector fields
defined on the horizon equipped with a point at infinity. All that happens provided
the Virasoro ground energyhªm2/2 vanishes and, in that case, the Rindler Hamil-
tonian is associated with a certain Virasoro generator. If a suitable regularization
procedure is employed, forh51/2, the ground state of that generator seems to
correspond to a thermal state when examined in the Rindler wedge, taking the
expectation value with respect to Rindler time. Finally, under Wick rotation in
Rindler time, the pair of quantum field theories which are built up on the future and
past horizon defines a proper two-dimensional conformal quantum field theory on a
cylinder. © 2004 American Institute of Physics.@DOI: 10.1063/1.1629396#

I. INTRODUCTION AND SUMMARY OF PREVIOUSLY OBTAINED RESULTS

A number of papers have been concerned with the issue of the statistical origin of blac
entropy. The holographic principle1–3 arose from the idea that gravity near the horizon should
described by a low dimensional theory with a higher dimensional group of symmetry. Malda
and Witten4,5 showed that there is a correspondence between quantum field theory~QFT! in an
asymptoticallyAdSspace–time, the ‘‘bulk,’’ and a conformal theory on its ‘‘boundary’’ at spac
like infinity. Rehren proved rigorously some holographic results for local quantum fields i
AdSbackground, establishing a correspondence between bulk observables and boundary
ables without employing string machinery.6,7 Dealing with QFT in two-dimensional~2D!-Rindler
space–time, we have proved in a recent work8 that it is possible to define a free quantum theo
on the horizon of a two-dimensional Rindler space. That theory enjoys holographic interplay
the analogous theory defined in the bulk. More precisely, there are two holographic theorem
former shows that there is a*-algebra injective homomorphism from the algebra of the b
observables associated with the Rindler free field to the algebra of the horizon observable
ciated with the horizon free field. The latter identifies the observables of the theories fro
point of view of unitary equivalences whenever the theory is represented in suitable Fock s

a!Also at I.N.d.A.M., Istituto Nazionale di Alta Matematica ‘‘F.Severi,’’ unita` locale di Trento and I.N.F.N., Istituto
Nazionale di Fisica Nucleare, Gruppo Collegato di Trento; electronic mail: moretti@science.unitn.it

b!Electronic mail: pinamont@science.unitn.it
2570022-2488/2004/45(1)/257/28/$22.00 © 2004 American Institute of Physics
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~in that case also the vacuum states are in correspondence through the unitary operato
realizes holography!. An interesting consequence is that the ‘‘hidden’’SL(2,R) symmetry of free
quantum field theory in the bulk found in Ref. 9 becomes manifest when transposed on the K
horizon by means of unitary holography. In fact, due to the spectrum of the Hamiltonian ope
QFT theory in the bulk turns out to be invariant under a unitary representation ofSL(2,R) but
such a quantum symmetry cannot be induced by the geometric background because the iso
of Rindler space have a Lie algebra different from that ofSL(2,R).9 Nevertheless, the unitary
representation ofSL(2,R) realizes that bulk symmetry becomes manifest, i.e., it reveals a c
geometric meaning, if it is examined on the horizon by means of the holographic machiner
that is summarized later in this section in some detail.

Overlap with ideas and results of Ref. 8 is present in the literature, especially due to Sch10

Schroer and Wiesbrock,11 and Schroer and Fassarella.12 In those papers an approach to holograp
similar to ours is implemented in the framework of LightFront Holography developed a
algebraic level using nets of local observable algebras. From a very elementary point of v
relevant difference with our machinery is the fact that the quantization of the bulk field use
Schroer and collaborators is that referred to as Minkowski vacuum and Minkowski time inste
Rindler vacuum and time. From a pure physical point of view, perhaps, the quantization
respect to the Rindler frame is more interesting if one tries to use our machinery as a startin
to investigate quantum field theory~QFT! near the bifurcate Killing horizon of a black hole
Rindler quantization corresponds to quantization in a reference frame that gives rise to Mink
coordinates far from the black hole and the associated particles should be those things are m
However the interplay of Schroer and collaborators’ ideas and achievements and procedu
results presented in our paper deserves further investigation. Another relevant paper which
particular quotation is that by Guido, Longo, Roberts, and Verch.13 Overlap with some results
arising from our approach is present in Sec. 4 of Ref. 13. In that section, in the very ge
context of QFT in curved space–time in terms of nets of localC* algebras~and Von Neumann
representations! and making use of very general theorems by Wiesbrock on local quantum
theory defined onS1 and covariant with respect toPSL(2,R)ªSL(2,R)/6I , the existence of a
local quantum field theory~covariant with respect toPSL(2,R)/6I ) defined on the bifurcate
Killing horizon is proven. This is done by considering a net of Von Neumann algebras in
representation of a state which is, in restriction to the subnet of observables which are local
the horizon, a KMS state at Hawking temperature for the Killing flow.

In Ref. 8 we found some clues for the existence of a whole unitary representation of Vir
algebra which extends theSL(2,R) unitary representation on the horizon. In this paper we pr
the very existence of a full unitary representation of Virasoro algebra with central chargec51 for
quantum field theory defined on the horizon. That fact is interesting for several reasons in re
to the problem of the statistical interpretation of black hole entropy. In fact, there are se
attempts to give a statistical explanation to black hole entropy by counting microstates in te
the degeneracy of an eigenspace of a certain Virasoro generator in a suitable irreducible
representation of Virasoro algebra.14,15This is done by means of the so-called ‘‘Cardy’s formula
These approaches are, in fact, based on the existence of a Virasoro algebra~with central charge
cÞ0) in terms of generators of diffeomorphisms of the black hole manifolds considering
horizon as a boundary. The algebra of the associated generators in the Hamiltonian ADM
lation of gravity gets a nonvanishing central charge. Under the supposition that a quantum v
of that Virasoro representation exists, that the value of central charge is not affected b
quantization procedure and that the actual value of the black hole mass is an eigenvalue
Virasoro generatorL0 , it is possible to compute the degeneracy of that eigenspace by mea
Cardy’s formula because of the presence of a central charge. The logarithm of the dege
gives the very black-hole entropy law barring logarithmic corrections.

The main problem of all of those approaches is that the Virasoro algebra representatio
nonvanishing central charge is proven to exist at classical level only in the Hamiltonian form
tion. All derivations of black hole entropy by that way are based on the found classical form
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and on the supposition that there is a quantum version of the found Hamiltonian structure~in order
to use Cardy’s formula!.

To make contact with the content of this paper where a quantum scalar field propagatin
2D-Rindler space is considered, we notice that in the above-outlined approaches, the onl
horizon structure is sufficient to use the Virasoro–Cardy machinery.15,14,16 Moreover, for a
Schwarzschild black-hole manifold, the relevant algebra of diffeomorphisms is that of diffeo
phisms in the planer ,t which preserve the horizon structure. Hence it seems that 2D-Rin
models are relevant to this context. On the other hand, a scalar field arises naturally in
2D-Rindler space approaches by dimensional reduction16 from the gravitational theory in four
dimensions~4D! in the presence of spherical symmetry. That field supports information of pa
the 4D-dimensional gravity in the 2D model. Concerning the problem of the existence
Virasoro representation at quantum level we stress that, in this paper, we prove that
positive-energy unitary representation of Virasoro algebra does exist at quantum level f
quantum field defined on the horizon. That algebra of operators can be defined also for the
field propagating in the bulk via unitary holography.

In fact, Sec. II of this paper is devoted to showing that the bulk hiddenSL(2,R) symmetry
admits an enlargement in terms of a unitary representation of Virasoro algebra with central
c51 defined in Fock representation. The Virasoro algebra of operators gets a manifest geom
meaning if referring to the holographically associated QFT on the horizon: It gives rise to a u
representation of a group of automorphisms of the*-algebra generated by field operators. Th
representation is induced by a group of diffeomorphisms of the horizon compactified by ad
point at infinity. Moreover, a subrepresentation which is generated by three certain Vir
generators reduces to theSL(2,R) representation previously found. Under Wick rotation w
respect to Rindler time, the pair of QF theories which are built up on the future and past ho
defines a proper two-dimensional conformal quantum field theory. That CFT can be realized
Riemann surface given by a two-dimensional cylinder. In Sec. III we see that, with a su
choice of the weight of the found Virasoro algebra of operators, a certain generator which
alizes Rindler Hamiltonian, admits a ground stateC which seems to enjoy thermodynamic pro
erties: When that state is examined in the bulk via holography, and a suitable regularized m
computed with respect to Rindler-time evolution,C reveals itself as a thermal state whose inve
temperature is 2b, b being the parameter initially used to build up the unitarySL(2,R) represen-
tation in the bulk.

We summarize part of the content of Ref. 8 relevant to this work within the following
steps.

@a# Consider the globally hyperbolic space–timeR called the two-dimensionalRindler wedge
with metric dsR

2 52k2y2dt21dy2, which can be obtained by a suitable near horizon approxi
tion of a general Schwarzschild-like metric also dropping the angular coordinates,8 abovetPR,
yP(0,1`) are global coordinates. A free Klein–Gordon~KG! scalar fieldf in R satisfies the
equation of motion2] t

2f1k2(y]yy]y2y2m2)f50. In Rindler quantization, the one-partic
Hilbert spaceH consists of the space of complex linear combinations of the positive frequ
parts of smooth real solutionsc of the KG equation with compact Cauchy data. The natu
symplectic formon that space isV(c,c8)ª*L(c8¹mc2c¹mc8)nmds, L being any Cauchy
surface, ds the induced measure, andn a unit future-oriented normal vector. Everyc decomposes
into ] t-stationary modes as

c~ t,y!5c1~ t,y!1c.c.5E
0

1`

e2 iEt(
a

FE
(a)~y!c̃1

(a)~E! dE1c.c. ~1!

The indexa distinguishes between two cases: ifm.0 there is a single modeFE
(a)5FE . If

m50 there are two values ofa, corresponding toingoing and outgoing modes,FE
(in)/(out)

5e7 iE ln(ky)/k/A4pE. In that case both ingoing and outgoing components in~1! must have Cauchy
compact support. The one-particle Hilbert space of wave functions is obtained by takin
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completion of the space of complex linear combinations of positive frequency wave func
~obtained from Cauchy support compactly real wave functions! with respect to the Hermitian
scalar product2 iV(c18 ,c1). ] t evolution of a wave functionc is equivalent to the action of the
one-parameter subgroup generated by a HamiltonianH on the associatedc1PH. s(H)5@0,
1`) for m>0. If m.0 there is no energy degeneration and the one-particle Hilbert spaceH is
isomorphic toL2(R1,dE) via spectral decomposition ofH. In the other case (m50), twofold
degeneracy implies thatH>L2(R1,dE) % L2(R1,dE). Let us pass to the bosonic Fock spac
F~H!, associated withH. Thequantum fieldV( •,f̂) of our theory is the map

c°V~c,f̂ !ª ia~c1!2 ia†~c1! , ~2!

wherec is any real compactly supported wave function anda(c1) and a†(c1), respectively,
denote the annihilation and construction operator associated with the one-particle statesc1 and
c1 , defined inF~H! and referred to the Rindler vacuumu0& ~that is u0& in^ u0&out if m50).
V(c,f̂) is essentially self-adjoint in the dense invariant subspace spanned by all states con
a finite arbitrarily large number of particles with states given by positive-frequency wave
tions. Every wave functionc in ~1! can be obtained asc5E( f ) where f is an associated com
pactly supported smooth function inR and E is the causal propagator~the ‘‘advanced-minus-
retarded’’ two point function! of Klein–Gordon operator. Moreover

E
R
c f dmg5V~E f ,c!, E

R
h~x!~E f !~x! dmg~x!5V~E f ,Eh! , ~3!

mg being the measure induced by the metric inR. Equation~3! suggests defining18 a quantum-field
operator smeared with compactly supported complex-valued functionsf , as the linear map

f °f̂~ f !ªV~E f ,f̂ ! , ~4!

which is formally equivalent to the nonrigorous but popular definition

f̂~ t,y!5E
0

`

(
a

e2 iEtFE
(a)~y!aEa1eiEtFE

(a)~y!aEa
† dE . ~5!

The rigorous version of the formal identity@f̂(x),f̂(x8)#52 iE(x,x8) is

@f̂~ f !,f̂~h!#52 iE~ f ,h!ª2 i E
R
h~x!~E f !~x! dmg~x! . ~6!

@b# In Refs. 9 and 8 we have established that, ifm.0, H is irreducible under a~uniquely
determined! strongly continuous unitary representation ofSL(2,R) whose Lie algebra is given by
the ~uniquely determined! self-adjoint extension of the real linear combinations of opera
H0 ,D,C:

H0ªE , Dª2 i S 1

2
1E

d

dED , Cª2
d

dE
E

d

dE
1

S k2
1

2D 2

E
. ~7!

k can arbitrarily be fixed in$1/2, 1, 3/2,...%. iH 0 , iC, iD enjoy the commutation relations of the Li
algebra ofSL(2,R) in a suitable dense and invariant domainDk where they, and their real linea
combinations, are essentially self-adjoint8 andH05H. Dk is the subspace spanned by the eige
vectors of the operator
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Kbª
1

2 S bH01
1

b
CD , ~8!

b being a constant with the dimensions of an inverse energy. The unitary representation do
depend on the value ofb. The spectrum of the self-adjoint operatorKb ~initially defined onDk)
is a pure point spectrum without degeneracy, it does not depend onb itself and is s(Kb)
5$ln u ln5n, n5k, k11,k12,...%. If Lp

(a) are modified Laguerre’s polynomials,17 the associ-
ated normalized eigenvectors~which are the same as those ofKb) are

Zn
(k)~E!ªhnAG~n2k11!

E G~n1k!
e2bE~2bE!kLn2k

(2k21)~2bE! , n5k,k11,..., ~9!

hn being a pure phase which can be arbitrarily fixed~in Refs. 9 and 8 we usedhn51). As noticed
in Ref. 9, if b is interpreted as an inverse temperature, the exponentiale2bE suggests an inter
pretation in terms of a canonical ensemble of the energetic content of these states. In this pa
examine in depth this possibility finding out very interesting results.

If m50 and soH>L2(R1,dE) % L2(R1,dE), an analogue representation exists in each sp
L2(R1,dE). Making use of the Heisenberg representation it is simply proven that the alg
generated byH,D̄,C̄, with depending-on-time coefficients, is made of constant of motions.8 Thus
SL(2,R) is a symmetryof the one-particle system. That can straightforwardly be extended to
free quantum field in Fock space. The crucial point is that the found symmetry ishidden: It cannot
be induced by the background geometry since the Killing fields of Rindler space–time en
different Lie algebra from that ofH0 ,D,C and no representation ofSL(2,R) exists in terms of
isometries ofR ~see Ref. 8 for definitions and details!. The picture changes dramatically when t
found SL(2,R) symmetry is examined on the horizon as noted in@e# below.

@c# The spaceR is naturally embedded in a Minkowski space–time which contains the hor
associated with the Rindler metric. Rindlerlight coordinates u5t2 log(ky)/k, v5t1 log(ky)/k
~whereu,vPR) cover the~open! Rindler spaceR. Separately,v is well defined on thefuture
horizon F, u→1`, andu is well defined on thepast horizonP, v→2` ~see Fig. 1!. A wave
function in ~1! admits well-defined limits toward the future horizonu→1`:

FIG. 1. Holography in 2D-Rindler space.
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c~v !5E e2 iEv

A4pE
eirm,k(E)c̃1~E! dE1c.c., ~10!

eirm,k(E) being a pure phase.8 In coordinateuPR, the restriction ofc to P is similar with v
replaced foru andrm,k(E) replaced by2rm,k(E). If m50 restrictions toF andP are similar to
~10! with the difference thateirm,k(E) is replaced by 1, only ingoing components survive in t
limit toward F and only outgoing components survive in the limit towardF (v must be replaced
for u in that case!. Discarding the phase it is possible to consider the following real ‘‘wave
function on the (future) horizonF’’:

w~v !5E
R1

e2 iEv

A4pE
w̃1~E! dE1E

R1

e1 iEv

A4pE
w̃1~E! dE, ~11!

wherew is any real function in Schwartz’ space onR[F, as the basic object in defining a quantu
field theory on the future horizon. The same is doable concerningP. The space of horizon wave
functions can be equipped with a diffeomorphism invariant symplectic formVF(w,w8)
ª*Fw8dw2wdw8. A suitable causal propagator can also be definedEF(v,v8)5(1/4)sign(v
2v8) and used as noted in the following. First of all define the Hermitian scalar pro
^w18 ,w1&Fª2 iVF(w18 ,w1). The one-particle Hilbert spaceHF is the completion with respect to
that scalar product of the space of complex combinations of positive frequency partsw̃1(E), of
horizon wave functionsw. As ^w18 ,w1&F5*R1w̃18 (E)w̃1(E)dE, HF turns out to be isomorphic to
L2(R1,dE) once again. The field operator is defined in the symmetrized Fock spaceF(HF), with
vacuum stateu0&F , with rigorous symplectic definition given by

w°VF~w,f̂F!ª ia~w1!2 ia†~w1! , ~12!

wherew is any horizon wave function in the above-specified space. With these definitions, in
of the absence of any equation of motion the essential features of free quantum field theo
preserved by that definition.8 Degeneracy of the metric on the horizon prevents one from smea
field operators by functions due to the ill-definiteness of the induced volume measure. How
employing the symplectic approach,18 a well-defined smearing procedure is that of field operat
and exact one-formsh5d f where f 5 f (v), vPR[F, is any real function in Schwartz’s spac
More precisely,h(v)°EF(h)5 1

4*R sign(v2v8)h(v8)5ch(v) defines a one-to-one correspo
dence between exact one-forms and horizon wave functions of the form~11! andh52dch . Thus,
if h5dw with w5w(v) in Schwartz’ space, one can define

h°f̂F~h!ªVF~EFh,f̂F! , ~13!

which is the rigorous meaning of

f̂F~h!5E
0

` dE

A4pE
S E

R
e2 iEvh~v ! D aE1S E

R
eiEvh~v ! D aE

† . ~14!

Horizon wave functionsw and one-formsh,h8 in the above-noted spaces enjoy the same pr
erties as in the bulk. More precisely one has

E
F
wh5VF~EFh,w!, E

F
~EFh!h85VF~EFh,EFh8! , ~15!

@f̂F~h!,f̂F~h8!#52 iEF~h,h8!5E
F
ch8dch2chdch8 . ~16!
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The latter is nothing but the rigorous meaning of the formal equation@f̂(v),f̂(v8)#
52 iEF(v,v8). Finally a ‘‘locality property’’ holds true:

@f̂F~h!,f̂F~h8!#50 if supp~h!ùsupp~h8!5B.

Everything we have stated forF can analogously be stated forP.
@d# It is possible to prove the existence of a unitary equivalence between the theory in th

and that on the horizon in the sense we are going to describe.
Theorem 1.1: If f is any real smooth compactly supported function f used to smear the

field, defineh fª2d(E( f )�F), andv fª2d(E( f )�P), E( f )�F/P being the limit towardF, respec-
tively, P, of E( f ) (see Fig. 1).

(a) If m.0, there is a unitary map UF :F(H)→F(HF) such that

UFu0&5u0&F , and UF
21f̂F~h f !UF5f̂~ f ! .

(b) If m50 two unitary operators arise VF/P :F(Hin/out)→F(HF/P) such that

VF/Pu0& in/out5u0&F/P

and

VF
21f̂F~h f !VF5f̂ in~ f ! , and VP

21f̂P~v f !VP5f̂out~ f ! .

Hin/out is the bulk Hilbert space associated with the ingoing/outgoing modes andf̂ in/out( f ) is the
part of bulk field operator built up using only ingoing/outgoing modes.

Details on the construction ofUF , VF , VP are supplied in Ref. 8. Similar to the extent in th
bulk case, one focuses on the algebraAF of linear combinations of product of field operato
f̂F(v) varying v in the space of allowed complex one-forms. We assume thatAF also contains
the unit operatorI . The Hermitian elements ofAF are the natural observables associated with
horizon field. From an abstract point of view the found algebra is a unital* -algebra of formal
operators fF(h) with the additional properties@fF(h),fF(h)#52 iEF(h,h8), fF(h)*
5fF(h̄) and linearity in the formh. ~The analogous algebra of operators in the bulk fulfill t
further requirementf( f )50 if ~and only if! f 5Kg, K being the Klein–Gordon operator. N
analogous requirement makes sense forAF since there is no equation of motion on the horizo!
AF can be studied no matter any operator representation in any Fock space. Operator rep
tions are obtained via the GNS theorem once an algebraic state has been fixed.18 AP can analo-
gously be defined. BelowAR denotes the unital* -algebra associated with the bulk field operat
If m50, AR naturally decomposes asAin^ Aout ~see Ref. 8! with obvious notation. We have th
following result which is independent of any choice of vacuum state and Fock representatio
proof can be found in Ref. 8.

Theorem 1.2:Assume the same notation as in Theorem 1.1 concerningh f and v f .
(a) If m.0, there is a unique injective unital* -algebras homomorphismxF :AR→AF such

that xF(f( f ))5fF(h f). Moreover in GNS representations in the respectively associated F
spacesF~H!, F(HF) built up over u0& and u0&F , respectively, xF has a unitary implementation

naturally induced by UF (e.g.,xF(f̂( f ))5UFf̂( f )UF
21).

(b) If m50, there are two injective unital* -algebras homomorphismsPF/P :Ain/out→AF/P
such thatPF(f( f ))5fF(h f) andPP(f( f ))5fP(v f). Moreover in GNS representations in th
respectively associated Fock spacesF(Hin/out), F(HF/P) built up overu0& in/out and u0&F/P , respec-
tively, PF and PP have unitary implementations and reduce to VF and VP , respectively.

Notice that, in particularxF preserves the causal propagator, in the sense that it mu
2 iE( f ,g)5@f( f ),f(g)#5@fF( f ),fF(g)#52 iEF(h f ,hg).

@e# Consider quantum field theory onF, but the same result holds concerningP. In HF
>L2(R1,dE) define operatorsHF0 ,DF ,CF as the right-hand side of the equation that, resp
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tively, definesH0 ,D,C in ~7!. They and their real linear combinations are essentially self-adj
if restricted to the invariant dense domainD k

(F) defined with the same definition asDk in @b#.
Exactly as in the bulk case, operatorsiH F5 iHF0, iDF,iCF generate a strongly continuous unita
SL(2,R) representation$Ug

(F)%gPSL(2,R) . Hence, varyinggPSL(2,R), the unitary operators ob
tained by unitary holography (UF�H)21 Ug

(F) UF�H define a representation ofSL(2,R) for the
system in the bulk. By construction (UF�H)21 HF UF�H5H. As a consequence everyUg

(F) gives
rise to a SL(2,R) symmetry of the bulk field and the group of these symmetries is uni
equivalent to that generated byiH ,iD̄ ,iC̄. In particular the one-parameter group associated w
HF generatesv displacements of horizon wave functions which are equivalent, under un
holography, tot displacements of bulk wave functions. Now, it makes sense to investigat
geometrical natureof the SL(2,R) representation$Ug

(F)% that, as we said, induces, up to unita
equivalences, the originalSL(2,R) symmetry in the bulk, but now can be examined on t
horizon. In fact, the symmetry has a geometrical meaning: The action of everyUg

(F) on a state
w̃15w̃1(E) is essentially equivalent to the action of a correspondingF-diffeomorphism on the
associated@by ~11!# horizon wave functionw. More precisely:8

Theorem 1.3: Assume k51 in (7), take a matrix gPSL(2,R). Let w5w(v) be a real
Schwartz’s horizon wave function with positive frequency partw̃15w̃1(E) and such thatw(0)
50 and v°w(1/v) belongs to Schwartz’s space too.

The wave functionwg associated with Ug
(F)w̃1 reads

wg~v !5wS av1b

cv1dD2wS b

dD , S a b

c dD 5g21. ~17!

Moreover one has the particular cases:
(a) The unitary one-parameter group generated by iHF is associated with the one-paramet

group ofF diffeomorphisms generated by]v .
In other words, for every tPR and positive-frequency part wave functionw̃1 , the positive-
frequency part wave function eitH Fw̃1 is associated with the horizon wave functionwgt

such that

]wgt

]t
U

t50

52]vw .

(b) With the same terminology as in case (a), the unitary one-parameter group genera
iDF is associated with the one-parameter group ofF diffeomorphisms generated byv]v .

(c) With the same terminology as in case (a), the unitary one-parameter group genera
iCF is associated with the one-group ofF diffeomorphisms generated byv2]v .

The term2w(b/d) in ~17! assures thatwg vanishes asv→6`. Notice that the added term
disappears when referring to dw rather thanw. The group of diffeomorphisms ofF[R used above,

v°
av1b

cv1d
, S a b

c dD PSL~2,R!, ~18!

in fact gives a representation ofSL(2,R). It can be obtained by finite composition of on
parameter subgroups associated with the following three vector fields onF: ]v ,v]v ,v2]v . It is
simply proven that the Lie brackets of2]v ,2v]v ,2v2]v produce the same algebra as the L
algebra ofSL(2,R). We conclude that the bulkSL(2,R)-symmetry is manifest when examined o
the horizon, in the sense that it is induced by the geometry.

II. FROM THE LINE TO THE CIRCLE: THE FULL VIRASORO ALGEBRA

Noli tangere circulos meos. ~Archimedes’ last words.!
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The algebra of vector fields]v ,v]v ,v2]v can be extended to include the class of fields defin
on the horizonvn11]v with nPZ. It is interesting to notice that these fields~more precisely the
fields 2vn11]v) enjoy Virasoro commutation relations without central charge. In fact there
central representation of Virasoro algebra which presents a central charge and is directly de
terms of operators acting in the Fock space of the horizon particles. The representation
introduced after one has given a convenient definition of quantum field operator on the ciF
5Fø$`%.

A. QFT on the circle F ÄF ˆ`‰

Consider the vector field onF,

Kª

1

2 S b]v1
1

b
v2]vD . ~19!

That field is associated with the essentially self-adjoint operator that is defined onD 1
(F) ,

KFbª
1

2 S bHF1
1

b
CFD , ~20!

in the Lie algebra of the unitary representation ofSL(2,R) because of Theorem 1.4. It is simp
proven that the integral line ofK with origin in v50 is v5b tan(u/2) with uP(2p,p) andv
50 corresponding tou50. One can useu as a new coordinate onF with the advantage that thi
new coordinate gets finite values in the whole compactified manifoldFø$`%[F ~in the sense of
Alexandrov’s procedure!, the added point̀ corresponding tou5p[2p in the circle. As a
consequence of our definitions, it turns out that

K5]u . ~21!

In fact this formula smoothly extends the left-hand side on the whole circleF. By construction,
there is the natural submanifold embeddingF,F. We want to show that such an inclusion can
extended to free quantum field theory if a suitable definition of QFT onF is given. We follow a
procedure very similar to that used for the horizon. As a final result we show that more stro
the ‘‘inclusion’’ of QFT on F into QFT on F is actually a unitary equivalence as well as
* -algebras inclusion. The observableKFb plays a central role in that identification. The associa
quantum field theory onF will be proved to support a nice unitary Virasoro’s algebra represe
tion with an explicit geometric meaning that extends the unitary representation ofSL(2,R).

Consider the space of realC` functionsr on F, C`(F;R), and define a subsequent real vec
spaceS~F! by taking the quotient with respect to the equivalence relation, forr,r8PC`(F;R),

r;r8 iff d~r2r8!50 . ~22!

From now on, the elements ofS~F! are calledcircle wave functions. The following symplectic
form on S~F! is well-defined and nondegenerate@the latter is not true onC`(F;R)]:

VF~r,r8!ªE
F
r8 dr2r dr8. ~23!

The elements ofC`(F;C) can be expanded in Fourier series. IfrPC`(F;R), with a re-
arrangement of the Fourier coefficients it holds either inL2(F,du) and in the uniform sense

r~u!5r01 (
n51

`
e2 inu r̃1~n!

A4pn
1

einu r̃1~n!

A4pn
.
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As r̃1(n) is proportional to*Fe2 inur(u)du and*Fe2 inudu50, if n.0, the coefficientsr̃(n) are
not affected ifr is replaced byr8 with r2r85constant, and thus the coefficientsr̃1(n), for n
.0, are well-associated with an element ofS~F!. In the following we indicate the elements o
S~F! simply by r instead of@r#. In the sense clarified above, ifrPS(F) we have

r~u!5 (
n51

`
e2 inu r̃1~n!

A4pn
1c.c.5r1~u!1c.c. ~24!

To define the one-particle Hilbert space, define the Hermitian scalar product

^r18 ,r1&Fª2 iVF~r18 ,r1! .

The one-particle Hilbert spaceHF is the completion with respect to that scalar product of the sp
of complex combinations of positive frequency parts$r̃1(n)%, of circle wave functionsr. It is
simply proven that, ifrPC`(F;C) with Fourier coefficients$Cn%nPZ , for everyp50,1,... there is
a realKp such thatunupuCnu<Kp for all nPZ. As a consequence,(nPZnuCnu2,`. We conclude
that, if rPS(F), the sequence of complex numbers$r̃1(n)5A2nCn%n51,2,... is an element of
,2(C). A direct computation shows thatHF turns out to be isomorphic to,2(C) because

^r18 ,r1&F5 (
n51

`

r̃18 ~n!r̃1~n!.

Using the Hilbert base ofHF given by the eigenvectors of the operatorKbF , $Zn
(1)%n51,2,... @where

the phase ofZn
(1) in ~9! is fixed to behn5(21)n11], the unitary mapM :HF→HF can be defined

such that

M :w°$^Zn
(1) ,w&%n51,2,.... ~25!

That isomorphism has a natural geometric interpretation stated in the former part of the th
below.

Theorem 2.1: Let w5w(v) be a real horizon wave function (which belongs to Schwar
space onR[F) associated with a quantum statew̃1 . If r is the circle wave function associate
with w by means of the unitary transformation (25), that isr̃1ªM (w̃1), one has

r~u!5w~v~u!! , ~26!

wherev(u)5b tan(u/2), uP(2p,p#. In other words

w~v~u!!5 (
n51

`
^Zn

(1) ,w̃1&

A4pn
e2 inu1c.c.1const.

The linear mapw°r defined in (26) is injective and preserves the symplectic forms of
respective spaces, that is, ifr8 is associated withw8 by the map (26) itself,

VF~r,r8!5VF~w,w8! . ~27!

Proof: Notice that, if the real horizon wave functionw5w(v) is in Schwartz’s space, the
function (2p,p#{u°w(v(u)) is well-defined and belongs toC`(F;R) with w(v(6p))50
with all its derivatives of any order. So the thesis makes sense. The second part can stra
wardly be proven by using the given definitions, so we focus on the former only. If the
horizon wave functionw5w(v) is in Schwartz’s space, the associated positive frequency
w̃1(E) is such thatw̃1(E)/A4pE is the restriction toR1 of Schwartz’s function. As a conse
quencew1(v)5*0

1`dE e2 iEvw̃1(E)/A4pE is smooth and
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w1~v~u!!;const3
w̃1~E!

AE
U

E50

~u7p!2

as u→6p. So the Fourier expansion ofw1 makes sense and each coefficient of the Fou
expansion ofw is the sum of the corresponding coefficients of the Fourier expansion ofw1 and
w1, it beingw5w11w1. We want to evaluate the Fourier coefficients ofw1 . First consider the
Fourier coefficients withn.0. By direct computation17 one finds

E
0

1` e2 iEb tan(u/2)Zn
(1)~E!

A4pE
dE5

1

A4pn
~~21!n111e2 inu! , ~28!

with uP(2p,p# @notice that the dependence formb cancels out due the shape~9! of functions
Zn

(1) by passing to the new variable of integrationbE in the integral#. As a consequence, definin
Zn

(1)(E)50 if E,0, inverting the Fourier~-Plancherel! transform~and changing the integratio
variablev→2v),

Zn
(1)~E!

A2E
5 lim

L→1`
E

2L

L

dv e2 ivE
~21!n111e2in tan21(v/b)

A4pn
, ~29!

the limit being computed in the sense ofL2(R,dE). SinceE°w̃1(E)/AE is the restriction toR1

of a Schwartz function,E°c(E)5A2Ew̃1(E) (c(E)ª0 for E,0!) is a function in
L1(R,dE)ùL2(R,dE). The functionsE°Zn

(1)(E) andE°Zn
(1)(E)/A2E ~assumed to vanish fo

E,0) are real and belong toL1(R,dE)ùL2(R,dE). It holds

^Zn
(1) ,w̃1&5E

0

`

Zn
(1)~E!w̃1~E!dE5E

2`

` Zn
(1)~E!

A2E
c~E!dE .

Using ~29! and taking theL2-continuity of the scalar product into account, one gets

^Zn
(1) ,w̃1&5 lim

L→1`
E

2`

`

dE c~E!E
2L

L

dv e2 ivE
~21!n111e2in tan21(v/b)

A4pn
,

that is

^Zn
(1) ,w̃1&5 lim

L→1`
E

0

`

dE w̃1~E!E
2L

L

dv 2E
e2 ivE

A2E

~21!n111einu(v)

A4pn
.

Using Ee2 ivE5 i (]/]v) e2 ivE and integrating by parts it arises

^Zn
(1) ,w̃1&5C~L !1 lim

L→1`

A2nE
0

`

dEw̃1~E!E
2L

L

dv
e2 iEv

A4pE

einu(v)

A2p

du

dv
,

where C(L) is a boundary term which vanishes in the limitL→` by Riemann–Lebesgue’
lemma. Interchanging the integration symbols and taking the limit asL→` we finally get thenth
Fourier coefficient ofw1 and the (2n)th Fourier coefficient ofw1,

E
2p

p

w1~v~u!!
einu

A2p
du5

^Zn
(1) ,w̃1&

A2n
, E

2p

p

w1~v~u!!
e2 inu

A2p
du5

^Zn
(1) ,w̃1&

A2n
.
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Now we pass to consider the remaining Fourier coefficients. Since in~29! Zn
(1)(E) is defined to

vanish forE,0, one has that, ifn.0,

lim
L→1`

E
2`

0

dE f~E!E
2L

L

dv e2 ivE
~21!n111e2in tan21(v/b)

A4pn
50 ,

which, after complex conjugation and change of variablesE→2E, is equivalent to

lim
L→1`

E
0

1`

dE g~E!E
2L

L

dv e2 ivE
~21!m111e2im tan21(v/b)

A4pumu
50 , ~30!

wherem52n,0 andgPL2(R,dE). Usingg(E)5A2Ew̃1(E) for E>0 andg(E)50 otherwise
and following the same procedure as for the casen.0, ~30! implies that, ifn,0,

E
2p

p

w1~v~u!!
einu

A2p
du50 .

As a consequence,

E
2p

p

w1~v~u!!
e2 inu

A2p
du50 .

Putting all together we get

w~v~u!!5w1~v~u!!1w1~v~u!!5constant1 (
n51

`
^Zn

(1) ,w̃1&

A4pn
e2 inu1 (

n51

`
^Zn

(1) ,w̃1&

A4pn
einu

which concludes the proof. h

The result stated in Theorem 2.1 suggests to define a quantum field on the cirF
ªFø$`% whose Hilbert space is the symmetrized Fock spaceF(HF)>F(HF), where the isomor-
phism is that naturally induced byM of Eq. ~25! and the vacuumu0&F is associated withu0&F by
the isomorphism itself. Formally the quantum field operator onF reads

f̂~u!5 (
n51

`
e2 inu an

A4pn
1

einu an
†

A4pn
, ~31!

wherean andan
† are the annihilator and constructor operator of modesZn

(1) .
The field operator is defined in the symmetrized Fock spaceF(HF), with rigorous symplectic

definition given by

r°VF~r,f̂F!ª ia~r1!2 ia†~r1! , ~32!

wherer is any circle wave function and, respectively,a(r1), a†(r1) annihilates and creates th
statesr1 and r1 . Once again a well-defined smearing procedure is that of field operators
exact one-formsh5dr whererPS(F). Notice thatdr does not depend on the chosen elemen
the class of equivalence associated withr. More precisely, we introduce the ‘‘causal propagator’’
on F

h~u!°EF~h!5
1

4 EF
@sign~u2u8!1~u82u!/p#h~u8! ,
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where it is understood that one has to take the quotient with respect to the equivalence r
defining S~F! after the action ofEF . Moreover the used functionx→signx and x→x are first
defined in@2p,p# and then are extended in the wholeR as periodic functions with period 2p. EF
gives rise to a bijective linear map from the space of real exactC` one-forms onF @which will be
denoted byD~F!# andS~F! itself. Indeed, it results that ifrPS(F),

EF~v!5r if and only if v52dr . ~33!

We can define the field operator smeared by elements ofD~F;R! as

h°f̂F~h!ªVF~EFh,f̂F! , ~34!

which is the rigorous meaning of

f̂F~h!5 (
n51

` S E
F
e2 inuh~u! D an

A4pn
1S E

F
einuh~u! D an

†

A4pn
. ~35!

Circle wave functionsr and one-formsh,h8 in the above-noted spaces enjoy the same prope
as in the bulk. More precisely one has

E
F
rh5VF~EFh,r!, E

F
~EFh!h85VF~EFh,EFh8! , ~36!

@f̂F~h!,f̂F~h8!#52 iEF~h,h8! . ~37!

The latter is nothing but the rigorous meaning of the formal equation@f̂F(u),f̂F(u8)#
52 iEF(u,u8). Notice that as a consequence of~33!, ~36!, ~37!, a ‘‘locality property’’ holds

@f̂F~h!,f̂F~h8!#50 if supp~h!ùsupp~h8!5B.

Everything we said about the future circleF5Fø$`% can be restated, with obvious chang
of notation, for the past circlePªPø$`%.

Theorem 2.1 together with Theorems 1.1 and 1.2 has two straightforward consequenc
Theorem 2.2: If f is any real smooth compactly supported function f used to smear the

field, extend onF and P the formsh f and v f defined in Theorem 1.1 by puttingh f(`)ª0 and
v f(`)ª0 and consider these forms as elements ofD~F! and D~P! respectively.

(a) If m.0, there is a unitary map UF :F(H)→F(HF) such that

UFu0&5u0&F , and UF
21f̂F~h f !UF5f̂~ f ! .

(b) If m50, two unitary operators arise VF/P :F(Hin/out)→F(HF/P) such that

VF/Pu0& in/out5u0&F/P

and

VF
21f̂F~h f !VF5f̂ in~ f ! , and VP

21f̂P~v f !VP5f̂out~ f ! .

Hin/out is the bulk Hilbert space associated with the ingoing/outgoing modes andf̂ in/out( f ) is the
part of bulk field operator built up using only ingoing/outgoing modes.

Sketch of proof:The unitary operatorUF in Theorem 1.1 is obtained~see Ref. 8! as the unitary
operator that fulfills the following pair of conditions.~1! UFu0&5u0&F ; ~2! for every naturaln,
consider the subspace ofF~H!, H n^ , spanned by~symmetrized! states withn particles; on every
H n^ , UF reduces to the tensor product ofn copies of the unitary operatorUF :H→HF , where,
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under the identifications~working in the energy representations! H>L2(R1,dE), HF
>L2(R1,dE), UF is nothing but the identity operator. Now consider the composite unitary op
tor UFªM +UF :H→HF , whereM is as in Eq.~25!, and defineUF such thatUFu0&5u0&F and the
restriction of UF to every H n^ coincides with the tensor product ofn copies of the unitary
operatorUF . Theorems 1.1 and 2.1 and the definition off̂F immediately imply the validity of the
thesis. The case ofm50 can be proven by the same way. h

Similar to the extent on the horizon case, one can focus on the algebraAF of linear combi-
nations of product of field operatorsf̂F(v), varyingv in the spaceD(F;C)ªD(F)1 iD(F) and
defining f̂F(v1 iv8)ªf̂F(v)1 i f̂F(v8). We assume thatAF also contains the unit operatorI .
The Hermitian elements ofAF are the natural observables associated with the horizon field. F
an abstract point of view the found algebra is a unital* -algebra of formal operatorsfF(h) with
the additional properties@fF(h),fF(h8)#52 iEF(h,h8), fF(h)* 5fF(h̄) and linearity in the
form h. AF can be studied no matter any operator representation in any Fock space. Op
representations are obtained via GNS theorem once an algebraic state has been fixed.18 Everything
we said can be extended to the analogous*-algebra defined onP, AP . We have a second resul

Theorem 2.3.Assume the same notation as in Theorem 2.2 concerningh f and v f .

(a) If m.0, there is a unique injective unital* -algebras homomorphismxF :AR→AF such that
xF(f( f ))5fF(h f). Consider the GNS representations in the Fock spacesF(H), F(HF) built up
over u0& and u0&F , respectively associated withAR and AF , in these representationsxF has a

unitary implementation naturally induced by UF ~e.g.xF(f̂( f ))5UFf̂( f )UF
21).

(b) If m50, there are two injective unital* -algebras homomorphismsPF/P :Ain/out→AF/P such
that PF(f( f ))5fF(h f) and PP(f( f ))5fP(v f). Moreover, considering the GNS represent
tions in the Fock spacesF(Hin/out), F(HF/P) built up overu0& in/out and u0&F/P respectively asso-
ciated withAin/out andAF/P , PF andPP have unitary implementations and reduce to VF and VP ,
respectively.

Sketch of proof:Consider the mapxF8 :f̂F(h)°f̂F(h) where h5dw, w being any real
Schwartz function onF[R. In f̂F(h), h is supposed extended to the wholeF by means of
h(`)ª0 so that hPD(F;R). Using the fact that it holds @f̂F(h),f̂F(h8)#

52 iVF(EF(h8),EF(h))52 iVF(EF(h8),EF(h))5@f̂F(h),f̂F(h8)#, one proves that xF8
uniquely extends into an injective*-algebra homomorphism fromAF to AF . The injective
*-algebra homomorphismxF is nothing butxF8+xF . The remaining properties are strightforwa
consequences of the properties ofxF stated in Theorem 1.2. The casem50 is analogous. h

B. Virasoro algebra with cÄ1 in the Fock space of the circle

The unitary mapM :HF→HF associates the essentially self-adjoint operatorsHF0 ,DF ,CF
defined onD 1

(F),HF with analogous essentially self-adjoint operators acting on one-particle c
statesHF , respectively,HF0 ,DF ,CF . More precisely, the real linear combinations of these ope
tors are essentially self-adjoint in the dense invariant domainD 1

(F)5M (D 1
(F)) spanned by the

eigenvectors ofKbF associated with the analogous operatorKbF ~20!. The Lie algebra spanned b
the operators above inF gives rises to a strongly continuous unitarySL(2,R) representation
$Ug

(F)%gPSL(2,R) on the Hilbert space of the circle that is related, by means ofM , with the analo-
gous unitary representation$Ug

(F)%g«SL(2,R) found on the horizonF discussed earlier in@e#. And
thus, in turn, it induces just the bulk symmetry induced by$Ug

(F)%g«SL(2,R) ~see @e# discussed
earlier! by means of unitary holography. In particularHFªHF0 turns out to be associated with th
generator of Rindler-time displacementsH.

HF0 ,DF ,CF are a basis of the Lie algebra ofSL(2,R). An equivalent, but more useful in th
following, basis of the Lie algebra ofSL(2,R) made of essentially self-adjoint operators inD 1

(F)

is that of the operatorsKbF ,DF ,SF with

SFª
1

2 S bHF02
1

b
CFD . ~38!
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Now, it makes sense to investigate thegeometrical natureof theSL(2,R) representation$Ug
(F)% on

the circle F instead of the horizonF. First of all one has to notice that the vector fiel
]/]v ,v (]/]v) ,v2 (]/]v), which give rise to the geometric interpretation of$Ug

(F)% when working
on F, span inF the same space as that spanned by the three smooth vector fields defined
whole circleF,

]u ,cos~u!]u ,sin~u!]u .

The proof is straightforward using the relationv5b tan(u/2) only. Then consider the transforma
tions ~18! of the line F, translate them in the variableu52 arctan(v/b) extended to the domain
(2p,p# so to includè . The new transformations so obtained define a representation ofSL(2,R)
in terms of orientation-preserving diffeomorphismsdg of the circleF:

dg :u°2 arctanS ab tan~u/2!1b

cb2 tan~u/2!1bdD , gªS a b

c dD PSL~2,R! . ~39!

There is another, more elegant, way to write the elements of same diffeomorphism group:

dh :eiu°
zeiu1h̄

heiu1 z̄
, hªS z h̄

h z̄
D PSU~1,1! , ~40!

where we have used the group isomorphismSL(2,R){g°hPSU(1,1) with

zª
ba1bd1 i ~b2b2c!

2
, hª

bd2ba2 i ~b1b2c!

2
.

The conditionhPSU(1,1), whenh has the form in~40!, can equivalently be written

uzu22uhu251 . ~41!

Remark:Notice that the transformationr°rg does not mix Fourier components with positiv
frequency and Fourier components with negative frequency and vice versa.~This fact allows one
to look for unitary representations of the considered group in the one-particle Hilbert space
is constructed by using positive frequency part of wave functions.! Indeed, using~40!, e2 inu is
mapped into

S zeiu1h̄

heiu1 z̄
D 2n

.

Fourier coefficients with strictly ‘‘negative frequency’’2m are proportional to the integrals
wherem,n>1 are integers,

E
2p

p S zeiu1h̄

heiu1 z̄
D 2n

e2 imudu5 R
1S1

2 i

zm11 S hz1 z̄

zz1h̄
D n

dz5 R
1S1

2 i

zm11 S h

z
1

1/z

zz1h̄
D n

dz ,

where1S1 is the circleuzu51 with positive orientation. Expanding the expression under the
integration symbol using the binomial formula one reduces to a linear combination of con
tions of integrals with form

R
1S1

dz

zm11~z2z0!p
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with p50,1,...,n>1, m>1 and wherez052h̄/z with zÞ0 @due to~41!#. If p.0, using condi-
tion ~41! one sees that, whatever the values ofh and z and barring the pole atz50 with order
m11, there is another pole of orderp inside the region with boundaryS1, at z52h̄/z. Cauchy
formula for p.0 proves that the contribution of the two residues in each integral cancel out
other and the final result is zero. The casep50 gives the same result automatically. So it mak
sense to look for unitary representation of the group in the one-particle space.

Exactly as in the case of Theorem 1.3, ifr is a real circle wave function, with associate
one-particle quantum stater̃15 r̃1(n), the action of everyUg

(F) on r̃1 is equivalent to the action
of a correspondingF diffeomorphism,dg , on the horizon wave functionr itself.

Theorem 2.4: Assume k51 in the definition ofD k
(F) , that is, in (7). If gPSL(2,R) and r̃1

5 r̃1(n) is the positive frequency part ofrPS(F), the state Ug
(F)r̃1 can be associated with th

wave functionrgPS(F) with

rg~u!5r~dg
21u! , for all uP~2p,p#. ~42!

In particular (with the same terminology as that used in (a) of Theorem 1.3):
(a) The unitary one-parameter group generated by iKFb is associated with the one-group ofF
diffeomorphisms generated by]u ;
(b) the unitary one-parameter group generated by iDF is associated with the one-parameter grou
of F diffeomorphisms generated bysinu]u ;
(c) the unitary one-parameter group generated by iSF is associated with the one-group ofF
diffeomorphisms generated bycosu]u .

The Lie algebra spanned by fields]u , cosu]u , sinu]u is a realization of the Lie algebra o
SL(2,R).

Proof: The first part can be proven as follows. TakerPC`(F;R). As HF5,2(C), the asso-
ciated positive frequency part in ‘‘frequency picture’’r̃1PHF is a sequence$Cn%n51,2,... . The
associated positive frequency part in ‘‘u picture’’ can be written

r1~u!5F~Wr̃1!~u!,

whereF:,2(C)→L2((2p,p),du) andW:,2(C)→,2(C) are, respectively, thecontinuouslinear
operators,

F:$Cn%n51,2,...° (
n51

1`

Cn

e2 inu

A2p
, ~43!

W:$Cn%n51,2,...°H Cn

A2n
J

n51,2,...

. ~44!

On the other hand, in the sense of the topology of,2(C),

r̃15 (
m51

`

CmCm

where$Cm%m51,2,... is the Hilbert baseCm5$dmn%n51,2,.... By linearity, continuity, and the ab
sence of positive-negative frequency mixing,

~rg!15F~WUg
(F)r̃1!5FS WUg

(F)(
n

CnCnD 5(
n

F~WUg
(F)CnCn! . ~45!

Now one notices that Theorem 1.3 holds true also for the horizon wave functionw (n) with
positive frequency part, in the ‘‘frequency picture’’ given byZn

(1)(E) ~with k51,2,...) as the
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associated positive frequency wave function.~The proof of this fact is, in fact, the same proof
that of Theorem 1.3, that is Theorem 4.7 in Ref. 8, with trivial adaptations which make sen
the considered case. In particular Proposition 4.2 in Ref. 8 can directly be proven by using~28!. It
is useful to notice thatQZn

(1)5(21)nZn
(1) .) By ~28!,

w (n)~v~u!!5
1

A4pn
@~21!n11~Cn1Cn!1Cne2 inu1Cneinu# , ~46!

and thus, Theorem 1.3 says that

wg
(n)~v~u!!5

1

A4pn
@Cne2 indg

21u2e2 indg
21pCn#1c.c. ~47!

Since, by Theorem 2.1,Zn in HF is transformed intoCn of HF and the same transformatio
associatesUg

(F) with Ug
(F) , ~47! can be re-written in the spaceHF and in the circleF:

F~WUg
(F)CnCn!~u!1c.c.5Cnwg

(n)~v~u!!1c.c.5
1

A4pn
@Cne2 indg

21u2Cne2 indg
21p#1c.c.

~48!

Inserting it in ~45!, one concludes that

rg~u!5 (
n51

1`

Cn

e2 indg
21u

A4pn
2Cn

e2 indg
21p

A4pn
1c.c. ~49!

The convergence must be understood in the sense ofL2(F,du). However sincerPC`(F) and
thus r+dg

21PC`(F), the latter admit a uniformly convergent Fourier series and the se

(nuCnu/A4pn converges too. By the uniqueness property of Fourier series it must hold,

rg~u!5r~dg
21u!1const for alluPF .

This concludes the proof if the functions are considered as elements ofS~F!.
Let us pass to prove the statement in~b!, the remaining cases can be proven following

strongly analogous proof@which is much more simple in case~a!#. If t°gt is the one-paramete
subgroup ofSL(2,R) whose associated one-parameter group of diffeomorphisms is that gene
by the field sinu ]u , consider the transformed wave functionrg(t)(u)ªr(dt

21(u))5r(d2t(u))
and the associated positive frequency partrg(t )̃1 in ‘‘frequency representation.’’ SinceSL(2,R)
acts on positive frequency wave functions by means of a strongly continuous unitary repre
tion, there must be some self-adjoint generatorA ~not depending onr1) such thatrg(t )̃1

5eitAr̃1 . Our thesis states thatA5DF. With the above-introduced formalism, the statement tu

out to be proved if it holds for all the statesr (k)̃
15Ck5$dnk%n51,2,...P,2(R), k51,2,... . Hence

we want to show that fork51,2,..., rg(t)
(k)̃

15eitDFCk . To this end it is sufficient to show that in
the topology ofH F>,2(C),

d

dt
rg(t)

(k)̃
1U

t50

5 iD FCk . ~50!

Indeed, by Stone’s theorem the derivative on the left-hand side isiACk , on the other hand
sinceDF is essentially self-adjoint in the linear space finitely spanned by the vectorsCk , it must

beA5DF. Let us prove~50!. From now onrg(t)
(k)̃

15$Cn(t)%n51,2,.... Definingu t(u)ªd2t(u), one
has
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Cn~ t !5An

k E2p

p e2 i (ku t(u)2nu)

2p
du , ~51!

because of~47! where, by construction,rg(t)
(k) (u)5wg(t)

(k) (v(u)) and using the fact that there is n
mixing of positive end negative frequencies under the action of the group. By direct compu
one finds thatCn(0)50 and dCn(t)/dtu t5050 if nÞk,k61. So if the derivative on the left-han
side of ~50! is computed term by term,~50! can be re-written

dn,k21Ak~k21!2dn,k11Ak~k11!

2
5^Cn ,iD FCk&F , ~52!

where we have computed the derivatives of dCn(t)/dtu t50 using ~51!. However, it also holds

^Cn ,iD FCk&F5^Zn
(1) ,iD FZk

(1)&F ,

and the right-hand side can be computed trivially~for instance by employing the formalism on p
137 of Ref. 9! and it turns out to coincide with the left-hand side of~52!, so ~52! holds true. To
conclude the proof, it is sufficient to show that the derivative on the left-hand side of~50!, which
is computed with respect to the topology of,2(C), can equivalently be computed deriving term b

term the sequence of complex which definesrg(t)
(k)̃

1 . Expanding the term under the integral symb
in ~51! by means of Taylor formula in the variablet aboutt50, using the Lagrange formula fo
the remnant and, finally, using integration by parts and the fact that the integrated functio
smooth and periodic onS1, one proves that for some constantA, for all t in a neighborhood of 0
and for allnÞk,k61:

UCn~ t !

t U2

<
A

n2 . ~53!

Thus

(
n51

` UCn~ t !2Cn~0!

t
2

dCn~ t !

dt U
t50

U25 (
nÞk,k61

U Cn~ t !

t U2

1 (
n5k,k61

UCn~ t !2Cn~0!

t
2

dCn~ t !

dt U
t50

U2

.

Cn(t)/t →0 in our hypotheses for 0,nÞk,k61 and so the sum of the corresponding series ab
vanishes too due to Lebesgue’s dominated convergence theorem with respect to the Dirac m
with support on the pointsnÞk,k61 as a consequence of~53!. We finally get

lim
t→0

(
n51

` UCn~ t !2Cn~0!

t
2

dCn~ t !

dt U
t50

U2

5 lim
t→0

(
n5k,k61

U Cn~ t !2Cn~0!

t
2

dCn~ t !

dt U
t50

U2

50 .

We conclude that the derivative on the left-hand side of~50! computed with respect to th
topology of,~C! coincides with that computed term by term. This concludes the proof becaus
last statement can straightforwardly be proven by direct inspection. h

The theorem states that, in fact, the bulkSL(2,R) symmetry becomes manifest when exa
ined on the circleF5Fø$`%. However that is not the whole story because the found ci
unitarySL(2,R) representation is just a little part of a larger unitary representation with geom
cal meaning. We can, in fact, consider the Lie algebra Vect(S1) of the infinite dimensional Lie
group19 of orientation-preserving diffeomorphisms of the circle Diff1(S1), whereS15F in our
case. To make contact with Virasoro algebra we have to consider an associatedcomplexLie
algebra.20 Consider the complex Lie algebra d(F)ªVect(F) % i Vect(F) equipped with usual Lie
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brackets$•,•% and the involutionv:X°2X̄ for XPd(F), so thatv($X,Y%)5$v(Y),v(X)%. An
algebraic basis of that algebra is made of the complex smooth fields onF:

Fnª ieinu]u with nPZ. ~54!

The vector fieldsFn enjoy the celebratedVirasoro commutation ruleswith central chargec50:

$Fn ,Fm%5~n2m!Fn1m , ~55!

and the Hermiticity condition

v~Fn!5F2n . ~56!

In the presented picture Vect~F! is nothing but the sub-algebra of d~F! containing all of the
vectors fixed under2v. An algebraic basis of Vect~F! is that made of the fields

F n
(1)

ª

v~Fn!1Fn

2i
5cos~nu!]u, F m

(2)
ª

v~Fm!2Fm

2
5sin~nu!]u , ~57!

wheren50,1,... whilem51,2,... . Conversely, the base of d~F!, $Fn%nPZ can be obtained from
the base above as, wheren51,2,...,

F0ª iF 0
(1) , FnªF n

(1)1 iF n
(2) , F2nªF2n

(1)2 iF2n
(2) . ~58!

Notice that the three fieldsF 0
(1) ,F 1

(1) ,F 1
(2) are in fact generators of a finite-dimensional su

algebra of Vect~F!, namely the representation of the Lie algebra ofSL(2,R) found above, which is
equivalently generated by the three fieldsvn11]v with n521,0,1. However forunu.1, the alge-
bras spanned by generatorsvn11]v and F n

(6) are different and we focus attention on the lat
ones.

By direct inspection one proves that each of the fieldsF n
(6)PVect(F) generate aglobal

one-parameter group ofF orientation-preserving diffeomorphisms~this fact does not hold for
fields vn11]v in F!. Global means here that the additive parameter which labels the group r
over the entire real lineR. In turn, that group of diffeomorphisms generates a group of autom

phisms of the algebra of the quantum fieldAF . Let us explain how it happens. Ifd
l

(F n
(6))

:F→F is
an element of the one-parameter~orientation-preserving! diffeomorphism group generated b
F n

(6) , lPR being the additive parameter, andrPS(F), as usual we define the associated gro

of wave function transformations: (a
l

(F n
(6))

r)(u)ªr(d
2l

(F n
(6))

(u)). Notice that the transformation

a
l

(F n
(6))

are, in fact, automorphisms of the real vector spaceS~F! equipped with the symplectic
form VF because the latter is orientation-preserving diffemorphism invariant.

Remark: By direct inspection one realizes that, ifn.1 the transformationa
l

(F n
(6))

doesnot
admit the space of positive frequency wave functions as invariant space. As a consequence

possible to representa
l

(F n
(6))

unitarily in the one-particle spaceHF . To implement the transfor-

mationa
l

(F n
(6))

at quantum level, the entire Fock space is necessary ifn.1.
As we want to deal with quantum fields smeared by exact one-forms ofD~F!, we define a

natural action of the diffeomorphismsd
l

(F n
(6))

also on these forms by using~33!: If vPD(F) and

rªEF(v), we define the one-parameter group of transformations of one-forms$bl

(F n
(6))

%lPR ,
such that

b
l

(F n
(6))

~v!ª2da
l

(F n
(6))

~EF~v!! . ~59!
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Finally we can define the action of quantum fields by means of

g
l

(F n
(6))

~f̂F~v!!ªf̂F~b
2l

(F n
(6))

~v!! . ~60!

Using the given definitions, the fact thata
l

(F n
(6))

preservesVF as well as~36! and ~37!, one
finds

@g
l

(F n
(6))

~f̂F~v!!, g
l

(F n
(6))

~f̂F~v8!!#5@f̂F~v!,f̂F~v8!# . ~61!

It is possible to prove by that identity thatg
l

(F n
(6))

naturally extends into a*-algebra automorphism
of the algebraAF . The procedure to do it is very similar to those used in Ref. 8 to ext
transformations of field operators into* -algebra homomorphisms. So, in fact, every fieldF n

(6)

gives rise to a one-parameter group of automorphisms of the algebraAF that we indicate by

$gl

(F n
(6))

%lPR once again. A natural question arises:
Is there a representation of the (infinite dimensional complex) Lie algebrad~F!, in terms of

operators defined inF(HF) such that the fieldsF n
(6) are mapped into (essentially) anti-sel

adjoint operators2 iF n
(6) , whose associated unitary one-parameter groups implement the res

tive one-parameter group ofAF automorphisms$gl

(F n
(6))

%lPR (at least at the first order)? That is

e2 ilFn
(6)

f̂F~v!eilFn
(6)

5g
l

(F n
(6))

~f̂F~v!! , ~62!

or some other formally related, but perhaps weaker, identity holds.
The answer is yes provided one uses an operator algebra which representscentral extensions

of the algebra d~F!. In other words one has to permit to change, at quantum level, the relation~55!
by adding in the right-hand side a further term which commutes with the elements of the
sentation itself. The obtained algebra is properly calledVirasoro’s algebra.

More precisely, the quantum representation on the one hand is a straightforward exten
that previously found for the groupSL(2,R). On the other hand it is, in fact, apositive-energyand
unitary representation of Virasoro algebra withcentral charge c51.20 To build up such a repre
sentation the entire Fock space, and not only the one-particle Hilbert space, is neces
relevant point is that the found unitary representation of the Virasoro algebra can be expo
the bulk via unitary holography.

In the circle Fock spaceF(HF), consider the basis obtained by taking all the symmetri
tensor products of one-particle statesZn

(1) , namely, the eigenvectors of the operatorKFb . Hence-
forth an and an

† are, respectively, the creation and annihilation operator associated with
one-particle stateZn

(1) with n51,2,... . As a consequence

@an ,am
† #5dn,mI , @an ,am#5@an

† ,am
† #50 . ~63!

Now, fix mPR and introduce the operators,an , with nPZ such that

an5H mI if n50 ,

iAn an if n.0 ,

2 iA2n a2n
† if n,0.

~64!

By ~63! these operators satisfy theoscillator algebracommutation relations20

@am ,an#5mdm,2nI , ~65!

and the so-calledHermiticity conditions
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an
†5a2n ~66!

~actually on the left-hand side is considered only the restriction ofan
† to the domain ofa2n). With

these definitions, the formal expression forf̂F ~31! takes the form

f̂F~u!5
1

iA4p
(

nPZ\$0%

e2 inu

n
an , ~67!

moreover, formallybut also with a rigorous meaning in terms of a field operator smeared by
exact one-form~35!, it holds

an5
1

Ap
E

F
f̂F~u! deinu if nPZ\$0% . ~68!

Finally, define the operators~denoted byLk in Ref. 20!

Fkª
ek

2
ak/2

2 1 (
n.2k/2

a2nan1k , kPZ, ~69!

whereek50 if k is odd,ek51 if k is even~includingk50). The various sums are, in fact, finit
when acting on a vector, since we adopt as a common domain of those operators, the
subspaceD1

(F),F(HF) made of the finite linear combination of vectors containing any fin
number of particles in statesZn

(1) .
Theorem 2.5:The operators Fk , kPZ enjoy the following properties on their domainD1

(F) .
(a) The complex Lie algebra finitely spanned by operators Fk (equipped with the usual operato
commutator and Hermitian conjugation) is a positive-energy unitary Virasoro algebra repre
tation Vir ~F! with central charge c51. Indeed it holds

@Fm ,Fn#5~m2n!Fm1n1dm,2n

m32m

12
I for n,mPZ , ~70!

Hermiticity relations are fulfilled

Fm
† C5F2mC for everyCPD1

(F) , ~71!

F0 is essentially self-adjoint and F0̄ is positive defined with discrete spectrum

s~F0!5H m2

2
1N U N50,1,...J . ~72!

(b) For n51,2,..., the operators

F0
(1)

ªF0 , Fn
(1)

ª

F2n1Fn

2
and Fn

(2)
ª i

F2n2Fn

2
~73!

are essentially self-adjoint inD1
(F) . (It is worth stressing that the interplay of fieldsF n

(6) andFn

is the same as that operators2 iF n
(6) and Fn and not Fn

(6) and Fn , this is because the operato
involution † corresponds to the field involutionv instead of the simpler complex conjugation.)

Proof: Barring the statements onF0 , the properties in~a! are proven in Ref. 20~see Secs.
II A–II C and III A ! as consequences of~65!, ~66!, and ~69!. The operatorsF0 , Fm1F2m and
i (Fm2F2m) are symmetric by construction and one can prove by direct inspection tha
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elements ofD1
(F) are analytic vectors for these operators. Thus they are essentially self-ad

This proves~b! and the essential self-adjointness ofF0 . By direct inspection and using~64!, one
finds

F05
m2

2
I 1 (

n51

`

nan
†an . ~74!

The Hilbert basis ofF(HF), $uL&%LPN made of the vectors~labeled with an arbitrary order by
the indexL) containing any finite number of statesZm

(1) is a basis of eigenvectors ofF0 . The
eigenvalue associated withuL& is of the formm2/21NL whereNL ranges everywhere inN. This
fact suggests to consider the self-adjoint operator

F08ª(
L50

`

NLuL&^Lu,

where now the sum is interpreted in the strong operator topology in the domainD(F08) containing
the vectorsuC&PF(HF) with

(
l 50

`

NL
2u^LuC&u2,` .

By construction,F08 has the spectrum~72!. On the other hand, sinceF0,F08 by construction,
uniqueness of self-adjoint extensions ofF0 implies F 0̄5F08 . h

Finally we show that~1! the whole Virasoro representation extends the circleSL(2,R) unitary
representation and~2! it has the geometric meaning~62!.

Theorem 2.6:Referring to the Virasoro representation of Theorem 2.5,
(a) if (and only if)m50, the operators F0

(1) ,F1
(1) ,F1

(2) admit D 1
(F),HF as invariant space and

F0
(1)�HF

5KbF , ~75!

F1
(1)�HF

5SF , ~76!

F1
(2)

�HF
5DF , ~77!

and so these operators generate the SL(2,R) representation$Ug
(F)%gPSL(2,R) .

(b) If (and only if)m50, for every nPN (n.0 in the case(2)), (62) holds true at the first order
at least,

@Fn
(6) ,f̂F~v!#5 i

d

dl U
l50

g
l

(F n
(6))

~f̂F~v!! ~78!

for everyv5h1 ih8PD(F;C) such that the real wave functions EFh and EFh8 are associated
with states inD (F) and the derivative is computed in the strong operator topology inD1

(F) .
Proof: ~a! The proof of the first case is a trivial consequence of~74!. Concerning the second

and third cases, we notice that using operatorsan andan
† ,

F2152 ima1
†1 (

n51

`

An~n11!an11
† an ~79!

F15 ima11 (
n51

`

An~n11!an
†an11 . ~80!
                                                                                                                



s

e to

egal,

l

279J. Math. Phys., Vol. 45, No. 1, January 2004 Quantum Virasoro algebra with central charge c51

                    
It is obvious that, because of the terms containingm(a1
†6a1), the operators above admitD 1

(F) as
an invariant space if and only ifm50. In that case, the restrictions toD 1

(F) coincide, respectively,
with the operatorsA1 and A2 defined in Ref. 21 or~23! of Ref. 9 ~where the coefficientb is
indicated byl/k andk51). With our notations

A65
1

2 S bHF02
1

b
CFD7 iD F , ~81!

so thatA2Z1
(1)50 andA1Zn

(1)5An(n11)Zn11
(1) . Equation~81! implies ~76! and~77! straightfor-

wardly taking~38! into account.
Let us come to the last part. It is simply proven that every exact one-formv5h1 ih8, where

the real exact one-formsh, h8 determine circle wave functions with positive frequency inD 1
(F) ,

is a finite complex linear combination of formsvm(u)ªdeimu with mPZ\$0%. Hence it is suffi-
cient to prove~78! for every f̂(vm) with mPZ\$0%. Fix mPZ\$0% andkPZ. By direct compu-
tation and using~68! and ~2.12! in Ref. 20, one finds that, for everyCPDF

(1) ,

@Lk
(6) ,f̂~vm!#C52

mAp

2
~ i !6~am2k6am1k!C, ~82!

where (i ) jª1 if j 51, (i ) jª i if j 52. The identity above holds provided am2m and a2m1m are
interpreted as the multiplicative operatormI .20 On the other hand,

g
l

(F k
(6))

~f̂F~vm!!5 ia~fml!2 ia†~cml! ,

where the vectorscml andfml are defined by

cmlªHAnE
2p

p

einueimu t(u)duJ
n51,2,...

, fmlªHAnE
2p

p

e2 inueimu t(u)duJ
n51,2,...

~83!

and l°ul(u) is the integral curve ofF k
(6) starting from u. Notice that the linear maps

c°a(c)C andc°a†(c)C are continuous for every fixed vectorCPDF
(1) , so that

d

dl U
l50

g
l

(F k
(6))

~f̂F~vm!!C5 iaS d

dl U
l50

fmlDC2 ia†S d

dl U
l50

cmlDC .

In turn, using a procedure very similar to that used in the proof of~b! in Theorem 2.4, one see
that the derivatives (d/dl) ul50fml and (d/dl) ul50cml evaluated by using the topology of,2(C)
coincide with the analogous derivatives computed term-by-term for the sequences of,2(C) which
definefml andcml ~83!. These derivatives can be computed straightforwardly and give ris

d

dl U
l50

g
l

(F k
(6))

~f̂F~vm!!C52
imAp

2
~ i !6~am2k6am1k!C ,

where, on the right-hand side, am2m and a2m1m must be interpreted as the null operator. By
comparison with~82! we find that~78! holds true providedm50. h

Remarks:~1! A natural question concerns whether or notF(HF) is irreducible with respect to
the found Virasoro representation. The answer depends on the value ofm. If and only if m&
PZ ~and in particular ifm50) the answer is negative because of several results by Kac, S
and Wakimoto-Yamada~see Theorem 6.2 in Ref. 20 where the parameterl used below is indicated
by m which differs from the parameterm used herein!. If m&52mPZ, one has the orthogona
decomposition
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F~HF!5 %
kPZ1,k>2m

V~1,~m12k!2/4! ,

where V(c,h) is the up-to-isomorphism unique highest-weight unitary Virasoro represent
~which is irreducible by consequence! with central chargec and weighth. We recall for the reader
that if c51 andh5 l 2/4 with l PZ, V(c,h) is not aVerma representation. In other words the
system of generators ofV(c,h) built up over the singular vector ofV(c,h) by application of
products of Virasoro generators contains linearly dependent vectors. Conversely, ifc51 andh
Þ l 2/4 with l PZ, V(c,h) is a Verma representation.

~2! It is possible to build up a free scalar standard 2D-CFT by usingf̂F and the analogous
field f̂P defined onPªPø$`%. In fact, consider the Wick rotation in Rindler coordinatest° i t .
Under that continuation, light-Rindler coordinates transform intov→ i t 1 log(ky)/k, u→ i t
2 log(ky)/k and sou52 arctan(v/b)→z, u852 arctan(u/b)→2z̄. u8 is the coordinate onP which
is defined analogously tou. With the given definitions,z turns out to be defined on a cylinderC
obtained by taking Im(z)PR and Re(z)P(2p,p# with the identification2p[p. By this way the
fields f̂F andf̂P become, respectively, the Euclideanholomorphicandantiholomorphicfields in
F(HF) ^ F(HP):

f̂~w!5 (
nPZ\$0%

wn

n
an , f̂~w̄!5 (

nPZ\$0%

w̄n

n
bn ,

wherew:5e2 iz, the operatorsbn are defined onP similarly to operatorsan and@an ,bm#50. The
operatorsFn and the analoguesPn defined inP are those usually denoted byLn andLn, respec-
tively.

~3! The bulk evolution is generated by the HamiltonianH which is the quantum generato
associated with the bulk killing vector] t . Consider the operatorHF associated withH by holog-
raphy and naturally extending it in the whole Fock spaceF(HF) by assuming to work with
massive noninteracting particles in the bulk. The obtained operatorHF

^ coincides with the self-
adjoint Virasoro generator

HF
^
ª

1

b
~2F1

(1)1F0! ~wherem50! ~84!

providedm50. Under this hypothesis,F0
(1) ,F1

(6) span a finite-dimensional Lie algebra andH ^ is
the closure of an element of the algebra.@That is nothing but the Lie algebra of a unitary repr
sentation ofSL(2,R).] As a consequence it is possible to define time-depending observ
F0(t),F1

(6)(t) which are constant of motion in Heisenberg picture. These are finite linear co
nations of generatorsF0(t),F1

(6)(t). The proof of that fact is essentially the same as that
Theorem 2.1—item~b! in particular—in Ref. 8. We conclude thatF0(t),F1

(6)(t) generate asym-
metry of the systemwhen they are realized, by unitary holography, as operators acting in the
Conversely, this result does not apply as it stands forFn

(6) if n.1. This is because there is n
finite-dimensional Lie algebra containing bothFn

(6) andHF
^ . However if one assumes thatF0

(1)

~which is associated withKbF in the bulk! is the Hamiltonian of the theory onF, the observables
Fn

(6) with n.1 can be considered as symmetries of the system. This is because, for every
integern.0 and also ifmÞ0, F0

(1) ,Fn
(1) ,Fn

(2) span a finite-dimensional Lie algebra@which is, in
fact, a representation of the Lie algebra ofSL(2,R)].

III. APPEARANCE OF THERMAL STATES FROM VIRASORO GENERATORS

Let us focus on the class of ‘‘Hamiltonian operators’’ defined for the theory on the circlF,

HF m
^

ª

1

b
~2F1

(1)1F0! , ~85!
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where, differently from~84!, now mPR and thus, barring the valuem50, HF m
^ cannot be asso

ciated with the Rindler Hamiltonian in the bulk by means of holography. In the following we s
some properties of these Hamiltonians and associated ground states which can be consid
operators and states of the theory in the bulk. We shall not give rigorous proofs since the tre
of the issue involves a singular Bogoliubov transformation as well as a regularization proc
We have formally

HF m
^ 5

m2

2b
I 1HF

^ 1 i
m

2b
~a12a1

†!. ~86!

We look for a, formally unitary, transformationUm such that

HF
^ 5UmHF m

^ Um
† .

It is convenient to work in the Fock spaceF(HF) which is isomorphic toF(HF) by means of the
isomorphismM :HF→HF used in Theorem 2.1. In this representation

HF m
^ 5

m2

2b
I 1E

R1
dEE aE

†aE1 i
m

2b E
R1

dE Z1
(1)~E!~aE2aE

† ! , ~87!

whereaE andaE
† are as in Eq.~14!. By that way, it turns out that formally

Um5expS 2 i E
0

`

Z1
(1)~E!

m

2b
~aE1aE

† !
dE

E D . ~88!

Notice that whenm is equal to zero the unitary transformation becomes the identity andHF 0
^

5HF
^ as is due. For completeness we say that it is possible to rewriteUm in terms the operators

an as follows:

Um5expS 2 i (
n.0

~21!(n11)
m

An
~an1an

†!D . ~89!

The ground state ofHF m
^ , can be obtained as

CmªUm
† u0&F . ~90!

Cm is not invariant under Rindler evolution generated byHF
^ but it enjoys interesting therma

properties when one considers expectation values of observables also averaged during
period of Rindler timeT→`. Consider the expectation value of the operatorA:

^A&m ª lim
T→`

1

2T E
2T

T ^Cm~ t !,ACm~ t !&F

^Cm~ t !,Cm~ t !&F
dt , ~91!

where Cm(t)ªexp$2itHF
^%Cm . The direct computation is affected by mathematical proble

which can be made harmless by making discrete the energy spectrum and taking the limit
the continuous case after the evaluation of the expectation value. The discrete spectrum
obtained by reducing to a known regularization procedure, consisting of a suitable version
so-called ‘‘box quantization.’’ Start from~88! noticing that it can be rewritten, by using th
adimensional parameterl5 log(E/E* ), E* being an arbitrarily fixed energy scale,

Um5expS 2 i E
2`

1`

Z1
(1)~E~l!!

m

2b
~aE(l)1aE(l)

† !dl D . ~92!
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Now, differently fromE, l ranges over the whole real line and box-quantization can be use
follows. First of all define the operatorscl5AE8(l)aE(l) andcl

†5AE8(l)aE(l)
† so that bosonic

commutation relations ofaE andaE
† turns out to be equivalent to

@cl ,cl8
†

#5d~l2l8! , @cl ,cl8#50 , @cl
† ,cl8

†
#50 . ~93!

Finally, to get the discrete spectrum inl, assume that valuesl describe the spectrum of
‘‘momentum operator.’’ These values can be made discrete by working a 1D box with lenL
with periodic boundary conditions, the continuous spectrum being restored in the limitL→`.
Within this framework, ifln52pn/L with nPZ, the operatorscjªcl j

enjoy the commutation
relations

@ci ,cj
†#5d i j , @ci ,cj #50 , @ci

† ,cj
†#50 . ~94!

With that regularization procedure, the HamiltonianHF
^ can be rewritten as

HF
^ 5E

R1
E aE

† aE dE5E
R
E~l! cl

† cl dl→(
j

Ejcj
†cj , ~95!

whereEjªE(l j ). Similarly, usingE5E* el and ~9! for k5n51, the regularized unitary trans
formationUm reads

Um5)
j

exp~2 ime2bEj~cj1cj
†!! ~96!

and so the stateCm can be expanded as

Cm5)
j

expS m2

2
e22bEj D (

n
i nmne2bEjn

cj
†n

n!
u0&F . ~97!

We are now ready to compute^A&m . Using ~97! in ~91! one gets straightforwardly

^A&m5Zb
21(

$nj %
e22b( jEjnjm2( j nj^$nj%uAu$nj%&, ~98!

with

Zb5(
$nj %

e22b( jEjnjm2( j nj , ~99!

and the final limitL→` is understood. Let us consider all the developed machinery as referr
the theory in the bulk making use of the holographic theorem~Theorem 2.2! for a massivefield.
In that way,A must be considered as an observable for an observer in the Rindler wedge aCm

is a state for a quantum field propagating in the Rindler wedge. Ifm is equal to 1,~98! states that
the time-averaged stateCm51 viewed by an observer in the bulk who uses Rindler time-evolut
is a thermal state with inverse temperature 1/(2b). In particular, if we also chooseb5bU/2,
where bU is the inverse Unruh temperature, we get formally and in the sense of the po
regularization-procedure out,

^A&m515tr~rbU
A!, ~100!

where
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rbU
ª

e2bUHF
^

tre2bUHF
^

is the density matrix of a thermal state, which coincides with the restriction of Minkowski vac
to Rindler wedge because of celebrated results of QFT~Bisognano–Wichmann–Sewell theorem
see Ref. 22 for a general discussion!. In the casemÞ1, ~98! suggests to interpret

logm2

2b

as a chemical potential and the associated state can be seen as a grand canonical ensem

IV. OVERVIEW AND OPEN PROBLEMS

In this paper we have shown that quantum field theory for free fields propagating in a
Rindler background is unitary equivalent to the analogue defined on the compactified K
horizons. The same equivalence can be implemented at the algebraic level. The key point
holographic description is the hiddenSL(2,R) symmetry found in Ref. 9 for the fields propagatin
in the bulk. Indeed that hidden representation ofSL(2,R) becomes geometrically manifest whe
the theory is represented on the Killing horizon. Preserving a clear geometric meaning, th
resentation can be enlarged up to include a positive-energy unitary representation of Vi
algebra with central chargec51. Notice that the Virasoro algebra is realized in the many parti
description of the fields, namely it describes a representation in the Fock space. The appea
the pair of Virasoro algebras in the future and past horizon leads naturally to an~Euclidean! 2D
conformal field theory on a cylinder which is holograpically associated with QFT in the bul
the last section we have proposed the idea that, for a particular choice of the parameterb and the
ground energyh5m2/2 of the Virasoro HamiltonianF0 , the ground stateCm(t) of another
Virasoro generator which generalizes Rindler Hamiltonian has thermal properties.Cm(t), seen in
Fock space built up over the Rindler vacuumu0&, is revealed to be an infinite particle state
thermal equilibrium temperature 1/~2b!. It can be useful to describe the Hawking effect. The
thermal properties are shown here without rigorous proof because of the use of a nec
regularization procedure in computing the mean value of the state with respect to Rindler
Further investigation in that direction, perhaps based on KMS condition, is necessary.

Another issue which deserves investigation is the existence of any relation between the
of this paper and the attempts to give a statistical explanation to black hole entropy by co
microstates of irreducible unitary representations of Virasoro algebra.15 This is done by means o
the so-called Cardy’s formula after a suitable dimensional regularization which gives rise
scalar field~supporting part of information of 4D gravity! propagating in a 2D space–time. Th
main problem of those approaches is that they must assume the existence of a quantum V
representation. The existence of such a representation has been established in this pap
worthwhile to investigate about the possible interplay between the quantum Virasoro repre
tion found here and that necessary in those approaches.
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We make a number of observations about matter-ghost string phase, which may
eventually lead to a formal connection between matroid theory and string theory. In
particular, in order to take advantage of the already established connection between
matroid theory and Chern–Simons theory, we propose a generalization of string
theory in terms of some kind of Kahler metric. We show that this generalization is
closely related to the Kahler–Chern–Simons action due to Nair and Schiff. In
addition, we discuss matroid/string connection via matroid bundles and a Schild
type action, and we add new information about the relationship between matroid
theory,D511 supergravity and Chern–Simons formalism. ©2004 American In-
stitute of Physics.@DOI: 10.1063/1.1625416#

I. INTRODUCTION

Although the key principle in M-theory1–3 and string theory4 is unknown, there is accumu
lating evidence for the existence of some kind of duality principle. In fact, duality is the
physical concept that relates the five known superstring theories in 911 dimensions~i.e., nine
space and one time!, Type I, Type IIA, Type IIB, Heterotic SO~32! and HeteroticE83E8 , which
may now be understood as different manifestations of M-theory. Thus, anticipating the poss
that duality is the basic principle in M-theory, one may be interested in the mathematical str
necessary to make sense of such a duality principle. The idea is similar to the role played by
analysis which gives a mathematical sense to the postulate of relativity ‘‘the laws of physic
the same for every observer.’’ In two previous works we proposed the possibility that su
mathematical structure could be realized through the so-called matroid theory.5 Matroid theory,
which can be understood as a generalization of graph theory and matrix theory, has the
symmetry among its key basic concepts. In fact, in contrast to graphs in which duality can o
considered in connection with planar graphs, matroid theory has the remarkable proper
every matroid has a unique dual matroid. As an example of the importance of the duality pr
in matroid theory let us just mention a theorem due to Whitney:5 if M1 ,...,M p andM18 ,...,M p8 are
the components~blocks! of the matroidsM and M 8, respectively, and ifMi8 is the dual ofMi

( i 51, . . . ,p), thenM 8 is the dual ofM and, conversely, ifM andM 8 are dual matroids, thenMi8
is the dual ofMi . Moreover, in a general context, we have the remarkable proposition tha
statementm in the theory of matroids has been proved true, then also its dualm* is true.

Of course, the question is how to achieve such a relationship between matroid theo
M-theory, especially if we do not even know the formal partition function associated to M-th
As a first step in this direction, one may attempt to see if matroid theory is linked someho
D511 supergravity which is one of the manifestations of M-theory. In fact, it has been sh6

that the Fano matroid and its dual are closely related to Englert’s compactification7 of D511
supergravity. This result is physically interesting because it allows a connection betwee
fundamental Fano matroid or its dual8 and octonions which, at the same time, are one of

a!Electronic mail: nieto@uas.uasnet.mx
2850022-2488/2004/45(1)/285/17/$22.00 © 2004 American Institute of Physics
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alternative division algebras.9 In Ref. 10, we made further progress on this program, incorpora
matroid theory on quantum Yang–Mills theory in the context of Chern–Simons action.
mechanism was based on a theorem due to Thistlethwaite11 which connects the Jones polynomi
for alternating knots with the Tutte polynomial for graphs. Since Witten12 showed that Jones
polynomial can be understood in three dimensional terms through a Chern–Simons forma
became evident that we achieved a bridge between matroid theory and Chern–Simons form

In this article, we further pursue the idea of relating matroid theory with M-theory. Since
five fundamental strings are different vacuum limits of M-theory, it seems natural to try to find
a link between matroid theory and string theory. In this context there are a number of observ
that indicate that this idea makes sense. First, since Chern–Simons formalism is closely lin
conformal field theory and matrix theory, which in turn are related to string theory, one sh
expect a connection of the form: matroid-theory→Chern–Simons-theory→string-theory. Second
since strings are closely related to knots, which in turn are related in one-to-one correspond
signed graphs, one should expect a link of the form: matroids→signed graphs→knots→strings.
Finally, we can in effect combine the two previous observations in the form: matroids→signed
graphs→knots→Chern–Simons-formalism→strings.

In order to achieve our goal, we study the possibility that, in the string phase of matter-
coupling, the world sheet metric and the target space–time metric become unified in ju
metric. We show, in some detail, that such a unified metric may be a certain kind of Kahler m
This observation lead us to consider the Kahler–Chern–Simons action as the key bridge
nect matroid theory and string theory.

An alternative matroid/string connection can be achieved via the Schild type action.13 In fact,
we show that writing the Nambu–Goto action in the context of Schild formulation, such a
nection seems to be a straightforward extension of the chirotope notion of oriented matroid
prove that a local description of the chirotope concept becomes part of the structure of the
action. The relevant structure in this process is the concept of matroid bundle which has a
been developed by the mathematicians.14–17Finally, we show that in order to complete the desir
connection between matroids and strings it appears necessary to use the Chern–Simons
tion for strings as proposed by Zaikov.18

The plan of this work is as follows. In Sec. II, we briefly review matroid theory. In Sec.
we closely follow Ref. 6 by adding new information about the connection between matroid th
andD511 supergravity. In Sec. IV, we briefly review Ref. 10 and propose a possible extens
the relation between matroid theory and Witten’s partition function for knots. In Sec. V
propose a generalized Polyakov string action with the property of unifying the world-sheet m
and the target space–time metric. In Sec. VI, we discuss an alternative matroid/string conn
via the concept of a chirotope of oriented matroids and Schild type action. Finally, in Sec. VI
make some final comments.

II. A BRIEF REVIEW OF MATROID THEORY

At present matroid theory, also called combinatorial geometry or pregeometry, can be
stood as the combinatorial analog of K-theory. In fact, the axioms of K-theory are very simi
the properties achieved with the Tutte–Gotendiek invariants for matroids. This interpre
emerged from a great number of contributions from several mathematicians since 1935 w
pioneer work of Whitney5 on ‘‘abstract properties of linear dependence.’’ In the same y
Birkhoff19 established the connection between simple matroids and geometric lattices. In
MacLane20 gave an interpretation of matroids in terms of projective geometry. And an impo
progress to the subject was given in 1958 by Tutte8 who introduced the concept of homotopy fo
matroids. The fascination of this subject among the combinatorial mathematicians can be
ciated from the large body of information about matroid theory. In fact, there is a large numb
books about matroid theory. For background information on this subject the reader should c
Oxley21 and Welsh.22 We also recommend the books by Wilson,23 Kung,24 and Ribnikov.25

It is known that in graph theory only planar graphs have an associated dual graph
instance, the Kuratowski theorem assures that the complete graphK5 and the bipartita graphK3,3,
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which are not planar, do not have an associated dual graph. In a sense, matroid theory aro
attempt to solve this lack of duality symmetry. The attractive feature is that in matroid th
every matroid has an associated unique dual matroid. In particular the matroid associatedK5 ,
let us sayM (K5), has a dualM* (K5). The important aspect is thatM* (K5) is not graphic, that
is, it can not be represented by a graph. This is, of course, an indication that matroid theo
generalization of graph theory. Therefore, the great advantage of matroid theory is that it pr
us with a mathematical structure in which the concepts of duality of planar graphs is exten
graphs that are not planar.

Another interesting aspect that motivates the subject is that linear dependence in algeb
be understood as a particular case of matroid theory. In fact, matroid theory leads to matroi
are not even representable by a finite set of vectors in a vector space or by matrices, extend
concept of orthogonality in vector spaces. Summarizing, we can say that by extending the c
of duality in vector spaces and planar graphs, matroid theory accomplishes a generaliza
both graph theory and matrix theory.

Mathematically, a matroid is defined as follows: a matroidM is a pair (E,I ), whereE, called
the ground set, is a nonempty finite set, andI is a nonempty collection of subsets ofE satisfying
the following two properties:

(I i ) Any subset of an independent set is independent.
(I i i ) If K andJ are independent sets withK#J, then there is an elemente contained inJ but

not in K such thatKø$e% is independent.
Members ofI are called independent sets ofM ; other sets are called dependent. Therefore,

definition itself of a matroid divides all possible subsets ofE in two types: independent an
dependent subsets. Thus, we see that, even from the beginning, matroids have the dual s
independent–dependent. From this point of view, it is not a surprise to find eventually that
matroid has an associated dual matroid.

A base is defined to be any maximal independent set. Similarly, the minimal dependent
called a circuit. By repeatedly using the property (I i i ) it is straightforward to show that any tw
bases have the same number of elements.

An alternative definition of a matroid in terms of bases is as follows:
A matroidM is a pair (E,B), whereE is a nonempty finite set andB is a nonempty collection

of subsets ofE ~called bases! satisfying the following properties:
(B i ) No base properly contains another base.
(B i i ) If B1 andB2 are bases and ifb is any element ofB1 , then there is an elementg of B2

with the property that (B12$b%)ø$g% is also a base.
A matroid can also be defined in terms of circuits:
A matroid M is a pair (E, C), where E is a nonempty finite set, andC is a nonempty

collection of subsets ofE ~called circuits! satisfying the following properties.
(C i) No circuit properly contains another circuit.
(C ii ) If C1 andC2 are two distinct circuits each containing an elementc, then there exists

a circuit in C1øC2 which does not containc.
If we start with any of the three definitions, then one finds that the other two follow

theorems. For example, it is possible to prove that (I ) implies ~B! and (C). In other words, these
three definitions are equivalent. There are other definitions also equivalent to these three,
the purpose of this work it is not necessary to consider all of them.

As we noticed previously, even from the initial structure of a matroid theory we find rela
such as independent–dependent structure which suggests duality. The dual ofM , denoted byM* ,
is defined as a pair (E,B* ), whereB* is a nonempty collection of subsets ofE formed with the
complements of the bases ofM . An immediate consequence of this definition is that every mat
has a dual and this dual is unique. It also follows that the double-dualM** is equal toM .
Moreover, ifS is a subset ofE, then the size of the largest independent set contained inS is called
the rank ofS and is denoted byr(S). If M5M11M2 andr(M )5r(M1)1r(M2), we shall say
thatM is separable. Any maximal nonseparable part ofM is a block ofM . An important theorem
due to Whitney5 is that if M1 ,...,M p andM18 ,...,M p8 are the blocks of the matroidsM andM 8,
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respectively, and ifMi8 is the dual ofMi ( i 51, . . . ,p), thenM 8 is dual ofM . Conversely, letM
andM 8 be dual matroids, and letM1 ,...,M p be blocks ofM . Let M18 ,...,M p8 be the corresponding
submatroids ofM 8. ThenM18 ,...,M p8 are the blocks ofM 8, andMi8 is the dual ofMi .

Over the last years matroid theory has been growing very rapidly. There are already
established formalisms for oriented matroids26 and bias matroids.27 The former can be understoo
as a generalization of oriented graphs and the latter as an extension of signed graphs. In e
of these branches of matroid theory there are very interesting theorems and results, some o
we shall mention in the next sections.

III. MATROID THEORY AND SUPERGRAVITY

Here, we briefly review the main results of Ref. 6 and add some new observations. In
we showed that the Fano matroidF7 may be connected with octonions which, in turn, are rela
to the Englert’s compactification ofD511 supergravity.

A Fano matroidF7 is the matroid defined on the ground set

E5$1,2,3,4,5,6,7% ~1!

whose bases are all those subsets ofE with three elements exceptf 15$1,2,3%, f 25$5,1,6%, f 3

5$6,4,2%, f 45$4,3,5%, f 55$4,7,1%, f 65$6,7,3% and f 75$5,7,2%. The circuits of the Fano ma
troid are precisely these subsets and its complements. It follows that these circuits define th
F7* of the Fano matroid.

Let us write the setE in the formE5$e1 ,e2 ,e3,e4,e5 ,e6 ,e7%. Thus, the subsets used to defi
the Fano matroid now becomef 15$e1 ,e2 ,e3%, f 25$e5 ,e1 ,e6%, f 35$e6 ,e4 ,e2%, f 4

5$e4 ,e3 ,e5%, f 55$e4 ,e7 ,e1%, f 65$e6 ,e7 ,e3% and f 75$e5 ,e7 ,e2%. The key idea in Ref. 6 was to
identify the quantitiesei , wherei 51, . . . ,7,with the octonionic imaginary units. Specifically, w
write an octonionq in the form

q5q0e01q1e11q2e21q3e31q4e41q5e51q6e61q7e7 ,

whereq0 andqi are real numbers. Here,e0 denotes the identity. The product of two octonions c
be obtained from the formula

eiej52d i j 1c i j
k ek , ~2!

whered i j is the Kronecker delta andc i jk5c i j
l d lk is the fully antisymmetric structure constant

with i , j ,k51, . . . ,7. Bytaking thec i jk equal to 1 or21 for each one of the seven combinatio
f i we may derive all the values ofc i jk .

The octonion~Cayley! algebra is not associative, but alternative. This means that the b
associator of any three imaginary units is

^ei ,ej ,ek&5~eiej !ek2ei~ejek!5w i jkmem , ~3!

wherew i jkl is a fully antisymmetric four index tensor. It turns out thatw i jkl andc i jk are related by
the expression

w i jkl 5~1/3!!e i jklmnrcmnr , ~4!

wheree i jklmnr is the completely antisymmetric Levi–Civita tensor, withe12 . . . 751. It is interest-
ing to observe that given the numerical valuesf i for the indices ofcmnr and using~4! we get the
other seven subsets ofE with four elements of the dual Fano matroidF7* . For instance, if we take
f 1 , then we havec123 and ~4! givesw4567 which leads to the circuit subset$4,5,6,7% of F7* .

Therefore, this shows that the Fano matroid and its dual are closely related to octonions
at the same time are an essential part of Englert’s solution of absolute parallelism onS7 of D
511 supergravity. It is important to mention that the Fano matroid is the only minimal bi
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irregular matroid. Just as octonions are central mathematical objects in division algebra
property makes the Fano matroid a central mathematical object in matroid theory.D511 super-
gravity is on the other hand an important physical structure in M-theory. Therefore, we have
a link between three apparently unrelated important objects in its own field: Fano ma
(matroid theory)↔ octonions (algebra)↔D511 supergravity~unify fundamental physics!.

We would like to make some further observations about the link between the Fano m
and octonions. Consider the subsetsh15$v1 ,v2 ,v3%, h25$v5 ,v1 ,v6%, h35$v6 ,v2 ,v4%, h4

5$v4 ,v3 ,v5%, h55$v4 ,v7 ,v1%, h65$v6 ,v7 ,v3% andh75$v5 ,v7 ,v2%. If we identify v i , where
i 51, . . . ,7, ofthese subsets with the columns of the matrix

A5S 1 0 1 0 1 0 1

1 1 0 0 0 1 1

0 1 1 1 0 0 1
D , ~5!

we notice that the matrixA provides a representation~or realization! of the Fano matroidF7 .
Now, suppose that the Fano matroid is extended to a structure in which the sets$v i ,v j ,vk%
corresponding to thehi are replaced by the completely antisymmetric object

~v i ,v j ,vk!52~v i ,vk ,v j !52~v j ,v i ,vk!. ~6!

For instance, we may replaceh15$v1 ,v2 ,v3% by ĥ15(v1 ,v2 ,v3). Specifically, we define the
extended Fano matroidF̂7 as the pair (E,B̂) in which B̂ is the set of three elements (v i ,v j ,vk)
except the completely antisymmetric quantitiesĥ15(v1 ,v2 ,v3), ĥ25(v5 ,v1 ,v6), ĥ3

5(v6 ,v2 ,v4), ĥ45(v4 ,v3 ,v5), ĥ55(v4 ,v7 ,v1), ĥ65(v6 ,v7 ,v3) and ĥ75(v5 ,v7 ,v2). The
generalization fromF7 to F̂7 is very similar to the transition from graphs to digraphs~or oriented
graphs! in which the edges of the original graph, let us say$a,b%, are changed to an ordering se
(a,b)52(b,a). The important point is that if there exists such a transition betweenF7 and F̂7 ,
then we discover thatF̂7 almost determine completely the octonion algebra, essentially bec
(v i ,v j ,vk) for the differenthi become closely related to the structure constantscmnr associated to
octonions. In fact, there is an extension of matroid theory which seems to be what these ob
tions suggest for the Fano matroid, namely oriented matroids.26

In order to define oriented matroids it is necessary to define first what signed circuits a
signed circuitX is a circuit with the partition (X1,X2) into two sets:X1 the set of positive
elements ofX, andX2 its set of negative elements.

An oriented matroidM is a pair (E,C), whereE is a nonempty finite set, andC is a nonempty
collection of subsets ofE ~called signed circuits! satisfying the following properties.

(C i ) No circuit properly contains another circuit.
(C i i ) If C1 and C2 are two distinct signed circuits,C1Þ2C2 and cPC 1

1ùC 2
2 , then there

exists a third circuitC3PC with C 3
1#(C 1

1ùC 2
1)\$c% andC 3

2#(C 1
2ùC 2

2)\$c%.
It is not difficult to see that by forgetting signs, this definition of oriented matroids reduce

the definition of ordinary~nonoriented! matroids.
An alternative but equivalent way to define an oriented matroid is as follows: An orie

matroidM is a pair (E,x), whereE is a nonempty finite set andx ~called chirotope! is a mapping
Er→$21,0,1%, with r the rank onE, satisfying the following properties.

(x i ) x is not identically zero.
(x i i )x is alternating.
(x i i i ) For all x1 ,x2 , . . . ,xr andy1 ,y2 , . . . ,yr such that

x~x1 ,x2 , . . . ,xr !x~y1 ,y2 , . . . ,yr !Þ0, ~7!

there exists ani P$1,2,3,4,5,6,7% such that
                                                                                                                



that
at

atroid

ht-
ma-
over a

s out
s, be-
r
r
is

ith an
ith

n of
ing
re for

le
e.

ween
let us

290 J. Math. Phys., Vol. 45, No. 1, January 2004 J. A. Nieto

                    
x~yi ,x2 , . . . ,xr !x~y1 ,y2 , . . . ,yi 21 ,x1 ,yi 11, . . . ,yr !5x~x1 ,x2 , . . . ,xr !x~y1 ,y2 , . . . ,yr !.
~8!

For a vector configurationx can be identified as

x~ i 1 , . . . ,i r ![sign det~v i 1
, . . . ,v i r

!P$21,0,1% ~9!

and (x i i i ) turns out to be related to the Grassmann–Plucker relation.
Returning to the case of the Fano matroid, it is tempting to identifyhi with the chirotope

x~ i 1 ,i 2 ,i 3!5sign det~v i 1
,v i 2

,v i 3
!. ~10!

But, in Ref. 28 it is noted that the Fano matroid is not orientable. Specifically, one can verify
the Fano matroid does not satisfy the property (x i i i ). Nevertheless, it is interesting to observe th
one may write the formula29

c i 1i 2i 3
1x~ i 1 ,i 2 ,i 3!5Ci 1i 2i 3

, ~11!

where Ci 1i 2i 3
P$21,1% may be identified with the uniform matroidU3,7 which is an excluded

minor for GF(5)-representability, whereGF(q) denotes a finite field of orderq. In this sense the
Fano matroid and the octonions look like complementary concepts of the oriented uniform m
M (U3,7) structure.

It is worth remarking that the structure ofF̂7 does not necessarily correspond, in a straig
forward way, to oriented matroids for the following observations. An important problem in
troid theory is to see which matroids can be mapped into a set of vectors in a vector space
given field. When such a map exists we are speaking about a coordinatization~or representation!
of the matroid over the field. A matroid which has a coordinatization overGF(2) is called binary.
Furthermore, a matroid which has a coordinatization over every field is called regular. It turn
that regular matroids are of fundamental importance in matroid theory, among other thing
cause they play a similar role as planar graphs in graph theory.23 It is known that a graph is plana
if and only if it contains no subgraph homeomorphic toK5 or K3,3. The analog of this theorem fo
matroids was proved by Tutte.8 In fact, Tutte proved that a matroid is regular if and only if it
binary and has no minor isomorphic to the Fano matroid or the dual of this.

The important point is that an algebra, like the octonion algebra, is a vector space w
additional multiplicative operation. If it could be possible to identify this additional product w
a kind of rule for the bases ofB in a given matroid, then we could speak about a representatio
a matroid~with this additional product! in terms of an algebra instead of just the correspond
vector space. At present, we have not been able to find in the literature this kind of structu
matroids. But it seems to us that our identification ofF̂7 with octonions may provide an examp
of matroids associated with an algebra rather than with just the corresponding vector spac

IV. MATROID THEORY AND CHERN–SIMONS THEORY

Here, we shall briefly review the main results of Ref. 10 about the connection bet
matroid theory and Chern–Simons theory and make additional comments. For this purpose
introduce the Witten’s partition function

Z~L,k!5E DA exp~Scs!)
r 51

n

W~Lr ,r r !, ~12!

whereSCS is the Chern–Simons action

SCS5
k

2p E
M3

TrS A∧dA1
2

3
A∧A∧AD , ~13!
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andW(Ci ,r i) is the Wilson line

W~Lr ,r r !5Trrr
P expS E

Lr

Ai
aTadxi D . ~14!

Here,A5Ai
aTadxi , with Ta the generators of the Lie algebra ofG and the symbolP means the

path-ordering along the knotsLr . If we chooseM35S3, G5SU(2) andr r5C2 for all the link
components, then the Witten’s partition function~12! reproduces the Jones polynomial

Z~L,k!5VL~ t !, ~15!

where

t5e2p i /k ~16!

andVL(t) denotes the Jones polynomial satisfying the skein relation,

t21VL1
2tVL2

5S At2
1

At
D VL0

, ~17!

whereL1 , L2 andL0 are the standard notation for overcrossing, undercrossing and zero cro
On the other hand, Thistlethwaite11 showed that ifL is an alternating link andG(L) the

corresponding planar graph, then the Jones polynomialVL(t) is equal to the Tutte polynomia
TG(2t,2t21) up to a sign and a factor power oft. Specifically, we have

VL~ t !5~2t3/4!w(L)t2(r2n)/4TG~2t,2t21!, ~18!

wherew(L) is the writhe andr andn are the rank and the nullity ofG, respectively. Here,VL(t)
is the Jones polynomial of alternating linkL. The Tutte polynomial associated to each graphG is
a polynomialTG(x,x21) with the property that ifG is composed solely of isthmus and loops th
TG(x,x21)5xIx2 l , whereI is the number of isthmuses andl is the number of loops. The poly
nomial TG satisfies the skein relation

TG5TG81TG9 , ~19!

whereG8 andG9 are obtained by respectively delating and contracting an edge that is neit
loop nor an isthmus ofG.

On the other hand, a theorem due to Tutte allows us to computeTG(2t,2t21) from the
maximal trees ofG. In fact, Tutte proved that ifB denotes the set of maximal trees in a graphG,
i (B) denotes the number of internally active edges inG, ande(B) refers to the number of the
externally active edges inG ~with respect to a given maximal treeBPB), then the Tutte polyno-
mial is given by the formula

TG~2t,2t21!5 (
B#B

xi (B)x2e(B), ~20!

where the sum is over all elements ofB.
The important point is that the Tutte polynomialTG(2t,2t21) computed according to~20!

uses the concept of a graphic matroidM (G) defined as the pair (E,B), whereE is the set of edges
of G. This remarkable connection between the Tutte polynomial and a matroid allows in f
relation between the partition functionZ(L,k) given in ~12! and matroid theory. This is becaus
according to~18! the Tutte polynomialTG(2t,2t21) is related to the Jones polynomialVL(t)
which in turn according to~15! is connected to the partition functionZ(L,k). Specifically, for
M35S3, G5SU(2), r r5C2 for all alternating link components ofL, we have the relation
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Z~L,k!5VL~ t !5~2t3/4!w(L)t2(r2n)/4TG~2t,2t21!. ~21!

Thus, the matroid (E,B) used to computeTG(2t,2t21) can be associated not only toVL(t), but
also toZ(L,k). Therefore, we have found a bridge which links the matroid formalism (E,B) and
the partition functionZ(L,k). This may allow us to bring many concepts of matroid theory
fundamental physics and, conversely, different results in fundamental physics may be use
inspiration to further develop matroid theory. As an example of the former remark let us
mention how the duality concept in matroid theory can be used as a symmetry ofZ(L,k).

First of all, it is known that in matroid theory the concept of duality is of fundamen
importance. For example, there is a remarkable theorem that assures that every matroid ha
So, the question arises about what are the implications of this theorem in Chern–Simons f
ism. In order to address this question let us first make a change of notationTG(2t,2t21)
→TM (G)(t) and Z(L,k)→ZM (G)(k). The idea of this notation is to emphasize the connect
between matroid theory, Tutte polynomial and Chern–Simons partition function. Conside
planar dual graphG* of G. In matroid theory we haveM (G* )5M* (G). Therefore, the duality
property of the Tutte polynomial

TG~2t,2t21!5TG* ~2t21,2t ! ~22!

can be expressed as

TM (G)~ t !5TM* (G)~ t21! ~23!

and consequently from~15! and ~18! we discover that for the partition functionZM (G)(k) we
should have the dual property

ZM (G)~k!5ZM* (G)~2k!. ~24!

As a second example let us first mention another theorem due to Withney:5 If M1 ,...,M p and
M18 ,...,M p8 are the components~or blocks! of the matroidsM andM 8, respectively, and ifMi8 is
the dual ofMi ( i 51, . . . ,p), thenM 8 is dual ofM . Conversely, letM andM 8 be dual matroids,
and letM1 ,...,M p be components ofM . Let M18 ,...,M p8 be the corresponding submatroids ofM 8.
ThenM18 ,...,M p8 are the components ofM 8, andMi8 is dual ofMi . Thus, according to~24! we
find that

ZMi (Gi )
~k!5ZM

i8(Gi )
~2k! ~25!

if and only if

ZM (G)~k!5ZM8(G)~2k!, ~26!

whereGi are the components or blocks ofG.
Our discussion has been, so far, based on alternating linksL. This kind of link is an important,

but relatively small, subclass of links. In fact, there is a one-to-one correspondence betwee
and signed graphs and a link is alternating if the signed graph representation has all edges w
same sign. Therefore, in order to generalize the procedure, it turns necessary to have a gen
Thustlethwaite’s11 theorem for any signed graph not just for those of the same sign. Fortun
Thustlethwaite himself,11 and later Kauffman,30 precisely generalized the original Thustlethwaite
theorem for planar unsigned graphs.

Theorem: Let G be a planar signed graph. LetK(G) be the knot/link diagram correspondin
to G. Then^K(G)&5TG(A,B,x,y). The bracket polynomial for knots and links is a specializat
of the generalized Tutte polynomial for signed graphs.

Here, A, B, and d are commuting variables associated to the link.A and B correspond to
A-channel,B-channel, respectively, while the parameterd is used as a factor of normalization i
order to makeTG(A,B,d) invariant under the Reidemeister moves II and III.
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Furthermore, Kauffman showed thatTG5TG(A,B,x,y) has a spanning tree expansion of t
form

TG5 (
H#B

L~H !, ~27!

whereL(H) denotes the product of the contribution of the edges ofG relative activities of the
maximal treesH in G.

In principle, since up to a normalized factor, measuring the orientability of the
^K(G)&↔CS, in order to find a generalization of our procedure we need to relateTG with matroid
theory. ATG↔matroidsconnection is given by~27! in the sense that the sum is over all maxim
treesH in G. Notice, however, that the maximal treesH are associated to the underlying gra
~without signs! of the signed graph and not to the signed graph itself.

It is known that matroids associated to signed graphs are called bias matroids.27 It turns out
that bias matroids are interesting by themselves, but unfortunately the subject about this k
matroid has not been developed for our purpose and it appears that many of the inte
properties of ordinary matroids are lost. Nevertheless, the idea of writingTG as a sum over bias
matroids seems interesting and deserves further study.

It may help to mention in this direction that Crapo31 proposed an alternative possibility t
write TG as a sum over all spanning subsets ofE, rather than over maximal trees. This idea
motivated from the observation that in this case the rank functionr becomes an important conce
and can be used to generalizeTG to matroid theory. A generalization for signed graphs of
Crapo’s polynomial has been proposed by Murasugi32 and by Shwarzler and Welsh.33 Let us
briefly mention these two polynomials.

Murasugi introduced the following polynomial. LetG(r ,s) denote the set of all spannin
subgraphS of G. ThenTG(x,y,z) is defined by

TG~x,y,z!5(
k,r

H (
SPG(r ,s)

xP(S)2N(S)J yk(S)21zuSu2r(S), ~28!

whereP(S) andN(S) denote the number of positive and negative edges inS, respectively. It is
interesting to note thatb05k5r 11 andb15n5uSu2r(S), wheren is the nullity andb i denotes
the i Betti number ofS as a 1-complex. Although this polynomial uses the rank and the nu
concepts, the fact that the sum is over all spanning subgraphsG means thatTG(x,y,z) is also
applied only to the underlying unsigned graphG associated to the signed graph. Furthermore,
Murasugi polynomial does not have a direct relation with the Kauffmann polynomial.

On the other hand, Shwarzler and Welsh33 proved that the Kauffmann polynomial associat
to a link L can be expressed in terms of the associated signed graphG(L) as follows,

TG~A,B!5AuE2u2uE1u~2A22A22!r(G) (
S#E

A4(r(S)2uS2u)Br(G)1uSu22r(S), ~29!

whereB52A421 and for any subsetS#E(G), S1 and S2 denote the positive and negativ
signed parts, respectively. It is important to remark that Shwarzler and Welsh showed that~29! is
a specialization of a more general polynomial for signed matroids. In fact, Shwarzler and
proposed an eight variables polynomial which contains as specialization not only the Kau
bracket polynomial but also the Tutte polynomial of a matroid, the partition function of
anisotropic Ising model and the Kauffman-Murasugi polynomial of signed graphs~for further
details, see Ref. 33!.

V. MATROID THEORY AND STRING THEORY

In the literature,34–36 several attempts have been done to connect Chern–Simons form
with string theory. One of the most interesting37 comes from the idea that at some level t
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decoupling of ghost and matter does not hold. In this case, matter fields and ghosts become
and the standard string theory should be replaced by some kind of topological string theo38 It
has been shown35 that some topological string theories perturbatively coincide with Che
Simons theory. So, in this sense Chern–Simons theory is equivalent to topological string t
However, the problem arises when it is attempted to relate Chern–Simons theory with fund
tal strings. In fact, it has been shown38 that in the pure Chern–Simons formalism there are
enough degrees of freedom to reproduce not only the induced gravity but the toroidal com
fication of heterotic string.

These observations are, of course, important in order to find a matroid theory and string
connection and eventually M-theory connection. In the previous section we explained a m
theory–Chern–Simons theory relation via Tutte and Jones polynomials. It is clear then tha
we should look for is some kind of generalization of fundamental strings which may provid
bridge between fundamental strings and topological strings.

The generalized fundamental strings could be the topological membrane39 itself, but this is
likely to be reduced to the topological strings rather than to fundamental strings. Another
bility is the membrane theory or any other p-brane,40 but it has been shown41 that through double
dimensional reduction these are reduced to fundamental strings rather than to topological
So, although there is the hope that at some level 3D topological field theory may lead to f
mental strings, the correct formulation of such a theory is at present unknown.

In this section, we propose an alternative generalization of fundamental strings which
closer to our purpose than the already known alternative of topological membranes or p-b

The idea comes from the observation that in the Polyakov type action the world sheet
and the target space–time metrics are decoupled. But it seems natural to think that at
fundamental level when ghost and matter fields are mixed the decoupling between two
metrics is no longer true. Therefore the desired generalization of string theory must be base
unified metric of the world sheet and target space–time metrics.

Let us clarify these observations. For this purpose, let us first consider the Polyakov a

S5
1

2 E d2jA2ggab~j!]axm]bxnGmn~x!, ~30!

wheregab(j) andGmn(x), with m,n51, . . . ,D, are the world sheet metric and the target spac
time metric, respectively. We observe from~30! that the two metricsgab(j) andGmn(x) play very
different roles;gab(j) determines the world sheet metric swept out by the string in its dynam
evolution, whileGmn(x) determines the background metric where the string is moving. There
classicallygab(j) andGmn(x) are unrelated. However, this is no longer true at the quantum le
For instance, it is well known that in a consistent quantum string theorygab(j) plays an essentia
role to fix the size of the matrixGmn(x): D526 in the bosonic case. This kind of relation betwe
gab(j) andGmn(x) is, however, in a certain sense superficial because in the critical dimensio
matter fields decouple from the corresponding ghost with associated central chargec5226. The
important observation is that, as it was mentioned in the Introduction, at a deeper lev
decoupling between matter fields and ghost must be no longer true and therefore one
expect that in such a case there must be a unified framework for the two metricsgab(j) and
Gmn(x).

Consider the line element

ds25G(m̂n̂)~xâ!dxm̂
^ dxn̂, ~31!

where the indicesm̂,n̂ run from 1 to 2D, the symbol ^ means tensor product andG(m̂n̂)

5G( n̂m̂) . Suppose that~31! can be written as

ds25G(mn)~xâ!dxm
^ dxn1G(mn)~xâ!dym

^ dyn. ~32!
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Here, we assume thatG(mA)5G(Am)50, with A5D11, . . . ,2D and we identifyxA→ym and
G(AB)→G(mn) . It is not difficult to see that~32! can be rewritten as

ds25G(mn)
ab ~xâ!dxa

m
^ dxb

n , ~33!

wherex1
m[xm andx2

m5ym and we assumed thatG(mn)
11 5G(mn)

22 andG(mn)
12 5G(mn)

21 50.
On the other hand, if we use the definition

zm5xm1 iym, ~34!

we find that~32! can be written in the alternative way

ds25G(mn)~xâ!dzm
^ dz̄n. ~35!

In this scenario, sincedxm̂
^ dxn̂ is a second-rank symmetric tensor, the same results follow if

consider the most general Hermitian metric

Gm̂n̂~xâ!5G(m̂n̂)~xâ!1 iG [ m̂n̂]~xâ!. ~36!

Here,G[ m̂n̂] denotes an antisymmetric tensor metric. Of course,Gm̂n̂ in ~36! satisfies the Hermitian
conditionGm̂n̂5Gm̂n̂

† .
Now, consider the metricGm̂n̂(xâ) given in ~36!, in connection with the exterior product

V5 1
2 Gm̂n̂~xâ!dxm̂∧dxn̂. ~37!

Using the exterior product propertydxm̂∧dxn̂52dxn̂∧dxm̂, we see that~37! leads to

V5
i

2
G[ m̂n̂]~xâ!dxm̂∧dxn̂. ~38!

Assuming thatG[mA]5G[Am]50 we find that~38! becomes

V5
i

2
G[mn]~xâ!dxm∧dxn1

i

2
G[AB]~xâ!dyA∧dyB. ~39!

We again make the identificationxA→ym andG[AB]→G[mn] . The formula~39! can be rewritten as

V5
i

2
G[mn]~xâ!~dxm∧dxn1dym∧dyn!. ~40!

Introducingx1
m[xm and x2

m5ym and assuming thatG[mn]
12 5G[mn]

21 50 andG[mn]
11 5G[mn]

22 Þ0 we
find that ~40! leads to

V5
i

2
G[mn]

ab ~xâ!dxa
m∧dxb

n . ~41!

On the other hand, using the definition~34! for zm we find that~40! can also be written as

V5
i

2
G[mn]~xâ!dzm∧dz̄n. ~42!

Summarizing we have shown that ifG(mn)
11 5G(mn)

22 Þ0 and G(mn)
12 5G(mn)

21 50, and G[mn]
11

5G[mn]
22 Þ0 andG[mn]

12 5G[mn]
21 50, then

ds25Gmn
ab~xc

a!dxa
m

^ dxb
n ~43!
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is equivalent to

ds25Gmn~za,z̄b!dzm
^ dz̄n, ~44!

and that

V5
i

2
Gmn

ab~xc
a!dxa

m∧dxb
n ~45!

is equivalent to

V5
i

2
Gmn~za,z̄b!dzm∧dz̄n. ~46!

We recognize in~44! and ~46! the formulas used to define the Kahler metric which in addit
satisfies the conditiondV50. Therefore we have shown that under certain anzats the m
Gmn

ab(xc
a) can be identified with the Kahler metric. This shows that it makes mathematical sen

consider a metric of the formGmn
ab(xc

a).
Our goal is now to use the metricGmn

ab(xc
a) in connection with string theory. We find that the

are at least two different ways to achieve this. In fact, in the first case we have the action

S15
1

2 E d2jA2ggab~j!]axc
m]bxd

nGmn
cd ~x!, ~47!

while in the second case we have42

S25
1

2 E d2jGmn
ab~j,x!]axm]bxn. ~48!

For our purpose to relate matroid theory with string theory both possibilities look attractive
action S1 may be useful to understand T-duality or S-duality because of its property of b
symmetric under the interchange of coordinatesx↔y. However,S2 is closer to our idea of unified
worldsheet–target space–time metrics when matter and ghost mix.

In fact, in the particular case

Gmn
ab5AggabGmn , ~49!

one sees thatS2 is reduced to the Polyakov action~30!. This shows that ordinary bosonic strin
theory is contained in a theory associated to~48!. Another particular case forGmn

ab is

Gmn
ab5AggabGmn1 i«abBmn , ~50!

whereBmn52Bnm is a two form and«ab is the completely antisymmetric tensor with«1251. The
choice~50! leads to a generalized bosonic string theory, the so-called nonlinear sigmal mo
two dimensions, in which the string propagates in a background determined not only by g
but by the antisymmetric two form gauge fieldB with associated field strengthH5dB. Finally,
the third example is provided precisely for what we have already discussed whenGmn

ab is identified
with a Kahler metric.

Here, we are not particularly interested in developing the full theory implied byS2 , but to
point out howS2 can be related to matroid theory via Chern–Simons theory. For this purpo
seems to be convenient to start by recalling briefly how the Kahler structure is related to C
Simons theory.

There are a number of restrictions which a background field must satisfy in order to h
consistent string theory. Perhaps one of the most important is the anomaly cancellation fix
the constraint4
                                                                                                                



ic is

hern–

imons

s for-

on we
heory

tion

297J. Math. Phys., Vol. 45, No. 1, January 2004 Connection between matroid and string theory

                    
dH5trR∧R2trF ∧F, ~51!

whereR is the curvature associated toGmn . The formula~51! is an important restriction for the
possible compactifications. One of the most attractive solutions of~51! is when the ten dimen-
sional space–time vacuum state is given by T43K, where T4 is a maximally symmetric four
dimensional space–time andK is a six dimensional Kahler manifold.

Now, it is known that a Kahler metric determines a Kahler manifold, so Kahler metr
related to string theory through~51!. In turn ~51! contains the second Chern class* trF ∧F which
reduces to the Chern–Simons form. Therefore, the Kahler metric is closely related to C
Simons formalism in string theory. Consequently, the actionS2 with the choice ofGmn

ab as a Kahler
metric establishes a connection between matroid theory and string theory via Chern–S
formalism.

VI. ALTERNATIVE CONNECTION BETWEEN MATROID THEORY AND STRING THEORY

The observations in the previous section may motivate us to look for a Chern–Simon
mulation for strings. An attempt in this direction has been proposed by Zaikov.18 Dolan and
Tchrakian43 have proposed a similar structure which has been extensively studied by Castro.44 One
of the roots of these developments is the Schild type construction for strings. In this secti
shall show that this kind of construction offers a more direct connection between matroid t
and string theory.

Let us first recall the Schild type construction for strings. It is well known that from the ac
~30! one can derive the Nambu–Goto action

S5TE d2jA2h, ~52!

whereh is the determinant of

hab5]axm]bxnGmn~x!. ~53!

Here, we have restored the tensionT of the string.
It is not difficult to see thath can be written as

h5smnsmn , ~54!

where

smn5
1

@2!#1/2«abva
m~j!vb

n~j!. ~55!

Here,va
m(j) is defined by

va
m~j!5]bxm~j!. ~56!

One can show that the action~52! is equivalent to

Sp
(1)5E d2jS smnpmn2

g

2
~pmnpmn1T2! D , ~57!

whereg is a Lagrange multiplier andpmn is a linear momentum associated tosmn. If we eliminate
pmn from this action, we get

Sp
(1)5

1

2 E d2j~g21smnsmn2gT!. ~58!
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By eliminatingg from ~58! we recover action~52!. The importance of~57! or ~58! is that it now
makes sense to setT50. In this case~58! is reduced to the Schild type null 1-brane action.13 Here,
we are interested in connecting~58! with matroid theory.

Observe that we can relate~58! with matroid theory if we connectsmn with a matroid
structure. Therefore, the question is how expression~55! is related to matroids.

Consider the matrix

D5S 1 0 1 1

0 1 1 21D . ~59!

The matrixD is a realization of the matroidE5$1,2,3,4% and

B5$$1,2%,$1,3%,$1,4%,$2,3%,$2,4%,$3,4%%. ~60!

This is the uniform matroidU2,4. The elements ofE are identified with the columns ofD in the
form 1→ba

1 , 2→ba
2 , 3→ba

3 and 4→ba
4 whereba

m are the four columns ofD and the indexa runs
from 1 to 2. In this case the chirotope formula~9! reads as

x~m,n![sign det~bm,bn!P$21,0,1%. ~61!

In tensor notation we can write~61! in the form

x~m,n![sign~«abba
mba

n!P$21,0,1%. ~62!

Let us define

Smn[«abba
mba

n ~63!

so thatx(m,n)[signSmn. Comparing~55! and ~63! we observe the great similarity between t
two formulas. The main difference is the local property of~55!. This is in a certain sense simila
to the relation between the flat Minkowski metrichmn5diag(21, . . . ,1) and a curved metric
gmn5gmn(x). Let us discuss this analogy in more detail.

Consider ann-dimensional manifoldM . A tangent bundle associated toM can be defined as

TM5 ø
xPM

Tx~M !, ~64!

whereTx(M ) is the tangent space attached at each pointx of M . The cotangent bundle

T* M5 ø
xPM

Tx* ~M ! ~65!

is defined through the isomorphismw:Tx(M )→R, wherewPTx* (M ). The curved metricgmn(x)
can be understood as the symmetric positive definite map

g:Tx~M !→Tx* ~M !. ~66!

In tensor notation~45! becomes

am5gmnan, ~67!

whereanPTx(M ) andamPTx* (M ). A tangent bundle is an example of fiber bundles. In this c
the fiber is the tangent spaceTx(M ).

Therefore, the transition fromhmn to gmn(x) is determined by the transition from flat vecto
space to a fiber bundle. Similarly, we may say that the transition fromSmn to smn(j) is deter-
mined by the transition form matroid structure to matroid bundle structure. But the question i
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to understand what we mean by matroid bundle. Fortunately, the mathematicians have a
developed such a concept.14–17The matroid bundle concept can be understood as the combin
rial analog of a fiber bundle. In a matroid bundle the fiber of a bundle is replaced by a matr
is worth mentioning that, recently, matroid bundle structure was used to combine the conce
matroid and gravity in a proposed theory called gravitoid.29

Summarizing, we may start with a rank-two realizable matroidM such as the example in~59!.
We construct the chirotopex~m,n! by means of the tensorSmn as in the formula~63!. We then
make the transition from a matroid structure to matroid bundle structure in such a way thaSmn

→smn(j). If we can go from~55! to ~56!, our task is finished.
Consider the object

Fab
m 5]avb

m~j!2]bva
n~j!. ~68!

If Fab
m vanishes, then a solution of~68! is va

m(j)5 ]xm/]ja wherexm is in this context a gauge
function. In this case, one says thatva

m(j) is a pure gauge. This kind of scenario can be deriv
from an Abelian Chern–Simons action forFab

m in the form

SCS5
k

2p E d3j« i jkv i
mF jkm . ~69!

This shows once again the great importance of Chern–Simons formulation for a matroid
connection. In fact, if we substitute expression~56! into ~69!, then the Zaikov’s Chern–Simon
type action for strings is obtained.

It is worth mentioning that in general a p-formF that can be written asF5v1∧¯∧vp for
somev1 , . . . ,vpPRn is called decomposable. This means that the two formsmn(j) given in ~55!
is decomposable. It turns out that decomposable forms may be considered as the starting
construct the realization space of an oriented matroid~see Ref. 26, Chap. 8!. These observations
provide an additional evidence for the close relation betweensmn(j) and oriented matroids.

VII. COMMENTS

In the present work we have shown that the Kahler metric may provide an important brid
connect matroid theory and string theory. Specifically using a generalized string theory we
lished the following identifications:string-theory↔Kahler-structure; Chern–Simons-
theory↔Kahler-structureandmatroid-theory↔Chern–Simons-theory. Moreover, it is
natural to expect that this kind of relation suggests a direct link between the generalized
theory described by~48!, which by convenience we shall call Kahler-string action, and the p
Chern–Simons theory. But at first sight it is improbable that this more direct relation exists
reason is that pure Chern–Simons theory does not provide us enough degrees of free
describe the dynamics even for the heterotic string theory. Therefore, these observations
that there must exist a generalized Chern–Simons action which is reduced to the Kahler
action~48!. Of course, the Kahler structure must play an important role in this generalized Ch
Simons theory. Happily, such a theory along this idea has already been proposed. In fact
years ago Nair and Schiff45 proposed what they called Kahler–Chern–Simons theory. The ac
proposed by Nair and Schiff has the form

SKCS5
k

2p E
M33R

TrS A∧dA1
2

3
A∧A∧ADV,1Tr~FF1FF !, ~70!

whereF is the field strength inB43R, F is a Lie algebra value~2,0! form andM4 is a Kahler
manifold of real dimension four. It turns out thatSKCS provides an action description of anti-sel
dual gauge fields~instantons! on a four dimensional Kahler manifolds. Here, we are intereste
seeing if under quantizationSKCS is reduced to the Kahler-string action~48!. It can be shown,
however, that up to WSW term,SKCS leads to the action
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S35
1

2 E d212jA2ggi j
ab~j!

]xm

]j i
a

]xn

]j i
a Gmn~x!, ~71!

rather than~48!. Here,gi j
ab can be identified with a Kahler metric onB4, while Gmn(x) is given by

Gmn(x)5]mU]nU21, whereU is a locally definedG-valued function related to the gauge fieldA
by A5U21dU. Therefore, we conjecture that there must be a slightly different action from~70!,
with the property of reducing to~48!.

Nevertheless, the actionSKCS may be of special interest to relate matroid theory not only
string theory but to M-theory itself. In fact, it is known thatSKCS leads to a theory in terms o
fields in a target space ofN52 strings.46 In turn, N52 strings is one of the main proposals
M-theory.47 Moreover, it has been pointed out in Ref. 48 that a number of similarities e
between the other main proposal of M-theory, namely, matrix theory.49 In principle, forSKCS one
may repeat the formalism of Sec. IV. In fact, consider the partition function

ZKCS~L,k!5E DA exp~SKCS!)
r 51

n

W~Lr ,r r !, ~72!

whereW(Li ,r i) are the Wilson lines defined in~14!. It is tempting to speculate thatZKCS(L,k)
must be related to some knot invariant in a similar way thatZCS(L,k) is related to the Jone
polynomials. From this idea, since knots are in one-to-one correspondence with signed grap
should expect to find the desired relation between matroid theory andZKCS(L,k), which may lead
eventually to a matroid theory and M-theory connection.

In Sec. VI, we discussed an alternative possibility to connect matroids and strings. The
to consider the Schild type action for strings.~This action is equivalent to the Nambu–Goto acti
and may be considered as the starting point for the Zaikov and Dolan–Tchrakian constructio
p-branes.! We identify thesmn factor in ~55! with the tensorSmn associated to the chirotop
x~m,n! via the matroid bundle notion. Such identification may lead to the matroid/string con
tion if one consider the Chern–Simons structure in~69!, which becomes a Zaikov type action aft
using ~56!. It is important to mention that the discussion of Sec. VI can be generalized
straightforward way to any p-brane.50

Another possible route to connect matroid theory with M-theory comes from the wor
Gopakumar and Vafa51,52who have proved that topological strings are closely related to M-the
Since Chern–Simons formalism is linked to topological strings,35 it seems that we are closer t
make the matroid theory the underlying mathematical structure of M-theory~see Ref. 53 for
interesting observations about M-theory!.

Finally, besides the possible connection between matroid theory, and string theory, the p
formalism may be of special interest for quantum gravity based on the Ashtekar formalism54 ~see
also Ref. 55 and references therein!. The most interesting solutions of the Ashtekar constra
correspond to Witten’s partition function. Consequently, the duality symmetries~24! may also play
an important role in such solutions. It is known that the Vasiliev invariants become an impo
tool in the loop solutions of quantum canonical gravity in the Ashtekar formalism. Since
Vasiliev invariants can be understood as a generalization of the Jones polynomials, it m
interesting for further research to investigate whether matroid theory can be connected t
invariants.
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Axially symmetric monopole–antimonopole dipole solutions to the second-order
equations of a simple SU~2! Yang–Mills–Higgs model featuring a quartic Skyrme-
like term are constructed numerically. The effect of varying the Skyrme coupling
constant on these solutions is studied in some detail. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1630703#

I. INTRODUCTION

The SU~2! Georgi–Glashow model in the Bogomol’nyi–Prasad–Sommerfield~BPS! limit
supports monopoles1,2 which are solutions of the first-order self-duality equations.3,4 Away from
the BPS limit, when new gauge invariant and positive definite terms are added, the res
monopoles are described by the solutions to the second-order Euler–Lagrange equations,
to the first-order self-duality equations. Once these terms are introduced to the model, th
topological bound cannot be saturated.

BPS and non-BPS monopoles differ in two remarkable respects. First, the BPS multim
poles can be constructed analytically5–8 while the non-BPS monopoles, e.g., when the Hig
potential is present,1,2 can only be constructed numerically. Second, and perhaps physically
interestingly, BPS monopoles do not interact while non-BPS monopoles interact. In the pre
of a Higgs potential this interaction is known to be repulsive9,10 and has been verified to be s
numerically,11 while in the presence of Skyrme-like terms, higher order in both the Yang–M
~YM ! curvature and the Higgs covariant derivatives, this interaction can be both repulsiv
attractive.12 In a particularly simple such~Skyrme-like! model, this interaction was found13 to be
strictly attractive, and moreover it was found,13 rather unexpectedly, that the lowest energy bou
states were the axially symmetric ones and not those with Platonic symmetries.~It was unexpected
since this feature contrasts with that for Skyrmion bound states.14!

All the above-mentioned monopole solutions discussed are stable relative to the topo
lower bound whether they saturate this bound, as for the BPS monopoles, or not, as for no
ones. There is however another class of non-self-dual solutions to the second-order
Lagrange equations which are not stable and represent states of monopoles and antimono
equilibrium. The existence of such solutions was first proved by Taubes15 for the model featuring
no Higgs potential~and of course no higher order terms in the curvature and covariant deriva!,
namely, for the model which supports BPS multimonopoles. Such a non-BPS solution, nam
unstable solution of the second-order equations, was first constructed for this system with~3!
gauge group and subject to spherical symmetry by Burzlaff.16 More recently Ioannidou and
Sutcliffe17 employed a harmonic map anstaz to construct such spherically symmetric solutio
the same~BPS! system with gauge groups SU~3!, SU~4!, and SU~N!. Using results on sigma

a!Electronic mail: tigran@maxwell.thphys.may.ie
3020022-2488/2004/45(1)/302/8/$22.00 © 2004 American Institute of Physics
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model instantons, these authors17 also argued that the zero charge solutions they constru
described monopole–antiimonopole pairs.

A direct approach to constructing zero charge monopole–antimonopole pairs for the~2!
BPS model was used sometime ago by Ru¨ber.18 This was the numerical construction of axial
symmetric solutions with suitable boundary value conditions. More recently Kleihaus and K19

constructed this zero charge solution for the full Georgi–Glashow model featuring a Higgs p
tial, and they studied the effect of the Higgs potential in detail. To date, no such study has
reported in the literature pertaining to the model featuring higher order Skyrme-like terms.
background of the above-described scenario it is pertinent to carry out such a study.

This is the aim of the present work. We will consider the zero charge axially symm
monopole–antimonopole solutions as in Refs. 18 and 19, for the simple skyrmed Higgs
studied in Ref. 13 whose axially symmetric charge-2 monopoles are mutually attractive.
contrasts with the monopole–antimonopole solutions studied in Ref. 19 for the model w
charge-2 monopoles are mutually repulsive, which makes the comparison of our results with
of Ref. 19 interesting. In addition to constructing the vorticity-1 monopole–antimonopole
tions, as in Refs. 18 and 19, but now for the Skyrmed model here, we also construct the
sponding vorticity-2 solutions.

II. SKYRMED SU„2… YANG–MILLS–HIGGS MODEL

The static energy of the simplified Skyrme-like model considered is

E5E H 1

2
Tr$FmnFmn%1

1

4
Tr$DmFDmF%1

k

8
Tr$@DmF,DnF#@DmF,DnF#%

1
l

2
Tr$~F22h2!2%d3r ~1!

with field strength tensor of the su~2! gauge potentialAm5 1
2taAm

a ,

Fmn5]mAn2]nAm1 ig@Am ,An# , ~2!

and covariant derivative of the Higgs fieldF5tafa in the adjoint representation

DmF5]mF1 ig@Am ,F# , ~3!

and g denotes the gauge coupling constant,k the coupling strength of the quartic Skyrme-lik
Higgs kinetic term,l the strength of the Higgs potential, andh the vacuum expectation value o
the Higgs field.

The topological chargeQ is the well-known quantity

Q5
1

4ph
« i jkE Tr$Fi j DkF%d3r , ~4!

corresponding to the magnetic chargem5Q/g, and takes integer values that equal the wind
number of the Higgs field.20 The latter is encoded with the boundary conditions which yield
value of this integer.

To construct axially symmetric solutions that describe systems of monopoles and multim
poles, specific boundary conditions must be imposed at the Higgs field at infinity. For
multimonopoles, the Higgs field at infinity is described by the vortex numbern winding the
azimuthal anglew, n times and the polar angleu does not wind. Zero magnetic charge monopo
on the other hand, namely those we seek to construct, can be achieved by requiring tha
asymptotic Higgs field the polar angle is enhanced by another integerm. This can also be achieve
automatically by incorporating this integerm in the ansatz18,19 as will be in the following. The
integral~4! can be evaluated for a system withm zeros of the Higgs field~i.e., with m monopole
and antimonopole centers!, and with vorticityn, yielding
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Q54pnh3@12~21!m# . ~5!

In this paper we will restrict to the charge zero casem52 with vorticity n51, to carry out our
detailed analysis of the system, with special attention to thek dependence of the solutions. Afte
that, we will also briefly study the case ofn52 vorticity, again withm52. These are both
monopole–antimonopole solutions to the second-order equations carryingQ50.

III. STATIC AXIALLY SYMMETRIC QÄ0 ANSATZ

We choose the static, axially symmetric, purely magnetic ansatz employed in Ref. 18 f
monopole–antimonopole solution and in Refs. 21 and 22 for the sphaleron–antisphaleron s
of the Weinberg–Salam model. Here the gauge field is parametrized by

A050 , Ar5
H1

2gr
tw

(n) , Au5
~12H2!

g
tw

(n) , Aw52n
sinu

g
~H3t r

(2,n)1~12H4!tu
(2,n)!,

~6!

and the Higgs field by

F5h~F1t r
(2,n) 1F2tu

(2,n)! . ~7!

All functions H1 , H2 , H3 , H4 , F1 , andF2 depend on (r ,u) or equivalently on (r5r sinu, z
5r cosu), with the su~2! matricest r

(2,n) , tu
(2,n) , andtw

(n) defined in terms of the Pauli matrice
t1 ,t2 ,t3 as

t r
(2,n)5sin 2u~cosnwt11sinnwt2!1cos 2ut3 ,

tu
(2,n)5cos 2u~cosnw t11sinnw t2!2sin 2u t3 , ~8!

tw
(n)52sinnw t11cosnw t2 ,

and for later convenience we define

tr
(n)5cosnw t11sinnw t2 . ~9!

Note that the dependence on the vorticityn is encoded throught r
(2,n) and tu

(2,n) , and of course
tr

(n) .
We change to dimensionless coordinates, Higgs field, and coupling parameters by res

r→ r

gh
, F→hF , k→ k

g2h4 , l→ l

g2 ,

respectively. Then this ansatz leads to the field strength tensor

Fru52
1

2r
~]uH112r ] rH2!tw

(n) ,

Frw5
n

2r
$~sin 2uH122 sinuH1~12H4!2sinur ] rH3!t r

(2,n)

1~cos 2uH112 sinuH1H312 sinur ] rH4!tu
(2,n)%, ~10!
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Fuw52
n

2
$~2 sin 2u~H221!12 cosuH322 sinuH2~12H4!12 sinu]uH3!t r

(2,n)

1~2 cos 2u~H221!12 cosu~12H4!12 sinuH2H322 sinu]uH4!tu
(2,n)% ,

and the covariant derivative of the Higgs field

DrF5
1

r
$~r ] rF11H1F2!t r

(2,n)1~r ] rF22H1F1!tu
(2,n)% ,

DuF5~]uF122H2F2!t r
(2,n)1~]uF212H2F1!tu

(2,n) , ~11!

DwF5n$~sin 2u22 sinu~12H4!!F11~cos 2u12 sinuH3!F2%tw
(n) .

The dimensionless energy density then becomes

«5TrH 1

r 2 Fru
2 1

1

r 2 sin2 u
Frw

2 1
1

r 4 sin2 u
Fuw

2 J 1
1

4
TrH ~DrF!21

1

r 2 ~DuF!21
1

sin2 ur 2 ~DwF!2J
2

k

4
TrH 1

r 2 @DrF,DuF#21
1

r 2 sin2 u
@DrF,DwF#21

1

r 4 sin2 u
@DuF,DwF#2J

1l~~ uFu221!2!, ~12!

whereuFu5AF1
21F2

2 denotes the modulus of the Higgs field.
For a monopole–antimonopole pair we expect a magnetic dipole field for the asym

gauge potential. The dipole momentCm can be extracted from the gauge field functionH3 , in the
gauge where the Higgs field approaches asymototically a constant. Like in Ref. 19 we find

H35
Cm

r
sinu , ~13!

while all other gauge field functions decay faster.

IV. NUMERICAL RESULTS

As noted in Ref. 19 the ansatz Eqs.~6! and~7! possess a residualU(1) gauge symmetry. To
obtain an unique solution we use the gauge fixing condition19

Gf5
1

r 2 ~r ] rH122]uH2!50 . ~14!

The system of partial differential equations is solved numerically subject to the following bo
ary conditions, which respect finite energy and finite energy density conditions as well as
larity and symmetry requirements. These boundary conditions are at the origin

H1~0,u!5H3~0,u!50 , H2~0,u!5H4~0,u!51 , ~15!

sin 2uF1~0,u!1cos 2uF2~0,u!50 , ] r~cos 2uF1~0,u!2sin 2uF2~0,u!!50 , ~16!

at infinity

H1~`,u!5H2~`,u!50 , H3~`,u!5sinu , ~12H4~`,u!!5cosu, ~17!

F1~`,u!51 , F2~`,u!50 , ~18!
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and on thez axis

H1~r ,u50,p!5H3~r ,u50,p!5]uH2~r ,u50,p!5]uH4~r ,u50,p!50 , ~19!

F2~r ,u50,p!5]uF1~r ,u50,p!50 . ~20!

The numerical calculations were performed with the software packageCADSOL, based on the
Newton–Raphson method.23 We have carried out the main part of the numerical analysis for
case of unit vortex numbern51 in ~8! as in Refs. 18 and 19. In addition we have also stud
more briefly, the case ofn52.

Starting with the case of vorticityn51, we have constructed monopole–antimonopole so
tions for a large range of values of the coupling constantk. For vanishing coupling constantk the
monopole–antimonopole solution corresponds to a non-Bogomol’nyi solution of the BPS sy
for which our results are in good agreement with those of Ref. 19. Our numerical analysi
carried out for the Skyrmed model in the absence of the Higgs potential, namely withl50 in
~12!. We did however check that the presence of nonvanishingl does not change the qualitativ
properties of our solutions. As expected the only effect it has is in the larger asymptotic region,
where the modulus of the Higgs field, for example, reaches its asymptotic value faster, n
exponentially.

In Fig. 1 we show the normalized energy of the solitonsE/4ph and the energyEinf/4ph, of
the monopole–antimonopole pair with infinite separation corresponding to twice the energ

FIG. 2. The modulus of the Higgs field as a function ofr andz for k50 ~a! andk5100 ~b!, for n51.

FIG. 1. The energy of the monopole–antimonopole solution~solid line! and the energy of a monopole–antimonopole p
with infinite separation~dashed line!, for n51.
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charge-1 monopole, as functions of the coupling constantk. As can be seen from Fig. 1 the energ
of the monopole–antimonopole solution is less than the energy of a monopole–antimonopo
with infinite separation for all values ofk.

In Fig. 2 we exhibit the modulus of the Higgs fielduF(r,z)u as a function of the coordinate
r5Ax21y2 andz for k50 andk5100. The zeros ofuF(r,z)u are located on the positive an
negativez axis at6z0'2.1 for k50 and at6z0'1.5 for k5100. The distanced of the two
zeros of the Higgs field decreases monotonically with increasingk.

AsymptoticallyuF(r,z)u approaches the value 1. But at the origin the value of the modulu
the Higgs field decreases monotonically with increasingk ~see Fig. 3!. In the limit k→` uf0u
'0.015, and we expect the modulus of the Higgs field to be very small foruzu<4.

In Fig. 4 we show the energy density of the monopole–antimonopole solution as a funct
the coordinatesr5Ax21y2 andz for k50 andk5100. At the locations of the Higgs field th
energy density posesses maxima.

For small values of coupling constantk the equal energy density surfaces near the location
the zeros of the Higgs field assume a shape close to a sphere, centered at the location
respective zero@see Fig. 4~a!#. This presents further support for the conclusion that at the
zeros of the Higgs field a monopole and an antimonopole are located, which can be c
distinguished from each other, and which together form a bound state.

With increasingk the distanced between the monopole–antimonopole centers beco
smaller tending to a limit ask→`. At the same time the spherical equal energy surfaces in
4~b! become larger, and the equal energy density surfaces assume a shape that looks
intersection of two spheres@see Fig. 4~b!#, thus making it more difficult to distinguish the mono
pole from the antimonopole. The dependence of the separation lengthd is given in Table I below
as a function ofk.

FIG. 3. The modulus of Higgs fields at the origin as a function ofk, for n51.

FIG. 4. The dimensionless energy density as a function ofr andz for k50 ~a! andk5100 ~b!, for n51.
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Having exibited the qualitative properties of ourdipole solutions, we give the values of th
dipole moment that we calculated as a function of the coupling constantk, again in Table I. As
expected, with decreasingd the dipole momentCm also decreases.

Finally we constructed solutions for the case of vorticityn52. Most of the qualitative prop-
erties of these solutions do not differ from those of then51 case just described. The mo
noticeable quantitative difference concerns the value of the modulus of the Higgs field
origin, analogous with Figs. 1~a! and 1~b!. We do not exhibit here these analogous figures,
simply note that the the moduli of the Higgs fields at the origin aresmallerthan those in Figs. 1~a!
and 1~b! for the same values of the coupling constantk.

Another difference, qualitative though expected, is that the surfaces of equal energy a
spheres centered on thez axis but describe rings or tori around it. This is exhibited in Figs. 5~a!
and 5~b!, analogously with Figs. 4~a! and 4~b!.

Again, ask grows, the distiction between the monopole and antimonopole rings gets blu

V. SUMMARY

We have contructed axially symmetric solutions to a simple SU~2! Skyrmed YM–Higgs
model, with such boundary conditions that result in the description of a monopole–antimon
pair with zero magnetic charge. These solutions have lower mass than two infinitely sep
charge-1 monopoles, and since they are characterized by zero magnetic charge, are not t
cally stable.

When the usual boundary conditions are imposed, the Skyrmed SU~2! YM–Higgs model
employed here supports mutually attractive monopoles, including axially symmetric cha
monopoles. This is in contrast to the Georgi–Glashow model studied in Ref. 19 where due
Higgs potential the monopoles are mutually repulsive.11 Nevertheless, the qualitative features
the monopole–antimonopole solutions in the two models are similar. Increasing the Skyrm
pling constantk in the present model results in the approaching of the monopole and the
monopole centers down to a limiting value 2.53 ask→`, just as it does to the limiting value 3.
asl→` in the Georgi–Glashow modell being the Higgs coupling constant.~Our results are for
l50.)

Another parallel property in the two models is the changing dipole moment with respect
change in the Skyrme coupling constantk and the Higgs coupling constantl, in the two models,

TABLE I. Monopole–antimonopole separationd and dipole momentCm as a functions ofk.

k 0 9 16 25 36 49 64 100 8100 10 000
d 4.19 3.64 3.49 3.38 3.29 3.21 3.16 3.06 2.54 2.53

Cm 2.36 2.27 2.23 2.19 2.15 2.11 2.07 2.02 1.66 1.65

FIG. 5. The dimensionless energy density as a function ofr andz for k50 ~a! andk5100 ~b!, for n52.
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respectively. Specifically in the present model the magnetic moment decreases with increak,
with limiting value 1.64, while in the Georgi–Glashow model it decreases with increasingl, with
limiting value 1.55, in the same units.

Finally, we also studied the case of a zero charge monopole which has vortex numben52
rather thann51. The qualitative properties again stay unchanged. The most noticeable qua
tive difference of then52 solution is that the value of the modulus of the Higgs field at the or
is smaller than that of then51 solution, for the same value ofk, and the distance between the tw
centers is also smaller. For example atk525 the distanced53.38 for then51 solutions while
that for then52 is d51.33.
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We examine symmetry generators for exterior differential systems and for systems
of partial differential equations and apply the Cartan theory of exterior differential
systems to the Weyl–Lanczos equations and to the Lanczos wave equation in four
dimensions. We look at a number of examples of symmetries for the Weyl–Lanczos
equations in four dimensions and give examples of isovectors when the solution
manifold is the Schwarzschild, Kasner or Go¨del space–time. Solutions of the
Weyl–Lanczos system are automatically solutions of the Lanczos wave equation.
We give examples of symmetry generators for the Lanczos wave equation and find
that they are not automatically symmetry generators for the Weyl–Lanczos
equations. ©2004 American Institute of Physics.@DOI: 10.1063/1.1625076#

I. INTRODUCTION

A. The Weyl–Lanczos equations and the Lanczos tensor wave equation in four
dimensions

Lanczos13 generated the space–time Weyl conformal tensorCabcd from a tensor potentialLabc

by covariant differentiation and it is given by

Cabcd5L [ab][ c;d]1L [cd][ a;b]2* L @ab#@c;d#
* 2* L @cd#@a;b#

* , ~1!

where ‘‘;’’ denotes covariant differentiation. The index symmetries of the Lanczos tensorLabc

have to match the symmetries of~1! and so it is usual to add to the property

Labc5L [ab]c , ~2!

the antisymmetric condition

L [abc]50, ~3!

and the trace-free~gauge! condition

Las
s50 . ~4!

The space–time Weyl–Lanczos equations~1! can also be expressed as

Cabcd5Labc;d2Labd;c1Lcda;b2Lcdb;a1gbcL (ad)1gadL (bc)2gbdL (ac)2gacL (bd)

1 2
3 Lms

m;s~gacgbd2gadgbc!, ~5!

a!Electronic mail: pdolan@inctech.com
b!Electronic mail: agerber03@yahoo.co.uk
3100022-2488/2004/45(1)/310/17/$22.00 © 2004 American Institute of Physics

                                                                                                                

http://dx.doi.org/10.1063/1.1625076


o-

yl–
qs.
ions

ist and
out in

or the

. 16. A

also a
ome
in four
elp in

311J. Math. Phys., Vol. 45, No. 1, January 2004 Weyl–Lanczos relations, wave equation, symmetry

                    
whereLad5Lasd;
s2Las

s
;d and round brackets indicate symmetrization. We call~5! the Weyl–

Lanczos equations. The algebraic equations~2!–~4! leave us with only 16 independent comp
nents for theLabc . If we then introduce the differential gauge condition

Labs;
s50, ~6!

which we will denote byf ab
(DG)5Labs;

s50, we can simplify~5! considerably to get

Cabcd5Labc;d2Labd;c1Lcda;b2Lcdb;a2gbcLsad;
s2gadLsbc;

s1gbdLsac;
s1gacLsbd;

s . ~7!

The Weyl–Lanczos equations in solved form, which we denote byf abcd
(W) 50, are then given by

f abcd
(W) 5Cabcd2Labc;d1Labd;c2Lcda;b1Lcdb;a1gbcLsad;

s1gadLsbc;
s2gbdLsac;

s2gacLsbd;
s50 .

~8!

Theoretically, we could completely solve the six differential gauge conditions~6! for six further
componentsLabc and have only tenLabc components for ten independent space–time We
Lanczos equations. But here, we examine the most general situation first. We note that E~6!
and ~7! constitute a system of linear first-order partial differential equations in four dimens
which can easily be rewritten as an exterior differential system~EDS! in involution as was shown
in Ref. 1. Using the Janet–Riquier theory we could confirm these results.9 This theory only applies
in four dimensions as the Weyl–Lanczos problem in two and three dimensions does not ex
for five and maybe higher dimensions, we expect extra conditions to apply as we will point
later papers.

From the Weyl–Lanczos problem it is possible to generate a tensor wave equation f
~space–time! Lanczos potential from which the Penrose wave equation for the Weyl tensorCabcd

can be derived.8,18 Arising from the Weyl–Lanczos equations is the tensor wave equation

hLabc12Rc
sLabs2Ra

sLbcs2Rb
sLcas2gacR

lsLlbs1gbcR
lsLlas2

1
2 RLabc5Jabc , ~9!

where

Jabc5
1
2 Rc[a;b]2

1
6 gc[aR;b] ~10!

and

hLabc5gsmLabc;sm. ~11!

A new comprehensive survey of the Lanczos tensor also using spinors can be found in Ref
standard derivation of Penrose’s wave equation for the space–time Weyl tensor

hCabcd2CabsmCcd
sm24Casm[cCd]

sm
b1

R

4
Cabcd5J[ab][ c;d]1J[cd][ a;b]2* J@ab#@c;d#

* 2* J@cd#@a;b#
*

~12!

is given in Ref. 18. The Lanczos wave equation in solved form can be written as

Wabc5hLabc12Rc
sLabs2Ra

sLbcs2Rb
sLcas2gacR

lsLlbs1gbcR
lsLlas2

1
2 RLabc2Jabc50.

~13!

It was shown in Refs. 6 and 9 that the Lanczos tensor wave equation in four dimensions is
system in involution. Here, we are going to look at solutions with symmetries and find s
symmetry generators for both the Weyl–Lanczos equations and the Lanczos wave equation
dimensions. The knowledge of symmetries of a system of partial differential equations can h
finding further solutions of its equations. Before suggestingAnsätze for symmetry generators, we
introduce exterior differential systems~EDS! and isovectors.
                                                                                                                



g-
e gen-

e
tion of

ay

he
ding
tion
in Ref.

. A
good

312 J. Math. Phys., Vol. 45, No. 1, January 2004 P. Dolan and A. Gerber

                    
B. Historical comments

Over many papers culminating in 1962 Lanczos13 explored the analogy between electroma
netism as a field theory and general relativity. Thereby the following correspondences wer
erally established

field Fab↔Cabcd,

potential Aa↔Labc ,

current Ja↔Jabc .

In the 1962 paper13 the gravitational analog of the potential field relations

Fab5Aa;b2Ab;a ~14!

was found to be given by~1! with Labc satisfying ~2!–~4! in order to makeLabc algebraically
irreducible. Further, we have an electromagnetic gauge conditionAs

;s50 and analogously the
differential gauge condition~6! for Labc . The electric current relationJa satisfies

Ja5Fab
;b , ~15!

which is equivalent to a wave equation for the potentialAa . Of course, it is the vanishing of th
covariant derivatives of the electromagnetic gauge conditions that permit the causal propaga
Aa and so analogously the wave equation~9! for the Lanczos tensor propagatesLabc causally
because the covariant derivatives of the gauge conditions~6! have been removed. In the same w
the Schouten tensorJabc acts as a source for the Lanczos potential wave equation~9!. From the
potential wave equation forAa it is well known that we can obtain a field wave equation for t
field Fab . The wave equation~9! for the Lanczos potential can also generate the correspon
field wave equation~12!. The interest in the study of the Lanczos potential and its wave equa
is based on these analogies between electromagnetism and gravity. Fuller details are given
8.

II. LANCZOS POTENTIALS AND ISOVECTORS

An exterior differential system ~EDS! S over a formalN-dimensional manifoldM is given
by a set of differential forms$a i 1

(1) , a i 2
(2) , ...,a i p

(p)% with

a i 0
(0) zero-forms, 1< i 0<k0 ,

a i 1
(1) one-forms, 1< i 1<k1 ,

a i 2
(2) two-forms, 1< i 2<k2 ,

] ] ]

a i p

(p) p-forms, 1< i p<kp ,

where thek0 ,k1 ,...,kp give the number of zero-forms, one-forms and so on in the EDS
Pfaffian systemP is a special case of an EDS containing only zero-forms and one-forms. A
account of the theory of EDS can be found in Refs. 4, 5, 14, and 25.

We will assume that we are working on a formal manifoldM with dimensionN584 with
local jet coordinates (xa,Lbcd ,Pe f gh), where we have 4 independent variablesxe, 16 variables
Labc and 64 Pabcd at our disposal so thatN54116164584 on the first-order jet bundle
J 1(R4,R16). An introduction to jet bundles can be found in Ref. 19. When thePabcd are projected
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onto the space–time manifoldM they become the partial derivativesPabcd5]Labc /]xd. We can
write the Weyl–Lanczos equations as an EDSS with independence conditionV, which is given
by V5dx1∧dx2∧dx3∧dx4Þ0 when local coordinates (x1,x2,x3,x4) are used. The EDS is give
by

d fabcd
(W) 5d~L [ab][ c;d] !1d~L [cd][ a;b] !2d~* L @ab#@c;d#

* !2d~* L @cd#@a;b#
* !,

d fab
(DG)5d~Labs;

s!, ~16!

Kabc5dLabc2Pabcedxe ,

where details can be found in Refs. 6 and 9. Solutions to the Weyl–Lanczos equation
correspond to integral manifolds on which all forms in~16! vanish when restricted to subman
folds with f abcd

(W) 50,f ab
(DG)50. Tangent spaces to such integral manifolds are usually spanne

four Vessiot vector fieldswhich we will denote byV(1),...,V(4). A Vessiot vector fieldV is
defined as an annihilator of all one-forms in a Pfaffian system. This means thatVPD5P' and we
can write in local components

V5Ve
]

]xe 1Vabc
]

]Labc
1Vabcd

]

]Pabcd
1Vabcde

]

]Sabcde
.

If we consider the Lanczos wave equation, we need to incorporate a further 160 second-o
variables Sabcde so that our jet bundle is given byJ 2(R4,R16) with local coordinates
(xa,Lbcd ,Pe f gh,Si jklm) and formal dimensionN5411616411605244. TheSabcdebecome the
partial derivativesSabcde5]2Labc /]xd]xe when projected onto the space–time manifoldM . The
Pfaffian system for the Lanczos wave equation is given by

dWabc5d~ f abcs
~W! ;s!,

Kabc5dLabc2Pabcedxe, ~17!

Kabcd5dPabcd2Sabcdedxe ,

and the details can be found in Refs. 6 and 9. Because of the way the Lanczos wave equat
derived from the Weyl–Lanczos equations, any solutions to the Weyl–Lanczos equation
automatically solutions to the Lanczos wave equation.7,8

One can now examine whether such an EDSS or a Pfaffian systemP possesses symmetrie
The infinitesimal generators of the symmetries of an exterior differential system~EDS! S or of a
Pfaffian systemP are calledisovectors. IsovectorsX for either of the above systems have to ma
the Lie derivatives with respect toX of all one-forms involved in the Pfaffian system be line
combinations of the one-forms of the corresponding Pfaffian system itself. They are defin
follows:

Definition 1: Isovectors. X is an isovector of the EDSS means that the set of all Lie deriva
tives of the differential forms inS with respect to the vector field X are also differential forms
S: £XS,S. Dually, X is an isovector of the vector field systemV means that£XV,V.

In order to check whether a given vector fieldX is an isovector, it is useful to apply the H
Cartan formula

£Xa5Xcda1d~Xca! , ~18!

where c denotes the inner product operator anda is any differential form in the EDSS. If we
specializeS to be a Pfaffian systemP, then asubset ofthe set of isovectors is given by the set
Cauchy characteristic vector fieldsX which are given by Ref. 2.
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Definition 2: X is a Cauchy characteristic vector field of a vector field systemD, where we
normally haveD5P' for a given Pfaffian systemP, means that

Xca50 , Xcda50 ~mod P!,

for all one-formsa in P, wherec denotes the inner product operator.
We can also write our equations as systems of partial differential equations~PDEs! directly

and findsymmetry generatorsfor these systems, where details on this approach can be fou
Refs. 3, 17, and 22. A generatorY(P) of a point symmetry for the Weyl–Lanczos equations i
necessarily of the form

Y(P)5Yf~xe,La8b8c8!
]

]xf 1Yabc~xe,La8b8c8!
]

]Labc
1Yabcd

]

]Pabcd
~19!

with

Yabcd5
]Yabc

]xd 1Pa8b8c8d

]Yabc

]La8b8c8
2Pabc f

]Yf

]xd 2Pa8b8c8dPabc f

]Yf

]La8b8c8
. ~20!

More generally, we can look at generatorsZ(C) of contact symmetrieswhich are of the form

Z(C)5Zf~xe,La8b8c8 ,Pa8b8c8d8!
]

]xf 1Zabc~xe,La8b8c8 ,Pa8b8c8d8!
]

]Labc
1Zabcd

]

]Pabcd
,

~21!

but now with

Zabcd5
]Zabc

]xd 1Pa8b8c8d

]Zabc

]La8b8c8
2Pabc f

]Zf

]xd 2Pa8b8c8dPabc f

]Zf

]La8b8c8
1Sa8b8c8dk

]Zabc

]Pa8b8c8k

2Pabc fSa8b8c8dk

]Zf

]Pa8b8c8k
. ~22!

The conditions for either vector fieldsY(P) or Z(C) to be symmetry generators are then given

Y(P) f abcd
(W) [0 mod~ f abcd

(W) ! ,
~23!

Z(C) f abcd
(W) [0 mod~ f abcd

(W) ! ,

where f abcd
(W) is given by ~8!. If we are determining symmetry generatorsY(P) or Z(C) for the

Lanczos wave equation, then they have to satisfy

Y(P)Wabc[0 mod~Wabc! ,
~24!

Z(C)Wabc[0 mod~Wabc! ,

whereWabc is given by~13!, and the corresponding second-order componentsYabcde,Zabcdehave
to obey conditions which can be found in Refs. 3 and 22. The equations~20! and~22! respectively
for the componentsYabcd,Zabcd, and, if we are looking at second-order equations, the co
sponding equations for theYabcde,Zabcde as well, ensure that we obtain a contact structure
J 1(R4,R16) and onJ 2(R4,R16), respectively.

Now, we wish to consider a number of candidates for isovectors for the Weyl–Lan
equations and then for the Lanczos wave equation. In Ref. 9 it is shown that the Weyl–La
equations and the Lanczos wave equation possess no Cauchy characteristic vector field
means that we have to look for isovectors which are not Cauchy characteristic vector fields.
                                                                                                                



ations
llowing

pes 1

o

ni-
-

For
try
tion. It

r the

ild and
times.

e

r
s

315J. Math. Phys., Vol. 45, No. 1, January 2004 Weyl–Lanczos relations, wave equation, symmetry

                    
not attempt to give a complete discussion of the symmetry groups of the Weyl–Lanczos equ
and of the Lanczos wave equation here but to consider some examples. Consider the fo
Ansätze:

~1! Y5ce
]

]xe ,

~2! Y5cabc

]

]Labc
, ~25!

~3! Y5Yabc~xf !
]

]Labc
1Yabc,d~xf !

]

]Pabcd
,

wherece andcabc are arbitrary constants. The reader should note that the coefficients in ty
and 2 are only constants. This makes type 2 a special case of type 3 when theYabc are constants.
The presence of a nonvanishing coefficient for]/]Pabcd in type 3 forces both its coefficients t
have the form given in~25! if Eqs. ~20! or ~22! are to hold, respectively.

We know that Killing vector fields~KVs! are isometries of our underlying space–time ma
fold and symmetry generators for Einstein’s field equations.22 KVs are good candidates for sym
metry generators because for any KVj we always have £j¹5¹£j , where we used¹ here to
indicate covariant differentiation. If we look at the Weyl–Lanczos equations~7! and the differen-
tial gauge condition~6!, we see that they consist of terms all involving covariant derivatives.
KVs we know that £jCabcd50. It is obvious that particular KVs present examples of symme
generators of type 1 for the Weyl–Lanczos equations as well as for the Lanczos wave equa
is well known that a KVj is always a symmetry generator when it is based onignorable
coordinates. Suchj generate isovectors of type 1 for the Weyl–Lanczos equations and fo
Lanczos wave equation.

III. EXAMPLES OF SOLUTIONS AND ISOVECTORS FOR THE WEYL–LANCZOS
EQUATIONS

First, we look at those solutions, where weimpose£jLabc50 for some or for all KVs of a
given space–time. Then, we discuss some isovectors of type 3 for Kasner, Schwarzsch
Gödel space–times and it will be shown that no isovectors of type 2 exist for these space–

A. Kasner space–time

A line element for Kasner space–time can be given locally as

ds25dt22t2p1dx22t2p2dy22t2p3dz2 ~26!

with p11p21p351 and p1
21p2

21p3
251. We look at those solutionsLabc(t) which fulfill the

conditions £jLabcª0 for all 3 spatial KVs (]/]x ,]/]y , ]/]z) which the Kasner space–tim
admits. The only nonvanishing independent components of the Weyl tensor areCtxtx ,Ctyty . Using
Ltxx5t2p1(t22p2Ltyy1t22p3Ltzz) resulting from solving~4! for the componentLtxx , a solution for
the componentsLabc is as given in Ref. 7,

Ltxx5
1
3 ~p12 1

3!t
2p121 ,

Ltyy5
1
3 ~p22 1

3!t
2p221 , ~27!

Ltzz5
1
3 ~p32 1

3!t
2p321 ,

while all other components are identically zero. This solution~27! corresponds to a particula
integral manifold of which the tangent spaces are spanned by the four Vessiot vector field
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V(1)5
]

]t
1Ptyyt

]

]Ltyy
1Ptzzt

]

]Ltzz
1Vtyyt

(1) ]

]Ptyyt
1Vtzzt

(1) ]

]Ptzzt
,

V(2)5
]

]x
,

~28!

V(3)5
]

]y
,

V(4)5
]

]z
.

The Vtyyt
(1) andVtzzt

(1) are given by

Vtyyt
(1) 5t21~p21p3!Ptyyt2t2p222p321~p12p3!Ptzzt2

] f tyty
(W)

]t
,

~29!

Vtzzt
(1) 5t2p322p221~p22p1!Ptyyt1t21~p21p3!Ptzzt1t2(p32p1)

•S ] f txtx
(W)

]t
1

] f tyty
(W)

]t D ,

where thef abcd
(W) are given by~8!. Solution~27! is not the most general solution asV(1),...,V(4) do

not span the most general integral elements but correspond to a particular solution of the g
solution. If a system is not in involution, singular solutions can still exist. A solution is asingular
solution to the original system if for its characterssi(x) we have

si~x!,si at any pointx ~30!

of the space–time manifold so that they do not adopt their maximal values. The maximal v
for the si(x) were computed in Refs. 6 and 9 which are given by (s0 ,s1 ,s2 ,s3 ,s4)
5(32,16,16,16,0), but when restricted to the submanifoldf abcd

(W) 50,f ab
(DG)50 we gets0516 while

the other characters remain unchangeds15s25s3516,s450. We can find a modified Pfaffian
system for which the solution~27! turns into the general solution when we look at the integ
manifold characterized by

d fabcd
(W) ~V( i )!50,

d fab
(DG)~V( i )!50,

Kabc~V( i )!50,
~31!

dPabcx~V( i )!50,

dPabcy~V( i )!50,

dPabcz~V( i )!50,

where i 51,2,3,4. For this Pfaffian system, theV(1),...,V(4) of ~28! span a general integral ele
ment. The solution~27! now corresponds to the submanifold of~31! on which f abcd

(W) 50,
f ab

(DG)50. For our modified Pfaffian system leading to~31! theonly nonvanishing Cartan characte
is s0 which is simply the number of remaining independent one-forms. This is because

dKabc~V( i ),V( j )!50
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vanishes identically for any of the aboveV( i ),V( j ) in ~28!. Therefore, the modified system corr
sponding to~31! consists of acomplete systemto which the Frobenius theorem applies. Howev
the original system given only byd fabcd

(W) ,d fab
(DG) ,Kabc doesnot form a complete system.

We can also obtain this result using Janet–Riquier theory. Details of this theory, whic
volves thesymbolMq of a given system of PDEs of orderq denoted byRq , can be found in Refs
6, 12, 20, and 21. There, we obtain that the quantitiesaq

(k) correspond to the Cartan characte
sk , k51,2,3,4, in this case and these are also identically zero for a modified system given

f abcd
(W) 50 ~1!2~10!,

f ab
(DG)50 ~11!2~16!,

Pabcx50 ~17!2~32!, ~32!

Pabcy50 ~33!2~48!,

Pabcz50 ~49!2~64! .

It is easy to show that this modified system~32! consists of a complete system witha1
(1)5a1

(2)

5a1
(3)5a1

(4)50.
Lastly, we wish to determine some isovectors for Kasner space–time. A trivial calcul

shows that no isovectors of type 2 exist. Apart from the 3 isovectors]/]x ,]/]y , ]/]z of type 1,
we look for isovectors of type 3 of the form

Y5Yabc~xe!
]

]Labc
1Yabc,d~xe!

]

]Pabcd
. ~33!

Using algebraic computing as described in detail in Ref. 9, we see that the Weyl–Lanczos
tions together with the differential gauge condition~6! can be divided into eight groups of tw
equations each, where each group only involves two distinct components of theLabc . This leads
to the groups:

1 : Ltyy andLtzz in equationsf txtx
(W) , f tyty

(W) ;

2 : Ltxy andLtyx in equationsf txty
(W) , f xy

(DG) ;

3 : Lxyx andLyzz in equationsf txxy
(W) , f ty

(DG) ;

4 : Lxyy andLxzz in equationsf tyxy
(W) , f tx

(DG) ;

5 : Ltxz andLtzx in equationsf txtz
(W) , f xz

(DG) ;

6 : Ltyz andLtzy in equationsf tytz
(W) , f yz

(DG) ;

7 : Lxzx andLyzy in equationsf txxz
(W) , f tz

(DG) ;

8 : Lxyz andLxzy in equationsf txyz
(W) , f tyxz

(W) .

Solving the determining equations for such isovectors for each group separately leads
distinct isovectors already given in Ref. 9. Here, we are only interested in group1 for which we
obtain the isovector

Y5t (a22p3)
]

]Ltyy
1

~p3122p22a!

p221
t (a22p2)

]

]Ltzz
1~a22p3!t (a22p321)

]

]Ptyyt

1~a22p2!
~p3122p22a!

p221
t (a22p221)

]

]Ptzzt
, ~34!
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wherea adopts either of the values

a5~2p213p3!6~3p2
214p3

219p2p323p225p311!1/2. ~35!

The a in ~35! are solutions of the quadratic equation

a222~2p213p3!a1C50 , ~36!

where

C5p2
213~p2p31p2!15~p3

21p3!21. ~37!

They are real only for particular choices ofp1 ,p2 ,p3 . This isovector generates an exchan
amongst the componentsLtxx ,Ltyy ,Ltzz and their derivatives for solutions of the Weyl–Lancz
equations of the formLtxx(t),Ltyy(t),Ltzz(t).

B. Schwarzschild space–time

Next, we look at Schwarzschild space–time for which the line element in curvature co
nates is

ds25S 12
2m

r Ddt22S 12
2m

r D 21

dr22r 2du22r 2 sin2~u!df2 . ~38!

Schwarzschild space–time admits four well known Killing vector fields;24 two of them are based
on ignorable coordinates. When we impose the cyclic, trace-free and differential gauge con
~3!, ~4! and~6! as well as £jLabcª0 for all four KVs j, we obtain the well known solution given
in Ref. 24. It is given by

Lruu52
rm

3~r 22m!
,

~39!

Lrff52
rm

3~r 22m!
sin2~u! ,

where all other components can be chosen to be identically zero. The four Vessiot vector
spanning the integral elements (E4)x of the solution manifold corresponding to~38! can be given
as

V(1)5
]

]t
,

V(2)5
]

]r
1~Pabcr1Pabcu!

]

]Labc
1Vabcr

(r ) ]

]Pabcr
1Vabcu

(r ) ]

]Pabcu
,

~40!

V(3)5
]

]u
1~Pabcr1Pabcu!

]

]Labc
1Vabcr

(u) ]

]Pabcr
1Vabcu

(u) ]

]Pabcu
,

V(4)5
]

]f
,

whereVabcr
(r ) ,Vabcu

(r ) ,Vabcr
(u) ,Vabcu

(u) are given in the Appendix. The above solution corresponds
submanifold of the integral manifold characterized by
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d fabcd
(W) ~V( i )!50,

d fab
(DG)~V( i )!50,

~41!
Kabc~V( i )!50,

d~£jLabc!~V( i )!50,

where i 51,2,3,4 and on whichf abcd
(W) 5 f ab

(DG)5£jLabc50. This modified system is complete an
therefore trivially in involution with onlys05s08 nonvanishing. Using Janet–Riquier theory w
could confirm this result, where we obtained thata1

(1)5a1
(2)5a1

(3)5a1
(4)50 holds again.

Now, we wish to determine some isovectors for Schwarzschild space–time. We foun
again no isovectors of type 2 exist and we look at anAnsatzof type 3 which is given by

Y5Yabc~r ,u!
]

]Labc
1Yabc,r

]

]Pabcr
1Yabc,u

]

]Pabcu
. ~42!

Using algebraic computing based on REDUCE9 we see that the ten Weyl–Lanczos equations a
the six differential gauge conditions form four groups each only involving four different com
nents of all the 16 distinct Lanczos componentsLabc . These groups are:

1 Lrur ,Lruu ,Lrff ,Luff in equationsf trtr
(W) , f trtu

(W) , f tutu
(W) , f ru

(DG) ;

2 Ltru ,Ltur ,Ltuu ,Ltff in equationsf turu
(W) , f trr u

(W) , f tr
(DG) , f tu

(DG) ;

3 Lruf ,Lrfu ,Lrfr ,Lufu in equationsf trtf
(W) , f tutf

(W) , f rf
(DG) , f uf

(DG) ;

4 Ltrf ,Ltfr ,Ltuf ,Ltfu in equationsf trr f
(W) , f truf

(W) , f turf
(W) , f tf

(DG) .

We give 4 examples of isovectors for the Weyl–Lanczos equations for Schwarzschild space
corresponding to the four groups1 to 4 above. Note that unfamiliar factors such aser 2/2 may
occur becauseY(1) to Y(4) are examples ofsymmetry generatorsfor the Weyl–Lanczos equations
for Schwarzschild space–time. For group1 , we obtain an isovector

Y(1)5
1

r sin2~u!

]

]Lruu
2

1

r

]

]Lrff
2

1

r 2 sin2~u!

]

]Pruur
2

2

r

cos~u!

sin3~u!

]

]Pruuu
1

1

r 2

]

]Prffr
.

~43!

For group 2 , an isovector has the form

Y(2)5
~2m2r !

sin2~u!

]

]Ltuu
2~2m2r !

]

]Ltff
2

1

sin2~u!

]

]Ptuur
12~2m2r !

cos~u!

sin3~u!

]

]Ptuuu
1

]

]Ptffr
,

~44!

whereas an isovector for group3 is given by

Y(3)5
er 2/2

sin~u!

]

]Lruf
1

er 2/2

sin~u!

]

]Lrfu
1

rer 2/2

sin~u!

]

]Prufr
2

er 2/2 cos~u!

sin2~u!

]

]Prufu
1

rer 2/2

sin~u!

]

]Prfur

2
er 2/2 cos~u!

sin2~u!

]

]Prfuu
. ~45!

Lastly, an isovector for group4 is of the form
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Y(4)5
r 3/2~r 22m!1/2

sin~u!

]

]Ltuf
1

r 3/2~r 22m!1/2

sin~u!

]

]Ltfu
1

1

2 sin~u!
@3r 1/2~r 22m!1/2

1r 3/2~r 22m!2 1/2#
]

]Ptufr
2r 3/2~r 22m!1/2

cos~u!

sin2~u!

]

]Ptufu
1

1

2 sin~u!
@3r 1/2~r 22m!1/2

1r 3/2~r 22m!2 1/2#
]

]Ptfur
2r 3/2~r 22m!1/2

cos~u!

sin2~u!

]

]Ptfuu
. ~46!

Each of these isovectors generates exchanges amongst some of the corresponding Lancz
ponentsLabc given in 1 to 4 and their partial derivatives.

C. Gödel space–time

Next, we examine a space–time with nondiagonalizable metric tensor and aG5 as its isometry
group, namely the Go¨del space–time. The line element can be given as

ds25a2~dt22dx22dz21 1
2 e2xdy212exdtdy! , ~47!

wherea is an arbitrary constant. Go¨del space–time admits aG5 of motions of which three KVs
commute as they are based on ignorable coordinates alongt, y andz.11 We look for a solution
which only depends onx and we use anAnsatzbased on exponentials ofx. Such a solution exists
and is given by

Ltxy5
a2

18
ex ,

Ltyx52
a2

18
ex , ~48!

Lxyy52
a2

6
e2x ,

while all other independent components vanish identically. This solution coincides with the
tion in Ref. 15, where a different set of local coordinates was used. We can look at the mo
system which is again of the form~41!. This modified system is again a complete system, a re
which is confirmed using Janet–Riquier theory here as well. The integral manifold correspo
to ~48! possesses tangent spaces which are spanned by the four Vessiot vector fields

V(1)5
]

]t
,

V(2)5
]

]x
1Ptxyx

]

]Ltxy
1Ptyxx

]

]Ltyx
1Pxyyx

]

]Lxyy
1Vtxyx

(2) ]

]Ptxyx
1Vtyxx

(2) ]

]Ptyxx
1Vxyyx

(2) ]

]Pxyyx
,

~49!

V(3)5
]

]y
,

V(4)5
]

]z
,

where the componentsVtxyx
(2) ,Vtyxx

(2) ,Vxyyx
(2) are given by
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Vtxyx
(2) 5e2xPxyyx1Ptxyx2e2xLxyy1

1
6 a2ex ,

Vtyxx
(2) 52Ptxyx , ~50!

Vxyyx
(2) 5exLtyx2

7
2 exLtxy24Lxyy1

5
2 exPtxyx22exPtyxx13Pxyyx2

1
3 a2e2x .

Now, we wish to determine a number of isovectors for Go¨del space–time and look at anAnsatzof
type 3 as no isovectors of type 2 do exist here either. Such anAnsatzcan be given by

Y5eaxcabc

]

]Labc
1aeaxcabc

]

]Pabcx
~51!

for some constantsa andcabc . We see that the ten Weyl–Lanczos equations and the six di
ential gauge conditions can be split into four groups each containing only four distinct compo
Labc this time given by

1 Ltxy ,Ltyx ,Lxyy ,Lxzz in equationsf txtx
(W) , f tyty

(W) , f txxy
(W) , f ty

(DG) ;

2 Ltyy ,Ltzz,Lxyx ,Lyzz in equationsf txty
(W) , f tyxy

(W) , f tx
(DG) , f xy

(DG) ;

3 Ltyz ,Ltzy ,Lxzx,Lyzy in equationsf txtz
(W) , f txyz

(W) , f tyxz
(W) , f xz

(DG) ;

4 Ltxz ,Ltzx ,Lxyz,Lxzy in equationsf tytz
(W) , f txxz

(W) , f tz
(DG) , f yz

(DG) .

Here, we are again only interested in finding an example of the above type for group1 . After
some calculations we find the isovector

Y5eax
]

]Ltxy
2

2~2a23!

D~a!
eax

]

]Ltyx
1S a1

2~3a11!

D~a! De(a11)x
]

]Lxyy
1

2~2a211!

D~a!
e(a21)x

]

]Lxzz

1aeax
]

]Ptxyx
2

2~2a23!a

D~a!
eax

]

]Ptyxx
1~a11!S a1

2~3a11!

D~a! De(a11)x
]

]Pxyyx

1~a21!
2~2a211!

D~a!
e(a21)x

]

]Pxzzx
, ~52!

whereD(a)52a226a21 anda has to satisfy the quartic equation

a422a317a2220a2 5
4 50 . ~53!

From numerical approximations based on REDUCE using the Newton–Raphson method w
that there are two real roots which satisfy~53!. They are given by

a1520.061 166 927 586 6,
~54!

a252.492 142 058 35,

whereas the other two roots are complex and therefore not relevant for us for forming isove
The isovectors corresponding toa1 anda2 lead to an exchange amongst the solution compon
Ltxy(x),Ltyx(x),Lxyy(x),Lxzz(x).

D. pp-wave space–times with a G5

Here, we will see that it is impossible to find a solution to the Weyl–Lanczos equation
pp-space–times for which we impose £jLabcª0 for all KVs j at the same time. Plane-wav
space–times which admit aG5 as an isometry group can be found in Ref. 23. We write the
element of a plane-wave space–time like
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ds252dudr1~h11X
212h12XY1h22Y

2!du22dX22dY2 , ~55!

with h11,h12,h22 being functions ofu only. Following Ref. 10 we can perform a coordina
transformation so that the line element turns into

ds252dudv2e2U~eV cosh~W!dx222 sinh~W!dxdy1e2V cosh~W!dy2! , ~56!

where nowU, V andW are functions ofu only. For linearly polarized gravitational waves, we c
always setWª0.10 The five Killing vector fields are given in Ref. 10, where three of them
given byj15]/]x , j25]/]y , j35]/]v based on ignorable coordinates and the other two a

j45x
]

]v
1P2~u!

]

]x
1N~u!

]

]y
,

~57!

j55y
]

]v
1N~u!

]

]x
1P1~u!

]

]y
,

where

P6~u!5E e(U6V) cosh~W!du, N~u!5E eU sinh~W!du.

A solution, where £jLabcª0 was imposed only forj1 , j2 andj3 , is given in Ref. 24. We wish
to see whether we can obtain a solution, where £jLabcª0 is imposed for all 5 KVs. This leads to
the expressions

Luxx5eV
cosh~W!

sinh~W!
~Luyx22Luxy! ,

Luyy5
1

eV sinh~W! FLuxyS sinh~W!2
2

sinh~W! D1LuyxS 1

sinh~W!
22 sinh~W! D G , ~58!

Luvu5
eU

sinh~W!
~2Luxy2Luyx! ,

whereLuxu ,Luyu ,Luxy ,Luyx can be chosen arbitrarily and all other components vanish identic
The trace-free condition~4! leads to equations of the form ‘‘050’’ except for Lu

s
s50 so that all

Labc apart fromLuxu andLuyu can be expressed in terms ofLuxy with

Luyx52S 32sinh2~W!

3 sinh2~W!11DLuxy . ~59!

We now have to check whether thisAnsatzsatisfies the Weyl–Lanczos equations. The o
nonvanishing components remaining aref uxux, f uxuy, f uyuy. But this Ansatzfails to satisfy all
three equationsf uxux, f uxuy, f uyuy at the same timeas it is shown in detail in Ref. 9. Therefore, n
solutions to the Weyl–Lanczos equations for pp-space–times, which at the same time
vanishing Lie derivatives alongall 5 KVs, do exist but other solutions such as the solution in R
24 can be found.

IV. SOME SOLUTIONS AND ISOVECTORS FOR THE LANCZOS WAVE EQUATION

The Lanczos wave equation in four dimensions~9! consists of a system in involution a
shown in Ref. 9. Some solutions for~9! are given in Ref. 7 for Kasner, Schwarzschild and Bon
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space–times. They are also solutions to the Weyl–Lanczos equations such that the one for
corresponds to~27!, the one for Schwarzschild to~39! and the one for Go¨del to ~48!.

As for examples of isovectors for the Lanczos wave equation, we see thatKVs based on
ignorable coordinates are isovectors for the Lanczos wave equation. Further symmetry generator
for Kasner, Schwarzschild and Go¨del space–times can be constructed in the same way as fo
Weyl–Lanczos equations except that we have to use the prolonged second-order version

Y5Ye
]

]xe 1Yabc

]

]Labc
1Yabcd

]

]Pabcd
1Yabcde

]

]Sabcde
, ~60!

where the general expression for theYabcdecan be found in Refs. 17 and 22. The prolonged fo
of symmetry generators of the same form as~33! is given by

Y5Yabc~xe!
]

]Labc
1Yabcd~xe!

]

]Pabcd
1Yabcde~xe!

]

]Sabcde
~61!

for any space–time and its componentsYabcd,Yabcde simply are

Yabcd5
]Yabc

]xd , Yabcde5
]Yabcd

]xe .

But they are not necessarily symmetry generators for the Lanczos wave equation as we w
Solving the equations £YdWabc50 for Kasner space–time usingAnsatz~61!, we obtain

Y5tb
]

]Ltyy
1 f ~b,p1 ,p2 ,p3!tg

]

]Ltzz
1bt (b21)

]

]Ptyyt
1 f ~b,p1 ,p2 ,p3!gt (g21)

]

]Ptzzt

1b~b21!t (b22)
]

]Styytt
1 f ~b,p1 ,p2 ,p3!g~g21!t (g22)

]

]Stzztt
, ~62!

whereg5b22p212p3 and f (b,p1 ,p2 ,p3) is given by

f ~b,p1 ,p2 ,p3!5
~b224p2b2p1

224p1p223p2p313p22p3!

~p32p11p1p22p2p31p1
22p3

2!
. ~63!

The quantityb has to satisfy the quartic equation

05b428p2b31b2~16p2
222p1

214p3
216p212p324p1p228p1p3210p2p3!24p2b~426p1

2

24p1p224p1p326p2p31222p1!11216p2p3
3116p2p3

228p2p318p2232p3
4148p3

3

232p3
218p3 . ~64!

We note that depending on particular choices ofp1 ,p2 ,p3 , we can obtain forb four real, two real
and two complex, or four complex solutions to~64!. We are not going to specify the conditions o
p1 ,p2 ,p3 because this leads to rather cumbersome calculations. However, using polynomia
sion, we find that the two solutions fora given by ~35! for isovectors for the Weyl–Lanczo
equations arenot solutions to~64! when prolonged to second order because we cannot facto
~36! out of ~64! without a remainder term.

If we determine isovectors forGödel space–time using anAnsatzof type ~61! as well, we
obtain isovectors of the form
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Y5ebx
]

]Ltxy
1 f 1~b!ebx

]

]Ltyx
1 f 2~b!e(b11)x

]

]Lxyy
1 f 3~b!e(b21)x

]

]Lxzz
1bebx

]

]Ptxyx

1 f 1~b!bebx
]

]Ptyxx
1 f 2~b!~b11!e(b11)x

]

]Pxyyx
1 f 3~b!~b21!e(b21)x

]

]Pxzzx

1b2ebx
]

]Stxyxx
1 f 1~b!b2ebx

]

]Styxxx
1 f 2~b!~b11!2e(b11)x

]

]Sxyyxx

1 f 3~b!~b21!2e(b21)x
]

]Sxzzxx
, ~65!

and, wheref 1(b), f 2(b), f 3(b) are given by

f 1~b!58
~b412b31 5

2 b21 3
2 b27!

D~b!
,

f 2~b!5
~4b428b3132b218b169!

D~b!
, ~66!

f 3~b!5
~4b614b522b4216b3129b215b1 267

2 !

D~b!
,

whereD(b) is given by

D~b!54b4116b3228b2112b2109. ~67!

Becauseb has to be such that £YdWabc50, b has to satisfy the equation

b92 3
2 b822b61 31

2 b52 107
4 b4133b3253b21 573

16 b2 171
32 50 . ~68!

Using numerical computing based on REDUCE applying the Newton–Raphson method t
equation, we find that~68! possesses three distinct real roots which are given by

b150.204 256 218 397,

b250.782 257 036 153, ~69!

b351.5,

of which b351.5 is an exact result and from which we can form three distinct isovectors. Ag
we see that these isovectors forb1 ,b2 ,b3 are not just prolonged versions of the isovectors for
Weyl–Lanczos equations.

An Ansatzof type~61! could be used for Schwarzschild space–time as well but this is a ra
cumbersome calculation and we will not carry it out explicitly. It remains future work to exam
the symmetry groups of both the Weyl–Lanczos equations and of the Lanczos wave equatio
systematically.

V. CONCLUSIONS

For Kasner, Schwarzschild and Go¨del space–times there exist solutions of the Weyl–Lanc
equations with Lie symmetries along all Killing directions. For pp-space–times no such solu
exist, which shows that not all KVs are symmetry generators for the Weyl–Lanczos equatio
only those which are based onignorable coordinates. Some isovectors for the Weyl–Lanczo
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equations which indicate an exchange amongst some of the componentsLabc were given for
Kasner, Schwarzschild and Go¨del space–times.

All solutions for the Weyl–Lanczos equations in four dimensions are automatically solu
for the Lanczos wave equation, and KVs based on ignorable coordinates are also isovectors
Lanczos wave equation. We found that isovectors for the Weyl–Lanczos equations arenot auto-
matically isovectors for the Lanczos wave equation when prolonged to second order. We
some examples for Kasner and Go¨del space–times. A more thorough examination of the resp
tive symmetry groups of the Weyl–Lanczos equations and of the Lanczos wave equation re
future work though.
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APPENDIX: VESSIOT VECTOR FIELDS

Here, we give the componentsVabcr
(e) ,Vabcu

(e) of the Vessiot vector fieldsV(2),V(3) for
Schwarzschild space–time for a solution to the Weyl–Lanczos equations, wheree5r ,u:

Vtuur
(e) 52Ptuue

m

r ~2m2r !
2Ptffe

m2r

sin2 ur ~2m2r !
2r 2

] f tr
(DG)

]e
2S ] f turu

(W)

]e D 1

2m2r
,

Vtuuu
(e) 5Ptffe

cot~u!

sin2~u!
2Ptuue cot~u!1

] f tu
(DG)

]e
,

Vtffr
(e) 5Ptuue

~r 2m!sin2~u!

r ~2m2r !
2Ptffe

m

r ~2m2r !
1S ] f turu

(W)

]e D sin2~u!

2m2r
,

Vtffu
(e) 5Ptuue cos~u!sin~u!1Ptffe cot~u!1S ] f trr u

(W)

]e D r sin2~u! ,

Vtufr
(e) 52Ptufe

2m23

r ~2m2r !
2Ptfue

3m2r

r ~2m2r !
2

] f turf
(W)

]e
,

Vtufu
(e) 52Ptfue cot~u!2S ] f trr f

(W)

]e D r ~2m2r ! ,

Vtfur
(e) 5Ptfue

3m22r

r ~2m2r !
1Ptufe

3r 28m13

r ~2m2r !
1

] f truf
(W)

]e
2

] f turf
(W)

]e
,

Vtfuu
(e) 5Ptufe cot~u!2r 2

] f tf
(DG)

]e
,

~A1!

Vruur
(e) 5Pruue

~10m2219mr14r 2!

r ~2m2r !2 1Prffe

~6m225mr1r 2!

r ~2m2r !2 sin2~u!
1

r 3

2m2r S ] f trtr
(W)

]e D
2

r 2

~2m2r !2 S ] f tutu
(W)

]e D ,

Vruuu
(e) 5Pruue cot~u!1Prffe

cot~u!

sin2~u!
1

] f ru
(DG)

]e
,
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Vrffr
(e) 5Pruue

~6m225mr1r 2!

r ~2m2r !2 sin2~u!1Prffe

~10m229mr12r 2!

r ~2m2r !2 1S ] f tutu
(W)

]e D ~r !2 sin2~u!

~2m2r !2 ,

Vrffu
(e) 5Pruue cos~u!sin~u!1Prffe cot~u!1S ] f trtu

(W)

]e D r 3 sin2~u!

2m2r
,

Vrufr
(e) 5Prufe

m

r ~2m2r !
1Prfue

r 2m

r ~r 22m!
2S ] f tutf

(W)

]e D r 2

~r 22m!2 ,

Vrufu
(e) 5Prfue cot~u!1

r 3

r 22m S ] f trtf
(W)

]e D ,

Vrfur
(e) 5Prufe

r 2m

r ~r 22m!
2Prfue

m

r ~r 22m!
1

r

~r 22m!

] f uf
(DG)

]e
2S ] f tutf

(W)

]e D r 2

~r 22m!2 ,

Vrfuu
(e) 5r 2

] f rf
(DG)

]e
2Prufe cot~u! ,

where f ab
(DG)5Labs

;s as defined before.

1Bampi, F. and Caviglia G., ‘‘Third-order tensor potentials for the Riemann and Weyl tensors,’’ Gen. Relativ. Grav15,
375–386~1983!.

2Barco, M. A. and Prince, G. E., ‘‘Solvable symmetry structures in differential forms applications,’’ Acta Appl. Math66,
89–121~2001!.

3Bluman, G. W. and Kumei, S.,Symmetries and Differential Equations~Springer Verlag, New York, 1989!.
4Bryant, R. L., Chern, S. S., Gardner, P. B., Goldschmidt, H. L., and Griffiths, P. A.,Exterior Differential Systems (EDS
~Springer Verlag, New York, 1991!.
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WKB analysis of the Regge–Wheeler equation down
in the frequency plane

Alec Maassen van den Brinka)

Physics Department, The Chinese University of Hong Kong, Hong Kong, China
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The Regge–Wheeler equation for black-hole gravitational waves is analyzed for
large negative imaginary frequencies, leading to a calculation of the cut strength for
waves outgoing to infinity. In the—limited—region of overlap, the results agree
well with numerical findings@Leunget al., Class. Quantum Grav.20, L217 ~2003!#.
Requiring these waves to be outgoing into the horizon as well subsequently yields
an analytic formula for the highly damped Schwarzschild quasinormal modes,in-
cluding the leading correction. Just as in the WKB quantization of, e.g., the har-
monic oscillator, solutions in different regions of space have to be joined through a
connection formula, valid near the boundary between them where WKB breaks
down. For the oscillator, this boundary is given by the classical turning points;
fascinatingly, the connection here involves an expansion around the black-hole
singularity r 50. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1626805#

I. INTRODUCTION

Black-hole axial gravitational waves of angular momentum,>2 are described~in units
c5G52M51) by the Regge–Wheeler equation1,2 ~RWE!

@dx
21v22V~x!#c~x,v!50, ~1!

V~r !5S 12
1

r D F,~,11!

r 2 2
3

r 3G , ~2!

wherex5r 1 ln(r21) is the tortoise coordinate andr the circumferential radius;V(r ) accounts for
the Schwarzschild background. The long-range nature of this potential,V(x)2,(,11)/x2

;2,(,11)lnx/x3 for x→` ~Ref. 3!, is well known to cause a branch cut in the~retarded! Green’s
function of ~1! on the negative imaginary axis~NIA ! in the v plane.

For damping g[ iv↓0, this cut causes an algebraically decaying late-time tail in
gravitational-wave signal.4,5 For moderateg and 2<,<4, it has recently been investigate
numerically,6 leading to a clear conjecture for the large-g behavior. In a separate development, t
strings of quasinormal modes~QNMs! parallel on both sides of the cut and close to it seem to o
clues to the quantum theory, in particular to a calculation of the Bekenstein entropy in
quantum gravity and to the quantum of area.7 These motivate studying also the branch cut asym
totically, which will turn out to have ample independent interest.

In each, sector and in the frequency domain, the RWE is one dimensional, so the a
mentioned Green’s functionḠ(x,y)5Ḡ(y,x) can be written as

Ḡ~x,y;v!5
f ~y,v!g~x,v!

J~v!
, y,x. ~3!

a!Electronic mail: alec@dwavesys.com
3270022-2488/2004/45(1)/327/9/$22.00 © 2004 American Institute of Physics
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Here, f solves ~1! with the left outgoing-wave boundary condition~OWC! f (x→2`,v)
;1•e2 ivx and thus represents waves going into the horizon, whileg(x→`,v);1•eivx corre-
sponds to waves going to infinity;J5g f82 f g8 is their Wronskian. In the physical regio
xPR, these asymptotic definitions are unambiguous only for Imv>0, from where the functions
are continued analytically. The normalizations off ,g have been fixed for definiteness, butJ in the
denominator renders~3! normalization independent. SinceV(x→2`);ex, the functionf (x,v)
is single valued inv. Thus it is intuitively clear, and readily shown,6 that the branch cut inḠ can
be expressed in terms of the one ing.

Focusing on the latter, we defineg6(v) as the continuations from Re6v.0 and Dg
[g12g2 . Since g6(x,2 ig);1•egx satisfy thesame ~linear, second-order! wave equation,
Dg(x,2 ig);0•egx is the small solution}g(x,1 ig). The simple symmetryg(2v* )5g* (v)
rendersDg imaginary, so we introduce the real cut strengthq through4,8

Dg~x,2 ig!5 iq~g!g~x,1 ig!. ~4!

Since g is defined by the OWC atx→`, ~4! definesq not merelyx independent, but rathe
independent ofV(x) at any finitex: if, say, V1(x.L)5V2(x.L), the correspondingq1 andq2

are identical. Thus,q economically characterizesDg ~and ultimatelyDḠ), and our task can now
be specified as calculating the asymptotics ofq(g→`).

II. WKB SOLUTIONS

For Imv,0, in particular on the NIA, the simple asymptotic definition ofg(v) becomes all
but meaningless, since it is impossible to distinguish the decaying component;e2gx ~to be set to
zero! from the ‘‘pure’’ outgoing wave;egx, where this limiting form, however, has algebra
corrections to all orders inV. One way out is to complement the analytic continuation in f
quency with one inspace,8–10 so that the productivx retains a negative real part. However,
terms ofx, the very equation~1! is multiple valued, so that the analysis henceforth will proceed
the complexr plane, viz.,

@r 2~r 21!2dr
21r ~r 21!dr2~r 21!$,~,11!r 23%1v2r 4#g50. ~5!

It is possible to impose the OWC forg1(r ,2 ig) @g2(r ,2 ig)# directly and stably for
r→2` and continue the solutions to the physicalr .1 in the upper~lower! half plane.8 That is,
apart from a trivial overall phase,g6 are thesamesolutions asr grows from2`, until they are
prescribed to encircle the singularityr 50 in opposite directions. Hence, closer study of this po
should shed light on their differenceDg.

At least away from the singularitiesr 50,1 and the anti-Stokes lines~v.i.!, one expects to have
asymptotic expansionsga(r ,v) andga(r ,2v), with

ga~r ,v!;@~r 21!er # ivH 11
g1~r !

v
1

g2~r !

v2 1¯J , ~6!

where the first factor is just a plane wave in the tortoise coordinate. Substitution yields

g1~r !5
1

2i È
r ds s

s21
V~s!5 i F,~,11!

2r
2

3

4r 2G ,
g2~r !5

1

4
V~r !2

1

8 F È r ds s

s21
V~s!G2

52
3N

8r 2 1
,~,11!26

8r 3 1
15

32r 4 , ~7!

where
                                                                                                                



y are
he

g
, the

the eye

erfeld
down,
has

t.

329J. Math. Phys., Vol. 45, No. 1, January 2004 WKB analysis of the Regge–Wheeler equation

                    
N58S ,12
4 D5

4

3
n~n11!

with n[ 1
2(,21)(,12). That is, these two orders still agree with the upshot ofv expanding the

standard WKB expression, though this is no longer true forg3 , which involvesV8 ~of course,
there are higher-order corrections to WKB as well!.

The anti-Stokes lines of the RWE on the NIA for this expansion are shown in Fig. 1. The
the curves whereu(r 21)er u51 ~i.e., Rex50); for g→`, these are the boundaries where t
solutions~6! change between exponentially growing and decaying characters.

Thus, the solution which is small forr→2` can be continued to the region includin
x.0, but this only yields the exponentially growing part one knew all along. From there
solutioncannotbe continued back tox,0 ~where its imaginary part could be identified! because
of the Stokes phenomenon. For the latter continuation, we apparently have to pass through
of the storm—the black-hole singularityr 50 ~Ref. 11!. Nearr 50, the expansion~6! is not valid,
for higher-order terms only become small ifur u@1/Ag. One therefore has to match~possibly
different! expansions in terms ofga in the regionsuargr2pu< p/4 anduargru< p/4, respectively.
This is similar to the connection procedure near classical turning points in Bohr–Somm
quantization. However, near the latter it is merely the asymptotic expansion which breaks
while the original~Schrödinger! wave equation is perfectly regular. In our case, the connection
to be carried out across a singularity of the RWE.

III. CONNECTION FORMULA

Series expansion aroundr 50 is standard:12

c1~r !5r 31
62,~,11!

5
r 41O~r 5!, ~8!

c2~r !5r 211
2n

3
1

N

4
r 1

,~,11!N

12
r 21

V22v2

4
c1~r !ln r 1O~r 4!, ~9!

where both error terms are single valued and where we introduced thealgebraically special
frequencyV52 iN/2 ~Refs. 8 and 13!. However, because of the large term}v2 in the RWE~5!,
higher-order terms in these expansions can only be omitted ifur 2vu!1 ~cf. the given terms ofc2).
Thus, there is no overlap with the region of validity ofga, where matching could be carried ou
Still, the above series forc1,2 will be useful for comparison,inter alia, yielding the exact
monodromy14 c2(re2p i)5c2(r )1 i (p/2) (V22v2)c1(r ) andc1(re2p i)5c1(r ).

FIG. 1. Anti-Stokes lines of the RWE for negative imaginary frequencies.
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A usable matching solution follows by effectively resumming the large-g parts of higher-order
terms in~8!,~9!. In practice, it is more convenient to setr[t/Ag and sort powers ofg :

@ t2dt
22tdt232t4#c5

1

Ag
@2t3dt

22t2dt2$,~,11!13%t#c1O~g21![R~ t !, ~10!

c5c (0)1c (1)1¯ .

The lowest order follows by equating the right-hand side of~10! to zero:

c1
(0)~ t !5

4i t

g3/2J1S t2

2i D , ~11!

c2
(0)~ t !5

ipAg

4
tY1S t2

2i D . ~12!

These have not been written in terms of modified Bessel functions, since the subsequent m
is best done on the anti-Stokes lines wheret2/2i is real. Subsequently,c1

(0) figures as an inhomo
geneous term in the equation forc1

(1) , solved by

c1
(1)~ t !5

p

4
tE

0

t ds

s2 FY1S t2

2i D J1S s2

2i D2J1S t2

2i DY1S s2

2i D GR1~s!, ~13!

R1~s!5
4i

g2 H 2@s62ns2#J1S s2

2i D2 is4J0S s2

2i D J . ~14!

Note that the occurrence ofY1 does not spoil the analyticity ofc1
(1) . In particular, fort→0 the

above readily reproduces thet4 term found in~8! by direct expansion. The counterpart forc2

reads

c2
(1)~ t !5

p

4
tY1S t2

2i D E0

t ds

s2 J1S s2

2i DR2~s!1
p

4
tJ1S t2

2i D F E0

t

dsH 8in

ps4 2Y1S s2

2i D R2~s!

s2 J 1
8in

3pt3G ,
~15!

R2~s!5
ip

4 H 2@s62ns2#Y1S s2

2i D2 is4Y0S s2

2i D J , ~16!

where we introduced a ‘‘counterterm’’ in order to keep the second integral finite nears50. Again,
one verifies that the leading small-t correction@}t0 in ~9!# is reproduced correctly. Using th
standard branching properties of theYn one now finds that, up to this second order,c2(te2p i)
5c2(t)1 i (p/2) g2c1(t), so that the exact monodromy is approached foruvu@uVu.

In fact, we can follow the transformation ofc1,2
( i ) under rotation in more detail by using th

standardJn(2z)5(2)nJn(z) andYn(e6 ipz)5(2)n@Yn(z)62iJn(z)#, implying

c1
(0)~ i t !52 ic1

(0)~ t !, ~17!

c1
(1)~ i t !5c1

(1)~ t !, ~18!

c2
(0)~ i t !52 ic2

(0)~ t !1
pg2

8
c1

(0)~ t !, ~19!

c2
(1)~ i t !5c2

(1)~ t !1 i
pg2

8
c1

(1)~ t !. ~20!
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These relations streamline the asymptotic expansion. Namely, look along argt5 p/4, where
c1,2

(0)e23p i /4PR andc1,2
(1)PR, so that their expansions will read

c1~ t !;
4

Apg3 Fet2/2H 11
a

Ag
J 1e2t2/2H 2 i 1

a*

Ag
J 1O~ t22!1OS t3

Ag
D 1O~g21!G , ~21!

c2~ t !;
Apg

4 Fet2/2H 2 i 1
b

Ag
J 1e2t2/2H 11

b*

Ag
J 1O~ t22!1OS t3

Ag
D 1O~g21!G . ~22!

The occurrence ofO(t3/Ag) ~which, however, doesnot generate additionalt0/Ag terms! means
that these hold for 1!t!g1/6 or g21/2!r !g21/3, conveniently handled as a double asympto
expansion int andl[g/t6. The power-law asymptotic corrections int follow directly from the
RWE; the real nonlocal information is contained ina, b.

We can use the general rules~17!–~20! to transform~21!,~22! to argt5 3p/4 and demand
consistency for the (}e2t2/2) part that dominates forp/4,argt,3p/4. This leads toaPR and
Im b52a. By subsequently demanding consistency also for the combination ofc1 andc2 which
is minimal in the same sector, one finds

b52~21 i !a . ~23!

Thus, this algebraic exercise circumvented directly expanding the integrals~15! for c2
(1) .

IV. MATCHING

For uargt2pu,3p/4 one can do the analogous expansion ofg1(t,2 ig)5ga(t,2 ig) in ~6!.
Again, one finds a Gaussian form ift!g1/6 ~Ref. 15!:

g1~ t,2 ig!;eipge2t2/2F11
3

4t2 2
15

32t4 2
t3

3Ag
2

t

4Ag
1

5216,~,11!

32tAg
1

t6

18g
1h.o.t.G ;

~24!

the first factor comes from encircling the horizonr 51. The leading corrections verify the consi
tency of expansions~21!,~22!, and ~24!, obtained in very different ways; all that matters for th
matching is@¯#5110•t0/Ag1¯ .

Comparison shows that

g1e2 ipg5
Ap

8
@3ig3/21~223i !ag1O~Ag!#c11

2

Ap
S 2

1

Ag
1

a

g
1O~g23/2!D c2, ~25!

which can be matched back to solutions in terms ofga on argt5 p/4, yielding

g1~2 ig!5ga~2 ig!12e2p igS i 1
a

Ag
D ga~1 ig! ~26!
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in the region~bounded by anti-Stokes lines! including r 51. Hence, in particular in the physica
part x,0 of that region, one has

Dg~2 ig!52i Im g1~2 ig!54i Fcos~2pg!1
a

Ag
sin~2pg!Gg~1 ig![ iq~g!g~1 ig!. ~27!

Already, the numerically observed asymptotics6 of q(g) have been confirmed. For the co
rections, it remains to calculatea in closed form. Let us start with then-dependent term in~14!,
which clearly cannot be combined with the other two. Straightforward manipulations yiel
contribution toc1

(1) as (argt5 p/4)

c1
(1)~ t !;

A8p

g2 nFcosS t2

2i
1

p

4 D E
0

` dz

Az
J1~z!Y1~z!1cosS t2

2i
1

3p

4 D E
0

` dz

Az
J1

2~z!G . ~28!

By considering the asymptotics of*0
K(dz/Az)J1(z)H1

(1)(z) (H are Hankel functions! in the upper-
half K plane@again using the formula forY1(eipz) above~17!#, one convinces oneself that in fa
*0

`(dz/Az)J1(z)Y1(z)52*0
`(dz/Az)J1

2(z), which is also necessary for this contribution toa to

be real. The latter integral is tabulated as*0
`(dz/Az)J1

2(z)5G( 1
4)

4/12p5/2 ~Ref. 16!. Thus, the
present contribution toa reads

a152
nG~ 1

4!
4

24p3/2. ~29!

The last term of ~14! analogously leads to the integrals*0
`dzAzJ1(z)J0(z)

52*0
`dzAzY1(z)J0(z)5G( 1

4)
4/16p5/2, for a contribution

a25
G~ 1

4!
4

32p3/2. ~30!

However, the first term of~14!, with its higher power ofs, leads to diverging integrals:

E
0

K

dz z3/2J1
2~z!;

2

3p
K3/21

1

2p
AK cos~2K !1c31O~K21/2!, ~31!

E
0

K

dz z3/2J1~z!Y1~z!;
1

2p
AK sin~2K !1d31O~K21/2!. ~32!

If d352c3 , these lead to a real contribution

a3522pc3. ~33!

Unfortunately, the general*0
Kdz z3/2J1

2(z)5(K9/2/18)2F3( 3
2,

9
4;2,3,13

4 ;2K2) does not help directly,
since not enough seems to be known about the asymptotics of2F3 . Instead, one can proceed a
follows: d352c3 can again be proven by studying*0

Kdz z3/2J1(z)H1
(1)(z) in the upper-half plane.

It is then logical to also consider*0
Kdz z3/2H1

(1)(z)2, in which one can takeK→ i`. One finds

c35
&

p2 E
0

`

dw w3/2K1
2~w!5

5G~ 1
4!

4

192p5/2. ~34!

The rest is straightforward:~29!, ~30!, and~33! with ~34! can be added and substituted into~27!,
from which one can read off our final answer
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q~g!;4 cos~2pg!1
G~ 1

4!
4

12p3/2@12,~,11!#
sin~2pg!

Ag
1O~g21!, ~35!

where G( 1
4)

4/12p3/252.586... . Theresult for the leading term has appeared before in Ref.
preliminary results from a transmission-amplitude calculation seem support the form for th
rections, in particular, the, dependence.17

V. DISCUSSION

The above analysis, forr ,g→`, is the third instance where the mathematics of the RWE n
r 50 has been seen to influence the goings-on in our universer .1. The first instance is the
question of ‘‘anomalous’’ vs ‘‘miraculous’’ waves outgoing into the horizon, i.e.,r↓1 and
2gPN ~Ref. 8, Sec. VI!. The second instance is the dynamics at and around the algebra
special frequencyg5N/2, where the RWE has closed-form solutions, whose global behavio
the r plane can therefore be traced.6,8

Besides the axial waves described by the RWE~1!, ~2! there are also polar waves, describ
by the Zerilli equation.18 However, the latter’s ‘‘intertwining’’ or supersymmetry relation to th
RWE yields its cut strength asq̃(g)5@(N/22g)/(N/21g)#q(g) ~Ref. 8!. Thus,q andq̃ agree up
to an overall sign, plusO(g21) corrections immaterial to~35!.

For an outlook, the first obvious item is the numerical verification of~35!, in particular of the
subleading correction. A brute-force increase of numerical precision in the existing meth
unlikely to suffice, especially for,>3. More promising is to calculateg6(2 ig) directly on the
NIA, instead of through extrapolation to this axis. In the series forg(v) ~Refs. 6 and 12!, the
problem for Rev→0 is not convergence but rather obtaining the individual~irregular-
hypergeometric! terms reliably. Working this out should be mainly a matter of time, but it rema
to be seen if it would sufficiently extend the range of validity ing.

Related to this, it is worth re-emphasizing8 that the present method involves two conceptua
separate steps:~a! the continuation inr , stabilizing the OWC at infinity in the lower-halfv plane,
leading to a well-defined computational problem, and~b! the asymptotics, by which one ca
actually solve this problem analytically for largeg. The second step is optional,9 and numerical
integration ofg1 from r 52` ~combined with standard series solutions forf ) should soon open
up the thirdv quadrant~i.e., behind the cut! to direct exploration, especially for at most modera
damping.

It would also be interesting if this work could be compared to the closed-form expressio
q(g) in ~31!–~33! of Ref. 4, through the coefficientsdL

(n) of an expansiong}(L52`
` dL

(n)uL1n ;
here,uL1n are Coulomb wave functions. As usual, thedL

(n) satisfy a three-term recursion relatio
~given in a simplified form, which can be made purely real on the NIA, in Sec. VI F of Ref.!;
0<n,1 is to be chosen such thatdL

(n) is the minimal solution to this relation for bothL→`
and2`. The adiabatic ansatz of slowly varyingdL11

(n) /dL
(n) readily yields asymptotic solutions fo

g→`, except nearL56g and L50. Following Ref. 19, one can try to develop connecti
formulas near these three points, which would determinen analytically. At the ‘‘turning points’’
L56g, the three-term recursion asymptotically degenerates into atwo-term one, and the connec
tion proceeds exactly as in Ref. 19. NearL50, however, all three terms are of the same or
~in g!, and the recursion remains in the form of analytically intractable continued fractions~i.e.,
without simplifying to products!. Thus, this route for now seems unfeasible.

At least to leading order, the method of continuation through the vicinity ofr 50 has mean-
while independently been used to calculate the high-damping QNM frequencies.11 On the one
hand, this yields more information on the QNMwave functionsthan the continued-fraction
technique.19 On the other, this clearly establishes a relation to the present problem of the br
cut strengthq(g). Thus one can expect alsonumericalresults for these two high-damping aspec
of the RWE to bear on each other, and an extension to other black-hole models. Converse
work’s progress on the corrections should help finding theO(uvu21/2) terms for the asymptotic
QNM frequencies. Meanwhile, this has indeed been possible; see the Appendix.
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In particular, these developments render it urgent to study the branch cut of the R
Green’s function also for other values of the spins, where~2! corresponds tos52. Notably, the
highly damped electromagnetic (s51) QNMs are predicted11,19 to approach the NIA asymptoti
cally so that one expects an even closer, though yet unknown, relation to the branch cut
case.
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APPENDIX: HIGH-DAMPING QNMs

For frequencies close to the NIA, it should certainly be possible to analytically continue~26!
and find thoseg for which g1 also satisfies the OWC into the horizon, i.e.,g1(v)} f (v). These
should identify the highly damped QNMs. Here,f is characterized by its monodromy around t
horizon:

f ~~r 21!e2p i ,v!5e2pv f ~r 21,v!. ~A1!

Inspecting~6!, it seems thatf (v)5ga(2v), but this is deceptive. While itis true that f (2v)
5ga(v) in the lower-half v plane, the asymptotic nature of the large~near r 51) solution
ga(2v) means that naive rotation ofr 21 only confirms the desired monodromy to domina
order, whereasf is required to obey it exactly.

The solution is to, in the spirit of Refs. 11 and 17, do the rotation along the anti-St
contour in Fig. 1, where neither solution dominates the other~skippingr 50 on the inside!. By the
normalization off one knows the dominant component, so we take the ansatz

f ~2 ig!5ga~ ig!1c~g!ga~2 ig!. ~A2!

Continuing this from the physicalx50 to 1/Ag!ur u!1 with argr5 p/4, one finds

f ~2 ig!;e2 ipget2/21c~g!eipge2t2/2

;
Apg3

8 Fe2 ipgH 11
~ i 22!a

Ag
J 1c~g!eipgH i 1

~21 i !a

Ag
J Gc1

1
2

Apg
Fe2 ipgH i 2

a

Ag
J 1c~g!eipgH 11

a

Ag
J Gc2; ~A3!

the second line followed by comparison with~21!,~22!. As before,~17!–~20! make quick work of
continuing this to argr52 p/4, where it can be matched back to a combination ofga(6 ig). One
thus finds f ((r 21)e2p i ,2 ig)5e22p igga(r 21,ig)1@2i (12a/Ag)1c(g)e2p ig#ga(r 21,2 ig).
Indeedf as in~A2! obeys~A1! to dominant order for anyc, while the subdominant (}c) term by
itself has the opposite monodromy, corresponding to incoming waves—both as stipulated
Equation~A1! holds exactly for

c~g!;2
12a/Ag

sin~2pg!
. ~A4!

As required,c(gPR)PR, since the exponential tail ofV(x→2`) does not generate a branch c
in f (v). Also the poles for 2gPN are not surprising, since the RWE is known to have su
anomalous pointsfor 2g51,2,..., with exactlyoneexception at 2g5N ~Ref. 8!; clearly, the latter
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is beyond the reach of the present asymptotics. Expressingf (6v), g(6v) not throughga but in
terms of each other, theS matrix could be read off; cf. Ref. 17 for the leading order.

Combining~26!, ~A2!, and~A4!, all that remains is to asymptotically solve

05J~2 ig!}sin~2pg!12e2p igS i 1
a

Ag
D S 12

a

Ag
D 'sin~2pg!12ie2p igS 12

~11 i !a

Ag
D .

~A5!

Reexpressing the answer in terms ofv and substitutinga from the main text, one obtains

vn5
ln 3

4p
2S n

2
1

1

4D i 1
&G~ 1

4!
4

144p5/2 ~11 i !
,~,11!21

An
1O~n21!, ~A6!

where the prefactor of the correction evaluates to 0.097 007... . Thevn have automatically come
out on the physical sheet ofg1 ; contrast Ref. 19, which is not sheet-specific. Agreement with~29!
and~30! in Ref. 20 is excellent; as anticipated in the discussion, this numerical confirmation o
value ofa via theQNMsgreatly supports~35! for thecut. To my knowledge, this is the first time
that the correction to the highly damped Schwarzschild QNM frequencies has been calc
analytically.
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One of the difficulties encountered when studying physical theories in discrete
space–time is that of describing the underlying continuous symmetries~like Lor-
entz, or Galilei invariance!. One of the ways of addressing this difficulty is to
consider point transformations acting simultaneously on difference equations and
lattices. In a previous article we have classified ordinary difference schemes invari-
ant under Lie groups of point transformations. The present article is devoted to an
invariant Lagrangian formalism for scalar single-variable difference schemes. The
formalism is used to obtain first integrals and explicit exact solutions of the
schemes. Equations invariant under two- and three-dimensional groups of Lagrang-
ian symmetries are considered. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1625418#

I. INTRODUCTION

A recent article was devoted to a symmetry classification of second-order ordinary diffe
equations.1 This was modeled on a paper by Sophus Lie, in which he provided a symm
classification of second order ordinary differential equations~ODEs!.2 As a matter of fact, the
classification of difference schemes goes over into Lie’s classification of ODEs in the contin
limit.1

Lie showed that a second-order ODE can be invariant under a groupGr of dimensionN
50,1,2,3, or 8. ForN>2 the equation can be integrated in quadratures. This can be don
transforming the equation to one of the ‘‘canonical’’ forms, integrated by Lie himself.2 Virtually all
standard methods of integrating second-order ODEs analytically can be interpreted in this m
~though this is not mentioned in most elementary textbooks!.

The situation with difference equations is much less developed. This is not surprising,
applications of Lie group theory to difference equations are much more recent.3–27 Several differ-
ent approaches are being pursued. One possibility is to consider the difference equations on
lattice3–13 and consider only transformations that do not act on the lattice. In order to o
physically interesting symmetries in this approach, it is necessary to go beyond point symm
and to let the transformations act on more than one point of the lattice. Lie algebra contra
occur in the continuous limit and some ‘‘generalized’’ symmetries may ‘‘contract’’ to point one10

The second possibility is to consider group transformations acting both on the diffe
equations and on the lattice.1,17–27 Technically, for systems involving one dependent and o

a!Electronic mail: dorod@spp.Keldysh.ru
b!Electronic mail: kozlov@ifi.uio.no
c!Electronic mail: wintern@crm.umontreal.ca
3360022-2488/2004/45(1)/336/24/$22.00 © 2004 American Institute of Physics
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independent variable, this is achieved by considering a difference scheme, consisting
equations, one representing the actual difference equation, the other the lattice.

This is the approach that we will follow in the present article. More specifically, we
consider the same three-point scheme as in our previous article.1 The continuous limit of the
scheme, if it exists, will be a second-order ODE.

Thus, we consider two variables,x andy, with x the independent one andy dependent. The
variablex runs through an infinite set of values$x5xk , kPZ% that are not necessarily equal
spaced and are not prescribeda priori. Instead, we give two relations between any three nei
boring points

F~x,x2 ,x1 ,y,y2 ,y1!50, ~1.1!

V~x,x2 ,x1 ,y,y2 ,y1!50 ~1.2!

and also specify some initial conditions likex0 , x1 , y05y(x0), y15y(x1). In the continuous
limit Eq. ~1.1! goes into an ODE,~1.2! into an identity~like 050), if the continuous limit exists.

The group transformations considered in this approach are of the same type as for
They are generated by a Lie algebra of vector fields of the form

X5j~x,y!
]

]x
1h~x,y!

]

]y
. ~1.3!

The corresponding transformations are purely point ones, since the coefficientsj and h depend
only on (x,y), not on the shifted points (x1 ,y1) or (x2 ,y2).

In Ref. 1 we showed how Lie group theory can be used to classify such pairs of equatio
~1.1! and ~1.2!. Possible dimensions of the symmetry groupG of Eqs. ~1.1! and ~1.2! are N
50,1,2,3,4,5, and 6. The highest dimension,N56, occurs only for difference schemes equivale
to

y122y1y2

~x12x!2 50, x122x1x250.

The purpose of this article is to provide a Lagrange formalism and difference analog of Noe
theorem for second-order difference schemes of the form~1.1! and ~1.2!, admitting Lie point
symmetry groups. The Lagrangians will be used to obtain first integrals and exact analytic
tions of the difference schemes.

II. GENERAL THEORY

A. Definitions and notations

We study the difference system~1.1! and~1.2!. In general, we assume that these equations
be solved to expressx1 and y1 explicitly in terms of (x,y,x2 ,y2) and also vice versa, i.e
(x2 ,y2) in terms of the other quantities. We also make use of the following quantities:

h15x12x, h25x2x2 , yx5
y12y

h1
, yx̄5

y2y2

h2
,

~2.1!

yxx̄5
2

h11h2
~yx2yx̄!,

i.e., the up and down spacings inx, the right and left discrete first derivatives and the discr
second derivative, respectively. It is also convenient to use the following total shift and dis
differentiation operators:
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S
6h

f ~x!5 f ~x6!, D
6h

5

S
6h

21

6h6
.

Continuous first and second derivatives are denotedy8 andy9, respectively.
When acting on differential equations, the vector fields~1.3! must be prolonged to act o

derivatives. For difference schemes, the prolongation of a vector field acts on variables a
points of the lattice. It is obtained by shifting the coefficients to the corresponding points. For
point schemes we have

pr X5X1j~x2 ,y2!
]

]x2
1j~x1 ,y1!

]

]x1
1h~x2 ,y2!

]

]y2
1h~x1 ,y1!

]

]y1
. ~2.2!

B. Lagrangian formulation for second-order ODEs

It has been known since Noether’s fundamental work that conservation laws for differ
equations are connected with their symmetry properties.28–31 For convenience we present he
some well-known results adapted to the case of second-order ODEs.

Let us consider the functional

L~y!5E
I
L~x,y,y8!dx, I ,R1, ~2.3!

where L(x,y,y8) is called a first-order Lagrangian. The functional~2.3! achieves its extrema
values wheny(x) satisfies the Euler–Lagrange equation

dL

dy
5

]L

]y
2DS ]L

]y8D50, D5
]

]x
1y8

]

]y
1y9

]

]y8
1¯ , ~2.4!

whereD is the total derivative operator. Equation~2.4! is an ODE that can be rewritten as

y95 f ~x,y,y8!. ~2.5!

Let us consider a Lie point transformationG generated by the vector field~1.3!. The groupG
is a ‘‘variational symmetry’’ of the functionalL if and only if the Lagrangian satisfies

prX~L !1LD~j!50, ~2.6!

when prX is the first prolongation of the vector fieldX for y8. We will actually need a weake
invariance condition than given by Eq.~2.6!. The vector fieldX is an ‘‘infinitesimal divergence
symmetry’’ of the functionalL(y) if there exists a functionV(x,y) such that28

prX~L !1LD~j!5D~V!, V5V~x,y!. ~2.7!

The two important statements for us follow.
~1! If X is an infinitesimal divergence symmetry of the functionalL, it generates a symmetr

group of the corresponding Euler–Lagrange equation. The symmetry group of Eq.~2.4! can of
course be larger than the one generated by symmetries of the Lagrangian.

~2! Noether’s theorem28–31can be based on the following Noether-type identity,31 which holds
for any vector field and any functionL:

prX~L !1LD~j!5~h2jy8!
dL

dy
1DS jL1~h2jy8!

]L

]y8D . ~2.8!
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It follows that if X is a divergence symmetry ofL, i.e., ~2.6! or ~2.7! is satisfied, then there
exists a first integral

jL1~h2jy8!
]L

]y8
2V5K5const ~2.9!

of the corresponding Euler–Lagrange equation.
The above considerations tell us how to obtain invariant ODEs and conservation laws

divergence invariant Lagrangians. They do not tell us how to obtain invariant Lagrangian
invariant equations. This amounts to ‘‘variational integration,’’ as opposed to variational diffe
tiation.

A procedure that we shall use in the following to find invariant Lagrangians for differe
equations can be summed up as follows.

Start from a given ODEy95 f (x,y,y8) and its symmetry algebra with basis

Xa5ja~x,y!
]

]x
1ha~x,y!

]

]y
, a51, . . . ,k.

Find the invariants ofXa in the space$x,y,y8,L%, whereL is the Lagrangian. The appropriat
prolongation in this case is

prX5j
]

]x
1h

]

]y
1z1

]

]y8
2~Dj!L

]

]L
, z15D~h!2y8D~j! ~2.10!

and we require thatL(x,y,y8) should satisfy

prX~L2L !uL5L50. ~2.11!

Each basis elementXa provides us with an equation of the form

ja

]L

]x
1ha

]L

]y
1za

1 ]L

]y8
2LD~ja!50. ~2.12!

Solve the partial differential equations~2.12!. This will give us the general form of an invari
ant Lagrangian. It may involve arbitrary functions of the invariants ofX.

Request that the Euler–Lagrange equation~2.4! should coincide with the equation we starte
from. This will further restrict the invariant Lagrangian and determine whether one exists.

If this procedure does not yield a suitable Lagrangian, then step 1 can be weakened. W
request that the Lagrangian be invariant under some subgroup of the symmetry group of the
ODE, rather then the entire group. We then go through step 2, then verify whether the ob
Lagrangian is divergence invariant under the entire group, or at least a larger subgroup.
case, each divergence symmetry of the Lagrangian will provide a first integral of the ODE

For ODEs the Lagrangian formalism is not the only integration method. The existen
one-parameter symmetry group provides a reduction to a first-order ODE directly. The exi
of a two-parameter symmetry group makes it possible to integrate in quadratures. An inv
Lagrangian provides an alternative. Indeed, assume that we know two first integrals

f 1~x,y,y8!5A, f 2~x,y,y8!5B, ~2.13!

then we eliminatey8 from these two equations and obtain the general solution

y5F~x,A,B!, ~2.14!
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of the corresponding ODE~2.5! by purelyalgebraicmanipulations. It is this method of invarian
Lagrangians that generalizes to difference equations and is particularly useful when direct m
fail.

C. Lagrangian formalism for second-order difference equations

The variational formulation of discrete equations and a discrete analog of Noether’s the
are much more recent.19,25–27 Here we briefly overview the results that we shall need in
following.

Let us consider a finite difference functional

Lh5(
V

L~x,x1 ,y,y1!h1 , ~2.15!

defined on some one-dimensional latticeV with steph1 that generally can depend on the soluti

h15w~x,y,x1 ,y1!. ~2.16!

The functional~2.15! must be considered together with a lattice~2.16!. On different lattices it
can have different continuous limits and in this limit the lattice equation itself vanishes~turns into
an identity like 050)

In the continuous case, a LagrangianL provides an equation~the Euler–Lagrange equation!
that inherits all the symmetries ofL. In the discrete case we wish the Lagrangian~2.15! to provide
two equations: the entire difference system~1.1!, ~1.2!. Moreover, the three-point difference sy
tem should inherit the symmetries of two-point Lagrangian.

Let us again consider a Lie group of point transformations, generated by a Lie algeb
vector fieldsXa of the form ~1.3!. The infinitesimal invariance condition of the functional~2.15!
on the lattice~2.16! is given by two equations:19,25,27

j
]L
]x

1j1
]L
]x1

1h
]L
]y

1h1
]L
]y1

1LD
1h

~j!50,

~2.17!
S

1h
~j!2j5X~w!,

where

j15j~x1 ,y1!, h15h~x1 ,y1!. ~2.18!

Let us consider a variation of the difference functional~2.15! along some curvey5f(x) at
some point (x,y). The variation will effect only two terms in the sum~2.15!:

Lh5¯1L~x,x2 ,y,y2!h21L~x,x1 ,y,y1!h11¯ , ~2.19!

so we get the following expression for the variation of the difference functional:

dLh5
dL
dx

dx1
dL
dy

dy, ~2.20!

wheredy5f8dx and

dL
dx

5h1

]L
]x

1h2

]L2

]x
1L 22L,

dL
dy

5h1

]L
]y

1h2

]L2

]y
,

whereL 25S2h(L).
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Thus, for an arbitrary curve the stationary value of difference functional is given by
solution of thetwo equations, calledquasiextremal equations,

dL
dx

50,
dL
dy

50. ~2.21!

Both of them tend to the differential Euler–Lagrange equation in the continuous limit. Tog
they represent the entire difference scheme and could be called ‘‘the discrete Euler–La
system.’’ The difference between these two equations, or some other function of them tha
ishes in the continuous limit will represent the lattice.

Now let us consider a vector field~1.3! with given coefficientsj(x,y) andh(x,y). Variations
along the integral curves of this vector field are given bydx5jda anddy5hda, whereda is a
variation of a group parameter. A stationary value of the difference functional~2.15! along the
flow generated by this vector field is given by

j
dL
dx

1h
dL
dy

50, ~2.22!

which depends explicitly on the coefficients of the generator.
If we have a Lie algebra of vector fields of dimension 2 or more, then a stationary value

difference functional~2.15! along the entire flow will be achieved on the intersection of
solutions of all equations of the type~2.22!, i.e., on the quasiextremals~2.21!.

On the other hand, Eq.~2.21! can be interpreted as a three-point difference scheme of the
~1.1! and~1.2!. For instance, given two points (x,y) and (x2 ,y2), we can calculate (x1 ,y1). In
the continuous limit both of these equations will provide the same second-order differential
tion. Thus, one of the quasiextremal equations can be identified with Eq.~1.1! and the difference
between the two of them with the lattice equation~1.2!.

It has been shown elsewhere,19,25,27that if the functional~2.15! is invariant under some grou
G, then the quasiextremal equations~2.21! are also invariant with respect toG. As in the con-
tinuous case, the quasiextremal equations can be invariant with respect to a larger group t
corresponding Lagrangian.

A useful operator identity, valid for any LagrangianL(x,x1 ,y,y1) and any vector fieldX is
~Refs. 19 and 25!

j
]L
]x

1j1
]L
]x1

1h
]L
]y

1h1
]L
]y1

1LD
1h

~j!5jS ]L
]x

1
h2

h1

]L2

]x
2 D

1h
~L 2!D 1hS ]L

]y
1

h2

h1

]L2

]y D
1 D

1h
S h2h

]L2

]y
1h2j

]L2

]x
1jL 2D . ~2.23!

From Eq.~2.23! we obtain the following discrete analog of Noether’s theorem.
Theorem 2.1:Let the Lagrangian densityL be divergence invariant under a Lie groupG of

local point transformations generated by vector fieldsX of the form ~1.3!, i.e., let us have

pr X~L!1LD
1h

~j!5 D
1h

~V! ~2.24!

for some functionV(x,y). Then each elementX of the Lie algebra corresponding toG provides
us with a first integral of the quasiextremal equations~2.21!, namely,

K5h2h
]L2

]y
1h2j

]L2

]x
1jL 22V. ~2.25!

Proof:19,25 On solutions of the quasiextremal equations~2.21! Eq. ~2.23! reduces to
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D
1h

S h2h
]L2

]y
1h2j

]L2

]x
1jL 2D5 D

1h
~V! ~2.26!

@we have used Eq.~2.23!#. The result~2.25! follows immediately. h

The fundamental equation~2.25! is the discrete analog of Eq.~2.9! for ODEs.
Let us compare the situation for second-order ODEs and for three-point difference sch

For a second-order ODE a Lagrangian that is divergence invariant under a two-dimen
symmetry group provides two integrals of motion. From them we can eliminate the remainin
derivative and obtain the general solution, depending on two arbitrary constants~the two first
integrals!. Moreover, we do not really need a Lagrangian. Once we have a two-dimens
symmetry group of the ODE, we can integrate in quadratures.

For three-point difference schemes we have two equations to solve, namely, the system~1.1!
and ~1.2!. Equivalently, we have a set of points (xn ,yn), labeled by an integern. Any three
neighboring points are related by two equations that we can write, e.g., as

yn115F1~xn ,yn ,xn21 ,yn21!, xn115V1~xn ,yn ,xn21 ,yn21!. ~2.27!

Alternatively, the system could be solved forxn21 ,yn21 . We mention that we use notations lik
xn215x2 , xn5x, xn115x1 , yn215y2 , yn5y, yn115y1 interchangeably.

Given some starting values (x0 ,y0 ,x21 ,y21), we can solve~2.27! for (xn ,yn) with n>1, and
n<22. The solution will depend on four constantsKi ,i 51, . . . ,4, and can bewritten as

yn5yn~xn ,K1 ,K2 ,K3 ,K4!, ~2.28!

xn5xn~K1 ,K2 ,K3 ,K4!. ~2.29!

The two quasiextremal equations~2.21! correspond to the system~2.27!.
A one-parameter symmetry group of the LagrangianL will provide us with a first integral

~2.25!, i.e., an equation of the form

f ~xn ,yn ,xn11 ,yn11!5K1 , ~2.30!

compatible with the system~2.21!. We can solve~2.30! for, e.g.,yn11 , substitute into~2.27! and
thus simplify this system.

A two-dimensional symmetry group will provide two first integrals of the form~2.25!. We can
solve forxn11 andyn11 . Then system~2.27! is reduced to a two-point difference scheme. Qu
often it is possible to solve it by integration methods that allow one to integrate a two-
difference scheme explicitly.

A three-dimensional symmetry group provides three first integrals of the type~2.25!. From
them we can expressxn21 ,yn21 andyn in terms ofxn . This provides us with the solution~2.28!
and a two-point difference equation relatingxn11 andxn . If this equation can be solved, we hav
a complete solution of the problem. Finally, if we have four first integrals, then we get the ge
solution of the system by purely algebraic manipulations.

An alternative method can be proposed when the Lagrangian is invariant with respec
two-dimensional Lie group. The discrete Lagrangian corresponding to a given continuous
not unique and it is possible to introduce a family of Lagrangians:

Li5Li~x,x1 ,y,y1 ,a i ,b i !, i 51,2,3, . . . ~2.31!

depending on parametersa i ,b i , all satisfying

lim(x1 ,y1)→(x,y)Li~x,x1 ,y,y1 ,a i ,b i !5L~x,y,y8!

for the same continuous LagrangianL(x,y,y8).
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Let us take three different Lagrangians in the family~2.31!, corresponding to constant
a1 ,b1 ,a2 ,b2 anda3 ,b3 . Each of them will lead to two first integrals and two quasiextremals
the examples considered in the following we will show that it is possible to fine-tune the con
a i ,b i in such a manner as to get a system of two invariant equations of the form~1.1! and~1.2!
and three first integrals, yielding a set of solutions to the two quasiextremal equations. It is
two equations that will constitute the invariant difference system.

In Sec. II B we described a procedure for obtaining invariant Lagrangians for given se
order differential equation. For difference equations our starting point will be a discretizatio
the continuous Lagrangian. This is obviously not unique and we shall make use of the in
arbitrariness. Once an invariant difference Lagrangian with a correct continuous limit is chos
construct the invariant difference scheme in the above-described manner.

In our previous article1 we gave a classification of difference schemes and used all realiza
of Lie algebras that provide such schemes. Any algebra containing a two-dimensional suba
realized by linearly connected vector fields such as

S ]

]x
, y

]

]xD , S ]

]x
, x

]

]xD ,

leads to a linear differential equation and its discretization.
In the following we shall consider only genuinely nonlinear difference schemes presen

Ref. 1 that have nonlinear differential equations as their limit.

III. EQUATIONS CORRESPONDING TO LAGRANGIANS INVARIANT UNDER ONE- AND
TWO-DIMENSIONAL GROUPS

A. One-dimensional symmetry group

We start with the simplest case of a symmetry group, namely a one-dimensional group.
algebra is generated by one vector field of the form~1.3!. By an appropriate change of variable
we take this vector field into its rectified form. Thus we have

D1,1: X15
]

]y
. ~3.1!

The most general second-order ODE invariant underX1 is

y95F~x,y8!, ~3.2!

whereF is an arbitrary given function.
Equation ~3.2! is actually already reduced to a first-order equation foru5y8. If X1 is a

variational symmetry of Eq.~3.2! and we know the LagrangianL that it comes from, we can do
better. An invariant Lagrangian density will by necessity have the formL5L(x,y8) @see Eq.
~2.6!#. The Euler–Lagrange equation~2.4! reduces to

]2L

]x]y8
1y9

]2L

]y82 50. ~3.3!

Substituting fory9 from Eq.~3.2!, we obtain a linear partial differential equation forL(x,y8).
This of course has an infinity of solutions. Let us assume that we know a solutionL(x,y)
explicitly. Equation~2.9!, i.e., Noether’s theorem, provides us with a first integral

]L

]y8
~x,y8!5K. ~3.4!

We can solve~in principle! Eq. ~3.4! for y8 as a function ofx ~andK). The general solution is then
obtained by a quadrature:
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y85f~x,K !, y~x!5y01E
0

x

f~x,K !dt. ~3.5!

In the discrete case the situation is similar. Let us assume that we know a Lagra
L(x,x1 ,y,y1), invariant under the group of transformations ofy, generated byX1 of Eq. ~3.1!.
It will have the form

L5L~x,x1 ,yx!, yx5
y12y

x12x
. ~3.6!

The corresponding quasiextremal equations, to be identified with the system~1.1! and ~1.2!, are

dL
d y

52
]L
]yx

~x,x1 ,yx!1
]L
yx̄

~x2 ,x,yx̄!50, ~3.7!

dL
dx

5h1

]L
]x

~x,x1 ,yx!1yx

]L
] yx

~x,x1 ,yx!2L~x,x1 ,yx!1h2

]L
]x

~x2 ,x,yx̄!2yx̄

]L
] yx̄

~x2 ,x,yx̄!

1L~x2 ,x,yx̄!50. ~3.8!

The first integral~2.25! can be read off form Eq.~3.7! and is

]L
]yx

~x,x1 ,yx!5K. ~3.9!

We can solve Eq.~3.9! for yx and by downshifting obtainyx̄ :

yx5f~x,x1 ,K !, yx̄5f~x2 ,x,K !. ~3.10!

Substituting into the quasiextremal equation~3.8!, we obtain a relation betweenx1 , x2 and x,
i.e., a single three-point relation for the variablex. For y we then obtain a two point equation

y12y5~x12x!f~x,x1 ,K !. ~3.11!

Equation~3.11! is really a discrete quadrature: a first-order inhomogeneous linear equationy.
Example 3.1:Consider the Lagrangian

L5xn
axn11

b exp~yx!. ~3.12!

The quasiextremal equations are

2xn
axn11

b exp~yx!1xn21
a xn

b exp~yx̄!50, ~3.13!

h1axn
a21xn11

b exp~yx!1yxxn
axn11

b exp~yx!2xn
axn11

b exp~yx!1h2bxn21
a xn

b21 exp~yx̄!

2yx̄xn21
a xn

b exp~yx̄!1xn21
a xn

b exp~yx̄!50. ~3.14!

The first integral is

xn
axn11

b exp~yx!5K. ~3.15!

From ~3.15! we have

yx5 ln~Kxn
2axn11

2b !, yx̄5 ln~Kxn21
2a xn

2b!. ~3.16!

Equation~3.13! is satisfied identically. Equation~3.14! reduces to a three-point equation forx:
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axn111~b2a!xn2bxn211xn~2b ln~xn11!1~b2a!ln~xn!1a ln~xn21!!50. ~3.17!

This lattice equation can be reduced to a two-point equation for a new variableln5xn11 /xn :

aln1~b2a!2
b

ln21
5a ln~ln21!1b ln~ln!. ~3.18!

In particular, one can choose the solutionln5ln115l, wherel satisfies

al1~b2a!2
b

l
5~a1b!ln~l!.

It provides us with the latticexn5x0ln.
Substituting the lattice into~3.15!, we obtain a two-point equation fory:

yn112yn5~xn112xn!ln~Kxn
2axn11

2b !. ~3.19!

The fact that we could solve Eq.~3.17! explicitly is specific for the considered example. Th
fact that we obtain a three-point equation involving only the independent variables is tr
general.

B. Two-dimensional symmetry groups

D2,1: The Abelian Lie algebra with nonconnected basis elements

X15
]

]x
, X25

]

]y
~3.20!

corresponds to the invariant ODE

y95F~y8!, ~3.21!

whereF is an arbitrary function.
The equation can be obtained from the Lagrangian

L5y1G~y8!, F~y8!5
1

G9~y8!
. ~3.22!

The Lagrangian admits symmetriesX1 andX2 :

prX1L1LD~j1!50,

prX2L1LD~j2!515D~x!.

With the help of Noether’s theorem we obtain the following first integrals:

J15y1G~y8!2y8G8~y8!, J25G8~y8!2x. ~3.23!

As we mentioned in Sec. II B, it is sufficient to have two first integrals to write out the gen
solution of a second-order ODE without quadratures. More explicitly, we can solve the se
equation~3.23! for y8 in terms ofx and obtain

y85H~J21x!, H~J21x!5@G8#21~J21x!. ~3.24!

Substituting into the first equation, we obtain

y~x!5J12G@H~J21x!#1~J21x!H~J21x!. ~3.25!
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Now we are in a position to show how one can find a variational discrete model an
conservation laws by means of Lagrange-type technique. Let us choose a difference Lagran
the form

L5
y1y1

2
1G~yx!, ~3.26!

then

pr X1L1LD
1h

~j1!50,

pr X2L1LD
1h

~j2!515 D
1h

~x!.

The variations ofL yield the following quasiextremal equations:

dL
dy

: G8~yx!2G8~yx̄!5
h11h2

2
, ~3.27!

dL
dx

: 2
y1y1

2
2G~yx!1yxG8~yx!1

y1y2

2
1G~yx̄!2yx̄G8~yx̄!50. ~3.28!

Due to the invariance of the Lagrangian with respect to the operatorsX1 andX2 , the differ-
ence analog of Noether’s theorem yields two first integrals

I 15y1G~yx!2yxG8~yx!1
x12x

2
yx , ~3.29!

I 25G8~yx!2
x1x1

2
. ~3.30!

As in the case of the algebraD1,1 we can solve foryx to obtain

yx5F1~ I 2 ,x1x1!. ~3.31!

Substituting into the equation forI 1 we obtain

y5F2~ I 1 ,I 2 ,x,x1!. ~3.32!

Calculatingyx from Eq.~3.32! and setting it equal to~3.31!, we obtain a three-point recursio
relation forx. Solving it ~if we can!, we turn Eq.~3.32! into an explicit general solution of the
difference scheme~3.27! and ~3.28!.

Example 3.2:Let us consider the case

L5
y1y1

2
1exp~yx!. ~3.33!

The two first integrals~3.29! and ~3.30! in this case are the following:

I 15y1exp~yx!2yx exp~yx!1
xn112xn

2
yx ,

~3.34!

I 25exp~yx!2
xn111xn

2
.
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Equation~3.31! and ~3.32! reduce to

yx5 lnS I 21
xn111xn

2 D , ~3.35!

y5I 12I 22
xn111xn

2
1~ I 21xn!lnS I 21

xn111xn

2 D . ~3.36!

The recursion relation forx is

2xn111xn21

2
1~ I 21xn!@ ln~2I 21xn111xn!2 ln~2I 21xn1xn21!#. ~3.37!

The last equation is difficult to solve. We have however reduced a system of two three
equations to a single three-point one. We shall return to this case in Sec. V using an alte
method.

D2,2: The non-Abelian Lie algebra with nonconnected elements

X15
]

]y
, X25x

]

]x
1y

]

]y
~3.38!

yields the invariant ODE

y95
1

x
F~y8!. ~3.39!

We define a functionG(y8) by

F~y8!5
G8~y8!

G9~y8!
. ~3.40!

Then the ODE~3.39! is the Euler–Lagrangian equation for the Lagrangian

L5
1

x
G~y8!, ~3.41!

which admitsX1 andX2 as variational symmetries:

prX1L1LD~j1!50,

prX2L1LD~j2!50.

Noether’s theorem provides us with two first integrals:

J15
1

x
G8~y8!, J25G~y8!1S y

x
2y8DG8~y8!.

Let us take the difference Lagrangian

L5
2

x1x1
G~yx!,

which satisfies
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pr X1L1LD
1h

~j1!50,

pr X2L1LD
1h

~j2!50.

Then the variations ofL yield the following quasiextremal equations:

dL
dy

:
2

x1x1
G8~yx!2

2

x21x
G8~yx̄!50,

dL
dx

: 2
2h1

~x1x1!2 G~yx!1
2

~x1x1!
G8~yx!yx2

2

~x1x1!
G~yx!

2
2h2

~x21x!2 G~yx̄!2
2

~x21x!
G8~yx̄!yx̄1

2

~x21x!
G~yx̄!50.

~3.42!

Since the Lagrangian is invariant with respect to the operatorsX1 andX2 , we find the first
integrals

I 15
2G8~yx!

x1x1
, I 25

4xx1

~x1x1!2 G~yx!1
2G8~yx!

x1x1
~y2xyx! ~3.43!

for the solutions of~3.42!.
As in the case of the algebraD2,1, we can solve foryx , using the integralI 1 . We obtain

yx5F1~ I 1 ,x1x1!. ~3.44!

The second integral allows us to expressy as a function ofx andx1 ,

y5xF11
I 2

I 1
2

4xx1

I 1~x1x1!2 G~F1!. ~3.45!

IV. EQUATIONS CORRESPONDING TO LAGRANGIANS INVARIANT UNDER
THREE-DIMENSIONAL LIE GROUPS

Among the ‘‘prototype equations’’ of our previous article,1 many have three-dimensiona
symmetry groups. In this section we shall consider two of these cases. Both of them com
Lagrangians that also have three-dimensional symmetry groups, i.e., all these symmetr
Lagrangian ones.

D3,1: Let us first consider a family of solvable Lie algebras depending on one constantk:

X15
]

]x
, X25

]

]y
, X35x

]

]x
1ky

]

]y
, kÞ0,

1

2
,1,2. ~4.1!

The invariant equation has the form

y95y8~k22!/~k21!. ~4.2!

This equation can be obtained by the usual variational procedure from the Lagrangian

L5
~k21!2

k
~y8!k/~k21!1y, ~4.3!
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which admits operatorsX1 andX2 for any parameterk andX3 for k521:

prX1L1LD~j1!50,

prX2L1LD~j2!515D~x!,

prX3L1LD~j3!5~k11!L.

It is possible to show that there is no Lagrangian functionL(x,y,y8) which gives Eq.~4.2!
with kÞ21 as its Euler’s equation and is divergence invariant for all three symmetries~4.1!.

For arbitraryk there are two first integrals

J15
~12k!

k
~y8!k/~k21!1y5A0, J25~k21!~y8!1/~k21!2x5B0.

Eliminating y8 we find the general solution:

y5
1

k S 1

k21D (k21)

~x1B0!k1A0. ~4.4!

In the casek521 we have the further first integral corresponding to the symmetryX3 :

J35
2

Ay8
~y2xy8!1xy5C0.

It is functionally dependent onJ1 andJ2 since a second-order ODE can possess only two fu
tionally independent first integrals. Let us mention that the first integralJ3 is basic:

J15X1~J3!, J252X2~J3!,

since

@X1 ,X3#5X1 , @X2 ,X3#5kX2 .

In this case we have the following relation:

42J1J22J350. ~4.5!

Thus, the integralJ3 is not independent and is of no use in the present context.
Now let us turn to the discrete case and considerk521 only. Other values ofk will be

considered in Sec. V, using a different approach. Let us choose the Lagrangian to be

L524Ayx1
y1y1

2
~4.6!

as a discrete Lagrangian, which is invariant forX1 andX3 and divergence invariant forX2 :

pr X1L1LD
1h

~j1!50,

pr X2L1LD
1h

~j2!515 D
1h

~x!, ~4.7!

pr X3L1LD
1h

~j3!50.
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From the Lagrangian we obtain the quasiextremal equations:

dL
dy

: 2
4

h21h1
S 1

Ayx

2
1

Ayx̄
D 51,

~4.8!
dL
dx

: 4~Ayx2Ayx̄!2
y1y1

2
1

y21y

2
50.

This system of equations is invariant with respect to all three operators~4.1!. The application
of the difference analog of the Noether theorem gives us three first integrals:

I 1522Ayx1
y1y1

2
5A, I 252

2

Ayx

2
x1x1

2
5B,

~4.9!

I 35
2~x1y2y1x!

h1Ayx

1
x1y1y1x

2
5C.

In contrast to the continuous case the three difference first integralsI 1 , I 2 , and I 3 are func-
tionally independent and instead of Eq.~4.5! we have the following relation:

42I 1I 22I 35
1

4
h1

2 yx5
4«2

~«12!2 . ~4.10!

This coincides with Eq.~4.5! in the continuous limit«→0. We see that the expressionh1
2 yx is also

a first integral of~4.8!. This allows one to introduce a convenient lattice, namely,

1

4
h2

2 yx̄5
1

4
h1

2 yx5
4«2

~«12!2 , «5const, 0,«!1. ~4.11!

Substitutingyx from Eq.~4.11! into I 2 , we obtain a two-term recursion relation forx, namely,

xn112~11«!xn2«B50, ~4.12!

or

2~11«!xn111xn2«B50, ~4.13!

depending on the sign choice forAyx. These equations can be solved and we obtain a la
satisfying

xn5~x01B!~11«!n2B, x0.2B ~4.14!

for the first equation and a lattice satisfying

xn5~x01B!~11«!2n2B, x0,2B ~4.15!

for the second equation. Using the expressions forI 1 , we get the general solution fory @the same
for both lattices~4.14! and ~4.15!# as

yn5A2
4

xn1B

11«

S 11
«

2D 2 . ~4.16!

This agrees with the continuous case up to order«.
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We have used the three integralsI 1 , I 2 , andI 3 to obtain the general solution of the differenc
scheme~4.8!. Indeed, the solution~4.14! and ~4.16! for xn , yn depends on four constant
(A,B,x0 ,«), as it should.

The difference scheme is not compatible with a regular lattice, but requires an expon
one, as in Eq.~4.14!. The only nonalgebraic step in the integration was the solution of Eq.~4.12!:
a linear two point equation with constant coefficients.

D3,2: The group given by the operators

X15
]

]x
, X252x

]

]x
1y

]

]y
, X35x2

]

]x
1xy

]

]y
~4.17!

corresponds to the invariant differential equation

y95y23. ~4.18!

This equation can be obtained from the Lagrangian function

L5y822
1

y2 , ~4.19!

which admits all three operators:

prX1L1LD~j1!50,

prX2L1LD~j2!50, ~4.20!

prX3L1LD~j3!52y8y5D~y2!.

Consequently, the symmetries yield the following first integrals:

J15y821
1

y2 5A0, J252
x

y2 22~y2y8x!y852B0,

~4.21!

J35
x2

y2 1~y2xy8!25C0.

Using the integralsA0 andB0 we write the general solutiony(x) as

A0y25~A0x2B0!211. ~4.22!

We see that the third integral, denotedJ3 is not needed, is not useful and indeed, is n
independent. The integralsJ1 , J2 , andJ3 are related as follows:

S J2

2 D 2

2J1J31150. ~4.23!

Now let us consider the discrete case. Let us consider the discrete Lagrangian functio

L5yx
22

1

yy1
, ~4.24!

which admits the same symmetries as the continuous one:
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pr X1L1LD
1h

~j1!50,

pr X2L1LD
1h

~j2!50, ~4.25!

pr X3L1LD
1h

~j3!5 D
1h

~y2!.

The Lagrangian generates the invariant quasiextremal equations:

dL
dy

: 2~yx2yx̄!5
h1

y2y1
1

h2

y2y2
,

~4.26!
dL
dx

: ~yx!
21

1

yy1
2~yx̄!

22
1

yy2
50.

The quasiextremal equations have three functionally independent first integrals

I 15yx
21

1

yy1
5A, I 25

x1x1

yy1
12yx~x1yx2y1!52B,

~4.27!

I 35
xx1

yy1
1~x1yx2y1!25C.

In the discrete case the integralsI 1 , I 2 , and I 3 are independent. Equation~4.23! no longer
holds and instead we have

S I 2

2 D 2

2I 1I 3115
1

4 S h1

yy1
D 2

. ~4.28!

In order to integrate the system~4.26! we will use three first integralsA, B and the one in Eq.
~4.28!, namely,

h1

yy1
5«. ~4.29!

Eliminating yx , x1 , andy1 , we obtain the solution

Ay25~Ax2B!2112
«2

4
. ~4.30!

This agrees with the continuous limit~4.22! up to order«2.
Calculatingyx from Eq. ~4.30! and substituting into the expression forA in Eq. ~4.27! we

obtain a two-point difference equation forx and hence we obtain the lattice. In this case
equation has the form of a fractional linear mapping, i.e., it is a discrete version of the R
equation~with constant coefficients!.

Explicitly we obtain

xn115
axn1b

gxn1d
, ~4.31!
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a512«B2
1

2
«2, b5

«

A S 11B22
1

4
«2D ,

~4.32!

g52«A, d511«B2
1

2
«2.

We see that the coefficients in the discrete Riccati equation~4.31! satisfy

ad2bg51, a1d522«2. ~4.33!

Like the continuous Riccati equation, Eq.~4.31! can be linearized. To do this we introduce a line
system

S un11

vn11
D5S a b

g d D S un

vn
D . ~4.34!

If u andv satisfy Eq.~4.34!, then

x5
u

v
~4.35!

will satisfy Eq. ~4.31!. Equation~4.34! can be solved by standard methods. Indeed, bothu andv
must satisfy

un122~a1d!un111~ad2bg!un50. ~4.36!

The characteristic equation

l22~a1d!l1~ad2bg!50 ~4.37!

is obtained by puttingun5ln.
In view of Eq. ~4.33! the roots of Eq.~4.37! are complex. The final result is that the solutio

of Eq. ~4.31! is

xn5
1

A
A12

«2

4
tan~vn1r!1

B

A
, ~4.38!

wherer is an integration constant andv satisfies

tanv5
2«

22«2A12
«2

4
. ~4.39!

Equations~4.30! and~4.38! provide an explicit analytic solution of the system~4.26!. It is the
general solution and involves four constants:A, B, «, andr. It follows from Eq. ~4.38! that the
independent variablex varies between2 and1 infinity as vn1r varies between6p/2.

V. INTEGRATION OF DIFFERENCE SCHEMES WITH TWO VARIATIONAL SYMMETRIES

A. The method of perturbed Lagrangians

We have mentioned in Sec. III B that a two-dimensional group of Lagrangian symmetr
always sufficient to reduce the original system of two three-point equations to a single three
equation for the independent variable alone.

Here we shall show that in some cases we can do better. Using a different approach, w
actually obtain a complete solution of a difference scheme approximating a differential equ
with a Lagrangian, divergence invariant under a two-dimensional symmetry group.
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The case we shall consider is Eq.~3.21! and hence the two-dimensional Abelian groupD2,1
corresponding to the algebra~3.20!. We shall make use of the fact that the Lagrangian is
unique. Indeed we will consider three different Lagrangians, all having the same continuou
~3.22!. Instead of writing the Lagrangian~3.26! in the discrete case, we shall use a family
Lagrangians, parametrized by two constants,a andb:

L5aG~yx!1by1~12b!y1 , a'1, 0<b<1. ~5.1!

Each Lagrangian provides its own quasiextremal system

a@2G8~yx!1G8~yx̄!#1bh11~12b!h250, ~5.2!

a@yxG8~yx!2yx̄G8~yx̄!2G~yx!1G~yx̄!#2b~y2y2!2~12b!~y12y!50. ~5.3!

We shall view one Lagrangian, witha351 andb350.5, as the basic one, the other two as
perturbations.

Each Lagrangian in the family is divergence invariant underX15]x and X25]y and hence
provides two first integrals of the corresponding quasiextremal equations~5.2! and ~5.3!:

a@2yxG8~yx!1G~yx!#1y1~12b!h1yx5A, ~5.4!

aG8~yx!2x2bh15B. ~5.5!

Let us now choose three different pairs (a i ,b i). They provide six integrals~and six quasiex-
tremal equations!. We shall show that by appropriately fine-tuning the constantsa i and b i and
choosing some of the constantsAi and Bi we can manufacture a consistent difference syst
representing both the equation and the lattice. Moreover, we can explicitly integrate the equ
in a manner that approximates the exact solution obtained in the continuous limit.

Let us take one equation of the form~5.4! and two of the form~5.5!. In these three equation
we choosea351, b350.5, andB25B35B. We then take the difference between the two eq
tions involvingB to finally obtain the following system of three two-point equations:

a1@2yxG8~yx!1G~yx!#1y1~12b1!h1yx5A, ~5.6!

G8~yx!2x2 1
2 h15B, ~5.7!

~12a2!G8~yx!2~ 1
2 2b2!h150. ~5.8!

From Eqs.~5.7! and ~5.8! we have

G8~yx!5
x11x12B

2
, ~5.9!

x12~11«!x2«B50, ~5.10!

where we have put

«5
2~12a2!

a222b2
. ~5.11!

The continuous limit will correspond to«→0.
Equation~5.10! coincides with Eq.~4.12! obtained using three Lagrangian symmetries in

special case. Here it appears in a much more general setting. The general solution of Eq.~5.10!,

xn5~x01B!~11«!n2B, ~5.12!
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depends on one integration constantx0 . This solution gives a lattice satisfyingh2.0 andh1

.0 for x0.2B if «.0 and forx0,2B if «,0. For the other cases, namelyx0,2B if «.0
and forx0.2B if «,0, formula~5.12! gives a lattice with a reverse order of points:h2,0 and
h1,0.

Using ~5.12! and ~5.9!, we can expressyx in terms ofx. We have

G8~yx!5S 11
«

2D ~B1x!. ~5.13!

Denoting the inverse function ofG8(yx) asH, we have

yx5HF S 11
«

2D ~B1x!G . ~5.14!

Using ~5.6! and~5.14!, we can now write the general solution of the system~5.6!, ~5.7!, and~5.8!
as

y~x!5A2a1G~H !1~x1B!H, ~5.15!

where we have put

a1S 11
«

2D2~12b1!«51. ~5.16!

The value ofa1 , still figuring in the solution~5.15!, must be so chosen as to obtain
consistent scheme. Indeed,xn andyn given in Eqs.~5.12! and~5.15! will satisfy the system~5.6!,
~5.7!, and ~5.8!. We must however assure thatyx of Eq. ~5.14! and yx5(yn112yn)/(xn112xn)
coincide. A simple computation shows that this equality requires thata1 should satisfy

a15~11«!n11~x01B!
Hn112Hn

G~Hn11!2G~Hn!
. ~5.17!

This equation is consistent only if the right-hand side is a constant~independent onn). The
constantsa i and b i can depend upon the constant« and for «→0 we must havea1 ,a2→1;
b1 ,b2→0.5.

From Eq.~5.8! we have

h1

G8~yx!
5

2~12a2!

122b2
. ~5.18!

This expression must vanish for«→0. To achieve this while respecting Eq.~5.11! we put

a2511«2, b25
1

2
1«1

«2

2
. ~5.19!

Equation~5.11! is satisfied exactly and we have

h1

G8~yx!
5

2«

«12
. ~5.20!

We can view Eqs.~5.12! and~5.15! as the general solution of the following three-point differen
scheme:
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G8~yx!2G8~yx̄!2
x12x2

2
50,

~5.21!
h1

G8~yx!
5

h2

G8~yx̄!
.

The system~5.21! is invariant under the group corresponding toD2,1. Strictly speaking, this is
not a quasiextremal system, since it cannot be derived from any single Lagrangian. The ar
constantsA, B and« come from three first integrals~5.6!, ~5.7!, and~5.20! that are associated with
three different Lagrangians.

We have not proven that Eq.~5.17! is consistent for arbitrary functionsG(yx). We shall
however show below that in at least two interesting special cases the above integration sch
consistent.

The results of this section can be summed up as a theorem.
Theorem 5.1:The ODE~3.21! obtained from the Lagrangian~3.22! can be approximated by

the difference system~5.21!. If a1 of Eq. ~5.17! is constant, then the general solution of th
system is given by

xn5~x01B!~11«!n2B,
~5.22!

y~xn!5A2a1G~Hn!1~xn1B!Hn ,

whereA, B, « andx0 are arbitrary constants. For«→0, y(xn) agrees with the solution~3.25! of
the ODE~3.21!.

As applications of this theorem let us consider two different equations, each invariant un
three-dimensional group withD2,1 as an invariant subgroup. In both cases the Lagrangian is
divergence invariant under the subgroupD2,1.

B. A polynomial nonlinearity

D3,1:

X15
]

]x
, X25

]

]y
, X35x

]

]x
1ky

]

]y
, kÞ0,

1

2
,61,2. ~5.23!

This algebra fork521 was treated in Sec. IV, now we consider the generic case. We t

G~yx!5
~k21!2

k
yx

k/~k21! ~5.24!

and hence

G8~yx!5~k21!yx
1/~k21!5S 11

«

2D ~x1B!. ~5.25!

Equation~5.14! reduces to

yx5Hn~x!5S x1B

k21 D k21S 11
«

2D k21

~5.26!

and we have

G~Hn!5
~k21!2

k S x1B

k21 D kS 11
«

2D k

. ~5.27!
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Substituting into~5.17!, we find

a15
k~11«!~~11«!k2121!

~k21!S 11
«

2D ~~11«!k21!

~5.28!

so that we havea1511O(«2).
Thus,a1 is a constant, close toa151 for «!1. The solutionyn of ~5.22! specializes to

yn5A1
~x1B!k

~k21!k21

«S 11
«

2D k21

~11«!k21
. ~5.29!

This agrees with the solution~4.4! of the ODE~4.2! up to O(«2).
It is interesting to note that fork521 a1 becomes independent on« and we obtaina151,

b150.5. The solution~5.29! provides us with the solution~4.16!, which was obtained in Sec. IV
with the help of a different method.

C. An exponential nonlinearity

We consider another three-dimensional group and its Lie algebra, namely,

D3,3: X15
]

]x
, X25

]

]y
, X35x

]

]x
1~x1y!

]

]y
. ~5.30!

The corresponding invariant ODE is

y95exp~2y8! ~5.31!

and can be obtained from the Lagrangian

L5exp~y8!1y. ~5.32!

We have

prX1L1LD~j1!50,
~5.33!

prX2L1LD~j2!515D~x!.

The corresponding first integrals of Eq.~5.31! are

exp~y8!~12y8!1y5A, exp~y8!2x5B. ~5.34!

Finally, the general solution of Eq.~5.31! is

y5~x1B!~ ln~x1B!21!1A. ~5.35!

Now let us consider the discrete case, following the method of Sec. V A. We have

G~yx!5exp~yx! ~5.36!

and hence
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G8~yx!5exp~yx!5~xn1B!S 11
«

2D ,

~5.37!

Hn5yx5 ln~xn1B!1 lnS 11
«

2D .

Substituting into Eq.~5.17!, we find

a15
~11«!ln~11«!

«S 11
«

2D ~5.38!

so thata1 is indeed a constant and moreover we havea1511O(«2).
The solutiony(x) on the lattice given in Eq.~5.22! is

yn5A1~xn1B!ln~xn1B!1~xn1B!F lnS 11
«

2D2
~11«!ln~11«!

« G . ~5.39!

This agrees with the solution~5.35! of the ODE~5.31! up to O(«2).

VI. CONCLUDING REMARKS

We see that variational symmetries, and the first integrals they provide, play a crucial r
the study of exact solutions of invariant difference schemes. Much more so than in the the
ordinary differential equations.

The procedure that we followed in this article can be reformulated as follows. We start
the continuous case where we know a Lagrangian densityL(x,y,y8), invariant under a groupG0

of local point transformations, i.e., satisfying condition~2.6!, or ~2.7!. We hence also know the
corresponding Euler–Lagrange equation, invariant under the same group, or a larger grou
taining G0 as a subgroup.

Let us assume that we can approximate this Lagrangian by a ‘‘discrete Lagrangian de
L(x,y,x1 ,y1) invariant under the same groupG0 . Even in the absence of any symmetry grou
the Lagrangian will provide us with the quasiextremal equations~2.21!, i.e. with a discrete Euler–
Lagrange system. This system can be identified with the difference system~1.1! and ~1.2!.

If the Lagrangian is invariant under a one-dimensional symmetry group, we can reduc
quasiextremal system to a three-point relation forx alone, plus a ‘‘discrete quadrature’’ fory ~see
Sec. III A!. If the symmetry group of the Lagrangian is two-dimensional, we can always re
the quasiextremal system to one three-point equation forx alone, and write the solutionyn(x)
directly ~see Sec. III B!.

If the invariance group of the Lagrangian is~at least! three-dimensional then we can integra
the system explicitly~Sec. IV!.

Finally, we have shown that if the symmetry group of the Lagrangian is two-dimensiona
the quasiextremal system has a third~non-Lagrangian! symmetry, we can also integrate explicitl
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TheRusk–Skinner formalismwas developed in order to give a geometrical unified
formalism for describing mechanical systems. It incorporates all the characteristics
of Lagrangian and Hamiltonian descriptions of these systems~including dynamical
equations and solutions, constraints, Legendre map, evolution operators, equiva-
lence, etc.!. In this work we extend this unified framework to first-order classical
field theories, and show how this description comprises the main features of the
Lagrangian and Hamiltonian formalisms, both for the regular and singular cases.
This formulation is a first step toward further applications in optimal control theory
for partial differential equations. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1628384#

I. INTRODUCTION

In ordinary autonomous classical theories in mechanics there is a unified formulati
Lagrangian and Hamiltonian formalisms,1 which is based on the use of theWhitney sumof the
tangent and cotangent bundlesW5TQ% T* Q[TQ3QT* Q ~the velocity and momentum phase
spacesof the system!. In this space, velocities and momenta are independent coordinates. Th
a canonical presymplectic formV ~the pull-back of the canonical form inT* Q), and a natural
coupling function, locally expressed aspiv

i , is defined by contraction between vectors and c
ectors. Given a LagrangianLPC`(TQ), a Hamiltonian function, locally given byH5piv

i

2L(q,v), is determined, and, using the usual constraint algorithm for the geometric equ
i (X)V5dH associated to the Hamiltonian system (W,V,H), we obtain that

~1! The first constraint submanifoldW1 is isomorphic toTQ, and the momenta]L/]v i5pi are
determined as constraints.

~2! The geometric equation contains the second order conditionv i5dqi /dt.
~3! The identificationW1[TQ allows us to recover the Lagrangian formalism.
~4! The projection to the cotangent bundle generates the Hamiltonian formalism, including

straints. The Legendre map and the time evolution operator are straightforwardly obtain
the previous identification and projection.2

a!Electronic mail: carlos.lopez@uah.es
b!Electronic mail: jmarin@ub.edu
c!Electronic mail: matmcml@mat.upc.es
d!Electronic mail: matnrr@mat.upc.es
3600022-2488/2004/45(1)/360/21/$22.00 © 2004 American Institute of Physics
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It is also worth noticing that this space is also appropriate for the formulation of different kin
problems in optimal control.3–7 Furthermore, in Refs. 8 and 9 this unified formalism has b
extended for nonautonomous mechanical systems.

Our aim in this paper is to reproduce the same construction for first-order field the
generating a unified description of Lagrangian and Hamiltonian formalisms and its corre
dence, starting from the multisymplectic description of such theories.~See, for instance, Refs
10–18, for some general references on this formalism. See, also, Refs. 19–25, for other ge
formulations of field theories.! As is shown throughout the paper, characteristics analogou
those pointed out for mechanical systems can be stated in this context. In Ref. 9, a first ap
to this subject has been made, focusing mainly on the constraint algorithm for the singular

The organization of the paper is as follows: Sec. II is devoted to reviewing the main fea
of the multisymplectic description of Lagrangian and Hamiltonian field theories. In Sec. II
develop the unified formalism for field theories: starting from theextended jet-multimomentum
bundle~analogous to the Whitney sum in mechanics!, we introduce the so-calledextended Hamil-
tonian systemand state the field equations for sections,m-vector fields, connections, and jet field
in this framework. It is also shown how the standard Lagrangian and Hamiltonian descriptio
recovered from this unified picture. As a typical example, theminimal surface problemis de-
scribed in this formalism in Sec. IV. Finally, we include an Appendix where basic features a
connections, jet fields, andm-vector fields are displayed.

Throughout this paperp:E→M will be a fiber bundle (dimM5m, dimE5N1m), whereM
is an oriented manifold with volume formvPVm(M ). p1:J1E→E is the jet bundle of local
sections ofp, and p̄15p+p1:J1E→M gives another fiber bundle structure. (xa,yA,va

A) will
denote natural local systems of coordinates inJ1E, adapted to the bundleE→M (a51,...,m; A
51,...,N), and such thatv5dx1∧•••∧dxm[dmx. Manifolds are real, paracompact, connecte
andC`. Maps areC`. Sum over crossed repeated indices is understood.

II. GEOMETRIC FRAMEWORK FOR CLASSICAL FIELD THEORIES

A. Lagrangian formalism

~For details concerning the contents of this and the next section, see, for instance,
10–13, 17, 18, and 26–31. See, also, the Appendix!.

A classical field theoryis described by giving aconfiguration fiber bundlep:E→M and a
Lagrangian density, which is a p̄1-semibasicm-form on J1E usually written asL5Lp̄1* v,
whereLPC`(J1E) is theLagrangian functiondetermined byL andv. ThePoincaré–Cartan m
and (m11)-formsassociated with the Lagrangian densityL are defined using thevertical endo-
morphismV of the bundleJ1E ~see Ref. 30!

QLª i ~V!L1LPVm~J1E!; VLª2dQLPVm11~J1E!.

A Lagrangian systemis a couple (J1E,VL). It is regular if VL is a multisymplectic (m11)-form
~a closedm-form, m.1, is calledmultisymplecticif it is one-nondegenerate; elsewhere it
pre-multisymplectic!. In natural charts inJ1E we have

V5~dyA2va
Adxa! ^

]

]vn
A

^
]

]xn
,

and

QL5
]L

]vm
A

dyA∧dm21xm2S ]L

]vm
A

vm
A2L D dmx,
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VL52
]2L

]vn
B]va

A
dvn

B∧dyA∧dm21xa2
]2L

]yB]va
A

dyB∧dyA∧dm21xa1
]2L

]vn
B]va

A
va

Advn
B∧dmx

1S ]2L

]yB]va
A

va
A2

]L

]yB
1

]2L

]xa]va
BD dyB∧dmx

~where dm21xa[ i (]/]xa)dmx); the regularity condition is equivalent to det(]2L/]va
A]vn

B(ȳ))Þ0, for
every ȳPJ1E.

The Lagrangian problemassociated with a Lagrangian system (J1E,VL) consists in finding
sectionsfPG(M ,E), the set of sections ofp, which are characterized by the condition

~ j 1f!* i ~X!VL50, for every XPX~J1E!.

In natural coordinates, iff(x)5(xa,fA(x)), this condition is equivalent to demanding thatf
satisfy theEuler–Lagrange equations

]L

]yAU
j 1f

2
]

]xa S ]L

]va
AD U

j 1f

50 ~ for A51,...,N!. ~1!

The problem of finding these sections can be formulated equivalently as follows: find
distribution D of T(J1E) such that it is integrable~that is, involutive!, m-dimensional,
p̄1-transverse, and the integral manifolds ofD are the image of sections solution of the abo
equations~therefore, lifting ofp-sections!. This is equivalent to stating that the sections solut
to the Lagrangian problem are the integral sections of one of the following equivalent elem

• A class of holonomicm-vector fields$XL%,Xm(J1E), such thati (XL)VL50, for every
XLP$XL%.

• A holonomic connection¹L in p̄1:J1E→M such thati (¹L)VL5(m21)VL .

• A holonomic jet fieldCL :J1E→J1J1E, such thati (CL)VL50 ~the contraction of jet fields
with differential forms is defined in Ref. 11!.

Semi-holonomic locally decomposablem-vector fields, jet fields, and connections which are
lution to these equations are calledEuler–Lagrange m-vector fields, jet fields, andconnectionsfor
(J1E,VL). In a natural chart inJ1E, the local expressions of these elements are

XL5 f ∧
a51

m S ]

]xa
1Fa

A ]

]yA
1Gan

A ]

]vn
AD ,

¹L5dxa
^ S ]

]xa
1Fa

A ]

]yA
1Gan

A ]

]vn
AD ,

CL5~xa,yA,va
A ,Fa

A ,Gah
A !,

with Fa
A5va

A ~which is the local expression of the semi-holonomy condition!, and where the
coefficientsGan

A are related by the system of linear equations

]2L

]va
A]vn

B
Gan

A 5
]L

]yB
2

]2L

]xn]vn
B
2

]2L

]yA]vn
B

vn
A ~A,B51,...,N!. ~2!
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f PC`(J1E) is an arbitrary nonvanishing function. A representative of the class$XL% can be
selected by the conditioni (XL)(p̄1* v)51, which leads tof 51 in the above local expression
Therefore, ifj 1f5(xm,fA,]fA/]xn) is an integral section ofXL , thenva

A5]fA/]xa, and hence,
the coefficientsGan

B must satisfy the equations

Gnh
A S xa,fA,

]fA

]xa D 5
]2fA

]xh]xn
~A51,...,N; h,n51,...,m!.

As a consequence, the system~2! is equivalent to the Euler–Lagrange Eq.~1! for f.
If ( J1E,VL) is a regular Lagrangian system, the existence of classes of Euler–Lag

m-vector fields forL ~or what is equivalent, Euler–Lagrange jet fields or connections! is assured.
For singular Lagrangian systems, the existence of this kind of solutions is not assured
perhaps on some submanifoldS�J1E. Furthermore, solutions of the field equations can exist~in
general, on some submanifold ofJ1E), but none of them are semi-holonomic~at any point of this
submanifold!. In both cases, the integrability of these solutions is not assured, except perha
a smaller submanifoldI such that the integral sections are contained inI.

B. Hamiltonian formalism

For the Hamiltonian formalism of field theories, we have theextended multimomentum bund
Mp, which is the bundle ofm-forms onE vanishing by contraction with twop-vertical vector
fields @or equivalently, the set of affine maps fromJ1E to p* LmT* M ~Refs. 10 and 32!#, and the
restricted multimomentum bundle J1* E[Mp/p* LmT* M . We have the natural projections

t1:J1* E→E, t̄15p+t1:J1* E→M , m:Mp→J1* E, m̂5 t̄1+m:Mp→M .

Given a system of coordinates adapted to the bundlep:E→M , we can construct natural coord
nates (xa,yA,pA

a ,p) (a51,...,m; A51,...,N) in Mp, corresponding to them-covectorp5pdmx
1pA

adyA∧dm21xaPMp, and (xa,yA,pA
a) in J1* E, for the class@p#5pA

adyA∧dm21xa1^dmx&
PJ1* E.

Now, if (J1E,VL) is a Lagrangian system, theextended Legendre mapassociated withL,
FL̃:J1E→Mp, is defined as

@FL̃~ ȳ!#~Z1 ,...,Zm!ª~QL! ȳ~ Z̄1 ,...,Z̄m!, ~3!

where Z1 ,...,ZmPTp1( ȳ)E, and Z̄1 ,...,Z̄mPTȳJ
1E are such thatTȳp

1Z̄a5Za . Then there-

stricted Legendre mapassociated withL is FLªm+FL̃. Their local expressions are

FL̃* xa5xa, FL̃* yA5yA, FL̃* pA
a5

]L

]va
A

, FL̃* p5L2va
A ]L

]va
A

,

FL* xa5xa, FL* yA5yA, FL* pA
a5

]L

]va
A

.

Therefore, (J1E,VL) is a regular Lagrangian system ifFL is a local diffeomorphism~this defi-
nition is equivalent to that given above!. Elsewhere (J1E,VL) is asingularLagrangian system. As
a particular case, (J1E,VL) is a hyper-regularLagrangian system ifFL is a global diffeomor-
phism. A singular Lagrangian system (J1E,VL) is almost-regularif: PªFL(J1E) is a closed
submanifold ofJ1* E ~we will denote the natural imbedding by :P�J1* E), FL is a submersion
onto its image, and for everyȳPJ1E, the fibresFL21(FL( ȳ)) are connected submanifolds o
J1E.

In order to construct aHamiltonian systemassociated with (J1E,VL), recall that the multi-
cotangent bundleLmT* E is endowed with a natural canonical formQPVm(LmT* E), which is
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the tautological form defined as follows: lettE :T* E→E be the natural projection, an
LmtE :LmT* E→E its natural extension; then, for everyp̄PLmT* E ~where p̄5(y,b), with y
PE andbPLmTy* E), and for everyX1 ,...,XmPX(LmT* E) we have

@Q~X1 ,...,Xm!# p̄ª@~LmtE!* b#~X1p̄
,...,Xmp̄

!5b~Tp̄L
mtE~X1p̄

!,...,Tp̄L
mtE~Xmp̄

!!.

Thus we also have the multisymplectic formVª2dQPVm11(LmT* E). But Mp[L1
mT* E is

a subbundle ofLmT* E. Then, if l:L1
mT* E�LmT* E is the natural imbedding,Qªl*Q and

Vª2dQ5l*V are canonical forms inMp, which are called themultimomentum Liouville mand
(m11) forms. In particular, we have thatQ(p)5(t1+m)* p, for everypPMp. Their local ex-
pressions are

Q5pA
adyA∧dm21xa1pdmx, V52dpA

a∧dyA∧dm21xa2dp∧dmx. ~4!

Observe thatFL̃* Q5QL , andFL̃* V5VL .
Now, if (J1E,VL) is a hyper-regular Lagrangian system, thenP̃ªFL̃(J1E) is a one-

codimensional andm-transverse imbedded submanifold ofMp ~we will denote the natural im-
bedding bỹ :P̃�Mp), which is diffeomorphic toJ1* E. This diffeomorphism ism21, whenm is
restricted toP̃, and also coincides with the maphªFL̃+FL21, when it is restricted onto its imag
~which is justP̃!. This maph is called aHamiltonian section, and can be used to construct th
Hamilton-Cartan mand (m11) formsof J1* E by making

Qh5h* QPVm~J1* E!, Vh5h* VPVm11~J1* E!.

The couple (J1* E,Vh) is said to be theHamiltonian systemassociated with the hyper-regula
Lagrangian system (J1E,VL). Locally, the Hamiltonian sectionh is specified by thelocal Hamil-
tonian function H5pA

a(FL21)* va
A2(FL21)* L, that is, h(xa,yA,pA

a)5(xa,yA,pA
a ,2H). Then

we have the local expressions

Qh5pA
adyA∧dm21xa2Hdmx, Vh52dpA

a∧dyA∧dm21xa1dH∧dmx.

Of courseFL* Qh5QL andFL* Vh5VL .
The Hamiltonian problemassociated with the Hamiltonian system (J1* E,Vh) consists in

finding sectionscPG(M ,J1* E), which are characterized by the condition

c* i ~X!Vh50, for every XPX~J1* E!.

In natural coordinates, ifc(x)5(xa,yA(x),pA
a(x)), this condition leads to the so-calle

Hamilton–De Donder–Weyl equations~for the sectionc!.
The problem of finding these sections can be formulated equivalently as follows: find

distribution D of T(J1* E) such that D is integrable ~that is, involutive!, m-dimensional,
t̄1-transverse, and its integral manifolds are the sections solution to the above equations.
equivalent to stating that the sections solution to the Hamiltonian problem are the integral se
of one of the following equivalent elements:

• A class of integrable andt̄1-transversem-vector fields$XH%,Xm(J1* E) satisfying that
i (XH)Vh50, for everyXHP$XH%.

• An integrable connection¹H in t̄1:J1* E→M such thati (¹H)Vh5(m21)Vh .

• An integrable jet fieldCH :J1* E→J1J1* E, such thati (CH)Vh50.

t̄1-transverse and locally decomposablem-vector fields, orientable jet fields, and orientable co
nections, which are solutions of these equations, are calledHamilton–De Donder–Weyl (HDW)
m-vector fields, jet fields, and connectionsfor (J1* E,Vh). Their local expressions in natura
coordinates are
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XH5 f ∧
a51

m S ]

]xa
1Fa

A ]

]yA
1GAa

h ]

]pA
hD ,

CH5~xa,yA,pA
a ;Fa

A ,GAa
h !,

¹H5dxa
^ S ]

]xa
1Fa

A ]

]yA
1GAa

n
]

]pA
n D ,

where f PC`(J1* E) is a nonvanishing function, and the coefficientsFa
A , GAa

h are related by the
system of linear equations

Fa
A5

]H

]pA
a

, GAn
n 52

]H

]yA
.

Now, if c(x)5(xa,yA(x)5cA(x),pA
a(x)5cA

a(x)) is an integral section ofXH then

]H

]pA
aU

c

5Fa
A+c5

]cA

]xa
; 2

]H

]yAU
c

5GAa
a +c5

]cA
a

]xa
,

which are the Hamilton–De Donder–Weyl equations forc. As above, a representative of the cla
$XH% can be selected by the conditioni (XH)( t̄1* v)51, which leads tof 51 in the above local
expression. The existence of classes of HDWm-vector fields, jet fields, and connections is a
sured.

In an analogous way, if (J1E,VL) is an almost-regular Lagrangian system, the submani
:P�J1* E, is a fiber bundle overE andM. In this case them-transverse submanifoldP̃�Mp is
diffeomorphic toP. This diffeomorphism is denoted bym̃:P̃→P, and it is just the restriction of
the projectionm to P̃. Then, taking the Hamiltonian sectionh̃ª ̃+m̃21, we define the Hamilton–
Cartan forms

Qh
05h̃* Q; Vh

05h̃* V,

which verify thatFL0* Qh
05QL andFL0* Qh

05VL ~whereFL0 is the restriction map ofFL onto
P!. Then (P,Vh

0) is theHamiltonian systemassociated with the almost-regular Lagrangian sys
(J1E,VL), and we have Diagram 1.

~5!

Then, theHamiltonian problemassociated with the Hamiltonian system (P,Vh
0), and the equa-

tions for the sections ofG(M ,P) solution to the Hamiltonian problem are stated as in the reg
case. Now, the existence of the corresponding Hamilton–De Donder–Weylm-vector fields, jet
fields, and connections for (P,Vh

0) is not assured, except perhaps on some submanifoldP of P,
where the solution is not unique.

From now on we will consider only regular or almost-regular systems.
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III. UNIFIED FORMALISM

A. Extended Hamiltonian system

Given a fiber bundlep:E→M over an oriented manifold (M ,v), we define theextended
jet-multimomentum bundleW and therestricted jet-multimomentum bundleWr as

WªJ1E3EMp, WrªJ1E3EJ1* E,

whose natural coordinates are (xa,yA,va
A ,pA

a ,p) and (xa,yA,va
A ,pA

a), respectively. We have the
natural projections~submersions!

r1 :W→J1E, r2 :W→Mp, rE :W→E, rM :W→M ,
~6!

r1
r :Wr→J1E, r2

r :Wr→J1* E, rE
r :Wr→E, rM

r :Wr→M .

Note thatp1+r15t1+m+r25rE . In addition, there is also the natural projection

mW :W→Wr ,

~ ȳ,p!°~ ȳ,@p# !.

The bundleW is endowed with the following canonical structures:

Definition 1:

~1! Thecouplingm-form in W, denoted byC, is an m-form alongrM which is defined as follows
for every ȳPJy

1E, with p̄1( ȳ)5p(y)5xPE, and pPMyp, let w[( ȳ,p)PWy , then
C~w!ª~Txf!* p,

wheref:M→E satisfies that j1f(x)5 ȳ.
Then, we denote byĈPVm(W) the rM-semibasic form associated withC.

~2! The canonical m-form QWPVm(W) is defined by QWªr2* Q, and it is therefore
rE-semibasic.

The canonical (m11)-form is the pre-multisymplectic formVWª2dQW5r1* V
PVm11(W).

Being Ĉ a rM-semibasic form, there isĈPC`(W) such thatĈ5Ĉ(rM* v). Note also thatVW
is not one-nondegenerate, its kernel being ther2-vertical vectors; then, we call (W,VW) a pre-
multisymplectic structure. This definition of the coupling form is in fact an alternative~obviously
equivalent! presentation of the extended multimomentum bundle as the set of affine maps fro
jet bundleJ1E to p-basicm-forms.

The local expressions forQW andVW are the same as~4!, and for Ĉ we have

Ĉ~w!5~p1pA
ava

A!dmx.

Given a Lagrangian densityLPVm(J1E), we denoteL̂ªr1* LPVm(W), and we can write
L̂5L̂(rM* v), with L̂5r1* LPC`(W). We define aHamiltonian submanifold

W0ª$wPWuL̂~w!5 Ĉ~w!%.

So,W0 is the submanifold ofW defined by the constraint functionĈ2L̂50. In local coordinates
this constraint function is

p1pA
ava

A2L̂~xn,yB,vn
B!50.
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We have the natural imbedding0 :W0�W, as well as the projections~submersions!

r1
0:W0→J1E, r2

0:W0→Mp, rE
0:W0→E, rM

0 :W0→M ,

which are the restrictions toW0 of the projections~6!, and r̂2
05m+r2

0:W0→J1* E. So we have
Diagram 2.

Local coordinates inW0 are (xa,yA,va
A ,pA

a), and we have that

r1
0~xa,yA,va

A ,pA
a!5~xa,yA,va

A!,

0~xa,yA,va
A ,pA

a!5~xa,yA,va
A ,pA

a ,L2va
ApA

a!,

r2
0~xa,yA,va

A ,pA
a!5~xa,yA,pA

a ,L2va
ApA

a!,

r̂2
0~xa,yA,va

A ,pA
a!5~xa,yA,pA

a!.

Proposition 1:W0 is a one-codimensionalmW-transversal submanifold ofW, diffeomorphic
to Wr .

~Proof! For every ~ ȳ,p!PW0 , we have L~ ȳ![L̂~ ȳ,p!5Ĉ~ ȳ,p!,

and

~mW+0!~ ȳ,p!5mW~ ȳ,p!5~ ȳ,m~p!!5~ ȳ,@p# !.

First, mW+0 is injective: let (ȳ1 ,p1), (ȳ2 ,p2)PW0 , then we have

~mW+0!~ ȳ1 ,p1!5~mW+0!~ ȳ2 ,p2!⇒~ ȳ1 ,m~p1!!5~ ȳ2 ,m~p2!!⇒ ȳ15 ȳ2 ,m~p1!5m~p2!,

hence,

L~ ȳ1!5L~ ȳ2!5Ĉ~ ȳ1 ,p1!5Ĉ~ ȳ2 ,p2!.

In a local chart, third equality gives

p~p1!1pA
a~p1!va

A~ ȳ1!5p~p2!1pA
a~p2!va

A~ ȳ2!,

but m(p1)5m(p2) implies that
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pA
a~p1!5pA

a~@p1# !5pA
a~@p2# !5pA

a~p2!,

therefore,p(p1)5p(p2), and hence,p15p2 .
Second,mW+0 is onto: Let (ȳ,p)PWr , then there exists (ȳ,q)P0(W0) such that@q#5@p#.

In fact, it suffices to take@q# in such a way that, in a local chart ofJ1E3EMp5W

pA
a~q!5pA

a~@p# !, p~q!5pA
a~@p# !va

A~ ȳ!2L~ ȳ!.

Finally, observe thatW0 is defined by the constraint functionL̂2Ĉ and, as kermW*
5$]/]p% and ]/]p(L̂2Ĉ)51, then W0 is a 1-codimensional submanifold ofW and
mW-transversal. j

As a consequence of this property, the submanifoldW0 induces a sectionĥ:Wr→W of the
projection mW . Locally, ĥ is specified by giving the localHamiltonian function Hˆ 52L̂
1pA

ava
A ; that is, ĥ(xa,yA,va

A ,pA
a)5(xa,yA,va

A ,pA
a ,2Ĥ). In this sense,ĥ is said to be aHamil-

tonian sectionof mW .

Remark:It is important to point out that, from every HamiltonianmW-sectionĥ:Wr→W in the
extended unified formalism, we can recover a Hamiltonianm-sectionh̃:P→Mp in the standard
Hamiltonian formalism. In fact, given@p#PJ1* E, the sectionĥ maps every point (ȳ,@p#)
P(r2

r )21(@p#) into r2
21@r2(ĥ( ȳ,@p#))#. So, the crucial point is the projectability of the loc

function Ĥ by r2 . But, being]/]va
A a local basis for kerr2* , Ĥ is r2-projectable if, and only if,

pA
a5]L/]vA

a , and this condition is fulfilled when@p#PP5Im FL,J1* E, which implies that
r2@ ĥ(r2

r )21)(@p#))] PP̃5Im FL,Mp. Hence, the Hamiltonian sectionh̃ is defined as follows:

h̄~@p# !5~r2+ĥ!@~r2
r !21~~@p# !!#, for every @p#PP.

So we have Diagram 3~see also Diagram 1!.

~For ~hyper! regular systems this diagram is the same with ImFL5J1* E.)
Finally, we can define the forms

Q0ª j 0* QW5r2
0* QPVm~W0!, V0ª j 0* VW5r2

0* VPVm11~W0!,

with local expressions

Q05~L2pA
ava

A!dmx1pA
adyA∧dm21xa ,

~7!
V05d~pA

ava
A2L !∧dmx2dpA

a∧dyA∧dm21xa ,

and we have obtained a~pre-multisymplectic! Hamiltonian system (W0 ,V0), or equivalently
(Wr ,ĥ* VW).

B. Field equations for sections

The Lagrange-Hamiltonian problemassociated with the system (W0 ,V0) consists in finding
sectionsc0PG(M ,W0) which are characterized by the condition

c0* i ~Y0!V050, for every Y0PX~W0!. ~8!
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This equation gives different kinds of information, depending on the type of the vector fieldY0

involved. In particular, using vector fieldsY0 which arer̂2
0-vertical, we have:

Lemma 1: If Y0PXV( r̂2
0)(W0) (i.e., Y0 is r̂2

0-vertical), then i(Y0)V0 is rM
0 -semibasic.

~Proof! A simple calculation in coordinates leads to this result. In fact, taking$]/]va
A% as a

local basis for ther̂2
0-vertical vector fields, and bearing in mind~7! we obtain

i S ]

]va
AD V05S pA

a2
]L

]va
AD dmx,

which are obviouslyrM
0 -semibasic forms. j

As an immediate consequence, whenY0PXV( r̂2
0)(W0), condition~8! does not depend on th

derivatives ofc0 : is a pointwise~algebraic! condition. We can define the submanifold

W15$~ ȳ,p!PW0u i ~V0!~V0!~ ȳ,p!50, for every V0PV~ r̂2
0!%,

which is called thefirst constraint submanifoldof the Hamiltonian pre-multisymplectic system
(W0 ,V0), as every sectionc0 solution to~8! must take values inW1 . We denote by1 :W1�W0

the natural embedding.
Locally, W1 is defined inW0 by the constraintspA

a5]L/]va
A . Moreover:

Proposition 2:W1 is the graph ofFL̃; that is, W15$( ȳ,FL̃( ȳ))PWu ȳPJ1E%.
~Proof! ConsiderȳPJ1E, let f:M→E be a representative ofȳ, andp5FL̃( ȳ). For every

UPTp̄1( ȳ)M , considerV5Tp̄1( ȳ)f(U) and its canonical liftingV̄5Tp̄1( ȳ) j
1f(U). From the defi-

nition of the extended Legendre map~3! we have that (Tȳp)* (FL̃( ȳ))5(QL) ȳ , then

i ~V̄!@~Tȳp
1!* ~FL̃~ ȳ!!#5 i ~V̄!~QL! ȳ .

Furthermore, asp5FL̃( ȳ), we also have that

i ~V̄!@~Tȳp
1!* ~FL̃~ ȳ!!#5 i ~Tp̄1~ ȳ! j

1f~U !!@~Tȳp
1!* p!

5 i ~Tp1~ ȳ!@~Tp̄1~ ȳ! j
1f~U !# !p5 i ~Tp̄1~ ȳ!f~U !!p5 i ~V!p.

Therefore, we obtain

i ~U !~f* p!5 i ~U !@~ j 1f!* ~QL! ȳ#,

and bearing in mind the definition of the coupling formC, this condition becomes

i ~U !~C~ ȳ,p!!5 i ~U !@~ j 1f!* QL! ȳ].

Since it holds for everyUPTp̄1( ȳ)M , we conclude thatC( ȳ,p)5@( j 1f)* QL# ȳ , or equivalently,
Ĉ( ȳ,p)5L̂( ȳ,p), where we have made use of the fact thatQL is the sum of the Lagrangian
densityL and a contact formi (V!L ~vanishing by pull-back of lifted sections!. This is the con-
dition definingW0 , and thus we have proved that (ȳ,FL̃( ȳ))PW0 , for every ȳPJ1E; that is,
graphFL̃,W0 . Furthermore, graphFL andW1 are defined as subsets ofW0 by the same local
conditions:pA

a2]L/]va
A50. So we conclude that graphFL̃5W1 . j

Being W1 the graph ofFL, it is diffeomorphic toJ1E. Every sectionc0 :M→W0 is of the
form c05(cL ,cH), with cL5r1

0+c0 :M→J1E, and if c0 takes values inW1 then cH5FL̃
+cL . In this way, every constraint, differential equation, etc., in the unified formalism ca
translated to the Lagrangian or the Hamiltonian formalisms by restriction to the first or the s
factors of the product bundle.
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However, as was pointed out before, the geometric condition~8! in W0 , which can be solved
only for sectionsc0 :M→W1,W0 , is stronger than the Lagrangian conditioncL* i (Z)VL50, @for
everyZPX(J1E)] in J1E, which can be translated toW1 by the natural diffeomorphism betwee
them. The reason is thatTW1

W05TW1% VW1
(r1

0), so the additional information comes therefo

from ther1
0-vertical vectors, and it is just the holonomic condition. In fact:

Theorem 1: Let c0 :M→W0 be a section fulfilling Eq. (8), c05(cL ,cH)5(cL ,FL̃+cL),
wherecL5r1

0+c0 . Then:
(1) cL is the canonical lift of the projected sectionf5rE

0+c0 :M→E (that is, cL is a
holonomic section).

(2) The sectioncL5 j 1f is a solution to the Lagrangian problem, and the sectionm+cH
5m+FL̃+cL5FL+ j 1f is a solution to the Hamiltonian problem.

Conversely, for every sectionf:M→E such that j1f is solutions to the Lagrangian problem
(and henceFL+ j 1f is solution to the Hamiltonian problem) we have that the sectionc0

5( j 1f,FL̃+ j 1f), is a solution to (8)~see Diagram 4!.

~Proof!

~1! Taking $]/]pA
a% as a local basis for ther1

0-vertical vector fields:

i S ]

]pA
aD V05va

Admx2dyA∧dm21xa ,

so that for a sectionc0 , we have

05c0* F i S ]

]pA
aD V0G5S va

A~x!2
]yA

]xa D dmx,

and thus the holonomy condition appears naturally within the unified formalism, and it is
necessary to impose it by hand toc0 . Thus, we have thatc05(xa,yA,]yA/]xa,]L/]va

A), sincec0

takes values inW1 , and hence, it is of the formc05( j 1f,FL̃+ j 1f), for f5(xa,yA)5rE
0+c0 .
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~2! Since sectionsc0 :M→W0 solution to~8! take values inW1 , we can identify them with
sectionsc1 :M→W1 . These sectionsc1 verify, in particular, thatc1* i (Y1)V150 holds for every
Y1PX(W1). Obviously,c051+c1 . Moreover, asW1 is the graph ofFL̃, denoting byr1

15r1
0

+1 :W1→J1E the diffeomorphism which identifiesW1 with J1E, if we defineV151* V0 , we
have thatV15r1

1* VL . In fact; as (r1
1)21( ȳ)5( ȳ,FL̃( ȳ)), for every ȳPJ1E, then (r0

2+1

+(r1
1)21)( ȳ)5FL̃( ȳ)PMp, and hence,

VL5~r0
2+1+~r1

1!21!* V5@~~r1
1!21!* +1* +r0

2* #V5@~~r1
1!21!* +1* #V05~~r1

1!21!* V1 .

Now, let XPX(J1E). We have

~ j 1f!* i ~X!VL5~r1
0+c0!* i ~X!VL5~r1

0+1+c1!* i ~X!VL

5~r1
1+c1!* i ~X!VL5c1* i ~~r1

1!
*
21X!~r1

1* VL!5c1* i ~Y1!V1 ~9!

5c1* i ~Y1!~1* V0!5~c1* +1* !i ~Y0!V05c0* i ~Y0!V0 ,

whereY0PX(W0) is such thatY051* Y1 . But asc0* i (Y0)V050, for everyY0PX(W0), then
we conclude that (j 1f)* i (X)VL50, for everyXPX(J1E).

Conversely, letj 1f:M→J1E such that (j 1f)* i (X)VL50, for everyXPX(J1E), and define
c0 :M→W0 asc0ª( j 1f,FL̃+ j 1f) ~observe thatc0 takes its values inW1). Taking into account
that, on the points ofW1 , everyY0PX(W0) splits intoY05Y0

11Y0
2, with Y0

1PX(W0) tangent to

W1 , andY0
2PXV(r1

0)(W0), we have that

c0* i ~Y0!V05c0* i ~Y0
1!V01c0* i ~Y0

2!V050,

because forY0
1, the same reasoning as in~9! leads to

c0* i ~Y0
1!V05~ j 1f!* i ~X0

1!VL50

@whereX0
15(r1

1)
*
21Y0

1] and for Y0
2, following also the same reasoning as in~9!, a local calculus

gives

c0* i ~Y0
2!V05~ j 1f!* F S f A

a~x!S va
A2

]yA

]xa D D dmxG50,

since j 1f is a holonomic section.
The result for the sectionsFL+ j 1f is a direct consequence of theequivalence theorembe-

tween the Lagrangian and Hamiltonian formalisms~see, for instance, Refs. 12 and 31!. j

Remark:The results in this section can also be recovered in coordinates taking an arb
local vector fieldY05 f A(]/]yA)1ga

A(]/]va
A)1hA

a(]/]pA
a)PX(W0), then

i ~Y0!V052 f A~]L/]yA!dmx1 f AdpA
a∧dm21xa1ga

A~pA
a2~]L/]va

A!!dmx

1hA
ava

Admx2hA
adyA∧dm21xa

and, for a sectionc0 fulfilling ~8!,
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05c0* i ~Y0!V05F f AS ]pA
a

]xa
2

]L

]yAD 1ga
AS pA

a2
]L

]va
AD 1hA

aS va
A2

]yA

]xa D Gdmx

reproduces the Euler–Lagrange equations, the restricted Legendre map~that is, the definition of
the momenta!, and the holonomy condition.

Summarizing, Eq.~8! gives different kinds of information, depending on the type of vertic
lity of the vector fieldsY0 involved. In particular, we have obtained equations of three differ
classes:

~1! Algebraic ~not differential! equations, determining a subsetW1 of W0 , where the sections
solution must take their values. These can be calledprimary Hamiltonian constraints, and in
fact they generate, byr̂2

0 projection, the primary constraints of the Hamiltonian formalism
singular Lagrangians, i.e., the image of the Legendre transformation,FL(J1E),J1* E.

~2! The holonomic differential equations, forcing the sections solutionc0 to be lifting of
p-sections. This property is similar to the one in the unified formalism of Classical Mecha
and it reflects the fact that the geometric condition in the unified formalism is stronger tha
usual one in the Lagrangian formalism.

~3! The classical Euler–Lagrange equations.

C. Field equations for m-vector fields, connections, and jet fields

The problem of finding sections solution to~8! can be formulated equivalently as follow
finding a distributionD0 of T(W0) such that it is integrable~that is, involutive!, m-dimensional,
rM

0 -transverse, and the integral manifolds ofD0 are the sections solution to the above equatio
~Note that we do not ask them to be lifting ofp-sections; that is, the holonomic condition.! This
is equivalent to stating that the sections solution to this problem are the integral sections of
the following equivalent elements:

• A class of integrable andrM
0 -transversem-vector fields$X0%,Xm(W0) satisfying that

i~X0!V050, for every X0P$X0%. ~10!

• An integrable connection¹0 in rM
0 :W0→M such that

i~¹0!V05~m21!V0. ~11!

• An integrable jet fieldC0 :W0→J1W0 , such that

i ~C0!V050. ~12!

Locally decomposable andrM
0 -transversem-vector fields, orientable jet fields, and orientab

connections, which are solutions of these equations will be calledLagrange–Hamiltonian
m-vector fields, jet fields, andconnectionsfor (W0 ,V0).

Recall that, in a natural chart inW0 , the local expressions of a connection form, its associa
jet field, and them-multivector fields of the corresponding associated class are

¹05dxa
^ S ]

]xa
1Fa

A ]

]yA
1Gan

A ]

]vn
A

1HaA
n

]

]pA
n D ,

C05~xa,yA,va
A ,Fa

A ,Gah
A ,HaA

n !, ~13!

X05 f ∧
a51

m S ]

]xa
1Fa

A ]

]yA
1Gan

A ]

]vn
A

1HaA
n

]

]pA
n D ,
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wheref PC`(J1E) is an arbitrary nonvanishing function. A representative of the class$X% can be
selected by the conditioni (X)( r̄M

0* v)51, which leads tof 51 in the above local expression.
Now, the equivalence of the unified formalism with the Lagrangian and Hamiltonian for

isms can be recovered as follows:

Theorem 2: Let $X0% be a class of integrable Lagrange–Hamiltonian m-vector fields inW0 ,
whose elements X0 :W0→LmTW0 are solutions to (10), and let¹0 :W0→rM

0* T* M ^ W0
TW0 be

its associated Lagrange–Hamiltonian connection form [which is a solution to (11)], an
C0 :W0→J1W1 its associated Lagrange–Hamiltonian jet field [which is a solution to (12)].

(1) For every X0P$X0%, the m-vector field XL :J1E→LmTJ1E defined by

XL+r1
05LmTr1

0+X0 ,

is a holonomic Euler–Lagrange m-vector field for the Lagrangian system(J1E,VL) (where
LmTr1

0:LmTW0→LmTJ1E is the natural extension of Tr1
0).

Conversely, every holonomic Euler–Lagrange m-vector field for the Lagrangian syste
(J1E,VL) can be recovered in this way from an integrable Lagrange–Hamiltonian m-vector field
X0PXW1

m (W0).

(2) The Ehresmann connection form¹L :J1E→p̄1* T* M ^ J1ETJ1E defined by

¹L+r1
05kW0

+¹0 ,

is a holonomic Euler–Lagrange connection form for the Lagrangian system(J1E,VL) (where
kW0

is defined as the map making the following diagram commutative)~see Diagram 5!.

Conversely, every holonomic Euler–Lagrange connection form for the Lagrangian syste
(J1E,VL) can be recovered in this way from an integrable Lagrange–Hamiltonian connection
form ¹0 .

(3) The jet fieldCL :J1E→J1J1E defined by

CL+r1
05 j 1r1

0+C0 ,

is a holonomic Euler–Lagrange jet field for the Lagrangian system(J1E,VL). Conversely, every
holonomic Euler–Lagrange jet field for the Lagrangian system(J1E,VL) can be recovered in this
way from an integrable Lagrange–Hamiltonian jet fieldC0 .

~Proof! Let X0 be a rM
0 -transversalm-vector field onW0 solution to ~10!. As sections

c0 :M→W0 solution to the geometric equation~8! must take value inW1 , then X0 can be
identified with am-vector field X1 :W0→LmTW1 ~i.e., LmT1+X15X0uW1

), and hence, there

existsXL :J1E→LmTJ1E such thatX15LmT(r1
1)21+XLPXm(W1). Therefore as a consequen

of item ~1! in theorem 1, for every sectionc0 solution to~8!, there existsXL
0PXm( j 1f(M )) such

thatLmTf+XL
05XLu j 1f(M ) , wheref : j 1f→E is the natural imbedding. So,XL is p̄1-transversal

and holonomic. Then, bearing in mind that1* V05r1
1* VL , we have

1* i ~X0!V05 i ~X1!~1* V0!5 i ~X1!~r1
1* VL!5r1

1* i ~XL!VL ,
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then i (X0)V050⇒ i (XL)VL50.
Conversely, given an holonomic Euler–Lagrangem-vector fieldXL , from i (XL)VL50, and

taking into account the above chain of equalities, we obtain thati (X0)V0P@X(W1)#0 @the anni-
hilator of X(W1)]. Moreover, beingXL holonomic,X0 is holonomic, and then the extra conditio

i (Y0) i (X0)V050 is also fulfilled for everyY0PXV(r1
0)(W0). Thus, remembering thatTW1

W0

5TW1% VW1
(r1

0), we conclude thati (X0)V050.
The proof for Ehresmann connections and jet fields is straightforward, taking into accoun

they are equivalent alternative descriptions in the Lagrangian formalism. j

This statement also holds for nonintegrable classes ofm-vector fields, connections, and je
fields in W0 , but now the corresponding classes of Euler–Lagrangem-vector fields, connections
and jet fields inJ1E will not be holonomic~but only semi-holonomic!. To prove this assertion i
suffices to compute Eq.~10! in coordinates, using the local expressions~7! and ~13!, concluding
then that, in the expressions~13!, Fa

A5va
A , which is the local expression of the semi-holonom

condition ~see, also, Ref. 9!.
Finally, the Hamiltonian formalism is recovered in the usual way, by using the following

Theorem 3: Let (J1* E,Vh) be the Hamiltonian system associated with a (hyper) regu
Lagrangian system(J1E,VL).

(1) (Equivalence theorem for m-vector fields! Let XLPXm(J1E) and XHPXm(J1* E) be the
m-vector fields solution to the Lagrangian and the Hamiltonian problems respectively. T

LmTFL+XL5 f XH+FL,

for some fPC`(J1* E) (we say that the classes$XL% and $XH% are FL-related).

(2) (Equivalence theorem for jet fields and connections) LetYL and YH be the jet fields solution
of the Lagrangian and the Hamiltonian problems respectively. Then

j1FL+YL5YH+FL
(we say that the jet fieldsYL and YH are FL-related). As a consequence, their associa
connection forms, ¹L and ¹H respectively, areFL-related, too.
(For almost-regular systems the statement is the same, but changing J1* E for P!.
~Proof! See Ref. 31.~The proof for the almost-regular case follows in a straight-forw

way.! j

As a consequence of these latter theorems, similar comments to those made at the end
II A and II B about the existence, integrability, and nonuniqueness of Euler–Lagrange
Hamilton–de Donder–Weylm-vector fields, connections, and jet fields, can be applied to t
associated elements in the unified formalism. In particular, for singular systems, the existe
these solutions is not assured, except perhaps on some submanifoldS�W1 , and the number of
arbitrary functions which appear depends on the dimension ofS and the rank of the Hessia
matrix of L ~an algorithm for finding this submanifold is outlined in Ref. 9!. The integrability of
these solutions is not assured~even in the regular case!, except perhaps on a smaller submanifo
I�S such that the integral sections are contained inI.

IV. EXAMPLE: MINIMAL SURFACES „in R3
…

@In Ref. 9 we find another interesting example, thebosonic string~which is a singular model!,
described in this unified formalism.#

A. Statement of the problem: Geometric elements

The problem consists in looking for mappingsw:U,R2→ such that their graphs have min
mal area as sets ofR3, and satisfy certain boundary conditions.
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For this model, we have thatM5R2, E5R23R, and

J1E5p* T* R2
^ R5p* T* M5p* T* R2,

Mp5p* ~TM3ME! ~affine maps fromJ1E to p* L2T* M !,

J1* E5p* TM5p* TR2 ~classes of affine maps fromJ1E to p* L2T* M !.

The coordinates inJ1E, J1* E and Mp are denoted (x1,x2,y,v1 ,v2), (x1,x2,y,p1,p2), and
(x1,x2,y,p1,p2,p), respectively. Ifv5dx1∧dx2, the Lagrangian density is

L5@11~v1!21~v2!2#1/2dx1∧dx2[Ldx1∧dx2,

and the Poincare´–Cartan forms are

QL5
v1

L
dy∧dx22

v2

L
dy∧dx11LS 12S v1

L D 2

2S v2

L D 2Ddx1∧dx2,

VL52dS v1

L D∧dy∧dx21dS v2

L D∧dy∧dx12dFLS 12S v1

L D 2

2S v2

L D 2D G∧dx1∧dx2.

The Legendre maps are

FL~x1,x2,y,v1 ,v2!5S x1,x2,y,
v1

L
,
v2

L D ,

FL̃~x1,x2,y,v1 ,v2!5S x1,x2,y,
v1

L
,
v2

L
,L2

~v1!2

L
2

~v2!2

L D ,

and thenL is hyperregular. The Hamiltonian function is

H52@12~p1!22~p2!2#1/2. ~14!

So the Hamilton–Cartan forms are

Qh5p1dy∧dx22p2dy∧dx12Hdx1∧dx2,

Vh52dp1∧dy∧dx21dp2∧dy∧dx11dH∧dx1∧dx2.

B. Unified formalism

For the unified formalism we have

W5p* T* M3Ep* ~TM3ME!, Wr5p* T* M3Ep* TM5p* ~T* M3MTM!.

If

w5~x1,x2,y,v1 ,v2 ,p1,p2,p!PW,

the coupling form is

Ĉ5~p1v11p2v21p!dx1∧dx2,

therefore,
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W05$~x1,x2,y,v1 ,v2 ,p1,p2,p!PWu@11~v1!21~v2!2#1/22p1v12p2v22p50%,

and we have the forms

Q05~@11~v1!21~v2!2#1/22p1v12p2v2!dx1∧dx22p2dy∧dx11p1dy∧dx2 ,

V052d~@11~v1!21~v2!2#1/22p1v12p2v2!∧dx1∧dx21dp2∧dy∧dx12dp1∧dy∧dx2 .

Taking first r̂2
0-vertical vector fields]/]va we obtain

05 i S ]

]va
D V05S pa2

va

L Ddx1∧dx2,

which determines the submanifoldW15graphFL̃ ~diffeomorphic toJ1E), and reproduces the
expression of the Legendre map. Now, takingr1

0-vertical vector fields]/]pa, the contraction
i (]/]pa)V0 gives, fora51,2, respectively,

v1dx1∧dx22dy∧dx2, v2dx1∧dx21dy∧dx1,

so that, for a section

c05~x1,x2,y~x1,x2!,v1~x1,x2!,v2~x1,x2!,p1~x1,x2!,p2~x1,x2!!,

taking values inW1 , we have that the condition

c0* F i S ]

]paD V0G50

leads to

S v12
]y

]x1D dx1∧dx250, S v22
]y

]x2D dx1∧dx250,

which is the holonomy condition. Finally, taking the vector field]/]y we have

i S ]

]yDV052dp2∧dx11dp1∧dx2,

and, for a sectionc0 fulfilling the former conditions, the equation

05c0* F i S ]

]yDV0G ,
leads to

05S ]p2

]x2
1

]p1

]x1D dx1∧dx2

5F ]

]x1 S v1

L D1
]

]x2 S v2

L D Gdx1∧dx2

5
1

L3 F S 11S ]y

]x1D 2D ]2y

]x2]x2
1S 11S ]y

]x2D 2D ]2y

]x1]x1
22

]y

]x1

]y

]x2

]2y

]x1]x2Gdx1∧dx2,
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which gives the Euler–Lagrange equation of the problem.
Now, bearing in mind~14!, and the expression of the Legendre map, from the Euler–Lagra

equations we get

]y

]x1
52

p1

H
,

]y

]x2
52

p2

H
;

]p1

]x1
52

]p2

]x2
,

which are the Hamilton–De Donder–Weyl equations of the problem.
The m-vector fields, connections and jet fields which are the solutions to the problem i

unified formalism are

X05 f S ]

]x1
1v1

]

]y
1

]v1

]x1

]

]v1
1

]v2

]x1

]

]v2
1

]p1

]x1

]

]p1
1

]p2

]x1

]

]p2D
∧S ]

]x2
1v2

]

]y
1

]v1

]x2

]

]v1
1

]v2

]x2

]

]v2
1

]p1

]x2

]

]p1
1

]p2

]x2

]

]p2D ,

C05S x1,x2,y,p1,p2;v1 ,v2 ,
]v1

]x1
,
]v1

]x2
,
]v2

]x1
,
]v2

]x2
,
]p1

]x1
,
]p1

]x2
,
]p2

]x1
,
]p2

]x2D ,

¹05dx1
^ S ]

]x1
1v1

]

]y
1

]v1

]x1

]

]v1
1

]v2

]x1

]

]v2
1

]p1

]x1

]

]p1
1

]p2

]x1

]

]p2D
1dx2

^ S ]

]x2
1v2

]

]y
1

]v1

]x2

]

]v1
1

]v2

]x2

]

]v2
1

]p1

]x2

]

]p1
1

]p2

]x2

]

]p2D
~f being a nonvanishing function!, where the coefficients]va /]xn5]2y/]xn]xa are related by the
Euler–Lagrange equations, and the coefficients]pa/]xn are related by the Hamilton–De Donder
Weyl equations~the third one!. Hence, the associated Euler–Lagrangem-vector fields, connections
and jet fields which are the solutions to the Lagrangian problem are

XL5 f S ]

]x1
1v1

]

]y
1

]v1

]x1

]

]v1
1

]v2

]x1

]

]v2
D ∧S ]

]x2
1v2

]

]y
1

]v1

]x2

]

]v1
1

]v2

]x2

]

]v2
D ,

CL5S x1,x2,y,p1,p2;v1 ,v2 ,
]v1

]x1
,
]v1

]x2
,
]v2

]x1
,
]v2

]x2D ,

¹L5dx1
^ S ]

]x1
1v1

]

]y
1

]v1

]x1

]

]v1
1

]v2

]x1

]

]v2
D 1dx2

^ S ]

]x2
1v2

]

]y
1

]v1

]x2

]

]v1
1

]v2

]x2

]

]v2
D ,

and the corresponding Hamilton–De Donder–Weylm-vector fields, connections, and jet field
which are the solutions to the Hamiltonian problem are

XH5 f S ]

]x1
2

p1

H

]

]y
1

]p1

]x1

]

]p1
1

]p2

]x1

]

]p2D ∧S ]

]x2
2

p2

H

]

]y
1

]p1

]x2

]

]p1
1

]p2

]x2

]

]p2D ,

CH5S x1,x2,y,p1,p2;2
p1

H
,2

p2

H
,
]p1

]x1
,
]p1

]x2
,
]p2

]x1
,
]p2

]x2D ,
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¹H5dx1
^ S ]

]x1
2

p1

H

]

]y
1

]p1

]x1

]

]p1
1

]p2

]x1

]

]p2D 1dx2
^ S ]

]x2
2

p2

H

]

]y
1

]p1

]x2

]

]p1
1

]p2

]x2

]

]p2D .

V. CONCLUSIONS AND OUTLOOK

We have generalized theRusk–Skinner unified formalismto first-order classical field theories
Corresponding to the Whitney sumTQ3QT* Q in autonomous mechanics, here we takeJ1E
3EMp as standpoint, but the field equations are stated in a submanifoldW0,J1E3EMp. As a
particular case of this situation, the unified formalism for nonautonomous mechanics is reco
the Whitney sum being nowJ1E3ET* E, wherep:E→R is the configuration bundle.8,9 Once the
suitable ~pre! multisymplectic structures are introduced, the field equations can be writte
several equivalent ways: using sections and vector fields~8! in W0 , m-vector fields~10!, connec-
tions ~11!, or jet fields~12!.

Starting from Eq.~8!, we have seen how, when different kinds of vertical vector fields inW0

are considered, this equation gives a different type of information. In particular, usingr̂2
0-vertical

vector fields, we can define a submanifoldW1�W0 , which turns out to be the graph of th
~extended! Legendre transformation~and hence diffeomorphic toJ1E). Furthermore, the field
equations are only compatible inW1 . As sections solution to the field equations take values
W1 , they split in a natural way into two components,c05(cL ,cH), ~with cL :M→J1E, and
cH5FL̃+cL). Then, takingr1

0-vertical vector fields in~8!, we have proved that the section
solution to the field equations in the unified formalism are automatically holonomic, even i
singular case. They are so in the following sense: for every sectionc0 solution in the unified
formalism, the corresponding sectioncL is holonomic.~As a special case, nonintegrablem-vector
fields, connections and jet fields which are solutions to the field equations are semi-holon!
These solutions only exist in general in a submanifold ofW1 . Finally, considering~8! for a
generic vector field, the Euler–Lagrange equations forcL , and the Hamilton–De Donder–Wey
equations form+cH5FL+cL arise in a natural way. Conversely, starting from sectionscL
5 j 1f and FL+cL solutions to the corresponding field equations, we can recover sectionc0

solution to ~8!. Thus, we have shown the equivalence between the standard Lagrangia
Hamiltonian formalisms and the unified one. This equivalence has been also proved form-vector
fields, connections and jet fields.

Although the subject is not considered in this work,K operators~i.e., the analogous operator
in field theories to the so-calledevolution operatorin mechanics!, in their different alternative
definitions,33 can easily be recovered from the unified formalism, similarly to the case of clas
mechanics.

In a forthcoming paper, this formalism will be applied to give a geometric framework
optimal control with partial differential equations. Although this subject has been dealt with i
context of functional analysis, to our knowledge there has been no geometric treatment o
date.
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APPENDIX: m-VECTOR FIELDS, JET FIELDS, AND CONNECTIONS IN JET BUNDLES

~See Refs. 17 and 27 for the proofs and other details of the following assertions.!
Let E be an-dimensional differentiable manifold. Form<n, sections ofLm(TE) are called

m-vector fieldsin E ~they are contravariant skew-symmetric tensors of orderm in E!. We denote
by Xm(E) the set ofm-vector fields inE. YPXm(E) is said to belocally decomposableif, for
every pPE, there exists an open neighborhoodUp,E and Y1 ,...,YmPX(Up) such that
Y.Y1∧•••∧Ym . Contraction ofm-vector fields and tensor fields inE is the usual one.
Up
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We can define the following equivalence relation: ifY,Y8PXm(E) are nonvanishingm-vector
fields, thenY;Y8 if there exists a nonvanishing functionf PC`(E) such thatY85 f Y ~perhaps
only in a connected open setU#E). Equivalence classes will be denoted by$Y%. There is a
one-to-one correspondence between the set ofm-dimensional orientable distributionsD in TE and
the set of the equivalence classes$Y% of nonvanishing, locally decomposablem-vector fields inE.
Then, there is a bijective correspondence between the set of classes of locally decomposa
p-transversem-vector fields$Y%,Xm(E), and the set of orientable jet fieldsC:E→J1E; that is,
the set of orientable Ehresmann connection forms¹ in p:E→M . This correspondence is chara
terized by the fact that the horizontal subbundle associated withC ~and¹! coincides withD(Y).

If YPXm(E) is nonvanishing and locally decomposable, the distribution associated wit
class$Y% is denotedD(Y). A nonvanishing, locally decomposablem-vector fieldYPXm(E) is
said to beintegrable ~respectively,involutive! if its associated distributionDU(Y) is integrable
~respectively, involutive!. Of course, ifYPXm(E) is integrable~respectively, involutive!, then so
is every m-vector field in its equivalence class$Y%, and all of them have the same integr
manifolds. Moreover,Frobenius’ theoremallows us to say that a nonvanishing and locally deco
posablem-vector field is integrable if, and only if, it is involutive. Of course, the orientable
field C, and the connection form¹ associated with$Y% are integrable if, and only if, so isY, for
everyYP$Y%.

Let us consider the following situation: ifp:E→M is a fiber bundle, we are concerned wi
the case where the integral manifolds of integrablem-vector fields inE are sections ofp. Thus,
YPXm(E) is said to bep-transverseif, at every pointyPE, (i (Y)(p* b))yÞ0, for everyb
PVm(M ) such thatb(p(y))Þ0. Then, ifYPXm(E) is integrable, it isp-transverse if its integra
manifolds are local sections ofp. In this case, iff:U,M→E is a local section withf(x)5y and
f(U) is the integral manifold ofY throughy, thenTy(Im f) is Dy(Y). Integral sectionsf of the
class$Y% can be characterized by the conditionLmTf5 f Y+f+sM , wheresM :LmTM→M is the
natural projection, andf PC`(E) is a nonvanishing function.

As a particular case, let$X%:J1E→DmTJ1E,$LmTJ1E% be a class of nonvanishing, locall
decomposable andp̄1-transversem-vector fields inJ1E, C:J1E→J1J1E its associated jet field
and¹:J1E→p̄1* TM ^ J1ETJ1E its associated connection form. Then, these elements are sa
beholonomicif they are integrable and their integral sectionsw:M→J1E are holonomic. Further-
more, consider the (1,m)-tensor field inJ1E defined byJª i (V)(p̄1* v), whose local expression
is J5(dyA2va

Adxa)∧dm21xn ^ ]/]vn
A . A connection form¹ in p̄1:J1E→M ~and its associated

jet field C:J1E→J1J1E) are said to besemi-holonomic~or a second order partial differential
equation!, if

whereh¹ denotes the horizontal projector associated with¹. If $X%,Xm(J1E) is the associated
class ofp̄1-transverse multivector fields, then this condition is equivalent toJ(X)50, for every
XP$X%. Then the class$X%, and its associated jet fieldC and connection form¹ are holonomic if,
and only if, they are integrable and semi-holonomic.
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Unsteady equipartition MHD solutions
Oleg I. Bogoyavlenskij
Department of Mathematics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
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The unsteady equipartition solutions are introduced that describe a plasma relax-
ation in regime of a strong interaction between the plasma velocityV and the
magnetic fieldB and depend on all four variablest,x,y,z. The solutions exist when
the kinematic viscosityn is equal to the magnetic diffusivityh and V
56B/Arm. The exact equipartition solutions to the boundary value problem with
the ‘‘no-slip’’ boundary condition are derived. The solutions depend on infinitely
many parameters and describe the plasma relaxation in a ball with a constant
pressure at the boundary. The translationally invariant exact solutions are obtained
for nÞh for which plasma is confined in cylindrical domains by the magnetic field
B only while the plasma pressureP is zero at the boundary and is positive inside
the domains. ©2004 American Institute of Physics.@DOI: 10.1063/1.1629137#

I. INTRODUCTION

The magnetohydrodynamics equations have the form

]V

]t
1~V•grad!V52

1

r
gradP1nDV1

1

rm
curlB3B1

1

r
f, ~1.1!

]B

]t
5curl~V3B!1hDB, ~1.2!

div V50, divB50, ~1.3!

whereB is the magnetic vector field,V is the plasma velocity andP is the pressure. We suppos
that the plasma densityr, its kinematic viscosityn, magnetic permeabilitym, and the resistivity~or
magnetic diffusivity! h are constant and assume thatf is the vector field of the external gravita
tional force,f52r gradF, whereF(t,x) is the gravitational potential and denotex5(x,y,z).
For B50, the MHD equations turn into the Navier–Stokes equations~NSE!:

]V

]t
1~V•grad!V52

1

r
gradP1nDV1

1

r
f, div V50. ~1.4!

The NSE were intensively studied in the literature, see the Leray paper1 and the monographs.2,3

There are well-known exact parallel shear or unidirectional flows for which all streamline
parallel to the axisz and velocityV is independent ofz; this class contains the steady Couette flo
and Poiseuille flow. There are exact cylindrically symmetric solutions with closed p
streamlines.4 The known Landau5 and Squire6 exact solution describes a steady and axially sy
metric laminar jet; the solution has singularity atr 50, infinite total kinetic energy and has th
asymptoticsuV(x,y,z)u5r 21f (u) as r→` wherer , u, f are the spherical coordinates.

Cole7 and Hopf8 demonstrated that the Burgers equation9

]V

]t
1~V•grad!V5nDV ~1.5!
3810022-2488/2004/45(1)/381/10/$22.00 © 2004 American Institute of Physics
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has exact potential solutionsV522n grad(logC) where functionC(t,x) satisfies the diffusion
equationC t5nDC. The incompressibility condition divV50 and the pressureP are ignored in
the Burgers equation~1.5!.

In the paper10 we presented the following exact solutions to the complete system o
viscous MHD equations with the necessary constraints divV50, divB50:

V~ t,x!5e2a2ntE E
S2

@sin~ak"x!T~k!1cos~ak"x!k3T~k!#ds, ~1.6!

B~ t,x!5C1 exp@2a2~h2n!t#V~ t,x!,

P~ t,x!5C22rV2~ t,x!2rF~t,x!.

Here the integral is taken with respect to an arbitrary measure ds on the two-dimensional uni
sphereS2: k"k51 andT~k! is an arbitrary smooth vector field tangent to the unit sphere,T(k)
•k50 and aÞ0 is an arbitrary parameter. The solutions satisfy the Beltrami equation cV
5aV. ForC150, we get the exact solutions to the Navier–Stokes equations~1.4!. For the special
vector fieldsT~k! and the Euclidean measure ds, solutions~1.6! have the solitonlike properties
see Refs. 11 and 12.

In this paper we introduce the unsteady field-aligned equipartition solutions to the M
equations~1.1!–~1.3! that describe the plasma relaxation in the regime of a strong intera
between the magnetic fieldB(t,x) and the plasma velocityV(t,x) ~these solutions were firs
announced in Refs. 13 and 14!. The interaction causes the equality of the densities of the pla
magnetic and kinetic energies and the collinearity of the fieldsB(t,x) andV(t,x). The solutions
exist when the kinematic viscosityn is equal to the resistivityh. As an application we construct fo
n5h.0 the nonequipartition solutions describing a plasma relaxation to an equilibrium w
constant magnetic fieldB. For the unsteady equipartition solutions withn5h.0, the viscous
MHD equations are reduced to the linear system of the vector diffusion equation and the i
pressibility equation:

]V

]t
5nDV, div V50. ~1.7!

We derive the global equipartition solutions inR3 for which the total plasma magnetic and kinet
energies are finite and equal. The obtained solutions are different from the small Alfve´nic fluc-
tuations or waves15–18 that satisfy the equationdB56ArmdV for the variationsdB, dV.

We present the exact nonsymmetric equipartition solutions to the boundary value prob

]V

]t
5nDV, div V50, Vu]D50 ~1.8!

with the ‘‘no-slip’’ boundary condition which describe the viscous plasma relaxation in a baD
with a constant pressure at the boundary. We show that the corresponding initial-boundary
problem is overdetermined. The steady ideal MHD equilibria in a ball withn5h50 andV50
were first found by Wu and Chen19 and by Kaiser and Lortz.20

For the generic casenÞh, we derive the exact translationally invariant solutions that mo
the plasma relaxation inside cylindrical domainsD. An important property of these solutions
that the pressureP(t,x) is positive inside the plasma volumeD and is zero at the boundary]D.
Hence it is the magnetic fieldB(t,x) that confines plasma inside the domainD but not the external
pressure that is zero.
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II. UNSTEADY EQUIPARTITION SOLUTIONS

The magnetohydrodynamics equations (1.1)–(1.3) for n5h have the following exact field
aligned equipartition solutions

V~ t,x!5
1

~4pnt !3/2curlE
R3

A~x8!expS 2
ux2x8u2

4nt Ddt8, ~2.1!

B~ t,x!56ArmV~ t,x!, ~2.2!

where dt85dx8 dy8 dz8 and the vector fieldA(x8) is arbitrary and coincides with the vecto
potential of the initial vector fieldV(0,x8): curlA(x8)5V(0,x8). The pressure P has the form

P~ t,x!5C2rV2~ t,x!/22rF~ t,x!. ~2.3!

Using the known identity

~V•grad!V5curlV3V1grad~V2/2!, ~2.4!

one transforms equations~1.1! to the form

]V

]t
5V3curlV1nDV1

1

rm
curlB3B2grad

1

r S P1
1

2
V21F D . ~2.5!

Equations~2.5! and ~1.2! after substitution of~2.2! take the form

]V

]t
5nDV2gradS 1

r
P1

1

2
V21F D ,

]V

]t
5hDV.

Applying operator curl to these two equations we find the conditions of their compatibility

n5h,
1

r
P~ t,x!1

1

2
V2~ t,x!1F~ t,x!5const.

For this case, the equations~1.1!–~1.3! are reduced to the linear equations~1.7!. The solutions to
the scalar diffusion equation]u/]t5nDu have the form1

u~ t,x!5
1

~4pnt !3/2E
R3

f ~x8!expS 2
ux2x8u2

4nt Ddt8,

wheref (x8)5u(0,x8) are the initial data. Substituting here an arbitrary vector fieldA(x8) instead
of the function f (x8) we get a solution to the vector diffusion equation~1.7!. Applying to this
solution operator curl we obtain the vector field~2.1! that is divergence free and hence satisfi
both equations~1.7! and therefore the MHD equations~1.1!–~1.3!.

Remark 1:The exact solutions~2.1!, ~2.2! are the unsteady equipartition solutions because
densities of the kinetic and magnetic energies are equal:rV2(t,x)5B2(t,x)/m. It is evident that if
the vector fieldA(x8) is square integrable then the solutions~2.1!, ~2.2! are square integrable also
hence the total kinetic and magnetic energies are finite and equal.

Remark 2:The derived exact solutions~2.1!–~2.3! describe a plasma relaxation in a regime
a strong interaction between the plasma velocityV and the magnetic fieldB. Indeed, the very fact
of the equality of the densities of the plasma kinetic and magnetic energies and the collin
~2.2! mean a strong interaction between the magnetic fieldB(t,x) and the plasma velocityV(t,x).

Remark 3:Solutions~2.1! can be represented also in the form
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V~ t,x!5E
R3

exp~2nk2t !@cos~k"x!S~k!1sin~k"x!T~k!#dt, ~2.6!

where dt5dk1 dk2 dk3 and the vector fieldsS~k! and T~k! are tangent to the spheresk"k
5const, or the equationsk"S(k)50, k"T(k)50 hold. Indeed, a direct calculation proves that t
vector field~2.6! satisfies both equations~1.7!.

III. AN APPLICATION TO THE PLASMA RELAXATION TO A CONSTANT MAGNETIC
FIELD

As a first application of the equipartition solutions~2.1!–~2.3! we construct the following
exact solutions forn5h:

V2~ t,x!5
1

~4pnt !3/2curlE
R3

A~x8!expS 2
ux6B0t/Arm2x8u2

4nt D dt8, ~3.1!

B2~ t,x!56ArmV2~ t,x!1B0 ,

P2~ t,x!5C2
r

2 S V2~ t,x!6
1

Arm
B0D 2

2rFS t,x6
1

Arm
B0t D .

To prove that~3.1! is an exact solution, we consider first for any square integrable vector
V(t,x) ~2.1! the following equipartition solution:

V1~ t,x!5V~ t,x!6
1

Arm
B0 , B1~ t,x!56ArmV~ t,x!1B0 , ~3.2!

P1~ t,x!5C2rV1
2~ t,x!/22rF~ t,x!,

whereB0 is an arbitrary constant vector. The formulas~3.2! define a solution to the equation
~1.1!–~1.3! because the equations~1.7!, ~2.2!, and~2.3! are satisfied.

As is known, the magnetohydrodynamics equations~1.1!–~1.3! are invariant with respect to
the Galilean transforms

V2~ t,x!5V1~ t,x2ut !1u, B2~ t,x!5B1~ t,x2ut !, ~3.3!

P2~ t,x!5P1~ t,x2ut !,

whereu is an arbitrary constant vector. Applying the Galilean transform~3.3! with the vectoru
57B0 /Arm to the exact solutions~3.2!, we obtain the solutions~3.1!.

The exact solutions~3.1! evidently are not the equipartition ones and not the field-alig
ones. For these solutions the plasma velocityV2(t,x)→0 as t→` and asuxu→` and is square
integrable. At the same time the magnetic fieldB2(t,x)→B0 . Therefore the derived noncollinea
and nonequipartition solutions~3.1! describe a plasma relaxation to an equilibrium with a cons
magnetic fieldB0 .

IV. PLASMA RELAXATION IN A BALL

The steady MHD equilibria in a ball are constructed in Refs. 19 and 20 where the au
consider the ideal plasma (n5h50) with zero velocityV(t,x)50. In Ref. 21 we generalize thes
solutions to the ideal MHD equilibria with dynamics of plasma with a steady velocityV(t,x)
5V(x)Þ0 using the newly discovered symmetry transform.21,22 In this section we present th
unsteady equipartition solutions in a ball that take into account the effects of the plasma vis
and the finite electric conductivity (n5hÞ0) and have spherical magnetic surfacesuxu5r .
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For the equipartition solutions (2.2) in a domainD,R3, the initial-boundary value problem
with the ‘‘no-slip’’ boundary conditionV(t,x)u]D50 is overdetermined.

Indeed, since the equipartition solutions satisfy the system of equations~1.7!, the initial-
boundary value problem for them takes the form

]V

]t
5nDV, div V50, V~ t,x!u]D50, V~0,x!5U~x!, ~4.1!

where the vector fieldU~x! is the initial plasma velocity in the domainD. The presence of the
additional incompressibility condition divV50 makes the problem~4.1! overdetermined. Indeed
let us consider the solutions independent of the variablez. Then the incompressibility equatio
implies V(t,x,y)52cyex1cxey where c(t,x,y) is a streamfunction andcx5]c/]x, cy

5]c/]y. For this case the initial-boundary value problem~4.1! takes the form

c t5n~cxx1cyy!, cxu]D50, cyu]D50, c~0,x,y!5 f ~x,y!. ~4.2!

The two boundary conditions in~4.2! are equivalent to the taken simultaneously Dirichlet’s a
Neumann’s conditions,

c~ t,x,y!u]D5const,
]c~ t,x,y!

]n U
]D

50.

Heren is the unit normal vector field to the boundary]D. As is known,23 for each of these two
boundary conditions separately the initial-boundary value problem for the diffusion equatic t

5n(cxx1cyy) has a unique solution~up to a constant!, and the two solutions are different i
general. Hence the problem~4.2! is overdetermined.

Therefore we construct some solutions to the boundary value problem~1.8! without pre-
scribed initial conditions. Let the domainD be a ball of radiusR. Function

Fa~x!5
sin~auxu!

auxu

satisfies the Helmholtz equationDFa(x)52a2Fa(x) wherea is an arbitrary parameter. Henc
for an arbitrary vectora the vector fieldA(x)5Fa(x)a satisfies the vector Helmholtz equatio
DA(x)52a2A(x). Therefore the vector field

V~ t,x,a!5e2a2nt curl~Fa~x!a!5e2a2ntha~x!x3a ~4.3!

satisfies the first two equations~1.8!. Here

ha~x!5ha~ uxu!5Fa8 ~ uxu!uxu215cos~auxu!uxu222sin~auxu!a21uxu23 ~4.4!

is a smooth function ofx.
The zeros of the functionha(za21) satisfy the equation

tanz5z. ~4.5!

Let z1 , . . . ,zk , . . . be thepositive roots of equation~4.5!. As is known,

zk'kp1
p

2
2

2

~2k11!p
as k→`, kp1

p

4
,zk,kp1

p

2
.

Formula~4.4! yields thatha(zka
21)50. Therefore the vector fieldV(t,x,a) ~4.3! vanishes on the

spheresuxu5zka
21. Hence for the discrete values ofa: a15z1R21, a25z2R21, . . . and for the

arbitrary vectorsa5ak the vector fields~4.3! vanish on the sphereuxu5R. Thus the vector fields
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Vk~ t,x,ak!5e2zk
2R22ntFcos~zkR

21uxu!
uxu2

2R
sin~zkR

21uxu!
zkuxu3 Gx3ak ~4.6!

satisfy the boundary value problem~1.8! in the ball uxu<R. The vector fields~4.6! have two first
integrals f 1(t,x)5uxu and f 2(t,x)5x"ak ; hence their magnetic field lines are circumferences
the planes orthogonal to the vectorsak . A more general solution to the boundary value probl
~1.8! is represented by the convergent series

V~ t,x!5 (
k51

`

e2zk
2R22ntFcos~zkR

21uxu!
uxu2

2R
sin~zkR

21uxu!
zkuxu3 Gx3ak , ~4.7!

where we suppose that the series(k51
` uaku is convergent. The unsteady equipartition solutio

~2.2!, ~2.3!, ~4.7! satisfy the boundary value problem~1.8! in the balluxu<R. The pressure~2.3! is
P(t,x)5P02rV2(t,x)/2 whereP0 is an arbitrary constant. Hence we find at the boundaryuxu
5R:

P~ t,x!5P0 , gradP~ t,x!50.

The solution is continued in the outer space by the trivial solutionP5P0 , B50, V50.
A direct calculation using the equations tanzk5zk proves that the total kinetic energy of th

field ~4.7! inside the ballD has the simple form

E5
r

2 ED
V2 dx dy dz5

2prR

3 (
k51

`

e22zk
2R22ntuaku2

zk
2

11zk
2 ,

for arbitrary vectorsak . The total plasma kinetic plus magnetic energy for the solutions~2.2!, ~4.7!
is equal to 2E.

The solutions~2.2!, ~4.7! possess invariant magnetic surfaces that are the spheresuxu5r
5const. We haveV(t,x)5x3V(t,uxu) where

V~ t,r !5 (
k51

`

e2zk
2R22ntFcos~zkR

21r !

r 2 2R
sin~zkR

21r !

zkr
3 Gak . ~4.8!

Therefore on each sphereuxu5r the vector fieldV(t,x) ~4.7! defines a rotation around the vect
V(t,r ) ~4.8! that depends ont and r . Hence the solutions~2.2!, ~4.7! have no geometrica
symmetries provided that some of the vectorsak are noncollinear. It is evident that the solution
~2.2!, ~4.7! have spherical magnetic surfacesuxu5r<R. The boundary value problem~1.8! is
transformed to that for the vectorV(t,r ):

Vt5n~4r 21Vr1Vrr !, V~ t,0!50, V~ t,R!50,

whereVt5]V/]t, Vr5]V/]r .

V. TRANSLATIONALLY INVARIANT SOLUTIONS FOR nÅh

The viscous MHD equations (1.1)–(1.3) for arbitrary constantsr, m, n, h have an infinite-
dimensional family of exact solutions

V~ t,x̃!5e2a2nt@2acy~ x̃!êx1acx~ x̃!êy1bc~ x̃!êz#1cêz , ~5.1!

B~ t,x̃!5e2a2ht@2kcy~ x̃!êx1kcx~ x̃!êy1,c~ x̃!êz#1mêz , ~5.2!

wherex̃5(x,y) and a,b,c,k,,,m anda are arbitrary parameters, cx5]c/]x, cy5]c/]y and
the flux functionc( x̃) satisfies the two-dimensional Helmholtz equation
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Dc~ x̃!52a2c~ x̃!. ~5.3!

The pressure P is

P5C2
a2r

2
E2~cx

21cy
21a2c2!1

a2k22,2

2m
Em

2 c22
,m

m
Emc, ~5.4!

where E5exp(2a2nt) and Em5exp(2a2ht). The solutions possess invariant magnetic surfa
that are defined by the equationsc( x̃)5const.For k5,5m50, the formulas (5.1)–(5.4) de-
scribe exact solutions to the Navier–Stokes equations (1.4).

It is evident that the vector fields~5.1!, ~5.2! have the form

V5bU2a curlU1cêz , B5e2a2(h2n)t~,U2k curlU!1mêz , ~5.5!

where vector fieldU5exp(2a2nt)c(x̃)êz satisfies the equations divU50, DU52a2U. Hence
using the identity curl curlU5grad divU2DU we find

curlV52a2aU1b curlU, curlB5e2a2(h2n)t~2a2kU1, curlU!. ~5.6!

The formulas~5.5!–~5.6! imply

curlV3V5~b22a2a2!curlU3U1bc curlU3êz5grad@~a2a22b2!E2c2/22bcEc#.
~5.7!

Hence using the identity~2.4! we get

~V•grad!V5a2E2 grad~cx
21cy

21a2c2!/2. ~5.8!

Analogously we obtain

curlB3B5grad@~a2k22,2!Em
2 c2/22,mEmc#, ~5.9!

V3B5grad@~a,2bk!EEmc2/21~amE2ckEm!c#. ~5.10!

For the vector fields~5.1!–~5.2!, equations~1.3! hold identically. A substitution of the formula
~5.8!–~5.10! shows that equations~1.1!–~1.2! reduce to the form

]B

]t
5hDB,

]V

]t
5nDV2gradS P

r
1

a2E2

2
~cx

21cy
21a2c2!2

a2k22,2

2rm
Em

2 c21
,m

rm
Emc D .

~5.11!

An inspection proves that the vector fields~5.1!, ~5.2! satisfy equations~5.11! provided that the
pressureP has form~5.4! and functionc( x̃) is any solution to the Helmholtz equation~5.3!. Such
solutions can be taken in the form

c~ x̃!5E
0

2p

@sin~ak"x̃! f 1~f!1cos~ak"x̃! f 2~f!#df. ~5.12!

Here vectork5(cosf)ex1(sinf)ey , 0<f<2p, and f 1(f), f 2(f) are any integrable functions
The exact solutions~5.1!–~5.4! were first announced in Ref. 24. For the special caseb5c

50, k5,5m50, they become the Taylor two-dimensional flows of viscous fluid.25
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VI. MAGNETIC CONFINEMENT OF PLASMA IN CYLINDRICAL DOMAINS

For a5c50 and arbitrary constantsr, m, n, h, the solutions~5.1!–~5.4! take the form

V~ t,x̃!5be2a2ntc~ x̃!êz , ~6.1!

B~ t,x̃!5e2a2ht@2kcy~ x̃!êx1kcx~ x̃!êy1,c~ x̃!êz#1mêz , ~6.2!

P~ t,x̃!5
a2k22,2

2m
e22a2htc2~ x̃!2

,m

m
e2a2htc~ x̃!. ~6.3!

For a2k2>,2 and,m<0, the solutions~6.1!–~6.3! describe a relaxation of the plasma flow insi
the z-invariant cylindrical domainsD wherec( x̃)>0. The functionc( x̃) satisfies the Helmholtz
equation ~5.3!. At the boundaryc( x̃)50, the necessary boundary conditionsV(t,x̃)50 and
P(t,x̃)50 hold ~the pressureP is defined up to an arbitrary constantC). The magnetic field
B(t,x̃) lines and the electric currentJ(t,x̃) lines preserve the magnetic surfacesc( x̃)5const. The
electric current is

J~ t,x̃!5m21 curlB~ t,x̃!5m21e2a2ht@,cy~ x̃!êx2,cx~ x̃!êy2a2kc~ x̃!êz#.

For example, let the functionc( x̃) be

c1~ x̃!5cos~bx!cos~Aa22b2y!, b.0, a2.b2. ~6.4!

The Helmholtz equationDc1( x̃)52a2c1( x̃) evidently holds. The corresponding cylindrical d
main D has the rectangular form

uxu<
p

2b
, uyu<

p

2Aa22b2
, 2`,z,`. ~6.5!

A more general class of solutions to the Helmholtz equation has the form

c2~ x̃!5E
0

uau
f ~t!cos~tx!cos~Aa22t2y!dt, ~6.6!

where f (t) is a distribution. The solution~6.4! corresponds tof (t)5d(t2b). Any function
c2( x̃) ~6.6! specifies a domainD: c2( x̃)>0. It is plausible that any smooth closed curve in
neighborhood of the rectangle~6.5! can be defined by the equationc2( x̃)50 for an appropriate
distribution f (t) in ~6.6!.

Remark 4:The exact solutions~6.1!–~6.3! exist for arbitrary values of the physical constan
r, m, n, andh and describe a relaxation ast→` of the plasma flows inside the cylindrical domain
D wherec( x̃)>0. An important property of the exact solutions~6.1!–~6.3! is that the pressure
P(t,x̃) ~6.3! for a2k2>,2 and,m<0 attains its minimum 0 at the boundary]D, c( x̃)50, and is
positive inside the domainD. Hence the plasma is confined inside the cylindrical domainD only
by the magnetic fieldB(t,x̃) ~6.2! and not by an external pressure that is zero.

VII. TRANSLATIONALLY INVARIANT NONEQUIPARTITION SOLUTIONS FOR nÄh

The viscous MHD equations (1.1)–(1.3) for n5h and f50 have an infinite-dimensiona
family of z-translationally invariant exact solutions

V~ t,x,y!52acyêx1acxêy1~bc1c!êz , ~7.1!

B~ t,x,y!52kcyêx1kcxêy1~,c1m!êz , ~7.2!
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where cx5]c/]x, cy5]c/]y, a,b,c,k,,,m are arbitrary parameters satisfying the equatio
a25k2/(rm) and the flux functionc(t,x,y) satisfies the diffusion equation

]c

]t
5nS ]2c

]x2 1
]2c

]y2 D . ~7.3!

The pressure P is

P5C2
a2r

2
~cx

21cy
2!2

,2

2m
c22

,m

m
c. ~7.4!

Indeed, the formulas~7.1!–~7.2! imply

~V•grad!V5a2 grad~cx
21cy

2!/22a2Dc gradc, ~7.5!

curlB3B52grad~,2c2/21,mc!2k2Dc gradc, ~7.6!

V3B5grad@~a,2bk!c2/21~am2ck!c#, ~7.7!

curlV3V52grad~b2c2/21bcc!2a2Dc gradc. ~7.8!

A substitution of the formulas~7.5!–~7.7! reduces the equations~1.1! and ~1.2! for a2

5k2/(rm) to the form

]V

]t
5nDV2gradS P

r
1

a2

2
~cx

21cy
2!1

,2c2

2rm
1

,mc

rm D ,
]B

]t
5hDB. ~7.9!

Substituting the vector fields~7.1!, ~7.2! we find that equations~1.3! hold identically and equations
~7.9! are satisfied if and only ifn5h, the pressureP has form~7.4! and the flux functionc(t,x,y)
satisfies the two-dimensional diffusion equation~7.3!. The solutions to this equation have th
form1

c~ t,x̃!5
1

4pnt ER2
f ~ x̃8!expS 2

ux̃2 x̃8u2

4nt Ddx̃8, ~7.10!

wherex̃5(x,y), x̃85(x8,y8), and f ( x̃8)5c(0,x̃8) are the initial data.
Remark 5:The z-invariant solutions~7.1!–~7.4! are rather general for they do not belong

any simpler class of exact solutions. Indeed, formula~7.6! implies that the solutions are no
force-free, formula~7.7! shows that they are not field-aligned and formula~7.8! yields that the
flows V(t,x,y) are not the Beltrami flows. The solutions are not the equipartition ones e
because

1

2
rV2~ t,x!2

1

2m
B2~ t,x!5

1

2
r~bc1c!22

1

2m
~,c1m!2Þ0.

The derived exact solutions are unidirectional only fora5k50. The exact solutions~7.1!–~7.4!
are uniformly bounded and forc5m50 tend to zero asx21y2→` if it was so for the initial data
c(0,x,y).

VIII. SUMMARY

We have introduced the unsteady equipartition solutions to the viscous MHD equations
solutions exist when the plasma kinematic viscosity is equal to the magnetic diffusivity,n5h, and
the plasma velocity and the magnetic field are collinear,V56B/Arm. We have constructed th
smooth solutions~2.1!–~2.3! in R3 with finite and equal kinetic and magnetic energies. T
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solutions turn into the ideal and steady Chandrasekhar equipartition equilibria26 whenn5h50 in
formula ~2.6!. Applying the Galilean transform to some special equipartition solutions we h
derived the nonequipartition solutions~3.1! that describe plasma relaxation to an equilibrium w
a constant magnetic fieldB.

We have shown that the initial-boundary value problem with the ‘‘no-slip’’ boundary co
tion V(t,x)u]D50 is overdetermined for the equipartition solutions. An infinite family of the ex
solutions~4.7! is constructed that satisfy the boundary value problem~1.8! in a ball of radiusR.
The solutions describe the viscous plasma relaxation in a ball with a constant pressure
boundary and have spherical magnetic surfacesuxu5r . On each sphereuxu5r<R, the plasma
dynamics is a rotation with the angular velocityV(t,r ) ~4.8! andV(t,R)50.

For the arbitrary values of the parametersr, m, n, andh, we have derived the exact transl
tionally invariant solutions~5.1!–~5.3!. The solutions are rather general since they are not fi
aligned, are not force-free (curlB3BÞ0) and do not satisfy the Beltrami equation since curV
3VÞ0. The exact solutions~6.1!–~6.3! model the magnetic confinement of viscous plasma
cylindrical domainsD. They satisfy the ‘‘no-slip’’ boundary conditionV(t,x)u]D50. An important
property of these solutions is that the plasma pressureP is positive inside the domainD ~if
a2k2>,2, ,m<0) and is zero at the boundary. Hence plasma is confined inside the domainD by
the magnetic fieldB.

For n5h, we have derived a larger class of translationally invariant solutions~7.1!–~7.3! that
are defined by an arbitrary solution to the two-dimensional diffusion equation~7.3!. The solutions
are non-field-aligned and nonequipartition ones.
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Continuity of Bethe solutions with respect to chain length
N and winding numbers ˆl l‰

W. J. Caspers
Bastinglaan 29, 7548 AM Enschede, The Netherlands

A. Wal, M. Łabuz,a) M. Kuźma, and T. Lulek
Institute of Physics, Rzeszow University, Rejtana 16 a, 35–310 Rzeszow, Poland
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Bethe solutions forr reversed spins are characterized by a set of winding numbers
$l1<l2<¯<l r%. Such classification is, however, not unique since the same
sequences can describe different solutions and different sequences yield essentially
equivalent states. These ambiguities should find their resolution in a complete
configuration. We demonstrate here that in general a solution with a fixed sequence
of winding numbers evolves in a quasicontinuous way as the function ofN, the
number of spins. This property could be disturbed in some cases at special transi-
tion point Ntr . We explain analytically the origin of this discontinuity. Consider-
ation was addressed for three and four spin deviations. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1623614#

I. INTRODUCTION

A lot of modern problems in theoretical physics, particularly in statistical physics, nonli
science, and condensed matter physics are transformed so that they might assume t
dimensional~1D! Heisenberg model. Such a wide applicability in completely distinct area
physics emerges from the fact that this model belongs to a little family of quantum systems,
offer exact solutions. Moreover, the classical 1D Heisenberg chain is a very interesting non
dynamical system, which manifests such unique properties like coherency or chaos, depen
the imposed magnetic interactions. The adaptation of this method was very fruitful in cla
statistical physics on two-dimensional lattices,1 by giving a new approach to such subjects lik
e.g., BCS theory,2 solitons,3 Bloch particles in magnetic field,4,5 etc. Bethe ansatz~BA! stimulated
the giant development of mathematical methods applicable in the field of integrable sys
leading to the quantum inverse scattering methods6–8 as well as to important contributions t
combinatorics.9–11Nowadays BA is still extensively studied and developed from both physical
mathematical points of view.12–14

The examination of solutions of Bethe equations is a difficult task in physical and mathe
cal investigations because of strange nonlinearity of these equations. For a small num
overturned spins~particularly forr 52), these solutions~introduced for the first time by Bethe15!
have an analytical form. For finite systems the solutions of Bethe equations can be found
numerical methods. Only in the case of very small systems, the solutions of the Heisenberg
can be obtained by solving the Bethe equations by hand or by straight diagonalization
Hamiltonian. In many cases for smallN these methods collapse to numerical procedure. Mo
over, a serious difficulty arises when the relation between diagonalization results and Bet
rameters~momenta and phases of pseudoparticles! should be established. We have proposed in
former paper16 a new method for the determination of solutions of Bethe equations. This me
is especially applicable for large, but finite length of the Heisenberg chainN, e.g.,N<1000. The
need for exact results for the 1D Heisenberg chain of a finite size is motivated nowadays
great development in science and technology of materials of mesoscopic as well as nano

a!Electronic mail: labuz@univ.rzeszow.pl
3910022-2488/2004/45(1)/391/9/$22.00 © 2004 American Institute of Physics
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size and their application in an electronics of the future such as spintronics, quantum comp
as well as in biochemistry and biophysics. One should emphasize that for 100<N<1000 even the
usual numerical computer method fails. That is why the proposed method of solving the
equations presented in Ref. 16 seems to be promising in science of small systems. The met
only determines the solutions but also provides some information about their form and origin
method is based on the principal assumption that the solutions have quasicontinuous pro
with respect toN. A starting point of the procedure is the asymptotic solution. Furthermore
make the hypothesis that this solution is also valid for sufficiently largeN, e.g., N51000 as
chosen in our previous paper.16 That assumption preserves proper action of the procedure. In
paper we have established that in the range ofNP(10,1000) the solutions are changing in
quasicontinuous way as functions ofN. The same behavior was independently noticed by Fu
et al.,17 but only for the two-magnon case. However for small systems some discontinuities
at the so-called special points:18 critical Ncr , limiting Nlim , and transitionNtr . In the case ofN
5Ntr , the transition of winding numbers sequence$l l% into a new one$l l8% is also observed.

In Sec. II of the present paper we introduce Bethe equations briefly and we pay att
especially to winding numbers, showing that for some cases they describe equivalent sol
Section III presents the above-mentioned method, which enables finding solutions of Bethe
tions for a wide range of chain lengths for a selected set of winding numbers. For some s
chain length the procedure fails. Therefore in such cases the method should be modified~Sec. IV!.
Furthermore in that section we illustrate graphically the evolution of Bethe parameters a
function of chain length. The cases were selected to demonstrate transition points clearly.

II. WINDING NUMBERS AND EQUIVALENCY OF SOLUTIONS

The 1D Heisenberg model19–26 consists of identical particles with spin 1/2 on each site, w
interaction only between nearest neighbors. The Hamiltonian of such a system has the for

Ĥ5 (
n51

N

~4Sn"Sn1121!, ~1!

whereSn denotes a spin vector at thenth position in the chain. Furthermore we have

SN[S1, ~2!

so the periodic boundary condition is satisfied.
Considering the Heisenberg chain, we write the stationary states in following the form:

C5 (
1<n1<n2 <¯<nr<N

a~n1 ,n2 ,...,nr !un1n2¯nr&, ~3!

with coefficients of the form

a~n1 ,n2 ,...,nr !5(
P

expF i S (
l 51

r

kP( l )nl1
1

2 (
j , l

fP( j )P( l )D G . ~4!

In formula ~4! there are two characteristic parameters describing soluti
kl—pseudomomenta of pseudoparticles andf l , j—phases between interacting pseudopartic
The sum runs over all permutationsP of positionsr occupied by these pseudoparticles. Furth
moreun1n2¯nr& describes magnetic configuration containingr spin deviation~overturned spins!
on chain nodesn1 ,n2 ,¯,nr . The two referred parameters satisfy the following conditions:

2 cot
f l , j

2
5cot

kl

2
2cot

kj

2
, f l , j52f j ,l , 1< l< j <N, ~5!
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and

Nkl52pl l1(
j Þ l

f l , j , l 51,2,...,r . ~6!

The first one is a set of reflection conditions, whereas the second one expresses boundar
tion. In formula ~6! N and the integerl l are, respectively, chain length and winding numbe
where

2
N

2
<l1<l2<¯<

N

2
. ~7!

The winding numbers$l l% parametrize the Bethe equations but not unequivocally. One
consider two types of equivalency. First, the different sets of$l l% classify in some cases solution
that differ only in sign, but these may describe the same physical state for certainN. Second, there
are cases where the same winding numbers result in different solutions. Both possibilities
addressed to the form of Bethe equations.

Let us consider this problem for the case of the Heisenberg chain with three spin devi
(r 53). The transformation$l1 ,l2 ,l3%→$2l3 ,2l2 ,2l1% introduced to the B-H equations~5!
and ~6! results in the following changes in Bethe parameters:

k1→2k3 , f1,2→f2,3,

k2→2k2 , f1,3→f1,3,

k3→2k1 , f2,3→f1,2.

But equivalent solutions can be observed only for the cases where totalulu56N/2 or ulu50.
In Table I results for selected winding numbers for the caseN56, r 53 are collected as an

illustration of this quasiequivalency.
In Table II we present an example of the second type of equivalency. There are the res

solutions for variousN starting fromN51000 down toN56 for two sets of winding numbers
(23,0,0) and (21,21,21). In the rangeNP(1000,Ntr58) these parameters result in differe
solutions, but forN,Ntr different solutions are obtained for the same set (23,0,0). The way by
which the parameter set$l l% is changed in the transition point is described in Sec. IV.

TABLE I. Equivalent solutions with respect to symmetry of sets$l l% for N56 andr 53. Sets with an asterisk are obtaine
from the other ones because of the appearance ofNtr . For further details see Sec. IV.

$l l% k1 k2 k3 f1,2 f1,3 f2,3

(23,21,1) 2p 21,72 1,72 2,33 22,33 21,72
(21,1,3) 21,72 1,72 p 21,72 22,33 2,33
(23,0,0) 2p 0 0 0 0 0
~0,0,3! 0 0 p 0 0 0
(22,1,1) 2p p/22 i` p/21 i` 2p11,10i 2p11,10i 2 i`
(21,21,2) 2p/22 i` 2p/21 i` p 2 i` 2p11,10i 2p11,10i
(22,21,0) 2p/22 i` 2p/21 i` 0 p1 i` 0 0
~0,1,2! 0 p/22 i` p/21 i` 0 0 p1 i`
(23,0,0)* 2p 21,09i 1,09i 5,44i 25,44i 21,09i
(0,0,3)* 21,09i 1,09i p 21,09i 25,44i 5,44i
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III. QUASICONTINUITY AND RECURRENCE-NUMERICAL DETERMINATION OF BETHE
SOLUTIONS

Numerical computations concerning solutions of large systems are not efficient becau
largeN the set of a great number of equations which should be solved is either impossible
solved at all using usual computer programs, or the result of computations consists of
additional solutions, which are inappropriate from a physical point of view. It is known tha
numerical procedures for solving nonlinear equations are very sensitive to the correct predic
the range in which the solutions are expected to be obtained (DS) or exact establishment of th
starting point of the inner computations. For largeN, especially forr @2, the fulfillment of these
conditions must be particularly precise and restricted. Observed quasicontinuity of solution
vides the opportunity to satisfy described requirements fully for the determination of the p
range as well as the starting point. As such a point choosing the asymptotic solutions o
assume thatN51000 is also a good point at which start calculations. Solution obtained bec
the starting point for following smallerN. ForNP(100,1000) values of solutions for two differen
N’s are small even for everyN from this range, which is why for the calculation of solutions
anyN it is possible to assumeN51000 as the starting point. Thus forN,100 the differences are
more and more distinct forN andN2DN even for smallDN ~keep in mind that thex axis in Fig.
1 is in logarithmic scale!. Therefore in this range we have to be careful in choosing the sta
point to be sure that theDN is small enough to also provide smallDS. We have absolute
conviction that the starting point was picked correctly when we choseN11 as a starting point of
the studied pointN.

Of course it is not necessary to derive all solutions for all possibleN, going by step 1 from
N51000 to very smallN. We have the opportunity to choose the proper steps, taking care
sure that the expected solutions forN2DN are from the assumed rangeDS. For largeN it is
necessary to realize this condition even for largeDN, but for small lengths of systems we have
apply smaller steps that provide thatDS is sufficiently small. However we observed that in som
ranges ofN the continuity of solutions is broken. There are so-called special points like cr

TABLE II. Comparison of solutions for two different sets$l l% for the caser 53.

N $l l% k1 k2 k3 f1,2 f1,3 f2,3

1000 (23,0,0) 20,0188 0 0 0 0 0
(21,21,21) 20,0063 20,0063 20,0063 20,0042 20,0042 0

20,0003i 10,0003i 10,2302i 20,2302i 20,1148i
100 (23,0,0) 20,1885 0 0 0 0 0

(21,21,21) 20,0637 20,0624 20,0624 20,0455 20,0455 0
20,0111i 10,0111i 10,7509i 20,7509i 20,3640i

50 (23,0,0) 20,3770 0 0 0 0 0
(21,21,21) 20,1296 20,1237 20,1237 20,0990 20,0990 0

20,0323i 10,0323i 11,1013i 21,1013i 20,5158i
30 (23,0,0) 20,6283 0 0 0 0 0

(21,21,21) 20,2218 20,2032 20,2032 20,1861 20,1861 0
20,0721i 10,0721i 11,4972i 21,4972i 20,6660i

10 (23,0,0) 21,8850 0 0 0 0 0
(21,21,21) 20,8681 20,5084 20,5084 21,1987 21,1987 0

20,4663i 10,4663i 13,5888i 23,5888i 21,0740i
8 (23,0,0) 22,3562 0 0 0 0 0

(21,21,21) 21,3399 20,5082 20,5082 22,2179 22,2179 0
20,7176i 10,7176i 14,6264i 24,6264i 21,1148i

7 (23,0,0) 22,6928 0 0 0 0 0
(23,0,0) 21,9007 20,3961 20,3961 2,7724 2,7724 0

20,9233i 10,9233i 15,3525i 25,3525i 21,1105i
6 (23,0,0) 2p 0 0 0 0 0

(23,0,0) 2p 0 0 0 0 0
21,0871i 11,0871i 15,4354i 25,4354i 21,10871i
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Ncr , limiting Nlim , and transitionNtr points. The relevant property ofNtr is that for this value of
N the set$l l% should be changed into another one$l l8% in order to keep the real parts of wav
numbers and phases within the proper bounds (2p,p). It is important to note that such modifi
cation does not disturb the behavior of remaining parameters in relation toN.

IV. BREAK OF QUASICONTINUITY

In Sec. III it was noticed that in transition pointNtr quasicontinuity of some paramete
describing solutions is broken, as they leave (2p,p) range, where we expected to get resu
which disables using the above-described method. To remove this problem one has to cha
set of winding numbers related to the solutions studied into another one according to the e
lency resulting from the Bethe equations~see Sec. II!. Such modification enables one to bring a
parameters to the (2p,p) range again.

As an example let us consider the system withr 53 overturned spins. Then the set of thr
winding numbers$l1 ,l2 ,l3% should satisfy relation~7!. The Bethe equations enable us to find t
relation between the sets of winding numbers on both sides of the transition pointNtr . The
simplest case we consider for finding this relation is the one of real solutions~Sec. IV A!. Another
one is the complex solution~Sec. IV B!. Calculations conducted by our recurrency-numeri
method point out that values off l , j leave the (2p,p) range forN5Ntr , but there are indications
that kl also leaves that range. In Fig. 2 one can notice that other parameters preserve qua
nuity very well.

A. The case of real solutions

In the case of real solutions we can rewrite Bethe equations~5! and ~6! in the form

Nk152pl11f1,21f13, ~8!

Nk252pl22f1,21f2,3, ~9!

Nk352pl32f1,32f2,3, ~10!

FIG. 1. Continuity of Bethe solutions for selected set of winding numbers in a wide range ofN. HereS denotes one of the
parameterskl or f l , j describing the solution.
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cot
f1,2

2
5

sin
k12k2

2

cos
k11k2

2
2cos

k12k2

2

, ~11!

cot
f1,3

2
5

sin
k12k3

2

cos
k11k3

2
2cos

k12k3

2

, ~12!

cot
f2,3

2
5

sin
k22k3

2

cos
k21k3

2
2cos

k22k3

2

. ~13!

FIG. 2. Quasicontinuous form of changes in Bethe solutions starting fromN51000; ~a! r 53, set$21,21,21% changes
into $23,0,0% in Ntr58 ~b! r 54, the set$22,21,21,0% changes into$24,0,0,0% in Ntr59.
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Let us assume thatf l , j5f1,2 leaves the (2p,p) range by passing the limitp. Thus we can
write

f1,25f1,28 12p, ~14!

wheref1,28 belongs to the range. Then from~8! and ~9! we get

Nk152pl11f1,28 12p1f1,3, ~15!

Nk252pl22f1,28 22p1f2,3. ~16!

Now we can see that

Nk152p~l111!1f1,28 1f1,3, ~17!

Nk252p~l221!2f1,28 1f2,3. ~18!

It means that we get new winding numbers

l111[l18 , ~19!

l221[l28 . ~20!

Thus from~8! and ~9! we can write

Nk152pl181f1,28 1f1,3, ~21!

Nk252pl282f1,28 1f2,3. ~22!

Looking at the change of set of winding numbers$l l% into $l l8% one can see that it does no
influence the totall andk:

l181l285l1111l2215l11l2 . ~23!

The form of Eqs.~8!–~13!, especially the properties of trigonometric functions, preserves
quasicontinuous form of the other parameters, despite the changef1,2→f1,28 .

B. The case of complex solutions

In such a case we assume that two parameters are complex conjugated:18

k15A2 ib, k25A1 ib, f1,35P2 iq, f2,35P1 iq, f1,252 i l . ~24!

Rewriting Eqs.~8!–~10! and having in mind relations~24! we have

N~A2 ib !52pl12 i l 1P2 iq, ~25!

N~A1 ib !52pl11 i l 1P1 iq, ~26!

Nk352pl322P, ~27!

and after simplification we get

NA52pl11P, ~28!

Nb5 l 2q, ~29!
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Nk352pl322P. ~30!

Now we assume thatP leaves the range. Similar to the first case we write

P5P812p. ~31!

Thus finally we get

NA52p~l111!1P8, ~32!

Nk352p~l322!22P8. ~33!

From ~32! and ~33! we can observe that

l185l111, l285l211, l385l322. ~34!

Both cases~a! and ~b! show how to change the set of winding numbers to another one to m
sure that all seeking solutions are within the (2p,p) range, even when transition point appea

Analogous considerations applied to the case withr 54 overturned spins results in the fo
lowing: In Fig. 2 we show quasicontinuity of solutions for selected examples withr 53 and r
54 including the situation whereNtr appears.

V. CONCLUSIONS

Solutions of the Bethe equations manifest the quasicontinuous property with respect toN for
an established set of winding numbers. Our studies reveal that for some chain lengthN ~special
points! the quasicontinuity is disturbed because some pseudomomenta and phases lose q
tinuity in the range (2p,p). In the paper we examine in detail one such type of point, i.e.,
transition pointNtr .

For this point and below it the solution does not exist in the (2p,p) range for the initial set
of $l l% ~for sufficiently largeN) and changing it into$l l8% is required to ensure the quasicontinui
belowNtr . The method for finding such a new set$l l8% for both real and complex cases has be
described. Nevertheless it should be emphasized that changing of$l l%→$l l8% does not influence
the quasicontinuity for all other Bethe parameters (k,f) in Ntr .
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Quantum stochastic equation for a test particle interacting
with a dilute Bose gas

A. N. Pechen*
Centro Vito Volterra, Universita di Roma Tor Vergata 00133, Roma, Italy

~Received 2 June 2003; accepted 9 September 2003!

We use the stochastic limit method to study long time quantum dynamics of a test
particle interacting with a dilute Bose gas. The case of arbitrary form factors and an
arbitrary, not necessarily equilibrium, quasifree low density state of the Bose gas is
considered. Starting from microscopic dynamics we derive in the low density limit
a quantum white noise equation for the evolution operator. This equation is equiva-
lent to a quantum stochastic equation driven by a quantum Poisson process with
intensityS21, whereS is a one-particleS matrix. The novelty of our approach is
that the equations are derived directly in terms of correlators, without use of a
Fock–anti-Fock~or Gel’fand–Naimark–Segal! representation. Advantages of our
approach are the simplicity of derivation of the limiting equation and that the
algebra of the master fields and the Ito table do not depend on the initial state of the
Bose gas. The notion of a causal state is introduced. We construct master fields
~white noise and number operators! describing the dynamics in the low density
limit and prove the convergence of chronological~causal! correlators of the field
operators to correlators of the master fields in the causal state. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1626806#

I. INTRODUCTION

The fundamental equations in quantum theory are the Heisenberg and Schro¨dinger equations.
However, it is a very difficult problem to solve explicitly these equations for realistic phys
models and one uses various approximations or limiting procedures such as weak couplin
density, and hydrodynamical limits. These scaling limits describe the long time behavior of p
cal systems in different physical regimes.

One of the powerful methods to study the long time behavior in quantum theory is
stochastic limit method developed by Accardi, Lu, and Volovich.1 Many interesting physica
models have been investigated by using this method. In particular, it has been applied to stu
long time quantum dynamics of a system interacting with a reservoir in the case of a
interaction between the system and reservoir, i.e., in the weak coupling limit. It was appl
study the spin-boson model,2 polaron model and nonrelativistic quantum electrodynamics,3,4 quan-
tum Hall effect,5 relations between Hepp–Lieb and Alli–Sewell laser models,6 bifurcation phe-
nomenon in a spin relaxation,7 etc.

An important problem is to study the long time dynamics of a quantum system intera
with a reservoir in the case the interaction is not weak but the density of particles of the res
is small, i.e., in the low density limit. To describe a quantum physical model to which the
density limit can be applied let us consider anN-level atom~test particle! immersed in a free gas
whose molecules can collide with the atom; the gas is supposed to be very dilute. The
reduced time evolution for the atom will be Markovian, since the characteristic timetS for appre-
ciable action of the surroundings on the atom~time between collisions! is much larger than the
characteristic timetR for relaxation of correlations in the surroundings. The dynamics of

*Permanent address: Steklov Mathematical Institute of Russian Academy of Sciences, Gubkin St. 8, 119991, M
Russia. Electronic mail: pechen@mi.ras.ru
4000022-2488/2004/45(1)/400/18/$22.00 © 2004 American Institute of Physics
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N-level atom interacting with the free gas should converge, in the low density limit, to the sol
of a quantum stochastic differential equation driven by quantum Poisson noise. The qu
Poisson process, introduced by Hudson and Parthasarathy8 ~for a description of the quantum
Poisson process see also Kumerrer9!, should arise naturally in the low density limit, as conjectur
by Frigerio and Maassen10 and later by Alicki and Frigerio.11 For a general survey of quantum
stochastic calculus we refer to the review by Attal.12

The quantum stochastic equation for the low density limit was derived by Accardi and Lu13–15

using perturbation series for the evolution operator. A nonperturbative white noise approach
investigation of dynamics in the low density limit is developed in Refs. 16 and 17, where
mathematical procedure, the so-called stochastic golden rule for the low density limit, wa
mulated. This derivation uses the white noise technique developed for the case of the
coupling limit by Accardi, Lu, and Volovich.1 The approach to derivation of the stochastic eq
tions in Refs. 13–17 is based on use of the Fock–anti-Fock@or Gel’fand–Naimark–Segal~GNS!#
representation for the canonical commutation relations~CCR! algebra of the Bose gas. The a
proach of the present paper does not use the Fock–anti-Fock representation.

We study the low density limit for anN-level atom~test particle! interacting with a Bose gas
Starting from microscopic quantum dynamics we derive quantum white noise and quantu
chastic differential equations for the limiting evolution operator. A useful tool is the energy
resentation introduced in Refs. 16 and 17 where the case of orthogonal form factors was c
ered. In the present paper we consider the case of arbitrary form factors and an arbitra
necessarily equilibrium, quasifree low density state of the reservoir. To each initial low de
state of the Bose gas we associate in the low density limit a special ‘‘state’’~which is called a
causal state! on the limiting master field algebra. We prove the convergence of time-ordere~or
causal! correlators of the initial Bose field to the correlators of master fields~which are number
operators constructed from some white noise operators! in these causal states. These states
determined by the diagrams which give a nontrivial contribution to the limit. The leading diag
can be interpreted as a new statistics arising in the low density limit~new statistics arising in the
weak coupling limit is discussed in Refs. 1 and 18!.

One of the main results of the paper is that the dynamics in the low density limit is give
the solution of a quantum white noise equation, which is equivalent to the quantum stoc
equation

dUt5dNt~S21!Ut , ~1!

whereUt is the evolution operator at timet describing the limiting dynamics,S is a one-particle
S matrix describing scattering of the test particle on one particle of the reservoir, andNt(S21) is
the quantum Poisson~number or gauge! process with intensityS21. The equation describes th
evolution of the total system1reservoir and can be applied, in particular, to the important prob
of derivation of the linear quantum Boltzmann equation describing the irreversible reduce
namics of the test particle in the low density limit. Such an equation for the reduced density m
can be easily obtained from the quantum Langevin equation, which can be derived by usi
quantum stochastic differential equation and quantum Ito table~see Sec. VII! for stochastic dif-
ferential dNt ~for a derivation of the quantum Langevin equation see Ref. 17!. However, in the
present paper we are mainly concentrated on further understanding in what sense the
process is an approximation of the usual quantum field~Theorem 1! and in mechanism through
which the quantum stochastic equation arises as a limit of the usual Hamiltonian equation

In order to describe the objects appearing in~1! let us introduce two Hilbert spacesHS andH,
which are called in this context the system and one-particle reservoir Hilbert spaces, and th
spaceG(L2(R1 ;H)) over the Hilbert space of square-integrable measurable vector-valued
tions from R15@0,̀ ) to H. With these notations the solution of the equation is a family
operatorsUt ;t>0 in HS^ G(L2(R1 ;H)) ~adapted process!; S is a unitary operator inHS^ H,
which is explicitly defined in Sec. VI.
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Let us introduce the notion of a Poisson process. LetX be a self-adjoint operator in a Hilber
spaceK and C( f ) the normalized coherent vector in the Fock spaceG~K! with test functionf
PK. Thenumber operatoris the generator of one-parameter unitary groupG(eilX) characterized
by

G~eilX!C~ f !5C~eilXf !, lPR.

The number operator is characterized by the property

^C~ f !,N~X!C~g!&5^ f ,Xg&^C~ f !,C~g!&.

The definition ofN(X) is extended by complex linearity to any bounded operatorX on K. Let us
considerK of the form L2(R1 ;H)>L2(R1) ^ H. For any bounded operatorsX0PB(HS), X1

PB(H), and for anyt>0 we defineNt(X0^ X1)ªX0^ N(x [0,t] ^ X1), extend this definition by
linearity to any bounded operatorK in HS^ H, and call the familyNt(K);t>0 of operators in
HS^ G(L2(R1 ;H)) a quantum Poisson process with intensity K. The existence and uniqueness
the solution of the equation in this case follows from the general theory of quantum stoc
differential equations. Moreover, unitarity ofS leads to the conclusion that, for eacht>0, Ut is a
unitary operator~see Lemma 2!.

For the vacuum state of the reservoir~zero density! such an equation was derived by Accar
and Lu.14 In the present paper we derive this equation for an arbitrary quasifree initial state
Bose gas. The main feature of the present paper is that the stochastic equations are derived
in terms of correlators, without use of a Fock–anti-Fock~or GNS! representation. This simplifie
the derivation of the limiting quantum white noise equation and allows us to express the int
of the quantum Poisson process directly in terms of a one-particleS matrix. In our approach the
limiting equation, the algebra of the master fields, and the Ito table do not depend on the
state of the Bose gas.

We obtain that the dynamics of the compound system in the low density limit is describ
the solution of quantum white noise equation~36! or, equivalently, quantum stochastic differenti
equation in forms~44! and~1! and the family of causal stateswL on the algebra of master fields

The reduced dynamics of the system~test particle! in the low density limit for the model unde
consideration, with completely different methods, based on a quantum Bogoliubov–Born–G
Kirkwood–Yvon~BBGKY! hierarchy, has been investigated by Du¨mcke,19 where it is proved that,
under some conditions, the reduced dynamics is given by a quantum Markovian semigrou

In the approach of the present paper the reduced dynamics can be easily derived fr
solution of the limiting quantum stochastic differential equation. Namely, the limiting evolu
operatorUt and the limit statewL determine the reduced dynamics by

Tt~X!5wL~Ut
†~X^ 1!Ut!,

whereX is any system observable~bounded operator inHS), wL(•) denotes partial expectation
andTt is the limiting semigroup. This equality shows thatUt is a stochastic dilation of the limiting
Markovian semigroup. Using the quantum Ito table for stochastic differential dNt one can derive
a quantum Langevin equation for the quantityUt

†(X^ 1)Ut . Then taking partial expectation on
gets an equation forTt(X); in particular, one can get the generator of the semigroup. This
general feature of the white noise approach: one at first obtains the equation for the evo
operator of the total system and then gets the reduced dynamics of the test particle. Let us n
although quantum stochastic equations, which are derived in Refs. 13 and 17 are different fr~1!
they give the same reduced dynamics.

The low density limit can be applied to the model of a test particle moving through
environment of randomly placed, infinitely heavy scatterers~Lorentz gas! ~see the review of
Spohn20!. In the Boltzmann–Grad limit successive collisions become independent and the
aged over the positions of the scatterers the position and velocity distribution of the pa
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converges to the solution of the linear Boltzmann equation. An advantage of the stochasti
method is that it allows us to derive equations not only for averaged over reservoir degr
freedom dynamics of the test particle but for the total system1reservoir. For a rigorous treatmen
of a classical Lorentz gas we refer to Refs. 21–26. The convergence results and derivation
linear Boltzmann equation for a quantum Lorentz gas in the low density and weak coupling
are presented in Refs. 27 and 28. The Coulomb gas at low density is considered in Ref. 2

The hydrodynamical limit is described by the Euler equation. In Ref. 30 the Euler equatio
fermions in the hydrodynamical limit is derived under some assumptions.

Let us describe the plan of the paper. In Sec. III we construct the master fields, whic
number operators acting in some Hilbert space, and the limit causal states on the maste
algebra. We prove that the time-ordered~or causal! correlators of the free evolution of the initia
field converge in the low density limit to the correlators of the master field in these causal s
In Sec. IV the stochastic Schro¨dinger equation which describes the dynamics in the low den
limit is derived. In Sec. V we bring this equation to the causally normally ordered form. This
is convenient for study of reduced dynamics of the system. In Sec. VI the expressions f
one-particleS matrix andT operator are given. In Sec. VII quantum stochastic differential eq
tion ~1! for the limiting evolution operator is derived.

II. MODEL OF AN ATOM INTERACTING WITH A DILUTE BOSE GAS

Let us explain our notations. We consider a quantum model of a system~test particle! inter-
acting with a boson reservoir~heat bath!. Let HS be the Hilbert space of the system. For
example, for anN-level atomHS5CN. The system HamiltonianHS is a self-adjoint operator in
HS. The reservoir is described by the boson Fock spaceG~H! over the one-particle Hilbert spac
H5L2(Rd) ~with scalar product̂ •,•&), whered53 in the physical case. Moreover, the Ham
tonian of the reservoir is given byHRªdG(H1) ~the second quantization of the one-partic
HamiltonianH1) and the total HamiltonianH tot of the compound system is given by a self–adjo
operator on the total Hilbert spaceHS^ G(H):

H totªH free1H int5HS^ 111^ HR1H int .

HereH int is the interaction Hamiltonian between the system and reservoir. The one-particle H
tonian H1 is the operator of multiplication by some real-valued functionv(k). The interaction
Hamiltonian will be assumed to have the following form:

H intª i~D ^ A†~g0!A~g1!2D†
^ A†~g1!A~g0!!,

whereD is a bounded operator inHS , DPB(HS); A(gn) andA†(gn), n50,1, are annihilation
and creation operators, andg0 ,g1PH are form factors describing the interaction of the syst
with the reservoir. This Hamiltonian describes scattering of particles of the Bose gas on th
particle (N-level atom! and can be obtained by quantization of the classical interaction pote
between particles of two different types with an infinite number of particles of one type~particles
of the gas! and finite number of particles of the second type~atoms!. This Hamiltonian preserves
the particle number of the reservoir, and therefore the particles of the reservoir are only sc
on the test particle and not created or destroyed. Such a Hamiltonian was considered by D31

in the analysis of the weak coupling limit.
The initial state of the compound system is supposed to be of the form

r5rS^ wL,j .

HererS is an arbitrary density matrix of the system and the initial state of the reservoirwL,j is the
gauge-invariant mean-zero Gaussian state, characterized by

wL,j~A†~ f !A~g!!5j K g,
L

12jL
f L ~2!
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for eachf ,gPH. Herej.0 is a small positive number andL is a bounded positive operator inH
commuting with St @an operator of multiplication by some functionL(k)]. In the caseL
5e2bH1, where b.0 is a positive number, the statewL,j is just the Gibbs state, at invers
temperatureb and fugacityj, of the free evolution. The fugacityj5ebm; m is the chemical
potential.

The dynamics of the total system is determined by the evolution operator which in intera
representation has the form

U~ t !ªeitH freee2 itH tot.

It satisfies the differential equation

dU~ t !

dt
52 iH int~ t !U~ t !,

where the quantityH int(t) will be called the evolved interaction and defined as

H int~ t !5eitH freeH inte
2 itH free.

The iterated series for the evolution operator is

U~ t !511 (
n51

`

~2 i!nE
0

t

dt1¯E
0

tn21
dtnH int~ t1!¯H int~ tn!. ~3!

With the notations

StªeitH1, D~ t !ªeitHSDe2 itHS,

the evolved interaction can be written in the form

H int~ t !ª i~D~ t ! ^ A†~Stg0!A~Stg1!2D†~ t ! ^ A†~Stg1!A~Stg0!!. ~4!

We assume the rotating wave approximation

eitHSDe2 itHS5D,

although generalization to the case of arbitraryD is not difficult.
We study the dynamics generated by the Hamiltonian~4! in the low density limit:n→0, t

;1/n (n is the density of particles of the reservoir!. The density of particles with momentumk in
the statewL,j is equal to

jL~k!

12jL~k!

and goes to zero asj→0. Therefore the limitn→0, t;1/n is equivalent to the limitj→0, t
;1/j.

Let us consider the time rescalingt→t/j so thatU(t)→U(t/j). With the notation

Nf ,g,j~ t !5
1

j
A†~St/j f !A~St/jg! ~5!

for any f ,gPH, the equation for the evolution operatorU(t/j) becomes

dU~ t/j!

dt
5~D ^ Ng0 ,g1 ,j~ t !2D†

^ Ng1 ,g0 ,j~ t !!U~ t/j!. ~6!
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The reduced dynamics of any test particle’s observableX in the low density limit is defined by
the limit

lim
j→0

wL,j~U†~ t/j!~X^ 1!U~ t/j!!,

wherewL,j(•) denotes partial expectation. In Ref. 19 it was proved that, under some condi
the limit exists in a small time interval and is equal toTt(X), where$Tt ;t>0% is a quantum
Markovian semigroup. The dynamics of the reduced density matrixrS(t) is determined through
the duality Tr(rSTt(X))5Tr(rS(t)X). As was mentioned in the Introduction, in the approach
the present paper the limiting semigroup can be obtained by using the solutionUt of the quantum
stochastic equation as

Tt~X!5wL~Ut
†~X^ 1!Ut!

and the generator of the semigroup can be easily derived from quantum Langevin equatio
limiting semigroup can be obtained also from quantum Langevin equation in Ref. 17, wh
based on a quantum stochastic equation similar to~1! but much more complicated.

The first step to study the low density limit of the model is to find the limit of the fi
Nf ,g,j(t). This limit we call master fields or number operators.

III. MASTER FIELDS AND THE LIMIT STATES

In this section we construct the algebra of the master fields arising in the low density lim
the limit causal states on this algebra. We prove~Theorem 1! that time-ordered correlators o
initial fields ~5! converge in the low density limit to correlators of number operators constru
from some white noise operators. Theorem 2 states a useful factorization property of the li
causal states.

It is convenient to use the ‘‘projections’’

PEª
1

2p E
2`

`

dtSte
2 itE5d~H12E!,

with the properties

PEPE85d~E2E8!PE , PE* 5PE , St5E dEPEeitE.

For thed function of a self-adjoint operator cf. Definition~1.2.1! in Ref. 1.
Let us construct the master space~which is Fock space over some Hilbert space! and master

fields. For a given Hilbert spaceH and a self-adjoint operatorH1 in H we define the Hilbert space
XH,H1

as the completion of the quotient of the set

HF:R→H s.t.iFi2
ª2pE dE^F~E!,PEF~E!&,`J ,

with respect to the zero-norm elements. The inner product inXH,H1
is defined as

^F,G&52pE dE^F~E!,PEG~E!&.

We denote byBf
†(E,t), Bg(E8,t8) time-energy white noise creation and annihilation operat

acting in the symmetric Fock spaceG(L2(R1 ,XH,H1
)) whereL2(R1 ,XH,H1

) is the Hilbert space
of square integrable functionsf :R1→XH,H1

. These operators~operator-valued distributions! sat-
isfy the canonical commutation relations
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@Bg~E,t !, Bf
†~E8,t8!#5d~ t82t !d~E82E!g̃g, f~E! ~7!

and causal commutation relations

@Bg~E,t !, Bf
†~E8,t8!#5d1~ t82t !d~E82E!gg, f~E!, ~8!

whered1(t82t) is the causald function and

gg, f~E!5E dE8
^g,PE8 f &

i~E82E2 i0!
,

g̃g, f~E!52p^g,PEf &.

In the Appendix we review the definition of the causald function: for a detailed discussion o
distributions over the simplex and the meaning of two different commutators~7! and ~8! for the
same operators we refer to Sec. VII in Ref. 1. These operators are called time-energy qu
white noise due to the presence ofd(t82t)d(E82E) in ~7!.

For any positive bounded operatorL in H we define the causal gauge-invariant mean z
Gaussian statewL by the properties~9!–~12!:

for n52k, wL~B1
e1
¯Bn

en!5( wL~B
i 1

e i 1B
j 1

e j 1!¯wL~B
i k

e i kB
j k

e j k!, ~9!

where the sum is taken over all permutations of the set (1,. . . ,2k) such that i a, j a , a
51, . . . ,k, i 1, i 2,¯, i k ; Bm

em
ªBf m

em(Em ,tm), for m51, . . . ,n, are time-energy quantum whit

noise operators with causal commutation relations~8!, andem means either creation or annihila
tion operator;

for n52k11 wL~B1
e1
¯Bn

en!50, ~10!

wL~Bf~E,t !Bg~E8,t8!!5wL~Bf
†~E,t !Bg

†~E8,t8!!50, ~11!

wL~Bf
†~E,t !Bg~E8,t8!!5x [0,t]~ t8!^g,PEL f &. ~12!

Notice that the ‘‘state’’wL does not satisfy the positivity condition. This is a well-know
situation for the weak coupling limit~see Ref. 1! and is due to the fact that we work wit
time-ordered, or causal, correlators. Therefore it is natural to call such ‘‘states’’ causal stat

Definition 1: Causal time-energy white noise is a pair(Bf(E,t),wL), where Bf(E,t) satisfy
the causal commutation relations (8) andwL is a causal gauge invariant mean zero Gaussian st
characterized by (9)–(12).

Using the operatorsBf
†(E,t), Bg(E,t) we define the number operators as

Nf ,g~ t !5E dEBf
†~E,t !Bg~E,t !. ~13!

Finally, for a given Hilbert spaceH and a self-adjoint operatorH1 we have the following
objects: for anyj.0 the family of operatorsNf ,g,j(t) defined by~5! together with the gauge
invariant quasifree mean-zero Gaussian statewL,j and the number operatorsNf ,g(t) together with
the causal statewL .
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The following theorem describes the relation between these objects and states the mas
in the low density limit.

Theorem 1: There exists causal time-energy white noise(Bf(E,t),wL) such that;nPN

lim
j→0

wL,j~Nf 1 ,g1 ,j~ t1!¯Nf n ,gn ,j~ tn!!5wL~Nf 1 ,g1
~ t1!¯Nf n ,gn

~ tn!!,

where the equality is understood in the sense of distributions over simplex t1>t2> • • • >tn

>0. The limit causal statewL is characterized by (9)–(12) and the number operators are define
by (13).

Remark 1: This convergence is called convergence in the sense of time ordered corre
The fact that we use the distributions over simplex is motivated by iterated series (3) fo
evolution operator.

Proof: Notice that

Nf ,g,j~ t !5E dENf ,g,j~E,t !,

where

Nf ,g,j~E,t !ª
eitE/j

j
A†~PEf !A~St/jg!.

Therefore

wL,j~Nf 1 ,g1 ,j~ t1!¯Nf n ,gn ,j~ tn!!5E dE1¯dEnwL,j~Nf 1 ,g1 ,j~E1 ,t1!¯Nf n ,gn ,j~En ,tn!!.

Let us denote for shortness of notation forl 51, . . . ,n,

Al
†
ª

eit lEl /j

Aj
A†~PEl

f l !, Alª
1

Aj
A~Stl /jgl !.

In this notation,

wL,j~Nf 1 ,g1 ,j~E1 ,t1!¯Nf n ,gn ,j~En ,tn!!5wL,j~A1
†A1¯An

†An!. ~14!

The statewL,j is a gauge-invariant mean-zero Gaussian state. Therefore~14! equals the sum of
terms of the form

wL,j~Ai 1
† Aj 1

!¯wL,j~Ai k
† Aj k

!wL,j~Aj k11
Ai k11

† !¯wL,j~Aj n
Ai n

† !, ~15!

wherek51, . . . ,n, 15 i 1, i 2,¯, i k , j k11,¯, j n , i l< j l for l 51, . . . ,k and j l, i l for l 5k
11, . . . ,n. We say that ~15! corresponds to a nonconnected diagram if there existsm
P$1, . . . ,n% such thati l<m⇔ j l<m. Otherwise we say that~15! corresponds to a connecte
diagram.

Let us prove that all the connected diagrams except only one corresponding to thek
51 are equal to zero in the limit. One can write~15! as
                                                                                                                



,

ons

408 J. Math. Phys., Vol. 45, No. 1, January 2004 A. N. Pechen

                    
1

jn exp$ i @~ t12t j 1
!E11¯1~ t i n

2t j n
!Ei n

#/j%~jkF~E!1O~jk11!!

5
1

jn exp$ i @ tn~En2Ean
!1¯1t1~E12Ea1

!#/j%~jkF~E!1O~jk11!!

5
1

jn21 exp$ i @~ tn2tn21!vn~E!1¯1~ t22t1!v2~E!#/j%~jk21F~E!1O~jk!!

5
ei( tn2tn21)vn(E)/j

j
¯

ei( t22t1)v2(E)/j

j
~jk21F~E!1O~jk!!, ~16!

where (a1 , . . . ,an) is the permutation of the set (1,. . . ,n), v l(E)5En1¯1El2Ean
2¯

2Ea l
for l 52, . . . ,n, and

F~E!5)
l 51

k

^gj l
,PEl

L f i l
& )

l 5k11

n

^gj l
,PEi l

f i l
&.

Notice that for a connected diagram all the functionsv l(E) are not identically zero. In fact
suppose thatvm(E)[0 for somemP$2, . . . ,n%. In this case one has the identity

Em1¯1En[Eam
1¯1Ean

~whereEa ,Ea8 for aÞa8 are independent variables! which means that (am , . . . ,an) is a per-
mutation of the set$m, . . . ,n% and hence (a1 , . . . ,am21) is a permutation of the set$1, . . . ,m
21%. Let us choose anyl P$1, . . . ,n% and consider the termt j l

(Ej l
2Ei l

) in the exponent in the
second line of~16!. If j l,m, then sincei l[a j l

anda j l
belongs to the set$1, . . . ,m21%, one has

i l[a j l
P$1, . . . ,m21%, and vice versa ifa j l

[ i lP$1, . . . ,m21%, then j l<m21. This means that
if v l are not identically zero, then~15! corresponds to a connected diagram.

Let us consider the casek.1. Then, if~15! corresponds to a connected diagram, the functi
v l(E) are not identically zero. In this case, since there exists the limit

lim
j→0

ei( t l2t l 21)v l (E)/j

j
5d1~ t l2t l 21!

1

i~v l~E!2 i0 !

and the limit of the product of such terms in~16!, andk21.0, the limit of ~16! is equal to zero.
Now let us consider the casek51. In this case~15! has the form

wL,j~A1
†An!wL,j~A1A2

†!¯wL,j~An21An
†!

5
1

jn exp$ i @~ t12tn!E11~ t22t1!E21¯1~ tn2tn21!En#/j%~jF~E!1O~j2!!

5
ei( tn2tn21)vn(E)/j

j
¯

ei( t22t1)v2(E)/j

j
~F~E!1O~j!!, ~17!

wherev l(E)5El2E1 . Using the limit~A2! one finds that the limit of the right-hand side~RHS!
of ~17! is equal to

d1~ t22t1!¯d1~ tn2tn21!^gn ,PE1
L f 1&

^g1 ,PE2
f 2&

i~E22E12 i0 !
¯

^gn21 ,PEn
f n&

i~En2E12 i0 !
.

After integration overE1¯En it becomes equal to
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d1~ t22t1!¯d1~ tn2tn21!E dE^gn ,PEL f 1&gg1 , f 2
~E!¯ggn21 , f n

~E!. ~18!

This proves that only one connected diagram survives in the limit.
Now let us consider the quantity

wL~Nf 1 ,g1
~ t1!¯Nf n ,gn

~ tn!!.

With the notation

Bl
†
ªBf l

† ~El ,t l !, BlªBgl
~El ,t l !,

it can be written as

E dE1¯dEnwL~B1
†B1¯Bn

†Bn!. ~19!

Notice that on the simplext1>t2>¯>tn>0 causald functionsd1(t l 1m2t l) for m>2 are equal
to zero. Therefore form>2 one haswL(Btl

Btl 1m

† )}d1(t l 1m2t l)50 and hence the integrand i

~19! can be written as

wL~B1
†B1¯Bn

†Bn!5 (
k51

n21

wL~B1
†Bk!wL~B1B2

†!¯wL~Bk21Bk
†!wL~Bk11

† Bk11¯Bn
†Bn!

1wL~B1
†Bn!wL~B1B2

†!¯wL~Bn21Bn
†!. ~20!

The terms in the sum correspond to nonconnected diagrams. The last term corresponds to a
nonzero connected diagram. Moreover,

E dE1¯dEnwL~B1
†Bn!wL~B1B2

†!¯wL~Bn21Bn
†!

5d1~ t22t1!¯d1~ tn2tn21!EdE^gn ,PEL f 1&gg1 , f 2
~E!¯ggn21 , f n

~E!,

which is equal to~18!.
For n51 the statement of the theorem is clear. In fact,

lim
j→0

wL,j~Nf ,g,j~ t !!5 lim
j→0

K g,
L

12jL
f L 5^g,L f &5E dEwL~Bf

†~E,t !Bg~E,t !!.

Then proof of the theorem follows by induction using the fact that only one connected dia
survives in the limit.

Remark 2: The fact that in each order of iterated series only one connected diagram su
in the limit can be interpreted as emergence of a new statistics (different from Bose) in th
density limit. For a discussion of new statistic arising in the weak coupling limit we refer to
1 (see also Ref. 18).

The following theorem is important for investigation of the limiting white noise equation
the evolution operator.

Theorem 2: The limit statewL has the following factorization property: ;nPN,

wL~Bf
†~E,t !Nf 1 ,g1

~ t1!¯Nf n ,gn
~ tn!Bg~E,t !!5wL~Bf

†~E,t !Bg~E,t !!wL~Nf 1 ,g1
~ t1!¯Nf n ,gn

~ tn!!,
~21!
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where the equality is understood in the sense of distributions over simplex t>t1>t2>¯>tn

>0.
Proof: From Gaussianity of the causal statewL @property~9!# it follows that

wL~Bf
†~E,t !Nf 1 ,g1

~ t1!¯Nf n ,gn
~ tn!Bg~E,t !!

5wL~Bf
†~E,t !Bg~E,t !!wL~Nf 1 ,g1

~ t1!¯Nf n ,gn
~ tn!!1E dE1¯dEn

3( wL~Bf
†~E,t !Bgi

~Ei ,t i !!¯wL~Bf j

† ~Ej ,t j !Bg~E,t !!.

The sum is equal to zero since the last multiplier

wL~Bf j

† ~Ej ,t j !Bg~E,t !!5x [0,t j ]
~ t !^g,PEj

L f j&

is equal to zero almost everywhere on the simplext>t1>t2>¯>tn>0 and hence is equal to
zero in the sense of distributions on the simplex. This proves the theorem.

Theorem 1 allows us to calculate, in particular, the partial expectation of the evolution o
tor and Heisenberg evolution of any system observable in the low density limit. In fact, p
expectation of thenth term of the iterated series for the evolution operator~3! ~or equivalent series
for Heisenberg evolution of a system observable! after time rescalingt→t/j includes the quantity

E
0

t

dt1¯E
0

tn21
dtnwL,j~Nf 1 ,g1 ,j~ t1!¯Nf n ,gn ,j~ tn!!

~where f a , ga are equal tog0 or g1). The limit asj→0 of this quantity can be calculated usin
Theorem 1. For example, the contribution of the connected diagram is equal to

E
0

t

dt1E
0

t1
dt2d1~ t22t1!E

0

t2
dt3d1~ t32t2!¯E

0

tn21
dtnd1~ tn2tn21!

3E dE^gn ,PEL f 1&gg1 , f 2
~E!¯ggn21 , f n

~E!5tE dE^gn ,PEL f 1&gg1 , f 2
~E!¯ggn21 , f n

~E!.

Similarly one can calculate the contribution of nonconnected diagrams~they give terms propor-
tional to higher orders oft). Summing over all orders of the iterated series one can find
reduced dynamics of the system. But in the present paper we will get the limiting dynamic
nonperturbative way, without direct summation of the iterated series. This procedure inc
derivation of the white noise equation for the limiting evolution operator and then bringing
equation to the causally normally ordered form. After that one can easily find, for example
reduced dynamics of the system. For the weak coupling limit such a procedure was develo
Ref. 1. A nontrivial generalization to the low density limit was developed in Ref. 16 and 17, w
the derivation is based on the Fock–anti-Fock representation for the CCR algebra of the Bo
determined by the statewL,j . The approach of the present paper does not require a GNS r
sentation and is different from approach of Ref. 16 and 17.

IV. WHITE NOISE SCHRÖDINGER EQUATION

In this section we derive, using the results of previous section, the white noise Schro¨dinger
equation for the limiting evolution operator.

The evolution operatorU(t/j) satisfies Eq.~6! which can be written as

dU~ t/j!

dt
52 iHj~ t !U~ t/j!,
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where

Hj~ t !5 i~D ^ Ng0 ,g1 ,j~ t !2D†
^ Ng1 ,g0 ,j~ t !!.

The results of the preceding section allow us to write the limit asj→0 of the HamiltonianHj(t).
In the notation ~13! the limiting Hamiltonian is the following operator inHS

^ G(L2(R1 ,XH,H1
)):

H~ t !5 i~D ^ Ng0 ,g1
~ t !2D†

^ Ng1 ,g0
~ t !!

5 iEdE~D ^ Bg0

† ~E,t !Bg1
~E,t !2D†

^ Bg1

† ~E,t !Bg0
~E,t !!. ~22!

The dynamics of the total system (system1reservoir) in the low density limitj→0 is given
by a new evolution operatorUt which is the solution of the white noise Schro¨dinger equation

dUt

dt
52 iH~ t !Ut , U051, ~23!

or equivalent integral equation

Ut511E
0

t

dt1~D ^ Ng0 ,g1
~ t1!2D†

^ Ng1 ,g0
~ t1!!Ut1

. ~24!

V. NORMALLY ORDERED FORM OF THE WHITE NOISE EQUATION

Our next step is to bring the white noise Schro¨dinger equation to the causally normal
ordered form~Theorem 3!, i.e., the form in which all annihilation operators are on the right s
of the evolution operator and all creation operators are on the left side. Such a form is conv
for study of the limiting dynamics~see remark 3 and text after remark!. In particular, it can be
used for derivation of~linear! Boltzmann equation.

We assume that for eachEPR, the inverse operators

T0~E!ª~11gg0 ,g1
~E!D†2gg1 ,g0

~E!D1~gg0 ,g0
gg1 ,g1

2gg1 ,g0
gg0 ,g1

!~E!DD†#21,

T1~E!ª~11gg0 ,g1
~E!D†2gg1 ,g0

~E!D1~gg0 ,g0
gg1 ,g1

2gg1 ,g0
gg0 ,g1

!~E!D†D !21

exist.
Lemma 1: If the evolution operator Ut satisfies (23) with H(t) given by (22), then one has

Bg0
~E,t !Ut5gg0 ,g0

~E!T0~E!DUtBg1
~E,t !1T0~E!~12gg1 ,g0

~E!D !UtBg0
~E,t !, ~25!

Bg1
~E,t !Ut52gg1 ,g1

~E!T1~E!D†UtBg0
~E,t !1T1~E!~11gg0 ,g1

~E!D†!UtBg0
~E,t !. ~26!

Notice that in the RHS of these equalities the annihilation operators Bf(E,t) are on the right of
the evolution operator.

Proof: It follows from ~8! and ~13! that

@Bf 8~E,t !,Nf ,g~ t1!#5d1~ t12t !g f 8, f~E!Bg~E,t !. ~27!

Therefore using the integral equation~24! for the evolution operator one gets
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Bf~E,t !Ut5@Bf~E,t !,Ut#1UtBf~E,t !

5E
0

t

dt1~D ^ @Bf~E,t !,Ng0 ,g1
~ t1!#2D†

^ @Bf~E,t !,Ng1 ,g0
~ t1!# !Ut1

1UtBf~E,t !

5~Dg f ,g0
~E!Bg1

~E,t !2D†g f ,g1
~E!Bg0

~E,t !!Ut1UtBf~E,t !. ~28!

The second equality in~28! holds because, due to the time consecutive principle,

@Bf~E,t !,Ut1
#50 for t1,t.

In fact, let us consider the quantity

E
0

t

dt1@Bf~E,t !,Ut1
(n21)#5~2 i !n21E

0

t

dt1¯E
0

tn21
dtn@Bf~E,t !,H~ t2!¯H~ tn!#, ~29!

where thenth term of the iterated series~3! for Ut has the form

Ut
(n)
ª~2 i !nE

0

t

dt1¯E
0

tn21
dtnH~ t1!¯H~ tn!.

The commutator @Bf(E,t),H(tk)# is proportional to d1(tk2t); hence the commutato
@Bf(E,t),H(t2)¯H(tn)# is equal to zero on the simplext>t1>t2>¯>tn>0 and therefore~29!
is equal to zero.

The third equality in~28! holds since from~27! and the definition of the causald function one
has

E
0

t

dt1d1~ t12t !Bf~E,t1!Ut1
5Bf~E,t !Ut .

For a detailed discussion of the time consecutive principle and causald function we refer to
Ref. 1.

After the substitutionf 5g0 and f 5g1 in ~28! one gets

Bg0
~E,t !Ut5~Dgg0 ,g0

~E!Bg1
~E,t !2D†gg0 ,g1

~E!Bg0
~E,t !!Ut1UtBg0

~E,t !,

Bg1
~E,t !Ut5~Dgg1 ,g0

~E!Bg1
~E,t !2D†gg1 ,g1

~E!Bg0
~E,t !!Ut1UtBg1

~E,t !,

or equivalently

~11gg0 ,g1
~E!D†!Bg0

~E,t !Ut5gg0 ,g0
~E!DBg1

~E,t !Ut1UtBg0
~E,t !, ~30!

~11gg1 ,g0
~E!D !Bg1

~E,t !Ut52gg1 ,g1
~E!D†Bg0

~E,t !Ut1UtBg1
~E,t !. ~31!

After left multiplication of both sides of equality~30! by (11gg1 ,g0
(E)D) and both sides of~31!

by gg0 ,g0
(E)D one gets

~11gg1 ,g0
~E!D !~11gg0 ,g1

~E!D†!Bg0
~E,t !Ut

5gg0 ,g0
~E!D~11gg1 ,g0

~E!D !Bg1
~E,t !Ut1~11gg1 ,g0

~E!D !UtBg0
~E,t !, ~32!

gg0 ,g0
~E!D~11gg1 ,g0

~E!D !Bg1
~E,t !Ut

52gg0 ,g0
~E!DD†gg1 ,g1

~E!Bg0
~E,t !Ut1gg0 ,g0

~E!DUtBg1
~E,t !. ~33!
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Now after substitution of expression~33! into ~32! one has

~11gg0 ,g1
~E!D†2gg1 ,g0

~E!D1~gg0 ,g0
gg1 ,g1

2gg1 ,g0
gg0 ,g1

!~E!DD†!Bg0
~E,t !Ut

5gg0 ,g0
~E!DUtBg1

~E,t !1~12gg1 ,g0
~E!D !UtBg0

~E,t !. ~34!

One can show by similar computations that

~11gg0 ,g1
~E!D†2gg1 ,g0

~E!D1~gg0 ,g0
gg1 ,g1

2gg1 ,g0
gg0 ,g1

!~E!D†D !Bg1
~E,t !Ut

52gg1 ,g1
~E!D†UtBg0

~E,t !1~11gg0 ,g1
~E!D†!UtBg1

~E,t !. ~35!

Now since we suppose that the inverse operatorsT0(E) andT1(E) exist, we can solve the abov
equations~34! and ~35! with respect toBg0

(E,t)Ut andBg1
(E,t)Ut . The solutions are given by

~25! and ~26!, and that proves the lemma.
Denote

R0,0~E!ªgg1 ,g1
~E!DT1~E!D†,

R1,1~E!ªgg0 ,g0
~E!D†T0~E!D,

R0,1~E!ª2DT1~E!~11gg0 ,g1
~E!D†!,

R1,0~E!ªD†T0~E!~12gg1 ,g0
~E!D !.

Theorem 3: The normally ordered form of Eq. (23) is

dUt

dt
52 (

n,m50,1
E dERm,n~E!Bgm

† ~E,t !UtBgn
~E,t !. ~36!

Proof: Using ~22! white noise Schro¨dinger equation~23! can be rewritten in a more detaile
form

dUt

dt
5E dE~D ^ Bg0

† ~E,t !Bg1
~E,t !2D†

^ Bg1

† ~E,t !Bg0
~E,t !!Ut . ~37!

It follows from Lemma 1 that

D†Bg0
~E,t !Ut5R1,1~E!UtBg1

~E,t !1R1,0~E!UtBg0
~E,t !,

DBg1
~E,t !Ut52R0,0~E!UtBg0

~E,t !2R0,1~E!UtBg1
~E,t !.

The statement of the theorem is obtained after substitution of these expressions in~37!.
Remark 3: An immediate consequence of Theorem 2 is the following factorization prope

the limiting statewL :

wL~Bgm

† ~E,t !UtBgn
~E,t !!5wL~Bgm

† ~E,t !Bgn
~E,t !!wL~Ut!.

This property of the statewL similar to the factorization property of the state determined by
coherent vectorC,iCi51:

~C,Bgm

† ~E,t !UtBgn
~E,t !C!5~C,Bgm

† ~E,t !Bgn
~E,t !C!~C,UtC!,
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which is usually used to define quantum stochastic differential equations (the general not
adaptedness and adapted domains which are much larger than the coherent ones is given
12).

Taking the partial expectation of both sides of Eq.~36! in the statewL , using the factorization
property and noticing that

wL~Bgm

† ~E,t !Bgn
~E,t !!5^gn ,PELgm&,

one gets the equation

dwL~Ut!

dt
52GwL~Ut!, ~38!

whereG is being called drift and is equal to

G5 (
n,m50,1

E dERm,n~E!^gn ,PELgm&.

The solution of~38! is

wL~Ut!5e2Gt.

In the case of orthogonal test functions, i.e.,^g0 ,Stg1&50, this expectation value for the evolutio
operator was obtained in Ref. 16. Let us note that the expectation value is obtained in a n
trubative way, without direct summation of the iterated series for the evolution operator, an
result of the procedure of causal normal ordering.

VI. ONE-PARTICLE T OPERATOR AND S MATRIX

In the low density limit the role of multiparticle collisions is negligible and the dynamics
the test particle should be determined by the interaction of the test particle with one particle
reservoir. In the present section we give the expressions for the one-particleT operator andS
matrix. In the next section we will rewrite normally ordered white noise equation~36! in a form
of the quantum stochastic equation~44! and show~Theorem 5! that the coefficients of this equa
tion can be expressed in terms of the one-particleS matrix.

Because of number conservation, the closed subspace ofHS^ G(H) generated by vectors o
the form u^ A†( f )F „uPHS, f PH5L2(Rd), F is the vacuum vector!, which is naturally
isomorphic toHS^ H, is globally invariant under the time evolution operator exp@i(HS^ 111
^ HR1V)t#. The restriction of the time evolution operator to this subspace corresponds t
evolution operator onHS^ H given by

exp@ i~HS^ 111^ H11V1!t#,

where

V15 i~D ^ ug0&^g1u2H.c.!. ~39!

The one-particle Møller wave operators are defined as

V65s2 lim
t→7`

exp@ i~HS^ 111^ H11V1!t#exp@2 i~HS^ 111^ H1!t#.

The one-particleT operator is defined as

T5V1V1 ~40!
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and the one-particleS matrix as

S5V2* V1 . ~41!

Theorem 4: For the interaction (39) the one-particle T operator and S matrix have the f

T52 i (
n,mP$0,1%

E dERm,n~E! ^ ugm&^gnuPE , ~42!

S5122p (
n,mP$0,1%

E dERm,n~E! ^ uPEgm&^PEgnu. ~43!

Proof: For the casêg0 ,Stg1&50 equality~42! was proved in Ref. 17. The proof of~42! and
~43! for the general case can be done in a similar way.

Expression~43! will be used in the next section for derivation of Eq.~47!.

VII. QUANTUM STOCHASTIC EQUATION FOR THE LIMITING EVOLUTION OPERATOR

Normally ordered white noise equation~36! equivalent, through identification

Bm
† ~E,t !UtBn~E,t !dt52pdNt~ uPEgm&^PEgnu!Ut

to the quantum stochastic differential equation

dUt522p (
n,mP$0,1%

E dERm,n~E!dNt~ uPEgm&^PEgnu!Ut , ~44!

whereNt is the quantum Poisson process inG(L2(R1) ^ H) defined byNt(X)ªN(x [0,t] ^ X), if
X is an operator inH. The stochastic differential dNt satisfies the usual Ito table

dNt~X!dNt~Y!5dNt~XY!, ~45!

whereX, Y are operators inH, and the limit statewL characterized by the property

wL~2pdNt~ uPEf &^PEgu!!5^g,PEL f &dt.

The coefficients of quantum stochastic equation~44! can be expressed in terms of a on
particleS matrix describing scattering of the test particle on one particle of the reservoir. To
this we will use Hilbert module notation. For any pair of Hilbert spacesX0 ,X1 , if Nt denotes the
Poisson process on the Fock spaceG(L2(R1) ^ X1), then for bounded operatorsX0PB(X0),
X1PB(X1), the Hilbert module notation is10

Nt~X0^ X1!ªX0^ Nt~X1!.

With this notation Eq.~44! can be written as

dUt5dNtS 22p (
n,mP$0,1%

E dERm,n(E) ^ uPEgm&^PEgnu DUt . ~46!

An immediate conclusion from~43! and ~46! is the following theorem which is one of the ma
results of the paper.

Theorem 5: The evolution operator in the low density limit satisfies the quantum stoch
equation driven by the quantum Poisson process with intensity S21:

dUt5dNt~S21!Ut . ~47!
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Equation~47! describes the dynamics of the compound system in the low density limit. U
this equation and the Ito table for stochastic differentials one can obtain a quantum Lan
equation for the Heisenberg evolution of any system observable. Then the corresponding
equation or, equivalently, quantum~linear! Boltzmann equation for reduced density matrix of t
system can be obtained simply by taking the partial expectation of this Langevin equation
causal statewL .

Lemma 2: The solution of (47) is unitary.
Proof: Let us show that d(Ut

†Ut)50. The operatorUt
† satisfies the equation

dUt
†5Ut

†dNt~S†21!.

One has

d~Ut
†Ut!5dUt

†Ut1Ut
†dUt1dUt

†dUt

5Ut
†dNt~S†21!Ut1Ut

†dNt~S21!Ut1Ut
†dNt~S†21!dNt~S21!Ut .

Using the Ito table~45! one gets

dNt~S†21!dNt~S21!5dNt@~S†21!~S21!#.

This and unitarity ofS leads to

d~Ut
†Ut!5Ut

†dNt@S†211S211~S†21!~S21!#Ut50.

Now it follows from the initial conditionUt5051 that, for anyt>0, Ut
†Ut51. The proof of

UtUt
†51 can be done in a similar way.

VIII. CONCLUSIONS

In the present paper we consider the dynamics of a test particle (N-level atom! interacting
with a dilute Bose gas. It is proved that the dynamics of the total system converges in th
density limit to the solution of the quantum stochastic equation driven by a quantum Po
process with intensityS21, whereS is a one-particle scattering matrix. The limiting equation
derived in a nonpertrubative way, without use of iterated series for the evolution operato
derivation is based on the white noise approach and on the procedure of causal normal o
developed for the weak coupling limit by Accardi, Lu, and Volovich.1 The novelty of the presen
derivation is that we do not use the Fock–anti-Fock~or GNS! representation for the CCR algeb
of the boson gas, determined by the statewL,j . This simplifies the derivation and allows us
express the intensity of the Poisson process directly in terms of a one-particleS matrix. The notion
of causal states is introduced and the convergence of the correlators of the free evolution
initial number operators to correlators of quantum white noise operators in causal states is p
The causal states satisfy the factorization property similar to that satisfied by states determ
coherent vectors. This property is crucial for study of the reduced dynamics of the system
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APPENDIX: CAUSAL d FUNCTION

Let us recall the construction for distributions on the standard simplex~cf. Ref. 1!. Define

C0ª$f:R1→Cuf50 a.e.%,
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C1ª$f:R1→C u f is bounded and left-continuous at anyt.0%,

Cª linear span of$C0øC1%.

For anya.0 defined1(•2a) as the unique linear extension of the map:

d1~•2a!:fPC1→f~a!,

d1~•2a!:fPC0→0.

In Ref. 1 the following results are proved.
Lemma 3: In the sense of distributions one has the limit

lim
l→0

ei( t82t)E/l2

l2 52pd~ t82t !d~E!. ~A1!

Lemma 4: In the sense of distributions over the simplex t>t8>0 one has the limit

lim
l→0

ei( t82t)E/l2

l2 5d1~ t82t !
1

i~E2 i0 !
. ~A2!

The last equality means, in particular, that for anyf PC, gPS(R), one has the limit

lim
l→0

E
0

t

dt8E
R
dE

ei( t82t)E/l2

l2 f ~ t8!g~E!5 f ~ t ! lim
«→01

E dE
g~E!

i~E2 i«!
.
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Given a unitary representationU of an Abelian groupG and a subgroupH, we
characterize the positive operator valued measures based on the quotient group
G/H and covariant with respect toU. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1631081#

I. INTRODUCTION

Usually, the observables in quantum mechanics are represented by self-adjoint operat
ing in the Hilbert space of states, or, equivalently, by projection valued operator measures.
ever, in quantum theory of measurement and in its applications~such as quantum optics or theo
of measurement in phase-space! one needs to consider a more general setting in which project
is dropped and generalized observables are described in terms of positive operator value
sures~for a review see, for example, Refs. 1, 2, 6, 10, 13, and 14!. Among these measures, th
physically significant ones satisfy certain properties of covariance with respect to a sym
group of the theory.

More precisely, consider a topological groupG and a closed subgroupH. Given a unitary
representationU of G, it is of interest both in quantum mechanics and in wavelet analysi
describe the positive operator valued measuresQ defined on the quotient spaceG/H and covariant
with respect toU.

In his seminal papers,11,12Holevo classifies the covariant positive operator valued measur
G is of type I andH5$e%, and if G is compact andH is arbitrary.

In this article we extend the above result to the caseG Abelian andH arbitrary. Moreover, we
give a more feasible description of covariant positive operator valued measures in term
family Wx :Ex→E of isometries, where the indexx runs over the dual group ofG, dim Ex equals
the multiplicity of the characterx in U andE is a fixed~infinite dimensional! Hilbert space. As a
byproduct, we define a unitary operatorS that diagonalizes the representation ofG unitarily
induced by a representation ofH with uniform multiplicity.

As an application of our characterization, in the final section we give three exampl
physical interest:

~1! the regular representation of the real line, where the positive operator valued measure
scribe theposition observablesin one dimension;

a!Electronic mail: cassinelli@ge.infn.it
b!Electronic mail: devito@unimo.it
c!Electronic mail: toigo@ge.infn.it
4180022-2488/2004/45(1)/418/16/$22.00 © 2004 American Institute of Physics
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~2! the number-representation of the torus, where the positive operator valued measures de
the phase observables;3 and

~3! the tensor product of twonumber-representations of the torus, where the positive oper
valued measures describe thephase difference observables.9

II. NOTATIONS

In this article, byHilbert spacewe mean a separable complex Hilbert space with sc
product^•,•& linear in the first argument, bygroup we mean a locally compact second counta
Abelian group and byrepresentationa continuous unitary representation of a group acting o
Hilbert space. IfX is a locally compact second countable topological space, we denote byB(X)
the Borels-algebra ofX and byCc(X) the space of continuous complex functions onX with
compact support. Bymeasurewe mean a positive measure defined onB(X) and finite on compact
sets.

In the sequel we shall use rather freely basic results of harmonic analysis on Abelian g
as exposed, for example, in Refs. 7 and 8.

We fix a groupG and a closed subgroupH. We denote byĜ and Ĥ the corresponding dua
groups and bŷx,g& the canonical pairing.

We denote by

q:G→G/H, q~g!5ġ

the canonical projection onto the quotient groupG/H. If aPG and ġPG/H, we let a@ ġ#

5q(ag)5ȧġ be the natural action ofa on the pointġ.
Let H' be the annihilator ofH in Ĝ, that is,

H'5$yPĜu^y,h&51 ;hPH%.

The groupH' is a closed subgroup ofĜ andG/Ĥ can be identified~and we will do that! with H'

by means of

^y,ġ&ª^y,g& ;yPH',;ġPG/H.

SinceH' is closed, we can consider the quotient groupĜ/H'. We denote by

p:Ĝ→Ĝ/H', p~x!5 ẋ

the canonical projection. The groupĤ can be identified~and we will do that! with the quotient
groupĜ/H' by means of

^ẋ,h&ª^x,h& ; ẋPĜ/H',;hPH.

Let mG , mH andmG/H be fixed Haar measures onG, H andG/H, respectively.
We denote bymH' the Haar measure onH' such that the Fourier–Plancherel cotransfo

F̄G/H is unitary fromL2(G/H,mG/H) onto L2(H',mH'), whereF̄G/H is given by

~F̄G/Hf !~y!5E
G/H

^y,ġ& f ~ ġ!dmG/H~ ġ!, yPH',

for all f P(L1ùL2)(G/H,mG/H).
Given wPCc(Ĝ), let
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w̃~ ẋ!ªE
H'

w~xy!dmH'~y! ; ẋPĜ/H'.

It is well known thatw̃ is in Cc(Ĝ/H') and thatw̃>0 if w>0. Given a measuren on Ĝ/H', the
map

Cc~Ĝ!{w°E
Ĝ/H'

w̃~ ẋ!dn~ ẋ!PC ~1!

is linear and positive. Hence, by Riesz–Markov theorem, there is a unique measureñ on Ĝ such
that

E
Ĝ

f~x!dñ~x!5E
Ĝ/H'

dn~ ẋ!E
H'

f~xy!dmH'~y!

for all fPL1(Ĝ,ñ). One can check that the correspondencen° ñ preserves equivalence an
orthogonality of measures.

Given a finite measurem on Ĝ, we denote bymp the image measure ofm with respect top,
i.e., the measure onĜ/H' given by

mp~A!5m~p21~A!! ;APB~Ĝ/H'!.

We fix a representationU of G acting on a Hilbert spaceH. Let Q be a positive operato
valued measure~POVM! defined onG/H and acting onH. If Q satisfies the following properties

~1! Q(G/H)5I ,
~2! for all XPB(G/H),

U~g!Q~X!U~g21!5Q~g@X#! ;gPG,

it is calledcovariantand (U,Q) is said to be acovariance system. In particular, ifQ is a projective
measure, (U,Q) is called animprimitivity system.

For vPCc(G/H), we define the operator

M ~v!ªE
G/H

v~ ġ!dQ~ ġ!.

The mapv°M (v) defines uniquely the POVMQ. In the following we useM instead ofQ.
Finally, given a representations of H, we denote by (indH

G(s),M0) the imprimitivity system
induced bys from H to G.

The aim of this article is to describe all the positive operator valued measures covarian
respect toU. The generalized imprimitivity theorem~see, for example, Refs. 4 and 5! states the
following.

Theorem 1: A POVM M based on G/H and acting onH is covariant with respect to U if and
only if there exists a representations of H and an isometry W intertwining U withindH

G(s) such
that

M ~v!5W* M0~v!W

for all vPCc(G/H).
If s8 is another representation ofH such thats is contained~as subrepresentation! in s, then

(indH
G(s),M0) is contained~as an imprimitivity system! in (indH

G(s8),M08). Hence, we can always
assume thats in the previous theorem has infinite multiplicity.
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Moreover, there exist a measuren on Ĝ/H' and an infinite dimensional Hilbert spaceE such
that, up to a unitary equivalence,s acts diagonally onL2(Ĝ/H',n;E). The first step of our
construction is to diagonalize the representation indH

G(s).

III. DIAGONALIZATION OF ind H
G
„s…

In this section, given a representation ofH with uniform multiplicity, we diagonalize the
corresponding induced representation.

Let n be a measure onĜ/H' andE be a Hilbert space. Letsn be the diagonal representatio
of H acting on the spaceL2(Ĝ/H',n;E), that is,

~sn~h!j!~ ẋ!5^ẋ,h&j~ ẋ!, ẋPĜ/H',

wherehPH.
We denote byH n the space of functionsf :G3Ĝ/H'→E such that
~i! f is weakly (mG^ n)-measurable;
~ii ! for all hPH,

f ~gh,ẋ!5^ẋ,h& f ~g,ẋ! ;~g,ẋ!PG3Ĝ/H'; ~2!

~iii !

E
G/H3Ĝ/H'

i f ~g,ẋ!iE
2 d~mG/H ^ n!~ ġ,ẋ!,1`.

We identify functions inH n that are equal (mG^ n)-a.e.. LetG act onH n as

~ln~a! f !~g,ẋ!ª f ~a21g,ẋ!, ~g,ẋ!PG3Ĝ/H',

for all aPG. Define

~M0
n~v! f !~g,ẋ!ªv~ ġ! f ~g,ẋ!, ~g,ẋ!PG3Ĝ/H'

for all f PH n, vPCc(G/H).
One can easily prove the following fact.
Proposition 2: The spaceH n is a Hilbert space with respect to the inner product

^ f 1 , f 2&H n5E
G/H3Ĝ/H'

^ f 1~g,ẋ!, f 2~g,ẋ!&Ed~mG/H ^ n!~ ġ,ẋ!.

If wPCc(G3Ĝ/H';E), let

f w~g,ẋ!ªE
H

^ẋ,h&w~gh,ẋ!dmH~h! ;~g,ẋ!PG3Ĝ/H'.

Then fw is a continuous function inH n such that(q3 idĜ/H')(supp f w) is compact, and the se

H 0
n5$ f wuwPCc~G3Ĝ/H';E!%

is a dense subspace ofH n. The couple(ln,M0
n) is the imprimitivity system induced bysn from H

to G.
We now diagonalize the representationln. First of all, we letñ be the measure defined inĜ

by Eq. ~1!. Let Ln be the diagonal representation ofG acting onL2(Ĝ,ñ;E) as
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~Ln~g!f!~x!5^x,g&f~x!, xPĜ,

for all gPG.
Moreover, givenf:Ĝ→E and fixedxPĜ, definefx from H' to E as

fx~y!ªf~xy! ;yPH'.

Theorem 3: There is a unique unitary operatorS from H n onto L2(Ĝ,ñ;E) such that, for all
f PH 0

n ,

~S f !~x!5E
G/H

^x,g& f ~g,ẋ!dmG/H~ ġ!, xPĜ. ~3!

The operatorS intertwinesln with Ln. Moreover,

~S* w!~g,ẋ!5E
H'

^xy,g&w~xy!dmH'~y!, ~g,ẋ!PG3Ĥ, ~4!

for all wPCc(Ĝ;E).
Proof: We first defineS on H 0

n . Let f PH 0
n . Fix xPĜ. By virtue of Eq.~2! the function

g°^x,g& f ~g,ẋ!

depends only on the equivalence classġ of g and we letf x be the corresponding map onG/H.
Due to the properties off , f x is continuous and has compact support, so it ismG/H-integrable and
we defineS f by means of Eq.~3!.

We claim thatS f is in L2(Ĝ,ñ;E) and iS f iL2(Ĝ,ñ;E)5i f iH n. Since the map

~x,ġ!° f x~ ġ!

is continuous, by a standard argumentS f is continuous. Moreover, ifxPĜ andyPH',

~S f !~xy!5E
G/H

^xy,g& f ~g,ẋ!dmG/H~ ġ!5E
G/H

^y,ġ&^x,g& f ~g,ẋ!dmG/H~ ġ!5F̄G/H~ f x!~y!.

Indeed,

iS f i
L2(Ĝ,ñ;E)

2
5E

Ĝ
iS f ~x!iE

2dñ~x!

5E
Ĝ/H'

dn~ ẋ!E
H'

i~S f !~xy!iE
2dmH'~y!

5E
Ĝ/H'

dn~ ẋ!E
H'

iF̄G/H~ f x!~y!iE
2dmH'~y! ~unitarity of F̄G/H!

5E
Ĝ/H'

dn~ ẋ!E
G/H

i f x~ ġ!iE
2dmG/H~ ġ!

5E
Ĝ/H'

dn~ ẋ!E
G/H

i f ~g,ẋ!iE
2dmG/H~ ġ!

5E
G/H3Ĝ/H'

i f ~g,ẋ!iE
2d~mG/H ^ n!~ ġ,ẋ!

5i f iH n
2 .
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By density,S extends to an isometry fromH n to L2(Ĝ,ñ;E). Clearly, Eq.~3! holds and it defines
uniquelyS.

The second step is computing the adjoint ofS. Let wPCc(Ĝ;E). By standard arguments th
right hand side of Eq.~4! is a continuous function of (g,ẋ). Moreover, it satisfies Eq.~2!. We have

E
H'

^xy,g&w~xy!dmH'~y!5^x,g&F̄G/H* ~wx!~ ġ!, ~g,ẋ!PG3Ĥ.

First of all, we show that the above function is inH n. Indeed,

E
Ĝ/H'

dn~ ẋ!E
G/H

i^x,g&F̄G/H* ~wx!~ ġ!iE
2dmG/H~ ġ!

5E
Ĝ/H'

dn~ ẋ!E
G/H

iF̄G/H* ~wx!~ ġ!iE
2dmG/H~ ġ! ~unitarity of F̄G/H!

5E
Ĝ/H'

dn~ ẋ!E
H'

iwx~y!iE
2dmH'~y!

5E
Ĝ/H'

dn~ ẋ!E
H'

iw~xy!iE
2dmH'~y!

5iwi
L2(Ĝ,ñ;E)

2
. ~5!

Moreover, for allf PH 0
n , we have

^S* w, f &H n5^w,S f &L2(Ĝ,ñ;E)

5E
Ĝ/H'

dn~ ẋ!E
H'

^w~xy!,~S f !~xy!&EdmH'~y!

5E
Ĝ/H'

dn~ ẋ!E
H'

^wx~y!,F̄G/H~ f x!~y!&EdmH'~y! ~unitarity of F̄G/H!

5E
Ĝ/H'

dn~ ẋ!E
G/H

^F̄G/H* ~wx!~ ġ!, f x~ ġ!&EdmG/H~ ġ!

5E
Ĝ/H'

dn~ ẋ!E
G/H

^F̄G/H* ~wx!~ ġ!,^x,g& f ~g,ẋ!&EdmG/H~ ġ!

5E
Ĝ/H'

dn~ ẋ!E
G/H

^^x,g&F̄G/H* ~wx!~ ġ!, f ~g,ẋ!&EdmG/H~ ġ!

5E
G/H3Ĝ/H'

^^x,g&F̄G/H* ~wx!~ ġ!, f ~g,ẋ!&Ed~mG/H ^ n!~ ġ,ẋ!.

SinceH 0
n is dense, Eq.~4! follows. By Eq. ~5! S* is isometric, henceS is unitary.

Finally, we show the intertwining property. LetaPG and f PH 0
n . Thenln(a) f PH 0

n , and so
one has
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~Sln~a! f !~x!5E
G/H

^x,g& f ~a21g,ẋ!dmG/H~ ġ!

5^x,a&E
G/H

f x~a21@ ġ# !dmG/H~ ġ!~ ġ→a@ ġ# !

5^x,a&E
G/H

^x,g& f ~g,ẋ!dmG/H~ ġ!

5~Ln~a!S f !~x!, xPĜ.

By density ofH 0
n , it follows thatSln(a)5Ln(a)S. j

Given vPCc(G/H), let M0
ñ(v)5SM0

n(v)S* . Then we have the following proposition.
Proposition 4: For allvPCc(G/H) and fPL2(Ĝ,ñ;E),

~M0
ñ~v!f!~x!5E

H'
F̄G/H~v!~y!f~xy21!dmH'~y!, xPĜ. ~6!

Proof: Let vPCc(G/H). We compute the action ofM0
ñ(v) on Cc(Ĝ;E). If wPCc(Ĝ;E), let

j~x!ªE
H'

F̄G/H~v!~y!w~xy21!dmH'~y! ;xPĜ,

which is well defined and continuous. Moreover, for allxPĜ andyPH',

j~xy!5E
H'

F̄G/H~v!~y8!w~xyy821!dmH'~y8!

5E
H'

F̄G/H~v!~y8!wx~yy821!dmH'~y8!5~F̄G/H~v!* wx!~y!. ~7!

Here and in the following, convolutions are always taken inH'. If w,cPCc(Ĝ;E),

^M0
ñ~v!w,c&L2(Ĝ,ñ;E)5^M0

n~v!S* w,S* c&H n

5E
Ĝ/H'

dn~ ẋ!E
G/H

dmG/H~ ġ!

3^v~ ġ!^x,g&F̄G/H* ~wx!~ ġ!,^x,g&F̄G/H* ~cx!~ ġ!&E

5E
Ĝ/H'

dn~ ẋ!E
G/H

dmG/H~ ġ!^v~ ġ!F̄G/H* ~wx!~ ġ!,F̄G/H* ~cx!

3~ ġ!&E ~unitarity of F̄G/H and properties of convolution!

5E
Ĝ/H'

dn~ ẋ!E
H'

dmH'~y!^~F̄G/H~v!* wx!~y!,cx~y!&E

5E
Ĝ/H'

dn~ ẋ!E
H'

dmH'~y!^j~xy!,c~xy!&E ,

hence Eq.~6! holds onCc(Ĝ;E).
Let now fPL2(Ĝ,ñ;E). Since
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ifiL2(Ĝ,ñ;E)
2

5E
Ĝ/H'

dn~ ẋ!E
H'

if~xy!iE
2dmH'~y!,1`,

by virtue of the Fubini theorem there is an-negligible setY1,Ĝ/H' such that, for allxPĜ with
ẋ¹Y1 , fxPL2(H',mH';E). Moreover, using the definition ofñ, one can check thatp21(Y1) is
ñ-negligible. Then, forñ-almost allxPĜ, fx is in L2(H',mH';E). We observe that the map

ġ°v~ ġ!~F̄G/H* ~fx!!~ ġ!

is then in (L1ùL2)(G/H,mG/H ;E) for ñ-almost allxPĜ, hence its Fourier cotransform is con
tinuous, and we have

F̄G/H~vF̄G/H* ~fx!!~e!5~F̄G/H~v!* fx!~e!5E
H'

F̄G/H~v!~y!f~xy21!dmH'~y!. ~8!

Now, we let (wk)k>1 be a sequence inCc(Ĝ;E) converging tof in L2(Ĝ,ñ;E). Then

E
Ĝ/H'

dn~ ẋ!E
H'

i~wk!x~y!2fx~y!iE
2dmH'~y!→0

and so, possibly passing to a subsequence, there is an-negligible setY2,Ĝ/H' such that

E
H'

i~wk!x~y!2fx~y!iE
2dmH'~y!→0

for all xPĜ with ẋ¹Y2 . This fact means that, forñ-almost allxPĜ,

~wk!x→fx

in L2(H',mH';E). It follows that

vF̄G/H* ~~wk!x!→vF̄G/H* ~fx!

in L1(G/H,mG/H ;E). Then, forñ-almost allxPĜ,

F̄G/H~vF̄G/H* ~~wk!x!!→F̄G/H~vF̄G/H* ~fx!!

uniformly, and, using Eqs.~7!, and~8!,

~M0
ñ !~v!wk)~x!5F̄G/H~vF̄G/H* ~~wk!x!!~e!→F̄G/H~vF̄G/H* ~fx!!~e!

5E
H'

F̄G/H~v!~y!f~xy21!dmH'~y!.

SinceM0
ñ(v)wk converges toM0

ñ(v)f in L2(Ĝ,ñ;E), Eq. ~6! follows from unicity of the limit.
j

IV. CHARACTERIZATION OF COVARIANT POVMs

We fix in the following aninfinite dimensionalHilbert spaceE. According to the results of the
previous sections, the generalized imprimitivity theorem for Abelian groups can be stated
following way.

Theorem 5: A POVM M based on G/H and acting onH is covariant with respect to U if and

only if there exist a measuren on Ĝ/H' and an isometry W intertwining U withLn such that
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M ~v!5W* M0
ñ~v!W

for all vPCc(G/H).
To get an explicit form ofW, we assume thatU acts diagonally onH. This means thatH is

the orthogonal sum of invariant subspaces

H5 %
kPI

L2~Ĝ,rk ;Fk!, ~9!

whereI is a denumerable set, (rk)kPI is a family of measures onĜ, (Fk)kPI is a family of Hilbert
spaces, and the action ofU is given by

~U~g!fk!~x!5^x,g&fk~x!, xPĜ,

where fkPL2(Ĝ,rk ;Fk) and gPG. We will denote byPk the orthogonal projector onto th
subspaceL2(Ĝ,rk ;Fk).

The assumption~9! is not restrictive. Indeed, it is well known that there are a family
disjoint measures (rk)kPNø$`% and a family of Hilbert spaces (Fk)kPNø$`% such that dimFk5k
and, up to a unitary equivalence, Eq.~9! holds.

Given the decomposition~9!, let r be a measure onĜ such that

r~N!50⇔rk~N!50 ;kPI . ~10!

We recall that the equivalence class ofr is uniquely defined by the family (rk)kPI .
Finally, we observe also that the equivalence class ofr is independent of the choice o

decomposition~9!. Indeed, ifG acts diagonally on another decomposition,

H5 %
kPI 8

L2~Ĝ,rk8 ;Fk8!,

then

rk8~N!50 ;kPI 8⇔rk~N!50 ;kPI .

It follows that the representationU defines uniquely an equivalence classCU of measuresr
such that relation~10! holds. Chosen in this equivalence class afinite measurer, we denote byC U

p

the equivalence class of the image measurerp. ClearlyC U
p depends only onCU .

We now give the central result of this section.
Theorem 6: Let U be a representation of G acting diagonally on

H5 %
kPI

L2~Ĝ,rk ;Fk!.

GivennUPC U
p , let ñU be the measure given by Eq. (1). The representation U admits cova

positive operator valued measures based on G/H if and only if, for all kPI , rk has density with

respect toñU . In this case, for every kPI , let ak be the densities ofrk with respect toñU .
Let E be a fixed infinite dimensional Hilbert space. For each kPI , let

Ĝ{x°Wk~x!PL~Fk ;E!

be a weakly measurable map such that Wk(x) are isometries forrk-almost all xPĜ. For v
PCc(G/H), let M(v) be the operator given by
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~PjM ~v!Pkf!~x!5E
H'

dmH'~y!F̄G/H~v!~y!Aak~xy21!

a j~x!

3Wj~x!* Wk~xy21!~Pkf!~xy21!, xPĜ, ~11!

for all fPH and k, j PI . Then, M is a POVM covariant with respect to U.
Conversely, any POVM based on G/H and covariant with respect to U is of the form given

Eq. (11).
We add some comments before the proof of the theorem.
Remark 7: We observe that Eq. (11) is invariant with respect to the choice of the me

nUPC U
p . Indeed, letnU8 PC U

p , and b.0 be the density ofnU with respect tonU8 . Clearly,

n Ũ5~b+p!nU8̃ ,

so that the densitiesak8 of rk with respect tonU8̃ are

ak85~b+p!ak .

It follows that Eq. (11) does not depend on the choice ofnUPC U
p .

Corollary 8: Let H be the trivial subgroup$e%. The representation U admits covarian
positive operator valued measures based on G if and only if the measuresrk have densities with
respect to the Haar measuremĜ . In this case, the functionsak in Eq. (11) are the densities ofrk

with respect tomĜ .
Remark 9: The content of the previous corollary was first shown by Holevo in Ref. 1

non-normalized POVM. In order to compare the two results, observe that, iffP(L1ùL2)
3(Ĝ,rk ;Fk) and cP(L1ùL2)(Ĝ,r j ;F j ), Eq. (11) becomes

^M ~v!f,c&H5E
G

dmG~g!v~g!E
Ĝ3Ĝ

^x,g&^y,g&Aak~y!a j~x!

3^Wj~x!* Wk~y!f~y!,c~x!&d~mĜ^ mĜ!~x,y!

5E
G

dmG~g!v~g!E
Ĝ3Ĝ

KU(g21)c,U(g21)f~x,y!d~mĜ^ mĜ!~x,y!,

where

Kc,f~x,y!5Aak~y!a j~x!^Wk~y!f~y!,Wj~x!c~x!&

is a bounded positive definite measurable field of forms [compare with Eqs. (4.2) and (4.3) i
11].

In order to prove Theorem 6, we need the following lemma.
Lemma 10: Letr be a finite measure on Gˆ . Assume that there is a measuren on Ĝ/H' such

that r has density with respect toñ. Thenr has density with respect torp̃. In this case, n uniquely
decomposes as

n5n11n2 ,

wheren1 is equivalent torp and n2'rp.
Proof: Suppose thatn is a measure onĜ/H' such thatr5añ, wherea is a non-negative

ñ-integrable function onĜ. Then, for allwPCc(Ĝ/H'),

rp~w!5E
Ĝ

w~p~x!!dr~ ẋ!5E
Ĝ/H'

dn~ ẋ!E
H'

w~ ẋ!a~xy!dmH'~y!5E
Ĝ/H'

w~ ẋ!a8~ ẋ!dn~ ẋ!,
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where the function

a8~ ẋ!ªE
H'

a~xy!dmH'~y!>0

is n-integrable by virtue of Fubini theorem. It follows that

rp5a8n. ~12!

Using the Lebesgue theorem, we can uniquely decompose

n5n11n2 ,

wheren1 has baserp andn2'rp. From Eq.~12!, it follows thatn1 andrp are equivalent, and this
proves the second statement of the lemma. IfA,BPB(Ĝ/H') are disjoint sets such thatn2 is
concentrated inA andn1 is concentrated inB, thenn 2̃ andn 1̃ are respectively concentrated in th
disjoint setsÃ5p21(A) and B̃5p21(B). By definition ofrp, we also have

r~Ã!5rp~A!50.

Sincer has density with respect toñ5n 1̃1n 2̃ andn 2̃ is concentrated inÃ, it follows thatr has
density with respect ton 1̃>rp̃. The claim is now clear. j

Proof of Theorem 6:Let r be a finite measure inCU . By virtue of Theorem 5,U admits a
covariant POVM⇔there exists a measuren in Ĝ/H' such thatU is a subrepresentation o
Ln⇔each measurerk has density with respect toñ⇔r has density with respect toñ. From
Lemma 10,U admits a covariant POVM if and only ifr has density with respect torp̃. Since
rpPC U

p , the first claim follows.
Let now M be a covariant POVM. By Theorem 5, there is a measuren on Ĝ/H' and an

isometryW intertwining U with Ln such that

M ~v!5W* M0
ñ~v!W ;vPCc~G/H !.

Using Lemma 10, we~uniquely! decompose

n5n11n2 ,

wheren1 is equivalent tonU andn2'nU . Then we have

sn>snU % sn2⇒~Ln,M0
ñ !>~LnU,M0

nŨ! % ~Ln2,M0
n 2̃!,

i.e., the imprimitivity system (Ln,M0
ñ) preserves the decomposition

L2~Ĝ,ñ;E!>L2~Ĝ,n Ũ;E! % L2~Ĝ,n 2̃;E!.

Moreover, since eachrk has density with respect ton Ũ andn Ũ is disjoint fromn 2̃, it follows that
W(H),L2(Ĝ,n Ũ;E), then we can always assume that the measuren on Ĝ/H' which occurs in
Theorem 5 isnU .

We now characterize the form ofW. ForkPI , we can always fix an isometryTk :Fk→E such
that Tk(Fk) are mutually orthogonal subspaces ofE. Hence, if we define, forfk

PL2(Ĝ,rk ;Fk),

~Tfk!~x!ªAak~x!Tkfk~x!, xPĜ,
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T is an isometry intertwiningU with LnU. We defineWk5WPk . The operatorV5WT* is a
partial isometry commuting withLnU, hence there exists a weakly measurable correspond
Ĝ{x°V(x)PL(E) such thatV(x) are partial isometries forn Ũ-almost allxPĜ and

~Vf!~x!5V~x!f~x!, xPĜ,

wherefPL2(Ĝ,n Ũ;E). We haveW5WT* T5VT. Then

~Wkfk!~x!5Aak~x!V~x!Tkfk~x!5Aak~x!Wk~x!fk~x!, xPĜ, ~13!

where we set

Wk~x!5V~x!Tk ;xPĜ.

SinceW is isometric, thenWk* Wk is the identity operator onL2(Ĝ,rk ;Fk), hence

Tk* V~x!* V~x!Tk5I k , xPĜ,

rk-almost everywhere, whereI k is the identity operator onFk . SinceTk is isometric andV(x) is
a partial isometry forn Ũ-almost everyxPĜ ~that is for rk-almost everyxPĜ), it follows that
V(x)* V(x) is the identity on ranTk and thatWk(x) is isometric, forrk-almost everyxPĜ. Weak
measurability of the mapsx°Wk(x) is immediate.

The explicit form ofM is then given by

~PjM ~v!Pkf!~x!5~Wj* M0
ñ~v!Wkf!~x!5

1

Aa j~x!
Wj~x!* E

H'
F̄G/H~v!~y!

3Aak~xy21!Wk~xy21!~Pkf!~xy21!dmH'~y!, xPĜ,

wherefPH, vPCc(G/H).
Conversely, letĜ{x°Wk(x)PL(Fk ;E) be a weakly measurable map such thatWk(x) are

isometries forrk-almost everyxPĜ and for allkPI . We define, forfkPL2(Ĝ,rk ;Fk),

~Wfk!~x!ªAak~x!Wk~x!fk~x! ;xPĜ.

ThenW is clearly an intertwining isometry betweenU andLnU and Eq.~11! defines a covarian
POVM. j

We now study the problem of equivalence of covariant POVMs. To simplify the exposi
we assume that the measuresrk in decomposition~9! are orthogonal.

Let M and M 8 be two covariant positive operator valued measures that are equivalen
there exists an unitary operatorS:H→H such that

SU~g!5U~g!S ;gPG, ~14!

SM~v!5M 8~v!S ;vPCc~G/H !. ~15!

We have the following result.
Proposition 11: Let(Wj ) j PI and (Wj8) j PI be families of maps such that Eq. (11) holds for

and M8, respectively.
The POVMs M and M8 are equivalent if and only if, for each kPI , there exists a weakly

measurable map x°Sk(x)PL(Fk) such that Sk(x) are unitary operators forrk-almost all x and

Aak~xy!Wj~x!* Wk~xy!5Aak~xy!Sj~x!* Wj8~x!* Wk8~xy!Sk~xy! ~16!
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for (r j ^ mH')-almost all (x,y).
Proof: By virtue of condition~14! and orthogonality of the measuresrk , S preserves decom

position ~9!. Moreover, for eachkPI , there exists a weakly measurable mapx°Sk(x)PL(Fk)
such thatSk(x) is unitary forrk-almost allx and, if fkPL2(Ĝ,rk ;Fk),

~Sfk!~x!5Sk~x!fk~x!, xPĜ.

Condition ~15! is equivalent to

PjM ~v!Pkf5PjS* M 8~v!SPkf

for all fPH, vPCc(G/H) and j ,kPI . It is not restrictive to assume that the densitiesak are
measurable functions. Let

V j ,k~x,x8!5Aak~x8!

a j~x!
~Wj~x!* Wk~x8!2Sj~x!* Wj8~x!* Wk8~x8!Sk~x8!!.

Using Eq.~11!, the previous condition becomes

E
H'

FG/H~v!~y!V j ,k~x,xy21!~Pkf!~xy21!dmH'~y!50, ~17!

r j -almost everywhere for allfPH, vPCc(G/H) and j ,kPI .
Let K be a compact set ofĜ andvPFk . In Eq. ~17! we choose

f5xK vPL2~Ĝ,rk ;Fk!

and vPCc(G/H) running over a denumerable subset dense inL2(G/H,mH'). It follows that
there exists ar j -null setN,Ĝ such that, for allx¹N,

xK~xy21!V j ,k~x,xy21!v50

for mH'-almost allyPH'. SinceV j ,k is weakly measurable, the last equation holds in a mea
able subsetY,Ĝ3H' whose complement is a (r j ^ mH')-null set. Define

m~x,y!5xy21 ;~x,y!PG'.
For all (x,y)PYùm21(K) we then have

V j ,k~x,xy21!v50.

SinceFk is separable andĜ is s-compact, we get

V j ,k~x,xy!50

for (r j ^ mH')-almost all (x,y)PĜ3H', that is,

Aak~xy!Wj~x!* Wk~xy!5Aak~xy!Sj~x!* Wj8~x!* Wk8~xy!Sk~xy!

for (r j ^ mH')-almost all (x,y).
Conversely, if condition~16! is satisfied for allj ,kPI , then clearlyM is equivalent toM 8.j
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V. EXAMPLES

A. Generalized covariant position observables

Let H5L2(R,dx), where dx is the Lebesgue measure onR. We consider the representationU
of the groupR acting onH as

~U~a!f!~x!5eiaxf~x!, xPR,

for all aPR. By means of Fourier transform,U is clearly equivalent to the regular representati
of R. We classify the POVMs based onR and covariant with respect toU. With the notations of
the previous sections, we have

G5R, H5$0%, G/H5R, Ĝ5H'5R, Ĝ/H'5$0%.

We choosemG/H5(1/2p)dx, so thatmH'5dx, andE5H.
The representationU is already diagonal with multiplicity equal to 1, so that in the deco

position ~9! we can setI 5$1%, r15dx, F15C. Hence, by Corollary 8,U admits covariant
POVMs based onR anda151.

According to Theorem 6, any covariant POVMM is defined in terms of a weakly measurab
map x°W1(x) such thatW1(x):C→H is an isometry for everyxPR. This is equivalent to
selecting a weakly measurable mapx°hxPH, with ihxiH51 ;xPR, such thatW1(x)5hx

;xPR. Explicitly, if fPL2(R,dx),

~M ~v!f!~y!5E
R
F̄R~v!~x!^hy2x ,hy&f~y2x!dx

5E
R
F̄R~v!~y2x!^hx ,hy&f~x!dx

5E
R
S E

R
ei (y2x)zv~z!^hx ,hy&f~x!

dz

2p D dx, yPR.

B. Generalized covariant phase observables

We give a complete characterization of the covariance systems based on the one-dime
torus

T5$zPCuuzu51%5$eiuuuP@0,2p#%.

We have

G5T, H5$1%, G/H5T,

Ĝ5H'5$~T{z°znPC!unPZ%>Z,

Ĝ/H'5$1%.

We choosemG/H5(1/2p) du5..mT , so thatmH' is the counting measuremZ on Z.
Let U be a representation ofT. SinceT is compact, we can always assume thatU acts

diagonally on

H5 %
kPI

Fk ,
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where I ,Z, andFk are Hilbert spaces such that dimFk is the multiplicity of the representation
kPZ in U. Explicitly,

~U~z!fk!5zkfk

for all zPT andfkPFk .
In order to use Eq.~9!, we notice thatFk5L2(Z,dk ;Fk) ~wheredk is the Dirac measure atk),

so thatrk5dk , By Corollary 8, one has thatU admits covariant POVMs based onT and that
ak( j )5dk, j ~wheredk, j is the Kronecker delta!.

Choose an infinite dimensional Hilbert spaceE and, for eachkPI , fix an isometryWk from
Fk to E. The corresponding covariance system is given by

PjM ~v!Pkf5F̄T~v!~ j 2k!Wj* WkPkf5
1

2p E
0

2p

v~eiu!ei ( j 2k)u Wj* WkPkfdu,

wherefPH andvPC(T).
If I 5Z and dimFk51 ;kPZ, U is the number representation andM represents the phas

observable~compare with the result obtained in Ref. 3!.

C. Covariant phase difference observables

Let mT as in the previous section. We consider the following representationU of the direct
productG5T3T acting on the spaceH5L2(T3T,mT^ mT) as

~U~a,b! f !~z1 ,z2!5 f ~az1 ,b21z2!, ~z1 ,z2!PT3T,

for all (a,b)PT3T.
Let H be the closed subgroup

H5$~a,b!PT3Tub5a%>T.

We classify all the POVMs based onG/H and covariant with respect toU ~for a different
approach to the same problem, see Ref. 9!.

We have

G5T3T, G/H>T, Ĝ5T̂3T̂>Z3Z,

H'5$~ j ,k!PZ3Zuk52 j %>Z,

Ĝ/H'>Z.

We fix mG/H5mT , so thatmH'5mZ .
We choose the following orthonormal basis (ei , j ) i , j PZ of H,

ei , j~z1 ,z2!5z1
i z2

2 j , ~z1 ,z2!PT3T,

so that

U~a,b!ei , j5aibjei , j ;~a,b!PT3T.

Let Fi , j5Cei , j , Then U acts diagonally onFi , j as the character (i , j )PZ3Z. Then, one can
choose as decomposition~9!

H5 %
i , j PZ

Fi , j> %
i , j PZ

L2~Z3Z,d i ^ d j ;Fi , j !.
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With the notations of Sec. IV, we haveI 5Z3Z and r i , j5d i ^ d j . It follows that C U
p is the

equivalence class ofmZ . With the choicenU5mZ , it follows that ñ5mZ^ mZ . According to
Theorem 6,U admits covariant POVMs anda i , j (n,m)5dn,idm, j .

With the choiceE5H, we select a map (i , j )°Wi , j , whereWi , j is an isometry fromFi , j to
H. SinceFi , j are one dimensional, there exists a family of vectors (hi , j ) i , j PZ in H, with ihi , j iH
51 ;( i , j )PZ3Z, such that

Wi , jei , j5hi , j ;~ i , j !PZ3Z.

The corresponding covariant POVMM is given, for everyfPH, by

Pl ,mM ~v!Pi , jf5 (
hPZ

FT~v!~h!d l 2h,idm1h, j^hi , j ,hl ,m&^f,ei , j&el ,m

5d l 1m,i 1 j FT~v!~ j 2m!^hi , j ,hl ,m& ^f,ei , j&el ,m .

In particular, if l 1m5 i 1 j , we have

^M ~v!ei , j ,el ,m&5F̄T~v!~ j 2m!^hi , j ,hl ,m&5
1

2p E
0

2p

v~eiu!ei ( j 2m)u^hi , j ,hl ,m&du.

If l 1mÞ i 1 j , one has

^M ~v!ei , j ,el ,m&50.

1Ali, S. T., Antoine, J.-P., and Gazeau, J.-P.,Coherent States, Wavelets and their Generalizations~Springer-Verlag, New
York, 2000!.

2Busch, P., Grabowski, M., and Lahti, P.,Operational Quantum Physics~Springer-Verlag, Berlin, 1997!.
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The Yangian of the Lie algebra sln is known to have different presentations, in
particular the RTT realization and the Drinfel’d realization. Using the isomorphism
between them, the explicit expressions of the comultiplication, the antipode and the
counit in the Drinfel’d realization of the YangianY(sln) are given. As examples, the
cases ofY(sl2) andY(sl3) are worked out. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1633024#

I. TWO REALIZATIONS OF THE YANGIAN Y„sl n…

The YangianY(a) based on a simple Lie algebraa is defined1,2 as the~unique! homogeneous
quantization of the algebraa@u#5a^ C@u# endowed with its standard bialgebra structure, wh
C@u# is the ring of polynomials in the indeterminateu. This algebra has a structure of a nonc
comutative Hopf algebra, which partially explains the importance of Yangians and their repr
tations in the study of quantum inverse problem. Among the different presentations of the
gians, the one known as the Drinfel’d realization is well adapted for the study of
representations.3 No explicit formula for the Hopf structure in this realization was known y
except for sl2

4 and for osp~1u2!.5 The aim of this paper is to give an explicit expression of t
comultiplication, the antipode and the counit in the Drinfel’d realization forY(sln). Note that
partial results were given in Refs. 6 and 7. The comultiplication given in this paper ca
extended to the double YangianDY(sln). One can show that the so-called Drinfel’d comultip
cation defined only for the double Yangian is the twist of this extended comultiplication~see, for
example, Refs. 7 and 8!.

This paper is organized as follows. In this section, the RTT formalism9 and Drinfel’d realiza-
tion of Y(sln) are presented, which allow us to give the normalization of the generators as w
the exact form of theR-matrix and of the quantum determinant. In the second section, s
properties about the quantum minors, needed in the following, are explained. The express
the isomorphism using the quantum minors or the Gauss decomposition are then present
main theorem of this paper, i.e., the explicit form of the Hopf structure, is exposed in the nex
sections. Finally, as illustrative examples, theY(sl2) andY(sl3) cases are worked out.

In this section, two well-known realizations of the Yangian based on the Lie algebra sn are
presented: the RTT formalism and the Drinfel’d realization.3

The first realization uses the RTT formalism.3,4,9 Let V(n) denote then-dimensional funda-
mental vector space representation of sln . The Yang’sR-matrix is given by

R12
(n)~u!5I ^ I 1 (

1< i , j <n

Ei j ^ Eji

u
PEnd~V(n)

^ V(n)!, ~1.1!

whereEi j is the elementary matrix with entry 1 in rowi and columnj and 0 elsewhere. This
R-matrix satisfies the following properties:

R12
(n)~u!R13

(n)~u1v !R23
(n)~v !5R23

(n)~v !R13
(n)~u1v !R12

(n)~u! ~Yang–Baxter equation!, ~1.2!
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R12
(n)~u!R21

(n)~2u!5
u221

u2 ~ I ^ I ! ~unitarity!. ~1.3!

Definition 1.1: The Yangian ofgln , Y(gln), is the associative algebra, generated by the u
and the elements$Ti , j

(k)u1< i , j <n,kPZ.0% gathered in the formal series

T~u!511 (
i , j 51

n

(
kPZ.0

Ti , j
(k) u2k Ei j 5 (

i , j 51

n

Ti , j~u! Ei j ~1.4!

subject to the defining relations

R12
(n)~u2v !~T~u! ^ 1!~1^ T~v !!5~1^ T~v !!~T~u! ^ 1!R12

(n)~u2v !. ~1.5!

The defining relations~1.5! as commutators ofTi j (u) are

2~u2v !@Ti , j~u!,Tk,l~v !#5Tk, j~u! Ti ,l~v !2Tk, j~v ! Ti ,l~u!. ~1.6!

The YangianY(gln) has a Hopf algebra structure and the explicit forms of comultiplicati
antipode and counit are

D~Ti , j~u!!5 (
k51

n

Ti ,k^ Tk, j , S~T~u!!5T21~u! and e~Ti , j~u!!5d i j . ~1.7!

By definition, the quantum determinant is the following formal series with coefficients inY(gln):

q detT~u!5 (
sPSn

sgn~s! Ts(1),1~u!¯Ts(n),n~u1n21!. ~1.8!

Remark:To avoid ambiguity, let us stress that

q detT~2u!5 (
sPSn

sgn~s! Ts(1),1~2u!¯Ts(n),n~2u1n21!

is different from the quantum determinant of the matrixT̃(u)5T(2u),

q detT̃~u!5 (
sPSn

sgn~s! Ts(1),1~2u!¯Ts(n),n~2u2n11!. ~1.9!

A well-known result~see, e.g., Ref. 4! is that the coefficients ofq detT(u) generate the center o
Y(gln) and furthermore

D~q detT~u!!5q detT~u! ^ q detT~u!. ~1.10!

These results justify the following definition.
Definition 1.2: The Yangian of the Lie algebrasln , Y(sln), is the quotient of the algebra

Y(gln) by the ideal generated by qdetT(u)51 with the Hopf algebra structure (1.7).
Let us note that the YangianY(sln) can also be viewed as a subalgebra ofY(gln); for more

details, see, for example, Ref. 4. In the following,T(u) will denote the generators of the Yangia
Y(sln).

The map

T~u!°T21~2u![T* ~u! ~1.11!

defines an automorphism ofY(sln).
The second realization of the Yangian uses the so-called Drinfel’d generators. Let$a i u1< i

<n21% be the set of simple roots of sln and ~•,•! be the standard nondegenerate symme
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invariant bilinear form on sln . For each simple roota i , ea i
, and f a i

are the corresponding roo
vectors, such that (ea i

, f a i
)51, andha i

5@ea i
, f a i

# are the Cartan generators. The Drinfel’d re
ization of the Yangian is given by the following theorem.3

Theorem 1.3: The Yangian ofsln , Y(sln), is isomorphic to the associative algebraA, gener-
ated by the unit and the elements$ei

(k) , f i
(k) ,hi

(k) u 1< i<n21,kPZ>0% subject to the defining
relations

@hi
(k) ,hj

( l )#50, @ei
(k) , f j

( l )#5d i , j hi
(k1 l ), ~1.12!

@hi
(0) ,ej

( l )#5~a i ,a j !ej
( l ), @hi

(0) , f j
( l )#52~a i ,a j ! f j

( l ), ~1.13!

@hi
(k11) ,ej

( l )#2@hi
(k) ,ej

( l 11)#5 1
2~a i ,a j ! ~hi

(k) ej
( l )1ej

( l ) hi
(k)!, ~1.14!

@hi
(k11) , f j

( l )#2@hi
(k) , f j

( l 11)#52 1
2~a i ,a j ! ~hi

(k) f j
( l )1 f j

( l ) hi
(k)!, ~1.15!

@ei
(k11) ,ej

( l )#2@ei
(k) ,ej

( l 11)#5 1
2~a i ,a j ! ~ei

(k) ej
( l )1ej

( l ) ei
(k)!, ~1.16!

@ f i
(k11) , f j

( l )#2@ f i
(k) , f j

( l 11)#52 1
2~a i ,a j ! ~ f i

(k) f j
( l )1 f j

( l ) f i
(k)!, ~1.17!

and to the Serre relations, for iÞ j and ni j 5122@(a i ,a j )/(a i ,a i)#:

(
sPSni j

@ei
(ks(1)) ,@¯ ,@e

i

(ks(ni j )
)
,ej

( l )#¯#50, ~1.18!

(
sPSni j

@ f i
(ks(1)) ,@¯ ,@ f

i

(ks(ni j )
)
, f j

( l )#¯#50. ~1.19!

For later conveniences, we define the following formal series:

ei~u!5 (
k50

1` ei
(k)

uk11 , f i~u!5 (
k50

1` f i
(k)

uk11, and hi~u!511 (
k50

1` hi
(k)

uk11 for 1< i<n21.

~1.20!

The mappingea i
°ei

(0), f a i
° f i

(0), ha i
°hi

(0) defines an embedding U(sln)�A, where U(sln) is
the universal enveloping algebra of sln .

II. QUANTUM MINORS

Before giving the expression of the isomorphism that relates the two Yangian presentatio
the next section, we introduce the notion of quantum minors and recall some of their prop
~see, e.g., Refs. 4 and 8, for the proofs!.

Let I 5$a1 ,a2 ,...,am% andJ5$b1 ,b2 ,...,bm% such thatI ,J,$1,...,n% and card(I )5card(J)
5m with 1<m<n. The set of generators$Tai ,bj

(u)u1< i , j <m% defines a subalgebra ofY(sln)
with the following commutation relations:

R12
(m)~u2v !~T~b1¯bm

a1¯am!~u! ^ 1!~1^ T~b1¯bm

a1¯am!~v !!

5~1^ T~b1¯bm

a1¯am!~v !!~T~b1¯bm

a1¯am!~u! ^ 1!R12
(m)~u2v !, ~2.1!

whereT(b1¯bm

a1¯am)(u)5( i , j 51
m Taibj

(u) Ei j .

Definition 2.1: The quantum minor t(b ¯b
a1¯am)(u) of T(u) is defined by
1 m
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t~b1¯bm

a1¯am!~u!5q detT~b1¯bm

a1¯am!~u!5 (
sPSm

sgn~s!Tas(1) ,b1
~u!¯Tas(m) ,bm

~u1m21!. ~2.2!

The quantum minors can also be given by4

t~b1¯bm

a1¯am!~u!5 (
sPSm

sgn~s!Ta1 ,bs(1)
~u1m21!¯Tam ,bs(m)

~u!. ~2.3!

By convention, whenm,1, the quantum minor is equal to 1. Quantum minors satisfy so
properties which are analogous to those of numerical matrices minors~for more details, see, fo
example, Refs. 4 and 8!.

Proposition 2.2: The quantum minor t(b1¯bm

a1¯am)(u) verifies the following properties:

(1) It is antisymmetric, i.e., forrPSm ,

t~b1¯bm

a1¯am!~u!5sgn~r!t~b1 ¯bm

r(a1)¯r(am)
!~u!5sgn~r!t~r(b1)¯r(bm)

a1 ¯am !~u!. ~2.4!

(2) It is alternated, i.e., if there exists iÞ j such that ai5aj or bi5bj , then t(b1 ¯bm

a1¯am )(u)50.

(3) It can be expanded with respect to its last column or its last row as follows:

t~b1¯bm

a1¯am!~u!5(
k51

m

~21!k1m t~b1 ¯ bk21 bk ¯ bm22 bm21

a1 ¯ ak21 ak11 ¯ am21 am !~u! Tak ,bm
~u1m21! ~2.5!

5(
k51

m

~21!k1m Tam ,bk
~u1m21! t~b1 ¯ bk21 bk11 ¯ bm21 bm

a1 ¯ ak21 ak ¯ am22 am21 !~u!. ~2.6!

From the defining relations~1.6!, the commutation relations of the quantum minors withTi , j (u)
can be computed:

~u2v !@Ti , j~u!,t~b1¯bm

a1¯am!~v !#5 (
k51

m

~ t~b1¯ bk21 j bk11¯bm

a1¯ak21 akak11¯am!~v ! Ti ,bk
~u!

2Tak , j~u!t~b1¯ bk21 bk bk11¯bm

a1¯ak21 iak11¯am !~v !!. ~2.7!

A corollary of ~2.7! is that the quantum minort(b1¯bm

a1¯am)(u) lies in the center of the subalgebr

generated by$Tai ,bj
(u)u1< i , j <m%, i.e.,

@Tai ,bj
~u!, t~b1¯bm

a1¯am!~v !#50 for 1< i , j <m. ~2.8!

The map

Ti , j~u!°t~1¯p p1 j
1¯p p1 i !~u! ~2.9!

defines an algebra homomorphismY(sln2p)→Y(sln), for 1<p<n21 and 1< i , j <n2p. Note
that this homomorphism allows us to compute a simple way the commutation relations amo
t(1¯p p1 j

1¯p p1 i )(u) minors.
Finally, quantum minors allow us to express some elements of the inverse matrix ofT(u)

thanks to the following proposition~see, e.g., Ref. 4!.
Proposition 2.3: For1< i , j <n, the following equality holds:

~T21~u1n21!! i , j5~21! i 1 j t~1¯ i 21 i 11¯n
1¯ j 21 j 11¯n !~u!. ~2.10!
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III. ISOMORPHISMS BETWEEN THE TWO REALIZATIONS OF Y„sl n…

For clarity purposes, the isomorphism between the two previous realizations is recalled~see,
e.g., Refs. 3 and 8!. Two presentations of this isomorphism are possible. The first one use
quantum minors and the second one uses the Gauss decomposition.

Theorem 3.1:The mapf:A→Y(sln),

ei S u1
i 22

2 D°~ t~1¯ i
1¯ i !~u!!21t~1¯ i 21 i 11

1¯ i 21 i !~u!, ~3.1!

f i S u1
i 22

2 D°t~1¯ i 21 i
1¯ i 21 i 11!~u!~ t~1¯ i

1¯ i !~u!!21, ~3.2!

hi S u1
i 22

2 D°~ t~1¯ i
1¯ i !~u!!21t~1¯ i 21

1¯ i 21!~u!t~1¯ i 11
1¯ i 11!~u21!~ t~1¯ i

1¯ i !~u21!!21, ~3.3!

defines an algebra isomorphism.
Note that the image ofhi(u) can be written differently as, by using the proposition 2.2,

fS hi S u1
i 22

2 D D5~ t~1¯ i
1¯ i !~u!!21t~1¯ i 21 i 11

1¯ i 21 i 11!~u!2fS f i S u1
i

2Dei S u1
i 22

2 D D ~3.4!

5t~1¯ i 21 i 11
1¯ i 21 i 11!~u!~ t~1¯ i

1¯ i !~u!!212fS f i S u1
i 22

2 Dei S u1
i

2D D .

~3.5!

The other presentation of the isomorphismf uses the Gauss decompositions of the matrixT(u),

T~u!5S 1 0

f 2,1~u! 1

] � �

f n,1~u! ¯ f n,n21~u! 1

D S k1~u! 0

�

0 kn~u!
D S 1 e1,2~u! ¯ e1,n~u!

1 � ]

� en21,n~u!

0 1

D
~3.6!

5S 1 ẽ1,2~u! ¯ ẽ1,n~u!

1 � ]

� ẽn21,n~u!

0 1

D S k̃1~u! 0

�

0 k̃n~u!
D S 1 0

f̃ 2,1~u! 1

] � �

f̃ n,1~u! ¯ f̃ n,n21~u! 1

D .

~3.7!

The expression of the elements of the Gauss decomposition~3.6! in terms of quantum minors ha
been computed by Iohara.8 For the alternative Gauss decomposition~3.7!, the computations are
similar and one obtains the following.

Proposition 3.2: Let1< i , j <n and 1<p<n. The formal series ei , j (u), ẽi , j (u), f j ,i(u),
f̃ j ,i(u), kp(u) and k̃p(u) in the Gauss decompositions, can be expressed in terms of qua
minors,

ei , j~u1 i 21!5~ t~1¯ i
1¯ i !~u!!21t~1¯ i 21 j

1¯ i 21 i !~u!, ~3.8!

f j ,i~u1 i 21!5t~1¯ i 21 i
1¯ i 21 j !~u!~ t~1¯ i

1¯ i !~u!!21, ~3.9!

kj~u1 j 21!5t~1¯ j
1¯ j !~u!~ t~1¯ j 21

1¯ j 21!~u!!21, ~3.10!
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k1~u!5t~1
1!~u!5T1,1~u! ~3.11!

and

ẽi , j~u1n2 j !5t~ j j 11¯n
i j 11¯n!~u!~ t~ j 11¯n

j 11¯n!~u!!21, ~3.12!

f̃ j ,i~u1n2 j !5~ t~ j 11¯n
j 11¯n!~u!!21t~ i j 11¯n

j j 11¯n!~u!, ~3.13!

k̃i~u1n2 i !5~ t~ i 11¯n
i 11¯n!~u!!21t~ i¯n

i¯n!~u!, ~3.14!

k̃n~u!5t~n
n!~u!5Tn,n~u!. ~3.15!

Remark:Proposition 3.2 proves the existence of the two Gauss decomposition.
Then, proposition 3.2 implies that the mapf̃:A→Y(sln),

ei~u!°ei ,i 11S u1
i

2D , ~3.16!

f i~u!° f i 11,i S u1
i

2D , ~3.17!

hi~u!°ki 11S u1
i

2D ki
21S u1

i

2D ~3.18!

is an algebra isomorphism, for 1< i<n21.
Let T* (u) denoteT(2u)21. Then, thanks to the map~1.11!, the quantum minors ofT* (u)

has a meaning and is denoted byt* (b1¯bm

a1¯am)(u).

Corollary 3.3: For 1<m<n, the following equalities hold:

t* ~1¯m
1¯m!~2u2n11!5t~m11¯n

m11¯n!~u!, ~3.19!

t* ~1¯m21 m
1¯m21 m11!~2u2n11!52t~m m12¯n

m11 m12¯n!~u!, ~3.20!

t* ~1¯m21 m11
1¯m21 m !~2u2n11!52t~m11 m12¯n

m m12¯n !~u!, ~3.21!

t* ~1¯m21 m11
1¯m21 m11!~2u2n11!5t~m m12¯n

m m12¯n!~u!. ~3.22!

Proof: Let T(u) decomposed according to~3.7!. Then,T* (u) decomposes as in~3.6!. Using
the relationT* (u)5T(2u)21, we deduce

ei ,i 11* ~u!52ei ,i 11~2u!, ~3.23!

f i 11,i* ~u!52 f i 11,i~2u!, for 1< i<n21, ~3.24!

ki* ~u!5~ki~2u!!21, for 1< i<n, ~3.25!

with obvious notations. Finally, using proposition 3.2, the equalities are proven. j

For 1< i , j <n, the elementsei , j
(0)5Ti , j

(1) and f j ,i
(0)5Tj ,i

(1) are root generators of the algebra sln ,
which can be expressed in terms of simple root generators,ei

(0) and f i
(0) , as follows:

ei , j
(0)5@¯@ej 21

(0) ,ej 22
(0) #,ej 23

(0) #,¯],ei 11
(0) ],ei

(0)], ~3.26!

f j ,i
(0)5@ f i

(0) ,@ f i 11
(0) ,@¯,@ f j 23

(0) ,@ f j 22
(0) , f j 21

(0) #¯#. ~3.27!
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Remark: In ~3.26! and ~3.27!, the isomorphismf̃ has been omitted for simplicity. In the
following, this notation is always used, i.e., the isomorphisms between two realizations o
same algebra are omitted.

IV. THE HOPF STRUCTURE OF Y„sl n… IN THE DRINFEL’D BASIS

Before giving the Hopf structure ofY(sln) in the Drinfel’d basis, the images of any quantu
minor under the coproduct, the antipode and the counit are needed. Let us recall thatT* (u)
denotesT(2u)21 and t* (b1¯bm

a1¯am)(u) denotes its quantum minors.

Proposition 4.1: Let1<m<n,1<a1,¯,am<n and1<b1,¯,bm<n. The images of a
quantum minor under the coproduct, the antipode and the counit are given by

D~ t~b1¯bm

a1¯am!~u!!5 (
1<c1,¯,cm<n

t~c1¯cm

a1¯am!~u! ^ t~b1¯bm

c1¯cm!~u!, ~4.1!

S~ t~b1¯bm

a1¯am!~u!!5~21! [m/2]t* ~b1¯bm

a1¯am!~2u2m11!, ~4.2!

«~ t~b1¯bm

a1¯am!~u!!5da1 ,b1
¯dam ,bm

, ~4.3!

where@m/2# is the integer part of m/2.
Proof: The result for the coproduct is well known~see, e.g., Ref. 4!. For the antipode, one get

S~ t~b1¯bm

a1¯am!~u!!5SS (
sPSm

sgn~s!Tas(1) ,b1
~u!¯Tas(m) ,bm

~u1m21! D ~4.4!

5 (
sPSm

sgn~s!S~Tas(m) ,bm
~u1m21!!¯S~Tas(1) ,b1

~u!!

~S is an antimorphism! ~4.5!

5 (
sPSm

sgn~s!Tas(m) ,bm
* ~2u2m11!¯Tas(1) ,b1

* ~2u! ~4.6!

5~21! [m/2] (
sPSm

sgn~s!Tas(m) ,b1
* ~2u2m11!¯Tas(1) ,bm

* ~2u!

@Eq. ~2.4!#, ~4.7!

which proves the relation~4.2!. The computation for the antipode is obvious. j

The comultiplication, the antipode and the counit are established in the Drinfel’d basis t
to the isomorphismf ~see theorem 3.1! betweenA andY(sln).

A. Comultiplication

The adjoint actions of the elements of the algebra sln on XPY(sln) will be denoted by, for
1< i< j <n,

Adei , j

6 ~X!5H 6@ei , j
(0),X#, i , j ,

X, i 5 j ,
and Adf j ,i

6 ~X!5H 6@ f j ,i
(0),X#, i , j ,

X, i 5 j .
~4.8!

To determine the explicit form of the comultiplication, the following generalization of the adj
action, depending on a spectral parameter, is useful.
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Definition 4.2: Let1< i< j <n, 1<a<n and X an element of Y(sln). The generalized adjoin
actions are defined by

aEi , j~u!~X!5Adei , j

1 ~X!1d i<a, j Adei ,a

2 ~Adea11,j

1 ~ea~u!!! X, ~4.9!

E i , j
a ~u!~X!5Adei , j

1 ~X!1d i<a, j X Adei ,a

2 ~Adea11,j

1 ~ea~u!!!, ~4.10!

and

aFj ,i~u!~X!5Adf j ,i

2 ~X!1d i<a, j Adf a,i

1 ~Adf j ,a11

2 ~ f a~u!!!X, ~4.11!

F j ,i
a ~u!~X!5Adf j ,i

2 ~X!1d i<a, j X Adf a,i

1 ~Adf j ,a11

2 ~ f a~u!!!, ~4.12!

where

d i<a, j5H 1 if i<a, j ,

0 otherwise.

Let us give examples of the generalized adjoint actions~4.9!,

1E13~u!~X!5Ade13

1 ~X!1Ade11

2 ~Ade23

1 ~e1~u!!!X5@e13
(0),X#1@e23

(0),e1~u!#X, ~4.13!

2E13~u!~X!5Ade13

1 ~X!1Ade12

2 ~Ade33

1 ~e2~u!!!X5@e13
(0),X#2@e12

(0),e2~u!#X, ~4.14!

3E13~u!~X!5Ade13

1 ~X!5@e13
(0),X#. ~4.15!

Let aG, G b be any actions onY(sln). Hereafter, for simplicity, the notationaG b means eitheraG
or G b.

To compute the comultiplication, we also need the following definition.
Definition 4.3: For 1<m<n, 1<k1,k2,¯,km<n and kmÞm, aEk1 ,k2 ,¯,km

b (u) and
aFk1 ,k2 ,¯,km

b (u)(X) are defined by for XPY(sln):

aEk1 ,k2 ,¯,km

b ~u!~X!5S )
1< i<m21

→
aE i ,ki

b ~u!D ~aE m11,km

b ~u!~X!!, ~4.16!

aFk1 ,k2 ,¯,km

b ~u!~X!5S )
1< i<m21

→
aF ki ,i

b ~u!D ~aF km ,m11
b ~u!~X!!, ~4.17!

where, for$Gpu1<p<m21%, a set of actions on Y(sln), we denote

)
1< i<m21

→
Gi~X!5G1~¯~Gm22~Gm21~X!!¯ !. ~4.18!

In particular, one gets fork.1

aEk
b~u!~X!5aE 2,k

b ~u!~X!, aFk
b~u!~X!5aF k,2

b ~u!~X!. ~4.19!

By convention, if the set of indices$k1 ,k2 ,...,km% is empty, thenaEk1 ,k2 ,...,km

b (u)(X)51 and
aFk1 ,k2 ,...,km

b (u)(X)51. Remark that these generators can be expressed only in terms o

elements of the Drinfel’d basis, thanks to Eqs.~3.26! and ~3.27!.
These generalized actions show up in the following lemma.
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Lemma 4.4: For1< i<n21, 1<a1,¯,ai<n and aiÞ i , one gets

~ t~1¯ i
1¯ i !~u!!21t~a1¯ ai

1¯ i !~u!5 iEa1 ,...,aiS u1
i 22

2 D S ei S u1
i 22

2 D D , ~4.20!

t~a1¯ ai

1 ¯ i !~u!~ t~1¯ i
1¯ i !~u!!215Ea1 ,...,ai

i S u1
i

2D S ei S u1
i

2D D , ~4.21!

~ t~1¯ i
1¯ i !~u!!21t~1 ¯ i

a1¯ai !~u!5 iFa1 ,...,aiS u1
i

2D S f i S u1
i

2D D , ~4.22!

t~1 ¯ i
a1¯ai !~u!~ t~1¯ i

1¯ i !~u!!215Fa1 ,...,ai

i S u1
i 22

2 D S f i S u1
i 22

2 D D , ~4.23!

~ t~1¯ i
1¯ i !~u!!21t~a1¯ai 21 ai

1 ¯ i 21 i 11!~u!5 iEa1 ,...,aiS u1
i 22

2 D S g̃i S u1
i 22

2 D D , ~4.24!

t~a1¯ai 21 ai

1 ¯ i 21 i 11!~u!~ t~1¯ i
1¯ i !~u!!215Ea1 ,...,ai

i S u1
i

2D S gi S u1
i 22

2 D D , ~4.25!

~ t~1¯ i
1¯ i !~u!!21t~1 ¯ i 21 i 11

a1¯ai 21 ai !~u!5 iFa1 ,...,aiS u1
i

2D S g̃i S u1
i 22

2 D D , ~4.26!

t~1 ¯ i 21 i 11
a1¯ai 21 ai !~u! ~ t~1¯ i

1¯ i !~u!!215Fa1 ,...,ai

i S u1
i 22

2 D S gi S u1
i 22

2 D D , ~4.27!

where

gi~u!5hi~u!1 f i~u!ei~u11!, ~4.28!

g̃i~u!5hi~u!1 f i~u11!ei~u!. ~4.29!

Proof: The proof is only given for~4.20!. Let i and $a1 ,...,ai% fixed as in the lemma.
The first step is to evaluate the quantum minort(a1¯ai

1¯ i )(u) in terms of the quantum mino

t(1¯ i 21 i 11
1¯ i 21 i )(u) and in terms of some generators of the sln algebra. Selecting the coefficient o

u0v21 in Eq. ~2.7!, the following relation is obtained for 1<b1,¯,bi<n, 1<p< i and
1<m<n2bp :

Adebp ,bp1m

1 ~ t~b1¯bp¯bi

1¯p ¯ i !~v !!5@Tbp ,bp1m
(1) ,t~b1¯bp¯bi

1¯p ¯ i !~v !#5t~b1¯bp1m¯bi

1¯p ¯ i !~v !. ~4.30!

This relation allows us to increase the parameters of the quantum minor. Using this relatio
indices$1,...,i 21, i 11% of t(1¯ i 21 i 11

1¯ i 21 i )(u) can be increased up to$a1 ,...,ai%:

S )
1<p< i 21

→
Adep,ap

1 D ~Adei 11,ai

1 ~ t~1¯ i 21 i 11
1¯ i 21 i !~u!!!5t~a1¯ai

1¯ i !~u!. ~4.31!

The second step of the proof consists in determining the commutator of (t(1¯ i
1¯ i)(u))21 with

ej , j 11
(0) . The commutation relations are computed using equation~2.7!,

~u2v !@Tj , j 11~u!,t~1¯ i
1¯ i !~v !#5d i j t~1¯ i 21 i 11

1¯ i 21 i !~v !Tii ~u!1OS 1

uD . ~4.32!

Multiplying by (t(1¯ i
1¯ i)(v))21 both sides of theu0 coefficient in~4.32!, one gets
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@ej , j 11
(0) ,~ t~1¯ i

1¯ i !~v !!21#52d i j ei S v1
i 22

2 D ~ t~1¯ i
1¯ i !~v !!21. ~4.33!

Thus, thanks to the relations~3.26! and ~4.33!, one obtains forXPY(sln),

~ t~1¯ i
1¯ i !~u!!21 Adep,ap

1 ~X!5 iEp,apS u1
i 22

2 D ~~ t~1¯ i
1¯ i !~u!!21X!. ~4.34!

This proves the Eq.~4.20!. Equation~4.21! is proven along the same lines. Indeed, one rema
that

t~1¯ i 21 i 11
1¯ i 21 i !~u21!~ t~1¯ i

1¯ i !~u21!!215~ t~1¯ i
1¯ i !~u!!21t~1¯ i 21 i 11

1¯ i 21 i !~u!, ~4.35!

by using the commutation relations deduced from the map~2.9!. This explains the shift of the
spectral parameter between~4.20! and ~4.21!. For the relations~4.22!–~4.27!, the proof is analo-
gous. j

Now we can state the main theorem of the paper.
Theorem 4.5:Let 1< i<n21. The comultiplication in the Drinfel’d basis is given by

D~ei~u!!5 (
m50

1`

~21!mS (
1<b1,¯,bi<n

biÞ i

iEb1 ,...,bi
~u!~ei~u!! ^

iFb1 ,...,bi
~u11!~ f i~u11!!D m

3S 1^ ei~u!1 (
1<a1,¯,ai<n

aiÞ i

iEa1 ,...,ai
~u!~ei~u!! ^

iFa1 ,...,ai
~u11!~ g̃i~u!!D ,

~4.36!

D~ f i~u!!5S f i~u! ^ 11 (
1<a1,¯,ai<n

aiÞ i

Ea1 ,...,ai

i ~u11!~gi~u!! ^ Fi~a1¯ai !~u!~ f i~u!!D
3 (

m50

1`

~21!mS (
1<b1,¯,bi<n

biÞ i

Eb1 ,...,bi

i ~u11!~ei~u11!! ^ Fb1 ,...,bi

i ~u!~ f i~u!!D m

,

~4.37!

D~hi~u!!5S f i~u! ^ ei~u11!1 (
1<a1,¯,ai<n

aiÞ i

Ea1 ,...,ai

i ~u11!~gi~u!! ^ Fa1 ,...,ai

i ~u!~gi~u!!D
3 (

m50

1`

~21!mS (
1<b1,¯,bi<n

biÞ i

Eb1 ,...,bi

i ~u11!~ei~u11!! ^ Fb1 ,...,bi

i ~u11!~ f i~u!!D m

2D~ f i~u!!D~ei~u11!!. ~4.38!

Proof: The full proof is presented only forei(u), the outline of proofs forf i(u) and hi(u)
being similar. The comultiplication in the Drinfel’d realization is constructed thanks to the
morphism given in the theorem 3.1,
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DS ei S u1
i 22

2 D D5D~ t~1¯ i
1¯ i !~u!!21D~ t~1¯ i 21 i 11

1¯ i 21 i !~u!! ~4.39!

5S (
b1,¯,bi

t~b1¯bi

1¯ i !~u! ^ t~1¯ i
b1¯bi !~u! D 21

(
a1,¯,ai

t~a1¯ai

1¯ i !~u! ^ t~1¯ i 21 i 11
a1¯ai 21 ai !~u! ~4.40!

5 (
m<0

~21!mS (
b1,¯,bi

biÞ i

~ t~1¯ i
1¯ i !~u!!21t~b1¯bi

1¯ i !~u! ^ ~ t~1¯ i
1¯ i !~u!!21t~1¯ i

b1¯bi !~u!D m

3 (
a1,¯,ai

~ t~1¯ i
1¯ i !~u!!21t~a1¯ ai

1¯ i !~u! ^ ~ t~1¯ i
1¯ i !~u!!21t~1¯ i 21 i 11

a1¯ai 21 ai !~u!. ~4.41!

The lemma 4.4 allows us to evaluate all the terms of Eq.~4.41!, which proves~4.36!. j

B. Antipode and counit

As for the comultiplication, generalized adjoint actions must be introduced to expres
antipode.

Definition 4.6: Let1< i , j <n, 1<a<n. X denotes an element of Y(sln). The generalized
adjoint actions are defined by

aHi , j~u!~X!5H 1 if i . j ,

X if i 5 j ,

X 1 aEi , j~u!~aFj ,i~u11!~X!! otherwise,

~4.42!

H i , j
a ~u!~X!5H 1 if i . j ,

X if i 5 j ,

X 1 E i , j
a ~u11!~F j ,i

a ~u!~X!! otherwise.

~4.43!

Let 1<m<n21 and 1<k1,k2,•••,km<n. Then, one has

aHk1 ,k2 ,...,km

b ~u!~X!5S )
1<p<m21

→
aH p,kp

b ~u!D ~aH m11,km

b ~u!~X!!. ~4.44!

Similary, Êm(u)(X) is defined as

E2,n
1 ~u11!~Fn21,1

1 ~u!~X!! if m51,

E 1,n2m11
m ~u11!F n2m,1

m ~u!S )
2<p<m21

→
H p,n2m1p

m ~u!D E m11,n
m ~u11!F n,m

m ~u!~X! otherwise,

~4.45!

and F̂m(u)(X) as

1E1,n21~u!~1Fn,2~u11!~X!! if m51,

mE1,n2m~u11!mFn2m11,1~u!S )
2<p<m21

→
mHp,n2m1p~u!D m

Em,n~u11!mFn,m11~u!~X!

otherwise. ~4.46!

To find the image under the antipode, the following lemma is needed.
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Lemma 4.7: For1< i<n21 and 1< j < i 11, one has

t~ j i 12¯n
j i 12¯n!~u!~ t~1¯n2 i

1¯n2 i !~u!!215H j ,i 12,...,n
n2 i S u1

n2 i 22

2 D S gn2 i S u1
n2 i 22

2 D D , ~4.47!

~ t~1¯n2 i
1¯n2 i !~u!!21t~ j i 12¯n

j i 12¯n!~u!5n2 iH j ,i 12,...,nS u1
n2 i 22

2 D S g̃n2 i S u1
n2 i 22

2 D D
~4.48!

and

t~ i 11 i 12¯n
i i 12¯n !~u!~ t~1¯n2 i

1¯n2 i !~u!!215Ên2 i S u1
n2 i 22

2 D S en2 i S u1
n2 i

2 D D , ~4.49!

~ t~1¯n2 i
1¯n2 i !~u!!21t~ i i 12¯n

i 11 i 12¯n !~u!5F̂n2 i S u1
n2 i 22

2 D S f n2 i S u1
n2 i

2 D D . ~4.50!

Proof: This lemma is proven along the same lines as the lemma 4.4. j

Theorem 4.8: The antipode and the counit in the Drinfel’d basis are given by, for1< i<n
21,

SS ei S u1
n

2D D52Ên2 i~u!~en2 i~u11!!~Hi 11,...,n
n2 i ~u!~gn2 i~u!!!21, ~4.51!

SS f i S u1
n

2D D52~n2 iHi 11,i 12,...,n~u!~ g̃n2 i~u!!!21F̂n2 i~u!~ f n2 i~u11!!, ~4.52!

SS hi S u1
n

2D D5~n2 iHi 11,i 12,...,n~u!~ g̃n2 i~u!!!21n2 iHi ,i 12,...,n~u!~ g̃n2 i~u!!

2S~en2 i~u11!!S~ f n2 i~u!!, ~4.53!

and

e~ei~u!!50, e~ f i~u!!50, e~hi~u!!51. ~4.54!

Proof: The proof is given forS(en2 i(u)). S(hn2 i(u)) and S( f n2 i(u)) are proven analo-
gously,

SS ei S u1
i 22

2 D D5S~ t~1¯ i 21 i 11
1¯ i 21 i !~u!!S~~ t~1¯ i

1¯ i !~u!!!215t* ~1¯ i 21 i 11
1¯ i 21 i !~u!~ t* ~1¯ i

1¯ i !~u!!21

~4.55!

52t~ i 11 i 12¯n
i i 12¯n !~u2n1 i !~ t~1¯n2 i

1¯n2 i !~u2n1 i !!21~ t~ i 11¯n
i 11¯n!~u2n1 i !

3~ t~1¯n2 i
1¯n2 i !~u2n1 i !!21!21 @Eq. ~2.10! and corollary 3.3#. ~4.56!

The terms in the relation~4.56! can be expressed thanks to the lemma 4.7, which proves
relation forS(en2 i(u)).

The proof for the counit is obvious. j

Remark:This Hopf structure can be extended to the double YangianDY(sln). The image of
the generatorsx(u)PY(sln),DY(sln) under the comultiplication, the antipode or the counit a
unchanged. For the dual generatorx* (u) of x(u), its image is given by the same formula whe
all the generators are replaced by their dual.
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C. Examples

We give two examples to show explicit computations using the theorems 4.5 and 4.8
comultiplication ofY(sl2) is given by

D~e1~u!!5 (
m50

1`

~2e1~u! ^ f 1~u11!!m~1^ e1~u!1e1~u! ^ ~h1~u!1 f 1~u11!e1~u!!!

~4.57!

51^ e1~u!1 (
m50

1`

~21!me1~u!m11
^ f 1~u11!mh1~u!, ~4.58!

D~ f 1~u!!5~ f 1~u! ^ 11~h1~u!1 f 1~u11!e1~u!! ^ f 1~u!! (
m50

1`

~2e1~u11! ^ f 1~u!!m

~4.59!

5 f 1~u! ^ 11 (
m50

1`

~21!mh1~u!e1~u11!m
^ f 1~u!m11, ~4.60!

D~h1~u!!5~ f 1~u! ^ e1~u11!1~h1~u!1 f 1~u!e1~u11!! ^ ~h1~u!1 f 1~u!e1~u11!!!

3 (
m50

1`

~2e1~u11! ^ f 1~u!!m2D~ f 1~u!!D~e1~u11!! ~4.61!

5 (
m50

1`

~21!m~m11!h~u! e1~u11!m
^ f 1~u11!mh~u!. ~4.62!

The explicit forms~4.58!, ~4.60!, and ~4.62! allows us to show that the comultiplication, intro
duced in this paper, is the opposite of the comultiplication used by Molev.4 Remark that the proof
of the relation~4.62! from ~4.61! is not obvious. A simpler way consists in using the form~3.3!
instead of the form~3.5! in the proof of the theorem 4.5. Despite its simpler form, the gene
zation to sln of the form given by Molev does not seem possible.

The antipode and the counit ofY(sl2) are given by

S~e1~u11!!52e1~u11!~h1~u!1 f 1~u!e1~u11!!21, ~4.63!

S~ f 1~u11!!52~h1~u!1 f 1~u11!e1~u!!21f 1~u11!, ~4.64!

S~h1~u11!!5~h1~u!1 f 1~u11!e1~u!!212S~e1~u11!!S~ f 1~u!!, ~4.65!

and

e~e1~u!!50, e~ f 1~u!!50, and e~h1~u!!51. ~4.66!

For Y(sl3), the comultiplication in the Drinfel’d basis is given by

D~e1~u!!5 (
m50

1`

~21!m~e1~u! ^ f 1~u11!2@e2
0,e1~u!# ^ @ f 2

0, f 1~u11!# !m3~1^ e1~u!1e1~u!

^ ~h1~u!1 f 1~u11!e1~u!!2@e2
0,e1~u!# ^ @ f 2

0,h1~u!1 f 1~u11!e1~u!# !, ~4.67!
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D~ f 1~u!!5~ f 1~u! ^ 11~h1~u!1 f 1~u!e1~u11!! ^ f 1~u!2@e2
0,h1~u!1 f 1~u!e1~u11!#

^ @ f 2
0, f 1~u!# ! (

m50

1`

~21!m~e1~u11! ^ f 1~u!2@e2
(0),e1~u11!# ^ @ f 2

(0), f 1~u!# !m,

~4.68!

D~h1~u!!5~ f 1~u! ^ e1~u!1~h1~u!1 f 1~u!e1~u11!! ^ ~h1~u!1 f 1~u!e1~u11!!2@e2
(0),h1~u!

1 f 1~u!e1~u11!# ^ @ f 2
(0),h1~u!1 f 1~u!e1~u11!# ! (

m50

1`

~21!m~e1~u11! ^ f 1~u!

2@e2
(0),e1~u11!# ^ @ f 2

(0), f 1~u!# !m2D~ f 1~u!!D~e1~u11!!, ~4.69!

D(e2(u)) @respectively,D( f 2(u)), D(h2(u))] is obtained by exchanging the subscripts 1 and 2
Eq. ~4.67! @respectively,~4.68!, ~4.69!#. Of course, the antipode and the counit forY(sl3) can be
computed thanks to theorem 4.8, however we leave it to the reader.
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The Lie symmetry analysis and the basic similarity reductions are performed for the
Wu–Zhang equation, a 211 dimensional nonlinear dispersive wave equation.
Some new exact solutions generated from the similarity transformation are pro-
vided. They demonstrate some new three-dimensional features of a single solitary
wave and two interacting solitary waves. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1629779#

I. INTRODUCTION

The 211 dimensional nonlinear dispersive wave equation

ut1uux1vuy1wx50,

v t1uvx1vvy1wy50, ~1!

wt1~uw!x1~vw!y1 1
3 ~uxxx1uxyy1vxxy1vyyy!50,

where (u,v) is the horizontal projection of the surface velocity of a water particle,w is the total
water depth (w21 being the wave elevation!, is regarded as Wu–Zhang~WZ! equation by Ref. 1.
The WZ equation is derived in Ref. 2 from the Euler equation with a perturbation scheme
the assumption that the amplitude of wave elevation is small and the wave is long compare
the water depth~scaled to be 1!. The WZ equation can be used to model the three dimensi
behavior of solitary waves on a uniform layer of water, such as oblique interaction, ob
reflection from a vertical wall and turning in a curved channel.

If the waves propagate in only one dimension, e.g., alongy coordinate, then the WZ equatio
is reduced to the classical Boussinesq equation

v t1vvy1wy50,

wt1~vw!y1 1
3 vyyy50, ~2!

a!Author to whom correspondence should be addressed. Electronic mail: jinzhang@ust.hk
4480022-2488/2004/45(1)/448/13/$22.00 © 2004 American Institute of Physics
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which is known to be integrable and equivalent to Broer–Kaup~BK! system3,4 and a member of
Ablowitz–Kaup–Newell–Segur~AKNS! system5 that has a tri-Hamiltonian structure. Its exa
bidirectionalN-soliton solution has been provided by Ref. 5.

Reference 1 provides the Painleve´ analysis of the WZ equation. It obtains some exact so
tions by using the standard Weiss–Tabor–Carnevale Painleve´ truncation expansion. However, th
Lie symmetry analysis of the WZ equation is not available yet.

Since the WZ equation is a physical extension of the classical Boussinesq equation, it
bidirectional soliton solution in any direction in the (x,y) plane. It might have an exact solutio
that can be used to describe obliquely interacting solitons. This paper is one of a series
towards a good understanding of the WZ equation.

We perform the Lie symmetry analysis in Sec. II, present the 111 similarity reductions in
Sec. III and provide a few new exact solutions of the WZ equation in Sec. IV. Finally
summarize the paper in Sec. V.

II. LIE POINT SYMMETRIES

In this section we perform Lie symmetry analysis for the 211-dimensional system~1!. Let us
consider a one-parameter Lie group of infinitesimal transformation6

x→x1eX~x,y,t,u,v,w!,

y→y1eY~x,y,t,u,v,w!,

t→t1eT~x,y,t,u,v,w!,

u→u1eU~x,y,t,u,v,w!,

v→v1eV~x,y,t,u,v,w!,

w→w1eW~x,y,t,u,v,w! ~3!

with a small parametere!1. The vector field associated with the above group of transformat
can be written as

uI 5X
]

]x
1Y

]

]y
1T

]

]t
1U

]

]u
1V

]

]v
1W

]

]w
. ~4!

An invariance of system~1! under transformation~3! leads to the expressions for the functio
X, Y, T, U, V,W of the form~throughout this paper we use symbolic packageMAPLE to perform
all calculation!

X5c8xt1c7x1c6y1c4t1c1 ,

Y5c8yt1c7y2c6x1c5t1c2 ,

T5c8t212c7t1c3 ,

U52~c8ut1c7u2c6v2c8x2c4!,

V52~c8vt1c7v1c6u2c8y2c5!,

W52~2c8wt12c7w!, ~5!

whereci , i 51,...,8 arearbitrary constants. The presence of these arbitrary constants lead
finite-dimensional Lie algebra of symmetries. A general element of this algebra is written a
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vI 5vI 1c11vI 2c21vI 3c31vI 4c41vI 5c51vI 6c61vI 7c71vI 8c8 , ~6!

where

vI 15
]

]x
,

vI 25
]

]y
,

vI 35
]

]t
,

vI 45
]

]u
1t

]

]x
,

vI 55t
]

]y
1

]

]v
,

vI 65y
]

]x
2x

]

]y
2u

]

]v
1v

]

]u
,

vI 75x
]

]x
1y

]

]y
12t

]

]t
2u

]

]u
2v

]

]v
22w

]

]w
,

vI 85xt
]

]x
1yt

]

]y
1t2

]

]t
1~y2vt !

]

]v
1~x2ut!

]

]u
22wt

]

]w
, ~7!

construct a basis of the vector space. The associated Lie algebra among these vector fi
comes

vI 1 vI 2 vI 3 vI 4 vI 5 vI 6 vI 7 vI 8

vI 1 0 0 0 0 0 2vI 2 vI 1 vI 4

vI 2 0 0 0 0 vI 1 vI 2 vI 5

vI 3 0 vI 1 vI 2 0 2vI 3 vI 7

vI 4 0 0 2vI 5 2vI 4 0

vI 5 0 vI 4 2vI 5 0

vI 6 0 0 0

vI 7 0 2vI 8

vI 8 0

where the entry inj th row andkth column represents the commutator@v j ,vk#, and$vI 1 ,vI 2 ,vI 3%,
$vI 4 ,vI 5%, $vI 7 ,vI 8%, $vI 1 ,vI 2 ,vI 4 ,vI 5 ,vI 6% are some of the subalgebras.

We now consider a point transformation

G:~x,y,t,u,v,w!°~j,h,z,P,Q,R!. ~8!

From the transformation~1!, we have the corresponding one-parameter group of symmetries o
WZ equation
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G1 :~x,y,t,u,v,w!°~x1e,y,t,u,v,w!,

G2 :~x,y,t,u,v,w!°~x,y1e,t,u,v,w!,

G3 :~x,y,t,u,v,w!°~x,y,t1e,u,v,w!,

G4 :~x,y,t,u,v,w!°~x1te,y,t,u1e,v,w!,
~9!

G5 :~x,y,t,u,v,w!°~x,y1te,t,u,v1e,w!,

G6 :~x,y,t,u,v,w!°~x cose1y sine,2x sine1y cose,t,u cose1v sine,2u sine

1v cose,w!,

G7 :~x,y,t,u,v,w!°~xee,yee,te2e,ue2e,ve2e,we22e!,

G8 :~x,y,t,u,v,w!°S x

12te
,

y

12te
,

t

12te
,u~12te!1xe,v~12te!1ye,w~12te!2D .

We observe thatG1 and G2 are space translations,G3 is a time translations,G4 and G5 are
Galilean boost,G6 is a rotation,G7 is a scaling for all variables with different ratios.G8 is a
time-dependent scaling. The entire symmetry group is obtained by composing one-dimen
subgroupsGi , i 51,...,8. WhenG is an element of this group, ifu(x,y,t), v(x,y,t), w(x,y,t) is
a solution of WZ equation, thenP(j,h,z), Q(j,h,z), R(j,h,z) is also a solution of WZ equa
tion.

III. 1¿1 SIMILARITY REDUCTIONS

After determining the infinitesimal generators, the similarity variables can be found by so
the characteristic equations6

dx

X
5

dy

Y
5

dt

T
5

du

U
5

dv
V

5
dw

W
. ~10!

It is easy to know that the generatorvI 1 has an invariance

j5y, h5t, P5u, Q5v, R5w.

Under this transformation, WZ equation is reduced to a system of PDE with two indepe
variablesj and h and three dependent variablesP, Q, and R. The reduced equation is WZ
equation but withu, v, and w independent ofx, i.e., ux5vx5wx50. In fact the set of two
equations onv andw is identical to the system~2! and the other one is a linear equation onu

ut1vuy50, ~11!

which can be solved with a method of characteristic line. Therefore one can obtain a solut
WZ equation~1! from a solution of the classical Boussinesq equation~2!.

For the generatorvI 2 , we have a similar result except now the solution is independent oy.
For the generatorvI 3 , WZ equation is reduced to its steady case.
For the generator of Galilean transformationvI 45(]/]u) 1t (]/]x), we have the following

similarity variables:

j5y, h5t, P5ut2x, Q5v, R5w. ~12!

The reduced PDE becomes
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Ph1QPj50,

Qh1QQj1Rj50,

Rh1
R

h
1QjR1QRj1

1

3
Qjjj50. ~13!

One may notice that the second and third equations are very closely related to the cl
Boussinesq equation~2! except the extra termR/h.

The generatorvI 5 has a similar result asvI 4 .
For the rotation transformationvI 6 , the similarity variables are

j5x21y2, h5t, P52xv1yu, Q5yv1xu, R5w. ~14!

Then WZ equation is reduced to

Ph12QPj50,

jQh12j2Rj12jQQj2~P21Q2!50,

Rh12QRj12RQj1 8
3 Qjj1 8

3 jQjjj50. ~15!

Of course one may choose another set of invariants to be the similarity variables and ob
different reduced system. For example, if we take

j5x21y2, h5t, P5
2xv1yu

x21y2 , Q5
yv1xu

x21y2 , R5w, ~16!

then the reduced system reads

Ph22QPjj22QP50,

Qh1Q212QQjj2P212Rj50, ~17!

2RQ12QRjj12RQjj1Rh1 16
3 Qj1 8

3 Qjjjj
21 32

3 Qjjj50,

which is equivalent to the system~15!.
For the scaling transformation generated byvI 7 , the similarity variables are

j5
x

At
, h5

y

At
, P5uAt, Q5vAt, R5wt. ~18!

The WZ equation is reduced to a system with two independent variables but in a more comp
form

~j22P!Pj1~h22Q!Ph1P22Rj50,

~j22P!Qj1~h22Q!Qh1Q22Rh50, ~19!

6R~Qh1Pj21!23~h22Q!Rh23~j22P!Rj12~Pjjj1Phhj1Qhhh1Qhjj!50.

The similarity variables corresponding tovI 8 are
                                                                                                                



t basic
n a 1

lar

E

at

453J. Math. Phys., Vol. 45, No. 1, January 2004 Wu–Zhang equation

                    
j5
x

t
, h5

y

t
, P5ut2jt, Q5vt2ht, R5wt2. ~20!

The WZ equation is also reduced to its steady case.
We would like to point out that in this section we have only reported the 111 similarity

reduction generated by the single but different basic infinitesimal generatorsvI j . More 111
reduced systems can be obtained by considering a proper linear combination of differen
generators. We may also implement the symmetry analysis and similarity reduction upo
11 reduced system and obtain a corresponding ODE system.

IV. SOME NEW EXACT SOLUTIONS

In this section, we present some new exact particular solutions of WZ system~1! obtained
from the three kinds of reduction transformation studied in the last section.

A. Solutions from v 3 reduction

The system generated byv3 is the steady WZ system. Here we are looking for a particu
steady solution with a similarity variablez5k1x1k2y, where the two constantsk1 and k2 are
assumed to satisfyk1

21k2
251 without a loss of generality. The velocity field (u,v) and the total

wave depthw are assumed to be functions ofz only. The WZ equation becomes a system of OD

k1uu81k2vu81k1w850, ~21!

k1uv81k2vv81k2w850, ~22!

~k1u1k2v !w81~k1u81k2v8!w1 1
3 ~k1u-1k2v-!50. ~23!

Integrating the first two equations gives

v5
k2

k1
u1d1 , w52

1

2k1
2 u22

k2

k1
d1u1d21k2

2d1
2 .

Substituting into Eq.~23! and integrating it twice yields a single equation foru,

u825
3

4k1
2 u413

k2

k1
d1u323d2u21d3u1d4 ,

where the four integration constantsdi , i 51,2,3,4 are determined by the boundary condition
infinity. For a set ofdi ’s with four real parameters,l1.l2.l3.l4 ,

d152
1

4k2
(
i 51

4

l i , d252
1

4 (
i , j 51,i , j

4

l il j , d352
3

4
k1(

j 51

4
1

l j
l1l2l3l4 ,

d45 3
4 k1

2l1l2l3l4 .

the ODE is written as

u825
3

4k1
2 ~u2k1l1!~u2k1l2!~u2k1l3!~u2k1l4!,

and the solution can be written in terms of a Jacobi elliptic function
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u5k1S l41
D24D34

D242D23sn2~s,m! D , or u5k1S l21
D24D12

D242D14sn2~s,m! D ,

v5
k2

k1
u2

1

4k2
(
i 51

4

l i , ~24!

w52
1

2k1
2 u21

1

4k1
(
i 51

4

l iu2
1

4 (
i , j 51,i , j

4

l il j1
1

16S (i 51

4

l i D 2

,

where

s5
1

4
A3D13D24~z2z0!, m5AD14D23

D13D24
, D i j 5l i2l j .

For a particular set of integration constants with one parameterl,

d150, d2511 1
2 l2, d356k1l, d45 3

4 k1
2l423k1

2l2, ~25!

the solution given by

u5k1S l2
2~l221!

l1coshA3~l221!~z2z0!
D , v5

k2

k1
u, ~26!

w511
2~l221!~11l coshA3~l221!~z2z0!!

~l1coshA3~l221!~z2z0!!2
, ~27!

describes a steady solitary wave on a uniform layer of water. For the same set of constants~25!,
we have another solution

u5k1S l1
2~12l2!

l6sinA3~12l2!~z2z0!
D , v5

k2

k1
u,

w512
2~12l2!~16l sinA3~12l2!~z2z0!!

~l6sinA3~12l2!~z2z0!!2
, ~28!

which has a singularity in a finite domain.
With some other choices of the constants, we have more steady solutions listed below
Case 1:

d152
1

2k2
~l1m!, d252

1

4
~l214lm1m2!,

d352 3
2 k1lm~l1m!, d45 3

4 k1
2l2m2,

~29!

u5k1

l2m expS 6
)

2
~l2m!~z2z0! D

12expS 6
)

2
~l2m!~z2z0! D , v5

k2

k1
u2

1

2k2
~l1m!,

w52
1

8
~l2m!2 csch2

)

4
~l2m!~z2z0!,
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or

u5k1

m1l expS 6
)

2
~l2m!~z2z0! D

11expS 6
)

2
~l2m!~z2z0! D , v5

k2

k1
u2

1

2k2
~l1m!,

~30!

w5
1

8
~l2m!2 sech2

)

4
~l2m!~z2z0!.

Case 2:

d152
1

k2
~l71!, d252

3

2
l~l72!,

d3523k1l2~l73!, d45 3
4 k1

2l3~l74!,
~31!

u5k1S l6
4

3~z2z0!221D , v5
k2

k1
u2

1

k2
~l71!,

w512
4~3~z2z0!211!

~3~z2z0!221!2 .

Case 3:

d152
l

k2
, d252

3

2
l2, d3523k1l3, d45

3

4
k1

2l4,

~32!

u5k1S l7
2

)~z2z0!
D , v5

k2

k1
u2

l

k2
, w5

22

3~z2z0!2 .

Case 4:

d150, d25 1
4 ~l22m2!, d350, d452 3

2 k1
2l2m2,

u5
k1l

A12sn2~s,m!
, v5

k2

k1
u, w5

1

4
~l22m2!2

l2

2~12sn2~s,m!!
, ~33!

s5 1
2A3~l21m2!~z2z0!, m25

m2

l21m2 .
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Case 5:

d152
1

k2
m, d252

1

4
~6m21l2!,

d352 3
2 k1m~2m21l2!, d45 3

4 k1
2m2~m21l2!,

~34!

u5k1S m7
l

sinh
)

2
l~z2z0!D , v5

k2

k1
u2

m

k2
,

w52
l2

4 S 11
2

sinh2
)

2
l~z2z0!D .

Case 6:

d150, d252 1
4 ~l21m2!, d350, d45 3

4 k1
2l2m2,

u5k1l
sn~s,m!

cn~s,m!
, v5

k2

k1
u, w5

1

4
~l22m2!2

l2

2 cn2~s,m!
, ~35!

s5
)

2
m~z2z0!, m2512

l2

m2 ~l2,m2!.

Case 7:

d15
l

2k2
, d252 1

8 ~3l21b2!, d35 3
8 k1l~l21b2!, d45 3

64 k1
2~l21b2!2,

u52
k1

2 S l7b tan
)

4
b~z2z0! D , v5

k2

k1
u1

l

2k2
, ~36!

w52
1

8
b2S 11tan2

)

4
b~z2z0! D .

These solutions are of mathematical interests, even though some of them are not phy
meaningful for the water wave because the total water depthw either goes to zero at infinity or ha
a singularity in a finite domain.

B. Solutions from v 4 reduction

The last two equations in the reduced system~13! from the generatorv4 are closely related to
the classical Boussinesq equation except the extra termR/h. Their relation is very similar to tha
of KdV and cKdV equations. In fact, with the following transformation

j̄5
j1d1

d1h
1d2 , h̄52

1

d1
2h

1d3 ,

~37!

P̄5d4P1d5 , Q̄5S Q2
j1d1

h Dd1h, R̄5Rd1
2h2
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the system~13! is converted to

P̄h̄1Q̄P̄j̄50,

Q̄h̄1Q̄Q̄j̄1R̄j̄50, ~38!

R̄h̄1Q̄j̄R̄1Q̄R̄j̄1 1
3Q̄j̄ j̄ j̄50,

where the last two equations are the classical Boussinesq equation. We can make use
property to construct new solutions of WZ equation. For example, starting with a single s
solution of the classical Boussinesq equation

Q̄5
2 ~l221!

l1cosh~A3 l223 ~ j̄2lh̄!!
, ~39!

R̄5
2 ~l221!@11l cosh~A3 l223~ j̄2l h̄!!#

@l1cosh~A3 l223~ j̄2l h̄!!#2
11, ~40!

we are able to obtain a particular solution of WZ equation

u5
1

d4t
~d4x1 P̄2d5!, ~41!

v5
2~l221!

d1t@l1cosh~A3 l223 s!#
1

y1d1

t
, ~42!

w5
2~l221!@11l cosh~A3 l223 s!#

d1
2t2@l1cosh~A3 l223 s!#2

1
1

d1
2t2 , ~43!

where the phase functions is given by

s5 j̄2lh̄5
1

d1t Fy2d1~ld32d2!t1d11
l

d1
G

and P̄ is a solution of linear equation

P̄h̄1Q̄P̄j̄50

with Q̄ given by ~39! and dj , j 51,...,5 arearbitrary constants butd1d4Þ0. The solution de-
scribes a single solitary wave that is uniform alongx direction and travels alongy direction. The
wave travels with a speedd1(ld32d2). Sinced2 and d3 are two free parameters, the solita
wave can be made still by choosingd25ld3 . It is double-peaked whenl.2 just like the solution
of the classical Boussinesq equation. Its amplitude of the total water depth for the case ofl,2 is
(2l21)/(d1t)2, which is singular at timet50 and decreases as time goes on from 0 to1`, and
its wavelength increases liked1t. For t.0, the mass loss under the solitary wave is due to
sinks at infinity. One may notice that the velocityu→6` asx→6` andv→6` as y→6`.
The solitary wave solution of the WZ equation has a three-dimensional feature that has no
presented before for other 211 dimensional nonlinear dispersive wave equations.

We now start with the solution of two-soliton head-on collision of the classical Boussi
equation5
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Q̄5
2~l11l2!~l2

22l1
22k2

2 tanh2 j21k1
2 tanh2 j1!

~k2 tanhj22k1 tanhj1!22~l11l2!2 , ~44!

R̄5
1

)
Q̄j̄1

k2 tanhj22k1 tanhj12l12l2

k2 tanhj22k1 tanhj11l11l2

3F112
~l11l2!~k1 tanhj12l1!~k2 tanhj21l2!

k2 tanhj22k1 tanhj11l11l2
G , ~45!

j15
)

2
k1~ j̄2l1h̄ !, j25

)

2
k2~ j̄1l2h̄ !, ki5Al i

221, l i.1, i 51,2,

and construct a new solution of the WZ equation

u5
1

d4t
~d4x1 P̄2d5!, v5

Q̄

d1t
1

y1d1

t
, w5

R̄

d1
2t2 , ~46!

whereP̄ solvesP̄h̄1Q̄P̄j̄50, Q̄ and R̄ are given by~44! and ~45! with

j̄5
y1d1

d1t
1d2 , h̄52

1

d1
2t

1d3 .

The two phase functions are

s15 j̄2l1h̄5
1

d1t Fy2d1~l1d32d2!t1d11
l1

d1
G ,

s25 j̄1l2h̄5
1

d1t Fy2d1~2l2d32d2!t1d12
l2

d1
G .

The two wave speeds are

c15d1~l1d32d2!, c25d1~2l2d32d2!.

If we pick d252l2d3 , thenc15d1d3(l11l2) and c250, solitary wave 2 will stand still and
solitary wave 1 will pass through solitary wave 2. Like the single solitary wave solution,
amplitude of the total water depth of both solitary waves decreases like 1/(d1t)2, the wave length
increases liked1t for t.0. The mass loss under the two solitary waves is due to the sink
infinity of both x andy directions.

Figure 1 shows the total water depthw(y,t) from ~46! for the interaction of two single-pea
solitary waves. The parameters are chosen to ensure that the solitary wave 2 with higher am
stands still near the origin and solitary wave 1 with lower amplitude passes through the s
wave 2 as time goes on. After the elastic collision, each one experiences a backward phas
The phase shift of solitary wave 2 is visible in Fig. 1 by comparing the lowerest dashed and
lines. Figure 2 shows the same solution withl1 and l2 larger than 2, so that the two solitar
waves are double peaked. The phase shift of solitary wave 2 is more visible because t
solitary waves have larger amplitude.

Similarly we can obtain a new exact solution of the WZ equation by using the multiso
solution of the classical Boussinesq equation.5
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C. Solution from v 8 reduction

The system generated byv8 is also the steady WZ system. With the steady solution~26! and
~27! and the similarity variables~20!, we obtain a new solution of the WZ equation

u5
x

t
1

k1

t S l2
2~l221!

l1coshA3~l221!
k1x1k2y2z0t

t
D , k1

21k2
251,

v5
y

t
1

k2

t S l2
2~l221!

l1coshA3~l221!
k1x1k2y2z0t

t
D ,

w5
1

t2
1

2~l221!S 11l coshA3~l221!
k1x1k2y2z0t

t D
t2S l1coshA3~l221!

k1x1k2y2z0t

t D 2 .

FIG. 1. The interaction of two single-peak solitary waves,l151.1, l251.2, d15Al2, d3510, d252l2d3 . The dashed
lines are for the total water depthw as a function of spacey for the time instances oft520.4, 20.38,20.36,20.34,
20.32, 20.3, 20.28,20.26,20.24,20.22, and20.2 bottom up. The solid lines are for the time instances ot
50.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4 top down.

FIG. 2. The interaction of two double-peak solitary waves,l153, l254, d15Al2, d351, d252l2d3 . The dashed lines
are for the total water depthw as a function of spacey for the time instances oft520.7, 20.6, and20.5 bottom up. The
solid lines are for the time instances oft50.5, 0.6, and 0.7 top down.
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The solution describes a solitary wave with an amplitude of the total water depth decreasin
1/t2 and wavelength increasing liket. The wave speed of the solitary wave isz0 , which can be an
arbitrary number.

V. SUMMARY

We have performed Lie symmetry analysis for the Wu–Zhang~WZ! equation and found its
algebraic structure. The WZ equation is shown to have a finite dimension of Lie algebra,
means that the equation is less integrable than other integrable 211 dimensional system, such a
Kadomtsev–Petviashvili~KP! equation, Davey–Stewartson~DS! equation, Nizhnik–Novikov–
Veselov~NNV! equation and 211 dimensional sine-Gorden~sG! system,7–14 which have infinite
dimension of Lie algebra. The result agrees with that from Painleve´ analysis.1

We have also obtained some new exact solutions of WZ equation by using the sim
transformation approach. They are of mathematical interest even though most of them a
physically meaningful. The solution demonstrate that a solitary wave could travel with arb
speed, its amplitude decreases and wave-length increases with time, and solitary waves w
kind of amplitudes could take over each other. These new features are due to the velocity s
infinity in both x andy directions. The three-dimensional feature of solitary waves seems to
new phenomenon to us.

Since the WZ equation has a rotation symmetry, it admits a solitary wave solution alon
direction in (x,y) plane. Two such solitary waves on two different directions could have
oblique interaction. The WZ equation can be used to model the process, but the question r
open whether the obliquely interacting solitary wave solution can be written in a closed-form
is left for further research.
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We construct the so-called theta vectors on noncommutativeT4, which correspond
to the theta functions on commutative tori with complex structures. Following the
method of Dieng and Schwarz, we first construct holomorphic connections and then
find the functions satisfying the holomorphic conditions, the theta vectors. The
holomorphic structure in the noncommutativeT4 case is given by a 232 complex
matrix, and the consistency requires its off-diagonal elements to be the same. We
also construct the tensor product of these functions satisfying the consistency
requirement. ©2004 American Institute of Physics.@DOI: 10.1063/1.1629778#

I. INTRODUCTION

Classical theta functions have played an important role in the string loop calculation.1,2 Re-
cently, noncommutative geometry3 became an important ingredient of string/M theory~for in-
stance, see Ref. 4! starting with the work of Ref. 5.

Along this direction, the noncommutative torus6,7 and its varieties,8–11 and physics on non-
commutativeR4 ~Refs. 12–14! have been studied intensively. However, noncommutative tori w
complex structures have been rarely studied.15–17Noncommutative geometry with complex stru
tures has been also studied recently with the algebraic geometry approach for Calabi–Ya
folds,18–20 and for K3 surfaces.21

Classical theta functions can be regarded as state functions over commutative tori with
plex structures. The noncommutative generalization of this has been initiated in mathema
the quantized theta function approach by Manin,15 and with the so-called theta vectors b
Schwarz.16 In the physics literature, this has appeared in the context of noncommut
solitons22–24 but mostly in the so-called integral torus case. Recently, Dieng and Schwarz17 have
computed the theta vectors and their tensor products on noncommutativeT2 explicitly without any
restriction.

In this paper, we follow the method of Dieng and Schwarz and calculate the theta vecto
their tensor products in the case of noncommutativeT4. In Sec. II, we construct modules on th
noncommutative four torus. In Sec. III, we deal with connections with complex structures. In
IV, we deal with tensor product of these modules. In Sec. V, we conclude with a discussio

II. MODULES ON NONCOMMUTATIVE T 4

In this section, we construct the modules on noncommutativeT 4 following the method of
Rieffel.7

Recall thatTu
d is the deformed algebra of the algebra of smooth functions on the torusTd with

the deformation parameteru, which is a reald3d anti-symmetric matrix. This algebra is gene
ated by operatorsU1 ,...,Ud obeying the following relations:

a!Electronic mail: hikim@knu.ac.kr
b!Electronic mail: cylee@sejong.ac.kr
4610022-2488/2004/45(1)/461/14/$22.00 © 2004 American Institute of Physics
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UiU j5e2p iu i j U jUi and Ui* Ui5UiUi* 51, i , j 51,...,d.

The above relations define the presentation of the involutive algebra,

A u
d5 H( ai 1¯ i d

U1
i 1
¯Ud

i dUa5~ai 1¯ i d
!PS~Zd!J ,

whereS(Zd) is the Schwartz space of sequences with rapid decay.
Every projective module over a smooth algebraA u

d can be represented by a direct sum
modules of the formS(Rp3Zq3F), the linear space of Schwartz functions onRp3Zq3F, where
2p1q5d andF is a finite Abelian group. The module action is specified by operators onS(Rp

3Zq3F) and the commutation relation of these operators should be matched with that o
ments inA u

d .
Recall that there is the dual action of the torus groupTd on A u

d which gives a Lie group
homomorphism ofTd into the group of automorphisms ofA u

d . Its infinitesimal form generates
homomorphism of Lie algebraL of Td into Lie algebra of derivations ofA u

d . Note that the Lie
algebraL is Abelian and is isomorphic toRd. Let d:L→Der(A u

d) be the homomorphism. For eac
XPL, d(X)ªdX is a derivation i.e., foru,vPA u

d ,

dX~uv !5dX~u!v1udX~v !. ~1!

Derivations corresponding to the generators$e1 ,...,ed% of L will be denoted byd1 ,...,dd . For the
generatorsUi ’s of Tu

d , it has the following property:

d i~U j !52p id i j U j . ~2!

If E is a projectiveA u
d-module, a connection¹ on E is a linear map fromE to E^ L* such that

for all XPL,

¹X~ju!5~¹Xj!u1jdX~u!, jPE, uPA u
d . ~3!

It is easy to see that

@¹i ,U j #52p id i j U j . ~4!

We now consider the endomorphisms algebra of a module overA u
d . Let L be a lattice in

G5M3M̂ , whereM5Rp3Zq3F andM̂ is its dual. LetF be an embedding map such thatL is
the image ofZd under the mapF. This determines a projective module which will be denoted
EL .7 The dual lattice ofL can be defined as

L'
ª$~n, t̂ !PM3M̂ uu„~m,ŝ!,~n, t̂ !…5^m, t̂ &2^n,ŝ&PZ, for all ~m,ŝ!PL%, ~5!

since in the Heisenberg representation the operators are defined by

U(m,ŝ) f ~r !5e2p i ^r ,ŝ& f ~r 1m!, ~6!

for f PEL, r PM . Namely, the operators defined in the dual lattice,U(n, t̂ ) for (n, t̂ )PL', com-
mute with all the operators defined in the original lattice,U(m,ŝ) for (m,ŝ)PL.

It is known that the algebra of endomorphisms onEL , denoted by EndAu
(EL), is a

C* -algebra obtained byC* -completion of the space spanned by operatorsU(n, t̂ ) , (n, t̂ )PL'. The
algebra EndAu

(EL) can be identified with a noncommutative torusAũ , i.e.,Aũ is Morita equiva-
lent toAu .7 Recall that aC* -algebraA is said to be Morita equivalent toA8 if A8>EndA(E) for
some finite projective moduleE. In general, a noncommutative torusAũ is Morita equivalent to
Au if u and ũ are related byũ5(Au1B)(Cu1D)21, where (C D

A B)PSO(d,duZ).25
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In this paper, we consider a projective module of the formS(Rp3Zq) ^ S(F) with p52, q
50.

For the real part, we choose our embedding map as

F inf5S u11
n1

m1
0 0 0

0 0 u21
n2

m2
0

0 1 0 0

0 0 0 1

D [~xi j !, ~7!

then using the previous expression for the Heisenberg representation withs1 ,s2PR,

~Vi f !~s1 ,s2!5~Vei
f !~s1 ,s2!ªexp„2p i ~s1x3i1s2x4i !…f ~s11x1i ,s21x2i !,

we get

~V1f !~s1 ,s2!5 f S s11u11
n1

m1
,s2D ,

~V2f !~s1 ,s2!5exp~2p is1! f ~s1 ,s2!,

~V3f !~s1 ,s2!5 f S s1 ,s21u21
n2

m2
D ,

~V4f !~s1 ,s2!5exp~2p is2! f ~s1 ,s2!.

For the finite part, letF5Zm1
3Zm2

, whereZmi
5Z/miZ, (i 51,2) and consider the spac

Cm1^ Cm2 as the space of functions onC(Zm1
3Zm2

). For all miPZ andniPZ/miZ such thatmi

and ni are relatively prime. We define the operatorsWi on C(Zm1
3Zm2

) corresponding to our
embedding map,

Ffin5S 21 0 0 0

0 0 21 0

0
n1

m1
0 0

0 0 0
n2

m2

D , ~8!

with kiPZmi
( i 51,2) as follows:

~W1f !~k1 ,k2!5 f ~k121,k2!,

~W2f !~k1 ,k2!5expS 2p i
n1k1

m1
D f ~k1 ,k2!,

~W3f !~k1 ,k2!5 f ~k1 ,k221!,

~W4f !~k1 ,k2!5expS 2p i
n2k2

m2
D f ~k1 ,k2!.
                                                                                                                



l

464 J. Math. Phys., Vol. 45, No. 1, January 2004 H. Kim and C. Lee

                    
Thus, we define operatorsUi5Vi ^ Wi acting on the spaceETªS(R2) ^ Cm1^ Cm2 as

~U1f !~s1 ,s2 ,k1 ,k2!5 f S s11u11
n1

m1
,s2 ,k121,k2D ,

~U2f !~s1 ,s2 ,k1 ,k2!5e2p i (s11 n1k1 /m1) f ~s1 ,s2 ,k1 ,k2!,
~9!

~U3f !~s1 ,s2 ,k1 ,k2!5 f S s1 ,s21u21
n2

m2
,k1 ,k221D ,

~U4f !~s1 ,s2 ,k1 ,k2!5e2p i (s21 n2k2 /m2) f ~s1 ,s2 ,k1 ,k2!.

One can now see that they satisfy

U2U15e2p iu1U1U2 ,
~10!

U4U35e2p iu2U3U4 ,

and otherwiseUiU j5U jUi .
In order to find operators which commute with theUi ’s, we recall the definition of the dua

lattice L':

^m, t̂ &2^n,ŝ&PZ, for all ~m,ŝ!PL and ~n, t̂ !PL'.

If we express the embedding mapF as

F5S m ¯

ŝ ¯

D , ~11!

and the embedding mapC for the dual lattice as

C5S n ¯

t̂ ¯

D , ~12!

then the duality condition above can be written as

^m, t̂ &2^n,ŝ&5F tJCPZ,

where

J5S 0 0 1 0

0 0 0 1

21 0 0 0

0 21 0 0

D . ~13!

Hence, we obtain the relation between the two embedding maps:

C52JF2tZ. ~14!

Using the above relation, the dual map for the real part is now given by
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m1
0 0

0 0 0
1

m2

1

m1u11n1
0 0 0 D , ~15!
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465J. Math. Phys., Vol. 45, No. 1, January 2004 Theta functions on noncommutative T4

                    
0 0
1

m2u21n2
0

and the finite part is given by

Cfin5S 0 2a1 0 0

0 0 0 2a2

1

m1
0 0 0

0 0
1

m2
0

D . ~16!

Here,aiPZ andaini2bimi51 for somebiPZ ( i 51,2).
The generators of operators corresponding to the embedding map for the dual lattice a

defined by

~Z1f !~s1 ,s2 ,k1 ,k2!5e2p i „s1 /~m1u11n1! 1 k1 /m1…f ~s1 ,s2 ,k1 ,k2!,

~Z2f !~s1 ,s2 ,k1 ,k2!5 f S s11
1

m1
,s2 ,k12a1 ,k2D ,

~17!
~Z3f !~s1 ,s2 ,k1 ,k2!5e2p i „s2 /~m2u21n2! 1 k2 /m2…f ~s1 ,s2 ,k1 ,k2!,

~Z4f !~s1 ,s2 ,k1 ,k2!5 f S s1 ,s21
1

m2
,k1 ,k22a2D .

Here,

Z1Z25e2p iu18Z2Z1 ,
~18!

Z3Z45e2p iu28Z4Z3 ,

where

u i85
aiu i1bi

miu i1ni
, i 51,2, ~19!

and otherwiseZiZj5ZjZi . One can check that theZi ’s commute with theUi ’s, i.e., UiZj

5ZjUi .

III. CONNECTIONS WITH COMPLEX STRUCTURES

In the previous section, connections on a projectiveA u
d-module satisfies the condition~4!

@¹i ,U j #52p id i j U j .
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A connection¹i is called a constant curvature connection if@¹i ,¹j #5 iF i j for constantsFi j . This
condition is satisfied if¹i is expressed as¹i5] i2 ( i /2) Fi j sj where] i is a derivative with respec
to si . Note that the condition~4! can be regarded as a compactification condition. This can be
by considering an operatorX̄i52¹i with which the condition is expressed as

U jX̄iU j
215X̄i12p id i j , ~20!

and this relation is comparable to a compactification with radiusRi , U jXiU j
215Xi12pd i j Ri .

We thus let

~X̄i f !~s1 ,s2 ,k1 ,k2!52p iAi1s1f ~s1 ,s2 ,k1 ,k2!12p iAi2s2f ~s1 ,s2 ,k1 ,k2!

2Ai3

] f ~s1 ,s2 ,k1 ,k2!

]s1
2Ai4

] f ~s1 ,s2 ,k1 ,k2!

]s2
,

whereAikPR are constants. If we denote the embedding maps asF inf[(xi j ) andFfin[(yi j ), then
Ui action is expressed as

~Ui f !~s1 ,s2 ,k1 ,k2!5e2p i (s1x3i1s2x4i1k1y3i1k2y4i ) f ~s11x1i ,s21x2i ,k11y1i ,k21y2i !.

The condition~20! is satisfied if

x1ix3i1x2ix4i1y1i y3i1y2i y4i50, ~21!

and

Aik5~F inf
21! ik . ~22!

The embedding maps~7!, ~8! satisfy the condition~21!, and the condition~22! gives

~Aik!5S 1

u11
n1

m1

0 0 0

0 0 1 0

0

1

u21
n2

m2

0 0

0 0 0 1

D .

Therefore the following operators specify a constant curvature connection of rightTu
4-module

EN,M :

¹152
2p is1

u11
n1

m1

,

¹25
]

]s1
,
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¹352
2p is2

u21
n2

m2

,

¹45
]

]s2
. ~23!

In general, a constant curvature connection can be obtained by adding some constants:¹i→¹i

1di ,i 51,...,4, wherediPR are constants.
A complex structure on the moduleEN,M can be introduced by fixing a]̄-connection,

¹̄15l11¹11l12¹21l13¹31l14¹4 ,

¹̄25l21¹11l22¹21l23¹31l24¹4 ,

wherel i j PC. Choosing an appropriate basis such that (l i j ) becomes

S t11 1 t12 0

t21 0 t22 1D 5S l12 l14

l22 l24
D 21S l11 l12 l13 l14

l21 l22 l23 l24
D ,

the (232) matrix (t21 t22

t11 t12), t i j PC represents the complex structure of theTu
4-module and 1–1

corresponds to the complex structure onTu
4 via the ]̄-derivative,d̄ i5( jl i j d j whered j is defined

by ~2!.16

Now we consider holomorphic vectors inTu
4-module. A vector QPEN,M is called

holomorphic16 if it satisfies

~¹̄i2ci !Q50, for i 51,2, ~24!

whereciPC are constants. The above holomorphic condition forf PEN,M now takes the form

S 2p i t11

u11
n1

m1

s11
2p i t12

u21
n2

m2

s21c1D f 5
] f

]s1
,

~25!

S 2p i t21

u11
n1

m1

s11
2p i t22

u21
n2

m2

s21c2D f 5
] f

]s2
.

In order for the two equations in~25! to be consistentt i j should satisfy

t12

u21
n2

m2

5
t21

u11
n1

m1

. ~26!

If ReV,0, Eq.~25! hasm13m2 linearly independent solutions, the so-called theta vectors16,17on
noncommutativeT4,

f (a1 ,a2)~s1 ,s2 ,k1 ,k2!5expF1

2
StVS1CtSGda1

k1 da2

k2 , ~27!

whereC5(c
c1), S5(s

s1), ciPC, siPR, kiPZmi
( i 51,2), and
2 2
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2p i t12

u21
n2

m2

2p i t21 2p i t22 D .
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u11
n1

m1
u21

n2

m2

IV. TENSOR PRODUCT

In this section we consider a tensor product of two bimodules. The tensor product
(C,Y)-bimoduleE and a (Y,D)-bimoduleE8 overY results in a (C,D)-bimoduleF for algebras
C,Y,D;

CEY^ YED8 5CFD ,

where the tensor product overY is obtained by identifyingey^ e8;e^ ye8 for yPY, ePE,e8
PE8. Note that in this identification,E behaves as a rightY-module andE8 behaves as a lef
Y-module. Thus, we will denoteEN,M as a rightTu

4-module andEK,L8 as a leftTu
4-module. Here,

we recall thatT
ũ

4
is Morita equivalent toTu

4 if u and ũ are related byũ5(Au1B)(Mu1N)21

where (M N
A B )PSO(4,4uZ), andT

ũ

4>EndT
u
4(E) for some finite projective moduleE. In this nota-

tion, a right moduleEN,M is identified with a left moduleEA,M8 . Let us calculate the tensor produ
EN,M ^ T

u
4EK,L8 which forms a vector spaceS(R3Zn1l 11m1k1

3Zn2l 21m2k2
) , when eachN,M ,K,L

is reducible into two blocks represented by the valuesN;(n1 ,n2), M;(m1 ,m2), K
;(k1 ,k2), L;( l 1 ,l 2).26 For f (s1 ,s2 ,m1 ,m2)PEN,M , and g(t1 ,t2 ,n1 ,n2)PEK,L8 where si ,t i

PR, m iPZmi
, n iPZl i

( i 51,2) the actions ofUiPTu
4 andZiPT

ũ

4
are given as follows.

The rightUi actions onEN,M are defined as

~U1f !~s1 ,s2 ,m1 ,m2!5 f S s11u11
n1

m1
,s2 ,m121,m2D ,

~U2f !~s1 ,s2 ,m1 ,m2!5e2p i (s11 n1m1 /m1) f ~s1 ,s2 ,m1 ,m2!,
~28!

~U3f !~s1 ,s2 ,m1 ,m2!5 f S s1 ,s21u21
n2

m2
,m1 ,m221D ,

~U4f !~s1 ,s2 ,m1 ,m2!5e2p i (s21 n2m2 /m2) f ~s1 ,s2 ,m1 ,m2!.

The left Ui actions onEK,L8 are defined as

~U1g!~ t1 ,t2 ,n1 ,n2!5gS t12u11
k1

l 1
,t2 ,n121,n2D ,

~U2g!~ t1 ,t2 ,n1 ,n2!5e2p i (t11 k1n1 / l 1)g~ t1 ,t2 ,n1 ,n2!,
~29!

~U3g!~ t1 ,t2 ,n1 ,n2!5gS t1 ,t22u21
k2

l 2
,n1 ,n221D ,

~U4g!~ t1 ,t2 ,n1 ,n2!5e2p i (t21 k2n2 / l 2)g~ t1 ,t2 ,n1 ,n2!.

The left Zi actions onEN,M are defined as
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~Z1f !~s1 ,s2 ,m1 ,m2!5e2p i „s1 /~m1u11n1! 1 m1 /m1…f ~s1 ,s2 ,m1 ,m2!,

~Z2f !~s1 ,s2 ,m1 ,m2!5 f S s11
1

m1
,s2 ,m12a1 ,m2D ,

~30!
~Z3f !~s1 ,s2 ,m1 ,m2!5e2p i „s2 /~m2u21n2! 1 m2 /m2…f ~s1 ,s2 ,m1 ,m2!,

~Z4f !~s1 ,s2 ,m1 ,m2!5 f S s1 ,s21
1

m2
,m1 ,m22a2D ,

whereaiPZ andaini2bimi51 for somebiPZ ( i 51,2).
Following Ref. 17, we define the tensor productf ^ g[hPEN,M ^ T

u
4EK,L8 as

h~r 1 ,r 2 , j 1 , j 2!5 (
q1PZ

(
q2PZ

f S ~n11m1u1!r 11
n11m1u1

m1
q12

l 1~n11m1u1!

m1~n1l 11m1k1!
j 1 ,~n21m2u2!r 2

1
n21m2u2

m2
q22

l 2~n21m2u2!

m2~n2l 21m2k2!
j 2 ,2q11a1 j 1 ,2q21a2 j 2D

3gS ~n11m1u1!r 12
k12 l 1u1

l 1
q11

k12 l 1u1

n1l 11m1k1
j 1 ,~n21m2u2!r 22

k22 l 2u2

l 2
q2

1
k22 l 2u2

n2l 21m2k2
j 2 ,q1 ,q2D , ~31!

for r iPR, j iPZ ( i 51,2). Then, one can check that

~Ui f ! ^ g; f ^ ~Ui !g,

~Zih!;~Zi f ! ^ g,

h~r i , j i1ni l i1miki !5h~r i , j i !,

for i 51,2. Notice that in the above calculationZi ’s act onh as left actions, sinceh is regarded
here as an element of a left moduleE8. So far, we have only defined the left actions ofZi on a
right moduleE. Thus, we define leftZi actions on a left moduleE8 as

~Z1g!5~U2g!,

~Z2g!5~U1g!,

~Z3g!5~U4g!,

~Z4g!5~U3g!,

whereUig are defined in~29!.
If EN,M is a right module expression of a (T

ũ

4
,Tu

4)-bimodule andEK,L8 is a left module

expression of a (Tu
4 ,Tu8

4 )-bimodule, then one can also show thath belongs toEAK1BL,NL1MK8 ( ũ)

where ũ5(Au1B)(Mu1N)21 and u5(Ku81D)(Lu81C)21 with CK2DL;1, AN2BM
;1, when eachA,B,M ,N,K,D,L,C is reducible into 2 blocks in the sense that we describ
earlier.

Let us consider the tensor product~31! between the two theta vectors,f PEN,M and g
PEK,L8 ,
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f (a1 ,a2)~s1 ,s2 ,m1 ,m2!5exp@ 1
2 StVS1CtS#da1

m1da2

m2,

~32!

g(b1 ,b2)~ t1 ,t2 ,n1 ,n2!5exp@ 1
2 TtV8T1C8tT#db1

n1db2

n2 ,

where C5(c2

c1), C85(
c

28

c18), S5(s2

s1), T5( t2

t1), ci ,ci8PC, si ,t iPR,m iPZmi
, n iPZl i

( i 51,2),

V5S 2pit21

u11
n1

m1

2p i t22

u21
n2

m2

2p i t11

u11
n1

m1

2p i t12

u21
n2

m2

D , and V85S 2p i t218

2u11
k1

l 1

2p i t228

2u21
k2

l 2

2p i t118 /

2u11
k1

l 1

2p i t128

2u21
k2

l 2

D .

The resulting function now takes the form

ha1 ,a2 ,b1 ,b2
~r 1 ,r 2 , j 1 , j 2!5 (

q1PZ
(

q2PZ
expS 1

2
ÃtVÃ1CtÃD da1 ,a2

2q11a1 j 1 ,2q21a2 j 2

3expS 1

2
Ã8tV8Ã81C8tÃ8D db1 ,b2

q1 ,q2 ,

wherer iPR, j iPZni l i1miki
( i 51,2) and

Ã5S ~n11m1u1!r 11
n11m1u1

m1
q12

l 1~n11m1u1!

m1~n1l 11m1k1!
j 1

~n21m2u2!r 21
n21m2u2

m2
q22

l 2~n21m2u2!

m2~n2l 21m2k2!
j 2

D ,

Ã85S ~n11m1u1!r 12
k12 l 1u1

l 1
q11

k12 l 1u1

n1l 11m1k1
j 1

~n21m2u2!r 22
k22 l 2u2

l 2
q21

k22 l 2u2

n2l 21m2k2
j 2

D .

From the delta function relations, we rewriteqi as qi5pi1uimi l i /v i , uiPZ ( i 51,2) for some
integerspi wherev i5g.c.d.(mi ,l i). Then,h can be written as

ha1 ,a2 ,b1 ,b2
~r 1 ,r 2 , j 1 , j 2!5 (

u1PZ
(

u2PZ
expS 1

2
~A1U! tV~A1U!1CtU1CtA

1
1

2
~A81U8! tV8~A81U8!1C8tU81C8tA8D ,

where

A5S ~n11m1u1!r 11
n11m1u1

m1
p12

l 1~n11m1u1!

m1~n1l 11m1k1!
j 1

~n21m2u2!r 21
n21m2u2

m2
p22

l 2~n21m2u2!

m2~n2l 21m2k2!
j 2

D ,
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A85S ~n11m1u1!r 12
k12 l 1u1

l 1
p11

k12 l 1u1

n1l 11m1k1
j 1

~n21m2u2!r 22
k22 l 2u2

l 2
p21

k22 l 2u2

n2l 21m2k2
j 2

D ,

U5S ~n11m1u1!l 1

v1
u1

~n21m2u2!l 2

v2
u2

D , U85S 2
~k12 l 1u1!m1

v1
u1

2
~k22 l 2u2!m2

v2
u2

D .

This can be decomposed into two parts, including the classical theta function,

h5q~T,Z!j~r 1 ,r 2 , j 1 , j 2!. ~33!

Here, the classical theta functionq is given by

q~T,Z!5 (
u1 ,u2PZ

exp~p iU tTU12p iZ tU !,

where

U5S u1

u2
D , T5S B1O11B11B18O118 B18 B1O12B21B18O128 B28

B2O21B11B28O218 B18 B2O22B21B28O228 B28
D ,

Z5S B1O11A11B1O12A21B18O118 A181B18O128 A28

B2O21A11B2O22A21B28O218 A181B28O228 A28
D 1

1

2p i S c1B11c18B18

c2B21c28B28
D ,

with

O5
1

2p i
V, O85

1

2p i
V8, B5S B1

B2
D5S ~n11m1u1!l 1

v1

~n21m2u2!l 2

v2

D ,

B85S B18

B28
D 5S 2

~k12 l 1u1!m1

v1

2
~k22 l 2u2!m2

v2

D ,

and functionj is given by

j~r 1 ,r 2 , j 1 , j 2!5exp~ 1
2A tVA1 1

2 A8tV8A81CtA1C8tA8!.

Requiring thatEN,M andEK,L8 have the same complex structure for consistency of the te
product, i.e., (t i j )5(t i j8 ), and the consistency condition~26! the resulting functionh becomes

ha1 ,a2 ,b1 ,b2
~r 1 ,r 2 , j 1 , j 2!5 (

g1 ,g2

ca1 ,a2 ,b1 ,b2

g1 ,g2 wg1 ,g2
~r 1 ,r 2 , j 1 , j 2!. ~34!

Here, the functionwg1 ,g2
is given by
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wg1 ,g2
~r 1 ,r 2 , j 1 , j 2!5exp„p iRtÕR1~C1C8! tR̃…dg1

j 1 dg2

j 2 ,

with

R5S r 1

r 2
D , Õ5S t11~n11m1u1!~n1l 11m1k1!

~k12 l 1u1!

t12~n11m1u1!~n2l 21m2k2!

~k22 l 2u2!

t21~n21m2u2!~n1l 11m1k1!

~k12 l 1u1!

t22~n21m2u2!~n2l 21m2k2!

~k22 l 2u2!

D ,

R̃5S ~n11m1u1!r 1

~n21m2u2!r 2
D ,

and the constantsca1 ,a2 ,b1 ,b2

g1 ,g2 are given by

ca1 ,a2 ,b1 ,b2

g1 ,g2 5q~J,L!eK,

where

K5p iQ̃ tP̃1CtM̃1C8tL̃,

with

Q̃5S t11p11t12p22
t11l 1 j 1

n1l 11m1k1
2

t12l 2 j 2

n2l 21m2k2

t21p11t22p22
t21l 1 j 1

n1l 11m1k1
2

t22l 2 j 2

n2l 21m2k2

D , P̃5S n1l 11m1k1

l 1m1
p12

j 1

m1

n2l 21m2k2

l 2m2
p22

j 2

m2

D ,

M̃5S n11m1u1

m1
p12

l 1~n11m1u1!

m1~n1l 11m1k1!
j 1

n21m2u2

m2
p22

l 2~n21m2u2!

m2~n2l 21m2k2!
j 2

D , L̃5S 2
k12 l 1u1

l 1
q11

k12 l 1u1

n1l 11m1k1
j 1

2
k22 l 2u2

l 2
q21

k22 l 2u2

n2l 21m2k2
j 2

D ,

and

q~J,L!5 (
u1 ,u2PZ

exp~p iU tJU12p iL tU !,

with

U5S u1

u2
D , J5S t11~n1l 11m1k1!l 1m1

v1
2

t12~n1l 11m1k1!l 2m2

v1v2

t21~n2l 21m2k2!l 1m1

v1v2

t22~n2l 21m2k2!l 2m2

v2
2

D ,
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L5S t11

v1
„~ l 1n11m1k1!p12 l 1 j 1…1

t12

v1
~ l 1n11m1k1!S p22

l 2 j 2

l 2n21m2k2
D

t21

v2
~ l 2n21m2k2!S p12

l 1 j 1

l 1n11m1k1
D1

t22

v2
„~ l 2n21m2k2!p22 l 2 j 2…

D
1

1

2p i S c1B11c18B18

c2B21c28B28
D ,

whereci ,ci8 ,Bi ,Bi8 are the same as given before.
Notice that the functionwg1 ,g2

(r 1 ,r 2 , j 1 , j 2) is a theta vector~32! and belongs to

EAK1BL,NL1MK8 ( ũ) with ũ5 (Au1B)/(Mu1N) as we expected.

V. DISCUSSION

In this paper, we first construct a module on noncommutativeT4 and its dual. Then we define
the complex structure on this module and construct the theta vector which is a solution
holomorphic connection. We then consider the tensor product of the theta vectors satisfyi
consistency requirement.

Here, we want to notice what has not been apparent in the noncommutativeT2 case.17 When
we require the holomorphic condition~24!, the symmetry appears not in the complex struct
itself but in theV-matrix which appears in the theta vector~27!, i.e., V125V21 instead oft12

5t21 in the commutative 4-torus case. We consider that this difference comes from nonco
tativity.

As in the noncommutativeT2 case, the tensor products of modules on the noncommuta
4-torus with complex structures become very restrictive in order to satisfy the consistency re
ment. We consider this consistency requirement as another aspect of noncommutativity co
with the commutative case in which there is no restriction.

So far, theta functions on noncommutative tori have not been utilized in the physics lite
except for the integral torus case.22–24 With the theta functions on noncommutative tori witho
any restriction, one can hope to explore the physical states on noncommutative tori in
general cases.
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Import of a set of solutions of the homogeneous Bloch
equation

M. Kobayashia)

Physics Department, Gifu University, Yanagido, Gifu 501-1193, Japan

~Received 11 April 2003; accepted 19 September 2003!

We show for a class of time-varying magnetic fields that a generalized solution of
precession is decomposed by two ways into two solutions of the homogeneous
Bloch equation, thus having four solutions of which three are independent and form
the fundamental systems. These solutions are found by solving the Riccati equation
to which the homogeneous Bloch equation reduces. A brief discussion of the mag-
nectic field class characteristics and an illustrative exmaple are given. ©2004
American Institute of Physics.@DOI: 10.1063/1.1629136#

I. INTRODUCTION

Recently we succeeded in finding a solution of the inhomogeneous Bloch equation.1 This was
completed by giving the fundamental system in terms of a set of the three independent so
of the homogeneous Bloch equation. These three solutions were found by solving the R
equation to which the homogeneous Bloch equation reduces.

The purpose of this paper is to clarify the import of a set of solutions of the homgen
Bloch equation. Of immediate utility to us are the solvable cases of the Riccati equation. Eq
the Riccati equation of Abel’s type2 to the Riccati equation above we can find the fourth solut
of it. By this finding we show that a generalized solution of precession is decomposed b
ways into two solutions of the homogeneous Bloch equation, thus having four solutions of
three are independent and form the fundamental systems. Two sets of the two decompose
tions are related to each other through the formula to find a general solution when two indep
special solutions of the Riccati equation are known. The same arguments hold for the R
equation of Chini’s type.3 In this soluble case the real parameterC is contained in the solutions to
form the fundamental system. By setting the parameter on the special value all the so
reduce to those of the Riccati equation of Abel’s type.

Although we cannot solve the Riccati equation in general, we can do for a class of
varying magnetic fields. This class is distinguished by requiring a nonlinear relation betwee
of the magnetic field components and the other two components and their derivatives. T
striction seems to arise in the solvable cases of the Riccati equation.

In Secs. II and III we solve the Riccati equation using the Riccati equation of Abel’s type
Chini’s type, respectively. A brief discussion of the magnetic field class characteristics a
illustrative example of precession are given in Sec. IV. The final section is devoted to our
clusions.

II. THE RICCATI EQUATION OF ABEL’S TYPE

The Bloch equation for magnetization with infininite relaxation times is a homogen
system of three first-order linear differential equations given by

MẆ 52g ~BW 3MW ! , ~1!

a!Electronic mail: masanori@cc.gifu-u.ac.jp
4750022-2488/2004/45(1)/475/11/$22.00 © 2004 American Institute of Physics

                                                                                                                

http://dx.doi.org/10.1063/1.1629136


r
e

om Eq.

476 J. Math. Phys., Vol. 45, No. 1, January 2004 M. Kobayashi

                    
where a dot means differentiation with respect to time. HereMW andBW are the magnetization vecto
and the applied magnetic field, respectively, andg is the constant gyromagnetic ratio in som
substance. Since the magnitude of the magnetization vector is constant in time, as is clear fr
~1!, the normalized magnetization vector obeys the Bloch equation,

mẆ 52g ~BW 3mW ! , ~2!

with

mW 5
MW

uMW u
. ~3!

Introducing the two complex variables,j andh, given by

m11 i m25j~12m3! ~4!

and

m12 i m25
1

h
~m321! , ~5!

we derive the following ordinary differential equation forj ~andh! from the Bloch equation~2!:

j̇5 1
2 g~B21 i B1!j22 igB3 j1 1

2 g~B22 iB1! . ~6!

This is a form of the general Riccati equation which can be cast in the form

j̇5 i ẋ e2 icj22 i ẋ3 j2 i ẋ eic . ~7!

Herex andx3 are defined by

x5
1

2
gE

t0

t

B0~t! dt ~8!

and

x35gE
t0

t

B3~t! dt , ~9!

with

B26 iB156 iB0 e7 ic ~10!

and

B05AB1
21B2

2. ~11!

Also,

c5tan21S B2

B1
D . ~12!

The Riccati equation of Abel’s type is of the form
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u̇5
ḟ

g
u22

ġ

f
, ~13!

and the solution is given by2

u52
g

f
1

1

f 2 FC12E
t0

t ḟ ~t!

g~t! f 2~t!
dtG21

, ~14!

whereC1 is a constant of integration.
The Riccati equation~7! has the form

u̇5ẋ e2 i (c1x3)u21ẋ ei (c1x3) , ~15!

and an equation of this form results from the substitution

j52 iu e2 ix3 . ~16!

Equating Eq.~15! to Eq. ~13!, we find

ẋ e2 i (c1x3)5
ḟ

g
~17!

and

ẋ ei (c1x3)52
ġ

f
, ~18!

which reduce to two second-order linear differential equations

f̈ 2F S ẍ

ẋ D2 i ~ ċ1ẋ3!G ḟ 1~ ẋ !2f 50 ~19!

and

g̈2F S ẍ

ẋ D1 i ~ ċ1ẋ3!G ġ1~ ẋ !2g50 . ~20!

Notice that the linearized Riccati equation has the form@Eq. ~20! in Ref. 4#

ü2F S ẍ

ẋ D2 i ~ ċ1ẋ3!G u̇1~ ẋ !2u50 , ~21!

where we have substitutedj given by

j5 i
1

ẋ S u̇

uDeic , ~22!

into Eq. ~7!. Equation~21! can be solved4 under the restriction@Eq. ~46! in Ref. 4#

ċ1ẋ35Cẋ , ~23!

with

C562 . ~24!
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This restriction was imposed to eliminate unwanted derivative differential equations arising
differentiating the original coupled differential equations.

We immediately find two independent solutions of the second-order linear differential e
tion for both f andg by using the solutions obtained by solving Eq.~21!. @See Eqs.~57! and~58!
in Ref. 4.# A specific combination is required forg in order to satisfy Eqs.~17! and ~18! when
choosing one of two independent solutions of Eq.~19! as f . We thus find two sets of the solution
for f andg such that

S f
gD5S cos~&x!e2 ix

2@ i 1& tan~&x!#cos~&x!eix D ~25!

and

S f
gD5S sin~&x!e2 ix

2@ i 2& cot~&x!#sin~&x!eix D , ~26!

where we have chosenC as

C52 . ~27!

Substituting Eqs.~25! and ~26! back into Eq.~14! and arranging them, we arrive at tw
independent special solutions of Eq.~7!,

j35eicF12 i&
11tan~&x!

12tan~&x!
G ~28!

and

j45eicF11 i&
12tan~&x!

11tan~&x!
G , ~29!

where we have used the relationship~16! andC1 has been chosen as

C11
1

&
tan~&x0!5

1

&
~30!

and

C12
1

&
cot~&x0!5

1

&
, ~31!

respectively, with

x05x~ t0! . ~32!

Let ja (a5 i , j ) be two special solutions of Eq.~7!, then

j̇2 j̇ i

j2j i
2

j̇2 j̇ j

j2j j
5 i ẋ e2 ic~j i2j j ! . ~33!

Thus, we find that a general solution of the differential equation~33! is
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j2j i

j2j j
5C2 expH i E

t0

t

ẋ~t!e2 ic(t)@j i~t!2j j~t!# dtJ , ~34!

whereC2 is a constant of integration.
Substituting the two independent special solutions~28! and ~29! into Eq. ~34! and choosing

C2 ,

C252
11tan~&x0!

12tan~&x0!
~35!

and

C25
11tan~&x0!

12tan~&x0!
, ~36!

we find the other two special solutions

j15eic@12 i& tan~&x!# ~37!

and

j25eic@11 i& cot~&x!# , ~38!

respectively. These two special solutions~37! and ~38! are exactly the same ones@Eqs.~61! and
~62! in Ref. 4# as were derived from the linearized Riccati equation~21!.4 Inversely, we obtain the
special solutions~28! and~29! by substituting Eqs.~37! and~38! back into Eq.~34! and choosing
C2 as

C25tan~&x0! ~39!

and

C252tan~&x0! , ~40!

respectively. We thus find the relationship between a couple of the special solutions (j1 , j2) and
(j3 , j4).

Notice that the special solutionsj i ( i 51, 2) were already found as stated above andj3 is
contained in the fundamental system1 @Eq. ~52! in Ref. 1# which we have found as a special cas
Thus, the special solution ofj4 is unknown so far.

As mentioned in the beginning of this section, the homogeneous Bloch equation is a sys
the three first-order linear differential equations, thus having three independent magnet
vectors. While we have found four special solutionsj i ( i 51,2,3,4), each of which has the one
one correspondence to the magnetization vector. This fact strongly suggests that the four
tization vectors are not independent, but a constraint exists. To see this we express the m
zation vectors,mW ( i ) ( i 51,2,3,4), in terms ofj i ( i 51,2,3,4),

m1
( i )5

j i1j i*

11j i j i*
, ~41!

m2
( i )52 i

j i2j i*

11j i j i*
, ~42!

and
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m3
( i )52

12j i j i*

11j i j i*
, ~43!

where we have used the definition ofj, Eq. ~4!.
Though the explicit forms of the magnetization vectors are easily obtained by using Eqs~41!,

~42!, and~43!, we do not list them in this section, because those are contained in the correspo
expressions in Sec. III as the parameterC being the specific value, i.e.,C52. Instead we display
the relation among the magnetization vectors,

mW (1)1mW (2)5mW (3)1mW (4)5&mW (5) , ~44!

where

mW (5)5S 1

&
cosc,

1

&
sinc,

1

&
D T

. ~45!

It is worth noticing that the fifth magnetization vector is a generalized solution of the clas
precession. We thus find the correct number of magnetization vectors.

The fundamental matrix is defined by

~K ! i j 5Ki j 5mi
( j ) ~ i , j 51,2,3! . ~46!

The equivalent fundamental systems appear in a set of magnetization vectors by denoj :
j 52,3,4;3,4,1;4,1,2. Thus we have four fundamental systems. In each of the fundament
tems, the determinant of the fundamental matrix turns out, up to a sign, to be

detK5
1

&
. ~47!

This means that the fundamental matrices are nonsingular and then three of the four solut
the homogeneous Bloch equation are linearly independent.

The homogeneous Bloch equation~2! can be written in a matrix form

K̇5A K , ~48!

whereK is the fundamental matrix defined by Eq.~46! and a matrixA is given by

A5S 0 gB3 2gB2

2gB3 0 gB1

gB2 2gB1 0
D , ~49!

which is antisymmetric and singular. Moreover, we find

detK̇5tr A detK50 , ~50!

and solving Eq.~50! for detK we have

detK5detK~ t0! . ~51!

The inhomogeneous Bloch equation has the form5

mẆ 5A mW 1bW . ~52!
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The fundamental system of solutions of the homogeneous system is a set of three linearl
pendent magnetization vectorsmW ( j ) . Using the fundamental matrix defined by Eq.~46!, the unique
solution to the inhomogeneous system~52! is

mW 5K K21~ t0! mW ~ t0!1K E
t0

t

K21~t!bW ~t! dt . ~53!

III. THE RICCATI EQUATION OF CHINI’S TYPE

The Riccati equation of Chini’s type is in the form

u̇5
1

~ag1b!2

ġ

f
u21

ḟ

f
u1 f ġ50 , ~54!

wherea andb are arbitrary constants.
The Riccati equation~7! is rewritten in the form

u̇5ẋu22 i ~ ċ1ẋ3! u1ẋ , ~55!

which results from the substitution of

j52 iu eic ~56!

into Eq. ~7!. Equating Eq.~55! to Eq. ~54!, we find

ẋ5
1

~ag1b!2

ġ

f
5 f ġ ~57!

and

2 i ~ ċ1x3!5
ḟ

f
. ~58!

It follows from Eq. ~57! that

f 5
1

ag1b
~59!

and

ẋ5
1

ag1b
ġ . ~60!

Solving the differential equation~60!, we obtain

ag1b5A eax , ~61!

whereA is a constant of integration. Thus we find

ḟ 52aẋ f . ~62!

By settinga5 iC (C, real number!, Eq. ~58! yields

ċ1ẋ35C ẋ . ~63!
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This produces a separation of the variables,u andx, and leads to

u̇5ẋ ~u22 iC u11! , ~64!

where we have used Eq.~55!.
Solving Eq.~64!, we find two solutions@Eqs.~42! and ~43! in Ref. 1#

j15eic @a2 ib tan~bx!# ~65!

and

j25eic @a1 ib cot~bx!# , ~66!

wherea andb are given by

a5 1
2 C ~67!

and

b5A11a2 . ~68!

The same procedure to find another couple of special solutions developed in Sec. II is
cable to this case. We thus find

j35eicFa2 ib
11tan~bx!

12tan~bx!G ~69!

and

j45eicFa1 ib
12tan~bx!

11tan~bx!G , ~70!

where use has been made of the relation~34! andC2 has been chosen as

C25tan~bx0! ~71!

and

C252tan~bx0! , ~72!

respectively. Note that Eq.~69! corresponds to Eq.~52! in Ref. 1. Inversely, substituting Eqs.~69!
and ~70! into Eq. ~34! and choosingC2 as

C252
11tan~bx0!

12tan~bx0!
~73!

and

C25
11tan~bx0!

12tan~bx0!
, ~74!

respectively, we find Eqs.~65! and ~66!. Thus a couple of the special solutions (j1 , j2) and
(j3 , j4) are transferable through the relationship in~34!.

Using Eqs.~41!, ~42!, and~43!, we find the explicit forms of the magnetization vectorsmW ( i )

( i 51,2,3,4) corresponding to the special solutions of the Riccati equation~55! as follows:
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mW (1),

m1
(1)5

1

b2 $a@11cos~2bx!#cosc1b sin~2bx!sinc% , ~75!

m2
(1)5

1

b2 $a@11cos~2bx!#sinc2b sin~2bx!cosc% , ~76!

m3
(1)52

1

b2 ~12a2!
1

2
@11cos~2bx!#1

1

2
@12cos~2bx!# , ~77!

mW (2),

m1
(2)5

1

b2 $a@12cos~2bx!#cosc2b sin~2bx!sinc% , ~78!

m2
(2)5

1

b2 $a@12cos~2bx!#sinc1b sin~2bx!cosc% , ~79!

m3
(2)52

1

b2 ~12a2!
1

2
@12cos~2bx!#1

1

2
@11cos~2bx!# , ~80!

mW (3),

m1
(3)5

1

b2 $a@12sin~2bx!#cosc1b cos~2bx!sinc% , ~81!

m2
(3)5

1

b2 $a@12sin~2bx!#sinc2b cos~2bx!cosc% , ~82!

m3
(3)52

1

b2 ~12a2!
1

2
@12sin~2bx!#1

1

2
@11sin~2bx!# , ~83!

mW (4),

m1
(4)5

1

b2 $a@11sin~2bx!#cosc2b cos~2bx!sinc% , ~84!

m2
(4)5

1

b2 $a@11sin~2bx!#sinc1b cos~2bx!cosc% , ~85!

m3
(4)52

1

b2 ~12a2!
1

2
@11sin~2bx!#1

1

2
@12sin~2bx!# . ~86!

A key relationship appears to be

mW (1)1mW (2)5mW (3)1mW (4)5
2a

b
mW (5) , ~87!

where
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mW (5)5S 1

b
cosc,

1

b
sinc,

a

b D T

. ~88!

The fifth magnetization vector~a special solution of the homogeneous Bloch equation! is a gen-
eralized solution of the classical precession, as will be illustrated in Sec. IV. Thus the relatio~87!
tells us that a generalized solution of precession can be decomposed by two ways into two
solutions of the homgeneous Bloch equation and then three of the four special solutionsmW ( j ) ( j
51,2,3,4) are independent and form the fundamental systems. Whole, the special solutions
homogeneous Bloch equation, reduce to those obtained in the preceding section by seC
52, as was stated.

The fundamental systems are obtained by using a set of three special solutions of the
geneous Bloch equation if and only if the fundamental matrices are nonsingular.

Using the definition of fundamental matrix~46!, we evaluate the determinant of the fund
mental matrix as

detK5
2a

b3 5CS 2

A41C2D 3

, ~89!

as is expected from Eq.~51!. This means that the fundamental matrix is nonsingular and the s
three special solutions, denoting byj 51,2,3, consists of the three linearly independent ones.
also find the other fundamental systemsj 52,3,4; 3,4,1; 4,1,2. The determinant of each fundam
tal matrix becomes the same as Eq.~89! up to a sign.

Using the fundamental matrix, we can find the unique solution to the inhomogeneous s
~52!. @See Eq.~53!.#

IV. THE MAGNETIC FIELD CLASS CHARACTERISTICS AND AN ILLUSTRATIVE
EXAMPLE

Using Eq.~12!, the constraint~63! yields

gB35
Ḃ1B22B1Ḃ2

B1
21B2

2 1
1

2
CgAB1

21B2
2 . ~90!

The third component of magnetic field is expressed by the other two independent time-v
magnetic field components.

To discuss the characteristics of the magnetic field class we give some insight to the m
of the restriction~90! which must be satisfied by the applied magnetic field in order to obtain
solution which is devloped in this paper.

The simplest practical discussion would center on the behavior of the third component
the first two components are harmonically varying,

BW ~ t !5~B0~ t !cosvt, B0~ t !sinvt, B3~ t !! , ~91!

with v being a constant angular velocity~harmonic frequency!. The restriction~90! leads to the
relation

B3~ t !52
v

g
1

1

2
CB0~ t ! . ~92!

This immediately suggests the effect of the variation of the constantC as a controlling influence
on the third component of the applied magnetic field; the effects of variation harmonic frequ
gyromagnetic ratio and the magnitude of the harmonic field thus being easily interpreted.

The fifth magnetization vector~88! in this case turns out to be
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mW (5)5S 1

b
cosvt,

1

b
sinvt,

a

b D T

, ~93!

where we have used Eq.~12!. This is the well-known solution of classical precession.

V. CONCLUSIONS

We clarify the import of a set of the special solutions of the Riccati equation as follows
A set of special solutions has been obtained for a class of time-varying magnetic fiel

solving the Riccati equation to which the homogeneous Bloch equation reduces. The finding
fourth special solution allows us to interpret a set of the four special solutions as

mW (1)1mW (2)5mW (3)1mW (4)5
2a

b
mW (5) , ~94!

i.e., a generalized solution of the classical precession is decomposed by two ways into t
special solutions of the Riccati equation~7!, thus having the four special solutions of which thr
special solutions are independent and form the fundamental system. Thus we have found
tion of the inhomogeneous Bloch equation for a class of time-varying magnetic fields.

Notice that a couple of the special solutions (j1 , j2) and (j3 , j4) are transferable to eac
other through the relationship~34!. This is the characteristics of the Riccati equation.

Also note that we have found four~eight when including the fifth special solution! fundamen-
tal systems which are equivalent.

In most of the soluble cases of the Riccati equation the restriction~63! would appear to be a
key of solvability. We have not yet succeeded in finding an unknown solution of the Ri
equation.
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Towards a general solution of the inhomogeneous Bloch
equation

M. Kobayashia)

Physics Department, Gifu University, Yanagido, Gifu 501-1193, Japan
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A general form of solution of the inhomogeneous Bloch equation is given in terms
of a solution of the homogeneous Bloch equation which is assumed to be known.
The fundamental system of the homogeneous Bloch equation is derived from the
method inherent to the Riccati equation to which the homogeneous Bloch equation
reduces. The fundamental matrix is an orthogonal matrix. ©2004 American Insti-
tute of Physics.@DOI: 10.1063/1.1633023#

I. INTRODUCTION

Very recently, an interesting solution was found to the inhomogeneous Bloch equation1 The
fundamental matrix in terms of a set of three independent solutions of the homogeneous
equation became an orthogonal matrix. A simple question arose whether or not a funda
matrix can always be chosen to be an orthogonal matrix.

The aim of this article is to show that a general form of solution of the inhomogeneous B
equation is obtained and the fundamental matrix is an orthogonal matrix. The key to demo
ing this is to make use of well-known properties of the Riccati equation.

The homogeneous Bloch equation reduces to a form of Riccati equation by introducin
complex variables. The same Riccati equation is satisfied by each of these variables. If a s
of the homogeneous Bloch equation is assumed to be known, then another solution m
automatically found. Whenever two special solutions are found, further special solutions c
derived from using a method inherent to the Riccati equation.1–3 This leads to expressions for a s
of three independent special solutions without solving the Riccati equation explicitly. We
show that the resulting normalized magnetization vectors obey the homogeneous Bloch eq
by using the differential equations which the real and imaginary parts of an assumed solutio
satisfy. Thus we arrive at a general form of solution of the inhomogeneous Bloch equati
finding the fundamental system of the homogeneous Bloch equation. The fundamental
turns out to be orthogonal.

In Sec. II we give a set of special solutions of the homogeneous Bloch equation in terms
assumed known solution. In Sec. III the fundamental system of the homogeneous Bloch eq
is given, thereby providing a general form of solution of the inhomogeneous Bloch equation
differential equation which must be solved in order to obtain a general solution of the hom
neous Bloch equation is given in Sec. IV. The final section is devoted to conclusions.

II. A SET OF SPECIAL SOLUTIONS OF THE RICCATI EQUATION

The Bloch equation for magnetization with infinite relaxation times is a homogeneous sy
of three first-order linear differential equations given by

MẆ 52g ~BW 3MW ! , ~1!

a!Electronic mail: masanori@cc.gifu-u.ac.jp
4860022-2488/2004/45(1)/486/9/$22.00 © 2004 American Institute of Physics
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where an overdot means differentiation with respect to time. HereMW andBW are the magnetization
vector and the time-dependent applied magnetic field, respectively. Alsog is the constant gyro-
magnetic ratio in some substance. Since the magnitude of the magnetization vector is prese
is clear from Eq.~1!, the normalized magnetization vector obeys the Bloch equation

mẆ 52g ~BW 3mW ! , ~2!

with

mW 5
MW

uMW u
. ~3!

Introducing the two complex variablesj andh given by

m11 i m25j~12m3! ~4!

and

m12 i m25
1

h
~m321! , ~5!

we can derive the following ordinary differential equation for bothj and h from the Bloch
equation~2!:

j̇5 i ẋe2 icj22 i ẋ3j2 i ẋeic , ~6!

wherex andx3 are defined by

x5
1

2
gE

t0

t

B0~t! dt ~7!

and

x35gE
t0

t

B3~t! dt , ~8!

with

B26 iB156 iB0 e7 ic , ~9!

and

B05AB1
21B2

2. ~10!

Also,

c5cos21S B1

B0
D5sin21S B2

B0
D5tan21S B2

B1
D . ~11!

The Riccati equation~6! can be cast in the form

u̇5ẋu22 i ~ ċ1ẋ3!u1ẋ , ~12!

where the variableu is introduced by
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j52 ieicu . ~13!

Let u1 be a solution assumed to be known of the form

u15Reu11 i Im u15b11 ia1 , ~14!

then the Riccati equation~12! yields

ȧ152ẋb1~a12a! ~15!

and

ḃ1522ẋa1~a12a!1ẋS 11
1

l D , ~16!

where the variablesa andl are defined by

a5
ċ1ẋ3

2ẋ
~17!

and

1

l
5u1u1* 5a1

21b1
2 . ~18!

By differentiating Eq.~18! with respect to time together with Eqs.~15! and ~16!, we find

l̇522ẋb1l~l11! . ~19!

Since the variablesj and h satisfy the relationship;j* h521, a second special solution i
immediately obtained from

u252
1

u1*
52lu1 . ~20!

By using Eq.~19!, we can directly show thatu2 is a solution of the Riccati equation~12! whenu1

is a solution.
Another solution of the Riccati equation, when two independent special solutions are kn

is of the form

u2u1

u2u2
5C2 expH E

t0

t

ẋ~t!@u1~t!2u2~t!# dtJ , ~21!

whereC2 is a constant of integration. An appropriate choice of the integration constant lead
third solution in the form

u32u1

u32u2
5

1

Al
eix1 , ~22!

wherex1 is given by

x15E
t0

t

ẋ~t!a1~t!@11l~t!#dt , ~23!

namely,
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ẋ15ẋa1~11l! . ~24!

Here use has been made of the relationship

ẋ~u12u2!5 i ẋa1~11l!2
1

2

l̇

l
. ~25!

We thus find

u35l1u1 , ~26!

where

l15
11Aleix1

12
1

Al
eix1

. ~27!

Again a further solution of the Riccati equation when three independent special solutio
known is given by

u2u1

u2u2
5C3

u32u1

u32u2
, ~28!

whereC3 is a constant of integration. A fourth special solution is obtained by choosing

C352 i . ~29!

Thus we find a fourth special solution in the form

u45l2u1 , ~30!

where

l25
12 iAleix1

11 i
1

Al
eix1

. ~31!

Thus we find four independent special solutions of the Riccati equation~12!. Noticing that the
magnetization vectors derived from these four special solutions are not always independe
expect that three of them are independent and form a fundamental system.

III. THE FUNDAMENTAL SYSTEM OF THE HOMOGENEOUS BLOCH EQUATION

The special solutions of the Riccati equation~6! are found in terms ofui ( i 51,2,3,4), which
are given by Eqs.~14!, ~20!, ~26!, and~30!, such that

j i52 ieicui ~ i 51,2,3,4! . ~32!

The normalized magnetization vectors,mW ( i ) ( i 51,2,3,4), corresponding to the special solutio
~32! are obtained from the definition ofj, Eq. ~4!, and given by

m1
( i )5

j i1j i*

11j ij i*
, ~33!
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m2
( i )52 i

j i2j i*

11j ij i*
, ~34!

and

m3
( i )52

12j ij i*

11j ij i*
. ~35!

Writing out Eqs.~33!, ~34!, and~35!, we find the magnetization vectors as follows:

mW (1)52mW (2) ~36!

and

mW (1),

m1
(1)5~12l0!~a1 cosc1b1 sinc! , ~37!

m2
(1)5~12l0!~a1 sinc2b1 cosc! , ~38!

m3
(1)5l0 , ~39!

mW (3),

m1
(3)5Al@~2a1l0 cosx11b1 sinx1!cosc2~a1 sinx11b1l0 cosx1!sinc# , ~40!

m2
(3)5Al@~a1 sinx11b1l0 cosx1!cosc1~2a1l0 cosx11b1 sinx1!sinc# , ~41!

m3
(3)5

1

Al
~12l0!cosx1 , ~42!

and

mW (4),

m1
(4)5Al@2~a1l0 sinx11b1 cosx1!cosc1~a1 cosx12b1l0 sinx1!sinc# , ~43!

m2
(4)5Al@~2a1 cosx11b1l0 sinx1!cosc2~a1l0 sinx11b1 cosx1!sinc# , ~44!

m3
(4)5

1

Al
~12l0!sinx1 , ~45!

wherel0 is given by

l052

12
1

l

11
1

l

. ~46!

As is obvious from Eq.~36!, the magnetization vector corresponding to the second special sol
is not independent. Thus we find the fundamental system in terms ofmW ( i ) ( i 51,3,4) .

Differentiating the magnetization vectors~37!–~45! with respect to time and using the firs
order nonlinear differential equations~15!, ~16!, and ~19! together with the definitions~7!, ~8!,
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~11!, ~17!, ~24!, and~46!, we can show, after some tedious but straightforward manipulation,
the magnetization vectors~37!–~45! obey the homogeneous Bloch equation~2!. Note that using
Eq. ~19! we find

l̇052ẋb1~12l0! . ~47!

For later convenience, we replace from now onmW (3) andmW (4) by mW (2) andmW (3), respectively.
We thus define the fundamental matrixK by

~K ! i j 5Ki j 5mi
( j ) ~ i , j 51,2,3! . ~48!

The cofactors of each element of the fundamental matrix are given by

Ki j
C5Ki j ~ i , j 51,2,3! , ~49!

whereKi j
C is the cofactor ofKi j . This beautiful relationship is obtained after a straightforwa

manipulation using Eqs.~37!–~46! and the useful relation

~12l0!
1

l
2~11l0!50 . ~50!

Thus, we find that the determinant of the fundamental matrix is

detK5Ki1Ki1
C 5Ki2Ki2

C 5Ki3Ki3
C 51 , ~51!

where we assume summation over repeated indices. Here we have used the fact that the
tization vectors are normalized. The fundamental matrix is nonsingular and therefore the
special solutions of the homogeneous Bloch equation,mW ( i ) ( i 51,2,3), are linearly independen

The homogeneous Bloch equation~2! is written in the matrix form

d

dt
mW 5A mW , ~52!

where the normalized magnetization vectormW is a column vector andA is a 333 matrix given by

A5S 0 gB3 2gB2

2gB3 0 gB1

gB2 2gB1 0
D . ~53!

The homogeneous Bloch equation turns out to be

K̇ i j 5ṁi
( j )5Aikmk

( j )5AikKk j ~ i , j 51,2,3! , ~54!

where

~A! i j 5Ai j . ~55!

We thus find

K̇5AK . ~56!

Differentiating the determinant of the fundamental matrix with respect to time, we find

detK̇5K̇ i j Ki j
C5AikKk jKi j

C5Aikdki detK5tr A detK , ~57!
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where

KikK jk
C 5d i j detK . ~58!

The solution of the differential equation~57! is

detK5detK~ t0! expF E
t0

t

tr A~t! dtG , ~59!

with

tr A50 . ~60!

Thus we find that Eq.~51! is exactly the solution we want.
The inhomogeneous Bloch equation has the form

d

dt
mW 5AmW 1bW , ~61!

where the column vectorbW is given by

bi52
mi

T2
~ i 51,2! ~62!

and

b352
m32m0

T1
, ~63!

whereTi ( i 51,2) are the relaxation times andm0 is the equilibrium magnetization vector.
The fundamental system of the homogeneous Bloch equation is a set of three linearly

pendent magnetization vectors. Using the fundamental matrixK defined by Eq.~48!, the unique
solution to the inhomogeneous system~61! is given by4

mW 5KK21~ t0!mW ~ t0!1KE
t0

t

K21~t!bW ~t! dt , ~64!

where the inverse matrix ofK is defined by

K215
adjK

detK
, ~65!

with

~adjK ! i j 5K ji
C . ~66!

Using Eq.~48! we find

K215KT . ~67!

This means that the fundamental matrix is an orthogonal matrix with

detK51 . ~68!
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IV. THE SPECIAL SOLUTIONS OF THE RICCATI EQUATION

To find a general solution of the Riccati equation~12!, we have to solve the system of tw
first-order nonlinear differential equations~15! and ~16!. Combining them yields

b15
ȧ1

2ẋ~a12a!
~69!

and

ä1@2ẋ~a12a!#2ȧ1H S ẍ

ẋ D @2ẋ~a12a!#22ẋaS ȧ

aD J 23ẋ~ ȧ1!21$a1@2ẋ~a12a!#

2ẋ~11a1
2!%@2ẋ~a12a!#250 . ~70!

This highly nonlinear differential equation~70! seems very difficult to solve in general. This is th
main difficulty of solving the homogeneous Bloch equation.

Now we briefly review the soluble cases in this section. Two special solutions of the R
equation~12! have been found so far.1,3 These solutions were obtained by imposing constrain

~1! a5a5a1 , for the case in Ref. 3 and
~2! a5 (a1

21a2)/2a1 anda15Aa212@11tan2(bx)# , for the case in Ref. 1,

wherea andb are arbitrary real constants satisfying:

b22a251 . ~71!

The differential equation~16! for both cases reduces to

ḃ15ẋ~b21b1
2! , ~72!

where we have used the useful relationship

a1~a12a!511tan2~bx! . ~73!

We thus find the solution of Eq.~72! as

b15b tan~bx! . ~74!

Notice thatx1 defined by Eq.~23! can be evaluated and given by

x15tan21Fb tan~bx!

a G for the case~1! , ~75!

and

x15
&

b
lnH 1

A11b2
@a11& tan~bx!#J 2tan21Fa1 cot~bx!

b G for the case~2! . ~76!

V. CONCLUSIONS

We have found a general form of solution of the inhomogeneous Bloch equation by fin
the fundamental system in terms of a solution of the homogeneous Bloch equation wh
assumed to be known. In other words, whenever a special solution of the homogeneous
equation is known, a solution of the inhomogeneous Bloch equation is given by Eq.~64! for which
the fundamental matrix is of the form~48!.
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The reason why we have succeeded in finding a general form of the fundamental matrix
to the fact that the second special solution is obtained in the form of Eq.~20!. This is one of the
characteristics of the Riccati equation to which the homogeneous Bloch equation reduces.

The problem which remains is the biggest one: to solve the highly nonlinear differe
equation~70!.
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Confluence expansions of the generalized hypergeometric
function

Bengt Nagela)

Mathematical Physics, Department of Physics, Royal Institute of Technology,
SCFAB, S-10691 Stockholm, Sweden

~Received 24 February 2003; accepted 29 September 2003!

By confluencing a subset of upper and lower parameters in the generalized hyper-
geometric functionPFQ(a1, ,...,aP ,c1 ,...,cQ ;z) with the variablez one obtains a
lower-order hypergeometric function in the limit when the confluence parameters
go to infinity. It is shown that this function is the first term in a convergent expan-
sion in terms of functions of the same type with parameters increasing stepwise by
integersn and coefficients which are polynomials in the reciprocals of the conflu-
ence parameters. These polynomials have nonvanishing lowest degree terms whose
power increases withn. The expansion can hence be used to derive asymptotic
expansions for large but finite absolute values of the confluence parameters.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1629777#

I. INTRODUCTION AND SUMMARY

The hypergeometric function2F1(a,b,c;z) and its various limiting and special cases are
great importance in mathematical and theoretical physics. By confluence of one or two
upper parameters~sayb, anda andb, respectively! with the variablez one obtains the confluen
hypergeometric function1F1(a,c;z), or the function0F1(c;z), closely related to the Bessel func
tion. In some applications one may be interested in the behavior of the hypergeometric fu
when the confluence is not taken ‘‘all the way,’’ i.e., to obtain an asymptotic expansion in 1/b, or
1/a and 1/b, in the two cases mentioned. This has been done in two recent articles,1,2 where the
asymptotic expansions including second order have been derived and applied to a study of
aspects of the Coulomb excitation of atomic systems by passing charged particles.

In a previous article3 I showed that in the second of the cases mentioned above~the one
addressed in Ref. 1! the asymptotic expansion could be derived from a convergent expansi
the hypergeometric function in Bessel functions, with expansion coefficients which are poly
als in 1/a and 1/b; rearrangement of this convergent expansion would in principle give
asymptotic expansion to any order. In a similar way an asymptotic expansion corresponding
confluence of the parameterb can be derived; see the end of Sec. II below.

Here, I shall show that by an extension of the method in Ref. 3 one can derive a confl
expansion corresponding to confluence of a general subset of upper and lower parameter
generalized hypergeometric function defined by the series

PFQ~a1 ,...aP ,c1 ,...,cQ ;z!5 (
n50

`
~a1!n •••~aP!n

n! ~c1!n •••~cQ!n
zn, ~a!n5G~a1n!/G~a!. ~1!

ProvidedP<Q11 ~1! defines a function ofz and the parameters which is holomorphic for
complex values of the parameters, except nonpositive integerc parameters, and~at least! for uzu
,1 ~or arbitrary complexz if P<Q). If P.Q11 we must assume one of the upper parame
to be equal to a nonpositive integer, saya152m, to get a polynomial of degreem in z.

a!Electronic mail: nagel@theophys.kth.se
4950022-2488/2004/45(1)/495/14/$22.00 © 2004 American Institute of Physics
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With the view of confluencingp8 of the upper andq8 of the lower parameters, we putP
5p1p8, Q5q1q8, divide each of the upper and lower parameter sets into the two corresp
ing subsets@some subset~s! may be empty#, and introduce the notations

@a#5a1 ,...,ap , @b#5b1 ,...,bp8 , @c#5c1 ,...,cq , @d#5d1 ,...,dq8 ;

@a1n#5a11n,...,ap1n, p@a#5a1¯ap ; s@a#5a11•••1ap ; ~2!

f ~@a# !5 f ~a1!¯ f ~ap!, etc.

Confluencing theb andd parameters withz in each of the terms in the series~1!, we get, at least
formally, the confluence relation~all b andd parameters go to infinity!

limp1p8Fq1q8~@a#,@b#,@c#,@d#;p@d#z/p@b# !5pFq~@a#,@c#;z!. ~3!

We shall see that~3! gives the first term in a convergent series expansion of the follow
form:

p1p8Fq1q8~@a#,@b#,@c#,@d#;p@d#z/p@b# !

5 (
n50

`

~21!p811
n Fq8~2n,@b#,@d#;p@d#/p@b# !

~@a# !n

n! ~@c# !n
zn

pFq~@a1n#,@c1n#;z!.

~4!

Here, we assume, as always, that noc or d parameter is a nonpositive integer, so that in particu
p@d#Þ0; besides, we assumep@b#Þ0, buta andb parameters may take negative integer valu

Equation~4! is first derived formally by introducing in each term of the series expansion~1!
for upper and lower confluence parameters standard integral representations for the gamm
tions G(b1n) and the reciprocals 1/G(d1n), inverting order of summation and integration, a
expanding the integrand around the resulting multiple saddle point, assuming in this derivati
b and d parameters real, positive, and large. This gives a (p81q8)-dimensional mixed integra
representation for the hypergeometric polynomialp811Fq8(2n,...), which is useful in the study
of this function.

To establish validity of the expansion~4! inside some radius of convergence inz, and for
general complex parameters, we first show that it is a formal power series identity if we e
eachpFq function on the right-hand side in a power series and rearrange terms.~In particular, if
one of thea parameters is a nonpositive integer, we have a polynomial identity.! It then follows
from well-known theorems about series of holomorphic functions that if we get a common
zero radius of convergence inz for the series on both sides, equality holds inside this radius. T
turns out to be always possible, provided the general necessary conditionsP<Q11, p<q11 are
fulfilled. The asymptotic behavior asn→` of the functions pFq(@a1n#,@c1n#;z) and

p811Fq8(2n,@b#,@d#;p@d#/p@b#) is studied in the Appendix. It turns out that ifp<q the validity
of ~4! is given by the convergence radius of the left-hand side:up@d#z/p@b#u,1 if P5Q11, all
complexz if P<Q. Compare the end section of Appendix 1, combined with~A13! and~A15!. If
p5q11, the functionsq11Fq have the finite convergence radius 1, and a singularity forz51 with
a dominating asymptoticn behavior (12z)2n. As a consequence in this case the factors depe
ing on @a# and @c# in the terms on the right-hand side of~4! have essentially an asymptot
(z/@12z#)n behavior. This means that ifP<Q, i.e., q82p8>1, we have the conditionsuzu,1,
uz/(12z)u,1, cf. the comment after Eq.~A31!. In the caseP5Q11, i.e.,q85p8 we find from
~A25! and ~A26! the further conditionu12p@d#/p@b#uuz/(12z)u,1 if u12p@d#/p@b#u.1.

As a by-product of the results derived or quoted in the Appendix we get asymptotic estim
largen, of the behavior of the generalized hypergeometric polynomialspFq(2n,.;z), generalizing
among other things classical results for the Laguerre polynomials.
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The dependence on the confluence parameters is contained in the generalized hyperge
polynomial p811Fq8(2n,@b#,@d#;p@d#/p@b#)5F(2n), for short. It is easily seen thatF(0)
51, F(21)50, and that forn>2 the limiting value ofF(2n) as all parameters go to infinity i
(121)n50, so that~4! implies~3!. To get a polynomial in the reciprocals of all the parameters
can formF8(2n)5(@d#)n /p@d#n F(2n), which is seen to be a symmetric polynomial in th
reciprocals of theb parameters and the reciprocals of thed parameters, separately, of degre
p8(n21) and q8(n21). If p8Þq8 the largest of these two numbers gives the degree ofF8
(2n). The largest degree terms of this type are seen to come from the last and first terms
expansion ofF8(2n) and are (21)n@(n21)!#p8/p@b#n21 and2(n21)@(n21)!#q8/p@d#n21. If
p85q8, so that these two terms are of the same degree, the highest degree terms can be
to be of the following form:

~@d# !n

p@d#n F~2n!5•••@~n21!! #p8~p@b#/p@d#21!dS 1

p@d#
2

1

p@b# D
n21

2
1

p@d#n21e. ~5!

It could be remarked that the results forp8Þq8 given above can be obtained from~5! by letting
p@d# or p@b# go to infinity, in the last case also changing the exponentp8 to q8.

To derive from~4! an asymptotic expansion in the reciprocals of the confluence paramet
is of importance to verify that the lowest degree terms inF8(2n), or, which is the same, in
F(2n), have a degree which increases withn ~they turn out to be of degree@(n11)/2#, where
@•••# here stands for integer part! and to find expressions for these lowest degree terms. To do
directly from the series expression seems less trivial; we do it by a saddle-point estimat
parameters real, positive, and large—of the multiple integral representation ofF(2n) obtained in
the formal derivation of the expansion~4!. The result is different for even and oddn: ~we use the
notations@1/bm#5( i1/bi

m , m51,2 etc.!

F~22k!'
2kG~k11/2!

Ap
~s@1/b#2s@1/d# !k1••• , ~6a!

F~22k21!'2
2k11kG~k13/2!

Ap
~s@1/b#

2s@1/d# !k21F ~s@1/b#2s@1/d# !22
1

3
~s@1/b2#2s@1/d2# !G . ~6b!

These formulas agree with the special case treated in Ref. 3, except for the fact that ther
error in formula~5! in that paper: the factorG(2k11) should be replaced by2G(2k12). In the
derivation of~18! of Ref. 3 the correct form of~5! has been used.

In the second section the details of the derivations indicated above are carried throug
also give the explicit result of the asymptotic expansion in 1/b including third order of

2F1(a,b,c;z/b), the case studied in Ref. 2. As already mentioned, in the Appendix the asym
behavior or asymptotic bounds asn→` of the functions on the right-hand side of~4! are derived.

A final cautionary remark is that in view of the enormous amount of papers treating va
aspects of the hypergeometric function and its generalizations, dating back over two centu
is possible that expansions such as~4!, or at least special cases of it, have been derived earlier.
the usefulness of these expansions for asymptotic estimates it is also essential to know the
of the lowest order terms, as contained in the relations~6a! and ~6b!.

In a true asymptotic expansion in reciprocals of a lower confluence parameter eviden
each order all the ‘‘previous’’pFq(@a1n#...) will appear, because of the factorp@d#n/(@d#)n

difference betweenF8(2n) and F(2n). In an explicit computation it might be preferrable
attach this factor to thez-dependent part of the expansion terms.
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II. DERIVATION OF FORMULAS „4…–„6…

Let us first make a formal derivation of the expansion~4!, not caring about convergence o
conditions for inverting summation and integration. Start from the series expansion of the
hand side of~4!

F[p1p8Fq1q8~@a#,@b#,@c#,@d#;p@d#z/p@b# !5 (
n50

`
~@a# !n~@b# !np@d#n

n! ~@c# !n~@d# !np@b#n zn. ~7!

Here, we assume the confluence parametersb andd real and positive, sometimes even large a
going to infinity.

In the sum in~7! we introduce for the confluence Pochhammer symbols standard int
representations for the gamma function and the reciprocal of the gamma function4 and make a
variable changes5bx, t5dy, as follows:

~b!n5
1

G~b!
E

0

`

dse2ssb1n215
bb1n

G~b!
E

0

`

dxe2bxxb1n21, ~8!

1

~d!n
5

G~d!

2p i E2`

~01!
dtett2d2n5

G~d!

dd1n212p i E2`

~01!
dyedyy2d2n. ~9!

The integration path in~9! is from 2` below the real axis~whose negative part is a branch cut f
nonintegerd! around zero and back to2` above the real axis, with the argument of the integrat
variable zero on the positive real axis.

Introducing ~8! and ~9! into ~7! and inverting order of integration and summation, we g
using the notations introduced in~2! and consideringx andy asp8- andq8-dimensional vectors,

so that, e.g.,bx5( i 51
p8 bixi , dx5dx1¯dxp8 etc.

F5
p@bb#G~@d# !

G~@b# !p@dd21#

1

~2p i !q8 E0

`

•E
0

`

dxE
2`

~01!
•E

2`

~0!1

dye2bx1dy

3p@xb21#p@y2d#(
~@a# !n

n! ~@c# !n
S p@x#

p@y#
zD n

. ~10!

Here, the sum under the integrations gives, withX5p@x#, etc.,pFq(@a#,@c#;Xz/Y). As we shall
see, thea andc parameters play a sort of dummy role in the~formal! power series identity~4!.

For large positive values of theb and d parameters the dominant factor in the multip
integrand can be written exp@2(bi f(xi)1(dkf(yk)#, where the functionf (§)5§2 ln §511(§
21)2/22(§21)3/31¯ takes its minimum~maximum! value at the saddle point 1 for thex ~y!
variables along the respective paths of integration. We expand thepFq function in its Taylor series
around the common saddle point 1, and using the easily derived formula for thenth derivative

pFq
~n!~ @a#,@c#:z!5

~@a# !n

~@c# !n
pFq~@a1n#,@c1n#;z!, ~11!

we can write

pFq~@a#,@c#;Xz/Y!5 (
n50

`

~21!n~12X/Y!n
~@a# !n

n! ~@c# !n
zn

pFq~@a1n#,@c1n#;z!. ~12!

Introducing~12! in ~10!, inverting order of integration and summation, expanding
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~12X/Y!n5 (
n50

n
~2n!n

n!
~X/Y!n, ~13!

and using the formulas~8! and~9! ‘‘backwards’’ in performing the integrations, we get the desir
expansion formula~4!, where as an intermediate result we obtain an integral representation fo
function F(2n)

F~2n![p811Fq8~2n,@b#,@d#;p@d#/p@b# !

5
p@bb#G~@d# !

G~@b# !p@dd21#

1

~2p i !q8 E0

`

•••E
0

`

dxE
2`

~01!
•••E

2`

~0!1

dye2bx1dy

3p@xb21#p@y2d#~12p@x#/p@y# !n. ~14!

To further investigate the formula~4! we use the fact that the two sides, if they both ma
sense, should have identical power series expansions inz. Comparing thenth power ofz, one
observes that due to the relation (a)k(a1k)n2k5(a)n the expressions containing thea and c
parameters are the same on both sides, and introducing the notationBn

5(@b#)np@d#n/$(@d#)np@b#n% we get, expanding thep811Fq8 function

Bn5 (
k50

n S n
kD ~21!k(

l 50

k
~2k! l

l !
Bl , S n

kD5
n!

k! ~n2k!!
. ~15!

This relation is an identity, i.e., the right-hand side is equal toBn independent of the otherBl

values: Introduce a new summation variablek85k2 l and use (2k) l / l ! 5(21)l( l
k) to rewrite the

right-hand side of~15! as

(
l 50

n S n
l DBl (

k850

n2 l

~21!k8S n2 l
k8 D . ~158!

Now, the sum overk8 is the binomial expansion of (121)n2 l ; thus50 except forl 5n, when the
‘‘sum’’ is 1.

Generalizing the crucial property of thea and c parameters used above, we can extract
essentials of relation~4! as a formal power series identity in the form

(
n50

`
1

n!
An~a!Bnzn5 (

n50

` F ~21!nS (
m50

n
~2n!m

m!
BmD 1

n!
An~a!znS (

m50

`
1

m!
Am~a1n!zmD G ,

~16!

where $Bn% is an arbitrary sequence and the expressions$An(a)% defined for ~complex!
N-dimensional vectorsa fulfill Am1n(a)5Am(a)An(a1m), wherea1m stands for component
wise addition ofm.

One could argue that since our basic derivation of~4! from the integral representations~8! and
~9! was only formal anyhow, one could directly use the basic elementary relation~15! and the
formula ~16! to get~4!. This is of course correct, but is somewhat of a ‘‘put’’ derivation. Besid
for deriving the lowest order term of the expansion ofF(2n) in reciprocal powers of the param
eters we use the multiple integral representation, which is the starting point for the asym
estimate.

Since the verification of the validity of~4! with a common radius of convergence inz is based
on asymptotic estimates of the functions on the right-hand side of~4! obtained in the Appendix,
and the derivation of the relation~5! giving the highest order terms in the reciprocals of theb and
d parameters in the special casep85q8 is rather straightforward, we proceed to the derivation
the crucial formulas~6a! and ~6b!.
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These formulas are obtained by making a first nonvanishing order saddle-point estima5 of
the integral representation~14! for large positive values of theb and d parameters. The saddl
points for both types of integrals is 1, and as noted in the text before formula~11! the dominant
exponential function has the argument§2 ln § multiplied by theb andd variables. In the spirit of
the standard saddle-point estimate procedure we introduce new variables~vector notation!!

x511j/Ab, y511 ih/Ad. ~17!

We should then integrate in the variablesj andh from 2` to 1`. Since in the case of oddn the
lowest order terms inj andh are odd, and give zero contribution by symmetry, we have to exp
to relative order 1/Ab and 1/Ad everywhere. For the further calculation it is advantageous
introduce new~‘‘small’’ ! parametersui521/Abi , wk5 i /Adk. The resulting formulas are easil
seen to be even polynomials in these new parameters. Since we want to calculate integrals
the coefficients of these polynomials, it is clear that for the purpose of this calculation w
assume theu andw parameters to be real. The resulting expression is given for clarity in a m
vector and component presentation:

F~2n!'
p@bb21/2e2b#G~@d# !

G~@b# !p@dd21/2e2d#~2p!q8 E2`

` E
2`

`

dj dhe2~j21h2!/2

3F( uij i1( wkhk2
1

2 (
iÞ j

uiujj ij j1
1

2 (
kÞ l

wkwlhkh l1•••G n

3F11( ui~j i2j i
3/3!2( wk~nhk2hk

3/3!1••• G . ~18!

The various terms in the two@•••# brackets come from the expansions to first relative orde
p@y#2p@x#,1/p@x#p@y#n, and the third power term2(§21)3/3 in the dominating exponentia
obtained in the expression~14!.

For the case of evenn52k, the leading contribution comes from the linear terms in the fi
@•••# raised to power 2k. Assuming that theu andw parameters are real we can make an orthogo
coordinate transformation of thep81q8 j, h variables, taking (uj1wh)/Au21w2 ~again vector
notation!! as one of the transformed variables, and the other transformed variables as a
complementary orthogonal expressions, so that the exponent expressionj21h2 and the volume
product djdh are invariant. As noted earlier the result is an even polynomial in theu and w
parameters, and can be carried over to the actual expressions foru and w. The integrations are
elementary, and using the asymptotic forms of theG functions in front of the integrals we obtai
as leading asymptotic term

F~22k!'
2kG~k11/2!

Ap
S ( ui

21( wk
2D k

, ~19!

which gives~6a!.
For the casen52k11, odd, the leading terms are odd, and one has to calculate the next

terms. This can easily be done by suitable differentiations of the previously obtained res
evenn52k12,2k14 with respect to theu andw parameters. The resulting calculations lead
~6b!.

The five possible confluence expansions for the ordinary hypergeometric function are

2F1~a,b,c,z/b!5 (
n50

`

~21!n
2F0~2n,b;1/b!

~a!n

n! ~c!n
zn

1F1~a1n,c1n;z!, ~20a!
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2F1~a,b,c,cz!5 (
n50

`

~21!n
1F1~2n,c;c!

~a!n~b!n

n!
zn

2F0~a1n,b1n;z!, ~20b!

2F1~a,b,c,z/ab!5 (
n50

`

~21!n
3F0~2n,a,b;1/ab!

1

n! ~c!n
zn

0F1~c1n;z!, ~20c!

2F1~a,b,c,cz/b!5~12z!2a(
n50

`

~21!n
2F1~2n,b,c;c/b!

~a!n

n!
~z/@12z# !n. ~20d!

2F1~a,b,c,cz/ab!5ez(
n50

`

~21!n
3F1~2n,a,b,c;c/ab!

1

n!
zn. ~20e!

Equation~20b! makes sense only ifa ~or b! is a nonpositive integer.
The three possible confluence expansion formulas for the confluent hypergeometric fu

1F1(a,c:z) are obtained by confluencing theb parameter on both sides of the three last relatio
Equation~20c! is the case studied in Ref. 3, with argument and parameter adjusted to gi

expansion in Bessel functions, resulting in Eq.~1! of that paper

~z/2!c

G~c11! 2F1~a,b,c11;2z2/4ab!5 (
n50

`
1

n! 3F0~2n,a,b;1/ab!~z/2!nJc1n~z!. ~21!

Finally, I give the resulting asymptotic expansion including third-order terms in 1/b for the
case~20a!, which is the case addressed in Ref. 2. It is seen that the resulting formula inv

2F0(2n,b;1/b) functions withn52,...,6, and that the expressions for the highest and lowest o
terms given in formulas~5! and ~6a! and ~6b! suffice to give the necessary terms. If we want
include fourth-order terms, we should go ton58, and that would only require explicit calculatio
of the fourth-order 1/b term ofF(26), the middle one of its three terms of order 3, 4, and 5. Si
we know the coefficients of the other two powers, we can determine the value of the m
coefficient by calculating theF(26) function for a special value ofb, sayb51.

The result to order three is

2F1~a,b,c:z/b!51F1~a,c:z!1
~a!2

~c!2

z2

2 1F1~a12,c12;z!
1

b

1F ~a!3

~c!3

z3

3 1F1~a13,c13;z!1
~a!4

~c!4

z4

8 1F1~a14,c14;z!G 1

b2

1F ~a!4

~c!4

z4

4 1F1~a14,c14;z!1
~a!5

~c!5

z5

6 1F1~a15,c15;z!

1
~a!6

~c!6

z6

481F1~a16,c16;z!G 1

b3 1OS 1

b4D . ~22!

Equation~22! agrees to second order with the result of Ref. 2, Eq.~2.7!.

APPENDIX

In this appendix we shall often use two different asymptotic estimates of the Pochha
symbol (a1n)n5G(a1n1n)/G(a1n), which can be derived from the asymptotic estimate
G(a1z) asz→`,uargzu,p

G~a1z!5A2p~z/e!zza21/2@11A~a!/z1B~a!/z21O~1/z3!#, ~A1!
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whereA(a)51/121a(a21)/2 andB(a) is a fourth-degree polynomial ina. In ~A1! a is assumed
finite, or more general,uau2!uzu.

From ~A1! with z5n andz5n1n, we get whenn→`, any positiven

~a1n!n5S n1n

e D nS n1n

n D n1a21/2F12A~a!
n

n1n

1

n
1

n

n1n
O~1/n2!G . ~A2!

If n stays finite, the first correction term is actually of order 1/n2, the second of order 1/n3, and
~A2! then gives, including the first correction term, the first three terms in the polynomiaa
1n)n5nn1a1nn211¯ .

Assuming insteadn→` andn finite, or n2!n, we get from~A1!

~a1n!n5
A2p

G~a1n!
~n/e!nna1n21/2@11A~a1n!/n1B~a1n!/n21O~1/n3!#. ~A3!

It should be noted that the definition of (a1n)n as a quotient of gamma functions actua
defines (a1n)n as a holomorphic function for general complexn andn. We shall sometimes us
this extension in connection with the estimate of a sum overn by a corresponding integral ove
~continuous! n, and even deforming the integration path into the complexn plane.

1. Study of the asymptotic behavior, n\`, of pFq„†a¿n‡,†c¿n‡,z…

Unless one of thea’s is a nonpositive integer, we must havep<q11.
Let us first state the result in some simple cases, using well-known transformation for

for the hypergeometric and confluent hypergeometric functions

1F0~a1n;z!5~12z!2a2n, ~A4a!

2F1~a1n,b1n,c1n;z!5~12z!c2a2b2n
2F1~c2a,c2b,c1n;z!

5~12z!c2a2b2n@11O~1/n!#, ~A4b!

1F1~a1n,c1n;z!5ez
1F1~c2a,c1n;2z!5ez1O~1/n!], ~A4c!

0F1~c1n;z!511
z

c1n (
n51

zn21

n! ~c1n11!n21
511O~1/n!. ~A4d!

The order termsO(1/n) in ~A4c! and~A4d! hold uniformly inz for z bounded, sayuzu,R, but the
‘‘order constant’’ will increase with increasingR.

From ~A2! follows for largen

~@a1n#!n5S n1n

e D pnS n1n

n D p~n21/2!1s@a#F12s@A~a!#
n

n1n

1

n
1••• G . ~A5!

This implies that one can for largen ‘‘multiply’’ and ‘‘divide’’ Pochhammer symbols between
numerator and denominator in the expansion coefficients of thepFq functions.

One should thus expect that asymptotically for largen

q11Fq~@a1n#,@c1n#;z!'1F0~s@a#2s@c#1n;z!5~12z!2s@a#1s@c#2n, ~A6a!

qFq~@a1n#,@c1n#;z!'1F1~s@a#1n,s@c#1n;z!5ez1O~1/n!, ~A6b!

pFp11~@a1n#,@c1n#;z!'0F1~s@c#2s@a#1n;z!511O~1/n!. ~A6c!

For q>p11 one finds in the same way as in~A4d! that
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pFp1 l~@a1n#,@c1n#;z!511O~1/n l !,l>1. ~A7!

O(1/n l) should be interpreted in the way that is indicated after~A4d!.
Using ~A5! it is possible to show the estimates~A6b!–~A6c! and~A7!; to prove~A6a! seems

to be more difficult. However, all the estimates in~A6! and ~A7! have been derived by
Knottnerus,6 as quoted and presented in Ref. 7, Chap. VII, 7.3, Eqs.~3!, ~4!, and~5!.

So, summing up we see that the functionspFq(@a1n#,@c1n#;z) influence the convergenc
of the right-hand side of~4! only in the limiting casep5q11, where, besides the necessa
restrictionuzu,1, the essential asymptotic behavior is (12z)2n.

2. Asymptotic behavior, n\`, of p8¿1Fq8„Àn,†b ‡,†d ‡,p †d ‡Õp †b ‡…

Although some of the results below are contained in, or can be derived from results pre
in Ref. 7, Chap. VII, I give an independent presentation, only sometimes checking against or
results from this reference.

For simplicity of notation let us drop the primes onp8 andq8 and use2n instead of2n as
the first parameter andn as the summation index. Recall that according to the assumptions s
after Eq.~4! p@d#/p@b# is finite and stays away from zero. We can write for a general argum
z

p11Fq~2n@b#,@d#:z!5
G~@d#

G~@b# ! (
n50

n

An~n!~2z!n, ~A8!

where from~A1!, with the notationk5q2p

An~n!5S n
n D G~@b1n#!

G~@d1n#!
5S n

n D ~2p!2k/2S n

eD 2kn

ns@b#2s@d#1k/2@11O~1/n!#. ~A9!

As we shall see, the main contribution to the asymptotic behavior for largen of the p11Fq

(2n,...) function comes from terms with largen ~at worst a fractional power ofn, see below!, so
that ~A9! can be used in the estimate. This means that the asymptotic form of such a fun
apart from the gamma function factors in front of~A8!, depends only onk and the combination
s@b#2s@d# of parameters.

The binomial coefficientG(n11)/G(n11)G(n2n11) satisfies the inequality

1<S n
n D<S n

n/2D'A2/pn•2n, ~A10!

and has the asymptotic behavior, largen andn2n

S n
n D5

expFn~ ln~n/n!11!2~n2/n! (
m50

`
1

~m11!~m12! S n

nD mG
A2pn~12n/n!

F11OS maxH 1

n
,

1

n2nJ D G ,
~A11!

and in particular in a more symmetrical form betweenn andn2n

S n
ynD'

exp$n@2y ln y2~12y!ln~12y!#%

A2pny~12y!
@11O~1/n!#, «,y,12«. ~A12!

If we ignore the actual value ofz5p@d#] p@b# we see from~A8! and ~A9! that the most ‘‘unfa-
vorable’’ case isz real and negative, since all terms then have essentially the same sign;
strictly true if all the parameters@b# and @d# are positive. The estimate for this case then give
majorization for general parameters and general complexz ~which we shall assume stays away
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positive distance from zero! as argument. The asymptotic estimates in~A9!–~A12! then imply a
qualitatively different behavior for the two casesk.0 andk,0. In the first case the terms in th
lower part of the series give the dominant contribution, whereas in the second case the fina
dominate.k50 is an intermediate case where there is a sharp peak of dominant terms ne
middle of the series; here, the estimate in~A12! turns out to be useful.

We start with the case with negativek, where the dominant contribution for largen is expected
to come from the end of the series, cf.~A9!. To explore this we use the ‘‘reversed summatio
formula, following from (b)n5(21)n2n(b)n(12b2n)n2n

p11Fq~2n,@b#,@d#;z!5
~@b# !n

~@d# !n
~2z!n

q11Fp~2n,@12d2n#,@12b2n#;~21!p2q/z!.

~A13!

Since

q11Fp~2n,@12d2n#,@12b2n#;y!5 (
n50

n
~2n!n~@12d2n# !n

~@12b2n# !n

yn

n!
, ~A14!

we would, by going to the limit in each term, expect the following asymptotic behavior an
→`:

q11Fq11~2n,...:y!'ey; q11Fp~2n,...;y!'1 for p2q>2. ~A15!

This behavior can be verified by a closer examination, as follows.
We write

q11Fq11~2n,@12d2n#,@12b2n#;y!5 (
n50

n

an~n!
yn

n!
, ~A16!

where—use (b)n5(21)n(12b2n)n—

an~n!5~2n!n~@12d2n# !n /~@12b2n# !n

5
G~n11!G~@n1d# !G~@n2n1b# !

G~n2n11!G~@n2n1d# !G~@n1b# !

'~12n/n!s@b#2s@d#21 for n and n2n large. ~A17!

Subtracting the series for the exponential and making obvious majorizations, we get

uq11Fq11~2n,...;y!2eyu< (
n50

m

uan~n!21]
uyun

n!
1 (

m11

n

uan~n!u
uyun

n!
1 (

m11

` uyun

n!
, ~A18!

where m is large but small compared ton. Evidently, assuminguyu,R and choosingm large
enough, the last term can be made as small as we like, and by then takingn large enough the firs
term can also be made as small as desired. To handle the middle term one can check that th
are monotonously decreasing with increasingn, for large enoughm, and divide the summation into
two parts, using the asymptotic estimate in~A17! in the first part and monotonicity in the secon
giving

(
m11

n

•••,max@1,212s@Reb#1s@Red## (
m11

n/2 uyun

n!
1~n/2!an/2~n!

uyun/2

~n/2!!
. ~A19!

Evidently this term can also be made arbitrarily small by picking for a givenm a large enoughn.
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A similar argument for the casep2q>2 verifies the second estimate in~A15!. It should be
observed that these estimates assumey bounded, which means in the actual application that
argumentp@d#/p@b# should stay away from zero, as we have already assumed.

For k>0 we put temporarilyz52x, x real and positive, in~A8!, and find the location of the
peak value of the terms by the condition

1/x5An11~n!/An~n!5
n2n

n11

p@b1n#

p@d1n#
'

n2n

nk11 , large n and n. ~A20!

For k50 we then get the maximum forn05nx/(11x), for k>1 n05k11Anx.
Let us first look at the casek50. Generalizing to a complexz and approximating the sum b

an integral, using the asymptotic approximations~A9! and ~A12! and changing integration vari
able byn5ny we get, withA5s@b#2s@d#

(
n50

n

An~n!zn' (
n50

n S n
n D nAzn'E

0

nS n
n D nAzn dn'

nA11/2

A2p
E

0

1 eng~y!

Ay~12y!
yAdy, ~A21!

where

g~y!52y ln y2~12y!ln~12y!1y ln z, ~A22!

goes from 0 to lnz asy goes from 0 to 1. Forz5x, real and positive,g(y) takes its maximum
value ln(11x) at n0 /n5x/(11x). In the general case we getg8(y0)50 for y05z/(11z), and
g(y0)5 ln(11z), g9(y0)52(11z)2/z. So, we can write

g~y!5 ln~11z!2
~11z!2

2z
~y2y0!21¯ ~A23!

in the vicinity of the saddle point of the dominating factor in the integral. Extending the inte
to complexy values, and using the standard saddle-point asymptotic evaluation of the int
introducing a new integration variablet5(11z)An/2z(y2y0), we get the asymptotic estimate

E
0

1 eng~y!

Ay~12y!
yAdy5A2p/n~11z!n2AzA@11O~1/n!#, ~A24!

which finally leads to the estimate

p11Fp~2n,@b#,@d#;2z!5
G~@d# !

G~@b# !
~nz!s@b#2s@d#~11z!n2s@b#1s@d#@11O~1/n!#. ~A25!

The error estimateO(1/n) comes from~A9!, ~A11!, and the two approximations in~A21! and
~A24!: the approximation of a sum by an integral—in most cases seen the other way aro
gives a relative error of the order of the discretization interval squared times the quotient
second derivative of the function to the function itself, which gives (1/An)2

•1; and the next to
leading term in the evaluation of the integral in~A24!, which is also of relative order 1/n
}(1/An)2, since an integral over odd powers oft gives zero by symmetry.

The condition for the application of the saddle-point evaluation in~A24! is that Reg(y) takes
its maximum value on the deformed integration path in the saddle pointy0 , which means lnu1
1zu.lnuzu, lnu11zu.0, i.e., u11zu.max(1,uzu). Expressed in the argument§52z this means the
left half-plane Re§,1/2 outside the circleu§21u51.

Equation~A25! can be shown to be correct under the weaker conditionu11zu.1 according
to the result in Ref. 7 7.4,~8!, p. 265. In this reference a completely different and more rigor
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derivation of the asymptotic behavior is given. I have chosen to reproduce my own derivat
a test for the similar derivation in the casesk.0, where the results are not given except fork
51, at least not explicitly, in Ref. 7.

For u11zu,1, it is shown in the same formula that the dominating asymptotic behavi
proportional to (nz)2b8, whereb8 is theb parameter with the numerically smallest real part.
several have the same real part, there contributions are added, with coefficients depending
b andd parameters. From our point of view the essential result is that, being powers ofn, they
don’t influence the convergence of the right-hand side of~4!.

For the casep51, the formula reads (u12§u,1)

2F1~2n,b,d;§!5
G~d!

G~d2b!
~n§!2b@11O~1/n!#, ~A26!

and can, for the restricted domain, be derived from~A25! by the transformation formula
F(2n,b,d:z)5(12z)nF@2n,d2b,d;z/(z21)#. For this special case~A25! and ~A26! can be
verified by asymptotic estimates of one of the standard integral representations of the hyp
metric function, involving integration from 0 to 1 over the integrand (12t)b21(12t)d2b21(1
2tz)n, simplest in the case where Red.Reb.0. The dominant asymptotic contribution com
from the integration near 1, or 0, in the case~A25!, or ~A26!, respectively.8

Let us now look at the cases withk>1. Here, we have again

p11Fp1k~2n,@b#,@d#;2z!5
G~@d# !

G~@b# ! (
n50

n

An~n!zn. ~A27!

For largen andz5x, real and positive, the maximum term of the sum corresponds, as we
seen from~A20!, to n05k1A1 nx. With the aim of approximating the sum with an integral, we wr
n5tn0 , 0,t,n/n0 , put z5x•eiw, uwu,p, and combine~A9! and ~A11! to obtain

ln@An~n!zn#52~k11!n0t@ ln t212 iw/~k11!#2~1/2n!n0
2t21@s@b#2s@d#

1~k21!/2#~ ln n01 ln t !2 ln~2p!~k11!/21O~1/n!1O~n3/n2!. ~A28!

The dominating terms of ordern0 ln n0 from ~A9! and~A11! have been canceled, and the leadi
term of ordern0 is multiplied with the functionf (t)5t@ ln t212iw/(k11)#, which goes from 0 at
t50 to ` at t5`. f 8(t)50 for t5t05eiw/(k11), which corresponds to a negative Ref(t0)
52cos@w/(k11)#. f (t) can be expanded aroundt0 as f (t)52t01(t2t0)2/2t02(t2t0)3/6t0

2

1¯ . Making a standard asymptotic saddle-point evaluation of the integral corresponds to
ducing a new variable byt2t05t/A(k11)n0 /t0, integrating the resulting functione2t2/2 from
2` to 1` while putting t5t0 in all other factors of the integrand. Since we have the pa
symbolic differential relation ‘‘dn ’ ’ 5n0dt5An0t0 /(k11)dt, we can estimate

(
n

An~n!zn'n0E
0

n/n0
•••dt'An0t0 /~k11!E

2`

`

•••dt, ~A29!

which finally leads to the asymptotic estimate

(
n50

n

An~n!zn5
1

~2p!k/2Ak11
e~k11!n0t0e2n0

2t0
2/2n~n0t0!s@b#2s@d#1k/2@11O~1/n0!#. ~A30!

The error estimateO(1/n0) comes from~A9!, ~A11!, and the two approximations in~A29! and
~A30!: the approximation of a sum by an integral—as argued earlier—gives a relative error
order of the discretization interval squared times the quotient of the second derivative
function to the function itself, which, if seen relative to the integral overt, gives (1/n0)2

•n0 ~or in
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the t variable (1/An0)2
•1), and the next to leading term in the asymptotic saddle-point estim

of the integral which is also of relative order 1/n0}(1/A(k11)n0)2, since an integral over odd
powers oft gives zero by symmetry.

From ~A30! we get for the generalized hypergeometric polynomial the estimate for largn,
k>1, andu argzu,p

p11Fp1k~2n,@b#.@d#;2z!5
G~@d# !

G~@b# !

1

~2p!k/2Ak11
~nI z!@s@b#2s@d#1k/2#/~k11!e~k11!k11Anz

3e2z/2d1k@11O~1/k11Anx!#. ~A31!

Equation~A31! shows that for the casesk>1 the functionsp811Fq8(2n,...) give a harmless,
slower than exponentialn behavior to the convergence of the right-hand side series in Eq.~4!.

Finally, we shall make a comment on the special case of~A31! with k51, p50:

1F1~2n,d;2z!5
G~d!

2Ap
~nz!1/42d/2e2z/2e2Anz@11O~1/Anz!#. ~A32!

This function is essentially a generalized Laguerre polynomial

Ln
a~x!5

G~n1a11!

G~a11!n! 1F1~2n,a11;x!'
na

G~a11! 1F1~2n,a11;x!. ~A33!

Some known asymptotic formulas, largen, for the Laguerre polynomial lead to the followin
corresponding formulas for the confluent hypergeometric polynomial: Fejer’s formula9 for the
behavior on the positive real axis

1F1~2n,d;x!5
G~d!

Ap
~nx!1/42d/2ex/2 cos@2Anx1~1/42d/2!p#1O~n1/42d/2!, ~A34!

valid for fixed positivex, or uniformly in a finite interval staying away from 0.
A formula by Perron10 gives the behavior in the complex plane cut along the positive real

1F1~2n,d;z!5
G~d!

2Ap
~2nz!1/42d/2ex/2 exp@2A2nz#$11O~1/An!%, ~A35!

which agrees with~A32!. Equations~A34! and ~A35! show that we get the behavior on th
positive real axis by adding the limiting values from above and below in the complex plane@which
makes more sense if we look the other way, extending the formula on the real axis up~or down!
into the complex plane#. This probably holds also for the general case~A31!.

1M. D. Thorsley and M. C. Chidichimo, J. Math. Phys.42, 1921~2001!.
2M. C. Chidichimo and M. D. Thorsley, J. Math. Phys.42, 5371~2001!.
3B. Nagel, J. Math. Phys.42, 5910~2001!.
4See, e.g.,Higher Transcendental Functions, edited by A. Erde´lyi ~McGraw-Hill, New York, 1953!, Vol. 1, Chap. 1.6.~2!,
p. 13.

5The saddle-point method, also called the method of steepest descent, for asymptotic evaluation of an integral, i
in many books. A classical reference is A. Erde´lyi, Asymptotic Expansions~Dover, New York, 1956!. Our application,
although apparently multidimensional, involves a product of one-dimensional integrals with the saddle-point integ
along the real or imaginary directions.

6U. J. Knottnerus,Approximation Formulas for Generalized Hypergeometric Functions for Large Values of the Pa
eters and Applications to Expansion Theorems for the Function Gp,q

m,n(z) ~Wolters, Groningen, 1960!.
7Y. L. Luke, The Special Functions and their Approximations~Academic, New York, 1969!, Vol. I.
8The asymptotic estimates given in Ref. 4, Chap. 2.32,~14! and~15!, p. 77, are not correct. For one thing they eviden
do not satisfy the transformation formula for the hypergeometric function quoted above. The mistake made
derivation is that the original error estimate in formula~13! is incorrect, so the transformation to the asymptotics for
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confluent hypergeometric function is not valid. The formulas should be corrected by substituting the fac
2z)c2a2b for the factorebz in the two formulas. The results in Ref. 4 have been quoted also in later references, s
Abramowitz, Stegun:Handbook of Mathematical Functions, and Magnus, Oberhettinger, Soni:Formulas and Theorems
for the Special Functions of Mathematical Physics.

9Higher Transcendental Functions, edited by A. Erde´lyi ~McGraw-Hill, New York, 1953!, Vol. 2, Chap. 10.15.~1!, p. 199.
10G. Szego¨, Orthogonal Polynomials, 4th ed.~American Mathematical Society, Providence, RI, 1975!, ~8.22.3!, p. 199.
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Low dimensional cohomology of general conformal
algebras gc N

Yucai Sua)

Department of Mathematics, Shanghai Jiaotong University,
Shanghai 200030, People’s Republic of China
and Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

~Received 18 April 2003; accepted 26 September 2003!

We compute the low dimensional cohomologiesH̃q(gcN ,C), Hq(gcN ,C) of the
infinite rank general Lie conformal algebrasgcN with trivial coefficients forq
<3, N51 or q<2, N>2. We also prove that the cohomology ofgcN with coeffi-
cients in its natural module is trivial, i.e.,H* (gcN ,C@]#N)50, and thus partially
solve an open problem of Bakalov–Kac–Voronov@Commun. Math. Phys.,200,
561–598~1999!#. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1628839#

I. INTRODUCTION

The notion of a conformal algebra, introduced by Kac in Ref. 12, encodes an axio
description of the operator product expansion of chiral fields in conformal field theory. Confo
algebras play important roles in quantum field theory and vertex operator algebras~e.g., Ref. 12!,
whose study has drawn much attention in the literature~e.g., Refs. 1–7, 12–14, and 20–23!. As is
pointed out in Ref. 1, on one hand, it is an adequate tool for the study of infinite-dimension
algebras satisfying the locality property~cf. Refs. 5, 12, and 14!. On the other hand, conforma
modules over a conformal algebraR correspond to conformal modules over the associated
algebra LieR ~cf. Ref. 3!. The main examples of Lie algebras LieR are the Lie algebras ‘‘based
on the punctured complex planeC3, namely, the Lie algebraVectC3 of vector fields onC3 ~the
Virasoro algebra! and the Lie algebra of maps ofC3 to a finite-dimensional Lie algebra~the loop
algebra!. Their irreducible conformal modules are the spaces of densities onC3 and loop modules,
respectively~cf. Ref. 3!. Since complete reducibility does not hold in this case~cf. Refs. 4 and 10!,
one may expect that their cohomology theory is very interesting and important~cf. Ref. 1!, just as
the cohomology theory of Lie algebras has played important roles in the structure and rep
tation theories of Lie algebras~cf. Refs. 8–11 and 15–19!.

A general theory of cohomology of Lie conformal algebras was established by Bakalov,
and Voronov in Ref. 1. They also computed the cohomologies for the finite simple Lie confo
algebras. However the problem for the general Lie conformal algebragcN , which is an infinite Lie
conformal algebra, remains open. It is well-known that the general Lie conformal algebragcN

plays the same important role in the theory of Lie conformal algebras as the general Lie a
glN does in the theory of Lie algebras: any moduleM5C@]#N over a Lie conformal algebraR is
obtained via a homomorphismR→gcN ~cf. Refs. 5 and 12!, thus the study of Lie conforma
algebrasgcN has drawn some authors’ attentions~cf. Refs. 1, 2, 6, 13, and 14!. It seems to us tha
the computation of cohomology ofgcN is important.

In this paper, we compute the low-dimensional basic cohomologiesH̃q(gcN ,C) and the re-
duced cohomologyH̃q(gcN ,C) of gcN with trivial coefficients forq<3, N51 or q<2, N>2. We
also prove that the cohomology ofgcN with coefficients in its natural module is trivial, i.e
H* (gcN ,C@]#N)50; thus we partially solve an open problem in Ref. 1.

In Sec. II, we shall recall definitions of conformal algebras, their modules and cohomo

a!Electronic mail: ycsu@sjtu.edu.cn
5090022-2488/2004/45(1)/509/16/$22.00 © 2004 American Institute of Physics
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and present the main theorem of this paper~Theorem 2.5!. Sections III and IV are devoted to th
proof of the main theorem.

II. NOTATIONS AND MAIN RESULTS

We shall briefly recall definitions of conformal algebras, their modules and cohomology.
details can be found in, say, Ref. 1.

Definition 2.1:A Lie conformal algebrais a C@]#-moduleA with a l-bracket@alb# which
defines a linear mapA3A→A@l#, whereA@l#5C@l# ^ A is the space of polynomials ofl with
coefficients inA, satisfying

@]alb#52l@alb#, @al]b#5~]1l!@alb# ~conformal sesquilinearity!, ~2.1!

@alb#52@b2l2]a# ~skew-symmetry!, ~2.2!

@al@bmcb5valb#l1mc#1@bm@alcb ~Jacobi identity!, ~2.3!

for a, b, cPA. A subsetS,A is called agenerating setif SgeneratesA as aC@]#-module. If there
exists a finite generating set, thenA is calledfinite. Otherwise, it is calledinfinite. h

There is a similar notion of associative conformal algebras, which we shall not introdu
this paper. Below we shall only work with Lie conformal algebras, thus we shorten the term
conformal algebra’’ to ‘‘conformal algebra.’’ The simplest nontrivial conformal algebra is
Virasoro conformal algebraVir, which is a rank one freeC@]#-module generated by a symbolL
such that

Vir5C@]#L, @LlL#5~]12l!L. ~2.4!

Note that, using~2.1!, it suffices to definel-brackets on a generating set. LetN>1 be an integer.
The general conformal algebra gcN can be defined~see, e.g., Ref. 14! as an infinite rank free
C@]#-module with a generating set

SN5$JA
n unPZ1 ,APglN%, ~2.5!

whereglN is the space ofN3N matrices~note that the setSN is not C-linearly independent, for
example,JaA

m 5aJA
m for aPC), such that thel-bracket is defined by

@JAl
m JB

n #5(
s50

m S m
s D ~l1]!sJAB

m1n2s2(
s50

n S n
sD ~2l!sJBA

m1n2s , ~2.6!

for m, nPZ1 , A, BPglN , where (s
m)5m(m21)¯(m2s11)/s! if s>0 and (s

m)50 otherwise,
is the binomial coefficient.

Definition 2.2:A moduleover a conformal algebraA is aC@]#-moduleM with a l-actionalv
which defines a mapA3M→M vl b , whereM vl b is the set of formal power series ofl with
coefficients inM, such that

al~bmv !2bm~alv !5@alb#l1mv, ~2.7!

~]a!lv52lalv, al~]v !5~]1l!alv, ~2.8!

for a, bPA, vPM . If alvPM @l# for all aPA, vPM , then theA-moduleM is calledconformal.
If M is finitely generated overC@]#, thenM is simply calledfinite.

Below we shall only consider ‘‘conformal modules,’’ thus we drop the word ‘‘conformal’’ a
simply call a ‘‘conformal module’’ a ‘‘module.’’ Clearly, the one-dimensional vector spaceC can
be defined as a module~called atrivial module! over any conformal algebraA with both the action
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of ] and the action ofA being zero. Furthermore, foraPC, aÞ0, one can define aC@]#-module
Ca , which is the one-dimensional vector spaceC such that]v5av for vPCa . ThenCa becomes
an A-module with trivial action ofA.

Let aPC. The spaceCN@]# ~a rankN freeC@]#-module! can be defined as agcN-module with
l-action

JAl
m v5~]1l1a!mAv for APglN , mPZ1 , vPCN ~2.9!

@cf. the statement after~2.4!#. We denote this module byCa
N@]#. Whena50, the moduleCN@]#

5C0
N@]# is called thenatural module of gcN .
Definition 2.3: Let qPZ1 . A q-cochain of a conformal algebra A with coefficients in

module Mis a C-linear mapg:A^ q→M @l1 ,...,lq#,

g~a1^¯^ aq!5gl1 ,...,lq
~a1 ,...,aq!, ~2.10!

satisfying

gl1 ,...,lq
~a1 ,...,]ai ,...,aq!52l igl1 ,...,lq

~a1 ,...,ai ,...,aq! ~conformal antilinearity!,
~2.11!

gl1 ,...,l i 21 ,l i 11 ,l i ,l i 12 ,...,lq
~a1 ,...,ai 21 ,ai 11 ,ai ,ai 12 ,...,aq!

52gl1 ,...,l i 21 ,l i ,l i 11 ,l i 12 ,...,lq

3~a1 ,...,ai 21 ,ai ,ai 11 ,ai 12 ,...,aq! ~skew-symmetry!, ~2.12!

for a1 ,...,aqPA and all possiblei. We letA^ 05C, so that a zero-cochaing is simply an element
of M. h

We define adifferential d of a cochaing as follows:

~dg!l1 ,...,lq11
~a1 ,...,aq11!5 (

i 51

q11

~21! i 11ail i
gl1 ,...,l̂ i ,...,lq11

~a1 ,...,âi ,...,aq11!

1 (
1< i , j <q11

(21)i 1 jgl i1l j ,l1 ,...,l̂ i ,...,l̂ j ,...,lq11

3~@ail i
aj #,a1 ,...,âi ,...,â j ,...,aq11!, ~2.13!

where g is extended linearly over the polynomials inl i , and where, the symbol ˆ means th
element below it is missing. In particular,

~dg!l~a!5alg if gPM is a zero-cochain. ~2.14!

By Ref. 1, the operatord preserves the space of cochains andd250, so that the cochains form
complex, which will be denoted byC̃* 5C̃* (A,M )5 % qPZ1

C̃q(A,M ), and called thebasic com-

plex for the A-moduleM.
Define the structure of aC@]#-module onC̃* (A,M ) by

~]g!l1 ,...,lq
~a1 ,...,aq!5S ]M1(

i 51

q

l i D gl1 ,...,lq
~a1 ,...,aq!, ~2.15!

where]M denotes the action of] on M. Thend]5]d ~see Ref. 1! and so the graded subspa
]C̃* ,C̃* forms a subcomplex. Define the quotient complexC* 5C* (A,M )
5C̃* (A,M )/]C̃* (A,M )5 % qPZ1

Cq(A,M ), called thereduced complex.
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Definition 2.4:Thebasic cohomology H˜ * (A,M ) of a conformal algebra A with coefficients i
a module Mis the cohomology of the basic complexC̃* . The(reduced) cohomology H* (A,M ) is
the cohomology of the reduced complexC* . h

Note that the basic cohomologyH̃* (A,M ) is naturally aC@]#-module, whereas the reduce
cohomologyH* (A,M ) is a complex vector space.

The main results of this paper are the following theorem.
Theorem 2.5: (1) For the general conformal algebra gc1 , we have

dim H̃q~gc1 ,C!5H 1 if q50 or 3,

0 if q51 or 2,
~2.16!

and

dimHq~gc1 ,C!5H 1 if q50, 2 or 3,

0 if q51.
~2.17!

(2) Equations (2.16) and (2.17) also hold for the general conformal algebra gcN if q<2.
(3) H* (gcN ,Ca)50 if aÞ0.
(4) H* (gcN ,Ca

N@]#)50 for aPC. Furthermore, for any gcN-module M which is freely gen
erated overC@]# such that there exists nonzero cPC satisfying JIl

0 vul505cv for vPM , where I
is the N3N identity matrix, we have H* (gcN ,M )50.

Remark 2.6: ~1! Equations ~2.16! and ~2.17! show that the cohomologiesH̃q(gc1 ,C),
H* (gc1 ,C), q<3, of the general conformal algebragc1 with trivial coefficients are isomorphic to
those of the Virasoro conformal algebra with trivial coefficients.

~2! Theorem 2.5~2! in particular shows that there is a unique nontrivial universal cen
extension of the general conformal algebragcN , which agrees with that of the Lie algebraDN of
N3N matrix differential operators on the circle~cf. Refs. 16 and 18!. ~It is well-known thatDN is
the distribution Lie algebra associated withgcN , cf. Ref. 14.! A nontrivial reduced two-cocyclec8
of gcN is given in ~3.36!, and the universal central extensiong̃cN of gcN corresponding toc8 is
given by

@JAl
m JB

n #5(
s50

m S m
s D ~l1]!sJAB

m1n2s2(
s50

n S n
sD ~2l!sJBA

m1n2s

1~21!n
m!n!

~m1n11!!
tr~AB!lm1n11C, ~2.18!

whereC is a nonzerocentral elementof g̃cN ~i.e., @Cla#5@alC#50 for all aPg̃cN) such thatCC
is a trivial C@]#-module.

~3! In Theorem 2.5~4!, note that if we define the zero-bracket by@a0b#5@alb#ul50 for a,
bPgcN , and define the zero-action ofgcN on a moduleM by a0v5alvul50 for aPgcN , v
PM , then JI

0 is central under zero-bracket, i.e., @JI0
0 a#5@a0JI

0# for aPgcN , and so the zero-
action ofJI

0 on any indecomposablegcN-moduleM is a scalar. h

We shall give the proof of Theorem 2.5 in the next two sections.

III. PROOF OF THEOREM 2.5„2…–„4…

We shall keep the notation of the previous section. For aq-cochaingPC̃q(A,M ), we callg
a q-cocycle if dg50; a q-coboundaryor a trivial q-cocycle if there is a (q21)-cochainf
PC̃q21(A,M ) such thatg5df. Two cochainsg andc areequivalentif g2c is a coboundary.
Denote byD̃q(A,M ) and byB̃q(A,M ) the spaces ofq-cocycles andq-coboundaries, respectively
Then, by Definition 2.4, we have
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H̃q~A,M !5D̃q~A,M !/B̃q~A,M !5$equivalent classes ofq-cocycles%. ~3.1!

We shall divide the proof of Theorem 2.5~2!–~4! into several lemmas.~Although we are
unable to give the general result forgcN in this paper, Lemmas 3.1–4 below may be helpful
determiningH̃* (gcN ,C) andH* (gcN ,C) in the future.!

First supposegPC̃q(gcN ,C). Clearly, by~2.11!, g is uniquely determined by the right-han
side of~2.10! for a1 ,...,aqPSN , whereSN is defined in~2.5!. We can regard the right-hand sid
of ~2.10! as a polynomial inl1 ,...,lq . For any fixed pPZ, we define aC-linear map
g (p):gcN

^ q→C@l1 ,...,lq# such that~2.11! holds forg (p) and such that

g~p!~JA1

n1 ^¯^ JAq

nq !5gl1 ,...,lq

~p! ~JA1

n1 ,...,JAq

nq ! ~3.2!

is a homogenous polynomial inl1 ,...,lq consisting of all monomials of total degreep8 which
appear ingl1 ,...,lq

(JA1

n1 ,...,JAq

nq), where

p85p1(
i 51

q

ni . ~3.3!

Then it is straightforward to see thatg (p)PC̃q(gcN ,C) and

g5 (
pPZ

g~p!. ~3.4!

Note that~3.4! is possibly an infinite sum, however for givenJA1

n1 ,...,JAq

nqPSN , there are only finite

manyp’s such that~3.2! is not zero; we call such a sumsummable. From ~2.6!, ~2.11! and~2.13!
@note that in~2.6!, if we informally regard the right-hand side as a polynomial inl, ], JAB , JBA ,
then it is a homogenous polynomial of the total degreem1n; also note that~2.13! now takes the
form such that the first sum in the right-hand side is missing sinceC is a trivial module and note
from ~2.11! that when we substitute~2.6! into ~2.13!, ] in ~2.6! can be replaced by2l i for some
i#, we immediately obtain the following lemma.

Lemma 3.1: A q-cochaingPC̃q(gcN ,C) is a q-cocycle (resp., q-coboundary)⇔all g (p) are
q-cocycles (resp., q-coboundaries). h

A q-cochain of the formg (p) is called ahomogenous q-cochain of degree p.
Following Ref. 1, we define an operatort1 :C̃q(gcN ,C)→C̃q21(gcN ,C) as follows: If q

50, we sett1g50; otherwise, we set

~t1g!l1 ,...,lq21
~a1 ,...,aq21!5~21!q21

]

]l
gl1 ,...,lq21 ,l~a1 ,...,aq21 ,J!ul50 , ~3.5!

for a1 ,...,aq21PSN , whereJ5JI
1 and I is theN3N identity matrix. Noting that, by~2.6!,

@JAil i

ni J#5(
s51

ni S ni

s D ~l i1]!sJAi

ni112s
2~2l i !JAi

ni , ~3.6!

we obtain
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~~dt11t1d!g~p!!l1 ,...,lq
~JA1

n1 ,...,JAq

nq !

5~21!q
]

]l (
i 51

q

~21! i 1q11g
l i1l,l1 ,...,l̂i ,...,lq

~p!
~ @JAil i

ni J#,JA1

n1 ,...,ĴAi

ni ,...,JAq

nq !ul50

5
]

]l (
i 51

q

gl1 ,...,l i 21 ,l i1l,l i 11 ,...,lq

~p! ~JA1

n1 ,...,JAi 21

ni 21 ,@JAil i

ni J#,JAi 11

ni 11 ,...,JAq

nq !ul50 , ~3.7!

where the first equality follows from the fact that all terms appearing indt1g (p) are canceled with
the corresponding terms int1dg (p) and the terms left are all appearing int1dg (p) @cf. ~2.13!#; the
second equality follows from~2.12!. Note that for a polynomialP, ]P/]lul50 is simply the
coefficient ofl1 in P. Now we substitute~3.6! into ~3.7!. By ~2.11!, (l i1])s can be replaced by
(2l)s. Since we only need coefficients ofl1, the terms withs>2 in ~3.6! do not contribute to
the calculation. Thus@JAil i

ni J# in ~3.7! can be replaced by (l i2nil)JAi

ni . Thus~3.7! is equal to

]

]l (
i 51

q

~l i2nil!gl1 ,...,l i 21 ,l i1l,l i 11 ,...,lq

~p! ~JA1

n1 ,...,JAq

nq !ul505pgl1 ,...lq

~p! ~JA1

n1 ,...,JAq

nq !, ~3.8!

which follows from ~3.3! and the fact that for a homogenous polynomialP(l1 ,...,lq) of total
degreep8, we have

]

]l (
i 51

q

~l i2nil!P~l1 ,...,l i 21 ,l i1l,l i 11 ,...,lq!ul505S p82(
i 51

q

ni D P. ~3.9!

From ~3.7! and ~3.8!, we obtain

~dt11t1d!g~p!5pg~p!. ~3.10!

So if dg50, then~3.10! shows thatg85(pÞ0g (p)5d((pÞ0p21t1g (p)) @note that this is sum-
mable, cf. the statement after~3.4!# is a coboundary, andg2g85g (0). Thus, we obtain the
following lemma.

Lemma 3.2: A q-cocycle in D˜ q(gcN ,C) is equivalent to a homogenous q-cocycle of deg
zero. h

Now supposeg is a homogenousq-cocycle of degree zero. For 1< j , k<N, denote byEj ,k

the N3N matrix with entry 1 at (j ,k) and 0 otherwise. Then

SN8 5$JEj ,k

n unPZ1,1< j ,k<N% ~3.11!

is a free generating set ofgcN over C@]#. Let h5( j 51
N jE j , j . We define another operato

t2 :C̃q(gcN ,C)→C̃q21(gcN ,C) as follows: We sett2g50 if q50, otherwise we set

~t2g!l1 ,...,lq21
~a1 ,...,aq21!5~21!q21gl1 ,...,lq21,0~a1 ,...,aq21 ,Jh

0!, ~3.12!

for a1 ,...,aq21PSN . Now note that, by~2.6!,

@JEj i ,ki
l i

ni Jh
0#5(

s50

ni S ni

s D ki~l i1]!sJEj i ,ki

ni2s
2 j iJEj i ,ki

ni . ~3.13!

Thus as discussed in~3.7! and ~3.8!, the terms withs>1 do not contribute to the following
calculation, and, as in~3.7!, we have
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~~dt21t2d!g!l1 ,...,lq
~JEj 1 ,k1

n1 ,...,JEj q ,kq

nq !

5(
i 51

q

gl1 ,...,lq
~JEj 1 ,k1

n1 ,...,JEj i 21 ,ki 21

ni 21 ,@JEj i ,ki
l i

ni Jh
0#,JEj i 11 ,ki 11

ni 11 ,...,JEj q ,kq

nq !

5(
i 51

q

~ki2 j i !gl1 ,...,lq
~JEj 1 ,k1

n1 ,...,JEj q ,kq

nq !. ~3.14!

Thus as in Lemma 2.2, we obtain the following lemma.
Lemma 3.3: A q-cocycle in D˜ q(gcN ,C) is equivalent to a homogenous q-cocycleg of degree

zero satisfying

gl1 ,...,lq
~JEj 1 ,k1

n1 ,...,JEj q ,kq

nq !50 if (
i 51

q

~ j i2ki !Þ0. ~3.15!

h

For aq-cochaingPC̃q(gcN ,C), we define a linear mapDg:gcN
^ q→C@l1 ,...,lq21# by

Dg~a1^¯^ aq!5gl1 ,...,lq
~a1 ,...,aq!ulq52l12...2lq21

5gl1 ,...,lq21 ,2l12...2lq21
~a1 ,...,aq!,

~3.16!

for a1 ,...,aqPgcN @we defineDg5g if q50, and defineDg(a1)5gl1
(a1)ul150 if q51]. Let

C8q(gcN ,C)5$DgugPC̃q(gcN ,C)%. Then we obtain a linear map D:C̃q(gcN ,C)
→C8q(gcN ,C). If gP]C̃q(gcN ,C)5(( i 51

q l i)C̃
q(gcN ,C) @note that ]C50, cf. ~2.15!#, then

clearly Dg50. ThusD factors to a mapD:Cq(gcN ,C)→C8q(gcN ,C).
Lemma 3.4: The mapD:Cq(gcN ,C)→C8q(gcN ,C) is an isomorphism as spaces.
Proof: SupposeDg50 for aq-cochaing. For a1 ,...,aqPgcN , regardinggl1 ,...,lq

(a1 ,...,aq)

as a polynomial inlq , we see that it has a rootlq52( i 51
q21l i , i.e., it is divided by( i 51

q l i . Thus

f~a1^¯^ aq!5S (
i 51

q

l i D 21

gl1 ,...,lq
~a1 ,...,aq! ~3.17!

defines a mapf:gcN
^ N→C@l1 ,...,lq#. Obviously, f is a q-cochain, andg5(( i 51

q l i)f
P]C̃q(gcN ,C). h

Thus we can identifyCq(gcN ,C) with the spaceC8q(gcN ,C). We call an element in
C8q(gcN ,C) a reduced q-cochain. We define the operatord:C8q(gcN ,C)→C8q11(gcN ,C) by
dDg5Ddg, and then we have similar notions ofreduced q-cocycles, reduced q-coboundarie.

Lemma 3.5: Theorem 2.5(2) holds.
Proof: Clearly, by ~2.14!, D̃0(gcN ,C)5C̃0(gcN ,C)5C, and B̃0(gcN ,C)50. Thus

H̃0(gcN ,C)5C. Also by ~2.15!, ]C̃0(gcN ,C)50 and we haveH0(gcN ,C)5C.
SupposegPC̃1(gcN ,C) such thatdgP]C̃2(gcN ,C), i.e., there isfPC̃2(gcN ,C) such that

gl11l2
~@ul1

v# !52~dg!l1 ,l2
~u,v !

52~]f!l1 ,l2
~u,v !

52~]C1l11l2!fl1 ,l2
~u,v !

52~l11l2!fl1 ,l2
~u,v ! ~3.18!

@cf. ~2.13! and ~2.15!# for u, vPSN . By ~2.6!, we have
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@JAl1

n J0#5(
s51

n S n
sD ~l11]!sJA

n2s , ~3.19!

for APglN , nPZ1 , whereJ05JI
0. Thus by~2.11!, ~3.18!, and~3.19!, we have

(
s51

n S n
sD ~2l2!sgl11l2

~JA
n2s!5gl11l2

@JAl1

n J0#52~l11l2!fl1 ,l2
~u,v !. ~3.20!

Let l15l2l2 . Then expressions in~3.20! are polynomials inl, l2 and the right-hand side is
divided byl, thus each term in the left-hand side is divided byl. Therefore we can set

gl8~JA
n !5l21gl~JA

n ! for aPglN , nPZ1 . ~3.21!

Clearly, ~3.21! defines a one-cochaing8PC̃1(gcN ,C), and we haveg5]g8P]C̃1(gcN ,C). This
proves thatH1(gcN ,C)50.

Now supposegPD̃1(gcN ,C) is a one-cocycle. This means thatf50 in ~3.18! and ~3.20!,
and, so, we obtaing50. ThusH̃1(gcN ,C)50.

Next supposecPD̃2(gcN ,C) is a homogenous two-cocycle of degree zero. We defin
one-cochainf which is uniquely determined by

f l1
~JA

n !5~n11!21
]

]l
cl1 ,l~JA

n11,J0!ul50 . ~3.22!

Setg5c1d f , which is also a homogenous two-cocycle of degree zero. Then

]

]l
gl1 ,l~JA

n ,J0!ul505
]

]l
cl1 ,l~JA

n ,J0!ul502
]

]l
f l11l~@JAl1

n J0# !ul5050, ~3.23!

where the last equality follows from~3.19!, ~2.11! and ~3.22! if n>1, or from the fact that
cl1 ,l(JA

0,J0) is a constant polynomial@cf. ~3.3!# if n50. Thus we have

05
]

]l
~dg!l1 ,l2 ,l~JA

m ,JB
n ,J0!ul50

5
]

]l
~2gl11l2 ,l~@JAl1

m JB
n #,J0!

1gl11l,l2
~@JAl1

m J0#,JB
n !2gl21l,l1

~@JBl2

n J0#,JA
m!!ul50

5mgl1 ,l2
~JA

m21,JB
n !1ngl1 ,l2

~JA
m ,JB

n21!, ~3.24!

for A, BPglN , m, nPZ1 , where the second equality follows from~2.13! and the last equality
follows from ~3.23!, ~3.19! and ~2.11!. Induction onn>0 in ~3.24! provesgl1 ,l2

(JA
m ,JB

n)50.

Thusg50 and soH̃2(gcN ,C)50.
Finally, supposec85DcPC82(gcN ,C) is a reduced two-cochain. By~2.13! and ~3.16!,

~dc8!l1 ,l2
~a1 ,a2 ,a3!52cl11l2

8 ~@a1l1
a2#,a3!1c2l2

8 ~@a1l1
a3#,a2!2c2l1

8 ~@a2l2
a3#,a1!,

~3.25!

for a1 ,a2 ,a3PgcN . We define a reduced one-cochainf 85D f PC81(gcN ,C) as follows @note
from ~3.16! that f 8(a)5 f l(a)ul505 f 0(a) is simply a linear functionf 8:gcN→C, and it is not
necessary to write down explicitly its representative~basic! one-cochainf#
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f 8~JA
m!5~m11!21

d

dl
cl8~JA

m ,J!ul50 ~3.26!

@recall ~3.6! that J5JI
1] for APglN , mPZ1 @note from ~2.11! that f 8(]a)5 f 0(]a)50]. By

~2.13! and ~3.16!,

~d f8!l~a1 ,a2!52 f 8~@a1la2# !, ~3.27!

for a1 , a2PgcN .
Now supposec8 is a reduced two-cocycle. Theng85c81d f8 is a reduced two-cocycle

equivalent toc8. By ~3.26!, ~3.27!, and~3.6!,

d

dl
gl8~JA

m ,J!ul5050 for APglN , mPZ1 . ~3.28!

Thus, by~3.25!,

05
]

]l
~dg8!l1 ,l~JA

m ,JB
n ,J!ul52l1

5
]

]l
~2gl11l8 ~@JAl1

m JB
n #,J!1g2l8 ~@JAl1

m J#,JB
n !2g2l1

8 ~@JBl
n J#,JA

m!!ul52l1

5
]

]l
~~m~l11l!1l1!g2l8 ~JA

m ,JB
n !2~~n~l1l1!1l!g2l1

8 ~JB
n ,JA

m!!ul52l1
, ~3.29!

where the last equality follows from~3.28! and ~3.6! @similarly to the discussion after~3.7!, l1

1] andl1] can be replaced byl1l1 and the terms withs>2 do not contribute to the calcu
lation#. Using ~2.12! and ~3.16!, the right-hand side of~3.29! is equal to

~m1n11!gl1
8 ~JA

m ,JB
n !2l1

]

]l1
gl1

8 ~JA
m ,JB

n !50. ~3.30!

From ~3.30!, we obtain

gl8~JA
m ,JB

n !5cA,B
~m,n!lm1n11 for some cA,B

~m,n!PC. ~3.31!

In particular,

d

dl
gl8~JA

m ,J0!ul505dm,0cA , ~3.32!

wherecA5cA,I
(0,0) . Similarly to ~3.29! @also cf.~3.24!#,

05
]

]l
~dg8!l1 ,l~JA

m ,JB
n ,J0!ul52l1

52
]

]l
gl11l8 ~@JAl1

m JB
n #,J0!ul52l1

1mgl1
8 ~JA

m21,JB
n !1ngl1

8 ~JA
m ,JB

n21!

52S m
m1nDl1

m1ncAB1S n
m1nD ~2l1!m1ncBA1~mcA,B

~m21,n!1ncA,B
~m,n21!!l1

m1n , ~3.33!

where the last equality follows from~2.6!, ~2.11!, ~3.16!, ~3.31!, and~3.32!. Takingm5n50, we
obtaincAB5cBA . Thus
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mcA,B
~m21,n!1ncA,B

~m,n21!5S S m
m1nD2~21!m1nS n

m1nD D cAB . ~3.34!

Thus we solve

cA,B
~m,n!5~21!n

m!n!

~m1n11!!
cAB for A,BPglN ,m,nPZ1 . ~3.35!

From ~3.31! and the fact thatcA5cA,I
(0,0) and thatcAB5cBA , we see that the mapA°cA is a trace

of glN , i.e.,cA is a scalar multiple of tr(A) for APglN . Thus~3.31! and~3.35! show thatg8 is a
multiple of c8 which is defined by

cl8~JA
m ,JB

n !5~21!n
m!n!

~m1n11!!
tr~AB!lm1n11. ~3.36!

To see thatc8 is a nontrivial reduced two-cocycle, first define

cl1 ,l2
~JA

m ,JB
n !5~21!n

m!n!

~m1n11!!
~~21!ml1

m1n112~21!nl2
m1n11!tr~AB!lm1n11.

~3.37!

Clearly,c is a two-cochain@recall the second sentence in the paragraph before~3.2!#, andc85Dc
is a reduced two-cochain. One can easily check thatdc850 and thatc8Þd f8 for any reduced
one-cochainf 8. This proves thatH2(gcN ,C)5Cc8. h

Lemma 3.6: Theorem 2.5(3) holds.
Proof: We define an operatort:C̃q(gcN ,Ca)→C̃q21(gcN ,Ca) by

~tg!l1 ,...,lq21
~a1 ,...,aq21!5~21!q21gl1 ,...,lq21 ,l~a1 ,...,aq21 ,J!ul50 , ~3.38!

for a1 ,...,aq21PgcN . Similarly to the discussions in~3.7! and ~3.8!, we have

~~dt1td!g!l1 ,...,lq
~JA1

n1 ,...,JAq

nq !5S (
i 51

q

lqD gl1 ,...,lq
~JA1

n1 ,...,JAq

nq !

[2agl1 ,...,lq
~JA1

n1 ,...,JAq

nq !~mod]C̃q~gcN ,Ca!!. ~3.39!

@Note that]C̃q(gcN ,Ca)5(a1( i 51
q l i)C̃

q(gcN ,Ca) by ~2.15!, since ]Ca
5a.] Now supposeg

PC̃q(gcN ,Ca) such thatdgP]C̃q11(gcN ,Ca), i.e., there exists a (q11)-cochainf such that
dg5(a1( i 51

q11l i)f. Clearly, by ~3.38! tdg5(a1( i 51
q l i)tfP]C̃q(gcN ,Ca). Thus ~3.39!

shows thatg[2d(a21tg)(mod]C̃q(gcN ,Ca)) is a reduced coboundary~note that we assume
aÞ0), i.e.,Hq(gcN ,Ca)50. h

Lemma 3.7: Theorem 2.5(4) holds.
Proof: Note that as spaces, we haveCa

N@]#@l1 ,...,lq#5CN@l1 ,...,lq ,]#, and aq-cochain
g̃PC̃q(gcN ,Ca

N@]#) can be regarded as a mapg̃:gcN
^ q→CN@l1 ,...,lq ,]#,

g̃~a1^¯^ aq!5g̃l1 ,...,lq ,]~a1 ,...,aq!, ~3.40!

for a1 ,...,aqPgcN . Regarding~3.40! as a polynomial inl1 ,...,lq ,] with coefficients inCN, then
similarly to Lemma 3.4, a reducedq-cochain

gPCq~gcN ,Ca
N@]#!5C̃q~gcN ,Ca

N@]#!/S ]1(
i 51

q

l i D C̃q~gcN ,Ca
N@]#! ~3.41!
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is uniquely determined by the coefficient of]0 in ~3.40!. Thus a reducedq-cochaing can be
regarded as a mapg:gcN

^ q→CN@l1 ,...,lq#,

g~a1^¯^ aq!5gl1 ,...,lq
~a1 ,...,aq!. ~3.42!

Define an operatort0 :Cq(gcN ,Ca
N@]#)→Cq21(gcN ,Ca

N@]#) by @cf. ~3.38!#

~t0g!l1 ,...,lq21
~a1 ,...,aq21!5~21!q21gl1 ,...,lq21 ,l~a1 ,...,aq21 ,J0!ul50 . ~3.43!

Similarly to the discussions in~3.7! and ~3.8!, using ~3.19!, we have@comparing with~3.7!, all
terms corresponding to the right-hand side of~3.7! are now zero becauseJ has been replaced b
J0 and we do not take partial derivative]/]l; but note that since the first sum in~2.13! is not zero
in this case, we have one more term here#

~~dt01t0d!g!l1 ,...,lq
~JA1

n1 ,...,JAq

nq !5Jl
0gl1 ,...,lq

~JA1

n1 ,...,JAq

nq !ul50 . ~3.44!

Now by ~2.9!, the l-action of gcN on its moduleCa
N@]# in particular satisfiesJl

0v5v for v
PCa

N@]#. Thus the right-hand side of~3.44! is simply 2gl1 ,...,lq
(JA1

n1 ,...,JAq

nq), i.e., we obtain

g5~dt01t0d!g. ~3.45!

In particular, if g is a reduced cocycle,~3.45! gives thatg5d(t0g) is a coboundary, i.e.
Hq(gcN ,Ca

N@]#)50.
Clearly, the above proof works for anygcN-module M satisfying the condition stated in

Theorem 2.5~4!. h

Thus Theorem 2.5~2!–~4! is proved.

IV. PROOF OF THEOREM 2.5„1…

This section is devoted to the proof of Theorem 2.5~1!. By Lemma 3.5, it remains to conside
the caseq53. Since some of the following arguments also work for generalq-cocycles, we shall
first considerq-cocycles withq>3 so that it may be possible to use these arguments to deter
higher dimensional cohomologies in the future.

Let gc5gc1 . It has a free generating setS5$JnunPZ1%, such that

@Jl
mJn#5(

s51

m S m
s D ~l1]!sJm1n2s2(

s51

n S n
sD ~2l!sJm1n2s, ~4.1!

for m, nPZ1 . We shall give some more notations. An element inZ1
q is denoted by

nI 5nI @q#5~n1 ,...,nq!, n1 ,...,nqPZ1 ~4.2!

~when there is no confusion we denote it bynI , otherwise we denote it bynI @q#). DenoteJnI

5Jn1^¯^ Jnq5(Jn1,...,Jnq)Pgc^ q. Denote lI5lI @q#5(l1 ,...,lq). For nI PZ1
q , let unI u

5( i 51
q ni , called thelevel of nI . We define a total ordering onZ1

q by the level-lexicographical
order, i.e.,

mI ,nI ⇔umI u,unI u, or umI u5unI u and 'p such thatmi5ni for i ,p and mp,np ,
~4.3!

for mI , nI PZ1
q . Set

Nq5$nI PZ1
q un1<n2<¯<nq%. ~4.4!
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For m, nPZ, we denote@m,n#5$m,m11,...,n%. Let Sq be the permutation group on the index s
@1,q#, which acts onCq by s(v)5(vs(1) ,...,vs(q)) for v5(v1 ,...,vq)PCq. Then for anynI
PZ1

q , there is a uniquenI * PNq and somesPSq such thatnI * 5s(nI )PNq andnI * <t(n) for t in
Sq . In fact,

nI * 5min$s~nI !usPSq% ~4.5!

is the minimal element inSq(nI )5$s(nI )usPSq%.
A q-cochaing is uniquely determined byglI (J

nI ) for nI PNq and

glI ~JnI !5sgn~s!gs~lI !~Js~nI !!, ~4.6!

for nI PZ1
q , sPSq , where sgn~s! is the signature of the permutations. In fact, glI (J

nI ) can be
arbitrary polynomial inlI satisfying~4.6! for all s such thats(nI )5nI .

First we construct a three-cochainḡ as follows:

ḡlI ~JnI !5H l2
n32l1

n3 if n15n250, n3Þ0,

0 otherwise,
~4.7!

for nI PN3 ~note that in the first case, we letn3Þ0 in order to avoid the problem on how to de
with 00 when we setl150).

Lemma 4.1:ḡ is a nontrivial three-cocycle.
Proof: One can define aLeibniz q-cochainby removing the skew-symmetric condition~2.12!,

and define theLeibniz differential operator dL by changing~2.13! into

~dLg!l1 ,...,lq11
~a1 ,...,aq11!5 (

i 51

q11

~21! i 11ail i
gl1 ,...,l̂ i ,...,lq11

~a1 ,...,âi ,...,aq11!

1 (
1< i , j <q11

~21! igl1 ,...,l̂ i ,...,l j 21 ,l i1l j ,l j 11 ,...,lq11

3~a1 ,...,âi ,...,aj 21 ,@ail i
aj #,aj 11 ,...,aq11!. ~4.8!

@Note that ifg is a ~regular! q-cochain, then~4.8! coincides with~2.13!, i.e., d5dL in this case.#
Then we obtainLeibniz cohomology~cf. Ref. 1!. We shall not discuss Leibniz cohomology her
but we define a Leibniz two-cochainf by

f l1 ,l2
~J0,J0!51 and f l1 ,l2

~Jm,Jn!50 if ~m,n!Þ~0,0!. ~4.9!

One can immediately check thatḡ5dL f ~thus ḡ is a Leibniz three-coboundary!. Thereforedḡ
5ddL f 5dL

2 f 50, i.e.,ḡ is a~regular! three-cocycle. However, there is no two-cochainf such that
df5ḡ because ifdf5ḡ, then we also havefl1 ,l2

(J0,J0)51 and sof is not a ~regular!
two-cochain@~2.12! is not satisfied#. Thusḡ is a nontrivial three-cocycle. h

Now let g be aq-cocycle withq>3. By Lemma 3.2, we can supposeg is homogenous with
degree zero. First we have the following lemma.

Lemma 4.2: If q53, by replacingg by g2cḡ for some cPC, we can supposeglI (J
0,J0,J)

50.
Proof: Note thatglI (J

0,J0,J) is a linear polynomial inlI @cf. ~3.3!# which is skew-symmetric
with respect tol1 ,l2 by ~2.12!. ThusglI (J

0,J0,J)5c(l22l1) for somecPC. Replacingg by
g2cḡ, we have the lemma. h

To prove~2.16!, our strategy is the following: We want to prove by induction onnI PNq @with
respect to the order~4.3!# that after a number of steps, in each of whichg is replaced byg2g8 for
someq-coboundariesg8, we obtain thatglI (J

mI )50 for all mI PNq , mI <nI @Thus we obtain that
glI (J

nI )50 for all nI PNq , i.e., g50, after a countably infinite number of steps; this amounts
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saying thatg is subtracted by an infinite sum ofq-coboundaries, but from the following proof w
see that this infinite sum is summable, cf. the statement after~3.4!.# For the caseq53, this will be
done by a number of lemmas~unfortunately, not all arguments work forq>4, cf. the proof of
Lemma 4.6!.

Lemma 4.3:glI (J
nI )50 if unI u<1.

Proof: Note thatglI (J
nI ) is a polynomial inlI on degreeunI u. If unI u50, we haveglI (J

nI )50 by
~4.6!. If unI u51, thennI 5(0,...,0,1) andglI (J

nI ) is skew-symmetric with respect tol1 ,...,lq21 ,
thus divided byP1< i , j <q21(l i2l j ), which has degree (q21)(q22)/2.1 if q.3. Thus
glI (J

nI )50 if q.3. If q53, thenglI (J
nI )5glI (J

0,J0,J)50 by Lemma 4.2. h

Now supposeunI u>2. We seti 05#$ i P@1,q#uni50%>0 ~where #X stands for the size of the
finite setX!, i 25q2#$ i P@1,q#uni5nq%<q21. If i 0Þ i 2 , we seti 1 to satisfy

05n15¯5ni 0
,ni 011<¯<ni 1

,ni 1115¯5ni 2
,ni 2115¯5nq ; ~4.10!

if i 05 i 2 , we seti 150.
Let mI PNq11 be such thatumI u5unI u11. Consider (dg)lI @q11#(J

mI ) @cf. notation~4.2!#. Note
that when we substitute~4.1! into ~2.13!, using ~2.11! and ~2.12!, we obtain that (dg)lI @q11#

3(JmI ) is a combination ofglI 8(J
kI) with coefficients being polynomials inlI @q11#, wherekI

PNq , ukI u<unI u, andlI 85(l18 ,...,lq8) such that eachl i8 is a linear polynomial inlI @q11#. Using

the inductive assumption,glI 8(J
kI)50 if ukI u,unI u. Thus the terms withs>2 in ~4.1! do not

contribute to~2.13! @cf. the discussion after~3.7!#, and so we have@here we use~4.8! instead of
~2.13!#

05~dg!lI @q11#~JmI !5 (
1< i , j <q11

~21! i~mjl i2mil j !gl1 ,...,l̂ i ,...,l j 21 ,l i1l j ,l j 11 ,...,lq11
~JmI ~ i , j !!,

~4.11!

where

mI ~ i , j !5~m1 ,...,m̂i ,...,mj 21 ,mi1mj21,mj 11 ,...,mq11!, ~4.12!

and the right-hand side of~4.11! is a combination ofglI 8(J
mI ( i , j )* ) @cf. ~4.5! and ~4.6!#.

Lemma 4.4:glI (J
nI )50 if n1>1 ~i.e., i 050).

Proof: In ~4.11!, take mI 5(0,n1 ,...,nq21 ,nq11)PNq11 . In ~4.12!, if iÞ1, then m150
,n1 and somI ( i , j )* <mI ( i , j ),nI ; by induction,glI 8(J

mI ( i , j )* )50. Similarly, glI 8(J
mI ( i , j )* )50 if

j Þq11. Thus the only possible nonzero term in~4.11! is the one with (i , j )5(1,q11). Since
mI (1,q11)5nI , ~4.11! gives

2~nq11!l1gl2 ,...,lq ,l11lq11
~JnI !50. ~4.13!

This gives the lemma. h

From now on, we assume thatn150.
Lemma 4.5:glI (J

nI )50 if i 25q21 and nq>nq2112 [cf. (4.10)].
Proof: As above, now~4.11! gives @cf. ~4.13!#

(
i 51

i 011

~21! i~nq11!l igl1 ,...,l̂ i ,...,lq ,l i1lq11
~JnI !50. ~4.14!

Replacing (l1 ,...,lq11) by (l,l1 ,...,lq) and applying the operator]/]lul50 to ~4.14!, we
obtain
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glI ~JnI !52(
i 51

i 0

~21! il i

]

]l
gl,l1 ,...,l̂ i ,...,lq21 ,l i1lq

~JnI !ul50 . ~4.15!

We define a (q21)-cochainf as follows:

f lI @q21#~JkI !5H 2nq
21 ]

]l
gl,l1 ,...,lq21

~JnI !ul50 if kI 5nI 2,

0 otherwise,

~4.16!

for kI PNq21 , wherenI 25(n2 ,...,nq21 ,nq21)PNq21 @cf. ~4.10!#. Indeed,f is a (q21)-cochain
@cf. the statement after~4.6!#: Write nI 2 asnI 25(n1

2 ,...,nq21
2 ), thenni

25nj
2⇔ni 115ni 11 . Thus

the skew-symmetric condition~4.6! for f follows from the skew-symmetric condition forg. We
claim that

glI ~JkI !5~d f !lI ~JkI !, ~4.17!

for all kI PNq with kI <nI . If kI 5nI , similarly to ~4.14!, we have

~d f !lI ~JnI !5(
i 51

i 0

~21! inql i f l1 ,...,l̂ i ,...,lq21 ,l i1lq
~JnI 2

!5glI ~JnI !, ~4.18!

where the last equality follows from~4.15! and ~4.16!. If kI ,nI , when we substitute~4.1! into
~2.13! for (d f)lI (J

kI), as in~4.11!, (d f)lI (J
kI) is a combination of the formf lI 8(J

kI ( i , j )), and we see
that kI ( i , j ),nI 2 @cf. ~4.12!#, i.e., the term f lI 8(J

nI 2
) does not appear in (d f)lI (J

kI), thus
(d f)lI (J

kI)50, which is the same asglI (J
kI) by inductive assumption. This proves~4.17!. Thus by

replacingg by g2d f , we have the lemma. h

Lemma 4.6:glI (J
nI )50 if q53.

Proof: When q53, by Lemmas 4.3–5, we are left to consider the casesnI 5(0,n2 ,n2) and
nI 5(0,n2 ,n211) for n2>1. First supposenI 5(0,n2 ,n2). As in ~4.14!, we have

05~dg!lI @4#~J0,J0,Jn2,Jn211!5~n211!~2l1gl2 ,l3 ,l11l4
~JnI !1l2gl1 ,l3 ,l21l4

~JnI !!.
~4.19!

Settingl450, it gives thatglI (J
nI ) can be divided byl1 . So we can writeglI (J

nI )5l1glI8 for some
polynomialglI8 , and~4.19! shows thatgl2 ,l3 ,l11l4

8 5gl1 ,l3 ,l21l4
8 . Settingl150, this gives that

gl2 ,l3 ,l4
8 5g0,l3 ,l21l4

8 . Thus

glI ~JnI !5l1g0,l2 ,l11l3
8 . ~4.20!

But glI (J
nI ) is skew-symmetric with respect tol2 ,l3 , we obtaing0,l2 ,l11l3

8 52g0,l3 ,l11l2
8 .

Setting l150 and l350, respectively, we obtain thatg0,l2 ,l3
8 52g0,l3 ,l2

8 and g0,l2 ,l1
8

52g0,0,l11l2
8 , which gives thatglI850. ThusglI (J

nI )50.

Next supposenI 5(0,n2 ,n211). We still have~4.20! for some polynomialglI8 . We assume tha
n2>2 ~the proof for the casen251 is similar and we leave it to the reader!. For 1< i ,n2 , by
~2.13! and the inductive assumption, we have

05~dg!lI @4#~J0,J,Jn22 i ,Jn21 i 11!

5~n22 i !l1gl2 ,l11l3 ,l4
~J,Jn22 i 21,Jn21 i 11!1~n21 i 11!l1gl2 ,l3 ,l11l4

~J,Jn22 i ,Jn21 i !.

~4.21!
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Note that wheni 5n221, the first term of the right-hand side is zero sinceglI (J,J0,J2n2)
52gl2 ,l1 ,l3

(J0,J,J2n2) and (0,1,2n2),nI . Thus induction oni gives thatglI (J,Jn22 i ,Jn21 i)
50. Then by~2.13! and the inductive assumption,

05~dg!lI @4#~J0,J,Jn2,Jn211!

52l1gl11l2 ,l3 ,l4
~JnI !2~n211!l1gl2 ,l3 ,l11l4

~J,Jn2,Jn2!1~n2l22l3!gl1 ,l21l3 ,l4
~JnI !

1~~n211!l22l4!gl1 ,l3 ,l21l4
~JnI !. ~4.22!

Substituting~4.20! into ~4.22!, cancelling the common factorl1 , then settingl15l250, we
obtain that 052(n211)g0,l3 ,l4

(J,Jn2,Jn2)2(l31l4)g0,l3 ,l4
8 , which shows thatg0,l3 ,l4

8 is

skew-symmetric with respect tol3 , l4 . Thus

f l1 ,l2
~Jm1,Jm2!5H 2n2

21g0,l1 ,l2
8 if ~m1 ,m2!5~n2 ,n2!,

0 otherwise,
~4.23!

defines a two-cochainf @cf. ~4.16!#. Now as in the proof of Lemma 4.5, by replacingg by g
2d f , we have the lemma. This also proves~2.16!. h

Lemma 4.7: Equation (2.17) holds.
Proof: By Lemma 3.5, it remains to consider the caseq53. Let ḡ be the three-cocycle define

in ~4.7!. Let ḡ85Dḡ be the corresponding reduced three-cocycle@cf. ~3.16!#. Clearly ḡ8 is non-
trivial. Now supposeg8 is an arbitrary reduced three-cocycle. As in the paragraph before Le
4.3, we shall prove by induction onnI PN3 that by replacingg8 by g82cḡ82d f8 for somec
PC and some reduced two-cochainf 8 we havegl1 ,l2

8 (JmI )50 for mI <nI . Assume that we have

provedgl1 ,l2
8 (JmI )50 for mI ,nI .

First supposenI 5(0,0,n3). By ~2.13!, ~3.16! and the inductive assumption, we have

05~dg8!lI @3#~J0,J0,J0,Jn311!5~n311!~2l1gl2 ,l3
8 ~JnI !1l2gl1 ,l3

8 ~JnI !2l3gl1 ,l2
8 ~JnI !!.

~4.24!

Thus

gl1 ,l2
8 ~JnI !5l1g1,l2

8 ~JnI !2l2g1,l1
8 ~JnI !. ~4.25!

If n350, then by~2.12! and ~3.16!, gl1 ,l2
8 (JnI )52gl1 ,2l12l2

8 (JnI ). This together with~4.25!

gives thatgl1 ,l2
8 (JnI )50. If n351, then by~2.13!, ~3.16! and the inductive assumption,

05~dg8!lI @3#~J0,J0,J,J!

52l1~gl2 ,l11l3
8 ~JnI !2gl2 ,2l22l3

8 ~JnI !!

1l2~gl1 ,l21l3
8 ~JnI !2gl1 ,2l12l3

8 ~JnI !!. ~4.26!

Using ~4.25! in ~4.26!, we see thatg1,l1
8 can be divided byl1 . Writing g1,l1

8 5l1p(l1) for some

polynomial p(l1) and using this in~4.26!, cancelling the common factorl1l2 , and settingl2

5l350, we see thatp(l1)5cPC is a constant. Thusgl1 ,l2
8 (JnI )5c(l12l2). Replacingg8 by

g81cḡ8, we obtain thatgl1 ,l2
8 (JmI )50 for mI <nI .

If n3>2, we define a reduced two-cochainf 8 as follows:

f l1
8 ~Jm1,Jm2!5H 2g1,l1

8 ~JnI ! if ~m1 ,m2!5~0,n321!,

0 otherwise,
~4.27!
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for (m1 ,m2)PN2 . Clearly, this indeed defines a reduced two-cochainf 8. Using~4.25!, by replac-
ing g8 by g82d f8 as in the proof of Lemma 4.5, we havegl1 ,l2

8 (JmI )50 for mI <nI .

Next supposenI 5(0,n2 ,n2) for n2>1. As in ~4.25!, from (dg8)lI @3#(J
0,J0,Jn2,Jn211)50 we

obtain thatgl1 ,l2
8 (JnI )5l1g1,l2

8 (JnI ). But gl1 ,l2
8 (JnI )52gl1 ,2l12l2

8 (JnI ) by ~2.12! and~3.16!; we

obtaingl1 ,l2
8 (JnI )50.

Now supposenI 5(0,n2 ,n211) for n2>1. FromglI @3#8 (JkI)50 for kI 5(0,0,n2 ,n212) andkI
5(0,0,n211,n211), we obtain thatgl1 ,l2

8 (JnI )5l1g1,l2
8 (JnI ) and that~4.26! again holds. From

this, we obtain thatgl1 ,l2
8 (JnI )52gl1 ,2l2

8 (JnI ). Thus we can define a reduced two-cochainf 8

such thatf l1
8 (Jm1,Jm2)5g1,l1

8 (JnI ) if ( m1 ,m2)5(n2 ,n2) or f l1
8 (Jm1,Jm2)50 otherwise. Then the

rest of the proof is as before.
Finally supposenI 5(0,n2 ,n3) with n3>n212 or nI 5(n1 ,n2 ,n3) with n1>1. Then the proof

is the same as that of Lemmas 4.4 and 4.5. h

This completes the proof of Theorem 2.5.
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We classify the pairs~A,D! consisting of an~e,G!-color-commutative associative
algebraA with an identity element over an algebraically closed fieldF of charac-
teristic zero and a finite dimensional subspaceD of ~e,G!-color-commutative locally
finite color-derivations ofA such thatA is G-gradedD-simple and the eigenspaces
for elements ofD are G-graded. Such pairs are the important ingredients in con-
structing some simple Lie color algebras which are in general not finitely-graded.
As some applications, using such pairs, we construct new explicit simple Lie color
algebras of generalized Witt type, Weyl type. ©2004 American Institute of Phys-
ics. @DOI: 10.1063/1.1628837#

I. INTRODUCTION

Lie color algebras, a notion first appeared in mathematical physics,1,3,5–7,15are generalizations
of Lie algebras and Lie superalgebras. Let us start with the definition. LetF be an algebraically
closed field of characteristic zero and letG be an additive group. Askew-symmetric bicharacterof
G is a mape:G3G→F35F\$0% satisfying

e~l,m!5e~m,l!21, e~l,m1n!5e~l,m!e~l,n!, ; l,m,nPG. ~1.1!

It is clear that

e~l,0!51, ; lPG. ~1.2!

Let L5 % lPGLl be aG-gradedF-vector space. For a nonzero homogeneous elementa, denote by
ā the unique group element inG such thataPLā . We shall callā the color of a. TheF-bilinear
map @•,•#:L3L→L is called a Lie color bracket onL if the following conditions are satisfied:

@a,b#52e~ ā,b̄!@b,a# ~skew symmetry!,

@a,@b,c##5@@a,b#,c#1e~ ā,b̄!@b,@a,c## ~Jacobi identity!,

for all homogeneous elementsa,b,cPL. The algebra structure (L,@•,•#) is called an~e,G!-Lie
color algebra or simply a Lie color algebra. If G5Z/2Z and e( i , j )5(21)i j ,; i , j PZ/2Z, then
~e,G!-Lie color algebras are simply Lie superalgebras. For Lie color algebras, we refer the r
to Ref. 1.

For anyG-gradedF-vector spaceV, we denote

H~V!5$all homogeneous elements inV%.
5250022-2488/2004/45(1)/525/12/$22.00 © 2004 American Institute of Physics
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Let A5 % lPGAl be a G-graded associativeF-algebra with an identity element 1, i.e
AlAm,Al1m for all l,mPG. So 1PA0 . We say thatA is graded simpleif A does not have
nontrivial G-graded ideals. If we define the bilinear product@•,•# on A by

@x,y#5xy2e~ x̄,ȳ!yx, ; x,yPH~A!, ~1.3!

then ~A,@•,•#! becomes a Lie color algebra.
A Lie color ideal Uof A is aG-graded vector spaceU of A such that@A,U#,U. Sometimes

it is called an~e,G!-Lie ideal. Thee-center Ze(A) of A is defined as

Ze5Ze~A!5$xPA u @x,A#50%.

It is easy to see thatZe(A) is G-graded. We say thatA is color-commutative~or e-color-
commutative! if Ze(A)5A, i.e., @A,A#50.

Let A be an~e,G!-color-commutative associative algebra with an identity element 1. A n
zeroF-linear transformation]:A→A is called ahomogeneous color-derivationof degreelPG if

]~a!PAl1m , ; aPAm , mPG,
~1.4!

]~ab!5]~a!b1e~l,ā!a]~b!, ; a,bPH~A!.

For convenience, we shall often denote]̄5l if ] has degreel. Clearly ](c)50 for all cPF.
Denote Dere(A)5 % lPG Derl

e (A), where Derl
e (A) is theF-vector space spanned by all homog

neous color derivations of degreel. Similar to the Lie algebra case, it is easy to verify th
Derl

e (A) becomes a Lie color algebra under the Lie color bracket

@],]8#5]]82e~ ]̄,]̄8!]8], ; ],]8PH~Dere~A!!,

where]]8 is the composition of the operators] and]8.
Let D5 % lPGDl be an~e,G!-color-commutative subspace of Dere(A), i.e.,

]]85e~ ]̄,]̄8!]8], ; ],]8PH~D!. ~1.5!

Recall that the associative algebraA is calledgradedD-simple if A has no nontrivial graded
D-stable ideals.4

A linear transformationT on a vector spaceV is calledlocally finite if

dim~span$Tm~v ! u mPN%!,`,

for any vPV. The transformationT is called locally nilpotent if for any vPV, we haveTn(v)
50 for somenPN, andT is calledsemisimpleif it acts diagonalizably onV.

For a pair~A,D! of an ~e,G!-color-commutative associative algebra with an identity elem
and an~e,G!-color-commutative subspaceD of Dere(A), Passman4 proved that the Lie color
algebra~including the Lie algebra case! AD5A^ D is simple if and only ifA is gradedD-simple
andAD acts faithfully onA ~except a minor case!. The authors of the present paper11 ~see also
Refs. 9, 10, and 14! constructed~associative and Lie! color algebras of Weyl typeA@D#, which is
the color commutative algebra generated byA andD ~as operators onA!, and proved thatA@D#
is simple as an associative algebra or iscentral simpleas a Lie color algebra~i.e., the derived
subalgebra modulo itse-center is simple! if and only if A is gradedD-simple~except a minor case
in Lie case!. However, it is still a question of how to construct new explicit simple Lie co
algebras of generalized Witt type or Weyl type.

The problem of classifying all the pairs~A,D! of a commutative associative algebraA with an
identity element and a finite-dimensional locally finite commutative derivation subalgebraD such
that A is D-simple~i.e., A does not haveD-stable ideals!, was settled in Ref. 8~using the pairs
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~A,D!, Xu constructed explicit simple Lie algebras of generalized Cartan type12 and of generalized
Block type13!. However, this problem becomes much more complicated in color case.

In order to construct explicit new simple Lie color algebras of generalized Witt, Weyl ty
the first aim of the present paper is to give a classification of all the pairs~A,D! of an ~e,G!-color-
commutative associative algebraA with an identity element over an algebraically closed fieldF of
characteristic zero and a finite-dimensional subspaceD of ~e,G!-color-commutative locally finite
color derivations ofA such thatA is G-gradedD-simple and the eigenspaces for elements ofD are
G-graded~see Theorem 2.2!. Then in Sec. III, as some applications, using the pairs~A,D!, we
construct explicit new simple Lie color algebras~including Lie superalgebras! of generalized Witt,
Weyl types~see Theorem 3.1!.

II. D-SIMPLE COLOR ALGEBRAS

In this section, we shall classify the pairs~A,D! of an ~e,G!-commutating associative algebr
A with an identity element 1 and a finite-dimensional subspaceD of ~e,G!-commutative locally
finite color derivations ofA such thatA is gradedD-simple and the eigenspaces for elements
D areG-graded.

First we would like to remark that the eigenspace of a derivation is not necessarilyG-graded.
Since we are consideringG-graded algebras, it is natural that we require the eigenspace
elements ofD areG-graded.

We shall start with constructing explicitly such pairs~A,D!. The motivation to construct suc
pairs will become clear in the proof of Theorem 2.2 below. Actually, the proof of Theorem
leads us to the way to construct such pairs.

Set

G15$lPG u e~l,l!51%, G25$lPG u e~l,l!521%.

Then by~1.1!, G1 is a subgroup ofG with index<2. For any graded subspaceB of A, we define
B15 % lPG1

Bl , thenB1 is G-graded. Similarly we can defineB2 . SinceG5G1øG2 , it follows
that B5B1 % B2 . By ~1.5!, we have

a250 or ]250 if āPG2 or ]̄PG2 . ~2.1!

For m,nPZ, we denote

m,n5$m,m11,...,n%.

To construct the pair~A,D!, first we construct aG-gradede-commutative field extensionE of
F ~i.e., each nonzero homogeneous element ofE is invertible!. To do this, letG0,G1 be a
subgroup ofG and letE0 be a field extension ofF. Let e:G03G0→E0

35E0\$0% be a 2-variable
function e:(a,b)°ea,b such that

ea,b5e~a,b!eb,a , ea,051, ea,bea1b,g5ea,b1geb,g , ; a,b,gPG0. ~2.2!

You will see that these are required by the associativity of the algebra we are going to con
Let E5E0@G0#5spanE0

$Ea u aPG0% be aG0-gradede-commutative associative algebra overE0

such thatEa has colorĒa5a, with the multiplication

Ea•Eb5ea,bEa1b , ; a,bPG0. ~2.3!

From ~2.2! it is easy to see thatE is a G-gradede-commutative field extension ofF.
Let

kI 5~k1 ,k2 ,k3 ,k4!PN4 such thatk5k11k21k31k4.0.
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We also require thatk450 if G25B. We shall constructD which will be spanned by color
derivations]p ,pP1,k such that

]p is semisimple with color]̄p50, ; pP1,k1, ~2.4!

]k11p is locally finite but not semisimple with color]̄k11p50, ; pP1,k2, ~2.5!

]k11k21p is locally nilpotent with color]̄k11k21pPG1 , ; pP1,k3, ~2.6!

]k11k21k31p is locally nilpotent with color]̄k11k21k31pPG2 , ; pP1,k4 ~2.7!

@cf. ~2.21! and~2.22!#. To this end, we first need to constructA which will be the tensor produc
of two algebrasA5A1^ A2 @cf. ~2.19!# such thatA1 is a ‘‘group-algebra-like’’ algebra@cf. ~2.12!#
andA2 is a ‘‘polynomial-like’’ algebra@cf. ~2.16!#.

Now we constructA1 such that]puA1
are nonzero semisimple operators forpP1,k11k2 and

]k11k21puA1
are zero operators forpP1,k31k4 @cf. ~2.4!–~2.7! and~2.21!–~2.22!#. To do this, let

G be anondegenerateadditive subgroup ofFk11k2, i.e., G contains anF-basis ofFk11k2. If k1

1k250, we takeG5$0%. An element inG is usually denoted by

aI 5~a1 ,a2 ,...,ak! with ap50, ; p.k11k2 . ~2.8!

Let ˆ:G→G1 be a map̂ :aI °aÎ satisfying

0̂50, uaI ,bIªaÎ 1bÎ 2aI1bÎ PG0, ; aI ,bI PG. ~2.9!

Let f (•,•):G3G→E0
3 be a map such that

f ~aI ,bI !5e~aÎ ,bÎ ! f ~bI ,aI !, f ~aI ,0!51, ~2.10!

e
uaI ,bI ,uaI 1bI ,cI

f ~aI ,bI ! f ~aI 1bI ,cI !5e~aÎ ,ubI ,cI !eubI ,cI ,uaI ,bI 1cI
f ~bI ,cI ! f ~aI ,bI 1cI !, ~2.11!

for aI ,bI ,cI PG. Denote byA15A(G,E, f ) the ~e,G!-color commutative associative algebra wi
E-basis$xaI u aI PG% or E0-basis$EaxaI u (a,aI )PG03G% such thatxaI has coloraÎ and

xaI
•xbI 5 f ~aI ,bI !EuaI ,bI

xaI 1bI , ; aI ,bI PG, ~2.12!

and in general

EaxaI
•EbxbI 5e~aÎ ,b!ea,bea1b,uaI ,bI

f ~aI ,bI !Ea1b1uaI ,bI
xaI 1bI , ; a,bPG0, aI ,bI PG ~2.13!

@cf. ~2.3!#. The e-commutativity and associativity ofA1 are guaranteed by conditions~2.10! and
~2.11!.

Now we shall constructA2 such that]puA2
50 for pP1,k1 and ]puA2

are nonzero locally

nilpotent operators forpPk111,k @cf. ~2.4!–~2.7! and~2.21!–~2.22!#. To this end, lettk111 ,...,tk

be k21k31k4 variables such that eachtp has colort̄ p satisfying

t̄ k11p50, t̄ k11k21qPG1 , t̄ k11k21k31rPG2 , ~2.14!

for pP1,k2, qP1,k3, r P1,k4. For convenience, we denotetp50 if p<k1 . DenoteJ5$0%k1

3Nk21k33Z2
k4, whereZ25Z/2Z, i.e., J is the subset ofFk consisting of the following elements

iI5~ i 1 ,i 2 ,...,i k!, ~2.15!
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with i p50 for p<k1 , andi qPN for qPk111,k11k21k3, andi r50,1 for q.k11k21k3 @~2.1!
and~2.16! explain why we shall havei q50,1 forq.k11k21k3]. Let A25E@ tk111 ,...,tk# be the
e-commutative algebra of polynomials ink21k31k4 variables with anE-basis consisting of the
elements

t iI5t
k111

i k111
¯tk

i k , ; iIPJ, ~2.16!

or E0-basis$Eat iI u (a, iI)PG03J % such that

Eat iI
•Ebt jI5ea,b )

p5k111

k

e~ t̄ p ,b! i p )
k1,p,q<k

e~ t̄ q , t̄ p! i qj pEa1bt iI1 jI, ; a,bPG0, iI, jIPJ
~2.17!

@cf. ~2.3!#, where we use the convention thatt iI50 if iI¹J. For convenience, we shall denote

e iI,b5 )
p5k111

k

e~ t̄ p ,b! i p, ẽ iI, jI
5 )

k1,p,q<k
e~ t̄ q , t̄ p! i qj p, ; iI, jIPJ, bPG0. ~2.18!

Definition 2.1:We defineA5A(kI ,G,E, f ) to be the~e,G!-commutative associative algebr
with the identity element 15E05x0, which is the tensor product of algebrasA5A1^ EA2 ,
havingE0-basis

EaxaI , iI5EaxaI t iI, ; ~a,aI , iI !PG03G3J, ~2.19!

with the multiplication

EaxaI , iI
•EbxbI , jI5e iI,bea,be iI,bÎ ẽ iI, jI

e~aÎ ,b!ea1b,uaI ,bI
f ~aI ,bI !Ea1b1uaI ,bI

xaI 1bI , iI1 jI, ~2.20!

for a,bPG0, aI , bI PG, iI, jIPJ @cf. ~2.3!, ~2.13!, ~2.17!, and~2.18!#.

For aPFk,pP1,k, we denote

a[ p]5~0,...,0,a
p

,0,...,0!PFk.

For pP1,k, we define the linear transformations]p ,] tp
,]p* onA such that they have color2 t̄ p @in

particular, they have color 0 ifp<k11k2 , cf. ~2.14!#, and

]p5]p* 1] tp
, ~2.21!

]p* ~EaxaI , iI!5apEaxaI , iI, ] tp
~EaxaI , iI!5e~ ]̄ tp

,a1aÎ !)
q51

p21

e~ ]̄ tp
, t̄ q! i q i pEaxaI , iI21[ p] , ~2.22!

for (a,aI , iI)PG03G3J. Clearly, ]p* 50 if p.k11k2 by ~2.8!, and ]q50 if q<k1 by ~2.15!.
Then ]p ,]p* ,] tp

are e-derivations ofA for pP1,k. We call ]p* a grading operator~or degree

operator!, ] tp
a down-grading operator, and]p5]p* 1] tp

a mixed operatorif both pp* and] tp
are

nonzero. Then

D5spanF$]p u pP1,k% ~2.23!

is a finite-dimensional subspace ofe-commutative locally finite color derivations ofA such that
the eigenspaces for elements ofD areG-graded.

Theorem 2.2: Let A5(aPGAa be ane-commutative associative graded algebra with
identity element over an algebraically closed fieldF of characteristic zero and letD5(aPGDa be
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a finite-dimensionalG-gradedF-subspace ofe-commutative locally finite color-derivations ofA
such that the eigenspaces for elements ofD areG-graded. ThenA is gradedD-simple if and only
if A is isomorphic to the algebra of the formA(kI ,G,E, f ) defined in~2.19! and~2.20!, andD is
of the form ~2.21!–~2.23!.

Proof: ‘‘ ⇐:’’ Let I be aG-gradedD-stable nonzero ideal ofA5A(kI ,G,E, f ). By ~2.21! and
~2.22!, we see that

S ø
(a,aI )PG03G

F~EaxaI ! D \ $0%,

is the set of the common eigenvectors ofD. We also see that if a homogeneous elemen]
PH(D) has a nonzero eigenvalue, then]PD0 . Thus (0ÞaPGDa acts locally nilpotently onI.
Since D0 is commutative @cf. ~1.2! and ~1.5!#, and D0 commutes with(0ÞaPGDa , and
(0ÞaPGDa is color-commutative, by linear algebra,I must contain a common eigenvector ofD.
ThusEaxaI PI for some (a,aI )PG03G. Then

15e2a,a
21 f ~2aI ,aI !21~E2ax2aI !•~EaxaI !PI

@cf. ~2.13!#. HenceI5A. This proves thatA is gradedD-simple.
‘‘ ⇒:’’ Suppose]PH(D) has a nonzero eigenvalueaPF such thatuaPH(A) is a correspond-

ing eigenvector. Then we have](ua)5aua , and so]̄1ūa5ūa by ~1.4!. Thus ]̄50. In other
words, we have

]PH~D!, ]̄Þ0 ⇒ ] acts locally nilpotent on A. ~2.24!

SinceF is algebraically closed andD is a finite-dimensional subspace ofe-commutative locally
finite color derivations ofA, from linear algebra, we have

A5 %
aI PD*

A~aI !,

whereD* is the dual space ofD, and

A~aI !5$uPA u ~]2aI ~]!!m~u!50 for ]PH~D! and somemPN%,

for aI PD* @note thataI (])50 if ]̄Þ0 by ~2.24!#. Denote

G5$aI PD* u A~aI !Þ0%.

By ~2.24!, G can be viewed as a subset ofD0* by the restrictionaI °aI uD0
. For anyaI PG, n

PN, we define

A~aI !(n)5$uPA u ~d12aI ~d1!!¯~dn112aI ~dn11!!~u!50, ; d1 ,¯ ,dn11PH~D!%.
~2.25!

Then

A~aI !5 ø
n50

`

A~aI !(n), ; aI PG.

A nonzero vector inA(aI )(0) is called aroot vectorwith root aI . For any homogeneous root vecto
uPA(aI )(0), clearlyAu is aG-gradedD-stable ideal ofA. ThusAu5A. In particular,vu51 for
somevPA. So any homogeneous root vector is invertible. For a root vectoruPH(A(aI )(0)) with
aI PG and any]PH(D), we have
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05]~1!5]~uu21!5]~u!u211e~ ]̄,ū!u]~u21!5aI ~]!uu211e~ ]̄,ū!u]~u21!

5H e~ ]̄,ū!u]~u21! if ]̄Þ0,

aI ~]!1u]~u21! if ]̄50,

becauseaI (])50 if ]̄Þ0 by ~2.24!. This implies

]~u21!52aI ~]!u21, ~2.26!

by ~2.24!. Hence

2aI PG, ; aI PG. ~2.27!

For anyxPH(A(aI )(0)), yPH(A(bI )(0)), and]PH(D), we have

]~xy!5]~x!y1e~ ]̄,x̄!x]~y!5H 0 if ]̄Þ0,

~aI ~]!1bI ~]!!xy if ]̄50.

Hence

A~aI !(0)
•A~bI !(0),A~aI 1bI !(0), ; aI ,bI PG.

Considering the invertibility of root vectors, we have

A~aI !(0)
•A~bI !(0)5A~aI 1bI !(0), ; aI ,bI PG.

In particular, we obtain

aI 1bI PG, ; aI ,bI PG. ~2.28!

Thus by~2.27! and ~2.28!, G is an additive subgroup ofD* . Set

E5A~0!(0). ~2.29!

ThenE is a G-graded field extension ofF such thatE0 is a field extension ofF. We set

G05$aPG u EaÞ$0%%.

Clearly,G0 is a subgroup ofG andG0,G1 by ~2.1!. For anyaPG0, chooseEa51 if a50, and
EaPEa\$0% if aÞ0. Then$Ea u aPG0% forms anE0-basis ofE. Thus we have~2.3! such that the
coefficientea,b satisfies~2.2! by color commutativity and associativity.

First assume thatA(0)ÞE. SinceaI (])50 for any homogeneous derivation] with ]̄Þ0, for
uPA(aI )(m), vPA(bI )(n) andd1 ,...,dm1n11PH(D), by induction onm1n11, we can write

~d12~aI 1bI !~d1!!¯~dm1n112~aI 1bI !~dm1n11!!~uv !, ~2.30!

as a linear combination of the forms

~di 1
2aI ~di 1

!!¯~di r
2aI ~di r

!!~u!•~dj 1
2aI ~dj 1

!!¯~dj s
2aI ~dj s

!!~v !, ~2.31!

where

r 1s5m1n11, $ i 1 , . . . ,i r , j 1 , . . . ,j s%5$1, . . . ,m1n11%.

By definition ~2.25!, we obtain that~2.31! is zero, and so is~2.30!. It follows that uvPA(aI
1bI )(m1n). Thus
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A~aI !(m)
•A~bI !(n),A~aI 1bI !(m1n), ; aI ,bI PG, m,nPN. ~2.32!

In particular~since homogeneous root vectors are invertible!,

EA~aI !(m)5A~aI !(m)5A~aI !(0)A~0!(m), ; aI PG, mPN ~2.33!

@cf. ~2.29!#. Hence eachA(aI )(m) is a vector space over the graded fieldE. For anyvPA(0)(1), we
haveD(v),E and

D~v !50 ⇔ vPE. ~2.34!

Set

H5ED, H15$]PH u ]~A~0!(1)!5$0%%, k15dimE H1 . ~2.35!

Expression~2.34! implies thatA(0)(1)/E is isomorphic to a subspace of the space HomE(H,E)
over E. By linear algebra, there exist subsets

$]k111 ,]k112 ,¯ ,]k%,H~D!, $tk111 ,tk112 ,¯ ,tk%,H~A~0!(1)!, ~2.36!

for somekPN, such that

A~0!(1)5E1 (
l 5k111

k

Et l , ]p~ tq!5dp,q , ; p,qPk111,k. ~2.37!

Set

H25 (
p5k111

k

E]p .

Then we have

H5H1% H2 .

For convenience, denote

t iI5t
k111

i k111
¯tk

i k for iI5~ i k111 ,...,i k!PN,,

where,5k2k1 . By ~2.1! then

t iI50 if i p>2 with t̄ pPG2 for some pPk111,k,

and

t iI
•t jI5 )

k111<p,q<k
e~ t̄ q , t̄ p! i qj pt iI1 jI, ; iI, jIPN,.

Furthermore, by~2.37!, we can deduce by induction on the levelu iIuª(p5k111
k i p that

t iIPA~0!( u iIu ), ]p~ t iI!5 )
k1,q,p

e~ p̄p ,tq! i q i pt iI21[ p] , ~2.38!

for iIPN,,pPk111,k. Set
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Ã~0!5 (
iIPN,

Et iI,A~0!. ~2.39!

Then Ã(0) forms a subalgebra ofA. We want to prove thatA(0)5Ã(0). By ~2.37!,
A(0)(1),Ã(0). Suppose A(0)(m),Ã(0) for some 1<mPN. By ~2.25!,
](A(0)(m11)),A(0)(m),Ã(0) for any]PH. Thus, for]k111PH(H) anduPH(A(0)(m)), we
may assume that

]k111~u!5 (
iIPN,

ciIt
iI, ~2.40!

whereciIPH(E) andciI50 for all but a finite number ofiI. If ]̄k111PG1 , then we set

u15 (
iIPN,

ciIe~ ]̄k111 ,c̄iI!
21~ i k11111!21t iI11[k111]PH~Ã~0!!, ~2.41!

and we obtain

]k111~u!5]k111~u1!. ~2.42!

If ]̄k111PG2 , then by~2.1!, ]k111
2 50, we must have

i k11150 if ciIÞ0, ~2.43!

otherwise if~2.43! does not hold, then by~2.38! and~2.40! we would have]k111
2 (u)Þ0, leading

to a contradiction to the fact that]k111
2 50. Thus we can still chooseu1 as in~2.41! to give ~2.42!.

Similarly, since]k112(u2u1)PA(0)(m),Ã(0), there existsu2PH(Ã(0)) such that

]k112~u2u1!5]k112~u2!. ~2.44!

Assume thatu25( iIPN,ciI8t
iI, where ciI8PH(E). Since H is color commutative, by~2.42! and

~2.44!, we have

05]k111]k112~u2!5 (
iIPN,

ciI8e~ ]̄k1111 ]̄k112 ,c̄iI8!e~ ]̄k112 ,tk111! i k111 i k111i k112t iI21[k111]21[k112].

Thus i k111i k11250 if ciI8Þ0. Hence we can re-chooseu2PH(Ã(0)) such that

]k111~u2!50, ]k112~u2u1!5]k112~u2!.

Similarly, we can findu2 ,...,u,PH(Ã(0)) such that

]k11pS u2 (
q51

p

uqD 50, ]k111~up!5]k112~up!5¯5]k11p21~up!50, ; pP2,,,

by induction onp. Thus we have

]k11pS u2 (
q51

,

uqD 50, ; pP1,,. ~2.45!

For any],]8PH(H1), using~2.35! and ~2.39! we deduce
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]]8S u2 (
p51

,

upD P]~A~0!(m)!1]8~A~0!(m)!,]~Ã~0!!1]8~Ã~0!!5$0%. ~2.46!

Now ~2.45! and ~2.46! show thatu2(p51
, upPA(0)(1). Thus by~2.35!,

]S u2 (
p51

,

upD 50, ; ]PH~H1!. ~2.47!

Then ~2.45!, ~2.47! and the definition~2.25! show that

u2 (
p51

,

upPA~0!(0)5E.

ThusuPÃ(0). This proves

A~0!5Ã~0!.

The caseA(0)5E can be viewed as in the general caseA(0)5Ã(0) with ,50.
We re-choose]p ,tp , pP1,k as follows: Choose a homogeneousF-basis $]1 ,...,]k1

% of

DùH1 , and settp50 for pP1,k1, then]p are semi-simple derivations onA by ~2.33! and~2.35!.
Let ,1 be the dimension of the maximal locally nilpotentF-subspace ofD. Clearly ,1<,5k
2k1 . Let k25,2,1 . Now we choose]k11k211 ,...,]k to be homogeneous locally nilpotent der
vations ofD such that the firstk3 derivations have colors inG1 and the lastk4 derivations have
colors in G2 for somek3 ,k4 with k31k45,1 . Extend$]p u pP1,k1øk11k211,k% to a homo-
geneousF-basis$]p u pP1,k% of D. By the choices of]p , then there existstpPA(0)(1) for each
pPk111,k satisfying~2.36! and ~2.37!.

For anyaI PG, we identify

aI ↔ ~aI ~]1!,...,aI ~]k11k2
!!PFk11k2.

Then G is a nondegenerate subgroup ofFk11k2 ~otherwise, there exists]P(p51
k11k2F]p such that

aI (])50 for all aI PG and so] is locally nilpotent, which contradicts the maximality of,1).
Taking homogeneous root vectoruPA (0)(aI ), by ~2.26! and ~2.32!, we have

u21A~aI !,A~0!, uA~0!,A~aI !.

Hence

uA~0!5A~aI !. ~2.48!

In particular,

A~aI !(0)5Eu ~2.49!

is one-dimensional overE. Choose

x051, 0ÞxaI PA~aI !(0) for 0ÞaI PG,

such thatxaI is homogeneous with color denoted byaÎ . SincexaI is invertible, we haveaÎ PG1 .
Then we have a map̂ satisfying~2.9!. By ~2.32! and ~2.49!, we have~2.12! with f (aI ,bI ) satis-
fying ~2.10! and ~2.11! by color commutativity and associativity. By~2.48!, we obtain

A5A (0)A~0!>A (0)
^ A~0!,
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where A (0)5 % aI PGA(aI )(0) is isomorphic to the algebraA1 defined in~2.12! and ~2.13!, and
A(0)5Ã(0) is isomorphic to the algebraA2 defined in~2.16! and~2.17!. Therefore, the algebra
A is isomorphic to the algebraA(kI ,G,E, f ) defined in~2.19! and ~2.20!, andD is of the form
~2.23!. This completes the proof of Theorem 2.2. h

III. CONSTRUCTING SIMPLE LIE COLOR ALGEBRAS FROM D-SIMPLE COLOR
ALGEBRAS

In this section, as applications, we shall construct some explicit simple Lie color alg
using the pairs~A,D! given in the last section. For simplicity, we assume that the pairs~A,D! in
~2.19! and ~2.23! satisfies

$uPA u D~u!50%5F.

This is equivalent to thatE05F and G05$0%. So the map̂ :G→G1 in ~2.9! is a group homo-
morphism anduaI ,bI 50 for all aI ,bI PG. In this case, noting thatF is algebraically closed, we prov
that we can choose suitable basis$xaI u aI PG% such that the coefficientf (aI ,bI ) determined by
~2.12!, which satisfies~2.10! and ~2.11!, has the following form:

f ~aI ,bI !5e~aÎ ,bÎ !1/2, ; aI ,bI PG, ~3.1!

where the right-hand side is a fixed square root such that~2.10! and ~2.11! hold.
Let G8 be a maximal subgroup ofG such thatxaI , aI PG8 can be chosen so that~3.1! holds for

aI ,bI PG8. SupposeG8ÞG. Let cI PG\G8 and setG95G81ZcI . If G8ùZcI 5$0%, we choose any
xcIÞ0, and setxaI 1kcI5e(aÎ ,cÎ )2 k/2xaI

•(xcI)k for aI 1kcI PG9. If G8ùZÞ$0%, thenG8ùZcI 5ZdI for
somedI 5mcI , m.1. In this case, sinceF is algebraically closed, we can choosexcI such that
(xcI)m5xdI , and setxaI 1kcI as above. In any case, the coefficientf (aI ,bI ) determined by~2.12!
satisfies~3.1! for aI ,bI PG9. But G8ÞG9.G8. This contradicts the maximality ofG8. This proves
~3.1!.

Let F@D# be the~e,G!-commutative associative algebra with basis

$]m5]1
m1
¯]k

mk u m5~m1 ,...,mk!PM%,

whereM5Nk11k21k33Z2
k4. For convenience, we denote]m50 if m¹M. Denote

W5W~kI ,G!5A^ D5span$xaI , iI]p u ~aI , iI !PG3J,pP1,k%,

W5W~kI ,G!5A^ F@D#5span$xaI , iI]m u ~aI , iI,m!PG3J3M%.

Then as spaces, we haveW,W. By regardingW as operators onA, W becomes aG-graded
associative algebra whose multiplication is the composition of operators. ThusW forms an~e,G!-
Lie color algebra under the bracket~1.3!. We call W a Lie color algebra of (generalized) Wey

type. ClearlyF is the center ofW. Let W̃5W/F and letW̄5@W̃,W̃# the derived algebra ofW̃.
Obviously,W forms an~e,G!-Lie color subalgebra ofW, called aLie color algebra of (general-
ized) Witt type. Using results in Refs. 4 and 11, we obtain the following.

Theorem 3.1: The Lie color algebrasW̄ and W are simple if k11k21k3.0 or k4.1.
Furthermore,W̄5W̃ if k11k21k3.0 or otherwise,W̃5W̄1FtnI ]l, where nI and l are the
largest elements respectively inJ and inM. h

Note that in casek5k451, W̄50 andW5Ft1]1 are not simple. Ifk5k4.1, then we obtain
finite dimensional simple Lie color algebrasW̄ andW of dimensions 22n22 andn2n. In particu-
lar, if G5Z2 ,e( i , j )5(21)i j ,i , j PZ2 , we obtain the finite dimensional simple Lie superalgeb
W̄5H(2n) andW5W(n) ~see Ref. 2!.
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Using the pair~A,D!, one might construct other simple Lie color algebras, for example, o
series of Lie color algebras of Cartan type.
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The noncommutative Lorentzian cylinder as an isospectral
deformation

W. D. van Suijlekoma)
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We present a new example of a finite-dimensional noncommutative manifold,
namely, the noncommutative cylinder. It is obtained by isospectral deformation of
the canonical triple associated with the Euclidean cylinder. We discuss Connes’
character formula for the cylinder. In the second part, we discuss noncommutative
Lorentzian manifolds. Here, the definition of spectral triples involves Krein spaces
and operators on Krein spaces. A central role is played by the admissible funda-
mental symmetries on the Krein space of square integrable sections of a spin
bundle over a Lorentzian manifold. Finally, we discuss isospectral deformation of
the Lorentzian cylinder and determine all admissible fundamental symmetries of
the noncommutative cylinder. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1630702#

I. INTRODUCTION

Strict deformation quantization1–3 provides a powerful mathematical tool to describe t
notion of quantization in physics. The central object here is a family ofC* -algebras$A\%,
parametrized by some real number\. Recall that aC* -algebraA is a norm-closed*-algebra
where the norm satisfies

ia* ai5iai2 ~aPA!.

In physics, the commutative algebra of functions on a phase space describes a classical the
denote this algebra byA0 . A quantum mechanical theory at value\ of Planck’s constant, on the
other hand, is described by a noncommutative algebra of operators on a Hilbert space, den
A\ (\Þ0). As we will see, the family$A\% is a strict deformation quantization if it satisfie
certain axioms.

A good example is the noncommutative torus. It is obtained via deformation quantizati
the algebra of functions on the torusTd.1,4 The noncommutative tori play a role in string theo
and M~atrix! theory.5

In this article, we will discuss a third example: the noncommutative cylinder. It is defi
along the same lines by deformation quantization of the cylinder. In string theory, the cylind
quite a natural object. There, space–time is a manifold of dimension higher than four.
dimension follows from certain consistency conditions of the theory~see Polchinski, Ref. 6!. For
example, the superstring can only be defined in a ten-dimensional background, sayR10. It is
usually toroidally compactified toR43T6 in order for the theory to make sense. This means
six dimensions are rolled up to the 6-torusT6. As Seiberg and Witten argued in Ref. 7, th
effective action of open strings in the presence of a constant magnetic field in the backgro
described by making space–time noncommutative. In order to describe this noncomm
background, one needs to quantize the~generalized! cylinder R43T6.

a!Current address: Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, 34014 Trieste, Italy; electron
wdvslkom@sissa.it
5370022-2488/2004/45(1)/537/20/$22.00 © 2004 American Institute of Physics
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Another motivation to quantize the cylinder comes from an idea of Kamani. In Ref. 8
studied the worldsheet of a superstring in a background as described before, as a noncomm
geometry. In this case, one quantizes the worldsheet, which is an ordinary cylinderR3T.

Apart from such physical arguments, the quantization of the cylinder is also interesting
a mathematical point of view. It turns out that theC* -algebras occurring in the quantization of th
plane and of the torus are rather different. As the cylinder in some sense lies in between the
and the torus, it will be interesting to study theC* -algebras occurring in its quantization. Furthe
more, the noncommutative cylinder provides another example in the scarce list of
dimensional noncommutative geometries.9

Having obtained the deformation quantization of the cylinder, it is interesting to consid
K-theory. This requires the K-theory ofC* -algebras, which turns out to be the right noncomm
tative analogue of topological K-theory. In fact, for theC* -algebraC(X) of continuous functions
on a compact Hausdorff spaceX we have that

Kn~C~X!!5Kn~X!.

The main results in topological K-theory, like Bott periodicity and homotopy invariance, lift to
K-theory of C* -algebras which has the additional powerful feature of stability.10

It is interesting to study the interplay between K-theory and deformation quantization. W
that K-theory isrigid under a given deformation whenK(A\) is independent of\.11 For example,
both Bott periodicity12 and a far-reaching generalization of it, the Baum–Connes conjectu
E-theory,13 can be seen as examples of such rigidity.14 For the three examples just mentioned, i.
Euclidean space, the torus, and the cylinder, rigidity of K-theory turns out to hold. Howev
general this is not the case. LetA05C0(T* M ) andA\5B0(L2(M )) for al \.0. Then for general
M , clearly

Kn~A0!5Kn~T* M !ÞKn~A\!5H Z if n50

0 if n51.

The Gel’fand–Naimark theorem assures us that we can obtain all topological notions of a l
compact Hausdorff space from theC* -algebra of continuous functions on it. However, in order
describe the full geometry of a spin manifold, we need more data. It turns out that the
algebraic description of a spin manifold is given by a real spectral triple satisfying Connes’
axioms.

Definition 1:A spectral triple(A,H,D) is given by a unital involutive algebra of operatorsA
on a Hilbert spaceH and a self-adjoint operatorD5D* on H such that

~1! The resolvent (D2l)21 is compact for alll¹sp(D),
~2! The commutators@D,a#ªDa2aD are bounded for anyaPA.

For the formulation of the seven axioms that define aspin geometryon A, we refer to Refs.
15–17. A complete reconstruction of the spin structure on a spin manifoldM from the spin
geometry overC`(M ) can be found in Ref. 18.

Spectral triples provide a powerful tool in describing noncommutative geometries but, a
in this definition, it relies heavily on two conditions, namely:

~1! 1PA,
~2! D is self-adjoint.

In ~commutative! spin geometry, this is equivalent to the condition thatM is a compact Riemann
ian spin manifold.18 In physics, however, it is natural to work in a setting where this is not
case. This is illustrated by simple examples. Consider a Minkowski space–timeM5R4 with an
indefinite metrich5(21,1,1,1). The Dirac operator onM is neither self-adjoint nor elliptic, and
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M is noncompact. Other examples come from string theory. Consider the worldsheet of a
R3T, embedded in a compactified backgroundR43T6. Both the worldsheet and the backgroun
have a semi-Riemannian metric, so that both conditions are unfulfilled.

Thus, in order to describe such physical models in noncommutative geometry, i.e., u
spectral triple, we need to adjust its definition. If theC* -algebra is nonunital, it is sufficient to
replace condition 1 in the definition of a spectral triple by

(18) The operatora(D2l)21 is compact for anyaPA; l¹sp(D).
However, in Lorentzian geometry, the Dirac operatorD is not self-adjoint, so that this conditio
must be dropped. It turns out that the operatorD is a Krein-self-adjoint operator in a Krein spac
H.

Noncompact Lorentzian manifolds are central objects in physics and, therefore, we wi
cuss here the adjustifications mentioned in the definition of spectral triples. It will turn out tha
can be done in a natural way, which allows for a definition of isospectral deformation, simi
what has been done by Connes and Landi.19 Our key example of a noncommutative noncomp
Lorentzian manifold will be the noncommutative cylinder, which is defined by isospectral d
mation of the Lorentzian cylinder.

In Sec. II, we discuss deformation quantization of Euclidean space, the torus, and the cy
We obtain the family ofC* -algebras as a family of crossed product algebras and discuss
K-theory. We provide new evidence for the idea that K-theory is rigid under deformation qu
zation by describing the K-theory of the noncommutative cylinder.

In Sec. III, still working in the Euclidean setting, we consider Connes’ trace theorem
noncompact manifolds. We construct spectral triples for algebras without a unit and d
Connes’ character formula in the case of the cylinder. It turns out that it is possible to gene
this theorem to noncompact manifolds. Then we obtain the noncommutative cylinder as a s
triple, via isospectral deformation of the canonical triple of the cylinder, similar to what is don
Connes and Landi.19 We attempt to construct a spin geometry over the noncommutative cylin
where Connes’ seven axioms are adapted to nonunital algebras as in Ref. 20.

We adjust the definition of the spectral triple to semi-Riemannian spin geometry21 in Sec. IV,
in particular to Lorentzian spin geometry. This involves Krein spaces, and we give a short
duction to the theory of these spaces and operators acting in them. Since the Dirac operato
self-adjoint, we work with the associated operatorDJ , which is self-adjoint. It plays a central rol
in the formulation of the integral in terms of a Dixmier trace.

Finally, we consider the noncommutative Lorentzian cylinder, obtained by isospectral d
mation of the semi-Riemannian spectral triple that describes the Lorentzian cylinder. The
admissible fundamental symmetries for the noncommutative cylinder is shown to be exac
set of fundamental symmetries coming from spacelike reflections in spinor space.

II. DEFORMATION QUANTIZATION AND K-THEORY

A. Old examples

We start with a brief recapitulation of the definition of strict deformation quantization. S
sequently, we review the strict deformation quantization of Euclidean space and of the torus
due to Rieffel.1,2,4,22

Definition 2:Let M be a Poisson manifold with bracket$ , % and letA be a dense*-subalgebra
of C0(M ). A strict deformation quantizationof M in the direction of$ ,%, consists of an open
interval I #R with 0 as an accumulation point, together with, for each\PI , an associative produc
* \ , an involution* \, and aC* -norm i i\ ~for * \ and* \) on A, which for \50 are the original
pointwise product, complex conjugation involution, and supremum norm, such that

~1! The family $A\%\PI forms a continuous field ofC* -algebras overI . HereA\ denotes the
C* -completion ofA with respect toi i\ .

~2! For everyf ,gPA,

lim
\→0

i~ f * \g2g* \ f !/ i\2$ f ,g%i\50 ~Dirac’s condition!.
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1. Weyl quantization

We consider even-dimensional Euclidean spaceR2n. Let S(R2n) denote the commutative
algebra of Schwartz functions onR2n under pointwise multiplication. This pointwise product
deformed to the Moyal star product, which reads, in Fourier space, for any\PR,

~f* \c!~p,q!5E
R2n

dnp8dnq8f~p8,q8!c~p2p8,q2q8!e2 i\(q8•p2p8•q). ~1!

The involution we use onS(R2n) is defined byf* (p,q)5f(2p,2q), which is independent of
\. We let p\ denote the left regular representation ofS(R2n) on L2(R2n) via * \ , i.e., for f
PS(R2n) andCPL2(R2n),

p\~f!Cªf* \C.

We define a normi i\ on S(R2n) as the operator norm for this representation. The completio
S(R2n) with respect to this norm is aC* -algebra, denoted byR\

2n . By rewriting formula~1! in
terms of partial Fourier transforms, one can show the following.3

Proposition 3: The C* -algebraR\
2n is isomorphic to the crossed product algebra

C0~Rn!’\R
n,

where Rn acts onRn by translation, x°x1\y (x,yPRn), so that it acts on C0(Rn) by the
pullback of this action.

Theorem 4: For \Þ0, the C* -algebraR\
2n is isomorphic toB0(L2(Rn)), the C* -algebra of

compact operators on L2(Rn).
For a proof of this, we refer to Refs. 3 and 22.
It is now immediate that theC* -algebrasR\

2n (\Þ0) are simple, and are all isomorphic t
each other. Furthermore, we can conclude that Euclidean spaceR2n has rigid K-theory under
quantization, i.e., for all\ one has

K0~R2n!>K0~R\
2n!>Z,

K1~R2n!>K1~R\
2n!>0.

2. Noncommutative tori

Let Td be thed-dimensional torus, and letu be a real skew-symmetricd3d matrix. Instead of
deforming the pointwise product in the space of smooth functions onTd, we deform the product
in its Fourier spaceS(Zd). For \PR, the star product reads

~f* \c!~n!5 (
mPZd

f~m!c~n2m!e2p i\u(m,n). ~2!

Hereu is the skew bilinear form defined byu(m,n)ª( j ,ku jkmjnk .
We setf* (n)ªf(2n), which is independent of\. We let S(Zd) act on L2(Zd) by left

multiplication via* \ . The completion ofS(Zd) with respect to the operator normi i\ , equipped
with this star product is thenoncommutative torus, denoted byT\u

d . For fixedu, the family$T\u
d %

provides a strict deformation quantization ofTd.1 Whend52, the skew-symmetric matrixu is just
determined by a real number, denoted byu as well. It turns out that the noncommutative torusTu

2

is isomorphic to the crossed product algebraC(T)’aZ, wherea( f )(t)ª f (t1u). Furthermore, it
is simple if and only ifu is irrational. If uÞu8, both irrational with 0,u,u8, 1

2, thenTu
2>” Tu8

2 .16

It came as a surprise that the K-groups ofTu
d do not depend onu.

Proposition 5: The torusTd has rigid K-theory under quantization, i.e., for all\ one has
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K0~Td!>K0~T\u
d !>Z2d21

,

K1~Td!>K1~T\u
d !>Z2d21

.

B. Deformation quantization of cylinders

We consider the cylinder in a generalized form. The (n,d)-dimensional cylinder C(n,d) is
defined as

C(n,d)
ªRn3Td. ~3!

In the casen5d51 we obtainC2
ªR3S1, which is of course the familiar two-dimensiona

cylinder.
Let L be a Poisson structure onRn3Td. For j 51,...,n1d, let ]xj

denote the vector field on
Rn3Td corresponding to differentiation in thej th direction. We can write the Poisson structure

L52p21(
i , j

u i j ]xi
∧]xj

. ~4!

The factorp21 has been included for later convenience. Hereu i j is a real skew-symmetric matrix
For later use, we define a skew bilinear formu on Rn3Zd,

u~ l ,k!5(
i , j

u i j l ikj ~ l ,kPRn3Zd!. ~5!

Let l denote the Lebesgue measure onRn3Td. The Fourier transformf̂ of a Schwartz function
f PS(Rn3Td) is given by

f̂ ~k!5E
Rn3Td

dl~x!e22p ik•xf ~x!. ~6!

For i 51,...,n we havekiPR, for i 5n11,...,n1d we havekiPZ. In fact, the Fourier transform
mapsS(Rn3Td) isomorphically toS(Rn3Zd).

To integrate overRn and sum overZd in the productRn3Zd, we introduce the measurem on
Rn3Zd, defined as the product of Lebesgue measure onRn and the counting measure onZd.

For functions in Fourier space, the Poisson bracket is given by

$f,c%~k!54pE
Rn3Zd

dm~ l !(
i , j

u i j l if~ l !~kj2 l j !c~k2 l !

54pE
Rn3Zd

dm~ l !f~ l !c~k2 l !u~ l ,k!, ~7!

wherek,l PRn3Zd andu is the bilinear form defined in Eq.~5!.
We define a bicharacters\ on Rn3Zd by

s\~ l ,k!5e2p i\u( l ,k), ~8!

where\PR, and introduce a star product* \ on S(Rn3Zd) by

~f* \c!~k!5E
Rn3Zd

dm~ l !f~ l !c~k2 l !s\~ l ,k!. ~9!
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We define an involution onS(Rn3Zd) by f* (k)ªf(2k), independent of\. We represent
S(Rn3Zd) on L2(Rn3Zd) by star product multiplication, and define thenoncommutative cylinde
as the completion ofS(Rn3Zd) in the operator normi i\ , equipped with product* \ . This
C* -algebra is denoted byC\u

(n,d) .
We could equally well define the noncommutative cylinder as the~completion of! the algebra

S(Rn3Td) with product, involution, and norm obtained by pulling back the product* \ ,
involution* and normi i\ through the inverse Fourier transform. Even though this makes
differences with the ordinary cylinder more clear, we will continue in Fourier space to a
expressions involving many derivatives.

Theorem 6: For fixed u, the family $C\u
(n,d)% provides a strict deformation quantization o

Rn3Td in the direction of$ , %.
Proof: We verify Dirac’s condition

i~f* \c2c* \f!/ i\2$f,c%i\→0 as\→0, ~10!

wheref,cPS(Rn3Zd). We define

D\ª~f* \c2c* \f!/ i\2$f,c%.

With formulas~7! and ~9!, this reads

D\~k!5E
Rn3Zd

dm~ l !f~ l !c~k2 l !~~s\~ l ,k!2s\~k,l !!/ i\24pu~ l ,k!!.

Similar to Rieffel in Ref. 1, we can estimate the expression inside~ ! so that

uD\~k!u<\ME
Rn3Zd

dm~ l !uf~ l !uuc~k2 l !uu l u2uk2 l u2,

for some constantM . This last expression is just~proportional to! the convolution product of two
functionsf̃ and c̃ where

f̃~k!ªuku2uf~k!u, c̃~k!ªuku2uc~k!u.

As theL1-norm dominates the normi i\ , we have

iD\i\<\M if̃* c̃i1 .

It follows that iD\i\→0 as\→0.
Continuity of the field$C\u

(n,d)% follows from Corollary 5.6 in Ref. 23~or Lemma 1 in Ref. 2!,
in combination with Proposition 7 below. h

C. Properties of noncommutative cylinders

When one observes the major differences betweenR\
2n andT\u

d , one is led to the question
whether the noncommutative cylinders are simple and whether they are all isomorphic. Fo
we connect with the theory of crossed product algebras. At the end, we discuss the K-the
noncommutative cylinders.

We take the noncommutative cylinder forn5d, and denote it byC\
2d . We let l 5(x,n) and

k5(y,m), wherex,yPRd and n,mPZd, and choose the following skew bilinear form onRd

3Zd,

u~ l ,k!5
1

2p (
i 51

d

yini2mixi . ~11!
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We want to rewrite the star product~9! in terms of partial Fourier transforms, defined by

f́~x,t !ª (
nPZd

f~x,n!ein•t ~ tPTd!, ~12!

which is a function onRd3Td. The star product onS(Rd3Td) then reads

~f́* \ć !~x,t !5E
Rd

dyf́~y,t1\~y2x!!ć~x2y,t1\y!, ~13!

as can be easily verified. We introduce an actionb of Rd on Td defined bybx(t)5t1\x, and
write

~f́* \ć !~x,t !5E
Rd

dyf́~y,by2x~ t !!ć~x2y,by~ t !!. ~14!

This formulation of the star product in terms of an actionb of Rd on Td goes back to Rieffel. As
in the examples in his paper,22 we relate this to crossed product algebras. For more details on
theory of these algebras, we refer to Pedersen.24 Let C(Td)’\R

d denote the crossed produ
algebra for the\-dependent actionb2x . Then S(Rd,C`(Td)) is a dense*-subalgebra of this
crossed product algebra. Define a mapQ:S(Rd3Td)→S(Rd,C`(Td)) by

Q~f́ !~x,t !ªf́~x,bx~ t !!. ~15!

Note thatS(Rd3Td) is a dense*-subalgebra ofC\
2d . Clearly,Q is an isomorphism, in that

Q~f́* \ć !~x,t !5~f́* \ć !~x,bx~ t !!

5E
Rd

dy Q~f́ !~y,t !Q~ ć !~x2y,b2y~ t !!5Q~f́ !* Q~ ć !. ~16!

Extension of the mapQ to C\
2d yields the following.

Proposition 7: The noncommutative cylinder C\
2d (\Þ0) is isomorphic to the crossed produc

C(Td)’\R
d.

This allows us to use known results on crossed product algebras.
Theorem 8: The C* -algebra C\

2d is isomorphic toB0(L2(Td)) ^ C* (Zd).
Proof: We note thatC(Td)’\R

d>C(Td)’\8R
d for \,\8Þ0. In particular,

C~Td!’\R
d>C~Td!’Rd

for \Þ0. Corollary 2.8 of Green25 completes the proof. h

With the isomorphismC* (Zd)>C(Td), we have the following.
Corollary 9: The noncommutative cylinders C\

2d (\Þ0) are nonsimple C* -algebras.
It is well known that anyC* -algebraA is Morita equivalent to its stabilization

ASªB0~H! ^ A

for some Hilbert spaceH. In particular,B0(L2(Td)) ^ C(Td) is Morita equivalent toC(Td). Since
Morita-equivalentC* -algebras have isomorphic K-groups, we have the following.

Corollary 10: For the noncommutative cylinder C\
2d one has for all\Þ0,

K0~C\
2d!>K1~C\

2d!>Z2d21
.

In order to compare this with the K-groups of the original cylinderRd3Td we need the
following Lemma.
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Lemma 11: For the cylinderRd3Td the K-groups are

K0~Rd3Td!>K1~Rd3Td!>Z2d21
.

Proof: For the K-groups ofTd we note that

K0~C~T,A!!>K1~C~T,A!!>K0~A! % K1~A!

for any C* -algebraA ~cf. Exercise 10.1 in Ref. 10!. Since

C0~Rd3Td!>C~T,C0~Rd3Td21!!,

this yields by induction

K0~C0~Rd3Td!!>K1~C0~Rd3Td!!>Z2d21
.

Here, one usesK0(C0(Rd)) % K1(C0(Rd))>Z. An alternative proof can be constructed using B
periodicity.

Proposition 12: The cylinderRd3Td has rigid K-theory under quantization, i.e., for all\ one
has

K0~Rd3Td!>K0~C\
2d!>Z2d21

,

K1~Rd3Td!>K1~C\
2d!>Z2d21

.

Note that these groups are the same as the K-groups of the noncommutative torusT\u
d .

III. NONCOMMUTATIVE MANIFOLDS AND ISOSPECTRAL DEFORMATION

The description of a manifold in terms of spectral data is provided by the theory ofK-cycles
~also called spectral triples! developed by Connes. This generalization has been very success
describing noncommutative manifolds, as shown by examples like the noncommutative t13

and the noncommutative 4-sphereSu
4.19 It also admits generalizations to noncompact manifol

or, in other words, to nonunital algebras.

A. Connes’ trace theorem

An important result here is that Connes’ trace theorem generalizes to noncompact manif16

Connes’ trace theorem13,26relates the Wodzicki residue of an elliptic pseudodifferential operato
the Dixmier trace of this operator. It allows one to compute the integral of any function
compact Riemannian manifold in terms of an operatorial formula. See for example Ref. 16
complete treatment and proof of the theorem.

Proposition 13: Let f be an integrable function on an n-dimensional Riemannian manifold M,
then

E
M

f ~x!Augudx5
n~2p!n

Vn
Trv~ f D2n/2!,

whereD is the Laplacian on M.
The fact that a manifoldM is not compact translates into the fact that theC* -algebraC0(M )

is not unital. So, in order to describe a Riemannian manifold which is only locally compact
spectral triple, we need a generalization of the definition as given in Ref. 13.

Definition 14:A spectral triple (A,H,D) is given by an involutive algebra of operatorsA in
a Hilbert spaceH and a self-adjoint operatorD5D* in H such that

~1! a(D2l)21 is compact for anyaPA; l¹sp(D),
~2! The commutators@D,a#ªDa2aD are bounded for anyaPA.
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The triple is said to beevenif there is aZ2 grading ofH, namely, an operatorx on H with x*
56x andx251, such that

xD1Dx50,

xa2ax50 for all aPA. ~17!

If such a grading does not exist, the triple is said to beodd, and we setx51.
This was already pointed out by Connes in 1995~Ref. 27!. If A is unital this yields the

familiar definition, because then condition~1! implies that 1A(D2l)21 is compact.
As a special case, we have the Dirac geometry (C0

`(M ), L2(M ,S), D” ) whereM is a spin
manifold andD” the Dirac operator for a spin bundleS→M . Here,C0

`(M ) denotes the algebra o
smooth continuous functions onM ‘‘vanishing at infinity.’’ For generalM this means forf
PC0(M ) that for all e.0, there exists a compact submanifoldK of M such thatf (x),e for all
xPM /K. Note that the principal symbols~D! of the Laplacian, coincides withs(D” 2).

Definition 15: A spectral triple (A,H,D) is said to bep1-summable(p.0), if auDu2p

PL (1,̀ ) for any aPA for some dense subalgebraA,A.
For ap1-summable spectral triple (A,H,D), thenoncommutative integralof aPA is defined

by

J aª
n~2p!n

2[n/2]Vn
TrvauDu2n. ~18!

If A5C0
`(M ), the *-subalgebraA consists of integrable functions with respect to the meas

associated to the Riemannian metric on M.

B. Connes’ character formula for the cylinder

Another result in noncommutative geometry is Connes’ character formula. It provides a
between Hochschild and cyclic cohomology in that it gives a representation of the Hoch
class of the Chern character, i.e., a cyclic cocycle. It turns out that the Hochschild cocycle is
easier to handle than the Chern character. Here, we prove the character formula for the c
As we saw in the previous section, the geometry of the (n,d)-dimensional cylinder can be de
scribed by the triple

AªCc
`~Rn3Td!,

HªL2~Rn3Td! ^ C2[(n1d)/2]
,

DªD” .

For convenience we have restrictedA to functions with compact support, so that all functions
A are integrable.

The Dirac operator on the cylinder is defined byD” ªga]a where the gamma-matrices satis
$ga,gb%52dab. Using the spectral theorem for self-adjoint operators we defineF5sign(D” ),
where sign(x)511(21) for x>0 (x,0). The couple (H,F), together with a representations
of A in H, defines a Fredholm module overA. In the casen1d is even, there is grading operato
on H defined byxª in1dg1

¯gn1d, which makes (H,F) an even Fredholm module. Before w
continue, we state some theory on universal differential graded algebras for nonunital alg
which will be needed later.

1. Universal forms on nonunital algebras

The way to describe the graded differential algebra for nonunital algebras is very similar
way K-theory is defined for nonunital algebras. Both rely on the notion of unitization. For
                                                                                                                



8, and
ere is

eory,
can

the

546 J. Math. Phys., Vol. 45, No. 1, January 2004 W. D. van Suijlekom

                    
theory of universal graded differential algebras for algebras with unit, we refer to Refs. 16, 2
29. A comprehensive introduction is found in Chap. 4 of Ref. 30. The approach we take h
based on Refs. 29 and 31.

Let A be an algebra. Its unitizationÃ is defined byÃªA% C. The quotient map isp:Ã
→C with A5ker(p). Since 1PÃ, we can construct the graded universal differential algebraVÃ
following standard literature. The relation between the differential algebras is similar to K-th
i.e., VÃ5C% VA. Let d be the corresponding derivation. By Proposition 3.2 of Ref. 29 we
extendp uniquely to a mapp* :VÃ→VC by

p* ~ ã0dã1¯dãn!5pã0d~pã1!¯d~pãn!. ~19!

Immediately, this yieldsp* (VnÃ)5$0% for n.0. Forn50, we havep* (a1l1)5l. Of course,
VC5C.

Similar to what is done in the definition of K-theory for nonunital algebras, we define
graded universal differential algebraVA of the nonunital algebraA as a kernel

VAªker~p* :VÃ→VC!. ~20!

From the above observations it is clear thatVnA5VnÃ for n.0. For n50, we haveV0Ã5C
% V0A, which yieldsV0A5A.

2. The Chern character

Given a Fredholm module (H,F,s) over A, we will construct a representation ofVA, for
A5Cc

`(Rn3Td). This will use the fact that the map

d:a° i@F,s~a!#

is a derivation onA, which commutes with the convolution. We can uniquely extends to a
representation of the unitizationÃ. The couple (H,F) is a Fredholm module overÃ, since
obviously@F,ã#5@F,a# where we have suppressed the representationss ands̃. We extends̃ to
the universal differential algebraVA by

s̃: VkA→B~H!,

ã0dã1¯dãk°ã0ik@F,ã1#¯@F,ãk#5ã0da1¯dak .

From Ref. 16 we take the following lemma, generalized to the nonunital case.
Lemma 16: Let D” be the (Euclidean) Dirac operator on the cylinderRn3Td and F

5sign(D” ). Then@F,s(a)#PL q(H), where q5n1d11.
Besides the Schatten idealsL p(H), we define the conditional trace classL C

1 (H) by

L C
1 ~H!ª$aPB~H!:a1FaFPL 1~H!%. ~21!

For elements inL C
1 (H), we define the conditional trace by

TrC~a!ª 1
2Tr~a1FaF!. ~22!

Definition 17: The Chern character of the Fredholm module (H,F) is the cyclic (n1d)
cocycle

tF
(n1d)~ ã0 ,a1 ,...,an1d!5TrC~ ã0da1¯dan1d! ~aiPA!

~with xã0 instead ofã0 if n1d is even!.
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Note that since dai5 i@F,ai #PL q(H), the above expression is indeed inL C
1 (H), using Höld-

ers inequality. The following lemma brings us back fromÃ to A.
Lemma 18:

tF
(n1d)~ ã0 ,a1 ,...,an1d!5tF

(n1d)~a0 ,a1 ,...,an1d!.

Proof: This follows immediately by writing outa1FaF for a5ã0da1¯dan1d .

h

Thus, although the Chern character is defined as a cyclic (n1d)-cocycle onÃ, it is essen-
tially a cyclic (n1d)-cocycle onA.

Theorem 19: For all a0 ,a1 ,...,an1dPCc
`(Rn3Td), one has

tF
(n1d)~a0 ,a1 ,...,an1d!5cn1dE

Rn3Td
a0ddRa1∧¯∧ddRan1d ,

for some constant cn1d and whereddR is the de Rham differential.
The proof of this theorem is really analogous to the case ofRn, which was proved by Langman
in Ref. 32.

3. Connes’ character formula

It was already mentioned in Ref. 16 that Connes’ character formula holds for noncom
manifolds. Specifically, we can construct a Hochschild (n1d)-cocycle, which agrees with the
Chern charactertF

(n1d) on Hochschild (n1d)-cycles to obtain Connes’ character formula for t
cylinder. In this simple case, this follows directly from Proposition 13 and Theorem 19, i
define a Hochschild (n1d)-cocycle by

cD
v~ ã0 ,a1 ,...,an1d!ªTrv~ ã0@D” ,a1#¯@D” ,an1d#uD” u2n2d!

~with xã0 instead ofã0 in the even case!. This expression makes sense by the summab
properties of the spectral triple. Similar to the Chern character, we can replaceã0 by a0 .

Theorem 20: For all a0 ,a1 ,...,an1dPCc
`(Rn3Td), we have

cD
v~a0 ,a1 ,...,an1d!5tF

(n1d)~a0 ,a1 ,...,an1d!.

C. Isospectral deformation of the cylinder

In Secs. II B and II C, we constructed the noncommutative cylinder as the famil
C* -algebrasC\u

(n,d) , \P(0,1#. Here C\u
(n,d) was defined as the completion ofS(Rn3Td) with

respect to the normi i\ , equipped with product* \ . Note that we here choose the more natu
Fourier transform instead ofS(Rn3Zd). We now want to describe the geometry of the nonco
mutative cylinder using the theory of spectral triples developed in the previous sections
approach we take involves isospectral deformation~see the following! of the ~Euclidean! Dirac
geometry of the cylinderRn3Td.

Deformation quantization provides a natural technique to obtain a noncommutative ana
of a function algebra. Starting from the Dirac geometry (C`(M ),H,D) of a compact spin mani-
fold M , the simplest noncommutative manifold is the triple (A\ ,H,D), whereA\ is obtained
from C`(M ) along the lines of deformation quantization. This recipe for noncommutative m
folds is called isospectral deformation, sinceH andD are unchanged. The only thing that chang
is the algebra and the way it acts on the Hilbert space.

The Dirac geometry of the cylinder is given by (C0
`(Rn3Td), H, D” ), where H5L2(Rn

3Td) ^ C2[(n1d)/2]
. However, in order to represent the deformed algebra on the same Hilbert s
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we have to restrict toS(Rn3Td),C0
`(Rn3Td). Let C \u

(n,d) denote the algebraS(Rn3Td)
equipped with product* \ . Note the difference with the noncommutative cylinderC\u

(n,d) as a
C* -algebra which is the completion ofC \u

(n,d) .
We want to construct a spin geometry on the noncommutative cylinder. Recall that a no

mutative spin geometry is a real spectral triple fulfilling Connes’ seven axioms.15 It was shown in
Refs. 16 and 33, that when the algebraA5C`(M ) on a compact spin manifoldM , the spin
structure, metric, and Dirac operator can be recovered from these seven axioms. However
case, we need a modification of these conditions. Clearly, bothS(Rn3Td) andC \u

(n,d) are nonuni-
tal. Hence, the conditions for a spin geometry on the noncommutative cylinder have to be
fied. Such a definition of a noncommutative noncompact spin geometry has been proposed
20.

Let us start by completing the set of ingredients for a spin geometry on the noncommu
cylinder. The basic element is the spectral triple (C \u

(n,d) ,H,D” ). A lengthy computation shows tha
p\( f )(D” 2l)21 is compact. Both the grading operatorx and the charge conjugation operatorC
are inherited from the commutative case.

Regularity, finiteness, and reality follow directly from the commutative case, since we
considering an isospectral deformation. However, the classical dimension cannot be ob
directly from the spectrum ofD” , since the latter is continuous. Following Ref. 20, it can
extracted from the leading term of the distributional kernel ofuD” u,33 so that it follows from the
commutative case, i.e., the classical dimension isn1d. The first order axiom is fulfilled since
@D” , f #PS(Rn3Td) if f PS(Rn3Td) and

Cp\~ f * !C21c5c* \ f 5p\
+ ~ f !c.

For the orientation, we need a Hochschild (n1d)-cycle c that satisfiespD” (c)5x. However,
C \

2d is Morita equivalent toC`(Td) ~see the Appendix! so that with Loday34

HH~C \
2d!5HH~C`~Td!!5HdR~Td!. ~23!

Hence, in the casen5d, pD” (c)50 for any 2d-cycle.
Poincare´ duality is satisfied in the casen5d and the special form ofu described before. Since

we are considering an isospectral deformation ofRd3Td, Poincare´ duality follows from the
commutative case. Indeed, we have

K •~C \
2d!>K •~Rd3Td!

as proved before. Since the pairing in Poincare´ duality involves only the K-groups of the algebr
and the Dirac operatorD” , the claim follows.

The real spectral triple (C \
2d , H, D” ,C,x) satisfies almost all conditions for a spin geome

on C \
2d . Only the orientation class does not exist for the dimension prescribed by the

operator. This illustrates again20 the need for an adjustment of the orientation axiom.

IV. NONCOMMUTATIVE LORENTZIAN MANIFOLDS AND ISOSPECTRAL DEFORMATION

We saw in the previous sections that spectral triples provide a powerful noncommu
description of Riemannian geometry, which allows for generalizations to noncompact man
However, in physics it is more natural to consider Lorentzian manifolds, and more gen
semi-Riemannian manifolds. In fact, this is closely related to noncompactness, as illustrated
key example: the cylinder. In string theory, one thinks of the cylinderR3T as the worldsheet o
a string, where the noncompact direction represents the time-axis. In order to give mean
notions such as time, a causal structure is needed and, therefore, an indefinite metric.
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Following Strohmaier,21 we start by setting up a general theory of Lorentzian manifolds
terms of spectral triples. Then we return to the~Lorentzian! cylinder and study its isospectra
deformation. For an introduction to semi-Riemannian and Lorentzian geometry, we refer to
35 and 36.

The description of a Lorentzian manifold in terms of spectral data requires a more ge
approach than that of Riemannian manifolds. This is enforced by the fact that the Lorentzian
operator is no longer a self-adjoint operator on the Hilbert space of square integrable sect
the spin bundle. Rather it is Krein-self-adjoint on the Krein space of square integrable sec
Furthermore, the signature of the Lorentzian metric implies nonellipticity of the Dirac operat
a pseudodifferential operator acting on smooth sections. Before we go into details on th
summarize some definitions concerning Krein spaces. For a more comprehensive overvi
refer to Ref. 37 or to the lecture notes by Dritschel and Rovnyak, Ref. 38.

Let V be a nondegenerate indefinite inner product space. It is calleddecomposableif there are
subspacesV2, V1 with V5V2

% V1 such that the inner product (•,•) is negative definite onV2

and positive definite onV1. The inner product then defines a norm on these subspaces. IfV2 and
V1 are complete in these norms, thenV is called aKrein space. To every decompositionV
5V2

% V1, we can associate an operatorJ52 id% id, called afundamental symmetry. This op-
erator defines a positive definite inner product onV by ^•,•&Jª(•,J•) which makesV a Hilbert
space.

Example 21:Consider flat Minkowski space,V5Rn, with inner product defined by (x,y)5
2x0y01x1y11¯1xn21yn21 . We haveV5R% Rn21 and J5diag(21,1,...,1). Clearly,^x,y&J

5( ixiyi is positive definite.

A. Lorentzian spin geometry

Our starting point will be ann-dimensional spin manifoldM , equipped with a Lorentzian
metricg, i.e., a metric with signature (n21,1). Spinors on this space–time are smooth section
the spin bundleS→M . In the following, we denote bygm the curved gamma-matrices, where
ga are the flat ones.39 The flat gamma matrixg0 plays a special role in that it defines an opera
Jª ig0 satisfyingJ251. In fact, this operator is a fundamental symmetry of the spaceL2(M ,S) of
square integrable sections of the spin bundle. The spaceL2(M ,S) is a Krein space endowed wit
the indefinite inner product

~c,f!ªE
M
(
i , j

c i* ~x!Ji j f j~x!Augudx.

1. Operators in Krein spaces

In what follows we will make a clear distinction between self-adjoint operators and Kr
self-adjoint operators inH.

The Krein adjointA[ * ] of a densely defined operatorA on a Krein spaceH is defined with
respect to the indefinite inner product (•,•) on H. One shows thatA[ * ]5JA* J and thatA is
Krein-self-adjoint if and only ifAJ ~or JA) is self-adjoint. See Ref. 21 for more details. Accordi
to Proposition 4.1 therein, we can formally write the square of a Krein-self-adjoint operatorA as

~A!Jª
1
2 ~AA* 1A* A!. ~24!

TheJ-dependency of this operator appears in the conjugation* . It follows that the operator (A)J is
self-adjoint and commutes withJ. Hence, it is Krein-self-adjoint by the above remarks.

2. Spacelike reflections and fundamental symmetries

Spacelike reflections make it possible to introduce a positive definite metric on a Loren
manifold ~or, more generally, on a semi-Riemannian manifold!. We give some of the basic notion
and refer to Ref. 21 for a more detailed description.
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Definition 22: Let (M ,g) be a semi-Riemannian manifold. Aspacelike reflection ris an
automorphism of the vector bundleTM, such that

~1! g(r .,r .)5g(.,.),
~2! r 25 id,
~3! gr(.,.)ªg(.,r .) is a positive definite metric onTM.

This map induces a splitting ofTM in a direct sumF1% F2 , such that

r ~x,k1% k2!5~x,2k1% k2!.

The metricgr is called theRiemannian metric associated to r.
If M is a semi-Riemannian spin manifold, we can associate an operatorJr to a spacelike

reflection r . Let e0 ,e1 , . . . ,ek be a local oriented orthonormal frame forF1 . We defineJr

ª ik(k11)g(e0)g(e1)¯g(ek21). In the case of a Lorentzian manifold, we haveJr5 ig0, which is
a fundamental symmetry of the Krein spaceL2(M ,S) as noted before.

3. The Dirac operator

We define the Dirac operator for a spin bundleS→M in local coordinates by

D” ªgm¹m
S5gaea

m¹m
S ~25!

acting on smooth sectionsG`(S). Here,¹S is the lift of the Levi-Civita connection to the spi
bundle. Its principal symbols(D” ) satisfies the relation

s~D” !~j!25g~j,j!. ~26!

This shows that the Dirac operator on a Lorentzian manifold is a nonelliptic pseudodiffer
operator that is not self-adjoint. However, from the fact thatiJ D” is self-adjoint, it follows that
D5 iD” is Krein-self-adjoint.

As ellipticity was an important property of the Dirac operator on a Riemannian manifold
define an elliptic self-adjoint operatorDJ using results of Sec. IV A 2:

DJª~~D !J11!1/2. ~27!

Ellipticity of this operator follows from considering its principal symbol:

s~DJ!~j!5Agr~j,j!, ~28!

where gr is the Riemannian metric associated tog. Furthermore,DJ is a pseudodifferentia
operator of order 1. This motivates the following definition.

Definition 23: An n1-summable semi-Riemannian spectral triple(A,H,D) is given by an
involutive algebra of operatorsA in a Krein spaceH, such thata* 5a[ * ] , and by a Krein-self-
adjoint operatorD5D [ * ] in H such that

~1! The commutators@D,a#ªDa2aD are bounded for anyaPA,
~2! The operatoraDJ

2n is in L (1,̀ ), for all aPA.

Similar to Definition 14, the triple is called even if there is a grading operatorx on H that satisfies
the relations stated there with the only adjustification that nowx [ * ]56x.

Of course, the triple (C0
`(M ),L2(M ,S),D), whereD5 iD” , is a semi-Riemannian spectra

triple, called thecanonical tripleassociated to the Lorentzian spin manifoldM . If the dimension
n of M is even, there is aZ2-grading on the Hilbert space given byx5 in/2g0

¯gn21 so that the
canonical triple is even. If the dimension ofM is odd, the canonical triple is odd. Since th
self-adjoint operatorDJ associated toD is an elliptic pseudodifferential operator of order 1
noted before, we have the following. Compare with Proposition 13.
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Proposition 24: Let f be an integrable function on an n-dimensional Lorentzian manifold M,
then

E
M

f ~x!Augudx5
n~2p!n

2[n/2]Vn
Trv~ f DJ

2n!.

For the canonical triple, the fundamental symmetries of the formJr for some spacelike
reflectionr play an important role. The analogue of such fundamental symmetries in the ge
case is given by the admissible fundamental symmetries as were defined in Ref. 21. There
proved that the admissible fundamental symmetries of the canonical triple are indeed exactl
of the formJr .

B. Hochschild cocylces

We associate a Hochschildn-cocycle to the canonical triple (C0
`(M ), L2(M ,S), D) as fol-

lows:

cD
v~a0,a1,...,an!5Trv~a0@D,a1#•••@D,an#uDJu2n!. ~29!

Another cocycle can be constructed using the following result.
Theorem 25:Let (C0

`(M ), L2(M ,S), D) be the semi-Riemannian canonical triple as defin
before. Then(C0

`(M ), L2(M ,S), DJ) is an n1-summable spectral triple.
Proof.The only nontrival condition to prove is the boundedness of@DJ, f # for any f [C0

`(M ).
SinceDJ is a pseudodifferential operator of order 1,@DJ, f # is of order 0, hence it is bounded.

h

We define the following Hochschildn-cocyle onC0
`(M ):

cDJ

v ~a0,a1,...,an!5Trv~a0@DJ,a1#•••@DJ,an#uDJu2n!. ~30!

Obviously the two Hochschild cocycles do not coincide. We illustrate this by the follow
example.

Example 26:Let M be a compact two-dimensional manifold, equipped with a Minkow
metric. We evaluate the two 2-cocycles using symbol calculus:

Trv~ f @DJ ,g#@DJ ,h#uDJu2n!5CE
M

f dg∧* ~dh!

in contrast to

Trv~ f @D,g#@D,h#uDJu2n!5C8E
M

f dg∧dh

for some integration constantsC,C8. Note the apperance of a Polyakov type function forcD
v in

this special case.

C. Isospectral deformation of the Lorentzian cylinder

With the theory of semi-Riemannian spectral triples developed in the previous sections
hands, we are now in a position to describe the geometry of the cylinder equipped with a
Riemannian metric. In this section, we will discuss the semi-Riemannian spectral triple th
scribes the cylinder equipped with a Minkowski metric. Then we discuss isospectral deform
in this case, similar to what has been done before in the Euclidean setting. Finally, we sho
the set of admissible fundamental symmetries of the noncommutative cylinder coincides w
set of fundamental symmetries coming from spacelike reflections in spinor space.

The cylinder can be described by the following semi-Riemannian spectral triple:
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AªC0
`~Rn3Td!,

HªL2~Rn3Td! ^ C2[(n1d)/2]
,

Dª iD” .

HereD” 5ga]a , where the gamma-matrices satisfy$ga,gb%52hab for the flat~Minkowski! metric
h5(21,1,...,1).

In order to obtain a noncommutative manifold, we perform isospectral deformation o
Lorentzian cylinder, along the same lines as we did before for the Euclidean cylinder. We r
to S(Rn3Td) in order to represent the deformed algebraC \u

(n,d) on the Hilbert spaceH.
Theorem 27: The triple (C \u

(n,d) , H, D) is a semi-Riemannian spectral triple, which is a
isospectral deformation of(S(Rn3Td), H, D).

One could very well imitate the construction of the Riemannian spin geometry onC \
2d to

obtain a Lorentzian spin geometry on the noncommutative cylinder. However, it turns out t
order to obtain for example the Lorentzian distance function from a canonical triple, one ne
different approach.40

An admissible fundamental symmetryJ for the triple (S(Rn3Td), H, D) is also admissible
for the noncommutative cylinder. Indeed,C \u

(n,d) is invariant under conjugation withJ. Invariance
of p(VC \u

(n,d)) follows from the following lemma.
Lemma 28: For the semi-Riemannian spectral triple(C \u

(n,d) , H, D) we have

p~VpC \u
(n,d)!5H(

j
ajg~v1

j !¯g~vp
j !: ajPC \u

(n,d) ,v i
jPC2[(n1d)/2]J .

Proof: Recall the theory of universal forms on nonunital algebras described before.
@D,a#5 ig(da) still holds, we have foraiPC \u

(n,d) ,

p~ ã0da1¯dap!5p~ ã0!p~]m1
a1!¯p~]mp

ap!g~dx1
m!¯g~dxp

m!,

which is of the required form. Forp50 we havep(V0C \u
(n,d))5C \u

(n,d) . h

In Sec. IV A, we saw that the set of admissible fundamental symmetries of the s
Riemannian canonical triple coincides with the set of fundamental symmetries coming from s
like reflections inC2[(n1d)/2]

. Strohmaier21 showed that this statement also holds for noncommu
tive tori with trivial center. For the noncommutative cylinder, we restrict to the class describ
Sec. II C, wheren5d. There, we proved the following isomorphism ofC* -algebras:

C\
2d>B0~L2~Td!! ^ C~Td!. ~31!

The appearance of the set of compact operators in the tensor product plays a central role
following result. It turns out to hold in a slightly more general setting, i.e., in the case
semi-Riemannian Dirac operator.

Theorem 29: The set of admissible fundamental symmetries of the noncommutative
Riemannian cylinder(C \

2d , H, D) coincides with the set

$Jr :r is a spacelike reflection ofC2d
%.

Proof: Let r be a spacelike reflection ofC2d
. It follows from Lemma 28 thatJr is admissible.

For the proof of the converse statement, suppose thatJ is an admissible fundamental symmetry
(A, H, D), where we takeAªC \

2d . SinceJ commutes with all elements inA, we have

JPA8^ End~C2d
!,
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whereA8 is the commutant ofA in B(L2(Rd3Td)). Since the opposite algebraA°, which acts on
H from the right, is a dense subalgebra ofA8, we have for its unitization, with formula~10.82! in
Ref. 16,

Ã°5$TP~A° !9: TPDom`d%5$TPA8: TPDom`d%,

where Dom`d is the smooth domain of the derivationdª@DJ ,.#. Here we used the fact tha
A85Ã8. SinceJ is smooth,JPDom`d, and it follows thatJPÃ° ^ End(C2d

). Note that the
construction in Ref. 16 relies on finitely generated projective modules so that it does not d
apply to nonunital algebras.

Sincep(VpA) is invariant under conjugation withJ, we have

@Jp~V1A!J,Ã°#5@p~V1A!,Ã°#50.

In particular, for anyãg(v)Pp(V1A), we haveã@Jg(v)J,Ã°#50 so thatJg(v)J has entries in
the center ofÃ°. SinceC(A)5C(C\

2d)50, as can be seen from formula~30!, we infer that
C(Ã)5C. Hence,Jg(v)J must be an element of End(C2d

), so thatJg(v)J52g(rv) for some
endomorphismr of C2d

. One checks the conditions of Definition 22 to conclude thatr is a
spacelike reflection. Hence there existsJr such thatJg(v)J5Jrg(v)Jr . Define the operatora
ªJJr . It commutes with allg(v), so thataPÃ°. SinceJrPEnd(C2d

), @a,Jr #50. One shows
that a25a[ * ]a5aa[ * ]51 and that

^j,aj&Jr
5~j,Jraj!5~j,Jj!>0, ~jPH!.

We conclude thata51 andJ5Jr . h
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APPENDIX: MORITA EQUIVALENCE OF C \
2d AND S„Zd

…

Theorem 30: The Fréchet algebrasC \
2d and S(Zd) are Morita equivalent via the Fre´chet

bimoduleS(Rd), i.e.,

S~Rd! ^̄ S(Zd)S~Rd!>C \
2d ,

S~Rd! ^̄ C
\
2dS~Rd!>S~Zd!.

Here ^̄ A denotes the completion of the tensor product over a Fre´chet algebraA in the projective
tensor product topology.

For notational convenience, we restrict to the cased51. Recall thatC \
2 is the Fréchet algebra

S(R3T) equipped with the following product:

~F* G!~x,t !5E
R
dy F~y,t !G~x2y,t2p~y!!,

wherep:R→R/Z>T is the natural projection. We equip it with the following submultiplicati
seminorms:41
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pa,b,g~F !5E
T
dtE

R
dx~11uxu!au]x

b] t
gF~x,t !u.

The algebraS~Z! is equipped with the usual convolution product and the corresponding sub
tiplicative seminorms

qa~a!5 (
nPZ

~11unu!aua~n!u.

Proof: The moduleS(R) is a FréchetC \
22S(Z) bimodule in the following sense. First of al

it consists of differentiable functions onR with the topology given by the seminormsna,b,

na,b~ f !ªE
R
dx~11uxu!au]x

b f ~x!u. ~A1!

The left and right actions ofC \
2 andS(Z) are defined by

F• f ~x!5E
R
dy F~x2y,p~x!! f ~y!, ~A2!

f •a~x!5(
n

a~n! f ~x1n!. ~A3!

One checks that these actions are continuous and that (F* G)• f 5F•(G• f ), f •(a* b)5( f •a)
•b. Furthermore, compatibility of both actions, (F• f )•a5F•( f •a) is easily checked. We write

C
\
2S(R)S(Z) .

We will endowS~R! also with the structure of aS(Z)2C \
2 bimodule:

f •F~x!5E
R
dy F~y2x,p~y!! f ~y!, ~A4!

a• f ~x!5(
n

a~n! f ~x2n!. ~A5!

Again, this module satisfies the right properties and we writeS(Z)S(R)C
\
2.

Recall that an essential Fre´chetA-modulesX satisfiesA•X,X densely.42

Lemma 31: The Fre´chet bimodulesC
\
2S(R)S(Z) and S(Z)S(R)C

\
2 are essential.

Proof: Since the algebraS~Z! is unital for the convolution product, there is nothing to pro
there. The algebraC \

2 has an approximate identity$el%lPL defined by

el~x,t !ª
l

Ap
e2lx2

.

We haveel• f→ f and f •el→ f for f PS(R). h

We proceed by defining bilinear maps,

f̃:S~R!3S~R!→C \
2,

f̃~ f ,g!~x,t !5(
n

f ~ t2n!g~ t2x2n!, ~A6!

c̃:S~R!3S~R!→S~Z!,
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c̃~ f ,g!~n!5E
R
dx f~x!g~x2n!. ~A7!

One checks that the mapsf̃ and c̃ are bounded bilinear module maps. They are balanced s
one easily computes

f̃~ f •a,g!5f̃~ f ,a•g!,

c̃~ f •F,g!5c̃~ f ,F•g!. ~A8!

Therefore, we can extendf̃ and c̃ to the tensor product:

f:S~R! ^̄ S(Z)S~R!→C \
2,

c:S~R! ^̄ C
\
2S~R!→S~Z!. ~A9!

Note that the mapsf̃ and c̃ satisfy the following properties:

f̃~ f ,g!•h5 f •c̃~g,h!,

c̃~ f ,g!•h5 f •f̃~g,h!. ~A10!

Lemma 32: The module morphismsf and c are surjective.
Proof: Let FPC \

2 . DefineHPS(R) ^̄ S(Z)S(R) by

H~x,y!ª f ~x!F~x2y,p~x!!,

wheref PS(R) satisfies(nf (t2n)51 for all tP@0,1). Thenf(H)5F. For surjectivity ofc it is
enough to construct a functionf PS(R) with c( f ^ f )51S(Z) . Clearly, this holds for a functionf
with suppf P(0,1) and*dxu f (x)u251. h

Lemma 33: The module morphismsf and c are injective

Proof: Let ( if̃( f i ,gi)50. Then

f̃~ f ,g!•(
i

f i ^ S(Z)gi5( f̃~ f ,g!• f i ^ S(Z)gi5( f •c̃~g, f i ! ^ S(Z)gi

5( f ^ S(Z)c̃~g, f i !•gi5 f ^ S(Z)g•(
i

f̃~ f i ,gi !50, ~A11!

using formula~A10! twice. Hence,F•( i f i ^ S(Z)gi50 for all FPC \
2 . SinceC \

2 has an approxi-
mate identity it follows that( i f i ^ S(Z)gi50. SinceS(Z) is unital, we find similarly injectivity
of c. h

This completes the proof of the theorem.
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Ruijsenaars–Schneider models associated withAn21 root system with a discrete
coupling constantare studied. The eigenvalues of the Hamiltonian are given in
terms of the Bethe ansatz formulas. Taking the ‘‘nonrelativistic’’ limit, we obtain
the spectrum of the corresponding Calogero–Moser systems in thethird formulas
of Felderet al. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1635067#

I. INTRODUCTION

Ruijsenaars–Schneider~RS! models1,2 are integrable generalization of Calogero–Moser~CM!
models3,4 at both classical and quantum levels. The integrability of classical RS models asso
with various root systems were studied by Lax pair representation forAn21 ,1 for Dn ,5 for Cn and
BCn with one coupling constant.6 The commuting conserved quantities for quantum RS mod
were discussed in Refs. 2, 7, 8, and 9.

It is well known that the Hamiltonian of RS model with degenerate potentials~trigonometric
and rational ones! is one of the commuting families of Macdonald operators,10 which are also
calledRuijsenaars–Macdonald operators. The eigenfunctions of thedegenerateHamiltonian are
given by so-calledMacdonald polynomials.10 However, an analogous construction for ellipt
generalization ofMacdonald polynomialsis still an open problem.

Bethe ansatz method has proved to be the most powerful and~probably! unified method to
construct the common eigenvectors of commuting families of operators~usually calledtransfer
matrices! in two-dimensional trigonometric and rational integrable models.11–15 Recently, after a
definition of elliptic quantum groupsEt,h(g) associated with any simple classical Lie algebrag
was given,16 the algebraic Bethe ansatz method has been successfully extended. The met
construction of the eigenvectors of the transfer matrices associated with the module overEt,h(sl2)
~Ref. 17! is now generalized to apply for those associated with the module overEt,h(sln) with
genericn.18,19

In particular, the ellipticRuijsenaars–Macdonald operator~3.7! with a discretecoupling
constantg5A21gl ~l being a non-negative integer! associated withAn21 root system can be
rewritten as thetransfer matricesassociated with the symmetricn3 l tensor product evaluation
Et,h(sln) module.20 This enables us to obtain the eigenvalues of the Hamiltonian of elliptic
models with the discretecoupling constantg5A21gl associated withAn21 root system by the
algebraic Bethe ansatz for elliptic quantum groupEt,h(sln).

The paper is organized as follows. In Sec. II, we give a brief review of the algebraic B
ansatz for elliptic quantum groupEt,h(sln) developed in Ref. 19. In Sec. III, choosing the spec
Et,h(sln)-moduleW5VL(nl)(0), we give the eigenvalues of elliptic RS model with the discre
coupling constantg5A21gl and the associated Bethe ansatz equations. Taking the dege
5590022-2488/2004/45(2)/559/17/$22.00 © 2004 American Institute of Physics
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~trigonometric and rational! limit, we obtain the eigenvalues of Hamiltonian of the degenerate
models associated withAn21 root system. In Sec. IV, taking the ‘‘nonrelativistic’’ limit,21 we
obtain the eigenvalues of elliptic, trigonometric and rational types of CM models associated
An21 root system with an integercoupling constantg5 l 11 in the Bethe ansatz formulas or th
third formulasin the sense of Felderet al.22

II. ALGEBRAIC BETHE ANSATZ FOR ELLIPTIC QUANTUM GROUP Et,h„sl n…

A. Elliptic quantum group associated with A nÀ1

We first review the definition of the elliptic quantum groupEt,h(sln) associated withAn21 .16

Let $e i u i 51,2,...,n% be the orthonormal basis of the vector spaceCn such that̂ e i ,e j&5d i j . The
An21 simple roots are$a i5e i2e i 11u i 51,...,n21% and the fundamental weights$L i u i 51,...,n
21% satisfying^L i ,a j&5d i j are given by

L i5 (
k51

i

ek2
i

n (
k51

n

ek .

Set

î 5e i2 ē, ē5
1

n (
k51

n

ek , i 51,...,n, then (
i 51

n

î 50. ~2.1!

L~ l !5 lL1 , l PZ and l .0. ~2.2!

Let h be the Cartan subalgebra ofAn21 andh* be its dual. A finite dimensional diagonalizab
h-module is a complex finite dimensional vector spaceW with a weight decompositionW
5 % mPh* W@m#, so thath acts onW@m# by xv5m(x)v, (xPh,vPW@m#). For example, the
fundamental vector representationVL1

5Cn, the nonzero weight spacesW@ î #5Ce i , i 51,...,n.
Let us fix t such that Im~t!.0 and a generic complex numberh. For convenience, we

introduce another parameterw5nh related toh. Let us introduce the following elliptic functions

uFabG~u,t!5 (
m52`

`

exp$A21p@~m1a!2t12~m1a!~u1b!#%, ~2.3!

s~u!5uF 1
2

1
2
G ~u,t!, z~u!5]u$ ln s~u!%, `~u!52]u$z~u!%. ~2.4!

These functions have the following properties:

s~u!501us8~0!1
u3

6
s-~0!1¯, when u→0, ~2.5!

s~2u!52s~u!, z~2u!52z~u!, `~2u!5`~u!, ~2.6!
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wheres8(0)5]u$s(u)%uu50 ands-(0)5]u
3$s(u)%uu50 .

For a genericlPCn, define

l i5^l,e i&, l i j 5l i2l j5^l,e i2e j&, i , j 51,...,n. ~2.7!

Let R(z,l)PEnd(Cn
^ Cn) be theR-matrix given by

R~z,l!5(
i 51

n

Rii
i i ~z,l!Eii ^ Eii 1(

iÞ j
$Ri j

i j ~z,l!Eii ^ Ej j 1Ri j
j i ~z,l!Eji ^ Ei j %, ~2.8!

in which Ei j is the matrix with elements (Ei j )k
l 5d jkd i l . The coefficient functions are

Rii
ii ~z,l!51, Ri j

i j ~z,l!5
s~z!s~l i j 1w!

s~z1w!s~l i j !
, ~2.9!

Ri j
j i ~z,l!5

s~w!s~z1l i j !

s~z1w!s~l i j !
, ~2.10!

andl i j is defined in~2.7!. TheR-matrix satisfies the dynamical~modified! quantum Yang–Baxter
equation.

R12~z12z2 ,l2wh~3!!R13~z12z3 ,l!R23~z22z3 ,l2wh~1!!

5R23~z22z3 ,l!R13~z12z3 ,l2wh~2!!R12~z12z2 ,l!, ~2.11!

with the initial condition

Ri j
kl~0,l!5d i

ld j
k . ~2.12!

We adopt the notationR12(z,l2wh(3)) acts on a tensorv1^ v2^ v3 as R(z,l2wm) ^ Id if v3

PW@m#.
A representation of the elliptic quantum groupEt,h(sln) @an Et,h(sln)-module# is by defini-

tion a pair (W,L) whereW is a diagonalizableh-module andL(z,l) is a meromorphic function of
l and the spectral parameterzPC, with values in Endh(C

n
^ W) ~the endomorphisms commutin

with the action ofh!. It obeys the so-calledRLL relation

R12~z12z2 ,l2wh~3!!L13~z1 ,l!L23~z2 ,l2wh~1!!5L23~z2 ,l!L13~z1 ,l2wh~2!!R12~z12z2 ,l!,
~2.13!

where the first and second space are auxiliary spaces (Cn) and the third space plays the role of th
quantum space~W!. The total weight conservation condition for theL-operator reads

@h~1!1h~3!,L13~z,l!#50.

In terms of the elements of theL-operator defined by

L~z,l!~e i ^ v !5(
j 51

n

e j ^ Li
j~z,l!v, vPW, ~2.14!

the above condition can be expressed equivalently as

f ~h!Li
j~z,l!5Li

j~z,l! f ~h1 î 2 ĵ !, ~2.15!

in which f (h) is any meromorphic function ofh andh measures the weight of the quantum spa
~W!.
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B. Modules over Et,h„sl n… and the associated operator algebra

The basic example of anEt,h(sln)-module is (Cn,L) with L(z,l)5R(z2z1 ,l), which is
called the fundamental vector representationVL1

(z1) with the evaluation pointz1 . It is obvious
that theRLL relation is satisfied as a consequence of the dynamical Yang–Baxter equation~2.11!.
Other modules can be obtained by taking tensor products: if (W1 ,L (1)) and (W2 ,L (2)) are
Et,h(sln)-modules, whereL ( j ) acts on (Cn

^ Wj ), then also (W1^ W2 ,L) with

L~z,l!5L ~1!~z,l2wh~2!!L ~2!~z,l! acting on Cn
^ W1^ W2 . ~2.16!

An Et,h(sln)-submodule of anEt,h(sln)-module (W,L) is a pair (W1 ,L1) whereW1 is an
h-submodule ofW such thatCn

^ W1 is invariant under the action of all theL(z,l), andL1(z,l)
is the restriction to this invariant subspace. Namely, theEt,h(sln)-submodules are
Et,h(sln)-modules.

Using the fusion rule of Et,h(sln) ~2.16! one can construct the symmetr
Et,h(sln)-submodule ofl-tensors of fundamental vector representations:

VL~ l !~z1!5symmetric subspace ofVL1
~z1! ^ VL1

~z12w! ^¯^ VL1
~z12~ l 21!w!,

whereL ( l ) is defined by~2.2!. We call such anEt,h(sln)-module thehigher spin-l representation
with the evaluation pointz1 . These series of representations in the case ofZn Sklyanin algebra
have been studied in Ref. 23 forn52 case and in Refs. 24 and 25 for genericn case.

For any Et,h(sln)-module, as in Ref. 17 one can define an associated operator algeb
difference operators on the space Fun(W) of meromorphic functions ofl with values inW. The
algebra is generated byh and the operatorsL̃(z)PEnd(Cn

^ Fun(W)) acting as

L̃~z!~e i ^ f !~l!5(
j 51

n

e j ^ Li
j~z,l! f ~l2wî !. ~2.17!

One can derive the following exchange relation of the difference operatorL̃(z) from the RLL
relation ~2.13!, the weight conservation conditionLi

j (z,l) ~2.15! and the fact @h(1)

1h(2),R12(z,l)#50,

R12~z12z2 , l2wh!L̃13~z1!L̃23~z2!5L̃23~z2!L̃13~z1!R12~z12z2 ,l!, ~2.18!

f ~h!L̃ i
j~z!5L̃ i

j~z! f ~h1 î 2 ĵ !, ~2.19!

where f (h) is any meromorphic function ofh. Let W5VL( l 1)(z1) ^ VL( l 2)(z2) ^¯^ VL( l m)(zm)
andL5L ( l 1)1¯1L ( l m), thenW@L#5CuL& with uL&5uL ( l 1)& ^¯^ uL ( l m)&.

Theorem 1„Ref. 19…: With generic evaluation points$zi%, W is an irreducible highest weigh
Et,h(sln)-module and the vectoruL&, viewed as a constant function in Fun(W), obeys the follow
highest weight conditions:

L̃1
1~z!uL&5A~z,l!uL&, L̃1

i ~z!uL&50, i 52,...,n,

L̃ j
i ~z!uL&5d j

i Di~z,l!uL&, i , j 52,...,n, f ~h!uL&5 f ~N1̂!uL&.

The highest weight functions read

A~z,l!51, Di~z,l!5H )
k51

m
s~z2pk!

s~z2qk!
J s~l i11Nw!

s~l i1!
, i 52,...,n, ~2.20!

where
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pk5zk , qk5zk2 l kw, N5 (
k51

m

l k , k51,...,m. ~2.21!

The transfer matricesassociated with anEt,h(sln)-module (W,L) ~Ref. 17! are difference opera
tors acting on the space Fun(W)@0# of meromorphic functions ofl with values in the zero-weigh
space ofW. They are defined by

T~u! f ~l!5(
i 51

n

L̃ i
i~u! f ~l!5(

i 51

n

Li
i~u,l! f ~l2wî !. ~2.22!

The exchange relations ofL̃-operators~2.18! and~2.19! imply that, for anyEt,h(sln)-module, the
above transfer matrices preserve the spaceH5Fun(W)@0#. Moreover, they commute pairwise o
H:@T(u),T(v)#uH50.

C. Algebraic Bethe ansatz for Et,h„sl n…

We fix a highest weightEt,h(sln)-moduleW of weight L, the functionsA(z,l), Di(z,l)
~2.20!, with the highest weight vectoruL&. We assume thatN5(k51

m l k5n3 l with l being an
integer, so that the zero-weight spaceW@0# can be nontrivial and that the algebraic Bethe ans
method can be applied as in Refs. 26, 27, 28, 17, and 19.

Let us adopt the standard notation for convenience:

A~u!5L̃1
1~u!, Bi~u!5L̃ i

1~u!, i 52,...,n, ~2.23!

Ci~u!5L̃1
i ~u!, Di

j~u!5L̃ i
j~u!, i , j 52,...,n. ~2.24!

The transfer matricesT(u) become

T~u!5A~u!1(
i 52

n

Di
i~u!. ~2.25!

Any nonzero vectoruV&PFun(W)@L# is of form uV&5g(l)uL&, for some meromorphic function
gÞ0. WhenN5n3 l , the weightL can be written in the form

L5nlL15 l (
k51

n21

~e12ek11!. ~2.26!

Noting ~2.19!, the zero-weight vector space is spanned by the vectors of the following form

Bi N1
~vN1

!Bi N121
~vN121!¯Bi 1

~v1!uV&, ~2.27!

whereN15(n21)3 l and among the indices$ i kuk51,...,N1%, the number ofi k5 j , denoted by
#( j ), should be

#~ j !5 l , j 52,...,n. ~2.28!

The above states~2.27! actually belong to the zero-weight spaceW@0#.19 Let us introduce the
following set of integers for convenience:

Ni5~n2 i !3 l , i 51,2,...,n21, ~2.29!

and@n(n21)/2# l parameters$$vk
( i )uk51,2,...,Ni 11%,i 50,1,...,n22%. The parameters$$vk

( i )%% will
be specified later by the Bethe ansatz equations~2.40!. We will seek the common eigenvectors
the transfer matrices T(u) in the form
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ul;$vk%&5 (
i 1 ,¯,i N1

52

n

Fi 1 ,i 2 ,...,i N1~l;$vk%!Bi N1
~vN1

!Bi N121
~vN121!¯Bi 1

~v1!uV&, ~2.30!

with the restriction condition~2.28!. We adopt hereafter the convention

vk5vk
~0! , k51,2,...,~n21!3 l . ~2.31!

Let us introducen parameters$a ( i )u i 51,...,n% to specify quasivacua of each step of the nes
Bethe ansatz,19 and another set of parameters related to them,

ā~ i !5
1

~n2 i 21!
H a~ i 11!2

(
k5 i 11

n

a~k!

n2 i
J , i 50,...,n22. ~2.32!

Choosing the function ofg(l),

g~l!5eA21p^a~1!e1 ,l&)
j 52

n H )
k51

l
s~l j 11kw!

s~w! J , ~2.33!

then we have the following.
Theorem 2 „Ref. 19…: With properly chosen coefficients Fi 1 ,i 2 ,...,i N1(l;$vk%), we obtain

eigenvectors of the transfer matrices

T~u!ul;$vk%&5t~u;$vk%!ul;$vk%&, ~2.34!

with the eigenvalue

t~u;$vk%!5eA21p~12n!āwH )
k51

N1 s~vk2u1w!

s~vk2u! J 1eA21pāwH )
k51

N1 s~u2vk1w!

s~u2vk!
J

3H )
k51

m
s~u2pk!

s~u2qk!
J t ~1!~u;$vk

~1!% !. ~2.35!

The functions t( i )(u;$vk
( i )%) are given recursively,

t ~ i !~u;$vk
~ i !% !5eA21p~ i 112n!ā~ i !wH )

k51

Ni 11 s~vk
~ i !2u1w!

s~vk
~ i !2u!

J 1eA21pā~ i !wH )
k51

Ni 11 s~u2vk
~ i !1w!

s~u2vk
~ i !!

J
3H )

k51

Ni s~u2pk
~ i !!

s~u2qk
~ i !!

J t ~ i 11!~u;$vk
~ i 11!% !, i 50,1,...,n22, ~2.36!

t ~n21!~u!51, t ~0!~u;$vk
~0!% !5t~u;$vk%!, ~2.37!

whereā ( i ), i 50,1,...,n22 are given by (2.32), ā (0)5ā, N05m and

pk
~0!5pk5zk , qk

~0!5qk5zk2 l kw, k51,2,...,m, ~2.38!

pk
~ i !5vk

~ i 21! , qk
~ i !5vk

~ i 21!2w, i 51,2,...,n22, k51,2,...,Ni . ~2.39!

The$$vk
( i )%% satisfy the following Bethe ansatz equations:
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eA21p~ i 2n!ā~ i !wH )
k51,kÞs

Ni 11 s~vk
~ i !2vs

~ i !1w!

s~vk
~ i !2vs

~ i !2w!
J 5H )

k51

Ni s~vs
~ i !2pk

~ i !!

s~vs
~ i !2qk

~ i !!
J t ~ i 11!~vs

~ i ! ;$vk
~ i 11!% !.

~2.40!

In principle one can construct explicit expression of the coefficients ofFi 1 ,i 2 ,¯,i N1(l;$vk%) ~for
details we refer the reader to Ref. 19!.

We conclude this section with some remarks on functional dependence of the statesul;$vk%&.
By construction~2.23!, the operators$Bi% are the functions of$l i2l j% because of the definition
of the R-matrix ~2.9!–~2.10!, and the states can be written in the following form:

ul;$vk%&5expH (
i 51

n

A21pa~ i !l iJ ul;$vk%&. ~2.41!

Here ul;$vk%& is a meromorphic function of$l i% and has the following properties:

ul11c,...,ln1c;$vk%&5ul1 ,...,ln ;$vk%&, for ;cPC, ~2.42!

ul1 ,...,l i 21 ,l i11,l i 11 ,...ln ;$vk%&5~21! l ~n21!ul1 ,...,ln ;$vk%&, i 51,...,n. ~2.43!

III. RUIJSENAARS–SCHNEIDER MODELS ASSOCIATED WITH A nÀ1 ROOT SYSTEM

A. The elliptic case

W5VL~nl !~0!, ~3.1!

in which the evaluation pointz1 is set to 0. Then the zero-weight space of this module is o
dimensional:ul;$vk%&5F̃RS(l;$a ( i )%)e0 , e0PW@0# and it does not depend onl i . The associ-
atedtransfer matricescan be written as20

T~u!5
s~u1 lw !

s~u1nlw!
M . ~3.2!

The operatorM is independent ofu and is given by

M5(
i 51

n H)
j Þ i

s~l i j 1 lw !

s~l i j !
G iJ . ~3.3!

Here$G i% are difference operators:G i f (l)5 f (l2wî). Noting ~2.41!–~2.43! and~3.14!, we find

MF̃RS5H̃RSF̃RS5eRSF̃RS. ~3.4!

The difference operatorH̃RS is given by

H̃RS5(
i 51

n H)
j Þ i

s~l i j 1 lw !

s~l i j !
e2w~]/]l i !J . ~3.5!

In order to apply Theorem 2 to RS model, hereafter we restrict the parameterst and w as
follows:

t5A21k, kPR, k.0, w5A21g, ~3.6!
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where g is a real number. This is necessary for the reality of the Hamiltonian. Becaus
parameters$l i% will play the role of the canonical coordinates, we further restrictl iPR. In terms
of the specified parameters,H̃RS becomes

H̃RS5(
i 51

n H)
j Þ i

s~l i j 1A21gl !

s~l i j !
e2A21g~]/]l i !J . ~3.7!

The resulting difference operatorH̃RS will be the Hamiltonian of ellipticAn21 type RS model2

with the specialcoupling constantg5A21gl, up to conjugation by a function.25,29 SupposeF̃RS

andeRS are an eigenfunction and the corresponding eigenvalue ofH̃RS,

H̃RSF̃RS5eRSF̃RS. ~3.8!

Let us introduce another functionFRS,

FRS5e2CRSF̃RS, CRS5
1

2
ln )

iÞ j
H )

k51

l
s~l i j 2A21gk!

s~A21g!
J , ~3.9!

associated toF̃RS. ThenFRS is an eigenfunction of the similarity transformed HamiltonianHRS

with the same eigenvalueeRS,

HRSFRS5eRSFRS, HRS5e2CRSH̃RSe
CRS, ~3.10!

HRS5(
i 51

n H)
j Þ i

s~l j i 2A21gl !

s~l j i !
J 1/2

e2A21g~]/]l i !H)
j Þ i

s~l i j 2A21gl !

s~l i j !
J 1/2

. ~3.11!

One finds thatHRS is the Hamiltonian of ellipticAn21 type RS model2 with the specialcoupling
constantg5A21gl.

Now, we consider the spectrum ofH̃RS. Theorem 2 enables us to obtain the spectrum of
Hamiltonian of the ellipticAn21 Ruijsenaars–Schneider model as well as the eigenfunction
terms of the associated transfer matrices~3.2!. Since we have already taken the spec
Et,h(sln)-moduleW5VL(n3 l )(0), thanks to Theorem 2, the eigenvalues are given by~2.34! and
~2.35! but with special values of the parameters

m5N051, p1
~0!5z150, q1

~0!52A21gnl. ~3.12!

SinceM is independent ofu, we can evaluate the eigenvalues ofT(u) at u5z150. Then the
expression of the eigenvaluet(u;$vk%) simplifies drastically, for the second term on the right-ha
side of ~2.35! @the one depending on the eigenvalue of the reduced transfer matricet (1)

3(u;$vk
(1)%)] vanishes becauseu2p1

(0)50.
Note thatH̃RS(HRS) has periodic coefficients withl i→l i11, and therefore preserves th

space of Bloch functions such that

c~l1 ,...,l i 21 ,l i11,l i 11 ,...,ln!56~21! l ~n21!c~l1 ,...,ln!. ~3.13!

The ~quasi!periodicity requires integera ( i ), a ( i )PZ. Noting the relation~2.32!, in order to get
one-to-one correspondence between$a ( i )% and$ā ( i )%, we need further choose

a~ i !PZ1, i 51,...,n21, and a~n!52 (
k51

n21

a~k!. ~3.14!

Finally, we obtain the eigenvalueseRS($vk%) of H̃RS ~3.4!:
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ep~n21!āg
s~A21gnl!

s~A21gl !
H )

k51

~n21!3 l
s~vk1A21g!

s~vk!
J , ~3.15!

where$$vk
( i )%% satisfy the Bethe ansatz equations

ep~n2 i !ā~ i !gH )
k51,kÞs

Ni 11 s~vk
~ i !2vs

~ i !1A21g!

s~vk
~ i !2vs

~ i !2A21g!
J 5H )

k51

Ni s~vs
~ i !2pk

~ i !!

s~vs
~ i !2qk

~ i !!
J t ~ i 11!~vs

~ i ! ;$vk
~ i 11!% !,

i 50,1,...,n22. ~3.16!

The functionst ( i )(u) appearing in~3.16! are given by the same recurrence relations as~2.36!–
~2.37!, but with the specialN051, p1

(0)50, andq1
(0)52A21gnl and replacingw by A21g.

Substituting the expression of the functiont ( i 11)(u) ~2.36! into the Bethe ansatz equations~3.16!,
noting the conditions~3.12! and ~2.39!, we have the following.

Proposition 1: The eigenvalues of the Hamiltonian (3.11) of the elliptic RS model assoc
with An21 root system with the discrete coupling constantg5A21gl (l being an integer) are

eRS5ep~n21!āg
s~A21gnl!

s~A21gl !
H )

k51

~n21!3 l
s~vk1A21g!

s~vk!
J . ~3.17!

The @n(n21)/2# l parameters$$vk
( i )%% satisfy the Bethe ansatz equations

epnāg )
k51,kÞs

N1 s~vk2vs1A21g!

s~vk2vs2A21g!
5ep~n22!ā~1!g

s~vs!

s~vs1A21gnl!
)
k51

N2 s~vk
~1!2vs1A21g!

s~vk
~1!2vs!

,

~3.18!

ep~n2 i !ā~ i !g )
k51,kÞs

Ni 11 s~vk
~ i !2vs

~ i !1A21g!

s~vk
~ i !2vs

~ i !2A21g!
5ep~n2 i 22!ā~ i 11!g)

k51

Ni s~vs
~ i !2vk

~ i 21!!

s~vs
~ i !2vk

~ i 21!1A21g!

3 )
k51

Ni 12 s~vk
~ i 11!2vs

~ i !1A21g!

s~vk
~ i 11!2vs

~ i !!
, i 51,...,n23,

~3.19!

e2pā~n22!g )
k51,kÞs

Nn21 s~vk
~n22!2vs

~n22!1A21g!

s~vk
~n22!2vs

~n22!2A21g!
5 )

k51

Nn22 s~vs
~n22!2vk

~n23!

s~vs
~n22!2vk

~n23!1A21g!
. ~3.20!

The parametersā ( i ), i 50,1,...,n22 and ā (0)5ā are given by the relation (2.32) from n21
arbitrary non-negative integers$a ( i )PZ1u i 51,...,n21%.

Our formula of eigenvalues is the elliptic generalization of thethird formulasin the sense of
Felderet al.22 Taking complex conjugation of the Bethe ansatz equations~3.18!–~3.20!, noting the
property~A5!, we find that the solutions$$vk

( i )%% are all pure imaginary numbers. This ensures t
the eigenvalueseRS are real. By construction from the nested Bethe ansatz method and the re
~3.9!, we know that the corresponding eigenfunction is a meromorphic function of$l i% and
satisfies the following properties:

FRS~l1 ,...,l i 21 ,l i11,l i 11 ,...,ln ;$a~ i !% !5~21!a~ i !
FRS~l;$a~ i !% !. ~3.21!

B. The trigonometric case

Here we consider the trigonometric RS model associated withAn21 root system. The corre
sponding Hamiltonian with the discretecoupling constantg5A21gl is given
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HRS5(
i 51

n H)
j Þ i

sinp~l j i 2A21gl !

sinp~l j i !
J 1/2

e2A21g~]/]l i !H)
j Þ i

sinp~l i j 2A21gl !

sinp~l i j !
J 1/2

.

~3.22!

Taking the trigonometric limitk→1` (t→1A21`), one finds that

s~x!

s~y!
→ sinpx

sinpy
, when k→1`, ~3.23!

from the product expression~A1! of thes-function. The trigonometric Hamiltonian~3.22! can be
obtained from the elliptic one~3.11! by taking limit k→1`. Consequently, we can find th
spectrum of the Hamiltonian of the trigonometric RS model associated withAn21 type root system
by taking the trigonometric limit of the elliptic one. Noting that the solutions to the Bethe an
equations~3.18!–~3.20! $$vk

( i )%% are all pure imaginary numbers, let us introduce@n(n21)/2# l
real parameters$$v̄k

( i )%% associated to@n(n21)/2# l pure imaginary parameters$$vk
( i )%% as follows:

vk
~ i !5A21v̄k

~ i ! , v̄k
~ i !PR. ~3.24!

Finally, we have
Proposition 2: The eigenvalues of the Hamiltonian (3.22) of the trigonometric RS m

associated with An21 root system with the discrete coupling constantg5A21gl are

eRS5ep~n21!āg
sinhp~nlg!

sinhp~ lg ! H )
k51

~n21!3 l sinhp~ v̄k
~0!1g!

sinhp~ v̄k
~0!!

J . ~3.25!

The @n(n21)/2# l real parameters$$v̄k
( i )%% satisfy the Bethe ansatz equations

epnāgH )
k51,kÞs

N1 sinhp~ v̄k
~0!2 v̄s

~0!1g!

sinp~ v̄k
~0!2 v̄s

~0!2g!
J 5ep~n22!ā~1!g

sinhp~ v̄s
~0!!

sinhp~ v̄s
~0!1nlg!

3H )
k51

N2 sinhp~ v̄k
~1!2 v̄s

~0!1g!

sinhp~ v̄k
~1!2 v̄s

~0!!
J , ~3.26!

ep~n2 i !ā~ i !gH )
k51,kÞs

Ni 11 sinhp~ v̄k
~ i !2 v̄s

~ i !1g!

sinhp~ v̄k
~ i !2 v̄s

~ i !2g!
J 5ep~n2 i 22!ā~ i 11!gH )

k51

Ni sinhp~ v̄s
~ i !2 v̄k

~ i 21!!

sinhp~ v̄s
~ i !2 v̄k

~ i 21!1g!
J

3H )
k51

Ni 12 sinhp~ v̄k
~ i 11!2 v̄s

~ i !1g!

sinhp~ v̄k
~ i 11!2 v̄s

~ i !!
J ,

i 51,...,n23, ~3.27!

e2pā~n22!gH )
k51,kÞs

Nn21 sinhp~ v̄k
~n22!2 v̄s

~n22!1g!

sinhp~ v̄k
~n22!2 v̄s

~n22!2g!
J 5H )

k51

Nn22 sinhp~ v̄s
~n22!2 v̄k

~n23!!

sinhp~ v̄s
~n22!2 v̄k

~n23!1g!
J .

~3.28!

Here the parametersā ( i ), i 50,1,...,n22 and ā5ā0 are given by the relation (2.32) from n21
arbitrary non-negative integers$a ( i )PZ1u i 51,...,n21%.

Our formula of eigenvalues is thetrigonometricgeneralization of thethird formulas in the
sense of Felderet al.22 Similarly to the elliptic case, we know that the corresponding eigenfunc
has the same quasiperiodic properties~3.21!.
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C. The rational case

The Hamiltonian of the rational RS model associated withAn21 root system reads as

HRS5(
i 51

n H)
j Þ i

S 12
A21gl

l j i
D J 1/2

e2A21g~]/]l i !H)
j Þ i

S 12
A21gl

l i j
D J 1/2

. ~3.29!

If one rescales

l i→dl i , ā~ i !→ 1

pd
ā~ i !, g→dg, ~3.30!

v̄k
~ i !→d v̄k

~ i ! , ~3.31!

and takes the limit:d→0 ~we call it the rational limit!, the Hamiltonian~3.29! of the rational RS
model can be obtained from the trigonometric one~3.22!. Therefore we can find the spectrum
the Hamiltonian of the rational RS model associated withAn21 root system by taking the rationa
limit of Proposition 2. Finally we have the following.

Proposition 3: The eigenvalues of the Hamiltonian (3.29) of the rational RS model assoc
with An21 root system with the discrete coupling constantg5A21gl are

eRS5ne~n21!āgH )
k51

~n21!3 l v̄k
~0!1g

v̄k
~0! J . ~3.32!

The @n(n21)/2# l real parameters$$v̄k
( i )%% satisfy the Bethe ansatz equations

enāgH )
k51,kÞs

N1 ~ v̄k
~0!2 v̄s

~0!1g!

~ v̄k
~0!2 v̄s

~0!2g!
J 5e~n22!ā~1!g

v̄s
~0!

v̄s
~0!1nlg

H )
k51

N2 ~ v̄k
~1!2 v̄s1g!

~ v̄k
~1!2 v̄s!

J , ~3.33!

e~n2 i !ā~ i !gH )
k51,kÞs

Ni 11 ~ v̄k
~ i !2 v̄s

~ i !1g!

~ v̄k
~ i !2 v̄s

~ i !2g!
J 5e~n2 i 22!ā~ i 11!gH )

k51

Ni ~ v̄s
~ i !2 v̄k

~ i 21!!

~ v̄s
~ i !2 v̄k

~ i 21!1g!
J

3H )
k51

Ni 12 ~ v̄k
~ i 11!2 v̄s

~ i !1g!

~ v̄k
~ i 11!2 v̄s

~ i !!
J , i 51,...,n23,

~3.34!

e2ā~n22!gH )
k51,kÞs

Nn21 ~ v̄k
~n22!2 v̄s

~n22!1g!

~ v̄k
~n22!2 v̄s

~n22!2g!
J 5H )

k51

Nn22 ~ v̄s
~n22!2 v̄k

~n23!!

~ v̄s
~n22!2 v̄k

~n23!1g!
J . ~3.35!

Here the parametersā ( i ), i 50,1,...,n22 and ā (0)5ā are given by the relation (2.32) from n
21 arbitrary non-negative real numbers$a ( i )PR1u i 51,...,n21%.

Our formula of eigenvalues is the rational generalization of thethird formulasin the sense of
Felderet al.22 The rescalings~3.30! and~3.31! and the rational limit lead to that the coefficients
the Hamiltonian~3.29! are no longer periodic~cf. the elliptic and trigonometric case!. The ~qua-
si!periodic properties~3.21! of the eigenfunction now are replaced by the following asympto
properties:

FRS}eA21a il i, l i→`. ~3.36!

Namely, the corresponding eigenfunctions are bounded whenl i→` on the real axis.
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IV. CALOGERO–MOSER SYSTEMS ASSOCIATED WITH A nÀ1 ROOT SYSTEM

In this section, we will study all types of CM models associated withAn21 root system by
taking ‘‘nonrelativistic’’ limit:21 g→0 of the corresponding RS models which have already b
studied in Sec. III.

A. Elliptic potential

Taking thenonrelativistic limitof the Hamiltonian~3.7! and noting the asymptotic propertie
of s-function ~2.5!, we obtain

H̃RS5n1
g2

2
H̃CM1O~g3!, g→0. ~4.1!

The resulting differential operatorH̃CM is given by

H̃CM52(
i 51

n
]2

~]l i !
2

12l(
iÞ j

n

z~l i j !
]

]l i
2 l 2(

iÞ j

s9~l i j !

s~l i j !
2 l 2 (

iÞ j Þk
z~l i j !z~l ik!, ~4.2!

wheres9(t)5@]2/(]u)2#s(u)uu5t and the functionz is defined in~2.4!. We can further transform
H̃CM to a more familiar form. Let us supposeF̃ andeCM are an eigenfunction and the correspon
ing eigenvalue ofH̃CM , namely,

H̃CMF̃5eCMF̃. ~4.3!

At the same time, we introduce another functionF,

F5e2CF̃, C5 ln )
i , j

~s~l i j !! l , ~4.4!

associated toF̃. ThenF is an eigenfunction of the HamiltonianHCM with the same eigenvalue
eCM ,

HCMF5eCMF, HCM5e2CH̃CMeC52(
i 51

n
]2

~]l i !
2

1 l ~ l 11!(
iÞ j

`~l i j !, ~4.5!

where the functioǹ is defined in~2.4!. One finds thatHCM is exactly the Hamiltonian of elliptic
CM model associated withAn21 root system3,4 with thecoupling constant l11. ~Traditionally, the
coupling constantof the Hamiltonian:HCM52( i 51

n @]2/(]l i)
2#1g(g21)( iÞ j`(l i j ) of CM

model is set tog.!
Now we study the asymptotic properties of the eigenvalues ofH̃RS ~3.17! and the associated

Bethe ansatz equations~3.18!–~3.20!. Let the solution to the Bethe ansatz equations~3.18!–~3.20!
have the following form:

vk
~ i !5xk

~ i !1A21gyk
~ i !2g2zk

~ i !1O~g3!, g→0. ~4.6!

Noting the asymptotic properties ofs-function ~2.5!, the Eq.~3.17! becomes

eRS5n1A21gnS ~12n!A21pā1 (
k51

N1

z~xk
~0!!D 1

g2

2 H n(
k51

N1

~2yk
~0!11!`~xk

~0!!

2
~n11!n~n21!l 2

3

s-~0!

s8~0!
2nS ~12n!A21pā1 (

k51

N1

z~xk
~0!!D 2J 1O~g3!. ~4.7!

The Bethe ansatz equations~3.18!–~3.20! at the first order ofg become
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2 (
k51,kÞs

N1

z~xk
~0!2xs

~0!!2nA21pā5~22n!A21pā~1!2nlz~xs
~0!!1 (

k51

N2

z~xk
~1!2xs

~0!!,

~4.8!

2 (
k51,kÞs

Ni 11

z~xk
~ i !2xs

~ i !!1~ i 2n!A21pā~ i !

5~ i 122n!A21pā~ i 11!2 (
k51

Ni

z~xs
~ i !2xk

~ i 21!!1 (
k51

Ni 12

z~xk
~ i 11!2xs

~ i !!, i 51,...,n23,

~4.9!

2 (
k51,kÞs

Nn21

z~xk
~n22!2xs

~n22!!22A21pā~n22!52 (
k51

Nn22

z~xs
~n22!2xk

~n23!!. ~4.10!

Sum up withs for each equation of~4.8!–~4.10!. Then taking the summation of all the equatio
and noting the parity property ofz-function ~2.4!, we find

(
k51

N1

z~xk
~0!!1~12n!A21pā50. ~4.11!

This means that the first order ofg term of eRS in ~4.7! is vanishing which is in conformity with
~4.1!.

The Bethe ansatz equations~3.18!–~3.20! at the second order ofg are

4 (
k51,kÞs

N1

~ys
~0!2yk

~0!!`~xk
~0!2xs

~0!!

5nl~2ys
~0!1nl !`~xs

~0!!2 (
k51

N2

~2yk
~1!22ys

~0!11!`~xk
~1!2xs

~0!!, ~4.12!

4 (
k51,kÞs

Ni 11

~ys
~ i !2yk

~ i !!`~xk
~ i !2xs

~ i !!5 (
k51

Ni

~2ys
~ i !22yk

~ i 21!11!`~xs
~ i !2xk

~ i 21!!2 (
k51

Ni 12

~2yk
~ i 11!22ys

~ i !

11!`~xk
~ i 11!2xs

~ i !!, i 51,...,n23, ~4.13!

4 (
k51,kÞs

Nn21

~ys
~n22!2yk

~n22!!`~xk
~n22!2xs

~n22!!5 (
k51

Nn22

~2ys
~n22!22yk

~n23!11!`~xs
~n22!2xk

~n23!!.

~4.14!

Sum up withs for each equation of~4.12!–~4.14!. Then taking the summation of all the equatio
and noting the parity property of̀-function ~2.4!, we find

(
s51

N1

~2ys
~0!1nl !`~xs

~0!!50. ~4.15!

Substituting the equations~4.11! and ~4.15! into ~4.7!, we finally have the following.
Proposition 4: The eigenvalues of the Hamiltonian (4.5) of the elliptic CM model assoc

with An21 root system with the discrete coupling constantsg5 l 11 are

eCM5~12nl !n(
k51

N1

`~xk
~0!!2

~n11!n~n21!

3
l 2

s-~0!

s8~0!
. ~4.16!
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The @n(n21)/2# l parameters$$xk
( i )%% satisfy the Bethe ansatz equations

2 (
k51,kÞs

N1

z~xk
~0!2xs

~0!!2nA21pā5~22n!A21pā2nlz~xs
~0!!1 (

k51

N2

z~xk
~1!2xs

~0!!,

~4.17!

2 (
k51,kÞs

Ni 11

z~xk
~ i !2xs

~ i !!1~ i 2n!A21pā~ i !5~ i 122n!A21pā~ i 11!2 (
k51

Ni

z~xs
~ i !2xk

~ i 21!!

1 (
k51

Ni 12

z~xk
~ i 11!2xs

~ i !!, i 51,...,n23, ~4.18!

2 (
k51,kÞs

Nn21

z~xk
~n22!2xs

~n22!!22A21pā~n22!52 (
k51

Nn22

z~xs
~n22!2xk

~n23!!. ~4.19!

The parametersā ( i ), i 50,1,...,n22 and ā (0)5ā are given by the relation (2.32) from n21
arbitrary non-negative integers$a ( i )PZ1u i 51,...,n21%.

Our result agrees with thethird formulas ~or Bethe ansatz type! of the eigenvalues of the
elliptic CM model associated withAn21 root system.22 Taking complex conjugation of the Beth
ansatz equations~4.17!–~4.19!, noting the property~2.6! and ~A5!, we find that the solutions
$$xk

( i )%% to the equations are all pure imaginary numbers. This ensures that the eigenvalueseCM are
real and positive up tothe ground state energye052@(n11)n(n21)/3# l 2@s-(0)/s8(0)# @the
positivity from the expression~A4! of `-function when the argument is taken on imaginary ax#.

B. Trigonometric potential

Here we consider trigonometric CM models associated withAn21 root system. The corre
sponding Hamiltonian with the discretecoupling constantg5 l 11 is given

HCM52(
i 51

n
]2

~]l i !
2

1 l ~ l 11!(
iÞ j

p2

sin2~pl i j !
. ~4.20!

Taking the trigonometric limitk→1`, one finds that

z~u!→p cotpu, ~4.21!

`~u!→ p2

sin2~pu!
, ~4.22!

from expansions~A2! and ~A3!. Then the Hamiltonian~4.20! can be obtained from the elliptic
type ~4.5! by taking the trigonometric limit. Moreover, since the solutions$$xk

( i )%% to the Bethe
ansatz equations~4.17!–~4.19! are all pure imaginary numbers, we can introduce@n(n21)/2# l
real parameters$$x̄k

( i )%% associated with$$xk
( i )%%,

xk
~ i !5A21x̄k

~ i ! . ~4.23!

Finally, we can find the spectrum of the Hamiltonian of trigonometric CM model associated
An21 root system from Proposition 4.

Proposition 5: The eigenvalues of the Hamiltonian (4.20) of the trigonometric CM m
associated with An21 root system with the discrete coupling constantg5 l 11 are
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eCM5~nl21!n(
k51

N1 p2

sinh2~p x̄k
~0!!

1
~n11!n~n21!

3
l 2p2. ~4.24!

The @n(n21)/2# l real parameters$$x̄k
( i )%% satisfy the Bethe ansatz equations

2 (
k51,kÞs

N1

cothp~ x̄k
~0!2 x̄s

~0!!1nā5~n22!ā~1!2nl cothp~ x̄s
~0!!1 (

k51

N2

cothp~ x̄k
~1!2 x̄s

~0!!,

~4.25!

2 (
k51,kÞs

Ni 11

cothp~ x̄k
~ i !2 x̄s

~ i !!1~n2 i !ā~ i !5~n2 i 22!ā~ i 11!2 (
k51

Ni

cothp~ x̄s
~ i !2 x̄k

~ i 21!!

1 (
k51

Ni 12

cothp~ x̄k
~ i 11!2 x̄s

~ i !!, i 51,...,n23,

~4.26!

2 (
k51,kÞs

Nn21

cothp~ x̄k
~n22!2 x̄s

~n22!!12ā~n22!52 (
k51

Nn22

cothp~ x̄s
~n22!2 x̄k

~n23!!. ~4.27!

Here the parametersā ( i ), i 50,1,...,n22 and ā (0)5ā are given by the relation (2.32) from n
21 arbitrary non-negative integers$a ( i )PZ1u i 51,...,n21%.

C. Rational potential

Taking further rational limit of the elliptic Hamiltonian~4.5! as in Sec. III C, we can obtain th
Hamiltonian of rational CM model associated withAn21 root system

HCM52(
i 51

n
]2

~]l i !
2

1(
iÞ j

l ~ l 11!

~l i2l j !
2

. ~4.28!

Moreover, we have
Proposition 6: The eigenvalues of the Hamiltonian (4.28) of the rational CM model assoc

with An21 root system with the discrete coupling constantsg5 l 11 are

eCM5 (
k51

N1 ~nl21!n

~ x̄k
~0!!2

, ~4.29!

where the@n(n21)/2# l real parameters$$x̄k
( i )%% satisfy the Bethe ansatz equations

2 (
k51,kÞs

N1 1

x̄k
~0!2 x̄s

~0!
1nā5~n22!ā~1!2

nl

x̄s
~0!

1 (
k51

N2 1

x̄k
~1!2 x̄s

~0!
, ~4.30!

2 (
k51,kÞs

Ni 11 1

x̄k
~ i !2 x̄s

~ i !
1~n2 i !ā~ i !5~n2 i 22!ā~ i 11!2 (

k51

N1 1

x̄s
~ i !2 x̄k

~ i 21!
1 (

k51

Ni 12 1

x̄k
~ i 11!2 x̄s

~ i !
,

i 51,...,n23, ~4.31!

2 (
k51,kÞs

Nn21 1

x̄k
~n22!2 x̄s

~n22!
12ā~n22!52 (

k51

Nn22 1

x̄s
~n22!2 x̄k

~n23!
. ~4.32!
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Here the parametersā ( i ), i 50,1,...,n22 and ā (0)5ā are given by the relation (2.32) from n
21 arbitrary non-negative real numbers$a ( i )PR1u i 51,...,n21%.

V. SUMMARY AND COMMENTS

Using the nested Bethe ansatz method forEt,h(sln),19 we obtain the spectrum of the Hami
tonian of all types of~elliptic, trigonometric, rational! RS models associated withAn21 root
system with the discretecoupling constantg5A21gl. Eigenvalues are given in the Bethe ansa
formulas~or the third formulasin sense of Felderet al.22!. The corresponding eigenfunction is
meromorphic function of$l i% and has quasiperiodic properties~3.21! for the elliptic and trigono-
metric cases, asymptotic properties~3.36! for the rational case. For the special case ofn52, our
generalized result recovers that of Refs. 17, 30, and 31.

Taking the ‘‘nonrelativistic limit,’’ the Hamiltonian of RS model becomes that of the C
model. Then, we give eigenvalues of the Hamiltonian of CM models associated withAn21 root
system with the discretecoupling constantg5 l 11 in the Bethe ansatz formulas. Our formul
coincide with those of Ref. 22 and those ofn52 case.30,32The eigenvalues from our formulas a
real and positive up to theground state energye0 as physically desired. But, we have not yet g
a direct proof of positivity of the eigenvalues of RS models from our formulas. However, we
show that for smallcoupling constantthe eigenvalues of RS model associated withAn21 root
system are positive, from their asymptotic expansion~4.1!. Moreover, we find that the elliptic and
trigonometric RS and CM models havediscrete spectrumwhich are parametrized by a set o
non-negative integers$a ( i )u i 51,...,n21%. The rational RS and CM models havecontinuous spec-
trum which are parametrized by a set of non-negative real numbers$a ( i )u i 51,...,n21%.

If one writes the Hamiltonian of CM model with thecoupling constantg asHCM(g) and the
associated eigenvalues aseCM(g), from the expression of the Hamiltonian~4.5!, ~4.20!, and~4.28!
one can find the followingduality:

HCM~2g!5HCM~g21!. ~5.1!

Then, actually, we have already obtained the spectrum of CM models associated withAn21 root
system with the discretecoupling constantsg5 l ( l PZ). Unfortunately, such aduality does not
exist for RS models associated withAn21 root systems.

There also exists another way~we callsymmetric polynomials approach! to get eigenfunctions
and the corresponding eigenvalues of thetrigonometric and rationalRS models10 and CM
models.33–36 It would be very interesting to compare our formulas~of trigonometric and rationa
cases! with those obtained by thesymmetric polynomials approach~for specialA1 case, it has
already been obtained30!. However, thesymmetric polynomials approachfails in the elliptic mod-
els.
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APPENDIX: FORMULAS FOR ELLIPTIC FUNCTIONS

In this appendix, we give some useful series expansions of the elliptic functions given by~2.4!
whent5A21k, kPR, k.0. By ~2.3!, s-function can be expressed in terms of product form37

~see Chap. 15!

s~u!5q1/4sinpu)
n51

`

~12q2ne2A21pu!~12q2ne22A21pu!~12q2n!, q5e2pk. ~A1!

We can derive the following series expansions from~2.4!:
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z~u!5
p cospu

sinpu
1p (

n51

`
sin 2pu

sinp~u1A21nk!sinp~u2A21nk!
, ~A2!

`~u!5
p2

sin2 pu
1 (

n51

` H p2

sin2 p~u1A21nk!
1

p2

sin2 p~u2A21nk!
J . ~A3!

Moreover, the functions have the following properties:

`~A21u!52H p2

sinh2 pu
1 (

n51

` H p2

sinh2 p~u1nk!
1

p2

sinh2 p~u2nk!
J J , ~A4!

s* ~u!5s~u* !, z* ~u!5z~u* !, `* ~u!5`~u* !, ~A5!

where* stands for the complex conjugation.
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Eigenvalue problems of a two-dimensional Schro ¨ dinger
operator with nonparabolic effective mass

Wen-Wei Lina) and Shih-Feng Shiehb)
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In this paper, we study the eigenvalue problem for the Schro¨dinger operator on a
two dimensional disk with nonparabolic effective mass approximation. Here the
effective mass depends on the energy states. Our results mainly concern with the
number of energy states lying in a wire and the monotonicity of energy states with
respect to the depth of the wire. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1641151#

I. INTRODUCTION

Semiconductor quantum wires~or dots! are nanoscale structures in which the carriers
confined in two~or three! dimensions. The carriers exhibit wavelike properties in quantum w
and dots, and discrete energy states exist for the structures. These structures have recently
intensive research, on their physical phenomena and the corresponding practical applicatio~see,
e.g., Ref. 1!. Methods like photoluminescence2 and capacitance-voltage spectroscopy3 have been
used to study the electronic and optical properties of quantum dots. For practical applica
quantum wires and dots play an important role in optoelectronic devices such as in
photodetectors,4 quantum dots laser,5 memory device,6 and quantum computing systems.7

In this paper, we study the eigenvalue problem for the Schro¨dinger operator on a diskD
5$(r ,u)u r P(0,R1)ø(R1 ,R2#, uP@0,2p#%:

2\2

2m~r ,l! S ]2c

]r 2 1
1

r

]c

]r
1

1

r 2

]2c

]u2 D1V~r !c~r ,u!5lc~r ,u!, ~1.1!

where the potential functionV is defined by

V~r !5H 0, r ,R1

c, R1,r<R2 ,
~1.2!

and the nonparabolic effective massm(r ,l) is defined by

m~r ,l!5H m1~l!, r ,R1

m2~l!, R1,r<R2 .
~1.3!

Equation~1.1! is equipped with the Dirichlet boundary condition:

c~R2 ,u!50, uP@0,2p#. ~1.4!

We also impose the interface conditions atr 5R1 anduP@0,2p#:

c~R1
2 ,u!5c~R1

1 ,u! ~1.5!

a!Electronic mail: wwlin@am.nthu.edu.tw
b!Electronic mail: sfshieh@am.nthu.edu.tw
5760022-2488/2004/45(2)/576/9/$22.00 © 2004 American Institute of Physics
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and

1

m1~l!

]c

]r
~R1

2 ,u!5
1

m2~l!

]c

]r
~R1

1 ,u!. ~1.6!

Throughout this paper, we further assume that
~H1! The effective massm1(l), m2(l).0 areC1 and increasing forlP@0,c#.
~H1! The productm2(l)(c2l) is decreasing forlP@0,c#.

Remark 1.1: In Refs. 8–10, for a quantum wire of small size, the nonparabolic effective m
m(r ,l) in (1.3) is approximated by

1

mj~l!
5

Pj
2

\2 S 2

l1aj2cj
1

1

l1aj2cj1d j
D , j 51,2, ~1.7!

where Pj , aj , and d j stand for the momentum, main energy gap and spin–orbit splitting in the
jth region, respectively. The semiconductor band structure parameters are

c150, a150.235, d150.81, P150.2875;

c25c5the depth o f the potential wire, a251.59, d250.8, P250.1993.

By taking the derivatives of m1(l) and m2(l)(c2l) with respect tol, one can easily verify, for

0,c<
a2

2
,

that the nonparabolic effective mass approximations mj (l) ( j 51,2) satisfy~H1! and ~H2!.
Such problem and its generalization have been studied by many authors~see, e.g., Refs

11–16 and the work cited therein!. Their results mainly focus on the ratios of and the ga
between eigenvalues. We are led to investigate, in this paper, the eigen-states lying in the
the following work. In Refs. 17 and 18, the spatial tunneling~from one hole to another! occurs in
coupled quantum wells@one-dimensional~1D!# when the energy states in both wells are align
In the case of the hole tunneling in the coupled quantum dots, the tunneling mechanism
significantly more complicated, due to the band mixing effect. When the energy states are ap
mately aligned between heavy hole and light hole, mixing tunneling occurs. Moreover, it
reported in Ref. 19 that a chaotic tunneling effect was generated when tunneling occurs. Ou
here aims towards understanding these phenomena. Note also that the discretization of t
dimensional Schro¨dinger operator with constant effective mass has recently been reported in
20.

This paper is organized as follows. In Sec. II, we apply separation of variables and deri
secular equations for~1.1!:

f k~l!5gk~l! ~k50,1,2,...; lP@0,c# !,

from which l can be solved. In Sec. III, we show for allk that f k(l) is decreasing andgk(l) is
increasing. Furthermore, we shall show thatgk(l) is continuous in@0,c#. In Sec. IV, we utilize the
results in Secs. II and III to find the exact number of energy states lying in the wire, i.e.,
eigenvalues in@0,c#. We shall give a sufficient and necessary condition which guarantee
existence of at least one energy state in the wire. The monotonicity of the energy state with r
to c, the depth of the wire, is also obtained. Section V contains some brief concluding rem

II. SECULAR EQUATIONS

In this section we shall derive the secular equations for the eigenvalue problem~1.1!. To this
end, we apply the technique of separation of variables, assuming that the wave functionc satisfies
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c~r ,u!5u~r !v~u!. ~2.1!

Substituting~2.1! into ~1.1! we get

r 2

u~r ! H 2\2

2 S d2u

dr2 1
1

r

du

dr D1m~r ,l!@V~r !2l#u~r !J 5
\2

2

1

v~u!

d2v

du2 . ~2.2!

Furthermore, the boundary condition~1.4! becomes

u~R2!50, ~2.3!

and the interface conditions~1.5! and ~1.6!, respectively, become

u~R1
2!5u~R1

1! ~2.4!

and

1

m1~l!

du

dr
~R1

2!5
1

m2~l!

du

dr
~R1

1!. ~2.5!

As ~2.2! holds for all values ofr P@0,R1)ø(R1 ,R2# anduP@0,2p#, both sides of the equation
equal to a constant. Consequently, the right hand side of~2.2! implies that the functionv~u!
satisfies the following boundary value problems:

v9~u!

v~u!
52k2, v~0!5v~2p!, v8~0!5v8~2p!,

wherek50,1,2,... . For convenience, we shall denote

a[A2m1~l!l/\2, b[A2m2~l!~c2l!/\2. ~2.6!

Similarly, the left hand side of~2.2! implies, fork50,1,2,...,

r 2u91ru81~r 2a22k2!u50, for 0,r ,R1 ~2.7!

and

r 2u91ru82~r 2b21k2!u50, for R1,r ,R2 . ~2.8!

Let Jk be Bessel functions of the first kind of orderk, which satisfies the Bessel’s equatio
r 2u91ru81(r 22k2)u50. Let I k and Kk , respectively, be the modified Bessel functions of t
first and second kind of orderk, which are linearly independent solutions of the modified Bess
equationr 2u91ru82(r 21k2)u50.

For a givenk, ~2.7! and ~2.8! imply that the solution of~2.2! is given by

u~r !5AJk~ar !, for 0,r ,R1 ~2.9!

and

u~r !5BIk~br !1CKk~br !, for R1,r<R2 , ~2.10!

whereA, B, andC are constant coefficients to be determined. Note that Bessel functions o
second kind are absent in~2.9! because of the boundedness of the eigenfunctionc(r ,u)
5u(r )v(u).

Now, applying the boundary condition~2.3! to ~2.10!, we obtain
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C52DkB , Dk[
I k~bR2!

Kk~bR2!
. ~2.11!

Applying the interface conditions~2.4! and ~2.5! to ~2.9! and ~2.10!, we have

AJk~aR1!5B@ I k~bR1!2DkKk~bR1!# ~2.12!

and

A

m1~l!
aJk8~aR1!5

B

m2~l!
b@ I k8~bR1!2DkKk8~bR1!#. ~2.13!

Dividing ~2.13! by ~2.12!, we can show that an eigenvalue of~1.1! is a root of the secular
equations

f k~l!5gk~l! ~k50,1,2,...!, ~2.14!

where

f k~l![
1

m1~l!

aJk8~aR1!

Jk~aR1!
~2.15!

and

gk~l!5
1

m2~l!
g̃k~l! , g̃k~l![

b@ I k8~bR1!2DkKk8~bR1!#

I k~bR1!2DkKk~bR1!
. ~2.16!

Remark 2.1. Assumptions~H1! and ~H2! are not involved in the derivation of the secula
equations (2.14). Thus, (2.14) holds for any effective mass m(r ,l) and can be used in numerica
computations involving the eigenvalues of (1.1).

III. MONOTONICITY OF f k AND g k

In this section, we shall study the monotonicity off k andgk with respect tol andc. To this
end, we first quote some well-known and useful properties ofJk , I k , and Kk , as well as the
Comparison Theorem@Ref. 21, p. 24# for differential equations.

Proposition 3.1 (Ref. 22, p. 79): Let k be a nonnegative integer. Then the following prop
hold.

~ i! Jk~x!5 (
n50

` ~21!nS x

2D 2n1k

n!G~n1k11!
, where G~• ! is the gamma f unction.

~ ii ! I k~x!5 (
n50

` S x

2D 2n1k

n!G~n1k11!
.

~ iii ! Kk~x!52I k~x!ln
x

2
1

1

2 (
n50

k21

~21!n
~k2n21!!

n! S x

2D 2k12n

1~21!k11
1

2 (
n50

` S x

2D k12n

n! ~n1k!! S G8~n11!

G~n11!
1

G8~n1k11!

G~n1k11! D , for k>1,
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K0~x!52I 0~x!ln
x

2
1

1

2 (
n50

` S x

2D 2n

~n! !2

G8~n11!

G~n11!
.

~ iv! I k~x!, Kk~x!.0, f or x.0.

~v! I k111I k2152I k8 , I 085I 1 .

~vi! Kk111Kk21522Kk8 , K0852K1 .

~vi! W$I k~x!,Kk~x!%52
1

x
where W$•,•% denotes the Wronskian of two

functions.

Theorem 3.1 „Comparison Theorem…: Let u andv be, respectively, the solutions of th
differential equations

y85F~y,x!, z85G~z,x!

where F(h,x)<G(h,x) in the strip a<x<b, and F and G satisfy the Lipschitz condition.
u(a)<v(a) then u(x)<v(x), for all xP@a,b#.

Now, we are ready to prove the monotonicity properties off k andgk , with a modified Pru¨fer
transform21 for linear second-order boundary value problems.

Proposition 3.2: Assume that~H1! and ~H2! in Sec. I hold.
~i! For each k, f k(l) is decreasing.
~ii ! f kul505k/m1(0)R1 .
Proof: For a givenk, denoteu(r )[Jk(ar ). Thenu satisfies the differential equation~2.7!.

Note thatf k(l)5u8(R1)/@m1(l)u(R1)#, and define the modified Pru¨fer transform

tanf~r ,l!5
u8~r !

m1~l!u~r !
. ~3.1!

Differentiating ~3.1! and with the help of~2.7!, we can show thatf satisfies the first-orde
differential equation

f85F~f,r ,l!ª
uu92~u8!2

m1~l!F11
1

m1~l!2 S u8

u D 2Gu2

5F2
2l

\2 1
k2

m1~l!r 2Gcos2 f2
1

r
sinf cosf

2m1~l!sin2 f. ~3.2!

Routine calculations, with the help of Proposition 3.1~i!, then yield

u8

m1~l!u
5A 2l

m1~l!\2

Jk8~A2m1~l!l/\2 r !

Jk~A2m1~l!l/\2 r !
5

k

m1~l!r
2

lr

~k11!\2 1O~m1~l!l2r 3!.

~3.3!

Consequently, forl1.l2 and a sufficiently smallr 0.0, we arrive at

u8~r !

m1~l!u~r !
U

r 5r 0 ,l5l1

<
u8~r !

m1~l!u~r !
U

r 5r 0 ,l5l2

,

hence
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f~r 0 ,l1!<f~r 0 ,l2!. ~3.4!

On the other hand, it follows from~3.2! that F is Lipschitz continuous forr P@r 0 ,R1# and is
decreasing with respect tol. Thus, from ~3.4! and Theorem 3.1, we havef(R1 ,l1)
<f(R1 ,l2). From ~2.15!, ~3.1! and the definition ofu(r ), assertion~i! follows. Assertion~ii ! is
a direct consequence of~3.3!. h

Remark 3.1. We require the modified Pru¨fer transformtanF(r,l)5u8(r)/@m1(l)u(r)# in (3.1) in
the proof of Proposition 3.1, rather than the traditional Pru¨fer transformcotf(r)5u8(r)/u(r).

In the following, we study the continuity and monotonicity ofgk .
Proposition 3.3: Let a, b.0, and k be a nonnegative integer. Then

I k~a!2
I k~b!

Kk~b!
Kk~a!H .0, if a.b

50, if a5b

,0, if a,b.

Proof: Since Kk(x) never vanishes, we defineh(x)ªI k(x)/Kk(x). Using Proposition 3.1
~vii !, it follows thath8(x)5@xKk(x)2#21.0, and the assertion follows. h

Proposition 3.4: Assume m2(l).0, for lP@0,c#. For any nonnegative integer k, we have
~i! g̃k(l) in ~2.16! is continuous and nonpositive on@0,c), and so is gk(l).

(ii) lim l→cgk(l)5$
k(R1

2k
1R2

2k) @m2(c) R1(R1
2k

2R2
2k)#21, k>1

@m2(c) R1 ln R1 /R2#21, k50
.

Proof: Applying Proposition 3.3 to~2.16!, together with~2.11!, we can show that the denom
nator of g̃k is negative, implying thatg̃k is continuous. From Proposition 3.1~v! and ~vi!, it
follows that the numerator ofg̃k is positive. Thus,g̃k(l),0 for 0<l,c. As gk5g̃k /m2(l) and
m2(l).0, assertion~i! holds.

To prove assertion~ii !, a straightforward application ofMATHEMATICA 23 on Proposition 3.1~ii !
and ~iii ! produces

Kk~bR2! I k8~bR1!2I k~bR2! Kk8~bR1!

Kk~bR2! I k~bR1!2I k~bR2! Kk~bR1!

5H Fb R1 ln
R1

R2
G21

1O~b!, k50

k~R1
2k1R2

2k! @b R1~R1
2k2R2

2k!#211O~b!, k>1,

whenb is sufficiently small. The fact thatb→0 asl→c leads to assertion~ii !. h

Proposition 3.5: Assume that~H1! and ~H2! hold. Then for any nonnegative integer k,
( i ) gk is increasing with respect tol for 0<l<c, and
( i i ) gk is decreasing with respect to c.
Proof: We first show thatg̃k in ~2.16! is decreasing with respect tob. Let

u~r ![I k~br !2DkKk~br !.

Define the Pru¨fer transform tanf5v5u8/u. With ~2.8! and a similar argument as in the proof
Proposition 3.2, we can show thatg̃k(l)5vur 5R1

andf satisfies

f85
1

r 2 ~cos2 f!~b2r 21k2!2
1

r
sinf cosf2sin2 f. ~3.5!

From Proposition 3.3, it follows for eachb that u(r ,b)50 only whenr 5R2 . Together with the
definitions of the Bessel functionsI k andKk , we prove thatv is continuous for 0,r ,R2 and
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lim
r→01

v~r ,b!5 lim
r→R2

2

v~r ,b!52` for all b. ~3.6!

Using Proposition 3.1~v! and ~vi! and Proposition 3.3, we haveu8.0 andu,0. This implies
v(r ,b),0 for 0,r ,R2 . Thus we may choosef(•,b) as one branch of tan21(•) in
@2 p/2 , p/2#, and ~3.6! leads tof(R2 ,b)5f(0,b)52 p/2 for all b. Using the change of
variables5R22r , ~3.5! becomes

df

ds
5G~f,s,b!ª

2cos2 f

~R22s!2 @b2~R22s!21k2#1
sinf cosf

R22s
1sin2 f. ~3.7!

Pick b1.b2.0. We then have

f~s50,b1!5f~s50,b2!52
p

2

and

G~f,s,b1!<G~f,s,b2! for 0<s,R2 .

Applying Theorem 3.1 to~3.7!, we conclude thatf(s,b1)<f(s,b2) for 0<s,R2 , i.e., f is
decreasing with respect tob ~see Fig. 1 for illustration!. From ~H2! and ~2.6!, it follows that
]b/]l,0 and]b/]c.0, implying thatg̃k is increasing with respect tol and decreasing with
respect toc. Together with the result in Proposition 3.4 thatg̃k(l),0 and assumption~H1! that
m2(l).0 is increasing, we show thatgk is increasing with respect tol. Sincegk5g̃k /m2(l) and
m2(l) is independent ofc, assertion~ii ! also holds. h

IV. MAIN RESULTS

In this section, we shall prove the main result of this paper. Denote the eigenvalue of~1.1! by
lk, j (k50,1,2,..., j 51,2,...), corresponding to thej th root of thekth secular equation~2.14!. We
also definesk, j (k50,1,2,..., j 51,2,3,...) to be thereal number such thatA2m1(sk, j )sk, j R1 /\ is
the j th root of thekth Bessel functionJk , with sk,050. It is easy to see thatsk, j ( j 51,2,...) are
the singularities off k . Note that$sk, j% are well-defined, since~H1! implies that the function
l°m1(l)l is increasing from zero to infinity in@0,̀ ). Using the properties off k and gk in
Propositions 3.2, 3.4, and 3.5, we sketchf k(l) andgk(l) in Fig. 2.

We now prove the first main result that exactly counts the number of eigenvalues of~1.1!
which lie in the wire.

Theorem 4.1. Assume that~H1! and ~H2! hold. Suppose sk,n,c,sk,n11 for some n>0. If
f k(c),gk(c), then lk,1 ,...,lk,n11 lie in the wire; otherwise, lk,1 ,...,lk,n lie in the wire and

FIG. 1. Illustration of the proof of Proposition 3.5 thatf decreases inb.
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lk,n11 is out of the wire. Moreover, for any given size and depth of the wire in (1.1), there e

R̄2 such that there is at least one energy state lying in the wire for R2.R̄2 .
Proof: For a fixedk, defined(l)[ f k(l)2gk(l). It follows from Propositions 3.2 and 3.5

that d is decreasing inl. Sincegk is continuous on@0,c#, d has only singularitiessk,1 ,...,sk,n in
@0,c#. But f k(0)>0 andgk(0),0 imply thatlk, jP(sk, j 21 ,sk, j ), j 51,2,...,n. The existence of
lk,n11 in (sk,n ,c# comes from the inequalityf k(c)<gk(c).

To complete the proof, it suffices to consider the case whens0,1.c we see thatf 0 is continu-
ous on @0,c#, with f 0(0)50, f 0(c),0. Using Proposition 3.4, we haveg0(c)
5@m2(c) R1 ln(R1 /R2)#

21→0 asR2→`. The assertion follows. h

Remark 4.1. (i) A direct consequence of the last assertion of Theorem 4.1 is that wh
domain of (1.1) is degenerated to the entire plane, i.e., R25`, there is at least one energy sta
lying in the wire.

(ii) From a computational point of view, all discrete energy states of (1.1) lying in the
@0,c# can easily be computed by applying Newton’s iteration or the bisection method to the se
equations (2.14), with sk. j as initial guesses.

The second main result shows that the increasing monotonicity of the energy state hold
respect to the depthc of the wire.

Theorem 4.2.Each energy state lying in the wire increases as c increases.
Proof: Let d(l)[ f k(l)2gk(l). As in the proof of Theorem 4.1, the result follows fro

Proposition 3.5~ii !. h

V. CONCLUDING REMARKS

We conclude this paper with some brief remarks and speculation on future works.
The non-parabolic effective mass approximations in~1.7! proposed in Refs. 9 and 10 satis

satisfy~H1! and~H2! for specifiedc. These approximations are thus applicable, for some spe
c, in our main Theorems. With assumptions~H1! and~H2!, the monotonicity properties off k and
gk are ensured. Hence, the roots of~2.14! can be computed by classical iterative methods~e.g.,
Newton’s method or bisection method!. Without assumptions~H1! and ~H2!, the monotonicity
properties off k andgk does not always hold, so it cannot guarantee that there is a unique ro
~2.14! between two consecutive singularities. Hence, the number of energy states lying in th
from Theorem 4.1 becomes a lower bound.

Analogously, the main results of~1.1! in this paper with Neumann boundary conditions can
proved. It may be of interest to study the eigenvalue problem for the Schro¨dinger operator~or
discretized Schro¨dinger operator! on a 3D the cylindrical domain with Dirichlet or Neuman
boundary condition.

FIG. 2. Illustration for the graphs off k andgk on @0,c#.
                                                                                                                



8

584 J. Math. Phys., Vol. 45, No. 2, February 2004 W.-W. Lin and S.-F. Shieh

                    
1L. Jacak, P. Hawrylak, and A. Wo´js, Quantum dots~Springer, Berlin, 1998!.
2R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kope´v, and Zh. I. Alferov, Phys. Rev.
B 56, 10 435~1997!.

3G. Medeiros-Ribeiro, J. M. Garcia, and P. M. Petroff, Phys. Rev. B56, 3609~1997!.
4S. Maimon, E. Finkman, G. Bahir, S. E. Schacham, J. M. Garcia, and P. M. Petroff, Appl. Phys. Lett.73, 2003~1998!.
5L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, Appl. Phys. Lett.73, 969 ~1998!.
6G. Iannaccone, A. Trellakis, and U. Ravaioli, J. Appl. Phys.84, 5032~1998!.
7G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B59, 2070~1999!.
8T. M. Huang, W. W. Lin, J. L. Liu, and W. Wang, J. Comp. Phys.~to be published!.
9Y. Li, J. L. Liu, O. Voskoboynikov, C. P. Lee, and S. M. Sze, Comput. Phys. Commun.140, 399 ~2001!.

10O. Voskoboynikov, C. P. Lee, and S. M. Sze, Phys. Rev. B58, 15 397~1998!.
11M. S. Ashbaugh and R. D. Benguria, Commun. Math. Phys.124, 403 ~1989!.
12M. S. Ashbaugh and R. D. Benguria, J. Diff. Eqns.103, 205 ~1993!.
13S. Flugge,Practical Quantum Mechanics~Springer Verlag, Berlin, 1999!.
14G. H. Golub, SIAM Rev.15, 318 ~1973!.
15B. N. Parlett and T. T. Lu, Linear Algebra Appel.~to be published!.
16I. M. Singer, B. Wong, and S. T. Yau, Ann. Scuola Norm. Sup. Pisa.12, 319 ~1985!.
17C. Juang, K. J. Kuhn, and R. B. Darling, Phys. Rev. B41, 12 047~1990!.
18S. Luryi, IEEE J. Quantum Electron.27, 54 ~1991!.
19C. Juang, J. Y. Wang, and J. Juang, IEEE J. Quantum Electron.33, 1345~1997!.
20J. Juang, W. W. Lin, and S. F. Shieh, SIAM J. Matrix Anal. Appl.23, 524 ~2001!.
21G. Birkhoff and G. C. Rota,Ordinary Differential Equations, 3rd ed.~Wiley, New York, 1978!.
22G. N. Watson,Theory of Bessel Functions, 2nd ed.~The Syndics of the Cambridge University Press, New York, 195!.
23Wolfram Research, Inc.MATHEMATICA 4 . 100 Trade Center Drive Champaign, IL 61820-7237, USA.
                                                                                                                



non-

uctures
efinite

itarity
rity is
rator,

t

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 2 FEBRUARY 2004

                    
Transition elements for a non-Hermitian quadratic
Hamiltonian

Mark S. Swansona)

Department of Physics, University of Connecticut, Stamford, Connecticut 06901
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The non-Hermitian quadratic HamiltonianH5va†a1aa21ba†2
is analyzed,

wherea† anda are harmonic oscillator creation and annihilation operators andv,
a, and b are real constants. For the case thatv224ab>0, it is shown using
operator techniques that the Hamiltonian possesses real and positive eigenvalues. A
generalized Bogoliubov transformation allows the energy eigenstates to be con-
structed from the algebra and states of the harmonic oscillator. The eigenstates are
shown to possess an imaginary norm for a large range of the parameter space.
Finding the orthonormal dual space allows the inner product to be redefined using
the complexification procedure of Benderet al. for non-Hermitian Hamiltonians.
Transition probabilities governed byH are shown to be manifestly unitary when the
complexification procedure is followed. A specific transition element between har-
monic oscillator states is evaluated for both the Hermitian and non-Hermitian cases
to identify the differences in time evolution. ©2004 American Institute of Phys-
ics. @DOI: 10.1063/1.1640796#

I. INTRODUCTION

There is a good deal of current interest in extending quantum mechanics to include
Hermitian Hamiltonians, stemming primarily from the work of Bender and collaborators.1,2 An
example is the Hamiltonian

H5p21x2~ ix !n ~n>0!, ~1!

which is known1 to have a real and positive spectrum. Recent work2 has found similar non-
Hermitian cases that give rise to real and positive spectra. The key step in extending the str
of quantum mechanics to these Hamiltonians in a consistent manner is dealing with the ind
metric3 that arises in the Hilbert space of their eigenfunctions. For the eigenfunctions of~1! the
standard inner product yields norms that alternate in sign. An indefinite metric threatens un
and prevents a probabilistic interpretation of matrix elements. In Bender’s approach unita
maintained by modifying the inner product of the Hilbert space through the action of an ope
written as the product of time reversalT, parity P, and charge conjugationC, so that the inner
product takes the form4

^ f ug&5E
C
dx @CPTf ~x!#g~x!, ~2!

where both the contour C in the complexx plane and the form forCPT are determined from the
form of the Hamiltonian. For the case thatn→0 in ~1! the operatorCP→1 and the inner produc
~2! reduces to the usual definition sinceTf (x)5 f * (2x). In general, Hamiltonians that arePT

a!Electronic mail: swanson@uconnvm.uconn.edu
5850022-2488/2004/45(2)/585/17/$22.00 © 2004 American Institute of Physics
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symmetric can be treated in this manner. The resulting generalization to a complexified vers
quantum mechanics allows a much broader range of Hamiltonians to be considered while
taining unitary time evolution.

The purpose of this paper is to analyze a simple quadratic non-Hermitian Hamiltonian
operator methods and adapt it to the structure developed by Bender. The Hamiltonian is exp
in terms of bosonic harmonic oscillator creation and annihilation operatorsa† anda, which obey
the usual commutation relationship

@a,a†#51. ~3!

The operatora annihilates the stateu0&, so that

au0&50⇒^0ua†50. ~4!

The set of states given by

un&5
a†n

An!
u0& ~5!

are eigenstates of the Hermitian HamiltonianH05va†a and are orthonormal and complete. T
Hamiltonian to be considered is then given by

H5va†a1aa21ba†2
1 1

2 v, ~6!

wherev, a, andb are real parameters with the dimensions of inverse time. The Hamiltonia~6!
is of course manifestly non-Hermitian whenaÞb, but it is bothP and T invariant sinceT:a
→a andP:a→2a with similar transformation properties fora†. As a result, if eigenstates of~6!
can be found they will possess real eigenvalues.5 The Hermitian version of~6! occurs in the
analysis of two photon processes,6 but to the knowledge of the author the non-Hermitian vers
and its transition elements have not been considered.

The approach followed is first to find the Hilbert space of energy eigenstates and th
define via Bender’s method an inner product that allows unitary time development. This pap
restrict attention to the case thata and b are real andv224ab>0. For those restrictions the
Hamiltonian~6! possesses eigenstates with real and positive eigenvalues, and therefore, me
criteria for applying Bender’s method. The energy eigenstates will be constructed from th
monic oscillator states using a generalized Bogoliubov transformation7 and will be shown to be
structurally identical to the harmonic oscillator. It will be seen that the Hilbert space of en
eigenstates possesses an indefinite metric ifaÞb corresponding to non-normalizable eigenstat
In order to implement Bender’s approach to dealing with the breakdown of unitarity the spac
to these eigenstates will be constructed through the demand of orthonormality. An explicit
for the operatorU that maps the energy eigenstates into the orthonormal dual basis is deter
and, in order to avoid a breakdown of unitarity, it will be shown that the action ofU must be
included in the inner product. This operator reduces to unity when the Hermitian limita→b is
taken, in a manner identical to the result that limn→0CP51 for the Hamiltonian~1!. The Hilbert
space of eigenstates and the modified inner product then allow the definition of a unit proj
operator. It will be explicitly demonstrated that time evolution using this inner product is uni
showing that the non-Hermitian Hamiltonian~6! can be treated by Bender’s general metho
Transition elements between harmonic oscillator states using~6! will be calculated using both the
methods of Bender and the standard inner product. Because the states of the theory are e
constructed from the harmonic oscillator states, evaluating the transition elements in eithe
reduces to an exercise in normal ordering. Transition probabilities calculated without Ben
complexification procedure are oscillatory due to the real and positive energy spectrum but a
time-reversal invariant sinceuWf i u2ÞuWi f u2 whenaÞb. The resulting transition elements ther
fore manifestly violate unitarity whenaÞb. The origin of this failure is clearly demonstrated f
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a specific fixed number transition element in the limit thata→0 while bÞ0. Comparing the
Hermitian limit a5b of a transition amplitude to the non-Hermitian case shows that for smab
the non-Hermitian case is very similar in behavior to the Hermitian case, but that signi
differences in time evolution appear asb approachesv/2.

The outline of the paper is as follows. In Sec. II the Hamiltonian is analyzed using ope
techniques to determine the structure of the Hilbert space of eigenstates and the form of th
product required for unitary time evolution. In Sec. III fixed number transition elements
evaluated to demonstrate the failure of time-reversal invariance in the absence of the m
inner product. A specific transition element governed by the Hamiltonian~6! is then defined and
evaluated in several limits. To enhance readability the more tedious aspects of the evaluat
collected in a set of appendices.

II. ENERGY EIGENSTATES AND THE INNER PRODUCT

The first step in evaluating~6! is to find its eigenstates. This process begins by introducing
new operators,c andd, by means of a generalized Bogoliubov transformation7

c5g1a†2g3a, ~7!

d5g4a2g2a†, ~8!

where in the general case thegj coefficients are complex numbers. It is clear thatcÞd† unless
g45g1* andg35g2* , in which case~7! and~8! reduce to the standard Bogoliubov transformati
for the Hermitian case. This yields the Hermitian limits

lim
a→b

g1* 5g4 , ~9a!

lim
a→b

g2* 5g3 , ~9b!

and their complex conjugates. Written in matrix form, the definitions of~7! and ~8! become

S d
cD5S g4 2g2

2g3 g1
D S a

a†D . ~10!

The algebra@a,a†#51 gives

@d,c#5g1g42g2g351, ~11!

where, to simplify subsequent calculations,~11! has been set to unity. Since~11! is the determinant
of the matrix in~10!, the matrix is a member of the group SL(2,C) and its inversion gives

a5g1d1g2c, ~12!

a†5g3d1g4c. ~13!

Substituting~12! and ~13! into ~6! yields

H5Vcd1ãc21b̃d21e1 1
2 v, ~14!

where the new coefficients are given in terms of the parameters of~6! and thegj :

V5~g2g31g1g4!v12g1g2a12g3g4b, ~15a!

ã5g2g4v1g2
2a1g4

2b, ~15b!
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b̃5g1g3v1g1
2a1g3

2b, ~15c!

e5g2g3v1g1g2a1g3g4b. ~15d!

It is important to note that the ordering prescription of movingc to the left in all expressions ha
been chosen and this choice generates the form fore. While the other option is possible, thi
choice takes advantage of the similarity ofc andd to creation and annihilation operators in th
commutator~11! to avoid needless complications.

The gj are now chosen so that the two complex constraints

ã5b̃50, ~16!

are satisfied. Ifa5b50 in ~6!, then~7! and~8! can be chosen to reduce toc5a† andd5a, and
this yields the boundary conditions

lim
a,b→0

g2,350, ~17!

for g2 andg3 . Condition~11! is then consistent with the limits

lim
a,b→0

g1,451, ~18!

which will be true up to an arbitrary phase. The two conditions of~16! and the constraint~11!
remove six degrees of freedom from the four complex numbersgj , which naively possess eigh
degrees of freedom. However, thegj actually possess only six physical parameters due to
freedom to adjust the overall phases of the operators in the definitions~12! and ~13!. The details
of this argument are presented in Appendix A. Because all six actual degrees of freedom a
accounted for, solutions to~11! and ~16! consistent with the boundary conditions can now
found. It is shown in Appendix B that

V5Av224ab, ~19a!

e5 1
2 ~V2v!, ~19b!

and these are real ifv224ab>0.
The eigenstates of the Hamiltonian~6! can now be constructed from the harmonic oscilla

states. Defining the stateu0d& through the relation

du0d&50, ~20!

allows the eigenstates of~6! to be expressed defined in a manner similar to the simple harm
oscillator

uñ&5
1

An!
cnu0d&. ~21!

Using the algebra~11! and the property~20! gives

Huñ&5~n1 1
2!Vuñ&[Enuñ&. ~22!

It follows that the eigenvalues ofH are real and positive as long asV25v224ab>0 and are
formally identical to the simple harmonic oscillator.

The key step in understanding the properties of the eigenstates is to construct the stau0d&
from the states of the harmonic oscillator. The Baker–Campbell–Hausdorff theorem8 states that if
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the commutator of two operators@A,B# commutes withB, then AelB2
5elB2

(A1l@A,B#B),
wherel is an arbitraryc-number parameter. In addition, it shows that ifA andB are two operators
such that@B,A#5A, thenelBA5elAelB, wherel is a c-number parameter. Using these sho
that

d expS 1

2

g2

g4
a†2D5~g4a2g2a†!expS 1

2

g2

g4
a†2D5expS 1

2

g2

g4
a†2Dg4a. ~23!

It then follows that the state that satisfies~20! is given by

u0d&5Nd expS 1

2

g2

g4
a†2D u0&, ~24!

whereNd will be used to define a unit projection operator. It is shown in Appendix C that
ground stateu0d& possesses the norm

^0du0d&5
uNdu2ug4u2

Aug4u22ug2u2
. ~25!

For the case that21.g2 /g4.1 the ground state possesses an imaginary norm and the H
space possesses an indefinite metric. This is caused by the divergence of the power series~C4! that
defines the norm, and so the indefinite metric is signaling that the eigenstates are not norma
if 21.g2 /g4.1. Using result~B4! shows there are no solutions to this inequality in the H
mitian case. However, for the non-Hermitian casea,0 andb.0 result~B4! shows that imagi-
nary norms occur ifa1b,v. As a result, the Hamiltonian~6! suffers difficulties with its metric
that are similar to other non-Hermitian cases.3

The solution by Bender, Brody, and Hughes4 to the indefinite metric of other non-Hermitia
Hamiltonians is to find the charge conjugation operatorC such that the action of the operatorCPT
yields a positive-definite inner product as in~2!. In some cases it is necessary to resort to
perturbative construction of this operator.9 The approach followed in this paper will be to find th
orthonormal dual space basisun̄& first, and then to deduce the form of the operatorU that maps the
energy eigenstates into the dual states,un̄&5Uuñ&. By construction this will result in a modified
inner product such that^ñuU†uñ& is positive definite. For the case that the dual space is assoc
with the eigenvectors ofH† and the energy spectrum ofH† is identical toH, this approach yields
an inner product that will preserve unitarity. The proof of this will be given later in this sec
This method is easier for the Hamiltonian~6! since the algebra~11! allows the space dual to th
Hilbert space of eigenstates~21! to be constructed from the dual space of the harmonic oscilla

The process begins by defining the dual^0cu to the ground stateu0d& as the state that satisfie

~c†u0c&)
†5^0cuc50. ~26!

As in ~24! this state can be constructed from the original harmonic oscillator algebra an
ground state dual̂0u by defining

^0cu5Nc^0uexpS 1

2

g3

g1
a2D . ~27!

This process yields the dual space basis

^m̄u5^0cu
dm

Am!
. ~28!
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The notation is intended to reinforce the fact that^n̄uÞuñ&†. Using the algebra~11! immediately
shows that the dual space basis defined by~28! will be orthonormal to the states of~21!, i.e.,
^m̄uñ&5dmn , if ^0cu0d&51. This inner product can be evaluated easily because the two s
have inherited the inner product of the harmonic oscillator basis. The result~C3! from Appendix
C shows that

^0cu0d&5NcNdAg1g4, ~29!

so thatNcNd51/Ag1g4 normalizes the inner product. It is convenient to choose

Nd5~g4!21/2, ~30a!

Nc5~g1!21/2, ~30b!

so that in the limit~18! the normalization factors reduce to unity. The matrix elements of
Hamiltonian are well defined in this basis, yielding

^m̄uHuñ&5~n1 1
2!V dmn . ~31!

It is shown in Appendix C that these states and their duals allow the definition of a unit proje
operator

(
n50

`

uñ&^n̄u51̂. ~32!

It is important to note that this process is equivalent to finding the complete set of eigen
for the Hermitian adjointH†. Given the explicit form ofH and the dual states~28! it is easy to
show that

H†un̄&5~n1 1
2!Vun̄&5Enun̄&. ~33!

Since the eigenvalues are real, nondegenerate, and identical to those forH, the orthonormality
statement~31! immediately follows from the relation

Em^m̄uñ&5~^m̄uH !uñ&5^m̄u~Huñ&!5En^m̄uñ&. ~34!

In order to avoid the indefinite metric an operatorU will be found that satisfies

^n̄u5~Uuñ&!†5^ñuU†. ~35!

As long as the statesuñ& and un̄& have the same spectrum it will now be shown that

H†U2UH50. ~36!

This follows by using~33! to give

Enun̄&5H†Uuñ&, ~37!

while from ~22! it follows that

Enun̄&5U†Huñ&, ~38!

where the equivalence of the eigenvalues has been used. Combining~37! and ~38! immediately
yields ~36!. It is shown in Appendix D that for the Hamiltonian~6! the operatorU is given
explicitly by
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U5expH 1

2 S g3*

g1*
2

g2

g4
D a†2J expS 1

2
wd2Dexp~cd ln z!, ~39!

with

w5
g3g42g1* g2*

g4
2 , ~40a!

z5
g4

g1*
. ~40b!

Appendix D also shows that the operatorU has the property that

Uc5d†U, ~41a!

Ud5c†U, ~41b!

so that

UH5UVcd5Vd†c†U5H†U, ~42!

and its action on the Hamiltonian is precisely that predicted by~36!. Result~42! is essential in
proving that the theory using the modified inner product is unitary. To demonstrate unitarit
projection operator~32! is rewritten

(
n50

`

uñ&^ñuU†51̂. ~43!

An arbitrary stateuw̃& is written as a superposition of the energy eigenstates

uw̃&5 (
n50

`

anuñ&, ~44!

with the normalization condition

(
n50

`

uanu251. ~45!

Using the definition

^w̄u5~Uuw̃& !†5 (
n50

`

^n̄uan* , ~46!

shows that̂ w̄uw̃&51. The transition element fromuw̃& to the energy eigenstateuñ& in Bender’s
complexified quantum mechanics is defined as

Ww̃ñ[^n̄ue2 iHTuw̃&5^ñuU†e2 iHTuw̃&, ~47!

so that its complex conjugate is given by

Ww̃ñ
* 5^w̃ueiH †TUuñ&. ~48!

Unitarity requires that the transition probability satisfies
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15(
n

uWw̃ñu25(
n

^w̃ueiH †TUuñ&^ñuU†e2 iHTuw̃&. ~49!

Using ~43! followed by ~42! immediately gives

(
n

uWw̃ñu25^w̃ueiH †TUe2 iHTuw̃&5^w̃ueiH †Te2 iH †TUuw̃&5^w̃uUuw̃&5^w̄uw̃&* 51. ~50!

As a result, the use of the modified inner product preserves unitarity in transition probability
method used in this paper for constructing the operatorU requires thatH and H† possess an
identical spectrum, and this is the case for~6!.

As a result,~35! generalizes the adjoint operation to this particular case of a non-Herm
Hamiltonian. The operatorU is playing a role identical to that of theCP operator for the Hamil-
tonian ~1! by mapping the eigenstates into a dual space that yields a positive definite and
normal inner product. Using the limits~9! shows that the arguments of the exponentials in~39! go
to zero whena→b. The Hermitian limit, therefore, yields lima→bU51 and the standard adjoin
operation is recovered, as in the other non-Hermitian Hamiltonians analyzed using Be
method.

III. TRANSITION ELEMENTS

In this section a specific simple transition element will be evaluated with and without B
er’s complexification procedure. The results verify the breakdown of unitarity for the
Hermitian caseaÞb if Bender’s procedure is not followed. However, in the Hermitian limita
5b andU51, so that the transition element calculated in this manner will coincide with Bend
method. The same transition amplitude for the non-Hermitian case will then be calculated
Bender’s method and shown to be manifestly unitary. It is of interest to compare the resu
using a non-Hermitian Hamiltonian and Bender’s method to the case of using a Hermitian H
tonian. Since both cases correspond to unitary time development it is useful through comp
to see what differences emerge in the time evolution of the states. It will be seen that sign
differences appear for the caseb/v'1/2.

That unitarity will be violated for the non-Hermitian case can be seen from the follow
general argument. If the inner product is not generalized via Bender’s method the tran
element from an arbitrary stateuw& to a harmonic oscillator eigenstate of the form~5! is defined as

Wwn5^nue2 iHTuw&. ~51!

Repeating the steps of~49! and ~47! gives

(
n

uWwnu25^wueiH †Te2 iHTuw&, ~52!

and this result is not unity ifH†ÞH. As a result, the transition element defined by~51! will not
give a unitary transition probability in the non-Hermitian case. However, this does not preve
evaluation of~51! and an explicit examination of the breakdown of unitarity whenaÞb. Since
the operatorU of ~39! reduces to unity in the Hermitian case, the expression~51! will be the
correct definition of the transition amplitude in the limita→b.

In the first step a transition element will be calculated without Bender’s complexifica
procedure. It is simple and instructive to look at the fixed number process

W025^2ue2 iHTu0&, ~53!
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where^2u5^0ua2/& andH is given by~6!. Despite the fact thatH is non-Hermitian, evaluating
~53! is nothing more than an exercise in normal ordering. This is simplified by using the
projection operator~32! to find

W025(
n

^2uñ&^n̄u0&e2 inVTe2 ~1/2! iVT. ~54!

It is straightforward to adapt expressions~C13! and ~C19! to show that

W0252S b

&V
D ~12e22iVT!~g1g42g2g3e22iVT!23/2e2 ~1/2! iVT. ~55!

Similarly, it is straightforward to show that

W205^0ue2 iHTu2&52S a

&V
D ~12e22iVT!~g1g42g2g3e22iVT!23/2e2 ~1/2! iVT. ~56!

Interpreting these quantities as the transition probability amplitude shows that the transition
ability defined byP(T)5uWu2 would yield two differing rates for these processes as long aa
Þb. This violates the well known time-reversal invariance of processes driven by Herm
Hamiltonians, i.e.,uWf i u25uWi f u2, and is a direct outcome of the fact that the Hamiltonian~6! is
non-Hermitian as long asaÞb. The origin of this violation is particularly clear in the limit tha
a→0 while bÞ0. For such a case it is impossible for the Hamiltonian to connect the stateu2& to
the statê 0u since there are no terms quadratic in the destruction operators in the Hamilto
Using the results of Appendix B gives the limits for the non-Hermitian transition elements
tained without the complexification procedure as

lim
a→0

W2050, ~57a!

lim
a→0

W0252
b

&v
~12e22ivT!. ~57b!

The smallT limit of ~57b! reduces to the first order term in a perturbative expansion of
transition element~53! wherea50, verifying that the factors in~57b! are correct. Unitarity is,
therefore, manifestly violated in the absence of the complexification procedure.

In the Hermitian limit a5b, ~55! and ~56! are identical and correspond to unitary tim
development. Using the results of Appendix B gives

lim
a→b

W2052
b

&V
S V~v2V!

2ubu2 D 3/2

~12e22iVT!S 12
~v2V!2

4ubu2
e22iVTD 23/2

e2 ~1/2! iVT. ~58!

The absolute valueubu2 appears in~58! to reflect the fact that the expansion is actually in terms
ubu25ab, which is invariant under the phase transformations discussed in Appendix A. For
b/v ~58! reduces to

W20'2
b

&v
~12e22ivT!S 12

ubu2

v2 e22ivTD 23/2

e2 ~1/2! ivT. ~59!
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Calculating the same transition element via Bender’s method for the non-Hermitian ca
50 and bÞ0 is particularly simple. For such a case the results of Appendix B show thaV
5v, g1g451, g350, andg252b/v. The first step is to express the statesu0& andu2& in terms of
the energy eigenstatesuñ&, so that

u0&5N0(
n

uñ&^n̄u0&[N0(
n

anuñ&, ~60!

u2&5N2(
n

uñ&^n̄u2&[N2(
n

bnuñ&. ~61!

The factorsN0 andN2 are required to normalize the states when the modified transition ele
of ~47! is used. In the limit thatT→0 all transition elements from a state to itself must coinc
with unity. This requires fixing

uN0u225(
n

uanu2, ~62!

uN2u225(
n

ubnu2, ~63!

which ensures that the inner product is unity:

^0uU†u0&5^2uU†u2&51. ~64!

It is again straightforward to adapt the expressions~C13! and~C19! to show that fora50 andn
even the coefficients are given by

an5
NcAn!

2n/2~n/2!! S 2
g2

g1
D n/2

, ~65a!

bn5
&NcAn!

g1
22n/2~n/221!! S 2

g2

g1
D n/2

. ~65b!

Using the results of Appendixes B and C, the norms are then given by

uN0u25S 12
ubu2

v2 D 21/2

, ~66a!

uN2u25S 11
ubu2

2v2D S 12
ubu2

v2 D 25/2

, ~66b!

where it has been assumed thatb/v,1 in order for the series to converge. Evaluating t
transition amplitude is now straightforward, since

W205^0uU†e2 iHTu2&5N0* N2 (
n50,2,...

an* bne2 invT. ~67!

Using ~65! and ~66! and the identity~C2! gives

lim
a→0

W2052
b

&v
S 11

ubu2

2v2D 21/2S 12~ ubu2/v2!

12~ ubu2/v2!e22ivTD 3/2

e22ivT, ~68!
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which is true up to the irrelevant arbitrary phase available forb.
It is now possible to compare result~58! to ~68!. Both expressions are characterized by on

two parameters,v and b, sinceV5Av224ubu2 in expression~58!. The first point is that~68!
does not vanish as did~57a!. Result~58! goes to zero atubu5v/2, while ~68! remains well defined
for ubu,v. There is a great deal of similarity between~68! and ~59! for b small. However, it is
clear that the transition amplitude~58! for the Hermitian case deviates significantly from~68! asb
increases. In the Hermitian case the frequencyV is not independent ofb, while in the non-
Hermitian case~68! v and b are independent parameters. Thus, as in other cases, the us
non-Hermitian Hamiltonian has given rise to a well-defined theory but with different dyna
than its Hermitian counterpart.
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APPENDIX A: NORMAL ORDERING, FUNCTIONAL DEPENDENCE, AND DEGREES
OF FREEDOM

The process of normal ordering a matrix element results in restrictions on the func
dependence of the matrix element upon its parameters. To illustrate consider the general
element

W005^0uexp$2 i ~va†a1aa21ba†2!T%u0&, ~A1!

wherev, a, andb are real variables with the units of inverse time. In this case the operatorU that
mapsH into H† and discussed in Sec. III is absent in the definition~A1!. The dimensionless
operatorsa† and a obey the commutation relation@a,a†#51. Evaluation of~69! consists of
normal ordering thea anda† operators in an arbitrary power of the effective Hamiltonian. In
doing, it is a simple observation that in order to have a nonzero contribution to the matrix ele
the product of thea anda† operators must have equal numbers ofa anda† operators. Only for
this case can the process of normal ordering the operators produce a nonzeroc-number. In all
other cases the process of normal ordering will result in terms with powers of eithera or a†, and
these have a vanishing matrix element. This is easily seen for low order crossterms such aaa†2

andaa†aa†, and the general result can be then be established by induction.
This observation can now be coupled with the fact that the commutation relation@a,a†#51 is

invariant under the simultaneous phase transformationsa†→eiua† anda→e2 iua. However, this
transformation does not leave the effective Hamiltonian of~69! invariant, instead inducing the
transformations

a→e22iua, ~A2a!

b→e2iub, ~A2b!

v→v, ~A2c!

on the parameters of the Hamiltonian. However, since all terms in the expansion of the expo
that produce nonzero contributions must have equal numbers ofa anda† operators, it follows that
~A1! is invariant under this transformation. This means that the final result of evaluating~A1! can
depend only upon combinations of parameters that are independent of the transformations~A2a!–
~A2c!, and this includes terms such asv andab, as well as any combinations determined from t
form of the states.

While these restrictions can serve as a consistency check for the form determined for~A1!, the
phase symmetry also reduces the number of free parameters in the generalized Bogoliubo
formation of~7! and~8!. This follows from reexpressing the matrix element~A1! in terms of the
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c andd operators. For the same reasons discussed earlier in this appendix, the matrix eleme~A1!
will be independent of the simultaneous phase transformationsc→ei jc andd→e2 i jd since these
also leave invariant the commutator@a,a†# determined using~7! and~8!. As a result, there are two
independent arbitrary relative phases present in the generalized Bogoliubov transformati
one associated withc and d and the one associated witha and a†. In effect, the generalized
Bogoliubov transformations~12! and ~13! could have been written

a5ei (j1u)g1c1e2 i (j2u)g2d5eiu~ei jg1c1e2 i jg2d!, ~A3!

a†5ei (j2u)g3c1e2 i (j1u)g4d5e2 iu~ei jg3c1e2 i jg4d!, ~A4!

whereu andj are arbitrary real phases, without affecting the final result of evaluating the m
element. All resulting expressions in the final form for the matrix element~A1! will therefore
possess the symmetries~A2a!–~A2c! when combined with the simultaneous transformations

g1→ei (j1u)g1 , ~A5a!

g2→e2 i (j2u)g2 , ~A5b!

g3→ei (j2u)g3 , ~A5c!

g4→e2 i (j1u)g4 . ~A5d!

These symmetries ensure that two of the degrees of freedom in thegj can always be removed b
choosingu andj appropriately, and therefore, these degrees of freedom cannot have any ph
significance. This is identical to gauge fixing10 in field theories, where the gauge symme
corresponds to unphysical ghost states in the spectrum. Therefore, thegj possess only six physica
degrees of freedom with which to evaluate the matrix element.

APPENDIX B: SOLUTIONS OF THE GENERALIZED BOGOLIUBOV TRANSFORMATION

In this appendix the relevant properties of thegj will be derived through algebraic manipu
lation for later use in the paper. The constraints of~16! can be rewritten as two quadratic equatio
under the assumption thatg1Þ0 andg4Þ0:

v~g3 /g1!1a1b~g3 /g1!250, ~B1!

v~g2 /g4!1b1a~g2 /g4!250. ~B2!

Consistency with the limits~17! and ~18! requires selecting the roots

g3 /g15~2v1Av224ab!/2b, ~B3!

g2 /g45~2v1Av224ab!/2a. ~B4!

It follows that

g2g3

g1g4
5~v222ab2vAv224ab!/2ab. ~B5!

Combining~B5! with condition ~11! gives

g1g45
2ab

~4ab2v21vAv224ab!
, ~B6!
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g2g35
v2Av224ab

2Av224ab
, ~B7!

g1g41g2g35
v

Av224ab
. ~B8!

Because~B5!–~B7! are invariant under the transformations of~A4!, they can serve as fundament
components of the final form of the transition element. It also follows thatg1g4 is a real positive
number as long asv224ab>0, while g2g3 is real but its sign is that ofab.

The relationships among thegj determined so far can now be used to determine other prod
and ratios. Straightforward algebraic manipulation gives

g1g25
g1

g3
g2g352

b

Av224ab
, ~B9!

g3g45
g4

g2
g2g352

a

Av224ab
. ~B10!

The parameters appearing in the transformed Hamiltonian~14! are then given by

V5~g2g31g1g4!v12g1g2a12g3g4b5Av224ab, ~B11!

e5g2g3v1g1g2a1g3g4b5 1
2Av224ab2 1

2 v5 1
2 ~V2v!. ~B12!

APPENDIX C: PROPERTIES OF THE EIGENSTATES

This appendix analyzes the properties of the states defined by~21! and ~28! as well as the
states built from them. To begin, the inner product of the states~24! and~27! is evaluated. Using
their definitions the inner product reduces to the sum

^0cu0d&5NcNd (
n,m50

` A~2m!!

2mm!

A~2n!!

2nn! S g2

g4
D nS g1

g3
D m

^mun&

5NcNd(
n50

`
~2n!!

4n~n! !2 S g2g3

g1g4
D n

. ~C1!

Result ~B5! of Appendix B shows thatug2g3 /g1g4u,1, so that the series in~C1! converges
absolutely. Using the identity

1

2p E
0

2p

du cos2n u5
~2n!!

4n~n! !2 , ~C2!

allows ~C1! to be replaced by a geometric sum and integrated with the desired result that

^0cu0d&5
NcNd

2p E
0

2p

du
g1g4

g1g42g2g3 cos2 u
5NcNdAg1g4, ~C3!

where ~11! has been used. The two states have a unit inner product for the conditions of~29!.
Similarly, the norm of the state~24! can be found to be
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^0du0d&5uNdu2(
n50

`
~2n!!

4n~n! !2 S ug2u2

ug4u2D
n

5
uNdu2ug2u2

Aug4u22ug2u2
, ~C4!

where the assumption thatug2u/ug4u,1 has been made.
In proving completeness of the modified states~21! and ~28! it will be necessary to evaluat

their inner product with the harmonic oscillator ground stateu0&. This is accomplished by firs
noting the identity

c expS 1

2

g2

g4
a†2D5expS 1

2

g2

g4
a†2D S 2g3a1

a†

g4
D , ~C5!

where~11! has again been used. As a result the stateuñ& can be written

uñ&5
Nd

An!
expS 1

2

g2

g4
a†2D S 2g3a1

a†

g4
D n

u0&. ~C6!

The inner product then reduces to evaluating

^0uñ&5
Nd

An!
^0uS 2g3a1

a†

g4
D n

u0&. ~C7!

The matrix element can be evaluated to give

Tn [ K 0US 2g3a1
a†

g4
D nU0L 5H 0 if n is odd

n!

2n/2~n/2!! S 2
g3

g4
D n/2

if n is even.
~C8!

The proof is inductive, and begins by noting that~C8! is correct forn5$0,1,2,3,4% by direct
calculation. Assuming thatTn andTn22 are given by~C8!, the next termTn12 can be evaluated
inductively by using the formulas

aS 2g3a1
a†

g4
D n

5S 2g3a1
a†

g4
D n

a1
n

g4
S 2g3a1

a†

g4
D n21

, ~C9!

S 2g3a1
a†

g4
D n

a†5a†S 2g3a1
a†

g4
D n

2ng3S 2g3a1
a†

g4
D n21

, ~C10!

with the result that forn an even integer

Tn1252
g3

g4
^0uaS 2g3a1

a†

g4
D n

a†u0&

5
~n12!!

2(n12)/2~~n12!/2!! S 2
g3

g4
D (n12)/2

, ~C11!

which completes the proof of~C8!. Using ~C8! in ~C7! yields the final form for the inner produc

^0uñ&5H 0 if n is odd

NdAn!

2n/2~n/2!! S 2
g3

g4
D n/2

if n is even.
~C12!

A similar result follows for^n̄u0&
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^n̄u0&5H 0 if n is odd

NcAn!

2n/2~n/2!! S 2
g2

g1
D n/2

if n is even.
~C13!

It is critical that the states~21! and~28! can be used to expand the harmonic oscillator sta
appearing in transition elements. This reduces to showing that the projection operator

P̂5 (
n50

`

uñ&^n̄u ~C14!

is a unit operator in the Hilbert space of the harmonic oscillator states. The orthonormality
states~21! and ~28! ensures that the operator~C14! is idempotent,P̂25 P̂. The proof thatP̂ is a
unit projection operator is inductive, and begins by noting that~C12! and ~C13! give

^0uP̂u0&5NcNd (
n50,2,...

`
n!

2nS n

2
! D 2 S g2g3

g1g4
D n/2

5NcNdA g1g4

g1g42g2g3
51, ~C15!

where the method employed in summing~C1! has been used as well as using the condition~26!

and the norms~30!. As a result,̂ 0uP̂u0&5^0u0&51.
The projection operator must also preserve orthonormality of the original harmonic osc

states. Using the tools developed so far it is straightforward to show that

(
n50

`

^1uñ&^n̄u0&5^1u0&50. ~C16!

Result~C16! follows from the fact that̂ 1uñ&50 for n even, while^n̄u0&50 for n odd. The next
step is to demonstrate that

^2uP̂u0&5 (
n50

`

^2uñ&^n̄u0&50. ~C17!

From the definitions of the modified states it follows that

^2uñ&5
Ndn~n21!

g4
2A2~n! !

^0uS 2g3a1
1

g4
a†D (n22)

u0&1
Nd

A2~n! !

g2

g4
^0uS 2g3a1

1

g4
a†D n

u0&,

~C18!

where the first term on the right hand side of~C18! is present only ifn>2. Result~C8! can now
be used to show that

^2uñ&5
Nd

A2~n! !

n!

2n/2~n/2!! Fg2

g4
2

n

g3g4
G S 2

g3

g4
D n/2

1
Ndg2

&g4

, ~C19!

where then50 contribution has been written as the last term on the right hand side of~C19!.
Result~C19! can now be combined with~C8! to give

(
n50

`

^2uñ&^n̄u0&5
NcNdg2

&g4

1
NcNdg2

&g4
(

n52,4,...

`
n!

2n~~n/2!! !2 S 12
n

g2g3
D S g2g3

g1g4
D n/2

. ~C20!

Using the identities
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g2

&g4
(

n52,4,...

`
n!

2n~~n/2!! !2 S g2g3

g1g4
D n/2

5
g2

&g4

~Ag1g421!, ~C21!

1

&g3g4
(

n52,4,...

`
n n!

2n~~n/2!! !2 S g2g3

g1g4
D n/2

5
g2

&g4

Ag1g4, ~C22!

shows that~C20! vanishes. The preservation of orthonormality can now be extended to a
harmonic oscillator states by using induction.

APPENDIX D: THE U TRANSFORMATION

The object is to demonstrate that the action of the operatorU, given by ~39!, maps the
eigenstates into their orthonormal duals under the adjoint operation. TheU operator is invariant
under the transformations of~A5a!–~A5d!, which is required for consistency. The first two oper
tors in ~39! leave the stateu0d& invariant by virtue of the fact thatdu0d&50, so their action is
solely upon thec operators that define the eigenstate. The Baker–Campbell–Hausdorff the
gives

expH 1

2 S g3*

g1*
2

g2

g4
D a†2J expS 1

2
wd2Dexp~cd ln z!cnu0d&5expH 1

2 S g3*

g1*
2

g2

g4
D a†2J ~zc1wzd!nu0d&.

~D1!

Using the forms~7! and~8! for c andd allows the action of the remaining operator in~39! to be
evaluated, with the result that

expH 1

2 S g3*

g1*
2

g2

g4
D a†2J ~zc1wzd!nu0d&5NdS zF 1

g4
1

g3g3*

g1*
2

wg3* g4

g1*
Ga†

1z@wg42g3#aD n

expS 1

2

g3*

g1*
a†2D u0&, ~D2!

where~11! has been used. Using~40!, the forms forz andw, and the complex conjugate of~11!
yields the desired result that

Uc5H zF 1

g4
1

g3g3*

g1*
2

wg3* g4

g1*
Ga†1z@wg42g3#aJ U5~g4* a†2g2* a!U5d†U, ~D3!

while comparison with~27! shows that

~Uu0d&)
†5S Nd expS 1

2

g3*

g1*
a†2D u0& D †

5^0cu. ~D4!

Combining these results gives

S U
cn

An!
u0d& D †

5S d†n

An!
u0c& D †

5^n̄u. ~D5!

This completes the demonstration of~35!.
From ~D3! it is clear that~41a! is satisfied. The Baker–Campbell–Hausdorff theorem giv

expS 1

2
wd2Dexp~cd ln z!d5

d

z
expS 1

2
wd2Dexp~cd ln z!, ~D6!
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while using~11! shows

expH 1

2 S g3*

g1*
2

g2

g4
D a†2J d5S g4a2

g3* g4

g1*
a†D expH 1

2 S g3*

g1*
2

g2

g4
D a†2J . ~D7!

Combining these results withz5g4 /g1* and noting that~7! gives c†5g1* a2g3* a† immediately
yields ~41b!.
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The Euler characteristic and the first Chern number in the
covariant phase space formulation of string theory

R. Cartas-Fuentevillaa)

Instituto de Fı´sica, Universidad Auto´noma de Puebla,
Apartado postal J-48 72570, Puebla Pue., Me´xico

~Received 23 July 2003; accepted 23 October 2003!

Using a covariant description of the geometry of deformations for extendons, it is
shown that the topological corrections for the string action associated with the
Euler characteristic and the first Chern number of the normal bundle of the world
sheet, although do not give dynamics to the string, modify the symplectic proper-
ties of the covariant phase space of the theory. Future extensions of the present
results are outlined. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1635066#

I. INTRODUCTION

As it is well known, string theory contains two natural topological invariants related with
different topologies of the two-dimensional world surface embedded in a background space
Specifically, the Gauss–Bonnet action, which depends only on the purely intrinsic propert
the world surface, corresponds to the Euler characteristic, which counts the number of ho
handles of the world surface. Additionally, the first Chern number of the normal bundle o
world surface, which depends on the extrinsic properties of the world surface embedde
~four-dimensional! background space–time, gives us essentially the number of self-interse
of the world surface. Such topological invariants do not contribute effectively as Lagrangian
to the string dynamics, although it is well known also that there is a global contribution in the
integral formulation of the theory, weighting the different topologies in the sum over w
surfaces.

On the other hand, in the canonical formulations of the theory for quantization, based o
classical dynamics of the theory, the topological terms will have no any contribution, sinc
dynamics remains unmodified. The fact that such terms play a nontrivial role in the path in
formulation of the theory, and do not appear at all in the canonical scheme, is somewhat sus
at first glance. Hence, the aim of this work is to show that, on the basis of a covariant desc
of the canonical formulation of the theory, the topological terms in the string action may
indeed a physically relevant contribution on the symplectic structure constructed on the
sponding covariant phase space. With these results, we give a new relevant role of the topo
terms within a canonical formulation, which is completely unknown in the literature, levelling
the roles of such terms in both approaches for quantization.

In the next section, we outline the covariant canonical formalism, and in Sec. III we give
remarks on the covariant canonical formulation of the Dirac–Nambu–Goto~DNG! action, in
order to prepare the background for the subsequent sections, where the topological terms
worked out. In Sec. VII we conclude with some discussions about our results and future
sions.

II. COVARIANT PHASE SPACE AND THE EXTERIOR CALCULUS

In this section we summarize the exterior calculus on the covariant phase space given
1 but adjusted for the treatment of embeddings.2

a!Electronic mail: rcartas@sirio.ifuap.buap.mx
6020022-2488/2004/45(2)/602/7/$22.00 © 2004 American Institute of Physics
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According to Ref. 1, in a given physical theory,the classical phase space is the space
solutions of the classical equations of motion, which corresponds to a manifestly covariant de
nition. The basic idea of the covariant description of the canonical formalism is to constr
symplectic structure on such a phase space, instead of choosingp’s andq’s.

In the present case, the phase space is the space of solutions of Eq.~12!, and we shall call it
Z. Any background quantity, will be associated with zero-forms onZ. The deformation operatord
~see Sec. III! acts as an exterior derivative onZ, takingk-forms into (k11)-forms, and it should
satisfy

d250, ~1!

and the Leibniz rule

d~AB!5dAB1~21!AAdB. ~2!

In particular,dXm is the exterior derivative of the zero-formXm @see Eq.~5!#, and it will be closed,

d2Xm50. ~3!

Furthermore, sincef i5nm
i dXm, andnm

i corresponds to zero-forms onZ, the scalar fieldsf i are
one-forms onZ, and thus are anticommutating objects:f if j52f jf i . This property allows us to
verify that, being the vector fieldd5nif i , thusd25ninjf if j , which vanishes because of th
commutativity of the zero-formni and the anticommutativity of thef i on Z, in full agreement
with Eq. ~1!. It is important to mention, at this point, that the covariant deformation operatoDd

~see Sec. III! also works as an exterior derivative onZ, in the sense that mapsk-forms into (k
11)-forms; howeverDd

2 does not vanish necessarily.
We can determine certain two-forms onZ that will be useful for our present purposes. Co

sidering thatd[dXm]m andDd[dXmDm , we can show thatDd(dXm) vanishes,

Dd~dXm!5dXaDadXm5dXa@]adXm1Gal
m dXl#5d2Xm1Gal

m dXadXl50, ~4!

where the first term vanishes according to Eq.~3!, and the second one because of the symmetr
Gal

m in the indicesa andl, and the anticommutativity ofdXa anddXl. Hence, Eq.~4! suggests
that Dd is, as well asd, a measure of the closeness ofdXm on Z.

III. COVARIANT CANONICAL FORMULATION FOR DNG p-BRANES IN A CURVED
BACKGROUND

It will be convenient to do the general treatment forp-branes, and then to consider th
particular case of string theory~1-brane!, which will show the particularities of string theory a
opposed to the other higher-dimensional objects.

In Ref. 2 it is shown that there exists an identically closed two-form on the space of solu
of the classical equations of motion~modulo gauge transformations! for p-branes propagating in a
curved background, endowing to the physical phase spaceẐ of a symplectic structure. Howeve
a more detailed study3 shows that such a closed two-form is even an exact two-form, obtaine
direct exterior derivative of asymplectic potential, a global one-form on the phase space. T
strategy in Ref. 3 for obtaining the global symplectic potential directly from the variations o
corresponding Lagrangian is as follows.

In the geometry of deformations ofp-branes developed in Ref. 4, it is assumed that
infinitesimal deformation tangent to the world surface is not physically relevant, since it ca
identified always with the action of a world surface diffeomorphism. However, as claimed in
3, it is precisely such an infinitesimal diffeomorphism that plays the role of our global sympl
potential on the phase space~and it is the first example showing that aspuriousquantity in a
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conventional sense, may be physically relevant on the phase space!. Hence, we will maintain
explicitly a world surface diffeomorphism from the beginning, modifying slightly the origi
deformation scheme given in Ref. 4.

In this manner, following Ref. 4, the deformation of the world surface swept out by ap-brane
~propagating in a curved background! is given by the infinitesimal space–time variation

jm[dXm5ni
mf i1ea

mfa, ~5!

where ni correspond to vector fields normal to the world surface and,ea to the vector fields
tangent to such a surface.4 Hence, considering thatDm is the background torsionless covaria
derivative, in Ref. 4 the normal deformation operator is defined as

Dd[dmDm , d[nif
i , ~6!

and it is found that4

Ddca5~Kab
i f i !e

b1~¹̃af i !n
i ,

Ddgab52Kab
i f i , ~7!

DdA2g5A2gKif i ,

which will be useful below. We define here the tangential deformation operator as

DD[DmDm , D[eafa, ~8!

and using the generalized Gauss–Weingarten equations, we find that

DDea5~¹afb!eb2Kab
i fbni ,

DDgab5¹afb1¹bfa , ~9!

DDA2g5A2g¹afa.

In this manner, the action for DNGp-branes,

S052s0E dDjA2g, ~10!

considering world surface diffeomorphisms, has as a first variation

05~Dd1DD!S052s0E dDjA2gKif i2s0E dDjA2g¹afa, ~11!

where the last of Eqs.~7! and ~9! have been considered; from Eq.~11! we can see thatDDS0 is
associated with a total divergence that can be indeed negligible, since it does not contribute
to the dynamics.

Therefore, from Eq.~11!, the equations of motion for extremal surfaces are

Ki50, ~12!

whose set of solutions defines, in fact, the covariant phase spaceZ of the theory.
On the other hand, from the deformation dynamics@obtained linearizing Eq.~12!#, and using

the scheme of~self-! adjoint operators, it is found that the currentj a5f i¹̃
af i is world surface
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covariantly conserved (¹aj a50), and corresponds to a closed two-form on the phase s
Dd j a50.2 Therefore, one can finally construct a covariant and gauge invariant symplectic
ture v for the theory,2

v[E
S
A2g j a dSa , ~13!

independent on the choice ofS ~a spacelike section of the world surface corresponding t
Cauchyp-surface for the configuration of thep-brane!. However, the symplectic currentj a is even
an exact two-form,3 since from Eqs.~4!, ~5!, and the first of Eqs.~7! one finds that

dfa5Dd~em
a dXm!52 j a, ~14!

and j a is in particular a closed form,d j a50, because of the nilpotency ofd @see Eq.~1!#.
Thereforefa ~the tangential projection of the deformation of the embedding!, coming directly
from the pure divergence term in Eq.~11!, plays the role of a global symplectic potential on t
phase space. As pointed out above,fa gives no dynamics to the string, but it is physically releva
on the phase space, in accordance with Eq.~14!.

It is important to emphasize here, the significance of a covariant and gauge invariant
plectic structure for the theory.v in Eq. ~13! represents a completeHamiltoniandescription of the
covariant phase space, preserving manifestly all relevant symmetries of the theory. Hev
represents a starting point for the study of the symmetry aspects and also a covariant des
of the canonical formulation of the theory for quantization. For the general features of the
riant phase space formulation, see, for example, Ref. 1. Note, however, that the concept o
plectic potential does not appear at all in Ref. 1.

In the next section we will follow the same procedure employed in this section for deter
ing the symplectic potentialfa, in order to find the contribution of the Gauss–Bonnet topolog
term in the action on the covariant phase space of the theory.

IV. THE GAUSS–BONNET TOPOLOGICAL TERM

The Gauss–Bonnet term for an arbitrary closedp-brane without physical boundaries is pr
portional to the Ricci scalarR constructed from the world surface metricgab ,

x[s1E dDjA2gR, ~15!

whose first variation, according to the geometry of deformations of Ref. 4, is given by

Dd~A2gR!522A2gGabKi
abf i1A2g¹acN

a , ~16!

whereGab is the world surface Einstein tensor

Gab5Rab2 1
2gabR, ~17!

and

cN
a 5gabDdgbc

c 2gbcDdgbc
a ~18!

is the analogous tofa in Sec. III. Note that in Ref. 4, the pure divergence term involvingcN
a is

completely ignored~which is correct in a conventional analysis of the brane dynamics!, without
suspecting the relevant role that such a term will play in a phase space formulation of the t

In this manner, Eq.~16! gives the universal contribution of the Gauss–Bonnet term on
brane dynamics~the first term on the right-hand side!, and on the covariant phase space throu
cN

a . In this sense, there is no surprise for an arbitraryp-brane, sincex changes the dynamics an
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correspondingly the symplectic structure on the phase space. Nevertheless, as it is well kn
a two-dimensional world surface~and only for such a case!, swept out for a string, the world
surface Einstein tensor vanishes~for an arbitrary embedding background dimension!,

Gab50, ~19!

and there is not effect on the string dynamics. However, there is a nontrivial contribution o
topological term on the phase space through symplectic potential~18!, independently on the nul
contribution at the level of the string dynamics. For example, in the case considered in Sec
Eqs. ~12! are the equations of motion for the closed string dynamics described by externa
faces, the inclusion of the topological termx in the action leaves Eqs.~12! unchanged~and thus
the phase space itself, defined as the space of solutions of the equations of motion, is una!,
but the corresponding symplectic potential on the phase space is no longer2s0fa, but 2s0fa

1s1cN
a , wherecN

a is given in Eq.~18!.
Although we have considered only the DNG closed strings as the reference Lagrangia

for the inclusion of the GB term, the main idea is to show thats1cN
a is the universal contribution

of the latter on the phase space, and similarly for any action describing strings, for example
action including terms with curvature corrections.3 Therefore, ifFa is the symplectic potential for
such a general action, we can construct the symplectic structurev as

v5E
S
DdA2g~Fa1s1cN

a !dSa , ~20!

with the wanted properties of closeness~dv50!. The closeness ofv is equivalent to the Jacob
identity that the Poisson brackets satisfy, in the usual Hamiltonian scheme.5

Considering the deformation formulas of Ref. 4, we can determine explicitly the univ
contribution ofcN

a to the symplectic current of the theory, in terms off i , the only measure of the
deformation that cannot be gauged away,

DdcN
a 522f i$K

abi¹b~K jf j !1Kbci@¹b~Kc
a jf j !1¹c~Kb

a jf j !2¹a~Kbc
j f j !#%; ~21!

which will constitute the universal integral kernel of the Euler characteristic on the sympl
geometry of string theory. Note that even in the simplest case of a DNG closed string dyn
described by Eq.~12!, DdcN

a in Eq. ~21! does not vanish. Therefore, the topological term modifi
drastically the symplectic properties of the phase space of the theory, without changing t
namics and the phase space itself.

V. THE FIRST CHERN NUMBER OF THE NORMAL BUNDLE OF THE WORLD SHEET

The self-intersection number of the world sheet embedded in a four-dimensional backg
space–time, given essentially by the first Chen number of the normal bundle of the world
has the analytic expression6,7

n5s2E d2j V, ~22!

in terms of the extrinsic twist curvature,

V5 1
2e i j e

abVab
i j ,

~23!
Vab

i j 5]bva
i j 2]avb

i j ,

where va
i j corresponds to the extrinsic twist potential.4,7 Using Eqs.~23!, n can be rewritten

explicitly as a topological invariant in terms of a total divergence,
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n5s2E d2jA2g¹a~e i j e
abvb

i j !, ~24!

where eab5A2geab.7 In order to determine the variation ofn, we exploit the frame gauge
dependence of the potentialvb

i j , which means that it can always be set equal to zero at any s
chosen point by an appropriate choice of the normal frame,

dn5s2E d2jA2g¹a~e i j e
abdvb

i j !, ~25!

where the~normal! variation of the twist potential is given in terms off i by4,7

dvb
i j 522Kcb

i ¹̃cf j1Rmnabnm inn jnakeb
bfk , ~26!

where Rmnab is the Riemann tensor of the~four-dimensional! background space–time. In thi
manner, following the ideas of the present work, from Eq.~25! we can identify to Qa

5s2e i j e
abdvb

i j as a symplectic potential forn. Thus, the contribution ofn on the integral Kernel
of the symplectic structure of the theory is given by the deformation~exterior derivative! of Qa,

dQa52Kif
iQa, ~27!

where we have considered thatdA2g5A2gKif
i .4 Note that the effect of addingn to the DNG

string action is, in addition to leave unaltered the dynamics governed byKi50 @Eq. ~12!#, to leave
unchanged the symplectic structure for the theory~unlike the case ofx in Sec. IV!, since in this
casedQa50 in accordance with Eq.~27!; of course the situation is different in a more gene
case than that described by the DNG action, where in generalKiÞ0. Therefore, ifCa is the
symplectic potential for such a general action~which may include, for example, the Gauss–Bonn
term x considered in Sec. IV!, the symplectic structurev of string theory~in four dimensions!
including the termn will take the form

v5E
S
Dd~A2gCa!dSa1E

S
DdQa dSa , ~28!

which is evidently closed.
The same argument employed in Ref. 2 for demonstrating the nondegeneracy of the sy

tic structure for DNG branes works for the contributions of the topological terms on the sym
tic structure of the theory. In this manner thev’s in ~20! and ~28! are nondegenerate and a
defined on the reduced phase spaceZ/G, with G being the volume of the group of infinitesima
space–time diffeomorphisms.2

VI. REMARKS ON OPEN AND CLOSED STRINGS

In Ref. 7 open strings with topologically inspired boundary conditions are considered,
cifically the topological terms considered here for closed strings. In both cases, such topo
terms do not affect the equations of motion; however, in the case of open strings such term
to boundary conditions to be implemented in addition to the equations of motion, unlike the
treated here of closed strings, where such complementary conditions do not appear at all, b
of the absence of physical boundaries. Thus, it is opportune to emphasize the results pres
this work: the topological terms for closed strings do not modify the classical dynamics, n
imposing any additional condition, but contributing explicitly to the symplectic structure of
theory, and thus they may have possible quantum effects.

It is important to remark also that the symplectic potentials for the topological termsx andn
are the same for both closed and open strings; however for the former the symplectic structu
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be constructed on the phase space defined by the~unmodified! equations of motion, and for the
latter on arestrictionof the same phase space defined by the complementary conditions men
above.

VII. REMARKS AND PROSPECTS

In Ref. 8, it is proved that the topological terms modify drastically the deformation dyna
of string theory, in such a way that the symplectic current obtained as a consequence
self-adjointness of that deformation dynamics, is in full agreement with the currents obtain
the present treatment calculating the variations of the symplectic potentials. Specifically
proved that the symplectic currents of the topological terms in Eqs.~20! and~28! are world sheet
covariantly conserved:¹a(DdA2gcN

a )505¹a(DdQa), which ensures that thev’s in ~20! and
~28! are independent on the choice ofS. It is important to mention that such world sheet conserv
currents that play the role of integral kernels for the symplectic structures onZ in the present
approach, can be considered, in a more ordinary sense, as Noetherian current for the top
invariants considered, which will allow us in this sense to obtain conserved currents asso
with any continuous symmetries of the background. In the context of brane dynamics i
current literature, these conserved currents only have been considered in this conventional9

Since a symplectic structurev governs the transition between the classical and quan
domains, and allows us to consider also the aspects of symmetry of the theory, it may be
esting to study the possible contribution of the topological terms on the Poincare´ charges, Poincare´
algebra, and the relevant commutation relations of the theory. In this sense, because of th
ence of the topological terms, the quantum version of string theory obtained from the unmo
classical dynamics, may be radically different to that obtained from the global description o
phase space given in terms ofv. All these questions will be the subject of forthcomin
communications.
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1C. Crncovićand E. Witten, inThree Hundred Years of Gravitation, edited by S. W. Hawking and W. Israel~Cambridge
University Press, Cambridge, 1987!.

2R. Cartas-Fuentevilla, Class. Quantum Grav.19, 3571~2002!.
3A. Escalante-Hernandez, Basic symplectic geometry forp-branes with thickness in a curved background~unpublished!.
4R. Capovilla and J. Guven, Phys. Rev. D51, 6736~1995!.
5N. M. J. Woodhouse,Geometric Quantization~Oxford University Press, New York, 1990!.
6A. M. Polyakov,Gauge Fields and Strings~Hardwood Academic, New York, 1987!.
7R. Capovilla and J. Guven, Class. Quantum Grav.15, 1111~1998!.
8A. Escalante-Hernandez, Deformation dynamics and the topological terms in the covariant phase space formul
string theory~unpublished!.

9G. Arreaga, R. Capovilla, and J. Guven, Ann. Phys.~N.Y.! 279, 126 ~2000!; R. Battye and B. Carter, Class. Quantu
Grav. 17, 3325 ~2000!; B. Carter, ‘‘Brane dynamics for treatment of cosmic strings and vortons,’’ inRecent Develop-
ments in Gravitation and Mathematics, Proceedings of the 2nd Mexican School on Gravitation and Mathem
Physics (Tlaxcala, 1996)~http://kaluza.physik.unikonstanz.de/2MS!, edited by A. Garcia, C. Lammerzahl, A. Macia
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Construction of a family of quantum Ornstein–Uhlenbeck
semigroups

Chul Ki Koa) and Yong Moon Parkb)

Department of Mathematics, Yonsei University, Seoul 120-749, Korea

~Received 17 April 2003; accepted 19 November 2003!

For a given quasi-free state on the CCR algebra over one dimensional Hilbert
space, a family of Markovian semigroups which leave the quasi-free state invariant
is constructed by means of noncommutative elliptic operators and Dirichlet forms
on von Neumann algebras. The generators~Dirichlet operators! of the semigroups
are analyzed and the spectrums together with eigenspaces are found. When re-
stricted to a maximal Abelian subalgebra, the semigroups are reduced to a unique
Markovian semigroup of classical Ornstein–Uhlenbeck process. ©2004 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1641150#

I. INTRODUCTION

The purpose of this paper is to find the explicit expressions of the generators of Mark
semigroups on the CCR algebraA over one dimensional Hilbert space, which leave a giv
~fixed! quasi-free statev on A invariant. By means of noncommutative elliptic operators1 and
Dirichlet forms on standard forms of von Neumann algebras,2 we construct a family of symmetric
Markovian semigroups on the natural standard form associated to the GNS representation
pair ~A,v!. If one restricts the semigroups to a maximal Abelian subalgebra, then the semig
are reduced to a unique Markovian semigroup of classical Ornstein–Uhlenbeck~O-U! process.
Each generator of the semigroups has a discrete spectrum and a simple lowest eigenvalu
the semigroups are ergodic and tend to the equilibrium exponentially fast.

The need to construct Markovian semigroups on von Neumann algebras, which are sym
with respect to a nontracial state, is clear for various applications to open systems,3 quantum
statistical mechanics,4 and quantum probability theory.5–7 Although on the abstract level we hav
quite a well-developed theory,2,8,9 the progress in concrete applications is very slow. We wo
like to mention a few works in this direction. The completely positive Hamiltonian semigroup
quantum spin chains in the ground state representation has been considered in Ref. 10. In
and 12, the generalized conditional expectation is used to construct generators of spin-fl
dynamics for quantum spin systems. In Ref. 13, one of authors gave a general construction
of Dirichlet forms on standard forms of von Neumann algebras and applied the method to
struct translation invariant Markovian semigroups for quantum spin systems. The method o
13 has been extended to construct symmetric Markovian semigroups on the CCR and
algebras with respect to quasi-free states,14,15 and on quantum mechanical systems.16 In Ref. 17,
quantum O-U semigroups were constructed by means of noncommutative Dirichlet forms. I
be worthwhile to mention that for a given quasi-free statev on the CCR algebraA, the O-U
semigroup constructed in Ref. 17 belongs to the family of semigroups we constructed i
article. See Sec. III for the details.

Let us describe the content of this paper briefly. LetA be theC* -algebra generated by th
Weyl operatorsW(z), zPC. See Sec. 5.2 of Ref. 4 for the details. The quasi-free statev on A is
given by

a!Electronic mail: kochulki@hotmail.com
b!Electronic mail: ympark@yonsei.ac.kr
6090022-2488/2004/45(2)/609/19/$22.00 © 2004 American Institute of Physics
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v~W~z!!5exp$2 1
4 uzu2~11e2b!~12e2b!21%, zPC, ~1.1!

wherebP(0,̀ ) is the inverse temperature, which is fixed throughout in this article.
Let (Hv ,pv ,Vv) be the GNS representation4 of ~A,v! and letM5pv(A)9. For eachz

PC, we denote byFv(z) the infinitesimal generator of the strongly continuous unitary gro
pv(W(tz)),tPR:

pv~W~ tz!!5exp~ i tFv~z!!. ~1.2!

Let Q andP be the position and momentum operators given by

Q5Fv~1!, P5Fv~ i !. ~1.3!

From now on we writeH5Hv , j05Vv andW(z)5pv(W(z)), ;zPC. Let s t be the group
of automorphisms onM defined by

s t~W~z!!5W~e2 ibtz!, ;zPC. ~1.4!

The statev satisfies thes-KMS condition4 and thuss t , tPR, is the group of the modula
automorphisms. LetD andJ be the modular operator and modular conjugation respectively a
ciated to (M,j0). Thens t(A)5D i tAD2 i t , APM. Let M8 be the commutant ofM. The map
j : M→M8 is the antilinear* -isomorphism defined byj (A)5JAJ, APM. The natural positive
coneP associated with (M,j0) is the closure of the set$A j(A)j0 :APM%. Then (M,H,P,J) is
the natural standard form associated to (M,j0).

Next let us describe the explicit forms of the generators of Markovian semigroups oM
which leavev invariant. In Ref. 1, the authors constructed Markovian semigroups on von
mann algebras by the quantum Feynman–Kac formula. LetN be a von Neumann algebra andb
5b* PN. Let d be a densely defined* -derivation onN such that1PD(d) andd(1)50. Let Gb

be an elliptic operator onN defined by

D~Gb!5D~d2!,
~1.5!

Gb~A!52 1
2 d2~A!2bd~A!2d~A!b1 1

2 @b,@b,A##, APD~Gb!,

where @A,B#5AB2BA, A,BPN. It was shown that the closed extension ofGb generates a
Markovian semigroup onN.1

We are searching for elliptic operators onM which generate Markovian semigroup leavingv
invariant. Let a1 , a2 , a3PR be real parameters. In~1.5!, we choosed(A)5 i @P,A# and b
5a1Q, and let

G1~A!ª 1
2 @P,@P,A##2 ia1~Q@P,A#1@P,A#Q!1 1

2 a1
2@Q,@Q,A##.

Next, choosed(A)5 ia3@Q,A# andb5a2P, and let

G2~A!ª 1
2 a3

2@Q,@Q,A##2 ia2a3~P@Q,A#1@Q,A#P!1 1
2 a2

2@P,@P,A##.

Let G be the elliptic operator onM given by

G~A!ªg$G1~A!1G2~A!%5
g

2
~11a2

2!@P,@P,A##1
g

2
~a1

21a3
2!@Q,@Q,A##2 iga1~Q@P,A#

1@P,A#Q!2 iga2a3~P@Q,A#1@Q,A#P!, ~1.6!

whereg is the normalized constant which will be chosen asg5(11a2
2)21. SinceP andQ are

unbounded operators affiliated toM, the above is a formal expression.
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Because of the well-developed theory,2 it is convenient to construct Markovian semigroups
the standard form (M,H,P,J). Consider the symmetric embedding:2

i 0 : M → H,
~1.7!

i 0~A!5D1/4Aj05s2 i /4~A!j0 ,

and define the operatorH on H by

Hs2 i /4~A!j05s2 i /4~G~A!!j0 . ~1.8!

It follows from ~1.8! that

H5
g

2
~11a2

2!~s2 i /4~P!2 j ~s2 i /4~P!!!21
g

2
~a1

21a3
2!~s2 i /4~Q!2 j ~s2 i /4~Q!!!2

2 iga1~s2 i /4~Q!1 j ~s2 i /4~Q!!!~s2 i /4~P!2 j ~s2 i /4~P!!!2 iga2a3~s2 i /4~P!

1 j ~s2 i /4~P!!!~s2 i /4~Q!2 j ~s2 i /4~Q!!!. ~1.9!

Let the parametersa1 , a2 , a3PR, satisfy the following relations:

1
2 ~11a2

2!sinh~b/2!52a1 cosh~b/2!,
~1.10!

1
2 ~a1

21a3
2!sinh~b/2!5a2a3 cosh~b/2!.

Then the operatorH can be written as

H5g1~s2 i /4~P!2 j ~s2 i /4~P!!!* ~s2 i /4~P!2 j ~s2 i /4~P!!!1g2~s2 i /4~Q!

2 j ~s2 i /4~Q!!!* ~s2 i /4~Q!2 j ~s2 i /4~Q!!!, ~1.11!

whereg152ga1 /sinh(b/2), g25ga2a3 /sinh(b/2). Recall thatg5(11a2
2)21. See the proof of

Proposition 3.1 in Sec. IV.
Notice that formally the operatorH in ~1.11! is symmetric and positive. By means of Dirichle

forms on von Neumann algebras2 and the approximation procedure used in Ref. 14, we will sh
that H becomes a positive self-adjoint operator on a dense domain inH, which generates a
strongly continuous symmetric Markovian semigroup$Tt% t>0 on H. Define the mapSt on M by

St :M→M, i 0+St5Tt+ i 0 .

Then$St% t>0 is a weakly continuous Markovian semigroup onM which leavesv invariant. See
Remark 3.1.

Let w be a bounded smooth function onR. It follows from ~1.6! and the commutation relation
@P,Q#52 i1 that

G~w~Q!!52
g

2
~11a2

2!w9~Q!22ga1Qw8~Q!52 1
2 w9~Q!1tanh~b/2!Qw8~Q!. ~1.12!

Thus for anya1 , a2 anda3 satisfying~1.10!, the restriction ofSt to the maximal Abelian subal
gebraN,M generated by exp(ikQ), kPR, is reduced to a unique classical O-U semigroup.

The spectrum ofH will be analyzed by a method similar to that used in Ref. 14. It turns
that H has discrete spectrum andH has a simple eigenvalue zero with eigenvectorj0 .

The article is organized as follows: In Sec. II, we review the theory of noncommuta
Dirichlet forms on von Neumann algebras.2 In Sec. III, we give explicit expressions of Dirichle
forms and state the main results. Section IV is devoted to the proof of the Markov prope
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semigroups by means of the theory of noncommutative Dirichlet forms and the approxim
procedure used in Ref. 14. In Sec. V, we decomposeH to a direct sum of eigenspaces of Direch
operators and analyze the spectrum of generators of the semigroups.

II. REVIEW ON THE NONCOMMUTATIVE DIRICHLET FORMS

In this section we give a brief review on the theory of Dirichlet forms and Markovian se
groups on standard forms of von Neumann algebras. For details, we refer the reader to R

Let M be as-finite von Neumann algebra acting on a complex Hilbert spaceH. A self-dual
coneP in H is a subset satisfying the property:

$jPH:^j,h&>0,;hPP%5P.

Then P is a closed convex cone andH is the complexification of the real subspaceH J
ª$j

PH:^j,h&PR, ;hPP%, whose elements are calledJ-real: H5H J
% iH J. For any two elements

j, hPH J, j<h meansh2jPP, thusH J has an ordered structure. An anti-unitary involutionJ
on H by J(j1 ih)ªj2 ih,; j,hPH J, preservesP and H J. Any J-real elementj can be
decomposed uniquely as a difference,j5j12j2 , of two orthogonal, positive elements, calle
the positive and the negative part ofj: j1 , j2PP, ^j1 ,j2&50.

A standard form(M,H,P,J) of the von Neumann algebraM acting faithfully on the Hilbert
spaceH consists of self-dual, closed, convex coneP in H and the anti-unitary involutionJ
satisfying the following properties:

~a! JMJ5M8,
~b! JAJ5A* , ;APMùM8,
~c! Jj5j, ;jPP,
~d! AJAJ(P),P, ;APM,

whereM8 is the commutant ofM.
A bounded operatorA onH is calledJ-real if AJ5JA andpositive preservingif AP,P. The

semigroup$Tt% t>0 is said to beJ-real if Tt is J-real for any t>0 and it is calledpositive
preservingif Tt is positive preserving for anyt>0.

Let us fix a cyclic and separating vectorj0 in P. A bounded operatorA:H→H is called
sub-Markovian~with respect toj0) if 0<j<j0 implies 0<Aj<j0 . A is calledMarkovianif it is
sub-Markovian and alsoAj05j0 . A semigroup$Tt% t>0 is said to besub-Markovian~with respect
to j0) if Tt is sub-Markovian for everyt>0. The semigroup$Tt% t>0 is calledMarkovian if Tt is
Markovian for everyt>0.

Next, we consider a sesquilinear form on some linear manifold ofH: E(•,•):D(E)3D(E)
→C. We also consider the associated quadratic form:E@•#:D(E)→C, E@j#ªE(j,j). A real valued
quadratic formE@•# is said to besemi-boundedif inf $E@j#:jPD(E), iji51%52b.2`. A
quadratic form (E,D(E)) is said to beJ-real if JD(E),D(E) and E@Jj#5E@j# for any j
PD(E). For a given semi-bounded quadratic formE, one considers the inner product given b
^j,h&lªE(j,h)1l^j,h&, for l.b. The formE is closedif D(E) is a Hilbert space for some o
the above norms. The formE is calledclosableif it admits a closed extension.

Associated to a semi-bounded closed formE, there are a self-adjoint operator (H,D(H)) and
a strongly continuous, symmetric semigroup$Tt% t>0 . Each of the above objects determin
uniquely the others according to well known relations~see Sec. 3.1 of Ref. 4!.

From now on we will consider onlyJ-real, real-valued, semi-bounded, densely defined q
dratic forms. It is easy to check that these forms satisfy the relationE@j1 ih#5E@j#1E@h# for all
j1 ihPD(E)J1 iD (E)J5D(E) whereD(E)J

ªD(E)ùHJ.
Let us denote by Proj(j,Q) the projection of the vectorjPH J onto the closed, convex con

Q,H J. For j,hPH J, define

j∨hªProj~j,h1P!,
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j∧hªProj~j,h2P!.

Definition 2.1: A J-real, real-valued, densely defined quadratic form(E,D(E)) is called Mar-
kovian with respect toj0PP if

jPD~E!Jimplies j∧j0PD~E!and E@j∧j0#<E@j#.

A closed Markovian form is called a Dirichlet form.
Next, we state main results which will be used in the sequel. For the proofs we refer to

2.
Proposition 2.1: Let(E,D(E)) be a J-real, real valued, densely defined closed form. Assu

that the following properties hold:

~a! j0PD(E),
~b! E(j,j)>0 for jPD(E),
~c! jPD(E)J impliesj6PD(E) and E(j1 ,j2)<0.

ThenE is a Dirichlet form if and only ifE(j,j0)>0 for all jPD(E)ùP.
The above result follows from Proposition 4.5~b! of Ref. 2 and Proposition 4.10~ii ! of Ref. 2.
Theorem 2.1~Theorem 4.11 of Ref. 2): Let$Tt% t>0 be a J-real, strongly continuous, symme

ric semigroup onH and let (E,D(E)) be the associated densely defined J-real, real valued
quadratic form. Then the followings are equivalent:

~a! $Tt% t>0 is sub-Markovian.
~b! (E,D(E)) is a Dirichlet form.

III. DIRICHLET FORMS: PRELIMINARIES AND MAIN RESULTS

Let A be theC* -algebra generated by the Weyl operatorsW(z), zPC, satisfying

W~z!* 5W~2z!,
~3.1!

W~z!W~z8!5e2 i /2 Im(z̄z8)W~z1z8!,;z,z8PC,

wherez̄ is a complex conjugate ofz. A is the CCR algebra over one dimensional Hilbert spa
Let v be a quasi-free state onA defined by

v~W~z!!5exp$2 1
4 uzu2~11e2b!~12e2b!21%,;zPC, ~3.2!

whereb.0 is the inverse temperature.
Let (Hv ,pv ,Vv) be the GNS representation4 of ~A,v!, and letM5pv(A)9. Denote by

Fv(z) the infinitesimal generator of the strongly continuous unitary grouppv(W(tz)) for all z
PC:

pv~W~ tz!!5exp~ i tFv~z!!.

The position and momentum operators are defined by

QªFv~1!, PªFv~ i !, ~3.3!

respectively. Sincev is an entire analytic state4 by ~3.2!, the cyclic vectorVv is an entire analytic
vector forP andQ. The annihilation and creation operators given by

D~av!5D~P!ùD~Q!5D~av* !,
~3.4!

avª221/2~Q1 iP !, av*ª221/2~Q2 iP !,
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are densely defined, closed and (av)* 5av* , and satisfy the canonical commutation relatio
~CCR!: @av ,av* #51. See Sec. 5.2.3 of Ref. 4 for the details.

In the rest of this paper, we write thatH5Hv , j05Vv , W(z)5pv(W(z)), F(z)
5Fv(z), ;zPC, a5av anda* 5av* . Let s t : M→M be the group of automorphisms onM
defined by

s t~W~z!!5W~e2 ibtz!,;zPC.

The statev in ~3.2! satisfies thes-KMS condtion4 and thuss t , tPR, is the modular automor-
phism by Theorem 5.3.10 of Ref. 4. LetD andJ be the modular operator and modular conjugat
respectively associated to the pair (M,j0).4 Then s t(A)5D i tAD2 i t , APM. Let M8 be the
commutant ofM. The map j : M→M8 is the anti-linear* -isomorphism defined byj (A)
5JAJ, APM. The natural positive coneP associated with (M,j0) is the closure of the se
$A j(A)j0 : APM%. Then (M,H,P,J) is the natural standard form associated to (M,j0).

Next, we introduce two dense manifolds ofH. For anyAPM, define

An5S n

p D 1/2E s t~A!e2nt2dt, nPN. ~3.5!

Then An is an entire analytic element fors t , iAni<iAi ;nPN and An→A strongly. See the
proof of Proposition 2.5.22 in Ref. 4. Put

M0ªthe algebra generated byAn , APM, nPN, ~3.6!

and denote byHf in the subset of finite linear combinations of the vectors of the following ty

cm
n 5PmQnj0 , m,n50,1,2,... .

ClearlyM0j0 andHf in are dense inH, andP, Q and j (P), j (Q) are affiliated withM andM8,
respectively~see Lemma 4.1!.

For anyzPC, we write

sz~a!ªeibza, sz~a* !ªe2 ibza* , ~3.7!

and

sz~P!ª2 i221/2~eibza2e2 ibza* !, sz~Q!ª221/2~eibza1e2 ibza* !. ~3.8!

Denote byF either P or Q. In fact, one may be able to show that forjPM0j0 the function
t°s t(F)j has an analytic extension onC, which is denoted bysz(F)j, and thatsz(F) is equal
to that of ~3.8! on M0j0 . See Lemma 4.1 forD(F).

As discussed in the Introduction, for any parametersa1 , a2 , a3 , we introduce a sesquilinea
form corresponding to the operatorH given in ~1.9! by

D~E!5M0j0 ,
~3.9!

E~h,j!5
g

2
~11a2

2!^~s2 i /4~P!2 j ~s2 i /4~P!!!* h,~s2 i /4~P!2 j ~s2 i /4~P!!!j &

1
g

2
~a1

21a3
2!^~s2 i /4~Q!2 j ~s2 i /4~Q!!!* h,~s2 i /4~Q!2 j ~s2 i /4~Q!!!j &

2 iga1^~s2 i /4~Q!1 j ~s2 i /4~Q!!!* h,~s2 i /4~P!2 j ~s2 i /4~P!!!j &

2 iga2a3^~s2 i /4~P!1 j ~s2 i /4~P!!!* h,~s2 i /4~Q!2 j ~s2 i /4~Q!!!j&
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for h, jPM0j0 , whereg5(11a2
2)21. Notice thatE is well defined onM0j0 by Lemma 4.1.

Proposition 3.1: Let the parametersa1 , a2 , a3PR satisfy the following relations:

1
2 ~11a2

2!sinh~b/2!52a1 cosh~b/2!,
~3.10!

1
2 ~a1

21a3
2!sinh~b/2!5a2a3 cosh~b/2!.

Then the sesquilinear form given by (3.9) equals to

D~E!5M0j0 ,
~3.11!

E~h,j!5g1^~s2 i /4~P!2 j ~s2 i /4~P!!!h,~s2 i /4~P!2 j ~s2 i /4~P!!!j&1g2^~s2 i /4~Q!

2 j ~s2 i /4~Q!!!h,~s2 i /4~Q!2 j ~s2 i /4~Q!!!j&,

where

g152ga1 /sinh~b/2!, g25ga2a3 /sinh~b/2!. ~3.12!

Thus by (3.11)E is a positive form.
In the rest of the paper,we assume that the relations (3.10) hold. We state the main results
Theorem 3.1: The form(E,D(E)) defined as in (3.9) [and so as in (3.11)] is closable. Den

by ( Ē,D( Ē)) the closure of(E,D(E)) and by H the positive self-adjoint operator associated

( Ē,D( Ē)). Then the following properties hold:

~a! j0PD(H) and Hj050,
~b! Ē is J-real, that is, Ē@Jj#5 Ē@j# for jPD( Ē),
~c! Ē(j1 ,j2)<0 for any jPD( Ē)ùH J.

Furthermore, the form( Ē,D( Ē)) is a Dirichlet form.
Recall that a symmetric, strongly continuous, positive preserving semigroup$Tt% t>0 on H is

called ergodic if for any h, jPP2$0%, there existst.0 such that̂ h,Ttj&.0. Let H be the
self-adjoint generator ofTt :Tt5e2tH, t>0. An eigenvector ofH corresponding to the lowes
eigenvalue infs(H) will be called a ground statefor H ~or $Tt% t>0). The ergodicity of its
semigroup is equivalent to that the lowest eigenvalue ofH has multiplicity one and there exists
strictly positive ground state forH ~Theorem 4.3 of Ref. 18!.

Theorem 3.2:Let $Tt% t>0 be the symmetric Markovian semigroup associated to the Diric

form ( Ē,D( Ē)) and let H be the Dirichlet operator, i.e., Tt5e2tH. Then the following results hold:

~a! H is essentially self-adjoint onHf in .
~b! The spectrum of generator H are discrete, i.e., s(H)5$mt11nt2 : m,n50,1,2, . . .%, where

t152g1 sinh(b/2), t252g2 sinh(b/2).
~c! The zero is a simple eigenvalue of H with eigenvectorj0 . Thus$Tt% t>0 is ergodic.

The eigenspaces ofH will be given in Theorem 5.2~b!. By the spectral theorem, Theore
3.2~b! implies that for anyjPH and t.0

iTtj2^j0 ,j&j0i<e2ttij2^j0 ,j&j0i ,

wheret5min$t1, t2%. Thus$Tt% t>0 converges to the equilibrium exponentially fast.
Remark 3.1: Let$Tt% t>0 be a strongly continuous, symmetric Markovian semigroup onH.

Consider the symmetric embedding:

i 0 : M → H,

i 0~A!5D1/4Aj0 .
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Define the maps St on M by

St :M→M, i 0+St5Tt+ i 0 . ~3.13!

It follows from Theorem 2.12 of Ref. 2 that$St% t>0 is a weakly continuous Markovian semigrou
on M.

Remark 3.2: LetN be the maximal Abelian subalgebra ofM generated byexp$ikQ%, kPR.
Let St be the Markovian semigroup onM obtained by (3.13). As mentioned in the Introduction
can be checked that for anya1 , a2 , a3PR satisfying (3.10) the restriction of St to N gives a
unique O-U semigroup whose generation satisfies the equation in (1.12).

Before closing this section, we show that distinct values of the parametersa1 , a2 , a3PR
satisfying~3.10! give distinct semigroups onH. It follows from Theorem 3.2~b! that the spectrum
of each generatorH is characterized by

g1 /g252a1 /~a2a3!.

We first consider two special examples and then describe general case.
Example 3.1: the O-U semigroup studied in Ref. 17. Choosea351 and2a15a2 . It follows

from ~3.10! and ~3.12! that

g15g2 ,
~3.14!

a25~cosh~b/2!61!/sinh~b/2![a2,6~b!.

Using ~3.8!, we obtain from~3.11! that

E~j,j!5g~ i~ma2l j ~a* !!ji21i~la* 2m j ~a!!ji2!,;jPM0j0 ,

wherem5l215eb/4 andg5g15g2 . The above is the form studied in Ref. 17.
Example 3.2: Considera251. It follows from ~3.10! and ~3.12! that

a152tanh~b/2!,

a35coth~b/2!6~coth2~b/2!2tanh2~b/2!!1/2

5tanh2~b/2!/@coth~b/2!7~coth2~b/2!2tanh2~b/2!!1/2#, ~3.15!

g1 /g25coth~b/2!@coth~b/2!7~coth2~b/2!2tanh2~b/2!!1/2#Þ1.

Next, we consider the general case. Considera2 as a parameter. Then we get from~3.10! that

a152 1
2 ~11a2

2!tanh~b/2!,

~3.16!
a35@a2 cosh~b/2!6~a2

2 cosh2~b/2!2a1
2sinh2~b/2!!1/2#/sinh~b/2!.

For real a3 , one requires thata2
2 cosh2(b/2)>a1

2 sinh2(b/2). By the first equation in~3.16!,
positive solutionsa2 exist if and only if

2a2 cosh2~b/2!>~11a2
2!sinh2~b/2!.

Denote

k6~b!ª@cosh2~b/2!6~cosh4~b/2!2sinh4~b/2!!1/2#/sinh2~b/2!,

I bª@k2~b!,k1~b!#.

Thusa2PI b . Note that
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k1~b!5@cosh2~b/2!1~cosh2~b/2!1sinh2~b/2!!1/2#/sinh2~b/2!,

>@cosh2~b/2!1cosh~b/2!#/sinh2~b/2!,

5coth~b/2!a2,1~b!,

wherea2,1(b) has been defined in~3.14!. The above implies thatk1(b).a2,1(b). An argument
similar to that used above yields thatk2(b),a2,2(b). Thus we conclude that 1
P@a2,2(b),a2,1(b)#,I b .

Define

f 6~a2!ª2a1~a2!/a2a3,6~a2!,

a3,6~a2!5@a2 cosh~b/2!6~a2
2 cosh2~b/2!2a1

2 sinh2~b/2!!1/2#/sinh~b/2!

5a2 coth~b/2!6~a2
2 coth2~b/2!2 1

4 ~11a2
2!2 tanh2~b!!1/2.

Since f 6 are continuous onI b,(0,̀ ), f 1(I b) and f 2(I b) are closed intervals which have com
mon point ata25k2(b) anda25k1(b). Thus f 1(I b)ø f 2(I b) is a closed interval containing 1
with nonzero length@by ~3.15!#. Therefore there exist infinitely many different semigroups, wh
contain the semigroups constructed in Ref. 17.

IV. MARKOV PROPERTY OF FORMS: PROOFS OF PROPOSITION 3.1
AND THEOREM 3.1

In this section we produce the proofs of Proposition 3.1 and Theorem 3.1. SinceP andQ are
unbounded operators, we need to employ the approximation procedure used in Ref. 14. In
of this article we denote byF eitherP or Q and bya] eithera or a* .

Lemma 4.1: (a)M0j0 and Hf in are dense inH.
(b) The inclusions

M0j0,D~F! and Hf in,D~F!

hold; moreover, the relation

FAj05 j ~s2 i /2~A* !!Fj0

holds for any APM0 . Also we have M0j0,D(a]), Hf in,D(a]) and a]Aj0

5 j (s2 i /2(A* ))a]j0 ,APM0 .
Proof: ~a! Since forAPM, An in ~3.5! converges strongly toA asn→` and sinceMj0 is

dense inH, M0j0 is dense inH. It follows from ~3.2! thatv is an entire analytic state, and soj0

is an entire analytic vector forF(z),zPC. ThusHf in is dense. See Sec. 5.2.3 of Ref. 4 for t
details.

~b! Sincej0 is an entire analytic vector forF, Hf in,D(F). Notice that for anyAPM0 ,
j (s2 i /2(A* ))j05Aj0 . For z51,i andnPN, we write that

F~z,n!52 inS WS 1

n
zD21D . ~4.1!

Notice that

F~z,n!Aj05F~z,n! j ~s2 i /2~A* !!j05 j ~s2 i /2~A* !!F~z,n!j0 .

Since the sequence$F(z,n)j0% converges toFj0 , it follows thatAj0PD(F) and the relation

FAj05 j ~s2 i /2~A* !!Fj0
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hold for APM0 . The rest part of~b! follows from ~3.4!. h

Recall the definitions ofsz(F), zPC in ~3.8!, i.e.,

sz~P!52 i221/2~eibza2e2 ibza* !, sz~Q!5221/2~eibza1e2 ibza* !.

For anynPN, we write that

Fnª2S n

p D 1/2E inH s tS expS i

n
F D21D J e2nt2 dt. ~4.2!

Notice that for anynPN, Fn is an entire analytic element fors t andsz(Fn) is given by

sz~Fn!ª2S n

p D 1/2E inH s tS expS i

n
F D21D J e2n(t2z)2

dt ~4.3!

for any zPC. See the proof of Proposition 2.5.22~1! in Ref. 4.
Lemma 4.2: For any nPN, z5t1 isPC and APM0 , there exists a constant M(A,s) such

that the bound

isz~Fn!Aj0i1isz~F!Aj0i<M ~A,s!,

and, moreover, sz(F)Aj05 limn→`sz(Fn)Aj0 holds.
Proof: By the method used in the proof Lemma 4.1, one can check that

sz~Fn!Aj05 j ~s2 i /2~A!!sz~Fn!j0 ,

and a similar relation forsz(F). Sincesz(Fn)j0 converges tosz(F)j0 , the lemma follows from
above relation. h

We first produce the proof of Proposition 3.1. Note that by~3.7!

s2 i /4~a* !5e2b/4a* , s2 i /4~a!5eb/4a,
~4.4!

s i /4~a* !5eb/4a* , s i /4~a!5e2b/4a.

Proof of Proposition 3.1: By Lemmas 4.1 and 4.2 the operatorss6 i /4(P) ands6 i /4(Q) are well
defined onM0j0 . We have that

P5s2 i /4~s i /4~P!!5 i221/2s2 i /4~eb/4a* 2e2b/4a!

5 i221eb/4~s2 i /4~Q!2 is2 i /4~P!!2 i221e2b/4~s2 i /4~Q!1 is2 i /4~P!!

5 i sinh~b/4!s2 i /4~Q!1cosh~b/4!s2 i /4~P!. ~4.5!

By the method used above, we also have that

Q5cosh~b/4!s2 i /4~Q!2 i sinh~b/4!s2 i /4~P!. ~4.6!

It follows from ~4.4! and ~4.6! that

@s i /4~P!7 j ~s i /4~P!!#2@s2 i /4~P!7 j ~s2 i /4~P!!#

5 i221/2@~eb/42e2b/4!a* 2~e2b/42eb/4!a#7221/2j $ i @~eb/42e2b/4!a* 2~e2b/42eb/4!a#%

52i sinh~b/4!Q7 j ~2i sinh~b/4!Q!52i sinh~b/4!~Q6 j ~Q!!

52i sinh~b/4!$cosh~b/4!s2 i /4~Q!2 i sinh~b/4!s2 i /4~P!%

62i sinh~b/4! j $cosh~b/4!s2 i /4~Q!2 i sinh~b/4!s2 i /4~P!%

5 i sinh~b/2!@s2 i /4~Q!6 j ~s2 i /4~Q!!#12 sinh2~b/4!@s2 i /4~P!7 j ~s2 i /4~P!!#. ~4.7!
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Here we have used the equality 2 sinh(b/4)cosh(b/4)5sinh(b/2). The argument used above yield

@s i /4~Q!7 j ~s i /4~Q!!#2@s2 i /4~Q!7 j ~s2 i /4~Q!!#52 sinh2~b/4!@s2 i /4~Q!7 j ~s2 i /4~Q!!#

2 i sinh~b/2!@s2 i /4~P!6 j ~s2 i /4~P!!#.
~4.8!

Note that 112 sinh2(b/4)5cosh(b/2). Thus~4.7! and ~4.8! imply

s i /4~P!7 j ~s i /4~P!!5 i sinh~b/2!@s2 i /4~Q!6 j ~s2 i /4~Q!!#1cosh~b/2!@s2 i /4~P!

7 j ~s2 i /4~P!!#,

s i /4~Q!7 j ~s i /4~Q!!52 i sinh~b/2!@s2 i /4~P!6 j ~s2 i /4~P!!#1cosh~b/2!@s2 i /4~Q!

7 j ~s2 i /4~Q!#.

Notice that (s2 i /4(F)6 j (s2 i /4(F)))* 5s i /4(F)6 j (s i /4(F)) onM0j0 . We substitute the above
relations into~3.9! to obtain that forh, jPM0j0 ,

E~h,j!5A1~a1 ,a2 ,a3!^~s2 i /4~P!2 j ~s2 i /4~P!!!h,~s2 i /4~P!2 j ~s2 i /4~P!!!j&

1A2~a1 ,a2 ,a3!^~s2 i /4~Q!2 j ~s2 i /4~Q!!!h,~s2 i /4~Q!2 j ~s2 i /4~Q!!!j&

1A3~a1 ,a2 ,a3!^~s2 i /4~Q!1 j ~s2 i /4~Q!!!h,~s2 i /4~P!2 j ~s2 i /4~P!!!j&

1A4~a1 ,a2 ,a3!^~s2 i /4~P!1 j ~s2 i /4~P!!!h,~s2 i /4~Q!2 j ~s2 i /4~Q!!!j&,

where

A1~a1 ,a2 ,a3!5g@ 1
2 ~11a2

2!cosh~b/2!1a1 sinh~b/2!#,

A2~a1 ,a2 ,a3!5g@ 1
2 ~a1

21a3
2!cosh~b/2!2a2a3 sinh~b/2!#,

A3~a1 ,a2 ,a3!52 ig@ 1
2 ~11a2

2!sinh~b/2!1a1 cosh~b/2!#,

A4~a1 ,a2 ,a3!5 ig@ 1
2 ~a1

21a3
2!sinh~b/2!2a2a3 cosh~b/2!#.

By the relations~3.10!, the form in~3.9! equals that in~3.11!. h

In order to prove Theorem 3.1, we employ the approximation procedure similar to that u
Ref. 14. For anynPN, let (En ,H) be the form given by

En~h,j!5
g

2
~11a2

2!^~s2 i /4~Pn!2 j ~s2 i /4~Pn!!!* h,~s2 i /4~Pn!2 j ~s2 i /4~Pn!!!j&

1
g

2
~a1

21a3
2!^~s2 i /4~Qn!2 j ~s2 i /4~Qn!!!* h,~s2 i /4~Qn!2 j ~s2 i /4~Qn!!!j&

2 iga1^~s2 i /4~Qn!1 j ~s2 i /4~Qn!!!* h,~s2 i /4~Pn!2 j ~s2 i /4~Pn!!!j&

2 iga2a3^~s2 i /4~Pn!1 j ~s2 i /4~Pn!!!* h,~s2 i /4~Qn!2 j ~s2 i /4~Qn!!!j&, ~4.9!

whereg5(11a2
2)21 andPn , Qn have been defined as in~4.2!. Notice thatEn is bounded.

Lemma 4.3: Let(E,D(E)) be the form defined by (3.9). For anyh, jPM0j0 ,

E~h,j!5 lim
n→`

En~h,j!.

Proof: The lemma follows from Lemma 4.2. h
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We write that

d2~A!ªA2 j ~s2 i /2~A* !!,
~4.10!

d1~A!ªA1 j ~s2 i /2~A* !!,

whereA is an operator onH. By Lemmas 4.1 and 4.2,d2(F) andd1(F) are also well defined
on M0j0 . We are ready to prove Theorem 3.1.

Proof of Theorem 3.1: Two operatorsd2(s2 i /4(P)) andd2(s2 i /4(Q)) are defined onM0j0

and have the adjoint operatorsd2(s i /4(P)) andd2(s i /4(Q)), respectively, which are also define
onM0j0 , and so they are closable. Thus by Proposition 3.1 the form (E,D(E)) is closable. Notice
that (E,D(E)) in ~3.11! is positive. Denote by (Ē,D( Ē)) the closure of (E,D(E)) and byH the
positive self-adjoint operator associated to (Ē,D( Ē)).

~a! Notice thatj0PM0j0 and d2(s2 i /4(F))j050 implies j0PD( Ē), and soj0PD(H1/2)
andH1/2j050. By the spectral theorem one hasj0PD(H) andHj050.

~b! Note that JAj05s2 i /2(A* )j0PM0j0 , APM0 . Thus jPM0j0 implies JjPM0j0 .
Consider the form (E,D(E)) in ~3.11!. The proof of ~b! follows from d2(s2 i /4(F))Jj

52Jd2(s2 i /4(F))j, jPM0j0 , and the fact thatM0j0 is a form core ofĒ.
~c! We first assert that

jPM0j0ùH J⇒j1 ,j2PD~ Ē! and Ē@j6#5 lim
n→`

En@j6#. ~4.11!

Let us prove our assertion. Lets1 ands2 be the projections onto the closure ofM8j1 andM8j2

respectively, wheres1 , s2PM.19 For j5Aj0 , APM0 , we write that

jn,65~s6A!nj0 ,

where

~s6A!n5S n

p D 1/2E s t~s6A!e2nt2 dt.

Notice thati(s6A)ni<iAi , nPN, and that for anyhPH, (s6A)nh→s6Ah asn→`. See the
proof of Proposition 2.5.22 of Ref. 4. SinceD i tP,P for tPR, jn,65(s6A)nj05 j ((s6A)n)j0 ,
and so

s2 i /4~F!jn,65 j ~~s6A!n!s2 i /4~F!j0 .

Sinces2 i /4(F) is a closed operator, we taken to infinity to conclude thatj6PD(s2 i /4(F)), and
s2 i /4(F)j65 j (s6A)s2 i /4(F)j0 , and so

d2~s2 i /4~F!!j65 j ~s6A!s2 i /4~F!j02~s6A! j ~s2 i /4~F!!j0 . ~4.12!

By the method used above, we also have thatj6PD(s i /4(F)) and

d2~s i /4~F!!j65 j ~s6A!s i /4~F!j02~s6A! j ~s i /4~F!!j0 ,
~4.13!

d1~s i /4~F!!j65 j ~s6A!s i /4~F!j01~s6A! j ~s i /4~F!!j0 .

The relations analogous to~4.12! and~4.13! for Fn hold. Thus, it follows from~3.9! and Lemma
4.2 thatĒ@jm,62jn,6#→0 asm,n→`. Since (Ē,D( Ē)) is closed,j6PD( Ē). Next we will prove
that En@j6# converges toĒ@j6# as n tends to infinity. By~4.12!, ~4.13! and Lemma 4.2, we
conclude that for anyj5Aj0 , there exists a positive real numberM such that the bounds
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id2~s2 i /4~Fn!!j6i1id2~s2 i /4~F!!j6i<M ,

id2~s i /4~Fn!!j6i1id2~s i /4~F!!j6i<M , ~4.14!

id1~s i /4~Fn!!j6i1id1~s i /4~F!!j6u<M

hold uniformly in nPN. It follows from ~3.9!, ~4.9!, ~4.12!, ~4.13! and the above bounds that

uEn@j6#2 Ē@j6#u<4aM i~d2~s2 i /4~Fn!!2d2~s2 i /4~F!!!j6i12aM i~d2~s i /4~Fn!!

2d2~s i /4~F!!!j6i12aM i~d1~s i /4~Fn!!2d1~s i /4~F!!!j6i

<M 8~ is2 i /4~Fn!j02s2 i /4~F!j0i1is i /4~Fn!j02s i /4~F!j0i !→ 0

as n→`,

wherea5g max$(11a2
2)/2, (a1

21a3
2)/2, ua1u1ua2a3u%. This completes the proof of our assertio

~4.11!.
Recall the definition ofEn in ~4.9!. To show the Dirichlet property,En(j1 ,j2) in ~4.9! can be

written as

En~j1 ,j2!5E n
(1)~j1 ,j2!1E n

(2)~j1 ,j2!5~ I (1)1II (1)!1~ I (2)1II (2)!, ~4.15!

where

E n
(1)~j1 ,j2!5

g

2
^d2~s2 i /4~Pn!!* j1 ,d2~s2 i /4~Pn!!j2&

1
g

2
a1

2^d2~s2 i /4~Qn!!* j1 ,d2~s2 i /4~Qn!!j2&

2 iga1^d1~s2 i /4~Qn!!* j1 ,d2~s2 i /4~Pn!!j2&,

E n
(2)~j1 ,j2!5

g

2
a2

2^d2~s2 i /4~Pn!!* j1 ,d2~s2 i /4~Pn!!j2&

1
g

2
a3

2^d2~s2 i /4~Qn!!* j1 ,d2~s2 i /4~Qn!!j2&

2 iga2a3^d1~s2 i /4~Pn!!* j1 ,d2~s2 i /4~Qn!!j2&,

and

I (1)5
g

2
^j1 ,s2 i /4~Pn

21a1
2Qn

2!j2&1
g

2
^s2 i /4~Pn

21a1
2Qn

2!j2 ,j1&2g^j1 ,s2 i /4~ ia1QnPn!j2&

2g^~s2 i /4~ ia1QnPn!j2 ,j1&,

I (2)5
g

2
^j1 ,s2 i /4~a2

2Pn
21a3

2Qn
2!j2&1

g

2
^s2 i /4~a2

2Pn
21a3

2Qn
2!j2 ,j1&

2g^j1 ,s2 i /4~ ia2a3PnQn!j2&2g^ j ~s2 i /4~ ia2a3PnQn!!j2 ,j1&,

II (1)52g^j1 ,s2 i /4~Pn2 ia1Qn! j ~s2 i /4~Pn2 ia1Qn!!j2&,

II (2)52g^j1 ,s2 i /4~a2Pn1 ia3Qn! j ~s2 i /4~a2Pn1 ia3Qn!!j2&.
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Here we have used the fact that^j1 , j (A)j2&5^Aj2 ,j1&, APM in I (1), I (2). As a consequence
of Theorem 4~7! of Ref. 19,Mj1'Mj2 , which impliesI (1)50 and I (2)50. SinceA j(A)j2

PP for APM, we obtain thatII (1)<0 andII (2)<0. ThereforeEn(j1 ,j2)<0.
We turn to the proof of the property~c!. Sinceuju5j11j2 , the assertion~4.11! implies that

jPM0j0ùH J⇒ujuPD~ Ē! and Ē@ uju#5 lim
n→`

En@ uju#. ~4.16!

Let jPD( Ē)ùH J be given. Choose a sequence$jm% in M0j0ùH J such thatjm→j in H and
Ē@jm#→Ē@j# as m→`. The inequalityij62h6i<ij2hi , ;j, hPH J, implies ujmu→uju as
m→`. Notice thatĒ(j1 ,j2)<0 is equivalent toĒ@ uju#< Ē@j#, and we have shown that eac
En , nPN, satisfies the property~c!. By the lower semi-continuity ofĒ and~4.16!, we obtain that

Ē@ uju#< limm→`Ē@ ujmu#5 limm→`S lim
n→`

En@ ujmu# D< limm→`S lim
n→`

En@jm# D5 limm→`E@jm#5 Ē@j#.

Thus ujuPD( Ē) and Ē@ uju#< Ē@j#. This completes the proof of the property~c!.
SinceĒ(j,j0)50 for anyjPD( Ē), it follows from the properties~b! and~c! and Proposition

2.1 thatĒ is a Dirichlet form. h

V. SPECTRAL ANALYSIS OF DIRICHLET OPERATORS

In this section we decompose the Hilbert spaceH5Hv into direct sum of eigenspaces o
Dirichlet operator, and analyze the spectrum of generator~Dirichlet operator! of Markovian semi-
group. We also show the ergodicity of its semigroup. The decomposition method we u
essentially the same as that in Ref. 20. See also Example 5.2.20 in Ref. 4.

We write that

D1ª~2 sinh~b/2!!21/2~eb/4a2e2b/4j ~a* !!,
~5.1!

D2ª~2 sinh~b/2!!21/2~e2b/4a* 2eb/4j ~a!!.

By Lemma 4.1 the operatorsD1 andD2 are well defined onM0j0 and also onHf in . It follows
from ~5.1! that

D1* 5~2 sinh~b/2!!21/2~eb/4a* 2e2b/4j ~a!!5~2 sinh~b/2!!1/2e2b/4a* 1e2b/2D2 ,
~5.2!

D2* 52~2 sinh~b/2!!1/2eb/4a1eb/2D1 .

Note thatj (a* )j05eb/2aj0 and j (a)j05e2b/2a* j0 . ThusDij050, i 51,2. A direct calculation
shows that fori , j 51,2, the following canonical commutation relations~CCRs!,

@Di ,D j #50, @Di* ,D j* #50,
~5.3!

@Di ,D j* #5d i j 1,

hold on Hf in . By ~5.1!, ~5.2! and ~3.8!, any PmQnj0 , m, n50,1,2,. . . , can beexpressed as a
finite linear combination of the vectors of the form

~D1* !p~D2* !qj0 , p,q50,1,2,. . . .

Thus, as a consequence of~5.2! and the CCRs in~5.3!, Hf in is spanned by the vectors of the abo
form, and also the following decomposition holds,

H5 %
m,n50

`

H (m,n),
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where H (m,n) is the closure of subspace spanned by the vectors of the type (D1* )m(D2* )nj0 ,
m, n50,1,2,. . . . Seealso Sec. V of Ref. 14.

To analyze the spectrum of generatorH, we introduce the new operators and decomposit
of H. Define

A1ª221/2~D12D2!, A2ª221/2~D11D2!. ~5.4!

We first collect some properties ofAi , i 51,2, which are similar to~5.3!.
Proposition 5.1: (a) Aij050 for i 51,2.
(b) As operators defined onHf in , we have the following CCRs: for i, j 51,2,

@Ai ,Aj #50, @Ai* ,Aj* #50,
~5.5!

@Ai ,Aj* #5d i j 1.

Proof: ~a! The result follows fromDij050, i 51,2, and~5.4!. ~b! This follows from~5.4! and
the CCRs in~5.3!. h

We are ready to get another decomposition of the Hilbert spaceH5Hv , called quasi-free
Hilbert space. According to the CCRs in Proposition 5.1,Ai andAi* , i 51,2, can be thought of a
annihilation and creation operators, respectively. The following decomposition ofH will be used
to analyze the spectrum of generatorH.

Theorem 5.1: The following decomposition holds:

H5 %
m,n50

`

H(m,n) , ~5.6!

where H(m,n) is the closure of subspace spanned by the vectors of the type(A1* )m(A2* )nj0 ,
m, n50,1,2,. . . .

Proof: Note that

D15221/2~A11A2!, D252221/2~A12A2!.

Thus any (D1* )m(D2* )nj0 , m,n50,1,2,. . . , can beexpressed as a finite linear combination of t
vectors of the form

~A1* !p~A2* !qj0 , p,q50,1,2,. . . .

SinceHf in is dense inH, we conclude that the set of finite linear combinations of the vector
the above forms is dense inH. The decomposition follows from the CCRs in Proposition 5.1h

Let l 2 be the space of sequences$zn%n50
` of complex numbers satisfying(n50

` uznu2,` and
$en%n50

` be the standard orthonormal basis inl 2. Denote byN, a1 anda1* the number, annihilation
and creation operator onl 2 as follows. The number operatorN is the self-adjoint multiplication
operator,Nen5nen , with maximal domainD(N)5$$zn%P l 2 u (n50

` unznu2,`%. a1 and a1* are
given by

a1e050, a1en5n1/2en21 , n51,2,. . . ,

a1* en5~n11!1/2en11 , n50,1,2,. . . .

The operatorsa1 anda1* are closed and mutually adjoint,a1* a15N anda1a1* 5N11.
Proposition 5.2: Let U be the operator defined by

U:H→ l 2
^ l 2, ~A1* !m~A2* !nj0°~a1* !me0^ ~a1* !ne0 ,

for m,n50,1,2,. . . . Then U is unitary.
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Proof: SinceAi , Ai* , i 51,2 anda1 , a1* satisfy the same commutation relation, the unitar
of U is easily checked. h

By ~3.8!, ~4.10! and ~5.1! we get that

d2~s2 i /4~P!!5s2 i /4~P!2 j ~s2 i /4~P!!52 i221/2$~eb/4a2e2b/4a* !1~eb/4j ~a!2e2b/4j ~a* !!%

52 i221/2~2 sinh~b/2!!1/2~D12D2!

52 i ~2 sinh~b/2!!1/2A1 . ~5.7!

The argument used above yields

d2~s2 i /4~Q!!5221/2~2 sinh~b/2!!1/2~D11D2!5~2 sinh~b/2!!1/2A2 . ~5.8!

Define the operatorH̃ on Hf in by

H̃5g1d2~s2 i /4~P!!* d2~s2 i /4~P!!1g2d2~s2 i /4~Q!!* d2~s2 i /4~Q!!

5t1A1* A11t2A2* A2[t1H11t2H2 , ~5.9!

wheret152g1 sinh(b/2), t252g2 sinh(b/2). It follows from Proposition 5.1 that

H̃~A1* !m~A2* !nj05~mt11nt2!~A1* !m~A2* !nj0 , m,n50,1,2,. . . . ~5.10!

Proposition 5.3: (a) Hf in,D( Ē).
(b) For jPHf in the equality

Ē@j#5g1id2~s2 i /4~P!!ji21g2id2~s2 i /4~Q!!ji25
t1

2
i~D12D2!ji21

t2

2
i~D11D2!ji2

~5.11!

holds.
(c) For h, jPHf in the equality

Ē~h,j!5^h,H̃j&

holds.
Proof: ~a! By the method similar to that used in the proof of Lemma 4.1~b!, we get that

W(z)j0PD(a]), zPC, and soW(z)j0 belongs to the domain ofDi , i 51,2. Denote byW the
algebra generated byW(z),zPC. ClearlyWj0 is dense inH. Using CCRs, one can check that th
relations forzPC,

@a,W~z!#5 i221/2zW~z!,
~5.12!

@a* ,W~z!#52 i221/2z̄W~z!,

hold on Wj0 . Recall the definition ofWn(z)ª(W(z))n , nPN, zPC in ~3.5!. It can be easily
checked that forzPC

Ē@Wn~z!j02W~z!j0#→0 as n→`.

See also the proof of Lemma 5.3 of Ref. 14. Since (Ē,D( Ē)) is closed,W(z)j0PD( Ē) for any
zPC.

For eachl 51, . . . ,m, mPN, let zl be either 1 ori . Recall the definition ofF(z,n) in ~4.1! for
z51,i andnPN. We will use the following abbreviated notations:
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F l~n!ªF~zl ,n!, l 51, . . . ,m,

F lªF~zl !, l 51, . . . ,m, ~5.13!

j~n!ªS )
l 51

m

F l~n!D j0 and jªS )
l 51

m

F l D j0 .

Using the relations in~5.12! and ~5.1!, we obtain that the relations

@D1 ,F l~n!#5~2~12e2b!!21/2zlWS 1

n
zl D ,

~5.14!
@D1 ,F l #5~2~12e2b!!21/2zl

hold onWj0 . Notice thatj(n)PD( Ē), nPN andjPHf in . It is not hard to show thatj(n)→j as
n→`. See the method used below. We will show thatĒ@j(n)2j#→0 asn→`. SinceĒ is closed,
this implies thatHf in,D( Ē) and

Ē@j#5 lim
n→`

Ē@j~n!#. ~5.15!

Let j andj(n), nPN, be defined as in~5.13!. Notice that

j~n!2j5 (
p51

m S )
l 51

p21

F l~n!D ~Fp~n!2Fp!S )
l 5p11

m

F l D j0 .

We use the Schwarz inequality twice to obtain that

iD1~j~n!2j!i2<m(
p51

m ID1S )
l 51

p21

F l~n!D ~Fp~n!2Fp!S )
l 5p11

m

F l D j0I 2

. ~5.16!

It follows from ~5.14! and the definition ofD1 that

D1S )
l 51

p21

F l~n!D ~Fp~n!2Fp!S )
l 5p11

m

F l D j05~2~12e2b!!21/2(
q51

m

zqC~p,q;n!, ~5.17!

where

C~p,q;n!ªS )
l 51

q21

F l~n!D WS 1

n
zqD S )

l 5q11

p21

F l~n!D ~Fp~n!2Fp!S )
l 5p11

m

F l D j0 , 1<q<p21,

C~p,q;n!ªS )
l 51

p21

F l~n!D S WS 1

n
zpD21D S )

l 5p11

m

F l D j0 , q5p,

C~p,q;n!ªS )
l 51

p21

F l~n!D ~Fp~n!2Fp!S )
l 5p11

q21

F l~n!D S )
l 5q11

m

F l D j0 , p11<q<m.

We use the Schwarz inequality twice again to~5.17! and substitute the result into~5.16! to
conclude that

iD1~j~n!2j!i2<
1

2
m2~12e2b!21(

p51

m

(
q51

m

iC~p,q;n!i2.
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One notes that eachC(p,q;n) contains either (Fp(n)2Fp) or else (W((1/n) zp)21), which
implies that

iC~p,q;n!i2→0 as n→`

for any p, q, and so

iD1~j~n!2j!i2→0 as n→`.

The method similar to that used in the above implies that

iD2~j~n!2j!i2→0 as n→`.

By ~5.7!, ~5.8! and ~3.11!, this proved part~a! of this proposition.
~b! This follows from Theorem 5.1,~3.11! and ~5.9!.
~c! This follows from ~5.4! and part~b! of the proposition. h

Theorem 5.2: (a) The operators H˜ and Hi , i 51,2, are essential self-adjoint and the sel

adjoint extension of H˜ equals to the Dirichlet operator H given in Theorem 3.1.
(b) For each m, n50, 1, 2, . . . ,H(m,n) is an eigenspace of the Dirichlet operator H corre

sponding to eigenvaluet1m1t2n.
Proof: ~a! Clearly H̃ and Hi , i 51,2, are symmetric onHf in . It follows from ~5.5! that the

following relations holds: forj5(A1* )m(A2* )nj0 , m,n50,1,2,. . . ,

H1j5mj, H2j5nj. ~5.18!

By ~5.18! any jPHf in is an analytic vector forH̃ and Hi , i 51,2, and H̃Hf in,Hf in ,
HiHf in,Hf in , i 51,2. It follows from Corollary 2 of Theorem X.39 in Ref. 21 thatH̃ and
Hi , i 51,2, are essentially self-adjoint onHf in . By Proposition 5.3~c!, H5H̃ on Hf in , which
implies H5H̃.

~b! By Proposition 5.2 and~5.18!, we have that

UHU215t1N^ 111^ t2N,

whereN is the number operator onl 2. Thus this completes the proof of~b!. h

Finally we are able to produce the proof of Theorem 3.2.
Proof of Theorem 3.2: ~a! and ~b! follow from Theorem 5.2.
~c! By ~b!, zero is a simple eigenvalue ofH with eigenvectorj0 . Sincej0 is a strictly positive

vector,$Tt% t>0 is ergodic. The proof of Theorem 3.2 is completed. h
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Existence of mesons and mass splitting in strong
coupling lattice quantum chromodynamics
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We consider one flavor lattice quantum chromodynamics in the imaginary time
functional integral formulation for space dimensionsd52, 3 with 434 Dirac spin
matrices, small hopping parameterk, 0,k!1, and zero plaquette coupling. We
determine the energy-momentum spectrum associated with four-component gauge
invariant local meson fields which are composites of a quark and an antiquark field.
For the associated correlation functions, we establish a Feynman–Kac formula and
a spectral representation. Using this representation, we show that the mass
spectrum consists of two distinct massesma and mb , given by mc

522 lnk1rc(k), c5a,b, where r c is real analytic. Ford52, ma and mb have
multiplicity two and the mass splitting isk41O(k6); for d53, one mass has
multiplicity one and the other three, with mass splitting 2k41O(k6). In the sub-
space of the Hilbert space generated by an even number of fermion fields the
dispersion curves are isolated~upper gap property! up to near the two-meson
threshold of asymptotic mass24 lnk. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1636000#

I. INTRODUCTION

It is fundamental to determine the existence of particles and their spectral propert
quantum field theory. In quantum chromodynamics~QCD!, one needs to establish on a rigoro
basis the energy-momentum~EM! spectrum of particles and their bound states, in particular
prove the existence of mesons and baryons and their bound states. These types of spect
erties involve low energies and one way to study them is by using a lattice regularization
continuum, and to consider the strong coupling regime. Strong coupling lattice QCD model
a good insight into the low-energy behavior of QCD. Indeed, our partial understanding of
finement up to now comes in this way, and in fact was one reason for the introduction of l
QCD ~see Refs. 1–3 for a reference book and Refs. 4 and 5 for recent reviews!.

Basically, there have been two routes used in the rigorous studies of the particle spect
lattice theories. One is based on methods which are reminiscent of continuum field theorie~e.g.,
decoupling of hyperplanes, Euclidean subtraction!6–11 and the others are based on statistical m
chanical methods~e.g., random surfaces!.12,13 Here, we take the former approach.

As our main result, we prove the existence of meson particles by showing that mesons a
tightly bound, bound states of a gauge invariant state composed of one quark and one an
The occurrence of mesons is manifested by an isolated dispersion curve in the EM spectru
same kind of spectral problems that we consider here were also treated in previous wor
other types of particles. For the pure gauge case, with small couplingg0

22, the low-lying glueball
spectrum is found in Ref. 8. The corresponding glueball mass is'8 lng0. The determination of
the masses in the baryonic sector was considered in Refs. 14 and 15. Recently, a rigorou

a!Electronic mail: veiga@icmc.usp.br
6280022-2488/2004/45(2)/628/14/$22.00 © 2004 American Institute of Physics
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ment allowed to prove the existence of baryons and their multiplicities for a one-flavor la
QCD model in the infinitely strong coupling regime and for small enough hopping paramek
.0, 0,g0

22!k!1. In Ref. 16, this was done for space dimensiond52, using 232 Pauli spin
matrices, and in Ref. 17 ford52,3 employing 434 Dirac spin matrices. The two-baryon boun
state spectrum within the context of Ref. 16 was analyzed more recently in Ref. 18.

Here, we work with the same lattice QCD model as in Ref. 17, but our analysis is rest
to the meson sector of the underlying physical Hilbert spaceH. The method used in Ref. 17 fo
baryons is largely applied here, with some adaptations. No approximations are made so our
are exact within this context. We will assume the results of Ref. 17 regarding positivity an
construction ofH. We begin directly by introducing a local four-component meson field. For
associated correlation functions~CF’s!, we establish a Feynman–Kac formula and a spec
representation analogous to the Ka¨llen–Lehman representation in quantum field theory. We e
phasize that it is this representation that allows us to identify complex momentum space
larities of the two-point function with points in the EM spectrum. To our knowledge, suc
representation as given here is not found in the literature. We also point out that determ
exponential decay rates of CF’s, as in Ref. 13, isnot sufficientto identify these rates with the mas
spectrum, since a connection with the energy-momentum spectrum is not established.
especially true in the case where there are multiplicities involved and mass splitting, as he

Let He,H denote the subspace generated by an even number of fermions. We show tha
are meson particles, with asymptotic masses22 lnk, manifested by isolated dispersions curves
the EM spectrum~upper mass gap property! and it is theonly spectrum in the subspaceHe,H,
up to near the two-meson threshold which is asymptotically of order24 lnk.

Besides its intrinsic importance, the determination and control of the meson spectrum
essential step towards the understanding of, e.g., meson–meson and meson–baryon bou
from first principles. Indeed, a two-meson bound state analysis is in progress,25 using, e.g., our
techniques from previous works~see Refs. 10, 11, and 18!. Also, our results open the way to stud
the EM spectrum for the more realistic case when the glueball mass is large, but is suc
g0

22!1 cannot be neglected in comparison with the small hopping parameterk!1.

II. THE RESULTS

We first give a very brief definition of one flavor SU~3! gauge-matter QCD model of Ref. 1
and present our results. We use the same notation as in Ref. 17, and the reader is referred
all details concerning notation, the definition of the model, the introduction of energy, and
mentum operators, the derivation of a Feynman–Kac-type formula for general correlation
tions, the construction of the underlying physical Hilbert spaceH, the computation of gauge an
Fermi ~Grassmann! integrals, and the analysis of symmetries other than gauge that is the
result of its Theorem 4, namely, the symmetries of charge conjugation, parity, lattice coor
reflections, and lattice spatial rotations. We omit these and other details here, for the s
brevity.

We consider the case where the space dimension isd52,3 and the gauge group is SU~3!. The
partition function of the model is given formally by

Z5E e2S(c,c̄,g) dc dc̄ dm~g!, ~2.1!

and for a functionF(c̄,c,g), of the single flavor~anti!quark Grassmann fieldsc and c̄, and the
gauge fieldg, the normalized expectations, in the thermodynamic limit, are denoted by

^F~ c̄,c,g!&[
1

Z E F~ c̄,c,g!e2S(c,c̄,g) dc dc̄ dm~g!.

The gauge invariant actionS(c,c̄,g) is given by
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S~c,c̄,g!5
k

2 ( c̄aa~u! Gab
eer

~gu,u1eer!ab cbb~u1eer!

1 (
uPZo

d11
c̄aa~u!Mabcab~u!2

1

g0
2 (

p
x~gp!, ~2.2!

where the first sum runs overu5(u0,uW )5(u0,u1,...,ud)PZo
d11[Z1/23Zd, whereZ1/25$61/2,

63/2,...%, e561, r50,1,...,d, and over repeated indices. For notational simplicity, we som
times dropU from the gauge matrixU(g) associated with each oriented lattice bond. Concern
the parameters, we takem.0, 0,g0

22!k!1 and M[M (m,k)5(m12k)I 4 , I 4 being the 4

34 identity matrix. Also, within the family of actions of Ref. 2, we haveG6er
5216gr. For

d53, gr are the 434 Hermitian traceless anticommuting Dirac matrices. Ford52, all but theg3

matrix appear in the action. The measure dm(g) is the product measure over non-oriented bon
of normalized SU~3! Haar measures~see Ref. 19! and the integrals over Grassmann fields a

defined according to Ref. 20. In Eq.~2.1!, dc dc̄ means)u,a,a dcaa(u) dc̄aa(u) such that, with
a normalizationN5^1&, we have

^caa~x! c̄bb~y!& 5 ~1/N! E caa~x! c̄bb~y! e2(uc̄a8a8(u)Ma8b8ca8b8(u) dc dc̄

5Mab
21dabd~x,y!,

with a Kronecker delta for space–time coordinates. With our restrictions on the parameters
is a quantum mechanical Hilbert spaceH of physical states, fork.0; and the conditionm.0
guarantees that the one-particle free Fermion dispersion curve increases in each positive m
tum component. Last, without loss of generality, we setM5I 4 in ~2.2!.

We note that by polymer expansion methods~see Refs. 2, 9, 21!, CF’s exist and are lattice
translational invariant in the thermodynamic limit and truncated correlations have exponenti
decay. Furthermore, the CF’s extend to analytic functions in the coupling parametersk andg0

22.
To state our results on the existence of meson particles, their masses and dispersion cu

consider the subspaceHm,H generated by vectors associated with the gauge invariant m
fields composed of a fermion~quark! and an antifermion~antiquark! given by

ma~u!5

¦

1

A6
~ca3~u!c̄a1~u!1ca4~u!c̄a2~u!!, a51,

1

)
ca4~u!c̄a1~u!, a52,

1

)
ca3~u!c̄a2~u!, a53,

1

A6
~ca3~u!c̄a1~u!2ca4~u!c̄a2~u!!, a54 ;

~2.3!
                                                                                                                



pb~v !5

¦

1

A6
~ c̄a3~v !ca1~v !1c̄a4~v !ca2~v !!, b51,

1

)
c̄a4~v !ca1~v !, b52,

1

)
c̄a3~v !ca2~v !, b53,

~2.4!
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1

A6
~ c̄a3~v !ca1~v !2c̄a4~v !ca2~v !!, b54 .

The normalization is chosen so that the associated matrix-valued two-point CF~see below!, at
coincident points and zero hopping parameterk, equalsI 4 .

To see the connection with the EM spectrum, we define a two-point CF, establish a Feyn
Kac ~FK! formula, and a spectral representation. The normalized two-point CF is defined~x
here denotes the characteristic function!

Gab~u,v !5^ma~u!pb~v !&T xu0<v01^pa~u!mb~v !&T* xu0.v0

5^ma~u!pb~v !& xu0<v01^pa~u!mb~v !&* xu0.v0

5Gab~u2v !,

where the truncation̂ &T is given by

^F~u!H~v !&T5^F~u!H~v !&2^F~u!&^H~v !& , ~2.5!

and we used that the truncation forGab is zero, by parity symmetry.
This seemingly awkward definition has three desirable features. First, the extension to

times of theu0.v0 definition agrees with the one foru0<v0, by translational invariance and tim
reversal. Second, its Fourier transform admits a simple spectral representation. Third, it per
to show the existence of particles, such as the upper mass gap property.

We setE(l0,lW )5E0(l0)E(lW ), whereE0(l0) is the spectral family for the time translatio
operatorT0 , andE(lW )5) i 51

d Ei(l
i) is the product of the spectral families for thei th component

self-adjoint momentum operatorPi which generates lattice space translations along thei th direc-
tion ei , i 51,...,d. The spectral representation of the next proposition is an important too
proof is omitted here since it follows closely the one for baryons given in Ref. 17.

Proposition 2.1: For u0Þv0, pa[pa(1/2,0W ), the following FK formula holds for the two
point meson CF [and the right-hand-side is an even function of vW2uW]:

Gab~u,v ! 5 E
21

1 E
Td

~l0! uv02u0u21eilW .(vW 2uW )d~pa ,E~l0,lW !pb!H . ~2.6!

We now obtain a spectral representation for the Fourier transform of the two-point fun
Gab(u,v). For xPZd11, with an abuse of notation, we defineGab(x5u2v)[Gab(u,v). Then,
the Fourier transformG̃ab(p)5(xPZd11 Gab(x)e2 ipx, pPTd11, admits the spectral represent
tion
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G̃ab~p! 5 G̃ab~pW !1~2p!dE
21

1 E
Td

d~pW 2lW !
2~cosp02l0!

11~l0!222l0 cosp0

3 dl0dlW ~pa~1/2,0W !,E0~l0!E~lW !pb~1/2,0W !!H , ~2.7!

whereG̃(pW )5(xWZde2 ipW .xWG(x050,xW ). From the above spectral representation, we see that p
of nonanalyticity inp0, on the imaginary axis, are points in the EM spectrum. It is possible
points of nonanalyticity of the formp056p1 iq0 can occur but this is shown not to be the ca
in our analysis. We determine the spectrum and show the existence of isolated dispersion
up to near the threshold24 lnk, by showing thatGab(u,v), the convolution inverse of the
two-point functionGab(u,v), decays faster thanGab(u,v), and hence the Fourier transform
G̃ab(p) of Gab(x5u2v)5Gab(u,v) has a larger region of analyticity inp0. Thus, as
G̃(p)G̃(p)5I 4 , G̃ab

21(p)5@cof G̃#ba(p)/det@G̃(p)# provides a meromorphic extension ofG̃ab(p),
and the EM spectrum occurs, for eachpW , as points given by thep0 imaginary axis zeroes o
det@G̃(p)#.

The reader may wonder, e.g., for space dimensiond53, why composite fields of the form
c̄(u)g5c(u) and, for k51,2,3, c̄(u)gkc(u), g55g0g1g2g3, are not employed to form the
two-point CF matrix rather than those of Eqs.~2.3! and~2.4!. Intuitively, these are the vector an
the pseudoscalar meson fields. The reason is that, with our choices, it turns out that the zero
momentum matrixG̃ab(p0,pW 50W ) is already diagonal~see Sec. IV, Lemma 4.1!, so that the masse
ma are determined as the solutions ofG̃aa(p05 ima ,pW 50W )50, a51,2,3,4.

The zero space momentum improper states we obtain can be classified using the irre
discreteZ4 rotation group generated byp/2 rotations in thex1x2 plane and the groupZ2 generated
by x3-coordinate reflections. Using the results of Theorem 4 of Ref. 17, about symmetries, w
that, forp i8[(xWPZd21 p i(1/2,xW ), the improper zero momentum statesp i8 , i 51,2,3,4, satisfy the
following: p18 andp48 form a basis for the trivial representation ofZ4 , while p28 (p38) is a basis for
the representation ofZ4 generated byi (2 i ) times the identity;p181p48 (p182p48) forms a basis
for the trivial ~nontrivial! representation ofZ2 ; and p28 and p38 form a basis for the trivial
representation ofZ2 . The commuting groupsZ4 andZ2 are of course subgroups of the full lattic
rotation and reflection group. We note that all the states have parity (21), so that parity does no
distinguish among them.

To analyze detG̃(p), it suffices to obtain a long range bound forG(x), but we need its precise
short distance behavior, foruxu<2 to determine the masses and the mass splitting up to
including the orderk4. However, to control the error, bounds onG(x) ~which improve those
obtained by the hyperplane decoupling method! are needed for somex’s, with ux0u<3. These
bounds are obtained by exhibiting cancellations in the Neumann series.

The two-point function convolution inverseG(x) is defined by the Neumann seriesG
5( i 50

` (21)i@Gd
21Gn# iGd

21 , whereGd is the diagonal part ofG,

Gd,ab~u,v ! 5 Gaa~u,u!dabd~u,v ! ~2.8!

and Gn is the remainderGn,ab(u,v)5Gab(u,v)2Gd,ab(u,v). By the bounds in Theorems 2.
and 2.2 below,G, Gd , Gn , andG are bounded as matrix operators on,2(C43Zo

d11).
Moreover,Gab(x) is analytic ink asGab(x) is, and its short distance behavior is determin

by expanding ink. Long-range bounds on the decay ofGab(x) andGab(x) are obtained by the
decoupling of the hyperplane method~see Refs. 6, 7, 9, and 11!. Our results hold for all suffi-
ciently small hopping parameterk.0, 0,g0

22!k!1. The short-distance behavior and bounds
G andG are given in the next two theorems.
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Theorem 2.1:Let 0,g0
22!k!1, c be a positive constant, r,s50,1,...,d and e0 denote the

time unit vector, ei , ej ( i , j 51,...,d), denote space unit vectors, uxW u[( i 51
d uxi u and e,e8561.

The following properties hold for G:

(1)

Gab~x! 5 5
dab1O~k8!, x50 ,

dabk21O~k6!, x5ee0 ,

c2dabk21O~k6!, x5eej ,

dabk41O~k8!, x52ee0 ,

c2dabk41O~k8!, x52eej ,

cab~x!k41O~k8!, x5eer1e8es, r,s ,

~2.9!

where thek independent constants are given by c251/4, and

cab~x! 5 Hdab /2, x5ee01e8er,

cab
i j , x5eei1e8ej , i , j ,

~2.10!

where cab
i j is given by cab

12 , diagonal with 4c11
1254c44

1251 and c22
125c33

1250, 4c11
1358c22

13

58c33
13528c23

13528c32
1351, 4c11

2358c22
2358c33

2358c23
2358c32

2351, and the remaining element
are zero.

(2)

uGab~x!u < cuku2ux0u12uxWu . ~2.11!

(3) Gab(x)5daGab(x8)db* , where

~a! for x85~x0,2x2,x1,x3!, d151, d252 i , d35 i , d451;

~b! f or x85~x0,2x1,2x2,x3!, d151, d2521, d3521, d451;

~c! f or x85~x0,2x1,2x2,2x3!, da521, f or a51,2,3,4.

Also,

G~e11e2!5SG~e11e3!S†,

where S5St and S215S† ~superscript t means transpose and† Hermitian conjugate!. S has
the matrix elements S1151, S125S135S145S4450, S225S335S2351/2, and S245S34*
5 i&/2.

Remark 2.1: The equality of the diagonal elements of cab
13 and cab

23 follows from the symmetry
results of Theorem 4 in Ref. 17, namely rotations byp/2 about the e3 axis.

Remark 2.2: The third result above follows by using the symmetry results of Theorem 4
17 below and holds to all orders ink.

The short distance and decay behaviors ofG(x) are given by the following.
Theorem 2.2:Under the same hypotheses of Theorem 2.1, with c2 and cab(x) as given there,

we have the following:
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(1)

Gab~x! 5

¦

dab1~212dc2
2!dabk41O~k8!, x50 ,

2dabk21O~k8!, x5ee0 ,

2c2dabk21O~k6!, x5eej ,

O~k10!, x52ee0 ,

~2c21c2
2! dabk41O~k8!, x52eej ,

@2cab~x!12c2
2dab#~12d0r!~12d0s!k41O~k8!, x5eer1e8es, r,s ,

O~k8!, ux0u51, uxW u52 ,

O~k10!, ux0u52, uxW u51 ,

O~k12!, ux0u53, uxW u50 .

~2.12!

(2)

uGab~x!u < Hcuku214(ux0u21)12uxWu, ux0u.1 ,

cuku2ux0u12uxWu, ux0u<1 .
~2.13!

Remark 2.3: The absence of lower order terms inGab , as compared to Gab , for ux0u
51,2,3, is due to explicit cancellations in the Neumann series and improves the hyper
method bounds obtained in Theorem 2.2, item (2).

Concerning the mass spectrum, i.e., the EM spectrum at zero-space momentum, it tu
that the mass is determined up toO(k4) by the values ofGab(x) up to distanceuxu<2, anda
5b. The k4 contribution toG(x), for these values ofx, comes from the first and second ord
terms inGn in the Neumann series. The second order terms are independent ofa since they are
products of twok2 terms of Gn,ab(x), for points x of distance one, which are diagonal an
independent ofa. For the first order term inGn(x), uxu52, the k4 contributions come from
straight contributions andanglecontributions. Straight contributions have two subsequent se
two bonds, with opposite orientation, connecting, e.g., the point 0 toeer and then to 2eer; and the
property of theG matrices given above guarantees that these contributions behave like thk2,
diagonal anda-independent contributionsGn,ab(x), uxu51, and do not give rise to mass splittin
as well. Angles are contributions toGn,ab for points of the formx5eei1e8ej , i , j 51,2,...,d, i
, j , e,e8561. These are L-type contributions associated with two sets of two lattice bonds,
opposite orientation; one set connecting the points 0→eei and the other connectingeei→eei

1e8ej , or one set connecting the points 0→e8ej and the other connectinge8ej→eei1e8ej . They
contribute to mass splitting inO(k4) for d52, 3. ~See Theorem 2.3.!

Before stating our results on the mass spectrum and dispersion curves, we give an in
picture for theasymptoticbehavior of the mass. Retaining only the diagonal part ofGab(x), x

50 andx5(1,0W ), the equation for the massm is

detG̃~p05 im,pW 50W !u~12k2 em!450, mPR ,

so we have a massm of order22 lnk, with a fourfold degeneracy.
To rigorously determine the EM spectrum, we exploit symmetries forpW 50W . G̃(p05 im,pW

50W ) is shown to be diagonal. The determination of the nonsingular part can be cast in
analytic implicit function problem. ForpW Þ0W , we have not shown thatG̃(p05 im,pW ) is diagonal,
but the asymptotic form of the dispersion curve can be obtained by a Rouche´’s theorem argumen
for the zeroes of detG̃(p05iw(pW),pW). Also, our results inHm are extended to the whole Hilbe
spaceHe by adapting the subtraction method of Ref. 8.

The results for the EM spectrum are given in the theorem below.
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Theorem 2.3: Under the hypotheses of Theorem 2.1, the following mesonic spectral re
hold in the even subspaceHe of the physical Hilbert spaceH.

(1) To any order ink and for d52,3, the mass spectrum inHe and in the energy interval(0,
2(42e)ln k), e.0, consists of three masses given bydiag@a1c,b,b,a2c#, a1c for a
51, b for a52,3 and a2c for a54. Up to and including orderk4, a2c5b, for d53, and
c50, for d52, and there are only two distinct masses ma and mb given by

mj522 lnk1r j~k!, j5a or j5b,

where rj (k)[(n52
` bj ,nkn is real analytic ink at 0, for each d52, 3. We obtain, with the

constants given in Theorem 2.1,

r j~k!522 dc2k21@24~caa
12 1caa

13;23!1~122 dc2224c2
2120 dc2

2!22 d2c2
2#k41O~k6! ,

where caa
13;23[caa

13 1caa
23 is to be omitted for d52. Again, up to and including orderk4, for

d53, the mass mb is associated witha51 and has multiplicity one; ma is associated with
a52,3,4, and has multiplicity three. The mass splitting is ma2mb52k41O(k6). For d
52, mb (ma) is associated witha51,4 (a52,3), and both have multiplicity two. The mass
splitting is ma2mb5k41O(k6).

(2) The EM spectrum inHe and in the energy interval(0,2(42e)ln k), e.0, consists of four
dispersion curves (not necessarily distinct), each of which has the form

w~pW!522 lnk22dc2k
21c2k

2 (
j51

d

2~12cospj!1O~k4!. ~2.14!

The curves w(pW ) are increasing functions of each component pj of pW , and are convex for
small u pW u.

Remark 2.4: The action of the charge conjugation transformation defined below leave
spaceHm stable, and hence we have the same spectral representation for particles and an
ticles, as given by Eq. (2.7). At the level of CF, the two-point function for the meson antipa
~which we call G8), is related to G by G85TGT21, with T5diag@1,21,21,21#, for d53. For
d52, replace T by U, where U5diag@21,21,21,1#. As the mass and dispersion curves a
determined by the implicit equationdetG̃(p0,pW)50, the meson particle and antiparticle mas
spectrum and dispersion curves are identical.

The organization of the rest of the paper is also patterned by that in Ref. 17. Section
devoted to the proof of Theorems 2.1 and 2.2. In Sec. IV we prove Theorem 2.3.

III. DECAY BOUNDS AND SHORT-DISTANCE BEHAVIOR OF G AND G

We now use the decoupling of the hyperplane method to obtain bounds onG andG, as given
in Theorem 2.1. We assume that the reader has some familiarity with this method and re
Refs. 6, 9, and 11 for more details.

We will encounter gauge group integrals of monomials in the group matrix elementgi j

( i , j 51,2,3), denote SU~3! matrix elements, and we suppress the lattice points from the nota
and the inversesgi j

21 . These are evaluated following techniques developed in Chap. 8 of Re
and in Refs. 23 and 24, for the general SU(N) case. In particular, to prove Theorem 2.1, we w
need*ga1b1

ga2b2

21 dm(g)5 1
3da1b2

da2b1
and *ga1b1

ga2b2

21 ga3b3
ga4b4

21 dm(g)5 1
8(da1b2

da3b4
db1a2

db3a4

1da1b4
da3b2

db1a4
db3a2

)2 1
24(da1b2

da3b4
db1a4

db3a2
1da1b4

da3b2
db1a2

db3a4
). Also, we use the fol-

lowing properties involving G matrices (r,s50,1,...,d, and e, e8561) Geer
G2eer

50,
Geer

Geer
522Geer

, andGeer
Ge8es

52I 42G2e8es
G2eer

.
We will obtain decay properties for the gauge invariant truncated CF’s,

^F~u!H~v !&T5^@T0
u021/2TW uWF~1/2,0W !#@T0

v021/2TW vWH~1/2,0W !#&T , ~3.1!
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where F,HPHe , T0 is time translation bye0 and TW uW5T1
u1
¯Td

ud
is space translation byuW

5(u1,...,ud)PZd.
We discuss explicitly the decoupling procedure for the time~vertical! direction. The space

directions are treated similarly, and together with the time direction. The arguments are carri
for CF’s in a finite volumeLPZo

d11 , with bounds uniform in the volumeuLu, and extend to the
infinite volume using standard consequences of the polymer expansion~see, e.g., Refs. 9 and 21!.

For u0,v0, pPZ, u011/2<p<v021/2 ~or, if u0.v0, v011/2<p<u021/2), replace the
hopping parameterk.0 multiplying the nonlocal fermionic part of the action~2.2! ~not the k in
M ) by kpPC and denoting] r /]kp

r by ] r and by]0
r its kp50 value, the following properties hold

Lemma 3.1: Concerning the derivatives of G, we have the following.

(1) If u0Þv0, ]0
r ^F(u)H(v)&T50, r 50,1,3.

(2) If u0,v0, and r52,

]0
2^F~u!H~v!&T5 2 (

wuw0521/21p
^F~u!pa~w!&T^ma~w1e0!H~v !&Tukp50 .

(3) If u0.v0, and r52,

]0
2^F~u!H~v!&T5 2 (

wuw0521/21p
^F~u!ma~w1e0!&T^pa~w!H~v !&Tukp50 .

Proof: Consideru0,v0; the argument forv0,u0 is similar. For the truncated two-poin
function of Eq.~2.5!, we introduce a duplicate variable representation~see Ref. 8! depending on
the hyperplane decoupling parameters$kp%,

^F~u!H~v !&T5
1

2Z2 E @F~u!2F8~u!#@H~v !2H8~v !#

3expF2 (
wuw0521/21p

kp~A~c,c̄,g,w!1A~c8,c̄8,g8,w!!G
3exp@2S~c,c̄,g!2S~c8,c̄8,g8!# dc dc̄ dm~g! dc8 dc̄8 dm~g8! , ~3.2!

where A(c,c̄,g,w)5 1
2@c̄aa(w) Gab

ee0
(gw,w1e0)ab cbb(w1e0)1c̄aa(w1e0)Gab

2e0
(gw1e0,w)

abcbb(w)] and Z2 is the normalization factor. The primes inF8 andH8 mean functions of the
duplicate variablesc8, c̄8, and g8. S(c,c̄,g) is the action for the remaining bonds. We no
expand the numerator and denominator of~3.2! in powers ofkp . For the denominator thekp

coefficient is a sum of bond terms and each term is a product of expectations containing a
c or c̄ which Fermi integrates to zero. The coefficient ofkp

2 is a sum of terms with two bound
which must be coincident and of opposite orientation to give a nonzero contribution. Fo
numerator, we consider the coefficients ofkp . For the first statement, thekp

0 is trivially zero. For
kp

1 and kp
3 the expectation factorizes and each factor has an odd number of fermions and

zero. The integral over interhyperplane gauge field could also be used to show zero contr
for kp

1 . For the second statement, thekp
2 coefficient has terms with two bonds. For a nonze

contribution performing the gauge integral and the matrix structure ofG6e0
gives the result. The

proof of the third statement is similar to the second one. h

To calculate thekp derivatives ofG, it is convenient to consider insteadG8[2G, minus the
convolution inverse ofG, and use the formula

] rG85(
s50

r 21 S r
sD G8 ] r 2sG ]sG8 . ~3.3!

The first threek50 derivatives ofG are given in the next lemma.
Lemma 3.2: For the derivatives ofG, we have the following.
                                                                                                                



lt
the

he
the

ermi
first
an
pical

n

t

637J. Math. Phys., Vol. 45, No. 2, February 2004 Existence of mesons and mass splitting

                    
(1) If u0Þv0, ]0
r G(u,v)50, r 50,1.

(2) If u0,v0, ]0
2G(u,v)522(wuw0521/21p d(u,w)d(w1e0,v).

(3) If u0.v0, ]0
2G(u,v)522(wuw0521/21p d(u,w1e0)d(w,v).

(4) If uu02v0u.1, ]0
3G(u,v)50.

Proof: For the first statement, consider firstu0,v0. Using Eq.~3.3! and Lemma 3.1, the resu
follows directly; and similarly foru0.v0. For the second statement, using the first one and
second statement of Lemma 3.1, we have

]0
2G~u,v !52 (

w,zuw011/2<p<z021/2

G~u,w!]2G~w,z!G~z,v !U
kp50

522 (
w,zuw011/2<p<z021/2

G~u,w! (
r ur 011/25p

G~w,r !G~r 1e0,z! G~z,v !U
kp50

.

~3.4!

Using Lemma 3.1~first item! for r 50 thew andz sums can be taken over all values to give t
result. The third statement follows from a similar argument. The fourth statement follows from
first three statements and uses Eq.~3.3! again. h

We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1 (first item):Consider the expansion of the denominator ofGab in

powers ofk. For a point where the bonds arrive and leave in opposite directions the F
integration gives products ofG’s, in which case the above property is used to give zero. The
nonvanishing contribution occurs atk8, corresponding to two sets of four bonds going around
elementary square in opposite directions. For the numerator we explicitly carry out two ty
calculations: one for thek2 contribution toG11(x), associated withx5eer (uxu51), and another
for the case of an angle contribution toG11(x), whenx5eer1e8es. The casee5e8 andr5s is
simpler as the propertyGeer

Geer
522Geer

can be used.
The k2 contribution to the caseux5u2vu51, involves two bonds, with opposite orientatio

connectingu andv. After performing the gauge group integral, we obtain forG11(u,v) with ^ &0

denoting the expectation with the hopping parameter set equal to zero in the action of~2.2!,

k2

12
^m1~u!c̄a1a1

~u!ca1b2
~u!&0Ga1b1

eer
Ga2b2

2eer
^ca2b1

~v !c̄a2a2
~v !p1~v !&0 .

Using the definitions~2.3!, ~2.4! and applying again Wick’s theorem for the factors^ &0 we get

k2

8
~G11

2eer
G33

eer
1G12

2eer
G43

eer
1G21

2eer
G34

eer
1G22

2eer
G44

eer
!.

By the explicit structure of the matricesG the second and third terms above are zero~for all r! and
the sum of the first and fourth is equal to 8dr012dr j ~remember thatj 51,2,3) and the resul
follows.

The k4 contribution toG11(u,v) 5 G11(x5u2v) of the angle 0→eer→eer1e8es[x is

denoted byA11
eer,xk4 and hasg0,eer (g0,eer

21 ) emanating from 0 (eer) in the er direction and
geer,x(geer,x

21 ) arriving at x(eer) in the es direction. After gauge integration ofg0,eergeer,0 and
geer,xgx,eer, and Fermi integration of the fields ateer using Wick’s theorem, we have

A11
eer,x5 1

48 ^m1~u!c̄a1a1
~u!ca1b2

~u!&0 ~Ga1b1

eer
Ga2b2

2eer
Gb1b3

e8es
Ga4a2

2e8es

23Ga1b1

eer
Gb1b2

2eer
Ga3b3

e8es
Ga4a3

2e8es
! ^ca4b3

~v !c̄a4a4
~v !p1~v !&0 .
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The second product ofG’s above is zero byGeer
G2eer

50. Using the definitions~2.3!, ~2.4! and
applying again Wick’s theorem for the factors^ &0 we get

A11
eer,x5 1

32 @L11
2e8es,2eer

L33
eer,e8es

1L12
2e8es,2eer

L43
eer,e8es

1L21
2e8es,2eer

L34
eer,e8es

1L22
2e8es,2eer

L44
eer,e8es

#,

whereLuu8
2e8es,2eer

[Gua
2e8es

Gau8
2eer

andL,,8
eer,e8es

[G,b
eer

Gb,8
e8es

. Similarly, we can calculate the con

tribution of A11
e8es,x . The expression forc11(x) is

c11~x! 5 A11
eer,x1A11

e8es,x ,

with x5eer1e8es, and similarly for the othercab(x)’s. Whenr5 i ands5 j ( i , j 5 1,2,3) by
the symmetry properties of Theorem 4 in Ref. 17~namely, rotations byp aboute3 and parity!, we
can show thatcab(x 5 eei1e8ej ) is independent ofe, e8 so, we can writecab(x)5cab(ei

1ej )[cab
i j and we get Eq.~2.10!. h

Proof of Theorem 2.1 (second item):Using a Cauchy integral representation for eachkp and
for analogous spatial complex hyperplane decoupling parameters, taking into account the n
of vanishing derivatives as given in Lemma 3.1, and using Cauchy estimates on the m
integral gives the result. An argument based on the maximum modulus theorem could also b
~see Ref. 9 for details!. h

Let us now turn to the proof of Theorem 2.2. The corrections to the asymptotic mass va
22 lnk which we need for the determination of mass splitting require precise values ofGab(x),
for small uxu. The results go beyond those obtained by the hyperplane method, and rely on e
cancellations in the Neumann series forG. The results below are obtained expanding in powers
k and controlling the remainders using the analyticity ofG andG, and the decay ofG as given by
Theorem 2.1.

Proof of Theorem 2.2 (first item):Gab is obtained from the Neumann series and Theorem
~first item!. We show how the cancellations occur, which improves the hyperplane method b
We explicitly consider the casex5ee01e8ej ; the other cases where there are one, two or th
times units are treated similarly. Recall that@see Eq.~2.8!# Gd,ab(u,v)5Gaa(u,u)dabd(u,v).
From Theorem 2.1, we obtainGaa(0)511O(k8). Using G5( i 50

` (21)i@Gd
21Gn# iGd

21 , for x
5u2vÞ0, we write

Gab~u,v !52Gaa
21~0!Gn,ab~u,v !Gbb

21~0! 1 (
w

Gaa
21~0!Gn,ag~u,w!

3 Ggg
21~0!Gn,gb~w,v !Gbb

21~0! 1 O~Gn
3!. ~3.5!

For a5b, there are twok4 angle contributions toGn,ab(u,v) in the first term of Eq.~3.5!,
and these are cancelled by the product ofk2 contributions forw2v5ee0 andw2v5eej in the
second term of Eq.~3.5!. h

Proof of Theorem 2.2 (second item):Similar to Theorem 2.1~second item!. h

IV. SPECTRAL RESULTS

We now prove Theorem 2.3. To determine the meson masses and dispersion curves,
the p0 imaginary axis solutions of detG̃(p0,pW)50. For the mass spectrum, we find, by the use
symmetries, thatG̃ab(p0,pW 50W ) is diagonal. Furthermore, we show thatmc12 lnk is real analytic
in k. For pW Þ0W , as we havenot found symmetries which simplify the matrix structure, we det
mine the dispersion curvesw(pW ), where detG̃(p05iw(pW),pW)50, by an application of Rouche´’s
theorem.

We state some symmetry properties in the next lemma.
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Lemma 4.1: The following symmetry properties are satisfied by the matrices G andG.

(1) Gab(x) 5 @Gba(x)#* and Gab(x) 5@Gba(x)#* ,
(2) For x P R, let p0 5 ix. We have G˜ ab( ix,pW ) 5 @G̃ba( ix,pW )#* and G̃ab( ix,pW )

5 @G̃ba( ix,pW )#* ,
(3) At pW 50W , G̃ab(p0,pW 50W )5diag@a1c, b, b, a2c#, with a, b, cPC.

Proof: Here we use several symmetries given in Theorem 4 in Ref. 17. By the spe
representation of Proposition 2.1, forx0Þ0, item ~1! follows. Forx050, the result follows from
time reversal and parity. Thus, item~1! holds for allx. The proof of item~2! follows from parity
invarianceGab(x0,xW ) 5 Gab(x0,2xW ). To prove item~3!, we use reflection symmetry in th
coordinate x1. Here xW5(x1,...,xd)°xW 85(2x1,...,xd), and c̃a1(x)°2c̃a2(x8), c̃a2(x)°

2c̃a1(x8), c̃a3(x)°c̃a4(x8), c̃a4(x)°c̃a3(x8). Also rotations ofp/2 andp aboute3 will be
used. Consideringp/2 and d53 we have, x5(x0,x1,x2,x3)°x85(x0,2x2,x1,x3) @x

5(x0,x1,x2)°x85(x0,2x2,x1), for d52] and c̃a1(x)°c̃a1(x8), ca2(x)°2 ica2(x8),
c̃a3(x)°c̃a3(x8), ca4(x)°2 ica4(x8) and c̄a2(x)° i c̄a2(x8), c̄a4(x)° i c̄a4(x8). For p and
d53 we have,x5(x0,x1,x2,x3)°x85(x0,2x1,2x2,x3) @x5(x0,x1,x2)°x85(x0,2x1,2x2),
for d52] and c̃a1(x)°c̃a1(x8), c̃a2(x)°2c̃a2(x8), c̃a3(x)°c̃a3(x8), c̃a4(x)°2c̃a4(x8).

These transformations, taken together with the symmetry results given in Theorem 4 i
17, are used to obtain the matrix structure stated in the third item, ford52,3. h

After using Theorem 2.2 and taking the Fourier transform, we have

G̃ab~p0,0W ! 5 @122 dc2k212~12dc2212c2
2110dc2

2!k4#dab

24~cab
12 1cab

13 1cab
23 !k41O~k6!2@dabk21O~k8!#~eip0

1e2 ip0
!1¯ .

~4.1!

We now introduce an auxiliary functionHa(w,k), jointly analytic inw andk, for small uku and
uwu, such thatHa(w512k2e2 ip0

,k)5G̃aa(p0,pW 50W ). Ha(w,k) is defined by

Ha~w,k!,5w22 dc2k212~12dc2212c2
2110dc2

2!k424~caa
12 1caa

13;23!k42
k4

12w

1(
xW

Gaa8 ~0,xW !2(
xW

Gaa8 ~1,xW !F k2

12w
1

12w

k2 G
1 (

n>1,xW u(n,xW )Þ(1,0W )

Gaa~n,xW !F S k2

12wD n

1S 12w

k2 D nG , ~4.2!

where Gaa8 (0,xW ) @respectively,Gaa8 (1,xW )] contains the contributions ofO(k6) @respectively,
O(k8)] or higher andcaa

13;23 is the sum of angle contributions 0→ei→e13 ( i 51,3) and 0→ej

→e23 ( j 52,3) which is diagonal.Ha(0,0)50 and (]Ha /]w) (0,0)51, and hence the analyti
implicit function theorem applies and gives us an analytic functionw(k)[wa(k) such that
Ha(w(k),k)50. Thus, fork real positive, the mass is given by

ma52 ln k21 ln~12w! .

By an analysis of the formulas for the implicit function derivatives, with dw
52(]wH)21]kH[2(Hw)21Hk , we find d0

r w50, r 50,1,3,5 and

d0
2w52]k

2H~0,0! 5 4c2d

d0
4w52]k

4H~0,0! 5 24!@122 dc2224c2
2120dc2

224~caa
12 1caa

13;23!# .
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Hence, ford53,

ma 522 lnk22 dc2k21@24~caa
12 1caa

13;23!1~122 dc2224c2
2120dc2

2!22 d2c2
2#k41O~k6! ,

and similarly, ford52, with caa
13;2350.

Thus, up to and includingO(k4), we have, ford53, ma[ma andmb[m1 , ma2mb52k4

anda52,3,4; ford52, ma[ma andmb[mb , ma2mb5k4, a52,3 andb51,4.
Let us now turn to the dispersion curves. They satisfy detG̃(ip05iw(pW),pW)50. To determine

them, withc2(pW )[c2 ( j 51
d 2 cospj, we write the Fourier transform ofGab(x) as

G̃ab~p0,pW !5@12c2~pW !k22k2~e2 ip0
1eip0

!#dab1( 8
n,xW

Gab~n,xW ! e2 ipW .xW~e2 ip0n1eip0n! ,

~4.3!

where (n,xW8 means that all terms of orderk4 or higher in Gab(x) are included. Introduce the

auxiliary matrix functionHab(w,k)[Hab(w,k,pW ) such thatHab(w512c2(pW )k22k2e2 ip0
,k)

5G̃ab(p0,pW ). Hab(w,k) is defined by

Hab~w,k!5wdab1( 9
n,xW

Gab~n,xW ! e2 ipW .xW F S 12w2c2~pW !k2

k2 D n

1S k2

12w2c2~pW !k2D nG ,
where(n,xW9 means that onlyO(k4) terms or higher order terms are to be included.H(w,k) is
jointly analytic in k andw at (w,k)5(0,0).

Letting

f ~w! [ detH~w,k!5detwI4 1 @detH~w,k!2detwI4#[g~w! 1 h~w! ,

we can apply Rouche´’s theorem tof (w) on the circleuwu5cuku4, c@.1, ug(w)u5c4uku16 and
uh(w)u<c 8uku16,c4uku165ug(w)u, so that f (w) has four zeroes insideuwu5cuku4, as g(w)
5w4 has a fourth order zero. Notice that the upper bound foruh(w)u comes from an upper boun
on the remaining 23 terms in the difference between the two determinants. Now, fop0

5 iw(pW ), andk real positive, each of the four zeroes satisfying detG̃(p05iw(pW),pW)50 has the form

w~pW !522 lnk22 dc2k212c2k2(
j 51

d

~12cospj !1O~k4! .

We now extend the spectral results fromHm to the spaceHe , using the Euclidean subtractio
method established in Ref. 8. We consider the generalized subtracted two-point CF,

F~u,v !5GLL~u,v !2 (
w,w8PZ0

d11
GL,F~u,w!G~w,w8!GF,L~w8,v ! ,

whereF(u)5(p1(u), . . . ,p4(u)) has four components;G(w,w8) is given by the convolution
inverse of the two-point functionG. Finally,

GFH~u,v !5H SQT
0
21F,H~u,v !, u0<v0,

SF,QT
0
21H

* ~u,v !, u0.v0,

with SF,H(u,v)5^@T0
u021/2TW uWF(1/2,0W )#@T0

v021/2TW vWH(1/2,0W )#&T .
The lemma below guarantees that our results hold in the full spaceHe .
Lemma 4.2: For u0,v0, pPZ, u011/2<p<v021/2 ~or, if u0.v0, v011/2<p<u021/2),

and again denoting by]0 the kp derivative atkp50, we have]0
r F(u,v)50, for r 50,1,2,3.
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Proof: The proof follows Ref. 8 closely. Foru0,v0 ~the caseu0.v0 is similar! and from
Lemmas 3.1 and 3.2 the power series expansions inkp of the functions appearing in the definitio
of F(u,v) are of the form

GLL~u,v !5a2~u,v !kp
21O~kp

4! ,

GL,F~u,w!5b0~u,w!xw0<21/21p1b2~u,w!kp
21O~kp

4! ,

G~w,w8!5c0~w,w8!~xw0<21/21p xw80<21/21p1xw0.21/21pxw80.21/21p!1c2~w,w8!kp
2

1O~kp
4!,

GF,L~w8,v !5d0~w8,v !xw80.21/21p1d2~w8,v !kp
21O~kp

4! .

Substituting these expressions, it is easy to show that]0
r F(u,v)50 (r 50,1,3). Forr 52, pro-

ceeding exactly as in Theorem 3.7 of Ref. 8, we have four terms which sum up to zero a
result follows. h

This ends the proof of Theorem 2.3. h
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Warped product approach to universe with nonsmooth
scale factor
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In the framework of Lorentzian warped products, we study the Friedmann–
Robertson–Walker cosmological model to investigate nonsmooth curvatures asso-
ciated with multiple discontinuities involved in the evolution of the universe. In
particular we analyze nonsmooth features of the spatially flat Friedmann–
Robertson–Walker universe by introducing double discontinuities occurred at the
radiation-matter and matter-lambda phase transitions in astrophysical
phenomenology. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1637714#

I. INTRODUCTION

Since the cosmic microwave background was discovered, there have been many ide
proposals to figure out how the universe has evolved. The standard big bang cosmological
based on the Friedmann–Robertson–Walker~FRW! space–times has led to the inflationa
cosmology1 and nowadays to the M-theory cosmology with bouncing universes.2 These space–
times are foliated by a special set of spacelike hypersurfaces such that each hypersurfac
sponds to an instant of time. From a physical point of view, these warped product space–tim
interesting since they include classical examples of space–time such as the FRW manifold
intermediate zone of Reissner–Nordstro¨m ~RN! manifold.3,4

The Lorentzian manifolds with non-smooth metric tensors have been extensively disc
from various view points.5–9 In a space–time where the metric tensor is continuous but has a
in its first and second derivatives across a submanifold in an admissible coordinate syste
can have a curvature tensor containing a Dirac delta function.10 The support of this distribution
may be of three, two, or one dimensional or may even consist of a single event. More
Lichnerowicz’s formalism7 for dealing with such tensors is modified so that one can obtain
Riemannian curvature tensor and Ricci curvature tensor defined in the sense of distributio

A general theory for matching two solutions of the Einstein field equations has
proposed8,9 at arbitrary shock-wave interface across which the metric tensor isC0-Lorentzian,
namely at smooth surface across which the first derivatives of the metric suffer at worst a
discontinuity, so that the simplest solution of Einstein equations can incorporate a shock-wa
a standard FRW metric whose equation of state accounts for the Hubble constant and the
wave background radiation temperature. There have been later presented the evolution of
point probability distribution function of the cosmological density field based on an exact s
tical treatment.11

On the other hand, the concept of a warped product manifold was introduced by Bisho
O’Neill long ago,12 and it was later connected to general relativity13 and semi-Riemannian
geometry14 by elevating warped products to a central role. Warped product spaces has bee

a!E-mail address: jdong@afa.ac.kr
b!E-mail address: soonhong@ewha.ac.kr
6420022-2488/2004/45(2)/642/10/$22.00 © 2004 American Institute of Physics
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extended to a richer class of spaces involving multiple product spaces.5,6 One of the authors ha
investigated the curvature of a multiply warped product possessingC0-warping functions with a
discontinuity at a single point,5 and in this paper we will generalize this result to a warped prod
space–time with multiple discontinuities associated with cosmological phenomenology. O
ticular interest are space–times with metric tensors which fail to beC1 across multiple points on
the hypersurface, and isC` off the hypersurface. We will also study the Lorentzian metric wh
fails to beC0 across multiple points on the hypersurfaces and isC` off the hypersurfaces.

In this paper, as a cosmological model we will exploit the FRW space–timesM03 fH, which
can be treated as a warped product manifold possessing warping function~or scale factor! f with
time dependence, to investigate the nonsmooth curvature associated with the multiple disco
ties involved in the evolution of the universe. We will also analyze nonsmooth features o
spatially flat FRW universe by introducing double discontinuities occurred at the radiation-m
and matter-lambda phase transitions in the astrophysical phenomenology.

In Sec. II we will introduce the warped product space–time with multiple warping funct
and extend the warped product scheme to the case with multiple discontinuities in the
cosmological model in Sec. III. We will study the realistic cosmological phenomenology in
spatially flat FRW universe associated with the radiation-matter and matter-lambda phase
tions in Sec. IV.

II. WARPED PRODUCT SPACE–TIME WITH MULTIPLE WARPING FUNCTIONS

In this section we briefly recapitulate the curvature of the warped product approach to s
time with multipleC0-warping functions at a single point.

Definition 2.1~Ref. 5!: A multiply warped products space–time with base (M0 ,2dt2), fibers
(Fi ,gi) i 51, . . . ,n and warping functionsf i.0 is the product manifold (M03F13¯3Fn ,g)
endowed with the Lorentzian metric:

g52pM0
* dt21(

i 51

n

~ f i+pM0
!2p i* gi ,

where pM0
, p i ( i 51, . . . ,n) are the natural projections ofM03F13¯3Fn onto M0 and

F1 , . . . ,Fn , respectively. For a specific case ofM05R andgM0
52dt2, the Lorentzian metric is

given by

g52dt21(
i 51

n

f i
2gi .

Proposition 2.2~Ref. 5!: Let M5M03 f 1
F13¯3 f n

Fn be a multiply warped product with
Riemannian curvature tensorR. If X, YPL(M0), Ui , Vi , WiPL(Fi) (n51,2,. . . ,n), f i

PC0(S) at a single pointpPM0 , andS5$p%3 f 1
F13¯3 f n

Fn , then

~i!

RXUi
U j5RUiU j

X5RU jX
Ui50 for iÞ j ,

~ii !

RUiX
Y5UiX

1Y1
f i9~ t !1d~ t2p!~ f i8

12 f i8
2!

f i
,

~iii !

RXUi
U j5RUiU j

X5RU jX
Ui50, for iÞ j ,
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~iv!

RXYUi50, for i 51, . . . ,n,

~v!

RUiVi
U j50, for iÞ j ,

~vi!

RUiU j
Vj5Ui^U j ,Vj&

~ f i8
11 f i8

2!~ f j8
11 f j8

2!

f i f j
, for iÞ j ,

~vii !

RUiVi
Wi5

FiRUiVi
Wi1~^Ui ,Wi&Vi2^Vi ,Wi&Ui !

f i8
1m~ t2p!1 f i8

2m~p2t !

f i
2 ,

whereX5X1]/] t and Y5Y1]/] t , andm(t2p) and d(t2p) are the unit step function and th
delta function, respectively.

Proposition 2.3~Ref. 5!: Let M5M03 f 1
F13¯3 f n

Fn be a multiply warped products with
Riemannian curvature tensorR. If X, YPL(M0), Ui , ViPL(Fi) (n51,2,. . . ,n), di5dim Fi ,
f iPC0(S) at a single pointpPM0 , andS5$p%3 f 1

F13¯3 f n
Fn , then

~i!

Ric~X,Y!52(
i 51

n

diX
1Y1

f i9~ t !1d~ t2p!~ f i8
12 f i8

2!

f i
,

~ii !

Ric~X,Ui !50,

~iii !

Ric~Ui ,Vi !5FiRic~Ui ,Vi !1^Ui ,Vi&
f i9~ t !1d~ t2p!~ f i8

12 f i8
2!

f i

1^Ui ,Vi&F ~di21!
f i8

12 f i8
2

f i
2 1(

j Þ i
dj

^ f i8
12 f i8

2 , f j8
12 f j8

2&
f i f j

G ,

~iv!

Ric~Ui ,U j !50, for iÞ j ,

whereX5X1]/] t andY5Y1]/] t , andd(t2p) is the delta function.

III. FRW METRIC WITH MULTIPLE DISCONTINUITIES

The FRW space–time is one of thewarped productmanifold where the base is an ope
interval M0 of R with usual metric reversed (M0 ,2dt2), the fiber is a three-dimensional Rie
mannian manifold (F,gF) and the warping functionf is any positive functionf on M0 . The
Robertson–Walker space–time is then the product manifoldM5M03 fH endowed with the
Lorentzian metricg52dt21 f 2(t)gH with f being the scale factor of the FRW universe associa
with universal expansion. This warping functionf is a function of time alone and it measures ho
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physical separations change with time. The dynamics of the expanding universe only a
implicitly in the time dependence of the warping function~or scalar factor! f .

Consider the space–time (M , g) with metric g52dt21 f 2ds2 in the form of warped prod-
ucts. LetM5M03 fH be a warped product withgM0

52dt2. Let f .0 be smooth functions on
M05(t0 , t`). Assumef PC` for tÞt i and f PC1 at t5t i ( i 51,2,. . . ,n). When f PC1 at points
t iP(t0 ,t`) and S5$t i%3 fH, we define f PC1(S) as a collection of functions$ f ( i )% with f ( i )

piecewisely defined on the intervalst i<t<t i 11 ( i 50,1,2,. . . ,n) with tn115t` . Since f

PC1(S), we havef ( i 21)(t i)5 f ( i )(t i), f ( i 21)8(t i)5 f ( i )8(t i) but f ( i 21)9(t i)Þ f ( i )9(t i). We shall use
the unit step functionm for discontinuity of f ( i )9 at t5t i .

Consider the FRW metric of the form

g52dt21 f 2~ t !S dr 2

12kr2 1r 2~du21sin2 u df2! D ,

wherek is a parameter denoting the spatially flat (k50), 3-sphere (k51) and hyperboloid (k
521) universes.

Proposition 3.1:Let M5M03 fH be the FRW space–time with Riemannian curvatureR and
flow vector fieldU5] t . If f PC1(S), vector fieldsX, Y, ZPL(H) satisfy

~i!

RXYZ5
f 821k

f 2 ~^X,Z&Y2^Y,Z&X!,

~ii !

RXUU5
f 9

f
X,

~iii !

RXYU50,

~iv!

RXUY5
f 9

f
^X,Y&U,

where f 9 is given by

f 95S f (n)92 f (n21)91
1

n (
k50

n21

f (k)9Dm~ t2tn!1 (
l 51

n21 S 2 f ( l 21)91
1

n (
k50

n21

f (k)9Dm~ t2t l !

1
1

n (
k50

n21

f (k)9m~ tn2t !1 (
l 51

n21 S 2 f ( l )91
1

n (
k50

n21

f (k)9Dm~ t l2t !, ~1!

with m(t2t i) being the unit step function which becomes unity fort.t i and vanishes otherwise
Proof: We derivef 9 in terms of the collection of functions$ f ( i )% with f ( i ) piecewisely defined

on the intervalst i<t<t i 11 ( i 50,1,2,. . . ,n) with tn115t` . For a single discontinuityn51 case,
f is trivially given by

f 95 f (1)9m~ t2t1!1 f (0)9m~ t12t !

which fulfills ~1!. For double discontinuitiesn52 case,f is similarly given by
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f 95~ f (2)92 1
2 f (1)91 1

2 f (0)9!m~ t2t2!1~ 1
2 f (1)92 1

2 f (0)9!m~ t2t1!1~ 1
2 f (1)91 1

2 f (0)9!m~ t22t !

1~2 1
2 f (1)91 1

2 f (0)9!m~ t12t !, ~2!

which also fulfills ~1!. By using iteration method, one can obtain~1! for an arbitraryn case. h

For the case off PC0(S) we use the derivative of the unit step functionm(t i). For all tÞt i

this is well-defined,m8(t)50. However, att5t i there exists a jump discontinuity so that w
cannot define classical derivative and thus we use thed-function,m8(t2t i)5d(t2t i) to obtain the
follow results.

Proposition 3.2:Let M5M03 fH be the FRW space–time with Riemannian curvatureR and
flow vector fieldU5] t . If f PC0(S), vector fieldsX, Y, ZPL(H) then satisfy
~i!

RXYZ5
f 821k

f 2 ~^X,Z&Y2^Y,Z&X!,

~ii !

RXUU5
f 9

f
X,

~iii !

RXYU50,

~iv!

RXUY5
f 9

f
^X,Y&U,

where f 8 and f 9 are given by

f 85S f (n)82 f (n21)81
1

n (
k50

n21

f (k)8Dm~ t2tn!1 (
l 51

n21 S 2 f ( l 21)81
1

n (
k50

n21

f (k)8Dm~ t2t l !

1
1

n (
k50

n21

f (k)8m~ tn2t !1 (
l 51

n21 S 2 f ( l )81
1

n (
k50

n21

f (k)8Dm~ t l2t !, ~3!

f 95S f (n)92 f (n21)91
1

n (
k50

n21

f (k)9Dm~ t2tn!1 (
l 51

n21 S 2 f ( l 21)91
1

n (
k50

n21

f (k)9Dm~ t2t l !

1
1

n (
k50

n21

f (k)9m~ tn2t !1 (
l 51

n21 S 2 f ( l )91
1

n (
k50

n21

f (k)9Dm~ t l2t !1~ f (n)82 f (n21)8!d~ t2tn!

1 (
l 51

n21

~ f ( l )82 f ( l 21)8!d~ t2t l !, ~4!

with m(t2t i) andd(t2t i) being the unit step function and the delta function, respectively.
Proof: Similar to ~1! in Proposition 3.1, one can readily obtainf 8. Differentiating f 8 with

respect tot and using the definition of the delta functionm8(t2t i)5d(t2t i) at t5t i , one can also
obtain f 9. h

Proposition 3.3:Let M5M03 fH be the FRW space–time with Riemannian curvatureR and
flow vector fieldU5] t . If f PC0(S) andX, YPL(H), then Ricci curvature is given by
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~i!

Ric~U,U !52
3 f 9

f
,

~ii !

Ric~U,X!50,

~iii !

Ric~X,Y!5S 2~ f 821k!

f 2 1
f 9

f D ^X,Y&, if X,Y'U,

where f 8 and f 9 are given by~3! and ~4!.
Proposition 3.4:Let M5M03 fH be the FRW space–time with Riemannian curvatureR and

flow vector fieldU5] t . If f PC0(S), the Einstein scalar curvature is given by

R56S f 82

f 2 1
f 9

f
1

k

f 2D ,

where f 8 and f 9 are given by~3! and ~4!.
Proposition 3.5:For every plane containing a vector field ofU5] t , if f PC0(S) andX, Y

PL(H), we have a sectional curvatureK on the space–time (M , g) for an arbitrary plane
containing a vector field ofU5] t andW5aU1bY,

K~W,X!5
2a2f 91b2~ f 81k!

~2a21b2! f 2 ,

where f 8 and f 9 are given by~3! and ~4!.
Proof: The result followsK(W,X)5 g(RWXW,X)/g(W,W)g(X,X)2@g(W,X)#2 of the non-

degenerate 2-plane with basis (W,X). h

IV. COSMOLOGY OF SPATIALLY FLAT FRW METRIC WITH DOUBLE DISCONTINUITIES

In the spatially flat FRW cosmology withk50, the early universe was radiation dominate
the adolescent universe was matter dominated, and the present universe is now enteri
lambda-dominate phase in the absence of vacuum energy. If the universe underwent in
there was a very early period when the stress-energy was dominated by vacuum energ
Friedmann equation may be integrated to give the age of the universe in terms of present
logical parameters. We have the scale factorf as a function of timet which scales asf (t)}t1/2 for
a radiation-dominated~RD! universe, and scales asf (t)}t2/3 for a matter-dominated~MD! uni-
verse, and scales asf (t)}eKt for a lambda-dominated~LD! universe. Note that the transition from
the radiation-dominated phase to the matter-dominated is not an abrupt one; neither is th
transition from the matter-dominated phase to the exponentially growing lambda-domi
phase.

With the above astrophysical phenomenology in mind, consider the spatially flat FRW sp
time (M , g) with metric g52dt21 f 2(t)ds2 in the form of warped products. LetM5M03 fH
be a warped product withgM0

52dt2.
Definition 4.1: A C0-Lorentzian metric onM is a nondegenerate~0,2! tensor of Lorentzian

signature such that

~i! gPC0 on S
~ii ! gPC` on MùSc
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~iii ! for all pPS, andU(p) partitioned byS, guU
p
1 andguU

p
2 have smooth extensions toU. We

call S a C0-singular hypersurface of (M ,g).

ConsiderM0 as aC0-singular hypersurface of (M ,g). In the spatially flat FRW space–time
f .0 is smooth functions onM05(t0 , t`) except attÞt i ( i 51,2), that isf PC`(S) ~whereS
5$t i%3 fH) for tÞt i and f PC0(S) at t5t iPM0 to yield

f 5S f (0)5c0t1/2, for t,t1

f (1)5c1t2/3, for t1<t<t2

f (2)5c2eKt, for t.t2

D ~5!

with the boundary conditions

c0t1
1/25c1t1

2/3, c1t2
2/35c2eKt2. ~6!

Experimental values fort1 and t2 are given byt154.73104 yr and t259.8 Gyr.15 Moreoverc1

andc2 are given in terms ofc0 , t1 and t2 as follows:

c15c0t1
21/6, c25c0t1

21/6t2
2/3e2Kt2.

Note that in the spatially flat FRW model,f PC0(S) since if we assumef PC1(S) one could have
the boundary conditions12c0t1

21/25 2
3c1t1

21/3 and 2
3c1t2

21/35Kc2eKt2, which cannot satisfy the
above boundary conditions~6! simultaneously.

Proposition 4.2: Let M5M03H be the spatially flat FRW space–time with Riemanni
curvatureR, flow vector fieldU5] t and warping functionf PC0(S). For vector fieldsX, Y, Z
PL(H) we have

~i!

RXYZ5
f 82

f 2 ~^X,Z&Y2^Y,Z&X!,

~ii !

RXUU5
f 9

f
X,

~iii !

RXYU50,

~iv!

RXUY5
f 9

f
^X,Y&U,

where f is given by~5! and f 8 and f 9 are given by

f 85~ 1
4 c0t21/22 1

3 c1t21/31Kc2eKt!m~ t2t2!1~2 1
4 c0t21/21 1

3 c1t21/3!m~ t2t1!

1~ 1
4 c0t21/21 1

3 c1t21/3!m~ t22t !1~ 1
4 c0t21/22 1

3 c1t21/3!m~ t12t !, ~7!
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f 95~2 1
8 c0t23/21 1

9 c1t24/31K2c2eKt!m~ t2t2!1~ 1
8 c0t23/22 1

9 c1t24/3!m~ t2t1!1~2 1
8 c0t23/2

2 1
9 c1t24/3!m~ t22t !1~2 1

8 c0t23/21 1
9 c1t24/3!m~ t12t !1~2 2

3 c1t21/31Kc2eKt!d~ t2t2!

1~2 1
2 c0t21/21 2

3 c1t21/3!d~ t2t1!, ~8!

with m(t2t i) andd(t2t i) being the unit step function and the delta function, respectively.
Proof: Substitutingf in ~5! into ~3! and~4! in Proposition 3.2, one can readily obtain~7! and

~8!. h

Proposition 4.3:Let M5M03H be the spatially flat FRW space–time with Riemanni
curvatureR, flow vector fieldU5] t and warping functionf PC0(S). For vector fieldsX, Y, Z
PL(H), the Ricci curvature is given by

~i!

Ric~U,U !52
3 f 9

f
,

~ii !

Ric~U,X!50,

~iii !

Ric~X,Y!5S 2 f 82

f 2 1
f 9

f D ^X,Y&, if X,Y'U,

where f , f 8, and f 9 are given by~5!, ~7!, and~8!, respectively.
Proposition 4.4:Let M5M03H be the spatially flat FRW space–time with Riemanni

curvatureR, flow vector fieldU5] t and warping functionf PC0(S). The Einstein scalar curva
ture is then given by

R56S f 82

f 2 1
f 9

f D ,

where f , f 8, and f 9 are given by~5!, ~7!, and~8!, respectively.
Proposition 4.5:For every plane containing a vector field ofU5] t and f PC0(S), if X, Y

PL(H) we have a sectional curvatureK on the FRW space–time (M , g) for an arbitrary plane
containing a vector field ofU5] t andW5aU1bY,

K~W,X!5
2a2f 91b2f 8

~2a21b2! f 2 ,

where f , f 8, and f 9 are given by~5!, ~7!, and~8!, respectively.
Proposition 4.6:Let M5M03H be the spatially flat FRW space–time with Riemanni

curvatureR, flow vector fieldU5] t and warping functionf PC0(S). The evolution equations ar
then given by

~i!

3 f 82

f 2 58pr1L,
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~ii !

3 f 9

f
524p~r13P!1L,

where f , f 8, and f 9 are given by~5!, ~7!, and ~8!, respectively. Herer, P, andL are the mass
density and pressure of matter and the cosmological constant.

Proof: Consider the Einstein equation,

Gmn1Lgmn5Rmn2 1
2 Rgmn1Lgmn58pTmn , ~9!

whereGmn is the Einstein tensor, andTmn is the stress-energy tensor for all the field prese
matter, radiation and so on. To be consistent with the symmetries of the metric, the total
energy tensorTmn must be diagonal, and by isotropy the spatial components must be equa
simplest realization of such a stress-energy tensor is that of a perfect fluid characterize
time-dependent energy densityr(t) and pressurep(t),

Tn
m5diag~r,2p,2p,2p!. ~10!

Substituting~10! into ~9!, together with the Ricci and Einstein curvatures given in Proposition
and Proposition 4.4, one can readily obtain the above evolution equations. h

Remarks 4.7:Them50 component of the conservation of stress-energy tensor,T;n
mn50, gives

the first law of thermodynamics of the familiar formd(r f 3)52pd( f 3) or equivalently,d@ f 3(r
1p)#5 f 3 dp. The change in energy in a co-moving volume element,d(r f 3), is equal to minus
the pressure times the change in volume element,2pd( f 3). For the simple equation of statep
5vr, wherev is independent of time, the energy density evolves asr} f 23(11v). Examples of
interest include: radiation (p5 1

3r, r} f 24), matter (p50, r} f 23), and vacuum energy (p
52r, r}const) phases.

V. CONCLUSIONS

We have considered the FRW cosmological model in the warped product scheme to in
gate the nonsmooth curvature associated with the multiple discontinuities involved in the e
tion of the universe. In particular we have analyzed the nonsmooth features of the spatia
FRW universe by introducing double discontinuities occurred at the radiation-matter and m
lambda phase transitions in the astrophysical phenomenology.
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We give a classification of the type D space–times based on the invariant differen-
tial properties of the Weyl principal structure. Our classification is established using
tensorial invariants of the Weyl tensor and, consequently, besides its intrinsic na-
ture, it is valid for the whole set of the type D metrics and it applies on both,
vacuum and nonvacuum solutions. We consider the Cotton-zero type D metrics and
we study the classes that are compatible with this condition. The subfamily of
space–times with constant argument of the Weyl eigenvalue is analyzed in more
detail by offering a canonical expression for the metric tensor and by giving a
generalization of some results about the nonexistence of purely magnetic solutions.
The usefulness of these results is illustrated in characterizing and classifying a
family of Einstein–Maxwell solutions. Our approach permits us to give intrinsic
and explicit conditions that label every metric, obtaining in this way an operational
algorithm to detect them. In particular a characterization of the Reissner–
Nordström metric is accomplished. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1640795#

I. INTRODUCTION

Type D space–times have been widely considered in literature and we can point out no
the large number of known families of exact solutions but also the interest of these solutions
the physical point of view. Let us quote, for example, the Schwarszchild or the Kerr metrics w
model the exterior gravitational field produced, respectively, by a nonrotating or a rotating s
cally symmetric bounded object. Or also the related metrics in the case of a charged obje
Reissner–Nordstro¨m or the Kerr–Newman solutions. However, although some classes of ty
metrics have been considered taking into account algebraic properties of the Weyl eigenv
differential conditions on the null Weyl principal directions, a classification of the type D solut
involving all the first-order differential properties of the Weyl tensor geometry is a task which
not been totally accomplished yet. In this work we present this classification of the type D m
and we show the role that it can play in studying geometric properties of known space–tim
looking for new solutions of Einstein equations or in offering new elements which allow us to
intrinsic and explicit characterizations of all these space–times.

At an algebraic level, a type D Weyl tensor determines a complex scalar invariant, the e
value, and a 212 almost-product structure defined by its principal 2–planes. Some classes o
D metrics can be considered by imposing the real or imaginary nature of the Weyl eigenva
this way we find the so-called purely electric or purely magnetic space–times. The purely e
character often appears as a consequence of usual geometric or physical restrictions.1 This is the
case of the static type D vacuum spacetimes found by Ehlers and Kundt,2 or the Barnes degenerat
perfect fluid solutions with shear-free normal flow.3 On the other hand, some restrictions a

a!Electronic mail: joan.ferrando@uv.es
b!Electronic mail: juan.a.saez@uv.es
6520022-2488/2004/45(2)/652/16/$22.00 © 2004 American Institute of Physics
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known on the existence of purely magnetic solutions.4,5 A wide bibliography about Weyl-electric
and Weyl-magnetic space–times can be found in a recent work6 where these concepts have be
generalized.

The most usual approaches to look for exact solutions of the Einstein equations wo
frames or local coordinates adapted to some outlined direction of the curvature tensor. F
ample, in the case of perfect fluid solutions or static metrics the 311 formalism adapted, respec
tively, to the fluid flow or to the normal timelike Killing vector can be useful. Sometimes
considers that some of the kinematic coefficients associated with the unitary vector are zer
means that one is searching for new solutions belonging to a class of metrics that are defi
first-order differential conditions imposed on the curvature tensor. A similar situation ap
when local coordinates adapted to the multiple Debever direction are considered when look
algebraically special solutions. Indeed, if the hypotheses of the generalized Goldberg–Sach
rem hold, the multiple Debever direction defines a shear-free geodesic null congruence.
case, or when considering nondiverging or nontwisting restrictions on a Debever direction, w
imposing differential conditions on the Weyl tensor.

It is worth pointing out that the kinematic coefficients associated with a unitary vector c
pletely determine the first-order differential properties of the 113 almost-product structure that
defines. Nevertheless, the conditions usually imposed on the two double Debever directio
type D space–time do not cover all the differential properties of the principal 212 almost-product
structure of the Weyl tensor exhaustively. The first goal of this work is to offer a classificatio
the type D metrics based on all the first-order differential properties of the principal structure
to reinterpret under this view the usual conditions that can be found in the literature. This c
fication is not based on the scalar invariants, but on tensorial invariants of the Weyl tensor.
invariants are well adapted to the generic type D metrics, where a Weyl canonical frame
univocally determined, and where the eigenvalues and the 212 principal structure are the onl
invariants associated with the Weyl tensor.

The ~proper! Riemannian almost-product structures have been classified according the i
ant decomposition of their structure tensor,7 and the classes have been interpreted in terms of
foliation, minimal and umbilical properties.8 This classification can be generalized to the spac
time structures by also considering the causal character of the planes.9 Almost-product structures
have shown their usefulness in studying the underlying geometry of some physical fields.
13 structures are frequently used in relativity and sometimes the properties of a physical fie
be expressed in terms of the kinematic properties of a unitary vector.10,11 On the other hand, the
212 structure associated with a regular solution of Maxwell equations12 is a basic concept in
building the ‘‘already unified theory’’ for the electromagnetic field.13 It has also allowed a geo
metric interpretation14 of the Teukolsky–Press relations15 used in analyzing incident electromag
netic waves on a Kerr black hole.

In General Relativity we can also find almost-product structures attached to the geome
physical properties of the spacetime. Indeed, some energy contents~for example, in the Einstein–
Maxwell or perfect fluid solutions! define underlying structures that restrict, via Einstein eq
tions, the Ricci tensor. On the other hand, the Weyl tensor also defines almost-product str
associated with its principal bivectors depending on the different Petrov types.16 These structures
determine the Weyl canonical frames.17 In the type D case, only theprincipal structureis outlined.

Until now we have mentioned two different ways of classifying the type D space–times
first one is strictly algebraic and takes into account the real or imaginary character of the
eigenvalues; the second one, which we will present here, involves differential conditions
212 principal structure, that is, on the Weyl eigenvectors. Nevertheless, there is a third n
manner to impose restrictions on the type D metrics: To take into account the relative po
between the principal 2–planes and the gradient of the Weyl scalar invariants. This is a
classification, differential in the eigenvalues and algebraic in the principal structure, which a
16 different classes of type D metrics. In this work we will show the marked relation that e
between this classification and the two previous ones.

A classification of type D space–times taking into account the properties of the 212 principal
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structure shows quite interesting advantages. Indeed, the integration of the static type D v
equations using an alternative approach based on the Weyl principal structure has allowe
complete the results by Ehlers and Kundt2 in order to accomplish an algorithmic and intrins
identification of the solutions and, in particular, to obtain the equations that define the Schw
child space–time explicitly.18 Moreover, our classification affords a geometric interpretation of
other families of vacuum type D solutions. Starting from this approach two Killing vectors ca
determined in terms of Weyl concomitants,19 a result which shows that a commutative bidime
sional group of isometries exists. Although all the type D vacuum solutions were foun
Kinnersley20 a integration method based on our classification permits their intrinsic label, as
as a geometric interpretation of the NUT and acceleration parameters.21

In this work we apply our classification to the study of space–times with zero Cotton te
For them, the Bianchi identities impose the same restrictions on the Weyl tensor as the v
condition. We interpret these restrictions in terms of geometric properties of the principal stru
and we show that the compatible classes can be characterized in terms of the relative p
between the gradient of some invariant scalars and the principal 2–planes. From a physica
of view these metrics have two interesting properties. Firstly, the two double Debever dire
define shear-free geodesic null congruences and, secondly, the principal structure is Maxw
This result can be of interest in order to generalize the Teukolsky–Press relations14,15 and their
applications to type D nonvacuum solutions.

In order to show the usefulness of this approach in analyzing properties of known metr
integrating Einstein equations and in labeling the solutions, here we study the space–time
the two properties quoted above for the particular classes with integrable structure. In this ca
space–time metric turns out to be conformal to a product metric. Then, as a first consequen
extend the result by Hall4 ~see also McIntoshet al.5! concerning the nonexistence of pure
magnetic type D vacuum solutions in a double sense: The family of solutions where the new
applies is wider than the vacuum metrics, and the purely magnetic restriction is weakened
arbitrary constant argument. Elsewhere22 we have acquired a similar extension for some res
concerning the purely magnetic type I solutions. Moreover, starting from a canonical form
begin on the integration of the Einstein–Maxwell equations for the compatible classes, a
recover the charged counterpart of the A, B, C vacuum metrics by Ehlers and Kundt. The
gration method at once provides an algorithm to detect the solutions with intrinsic and ex
conditions and, in particular, it offers a characterization of the Reissner–Nordstro¨m space–time.
The classification of the Kinnersley rotating type D vacuum solutions will be consid
elsewhere.21

The paper is organized as follows. In Sec. II we introduce some definitions and notation
we give some results about 212 almost-product structures. In Sec. III we present the classifi
tion of the type D metrics based on the first-order differential properties of the Weyl prin
structure, as well as the mixed classification involving the eigenvalues gradient and the pr
structure. The Cotton-zero type D metrics are analyzed in Sec. IV, and we show that the pr
2–planes define an umbilical structure and, consequently, we only have 16 compatible c
which coincide precisely with those defined by the mixed classification. The four classes
integrable structure are studied in detail in Sec. V: We present a canonical form for them
generalize a result about the nonexistence of purely magnetic solutions. Finally, in Sec. V
apply our results to recover a family of Einstein–Maxwell solutions, to give an operational
rithm to detect them and to explicitly and intrinsically characterize the Reissner–Nords¨m
space–time. Some of the results in this paper were communicated without proof at the S
Relativity Meeting–96.19

II. SPACE–TIME ALMOST-PRODUCT STRUCTURES

On a Riemannian manifold (M ,g) an almost-product structure is defined by a p-plane fieldV
and its orthogonal complementH. Let v andh5g2v the respective projectors, and letQv be the
~2,1!-tensor:
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Qv~x,y!5h~¹vxvy! , ; x,y. ~1!

Let us consider the invariant decomposition ofQv into its antisymmetric partAv and its symmetric
part Sv[Sv

T1 (1/p) v ^ TrSv , whereSv
T is a traceless tensor:

Qv5Av1
1

p
v ^ Tr Sv1Sv

T . ~2!

The planeV is foliation if, and only if,Av50. In this caseQv5Sv and it coincides with the secon
fundamental form of the integral manifolds of the foliationV.23 MoreoverV is minimal, umbilical
or geodesic if, and only if, TrSv50, Sv

T50 or Sv50, respectively. Then one can generalize the
geometric concepts for plane fields which are not necessarily foliation:

Definition 1: A plane field V is said to be geodesic, umbilical or minimal if the symmetric
Sv of its (generalized) second fundamental form Qv satisfies, respectively, Sv50, Sv

T50 or
Tr Sv50.

The ~proper! Riemannian almost-product structures (V,H) have been classified taking int
account the invariant decomposition~2! of the tensorsQv andQh or, equivalently, according with
the foliation, minimal, umbilical, or geodesic character of each plane.7,8 Some of these propertie
have also been interpreted in terms of invariance along vector fields.24 A generalization for the
spacetime structures follows taking into account the causal character of the planes. We w
that a structure is integrable when both planes are foliation and we will say that it is min
umbilical or geodesic if both of the planes are so.

This way, on an oriented space–time (V4 ,g) of signature (2111) we have generically
26564 different classes of~almost-product! structures depending on the first-order geome
properties. Nevertheless, whenp51, V is always an umbilical foliation and, consequently, only
possible classes exist. In this caseQv andQh depend on the kinematic coefficients associated w
a unitary vectoru, and the classes are defined by the vanishing or nonvanishing of the acc
tion, rotation, shear, and expansion. Elsewhere this kinematical interpretation has been exte
the 212 space–time structures and, as a consequence, the Maxwell–Rainich equations ha
expressed in terms of kinematical variables.9

In order to be used in next sections, we now analyze the space–time 212 almost-product
structures in detail by giving the characterization of their properties in terms of their cano
2–formU, and by showing their relation with other usual approaches, the Newmann–Penro
the self-dual formalisms. We also study the change of these properties for a conformal tra
mation and we summarize some results about Maxwellian structures.

A. 2¿2 structures

In the case of a 212 space–time structure it is useful to work with thecanonicalunitary
2-form U, volume element of the time-like planeV. Then, the respective projectors arev5U2

andh52(* U)2, whereU25U3U5Tr23 U ^ U and* is the Hodge dual operator.
The tensorsQv andQh determine the derivatives of the volume elementsU and* U by means

of

¹aUbl5~Qv!am,[bUm
l]1~Qh!a[b,

m Ul]m ,

¹a* Ubl5~Qh!am,[b* Um
l]1~Qv!a[b,

m
* Ul]m . ~3!

Then, if we denoted52Tr ¹, a straightforward calculation leads to

dU5 i ~Tr Sh!U22~U,Av! d* U5 i ~Tr Sv!* U22~* U,Ah!, ~4!

where 2(U,Av)m5Uab(Av)ab
m . So, the minimal and the foliation character of the planes can

stated in terms of the projections ofdU andd* U ontoV andH. On the other hand, let us consid
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G'5U ^ U2* U ^ * U1G; h'5U ^̃ * U1h, ~5!

~6!

Then, from expressions~3! and ~4! we get

~2¹U2K !lab5~Sv
T!lm,[a Um

b]1~Sh
T!lm,[a * Um

b] , ~7!

K[ i ~dU !G'2 i ~d* U !h' , ~8!

and so, the umbilicity of each plane is equivalent to the vanishing of the respective projectio
the first member of~7!. We summarize these results in the following lemma:

Lemma 1: Let (V,H) be a212 almost-product structure and let U be its canonical 2-for
Then, the following conditions hold:

(1) V (resp. H) is f oliation⇔ i (dU)* U50 (resp. i (d* U)U50);
(2) V (resp. H) is minimal⇔ i (d* U)* U50 (resp. i (dU)U50);
(3) V is umbilical⇔U3$2¹U2@ i (dU)G'2 i (d* U)h'#%50

H is umbilical⇔* U3$2¹U2@ i (dU)G'2 i (d* U)h'#%50.

A 212 structure is also determined by the two null directionsl 6 on the planeV. A family of
complex null bases$ l 1 ,l 2 ,m,m̄% exists such thatU5 l 2∧ l 1 . This family is fixed up to change
l 6�e6fl 6 , m�eium. Then, conditions of lemma 1 can be interpreted in terms of the Newm
Penrose coefficients25 as

Lemma 2: Let U5 l 2∧ l 1 be the canonical 2–form of a212 structure. It holds:

(1) The plane V is umbilical iffk505n;
(2) the plane H is umbilical iffl505s;
(3) the plane V is minimal iffp̄5t;
(4) the plane H is minimal iffr1 r̄505m1m̄;
(5) the plane V is a foliation iffp̄52t;
(6) the plane H is a foliation iffr2 r̄505m2m̄.

Taking into account the significance of the NP coefficients25 this lemma implies that the umbilica
nature of a 212 structure means that its principal directionsl 6 define shear-free geodesic nu
congruences. The minimal or foliation character of the spacelike 2-plane have also a kinem
interpretation and state, respectively, that both principal directions are expansion-free or vo
free. Elsewhere9 all the geometric properties have been interpreted in terms of kinematic co
cients associated with every direction in a 2–plane~not only the null ones! with respect to the
other 2–plane.

When both planes have a specific differential property, it is more convenient to introduc
self-dual unitary 2–formU[ (1/&) (U2 i* U) associated withU. We have

2 Re@ i ~dU!U#5 i ~dU !U2 i ~d* U !* U[F~U !,

2 Im@ i ~dU!U#52 i ~dU !* U2 i ~d* U !U[C~U !. ~9!
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So, the complex 1–formdU collects the information about the minimal and foliation characte
the structure. On the other hand, ifG5 1

2(G2 ih) is the metric on the self-dual 2–forms space, a
K[ (1/&) (K2 i* K) is the self-dual 2-form associated to the vector valued 2–formK given in
~8!, we have

K5 i ~dU!@U^ U1G#. ~10!

Consequently, from lemma 1 and Eqs.~9! and ~10!, we have
Lemma 3: Let us consider the212 structure defined byU5 (1/&) (U2 i* U). It holds:

(1) The structure is minimal if, and only if, Re@i(dU)U#50;
(2) the structure is integrable if, and only if, Im@i(dU)U#50;
(3) the structure is umbilical, if, and only if, ¹U5 i (dU)@U^ U1G#.

B. Almost-product structures and conformal transformations

If ( V,H) is a p1q almost-product structure for a metricg, then (V,H) is also an almost-
product structure for every conformal metricĝ5e2lg, and the projectors are related by th
conformal factor: Ifg5v1h, then ĝ5 v̂1ĥ, wherev̂5e2lv, ĥ5e2lh. The generalized secon
fundamental form change as

Qv̂5e2l ~Qv2v ^ h~dl!!. ~11!

So, the foliation and the umbilical character are conformal invariants, but the minimal chara
not. Indeed, taking the trace of the expression above, we have

Tr Qv̂5Tr Qv2ph~dl!. ~12!

These expressions immediately lead to the following result.
Lemma 4: Let (V,H) be a p1q almost-product structure for a metric g5v1h. The structure

(V,H) is minimal for a conformal metric gˆ 5e2lg if, and only if,

1

p
Tr Qv1

1

q
Tr Qh5dl. ~13!

If p5q ~as happens for the space–time 212 structures!, we conclude that the necessary a
sufficient condition for a structure to be minimal for a conformal metric is the sum of the trac
the second fundamental forms to be a closed 1-form, d(TrQv1Tr Qh)50. Thus, taking into
account~4! and the expression~9! for F(U), lemma 4 can be stated for the 212 case as

Lemma 5: Let U be the canonical 2–form of a212 structure for the space–time metric g.
The structure is minimal for a conformal metric if, and only if, dF(U)50. More precisely, when
this condition hold, letl be such that2dl5F(U). Then, the structure is minimal for the con
formal metric ĝ5e2lg.

The most degenerated class of almost-product structures are the product ones, which
those that satisfyQv505Qh . A metric that admits a product structure is called a product me
Then, and only then, local coordinates (xA,xi), A50,1, i 52,3, exist such thatg̃5s21s1, being
s25sAB

2 (xC)dxAdxB ands15s i j
1(xk)dxidxj bidimensional metrics, hyperbolic and elliptic, re

spectively. Then, ifg̃ is a 212 product metric andg5e22lg̃, lemma 5 and expression~11! lead
to the following result.

Lemma 6: The necessary and sufficient condition for a metric g to be conformal to a pro
metric g̃, is that an integrable and umbilical almost-product structure U exists such
dF(U)50. More precisely, if2dl5F(U), then g̃5e2lg is a product metric.
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C. Maxwellian structures

A regular 2-formF takes the canonical expressionF5ef@coscU1sinc*U#, whereU defines
the 212 associated structure,f is the energetic indexand c is the Rainich index. When F is
solution of the source-free Maxwell equations,dF50, d* F50, one says thatU defines aMax-
wellian structure. In terms of the canonical elements (U,f,c), Maxwell equations become:12,14

df5F~U ![ i ~dU !U2 i ~d* U !* U, ~14!

dc5C~U ![2 i ~dU !* U2 i ~d* U !U. ~15!

Then, from~14! and ~15! the Rainich theorem12 follows:
Lemma 7: A unitary 2-form U defines a Maxwellian structure if, and only if, it satisfies:

dF~U !50; dC~U !50. ~16!

The Maxwell–Rainich equations~14! and ~15! have a simple expression in the self-dual form
ism. Indeed, the self-dual 2 –formF5 (1/&) (F2 i* F) may be written asF5ef1 ic U. Then,
from Maxwell equations,dF50, and taking into account that 2U 25g,

d~f1 ic!52i ~dU!U. ~17!

This last equation is equivalent to~14! and~15! if we take into account~9!. Moreover, from here
we recover the complex version of~16! easily

di ~dU!U50. ~18!

III. CLASSIFYING TYPE D SPACE–TIMES

The self–dual Weyl tensorW5 1
2(W2 i* W) of a type D space–time takes the canonic

expression17

W53aU^ U1aG, ~19!

wherea52 Tr_W 3/Tr_W 2 is the double eigenvalue andU is the self-dual principal 2–form. This
principal 2–form defines a 212 almost-product structure which is called theprincipal structureof
a type D space–time. In terms of the canonical 2–formU of the principal structure the self-dua
2–form U becomesU5 (1/&) (U2 i* U). So, at the algebraic level, a type D Weyl tensor on
determines the complex scalara and the principal structureU. Consequently, any generic class
fication of the type D metrics must depend on these invariants associated with the Weyl te

The families of purely electric or purely magnetic type D spacetimes are defined, a
glance, by means of alternative conditions, namely, the nullity of the magnetic or the electric
fields associated with an observeru. But, actually, they admit a simple intrinsic characterization
terms of the Weyl scalar invariant: The eigenvalue is real or imaginary.5 In spite of these strong
conditions, the family of Weyl-electric type D space–times contains quite interesting solution
can quote, for example, the static vacuum metrics2 or the degenerate perfect fluids with shear-fr
normal flow.3 All the type D silent universes are also known26,27as well as other families of purely
electric type D perfect fluid solutions.28,30Nevertheless, few Weyl-magnetic type D solutions ha
been found,29 and some restrictions about their existence are known. Indeed, there are not v
metrics with purely magnetic type D Weyl tensor.4,5 The classification that we present belo
allows us to give an extension of this result in Sec. 5. On the other hand, the generalization
purely electric or magnetic concepts to the spacelike or null directions does not afford new c
in the type D case.6

But the purely electric or magnetic properties define very narrow subsets of the generi
D metrics because they impose one of the two real scalar invariants to be zero. The large
of known solutions of the Einstein equation recommends us to consider other classifications
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on less restrictive properties, which afford new intrinsic elements that increase the knowle
the metrics and permit their explicit characterization. Besides theintrinsic nature, the classification
must begeneric, that is, valid for the whole set of the type D metrics. Consequently, it will
independent of the energy content and it will have to be built on the intrinsic geometry asso
with a type D Weyl tensor.

The first classification that we propose is based on the geometric properties of the pri
2–planes, that is, it is induced by the geometric classification of the principal structure.
principal 2–plane can be submitted or not to three properties, so 26564 classes can be considere

Definition 2: Taking into account the foliation, minimal, or umbilical character of each pr
cipal 2–plane we distinguish64 different classes of type D space–times.

We denote the classes as Dlmn
pqr , where the superscripts p,q,r take the value 0 if the time-like

principal plane is, respectively, a foliation, a minimal or an umbilical distribution, and they t
the value 1 otherwise. In the same way, the subscripts l,m,n collect the foliation, minimal or
umbilical nature of the space-like plane.

The most degenerated class that we can consider is D000
000 which corresponds to a type D

product metric, and the most regular one is D111
111 which means that neitherV nor H are foliation,

minimal or umbilical distributions. We will put a dot in place of a fixed script~1 or 0! to indicate
the set of metrics that cover both possibilities. So, for example, the metrics of type D11 •

111 are the
union of the classes D111

111 and D110
111; or a metric is of type D

• • •

0 • • if the timelike 2–plane is a
foliation.

Taking into account lemma 1, every class is defined by means of first-order differe
equations imposed on the canonical 2–formU. On the other hand,U can be written explicitly in
terms of the Weyl tensor17 and, consequently, every class admits an intrinsic and explicit cha
terization.

The above classification depends on the derivatives of the principal 2–formU. An alternative
classification at first order in the Weyl eigenvalues can also be considered by taking into a
the four 1-forms defined by the principal 2–planes and the gradient of the modulus an
argument of the eigenvalue. So, we will have 24516 classes.

Definition 3: Let a5e
3
2(r1 iu) be the Weyl eigenvalue. Taking into account the relat

position between the gradients du,dr and each principal 2–plane we distinguish16 different
classes of type Dspace–times.

We denote the classes D@pq,rs# where p,q,r ,s take the values0 or 1 to indicate, respectively
that one of the 1-forms U(du),U(dr),* U(du),* U(dr) is zero or nonzero.

The most degenerated class D@00;00# is occupied by the type D metrics with constant eige
values, and the most general one D@11;11# by those type D space–times for which both, t
modulus and the argument of the Weyl eigenvalue, have nonzero projection onto the pr
planes. As above, a dot means that a condition is not fixed. So, for example, we write D@0 • ; • •#
to indicate the type D metrics for which the argument of the eigenvalues have zero projectio
the timelike principal 2–plane.

The type D metrics with constant modulus,dr50, correspond to the classesD@ •0; •0#, and
those with constant argument,du50, are the metrics of typeD@0 •;0 •#. This last family contains
the Weyl-electric and the Weyl-magnetic space–times because a real or imaginary eige
means that the argument takes the constant value 0,p or p/2, 3p/2, respectively.

In the next section we will show the marked relation between the two classifications giv
definitions 2 and 3 when some usual restrictions are imposed on the Ricci tensor.

IV. TYPE D METRICS WITH ZERO COTTON TENSOR

The space–time Cotton tensorP is a vector valued 2–form which depends on the Ricci ten
as

Pmn,b[¹[mQn]b , 2Q[Ric2 1
6 ~Tr Ric!g. ~20!
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The Bianchi identities equal the Cotton tensor with the divergence of the Weyl tensor. IndeedW
is the self-dual Weyl tensor andP5 1

2(P2 i* P) is the self-dual 2–form associated with the Cott
tensor, Bianchi identities become

P52dW. ~21!

So, the vanishing of the Cotton tensor is equivalent to the Weyl tensor to be divergence
dW50. Taking into account the canonical expression of a type D Weyl tensor~19!, a straightfor-
ward calculation leads to the following:

Proposition 1: Let U anda52 Tr_W 3/Tr_W 2 be the principal 2–form and the double eigen
value of a type D Weyl tensor. Then, the space–time Cotton tensor is zero if, and only if,

¹U5 i ~dU!@U^ U1G# ; i ~dU!U5 1
3d lna. ~22!

From the results of the previous section, we know that the first condition means that the pri
structure is umbilical, that is, the principal directions are shear free null geodesics accordin
the Goldberg–Sachs theorem. Consequently, every type D space–time with zero Cotton te
of type D

••0
••0. The second equation in~22! shows that the principal structure is Maxwellian and t

electromagnetic invariant scalars depend on the Weyl eigenvalue. If we take the real a
imaginary parts of this equation and writer1 iu5 2

3 ln a, we get

F~U !5dr ; C~U !5du. ~23!

So the modulus and the argument of the Weyl eigenvalue govern, respectively, the minim
the foliation character of the principal planes. This relation establishes a bijection betwee
classes of the two classifications that we have presented. More precisely, we have:

Theorem 1: Every type D spacetime with zero Cotton tensor is of type D
••0
••0. Moreover, it is

of class Dlm0
pq0 if, and only if, it is of class D@ lm,pq#.

So we have just 16 classes of type D space–times with zero Cotton tensor and each
characterized by the vanishing or not of the projections of the gradient of the Weyl eigen
onto the principal planes. The second condition in~22! implies that a solution of the Maxwel
equations exists that hasU as its associated structure. Then, taking into account the results of
II C, it holds:

Proposition 2: The principal structure of a type D space–time with zero Cotton tensor is
Maxwellian. More precisely, ifU and a52 Tr_W 3/Tr_W 2 are the principal 2–form and the
double eigenvalue of the Weyl tensor, the self–dual 2–form

FM5a2/3U, ~24!

is a solution of the source-free Maxwell equations, dFM50.
In the following D~M! denotes the type D space–times with Maxwellian principal struct

and D~M!lmn
pqr expresses the type D~M! space–times of class Dlmn

pqr . With this notation, from theo-
rem 1 and proposition 2 it follows:Every type D space–time with zero Cotton tensor is of typ
D(M )

••0
••0.

It is worth pointing out that the family of type D metrics admitting a conformal Killing–Ya
tensor attached to its principal structure are those of type D~M!

••0
••0,31 and this family includes the

Cotton-zero type D metrics.
The results of this section have been used elsewhere21 in offering a new approach to th

Kinnersley type D vacuum solutions. An integration of the Einstein vacuum equations bas
the classification given above permits the explicit and intrinsic labeling of the solutions as w
to put over interesting geometric properties of these space–times.
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V. SOME RESULTS ABOUT TYPE D „M…0"0
0"0 SPACE–TIMES

Now, in this section, we restrict our study to the type D metrics with Maxwellian, integr
and umbilical structure, that is, those of type D~M!0•0

0•0. We can easily obtain a canonical form fo
these metrics. Indeed, lemma 6 states that the metric is conformal to a product one
conformal factor determined by the potential of the closed 1–formF(U). More precisely, the
metric can be written as

g5
1

V2 @sAB
2 ~xC! dxAdxB1s i j

1~xk! dxidxj #, ~25!

whereV satisfies

2 d lnV5F~U ![ i ~dU !U2 i ~d* U !* U. ~26!

Conversely, we can analyze the Petrov type of the metric~25! by studying a product metric
g̃5s21s1. Let X2 andX1 be the Gaussian curvatures of the arbitrary bidimensional met
s2 and s1, hyperbolic and elliptic, respectively. The Gauss–Codazzi equations show tha
Riemann and the Ricci tensors ofg̃ are

~27!

So, the Weyl tensor of a product metric is Petrov-type O precisely whenX21X150, and then
both curvatures are constant. On the other hand, whenX21X1Þ0, the space–time is type D
MoreoverU determines the principal structure and the double eigenvalue is given by

ã52 1
6 ~X21X1!. ~28!

So, we have
Lemma 8: Every212 product metrics21s1 is of type D~or O) with real eigenvalues, and

the double eigenvalue is given by (28), where X2 and X1 are the Gaussian curvatures ofs2 and
s1, respectively. Moreover, it is of type O if, and only if, X252X15constant.

A conformal transformationg̃5V2g preserves the Petrov type and the Weyl eigenval
change asã5V22 a. Consequently, from Eq.~26! and taking into account lemmas 1 and 8, w
can conclude:

Proposition 3: A space–time is of type D(M )0•0
0•0 if, and only if, there exist local coordinate

such that the metric g takes the expression (25) with X21X1Þ0, where X2 and X1 are the
Gaussian curvatures ofs2 and s1, respectively. Moreover, it is of class D010

010, D010
000, D000

010, or
D000

000 if, and only if, s2(dV)Þ0Þs1(dV), s1(dV)50Þs2(dV), s1(dV)Þ05s2(dV), or
dV50, respectively.

Furthermore, taking into account the expressions~27! for the Ricci and~28! for the eigenvalue
of a product metric, and considering the change of these metric concomitants for a con
transformation, we can state:

Proposition 4: The Weyl eigenvalue of the metric (25) is real and it is given by

a52 1
6 V2~X21X1!. ~29!

The Ricci tensor of this metric is

Ric~g!5
2

V
¹dV1X2s21X1s11F 1

V
DV2

3

V2 g̃~dV,dV!G g̃, ~30!

where¹5¹s21¹s1 is the connection of the product metric g˜5s21s1.
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Let us consider metrics with zero Cotton tensor again. If they have a constant argu
theorem 1 implies that the principal structure is integrable and so, the space–times are
D~M!0•0

0•0. Consequently, from proposition 4 the Weyl tensor has real eigenvalues. So we can
Theorem 2: The Weyl eigenvalues of a type D space–time with zero Cotton tensor hav

constant argument if, and only if, they are real.
This result generalizes a previous one by Hall4 ~see also McIntoshet al.5!. He showed that

there are no purely magnetic Type D vacuum metrics. But the purely magnetic case occurs
the eigenvalue argument is3

2u56p/2 , that is to say, a particular value of constant argument.
from theorem 2 it follows:

Corollary 1: There is no purely magnetic Type D metric with zero Cotton tensor.
This corollary shows that not only the purely magnetic vacuum solutions are forbidden

also the Weyl-magnetic space–times with zero Cotton tensor. On the other hand the Hall re
also generalized in the sense that theorem 2 excludes all the constant arguments that differ
or p. Although this approach could be of interest in studying the existence of purely magnetic
I solutions, the recent results on this subject have been obtained by using the13
formalism.22,32,33

From the results above it is easy to recover the canonical form for the metrics with
Cotton tensor and real Weyl eigenvalues. Indeed, expressions~23! and~26! show that the confor-
mal factor and the Weyl eigenvalue are related byV25c2er5c2a2/3, c being an arbitrary con-
stant. On the other hand they also satisfy expression~29! and, consequently,V coincides, up to a
constant factor, withX21X1 . So we have

Proposition 5: Every type D metric with real eigenvalues and zero Cotton tensor ma
written

g5
1

~X21X1!2 ~s21s1!,

wheres25sAB
2 (xC)dxAdxB, s15s i j

1(xk)dxidxj , are two arbitrary bidimensional metrics, s2

hyperbolic ands1 elliptic, with Gaussian curvatures X2 and X1 , respectively.
This canonical expression was obtained in a previous work18 where it was used to integrat

the Einstein vacuum equations, in this way getting an intrinsic algorithm to identify every A
and C-metric of Ehlers and Kundt.2 In the following section, starting from the propositions 3 a
4 we present a similar study for the charged counterpart of these vacuum solutions.

VI. ALIGNED EINSTEIN–MAXWELL SOLUTIONS OF TYPE D 0"0
0"0

If ( v,h) is the principal structure of the Weyl tensor, the aligned Einstein–Maxwell solut
satisfy

Ric~g!5x~v2h!5k ~s22s1!, ~31!

where the second equality is satisfied for the type D0•0
0•0 metrics as a consequence of proposition

x5kV2, s25V2v, s15V2h. Moreover, as the principal structure is integrable, it is Maxwe
ian and the associated Rainich index is a constant. So,~31! is a necessary and sufficient conditio
for the metric ~25! to be an aligned solution of the Einstein–Maxwell equations. Taking
account the expression~30! for the Ricci tensor, condition~31! becomes

V5l2~xA!1l1~xi !, ~32!

¹dle5bes
e, ~33!

V2

6
~X21X1!1V ~b21b1!5s2~dl2 ,dl2!1s1~dl1 ,dl1!, ~34!

dbe1Xedle50. ~35!
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Equations~35! are the integrability conditions of~33!. Moreover, if we differentiate~34!, project
on s2 , differentiate again and take into account~35!, we have

2~X21X1!dl2∧dl11V@dX1∧dl22dX2∧dl1#50. ~36!

Then a simple analysis of the expressions~32!–~36! leads to
Lemma 9: The following conditions are equivalent: ( i ) dXe50, (i i ) be50, (i i i ) dle50, (iv)

se(dV)50. Moreover, these conditions hold ifse(dle ,dle)50 everywhere.

A. The solutions: A, B, and C charged metrics

Proposition 3 states that the classes D0m0
0q0 can be discriminated using the vectorsse(dV).

Then, lemma 9 implies that, as happens in the vacuum case,18 the four classes can be characteriz
by s2 or s1 to be bidimensional metrics that have constant curvature or not.

If g is in class D010
010, lemma 9 implies thatle can be taken as coordinate in the planese.

Then, Eqs.~34!–~36! say thatbe , Xe , and se(dle ,dle) depend just onle , and thatXe

52be8 . Then, from~34! we haveb2-(l2)1b1-(l1)50 and, consequently,be is a polynomial in
le of degree less than or equal to three. But lemma 9 also states thatdle is not a null vector
everywhere. Then, Einstein–Maxwell equations~32!–~36! finally lead to

se5
1

e f ~ele!
dle

21 f ~ele!dZ2, ~37!

with f (l) a fourth degree polynomial. Then, putting~37! and~32! into ~25! we recover the known
expression of the charged C-metrics.25

If g is in class D010
000, lemma 9 implies thatl2 can be taken as a coordinate in the planes2

and, moreover,s1 must be of constant curvature. Thus, a redefinition ofV ands2 allows us to
considerX1P$21,0,1% and V5l2 . Then, if we introduce the coordinate transformationr
52 1/l2 , a similar procedure that leads in the general case to the charged counterpart
Ai-metrics:

g52a~r !dt21
1

a~r !
dr 21r 2ds2, a~r ![X2

C

r
1

D

r 2 , ~38!

ds2 being the bidimensional elliptic metric of constant curvatureX, with X51,21,0 depending
on theA1 , A2 , or A3 case.

If g is in the class D000
010, in a similar wayl1 can be taken as a coordinate in the planes1, and

s2 must be of constant curvatureX2P$21,0,1%. Then, the coordinate transformationr
52 1/l1 , leads to the charged counterpart of the Bi-metrics:

g5r 2ds21a~r !dz21
1

a~r !
dr 2, a~r ![X2

C

r
1

D

r 2 , ~39!

ds2 being the bidimensional hyperbolic metric of constant curvatureX, with X51,21,0 depend-
ing on theB1 , B2 , or B3 case.

Finally, in class D000
000 both bidimensional metrics have a constant curvature and Eq.~34!

implies thatX21X150. This means that the space–times is conformally flat and the m
becomesg5s21s1, wherese are bidimensional metrics, hyperbolic, and elliptic, respective
with a constant curvatureeX. The metrics of this more degenerated class are the only ones
have zero Cotton tensor.

B. The intrinsic characterization

The metrics of type D~M!0•0
0•0, which take the canonical form~25!, admit an intrinsic identi-

fication by means of conditions involving the principal 2 –formU. These characterization equa
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tions that we have given in previous sections could be written explicitly in terms of m
concomitants becauseU can be determined from the Weyl tensor.17 Nevertheless, as a consequen
of the Bianchi identities some of the above conditions can be satisfied identically taking
account the properties of the Ricci tensor. This is the case of vacuum metrics: AsRic50 implies
the nullity of the Cotton tensor, the principal planes always define an umbilical and Maxwe
structure as a consequence of the results in Sec. IV. Actually we want to characterize a
Einstein–Maxwell solutions that are conformal to a product metric. So, the Weyl tensor mus
real eigenvalues and the principal planes are the eigenspaces of the Ricci tensor, that is,

W53a~U ^ U2* U ^ * U !1aG, Ric5x~v2h!, ~40!

wherev5U2, h52* U2. Then, taking into account the expressions in Sec. II about 212 almost-
product structures, a straightforward calculation shows that the Bianchi identities~21! can be
written

~3a12x! Qv5v ^ h~da!; ~3a22x! Qh5h^ v~da!, ~41!

v~dx!22x i ~dU !U50; h~dx!12x i ~d* U !* U50. ~42!

From these expressions we find that, under the scalar restriction (3a)2Þ(2x)2, the properties of
the structure follow just by imposing that the Weyl and the Ricci tensor take expressions~40!. On
the other hand, the case (3a)25(2x)2 leads to theexceptionalmetrics considered by Pleban´ski
and Hacyan.34 Nevertheless, it can easily be shown that (3a)2Þ(2x)2 for the solutions recovered
in the subsection above. So we get the following characterization:

Lemma 10: The charged counterpart of the A, B, and C-metrics are the only aligned
Einstein–Maxwell solutions of type D with real eigenvalues that satisfy(3a)2Þ(2x)2, a and x
being, respectively, the Weyl and the Ricci eigenvalues.

Elsewhere,18 conditions forg to be of type D with real eigenvalues have been given in te
of Weyl concomitants. In order to impose the Ricci tensor to take the form~40! we can use the
algebraic Rainich conditions.12 But if the Weyl tensor is of type D with real eigenvalues, a part
these Rainich conditions hold identically when we impose the aligned restriction. From
considerations and lemma 10 we have:

Theorem 3: The A, B, and C Einstein–Maxwell solutions can be characterized by conditio

aÞ0; S21S50; Ric~x,x!>0,

Tr Ric50, S@Ric#1Ric50; ~3a!22~2x!2Þ0.

This theorem offers an intrinsic and explicit description of the aligned Einstein–Max
solutions of type D0•0

0•0. Now we look for an intrinsic and explicit way to identify every metric
this family, that is, to distinguish theAi , Bi , and C charged metrics. In a first step we mu
discriminate between the classes D0m0

0p0 and, as a consequence of proposition 3, this depends o
nullity of the vectorsv(dV) and h(dV). But the expression~29! for the Weyl eigenvalue and
lemma 9 imply that, equivalently, the vectorsv(da) andh(da) determine these properties. S
the same scheme as in the vacuum case18 can be used to distinguish between the classes.

The last step to obtain the intrinsic and explicit characterization of the solutions is to g
invariant that provides the sign of the bidimensional curvature when this is constant. A str
forward calculation shows that ifXe is constant, then

XeV
25ve[

1
9 ~d ln~a1x!!222a2ex. ~43!
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So, we have a characterization of the Einstein–MaxwellA, B, andC-metrics, and we recover th
type D static vacuum solutions makingx50.

Theorem 4: Let g be an aligned Einstein–Maxwell solution of type D0•0
0•0 (characterized in

theorem 3). Let us take the metric concomitants

M[* W~da,•,da,• ! N[S~da,•,da,• !,

and let x be an arbitrary unitary timelike vector. Then,

~i! g is a charged C-metric if, and only if, MÞ0;
~ii ! g is a charged A-metric if, and only if, M50 and 2N(x,x)1trN.0.

Furthermore, it is of type A1 , A2 or A3 if v1.0, v1,0 or v150, respectively, where
v1[ 1

9(d ln(a1x))222a2x;
~iii ! g is a charged B-metric if, and only if, M50 and 2N(x,x)1trN,0.

Furthermore, it is of type B1 , B2 or B3 if v2.0, v2,0 or v250, respectively, where
v2[ 1

9(d ln(a1x))222a1x.

This theorem provides an algorithm to identify, in the set of all metrics, the charged counterp
the Ehlers and Kundt2 vacuum solutions. The particular case of theA1 metrics corresponds to
charged spherically symmetric spacetime, that is, to the Reissner–Nordstro¨m solution. In this case
the metric takes the form~38! with X51, and the mass and the charge are related with
constantsC and D, respectively. Moreover, these constants can be given in terms of Wey
Ricci invariants. Then, from the last theorem and previous subsection it follows:

Theorem 5: Let Ric[Ric(g) and W[W(g) be the Ricci and the Weyl tensors of a spaceti
metric g, and let us take the metric concomitants:

a[2~ 1
12Tr W3!1/3, x[2 1

2 ~Tr Ric2!1/2, v[ 1
9 g~d ln a,d ln a!22a2x, ~44!

~45!

The necessary and sufficient conditions for g to be the Reissner–Nordström metric are

aÞ0, S21S50, Ric~x,x!>0,

Tr Ric50, S@Ric#1Ric50, ~3a!22~2x!2Þ0,

M50, 2N~x,x!1trN.0, v.0,

where x is an arbitrary unitary time-like vector. Moreover, the mass m and the electric cha
are given, respectively, by m5 (a1x)/v3/2 and e252 x/v2 , and the timelike Killing vector by
j5 @Av(3a12x)#21@N(x)/AN(x,x)# .

C. A summary in algorithmic form

Finally, in order to emphasize the algorithmic nature of our results, we present them as
diagram that identifies, among all metrics, every A, B, or C Einstein–Maxwell solution~in the
following flow chart we denote themA* , B* , andC* -metrics!. The exceptional metrics studie
by Pleban´ski are also identified and they are denotedExc-metrics. This operational algorithm
involves an arbitrary unitary timelike vector,x, and some metric concomitants that may be o
tained from the components of the metric tensorg in arbitrary local coordinates: The invariantsa,
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x, ve , S, M , andN are given in~43!–~45! in terms of the Ricci and Weyl tensors. Makingx
50, we recover the vacuum solutions18
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Using ODE techniques we prove the existence of large classes of initial data sat-
isfying the constraints for the spherically symmetric Einstein–Vlasov–Maxwell
system. These include data for which the ratio of total charge to total mass is
arbitrarily large. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1637713#

I. INTRODUCTION

The global dynamical behavior of self-gravitating matter is a subject of central importan
general relativity. A form of matter which has particularly nice mathematical properties is c
sionless matter, described by the Vlasov equation. It has the advantage that it lacks the te
observed in certain other models, such as perfect fluids, that solutions of the equations of
of the matter lose differentiability after a finite time. These singularities of the mathematical m
form an obstacle to further analysis and prevent the study of the global dynamical properties
solutions. Collisionless matter is free from these difficulties and there is a growing literatu
global properties of solutions of the Einstein–Vlasov system.1,9

In Ref. 8, the authors prove the global existence of asymptotically flat solutions of the sp
cally symmetric Einstein–Vlasov system, with small initial data. That study concerns unch
particles. We consider, under the same assumption of spherical symmetry, the case wh
particles are charged. To describe the full physical situation, we must then couple the pr
system to the Maxwell equations that determine the electromagnetic field created by th
moving charged particles. As will be seen below, that reduces, in the spherically symmetric
to its electric part.

It is appropriate at this point to examine the motivation for considering this particular p
lem. We are not aware that it has any direct astrophysical applications. There are, howev
reasons why the problem is interesting. The first is that it extends the knowledge of the C
problem for systems involving the Vlasov equation and it will be seen that it gives rise to
mathematical features compared to those cases studied up to now. The second is connec
the fact that it would be desirable to extend the work of Ref. 8 beyond spherical symmet
particular, it would be desirable from a physical point of view to include the phenomeno
rotation. Unfortunately, presently available techniques do not suffice to get away from sph
symmetry. In this situation it is possible to attempt to obtain further intuition by using the ana
between angular momentum and charge, summed up in John Wheeler’s statement, ‘‘Cha
poor man’s angular momentum.’’ Thus we study spherical systems with charge in the hop
this will give us insight into nonspherical systems without charge. This strategy has recently

a!Electronic mail: noundjeu@uycdc.uninet.cm
b!Electronic mail: nnoutch@uycdc.uninet.cm
c!Electronic mail: rendall@aei.mpg.de
6680022-2488/2004/45(2)/668/9/$22.00 © 2004 American Institute of Physics
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pursued in the case of a scalar field as matter model, with interesting results.3,4

Concerning the Cauchy problem in general relativity, it is well known that in addition to
Einstein evolution equations there are constraint equations which have to be solved.~See, e.g.,
Ref. 5.! It is only of interest to consider the problem of evolution, if the problem of constraint
the initial data can be solved. In our specific case, we are led to a difficulty in solving
constraints on the initial data, that has not previously been considered in the literature. Let
recall the situation in Ref. 8 before seeing how it changes in the case of charged particles.
8, using the assumption of spherical symmetry, the authors look for two metric functionsl andm,
that depend only on the time coordinatet and on the radial coordinater , and for the distribution
function f of the uncharged particles that depends ont, r and on the 3-velocityv of the particles;
the metric functionsl, m are subject to the Einstein equations with sources generated b
distribution functionf of the collisionless uncharged particles which is itself subject to the Vla
equation. They show that the Einstein equations to determine the unknown metric functionsl and
m, turn out to be two first order ordinary differential equations~ODE! in the radial variabler ,
coupled to the Vlasov equation inf . Settingt50 in the Einstein equations yields two constra
equations that link the three initial data that are the two initial data forl(t,r ) andm(t,r ) denoted

l̊(r ) andm̊(r ), respectively, and the initial datum forf (t,r ,v) denoted byf̊ (r ,v). The equations

to be solved are two first order ODE forl̊, m̊. The mass functionm(t,r ) is defined as an integra
of f over the hypersurfaces of constantt. The exact definition is given in the next sectio

Provided the initial mass functionm̊(r )5m(0,r ) is everywhere less thanr /2 the functionl̊ can be
determined from the relation 122m/r 5e22l. Once this has been donem can be determined by

integration. In this way functionsl̊ andm̊ can be determined in a straightforward way whenf̊ is
given, provided the inequality 2m/r ,1 is satisfied on the initial hypersurface. Thus a sim
parametrization of the set of initial data satisfying the constraints is obtained. They can be

structed from a non-negative functionf̊ which is required to satisfy one inequality.
In the case of charged particles, the problem of constraints on the initial data is not so

We consider the case of a spherically symmetric electric fieldEW of the form EW (t,r )
5e(t,r ) (rW/r ), wheree(t,r ) is an unknown scalar function andrW the position vector inR3. We
denote bye̊ the initial data fore(t,r ). The Maxwell equations imply a constraint equation on t
initial data, that is a first order ODE in the radial variabler . We now have to face the problem o

constraints between the four initial datal̊, m̊, f̊ , e̊. If the equations forl̊, f̊ , ande̊ can be solved
then m̊ can be determined by a simple integration as in the case of uncharged particles. O
other hand, the problem of determining the first three quantities is more difficult in the ch
case due to the coupling of the gravitational and electromagnetic constraints. Any solution
constraints must satisfy the condition 2m/r ,1 on the initial hypersurface. However, in th
charged casem includes a contribution due to the energy density of the electric field and
depends one andl. As a consequence, in contrast to the uncharged case, this condition can
expressed as an inequality onf alone. Moreover, the equation fore also containsl and so it is not
possible to solve the electromagnetic constraint separately from the gravitational one. Ther

alternative but to solve the two constraints together. Whenf̊ is prescribed the constraints define

system of two coupled nonlinear ordinary differential equations forl̊ and e̊. These equations ar
singular atr 50.

Solving the ordinary differential equations arising from the constraints is a task which
necessarily be mastered before undertaking the study of the problem of evolution for the Ein
Vlasov–Maxwell system. Since the equations are singular they cannot be handled by st
results of ODE theory alone. In this paper, we prove, using statements developed in Ref.

singular ODE, that, under smallness assumptions on the prescribed initial data functionf̊ , a
corresponding global solution of the constraints exists. This provides a way of showin

existence of initial datal̊, m̊, e̊, in the case of an asymptotically flat space–time with a reg
center. In other words, we prove that the results obtained for the constraint equations in Ref
focuses on the case of uncharged particles, extend to the case of charged particles, in the s
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the initial datumf̊ can still be considered as the only arbitrary initial datum.
Given the complicated nature of the constraint equations it seems impractible to descr

most general class of functionsf̊ for which the constraints can be solved. What we have been
to do is to describe two large classes of functionsf̊ for which it is possible. The first case treate
is a rather obvious one to try. The chargeq of a particle is a free parameter in the equations. In
caseq50 the equations reduce to the uncharged situation analyzed in Ref. 8. A perturb
argument then allows the case with fixedf̊ and smallq to be treated. A more exotic class of initia
data is obtained by a rigorous perturbation argument in a regime where the density of pa
tends to zero and the charge per particle tends to infinity. This allows the construction of
data which coincide outside a compact set with data for the Reissner–Nordstro¨m solution with
arbitrarily large charge to mass ratio. The restriction of these data to the region outside a
radius does not allow an electrovacuum interior which has a regular center or correspond
black hole but, as this construction shows, does allow a regular~dynamical! interior with charged
matter.

Note that there is a local in time existence theorem available for the Einstein–Vla
Maxwell system without symmetry. This can be obtained as the special case of the results
2 on the Einstein–Maxwell–Boltzmann system by setting the collision term to zero. There
discussion of the existence of solutions of the constraints in that paper.

The paper is organized as follows. In Sec. II, we recall the spherically symmetric Eins
Vlasov–Maxwell system, from which we deduce the constraint equations. In Sec. III, we reca
main result of Ref. 10 which we use and we prove the existence of large classes of solutions
constraint equations for the Einstein–Vlasov–Maxwell system. The derivation of some fac
quired in Sec. III concerning regions where there are no particles is contained in the Appe

II. FORMULATION OF THE PROBLEM

We consider fast moving collisionless particles with unit mass and chargeq. The basic
space–time is (R4,g), with g a Lorentzian metric with signature (2,1,1,1). In what follows,
we assume that greek indices run from 0 to 3 and italic indices run from 1 to 3, unless othe
specified. We also adopt the Einstein summation convention. The metricg reads locally, in Car-
tesian coordinates (xa)5(x0,xi)[(t,x̃),

ds25gab dxa
^ dxb. ~2.1!

The assumption of spherical symmetry means that we can takeg of the following form~Schwarz-
schild coordinates!:

ds252e2m dt21e2l dr 21r 2~du21sin2 udw2!, ~2.2!

wherem5m(t,r ); l5l(t,r ); tPR; r P@0,1`@ ; uP@0,p#; wP@0,2p#. The Einstein–Vlasov–
Maxwell system reads

Rab2 1
2 gabR58p~Tab~ f !1tab~F !!, ~2.3!

LX(F) f 50, ~2.4!

¹aFab5Jb, ¹aFbg1¹bFga1¹gFab50 ~2.5!

with

Tab~ f !52E
R3

papb f vp , tab~F !52
gab

4
FgnFgn1FbgFa

g,
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Jb~ f !~x!5qE
R3

pb f ~x,p!vp , vp5ugu1/2
dp1 dp2 dp3

p0
, p05g00p

0,

Xa~F !5~pa,2Gbg
a pbpg2qpbFb

a!,

where Gbg
a denote the Christoffel symbols. Here,x5(xa) is the position andp5(pa) is the

4-momentum of particles. In the expressions above,f stands for the distribution function of th
charged particles,F stands for the electromagnetic field created by the charged particles.
~2.3! are the Einstein equations for the metric tensorg5(gab) with sources generated by bothf
andF, that appear in the stress-energy tensorTab1tab . Equation~2.4! is the Vlasov equation for
the distribution functionf of the collisionless particles, withLX(F) the Lie derivative, and~2.5! are
the Maxwell equations for the electromagnetic fieldF, with source~current! generated byf
throughJ5J( f ). One verifies that the conservation laws¹a(Tab1tab)50 hold if f satisfies the
Vlasov equation.

By the assumption of spherical symmetry, we can takeg in the form~2.2!. One shows, using
the Maxwell equation thatF reduces to its electric part. We take it in the formE5(Ea) with
E050, Ei5e(t,r ) (xi /r ) and then, a straightforward calculation shows that

t005
1
2 e2(l1m)e2~ t,r !, t0i50,

t i j 5
1
2 e2le2~ t,r !H S d i j 2

xixj

r 2 D2e2l
xixj

r 2 J ,

whered i j is the Kronecker symbol.
These relations and results of Ref. 8 show that the spherically symmetric Einstein–Vla

Maxwell system implies the following first order ODE system inl, m, f , e:

e22l~2rl821!1158pr 2r, ~2.6!

e22l~2rm811!2158pr 2p, ~2.7!

] f

]t
1em2l

v

A11v2
•

] f

] x̃
2S em2lm8A11v21l̇

x̃•v
r

2qel1me~ t,r ! D x̃

r
•

] f

]v
50, ~2.8!

d

dr
~r 2ele~ t,r !!5qr2elE

R3
f ~ t,x̃,v !dv, ~2.9!

wherel85 ]l/]r , l̇5]l/]t, and

r~ t,x̃!5E
R3

f ~ t,x̃,v !A11v2 dv1
1

2
e2l(t,x̃)e2~ t,x̃!, ~2.10!

p~ t,x̃!5E
R3

S x̃•v
r D 2

f ~ t,x̃,v !
dv

A11v2
2

1

2
e2l(t,x̃)e2~ t,x̃!. ~2.11!

Here~2.6! and~2.7! are the Einstein equations forl andm, ~2.8! is the Vlasov equation forf and
~2.9! is the Maxwell equation fore. Here x̃ andv belong toR3, rªux̃u, x̃•v denotes the usua
scalar product of vectors inR3, and v2

ªv•v. The distribution functionf is assumed to be
invariant under simultaneous rotations ofx̃ andv, hencer andp can be regarded as functions
t and r . It is assumed thatf (t) has compact support for each fixedt. We are interested in
asymptotically flat space–times which leads to imposing the boundary condition that
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lim
r→`

m~ t,r !50. ~2.12!

They should also have a regular center which means that in addition tol, m, ande being smooth
functions oft and r , including atr 50, the boundary conditionl(t,0)50 should be satisfied fo
all t. Note that the condition thatl(t,r ) tends to zero asr→`, which is part of asymptotic
flatness, follows from the field equations and the fact thatf (t) has compact support. This i
because in the region wheref vanishes the general solution of~2.6! satisfies the conditionl(r )
5O(1/r ) as r→`.

Let m(r )54p*0
r s2r(s)ds. This is the mass function referred to in the introduction. Its lim

M as r→` is the total or ADM~Arnowitt–Deser–Misner! mass of the system. The functionn
5*R3f dv is the number density of particles andnq the charge density. The total charge of t
system is given byQ54pq*0

`s2el(s)n(s)ds.
Now, define the initial data by

f ~0,x̃,v !5 f̊ ~ x̃,v !; l~0,x̃!5l̊~ x̃!5l̊~r !; e̊~0,x̃!5e̊~ x̃!5e̊~r ! ~2.13!

with f̊ PC0
` being aC` function with compact support, which is non-negative and spheric

symmetric, i.e.,

;APSO~3!, ;~ x̃,v !PR6, f̊ ~Ax̃,Av !5 f̊ ~ x̃,v !.

We obtain the constraint equations on the initial data by taking~2.6!, ~2.7!, and~2.9! for t50, that
give

e22l̊~2r l̊821!1158pr 2E
R3

A11v2 f̊ ~r ,v !dv14pr 2 e2l̊ e̊2, ~2.14!

d

dr
~r 2el̊e̊!5qr2el̊E

R3
f̊ ~r ,v !dv5J~ f̊ !, ~2.15!

e22l̊~2r m̊811!2158pr 2E
R3

S x̃•v
r D 2

f̊ ~r ,v !
dv

A11v2
24pr 2 e2l̊ e̊2. ~2.16!

We observe that, iff̊ is given and if we can solve~2.14! and ~2.15! for l̊ and e̊ then ~2.16!
determines at oncem̊8. Using the boundary condition~2.12! then determinesm̊. So we can
concentrate on~2.14! and~2.15!. In what follows, we fixf̊ in ~2.14! and~2.15! and we look for a
unique global asymptotically flat solution (l̊,e̊) of the system~2.14! and~2.15! above with regular
center. Note that, using the compact support off̊ and the equations~2.14! and ~2.15!, it follows
that l̊ ande̊ tend to zero asr→`. It also follows from~2.14! and~2.15! and the regularity of the
solution thatl̊8(0)50 ande̊(0)50.

III. EXISTENCE OF GLOBAL SOLUTIONS OF THE CONSTRAINTS

In this section the existence of global solutions of the equations~2.14! and ~2.15! will be
proved. Let us state first of all the following result of Ref. 10 on which our global existe
theorem relies.

Theorem 3.1: Let V be a finite-dimensional real vector space, N:V→V a linear mapping,
G:I 3V→V a smooth (i.e., C`) mapping and g:I→V a smooth mapping, where I is an ope
interval in R containing zero. Consider the equation

s
df

ds
1N f5sG~s, f ~s!!1g~s! ~3.1!
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for a function f defined on a neighborhood of 0 in I and taking values in V. Suppose that each
eigenvalue of N has a positive real part. Then there exists an open interval J with0PJ,I and a
unique bounded C1 function f on J\$0% satisfying (3.1). Moreover f extends to a C` solution of
(3.1) on J. If N, G, and g depend smoothly on a parameter z and if the eigenvalues of N
distinct then the solution also depends smoothly on z.

Proof: See Theorem 1 in Ref. 10, p.989.
Remark 1: The assumption that N has distinct eigenvalues is to ensure that N can be re

to diagonal form by a similarity transformation depending smoothly on z. In particular, Theorem
3.1 applies if N is already a diagonal matrix.

Theorem 3.2: (local existence) Let f˚PC`(R6) be non-negative, compactly supported a
spherically symmetric. Then, the equations (2.14) and (2.15) have a unique local and re

solution (l̊,e̊) defined on some interval@0,R#, R.0. The solution depends smoothly on t
parameter q.

Proof: Let f̊ PC`(R6) be non-negative, compactly supported and spherically symmetric.
regular solution we mean one which is smooth and for whichl̊50 at r 50. It follows that for any
regular solutionl̊ can be written in the form:

l̊~r !5rL ~r ! ~3.2!

for a smooth functionL(r ). Equation~3.2! implies l̊85L1rL 8 and~2.14!–~2.15! can be written

rL 81L5
1

2r
~12e2rL !14pre2rL S E

R3
A11v2 f̊ ~r ,v !dv1

1

2
e2rL e̊2D , ~3.3!

re̊812e̊52re̊~L1rL 8!1rqE
R3

f̊ ~r ,v !dv. ~3.4!

The functione2x2122x vanishes to first order at the origin and hencee2x2122x5x2F0(x) for
a smooth functionF0 . Hence the equation forL can be rewritten in the form

rL 81L52L1
r

2
L2F0~rL !14pre2rL S E

R3
A11v2 f̊ dv1

1

2
e2rL e̊2D .

Thus

rL 812L5rG1~r ,L,e̊, f̊ !, ~3.5!

where

G1~r ,L,e̊, f̊ !5
1

2
L2F0~rL !14pe2rLE

R3
A11v2 f̊ ~r ,v !dv12pe4rL e̊2

and ~3.4! reads, given~3.5!,

re̊812e̊52re̊~2L1rG1~r ,L,e̊, f̊ !!1rqE
R3

f̊ ~r ,v !dv.

Hence,

re̊812e̊5rG2~r ,L,e̊, f̊ !, ~3.6!

where
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G2~r ,L,e̊, f̊ !5Le̊2re̊G1~r ,L,e̊, f̊ !1qE
R3

f̊ ~r ,v !dv.

SettingG5(G2

G1) and F5( e̊
L) and using~3.5! and ~3.6!, the equations~2.14! and ~2.15! can be

written:

r
dF

dr
12F5rG~r ,F~r !!. ~3.7!

We apply Theorem 3.1 withV5R2, NF52F to ~3.7! and, sinceG clearly depends smoothly o
q, obtain the desired result. Thus Theorem 3.2 is proved.

Theorem 3.3 „Global existence, low charge…: Let f̊PC`(R6) be non-negative, compactl
supported and spherically symmetric with

8pE
0

r

s2S E
R3

A11v2 f̊ ~s,v !dv D ds,r . ~3.8!

Then, for q small enough, the equations (2.14) and (2.15) have a unique global and re

solution (l̊,e̊) defined on@0,1`@ that satisfies the boundary conditionl̊(0)50.
Proof: Let f̊ PC`(R6) be non-negative, compactly supported and spherically symmetric

assume thatf̊ is fixed and satisfies~3.8!. By Theorem 3.2, the equations~2.14! and~2.15! have a
unique local regular solution on some interval@0,R#, R.0. Again, Theorem 3.1 shows that, fo
fixed f̊ , there existsE.0, such that forqP@2E,E#, R can be chosen uniformly and the solutio
on @0,R# depends continuously on the parameterq. Now, for fixed f̊ andq, the solution has a righ
maximal interval of existence@0,R* @ , R* 5R* ( f̊ ,q). We have to show thatR* 51`. In fact, the
second term on the right-hand side of~2.14! vanishes forq50, as one can see by integratin
~2.15! over@0,r #, r .0. It follows that forq50, ~2.14! and~2.15! have a global solution under th
sole assumption~3.8! on f̊ . Then by the stability theorem for ODE, for everyR.0, there exists a
numberE.0, such that, for everyqP@2E,E#, the system~3.7! has a solutionFE that exists on
@0,R# ~see Theorem 4, p. 92 in Ref. 7!. Thus R* .R. Now, we can chooseR large so that
suppf̊ ,@0,R#3R3, i.e., f̊ (r ,v)50 for r>R. If R0 is the radius of the support of the distributio
function thenR may be chosen to be bigger thanm(R0)1Q2/(8pR0) for all q in the interval
@E,E#. Hence by the lemma of the appendix the solution extends to one which is globa
regular. This completes the proof of the theorem.

Theorem 3.4„Global existence, high charge…: Let f̄PC`(R6) be non-negative, compactl
supported and spherically symmetric. Then, for q large enough, the equations (2.14) and

have a global and regular solution(l̊,e̊) defined on@0,1`@ that satisfies the boundary conditio

l̊(0)50 for which f̊ is a constant multiple of f.̄ Moreover the charge to mass ratio Q/M of the
solution can be made as large as desired.

Proof: We assume thatf̄ is fixed as in the assumptions of the theorem. We set

a5q21, f̄ 5a2k f̊ , ē5a2(k21)e̊

for some integerk>2. Then~2.14! and ~2.15! can be written as

e22l̊~2r l̊821!1158pr 2S akE
R3

f̄ ~r ,v !dv1
1

2
e2l̊a2(k21)ē2D , ~3.9!

2ē1rēl̊81rē852r E
R3

f̄ ~r ,v !dv. ~3.10!
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Introducing a variableL as defined in~3.2! puts these equations into a form closely analogous
that obtained in the proof of the last theorem. In fact the left-hand side has the same form as
case. All that is changed is the form of the nonlinear terms on the right-hand side. The equ
depend ona as a parameter in a way which is smooth in a neighborhood ofa50. Fora50 the
function l̊ vanishes identically while the equation forē becomes linear and has a global regu
solution. From this point on we can argue just as in the proof of Theorem 3.3 to conclude th
a sufficiently small there is a unique global regular solution of these equations. Here we mu
the fact thatm(R0)1Q2/(8pR0) is bounded independently ofa for a small. The assumption tha
a is small corresponds toq being large. The distribution function belonging to the solution
obtained fromf̊ by a constant rescaling. The charge to mass ratio of the solution is proportio
a2k and thus tends to infinity asa tends to zero. This completes the proof.

Remark 2: The solution in the exterior region is part of the Reissner–Nordström solution.6

Remark 3: Our motivation in proving these theorems was to construct initial data for
Einstein–Vlasov–Maxwell system. The same arguments apply with other kinds of charged m
such as a charged fluid as sources for the Einstein equations.
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APPENDIX

This appendix contains an analysis of exterior regions free of particles in initial data se
the Einstein–Vlasov–Maxwell system. Letf̊ be an initial distribution function of compact sup
port. LetR0 be the radius of its support in space so thatf̊ vanishes for allr>R0 . In this appendix
we are only concerned with quantities on the initial hypersurface and so we will drop the
zero indicating the restriction of space–time quantities to the initial hypersurface.

Lemma 1: Consider a solution of the constraint equations for the spherically symm
Einstein–Vlasov–Maxwell system defined for0<r<R1 and having a regular center. Suppose th

radius R0 of the support of the distribution function f is less than R1 . Let M̃5m(R0)
1Q2/(8pR0). Then if R1.2M̃ the given solution extends to a unique solution of the constra
defined for all rP@0,̀ @ which is asymptotically flat and has f50 for R>R0 .

Proof: Integrating the constraint equation~2.15! gives

r 2el(r )e~r !5qE
0

r

s2el(s)E
R3

f ~s,v !dv. ~A1!

For r>R0 the upper limitr in the integral can be replaced byR0 or infinity without changing the
value of the expression. It is equal toQ/4p whereQ is the total charge of the system defined
Sec. II. Forr>R0 the functionf vanishes and the mass functionm defined in Sec. II satisfies

m85
2p

r 2 ~Q/4p!2. ~A2!

It follows that M̃ (r )5m(r )1Q2/(8pr ) is independent ofr . If the solution exists globally inr
and is asymptotically flat then taking the limitr→` shows thatM̃ is equal to the ADM massM .
In any caseM̃ is positive and it follows that in the exterior regionm5M̃2Q2/(8pr ). In order to
determine whether a solution can be extended to larger values of the radius it is enough to
that 122M̃ /r 1Q2/(4pr 2) remains positive. For in that case we can definel by means of the
relation

e22l5122M̃ /r 1Q2/~4pr 2!. ~A3!
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Note that limr→` l(r )50. Once this has been done we can definem to be equal to2l and
e(r )5r 22e2l(Q/4p) in the external region and this gives the unique solution satisfying
correct boundary conditions. Ifr .2M̃ then 122M̃ /r 1Q2/(8pr 2) is automatically positive and
the desired result is obtained.
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Relativistic stars in differential rotation: bounds on the
dragging rate and on the rotational energy

M. J. Pareja
Departamento de Fı´sica Teo´rica II, Facultad de Ciencias Fı´sicas,
Universidad Complutense de Madrid, E-28040 Madrid, Spain

~Received 27 July 2003; accepted 23 October 2003!

For general relativistic equilibrium stellar models~stationary axisymmetric asymp-
totically flat and convection-free! with differential rotation, it is shown that for a
wide class of rotation laws the distribution of angular velocity of the fluid has a
sign, say ‘‘positive,’’ and then both the dragging rate and the angular momentum
density are positive. In addition, the ‘‘mean value’’~with respect to an intrinsic
density! of the dragging rate is shown to be less than the mean value of the fluid
angular velocity~in full general, without having to restrict the rotation law, nor the
uniformity in sign of the fluid angular velocity!; this inequality yields the positivity
and an upper bound of the total rotational energy. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1636515#

I. INTRODUCTION

One of the most interesting of the relativistic effects produced by the rotation of a star
dragging of inertial frames~also called Lense-Thirring effect!.1 This has been classically describe
in terms of itslocal effects on gyroscopes and particles. However, its cumulative effects o
motion of particles give a much simpler description: a locally non-rotating test particle, th
dragged along in the gravitational field of the star, has an angular velocity, as seen f
non-rotating observer at spatial infinity, which is namedangular velocity of cumulative dragging
or rate of rotational dragging, shortly calleddragging rate.2,3 It is physically expected that, fo
isolated rotating stars in thermodynamic equilibrium, this dragging rateA has the same sign
~rotation sense! as the fluid angular velocityV, if this one has a ‘‘uniform’’ sign throughout the
fluid ~in the general differentially rotating case!. Indeed, Lindblom4 and, independently, Hanse
and Winicour ~1977!5 seem to establish this result, however, without explicitly fulfilling t
corresponding requirements when applying the Hopf theorem~a maximum principle! to an elliptic
operator in a certain domain, concerning the boundedness of its coefficients on the boundar
domain, specifically on the axis of rotation, and theC1 ~and notC2) regularity of the metric
functions across the surface of the star.

Also, ~assuming in the description above that the test particle does not collide with the
matter if it goes through the star! one is tempted to conjecture, in principle in the rigidly rotati
case withV5const5V*.0, that the dragging rate is bounded above by the fluid angular velo
A<V* . And Hansen and Winicour~1975!5 offer some proof of this~although with the same
objection as above!.

In the general differentially rotating case, however, an analogous relation should not b
pected to be so simple; first, because different portions of the star’s interior could have op
rotational motion about the same axis~assuming a convection-free fluid!, and, second~even if the
fluid angular velocity has a sign!, because, due to the integrability condition of the equation
motion, the distribution of fluid angular velocity,V-profile, cannot be freely prescribed; instead
is derived~together with the potential functions, integrating the field equations! once an appropri-
ate rotation law is given. Most of the literature concerning numerical works on differentia
rotating neutron stars make generally the ansatz for a certain rotation law which yieldsA<V.
Nevertheless, for a more general law such a relation is not so obvious. Hansen and W
6770022-2488/2004/45(2)/677/19/$22.00 © 2004 American Institute of Physics
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~1977!5 have made some attempts to give a result, however they needed the unphysical assu
that the star’s matter occupies the whole space.

One of the aims of this work is precisely to find general and physically reasonable ass
tions on the rotation law of a differentially rotating stellar model, so that the dragging rate~at
each interior point! less than the fluid angular velocity, and, hence, theangular momentum densit
is positive~vanishing on the axis! provided the weak energy condition is satisfied. For that ma
we consider the time-angle field equation’s component, which is elliptic and linear in the dra
potential A in coordinates adapted to the symmetries. The approach with the metric in
coordinates is attractive because the field equations become semilinear elliptic. Speciall
reduce to four~coupled! elliptic equations for the four metric functions. One has however
control the coordinate singularities of the equations on the axis of rotation, but these can be
mathematically using the axial symmetry of the physical problem.6 So handled, the elliptic equa
tion in A writes in a ‘‘regular’’ form and has bounded coefficients; this allows us to app
maximum principle to several differential inequalities, which, using theC1-matching on the star’s
surface and the asymptotic flatness of the metric, will lead to the mentioned and other inte
inequalities.

More generally, as was conjectured by Thorne2 ~p. 245!, themean valueof A is expected to
be less than themean valueof V. However, to my knowledge, there is in the literature no expl
and so general result in this direction. The other purpose of the present work is then to de
‘‘general’’ inequality on ‘‘mean values’’ with respect to a density function. In addition, related
this question is the concept oftotal rotational energyof the star. Hartle7 has given bounds for this
rotational energy in the slow rotation limit, which we aim here to generalize.

The paper is organized as follows. After reviewing in Sec. II the model for a relativistic
which is rotating differentially, Sec. III is devoted to handle the concerned field equation, el
and linear in the dragging potential, with special attention to the regularity and bounde
properties of the involved functions, as a preparation allowing us to apply the maximum prin
~reviewed in the Appendixes! in Sec. IV, where inequalities concerning mainly the positivity of t
dragging rate and of the angular momentum density are derived. In Sec. V a general ‘‘mean
inequality’’ is derived in full general; and the positivity and upper bound of the total rotatio
energy is established in the general differentially rotating case. Finally, in Sec. VI the rel
results are briefly summarized.

II. MODEL FOR A DIFFERENTIALLY ROTATING RELATIVISTIC STAR

The space–time of an isolated rotating star in thermodynamic equilibrium within ge
relativity theory is generally represented by an asymptotically flat stationary axisymmetric
dimensional Lorentzian manifold~M,g!, with metric g5gab dxa dxb satisfying Einstein’s equa
tions,

GabªRab2 1
2 R gab58p Tab , ~1!

for the energy-momentum tensor of a perfect fluid,Tab5(«1p) uaub1p gab , with 4-velocity
ua, energy density«, and pressurep. Signature ofg is here considered to be (2111). Since the
star is isolated, the matter~perfect fluid! is confined in a compact region in the space~interior!,
with vacuum,Tab50, on the outside.

We denote the two~commuting! global time and axial Killing vector fields8 by j5] t andh
5]f , respectively, wherex0[t labels the spacelike hypersurfaces which are invariant under
translations, andx1[f is the axial-angle coordinate around the axis of rotation, given bh
[0; (t,f)PR3@0,2p@ . The metric components will then only depend on the two remain
spatial coordinates,gab5gab(x2,x3).

We shall assume that the fluid motion is purely azimuthal~nonconvective!, i.e., the fluid
4-velocity is contained in the 2-surface spanned by the two Killing fields,~as one-forms!

u∧j∧h50 ~circularity condition! . ~2!
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In that case it can be seen9 that the 2-surface elements orthogonal to the two-dimensional g
orbits of the Killing fields are surface forming~the same holds in the vacuum region!; and,
consequently, the metric may be written in a form which is explicitly symmetric under the ch
(t,f)→(2t,2f). In the 2-surfaces orthogonal to the orbits we can always introduceisotropic
coordinates(x2,x3)5(r,z) without loss of generality, so that the metric can always be reduce
the standard form3,10

g5gab dxa dxb52e2U dt21e22U@r2e2B~df2A dt !21e2K~dr21dz2!# , ~3!

where the metric functionsK,U,B, andA depend only on the (r,z)- coordinates of the ‘‘meridian
plane.’’ Herer andz are cylindrical coordinates at the asymptotically flat infinity, and, using
remaining freedom of conformal transformations in the meridian plane, we choose these c
nates such thatr50 represents the axis of rotation and (r,z)PR0

13R ~denotingR0
1
ª$xPR u x

>0%). The metric functionsr eB, U, andA can be written as invariant combinations of the Killin
fields in the form

r2e2B52det~~gmn!m,n5t,f!52g~j,j! g~h,h!1g~j,h!2 ,

e2U5
r2e2B

g~h,h!
, ~4!

A52
g~j,h!

g~h,h!
,

and they can be interpreted physically as follows:r eB represents a sort of distance from th
rotation axis~and, hence,B is, to some extent, a measure how far isr from being that distance!;
U is a generalization of the gravitational potential; andA is the angular velocity of cumulative
dragging, or dragging rate. The remaining metric function isK, the conformal factor in the
meridian plane.

Throughout the following we shall denote the closure and the boundary of a setX by X̄ and
]X, respectively. We fix the notions

I[ interior of the starª$~r,z!PR0
13R u p~r,z!.0%,R0

13R ,

E[exterior of the starª~R0
13R!\ Ī ,R0

13R , ~5!

S[star’s surfaceª Ī ùĒ5]I ,R0
13R ,

I and E open in theinduced topology inR0
13R,R2; that means, although part of the axis (r

50) is in I ~and part inE), the only points of the axis which are in]I 5S ~and in ]E
5Sø$`%) are the poles, if they exist. The setI ,R0

13R is supposed to be bounded and co
nected. Concerning the regularity ofS5]I , we assume it satisfies an exterior sphere condit
everywhere~cf. Definition in Appendix A!.

Within our star model, thematchingconditions~from the interior and the exterior solutions!
require that the pressure vanishes identically on the star’s surface,p50 on S. In the exterior
(Tab50) we have«5p50. Furthermore,« and p satisfy a barotropic equation of state in th
interior,

«5«~p! in Ī . ~6!

We assume the pressurep to be continuous with respect to the coordinates, and alsop°«(p) a
continuous function,
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pPC0~R0
13R! , p°«~p! PC0~R0

1! , ~7!

satisfying theweak energy condition,11

«1p>0 ~ in R0
13R! . ~8!

@Notice, by the definition of the interior,~5!, if «>0 in Ī , as it is generally assumed, we shall ha
even«1p.0 in I , and, hence, condition~8! follows. In addition, since the equation of state
defined only in the interior,~6!, requirement~7! does not guarantee the continuity of« across the
star’s surface~where p50), namely, if«(p50).0, then a jump discontinuity of« across the
star’s surface occurs.#

From the circularity condition~2! on the fluid 4-velocity~in Ī ), this is of the form

u5ut~j1Vh!, where V[
uf

ut 5
df

dt

is the angular velocity of the fluid measured by a distant observer in an asymptoticall
space–time, and the fact that the 4-velocityu is a unit timelike vector field determines th
normalization factorut, such thatg(u,u)521, i.e.,

~ut!225e2U2r2e2(B2U)~V2A!2 5.. N , ~9!

from whereN5(ut)22.0 in Ī . Indeed, we do not allow that the velocity of light is approach
somewhere, and, hence, even

N>const.0 in Ī . ~10!

We consider a star rotating differentially with a distribution of angular velocity~rotation profile!
V5V(r,z), a continuously differentiable function,

VPC1~ Ī ! . ~11!

However, theV-profile of the fluid cannot be freely chosen, this shows up in the following.
integrability conditions of the field equations~1!, that is, the equation of hydrostatic equilibriu
T ;b

ab 50 ~from G ;b
ab 50) ~where ‘‘; ’’ denotes covariant derivative!, particularly, its part orthogo-

nal to the fluid 4-velocityu, reduces to the Euler equation,

dp52~«1p! a , ~12!

wherea is the 4-acceleration of the fluid,a5¹uu. Specifically,

a5dV1utuf dV , V[ 1
2 ln N , ~13!

utuf5r2e2(B2U)(V2A)N21. But the integrability condition of Eq.~12! taking into account~6!
is da50; following then, from~13!, d(utuf)∧dV50. The special case whereV5const is called
rigid rotation ~or uniform rotation!. In general we shall haveVÞconst, following then,

utuf5F~V! , ~14!

for some functionF, rotation law. By specifying the functionF~V! a specific model ofdifferential
rotation is obtained.@Note, since in the Newtonian limitutuf→r2 V, Eq. ~14! expresses the
general relativistic generalization of the Newtonian ‘‘rotation on cylinders’’ theorem,V
5G(r2) .]

Further requirements on our stellar model are
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~a! the metric functions are~at least! two times continuously differentiable in the interior and
the exterior of the star, and continuously differentiable everywhere~cf. note in Sec. III B!,

K,U,B,AP C2~I!ùC2~E!ùC1~R0
13R! ; ~15!

~b! in order that the metric functions are symmetric with respect to thez-axis (r50) ~‘‘axisym-
metric solutions’’!, and, hence, the metric~3!, defined onM excluding the axis, can be
extended to an at leastC1 axisymmetric tensor field in the whole space–timeM, we assume
that

as r→0, ]rK, ]rU, ]rB, ]rA→0 , ~16!

and, for completeness, also]r«, ]rp→0 ;
~c! finally, by the asymptotic flatness requirement, denotingDª(]r ,]z),

as Rª~r21z2!1/2→`, K,U,B,A→0 and DK, DU, DB, DA→0 . ~17!

Notice, fromC1 regularity, in~15!, and asymptotic flatness,~17!, it follows, in particular, that
the metric functions and their derivatives are bounded,12

uKu,uUu,uBu,uAu,` and iDKi , iDUi , iDBi , iDAi ,` in R0
13R . ~18!

III. THE ELLIPTIC EQUATION FOR THE DRAGGING RATE A

A. The time-angle field equation component

The (tf) component of Einstein’s equation~1! in these coordinates takes the form6

]rrA1]zzA1
3

r
]rA1^3DB24DU , DA&52c2

•~V2A! , ~19!

with c2
ª16p

e2K

N
~«1p! @>0, by ~8! and ~10!# , ~20!

where^.,.& denotes the Euclidean scalar product. Since, from condition~16!, v(r,z)5v(2r,z) for
v5K,U,B,A, i.e., we are considering only axisymmetric solutions of the field equations,
since only ‘‘axisymmetric operations’’ appear in these equations, we consider the following
formation~in the spirit of Ref. 6! in order to avoid the coordinate singularity@of Eq. ~19!# on the
axis of symmetry (z-axis, i.e.,r50). To this end we use the 5-lift of each functionv[v(r,z) ~on
R5), for the metric functionsv5K,U,B,A and also forv5V,«,p, where then-lift of v:R0

1

3R→R on flat Rn, axisymmetric around thexn-axis, is defined as follows:

v° ṽ such that ṽ~x![ ṽ~x1 ,...,xn!ªv~r5~x1
21¯1xn21

2 !1/2 , z5xn! , ~21!

and, for every functionṽ:Rn→R, themeridional cut~in direction x1) of ṽ,

ṽ°v such thatv~r,z!ª ṽ~r,0,...,0,z! . ~22!

For axisymmetric functions, both operations are isomorphisms and inverse to each other;
relevant properties ofn-lift and meridional cut are that~a! they leave the regularity conditions an
the norms invariant,~b! they commute with ‘‘axisymmetric operations,’’ in particular, with a
operations in Eq.~19!, like multiplication and scalar product, yielding especially~for n55)

^Dv,Dw&5^¹ ṽ,¹w̃& , denoting ¹ª~]1 ,...,]5! ~] i[]xi
, ] i j []xi

]xj
! ,

and, remarkably,~c! they transform the operator]rr1]zz1 @(n22)/r# ]r (n>2) into the flat
n-dimensional Laplacian, and vice versa; having forn55,
                                                                                                                



of
e
g the

sson’s

ess

ols
ess

ugh-

682 J. Math. Phys., Vol. 45, No. 2, February 2004 M. J. Pareja

                    
]rrv1]zzv1
3

r
]rv5(

i 51

5

] i i ṽ5..D ṽ .

Hence, with the 5-lift, Eq.~19! writes in the form

DÃ1^3¹B̃24¹Ũ , ¹Ã&52c̃2
•~Ṽ2Ã! , ~23!

c̃2 defined likec2, ~20!, but with 5-lifted functions~on R5).

B. Regularity and boundedness of the metric functions

Let us see how conditions~15!–~18! transmit through the 5-lift. First, from conditions~15!
and ~16! it follows

K̃,Ũ,B̃,Ã P C1~R5! , ~24!

because~for v5K,U,B,A) vPC1(R0
13R) and]rv→0 asr→0 imply ṽPC1(R5).

Note: In fact, as seen in Ref. 6, with the use of these mathematical tools (n-lift and meridional
cut, for different numbersn), the elliptic system of field equations~1! may be regarded as a set
Poisson-like equations, where the nonlinearities~quadratic terms in the first derivatives of th
metric functions! are contained in the inhomogeneous terms on the right-hand side. Makin
weak requirement that the metric functions and their derivatives are essentially bounded,ṽ, ¹ ṽ
PL`, since also«̃, p̃PL` @by condition~7! and «̃5 p̃50 in the exterior#, andṼPL` @by ~11!#,
we have that the right-hand side is essentially bounded. Then, by the regularity of Poi
integral,13 ~at least! ṽPC1,a for somea,1; in particular,ṽPC1, i.e., ~24!. This justifies require-
ments~15! and ~16! in Sec. II.

Combining~15! and~16! we obtain also that the 5-lifted metric functions are classC2 in the
interior and in the exterior of the star~in R5). That is, denoting

Iª$~x1 ,...,x5!PR5 u ~~x1
21¯1x4

2!1/2 , x5!PI %,R5 ~25!

and, analogously,E andS, from E andS @cf. ~5!#, respectively, we have forṽ5K̃,Ũ,B̃,Ã,

ṽ P C2~I!ùC2~E!ùC1~R5! . ~26!

The asymptotic flatness condition~17! implies, through the 5-lift, that

as R5ixi5~x1
21¯1x5

2!1/2→`, ṽ→0 and ¹ ṽ→0 ; ~27!

but ṽPC1(R5), that is,ṽPC0(R5) and¹ ṽP@C0(R5)#5, yielding, together with conditions~27!,
their respective boundedness,

uṽu,` and i¹ ṽi,` in R5 . ~28!

C. Notation convention and roundup

We have seen in Sec. III A that Eq.~23! is equivalent to Eq.~19! through the 5-lift and the
meridional cut,~21! and~22! for n55. Furthermore, the 5-lift leaves regularity and boundedn
properties invariant; see Sec. III B.

Convention:For simplicity in the notation, we omit throughout the following the symb
‘‘ ;’’ for all 5-lifted functions we use.@Once it has been seen how regularity and boundedn
properties transmit from the functions defined onR0

13R to the lifted ones~on R5), and since they
are equivalent in terms of positivity, and no explicit reference to the first ones will appear thro
out the following section, this notation convention seems appropriate.#

Accordingly, we write Eq.~23! in the form
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L0 A52c2
•~V2A! , ~29!

with L0 AªDA1^3¹B24¹U , ¹A& , ~30!

c2
ª16p

e2K

N
~«1p! >0 ~50 in E! ,

~31!
and Nªe2U2r2e2(B2U)~V2A!2 > const.0 in Ī ,

whereK,U,B,A:R5→R, axisymmetric around thex52axis. @Notice, Eq.~29! is so defined in the
whole space–time, interior~fluid! and exterior~vacuum!, ĪøE5R5, but in the exteriorc2[0
(«5p50) and the vacuum field equation is recovered,L0 A50 in E.# Also, we have~26!–~28!,
i.e. ~with the notation convention!,

K, U, B, A P C2~I!ùC2~E!ùC1~R5! , ~32!

as R5ixi5~x1
21¯1x5

2!1/2→`, K, U, B, A→0 , ~33!

¹K, ¹U, ¹B, ¹A →0 ; ~34!

uKu, uUu, uBu, uAu ,` , ~35!

and i¹Ki , i¹Ui , i¹Bi , i¹Ai ,` in R5 . ~36!

Equation~29!, i.e.,

L AªL0 A2c2
•A52c2

•V , ~37!

writes then

L A [ ai j ~x! ] i j A 1 bi~x! ] iA 1 c~x! A 5 g~x!

with

ai j [const5d i j ~51 if i 5 j , and 50 otherwise! ,

bi53 ] iB24 ] iU ~; i , j P$1,...,5%!, and
~38!

c52c2~<0! ,

g5c V

~where repeated indices indicate summation from 1 to 5!. The flat five-dimensional LaplacianD,
in ~30!, (ai j [d i j ), and henceL, is obviously strictly and uniformly elliptic everywhere. Th
coefficientsbi are measurable and bounded functions everywhere, becauseB andU areC1, ~32!,
and have bounded derivatives,~36!. On the other hand, for the coefficientc @cf. ~31!#, since~i! the
metric functions are continuous,~32!, and bounded,~35!; ~ii ! p is continuous everywhere,~7!, and
has compact support;~iii ! « is continuous in the~closed! interior Ī, from ~7!; ~iv! V is in particular
continuous~in Ī), ~11!, and, hence, measurable; and~v! N>const.0 ~also in Ī), ~10!; it follows
that c[2c2 is measurable and bounded in the interiorI, and, sincec2[0 («5p50) in the
exteriorE, and the boundary~the star’s surface! ]I5S is a set of measure zero, we have that
coefficientc is measurable and bounded everywhere. This will allow us in the following sectio
apply maximum principles in the classical and in the generalized sense to the operatorL ~andL0);
see Appendixes A and B.
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IV. BOUNDS ON THE DRAGGING RATE

A. Positivity of the dragging rate

Proposition 1: If the distribution of angular velocity of the fluid is non-negative (and n
trivial), then the dragging rate is positive everywhere,

V>0, VÓ0⇒ A.0 .

Proof: Consider the domainG defined by a ball inR5 centered at the originx50 and of
arbitrarily large radiuss,

GªBs~0! ,R5 . ~39!

SinceA is continuously differentiable inR5, cf. ~32!, so is in particular inG; but A and ¹A
continuous inR5 implies that they are 2-integrable~are inL2) in G; consequently,

A P W1,2~G!ùC1~G! . ~40!

Hence, the strictly elliptic linear partial differential equation~in A) with measurable and bounde
coefficients,~37!, is satisfied in a generalized sense inG; see Appendix B. Remarkably, whenev
V>0, Eq. ~37! yields the differential inequality

L A<0 in G , ~41!

i.e., A is a generalized supersolution relative to the operatorL and the domainG. We pay now
special attention to the behavior ofA on the boundary: since the radius of the ballG, s, is
arbitrary, we can make it sufficiently large (s→`) such that, by the asymptotic flatness conditi
on A @cf. ~33!#, A is arbitrarily small on]G,

lim
s→`

Au]G50 . ~42!

We first observe thatAÓconst@because, by~42! andAPC0(R5), would beA[const50, which
yields, by Eq.~37!, V[0, and we are assumingVÓ0]. Hence, by the strong minimum principle
Theorem 4 in Appendix B, applied to the differential inequality~41!, A cannot attain a nonpositive
minimum at an interior point ofG; using~42!, we conclude thenA.0 in G, i.e., everywhere.h

Remark 1:A result analogous to Proposition 1 holds with the opposite sense of the rota
that is, ifV<0 (VÓ0), thenA,0. This follows because Eq.~29! is invariant with respect to the
simultaneous change of sign (V,A)→(2V,2A).

B. Upper bound V. Positivity of the angular momentum density

Hereafter we discuss the sign of the differenceV2A. Remarkably, this determines the sig
of utuf , which, with assumption~8!, is the sign of theangular momentum density, integrand of
the total angular momentum, given by the ‘‘volume’’ integral14 J5*I2p Tf

t (2g)1/2dx, where
g[det(g) andTf

t 5(«1p) utuf .

1. In the rigidly rotating case

Proposition 2: In the particular case of rigid rotation, withV[const5..V* .0,

0,A,V*

holds everywhere. As a consequence, in this case, utuf , and, hence, the angular momentu
density, is non-negative.

Proof: We consider Eq.~29! for VÓconst5V*.0, i.e.,L0 A52c2
•(V* 2A), which, since

the differential operatorL0 , ~30!, is free from linear term, can be rewritten in the form
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L0~A2V* !52c2
•~V* 2A! ,

or, denoting again the differential operatorLªL02c2 and defining

w~x!ªA~x!2V* ~43!

in the whole space–time,xPĪøE5R5 ~as already 5-lifted function; cf. Sec. III A!,

Lw5L~A2V* !5L0~A2V* !2c2
•~A2V* !50 in R5 .

We have then the strictly elliptic linear~in w) equation

Lw50 ~ in particular! in G[Bs~0! ,R5 , ~44!

where the radiuss is arbitrary, withwPW1,2(G)ùC1(G), by ~40! and ~43!. On the other hand
by the condition of asymptotic flatness onA @in ~33!#, A is arbitrarily small on]G, provided that
s is sufficiently large, i.e.,~42!; consequently,

lim
s→`

wu]G52V* ,0 . ~45!

Since wÓconst @because, by~45! and continuity, would bew[const52V* in G, that is, A
[const50 in G, which is not allowed, by Eq.~37!, since hereV[V* .0], applying the strong
maximum principle, Theorem 4 in Appendix B, to Eq.~44!, we get thatw cannot attain a non-
negative maximum at an interior point ofG; hence, using~45!, w,0 in G ~everywhere!, i.e.,
A,V* everywhere. Moreover,A.0 everywhere, by Proposition 1. This establishes the con
sion of the proposition. h

Observe, in the static case,V* 50, we would haveLw50 and lims→`wu]G50, following, by
the strong maximum and minimum principles,w[0, i.e.,A[V* 50; as expected,A[0.

Remark 2:Likewise, if V[const[V*,0, then 0.A.V* everywhere, and, hence, the a
gular momentum density is nonpositive. We obtain this by applying Proposition 2 to the fun
Âª2A, solution of Eq.~29! for V̂*ª2V* .0 ~cf. Remark 1!. More explicitly, the angular
momentum density of a rigidly rotating stellar model has the same sign as the angular velo
the fluid. Also, as a result, we have for a fluid rotating rigidly withV[const[V*Þ0,

0,uAu,uV* u .

2. In the general (differentially rotating) case

In the following we shall assume that a functionF ~to be specified! has been given, and w
have a solution of the problem, that is,~four! metric functions,K, U, B, and A, and a fluid
angular velocity distribution,V, satisfying the~four! field equations~1! @in particular, the elliptic
equation forA, Eq. ~29!# and Eq.~14!, utuf5F(V). @Notice, in the interior, where the matte
terms do not vanish (p.0,«>0), substituting into the equation of motion~12! @with ~13!# its
integrability condition, i.e., Eq.~14!, and the equation of state, Eq.~6!, we obtain the pressure,p,
and the energy density,«, as functions ofr, U, B, A, andV.#

Remarkably,utuf may be written

utuf[
r2e2(B2U)~V2A!

e2U2r2e2(B2U)~V2A!2 5
%2~V2A!

12%2~V2A!2 5..F~% , V2A! with %ªr eB22U ,

~46!

where, from~10!, 12%2(V2A)25Ne22U>const.0 in Ī. With the defined function~46!, Eq.
~14! writes

F~% , V2A!5F~V! . ~47!
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Lemma: Assume

(i) the functionF:R→R is strictly decreasing, and
(ii) ' a constantVc (uVcu,`) such thatF(Vc)50,

then, at each interior point (inĪ), where Eq.~47!, F5F, is satisfied, the following holds:

A,V⇔A,V<Vc ~A,Vc!,

A.V⇔A.V>Vc ~A.Vc!, ~48!

A5V⇔A5V5Vc ~A5Vc! .

Note 1:Due to~i!, Vc @defined in~ii !# is unique. Also, observe,Vc exists and coincides with
the ~constant! value of V on the rotation axis, provided that part of the axis,%50, is in the
interior, I, ~i.e., if the rotating fluid does not have toroidal topology!. This is because at points i
$%50%ùIÞB, sinceFu%5050 andF5F in I, we haveF(V)u%5050; andF is, by require-
ment ~i!, invertible; yieldingVu%505const5Vc .

Note 2:Observe, ifFPC1 andF 8,0, then, since]VF>0, Eq.~47! can be solved forV, by
virtue of the implicit function theorem, yieldingV5V(r,U,B,A); and, by the regularity of the
metric functions,~32!, it follows in particularVPC1(Ī), requirement~11!.

Note 3: It should be stressed that, sinceF is an increasing function in V, choosing the
function F strictly decreasing@requirement~i!#, Eq. ~47! has a unique solution inV ~‘‘curve’’
solution with% variable!. Specially, this makes likely the existence of functionsV, K, U, B, and
A, solutions of the field equations and Eq.~14!. Indeed, in numerical works concerning differenti
rotation the ansatz for theF-law F(V)5R0

2(Vc2V), whereR0 is a free parameter describing th
length of scale over whichV changes, is generally used, and they claim they have a solution.~See,
e.g., Refs. 15–17.!

Proof: We consider a pointxPĪ where the metric functions and the fluid angular velocity a
solution, in particular, with reference to Eq.~47!, the functionsF and F valued at this point
‘‘intersect’’ each other, i.e.,

F~%~x! , V~x!2A~x!!5F~V~x!! ~;xPĪ! .

From requirements~i! and ~ii !, it follows ~at each interior point! sign(F)5sign(Vc2V). As
regardsF ~at the interior point!, on the axis (%50) it obviously vanishes, cf.~46!; following,
from the relationF5F ~in Ī), F5F50 and, thus,V5Vc on the axis. Outside the axis (%
Þ0) we have sign(F)5sign(V2A); and, hence~outside the axis!

F5F.0⇔A,V,Vc ,

F5F,0⇔A.V.Vc ,

F5F50⇔A5V5Vc .

But also,

;xPĪ / A~x!,V~x!, H A~x!,V~x!,Vc if %~x!Þ0,

A~x!,V~x!5Vc if %~x!50,

;xPĪ / A~x!.V~x!, H A~x!.V~x!.Vc if %~x!Þ0,

A~x!.V~x!5Vc if %~x!50,

and ;xPĪ / A~x!5V~x!, A~x!5V~x!5Vc .
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This yields~48!. h

We are now in a position to get one of the main results of this work in the general diffe
tially rotating case, namely, the following proposition.

Proposition 3: If theF-law [in Eq. (14)] specifying the model of differential rotation is chos
such that

(i) F:R→R strictly decreasing,
(ii) ' a constantVc (uVcu,`) such thatF(Vc)50, and
(iii) Vc.0,

then

0,A,V<Vc in Ī ; ~49!

in particular, utuf>0, and, hence, the angular momentum density is non-negative. Moreov,

0,A,max
S

V<Vc in E . ~50!

Note:As remarked above, if the interior~fluid! contains points of the axis, then condition~ii !
is already guaranteed, andVc is the constant value ofV on the axis; cf. Note 1 in the previou
lemma. See also Notes 2 and 3. And observe, requirement~iii ! is in principle much weaker than
V.0, but, as seen in the conclusion of this proposition,V.0 already follows. Furthermore, th
fact thatV<Vc in Ī shows that in differentially rotating stars the core may rotate faster than
envelope, so that the core can be supported by rapid rotation before mass shedding is rea
the equator.18

Proof: We divide the proof in four steps.
First step: Let us see firstA<V in Ī. Suppose~to get a contradiction! A(x0).V(x0) for

somex0PĪ. We have seen, in the previous lemma, cf.~48!, that this is equivalent toA(x0)
.V(x0)>Vc ; and, hence, using hypothesis~iii !, A(x0).Vc.0. Therefore, by the continuity o
A @indeedAPC1, cf. ~32!# and the asymptotic flatness@ limixi→` A50, cf. ~33!#, we infer that
there exists an open and connected neighborhood ofx0 , Nx0

,R5, such that

A.Vc in Nx0
,

~51!
and A5Vc on ]Nx0

.

We distinguish two cases.
Case 1:Nx0

ùE5B, that is, the neighborhood is contained in the interior,Nx0
#I. Thus we

have, again using the previous lemma,A.V>Vc.0 in Nx0
; particularly,V2A,0 in Nx0

, and,
therefore, by Eq.~29!,

L0 A.0 in Nx0
#I .

From ~32!, in particular,APC2(I)ùC0(Ī), and, hence,APC2(Nx0
)ùC0(N̄x0

). And applying
the weak maximum principle, Theorem 1 in Appendix A, to the operatorL0 ~on A) in Nx0

, we
obtain that the maximum ofA is reached on the boundary, i.e.,

max
N̄x0

A5max
]Nx0

A ,

contradicting~51!.
Case 2:Nx0

ùEÞB. ~Notice, here is included the case wherex0P]I5S.) We denote
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Ix0
[Nx0

ùI #I,

Ex0
[Nx0

ùE ,E,

and

G[Nx0
ùS .

Observe,GÞB, becauseNx0
is connected,x0PNx0

ùĪÞB, and, by assumption in this cas

Nx0
ùEÞB. Moreover,G5Īx0

ù Ēx0
5]Ix0

ù]Ex0
. Thus, we have in the interior, from~51!,

A.Vc in Ix0
øG , Nx0

~G,]Ix0
!,

A5Vc on ]Ix0
\G , ]Nx0

;

and, applying the weak maximum principle~Theorem 1 in Appendix A! to the differential inequal-
ity @cf. ~29!#

L0 A.0 in Ix0
,I

@again using~48!, A.V>Vc in Ix0
], with APC2(Ix0

)ùC0(Īx0
), it follows

max
Īx0

A5max
]Ix0

A5max
G

A ;

in the exterior, we have analogously, from~51!,

A.Vc in Ex0
øG , Nx0

~G,]Ex0
!,

A5Vc on ]Ex0
\G , ]Nx0

.

~Note, the point` is not included in]Ex0
, becauseVc.0 and A is asymptotically flat,Au`

50.) But, in the exterior,E, c2[0, and we have the elliptic equation forA

L0 A50 in Ex0
,E ;

as a consequence, again by virtue of the maximum principle~Theorem 1 in Appendix A! now in
Ex0

max
Ēx0

A5max
]Ex0

A5max
G

A .

We therefore have

max
Īx0

A5max
Ēx0

A5max
G

A5..A~x1!, for some x1PG .

Thus (N̄x0
5Īx0

ø Ēx0
)

max
N̄x0

A5A~x1!, for some x1PG,Nx0
~x1 interior point! ;

and, sinceAPC1(R5), in particular,APC1(Nx0
), it follows
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¹Aux1
50 . ~52!

However, this is not possible, because, on the other hand,x1 is a point of the star’s surfacex1

PG,S, and, from the assumptions on the stellar model,]I5S satisfies an exterior sphere co
dition everywhere, i.e.,]E5Sø$`% satisfies at each point ofS ~in particular, atx1) an interior
sphere condition~cf. Definition in Appendix A!. This allows us to apply the called boundary-po
lemma, Theorem 2 in Appendix A, for the operatorL0 in the exterior domainEx0

, with respect to

the pointx1PG,]Ex0
, beingA(x1)5maxA in Ēx0

. And, sinceAÓconst@becauseA.Vc.0 in
Ex0

øG,A5Vc or 2Ex0
\G, andA is continuous#, this yields

^n,¹A&ux1
5]nAux1

Þ0, n[ outward pointing unit normal toS at x1 ;

contradicting~52!. Consequently,

A<V in Ī . ~53!

Second step: A,V<Vc in Ī. This can be seen as follows. From inequality~53! and using
~48! we also have

V<Vc in Ī , ~54!

and, combining~53! and ~54!,

A<Vc in Ī . ~55!

On the other hand, we have Eq.~29!, i.e., L0 A52c2
•(V2A), satisfied everywhere, in particu

lar, in the interior~in a classical sense!. Let

u~x!ªA~x!2Vc ;xPĪ .

SinceVc is constant, we can rewrite Eq.~29!,

LuªL0u2c2
•u51c2

•~Vc2V!>0 @by ~54!# .

Hence, we have

Lu>0 in I , ~56!

where, likeA, uPC2(I)ùC0(Ī), and

u<0 in Ī , ~57!

by inequality~55!. We want to seeu,0. Suppose~to get a contradiction! that u( x̂)50 for some
x̂PI; then, by~57!, 05u( x̂)5maxĪu, x̂PI ~interior point!. However, by the strong maximum
principle, Theorem 3 in Appendix A, for~56!, u cannot reach a non-negative maximum at
interior point ofI, unlessu is a constant inI. That means, in our case,u cannot vanish somewher
in I unless it vanishes identically inI. But u[const5u(x̂)50 in I, i.e.,

A[ const5Vc.0 in I, APC1 everywhere , ~58!

yields, in particular,

¹A50 on ]I5S . ~59!
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On the other hand, in the exterior,E, we haveL0 A50, with APC2(E)ùC0( Ē), and, by the weak
maximum principle~Theorem 1 in Appendix A!

max
Ē

A5 max
]E5Sø$`%

A ,

but, using asymptotic flatness (Au`50) and~58!, actually,

max
Ē

A5max
S

A5..A~x1! for some x1PS,]E .

In particular, sinceAÓconst, the boundary-point lemma, Theorem 2 in Appendix A, applied to
operatorL0 in the exterior domainE ~where, by assumption, an interior sphere condition
satisfied in particular atx1PS,]E) yields a nonvanishing outward normal derivative

^n,¹A&ux1
5]nAux1

Þ0 ,

in contradiction to~59!. Therefore,u,0 everywhere inI, i.e.,A,Vc in I; and, hence, also on]I,
because, by the weak minimum principle, Theorem 1 in Appendix A, applied toL0 A52c2

•(V2A)<0 in I @by ~53!#, we get minĪ A5min]I A. Therefore,A,Vc in Ī, or, equivalently@cf.
~48!#,

A,V<Vc in Ī .

Third step: A.0 everywhere~i.e., the same conclusion of Proposition 1, but now us
different hypotheses!. We have seen in the first stepA<V in Ī; which yields,L0 A<0 in Ī. On
the other hand,L0 A50 in E. Accordingly,

L0 A<0 everywhere inĪøE5R5 .

Applying now the strong minimum principle for generalized supersolutions, Theorem 4 in Ap
dix B, and using asymptotic flatness, as was argued in the proof of Proposition 1, it folloA
.0 everywhere.@Notice, hereAÓconst, because, by asymptotic flatness and continuityA
[const is equivalent toA[0; by Eq.~37!, alsoV[0, and, hence, fromV2A[0, we would have
@cf. ~46!# 0[F5F(0); but this is not possible, since requirements~i! and ~ii ! imply F(0)
.F(Vc)50.] Thus,A.0 everywhere, in particular, in the interior; using now the result of
second step, we finally get~49!, 0,A,V<Vc in Ī. Notice, hence,V.0 ~in Ī).

Fourth step: A,maxS V<Vc in E. The elliptic equation holding in the exterior,

L0 A50 in E ,

yields, by virtue of the weak maximum principle~Theorem 1 in Appendix A!,

max
Ē

A5 max
]E5Sø$`%

A ;

but, using asymptotic flatness (Au`50), we actually have maxSø$`% A5maxS A. On the other
hand, we have seenA,V<Vc in particular in]I5S, andS is compact. Hence,

in E, 0,A<max
Ē

A5max
S5]I

A,max
S

V<Vc ,

establishing also~50!. h

Remark 3:Analogously as argued in Remarks 1 and 2, it is possible to ‘‘reflect’’ Propos
3. As a consequence, in particular, in a model for a star which is rotating differentially with
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functionF either strictly decreasing withVc.0 or strictly increasing withVc,0, F(Vc)50, the
angular momentum density has the same sign asVc , and, hence, as the angular velocity of t
fluid. Also, accordingly, the following holds:

0,uAu,uVu<uVcu in Ī ,

0,uAu,umax
S

Vu<uVcu in E .

V. GENERAL BOUNDS. ROTATIONAL ENERGY

A. Preliminary observation

Let u:Rn→R be a differentiable function,V:Rn→Rn be a vector field, andG,Rn a domain
where Gauss’ theorem can be applied. Then, due to

div~uV!5(
i

] i~uVi !5^Du,V&1u div V

@where ^.,.& is the Euclidean scalar product,D is the gradient operator, and divVª(i]i(Vi), the
divergence#, we get, integrating overG and applying the Gauss theorem,

E
G

u div V52E
G

^Du,V&1E
]G

u ^V,n& , ~60!

wheren is the outer unit normal of]G ~and, for simplicity in the notation, volume- and surfa
elements have been dropped!.

B. Appropriate form of the field equation

The general~elliptic! field equation forA, Eq. ~19!, may be rewritten as follows:

div~r3e3Be24UDA!52 f 2
•~V2A! , ~61!

whereDª(]r ,]z) and div are the flat expressions inR2, and

f 2~r,z![ f 2
ªr3e3B24Uc2516p ~«1p!

r3e3Be2(K22U)

e2U2r2e2(B2U)~V2A!2 >0 .

Especially we havef 2[0 in the exteriorE of the star@cf. ~5!#.
Note, in this section~independent of Sec. IV! we go back to the field equation in the meridia

plane coordinates, (r,z)PR0
13R, instead of the 5-lifted one ~on R5) ~cf. Sec. III A!.

C. Main observation

Multiplying Eq. ~61! by A, and using Eq.~60!, by settingu5A, V5r3e3Be24U DA, and
G5R0

13R,R2 @actually, we consider a ball inR2 centered at the origin of the coordinate syste
with arbitrarily large radius,Bs(0),R2, and takeG5Bs(0)ù(R0

13R),R2, s→`], we obtain

2E
I
f 2A~V2A!52E

R0
1

3R
r3e3Be24UiDAi21E

](R0
1

3R)
A r3e3Be24U^DA,n& ,

whereI ,R0
13R,R2 represents the (r,z)-coordinates of the interior of the star~note,f 2 vanishes

in the exteriorE). The first term on the right-hand side~which converges, sinceiDAi falls off
rapidly enough at the spacelike ‘‘infinity’’19! is obviously nonpositive. And the second ter
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vanishes, because of the asymptotic behavior ofA at spatial infinity,19 and because the integran
due to the factorr3, vanishes on the axis of rotationr50, which is the other part of](R0

13R)
5$R5(r21z2)1/2→`%ø$r50%. Hence, we have found

E
I
f 2 A ~V2A!>0 . ~62!

D. Consequences

In order to see more the linear algebra behind, we introduce now the bilinear form

^u,v& fªE
I
f 2~r,z! u~r,z! v~r,z! dr dz , u,v:I→R in L2~ I ! ,

and the induced seminormi .i fª(^. ,.& f)
1/2. With this definition we can write inequality~62! as

^A,V& f>iAi f
2 ,

and immediately see that especially

^V,A& f5^A,V& f>0 . ~63!

Furthermore, using the Cauchy–Schwarz inequality, we haveiAi f iVi f>^A,V& f>iAi f
2 , and

hence~sinceA[0⇔ V[0) we get~in full general! the main result of these sections, namely

0<iAi f<iVi f . ~64!

Proposition 4:

0<E
I
f 2 A2<E

I
f 2 V2 ~65!

@without any restriction concerning the rotation law,V°F(V) in ~14!, in the differentially rotat-
ing case, nor the regularity and sign uniformity ofV#. These integrals can be regarded as so
kind of ‘‘mean value’’ with respect to the ‘‘density’’f 2, thus, ~65! fulfilling the physical
expectations.2

In addition, multiplying inequality~64! by iVi f , we find ~again using the Cauchy–Schwa
inequality! iVi f

2>iVi f iAi f>^V,A& f , i.e.,

^V,V2A& f>0 . ~66!

Remarkably, the integral given in~66! has an important physical meaning; it is, up to a const
factor, the so-calledtotal rotational energy~see, e.g., Refs. 15, 16, 18, and 20!,

T[
1

2 EI
V dJ 5

1

2 EI
2p V Tf

t ~2g!1/2dr dz 5
1

16
^V,V2A& f

~also denotedErot or M rot). Thus,~66! showsT>0. Furthermore,

16 T5^V,V2A& f5iVi f
22^V,A& f < iVi f

2 ,

by ~63!. Hence, we have the following proposition.
Proposition 5:
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0 < T[
1

16EI
f 2 V ~V2A! <

1

16EI
f 2 V2 . ~67!

This generalizes the result given by Hartle~cf. Ref. 7, Sec. IV! in the limit of slow ~differential!
rotation to the general differentially rotating case.

VI. CONCLUSIONS

Aiming to derive general properties of equilibrium nonsingular stellar models with differe
rotation, we have established that for a wide class of rotation laws the distribution of an
velocity of the fluid has a sign, and then both the dragging rate~angular velocity of locally
nonrotating observers! and the angular momentum density have the sign of the fluid ang
velocity ~Sec. IV!. In addition, the mean value~with respect to a density function! of the dragging
rate is shown to be less than the mean value of the fluid angular velocity; and this is proved
general, without having to restrict the rotation law, nor the uniformity in sign of the fluid ang
velocity. A further simple calculation of linear algebra on this inequality yields a generalizatio
the result given by Hartle7 concerning positivity and upper bound of the total rotational energ
the limit of slow ~differential! rotation to the general differentially rotating case~Sec. V!.
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APPENDIX A: MAXIMUM „MINIMUM… PRINCIPLES FOR CLASSICAL SUB- „SUPER-…
SOLUTIONS

By G we denote an open and connected set, i.e., a domain, inRn, n>2. The boundary is
denoted by]G[Ḡù(Rn\G). We define the differential operators

L0uªai j ~x! ] i j u 1 bi~x! ] iu , ai j 5aji ,

and

LuªL0u 1 c~x!•u

~where the summation convention that repeated indices indicate summation from 1 ton is fol-
lowed!, such that21

~1! L ~and, hence,L0) is uniformly elliptic in G in the special form

0,l uyu2<aij~x! yiyj<L uyu2, ;yPRn\$0%, ;xPG S uyu2ª(
i

yi
2D , ~A1!

wherel andL are constants such that 0,l<L,`;
~2! all coefficients inL ~and inL0), ai j , bi ~for all i and j ), andc, are measurable and bounde

functions inG,
uaij u,`, ubiu,`, ucu,` in G ~ i , j P$1,...,n%! . ~A2!

Theorem 1: @the weak maximum~minimum! principle for L0 (c50) ] Suppose that L0u

>0 (<0) in a bounded domain G, with uPC2(G)ùC0(Ḡ). Then the maximum (minimum) of
is attained on the boundary, that is,
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max
Ḡ

u5max
]G

u S min
Ḡ

u5min
]G

uD .

~A proof of that theorem can be found, e.g., in Ref. 22, Theorem 3.1.!
Definition: For a set G,Rn, the boundary]G is said to satisfy aninterior ~exterior! sphere

conditionat a point x1P]G iff there exists a ball B,G (B,Rn\Ḡ) with x1P]B.
Theorem 2 „the boundary-point lemma…: Suppose that L0u>0 (c50) in a domain G not

necessarily bounded. Let x1P]G be such that

(i) u is continuous at x1 ,
(ii) u (x1)>u(x) for all xPG, and
(iii) ]G satisfies an interior sphere condition at x1 .

Then the outer normal derivative of u at x1 , if it exists, satisfies the strict inequality

]nu~x1!.0,

unless u[const5u(x1). ~A proof of that result can be found, e.g., in Ref. 23, Theorem 7, Chap!
If c<0 ~in Lu>0), the same conclusion holds provided u(x1)>0. ~See Ref. 23, Theorem 8, Cha
2. Also Ref. 22, Lemma 3.4.!

Theorem 3 †the strong maximum „minimum … principle for L#: Let Lu>0 (<0) in a

domain G not necessarily bounded, with uPC2(G)ùC0(Ḡ), and the operator L satisfying

c<0 in G ~A3!

apart from conditions (A1) and (A2) above. Then u cannot attain a non-negative maximum
positive minimum) at an interior point of G, unless u[const in G. For c50, i.e., L5L0 , the
same conclusion holds without the requirement non-negative (nonpositive). ~For the proof we refer
again to Ref. 22, Theorem 3.5; or Ref. 23, Theorems 5 and 6, Chap. 2.!

APPENDIX B: MAXIMUM „MINIMUM… PRINCIPLE FOR GENERALIZED SUB- „SUPER-…
SOLUTIONS

Consider in a domain~open and connected set! G,Rn (n>2) the differential operator with
principal part of divergence form, defined by

Lu5] i@ai j ~x!] ju1ai~x! u#1bi~x! ] iu1c~x! u ,

with ai j 5aji . Notice, an operatorL of the general formLu5ãi j (x)] i j u1b̃i(x)] iu1 c̃(x)u may
be written in divergence form provided its principal coefficientsãi j are differentiable. If further-
more theãi j are constants, then even with coinciding coefficients (ai j 5ãi j , bi5b̃i , c5 c̃) and
ai[0. Let us assume that

~1! L is strictly elliptic in G, i.e.,' a constantl.0 such thatl< the minimum eigenvalue of the
principal coefficient matrix@ai j (x)#,

l uyu2<aij~x! yiyj ;yPRn, ;xPG ; ~B1!

~2! ai j , ai , bi , andc are measurable and bounded functions inG,

uaij u,`, uaiu,`, ubiu,`, ucu,` in G ~ i , j P$1,...,n%! . ~B2!

By definition, for a functionu which is only assumed to beweakly differentiableand such that
the functionsai j ] ju1aiu and bi] iu1cu, i 51,...,n are locally integrable@in particular, foru
belonging to the Sobolev spaceW1,2(G)], u is said to satisfyLu5g in G in a generalized (or
weak) sense(g also a locally integrable function inG) if it satisfies
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L~u,w;G!ªE
G
$~ai j ] ju1aiu!] iw2~bi] iu1cu!w%dx52E

G
g w dx, ;w>0 wPCc

1~G!

@whereCc
1(G) is the set of functions inC1(G) with compact support inG].

Notice, u is generalized sub-(super-)solutionrelative to a differential operatorL and the
domainG @i.e., satisfiesLu>0 (<0) in G in a generalized sense# if it satisfiesL(u,w;G)<0
(>0), ;w>0 wPCc

1(G).
Theorem 4 †strong maximum „minimum … principle ‡: Let uPW1,2(G)ùC0(G) satisfy Lu

>0 (<0) in G in a generalized sense, with

E
G

~cw2ai] iw! dx<0, ;w>0 wPCc
1~G! ~B3!

[equivalent to requirement (A3) in the classical case] and conditions (B1) and (B2) above.
u cannot achieve a non-negative maximum (nonpositive minimum) in the interior of G, un
[const.~A proof of this theorem can be found in Ref. 22, Theorem 8.19.!
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We consider the solution of spectral problems with elliptic coefficients in the
framework of the HermiteAnsatz. We show that the search for exactly solvable
potentials and their spectral characteristics is reduced to a system of polynomial
equations solvable by the Gro¨bner bases method and others. New integrable poten-
tials and corresponding solutions of the Sawada-Kotera, Kaup-Kupershmidt,
Boussinesq equations and others are found. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1633353#

I. INTRODUCTION

The article is devoted to the algorithmic problems associated with integrating the sp
problems

L̂C[
dn

dxn C~x;l!1u1~x,l!
dn21

dxn21 C~x;l!1¯1un~x,l! C~x;l!50, ~1!

whereuj are elliptic functions ofx and arbitrary~rational or transcendental! functions ofl. We
shall restrict our consideration to the Schro¨dinger equation

C92u~x! C5l C, ~2!

the equation

C-2u~x! C85l C, ~3!

and the generalization of the Halphen equation

C-2u~x! C82v~x! C5l C. ~4!

We use the termpotential for the u(x), v(x)-functions. Until the 1970/80s, few exactly solvab
potentials were known. Earlier, in 1872, Hermite28 developed an approach for the integration
the Laméequation

C92n~n11! `~x! C5l C, ~5!

and, later, Halphen extended it to the third order equation

C-2~n221! `~x! C82 1
2 ~n221! `8~x! C5l C. ~6!

Here and belows, z, `, `8 denote the standard Weierstrassian functions. See Refs. 25, 19, a
for an extensive discussion of these classical examples. According to modern terminology,
of exactly solvable elliptic potentials is a particular case of finite-gap potentials in elliptic f

a!Current address: Department of Mathematics and Statistics, Boston University, 111 Cummington St, Boston, Ma
Electronic mail: brezhnev@math.bu.edu
6960022-2488/2004/45(2)/696/17/$22.00 © 2004 American Institute of Physics
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tions. An intense investigation of elliptic potentials was initiated by Ref. 30, and in 1987 Ve
and Treibich41,38 unexpectedly found new potentials for the equation~2! in elliptic functions

u~x!56 `~x!12 `~x2v j ! ~7!

and gave the termelliptic solitons to them. Recently V. Matveev drew attention to the fact th
such potentials, in Jacobian form, were already considered by Darboux in a short note12 in 1882.
The following year, two comprehensive me´moires by Sparre36 appeared on this topic.

The development of a theory led to the current result that elliptic solitons are the widest
of finite-gapexplicit solutions. See, for example, Refs. 34 and 17, recent results in Refs. 35 a
and references therein. Reference 1 reviews work in finite-gap theory up to the beginning
1990s and Refs. 22 and 24 contain a wide bibliography on that score.

One feature of elliptic solitons is the potential, and theC-function can be found by the
Hermite Ansatzmethod.28 In the case of the potentials with the only pole in a parallelogram
periods, the derivation of the algebraic curve and other characteristics is not difficult. Fo
purpose it is enough to take a few resultants,15,1 but in the general case the elimination techniq
is insufficient. Section II contains a pure algebraic interpretation of Hermite’s method. In Se
we show that the general scheme for solving the problem under consideration~1! is reduced to the
computation of the Gro¨bner basis for some polynomial system. After Buchberger’s discover
the 1960s of an algorithm for finding the polynomial ideal bases, this area of algorithmic m
ematics has rapidly developed. See Ref. 32 with regard to the modern achievements in th
Section IV contains a relation between the method and traditional objects in finite-gap integ
theory: the canonical form of an algebraic curveF̃(m,l)50 and reduction of one of the holo
morphic differentials to the elliptic. Some new examples of elliptic solitons and their applica
to the integrable partial differential equations~PDEs! are presented in Secs. V and VI and dev
opment of the theory is discussed in Sec. VII.

II. ALGEBRAIC CHARACTERIZATION OF THE HERMITE METHOD

Based on theF-function

F~x;a!5
s~a2x!

s~a! s~x!
ez(a) x, ~8!

or more preciselyl’élément simple

F~x;a,k!5
s~a2x!

s~a! s~x!
e(z(a)1k) x

by Halphen,26,27 Hermite and Halphen28,25 considered the followingAnsatzfor the C-function:

C5F~x;a,k!1a1F8~x;a,k!1¯1anF(n)~x;a,k!. ~9!

The functionF(x;a,k) as well itsx-derivativesF8(x;a,k), ...,F(n)(x;a,k) are doubly-periodic
functions of x of the second kind. According to~1!, ~8! and ~9!, the expressionL̂C/F(x
2x0 ;a,k) is a two-periodic meromorphic function with only one simple pole at the pointx0 . It
must be a constant function. Setting it to be equal to zero, we haveL̂C50 under the correspond
ing choice of additional parametersk, a andaj . As theF(x;a,k)-function has the first order pole
at x50 ~Ref. 26, p. 231!,

F~x;a,k!5
1

x
1k1

k22`~a!

2
x1

k323 `~a! k1`8~a!

6
x21¯,
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to solve the problem, it is sufficient to equate to zero only the principal part~s! of the Laurent’s
expansion~s! of the expressionL̂C, whereC is the Ansatz~9! or its multi-pole generalizations
~see Examples 1–3 and 7 in Sec. V!.

As a nontrivial example we shall consider the five-gap Lame´ potential withn55 in ~5!. It has
been studied in Ref. 15, but we give a more simple solution. Note that the casesn52, 3, 4 and
partially 5 were considered already in Ref. 27, pp. 527–531. In the same place one ca
mention of eliminations.

By Frobenius theory,C must have a fifth order pole atx50 and therefore theAnsatzfor the
C-function should be the following:

C5F1a1F81¯1a4F(IV) . ~10!

Substituting~10! in ~5! and expanding the result atx50, we obtain a system of equations in th
variablesk, a, aj . This system is linear with respect toaj . We do not write expressions for theaj

@Ref. 15, formula~3.7!#. The remaining equations have the form

w1[26 k51 20
3 ~9 `1l! k3260`8 k21~90`2220l `2 10

7 l21 144
7 g2!k2 4

3 ~9 `25 l!`8,

~11!

w2[25 k61~75`15 l!k42100`8 k31~225`2230l `2 5
7 l21 180

7 g2!k2

220~3 `2l!`8 k125`3215l `21 5
7 ~l2220g2! `240g32 1

21 l31 44
7 g2 l,

which are understood to be equal to zero. The argumenta in the `, `8-functions is omitted for
brevity. The system~11! has to be considered as algebraic with respect tok andtranscendentalin
a. We emphasize that everywhere in the articlel is a parameter, but not variable in polynomi
bases. Insomuch as functions`~a! and`8(a) are related by the Weierstrass equation~torus!

w3[`8~a!224 `~a!31g2 `~a!1g3 , ~12!

we supplement~11! by ~12! and consider~11! and ~12! as apolynomialsystem with respect to
independent variables (k, `, `8). The simplest method of solution consists of the elimination
the variablè followed by `8. As a result, we find thatk must be a root of the polynomial

k4 ~5103k42945l k2140l2154g2!4 ~225~27g22l2! P6
2~l! k21P9~l! P3

2~l!!,

whereP6,9,3(l) are some polynomials inl with degrees 6, 9, 3, respectively. It is not difficult
guess that the correct result requires thatk andl are related by the following equation,

F~k,l!:225~27g22l2! P6
2~l! k21P9~l! P3

2~l!50, ~13!

since the differential equation~5! is of second order and we must have not more than two solut
for k with fixed l. Curve~13! can be brought into the canonical hyperelliptic form

F̃~m,l!:m25~27g22l2! P9~l!

by an obvious birational transformation@note a misprint 27g2
2 in this formula in Ref. 15, formula

~3.8!#. The variables̀ , `8 as functions ofk can be found in the same way: by the sequen
reduction of exponents of̀ , `8 in ~11! and ~12!.

Obviously, the resultant technique is almost impossible if the potential has several pole17,34

as the number of variables increases. Another approach consists of finding an equivalent
with the following criterion. It is advisable for the new system to contain linear equation
`, `8. These equations definea as a function of (k, l):
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`~a!5R1~k; l!, `8~a!5R2~k; l!, ~14!

and we call~14! a cover of torus~12! in algebraic form. Suppose one of the new equations do
not contaiǹ , `8 ~i.e., be a univariate polynomial ink) if the nontrivial solution fork exists. We
interpret such a polynomial asthe algebraic curve F(k,l)50 corresponding to given an ellipti
potential. IfF(k,l) has a factorized form, then each of the factors is investigated separately
curve is one of them. It is clear that its degree ink has to be equal to the ordern of the equation
~1!. The canonical formF̃(m,l)50 of the curve is obtained with the help of a birational tran
formation between variables (k,l)↔(m,l) ~see an explanation in Sec. IV!. Note, there are spe
cialized algorithms for the computation of the univariate polynomial in an ideal without sol
the system as a whole.

III. GRÖBNER BASES, CURVES AND COVERS

We clarify the main idea using the previous example. Let us consider three polyno
w1,2,3(`8,`,k) as a system generating an ideal in a polynomial ringQ(l,g2 ,g3)@`8,`,k#,

^I &5h1 w11h2 w21h3 w3 ,

wherehj5hj (`8,`,k) are arbitrary elements of the ring. As is well known, the structure of
solution of the polynomial systems depends on the monomial ordering in a ring.32 The arguments
at the end of Sec. II~see also the elimination theorem in Ref. 11! lead to the choice of pure
lexicographic ordering̀ 8s`sk. Reference 11 contains a good exposition of details of
subject. The main property of the Gro¨bner base is expressed in the following.

Definition:11 Let $w1 , w2 , ...% be a basis of ideal I5^w1 , w2 , ...&. Let s be a monomial
ordering on the ringQ@ ...# and LT( f ) denote the leading term (monomial) of a polynomia
PQ@ ...#. The set G5$ f 1 , f 2 , ..., f N% is said to be a standard basis (Gro¨bner basis) if the mono-
mial ideal generated by

^LT~ f 1!, LT~ f 2!, ..., LT~ f N!&

is coincident with an ideal̂LT( I )& generated by all the leading terms of I.
In other words, the leading term of any polynomial inI is divisible by one of the LT(f j ).

According to the definition at the end of Sec. II, the polynomialF(k;l), determining the algebraic
curve

F~k;l!50, ~15!

is a generator of the intersection of the idealI and the ring of all polynomials ink:

^F~k;l!&5I ù Q~l!@k#.

Thus we arrive at a general recipe for the solution of the spectral problem~1!.
Proposition: Let$w1 , w2 , ...% be polynomials iǹ 8(a), `(a), k, ... appearing in the Her-

mite method and determining the solution of the spectral problem (1): the cover of torus (14
the curve (15). Then we have the following.

(1) Algorithmically, the method of solution is reduced to the computation of a standard bas
the ideal I5^w1 , w2 , ...& with respect to pure lexicographic ordering̀8(a)s`(a)sk
s¯. ~For example, by Buchberger’s syzygy polynomials algorithm.7!

(2) Let G5$ f 1 , f 2 , ..., f N% be this basis. The algebraic curve (15) and its projection on the to
(12) in algebraic form (14) are contained in G if the univariate polynomial in k and poly
mials (14) exist.

(3) If G contains a polynomial free from variables k, `8(a), `(a), then the spectral problem (1
is not integrable in the framework of Hermite’s Ansatz.
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Proof:
~1! The standard basis always exists and Buchberger’s algorithm terminates.11

~2! Taking the resultants ofw1 , w2 , ... we eliminate variables̀ , `8 and get polynomial~s!
R(k). It is obvious thatR(k)PI . Using the divisibility

^LT~ f 1!, LT~ f 2!, ..., LT~ f N!&5^LT~ I !&

and lexicographic ordering, the equalityR(k)5h(k) f̂ has to occur for somef̂ PG and h(k)
PQ(l)@k# ~possibly equal to 1!. Therefore there exists a polynomialf̂ depending only onk.
Designatingf̂ (k)[F(k;l), we obtain the curve~15!. If F(k;l) has a factorized form, then th
algebraic curve is one of its factors. Analogously, if the polynomials~14! exist, then they neces
sarily belong toG. In the same way, an important formula, the curve as a cover of the torus~12!
in a transcendentalform ~an equation ina!

R~`8~a!, `~a!; l!50, ~16!

necessarily must be contained inG computed with the orderingks(`8(a)s`(a)s¯), where
permutations inside the brackets are allowed. Note the order of elliptic function~16! in a is equal
to the ordern of the equation~1!.

~3! An existence of such a polynomial implies a restriction on the spectral parameterl ~see an
illustrative Example 5!. j

Note a direct link of the point~3! to a treatment of finite-gap potentials as Picar
potentials.21

There are numerous algorithmic methods to solve this problem. Among them are the G¨bner
basis method,7,10 the method of characteristic sets, and an effective method of elimination b
on the Seidenberg theory.43 We do not discuss all the modern achievements in this area. See
32 and references therein for details. Note that the reduction of the holomorphic differentialda to
the elliptic one is derived from~14! by the formula

da5
d`~a!

`8~a!
5

Fk R1l2Fl R1k

R2 Fk
dl, ~17!

where subscriptsk, l denote the derivatives with respect tok andl.

IV. CANONICAL FORM OF CURVES AND HOLOMORPHIC DIFFERENTIAL

Formulas~15!–~17! give a noncanonical form of the curve and holomorphic differential, i
expressions in the variables (k, l). The canonical variables~m, l! in the algebraic curve
F̃(m,l)50 we call variablesl in ~1! and eigenvaluem of a commuting operator pencil

P̂~l! C5m C. ~18!

Supplementing the polar expansion of the equation~1! by the polar expansion of~18!, we get the
algebraic equations in variables (`, `8, k, m, ...). Again, based on the above properties of t
Gröbner base, a canonical representation of the solution and all the spectral characteris
extracted by computing the base with the ordering (`s`8s¯)sksm. Such a base contains
birational transformation between the (k, m)-variables in one direction:

m→k: k5R3~m;l!. ~19!

An inverse transformation

k→m: m5R4~k;l!, ~20!
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where R3,4 are rational functions of its arguments, is computed by the ordering (`s`8s¯)
smsk.

We add a few words about the efficiency of computations. The solution of a spectral pro
itself does not require the inclusion of a commuting operator~18!. So, among of its polar expan
sions one may take~and supplement! those containing only them-variable. Evidently, it will enter
into the polar expansion with first degree:

m5w~k,`,`8;l!. ~21!

After the computation of the base@not including~18!#, we will have the curve~15! and cover in
algebraic form~14!. Substituting it into the equation~21!, the pair of equations for the determ
nation of the above transformation~19! and ~20! becomes

m5w~k, R1~k;l!, R2~k;l!; l!, F~k;l!50. ~22!

Formulas~19! and ~20! are obtained by computation of the bases for~22! with ordering (ksm)
and (msk), respectively. See Example 6 for details.

V. EXAMPLES

In this section we demonstrate the ideology of Secs. III and IV on examples. The genera
the technique allows us to make further proofs. Let us prove that the well known potent
Treibich and Verdier~7!41 for the equation~2! is the only possible integrable two-pole potential
the class

u~x!56 `~x!12 `~x2V!, VÞ0. ~23!

Example 1. The Treibich–Verdier potential:Parametersl, g2 , g3 are fixed andV is an un-
known constant. TheAnsatzfor the C-function must be the following:

C5a0F~x;a,k!1a1F8~x;a,k!1a2F~x2V;a,k!. ~24!

Substituting~23! and ~24! into ~2! and equating the poles to zero, we obtainC-function

C56 F~2V;a,k! F8~x;a,k!2~3 k223 `a22 `V2l! F~x2V;a,k!

and a system of five polynomials:

w152 ~`a2`V! k313 ~`V8 2`a8 ! k212 ~`a2`V!~3 `a2l22 `V! k

1~6 `V2`a! `a82~`V8 2`a8 ! l2~7 `a22 `V! `V8 ,

w253 k32~9 `a24 `V1l! k13 `a813 `V8 ,

w353 k422 ~9 `a214`V2l! k2112~`V8 1`a8 ! k2 9 `a
2

22 ~14`V1l! `a112`V
2 28 l `V2l2, ~25!

w45`a8
224 `a

31g2 `a1g3 ,

w55`V8
224 `V

3 1g2 `V1g3 ,

where we used the addition theorems for elliptic functions, the important equality

F~V;a,k! F~2V;a,k!5`a2`V ,
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and designated̀ a[`(a), `V[`(V), etc. A common factor̀ a2`V was removed in polyno-
mial w3 because it leads to the contradiction:a5V (a25`). The system~25! generates the idea

^w1 , w2 , w3 , w4 , w5&PQ~l,g2 ,g3!@k,`a8 ,`a ,`V8 ,`V#. ~26!

Note, the same ideal̂w1 ,...,w5& in the ring Q(l,g2 ,g3 ,`V)@k,`a8 ,`a ,`V8 # leads to the just
mentioned conditioǹ a2`V50. ThereforeV is not arbitrary. Computing the minimal reduce
Gröbner basis for~26! with pure lexicographic ordering̀ a8s`asks`V8 s`V , we obtain eight
polynomials, some of them having a factorized form. If some of the factors do not dependl,
we obtain restrictions oǹ V8 and`V equating these factors to zero. There are four such poly
mials:

G15`V8 ~~l324 g2 l216g3! k1~3 l224 g2! `V8 !M ,

G25`V8 ~16`V8 k13 l224 g2!M ,

G35~4 `V
3 2g2 `V2g3! ~4 `V2l! M ,

G45`V8 ~4 `V2l! M ,

where the multiplierM denotes 3k22l25 `V . The equationM50 yields the trivial result
`(a)5`(V). It is checked by recomputing the base~25! with an additional polynomialM .
Further,V must not depend onl ~!!. Therefore, the only solution forV is defined by the equation

`8~V!50⇒V5v1 , v2 , v3 ,

where v j are the half-periods of elliptic functions. Substituting̀V8 50,`V5e1 , g254 (e1
2

1e1e21e2
2), g3524 e1e2(e11e2) into ~25! and recomputing the basis with respect to the

dering `a8s`ask, we obtain the well known algebraic curve of genus 2 and all algebr
geometric objects.2,34. For classification results of the Treibich–Verdier potentials and other e
tic ones, see Ref. 34, the appendix in Ref. 16 and the most recent results in Ref. 37.

Example 2:As a preliminary, we shall consider Eq.~3! with potential

u~x!56 `~x!16 `~x2V! ~27!

and the restrictiong250. As before, we have theAnsatzfor the C-function

C5F~x;a,k!1a1F~x2V;a,k!

and the original basis of the ideal is generated by five polynomials. Computing the Gro¨bner basis
G, we obtain a system of eight polynomials. Only two of them have a factorized form:

G15~64l3k3227~l2116g3!2!~`V8 k23 `V
2 !,

G25~64l3k3227~l2116g3!2!~~4 `V
3 2g3!k23 `V8 `V

2 !.

The nontrivial solution will take place if and only if (k, l) are coordinates of the algebraic curv
which is the first factor inG1 , G2 . In the next example we rule out the conditiong250.

Example 3:If g2 is free, the straightforward computing of the basis is unsuccessful. Ind
the Gröbner base method is universal and therefore it can be ineffective in some special cas
our interest is only with thezero structureof the polynomial system. Thus, the characteristic s
method42 is the best approach in this case. Under the ordering`Va`V8 aka`aa`a8 , the char-
acteristic set has the form

f 15~64~k l1g2!~k l22 g2!2227~l2116g3!2! k M,
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f 25~8 ~kl22 g2! `a28 k3l116g2 k213 l2148g3!•~4 `V8 k1g2212`V
2 ! k,

~28!
f 35~32~kl22 g2! l3 `a82192g2

2 k2 l21~l42288g3 l226912g3
2128 g2

3! k l

2g2 ~11l41864g3 l216912g3
2228 g2

3!! k M,

f 45`V8
224 `V

3 1g2 `V1g3 ,

where

M[64`V8 `V k224 ~3 `V8 l216g2 `V212g3196`V
3 ! k13 ~12`V

2 2g2!~l14 `V8 !.

Factorization shows that the variableV is separated in polynomialsf 1,2,3. Thereforef 1 gives an
algebraic curve independent ofV:

64~k l1g2!~k l22 g2!2527~l2116g3!2. ~29!

The polynomials$ f 2 , f 3% are an algebraic form of the cover~14!. However, the genus of the curv
~29! is unity and we have a cover of a torus by a torus. Hence, if moduli of both tori are e
then there is a one-to-one correspondence between the global parametera of the torus~12! and the
global parametert of the torus~29!. The next step is to find it. After the birational change
variables (k,l)↔(y,x),

k5
3 y212 g2 x13 g3

4 y x
, l54 y,

we obtain the canonical form of the curve~29! as y254 x32g2 x2g3 with an obvious uni-
formization and the equalitya52 t. The final solution of the problem~3! and~27! is as follows:

C~x;l!5a F~x;2 t,k!1F~V;2 t,k! F~x2V;2 t,k!, l524 `8~t!,
~30!

a5z~2 t1V!22 z~t!2z~V!, k52 z~t!2z~2 t!.

The passage to the limitt→v j in ~30! leads to the solution under the conditionl50:

C~x;l50!5C1 ~z~x!2z~x2V!!1C2 .

An attempt to integrate the more general potential

u~x!56 `~x2V1!16 `~x2V2!1A

with a nonzero constantA failed. However, this point has an explanation in the theory of nonlin
partial differential equations. Indeed, the spectral problem~3! is associated with the Sawada
Kotera ~SK! equation33

ut5uxxxxx25 u uxxx25 ux uxx15 u2 ux . ~31!

By assuming that the polesV1,2 depend on timet, one obtains an isospectral deformation of th
potential. This simple calculation yields the stationary solution of~31!

u~x,t !56 `~x2c t!16 `~x2c t2V!1A

with the conditions

c112g215 A2160A `~V!50, A `8~V!50.
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Therefore (V5v j andA is free! or (A50 andV is free!. In the both cases we obtain a restrictio
on a velocityc of two canoidal waves. See an example in Ref. 40 for the caseA50. Recently,
Conte and Musette obtained a similar result@Ref. 31 formula~84!# and revealed a remarkabl
more general solution in an old paper by Chazy8 in the context of the Painleve´ analysis:

u~x,t !56 `~x2c t2V; g2 ,g3!16 `~x2 c̃ t2Ṽ; g̃2 ,g̃3!,
~32!

c53 g2215g̃2 , c̃53 g̃2215g2 .

Strictly speaking, Chazy’s solution~Ref. 8 p. 380! corresponds to the stationary equation~31! and
therefore to the caseg̃25g2 ( c̃5c) in ~32!. One can show that the potential~32! is the stationary
solution of a linear combination of the equation~31! and higher SK–equation of the seventh ord

ut5u7x2 27~u u5x12 ux u4x13 uxxuxxx22 u2 uxxx26 u ux uxx2ux
31 4

3 u3 ux!. ~33!

Section VII contains additional information for this potential. We do not enumerate other one
elliptic potentials u(x)5A `(x)1B for the equation~3!. For example, one of them isu
530`(x)63 A3 g2 ~see also Ref. 5!.

Example 4:Let us consider a general one-pole elliptic potential for the equation~4!,

C-2~a `~x!1d! C82~b `8~x!1c `~x!! C5l C, ~34!

in the framework of theAnsatz

C5F~x;a,k!.

Using the above techniques in the ringQ(a,b,c,d)@`a ,`a8 ,k# we do not get the solution:I
5^1&. Therefore (a,b,c,d) have to depend on each other. After calculations in the r
Q(a,b,c)@`a ,`a8 ,k,d# we determine step by step the constants (a, b, c, d) and get the following.
The first polynomial in a base is

28 b3 ~2 b23!3 l224 c ~2 b23!2 ~4 d b3212b2 d2b c216 c2! l1¯50.

Equating to zero the coefficients in front ofl2, l we obtain

b5 3
2 or b50.

In these cases we will have, respectively,

3 d2c250, ~216l1c3236c d! c350.

Therefore (b5 3
2, d5c2/3) or b5c50. In the first case, we have

C-23 ~`~x!1c2! C82~ 3
2 `8~x!13 c `~x!!C5l C, C~x;l!5F~x;a,c!.

The nonramified cover of the torus~16! of genusg51 is

`8~a!26 c `~a!12 l14 c350.

c is an arbitrary constant and the conditiong250 ~Ref. 29, example 3.10! does not appear. Note
there is no such restriction in the Halphen equation~6! with n55 as in Ref. 15. It appears only fo
n54.17 The second case is known:29
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C-2~6 `~x!1d! C85l C,
~35!

108l `8~a!136~d223 g2! `~a!127l22108g324 d350 ~genusg52!.

See Ref. 3 for an application of this potential.
Note that both cases can be found in Ref. 28 t. III, pp. 372, 522, in Jacobian functions an

19, III/IV, pp. 460, 462, in Weierstrassian functions. No other possibilities exist. The same
nique is applicable to otherAnsätze. The next one is a nontrivial example along these lines.

Example 5:The equation~34! in the framework of theAnsatz

C5a0F~x;a,k!1F8~x;a,k!. ~36!

As a consequence of corresponding indicial equation~38! with n52, without loss of generality we
set b5122a in ~34!. Solutions fora,c,d must not depend onl and k. One solution suggest
itself. Indeed, the first polynomial in the original base has the form

~a212! ~~a218! ~k22`a!12 c k!12 ~a218! d1c250.

With a512, this polynomial does not depend onk,a and we get~after the replacementc
→12c)

a512, b50, d512c2, a05k22 c.

Moreover, the ideal in the ringQ(l,c,g2 ,g3)@`a ,`a8 ,k# is not equal tô1& and, therefore,c is an
arbitrary constant. Thus, the equation~34! and its solution take the form

C-212~`~x!1c2! C8212c `~x! C5l C,
~37!

C~x;l!5F8~x;a,k!22 c F~x;a,k!.

We do not give here the large formulas for the cover~14!, or the four-sheet cover in the form~16!
and write only a skeleton of the nonhyperelliptic trigonal algebraic curve~15! of genusg53,

64~l2132c3 l128 c62108g2 c2!~l211c3! k31~¯ ! k21~¯ ! k1~¯ !50,

where (̄ ) designate some polynomials inl,c, g2 , g3 with integer coefficients.5 Underc50 we
arrive at the case~27! with V50.

The higherAnsätze ~9! are investigated in a similar manner. Indeed, by Fuchs–Frobe
theory, if C has the expansionC5x2n1¯, thena,b satisfy the determining equation

2n~n11!~n12!1an12 b50. ~38!

A natural question appears: under what parameters (a,b) does the equation~38! have integral
solutions forn ? One of solutions is Halphen’s equation~6!. It corresponds to 2b5a and ~38!
reduces to

a5n221 ~n[n11!.

As in the previous example we can list all the possible cases for theAnsatz~36!. Indeed,
assumingb5122a and (a,d,c) to be arbitrary, the origin base contains three polynomials.5 The
first and second of them are linear iǹ, `8. Solving them and substituting into the base again,
obtain the remaining polynomial in (l, k):

24 ~a212!2 ~a218!2 ~~a26! ~a218! k1c ~a29!! l1~¯ ! k1~¯ !50,
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where dots denote a polynomial in (a,c,d,g2 ,g3). It must be zero for all values ofl. Splitting it
in l we get two linear polynomials ink. Their compatibility condition is the polynomial

~a26!~a28!~108c4272~a218!2 d c21~a218!4 ~12d22~a212!2 g2!!50

and solution fork

k52
~a29! c

~a26! ~a218!
.

The verifying of Weierstrass’s relation~12! yields a polynomial inl:

~a26!3~a212!3~a218!6 l21~¯ ! l1~¯ !50.

UnderaÞ6, 12, 18 we arrive at the point~3! of the Proposition. Therefore, only three possibiliti
exist: a56, 12, 18. The corresponding final solutions for the variables (`8, `, k) are obtained
separately: by recomputing the base. Thus, besides~37!, we have the following integrable poten
tials @note a misprint̀ (x) instead of̀ 8(x) in one of the formulas in Ref. 5#:

C-2~18`~x!1d! C816 `8~x! C5l C, C-2~6 `~x!1d! C826 `8~x! C5l C.

See Ref. 39 for solutions of the generalized Halphen equation~6! and Ref. 5 for details of
Example 5.

It should perhaps be noted here that the example~37! is the generalizationcÞ0 of the first
nontrivial casen523 in a series of other Halphen’s equations~Ref. 27, p. 554!,

w-2
4

3
n2 w8 `~z!2

2

27
n ~n13! ~4 n23! w `8~z!50 ~39!

withouta spectral parameter.@The example~39! was revealed by E. Previato.# Notation as in Ref.
19 III/IV: Ex. 15, p. 464. Indicial equation~38! for the example~39! becomes

~3 n12 n!~3 n12 n16!~3 n24 n13!50

and (n13)(n16)(4 n29)50 for theAnsatz~36! (n52).
Example 6:Halphen’s equation~6! with n55. Here we display only the final formulas in th

context of Sec. IV:
~i! the commuting operator pencil~18!:

l C9214~4 `~x!22g2! C8116~7 `8~x!2l! `~x! C5m C;

~ii ! the polynomial~21!:

6 m256k51560`a k3220~28`a82l! k21168~5 `a
22g2! k 24 ~28`a815 l! `a50;

~iii ! the birational transformation~19, 20!, which is quadratic in (k, m):

m5
32

49

~2 ~l22392g3! k l17 ~5 l22784g3! g2! ~~l22392g3! k221g2 l!

l42208g3l213136~g2
314 g3

2!
,

k5
7

8

m224 g2 ~5 l22784g3!

~l22392g3! l
;

~iv! the canonical form of the algebraic curve of genus 4~see also Ref. 39!:
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F̃~m,l!:m324 g2 ~11l22784g3! m2l51208g3 l323136~g2
314 g3

2! l50;

~v! the eight-sheet cover in the form~16!:

28 ~l22392g3!3 l `8~a!22849g2 ~l21112g3! ~l22392g3!2 `~a!1l82¯50.

Note that both this cover and its algebraic form~14! are the expansive expressions, whereas
reduced holomorphic differential~17! in the variables (k, l) and ~m, l! is given by the simple
formulas:

d`~a!

`8~a!
5

28 ~l2256g3!

3 m224 g2 ~11l22784g3!
dl5

27 ~l2256g3!

~l22392g3! ~3 l k114g2!
dl.

Analogs of the above formulas are derived for all other examples in the article.
Example 7:The two-pole potential for the equation~4! with Ansatz

C5F~x;a,k!1a1 F~x2V;a,k!.

The general two-pole elliptic potentials contain many parameters—multipliers before
`8, `, z-functions. We do not give their exhaustive classification and consider only the
interesting case

C-23 ~`~x!1`~x2V!2`~A!! C82 3
2 ~`8~x!1`8~x2V!1B `~x!2B `~x2V!!C5l C.

~40!

By virtue of the Proposition, the Gro¨bner base contains all the information about the solution,
all the following formulas. As before we obtain thatV, A are arbitrary constants and

B52 A`~V!2`~A!.

The parametersk andl as meromorphic functions are connected by an algebraic equation o
genus 2 independent ofV ~compare with Ref. 35!:

2 l k31~3 `A
22g2! k223 `A l k2 1

4 l21`A8
250. ~41!

The equation~41! can be realized as a two-sheet cover of a torus in the form~16!,

l `8~a!1~3 `A
22g2! `~a!1 1

4 l21`A
32g350.

The algebraic form of cover~14! has the form

`~a!5k21`A , `8~a!5~g223 `A
2 !

k2

l
2

`A8
2

l
2

l

4
.

VI. SOLUTIONS OF INTEGRABLE PDEs

The spectral problem~4! and ~40! corresponds to the Boussinesq equation

3 utt5~2 u22uxx!xx , ~42!

and the arbitrariness ofV means the existence of an isospectral deformation of the potentia

u~x,t !53 `~x2V1~ t !!13 `~x2V2~ t !!23 `A . ~43!
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Substituting the two-gapAnsatz~43! in ~42!, we get the well known system of pairwise-interacti
particlesV1,2(t) of the Calogero–Moser system type30 with a repulsion potential and immovabl
center of mass. Integration leads to an equation forV1(t):

V̇1
254 `~2 V12c!24 `A , V25c2V1 .

Using the uniformization of the corresponding elliptic curve, we obtain the explicit solution

V1~ t !5
1

2
`21S z̃~t1n!2 z̃~t2n!2 z̃~2 n!1

1

4
`AD1

c

2
,

~44!

n56
1

2
`̃21S `A

2

16
1

g2

24D , `̃8~2 n!52
1

32
~`A

32g2 `A12 g3!,

wheret58 (t2t0) andc, t0 are arbitrary constants. An implicit form of this solution withc50 in
terms of Jacobi’s sn, cn, dn-functions is given in Ref. 20 and in the earlier citation9 in the context
of solutions of the Kadomtsev–Petviashvili equation. In~44!, the elliptic integral̀ 21 is calcu-
lated with invariantsg2 , g3 , and thez̃, `̃21-functions with invariants

g̃25
1

16S g2 `A
213 g3 `A1

g2
2

12D , g̃352
g3

28 ~`8A
212g3!1

g2
3

2733 2
g2 g̃2

24
.

The reduction caseB50 in ~40! corresponds to the Kaup–Kupershmidt~KK ! equation

ut5uxxxxx25 u uxxx2
25
2 ux uxx15 u2 ux ~45!

and its stationary solution

u~x,t !53 `~x2c t!13 `~x2c t2V!23 `~V!, ~46!

but the velocityc depends on the distance between poles:

c53g2245`2~V!.

The generalization of~46! in a similar way as the solution~32! is

u~x,t !5212~`11`2!13S `182`28

`12`2
D 2

, ~47!

where

`1[`~x2c t2V; g2 ,g3!, `2[`~x2c t2V̂; g2 ,ĝ3!, c5212g2 .

Here V, V̂, g2 , g3 , ĝ3 are five arbitrary constants. Using a connection between the SK(u)- and
KK( w)-equations and the Tzitzeica equation

fxt5ef2e22 f ~48!

with the Fordy–Gibbons equation18

v t5vxxxxx25 ~vx vxxx1v2 vxxx1vxx
2 1vx

314 v vx vxx2v4 vx!

via the Miura transformations
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u5v22vx , w5v212 vx , u5fxx1fx
2 ,

we obtain stationary solutions for thev-function

v~x,t !5
`182`28

`12`2
.

Nonstationary solution of the equation~48! has the form

f~x,t !5 ln 2 c1 ln~`~x1c t2V;g2 ,g3!2`~x2c t2V̂;g2 ,ĝ3!!

with the restriction: 4 (ĝ32g3) c351. The details of calculations~44! are expounded in Ref. 5 an
the formula~47!, and theC-function for the potentials~32! and ~47! in Refs. 5, 4, and 40.

VII. CONCLUDING REMARKS AND DISCUSSION

The investigation of elliptic solitons can be automated by polynomial techniques. The Gr¨bner
base method provides a unified approach to the solution of related problems. The tec
suggested with minor modifications is extended to matrix spectral problems.

As the Examples 2, 3 and 5 show, the algebraic curves can be degenerate~multiply roots of
discriminant!.

The general case in Example 7 for the equation~4!,

u~x!5a `~x!1b `~x2V!1c z~x!2c z~x2V!,
~49!

v~x!5d `8~x!1e `8~x2V!1 f `~x!1g `~x2V!1h z~x!2h z~x2V!,

requires additional research.
To all appearances, the example~37! has to fit into the hierarchy of higher Boussinesq eq

tions, studied in full in Refs. 13 and 14. Multi-pole potentials are investigated by involving
addition theorem for theF-function:

F~x1z;a,k!5
1

2

F~x;a,k! F~z;a,k!

`x2`z
S `a81`8x

`a2`x
2

`a81`8z

`a2`z
D .

A natural assumption suggests itself:all the potentials, obtained by the above method,
finite-gap ones. At least, by construction, all such potentials belong to the set of exact integ
~explicit C40! and theC-function is a single-value function on a Riemann surface of the algeb
curve F(k,l)50 and meromorphic function~in x) for all values ofl ~Picard’s theorem21,23!.
Since ourC is expressible in terms of Weierstrassians, all the corresponding spectral problem
become quadrature integrable. See Ref. 6 for further explanations of this concept of integr
in the example of the Schro¨dinger equation and see Ref. 40 and the example below for o
spectral problems. Note that all linear independent solutions for theC-function are obtained by
choosing thek-branch of algebraic equation~15!.

If the assumption is valid, then the potentials for the spectral problems~2!–~4! are free of
residues~a consequence ofQ-formulas!, and thereforeAnsätze for the multi-pole potentials@say
~49!# do not have to involve thez-functions. This strongly decreases the number of parameters
the computational task.

The potential~32!

u56 `~x2V; g2 ,g3!16 `~x2Ṽ; g̃2 ,g̃3! ~50!

with arbitrary invariantsg2 , g3 , g̃2 , g̃3 is a finite-gap one for the equation~3!, but its spectral
characteristics can not be obtained in the framework of elliptic soliton theory. The correspo
commuting operator pencil is derived with the help of the equation~33! and takes the form
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~9 ~u2c1! l23 u-16 u u81c1 u8! C92~27l219 u8 l2u(IV) 23 u821 4
3 u32c1 u92c1 u2

127c2! C816 l ~u92u21c1 u! C5m C.

Hence, the canonical formF̃(m,l)50 of the associated trigonal curve of genusg54 is obtained
by elimination ofC:

a3 m3135~36a2 b l42~a5216g2 a4116g2
2 a31192~b23 g3! a2 b1192g2 a b2! l2

148~g3 a52g2 a4 b14 a2 b3!! m136 ~27a3 l72216~a3b24 g3 a312 g2 a2 b18 b3! l5

22 ~a6130g2 a5296g2
2 a428 ~45b22216g3 b28 g2

31432g3
2! a31576~b

16 g3! g2 a2 b2289 g2
2 a b222833 ~b422 g3 b3! l32288~a322 g2 a2124b2!~g3 a3

2g2 a2 b14 b3! l50, a[g22g̃2 , b[g32g̃3 ,

and the correspondingC-function is given by the expression

C~x;l!5expE l F22G H1F H82F8 H

G22u F22F H1F8 G2F G8
dx,

where prime denotes a derivation inx and

F[23 u-16 u u823 c1 u819 ~u2c1! l, H[6 ~u92u21c1 u! l2m,

G[u(IV) 1c1 ~u91u2!23 u8229 u8 l2
4

3
u3227~l21c2!,

c1[212
g32g̃3

g22g̃2
, c2[

8

3

~3 g̃31g3! g22~3 g31g̃3! g̃2

g22g̃2
.

One particular case of the potential~50! and the more general property of finite-gap potentials
discussed in Ref. 40.

The natural generalization of Hermite’s method is to consider nonlinear homogeneousAnsätze
for the C-function. For instance, the quadraticAnsatz

C5ekx (
j , n

Ajn F~x2V j ; a! F~x2Vn ; a!.

However, this does not fit into the framework of finite-gap integration theory, because the po
the potential can depend on the spectral parameter. The following example with the transce
dependence on spectral parameter elucidates this:

C95~6 `~x!12 `~x2l!14 `~l!! C, C~x;l!5F2~x; l!.

Actually, the quadratic~and higher! Ansätzewill not give an advantage due to the relation

F~x;a!252F8~x;2 a,z~2 a!22 z~a!!

and we again arrive at the framework of Hermite’s method.
Note that the nonintegrability of equation~1! in context of the point~3! of the Proposition,

nevertheless, can be useful for its integrability with special values ofl or for more complex
operator pencils with a dependence of the potential~say parametersa,b,c,d in Examples 4 and 5!
on l. The availability of additional constants in the potentials may be considered as a fam
spectral pencils, and under fixed values ofl, as new spectral problems. For instance, the two-
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Lamépotentialu56 `(x) for Eq. ~5! is obtained from example~35! with l50 andd→l, C8
→C. A less simple example is to swap the parametersl↔c in Eq. ~37!, whereupon one finds the
finite-gap operatorl-pencil

C-212~`~x!1l2! C82~c112l `~x!! C50

with the algebraic curveF(k,l)50 of genusg58 @Ref. 5, formula~15!#.
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27Halphen, G. H.,Traité des Fonctions Elliptiques et de Leurs Applications, Parte 2~Gauthier–Villars et Fils., Paris,
1888!.

28Hermite, C.,Oeuvres de Charles Hermite, III~Gautheir-Villar, Paris, 1912!.
29Kamke, E.,Differentialgleichungen Lo¨sunsmethoden und Lo¨sungen~Chelsea, New York, 1971!.
30Krichever, I. M., ‘‘Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable particle systems,’’ F

Anal. Appl. 14 ~4!, 45–54~1980! ~in Russian!.
31Musette, M., and Conte, R., ‘‘Ba¨cklund transformation of the partial differential equations from the Painleve´-Gambier

classification. I. Kaup-Kupershmidt equation,’’ J. Math. Phys.39, 5617–5630~1998!.
32Progress in Mathematics Volume 109,Computational Algebraic Geometry, edited by F. Eyssette and A. Gallig
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A class of nonautonomous coupled Korteweg–de Vries~KdV! systems in (111)
dimensions are considered for integrability classification. Integrability of the sys-
tems is associated with the existence of a certain recursion operator. Some new
integrable nonautonomous two-component KdV systems are found. ©2004
American Institute of Physics.@DOI: 10.1063/1.1628838#

I. INTRODUCTION

There has been a constant interest in finding new scalar and multicomponent integrab
linear equations because of both the rich mathematical structures they possess and the wide
of physical systems having interesting properties that are described by such equations. F
purpose, many classes of scalar and multicomponent KdV type equations are classified ba
different aspects of integrability such as existence of infinitely many symmetries and/or co
vation laws, bi-Hamiltonian structure, master symmetries, recursion operator, formal symme
infinite rank, Lax representation, Painleve´ property, etc.1–13

Despite their frequent appearance in applications where inhomogeneous properties of p
media are taken into account, nonautonomous versions of KdV type equations are only i
gated for scalar equations. These investigations gave negative results for existence of o
nonautonomous scalar KdV type equations.5,14,15 All the known equations that are apparent
nonautonomous were also found to be transformable to the usual KdV or to its well-k
modifications. On the other hand, due to their importance in applications, systematic deriva
nonautonomous versions of KdV and other integrable equations are considered in Ref. 16

Most of the systematic integrability classifications of multicomponent equations are
formed only for nondegenerate systems,1–4,9,12,13usually having the identity matrix as the coeffi
cient of highest order~derivative! terms. Degenerate systems are relatively less interested. Sys
of this latter type are usually introduced on their own.17,18 There are also systematic works
obtain such systems.6,8,10 However, the most generic degenerate systems known so far ar
tained in a physical problem,7 where a class of degenerate KdV type extended two-compo
equations are introduced with their bi-Hamiltonian structure in the context of asymptotic int
bility of water waves.

Recently, we have started classification of nonautonomous multicomponent KdV sy
based on the existence of a certain recursion operator.13 We obtained the nonautonomous versio
of autonomous Svinolupov Jordan KdV systems4 therein. In the present work, we proceed with t
recursion operator based integrability classification of nonautonomous KdV type multicomp
equations. Motivated by the results of the above-mentioned earlier works and the form of
drical KdV equation, here we aim to classify both degenerate and nondegenerate classes
following N-component nonautonomous KdV type extended equations

qt
i5bj

i qxxx
j 1sjk

i ~ t !qjqx
k1yj

i ~ t !qj , i , j ,k51,2,. . . ,N, ~1!

a!Electronic mail: refik@metu.edu.tr
7130022-2488/2004/45(2)/713/12/$22.00 © 2004 American Institute of Physics
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whereqi5qi(x,t) are the dependent variables. We associate integrability of system~1! with the
existence of a recursion operator whose form we assume to be

R j
i 5zj

i ~ t !D21ajk
i ~ t !qk1hj

i ~x,t !1@cjk
i ~ t !qx

k1wj
i ~ t !#D21, ~2!

whereD5 d/dx andD21 is the formal inverse operator (DD215D21D51).
Systems admitting a recursion operator are integrable in existence of infinitely many sy

tries sense because by definition a recursion operator maps symmetries of a system t
symmetries of it endlessly.19

Here, in~1! and~2! except forbj
i which are assumed to be constants, all the coefficient te

are introduced with their presumed dependence on the independent variablesx and t. Sufficient
differentiability of these coefficients with respect to their independent variables is also assu

System~1! admits recursion operator~2! if they satisfy the integrability criterion19

R j ,t
i 5K r8

iR j
r2R r

i K j8
r , ~3!

where

K j8
i5bj

i D31sk j
i ~ t !qkD1sjk

i ~ t !qx
k1yj

i ~ t !

is the Fréchet derivative of the system~1!.
In Sec. II we give the conditions for~1! and~2! to satisfy the integrability criterion~3! for an

arbitrary numberN of components. In Sec. III we briefly explain our classification algorit
which is based on the Jordan canonical forms of matrices and finally in Sec. IV we giv
two-component (N52) systems we found as solutions of the integrability conditions.

II. INTEGRABILITY CONDITIONS

The integrability criterion~3! leads to some algebraic and differential conditions among
coefficient terms of the system~1! and the recursion operator~2!. In the following proposition we
give these conditions.

Proposition 1: Let qi(x,t) be functions of x and t satisfying system of equations (1) wh
admits a recursion operator R j

i given in (2). Then the coefficient term
bj

i ,sjk
i (t),yj

i (t),zj
i (t),ajk

i (t),hj
i (x,t),cjk

i (t),wj
i (t) satisfy the following relations:

3bk
i ajl

k 1bk
i cjl

k 1skl
i zj

k22zk
i sl j

k 2zk
i sjl

k 2ckl
i bj

k50,smk
i ajl

k 2akm
i sl j

k 50,

3bk
i ajl

k 13bk
i cjl

k 2zk
i sl j

k 22zk
i sjl

k 50,ajk
i bl

k2bk
i ajl

k 23bk
i cjl

k 1zk
i sjl

k 50,

bk
i zj

k2zk
i bj

k50,bk
i hj

k2hk
i bj

k50,bk
i cjl

k 2cjk
i bl

k50,wk
i ~sl j

k 2sjl
k !50,

ckm
i ~sjl

k 2sl j
k !50,cjk

i sml
k 2skm

i cjl
k 50,cjk

i sml
k 2smk

i cjl
k 50,

ajk
i sml

k 1akm
i sjl

k 1ckl
i sjm

k 2smk
i ajl

k 2smk
i cjl

k 2skl
i ajm

k 50, ~4!

bk
i ajl

k 1slk
i zj

k2zk
i sl j

k 2akl
i bj

k50,slk
i hj

k2hk
i sl j

k 50,skl
i hj

k2hk
i sjl

k 50,

zj ,t
i 23bk

i hj ,x
k 2bk

i wj
k2yk

i zj
k1zk

i yj
k1wk

i bj
k50,wj ,t

i 2yk
i wj

k1wk
i yj

k50,

ajl ,t
i 1ajk

i yl
k2slk

i hj ,x
k 2slk

i wj
k2yk

i ajl
k 1akl

i y j
k1wk

i sjl
k 50,bk

i hj ,xx
k 50,

cjl ,t
i 1cjk

i yl
k2skl

i wj
k2yk

i cjl
k 1ckl

i y j
k50,hj ,t

i 2bk
i hj ,xxx

k 2yk
i hj

k1hk
i yj

k50.

This proposition is the straightforward result of calculating operator equality~3! together with~1!
and ~2!.
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Although we obtained the integrability conditions for systems with any arbitrary numberN of
components, our focus in the rest of this work is to systematically obtain the solutions of
conditions in the two-component (N52) case.

III. CLASSIFICATION ALGORITHM

Having obtained the integrability conditions and specified the numberN, our basic aim is to
determine the integrable systems~or classes of systems! with their associated recursion operato
by solving the whole set of conditions~4!. For this purpose we base our classification onbj

i and
solve conditions~4! for each of the specially chosen different forms ofbj

i matrix. Having chosen
a certainbj

i matrix, we first solve the algebraic part of the equations in~4!. Although the number
of algebraic equations is quite large even forN52, since the constituent equations are polynom
of order at most two in the unknowns, they can be solved by computer algebra systems
niently. We usedREDUCE20 andMUPAD21 software for computations. Each nontrivial solution to t
algebraic part is then subjected to the remaining differential conditions.

In general, for a certainbj
i matrix there exist many solutions to the integrability conditions~4!.

However, some of these solutions give rise to systems which are not interesting: Deco
systems, trivially coupled systems likeut5F@u,t#, v t5G@u,t# or completely linear systems
Besides these, some solutions require the recursion operator to be identity, in case of whic~3! is
obviously inconclusive for the integrability of the system at hand. We call solutions giving ris
these kind of systems or recursion operators astrivial solutions. We discard all such trivial
solutions.

For the choice of the form ofbj
i matrix we make use of the Jordan canonical form theorem

matrices which says that under similarity transformations any 232 constant matrix, sayA, is
equivalent to one of the following matrices which are the Jordan canonical forms:

J~1!5S 1 0

0 1D , J~2!5S l1 0

0 l2
D , J~3!5S l 1

0 l
D , ~5!

wherel i are the eigenvalues of original matrixA. Nonautonomous systems associated with
identity matrix J(1) are extensively investigated in Ref. 13. Our present classification conc
the classes associated with the latter two matricesJ(2) andJ(3). Starting from these matrices an
taking equivalence of systems under scale transformations of evolution parametert into account
we conclude that~excluding the null matrix! without loss of generality, it is sufficient to conside

b~1!5S 1 0

0 l
D , b~2!5S 1 l

0 1D , b~3!5S 1 0

0 0D , b~4!5S 0 1

0 0D ~6!

as 232 matrices forbj
i in our classification. Here, inb(1) lÞ1 andlÞ0, in b(2) lÞ0. Any

two-component quasilinear evolution equation, such as~1!, whose coefficient matrixbj
i of leading

order terms other than the identity can be put in a form such that its transformed coefficient m
sayb̃ j

i , is either ofb(1), b(2), b(3) or b(4). Therefore, it is natural to say a system is in Jord
canonical form if so is its coefficient matrixbj

i .
In literature, except for a few systems, most of the integrable systems are given in J

canonical form. One of these exceptions is the systems with five arbitrary constants introdu
Fokas and Liu in the context of asymptotic integrability of water waves.7 As an illustrative
example of the above proposal about the Jordan canonical forms of systems, we recons
Fokas–Liu systems and give their Jordan canonical forms together with the transformations
ing them to these forms here. These systems are originally given as
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ut1vx1e@~3b112b4!b3uux1~21b1b4!b3~uv !x1b1b3vvx

1~b11b4!b2uxxx1~11b1b4!b2vxxx#50,
~7!

v t1ux1e@~213b1b4!b3vvx1~b112b4!b3~uv !x1b1b3b4uux

1~11b1b4!b2b4vxxx1~b11b4!b2b4uxxx#50,

wheree, b1 , b2 , b3 , b4 are arbitrary constants andb1
2Þ1. Systems~7! reduce to linear system

for e50 or b350 and to first order~hydrodynamic type! systems forb250. Here, we consider
only the third order nonlinear systems by takingeÞ0, b2Þ0, b3Þ0. Furthermore, we make th
following distinction:

~i! b1Þ2 2b4 /b4
211 , b1

2Þ1,
~ii ! b152 2b4 /b4

211 , b4Þ0, b4
2Þ61,

~iii ! b152 2b4 /b4
211 , b450,

in the space of arbitrary parameters.
In case~i!, applying the following change of dependent variables

S ũ
ṽ D5

b3

2b2~b1b4
21b112b4!

S b11b4 b1b411

6b4Ab1
221 7Ab1

221
D S u2A1

v2B1
D , ~8!

and rescaling of evolution parametert,

t52eb2~b1b4
21b112b4!t, ~9!

we arrive at a Jordan canonical form of systems~7! irrespective of the values of constant shiftin
parametersA1 andB1 .10 But let us for the sake of simplicity of final expression take

A15
2b1b4

313b1b412

eb3@b1b4
21b112b4#2 , B15

3b1b4
22b112b4

3

eb3@b1b4
21b112b4#2 .

After all, we get

ũt5ũxxx13ũũx12ṽ ṽx1
4~b4

212b1b411!

eb2@b1b4
21b112b4#2 ũx ,

~10!
ṽt52~ ũṽ !x ,

as a Jordan canonical form of systems~7! in the new variables in the mentioned case of arbitr
parameterse andb i , i 51,2,3,4.

In case~ii !, the following transformation:

S ũ
ṽ D5S 0

b3

b2b4

eb3b4~12b4
2!

b4
211

2
eb3~12b4

2!

b4
211

D S u2A2

v2B2
D , ~11!

where

A25
22b4

42b4
211

2eb3b4
2~b4

221!2 , B25
2b4~b4

211!

2eb3~b4
221!2 ,
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gives the following Jordan canonical form of systems~7!:

ũt5 ṽxxx12~ ũṽ !x1
2~b4

211!

eb2b4~b4
221!2 ṽ ṽx ,

~12!

ṽ t52ṽ ṽx1
2

b4
ṽx1

eb2~b4
221!2

b4
211

ũx .

In case~iii !, i.e., foreÞ0, b2Þ0, b3Þ0, b150, b450, systems~7! reduce to a system which
is already in Jordan canonical form. A simple scaling oft brings it to the form which hasb(4) as
its bj

i matrix.
It is apparent and in accordance with the above proposal regarding the Jordan canonica

that the coefficient matrixbj
i of systems~10! and ~12! are b(3) and b(4), respectively. By

including the Jordan matrices into the classification algorithm at the beginning, we restric
selves to a convenient base for obtaining the results without any loss of generality. In our
fication algorithm each of the matricesb( i ), i 51,2,3,4 in~6! cause a different set of solutions t
the integrability conditions~4!. We call a collection of systems obtained under a certainb( i )
matrix as a class and naturally identify each class with itsb( i ) matrix.

IV. CLASSES

In the rest of our work, we present the found two-component nontrivial integrable system
their associated recursion operators with a slight changeq15u andq25v in notation.

A. Class b „1…

Although our main concern is the nonautonomous systems, solutions of integrability c
tions ~4! give rise to autonomous systems as well. In each class we first give the autono
systems with their respective recursion operators. In the present class, there is only the fol
autonomous integrable system:

ut5uxxx1c1~2vux1uvx!,
~13!

v t5
1
4 vxxx12c1vvx ,

wherec1 is an arbitrary constant.10 The recursion operator admitted by~13! is

R5S D21 4
3 c1v c1u1 2

3 c1uxD
21

0 1
4 D21 4

3 c1v1 2
3 c1vxD

21D .

The only nonautonomous system in the present class is

ut5uxxx1
c1

At
~2vux1uvx!,

~14!

v t5
1

4
vxxx1

2c1

At
vvx ,

wherec1 is an arbitrary constant. This system admits the following recursion operator:
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R5S tD21 1
3 x1 4

3 c1Atv c1Atu1 2
3 c1AtuxD

21

0 1
4 tD21 1

3 x1 4
3 c1Atv1 1

3 ~2c1Atvx1 1
2!D

21D .

The above-mentioned systems~13! and~14! are the only nontrivial systems inb(1) class. All
other solutions of integrability conditions~4! with bj

i 5b(1) are trivial.
Systems related by invertible transformations are considered equivalent.13–16 Therefore, we

analyzed all the found nonautonomous systems in regard to their transformability to auton
systems through a certain class of transformations. In the next proposition we present the
relevant to the system~14!.

Proposition 2: Nonautonomous system (14) is not transformable to any autonomous sys
the invertible change of variables:

x5a~ t̃ !x̃1b~ t̃ !, t5g~ t̃ !,

u~x,t !5d~ t̃ !ũ~ x̃, t̃ !1f~ x̃, t̃ !, ~15!

v~x,t !5r~ t̃ !ṽ~ x̃, t̃ !1c~ x̃, t̃ !.

This proposition can be verified by explicitly transforming system~14! by transformations~15!.
After the transformation, requirement of the coefficients of new dependent variables to be
stants leads to contradiction.

B. Class b „2…

In this class there is only the following nontrivial system as solution of integrability condit
~4!:

ut5uxxx1lvxxx1
c1

At
~uv !x1

lc1

2At
vvx ,

~16!

v t5vxxx1
c1

At
vvx ,

which is integrable for arbitrary constantsc1 and lÞ0 introduced inb(2) of ~6!. This system

admits the recursion operatorR5(R
0
1 R

1
1

R 0
0 R 1

0

) with

R 0
05tD21 1

3 x1 2
3 c1Atv1 1

3 ~c1Atvx1 1
2!D

21,

R 1
05ltD21 2

3 c1Atu1 1
3 lc1Atv1 1

3 c1AtS ux1
l

2
vxDD21,

R 0
150,

R 1
15tD21 1

3 x1 2
3 c1Atv1 1

3 ~c1Atvx1 1
2!D

21.

A straightforward calculation proves the following statement about system~16!.
Proposition 3: System (16) is not transformable to any autonomous system by transform

~15!.
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C. Class b „3…

For bj
i 5b(3) in ~6!, solutions of integrability conditions~4! give rise to the following list of

autonomous systems and their associated recursion operators:
~i!

ut5uxxx13c1uux ,
v t5c1uvx1c2vux , R5S D212c1u1c1uxD

21 0

c2v1c1vxD
21 0D , ~17!

wherec1 andc2 are arbitrary constants.6,17

~ii !

ut5uxxx13c1uux1c2vvx ,
v t5c1~uv !x , R5S D212c1u1c1uxD

21 c2v

c1v1c1vxD
21 0 D , ~18!

wherec1 andc2 are arbitrary constants. Forc1Þ0 andc2Þ0 this system is equivalent to the It
system18 throughu→ (2/c1) u, v→ (2/Ac1c2) v. It is also possible to obtain the Ito system
b152(b4

211)/2b4 (b4Þ0), reduction of system~10!. Therefore, Fokas–Liu system7 includes
the Ito system as a special case.

~iii !

ut5uxxx13c1uux ,
v t5~c1u1c2v !vx , R5S D212c1u1c1uxD

21 0

c1vxD
21 c2v D , ~19!

wherec1 andc2 are arbitrary constants.8

The followings are the nonautonomous systems with their respective recursion opera
the b(3) class.

~iv!

ut5uxxx1c1t2(a12/3)vvx1c2t2(a11)v,
~20!

v t5t22/3vvx ,

wherec1 , c2 , anda are arbitrary constants. This system admits the recursion operator

R5S tD21
x

3
1aD21 t2a~c1t1/3v1c2D21!

0 t1/3v1
x

3

D . ~21!

~v!

ut5uxxx1e2at~c1vvx1c2v !,
~22!

v t5vvx ,

wherec1 , c2 , anda are arbitrary constants. The recursion operator is

R5S D21aD21 e2at~c1v1c2D21!

0 v D . ~23!
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~vi!

ut5uxxx1c1c2t21/2uux ,
~24!

v t5
1
3 ~c1c2t21/2uvx1c1t22/3vvx1c2t25/6u!,

wherec1 andc2 are arbitrary constants. This system admits the recursion operator

R 0
05tD21

x

3
1

2

3
c1c2t1/2u1

1

3 S c1c2t1/2ux1
1

2DD21,

R 1
050,

~25!
R 0

15 1
3 c2~c1t1/2vx1t1/6!D21,

R 1
15 1

3 ~c1t1/3v1x!.

Solutions of integrability conditions~4! other than those giving the above list of systems
trivial. Therefore, the above list of systems is the complete list of nontrivial systems in theb(1)
class.

The following proposition is about the transformability of nonautonomous systems fou
the present class.

Proposition 4: None of the nonautonomous systems (20), (22), and (24) is transforma
any autonomous system by transformations (15).

The a50 special case of system~22! is the only exception. In this case system~22! is
apparently autonomous. This proposition can be verified by direct calculation for each o
mentioned systems.

D. Class b „4…

Solutions of integrability conditions~4! with bj
i 5b(4) in ~6! give rise to the following list of

nontrivial, integrable subclasses of systems:
~i!

ut5vxxx1vux1c1uvx1svvx1yv,
~26!

v t5vvx ,

where c1 is an arbitrary constant, is integrable if the undetermined functionss5s(t) and y
5y(t) satisfy the differential constraint

ds

dt
1c1y50. ~27!

These systems admit the recursion operator

R5S S 12
c1

2 D v D21c1u1sv1
c1

2
uxD

21

0 S 12
c1

2 D v1
c1

2
vxD

21
D . ~28!
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~ii !

ut5vxxx1c1~vux12uvx!1svvx1yv,
~29!

v t5vvx ,

where c1 is an arbitrary constant, is integrable if the undetermined functionss5s(t) and y
5y(t) satisfy the differential constraint

ds

dt
1~3c121!y50. ~30!

The recursion operator is

R5S 0 D212c1u1sv1c1uxD
21

0 ~12c1!v1c1vxD
21 D . ~31!

In this subclass we observed that thec151 particular case of system~29! with ~30! admits
two recursion operatorsR~1! andR~2!. The first one is~31! with c151. The second recursion
operator is

R~2!5S 0 tD212tu1tsv1~ tux2 1
2 s!D21

0 ~ tvx11!D21 D . ~32!

~iii !

ut5vxxx1t22/3~vux1c1vvx!1yv,
~33!

v t5t22/3vvx ,

wherec1 is an arbitrary constant, is integrable for any arbitrary functiony5y(t). The recursion
operators of this system are

R~1!5S x

3
1t1/3v tD21c1t1/3v

0
x

3
1t1/3v

D , R~2!5S 0 D21

0 0 D . ~34!

The second operatorR~2! is not a proper recursion operator because of its nilpotent chara
Even thoughR~2! solely is not sufficient for integrability, any linear combination of it withR~1!
is a recursion operator for system~33!.

~iv!

ut5vxxx1taS uvx1
a11

3a12
vux1svvxD1yv,

~35!

v t5
a11

3a12
tavvx ,

whereaÞ22/3 is an arbitrary constant, is integrable if the undetermined functionss5s(t) and
y5y(t) satisfy the differential constraint

ds

dt
1y50. ~36!
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These systems admit the recursion operator

R 0
052

a

2 S x1
ta11

3a12
v D ,

R 1
05tD21ta11u1ta11sv1 1

2 @ ta11ux2~3a12!s#D21,

~37!
R 0

150,

R 1
152

a

2 S x1
ta11

3a12
v D1

1

2
@ ta11vx13a12#D21.

~v!

ut5vxxx1et/a~vux13uvx1svvx!1yv,
~38!

v t5et/avvx ,

whereaÞ0 is an arbitrary constant, is integrable if the undetermined functionss5s(t) and y
5y(t) satisfy the differential constraint

ds

dt
13y50. ~39!

The recursion operator is

R 0
052 1

2 ~x1aet/av !,

R 1
05aFD213et/au1et/asv1

1

2S 3et/aux2
1

a
sDD21G ,

~40!
R 0

150,

R 1
152 1

2 ~x1aet/av !1 3
2 ~aet/avx11!D21.

~vi!

ut5vxxx1~uv !x1svvx1yv,
~41!

v t5vvx ,

is integrable for any arbitrary functionss5s(t) andy5y(t). These systems admit the recursio
operatorsR~1!, R~2!, andR~3!, where

R~1!0
052vxD

21,

R~1!1
05D212u22S E y dt Dv1Fux1S E y dt DvxGD21,

~42!
R~1!0

150,

R~1!1
15vxD

21,

R~2!0
052x2tv22~ tvx11!D21,
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R~2!1
052tu12S E ~s2ty!dt Dv1F tux1S E S s12ty13E y dt Ddt Dvx13E y dt GD21,

~43!
R~2!0

150,

R~2!1
152x2tv1~ tvx11!D21,

R~3!5S 0 x1tv

0 0 D . ~44!

~vii !

ut5vxxx1
1

At
~uv !x1svvx1yv,

~45!

v t5
1

At
vvx ,

is integrable for any arbitrary functionss5s(t) andy5y(t). These systems admit the recursio
operatorsR~1!, R~2!, andR~3! where

R~1!0
05x12Atv1~2Atvx11!D21,

R~1!1
052tD22F S E S 2Aty1

1

At
E y dt D dt D vx1E y dtGD21,

~46!
R~1!0

150,

R~1!1
15x12Atv,

R~2!0
05x12Atv,

R~2!1
054tD214Atu12S E ~s22Aty!dt Dv1F2Atux1S E S s1

1

At
E y dt D dt D vx

1E y dtGD21,

~47!
R~2!0

150,

R~2!1
15x12Atv1~2Atvx11!D21,

R~3!5S 0 x12Atv

0 0
D . ~48!

Solutions of integrability conditions~4! with bj
i 5b(4) other than those giving the above li

of systems are trivial.
We have the following proposition on the transformability of nonautonomous systems o

above subclasses found in the present class.
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Proposition 5: None of the nonautonomous systems in each of the subclasses (26), (29
(35), (38), (41) and (45) of class b(4) is transformable to any autonomous system by trans
mations (15).

In the above subclasses, some choice of undetermined functions or arbitrary constant
for example,y(t)50 in ~30!, can lead to autonomous systems. Such autonomous systems a
of the scope of Proposition 5.

It has been recently observed that some recursion operators, which are called weak,
always generate symmetry hierarchies correctly.22 Some of the operators we found in this work a
of this type. The source of this weakness and possible solutions which relies on the found
recursion operators are extensively investigated in Ref. 23.

We would like to remark that our classification is a partial classification which gives
systems~1! admitting recursion operator of form~2!. As it is shown in a recent work,24 even an
autonomous coupled KdV system may admit a strange recursion operator which is not of for~2!.

Systems whose recursion operators are bi-Hamilton factorizable, are of special interest
physical point of view. Our knowledge on whether the recursion operators we obtained i
work are factorizable in this way is very limited at the moment. We have only some neg
results about the bi-Hamilton factorizability of some of the found recursion operators up t
Hamilton operators, which are a multicomponent generalization of the Hamilton operators
usual KdV equation.
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By using two different procedures we show that on the space of solutions of a
certain class of second-order ordinary differential equations,u95L(s,u,u8), a
two-dimensional definite or indefinite metric,gab , can be constructed such that the
two-dimensional Hamilton–Jacobi equation,gabu,au,b51 holds. Furthermore, we
show that this structure is invariant under a certain subset of contact transforma-
tions ~canonical transformations!. Two examples are given. ©2004 American In-
stitute of Physics.@DOI: 10.1063/1.1639957#

I. INTRODUCTION

In the early years of the 20th century, while studying the structure and transformation
erties of second- and third-order ordinary differential equations~ODEs!, Lie, Tresse,
Wünschmann,1–4 among others, discovered that there was a rich differential geometry induce
the solution spaces of the differential equations. This work was greatly developed and gene
by Cartan and Chern5–9 in the 1930s–1940s. Bryant,10 in more recent years, studied the geome
associated with fourth-order ODEs. Tod11 showed how third-order ODEs could generate thr
dimensional Einstein–Weyl metrics.

With a totally different motivation and from a different point of view originating with gene
relativity, Frittelli, Kozameh and Newman, in a series of papers,12–17 came to the same set o
issues and problems. Rather than starting with given differential equations, the point of vi
these authors began with three- and four-dimensional conformal Lorentzian manifolds, a
containing a metric. They then studied families of complete solutions to the eikonal equati
these manifolds. From these solutions, by the elimination of the space–time coordinate
differential equations of Cartan and Chern were reobtained. However, from this point of
unwittingly, the Cartan/Chern work was generalized from ODEs to pairs of second-order p
differential equations~PDEs! whose solution spaces could be identified with any four-dimensio
manifold with a conformal Lorentzian metric. In particular, they showed that the Einstein e
tions could be reformulated in terms of pairs of second-order PDEs.

Later, with Kamran and Nurowski,18–22this work was connected with the Cartan/Chern wo
for both the equivalence problem for differential equations under a variety of transformation
with the theory of Cartan normal conformal connections. With this consideration one saw ho
differential equations~both the third-order equation and the pair of second-order equations! had to
lie in a restricted class defined by the vanishing of the so-called Wu¨nschmann~or generalized
Wünschmann! equation.

An underlying unifying theme in many of the discussions was the existence of the ei

a!Electronic mail: newman@pitt.edu
7250022-2488/2004/45(2)/725/11/$22.00 © 2004 American Institute of Physics
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equation and families of complete solutions. These solutions could be obtained either via the
third-order ODE or pair of second-order PDEs or alternatively from the solutions to the eik
equation on the given conformal background space.

In the present work, we return to the geometry associated with a new class of second
ODEs. The connecting link with the earlier work is that now we use the time-indepen
Hamilton–Jacobi equation rather than the eikonal equation to obtain this new class. We sho~via
two different procedures! that, in the solution spaces of the ODEs, either a two-dimensio
Riemannian or Lorentzian metric can be constructed in a natural way. Furthermore all 2-m
can be found by this procedure. The metric structure associated with each differential equa
preserved when the equation is transformed by a subset of contact transformations~namely ca-
nonical transformations!.

In Sec. II we begin with a two-dimensional manifold,M, with no further structure and the
investigate arbitrary families of curves onM given byu5constant5Z(xa,s). ~The xa are local
coordinates onM and s parametrizes the families and takes values onS 1 or on R.! More
specifically, we ask when do such families of curves define a two-dimensional metric,gab(x

a),
such that

gab¹aZ~xa,s!¹bZ~xa,s!51. ~1!

We will show that theu5Z(xa,s) must also satisfy a second-order ODE,

u95L~u,u8,s!, ~2!

that lies in a special class of equations that we will refer to as ‘‘Wu¨nschmann-like,’’ defined by the
restriction ofL to solutions of

Lus1Luuu81Luu8L22LuLu850. ~3!

The prime denotes ‘‘s’’ derivatives. Note that in the solutionsu5Z(xa,s), the xa are a pair of
integration constants for Eq.~2! while the ‘‘s’’ is an integration constant for Eq.~1!.

Before proceeding we make the following important remark:
Remark 1: The time independent Hamilton–Jacobi equation for a particle, with mass m an

energy E, in a two-dimensional Riemannian space under the influence of a potential an
eikonal equation describing the evolution of the light rays in a two-dimensional isotropic op
medium characterized by its index of refraction, i.e., either of

g* ab¹aS~xa,s!¹bS~xa,s!5E2V~xa!,

g* ab¹aS~xa,s!¹bS~xa,s!5n~xa!,

can be rewritten in the form of Eq. (1) by dividing the equations by either E2V(xa) or by n(xa)
and simultaneously rescaling the metric by the same factors.

This action has the effect of changing certain properties of solutions to the Hamilton–J
~HJ! equation. Normally for the two-dimensional~HJ! equation a complete solution contains tw
constants of integration, where one of them isE. In our case, after the conformal rescaling, theE
is hidden as afixed constant in the metricgab and the solution will depend now on only on
parameter, ‘‘s. ’’ With an abuse of language, we will refer tou5Z(xa,s) as a ‘‘restricted complete’’
solution to the~HJ! equation. This change, in turn, leads to modifications in certain transform
properties of the solutions; contact transformations become canonical transformations. Thi
is discussed in Sec. III.

In Sec. III we begin with a general second-order ODE~prime denotess derivatives!

u95L~s,u,u8!, ~4!
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whose solution space is parametrized by two independent constants of integrationxa5(x1,x2).
Then by studying the two-parameter family of curves in the (u,s) space defined as solutions to E
~2!, namely,

u5Z~xa,s!, ~5!

and their generalized Jacobi fields, (du, du8) obtained by the independent variation of the tw
constants of integrationxa and ones derivative of Eq.~5! we show how a simple condition lead
to the Wünschmann-like condition and the associated two-dimensional metric. In this sectio
also remarked that this structure is invariant under a certain subclass of contact transform
Finally, two particular examples are presented.

II. TWO-DIMENSIONAL METRICS AND THE WÜ NSCHMANN-LIKE CONDITION

We begin with a two-dimensional manifoldM ~with local coordinatesxa5(x1,x2)) and
assume we are given a one-parameter set of functionsu5Z(xa,s), the parameters can take values
on S 1 or on R. We also assume that for a fixed value of the parameters, the level curves

u5const5Z~xa,s!, ~6!

locally foliate the manifoldM and thatu5Z(xa,s) satisfies the~HJ! equation, Eq.~1!,

gab¹aZ~xa,s!¹bZ~xa,s!51, ~7!

for some unknown metricgab(x
a).

Remark 2: The statement that for any fixed value of s, u5Z(xa,s) is a solution of Eq. (1), in
the case of the eikonal equation, means that the level curves of u are wave fronts. That is,
case we are looking for the conditions on the one-parameter family of functions u such th
associated level curves are the wave fronts associated with an optical metric (see Torr
Castillo23 for a definition of the optical metric). In this case, it can be shown that in orde
construct an arbitrary wave front in the two-dimensional isotropic optical medium, via the e
lope construction, we require that2p<s<p.

The basic idea now is to solve Eq.~1! for the three components of the metric in terms
¹aZ(xa,s). To do so, we will consider a number of parameter derivatives of the condition~1!, and
then by manipulation of these derivatives, obtain both the two-dimensional metric and the
tion defining the curves and the conditions it must satisfy, which we will refer to as
Wünschmann-like condition.

Remark 3: The notation is as follows: there will be two types of differentiation, one is
respect to the local coordinates, xa, of the manifoldM, denoted by¹a or ‘‘comma a,’’ the other
is with respect to the parameter s, denoted by a prime.

We first note that the one-parameter family of ‘‘level’’ curves, Eq.~6!, can be obtained as
solutions to the second-order ODE

u95L~u,u8,s!. ~8!

It can be found by first calculating

u9~xa,s![L* ~xa,s!. ~9!

Then by inverting the pair

u5Z~xa,s!,

u85Z8~xa,s!

obtaining
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xa5xa~u,u8,s! ~10!

the twoxa can be eliminated inL* yielding Eq.~8!.
Remark 4: Equation (10) can be thought of as an‘‘ s’’ dependent coordinate transformatio

between xa and (u,u8).
We define two parametrized scalars,

u i5$u0,u1%[$u,u8%5$Z~xa,s!,Z8~xa,s!%, ~11!

which for each value ofs forms a coordinate system intrinsically adapted to the curves.
From the two scalars,u i , we have their associated gradient basisu i

a given by

u i
a5¹au i5$Z,a ,]Z,a%, ~12!

and its dual vector basisu i
a, so that

u i
au j

,a5d i
j , u i

au i
,b5db

a. ~13!

Remark 5: The total s derivative of a function F5F(s,u,u8) is defined by

DF[Fs1Fuu81Fu8L. ~14!

It is easier to search for the components of the two-dimensional metric in the gradient
rather than in the original coordinate basis. Furthermore, it is preferable to use the contra
components rather than the covariant components of the metric; that is, we are interested

gi j ~xa,s!5gab~xa!u i
,au j

,b . ~15!

The metric components and the Wu¨nschmann-like condition, for this case, are obtained by rep
edly operating with]s on Eq.~7!, that is on

g005gabZ,aZ,b51. ~16!

Applying ]s on Eq.~16! yields

]s~gabZ,aZ,b!52gabZ,a8 Z,b52g1050, ~17!

where we have used that]sg
ab50. Applying ]s on Eq.~17! we obtain, using Eq.~8!,

gab~L ,aZ,b1Z,a8 Z,b8 !50. ~18!

Since

L ,a5LuZ,a1Lu8Z,a8 , ~19!

then Eq.~18! is equivalent to

g115gabZ,a8 Z,b8 52Lu .

Therefore, the final result is

~gi j !5S 1 0

0 2Lu
D . ~20!

Remark 6: Sincedet(gi j )Þ0 thenLu cannot be zero.
Finally taking the]s of Eq. ~18!, we obtain the Wu¨nschmann-like condition, forL(u,u8,s);

namely,
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DLu52LuLu8 . ~21!

Since

DLu5Lus1Luuu81Luu8L, ~22!

then Eq.~21! is equivalent to

Lus1Luuu81Luu8L22LuLu850. ~23!

Summarizing: We have the result that given a second-order ODE,u95L(u,u8,s), whereL
satisfies Eq.~23!, then in its space of solutions there exists a natural two-dimensional metric g
by

g5gabdxa dxb5FZ,aZ,b2S 1

Lu
D ]Z,a]Z,bGdxa dxb. ~24!

Furthermore, the solutionsu5Z(xa,s) satisfy the~HJ! equation

gab¹aZ~xa,s!¹bZ~xa,s!51

with the just determined metric, Eq.~24!. ~See the examples to follow.!

III. AN ALTERNATIVE DERIVATION OF THE METRICS AND THE WÜ NSCHMANN-LIKE
CONDITION

We begin with the general second-order ODE

u95L~u,u8,s! ~25!

and its two-parameter family of solution

u5Z~xa,s!. ~26!

We define the varied solution by

du5Z,a~xa,s!dxa, ~27!

du85Z,a8 ~xa,s!dxa ~28!

which, in turn, satisfies the deviation equation@or linearized Eq.~25!#

du95dL~u,u8,s![Ludu1Lu8du8. ~29!

In the two-dimensional (u,s) space, for fixedxa, Eqs.~27! and~28! define, via the two dxa,
a two-parameter family of neighboring curves. Rather than treating the variation to be asso
with the independent dxa, we will treat the two (du,du8) as independent variations~thes behav-
ior is subjected to the deviation equation!. On this two-dimensional space of independent cur
we define an infinitesimal quadratic distance; that is a metric distance between nearby cur
the beginning of the discussion this distance will depend on the value ofs; that is, will depend on
a point on the first curve for the comparison with the neighboring one. As conditions are im
this distance is completely determined.

To begin with, we define a metric distance~thegAB to be determined! between nearby curves
at the points, by

g~xa,s!5gABduAduB5g00dudu12g01dudu81g11du8du8. ~30!
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The following conditions are imposed on the metric:
~1! The first condition is thatg0051.
Remark 7: Actually g00 can be taken as an arbitrary function of xa, e.g., E2V(xa) or n(xa)

which can then be used to conformally rescale the metric. (See Remark 1.)
~2! The second condition is that

Dg50, ~31!

whereD, the total ‘‘s’’ derivative, is defined by Eq.~14!.
Remark 8: This is simply the condition that the metric distance between the two cur

independent of the point on the curves.
Theorem 1: Given a second-order ODE [Eq. (25)] and its deviation equation, Eq. (29), if

metric defined by Eq. (30) with g0051 satisfies Eq. (31), then the metric is uniquely determined
a function ofL(u,u8,s) whenL(u,u8,s) satisfies the differential equation (the Wu¨nschmann-like
condition) given by Eq. (23).

Proof: By directly applying the two conditions to Eq.~30!, we obtain

g0051, ~32!

g0150,

g1152S 1

Lu
D , ~33!

and

Dg11522Lu8g11. ~34!

From Eqs.~33! and ~34!, the Wünschmann-like condition, Eq.~23! immediately follows.
Sincedu(xa,s)5Z,adxa anddu8(xa,s)5Z,a8 dxa, then by using Eqs.~32!–~34!, we find that the
metric Eq.~30! can be written as

g~xa,s!5FZ,aZ,b2
1

Lu
Z,a8 Z,b8 Gdxa dxb. ~35!

That is, we have obtained Eq.~24! by another procedure. Observe that the conditiong0051 is
equivalent to Eq.~1!.

In some of the earlier mentioned work on the eikonal equation in three- and four-dimens
Lorentzian spaces, it was proved that the conformal Lorentzian metrics associated with third
ODEs and pairs of second-order PDEs satisfying the Wu¨nschmann condition and generalize
Wünschmann condition is preserved when the differential equation is transformed by a c
transformation. For our case, there is an analogous result given by the following:

Theorem 2: Let Eq. (25) be a second-order ODE, withL satisfying condition (23) and let

ū95L̄~ ū,ū8,s̄! ~36!

be a second-order ODE locally equivalent to Eq. (25) under the subset of contact transform
generated by the generating function

H~s,u,s̄,ū!5ū2u2G~s,s̄!. ~37!

Then under this subset of contact transformations the metric (30) is preserved.
The proof is exactly as that presented in Ref. 18 for the third-order ODE case. Here we

justify the form of the generating function~37!. To this end, we review the definition of a gener
contact transformation.
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Theorem 3: Every contact transformation which is not a prolonged point transformation
determined in terms of a generating function H(s,u,s̄,ū) by solving the following three implici
equations for s̄, ū, ū8:

H~s,u,s̄,ū!50, Hs1u8Hu50, Hs̄1ū8Hū50. ~38!

The generating function H(s,u,s̄,ū) is an arbitrary smooth function, subject only to the solubil
of Eq. (38) for s̄, ū, ū8.

For a proof of this theorem see, for example, Olver.24

Without loss of generality one can take

H5ū2V̄~u,s,s̄!, ~39!

so that the contact transformation has the form

ū5V̄~u,s,I ~s,u,u8!!,

s̄5I ~s,u,u8!, ~40!

ū85V̄s̄~u,s,I ~s,u,u8!!,

whereI (s,u,u8) is obtained by solving

V̄s1u8V̄u50, ~41!

for s̄ in terms ofs, u andu8.
As we pointed out earlier, for each value ofs, the two-parameter family of solutions

u5Z~xa,s! ~42!

of ~25! is also a one-parameter family of solutions of Eq.~1!, i.e., are ‘‘restricted complete’
integrals of Eq.~1!. We now invoke the envelope construction~slightly changed by our modifi-
cation of the complete integral! to take one ‘‘restricted complete’’ integral of Eq.~1! into another
such solution.

Consider the functionū5Z̄(xa,s̄) defined by

ū5V̄~u,s,s̄!, ~43!

whereu is defined by Eq.~42! ands is defined implicitly as a function ofxa ands̄ by the envelope
condition18,25

V̄uu81V̄s50. ~44!

Note that although~44! has the same form as~41!, it involves the variablesxa ands. Using both
Eqs.~43! and ~44!, we have that

ū,a5V̄uu,a . ~45!

By direct substitution ofū,a into the ~HJ! equation, Eq.~1!, we see that it is a new ‘‘restricted
complete’’ integral if and only ifV̄u

251. That is,ū5V̄(u,s,s̄) has the formū56u1G(s,s̄). For
simplicity, taking the positive sign, we have that ifu(xa,s) is a ‘‘restricted complete’’ integral of
Eq. ~1! then

ū5u1G~s,s̄!, ~46!
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wheres is defined implicitly as a function ofxa and s̄ by the envelope condition

u81Gs50, ~47!

which is a new ‘‘restricted complete’’ integral of Eq.~1!. Equations~46! and ~47! define a par-
ticular subset of the contact transformations given by contact transformations

ū5u1G~s,s̄!, ~48!

u852Gs , ~49!

ū85Gs̄ . ~50!

The generating function for this set of contact transformation is given by

H~s,u,s̄,ū!5ū2u2G~s,s̄!50. ~51!

Remark 9: The transformations Eqs. (48), (49), and (50) have a rather strange or pe
unconventional interpretation as a canonical transformation. If we have a two-dimensional p
space(q,p) and a canonical transformation to(P,Q) given by

p5]qG,

P52]QG,

with generating function G(q,Q), we see that this is identical to Eqs. (49) and (50) if we iden
(q,Q)⇔(s,s̄) and (p,P)⇔(u8,ū8) and ignore the u⇔ū transformation.

IV. TWO EXAMPLES

Observe that the trivial solutions to Eq.~23! under the condition thatLuÞ0 are:L56u.
Here we discuss these two cases.

~a! The caseL52u. From Eq.~25! we obtain thatu is such that

u91u50. ~52!

That is,u(xa,s), satisfies the harmonic oscillator equation with unit frequency. The general
tion to Eq.~52! is given by

u5Z~xa,s!5xal a[x coss1y sins, ~53!

where2p<s<p, l a5(coss,sins) andxa5(x,y) are two constants of integration, which defin
locally the space of solutions of Eq.~52!. From Eq.~53!, we have

u85Z8~xa,s!5xama[2x sins1y coss. ~54!

That is,ma5(2sins,coss). We thus obtain that for this case

u0
,a5Z,a5 l a ,

~55!
u1

,a5Z,a8 5ma .

From Eq.~24! and the definitions ofl a andmb , we find that the two-dimensional metric living o
the space of solutions of Eq.~52! is given by

g5gabdxa dxb5~ l al b1mamb!dxa dxb5dx21dy2, ~56!
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i.e., the two-dimensional Euclidean metric. In this case the eikonal equation reduces to

Z,x
21Z,y

251. ~57!

From theorem 2, we know that there is a large family of second-order ODEs such tha
solutions also yield two-dimensional Euclidean metrics on the solution space. The entire fam
connected by a contact transformation given by the generating function~51!, with u given by Eq.
~53!. We give a particular example, obtained with

G~s,s̄!5 s̄~coss1sins!.

After a straightforward calculation one obtains the new solution

ū25~x1 s̄!21~y1 s̄!2 ~58!

and the new second-order ODE

ū95L̄~ s̄,ū,ū8!5S 22~ ū8!2

ū D . ~59!

A direct computation shows that,ū, given by Eq.~58!, is a new family of solutions of the~HJ!
equation~57!. The explicit contact transformations yielding these results are

ū5u1u8S coss1sins

sins2cossD , s̄5S u8

sins2cossD , ū85coss1sins. ~60!

(b) The caseL5u. In this case, our ODE, Eq.~25! is

u92u50, ~61!

with general solution

u5Z~xa,s!5xal̃ a[x coshs1y sinhs, ~62!

wheresPR, l̃ a5(coshs,sinhs) andxa5(x,y) are two constants of integration defining the spa
of solutions. By differentiating, we have

u85Z8~xa,s!5xam̃a[x sinhs1y coshs, ~63!

with m̃a5(sinhs,coshs). From Eq.~12! we see that

u0
,a5Z,a5 l̃ a ,

~64!
u1

,a5Z,a8 5m̃a ,

and the two-dimensional metric living on the solution space is given by

g5gabdxa dxb5~ l̃ a l̃ b2m̃am̃b!dxa dxb5dx22dy2, ~65!

i.e., the two-dimensional Minkowski metric. Equation~1! reduces to

u,x
22u,y

251. ~66!

As in the previous example, there is a further family of second-order ODEs producing
dimensional Lorentzian metrics on their solution spaces obtained by the special contact tr
mations. A particular example, obtained when
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G~s,s̄!5 s̄~coshs1sinhs!,

is

ū25~x1 s̄!22~y1 s̄!2, ~67!

which satisfies the ODE

ū95L̄~ s̄,ū,ū8!52S ~ ū8!2

ū D . ~68!

The contact transformation is explicitly given by

ū5u2u8, s̄52S u8

sinhs1coshsD , ū85sinhs1coshs. ~69!

V. CONCLUSIONS

In this work, we have shown that the ideas and procedures developed earlier that
certain ODEs and PDEs to the eikonal equation and conformal metrics on their solution spac
be generalized to the Hamilton–Jacobi equation. In the earlier treatment of the eikonal eq
we had complete solutions of the equation which led to ODEs and sets of PDEs. These, in tu
to the transformation groups, connecting the ODEs and PDEs, being the contact group. H
‘‘restricted complete’’ solutions yielded a special class~Wünschmann-like! of ODEs and, in ad-
dition, limited the allowed transformations to a restricted set of contact transformations.

We point out that, though we have used, in the present work, only the two-dimensional
independentHJ equation, this can be generalized. In a future paper we will present the resu
the three-dimensionalHJ equation.
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We point out some interesting analogies between colored Le´vy noise and the ran-
dom channel approach to disordered kinetics. These analogies are due to the fact
that the probability density of the Le´vy noise source plays a similar role as the
probability density of rate coefficients in disordered kinetics. Although the equa-
tions for the two approaches are not identical, the analogies can be used for deriv-
ing new, useful results for both problems. The random channel approach makes it
possible to generalize the fractional Uhlenbeck–Ornstein processes~FUO! for
space- and time-dependent colored noise. We describe the properties of colored
noise in terms of characteristic functionals, which are evaluated by using a gener-
alization of Huber’s approach to complex relaxation@Phys. Rev. B31, 6070
~1985!#. We start out by investigating the properties of symmetrical white noise and
then define the Le´vy colored noise in terms of a Langevin equation with a Le´vy
white noise source. We derive exact analytical expressions for the various charac-
teristic functionals, which characterize the noise, and a functional fractional
Fokker–Planck equation for the probability density functional of the noise at a
given moment in time. Second, by making an analogy between the theory of col-
ored noise and the random channel approach to disordered kinetics, we derive
fractional equations for the evolution of the probability densities of the random rate
coefficients in disordered kinetics. These equations serve as a basis for developing
methods for the evaluation of the statistical properties of the random rate coeffi-
cients from experimental data. Special attention is paid to the analysis of systems
for which the observed kinetic curves can be described by linear or nonlinear
stretched exponential kinetics. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1634350#

I. INTRODUCTION

In this article we show that there are some useful analogies between the theory of c
Lévy noise and the random channel approach for rate processes in disordered system
though the evolution equations for the two problems are different, they share some co
features, which may be used for deriving new results in both fields. We show that the the
colored Lévy noise can be formulated in a simple way by applying the random channel app
from disordered kinetics; moreover, it is possible to introduce a more complex type of Le´vy noise,
which is both space and time dependent. Conversely, by analogy with the theory of colored´vy

a!Electronic mail: marceluc@stanford.edu
7360022-2488/2004/45(2)/736/25/$22.00 © 2004 American Institute of Physics
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noise, it is possible to derive equations for the probability density of rate coefficients in disor
kinetics. These equations serve as a basis for proposing methods for extracting statistica
mations about the fluctuations of the rate coefficients from experimental data.

The study of Le´vy stochastic processes is a major subject of topical interest in statis
physics; its development is of importance in connection with a broad class of phenomena
physics, chemistry and biology and even economics. Examples include the dispersive trans
solid-state physics,1 the study of vortex motion in high-temperature superconductors, mo
interfaces in porous media, random field magnets, spin glasses, the propagation of electrom
or acoustic waves in random media,2–4 random phase modulation in spectroscopy,5 reaction ki-
netics in disordered systems,6,7 the structure of biological organs,8 the growth of a population in a
random environment,9 and the fluctuation of prices in the stock market.10

For the study of these types of processes most classical approaches cannot be used, d
presence of the diverging moments of the Le´vy distribution; new theoretical methods are need
such as the development of path integrals for Le´vy-type stochastic processes.11 The study of Le´vy
stochastic processes is an active area of research. In this context the fractional Uhlen
Ornstein processes~FUO!, with a long history, play an important role. A first stochastic proces
this type was introduced in 1942 by Doob12 by starting out from the classical Uhlenbeck–Ornste
~CUO! process13 and by replacing the standard Wiener noise by a~symmetric! Lévy stable noise.
In 1982 West and Shesadri studied a harmonic oscillator with a fluctuating Le´vy noise source.14 In
2000 Garbaczewski and Olkiewicz15 introduced an Ornstein–Uhlenbeck–Cauchy process, w
the noise source obeys a probability law of the Cauchy~Lorentz! type.

A second type of fractal generalization of the Uhlenbeck–Ornstein process is based on t
of fractional evolution equations. Metzler, Barkai, and Klafter introduced a fractional Fok
Planck equation describing the stochastic evolution of a particle under the combined influe
an external, nonlinear force and a thermal heat bath.16 It seems plausible that there is a connecti
between their Fokker–Planck equation and a fractional generalization of the Uhlenbeck–O
process. This type of connection is apparent in other studies of Le´vy diffusion in external force
fields, which make use both of Langevin equations with Le´vy noise sources and fractional evo
lution equations.17,18

A third type of FUO was introduced by Koyama and Hara19 in connection with earthquake
dynamics. They started out from an overdamped harmonic oscillatior with a random noise
and applied a succession of renormalization processes of the type introduced by Shle
Hughes, Montroll, and West8,20,21 in stochastic dynamics. The result is a FUO process chara
ized by temporal correlation functions with long tails, which seems to have different prop
from the first two types mentioned above.

The relaxation and reaction processes occurring in disordered systems have been stud
from the experimental and theoretical points of view.6,7,22–28In this field most papers focus on th
experimental and theoretical study of processes with linear kinetics described by stretched
nential survival functions. There are also some attempts of extending this research to the
nonlinear processes.24 Many theoretical developments are based on the idea that the rate c
cients are random variables, which are the result of the additive contribution of a random n
of reaction channels which obey certain probability laws. This idea was introduced in 1948
seminal paper by Foerster25 dealing with the extinction of fluorescence in spectroscopical exp
ments. The description of the fluctuations of rate coefficients in terms of the contribution
random number of reaction channels is referred to the as random channel approach~RCA!.
Various developments of the RCA for linear kinetics have been reported.6,22–24,26In this paper we
are especially interested in the RCA approach suggested by Huber22 in 1985 and in an alternative
approach for systems with dynamic disorder developed by Allinger and Blumen.26 Recently it has
been shown that Huber’s theory is exact for a Poissonian distribution of independent chan23

Moreover, this equation also holds beyond the range of validity of the Poissonian distribut
emerges as a universal scaling law for a uniform random distribution of reaction channels
acterized by nonintermittent fluctuations.23 These universal scaling laws have been extende
systems with dynamical disorder.23 A major problem in disordered kinetics is the evaluation of t
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statistical properties of rate coefficients from experimental data. The field of chemical kin
dealing with this problem is referred to as ‘‘spectral kinetic analysis.’’29 Though this field is in an
early stage of development, a few methods of spectral kinetic analysis are available.

In this article we aim to bridge the gap between these two area of research. The struc
the article is the following. In Secs. II–IV we show that with suitable changes Huber’s appr
to RCA in disordered kinetics can be used for describing white and colored Le´vy noise. We study
space- and time-dependent colored Le´vy noise and introduce a space-dependent generalizatio
the fractional Uhlenbeck–Ornstein processes. In Sec. V we use the analogies between the r
channel approach to disordered kinetics and the theory of Le´vy colored noise, by deriving equa
tions for the probability densities of the random rate coefficients. In Sec. VI we use these
tions for deriving methods of evaluation of the statistical properties of rate coefficients
experimental data.

II. HUBER STOCHASTIC PROCESSES AND LÉ VY NOISE

In this section we make a connection between Huber stochastic processes and Le´vy noise and
extend the theory of Gaussian colored noise to the more complicated case of Le´vy fluctuations.
The Gaussian colored noise is assumed to be generated by the exponential damping of a
variable subject to the action of Gaussian white noise.30 Consider a scalar noise sourceF(r ,t) at
position r and timet: the properties of colored noise can be described by the Langevin equ

]F~r ,t !

]t
5LF~r ,t !1vF0~r ,t !, ~1!

whereL is a time-independent, but generally space-dependent, linear transport operator,v is a
characteristic frequency, andF0(r ,t) is a Gaussian noise source with an average value equ
zero and with delta correlated cumulants of the second order:

^F0~r ,t !&50, ^^F0~r1 ,t1!F0~r2 ,t2!&&5Ad~ t12t2!d~r12r2!. ~2!

A suitable choice for the transport operator is

L...52v1•••1vl2¹ r
21¯, ~3!

wherel is a characteristic diffusion length.
The classical analysis of the colored Gaussian noise characterized by Eqs.~1!–~3! is usually

done by performing a Fourier analysis of the moments and the cumulants of the noise
F(r ,t). This method cannot be extended to the Le´vy noise, because in this case the moments
cumulants ofF(r ,t) diverge. To overcome this difficulty we generalize a method recently use
us18 for the analysis of one-dimensional Le´vy diffusion in a force field. We focus our efforts on th
evaluation of characteristic functionals of the noise which can be evaluated even if the mo
and cumulants are divergent. Such an approach is useful because many experimental obs
can be evaluated if the characteristic functional is known. Our analysis proceeds in two ste
first consider the noise sourceF0(r ,t) to establish a suitable physical model for Le´vy white noise
and evaluate the characteristic functionals, which describe its stochastic properties. The ne
is to study the colored Le´vy noise as characterized by the Langevin equation~1! where the
fluctuation of the random forceF0(r ,t) is described by Le´vy white noise.

The fluctuations of the random forceF0(r ,t) are described by using a generalized Hub
approach.22,23The random forceF0(r ,t) is made up of the additive contribution of a large numb
N of individual componentsgm(r ,t), each of which is a random function corresponding to a giv
relaxation channel

F0~r ,t !5 (
m51

N

gm~r ,t !. ~4!
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This physical model of white Le´vy noise is essentially a model of Brownian motion for which t
contribution of an individual event~a collision! to the random force is a stochastic function, whi
obeys fractal statistics. The statistics of individual events can be conveniently expressed in
of Huber’s theory of complex relaxation.22 In this context we formally attach a channel to ea
individual ~collision! event. Both the numberN of channels and the contribution
g1(r ,t),...,gN(r ,t) of the different channels are random; their stochastic properties can b
scribed by a Poissonian random point process characterized by a density of channels whic
a scaling law of the negative power law type. The space–time characteristic functional of
noise can be expressed as a dynamic average

Gr ,t
0 @K~r 8,t8!#5K expH i E ¯

2`

1`E E
2`

1`

K~r 8,t8! (
m51

N

gm~r 8,t8!dr 8 dt8J L . ~5!

whereK(r 8,t8) is a suitable test function attached to the random forceF0(r ,t) and the dynamic
averagê¯& is taken over all possible values of the numberN of channels and over all possibl
values of the random functionsg1(r 8,t8),...,gN(r 8,t8). The detailed computation of the avera
in Eq. ~5! is presented in Sec. III.

The second step of our analysis consists in expressing the random forceF(r ,t) of the colored
noise as a functional of the noise source of the white noiseF0(r ,t) and in evaluating the charac
teristic functional of the colored noise

Gr ,t@K~r 8,t8!#5K expH i E ¯

2`

1`E E
2`

1`

K~r 8,t8!F~r 8,t8!dr 8 dt8J L , ~6!

in terms of the characteristic functionalGr ,t
0 @K(r 8,t8)# of the white noise. The computations a

presented in Sec. IV.

III. TIME- AND SPACE-DEPENDENT LÉ VY WHITE NOISE

The dynamic average in Eq.~5! can be expressed by using two different sets of probab
density functionals, either in terms of the probability density functional attached to the co
nentsg1(r 8,t8),...,gN(r 8,t8) or of the probability density functional of the random forceF0(r ,t),
respectively. The stochastic properties of the numberN of channels and of the componen
g1(r 8,t8),...,gN(r 8,t8) attached to the different channels can be expressed in terms of a s
grand canonical probability density functionals

Q0 ,QN@g1~r ;t !,...,gN~r ;t !#D@g1~r ;t !#¯D@gN~r ;t !#, N51,2,..., ~7!

which obey a normalization condition which includes an 1/N! Gibbs factor

Q01 (
N51

`
1

N! E E ¯E E QN@g1~r ;t !,...,gN~r ;t !#D@g1~r ;t !#¯D@gN~r ;t !#51. ~8!

Here D@g1(r ;t)#,...,D@gM(r ;t)# are suitable integration measures over the space of funct
g1(r ;t),...,gN(r ;t) and ** stands for the operation of path integration. Similarly, the stocha
properties of the total random forceF0(r ,t) attached to the Le´vy white noise can be expressed
terms of the probability density functional:

Pr ,t
0 @F0~r 8,t8!#Dr ,t

0 @F0~r 8,t8!# with E E
r ,t

Pr ,t
0 @F0~r 8,t8!#Dr ,t

0 @F0~r 8,t8!#51. ~9!

In this article we assume that the different channels are independent and thus the
canonical probability density functionals~6! obey Poissonian statistics:
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Q05expH 2E E rg@g~r 8;t8!#D@g~r 8;t8!#J , ~10!

QN@g1~r ;t !,...,gN~r ;t !#D@g1~r ;t !#¯D@gN~r ;t !#

5expH 2E E rg@g~r 8;t8!#D@g~r 8;t8!#J rg@g1~r ;t !#D@g1~r ;t !#¯rg@gN~r ;t !#D@gN~r ;t !#.

~11!

For Lévy white noise the functional average density of statesrg@g(r ;t)#D@g(r ;t)# obeys a scaling
condition of the negative power law type. By generalizing the approach from Ref. 23 for s
dependent systems we can give the following discrete representation forrg@g(r ;t)#D@g(r ;t)#:

rg~g;Dr ,Dt !dg5k0~a!~DtDr !~12a!ugu2~11a!dg, Dr5)
51

m

Dr , k0~a!.0, 2.a.0,

~12!

and

gn
~u,v!5gn~ t01uDt,r 11v1Dr 1 ,...,r m1vmDr m!, n51,...,N, ~13!

wherem is the space dimension,k0.0 is a positive proportionality factor,u,v are current labels,
and 2.a.0 is a dimensionless fractal exponent. By using this discrete representation w
formally express the Poissonian grand canonical probability density functio
Q0 ,...,QN@gt(r ;t),...,gN(r ;t)#D@gt(r ;t)#•••D@gN(r ;t)#,..., ~10! and~11! with the following lim-
its:

Q05 lim
Dr→0,Dt→0

)
u,v

FexpS 2E
2`

1`

rg~g~u,v!;Dr ,Dt !dg~u,v!D G , ~14!

QN@g1~r ;t !,...,gN~r ;t !#D@g1~r ;t !#¯D@gN~r ;t !#

5 lim
Dr→0,Dt→0

H)
u,v

FexpS 2E
2`

1`

rg~g~u,v!;Dr ,Dt !dg~u,v!D )
w51

N

rg~gw
~u,v!!dgw

~u,v!G J .

~15!

By using the discrete representation~14! and ~15! the ensemble average in Eq.~5! can be easily
evaluated. After some calculations we come to a closed expression for the characteristic fun
Gr ,t

0 @K(r 8,t8)# of Lévy white noise

Gr ,t
0 @K~r 8,t8!#5 lim

Dr→0,Dt→0
K )

w51

N

)
u,v

exp$ iK~u,v!gw
~u,v!DrDt%L

5 lim
Dr→0,Dt→0

)
u,v

expS 2E
2`

1`

rg~g~u,v!;Dr ,Dt !dg~u,v!D
3(

N

1

N! F )
w51

N E
2`

1`

exp$ i ,K~u,v!gw
~u,v!DrDt%rg~gw

~u,v!!dgw
~u,v!G

5 lim
Dr→0,Dt→0

)
u,v

expS 2k0~DtDr !2~12a!2E
0

1`

ugu2~11a!
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3~12cos$K~u,v!gDtDr %!dgD
5 lim

Dr→0,Dt→0
)
u,v

expS 2k0~DtDr !12a2
G~12a!

a
uK~u,v!DtDr ua cosS pa

2 D D .

~16!

By passing to the continuous limit in Eq.~16! we have

Gr ,t
0 [K~r 8,t8#5expS 2cE ¯

2`

1`E E
2`

1`

uK~r 8,t8!ua dr 8 dt8D , ~17!

where

c52k0~a!
G~12a!

a
cosS pa

2 D , ~18!

andG(x) is the complete gamma function. Equation~17! is the main result of this section. Th
characteristic functionalGr ,t

0 @K(r 8,t8)# expresses all stochastic properties of Le´vy white noise. By
evaluating the functional derivatives ofGr ,t

0 @K(r 8,t8)# and lnGr ,t
0 @K(r 8,t8)# with respect to the

test functionK(r 8,t8) we can check that for 2.a.0 all positive moments as well as all cumulan
attached to the Le´vy white noise are divergent. The probability density functional of white Le´vy
noise,Pr ,t

0 @F0(r 8,t8)#Dr ,t
0 @F0(r 8,t8)#, can be formally expressed as an inverse Fourier transf

of the characteristic functionalGr ,t
0 @K(r 8,t8)#. We rewrite the definition~5! of the characteristic

functional Gr ,t
0 @K(r 8,t8)# of the Lévy white noise in terms of the probability functiona

Pr ,t
0 @F0(r 8,t8)#Dr ,t

0 @F0(r 8,t8)#

Gr ,t
0 @K~r 8,t8!#5E E

r ,t

expH i E ¯

2`

1`E E
2`

1`

K~r 8,t8!F0~r 8,t8!dr 8 dt8J
3Pr ,t

0 @F0~r 8,t8!#Dr ,t
0 @F0~r 8,t8!#. ~19!

Now we use a discrete representation for Eq.~19!:

Gr ,t
0 @K~u,v!#5E ¯E expH i(

u,v
K~u,v!F0

~u,v!DtDr J Pr ,t
0 @ iF0

~u,v!i #)
u,v

dF0
~u,v! , ~20!

where Pr ,t
0 @ iF0

(u,v)i #Pu,vdF0
(u,v) is a joint probability which is a discrete representation of t

probability functionalPr ,t
0 @F0(r 8,t8)#Dr ,t

0 @F0(r 8,t8)# andGr ,t
0 @K(u,v)# is the Fourier transform of

Pr ,t
0 @ iF0

(u,v)i #. We have

Pr ,t
0 @F0~r 8,t8!#Dr ,t

0 @F0~r 8,t8!#5 lim
Dr→0,Dt→0

Pr ,t
0 @ iF0

~u,v!i #)
u,v

dF0
~u,v! , ~21!

Gr ,t
0 @K~r 8,t8!#5 lim

Dr→0,Dt→0
Gr ,t

0 @K~u,v!#. ~22!

By applying an inverse Fourier transformation to Eq.~20! we come to
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Pr ,t
0 @ iF0

~u,v!i #)
u,v

dF0
~u,v!5)

u,v
dF0

~u,v!E ¯E expH 2 i(
u,v

K~u,v!F0
~u,v!DtDr J

3Gr ,t
0 @K~u,v!#)

u,v
S dK~u,v!

2p D . ~23!

In the continuous limit Eq.~23! becomes

Pr ,t
0 @F0~r 8,t8!#Dr ,t

0 @F0~r 8,t8!#

5H E E
r ,t
expF2E ¯

2`

1`E E
2`

1`

@ iK~r 8,t8!F0~r 8,t8!

1cuK~r 8,t8!ua#dr 8 dt8GDr ,t
inv@K~r 8,t8!#J Dr ,t

0 @F0~r 8,t8!#, ~24!

where

Dr ,t
inv@K~r 8,t8!#5 lim

Dr→0,Dt→0
)
u,v

S dK~u,v!

2p D ~25!

is an integration measure over the space of functionsK(r 8,t8).
From Eqs.~21!–~25! we notice that the Le´vy white noise is described by an independe

stochastic process, that is, the fluctuations of the noise source at a given time and posit
independent of the fluctuations of the noise source at other times and positions. For this reas
expressions for the characteristic functional and for the probability density functional are
rable, that is, they can be expressed as products of factors corresponding to different point
space–time continuum. This can be easily seen from the discrete representationsGr ,t

0 @K(u,v)# and
Pr ,t

0 @ iF0
(u,v)i #. We have

Gr ,t
0 @K~u,v!#5)

u,v
exp$2c~DtDr !uK~u,v!ua%, ~26!

Pr ,t
0 @ iF0

~u,v!i #5)
u,v

H 1

@c~DtDr !#1/a
CaH F0

~u,v!

@c~DtDr !#1/aJ J , ~27!

where

Ca~x!5~2p!21E
2`

1`

exp~2 ikx2ukua!dk ~28!

is the one-variable symmetrical Le´vy probability density.8

In various physical, chemical, and biological problems the observables of physical intere
linked averages of the type

F~ t !5K expF2E ¯

2`

1`E E
t0

t

z~r 8,t8!F0~r 8,t8!dr 8 dt8G L . ~29!

By using Eq.~17! such linked averages can be easily evaluated with our approach. We hav
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F~ t !5Gr ,t
0 @K~r 8,t8!5z~r 8,t8!@h~ t82t0!2h~ t82t !##

5expS 2cE ¯

2`

1`E E
t0

t

uz~r 8,t8!ua dr 8 dt8D , ~30!

whereh(x) is the Heaviside step function.
It is easy to check that in the limita→2 the white Lévy noise studied in this section reduce

to the usual Gaussian white noise. The characteristic functional and the probability density
tional of the noise become Gaussian. We pass in Eq.~17! to the limit a→2 and assume that th
limit

lim
a→2

F2k0~a!
G~12a!

a
cosS pa

2 D G5c2 ~31!

exists and is finite. We come to

Gr ,t
0 @K~r 8,t8!#5expS 2c2E ¯

2`

1`E E
2`

1`

uK~r 8,t8!u2 dr 8 dt8D , ~32!

which corresponds to an independent, space- and time-dependent Gaussian stochastic proc
finite cumulants:

^^F0~r ,t !&&50, ~33!

^^F0~r1 ,t1!F0~r2 ,t2!&&52c2d~ t12t2!d~r12r2!, ~34!

^^F0~r1 ,t1!¯F0~rm ,tm!&&50, m.2. ~35!

In conclusion, in this section we have used the Huber approach for studying the stoc
properties of the space- and time-dependent Le´vy white noise. The type of Le´vy white noise
introduced by using the Huber approach is a space-dependent generalization of the Le´vy noises
introduced by Doob,12 West and Shesadri,14 and Garbaczewski and Olkiewicz.15 We have derived
expressions for the characteristic functional and the probability functional of the noise sourc
have indicated that the positive moments and the cumulants of the noise source are infin
have shown that the Gaussian white noise can be recovered as a limit case of Le´vy white noise,
which corresponds to a fractal exponenta equal to two.

IV. TIME- AND SPACE-DEPENDENT LÉ VY COLORED NOISE

In the case of the white Le´vy noise studied in the preceding section the values of the n
source at different positions in the space–time continuum are independent random variab
lected from the same probability density, which is of the Le´vy type. For this reason the stochast
process which describes the white Le´vy noise is stationary. In the case of colored noise, howe
it makes sense to consider the broader case where the noise is generally nonstationary
section we study Le´vy colored noise which obeys a Langevin equation of the type~1!, where
F0(r ,t) is a Lévy white noise described by Eq.~17!; however the white noise does not act fro
any time value between2` and 1`, but rather in a time window, limited by a lower valuet
5t0 . Under these circumstances we should introduce a lower time cutoff in Eq.~17!, resulting in

Gr ,t
0 @K~r 8,t8!#5expS 2cE ¯

2`

1`E E
t0

1`

uK~r 8,t8!ua dr 8 dt8D . ~36!

Then the colored noise is generally nonstationsary and the stationary colored noise corresp
the limit t0→2`.
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The next step is to express the properties of colored noise in terms of the properties of
noise. We express the general solution of the evolution equation~1! in terms of a Green function
which is the solution of

]G~r ;r 9,t2t9!

]t
5LG~r ;r 9,t2t9!, ~37!

with the initial condition

G~r ;r 9,0!5d~r2r 9!; ~38!

in particular, if the linear transport operatorL... is translationally invariant, so is the Green fun
tion, that is,G(r ;r 9,t2t9)5G(r2r 9,t2t9). The solution of Eq.~1!, corresponding to the initia
conditionF(r ,t5t0)5F(r ,t0), is

F~r ,t !5E ¯

2`

1`E G~r ;r0 ,t2t0!F~r0 ,t0!dr01vE ¯

2`

1`E E
t0

t

G~r ;r 9,t2t9!F0~r 9,t9!dr 9 dt9.

~39!

The characteristic functional of the noise sourceF(r ,t) can be easily evaluated. By assuming th
the distribution of the initial valueF(r ,t5t0)5F(r ,t0) is independent of the noise sourceF0(r ,t)
from Eq. ~6! we come to

Gr ,t@K~r 8,t8!#

5K expH i E ¯

2`

1`E E
t0

1`

K~r 8,t8!E ¯

2`

1`E G~r 8;r0 ,t82t0!F~r0 ,t0!dr0 dr 8 dt8J L
3K expH ivE ¯

2`

1`E E
t0

1`

K~r 8,t8!E ¯

2`

1`E E
t0

t

G~r 8;r 9,t82t9!F0~r 9,t9!dr 9 dt9 dr 8 dt8J L .

~40!

Now we introduce the probability functional of the random force fieldF(r ,t0) at the initial time
t5t0 ,

Pr@F~r 8!;t0#Dr@F~r 8!;t0# with 5E E
r
Pr@F~r 8!;t0#Dr@F~r 8!;t0#51, ~41!

and the corresponding characteristic functional

Gr@K~r 8!;t0#5K expH i E ¯

2`

1`E F~r 8!K~r 8!dr 8J L
5E E

r
expF i E K~r 8!F~r 8!dr 8GPr@F~r 8!;t0#Dr@F~r 8!;t0#. ~42!

By combining Eqs.~40! and ~42! we obtain

Gr ,t@K~r 8,t8!#5Gr ,t
transient~ t0!

@K~r 8,t8!#Gr ,t
normal~ t0!

@K~r 8,t8!#, ~43!

where

Gr ,t
transient~ t0!

@K~r 8,t8!#5GrFK~r 8!5E
t0

`

K~r 9,t9!E ¯

2`

1`E G~r 9;r 8,t92t0!dr 9 dt9G ~44!
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is a transient component and

Gr ,t
normal~ t0!

@K~r 8,t8!#

5expS 2D fract.E ¯

2`

1`E E
t85t0

1` U E ¯

2`

1`E E
t92t8

`

G~r 92r 8,t92t8!K~r 9,t9!dr 9 dt9Ua

dr 8 dt8D
~45!

is a normal component;

D fract.5
2k0~a!va

a
G~12a!cosS pa

2 D5cva ~46!

is a fractional diffusion coefficient.
Equations ~43!–~45! are the main results of this section. The characteristic functio

Gr ,t@K(r 8,t8)# expresses all stochastic properties of the Le´vy colored noise. In particular, by
computing the functional derivatives ofGr ,t@K(r 8,t8)# and lnGr ,t@K(r 8,t8)# we can show that for
2.a.0 all positive moments and cumulants of the noise source are infinite. The proba
functional of the colored noise

Pr ,t@F~r 8,t8!#Dr ,t@F~r 8,t8!# with E E
r ,t
Pr ,t@F~r 8,t8!#Dr ,t@F~r 8,t8!#51 ~47!

can be formally expressed as an inverse Fourier transform ofGr ,t@K(r 8,t8)#. By using a discrete
representation forPr ,t@F(r 8,t8)#Dr ,t@F(r 8,t8)# similar to the one used in the preceding section
can show that

Pr ,t@F~r 8,t8!#Dr ,t@F~r 8,t8!#

5H E E
r ,t
expF2 i E ¯

2`

1`E E
2`

1`

K~r 8,t8!F0~r 8,t8!dr 8 dt8G
3Gr ,t@K~r 8,t8!#Dr ,t

inv@K~r 8,t8!#J Dr ,t@F0~r 8,t8!#. ~48!

For the study of many problems it is enough if we know the stochastic properties of the
source at a given moment in time,t85t. In this case we can use the marginal probability den
functional

Pr@F~r 8!;t#Dr@F~r 8!;t#

5E E
r ,t
$d@F~r 8,t8!2F~r 8,t !#Dr@F~r 8!,t#%Pr ,t@F~r 8,t8!#Dr ,t@F~r 8,t8!# ~49!

and the corresponding characteristic functional

Gr@K~r 8!;t#5E E
r
expH i E ¯

2`

1`E K~r 8!F~r 8!dr 8J Pr@F~r 8!;t#Dr@F~r 8!;t#. ~50!

This characteristic functional can be easily evaluated from Eqs.~43!–~45!. We have
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Gr@K~r 8!;t#5Gr ,t@K~r 8,t8!5K~r 8!d~ t2t8!#

5GrF E ¯

2`

1`E K~r 9!G~r 9;r 8,t2t0!dr 9;t0G
3expS 2D fract.E ¯

2`

1`E E
t0

t U E ¯

2`

1`E G~r 9;r 8,t2t8!K~r 9!dr 9Ua

dr 8 dt8D .

~51!

We notice that theGr term can be viewed as an integration constant and thus Eq.~51! has the
structure of a solution of a linear evolution equation. Such an evolution equation can be
built by evaluating the time derivative]Gr@K(r 8);t#/]t and the functional derivative
dGr@K(r 8);t#/dK(r 9) and by eliminating the initial conditionGr@K(r 8);t0# from the resulting
equations. After some computations we come to

]

]t
Gr@K~r 8!;t#5E H iK ~r 9!LF r 9,2 i

d

dK~r 8!G JGr@K~r 8!;t# dr 9

2D fract.Gr@K~r 8!;t#E uK~r 9!ua dr 9. ~52!

We recall that the symmetric fractional derivative of ordera of a functionw~l! can be defined
as an inverse Fourier transform:17,31

]a

]la
w~l!52F21@w̄~q!uqua#5

21

2p E
2`

1`

w̄~q!uqua exp~2 iql!dq, ~53!

where

w̄~q!5E
2`

1`

w~l!exp~ iql!dl ~54!

is the Fourier transform ofw~l!. By using Eqs.~53! and ~54! we can introduce the following
heuristic definition for the fractional functional derivative of ordera, evaluated at a single positio
r5r 9,

da

d@F~r 9,t !#a
Pr@F~r 8,t !#5

]a

]la
Pr@F~r 8,t !1ld~r 82r 9!#ul50 . ~55!

In Appendix A we show that, by means of an inverse Fourier transformation, Eq.~52! leads to a
fractional functional Fokker–Planck equation for the probability density functionalPr@F(r 8,t)#,
which contains the fractional derivative~55!. We obtain

]

]t
Pr@F~r 8,t !#5E d

dF~r 9,t !
$@LF~r 8,t !#Pr@F~r 8,t !#%dr 9

1D fract.E da

d@F~r 9,t !#a
Pr@F~r 8,t !#dr 9. ~56!

Equation~56! has an important consequence: it can be used for deriving evolution equa
for joint probability density functionals of dynamical systems subject to colored noise by mea
Van Kampen’s method of compound master equations. A simple example is a nonlinear re
diffusion system subject to environmental fluctuations, described in terms of a one-variable
tiplicative noise, such as fluctuations of the temperature.
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An important type of colored noise corresponds to the case where the linear Langevin
tion ~1! is an equation of the reaction-diffusion type in unlimited space and the evolution ope
L... has the standard form~3!. In this case the Green function is translationally invariant. We h

G~r2r 9,t2t9!5@4pvl2~ t2t9!#2m/2 expF2v~ t2t9!2
~r2r 9!2

4vl2~ t2t9!
G , ~57!

with

E ¯

2`

1`E E
t5t9

1`

vG~r2r 9,t2t9!dr dt51, ~58!

wherem is the space dimension. It is easy to check that in the limitGt@K(t8)# with the constraint
~31! the colored noise corresponding to Eq.~57! reduces to the standard Gaussian colored no
introduced by Lam and Bagayoko30 and studied by Vlad, Ross, and Mackey.32

In conclusion, in this section we have derived analytic expressions for the charact
functional and probability density functional of space- and time-dependent colored Le´vy noise
@Eqs. ~48!–~51!#. In Appendix B we show that our general expression describes as a part
case the main properties of space-independent colored Le´vy noise studied in the literature. B
using a heuristic definition of the fractional functional derivative introduced in Appendix A,
have derived a fractional functional Fokker–Planck equation, which describes the proper
Lévy colored noise at a given moment in time, Eq.~58!. This fractional functional Fokker–Planc
equation can be used as a basis for deriving evolution equations for dynamical systems su
to Lévy colored noise.

V. RATE PROCESSES IN DISORDERED SYSTEMS. EQUATIONS FOR THE RATE
COEFFICIENTS

In this section we make an analogy between the theory of Le´vy noise developed in this pape
and the theory of rate processes in disordered systems. Our purpose is to use this ana
deriving equations for the stochastic properties of the rate coefficients of a rate process in
dered systems. The results derived in this section are used in Sec. VI for suggesting meth
extracting kinetic information from experimental data.

For simplicity, in this section we limit ourselves to the study of rate processes with s
disorder. We assume the validity of the random channel model in its simplest form. We co
a rate process described by a system of deterministic kinetic evolutions with random parame
the type

dx/dt5R~x,W!, ~59!

wherex5(x1 ,x2 ,...) is thecomposition vector of the system,W5(W1 ,W2 ,...) is thevector of
the total rate coefficients andR5(R1 ,R2 ,...) is thevector of the reaction rates. In Eq.~59! the
intrinsic chemical fluctuations of the composition vectorx are neglected and the only source
randomness are the random values of the vector of rate coefficientsW. We assume that the random
variations of the different total rate coefficientsW1 ,W2 ,... areindependent of each other and th
each total rateWv can be represented by a linear superposition of various contributions of diff
reaction channels

Wv5(
u

kvu , v51,...,m, ~60!

wherev is the channel label andm is the number of total rate coefficients.
We assume that the numberNv and the magnitudeskv1 ,....,kvNv

obey Poissonian statistics
For processes with static disorder we can introduce the grand canonical probability densit
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QvNv
~kv1 ,...,kvNv

!dkv1¯dkvNv
, Q1v~k1v!dk1v ,..., ~61!

which obey the normalization conditions

Qv01 (
Nv51

`
1

Nv! E ¯E QvNv
~kv1 ,...,kvNv

!dkv1¯dkvNv
51. ~62!

For Poissonian statistics we have

Qv05expF2E rv~kv!dkvG , ~63!

QvNv
~kv1 ,...,kvNv

!dkv1¯dkvNv
5expF2E rv~kv!dkvGrv~kv1!dkv1¯rv~kvNv

!dkvNv
, ~64!

whererv(kv)dkv , v51,2,..., are average numbers of channels with contributions to the total
betweenkv andkv1dkv .

Now we introduce the probability densityP~W! of the total rate coefficients, which obeys th
normalization condition*P(W)dW51, and the corresponding characteristic function:

G~u!5E
0

`

¯E
0

`

expS 2(
v

uvWvDP~W!dW, ~65!

whereuv are the Laplace variables conjugated to the total rate coefficientsWv . We notice that,
since the total rate coefficients are non-negative, the generating functionG~u! of the probability
densityP~W! of the total rate coefficients can be defined as a multiple Laplace transform ofP~W!
with respect to the random variablesWv .

The probability densityP~W! of the total rate coefficientsWv can be expressed as a multip
grand canonical average of a product of delta functions:

P~W!5K)
v

dS Wv2(
u

kvuD L
5(

N1

`

¯(
Nm

` E ¯E )
v51

m F 1

Nv!
dS Wv2(

u
kvuDQvNv

~kv1 ,...,kvNv
!dkv1 ,...,dkvNvG .

~66!

In general the grand canonical averages in Eq.~66! are hard to evaluate directly. However, if w
take the multiple Laplace transform of Eq.~66! the generating functionG~u! can be easily com-
puted. By using the Poissonian laws~63! and ~64! we come to

G~u!5E
0

`

¯E
0

`

expS 2(
v

uvWvD(
N1

`

¯(
Nm

` E
0

`

¯E
0

`

)
v51

m F 1

Nv!
dS Wv2(

u
kvuD

3QvNv
~kv1 ,...,kvNv

!dkv1 ,...,dkvNvGdW

5 )
v51

m H (
Nv50

`
1

Nv! F E rv~kv!exp~2uvkv!dkvGNv

expF2E rv~kv!dkvG J , ~67!

from which, by evaluating the sum overNv , we come to
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G~u!5expF2 (
v51

m E
0

`

~12exp~uvkv!!rv~kv!dkvG5 )
v51

m

Gv~uv! ~68!

with

Gv~uv!5expF2E
0

`

~12exp~2uvkv!!rv~kv!dkvG . ~69!

By taking the inverse Laplace transform of Eq.~68! we come to

P~W!dW5 )
v51

m

@Pv~Wv!dWv#, ~70!

where

Pv~Wv!dWv5L21@Gv~uv!#dWv ~71!

is the probability that thevth total rate has a value betweenWv and Wv1dWv ; the functions
Gv(uv) are the characteristic functions of the probability densitiesPv(Wv) andL21 denotes the
inverse Laplace transformation. As expected for independent random variables the prob
density of the vector of the total rate coefficients,W, is the product of the probability densities o
different rate coefficients.

An important particular case is that for which the average densities of channelsrv(kv), v
51,...,m, attached to the different rate coefficientsWv , v51,...,m, obey self-similar power scal
ing laws, similar to Eq.~12! introduced in Sec. III for Le´vy noise

rv~kv!5kvav~kv!2~11av!, 1.av.0; v51,...,m, ~72!

where kv and av are scaling factors and fractal exponents attached to the different tota
coefficients, respectively. By using the scaling laws~72! the integrals in Eqs.~69! and~70! can be
easily evaluated, resulting in

Gv~uv!5exp@2~Vvuv!av#, ~73!

where

Vv5@~av!21kv~av!G~12av!#1/av. ~74!

The probability densitiesPv(Wv) can be easily evaluated, resulting in

Pv~Wv!5~Vv!21wav
~Wv /Vv!, ~75!

where

wa~x!5L21@exp~2sa!#, 1.a.0, ~76!

is a Lévy probability density of a non-negative variablex, s is the Laplace variable conjugated
x, anda is a dimensionless fractal exponent.

Since the probability densitiesPv(Wv) of the total rate are of the Le´vy type we expect that
they obey fractional evolution equations similar to Eqs.~56! and~B18! from Sec. IV and Appen-
dix B. By differentiating Eqs.~73! with respect toVv we come to

Vv

]

]Vv
Gv1av~Vvuv!avGv50, v51,...,m. ~77!
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Now we recall the definition of the asymmetric fractional derivative of ordera,1.a.0 of a
function f (x) of a non-negative variable31 x,

da

dxa
f ~x!5

1

G~12a!

d

dx E0

x f ~y!dy

~x2y!a
, 1.a.0, ~78!

and apply the inverse Laplace transformation to Eqs.~77!, resulting in

]

]Vv
Pv1av~Vv!av21

]av

]~Wv!av
Pv50. ~79!

The fractional Fokker–Planck equation~79! can be easily extended to the more general c
where the state densitiesrv(kv), v51,...,m, are arbitrary. Sincerv(kv)dkv , v51,...,m, are pure
numbers, it follows that the state densitiesrv(kv), v51,...,m, have the physical dimensio
@kv#21. Dimensional analysis requires thatrv(kv), v51,...,m, must depend onm constantsVv ,
v51,...,m with physical dimension@kv#. We have

rv~kv!5~Vv!21xv~kv /Vv!, v51,...,m, ~80!

wherexv(xv), v51,...,m, are dimensionless densities of channels andxv5kv /Vv . By using Eqs.
~80! we can express Eqs.~69! in the following form,

Gv~uv!5exp@2hv~uvVv!#, ~81!

where

hv~y!5E
0

`

~12exp~2xy!!xv~x!dx. ~82!

By differentiating Eq.~81! with respect toVv we come to

]

]Vv
Gv1uvjv~Vvuv!Gv50, ~83!

with

jv~y!5
]

]y
hv~y!5E

0

`

exp~2xy!xxv~x!dx5L@xxv~x!#, ~84!

whereL denotes the direct Laplace transformation. Now we apply the inverse Laplace tra
mation to Eqs.~83!, resulting in a set of integrodifferential equations which are generalization
the Fokker Planck equations~79!

]

]Vv
Pv1~Vv!22

]

]~Wv!
E

0

Wv
~Wv2W8!xvS Wv2W8

Vv
DPv~W8!dW850. ~85!

If the self-similar scaling laws~72! hold, then

xv~x!5
av

G~12av!
x2~11av!, ~86!

and Eqs.~85! reduces to the fractional equations~79!.
In conclusion in this section we have studied the statistical properties of the total rate c

cients for a nonlinear disordered system obeying independent random channel statistics. W
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derived relations for the probability densities of the total rate coefficients and their charact
functions, and have shown that if the average densities of channels obey self-similar power
laws, then the probability densities of the total rate coefficients are of the Le´vy type. In this
particular case we have derived stationary fractional Fokker–Planck equations for the prob
densities of the total rate coefficients. In the general case where the average densities of c
are arbitrary we have derived integrodifferential equations for the probability densities of the
rate coefficients; as expected, for self-similar distributions of channels these integrodiffer
equations reduce to fractional Fokker–Planck equations. In the next section we use these
for suggesting methods for the extraction of kinetic information from experimental data.

VI. RATE PROCESSES IN DISORDERED SYSTEMS. EXTRACTION OF INFORMATION
FROM EXPERIMENTAL DATA

In disordered kinetics the experimental observables are usually average concentratio
denote by

x~ t !5Q~x0 ,W;t ! ~87!

the solution of the evolution equations~59! with the initial condition. We need to evaluate th
average concentration vector

^x~ t !&5E
0

`

¯E
0

`

Q~x0 ,W;t !P~W!dW. ~88!

We expressQ(xo ,W;t) as an inverse Fourier transform,

Q~xo ,W;t !5
1

~2p!m E2`

1`

¯E
2`

1`

Q̄~xo ,q;t !exp~2 iq"W!dq, ~89!

where

Q̄~xo ,q;t !5E
0

`

¯E
0

`

Q~xo ,W;t !exp~ iq"W!dW, ~90!

and whereq is the vector of Fourier variables attached to the vector of total rate coefficientW.
In Eq. ~90! we have taken into account that the total rate coefficients cannot be negativ
inserting Eqs.~89! and ~90! into Eq. ~88! and making use of Eq.~65! we come to

^x~ t !&5
1

~2p!m E0

`

¯E
0

`E
2`

1`

¯E
2`

1`

Q~xo ,W8;t !exp~ iq"W8!

3dW8dqE
0

`

¯E
0

`

exp~2 iq"W!P~W!dW

5
1

~2p!m E0

`

¯E
0

`E
2`

1`

¯E
2`

1`

G~ iq!Q~xo ,W8;t !exp~ iq"W8!dW8 dq. ~91!

Now we insert Eq.~68! into Eq. ~91! resulting in
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^x~ t !&5
1

~2p!m E0

`

¯E
0

`E
2`

1`

¯E
2`

1`

expS iq"W82 (
v51

m E
0

`

~12exp~2 iqvkv!!rv~kv!dkvD
3Q~xo ,W8;t !dW8 dq

5p2mE
0

`

¯E
0

`E
2`

1`

¯E
2`

1`

Q~xo ,W8;t !expS 2 (
v51

m E
0

`

~12cos~qvkv!!rv~kv!dkvD
3 )

v51

m H cosFqvWv81E
0

`

sin~qvkv!rv~kv!dkvG J dW8 dq. ~92!

In particular, if the average densities of channels obey the self-similar scaling laws~72!, we have

^x~ t !&5p2mE
0

`

¯E
0

`E
0

`

¯E
0

`

Q~xo ,W8;t !expS 2 (
v51

m

~qvVv!av cosS pav

2 D D
3 )

v51

m H cosFqvWv81~qvVv!av sinS pav

2 D G J dW8 dq. ~93!

Equation~92! expresses the experimental observables, the average concentrations, in te
the average densities of channels for a general nonlinear kinetic system with static di
described by the independent random channel model. In particular, Eq.~93! gives the average
concentration vector for scale-independent, self-similar distributions of reaction channels.
this point of view Eq.~93! can be considered as a nonlinear generalization of the stret
exponential kinetic law, for multi-species nonlinear chemical processes.

The experimental evaluation of kinetic parameters for the rate processes in disordered s
usually proceeds in two steps. The analysis starts with the extraction from experimental data
statistical properties of the rate coefficients, that is, with the evaluation of the probability den
Pv(Wv) or of the moments or cumulants of the total rate coefficients, followed by the evalu
of the average densities of channelsrv(kv) from the probability densitiesPv(Wv) of the total rate
coefficients. We think that there are at least two different methods for evaluating the fun
rv(kv) in terms of the probability densitiesPv(Wv). One first method is based on the use of t
generalized fractional equations~85!. By taking the inverse Laplace transform of Eqs.~81! we
notice that the total probability densities of the total rates can be expressed asPv(Wv)
5(Vv)21GN(Wv /Vv) whereGv(wv) are the probability densities of the dimensionless total ra
wv5Wv /Vv . By expressing Eqs.~85! in terms ofGv(wv), after lengthy manipulations we get
set of integral equations for the average densities of channelsrv(kv). A second method is based o
the derivation, from Eqs.~69!, of a set of differential equations for the generating functio
Gv(uv). Since both methods lead to the same integral equations, in the following we presen
the second method, which is shorter.

We differentiate Eqs.~69! with respect touv , resulting in

2
]

]uv
Gv~uv!5Gv~uv!

]

]uv
E

0

`

~12exp~2uvkv!!rv~kv!dkv5Gv~uv!L$kvrv~kv!%, ~94!

from which we come to

L$WvPv~Wv!%5L$Pv~Wv!%L$kvrv~kv!%. ~95!

By applying the inverse Laplace transformation to Eqs.~95! we obtain a set of convolution
equations for the densities of channels, which can be solved numerically:
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WvPv~Wv!5E
0

WvPv~Wv2kv!kvrv~kv!dkv . ~96!

Equations~92!, ~93!, ~95!, and~96! are general theoretical results. In order to apply them
the analysis of experimental data more detailed kinetic information is necessary. In this sect
consider three single and two species chemical systems for which a detailed analysis is p

The first example is the first order, irreversible reaction

X→Products. ~97!

In this case the solution of the evolution equation~59! is

x~ t !5x0 exp~2Wt!, ~98!

and the average concentration is described by Huber’s equation22

^x~ t !&/x05G~ t !5expH 2E
0

`

@12exp~2kt!#r~k!dkJ , ~99!

whereG(t) is the characteristic function of the probability density of the total rate coefficien
this case the ratio between the average concentration at timet and the initial concentration is
simply the Laplace transform of the probability densityP(W) of the total rate coefficient:

^x~ t !&/x05E
0

`

exp~2Wt!P~W!dW. ~100!

It follows that for first order kinetics the probability densityP(W) of the total rate coefficient can
be obtained from Eq.~100! by means of inverse numerical Laplace transformation. IfP(W) is
known, then the average density of channelsr(k) can be evaluated from Eqs.~95! and ~96!. We
note that for stretched exponential kinetics the moments and the cumulants of the tota
coefficient are divergent. However, if the average density of channelsr(k) does not obey a
self-similar scaling law the moments and cumulants of the total rate coefficients may be fin
numerical data are not precise, inverse numerical Laplace transformation is not possible. Ho
the first few moments and cumulants can be evaluated from the time derivatives of the a
concentration. We have

^Wm&5~21!m
dm

dtm
F ^x~ t !&

x0
GU

t50

~101!

for the moments and

^^Wm&&5~21!m
dm

dtm
lnF ^x~ t !&

x0
GU

t50

~102!

for the cumulants.
The second example is a first order, irreversible reaction, with a single equilibrium stat

X�Y. ~103!

The solution of the kinetic equations~59! for a closed system is given by

x~ t !

x01y0
5

1

Keq11
1F x0

x01y0
2

1

Keq11Gexp~2WSt !, ~104!
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and a similar equation for the concentrationy(t) of the species Y. Herex0 andy0 are the initial
concentrations of the species X and Y, respectively,WS5W11W2 is the total rate coefficient o
the process;W1 and W2 are rate coefficients of the forward and backward processes~103!,
respectively, andKeq5W2 /W2 is the equilibrium constant of the process. For a process wi
single equilibrium state, although the rate coefficientsW1 and W2 are random, their ratioKeq

5W1 /W2 is constant and equal to the equilibrium constant of the process. Under these c
stances it can be shown24 that the random channel model can be expressed in terms of a s
density of channels,rS(kS) corresponding to the total rate coefficientWS5W11W2 . We have

^x~ t !&
x01y0

5
1

Keq11
1F x0

x01y0
2

1

Keq11G E
0

`

PS~WS!exp~2WSt !dWS

5
1

Keq11
1F x0

x01y0
2

1

Keq11GexpH 2E
0

`

rS~kS!@12exp~2kSt !#dkSJ . ~105!

and a similar equation for the average concentration^y(t)& of the Y species. It follows that the
probability density of the rate coefficients can be expressed as

PS~WS!5L21H ^x~ t !&~Keq11!2~x01y0!

x0~Keq11!2~x01y0! J ~106!

and the moments and cumulants of the total rate coefficient can be computed from

^Wm&5~21!m
dm

dtm
F ^x~ t !&~Keq11!2~x01y0!

x0~Keq11!2~x01y0! GU
t50

, ~107!

^^Wm&&5~21!m
dm

dtm
lnF ^x~ t !&~Keq11!2~x01y0!

x0~Keq11!2~x01y0! GU
t50

. ~108!

The average density of channels can be determined from Eqs.~95! and ~96!.
The third example is a nonlinear, irreversible reaction,

nX→Products, ~109!

wheren is a stoichiometric coefficient bigger than one. The solution of the kinetic equation
given realization of the total rate coefficientW is given by

x~ t !/x05$11~n21!~x0!n21Wt%21/~n21!, ~110!

where W is the total rate coefficient of the process. The application of Eq.~92! leads to the
following expression for the average concentration^x(t)& of species X:

^x~ t !&
x0

5
1

G~~n21!21!
E

0

`

l1/~n21! expH 2z2E
0

`

r~k!@12exp~2l~n21!~x0!n21kt!#dkJ dl

5E
0

` P~W!dW

$11~n21!~x0!n21Wt%1/~n21!
. ~111!

Equation ~111! is a linear integral equation for the probability densityP(W) of the total rate
coefficient. This integral equation can be transformed, through discretization, into a linear m
equation which can be solved numerically. If the probability densityP(W) is known, then the
average densityr(k) of channels can be evaluated from Eqs.~95! and ~96!.
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The positive moments of the total rate coefficient can be evaluated from a relation sim
Eqs.~101! and ~107!:

^Wm&5@2~n21!~x0!n21#2m
G~m1~n21!21!

G~~n21!21!

dm

dtm
F ^x~ t !&

x0
GU

t50

. ~112!

We do not have direct expressions for the cumulants of the total rate coefficient; they can
ever, be computed step by step from the moments.

In conclusion, in this section we have made, a connection between the probability densi
the total rate coefficients, the average densities of channels, and the average concentration
are experimental observables in disordered chemical kinetics. We have developed meth
extracting statistical information about the fluctuations of the rate coefficients from experim
data. We have illustrated our approach by considering three simple chemical reactions.

VII. CONCLUSIONS

In this article we have pointed out some useful analogies between colored Le´vy noise and the
random channel approach in disordered kinetics. The exploitation of these analogies pr
interesting results in both areas of research. By using Huber’s stochastic approach for diso
kinetics we have managed to come up with a space- and time-dependent generalization o´vy
colored noise. In disordered kinetics, by using the analogies with Le´vy colored noise, we have
managed to develop a general theory of nonlinear chemical kinetics with static disorder. We
studied the statistical properties of the rate coefficients and developed methods for ext
information about rate statistics from experimental data.
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APPENDIX A: FRACTIONAL, FUNCTIONAL FOKKER–PLANCK EQUATION FOR
COLORED LÉVY NOISE

We consider a discrete representationPr@ iF0
(u,v)i ;t#PvdF(v) of the probability

Pr@F(r 8);t#Dr@F(r 8);t#. We have

Pr@F~r 8!;t#Dr@F~r 8!;t#5 lim
Dr→0

Pr@ iF0
~v!i ;t#)

v
dF~v!, ~A1!

Gr@K~r 8!;t#5 lim
Dr→0

Gr@K ~v!;t#, ~A2!

where

Gr@K ~v!;t#5E ¯

2`

1`E expH i(
v

K ~v!F ~v!Dr J Pr@ iF ~v!i ;t#)
v

dF0
~v! ~A3!

is the Fourier transform of the discrete probabilityPr@ iF0
(u,v)i ;t#PvdF(v). We use a discrete

representation of Eq.~52!, in terms ofGr@K (v);t#, and evaluate the inverse Fourier transform w
respect toK (v). The evaluation of the inverse Fourier transform of the first two terms is trivia
order to evaluate the inverse Fourier transform of the third term,

J35D fract.E ¯

2`

1`E expH 2 i(
v

K ~v!F ~v!Dr J F(
v

Dr uK ~v!uaGGr@K ~v!;t#)
v

S dK~v!Dr

2p D ,

~A4!
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we use the definition~57! of the symmetric fractional derivative of ordera, resulting in

J35D fract.(
v

~Dr !12a
]a

]@F ~v!#a
Pr@ iF0

~u,v!i ;t#. ~A5!

By passing to the continuous notations and using the heuristic definition~55! of the fractional
functional derivative of ordera we come to Eq.~56!.

APPENDIX B: SPACE-INDEPENDENT COLORED LÉ VY NOISE

In this appendix we apply our approach for studying the particular case of space-indepe
Lévy colored noise. The space independent white noise can be characterized by the pro
functional

Pt
0@F0~ t8!#Dt

0@F0~ t8!# with E E
t
Pt

0@F0~ t8!#Dt
0@F0~ t8!#51 ~B1!

or by the characteristic functional

Gt
0@K~ t8!#5E E

t
expH i E

2`

1`

K~ t8!F0~ t8!dt8J Pt
0@F0~ t8!#Dt

0@F0~ t8!#. ~B2!

The random forceF0(t8) can be expressed as the sum of the contributions of different indivi
events~channels!:

F0~ t8!5 (
m51

N

gm~ t8!. ~B3!

We assume that the fluctuations of the componentsgm(t8) can be described by a Poissonian po
process characterized by an average functional density of statesrg@g(t)#D@g(t)# which obeys a
scaling condition of the negative power law type similar to Eq.~12!. By considering a discrete
representation of the average functional density of statesrg@g(t)#D@g(t)# we have

rg~g;Dt !dg5x0~a!~Dt !~12a!ugu2~11a!dg, x0~a!.0, 2.a.0. ~B4!

The scaling law~B4! leads to the following expression for the characteristic functional of
white noise:

Gt
0@K~ t8!#5expS 2cE

2`

1`

uK~ t8!ua dt8D , where c52x0~a!
G~12a!

a
cosS pa

2 D . ~B5!

The probability functional corresponding to the characteristic functional~B5! can be ex-
pressed as the continuous limit of a product of symmetric Le´vy probability densities:

Pr ,t
0 @F0~r 8,t8!#Dr ,t

0 @F0~r 8,t8!#5 lim
Dt→0

)
u

H dF0
~u!

@c~Dt !#1/a
CaH F0

~u,v!

@c~Dt !#1/aJ J , ~B6!

whereCa(x) is the one-variable symmetrical Le´vy probability density given by Eq.~28!.
A given realizationF(t) of space-independent colored noise obeys the Langevin equati

]F~ t !/]t5v@2F~ t !1F0~ t !#. ~B7!
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We start out by considering the case of nonstationary colored noise and for this reas
introduce a cutoff valuet0 in the expression~B5! for the characteristic functionalGt

0@K(t8)# of the
white noise, resulting in

Gt
0@K~ t8!#5expS 2cE

t0

1`

uK~ t8!ua dt8D . ~B8!

From Eqs.~B7! and ~B8! we get the following expression for the characteristic functional
colored noise:

Gt@K~ t8!#5Gt
transient~ t0!

@K~ t8!#Gt
normal~ t0!

@K~ t8!#, ~B9!

where the transient componentGt
transient(t0)

@K(t8)# and the normal componentGt
normal(t0)

@K(t8)#
are given by

Gt
transient~ t0!

@K~ t8!#5GrFK5E
t0

`

K~ t9!exp@2v~ t92t0!dt9;t0#, ~B10!

Gt
normal~ t0!

@K~ t8!#5expS 2cE
t0

1`U E
t95t8

`

K~ t9!v exp@2v~ t92t8!#dt9Ua

dt8D ~B11!

and where

G@K;t0#5E
2`

1`

P~F;t0!exp~ iKF !dF ~B12!

is the Fourier transform of the probability densityP(F;t0) of the colored noise at timet0 .
In particular, the characteristic function

G@K;t#5E
2`

1`

P~F;t !exp~ iKF !dF ~B13!

of the colored noise at timet is given by

G@K;t#5G@K exp@2v~ t2t0!#;t0#expH 2
D fract.

av
uKua@12exp@2av~ t2t0!##J , ~B14!

where

D fract.5cva52vax0~a!
G~12a!

a
cosS pa

2 D ~B15!

is a space-independent fractional diffusion coefficient similar to the one defined in the s
dependent case by Eq.~46!.

The probability densityP(F;t) of the colored noise at timet can be easily evaluated by takin
the inverse Fourier transform of Eq.~B14!. We have

P~F;t !5S av

D fract.
D 1/a exp@v~ t2t0!#

@exp@av~ t2t0!#21#1/a E2`

1`

P~F0 ;t0!

3CaH S av

D fract.
D 1/a F exp@v~ t2t0!#2F0

@exp@av~ t2t0!#21#1/aJ dF0 . ~B16!
                                                                                                                



s

–
lution
l heat
iva-
ler,

e

istic

l expo-

or
f Van
system
noise.

758 J. Math. Phys., Vol. 45, No. 2, February 2004 Vlad, Velarde, and Ross

                    
From Eq.~B16! we notice that ast→` the probability densityP(F;t) of the colored noise tend
towards a Le´vy stable form which is independent of the initial conditionP(F0 ;t0):

P~F;t !→Pst~F !5~av/D fract.!
1/aCa@F~av/D fract.!

1/a#, independent ofP~F0 ;t0!, as t→`.
~B17!

It is easy to check that the probability densityP(F;t) of the colored noise given by Eq.~B16!
is the solution of a fractional Fokker–Planck equation:

]

]t
P~F;t !5

]

]F
@vFP~F;t !#1D fract.

]a

]Fa
P~F;t !. ~B18!

We notice that the fractional Fokker–Planck equation~B18! is the same as the fractional Fokker
Planck equation introduced by Metzler, Barkai, and Klafter for describing the stochastic evo
of a particle under the combined influence of an external, nonlinear force and a therma
bath.16 It follows that the fractional Le´vy noise introduced by using the Huber approach is equ
lent to the fractional Le´vy noise described by the fractional Fokker–Planck equation of Metz
Barkai, and Klafter.16 We also point out that our fractional functional Fokker–Planck equation~56!
is a generalization of the Metzler, Barkai, and Klafter equation~B18! to the case of space and tim
dependent Le´vy colored noise.

In particular, if t0→2` or if the initial probability densityP(F0 ;t0) is the same as the
stationary probability densityPst(F), then the colored noise is stationary and the character
functional ~B14! becomes

Gt@K~ t8!#5expS 2D fract.E
2`

1`U E
t95t8

`

K~ t9!exp@2v~ t92t8!#dt9Ua

dt8D . ~B19!

The stochastic process described by the characteristic functional~B19! is a statistical fractal
generalization of the Uhlenbeck–Ornstein process. In the particular case where the fracta
nenta tends towards 2,a→2, and the limit

lim
a→2

D fract.5 lim
a→2

F2vax0~a!
G~12a!

a
cosS pa

2 D G5D ~B20!

exists and is finite, we recover the classical Uhlenbeck–Ornstein process.
A linked average depending on the colored noise,

F~ t !5K expF2E
t0

t

z~ t8!F~ t8!dt8G L , ~B21!

can be easily evaluated from the expression~B19! for the characteristic functionalGt@K(t8)#. We
have

F~ t !5Gt
0@K~ t8!5z~ t8!@h~ t82t0!2h~ t82t !##. ~B22!

The fractional Fokker–Planck equation~B18! can be used for deriving evolution equations f
joint probability density functions of dynamical systems subject to colored noise by means o
Kampen’s method of compound master equations. For example, we consider a nonlinear
subjected to environmental fluctuations, described in terms of a one-variable multiplicative
We express the evolution equations of the system in the following form:

]

]t
x~ t !5F@x~ t !;F~ t !;t#, ~B23!
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wherex(t) is a state vector, andF@x(t);F(t);t# is a nonlinear vectorial function which depends
the state vectorx(t), the noiseF(t) and the timet. By using the method of compound mast
equations we can derive a fractional stochastic Liouville equation for the joint probability de
P(x,F;t):

]

]t
P~x,F;t !52¹x•@F@x;F;t#P~x,F;t !#1

]

]F
@vFP~x,F;t !#1D fract.

]a

]Fa
P~x,F;t !.

~B24!

The probability densityP(x;t) of the state vectorx at timet can be evaluated by solving Eq.~B24!
with suitable initial and boundary conditions and by integrating the solution over all pos
values of the random noise sourceF:

P~x,t !5E
2`

`

P~x,F;t !dF. ~B25!

In summary, in this appendix we studied the particular case of space-independent c
Lévy noise. We have derived expressions for the characteristic functional and probability d
functional of space-independent colored Le´vy noise. We have shown that the probability dens
of Lévy noise at a given time obeys a fractional Fokker–Planck equation. The colored Le´vy noise
derived by using the Huber approach is equivalent to the colored Le´vy noise described by the
fractional Fokker–Planck equation~B18!, which is the same as the fractional Fokker–Plan
equation derived by Metzler, Barkai and Klafter16 by using a different approach.
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On the integration of products of Whittaker functions
with respect to the second index
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Several new formulas are developed that enable the evaluation of a family of
definite integrals containing the product of two WhittakerWk,m(x)-functions. The
integration is performed with respect to the second indexm, and the first indexk is
permitted to have any complex value, within certain restrictions required for con-
vergence. The method utilizes complex contour integration along with various sym-
metry relations satisfied by the Whittaker functions. The new results derived in this
article are complementary to the previously known integrals of products of Whit-
taker functions, which generally treat integration with respect to either the first
index k or the primary argumentx. A physical application involving radiative
transport is discussed. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1634351#

I. INTRODUCTION

Many problems in mathematical physics involve differential equations with solutions tha
be expressed in terms of Whittaker’s functionsWk,m(x) and Mk,m(x). Examples of the diverse
applications include studies of the spectral evolution resulting from the Compton scatter
radiation by hot electrons,1–3 modeling of the structure of the hydrogen atom,4 analysis of the
Schrödinger equation,5 studies of the Coulomb Green’s function,6 and analysis of fluctuations in
financial markets.7

In a number of applications, it is necessary to evaluate integrals of Whittaker functions
need may arise out of the requirement to satisfy normalization or orthogonality condition
particular, in the analysis of time-dependent Compton scattering, it is necessary to evalua
grals containing the product of two WhittakerWk,m(x)-functions, where the variable of integratio
is the second indexm. This is an unusual situation that is not covered by any of the previo
known formulas for integrals of products of Whittaker functions. The required integrals in
Compton scattering application are members of the general family

I ~s![E
0

` u sinh~2pu!G~ 1
22k2 iu !G~ 1

22k1 iu !

s1u2
Wk,iu~x!Wk,iu~x0!du, ~1!

wherex and x0 are real and positive, ands and k are complex. This integral converges for a
values ofs in the complex plane, with the exclusion of the negative real semiaxis, provided
RekÞ1/2,3/2,5/2,..., ifImkÞ0. It also converges in the special cases50, provided Rek
Þ1/2,3/2,5/2,... . In this article we derive several exact formulas for the evaluation of the in
I (s) that fully describe all of the convergent cases.

a!Electronic mail: pbecker@gmu.edu
7610022-2488/2004/45(2)/761/13/$22.00 © 2004 American Institute of Physics
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II. FUNDAMENTAL EQUATIONS

We shall begin by briefly reviewing some of the basic properties of the Whittaker func
that will be useful in our later work. The Whittaker functionsWk,m(z) andMk,m(z) are confluent
hypergeometric functions that are related to the Kummer functionsF(a,b,z) andC(a,b,z) by8,9

Mk,m~z!5zm11/2e2z/2F~ 1
21m2k,112m;z!,

~2!

Wk,m~z!5zm11/2e2z/2C~ 1
21m2k,112m;z!.

For small values ofuzu, the functionMk,m(z) is given by the power series

Mk,m~z!5e2z/2zm11/2(
n50

` ~ 1
22k1m!n

~112m!n

zn

n!
, ~3!

where (a)n denotes the Pochhammer symbol, defined by9

~a!n[
G~a1n!

G~a!
. ~4!

The functionWk,m(z) can be expressed in terms ofMk,m(z) using8

Wk,m~z!5
G~22m!

G~ 1
22m2k!

Mk,m~z!1
G~2m!

G~ 1
21m2k!

Mk,2m~z!. ~5!

The integrand in Eq.~1! for I (s) is an even function ofu, and therefore we can write

I ~s!5
1

2 E2`

` u sinh~2pu!G~ 1
22k2 iu !G~ 1

22k1 iu !

s1u2
Wk,iu~x!Wk,iu~x0!du. ~6!

Next we utilize~5! to expressWk,iu(x0) as

Wk,iu~x0!5
G~22iu !

G~ 1
22k2 iu !

Mk,iu~x0!1
G~2iu !

G~ 1
22k1 iu !

Mk,2 iu~x0!, ~7!

which can be rewritten as

Wk,iu~x0!5
G~22iu !G~2iu !

G~ 1
22k2 iu !G~ 1

22k1 iu !
FG~ 1

22k1 iu !

G~2iu !
Mk,iu~x0!1

G~ 1
22k2 iu !

G~22iu !
Mk,2 iu~x0!G .

~8!

By employing the recurrence formula for the gamma function,zG(z)5G(z11), we can obtain
the alternative form

Wk,iu~x0!5
G~22iu !G~112iu !

G~ 1
22k2 iu !G~ 1

22k1 iu !
FG~ 1

22k1 iu !

G~112iu !
Mk,iu~x0!2

G~ 1
22k2 iu !

G~122iu !
Mk,2 iu~x0!G .

~9!

Using this result to substitute forWk,iu(x0) in ~6! now yields
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I ~s!5
1

2 E2`

` u sinh~2pu!

s1u2
G~22iu !G~112iu !Wk,iu~x!

3FG~ 1
22k1 iu !

G~112iu !
Mk,iu~x0!2

G~ 1
22k2 iu !

G~122iu !
Mk,2 iu~x0!Gdu. ~10!

By utilizing the reflection formula for the gamma function,

G~112iu !G~22iu !5
p i

sinh~2pu!
, ~11!

along with the symmetry relation@see Eq.~5!#

Wk,iu~x!5Wk,2 iu~x!, ~12!

we can rewrite~10! as

I ~s!5
p i

2 E
2`

` u

s1u2
FG~ 1

22k1 iu !

G~112iu !
Wk,iu~x!Mk,iu~x0!

2
G~ 1

22k2 iu !

G~122iu !
Wk,2 iu~x!Mk,2 iu~x0!Gdu. ~13!

This relation can be split into two identical integrals, and consequently our expression forI (s) can
be reduced to

I ~s!52p i E
2`

` u

s1u2

G~ 1
22k2 iu !

G~122iu !
Wk,2 iu~x!Mk,2 iu~x0!du. ~14!

III. CONTOUR INTEGRATION

The fundamental expression for the integralI (s) given by ~1! is clearly symmetrical with
respect to the interchange ofx andx0 . We can use this flexibility to select the arguments of theW
andM functions in such a way that the integration along the curved portion of the closed co
C in Fig. 1 vanishes in the limitr→`. By employing asymptotic analysis, we find that this occu
if xmax is the argument of theW function andxmin is the argument of theM function, where

xmin[min~x,x0!, xmax[max~x,x0!. ~15!

Equation~14! for I (s) can therefore be recast as the complex contour integral

I ~s!5 R
C
L~u!du, ~16!

where

L~u![2p i
u

s1u2

G~ 1
22k2 iu !

G~122iu !
Wk,2 iu~xmax!Mk,2 iu~xmin!. ~17!

We shall proceed to obtain an exact, closed form expression forI (s) by utilizing the residue
theorem to evaluate the integral in~16!.

The integrandL(u) has a simple pole located atu5 iAs, whereAs denotes the principle
branch of the square root function. This pole is located in quadrant II of the complexu plane if
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Ims>0, and otherwise it is located in quadrant I. In either case, the pole is contained with
closed integration contourC. Additional simple poles are located at the singularities of the fu

tion G( 1
22k2 iu), which occur where the quantity122k2 iu is equal to zero or a negative intege

At least one of the poles falls in the upper half-plane ifRek. 1
2. The poles are located atu

5un , where

un[ i ~k2 1
22n!, n50,1,...,@Rek2 1

2#, ~18!

and @a# indicates the integer part ofa. Note that if Rek, 1
2, then only the pole atu5 iAs is

contained within the contourC.
We can now use the residue theorem to write

I ~s!52p i (
n50

@Rek21/2#

Res~un!12p iRes~ iAs!, ~19!

where Res(u* ) denotes the residue associated with the simple pole located atu5u* .

IV. EVALUATION OF THE RESIDUES

The residue corresponding to the simple pole atu5 iAs is easily computed using the formul

Res~ iAs!5 lim
u→ iAs

~u2 iAs!L~u!, ~20!

which can be immediately evaluated to obtain

Res~ iAs!52
p i

2

G~ 1
22k1As!

G~112As!
Wk,As~xmax!Mk,As~xmin!. ~21!

Similarly, the residues associated with the simple poles located atu5un are evaluated using

Res~un!5 lim
u→un

~u2un!L~u!. ~22!

Because the poles in this case correspond to the singularities of the functionG( 1
22k2 iu), we will

require evaluation of the quantity

FIG. 1. Integration around the closed contourC yields I (s) in the limit r→` @see Eq.~16!#. In this example,k is a real
number in the range

3
2,k,

5
2, and consequently there are two simple poles~P and Q! located inside the contour on th

imaginary axis@see Eq.~18!#. The imaginary part ofs is less than zero in this instance, and consequently there is a
simple pole,R, located atu5 iAs in quadrant I.
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lim
u→un

~u2un!G~ 1
22k2 iu !. ~23!

By combining~4! and ~18! with the recurrence relationzG(z)5G(z11), we obtain

GS 1

2
2k2 iu D5

G~ 1
22k2 iu1n!

~ 1
22k2 iu !n

5
iG~11 iun2 iu !

~ iun2 iu2n!n~u2un!
, ~24!

and therefore

lim
u→un

~u2un!GS 1

2
2k2 iu D5

i ~21!n

n!
, ~25!

where we have used the fact that (2n)n5(21)nn! Next we need to evaluate the Whittake
functions appearing on the right-hand side of~17! in the limit u→un . Using~2! and~18!, we find
that

Mk,2 iun
~z!5e2z/2zk2nF~2n,2k22n;z!,

~26!
Wk,2 iun

~z!5e2z/2zk2nC~2n,2k22n;z!.

By employing Eqs.~13.6.9! and ~13.6.27! from Abramowitz and Stegun,9 we can rewrite these
expressions as

Mk,2 iun
~z!5

n!

~a11!n
e2z/2z~a11!/2Pn

~a!~z!,

~27!
Wk,2 iun

~z!5~21!nn!e2z/2z~a11!/2Pn
~a!~z!,

wherePn
(a)(z) denotes the Laguerre polynomial, and

a[2k22n21522iun . ~28!

Combining~17!, ~22!, ~25!, and~27!, we obtain for the residue

Res~un!5
2p ia

4s2a2

n!

G~a1n11!
e2~x1x0!/2~xx0!~a11!/2Pn

~a!~x!Pn
~a!~x0!. ~29!

Utilizing this result along with~19! and ~21!, we conclude that

I ~s!5E
0

` u sinh~2pu!G~ 1
22k2 iu !G~ 1

22k1 iu !

s1u2
Wk,iu~x!Wk,iu~x0!du

5p2
G~ 1

22k1As!

G~112As!
Wk,As~xmax!Mk,As~xmin!

24p2e2~x1x0!/2 (
n50

@Rek21/2#
an!

G~a1n11!

~xx0!~a11!/2

4s2a2
Pn

~a!~x!Pn
~a!~x0!, ~30!

wherea52k22n21. This previously unknown integral formula is one of the main results of
article. Note that the summation is carried out only ifRek> 1

2. The integral on the left-hand sid
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of ~30! converges for all complex values ofs with the exception of the negative real semiax
provided thatRekÞ1/2,3/2,5/2,..., ifImkÞ0. Whens50, the integral converges providedRek
is not a positive half-integer.

A case of special interest can be generated by settingx05x in ~30!. The result obtained is the
quadratic normalization integral,

E
0

` u sinh~2pu!G~ 1
22k2 iu !G~ 1

22k1 iu !

s1u2
Wk,iu

2 ~x!du

5p2
G~ 1

22k1As!

G~112As!
Wk,As~x!Mk,As~x!24p2e2x (

n50

@Rek21/2#
an!

G~a1n11!

xa11

4s2a2
@Pn

~a!~x!#2,

~31!

which is useful in situations involving the development of a series expansion in terms of a
normalized basis functions. In the following sections, we shall proceed to discuss the lim
behavior of~30! observed when two of the poles coincide, as well as its relation to form
appearing in the previous literature.

V. LIMITING BEHAVIOR

An interesting situation arises if the quantity1
22k1As is equal to zero or a negative intege

because in this case the integralI (s) converges, although the first term on the right-hand side

~30! formally divergesdue to the appearance of the factorG( 1
22k1As). This occurs when

As5Asm[k2 1
22m, ~32!

wherem is a positive integer or zero. SinceAs denotes the principle branch of the square ro
function, it follows thatAs is located in either quadrants I or IV of the complexs plane, depending
on whetherIms is positive or negative. HenceReAs>0 in general, and therefore the functio
G(1/22k1As) has no singularities unlessRek> 1

2. The values ofm yielding singularities for a
given value ofk are

m50,1,...,@Rek2 1
2#. ~33!

Whens5sm , the divergence of the first term on the right-hand side of~30!, containing the

factor G( 1
22k1As), is exactly balanced by the divergence of then5m term in the sum, leaving

a finite residual quantity. This situation corresponds to a coincidence of the pole locatedu
5 iAs with the pole located atu5um5 i (k2 1

22m) @see Eq.~18!#. In this case the resulting pol
has order two. The associated residue can be computed by using the standard formul
second-order pole, but it is more efficient to approach the calculation by evaluating Eq.~30! for
I (s) in the limit s→sm . The limiting value of the sum of the two divergent terms is given by

K[ lim
s→sm

p2
G~ 1

22k1As!

G~112As!
Wk,As~xmax!Mk,As~xmin!

24p2e2~x1x0!/2
lm!

G~l1m11!

~xx0!~l11!/2

4s2l2
Pm

~l!~x!Pm
~l!~x0!, ~34!

where

l[2k22m2152Asm. ~35!

Equation~34! can be rewritten as
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K5 lim
s→sm

N

D
, ~36!

where

N[p2~s2sm!
G~ 1

22k1As!

G~112As!
Wk,As~xmax!Mk,As~xmin!

2p2e2~x1x0!/2
lm!

G~l1m11!
~xx0!~l11!/2Pm

~l!~x!Pm
~l!~x0!, ~37!

and

D[s2sm . ~38!

We can demonstrate that the numeratorN vanishes in the limits→sm as follows. First we use
~4! and ~32! along with the recurrence relation for the gamma function to write

GS 1

2
2k1AsD5

G~ 1
22k1As1m!

~ 1
22k1As!m

5
~As1Asm!G~11As2Asm!

~s2sm!~As2Asm2m!m

, ~39!

and therefore@cf. Eq. ~25!#

lim
s→sm

~s2sm!GS 1

2
2k1AsD5

~21!m

m!
2Asm. ~40!

Furthermore, based on~27!, ~28!, and~35!, we note that

Mk,Asm
~z!5

m!

~l11!m
e2z/2z~l11!/2Pm

~l!~z!,

~41!
Wk,Asm

~z!5m! ~21!me2z/2z~l11!/2Pm
~l!~z!.

Taken together,~37!, ~40!, and~41! indicate that the numeratorN vanishes in the limits→sm . The
denominatorD also vanishes in this limit, and therefore we can employ L’Hoˆpital’s rule to
evaluateK by writing

K5 lim
s→sm

]N

]s Y lim
s→sm

]D

]s
. ~42!

Since]D/]s51 and the second term on the right-hand side of~37! is independent ofs, we obtain

K5 lim
s→sm

]

]s
p2~s2sm!

G~ 1
22k1As!

G~112As!
Wk,As~xmax!Mk,As~xmin!. ~43!

Upon differentiation, we obtain after a fairly lengthy calculation

K5
p2e2~x1x0!/2~xx0!~l11!/2m! Pm

~l!~x!Pm
~l!~x0!

G~l1m11! F2gE1
1

l
1H22c~l11!2

1

m11
1 (

n51

m11
1

n G ,

~44!

wheregE'20.577 is Euler’s constant,l52k22m21,
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H[
]

]b
ln@Wk,b~xmax!Mk,b~xmin!#U

b5Asm

, ~45!

and

c~z![
d

dz
ln G~z!. ~46!

Combining results, we find that in the special cases5sm5(k2m2 1
2)

2 the integralI (s) is given
by

I ~s!5E
0

` u sinh~2pu!G~ 1
22k2 iu !G~ 1

22k1 iu !

~k2m21/2!21u2
Wk,iu~x!Wk,iu~x0!du

5K24p2e2~x1x0!/2 (
n50
nÞm

@Rek21/2#
an!

G~a1n11!

~xx0!~a11!/2

4s2a2
Pn

~a!~x!Pn
~a!~x0!, ~47!

wherea52k22n21. The allowed range of values form is given by~33!, which indicates that
we must haveRek> 1

2 in order for any of these special cases to occur. Note that the singular
with n5m is not included in the sum, since that term is contained withinK. Equations~30! and
~47! cover all of the convergent cases of the fundamental integralI (s). In Sec. VI we present
simplified results obtained for certain values of the parameters.

VI. SPECIAL CASES

The general nature of the expression forI (s) given by ~30! encompasses many interestin
special cases involving particular values for the parametersk, s, x, andx0 . In this section, we shal
briefly discuss a few illustrative examples obtained when the first indexk is equal to an integer, in
which case the general solution forI (s) simplifies considerably. For brevity, we shall focus he
on situations withsÞsm . However, we emphasize that formulas similar to those discussed b
that are applicable to the cases5sm can also be obtained in a straightforward manner by star
with ~47! rather than~30!.

A. kÄ0

Whenk50, the summation in~30! is not performed at all. Making use of the identities9

GS 1

2
2 iu DGS 1

2
1 iu D5

p

cosh~pu!
~48!

and

sinh~2pu!52 sinh~pu!cosh~pu!, ~49!

we find that~30! reduces to

E
0

` u sinh~pu!

s1u2
W0,iu~x!W0,iu~x0!du5

p

2

G~1/21As!

G~112As!
W0,As~xmax!M0,As~xmin!. ~50!

This result is convergent for all complex values ofs, excluding the negative real semiaxis. Hen
the points50 is convergent in this case.
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B. kÄ1

Whenk51, there is one simple pole located ats05 1
4, and we can make use of the identity

GS 2
1

2
2 iu DGS 2

1

2
1 iu D5

4p

cosh~pu!~114u2!
, ~51!

along with ~49! to reduce~30! to the form

E
0

` u sinh~pu!

~114u2!~s1u2!
W1,iu~x!W1,iu~x0!du5

p

8

G~As2 1
2!

G~112As!
W1,As~xmax!M1,As~xmin!

2
p

2

xx0e2~x1x0!/2

4s21
. ~52!

The right-hand side converges for all complex values ofs with the exception of the points5 1
4

@which must be treated using~47!# and the negative real semiaxis. The points50 is convergent.

C. kÄ2

In this case there are two simple poles, located ats05 9
4 ands15 1

4. Utilizing the identity

GS 2
3

2
2 iu DGS 2

3

2
1 iu D5

16p

cosh~pu!~914u2!~114u2!
, ~53!

along with ~49!, we can simplify~30! to obtain

E
0

` u sinh~pu!

~914u2!~114u2!~s1u2!
W2,iu~x!W2,iu~x0!du

5
p

32

G~As2 3
2!

G~112As!
W2,As~xmax!M2,As~xmin!2

p

8
e2~x1x0!/2

3 (
n50

1
~322n!n!

G~42n!

~xx0!22n

4s2~322n!2
Pn

~322n!~x!Pn
~322n!~x0!. ~54!

Evaluation of the Laguerre polynomials yields

E
0

` u sinh~pu!

~914u2!~114u2!~s1u2!
W2,iu~x!W2,iu~x0!du

5
p

32

G~As2 3
2!

G~112As!
W2,As~xmax!M2,As~xmin!2

p

16
xx0e2~x1x0!/2F xx0

4s29
1

~22x!~22x0!

4s21 G , ~55!

which is convergent for all complex values ofs, excluding the negative real semiaxis and t
points s5 1

4, s5 9
4. These two points must be treated using~47!. Note that the points50 is

convergent in this case. Similar results can be obtained for any positive or negative intege
of k. The integral formula given by~55! is of particular significance in treating the scattering
radiation in an ionized plasma with a constant temperature, as discussed in Sec. VII.

VII. APPLICATION TO THERMAL COMPTONIZATION

One of the most important physical applications of the results developed in this artic
volves the repeated Compton scattering of photons by a hot Maxwellian distribution of elec
with temperatureTe and number densityne in an ionized plasma. This process, referred to
‘‘thermal Comptonization,’’ is the primary mechanism responsible for the production of the r
tion spectra observed from celestial x-ray sources such as active galaxies, black holes, and
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stars.2 When the electron temperatureTe is constant, the Green’s function,f G, describing the
temporal evolution of an initially monoenergetic radiation distribution satisfies the Kompa
partial differential equation1

] f G

]y
5

1

x2

]

]x Fx4S f G1
] f G

]x D G , ~56!

where the dimensionless photon energy and the dimensionless time are denoted by

x~e![
e

kTe
, y~ t ![nesTc

kTe

mec
2

~ t2t0!, ~57!

respectively, and the quantitiese, t0 , t, sT , me , c, andk represent the photon energy, the initi
time, the current time, the Thomson cross section, the electron mass, the speed of ligh
Boltzmann’s constant, respectively. The terms proportional tof G and] f G/]x inside the parenthe
ses on the right-hand side of~56! express in turn the effects of electron recoil and stocha
~second-order Fermi! photon energization. At the initial timet5t0 , the radiation distribution is
monoenergetic, and the Green’s function satisfies the initial condition

f G~x,x0 ,y!uy505x0
22d~x2x0!, ~58!

where the dimensionless initial energy is given by

x0[
e0

kTe
. ~59!

By operating on~56! with *0
`x2 dx, we can establish thatf G has the convenient normalizatio

E
0

`

x2f G~x,x0 ,y!dx5const51, ~60!

where the final result follows from the initial condition@Eq. ~58!#. Note that this normalization is
maintained for all values ofy, which reflects the fact that Compton scattering conserves pho
It can be shown based on~56! that the Laplace transform of the Green’s function,

F~x,x0 ,s![E
0

`

e2syf G~x,x0 ,y!dy, ~61!

is given by3

F~x,x0 ,s!5x0
22x22e~x02x!/2

G~m2 3
2!

G~112m!
M2,m~xmin!W2,m~xmax!, ~62!

where the quantitym is a function of the transform variables, defined by

m~s![~s1 9
4!

1/2 ~63!

and

xmin[min~x,x0!, xmax[max~x,x0!. ~64!

The solution for the Green’s function is obtained by performing the inverse Laplace transfo
tion using the Mellin integral,
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f G~x,x0 ,y!5
1

2p i Eg2 i`

g1 i`

esyF~x,x0 ,s!ds, ~65!

where the real constantg is chosen so that the lineRes5g lies to the right of the singularities in
the integrand. By transforming the variable of integration froms to

s8[s1 9
4, ~66!

we can obtain the equivalent expression

f G~x,x0 ,y!5
e29y/4

2p i E
g2 i`

g1 i`

es8yF̃~x,x0 ,s8!ds8, ~67!

where

F̃~x,x0 ,s8![x0
22x22e~x02x!/2

G~As82 3
2!

G~112As8!
M2,As8~xmin!W2,As8~xmax!. ~68!

The exact solution for the Green’s functionf G(x,x0 ,y) can be obtained by taking the invers
Laplace transformation of~55!, which yields

1

2p i Eg2 i`

g1 i`

esy
G~As2 3

2!

G~112As!
W2,As~xmax!M2,As~xmin!ds

5
32

p E
0

` u sinh~pu!

~914u2!~114u2!
W2,iu~x!W2,iu~x0!

1

2p i Eg2 i`

g1 i` esy

s1u2
ds du

1
xx0

2
e2~x1x0!/2

1

2p i Eg2 i`

g1 i`

esyF xx0

s29/4
1

~22x!~22x0!

s21/4 Gds, ~69!

where we have interchanged the order of integration in the double integral. The inverse L
transformations on the right-hand side of~69! are elementary in nature and can be evaluated u
the formula

1

2p i Eg2 i`

g1 i` esy

s1k
ds5e2ky. ~70!

By utilizing this result in~69!, we obtain

1

2p i Eg2 i`

g1 i`

esy
G~As2 3

2!

G~112As!
W2,As~xmax!M2,As~xmin!ds

5
32

p E
0

`

e2u2y
u sinh~pu!

~914u2!~114u2!
W2,iu~x!W2,iu~x0!du

1
xx0

2
e2~x1x0!/2@xx0e9y/41~22x!~22x0!ey/4#. ~71!

We can now combine~67!, ~68!, and~71! to show that the exact solution for the time-depend
Green’s function is given by3
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f G~x,x0 ,y!5
32

p
e29y/4x0

22x22e~x02x!/2E
0

`

e2u2y
u sinh~pu!

~114u2!~914u2!
W2,iu~x0!W2,iu~x!du1

e2x

2

1
e2x22y

2

~22x!~22x0!

x0x
. ~72!

Since the fundamental partial differential equation~56! is linear, the particular solution for the
radiation distribution corresponding to anarbitrary initial spectrum can be found via convolutio
using the Green’s function. The result given by~72! is therefore of central importance in the fie
of theoretical x-ray astronomy.

VIII. CONCLUSION

In this article, we have developed several new formulas for the evaluation of a fami
integrals containing the product of two WhittakerWk,m(x)-functions, when the integration occur
with respect to the second indexm, and that index is imaginary. The fundamental integral we h
focused on is

I ~s![E
0

` u sinh~2pu!G~ 1
22k2 iu !G~ 1

22k1 iu !

s1u2
Wk,iu~x!Wk,iu~x0!du. ~73!

This is related to the Whittaker function index transformation discussed in Refs. 10 and 1
expression of particular interest is the quadratic normalization integral given by~31!. The results
presented in~30! and~47! for I (s) allow the exact evaluation of all of the convergent cases of
integral without the need to resort to numerical integration. We also point out that by utilizing
~2!, one can easily obtain a set of analogous integration formulas applicable to the Ku
functionsF(a,b,z) andC(a,b,z). While integrals of this precise type have not been conside
before, it is worth noting thatI (s) is a member of a wider group of integrals containing t
product of two WhittakerW-functions. In general, the other integrals in this group involve in
gration with respect to one of the other parameters, rather than the second index as w
considered here. We briefly review a few of these related integrals below.

Several formulas are available in the previous literature for evaluating the integral o
product of two WhittakerWk,m(x)-functions with respect to the primary argumentx. For example,
based upon Eq.~9.12! from Buchholz12 or Eq.~20.3.40! from Erdélyi et al.13 or Eq.~7.611.3! from
Gradshteyn and Ryzhik,8 we have

E
0

`

Wk,m~x!Ws,m~x!
dx

x
5

1

k2s

p

sin~2pm! F 1

G~ 1
22k1m!G~ 1

22s2m!

2
1

G~ 1
22k2m!G~ 1

22s1m!
G , ~74!

which is valid provideduRemu, 1
2. We note that the formulas in Refs. 8 and 13 are missin

factor of p, and the formula in Ref. 12 contains two incorrect signs. Another closely rel
example is given by Eq.~7.611.6! from Gradshteyn and Ryzhik8 or Eq. ~20.3.41! from Ref. 13,

E
0

`

xs21Wk,m~x!W2k,m~x!dx5
G~s11!G~s/21 1

21m!G~s/21 1
22m!

2G~s/2111k!G~s/2112k!
, ~75!

which is valid providedRes.2uRemu21.
A few formulas that treat the integration of a product of two WhittakerWk,m(x)-functions

with respect to the first indexk have also been known for some time. The most general expres
is Eq. ~15.10b! from Buchholz,12 which can be written as
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E
0

`

G~k2 iu !G~k1 iu !Wiu,k21/2~x!W2 iu,k21/2~x0!du

5ApG~2k!~xx0!k~x1x0!22k11/2K2k21/2S x1x0

2 D , ~76!

whereK2k21/2(z) denotes the modified Bessel function. Whenk5 1
2, this formula reduces to Eq

~7.691! from Ref. 8, which states that

E
0

`

sech~pu!Wiu,0~x!W2 iu,0~x0!du5
Axx0

x1x0
e2~x1x0!/2. ~77!

The new results forI (s) obtained in this article@Eqs. ~30! and ~47!# are in some sense comple
mentary to these previously known formulas. We emphasize that the expressions develop
are of significance in a variety of applications, including the problem of the Comptonizatio
radiation in an isothermal plasma, discussed in Sec. VII. Our general approach may also all
determination of the Green’s function solution for the one-dimensional Schro¨dinger equation with
the Morse potential.14 We plan to pursue this question in future work.

The author would like to gratefully acknowledge the insightful comments provided by
anonymous referee, which led to simplifications in the main derivation and also helped to br
the applicability of the results.
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Given a complete noncompact surfaceS embedded inR3, we consider the Dirich-
let Laplacian in the layerV that is defined as a tubular neighborhood of constant
width aboutS. Using an intrinsic approach to the geometry ofV, we generalize the
spectral results of the original paper by Ducloset al. @Commun. Math. Phys.223,
13 ~2001!# to the situation whenS does not possess poles. This enables us to
consider topologically more complicated layers and state new spectral results. In
particular, we are interested in layers built over surfaces with handles or several
cylindrically symmetric ends. We also discuss more general regions obtained by
compact deformations of certainV. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1635998#

I. INTRODUCTION

The spectral properties of the Dirichlet Laplacian in infinitely stretched regions have attr
a lot of attention since the existence of geometrically induced discrete spectrum for certain
in the plane was proved in Ref. 1. The study was motivated by mesoscopic physics wh
reasonable model for the dynamics of a particle in quantum waveguides is given by the Lap
in hard-wall tubular neighborhoods of infinite curves inRd, d52,3 ~quantum strips, tubes!, or
surfaces inR3 ~quantum layers!; see Refs. 2 and 3 for the physical background and referen
Nowadays, it is well known that any nontrivial curvature of the reference curve, that is as
totically straight, produces bound states below the essential spectrum in the strips and tub2,4,5

The analogous problem in curved layers is much more complicated and it was invest
quite recently in Refs. 6–8. LetS be a complete noncompact surface embedded inR3, V be a tube
of radiusa.0 aboutS, i.e. ~see Fig. 1!,

Vª$zPR3 u distance~z,S!,a%, ~1!

and2DD
V denote the Dirichlet Laplacian inL2(V). If the surface is a locally deformed plane, th

existence of bound states below the essential spectrum of the Laplacian was demonstrated
7. A more general situation was treated in Ref. 6; assuming thatS is nontrivially curved, it has
asymptotically vanishing curvatures and possesses a pole, several sufficient conditions ar

a!Electronic mail: Gilles.Carron@math.univ-nantes.fr
b!Also at Doppler Institute, Czech Technical University, Brˇehová 7, 11519 Prague, Czech Republic. Electronic ma

exner@ujf.cas.cz
c!On leave of absence from Nuclear Physics Institute, Academy of Sciences, 25068 Rˇ ež near Prague, Czech Republic
Electronic mail: dkrej@math.ist.utl.pt
7740022-2488/2004/45(2)/774/11/$22.00 © 2004 American Institute of Physics
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which guarantee the existence of discrete spectrum. Finally, let us mention that an asym
expansion of the ground-state eigenvalue in layers built over mildly curved planes was fou
Ref. 8.

While Ref. 6 covers a wide class of layers, the technical requirement about the existenc
pole onS ~i.e., the exponential map is a diffeomorphism! restricted substantially the topologica
structure of the reference surface. In particular,S was necessarily diffeomorphic toR2 and as such
it was simply connected. The main goal of this paper is to extend the sufficient cond
established in Ref. 6 without assuming the existence of poles onS and without making any othe
~unnatural! topological and geometrical assumptions. In addition to this substantial generaliz
we will derive particularly interesting spectral results for quantum layers built over surfaces
handles or several cylindrically symmetric ends~see Figs. 2–4!.

Let us recall the reason why the existence of a pole onS was required in Ref. 6. According to
the usual strategy used in the spectral theory of quantum waveguides, one expresses the L
2DD

V in the pair of coordinates (x,u), wherex parametrizes the reference surfaceS and uP
(2a,a) its normal bundle. Assuming the existence of a pole,S could be parametrized globally b
means of geodesic polar coordinates, which were well suited for the construction of ex
mollifiers onS needed to regularize generalized trial functions establishing the existence of b
states below the essential spectrum.

There are several possibilities how to treat surfaces without poles. Since the above-men
regularization is needed out of a compact part ofS only, one way is to replace the polar coord
nates by geodesic coordinates based on a curve enclosing the interior part. This approach
suited for surfaces of one end~see the definition below!, however, it has to be modified in mor
general situations. In this paper, we introduce a different strategy which does not requir
special choice of coordinates onS. We employ substantially a consequence of Ref. 9 that if
Gauss curvature is integrable then there always exists a sequence of functions onS having the
properties of the mollifiers mentioned earlier.

FIG. 1. The configuration spaceV defined by~1! as the space delimited by two parallel surfaces at the distancea from S.

FIG. 2. Surface with a handleS8 is constructed fromS by attaching smoothly to it a curved cylindrical surfaceH. By
virtue of Corollary 1, one handle is sufficient to achieve the condition~a! of Theorem 1.
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II. STATEMENT OF RESULTS

To state here the main results we need to introduce some notation and basic assumptio
k1

2 denote the spectral threshold of the planar layer of width 2a, i.e., k1ªp/(2a). The induced
metric onS and the corresponding covariant derivative will be denoted byg and¹g , respectively.
Let K, M , andk6 denote, respectively, the Gauss curvature, the mean curvature, and the pr
curvatures ofS. Denoting by dS the surface area-element, we may define the total Gauss cu
ture K and the total mean curvatureM, respectively, by the integrals

KªE
S
K dS, M2

ªE
S

M2 dS. ~2!

The latter always exists~it may be1`), while the former is well defined provided

^H1& KPL1~S!,

which will be a characteristic assumption of this work. Henceforth, we shall also assume thk6

are bounded and

^H2& a,rmª~max$ik1i` ,ik2i`%!21 and V does not overlap,

which we need in order to ensure that the layerV is a submanifold ofR3. An open setE#S is
called anendof S if it is connected, unbounded and if its boundary]E is compact~see Fig. 4!; its
total curvatures are defined by means of~2! with the domain of integration being the subsetE
only. We say that a manifold embedded inR3 is cylindrically symmetric if it is invariant under
rotations about a fixed axis inR3. Our main result reads as follows.

FIG. 3. Elliptic paraboloid~without or with one handle attached, respectively! of Example 1.

FIG. 4. Surface with four ends (E1 , . . . ,E4). By virtue of Theorem 2, each cylindrically symmetric end (E3 ,E4) with a
positive total Gauss curvature and curvatures vanishing at infinity produces at least one discrete eigenvalue.
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Theorem 1: Let S be a complete noncompact connected surface of class C2 embedded inR3

and satisfyinĝH1&. Let the layerV defined by (1) as the tube of radius a.0 aboutS satisfy^H2&.
(i) If the curvatures K and M vanish at infinity ofS, then

inf sess~2DD
V!5k1

2 .

(ii) If the surfaceS is not a plane, then any of the conditions

(a) K<0,
(b) a is small enough and¹gMPL loc

2 (S),
(c) M51` and ¹gMPL2(S),
(d) S contains a cylindrically symmetric end with a positive total Gauss curvature

is sufficient to guarantee that

inf s~2DD
V!,k1

2 .

Consequently, if the surfaceS is not a plane but its curvatures vanish at infinity, then any of
conditions (a)–(d) is sufficient to guarantee that2DD

V has at least one eigenvalue of fini
multiplicity below the threshold of its essential spectrum, i.e., sdisc(2DD

V)ÞB.
Let us compare this theorem with the results obtained in Ref. 6. An improvement concer

essential spectrum. While only a lower bound on the threshold was found in Ref. 6, here we
use known results about the spectral threshold of complete surfaces in order to show t
essential spectrum starts just atk1

2. Conditions~a!–~d! are adopted from Ref. 6, however, we d
not assume thatS is of classC3 in ~b! and~c! of Theorem 1, which was required in Ref. 6 in ord
to give a meaning to¹gM . Indeed, only the integrability conditions on the gradient are need

The most significant generalization concerning all the results is that we have gotten rid
strong assumption about the existence of a pole onS. Actually, Theorem 1 involves quantum
layers built over general surfaces without any additional hypotheses about the existenc
special global parametrization, the number of ends, and other topological and geometrical
tions.

An interesting new spectral result then follows from the observation that making the top
of S more complicated than that of the plane, one always achieves that the basic condition~a! is
satisfied.

Corollary 1: Under the assumptions of Theorem 1, one hasinf s(2DD
V),k1

2 wheneverS is
not conformally equivalent to the plane.
Indeed, the Cohn–Vossen inequality10 yields

K<2p ~222h2e!, ~3!

whereh is the genus ofS, i.e., the number of handles, ande is the number of ends. In particula
the condition~a! of Theorem 1 is always fulfilled whenever the surface is not simply connec

Example 1:Let S be the elliptic paraboloid. It is easy to check that it has curvatures vanis
at infinity and that the condition~c! of Theorem 1 is always fulfilled. On the other hand, it violat
the condition~d! whenever it is not a paraboloid of revolution, and the condition~a! does not hold
because the total Gauss curvature is always equal to 2p. Attaching a handle toS, the total
curvature becomes equal to22p ~see Fig. 3!.

It was proven in Ref. 6 that any layer built over a cylindrically symmetric surface diffeom
phic to R2 has a spectrum below the energyk1

2. Since this class of reference surfaces may o
have a non-negative total Gauss curvature, it gave an important alternative condition to~a! in the
caseK.0. In Theorem 1, an interesting generalization to Ref. 6 is introduced by virtue o
condition ~d!, where it is supposed now that only an unbounded subset ofS admits a cylindrical
symmetry at infinity~see Fig. 4!. This extension is possible due to the fact that the sequenc
trial functions establishing the existence of spectrum belowk1

2 for surfaces of revolution with
K.0 is ‘‘localized at infinity’’ ~i.e., for any compact set ofV, there is an element from th
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sequence supported out of the compact!. Consequently, it may be localized just at the end sa
fying condition ~d! of Theorem 1. Since any deformation of a bounded part ofV does not affect
this spectral result, we may consider more general regions than tubes~1!. What is important is that
such local deformations do not include only bends and protrusions which are traditionally a s
of binding, but constrictions as well. Moreover, since such trial functions localized at diffe
ends will be orthogonal as elements ofL2(V), we may produce an arbitrary number of bou
states by attaching toV a sufficient number of suitable outlets. Finally, since the essential s
trum is stable under compact deformation ofV, we arrive at the following result.

Theorem 2: Let V be a layer (1) satisfyinĝH1&, ^H2& and the condition (i) of Theorem 1
Assume that the reference surfaceS contains N>1 cylindrically symmetric ends, each of the
having a positive total Gauss curvature. LetV8 be an unbounded region without boundary inR3

obtained by any compact deformation ofV. Then

(i) inf sess(2DD
V8)5k1

2,
(ii) there will be at least N eigenvalues in(0,k1

2), with the multiplicity taken into account.

Example 2:Fix uP(0,p/2) and consider the conical regionV8 in R3 given by rotating the
planar region~see Fig. 5!:

$~x,y!PR2 u ~x,y!P~~0,2a cotu!3~0,x tanu#!ø~@2a cotu,`!3~0,2a!!%

along the axisy5x tanu in R3. Note thatV8 is not a layer~1! because of the singularity of th
conical surface. Nevertheless, it may be considered as a compact deformation of the lay
over a smoothed cone whose total Gauss curvature is equal to 2p(12sinu)P(0,2p). Conse-

quently, we know that2DD
V8 possesses at least one discrete eigenvalue belowk1

2 due to Theorem
2. This is a nontrivial result for flat enough conical layers only, since using a trick analogo

that of Ref. 11 one can check that the cardinality ofsdisc(2DD
V8) can exceed any fixed integer fo

u small enough.

III. PRELIMINARIES

Let S be a connected orientable surface of classC2 embedded inR3. The orientation can be
specified by the choice of a globally defined unit normal vector field,n:S→S2, which is a
function of classC1. For anyxPS, the Weingarten map

Lx : TxS→TxS: $j°2dnx~j!% ~4!

FIG. 5. The planar region of Example 2.
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defines the principal curvaturesk6 of S as its eigenvalues with respect to the induced metricg.
The Gauss curvature and the mean curvature are defined byKªk1k2 and Mª

1
2(k11k2),

respectively, and are continuous functions onS.
Put a.0. We define a layerV of width 2a as the image of the mapping

L: S3~2a,a!→R3: $~x,u!°x1u n~x!%. ~5!

Henceforth, we shall always assume^H2&. ThenL induces a diffeomorphism andV is a submani-
fold of R3 corresponding to the set of points squeezed between two parallel surfaces
distancea from S ~see Fig. 1!, i.e., if S does not have a boundary then the definition ofV via ~5!
and ~1! are equivalent. We shall identify it with the Riemannian manifoldS3(2a,a) endowed
with the metricG induced by the immersion~5!. One has

G5g+~ I x2u Lx!
21du2, dV5~122Mu1Ku2!dS du, ~6!

whereI x denotes the identity map onTxS and dV stands for the volume element ofV. It is worth
noticing that~6! together with^H2& yields thatG can be estimated by the surface metric,

C2g1du2<G<C1g1du2, where C6ª~16arm
21!2. ~7!

Remark 1:Formally, it is possible to consider (S3(2a,a),G) as an abstract Riemannia
manifold where only the surfaceS is embedded inR3. Then we do not need to assume the seco
part of ^H2&, i.e., ‘‘V does not overlap.’’

We denote by2DD
V , or simply2D, the Dirichlet Laplacian onL2(V). We shall consider it

in a generalized sense as the operator associated with the Dirichlet form

Q~c,f!ªE
V

^¹c,¹f& dV with DomQªW0
1,2~V!. ~8!

Here¹ is the gradient corresponding to the metricG and ^•,•& denotes the inner product in th
manifoldV induced byG; the associated norm will be denoted byu•u. Similarly, the inner product
and the norm in the Hilbert spaceL2(V) will be denoted by~•,•! and i•i, respectively. We shal
sometimes abuse the notation slightly by writing (•,•)[*V^•,•&dV andi•i[*Vu•udV for vector
fields. The subscript ‘‘g’’ will be used in order to distinguish similar objects associated to
surfaceS.

Since the quadratic formQ is densely defined, symmetric, positive, and closed on its dom
the corresponding Laplacian2D is a positive self-adjoint operator. Denoting by (xm)[(x1,x2)
local coordinates forS and byGi j the coefficients of the inverse ofG in the coordinates (xi)
[(xm,u) for V, we can write

2D 5 2uGu2 1/2] i uGu1/2Gi j ] j 5 2uGu2 1/2]muGu1/2Gmn]n2]u
212Mu ]u ~9!

in the form sense, whereuGuªdetG and

Muª
M2Ku

122Mu1Ku2 , ~10!

which is the mean curvature of the parallel surfaceL(S3$u%).
The above definitions ofV and the corresponding Dirichlet Laplacian are valid for a

orientable surfaceS of classC2 provided^H2& ~or its first part only in view of Remark 1! holds
true. Nevertheless, since we are interested in the existence of discrete spectrum of2DD

V , and it
always exists wheneverV is bounded, in the sequel we shall assume thatS is completeand
noncompact.
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It is easy to see that the spectrum of the planar layerV0ªR23(2a,a) is purely continuous
and coincides with the interval@k1

2 ,`), where the threshold is the first eigenvalue of the Dirich
Laplacian on the transverse section, i.e.,k1ªp/(2a). In what follows we shall use the corre
sponding normalized eigenfunction given explicitly by

x1~u!ªA1

a
cosk1u. ~11!

Using the identitiesu¹uu51 and2Du52Mu , we get

2Dx1~u! 5 2Mu x18~u!1k1
2 x1~u! . ~12!

IV. ESSENTIAL SPECTRUM

We shall localize the essential spectrum of2DD
V for asymptotically planarlayers, i.e., the

curvatures ofS vanish at infinity which we abbreviate by

K,M→` 0. ~13!

Recall that a functionf , defined on a noncompact manifoldS, is said to vanish at infinity if

;e.0 'Re.0,xePS ;xPS\B~xe ,Re! : u f ~x!u,e ,

whereB(xe ,Re) denotes the open ball of centerxe and radiusRe . The property~13! is equivalent

to the vanishing of the principal curvatures, i.e.,k6→` 0.
The proof of statement~i! of Theorem 1 is achieved in two steps. If the layer is asymptotic

planar, then it was shown in Ref. 6 that the essential spectrum of2DD
V is bounded from below by

k1
2 provided the surface possesses a pole. Here we adapt this proof~based on a Neumann brack

eting argument! to the case of any complete surface with asymptotically vanishing curvature
the second part of this section, we establish the opposite bound on the threshold by mea
different method.

A. Lower bound, inf sess„ÀDD
V
…Ðk1

2

Fix ane.0 and consider an open precompact regionB$B(xe ,Re) with C1-smooth boundary
such that

;~x,u!PVext :~12ae!2<122M ~x! u1K~x! u2<~11ae!2, ~14!

whereVextªV\V̄ int with V intªB3(2a,a). Denote by2DN the Laplacian2DD
V with a supple-

mentary Neumann boundary condition on]B3(2a,a), that is, the operator associated with t
form QNªQN

int
% QN

ext, where

QN
v~c,f!ªE

Vv

^¹c,¹f& dV, DomQN
v
ª$cPW1,2~Vv! uc~•,6a!50%

for vP$ int,ext%. Since2DD
V>2DN and the spectrum of the operator associated toQN

int is purely
discrete, cf. Ref. 12, Chap. 7, the minimax principle gives the estimate

inf sess~2DD
V!> inf sess~2DN

ext!> inf s~2DN
ext!,

where2DN
ext denotes the operator associated toQN

ext. Neglecting the non-negative ‘‘longitudinal
part of the Laplacian@i.e., the first term at the right-hand side of~9!# and using the estimates~14!,
we arrive easily at the following lower bound:
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2DN
ext>S 12ae

11ae D 2

k1
2 in L2~Vext!,

which holds in the form sense~see also proof of Theorem 4.1 in Ref. 6!. The claim then follows
by the fact thate can be chosen arbitrarily small.

B. Upper bound, inf sess„ÀDD
V
…Ïk1

2

It follows from Ref. 13 that ifK→` 0 then the threshold of the~essential! spectrum of the
Laplacian onS, 2Dg , equals 0. This is equivalent to the statement that for any«.0 there exists
an infinite-dimensional subspaceDg#C0

`(S) such that

;wPDg : i¹gwig<«iwig . ~15!

It is easy to see that the following identity holds true:

;wPC0
`~S!: i¹wx1i25iu¹wu x1i22~wx1 ,wDx1!. ~16!

Using the estimates~7! and ~15!, we have

iu¹wu x1i2<~C1 /C2
2 ! «2 iw x1i2,

while the second term at the right-hand side of~16! can be rewritten by means of~12! as follows:

2~wDx1 ,wx1!5k1
2 iw x1i21~wx18,2Muwx1!.

Integrating by parts with respect tou in the second term at the right-hand side of the last equa
we conclude from~16! that for any«.0 there existsDªDg^ $x1%,C0

`(V) such that

;cPD: i¹ci22~c,Kuc!<~k1
21~C1 /C2

2 ! «2!ici2,

where

Kuª
K

122Mu1Ku2

is the Gauss curvature of the parallel surfaceL(S3$u%). This proves that infsess(2D2Ku)
<k1

2. SinceKu vanishes at infinity by the assumption~13!, i.e., the operatorKu(2D11)21 is
compact inL2(V), the same spectral result holds for the operator2D.

Remark 2:Notice that onlyK→` 0 is needed in order to establish the upper bound.

V. GEOMETRICALLY INDUCED SPECTRUM

It was shown in Sec. IV that the threshold of the essential spectrum is stable unde
deformation of the planar layer such that the deformed layer is still planar asymptotically i
sense of~13!. The aim of this section is to prove the sufficient conditions~a!–~d! of the second
part of Theorem 1, which guarantee the existence of spectrum below the energyk1

2. Since the
spectral threshold of the planar layer is justk1

2, the spectrum below this value is induced by t
curved geometry and it consists of discrete eigenvalues if the layer is asymptotically plana

All the proofs here are based on the variational idea of finding a trial functionC from the
form domain of2DD

V such that

Q1@C#ªQ@C#2k1
2 iCi2 , 0. ~17!

The important technical tool needed to establish conditions~a!–~c! is the existence of appropriat
mollifiers onS which is ensured by the following lemma.
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Lemma 1: AssumêH1&. Then there exists a sequence$wn%nPN of smooth functions with
compact supports inS such that

(1) ;nPN: 0<wn<1,
(2) i¹gwnig →

n→`
0,

(3) wn →
n→`

1 uniformly on compacts ofS.

Proof: If ^H1& holds true then it follows from Ref. 9 that (S,g) is conformally equivalent to
a closed surface from which a finite number of points have been removed. However, the in
i¹gwnig is a conformal invariant and it is easy to find a sequence having the required propert
the ‘‘pierced’’ closed surface. h

This sequence enables us to regularize a generalized trial function which would give for
a negative value of the functional~17!, however, it is not integrable inL2(S). Since the trial
functions used below are adopted from Ref. 6 and the proofs using different mollifiers of Le
1 require just slight modifications, we will not go into great details in the proofs of condit
~a!–~c!. The sufficient condition~d! does not use the mollifiers of Lemma 1. This condition
established by means of the fact that the sequence of trial functions employed in Ref.
cylindrically symmetric layers was localized only at infinity of the layer.

A. Condition „a…

Using the first transverse mode~11! as the generalized trial function, one gets

Q1@wnx1#5iu¹wnu x1i21~wn ,Kwn!g .

Since u¹wnu can be estimated byu¹gwnug by means of~7!, the first term at the right-hand sid
tends to zero asn→` due to Lemma 1. The second one tends to the total Gauss curvatuK
because of Lemma 1 and the dominated convergence theorem. Hence, ifK,0, we can find a finite
n0 such thatQ1@wn0

x1#,0.
In the critical case, i.e.,K50, one adds townx1 a small deformation term. Let« be a real

number, which will be specified later, and letj be an infinitely smooth positive function onS with
a compact support in a region where the mean curvatureM is nonzero and does not change sig
Defining u(x,u)ª j (x)ux1(u), one can write

Q1@wnx11«u#5Q1@wnx1#12« Q1~u,wnx1!1«2Q1@u#.

SinceK50, the first term at the right-hand side of this identity tends to zero asn→`. The shifted
quadratic form in the second term can be written as a sum of three terms:

Q1~u,wnx1!5~u,2Mu wnx18!1~¹ux1 ,¹wn!22~u¹x1 ,¹wn!,

where the last two terms tend to zero asn→` by means of the Schwarz inequality, the estima
~7! and Lemma 1, while an explicit calculation gives that the first integral is equal to2( j ,Mwn)g

which tends to anonzeronumber2( j ,M )g . Sinceu does not depend onn, one gets

Q1@wnx11«u# →
n→`

22« ~ j ,M !g1«2Q1@u#,

which may be made negative by choosing« sufficiently small and of an appropriate sign. h

B. Conditions „b… and „c…

Here we use the trial functioncn(x,u)ª(11M (x)u) wn(x)x1(u). Since
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¹cn~•,u!5~11Mu!~¹wn!x1~u!1~¹M !u wnx1~u!

1 ~~11Mu!k1 wnx18~u!1Mwnx1~u!!¹u, ~18!

it is easy to see thatcnPDomQ provided¹gMPL loc
2 (S). In this context and for further consid

erations, we recall that the curvaturesK andM are uniformly bounded, cf.̂H2&. One has

Q1@cn#<2~~11aiM i`!2iu¹wnu x1i21a2iu¹M u wnx1i2!

1~wn ,~K2M2!wn!g1
p226

12k1
2 ~wn ,KM2wn!g . ~19!

The inequality giving the factor 2 comes from the first line at the right-hand side of~18! and is
established by means of Minkovski’s inequality and evident estimates. The second line of~19! is
the result of a direct calculation and concerns the terms of the second line of~18!.

We start by checking the sufficient condition~c! of Theorem 1. If¹gM is L2-integrable and
^H1& holds true, then all the terms at the right-hand side of~19! tend to finite values asn→`,
except for the first integral at the second line which tends to2` due to the assumptionM5
1`. Hence we can find a finiten0 such thatQ1@cn0

#,0.
There are two observations which lead to the condition~b!. First, the integral containingK

2M2 in ~19! is always negative for any nonplanar and noncompact surface, which can be se
rewriting the difference of curvatures by means of the principal curvatures, i.e.,K2M25
2 1

4(k12k2)2. Second, the first term at the right-hand side of~19! tends to zero asn→` because
of ~7! and Lemma 1, and the remaining ones vanish forn fixed asa→0. ~For the latter we recall
thatk1

22 is proportional toa2.) Hence we can find a sufficiently largen0 such that the sum of the
first term at the right-hand side of~19! and the first integral at the second line of~19! is negative,
and then choose the layer half-widtha so small thatQ1@cn0

#,0. h

C. Condition „d…

Let S contain a cylindrically symmetric endE with a positive total Gauss curvature,KE

.0.
Let us recall first the strategy employed in Ref. 6 to prove the existence of bound sta

layers built over surfaces of revolution diffeomorphic toR2 with a positive total Gauss curvature
i.e., E5S. The essential ingredient is supplied by an information about the behavior of the
curvatureM at infinity. In particular, ifK.0, thenuM u(detg)1/2 is bounded but does not vanish
infinity of S and neitherM nor M2 are integrable inL1(S). On the other hand, the Gaus
curvature is supposed to be integrable, cf.^H1&. Constructing an appropriate family of trial func
tions $Cn%nPN that is localized at infinity~i.e., ; compact Vc,V'nPN: supp CnùVc5B)
one succeeds to eliminate the contribution of the Gauss curvature and, at the same time, to
thatQ1@Cn# remains negative asn→`. We refer to the proof of Theorem 6.1 in Ref. 6 for mo
details and an explicit form of$Cn%nPN .

FIG. 6. Construction of a simply connected surface of revolutionE8 from a cylindrically symmetric endE,S.
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The fact that the family of trial functions was localized at infinity makes it possible to ex
the proof to our more general situation. IfEÞS, we construct fromE a new cylindrically
symmetric surfaceE8 diffeomorphic toR2 by attaching smoothly to it a cylindrically symmetri
cap, i.e., a simply connected surface with a compact boundary~see Fig. 6!. Since the attached
surface is cylindrically symmetric and simply connected, its total Gauss curvature cann
negative, which can be seen by the Gauss–Bonnet theorem and a natural parametrization,
6, Sec. 6. Consequently, the total Gauss curvature ofE8 will not be less than the valueKE . Since
the latter is positive by assumption, the mean curvature ofE8 behaves at infinity like required fo
the use of$Cn%nPN , which proves the existence of spectrum belowk1

2 for the layer aboutE8.
However, the identical asymptotic behavior holds for the mean curvature ofE as well. Hence, in
order to establish the desired spectral result for the initialV, it is sufficient to construct the
sequence$Cn%nPN only at the infinity of the cylindrically symmetric layer built over the endE.

VI. CONCLUDING REMARKS

The main interest of this paper was the Dirichlet Laplacian,2DD
V , in the layer regionV

defined as a tubular neighborhood of a complete noncompact surface embedded inR3. Using an
intrinsic approach to the geometry ofV, the conditions of the original paper,6 sufficient to guar-
antee the existence of bound states below the essential spectrum of2DD

V , were significantly
extended to layers built over general surfaces without any strong topological restriction
Theorem 1 for the summary of the main results.

An important open problem is to decide whether the discrete spectrum exists also for
over surfaces withK.0 such that none of the conditions~b!–~d! of Theorem 1 is satisfied.~We
remind that, due to Corollary 1, it concerns surfaces diffeomorphic toR2 only.! In view of the
condition ~c!, it would be very desirable to prove the following conjecture:

K.0 ⇒ M51`. ~20!

Taking into account the definition ofK andM by means of the principal curvatures, it may see
that there is no reason to expect this property. However, the principal curvatures cannot
garded as arbitrary functions because the first and second fundamental forms ofS have to satisfy
some integrability conditions~the Gauss and Codazzi–Mainardi equations!. Note that we have
proved the conjecture~20! for cylindrically symmetric surfaces in Ref. 6.

Finally, interesting spectral results are expected if the ambient spaceR3 is replaced by an
Euclidean space of higher dimension~more complicated normal bundle ofS! or even by a genera
Riemannian manifold~nontrivial structure of the ambient curvature tensor!.
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Star exponentials for any ordering of the elements
of the inhomogeneous symplectic Lie algebra
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We compute for any ordering the star exponentials of all polynomials of degree not
greater than two on the 2,-dimensional phase space of a quantum system with,
degrees of freedom, and we show in the particular case of the Moyal star product
that the Weyl transform of the Moyal star exponential of the one-dimensional
harmonic oscillator Hamiltonian is the evolution operator of this quantum system.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1634352#

I. INTRODUCTION

A general method of quantization, known under the name of star products method
proposed in Ref. 1 for an arbitrary symplectic manifold, by Bayenet al. In the case of the
symplectic phase spaceR2, of a nonrelativistic quantum system with, degrees of freedom, the
Weyl transform2,3 of the Moyal star product of two admissible symbols~which are functions or
distributions on this space! is the product of the corresponding operators on the Hilbert sp
L2(R,). The Moyal star exponentials were introduced and computed in Refs. 1 and 2 for sp
homogeneous polynomials, in order to determine the spectrum of the corresponding obser
Later, the Moyal star exponentials of all polynomials of degree not greater than two onR2, were
obtained in Ref. 4 and were used to show the existence of classical trajectories for qu
systems whose Hamiltonian belongs to the space of these polynomials.

However, it was noticed in Ref. 5 that the Moyal star product, which corresponds to
completely symmetric ordering, is not appropriate in field theory for the quantization of the
scalar field Hamiltonian. So, a new star product, called the normal star product, which corres
to the normal ordering, was introduced in this paper and the normal star exponential o
Hamiltonian was computed in this paper, in order to determine~in the context of the star produc
method! the spectrum of this Hamiltonian. More recently, the normal star exponentials o
quadratic forms on the spaceR2 were obtained in Ref. 6.

The purpose of this article is to compute for any ordering, including the normal ordering
star exponentials of all polynomials of degree not greater than two on the symplectic spacR2,,
,>1. Furthermore, it was proved in Ref. 3 that the Weyl transforms of the Moyal star expone
of the real homogeneous polynomials of degree two onR2, are one-parameter groups of unita
operators. In the last section of this article, we prove in the particular case of the~real! Hamil-
tonianH of the one-dimensional harmonic oscillator that the one-parameter group op~Exp

*
MtH),

tPR, is generated by the essentially skew self-adjoint operator op(H/ i\), and then that this
one-parameter group is the evolution operator of this quantum system.

II. GENERAL RESULTS AND NOTATIONS

Let R2, be the phase space of a nonrelativistic quantum system with, degrees of freedom
whose points are denoted byx5( j 51

, qjej1( j 51
, pjej̄ or x5( j 51

2, xjej , whereej̄ 5ej 1, if 1< j
<,. Let v5( j 51

, dqj∧dpj be the canonical symplectic form onR2,. The Poisson bracket of two
elementsf andg of C`(R2,) is given by the formula

a!Electronic mail: jean-marie.maillard@u-bourgogne.fr
7850022-2488/2004/45(2)/785/10/$22.00 © 2004 American Institute of Physics
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P~ f ,g!5 (
j ,k51

2,

L jk
] f

]xj

]g

]xk

with L j , j 1,52L j 1,, j51 if 1< j <,, the other coefficients being equal to zero.
A general star product off andg is given by the formal expansion1

f * g5 f g1 (
n51

`
1

n! S i\

2 D n

Cn~ f ,g!,

where the two-cochainsCn are given by the formula

Cn~ f ,g!5 (
j r ,ks51

2,

G j 1k1
¯G j nknD j 1¯ j n

f Dk1¯kn
g,

where the coefficientsG jk are arbitrary constant numbers and where

D j 1¯ j n
f 5

]nf

]xj 1
¯]xj n

.

Furthermore, we suppose that these two-cochains satisfy the following formulas:1,7

(
r 1s5n

1

r !s!
Cr~Cs~ f ,g!,h!5 (

r 1s5n

1

r !s!
Cr~ f ,Cs~g,h!!, ~1a!

C1~ f ,g!2C1~g, f !52P~ f ,g!. ~1b!

Formula~1a!, which implies the associativity of the star product, is automatically satisfied if
coefficientsG jk are arbitrary constant numbers~Theorem 3, p. 69 of Ref. 1, and note that the pro
of this theorem remains valid for arbitrary constant coefficients!. We denote byL andG, respec-
tively, the matrices (L jk) and (G jk), 1< j , k<2,. Then, formula~1b!, which implies the relation
qj* pk2pk* qj5 i\d jk , is equivalent to the following formula:

G2TG52L, ~2!

whereTG denotes the transpose of the matrixG. We have on the precedently chosen basis ofR2,

L5S 0 I ,

2I , 0 D ~ I , is the unit ,3, matrix!.

We haveGM5L for the Moyal star product,

GN52S 0 I ,

0 0 D
for the normal star product, andGaN52TGN for the antinormal star product. In this article, th
symbolsM, N, andaN will, respectively, refer to the Moyal, normal, and antinormal star produ
Let us note that we have the same~as the last two one! matrices of coefficients for respectively th
antistandard and standard orderings.8

The star exponential~for a general star product! of f PC`(R2,) is defined by the formal
expansion:1,2

Exp* t f 5 (
n50

`
1

n! S t

i\ D n

f * n
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with f * n5 f *¯* f ~n factors!.
In the following, we consider the star exponentials of functions for a general ordering, t

for star products whose associated matrixG with constant entries satisfies formula~2!.

III. STAR EXPONENTIALS FOR ANY ORDERING OF THE ELEMENTS OF THE
HOMOGENEOUS SYMPLECTIC LIE ALGEBRA

Let us consider the case of the homogeneous polynomials of degree two onR2, of the form
X(x)5( j ,k51

2, ajkxjxk, where the matrixA5(ajk) is symmetric with complex entries. Let us writ
X(x)5(Axux), where~2u2! denotes the usual inner product onR2, that we extend in a natura
way to a symmetric bilinear product onC2,. Let us note that ifX is a polynomial of degree no
greater than 2 and iff PC`(R2,), thenCn(X, f )50 for n>3.

Let us write f n5X* n with X5(Axux) and denote byÃ5(ã jk) the symmetric matrixÃ
5TGAG. We have the following lemma.

Lemma 1: The functions fn are polynomials of degree2n onR2, which satisfy the following
recursion relation:

f n115X fn1 i\ (
j ,k,r 51

2,

G jkajr x
rDkf n2

\2

4 (
j ,k51

2,

ã jkD jk f n ~3!

with f0(x)51.
Remark: The analogs of Lemma 1 of Ref. 4 and of its corollary are not true for a ge

ordering.
To obtain the expression of Exp* tX, we first look for a solution of the partial differentia

equation:

i\
]F

]t
~ t,x!5XF1 i\ (

j ,k,r 51

2,

G jkajr x
rDkF2

\2

4 (
j ,k51

2,

ã jkD jkF ~4!

with F(0,x)51, in the form

F~ t,x!5 f ~ t !21 expi ~g~ t !xux!, ~5!

wheref (t) andg(t) are holomorphic functions with values, respectively, in the complex field
in the space of the symmetric 2,32, matrices with complex entries. We are led to the followi
differential system:

g8~ t !52
1

\
A1AGg~ t !1g~ t !TGA2\g~ t !Ãg~ t !, ~6!

f 8~ t !

f ~ t !
5

\

2
tr~Ãg~ t !!, ~7!

with g(0)50, f (0)51, and where trA denotes the trace of the matrixA. @Let us note that we have
used the formula (AGg(t)xux)5(g(t)TGAxux) in this computation, in order to obtain a symmetr
matrix g(t).]

Let us note that Eq.~6! is a Riccati matrix differential equation. So, following Ref. 9, p. 1
we look for a solution of this differential equation in the formg(t)5V(t)U(t)21, whereU(t) is
a nonsingular matrix. We then obtain the following linear matrix differential system:

U8~ t !52TGAU~ t !1\ÃV~ t !, ~8a!

V8~ t !52
1

\
AU~ t !1AGV~ t !, ~8b!
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with U(0)5I 2, andV(0)50. The solution of this system can be written in the form

S U~ t !
V~ t ! D5~exptF!S I 2,

02,
D ,

and if we consider the 4,34, matricesFn, n>1, as 232 block matrices (F jk
n ), 1< j , k<2, we

obtain with the aid of formula ~2!: F11
n 522n21 TGA(LA)n21 and F21

n 52(2n21/\)
3A(LA)n21. We deduce from these formulas that

U~ t !5I 2~1/2! (
n51

`

~~2t !n/n! !TGA~LA!n21, ~9a!

V~ t !52~1/2\! (
n51

`

~~2t !n/n! !A~LA!n21. ~9b!

If we introduce the relationL252I in the preceding formulas and if we setP152( 1
2)GL,

P25( 1
2)

TGL, P5P12P2 , and if we note@with the aid of formula~2!# that P11P25I , we
obtain

U~ t !5~coshtLA2P sinhtLA!exptLA, ~9a8!

V~ t !5~1/\!L~sinhtLA!exptLA. ~9b8!

We thus obtain

g~ t !5~1/\!L sinhtLA~coshtLA2P sinhtLA!21. ~10!

To solve Eq.~7!, let us first note that ifujk(t) are the entries of the nonsingular matrixU(t),
and if U jk(t) are the corresponding cofactors, we have

tr~U8~ t !U~ t !21!5~detU~ t !!21 (
j ,k51

2,

ujk8 ~ t !U jk~ t !.

We then obtain, with the aid of the derivative property of determinants, the following lemm
Lemma 2: If U(t) is a nonsingular matrix with differentiable or holomorphic entries, we ha

tr~U8~ t !U~ t !21!5~detU~ t !!21~detU~ t !!8.

With the aid of this lemma and of formulas~7! and ~8a!, we obtain

f 8~ t !

f ~ t !
5

1

2
~detU~ t !!21~detU~ t !!81

1

2
tr~TGA!,

and if we use the relation det(exptLA)51 ~due to trLA50, sinceTL52L) in formula ~9a8!, we
obtain

f ~ t !5expS t

2
tr AG D ~det~coshtLA2P sinhtLA!!1/2. ~11!

If we consider now the power series expansion int of the holomorphic functionF(t,x) @of
formula ~5!# around the origin,

F~ t,x!5 (
n50

`
1

n! S t

i\ D n

Cn~x!
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with Cn(x)5( i\)n]nF(t,x)/]tnu t50 , and if we keep in mind that the functionF(t,x) is a solution
of the partial differential equation~4!, it is easy to show that the functionsCn(x) satisfy the
recursion relation~3! with C0(x)51. We thus haveCn(x)5 f n(x) for all nPN.

Finally, let us note that formula~10! can be written in the form

g~ t !5~1/\!L tanhtLA~ I 2P tanhtLA!21,

and let us note that if we denote byiAi the operator norm of the matrixA in the 2,-dimensional
Hilbert spaceC2,, the functionF(t,x) is analytic if i tAi,p/2 and iP tanhtLAi<iPi tanitAi
,1. We can now formulate the main result of this paper.

Theorem 1: Let X5(Axux) for xPR2,, where A is a symmetric matrix with complex entrie
Then the power series in t,

Exp* tX5 (
n50

`
1

n! S t

i\ D n

X* n, ~12!

has a radius of convergencer>(1/iAi)Arc tan(1/iPi) @we setArc tan ~1/0!5p/2#, and we have
for any tPC, utu,r and any xPR2,,

Exp* tX5 f ~ t !21 expi ~g~ t !xux!

with

f ~ t !5expS t

2
tr AG D ~det~coshtLA2P sinhtLA!!1/2,

g~ t !5
1

\
L~ tanhtLA!~ I 2P tanhtLA!21,

P52 1
2~G1TG!L.

We choose for(det(coshtLA2P sinhtLA))1/2 the principal value.
Remark: We haveiAi5supum i u wherem i are the eigenvalues of the matrix A if A is a re

(and symmetric) matrix or if A is a normal (complex) matrix.
Since the functionF(t,x) is analytic forutu,r andxPR2,, then for eachtPC, utu,r, the

series~12! converges uniformly on compact sets ofR2,. We have the following theorem.
Theorem 2: For any tPC, utu,r, the series (12) converges weakly inD8(R2,).
Remarks:
~1! The symmetry of the matrixg(t) follows from the formulaTP5LPL and is easily

checked by using the power series expansion of the function (12x)21. We have

g~ t !5Tg~ t !5~1/\!L~ I 2~ tanhtLA!P!21 tanhtLA.

~2! We havePM50, and we can note that, in this particular case of the Moyal star prod
Theorem 1 was previously obtained in Ref. 4. We have

PN5S I , 0

0 2I ,
D

(PN is the projection operator on theq-space minus the projection operator on thep-space!, and
we havePaN52PN .

~3! In the case of the spaceR2, it is easy to show by using the Hamilton–Cayley theorem t
(LA)25dI2 @since tr(LA)50] with d52detA. We then have coshtLA5(coshtAd)I 2 and
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sinhtLA5((sinhtAd)/Ad)LA whereAd is one of the square roots ofd and an easy calculation
using the preceding formulas shows that we have, forX(q,p)5aq212bqp1cp2 and«511 for
the normal star product and«521 for the antinormal star product,

Exp
*
« tX5~ f «~ t !!21 expi ~a«~ t !X~q,p!1b«~ t !qp!

with

f «~ t !5e«tb~w«~ t !!1/2

@we choose for (w«(t))1/2 the principal value#,

w«~ t !5cosh 2tAd2«b~sinh 2tAd!/Ad,

a«~ t !52~2\w«~ t !!21~sinh 2tAd!/Ad,

b«~ t !5«~\w«~ t !!21~cosh 2tAd21!,

d5b22ac, whereAd is one of the square root ofd. Let us note that this result does not depe
on the choice of the square root ofd. This result was previously obtained in Ref. 6 for the ca
«511 with a minor difference due to a minor difference of the definition of star exponentia

~4! In the case of a homogeneous polynomial of degree two onR2,, ,.1, of the form
X(q,p)5S j 51

, Xj (q,p) with Xj (q,p)5ajqj
212bjqj pj1cj pj

2 and if we choose the basise1 ,
e1̄, ...,e, , e,̄ of R2,, the matricesA, L, G, andP are block diagonal matrices with 232 blocks, we
then have for most orderings, including the completely symmetric~Moyal!, normal and antinorma
orderings

Exp* tX5)
j 51

,

Exp* tXj .

(P j 51
, denotes the ordinary product of the preceding functions.! We have for the Moyal star

product

Exp
*
MtX5)

j 51

,

~coshtAdj !
21 expS 2

i

\

tanhtAdj

Adj

Xj D ,

which is a generalization of formula~6–11! of Ref. 2.
~5! If we consider the matrixA as a 232 block matrix (Ajk), 1< j , k<2, we haveÃN50 if

A1150 andÃaN50 if A2250. We havef (t)51 in both cases. We have in particular

Exp
*
« S t(

j 51

,

v jqj pj D 5exp
« i

\ S (
j 51

,

~12e«tv j !qj pj D .

Let us note that to connect this result in the case«511 with formula 3.5 of Ref. 5, and since th
deformation parameter in Ref. 5 is\ instead ofi\, we must replaceL and GN by (1/i )L and
(1/i )GN , respectively. Formulas~2!, ~9a!, ~9b!, and~11! remain valid when expressed with the

new matrices, but we must introduce the relation (2 iL)25I in ~9a!, ~9b! and setP5( 1
2)

(2 iGN2 i TGN)(2 iL)5PN . The right-hand side of~10! is then multiplied by21. Hence we
have

f ~ t !5 f N~2 i t ! and g~ t !5 igN~2 i t !.
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IV. STAR EXPONENTIALS FOR ANY ORDERING OF THE ELEMENTS OF THE
INHOMOGENEOUS SYMPLECTIC LIE ALGEBRA

Let us now consider the case of the inhomogeneous polynomials of degree not greater
on R2,. We obtain in the same way as in the homogeneous case the following theorem.

Theorem 3: Let X5(Axux)1(bux)1c where A5(ajk) is a symmetric matrix with comple
entries, b5(bj )PC2, and cPC. Then the power series

Exp* tX5 (
n50

`
1

n! S t

i\ D n

X* n

has a radius of convergencer>(1/iAi) Arc tan(1/iPi) and we have for tPC, utu,r and x
PR2,

Exp* tX5 f ~ t !21 expi @~g~ t !xux!1~k~ t !ux!2ct/\#

with

g~ t !5
1

\
L~ I 2~ tanhtLA!P!21 tanhtLA,

k~ t !5
1

\
L~ I 2~ tanhtLA!P!21

tanhtLA

LA
Lb,

f ~ t !5expS t

2
tr AG DexpS i

4
~w~ t !ub! D ~det~coshtLA2P sinhtLA!!1/2,

w~ t !5
1

\

tanhtLA2tLA

~LA!2
Lb2

tanhtLA

LA
PLk~ t !.

For the proof of this theorem, we first look for a solution of the partial differential equat

i\
]F~ t,x!

]t
5XF1 i\ (

j ,k51

2,

G jkS b j

2
1(

r 51

2,

ajr x
r DDkF2

\2

4 (
j ,k51

2,

ã jkD jkF

such thatF(0,x)51, in the form

F~ t,x!5 f ~ t !21 expi ~~g~ t !xux!1~k~ t !ux!1,~ t !!,

where g(t), k(t), ,(t), and f (t) are holomorphic functions with values in the space of
symmetric 2,32, matrices with complex entries, inC2, and in C for the last two functions,
respectively. We are led to the differential system

g8~ t !52
1

\
A1AGg~ t !1g~ t ! TGA2\g~ t !Ãg~ t !, ~13!

k8~ t !52
b

\
1AGk~ t !1g~ t ! TGb2\g~ t !Ãk~ t !, ~14!

f 8~ t !

f ~ t !
5

\

2
tr~Ãg~ t !!1 i S c

\
1,8~ t ! D2

i

2
~buGk~ t !!1 i

\

4
~Ãk~ t !uk~ t !!, ~15!

with g(0)50, k(0)50 and f (0)51.
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Let us note that Eq.~13! was already solved in Sec. III~see Remark 1 following Theorem 2!.
To solve Eq.~14!, let us consider the analytic function

g1~ t !5
1

\
L~ I 2~ tanhtLA!P!21

tanhtLA

LA
,

which satisfies the relationg18(t)5g8(t)/LA.
We deduce from Eq.~13! that the functiong1(t) satisfies the following equation:

g18~ t !52
1

\
L211AGg1~ t !1g~ t ! TGL212\g~ t !Ãg1~ t !. ~16!

It is then obvious that the functionk(t)5g1(t)Lb is the solution of Eq.~14!. To solve Eq.~15!,
let us set,(t)52ct/\ and let us note that the first part of the right-hand side of this equation
already integrated in Sec. III. The last part of this right-hand side is equal to (i /4)(h(t)Lbub) with

h~ t !52Gg1~ t !2L Tg1~ t ! TGL2\L Tg1~ t !Ãg1~ t !.

Let us note that the matrixg1(t) is not symmetric. Introducing the relationg(t)52AL Tg1(t) in
formula ~16!, we deduce that (Lg1(t)1t/\I )852LAh(t). Now, if we set

g2~ t !5
1

\

tanhtLA2tLA

~LA!2
2

tanhtLA

LA
PLg1~ t !,

and if we use the power series expansion of the function (12x)21, we obtain

Lg1~ t !1
t

\
I 52LAg2~ t !.

We then deduce from the analytic properties of these functions thath(t)5g28(t) and it suffices to
setw(t)5g2(t)Lb to obtain the solution of Eq.~15!.

V. MOYAL STAR EXPONENTIAL OF THE HAMILTONIAN OF THE ONE-DIMENSIONAL
HARMONIC OSCILLATOR AND EVOLUTION OPERATOR OF THIS QUANTUM
SYSTEM

Let us consider the homogeneous polynomials of degree 2 onR2, written in the formX
5(Axux) whereA is a real and symmetric matrix. Then the Weyl transforms op~Exp

*
MtX) of the

Moyal star exponentials of these polynomials form groups of unitary operators of the Hilbert
L2(R,) ~propositions 13 and 14 of Ref. 3!. In this section, we prove in the particular case of t
HamiltonianH5 1

2(p21q2) of the one-dimensional harmonic oscillator that the group of unit
operators op (Exp

*
MtH) is the evolution operator of this quantum system. We have the follow

proposition:
Proposition 1: Let H5 1

2(q
21p2) be the Hamiltonian of the one-dimensional harmonic os

lator. Then the Weyl transformop(H) of the function H is an essentially self-adjoint operator
L2(R) and we have for t real and sufficiently small

op~Exp
*
MtH !5exp

t

i\
op~H !,

whereop(H) is the closure of the operatorop(H).
Proof: We have for u, vPS (R):(op(H)uuv)5^Ĥ(a),xu,v(a)&5^H(x),x̂u,v(x)& where

(uuv)5* u(q)v(q) dq is the scalar product onL2(R), f̂ (a)5* e2 i ^a,x& f (x) dm(x) with f
PS (R2), x5(q,p), a5(a,b), ^a,x&5aq1bp, dm(x)5dqdp/2p and
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xu,v~a,b!5expS i
\

2
abD E eiaq8u~q81\b!v~q8! dq8.

~Let us note that an apparently different but equivalent definition is given in Ref. 3 with the u
the symplectic Fourier transformation.! We must prove fort real and sufficiently small that

^Exp
*
MtH, x̂u,v&5 (

n50

`
1

n! S t

i\ D n

^H* n, x̂u,v& ~17!

with

x̂u,v~q,p!5
2

u\u E expS 2
i

\
pbDu~q2b!v~q1b! db. ~18!

The convergence of the expansion~17! does not hold automatically, since the series~12! ~with
X5H) converges inD8(R2) but x̂u,v belongs toS (R2).

We shall estimate the functionsX̂u,v in order to apply Lebesgue’s dominated convergen
theorem. For this purpose, we consider the complete system of eigenvectors~then of analytic
vectors! of the operator op(H):

un~q!5~2nn!Apu\u!21/2e2q2/2uhuHn~q/Au\u!, nPN,

whereHn denotes the Hermite polynomial of degreen ~cf. Ref. 10!. The operator op(H) is then
essentially self-adjoint and we obtain by using formula~18!

x̂ur ,us
~q,p!5e2~q21p2!/u\uPr ,s~q,p!, r , sPN,

wherePr ,s is a polynomial of degree not greater thanr 1s in p andq. On the other hand, we know
that we haveH* n5Kn(H) for the Moyal star product on the phase spaceR2, where the functions
Kn(x) are polynomials of degreen which satisfy the recursion relation@formula ~6.2! of Ref. 2, or
remark 2 at the end of this section#

Kn11~x!5xKn~x!2
\2

4
Kn8~x!2

\2

4
xKn9~x!, K0~x!51.

Let us now consider the polynomialsCn(x) with non-negative coefficients, defined by the rec
sion relation

Cn11~x!5xCn~x!1
u\u2

4
Cn8~x!1

u\u2

4
xCn9~x!, C0~x!51. ~19!

It is then obvious that we have

uH* nu5uKn~H !u<Cn~ uHu!,

hence

(
n50

`
1

n! U t

i\U
n

uH* n~q,p!u< (
n50

`
1

n! U t

\U
n

CnS q21p2

2 D . ~20!

Let us now consider the Moyal star product with the deformation parameter2 i u\u instead of\
~let us note that this parameter does not need to be real in the definition of star products and
computation of star exponentials!, and let us note that the recursion relation~19! is the relation
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giving H* n5Cn(H) for this new deformation parameter. Then by using~for this new parameter!
Theorem 1 and Remark 4 following Theorem 2 forutu instead oft, it is easy to show that the
right-hand side of inequality~20! is equal to

S cos
utu
2 D 21

expS p21q2

u\u
tan

utu
2 D ,

and the convergence of the series~17! is then established withu5ur andv5us for utu sufficiently
small.

Remarks:
~1! The property thatX* n, for the Moyal star product, is a functionKn(X) of X if X is a

homogeneous polynomial of degree two onR2 does not remain valid onR2, with ,.1. This
property does not remain valid for a general ordering, even for,51.

~2! If X5(Axux) is a homogeneous polynomial of degree two onR2, whereA is a symmetric
232 matrix with complex entries, and if we setX* n5Kn(X) for the Moyal star product, then it is
easy to show by using Remark 3 following Theorem 2 that the recursion relation~3! can be written
in the form

Kn11~X!5XKn~X!1d\2Kn8~X!1d\2XKn9~X!

with d52detA.
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A system of nonlinear algebraic equations connected with
the multisoliton solution of the Benjamin–Ono equation

Yoshimasa Matsunoa)

Department of Applied Science, Faculty of Engineering, Yamaguchi University,
Ube 755-8611, Japan
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The multisoliton solution of the Benjamin–Ono equation is derived from the sys-
tem of nonlinear algebraic equations. This finding is unexpected from the scheme
of the inverse scattering transform method, which constructs the multisoliton solu-
tion through the system of linear algebraic equations. The anlaysis developed here
is also applied to the rational multisoliton solution of the Kadomtsev–Petviashvili
equation. ©2004 American Institute of Physics.@DOI: 10.1063/1.1641153#

I. INTRODUCTION

The Benjamin–Ono~BO! equation describes the unidirectional prepagation of weakly n
linear internal waves in a stratified fluid of great depth.1–3 It can be written in an appropriat
dimensionless form as

ut12uux1Huxx50, ~1.1a!

whereu5u(x,t) is a real function representing the amplitude of the wave, the operatorH is the
Hilbert transform defined by

Hu~x,t !5
1

p
PE

2`

` u~y,t !

y2x
dy, ~1.1b!

and the subscriptst andx appended tou denote partial differentiation.
A large number of studies have been done for the mathematical structure of the BO equ4

In particular, the initial value problem under vanishing boundary conditions has been solv
means of the inverse scattering transform~IST! method.5,6 The IST provides a procedure t
construct solutions explicitly for a certain class of initial data. A typical example is the reflec
less potential~or multisoliton potential! for which the solution is obtained simply by solving th
system oflinear algebraic equations. This remarkable feature is common to the completely
grable nonlinear evolution equations solvable by the IST.

The purpose of this paper is to show that the multisoliton solution of the BO equation can
be derived from a system ofnonlinearalgebraic equations. Since the IST reduces the nonlin
problem to the linear one characterized by a system of linear integral equations, the nove
presented here will not be predicted from the scheme of the IST. An alternative derivation
multisoliton solution described here will give a new insight into the structure of the solution

In Sec. II, we first describe theN-soliton (N: positive integer! solution of the BO equation
constructed by the IST. Then, we introduce a system of nonlinear algebraic equations and
that it leads to theN-soliton solution as well. This fact is verified based only on an elemen
theory of determinants. Section III is devoted to concluding remarks where the analysis, sim

a!Electronic mail: matsuno@yamaguchi-u.ac.jp
7950022-2488/2004/45(2)/795/8/$22.00 © 2004 American Institute of Physics
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that developed here, is aplied to the rationalN-soliton solution of the Kadomtsev–Petviashv
~KP! equation. In the Appendix, we summarize the Lagrange interpolation formula and re
formulas which will be used in Sec. II.

II. SYSTEM OF NONLINEAR ALGEBRAIC EQUATIONS

A. Notation

Before entering into the detailed analysis, we introduce the notation which will be
throughout this paper.

1. Matrices

The N3N matricesM ,V,Ṽ,W,Z,F, andF̃ are defined by the relations

M5~mjk!5~z jd jk22i ~12d jk!~aj2ak!
21!, z j5x2aj t2xj 01

i

aj
, ~2.1a!

V5~v jk!5~a j
k21!, ~2.1b!

Ṽ5~ ṽ jk!5S ]uVu
]v jk

D , uVu5detV, ~2.1c!

W5~wjk!5~~k21!a j
k22!, ~2.1d!

Z5~zjk!5~zjd jk!, zj5z j1 (
k51

(kÞ j )

N
1

a j2ak
, ~2.1e!

F5Z2WV215~ f jk!, ~2.1f!

F̃5~ f̃ jk!5S ]uFu
] f jk

D , uFu5detF, ~2.1g!

whered jk is Kronecker’s delta,aj and xj 0 are real constants satisfying the conditionsaj.0,aj

Þak for j Þk ( j ,k51,2,. . . ,N) anda j5 ia j /2 ( j 51,2,. . . ,N). Note thatV is the Vandermonde
matrix and ṽ jk is the cofactor ofv jk . We use the convention that a term like (12d jk)(aj

2ak)
21 is taken to be zero ifj 5k.

2. Vectors

The column vectorsx andb with N elements are defined as follows:

x5 t~xj !5 t~sN2 j 11!, ~2.2a!

b5 t~bj !5 t~2zja j
N1Na j

N21!, ~2.2b!

where the superscriptt denotes the transpose and the elementssN2 j 11 will be defined later.

3. Polynomials

The polynomialsg(x) andgk(x) are defined by the relations

g~x!5)
j 51

N

~x2a j !5(
s50

N

~21!sssx
N2s, ~s051!, ~2.3a!
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gk~x!5 )
j 51

( j Þk)

N

~x2a j !5 (
s50

N21

~21!sss,kx
N212s, ~k51,2,. . . ,N!, ~2.3b!

wheress are fundamental symmetric polynomials constructed froma j according to the relations

s15(
j 51

N

a j , s25 (
j ,k51
( j ,k)

N

a jak , . . . , sN5)
j 51

N

s j , ~2.3c!

andsk,s in ~2.3b! is expressed in terms ofsp andak as7

sk,s5 (
p50

s

sp~2ak!
s2p. ~2.3d!

It follows from the definition~2.3! that g8(a j )5gj (a j ) whereg8(x)5dg(x)/dx.

B. N-soliton solution of the BO equation

Let f j be the solution of the following system oflinear algebraic equations

z jf j22i (
k51

(kÞ j )

N
fk

aj2ak
51, ~ j 51,2,. . . ,N!. ~2.4!

Then, theN-soliton solution of the BO equation is given by5,6,8

u5 i (
j 51

N

~f j2f j* !5 i
]

]x
ln

f

f *
, ~2.5!

where f 5uM u andf j* denotes the complex conjugate off j . We note that a direct proof of the
N-soliton solution, without recourse to the IST, has been performed on the basis of Eq.~2.4!.8 The
last expression in~2.5! is very important in the present analysis. It stems from the relation8

(
j 51

N

f j5
f x

f
. ~2.6!

To show~2.6!, we note the relation

f x5Um11 ... m1N 1

] � ] ]

mN1 ... mNN 1

21 ... 21 0

U , ~2.7!

which is derived with use of the formula

Um11 ... m1N x1

] � ] ]

mN1 ... mNN xN

y1 ... yN z

U5uM uz2 (
j ,k51

N

m̃jkxjyk , ~2.8!

combined with the relation( j ,k51
N

m̃jk50 (m̃jk : cofactor ofmjk).

( j Þk)
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C. System of nonlinear algebraic equations

Let ck be the solution of the following system ofnonlinearalgebraic equations:

(
k51

N
1

a j2ak1ck
5z j1 (

k51
(kÞ j )

N
1

a j2ak
[zj ~ j 51,2,. . . ,N!. ~2.9!

Now, we show that the above system of equations yields theN-soliton solution~2.5! of the
BO equation. The basic idea in performing the analysis is to transform the nonlinear system~2.9!
into the linear system by introducing the nonlinear transformation

s15(
j 51

N

~c j2a j !, s25 (
j ,k51
( j ,k)

N

~c j2a j !~ck2ak!, . . . ,sN5)
j 51

N

~c j2a j !. ~2.10!

It then follows that the system~2.9! can be transformed into the system of linear algebr
equations for the new variablessj

(
k51

N

$zja j
k212~k21!a j

k22%sN2k1152zja j
N1Na j

N21 ~ j 51,2,. . . ,N!. ~2.11!

If we use the notations~2.1! and ~2.2!, we can write~2.11! compactly in the matrix form

~ZV2W!x5FVx5b. ~2.12!

D. Solution

To solve Eq.~2.12!, we first observe thatuFuÞ0 anduVuÞ0. The former relation follows from
uFu5uM u @see~2.25! later# together with a factuM uÞ0 for real x and t which is derived from

~2.4!. The latter relation is obvious sinceuVu5) j ,k51
( j .k)

N
(a j2ak) ~:Vandermonde determinant! and

a jÞak for j Þk. With these facts in mind, the solution of Eq.~2.12! is readily obtained by using
Cramer’s rule as

x5
t~ F̃Ṽ!b

uFuuVu
. ~2.13!

Hence, thej th element ofx is given by

xj5
1

uFuuVu (
m,n51

N

bmf̃ mnṽn j ~ j 51,2,. . . ,N!, ~2.14!

whereṽn j is the cofactor ofvn j . In terms of~2.3b! and~2.3d!, the explicit expression ofṽn j reads
as7

ṽn j5
~21!N2 jsn,N2 j

gn~an!
uVu. ~2.15!

Using the formula~2.8!, we can put~2.14! into the form of the bordered determinant

xj52
1

uFuuVuU f 11 ... f 1N b1

] � ] ]

f N1 ... f NN bN

ṽ1 j ... ṽN j 0

U . ~2.16!
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The next step is to modify~2.16! by employing the properties of the determinant. Sin
V215 tṼ/uVu, one sees thatF5Z2WV215Z2WtṼ/uVu. In view of ~2.1d!, ~2.1e!, and~2.3b!, the
( j ,k) element ofF takes the form

f jk5zjd jk2
1

uVu (l 51

N

wjl ṽkl5zjd jk2
gk8~a j !

gk~ak!
, ~2.17!

wheregk8(a j )5dgk(x)/dxux5a j
. The relations

gj8~a j !

gj~a j !
5 (

k51
(kÞ j )

N
1

a j2ak
, gk8~a j !5

gj~a j !

a j2ak
~ j Þk!, ~2.18!

follow immediately from the definition~2.3b! of gk(x). Substituting~2.18! into ~2.17!, we arrive
at the expression

f jk5z jd jk2~12d jk!
1

a j2ak

gj~a j !

gk~ak!
. ~2.19!

Let uBu be the (N11)3(N11) bordered determinant which appears on the right-hand sid
~2.16!. We modifyuBu in a sequence of steps. First, we add thekth column multiplied byak

N to the
(N11)th column (k51,2,. . . ,N). Then, after some calculations, the (n,N11) element ofuBu
which is referred to asbn,N11 is found to be as

bn,N1152 (
k51

(kÞn)

N ak
n

an2ak

gn~an!

gk~ak!
2 (

k51
(kÞn)

N an
N

an2ak
1Nan

N21

5gn~an!(
s51

N

an
s21(

k51

N ak
N2s

gk~ak!
2an

N (
k51

(kÞn)

N
1

an2ak
S gn~an!

gk~ak!
11D . ~2.20!

If we use the formulas~A2! and ~A3!, this expression simplifies to

bn,N115gn~an! ~n51,2,. . . ,N!. ~2.21!

On the other hand, the (N11,N11) element ofuBu which is referred to asbN11,N11 is given by

bN11,N115~21!N2 j uVu(
k51

N sk,N2 jak
N

gk~ak!
5~21!N2 j uVusN2 j 11 , ~2.22!

where the formula~A7! has been used in deriving the last expression of~2.22!. Thus, uBu is
modified into the form

uBu5U f 11 ... f 1N g1~a1!

] � ] ]

f N1 ... f NN gN~aN!

ṽ1 j ... ṽN j bN11,N11

U . ~2.23!

Next, we extract the factorgj (a j ) from the j th row of uBu ( j 51,2,. . . ,N) and the factor
gj

21(a j ) from the j th column of uBu ( j 51,2,. . . ,N), respectively, and see that these facto
cancel out completely. If we combine this result with~2.15!, ~2.19!, and ~2.22! and note the
relationsa j5 ia j /2( j 51,2,. . . ,N), uBu is transformed into the form
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uBu5~21!N2 j uVuU m11 ... mN1 1

] � ] ]

m1N ... mNN 1

s1,N2 j ... sN,N2 j sN2 j 11

U . ~2.24!

The relation

uFu5uM u ~2.25!

follows from ~2.1a! and ~2.19! by a similar calculation. Substititing~2.24! and ~2.25! into ~2.16!
and using the formulau tM u5uM u, we finally obtain

xj52
~21!N2 j

uM u Um11 ... m1N s1,N2 j

] � ] ]

mN1 ... mNN sN,N2 j

1 ... 1 sN2 j 11

U ~ j 51,2,. . . ,N!. ~2.26!

In the above solution, the casej 5N yields the particularly interesting result sincesk,051 (k
51,2,. . . ,N) by virtue of ~2.3d!. Applying the formula~2.8! into ~2.26! with j 5N, we find that

s15xN52s11
1

uM uUm11 ... m1N 1

] � ] ]

mN1 ... mNN 1

21 ... 21 0

U . ~2.27!

It then turns out from~2.3c!, ~2.6!, ~2.7!, ~2.10!, and~2.27! that

(
j 51

N

c j5s11s15
f x

f
5(

j 51

N

f j . ~2.28!

If we combine~2.5! with ~2.28!, we obtain the expression of the BON-soliton solution in terms of
the solution of the nonlinear system~2.9! as

u5 i (
j 51

N

~c j2c j* !. ~2.29!

III. CONCLUDING REMARK

The analysis developed in this paper can be applied to soliton solutions with the stru
similar to that of theN-soliton solution of the BO equation. An example is the rationalN-soliton
solution of the following KP equation:9

~ut16uux1uxxx!x13a2uyy50, u5u~x,y,t !, ~3.1!

wherea is a complex parameter. Consider the system of linear algebraic equations forF j

j jF j12 (
k51

(kÞ j )

N
Fk

n j2nk
51 ~ j 51,2,. . . ,N!, ~3.2a!

with
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j j5x1a21n j y23n j
2t2j j 0 , ~3.2b!

where n j and j j 0 are complex constants satisfying the conditionsn jÞnk for j Þk ( j ,k
51,2,. . . ,N). Then, theN-soliton solution of Eq.~3.1! can be expressed in terms ofF j as10,11

u52
]

]x F (
j 51

N

F j G . ~3.3!

Suppose thatC j satisfy the following system of nonlinear algebraic equations:

(
k51

N
2

n j2nk12Ck
5j j1 (

k51
(kÞ j )

N
2

n j2nk
~ j 51,2,. . . ,N!. ~3.4!

Then, one finds that

(
j 51

N

F j5(
j 51

N

C j . ~3.5!

In conclusion, it will be worthwhile to comment on an application of the result presente
this paper. We first point out that the analog of the nonlinear system~2.9! has been proposed fo
providing an alternative way to construct theN-soliton solution of the Korteweg–de Vries~KdV!
equation.12 It has played a central role in the study of the initial value problem of the K
equation with small dispersion.12 While the corresponding initial value problem is still unsolv
for the BO equation, the nonlinear system~2.9! may be employed to elucidate asymptotic soluti
of the BO equation in the limit of small dispersion.
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APPENDIX: LAGRANGE INTERPOLATION AND RELATED FORMULAS

In this appendix, we summarize the Lagrange interpolation formula and related form
which are used in Sec. II.

The Lagrange interpolation formula is given by the relation

f ~z!

g~z!
5(

j 51

N
f ~a j !

g8~a j !

1

z2a j
, ~A1!

where g(z) is defined by~2.3a!, f (z) is a polynomial of orderN21 at most andg8(a j )
5dg(x)/dxux5a j

5gj (a j ).
If we put f (z)5zm (m51,2,. . . ,N21) and integrate~A1! with respect toz along the large

circle uzu5R within which all thea j locate, we obtain* uzu5Rf (z)/g(z)dz52p idm,N21 in the limit
of R→`. On the other hand, we can use the Cauchy residue theorem to evaluate the inte
the right-hand side of~A1!. This gives the result 2p i ( j 51

N a j
N/g8(a j ). Equating the two expres

sions, one obtains

(
j 51

N a j
m

g8~a j !
5dm,N21 ~m51,2,. . . ,N21!. ~A2!

Applying the same procedure to the integral* uzu5R@(z2an)g(z)#21dz yields the formula
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(
k51

(kÞn)

N
1

ak2an
S gn~an!

gk~ak!
11D50 ~n51,2,. . . ,N!. ~A3!

If we put f (z)5zN21,z5x21 in ~A1!, expand it in powers ofx and note~2.3a!, ~A1! can be
written in the form

15H (
m50

N

~21!msmxmJ (
n50

`

Jnxn, Jn[(
j 51

N a j
N211n

g8~a j !
. ~A4!

Comparing the same power ofx on both-sides of~A4!, one obtains the recurrence relation th
determinesJn :

J051, (
m50

p

~21!msmJp2m50 ~p51,2,...!. ~A5!

The first four ofJn read as

J15s1 , J252s21s1
2 , J35s322s1s21s1

3 ,

J452s412s1s31s2
223s1

2s21s1
4 .

It follows from ~A5! with p5n11 that

sn115 (
m50

n

~21!n2msmJn112m . ~A6!

The following relation is a consequence of~2.3d! and ~A6!:

(
k51

N sk, j 21ak
N

g8~ak!
5s j ~ j 51,2,. . . ,N!. ~A7!
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On the reduction and the existence of approximate
analytic solutions of some basic nonlinear ODEs
in mathematical physics and nonlinear mechanics

Dimitrios E. Panayotounakosa) and Nikolaos V. Sotiropoulosa)

Division of Mechanics, Department of Applied Mathematics and Physical Sciences,
National Technical University of Athens, GR-15773, Athens, Greece

~Received 10 April 2003; accepted 17 October 2003!

Using series of admissible functional transformations we reduce the one-
dimensional axisymmetric nonlinear Schro¨dinger ~NLS! equation, as well as the
forced damped nonlinear Duffing~NLD! equation to equivalent nonlinear first-
order integrodifferential equations. The forced undamped~NLD! equation results as
a special case. The reduced integrodifferential equations are exact. In the limits of
small or large values of the parameters characterizing these nonlinear problems, we
prove that further reductions lead to first-order nonlinear ordinary differential equa-
tions which, except in case of the~NLS! equation, are of the Abel classes. The
approximate reduced~NLS! equation admits exact analytic solutions. On the other
hand, taking into account the known exact analytic solutions of the equivalent Abel
classes of equations we show that there do not exist analytic solutions of the above
two nonlinear Duffing oscillators. However, if further asymptotic approximations
take place, new approximate analytic solutions concerning the~NLD! equations are
constructed. ©2004 American Institute of Physics.@DOI: 10.1063/1.1635065#

I. INTRODUCTION

Standing and traveling waves in one-dimensional lattices1–3 and in systems described b
nonlinear partial differential equations4 have been extensively studied in the literature. In Refs
and 6 the existence and properties of standing wave solutions of the nonlinear Schro¨dinger~NLS!
equation were investigated. Also, the study of two-dimensional axisymmetric breathers using´
approximants was developed in Ref. 7. This problem is governed by a one-dimensional~NLS!
equation with cubic nonlinearities. On the other hand, whereas weakly nonlinear oscillator
weak damping can be approximately solved using techniques such as averagin8 or
multiple-scale,9 exact solutions of undamped or damped forced oscillators with strong nonlin
ties are still leaking. Perturbation problems addressing approximately damped nonlinear fr
cillations include Refs. 10–12. Also, the unforced Van der Pol oscillator was studied exten
as the prototypical system possessing a limit cycle and as a model for relaxation oscillat
large values of its parameter. Representative works include Refs. 13 and 14. Additional
focused on the forced response, the resulting bifurcations as parameters change, and on
response of the oscillator~see Refs. 15 and 16!.

Recently, it was proved that there are not analytic solutions of the unforced damped D
oscillator in terms of known~tabulated! functions.17 It followed that in order to solve this free
damped problem a set of new analytic functions must be defined. The same holds true also
Van der Pol free oscillator.18 However, in this last case and for large values of the character
parameter~relaxation oscillations! it was proved that there exists an approximate analytic solut

In this work we deal with the possibility of constructing exact analytic solutions for
one-dimensional axisymmetric~NLS! equation, as well as for the forced damped and undam
~NLD! equations. Using series of admissible functional transformations we succeed in red

a!Electronic mail: tsakstel@central.ntua.gr
8030022-2488/2004/45(2)/803/24/$22.00 © 2004 American Institute of Physics
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the examined nonlinear ODEs to equivalent first-order nonlinear integrodifferential equa
constituting the corresponding intermediate integrals in the phase plane. The reduced equat
exact. In the limits of small or large values of the parameters characterizing these non
problems, we prove that the reduced equations assume approximate asymptotic forms t
amenable to perturbation analysis. These approximations also change the NLS to a s
nonlinear first-order ODE, and the NLD equations to nonlinear ODEs of the Abel classes. T
into account the existing known exact analytic solutions of these classes of equations, we
that there do not exist exact analytic solutions of the above two~NLD! problems in terms of
known ~tabulated! analytic functions. However, if further asymptotic approximations take pla
new approximate analytic solutions concerning the two nonlinear Duffing oscillators are
structed.

The solution methodology introduced in the paper is general and can be applied to some
most interesting second- and third-order nonlinear ODEs of mathematical physics and no
mechanics, including the forced Van der Pol nonlinear oscillator; the Thomas–Fermi equatio
simplified Blasius equation; the Langmuir equation; the Kidder equation,19 as well the plastic spin
equations in simple shear.20

II. THE REDUCTION PROCEDURE

We shall investigate three kinds of strongly nonlinear ODEs appearing in the fields of
linear mechanics and mathematical physics. The first is the one-dimensional axisymmetri
equation, deriving in the ‘‘continuum approximation’’ of the equations of motion governing
antiphase vibrations of a two-dimensional array of weakly coupled nonlinear oscillators. The
two are the forced damped and undamped Duffing equations with no linear stiffness terms@~NLD!
equations#, produced in 1918 by Duffing and describing strongly nonlinear oscillations.

Before we address the issue of the reduction of the above-mentioned equations, w
provide an admissible functional transformation that can reduce a class of nonlinear ODE
different class. Consider the nonlinear ODE of the second order of the type

F f S 1

yx8
D 1g~y!G

x

8
2H~x!yx850, ~2.1!

wherey, f, g, andH are known smooth and continuously differentiable functions. Here the n
tion yx85dy/dx, yxx9 5d2y/dx2,... is used for the derivatives.

The functional transformation

wj85F~x!y~x!, j56uG~x!u ~2.2!

in which w andj are also smooth and continuously differentiable functions, whileF andG are to
be determined, furnishes the expressions

yx85S wj8

F D
x

8
5

6uGx8u
F

wjj9 2
Fx8

F2
wj8 , jx856uGx8u. ~2.3!

Introducing these results into~2.1! we obtain

F fS 1

6uGx8u
F

wjj9 2
Fx8

F2
wj8
D 1gS wj8

F D G
j

8
~6uGx8u!2H~x!S 6uGx8u

F
wjj9 2

Fx8

F2
wj8D 50. ~2.4!

We define functionsF andG such that
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6uGx8u
F

5
Fx8

F2
, 6uGx8u5H

6uGx8u
F

, ~2.5!

that is to say such that

F~x!5H~x!, ~ lnuFu!x856uGx8u5jx8 .

Thus, the above-mentioned functional transformation takes the following concrete form:

wj85ejy~x!, F~x!5H~x!5ej ~ ln F56G!, ~2.6!

and the ODE~2.1! is transformed to the equivalent one

F f S e2j

Hx8

1

wjj9 2wj8
D 1g~e2jwj8!G

j

8
5wjj9 2wj8 . ~2.7!

Note thatHx8 can be expressed in terms of the function exp~j! by way of the second of~2.6!.
Integration of the last equation results in

f S e2j

Hx8

1

wjj9 2wj8
D 1g~e2jwj8!5wj82w, ~2.8!

where the constant of integration is missing since both second-order equations~2.1! and~2.8! are
equivalent between them.

Let us now analyze the three kinds of prescribed equations.

A. The one-dimensional axisymmetric Schro ¨ dinger equation

The type of the equation is

yxx9 1
1

x
yx82l1y1l2yk50, k5 integer,

~2.9!
l1.0, l2.0, 2`,x,1` ~xÞ0!.

By the first transformation,

y~x!5h~j!, j5j~x!⇒yx85hj8jx8 , yxx9 5hjj9 jx8
21hj8jxx9 , ~2.10!

we reduce~2.9! in the form

jx8
2hjj9 1jxx9 hj81

1

x
jx8hj82l1h1l2hk50

and we definej(x) such thatjxx9 52(1/x)jx8 . Thus, the transformation~2.10! becomes

y~x!5h~j!, j56 lnuxu, 2`,j,1` ~2.11!

and ~2.9! is transformed to the following second-order ODE:

hjj9 2~l1h2l2hk!e62j50,
~2.12!

2`,j,1`, 2`,h,1`.

The additional substitution
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h~j!5v~ t !, t5e62j ~2.13!

converts~2.12! in

~ tv t8! t82 1
4~l1v2l2vk!50,

~2.14!
0,t,1`, 2`,v,1`,

while, changing the variables in the last equation, we extract a second-order nonlinear ODE
type ~2.1!, that is

S t

tv8
D

v

8
2

1

4
~l1v2l2vk!tv8 50. ~2.15!

Thus, referring to the transformation~2.3!, that is to say setting

wj̄
85g~v!t~v!, j̄56u f ~v!u ~2.16a!

with concrete form

g~v!5 1
4~l1v2l2vk!, j̄56u f ~v!u56 lnug~v!u⇒g~v!5ej̄, ~2.16b!

we succeed in reducing~2.15! in

F wj̄
8

j̄v8 ~wj̄ j̄
9 2wj̄

8!
G

j̄

8
5wj̄ j̄

9 2wj̄
8 , ~2.17a!

where

wj̄
85ej̄t~v!, l1v2l2vk54ej̄,

~2.17b!
2`, j̄,1`, 2`,v,1`, 0,t,1`.

Integrating~2.17a! we extract the following second-order nonlinear ODE:

wj̄
8

j̄v8
5~wj̄

82w!~wj̄
82w!j̄

8 , ~2.18!

similar to Eq.~2.8!.

By way of the second of~2.17b! we havej̄5 lnu1
4(l1v2l2v

k)u and thus one evaluates

j̄v8 5
~l12kl2vk21!

~l1v2l2vk!
.

Therefore,~2.18! can be rewritten as

~wj̄
82w!~wj̄

82w!j̄
85 1

4e
2 j̄h~ej̄ !,

~2.19!
h~ej̄ !5l12kl2vk21.

Integration of~2.19! results in
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1

2
~wj̄

82w!224E ej̄

h~ej̄ !
wj̄

8dj̄5C1 , ~2.20a!

or, equivalently, in

1

2
~wj̄

82w!224
ej̄

h~ej̄ !
w14E h~ej̄ !ej̄2h

ej̄
8 ~ej̄ !e2j̄

h2~ej̄ !
wdj̄5C1 ,

~2.20b!
0,w,1`, 2`, j̄,1`,

whereC1 is a constant of integration.
The nonlinear integrodifferential equation of the first-order~2.20a! constitutes the intermedi

ate integral in the phase plane of the one-dimensional axisymmetric~NLS! equation~2.9!.

B. The forced damped nonlinear Duffing equation

The equation under consideration is of the type

yxx9 1l3yx82l1y1l2y35A sin~Vx!,

l1.0, l2.0, l3.0, A.0, ~2.21!

2`,x,1`.

By a transformation similar to~2.10!, that is to say by the transformation

y~x!5z~s!, s5Al1x ~2.22!

we reduce~2.21! in the form

zss9 1mzs82z1lz35L sin~
*
Vs!,

m5
l3

Al1

.0, l5
l2

l1
.0, L5

A

l1
.0, *

V5
V

Al1

, ~2.23!

2`,s,1`.

Changing the variables and setting simultaneously

v~z!5
*
Vs~z!, ~2.24!

we transform~2.24! to the following null nonlinear ODE of the second order:

vzz9 2
*mvz8

21~az2bz3!vz8
31c sinvvz8

350, ~2.25a!

*m5
m

*
V

5
l3

*
VAl1

.0, a5
1

*
V2

.0, b5
l

*
V2

., c5
L

*
V2

5
A

*
V2l1

.0, *
V5

V

Al1

.0,

~2.25b!
2`,v,1`, 2`,z,1`.
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For vz8Þ0 the last equation can be rewritten as follows:

S 1

vz8
1c cosv1 *mzD

z

8
2~az2bz3!vz850, ~2.26!

which is of the type~2.1!. Introducing transformation~2.2! with concrete form

wj85ejv~z!, az2bz35ej,
~2.27!

2`,j,1`,

~2.26! becomes

F e2j

h~ej!

1

wjj9 2wj8
1c cos~e2jwj8!1 *m f ~ej!G

j

8
5wjj9 2wj8 , ~2.28a!

h~ej!5a23bz2, f ~ej!5z, az2bz35ej,

a, b, c, and *m as in Eq. ~2.25b!, ~2.28b!

2`,j,1`, 2`,w,1`.

Setting again

e2jw~j!5p~j!⇒e2j~wj82w!5pj8 , e2j~wjj9 2wj8!5pjj9 1pj8 ~2.29!

and integrating~2.28a!, we extract the following second-order nonlinear ODE:

ej

h~ej!
1c cos~p1pj8!~p1pj8!j81 *m f ~ej!~p1pj8!j82ejpj8~p1pj8!j850, ~2.30!

which is similar to Eq.~2.8!.
Noting that

E ejpj8pjj9 dj5
1

2
ejpj8

22
1

2 E ejpj8
2dj,

E f ~ej!~p1pj8!j8dj5 f ~ej!~p1pj8!2E ~p1pj8! f ej8 ejdj5 f ~p1pj8!2p fej8 ej1E p fejej9 e2jdj,

the integration of~2.30! results in

1

2
ejpj8

21
1

2 E ejpj8
2dj2c sin~p1pj8!2 *m f ~ej!~p1pj8!1 *mp fej8 ej2 *mE p fejej9 e2jdj

2E ej

h~ej!
dj5C1 , ~2.31!

whereC1 is an integration constant.
The nonlinear integrodifferential equation of the first-order~2.31! constitutes the intermediat

integral in the phase plane of the forced damped~NLD! oscillator ~2.21!.
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C. The forced undamped nonlinear Duffing equation

This equation has the following restricted form in comparison with~2.21!:

yxx9 2l1y1l2y35A sin~Vx!,

l1.0, l2.0, A.0, ~2.32!

2`,x,1`.

In other words it is a special case of~2.21!. Thus, according to the same procedure as previou
developed, the intermediate integral corresponding to~2.31! in the case of the forced undampe
~NLD! oscillator becomes through~2.31! by setting *m50 (l350), that is

1

2
ejpj8

21
1

2 E ejpj8
2dj2c sin~p1pj8!2E ej

h~ej!
dj5C1 . ~2.33!

Here, C1 is an integration constant, whilep(j) and h(ej) are as in Eqs.~2.29! and ~2.28b!,
respectively.

The three nonlinear integrodifferential equations~2.20a!, ~2.31!, and ~2.33!, constitute the
intermediate integrals in the phase plane of the corresponding one-dimensional axisym
~NLS! equation, and the forced damped and undamped~NLD! oscillators. They are exact since n
approximations were made in the already introduced admissible functional transformation
these equations do not admit exact analytic solutions, as a result one must resort to asy
approximations by considering specific ranges of the parameters being introduced. In Sec.
focus on the limits of small or large values of the parameterl5l2 /l1 , (1/l5l1 /l2), and derive
simplified approximations for the reduced three equations.

III. APPROXIMATIONS: EXISTENCE AND NONEXISTENCE OF EXACT ANALYTIC
SOLUTIONS

We now consider the three types of equations examined in Sec. II and investigate
reductions to equivalent nonlinear differential equations of the first order. Our study of the re
equations indicates the absence of exact analytic solutions of the original~NLS! equation and the
~NLD! oscillators, e.g., the absence of exact solutions in terms of known~tabulated! functions.

A. The one-dimensional axisymmetric „NLS… equation with cubic nonlinearities

In Ref. 7 it was proved that the study of two-dimensional axisymmetric breathers using´
approximants leads to the solution of a one-dimensional~NLS! equation with cubic nonlinearities
Thus, according to the results of this reference and in order to have the same order of non
ties for the three types of equations being examined, we prefer to investigate the NLS eq
with cubic nonlinearities.

In this case the functionh(ej̄) of the intermediate integral~2.20a! becomes

h~ej̄ !5l123l2v2, l1v2l2v354ej̄. ~3.1!

We express the cubic~Cardan! equationl1v2l2v354ej̄ in the form

v31 *pv1 *q50, ~3.2a!

with

*p52l, *q5
4

l2
ej̄, l5

l1

l2
~3.2b!
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and discriminant *Q given by the well-known formula

*Q5S *p

3
D 3

1S *q

2
D 2

52
l3

27
1S 2ej̄

l2
D 2

. ~3.2c!

When *Q,0, Eq. ~3.2a! possesses three real, distinct roots, whereas when*Q.0 there exist a

single real root and a complex conjugate pair of roots. The case*Q50 must be rejected since, i

*Q vanishes, the variablej̄, and therefore the variabley, become constants. Based on the

observations we now distinguish the following cases.

Case 1: *Q,0. The distinct real roots of the cubic equation~3.2a! are ( *q,0)

v152A2

*p

3
cos

a

3
.0, v2522A2

*p

3
cos

a2p

3
,0,

v3522A2

*p

3
cos

a1p

3
,0, cosa52

*q

2A2S *p

3
D 3

, 2
p

2
,a,p. ~3.3!

Case 2: *Q.0. The one real root of the cubic equation~3.2a! is given by

v5A1B, A5A3 2

*q

2
1A *Q, B5A3 2

*q

2
2A *Q. ~3.4!

By now, we focus on the limits of small or large values of the parameterl5l1 /l2.0, and derive
simplified approximations for the nonlinear integrodifferential equation~2.20a!.

The limit 0,l5l1 /l2!1. We develop an analytic approximation to the reduced equa
~2.20a! in the limit of small values of the parameterl5l1 /l2 . Recalling formula~3.2c! giving

the discriminant *Q of the cubic equation~3.2a! we observe that, ifl!1, then *Q; is positive, e.g.,
*Q5(2ej̄/l2)21O(l3).0, and the real root of Eq.~3.2a! becomes

v52S 4ej̄

l2
D 1/3

⇒ej̄/352S l2v3

4 D 1/3

. ~3.5!

This approximation permits us to write the following:
~i!

j̄5 lnUl2v3

4 U5 lnUl2

4 U1 lnuvu35 lnUl2

4 U13 lnuvu5 lnUl2

4 U13 lnU4l1ej̄

l1l2
U5 lnUl2

4 U1 lnU 4

l1
U1 lnulej̄u

5 lnUl2

l1
U1nlej̄212C01O~l2!, C05 (

m52,3,...

n
1

m
.

For simplicity and without loss of generality one neglects the constantC0 and takesn51. Thus
one obtains
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lej̄5 j̄112 lnU1lU⇒ej̄5

j̄112 lnU1lU
l

. ~3.6!

~ii !

j̄

3
5

1

3
lnUl2v3

4 U5 1

3
lnUl2

4 U1 lnuvu5
1

3
lnUl2

4 U1 lnU4ej̄

l2
U1/3

5
1

3
lnUl2

4 U1 1

3
lnU 4

l1
U1 lnulej̄u1/3

5
1

3
lnU1lU1@~lej̄ !1/321#.

Thus, we obtain

~lej̄ !1/35
j̄

3
112

1

3
lnU1lU⇒ej̄/35

j̄132 lnU1lU
3l1/3

. ~3.7!

Recalling the intermediate integral~2.20a! we evaluate

ej̄

h~ej̄ !
5

ej̄

l123l2v2
5

1

l1

ej̄

123
1

l
v2

5
1

l1

ej̄

12
3

l
S 4ej̄

l2
D 2 ,

which, since 1/l@1, and based on the previous results, it can be approximately written as

ej̄

h~ej̄ !
>;2

ej̄

3l2S 4ej̄

l2
D 2/352

ej̄/3

6A3 2l2
1/3

52
1

18A3 2

j̄132 lnU1lU
A3 l1

.

We estimate now the integral appearing in~2.20a! as follows:

4E ej̄

h~ej̄ !
wj̄

8dj̄52
2

3A3 2A3 l2
E wj̄

8ej̄/3dj̄52
2

A3 2A3 l2
E wj̄

8d~ej̄/3!

52
A3 4

A3 l2
E wj̄

8dS j̄132 lnU1lU
3A3 l

D 52
A3 4

3A3 l1

w.

Thus, the integrodifferential equation~2.20a!, constituting the exact intermediate integral of t
~NLS! equation~2.9! with cubic nonlinearities, can be approximated in case 0,l!1 by the
following first-order nonlinear ODE:

1

2
~wj̄

82w!21
A3 4

3A3 l1

w5C1 . ~3.8!

The limit 1`.l5l1 /l2@1. In this case the discriminant*Q of the cubic equation~3.2c!

becomes negative. In fact, since 0,1/l!1, we have
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*Q5S *p

3
D 3

1S *q

2
D 2

52
l3

27
1S 2lej̄

l1
D 2

52S l

3D 3F12S 3

l D 3S 2lej̄

l1
D 2G

52S l

3D 3F12
1

l
S 6A3ej̄

l1
D 2G52S l

3D 3

1O~l21!,0.

Then, the positive real rootv of ~3.2a! is given by the first of equations~3.3! and it can be
asymptotically approximated by expanding the general form of the variablea in terms of large
parameter. Indeed, taking into account the fourth of equations~3.3! we find

a5arccosS 2
2ej̄

l2

1

AS l

3D 3D
5

p

2
2F 2

2ej̄

l2

1

AS l

3D 32
1

6 S 2ej̄

l2

1

AS l

3D 3D 3

2¯G
5

p

2
1

2ej̄

l2

1

AS l

3D 3 1O~l29/2!,

and thus we evaluate

a

3
5

p

6
1

2A3ej̄

l2l3/2
1O~l29/2!.

Therefore we obtain

cos
a

3
5cosS p

6
1

2A3ej̄

l2l3/2D 5
A3

2
~11O~l23!!2

1

2 S 2A3ej̄

l2l3/2
1O~l29/2!D

5
A3

2
2

A3ej̄

l2l3/2
1O~l23!,

and the above-mentioned real rootv is asymptotically approximated in terms of large paramete

v5Al2
A3ej̄

l2l
1O~l23!. ~3.9!

The above-given approximations enable us to also write the following approximations:
~i!

j̄5 lnUll2

2
~Al2v!U5 lnUl1

2 U1 lnuAl2vu5 lnUl1

2 U1 lnUAl2Al1
2ej̄

ll2
U

5 lnUl1

2 U1 lnU 2ej̄

ll2
U5 lnUl1

2 U1n
2ej̄

ll2
212C01O~l22!, C05 (

m52,3,....

n
1

m
.

Neglecting the constantC0 and takingn51, one obtains
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2ej̄

l2
5l~j̄112K !, K5 lnUl1

2 U. ~3.10!

~ii !

ej̄

h~ej̄ !
5

ej̄

l123l2S Al2
2ej̄

ll2
D 2 5

ej̄

l123l2l23l2S 2ej̄

ll2
D 2

16l2Al
2ej̄

ll2

52
1

2l1

ej̄

3

2l3 S 2ej̄

l2
D 2

2
3

l3/2 S 2ej̄

l2
D 5

1

6l1

l2ej̄

AlS 2ej̄

l2
D F12

1

2l3/2 S 2ej̄

l2
D G

5
1

6l1

l2l3/2

2

1

12
1

2l3/2 S 2ej̄

l2
D 5

l1/2

12 S 11
1

2l3/2

2ej̄

l2
D 1O~l23!.

Thus, we write

ej̄

h~ej̄ !
5

1

12Fl1/21
1

2
~ j̄112K !G1O~l23!5

1

12
S l1/21

ej̄

ll2
D 1O~l23!.

After the above abbreviations the integrodifferential equation~2.20a! with cubic nonlinearities can
be asymptotically approximated as follows:

1

2
~wj̄

82w!22
1

3
Alw2

1

3ll2
E wj̄

8dej̄5C1

or equivalently

1

2
~wj̄

82w!22
1

3 SAl1
1

2Dw5C1 . ~3.11!

In the next section we will show that both reduced equations~3.8! and ~3.11! of the ~NLS!
equation~2.9! with cubic nonlinearities admit exact analytic solutions.

B. The forced damped „NLD… equation

In the case of the forced damped~NLD! equation the corresponding reduced nonlinear fi
order integrodifferential equation is given by~2.31!, while the cubic equation~2.27! becomes

z31 *pz1 *q50, *p52
1

l
, *q5

ej

b
5

*
V2

l
ej,

~3.12!

b5
l

*
V2

.0, l5
l2

l1
.0, *

V25
V2

l1
,

with the following discriminant *Q:
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*Q5S *p

3
D 3

1S *q

2
D 2

52
1

27l3
1

1

4
S *

V2

l
ejD 2

. ~3.13!

Thus, according to the previously developed in Sec. III A, we distinguish the cases*Q,0 and

*Q.0, where the real distinct roots corresponding to the cubic equation~3.12! are given by~3.3!

and ~3.4!, respectively.

The limit 0,l!1. We approximate *Q as

*Q52
1

27l3
1OS 1

l2D ,0, ~3.14!

and the positive real root of the cubic equation~3.12! becomes

z52A 1

3l
cos

a

3
, a5arccosS 2

A27l

2
*
V2ejD . ~3.15!

This real root can be asymptotically approximated by expanding the general form ofa in terms of
the small parameter. Indeed, taking into account the expansion

a5arccosS 2
A27l

2
*
V2ejD 5

p

2
1

A27l

2
*
V2ej1O~l3/2!,

we extract

cos
a

3
5cosS p

6
1

A27l

6
*
V2ejD 5

A3

2
2

A3l

4
*
V2ej1O~l!.

Thus, the real rootz becomes

z5
1

Al
2

1

2
*
V2ej1O~l!. ~3.16!

According to Eq.~2.31!, the above-given approximations enable us to also write the follow
approximations:

~i!

ej

h~ej!
5

ej

a23bz2
5

*
V2ej

1

123lS 1

Al
2

*
V2ej

2
D 2 5

*
V2ej

1

12313Al
*
V2ej2

3l

4
~

*
V2ej!2

52

*
V2ej

2
ejF11

3Al

2
~

*
V2ej!G1O~l!. ~3.17a!
                                                                                                                



-
r

815J. Math. Phys., Vol. 45, No. 2, February 2004 Analytic solutions of basic nonlinear ODEs

                    
~ii !

ej5~Al12Al2z!
2

*
V2AlAl1

⇒j5 lnU 2

*
V2AlAl1

U1 lnuAl12Al2zu

5 lnU 2

*
V2AlAl1

U1 lnUAlAl1
*
V2

2
ejU5n

AlAl1
*
V2

2
ej211 lnU 2

*
V2AlAl1

U2C01O~l!,

C05 (
m52,3,...

n
1

m
.

Neglecting the constantC0 and takingn51 we evaluate

ej5
2

AlAl1
*
V2

~j112K !, K5 lnU 2

*
V2AlAl1

U . ~3.17b!

~iii !

sin~p1pj8!5sin~e2jwj8!5sinF *
V2AlAl1

2

1

11j2K
wj8G5

*
V2AlAl1

2

1

11j2K
wj81O~l3/2!.

~3.17c!

Furthermore, by means of Eq.~2.28b!, we evaluate

f ~ej!5z5
1

Al
2

1

2
*
V2ej, f ej8 52

1

2
*
V2, f ejej9 50, ~3.17d!

while using transformation~2.29!, as well as Eqs.~3.17a!–~3.17d!, the nonlinear integrodifferen
tial equation~2.31! can be approximated in case 0,l!1 by the following first-order nonlinea
ODE:

S 12
1

2j̄
D ~wj̄

82w!22cwj̄
82 *mS 1

Al
2

1

AlAl1

j̄ D wj̄
82

*m

AlAl1

j̄w1
2

*
V2ll1

j̄21
3

*
V2ll1Al1

j̄3

2
2C1

*
V2AlAl1

j̄50,

~3.18!

j̄5j112K, K5 lnU 2

*
V2AlAl1

U .

Through Eq.~3.17b! we finally evaluate
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12
1

2j̄
512

1

2@ lnuAl2z2Al1u1K112K#
512

1

2@ lnu12Alzu1 lnuAl1u11#

512
1

2@11 lnuAl1u2Alz#1O~l!
. ~3.19!

Setting for simplicity

12
1

2j̄
>12

1

2~11 lnuAl1u!
5

112 lnuAl1u

2~11 lnuAl1u!
,

and taking into account that*V5V/Al1, Eq. ~3.18! becomes of the following nonlinear form:

~wj̄
82w!21kj̄~wj̄

82w!1awj̄
82bj̄21gj̄32dj̄50, ~3.20!

where

k5
l3

VAlAl1

2~11 lnuAl1u!

112 lnuAl1u
, a52

AAl1Vl3

V2Al

2~11 lnuAl1u!

112 lnuAl1u
,

~3.20a!

b52
4~11 lnuAl1u!

V2l~112 lnuAl1u!
, g5

3~11 lnuAl1u!

V2lAl1~112 lnuAl1u!
, d5

4C1Al1~11 lnuAl1u!

V2Al~112 lnuAl1u!
.

We shall prove now that Eq.~3.20! can be further reduced to a first-order Abel nonlinear O
of the formyyx82y5 f (x). In fact, we introduce the parametert5wj̄

8 and by differentiation we
obtain the well-known equations

dj̄

dt
52

F ,t

F ,j̄1tF ,w
,

dw

dt
52

tF ,t

F ,j̄1tF ,w
~3.21!

in which

F[F~t,w,j̄ !5~t2w!21kj̄~t2w!1at2bj̄21gj̄32dj̄50. ~3.22!

Here the notationF ,x5]F/]x, F ,y5]F/]y,... is used for the partial derivatives.
We compute

F ,t52~t2w!1kj̄1a, F ,w522~t2w!2kj̄, F ,j̄5k~t2w!22bj̄13gj̄22d

and the first of~3.21a! becomes

dj̄

dt
52

2~t2w!1kj̄1a

22bj̄13gj̄22d1k~t2w!22tF ~t2w!1
kj̄

2 G . ~3.23!

Solving also~3.22! for (t2w), we evaluate

t2w5
2kj̄6A24at1~4b1k2!j̄224gj̄314dj̄

2
, 24at1~4b1k2!j̄224gj̄314dj̄.0,

~3.24!
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while combining the results~3.23! and ~3.24! we extract the following:

1

tj̄
8

5
62A24at1~4b1k2!j̄224gj̄314dj̄12a

26gj̄21~4b1k2!j̄12d6A24at1~4b1k2!j̄224gj̄314dj̄
. ~3.25!

By the substitution

A24at1~4b1k2!j̄224gj̄314dj̄5A24at1v~j̄ !5AQ~ j̄ !, ~3.26a!

v~ j̄ !5~4b1k2!j̄224gj̄314dj̄,
~3.26b!

vj̄
852~4b1k2!j̄212gj̄214d,

which furnishes 1/tj̄
854a/(vj̄

82Qj̄
8), Eq. ~3.25! results in

2vAQ22QAQ24akAQ52vj̄
8AQ22AQQj̄

872aQj̄
8 . ~3.27!

By the new substitution

AQ5Z⇒Q5Z2⇒Qj̄
852ZZj̄

8 , ~3.28!

we transform~3.27! into the following Abel equation of the second kind:

~Z6a!Zj̄
85 1

2Z
21 1

2~vj̄
82v!1ak, ~3.29!

while by the well-known transformation~Ref. 21, p. 50!

y5~Z6a!expS 2
1

2 E dj̄ D5~Z6a!expS 2
j̄

2D , ~3.30!

we reduce~3.29! in

yyj̄
86ae2 j̄/2y5 1

2 ~vj̄
82v12ak1a2!ej̄. ~3.31!

In the sequel, through the general transformation

y~ j̄ !5q~s!, s5s~ j̄ !⇒yj̄
85qs8sj̄

8

with concrete form

y~ j̄ !5q~s!, s562ae2 j̄/2 ~ej̄/2562a/s!, ~3.32!

~3.31! results in the following Abel equation of the normal form:

qqs82q5~a1k!
s

4a2
2~vj̄

82v!
s

4a2
,

~3.33!
vj̄

82v54gj̄32~12g14b1k2!j̄212~4b1k222d!j̄14d.

Also, ~3.32! and ~3.17b! enable us to write the approximation
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U2a

s U5ej̄/2⇒ lnU2a

s U5 j̄

2
5

j122K

2
2

1

2
5AAlAl1

*
V2

2
e~12K !/2U2a

s U2 1

2
,

that is to say the approximation

lnU2a

s U5MU2a

s U21

2
5Mej̄/22

1

2
, M5AAlAl1

*
V2

2
e~12K !/25

1

Ae
. ~3.34!

Therefore, we evaluate

j̄52 lnU2a

s U562M S 2a

s D21,

j̄254M2S 2a

s D 2

1
1

4
74M S 2a

s D , ~3.35!

j̄3568M3S 2a

s D 3

212M2S 2a

s D 2

66M S 2a

s D21,

and the Abel equation~3.33! becomes

qqs82q5p1s221p2s211p3s1p4 , ~3.36a!

where

p15764agM3, p254~24g14b1k2!M2,

p35
2~216g212b23k218d12k1a!

4a2
, p456

4~29g24b1k21d!

a
M , ~3.36b!

a,b,g,d, and k as in ~3.20a!.

The limit 1`.l@1. We develop new analytic approximations of the reduced integrodif
ential equation~2.31! in the limit of large values of the parameterl5l2 /l1 , that is to say in case
of strongly nonlinear damped oscillations. In terms of the before mentioned analysis, in this

the discriminant *Q of the cubic equation~3.12! becomes positive, e.g.,

*Q5
1

4
S *

V2ej

l
D 2

1O~l23!.0 ~3.37!

and the only one real rootz can be asymptotically approximated by expanding the general f
~3.4! in terms of the large parameter. This furnishes

z52S *
V2ej

l
D 1/3

1O~l21!. ~3.38!

Thus, according to~2.31!, we write the following:
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~i!

ej52
l

*
V2

z35
l

*
V2

uzu3⇒j5 lnU l

*
V2U1 lnU *

V2ej

l
U5 lnU l

*
V2U1n

*
V2ej

l
212C01O~l22!,

C05 (
m52,3,...

n
1

m
.

For simplicity and without loss of generality one neglectsC0 and takesn51. Thus, one obtains

ej5~j112K !
l

*
V2

, K5 lnU l

*
V2U . ~3.39a!

~ii !

ej

h~ej!
5

ej

a23bz2
5

*
V2ej

123l1/3~
*
V2ej!2/3

. ~3.39b!

~iii !

sin~p1pj8!5sin~e2jwj8!5sinS *
V2

l~j112K !
wj8D 5

*
V2

l~j112K !
wj81O~l23!. ~3.39c!

~iv!

f ~ej!5z52S *
V2ej

l
D 1/3

, f ej8 52
1

3
S *

V2

l
D 1/3

e22j/3,

f ejej9 5
2

9
S *

V2

l
D 1/3

e25j/3. ~3.39d!

Using now transformation~2.29!, as well as Eqs.~3.39a!–~3.39d!, the nonlinear integrodifferentia
equation~2.31! can be approximated for1`.l@1 by the following first-order nonlinear ODE:

F12
1

2~j112K !G~wj82w!22cwj81 *mrej/3S wj82
1

3
wD1

*mr

3
j~wj82w!

1

*mr

2
e22j/3S wj82

5

3
wD2

*mr

2 S wj82
1

3
wD1

1

4
r4e7j/35C1ej,

~3.40!

r5S *
V2

l
D 1/3

.

Setting
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j̄5j112K S j̄5

*
V2

l
ejD ~3.41a!

and writing

~rej!!1⇒~rej!1/3!~rej!22/3, j̄!1⇒j!K5 lnU l

*
V2U ,

~3.41b!
e22j/35r2j̄22/3,

the above equation can be further simplified as follows:

2
1

2j̄
~wj̄

82w!22cwj̄
81

*mr3

2
j̄22/3S wj̄

82
5

3
wD2

*mr

2 S wj̄
82

1

3
wD1

1

4

1

r3
j̄7/35C1

1

r3
j̄,

or equivalently as follows:

~wj̄
82w!212cj̄wj̄

82 *mr3j̄1/3S wj̄
82

5

3
wD1 *mrj̄S wj̄

82
1

3
wD2

1

2

1

r3
j̄10/31

2C1

r3
j̄250.

~3.42!

We rewrite the third and the fourth terms of~3.42! in the form

2 *mr3j̄1/3~wj̄
82w!1

2 *mr3

3
j̄1/3w,

*mr

3
j̄~wj̄

82w!1
2

3
*mrj̄wj̄

8

and since it is validr3!1 and rj̄! j̄, comparison of 2/3*mrj̄wj̄
8 with 2cj̄wj̄

8 , as well as of

2/3 *mr3j̄1/3w with w2, results in the following further simplification for the nonlinear ODE~3.42!:

~wj̄
82w!21F~ j̄ !~wj̄

82w!1aj̄wj̄
81G~ j̄ !50, ~3.43a!

where

a52c, F~ j̄ !52 *mr3j̄1/31

*mr

3
j̄, G~ j̄ !52

1

2r3
j̄10/31

2C1

r3
j̄2. ~3.43b!

Both Eqs.~3.20! and ~3.43a! are of the same type. Thus, introducing the parametert5wj̄
8 and

following the already developed methodology on Eq.~3.43a!, we obtain

1

tj̄
8

5
62A24aj̄t1F224G12aj̄

F j̄
8F7F j̄

8A24aj̄t1F224G22Gj̄
822at62tA24aj̄t1F224G

. ~3.44!

By the substitution

A24aj̄t1F224G5A24aj̄t1H~ j̄ !5AQ~ j̄ !,
~3.45!

H~ j̄ !5F224G,
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~3.44! becomes

74aj̄2F j̄
8AQ62j̄F2AQ78j̄GAQ72j̄QAQ564j̄FF j̄

8AQ78j̄Gj̄
8AQ72j̄AQQj̄

872F2AQ

68GAQ62QAQ22aj̄2Qj̄
8 ,

which, further, by the new substitution

AQ5Z⇒Q5Z2, Qj̄
852ZZj̄

8 ~3.46!

results in the following Abel equation of the second kind:

~ j̄Z6aj̄2!Zj̄
85 1

2~ j̄11!Z21P~ j̄ !,

~3.47!
P~ j̄ !5aj̄2F j̄

82 1
2j̄F212j̄g1 j̄FF j̄

822j̄Gj̄
82 1

2F
212G.

As in the case 0,l!1, the well-known transformation

v~j̄ !5~z1aj̄ !j̄21/2expS 2
1

2
j̄ D , ~3.48!

reduces Eq.~3.47! into the modified Abel form

vvj̄
82F1~ j̄ !v5F0~ j̄ !,

~3.49!

F1~ j̄ !57ae2 j̄/2j̄1/2, F0~ j̄ !5F P~ j̄ !

j̄2
1

1

2
~11 j̄ !Ge2 j̄.

In order to reduce Eq.~3.49! to the normal Abel form, we introduce the final general transform
tion

v~j̄ !5q~s!, s5s~ j̄ ! ~3.50a!

with concrete form

v~j̄ !5q~s!, s5E F1~ j̄ !dj̄57aE j̄1/2e2 j̄/2dj̄522j̄1/2e2 j̄/212Ap erfSA2

2
j̄1/2D ,

~3.50b!

where

erf~x!5
2

Ap
E

0

x

e2t2dt

is the probability integral.
Thus,~3.49! becomes

qqs82q5
F0~ j̄ !

F1~ j̄ !
,

~3.51!

s5E F1~ j̄ !dj̄522j̄1/2e2 j̄/212Ap erfSA2

2
j̄1/2D .
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This equation corresponds to~3.33! and it is valid in case of the limit 0,l!1. Further approxi-
mations, concerning the second member of~3.51!, are beyond the scope of this investigation.

We have already proved that in the limit of weakly~0,l!1! or strongly~1`.l@1! non-
linear oscillations the forced damped~NLD! equation leads to Abel’s equations of the second k
of the normal form@types~3.33! and ~3.51!#. It was recently proved by Panayotounakos, Pan
otounakou, and Vakakis,17 that these types of nonlinear ODEs do not admit exact analytic s
tions in terms of known~tabulated! functions. Thus, the general conclusion from the abo
presented discussion of the forced damped~NLD! equation is that in both limits of weakly o
strongly nonlinear oscillations the equivalent equations of the Abel normal form do not a
exact analytic solutions in terms of known functions. For major reason this holds true fo
original forced damped problem.

C. The forced undamped „NLD… equation

The forced undamped~NLD! equation is a special case of the damped~NLD! equation, since
the governing nonlinear ODE~2.32! arises form~2.21! by settingl350. Thus, the procedure o
reduction in this case is the same as that of the damped problem. The new results are the
ing.

The limit 0,l!1. The approximate ODE~3.30! becomes

~wj̄
82w!21awj̄

82bj̄21gj̄2dj̄50, ~3.52a!

where

a52
2~11 lnuAl1u!

112 lnuAl1u

A

V2
, b52

2~11 lnuAl1u!

112 lnuAl1u

2

lV2
,

g5
2~11 lnuAl1u!

112 lnuAl1u

3

lAl1V2
, d5

4C1~11 lnuAl1u!

112 lnuAl1u

Al1

AlV2
, ~3.52b!

j̄511j2K, K5 lnU 2

*
V2AlAl1

U ,
*
V5

V

Al1

.

Further reduction of~3.52a! follows the corresponding steps of~3.20! and thus, the equivalent to
~3.36a! The Abel equation of the normal form becomes

qqs82q5p1s221p2s211p3s1p4 , ~3.53a!

in which

p1578agM3, p254~b16g!M2, p352
a214~3b14g22d!

4a2
,

~3.53b!

p457
2~9g14b2d!

a
M .

The limit 1!l,1`. In this case the corresponding to~3.40! reduced equation becomes b
setting in~3.40! *m50, and thus, the approximate nonlinear ODE~3.42! takes the simplified form

~wj̄
82w!212cj̄wj̄

82
1

2r3
j̄10/31

2C1

r3
j̄250. ~3.54!
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Therefore the final approximate Abel equation of the normal form, in which the nonlinear
integrodifferential equation~2.33! reduces, becomes

qqs82q5
F0~ j̄ !

F1~ j̄ !
, ~3.55a!

where

F0~ j̄ !

F1~ j̄ !
57

1

a H @ j̄F j̄
82~11 j̄ !F#j̄25/21

a2

4
~11 j̄ !j̄21/2J e2 j̄/2,

F~ j̄ !52~bj̄10/31gj̄2!,
~3.55b!

s5E F1~ j̄ !dj̄57
a

2 E j̄1/2e2 j̄/2dj̄562j̄1/2e2 j̄/212Ap erfSA2

2
j̄1/2D ,

erf~x!5
2

Ap
E

0

x

e2t2dt5probability integral.

The solvability of both approximated reduced Eqs.~3.53a! and ~3.55a! in the present case of th
limit 1!l,1` follows the general conclusion of the forced damped~NLD! problem.

In the following we provide approximate analytic solutions of the already examined t
nonlinear ODEs. In some cases such solutions are indispensable to making use of further a
tions and approximations. These assumptions and approximations are realistic and usual
riving exact solutions for these strongly nonlinear problems.

IV. APPROXIMATE ANALYTIC SOLUTIONS

We shall present new approximate analytic solutions of the three kinds of equations
examined.

A. The one-dimensional axisymmetric „NLS… equation with cubic nonlinearities

It is was already proved that for the NLS equation and for the limits 0,l5l1 /l2!1, and
1!l5l1 /l2,1`, the equivalent nonlinear first-order integrodifferential equation~2.20a! can
be asymptotically approximated by the following two nonlinear first-order ODEs.

~i! For 0,l5l1 /l2!1 @Eq. ~3.8!#,

1

2
~wj̄

82w!21w5C1 , A5
1

3

3A 4

l2l
. ~4.1a!

~ii ! For 1!l5l1 /l2,1` @Eq. ~3.11!#,

1
2~wj̄

82w!22Bw5C1 , B5 1
3~Al1 1

2!. ~4.1b!

Both these equations are of the same type, that is to say of the type

~wj̄
82w!212aw22b50, ~4.2a!

where

a5
2

3

3A 4

l2l
or a52

2

3 SAl1
1

2D , 2b52C1 , ~4.2b!
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and they can be analytically solved. In fact, solving~4.2a! for (wj̄
82w) and settingA2(b2aw)

5v, we obtain

vdv

v27av22b
52dj̄,

the integration which furnishes~see Ref. 22, p. 69!

2
1

4b
lnU v2

v27av22b
U7

a

4b E dv

v27av22b
52 j̄1C2 .

This integral depends on the sign of the quantityD5(8C11a2). Thus, we distinguish the fol-
lowing three possible solutions in terms ofw:

2
1

4b
lnU 2~b2aw!

2~b2aw!7aAb2aw22b
U7

a

4bA2~8C11a2!

2 lnU7a12A2~b2aw!2A2~8C11a2!

7a12A2~b2aw!1A2~8C11a2!
U

52 j̄1C2 if ~8C11a2!,0,

2
1

4b
lnU 2~b2aw!

2~b2aw!7aAb2aw22b
U6

2a

4b~7a12Ab2aw!
52 j̄1C2 if 2~8C11a2!50,

~4.3!

2
1

4b
lnU 2~b2aw!

2~b2aw!7aAb2aw22b
U6

2

4bA8C11a2
arctanS 7a12Ab2aw

A8C11a2 D
52 j̄1C2 if ~8C11a2!.0,

whereC2 is a second constant of integration.

B. The forced damped „NLD… equation

We shall try to construct approximate analytic solutions of the reduced equation~3.36a!
holding in case of the parameter~0,l!1!. First one observes that Eq.~3.36a! does not admit
exact solutions in terms of known~tabulated! functions ~see Ref. 21, pp. 29–32!. Thus, new
approximations are indispensable. Now combining Eqs.~3.17b! and~3.34! we extract the follow-
ing:

e2j5
1

12Alz

1

Al1

e2K, j5 j̄211K,

~4.4!

s562ae2 j̄/2562ae~11j2K !/256
2a

Ae

1

l1/4

1

A12Al1z
56

2a

Ae

1

l1/4
S 11

1

2
AlzD 1O~l!.

Rewriting the second of the above equations as

s56
a

Ae

1

l1/4
~3211Alz!56

3a

Ael1/4
7

a

Ael1/4
~12Alz!
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and introducing the quantity (12Alz) by way of the first of~4.4!, we find

s56
3a

Ael1/4
7

a

el3/4
ej̄56

3a

Ael1/2
7

4a3

el1
3/4

1

s2
.

Thus, sincel15l2 /l, one produces the following approximation:

1

s2
5

c1

l1/2
7

c2

l3/4
s1O~l!, c15

3a2~el2!1/2

4
, c25

el2
3/4

4a3
. ~4.5!

On the other hand, solving this last equation fors we deduce

s57

1

s2
2

c1

l1/2

c2

l3/4

57

12
c1

l1/2
s2

c2

l3/4
s2

,

a fact that permits us to write

1

s
57

1

1

c2s2/l3/4
2

c1 /l1/2

c2 /l3/4

56
1

c1l1/2

c2
2

l3/4

c2s2

56
1

S 12
l1/4

c1s2D c1l1/2

c2

.

We approximate again and we obtain

1

s
56

c2

c1l1/2 S 11
l1/4

c1

1

s2D 1O~l1/2!. ~4.6!

Until now we succeeded in expressing 1/s2 and 1/s in terms of s up to O~l! and O(l1/2),
respectively.

Introducing the above-given results into~3.36a! we extract the following Abel nonlinear ODE
of the normal form:

qqs82q5As1B,

A5p37
c2

l3/4
p12

c2
2

c1l1/4
p2 , B5p46

c1

l1/2
p16

c2

c1
S 1

l1/2
1

1

l3/4D p2 , ~4.7!

p1 , p2 , p3 , p4 as in Eq. ~3.36a!; c1 , c2 as in Eq. ~4.5!.

The Abel equation~3.7! admits an exact parametric solution given by the restored formula~see
Ref. 21, p. 29, type 1.3.2!

s5C2 expS 2E ydy

y22y2A
D ,

q5C2

y21

A
expS 2E ydy

n22y2A
D 2

B

A
, ~4.8!

y5qs85parameter.
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Note that for the forced undamped~NLD! equation a similar approximate analytic solution to~4.8!
holds true with different factorspi ~i51,2,3,4! given by Eq.~3.53b!.

V. CONCLUSIONS

By a series of admissible functional transformations we reduced the one-dimensional ax
metric ~NLS! equation, and the forced damped or undamped~NLD! equations to equivalen
nonlinear integrodifferential equations of the first order. These equations are exact and con
the intermediate integrals in the phase plane. In the limits of small or large values of the p
eters characterizing these nonlinear problems, we expand the reduced integrodifferential eq
asymptotically to nonlinear ODEs of the first order. The~NLS! equation changes to solvab
first-order form, while the~NLD! equations change to nonlinear ODEs of the Abel classes. Ta
into account the existing known exact analytic solutions of these classes of equations, we
that both~NLD! equations do not admit exact analytic solutions in terms of known~tabulated!
functions. For further asymptotic approximations we succeed in constructing exact analytic
tions for ~NLD! oscillators. The reduction methodology introduced in the paper is general an
be applied to some of the most interesting ODEs of mathematical physics and nonlinear m
ics, including the forced Van der Pol nonlinear oscillator; the Thomas–Fermi equation; the B
equationyxxx- 1l1yyxx9 50; the Langmuir equation 3yyxx9 1yx8

214yyx81y22150; the Kidder
equationA12ayyxx9 12xyx850, 0,a,1, as well as the plastic spin equations in simple shea20
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Erratum: ‘‘Hall effect in noncommutative coordinates’’
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The Hall conductivity on noncommutative plane is given as in~30! if the current defined in
~28! is rescaled with ag factor:

JŴ5
eg2r

m S gpŴ 1
e

c
AW 1aW D .

However, this is not a very natural definition. If one retains the more natural definition~28!, the
noncommutative Hall conductivitysH

nc will be independent of the noncommutativity parameteu
and the comments given in Ref. 1 should be taken into account.

1A. Kokado, T. Okamura, and T. Saito, ‘‘Hall effect in noncommutative spaces,’’ hep-th/0307120.
8270022-2488/2004/45(2)/827/1/$22.00 © 2004 American Institute of Physics
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‘‘Squashed entanglement’’: An additive entanglement
measure
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In this paper, we present a new entanglement monotone for bipartite quantum
states. Its definition is inspired by the so-called intrinsic information of classical
cryptography and is given by the halved minimum quantum conditional mutual
information over all tripartite state extensions. We derive certain properties of the
new measure which we call ‘‘squashed entanglement’’: it is a lower bound on
entanglement of formation and an upper bound on distillable entanglement. Fur-
thermore, it is convex, additive on tensor products, and superadditive in general.
Continuity in the state is the only property of our entanglement measure which we
cannot provide a proof for. We present some evidence, however, that our quantity
has this property, the strongest indication being a conjectured Fannes-type inequal-
ity for the conditional von Neumann entropy. This inequality is proved in the
classical case. ©2004 American Institute of Physics.@DOI: 10.1063/1.1643788#

I. INTRODUCTION

Ever since Bennettet al.1,2 introduced the entanglement measures ofdistillable entanglement
and entanglement of formationin order to measure the amount of nonclassical correlation
bipartite quantum state, there has been an interest in an axiomatic approach to entang
measures. One natural axiom is LOCC-monotonicity, which means that an entanglement m
should not increase underLocal Operations and Classical Communication. Furthermore, every
entanglement measure should vanish on the set of separable quantum states; it should be
additive, and a continuous function in the state. Though several entanglement measures ha
proposed, it turns out to be difficult to find measures that satisfy all of the above axioms
unresolved question is whether or not entanglement of formation is additive. This is an imp
question and has recently been connected to many other additivity problems in quantum in
tion theory.24 Other examples are distillable entanglement, which shows evidence of being n
additive nor convex,25 and relative entropy of entanglement,28 which can be proven to be
nonadditive.30

In this paper we present a functional called ‘‘squashed entanglement’’ which has ma
these desirable properties: it is convex, additive on tensor products and superadditive in gen
is upper bound by entanglement cost, lower bound by distillable entanglement, and we are
present some evidence of continuity.

The remaining sections are organized as follows: in Sec. II we will define squashed ent
ment and prove its most important properties. In Sec. III we will explain its analogy to a qua
called intrinsic information, known from classical cryptography. This constitutes the motivat
for our definition.

a!Electronic mail: matthias.christandl@qubit.org
b!Electronic mail: a.j.winter@bris.ac.uk
8290022-2488/2004/45(3)/829/12/$22.00 © 2004 American Institute of Physics
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The only property that we could not find proof for is continuity. A detailed discussion of
problem follows in Sec. IV, where we show that squashed entanglement is continuous o
interior of the set of states and where we provide evidence in favor of continuity in general
evidence is based on a Fannes-type inequality for the conditional von Neumann entrop
conjectured in general and is true in the classical case, which we will prove in the Append

II. SQUASHED ENTANGLEMENT

In this paper all Hilbert spaces are assumed to be finite dimensional, even though some
following definitions and statements make sense also in infinite dimension.

Definition 1:Let rAB be a quantum state on a bipartite Hilbert spaceH5HA^ HB . We define
the squashed entanglementof rAB by

Esq~rAB!ª inf$ 1
2 I ~A;BuE!:rABE extension ofrAB%.

The infimum is taken over all extensions ofrAB, i.e., over all quantum statesrABE with rAB

5Tr ErABE. I (A;BuE)ªS(AE)1S(BE)2S(ABE)2S(E) is the quantum conditional mutual in
formation of rABE.3 rA stands for the restriction of the staterABE to subsystemA, and S(A)
5S(rA) is the von Neumann entropy of the underlying state, if it is clear from the context. If
we emphasize the state in subscript,S(A)r . Note that the dimension ofE is a priori unbounded.

Tucci26 has previously defined the same functional~without the factor1
2) in connection with

his investigations into the relationship between quantum conditional mutual information an
tanglement measures, in particular entanglement of formation.

Our name for this functional comes from the idea that the right choice of a conditio
system reduces the quantum mutual information betweenA and B, thus ‘‘squashing out’’ the
nonquantum correlations. See Sec. III for a similar idea in classical cryptography, which mot
the above definition.

Example 2:Let rAB5uc&^cuAB be a pure state. All extensions ofrAB are of the formrABE

5rAB
^ rE; therefore

1
2 I ~A;BuE!5S~rA!5E~ uc&),

which impliesEsq(uc&^cu)5E(uc&).
Proposition 3: Esq is an entanglement monotone,i.e., it does not increase under local quan

tum operations and classical communication (LOCC) and it is convex.
Proof: According to Ref. 29 it suffices to verify thatEsq satisfies the following two criteria:

~1! For any quantum staterAB and any unilocal quantum instrument (Ek)—theEk are completely
positive maps and their sum is trace preserving6—performed on either subsystem,

Esq~rAB!>(
k

pkEsq~ r̃k
AB!,

where

pk5Tr Ek~rAB! and r̃k
AB5

1

pk
Ek~rAB!.

~2! Esq is convex, i.e., for all 0<l<1,

Esq~lrAB1~12l!sAB!<lEsq~rAB!1~12l!Esq~sAB!.

In order to prove 1, we modify the proof of theorem 11.15 in Ref. 19 for our purpose
symmetry we may assume that the instrument (Ek) acts unilocally onA. Now, attach two ancilla
systemsA8 andA9 in statesu0&A8 and u0&A9 to the systemABE ~i!. To implement the quantum
operation
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rABE→ r̃AA8BE
ª(

k
~Ek^ idE!~rABE! ^ uk&^kuA8,

with (uk&A8)k being an orthonormal basis onA8, we perform~ii ! a unitary transformationU on
AA8A9 followed by ~iii ! tracing out the systemA9. Here, ĩ denotes the systemi P$A,B,AB% after
the unitary evolutionU. Then, for any extension ofrAB,

I ~A;BuE!5
~ i!

I ~AA8A9;BuE!

5
~ ii !

I ~ÃÃ8Ã9;B̃uẼ!

>
~ iii !

I ~ÃÃ8;B̃uẼ!

5
~ iv!

I ~Ã8;B̃uẼ!1I ~Ã;B̃uẼÃ8!

>
~v!

(
k

pkI ~Ã;B̃uẼ!rk

>
~vi!

(
k

2pkEsq~rk!.

The justification of these steps is as follows: attaching auxiliary pure systems does not chan
entropy of a system, step~i!. The unitary evolution affects only the systemsAA8A9 and therefore
does not affect the quantum conditional mutual information in step~ii !. To show that discarding
quantum systems cannot increase the quantum conditional mutual information

I ~ÃÃ8;B̃uẼ!<I ~ÃÃ8Ã9;B̃uẼ!

we expand it into

S~AA8E!1S~BE!2S~AA8BE!2S~E!<S~AA8A9E!1S~BE!2S~AA8A9BE!2S~E!,

which is equivalent to

S~AA8E!2S~AA8BE!<S~AA8A9E!2S~AA8A9BE!,

the strong subadditivity;17 this shows step~iii !, and for step~iv! we use thechain rule,

I ~XY;ZuU !5I ~X;ZuU !1I ~Y;ZuUX!.

For step ~v!, note that the first term,I (Ã8;B̃uẼ), is non-negative and that the second ter

I (Ã;B̃uẼÃ8), is identical to the expression in the next line. Finally, we have~vi! sincerk
ÃB̃Ẽ is a

valid extension ofrk . As the original extension ofrAB was arbitrary, the claim follows.
To prove convexity, property 2, consider any extensionsrABE andsABE of the statesrAB and

sAB, respectively. It is clear that we can assume, without loss of generality, that the extensio
defined on identical systemsE. Combined,rABE andsABE form an extension

tABEE8
ªlrABE

^ u0&^0uE81~12l!sABE
^ u1&^1uE8

of the statetAB5lrAB1(12l)sAB. The convexity of squashed entanglement then follows fr
the observation

lI ~A;BuE!r1~12l!I ~A;BuE!s5I ~A;BuEE8!t>2Esq~tAB!.

Proposition 4: Esq is superadditive in general, and additive on tensor products, i.e.,

Esq~rAA8BB8!>Esq~rAB!1Esq~rA8B8!

is true for every density operatorrAA8BB8 on HA^ HA8^ HB^ HB8 , rAB5Tr A8B8r
AA8BB8, and

A8B8 AA8BB8
r 5Tr ABr ,

Esq~rAA8BB8!5Esq~rAB!1Esq~rA8B8!
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for rAA8BB85rAB
^ rA8B8.

Proof: We start with superadditivity and assume thatrAA8BB8E on HA^ HA8^ HB^ HB8
^ HE is an extension ofrAA8BB8, i.e., rAA8BB85Tr ErAA8BB8E. Then,

I ~AA8;BB8uE!5I ~A;BB8uE!1I ~A8;BB8uEA!

5I ~A;BuE!1I ~A;B8uEB!1I ~A8;B8uEA!1I ~A8;BuEAB8!

>I ~A;BuE!1I ~A8;B8uEA!>2Esq~rAB!12Esq~rA8B8!.

The first inequality is due to strong subadditivity of the von Neumann entropy. Note thatE is an
extension for systemAB and EA extends systemA8B8. Hence, the last inequality is true sinc
squashed entanglement is defined via the infimum over all extensions of the respective stat
calculation is independent of the choice of the extension, which proves superadditivity.

A special case of the above is superadditivity on product statesrAA8BB8
ªrAB

^ rA8B8. To
conclude thatEsq is indeed additive on tensor products, it therefore suffices to prove subaddi
on tensor products.

Let rABE on HA^ HB^ HE be an extension ofrAB and letrA8B8E8 on HA8^ HB8^ HE8 be an
extension forrA8B8. It is evident thatrABE

^ rA8B8E8 is a valid extension forrAA8BB85rAB

^ rA8B8, hence

This inequality holds for arbitrary extensions ofrAB andrA8B8. We therefore conclude thatEsq is
subadditive on tensor products. h

Proposition 5: Esq is upper bounded byentanglement of formation1,2

Esq~rAB!<EF~rAB!.

Proof: Let $pk ,uCk&% be a pure state ensemble forrAB,

(
k

pkuCk&^CkuAB5rAB.

The purity of the ensemble implies

(
k

pkS~A!Ck
5 1

2(
k

pkI ~A;B!Ck
.

Consider the following extensionrABE of rAB:

rABE
ª(

k
pkuCk&^CkuAB

^ uk&^kuE.

It is elementary to compute

(
k

pkS~A!Ck
5 1

2(
k

pkI ~A;B!Ck
5 1

2 I ~A;BuE!.

Thus, it is clear that entanglement of formation can be regarded as an infimum over a certai
of extensions ofrAB. Squashed entanglement is an infimum overall extensions ofrAB, evaluated
on the same quantity12I (A;BuE) and therefore smaller or equal to entanglement of formationh

Corollary 6: Esq is upper bounded byentanglement cost,
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Esq~rAB!<EC~rAB!.

Proof: Entanglement cost is equal to the regularized entanglement of formation,12

EC~rAB!5 lim
n→`

1

n
EF~~rAB! ^ n!.

This, together with proposition 5, and the additivity of the squashed entanglement~proposition 4!
implies

EC~rAB!5 lim
n→`

1

n
EF~~rAB! ^ n!> lim

n→`

1

n
Esq~~rAB! ^ n!5Esq~rAB!.

h

Theorem 7: Squashed entanglement vanishes for every separable density matrixrAB, i.e.,

rABseparable⇒Esq~rAB!50.

Conversely, if there exists a finite extensionrABE of rAB with vanishing quantum conditiona
mutual information, thenrAB is separable, i.e.,

I ~A;BuE!50 and dim H E,`⇒rAB separable.

Proof: Every separablerAB can be written as a convex combination of separable pure st

rAB5(
i

pi uc i&^c i uA
^ uf i&^f i uB.

The quantum conditional mutual information of the extension

rABE
ª(

i
pi uc i&^c i uA^ uf i&^f i uB^ u i &^ i uE,

with orthonormal states (u i &E), is zero. Squashed entanglement thus vanishes on the set of
rable states.

To prove the second assertion assume that there exists an extensionrABE of rAB with
I (A;BuE)50 and dimHE,`. Now, a recently obtained result13 on the structure of such state
rABE applies: there it was shown that in this case the systemE can be written as a direct sum
of tensor products, such that with a suitable basis transformationE→EE8E9 the state can be
rewritten

rABE5(
i

pir i
AE8^ r i

E9B
^ u i &^ i uE.

ThenrAB5( i pi(Tr E8r i
AE8) ^ (Tr E9r i

E9B) is separable.
Remark 8: The minimization in squashed entanglement ranges over extensions ofrAB with a

priori unbounded size. Esq(r)50 is thus possible, even if any finite extension has strictly pos
quantum conditional mutual information. Therefore, without a bound on the dimension o
extending system, the second part of theorem 7 does not suffice to conclude that Esq(r

AB) implies
separability ofrAB. A different approach to this question could be provided by a possible app
mate version of the main result of Ref. 13: if there is an extensionrABE with small quantum
conditional mutual information, then therAB is close to a separable state. For further discussi
on this question, see Secs. III and IV.
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Note that the strict positivity of squashed entanglement for entangled states would, vi
ollary 6, imply strict positivity of entanglement cost for all entangled states. This is not yet pr
but conjectured as a consequence of the additivity conjecture of entanglement of formation.

Example 9:It is worth noting that in generalEsq is strictly smaller thanEF andEC : consider
the totally antisymmetric statesAB in a two-qutrit system

sAB5 1
3 ~ uI&^Iu1uII &^II u1uIII &^III u!,

with

uI&5
1

&
~ u2&Au3&B2u3&Au2&B),

uII &5
1

&
~ u3&Au1&B2u1&Au3&B),

uIII &5
1

&
~ u1&Au2&B2u2&Au1&B).

On the one hand, it is known from Ref. 31 thatEF(sAB)5EC(sAB)51, though, on the other hand
we may consider the trivial extension,

Esq~sAB!< 1
2 I ~A;B!5 1

2 log 3'0.792.

The best known upper bound onED for this state, theRains bound,21 gives the only slightly

smaller value log53'0.737. It remains open if there exist states for which squashed entangle
is smaller than the Rains bound.

Proposition 10: Esq is lower bounded bydistillable entanglement1,2

ED~rAB!<Esq~rAB!.

Proof: Consider any entanglement distillation protocol by LOCC, takingn copies of the state
(rAB) ^ n to a statesAB such that

isAB2us&^suABi1<d, ~1!

with us& being a maximally entangled state of Schmidt ranks. We may assume without loss o
generality that the support ofsA andsB is contained in thes-dimensional support of TrBus&^su
and TrAus&^su, respectively. Using propositions 4 and 3, we have

nEsq~rAB!5Esq~~rAB! ^ n!>Esq~sAB!, ~2!

so that it is only necessary to estimateEsq(s
AB) vs Esq(us&^suAB)5 logs ~see example 2!. For this,

let sABE be an arbitrary extension ofsAB and consider a purification of it,uC&PHABEE8 . Chain
rule and monotonicity of the quantum mutual information allow us to estimate

I ~A;BuE!5I ~AE;B!2I ~E;B!>I ~A;B!2I ~EE8;AB!5I ~A;B!22S~AB!.

Further applications of Fannes inequality,9 lemma 13, give I (A;B)>2 logs2f(d)logs and
2S(AB)< f (d)logs, with a functionf of d vanishing asd approaches 0. Hence

1
2 I ~A;BuE!> logs2 f ~d!logs.

Since this is true for all extensions, we can put this together with Eq.~2!, and obtain
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Esq~rAB!>
1

n
~12 f ~d!!logs,

which, with n→` andd→0, concludes the proof, because we considered an arbitrary distilla
protocol. h

Remark 11: In the proof of proposition 10 we made use of the continuity of Esq in the vicinity
of maximally entangled states. Similarly, Esq can be shown to be continuous in the vicinity of a
pure state. This, together with proposition 3, the additivity on tensor products (second p
proposition 4), and the normalization on Bell states, suffices to prove corollary 6 and propo
10.15

Corollary 12:

1
2 ~ I ~A;B!2S~AB!!<Esq~rAB!.

Proof: The recently establishedhashing inequality7 provides a lower bound for theone-way
distillable entanglement ED(rAB),

S~B!2S~AB!<ED~rAB!.

Interchanging the roles ofA andB, we have

1
2 ~ I ~A;B!2S~AB!!<ED~rAB!,

where we use the fact that one-way distillable entanglement is smaller or equal to dist
entanglement. This, together with the bound from proposition 10, implies the assertion.h

III. ANALOGY TO INTRINSIC INFORMATION

Intrinsic information is a quantity that serves as a measure for the correlations be
random variables in information-theoretical secret-key agreement.18 The intrinsic (conditional
mutual) informationbetween two discrete random variablesX and Y, given a third discrete
random variableZ, is defined as

I ~X;Y↓Z!5 inf$I ~X;YuZ̄!:Z̄ with XY→Z→Z̄ a Markov chain%.

The infimum extends over all discrete channelsZ to Z̄ that are specified by a conditional prob
ability distributionPZ̄uZ .

A first idea to utilize intrinsic information for measuring quantum correlations was mentio
in Ref. 11. This inspired the proposal of aquantum analog to intrinsic information4 in which the
Shannon conditional mutual information plays a role similar to the quantum conditional m
information in squashed entanglement. This proposal possesses certain good properties de
of an entanglement measure, and it opened the discussion that has resulted in the curren

Before we state some similarities in the properties that theintrinsic informationandsquashed
entanglementhave in common, we would like to stress their obvious relation in terms of
definitions. Let uC&ABC be a purification ofrAB and let rABE be an extension ofrAB with
purificationuF&ABEE8. Remark that all purifications ofrAB are equivalent in the sense that there
a suitable unitary transformation on the purifying system with

1AB
^ U:uC&ABC°uF&ABEE8.

Applying a partial trace operation over systemE8 then results in the completely positive map

L:B~HC!→B~HE!,

id^ L:uC&^CuABC°rABE.
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Conversely, every staterABE constructed in this manner is an extension ofrAB.
This shows that the squashed entanglement equals

Esq~rAB!5 inf$ 1
2 I ~A;BuE!:rABE5~ id^ L!uC&^CuABC%, ~3!

where the infimum includes all quantum operationsL:B(HC)→B(HE).
In Ref. 5 it is shown that the minimization inI (X;Y↓Z) can be restricted to random variable

Z̄ with a domain equal to that ofZ. This shows that the infimum in the definition is in effect
minimum and that the intrinsic information is a continuous function of the distributionPXYZ. It is
interesting to note that the technique used there~and, for that matter, also in the proof th
entanglement of formation is achieved as a minimum over pure state ensemblesrAB

5(kpkuCk&^CkuAB of size (rankrAB)2), does not work for our problem, and so, we do not ha
an easy proof of the continuity of squashed entanglement. In the following section this issu
be discussed in some more detail.

In the cryptographic context in which it appears, intrinsic information serves as an u
bound for the secret-key rateS5S(X;YuuZ).18 S is the rate at which two parties, having access
repeated realizations ofX andY, can distill secret correlations about which a third party, hold
realizations ofZ, is almost ignorant. This distillation procedure includes all protocols in which
two parties communicate via a public authenticated classical channel to which the eavesd
has access but cannot alter the transmitted messages. Clearly, one can interpret distilla
tanglement as the quantum analog to the secret-key rate. On the one hand,secret quantum corre-
lations, i.e., maximally entangled states of qubits, are distilled from a number of copies ofrAB. In
the classical cryptographic setting, on the other hand, one aims at distillingsecret classical cor-
relations, i.e., secret classical bits, from a number of realizations of a triple of random variablX,
Y, andZ.

We proved in proposition 10 that squashed entanglement is an upper bound for dist
entanglement. Hence, it provides a bound in entanglement theory which is analogous to the
information-theoretic secure key agreement, where intrinsic information bounds the secr
rate from above.

This analogy extends further to the bound on the formation of quantum states~proposition 5
and corollary 6!, where we know of a recently proven classical counterpart, namely, tha
intrinsic information is a lower bound on the formation cost of correlations of a triple of ran
variablesX, Y, andZ from secret correlations.22

IV. THE QUESTION OF CONTINUITY

Intrinsic information, discussed in the previous section, and entanglement of formatio
continuous functions of the probability distribution and state, respectively. This is so, beca
both cases we are able to restrict the minimization to a compact domain; in the case of in
information to bounded rangeZ̄ and in entanglment of formation to bounded size decompositi
noting that the functions to be minimized are continuous.

Thus, by the same general principle, we could show continuity if we had a universal boud
on the dimension ofE in definition 1, in the sense that every value ofI (A;BuE) obtainable by
general extensions can be reproduced or beaten by an extension with ad-dimensional systemE.
Note that if this were true, then~just as for intrinsic information and entanglement of formatio!
the infimum would actually be a minimum: in remark 7 we have explained that thenEsq(r

AB)
50 would imply, using the result of,13 that rAB is separable.

As it is, we cannot yet decide on this question, but we would like to present a reaso
conjecture, an inequality of the Fannes-type9 for the conditional von Neumann entropy, which w
can show to imply continuity ofEsq. Let us first revisit Fannes’ inequality in a slightly nonstan
ard form:
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Lemma 13: For density operatorsr, s on the same d-dimensional Hilbert space, withir
2si1<e,

uS~r!2S~s!u<h~e!1e logd,

with the universal function

h~e!5H 2e loge e< 1
2 ,

1
2 otherwise.

Observe thath is a concave function. h

Now we can state the conjecture, recalling that for a density operatorrAB on a bipartite system
HA^ HB , the conditional von Neumann entropy3 is defined as

S~AuB!ªS~rAB!2S~rB!.

Conjecture 14: For density operatorsr, s on the bipartite systemHA^ HB , with ir2si1

<e,

uS~AuB!r2S~AuB!su<h~2e!13e logdA ,

with dA5dimHA , or some other universal function f(e,dA) vanishing ate50 on the right-hand
side.

Note that the essential feature of the conjectured inequality is that it only makes refere
the dimension of systemA. If we were to use Fannes inequality directly with the definition of
conditional von Neumann entropy, we would pick up additional terms containing the logarith
dB5dimHB . In the Appendix we show that this conjecture is true in the classical case, or
precisely, in the more general case where the states are classical on systemB.

In order to show that the truth of this conjecture implies continuity ofEsq, consider two states
rAB andsAB with irAB2sABi1<e. By well-known relations between fidelity and trace distanc10

this means thatF(rAB,sAB)>12e, hence16,27 we can find purificationsuC&ABC and uF&ABC of
rAB andsAB, respectively, such thatF(uC&ABC,uF&ABC)>12e. Using Ref. 10 once more, we ge

iuC&^CuABC2uF&^FuABCi1<2Ae.

Now, let L be any quantum operation as in Eq.~3!: it creates extensions ofrAB andsAB,

rABE5~ id^ L!uC&^CuABC,

sABE5~ id^ L!uF&^FuABC,

with

irABE2sABEi1<2Ae.

Hence, usingI (A;BuE)5S(AuE)1S(BuE)2S(ABuE), we can estimate

uI ~A;BuE!r2I ~A;BuE!su<uS~AuE!r2S~AuE!su1uS~BuE!r2S~BuE!su1uS~ABuE!r

2S~ABuE!su<3h~2Ae!16Ae log~dAdB!5..e8.

Since this applies to any quantum operationL and thus to every state extension ofrAB andsAB,
respectively, we obtain

uEsq~rAB!2Esq~sAB!u<e8,
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with e8 universally dependent one and vanishing withe→0. h

Remark 15: Since Esq is convex it is trivially upper semicontinuous. This also follows from
fact that squashed entanglement is an infimum of continuous functions obtained by bound
size of the dimension of system E.

This observation, together with results from the general theory of convex functions, im
that squashed entanglement is continuous ‘‘almost everywhere.’’ Specifically, with theorem 1
Ref. 23, we have:

Proposition 16: Esq is continuous on the interior of the set of states (i.e., on the faithful sta
and more generally, it is continuous when restricted to the relative interior of all faces of the
set.

Continuity near pure states (see remark 11) thus implies continuity of Esq on the set of all
rank-2 density operators. h

V. CONCLUSION

In this paper we have presented a new measure of entanglement, which by its very de
allows for rather simple proofs of monotonicity under LOCC, convexity, additivity for ten
products and superadditivity in general, all by application of the strong subadditivity prope
quantum entropy. We showed the functional, which we call ‘‘squashed entanglement,’’ to be
bounded by the distillable entanglement and upper bounded by the entanglement cost. Thu
most of the ‘‘good’’ properties demanded by the axiomatic approaches14,20,29 without suffering
from the disadvantages of other superadditive entanglement monotones. The one proposed
8, for example, diverges on the set of pure states.

The one desirable property from the wish list of axiomatic entanglement theory that we
not yet prove is continuity. We have shown, however, that squashed entanglement is con
near pure states and in the relative interior of the faces of state space. Continuity in genera
follow from a conjectured Fannes-type inequality for the conditional von Neumann entropy
proof of this conjecture thus remains the great challenge of the present work. It might well
wider applicability in quantum information theory and certainly deserves further study.

Another question to be asked is whether or not there exist states that are nonsepara
nonetheless, have zero squashed entanglement. We expect this not to be the case: if not b
of proving that the infimum in squashed entanglement is achieved, then by means of an a
mate version of the result of Ref. 13. The relation to entanglement measures other than en
ment of formation, entanglement cost and distillable entanglment remains open in gene
Esq50 would imply separability, however, it would follow that for the class of PPT sta
squashed entanglement is larger than entanglement measures based on the partial trans
eration, like relative entropy of entanglement, the logarithmic negativity and the Rains bou

Note added in proof.Alicki and Fannes~quant-ph/0312081! have recently proven our Con
jecture 14, with the upper bound 4e log dA12h(e)12h(12e). Thus, squashed entanglement
now known to be continuous.
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APPENDIX: THE CLASSICAL CASE OF THE CONDITIONAL FANNES INEQUALITY

In this appendix we prove the conjecture 14 for states

rAB5(
k

pkrk
A

^ uk&^kuB, ~A1!
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sAB5(
k

qksk
A

^ uk&^kuB, ~A2!

with an orthogonal basis (uk&)k and ofHB , probability distributions (pk) and (qk), and statesrk
A

andsk
A on A. Note that this includes the case of a pair of classical random variables. In this

the statesrk
A andsk

A are all diagonal in the same basis (u j &) j of HA and thusrAB andsAB describe
joint probability distributions on a Cartesian product.

The key to the proof is that for states of the form~A1!,

S~AuB!r5(
k

pkS~rk
A!,

and similarly for the states given in Eq.~A2!.
First of all, the assumption implies that

e>irB2sBi15(
k

upk2qku.

Hence, we can successively estimate,

uS~AuB!r2S~AuB!su<(
k

upkS~rk
A!2qkS~sk

A!u<(
k

pkuS~rk
A!2S~sk

A!u1(
k

upk2qkuS~sk
A!

<(
k

pk~h~ek!1ek logdA!1e logdA<h~2e!13e logdA ,

using the triangle inequality twice in the first line, then usingS(sk
A)< logdA , applying the Fannes

inequality, lemma 13~with ekªirk
A2sk

Ai1), and finally making use of the concavity of its upp
bound. To complete this step, we have to show(kpkek<2e, which is done as follows:

e>irAB2sABi15(
k

ipkrk
A2qksk

Ai1>(
k

~ ipkrk
A2pksk

Ai12ipksk
A2qksk

Ai1!>(
k

pkek2e,

where we have used the triangle inequality. h

Note that in the case of pure states the conjecture is directly implied by Fannes ineq
lemma 13, sinceS(AB)50 andS(A)5S(B). Clearly, a proof of the general case cannot proce
along these lines as they do not have the possibility to present the conditional von Neu
entropy as an average of entropies onA.

1Bennett, C. H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J. A., and Wootters, W. K., ‘‘Purification o
entanglement and faithful teleportation via noisy channels,’’ Phys. Rev. Lett.76, 722–725~1996!; 78, 2031~E! ~1997!.

2Bennett, C. H., DiVincenzo, D. P., Smolin, J. A., and Wootters, W. K., ‘‘Mixed-state entanglement and quantum
correction,’’ Phys. Rev. A54, 3824–3851~1996!.

3Cerf, N. J., and Adami, C., ‘‘Negative entropy and information in quantum mechanics,’’ Phys. Rev. Lett.79, 5194–5197
~1997!; ‘‘Quantum information theory of entanglement and measurement,’’ Physica D120, 68–91~1998!.

4Christandl, M., ‘‘The quantum analog to intrinsic information,’’ Diploma thesis, ETH Zu¨rich, 2002~unpublished!.
5Christandl, M., Renner, R., and Wolf, S., ‘‘A property of the intrinsic mutual information,’’ in Proc. ISIT 2003, Yo
hama, Japan, p. 258.

6Davies, E. B., and Lewis, J. T., ‘‘An operational approach to quantum probability,’’ Commun. Math. Phys.17, 239–260
~1970!.

7Devetak, I., and Winter, A., ‘‘Distillation of secret key and entanglement from quantum states,’’ quant-ph/0306078,
Horodecki, M. and Horodecki, P., ‘‘Hashing inequality’’~in preparation!.

8Eisert, J., Audenaert, K., and Plenio, M. B., ‘‘Remarks on entanglement measures and non-local state distinguish
J. Phys. A36, 5605–5615~2003!.

9Fannes, M., ‘‘A continuity property of the entropy density for spin lattice systems,’’ Commun. Math. Phys.31, 291–294
~1973!.
                                                                                                                



,’’ IEEE

te,’’ J.

entropy

ix by

rans.

,

action,’’

a

ent of

840 J. Math. Phys., Vol. 45, No. 3, March 2004 M. Christandl and A. Winter

                    
10Fuchs, C. A., and van de Graaf, J., ‘‘Cryptographic distinguishability measures for quantum-mechanical states
Trans. Inf. Theory45, 1216–1227~1999!.

11Gisin, N. and Wolf, S., ‘‘Linking classical and quantum key agreement: is there ‘‘bound information’’?,’’Advances in
Cryptology-CRYPTO’00, Lecture Notes in Computer Science~Springer-Verlag, Berlin, 2000!, pp. 482–500.

12Hayden, P. M., Horodecki, M., and Terhal, B. M., ‘‘The asymptotic entanglement cost of preparing a quantum sta
Phys. A34, 6891–6898~2001!.

13Hayden, P., Jozsa, R., Petz, D., and Winter, A., ‘‘Structure of states which satisfy strong subadditivity of quantum
with equality,’’ Commun. Math. Phys.~to be published!, quant-ph/0304007.

14Horodecki, M., ‘‘Entanglement measures,’’ Quantum Inf. Comput.1, 3–26~2001!.
15Horodecki, M., Horodecki, P., and Horodecki, R., ‘‘Limits for entanglement measures,’’ Phys. Rev. Lett.84, 2014–2017

~2000!.
16Jozsa, R., ‘‘Fidelity for mixed quantum states,’’ J. Mod. Opt.41, 2315–2323~1994!.
17Lieb, E. H., and Ruskai, M. B., ‘‘Proof of the strong subadditivity of quantum-mechanical entropy. With an append

B. Simon,’’ J. Math. Phys.14, 1938–1941~1973!.
18Maurer, U., and Wolf, S., ‘‘Unconditionally secure key agreement and the intrinsic conditional information,’’ IEEE T

Inf. Theory45, 499–514~1999!.
19Nielsen, M. A., and Chuang, I. L.,Quantum Computation and Quantum Information~Cambridge University Press

Cambridge, 2000!.
20Popescu, S., and Rohrlich, D., ‘‘Thermodynamics and the measure of entanglement,’’ Phys. Rev. A56, R3319–R3321

~1997!.
21Rains, E. M., ‘‘A semidefinite program for distillable entanglement,’’ IEEE Trans. Inf. Theory47, 2921–2933~2001!.
22Renner, R., and Wolf, S., ‘‘New bounds in secret-key agreement: The gap between formation and secrecy extr

Advances in Cryptology-EUROCRYPT’03, Lecture Notes in Computer Science~Springer-Verlag, Berlin, 2003!, pp.
562–577.

23Rockafeller, R. T.,Convex Analysis~Princeton University Press, Princeton, 1970!.
24Shor, P. W., ‘‘Equivalcne of additivity questions in quantum information theory,’’ Commun. Math. Phys.~to be pub-

lished!, quant-ph/0305035.
25Shor, P. W., Smolin, J. A., and Terhal, B. M., ‘‘Nonadditivity of bipartite distillable entanglement follows from

conjecture on bound entangled Werner states,’’ Phys. Rev. Lett.86, 2681–2684~2001!.
26Tucci, R. R., ‘‘Quantum entanglement and conditional information transmission,’’ quant-ph/9909041; ‘‘Enganglem

distillation and conditional mutual information,’’ quant-ph/0202144.
27Uhlmann, A., ‘‘The ‘‘transition probability’’ in the state space of asp-algebra,’’ Rep. Math. Phys.9, 273–279~1976!.
28Vedral, V., Plenio, M. B., Rippin, M. A., and Knight, P. L., ‘‘Quantifying entanglement,’’ Phys. Rev. Lett.78, 2275–2279

~1997!.
29Vidal, G., ‘‘Entanglement monotones,’’ J. Mod. Opt.47, 355–376~2000!.
30Vollbrecht, K. G. H., and Werner, R. F., ‘‘Entanglement measures under symmetry,’’ Phys. Rev. A64, 062307~2001!.
31Yura, F., ‘‘Entanglement cost of three-level antisymmetric states,’’ J. Phys. A36, L237–L242~2003!.
                                                                                                                



uanti-

rt

of
vel-
ee,
e

al defi-
o a

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 3 MARCH 2004

                    
Quantum mechanics of damped systems. II. Damping and
parabolic potential barrier
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We investigate the resonant states for the parabolic potential barrier known also as
inverted or reversed oscillator. They correspond to the poles of meromorphic con-
tinuation of the resolvent operator to the complex energy plane. As a by-product we
establish an interesting relation between parabolic cylinder functions~representing
energy eigenfunctions of our system! and a class of Gel’fand distributions used in
our recent paper. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1644751#

I. INTRODUCTION

In a recent paper1 we have investigated a quantization of the simple damped system1

u̇52gu. ~1.1!

To quantize this system we double the number of degrees of freedom, i.e., together with~1.1! we
considerv̇51gv. We slightly change the notation: the coordinates (x,p) used in Ref. 1 are
replaced by (u,v) in the present paper. The enlarged system is a Hamiltonian one and its q
zation leads to the following quantum Hamiltonian:

Ĥ52
g

2
~ ûv̂1 v̂û!. ~1.2!

This Hamiltonian, apart from the continuous spectrums(Ĥ)5(2`,`), displays two families of
generalized eigenvectorsf n

6 corresponding to purely imaginary eigenvaluesĤ f n
656Enf n

6 .
Clearly, these eigenvectors are not elements from the Hilbert spaceH5L2(Ru). To describe the
quantum-mechanical system defined by~1.2! it is convenient to go beyond the standard Hilbe
space formulation of quantum mechanics and to consider a rigged Hilbert space~or so-called
Gel’fand triplet!2,3

F , L2~Ru! , F8, ~1.3!

where F is a dense nuclear subspace ofL2(Ru) and F8 denotes its dual, i.e., the space
continuous functionals onF. The rigged Hilbert space version of quantum mechanics was de
oped by Bo¨hm,4 Roberts,5 and Antoine,6 and further investigated by Brussels/Austin groups, s
e.g., Refs. 7–10 and the recent review.11 The primary application of the rigged Hilbert spac
quantum mechanics is the description of resonances in scattering theory. The convention
nition @see, e.g., Refs. 12–14 and the review~Ref. 15!# states that a resonance corresponds t
pair of conjugated poles of theS-matrix analytically continued to the complex energy plane

zR5ER2 i
G

2
, zR5ER1 i

G

2
, ~1.4!
8410022-2488/2004/45(3)/841/14/$22.00 © 2004 American Institute of Physics
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whereER is the resonant energy andG is the width of the resonance. The corresponding gen
alized eigenvectorsuzR & are called resonant states~or Gamow vectors; see Ref. 11!. Other defi-
nitions locate resonances as poles of generalized energy eigenfunctions when continued
complex energy plane or as poles of meromorphic continuation of the resolvent operato
argued that resonant states are responsible for the irreversible behavior of quantum syste

It was shown in Ref. 1 that generalized eigenvectors of the Hamiltonian~1.2! may be inter-
preted as resonant states, i.e., they correspond to the poles of energy eigenfunctions when
ued to the complex energy plane. It turns out that resonant states are responsible for the i
ible behavior. Indeed, we showed that there are two dense subspacesF6PL2(Ru) such that

restriction of the unitary groupU(t)5e2 iĤ t to F6 no longer defines a group but gives rise to tw
semigroups:U2(t)5U(t)uF2

defined for t>0 and U1(t)5U(t)uF1
defined for t<0. In the

framework of Gel’fand triplets it means that the quantum version of the damped system~1.1!
corresponds to the Gel’fand tripletF2,L2(Ru),F28 together with the HamiltonianĤuF2

.

Another triplet F1,L2(Rv),F18 together withĤuF1
corresponds to the quantum pump

systemv̇51gv. This way, the fashionable ‘‘arrow of time’’ is introduced by restricting the tim
evolution either toF2 or to F1 .

In the present paper we continue to study this system but in a different representation.
over, we are going to relate the resonant states to the poles of the correspondingS-matrix. Let us
observe that performing the linear canonical transformation (u,v)→(x,p)

u5
gx2p

A2g
, v5

gx1p

A2g
, ~1.5!

one obtains for the Hamiltonian

Ĥ5 1
2 ~ p̂22g2x̂2!. ~1.6!

It represents the parabolic potential barrierV(x)52g2x2/2 and it was studied by several autho
in various contexts.16–22For obvious reasons it is also called an inverted or reversed oscillat
is well known that this system gives rise to the generalized complex eigenvalues—the ph
reason for that is the potential unbounded from below. We find the corresponding energy
states for~1.6!. They are given in terms of parabolic cylinder functionsDn(x). Using the
Gel’fand–Maurin spectral decomposition we find the resolvent operatorR(z,Ĥ)5(Ĥ2z)21 and
relate its poles to the resonant states. Finally, we investigate the scattering problem and de
relation between resonant and scattering states. It is shown that resonant states have the
Breit–Wigner energy distribution.

As a by-product we established an interesting relation between the Gel’fand distribu
u6

l 23,24 ~used in Ref. 1! and parabolic cylinder functionsDn(x). The details are included in th
Appendix.

II. INVERTED OSCILLATOR AND COMPLEX EIGENVALUES

Let us note thatĤ defined in~1.6! corresponds to the Hamiltonian of the harmonic oscilla
with purely imaginary frequencyv56 ig ~in the literature it is also called an inverted or revers
oscillator!. The connection with a harmonic oscillator may be established by the following sc
operator:25

V̂lªexpS l

2
~ x̂p̂1 p̂x̂! D , ~2.1!

with lPR. Using commutation relation@ x̂,p̂#5 i , this operator may be rewritten as follows:
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V̂l5e2 i ~l/2! el x̂p̂5e2 i ~l/2! e2 ilx]x, ~2.2!

and therefore it defines a complex dilation, i.e., the action ofV̂l on a functionw5w(x) is given
by

V̂l w~x!5e2 i ~l/2! w~e2 il x!. ~2.3!

In particular, one easily finds

V̂l x̂ V̂l
215e2 ilx̂ , V̂l p̂ V̂l

215eilp̂, ~2.4!

and hence

V̂l ~ p̂22g2x̂2! V̂l
215e2il ~ p̂22e24ilg2x̂2!. ~2.5!

Therefore, fore4il521, i.e.,l56p/4, one has

V̂6p/4 Ĥ V̂6p/4
21 56 iĤ ho, ~2.6!

where

Ĥho5
1
2 ~ p̂21g2x̂2!, ~2.7!

stands for the oscillator Hamiltonian. In particular, ifEn
ho5g(n1 1

2) is an oscillator spectrum

Ĥhocn
ho5En

hocn
ho, ~2.8!

then

Ĥfn
656Enfn

6, ~2.9!

with

En5 iEn
ho5 ig~n1 1

2!, ~2.10!

and

fn
6~x!5V̂7p/4 cn

ho~x!5e6 ip/8 cn
ho~e6 ip/4x!. ~2.11!

Now, recalling that~see, e.g., Ref. 26!

cn
ho~x!5Nn e2 ~g/2! x2

Hn~Agx!, ~2.12!

whereHn stands for thenth Hermite polynomial and the normalization constant

Nn5S Ag

2nn!Ap
D 1/2

, ~2.13!

one obtains the following formulas for the generalized eigenvectors ofĤ:

fn
6~x!5Nn

6 e7 i ~g/2! x2
Hn~A6 igx!, ~2.14!

with
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Nn
65e6 ip/8 Nn5S A6 ig

2nn!Ap
D 1/2

. ~2.15!

Clearly, fn
6 are not elements fromL2(R) but they do belong to the dual of the Schwartz spa

S(Rx)8, i.e., they are tempered distributions.
Proposition 1:Two families of generalized eigenvectorsfn

6 satisfy the following properties:
1. They are conjugated to each other:

fn
1~x!5fn

2~x!. ~2.16!

2. They are orthonormal

^ fn
6ufm

7 &5dnm. ~2.17!

3. They are complete

(
n50

`

fn
6~x! fn

7~x8!5d~x2x8!. ~2.18!

The proof follows immediately from orthonormality and completeness of oscillator eigenfunc
cn

ho. Formula~2.16! implies thatfn
1 and fn

2 are related by the time-reversal operatorT:Tcªc̄.

III. CHANGE OF REPRESENTATION

It should be clear that there exists a relation between generalized eigenvectorsfn
6(x) and

f n
6(u) found in Ref. 1,

f n
1~u! ; un, f n

2~u! ; d (n)~u!. ~3.1!

They define the same eigenvectorsu6n & but in different representations

fn
6~x!5^ xu6n &, f n

6~u!5^ uu6n &.

To find this relation, let us observe that the canonical transformation~1.5! is generated by the
following generating function:

S~x,u!5
g

2
x22A2gxu1

1

2
u2, ~3.2!

that is

p5
]S

]x
, v52

]S

]u
. ~3.3!

Let us define a unitary operator

U:L2~Ru!→L2~Rx!

by

f →~Uf !~x!5C E
2`

`

f ~u!eiS(x,u) du, ~3.4!
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where the constant ‘‘C’’ is determined by

uCu2 E
2`

`

eiS(x,u) e2 iS(x8,u) du5d~x2x8!. ~3.5!

It implies C5eia C0 , wherea is an arbitrary phase and

C05S g

2p2D 1/4

. ~3.6!

In the next section it would be clear that a natural choice for the phase isa52p/8. Clearly,U
may be extended to act onS(Ru)8. It is easy to show that

U~S~Ru!8!,S~Rx!8. ~3.7!

Proposition 2:The generalized eigenvectorsfn
6PS(Rx)8 and f n

6PS(Ru)8 are related by:

fn
65U f n

6. ~3.8!

Proof. Let us show thatfn
15Uf n

1 , that is

fn
1~x! ; E uneiS(x,u)du. ~3.9!

Using the definition ofS(x,u), one has

E uneiS(x,u)du5~2 iA2pg!2neig x2/2
dn

dxn E eiu2/22 iA2gxudu

5A22p i ~2 iA2pg!2ne2 ig x2/2S eigx2 dn

dxn e2 igx2D . ~3.10!

Now, due to the well-known formula for the Hermite polynomials

eiz2 dn

dzn e2 iz2
5~21!nHn~z!, ~3.11!

one obtains

E uneiS(x,u)du5A22p i S i

2D 2 n/2

e2 ig ~x2/2!Hn~Aigx!;fn
1~x!. ~3.12!

To prove thatfn
25Uf n

2 , let us note that

fn
2~x!5fn

1~x! ; E une2 iS(x,u)du. ~3.13!

It turns out that a function

S̃~x,v !52S~x,v !52
g

2
x21A2gxv2

1

2
v2,

serves as a generating function for the canonical transformation~1.5!
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p5
]S̃

]x
, u52

]S̃

]v
.

Now, taking into account thatf n
1 and f n

2 are related by the Fourier transformation

un5A2p~2 i !nF21@d (n)~k!#~u!, ~3.14!

one obtains

E une2 iS(x,u)du5A2p~2 i !nE d (n)~u!F21@e2 iS#~u! du. ~3.15!

Finally,

F21@e2 iS#~u!5
1

A2p
E e2 iku e2 iS(x,k)dk5A2 i eiS(x,u), ~3.16!

and hence

fn
2~x! ; E d (n)~u!eiS(x,u)du, ~3.17!

which ends the proof. h

IV. ENERGY EIGENSTATES

The spectrum of the self-adjoint operator~1.2! readss(Ĥ)5(2`,`) and the corresponding
energy eigenstates~in u-representation! are given by~cf. Sec. 6 in Ref. 1!

c6
E ~u!5

1

A2pg
u6

2( iE/g11/2), ~4.1!

with EPR. For the basic properties of the tempered distributionsu6
l PS(Ru)8, we refer the reader

to Refs. 23, 24~see also the Appendix in Ref. 1!. Now, using (x,p) coordinates, the correspondin
eigenvalue problem1

2( p̂22g2x̂2)xE5ExE reads

]x
2xE~x!1~g2x212E!xE~x!50. ~4.2!

Introducing a new variable

z5A2ig x, ~4.3!

the above equation may be rewritten as follows:

]z
2xE1S n1

1

2
2

z2

4 DxE50, ~4.4!

with

n52S i
E

g
1

1

2D , ~4.5!

which is the defining equation for the parabolic cylinder functions.27–29 Its solutionxE(z) is a
linear combination ofDn(z), Dn(2z), D2n21( iz), andD2n21(2 iz). @These four functions are
linearly dependent. For the linear relation see, e.g., formula 9.248 in Ref. 27.# On the other hand,
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the energy eigenstates inx-representationxE(x) may be obtained by applying the operatorU
defined in~3.4! to the corresponding eigenstates inu-representationc6

E (u)

x6
E ~x!5~Uc6

E !~x!5CE
2`

`

c6
E ~u! eiS(x,u) du. ~4.6!

Hence

x1
E ~x!5

C

A2pg
eig/2 x2E

0

`

un e2 iA2gxu1 iu2/2 du5
C

A2pg
Ai n11 e2y2/4E

0

`

jn eyj2j2/2 dj,

~4.7!

with y5A22ig x, and using an integral representation forDp(y) @formula 9.241~2! in Ref. 27#

Dp~y!5
e2y2/4

G~2p!
E

0

`

j2p21 e2yj2j2/2 dj, ~4.8!

one finds

x1
E ~x!5

C0

A2pg
Ai n11/2G~n11!D2n21~2A22igx!, ~4.9!

with n given in ~4.5!. The validity of this formula is restricted in Ref. 27 for Rep,0. However, as
we shall show~see the proof of Proposition 4!, it is valid for all pPC. Similarly, using an obvious
relation (2u)1

l 5u2
l , one obtains

x2
E ~x!5

C0

A2pg
Ai n11/2G~n11!D2n21~A22igx!, ~4.10!

that is,x2
E (x)5x1

E (2x). Actually, instead ofx6
E one may use energy eigenstates with the defin

parity

xeven
E 5

1

&
~x1

E 1x2
E !, ~4.11!

xodd
E 5

1

&
~x1

E 2x2
E !, ~4.12!

that is

Pxeven
E 5xeven

E , Pxodd
E 52xodd

E , ~4.13!

whereP stands for the parity operator.
Proposition 3:Energy eigenstatesx6

E satisfy

E
2`

`

x6
E ~x!x6

E8~x! dx5d~E2E8! ~4.14!

and

E
2`

`

x6
E ~x!x6

E ~x8! dE5d~x2x8!. ~4.15!
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The proof follows immediately from the analogous properties satisfied by energy eigenstatc6
E

in u-representation.1

In Ref. 1 we have also used another generalized basisF@c6
2E#(u). Now, we find itsU image

in S(Rx)8. Recalling the Fourier transformation ofx6
l ~see Ref. 23 and Appendix in Ref. 1!

F@x6
l #~u!5

6 i

A2p
e6 ilp/2 G~l11!~u1 i0!2l21, ~4.16!

one has

F@c1
2E#~u!5

1

A2pg

~2 i !n

A2p
G~2n!~u1 i0!n. ~4.17!

Therefore, the correspondingx-representation

h1
E ~x!5~U F@c1

2E# !~x! ~4.18!

is given by

h1
E ~x!5

C

A2pg

~2 i !n

A2p
G~2n! E

2`

`

~u1 i0!neiS(x,u)du

5
C

A2pg

~2 i !n

A2p
~2Ai !n11 G~2n! ey2/4E

2`

`

~j1 i0!n e22j222iyj dj, ~4.19!

with y5A2igx. Now, using the following integral representation@formula 9.241~1! in Ref. 27#:

Dn~y!5
1

Ap
2n11/2~2 i !ne~y2/4! E

2`

`

~j1 i0!n e22j212iyj dj, ~4.20!

one obtains

h1
E ~x!5

C0

A2pg
Ai n11/2G~2n!Dn~2A2igx!. ~4.21!

Similarly, one shows that

h2
E ~x!5~U F@c2

2E# !~x! ~4.22!

is given by

h2
E ~x!5

C0

A2pg
Ai n11/2G~2n!Dn~A2igx!. ~4.23!

Let us note that

n1152n ~4.24!

and

Ai n11/25Ai n11/2. ~4.25!
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Clearly, the transitionn11→2n is equivalent toE→2E and it corresponds to the fact tha
Ĥh1

E 52Eh1
E , while Ĥx1

E 51Ex1
E . The symmetry betweenx6

E and h6
E fully justifies the

specific choice of the phase factor in the constantC. One has

h6
E ~x!5x6

E ~x!, ~4.26!

that is, they are related by the time-reversal operatorT:h6
E 5T x6

E . Thus energy eigenstatesh6
E

correspond to the time-reversed system. This way, all four solutions of~4.4! were used to construc
four families of energy eigenstates:x1

E , x2
E , h1

E , andh2
E .

V. ANALYTIC CONTINUATION, RESOLVENT, AND RESONANCES

Now, let us continue the energy eigenfunctionsx6
E and h6

E into the energy complex plan
EPC and let us study its analyticity as functions ofE.

Proposition 4:The parabolic cylinder functionDl(z) is an analytic function oflPC.
For the proof see the Appendix. Due to the above proposition the analytic properties

energy eigenfunctions are entirely governed by the analytic properties of theG function which is
present in the definition ofx6

E and h6
E . Since G~l! has simple poles atl52n, with n

50,1,2,..., functionsx6
E have poles atE52En , whereas functionsh6

E have poles atE5En ,
whereEn is defined in~2.10!. Using a well-known formula for a residue of theG function

Res~G~l!;l52n!5
~21!n

n!
, ~5.1!

one has

Res~x6
E ~x!;2En!5

C0

A2pg

~21!n

n!
Ai 2n21/2Dn~7A22igx!, ~5.2!

and

Res~h6
E ~x!;1En!5

C0

A2pg

~21!n

n!
Ai n11/2Dn~7A2igx!. ~5.3!

Hence, using the relation27–29 ~in Ref. 27 the corresponding equation 9.253 has a wrong sign!

Dn~z!522 ~n/2! e2z2/4 HnS z

A2
D , n50,1,2,... , ~5.4!

together with

Hn~2z!5~21!nHn~z!, ~5.5!

one obtains

Res~x6
E ~x!;2En! ; fn

1~x!, ~5.6!

and

Res~h6
E ~x!;1En! ; fn

2~x!. ~5.7!

Now, it is natural to introduce two Hardy classes of functions.30,31 Recall that a smooth
function f 5 f (E) is in the Hardy class from aboveH 1

2 ~from belowH 2
2 ) if f (E) is a boundary
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value of an analytic function in the upper, i.e., ImE>0 ~lower, i.e., ImE<0) half complexE-plane
vanishing faster than any power ofE at the upper~lower! semi-circleuEu→`. Define

F2ª$fPS~Rx! u f ~E!ª^ x6
E uf &PS~RE!ùH 2

2 ~RE! %, ~5.8!

and

F1ª$fPS~Rx! u f ~E!ª^ h6
E uf &PS~RE!ùH 1

2 ~RE! %. ~5.9!

It is evident from~4.26! that F15F2, that is

F15T~F2!. ~5.10!

This construction enables one to define two Gel’fand triplets,

F6,L2~Rx!,F68 . ~5.11!

Note, thatH 6
2 (RE) are Hilbert spaces and the Fourier transform define an isometry bet

L2(2`,0) @respectively, L2(0,̀ )] and H 1
2 (RE) @respectively, H 2

2 (RE)]. Defining C6

ªS(RE)ùH 6
2 (RE) one obtains the following rigged Hilbert spaces of Hardy class functions

C6,H 6
2 ~RE!,C68 ,

introduced by Gadella.13

Due to the Gel’fand–Maurin spectral theorem,2,3 any functionf2PF2 may be decomposed
with respect tox6

E family

f2~x!5(
6

E
2`

`

dE x6
E ~x!^ x6

E uf2 &, ~5.12!

and any functionf1PF1 may be decomposed with respect toh6
E family

f1~x!5(
6

E
2`

`

dE h6
E ~x!^ h6

E uf1 &. ~5.13!

Applying the residue theorem, one easily proves the following.
Theorem 1: For any functionf6PF6 , one has

f2~x!5 (
n50

`

fn
2~x!^ fn

1uf2 &, ~5.14!

and

f1~x!5 (
n50

`

fn
1~x!^ fn

2uf1 &. ~5.15!

The proof goes along the same lines as the corresponding proof of Theorem 2 in Ref. 1. The
theorem implies the following spectral resolutions of the Hamiltonian:

Ĥ5(
6

E
2`

`

dE Eux6
E &^ x6

E u52 (
n50

`

Enufn
2 &^ fn

1u, ~5.16!

on F2 , and
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Ĥ5(
6

E
2`

`

dE Euh6
E &^ h6

E u5 (
n50

`

Enufn
1 &^ fn

2u, ~5.17!

on F1 . The same techniques may be applied for the resolvent operator

R~z,Ĥ !5
1

Ĥ2z
. ~5.18!

One obtains

R~z,Ĥ !5(
6

E
2`

` dE

E2z
ux6

E &^ x6
E u 5 (

n50

`
1

2En2z
ufn

2&^ fn
1u, ~5.19!

on F2 , and

R~z,Ĥ !5(
6

E
2`

` dE

E2z
uh6

E &^ h6
E u 5 (

n50

`
1

En2z
ufn

1&^ fn
2u, ~5.20!

on F1 . Hence,R(z,Ĥ)uF2
has poles atz52En , andR(z,Ĥ)uF1

has poles atz5En . As usual,

eigenvectorsfn
2 and fn

1 corresponding to poles of the resolvent are interpreted as resonant s
Note that

2
1

2p i R
gn

R~z,Ĥ !dz5ufn
1 &^ fn

2uª P̂n, ~5.21!

wheregn is a closed curve that encircles the singularityz5En . Clearly

P̂n• P̂m5dnmP̂n, ~5.22!

and the spectral decomposition ofĤ may be written as follows:

Ĥ5 (
n50

`

EnP̂n52 (
n50

`

EnP̂n
†. ~5.23!

Finally, let us note, that restriction of the unitary groupU(t)5e2 iĤ t defined on the Hilbert
spaceL2(R) to F6 no longer defines a group. It gives rise to two semigroups

U2~ t !:F2→F2 for t>0, ~5.24!

and

U1~ t !:F1→F1 for t<0. ~5.25!

These semigroups frequently appear in the literature on the rigged Hilbert space appro
scattering phenomena, see, e.g., an article by Bo¨hm and Harshman in Ref. 11. We stress that
Hardy classesF6 used in our paper have slightly different meaning. Bo¨hm’s spaces describe th
preparedin andout states. In our case they are not directly related to the scattering experimen
serve as subspaces of initial conditions.

Using ~5.16!, ~5.17!, and the formula forEn5 ig(n11/2), one finds

f2~ t !5U2~ t !f25 (
n50

`

e2g(n11/2)t P̂n
†f2, ~5.26!
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for t>0, and

f1~ t !5U1~ t !f15 (
n50

`

eg(n11/2)t P̂nf1, ~5.27!

for t<0. We stress thatf t
2 (f t

1) does belong toL2(R) also for t,0 (t.0). However,f t
2

PF2 (f t
1PF1) only for t>0 (t<0). This way the irreversibility enters the dynamics of t

reversed oscillator by restricting it to the dense subspaceF6 of L2(R).

VI. SCATTERING VS RESONANT STATES

To compare the physical properties of energy eigenstatesx6
E andh6

E and resonant statesfn
6 ,

let us investigate its asymptotic behavior atx→6`. Following Ref. 29~see also Refs. 19, 20! one
finds

x2
E ~x→1`! ;A1

x
expF i S g

2
x21

E

g
log~A2gx!1

p

4

E

g
1

p

8 D G , ~6.1!

and

x2
E ~x→2`!; iA1

xH ~11e22p ~E/g!!expF2 i S g

2
x21

E

g
log~A2gx!2

p

4

E

g
1

3p

8
1f D G

2e2p ~E/g! expF i S g

2
x22

E

g
log~A2gx!2

p

4

E

g
1

p

8 D G J , ~6.2!

wheref5argG(2i E/g11/2)5G(n11). Puttinga52E/g in Eq. 19.17.9 in Ref. 29 and usin
relation 19.3.1

U~a,x!5D2a2 1/2~x!,

one finds

US 2 i
E

g
,A2gxe2 ~1/4! ipD5D2n21~A22igx! ; x2

E ~x!.

Hence, energy eigenstatesx2
E represent scattering states~see Ref. 19 for more details!. The same

is true forx1
E andh6

E . In particular, one finds for the reflection and transmission amplitudeR
andT for x6

E scattering states:17,19

R~x6
E !52

i

A2p
e2pE/2g GS 1

2
2 i

E

g D , ~6.3!

T~x6
E !5

1

A2p
epE/2g GS 1

2
2 i

E

g D . ~6.4!

Clearly, computingR andT for time-reversedh6
E scattering states, one finds

R~h6
E !5R~x6

E !, T~h6
E !5T~x6

E !. ~6.5!

Note thatR(x6
E ) andT(x6

E ) have poles atE52En , whereasR(h6
E ) andT(h6

E ) have poles at
E51En . Obviously, the corresponding reflection and transition coefficientsuRu2 and uTu2 are
time-reversal invariant.

On the other hand, the eigenstatesfn
6 behave as follows:
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fn
1~x→6`! ; ~6Aigx!n e2 i ~g/2! x2

, ~6.6!

and

fn
2~x→6`! ; ~6A2 igx!n ei ~g/2! x2

. ~6.7!

Note thatfn
2 are purely outgoing states, whereasfn

1 are purely ingoing states. Moreover, resona
states have Breit–Wigner energy distribution. Indeed

^ x2
E ufn

1 & ; G~2n! E
2`

`

Dn~A2g ix ! fn
1~x! dx. ~6.8!

Now, Dn is an entire function ofn and G(2n) has poles atn5kPN. In the domain wheren
11.Ren>1, one has

G~2n!5analytical part1 (
k50

n
~21!k

k! ~k2n!k. ~6.9!

Hence

^ x2
E ufn

1 &;analytical function ofE 1 (
k50

n
~21!k

k! S k1 i
E

g
1

1

2D ^ fk
2ufn

1 &

;analytical function ofE 1
g

E2En
, ~6.10!

which is consistent with the Breit–Wigner formula.

APPENDIX

The integral formula 9.241~2! in Ref. 27

Dl~y!5
e2 y2/4

G~2l!
E

2`

`

j1
2l21 e2yj2j2/2 dj, ~A1!

contains two objects:G(2l) and a distributionj2l21 which are singular forl50,1,2,... . How-
ever, it is easy to see23 that

j1
2l21

G~2l!
U

p5n

5d (n)~j!, ~A2!

which shows that~A1! defines an entire function oflPC. The same is true for

Dl~y!5
e2y2/4

G~2l!
E

2`

`

j2
2l21 eyj2j2/2 dj, ~A3!

due to

j2
2l21

G~2l!
U

l5n

5~21!nd (n)~j!. ~A4!

The second integral representation given by 9.241~1! in Ref. 27
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Dl~y!5
1

Ap
2l11/2~2 i !ley2/4 E

2`

`

~j1 i0!l e22j212iyj dj, ~A5!

where (j1 i0)l5j1
l 1eiplj2

l , seems to have poles atl521,22,... . However, the limit
liml→2n(j1 i0)l is well defined23

~j1 i0!2n5j2n2
ip~21!n21

~n21!!
d (n21)~j!. ~A6!

Thus, formula~A5! also defines an entire function ofl.
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1D. Chruściński, J. Math. Phys.44, 3718~2003!.
2I. M. Gel’fand and N. Y. Vilenkin,Generalized Functions~Academic, New York, 1964!, Vol. IV.
3K. Maurin, General Eigenfunction Expansion and Unitary Representations of Topological Groups~PWN, Warszawa,
1968!.
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Galerkin analysis for Schro ¨ dinger equation by wavelets
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We consider the perturbed Schro¨dinger equation, which is an elliptic operator with
unbounded coefficients. We use wavelets adapted to the Schro¨dinger operator to
deal with problems on the unbounded domain. The wavelets are constructed from
Hermite functions, which characterizes the space generated by the Schro¨dinger
operator. We show that the Galerkin matrix can be pre-conditioned by a diagonal
matrix so that its condition number is uniformly bounded. Moreover, we introduce
a periodic pseudo-differential operator and show that its discrete Galerkin matrix
under periodic wavelet system is equal to the Galerkin matrix for the equation with
unbounded coefficients under the Hermite system. The convergence is proved in
the L2 topology. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1643541#

I. INTRODUCTION

Wavelets have been applied to differential and integral operators in recent years.5 The main
advantage of the wavelet numerical scheme compared with the finite element method a
multilevel method is that for the resulting system of algebraic equations its condition num
uniformly bounded after a simple preconditioning~see, e.g., Jaffard12 and Dahmen5!. Moreover, its
stiffness matrix can be approximated by a sparse matrix.2,4,5

With wavelets constructed through the usual multiresolution analysis method,7 they cannot be
readily applied to operators with unbounded coefficients such as the Schro¨dinger equation ap-
peared in quantum mechanics

2u9~x!1x2u~x!5 f ~x!, 2`,x,`,

as well as operators with singular coefficients. This kind of~partial! differential equations appear
in mathematics and physics.

Our purpose in this paper is to use a wavelet basis of the spaceL2(R) of the square-integrable
functions on the real lineR so that we can apply a Galerkin scheme to the numerical analys
the following perturbed Schro¨dinger equation,

2„a~x!u8~x!…81b~x!u~x!5 f ~x!, 2`,x,`,

which can be viewed as a model of second-order elliptic operators with unbounded coeffic
The wavelets$c j ,k% j ,kPZ generated from a mother waveletc are the time–frequency local

ization of the Fourier kernel$eixj%, which forms a set of eigenfunctions of the second-or
differential operator2d2/dx2. Jaffard12 successfully adapted wavelets on the finite domain to
analysis of the general second-order elliptic operator2d/dx„A(x)d/dx…1B(x) with regular co-
efficients.

a!Electronic mail: bhan@math.ualberta.ca
8550022-2488/2004/45(3)/855/15/$22.00 © 2004 American Institute of Physics
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Frazier and Zhang8 studied the Bessel operator2g9(x)1 (n221/4)/x2 g(x) with singular
coefficients. They used the Bessel functionJn(x) and the Hankel transform. Their basis functio
were obtained through the Hankel transform of the Meyer wavelets. These basis function
explicit expressions in the Hankel domain just as the Meyer wavelets do in the Fourier do

In this paper we shall use eigenfunctions of the Schro¨dinger operator, namely the Hermit
functions, to construct a wavelet-like basis and then adapt them to the analysis of the pe
Schrödinger equation with unbounded coefficients.

Our basis is adapted to a Schro¨dinger operator and can be explicitly expressed using
Hermite functions and a known wavelet function from an MRA. These functions are obta
through a similarity between the Hermite functions and the orthonormal system$ein2px%nPZ in-
stead of the continuous version$eixj%. Moreover, this construction can be easily generalized
any operators with a complete eigenfunction system.

Hermite functions have been utilized to approximate solutions of partial differential equa
on unbounded domains in the context of the spectral method~Refs. 9, 11, 14!. When dealing with
problems on unbounded domain with a finite difference method or finite element method nu
cally, one often restricts calculations to some bounded domains and imposes certain condit
artificial boundaries, which causes numerical errors. The Hermite functions defined on the
real line can be used to avoid such difficulty. Meanwhile, with the spectral method, solution
be approximated with accuracy adapted up to its smoothness. Wavelet bases have been a
numerical solutions of partial differential equations since for its discrete stiffness matrix
pre-conditioner can be easily constructed and its entries can be compressed.5,12 Our method will
take advantage from both the eigenfunctions and the wavelet functions. We use the former
with the geometry of differential operators and regularities of their coefficients so that we can
with differential equations defined on unbounded domain with unbounded coefficients, an
latter to obtain a simple diagonal pre-conditioner.

The organization of this paper is as follows. In Sec. II, we shall present the construction
basis functions. We shall introduce a spaceH associated with the Schro¨dinger operator and give a
characterization of its functions in terms of their coefficients. We notice that the second-
Schrödinger operator acts like a first-order differential operator according to Theorem 3 wh
the main result of Sec. II. In Sec. III, we shall use the Galerkin method to approximate solu
of the perturbed Schro¨dinger equations. Then, we shall estimate the condition number for
discrete Galerkin matrix and establish the convergence of the Galerkin scheme in theL2(R) space.
Finally, we shall introduce a periodic pseudo-differential operator and show that its discrete
kin matrix under a periodic wavelet system is equal to the Galerkin matrix for the equation
unbounded coefficients under the Hermite system.

II. HERMITE WAVELETS

We shall use Hermite functions to construct wavelets, for the background on their applic
to numerical solutions of partial differential equations; the reader is referred to Refs. 9–11, 1
Hermite polynomials are defined by

hn~x!5~21!nex2 dn

dxn ~e2x2
!, n50,1,... .

These polynomials are orthogonal in the weighted sense,

E
2`

`

hn~x!hm~x!e2x2
dx52nn!Apdm,n ,

wheredm,n is the Kronecker symbol such thatdm,n51 whenm5n anddm,n50, otherwise. It is
possible to start with these polynomials, but since the corresponding approximation resu
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measured in a weighted sense, their performance might become poor for largex due to the
presence of the negative power of the exponentiale2x2

. We therefore use Hermite function
instead.

The normalized Hermite function under the norm ofL2(R) is defined to be

en~x!5
e2x2/2hn~x!

A2nn!Ap
, with ieniL2(R)51, n50,1,..., ~1!

which satisfies the Schro¨dinger equation,

2en9~x!1x2en~x!5~2n11!en~x!, n50,1,... .

For fixed n, the functionen is well-localized in the spatial domain. Moreover, it has t
following asymptotic behavior:10

e2n~x!5
~21!n~2n21!!!

A~2n!!Ap
Fcos~A4n11x!1OS 1

A4 n
D G , as n→`,

e2n11~x!5
~21!n~2n21!!!

A~2n11!!Ap
Fsin~A4n13x!1OS 1

A4 n
D G , as n→`.

We consider the Schro¨dinger operatorL defined onC0
`(R) by

~Lu!~x!52u9~x!1x2u~x!, uPC0
`~R!, ~2!

whereC0
`(R) consists of compactly supportedC` functions onR.

For the positive operatorL, we introduce a norm by

iuiH5^Lu,u&1/2.

The domain of the operatorL can be extended to the Hilbert spaceH defined by

H5$u : uPC0
`~R!such thatiuiH,`%,

which is the completion ofC0
`(R) under the normi•iH .

Functions in the spaceH can be characterized by the expansion coefficients under the
$en%nPZ . For a proof, the reader is referred to Ref. 13.

Lemma 1:Let uPL2(R) with u5(n50
` ^u,en&en . ThenuPH if and only if

(
n50

`

~2n11!u^u,en&u2,`. ~3!

The Fourier transformŵ of w is defined to be

ŵ~j!5E
2`

`

w~x!e2 i2pxj dx.

Let w be a function inL2(R) such that the following occurs.

~1! w is a father wavelet; that is,ŵ(2j)5m(j)ŵ(j) for some 1-periodic measurable functionm.
~2! The shifts ofw are orthonormal; that is,

^w~•2k!,w~•2k8!&5dk,k8 , ; k,k8PZ.

~1! w is normalized byŵ(0)51 and there exist two positive constantsC ands.1 such that
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uŵ~j!u<C~11uju!2s, ; jPR. ~4!

Throughout the paper,C always denotes a general constant.
For example, the father wavelets in the Meyer wavelets and all of the Daubechies wa

~except the Haar wavelet! satisfy all the above three conditions in~1!, ~2! and ~3!.
Now we define a mother wavelet functionc ~see Ref. 7! by

ĉ~j!5e2 i j/2m~j/211/2!ŵ~j/2!.

We useZ1 to denote the set of non-negative integers. Denotew j ,k52 j /2w(2 j
•2k) and c j ,k

52 j /2c(2 j
•2k). It is well known that for anyj 0PZ1 ,

$w j 0 ,k : kPZ%ø$c j ,k : j > j 0 ,kPZ% ~5!

is an orthonormal basis forL2(R). It follows from ~4! that uĉ(j)u<C(11uju)2s for all jPR
sinceum(j)u<1.

Let T5R/Z be the torus. Throughout the paper, we shall use the following notation. Fo
uPL2(R), we define a functionuperPL2(T) as follows:

uper~x!ª(
l PZ

u~x1 l !, xPT. ~6!

Using the Poisson summation formula, foruPL2(R) satisfying uû(j)u<C(11uju)2s, ; j
PR for someC ands.1, we have

uper~x!5(
l PZ

u~x1 l !5 (
nPZ

û~n!ei2pnx. ~7!

Using the Hermite functions$en%n50
` and the wavelet basis in~5!, we can construct a wavelet

like system inL2(R) as follows.
Theorem 1: Let w andc be given above such that the system in~5! is an orthonormal basis

for L2(R). Let en be the Hermite functions defined in~1!. For j PZ1 and k50,1,...,2j21, we
define

F j ,k522 j /2e01 (
n51

`

@w j ,k̂~n!e2n1w j ,k̂~2n!e2n21#, ~8!

C j ,k5 (
n51

`

@c j ,k̂~n!e2n1c j ,k̂~2n!e2n21#. ~9!

Then for anyj 0PZ1 ,

$F j 0 ,k : k50,1,...,2j 021%ø$C j ,k : j > j 0 ,k50,1,...,2j21% ~10!

is an orthonormal basis forL2(R).
Proof: When the functionsw andc are the Meyer wavelets, the assertion was proved in D6

For completeness, here we present a sketch of the proof.
Note that the system in~5! is an orthonormal basis forL2(R). By a simple argument, it can b

easily shown that

$~w j 0 ,k!
per : k50,1,...,2j 021%ø$~c j ,k!

per : j > j 0 ,k50,1,...,2j21% ~11!

is an orthonormal basis forL2(T). Sincew j ,k̂(0)522 j /2 andc j ,k̂(0)50, it follows from ~7! that
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~w j 0 ,k!
per~x!5 (

nPZ
w j 0 ,k̂~n!ei2pnx522 j 0/21 (

n51

`

@w j 0 ,k̂~n!ei2pnx1w j 0 ,k̂~2n!e2 i2pnx#,

~12!

~c j ,k!
per~x!5 (

nPZ
c j ,k̂~n!ei2pnx5 (

n51

`

@c j ,k̂~n!ei2pnx1c j ,k̂~2n!e2 i2pnx#.

Replacing 1,ei2pn• ande2 i2pn• by e0 , e2n ande2n21 in ~12!, we obtain~8! and ~9!. Note that
$en%n51

` is an orthonormal basis forL2(R) and$ei2pn•%n52`
` is an orthonormal basis forL2(T).

Now one can easily show that the system in~10! is an orthonormal basis forL2(R) since the
system~11! is an orthonormal basis forL2(T).

The advantage of replacing the orthonormal basis$en%n50
` by the wavelet-like orthonorma

basis in~10! lies in the fact that the new system preserves many desirable features of a w
system.

As a direct consequence of Theorem 1, we have the following result.
Theorem 2: Let uPL2(R). Then for anyj 0PZ1 , we have

u5 (
k50

2 j 021

^u,F j 0 ,k&F j 0 ,k1 (
j 5 j 0

`

(
k50

2 j 21

^u,C j ,k&C j ,k , in L2~R!.

Lemma 2:The functionsF j ,k andC j ,k belong toH for all j PZ1 andk50,1,...,2j21.
Proof: We only proveF j ,kPH. The proof forC j ,k is similar. Since$en%n50

` is orthonormal,
it follows from the definition ofF j ,k in ~8! that

^F j ,k ,en&5H w j ,k̂~n/2!, n even,

w j ,k̂~2~n11!/2!, n odd.

Hence, by~4! ands.1, we have

(
n50

`

~2n11!u^F j ,k ,en&u25~22 j /2!21 (
n51

`

@~4n11!uw j ,k̂~n!u21~4n21!uw j ,k̂~2n!u2#

522 j122 j (
n51

`

@~4n11!uŵ~n/2j !u21~4n21!uŵ~2n/2j !u2#

<22 j122 jC(
n51

`

@~4n11!~11n/2j !22s1~4n21!~11n/2j !22s#

,`.

By Lemma 1, we conclude thatF j ,kPH.

Let Vj5span$F j ,k%k50
2 j 21. The subspaceVj will serve as our Galerkin approximation space. B

Lemma 2, we have the following result.
Lemma 3:For eachj PZ1 , Vj is a subspace of the Hilbert spaceH.
We shall use the Sobolev spaceHs(T) which consists of all functionsf PL2(T) such that

i f is5S (
nPZ

~11n2!su f̂ ~n!u2D 1/2

,`,

where the discrete Fourier transformf̂ (n) of f PL2(T) is defined to be

f̂ ~n!5E
T
f ~x!e2 i2pnx dx, nPZ.
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Throughout this paper, we use the notationA'B, which means that there exist positive consta
C1 andC2 , independent ofA,B, such thatC2B<A<C1B.

A periodic functionuPHs(T) can be characterized in terms of wavelet coefficients in
periodic wavelet system in~11!. For a proof of the following result, the reader is referred to Re
3, 7.

Lemma 4:Let uPHs(T)(s.0) be decomposed into

u~x!5c0,0~w0,0!
per~x!1(

j 50

`

(
k50

2 j 21

dj ,k~c j ,k!
per~x!, xPT.

Then we have the following norm equivalence:

iuis'S uc0,0u21(
j 50

`

22 js (
k50

2 j 21

udj ,ku2D 1/2

.

To prove our main results of this section, it is convenient to use pseudo-differential oper
For a background on pseudo-differential operators, see Taylor.15,16 Let p:Z→C be a symbol. The
pseudo-differential operatorP(D) with the symbolp is defined to be

@P~D !u#~x!5 (
nPZ

ei2pnxp~n!û~n!, uPC`~T!. ~13!

Lemma 5:Suppose that the symbolp satisfies

p~n!'~11n2!r /2,

for somer .0. Then foruPHr /2(T), we have

^P~D !u,u&'iui r /2
2 .

Proof: For uPC`(T), we have the Fourier expansion

u~x!5 (
nPZ

û~n!ei2pnx.

From the orthogonality of$ei2pn•%nPZ in L2(T), we have

^P~D !u,u&5 (
nPZ

p~n!uû~n!u2.

Sincep(n)'(11n2) r /2, we have

^P~D !u,u&' (
nPZ

~11n2!r /2uû~n!u25iui r /2
2 .

This completes the proof.
We now characterize the spaceH via our wavelet system$F0,0%ø$C j ,k : j PZ1 ,k

50,1,. . . ,2j21%.
Theorem 3: Suppose thatuPH is decomposed as

u5c0,0F0,01(
j 50

`

(
k50

2 j 21

dj ,kC j ,k . ~14!
                                                                                                                



861J. Math. Phys., Vol. 45, No. 3, March 2004 Schrödinger equation by wavelets

                    
Then for the Schro¨dinger operatorL, we have

^Lu,u&'uc0,0u21(
j 50

`

2 j (
k50

2 j 21

udj ,ku2. ~15!

Proof: From the definition ofF j ,k andC j ,k , by Theorem 1, we have

u5c0,0e01(
j 50

`

(
k50

2 j 21

dj ,k(
n51

`

@c j ,k̂~n!e2n1c j ,k̂~2n!e2n21#.

Hence, by applying the operatorL, we have

Lu5c0,0e01(
j 50

`

(
k50

2 j 21

dj ,k(
n51

`

@c j ,k̂~n!~4n11!e2n1c j ,k̂~2n!~4n21!e2n21#.

By the orthogonality of the Hermite system$en%n50
` , we get

^Lu,u&5uc0,0u21 (
j , j 850

`

(
k50

2 j 21

(
k850

2 j 821

dj ,kdj 8,k8(
n51

`

@~4n11!c j ,k̂~n!c j 8,k8̂~n!

1~4n21!c j ,k̂~2n!c j 8,k8̂~2n!#. ~16!

Consider the pseudo-differential operatorP(D) with the symbolp given by

p~n!5H 4n11, n>0,

4unu21, n,0.
~17!

Then we havep(n)'(11n2)1/2.
From ~7! we deduce that

uper5c0,01(
j 50

`

(
k50

2 j 21

dj ,k(
nPZ

c j ,k̂~n!ei2pn•. ~18!

Hence, the application of the pseudo-differential operatorP(D) with symbolp defined in~17! can
be written as

P~D !uper5c0,01(
j 50

`

(
k50

2 j 21

dj ,k(
nPZ

p~n!c j ,k̂~n!ei2pn•. ~19!

From ~18! and ~19! we get

^P~D !uper,uper&5uc0,0u21 (
j , j 850

`

(
k50

2 j 21

(
k850

2 j 821

dj ,kdj 8,k8(
n51

`

@~4n11!c j ,k̂~n!

3c j 8,k8̂~n!1~4n21!c j ,k̂~2n!c j 8,k8̂~2n!#. ~20!

By ~17! and Lemma 5 we conclude that

^P~D !uper,uper&'iuperi1/2
2 . ~21!

On the other hand, by Lemma 4,
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iuperi1/2
2 'uc0,0u21(

j 50

`

2 j (
k50

2 j 21

udj ,ku2. ~22!

Combining~16!, ~20!–~22!, we conclude that~15! holds.
We point out that in~15! the exponent of 2j is 1 instead of 2 for the second-order different

operatorL, as compared to Lemma 4.

III. GALERKIN ANALYSIS

In this section, we consider the perturbed Schro¨dinger operator,

~Su!~x!52
d

dx S a~x!
du~x!

dx D1b~x!u~x!, xPR, ~23!

where the functionsa andb are measurable and satisfy

0,a1<a~x!<a2 , 0,b1<b~x!/x2<b2 , ; xPR, ~24!

for some positive constantsa1 ,a2 ,b1 andb2 . In this section, we are interested in the perturb
Schrödinger equationSu5 f .

We shall use the wavelet system$F0,0%ø$C j ,k : j PZ1 ,k50,1,. . . ,2j21% to construct a
Galerkin approximation scheme for the Schro¨dinger equationSu5 f with a given function f
PL2(R). We shall first show that the resulting system of algebraic linear equations can be
conditioned by a diagonal matrix. We then show that the Galerkin solution converges. Ne
shall show that the discrete Galerkin scheme for the differential equation with unbounded c
cients is equivalent to a discrete Galerkin scheme of a periodic pseudo-differential operato
latter equation is naturally related to the spectral Galerkin approximation using Hermite fun
to solve the equation~23!.

A. Galerkin scheme

We use the subspaceVJ,H, which is defined by

VJ5span$FJ,k%k50
2J21

to be the Galerkin space. Since the space$Vj% j PZ1
forms a multi-resolution analysis,6 the sub-

spaceVJ can be also spanned by

VJ5span$F0,0,C j ,k : 0< j ,J,0<k,2 j%. ~25!

For convenience of notation, we denote

C05F0,0 and Cm5C j ,k , m51,2,..., ~26!

where j ,k are the unique non-negative integers such thatm52 j1k and 0<k,2 j .
The Galerkin scheme for the Schro¨dinger equationSu5 f with f PL2(R) is to find uJPVJ

such that

^SuJ ,v&5^ f ,v&, ; vPVJ . ~27!

In view of ~25!, ~27! is equivalent to

^SuJ ,Cm&5^ f ,Cm&, m50,1,...,2J21. ~28!

SinceuJPVJ , there existc0,0 anddj ,k , j 50,...,J21,k50,...,2j21 such that
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uJ5c0,0F0,01 (
j 50

J21

(
k50

2 j 21

dj ,kC j ,k5 (
m50

2J21

dmCm,

where we denoted05c0,0,dm5dj ,k for m52 j1k and 0<k,2 j .
Using matrix notation, the system of equations~28! takes the following form:

MJd5FJ , ~29!

whereMJ is a 2J32J matrix with entriesMm,m8 given by

Mm,m85^SCm,Cm8&,

andF5(^ f ,Cm8&)T is a column vector, andd5(d0,d1,...,d2J21)T is the unknown vector.

B. Pre-conditioning

We now estimate the condition number of the matrixMJ in terms of the scaleJ. Let DJ be the
2J32J diagonal matrix with diagonal elements,

d0,051, d(2 j 1k),(2j 1k)52 j /2, j 50,1,...,J21, k50,1,...,2j21.

Then the equationMJd5FJ can be rewritten as

DJ
21MJDJ

21DJd5DJ
21FJ . ~30!

Let AJ5DJ
21MJDJ

21 ,xJ5DJd andbJ5DJ
21FJ . Then the system of equations~30! becomes

AJxJ5bJ . ~31!

We show that as a function ofJ, the condition number of the matrixAJ is uniformly bounded.
Lemma 6:Assume that~24! holds. LetAJ be defined as in~31!. Then for anyJ, we have

^AJv,v&'^v,v&, ; vPC2J
, ~32!

where^•,•& is the inner product inC2J
. Hence, the system of equations~31! is uniquely solvable.

Proof: For the vector v, we define g5v0C0,01( j 50
J21(k50

2 j 21v2 j 1k2
2 j /2C j ,k . Then by

Lemma 3,gPH. Integrating by parts gives

^Sg,g&5^2~ag8!81bg,g&5^ag8,g8&1^bg,g&'^Lg,g&,

where~24! has been used in the last step. Furthermore, by Theorem 3, we have

^Lg,g&'uv0u21 (
j 50

J21

2 j (
k50

2 j 21

uv2 j 1k2
2 j /2u25uv0u21 (

j 50

J21

(
k50

2 j 21

uv2 j 1ku25 (
m50

2J21

uvmu25^v,v&.

On the other hand, from~26! we haveg5(m50
2J21vm22 j /2Cm and

^Sg,g&5 (
m,m850

2J21

vmvm82
2( j 1 j 8)/2^SCm,Cm8&5^AJv,v&.

Therefore,̂ AJv,v&'^v,v&, as desired.
By Lemma 6 we now estimate the condition number of the matrixAJ in Eq. ~31!. We have the

following result.
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Theorem 4: Under the assumption in~24!, the condition numbers of the matricesAJ (J
PZ1) are uniformly bounded~independent ofJ).

Proof: By Lemma 6, the ratio of the largest eigenvalue and the smallest eigenvalue o
matrix AJ is uniformly bounded. Since the condition number of a matrix can be estimated a
ratio of its largest eigenvalue and smallest eigenvalue, we conclude that the condition num
the matricesAJ are uniformly bounded.

C. Convergence of the Galerkin scheme

In this subsection we show that the approximate solutionuJ in ~27! converges to the solution
u of ~23! whenJ→1`. The convergence is not in the weighted norm but directly in theL2(R)
sense. We have the following result.

Theorem 5: For J.0, let u anduJ be solutions of~23! and~27!, respectively. Then we hav
the estimate

iu2uJiH<C inf
vJPVJ

iu2vJiH , ~33!

whereC is a constant independent ofJ. In particular, we have

uJ→u, in L2~R!.

Proof: For wPVJ , from ~23! and ~27! we have

^S~u2uJ!,w&50.

SinceS is self-adjoint and positive, as in the proof Lemma 6, we have

iu2uJiH
2'^S~u2uJ!,u2uJ&5^S~u2uJ!,u2vJ&<Ciu2uJiH•iu2vJiH .

Hence, we have

iu2uJiH<Ciu2vJiH , ; vJPVJ ,

which proves~33!. Moreover, by virtue of Theorem 3 we have

iu2uJiL2(R)<iu2uJiH .

Hence,uJ→u in L2(R). The proof of Theorem 5 is complete.

D. Spectral approximation

Hermite functions are eigenfunctions of the Schro¨dinger operator. We can use them to a
proximate solutions of the equation~23! in the context of the spectral method.

We introduce the notation

ñ5H 2n, if n>0,

2unu21, if n,0.

For the differential operatorS defined in~23!, let q be a function fromZ3Z to R defined by

q~n,n8!5^Señ ,eñ8&, n,n8PZ. ~34!

Then the truncated matrix„q(n,n8)…unu,un8u<N(NPZ1) is the Galerkin matrix of the spectral ap
proximation of the operatorS by Hermite functions.

When S is the Schro¨dinger operatorL in ~2!, we haveq(n,n8)5(2ñ11)dn,n8 , which is a
diagonal matrix. In general, the matrixq is a full matrix.
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E. A pseudo-differential operator

We introduce a periodic pseudo-differential operator connected to the Schro¨dinger equation
Su5 f . This also suggests the necessity to study numerical solutions for pseudo-differ
equations.3,4

Lemma 7:Let q be defined as in~23! and assume that~24! holds. Then for everynPZ,
$q(n,•)% is square summable, that is,(n8PZuq(n,n8)u2,`.

Proof: Let nPZ. Then we have

(
n8PZ

uq~n,n8!u25 (
n8PZ

u^Señ ,eñ8&u
2

5u^Señ ,e0&u21 (
n51

`

~ u^Señ ,e2n8&u
21u^Señ ,e2n821&u2!

5 (
n850

`

u^Señ ,en8&u
2

5iSeñi2

,`,

since$en8%n8PZ is an orthonormal basis forL2(R).
Lemma 8:Suppose that the functionsa andb satisfy the condition~24!. Then we have

(
n,n8PZ

cncn8q~n,n8!' (
nPZ

~2unu11!ucnu2.

Proof: Let u5(nPZcneñ . Then by Lemma 1 we have

(
n,n8PZ

cncn8q~n,n8!5 (
n,n8PZ

^Scneñ ,cn8eñ8&5^Su,u&'^Lu,u&' (
nPZ

~2unu11!ucnu2,

which completes the proof.
For (x,n)PT3Z, we use the symbol

p~x,n!5(
l PZ

q~n,n1 l !ei2p lx.

It follows that

q~n,n8!5E
0

1

p~x,n!ei2p(n2n8)x dx.

Consider the periodic pseudo-differential operatorP(•,D) with symbolp(x,n)

@P~x,D !u#~x!5 (
nPZ

ei2pnxp~x,n!û~n!, uPC`~T!. ~35!

Theorem 6: Suppose that the assumption~24! holds. Then the pseudo-differential operat
defined in~35! can be extended toH1(T). Moreover, the operatorP(•,D) is positive and there is
a positive constantC such that

P~•,D ! : H1~T!°L2~T! and ^P~•,D !u,u&>Ciui1/2
2 , ;uPH1/2~T!.
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Proof: For u,vPC`(T), we have

^P~•,D !u,v&5E
0

1

@P~x,D !u#~x!v~x!dx

5E
0

1S (
nPZ

ei2pnxp~x,n!û~n! D S (
n8PZ

ei2pn8xv̂~n8!D dx

5 (
n,n8PZ

û~n!v̂~n8!E
0

1

ei2p(n2n8)xp~x,n!dx5 (
n,n8PZ

û~n!v̂~n8!q~n,n8!.

Hence, by Lemma 8, we have

u^P~•,D !u,v&u<U (
n,n8PZ

û~n!v̂~n8!q~n,n8!U
<CS (

nPZ
~11n2!uû~n!u2D 1/2S (

n8PZ
uv̂~n8!u2D 1/2

5Ciui1ivi0 , ; vPC`~T!.

It follows that iP(•,D)ui<Ciui1 . Moreover, we have

^P~•,D !u,u&5 (
n,n8PZ

û~n!û~n8!q~n,n8!' (
nPZ

~11unu2!1/2uû~n!u25iui1/2
2 .

SinceC`(T) is dense inH1/2(T) andH1(T), the proof of Theorem 6 is complete.

F. Galerkin scheme for the pseudo-differential operator P„",D…

For a pseudo-differential operatorP(•,D) which is defined in~35! and for any given periodic
function f perPL2(T), we consider the periodic problem onT,

@P~x,D !uper#~x!5 f per~x!, xPT. ~36!

We use two bases onT to approximate solutions of~36!. The first basis is the standard Fouri
basis$ei2pnx%nPZ and the second one is the periodic wavelet basis.

The Galerkin scheme for the periodic pseudo-differential equation~36! with a Fourier basis is
to find

uN
per~x!5 (

unu<N
unei2pnx,

so that

^P~•,D !uN
per,v&5^ f per,v& ; vPspan$ei2pnx : n52N,2N11, . . . ,N%. ~37!

The system of algebraic equations in~37! can be rewritten as

FNuN5 f N ,

whereFN5$^P(•,D)(ei2pn•),ei2pn8•&% is a (2N11)3(2N11) matrix, f N5$^ f per,ei2pn•&%T and
uN5(u2N ,u2N11 , . . . ,uN)T. It can be easily verified that the discrete Galerkin matrixFN is
equal to the Galerkin matrix~34!, that is, we have

FN5„q~n,n8!…unu,un8u<N .
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The Galerkin scheme for the periodic pseudo-differential equation~36! with periodic wavelets
is to find

uper5d01 (
j 50

J21

(
k50

2 j 21

d2 j 1k~c j ,k!
per

such that

^P~•,D !uper,v&5^ f per,v& ; vPspan$~wJ,k!
per~x!: k50,...,2J21%. ~38!

Rewriting the system of equations~38! in terms of$dm%m50
2J21, we get the matrix equation

PJd5 f J , ~39!

where PJ5$^P(•,D)Cm8
per,Cm

per&% is a 2J32J matrix, f J5$^ f per,Cm
per&%T is a 2J31 vector, and

d5$(d0 ,d1 ,...,d2J21)T%. Here we have used the notationC0
per5(w0,0)

per51 and Cm
per

5(c j ,k)
per, where j ,k are the unique non-negative integers such thatm52 j1k and 0<k,2 j .

G. Equivalence of the Galerkin matrix MJ and PJ

In this subsection we show that the Galerkin equation~27! for the operatorS can be realized
by the pseudo-differential operatorP(•,D).

We show that the matrixMJ defined in~29! is equal to the matrix defined in~39!. To this end,
we introduce an isomorphism betweenL2(R) andL2(T). Suppose thatf PL2(R) has an expan-
sion,

f ~x!5 (
n50

`

f nen~x!, xPR,

we define a one-periodic functionfI (x) by

fI ~x!5 f 01 (
n51

`

@ f 2nei2pnx1 f 2n21e2 i2pnx#, xPT. ~40!

It is easy to show thatfIPL2(T) and in facti f iL2(R)5i fI iL2(T) . Moreover, we have the following
result connecting the differential operatorS with the pseudo-differential operatorP(•,D).

Lemma 9:For any f PH andgPL2(R), if fI andgI are defined in~40!, then we have

^S f,g&5^P~•,D ! fI ,gI &. ~41!

Proof: By ~40!, it suffices to prove~41! for g(x)5en(x),nPZ1 . First we consider the cas
g5e2n ,nPZ1 . For f (x)5(n50

` f nen(x) such that all but finitely manyf n are zeros, by definition
the periodic functiongI (x)5ei2pnx. Hence, we have

^S f,e2n&5 (
n850

`

f n8^Sen8 ,e2n&,

and for the pseudo-differential operator,
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^P~•,D ! fI ,gI &5 f 0^P~•,D !~1!,ei2pn•&1 (
n851

`

@ f 2n8^P~•,D !~ei2pn8•!,ei2pn•&

1 f 2n821^P~•,D !~e2 i2pn8•!,ei2pn•&#

5 f 0E
0

1

p~x,0!e2 i2pnx dx1 (
n851

` F f 2n8E
0

1

p~x,n8!ei2p(n82n)x dx

1 f 2n821E
0

1

p~x,n8!ei2p(2n82n)x dxG
5 f 0q~0,n!1 (

n851

`

@ f 2n8q~n8,n!1 f 2n821q~2n8,n!#

5 f 0^Se0 ,e2n&1 (
n851

`

@ f 2n8^Se2n8 ,e2n&1 f 2n821^Se2n821 ,e2n&#.

The proof for g5e2n11 is similar. The proof of Lemma 9 is complete by the facts th
span$en : nPZ1% is dense inH and$en : nPZ1% is an orthonormal basis forL2(R).

Lemma 10:For k50,1,...,2j21, j , j 850,1,...,J21 andk850,1,...,2j 821, for the differential
operatorS and the pseudo-differential operatorP, we have

^SF j ,k ,C j 8,k8&5^P~•,D !„~w j ,k!
per!,~c j 8,k8!

per&,

^SC j ,k ,C j 8,k8&5^P~•,D !„~c j ,k!
per
…,~c j 8,k8!

per&,

^SF j ,k ,F j 8,k8&5^P~•,D !„~w j ,k!
per
…,~w j 8,k8!

per&.

Proof: From the definition of the functionsF j ,k and C j ,k , according to~40!, it is easy to
verify thatF j ,k5(w j ,k)

per andC j ,k5(c j ,k)
per. Hence, Lemma 10 follows directly from Lemma 9

The following result is a direct consequence of Lemma 10:
Theorem 7: Let the matricesMJ andPJ be defined, respectively, in~29! and ~39!. Then we

haveMJ5PJ .
Numerical solutions of pseudo-differential equations by means of wavelets have been s

in several papers such as Refs. 2–4. By Theorem 7 and some results in the literature, the s
matrix PJ could be compressed and be approximated by a sparse matrix.

IV. CONCLUSION

We have presented an approximation method to deal with second order elliptic equation
unbounded coefficients on an unbounded domain. The combination of Hermite function
wavelet functions have the advantages from both the wavelet approximation method a
spectral method.

Note added in the revised version: After submitting this paper, we became aware that mu
resolution norm equivalences in weighted spacesLw

2
„(0,1)… with a weight functionw in ~0,1! have

been obtained in Ref. 1. The Galerkin scheme proposed in this paper deals with the pe
Schrödinger equations with unbounded coefficients on the unbounded domainR. Our approxima-
tion results are measured directly in theL2(R) andHs(R) spaces instead of in a weighted sense
in Ref. 1 which deals with the bounded domain~0,1!.
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A random matrix approach to the crossover
of energy-level statistics from Wigner to Poisson
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Hervé Kunz
Institut de Physique The´orique, EPFL, CH-1015 Lausanne, Switzerland

~Received 16 May 2002; accepted 30 November 2003!

We analyze a class of parametrized random matrix models, introduced by Rosen-
zweig and Porter, which is expected to describe the energy level statistics of quan-
tum systems whose classical dynamics varies from regular to chaotic as a function
of a parameter. We compute the generating function for the correlations of energy
levels, in the limit of infinite matrix size. The crossover between Poisson and
Wigner statistics is measured by a renormalized coupling constant. The model is
exactly solved in the sense that, in the limit of infinite matrix size, the energy-level
correlation functions and their generating function are given in terms of a finite set
of integrals. © 2004 American Institute of Physics.@DOI: 10.1063/1.1644752#

I. INTRODUCTION

Random Matrix Theory~RMT!,1 originally introduced by Wigner to characterize the statisti
behavior of the energy levels of nuclei, has found many successful applications in various fie
physics in recent years. Originally, it was thought that RMT was applicable only to com
systems with many degrees of freedom. Hence, it came as a surprise when it was found
could equally well describe simple quantum systems, with very few degrees of freedom, as l
their classical dynamics were chaotic. The first evidence of this fact was provided in the se
paper by Bohigaset al.2 in which the energy level fluctuations of the quantum Sinai billiard w
analyzed and shown to be consistent with the predictions of the Gaussian orthogonal ense
RMT. Since this pioneering work, it has been checked numerically on a wide variety of sys
that the local statistical properties of the energy levels of a quantum system, whose cl
counterpart is chaotic, are well-described by RMT. In particular, the nearest neighbor sp
distribution was found to be in excellent agreement with the spacing distribution between ad
eigenvalues of random matrices.

In contrast, Berry and Tabor3 had given strong arguments to justify that, for integrable syste
with more than one degree of freedom, the nearest neighbor spacing distribution of the qu
energy levels should have a Poisson distribution, characteristic of uncorrelated levels. Th
been confirmed by many numerical studies. There now exist excellent reviews on this topi4,5

However, it is well-known in classical mechanics that purely integrable or purely ch
systems are rare~at least for systems with a few degrees of freedom!. For most systems, the phas
space is partitioned into regular and chaotic regions and hence these systems can be refer
mixed systems.

An important physical system illustrating these different behaviors, is the hydrogen atom
magnetic field. The classical system is essentially integrable~chaotic! at weak~strong! fields but
appears to be mixed at intermediate values of the field. This classical behavior has its coun
in the energy level statistics of the corresponding quantum system, which exhibits a cro
from Poisson to Wigner-type, when the magnetic field is increased.6 It is, therefore, important to
find models of random matrices which could describe the statistics of the energy levels o
mixed systems. Qualitatively, such a model should be governed by a Hamiltonian matrix wh
8700022-2488/2004/45(3)/870/17/$22.00 © 2004 American Institute of Physics
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essentially a sum of two parts, one describing the chaotic part of phase space and hence be
to the Wigner–Dyson ensemble of the relevant symmetry, and the other corresponding
regular part of phase space. A number of authors have studied models in which block-di
GOE matrices are weakly coupled by matrix elements also belonging to a GOE ensemble7,8 In
this paper, we consider another class of models, first introduced by Rosenzweig and Po9 to
describe the observed deviations from the Wigner and Poisson statistics in the spectra o
transition metal atoms.

This class of models is governed by an ensemble ofN3N matrices of the form,

H5A1
l

Na G, ~1!

whereA andG are either real symmetric matrices~in the orthogonal case! or complex self-adjoint
ones ~in the unitary case!. The matrix elements ofG are chosen to be independent rando
variables with a Gaussian distribution of unit variance. In the context of quantum chaos,G is
supposed to correspond to the chaotic region of the classical phase space and hence its eig
distribution should obey the Wigner–Dyson statistics. In contrast,A should correspond to the
classically regular region and hence its eigenvalues should exhibit Poisson statistics. It is
seen that the statistics of the energy levels ofH depend only on the eigenvalues ofA. Hence,
without loss of generality, the matrixA can be chosen to be diagonal. The simplest type of mo
which can be considered is, therefore, the following one:A is a diagonal matrix, whose elemen
are independent random variables with a probability distributionn(•). Different behaviors can be
expected by varying the exponenta in ~1!. the The casea51/2, corresponds to a perturbe
Wigner–Dyson ensemble. It was recently analyzed by Brezin and Hikami.10 They considered the
case in whichG belongs to the Gaussian Unitary ensemble~GUE! and A is a fixed diagonal
matrix. They showed that the energy level statistics for such a matrix ensemble was the s
that ofG, i.e., the statistics relevant to the GUE. Ifa.1, the energy level statistics is expected
be Poissonian. The valuea51 corresponds to thecrossover regimeand for it one expects new
statistics. In fact, by making a numerical study of this model, Rosenzweig and Porter showe
if one chooses the exponenta to be unity, then one obtains energy level statistics which
intermediate between Wigner and Poisson statistics.

Analytical studies of the model fora51, has been done only in the unitary case. Th
studies made use of certain special features of unitary matrices. However, the case of the
which one encounters more often, and is technically more challenging, had remained vi
unsolved thus far. The only results for this case were perturbative ones in the smalll limit.11

In this article, we develop a technique which can be used to study the spectral correlatio
the case in whichG belongs to the GOE as well as to the one in which it belongs to the GUE
compute the generating function for the average value of the product of traces of adv
Green’s functions, and the mixed product of traces of advanced and retarded Green’s functio
the correlation functions of energy levels can be obtained from it, in the limit whereN goes to
infinity.

In the casea51, our result for the generating function~in the infiniteN limit ! is in the form
of a finite set of ordinary integrals. Quite generally, we show that the density of states at an e
e is given byn(e), and that all the correlation functions are universal functions depending on
the ‘‘renormalized’’ coupling constantL5ln(e). This suggests that in order to make a compa
son of the results of the model with a given quantum system, it might be plausible to takeL to be
the ratio ofr(e) andr reg(e), wherer(e) is the classsical Louiville measure of the energy surfa
andr reg(e) is the measure corresponding to the regular part of the phase space.

In order to obtain more concrete results, one needs to evaluate the integrals appearing
expression for the generating functions. This explicit computation, which turns out to be a
lengthy one, has been done in this paper for the generating function for the two-point corre
function, in the unitary case. From it we can recover the two-point correlation function itse
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the form of certain integrals over modified Bessel functions. In the orthogonal case, the gene
function, even for the two-point correlation function, appears in the form of integrals over el
functions and we postpone the study of it to a future paper.

Recently, there has been a certain interest in the computation of the generating fu
itself.12–14 In the case of the standard Wigner unitary ensemble this has been motivated
connection between such a RMT and the statistics of the zeroes of the Riemann zeta functi
think therefore that it is worth reporting the expression we get for the two-point gener
function in the unitary case, for the Rosenzweig–Porter ensemble. In the unitary case, in
approaches the formula of Harish-Chandra and Itzykson–Zuber15,16 proved to be very useful
Recently, Guhr and Kohler17,18have extended it to the orthogonal and symplectic cases and, u
this approach, have obtained an expression for the two-point correlation function in the ortho
case for the Rosenzweig–Porter model. However, it is not possible to compare their resul
those of this paper due to the difference in the two approaches and the complexity of the for

We would like to make a few remarks about the technique used in this paper. We basica
integrals over auxiliary Grassmannian variables to compute the average over the distribution
Hamiltonian. However, finally, we evaluate these Grassmannian integrals so as to arriv
representation in terms of ordinary integrals, in the largeN limit. Such an approach for the averag
Green’s function and density of states of a random matrix model was made by Ziegler20 and
Brezin.21 It is similar, of course in spirit, to the familiar supersymmetric approach, introduce
Efetov19 in this kind of problem. Note, however, that in the articles using the supersymm
technique, the supersymmetry plays a crucial role for the computation of the saddlepoint
action, and of the fluctuations around it. In contrast, in the case considered in this paper, we
have to compute a saddlepoint and Grassmannian variables are only used as an intermed
in the computation, for purposes of simplification. In this case, no further simplication ca
achieved by the use of supersymmetry.

II. GENERATING FUNCTION

We want to calculate the correlation functionsr (n)(e1 ,...,en) of the eigenvaluesl j of an N
3N self-adjoint matrixH. They are defined as

r (n)~e1 ,...,en!5K )
a51

n

r̂~ea!L , ~2!

where

r̂~e!5
1

N (
j

d~e2l j !

is the local density of eigenvalues at the energye. The angular brackets will henceforth indica
an average over the probability distribution ofH.

If Gs(e) denotes the advanced (s511) and retarded (s521) Green’s function

Gs~e!5
1

e2H2 is«
,

then

r̂~e!5 lim
«↑01

H 1

2p iN
tr@G1~e!2G2~e!!G .

We will use the following identity to compute@ tr Gs(e)#/N:
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]

]«6

det@~«2 /N!1N1 is ~e1N2H !#

det@~«1 /N!1N1 is ~e1N2H !#
U

«25«1

57
1

isN
tr Gs~e!.

The symbol1N is used to denote theN3N identity matrix. Hence, it is evident that the correlatio
functions of energy levels can be obtained from thegenerating function

Jn
S5K )

a51

n
det@«2~a!/N1 isa ~ea2H !#

det@«1~a!/N1 isa ~ea2H !# L , ~3!

whereS5$sa%a51
n , saP$1,21%, and«6(a).0, by taking suitable derivatives of it with respe

to the variables«2(a) or «1(a).
In particular, the density of states is given by

r~e!5r (1)~e!5 lim
«2↑01

ReH 1

p

]

]«2
J1

1U
«25«1

J
and the two-point correlation function by

r (2)~e1 ,e2!5 lim
«2↑01

ReH 1

2p2

]2@J2
121J2

11#

]«2~1! ]«2~2!
U

«25«1

J .

In this paper, we will consider HamiltoniansH of the form

H5A1
l

N
G, ~4!

whereG is anN3N matrix whose elements are independent random variables with a Gau
distribution of unit variance and zero mean. When the matrix elements ofG are real~complex!,
the matrixG belongs to the Gaussian orthogonal~unitary! ensemble of standard RMT. Since th
probability distribution ofG is independent of the basis, the correlations of the energy levelsH
depend only on the eigenvalues$aj% of A. Hence, without loss of generality, we can chooseA to
be a diagonal matrix whose elements are independent random variables with a probability
bution n(aj ).

A. The orthogonal case for finite matrix size

Consider a mixed system governed by a Hamiltonian matrix of the form~4!, with the matrix
G belonging to the Gaussian orthogonal ensemble~GOE!. In this case, it is convenient to expre
the generating functionJS as the ratio of thesquare rootsof the determinants of an antisymmetr
matrix and a symmetric one. This is because one can cast such a ratio as a product of in
over real and Grassmannian variables. In this way the average over the matrixG and a can be
easily done. After some standard manipulations, the generating function can be written as fo

JS5~detS!N/2 e~1/2l2![tr(r1S)22tr r2
2 ] E Dn~A!E Dw1 E Dw2 e2 ~l2/2N2!tr[L1

t S)21~r1SN/l2!] 2

3 e~l2/2N2!tr[L2
t Y2 ~r2N/l2!] 2

e2(w1 ,(iS^ (e1N2A)w1) e2(w2 ,(iY ^ ~l2/N2! T)w2). ~5!

The integration is carried over the vectorsw1 , whose components are real, andw2 , whose
components are Grassmanian variables, as well as over the variables denoted byaj . We have used
the notation
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Dn~A!ª)
j 51

N

daj n~aj !, ~6!

where then(aj )’s denote the probability distributions of the variablesajs. The 2n32n matrices
Ls, with s51,2, and theN3N matrix T are given by

Ls~paup8a8!5(
i 51

n

ws i~pa! ws i~p8a8!

and

Ti j 5 (
p51

2

(
a51

n

w1 i~pa! w1 j~pa!sa . ~7!

The 2n32n matricesS andY are given by

S~paup8a8!5daa8 dpp8sa , ~8!

Y~paup8a8!5daa8 g~pp8!, ~9!

where

g~pp!50, g~12!52g~21!51. ~10!

Since we consider correlation functions between energy levels around some energye, on the scale
of the mean level spacing, we have decomposed the energiesea into

ea5e1
r a

N
, ~11!

so that we have introduced the matricesr1 andr2 of elements

r1~paup8a8!5daa8dpp8@«1~a!1 ir asa#, ~12!

r2~paup8a8!5daa8dpp8@«2~a!sa1 ir a#. ~13!

With the help of Gaussian integrations over auxiliaryn3n matricesQ1 andQ2 , the expo-
nents in the integrands@on the RHS of~5!# can be reduced to quadratic forms inw1 andw2 . This
procedure, which is analogous to the Hubbard Stratonovich transformation, yields the follo
identities:

e2 ~l2/2N2!tr(L1
t S1 ~N/l2!Sr1)2

5
1

d1
E DQ1 e2 ~1/2!tr Q1

2
e2 ~ il/N!tr[Q1(L1

t S1 N/l2Sr1)] ,

and

e~l2/2N2!tr(L2
t Y2~N/l2! r2)2

5
1

d2
E DQ2 e2 ~1/2!tr Q2

2
e2 ~l/N!tr[Q2(L2

t Y2~N/l2! r2)] , ~14!

with

d65E DQ6 e2 ~1/2!tr Q6
2
. ~15!

Following Scha¨fer and Wegner22 we choose the matrixQ1 to be of the form
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Q15S Q112 iAd21Q12Q21 Q12

Q21 Q221 iAd21Q21Q12
D . ~16!

If sa521 for a51,...,q and sa51 for a5q11,...,n, then Q11 is a 2(n2q)32(n2q) real
symmetric matrix,Q22 is a 2q32q real symmetric matrix,Q12 is a 2q32(n2q) real matrix, and
Q21 is a 2(n2q)32q real matrix, such that

Q21
t 5Q12.

Here the superscriptt denotes the transpose of the matrix.
We considerQ2 to be Hermitian:Q2

† 5Q2 , so for n51 it reduces to a real number. I
addition, we requireQ2 to satisfy the following relation:

~Q2Y! t52~Q2Y!. ~17!

The constraint~17! on the matrixQ2 is imposed so as to ensure the validity of the ident
~14!. Indeed the latter identity, involving such a matrixQ2 , uses the fact that the linear term
Q2 , appearing in the exponential, is of the form tr(Q2EY), with E being an antisymmetric
matrix. We can therefore write the generating function in the form

JS5
~detS!N/2

d1 d2
E DQ1E DQ2 expS 2

1

2
trFQ11 i

Sr1

l G D 2

3 expS 2
1

2
trFQ22

r2

l G D 2

K̂~Q1 ,Q2! ~18!

with

K̂~Q1 ,Q2!5E Dn~a! E Dw1 e2(w1 ,(iS^ (e1N2A)w1) e2(w1 ,(il/N)SQ1 ^ 1N)w1)3I2 , ~19!

whereI2 is the integral over the Grassmannian variables$w2 j% and is given by

I25E Dw2 exp@2~w2 ,Rw2!#, ~20!

with

Rª
l

N
~YQ2! ^ 1N1Y ^ S i ~e1N2A!1

l2

N2 TD . ~21!

The matrixT is defined by~7!. In the following section we evaluate the integralI2 and show that
K̂(Q1 ,Q2) depends only on the eigenvalues of the matricesQ1 andQ2 .

Evaluation of the integralI2 : Due to the constraint~17! on the matrixQ2 , the matrixR,
defined by~21! is antisymmetric, and we obtain

I25AdetR. ~22!

Moreover, we can show, as follows, that the matrixR depends only on theeigenvaluesof the
matrix Q2 : Defining anN3N matrix A1 ,

A1ª i ~e1N2A!1
l2

N2 T, ~23!

we write
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detR5det~Y ^ 1N! detF l

N
Q2 ^ 1N112n^ A1G5det~Y ^ 1N! detF l

N
q2 ^ 1N112n^ A1G5..detC,

~24!

whereq2 is the diagonal matrix whose diagonal elements are the eigenvalues ofQ2 .
The elements of the matrixC, ~24!, are given by

C~pa, j up8a8, j 8!5Y~pp8!F l

N
q2~a!daa8 d j j 81daa8A1~ j j 8!G ,

whereq2(a)[q2(pa). This follows from the fact that the eigenvalues ofQ2 are doubly degen-
erate. Hence, the matrixC is antisymmetric in the label pand has the form

C5S 0 D

2D 0 D ,

whereD is annN3nN matrix defined as follows:

Dª

l

N
q̃2 ^ 1N11n^ A1 . ~25!

In ~25!, q̃2 denotes ann3n diagonal matrix with diagonal elementsq̃2a5q1a . This leads to the
result

I25detD.

From ~23! and ~25! it follows that

detD5 )
a51

n

detS q̃2a

l

N
1N1 i ~e1N2A!1

l2

N2 TD .

For eachaP$1,...,n%, let us define anN3N diagonal matrix

baªq̃2a

l

N
1N1 i ~e1N2A!. ~26!

In terms of this matrix, we can write

I2[detD5)
a

detba detS 1N1
l2

N2 ba
21TD . ~27!

For eacha, let Fa denote a 2n32n matrix whose elements are given by

Fa~pgup8g8!ª(
j 51

N

~ba
21! j w1 j~pg! w1 j~p8g8!.

If tr Aj5tr Bj for any arbitrary integerj , then

det~1n1A!5det~1m1B!. ~28!

Using ~28! we have the identity

detS 1N1
l2

N2 ba
21TD5detS 12n1

l2

N2 SFaD . ~29!
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Hence from~27!, ~26!, and~29! it follows that

I25)
j 51

N

detS l

N
q̃21 i ~e2aj !1nD )

a51

n

detS 12n1
l2

N2 SFaD , ~30!

where aj denotes a diagonal element of the diagonal matrixA. Using the representation of
determinant in terms of a Grassmannian integral, we can write

)
a

detS 12n1
l2

N2 SFaD5E DC̄ DC e2(C̄,C) e2(C̄,BC), ~31!

whereC (C̄) is a column~row! vector of length 2n2, and

~C̄,BC!5 (
a51

n

(
b,b851

2n

C̄a~b!Ba~bb8!Ca~b8!,

whereb now refers to the double index (pg) andBa denotes a 2n32n matrix whose elements ar
given by

Ba~bb8!5
l2

N2 S~b! Fa~bb8!,

with S(b)5sg . The relations~30! and ~31! yield the following expression for the integralI2 :

I25E DC̄ DC e2(C̄,C) )
j 51

N

detS l

N
q̃21 i ~e2aj !1nD

3expS 2F l2

N2 (
j 51

N

(
b,b851

2n

w1 j~b! w1 j~b8! Sb (
a51

n

@ba
21# j C̄a~b! Ca~b8!G D . ~32!

We can now insert the representation ofI2 , given by ~32!, in the expression~19! for K̂, and
perform the integration overw1 . This yields

K̂~Q1 ,Q2!5E DC̄ DC e2(C̄,C) E Dn~a! F )
j 851

N

detS l

N
q̃21 i ~e2aj 8!1nD G

3)
j 51

N

detFSS i ~e2aj !12n1 i
l

N
Q11

l2

N2 Rj D G2 ~1/2!

, ~33!

where eachRj is a 2n32n matrix with elements

Rj~bb8!5 (
a51

n

~ba
21! jC̄a~b! Ca~b8!5 (

a51

n S l

N
q̃2a1N1 i ~e1N2A! D

j

21

C̄a~b! Ca~b8!.

~34!

From the definition~6! of the measureDn(a), it follows that the expression forK̂(Q1 ,Q2)
involves a product ofN identical integrals and hence can be written in the form

K̂5~detS!2N/2E Dx̄Dxe2(x̄,x)PN, ~35!

where
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PªE da n~a! detS l

N
q̃21 i ~e2a!1nD detF i ~e2a!12n1 i

l

N
q11

l2

N2 RG21/2

, ~36!

with

R~bb8!5 (
a51

n S l

N
q̃2a1 i ~e2a! D 21

x̄a~b! xa~b8!. ~37!

Using the degeneracy of the eigenvalues ofa2 we can rewriteP as

P5E da n~a! FdetX2

detX1
G1/2

detS 1n1
l2

N2

M ~X1!

x2
D 1/2

, ~38!

whereM is the

Ma1a2
~q1!5 (

p51

2

(
g51

n xa1
~pg! x̄a2

~pg!

X1~pg!
,

andx2 is a diagonaln3n matrix of elementsx2(g).
Hence, the generating function in the orthogonal case, for finite matrix size, is given b

JS5
~detS!N/2

d1 d2
E DQ1E DQ2 expS 2

1

2
trFQ11 i

Sr1

l G D 2

3expS 2
1

2
trFQ22

r2

l G D 2

K̂~Q1 ,Q2!, ~39!

where

K̂5~detS!2N/2E Dx̄Dxe2(x̄,x)PN,

andP is given by~38!.

B. The unitary case for finite matrix size

When the Hamiltonian matrix~4!,

H5A1
l

N
G,

is such thatG belongs to the Gaussian unitary ensemble~GUE!, we arrive at an analogou
expression for the generating function. There is now no necessity to double the dimension
matrices so as to accommodate the real variables as we did in the GOE case. Proceeding
as before, we arrive at the following expression of the generating function:

JS5
1

d1 d2
E DQ1E DQ2 expS 2

1

2
trS Q11

iSr1

l D 2D expS 2
1

2
trS Q22

r2

l D 2D K̃~q1 ,q2!,

~40!

where

K̃5E Dx̄Dxe2(x̄,x)PN.
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Q2 is now simply ann3n self-adjoint matrix. Then3n matrix Q1 has the same block structur
as before, but nowQii with i 51,2 are self-adjoint matrices andQ125Q21

† . Herex̄,x are Grass-
mannian vectors of lengthn, andP is given by

PªE da n~a! FdetX2

detX1
G detS 1n1

l2

N2

M ~X1!

X2
D , ~41!

where

Ma1a2
5 (

g51

n xa1
~g! x̄a2

~g8!

X1~g!
,

andX6 are diagonaln3n matrices with diagonal elements

x1~g!ª i ~e2a!1 i
l

N
q1~g!, ~42!

x2~g!ª i ~e2a!1
l

N
q2~g!, ~43!

respectively.
The above relations,~40!–~41!, for the GUE, are found to be very similar in form to th

corresponding relations~18!–~38! for the GOE. The only difference lies in the fact that th
expression forP involvessquare rootsof determinants for the GOE@see~38!#, whereas there is no
square root appearing in the corresponding relation~41!, in the case of the GUE.

C. The orthogonal and unitary case in the limit of infinite matrix size

We will now evaluate the generating function in the limitN→`, from which the correlation
functions can be obtained by taking various derivatives with respect to the variables«2(a). It can
be easily shown that there is no problem in the interchange of the limitN→`, with the derivation
with respect to«2 , and the subsequent limit«25«1→0.

The result for the generating function both in the orthogonal (b51) and the unitary case
(b52) can be put in the following form:

JS5

expS ipb

2
tr~«22«1!SD
d1d2

E DQ1Dq2Dx̄Dx expS 2
1

2
trFQ11

ir1S

l
2

blp

2 G2D
3 expS 2

1

2
trFQ22

r2

l
2

iblp

2 G2

2~ x̄,x! D expS ln~e!FbAo

2
1A1

b1A2
bG D . ~44!

Here«6 aren3n matrices with diagonal elements«6(a), and

p5p~e!5PE da
n~a!

a2e
,

with the symbolP denoting the principal value of the integral. The matrixA0 is given by

A05 ip tr~q11 iq2!s~q1!,

wheres(q1) is the diagonal matrix whose elements are the signs of the imaginary parts o
eigenvaluesq1(pg) of the matrixQ1 ,
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A1
b5E

2`

1`

dt H S det~ t2 iq2!

det~ t1q1! D b/2

2F12
b

2
tr

q11 iq2

t1q1
G J

and

A2
b5E

2`

1`

dt S det~ t2 iq2!

det~ t1q1! D b/2

@det~12Rb!b/221#, ~45!

where

Raa8
1

5
1

t2 iq2~a! (
p51

2

(
g51

n
x̄a~pg!xa8~pg!

t1q1~pg!

and

Raa8
2

5
1

t2 iq2~a! (
g51

n
x̄a~g!xa8~g!

t1q1~g!
.

This is the main result of this paper. We have expressed the generating function for the corr
functions in terms of a finite set of integrals. Hence we have reduced the problem of the c
tation of the generating function, in the limit of infinite matrix size, to that of the evaluation
finite set of integrals. This was our main purpose, since, starting from this explicit expressio
can proceed to evaluate the physically relevant correlation functions. However, as we shall s
task of evaluating these integrals is nontrivial. Nevertheless, a general conclusion can be
from this expression by noting that the generating function has the following structure:

JS5expS ipb

2
tr@~«22«1!S# D KSS n«2 ,n«1 ,H nr a1

l2bn p

2 J ,L D ,

whereL5l n(e), can be called therenormalized coupling constant.
Since the correlation functions can be computed from the generating function by usin

formula

S 1

2p D n

)
a51

n
]

]«2~a!
J(1n ,21n) U

«25«150

5r (n)~r 1 ,...,r n!,

where

J(1n ,21n)5K )
a51

n det@«2
2 ~a!1 ~ea2H !2#

det@«1
2 ~a!1 ~ea2H !2# L ,

is positive, it follows that

J(1n ,21n)5uK (1n ,21n)u,

and thereforer (n) has the structure

r (n)~r 1 ,...,r n!5nn f b
(n)~r 1n1a,r 2n1a,...,r nn1a;L!, ~46!

with a5l2b/2. However, since the correlation functions are translation invariant, the RHS of~46!
does not depend ona.
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We shall prove that the density of statesr(e) is equal ton(e). We can therefore conclude tha
on the scale of energy where the mean level spacing is equal to unity, the correlation functions are
universal, i.e., they depend only onb andL. More precisely,

F 1

r~e!G
n

r (n)S r 1

r~e!
,...,

r n

r~e! D5 f b
(n)~r 1 ,r 2 ,...,r n ;L!.

Let us now derive Eq.~44!. We start with the expressions for the generating functionsJS for the
orthogonal@~39!# and unitary@~40!# cases. The integrals~38! and ~41! which occur in these
expressions can be written in the form of a single integral:

P5E da n~a! S detX2

detX1
D b/2 S detF 11

l2M ~X1!

N2X2
G D b/2

.

We decompose this into three terms, i.e.,P5P01P11P2 , where

P0ª11
b

2 E da n~a! tr
X22X1

X1
,

P1ªE da n~a!H S detX2

detX1
D b/2

2F11
b

2
tr

X22X1

X1
G J

and

P2ªE da n~a!S detX2

detX1
D b/2 H FdetS 11

l2M ~X1!

N2X2
D Gb/2

21J .

Let us first evaluateP0 in the large-N limit,

E da n~a!tr
X22X1

X1
52

l

N E da n~a!trF ~q11 iq2! S ~e2a!12n1
l

N
q1D 21G . ~47!

Since Imq1(g)Þ0, the integral on the RHS of~47! tends to the expression

2p~e!2 ipn~e!s1~pg!

asN→`, wheres1(pg) denotes the sign of the imaginary part of the eigenvalueq1(pg).
Hence, for largeN,

P0511
l

N

b

2
@p tr~q11 iq2!1 ipn tr~q11 iq2!s~q1!#,

wheres(q1) is the diagonal matrix with elementss1(pg). In the second term,P1 , we make the
change of variablese2a5tl/N, so that it reads

P15
l

N E
2`

1`

dt n~e2tl/N!H S det~ t2 iq2!

det~ t1q1! D b/2

2F12
b

2
tr

q11 iq2

t1q1
G J .

The term in parentheses is bounded int and decays like 1/t2 when t is large, since Imq1(g)Þ0.
Hence, we can use the dominated convergence theorem23 to show that if

sup
t

n~ t !,`,

andn(t) is continuous, then for largeN,
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P15
ln~e!

N
A1

b .

The termP2 is treated in exactly the same way asP1 , so that asymptotically,

P25
ln~e!

N
A2

b .

Finally,

lim
N→`

PN5expS lbp

2
tr~Q11 iQ2!1lnFb2 A01A1

b1A2
bG D . ~48!

Here and henceforth, we writen for n(e). Expression~44! for the generating function,JS, in the
limit of infinite matrix size, is obtained by substituting~48! in expressions~39! and ~40! and
completing the squares inQ1 andQ2 .

III. THE DENSITY OF STATES AND THE AVERAGE OF THE PRODUCT OF TRACES OF
ADVANCED GREEN’S FUNCTIONS

The only computation which is easy in the general case, is that of the generating functi
traces of advanced Green’s functions. This corresponds to the choicesa51 for all aP$1,...,n%.

Let q6( j ) denote the eigenvalues of the matricesQ6 . For the above-mentioned choice of th
matrix S, we know thatq1( j )5q18 ( j )2 id, whereq18 ( j ) is real andd is positive. Sinceq2( j ) is
also real~and doubly degenerate in theb51 case! we see that the integrands in the expressio
for A1

b andA2
b are analytic in the variablet in the lower half-plane, and decay like 1/t2. We can

therefore apply Cauchy’s theorem to simply conclude thatA1
b5A2

b50. In contrast, if we computed
these quantities for the case of a mixed product of advanced and retarded Green’s functiosa

51,a51,...,p, sa521,a5p11,...,n), there would ben2p singularities in the lower half-
plane, and, therefore,A1

b andA2
b would be nonzero.

Hence, it follows easily from~44! that the generating function factorizes as follows:

J1n5expS i ~p1 ipn! (
a51

n

@«2~a!2«1~a!# D J1 J2 ,

where

J15
1

d1
E DQ1 expS 2

1

2
trFQ11

ir1S

l
2

bl

2
~p1 ipn!G2D ,

and

J25
1

d2
E DQ2 expS 2

1

2
trFQ22

r2

l
2

ibl

2
~p1 ipn!G2D .

Hence, we see from the definitions ofd6 @~15!# that J651 and

J1n5expS i ~p1 ipn! (
a51

n

@«2~a!2«1~a!# D .

This implies that
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lim
N→`

K )
a51

n
1

N
tr Gea

1 L 5@2p2 ipn#n,

which in turn shows that average of a product of the traces of advanced~or retarded! Green’s
functions factorize. In particular, we see that the density of states,r(e), is simply given by

r~e!5n~e!.

IV. UNITARY CASE: THE TWO-POINT GENERATING FUNCTION

There is one major simplification in the unitary case. The integral definingA2 @~45!# can be
explicitly evaluated and gives ameromorphicfunction of the eigenvalues$q2 j% and$q1 j% of the
matricesQ2 andQ1 , respectively. We first integrate over the Grassmannian variables$x j

a ,x̄ j
a%,

then overQ2 and finally overQ1 . After a rather lengthy computation we find that the generat
function can be expressed as

J125
4i

pvt
expFuy1

1

2l2 tr~r1
2 2r2

2 !G ] tR, ~49!

whereR is

R5 (
j 521

4

a jBj , ~50!

u5
1

2il
tr~r22r1s!, ~51!

y522lp2
1

2il
@ tr r21tr~r1s!#, ~52!

t5
1

l
tr~r2s!, ~53!

v5
tr r1

l
, ~54!

and

Bn5E
Im w52c

dw w2n expF2w22 iw~v1L!2
iLu2

w G E
2`

1`

dzexpF2z2S 11
iL

w D2tzG ,
~55!

with c being an arbitrary constant larger thanL. The coefficientsa j are given by

a21551, a052iL, a152
13

4
L22

vL

2
,

a252
3

2
iL31

iL

2
2

3

4
vL2, a35

L4

4
2

7

8
L21

vL3

4
1

v2

16
L21u2L2,

a45 iu2L32
3

8
iL3, a552

u2

4
L4. ~56!
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Using the recursion formula

] tBn5
t

2
Bn2 iL] tBn11 ~57!

we can express the generating function in terms of theBn for nP$21,4% and] tB5 . One can also
show that theBn can be represented as an integral over the modified Bessel functions.

Once we have this expression for the generating function, we can also compute the two
correlation function. One finds that it is given@as in Ref. 24# by a sum of integrals over modifie
Bessel functions. Details of this computation can be found in Ref. 25.

V. ORTHOGONAL CASE: THE TWO-POINT GENERATING FUNCTION

We start from the equation

r (2)~r 1 ,r 2!5
1

2p2 ReH ]2@J2
121J2

11#

]«2~1! ]«2~2!
U

«25«150
J , ~58!

in order to compute the correlation functionr (2)(e1 ,e2). Using the fact~established in Sec. III!
that

J12u«25«1
51, ~59!

]J12

]«2~1!
5pn1 ip, ~60!

]J12

]«2~2!
5pn2 ip, ~61!

]2J11

]«2~1!«2~2!
U

«25«150

5~pn1 ip !2, ~62!

we can expressr (2)(r 1 ,r 2) as

r (2)~r 1 ,r 2!52
1

l2p2 p~r 11r 2!2
2

p2l4 r 1r 21
1

2
n22

p2

2p2

2
1

2d1d2l2p2 E DQ1 DQ2 )
a51

2

@Q2~1au1a!1Q2~2au2a!#

3 expS 2
1

2
trF S Q22

r2

l
2 ibpl D 2

1S Q11
ir1S

l
2

bpl

2 D 2G D3K~q1 ,q2!,

~63!

where

K~q1 ,q2!5E Dx̄Dx exp~2~ x̄,x!! expS ln~e!F1

2
A01A11A2G D ;

with
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A05 ip tr@~q11 iq2!s~q1!#,

A15E
2`

1`

dt @D~ t !#1/2F12
1

2 (
p51

2

(
g51

2
q1~pg!1 iq2~g!

t1q1~pg! G ,

A25E
2`

1`

dt @D~ t !#1/2@det~122R!1/221#,

and

D~ t !5
~ t2 iq2~1!!2 ~ t2 iq2~2!!2

)
p51

2

)
g51

2

~ t1q1~pg!!

.

The 232 matrix R is given by

Raa85
1

t2 iq2~a! (
p51

2

(
g51

2
x̄a~pg!xa8~pg!

t1q1~pg!
.

We recall thatq1(pg) andq2(g) are the eigenvalues ofQ1 andQ2 . Two eigenvalues ofQ1

have a positive imaginary part. The other two have a negative imaginary part.
A1 can be expressed in terms of elliptic integrals. The same is true forA2 , once we note that

det~122R!512X with X5tr R2detR,

so that

det~122R!1/2215 (
n51

8

Xncn ,

since theX are Grassmannian variables@cn are constants#. One can then integrate over th
Grassmannian variables, to computeK. We will not reproduce this computation here, since
have not analyzed the resulting expression for the correlation function. It can finally be note
for higher order correlation functions, hyperelliptic integrals appear.
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Time dependent transformations in deformation
quantization
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We study the action of time dependent canonical and coordinate transformations in
phase space quantum mechanics. We extend the covariant formulation of the theory
by providing a formalism that is fully invariant under both standard and time
dependent coordinate transformations. This result considerably enlarges the set of
possible phase space representations of quantum mechanics and makes it possible
to construct a causal representation for the distributional sector of Wigner quantum
mechanics. ©2004 American Institute of Physics.@DOI: 10.1063/1.1641152#

I. INTRODUCTION

The phase space formulation of quantum mechanics was originally introduced by Wey1 and
Wigner2 and further developed by Moyal.3 The theory lives on the classical phase space and
key algebraic structures~the star-product and the Moyal bracket! are both\-deformations of the
standard algebraic structures of classical mechanics.4–11 Because of this its mathematical forma
ism is remarkably similar to that of classical statistical mechanics, a property that has
perceived by many as a conceptual and technical advantage when addressing a wide r
specific problems.11–17 This relative success, together with the fact that the deformed alge
structures play a key part in some current developments in M-theory,18–21 led to an intense
research on applications of the deformation quantization approach as well as on the further
opment of its mathematical structure.

The Wigner theory uses the symmetric ordering prescription~the Weyl order! to find a par-
ticular phase space representation of quantum mechanics. Different representations provide
ent points of view and may suggest new solutions for both technical and conceptual pro
They may even suggest new interpretations for the entire quantum theory, as in the case o
Broglie Bohm formulation. For its importance, the topic of finding new, more general phase
representations of quantum mechanics has been studied in depth. Cohen22 introduced a generali-
zation of the Weyl map, providing in an unified fashion all phase space representation
correspond to different ordering prescriptions of operator quantum mechanics. The res
theory of quasidistributions includes as particular cases the Wigner and the de Broglie Boh23,24

formulations. Vey25 and several others,8,11,26–30developed the covariant generalization of Wigne
theory. The new formulation renders phase space quantum mechanics fully invariant und
action of phase space coordinate transformations. By doing so it provides a general formula
\-deformations of the Poisson bracket and makes it possible to apply deformation quant
methods to a larger set of dynamical systems including those displaying the structure of a
phase space manifold.

The aim of this article is to extend the covariant formulation further by admitting the po
bility of time dependent coordinate transformations. We will study the action of these transfo
tions in phase space quantum mechanics and rewrite the covariant Wigner theory in a
invariant form under their action. We derive the time dependent covariant form of the starpro

a!Electronic mail: ncdias@mail.telepac.pt
b!Electronic mail: joao.prata@ulusofona.pt
8870022-2488/2004/45(3)/887/15/$22.00 © 2004 American Institute of Physics
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Moyal bracket, Moyal dynamical equation and stargenvalue equation as well as the cov
probabilistic functionals, providing all key ingredients of the time dependent covariant formul
of Wigner quantum mechanics. This result enlarges the set of possible phase space represe
of quantum mechanics and provides a more general formula for the\-deformations of the Poisso
bracket, which may now include an explicit time dependence.

The new set of representations provides new possible formulations for a generic qu
mechanical problem. In some cases this may considerably simplify the technical resolution
problem. In Sec. VI a simple example illustrates how a suitable time dependent represe
leads to a far simpler description of the dynamics of the quasidistribution. More relevant is th
that the new formalism makes it possible to construct a phase space representation of q
mechanics where the quasidistribution displays a classical causal structure, i.e., the Wigne
tion evolves according to the Liouville equation. A formulation displaying this set of prope
cannot be~easily! accomplished using the standard methods of quantum mechanics~not even
within the standard covariant Wigner formalism! and it proves that the de Broglie Bohm theory
not the unique possible causal formulation of quantum mechanics. In the new causal repr
tion the quantum dynamical behavior is completely removed from the distributional sector
theory and is exclusively placed on the observables’ sector. In particular, if the quasidistribu
positive defined at the initial time, it will remain so for all times. These properties reinforce
formal analogy between phase space quantum mechanics and classical statistical mecha
make the causal formulation especially suitable to study the semiclassical limit of quantum
chanics.

This article is organized as follows: in Sec. II we review the main topics of the cova
formulation of the Wigner theory. In Sec. III we study the action of time dependent cano
transformations in standard operator quantum mechanics. Particular attention is devoted
behavior of the density matrix. In Sec. IV we derive the time dependent covariant formulati
Wigner quantum mechanics. In Sec. V a particular set of coordinates is used to obtain the
phase space representation. In Sec. VI a simple example illustrates some of the former res
in Sec. VII we present the conclusions.

II. COVARIANT WIGNER QUANTUM MECHANICS

Let us consider anN dimensional dynamical system. Its classical formulation lives on
phase spaceT* M which, to make it simple, we assume to be flat. A global Darboux chart can
be naturally defined onT* M , for which the symplectic structure readsw5dqi∧dpi , where
$qi ,pi ,i 51,...,N% is a set of canonical variables.

Upon quantization the set$q̂i% yields a complete set of commuting observables. Let th

Â(qŴ ,pŴ ) be a generic operator acting on the physical Hilbert spaceH. The Weyl map

W(q,p)~Â!5\NE dNyWe2 ipW •yW K qW 1
\

2
yW UÂUqW 2

\

2
yW L , ~1!

where we introduced the vector notationyW[(y1 ,...,yN) and uqW 6\/2yW & are eigenstates ofqŴ ,
provides a Lie algebra isomorphism between the algebraÂ(H) of linear operators acting on th
Hilbert spaceH and the algebra of phase space functionsA(T* M ) endowed with a*-product and
Moyal bracket@let A,BPA(T* M )]:

A* (q,p)B5Ae~ i\/2!]QkJ(q,p)
kl ]W lB, @A,B#M (q,p)

5
2

\
A sinS \

2
]Q kJ(q,p)

kl ]W l DB, ~2!

where the derivatives]Q and]W act onA andB, respectively, andJ(q,p)
kl is theklth element of the

symplectic matrix in the variables (qW ,pW ):
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J(q,p)5S 0N3N 21N3N

1N3N 0N3N
D . ~3!

We also introduced the compact notation:Ok5pk ,k51,...,N; Ok5qk2N ,k5N11,...,2N;
]/]Ok5]k and sum over repeated indices is understood.

We now consider a second set of fundamental operators (QŴ ,PŴ ) unitarily related to (qŴ ,pŴ ), i.e.,

qŴ 5ÛQŴ Û21 and pŴ 5ÛPŴ Û21 where Û is some unitary operator. The new operators satisfy
Heisenberg commutation relations, yield a new Weyl mapW(Q,P) and induce a phase spac
transformation (qW ,pW )→(QW ,PW ) acting on a generic observable through the procedure~let U

5W(Q,P)(Û)):

A~qW ,pW !5W(q,p)~Â!→A8~QW ,PW !5W(Q,P)~Â!5U* (Q,P)A~QW ,PW !* (Q,P)U
21 . ~4!

The phase space implementation of the unitary transformation preserves the starproduct
Moyal bracket but, as is well known, it does not act as a coordinate transformation~the exceptions
are the linear transformations!: let qW (QW ,PW )5W(Q,P)(q̂) andpW (QW ,PW )5W(Q,P)( p̂) and we find that
in generalA8(QW ,PW )ÞA(qW (QW ,PW ),pW (QW ,PW )). We conclude that the standard Wigner formulation
non-covariant.

We now introduce the generalized Weyl map.8 Let the transformation (qW ,pW )→(QW ,PW ) be a
phase space diffeomorphism defined, in general terms, byqW 5qW (QW ,PW ) and pW 5pW (QW ,PW ). In par-
ticular, the transformation of the canonical variables (qW ,pW ) might be given by the unitary trans
formation above, but this is not required. The generalized Weyl map is then defined by8

W(Q,P)
(q,p) ~Â!5\NE dNxWE dNyW e2 ipW (QW ,PW )•yWd~xW2qW ~QW ,PW !!K xW1

\

2
yW UÂUxW2

\

2
yW L , ~5!

where uxW6\/2yW & are eigenstates ofqŴ . The new map implements the transformation (qW ,pW )
→(QW ,PW ) as a coordinate transformation in quantum phase space; letA8(QW ,PW )5W(Q,P)

(q,p) (Â) and
A(qW ,pW )5W(q,p)(Â) and we haveA8(QW ,PW )5A(qW (QW ,PW ),pW (QW ,PW )), though in general it does no
preserve the functional form of the star-product and Moyal bracket. Instead it yields the
general covariant star-product and Moyal bracket:8,11

A8~QW ,PW !* (Q,P)8 B8~QW ,PW !5A8~QW ,PW !e~ i\/2!¹Q i8J(Q,P)8 i j ¹W j8B8~QW ,PW !,
~6!

@A8~QW ,PW !,B8~QW ,PW !#M
(Q,P)8 5

2

\
A8~QW ,PW !sinS \

2
¹Q i8J(Q,P)8 i j ¹W j8DB8~QW ,PW !,

where the covariant derivative is given by~let O8 i5Pi ,i 51,...,N; O8 i5Qi 2N ,i 5N11,...,2N)

¹ i8A85] i8A8, ¹ i8¹ j8A85] i8] j8A82G i j8
k]k8A8, ] i85]/]O8 i , i , j ,k51,...,2N, ~7!

and

J(Q,P)8 i j ~QW ,PW !5
]O8 i

]Ok

]O8 j

]Ol J(q,p)
kl , G jk8

i~QW ,PW !5
]O8 i

]Ob

]2Ob

]O8 j]O8k ~8!

are the new symplectic structure and Poisson connection associated to the coordinatesQW ,PW ).
Notice that in Eq.~8! we explicitly took into account the phase space flat structure.

When formulated in terms of these structures Wigner mechanics becomes invariant un
action of general coordinate transformations:
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A8~QW ,PW !* (Q,P)8 B8~QW ,PW !5A~qW ~QW ,PW !,pW ~QW ,PW !!* (q,p)B~qW ~QW ,PW !,pW ~QW ,PW !! ;A,BPA(T* M ) ,
~9!

the covariant generalization of the Moyal and stargenvalue equations reading

ḟ W8 5@H8, f W8 #M
(Q,P)8 ,

~10!
A8* (Q,P)8 ga85ga8* (Q,P)8 A85aga8 ,

where f W8 (QW ,PW ;t)5 (1/(2p\)N) W(Q,P)
(q,p) (uc(t)&^c(t)u) is the covariant Wigner function andga8 is

the left- and right-stargenfunction associated to the eigenvaluea.
These equations transform covariantly under arbitrary phase space diffeomorphisms yi

in any coordinates, identical mathematical solutions and thus identical physical predictions

P~A8~QW ,PW ;t !5a!5E dNQW E dNPW ~detJ(Q,P)8 i j !21/2d* (Q,P)8 ~A8~QW ,PW !2a! f W8 ~QW ,PW ;t !, ~11!

whered* (Q,P)8 (A82a) is a particular solution of~10!, displaying the following explicit form:9,11

d* (Q,P)8 ~A8~QW ,PW !2a!5
1

2p E dk e
* (Q,P)8
ik(A8(QW ,PW )2a)

, ~12!

the *-exponential being given bye
* (Q,P)8
A8 5(n50

` (1/n!) Vn where V051 and Vn11

5Vn* (Q,P)8 A8.
This concludes our review of the main topics of the covariant formulation of Wigner quan

mechanics. The reader should refer to Refs. 8 and 11 for more detailed presentations of the

III. TIME DEPENDENT CANONICAL TRANSFORMATIONS

The aim of this section is to succinctly review some aspects of time dependent can

transformations in standard operator quantum mechanics. LetAŴ 5AŴ (qŴ ,pŴ ,t) andBŴ 5BŴ (qŴ ,pŴ ,t) be a
new set of fundamental operators@Âi ,B̂j #5 i\d i j ,;t. Let T̂ be the generator of the canonic
transformation,

]

]t
AŴ 5

1

i\
@AŴ ,T̂# and

]

]t
BŴ 5

1

i\
@BŴ ,T̂#, ~13!

and to make it simple let us also impose the initial conditionsAŴ (0)5qŴ andBŴ (0)5pŴ . Then, the
unitary transformation reads

AŴ 5V̂~ t !qŴ V̂21~ t !5AŴ ~qŴ ,pŴ ,t ! and BŴ 5V̂~ t !pŴ V̂21~ t !5BŴ ~qŴ ,pŴ ,t !, ~14!

where V̂(t)5exp((i/\)T̂t). The former relations can be immediately inverted,qŴ 5V̂21(t)AŴ V̂(t)

andpŴ 5V̂21(t)BŴ V̂(t), and lead straightforwardly to the dynamical equation for a generic obs
able:

d

dt
F̂~AŴ ,BŴ ,t !5

1

i\
@ F̂,Ĥ1T̂#1

]

]t
F̂~AŴ ,BŴ ,t !. ~15!

We now consider the density matrix of the system:r̂(t)5uc(t)&^c(t)u where uc(t)& is the
corresponding quantum state at the timet. In the q̂ representation we have9
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r̂~ t !5E dNqW 8 dNqW 9^qW 9uc~ t !&^c~ t !uqW 8&uqW 9&^qW 8u

5E dNqW 8 dNqW 9 c~qW 9,t !c* ~qW 8,t !e2 ~ i /\!(qW 92qW 8)•pŴ D̂~qŴ 2qW 8!

5E dNqW 8 dNqW 9 c~qW 9,0!c* ~qW 8,0!e2 ~ i /\!(qW 92qW 8)•pŴ (qŴ ,pŴ ,2t)D̂~qŴ ~qŴ ,pŴ ,2t !2qW 8!5 r̂~qŴ ,pŴ ,t !,

~16!

whereD̂(qŴ 2qW 8)5D̂(q̂12q18) ¯ D̂(q̂N2qN8 ) and D̂(q̂i2qi8)5 (1/2p) *dkeik(q̂i2qi8). Moreover,

qŴ (qŴ ,pŴ ,t) andpŴ (qŴ ,pŴ ,t) are the Heisenberg time evolutions of the fundamental operatorsqŴ andpŴ .
The action of the time dependent canonical transformation on the density matrix is now

implemented,r̂(t)5 r̂(qŴ (AŴ ,BŴ ,t),pŴ (AŴ ,BŴ ,t),t)5V̂21(t) r̂(AŴ ,BŴ ,t)V̂(t)5 r̂8(AŴ ,BŴ ,t), from where it
follows that in theÂ representation

]

]t
r̂8~AŴ ,BŴ ,t !5

]V̂21~ t !

]t
r̂V̂~ t !1V̂21~ t !S ]

]t
r̂~AŴ ,BŴ ,t ! D V̂~ t !1V̂21~ t !r̂

]V̂~ t !

]t

5
1

i\
@ T̂,r̂8#1

1

i\
V̂21@Ĥ,r̂ #V̂5

1

i\
@ T̂1Ĥ8,r̂8#, ~17!

whereĤ8(AŴ ,BŴ ,t)5Ĥ(qŴ (AŴ ,BŴ ,t),pŴ (AŴ ,BŴ ,t))5V̂21(t)Ĥ(AŴ ,BŴ )V̂(t).

IV. TIME DEPENDENT TRANSFORMATIONS IN PHASE SPACE QUANTUM MECHANICS

In this section we study the action of time dependent transformations in phase space qu
mechanics. We consider an arbitraryN dimensional quantum system with HamiltonianĤ and
described by the wave functionc(t). As we have seen, the original Weyl transformW(q,p) yields
the standard Wigner formulation of the system. The time evolution of the Wigner fun
f W(qW ,pW ,t)5 (1/(2p\)N) W(q,p)(uc(t)&^c(t)u) is dictated by the standard Moyal equation whe
the Moyal bracket and the starproduct are given by Eq.~2!. We then consider two different phas
space implementations of a time dependent operator transformation.

~1! Unitary time dependent transformations and the map W(A,B) . At the quantum operato

level we introduce the unitary transformation (qŴ ,pŴ )→(AŴ ,BŴ ) defined by Eqs.~13! and ~14!. The

new variables (AŴ ,BŴ ) satisfy the Heisenberg commutation relations and thus a new Weyl
W(A,B) can be constructed. It displays the standard functional structure given by Eq.~1! and yields
a starproduct* (A,B) and Moyal bracket@ ,#M (A,B)

also displaying the non-covariant functional for
Eq. ~2!. The time evolution of the new Wigner function,

f W8 ~AW ,BW ,t !5
1

~2p\!N W(A,B)~ r̂8~AŴ ,BŴ ,t !!5V21~ t !* (A,B) f W~AW ,BW ,t !* (A,B)V~ t !, ~18!

whereV(t)5W(A,B)(V̂), reads

]

]t
f W8 ~AW ,BW ,t !5@H81T, f W8 #M (A,B)

, ~19!

and is just the (A,B)-Weyl transform of Eq.~17!. Notice that just like in the time independent ca
the unitary transformation (qW ,pW )→(AW ,BW ) does not, in general, act as a coordinate transformat
f W8 (AW ,BW ,t)Þ f W(qW (AW ,BW ,t),pW (AW ,BW ,t),t).
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~2! Coordinate transformations and the map W(A,B)
(q,p) . We follow the steps of the time inde

pendent case and introduce a time dependent phase space diffeomorphism (qW ,pW )→(AWW ,BWW ) defined
in generic terms byqW 5qW (AWW ,BWW ,t); pW 5pW (AWW ,BWW ,t). This coordinate transformation is not required
be a symplectomorphism~i.e., to preserve the Poisson bracket! nor to preserve the Moyal bracke
between the fundamental variables~i.e., to satisfy @qi(AWW ,BWW ,t),pj (AWW ,BWW ,t)#M (A,B)

5d i j and

@qi(AWW ,BWW ,t),qj (AWW ,BWW ,t)#M (A,B)
5@pi(AWW ,BWW ,t),pj (AWW ,BWW ,t)#M (A,B)

50 for all i , j 51 ,. . .,N).

We then define the time dependent generalized Weyl transform in the variables (AWW ,BWW ):

W(A,B)
(q,p) :Â~H!→A~T* M !; F̂→F8~AWW ,BWW ,t !5W(A,B)

(q,p) ~ F̂ !5W(q,p)~ F̂ !uqW 5qW (AW ,BW ,t)∧pW 5pW (AW ,BW ,t) .
~20!

The explicit form ofW(A,B)
(q,p) is given by the trivial time dependent generalization of Eq.~5!:

W(A,B)
(q,p) ~ F̂ !5\NE dNxWE dNyW e2 ipW (AW ,BW ,t)•yWd~xW2qW ~AWW ,BWW ,t !!K xW1

\

2
yW UF̂UxW2

\

2
yW L , ~21!

from which follows the covarianttime dependent* -product and Moyal bracket:

W(A,B)
(q,p) ~ F̂Ĝ!5F8~AWW ,BWW ,t !* (A,B)8 G8~AWW ,BWW ,t !5F~qW ~AWW ,BWW ,t !,pW ~AWW ,BWW ,t !!* (q,p)G~qW ~AWW ,BWW ,t !,pW ~AWW ,BWW ,t !!,

~22!

and @F8,G8#M
(A,B)8 5 (1/i\) (F8* (A,B)8 G82G8* (A,B)8 F8) whereF8(AWW ,BWW ,t)5W(A,B)

(q,p) (F̂), F(qW ,pW ,t)

5W(q,p)(F̂) and likewise forG andG8. The two algebraic structures display the functional fo
given by Eqs.~6!–~8! with the obvious inclusion of an explicit time dependence.

The dynamical structure of the theory displays more significant corrections. Letf W8 (AWW ,BWW ,t)
5 (1/(2p\)N) W(A,B)

(q,p) (uc(t)&^c(t)u) be the covariant Wigner function. It satisfiesf W8 (AWW ,BWW ,t)
5 f W(qW (AWW ,BWW ,t),pW (AWW ,BWW ,t),t) and thus

]

]t
f W8 ~AWW ,BWW ,t !5S ]

]t1

1
]

]t2
D f W~qW ~AWW ,BWW ,t1!,pW ~AWW ,BWW ,t1!,t2!U

t15t25t

5@H~qW ~AWW ,BWW ,t !,pW ~AWW ,BWW ,t !,t !, f W~qW ~AWW ,BWW ,t !,pW ~AWW ,BWW ,t !,t !#M (q,p)
1

] f W

]qW
•

]qW

]t1

1
] f W

]pW

•

]pW

]t1
U

t15t

5@H8~AWW ,BWW ,t !, f W8 ~AWW ,BWW ,t !#M
(A,B)8 1S ] f W8

]Ai

]Ai

]qj

1
] f W8

]Bi

]Bi

]qj
D ]qj

]t

1S ] f W8

]Ai

]Ai

]pj

1
] f W8

]Bi

]Bi

]pj
D ]pj

]t
5@H8~AWW ,BWW ,t !, f W8 ~AWW ,BWW ,t !#M

(A,B)8 1
] f W8

]Ai
S ]Ai

]qj

]qj

]t

1
]Ai

]pj

]pj

]t
D 1

] f W8

]Bi
S ]Bi

]qj

]qj

]t
1

]Bi

]pj

]pj

]t
D 5@H8~AWW ,BWW ,t !, f W8 ~AWW ,BWW ,t !#M

(A,B)8 2
] f W8

]AWW

•

]AWW

]t
2

] f W8

]BWW
•

]BWW

]t
, ~23!

where in the last step we used the fact thatAWW5AWW (qW(AWW ,BWW ,t),pW(AWW ,BWW ,t),t) and likewise forBWW .
Further, contraction over repeated indices is understood, i.e.,
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] f W

]qi

]qi

]t1
5

] f W

]qW
•

]qW

]t1
5(

i 51

N
] f W

]qi

]qi

]t1
.

Equation~23! constitutes a generalization of the Moyal covariant equation~10! and renders the
dynamics of the Wigner function fully invariant under the action of general time dependent p
space diffeomorphisms.

Let us then consider several particular cases in more detail:
~a! If the transformation (qW ,pW )→(AWW ,BWW ) is time independent, then Eq.~23! reduces to the

standard covariant Moyal equation~10!.
~b! If, on the other hand, it is unitary, i.e., ifAWW (qW,pW,t)5V(t)* (q,p)qW* (q,p)V

21(t) and
BWW (qW,pW,t)5V(t)* (q,p)pW* (q,p)V

21(t) satisfying]AWW /]t 5@AWW ,T#M (q,p)
and ]BWW /]t 5@BWW ,T#M (q,p)

with

initial conditionsAWW (qW,pW,0)5qW andBWW (qW,pW,0)5pW , then in Eq.~23! we have

]AWW

]t
5

]

]t
AWW ~qW ,pW ,t !U

qW 5qW (AW ,BW ,t)∧pW 5pW (AW ,BW ,t)

5@AWW ~qW ~AWW ,BWW ,t !,pW ~AWW ,BWW ,t !,t !,T~qW ~AWW ,BWW ,t !,pW ~AWW ,BWW ,t !!#M (q,p)

5@AWW ,T8~AWW ,BWW ,t !#M
(A,B)8 , ~24!

whereT8(AWW ,BWW ,t)5W(A,B)
(q,p) (T̂). An equivalent result is valid for]BWW /]t. Substituting these results i

Eq. ~23! we get

]

]t
f W8 ~AWW ,BWW ,t !5@H8~AWW ,BWW ,t !, f W8 ~AWW ,BWW ,t !#M

(A,B)8 1
] f W8

]AWW
•@T8,AWW #M

(A,B)8 1
] f W8

]BWW
•@T8,BWW #M

(A,B)8 .

~25!

~c! Finally, we consider the case where the transformation (qW ,pW )→(AWW ,BWW ) is a symplectomor-
phism. LetT be the generator. ThenAWW (qW,pW,t) satisfies]AWW /]t 5$AWW ,T%(q,p)5$AWW ,T% (A,B) and like-
wise for BWW . Hence, Eq.~23! reduces to

]

]t
f W8 ~AWW ,BWW ,t !5@H8~AWW ,BWW ,t !, f W8 ~AWW ,BWW ,t !#M

(A,B)8 2
] f W8

]AWW
•$AWW ,T%(A,B)2

] f W8

]BWW
•$BWW ,T%(A,B)

5@H8~AWW ,BWW ,t !, f W8 ~AWW ,BWW ,t !#M
(A,B)8 1$T, f W8 % (A,B) . ~26!

To finish this section let us study the(A,B)
(q,p) -representation of a general stargenfunction. LeF̂

be a generic operator andF8(AWW ,BWW ,t)5W(A,B)
(q,p) (F̂). The *-genvalue equation in the

(A,B)
(q,p) -representation is then written

F8~AWW ,BWW ,t !* (A,B)8 ga8~AWW ,BWW ,t !5ga8~AWW ,BWW ,t !* (A,B)8 F8~AWW ,BWW ,t !5aga8~AWW ,BWW ,t ! ~27!

and displays the solution

ga8~AWW ,BWW ,t !5d* (A,B)8 @F8~AWW ,BWW ,t !2a#5
1

2p E dke
* (A,B)8
ik[F8(AW ,BW ,t)2a]

5
1

2p E dke
* (q,p)

ik[F(qW (AW ,BW ,t),pW (AW ,BW ,t),t)2a] , ~28!
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whereF(qW ,pW ,t)5W(q,p)(F̂). Further, if ga(qW ,pW ,t) is such thatF* (q,p)ga5ga* (q,p)F5aga then
ga8(A

W ,BW ,t)5ga(qW (AW ,BW ,t),pW (AW ,BW ,t),t), a result that follows immediately from Eqs.~22! and~28!.
Therefore the stargenvalue equation transforms covariantly under the action of general tim
pendent coordinate transformations.

As an illustrative example let us consider the one-dimensional simple casF̂
5q̂⇒W(A,B)

(q,p) (q̂)5q(A,B,t). The solution of the*-genvalue equation~27! is then

ga8~A,B,t !5
1

2p E dke
* (A,B)8
ik[q(A,B,t)2a]

5
1

2p E dke
* (q,p)

ik[q(A,B,t)2a]5
1

2p E dkeik[q(A,B,t)2a]

5d@q~A,B,t !2a#, ~29!

and displays the time evolution

]

]t
ga8~A,B,t !5

]d

]q
@q~A,B,t !2a#

]q

]t
~A,B,t !. ~30!

Furthermore, if the transformation (q,p)→(A,B) is symplectic with generatorT, then ]q/]t
5$q,2T% (A,B) and

]

]t
ga8~A,B,t !52$ga8 ,T% (A,B) . ~31!

V. THE CAUSAL REPRESENTATION

As an application of the formalism let us consider a finite dimensional dynamical sy
described by a generic HamiltonianĤ and use the generalized time dependent Weyl map to de
in a systematic way~1! the Schro¨dinger and~2! the Heisenberg phase space pictures and~3! a new
phase space representation where the Wigner function displays a fully classical time evolu

To begin with, we introduce the time dependent unitary transformation generated byT̂5

2Ĥ. A new set of fundamental operators is given byAŴ 5AŴ (qŴ ,pŴ ,t) andBŴ 5BŴ (qŴ ,pŴ ,t), solutions of

Eq. ~13! and satisfying the initial conditionsAŴ (0)5qŴ andBŴ (0)5pŴ . Given the relation betweenĤ
and T̂ they also satisfy

AŴ 5AŴ ~qŴ ,pŴ ,t !5qŴ ~qŴ ,pŴ ,2t ! and BŴ 5BŴ ~qŴ ,pŴ ,t !5pŴ ~qŴ ,pŴ ,2t !, ~32!

whereqŴ (qŴ ,pŴ ,t) and pŴ (qŴ ,pŴ ,t) are the Heisenberg time evolution of the fundamental operatoqŴ

andpŴ . From ~32! we define a new set of phase space coordinatesAW 5AW M(qW ,pW ,t)5W(q,p)(Â) and
BW 5BW M(qW ,pW ,t)5W(q,p)(B̂) satisfying the Moyal equations,

]AW M

]t
5@AW M ,T#M (q,p)

,
]BW M

]t
5@BW M ,T#M (q,p)

, T5W(q,p)~ T̂!, ~33!

and the initial conditionsAW M(qW ,pW ,0)5qW and BW M(qW ,pW ,0)5pW . The subscriptM indicates that the
functions AM and BM obey the Moyal equations. Intuitively, they can be seen as the quan
phase space histories of the system.

A second set of~purely classical! phase space coordinates will also be required:QW ,PW are given
by QW 5QW (AW ,BW ,t) andPW 5PW (AW ,BW ,t) and satisfy the classical Hamiltonian equations,

]QW

]t
5$QW ,2T~AW ,BW !%(A,B) ,

]PW

]t
5$PW ,2T~AW ,BW !%(A,B) , T~AW ,BW !5W(A,B)~ T̂!, ~34!
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and the initial conditionsQW (AW ,BW ,0)5AW , PW (AW ,BW ,0)5BW . Notice thatT(AW ,BW ) displays the same
functional form as T(qW ,pW )5W(q,p)(T̂). Solving the algebraic equationsQW 5QW (AW ,BW ,t), PW

5PW (AW ,BW ,t) with respect toAW ,BW we getAW 5AW C(QW ,PW ,t) andBW 5BW C(QW ,PW ,t) where the subscriptC
indicates thatAW C andBW C are the solutions of the classical Hamilton’s equations,

]AW C

]t
5$AW C ,T~QW ,PW !% (Q,P) ,

]BW C

]t
5$BW C ,T~QW ,PW !% (Q,P) , ~35!

whereT(QW ,PW )5T(AW C(QW ,PW ,t),BW C(QW ,PW ,t)) displays the same functional form asT(AW ,BW ) ~notice
that T is the generator of the canonical transformation!. Also notice that in generalqW (AW ,BW ,t)
ÞQW (AW ,BW ,t) andpW (AW ,BW ,t)ÞPW (AW ,BW ,t) ~the exceptions happen forT quadratic in the phase spac
variables!. While the variables (qW ,pW ) describe thequantumphase space time evolution, the va
ables (QW ,PW ) describe theclassicalphase space trajectories. The transformation (AW ,BW )→(QW ,PW ) is
a phase space symplectomorphism exclusively defined at the classical level, i.e., it is no@and
unlike (qW ,pW )→(AW ,BW ) it could not be# inherited from a quantum operator transformation.

Finally, from Eqs.~16! and~32! the density matrixr̂(t)5uc(t)&^c(t)u admits the expansion

r̂~ t !5E dNqW 8dNqW 9c~qW 9,0!c* ~qW 8,0!e2~ i /\!(qW 92qW 8)•pŴ (qŴ ,pŴ ,2t)D̂@qŴ ~qŴ ,pŴ ,2t !2qW 8#5 r̂~qŴ ,pŴ ,t !,

~36!

r̂~ t !5E dNqW 8dNqW 9c~qW 9,0!c* ~qW 8,0!e2~ i /\!(qW 92qW 8)•BŴ D̂~AŴ 2qW 8!5 r̂~AŴ ,BŴ ,0!.

With these preliminaries settled down we address the derivation of the three phase
pictures:

~1! Schrödinger picture and the map W(q,p) . From the first expansion for the density matr
~36! we immediately get

f W~qW ,pW ,t !5
1

~2p\!N W(q,p)@ r̂~ t !#

5
1

~2p\!N E dNqW 8dNqW 9c~qW 9,0!c* ~qW 8,0!e
* (q,p)
~2 i /\!(qW 92qW 8)•pW (qW ,pW ,2t)

* (q,p)

3d* (q,p)@qW ~qW ,pW ,2t !2qW 8# ~37!

and the time evolution of the Wigner function obeys the standard Moyal equation: (]/]t) f W

5@H, f W#M (q,p)
. We also haveW(q,p)(uqW 0&^qW 0u)5d* (qW 2qW 0)5d(qW 2qW 0) and so (]/]t) d(qW 2qW 0)

50 and likewise forpW , i.e., the dynamics is cast in the Schro¨dinger picture.
~2! Heisenberg picture and the map W(A,B) . From the second expansion in~36! we get

1

~2p\!N W(A,B)@ r̂~ t !#5
1

~2p\!N W(A,B)@ r̂~AW ,BW ,0!#

5
1

~2p\!N E dNqW 8dNqW 9c~qW 9,0!c* ~qW 8,0!e
* (A,B)
2 ~ i /\!(qW 92qW 8)•BW

* (A,B)

3dN

* (A,B)~AW 2qW 8!. ~38!

Let us check explicit that the previous formula yields the standard~in this case time independen!
expression of the Wigner function. The same derivation would also apply to Eq.~37!. We start by
considering the term evolving starproducts in more detail:
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e
* (A,B)
2 i /\(qW 92qW 8)•BW

* (A,B)d
N

* (A,B)~AWW 2qW 8!5e2 ~ i /\!(qW 92qW 8)•BW * (A,B)d
N~AWW 2qW 8!

5
1

~2p!N (
n50

1`
1

n!
S 2

i\

2
D n

e2 ~ i /\!(qW 92qW 8)•BW F2
i

\
~qW 9

2qW 8!•
]

]AWW
G nE dNkW eikW•(AW 2qW 8)

5
1

~2p!N
e2 ~ i /\!(qW 92qW 8)•BW E dNkW (

n50

1`
1

n!
S 2

i

2
kW •~qW 9

2qW 8!D n

eikW•(AW 2qW 8)

5e2 ~ i /\!(qW 92qW 8)•BW
1

~2p!N E dNkW eikW•(AW 2qW 81 qW 8/2 2 qW 9/2)

5e2 i /\(qW 92qW 8)•BW dNS AWW 2
qW 8

2
2

qW 9

2
D . ~39!

Substituting this expression in~38! we get

1

~2p\!N W(A,B)@ r̂~ t !#5
1

~2p\!N E dNqW 8dNqW 9c~qW 9,0!c* ~qW 8,0!2NdN~2AWW 2qW 8

2qW 9!e2 ~2i /\!(AW 2qW 8)•BW 5
1

~p\!N E dNqW 8c~2AWW

2qW 8,0!c* ~qW 8,0!e2 ~2i /\!(AW 2qW 8)•BW 5
1

~p\!N E dNyWc~AWW 1yW ,0!c* ~AWW

2yW ,0!e2 ~2i /\!yW•BW 5 f W~AWW ,BWW ,0!, ~40!

where in the last step we madeyW5AWW 2qW 8. We indeed recovered the standard definition of
Wigner function. Moreover we see that (]/]t) f W50, as it should and in perfect agreement w
Eq. ~19! taking into account thatT52H. On the other hand, we also have

gqW 0
~AWW ,BWW ,t !5W(A,B)~ uqW 0&^qW 0u!5d

* (A,B)

N @qW ~AWW ,BWW ,t !2qW 0#5
1

~2p!N E dNkW e
* (A,B)

ikW•(qW (AW ,BW ,t)2qW 0) ,

~41!

whereqW 5qW (AWW ,BWW ,t) is the solution with respect toqW of the algebraic equationsAWW5AWW M(qW,pW,t),
BWW5BWW M(qW,pW,t) defined in Eq.~33!. It also follows from Eq.~33! that qW (AWW ,BWW ,t) satisfies]qW /]t
5@qW ,2T#M (A,B)

. Therefore,

]

]t
gqW 0

~AWW ,BWW ,t !5@gqW 0
~AWW ,BWW ,t !,H#M (A,B)

, ~42!

and we obtained the phase space Heisenberg picture.
~3! Causal picture and the map W(Q,P)

(A,B) . We finally consider the action of the mapW(Q,P)
(A,B) on

the second expansion for the density matrix~36!. From Eq. ~40! it follows that ~notice that
W(Q,P)

(A,B) 5W(A,B))
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f W8 ~QW ,PW ,t !5
1

~2p\!N W(Q,P)
(A,B) @ r̂~ t !#

5
1

~2p\!N E dNqW 8dNqW 9c~qW 9,0!c* ~qW 8,0!e
* 8(Q,P)

2 ~ i /\!(qW 92qW 8)•BW C(QW ,PW ,t)
* (Q,P)8 d

* 8(Q,P)
N

@AW C~QW ,PW ,t !2qW 8#

5
1

~2p\!N E dNqW 8dNqW 9c~qW 9,0!c* ~qW 8,0!e
* (A,B)
2 ~ i /\!(qW 92qW 8)•BW C(QW ,PW ,t)

* (A,B)d* (A,B)
N

@AW C~QW ,PW ,t !2qW 8#

5 f W~AW C~QW ,PW ,t !,BW C~QW ,PW ,t !,0!5 f W~QW ~QW ,PW ,2t !,PW ~QW ,PW ,2t !,0!, ~43!

whereQW (QW ,PW ,t)5AW C(QW ,PW ,2t) andPW (QW ,PW ,t)5BW C(QW ,PW ,2t) are the classical time evolution o
the canonical variables (QW ,PW ) @cf. ~35!#

QẆ 5$QW ,2T~QW ,PW !%(Q,P) and PẆ 5$PW ,2T~QW ,PW !%(Q,P) ~44!

associated with the HamiltonianH(QW ,PW )52T(QW ,PW )5W(A,B)(Ĥ)uAW 5QW ∧BW 5PW . Hence, the time
evolution of the Wigner function is given by

]

]t
f W8 ~QW ,PW ,t !5$ f W8 ,T% (Q,P)5$H, f W8 %(Q,P) . ~45!

On the other hand, for the*-genfunctionsW(Q,P)
(A,B) (uqW 0&^qW 0u) we have from Eq.~41!

gqW 0
8 ~QW ,PW ,t !5d

* (Q,P)8
N

~qW 2qW 0!5d
* (A,B)

N ~qW ~AW ,BW ,t !2qW 0!uAW 5AW C(QW ,PW ,t)∧BW 5BW C(QW ,PW ,t)

5gqW 0
~AW C~QW ,PW ,t !,BW C~QW ,PW ,t !,t !, ~46!

and so@cf. ~35! and ~42!#

]

]t
gqW 0
8 ~QW ,PW ,t !5H ]

]t1
1

]

]t2
J gqW 0

~AW C~QW ,PW ,t2!,BW C~QW ,PW ,t2!,t1!U
t15t25t

5@gqW 0
8 ,H#M

(Q,P)8 2$gqW 0
8 ,H%(Q,P) . ~47!

In this representation both the Wigner function and the stargenfunctions evolve in time
Wigner function displaying a fully classical evolution. In particular, if the Wigner function
positive defined at the initial time, it will remain so for all times. We conclude that the sourc
the quantum behavior has been completely removed from the distributional sector of the
and is now exclusively placed on the observables~stargenfunctions! sector.

VI. EXAMPLE

To illustrate our previous results let us consider a two particle system described b
Hamiltonian,

Ĥ5
p̂1

2

2M
1

p̂2
2

2m
1kq̂1p̂2

2, ~48!
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where (q̂1 ,p̂1) are the canonical variables of the particle of massM and (q̂2 ,p̂2) are those of the
particle of massm andk is a coupling constant.

The Weyl mapW(q,p) yields the (q,p)-Hamiltonian symbol,

H5W(q,p)~Ĥ !5
p1

2

2M
1

p2
2

2m
1kq1p2

2, ~49!

and the Moyal equationsż5@z,H#M (q,p)
for the fundamental variablesz5q1 ,q2 ,p1 or p2 . These

display the solutions

q1~ t !5q1~0!1
p1~0!

M
t2

k

2M
p2~0!2t2,

p1~ t !5p1~0!2kp2~0!2t,
~50!

q2~ t !5q2~0!1H p2~0!

m
12kq1~0!p2~0!J t1

k

M
p1~0!p2~0!t22

k2

3M
p2~0!3t3,

p2~ t !5p2~0!,

which coincide exactly with the classical time evolution, i.e., with the solutions of the clas
Hamiltonian equations for the classical Hamiltonian~49!. This property is not shared by th
Wigner function, its time evolution satisfying the equation

] f W

]t
5@H, f W#M (q,p)

⇔ ] f W

]t
5$H, f W% (q,p)1

\2

24F2H 2kp2 ,
]2f W

]q2]p1
J

(q,p)

2H 2kq1 ,
]2f W

]q2
2 J

(q,p)
G ,

~51!

which is obviously not of the form of the Liouville equation. Consequently, the Wigner func
does not satisfyf W(qW ,pW ,t)5 f W(qW (2t),pW (2t),0) with qW (t),pW (t) given by Eq. ~50!, and qW
5(q1 ,q2), pW 5(p1 ,p2), i.e., it does not display a classical causal structure.

We now introduce a new set of fundamental operators,

Â15q̂12
p̂1

M
t2

k

2M
p̂2

2t2,

B̂15 p̂11kp̂2
2t,

~52!

Â25q̂22H p̂2

m
12kq̂1p̂2J t1

k

M
p̂1p̂2t21

k2

3M
p̂2

3t3,

B̂25 p̂2 ,

satisfying the Heisenberg algebra@Â1 ,B̂1#5@Â2 ,B̂2#5 i\, all other commutators being zero. Th
transformation~52! is unitary and generated byT̂52Ĥ. Applying the Weyl mapW(q,p) to Eq.
~52! and comparing the result with~50! we get
                                                                                                                



A1~qW ,pW ,t !5q1~2t !
B1~qW ,pW ,t !5p1~2t !
A2~qW ,pW ,t !5q2~2t !
B2~qW ,pW ,t !5p2~2t !

⇔

q1~AW ,BW ,t !5A11
B1

M
t2

k

2M
B2

2t2

p1~AW ,BW ,t !5B12kB2
2t

q2~AW ,BW ,t !5A21H B2
12kA1B2J t1

k
B1B2t22

k2

B2
3t3

~53!
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5 m M 3M

p2~AW ,BW ,t !5B2 .

The density matrix satisfiesr̂(qŴ ,pŴ ,t)5 r̂(AŴ (qŴ ,pŴ ,t),BŴ (qŴ ,pŴ ,t),0) @cf. ~36!# and thus the Wigner
function f W(AW ,BW ,t)5W(A,B)( r̂)5 f W(AW ,BW ,0) is static. On the other hand, in this representati
the fundamental stargenfunctions do evolve in time. For instance,~let ux& be the general eigenke
of q̂1 with associated eigenvaluex),

gx~AW ,BW ,t !5W(A,B)~ ux&^xu!5d* (A,B)
@q1~AW ,BW ,t !2x#5

1

2p E dk e
* (A,B)

ik(q1(AW ,BW ,t)2x)

5
1

2p E dk eik(q1(AW ,BW ,t)2x)5d@q1~AW ,BW ,t !2x# ~54!

satisfies

]

]t
gx~AW ,BW ,t !5@gx~AW ,BW ,t !,H#M (A,B)

5$gx~AW ,BW ,t !,H%(A,B) . ~55!

Hence, the Weyl transformW(A,B) casts the phase space dynamics in the Heisenberg pic
Accordingly, the time dependence is exclusively displayed by the observable~stargenfunction!
sector of the theory.

We now consider the action of the generalized Weyl mapW(q,p)
(A,B) . The associated time depen

dent covariant starproduct* (q,p)8 and Moyal bracket@ , #M (q,p)
are characterized by@using the time

dependent version of Eqs.~6!–~8! and making O815p1 , O825p2 , O835q1 , O845q2 , O1

5B1 , O25B2 , O35A1 , O45A2 and i , j 51,...,4]

J(q,p)8 i j 5J(q,p)
i j ,

~56!

G228
152kt, G228

35
k

M
t2, G128

45G218
45

k

M
t2, G228

45
2k2

M
p2t3, G328

45G238
4522kt,

all other Christoffel symbols being zero. Notice that the connection is time dependent.
The new Wigner function@cf. ~53!#

f W8 ~qW ,pW ,t !5W(q,p)
(A,B)~ r̂ !5 f W~AW ~qW ,pW ,t !,BW ~qW ,pW ,t !,0!5 f W~qW ~qW ,pW ,2t !,pW ~qW ,pW ,2t !,0! ~57!

satisfies the Liouville equation

] f W8

]t
5

] f W

]AW
•

]AW

]t
1

] f W

]BW
•

]BW

]t
5

] f W

]qW
•$H,qW %(q,p)1

] f W

]pW
•$H,pW %(q,p)5$H, f W%(q,p)5$H, f W8 % (q,p) .

~58!

The quantum behavior is displayed by the stargenfunction sector alone. However, for this s
we also have~let z5q1 ,p1∨p2 anduz0& be a generic eigenket ofẑ with associated eigenvaluez0)
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W(q,p)
(A,B)~ uz0&^z0u!5d* 8(q,p)~z2z0!5d* (A,B)~z~AW ,BW ,t !2z0!uAW 5AW (qW ,pW ,t)∧BW 5BW (qW ,pW ,t)

5d~z~AW ,BW ,t !2z0!uAW 5AW (qW ,pW ,t)∧BW 5BW (qW ,pW ,t)5d~z2z0!, ~59!

where in the third step we used the fact thate
* (A,B)

ik(z(AW ,BW ,t)2z0)
5eik(z(AW ,BW ,t)2z0). Hence, the former

three fundamental stargenfunctions display a classical structure and satisfy$d* 8(q,p)(z2z0),H%
50. We conclude that for this system, in this representation, the nontrivial~quantum! behavior is
displayed by the stargenfunctionz5q2 alone.

A final remark is in order: in this example we were not required to use the most ge
formalism of Sec. V~3! ~causal picture and the mapW(Q,P)

(A,B) ) to derive the causal phase spa
representation of the system. This is so because the dynamical structure of the system is
tionally simple: the quantum and the classical trajectories@which in the most general case have
be described by two different sets of coordinates, (qW ,pW ) and (QW ,PW ), respectively# are identical.
Indeed, Eq.~50! solves both the Moyal and the Hamiltonian equations of motion and thus we
not required to introduce a second set of ‘‘classical’’ coordinates (QW ,PW ).

VII. CONCLUSIONS

Using a time dependent extension of the generalized Weyl map we enlarged the set of p
phase space representations of quantum mechanics, derived a more general formula
\-deformations of the Poisson bracket and proved that there is a phase space representatio
the quantum quasidistribution displays a causal dynamical structure. In this formulation the
tum behavior is displayed by the*-genfunctions~observables! sector alone. Such a property ma
lead to interesting applications in the field of the semiclassical limit of quantum mechanics
the fact that in the causal representation the quantum behavior has become, in fact, indep
from the state of the system.

The comparison with the de Broglie Bohm formulation seems inevitable. In the de Br
Bohm theory the source of quantum behavior is the quantum potential together with a modifi
of the momentum*-genvalue equation. The theory admits an interpretation in terms of causa~but
not classical! trajectories. In the Wigner causal formulation the effect of the quantum potentia
been replaced by further corrections in the observables~* -genfunctions! sector of the theory and
the achievement was that the particle trajectories became fully classical. It is quite remarkab
this shift of the source of the quantum behavior~from the distributional to the observables secto!
could be fully performed and it may lead to an alternative causal interpretation for qua
mechanics.
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Contextual approach to quantum mechanics and the
theory of the fundamental prespace
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We constructed a Hilbert space representation of a contextual Kolmogorov model.
This representation is based on two fundamental observables—in the standard
quantum model these are the position and momentum observables. This represen-
tation has all distinguishing features of the quantum model. Our representation is
not standard model with hidden variables. In particular, this is not a reduction of the
quantum model to the classical one. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1645650#

I. INTRODUCTION

We construct a representation of a Kolmogorovian contextual model in a Hilbert space.
plexes of physical conditions—contexts—are represented by complex amplitudes~or in the ab-
stract framework by normalized vectors of a Hilbert space!.

In the papers of Refs. 1–3 there was shown that by using non-Kolmogorovian probab
models~see Accardi4–8 on the role of non-Kolmogorovian models in foundations of QM! such a
representation can be constructed on the basis of a so calledcontextual formula of total probability
for observablesb anda:

pC
b ~x!5(

y
pC

a ~y! pb/a~x/y!

12 (
y1,y2

ApC
a ~y1! pC

a ~y2! pb/a~x/y1! pb/a~x/y2! cosuC
(y1y2)

~x!, ~1!

where pC
a (y)5P(a5y/C),pC

b (x)5P(b5x/C) are probabilities to observe valuesa5y and b
5x under the complex of physical conditions—context—C and pb/a(x/y)5P(b5x/a5y) are
transition probabilities. A complex amplitudewC

b/a(x) corresponding to the representation~1! gives
the QM-representation of contextC. Recently in the preprints9 it was shown that we can do th
same even in the conventional Kolmogorov framework by using thecontextual interpretationof
his measure-theoretical probabilistic model. This paper contains an extended presentation
from Ref. 9.

We shall show that for a Kolmogorov probability spaceK5(V,F,P) and a pair ofincompat-
ible Kolmogorovian random variables banda we can construct a natural quantum representat
This representation is rigidly based on a pair of variablesb anda—fundamental~for that concrete
representation of physical reality! observables. In particular, the standard quantum represent
is based on theposition and momentum observables. There exists a mapJb/a which maps contexts
~represented by subsets ofV! into quantum states[complexb/a-transition amplitudes of prob
ability. In some sense we came back to the original Hilbert’s viewpoint to a wave function
transition amplitude; see Ref. 10; see also Lande,11 Accardi,4 Ballentine,12 and Gudder.13

a!Also at the International Center for Mathematical Modeling in Physics and Cognitive Sciences. Electronic
Andrei.Khrennikov@msi.vxu.se; supported by EU-Network QP and Applications.
9020022-2488/2004/45(3)/902/20/$22.00 © 2004 American Institute of Physics
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Points ofV are interpreted asfundamental physical parameters. If you like HV . . . But the
general HV-approach was so discredited by former investigations~since people wanted too muc
for such a HV-description! that we would not like even to refer to HV. We callV prespaceand
fundamental parameters—prepoints.

The main distinguishing feature of the representation mapJb/a is the hugecompression of
information. In particular, every point represented in the conventional mathematical mod
physical space by a vectorxPR3 is the image of a subset

Bx5$vPV:b~v!5x%,

of V which can contain millions of prepoints. In the conventional quantum the representati
the prespace the fundamental variableb5q is the position observable. We have a similar pictu
for the momentum observable. In the quantum model we consider ‘‘classical physical poinx
PR3 as represented by eigenvectors of the position operator. Thus by going from the ‘‘cla
physical space’’R3 to the quantum physical~Hilbert! spaceH and then to the prespaceV we
obtain finer and finer descriptions of reality.

Another distinguishing feature of theJb/a-representation of the prespaceV in the Hilbert
spaceH is the creation of superpositions of ‘‘classical states.’’ The origin of the quantum su
position can be very easily explained by our prespace model. For example, let us cons
contextC,V such thatC,Bx1

øBx2
,x1 ,x2PR3,x1Þx2 , but neitherC,Bx1

nor C,Bx2 . The
imagewC5Jb/a(C)PH is a quantum state describing a quantum system which is ‘‘in a supe
sition of the positions’’x1 andx2 .

In this model ~as it was wanted by Einstein! the Heisenberg uncertainty relation can b
violated for fundamental observables~e.g., the position and momentum! which are used for our
classical and quantum representations of reality. Points (vPV) of the prespace aredispersion free
states.

In our model only the two fundamental observables correspond to random variables o
prespace. Other quantum and classical observables have only some indirect relation to
variables on the prespace. So we could not consider such, e.g., quantum observables
observables–functions of fundamental parameters. Nevertheless, for a wide class of qu
observables~including QM-Hamiltonians! we have the coincidence of averages with average
corresponding random variables onV. Here we speak about averages with respect to the s
wC5Jb/a(C) and contextC, respectively. In our model only quantum observables belonging
special class@classO1(a,b)] have a realist interpretation.

We underline that our investigations have nothing to do with attempts to find some ge
probabilistic model which would contain Kolmogorov as well as quantum probabilities as pa
lar cases, cf., e.g., Mackey,14 Gudder,13 Ludwig,15 Devies and Lewis,16 Ballentine,12 and Hardy.17

For us the main distinguishing feature of quantum theory is not a new~‘‘quantum’’! behavior of
probabilities, but a special way of the representation of~ordinary! probability.

By our model dispersion free states~e.g., position and momentum observables! can exist and
the Heisenberg’s uncertainty principle can be violated.

II. CONTEXTUAL FORMULA OF TOTAL PROBABILITY

Let ~V,F,P! be a Kolmogorov probability space.18

By the standard Kolmogorov axiomatics setsAPF representevents. In our simplest model of
contextual probability~Kolmogorovian contextual model! the same system of sets,F, is used to
represent complexes of experimental physical conditions—contexts. We can consider a setC
PF as a collection of physical parametersv describing a complex of physical conditions. This
a context–interpretation of setsCPF.

By the event–interpretation of setsAPF such a setA is a collection of physical parameter
inducing the corresponding event~denoted by the same symbolA).
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In principle, in a mathematical model events and contexts can be represented by di
families of sets, see, e.g., Renye’s model. We will not do this from the beginning. But later w
fix a proper subfamily of contextsC,F.

The conditional probability is mathematically defined by the Bayes’ formula:

P~A/C!5
P~AC!

P~C!
, P~C!Þ0.

In our contextual model this probability has the meaning of the probability of occurrence o
eventA under the complex of physical conditionsC. Thus it is not the probability of occurrenc
of the eventA under the condition that the eventC has occurred~as it is assumed in the Kolmog
orov theory!. ~The reader might think that the difference in interpretations is negligible. B
would like to underline that this is the crucial point of all our considerations.!

Thus it would be more natural to callP(A/C) a contextual probabilityand notconditional
probability. Roughly speaking, to findP(A/C) we should find parametersvA favoring the occur-
rence of the eventA among parametersvC describing the complex of physical conditionsC.

Let A5$An% be finite or countable complete group of inconsistent contexts:

AiAj5B, iÞ j , ø iAi5V.

Let BPF be an event andCPF be a context and letP(C).0. We have the standard formula o
total probability:

P~B/C!5
P~BC!

P~C!
5(

n

P~BAnC!P~AnC!

P~C!P~AnC!

@if P(AnC).0 for all n], and hence

P~B/C!5(
n

P~An /C!P~B/AnC!. ~2!

Of course, in the conventional Kolmogorov model we operate only with events. Thus, in sp
using the standard Kolmogorov measure-theoretical probabilistic formalism, from the very b
ning we use a new interpretation of conditioning in this formalism. Instead of the convent
even-conditioning, we usecontext-conditioning. Thus there is nothing new from the mathematic
viewpoint and the reader may be curious: Is it possible to find something new by using the
mathematical apparatus and by changing only the interpretation? Yes, we shall construct a
new representation of the Kolmogorov model in a Hilbert space. This representati
nontrivial—Kolmogorovian~but contextual! random variables are represented by in general n
commutative operators.

In particular, leta andb be discrete random variables taking valuesai ,i 51,...,ka andbj , j
51,...,kb , whereka ,kb,`. We have

P~b5bi /C!5(
n

P~a5an /C!P~b5bi /a5an ,C! .

Let a measurement of the variablea disturb essentially physical systemsvPV. Let us fix
some complex of conditions~context! C. One cannot measureb and a simultaneously in the
contextC. Thus the probabilitiesP(b5bi /a5an ,C) are ‘‘hidden’’ ~or ontic! probabilities.~We
are not able to select parametersvAn favouring to the realization ofa5an without to disturb
contextC.) However, we can measure the variableb in the contextAn5$v:a(v)5an%. Thus we
cannot prepare for the contextC systemsv such that we know that simultaneouslyb(v)
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5bi ,a(v)5an , but we can prepare systemsv such thata(v)5an and in this context we can
perform theb-measurement. Hence the probabilitiesP(b5bi /a5an)5P(Bi /An) are well de-
fined. Here

Bi5$vPV:b~v!5bi% and An5$vPV:a~v!5an%.

I would like to modify the formula of total probability~2! by eliminating hidden probabilities
P(b5bi /a5an ,C) and using only observable probabilitiesP(b5bi /a5an).

Definition 1: ~Context! A set C belonging toF is said to be a context with respect to
complete group of inconsistent contextsA5$An% if P(AnC)Þ0 for all n.

We denote the set of allA-contexts by the symbolCA .
Definition 2: LetA5$An% andB5$Bn% be two complete groups of inconsistent contexts. T

are said to be incompatible ifP(BnAk)Þ0 for all n and k.
ThusB andA are incompatible iff everyBn is a context with respect toA andvice versa; see

Appendix 1 for details.
Random variablesa andb inducing incompatible complete groupsA5$An% andB5$Bk% of

inconsistent contexts are said to beincompatible random variables.
Theorem 1~Interference formula of total probability!: LetA andB be incompatible and let C

be a context with respect toA. Then the following ‘‘interference formula of total probability
holds true for any BPB:

P~B/C!5( P~An /C!P~B/An!12 (
n,m

lnm~B/A,C!AP~An /C!P~Am /C!P~B/An!P~B/Am!,

~3!

where

lnm~B/A;C!5
dnm~B/A;C!

2AP~An /C!P~B/An!P~Am /C!P~B/Am!

and

dnm~B/A;C!5
@P~An /C!„P~B/AnC!2P~B/An!…1P~Am /C!„P~B/AmC!2P~B/Am!…#

ka21
~4!

Proof: We have

P~B/C!5(
n

P~An /C!„P~B/AnC!1P~B/An!2P~B/An!…5(
n

P~An /C!P~B/An!1d~B/A,C!,

where

d~B/A,C!5(
n

P~An /C!„P~B/AnC!2P~B/An!…. ~5!

Finally, we remark that we can represent the perturbation term as the sum of perturbation
corresponding to pairs of (An ,Am):

d~B/A,C!5 (
n,m

dnm~B/A;C!,

wherednm(B/A;C) is given by~4!.
The lnm(B/A,C) are calledcoefficients of statistical disturbance. Coefficientslnm(B/A,C)

describe disturbances of probabilities induced by filtrations with respect to valuesa5an in the
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contextC. Depending on magnitudes of these coefficients we can rewrite the nonconven
formula of total probability in various forms that are useful for representing~3! as a transformation
in a complex linear space or a Clifford modular; see Ref. 19 for details.

In our further investigations we will use the following result.
Lemma 1: Let conditions of Corollary 1 hold true. Then

(
k

d~Bk /A,C!50. ~6!

Proof: We have 15(kP(Bk /C)5(k(nP(An /C)P(Bk /An)1(kd(Bk /A,C). But
(n„(kP(Bk /An)…P(An /C)51.

As a consequence of this lemma we have

(
k

(
l ,m

l lm~Bk /A,C!AP~Al /C!P~Am /C!P~Bk /Al !P~Bk /Am!50. ~7!

~1! Suppose thata5an filtrations ~in the contextC) induce statistical disturbances havin
relatively small coefficientslnm(B/A,C), namely, for everyBPB,

ulnm~B/A,C!u<1 .

@First we prepare a statistical ensembleOC of physical systemsv under the complex of~e.g.,
physical! conditionsC. Then we perform a measurement of the random variablea for elements of
the ensembleOC . Finally, we select all systems for which we obtained the valuea5an .]

In this case we can introduce new statistical parametersunm(B/A,C)P@0,p# and represent
the coefficients of statistical disturbance in the trigonometric form:

lnm~B/A,C!5cosunm~B/A,C!.

Parametersunm(B/A,C) are said to berelative phasesof an eventB with respect to a complete
group of inconsistent eventsA ~in the contextC).

In this case we obtain the following interference formula of total probability:

P~B/C!5(
n

P~An /C!P~B/An!12 (
n,m

cosunm~B/A,C!

3AP~An /C!P~Am /C!P~B/An!P~B/Am!. ~8!

This is nothing other than the famousformula of interference of probabilities. @Typically this
formula is derived by using the Hilbert space~unitary! transformation corresponding to the tra
sition from one orthonormal basis to another and Born’s probability postulate. The orthon
basis under quantum consideration consist of eigenvectors of operators~noncommutative! corre-
sponding to quantum physical observablesa andb.] We demonstrated that in the opposite of t
common~especially in quantum physics! opinion nontrivial interference of probabilities need n
be related to some non-Kolmogorovian features of a probabilistic model. In our consider
everything is Kolmogorovian. The interference of probabilities is a consequence of the im
bility of using conditioning with respect to$a5an ,C% ~to combine two contexts—C anda) for
random variablesa which measurement disturbs essentially physical systemsvPV.

Starting from~8! we shall derive~for dichotomous random variables! Born’s rule, construct
for any contextC a complex probability amplitude, introduce a Hilbert space structure on
space of complex amplitudes and represent random variables on the Kolmogorov probability
by ~in general noncommutative! operators in the Hilbert space.
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~2! Suppose thata5an filtrations induce statistical disturbances having relatively large co
ficientslnm(B/A,C), namely, for everyBPB,

ulnm~B/A,C!u>1 .

In this case we can introduce new statistical parametersunm(B/A,C)P@0,1`# and represent
the coefficients of statistical disturbance in the trigonometric form

lnm~B/A,C!56coshunm~B/A,C!.

Parametersunm(B/A,C) are said to be hyperbolicrelative phasesof an eventB with respect to a
complete group of inconsistent eventsA ~in the contextC).

In this case we obtain the following interference formula of total probability:

P~B/C!5(
n

P~An /C!P~B/An!62 (
n,m

coshunm~B/A,C!

3AP~An /C!P~Am /C!P~B/An!P~B/Am!. ~9!

~3! Suppose thata5an filtrations induce for somen statistical disturbances having relative
small coefficientslnm(B/A,C) and for othern statistical disturbances having relatively larg
coefficientslnm(B/A,C). Here we have the interference formula of total probability contain
trigonometric as well as hyperbolic interference terms.

III. DICHOTOMOUS RANDOM VARIABLES

We study only models withtrigonometric interference. We set

C5$CPCA :ul~Bj /A,C!u<1%.

We call elements ofC trigonometric contexts. We shall see that QM can be interpreted
representation of trigonometric contexts. We can also introduce hyperbolic contexts which c
represented in a hyperbolic Hilbert space; see Ref. 19.

A. Interference and complex probability amplitude, Born’s rule

Let us study in more detail the case of incompatible dichotomous random variaba
5a1 ,a2 ,b5b1 ,b2 . We setY5$a1 ,a2%,X5$b1 ,b2% ~‘‘spectra’’ of random variablesa andb). Let
CPC be a context for both random variablesa andb. We set

pC
a ~y!5P~a5y/C!,pC

b ~x!5P~b5x/C!,p~x/y!5P~b5x/a5y!,

xPX,yPY. The interference formula of total probability~8! can be written in the following form:

pc
b~x!5 (

yPY
pC

a ~y!p~x/y!12 cosuC~x!A)
yPY

pC
a ~y!p~x/y! , ~10!

where uC(x)5u(b5x/A,C)5arccosl(b5x/A,C),xPX,CPC. We remark that in the case o
dichotomous random variables:

d~b5x/A,C!5pc
b~x!2 (

yPY
pC

a ~y!p~x/y!

and

l~b5x/A,C!5
d~b5x/A,C!

2A)
yPY

pC
a ~y!p~x/y!

.
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By using the elementary formula:

D5A1B12AAB cosu5uAA1ei euABu2,

for A,B.0,e561,uP@0,p#. we can represent the probabilitypC
b (x) as the square of the comple

amplitude:

pC
b ~x!5uwC~x!u2 . ~11!

We fix some pair of signse(x),xPX @e.g.,e(b1)521 ande(b2)511 ]. We set

w~x![wC~x!5ApC
a ~a1!p~x/a1!1ee(x)uC(x)ApC

a ~a2!p~x/a2! . ~12!

We denote the space of functions:w:X→C by the symbolE5F(X,C). SinceX5$b1 ,b2%, theE
is the two dimensional complex linear space. Dirac’sd-functions$d(b12x),d(b22x)% form the
canonical basis in this space. For eachwPE we have

w~x!5w~b1!d~b12x!1w~b2!d~b22x!.

By using the representation~12! we construct the map

Jb/a:C→F~X,C!. ~13!

The Jb/a maps contexts~complexes of, e.g., physical conditions! into complex amplitudes. The
representation~11! of probability as the square of the absolute value of the comp
(b/a)-amplitude is nothing other than the famousBorn rule.

Remark 1:We underline that the complex linear space representation~12! of the set of
contextsC is based on a pair (a,b) of incompatible~Kolmogorovian! random variables. Here
wC5wC

b/a .
The complex amplitudewC(x) can be called awave functionof the complex of physical

conditions, contextC; cf. Refs. 1–3, or apure state.
We recall that we obtained complex probability amplitudes in the conventional Kolmog

framework without appealing to the standard wave or Hilbert space arguments. As we sha
the mapJb/a gives aquantum-like representationof the conventional Kolmogorov probability
model.

In principle, we can represent each contextCPC by a family of complex amplitudes:

w~x![wC~x!5 (
yPY

ApC
a ~y!p~x/y!ei jC(x/y), ~14!

such that

jC~x/a1!2jC~x/a2!5uC~x!.

For such complex amplitudes we also have Born’s rule~11!. However, to simplify consideration
we shall consider only the representation~12! and the map~13! induced by this representation.

B. Hilbert space representation of Born’s rule

We set

ex
b~• !5d~x2• !.

The representation~11! can be rewritten in the following form:

pC
b ~x!5u~wC ,ex

b!u2 , ~15!
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where the scalar product in the spaceE5F(X,C) is defined by the standard formula:

~w,c!5 (
xPX

w~x!c̄~x!.

The system of functions$ex
b%xPX is an orthonormal basis in the Hilbert spaceH5„E,(•,•)….

Let X,R. By using the Hilbert space representation of Born’s rule~15! we obtain the Hilbert
space representation of the expectation of the~Kolmogorovian! random variableb:

E~b/C!5 (
xPX

xpC
b ~x!5 (

xPX
xuwC~x!u25~ b̂wC ,wC! , ~16!

whereb̂:F(X,C)→F(X,C) is the multiplication operator. This operator can also be determ
by its eigenvectors:b̂ex

b5xex
b ,xPX.

We set

uj
a5ApC

a ~aj !,uj
b5ApC

b ~bj !,pi j 5p~bj /ai !,ui j 5Api j ,u j5uC~bj !,e j5e~bj ! .

We remark that the coefficientsuj
a ,uj

b depend on a contextC; souj
a5uj

a(C),uj
b5uj

b(C). We also
consider thematrix of transition probabilitiesPb/a5(pi j ). It is always astochastic matrix. ~So
pi11pi251,i 51,2.) We have, see~14!, that

wC5v1
be1

b1v2
be2

b , where v j
b5u1

au1 j1u2
au2 je

i e ju j .

So

pC
b ~bj !5uv j

bu25uu1
au1 j1u2

au2 je
i e ju j u2. ~17!

This is theinterference representation of probabilitiesthat is used, e.g., in quantum formalism
@By starting with the general representation~14! we obtainv j

b5u1
au1 je

i j1 j1u2
au2 je

i j2 j and the
interference representationpC

b (bj )5uv j
bu25uu1

au1 je
i j1 j1u2

au2 je
i j2 j u2.] We recall that we obtained

~17! starting with the interference formula of total probability~10!.

C. Born’s rule and Hilbert space representations

We would like to obtain~17! by using the standard quantum procedure, namely, trans
from the orthonormal basis$ej

b% corresponding theb-variable to a new basis$ej
a% which corre-

sponds to thea-variable. Thus we would like to have Born’s rule not only in theb-representation,
but also in thea-representation. As we shall see, we cannot be lucky in the general case. S
from two arbitrary incompatible~Kolmogorovian! random variablesa andb we obtained a com-
plex linear space representation of the probabilistic model which is essentially more gener
the standard quantum representation. In our~more general! linear representation the ‘‘dual vari
able’’ a need not be represented by a symmetric operator~matrix! in the Hilbert spaceH generated
by theb.

For any contextC0 , we can represent thew5wC0
in the form

w5u1
ae1

a1u2
ae2

a , ~18!

where

e1
a5~u11, u12! e2

a5~ei e1u1u21, ei e2u2u22!. ~19!

Here$ei
a% is a system of vectors inE corresponding to thea-observable. We suppose that vecto

$ei
a% are linearily independent, so$ei

a% is a basis inE. We have
                                                                                                                



-

tion

e

ition

910 J. Math. Phys., Vol. 45, No. 3, March 2004 Andrei Khrennikov

                    
e1
a5v11e1

b1v12e2
b , e2

a5v21e1
b1v22e2

b .

Here V5(v i j ) is the matrix corresponding to the transformation of complex amplitudes:v11

5u11,v215u21 andv125ei e1u1u21,v225eii e2u2u22.
We would like to find a class of matrixesV such that Born’s rule~in the Hilbert space form!,

see~15!, holds true also in thea-basis:

pC
a ~aj !5u~w,ej

a!u2 .

By ~18! we have Born’s rule iff$ei
a% was anorthonormal basis, i.e., theV is a unitary matrix.

Since we study the two-dimensional case~i.e., dichotomous random variables!, V[Vb/a is unitary
iff the matrix of transition probabilitiesPb/a is double stochastic. ~So it is stochastic and, more
over, p1 j1p2 j51,j 51,2.)

However, there is some difficulty. In fact, we constructed thea-basis starting with one fixed
contextC0 . The basisej

a depends onC0 @via the phasesuC0
(x)]: ej

a5ej
a(C0). In principle, the

validity of Born’s rule for the contextC0 in the basisej
a(C0) need not imply this rule for any

contextC in the same basisej
a(C0). We shall see that for double stochastic matrices of transi

probabilities~and only such matrices! we can really construct thea-representation starting with
some fixedC0 . However, we should choose signse(x) in the representation~12! in a special way.
We recall that the mapJb/a was constructed for fixed signse1 ande2 ; so Jb/a5Jb/a(e1 ,e2).

We now investigate this problem. We remind the reader that we constructed the matrixV by
using the fixed contextC0 , so V5V(C0). For anyCPC, we would like to represent the wav
function as

fC5v1
a~C!e1

a~C0!1v2
a~C!e2

a~C0!, where uv j
a~C!u25pC

a ~aj !. ~20!

It is clear that, for anyCPC, we can represent the wave function as

fC~b1!5u1
a~C!v11~C0!1ei e1[uC(b1)2uC0

(b1)]u2
a~C!v12~C0!,

fC~b2!5u1
a~C!v21~C0!1ei e1[uC(b2)2uC0

(b2)]u2
a~C!v22~C0!.

Thus to obtain~20! we should have

e1@uC~b1!2uC0
~b1!#5e2@uC~b2!2uC0

~b2# ~mod 2p!, ~21!

for any pair of contextsC0 andC1 . Thus

D~C!5e1uC~b1!2e2uC~b2!5D ~22!

should be a constant~mod 2p! on C.

D. The role of the condition of double stochasticity

Lemma 2: Let a and b be incompatible random variables and let the matrix of trans
probabilitiesPb/a be double stochastic. Then

cosuC~b1!52cosuC~b2!, ~23!

for any context CPC.
Proof: By Lemma 1 we have

(
xPX

cosuC~x!A)
yPY

pc
a~y!p~x/y!50.
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But for a double stochastic matrix„p(x/y)… we have

)
yPY

pc
a~a1!p~b1 /y!5 )

yPY
pc

a~a2!p~b2 /y!.

Since random variablesa and b are incompatible, we havep(x/y)Þ0,xPX,yPY. Since C
PCA , we havepC

a (y)Þ0,yPY. We obtain~23!.
Thus for a double stochastic matrixPb/a we can choose

uC~b2!5p2uC~b1!. ~24!

Proposition 1: Let the conditions of Lemma 2 hold true. Then the condition (22) holds tru
any Kolmogorov model iffe152e2 .

Proof: By ~24! we obtain

D~C!5~e11e2!uC~b1!2e2p.

Let us denote the unit sphere in the Hilbert spaceE5F(X,C) by the symbolS. The map
Jb/a:C→S need not be a surjection~injection!; see the examples in Sec. VI. In general the se
pure states corresponding to a Kolmogorovian model,

SC[SC
b/a5Jb/a~C!,

is just a proper subset of the sphereS. The structure of the set of pure statesSC is determined by
the Kolmogorov model.

We remark that for a double stochastic matrixPb/a ~ande152e2) the condition~22! does not
depend on the setC ~i.e., a Kolmogorov model!. Here alwaysD5p. We also remark that, in fact
only double stochastic matricesPb/a has such a property. By using calculations which have b
done in the proof of Lemma 1 we obtain the following more general result.

Lemma 2a: Let a and b be incompatible random variables. Then for any context CPC the
following equality holds true:

cosuC~b1!52k cosuC~b2!, ~25!

where

k[kb/a5Ap12p22

p11p21
.

Proposition 2: Let k.0 be a real number and let anglesu1 ,u2P@0,p# be connected by (22)
If for all u2P@0,p#,

cosu152k cosu2 ,

then k51 and D5p.
Proof: By ~22! we haveu15e1D1e1e2u2 . Thus cos(e1D1e1e2u2)52kcosu2 for all u2

P@0,p#. So cos(D1e2u2)52kcosu2. Let u25e2(2D1p/2). So cos(2D1p/2)50. Thus D
50 or D5p. Let D50. Then cosu52kcosu for anyuP@0,p#. This contradicts the positivity of
k. SoD5p andk51. To get bothu1 ,u2P@0,p# we should choosee152e2 .

We also remark thatkb/a51 iff Pb/a is double stochastic.

E. Extension of the Hilbert space representation map

The setsAi are not contexts with respect toA, sinceP(A1A2)50. ThusJb/a(Ai) cannot be
defined by~12!. It is natural to extend the mapJb/a to setsAi by setting

Jb/a~Ai !5ei
a , i 51,2.
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We set

C̄5CøA.

Thus we have constructed the Hilbert space representation:

Jb/a: C̄→S.

We setSC̄5Jb/aC̄.

F. Nonsensitive contexts

Let d(Bi /A,C)50,i 51,2. So l(Bi /A,C)50 and, hence,u(Bi /A,C)5p/2. Here ~for x
PX)

wC~x!5Jb/a~C!~x!5ApC
a ~a1!p~x/a1!1ei e(x) ~p/2!ApC

a ~a2!p~x/a2!. ~26!

Thus

wC~x!5ApC
a ~a1!p~x/a1!1e~x!iApC

a ~a2!p~x/a2!. ~27!

We set

C05$CPC:d~Bj /A,C!50%.

ContextsCPC0 are said to beb/a-nonsensitive contexts. These are complexes of physical~or,
e.g., social! conditionsC such that a measurement ofa underC does not disturb the probability
distribution ofb. We remark thatV always belong toC0 . However, in generalC0Þ$V%; see Sec.
VI.

G. Noninjectivity of the Hilbert space representation map

Let C1 ,C2PC be contexts such that probability distributions of random variablesa and b
underC1 andC2 , respectively, coincide:

pC1

a ~y!5pC2

a ~y!,yPY, pC1

b ~x!5pC2

b ~x!,xPX.

In such a cased(b5x/A,C1)5d(b5x/A,C2). Thus corresponding phases also coincide:u(b
5x/A,C1)5u(b5x/A,C2). HencefC1

(x)5fC2
(x),xPX, andJb/a(C1)5Jb/a(C2); see Sec. VI

for examples.

H. Nonquantum Hilbert space representations of Kolmogorovian models

Of course, for arbitrary random variablesa andb the matrixPb/a need not be double stocha
tic. Thus a representation of probabilities by vectors in asingle Hilbert spacewe can obtain for a
very restricted class of random variables. In particular, such random variables are consid
quantum theory~in the formalism of Dirac–von Neumann!. In general, for each random variab
we should introduce its own scalar product and corresponding Hilbert space:

Hb5„E,(•,•)b…, Ha5„E,(•,•)a…,..., where

~w,c!b5(
j

v j
bw̄j

b , for w5(
j

v j
bej

b ,c5(
j

wjej
b

and
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~w,c!a5(
j

v j
aw̄j

a , for w5(
j

v j
aej

a ,c5(
j

wj
aej

a .

The Hilbert spacesHb ,Ha , . . . , give the b-representation, thea-representation, ... . Thu
pC

b (bj )5u(w,ej
b)bu2 andpC

a (aj )5u(w,ej
a)au2 and so on. In theHa we have

E~a/C!5 (
yPY

ypC
a ~y!5a1u~wC ,e1

a!au21a2u~wC ,e2
a!au25~ âwC ,wC!a ,

where the operatorâ:E→E is determined by its eigenvectors:âej
a5ajej

a .
Of course, the representation of random variables by linear operators is just a conv

mathematical tool to represent the average of a random variable by using only the Hilbert
structure. We recall that we started with purely ‘‘classical’’ Kolmogorovian random variables

As in the conventional quantum formalism we can also consider the map

J̃b/a: C̄→F̃~X,C!. ~28!

Here F̃(X,C) is the space of equivalent classes of functions under the equivalence relatiw

equivalentc iff w5tc, tPC, utu51, andJ̃b/a(C)5tfC , tPC, utu51, whereCP C̄.
Conclusion: In the contextual probabilistic approach we can construct a natural map from

set of contexts into the unit sphere of the complex Hilbert space. Such a map is determine
pair a,b of incompatible random variables. Unitarity of the matrix Vb/a of transition from the
basis$ei

a% to the basic$ei
b% (these basis correspond to random variables a and b, respectively) is

equivalent to the possibility of using Born’s rule both in the a and b representations. In ge
(i.e., for an arbitrary set of contexts) such a construction can be realized only for adouble
stochastic matrix of transition probabilities.

Everywhere below we restrict our considerations to the case in which the matrix of tran
probabilitiesPb/a is double stochastic.

IV. NONCOMMUTATIVITY OF OPERATORS REPRESENTING KOLMOGOROVIAN
RANDOM VARIABLES

We consider in this section the case of real valued random variables. Here the spe
random variablesb anda are subsets ofR.

We setq15Ap115Ap22 andq25Ap125Ap21.
Thus the vectors of thea-basis, see~19!, have the following form:

e1
a5~q1 ,q2!, e2

a5~ei e1u1q2 ,ei e2u2q1! .

Sinceu11u25p, we gete2
a5ei e2u2(2q2 ,q1). The factorei e2u2 does not play any role in proba

bilistic considerations. Hence we can work in the new basis:

e1
a5~q1 ,q2!, e2

a5~2q2 ,q1!.

We now find matrices of operatorsâ andb̂ in theb-representation. The latter one is diagonal. F
â we haveâ5V diag(a1,a2)V

!, wherev115v225q1 ,v2152v125q2 . Thus

a115a1q1
21a2q2

2 , a225a1q2
21a2q1

2 , a125a215~a12a2!q1q2 .

Hence

@ b̂,â#5m̂,
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where m115m2250 and m1252m215(a12a2)(b22b1)q1q2 . Since a1Þa2 ,b1Þb2 and qj

Þ0, we havem̂Þ0.

V. THE ROLE OF SIMULTANEOUS DOUBLE STOCHASTICITY OF P b Õa AND PaÕb

Starting with theb-representation—complex amplitudesfC(x) defined on the spectrum
~range of values! of a random variableb—we constructed thea-representation. This constructio
is natural~i.e., reproduce Born’s probability rule! only in the case in whichPb/a is double sto-
chastic. We would like to have a symmetric model. So by starting with
a-representation—complex amplitudesfC(y) defined on the spectrum~range of values! of a
random variablea—we would like to construct the naturalb-representation. Thus both matrices
transition probabilitiesPb/a andPa/b should be double stochastic.

Theorem 2: Let the matrixPb/a be double stochastic. The contexts B1 ,B2 belong toC iff the
matrix Pa/b is double stochastic.

Proof: We have

l~B2 /A,B1!52
m1

21m2
2

2m1m2
,

wherem j5ApB1

a (aj )p(b2 /aj ). Sol(B2 /A,B1)>1 and we have the trigonometric behavior on

in the casem15m2 . Thus pB1

a (a1)p(b2 /a1)5pB1

a (a2)p(b2 /a2). In this casel(B2 /A,B1)

521, sou(B2 /A,B1)5p, and consequentlyu(B1 /A,B1)50. We pay attention to the fact tha
pBi

a (aj )5pa/b(aj /bi)[p(aj /bi). Thus we have

p~a1 /b1!p~b2 /a1!5p~a2 /b1!p~b2 /a2!. ~29!

In the same way by using conditioning with respect toB2 we obtain

p~a1 /b2!p~b1 /a1!5p~a2 /b2!p~b1 /a2!.

By using the double stochasticity ofPb/a we can rewrite the last equality as

p~a1 /b2!p~b2 /a2!5p~a2 /b2!p~b2 /a1!. ~30!

Thus by~29! and ~30! we have

p~a1 /b2!

p~a2 /b1!
5

p~a2 /b2!

p~a1 /b1!
.

Hence p(a1 /b2)5tp(a2 /b1) and p(a2 /b2)5tp(a1 /b1),t.0. But 15p(a1 /b2)1p(a2 /b2)
5t@p(a2 /b1)1p(a1 /b1)#5t.

To finish the proof we need the following well known result.
Lemma 3: Both matrices of transition probabilitiesPb/a andPa/b are double stochastic iff the

transition probabilities are symmetric, i.e.,

p~bi /aj !5p~aj /bi !, i , j 51,2. ~31!

This is equivalent that random variables a and b have the uniform probability distribut
pa(ai)5pb(bi)51/2, i 51,2.

This lemma has important physical consequences. A natural~Bornian! Hilbert space represen
tation of contexts can be constructed only on the basis of a pair of~incompatible! uniformly
distributed random variables.

Lemma 4: Let both matricesPb/a and Pa/b be double stochastic. Then

l~Bi /A,Bi !51. ~32!
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Proof: Here d(Bi /A,Bi)512p(bi /a1)p(a1 /bi)2p(bi /a2)p(a2 /bi)512p(a1 /bi)
2

2p(a2 /bi)
252p(a1 /bi)p(a2 /bi). Thusl(Bi /A,Bi)51.

By ~32! we have

l~Bi /A,Bj !521,iÞ j .

Thus

u~Bi /A,Bi !50 and u~Bi /A,Bj !5p,iÞ j .

Proposition 2: Let both matrices of transition probabilitiesPb/a andPa/b be double stochastic
Then

Jb/a~Bj !~x!5d~bj2x!,xPX, and Ja/b~Aj !~y!5d~aj2y!,yPY.

Proof: Becauseu(B1 /A,B1)50 we have

Jb/a~B1!~b1!5Ap~a1 /b1!p~b1 /a1!1ei0Ap~a2 /b1!p~b1 /a2!5p~a1 /b1!1p~a2 /b1!51.

Becauseu(B2 /A,B1)5p we have

Jb/a~B1!~b2!5Ap~a1 /b1!p~b2 /a1!1eipAp~a2 /b1!p~b2 /a2!

5Ap~a1 /b1!„Ap~b2 /a1!2Ap~a2 /b1!…50.

Thus in this case,

Jb/a~Bi !5ei
b , i 51,2.

VI. EXAMPLE OF THE HILBERT SPACE REPRESENTATION OF THE CONTEXTUAL
KOLMOGOROVIAN MODEL

We consider an example of a Kolmogorov probability space and a pair of dichotom
random variablesa,b which are incompatible. In this example the set of contexts with nontri
disturbance termd,dÞ0, is nonempty, soC0ÞC.

A. Kolmogorov probability space and incompatible random variables

We find the imageSC of the set of contextsC in the Hilbert sphereS,E5F(X,C). In this
exampleSC is a proper subset of the sphereS. The Hilbert space representation mapJb/a is not
injective. Random variablesa andb are represented by symmetric operators in the Hilbert sp
E. They do not commute.

Let V5$v1 ,v2 ,v3 ,v4% andP(v j )5pj.0,( j 51
4 pj51. Let

A15$v1 ,v2%,A25$v3 ,v4%,

B15$v1 ,v4%,B25$v2 ,v3%.

Let p15p35q, 1
2 andp25p45(122q)/2. We denote this Kolmogorov probability space b

the symbolK(q).
Here P(A1)5P(A2)5P(B1)5P(B2)5 1

2. So the random variablesa and b are uniformly
distributed. Thus both matrices of transition probabilitiesPb/a andPa/b are double stochastic. Her

Pb/a5Pa/b5S 2q 122q

122q 2q D .

We have the symmetry conditionP(Bi /Aj )5P(Aj /Bi).
                                                                                                                



om
ll

916 J. Math. Phys., Vol. 45, No. 3, March 2004 Andrei Khrennikov

                    
B. Hilbert space representation of contexts

We choosee1521 ande2511 to fix the mapJb/a. We start with two point contexts.
~a! Let C5C245$v2 ,v4%. HereP(C)5122q,P(Bj /C)5P(Aj /C)5 1

2. Thusd50. By us-
ing the representation~27!, we obtain

wC24
~x!55 Aq2 iA122q

2
, x5b1 ;

A122q

2
1 iAq, x5b2 .

~33!

~b! Let C5C135$v1 ,v3%. Here everything is as in~a!. So we havewC13
5wC24

ThusJb/a is
not injective:Jb/a(C24)5Jb/a(C13).

~c! Let C5C145$v1 ,v4%5B1 . By general theory we havewC14
(x)5d(b12x)5e1

b . In the

same way,wC23
5d(b22x)5e2

b .
To find the Hilbert space representation of setsC5C125$v1 ,v2%5A1 and C5C34

5$v3 ,v4%5A2 we have to construct the basis$ej
a%. We can choose

e1
a5S A2q

A122qD , e2
a5S 2A122q

A2q D .

~d! Let C5C1235$v1 ,v2 ,v3%. Here P(C)5(2q11)/2,P(A1 /C)5P(B2 /C)51/(2q
11),P(A2 /C)5P(B1 /C)52q/(2q11). Thus d(B1 /A,C)5 2q(2q21)/(2q11) and, hence,
l(B1 /A,C)52 A122q/2 . This context is trigonometric, i.e., the measurement of the rand
variablea under the complex of physical conditionsC induces nontrivial, but a relatively sma
statistical disturbance of the ‘‘b-property;’’ so C123PC. We remark that l(B2 /A,C)
5 A122q/2 ~since Pb/a is double stochastic!. @We pay attention on the dependence ofu
5arccosA122q/2 on the parameterq:u(q) increases fromp/3 to p/2, whenq increases from 0
to 1/2.# We have

wC123
~x!55A

2q

2q11
2ei arccosA122q/2A2q~122q!

2q11
, x5b1 ,

A122q

2q11
1ei arccosA122q/2

2q

A2q11
, x5b2 .

Remark:In principle, we could choose, e.g.,

e2
a5S2eiuA122q

eiuA2q D , u5arccos
A122q

2
.

Thus

wC123
5

1

A2q11
e1

a1ei arccosA122q/2A 2q

2q11
e2

a .

~e! Let C5C1245$v1 ,v2 ,v4%. Here P(C)512q,P(A1 /C)5P(B1 /C)51/2(12q),
P(A2 /C)5P(B2 /C)5(122q)/2(12q). Thus d(B1 /A,C)5q(122q)/(12q) and, hence,
l(B1 /A,C)5Aq/2,1, and the contextC124PC. Thus

wC124
~x!55A

q

12q
1e2 i arccosAq/2

122q

A2~12q!
, x5b1 ,

A 122q

2~12q!
2e2 i arccosAq/2Aq~122q!

12q
, x5b2 ;
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wC124
~x!5

1

A2~12q!
e1

a2e2 i arccosAq/2A 122q

2~12q!
e2

a .

~f! Let C5C2345$v2 ,v3 ,v4%. HereP(C)512q,P(A1 /C)5P(B1 /C)5(122q)/2(12q),
P(A2 /C)5P(B2 /C)51/2(12q). Thus d(B1 /A,C)5q(2q21)/(12q) and, hence,
l(B1 /A,C)52Aq/2,l(B2 /A,C)5Aq/2. Here

wC234
~x!55A

q~122q!

12q
2ei arccosAq/2A 122q

2~12q!
, x5b1 ,

122q

A2~12q!
1ei arccosAq/2A q

12q
, x5b2 ;

wC234
~x!5A 122q

2~12q!
e1

a1ei arccosAq/2
1

A2~12q!
e2

a .

~g! Let C5C1345$v1 ,v3 ,v4%. Here P(C)5(2q11)/2,P(A1 /C)5P(B2 /C)52q/
(2q11),P(A2 /C)5P(B1 /C)51/(2q11). Thusd(B1 /A,C)52q(122q)/(2q11) and, hence,
l(B1 /A,C)5 A122q/2 . Thus

wC134
~x!55

2q

A2q11
1e2 i arccosA122q/2A122q

2q11
, x5b1 ,

A2q~122q!

2q11
2e2 i arccosA122q/2A 2q

2q11
, x5b2 ;

wC134
5A 2q

2q11
e1

a2e2 i arccosA12q/2
1

A2q11
e2

a .

~h! Let C5V. Here we know from the beginning thatd(Bj /A,C)50. Here P(Ai /C)
5P(Ai)51/2 andP(Bi /C)5P(Bi)51/2. ThusJb/a(V)5Jb/a(C24)5Jb/a(C13)5(33).

In this example the set of nonsensitive contexts contains three contexts:C05$V,C24,C13%.
We have

SC̄5$wV ,wC14
5e1

b ,wC23
5e2

b ,wC12
5e1

a ,wC23
5e2

a ,wC124
,wC234

,wC123
,wC134

%.

So the set of pure statesSC̄ is a finite, nine-point, subset of the unit sphere in the two-dimensio
Hilbert space.

We remark that there is a parameterqP(0,1/2) determining a Kolmogorov probability mode
K(q). For each value ofq we have a finite set of pure states. However, a familyK(q),q
P(0,1/2), of Kolmogorov probability spaces generates a ‘‘continuous’’ setøqSC̄(q) of pure
states.

VII. CONTEXTUAL CORRESPONDENCE BETWEEN KOLMOGOROVIAN RANDOM
VARIABLES AND QUANTUM OBSERVABLES

We begin with the following standard definition:
Definition 3: For a self-adjoint operator dˆ the quantum mean value in the statew is defined

by

^d̂&w5~ d̂w,w!.

Theorem 3: For any map f:R→R we have
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^ f ~ â!&wC
5E„f ~a!/C…, ^ f ~ b̂!&wC

5E„f ~b!/C…,

for any contextCP C̄.
Proof: By using Borness of theb-representation we obtain

E„f ~b/C!…5 (
xPX

f ~x!pc
b~x!5 (

xPX
f ~x!u~wC ,ex

b!u25^ f ~ b̂!&wC
.

The same result we have for thef (â) since~asPb/a is double stochastic! we have Born’s prob-
ability rule both forb anda.

Theorem 4: Let f,g:R→R be two arbitrary functions. Then

E„f ~a!1g~b!/C…5^ f ~ â!1g~ b̂!&wC
,

for any context CP C̄.
Proof: By using linearity of the Kolmogorov mathematical expectation, Theorem 3,

linearity of the Hilbert space scalar product we obtain

E~ f „a~v!…1g„b~v!…/C!5E„f „a~v!/C…1E~g~b„v!…/C!…

5^ f ~ â!&wC
1^g~ b̂!&wC

5^ f ~ â!1g~ b̂!&wC
.

Denote the linear space of all random variables of the formd(v)5 f „a(v)…1g„b(v)… by the
symbolO1(a,b) and the linear space of operators of the formd̂5 f (â)1g(b̂) by O1(â,b̂).

Theorem 5: The map T5Ta/b:O1(a,b)→O1(â,b̂),d5 f (a)1g(b)→d̂5 f (â)1g(b̂), pre-
serves the conditional expectation

^T~d!&wC
5„T~d!J~C!,J~C!…5E~d/C!. ~34!

The transformationT preserves the conditional expectation for random variablesd
PO1(a,b). But in general we cannot expect anything more, since in generalT does not preserve
probability distributions. The important problem is to extend the mapT for a larger class~linear
space?! of Kolmogorovian random variables with preserving~34!. It is natural to define~as we
always do in the conventional quantum formalism!:

T~ f !~ â,b̂!5 f ~ â,b̂!,

where f (â,b̂) is the pseudo differential operator with the Weyl symbolf (a,b). We shall see that
already forf (a,b)5ab @so f (â,b̂)5(âb̂1b̂â)/2] the equality~34! is violated.

We can consider theb and thea as discrete analogs of the position and momentum obs
ables. The operatorsb̂ andâ give the Hilbert space~quantum! representation of these observable

We also introduce an analog of the energy observable:

H~v!5
h

2
@a2~v!1V„b~v!…#,

whereh.0 is a constant andV:R→R is a map. The Hilbert space representation of this obs
able is given by the operator of energy~Hamiltonian!,

Ĥ5
h

2
„â21V~ b̂!….
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By Theorem 5 for contextsCP C̄ the averages of the observablesH~v! ~Kolmogorovian! andĤ
~quantum! coincide:

E„H~v!/C…5^H&wC
.

However, as we shall see, probability distributions do not coincide.
Proposition 3: There exists context C such that the probability distribution of the ran

variable d(v)5a(v)1b(v) with respect to C does not coincide with the probability distributi

of the corresponding quantum observable dˆ 5â1b̂ with respect to the statewC .
Proof: It suffices to present an example of such a contextC. Take the contextC5C234 from

Sec. VI. We consider the case:a(v)56g,b(v)56g,g.0; sod(v)522g,0,2g. Correspond-
ing Kolmogorovian probabilities can easily be found:

pC
d ~22g!5q/~12q!, pC

d ~0!5~122q!/~12q!, pC
d ~2g!50.

We now find the probability distribution ofd̂. To do this, we find eigenvalues and eigenvectors
the self-adjoint operatord̂. We find the matrix of the operatord̂ in the basis$ej

b%: d1152d22

54qg andd125d2152gA2q(122q). We havek1,2562A2qg. Of course, the range of value
of the quantum observabled̂ differs from the range of values of the random variabled. However,
this difference of ranges of values is not so large a problem in this case. The random varid
takes only two values,22g,0, with the probability one. Moreover, we can represent values of
quantum observabled̂ as just an affine transform of values of the random variabled:

dquantum52A2q d2g.

In principle we can interpret such a transformation as representing some special measu
procedure. Thus in this example the problem with the spectrum is not crucial. The crucial pr
is thatd and d̂ have different probability distributions.

The corresponding eigenvectors are

e1
d5

1

A2~12A2q!
~2A122q,A2q21!,

e2
d5

1

A2~11A2q!
~2A122q,A2q11!.

Finally, we find~by using the expression forwC234
which was found in Sec. VI!:

pc
d̂~k1!5u~wC ,e1

d!u25
~12A2q!~21A2q!

4~12q!
,

pc
d̂~k2!5u~wC ,e2

d!u25
~11A2q!~22A2q!

4~12q!
.

Thusd and d̂ have essentially different probability distributions.

VIII. DISPERSION-FREE STATES

As originally stated by von Neumann,20 the problem of hidden variables is to find wheth
dispersion free states existin QM. He answered the question in the negative. The problem of
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existence of dispersion free states as well as von Neumann’s solution were the subject o
debates. We do not want to go into detail; see, e.g., Ref. 21. In our contextual approach an
of this problem can be formulated as follows.

Do dispersion free contexts exist?The answer is the positive. In the example of Sec. VI. W
can take any atom of the Kolmogorov probability spaceKq , e.g.,C5$v1%. Since, for any random
variablej on the Kolmogorov spaceKq , it has a constant value on such aC the dispersion ofj
under the contextC is equal to zero:

D~j/C!5E@~j2E~j/C!!2/C#50.

However, dispersion free contexts do not belong to the systemC̄ of contexts which can be
mapped byJa/b into the Hilbert spaceH. On the one hand, our contextual approach gives
possibility to have the realist viewpoint to QM. On the other hand, it does not contradict to th
Neumann as well as other ‘‘no-go’’ theorems. The mathematical representation of contexts~com-
plexes of physical conditions! given by the quantum formalism it too rough to represent dispers
free contexts.

IX. CLASSICAL AND QUANTUM SPACES AS ROUGH IMAGES OF FUNDAMENTAL
PRESPACE

Our contextual probabilistic model induces the following picture of physical reality.

A. Prespace and classical space

There exists a prespaceV which points corresponds to primary~irreducible! states of physical
systems,prestates or fundamental physical parameters. Functionsd:V→Rm are said to bepre-
observables. The set of all preobservables is denoted by the symbolOp[Op(V). We are not able
~at least at the moment! to measure an arbitrary preobservabledPOp .

Nevertheless, some preobservables can be measured. Suppose that there exists a preo
b such that all measurements can be reduced to some measurements ofb; cf. De Broglie10 on the
possibility of reducing any measurement to a position measurement. LetX,Rm be the range of
values ofb. TheX is said to be a classical space SetBx5$vPV:b(v)5x%5b21(x),xPX.

In principle a setBx could contain millions of points. Dynamics inX is classical dynamics. In
our model, classical dynamics is a rough image of dynamics in the prespaceV.

B. Quantum mechanics and the Hilbert space representation of prespace contexts

By our contextual interpretationthe wave function has a realist prespace interpretation
complex amplitude is nothing than an image~induced by the contextual formula of total probab
ity! of a set of fundamental parameters—context. Thus the Hilbert state spaceH is not less real
than the classical real spaceR3.

Observables which probability distributions can be found by using the representatio
self-adjoint operators in the Hilbert space are called quantum observables. The set of qu
observables is denoted by the symbolOq(H). Neither classical statistical nor quantum mechan
can provide knowledge about the probability distribution of an arbitrary preobservable. Nev
less, the quantum theory gives some information about some preobservables, namely fund
preobservableb anda and preobservablesd belonging to the classO1(a,b).

Neither classical nor quantum mechanics are fundamental theories. They could not g
formation about the pointwise structure of the prespaceV. But the quantum formalism represen
some complexes of physical conditions—domains in the prespace—which are not represe
the classical space or phase space. Of course, the quantum formalism also represents
position statesxPX by wave functionswBx

~Hilbert statesex
b). Classical statesxPX are images of

prespace contextsBx . But the quantum formalism represents also some setsC,V which have no
classical images~namely, images inX or P!.

Example:In the example of Sec. VI we take the setC5C1235$v1 ,v2 ,v3%. NeitherC,B1

nor C,B2 . This prespace domainC can be described neither by the positionx5b1 nor x5b2 .
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The quantum statewCPS,H representing this domain of the prespace describes the superpo
of the two classical statesx5b1 andx5b2 . Hence a physical system prepared under the com
physical conditionsC5C123 is ~from the classical viewpoint! in the superposition of two differen
positions.

Finally, we remark that we have investigated only the case of dichotomous random vari
The general case is essentially more complicated from the mathematical viewpoint. In part
not every double stochastic matrix can be represented as the square of a unitary matrix
on . . . . But I think that from the phemenological viewpoint the case of dichotomous observ
is the most important; cf., e.g., Mackey14 and the general quantum logic approach.
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We derive a bound on the total number of negative energy bound states in a
potential in two spatial dimensions by using an adaptation of the Schwinger method
to derive the Birman–Schwinger bound in three dimensions. Specifically, counting
the number of bound states in a potentialgV for g51 is replaced by counting the
number ofgi ’s for which zero energy bound states exist, and then the kernel of the
integral equation for the zero-energy wave functon is symmetrized. One of the keys
of the solution is the replacement of an inhomogeneous integral equation by a
homogeneous integral equation. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1639956#

I. INTRODUCTION

In a previous paper,1 Chadan, Khuri, and the present authors obtained a bound on the nu
of bound states in a two-dimensional central potential. This bound has the merit that,
potentialgV, the coupling constant dependence for largeg is optimal, i.e., the same as the one
the semiclassical estimate.2 Previous work on the subject was done by Newton3 and Seto.4 We also
obtained a bound for the noncentral case, but only by using a rather brutal method which c
of replacing the potential by a central potential which is defined, after choosing a certain orig

Vc~r !5Inf V~xW !,
~1!

uxW u5r .

Because of the monotonicity of the energy levels with respect to the potential, puttingVc in our
formulas will give a bound for the potentialV. However, for potentials with singularities outsid
the given origin, this may lead to no bound at all. Our attention has been attracted by the fa
in condensed matter physics problems exist, where counting the bound states on a surface
useful,5 but where it is very unlikely that the potential will be central, even approximately.

In the present paper, we obtain a bound on the number of bound states in a non
two-dimensional potential, using an adaptation of the Schwinger method to derive the Bir
Schwinger bound6 in the three-dimensional case. The condition under which we obtain a bou

E E d2x d2yuV~x!u~ lnux2yu!2uV~y!u,`. ~2!

This condition isnonlinear, just like that of Birman and Schwinger, but we show in the Appen
that it follows from the linear conditions

a!Electronic mail: andre.martin@cern.ch
9220022-2488/2004/45(3)/922/10/$22.00 © 2004 American Institute of Physics
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E d2x ~ ln~21uxu!!2 uV~x!u,`,

~3!

E d2x VR~ uxW u! ln2uxu,`,

where VR is the circular decreasing rearrangement ofuVu ~for the definition of VR , see the
Appendix!.

Condition~2! has already been proposed by Sabatier.7 Condition~3! appears in a forthcoming
work by Khuri et al. dealing with the scattering problem. It has the advantage of showing m
clearly what kind of behavior the potential is allowed to have at short and large distances.

The strategy of Schwinger consists of counting the number of zero-energy bound state
potential gV for 0,g,1 instead of the actual number of negative energy bound states fg
51. In three dimensions these two numbers are equal. Indeed, let 0,g1 ,g2 , . . .,gn,1 be the
coupling constants for which we have zero-energy bound states. Eachgi is the origin of a bound
state trajectory in theE–g plane, Ei(g), with Ei(gi)50. These trajectories are monotono
decreasing:

dEi

dg
5E V c2dnx, ~4!

by the Feynman–Hellmann theorem, but

giE V c2dnx5E2E u¹cu2 dnx,0 for E,0. ~5!

This shows that the number of negative-energy bound states is exactly the same as the
of gi ’s,1. At the crossing of any pair of trajectories there is no problem because of their m
tonicity.

The same result holds in two dimensions with one modification: any attractive potential~i.e.,
* d2x V,0) has a bound state for arbitrarily smallg, with a binding energy going to zero forg
→0 like 2exp2(C/g).1 At E50 it disappears and is not included in Schwinger’s accounting
we have to add one unit.

Since we only want aboundon the number of bound states, we can always replaceV(y) by
2V2(y):

V2~y!50 for V.0,
~6!

V2~y!52V~y! for V<0.

Using 2uV(y)u instead of2V2(y) gives a more crude bound.
It can be shown that the general solution of the zero-energy Schro¨dinger equation

2Dc2V2c50 ~7!

in the equivalent integral form

c~x!5C2
1

2p E ln k0ux2yuV2~y!c~y!d2y ~8!

has a general asymptotic behavior foruxu→`,

c~x!2C;2 ln k0uxu
1

2p E V2~y!c~y!d2y1o~1! ~9!
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under the condition

E V2~y! ~ ln~21uyu!!2 d2y,`, ~10!

which follows from condition~1! as shown in the Appendix. In fact, the proof is easier if o
assumes that the potential is lower bounded for largex. One can always cut off the potential an
use a limiting procedure at the end.

Zero-energy bound states are characterized by the fact thatc is bounded. Hence we get the
necessary condition:

E V2~y!c~y!d2y50. ~11!

Now we have two possibilities:
I. At infinity c(xW )→0 and henceC50 and those bound state wave functions satisfy ahomo-

geneousintegral equation

c i~x!52
gi

2p E d2y ln~k0ux2yu! V2~y!c i~y! ~12!

@notice that the scale factork0 disappears because of condition~11!#.
This is what happens in the case of a central potential for a nonzero azimuthal an

momentumm.
II. At infinity, c(xW )→C, with CÞ0. In this case, the bound state wave functions satisfy

inhomogeneous integral equation. This case has been described in Ref. 8, where it is sho
for a central potential in two dimensions, them50 phase shift has the universal behavior

d~k!;
p

2 lnk
for k→0, ~13!

exceptif there is a zero-energy bound state of type II. Then

d~k!ln k→0. ~14!

In Ref. 8, a much stronger result is stated. This much stronger result, however, holds on
a very rapidly decreasing potential.

II. COUNTING BOUND STATES IN CASE I

Following Schwinger, we symmetrize the kernel of the integral equation:

f i~x!5giE K~x,y!f i~y!d2y ~15!

with

f i~x!5AV2~x! c i~x!,
~16!

K~x,y!52
1

2p
AV2~x! ln k0ux2yu AV2~y!.

If V2(x) vanishes in some regions, it seems impossible to go back fromf i to c i . However, this
can be remedied by defining
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Ve
2~x!5V2~x!1e exp2muxu. ~17!

Since the bounds we shall get are continuous inV, we can take the limite→0 at the end.
K can be written as

K5S
1

gi
uf i&^f i u1R. ~18!

R is a sum over states which do not satisfy~11!. Thef i ’s in themselves do not form a comple
set. If we definea by

a~x!5
AV2~x!

AE V2~y!d2y

~19!

we have

^auf i&50 ~20!

from property~11!, and naturallŷ aua&51.
If we define Tr̂, a trace restricted to thef i ’s, we have

Tr̂ K5S
1

gi
. (

gi<1

1

gi
.NI ,

NI being the number of bound states of type I. However, this trace turns out to be dive
because of the logarithmic singularity of the kernel~the same happened in Schwinger’s origin
work!!, and we follow Schwinger to iterate the integral equation~15!:

f i~x!5gi
2E K~x,y!K~y,z! f i~z!d2yd2z

and then

Tr̂ K25S
1

gi
2.NI . ~21!

Forgetting the caret on the trace still gives a bound becauseK2 is a positive operator~contrary to
K! !, but this bound depends on the scale parameterk0 entering in the logarithm. Among the
missing states in Trˆ is the stateua&, orthogonal to thef i ’s, and this one should be removed fro
the complete trace. In this way, we get

NI,Tr K22^auK2ua&,

or more explicitly

NI,
1

~2p!2 E V2~x!~ ln k0ux2yu!2V2~y!d2xd2y2
1

~2p!2

3
1

E V2~x!d2x
E V2~x!~ ln k0ux2zu! V2~z!~ ln k0uz2yu!V2~y! d2xd2yd2z. ~22!

It is visible that the second term is negative as we announced.
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Rewriting NI as

1

~2p!2

1

E V2~z!d2z
E d2xd2yd2z V2~x!V2~y!V2~z! @~ ln k0ux2yu!22 ln k0ux2zu ln k0uy2zu#,

we see that~22! is manifestlyindependentof the scale factork0 .

III. COUNTING BOUND STATES IN CASE II

At first it would seem that Schwinger’s technique will not work because, in Eq.~8!, the
constant is not zero and therefore we deal with aninhomogeneousintegral equation which can b
written, after the same changes of variables as in Sec. II, given by~16! and ~19!:

f i5Cia1giKf i , ~23!

with, again,

^auf i&50, ^aua&51. ~24!

Equation ~24! is precisely the key property which will make it possible to replace~23! by a
homogeneous equation.

Again, thef i ’s corresponding to differentgi ’s are orthogonal because

^f i uf j&5Cj^f i ua&1gj^f i uKf j&

5Ci^f j ua&1gi^f j uKf i&.

Hence, from~24!:

S 1

gi
2

1

gj
D ^f i uf j&50. ~25!

Let us callS the Hilbert space associated with the integral equation~23!, and construct a new
Hilbert space by removing the elementa:

S5S8% $a%. ~26!

We want to define a new operatorK8 acting inS8. Let

b5Ka. ~27!

Notice that

^buf i&52
Ci

gi
^aua&52

Ci

gi
. ~28!

We try

K85K2ub&^au2ua&^bu1Cua&^au

whereC will be chosen so that

K8a50. ~29!

We have
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K8ua&5ub&2ub&2^bua&ua&1Cua&,

and hence we take

C5^bua&5^auKua&. ~30!

K8 is Hermitian likeK, and we get

giK8uf i&5gi uKuf i&2gi^buf i&ua&

5gi uKuf i&1Ci ua&.

Hence

giK8uf i&5uf i&, ~31!

which is homogeneous.
To get a bound on the number of bound states of type II, we have to get a bound on traK82

~not surprisingly, traceK8 is divergent!. It is a lengthy but straightforward exercise to calcula
that trace, which gives

NII, tr K222^auK2ua&1~^auKua&!2. ~32!

The last two terms give an overall negative contribution. The first term is the same as th
appearing inNI . It is easy to see that the right-hand side of~32! is independent of the scal
parameterk0 entering into the kernelK. Finally, let us notice that the treatment of case IIcontains
case I because, in the argument, it has never been said thatCiÞ0. Equation~31! holds irrespective
of whetherCi50 or CiÞ0. Notice that the bound onNI is larger than the bound onNII . Therefore
the bound onNI becomes completely obsolete.

IV. CONCLUDING REMARKS

If we include the bound state with evanescent energy for zero coupling constant, we g
bound

N,11 tr K222^auK2ua&1~^auKua&!2.

Dropping the last two terms still gives a scale-dependent bound—which can be minimized
respect to the scale—which precisely appears in condition~2!, itself following from the linear
condition ~3! as shown in the Appendix.

Conditions~2! and ~3! both allow a potential behaving like

1

r 2~ ln r !31e

at infinity, with local singularities not worse than

2
1

ur 2r 0u2~ u lnur 2r 0uu!21e ,

e positive, arbitrarily small. Both conditions are violated fore,0. However, we shall see in th
Appendix that~2! is definitely weaker than~3!.

Our bound has the merit of being valid for the noncentral case, which, as we said in Se
important for solid-state physics. However, for a potentialgV, it behaves likeg2 for largeg, while
in Ref. 1, in the central case, we get a bound behaving likeg. In Ref. 1 we make a conjectur
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which is very far from being proved, but clever mathematical physicists might prove it or s
thing similar. The present work should be considered only as a first step which could possibl
reasonable results for not too largeg.

Note added in proof.Our attention has been drawn to the related work by Stoiciu.10 In this
work, which uses a different method, the same integral~2! appears to control the number of boun
states. However, there are no counterterms like in Eq.~32!, and, as a consequence, the resul
scale dependent.
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APPENDIX: COMPARISON OF CONDITIONS „2… AND „3…

Condition ~2! is

I 5E d2xd2y V2~x!~ lnux2yu!2 V2~y!,`. ~A1!

Condition ~3! is a set of two conditions:

E d2x ~ ln~21uxu!!2 V2~x!,`, ~A2!

E d2x VR~ uxu! ln2~ uxu!,`. ~A3!

In ~A3! we use

2 ln2~ uxu!5H 0 if uxu.1

2 lnuxu if uxu,1.

2VR(uxu), the circular decreasing rearrangement ofV2(x). Since this notion is not very wel
known among physicists, let us remind the reader thatVR(uxu) is a decreasing function ofuxu, such
that

m~VR~ uxu!.A!5m~V2~x!.A!, ;A,

wherem is the Lebesque measure. In more familiar terms, the rearranged Mont Blanc woul
mountain with axial symmetry, with a single peak, such that the surface between the leve
would be the same as the surface between the level lines of the original Mont Blanc~rather
awfully dull!!.

We shall prove first that the convergence ofI in ~A1! follows from the convergence of~A2!
and ~A3!. More exactly, we shall get an explicit bound on~A1! in terms of~A2! and ~A3!. We
write

I 5I 11I 2 ~A4!

with
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I 15E d2xd2y V2~x! ~ ln1ux2yu!2 V2~y!, ~A5!

I 25E d2xd2y V2~x! ~ ln2ux2yu!2 V2~y!. ~A6!

ln2 has already been defined. ln1(a)5ln a for a>1,50 for a,1. It is elementary to get a boun
on I 1 from ~A2! only. Indeed,

0, ln1ux2yu, ln1~ uxu1uyu!, ln~21uxu!1 ln~21uyu!

and thus

~ ln1ux2yu!2,2@~ ln 21uxu!21~ ln~21uyu!!2#. ~A7!

Hence

I 1,4E d2x V2~x! E d2y V2~y! ~ ln~21uyu!!2. ~A8!

The convergence of the right-hand side of~A8! follows directly from ~A2!.
ConcerningI 2 , we use a rearrangement inequality due to Luttinger and Friedberg,9 which

says

E E A~x! B~ ux2yu! C~y!d2xd2y<E AR~ uxu! BR~ ux2yu! CR~ uyu! d2xd2y, ~A9!

where A,B,C are non-negative functions andAR ,BR ,CR are their decreasing rearrangemen
Since ln2 and (ln2)2 are decreasing functions of their argument they are their own rearrange
Hence

I 2,E d2xd2y VR~ uxu!~ ln2~ ux2yu!!2 VR~ uyu!. ~A10!

In ~A10!, we can carry out first the angular integration, the angle (xW ,yW ) appearing only in
ln2. However, to be able to do that easily we have to sacrifice some information, i.e.
(ln2ux2yu)2<(ln(ux2yu))2. We have to calculate

E du

2p
~ ln~ uxu21uyu222uxuuyu cosu!!2.

We have

ln~ uxu21uyu222uxuuyu cosu!5 ln~ uxu2uyueiu!1 ln~ uxu2uyue2 iu!.

Assumeuxu.uyu. Then we get

ln~ uxu21uyu222uxuuyu cosu!52F lnuxu2SS uyu
uxu D

n cosnu

n G . ~A11!

Hence, ifuxu.uyu, using the orthogonality of the cosnu:

E du

2p
~ ln~ uxu21uyu222uxuuyu cosu!!254~ lnuxu!212(

n51

` S uyu
uxu D

2n 1

n2 .
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We see a dilogarithm, or Spence function, appearing on the right-hand side. However, w
need to notice that

supuyu<uxu E du

2p
~ lnuxu21uyu222uyuuxucosu!254~ lnuxu!212(

n51

`
1

n2 54~ lnuxu!21
p2

3
.

~A12!

In this way we get

I 2,~2p!232E
uxu.uyu

uxuduxu uyuduyu VR~ uxu!VR~ uyu! F4~ lnuxu!21
p2

3 G .
Again, we split the integral into

32p2 E
uxu.uyu

uxuduxu uyuduyu VR~ uxu!VR~ uyu!~ ln2uxu!2

132p2 E
uxu.uyu

uxuduxu uyuduyu VR~ uxu!VR~ uyu!~ ln1uxu!21
4p4

3 F E uxuduxu VR~ uxu!G2

.

~A13!

In the first term of~A13! we can replace (ln2(uxu))2 by ln2uxu ln2uyu, sinceuxu.uyu and since ln2 is
decreasing.

In the second term, we can drop the restrictionuxu.uyu and notice that

E d2xVR~ uxu! ~ ln1~ uxu!!2,E d2xV2~x!~ ln1~ uxu!!2.

Indeed,*d2xAR(x)f(uxu), wheref(uxu) is increasing, is less than*d2x A(x) f(uxu). Suppose
that f(uxu)→L. Then

E d2xAR~x!f~ uxu!5E d2xAR~x!L2E d2xAR~x!~L2f~ uxu!!.

L2f(uxu) is its own decreasing rearrangement and following the well-known properties

E ARBRd2x>E A~x!B~x!d2x

and

E AR~ uxu!d2x5E A~x!d2x,

we get the desired property. IfL is infinite, we can use a limiting procedure. Finally, we get

I 2,16p2F E d2x VR~ uxu! ln2UxUG2

132p2E d2x V2~x! E d2y V2~y!~ ln~21uyu!!2

1
4p4

3 F E d2x V2~x!G2

. ~A14!

From ~A2! and ~A3! we see thatI 2 is bounded. This concludes the proof.
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One question is: can we go in the opposite direction? Assume that we know that~A1! holds.
There exists certainly a regionux2x0u,R where InfV25m.0. If such a region did not exist,V2

would be zero almost everywhere! So

I .pR2m E
uxu.ux0u1R12

V2~x! ln@21uxu#2d2x. ~A15!

Now we choosey0.41ux0u1R12 andR such that

Infuy2y0u,R8 V2~y!5m8.0,

then

I .pR82m8 E
uxu,ux0u1R12

V2~x!~ ln~42R8!!2d2x. ~A16!

This proves that the convergence of~A1! implies the convergence of~A2!.
It is not possible to deduce~A3! from ~A1! because~A3! involves VR and ~A1! does not.

However, in practice the conditions are very similar. Nevertheless, the following example s
that ~A3! is stronger than~A1!, even for a potential which does not need rearrangement: take
central potential

V~ uxu!5H 2
1

uxu2u lnxu2~ lnu lnuxuu!g for uxu,
1

2e

0 for uxu>
1

2e
.

~A17!

For g< 1
2 ~A1! and~A3! are divergent, for12,g<1 ~A1! is convergent and~A3! is divergent, for

g.1 ~A1! and ~A3! are convergent.
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Pseudounitary operators and pseudounitary quantum
dynamics

Ali Mostafazadeha)

Department of Mathematics, Koc¸ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul,
Turkey

~Received 15 May 2003; accepted 15 December 2003!

We consider pseudounitary quantum systems and discuss various properties of
pseudounitary operators. In particular we prove a characterization theorem for
block-diagonalizable pseudounitary operators with finite-dimensional diagonal
blocks. Furthermore, we show that every pseudounitary matrix is the exponential of
i 5A21 times a pseudo-Hermitian matrix, and determine the structure of the Lie
groups consisting of pseudounitary matrices. In particular, we present a thorough
treatment of 232 pseudounitary matrices and discuss an example of a quantum
system with a 232 pseudounitary dynamical group. As other applications of our
general results we give a proof of the spectral theorem for symplectic transforma-
tions of classical mechanics, demonstrate the coincidence of the symplectic group
Sp(2n) with the real subgroup of a matrix group that is isomorphic to the
pseudounitary group U(n,n), and elaborate on an approach to second quantization
that makes use of the underlying pseudounitary dynamical groups. ©2004 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1646448#

I. INTRODUCTION

For the past 2 years we have witnessed a growing interest in pseudo-Herm
Hamiltonians.1–13 Initially, the concept of a pseudo-Hermitian operator was developed to des
the mathematical structure of~the possibly nonunitary! PT-symmetric quantum systems.1,2 Then it
became clear that any diagonalizable Hamiltonian that admitted a symmetry generated
invertible antilinear operator was necessarily pseudo-Hermitian.3,9 The intriguing spectral proper
ties of pseudo-Hermitian Hamiltonians generalize to the class of block-diagonalizable Ha
nians with finite-dimensional blocks,6 so does the connection with antilinear symmetries.10 Among
the most important outcomes of the study of pseudo-Hermitian Hamiltonians is the recent so
of the old problem of constructing invariant positive–definite inner products on the solution s
of the Klein–Gordon-type equations.14,15

A quantum system with a~time-independent! pseudo-Hermitian Hamiltonian has necessaril
pseudounitary evolution. Pseudounitary quantum systems with a two-dimensional Hilbert
provide the simplest nontrivial examples of such systems. As shown in Ref. 14, a classical
harmonic oscillator is equivalent to a pseudounitary quantum system with a two-dimen
Hilbert space. Recently Ahmed and Jain11,12 and Ahmed13 have considered the application o
certain 232 pseudo-Hermitian matrices in statistical mechanics and elaborated on the fac
they form a Lie algebra.

The purpose of this paper is threefold. First, we use the method of Ref. 6 to obtain a c
terization of the block-diagonalizable pseudounitary operators having finite-dimensional dia
blocks. Next, we confine our attention to pseudounitary matrices and show that they are ob
by exponentiating pseudo-Hermitian matrices. This is a nontrivial result, because, for a fixh,
not everyh-pseudounitary matrix is the exponential ofi 5A21 times anh-pseudo-Hermitian
matrix. Finally, we emphasize that unlike the set ofh-pseudounitary operators~with a fixedh!, the

a!Electronic mail: amostafazadeh@ku.edu.tr
9320022-2488/2004/45(3)/932/15/$22.00 © 2004 American Institute of Physics
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set of all pseudounitary operators does not form a group. If the Hilbert space in which
operators act is finite dimensional, then the group ofh-pseudounitary operators is isomorphic
one of the groups U(n) or U(n,m) for somem,nPZ1. For example, the Lie algebra of th
pseudounitary matrices constructed in Ref. 11 is isomorphic to u~1,1!. This follows from the fact
that the corresponding inner product is indefinite; there is no need to go through the calcula
the structure constants as done in Ref. 11.

The paper is organized as follows. In Sec. II we present a brief discussion of some
properties of pseudounitary operators and their relevance to symplectic transformations. In S
we explore block-diagonalizable pseudounitary operators with finite-dimensional diagonal b
In Sec. IV we use the results of Secs. II and III to study pseudounitary matrices. In Sec. V we
a thorough discussion of the 232 pseudounitary matrices. In Sec. VI we study an application
our general results for a quantum system with a pseudounitary dynamical group and elabo
the relation between the choice of the dynamical group and the issue of second quanti
Finally, in Sec. VII we provide a survey of our main results and present our concluding rem

II. PSEUDO-HERMITIAN AND PSEUDOUNITARY OPERATORS

By definition,1 a linear operatorH:H→H acting in a Hilbert spaceH is said to be pseudo
Hermitian if there exists a linear, invertible, Hermitian operatorh:H→H such that

H†5hHh21. ~1!

For a given pseudo-Hermitian operatorH, the operatorh satisfying ~1! is not unique.7,14 Each
choice ofh determines a possibly indefinite inner product~a pseudoinner product! on H, namely,

^̂ c,f&&hª^cuhf&, ~2!

where c,fPH, and ^ u & is the original inner product ofH. Conversely, every pseudoinne
product onH has the form~2!. As a result,h is sometimes called a metric operator.

If we make a particular choice forh, we say thatH is h-pseudo-Hermitian. In this case, it i
Hermitian with respect to the inner product^̂ , &&h . Therefore, the study ofh-pseudo-Hermitian
operators is equivalent to the study of Hermitian operators in a vector space with an ind
metric.16 The application of the latter in quantum physics dates back to the 1940s.17 See also Refs.
18 and 19. As emphasized in Ref. 19, there is an important distinction between the conc
pseudo-Hermiticity, where one does not fix the inner product and has the freedom of choos
and the well-studied notion ofh-pseudo-Hermiticity.

We can express the defining condition~1! in the form H#5H whereH#
ªh21H†h is the

h-pseudoadjoint ofH. Using the latter one can also define the notion of anh-pseudounitary
operatorU:H→H by requiring thatU satisfiesU#5U21.

Definition: A linear invertible operatorU:H→H is said to be pseudounitary if there exists
linear, invertible, Hermitian operatorh:H→H such thatU is h-pseudounitary, i.e.,

U†5hU21h21. ~3!

Similarly to the case of pseudo-Hermitian operators,h is not unique. If we make a choice forh,
we say thatU is h-pseudounitary. In this case it is not difficult to show thatU leaves the
pseudoinner product̂̂ , &&h invariant. This is easily seen by writing~3! in the form

U†hU5h, ~4!

and using~2! and ~4! to check that

^̂ Uc,Uf&&h5 ^̂ c,f&&h , ;c,fPH. ~5!

Given an h-pseudo-Hermitian operatorH one can construct a one-parameter family
h-pseudounitary operators, namelyU(t)5e2 i tH with tPR.
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Proposition 1: Let ePR1, tP(2e,e), H:H→H be at-independent linear operator acting
a Hilbert spaceH, U(t)ªe2 i tH , and h:H→H be a t-independent Hermitian, invertible, linea
operator. ThenH is h-pseudo-Hermitian if and only ifU(t) is h-pseudounitary for allt
P(2e,e).

Proof: Suppose thatH is h-pseudo-Hermitian, then a direct application of Eq.~1!, U(t)†

5eitH †
andU(t)215eitH , shows thatU(t) satisfies~3!, i.e., it ish-pseudounitary. Conversely, le

U(t) be h-pseudounitary for alltP(2e,e). Then substitutingU(t) for U in Eq. ~3!, taking the
derivative of both sides with respect tot, and settingt50 in the resulting expression, we find th
H satisfies~1!, i.e., it is h-pseudo-Hermitian. h

BecauseU(t) may be identified with the evolution operator for a quantum system havingH as
its Hamiltonian, a quantum system with a time-independent Hamiltonian has a pseudou
evolution if and only if the Hamiltonian is pseudo-Hermitian.14

The one-parameter familyU(t) clearly forms an Abelian Lie group under composition. Th
is indeed a subgroup of the groupUh(H) of all h-pseudounitary operators. The latter forms
group because for any pairU1 , U2 :H→H of h-pseudounitary operators,

~U1
21U2!†5U2

†~U1
†!215hU2

21h21~hU1
21h21!215hU2

21h21hU1h215h~U1
21U2!21h21.

ThereforeUh(H) is a subgroup of the group GL~H! of all invertible linear transformations actin
in H. In Ref. 11, the authors considered this group for the caseH5Cn. They call it the pseudouni-
tary group. This terminology is rather misleading as it does not reflect the important fact
particular choice forh has been made. In fact, it is not true that the product of any two pseudo
tary operatorsV1 and V2 is pseudounitary. This is because they may belong toUh(H) with
different h. This observation calls for a more careful study of the structure of the setU(H)
ªøhUh(H) of all pseudounitary operators acting inH.

In the remainder of this section we discuss two simple properties of pseudounitary ope
that will be of future use.

Proposition 2:Let h1 be a Hermitian, invertible, linear operator acting in a Hilbert spaceH,
A:H→H, U1 :H→H be invertible linear operators,U2ªA21U1A andh2ªA†h1A. ThenU1 is
h1-pseudounitary if and only ifU2 is h2-pseudo-Hermitian.

Proof: First note that the defining condition~3! may be written in the formUh21U†h5I ,
whereI is the identity operator. Then a simple calculation shows that

U2h2
21U2

†h25A21U1AA21h1
21A21†A†U1A21†A†h1A5A21~U1h1

21U1
†h1!A.

Therefore,U1h1
21U1

†h15I if and only if U2h2
21U2

†h25I . h

Proposition 3:Let U1 :H→H be a pseudounitary operator acting in a Hilbert spaceH andu
be an eigenvalue ofU. Then 1/u* is also an eigenvalue ofU. In other words, eigenvalues ofU are
either unimodular (uuu51) or they come in inverse-complex-conjugate pairs (u,1/u* ).

Proof: Let uu& be an eigenvector ofU with eigenvalueu, i.e., Uuu&5uuu&. Acting out both
sides of~4! on u21uu&, we findU†huu&5u21huu&. Becauseh is invertible,huu&Þ0. This in turn
means thatu21 is an eigenvalue ofU†. But the eigenvalues ofU† are complex conjugates of thos
of U. Therefore,u21* 51/u* is an eigenvalue ofU. If u51/u* , u is unimodular; otherwise
(u,1/u* ) is a pair of distinct inverse-complex-conjugate eigenvalues. h

As a straightforward application of Proposition 3, consider the case thatH5C2m, for some
mPZ1, and endowC2m with the metric operator

hJª iJ, ~6!

whereJ:C2m→C2m has the following matrix representation in the standard orthonormal bas
C2m:

J5S 0m 21m

1m 0m
D . ~7!
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Here 0m and 1m are, respectively, them3m zero and identity matrices, respectively. According
~6! and ~7!, the operatorhJ has a Hermitian matrix representation in an orthonormal basis,
hJ

251. HencehJ is indeed a Hermitian invertible~metric! operator acting inC2m.
Next, observe that the operatorJ restricted toR2m yields the usual symplectic form20 on R2m.

The associated symplectic transformations coincide with real 2m32m matricesS satisfying20

StJS5J, ~8!

whereSt stands for the transpose ofS. We can view the symplectic transformationsS as linear
operators acting inC2p. Then the condition that they admit real matrix representations~in the
standard basis! takes the form

TST5S, ~9!

whereT is the ~time-reversal! operator defined by;zWPC2p, TzW5zW* . Making use of~6! and the
fact thatT215T andS†5St, we can, respectively, express the defining relations~8! and~9! of the
symplectic transformationsS as

S†hJS5hJ , ~10!

@S,T#50. ~11!

BecauseT is an antilinear Hermitian invertible operator, according to Theorem 2 of Ref. 3,
~11! implies thatS is a pseudo-Hermitian operator. Furthermore, Eq.~10! means thatS is in
addition a pseudounitary operator.

In view of Proposition 3 and the spectral characterization theorem for pseudo-Herm
operators~Ref. 1, Theorem 2!, the fact that symplectic transformations are both pseudo-Herm
and pseudounitary leads to the following well-known spectral theorem for sympl
transformations.20

Theorem 1: Let l be an eigenvalue of a symplectic transformationS, then so arel* , 1/l, and
1/l* .

Proof: BecauseS is pseudounitary 1/l* is an eigenvalue. Because it is pseudo-Hermitianl*
and ~1/l* !*51/l are eigenvalues. h

III. BLOCK-DIAGONALIZABLE PSEUDOUNITARY OPERATORS WITH FINITE-
DIMENSIONAL DIAGONAL BLOCKS

Consider an operatorU:H→H acting in a Hilbert spaceH and having a discrete spectrum
Then U is said to be block diagonalizable with finite-dimensional diagonal blocks6 if it can be
expressed in the form

U5(
n

(
a51

dn S un(
i 51

pn,a

ucn ,a,i &^fn ,a,i u1 (
i 51

pn,a21

ucn ,a,i &^fn ,a,i 11u D , ~12!

wheren is the spectral label,un are the eigenvalues ofU, dn is the geometric multiplicity ofun ,
aP$1,2,...,dn% is a degeneracy label,pn,a is the dimension of the Jordan block associated with
labelsn anda ~these are called the Jordan dimensions6!, and$ucn ,a,i &,ufn ,a,i &% is a complete
biorthonormal system satisfying

^cn ,a,i ufm ,b, j &5dmndabd i j , (
n

(
a51

dn

(
i 51

pn,a

ucn ,a,i &^fm ,a,i u51. ~13!

In view of ~12! and ~13!,

Uucn ,a,1&5unucn ,a,1&, U†ufn ,a,pn,a&5un* ufn ,a,pn,a&, ~14!
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i.e., ucn ,a,1& are the eigenvectors ofU and ufn ,a,pn,a& are the eigenvectors ofU†. Clearly, the
eigenvalues ofU† are complex conjugates of those ofU, and if U is invertible the eigenvaluesun

do not vanish.
Lemma 1:Let U:H→H be an invertible operator acting in a Hilbert spaceH and zPC

2$0%. Then for all,PZ1,

kernel@~U212z21!,#5kernel@~U2z!,#. ~15!

Proof: This identity follows by induction over,. For ,51, we have

uj&Pkernel@U212z21#⇔~U212z21!uj&50

⇔zU~U212z21!uj&50⇔~z2U !uj&50⇔uj&Pkernel@U2z#,
~16!

where we have used the fact thatzU is an invertible operator. Relations~16! show that~15! holds
for ,51. Now, suppose~15! holds for some,5kPZ1. Then

uj&Pkernel@~U212z21!k11#⇔~U212z21!k~U212z21!uj&50

⇔~U212z21!uj&Pkernel@~U212z21!k#

⇔~U212z21!uj&Pkernel@~U2z!k#

⇔~U2z!k~U212z21!uj&50

⇔zU~U2z!k~U212z21!uj&50

⇔~U2z!k~z2U !uj&50⇔uj&Pkernel@~U2z!k11#.

Therefore,~15! holds for,5k11; by induction, it holds for all,PZ1. h

Theorem 2: Let U:H→H be an operator acting in a Hilbert spaceH and having a discrete
spectrum. Suppose thatU is block diagonalizable with finite-dimensional diagonal blocks so t
~12! holds. ThenU is pseudounitary if and only if the eigenvaluesun of U are either unimodular
~i.e., uunu51) or they come in inverse-complex-conjugate pairs (un,1/un* ) and that the geometric
multiplicity and the Jordan dimensions for the inverse-complex-conjugate eigenvalues coin

Proof: Suppose thatU is pseudounitary. Then, according to Proposition 3 the eigenvalue
U are either unimodular or they come in inverse-complex-conjugate pairs. Suppose thatun and
1/un* form a pair of distinct inverse-complex-conjugate eigenvalues. In order to show that
have the same geometric multiplicity and Jordan dimensions we prove that for all,PZ1,
kernel(U2un), and kernel(U21/un* ), have the same~finite! dimension. To see this, first note th
U and U† have the same Jordan block structure; in view of~12!, for all ,PZ1, kernel(U
2un), and kernel(U†2un* ), have the same~finite! dimension. Hence they are isomorphic
vector spaces. Next, we use the fact thath is an invertible operator to establish the isomorphi
between kernel(U†2un* ), and

kernel@h21~U†2un* !,h#5kernel@~h21U†h2un* !,#5kernel@~U212un* !,#

5kernel@~U21/un* !,#.

Here we have made use of the defining relation~3! and the identity~15! of Lemma 1. This
completes the proof that for all,PZ1, kernel(U2un), is isomorphic to kernel(U21/un* ),.
Therefore, they have the same~finite! dimension.

Next, suppose thatU has unimodular and/or inverse-complex-conjugate pairs of eigenva
with identical geometric multiplicity and Jordan dimensions. ThenU may be expressed as
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U5(
n0

(
a51

dn0 S un0 (i 51

pn0 ,a

ucn0
,a,i &^fn0

,a,i u1 (
i 51

pn0 ,a21

ucn0
,a,i &^fn0

,a,i 11u D
1(

n
(
a51

dn F(
i 51

pn,a S unucn1 ,a,i &^fn1 ,a,i u1
1

un*
ucn2 ,a,i &^fn2 ,a,i u D

1 (
i 51

pn,a21

~ ucn1 ,a,i &^fn1 ,a,i 11u1ucn2 ,a,i &^fn2 ,a,i 11u!G , ~17!

where we have setn5n0 , n1, or n2 depending on whetheruunu51, uunu.1, or uunu,1, respec-
tively, and usedn to denote the common value ofn1 andn2. In order to show thatU, as given
by ~17!, is pseudounitary we construct a Hermitian, invertible, linear operatorh satisfying~3! or
equivalently~4!. Consider the ansatz

h5(
n0

(
a51

dn0

(
i , j 51

pn0 ,a

zn0 ,a,i , j ufn0
,a,i &^fn0

,a, j u1(
n

(
a51

dn

(
i , j 51

pn,a

~zn,a,i , j ufn2 ,a, j &^fn1 ,a,i u

1zn,a,i , j* ufn1 ,a,i &^fn2 ,a, j u!, ~18!

wherezn0 ,a,i , j andzn,a,i , j are complex coefficients and

zn0 ,a,i , j* 5zn0 ,a, j ,i . ~19!

The latter relation ensures thath is Hermitian. Now, impose the condition~4!. Substituting~17!
and ~18! in ~4! and using the biorthonormality and completeness relations~13!, we find after a
quite lengthy calculation thatzn0 ,a,i , j and zn,a,i , j are solutions of the following equations foru

5un0
, p5pn0 ,a andu5un , p5pn,a , respectively,

x1,i5xi ,150, ; i P$1,2,...,p21%, ~20!

uxi 21,j1u21xi , j 211xi 21,j 2150, ; i , j P$2,...,p%. ~21!

It turns out that these equations have the following exact solution:

xi , j5H 0 for i 1 j <p,

(
k51

i 1 j 2p S i 2k21
p2 j 21D ~21! i 2kup1 i 2 j 2kxk,p for j ,p, i 1 j ,

~22!

where for allr ,sPZ1 with r<s

S s
r Dª s!

r ! ~s2r !!
,

andxk,p with kP$1,2,...,p% are arbitrary complex numbers. We have obtained the solution~22! by
a tedious inspection scheme and checked its validity by direct substitution in~21!; it clearly
satisfies~20!. It is important to note that according to~22!, xi , j form a p3p matrix x of the form
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0 0 0 ¯ 0 x2,p21 x2,p

0 0 0 ¯ x3,p22 x3,p21 x3,p

] ] ] ]]] ] ] ]

0 0 xp22,3 ¯ xp22,p22 xp22,p21 xp22,p

0 x x ¯ x x x
D . ~23!
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p21,2 p21,3 p21,p22 p21,p21 p21,p

xp,1 xp,2 xp,3 ¯ xp,p22 xp,p21 xp,p

In view of ~22! all the entries ofx are determined in terms of the entries in the last column.
example, we have

xi ,p2 i 115~21! i 21u2~ i 21!x1,p , ; i P$1,2,...,p%. ~24!

Moreover note that the determinant ofx is up to a sign the product of the entries~24!. Therefore,
x is an invertible matrix provided thatx1,pÞ0 anduÞ0. Next, consider the case thatu is unimo-
dular and seek for the solutions~22! that makex Hermitian, i.e., find solutions for~20! and ~21!
subject to the condition

xi , j* 5xj ,i . ~25!

Imposing this condition on the solution~22! restricts the choice of the initially free entries, name
xi ,p . For example, settingi 5p and j 51 in ~22! or alternatively settingi 5p in ~24!, we find
xp,15(21)p21u2(p21)x1,p . Now, using~25! which impliesxp,15x1,p* , we find

x1,p56A~21!p21u12pr, ~26!

wherer5ux1,pu is an arbitrary non-negative real number. A similar analysis shows that the
dition ~25! leads to similar restrictions on the choices ofxi ,p with i .1. But these restrictions do
not lead to any contradictions, i.e.,~25! can always be satisfied. Indeed there are infinitely ma
solutions of the form~22! that fulfill ~25!. In particular, if we chooseuuu51 andrÞ0, the matrix
x is an invertible Hermitian matrix. Settingu5un0

, we have a set of solutionszn0 ,a,i , j of ~20! and
~21! that respect the condition~19! and that the matriceszn0 ,a formed out ofzn0 ,a,i , j are invertible.
Similarly, settingu5un we have a set of solutionszn,a,i , j of ~20! and~21! such that the matrices
zn,a formed out ofzn,a,i , j are also invertible. The existence of these solutions is equivalent to
existence of a linear operatorh of the form~18! that satisfies~4! and is Hermitian and invertible
The inverse ofh is given by

h215(
n0

(
a51

dn0

(
i , j 51

pn0 ,a

z̃n0 ,a,i , j ucn0
,a,i &^cn0

,a, j u1(
n

(
a51

dn

(
i , j 51

pn,a

~ z̃n,a,i , j ucn2 ,a, j &^cn1 ,a,i u

1 z̃n,a,i , j* ucn1 ,a,i &^cn2 ,a, j u!, ~27!

wherez̃n0 ,a,i , j are the entries of the matrixzn0 ,a
21 , andz̃n,a,i , j are those ofzn,a

21† . One can check by

direct calculation thath21h51. This completes the proof of the pseudounitarity ofU. h

IV. PSEUDOUNITARY MATRICES

According to Theorem 2, a square matrixU is pseudounitary if its eigenvalues are eith
unimodular or they come in inverse-complex-pairs and that geometric multiplicity and the J
dimensions of the latter are identical. A direct consequence of this observation is the follow

Proposition 4:Every pseudounitary matrixU has a unimodular determinant, i.e.,udetUu51.
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Proof: This follows from the fact that in the Jordan canonical form ofU the nonunimodular
entries come is inverse-complex-conjugate pairs (un,1/un* ). Hence their product which yields
detU is unimodular. h

According to this proposition the setU(Cn) of all n3n pseudounitary matrices is a subset
the group

SL~n,C!ª$gPGL~n,C!u udetgu51%, ~28!

of n3n matrices with unimodular determinant. We shall callSL(n,C) the pseudospecial groups.
As a subset of GL(n,C), SL(n,C) is the inverse image of the group U~1! under the homomor-
phism det:GL(n,C)→GL(1,C). Therefore,SL(n,C) is a subgroup of GL(n,C). In fact, it is not
difficult to show thatSL(n,C) is isomorphic to the product group U(1)3SL(n,C). Note however
that not every element of the pseudospecial groups is pseudounitary. For example letg be a 232
diagonal matrix with diagonal entries 2i and2 i /2. Clearly, detg51PU(1), sogPSL(2,C). But,
(2i )21* 5 i /2Þ2 i /2. Hence the eigenvalues 2i and2 i /2 are not inverse-complex-conjugates, a
g is not pseudounitary. In general,U(Cn) is a proper subset ofSL(n,C).

Next, consider the groupUh(Cn) for a fixed Hermitian invertiblen3n matrix h. We recall
Sylvester’s law of inertia according to whichh satisfies

h5A†hp,qA, ~29!

whereA is some invertiblen3n matrix andhp,q is a diagonal matrix of the form

hp,q5diag~21,21,...,21,1,1,...,1!, ~30!

which hasp negative andqªn2p positive entries.
Proposition 5:Let h be ann3n Hermitian and invertible matrix. Then the groupUh(Cn) is

isomorphic to the pseudounitary group

U~p,q!ª$gPGL~n,C!ug†hp,qg5hp,q%5Uhp,q
~Cn!,

for somepP$0,1,...,n% andqªn2p. @Note that U(0,n)5U(n).]
Proof: SettingU25U, h25h, andh15hp,q in Proposition 2, we see thatUPUh(Cn) if and

only if U1ªAUA21PU(p,q). Hence, Uh(Cn)5A21U(p,q)A. Because the conjugatio
i A :GL(n,C)→GL(n,C) defined byi A(g)ªA21gA is an automorphism of the group GL(n,C) that
mapsUh(Cn) onto U(p,q), the subgroupsUh(Cn) and U(p,q) are isomorphic. h

According to Proposition 5, the pseudounitary groupsUh(Cn) are isomorphic to and obtaine
from the classical groups U(p,q) @or U(n)] by conjugation;Uh(Cn)5A21U(p,q)A for someA
PGL(n,C). Therefore, the setU(Cn) may be viewed as the union of the orbits of the subgro
U(p,q) under conjugation in GL(n,C). Obviously these orbits, which according to Proposition
lie in the pseudospecial groupSL(n,C), are not disjoint. For example,eiHPU(Cn) belongs to both
Uh1

(Cn) andUh2
(Cn), if H is bothh1- andh2-pseudo-Hermitian. The latter holds if and only

h25A†h1A for someAPGL(n,C) commuting withH.7

Another simple consequence of Proposition 5 is the following.
Corollary: Let mPZ1. Then the group Sp(2m) of symplectic transformations ofR2m is

isomorphic to the real subgroup of~a matrix group that is isomorphic to! the pseudounitary group
U(m,m).

Proof: According to the argument given above Theorem 1, Sp(2m) may be identified with the
subgroup ofUhJ

(C2m) consisting of real matrices. It is not difficult to show that the spectrum ofhJ

consists of21 and 1 each with multiplicitym. Hence according to Proposition 5,UhJ
(C2m) is

isomorphic to U(m,m), and Sp(2m) is isomorphic to the real subgroup ofUhJ
(C2m). h

Note also that according to the argument used in the above proof of Theorem 1 an
spectral characterization theorems for pseudo-Hermitian and pseudounitary operators~i.e., Theo-
rem 1 of Ref. 6 and Theorem 2 above!, given an eigenvaluel of a symplectic transformationS
PSp(2m), the eigenvaluesl* , 1/l, and 1/l* have the same geometric multiplicity and Jord
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dimensions asl. This in particular proves the well-known fact thatS has a unit determinant. In
particular, Sp(2m) may be identified with the real subgroup of~a matrix group that is isomorphic
to! SU(m,m).

Next, we state and prove the following lemma.
Lemma 2:Let pPZ1, EPC, andh be ap3p matrix of the Jordan form

h5E1p1ap , ~31!

where 1p is thep3p identity matrix andap is thep3p matrix

apªS 0 1 0 ¯ 0 0 0

0 0 1 ¯ 0 0 0

] ] � �� ] ] ]

0 0 0 ¯ 0 1 0

0 0 0 ¯ 0 0 1

0 0 0 ¯ 0 0 0

D ~32!

(ap provides an irreducible representation of the annihilation operator for a para-Fermion of
p2121!. Theneih has the following canonical Jordan form:

eiE1p1ap . ~33!

Equivalently, eiE is the unique eigenvalue ofeih with geometric multiplicity 1 and algebraic
multiplicity p.

Proof: Using the fact thatap
p50, we can easily compute

eih5eiE (
,50

p21
i ,a,

,!
.

This is an upper triangular matrix with a single eigenvalue~namelyeiE) and a single~linearly
independent! eigenvector. Therefore its geometric multiplicity is 1 and its algebraic multiplicit
p. h

Theorem 3: Every pseudounitary matrixU may be expressed aseiH for some pseudo-
Hermitian matrixH.

Proof: Let U be ann3n pseudounitary matrix. Clearly,UPGL(n,C). Now, because the
exponential map for the group GL(n,C) is onto,22 there is a square matrixH such thatU5eiH . We
can perform a similarity transformationH→H̃ªA21HA that mapsH into its Jordan canonica
form H̃. We then have

U5AeiH̃A21. ~34!

In view of Proposition 2 and Lemma 2,eiH̃ is pseudounitary, and its eigenvalues are of the fo
eiEn where En are the eigenvalues ofH̃. Moreover, the geometric multiplicity and the Jorda

dimensions of~the canonical Jordan form of! eiH̃ coincide with those ofH̃. Now, becauseeiH̃ is

pseudounitary, Theorem 2 implies that the eigenvalueseiEn of eiH̃ are either unimodular or they
come in inverse-complex-conjugate pairs with identical geometric multiplicity and Jordan di
sions. First we consider the unimodular eigenvalues which we denote byeiEn0. Because 1

5ueiEn0u25eiEn0e2 iEn0
* , we haveEn0

2En0
* 52pkn0

for somekn0
PZ. But the left-hand side of this

equation is imaginary while its right-hand side is real. This implieskn0
50. HenceEn0

is real.
Next, consider the eigenvalueseiEn that are not unimodular. These are paired with their inver
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complex-conjugate, namely,eiEn* . eiEn and eiEn* have the same geometric multiplicitydn and

Jordan dimensionspn,a . BecauseeiEn* is an eigenvalue ofeiH̃ , according to Lemma 2 there is a
eigenvalueEn8 of H̃ such that

eiEn* 5eiEn8, ~35!

and thatEn8 has the same geometric multiplicity and Jordan dimensions aseiEn* . Hence the
geometric multiplicity and Jordan dimensions ofEn8 are, respectively,dn andpn,a . Furthermore,
Eq. ~35! impliesEn85En* 12pkn for someknPZ. Now, letEn1 andEn2 , respectively, denote the
eigenvalues ofH̃ with positive and negative imaginary part. In view of the preceding argum
for eachEn1 there is an eigenvalueEn25En1* 12pkn1 . Furthermore all the eigenvalues wit
negative imaginary part may be obtained from the eigenvalues with positive imaginary part
way. Now, let H̃8 be the matrix obtained fromH̃ by replacing the eigenvaluesEn2 with En28
ªEn222pkn15En1* . Then, by construction,H̃8 has real and/or complex-conjugate pairs
eigenvalues, the latter having identical geometric multiplicity and Jordan dimensions. In lig
Theorem 1 of Ref. 6, this implies thatH̃8 is pseudo-Hermitian. One can also check that

eiH̃ 85eiH̃ . ~36!

Next, let

H8ªAH̃8A21. ~37!

Clearly, H̃8 is the Jordan canonical form ofH8. In particular, H8 is also pseudo-Hermitian
Combining Eqs.~34!, ~36!, and~37!, we finally have

U5AeiH̃A215AeiH̃ 8A215eiAH̃8A21
5eiH 8.

This completes the proof of the fact thatU is the exponential ofi times a pseudo-Hermitian
matrix. h

Corollary 1: A square matrixU is pseudounitary if and only if2 i ln U is pseudo-Hermitian,
i.e., U5eiH for a pseudo-Hermitian matrixH.

Proof: If U is pseudounitary, then according to Theorem 3 it is of the formeiH for some
pseudo-Hermitian matrix. IfU5eiH for a pseudo-Hermitian matrixH, then settinge52, t521 in
Proposition 1 we find thatU5U(21) is pseudounitary. h

Corollary 1 is rather surprising, for it is well known that the exponential map is not onto
pseudounitary groups such as U~1,1!.22 This does not however contradict the statement of Co
lary 1, because when one speaks of a pseudounitary group one fixes the operatorh. What has been
done in the proof of Theorem 3 is to show that for a given pseudounitary operatorU there is anh
such thatU is h-pseudounitary andHª2 ln U is h-pseudo-Hermitian. This is not equivalent to th
erroneous statement that given anh, 2 i ln U is h-pseudo-Hermitian for everyh-pseudounitary
matrix U. The exponential map for the pseudounitary groupUh(Cn) is generally not onto, but the
exponential map for the set of all pseudounitary matrices is onto. This is another demonstra
the importance of the difference between the notions ofh-pseudo-Hermiticity~respectively,
h-pseudounitarity! and pseudo-Hermiticity~respectively, pseudounitarity!.19

V. 2Ã2 PSEUDOUNITARY MATRICES

In this section we shall study the casen52 in more detail. The following corollary of
Theorem 3 yields the general form of 232 pseudounitary matrices.

Corollary 2: A 232 matrix U is pseudo-Hermitian if and only ifU5A21DA whereA is an
invertible 232 matrix andD is a matrix assuming one of the following three forms:
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D15S eiu 0

0 ei ~w2u!D , u,wPR, ~38!

D25S reiu 0

0 eiu/r D , r PR1, uPR, ~39!

D35S eiu 1

0 eiuD , uPR. ~40!

Proof: Block diagonalizingU we find a matrixD which is either diagonal or has the form

D5S u 1

0 uD , ~41!

whereuPC. According to Proposition 2,D is also pseudounitary. This together with Theorem
imply that

~i! if D is diagonal, its eigenvalues are either both unimodular, i.e.,D is of the form~38!, or
they are inverse-complex-conjugate, i.e.,D is of the form~39!;

~ii ! if D has the form~41!, then it has a single eigenvalueu which is necessarily unimodular
That isD is of the form~40!. h

In order to demonstrate the utility of Theorem 3, here we include a direct proof of Coro
2. This proof involves the calculation of the matricesh whose general form is given in the proo
of Theorem 2.

A direct proof of corollary 2:First consider the case thatU is diagonalizable, then the canon
cal Jordan formD5AUA21 of U is diagonal. Clearly detD5detU and according to Proposition
4 detUPU(1). HenceudetDu51. This implies thatD must have the form

D5S z 0

0 eiw/z D , ~42!

where zªreiuPC2$0% and eiwPU(1), i.e., r PR1 and u,wPR. Next, note that in view of
Proposition 2,U is h-pseudounitary if and only ifD is A21†hA21-pseudounitary. This reduces th
problem to finding the necessary and sufficient conditions onz ~alternativelyr, u! andw that make
D pseudounitary. Using the general form

h5S a j

j* bD , a,bPR, jPC, abÞuju2, ~43!

of the Hermitian matrixh and the fact thatD is h-pseudounitary for someh of the form~43!, i.e.,
D†5hD21h21 or D†hD5h, we find that forj50: r 51 andD5D1 , and forjÞ0: eiw5eiu and
D5D2 . Next, consider the case thatU is not diagonalizable. ThenD has the form~41!. Again
becauseD is pseudounitary, detDPU(1). This implies uPU(1), i.e., u5eiu for someuPR.
Substituting this expression and the general form~43! of h in D†hD5h, we find that this
equation can always be satisfied without restrictingu. Therefore, in this caseD5D3 . h

The above analysis also yields the form ofh for each of the cases considered.

~1! For D5D1 , there are two possibilities.
~1a! eiwÞe2iu: In this case,j50 andh has the diagonal form

h5h1ªS a 0

0 bD , a,bPR2$0%. ~44!
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Becausea and b may have arbitrary sign, the groupUh1
(C2) is isomorphic to either U~2! or

U~1,1!.
~1b! eiw5e2iu: In this case,D5eiuI where I is the 232 unit matrix. Hence, there is no

restriction onh; it has the general form~43!, andUh(C2) is isomorphic to either U~2! or U~1,1!.
~2! If D5D2 with r 51 we recover the case~1b!. If D5D2 andrÞ1, thena5b50 andh has
the off-diagonal form

h5h2ªS 0 j

j* 0D , jPC2$0%. ~45!

Becauseh2 is an indefinite matrix,Uh2
(C2) is isomorphic to U~1,1!. ~3!

~3! If D5D3 . Thenh has the general form

h5h3ªS 0 6 ire2 iu

7 ireiu 0 D , r PR1, uPR, ~46!

andUh3
(C2) is isomorphic to U~1,1!.

We can check that the above expressions forh are consistent with the general form ofh as
given in the proof of Theorem 2. Furthermore, we can obtain the explicit form of the ope
Hª2 i ln U. In view of the identityU5A21DA, it is not difficult to see that if we obtain an
operatorHD satisfyingD5eiH D, thenH5A21HDA will satisfy U5eiH . Table I gives the opera
tors HD and h for D5D1 , D2 , D3 . Note that in this tableu,wPR, r PR1, a,bPR2$0%,
jPC2$0%, and that the trivial case whereD is proportional to the unit matrix is omitted.

VI. PSEUDOUNITARY DYNAMICAL GROUPS AND THE HARMONIC OSCILLATOR

Suppose thatH is a 232 pseudo-Hermitian matrix serving as the~time-independent! Hamil-
tonian for a quantum system,U(t)ªe2 i tH is the corresponding evolution operator,EH is the set of
all invertible Hermitian 232 matricesh satisfying~1!, and

UHªø
hPEH

Uh~C2!, GUHªø
hPEH

GUh~C2!,

whereGUh(C2) denotes the Lie algebra ofUh(C2). Then clearlyiH PGUH and for all tPR U(t)
PUH . This in particular means that for eachhPEH , Uh(C2) serves as a dynamical group for th
quantum system.23 If H is diagonalizable with a real spectrum then the dynamical group ma
taken to be~isomorphic to! either U~2! or U~1,1! ~or one of their subgroups!. If H has~nonreal!
complex eigenvalues or if it is not diagonalizable, then the dynamical group is necessarily~iso-
morphic to a subgroup of! U~1,1!. @The generalization of this statement to arbitrary bloc

TABLE I. OperatorsHD andh for D5D1 , D2 , D3 .

i Di HDi
h i

1 Seiu 0

0 ei~w2u!D Su 0

0 w2u
D Sa 0

0 b
D

2 Sreiu 0

0 eiu/r
D Su2i ln r 0

0 u1i ln r
D S 0 j

j* 0
D

3 Seiu 1

0 eiuD Su u~eiu21!21

0 u
D S 0 6ire2iu

7ireiu 0
D
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diagonalizable pseudo-Hermitian Hamiltonians with finite-dimensional blocks is immediate.
Hamiltonian is not diagonalizable or has complex eigenvalues, then the dynamical groups t
system admits are necessarily~isomorphic to a subgroup of! U(p,q) with pÞ0Þq.]

A concrete example is provided by the classical equation of motion for a simple harm
oscillator of frequencyv,

ẍ1v2x50. ~47!

As explained in Refs. 4 and 14, this equation is equivalent to the Schro¨dinger equation,

i\
d

dt
C5HC, ~48!

where

C5..S x1 il ẋ
x2 il ẋD , H5..

\

2 S lv21l21 lv22l21

2lv21l21 2lv22l21D , ~49!

and lPR1 is a time scale. ClearlyH is a traceless matrix. It is also easy to check that deH
PR if and only if v2PR. Therefore, according to Theorem 3 of Ref. 6,H is a pseudo-Hermitian
matrix provided thatv2PR. Furthermore,H is diagonalizable unlessv50.

In the following we shall only consider the casev2PR.
For vÞ0, we can easily solve the eigenvalue problem and diagonalizeH. The corresponding

diagonal matrix has the formHD5\vs3 where s3 is the diagonal Pauli matrix diag~1,21!.
Comparing the expression forHD with the results given in the above table, we see thatHD is
h-pseudo-Hermitian with respect to a diagonal metric operatorh of the form ~44! provided that
v2.0. In this case the system admits both the dynamical groups U~2! and U~1,1!. If v2,0, H is
h-pseudo-Hermitian with respect to an off-diagonal metric operatorh of the form ~45! and the
system only admits the dynamical group U~1,1!. Finally for v50, H is not diagonalizable;U
5eiH has the Jordan canonical formD3 ; it is h-pseudounitary for a metric operatorh of the form
~46! and the system admits the dynamical group U~1,1!. @It is interesting to observe that th
noncompact dynamical group U~1,1! arises for the case thatv2,0 where Eq.~47! admits un-
bounded solutions.#

For the casev2.0, the freedom in the choice of the dynamical group is equivalent to
choice of a positive–definite or an indefinite inner product on the space of solutions of Eq.~47!.14

This freedom does not exist ifv2<0.
Now, consider changing the parameterv2 from a positive value down to a negative value.

one adopts an indefinite~but possiblyv2-dependent! inner product, one can keepH Hermitian
with respect to this inner product and view the evolution operator as tracing a curve i
dynamical group U~1,1!. The best-known example is the Klein–Gordon inner product that co
sponds to the choiceh5s3 , and therefore is independent of the value of the parameterv2.
However, if one initially adopts a~possiblyv2-dependent! positive–definite inner product, on
cannot maintain the Hermiticity ofH with respect to this inner product oncev2 crosses zero. The
dynamical group undergoes an abrupt transition from the group U~2! to the group U~1,1!. This
transition may be identified with the change of the signature of the metric~operator!.

For v2.0, one may endow the Hilbert space (C2) with a positive–definite invariant inne
product. In this case the system has a U~2! dynamical group and is physically equivalent to t
two-level spin system,23 i.e., a spin-1/2 particle interacting with a fixed magnetic field. The ti
evolution is clearly unitary. This equivalence is destroyed oncev2 becomes nonpositive. In thi
case the dynamical group is U~1,1! and the system does not admit a unitary evolution with resp
to any positive–definite inner product onC2. For the case thatv2.0 one could as well choose a
indefinite invariant inner product~this is precisely what was done historically!. But such a choice
leads to a nonunitary quantum system with a two-dimensional Hilbert space and a U~1,1! dynami-
cal group. As is well known the corresponding quantum harmonic oscillator also has a U~1,1! @or
                                                                                                                



itary
antum

finite
n

able to
dy the
ecause

ion.

his
group.
lassical
ical
rreduc-
ace of
amil-

hod of
e was

after
for

pectral
finite-
trices
d that
n and

douni-
lectic

f
-
sts the
f.

d
onzero

itarity

of the

945J. Math. Phys., Vol. 45, No. 3, March 2004 Pseudounitary operators and quantum dynamics

                    
rather SU~1,1!# dynamical group.23 Therefore, as far as the dynamics is concerned the nonun
system describing the dynamics of the classical oscillator is equivalent to the unitary qu
harmonic oscillator.

For the casev2.0 there are therefore two alternatives. One is to choose a positive–de
invariant inner product which corresponds to the dynamical group U~2!. The other is to choose a
indefinite invariant inner product which leads to the dynamical group U~1,1!.

Now, suppose that one wishes to keep the same dynamical group but insists on being
describe the dynamics using a unitary quantum system. In the first alternative this is alrea
case. But in the second alternative one needs to use an infinite-dimensional Hilbert space, b
being a noncompact Lie group U~1,1! does not admit a finite-dimensional unitary representat
Thereforeit is the demand for unitarity that leads to the quantization of the oscillator. The latter
is however not unique because U~1,1! has inequivalent unitary irreducible representations. T
does not lead to any problems, because the dynamics always takes place in the dynamical23

As a result the dynamical aspects of all possible quantum systems associated with the c
harmonic oscillator are equivalent.@Note that here quantization does not mean the canon
quantization which is unique in the sense that the Weyl–Heisenberg algebra has a unique i
ible ~projective! representation. It means defining the Hilbert space as the representation sp
a unitary irreducible projective representation of the dynamical group, and representing the H
tonian as an element of the Lie algebra of the dynamical group.#

The above two alternatives are also available in describing free Klein–Gordon fields~or more
generally Klein–Gordon fields interacting with a stationary magnetic field!. The second alternative
applies more generally even to the cases of interacting fields. It corresponds to Dirac’s met
second quantization that forms the foundations of quantum field theories. The first alternativ
noticed quite recently.14,15,24~See however Ref. 25 that were brought to the author’s attention
the completion of this project.! Its advantage is to provide a genuine probability interpretation
first quantized Klein–Gordon fields.26 Its main application is in quantum cosmology.15

VII. CONCLUSION

In this paper, we explored various properties of pseudounitary operators and proved a s
characterization theorem for the class of block-diagonalizable pseudounitary operators with
dimensional blocks. We applied our results to clarify the structure of pseudounitary ma
paying attention to the role of the inner product and the fact that it is not unique. We showe
the relationship between Hermitian and unitary matrices generalize to the pseudo-Hermitia
pseudounitary matrices. Specifically every pseudounitary matrix is the exponential ofi times a
pseudo-Hermitian matrix.

We showed that the symplectic transformations of classical mechanics are certain pseu
tary and pseudo-Hermitian operators. This led to a proof of the spectral theorem for symp
matrices and to the identification of the symplectic groups Sp(2n) with the real subgroups o
certain pseudounitary matrix groups that are isomorphic to U(n,n). The description of the sym
plectic transformations in terms of pseudounitary and pseudo-Hermitian operators sugge
possibility of the application of the latter in classical mechanics.~For a related discussion see Re
27.!

Furthermore, we derived the canonical forms of arbitrary 232 pseudounitary matrices, an
studied the pseudounitary system describing a classical harmonic oscillator. For real n
frequencies, this system admits both the dynamical groups U~2! or U~1,1!. If one imposes the
condition of the unitarity of the evolution, then the choice U~2! identifies the dynamics of the
oscillator with that of a two-level quantum system, and the choice U~1,1! leads to a quantization
of the oscillator. This picture provides a rather interesting link between the demand for un
and the need for~second! quantization.
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Equal rank embedding and its related construction
to superconformal field theories

Teparksorn Pengpana)
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The lowest lines of Euler multiplets corresponding to massless and massive super-
symmetric representations are classified. At the level of representation theory, the
Euler multiplets constructed by the GKRS method of equal rank embedding of
semisimple complex Lie algebras are found to be the intrinsic ground states
of superconformal field theories according to the Kazama–Suzuki
construction. ©2004 American Institute of Physics.@DOI: 10.1063/1.1645975#

I. INTRODUCTION

Although a Dirac operator with a cubic term and its square appeared as supercurre
energy-momentum tensor, respectively, in studies of the superconformal field theories a
supersymmetric Wess–Zumino–Witten action many years ago,1–3 there has not been muc
progress on understanding their spectrum. It still needs to determine the explicit representa
these superconformal models.

Recently, a study of equal rank embedding of semisimple complex Lie algebras4 led Kostant
to determine an Euler multiplet as the kernel of the cubic Dirac operator and its square in ge5

By accident, it was observed that some of the lowest lines of the Euler multiplets match e
with the known massless and massive supermultiplets6 and the higher lines of them possib
involve higher spin massless and massive fields. It was also observed that the Kostant opera
its square are the zero mode of the supercurrent and the energy-momentum tensor.7 In this paper,
we will observe these relations from the representation-theoretic viewpoint of Lie algebras a
affine Lie algebras. Understanding a method to obtain the Euler multiplets may help to obtain
the spectrum of the superconformal models really are level by level.

The contents of this paper are organized as follows. In Sec. II, the Kostant operator
viewed and an eigenvalue of its square is alternatively derived from the representation-th
viewpoint including a condition for getting an Euler multiplet. In Sec. III, Euler multiplets t
give the massless and massive supermultiplets are classified. Sections IV and V are devo
super-Kac–Moody algebras and the Kazama–Suzuki construction of superconformal mod
the last section, the Euler multiplet is shown to be inherent in a ground state of the Kaz
Suzuki superconformal models.

II. KOSTANT OPERATOR AND EULER MULTIPLET

Let J’s be generators of a semisimple complex Lie algebrag such that

@JA ,JB#5 i f [ABC]JC , ~1!

where indicesA,B,C51¯ dim g. A basis of the generators is chosen so that these generato
orthonormal with respect to an inner product ong that is invariant under the adjoint action. In th
case thatg is semisimple, the inner product ong is the Killing form. LetL be in the positive Weyl
chamber ofg and letJA

L be the image ofJA under the irreducible representation ofg with highest

a!Electronic mail: pteparks@ratree.psu.ac.th
9470022-2488/2004/45(3)/947/12/$22.00 © 2004 American Institute of Physics
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weight L. Kostant’s cubic Dirac operator of the pair (g,L) is the operator onVL ^ S, whereVL

is a vector space of the representation with the highest weightL andS is a spinor module of the
complexified Clifford algebra which can be decomposed into the direct sum of the positive s
representationS1 and the negative spinor representationS2 when the dimension of the complex
fied Clifford algebra is even, given by

K” g~L!5gAJA
L2

i

2
f [ABC]g [AgBgC] . ~2!

The Diracg-matrices satisfy the Clifford algebra,

$gA ,gB%52dAB . ~3!

Squaring~2! gives us

K” g
2~L!5~JA

L!21S i

2
f [ABC]g [AgBgC] D 2

5C2~L!1urgu2, ~4!

whereC2(L)5(L,L1rg) is the quadratic Casimir eigenvalue of the irreducible representatioL
and rg is one-half the sum of positive roots ofg. Both C2(L) and urgu2 are calculated in the
orthornormal basis$ei% where (ei ,ej )5d i j . The eigenvalue of~4! is always positive definite.
Therefore,K” g

2 is a positive eigenvalue operator.
In the case of the quotientg/h, the generatorsJi ,i 51¯ dim h, lie in g and the generators

Ja ,a5h11¯ dim g, are a basis of the orthogonal complement ofh with respect to the Killing
form on g. Both Ji andJa satisfy the following commutation relations:

@Ji ,Jj #5 i f [ i jk ]Jk , ~5!

@Ji ,Ja#5 i f [ iab]Jb , ~6!

@Ja ,Jb#5 i f [ab j]Jj1 i f [abc]Jc . ~7!

The twisted Dirac operator onh,g acting onVL ^ S is

K” h~L!5g i S Ji
L2

i

2
f [ iab]g [agb] D2

i

2
f [ i jk ]g [ ig jgk] , ~8!

and the Kostant operator of the quotientg/h is

K” g/h~L!5K” g~L!2K” h~L!5gaJa
L2

i

2
f [abc]g [agbgc] . ~9!

~This operator first appeared in the Kazama and Suzuki paper.2! DecomposeVL ^ S into irreduc-
ible representations ofh and let Vm be one of theseh-representations, wherem is its highest
weight. Restricting~9! to Vm and squaring gives a scalar operator:

„K” g/h~L!uVm
…

25~JA
L!22~Ji

L1Si !
21Si

25C2~L!2C2~m!1urgu22urhu2, ~10!

whereSi52 ( i /2) f [ iab]g [agb] . In the last line of~10!, C2(L) is the quadratic Casimir eigenvalu
for g and C2(m) for h. The rhs of Eq.~10! gives the eigenvalues of„K” g/h(L)uVm

…

2 acting on
VL ^ S. Since the Kostant operator is self-adjoint, all eigenvalues of~10! are non-negative.

From the representation-theoretic viewpoint of Lie algebras, the eigenvalue of~10! can be
naively derived by considering the following inequality:

L1rg>w21~m1rh!, ~11!
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wherem is a weight ofh appearing in the decomposition ofVL ^ S into irreducible representation
of h and w is an element in the Weyl group ofg such thatw21(m1rh) is a dominant weight.
Since the Weyl group preserves scalar product, squaring~11! yields

uL1rgu2>um1rhu2. ~12!

The equation~12! gives rise to

~L,L12rg!1urgu2>~m,m12rh!1urhu2, ~13!

i.e.,

C2~L!2C2~m!1urgu22urhu2>0. ~14!

Let c be an element inC, the quotient set of the Weyl groupW(g)/W(h). When m5c"L
[c(L1rg)2rh , ~14! is minimum and equal to zero:

C2~L!2C2~m!1urgu22urhu25H 0, if m5c"L;

positive otherwise.

A set of all highest weightsc"L is called the Euler multiplet.

III. CLASSIFICATION OF THE LOWEST LINES OF THE EULER MULTIPLETS

Alternatively, the Euler multiplet can be simply obtained by using the GKRS index,4

VL ^ S12VL ^ S25 (
cPC

sgn~c!Vc"L , ~15!

whenVL is the one-dimensional irreducible representation ofg and it is trivially branched into a
one-dimensional representation ofh. The lowest line of the Euler multiplets ofh is equal to a
decomposition of the two spinor representations ofSO(dim g/h) into irreducible representation
of h. In the case that an Euler numberC, the number ofc elements inW(g)/W(h), is a small
integer, one can compute the Euler multiplet froml[c(L1rg)2rh as shown in Ref. 6. In the
case that the Euler number is a high integer, e.g.,C.10, the Euler multiplet can be obtained b
branching the irreducible representationVL and the spinor representations of SO(dimg/h) into
the representations ofh, tensoring them together, and taking the difference between positive
negative spin spaces.

It is observed that when dimg/h54, 8, 16, and 32, the lowest lines of the Euler multiple
have the right degrees of freedom of the massless and massive supersymmetric represent
the supersymmetric gauge field theories.6 So, it is convenient to classify the lowest lines of th
Euler multipets according to SO(dimg/h). ~The Euler multiplets in this section are written
terms of dimensions of the irreducible representations ofh.)

~1! SO(4):

S152s and S252c .

• Sp(4).Sp(2)3Sp(2),
S15~1,2!,

S25~2,1!.
@In this paper, Sp(2n)[U(2n)ùSp(2n,C) is a unitary symplectic group.# Since the group
Sp(2), asimply-connected double covering group of SO(3), is locally isomorphic to the
group SO(3), i.e. Sp(2);SO(3), this Euler multiplet corresponds to theN51 smallest
massive representation in 311 space–time dimensions when one of the Sp(2) is interpr
as the little group of the inhomogenous Lorentz groupISO(3,1) and to theN51 shortest
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massless representation in 511 space–time dimensions when one of the Sp(2);SU(2)
algebras is interpreted as a chirality group in SO(4);SU(2)L3SU(2)R , the light-cone little
group of ISO(5,1).

• SU(3).SU(2)3U(1),

S1520,

S2511/2% 121/2.

This Euler multiplet corresponds to theN52 massless representation in 311 dimensions
when the U(1);SO(2) algebra is interpreted as the little group ofISO(3,1) and to the
massless representation in 411 when the SU(2);SO(3) algebra is interpreted as the litt
group ofISO(4,1). TheN52 supersymmetric multiplet with the highest helicity equal to 1
is sometimes called a hypermultiplet.

It is noticed that theN52 massless representation in 311 dimensions which is the lowes
line of the Euler multiplets of SU(3).SU(2)3U(1) can be assembled into anN51 massive
representation in 311 dimensions which is the lowest line of the Euler multiplets
Sp(4).Sp(2)3Sp(2). On the4-dimensional coset space, theN52 massless representatio
considered as a fundamental state of one theory at weak~strong! coupling limit, possibly has a
duality with anN51 massive representation, considered as a solitonic state of the other the
a strong~weak! coupling limit.

~2! SO(8):

S158s and S258c .

• Sp(6).Sp(4)3Sp(2) andG2.SU(2)3SU(2),

S15~5,1! % ~1,3!,

S25~4,2!.

This Euler multiplet corresponds to theN52 smallest massive representation in 311 di-
mensions and theN52 shortest massless representation in 511 dimensions.

• SU(5).SU(4)3U(1),

S1511%60%121,

S2541/2% 4̄21/2.

This Euler multiplet corresponds to theN54 Yang–Mills massless representation in 311
dimensions and, since SU(4);SO(6), amassless representation in 711 dimensions. How-
ever, there are two more possibilities to interpret this Euler multiplet, one as a ma
representation on the anti–de Sitter space when the SU(4)3U(1);SO(6)3SO(2) algebra
is interpreted as the subgroup of SO(6,2), the anti-de Sitter group in 611 dimensions, and
the other as a massless representation of a conformal theory when interpreted as the
mal group in 511 dimensions.

• SO(6).SO(4)3SO(2) and SU(4).SU(2)3SU(2)3U(1),

S15~1,1!1% ~3,1!0% ~1,3!0% ~1,1!21 ,

S25~2,2!1/2% ~2,2!21/2.

There are many possibilities to view this Euler multiplet. It corresponds to theN54 Yang–
Mills supermultiplet in 311 dimensions and to a massless multiplet in either 411 or 5
11 dimensions.
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Note thatN54 massless representation in 311 dimensions which is the lowest line of th
Euler multiplets of SU(5).SU(4)3U(1), SO(6).SO(4)3SO(2) and SU(4).SU(2)
3SU(2)3U(1) can also be assembled into anN52 massive representation in 311 dimensions
which is the lowest line of the Euler multiplets of Sp(6).Sp(4)3Sp(2) andG2.SU(2)
3SU(2). On the8-dimensional coset space, theN52 massless representations, considered as
fundamental states of one theory at the weak~strong! coupling limit, possibly have a duality with
N51 massive representations, considered as the solitonic states of the other theory at the
~weak! coupling limit.

~3! SO(16):

S15128s and S25128c .

• F4.SO(9),
S1544% 84,

S25128.

This multiplet can be viewed as theN51 massive soliton representation in 911 dimensions
and as theN51 massless representation in 1011 dimensions. In the later case, it is called t
supergravity triplet where the 44-dimensional representation is the degrees of freedom
spin-2 graviton, the 84-dimensional is the degrees of freedom of the third-rank antisymm
tensor field and the 128-dimensional is the degrees of freedom of the Rarita–Schwinger
vector called the gravitino.

• Sp(10).Sp(8)3Sp(2),
S15~42,1! % ~27,3! % ~1,5!,

S25~48,2! % ~8,4!.

This Euler multiplet corresponds to theN54 smallest massive representation in 311 di-
mensions and theN54 short massless representation in 511 dimensions.

• SO(8).SO(4)3SO(4);SU(2)3SU(2)3SU(2)3SU(2),

S15~5,1,1,1! % ~1,5,1,1! % ~1,1,5,1! % ~1,1,1,5! % ~1,3,3,3! % ~3,1,3,3! % ~3,3,1,3! % ~3,3,3,1!,

S25~4,2,2,2! % ~2,4,2,2! % ~2,2,4,2! % ~2,2,2,4!.

This Euler multiplet corresponds to theN54 smallest massive representation in 311 di-
mensions andN52 massless representaton in 511 dimensions.

• SU(9).SU(8)3U(1),

S1512%281% 700% 2821% 122 ,

S2583/2% 561/2% 5621/2% 8̄23/2.

Since the highest value ofSO(2) is 2, the helicity of graviton in 311 dimensions, this Euler
multiplet corresponds to theN58 supergravity representation.

• SO(10).SO(8)3SO(2),

S1512%281% ~35s!0% ~35c!0% 2821% 122 ,

S2583/2% ~56v!1/2% ~56v!21/2% 823/2.

This Euler multiplet corresponds to theN58 supergravity representation in 311 dimen-
sions. After using SO(8) triality, it also corresponds to the chiralN54 supermultiplet of type
IIB string theory in 911 dimensions.
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• SU(6).SU(4)3SU(2)3U(1);SO(6)3SO(3)3SO(2),

S15~1,1!2% ~10,1!1% ~6,3!1% ~208,1!0% ~15,3!0% ~1,5!0% ~10,1!21% ~6,3!21% ~1,1!22 ,

S25~4,2!3/2% ~20,2!1/2% ~ 4̄,4!1/2% ~20,2!21/2% ~4,4!21/2% ~ 4̄,2!23/2.

This Euler multiplet also corresponds to theN58 supergravity representation in 311 dimen-
sions and to a massless representation in 411 and 711 dimensions.

Note that theN58 supergravity multiplet in 311 dimensions which is the lowest line of th
Euler multiplets of SU(9).SU(8)3U(1) and SO(10).SO(8)3SO(2) can also be assemble
into an N52 massive representation in 311 dimensions which is the lowest line of the Eul
multiplets of Sp(10).Sp(8)3Sp(2). On the16-dimensional coset space, theN58 massless
representations, considered the fundamental states of one theory at weak~strong! coupling limit,
possibly have a duality withN54 massive representations, considered as the solitonic states
other theory at the strong~weak! coupling limit.

~4! SO(32):

• E6.SO(10)3SO(2),

S1514%1203% 7702% 10502% 36961% 43121% 6600% 41250% 80850% 431221% 369621

% 105022% 77022% 12023% 124 ,

S25~16s!7/2% ~560c!5/2% ~672c!3/2% ~3696c!3/2% ~2640s!1/2% ~8800c!1/2% ~8800s!21/2

% ~2640c!21/2% ~672s!23/2% ~3696s!23/2% ~560c!25/2% ~16c!27/2.

This Euler multiplet possibly corresponds to a massive supermultiplet with spin.2 in 10
11 dimensions.

There also exist the lowest lines of the Euler multiplets that are of SO(6), SO(10), SO(12),
etc. and not all of them can be interpreted as the degrees of freedom of the supersymmetri
field theories except Sp(8).Sp(6)3Sp(2) that its lowest line emerges asN53 massive~mass-
less! representation in 311 (511) dimensions.

In conclusion, from the facts of group theory, there are different coset spaces. For the
and 16-dimensional coset spaces, there exist the lowest lines of the Euler multiplets corresp
to the massive and massless supermultiplets.

IV. SUPER-KAC–MOODY ALGEBRAS

By relaxing a positivity condition of determinant of the Cartan matrices, one can get K
Moody algebras, of which a subclass constitutes the finite-dimensional~semi!simple Lie algebras.
Another subclass of Kac–Moody algebras is affine Lie algebras having the corresponding
ture and representation theory in analogy to those of the Lie algebras.8

A super-Kac–Moody algebraĝ associated with the Lie algebrag and Lie groupG is a
Kac–Moody algebra over superspace (z,u). With the supersymmetrized current decompositi
over ordinary spacez,

JA~z,u!5 j A~z!1uJA~z!, ~16!

the fermionsj A(z) in the adjoint representation ofg andJA(z) are not independent and satisfy th
OPEs,

j A~z! j B~0!;
dAB

z
, ~17!

JA~z! j B~0!; j A~z!JB~0!;
i f [ABC] j C~0!

z
, ~18!
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JA~z!JB~0!;
i f [ABC]JC~0!

z
1

kdAB

z2 . ~19!

The levelk in ~17! is absorbed into the fermion bilinear. To make the fermion and boson cu
generators independent, Kazama and Suzuki2 introduced the levelk5 k̂1g∨ current decomposi-
tion,

JA
k ~z!5 ĴA

k̂ ~z!1SA5 ĴA
k̂ ~z!2

i

2
f [ABC] j [Bj C]~z!, ~20!

so thatĴA
k̂ (z) andSA(z) are mutually independent and, respectively, generate the levelk̂ andg∨

ordinary Kac–Moody algebrasĝ. The levelg∨ Kac–Moody algebraĝ that is constructed by a
bilinear form of the fermions in the adjoint representation ofg turns out to be isomorphic to th
level 1 ordinary Kac–Moody algebrasô(dim g). Therefore, the levelk super-Kac–Moody alge-
bra can be regarded as a direct sum of two mutually independent ordinary Kac–Moody alg

ĝk5ĝk̂% sô~dim g!1 . ~21!

In terms of oscillators,~20! is

(
n

~Jn!Az2n215(
n

~ Ĵn!Az2n212
i

2
f [ABC](

n
~b2n!B~bn!Cz21. ~22!

In the representation theory of the ordinary Kac–Moody algebra,~22! corresponds to an affine
weight decomposition,

~L1rg ; k̂1g∨;2n!5~L; k̂;2n!1~rg ;g∨;0!, ~23!

wheren is called a grade. Whenn50, the affine weight (L; k̂;0) is called the highest weight
From the decomposition~21! of the super-Kac–Moody algebra, there exists the associateN
51 superconformal model with the superconformal generators,

G~z!5~2/k!1/2S j A~z!ĴA~z!2
i

2
f [ABC] j [Aj Bj C]~z! D , ~24!

and

T~z!5
1

k
„ĴA~z!ĴA~z!2 j A~z!]zj A~z!…. ~25!

On the rhs of the holomorphic energy-momentum tensorT(z), the first term commutes with the
second term. Thus, the central charge of this superconformal model is the sum of the
charges ofĝk̂ andsô(dim g)1 ,

c5
k̂dim G

k̂1g∨
1

1

2
dim G. ~26!

The superconformal generatorsT(z) andG(z) satisfy the OPEs,

T~z!T~0!;
c

2z4 1
2T~0!

z2 1
]zT~0!

z
, ~27!
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T~z!G~0!;G~z!T~0!;
3G~0!/2

z2 1
]zG~0!

z
, ~28!

G~z!G~0!;
2c/3

z3 1
2T~0!

z
. ~29!

The underlying supersymmetric Wess–Zumino–Witten Lagrangian in two dimensions
posseses the super-Kac–Moody algebraĝk and theN51 superconformal symmetry was con
structed in Ref. 1. The supersymmetric WZW Lagrangian was shown to be equal to the o
WZW Lagrangian ofĝk̂ plus the Lagrangian of free fermions in the adjoint representation ofĝk .
By applying Witten’s non-Abelian bosonization rules to the WZW Lagrangian, the supersym
ric WZW theory is equivalent to two free fermion theories.

V. KAZAMA–SUZUKI CONSTRUCTION OF NÄ1 AND NÄ2 SUPERCONFORMAL
MODELS

Instead of using Wick’s theorem to calculate the OPEs to get the superconformal gene
on the coset space, one can simply follow Brink and Ramond’s canonical method.7 The construc-
tion of superconformal generators from the coset space method applied to a super-Kac–
algebra can be done in analogy to Sec. II.

On the world-sheet, there exists a natural generalization ofg-matrices and generators of a L
algebra,

gA→ j A~z!, ~30!

JA→ ĴA~z!. ~31!

The fermionsj A(z) satisfy the anticommutator

$ j A~z!, j B~0!%52dAB , ~32!

and the bosonic current generatorsĴA(z) satisfy the levelk̂ Kac–Moody commutator,

@ Ĵi~z!,Ĵ j~0!#5 i f [ i jk ] Ĵk~0!1 k̂d i j ]zd~z!, ~33!

@ Ĵi~z!,Ĵa~0!#5 i f [ iab] Ĵb~0!, ~34!

@ Ĵa~z!,Ĵb~0!#5 i f [abc] Ĵc~0!1 i f [ab j] Ĵ j~0!1 k̂dab]zd~z!. ~35!

All indices are the same as in Sec. II.
The supercurrent ofĥ that lies inĝ is

Gĥ~z!5S 2

kD 1/2S j i S Ĵi2
i

2
f [ iab] j [aj b] D2

i

2
f [ i jk ] j [ i j j j k] D ~z!, ~36!

and that ofĝ/ĥ is

Gĝ/ĥ~z!5Gĝ~z!2Gĥ~z!5S 2

kD 1/2S j aĴa2
i

2
f [abc] j [aj bj c] D ~z!. ~37!

By squaring~37! and then using OPEs as in~17!–~19!, one yields the energy-momentum tens
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Tĝ/ĥ~z!5
1

k
~ ĴaĴa2 i f [ iab] Ĵ[ i j aj b]2 k̂ j a]zj a2 f [acd] f [acd] j [a] j b]2 f [abc] f [ade] j [bj c] j [dj e] !~z!.

~38!

In the case that the coset space is symmetric, i.e., the torsion termsf [abc] vanish,~38! reduces to

Tĝ/ĥ~z!5
1

k
~ ĴA

22~ Ĵi1Si !
22 k̂ j a]zj a1Si

2!~z!, ~39!

whereSi(z)52 i /2 f [ iab] j [aj b] (z). In comparison to~10!, the energy-momentum tensorTĝ/ĥ(z) is
a generalization of Kostant operatorK” g/h

2 . One can also see that OPEs,

Tĝ/ĥ~z!Ĵi~0!;Tĝ/ĥ~z! j i~0!;0, ~40!

imply the orthogonal decomposition of the superconformal generators,

Tĝ/ĥ~z!Gĥ~0!;Tĝ/ĥ~z!Tĥ~0!;0. ~41!

From ~39!, one can regard the Kazama–Suzuki construction of the equal rank embedd
super-Kac–Moody algebra as an extension of the GKO construction9 of ordinary Kac–Moody
algebra,

~ ĝk /ĥk!;~ ĝk̂ /ĥk̂1g∨2h∨! % sô~dim g/h!1 , ~42!

with central charge

cĝ/ĥ5
k̂

k̂1g∨
dim g1

1

2
dim g/h2

k̂1g∨2h∨

k̂1g∨
dim h5

3

2
~dim g/h!2

12

~ k̂1g∨!
~ urgu22urhu2!.

~43!

The equal rank embeddings in Sec. III that can be used to construct theN51 super-conformal
models are as follows:

• F̂4 /sô(9) with central chargecĝ/ĥ524k̂/( k̂19);

• Sp̂(2n12)/Sp̂(2n)3Sp̂(2) with central chargecĝ/ĥ56k̂n/( k̂1n12).

In the case that the subalgebra has au(1) factor, there exists a class ofN52 superconformal
theories. TheN52 superconformal theories have au(1) currentU(z), two supercurrentG6(z)
with u(1) charges61, and energy-momentum tensorT(z) as their generators. These generat
satisfy the OPEs,

T~z!T~0!;
c/2

z4 1
2T~0!

z2 1
]zT~0!

z
, ~44!

T~z!U~0!;
U~0!

z2 1
]zU~0!

z
, ~45!

T~z!G6~0!;
3G6~0!/2

z2 1
]zG6~0!

z
, ~46!

U~z!U~0!;
c/3

z2 , ~47!
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U~z!G6~0!;
6G6~0!

z
, ~48!

G1~z!G2~0!;
2c/3

z3 1
2U~0!

z2 1
2T~0!1]zU~0!

z
, ~49!

G1~z!G1~0!;G2~z!G2~0!;0. ~50!

The simplest representation of theN52 superconformal theories is thesû(2)/û(1) minimal
model with superconformal generators as follows:

G1~z!5S 2

kD 1/2

~ j 1Ĵ11 j 2Ĵ2!~z!, ~51!

G2~z!5S 2

kD 1/2

~ j 2Ĵ12 j 1Ĵ2!~z!, ~52!

U~z!5
2

k
S Ĵ31

i k̂

k
e123j 1 j 2D ~z!, ~53!

T~z!5
1

k
~~ Ĵ1!21~ Ĵ2!22 i j 1 j 2Ĵ32 k̂~ j 1]zj 11 j 2]zj 2!!~z!. ~54!

The superconformal generators~51! and~54! are the generalization of the Kostant operator and
square of the su(2)/u(1) model. The equal rank embeddings in Sec. III that are extente
construct theN52 superconformal models are as follows:

• sû(n11)/sû(n)3û(1) with central chargecĝ/ĥ53k̂n/( k̂1n11);

• sô(n12)/sô(n)3sô(2) with central chargecĝ/ĥ53k̂n/( k̂1n), n>2;

• sû(m1n)/sû(m)3sû(n)3û(1) with central chargecĝ/ĥ53k̂mn/( k̂1m1n);

• Ê6 /sô(10)3û(1) with central chargecĝ/ĥ548k̂/( k̂112).

VI. GROUND STATES OF SUPERCONFORMAL THEORIES

As discussed in the previous sections, the decomposition ofĝ and ĥ at level k are, respec-
tively,

ĝk5ĝk̂% sô~dim g!1 ,
~55!

ĥk5ĥk̂1g∨2h∨ % sô~dim h!1 ,

and in terms of generators are, respectively,

~56!
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From the viewpoint of representation theory, the affine weights ofĝk andĥk corresponding to~55!
and ~56! are, respectively,

L̂1 r̂g5~L; k̂;2m!1~rg ;g∨;0!, ~57!

l̂1 r̂h5~l; k̂1g∨2h∨;2n!1~rh ;h∨;0!. ~58!

Recall that an affine Weyl group ofĝ is a semidirect product of the Weyl group ofg by the group
of translations by coroots. The affine Weyl group still preserves the affine scalar product.8 This
allows us to define an Euler multiplet ofĝ/ĥ as a set of the affine weights ofĥ in accordance with
that of g/h, i.e.,

$c"L̂[c~L̂1 r̂g!2 r̂h%. ~59!

Now let us suppose that

L̂1 r̂g>ŵ21~m̂1 r̂h!, ~60!

wherem̂ is an affine weight ofĥ in the decomposition ofVL̂ ^ Ŝ into irreducible representations o
ĥ and ŵ is an element of the affine Weyl group such thatŵ21(m̂1 r̂h) is a dominant weight.
Squaring~60! yields

1

2~ k̂1g∨!
„C2~L!2C2~m!1urgu22urhu2

…2m1n>0. ~61!

From ~14!, in case ofm5c"L, one yields a conditionm5n. This means that in the Kazama
Suzuki construction ifm̂5c"L̂, the affine weight ofĝk̂ at gradem always gives the affine weight
of ĥk̂1g∨2h∨ at the same gradem as the Euler multiplet. Adding and subtracting by the eigenva
of the spinor highest weight ofsô(dim g/h)1 to ~61!, one obtains

~62!

The minimum of ~62! corresponds to the vanishing of the modular anomaly of the Kaza
Suzuki coset model and is the eigenvalue of zero mode of energy-momentum tensor~39!. It also
implies that the Euler multiplets are the intrinsic ground states of the superconformal theor
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On linearity of separating multiparticle differential
Schrö dinger operators for identical particles

George Svetlichnya)

Departamento de Matema´tica, Pontifı́cia Universidade Cato´lica, Rio de Janeiro,
RJ, Brazil
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We show that hierarchies of differential Schro¨dinger operators for identical par-
ticles which are separating for the usual~anti-!symmetric tensor product, are nec-
essarily linear, and offer some speculations on the source of quantum
linearity. © 2004 American Institute of Physics.@DOI: 10.1063/1.1646449#

I. INTRODUCTION

One of the properties considered in speculations about possible fundamental nonlinear
quantum mechanics isseparation, that is, product functions evolve as product functions. Sep
tion is considered a nonlinear version of the notion of noninteraction, as then uncorrelated
remain uncorrelated under time evolution. We show here that if separation is combined with
Fermi or Bose statistics embodied in the usual~anti-!symmetrized tensor product states, and if
the multiparticle Shro¨dinger operators are differential, then they are necessarily linear.

The motivation for studying hierarchies of multiparticle nonlinear Schro¨dinger equations
comes from two sources:~1! intellectual speculation about possible nonlinearities in quan
mechanics,1 and ~2! examples arising in representations of current algebras~diffeomorphism
groups!.2 We consider the second motivation compelling as current algebra representation
found to include many known linear quantum systems and to predict new ones, anyo
particular.3

The nonlinear theories considered still maintain that states are represented by rays in a
space, that evolution is given by a~nonlinear! Schrödinger-type equation for the wave function
and that the modulus of the~normalized! wave function gives the probability density of detectio
Though these assumptions can all be questioned, an important class of theories do satisfy

A complete analysis of separating hierarchies of Schro¨dinger-type equations for nonidentica
particles was given in Ref. 4, however as the world is made up of bosons and fermion
identical particle case has to be addressed. In Ref. 5 we explored the possibility of formula
nonlinear relativistic theory based on a nonlinear version of the consistent histories appro
quantum mechanics. A toy model led to a set of equation among which there were instanc
weakened form of the separation property for scalar bosons. This showed once more that
property is fundamental for understanding any nonlinear extension of ordinary quantum me
ics.

In Ref. 6 we showed that separating second-order differential hierarchies for identical pa
are necessarily linear under various simplifying assumptions. We here prove linearity under
assumptions and in a more transparent fashion.

The present result should not be taken as an argument against nonlinear quantum me
As such, it would be a much weaker physical argument than the causality violation obje
already raised by various authors.7,8 Though a degree of separability is necessary to be abl
isolate and observe an independent physical system, it need not be exact. Another possi
that in nonlinear theories one could conceivably form multiparticle states from states of
number of particles in a way other than by the usual~anti-!symmetric tensor product. In fact b

a!Electronic mail: svetlich@mat.puc-rio.br
9590022-2488/2004/45(3)/959/6/$22.00 © 2004 American Institute of Physics
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using the nonlinear gauge transformations of Doebner, Goldin, and Nattermann9 one can deform a
linear separating hierarchy of differential Schro¨dinger operators to a nonlinear hierarchy of d
ferential Schro¨dinger separating with respect to a deformed tensor product. Whether differ
hierarchies that are not equivalent to linear ones and separating with respect to deformed
products exist, is still to be determined. Last, our results are strictly nonrelativistic. Causa
tivistic nonlinear theories are seemingly hard to formulate, though they probably do exist.5,10What
separation implies in such a context is still to be explored. What the present result hints at
origin of linearity about which we comment in the final section.

II. SEPARATION

At time t ann-particle wave functionC depends on the positionsx1 , . . . ,xn of each particle,
where eachxiPRd, d being the dimension of space, and onA1 , . . . ,An where eachAi is an index
denoting the internal degrees of freedom of each particle. Initially we assume then particles to
always belong to different species and so no permutation symmetry property is assumed
wave function. We use the symbols5(s1 , . . . ,sn) as labelling the species of the particle. F
initial notational ease we shall combine the internal degrees of freedom indexAi with the position
xi into a single symbolj i5(xi ,Ai) and denote then-tuple of such byj. Thus we denote an
n-particle wave function at timet by C(j,t).

We assume that the evolution from timet1 to time t2 of the state corresponding to the ray wi
representative wave functionC(j,t1) can be expressed by a not necessarily linear evolu
operatorEs(t2 ,t1) applied to the wave function, that is

C~j,t2!5~Es~ t2 ,t1!C!~j,t1!.

The simple tensor product of ann- and anm-particle wave function is defined as

~f ^ c!~j1 , . . . ,jn ,jn11 , . . . ,jn1m!5f~j1 , . . . ,jn!c~jn11 , . . . ,jn1m!. ~1!

The separation property for the simple tensor product now reads

Es~ t2 ,t1!~C1^ C2!5Es1
~ t2 ,t1!~C1! ^ Es2

~ t2 ,t1!~C2!, ~2!

where the species indexs of C is the concatenation of the species indicessi of the C i . Strictly
speaking, since states correspond to rays and not vectors, the right-hand side should be m
by a complex numberg(t2 ,t1 ,s1 ,s2 ,C1 ,C2). To our knowledge, a full analysis of the possibili
of such a factor has not been carried out. For the rest of this paper we shall assume thatg51, the
general assumption in the literature.

Now, the world is made of bosons and fermions and one should reconsider the sep
property when one is dealing with a single species of identical particles. The separation pr
~2! must then be reformulated with respect to the symmetric or antisymmetric tensor prodf

^̂ c which is the right-hand side of~1! symmetrized or antisymmetrized according to either Bo
or Fermi statistics:

~f ^̂ c!~j1 , . . . ,jn ,jn11 , . . . ,jn1m!5
n!m!

~n1m!! (I
~21! f p(I)f~j i 1

, . . . ,j i n
!c~j j 1

, . . . ,j j m
!,

~3!

whereI5( i 1 , . . . ,i n) are n numbers from$1, . . . ,n1m%, in ascending order, (j 1 , . . . ,j m) the
complementary numbers, also in ascending order,f is the Fermi number 0 for bosons and 1 f
fermions, andp(I) is the parity ~0 for even and 1 for odd! of the permutation (1,. . . ,n
1m)°( i 1 , . . . ,i n , j 1 , . . . ,j m). We have taken into account that bothf andc are either symmet-
ric or antisymmetric with respect to permutations of their arguments. The normalizing f
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makes the product associative and the mapf ^ c°f ^̂ c into a projection. For the identica
particle case, the species symbols reduces just to the particle numbern.

If we pass to the generators of the evolution operators

Hs~ t !5
1

i

]

]t2
Es~ t2 ,t1!U

t25t15t

,

then the separation property~2! ~under the assumption thatg51) becomes

Hs~C1^ C2!5Hs1
~C1! ^ C21C1^ Hs2

~C2!, ~4!

where for notational simplicity we have suppressed indicating thet dependence of theH ’s. This
relation ~which we called tensor derivation! was fully analyzed in Ref. 4. Canonical decompo
tions and constructions were also presented.

An ~anti-!symmetric tensor derivation would be a hierarchy of operatorsHn that satisfies~4!

with ^̂ instead of^. One does not have a classification of these as one has for ordinary t
derivations as given in Ref. 4. It seems that the conditions to be a tensor derivation
~anti-!symmetric case is rather stringent, and as we shall now see, in the case of diffe
operators, implies linearity.

It now becomes convenient to disentangle the space-coordinatex and the internal degree o
freedom indexA. Our one-particle wave function will thus be denoted bycA(x) with the index as
a superscript for convenience. Multiparticle wave function will carry multiple indices in the u
way. The possibly nonlinear operators of the tensor derivation will be assumed to depend
real and imaginary parts of the wave function in an independent fashion, though, to sim
notation, this is not denoted explicitly. Likewise, for notational ease, internal degree of fre
indices will be suppressed when no confusion can arise.

We shall use a multi-index notation for partial derivatives. Given a functionu(x1 , . . . ,xn) and
I 5( i 1 , . . . ,i n) an n-tuple of non-negative integers, we denote byuI u the sumi 11¯1 i n and by
uI the partial derivative

] Iu5
] uI uu

]x1
i 1
¯]xn

i n
.

For the case of a functionu(x,y) of two variables we writeuI ,J for I differentiations with respec
to x, andJ with respect toy.

Let us consider possibly nonlinear differential operators of any order~dependence on time ca
be construed as simply dependence on a parameter!. Such a two-particle operator has the for
H(x,y,f I ,J

AB(x,y)). Introducing variable names for the arguments ofH, we write H(x,y,aI ,J
AB).

Whenf is constrained to be an~anti-!symmetrized product

fAB~x,y!5 1
2 ~aA~x!bB~y!1~21! fbA~x!aB~y!!,

then the arguments ofH are constrained to take on values of the form

aI ,J
AB5 1

2 ~a I
Ab̃J

B1~21! fb I
AãJ

B!. ~5!

Here quantities without the tilde are derivatives evaluated atx and those with, aty. The quantities
on the right-hand sides:a I

A ,b I
A ,ãJ

B ,b̃J
B , which we shall call theab quantities, can be given, b

Borel’s lemma, arbitrary complex values by an appropriate choice of the pointsx and y and
functionsa andb. Denote the right-hand sides of the above equations byâI ,J

AB .
The separability condition for the symmetrized tensor product now reads
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2H2
AB~x,y,âI ,J!5H1

A~x,a I !b̃0
B1a0

AH1
B~y,b̃J!1~21! fH1

A~x,b I !ã0
B1~21! fb0

AH1
B~y,ãJ!.

~6!

Now we come to the main point: in the space of theab quantities there are flows that leav
âI ,J invariant, and so must leave the right-hand side of~6! invariant. This leads to linearity.

III. PROOF OF LINEARITY

One easily sees that the following transformations leave theab-quantities invariant:

a I
A°sa I

A , b̃J
B°s21b̃J

B ;

a I
A°a I

A1sb I
A , ãJ

B°ãJ
B2s~21! f b̃J

B ; ~7!

and the same witha andb interchanged. Symmetry~7! is enough to force linearity.
Note thats is a complexparameter, which means that the real and imaginary parts of

quantities undergo separate transformations. As a result, the right-hand side of~6! has to be
annihilated by the vector field corresponding to~7!:

(
C,I

S b I
C ]

]a I
C 2~21! f b̃ I

C ]

]ã I
CD , ~8!

where by]/]a I
C we mean the usual convention (1/2)(]/] ReaI

C2i]/] Im aI
C) and similarly for the

other partial derivative.
Applying now ~8! to the right-hand side of~6!, we get

F(
C,I

b I
C

]H1
A

]a I
C ~x,a!2H1

A~x,b!G b̃0
B2b0

AF(
C,I

b̃ I
C

]H1
B

]ã I
C ~y,ã !2H1~y,b̃ !G50.

Now theab quantities can be chosen arbitrarily and generically we haveb0
AÞ0 andb̃0

BÞ0 for all
A andB and so generically

1

b0
A F(

C,I
b I

C
]H1

A

]a I
C

~x,a!2H1
A~x,b!G5

1

b̃0
B
F(

C,I
b̃ I

C
]H1

B

]ã I
C

~y,ã !2H1~y,b̃ !G .

Since both sides depend on different sets of variables, each side is a constantk and we now have

(
C,I

b I
C

]H1
A

]a I
C ~x,a!2H1

A~x,b!5kb0
A .

Fixing a this equation states thatH1(x,b) is a linear function ofb with coefficients depending on
x. We have thus shown the following.

Lemma: In an (anti-)symmetric tensor derivation in which the one-particle and two-par
operators are differential, the one-particle operator is necessarily linear.

To show the whole hierarchy is linear we proceed as in Ref. 6. AnN-particle wave function
for particles inRd can be viewed as a one-particle wave function for particles~call themconglom-
erateparticles! in RNd. Consider the separating property for a 2N-particle operator acting on a
~anti-!symmetrized tensor product of twoN-particle wave functions, reinterpreted now as a se
rating property for operators acting on the wave functions of two and one conglomerate pa
The only difference in relation to what we have already done, is the permutation symme
conglomerate particles. Letf(x1 , . . . ,xN) and c(y1 , . . . ,yN) be two properly~anti-!symmetric
N-particle wave functions. One has using the conventions of~3!,
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~f ^̂ c!A~x1 , . . . ,x2N!5
N! 2

~2N!! (I
~21! f p(I )fAI~xi 1

, . . . ,xi N
!cAJ~xj 1

, . . . ,xj N
!, ~9!

where A5(A1 , . . . ,A2N), AI5(Ai 1
, . . . ,Ai N

), and AJ5(Aj 1
, . . . ,Aj N

) are internal degree o
freedom indices. For~9! the possible values that one can attribute to the wave function an
derivatives at a point is now more complicated than that given by~5!, but since by an appropriat
choice of coordinates and an appeal to Borel’s lemma we can again use~5! as a particular case fo
two conglomerate particles, the only differences being the change of the combinatorial fact
to N! 2/(2N)! and the possibility that the factor (21) f may be absent even in the Fermi cas
These differences are nonessential to the derivation, and repeating the argument presente
for the two-particle case we see that the operator for one conglomerate particle must be line
so theN-particle operator must be linear. With this the whole hierarchy must be linear. We
have the following.

Theorem: An (anti-)symmetric tensor derivation in which all multiparticle operators a
differential, is necessarily linear.

IV. COMMENTS ON THE ORIGIN OF QUANTUM LINEARITY

Our view on quantum-mechanical linearity is that it is an emergent feature of the world
arises along with the manifold structure of space–time from some more fundamental pregeo
reality. Thus questions of~non!linearity should be joined with the general quantum gravity p
gram. Previous clues in this direction are provided by~1! the apparent connections betwe
linearity and the causal structure of space–time8,11 and by ~2! the difficulty of incorporating
internal degrees of freedom, such as spin, in separating nonlinear theories, requiring new
particle effects at every particle number.12 We consider the present result as another such c
linking linearity to the statistics of identical particles and the possibility of independently evol
systems.

The emergent view of linearity is also supported by the present extremely small experim
bounds on possible nonlinear effects, the suppression factor being about 10220.13 If linearity is
emergent, experimental evidence would be hard to come by. There is however the possibil
ultra-high-energy cosmic rays actually do probe the hypothetically nonlinear pregeom
regime.14 The possible role of nonlinearities on the Planck scale has also been consider
Singh,15 and by Mavromatos and Szabo.16
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Casimir energy inside a cavity with triangular
cross section

H. Ahmedova) and I. H. Durub)
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For a certain class of triangles~with angles proportional top/N , N>3) we for-
mulate an image method by making use of the groupGN generated by reflections
with respect to the three lines which form the triangle under consideration. We
formulate the regularization procedure by classification of subgroups ofGN and
corresponding fixed points in the triangle. We then also calculate Casimir energy
for a cavity of infinite height with triangular cross section for scalar massless fields.
More detailed calculation is given for oddN. © 2004 American Institute of Phys-
ics. @DOI: 10.1063/1.1643196#

I. INTRODUCTION

There is a rather restricted class of geometries, for which we have Casimir energies in e
forms. On the other hand, to have calculations for larger sets of geometries in hand will ce
help the better understanding of the phenomena and, may also offer new experimental real
especially in light of the rapid progress in the nanotechnologies.1 To calculate the energy momen
tum tensor one has to solve the boundary problem, that is one has to obtain eigenvalu
eigenfunctions for the field which is confined into the given region. The eigenvalues us
correspond to the roots of some special functions. For example for the three-dimensional b2 or
cylindrical regions3 to impose the required radial boundary conditions; one has to deal with B
functions and with the roots of them.

For some geometries with plane boundaries the Casimir problem is easier, especially if w
employ the method of images. The original parallel plate geometry, and in general recta
prisms4 are of that type. For parallel plates the Dirichlet Green function is computed as an in
sum of the ‘‘free’’ propagators to the image points. The images are due to infinite reflec
between the planes, a fact that is best visualized in the path integral formulation of the qu
mechanics.5 Similarly for multiply connected geometries~i.e., for Aharonov–Bohm case! one
sums over all homotopically nonequivalent paths. As we see in the next sections the g
generated by the reflections too provide useful guides in the construction of the Green fun
For the parallel plate the group is isomorphic toZ, for the three-dimensional rectangular prism f
example, it isZ3. However if the rectangularity condition is dropped, the groups generate
reflections becomes noncommutative which is the case for the present work.

We calculate the Casimir energy for the massless scalar field for a certain class of tria
regions. We restrict our attention on the triangles whose angles are proportional top/N, whereN
is a natural number greater than 2. Namely one of the angles isp/N and another isp/2 for even
N and p @(N21)/2N# for odd N. We also develop a regularization technique by reducing
problem of finding divergences to the classification of points of the region and their sta
subgroups.

In Sec. II we investigate the structure of the groupGN generated by the reflections wit
respect to the three lines which form the triangle. This group will play central role in the

a!Electronic mail: hagi@gursey.gov.tr
b!Electronic mail: duru@gursey.gov.tr.
9650022-2488/2004/45(3)/965/13/$22.00 © 2004 American Institute of Physics
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struction of the Green function satisfying the Dirichlet boundary condition, and in the regula
tion procedure.

We show that this group is isomorphic to the semidirect product of the dihedral groupDN and
finite dimensional lattices.

Section III is devoted to the construction of the Green function for the massless scala
which vanishes on the boundary of the triangle.

In Sec. IV we formulate the regularization procedure for the Green function in the triang
classification of points in the triangle and their stability groups. The trivial group consisting o
identity element is the stability group for any points in the triangle. The corresponding term
Green function is the free Green function in Minkowski space which makes an infinite con
tion to the energy momentum tensor. Stability group of the points on a side of the trian
generated by the reflection operator with respect to this side. In this way terms with su
divergences is found. Since at the vertices of the triangle the smoothness condition is viola
also have line divergences~vertex of the triangle in the plane corresponds to the line in th
dimensions, that is why we call it line divergence!. We find stability groups of these points an
corresponding singular terms in the Green function.

In Sec. V we give the general expression for the energy momentum tensor in terms of th
over elementary power functions. We also see that the energy density per unit length
direction perpendicular to the triangle under consideration can be represented as the integ
the boundary of this triangle and the integrand is the elementary power functions. We pre
the calculation for oddN in detail.

II. REFLECTIONS IN A CLASS OF TRIANGLES

For N53,4,5, . . . andk51,2,. . . ,N22 consider the trianglesDk
N in x1x2-plane formed by

the lines

L15$xPR2:x250%, ~1!

L25$xPR2:x25x1 tany%, ~2!

L35$xPR2:x25~b2x1!tan~ky!%, ~3!

whereb is the length of the side laying on the lineL1 andy5 p/N is the angle betweenL1 and
L2 . ~Note that in calculating the Casimir energy for the wedge geometry one also starts with
p/N, then makes analytic continuation.6!

The actions of the reflectionsQj with respect to the linesL j , j 51,2,3 on the vector

x5S x1

x2D ~4!

are given by

Q1x5px, Q2x5rpx, Q3x5prkx1x0 , ~5!

where

r 5S cos 2y 2sin 2y

sin 2y cos 2y D , p5S 1 0

0 21D , x05~12prk!S b
0D . ~6!

Denote byGN the group generated by the these reflections.GN is one free group with relations
Relations between the elementsQ1 , Q2 , andQ3 can be obtained from the formulas~5!, and from
the properties of the rotationr and reflectionp operators

r N51, p251, pr5r N21p, r kx052px0 . ~7!
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Some of the obvious relations are

Qj
251, ~Q1Q2!N51, ~8!

from which we conclude that the reflectionsQ1 andQ2 generate the finite subgroup

DN5$r s,prs,s50,1,. . . ,N21%, ~9!

which is the dihedral group of dimension 2N. Consider the linear spaceVN which consists of the
vectors

j5 (
s50

N21

nsxs , ~10!

wherens are integers and

xs5r sx0 . ~11!

The equalities

rxs5xs11 , pxs5xN2s1k ~12!

imply thatDN is the automorphism group of the linear spaceVN . The action ofDN is given in the
natural way

p~q!j5qj; qPDN . ~13!

SinceVN is a vector space over the integer numbers, unlike the spaces over the real numb
dimensionuVNu is not necessarily equal to the dimension of the vectorsxs . It may be larger, that
is in our case may be greater than two. For example the dimensions ofV5 , V8 are four; while the
dimensions ofV3 , V6 , and V4 are two ~the vector spacesV3[V6 and V4 are known as the
hexagonal and square lattices7!. ~For a detailed discussion of this problem, see Appendix A.!

The groupGN is the subgroup of the semidirect product groupDN!VN . In fact for any
elementgPGN one can find the pair of elementsqPDN andjPVN as

gx5qx1j[~q,j!x; xPR2. ~14!

In particular,

Q15~p,0!, Q25~rp,0!, Q35~prk,x0!. ~15!

GN contains two subgroups:DN and the one generated byQ3 . SinceVN does not contain invarian
subspaces with respect to~13! we conclude that there is no subgroup in the semidirect prod
group which containsDN and the group generated byQ3 simultaneously. This fact implies thatGN

is isomorphic toDN!VN . In the special case ofuVNu52 this group is called the wallpaper group7

III. CONSTRUCTION OF THE GREEN FUNCTION IN THE TRIANGLES WITHOUT
OBTUSE ANGLES

Consider the representation of the groupGN in the space of functions on the four-dimension
Minkowski space

T~g! f ~x!5 f ~gx!. ~16!

Here the action of the groupGN is given by substitutionx→x, j→j, p→P, r→R where
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R5S 1 0 0

0 r 0

0 0 1
D , P5S 1 0 0

0 p 0

0 0 1
D , ~17!

which are 434 matrices and

j5S 0
j

0
D , x5S x0

x
x3
D , ~18!

which are four-dimensional column vectors.
Using ~15! one can verify that the operator

O5 (
nPZ

(
s50

N21

~T~~Rs,j!!2T~~PRs,j!!! ~19!

satisfies the following property:

T~Qj !O52O. ~20!

In ~19!, n5(n0 ,n1 , . . . ,nuVNu21) is multi-index and

j5 (
t50

uVNu21

ntxt , ~21!

where

xs5S x0

xs

x3
D ~22!

andxs are the base vectors described in the previous section.
It is obvious that if we define a functionOf (x), it must vanish on the linesL j of reflections

Qj ; the fact that we make use in the construction of the Green function inside the triangleDk
N ,

satisfying the Dirichlet boundary conditions. Since the operatorO commutes with the Klein–
Gordon operator~which is invariant under translations, rotations and reflections! the function

K~x,x8![OG~x,x8!5 (
nPZ

(
s50

N21

~G~Rsx1j,x8!2G~PRsx1j,x8!!, ~23!

satisfies the equation

hmn
]2

]xm]xn K~x,x8!5Od~x2x8! ~24!

for any x,x8PM23Dk
N , M25$(x0 ,x3)%; i.e., the two-dimensional Minkowski space, and t

boundary condition

K~x,x8!uxPM23]D
k
N50, ~25!

where]Dk
N is the boundary of the triangleDk

N . G is is the Green function in the Minkowski spac
with the metrich5diag(1,21,21,21),
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G~x,x8!52
1

4p2

1

ux2x8u2
. ~26!

The functionK(x,x8) is the Green function if the right-hand side of~24! is a delta function

Od~x2x8!5d~x2x8! ~27!

for any x,x8PM23Dk
N . The above condition implies that for any (q,j)Þ(1,0) and for any

x,x8PDk
N ,

d~qx1j2x8!50 ~28!

must be satisfied. In other words any points inside the triangle should be the representa
different orbits of the coset spaceR2/GN . The orbits of the coset spaceR2/DN are

@x#5$r sx,prsx: s50, . . . ,N21%. ~29!

It is clear that we can identify this coset space with regionX between two linesL1 and L2

including the boundaries. For any orbit inR2/DN there exists a unique representative inX. Since
the groupGN is generated by the elements ofDN andQ3 the problem of constructing the cos
spaceR2/GN reduces to finding the subspacesY of X such that the reflectionQ3 mapsY into X.
Consider the area between three linesL j , which is the triangle under consideration. The previo
condition implies that the two anglesky andsy of the triangle between the linesL1 , L3 andL2 ,
L3 must be less than or equal top/2. The restrictions

ky<
p

2
, sy[p2~k11!y<

p

2
~30!

with solutions

k5H N

2
, for even N

N21

2
, for odd N

~31!

imply that for triangles without obtuse angle the functionK(x,x8) in ~23! is indeed the Green
function. Note that Eqs.~30! have also been solved byk5 (N22)/2 for evenN. In this cases
5 N/2. For k5 N/2 we haves5 (N22)/2. Therefore this solution is congruent to the previo
one; that isDN/2

N goes toD (N22)/2
N when the lengthb goes tob cosy.

Finally we like to remark that, for massive fields, instead ofG(x,x8) one has to put the Gree
function for the massive scalar fields in the Minkowski space in~23!.

IV. REGULARIZATION OF THE GREEN FUNCTION

In polygonal regions there are three types of singular terms that to be subtracted to obt
regularized Green function: Free space term, surface, and vertex terms.

Inspecting~23! we observe that the term

T~g!G~x,x8!5G~gx,x8! ~32!

leads to singularity whenevergx5x; that is, the singularities arise at the elements of the groupGN

which leave the points fixed. The regularization problem is then reduced to the classification
points of the region and their stability subgroups:
                                                                                                                



en

-
rface

int of

f the
n

970 J. Math. Phys., Vol. 45, No. 3, March 2004 H. Ahmedov and I. H. Duru

                    
~i! The identity element~which is the trivial subgroup! leaves all points fixed. The term
T((1,0))G(x,x8) in ~23! therefore gives the volume singularity and is the free Gre
function.

~ii ! The points on the lineL j are left fixed by the reflectionQj . The group generated byQj is
then the stability subgroup for the lineL j . Since the identity element of the two
dimensional reflection group is already employed in the volume regularization, the su
singularity terms in~23! are

KS~x,x8!5(
j51

3

T~Qj!G~x,x8!. ~33!

~iii ! To discuss the vertex singularities, let us first consider the vertex at the intersection po
the linesL1 andL2 . The N-dimensional subgroup generated by the elementQ1Q2 is the
stability subgroup of this vertex. The divergence term at the vertex we consider is

KL1L2
~x,x8!5 (

j 51

N21

T~~Q1Q2! j !G~x,x8!. ~34!

The elementQ1Q3 generates the stability subgroup of the vertex at the intersection point o
lines L1 andL3 . Due to restriction~31! andQ1Q35(r k,2r kx0) we conclude that the dimensio
of this group is 2 for evenN andN for odd N. Therefore we have

KL1L3
~x,x8!5 (

j 51

L21

T~~Q1Q3! j !G~x,x8!, ~35!

whereL is the dimension of the stability group, that isL52 if N is even andL5N if N is odd.
Finally let us consider the third vertex which is the intersection point of the linesL2 andL3 .

The stability group of this point is generated by the elementQ2Q3 . One can verify that the
dimensionD of this group is

D55
N for even

N

2

N

2
for odd

N

2

N for odd N,

~36!

and the corresponding singular line terms are

KL2L3
~x,x8!5 (

j 51

D21

T~~Q2Q3! j !G~x,x8!. ~37!

Collecting all the above terms we arrive at

KL~x,x8!5 (
j 51

N21

~T~~Q1Q2! j !1T~~Q1Q3! j !1T~~Q2Q3! j !!G~x,x8! ~38!

for odd N, and

KL~x,x8!5S T~Q1Q3!1 (
j 51

N21

~T~~Q1Q2! j !1T~~Q2Q3! j !!DG~x,x8! ~39!

for evenN/2, and
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KL~x,x8!5S T~Q1Q3!1 (
j 51

N21

T~~Q1Q2! j !1 (
j 51

~N/2!21

T~~Q2Q3! j !D G~x,x8! ~40!

for odd N/2. Subtracting all divergences from~23! we obtain the regularized Green function

Kr~x,x8!5K~x,x8!2G~x,x8!2KS~x,x8!2KL~x,x8!. ~41!

Before closing this section we would like to emphasize that if the method of images is appl
to a geometry, the stability group classification is quite a reliable approach to the regulariz

V. ENERGY MOMENTUM TENSOR

The energy momentum tensor for conformally coupled massless scalar field is given b8

Tmn5 2
3 ]mf]nf2 1

6 hmn]rf]rf2 1
3 f]m]nf1 1

12 hmnf]r]rf. ~42!

Since the vacuum expectation value of the product of two scalar fields is the Green functio
can express the energy momentum tensor in the region we study as

Tmn5 lim
x→x8

F1

3
~]m]n81]m8 ]n!2

hmn

6
hsr]s]8r2

1

6
~]m]n1]m8 ]n8!GKr~x,x8!, ~43!

where]m[ ]/]xm, andKr(x,x8) is given by~41!.
The vacuum energy density in particular is given by the following expression~for details, see

Appendix B!:

T005
1

6p2 (
(n,s)

F u~prs11!ju2

u~prs21!x1ju6
2

21cos~2sy!

u~r s21!x1ju4G . ~44!

The summation runs over the indicesn5(n0 ,n1 , . . . ,nuVNu21)PZuVNu, ands50,1,. . . ,N21. The
terms corresponding to the singularities described in the previous section should be drop
~44!. The term in the second summation in~44! with (n50,s50) is the energy of the free
vacuum. The terms with (n50,s50), (n50,s51), and (n5(1,0,. . . ,0),s5k) in the first sum-
mation of ~44! are surface divergence terms. Note that due to theu(prs11)ju2 factor they are
automatically zero. This is not surprising since it is known that the energy momentum tens
comformally coupled scalar field is finite on flat surfaces.9 Terms (n50,s51,2,. . . ,N21) in the
second summation of~44! are line divergent ones in the vertex which is the intersection poin
the linesL1 and L2 . Using the results of the previous section one may also find the ve
divergence terms for other two vertices.

Integrating the above energy density over the triangleDk
N we arrive at the energy densityE

per unit length inx3 direction. First we observe the existence of two exact forms

v1
s5

21cos~2sy!

2u~r s21!x1ju4
dx1∧dx2, ~45!

v2
s5

u~prs11!ju2

uv~prs!u6 dx1∧dx2. ~46!

They can be rewritten asv j
s5dV j

s , where

V1
s5Ds

~~r s21!x1j!2dx12~~r s21!x1j!1dx2

u~r s21!x1ju4
, sÞ0, ~47!
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V2
s5

u~prs11!ju2

u~prs21!x1ju6 ~r s/2x!1d~r s/2x!2, ~48!

where

Ds5
21cos~2sv !

6~12cos~2sv !!
.

By making use of the Stokes theorem one can convert the integration over the triangleDk
N into the

integral over its boundary]Dk
N . The energy density per unit length inx3 direction is then

E52
1

6p2 ^J01J12J2&, ~49!

whereSk
N is the area of the triangleDk

N and

J05 (
nPZuVNu

3Sk
N

uju4 , ~50!

J15 (
nPZuVNu

(
s51

N21 E
]Dk

N
Vs

1, ~51!

J25 (
nPZuVNu

(
s50

N21 E
]Dk

N
Vs

2. ~52!

In Jj we take summation over all values ofn ands. The bracketŝ & in ~49! means that we have
to drop the singularity terms.Jj may be divergent ifuVNu is greater than 3. However the
difference should be finite. We have to treat each term as formal series. Then collecting
together we obtain the final result.

A. NÄodd case as an example

Let us restrict our attention to the case of oddN, for which the vector spaceVN appears to be
invariant under the half angle rotationsr s/2. This can be shown from the identity

r N/2j52j. ~53!

Using the relations

~prs61!5r 2 ~s/2!~p61!r ~s/2!, ~r s21!52asr
~s/2! 1 ~N/4! ~54!

with as52 sin(sy) and making the reparametrization in the multi-indexn which is equivalent to
the change of variabler s/2j→j we arrive at

J152 (
nPZuVNu

(
s51

~N21!/2

DsE
]DN/2

~asz2j!2dz12~asz2j!1dz2

uasz2ju4 , ~55!

J25 (
nPZuVNu

(
s50

N21 E
]Ds

u~p11!ju2

u~p21!y1ju6
y1dy2. ~56!

Here we have used the short notationD0[Dk
N and Ds5r s/2D0 , that is, the triangleDs is D0

rotated by the anglesy. We also used the symmetrys→N2s in ~55! to reduce the summation
overs. Denote bya0 , a1 , andc0 the sides of the triangleD0 laying on the linesL1 , L2 , andL3 .
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Then as , as11 , and cs will be the sides of the triangleDs , that is, as115r s/2as and cs11

5r s/2cs . Since the orientation on the sideas11 of the triangleDs is opposite to the one on the sid
as11 of Ds11 we have

J25 (
nPZuVNu

E
U

u~p11!ju2

u~p21!y1ju6
y1dy2, ~57!

where the integration contourU5a0øb0øb1ø¯øbN21øaN oriented anticlockwise. On the
sidesa0 , aN , andc(N21)/2 we havey25const, that is, these sides do not make contribution inJ2 .
We also observe that reflection operator2p with respect to they2 axis sendcj to cN2 j 21 with
opposite orientation. Since the one form in the integral changes sign under reflectiony→2py one
can rewrite the above expression as

J252 (
nPZuVNu

(
j 50

~N23!/2 E
cj

u~p11!ju2

u~p21!y1ju6 y1dy2. ~58!

For givencj we construct closed contour in the following way. From the end points ofcj draw
lines which are parallel to they1-axis. They intersecty2 axis at the pointsb sin jy and b sin(j
11)y. The interval between these two points,cj and two intervals between them, which a
parallel to they1-axes form the desired contour which we denote byCj . Since aty150 andy2

5const the one form in the above integral is zero. We then have

J252 (
nPZuVNu

(
j 50

~N23!/2 E
Cj

u~p11!ju2

u~p21!y1ju6 ~y12Ajy
22Bj !dy2, ~59!

where we have added the exact forms, which are the second and third terms in the bracket
integral of the exact form over the closed form is zero. We choose the coefficientsAj andBj to
satisfy

y12Ajy
22Bj50, ~60!

for yPcj , that is, to make the value of the one form zero on the sidecj . We have

Aj52
cosy~k2 j !

siny~k2 j !
, Bj5b

sinyk

siny~k2 j !
, ~61!

wherek5 (N21)/2. Nonzero contribution to the integral comes only from the integration ove
interval laying on they2 axis:

J258 (
nPZuVNu

(
j 50

~N23!/2 E
b sin j y

b sin(j 11)y ~j1!2~Ajt1Bj !dt

~~j1!21~2t2j2!2!3 ~62!

or

J25
1

2b2 sin2 ky (
nPZuVNu

(
j 50

~N23!/2 h1
2

sin~k2 j !y Ef j

f j 11
dx

12x cos~~k2 j !y!

~h1
21~x2h2!2!3 , ~63!

where f j5sin jy/sinky andj52b sinkyh or

h5 (
t50

uVNu21

ntxt8 , xt85r t1 1/4S 1
0D . ~64!

~We also used lower indices for the vectorh.!
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Now consider expression~55!. Rotationr 1/2 maps intervalaN/2 on a(N/2) 11 which has the
opposite orientations. Since the expression under the integral is invariant under transformz
→r 1/2z, the contributions from these intervals cancel each other.J1 is nonzero on the interva
cN/2 . Let us make the change of variabley5r 2 (N11)/4z. ThencN/2 goes toc21/2 on which y1

5b cosy/2 andy2P@2b siny/2 ,b siny/2#. Therefore,

J15 (
nPZuVNu

(
s51

~N21!/2

DsE
2b sin y/2

b sin y/2 S bas cos
y

2
2j1Ddy

S S bas cos
y

2
2j1D 2

1~asy2j2!2D 2 ~65!

or

J15

sin
y

2

8b2 sin3 ky K (
nPZuVNu

(
s51

~N23!/2
Ds

f s
E

2 f s

f s
S f s cos

y

2
2h1Ddx

S S f s cos
y

2
2h1D 2

1S x sin
y

2
2h2D 2D 2 . ~66!

Note that in the above expression we have dropped the terms5 (N21)/2. Sincef (N21)/251 by
the reparametrizationh→h1x08 we can rewrite it as

2
1

8b2 sin3 ky
D ~N21!/2 (

nPZuVNu
E

21

1 h1dx

h1
21S ~x21!sin

y

2
2h2D 2D 2 ~67!

which is an odd function in theh1 variable. Therefore it is zero.

B. A special example: NÄ3

Finally let us consider the special case whenN53 and k51. We havey5 p/3 and j
5)bh with

h5
n0

2 S)1 D1
n1

2 S 2)
1 D , ~68!

that is,uV3u52. We haveS1
35()/4) b2, J150, and

J05
)

12b2 (
nPZ2

1

uhu4 , ~69!

J25
2

3)b2 (
nPZ2

h1
2E

0

1

dx
22x

~h1
21~x2h2!2!3 . ~70!

The vacuum energy density per unit length inx3 direction is then

E5
)

12b2 K (
2
S 1

uhu4
1

8

3
h1

2E1

dx
22x

~h21~x2h !2!3D L . ~71!

nPZ 0 1 2
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VI. DISCUSSION

We have calculated the Casimir energy for a class of triangles without an obtuse ang
applied the method of images. Unlike the case of parallel plate or rectangular prisms, the
generated by reflections is not Abelian; thus, the employment of the image method for trian
not trivial.

The regularization procedure is observed to be equivalent to the classification of the po
the triangle and their stability subgroups. To renormalize the Green function we subtract the
corresponding to these stability subgroups. The identity element is the stability subgroup f
all points, reflections, and bi-product of reflections generate the stability subgroups of poin
the planes involving the sides, and of the lines passing through the vertices, respectively.

We hope that the technique we used which essentially is based on the employment
groups generated by reflections from the surfaces, can be employed for other polygonal r
We also hope that it may even be possible to study some other geometries with smooth
aries, as the limiting case of the suitable polygonal regions. For example, for an elliptical r
such a process may not be as hopeless as dealing with the roots of the Mathieu functions
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APPENDIX A

To find the dimensionuVNu of VN one has to investigate the nonzero independent solution
the equation

(
s50

N21

nsxs50. ~A1!

Assume that we have found all independent solutionsnt5(n0
t ,n1

t , . . . ,nN21
t ), t51, . . . ,m, then

uVNu5N2m. From ~11! we observe that Eq.~A1! can be rewritten in the form

(
s50

N21

nsr
s50. ~A2!

Let N be a prime number. The periodicity conditionr N51 and the identity

12xN

12x
511x1¯1xN21 ~A3!

which is valid for xÞ1 imply the solutionn05(1,1,. . . ,1) of ~A1!. Let N5Ml , whereM is a
prime andl is a natural number. Then the operatorsRp5r N/M p

, p51,2,. . . ,l satisfy the period-

icity condition Rp
M p

51. This implies (N/M ) 1 (N/M2) 1¯1 (N/Ml 21) 11 relations of the
form

r sp~11Rp1¯1Rp
M p21!50 ~A4!

or

r sp1r ~N/M p! 1sp1¯1r ~N/M p!(M p21)1sp50. ~A5!

We denote the corresponding solutions bynsp, where p51,2,. . . ,l and sp50,1,. . . ,(N/M p)
21. The rank of the matrix (ns

sp) appears to beN/M and we choose solutionsns1 as independen
set. We demonstrate it forN523. We have four relations
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r s11r 41s150, s150,1,2,3, ~A6!

two relations

r s21r 21s21r 41s21r 61s250, s250,1, ~A7!

and one relation

11r 1•••1r 750. ~A8!

We see that relations~A7! reduce to

r s21r 41s250, r (21s2)1r 41(21s2)50. ~A9!

Summation of four relations~A9! leads to relation~A8!. Therefore we have four independe
solutions. The general case can be proved in a similar fashion. Let nowN5M1

l 1M2
l 2
¯M f

l f , where
M j are prime numbers such thatM1,M2,¯,M f . In this case we have (N/M1) 1 (N/M2)
1¯1 (N/M f) solutionsnsj

:

r sj
1r ~N/M j ! 1sj

1¯1r ~N/M j !(M j 21)1sj
50, ~A10!

where j 51,2,. . . ,f andsj50, . . . ,(N/M j ) 21. The rank of the matrixAN5(ns
sj

) gives the num-
ber of independent relations. The matrixAN which consist of (N/M1) 1 (N/M2) 1¯

1 (N/M f) rows andN columns can be shown to have the following form:

AN5S I 1 I 1 ¯ I 1

I 2 I 2 ¯ I 2

¯ ¯ ¯ ¯

I f I f ¯ I f

D , ~A11!

whereI j is the (N/M j ) 3(N/M j ) unit matrix. Note that the number ofI j matrices in thej th row
is M j . Assume that the relations described above exhaust all relations of the form~A1!. Then we
haveuVNu5N2rank(AN). For example, the vector spacesV3 , V4 , andV6 has dimension two. We
conjecture the following result:

uVNu5N21, for a prime N, ~A12!

uVNu5N2
N

M
, for N5Ml and a primeM . ~A13!

APPENDIX B

Here we give a list of formulas used in the derivation of~44!,

]

]xm

1

uax2x81hu2
52

1

uax2x81hu4

]uax2x81hu2

]xm , ~B1!

]2

]xm]xn

1

uax2x81hu2 52
1

uax2x81hu4

]2uax2x81hu2

]xm]xn

1
2

uax2x81hu6

]uax2x81hu2

]xm

]uax2x81hu2

]xn , ~B2!
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]

uax2x81hu2
]xm52~a~ax2x81h!!m , ~B3!

]

uax2x81hu2
]x8m522~ax2x81h!m , ~B4!

]2

uax2x81hu2
]xm]xn52amn

2 , ~B5!

]2

uax2x81hu2 ]xm]x8n522amn , ~B6!

]2

uax2x81hu2 ]x8m]x8n52hmn . ~B7!

Herea is the matrix of the formPRs.
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Soliton solutions on noncommutative orbifold T2ÕZ4

Hui Deng,a) Bo-Yu Hou,b) Kang-Jie Shi,c) Zhan-Ying Yang,d)

and Rui-Hong Yuee)

Institute of Modern Physics, Northwest University, Xi’an, 710069, People’s Republic
of China

~Received 24 May 2003; accepted 19 November 2003!

In this paper, we explicitly construct a series of projectors on integrable noncom-
mutative orbifoldT2/Z4 by extendedGHS construction. They include integration
of two arbitary functions withZ4 symmetry. Our expression possesses manifestZ4

symmetry. It is proven that the expression includes all projectors with minimal
trace and in their standard expansions, the eigenvalue functions of coefficient op-
erators are continuous with respect to the argumentsk andq. Based on the integral
expression, we alternately show the derivative expression in terms of the similar
kernal to the integral one. Since projectors correspond to soliton solutions of the
field theory on the noncommutative orbifold, we thus present a series of corre-
sponding solitons. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1643193#

I. INTRODUCTION

String theory is a very promising candidate for a unified description of the fundam
interactions, including quantum gravity. It may provide a conceptual framework to resolv
clash between two of the greatest achievements of 20th century physics: general relativ
quantum mechanics. Noncommutative geometry is originally an interesting topic
mathematics.1–3 In the past few years, it has been shown that some noncommutative gauge
ries can be embedded in string theories4–6 and noncommutative geometry can also be applied
condensed matter physics. The currents and density of a system of electrons in a strong m
field may be described by a noncommutative quantum field theory.7–9 The connection between
finite quantum Hall system and a noncommutative Chern–Simon matrix model first propos
Ref. 8 was further elaborated in subsequent papers.10,11Many papers concentrated on the resea
for the related questions about the quantum Hall effect.12–18 Since the noncommutative spac
resembles a quantum phase space, it exhibits an interesting spacetime uncertainty relation
causes an UV/IR mixing19,20 and a teleological behavior. Noncommutative field theories can
regarded as highly constrained deformation of local field theory. Thus it may help us to unde
nonlocality at short distances in quantum gravity.

Solitons in various noncommutative theories have played a central role in understandi
physics of noncommutative theories and certain situations of string theories. The quantum
effect practically provides a good illustration of the combination of the three theories.13,17,18,21The
existence and form of these classical solutions are fairly independent of the details of the
making them useful to probe the string behavior. In fact these solitons are the~lower-dimensional!
D-branes of string theory manifested in a field theory limit while still capturing many st
features.

Starting from the celebrated paper of Gopakumar, Minwalla, and Strominger,22 there are many

a!Electronic mail: hdeng–phy@cn.yahoo.com
b!Electronic mail: byhou@nwu.edu.cn
c!Electronic mail: kjshi@nwu.edu.cn
d!Electronic mail: zyyang@nwu.edu.cn
e!Electronic mail: rhyue@nwu.edu.cn
9780022-2488/2004/45(3)/978/18/$22.00 © 2004 American Institute of Physics
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works to study soliton solutions of noncommutative field theory and integrable systems
background of noncommutative spaces.23–30Although Derrick’s theorem forbids solitons in ord
nary 211 dimensional scalar field theory,31 solitons in noncommutative scalar field theory on t
plane were constructed in terms of projection operators in Ref. 22. It was soon realize
noncommutative solitons represent D-branes in string field theory with a backgroundB field, and
many of Sen’s conjectures32,33 regarding tachyon condensation in string field theory have b
beautifully confirmed using properties of noncommutative solitons. Gopakumar, Minwalla
Strominger made an important finding that in a noncommutative space, a projector may
spond to a soliton in the field theory,22 which proves the significance of the study of projecti
operators in various noncommutative spaces. Reiffel34 constructed the complete set of projectio
operators on the noncommutative torusT2. On the basis Boca studied the projection operators
noncommutative orbifold35 obtaining many important results and showed the well-known exam
of the projection operator forT2/Z4 in terms of the elliptic function. Soliton solutions in noncom
mutative gauge theory were introduced by Polychronakos in Ref. 23. Martinec and Moore in
important article deeply studied soliton solutions namely projectors on a wide variety of orbi
and the relation between physics and mathematics in this area.27 Gopakumar, Headrick, and
Spradlin have shown a rather apparent method to construct the multisoliton solution on no
mutative integrable torus with generict.24 This approach can be generalized to construct
projection operators on the integrable noncommutative orbifoldT2/ZN .30

In this paper, in the case of integrable noncommutative orbifoldT2/Z4 generated byu1 andu2

with

u1u25u2u1e2p i /A, A51,2,3,... . ~1!

We generalize theGHS construction, presenting the explicit symmetric form of a series of p
jectors with manifestZ4 symmetry. It includes all the solutions with minimal trace, and in
standard expansions for the projectors@see Eq.~9!#

P5(
s,t

u1
su2

t Cs,t~u1
A ,u2

A!, ~2!

where the eigenvalue functionCs,t(v1
A ,v2

A) is continuous~wherev1
A andv2

A are eigenvalues ofu1
A

andu2
A). The solutions include two arbitrary complex functions withZ4 symmetry. The kernels o

the integrations are closed analytic functions ofu1 andu2 . In the simplest case, whenA is an even
number, we reobtain the Boca’s classic result35 and obtain a new result whenA is an odd number.
Moreover the above construction is also applicable to the integrableT2/ZN(N53,6) cases.

This paper is organized as follows: In Sec. II, we introduce operators on the noncommu
orbifold T2/ZN . In Sec. III, we introduce theuk,q& representation and provide the matrix eleme
relation for the projectors and deduce the relation between the eigenvalue functions of coeffi
and the matrix elements of operators in theuk,q& representation. In Sec. IV, we study the gene
projectors with minimal trace when the eigen value functions of coefficients are continuou
Sec. V, we present two kinds of explicit expressions for the projectors with elliptical function
kernel.

II. NONCOMMUTATIVE ORBIFOLD T2ÕZN

In this section, we introduce operators on the noncommutative orbifoldT2/ZN . First we
introduce two Hermitian operatorsŷ1 and ŷ2 , which satisfy the following commutation relation

@ ŷ1 ,ŷ2#5 i . ~3!

The operators made up ofŷ1 and ŷ2
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Ô5(
m,n

Cmnŷ1
mŷ2

n ~4!

form the noncommutative planeR2. All operators onR2 which commute withU1 andU2

U15e2 i l ŷ 2, U25eil (t2ŷ12t1ŷ2), ~5!

wherel ,t1 ,t2 are all real numbers andl ,t2.0,t5t11 i t2 , constitute the noncommutative toru
T2. We have

U1
21ŷ1U15 ŷ11 l , U2

21ŷ1U25 ŷ11 l t1 ,

U1
21ŷ2U15 ŷ2 , U2

21ŷ2U25 ŷ21 l t2 . ~6!

The operatorsU1 andU2 are two different wrapping operators around the noncommutative t
and their commutation relation isU1U25U2U1e22p i ( l 2t2/2p). WhenA5 l 2t2/2p is an integer,
we call the noncommutative torus integrable, and introduce two operatorsu1 andu2 :

u15e2 i l ŷ 2 /A, u25e2 i l (t2ŷ12t1ŷ2)/A,

u1u25u2u1e2p i /A, u1
A5U1 , u2

A5U2
21. ~7!

The operators on the noncommutative torus are composed of the Laurant series ofu1 andu2 ,

ÔT25(
m,n

Cmn8 u1
mu2

n , ~8!

wherem,nPZ andC008 is called the trace of the operators, and Eq.~8! includes all operators on th
noncommutative torusT2, satisfying the relationUi

21ÔT2Ui5ÔT2. From ~7! we can rewrite Eq.
~8! as

ÔT25 (
s,t50

A21

u1
su2

t Cst~u1
A ,u2

A!, ~9!

where Cst is Laurant series of the operatorsu1
A and u2

A . We call this formula the standar
expression for the operator on the noncommutative torusT2. The trace for the operator is th
constant term’s coefficient ofC00. Next we introduce rotationR in noncommutative spaceR2

R~u!5e2 iu @~ ŷ1
2
1 ŷ2

2
!/2# 1 i ~u/2! ~10!

with

R21ŷ1R5cosu ŷ11sinu ŷ2 , R21ŷ2R5cosu ŷ22sinu ŷ1 , ~11!

whent5t11t25e2p i /N, settingu52p/N(NPZ). The noncommutative torusT2 is kept invari-
ant under rotationRN[R(2p/N).35,27,30NamelyRN

21ÔT2RN is still the operators on the noncom
mutative torusT2. Now Ui8[RN

21UiRN can be expressed by the monomial of$Ui% and their
inverses.27 In this case, we call the operators invariant under rotationRN on the noncommutative
torus as operators on the noncommutative orbifoldT2/ZN . We can also realize these operators
Fock space. Introduce

a5
ŷ22 i ŷ1

&
, a15

ŷ21 i ŷ1

&
, ~12!
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then

@a,a1#51, ~13!

RN5e2 iua1a. ~14!

In this paper, we study the projectorP on the orbifoldT2/Z4 :

t5 i , ~15!

P25P, ~16!

U j
21PUj5P, j 51,2, ~17!

R4
21PR45P. ~18!

III. THE zk ,q ‹ REPRESENTATION, STANDARD FORM, AND EIGENVALUE FUNCTION

From the above discussion, we know that the operatorsU1 andU2 commute with each othe
on the integrable torusT2 when A is an integer. So we can introduce a complete set of t
common eigenstates, namelyuk,q& representation36,37

uk,q&5A l

2p
e2 i t1ŷ2

2/2t2(
j

ei jkl uq1 j l &, ~19!

where the ket on the right is aŷ1 eigenstate. We have

U1uk,q&5e2 i lk uk,q&, U2uk,q&5eil t2quk,q&5e2p iqA/ l uk,q&,
~20!

id5E
0

2p/ l

dkE
0

l

dquk,q&^k,qu.

It also satisfies

uk,q&5Uk1
2p

l
,qL 5eilk uk,q1 l &. ~21!

Consider Eq.~9!, namely, the standard expansion of operators onT2 we have

Cst~u1
A ,u2

A!uk,q&5Cst~e2 i lk ,e22p iqA/ l !uk,q&[cst~k,q!uk,q&, ~22!

wherecst is a function of the independent variablesk and q, called the eigenvalue function o
Cst(u1

A ,u2
A). From ~22!, we see that the functioncst is invariant whenq→q1 l /A,

cstS k,q1
ln

A D5cst~k,q!. ~23!

As long as the eigenvalue function is obtained, the operator on the noncommutative torus
completely determined. Introducing the new basisuk,q0 ;n&[uk,q01 ln/A&,kP@0,2p/ l ),q0

P@0,l /A), we have from~20!

(
n50

A21 E
0

2p/ l

dkE
0

l /A

dq0Uk,q01
ln

A L K k,q01
ln

AU5 id, ~24!
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u1uk,q&5Uk,q1
l

AL , ~25!

u2uk,q&5e22p i ~q/ l !uk,q&. ~26!

From the above equation and~21!, we see that when any power of the operatorsu1 andu2 act on
the uk,q01 ln/A&, the result can be expanded in the basisuk,q01 ln8/A& with the samek,q0 . So
the operators on the noncommutative torus have the same property, namely do not changk and
q0 . Thus, for everyk andq0 we get anA3A matrix, called reduced matrix for the operator,
well as the projector,

PT2Uk,q01
ln

A L 5(
n8

M ~k,q0!n8nUk,q01
ln8

A L . ~27!

It is easy to find that the sufficient and necessary condition forP25P is30

M ~k,q0!25M ~k,q0!. ~28!

WhenT2 satisfiesZN symmetry, since afterRN rotationUi8 can be expressed by the monomial
$Ui% and their inverses, the state vectorRNuk,q01 ln/A& is still the common eigenstate of th
operatorsU1 andU2 . With the completeness of$uk,q1 ls/A&% and theA-fold degeneracy eigen
values ofUi in the kq representation, the state can be expanded in the basis$uk8,q81 ls8/A&%

RNUk,q01
ln

A L 5(
n8

A~k,q0!n8nUk,q01
ln8

A L ~29!

~it is necessary to point out that the matrixA defined here is the transposed matrix ofA defined in
formula ~93! in Ref. 30! wherek8P@0,2p/ l ),q8P@0,l /A) are definite and

RN
21Uk8,q081

ln8

A L 5(
n9

A21~k,q0!n9n8Uk8,q081
ln9

A L . ~30!

We can get the expression for the relation betweenk8, q08 and k, q0 , The mappingW:(k,q0)
→(k8,q08),W

N5 id, is essentially a linear relation, and area-preserving. By this fact and sincRN

is unitary, we conclude that the matrixA is a unitary matrix, that is to say

A* ~k,q0!nn85A21~k,q0!n8n . ~31!

The projector on the noncommutative orbifoldT2/ZN satisfiesRN
21PRN5P, then from~27!, ~29!,

~30! one obtains

RN
21PRNUk,q01

ln

A L 5(
n

8
@A21~k,q0!M ~k8,q08!A~k,q0!#n8nUk,q01

ln8

A L , ~32!

which should be equal to

PUk,q01
ln

A L 5(
n9

M ~k,q0!n9nUk,q01
ln9

A L . ~33!

So, we have

M ~k8,q08!5A~k,q0!M ~k,q0!A21~k,q0! ~34!
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and the sufficient and necessary condition for the projector on noncommutative orbifoldT2/ZN to
satisfy is

M ~k,q0!25M ~k,q0!, ~35!

M ~k8,q08!5A~k,q0!M ~k,q0!A21~k,q0!. ~36!

Next we will study the relation between coefficient functioncst(k,q) and the reduced matrix
M (k,q0). From ~23!, ~25!, ~26!, and~27! we have

PUk,q01
ln

A L 5(
s,t

u1
su2

t Cst~u1
A ,u2

A!Uk,q01
ln

A L
5(

s,t
e22p i (q0 / l 1n/A)tcst~k,q0!Uk,q01

l ~n1s!

A L
5(

n8
M ~k,q0!n8nUk,q01

ln8

A L . ~37!

So for n1s,A case, we have

M ~k,q0!n1s,n5 (
t50

A21

e22p i (q0 / l 1n/A)tcst~k,q0! ~38!

and forn1s>A case, we have

M ~k,q0!n1s2A,n5 (
t50

A21

e22p i (q0 / l 1n/A)tcst~k,q0!e2 i lk . ~39!

Setting

M ~k,q0!n1s,n5M ~k,q0!n1s2A,neilk , ~40!

we can uniformly write as

M ~k,q0!n1s,n5 (
t50

A21

e22p i (q0 / l 1n/A)tcst~k,q0! ~41!

and have

cst~k,q0!5
1

A (
n50

A21

M ~k,q0!n1s,ne2p i (q0 / l 1n/A)t. ~42!

Equations~41! and ~42! are the relation betweencst and the elements of the reduced matrixM .

IV. CONTINUOUS SOLUTION FOR THE PROJECTOR WITH MINIMAL TRACE

Now one may ask what property the reduced matrixM possesses when the coefficient fun
tion cst is a continuous function. In this section, we mainly answer this question. First we p
theA3A matrix satisfying the conditionM25M is always diagonalizable. For any vectorc, Mc
is invariant underM , namely,

M ~Mc!5Mc. ~43!

Assume there are totallyB linear independent invariant vectors under transformationM , then

~1! For A5B case, the matrixM is identity of the space expanded by the vectors, namelA
3A unit matrix. Of course it is diagonal.
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~2! For B,A case, considering any vectora and settingb5Ma2a, we findMb50. Namely any
vectora can be expressed as linear combination of invariant vectorc5Ma and null vectorb
under action ofM . So the whole linear space is composed of certain invariant vectors and
vectors under action ofM . M can be diagonalized in the representation with these vecto
basis. So we have

M ~k,q0!5S21~k,q0!M̄ ~k,q0!S~k,q0!, ~44!

where

M̄ ~k,q0!5diag~1,1,...,1,0,0,...,0!. ~45!

Due to ~41!, when cst(k,q0) is continuous,M (k,q0) is also continuous. However trM (k,q0)
5tr M̄ (k,q0)50,1,2,...,A, which is discrete, so whencst is continuous, the value of trM (k,q0)
5Ac00(k,q0) is invariant for allk and q0 . The trace of the projector is the zero order term
c00(k,q0) in the Laurant expression ofe2 i lk ande22p iqA/ l , so we have

tr P5E
0

2p/ l

dkE
0

l /A

dq
A

2p
c00~k,q0!5E

0

2p/ l

dkE
0

l /A

dq
1

2p
tr M ~k,q0!5

1

A
tr M ~k,q0!.

~46!

The projector is trivial for trM (k,q0)50,A, indicating P50 and identity. The nontrivial trP
5 1/A , 2/A ,..., (A21)/A. In this paper, we only study the nontrivial projector with minimal tra
(tr M (k,q0)51). Thus

M ~k,q0!5s21~k,q0!S 1

0

0

�

D s~k,q0!, ~47!

M ~k,q0!nn85s21~k,q0!n0s~k,q0!0n8[a~k,q0!nb~k,q0!n8 . ~48!

Explicit calculation aboutRN acting onuk,q;n& shows that we can divide the complete ar
S:$kP@0,2p/ l ),q0P@0,l /A)% into N subareas0 ,...,sN21 , making W:s i→s i 11 ,(i 50,1,...,N
22),sN21→s0 . If we construct a reduced matrixM (k,q0) to satisfy~48! in the areas0 , then
the projector corresponding to continuouscst with minimal trace is completely determined. In are
s0 , set

an5 K k,q01
ln

A Uf1L , bn5 K f2Uk,q01
ln

A L , ~49!

where

(
n

anbn5tr M ~k,q0!51. ~50!

In the other areass j with (k,q0)→(kj ,q0 j ) by mappingWj , we demand

an~kj ,q0 j !5 K kj ,q0 j1
ln

A Uf1L 5Aj~k,q0!nn8an8~k,q0!, ~51!

bn~kj ,q0 j !5 K f2Ukj ,q0 j1
lnL 5bn8~k,q0!A2 j~k,q0!n8n . ~52!

A
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We thus have all coefficients ofuf1&,^f2u in s0 ,...,sN21 . Owing to the completeness ofuk,q0

1 ln/A& in the areaS, uf1& and^f2u can be determined by the coefficient~49! of uf1& and^f2u.
Meanwhile, in the areas j , we have

M ~kj ,q0 j !nn85an~kj ,q0 j !bn8~kj ,q0 j !5@Aj~k,q0!M ~k,q0!A2 j~k,q0!#nn8 . ~53!

The matrixM (k,q0) really satisfies Eq.~34!. Consider the state vector

uf1&5E dkdq0(
n

Uk,q01
ln

A L K k,q01
ln

AUf1L
5 (

j 50

N21 E
s j

dkjdq0 j(
n

Ukj ,q0 j1
ln

A L an~kj ,q0 j !

5 (
j 50

N21 E
s j

dkdq0(
nn1

Uk,q01
ln

A L Ann1(k,q0)
j an1

~k,q0!

5 (
j 50

N21

RN
j E

s0

dkdq0(
n

Uk,q01
ln

A L an~k,q0!. ~54!

Thus we have

RNuf1&5uf1& . ~55!

In the same way, we get

^f2uRN5^f2u. ~56!

That is to say that the state vectorsuf1& and ^f2u are invariant under the rotationRN .
More generally, we can take any state vectorsuf1& and ^f2u satisfying

RNuf1&5eia1uf1&, ^f2uRN
215e2 ia2^f2u ~57!

to construct a projection operator on noncommutative orbifoldT2/ZN . Let M (k,q0) be given by
~48! with

an~k,q0!5

K k,q01
ln

A Uf1L
A(n8K k,q01

ln8

A Uf1L K f2Uk,q01
ln8

A L , ~58!

bn~k,q0!5

K f2Uk,q01
ln

A L
A(n8K k,q01

ln8

A Uf1L K f2Uk,q01
ln8

A L . ~59!

The projector of minimal trace and with continuous coefficient functions is surely of this form
can be verified thatM25M . And it is also covariant underRN . From ~30! we have

K f2Uk8,q081
n8l

A L 5K f2URN(
n9

A21~k,q0!n9n8Uk,q01
n9l

A L
5eia2(

n9
A21~k,q0!n9n8K f2Uk,q01

n9l

A L
and similarly
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K k8,q081
n8l

A Uf1L 5e2 ia1(
n9

K k,q01
n9l

A Uf1L A~k,q0!n8n9 ,

giving

(
n

K k8,q081
ln

A Uf1L K f2Uk8,q081
ln

A L 5(
n

K k,q01
ln

A Uf1L K f2Uk,q01
ln

A L e2 i (a12a2).

~60!

Thus,

M ~k8,q08!nn85an~k8,q08!bn8~k8,q08!5@AMA21#~k,q0!nn8 , ~61!

P is invariant under rotationRN due to ~36! and really gives the projection operator on t
noncommutative orbifoldT2/ZN . The form of~58! is a generalization ofGHS construction.~The
conditionP†5P is not satisfied byP like this, which might represent the solitons in a ‘‘complex
field.! From the above result, we have

M ~k,q0!nn85

K k,q01
ln

A Uf1L K f2Uk,q01
ln8

A L
(
n9

K k,q01
ln9

A Uf1L K f2Uk,q01
ln9

A L . ~62!

Noticing that this equation satisfies~40!, we have

cst~k,q0!5
1

A (
n50

A21

M ~k,q0!n1s,ne2p i (q0 / l 1n/A)t

5

1

A (
n50

A21 K k,q01
l ~n1s!

A Uf1L K f2Uk,q01
ln

A L e2p i (q0 / l 1n/A)t

(
n

K k,q01
ln

A Uf1L K f2Uk,q01
ln

A L 5
Fst~k,q0!

AF00~k,q0!
,

~63!

where

Fst~k,q0![ (
n50

A21 K k,q01
l ~n1s!

A Uf1L K f2Uk,q01
ln

A L e2p i (q0 / l 1n/A)t, ~64!

with

Fst~k,q0!5Fst~k,q01 l /A!5Fst~k12p/ l ,q0!, ~65!

Fst~k,q0!5Fs1A,t~k,q0!e2 i lk ~66!

5Fs,t1A~k,q0!e22p iq0A/ l . ~67!

So the functionFst is the function of independent variablesX5e2 i lk andY5e22p iq0A/ l , namely
Fst(k,q0)5Fst(X,Y). Similarly,

cst~k,q0!5Cst~X,Y!5
Fst~X,Y!

AF00~X,Y!
. ~68!
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If we change the variableX and Y into u1
A and u2

A , respectively, the standard form~9! of the
projection operator can be easily obtained. So the key question is to find outFst(k,q0).

V. COHERENT STATE REPRESENTATION

Introduce coherent states

uz&5e2 ~1/2! zz̄ea1zu0&,

wherez5x1 iy ,z̄5x2 iy , satisfies

1

p E
2`

`

d2zuz&^zu[
1

p E
2`

`

dxdyuz&^zu5 identity, ~69!

RNuz&5uvNz&. ~70!

We can show30

^k,quz&5
1

Alp1/4
uS q1

t

t2
k2 i&z

l
,

t

A
D e2 ~t/2i t2! k21 ikq1&kz2(z21zz̄)/2, ~71!

where

u~z,t![uF00G~z,t!

and

uFabG~z,t!5(
m

ep i t(m1a)2
e2p i (m1a)(z1b). ~72!

Thus we can expand the state vectorsuf1& and ^f2u in terms of the coherent state,

uf1&5
1

p E
2`

`

dxdyuz&^zuf1&[
1

p E
2`

`

dxdy f1~z!uz&, ~73!

^f2u5
1

p E
2`

`

dxdŷ f2uz&^zu5
1

p E
2`

`

dxdy f2~z!^zu. ~74!

The condition~57! is satisfied if and only if

f 1~vN
21z!5 f 1~z!eia1, ~75!

f 2~vN
21z!5 f 2~z!e2 ia2. ~76!

HerevN5e2 i (2p/N). We have

Fst~k,q0!5
1

p2 (
n50

A21 E K k,q01
l ~n1s!

A Uz1L f 1~z1!dx1dy1E K z2Uk,q01
ln

A L f 2~z2!dx2dy2

3e2p i (q0 / l 1n/A)t5
1

p2 E dx1dy1dx2dy2gst~k,q0 ,z1 ,z2! f 1~z1! f 2~z2!, ~77!
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where

gst~k,q0 ,z1 ,z2!5 (
n50

A21 K k,q01
l ~n1s!

A Uz1L K z2Uk,q01
ln

A L e2p i (q0 / l 1n/A)t. ~78!

We call the kernelg as generating function in coherent state representation. Next, we stud
expression ofg for Z4 case. Throughg we can give the integration expression for all the proje
tion operators on theT2/Z4 with minimal trace and continuous eigenvalue function. Consider
equation

u~z,t!* 5u~z* ,2t* !. ~79!

For thez4 case,t5 i ,A5 l 2/2p. From ~71!, ~73!, and~74! we get

K k,q1
ls

A Uz1L K z2Uk,q1
ls8

A L 5
1

lAp
uS q

l
1

i

l
k1

s

A
2

i&z1

l
,

i

AD uS q

l
2

i

l
k1

s8

A
1

i&z2*

l
,

i

AD
3e2k21 ~k/2!(z11z2* )1 ik @ l (s2s8)/A#e2 ~1/2!(z1

2
1(z2* )21z1z1* 1z2z2* )

[Kss8 . ~80!

Let u5 lk/2p ,v5 q/ l ,m52 i (&A/ l ) z1 ,n5 i (&A/ l ) z2* , then

Kss85
C1

lAp
uS v1

iu

A
1

s1m

A
,

i

AD uS v2
iu

A
1

s81n

A
,

i

ADep i 2i /A u212p i (~s1m2s82n!/A))u, ~81!

where

C15e2p i [ ~2 i /4A!(m21n2)1 ~ i /4A!(umu21unu2)] . ~82!

It can be proven that for integerA,

(
r 50

A21

e2p irt /Au~x1r /A,t/A!u~y1r /A,t/A!

5A (
d50,1

uS 2
t

A
~Ad2t !1x2y,

2t

A D uS t

A
~2At1A2d!1A~x1y!,2tADep i ~t/A!(Ad2t)2

3e2p i (Ad2t)y ~83!

and

u~z,t!5A i

t
e2p iz2/tuS 6

z

t
,2

1

t D . ~84!

Thus we have
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Gst~u,v ![gst~k,q,z1 ,z2!

5e2p ivt(
r

e2p irt /AKs1r ,r~u,v !

5
AC1

lAp
AA

2 (
d50,1

e2 ~p/2A!(Ad2t)212p i (Ad2t) ~n/A! 2 ~p/2A!(s1m2n)2

3e~p i /A!(s1m2n)(Ad2t)12p ivAduS u2
1

2
~Ad2t !1

i

2
~s1m2n!,

Ai

2 D
3u~2Av1s1m1n2tt1 iAd,2Ai !. ~85!

Due to

(
a50,1

uS x1
a

2
,t D52u~2x,4t!, ~86!

(
a50,1

~21!auS x1
a

2
,t D52e2p i (x1 t/2)u~2x12t,4t!, ~87!

whend is equal to 0,1,

u~2x12td,4t!5
1

2 (
a50,1

~21!ade2p i (x1 ~t/2!)duS x1
a

2
,t D , ~88!

the functionGst(u,v) can be rewritten as

Gst~u,v !5
A

4p
e2p if (

a,d50,1
~21!aduS 2u1

1

2
~Ad1t !1

i

2
~s1m2n!,

Ai

2 D
3uS 2Av1

1

2
~s1a2m2n!1

i

2
t,

Ai

2 D , ~89!

where

f5
i

4A
~s21t2!2

st

2A
1

i

2A
s~m2n!2

t

2A
~m1n!1

i

4A
~ umu21unu222mn!. ~90!

From the above discussion, we know that whenA is an even number, onlya50 contributes, so we
have

Gst~u,v !5
A

2p
e2p ifuS 2u1

1

2
t1

i

2
~s1m2n!,

Ai

2 D uS 2Av1
1

2
~s2m2n!1

i

2
t,

Ai

2 D
and whenA is an odd number,

Gst~u,v !5
A

4p
e2p if (

a,d50,1
~21!aduS 2u1

1

2
~Ad1t !1

i

2
~s1m2n!,

Ai

2 D
3uS 2Av1

1

2
~Aa1s2m2n!1

i

2
t,

Ai

2 D . ~91!

They can be uniformly written as
                                                                                                                



m of

to

990 J. Math. Phys., Vol. 45, No. 3, March 2004 Deng et al.

                    
Gst~u,v !5
A

4p
e2p if (

a,d50,1
~21!aduS 2u1

1

2
~Ad1t !1

i

2
~s1m2n!,

Ai

2 D
3uS 2Av1

1

2
~Aa1s2m2n!1

i

2
t,

Ai

2 D , ~92!

which is Z4 covariant. So we have from~63!, ~77!, and~85!,

cst~k,q!5
1

A H E d2md2nGst~u,v ! f 1~m! f 2~n!

E d2md2nG00~u,v ! f 1~m! f 2~n!
J , ~93!

where functionsf i should satisfy

f i~vNj!5eia i f i~j!. ~94!

Let û5 ( l /2p) ŷ2 andAv̂5 ( l /2p) ŷ1 , we may replaceu,v by û and v̂ in ~93! and get

Cst~u1
A ,u2

A!5
1

A

E d2md2nGstS l

2p
ŷ2 ,

l

2Ap
ŷ1D f 1~m! f 2~n!

E d2md2nG00S l

2p
ŷ2 ,

l

2Ap
ŷ1D f 1~m! f 2~n!

. ~95!

The operatorsu1 andu2 commute with the operatorsu1
A andu2

A , and from~7!

u1
s5e22p i s/Aû, ~96!

u2
t 5e22p i t v̂. ~97!

Further takingu1
s andu2

t into account, we can insert them to the corresponding operator for
Eq. ~89!. This leads to the function ofû and v̂

had[u1
su2

t Gst~ û,v̂ !

5
A

4p (
a,d50

1

~21!ade2p ife22p i s/AûuS 2û1
1

2
~Ad1t !1

i

2
~s1m2n!,

Ai

2 D
3e22p i v̂tuS 2Av̂1

1

2
~Aa1s2m2n!1

i

2
t,

Ai

2 D
5

A

4p (
a,d50

1

~21!ade2p i (2 ~3st/2A! 1 ~ i /4A!(umu21unu222mn))e22p i (~sd/2! 1 ~ ta/2!)

3uF s

A

t

2

G S 2û1
1

2
Ad1

i

2
~m2n!,

Ai

2 D uF t

A

s

2

G S 2Av̂1
1

2
Aa2

1

2
~m1n!,

Ai

2 D . ~98!

Due to uvNmu5umu,uvNnu5unu, e2p i ( i /4A)(umu21unu2) in the above formula can be attributed
f 1(m) and f 2(n). Finally, we have
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P5(
s,t

u1
su2

t Cst~u1
A ,u2

A!

5(
s,t

e2p i (2 ~3st/2A!) (
a,d50

1

~21!adE d2md2n f 1~m! f 2~n!ep i ~mn/A!e22p i (~sd/2! 1 ~ ta/2!)

3uF s

A

t

2

G S 2
l ŷ2

2p
1

1

2
Ad1

i

2
~m2n!,

Ai

2 D uF t

A

s

2

G S 2
l ŷ1

2p
1

1

2
Aa2

1

2
~m1n!,

Ai

2 D

3H A (
a,d50

1

~21!adE d2md2n f 1~m! f 2~n!ep i ~mn/A!uS 2
l ŷ2

2p
1

1

2
Ad1

i

2
~m2n!,

Ai

2 D
3uS 2

l ŷ1

2p
1

1

2
Aa2

1

2
~m1n!,

Ai

2 D J 21

. ~99!

In the above equation, the twou functions can not exchange orders with each other. It holds
any integer numberA. In the following, we present some discussion.

~1! A is an even number, soAd/2 andAa/2 are integers, too. Due to~72! we have

P5(
s,t

e23pi ~st/A!E d2md2n f 1~m! f 2~n!ep i ~mn/A!

3uF s

A

t

2

G S 2
l ŷ2

2p
1

i

2
~m2n!,

Ai

2 D uF t

A

s

2

G S 2
l ŷ1

2p
2

1

2
~m1n!,

Ai

2 D

3H AE d2md2n f 1~m! f 2~n!ep i ~mn/A!uS 2
l ŷ2

2p
1

i

2
~m2n!,

Ai

2 D
3uS 2

l ŷ1

2p
2

1

2
~m1n!,

Ai

2 D J 21

. ~100!

The above equation is the generalization of the Boca’s formula Proposition 3.1(i ).35

~2! A is an odd number

P5 (
s,t50

A21

e23p i ~st/A!E d2md2n f 1~m! f 2~n!ep i ~mn/A! (
a,d50

1

~21!ade22p i (sd/2) 1 ~ ta/2!)

3uF s

A

t

2

G S 2
l ŷ2

2p
1

Ad

2
1

i

2
~m2n!,

Ai

2 D uF t

A

s

2

G S 2
l ŷ1

2p
1

Aa

2
2

1

2
~m1n!,

Ai

2 D

3H AE d2md2n f 1~m! f 2~n!ep i ~mn/A! (
a,d50

1

~21!aduS 2
l ŷ2

2p
1

Ad

2
1

i

2
~m2n!,

Ai

2 D
3uS 2

l ŷ1

2p
1

Aa

2
2

1

2
~m1n!,

Ai

2 D J 21

. ~101!

Due to
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uF s

A

t

2

G S x1
Ad

2
,t D5uF s

2A

0
G ~2x,4t!~21!sde2p i ~st/2A!

1uF s1A

2A

0
G ~2x,4t!~21!(s1A)de2p i @(s1A)t/2A#, ~102!

the numerator ofP can be written as

2E d2md2n f 1~m! f 2~n!ep i ~mn/A! (
s,t50

A21

$ū0u011 ū1u0~21!s1 ū0u1~21! t1 ū1u1~21!s1t21%

52E d2md2n f 1~m! f 2~n!ep i ~mn/A! (
s,t50

2A21

e~p i /A! stū0u0 , ~103!

where

ūd5uF t1Ad

2A

0
G ~2y,4t!,

ud5uF t1Ad

2A

0
G ~2x,4t!,d50,1

with

x52
l ŷ2

2p
1

i

2
~m2n!

and

y52
l ŷ1

2p
2

1

2
~m1n!.

The denominator ofP is 2A*d2md2n f 1(m) f 2(n)ep i (mn/A)(d1 ,d250
1 ep id1d2ūd1

8 ud2
8 , where

ud85uF d

2

0
G ~2x,4t!,

ūd85uF d

2

0
G ~2y,4t!.

This formula gives another result compared with Boca’s whenf 1(z)5 f 2(z)5d2(z20).
Finally, we will give another explicit form ofP in terms of the derivative of elliptic functions

Note that the basis$un&% of Fock space produces a phasevn under action ofRN . It is not difficult
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to find that eia1 and eia2 in ~57! are both integral powers ofvN because of (RN)N5 identity.
Thereforeuf1& and ^f2u can, respectively, be expanded in the basis$un&% and$^nu%, where

un&5
~a1!n

An!
u0&. ~104!

We have the relation between coherent state and particle number eigenstate as the follow

^zun&5e2 ~1/2! zz̄
zn

An!
. ~105!

Obviously, the general forms ofuf1& and ^f2u in the expansion in terms of particle numb
eigenstates are(m50

` cm u i 14m& and (n50
` dn ^ j 14nu, wherei and j are non-negative integer

andcm anddn are arbitrary constant coefficients. So

uf1&5(
m

cmu i 14n&5
1

p (
m

E
2`

`

dxdycmuz&^zu i 14m&, ~106!

^f2u5 (
m50

`

dm^ j 14mu5
1

p (
n50

` E
2`

`

dxdydn^ j 14nuz&^zu. ~107!

We let RN act onuf1& and ^f2u and get

RNuf1&5v i uf1&, ~108!

^f2uRN
215^f2uv2 j . ~109!

Subsequently, we substitute~105!, ~106!, ~107! into ~64! and make use of the formula

^k,qun&5
1

An!

dn

dzn ~e~1/2! zz̄^k,quz&!iz50 ~110!

to obtain

Fst~k,q0!5(
m,n

(
h50

A21

cmdnK k,q01
l ~h1s!

A U i 14mL 3 K j 14nUk,q01
lh

A L 3e2p i (q0 / l 1h/A)t

5(
m,n

(
h50

A21

cmdn

1

A~ i 14m!! ~ j 14n!!

dn1m

dz1
mz̄2

n S e~1/2!(z1z̄11z2z̄2) (
h50

A21 K k,q01
l ~h1s!

A Uz1L
3 K z2Uk,q01

lh

A L 3e2p i (q0 / l 1h/A)tD I
z15 z̄250

5(
m,n

(
h50

A21

cmdn

1

A~ i 14m!! ~ j 14n!!

dn1m

dz1
mz̄2

n ~e1/2(z1z̄11z2z̄2)gst~k,q0 ,z1 ,z2!!iz15 z̄250 .

~111!

So, we get the projector in the case ofz4
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P5(
m,n

cmdn

1

A~ i 14m!! ~ j 14n!!

dn1m

dz1
mz̄2

nS ez1z̄11z2z̄23e2p i (2 ~3st/2A!)3e4p2iz1z̄2

3e22p i (~sd/2! 1 ~ ta/2)! (
a,d50

1

~21!aduF s

A

t

2

G S 2
l ŷ2

2p
1

1

2
Ad1

&A

2l
~z11 z̄2!,

Ai

2 D

3uF t

A

s

2

G S 2
l ŷ1

2p
1

1

2
Aa1

i&A

2l
~z12 z̄2!,

Ai

2 D D I
z15 z̄250

3H A(
m,n

(
a,d50

1

~21!adcmdn

dn1m

dz1
mz̄2

n S ez1z̄11z2z̄23e4p2iz1z̄2

3uS 2
l ŷ2

2p
1

1

2
Ad1

&A

2l
~z11 z̄2!,

Ai

2 D
3uS 2

l ŷ1

2p
1

1

2
Aa1

i&A

2l
~z12 z̄2!,

Ai

2 D D J 21I
z15 z̄250

. ~112!

Thus, we derive two forms of explicit expressions of the projectorP in terms of the integra-
tion and derivative of the classical theta functions.

VI. DISCUSSION

In this paper,P is represented by a form of a fraction which make sense only when
denominator has an inverse. The formula demands

D5AE d2md2n f 1~m! f 2~n!G00~u,v ! ~113!

is unequal to zero for any real variablesu andv. It is easy to prove that whenf 1 is equal tof 2* ,
the related denominator

D5A(
n

K k,q1
ln

A Uf L K fUk,q1
ln

A L 5A(
n

U K k,q1
ln

A Uf L U2

. ~114!

Thus if D50, then

K k,q1
ln

A Uf L 50, n50,1,...,A21. ~115!

The zero points of the state vectoruf& in uk,q& representation should be points equally spac
alongq with an interval ofl /A. The mapping fromk andq to ^k,q1 ln/A uf&PC is a mapping
from plane to plane. In general,^k,q1 ln/A uf&50 are some discrete points, and thus it is cas
thatD is equal to zero. So in this sense, for most off 15 f 2* , this still not happens~in some sense
the measure ofD50 event is zero!. Specially, when the stateuf1&5uf2&5u0&, it can be proved35

that D is not equal to zero everywhere. Thus set

uf1&5u0&1euc1&, ^f2u5^0u1e^c2u. ~116!

D is also not equal to zero everywhere for small enoughe. But we do not know the situation fo
generalf 1Þ f 2* .
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The BMS group and generalized gravitational instantons
Evangelos Melasa)

Department of Mathematical Sciences, QMW London, United Kingdom
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The ordinary Bondi–Metzner–Sachs~BMS! groupB is the best candidate for the
fundamental symmetry group of General Relativity. It has been shown thatB ad-
mits generalizations to real space–times of any signature, and also to complex
space–times. It has been suggested that certain continuous unitary irreducible rep-
resentations~IRs! of B and of its generalizations correspond to gravitational instan-
tons. Here I make this correspondence more precise and I take this suggestion one
step further by arguing that a subclass of IRs ofB and of its generalizations corre-
spond togeneralizedgravitational instantons. Some of thesegeneralizedgravita-
tional instantons involve in their definition certain subgroups of the Cartesian prod-
uct groupCn3Cm , whereCr is the cyclic group of orderr. With this motivation,
I give the subgroups ofCn3Cm explicitly. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1645976#

I. INTRODUCTION

In 1962, an intensive study of asymptotically flat space–times, representing bounded g
tional sources emitting gravitational radiation, was undertaken by Bondi and others1 and this work
was generalized by Sachs.2 These authors imposed radiation-dictated boundary conditions
found, among other things, that the ‘‘asymptotic symmetries’’ of such asymptotically flat sp
times formed a groupB which was independent of the detailed structure of the particular asy
totically flat space–time in question, hence the universality ofB and its importance. This group
the so called Bondi–Metzner–Sachs~BMS! groupB, contains the Poincare groupP, and, further-
more, is infinite dimensional.

Soon after its discovery, the importance of finding the irreducible representations ofB was
emphasized.2–4 The irreducible representations ofB were constructed in a series of papers
McCarthy.5–7 The role of the IRs ofB is much less well understood than the role of the IRs ofP.8,9

McCarthy, in order to make this role better understood and in order to make contact with
approaches to quantum gravity, where complexified or Euclidean versions of general relativ
frequently considered, generalizedB9 to real space–times of any signature, and also to com
space–times. A significant input in the attempt to interpret the irreducibles ofB and of its gener-
alizations came from Kronheimer’s work,11,12 in which he classifiedall ALE gravitational instan-
tons. McCarthy, using Kronheimer’s work, conjectured9 that there is a correspondence betwe
ALE gravitational instantons and certain IRs ofB, of EB, and ofCB; the groupsEB andCB are
correspondingly the Euclidean BMS group and the Complex BMS group and both of them
defined in Ref. 9. The aim of this paper is to state and extend this correspondence, and,
more, to give explicitly a class of groups which are expected to be involved in the definitio
new solutions to the Einstein equations. First, I make explicit and precise the expected corr
dence between ALE spaces and IRs ofB, EB, andCB; this correspondence has been stated
least implicitly, in some cases by McCarthy~Ref. 9!. Second, I argue that the representation the
of B and of its variants strongly suggests that in all signatures the aforementioned correspo
is naturally extended to non-self-dual solutions of the Einstein equations. Guided by this ext
correspondence I~Ref. 10! put forward the conjecture that there are solutions to the Euclid

a!Electronic mail: E.Melas@qmul.ac.uk; evangelosmelas@yahoo.co.uk
9960022-2488/2004/45(3)/996/7/$22.00 © 2004 American Institute of Physics
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Complex and Ultrahyperbolic Einstein equations which are neither self-dual nor anti-self-du
far more general mixtures of them and which involve in their definition subgroups of the Cart
product groupCn3Cm , whereCr is the cyclic group of orderr. With this motivation, I give the
subgroups ofCn3Cm explicitly.

In Sec. II I make explicit the expected correspondence between BMS IRs and~generalized!
gravitational instantons. Finally, in Sec. III I give explicitly the subgroups ofCn3Cm .

II. RELATION OF BMS IRs WITH INSTANTONS AND WITH GENERALIZED INSTANTONS

In 1989 Kronheimer11,12gave an implicit description of all ALE gravitational instantons.~For
the various types of gravitational instantons and for the role they play in the path integral app
to quantum gravity, see for example Ref. 13 and references therein.! Asymptotically locally Eu-
clidean means that outside some compact region the metric approaches the flat~Euclidean! metric
on (S3/T)3R, whereT is a finite group of isometries acting freely onS3 (S3 is a 3-sphere andR
is the straight line of real numbers!. ~If T is the identity the instanton is asymptotically Euclidea
in this case, however, according to a theorem of Showen and Yau,14 the only instanton is the
Euclidean four space. Eguchi and Hanson15 gave an explicit metric in the case whichT is a cyclic
groupZ2 of order 2. Gibbons and Hawking16 generalized Eguchi’s and Hanson’s result and ga
explicit metrics in the case whereT is a cyclic groupCk of order k>2. The same result wa
obtained by Hitchin17 by the Penrose nonlinear graviton technique, which can be extended t
finite subgroup ofSU(2). His approach however gives the solutions only implicitly.! Kron-
heimer’s description of ALE instantons is implicit because he does not give explicit expres
for the metrics of the ALE instantons; the description involves constraints, namely, alge
equations difficult to solve. He proved that the description of the moduli space ofall gravitational
ALE instantons involves the complex linear irreducible representations of the cyclic, the dih
groups and the symmetry groups of the tetrahedron, cube and icosahedron. More precis
description involves the complex linear irreducible representations of the corresponding
groups. It is precisely these binary groups which appear in the representation theory ofB6 as little
groups. In fact, it is this coincidence which led McCarthy9 to conjecture that there is a relatio
between IRs ofB induced from finite little groups and ALE instantons. To make contact with o
approaches to quantum gravity, where complexified or Euclidean versions of general relativ
considered, McCarthy generalizedB to real space–times of any signature and to complex spa
times and obtained 42 groups. For the purposes of this paper more relevant among these 42
are the Complex BMS groupCB5C`(S23S2,R)sT(SL(2,C)3SL(2,C)) and its various real
sections: the Euclidean BMS groupEB5C`(S3,R)sT(SU(2)3SU(2)), the Ultrahyperbolic
BMS group B(2,2)5C`(S13S1,R)sT(SL(2,R)3SL(2,R)), and the original BMS groupB
5C`(S2,R)sTSL(2,C) ~typically G5C`(A,R)sTH denotes a semi-direct product, wher
C`(A,R) is the normal Abelian subgroup ofG. A denotes in all cases a compact space a
C`(A,R) consists of the supertranslations; they are real-valued infinitely-differentiable func
defined onA. The spaceC`(A,R) can be given the structure of a linear vector space~over the field
of real numbers! under point-wise addition. The representation ‘‘T’’ of H on the linear vector spac
C`(A,R) which specifies in each case the semi-direct product is not relevant here!.

Now, I will state a number of conjectures which establish the relation of gravitational in
tons and BMS IRs. Some of them are contained implicitly in Ref. 9. Here, I make them
explicit. These conjectures provide part of the driving force of the research program expo
here; namely of approaching quantum gravity via the representation theory of the BMS grou
of its variants. The conjectures will be stated in order of increasing generality.

Conjecture 1:The Eguchi–Hanson metric15 corresponds to the irreducible ofEB induced
from the groupI 3C2 , whereI is the identity andC2 is the cyclic group of order 2.

It should be noted that there is also9 a correspondence between the Eguchi–Hanson metric
the irreducible ofCB induced from the groupI 3C2 . It appears though, in a very preliminar
consideration of the problem, that this correspondence can be explored and made explicit
a round-about way by using the results of Hithin17 and Newman,18 whereas, it appears that th
correspondence between the Eguchi–Hanson metric and the relevant irreducible ofEB can be
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established in a more straightforward way. This explains the reason I am restricting attention
Euclidean BMSEB in Conjecture 1. Having said that, it is of paramount importance to try
establish the correspondence between the Eguchi–Hanson metric and the associated irred
CB, because this will also offer some clues about the relation of IRs ofCB andEB; the interre-
lationship of the groups in Ref. 9 and of their IRs is an indispensable element of the res
program considered here. Now I proceed to give Conjecture 2.

Conjecture 2:The gravitational multi-instantons of Gibbons and Hawking16 correspond to the
irreducibles ofEB induced from the groupsI 3Ck , whereI is the identity andCk is the cyclic
group of orderk, k>2.

As in the case of the Eguchi–Hanson metric, there is a correspondence between the g
tional multi-instantons of Gibbons and Hawking and the IRs ofCB induced from the groupsI
3Ck . Making explicit this correspondence, by using the results of Hithin17 and Newman18 is an
important part of the research program considered here. The following Conjecture procee
step further than the previous 2 Conjectures and states that there is a strong link between K
imer’s work11,12 and the IRs ofEB.

Conjecture 3:The moduli spaces of ALE instantons given by Kronheimer in Refs. 11, 12
precisely the irreducibles ofEB induced from the groupsG3I , whereG is the binary cyclic,
binary dihedral, binary tetrahedral, binary octahedral or binary icosahedral andI is the identity
element.

Note that here the IRs ofEB are induced from little groups which lie only in the first fact
of SU(2)3SU(2). Themoduli spaces associated with instantons arise from only one fact
SU(2)3SU(2) @SU(2)3I for anti-instantons andI 3SU(2) for instantons#. In Conjecture 3, the
choiceG3I is made because Kronheimer’s work deals with anti-instantons. Kronheimer’s
scription of the ALE moduli spaces is partial since it involves constraints. Kronheimer doe
solve the constraint equations but the conjecture is being put forward here that theEB IRs give an
unconstrained description of the same moduli spaces. There is also a correspondence betw
moduli spaces of ALE instantons described by Kronheimer and the IRs ofCB induced from the
groupsG3I , whereG was defined in Conjecture 3. As in the previous cases this correspond
can be explored and made clear by using the results of Hitchin and Newman. Kronheimer’s
describesall ALE instantons; i.e., self-dual solutions toEuclideanEinstein equations. The repre
sentation theory of the BMS group and of its variants provide clues about~self-dual! solutions of
Einstein equations in all signatures, as well as of Complex Einstein equations. First, I will
ment on self-dual solutions. Indeed, the representation theory of the groupsCB,9 B(2,2)19

strongly suggests the following Conjecture.
Conjecture 4:There are self-dual solutions to the complex Einstein equations which inv

in their definition the IRs ofG ~whereG was defined in Conjecture 3!. The moduli spaces of thes
solutions correspond to the IRs ofCB which are induced from the groupsI 3G. There are also
self-dual solutions to the ultrahyperbolic Einstein equations which involve in their definition
IRs of Cn , where Cn is the cyclic group of ordern. The moduli spaces of these solution
correspond to the IRs ofB(2,2) which are induced from the groupsCn .

More importantly, the representation theory ofEB, CB,9 andB(2,2)19 suggests that there ar
solutions to Euclidean, complex and ultrahyperbolic Einstein equations which are neither se
nor anti-self-dual but far more general mixtures of them. To be more precise, we have the f
ing Conjecture.

Conjecture 5:There are solutions to the Euclidean and Complex Einstein equations whic
neither self-dual nor anti-self-dual but more general mixtures of them. The moduli spaces o
solutions involve in their definition IRs of subgroups of the direct productG13G2 , whereG1 , G2

are ~independently! binary cyclic, binary dihedral, binary tetrahedral, binary octahedral or bin
icosahedral. The moduli spaces of these solutions correspond to IRs of the groupsEB and CB
which are induced from the groupsG13G2 . There are also solutions to the ultrahyperbo
Einstein equations which are neither self-dual nor anti-self-dual but more general mixtur
them. The moduli spaces of these solutions involve in their definition IRs of subgroups o
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direct productCn3Cm . The moduli spaces of these solutions correspond to the IRs of the g
B(2,2) which are induced from the same subgroups ofCn3Cm .

It is to be noted that the IRs ofCB, EB, andB(2,2) which correspond to solutions which a
neither self-dual nor anti-self-dual but more general mixtures of them are not induced from
groups which lie within only one factor ofSU(2)3SU(2) in the cases ofCB andEB, or within
only one factor ofSO(2)3SO(2) in the case ofB(2,2), but are induced from little groups whic
‘‘lie across’’ SU(2)3SU(2) or acrossSO(2)3SO(2). Two remarks are now in order.

~1! The previous conjectures claim that there is a correspondence between certain solut
complex Einstein equations as well as to Euclidean or ultrahyperbolic Einstein equation
certain IRs of theCB, EB, andB(2,2). Inall casesthe IRs give anunconstraineddescription
of the corresponding moduli spaces. In the Euclidean signature, Kronheimer’s descript
the ALE moduli spaces involves constraints, i.e., algebraic equations which he has not s
The suggestion is being put forward here that in fact one can attempt to use the releva
of EB in order to solve Kronheimer’s constraint equations.

~2! In the correspondence conjectured here the IRs, of the relevant in each case, BMS-gro
induced from the, relevant in each case, finitelittle groups.

According to the last conjecture in the ultrahyperbolic case, the little groups ofB(2,2) are
involved in the description of moduli spaces of solutions of the ultrahyperbolic Einstein equa
These little groups are subgroups ofCn3Cm . The direct productCn3Cm also appears in the
representation theory of bothCB andEB and, according to Conjecture 5, subgroups of them
involved in the description of moduli spaces of solutions to the complex and Euclidean Ein
equations. For this reason I give explicitly the subgroups ofCn3Cm in the next section.

III. SUBGROUPS OF CnÃCm

It turns out that the explicit construction of the subgroups ofCn3Cm is a problem more
difficult than it might appear at a first consideration. I constructed the subgroups ofCn3Cm with
two entirely independent methods to assure correctness; full details of the construction w
given elsewhere, here I only give the result of the construction. The result is given in an alg
mic fashion; it can be used to write a program which would construct them automatically. It
interesting fact that the explicit construction of the subgroups ofCn3Cm involves the prime
decomposition of the numbersn andm. An attempt to find them explicitly without invoking the
prime decomposition ofn andm failed. A key observation is that the direct productCn3Cm is a
finite Abelian group, and therefore, its rank, i.e., the number of its independent generat
greater or equal than the rank of any of its subgroups. Consequently, the subgroups ofCn3Cm

have either one or two generators. First, in the first Theorem, I give the generators of the
subgroups ofCn3Cm , and then, in the second Theorem I give the generators of the nonc
subgroups ofCn3Cm . It will prove convenient to introduce some notation at this point.P will
denote a permutation of thes pairs of numbers (p1

a1,p1
b1), (p2

a2,p2
b2),...,(ps

as,ps
bs). Therefore, if

(pi
ai,pi

b i), i 51,2,...,s is one of these pairs of numbers then,P(pi
ai,pi

b i)5(pj
aj ,pj

b j), for some j
51,2,...,s. For convenience, we will write

P~pi
ai,pi

b i !5~pj
aj ,pj

b j ![~pi
ai,pi

bi !, i 51,2,...,s.

Thus, the integerpj is written aspi , the non-negative integeraj is written asai , and the
non-negative integerb j is written asbi . I proceed now to give the first theorem.

Theorem I: Let Cn3Cm be the direct product of the cyclic groups of finite order Cn and Cm .
Let n5p1

a1
•p2

a2
¯ps

as and m5p1
b1
•p2

b2
¯ps

bs be the prime decomposition of the integers n and
i.e., pi , i 51,2,...,s, are distinct prime numbers and ai , b i are non-negative integers. Then w
have the following.

(1) A group,
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C5A13A23A33¯3As , ~1!

where Ai is a cyclic subgroup, not necessarily different from the identity element, ofp
i

ai

3Cp
i

b i , i 51,2,...,s, is a cyclic subgroup of Cn3Cm .

(2) Every cyclic subgroupC of Cn3Cm is of the form

C5A13A23A33¯3As ,

where Ai is a cyclic subgroup, not necessarily different from the identity element of Cp
i

ai3Cp
i

b i ,

i 51,2,...,s.
(3) For every cyclic groupC of Cn3Cm the expression (1) is unique.

A generator of the cyclic subgroupC is given by

~xA,yB!, ~2!

where, x is a generator of Cn , y is a generator of Cm ,

A5(
i 51

n

r ipi
ai2ki~n/pi

ai !1 (
i 5n11

n1x

pi
ai2ki~n/pi

ai !1 (
i 5n1x11

n1x1t

j i~n/pi
ai !1 (

i 5n1x1t11

n1x1t1c

pi
ai2ki~n/pi

ai !,

~3!

and

B5(
i 51

n

pi
bi2ki~m/pi

bi !1 (
i 5n11

n1x

r i pi
bi2ki11

~m/pi
bi !1 (

i 5n1x11

n1x1t

pi
bi2ki~m/pi

bi !

1 (
i 5n1x1t11

n1x1t1c

j i~m/pi
bi !. ~4!

The orderuCu of the groupC is given by

uCu5 )
i 51

n1x1t1c

pi
ki. ~5!

The non-negative integersn, x, t, c are such thatn1x1t1c<s. Moreover, (pi
ai,pi

bi)

5P(pi
ai,pi

b i), i 51,2,...,s, for some permutationP of the s pairs of numbers(p1
a1,p1

b1),

(p2
a2,p2

b2),...,(ps
as,ps

bs). Furthermore, when iP$1,2,...,n%, r iP$0,1,2,...,pi
ki21%, and whensP$n

1x11,n1x12,...,n1x1t%, as,ks<bs and jsP$0,1,2,...,ps
as21%. Finally, when qP$n11,n

12,...,n1x%, rqP$0,1,2,...,pq
kq21

21%, and whenuP$n1x1t11,n1x1t12,...,n1x1t1c%, au

>ku.bu and juP$0,1,2,...,pu
bu21%.

I give now the second theorem, where generators of all the noncyclic subgroups ofCn3Cm

are given explicitly.
Theorem II: Let Cn3Cm be the direct product of the cyclic groups of finite order Cn and Cm .

Let n5p1
a1
•p2

a2
¯ps

as and m5p1
b1
•p2

b2
¯ps

bs be the prime decomposition of the integers n and,
i.e., pi , i 51,2,...,s, are distinct prime numbers and ai , b i are non-negative integers. Then w
have the following.

(1) A group,

C5A13A23A33¯3As , ~6!
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where Ai is a subgroup, not necessarily different from the identity element, of Cp
i

ai3Cp
i

b i , i

51,2,...,s, is a subgroup of Cn3Cm with two generators if at least one of the Ai , i 51,2,...,s, has
two generators.

(2) Every subgroupC of Cn3Cm with two generators is of the form

C5A13A23A33¯3As ,

where Ai is a subgroup, not necessarily different from the identity element, of Cp
i

ai3Cp
i

b i , i

51,2,...,s, and, where at least one of the Ai , i 51,2,...,s, has two generators.
(3) For every subgroupC of Cn3Cm with two generators the expression (6) is unique.

Two generators of a subgroupC of Cn3Cm with two generators are given by the following
~1!

g15~xA1,yB1!, ~7!

wherex is a generator ofCn , y is a generator ofCm ,

A15(
i 51

n

r ip1
ai2ki~n/pi

ai !1 (
i 5n11

n1x

pi
ai2ki~n/pi

ai !1 (
i 5n1x11

n1x1t

j i~n/pi
ai !1 (

i 5n1x1t11

n1x1t1c

pi
ai2ki~n/pi

ai !

1 (
i 5n1x1t1c11

n1x1t1c1s

r ipi
ai2ki~n/pi

ai !1 (
i 5n1x1t1c1s11

n1x1t1c1s1u

pi
ai2ki~n/pi

ai !

1 (
i 5n1x1t1c1s1u11

n1x1t1c1s1u1f

t i~n/pi
ai !1 (

i 5n1x1t1c1s1u1f11

n1x1t1c1s1u1f1j

pi
ai2ki~n/pi

ai ! ~8!

and

B15(
i 51

n

pi
bi2ki~m/pi

bi !1 (
i 5n11

n1x

r i pi
bi2ki11

~m/pi
bi !1 (

i 5n1x11

n1x1t

pi
bi2ki~m/pi

bi !

1 (
i 5n1x1t11

n1x1t1c

j i~m/pi
bi !1 (

i 5n1x1t1c11

n1x1t1c1s

pi
bi2ki~m/pi

bi !1 (
i 5n1x1t1c1s11

n1x1t1c1s1u

r i pi
bi2ki11

~m/pi
ki !

1 (
i 5n1x1t1c1s1u11

n1x1t1c1s1u1f

pi
bi2ki~m/pi

bi !1 (
i 5n1x1t1c1s1u1f11

n1x1t1c1s1u1f1j

t i~m/pi
bi ! ~9!

~2!

g25~xA2,yB2!, ~10!

where,

A25 (
i 5n1x1t1c11

n1x1t1c1s

pi
ai2 l i~n/pi

ai !1 (
i 5n1x1t1c1s1u11

n1x1t1c1s1u1f

pi
ai2 l i~n/pi

ai ! ~11!

and

B25 (
i 5n1x1t1c1s11

n1x1t1c1s1u

pi
bi2 l i~m/pi

bi !1 (
i 5n1x1t1c1s1u1f11

n1x1t1c1s1u1f1j

pi
bi2 l i~m/pi

bi !. ~12!

The orderuCu of the groupC is given by
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uCu5 )
i 51

n1x1t1c1s1u1f1j

pi
ki3 )

i 5n1x1t1c11

n1x1t1c1s1u1f

pi
l i. ~13!

The non-negative integersn, x, t, c, s, u, f, j are such thatn1x1t1c1s1u1f1j<s.
Moreover, (pi

ai,pi
bi)5P(pi

ai,pi
b i), i 51,2,...,s, for some permutationP of the s pairs of numbers

(p1
a1,p1

b1), (p2
a2,p2

b2),...,(ps
as,ps

bs). Furthermore, wheni P$1,2,...,n%, ki<min(ai ,bi) and r i

P$0,1,2,...,pi
ki21%, and when wP$n1x11,n1x12,...,n1x1t%, aw,kw<bw and j w

P$0,1,2,...,pw
aw21%. When qP$n11,n12,...,n1x%, kq<min(aq ,bq) and rqP$0,1,2,...,pq

kq21

21%, and when yP$n1x1t11,n1x1t12,...,n1x1t1c%, ay>ky.by and j y

P$0,1,2,...,py
by21%. When i 1P$n1x1t1c11,n1x1t1c12,...,n1x1t1c1s%, 1< l i 1

<ki 1
<min(ai1

,bi1
) and r i 1

P$0,1,2,...,p
i 1

ki 1
2 l i 121%, and whenq1P$n1x1t1c1s11,...,n1x

1t1c1s1u%, 1< l q1
,kq1

<min(aq1
,bq1

) and rq1
P$0,1,2,...,p

q1

kq1
2 l q1

21
21%. When w1P$n

1x1t1c1s1u11,n1x1t1c1s1u12,...,n1x1t1c1s1u1f%, 1< l w1
<aw1

,kw1

<bw1
and tw1

P$0,1,2,...,p
w1

aw1
2 l w121%. Finally, wheny1P$n1x1t1c1s1u1f11,n1x1t

1c1s1u1f12,...,n1x1t1c1s1u1f1j%, 1< l y1
<by1

,ky1
<ay1

and j y1

P$0,1,2,...,p
y1

by1
2 l y121%.

The previous theorems give the subgroups ofCn3Cm . The large number of subgroup
indicates that, in the Euclidean, for example, case, the gravitational multi-instantons of Gi
and Hawking16 are only a small class of solutions compared to the more general ones whic
parametrized with IRs of subgroups ofCn3Cm .
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Hamiltonians separable in Cartesian coordinates and
third-order integrals of motion
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We present in this article all Hamiltonian systems inE(2) that are separable in
Cartesian coordinates and that admit a third-order integral, both in quantum and
in classical mechanics. Many of these superintegrable systems are new, and it is
seen that there exists a relation between quantum superintegrable potentials, in-
variant solutions of the Korteweg–de Vries equation and the Painleve´
transcendents. ©2004 American Institute of Physics.@DOI: 10.1063/1.1633352#

I. INTRODUCTION

In classical mechanics, ann-dimensional Hamiltonian system is called Liouville integrable
it allows n functionally independent integrals of motion in involution~including the Hamiltonian!,
that is,

$H,Xi%50,

$Xi ,Xj%50,; i , j .

The Hamiltonian H5H(x1 , . . . ,xn ,p1 , . . . ,pn) and the integrals of motionXi

5Xi(x1 , . . . ,xn ,p1 , . . . ,pn) must be well defined functions on phase space.1,11 The system is
superintegrable if it allows more thann functionally independent integrals,n of them in involu-
tion. It is called maximally superintegrable if it allows 2n21 integrals of motion. The best know
superintegrable systems inn dimensions are the harmonic oscillatorV5vr 2 and the Coulomb
potentialV5 a/r , and they are indeed maximally superintegrable. This may be closely relat
Bertrand’s theorem1,2 which states that these are the only rotationally invariant systems for w
all finite trajectories are closed.

In quantum mechanics, a Hamiltonian system is said to be integrable if there exists a s$Xi%
of n well defined, algebraically independent operators~including the Hamiltonian! that commute
pairwise. It is superintegrable if it possesses further independent operators,$Yj% that commute
with the Hamiltonian. TheYj do not necessarily commute with each other, nor with theXi .

The independence of operators in quantum mechanics remains to be d
rigorously.13,14,17,29Since we are dealing here only with polynomial differential operators, we
proceed by analogy with the classical case, keeping in mind that a rigorous definition w
needed as soon as we will want to make some more general statements. This choice of a d
will be used only for discussion purposes, since we will find all potentials that admit third-o
integrals and all their integrals. The results obtained will therefore hold for any definition o
independence of operators.

Integrable and superintegrable systems, both in quantum and in classical mechanics, a
considerable interest in the last years. Extensive literature exists about systems with secon
integrals of motion, either in Euclidian space7–10,22,30or in spaces with nonzero constant19,25 or
nonconstant curvature.20 As long as there was no magnetic field in the Hamiltonian, the quan
and classical integrals of motion obeyed the same determining equations, and therefore q

a!Electronic mail: sg324@cornell.edu
10030022-2488/2004/45(3)/1003/17/$22.00 © 2004 American Institute of Physics
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and classical integrability were very similar. Both properties were related to separation o
Hamilton–Jacobi or Schro¨dinger equations, and also to exact solvability27 and generalized
symmetries.26

Systems with higher-order integrals have been studied and classified as early as 19
well-known paper by Drach.4 This paper considered classical Hamiltonians in complex Euclid
space.23,24 Efforts were made recently to understand and classify more completely systems
higher-order integrals in classical13,28 and quantum mechanics.13,15,16In spite of these efforts, still
relatively few such systems are known. This article is the logical sequel of a systematic sea
superintegrable systems with higher order integrals started in Ref. 13. Here we conside
dimensional real Euclidian space with a one-particle Hamiltonian:

H5 1
2 ~px

21py
2!1V~x,y!.

We request the existence of two additional integrals of motion, one of second order
momenta and the other of third order.

The condition of existence for second-order integral implies, both in classical and qua
mechanics, that the Hamiltonian be separable in Cartesian, polar, parabolic or elliptic coord
In this article we consider potentials that are separable in Cartesian coordinates:

H5 1
2 ~px

21py
2!1V1~x!1V2~y!.

We found all such systems which admit third-order integrals. Quantum and classical me
ics will be treated simultaneously, for the conditions of existence of integrals of motion,
though not equivalent, are quite similar in both cases.

II. EXISTENCE OF A THIRD-ORDER INTEGRAL

In quantum and classical mechanics, the general third-order commuting operator

X5 (
i 1 j 50

3

Pi j ~x,y!px
i py

j

can be reduced to a much simpler form,

X5 (
i , j ,k

i 1 j 1k53

Ai jk$L3
i ,px

j py
k%1$g1~x,y!,px%1$g2~x,y!,py%,

~1!
L35xpy2ypx ,

where theAi jk are real constants and thegi real functions. The bracket is the anticommutator. It
not needed in classical mechanics, but in quantum mechanics it allows us to get rid of term
even powers of thepi and to make sure the operator is self-adjoint. Furthermore, its use allow
to see clearly the relations between the quantum and the classical cases. Indeed, it was f
Ref. 13 that the requirement that the operator commutes~or Poisson-commutes! with the Hamil-
tonian

H5 1
2 ~px

21py
2!1V~x,y!

implies equations that behave well in the classical limit. Namely, commutativity implies

05g1Vx1g2Vy2
\2

4
~ f 1Vxxx1 f 2Vxxy1 f 3Vxyy1 f 4Vyyy

18A300~xVy2yVx!12~A210Vx1A201Vy!!, ~2!
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~g1!x53 f 1~y!Vx1 f 2~x,y!Vy , ~3!

~g2!y5 f 3~x,y!Vx13 f 4~x!Vy , ~4!

~g1!y1~g2!x52~ f 2~x,y!Vx1 f 3~x,y!Vy! ~5!

in quantum mechanics, where

f 1~y!52A300y
31A210y

22A120y1A030,

f 2~x,y!53A300xy222A210xy1A201y
21A120x2A111y1A021,

f 3~x,y!523A300x
2y1A210x

222A201xy1A111x2A102y1A012,

f 4~x!5A300x
31A201x

21A102x1A003.

The equations in classical mechanics are obtained by setting\50. We may notice from the
quantum equations, or directly from the condition@H,X#50, that we can express all quantu
integrable potentials as\2Ṽ(x,y) where Ṽ does not depend on\. It is often more natural and
interesting though to choose arbitrary parameters contained inṼ to be depending on\, so that the
potentialV does not vanish in the classical limit. One may always verify, though, that throug
appropriate transformation of the arbitrary parameters one can write the potential as bein
portional to\2.

The three last equations, identical in the quantum and classical cases, yield a linear c
ibility condition for V, which reads

052 f 3Vxxx1~2 f 223 f 4!Vxxy1~23 f 112 f 3!Vxyy2 f 2Vyyy12~ f 2y2 f 3x!Vxx

12~23 f 1y1 f 2x1 f 3y23 f 4x!Vxy12~2 f 2y1 f 3x!Vyy1~23 f 1yy12 f 2xy2 f 3xx!Vx

1~2 f 2yy12 f 3xy23 f 4xx!Vy . ~6!

Further nonlinear compatibility conditions can be obtained from~2!–~5! for the potential, and
these are listed in Ref. 13. They are quite complicated, though, and were not used for the
stated in this article.

III. POTENTIALS SEPARABLE IN CARTESIAN COORDINATES

If we setV5V1(x)1V2(y) in Eqs.~2!–~5!, we find

05g1V1x1g2V2y2
\2

4
~ f 1V1xxx1 f 4V2yyy18A300~xV2y2yV1x!12~A210V1x1A201V2y!!,

~7!

~g1!x53 f 1~y!V1x1 f 2~x,y!V2y , ~8!

~g2!y5 f 3~x,y!V1x13 f 4~x!V2y , ~9!

~g1!y1~g2!x52~ f 2~x,y!V1x1 f 3~x,y!V2y!, ~10!

with \50 in the classical case. Equations~8! and ~9! are readily integrated, so in the Cartesi
case two equations remain to be solved.

The compatibility condition~6! allows us to find ODEs forV1 andV2 . If we set alternatively
y50 andx50, we find

~A210x
21A111x1A012!V1

(3)~x!14~2A210x1A111!V19~x!112A210V18~x!5ax1b, ~11!
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~A201y
22A111y1A021!V2

(3)~y!14~2A201y2A111!V29~y!112A201V28~y!5cy1d. ~12!

The solutions to the homogeneous part of these equations are easily found and broug
simple form by translations inx and y. If we take the first one for definiteness, we have fo
different types of solution. WhenA210Þ0, we have two possible solutions,

V1hom5
c1

~x1a!2 1
c2

~x2a!2 ,

V1hom5
c1

x2 1
c2

x3 .

If A21050 andA111Þ0, we get

V1hom5
c1

x2 1c2x.

Finally, if only A012Þ0, the solution may be brought to the form

V1hom5c2x21c1x.

Special solutions are also simple. IfA210Þ0, we haveV1part5ax21bx. Otherwise, when
A111Þ0, V1part5ax31bx2, finally, if only A012Þ0, V1part5ax41bx3. Provided that~11! or
~12! does not vanish trivially, we can chooseV1 or V2 , respectively, among the following func
tions:

~A.1! f 15
c1

~x1a!2 1
c2

~x2a!2 1c3x21c4x,

~A.2! f 25
c1

x2 1
c2

x3 1c3x21c4x,

~A.3! f 35
c1

x2 1c2x31c3x21c4x,

~A.4! f 45c1x41c2x21c3x,

~A.5! f 55c1x31c2x,

~A.6! f 65c1x2,

~A.7! f 75c1x,

and then solve~7!–~10!. These long but rather straightforward calculations yield the 15 supe
tegrable potentials included in Table I. Some of them are obviously particular cases of othe
we listed them separately to account for their additional integrals. Only the third-order inte
are listed, some of them being trivial consequences of lower-order ones. With the exception
harmonic oscillator, potentials that have first-order integrals are not listed here for they
already presented in Ref. 13 with all their third-order integrals. The complete integrals of m
can be found in the Appendix.

Many of these potentials were not known. The only classical potentials among thes
indicated with a!. These are well-known superintegrable potentials~see, e.g., Ref. 10!, and all of
them, exceptVi , are in fact quadratically superintegrable.
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All the potentials are superintegrable in the quantum case. We therefore notice that cl
nontrivial potentials can have many different quantum equivalents. The classical harmonic
lator Va can be seen as a limiting case of the quantum potentialsVa , Vc andVd , and, also, if we
set a5A\/v, of Ve , Vf and Vg , not to mention the similar potentials that can be obtained
permutations ofx and y. The anisotropic harmonic oscillator with ratio 1:3 also admits ma
quantum deformations, but, interestingly, the anisotropic oscillator with ratio 1:2 does not
such deformations. Notice also that if we want to deal with real potentials only,a must be either
real or purely imaginary in potentialsVe , Vf , Vg and Vk . Therefore, these have as a classi
limit harmonic oscillators witha.0.

All quantum superintegrable potentials reduce to classical ones when the classical l
considered, sometimes in more than one way. For example, potentialsVe , Vf andVg give the free
motion potential instead of the harmonic oscillator ifa remains constant as\→0.

These potentials all satisfy the linear equations~11! and~12!, and can be expressed as sums
simple superintegrable potentials.

Let us now setA2105A1115A01250 so that~11! vanishes trivially. We may also assume th
V1 does not take one of the forms~A.1!–~A.7!, for we have already worked these cases out. T
is quite useful, for if we sety51 in ~6!, we obtain forV1 an equation of the same form as~11!

TABLE I. Superintegrable potentials that satisfy linear compatibility conditions for nonzero parameters.

Superintegrable potentials
Leading-order terms

of the integrals

!Va5a(x21y2) L3; $L,pxpy%; $L,py
2%; $L,px

2%

!Vb5a~x21y2!1
b

x2 1
c

y2
$L,pxpy%

Vc5a~x21y2!1
\2

x2 1
\2

y2
L3; $L,pxpy%

Vd5a~x21y2!1
\2

y2
L3; $L,pxpy%; $L,py

2%

Ve5
\2

8a4 ~x21y2!1
\2

~x2a!2 1
\2

~x1a!2
2L323a2$L,py

2%; $L,px
2%

Vf5
\2

8a4 ~x21y2!1
\2

y2 1
\2

~x1a!2 1
\2

~x2a!2
2L323a2$L,py

2%

Vg5
\2

8a4 ~x21y2!

1
\2

~y2a!2 1
\2

~x2a!2 1
\2

~y1a!2 1
\2

~x1a!2

2L323a2($L,px
2%1$L,py

2%)

!Vh5a~4x21y2!1
b

y2 1cx pxpy
2

! Vi5a(9x21y2) $L,py
2%

Vj5a~9x21y2!1
\2

y2
$L,py

2%

Vk5
\2

8a4 ~9x21y2!1
\2

~y1a!2 1
\2

~y2a!2
$L,py

2%

Vl5
\2

x2 1
a

y2
$L2,px%; $L,pxpy%; px

3

Vm5
\2

x2 1
\2

y2

L3; $L2,px%; $L2,py%
$L,pxpy%; px

3 ; py
3

Vn5ax1
\2

y2
$L,py

2%; py
3 ; pxpy

2

Vo5
\2

y2 1V~x! py
3
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with different coefficients. These coefficients must therefore vanish, soA3005A2015A10250. This
is a significant simplification that allows us to restrict our attention, when considering Eq.~12!, to
the following three cases:

~i! V25ay2;
~ii ! V25ay;
~iii ! A1205A02150.

Before we consider each case separately, it is worth noticing that potentials of the foV
5V1(x) that admit third-order integrals independent ofy andpy should appear as solutions her
for the integral remains if we add a functionV2(y) to these potentials. These potentials were fou
in Refs. 13 and 17 to satisfy the equation

\2V18
254V1

32g2V12g3 , ~13!

and can therefore be written as

V15\2P~x!, ~14!

whereP(x) is the Weierstrass elliptic function. Since they variable plays no role here and the
potentials admit integrals with leading-order terms proportional topx

3 , these solutions will appea
in cases~i!–~iii !.

A. Case i: VÄV1„x …¿ay 2

WhenV5V1(x)1ay2 andaÞ0, we find thatA30050, and the following two equations mus
be satisfied:

05A030~\2V1
(3)26~V1

2!8!1g1V18 , ~15!

05A120~2\2V1
(4)224a~xV1!816~V1

2!924ax2V1918a2x2!

18aA021~2ax2~xV18!822V18!14h~2a2V19!, ~16!

whereg1 and h are arbitrary constants. WhenA030Þ0, Eq. ~15! is equivalent to~13! ~up to a
translation ofV1 to get rid ofg1), hence its solutions are of the form~14!. These potentials canno
satisfy simultaneously Eq.~16! for nontrivial parameters. This can be observed by expanding~13!
in series aroundx50 and substituting the result in~16!. Therefore solutions given byA030Þ0 are
of no special interest here.

Let us now setA0305g150. Equation~16! can be greatly simplified. We assume thatA120

Þ0, for otherwise Eq.~16! can be solved to give potentialVh. Then by an appropriate translatio
of x andV, we can get rid of the terms involvingA021 andh and finally divide byA120:

052\2V1
(4)224a~xV1!816~V1

2!924ax2V1918a2x2. ~17!

This equation admits a first integral, namely,

k5\2~xV1-2V19!14x~ax223V1!V1816V1
2112ax2V122a2x4. ~18!

Both ~17! and ~18! can be simplified by settingV15W(x)1ax2/3. Then

\2W(4)512WW9112~W8!21bxW812bW2 1
6 b2x2 ~19!

with b528aÞ0 for ~17!, and

k253\2~xW-2W9!218x~W2!812~2ax213W!2 ~20!
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for the first integral. Equation~19! is well known. It is equivalent to Eqs.~3.16! in Ref. 5 and
~2.17! in Ref. 21, which were obtained by nonclassical reduction of the Boussinesq equat
was also shown in Ref. 3 to be a nonclassical reduction of the Kadomtsev–Petviashvili equ
It has the Painleve´ property, and, whenbÞ0, its solution, given in Ref. 6@Eq. ~2.88!# may be
written in terms of the fourth transcendant function of Painleve´, namely,

W5
\

2
b1P48S x,

b

\2D2
1

2
bP4

2S x,
b

\2D2
1

2
bxP4S x,

b

\2D2
1

6 S b

2
x21\2K12\b1D , ~21!

where b1[6A2b56A8a and P4(x, b/\2)5P4(x, b/\2 ,K1 ,K2) is the fourth transcendan
function of Painleve´, and therefore satisfies the equation

P49~x,a!5
~P48~x,a!!2

2P4~x,a!
2

3a

2
P4~x,a!322axP4~x,a!22S a

2
x21K1D P4~x,a!1

K2

P4~x,a!
.

~22!

K1 andK2 are integration constants. The potential therefore reads

V~x,y!5a~x21y2!1
\

2
b1P48S x,

28a

\2 D14aP4
2S x,

28a

\2 D
14axP4S x,

28a

\2 D1
1

6
~2\2K11\b1!. ~23!

This potential admits as special cases two anisotropic harmonic oscillators,V5a(x21y2)
whenK250 ~and P450), andV5a(x2/91y2) whenK150 andK252 1

18 ~and P452x/3), as
well as all their quantum deformations that have the formV5a(p2x21y2)1 f (x), that is, poten-
tials Vd , Ve , Vj andVk ~up to a permutation ofx andy).

The constant term in the potential, (2\2K11\b1), can be set to zero, but we will keep it i
order to be able to write the quantum and classical integrals in a unified way.

In classical mechanics, the equation~18! with \50 admits a first integral, which reads

c5
~9V12ax2!~V12ax2!31 k2/42k~V12ax2!~3V11ax2!

x2 .

We may therefore write the solution forV1 implicitly as

cx22d212d~V12ax2!~3V11ax2!5~9V12ax2!~V12ax2!3, ~24!

wherec andd are arbitrary constants. Ifc5d50, we find either the familiar anisotropic harmon
oscillators, or a potential obtained by joining atx50 two halves of anisotropic harmonic oscilla
tors with different ratios. Even though this potential does not have a continuous second deri
it can be obtained as a limiting case of the family of smooth superintegrable potentials~26!.

In the general case the potential may be expressed as the root of a fourth-order poly
with three arbitrary parameters (a, c andd), although we can seta51 and one of the other two
coefficients to61 by scalingx andV1 .

Since Eq.~24! may describe new two-dimensional potentials with bounded motion, it is w
studying for interesting special cases. Indeed, if we assumea.0 andd>0, we can consider the
casec5128a4d̃3/272 andd54a2d̃2/27. Four solutions exist in that case, two of which are tra
lated harmonic oscillators. The remaining two potentials are

V5ay21
a

9
~2d̃15x264xA~ d̃1x2!!. ~25!
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Up to an additive constant, potentials~25! are equal to

V5ay21
a

9
~x62Ad̃1x2!2. ~26!

Those potentials are smooth interpolations between anisotropic harmonic oscillators wit
1:1 and 1:3. Whend̃50 ~and thereforec5d50) they are the junctions of the two halves
harmonic oscillators mentioned above.

The integral of motion is similar in quantum and classical mechanics, and reads

X5$L,px
2%1$ax2y23yV1~x!,px%2

1

2a H \2

4
V1xxx1~ax223V1!V1x ,pyJ , ~27!

whereV1 is a solution to Eq.~24!. Therefore the integral for~26! must be slightly modified to take
into account the constant term we removed.

B. Case ii: VÄay¿V1„x …

Here we find again two equations:

05\2A120V1
(3)26A120~V1

2!8112a2A0031g1V18 ,
~28!

05
A030

4
~26~V1

2!81\2V1
(3)!82

a

2
A120~6~xV1!81x2V19!2aA021~~xV18!812V18!2g2V191ag1 .

This time we cannot treat the equations separately, but we can, whenA120Þ0, translateV to
annihilateg1 . Then we can substitute the first equation in the second to get rid ofA030, and finally
translatex to get rid ofA021. We can then solve the remaining system, first by solving the sec
linear equation, and then by substituting the result in the first one. The only solution remain
then potentialVn5ay1 \2/x2. Hence we can setA12050, and therefore alsoA0035g150 ~as
V1Þbx and aÞ0). In the second equation we can setg250. If then A03050, we find V1

5a/x2 which was already classified. IfA030Þ0 and A02150, though, the potentialV1(x) is
solution to

\2V1956V1
21lx1k. ~29!

If lÞ0, we can setk50, and we find thatV1 can be expressed in terms of the first Painle´
transcendent:

V5ay1\2v2P1~vx!, ~30!

with v55l/\4 .
The integral of motion is

X52px
313$V2~x!,px%1H \4v5

4a
,pyJ .

Notice that in order to consider the limiting casea50, we can multiply the integral bya, and
thus we find a potential that depends only onx with a trivial py integral. We can also setv5

5av58 first, in which case we find the potentials~14!. If we look for the classical limit, we find

V5ay1bAx ~31!

with the integral
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X52px
313b$Ax,px%2H 3b2

2a
,pyJ .

Returning to Eq.~29! and assumingl50, we find again thatV1 has the form~14!, and the
integral depends only onx andpx .

Finally, if we setA030A021Þ0, we have to solve the equation

05S 2
3

2
~V1

2!81
\2

4
V1

(3)D 8
1b~~xV18!812V18!, b5

2aA021

A030
Þ0. ~32!

It can be integrated once to give

C152
3

2
~V1

2!81
\2

4
V1

(3)1b~~xV18!12V1!.

We can setC150 by translations inx andV. The equation admits a first integral which rea

2b\2~V1~x!2bx!V19~x!1b\2~2b2V18~x!!V18~x!28bV1~x!~V1~x!2bx!25k1 . ~33!

In the classical case,\50, this is enough to solve. The solution, which can be writ
implicitly in a more compact form, is given by

d5V1~V12bx!2, ~34!

whered is an arbitrary constant. Whend50 we find the familiar caseV5bx1ay which admits
a first-order integral. We may notice that the implicit form of the solution is somewhat simil
~24!.

In the quantum case, we notice that the transformationW(x)5V1(x)2bx, that preserves the
Painlevéproperty, simplifies Eq.~33! which becomes

\2~2WW92W82!28~W1bx!W25k2 ~35!

or

W95
W82

2W
1

4W2

\2 1
4bxW

\2 1
k2

2\2W
. ~36!

We can also substituteY(x)5AW(x) to find

\2Y952~Y21bx!Y1
k2

4Y3 .

If k250, we can set\51 andb5 1
2 by the change of variables

Y5~2\b!1/3Z, x5S \2

2bD 1/3

j.

The solution forZ(j) is then a special case of the second Painleve´ transcendant, defined by th
equation

P29~x,a!52P2~x,a!31xP2~x,a!1a.

The solution forV is
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V~x,y!5bx1ay1~2\b!2/3P2
2S S 2b

\2 D 1/3

x,0D , ~37!

with the particular caseV5bx1ay.
Now if k2Þ0, we use~36!, which can be normalized by a change of variables,

x52S \2

~4b! D
1/3

j, W52
A2k2

~4\b!1/3Y.

We then find

Y95
Y82

2Y
14bY22jY2

1

2Y
, ~38!

whereb52A2k2/(4\b)Þ0 is an arbitrary constant. Equation~38! corresponds to case XXXIV
p. 340, in Ref. 18. The solution forY(j) reads

2bY5P28S j,22b2
1

2D1P2S j,22b2
1

2D 2

1
j

2
, ~39!

whereP2 is once again the second Painleve´ transcendant. Sinceb is an arbitrary constant, we ca
setk522b2 1

2.
Back to the original variables, we get

V~x,y!5ay1~2\2b2!1/3~P28~2~4b/\2!1/3x,k!1P2
2~2~4b/\2!1/3x,k!!. ~40!

This potential admitsV5ay andV5ay1\2/x2 as particular cases.
In all cases withV5ay1V1(x) andA012A030Þ0 the integral of motion is

2apx
322bpx

2py1a$3V1~x!2bx,px%22b$V1~x!,py%. ~41!

Limiting values fora, b and\ give either known potentials or trivial integrals.

C. Case iii: A 120ÄA 021Ä0

Since we set hereA1205A02150, we assumeA030A003Þ0 @otherwise we would find potential
of the form ~14!#. The conditions for the existence of a third-order operator then read

\2V19~x!56V1
2~x!1A003sx,

~42!
\2V29~y!56V2

2~y!2A030sy.

If s vanishes, we find the potential

V5\2~P~x!1P~y!!,

with two integrals that each depend on only one variable, as could have been predicted fr
results of Eq.~13!. If s does not vanish, let us setb15A003s andb252A030s.

If \50, we find that

V56Ab1x6Ab2y

is superintegrable, where theb i5bi /6 are arbitrary constants.
This defines similar real potentials on each quadrant of the plane. We can again patchw

pieces to find real continuous potentials defined everywhere, e.g.,V5c1Auxu1c2Auyu, although in
that case neither the Hamiltonian nor the integral are differentiable at the equilibrium point
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Finally, if \Þ0, we find thatV1 andV2 can be both written using the first Painleve´ transcen-
dent,

V5\2v1
2P1~v1x!1\2v2

2P1~v2y!, ~43!

where thev i5(bi /\4)1/5 are arbitrary constants.
The integral of motion is

X52b2px
322b1py

313b2$V1~x,b1!,px%23b1$V2~y,b2!,py%, ~44!

both in quantum and classical mechanics.

IV. CONCLUSION

We have found all systems in two-dimensional Euclidian space that admit separati
variables in Cartesian coordinates and at least one third-order integral, both in quantu
classical mechanics. Many new superintegrable potentials were found, and, interestingly,
quantum superintegrable potentials are found as solutions of equations having the Painlev´ prop-
erty, and this is probably not accidental. Many of the quantum potentials can in fact be writ
terms of different transcendent functions of Painleve´, and many are related to group invaria
solutions of the Korteweg–de Vries equation, and to reductions of the Boussinesq and KP
tions. All classical integrable potentials were found to be limiting cases of quantum ones. Th
not obey equations having the Painleve´ property, though, for many classical integrable potenti
have movable branch points of the formAx2b. Thus, in that respect, quantum integrable pote
tials behave more regularly than classical ones. A natural question is what does the P´
property, in quantum mechanics, tell us about classical integrable potentials. Since this
deals mostly with the classification of superintegrable systems, the consideration of such qu
regarding their properties and their solutions will be postponed to a future article.

Our investigation provided interesting new examples of the differences between quantu
classical integrability. A systematic search for systems with higher-order integrals is there
useful task since we still know little about such systems, and they are likely to share inter
properties.

Note added: The article mentioned earlier12 indeed shows that superintegrability of separa
systems has important physical implications. Even though the systems considered here ca
separated in two independent one-dimensional systems, two-dimensional superintegrability
ful to understand the one-dimensional properties of those separated systems.

Equations~2!–~5! are the necessary and sufficient conditions for the existence of third-o
integrals. The general solution to these equations is highly nontrivial, and it is not likely t
direct approach will lead to such a solution for integrals of order higher than four, without th
of new methods. In order to develop such methods, it would be useful to have a rigorous defi
of quantum integrability.
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APPENDIX

Here is the complete list of two-dimensional Hamiltonians separable in Cartesian coord
that admit at least one third-order integral. We also gave all their third-order integrals. Pote
depending on only one Cartesian coordinate are not listed here, for they were classified in R
Many of the potentials listed below were already known to be superintegrable, but we listed
                                                                                                                



egrals.
make

ion,
s of
otion

1014 J. Math. Phys., Vol. 45, No. 3, March 2004 Simon Gravel

                    
here for completeness and in some cases to take into account additional third-order int
Potentials in boxes are those who do not admit enough first- or second-order integrals to
them superintegrable. Most of them were not known before.

Some potentials~namely,Vp andVq) are not superintegrable according to the usual definit
for their integrals have simple though nontrivial relations with the Hamiltonian. For definition
parameters the reader is referred to the body of the article. In order to write the integrals of m
in a compact form we often use the notationV(x,y)5V1(x)1V2(y)5V11V2 .

1. Quantum potentials

~Q.1! V5a~x21y2!

X15L3

X25$L,pxpy%1a$2x2y,py%2a$2xy2,px%

X35$L,py
2%12a~$xy2,py%2$y3,px%!

X45$L,px
2%22a~$x2y,px%2$x3,py%!

~Q.2! V5a~x21y2!1
b

x2 1
c

y2

X15$L,pxpy%1H xyS 2
2b

x3 12axD ,pyJ 2H xyS 2
2c

y3 12ayD ,pxJ
~Q.3! V5a~x21y2!1

\2

x2 1
\2

y2

X152L32\2H 3x2

y
12y1

3y3

x2 ,pxJ 1\2H 3y2

x
12x1

3x3

y2 ,pyJ
X25$L,pxpy%1H xyS 2

2\2

x3 12axD ,pyJ 2H xyS 2
2\2

y3 12ayD ,pxJ
~Q.4! V5a~x21y2!1

\2

y2

X152L32\2H 2y1
3x2

y
,pxJ 1\2H 3x3

y2 12x,pyJ
X25$L,pxpy%22H axy22

\2x

y2 ,pxJ 12a$x2y,py%

X35$L,py
2%2H 2ay31\2

1

y
,pxJ 1H \2

3x

y2 12axy2,pyJ
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X152L323a2$L,py
2%1

\2

4 H yS 281
3y2

a2 2
24y2~x21a2!

~x2a!2~x1a!2D ,pxJ
1

\2

4 H xS 82
3y2~x4210a2x2224a4!

a2~x2a!2~x1a!2 D ,pyJ
X25$L,px

2%1\2H yS 4a22x2

4a4 2
6~x21a2!

~x22a2!2 D ,pxJ
1\2H x~x224a2!

4a4 2
2x

x22a2 1
4x~x21a2!

~x2a!2~x1a!2 ,pyJ

X152L323a2$L,py
2%1\2H 3y3

4a2 1
6y3~x21a2!

~x2a!2~x1a!2 2
3~x22a2!

y
22y,pxJ

13\2H xS x223a2

y2 2
3y228a2

12a2 2
2y2

x22a2 1
4y2~x21a2!

~x2a!2~x1a!2D ,pyJ

X152L323a2~$L,px
2%1$L,py

2%!1
\2

4 H yS 1241
3~x21y2!

a2 1
24~x225y2!

y22a2 2
144x2

x22a2

1
24~3x22y2!~x21a2!

~x2a!2~x1a!2 1
48~y22x2!~y21a2!

~y2a!2~y1a!2 D ,pxJ 2
\2

4 H xS 1241
3~x21y2!

a2

2
24~5x22y2!

x22a2 2
144x2

y22a2 2
24~x223y2!~y21a2!

~y2a!2~y1a!2 1
48~x22y2!~x21a2!

~x2a!2~x1a!2 D ,pyJ
~Q.8! V5a~4x21y2!1

b

y2 1cx

X152pxpy
21H 22ay21

2b

y2 ,pxJ 1$8axy1cy,py%

X15$L,py
2%1 2

3a$y3,px%26a$xy2,py%

X15$L,py
2%1H 2ay3

3
2

\2

y
,pxJ 1H 3xS 22ay21

\2

y2 D ,pyJ
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X15$L,py
2%1\2H yS y2

12a4 2
8a2

~y22a2!2 2
2

y22a2D ,pxJ 1
3\2

4 H xS 8~y21a2!

~y22a2!2 2
y2

a4D ,pyJ

X15$L2,px%22\2H y2

x2 ,pyJ 1H 3\2
y2

x2 12a
x2

y2 1
\2

2
,pxJ

X25$L,pxpy%22\2H y

x2 ,pyJ 12aH x

y2 ,pxJ
X352px

31H 3\2

x2 ,pxJ

X152L32\2H 2y1
3x2

y
1

3y3

x2 ,pxJ 1\2H 2x1
3y2

x
1

3x3

y2 ,pyJ
X25$L2,px%22\2H y

x
,pyJ 1H 3\2

y2

x2 12\2
x2

y2 1
\2

2
,pxJ

X35$L2,py%22\2H x

y
,pxJ 1H 3\2

x2

y2 12\2
y2

x2 1
\2

2
,pxJ

X45$L,pxpy%22\2H y

x2 ,pyJ 12\2H x

y2 ,pxJ
X552px

31H 3\2

x2 ,pxJ
X652py

31H 3\2

y2 ,pyJ
~Q.14! V5ax1

\2

y2

X15$L,py
2%2H \2

y
,pxJ 1H 3

\2x

y2 2a
y2

2
,pyJ

X252py
31H 3

\2

y2 ,pyJ
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X352pxpy
212\2H 1

y2 ,pxJ 1a$y,py%

X152py
31$3\2P~y!,py%

X152px
31$3\2P~x!,px%

X252py
31$3\2P~y!,py%

X152v2
5px

322v1
5py

313v2
5$V1~x,v1!,px%23v1

5$V2~y,v2!,py%

X15$L,px
2%1$ax2y23yV1 ,px%2

1

2a H \2

4
V1xxx1~ax223V1!V1x ,pyJ

X152px
313\2v2$P1~vx!,px%1H v5\4

4a
,pyJ

X152apx
322bpx

2py1a$3V1~x!2bx,px%22b$V1~x!,py%

X152apx
322bpx

2py1a$3V1~x!2bx,px%22b$V1~x!,py%

2. Classical potentials

~C.1! V5a~x21y2!

X15L3

X25$L,pxpy%1a$2x2y,py%2a$2xy2,px%

X35$L,py
2%12a~$xy2,py%2$y3,px%!

X45$L,px
2%22a~$x2y,px%2$x3,py%!
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~C.2! V5a~x21y2!1
b

x2 1
c

y2

X15$L,pxpy%1H xyS 2
2b

x3 12axD ,pyJ 2H xyS 2
2c

y3 12ayD ,pxJ
~C.3! V5a~4x21y2!1

b

y2 1cx

X152pxpy
21H 22ay21

2b

y2 ,pxJ 1$8axy1cy,py%

X15$L,py
2%1 2

3a$y3,px%26a$xy2,py%

X152b2px
322b1py

313b2$V1~x,6b1!,px%23b1$V2~y,6 b2!,py%

X15$L,px
2%1$ax2y23yV1 ,px%2

1

2a
$~ax223V1!V1x ,py%

X152px
313b$Ax,px%2H 3b2

2a
,pyJ

X152apx
322bpx

2py1a$3V1~x!2bx,px%22b$V1~x!,py%
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By means of a simple new approach, a general Kadomtsev–Petviashvili~KP! fam-
ily with an arbitrary function of group invariants of arbitrary order is proposed. It is
proved that the general KP family possesses a common infinite dimensional Kac–
Moody–Virasoro Lie point symmetry algebra. The known fourth order one can be
re-obtained as a special example. The finite transformation group is presented in a
clearer form. The Kac–Moody–Virasoro group invariant solutions and the Kac–
Moody group invariant solutions of the KP family are determined by the Bouss-
inesq and KdV families, respectively. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1645651#

I. INTRODUCTION

The symmetry study plays a very important role in the nonlinear science. Especially,
study of (211)-dimensional integrable models, it is found that for all the known integra
systems there is an isomorphic centerless Virasoro symmetry algebra~Witt algebra!:1–9

@s~ f 1!, s~ f 2!#5s~ f 2 ḟ 12 f 1 ḟ 2!, ~1.1!

wheref 1 and f 2 are arbitrary functions of a single independent variable. The dot over the func
f 1 and f 2 denotes the derivative of the functions with respect to their argument. In Ref.
method was established to obtain the models with centerless Virasoro symmetry algebras.
3, Güngör and Winternitz pointed out that the variable coefficient Kadomtsev–Petviashvili~KP!
equation,

@ut1p~ t !uux1q~ t !uxxx#x1s~y,t !uyy1a~y,t !uy

1b~y,t !uxy c~y,t !uxx1e~y,t !ux1 f ~y,t !u1h~y,t !50, ~1.2!

possesses the Virasoro symmetry algebra~1.1! iff it can be transformed to the usualintegrable
constant coefficient KP equation,

~ut1
3
2 uux1uxxx!x1 3

4 duyy50, d561. ~1.3!

By using the standard group approach, David, Levi and Winternitz4 had proved that

~ut1
3
2 uux!x1 3

4 duyy1uxx
3/2H~K2 , . . . ,K10!50, ~1.4!

a!Electronic mail: sylou@sjtu.edu.cn
10200022-2488/2004/45(3)/1020/11/$22.00 © 2004 American Institute of Physics
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with H(K2 , . . . ,K10) being an arbitrary function ofK2 , . . . ,K10 is the only fourth order KP
family with the same Kac–Moody–Virasoro symmetry algebra of the usual KP equation. In~1.4!,
K2 , . . . ,K10 are defined by

K25uxxxxuxx
23/2, ~1.5!

K35uxxxuxx
25/4, ~1.6!

K45~uxxuxxy2uxxxuxy!uxx
25/2, ~1.7!

K55~uxxxuxyy2uxxy
2 22duxuxxuxxx!uxx

23 , ~1.8!

K65@uxxx
2 uyyy12uxxy

3 23uxxxuxyyuxxy16duxuxxx~uxxuxxy2uxyuxxx!#uxx
29/2, ~1.9!

K75~uxxuxxxy2uxxxxuxy!uxx
211/4, ~1.10!

K85~uxxxxuxxyy2uxxxy
2 22duxuxxxuxxxx!uxx

27/2, ~1.11!

K95@uxxxx
2 uxyyy12uxxxy

3 23uxxxxuxxyyuxxxy16duxuxxxx~uxxxuxxxy2uxxyuxxxx!#uxx
221/4,

~1.12!

K105@uxxxxuyyyy12uxxyy
2 24uxyyyuxxxy112ux

2~uxxuxxxx1uxxx
2 !

212dux~uxyyuxxxx22uxxyuxxxy1uxxxuxxyy!#uxx
24 . ~1.13!

In Ref. 5, it is proved that a special type of arbitrary order equation,

S ut1
3

2
uux1uxxxD

x

1
3

4
duyy1 (

n52

M

Cnunx
6/(n12)50 ~M52, 3, . . .!, ~1.14!

also possesses the symmetry group of the KP equation. In this paper, by using a simp
method, we concentrate on giving some types of autonomous higher order KP family,

~ut1
3
2 uux1uxxx!x1 3

4 duyy1F~u!50, ~1.15!

which possess a same infinite dimensional Kac–Moody–Virasoro Lie point symmetry alg
where

F~u![F~u, ux , uxx , . . . ,uxnymtl, . . . ![F ~1.16!

is an undetermined function of the fieldu and its any order derivatives ofx, y and t but not
explicitly space–time dependent.

II. REVIEW ON THE LIE POINT SYMMETRIES AND FINITE TRANSFORMATIONS
OF THE KP EQUATION

The Lie point symmetries and the related Kac–Moody–Virasoro algebra of the usua
equation~1.3! have been first given by David, Kamran, Levi, and Winternitz1 by using the stan-
dard classical Lie approach.10,11 The generalized symmetries and the corresponding genera
w` symmetry algebra is obtained by Lou via the formal series symmetry approach.12,13

A symmetrys of the KP equation is a solution of its linearized equation,

~s t1
3
2 sux1 3

2 usx1sxxx!x1 4
3 dsyy50, ~2.1!

which means~1.3! is form invariant under the transformation
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u→u1es,

wheree is an infinitesimal parameter.
According to the results of Ref. 1, the full Lie point symmetries of the KP equation~1.3! are

the linear combinations of the following generators:

s0~h!5hux2 2
3 ḣ, ~2.2!

s1~g!522guy1 4
3 dġyux2 8

9 dyg̈, ~2.3!

and

s2~ f !5 f ut1
1
3 ~x ḟ2 2

3 dy2 f̈ !ux1 2
3 ḟ ~yu!y2 4

27 ~ 3
2 x f̈2dy2 f̂ !, ~2.4!

where f , g, andh are all arbitrary functions oft.
The Kac–Moody–Virasoro type algebra constituted bys0(h),s1(g) ands2( f ) reads as

@s0~h1!, s0~h2!#5@s0~h!, s1~g!#50, ~2.5!

@s1~g1!, s1~g2!#5 2
3 s0~ ġ1g22ġ2g1!, ~2.6!

@s2~ f !, s0~h!#5 1
3 s0~ ḟ h23ḣ f !, ~2.7!

@s2~ f !, s1~g!#5 1
3 s1~2 ḟ g23ġ f !, ~2.8!

@s2~ f 1!, s2~ f 2!#5s2~ ḟ 1f 22 ḟ 2f 1!, ~2.9!

while the commutator@G, H# of G[G(u) andH[H(u) is defined by

@G, H#5 lim
e→0

]

]e
„G~u1eH !2H~u1eG!…[G8H2H8G. ~2.10!

From ~2.9! we know that the subalgebra constituted bys2( f ) is just the Virasoro algebra~1.1!.
The general finite transformations related to the symmetries~2.2!–~2.4! had also been given in

Ref. 1. Here we rewrite them down in a much simpler and slightly extended form:
Theorem 1: If u5u(x,y,t) is a solution of the KP equation (1.3) then so also is u8 with

u85t t
2/3u~j,h,t!2

2~ ln t t! t

9
x2

4dt t
1/3

9 F ~t t
21/3! ty2

a t

t t
G

t

y2
2b t

3t t
1/32

2da t
2

9t t
4/3 , ~2.11!

where

j5t t
1/3x2

2d

9 S t tt

t t
2/3y21

3a t

t t
1/3 yD 1b, ~2.12!

h5t t
2/3y1a, ~2.13!

and $t[t(t), a[a(t), b[b(t)% are arbitrary functions of t.

III. A KP FAMILY WITH A COMMON KAC–MOODY–VIRASORO SYMMETRY ALGEBRA

In this section, we look for the possible equations which possess the totally same symm
~2.2!–~2.4! and then the Kac–Moody–Virasoro type symmetry algebra~2.5!–~2.9!.
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A. Models with the Virasoro symmetry „2.4…

The symmetry equation of~1.15! has the form

~s t1
3
2 sux1 3

2 usx1sxxx!x1 3
4 dsyy1F8s50, ~3.1!

whereF8 is the linearized operator ofF defined by

F8G5 lim
e→0

]

]e
F~u1eG! ~3.2!

for arbitraryG.
The substitution~2.4! into ~3.1! yields

F f ] t1
1

3
ḟ ~x]x12y]y16!2

2d

9
y2 f̈ ]xG S uxt1

3

2
uuxx1

3

2
ux

21uxxxx1
3

4
duyyD

1F8F f ut1
1

3 S x ḟ2
2d

3
y2 f̈ Dux1

2

3
ḟ ~yu!y2

4

27S 3

2
x f̈2dy2 f̂ D G50. ~3.3!

The use of~1.15! and the elimination ofuxt from ~3.3! lead to

F8F f ut1
1

3 S x ḟ2
2d

3
y2 f̈ Dux1

2

3
ḟ ~yu!y2

4

27S 3

2
x f̈2dy2 f̂ D G

2F f F8ut1
1

3
ḟ ~xF8ux12yF8uy16F !2

2d

9
y2 f̈ F8uxG50. ~3.4!

According to the definitions of the functionF ~1.16! and its linearized operatorF8 ~3.2!, we
have

F85 (
n,m,l

]F

]uxnymtl

]n1m1 l

]xn]ym]t l , m,n,l>0. ~3.5!

The substitution~3.5! into ~3.4! leads to

(
n,m,l

(
i 50

l 21

Cl
i ]F

]uxnymtl
F f ( l 2 i )] t1

f ( l 2 i 11)

3
~x]x12y]y!2

2d f ( l 2 i 12)

9
y2]xGuxnymti

1 (
n,m,l

(
i 50

l

Cl
i ]F

]uxnymtl
Fn

3
f ( l 2 i 11)]y

22
2md

9
f ( l 2 i 12)~2y]y1m21!]x

1
2

3
~m11! f ( l 2 i 11)]y

2Guxnym22t i2(
l

F2

9
f ( l 12)S ]F

]uxtl
1x

]F

]utl
D

2
4d

27
f ( l 13)S 2

]F

]uyytl
12y

]F

]uytl
1y2

]F

]utl
D G52 ḟ F, ~3.6!

where

Cl 8
i [

l 8!

i ! ~ l 82 i !!
, ux2ny2mt2 l50, ;n>1, m>1, l>1. ~3.7!
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If we can find anf -independent solutionF from ~3.6!, then we get a model with a Virasor
symmetry~2.4! for arbitrary f . Under thef -independent requirement and the autonomous co
tion of F, ~3.6! is equivalent to the following equation system:

(
n,m,l

~n13l 12m12!uxnymtl
]F

]uxnymtl
56F, ~3.8!

(
n,m,l

~ l 11!
]F

]uxnymtl 11
uxn11ymtl2

2

3

]F

]u
50, ~3.9!

(
n,m,l

]F

]uxnymtl
S 3

2
d l ]y

22m]x] tDuxnym21t l 2150, ~3.10!

(
n,m,l

]F

]uxnymtl
F l ~3l 1n12m24!]y

22
2md

3
~m21!]x] tGuxnym22t l 212

2

3

]F

]ux
50, ~3.11!

(
n,m,l

]F

]uxnymtl 12
uxn11ymtl 2k2

2

9

]F

]utk11
50, ~3.12!

2

3

]F

]utk
2 (

n,m,l

]F

]uxnymtl 11
Cl

l 2kuxn11ymtl 2k50, ~3.13!

2

3

]F

]uytk
1 (

n,m,l

]F

]uxnymtl 12
F3

2
dCl

l 2k]y
22mCl

l 2k11]x] tGuxnym11t l 2k50, ~3.14!

2
]F

]uyytk
2

3

2
d

]F

]uxtk11
1

3

4 (
n,m,l

]F

]uxnymtl 13
$3d@3Cl

l 2k1Cl
l 2k11~n12m12!#]y

2

22m~m21!Cl
l 2k12]x] t%uxnym22t l 2k1150, ~3.15!

wherek50, 1, 2, . . . , for~3.12!–~3.15!.
To solve the full equation system~3.8!–~3.15! is still quite difficult. However, if we require

that the functionF is uxnymtl independent forl>1, then~3.8!–~3.15! are reduced to

]F

]u
5

]F

]uy
5

]F

]uyy
50, ~3.16!

(
n,m

~n12m12!uxnym
]F

]uxnym
56F, ~3.17!

(
n,m

muxn11ym21
]F

]uxnym
50, ~3.18!

(
n,m

m~m21!uxn11ym22
]F

]uxnym
1d

]F

]ux
50. ~3.19!

The general solution of~3.16!–~3.17! reads as

F5uxx
3/2F1~vnm ,n,m50, 1, 2, . . . , $n, m%Þ$0, 0%, $0, 1%, $0, 2%![uxx

3/2F1 ,
~3.20!
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vnm[vn,m[uxnymuxx
2 ~n12m12!/4 . ~3.21!

Substituting~3.20! with ~3.21! into ~3.18! and ~3.19!, we have

(
n,m

mvn11,m21

]F1

]vnm
50, ~3.22!

(
n,m

m~m21!vn11,m22

]F1

]vnm
1d

]F1

]v10
50. ~3.23!

The general solution of~3.22! has the form of

F15F2~ynm ,n,m50, 1, 2, . . . , $n, m%Þ$0, 0%, $0, 1%, $0, 2%![F2 , ~3.24!

ynm[yn,m[(
k50

m

~21!m2kCm
k vn1m2k,kv11

m2k5 (
k50

m

~21!m2kCm
k uxn1m2kykuxy

m2kuxx
~4k2n26m22!/4 .

~3.25!

After finishing some tedious calculations, we know that the substitution of~3.24! into ~3.23! yields

(
n,m

m~m21!yn11,m22

]F2

]ynm
1d

]F2

]y10
50. ~3.26!

The general solution of~3.26! reads as

F25F0~Kn,m ,m, n50, 1, 2, . . .![F0 , ~3.27!

whereF0 is an arbitrary function ofKnm andKnm is given by the following recursion relation

Knm5ynm2 (
j 51

[m/2]
m!

j ! ~m22 j !!
Kn1 j ,m22 j~dy10!

j , ~3.28!

with (d i i 51, d i j 50, iÞ j )

Kn05~12dn,02dn,1!yn05~12dn,02dn,1!uxnuxx
2 ~n12!/4 , ~3.29!

Kn15~12dn,0!yn15~12dn,0!~uxnyuxx2uxyuxn11!uxx
2 ~n18!/4 . ~3.30!

Some further concrete examples ofKnm are

Kn25~12dn,0!~uxny2uxx
2 22uxn11yuxxuxy1uxn12uxy

2 22duxn11uxuxx
2 !uxx

2 ~n114!/4 , ~3.31!

Kn35~uxny3uxx
3 23uxn11y2uxx

2 uxy13uxn12yuxxuxy
2 2uxn13uxy

3 !uxx
2 ~n120!/4

26dux~uxn11yuxx2uxn12uxy!uxx
2 ~n112!/4 . ~3.32!

Kn45~uxny4uxx
4 24uxn11y3uxx

3 uxy16uxn12y2uxx
2 uxy

2 24uxn13yuxy
3 uxx1uxn14uxy

4 !uxx
2 ~n126!/4

26duxuxx
2 ~n118!/4 ~uxn11y2uxx

2 22uxn12yuxxuxy1uxn13uxy
2 !112uxn12ux

2uxx
2 ~n110!/4 .

~3.33!

In summary, it has been proven that the equation

~ut1
3
2 uux1uxxx!x1 3

4 duyy1uxx
3/2F0~Kn,m ,m, n50, 1, 2, . . .!50, ~3.34!
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with an arbitrary function ofKn,m possesses a common Virasoro symmetry algebra~2.9!.
It is straightforward to see that the result~1.4! with ~1.5!–~1.13! obtained by David, Levi, and

Winternitz is a special case of~3.34! because

K25K4,0, K35K3,0, K45K2,1, K75K3,1, K55K1,2K3,02K2,1
2 ,

K65K3,0
2 K0,323K2,1K1,2K3,012K2,1

3 , K95K4,0
2 K1,323K3,1K2,2K4,012K3,1

3 , ~3.35!

K85K2,2K4,02K3,1
2 , K105K4,0K0,424K1,3K3,113K2,2

2 .

B. Models with the symmetry „2.2…

The substitution~2.2! into ~3.1! yields

h~uxt1
3
2 uuxx1

3
2 ux

21uxxxx1
3
4 duyy!x1F8~hux2 2

3ḣ!50. ~3.36!

Eliminating uxt from ~3.36! with help of ~1.15!, ~3.36! becomes

F8S hux2
2

3
ḣD2hF8ux50. ~3.37!

Substituting~3.5! into ~3.37!, we have

(
n,m,l 8

(
i 50

l 821

Cl 8
i h( l 82 i )

]F

]uxnymtl 8
uxn11ymti2

2

3 (
l

h( l 11)
]F

]utl
50, l 8>1. ~3.38!

If we can find anh-independent solutionF from ~3.38!, then we get a model with a symmetr
~2.2! for arbitraryh.

To find all theh-independent solution of~3.38! is equivalent to solve the following infinitely
many linear equation system with infinitely many arbitrary independent variables,

(
n,m,l

Cl
l 2k21 ]F

]uxnymtl
uxn11ymtl 2k212

2

3

]F

]utk
50, k50, 1, 2, . . . ,̀ . ~3.39!

To find general solution of the over-determined equation system of~3.39! is difficult. How-
ever, if we requireF is notuxnymtl, (l>1) dependent, then the general solution of~3.39! reads as

F5 f 1[ f 1~uxnym, n,m50, 1, 2, . . . ,n21m2Þ0!. ~3.40!

Obviously,F5uxx
3/2F0(Kn,m ,m, n50, 1, 2, . . . )shown by~3.34! is only a special case off 1

of ~3.40!.

C. Models with the symmetry „2.3…

The substitution~2.3! into ~3.1! results in

~22g]y1 4
3 dyġ]x!~uxt1

3
2 uuxx1

3
2 ux

21uxxxx1
3
4 duyy!

1F8~22guy1 4
3 dġyux2 8

9 dyg̈!50. ~3.41!

Eliminating uxt from ~3.41! by means of~1.15!, we have
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2gF8uy2 4
3 dyġF8ux1F8~22guy1 4

3 dġyux2 8
9 dyg̈!50. ~3.42!

The substitution~3.5! into ~3.42! leads to

4

3
d (

n,m,l
(
i 50

l

Cl
ig( l 2 i 11)

]F

]uxnymtl
uxn11ym21t i2

8

9
d(

l
g( l 12)S ]F

]uytl
1y

]F

]utl
D

1 (
n,m,l 8

(
i 50

l 821

Cl 8
i ]F

]uxnymtl 8
S 22g( l 82 i )]y1

4

3
dg( l 82 i 11)]xDuxnymti50. ~3.43!

If we can find ag-independent solutionF from ~3.43!, then we get a model with a symmetry~2.3!
for arbitraryg.

To find out all theg-independent autonomous solutions of~3.43! is equivalent to solve the
following equation system:

(
n,m,l

mCl
l 2k21 ]F

]uxnymtl
uxn11ym21t l 2k212

2

3

]F

]utk
50, ~3.44!

(
n,m,l

]F

]uxnymtl
F S mCl

l 2k21]x] t2
3

2
dCl

l 2k22]y
2Duxnym21t l 2k22G2

2

3

]F

]uytk
50. ~3.45!

To find the general solutions of~3.44!–~3.45! is very difficult. However, if we require thatF
is uxnymtl independent forlÞ0, the equation system~3.44!–~3.45! is reduced to

]F

]u
50,

]F

]uy
50, ~3.46!

that means

F5 f 2[ f 2~uxnym, $n, m%Þ$0, 0%,$0, 1%!, ~3.47!

where f 2 is an arbitrary function of the indicated variables.
Obviously, ~3.47! is a special case of~3.40! and F5uxx

3/2F0(Kn,m ,m, n50, 1, 2, . . . ) is a
special case of~3.47!. In other words, the general KP family~3.34! possesses not only the Viraso
symmetry algebra~2.9! but also the full Kac–Moody–Virasoro symmetry algebra~2.5!–~2.9!.
Then the Theorem 1 can be extended as follows.

Theorem 2: If u5u(x, y, t) is a solution of the KP family (3.34), then so is u8 shown by
(2.11)–(2.13).

IV. GROUP INVARIANT SOLUTIONS OF THE KP FAMILY „3.34…

To find group invariant solutions of a given system means to find the solutions whic
solutions of not only the original model but also the symmetry constrained condition,s50. For
the KP family~3.34!, if the fieldu satisfies either the model equation or the symmetry constra
condition,

s0~h!1s1~g!1s2~ f !50, ~4.1!

with $s0(h), s1(g), s2( f )% given by ~2.2!–~2.4!, then the solution is invariant under the Kac
Moody–Virasoro group transformations.

The symmetry constrained equation~4.1! can be easily solved because it is only a first ord
linear equation.

For the full Kac–Moody–Virasoro symmetries,f Þ0, the general solution of~4.1! read as
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u5 f 22/3U~j,h!1
2 f tx

9 f
1

4d~2 f t
223 f f tt!y

2

81f 2 1
8d~3gt f 22 f tg!y

27f 2 1
8dg2

9 f 2 1
2h

3 f
, ~4.2!

where

j5
x

f 1/31
2d~ f ty

226gy!

9 f 4/3 2
8

3
dE g2

f 7/3dt2E h

f 4/3dt, ~4.3!

h5
y

f 2/312E g

f 5/3dt, ~4.4!

while the group invariant function,U(j, h)[U, should be determined by the so-called similar
reduction equation~a Boussinesq family!,

3
4 dUhh1~Ujjj1 3

2 UUj!j1Ujj
3/2F0„Kn,m~j,h!,m, n50, 1, 2, . . .…50, ~4.5!

which can be obtained by substituting~4.2! into ~3.34!, whereKn,m(j, h) is just Kn,m expressed
by ~3.28! with the transformationsuxnym→Ujnhm.

For the Kac–Moody symmetries,f 50, the general solution of~4.1! possesses the form

u5
1

g
U~j, t!1

gtx

3g
1

2d~2gt
22ggtt!y

2

9g2 1
~2gth2htg!y

6g2 2
h2

6g2 , ~4.6!

where

j5
1

Ag
S x1

dgty
2

3g
1

hy

2gD , ~4.7!

t5E g23/2dt ~4.8!

while the similarity reduction equation ofU(j, t)[U is a KdV family,

S Ut1Ujjj1
3

2
UUjD

j

1Ujj
3/2F0~Kn,m~j,t!,m, n50, 1, 2, . . .!50, ~4.9!

which is a result of the substitution of~4.6! into ~3.34! while Kn,m(j, t) is justKn,m expressed by
~3.28! with the transformationsuxn→Ujn anduxnym→0 for mÞ0.

V. SUMMARY AND DISCUSSION

In summary, starting from the Kac–Moody–Virasoro symmetry of the usual KP equation
using a quite simple symmetry approach, a general KP family is found such that the f
possesses the same Kac–Moody–Virasoro symmetry algebra as the usual KP equation. A
trary function of the higher order group invariants is included in the family. The finite K
Moody–Virasoro symmetry transformation group is naturally valid for the whole KP family.

The similarity reduction equation for the full Kac–Moody–Virasoro symmetry algebr
expressed by a Boussinesq family while for the Kac–Moody symmetry algebra@constituted by
s0(h) ands1(g)] can be expressed by a KdV family.
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For the usual KP equation~1.3!,12 in addition to the Lie point symmetries, there are infinite
many generalized~higher order nonpoint! symmetries which constitute the generalizedw` sym-
metry algebra. If one makes the similar calculations for the general symmetries of the KP
tion, one can find that the general nonpoint symmetries of the KP equation are not symmet
the KP family ~3.34!.

To obtain~3.34!, we have used not only the autonomous condition~i.e., F is not explicitly
$x, y, t%-dependent!, but also the condition

Fuxnymtl
50, ; lÞ0. ~5.1!

Generally,F may be both$x, y, t% anduxnymtl dependent. We have not yet had a good idea to fi
all uxnymtl and$x, y, t% dependent solutions ofF. However, these kinds of solutions really exis
For instance, by the direct calculations, one can find that

Jn1[uxx
2 ~n16!/4F S ut1

3

2
uuxD

x

1
3

4
duyyG

xn

, n50, 1, 2, . . . , ~5.2!

are also group invariants related to the symmetry algebra~2.5!–~2.9!. That means

F5uxx
3/2f 0~Kn,m , Jn1 , m, n50, 1, 2, . . .!, ~5.3!

with f 0 being an arbitrary function of the indicated variables is a special solution of the equ
systems~3.8!–~3.15!, ~3.39! and ~3.44!–~3.45!.

From ~1.15! @or ~5.3!# and~3.28!, we know that in addition to the KP equation itself and t
dispersion-less KP@the Zabolotskaya–Khokhlov~ZK!# equation, one may obtain various mode
in the family that are rational in the derivatives, say, by selectingF0 of ~1.15! being a linear
function of K4k,2l , K4k22,2l 11 , k51, 2, . . . ,l 50, 1, 2, . . . ,etc.

Though we have found many arbitrary order equations which possess the same Lie
symmetry group of the KP equation, it is still very difficult to say something about the integra
properties of any equations in the family except for the KP and the ZK equation. In particula
have not yet found higher symmetries or Painleve´ properties of any other equations.

Because all the known (211)-dimensional integrable systems possesses the Virasoro
metry algebra, the similar properties obtained in this paper for the KP equation may be va
other (211)-dimensional systems.
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We study hyperelliptic Nambu flows associated with somen dimensional maps and
show that discrete integrable systems can be reproduced as flows of this
class. © 2004 American Institute of Physics.@DOI: 10.1063/1.1643195#

I. INTRODUCTION

Let us consider ann dimensional rectangular box with edges of lengthX1 ,X2 ,...,Xn . The box
will be rigid if there aren independent relations amongXj ’s

xj5 f j~X1 ,X2 ,...,Xn!, j 51,2,...,n. ~1!

This set of constraints defines a map

x5~x1 ,x2 ,...,xn!→X5~X1 ,X2 ,...,Xn!. ~2!

If we relax one of the constraints, sayxn5 f n , the box changes its form asxn varies. We are
interested in how it changes. To make clear the problem let us see the case ofn53 and assume
for example, that relations~1! are given by the elementary symmetric polynomials

x15X11X21X3 ,

x25X1X21X1X31X2X3 , ~3!

x35X1X2X3 .

When allxj ’s are fixed the map is determined algebraically by solving the equation

X32x1X21x2X2x350, ~4!

up to permutations. Relations~3! amount to fix the total length of edges, the total area of surfa
and the volume of the box. If the volume of the boxx3 varies whilex1 andx2 are fixed, we will
obtain a circle as an intersection of the sphereX1

21X2
21X3

25x1
222x2 and the planeX11X2

1X35x1 in R3 along whichX moves. If we fixx1 andx3 but leavex2 free, we will find another
curve inR3. Our problem is to find such a curve in general.

a!Electronic mail: saito@phys.metro-u.ac.jp
b!Electronic mail: saitoh@lam.osu.sci.ynu.ac.jp
c!Electronic mail: yoshida@kiso.phys.metro-u.ac.jp
10310022-2488/2004/45(3)/1031/11/$22.00 © 2004 American Institute of Physics

                                                                                                                

http://dx.doi.org/10.1063/1.1643195


nifold
ariables

ys the

the
under

e they
w that

e., the
way to
ociated
purely

ction

1032 J. Math. Phys., Vol. 45, No. 3, March 2004 Saito, Saitoh, and Yoshida

                    
It will be worthwhile to notice here that relations~1! defines an algebraic manifold inRn if
some ofxj ’s are fixed and the relations are purely algebraic. To see the properties of the ma
one can leave one of the constraints free and vary the constant to study a response of the v
X1 ,X2 ,...,Xn to the variation.

In our previous work1,2 we have shown that there exists a Nambu–Hamiltonian flow3 corre-
sponding to an arbitrary differentiable map such that one of the initial values of the map pla
role of time of the flow. We can apply this result to see the change of the box whenxn varies.

We will study, in this article, how the problem is transcribed into the problem of solving
Nambu equation and the change of the boxes are described in terms of hyperelliptic curves
certain constraints. We are interested in the appearance of the hyperelliptic functions, sinc
are known to solve soliton equations in general. The second purpose of this article is to sho
the reason of the appearance of the hyperelliptic functions is common in two systems, i.
soliton equations and the Nambu equations. In other words the Nambu equations provide a
describe dynamics of integrable systems. We will show that, once the Nambu equations ass
with a soliton equation are solved, solutions to the soliton equation can be given by solving
algebraic relations.

II. NAMBU–HAMILTONIAN FLOWS

Let us first recall briefly the Nambu equations and review our previous results. For a fun
f (X) of n-dimensional variableXPRn, the generalized Nambu Hamilton equations3,4 are given by

d f

dt
~X!5$H1 ,H2 ,...,Hn21 , f ~X!%. ~5!

We define the Nambu bracket$w1 ,w2 ,...,wn%, in this article, by the Jacobian

$w1 ,w2 ,...,wn%ª
]~w1 ,w2 ,...,wn!

]~X1 ,X2 ,...,Xn!
.

n21 HamiltoniansH1 ,H2 ,...,Hn21 satisfy

dHj

dt
50, j 51,2,...,n21

by definition of the equations. The equations of motion for the dynamical variablesXj ’s are

dXj

dt
5$H1 ,H2 ,...,Hn21 ,Xj%, j 51,2,...,n

5~21!n2 j
]~H1 ,H2 ,...,Hn21!

]~X1 ,X2 ,...,Xn! j
. ~6!

Here (X1 ,X2 ,...,Xn) j means thatXj is missing among (X1 ,X2 ,...,Xn).
In Refs. 1 and 2, we proved the following:
Proposition 1: For a differentiable and invertible map (2), with its JacobiandetJ, there exists

a Nambu–Hamiltonian flow described by the equations

dXj

dxn
5$H1 ,H2 ,...,Hn21 ,Xj%, j 51,2,...,n, ~7!

such that the Hamiltonians are given by
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H j5xj , j 51,2,...,n22,

Hn215Exn21
~detJ! dxn21 .

Note that the initial valuexn of the map plays the role of the time variable in this flow.
addition to this proposition we would like to supply a new one which is more convenient to s
our present problems.

Proposition 2: For a differentiable and invertible map (2), with its JacobiandetJ, there exists
a Nambu–Hamiltonian flow described by the equations

dXj

dt
5$H1 ,H2 ,...,Hn21 ,Xj%, j 51,2,...,n, ~8!

such that the Hamiltonians are given by

H j5xj , j 51,2,...,n21,

and the variable t satisfies

dxk

dt
5

dk,n

detJ
. ~9!

Here the time variablet is not the initial valuexn itself but related to it by~9!. This formu-
lation has an advantage since the other initial valuesx1 ,x2 ,...,xn21 of the map remain constan
along the Nambu flow.

The proof of Proposition 2 is straightforward. From~9! it follows that

dXj

dt
5(

k

]Xj

]xk

dxk

dt
5

]Xj

]xn

1

detJ
5

]~x1 ,x2 ,...,xn21 ,Xj !

]~x1 ,x2 ,...,xn21 ,xn!

1

detJ
5

]~x1 ,x2 ,...,xn21 ,Xj !

]~X1 ,X2 ,...,Xn21 ,Xn!

5
]~H1 ,H2 ,...,Hn21 ,Xj !

]~X1 ,X2 ,...,Xn21 ,Xn!
.

Q.E.D.

Hence~8! is true. Conversely~8! impliesdHj /dt50, hence~9! follows. We notice that, when
the Nambu equation~8! is solved,

t5Exn
~detJ! dxn ~10!

holds. If the Jacobian detJ of the mapx→X was one, we simply havet5xn .
Now suppose we have solved the Nambu equations~8!. We then obtain a map

(x1 ,...,xn21 ,t)→X. We can show that the Jacobian detJ8 of this map is unity.
To see that we calculate the Jacobian of the inverse mapX→(x1 ,...,xn21 ,t) and expand it

along the last row

detJ8215
]~x1 ,x2 ,...,xn21 ,t !

]~X1 ,X2 ,...,Xn!
5(

j 51

n
]t

]Xj
Dn j ,

whereDn j is the minor of the (n j) element ofJ821. We notice that the right-hand side of~8! is
exactlyDn j . Therefore we obtain
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detJ8215(
j 51

n
]t

]Xj

dXj

dt
51

as a result of equations of motion. Therefore the Jacobian detJ8 of the map (x1 ,...,xn21 ,t)→X is
also one and the map preserves the hypervolume element.

III. STUDY OF SOLUTIONS

Sincexj , j 51,2,...,n21 are constants of the flow~8!, they formn21 dimensional hyper-
surfaces

xj5H j~X!, j 51,2,...,n21 ~11!

in Rn, while the pointX moves along a curve formed by an intersection of the hypersurfacest
changes. Suppose we can solve the constraints~11! for X1 ,X2 ,...,Xn21 as functions ofWªXn

and the constantsxj , j 51,2,...,n21. Substituting the results into the right-hand side of t
equation forW in ~8!, we obtain a first order ordinary differntial equation forW,

dW

dt
5F~W!, ~12!

whereF is a function ofW and the constants of the flow. The orbit is determined by solving~12!,
i.e.,

t5EW dW

F~W!
. ~13!

Combining this result with~10! we find

dW

dxn
5F~W!detJ.

Similarly we obtain equations for all other variablesXj ’s which determine the dependence onxn .

A. Elementary symmetric polynomials

First we study a Nambu flow when the constraints~1! are given by the elementary symmetr
polynomials

x15X11X21X31¯1Xn,

x25X1X21X1X31X2X31¯1Xn21Xn,

]

~14!

xj5 (
k1,k2,¯,kj

Xk1
Xk2

¯Xkj
,

]

xn5X1X2¯Xn .

When allxj ’s are fixed the map is determined by solving the algebraic equation

Xn2x1Xn211¯2~21!nxn21X1~21!nxn50, ~15!
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up to permutations. The relations~14! amount to fix the total length of edges, the total area
surfaces, ..., the total hypervolume of the box. If the hypervolume of the boxxn varies while other
xj ’s are fixed, we will obtain a curve inRn along whichX moves. Our problem is to find the curve

The Nambu equation whose Hamiltonians arex1 ,x2 ,...,xn21 in ~14! is given forW5Xn ~Ref.
4! by

dW

dt
5 )

1<k, l<n21
~Xk2Xl !.

Therefore our task is to solve this equation explicitly. For this to be done we have to know tW
dependence of the right hand side. We first notice that the square of the right-hand side
discriminant of the equationPn21(X)50, where

Pn21~X!ª~X2X1!~X2X2!¯~X2Xn21!. ~16!

If we expand the polynomialPn21(X) as

Pn21~X!5h0Xn212h1Xn221h2Xn232¯1~21!n21hn21 ~h051!

h1 ,h2 ,...,hn21 are the elementary symmetric polynomials ofX1 ,X2 ,...,Xn21 . Since the discrimi-
nant

Dn21ª )
1<k, l<n21

~Xk2Xl !
2

of Pn21(X)50 is a symmetric polynomial it can be expressed in terms ofh1 ,h2 ,...,hn21 . In fact
it is a homogeneous polynomial ofhj ’s of degree 2(n22). For example in the cases ofn
53,4,5

D25h1
224h0h2 ,

D35h1
2h2

224h0h2
324h1

3h3118h0h1h2h3227h0
2h3

2,

D45h1
2h2

2h3
224h1

2h2
3h424h1

3h3
3118h1

3h2h3h4227h1
4h4

224h0h2
3h3

2118h0h1h2h3
3116h0h2

4h4

280h0h1h2
2h3h41144h0h1

2h2h4
226h0h1

2h3
2h41144h0

2h2h3
2h42128h0

2h2
2h4

22192h0
2h1h3h4

2

227h0
2h3

41256h0
3h4

3 .

On the other handhj ’s are related withxj ’s according to

xk5hk1Whk21 , k51,2,...,n21

or, equivalently,

hk5xk2xk21W1¯1~21!kWk, k51,2,...,n21.

Therefore the discriminantDn21 is a polynomial ofW of degree (n22)(n21).
If we susbstituteDn21(W) into F of ~13!, we find

t5EW dW

ADn21~W!
.

The other variablesX1 ,X2 ,...,Xn21 will be obtained similarly. Hence the orbits derived from t
Nambu equations, whose Hamiltonians are elememtary symmetric polynomials, are giv
hyperelliptic functions.
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In the case ofn53 the motion of three variablesX1 ,X2 ,X3 are constrained on a circle fixe
by the constantsx1 andx2 . We find

X15 1
3 ~x112Ax1

223x2 cos~) t !!,

X25
1

3 S x112Ax1
223x2 cosS) t2

2p

3 D D ,

~17!

X35
1

3 S x112Ax1
223x2 cosS) t1

2p

3 D D .

If all xj ’s are fixed besidesxi the Nambu equation forW5Xi becomes

dW

dt
5~2W!n2 i )

1<k< l<n
k, j Þ i

~Xk2Xl !.

Note that the right-hand side of this equation is just the square root of discriminant of the eq
Pn21,i(X)50, where

Pn21,i~X!5

)
j 51

n

~X2Xj !

X2Xi
.

The discriminantDn21,i can be expressed in terms ofh18 ,h28 ,...,hn218 , wherehj8 is an elementary
symmetric polynomial withoutXi . As before,Dn21,i is also a polynomial ofW of degree (n
21)(n22). We find

t5~21!n2 iEW dW

WnADn21,i~W!
.

In the case ofn53 we could leavex2 free, instead ofx3 . Under the constraints

x15X11X21X3 ,

x35X1X2X3 ,

being constant, we find an elliptic curve parameterized by

X15
ag sn2~u,k!

g2a cn2~u,k!
,

X2,35x12
ag sn2~u,k!

g2a cn2~u,k!
6

~a2g!3/2Ab cn~u,k! dn~u,k!

2~g2a cn2~u,k!! sn~u,k!
,

where

u5 1
2A~a2g!b t, k5Aa~b2g!

b~a2g!

anda, b, andg are the roots of

x322x1x21x1
2x24x350.
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B. n dimensional generalization of Euler top and Nahm equation

An n dimensional box hasn(n21)/2 rectangles which are orthogonal with each other. Amo
them we choosen independent rectangles. If we fix a relation between edge lengths of each
n rectangles, allXj ’s are determined, hence the box becomes rigid.

For example we can fix the diagonals ofn rectangles as follows:

xj5
1
2 ~Xj

21Xj 11
2 !, j 51,2,...,n, ~18!

with Xn115X1 to make the box rigid. The Jacobian of this map is, whenn is odd,

detJ5~2X1X2¯Xn!21.

If xn5(Xn
21X1

2)/2 is varied, allXj ’s will be changed simultaneously andX draws a curve in
Rn. The corresponding Nambu equations are

dXj

dt
5~21!n2 j

X1X2¯Xn

Xj
, j 51,2,...,n. ~19!

We can solve the constraints~18! for Xj ’s

Xj
25a j1~21!n2 jW2, j 51,2,...,n21,

where

a j52~xj2xj 111¯2~21!n2 j xn21!.

The right-hand side of

dW

dt
5X1X2¯Xn21

is given by a function ofW. In fact we obtain

t5EW dW

A)
j 51

n21

~a j1~21!n2 jW2!

.

Thus we conclude that the pointX moves along a hyperelliptic curve. Whenn53, the solu-
tions are given by the Jacobi elliptic functions as

X15A2~x12x2! dn~u,k!,

X25A2x2 cn~u,k!,

X35A2x2 sn~u,k!,

where

uªA2~x12x2! t, kªA x2

x22x1
.

The above example can be readily generalized to the cases whose constraints can be
into the form
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xj5
1

2 (
k51

n

a jkXk
2 , j 51,2,...,n21. ~20!

The Nambu equations are

dXj

dt
5~21!n2 j detAj

X1X2¯Xn

Xj
, j 51,2,...,n,

where the matrixAj is given by eliminating thej th column from the (n21)3n matrix $a jk%. By
solving ~20! for Xk as a function ofW5Xn and the constants and substituting them into

dW

dt
5detAn X1X2¯Xn21

we again obtain a hyperelliptic integral.
A simple case, i.e.,

A5S 1 21 0

0 1 21D ,

which is called the Nahm equation, was discussed in Ref. 4. Another example is the famous
top corresponding to the matrix

S 1 1 0

0 1 1D ,

which was discussed by Nambu.3 We note that our generalization of this top ton dimension is
different from either one of Refs. 5 or 6.

IV. COMPLETELY INTEGRABLE MAPS

The hyperelliptic functions have been known to solve soliton equations.7,8 They appear
through the variation of subspectral parameters of Lax operators. We are going to show,
section, that the hyperelliptic solutions of soliton equations can be obtained equally by solvi
Nambu equations, which we discussed in the previous section.

A. Brief review of 3 point Toda lattice

Before going into details of the discussion we will review briefly how the hyperellip
solutions are derived from soliton equations. In order to make clear the point of our argume
consider a simple example, i.e., 3-point Toda lattice. The time evolution of the 6-dyna
variables (a1 ,a2 ,a3 ,b1 ,b2 ,b3) are determined by means of the Lax equation

dL

dt
5@B,L#, ~21!

where

L5S b1 a1 a3

a1 b2 a2

a3 a2 b3

D , B5S 0 2a1 a3

a1 0 2a2

2a3 a2 0
D .

In addition to the periodicity condition, which imposes toa1 ,a2 ,a3 a constraint

a1a2a351/8, ~22!
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the eigenvaluesl1 ,l2 ,l3 of L are constants of motion. Therefore only two variables out of
remain independent. It is conventional to choose two eigenvaluesm1 ,m2 of the matrix (a1

b1
b2

a1) as

new such variables. They are called subspectral parameters. The relations between the dy
variables (a1 ,a2 ,a3 ,b1 ,b2 ,b3) and (l1 ,l2 ,l3 ,m1 ,m2) are algebraic. For instance we have

m11m25l11l21l32b3 ,

m1m25b1b22a1
2.

Hence the time dependence of the dynamical variables can be found if we know howm1 andm2

vary in time.
Solving these algebraic relations for (l1 ,l2 ,l3 ,m1 ,m2), the Lax equation~21! can be con-

verted into equations which determine the time evolution ofm1 ,m2 as

dm j

dt
5

1

4

AD2~m j !24

m22m1
, j 51,2.

Here D~l! is a third order polynomial ofl. Solutions to these equations are given in terms
elliptic functions.

We can summarize this result as follows. For the five dynamical variables, which are
strained by three constants of motion, we introduce two intermediate variables, which ar
related with the dynamical variables algebraically. If we can find the dependence of the
variables on time, the time dependence of the five dynamical variables will be found by so
the five algebraic relations.

B. Generalization to integrable maps

Let us generalize this idea of solving 3-point Toda lattice to study larger class of integ
systems. For this purpose we consider a mapM (t)→M (t11) of anm3m matrix given by

M ~ t11!5U21M ~ t !U. ~23!

A large number of integrable maps have been known being represented in this form.9 For an
illustration we present here the discrete timem point Toda lattice,

M ~ t !5S i 11v1 1 0 ... 0 i 1vm

i 2v1 i 21v2 1 0 0

0 i 3v2 i 31v3 1

] ... ]

0 0 ... 1

1 0 ... 0 i mvm21 i m1vm

D ,

~24!

U~ t !5S i 1 1 0 ... 0

0 i 2 1 0

]

0 i m21 1

1 0 ... 0 i m

D .

In the continuum limit of time the variables (v j ,i j ) are related with (aj ,bj ) of the Lax form by

~v j ,i j !5~2aj ,12bj !, j 51,2,...,m.
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Suppose elements of the matrixM in ~23! are determined in terms ofm1n21 dynamical
variables withn,m11. Since eigenvalues of the matrix, which we denotel1 ,...,lm , are con-
stant under the map,m variables can be eliminated by solving algebraic relations between
elements ofM and the eigenvalues. The problem of solving the evolution equation~23! is turned
to finding proper intermediaten variables. They must be responsible faithfully to a variation of
system under the constraints that the eigenvalues are conserved. We can use the Nambu e
to describe such a system.

In order to make concrete our argument we adopt the elementary symmetric polynomialm
independent constants of the map:

x15l11l21¯1lm,

x25l1l21l1l31¯1lm21lm,

]

~25!

xj5 (
1<k1,k2,¯,kj<m

lk1
lk2

¯lkj
,

]

xm5l1l2¯lm .

Writing them explicitly in terms of the elementsM jk of the matrixM , we have

x15M111M221¯1Mmm,

x25 (
1< j ,k<m

~M j j Mkk2M jkMk j!,

~26!
]

xm5detM .

Now we let X1 ,X2 ,...,Xn be the newn intermediate variables andx1 ,x2 ,...,xn21 be n21
Hamiltonians of the system such that the intermediate variables are constrained by

X11X21¯1Xn5x1,

X1X21X1X31¯1Xn21Xn5x2,
~27!

]

(
1<k1,k2,¯,kn21<n

Xk1
Xk2

¯Xkn21
5xn21.

The Nambu equations for the new variables are nothing but~8! with H j5xj , j 51,2,...,n21 and
solutions have been already discussed in Sec. III A.

In order to find the behavior of the matrixM of ~23!, we first identify~25! and~26! to express
m variables of the matrix in terms of them constantsl1 ,...,lm . The rest of then21 independent
variables of the matrixM will be determined byX1 ,X2 ,...,Xn if we identity x1 ,x2 ,...,xn21 of
~27! with those of~26!. We would like to emphasize here that these steps will be done by pu
algebraic procedures.
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To be specific we consider the map~23! with M given by~24!. We further restrict to the cas
of m53, i.e., the 3-point Toda lattice. Corresponding to the condition~22! we may impose a
constraint

v1v2v35const, ~28!

so that the number of independent dynamical variables is five. Via explicit calculations we

x15 i 11 i 21 i 31v11v21v3 ,

x25 i 1i 21 i 1i 31 i 2i 31 i 1v21 i 2v31 i 3v11v1v21v1v31v2v3 , ~29!

x35~11 i 1i 2i 3!~11v1v2v3!

in the place of~26!. The correspondence between~25! and~26! enables us to write three variable
of M , say i 1 ,i 2 ,i 3 , in terms ofv1 ,v2 ,v3 and the constantsl1 ,l2 ,l3 .

If we further identifyx1 ,x2 in ~29! with those of~3!, they, together with the condition~28!,
determinev1 ,v2 ,v3 as functions ofX1 ,X2 ,X3 . SinceX1 ,X2 ,X3 have been known as given i
~17!, the behavior of the matrixM is determined.

V. REMARKS AND DISCUSSIONS

We have developed a method to derive Nambu equations from a given map~2!. There exist
some ambiguities how to relate the time variablet of the Nambu equations to the initial variable
of the map. It could be one of the initial variables of the map as in the case of Proposition 1
function of it as it was the case of Proposition 2. They are not independent but are relate
each other through a reparametrization of the variablet.

If the functions f 1 , f 2 ,...,f n of the map defined by~1! are purely algebraic, the map wi
determine an algebraic manifold. To study the nature of the manifold we change one of the
variables of the map and see the response. Our propositions claim that the Nambu eq
provide a systematic method to investigate such a response. By means of some examples
shown that the manifolds described by certain types of map are characterized by hyper
curves.

When there are known some number of invariants under time evolution, the Nambu equ
determine the change of the dynamical variables. Since any function of the invariants is ag
invariant there are many possible sets of Nambu equations. Suppose we can choose a prop
invariants such that the functions are algebraic and the Nambu equations can be solved ex
Then the problem of solving the equations of motion are replaced to solve the algebraic re
among variables. We have demonstrated that the hyperelliptic solutions of soliton equations
derived in this way.
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Geometric integrators and nonholonomic mechanics
M. de León,a) D. Martı́n de Diego,b) and A. Santamarı́a-Merinoc)

Instituto de Matema´ticas y Fı́sica Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain

~Received 2 July 2003; accepted 3 December 2003!

A geometric derivation of nonholonomic integrators is developed. It is based in the
classical technique of generating functions adapted to the special features of non-
holonomic systems. The theoretical methodology and the integrators obtained are
different from those obtained in Corte´s and Martı´nez@‘‘Nonholonomic integrators,’’
Nonlinearity14, 1365–1392~2001!#. In the case of mechanical systems with linear
constraints a family of geometric integrators preserving the nonholonomic con-
straints is given. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1644325#

I. INTRODUCTION

A. Introduction to nonholonomic mechanics

The theory of systems with nonholonomic constrains goes back to the XIX cen
D’Alembert’s or Lagrange–D’Alembert’s principle of virtual work and Gauss principle of le
constraint can be considered to be the first solutions to the analysis of systems with cons
holonomic or not. After a period of decay, many authors have recently shown a new interest
theory and also in its relation to the new developments in control theory, sub-Riemannian
etry, robotics, etc.~see, for instance, Ref. 45!. The main characteristic of this period is th
Geometry was used in a systematic way~see L.D. Fadeev and A.M. Vershik49 as an advanced an
fundamental reference, and also, Refs. 3, 4, 7, 10, 13, 24, 25, 28, 29, 30, 38!.

As is well known, in most problems of particle mechanics, the motion of the particle
constrained in some way; this is the term used to denote the condition that some moti
configurations are not allowed. First, we shall start with a configuration spaceQ, which is a
n-dimensional differentiable manifold, with local coordinatesqi . General two-side or equality
constraints are functions of the formfa(qi ,q̇i)50,1<a<m, depending, in general, on configu
ration coordinates and their velocities. The various kinds of constraints we are concerned wi
roughly come in two types: holonomic and nonholonomic, depending whether the constra
derived from a constraint in the configuration space or not. Therefore, the dimension of the
of configurations is reduced by holonomic constraints but not by nonholonomic constraints.
holonomic constraints permit a reduction in the number of coordinates of the configuration
needed to formulate a given problem~see Ref. 45!.

We will restrict ourselves to the case of nonholonomic constraints, since the case of
nomic constraints, and, in particular, the construction of holonomic integrators, is well estab
in the existing literature. Geometrically, nonholonomic constraints are globally described
submanifoldM̃ of the velocity phase spaceTQ, the tangent bundle of the configuration spaceQ.
If caseM̃ is a vector subbundle ofTQ, we are dealing with linear constraints. We will usua
refer toM̃ asD and, in such case, the constraints are alternatively defined by a distributionD on
the configuration spaceQ. If this distribution is integrable, we are precisely in the case of ho
nomic constraints. In caseM̃ is an affine subbundle modeled on a vector bundleD, we are in the

a!Electronic mail: mdeleon@imaff.cfmac.csic.es
b!Electronic mail: d.martin@imaff.cfmac.csic.es
c!Electronic mail: aitors@imaff.cfmac.csic.es
10420022-2488/2004/45(3)/1042/23/$22.00 © 2004 American Institute of Physics
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case of affine constraints. In what follows, we will denote byD the constraint submanifold on th
velocity phase space, no matter if they are determined by linear or nonlinear constraints.

Given the constraints, we need to specify the dynamical evolution of the system. The c
concepts permitting the extension of mechanics from the Newtonian point of view to the Lag
ian one are the notions of virtual displacements and virtual work; these concepts were form
in the developments of mechanics, in their application to statics. In nonholonomic dynamic
procedure is given by Lagrange–D’Alembert’s principle. We usually consider nonholonomic
straints of linear type, which are the constraints that we will regard as natural in a mech
sense~although the extension for general nonholonomic constraint will be straightforward!. We
now come to the description of the constraint forces; for constraints of that type, Lagra
D’Alembert’s principle allows us to determine the set of possible values of the constraint f
only from the set of admissible kinematic states, that is, from the constraint manifoldD deter-
mined by the vanishing of the nonholonomic constraints. Therefore, assuming that the dyn
properties of the system are mathematically described by a configuration spaceQ, by a Lagrang-
ian functionL and by a distribution determining the linear constraintsD, the equations of motion
following Lagrange–D’Alembert’s principle, are

F d

dt S ]L

]q̇i D2
]L

]qi Gdqi50, ~1!

wheredqi denotes the virtual displacements verifying

m i
adqi50 ~2!

and Do5span$ma5m i
adqi% ~for the sake of simplicity, we will assume that the system is

subject to nonconservative forces!. By using the Lagrange multiplier rule, we obtain that

d

dt S ]L

]q̇i D2
]L

]qi 5l̄am i
a. ~3!

The term on the right-hand side represents the constraint force or reaction force induced
constraints. The functionsl̄a are Lagrange multipliers to be determined in order to obtain a se
second order differential equations. These Lagrangian multipliers are computed using th
straint equations. An interesting remark, that will be used in what follows, is that wheneve
Lagrange multipliersl̄a5l̄a(qi ,q̇i) have been determined, then the system of equations~3! can be
considered a Lagrangian system subject to external conservative forces given by the righ
side term, taking, obviously, an initial condition on the constraint submanifoldD. The choice of
the Lagrange multipliersl̄a automatically implies that the solution integral curves also verifies
constraint equations.

B. Introduction to geometric integration and discrete mechanics

Standard methods for simulating the motion of a dynamical system, generically calle
merical integrators, usually take an initial condition and move it in the direction specified b
equation of motion or an appropriate discretization. But these standard methods ignore
geometric features of many dynamical systems, as for instance, for Hamiltonian systems w
preservation of the symplectic form, energy~in the autonomous case! and symmetries, if any
However, new methods have been recently developed, called geometric integrators, wh
concerned with some of the extra features of geometric nature of the dynamical systems. U
these integrators can run, in simulations, for long times with lower spurious effects~for instance,
bad energy behavior for conservative systems! than the traditional ones. As is well known, th
typical test example is the simulation of the solar system. Therefore, there is presently a
interest in geometric integration of differential equations as, for instance, symplectic integrat
Hamiltonian systems.17,48
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Discrete variational integrators appear as a special kind of geometric integrators. Thes
grators have their roots in the optimal control literature in the 1960s and 1970s~Jordan and
Polack,20 Cadzow,8 Maeda36,37! and in the 1980s by Lee,26,27 Veselov.44,50 In these papers, ther
appear the discrete action sum, discrete Euler–Lagrange equations, discrete Noether theor, . . . .
Although this kind of symplectic integrators have been considered for conserv
systems,18,21,39,43,51,52it has been recently shown how discrete variational mechanics can inc
forced or dissipative systems,22,43 holonomic constraints,16,43 time-dependent systems,31,43 fric-
tional contact,47 and nonholonomic constraints~see Refs. 10, 12!. Moreover, it has also bee
discussed by reduction theory,5,6,41,42extension to field theories,19,40and quantum mechanics.46 All
these integrators have demonstrated exceptionally good long time behavior and the researc
topic is interesting for numerical and geometric considerations.

At this point, we will describe the discrete variational calculus, following the approach in
51 ~see also Refs. 2, 15!. A discrete Lagrangian is a mapLd :Q3Q→R ~this discrete Lagrangian
may be considered as an approximation of the continuous LagrangianL:TQ→R). Define the
action sumSd :QN11→R corresponding to the LagrangianLd by

Sd5 (
k51

N

Ld~qk21 ,qk!,

whereqkPQ for 0<k<N. For any covectoraPT(x1 ,x2)* (Q3Q), we have a decompositiona

5a11a2 wherea iPTxi
* Q. Therefore,

dLd~q0 ,q1!5D1Ld~q0 ,q1!1D2Ld~q0 ,q1!.

The discrete variational principle or Cadzow’s principle states that the solutions of the dis
system determined byLd must extremize the action sum given fixed pointsq0 andqN . Extrem-
izing Sd over qk , 1<k<N21, we obtain the following system of difference equations:

D1Ld~qk ,qk11!1D2Ld~qk21 ,qk!50.

These equations are usually called thediscrete Euler–Lagrange equations. Under some regularity
hypothesis~the matrix (D12Ld(qk ,qk11)) is regular!, this implicit system of difference equation
defines a discrete flowY:Q3Q→Q3Q, by Y(qk21 ,qk)5(qk ,qk11).

The geometrical properties corresponding to this numerical method are obtained defini
discrete Legendre transformation associated toLd by

FLd :Q3Q→T* Q, ~q0 ,q1!°~q0 ,2D1Ld~q0 ,q1!!,

and the 2-formvd5FLd* vQ , wherevQ is the canonical symplectic form onT* Q. The discrete
algorithm determined byY preserves the symplectic formvd , i.e., Y* vd5vd . Moreover, if the
discrete Lagrangian is invariant under the diagonal action of a Lie groupG, then the discrete
momentum mapJd :Q3Q→g* defined by ^Jd(qk ,qk11),j&5^D2Ld(qk ,qk11),jQ(qk11)& is
preserved by the discrete flow. Therefore, these integrators are symplectic-momentum pre
integrators. Here,jQ is the fundamental vector field determined byjPg.

Another alternative approach to discrete variational calculus comes from the classical
of generating functions~see, for instance, Ref. 1!. Since (T* Q,vQ) is an exact symplectic mani
fold, wherevQ is the canonical symplectic form ofT* Q andvQ52duQ , the symplectic flow
Fh :T* Q→T* Q of a Hamiltonian vector fieldXH consists of canonical transormations, and th
Graph(Fh), the graph ofFh , is a Lagrangian submanifold of the symplectic manifold (T* Q
3T* Q,V) whereV5p2* vQ2p1* vQ . Here, we denote byp i :T* Q3T* Q→T* Q, i 51,2 the
canonical projections. Therefore, denotingQ5p2* uQ2p1* uQ we have that

i Fh
* V52diFh

* Q50,
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wherei Fh
:Graph(Fh)°T* Q3T* Q is the canonical inclusion. Then, at least locally, there ex

a functionS h:Graph(Fh)→R such thati Fh
* Q5dS h . Taking (qi ,pi) as natural coordinates in

Graph(Fh) and (qi ,pi ,qi ,pi) the coordinates inT* Q3T* Q, then,S h is locally a function of the
(q,p) coordinates. Hence, along Graph(Fh), we haveqi5qi(q,p) andpi5pi(q,p) and moreover

pi dqi2pidqi5dS h~q,p!.

Assume that in a neighborhood of some pointxPGraph(Fh), we can change this system o
coordinates by new independent coordinates (qi ,qi) ~the local condition is that det(]q/]p)Þ0). In
such a case, the functionS h can be locally expressed asS h5S h(q,p)5Sh(q,q). The function
Sh(q,q) will be called agenerating function of the first kindof the canonical transformationFh .
Moreover,

H pi52
]Sh

]qi ,

pi5
]Sh

]qi .

A nice and useful interpretation of the discrete Euler-Lagrange equations is the follo
theorem.23,33

Theorem 1.1: Let the function SNh be defined by

SNh~q0 ,qN!5 (
k50

N21

Sh~qk ,qk11!,

where qk , 1<k<N21, are stationary points of the right-hand side, that is

05D2Sh~qk21 ,qk!1D1Sh~qk ,qk11!, 1<k<N21, ~4!

then SNh is a generating function of first class for FNh :T* Q→T* Q, for h sufficiently small and
where FNh denotes the flow of XH over time Nh.

Moreover, if we start with a regular Lagrangian functionL:TQ→R, andH:T* Q→R is the
locally associated Hamiltonian, then we also have the following result~for example, see Ref. 33!.

Proposition 1.2: A generating function of the first kind for Fh is given by

Sh~q0 ,q1!5E
0

h

L~q~ t !,q̇~ t !! dt,

where q(t) is a solution of the Euler–Lagrange equations such that q(0)5q0 and q(h)5q1 .
The conclusion is that the discrete variational calculus reduces to taking an approxima

the generating functionSh. From this approximation, we obtain a new Lagrangian submanifol
T* Q3T* Q and the relation between subsequent steps is given by~4! for the new generating
function, which are precisely the discrete Euler–Lagrange equations. The symplecticity and
ervation of momentum are now direct consequences of this description.

C. Introduction to nonholonomic integrators

In a recent paper, Corte´s and Martı´nez12 have proposed a construction of nonholonom
integrators which is useful for numerical considerations. Their construction is based on thdis-
crete Lagrange–D’Alembert’s principle. Assuming that the constraints are given by a distribut
D, this principle states that

~D1Ld~qk ,qk11!1D2Ld~qk21 ,qk!! idqk
i 50, 1< i<N21,
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wheredqkPDqk
and, in addition (qk ,qk11)PDd . HereDd denotes a discrete constraint spa

Dd,Q3Q. This integrator has a good performance and naturally inherits some geometric
erties of the continuous problem. Observe that the method is based on the discretization
Lagrangian and a coherent discretization of the constraints, and both determine the discre
straint forces.

Alternatively, we propose a nonholonomic integrator based also on the discretization
Lagrangian function~in a more precise sense, we discretize the action function! but now we take
a coherent discretization of the constraint forces and both determine the discrete constrai
manifold. This method gives us, in general, different integrators from those in Ref. 12. Th
considerations of the previous section will be our starting point to study nonholonomic integr
and our equations will be conceptually equivalent to the proposed for systems with external
~see Ref. 43!. In the particular case of mechanical systems with linear constraint in the veloc
we study a subclass of our family of nonholonomic integrators with the property of preservat
the original nonholonomic constraints.

II. GEOMETRICAL FORMULATION OF NONHOLONOMIC SYSTEMS

Let Q be an-dimensional differentiable manifold, with local coordinates (qi). The tangent
bundle TQ, with induced coordinates (qi ,q̇i), is equipped with two fundamental geometric
objects:34 the Liouville vector fieldD and the vertical endomorphismS. In natural bundle coor-
dinates we have

D5q̇i
]

]q̇i , S5dqi
^

]

]q̇i .

Consider a Lagrangian system, with LagrangianL:TQ→R, subject to nonholonomic constraint
defined by a submanifoldD of the velocity phase spaceTQ. We will assume that dimD52n
2m and thatD is locally described by the vanishing ofm independent functionsfa ~the ‘‘con-
straint functions’’!.

In geometrical terms, the D’Alembert’s principle~or Chetaev’s principle for nonlinear con
straints! implies that the constraint forces, regarded as 1-forms onTQ alongD, take their values
in the subbundleS* (TDo) of T* TQ, whereTDo denotes the annihilator ofTD in T* TQ. In an
intrinsic way, the equations of motion can be written as~see Refs. 28, 30!

~ i XvL2dEL! uDPS* ~TDo!,

XuDPTD,

wherevL is the Poincare´–Cartan 2-form defined byvL52d(S* (dL)) andEL5D(L)2L is the
energy function.

In what follows we will also assume that the followingadmissibility conditionholds

dimTDo5dimS* ~TDo!.

This essentially means that the matrix (]fa/]q̇i) has rankm everywhere.
We now turn to the Hamiltonian description of the nonholonomic system on the cotan

bundle T* Q of Q.3,25,38 The canonical coordinates onT* Q are denoted by (qi ,pi), and the
cotangent bundle projection will bepQ :T* Q→Q. Assuming the regularity of the Lagrangian, w
have that the Lagrangian and Hamiltonian formulations are locally equivalent. If we suppo
addition, that the LagrangianL is hyperregular, then the Legendre transformationLeg:TQ
→T* Q,(qi ,q̇i)°(qi ,pi5]L/]q̇i), is a global diffeomorphism. The constraint functions onT* Q
becomeCa5fa+Leg21, i.e.,
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Ca~qi ,pi !5faS qi ,
]H

]pi
D ,

where the HamiltonianH:T* Q→R is defined byH5EL+Leg21. Since locallyLeg21(qi ,pi)
5(qi ,]H/]pi), then

H5piq̇
i2L~qi ,q̇i !,

whereq̇i is expressed in terms ofqi andpi usingLeg21.
The equations of motion for the nonholonomic system onT* Q can now be written as follows

H q̇i5
]H

]pi
,

ṗi52
]H

]qi 2la

]Ca

]pj
Hj i ,

~5!

together with the constraint equationsCa(q,p)50, whereHi j are the components of the invers
of the matrix (H i j )5(]2H/]pi]pj ). Note that

S ]Ca

]pj
Hj i D ~q,p!5S ]fa

]q̇i +Leg21D ~q,p!.

The symplectic 2-formvL is related, via the Legendre map, with the canonical symplectic f
vQ on T* Q. Let M denote the image of the constraint submanifoldD under the Legendre
transformation, and letF be the distribution onT* Q alongM , whose annihilator is given by

Fo5Leg* ~S* ~TDo!!.

Observe thatFo is locally generated by them independent 1-forms

ma5
]Ca

]pi
H i j dqj , 1<a<m.

Therefore, the ‘‘Hamilton equations’’ for the nonholonomic system can be rewritten in intr
form as

~ i XvQ2dH! uMPFo,

XuMPTM. ~6!

Suppose in addition that the followingcompatibility condition F'ùTM5$0% holds, where ‘‘'’’
denotes the symplectic orthogonal with respect tovQ . Observe that, locally, this condition mean
that the matrix

~Cab!5S ]Ca

]pi
H i j

]Cb

]pj
D ~7!

is regular. On the Lagrangian side, the compatibility condition is locally written as

det~C̃ab!5detS ]fa

]q̇i Wi j
]fb

]q̇ j DÞ0, ~8!

whereWi j are the entries of the Hessian matrix (]2L/]q̇i]q̇ j )1< i , j <n . The compatibility condition
is not too restrictive, since, taking into account the admissibility assumption, it is trivially ver
by the usual systems of mechanical type~i.e., with a Lagrangian of the form kinetic minu
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potential energy!, where theHi j represent the components of a positive definite Riemann
metric. The compatibility condition guarantees in particular the existence of a unique solut
the constrained equations of motion~6! which, henceforth, will be denoted byXH,M on the
Hamiltonian side andjL,D on the Lagrangian side.

Moreover, if we denote byXH the Hamiltonian vector field ofH, i.e., i XH
vQ5dH then, using

the constraint functions, we may explicitely determine the Lagrange multipliersla as

la52CabXH~Cb!.

Next, writing the 1-form

L52CabXH~Cb!
]Ca

]pj
H j i dqi ,

the nonholonomic equations are equivalently rewritten as

H q̇i5
]H

]pi
,

ṗi52
]H

]qi 2L i ,

~9!

for initial conditions (q0 ,p0)PM andL5L i dqi . We also denote byL̃5Leg* (L) the 1-form on
TQ wich represents the constraint force once the Lagrange multipliers have been determin
Now, consider the flowFt :M→M , tPI #R of the vector fieldXH,M , solution of the nonholo-
nomic problem.

Since~9! is geometrically rewritten as

i XH,M
vQ5dH1L,

( i jL,D
vL5dEL1L̃, with L̃5Leg* L, on the Lagrangian side! then

LXH,M
uQ5d~ i XH,M

uQ2H !2L,

or, equivalently,

LXH,M
uQ5d~L+Leg21!2L.

Now, from the dynamical definition of the Lie derivative, we have

Ft* ~LXH,M
uQ!5

d

dt
~Ft* uQ!,

and integrating, we obtain the following expression, with some abuse of notation,

Fh* uQ2uQ5dS E
0

h

L+F̃ t dtD 2E
0

h

Ft* L, ~10!

whereF̃ t is the flow of the vector fieldjL,D . In the following sections, we will study geometri
integrators which verify a discrete version of Eq.~10!.
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III. ‘‘GENERATING FUNCTIONS’’ AND NONHOLONOMIC MECHANICS

At this point, we will follow similar arguments for the construction of generating functions
symplectic or canonical maps.1 However, because of Eq.~10!, we have that the nonholonomi
flow is not a canonical transformation, i.e.,

Fh* vQ2vQ5dS E
0

h

Ft* L D . ~11!

This description will allow us to construct a new family of nonholonomic integrators for Eq.~3!.
Denote byp i :T* Q3T* Q→T* Q, i 51,2, the canonical projections. Consider the followi
forms:

Q5p2* uQ2p1* uQ,

V5p2* vQ2p1* vQ52dQ.

Denote by i Fh
:Graph(Fh)�T* Q3T* Q the inclusion map and observe that Graph(Fh),M

3M . Then, from~11!

i Fh
* V5~p1uGraph(Fh)

!* ~Fh* vQ2vQ!5~p1uGraph(Fh)
!* FdS E

0

h

Ft* L D G ,
or, from ~10!,

i Fh
* Q5~p1uGraph(Fh)

!* FdS E
0

h

L+F̃ t dtD 2E
0

h

Ft* LG .
Let (q0 ,p0 ,q1 ,p1) be coordinates inT* Q3T* Q in a neighborhood of some point in Graph(Fh).
If ( q0 ,p0 ,q1 ,p1)PGraph(Fh) then Ca(q0 ,p0)50 and Ca(q1 ,p1)50. Moreover, along
Graph(Fh), q15q1(q0 ,p0) andp15p1(q0 ,p0),

p1 dq12p0dq05dS E
0

h

L~q~ t !,q̇~ t !! dtD 2E
0

h

L̃~q~ t !,q̇~ t !!, ~12!

where (q(t),q̇(t))5F̃ t(q0 ,q̇0) with Leg(q0 ,q̇0)5(q0 ,p0). Here, F̃ t denotes the flow ofjL,D .
Equation~12! is satisfied along Graph(Fh).

Assume that, in a neighborhood of some pointxPGraph(Fh), we can change this system o
coordinates to a new coordinates (q0 ,q1). Denote by

Sh~q0 ,q1!5E
0

h

L~q~ t !,q̇~ t !! dt,

whereq(t) is a solution curve of the nonholonomic problem withq(0)5q andq(h)5q1 . This
solution always exists for adequate values ofq0 andq1 . In fact, observe that

q15q01h
]H

]p
~q0 ,p0!1o~h2!,

hence, since det(]2H/]pi]pj)Þ0, we locally have thatp05p0(q0 ,q1 ,h). But, in addition,
(q0 ,p0)PM ; thereforewa(q0 ,q1 ,h)5Ca(q0 ,p0(q0 ,q1 ,h))50. Then, the curve

~q~ t !,q̇~ t !!5Leg21~Ft~q0 ,p0~q0 ,q1 ,h!!!,

verifies the required assumptions ifwa(q0 ,q1 ,h)50.
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Thus, we deduce that

5 p052
]Sh

]q0
1E

0

h

L̃~q~ t !,q̇~ t !!
]q

]q0
,

p15
]Sh

]q1
2E

0

h

L̃~q~ t !,q̇~ t !!
]q

]q1
,

~13!

where (q0 ,q1) verifies the constraint functionswa(q0 ,q1 ,h)50, now explicitly defined by

wa~q0 ,q1 ,h!5CaS q0 ,2
]Sh

]q0
~q0 ,q1!1E

0

h

L̃~q~ t !,q̇~ t !!
]q

]q0
D , 1<a<m, ~14!

with q(t) solution of the nonholonomic problem withq(0)5q0 andq(h)5q1 .
Next, we will show how the group composite law of the flowFh

is expressed in terms of the corresponding ‘‘generating functions’’Sh. Moreover, the following
Theorem will result in a new construction of numerical integrators for nonholonomic mech
when we change the ‘‘generating function’’ and the constraint forces by appropriate appro
tions. As a generalization of Theorem 1.1 we have the following:

Theorem 3.1:The function SNh, the ‘‘generating function’’ for FNh , is given by

SNh~q0 ,qN!5 (
k50

N21

Sh~qk ,qk11!,

where qk , 1<k<N21, are points verifying

D2Sh~qk21 ,qk!1D1Sh~qk ,qk11!5E
0

h

L̃~q~ t !,q̇~ t !!
]q

]q1
1E

h

2h

L̃~q~ t !,q̇~ t !!
]q

]q0
, ~15!

and q(t) is a solution curve of the nonholonomic problem with q(0)5qk21 and q(h)5qk ~re-
spectively, q(h)5qk and q(2h)5qk11) for the first integral (resp., second integral) of the righ
hand side.

Proof: By a recursion argument, it is suffices to prove the result forN52; that is,

S2h~q0 ,q2!5Sh~q0 ,q1!1Sh~q1 ,q2!,

whereq1 verifies condition~15!.
Since

p1 dq12p0 dq05dSh~q0 ,q1!2E
0

h

L̃~q~ t !,q̇~ t !!,

p2 dq22p1 dq15dSh~q1 ,q2!2E
h

2h

L̃~q~ t !,q̇~ t !!,

then

p2 dq22p0 dq05d~Sh~q0 ,q1!1Sh~q1 ,q2!!2E
0

h

L̃~q~ t !,q̇~ t !!2E
h

2h

L̃~q~ t !,q̇~ t !!.

Since the variablesq1 do not appear on the left-hand side term, it follows that
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05D2S1
h~q0 ,q1!1D1S2

h~q1 ,q2!2E
0

h

L̃~q~ t !,q̇~ t !!
]q

]q1
2E

h

2h

L̃~q~ t !,q̇~ t !!
]q

]q0
, ~16!

and for a choice ofq1 verifying ~16!, then

S2h~q0 ,q2!5Sh~q0 ,q1!1Sh~q1 ,q2!

is a ‘‘generating function of the first kind’’ ofF2h because

p2 dq22p0 dq05dS2h~q0 ,q2!2E
0

2h

L̃~q~ t !,q̇~ t !!.

j

Equation~15! determines a implicit system of difference equations which permits us to obtaq2

from the initial dataq0 andq1 . An interesting consequence of this is that these equations pre
the constraint submanifold determined by the constraintswa50, 1<a<m. In fact, if
wa(q0 ,q1 ,h)50 ~that isCa(q0 ,p0)50) then

wa~q1 ,q2 ,h!5CaS q1 ,
]Sh

]q1
~q0 ,q1!2E

0

h

L̃~q~ t !,q̇~ t !!
]q

]q1
D ,

and now, applying~13!, we obtain that

wa~q1 ,q2 ,h!5Ca~q1 ,p1!50,

sinceFh(q0 ,p0)5(q1 ,p1) and the flow preserves the constraints.
The next remark will be a key result for the construction of nonholonomic integrators.
Remark 3.2:Replace Eq.~13! by

5 p052
]S̃h

]q0
1a0

h~q0 ,q1!,

p15
]S̃h

]q1
2a1

h~q0 ,q1!,

~17!

where S̃h is a function of (q0 ,q1) coordinates andah5a0
h dq01a1

h dq1 , and replace the con
straints functions by

w̃a~q0 ,q1 ,h!5CaS q0 ,2
]S̃h

]q0 1a0
h~q0 ,q1! D , ~18!

that is,

p1 dq12p0 dq05dS̃h2ah,

along w̃a50.
Assume that

detS ]2S̃h

]q0]q1
2

]a0
h

]q1
DÞ0, ~19!

then, applying the implicit function theorem we have that, locally,q15q1(q0 ,p0), and therefore,
the mapping
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Gh~q0 ,p0!5~q1 ,p1!

is well-defined.
Consider the mappingGNh defined by

Following a similar argument to Theorem 3.1, Graph(GNh) is described by

5 p052
]S̃Nh

]q0
~q0 ,qN!1a0

Nh~q0 ,qN!,

pN5
]S̃Nh

]qN
~q0 ,qN!2a1

Nh~q0 ,qN!,

~20!

where S̃Nh(q0 ,qN)5(k50
N21S̃h(qk ,qk11) and aNh(q0 ,qN)5(k50

N21ah(qk ,qk11). Here, theqk’s,
1<k<N21, verify

D2S̃h~qk21 ,qk!1D1S̃h~qk ,qk11!5a1
h~qk21 ,qk!1a0

h~qk ,qk11!, 1<k<N21. ~21!

A. Constraint error analysis

As we have seen, if our ‘‘generating function’’ isSh, then we have exact preservation of th
constraintswa. We now investigate what happens when the ‘‘generating function’’ is an app
mation. We follow similar arguments to those in Sec. III C in Ref. 43.

Assume thatQ, and alsoTQ and T* Q, are finite-dimensional vector spaces with inn
product^.,.& and corresponding normi i .

Consider an ‘‘approximated generating function’’S̃h and an approximated discrete constra
forceah5a i

h dqi for the nonholonomic problem, both of orderr ~all the functions are assumed t
be C2); hence, there exists an open setU,D with compact closure and constantsc,di.0, 1< i
<n, andH.0 such that

S̃h~q0 ,q1!5Sh~q0 ,q1!1C~q0 ,q1 ,h!hr 11, ~22!

a i
h5E

0

h

L̃ i~q~ t !,q̇~ t !! dt1Di~q0 ,q1 ,h!hr 11, ~23!

for all solutionq(t) of the nonholonomic problem withq(0)5q0 , q(h)5q1 and initial condition
belonging to U and h<H. Here C and Di , 1< i<n, are smooth functions such tha
iC(q0 ,q1 ,h)i<c and iDi(q0 ,q1 ,h)i<di on U.

Taking derivatives we have that

]S̃h

]q0
~q0 ,q1!5

]Sh

]q0
~q0 ,q1!1

]C

]q0
~q0 ,q1 ,h!hr 11

and also

a0
h~q0 ,q1!5~a0! i

h ]qi

]q0
5E

0

h

L̃ i~q~ t !,q̇~ t !!
]qi

]q0
dt1(

i 51

n
]Di

]q0
~q0 ,q1 ,h!hr 11,

where nowah5a0
h dq01a1

h dq1 .
Therefore, we deduce that
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w̃a~q0 ,q1 ,h!5CaS q0 ,2
]S̃

]q0 1a0~q0 ,q1! D
5CaS q0 ,2

]Sh

]q0
1E

0

h

L̃~q~ t !,q̇~ t !!
]q

]q0
D 1Ea~q0 ,q1 ,h!hr 11

5Ca~q0 ,p0!1Ea~q0 ,q1 ,h!hr 11

5Ea~q0 ,q1 ,h!hr 11,

whereEa are bounded functions. Thus, the discrete algorithm preserves the constraints up to
r .

B. Local error analysis

Assuming that

detS ]2S̃h

]q0]q1
2

]a0
h

]q1
DÞ0, ~24!

we obtain a discrete flowGh:V#T* Q→T* Q. Now, using Eqs.~13!, ~22!, and ~23! we deduce
that

5 p052
]Sh

]q0
1E

0

h

L̃~q~ t !,q̇~ t !!
]q

]q0
5

]S̃h

]q0
~q0 ,q1!1a0

h~q0 ,q1!1E0~q0 ,q1 ,h!hr 11,

p15
]Sh

]q1
2E

0

h

L̃~q~ t !,q̇~ t !!
]q

]q1
5

]S̃h

]q1
~q0 ,q1!2a1

h~q0 ,q1!1E1~q0 ,q1 ,h!hr 11,

~25!

whereE0 andE1 are smooth and bounded functions.
Applying the implicit function theorem to~25!, it is easy to show, from conditions~22! and

~23!, thatGh is an integrator ofXH,M of order r ~see for details Theorem 2.3.1 in Ref. 43!.

IV. CONSTRUCTION OF NONHOLONOMIC INTEGRATORS

In what follows and for simplicity assume thatQ is a vector space. SinceSh(q0 ,q1)
5*0

hL(q(t),q̇(t)) dt, whereq(t) is a nonholonomic solution withq(0)5q0 andq(h)5q1 , using
Remark 3.2, we can obtain nonholonomic integrators by taking adequate approximations
‘‘generating function’’Sh and the extra-term*0

hL̃(q(t),q̇(t)).
Consider, for instance, the approximation

Sa
h~q0 ,q1!5hLS ~12a!q01aq1 ,

q12q0

h D , ~26!

for some parameteraP@0,1#. ~In general, we will writeSa
h(q0 ,q1)'Sh(q0 ,q1).)

A natural approximation of the constraint forces adapted to our choice of approximation fSh

are

E
0

h

L̃~q~ t !,q̇~ t !!
]q

]q0
'~12a!hL̃S ~12a!q01aq1 ,

q12q0

h D ,

E
0

h

L̃~q~ t !,q̇~ t !!
]q

]q1
'ahL̃S ~12a!q01aq1 ,

q12q0

h D .

Consequently, Eqs.~21! give us the following numerical method for nonholonomic systems:
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D2Sa
h~qk21 ,qk!1D1Sa

h~qk ,qk11!5ahL̃S ~12a!qk211aqk ,
qk2qk21

h D
1~12a!hL̃S ~12a!qk1aqk11 ,

qk112qk

h D ,

1<k<N21,

with initial condition satisfying

w̃a~q0 ,q1 ,h!5CaS q0 ,2
]Sa

h

]q0
~q0 ,q1!1~12a!hL̃S ~12a!q01aq1 ,

q12q0

h D D 50.

Remark 4.1:Obviously, it is possible to produce a wider variety of discrete methods.
example,

Ssym,a
h 5 1

2 Sa
h1 1

2 S12a
h ,

gives a second-order method for anyaP@0,1#. Also, higher-order approximations of the functio
Sh may be considered.

Example 4.2: Nonholonomic particle: Consider the LagrangianL:TR3→R

L5 1
2 ~ ẋ21 ẏ21 ż2!2~x21y2!,

subject to the constraint

f5 ż2yẋ50.

It is easy to compute the nonholonomic differential equations

ẍ52
2x1yẋẏ

11y2 ,

ÿ522y,

z̈5
22xy1 ẋẏ

11y2 ,

where now the constraint 1-form is

L̃5
2xy2 ẋẏ

11y2 ~dz2ydx!.

The system being simulated here is purely conservative and so there should be no loss of
over time.

Taking

S1/2
h ~x0 ,y0 ,z0 ,x1 ,y1 ,z1!5

h

2 F S x12x0

h D 2

1S y12y0

h D 2

1S z12z0

h D 2G2S x01x1

2 D 2

2S y01y1

2 D 2

,

we obtain the nonholonomic integrator
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x12x0

h
2h

x11x0

2
2

x22x1

h
2h

x21x1

2
52

h

2F ~x11x0!~y11y0!

2
2

~x12x0!~y12y0!

h2

11S y11y0

2 D 2 •

y11y0

2

1

~x21x1!~y21y1!

2
2

~x22x1!~y22y1!

h2

11S y21y1

2 D 2 •

y21y1

2 G ,

y12y0

h
2h

y11y0

2
2

y22y1

h
2h

y21y1

2
50,

z12z0

h
2

z22z1

h
5

h

2F ~x11x0!~y11y0!

2
2

~x12x0!~y12y0!

h2

11S y11y0

2 D 2

1

~x21x1!~y21y1!

2
2

~x22x1!~y22y1!

h2

11S y21y1

2 D 2 G .

The constraint function onR33R3 is

w̃a~x0 ,y0 ,z0 ,x1 ,y1 ,z1 ,h!

52
z12z0

h
2

h

2

~x11x0!~y11y0!

2
2

~x12x0!~y12y0!

h2

11S y11y0

2 D 2

1y0F x12x0

h
1h

x11x0

2
2

h

2

~x11x0!~y11y0!

2
2

~x12x0!~y12y0!

h2

11S y11y0

2 D 2 •

y11y0

2 G .

Figures 1 and 2 show the preservation of energy as a key point of comparison of com
tional implementations of the method exposed above to other methods. In Fig. 3 we sho
behavior of the constraint function.

Remark 4.3: Generating function approach and discrete Lagrange–d’Alembert principle: A
discussion:As is well known, a remarkable feature of symplectic transformations is that it ca
expressed in terms of a single real-valued functionS, the generating function of the canonic
transformation. Therefore, any symplectic integrator has associated a generating function
taking adequate approximations of the generating function associated to the exact flow
Hamiltonian system, we generate symplectic integrators~see, for instance, symplectic and sym
plectic partitioned Runge–Kutta methods in Ref. 17! by using generating functions of the firs
kind, second kind, and so on. It is also possible to construct symplectic numerical metho
higher order considering better approximations of the generating function in the Hamilton–J
equation~see Ref. 9!.
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As we have said in Sec. I B, the discrete variational approach and the generating fu
approach are in fact the same on generating function of the first kind. That is, considerin
action integral as a function of (q0 ,q1), for the solutionq(t) of the Euler–Lagrange equations w
have that

Sh~q0 ,q1!5E
0

h

L~q~ t !,q̇~ t !! dt

~this is precisely, the exact discrete Lagrangian following the notation in Marsden and We43!.
Therefore, a discrete LagrangianLd is a discrete approximation of the above action integral or
other words, an approximated generating function forSh.

FIG. 1. Comparison of the method introduced here to the traditional Runge–Kutta method of fourth order, show
improvement in several orders of magnitude. Observe that, in this scale, the value of the energy in each ste
algorithm is practically undistinguishable from the initial value of the energy, therefore our method does not artifi
dissipate energy.

FIG. 2. A comparison between our method and the one that appeared in Refs. 10 and 12. A similar behavior is o
Nevertheless, a slightly better behavior can also be appreciated, where the proposed algorithm shows on averag
preservation of the original energy.
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In Sec. III B of Ref. 43, the authors discuss Discrete variational mechanics with force
using the so-calledDiscrete Lagrange–d’Alembert principle, they simulate a given forced La
grangian or Hamiltonian system choosing discrete Lagrangians and discrete forces to appro
the exact quantities.

Formally, the approach followed in Secs. III and IV is equivalent to the approach given in
43 considering a nonholonomic system as a Lagrangian system with forces determined w
constraint equations. However, a new insight is gained from the generating function app
First, our theory is ready for the constructions of new numerical integrators for nonholon
systems using Hamilton–Jacobi theory for nonholonomic systems~see Ref. 14! or even ‘‘gener-
ating functions’’ for nonholonomic system of different kinds. Observe that, for instance, sym
tic Runge–Kutta methods were generated using generating functions of the third kind~see Ref.
48!. Second, since symplectic integrators based on generating functions is strongly establi
numerical analysis research, we think that our presentation will be clearer than the usual
discrete Lagrangians frequently used by the geometrical mechanics researchers.

V. MECHANICAL SYSTEMS WITH LINEAR CONSTRAINTS: GEOMETRIC NUMERICAL
METHODS PRESERVING CONSTRAINTS

In Secs. III and IV we have constructed a family of numerical integrators for nonholon
mechanics; these integrators do not preserve the constraint but we show that the violation
constraint is very small. This answer is not completely satisfactory for a numerical method
nonholonomic system~as, for instance, rolling constraints in wheeled vehicles!, therefore we
impose the preservation of the nonholonomic constraints obtaining a subfamily of the
numerical integrators in this section. As we shall show more insight is performed by restr
ourselves to the particular~but general in a mechanical sense! case of Lagrangians of mechanic
type (L5T2V) and constraints linear on velocities.

Therefore, suppose that the mechanical system, given by the LagrangianL:TQ→R

L~vq!5 1
2 g~vq ,vq!2V~q!

is subjected to nonholonomic constraintsfa:TQ→R, 1<a<m. Since the nonholonomic con
straints usually found in mechanics are linear in the velocities, we will assume that

FIG. 3. For the same initial conditions and data, the following graph shows very good behavior of the constraint fu
evolution with time~notice the small scale!.
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fa~q,q̇!5m i
a~q!q̇i , 1<a<m.

From a geometric point of view, these linear constraints are determined by prescribing a di
tion D on Q of dimensionn2m such that the annihilator ofD is locally given by

D o5^ma5m i
adqi ;1<a<m& .

In this manner, the solutions of the nonholonomic Lagrangian system satisfy

¹ċ(t)ċ~ t !52gradV~c~ t !!1l~ ċ~ t !!, ċ~ t !PDc(t), ~27!

wherel is a section ofD' along c, andD' stands for the orthogonal complement ofD with
respect to the metricg.

Sinceg is a Riemannian metric, them3m matrix (Cab)5(m i
agi j m j

b) is symmetric and regu-
lar. Therefore, we can explicitly determine

l~qi~ t !,q̇i~ t !!5CabS S 2G jk
i q̇ j q̇k2gi j

]V

]qj Dm i
a1q̇i q̇ j

]m i
a

]qj DZb, ~28!

where (Cab) is the inverse matrix of (Cab), G jk
i are the Christoffel components and the vec

field Za is defined by

g~Za,Y!5ma~Y!, for all vector fieldY, 1<a<m,

that is,Za is the gradient of the 1-formma. Thus,D'5^Za&, 1<a<m. In local coordinates, we
have

Za5gi j m i
a ]

]qj .

By using the metricg and the distributionD we can obtain two complementary projectors

P:TQ→D,

Q:TQ→D',

with respect tog. The projectorQ is locally described by

Q5CabZ
a

^ mb.

Using these projectors we can obtain the equations of motion as follows. A curvec(t) is a motion
for the nonholonomic system if it satisfies the constraints, say,fa( ċ(t))50, for all a, and, in
addition, the ‘‘projected equation of motion,’’

P~¹ċ(t) ċ~ t !!52P~gradV~c~ t !!! ~29!

is fulfilled. But these conditions are equivalent to

ċ~ t !PDc(t), ¹̄ċ(t)ċ~ t !52P~gradV~c~ t !!!,

where¹̄ is the modified linear connection defined by

¹̄XY5¹XY1~¹XQ!~Y!

for all vector fieldsX andY on Q.
Since the constraints are linear then, from~14!
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2m i
a~q0!gi j ~q0!

]Sh

]q0
j ~q0 ,q1!1m i

a~q0!gi j ~q0!E
0

h

L̃~q~ t !,q̇~ t !!
]q

]q0
j 50, 1<a<m, ~30!

or, in terms of projectors,

Quq0
~D1Sh~q0 ,q1!!)5Quq0S D1E

0

h

L̃~q~ t !,q̇~ t !! D . ~31!

Moreover, the dynamics preserves the constraintsCa which implies that

CaS q1 ,
]Sh

]q1
~q0 ,q1!2E

0

h

L̃~q~ t !,q̇~ t !!
]q

]q1
D 50,

or, in other words,

Quq1
~D2Sh~q0 ,q1!!5Quq1S D2E

0

h

L̃~q~ t !,q̇~ t !! D . ~32!

Therefore, Eqs.~31! and ~32! show that the preservation of the exact constraints is equivale
give a prescription about the relationship between the ‘‘generating function’’ and the cons
forces.

Thus, Eq.~15!,

D2Sh~qk21 ,qk!1D1Sh~qk ,qk11!5E
0

h

L̃~q~ t !,q̇~ t !!
]q

]q1
1E

h

2h

L̃~q~ t !,q̇~ t !!
]q

]q0
,

can be rewritten using expression~32! as follows:

Puqk
~D2Sh~qk21 ,qk!!1D1Sh~qk ,qk11!5PuqkS E0

h

L̃~q~ t !,q̇~ t !!
]q

]q1
D 1E

h

2h

L̃~q~ t !,q̇~ t !!
]q

]q0
.

~33!

Now, considering an approximated generating functionS̃h and an approximate constraint forc
ah5a0

h(q0 ,q1) dq01a1
h(q0 ,q1) dq1 , as in Remark 3.2, from the previous discussion, we n

substitute the approximated constraint force by

ãh5a0
h~q0 ,q1! dq01Puq1

~a1
h~q0 ,q1! dq1!1Quq1

~D2S̃h~q0 ,q1!!).

Therefore forS̃h and ãh, Eqs.~21! are rewritten as

Puqk
~D2S̃h~qk21 ,qk!!1D1S̃h~qk ,qk11!5Puqk

~a1
h~qk21 ,qk!!1a0

h~qk ,qk11!, ~34!

for 1<k<N21. The importance of Eq.~34! is that they generate an algorithm which automa
caly preserves the exact constraint functionsCa. In fact, if we apply the projectorQ to Eq. ~34!
we obtain

Quqk
~D1Sh~qk ,qk11!!5Quqk

~a0
h~qk ,qk11!! ~35!

or
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w̃a~qk ,qk11 ,h!5CaS qk ,2
]S̃h

]q0
~qk ,qk11!1a0

h~qk ,qk11! D 50,

that is, the constraints are satisfied.
Therefore the geometric algorithm that we have obtained work as follows:

Puqk
~D2S̃h~qk21 ,qk!!1D1S̃h~qk ,qk11!5Puqk

~a1
h~qk21 ,qk!!1a0

h~qk ,qk11!,

with initial condition satisfying:

w̃a~q0 ,q1 ,h!50.

Choosinga0
h and a1

h in D 0, we obtain equations for nonholonomic integrators with more g
metric flavor:

Geometric nonholonomic integrator:

Puqk
~D2S̃h~qk21 ,qk!1D1S̃h~qk ,qk11!!50 ~36!

which is interpreted as a discretization of Eq.~29!,

¹̄ċ(t)ċ~ t !52P~grad~V~c~ t !!!.

In a future work we will study from numerical and geometrical points of view this partic
subclass of geometric integrators.

Nonholonomic integrators preserving constraints:For the class of integrators introduced
Sec. IV, we find the following family of nonholonomic integrators preserving constraints:

Puqk
~D2Sa

h~qk21 ,qk!!1D1Sa
h~qk ,qk11!5ahPuqkS L̃S ~12a!qk211aqk ,

qk2qk21

h D D
1~12a!hL̃S ~12a!qk1aqk11 ,

qk112qk

h D ,

1<k<N21 ,

with initial conditions satisfying

2m i
a~q0!gi j ~q0!

]Sa
h

]q0
j ~q0 ,q1!1~12a!hm i

a~q0!gi j ~q0!L̃ j S ~12a!q01aq1 ,
q12q0

h D50.

Example 5.1 (The nonholonomic particle revisited):Constructing the previous algorithm fo
the nonholonomic particle, we obtain the following preserving constraint integrator:
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1

11y1
2 S x12x0

h
2h

x11x0

2 D2
x22x1

h
2h

x21x1

2
1

y1

11y1
2 S z12z0

h D

52
h

2F 1

11y1
2 •

~x11x0!~y11y0!

2
2

~x12x0!~y12y0!

h2

11S y11y0

2 D 2 •

y11y0

2

1

~x21x1!~y21y1!

2
2

~x22x1!~y22y1!

h2

11S y21y1

2 D 2 •

y21y1

2

2
y1

11y1
2

~x11x0!~y11y0!

2
2

~x12x0!~y12y0!

h2

11S y11y0

2 D 2 G y12y0

h

2h
y11y0

2
2

y22y1

h
2h

y21y1

2
50,

y1
2

11y1
2 S z12z0

h D2
z22z1

h
1

y1

11y1
2 S x12x0

h
2h

x11x0

2 D

5
h

2F y1
2

11y1
2

~x11x0!~y11y0!

2
2

~x12x0!~y12y0!

h2

11S y11y0

2 D 2 1

~x21x1!~y21y1!

2
2

~x22x1!~y22y1!

h2

11S y21y1

2 D 2

2
y1

11y1
2

~x11x0!~y11y0!

2
2

~x12x0!~y12y0!

h2

11S y11y0

2 D 2 •

y11y0

2 G
with initial conditions satisfying~see Fig. 4!

w̃a~x0 ,y0 ,z0 ,x1 ,y1 ,z1 ,h!

52
z12z0

h
2

h

2

~x11x0!~y11y0!

2
2

~x12x0!~y12y0!

h2

11S y11y0

2 D 2

1y0F x12x0

h
1h

x11x0

2
2

h

2

~x11x0!~y11y0!

2
2

~x12x0!~y12y0!

h2

11S y11y0

2 D 2 •

y11y0

2 G .

Remark 5.2:In numerical analysis, an approach to the numerical solution of differe
equations is by projecting into a subset of invariants. These projection techniques do not d
rate the convergence order of the method but they can, in some cases, destroy the good lo
behavior of the solution. However a different behavior arises in the projection techniques th
have constructed in this section.
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Observe that a remarkable feature of nonholonomic systems is the nonpreservation
symplectic form, therefore its flow does not act as symplectic transformations; in a geometri

LXH,M
vQ5dLÞ0.

In Sec. III, we have generated integrators verifying a discrete version of the previous equ
The use of projection techniques are adequate in this case, since werecover the geometrical
properties of the nonholonomic system.

In the continuous setting it is well known, for instance, in Ref. 30, how to obtain the solu
of nonholonomic systems from the free dynamics using projection techniques. Also, proje
techniques are used in a Riemannian setting, modifying the Levi–Civita connection to obt
affine connection which gives as the correct dynamics~see Ref. 11 and references therein!. This is
the main idea of Sec. V, where we show that projection techniques are useful for nonholo
systems. Observe, for instance, the integrator proposed in~36!. We take a variational integrato
and then symplectic~a bad property for a nonholonomic integrator!, and projecting orthogonally
the discrete Euler–Lagrange equations, we obtain a nonholonomic integrator.

VI. CONCLUSION

A new numerical algorithm has been proposed for nonholonomic mechanics. This algori
based in the underlying geometry of nonholonomic systems. For mechanical systems with
constraints, a geometric integrator preserving constraints is proposed.

In future work, we will explore reduction schemes for discrete systems using the approa
generating functions. It is also interesting to use generating functions of different kinds; in a
work,32 we have shown that generating functions of second class generate algorithms wh
symplectic~in some sense! for discrete optimal control theory~see also Ref. 33!. Moreover, we
may easily extend the generating function technique in order to consider variable time ste
and also the time-dependent case and it would be possible to use this formalism for classic
theories.

FIG. 4. For the same initial conditions and data, the graph shows the exact preservation of the constraint function e
with time of our algorithm.
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In this paper we investigate the Suslov problem in the case when the vector of
nonholonomic constraint coincides with the third principal axis of the body, and the
fixed point of the body lies in the principal plane defined by the third and the first
principal axes but is out of these axes. We called this version of the Suslov problem
the generalized Kozlov case, and we prove that in this case a third real meromor-
phic first integral functionally independent together with the energy and geometri-
cal integrals does not exist. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1644324#

I. INTRODUCTION

Let us consider the rotational motion of a rigid body around a fixed pointO in a constant
gravity field. The motion of the body is restricted by one nonholonomic constraint^a,v&50, where
v5(v1 ,v2 ,v3) is the body angular velocity anda is a vector fixed in the body. Here and belo
all vectors are taken with respect to the principal axes reference frame, and^•,•& denotes the
standard scalar product. This is the formulation of the classical Suslov problem30 which is one of
the most famous problems in nonholonomic mechanics. Equations of motion of the Suslov
lem have the following form:

Iv̇5Iv3v1eg3b1la,
~1!

ġ5g3v, ^a,v&50,

wherel is the Lagrange multiplier,I5diag(I1,I2,I3) is the matrix of inertia of the body;e is the
product of the mass of the body, the gravity constant and the distance between pointO and the
mass center of the body; vectorsg5(g1 ,g2 ,g3) andb5(b1 ,b2 ,b3) are the unit vertical vector
and the unit vector along the line connecting pointO with the center of mass of the body
respectively.

In this paper we assume that vectora coincides with one of the principal axes, and, witho
loss of generality, we can choose it as the third axis, i.e.,a5~0,0,1!. For such choice equations~1!
read

I 1v̇15e~g2b32g3b2!,

I 2v̇25e~g3b12g1b3!,

ġ152v2g3 , ~2!

a!Electronic mail: maciejka@astro.ia.uz.zgora.pl
b!Electronic mail: Maria.Przybylska@sophia.inria.fr; Maria.Przybylska@astri.uni.torun.pl
10650022-2488/2004/45(3)/1065/14/$22.00 © 2004 American Institute of Physics
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ġ25v1g3 ,

ġ35v2g12v1g2 .

The above system has two independent first integrals

I15 1
2~ I 1v1

21I 2v2
2!1e^b,g&, I25^g,g&.

Additionally, the above mentioned choice ofa guarantees that the phase flow of system~2!
preserves the standard measure inR55R2$v1 ,v2%3R3$g%, see Refs. 13 and 14. Thus, by th
theorem of Jacobi about the last multiplier,8 if there exists a third independent first integralI3

which is functionally independent together withI1 andI2 , then the Suslov problem is integrab
by quadratures.

The known integrable cases of system~2! are the following:

~1! the Suslov case,30 wheree50, thenI35v1 ;
~2! the Kharlamova–Zabelina case,11 where ^b,a&50. The third first integral isI35I 1v1b1

1I 2v2b2 ;
~3! the Kozlov case, whereb is parallel toa and I 15I 2 , thenI35v1g11v2g2 .

In what follows we study cases wheneÞ0, and, without loss of generality, we can pute51.
For the case whenb is parallel toa Kozlov13,14reduced equations~2! to a Hamiltonian system

with two degrees of freedom. The Hamiltonian function of this system is the following:

H5
1

2
~p1

21p2
2!1

1

2 Fh2
1

2 S q1
2

I 1
1

q2
2

I 2
D G2

, ~3!

whereq15I 1v1 andq25I 2v2 . It depends on parameterh which is the fixed energy value of th
original problem. The integrability of the Hamiltonian system generated by~3! was investigated
by Ziglin in Ref. 37 where he proved the following two theorems.

Theorem 1: If hÞ0 and I1ÞI 2 , then the Hamiltonian system given by (3) has no additio
complex meromorphic first integral in the complexified phase space.

Theorem 2: If h50 and
(1) hÞr , or
(2) A2 cos(ph)Þcos(pr), whereh5A118a/4, a5I 1 /I 2 , and r is rational,

then the system with Hamiltonian (3) has no additional complex meromorphic first integral i
neighborhood of the origin of coordinates.

Using these results, in Ref. 39 Ziglin showed that
Theorem 3: If b15b250, then the Suslov system (2) has an additional complex meromor

first integral only in the case I15I 2 .
In the above theorem it is assumed that the complexified phase space of system~2! is

M45C23SC
2, whereSC

2 is the complex Poisson sphere

SC
25$~g1 ,g2 ,g3!PC3ug1

21g2
21g3

251%.

In Ref. 16 we proved that in the cases 1 and 2 excluded in Theorem 2 the system i
nonintegrable. Finally, in Ref. 38, Ziglin proved the following:

Theorem 4: If b15b250, then the Suslov system (2) has an additional real meromorphic
integral only in the case I15I 2 .

Ziglin obtained results formulated in Theorems 1–3 applying his theory formulated in
fundamental papers.35,36The main idea of his approach lies in a study of the monodromy grou
variational equations for a particular nonequilibrium solution. In our improvement of the Z
result given by Theorem 2 we applied the differential Galois extension of the Ziglin th
developed by Morales-Ruiz and Ramis~see Refs. 20, 23, 24!. In this approach the monodrom
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group is replaced by the differential Galois group of the variational equations. Both the Ziglin
Morales-Ramis theories are specified for Hamiltonian systems. However, the main ideas of b
them are valid for general systems. In fact, Ziglin proved Theorem 2 using this ‘‘n
Hamiltonian’’ part of his theory.

In this paper we consider a case when vectorb is not parallel or perpendicular to vectora.
More precisely, we assume thatb250 but b1b3Þ0, in other words, the vector of nonholonom
constraint coincides with the third principal axis of the body, and the fixed point of the body
in the principal plane defined by the third and the first principal axes and is out of them. We
this version of the Suslov problem the generalized Kozlov case and our aim is to pro
nonintegrability. Our main result is the following:

Theorem 5: If b250 and b1b3Þ0, then system (2) does not possess a real meromorphic
integral which is functionally independent together withI1 and I2 .

Let us notice that in the above theorem, as in Theorem 4, we talk about the nonexisten
real first integral. Using Ziglin or Morales-Ramis theory we are able to prove the nonexisten
a complexmeromorphic first integral. To show the nonexistence of a real meromorphic
integral we need to investigate variational equations along one parameter family of par
solutions for which the corresponding Riemann surfaces depend on the parameter valu
prescribed way. The key point is to show that in anarbitrary complex neighborhood of the rea
phase space the system does not admit an additional meromorphic first integral, and f
purpose a family of particular solutions is needed. These ideas were applied by Ziglin38 in his
proof of Theorem 4. In this proof the crucial role plays the fact that, in the Kozlov case, the S
problem admitstwo families of particular solutions. In the generalized Kozlov case considere
this paper, the system depends on two parameters, and there exists only one family of pa
solutions~see Sec. III!. This makes the problem difficult. In our proof of Theorem 5 we comb
ideas of Ziglin38 with the differential Galois approach.

Our interest in the Suslov problem is motivated by the fact that, recently, nonholon
systems attracted attention of many investigators, see, e.g., Refs. 15, 2, 18, 5, 34. The dyna
nonholonomic systems differs in many respects from the dynamics of the holonomic ones.
mention only that for nonholonomic systems we have no widely accepted notion of integrabi
it is the case for Hamiltonian systems, see Refs. 13, 7, 19. Investigations of known inte
cases of the generalized Suslov problem25,1,26 showed that for generic values of first integra
invariant manifolds defined by their common level have genus higher than one. Thus a globa
of an integrable nonholonomic system is different from the familiar image of an integrable H
tonian system when the phase space is foliated by invariant tori. We also remark that s
generalizations of the Suslov problem to higher dimensions were proposed recently, see R
33.

The plan of this paper is following. In the next section we describe basic facts from the Z
and differential Galois theory which are needed to understand the proof of our main result. I
III we derive a family of particular solutions of the system and variational equations around
Finally, in Sec. IV, we present a proof of Theorem 5.

II. THEORY

Below we describe only basic notions and facts concerning the Ziglin theory following35 in
our exposition. A more detailed and formal presentation can be found in Ref. 3. LetM be a
complexn-dimensional manifold. We consider a system of differential equations

d

dt
x5v~x!, tPC, xPM . ~4!

If w(t) is a nonequilibrium solution of~4! passing throughpPM , i.e.,w(0)5p, then the maximal
analytic continuation ofw(t) defines a Riemann surfaceG with t as a local coordinate. More
formally it can be described as follows. The map (t,q)→F t(q), whereF t(q) is the solution of~4!
passing throughqPM , is defined in a certain neighborhoodU3V of (0,p)PC3M . ThenG is the
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component ofp in the topology onM defined by the basis given by the sets$F t(p)utPU%. The
natural inclusioni :G→M is an immersion but not necessarily a proper map. Thus, using a g
language it is necessary to distinguishG and i (G),M .

Together with system~4! we also consider variational equations restricted toTGM , i.e.,

j̇5T~v !j, jPTGM . ~5!

We can reduce the order of this system by one. LetNªTGM /TG be the normal bundle ofG, and
p: TGM→N be the projection. Then system~5! induces the following system onN:

ḣ5p!~T~v !p21h!, hPN, ~6!

which is called the normal variational equations alongG.
Assume now thatf is a holomorphic first integral of Eqs.~4! defined in a neighborhood ofG.

By @ f #p we denote the first nonconstant homogeneous term in the Taylor expansion off at the
point pPG. We called it the leading part off. Although to define@ f #p we have to use loca
coordinates, it is a well defined homogeneous polynomial function onTpM . Moreover, the degree
of @ f #p does not depend onpPG. Such function@f# defined onTGM is a holomorphic first integra
of variational equations~5! which is a polynomial with respect to fibers variables. Iff is a
meromorphic first integral of~4!, then we define@ f #p in the following way. Asf is meromorphic,
we can writef 5a/b, wherea and b are holomorphic, and then we put@ f #p5@a#p /@b#p . This
defines correctly a rational function onTpM and a rational~with respect to fibers variables! first
integral@f# of ~5!. If @f# is a first integral of~5!, then@ f #+p21 is a first integral of~6!. For details,
see Refs. 36, 20, 3.

If we know that system~4! possesses holomorphic first integralsH5(H1 ,...,Hk) in a neigh-
borhood ofG such that their differentials dHi , i 51,...,k are linearly independent onG, then
dHi+p21 for i 51,...,k are independent first integrals of~6!. Their common zero level

N0ª$hPNudHi+p21h50, i 51,...,k%,

defines am-dimensional linear bundle overG, wherem5n2k21. Using these integrals we ca
reduce the order of system~6!. Namely, we consider the reduced normal variational equation

ḣ5p!~T~v !p21h!, hPN0 . ~7!

The monodromy groupM of this system is the image of the fundamental groupp1(G,t0) ob-
tained in the process of continuation of local solutions defined in a neighborhood oft0 along
closed paths with the base pointt0 . In our case it is a subgroup of GL(m,C). If we fix the set of
m linearly independent solutions of~7! then groupM is a matrix group acting naturally onm
vector space of variablesZ5(z1 ,...,zm). Thus, it acts also on the ring of polynomialsC@Z# and on
the field of fractionsC(Z). By LªC(Z)M we denote the field of invariants of this action. We c
considerC,L as a field extension. For an integerr, 1<r<m, we say thatM is r-Ziglin or
exactlyr-Ziglin, if the transdegCL>r or transdegCL5r , respectively; here transdegCL denotes the
transcendence degree of field extensionC,L. The following lemma formulated by Ziglin gives
the necessary condition for integrability, see Proposition on p. 183 in Ref. 35 and Proposit
p. 4 in Ref. 38.

Lemma 1: If system (4) possesses a meromorphic first integral which is functionally ind
dent together with H and defined in a neighborhoodU,M such that the fundamental group ofG
is generated by loops lying inU then, the monodromy groupM of the reduced normal variationa
equations (7) is 1-Ziglin.

Thus, under assumptions of the above lemma the monodromy group possesses at le
nonconstant rational invariant function, which in the Ziglin nomenclature is called a first int
of the monodromy group. Here it is important to notice that the existence of the rational inv
mentioned in the above lemma is related to the fact that from the existence of a meromorph
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integral for system~4! follows the existence of a rational first integral~with respect to fibres
variables! of variational equations, and this integral must be constant along an arbitrary co
ation of a local solution of variational equations.

Having a linear system~6! we can apply for its study also the differential Galois theory. F
a general introduction to this theory, see Refs. 27, 10, 4, 17. Here we only describe basic n
of this theory and we refer the reader to the cited papers for a fully detailed exposition.

Let F be a differential field of characteristic zero, i.e., a field with an additive opera
8: F→F, called derivation, satisfying the Leibniz rule. For example,F5C(z) with derivation
being the standard differentiating d/dz. The kernel of the derivation is a subfield ofF called the
subfield of constants and we denote it byF8. We assume that it is algebraically closed. Wh
F,L is a field extension, andL is a differential field, then we call it a differential field extensio
if the derivation onL restricted toF coincides with that ofF. An automorphisms: L→L is called
a differential automorphism if it commutes with the derivation onL. The differential Galois group
G(L/F) of a differential field extensionF,L is a subgroup of differential automorphism
s: L→L for which s uF5 idF .

Let us consider the following system of linear equations

x85Ax, ~8!

whereA is ann3n matrix with elements inF, andx5@x1 ,...,xn#T is a vector of lengthn. If x is
a solution of the above system, then usually its componentsxi for i 51,...,n are not elements ofF
and belong to a certain differential extension ofF. A differential extension fieldL of F is called a
Picard–Vessiot extension associated with~8! if it is generated byn linearly independent overF8
solutionsx( i )PLn, i 51,...,n of ~8! and the field of constants ofL coincides withF8. It can be
shown that a Picard–Vessiot extension exists and it is unique up to the differential isomorp
The differential Galois group of~8! is the differential Galois groupG(L/F) of the Picard–Vessiot
extensionF,L associated with~8!. It can be shown that the differential Galois group of~8! is an
algebraic subgroup of GL(n,F8).

Now, we can return to Eq.~7!. Let G denote its differential Galois group. It is an algebra
subgroup of GL(n2k21,C). GroupG is ‘‘bigger’’ than the monodromy group and it containsM,
see Theorem 2.4 in Ref. 20. For a Fuchsian system the monodromy group is dense inG ~in the
Zariski topology!, see Theorem 3.16 in Ref. 3.

As we mentioned above, if system~4! possesses a meromorphic first integral, then~7! has a
first integral and this fact imposes a restriction onG. In fact, we have a lemma which is analogo
to Lemma 1.

Lemma 2: If system (4) possesses a meromorphic first integral which is functionally ind
dent together with H and defined in a neighborhoodU,M of G, then the differential Galois group
G of the reduced normal variational Eqs. (7) is 1-Ziglin.

The above lemma is a variant of Lemma 4.6 in Ref. 20 adopted for a general situation
Remark 1:In Refs. 36 and 38 instead of common zero level of first integrals dHi+p21 Ziglin

considered an arbitrary level

Npª$hPFudHi+p21h5pi , piPC, i 51,...,k%.

Then, instead of a linear, we have an affine bundle overG, Eqs.~7! are generally not homogeneou
ones, and the monodromy group is a subgroup of affine transformations in dimensionm. Until
now this construction has not been translated to the differential algebra language. In the p
nonintegrability of the Goryachev–Chaplygin case of the heavy top, it was necessary to co
Np with pÞ0, see Ref. 38. Thus, it seems that this extension is important in applications.

In our considerations given in the last section we use some facts concerning the diffe
Galois group of a second order differential equation of the following form:

y95ry , r PC~z!, 8[
d

dz
. ~9!
                                                                                                                



ll

cur

acter-
Ref.

e

st

-
ntial

1070 J. Math. Phys., Vol. 45, No. 3, March 2004 A. J. Maciejewski and M. Przybylska

                    
For this equationG is an algebraic subgroup of SL~2,C!. The following lemma describes a
possible types ofG and relates these types to forms of solution of~9!, see Refs. 12, 20.

Lemma 3: LetG be the differential Galois group of Eq. (9). Then one of four cases can oc.

(1) G is triangulizable; in this case Eq. (9) has a solution of the form y5exp*v, where
vPC(z);

(2) G is conjugated with a subgroup of

D†5HFc 0

0 c21GUcPC* J øH F 0 c

c21 0GUcPC* J ,

in this case Eq. (9) has a solution of the form y5exp*v, wherev is algebraic overC(z) of
degree 2;

(3) G is primitive and finite; in this case all solutions of Eq. (9) are algebraic;
(4) G5SL~2,C! and Eq. (9) has no Liouvillian solution.

For a definition of Liouvillian solution see, e.g., Ref. 12. We need a more precise char
ization of case 1 in the above lemma. It is given by the following lemma, see Lemma 4.2 in
28.

Lemma 4: LetG be the differential Galois group of Eq. (9) and assume thatG is trianguliz-
able. Then, either

(1) Eq. (9) has a unique solution y such that y8/yPC(z), andG is conjugate to a subgroup of th
triangular group

T5H Fa b

0 a21GUa,bPC,aÞ0J .

Moreover, G is a proper subgroup ofT if and only if there exists mPN such that
ymPC(z). In this caseG is conjugate to

Tm5H Fa b

0 a21GUa,bPC,am51J ,

where m is the smallest positive integer such that ymPC(z), or
(2) Eq. (9) has two linearly independent solutions y1 and y2 such that yi8/yiPC(z), then G is

conjugate to a subgroup of

D5H Fa 0

0 a21GUaPC,aÞ0J .

In this case, y1y2PC(z). Furthermore, G is conjugate to a proper subgroup ofD if and only
if y1

mPC(z) for some mPN. In this caseG is a cyclic group of order m where m is the smalle
positive integer such that y1

mPC(z).

In case 2 of the above lemma we know thats5y1y2PC(z). Differentiatings three times, and
using the fact thatyi satisfies Eq.~9!, we obtain

s-52r 8s14rs8. ~10!

The above equation is called the second symmetric power of Eq.~9!. For applications of symmet
ric powers of differential operators to study the existence of Liouvillian solutions and differe
Galois group see, e.g., Refs. 28, 29, 32.
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III. PARTICULAR SOLUTIONS AND VARIATIONAL EQUATIONS

We consider now the complexification of system~2!, i.e., we assume tha
(v1 ,v2 ,g1 ,g2 ,g3)PC5 andtPC. From now on we putI 251. This can be achieved without los
of generality by a proper choice of units.

First, let us notice that ifb250, then the following three-dimensional complex hyperplan

P5$~v1 ,v2 ,g1 ,g2 ,g3!PC5uv15g250%,

is invariant with respect to the flow generated by~2!. System~2! restricted toP reads

v̇25g3b12g1b3 ,

ġ152v2g3 , ~11!

ġ35v2g1 ,

possesses two first integrals

I1uP5 1
2v2

21b1g11b3g3 , I2uP5g1
21g3

2,

and can be integrated explicitly. Phase curvesi (GE),P,C5 of system~2! defined by

1
2v2

21b1g11b3g35E, g1
21g3

251, ~v2 ,g1 ,g2!PP5C3

are algebraic and, as an intersection of two quadrics, they are elliptic curves. For further a
we choose a one parameter familyGk which in time parametrization is given by

wk~ t !5~0,v2~ t !,g1~ t !,0,g3~ t !!, ~12!

where

v2~ t !ª22k cn~ t,k!,

g1~ t !ª2@122k2 sn2~ t,k!#b122k sn~ t,k!dn~ t,k!b3 , ~13!

g3~ t !ª2@122k2 sn2~ t,k!#b312k sn~ t,k!dn~ t,k!b1 ,

and

k5A11E

2
, 0,k,1.

In the above formulas sn(t,k), cn(t,k), and dn(t,k) denote the Jacobi elliptic functions of argu
ment t and modulusk. Particular solutions defined by~12! and ~13! are single-valued, meromor
phic, and double periodic with periods

T1~k!52K~k!12iK 8~k!, T2~k!52K~k!22iK 8~k!,

whereK(k) is the complete elliptic integral of the first kind with modulusk, K8(k)ªK(k8), and
k8ªA12k2. In each period cell they have two simple poles at

s1~k!5 iK 8~k!, s2~k!52 iK 8~k! mod ~T1~k!,T2~k!!.

Thus, Riemann surfacesGk are tori with two points removed.
The variational equations along a particular solutionwk(t) have the following form:
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d

dt F o1

o2

g1

g2

g3

G5F 0 0 0 b3 /I 1 0

0 0 2b3 0 b1

0 2g3~ t ! 0 0 2v2~ t !

g3~ t ! 0 0 0 0

0 g1~ t ! v2~ t ! 0 0

G F o1

o2

g1

g2

g3

G ,

and they have two first integrals

J15v2~ t !o21b1g11b3g3 , J25g1~ t !g11g3~ t !g3 .

Let us notice that these first integrals do not depend ono1 andg2 , and this is why we can choos
them as coordinates in the fibre overwk(t) of the reduced phase space. Thus the reduced no
variational equations read

ȯ15
b3

I 1
g2 , ġ25g3~ t !o1 ,

or simply

ö5
b3

I 1
g3~ t !o, o5o1 . ~14!

From the form of this equation, we can see that its monodromy group, as well as its differ
Galois group, are contained in SL~2,C!. Now, in order to apply the differential Galois approa
effectively, the crucial point is to transform~14! to an equation with rational coefficients. In oth
words, we want to transform~14! from Gk to the Riemann sphereCP1. If we make the following
mapping:

t→z5
11b1g1~ t !1b3g3~ t !

b1g3~ t !2b3g1~ t !
, ~15!

then ~14! transforms to

o91p~z!o81q~z!o50, 85
d

dz
, ~16!

where

p~z!5
z~122k82~11z2!!

~11z2!~k22k82z2!
,

~17!

q~z!52
ab3~2b1z1b3~z221!!

~11z2!2~k22k82z2!
, a5

1

I 1
.

We note here that transformation~15! does not change the identity component of~14!.
Equation~16! is Fuchsian and it possesses four regular singular points overCP1

z15 i , z252 i , z35
k

k8
, z452

k

k8
.

It is more convenient to work with the reduced form of~16! which we obtain introducing a new
dependent variablew by the following formula:
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w5o expF1

2 Ez0

z

p~s!dsG . ~18!

As the result, we obtain the following equation:

w95r ~z!w, r ~z!5 1
2p8~z!1 1

4p~z!22q~z!. ~19!

The partial fraction decomposition of rational functionr (z) can be written as

r ~z!5(
i 51

4 F a i

~z2zi !
2

1
b i

z2zi
G , ~20!

where

a15a2* 52 3
161

1
2ab3~b32 ib1!,

a35a452 3
16,

and

b15b2* 52
i

16
~114k82!1a~b11 ib3!b3k82,

b35
1

16
Ak8

k
@~6k221!28ab3~~2k221!b312k8kb1!#,

b452
1

16
Ak8

k
@~6k221!28ab3~~2k221!b322k8kb1!#.

In the above formulas the star denotes the complex conjugation. It is important to notic
transformation~18! with p(z) given by~17! does not change the identity component of differen
Galois group of~16!, see Proposition 4.25 in Ref. 3.

IV. PROOF OF THEOREM 5

For Eq.~19! exponentsr i
6 at singular pointszi , i 51,...,4 are the following:

r i
65 1

2~16D i !, D i5A114a i , i 51,...,4.

Let Mi be the local monodromy matrix corresponding to a small circle around singular poinzi ,
see, e.g., Ref. 28. Then eigenvaluesl i

6 of matrix Mi are given by the following formula:

lk
65exp@2p irk

6#, k51,...,4.

Let us notice here that whenb1b3Þ0, thenrk
6¹Q for k51, 2. Thus,lk

6 for k51, 2 are not roots
of unity.

First, we show the following:
Lemma 5: If b1b3Þ0, then for0,k,1 the identity componentG0 of differential Galois group

of Eq. (19) is not Abelian.
Proof: From Lemma 3 it follows thatG0 can be Abelian only in the first three cases given

this lemma. We consider them successively.
Assume thatG is conjugate to a subgroup of triangular groupT and thatG0 is Abelian. By

Lemma 4G0 is Abelian in two cases: eitherG is conjugate to a proper subgroup ofT, or it is
conjugate to a subgroup of the diagonal groupD. The first possibility cannot occur. In fact, if it is
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so, then all elementsg of G have eigenvaluesa and a21 such thatam51 for somemPN. We
know that local monodromy matrices around singular points belong toG. But we also know that
eigenvalues ofM1 andM2 are notmth roots of unity. Thus this case is impossible. Let us consi
the second possibility. It follows from Lemma 4 that in this case there exist two solutionsy1 and
y2 of ~19! such thatyi8/yiPC(z), i 51, 2, ands5y1y2PC(z). As we remarked just after formu
lation of Lemma 4,s satisfies a third order linear differential Eq.~10!. We show that this equation
in the case considered does not have a rational solution. Forr 5r (z) given by ~20! Eq. ~10! is
Fuchsian and has the same singular pointszi , i 51,...,4, as~19!. The infinity is also a regular
singular point for Eq.~10!. Exponents at singular points are the following:

Ri5$1,16D i%, i 51,...,4,

and the exponents at infinity areR`5$22,21,0%.
Now, lets5P/Q, P,QPC@z# be a rational solution of~10!. Without loss of generality we can

assume that

Q5)
i 51

K

~z2r i !
ni, niPN.

Then, as it is well known,r iP$z1 ,...,z4% and2ni are exponents atr i . However, in our case ther
is no singular point atC with an exponent which is a negative integer. ThusQ51 ands5P. Let
N5degP. Thenr52N is an exponent at infinity. Hence degP<2. Assume that degP52, then
from ~10! it follows that

2r 8~z!P14r ~z!P850,

and thus (r (z)P2)850. Consequently,r (z)5cP22 for somecPC. However, direct calculations
show that whenb1b3Þ0, and 0,k,1, it is impossible. This excludes the second possibility
case 1 of Lemma 3.

Let us assume thatG is conjugate to a subgroup ofD† ~i.e., we have case 2 from Lemma 3!.
In this caseG0 is Abelian. We show that for Eq.~19! this cannot occur. To this end, we apply ca
II of the Kovacic algorithm, see p. 18 of Ref. 12. First, we determine auxiliary setsEi for each
singular point. These sets are defined as follows:

Ei5$2,262D i%ùZ, i 51,...,4.

Thus we have

E15E25$2%, E35E45$1,2,3%.

Additionally, we defineE`5$0,2,4%. Then, according to the Kovacic algorithm, we check if the
exists an elemente5(e` ,e1 ,...,e4) in Cartesian productE5E`3E13¯3E4 such that the
following number

d~e!5
1

2 S e`2(
i 51

4

ei D ,

is a non-negative integer. However, in our cased(e),0 for all ePE. Thus,G is not conjugate to
a subgroup ofD†.

Finally, let us assume thatG is conjugate to a finite imprimitive subgroup of SL~2,C! ~this is
case 3 in Lemma 3!. However, a necessary condition for this case is that at each singular
exponents are distinct and rational, see Theorem 3.6 in Ref. 29. As we have already mentio
our case whenb1b3Þ0 thenrk

6¹Q for k51, 2. Thus,G cannot conjugate to a finite imprimitive
subgroup of SL~2,C!.
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In this way, we eliminate all possibilities whenG0 can be Abelian and this ends the proof.h

Using the above lemma we are able to prove the following:
Lemma 6: If b1b3Þ0, then for0,k,1, in an arbitrary neighborhoodUPC5 of phase curve

Gk , the complexified Suslov system (2) does not possess a meromorphic first integral w
functionally independent together withI1 and I2 .

Proof: Assume that there exists a meromorphic first integral of~2! which is defined in a
neighborhoodU,C5 of phase curveGk , and is functionally independent together withI1 andI2 .
Then, according to Lemma 2, the differential Galois groupG of Eq. ~14! has a rational invariant
But G is an algebraic subgroup of SL(2,C) and such groups possess a rational invariant only ifG0

is Abelian, see Example 2.11~b! in Ref. 3. As the identity components of differential Galois gro
of Eqs.~14!, ~16!, and~19! are the same,G0 of ~19! is Abelian. However, in Lemma 5 we prove
that G0 for this equation is not Abelian. The contradiction finishes the proof. h

Point x05(0,0,b1,0,b3)PP is a hyperbolic equilibrium of system~2!. The phase curveG1

corresponds to solution~13! with k51. It contains two real components which are real ph
curves corresponding to real solutions homoclinic tox0 . Their union is ReG1 and we denote its
closure byV.

Lemma 7: For an arbitrary complex neighborhoodU,P of V there existse.0, such that for
0,uk21u,e the fundamental groupp1(Gk) of phase curveGk is generated by loops lying inU.

Proof: PeriodsT1(k) and T2(k) of solution ~13! are primitive. Minimal real and imaginary
periods areT(k)54K(k) and T8(k)54iK 8(k). As a base pointx(k)PGk we choosex(k)
5wk(t0(k)) wheret0(k)5K(k). Let us notice that from~13! it follows that

g1~ t0~k!!5~2k221!b122kk8b3 ,
~21!

g3~ t0~k!!5~2k221!b312kk8b1 , v2~ t0~k!!50.

Now, let

lk ,lk8 :@0,1#→Gk ,

be the loops with base pointx(k) corresponding to periodsT(k) andT8(k). These loops cross a
point

x8~k!5Fk~ t0~k!1T~k!/2!5Fk~ t0~k!1T8~k!/2!. ~22!

As a result, we obtain four semiloops with end pointsx(k) and x8(k). The fundamental group
p1(Gk) of Gk is generated by these semiloops, see Fig. 1. Let us analyze what happens wk
tends to 1. From~21! it follows thatx(k) tends tox0 and from~13! we deduce that looplk tends
to V. To see what happens with looplk8 whenk tends to 1, let us putt5t0(k)1 i t in formulas
~13!. We obtain

v2~ t !52ikk8
sn~t,k8!

dn~t,k8!
,

g1~ t !52F12
2k2

dn2~t,k8!
Gb122kk8

cn~t,k8!

dn2~t,k8!
b3 , ~23!

g3~ t !52F12
2k2

dn2~t,k8!
Gb312kk8

cn~t,k8!

dn2~t,k8!
b1 .

Thus, looplk8 tends to pointx0 ask tends to 1. h

Now, we are ready to present our proof of Theorem 5.
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Proof: Assume that there exists a real meromorphic first integralI of system~2! which is
functionally independent together withI1 andI2 . We can extend it to a complex meromorph
first integral defined in a complex neighborhood ofR5,C5. Thus, there exists a meromorphic fir
integral defined in a neighborhoodU of V. Moreover, by Lemma 7, there existse such that for
0,u12ku,e the fundamental group of phase curvesGk is generated by loops lying inU. Hence,
by Lemma 1, the monodromy groupM of the reduced normal variational equations for the ph
curveGk possesses a rational invariant. However, in Lemma 5, we show that the identity co
nent of differential Galois group of~19! is not Abelian. Thus, as~19! is Fuchsian, by Theorem 3.1
of Ref. 3, M does not possess a rational invariant. Contradiction with Lemma 1 finishe
proof. h

V. REMARKS

Without doubt the Ziglin and Morales-Ramis theories are elegant and, what is more impo
powerful tools for proving nonintegrability. However, both of them do not give any informa
about dynamical mechanismswhich cause the nonintegrability. For Hamiltonian systems so
efforts were done to connect known dynamical phenomena causing the nonintegrability w
properties of the differential Galois group of the variational equations. A nice example is des
in Chap. 7 of Ref. 20, see also Ref. 21. It seems that the analysis presented in Ref. 22 give
ideas to better understanding of dynamical meaning of the nonintegrability in the sense
differential Galois theory.

In the generalized Kozlov case the Suslov problem is not a Hamiltonian one, and we ca
conjecture what the dynamical mechanism of the nonintegrability is. Restricting system~2! to the
level I251 we obtain a four-dimensional system preserving the volume. It possesses a hyp
equilibrium of the saddle type. The stable and unstable manifolds of this equilibrium cross
versally along two pendulumlike homoclinic loops. In the case of Hamiltonian systems it is kn
that a transversal intersection of asymptotic manifolds is not an obstacle for the integrabilit
example is the famous C. Neumann system, see Ref. 6. However, as it was shown by Tura
Shilnikov,31 if there exists at least three transversal homoclinic orbits that leave and approa
saddle equilibrium tangentially to the leading directions, then the system is not integrabl
chaotic. The leading directions correspond to the eigendirections of the minimal positive

FIG. 1. Parallelogram of period with marked loops.
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maximal negative characteristic exponents. Four-dimensional systems preserving the volu
‘‘close’’ to the Hamiltonian one. We suspect that for the Suslov system considered in this pap
existence of a large number of orbits homoclinic to the equilibrium causes its nonintegrabi
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We develop a new approach to the study of Killing tensors defined in pseudo-
Riemannian spaces of constant curvature that is ideologically close to the classical
theory of invariants. The main idea, which provides the foundation of the new
approach, is to treat a Killing tensor as an algebraic object determined by a set of
parameters of the corresponding vector space of Killing tensors under the action of
the isometry group. The spaces of group invariants and conformal group invariants
of valence two Killing tensors defined in the Minkowski plane are described. The
group invariants, which are the generators of the space of invariants, are applied to
the problem of classification of orthogonally separable Hamiltonian systems de-
fined in the Minkowski plane. Transformation formulas to separable coordinates
expressed in terms of the parameters of the corresponding space of Killing tensors
are presented. The results are applied to the problem of orthogonal separability of
the Drach superintegrable potentials. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1644902#

I. INTRODUCTION

The classical theory of algebraic invariants has long been recognized as a common bra
commutative algebra, algebraic geometry, representation theory, and algebraic combinatoric
observation confirms yet again that ‘‘Mathematics is the study of analogies between ana
. . . .’’ 1 With this perspective the main aim of this paper is to establish an apparently new co
tion between the classical theory of algebraic invariants of vector spaces of homogeneou
nomials and a theory of algebraic invariants of vector spaces of Killing tensors defined in ps
Riemannian spaces of constant curvature. A second goal is to apply the results to a classi
problem which arises in the theory of separation of variables for the Hamilton–Jacobi equa
classical dynamics. The results obtained provide a framework for the solution of many pro
arising in mathematical physics.

Recall that the prime object of study in the classical theory of algebraic invariants2,3 is the
spaceV5SnCm of homogeneous polynomials of degreen in m variablesx1 ,...,xm , which has

a!Electronic mail: rgmclena@sirius.math.uwaterloo.ca
b!Present address: Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, C

B3H 3J5. Electronic mail: smirnov@mathstat.dal.ca
c!Present address: Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada, H3
Electronic mail: dthe@math.mcgill.ca
10790022-2488/2004/45(3)/1079/42/$22.00 © 2004 American Institute of Physics
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dimensiond5( n
n1m21). As a consequence, the main problem is to describe the set of invar

and covariants~i.e., polynomials of the parametersa1 ,...,ad and a1 ,...,ad ,x1 ,...,xm , respec-
tively! that remain fixed under the action of the groupGLm(C) acting linearly onV.2 Consider the
following illustrating example:2

Example 1.1:Let f PS2C2 be a general quadratic form defined overC:

f ~x1 ,x2!5a1x1
212a2x1x21a3x2

2 . ~1.1!

Under the action of the corresponding groupGL2(C):

T5Fa11 a12

a21 a22
GPGL2~C!,

x15a11x181a12x28 ,

x25a21x181a22x28
, det~T!Þ0

the quadratic form given by~1.1! transforms as follows:

f 8~x18 ,x28!5a18x18
212a28x18x281a38x28

2 ,

where

a185a1a11
2 12a2a11a211a3a21

2 ,

a285a1a11a121a2~a11a221a12a21!1a3a21a22 ,

a385a1a12
2 12a2a12a221a3a22

2 .

It is easily seen that the quantityDq f5a1a32a2
2 is an invariant modulo the factor det(T)2, since

it tansforms under the transformation induced by the groups as follows:

Dq f8 5a18a382a28
25~detT!2Dq f .

We observe that the invariantDq f can be immediately applied to theclassification of (centrally
symmetric) conic sectionsin the Euclidean planeR2 ~the above considerations also hold true f
x1 ,x2PR2). Indeed, for the conic sections defined by

f ~x1 ,x2!5a1x1
212a2x1x21a3x2

25const ~1.2!

we can distinguish, for example, the following cases:

~a! if Dq f , a1 and f (x1 ,x2) are of the same sign, then~1.2! defines an ellipse inR2,
~b! if Dq f,0, then~1.2! defines a hyperbola inR2,
~c! if Dq f50, anda1Þ0, then~1.2! defines a pair of straight linesR2.

The example above illustrates that the invariants are very effective in various classification
lems.

In modern mathematical language the main problem of the classical theory of alge
invariants can be formulated as follows:

Problem 1.1: Determine the linear action of a group G on a K-vector space V. Then in the
ring of polynomial functions K@V# describe the subring K@V#G of all polynomial functions on V
which are invariant under the action of G.

In order to create a satisfactory realization of these ideas in pseudo-Riemannian geome
need to determine counterparts of the groupG andK-vector spaceV, as well as properly define
the action of the group in the corresponding vector space defined in a pseudo-Riemannian
fold (M ,g). The natural choice for such a group is the isometry groupI (M ) if it exists, while the
vector space where its action can be determined is the vector space of Killing tensors of a
valence defined on (M ,g).
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Killing tensors of valence two play a pivotal role in the theory of orthogonally separ
Hamiltonian systems. Therefore the results of such an extension, by which we mean group
ants of the vector spaces of Killing tensors, can be applied to the problem of classificat
orthogonally separable Hamiltonian systems~see Sec. IV! which admit first integrals quadratic in
the momenta that, in turn, are determined by the Killing tensors of valence two.

The paper is organized as follows: In Sec. II we describe how the basic ideas of the cla
theory of algebraic invariants can be incorporated into the study of Killing tensors defin
pseudo-Riemannian manifolds of constant curvature. In Sec. III we solve the problem of fi
all isometry group invariants of the space of Killing tensors of valence two defined in
Minkowski planeR1

2. Section IV links the theory of group invariants of Killing tensors with t
Hamilton–Jacobi theory of separation of variables. In Sec. V we characterize Killing te
defined inR1

2 with respect to the Liouville–Morera coordinates. Section VI contains an analo
classification in terms of the pseudo-Cartesian coordinates. We describe all admissible rig
tions of R1

2 in Sec. VII. Section VIII contains a group invariant classification of Killing tens
defined inR1

2. In Sec. IX we compare the results of Sec. VIII with analogous classificat
obtained by other methods. In Sec. X we present transformation formulas in terms of the p
eters of the space of Killing tensors of valence two to separable coordinates for Hamilt
systems defined inR1

2. The main algorithm based on the results of Secs. VIII and X is the sub
of Sec. XI. In Sec. XII we show how the obtained results can be employed in the study of sy
of hydrodynamic type. Section XIII is devoted to applications of the results to the proble
orthogonal separability of the Drach superseparable potentials. In Sec. XIV we make conc
remarks.

II. THE EXTENSION

Using the ideas presented in the Introduction as a motivation, we consider a ps
Riemannian space (M ,g) of constant curvature, where dimM5n andg denotes the metric tenso
We shall assume that the manifoldM is complete.

Definition 2.1: A Killing tensorK p of valence p defined in(M ,g) is a symmetric(p,0) tensor
satisfying the Killing tensor equation:

@K p,g#50, ~2.1!

where@,# denotes the Schouten bracket.4 When p51, K1 is said to be a Killing vector (infinitesi-
mal isometry) and Eq. (2.1) reads

LK1g50, ~2.2!

whereL denotes the Lie derivative operator.
Remark 2.1:Throughout this paper, unless otherwise specified,@,# denotes the Schoute

bracket, which is a generalization of the usual Lie bracket of vector fields.
The set of all Killing vectors of (M ,g), denoted byi (M ), is a Lie algebra, which is also a Li

subalgebra of the spaceX(M ) of all vector fields defined onM . As is well-known, d
5dim i (M )5 1

2n(n11) iff the space (M ,g) is of constant curvature.5,6

It follows immediately from~2.1! that the Killing tensors of the same valencep constitute a
vector spaceK p(M ). Moreover, the following properties hold true:

@ , #: K p~M ! % K q~M !→K p1q21~M !, ~2.3!

@K p,Kq#52@Kq,K p# ~skew-symmetry!, ~2.4!

@@K p,Kq#,K r #1~cycle!50 ~Jacobi identity!. ~2.5!

Therefore one can consider a graded Lie algebra of Killing tensors defined on (M ,g) with respect
to the Schouten bracket@,#:
                                                                                                                



rs

cial in

.

re was
her
by
d to

xtend
try. The
iables.
or

etry

vari-
ors

ll

he two

the
f alge-
in this

1082 J. Math. Phys., Vol. 45, No. 3, March 2004 McLenaghan, Smirnov, and The

                    
Kalg5K 0~M ! % K 1~M ! % K 2~M ! %¯% K p~M ! %¯ , ~2.6!

whereK 0(M )5R, K 1(M )5 i (M ) and p50,1,2,..., denotes the valence of the Killing tenso
belonging to the corresponding spaceK p(M ). The following two fundamentalstructural proper-
ties of Killing tensors defined on pseudo-Riemannian spaces of constant curvature are cru
applications:

SPI:A Killing tensor K p defined on (M ,g) is asum of symmetrized tensor productsof Killing
vectors, or infinitesimal generators of the Lie algebra of the corresponding isometry group

SPII: The set of all Killing tensors of valencep>1 defined on (M ,g), where dim(M )5n, is
a vector space of dimension ddetermined by theDelong–Takeuchi–Thompson (DTT) formula:7–9

d5
1

n S n1p
p11D S n1p21

p D , p>1. ~2.7!

Accordingly, a Killing tensor of valencep is analgebraic objectdetermined by itsd param-
eters, or an element of the corresponding vector space of Killing tensors.

Recall that formula~2.7! was derived first for the casesp51 ~see above! andp52.10,11,13An
extensive study of Killing tensors defined in pseudo-Riemannian spaces of constant curvatu
undertaken by Delong in his 1982 Ph.D. thesis,7 where the author discovered, among many ot
beautiful results, formula~2.7! for arbitrary p.2. This result was obtained independently
Takeuchi8 and Thompson9 by making use of SPI. In addition, SPI has been routinely employe
solve classification problems in the Hamilton–Jacobi theory of separation of variables~see, for
instance, Refs. 14, 15!. Our approach to these problems is based on SPII, which we use to e
the basic ideas of the classical theory of algebraic invariants to pseudo-Riemannian geome
results are applied to problems arising in the Hamilton–Jacobi theory of separation of var
Indeed, in view of SPII, a Killing tensor of valencep can be interpreted as an algebraic object,
an element of the corresponding vector spaceK p(M ), determined byd parametersa1 ,...,ad ,
where d5dimK p(M ), which makes it natural to consider the induced action of the isom
group I (M ) in the spaceS with the coordinatesa1 ,...,ad ~noteS is isomorphic toRd:S.Rd).
Therefore in complete analogy with the main problem of the classical theory of algebraic in
ants ~see above!, we formulate the following problem for the vector spaces of Killing tens
defined in pseudo-Riemannian spaces of constant curvature:

Problem 2.1: Determine the action induced by the group of isometries in the spaceS deter-
mined by a1 ,...,ad . Then in the space of functions defined onS describe the subspace of a
functions inS which are invariant under the action induced by the isometry group.

To make the exposition clearer, we compare the corresponding main components of t
theories in Table I.

It should be mentioned that Delong7 made a considerable effort to establish a link between
study of Killing tensors defined in spaces of constant curvature and the classical theory o
braic invariants. However, his approach appears to be different from the one employed
work. More specifically, by treating the Killing tensors as functions on the cotangent bundleT* M ,
he considered the action of the Hamiltonian flow group inKalg. This set up prompted him to

TABLE I. Comparison with the classical theory of algebraic invariants.

Classical theory of
algebraic invariants

Group invariants of
Killing tensors

Group Linear groupGLm(C) Isometry groupI (M )
Space Vector spaceSnCm SpaceS.Rd determined byK p(M )
Objects preserved by
the group

Polynomials ofa1 ,...,ad ~invariants!
anda1 ,...,ad ,x1 ,...,xm ~covariants!,
whered5dim SnCm

Functions ofa1 ,...,ad , where
d5dim K p(M )
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consider cotangent bundles of the spaces where the group acted linearly~for instance,T* Rn). In
this view, the algebraKalg is itself the algebra of invariants of the Hamiltonian flow group.

In our setting, in order to determine the action ofI (M ) in S, we treat each element of th
vector spaceK p(M ) as a function of its parametersa1

0 ,...,ad
0 : K0

p5K0
p(a1

0 ,...,ad
0), where the

numberd is given by~2.7!. Denote by DiffK p(M ) all Killing tensors inK p(M ) whose param-
eters are smooth functions ofa1 ,...,ad . It is easy to see that DiffK p(M ) is generated by
Diff ( Rd)—the group of all diffeomorphisms ofS.Rd. To determine the action ofI (M ) we
introduce amapp: Diff K p(M )→X(S) defined as follows:

p: K p~a1
0 ,...,ad

0!→(
i 51

d

ai
0 ]

]ai
, ~2.8!

wherea1 ,...,ad are the general parameters that span the spaceS andX(S) denotes the space o
vector fields onS. Note, in generalai

0 , are functions ofa1 ,...,ad : ai
05ai

0(a1 ,...,ad), i
51,...,d. Hence, every element of the vector spaceK p(M ) is mapped to a vector field inX~S!.
Moreover, it is clear that kerp5$0%, thereforep is an isomorphismbetween the two spaces.
simple interpretation of this construction is the following: With a given Killing vector fieldX on
M we associate a linear mappingLX :K p(M )→K p(M ), hence, a linear mappingL̃X :S→S,
sinceK p(M ) is identified withS. This mapping is represented byd equations:

ai
05ai

0~a1 ,...,ad!, i 51,...,d.

Accordingly, we define a vector fieldVX on S by setting

VX5ai
0~a1 ,...,ad!

]

]ai
.

Remark 2.2:To define the mapp according to the formula~2.8! properly, we need an explici
representation of the general Killing tensorK pPK p(M ) under consideration given in terms of
fixed system of coordinates. Such a representation can be obtained on a case by case b
example, consider the casep52, M5R2: Solving the corresponding Killing tensor equation~2.1!
in ~say! Cartesian coordinates, one obtains the general form of a Killing tensor inK 2(R2):

Ki j 5S A12ay1gy2 C2ax2by2gxy

C2ax2by2gxy B12bx1gx2 D , ~2.9!

whereKi j are the components of the generalK2PK 2(R2). The six parametersA,B,C,a,b,g are
the constants of integration. They also represent the dimension of the spaceK 2(R2), which
alternatively can be calculated by making use of the formula~2.7!.

Now for a fixedK0
2PDiff K 2(R2) given in terms of the Cartesian coordinates (x,y)PR2 the

mapp: Diff K 2(R2)→X(S) can be defined20 as follows:

pS A012a0y1g0y2 C02a0x2b0y2g0xy

C02a0x2b0y2g0xy B012b0x1g0x2 D
5A0

]

]A
1B0

]

]B
1C0

]

]C
1a0

]

]a
1b0

]

]b
1g0

]

]g
,

where the parametersA0 ,B0 ,C0 ,a0 ,b0 ,g0 determine a given Killing tensorK0
2PDiff K 2(R2)

and are smooth functions of parametersA,B,C,a,b,g that span the corresponding spaceS.
Let X1 ,...,Xr , r 5 1

2n(n11) be the generators~Killing vectors! of the Lie algebrai (M )
5K 1(M ). Define the set of vector fieldsV1 ,...,VrPX(S) via a compositionF*ªp+L of p and
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the Lie derivative deformation of the general Killing tensorK p5K p(a1 ,...,ad)PK p(M ) ~i.e., the
general solution of the Killing tensor equation@K p,g#50, with a1 ,...,ad as the constants o
integration!:

V iªpLXi
K p, or V i5F* ~X i !, i 51,...,r . ~2.10!

Note LXi
K pPDiff K p(M ), hencep is well-defined.

Remark 2.3:Note that in view of the Jacobi identity~2.5! for any XPK 1(M ) and K p

PDiff K p(M ) the deformed tensorK̃ p5LXK p is also a Killing tensor:K̃ pPK p(M ), p>1, which
confirms that the formula~2.10! is well-defined. In general, a Lie algebra deformationLYK p,
whereYPTM is an arbitrary vector field, does not yield a Killing tensor:LYK p¹K p(M ).

This interesting fact about the Lie derivative deformation of symmetric tensorial quantit
reminiscent of a well-known fact in Poisson geometry, where skew-symmetric tensorial qua
are involved in similar settings. More specifically, recall that for a bi-Hamiltonian system de
by a bi-Hamiltonian vector fieldXH1 ,H2

satisfying

XH1 ,H2
5@P1 ,H1#5@P2 ,H2#,

whereP1 , P2 are compatible Poisson bi-vectors~i.e., @P1 ,P2#50) Oevel16 considered ascaling
symmetry, namely, a vector fieldZ0 satisfying the following scaling properties forXH1 ,H2

and the
compatible Poisson pairP1 , P2 :

LZ0
XH1 ,H2

5aXH1 ,H2
, LZ0

P15bP1 , LZ0
P25gP2 ,

where a, b and gPR. Recall also that in this situation the scaling symmetryZ0 is a master
symmetry, a concept introduced by Fuchssteiner17 ~see also Ref. 18 for more details!. Indeed, for
the vector fieldXH1 ,H2

we have@@Z0 ,XH1 ,H2
#,XH1 ,H2

#50. ThereforeZ0 is a master symmetry o

XH1 ,H2
. Then the hierarchy of the vector fields$Z i% i 50

` , whereZ i5A iZ0 (A5P2P1
21, provided

detP1Þ0) constitute a Virasoro type Lie algebra with the commutator relation@Z i ,Z j #5(b
1g)( i 2 j )Z i 1 j , i , j 50,1,2,... . Moreover, the Lie derivative deformationsLZi

P15P̃1
i , LZi

P2

5P̃2
i , i 50,1,2,... . yield Poisson bi-vectorsP̃1

i andP̃2
i . For more details see Ref. 16. Just like

the case of the Lie derivative deformations of Killing tensors described above, this fact also
not hold true in general for arbitrary vector fields. More specifically, for an arbitrary vector fieX
defined on the corresponding manifold, the tensorial quantitiesLXPi , i 51,2 are not necessarily
Poisson bi-vectors.

We also note that the parametersã1 ,...,ãd of K̃ pPDiff K p(M ) are functions of the genera
parametersa1 ,...,ad that span the spaceS:K̃ p5K̃ p(ã1(a1 ,...,ad),...,ãd(a1 ,...,ad)). Moreover,
each vector fieldV iPX(S), i 51,...,r carries the information about both the corresponding K
ing vectorX iP i (M )5K 1(M ), i 51,...,r and the general Killing tensorK pPK p(M ). However,
the action ofV i is determined in the spaceS of the parameters a1 ,...,ad .

Conjecture 2.1: Suppose the generatorsX1 ,...,Xr of i(M ) satisfy the following commutato
relations:

@X i ,X j #5ci j
k Xk , ~2.11!

where ci j
k , i , j ,k51,...,r are the structural constants. Then the corresponding vector fieldsV i

PX(S), defined by (2.10) satisfy the same commutator relations:

@V i ,V j #5ci j
k Vk . ~2.12!

Therefore the map F*ªp+L: i (M )→ i S(M ) is a Lie algebra isomorphism, where iS(M ) is the
Lie algebra generated byV1 ,...,Vr .
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The validity of the formula~2.12! can be confirmed directly on a case by case basis, prov
that the general form of a Killing tensorK pPK p(M ) is available~see Sec. III!. Thus, the authors
Robin Deeley and Joshua Horwood have verified in this way that the isomorphism descri
Conjecture 2.1 holds true for the following spaces of Killing tensors~vectors!: K 1(R2), K 1(R1

2),
K 1(R3), K 2(R2), K 2(R1

2) ~see below!, K 2(S2), K 3(R2), andK 2(R3),19 whereS2 denotes the
two-sphere.

Note that the same procedure can be carried out for any invariant subspace ofK p(M ).
Therefore one can determine the action ofI (M ) on any subspace ofK p(M ) invariant under the
action of I (M ). Once the isomorphismi (M ). i S(M ) is established, we can defin
I (M )-invariants and conformal I(M )-invariants of a vector space of Killing tensorsK p(M ) as
well as its invariant subspaces.

Definition 2.2: Let (M ,g) be an n-dimensional pseudo-Riemannian manifold of const
curvature, K p(M )—the corresponding vector space of Killing tensors of valence p define
(M ,g) and Q(M )#K p(M )—an invariant subspace ofK p(M ). A smooth function F:S→R is
said to be an I(M )-invariant of Q(M )#K p(M ) iff

V i~F !50, ~2.13!

whereV i , i 51,...,r are the generators of the Lie algebra iS(M ) defined as above forQ(M ).
A smooth function G:S→R is said to be a conformal I(M )-invariant of Q(M )#K p(M ) iff

V i~G!5e i , ~2.14!

wheree iPR for i 51,...,r .
Definition 2.3: An elementK2PK 2(M ) is said to be nontrivial if and only if it is not a

multiple of the metricg:K2Þl g, l PR.
Let Q(R2) denote the subspace of all nontrivial Killing tensors inK 2(R2). Without loss of

generality we can assume thatQ(R2) is defined by the general nontrivial Killing tensor who
components are given by

Qi j 5S A812ay1gy2 C2ax2by2gxy

C2ax2by2gxy 2bx1gx2 D , i , j 51,2, ~2.15!

whereA85A2B, andA,B,C,a,b,g are the parameters appearing in~2.9!. In view of Definition
2.2, one can determineI (R2)-invariants ofQ(R2). Recall that Problem 2.1 for the vector subspa
of nontrivial Killing tensors ofK 2(R2) has been solved by the authors in Ref. 20. The pre
result is given in the following theorem:

Theorem 2.1: Every smooth I(R2)-invariant of the subspaceQ(R2),K 2(R2) enjoys the
following form:

F~DR2
1 ,DR2

2
!, ~2.16!

where F: R2→R is a smooth function,

DR2
1

5g, DR2
2

5~a22b22gA8!214~gC1ab!2, ~2.17!

and A,B,C,a,b,g are the parameters defined in (2.9).
Definition 2.4: The quantitiesDR2

i ,i 51,2 are called the fundamental I(R2)-invariants of
K 2(R2).

Note that the fundamentali (R2)-invariants are homogeneous polynomials inA,B,C,a,b,g.
It is important to note that both the number of fundamental invariants and the form ofF in this
case are in compliance with the following well-known theorem of the theory of invariants.
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Theorem 2.2 „Ref. 12…: Let G act semiregularly on the m-dimensional manifold M with
s-dimensional orbits. If x0PM , then there exist precisely m2s functionally independent loca
invariantsz1(x),...,zm2s(x) defined in a neighborhood of x0 . Moreover, any other local invariant
of the group action defined near x0 is of the form

z~x!5F~z1~x!,...,zm2s~x!! ~2.18!

for some smooth function F. If the action of G is regular, then the invariants can be taken to
globally invariant in a neighborhood of x0 .

Indeed, dimS855, dimi S8(R
2)53. Therefore, according to Theorem 2.2, the number

fundamental invariants comes down to 52352.
The quantitiesDR2

i ,i 51,2 to classify families of confocal conics inR2 which define
orthogonally-separable coordinate webs for the Hamiltonian systems with two degrees of fre
defined inR2 admitting quadratic first integrals of motion. In this case the confocal conics ar
integral curves of the eigenvectors of the corresponding Killing tensorsK 2(R2). If the eigenval-
ues l1 ,l2 are not everywhere constant, they define the two families of confocal conicl i

5const,i 51,2. If one or both of the eigenvalues are everywhere constant one also has to co
the eigenvectors. Once an element ofQ(R2),K 2(R2) is available, it is easy to determine the typ
of the corresponding confocal conics~coordinate webs!, provided the Killing tensor in question i
linearly independent of the metric tensorg. Thus, we have the following classification~compare
with Example 1.1!:

~a! if DR2
1

50, DR2
2

50, then~2.9! defines the Cartesian web inR2;

~b! if DR2
1

50, DR2
2 Þ0, then~2.9! defines the parabolic web inR2;

~c! if DR2
1 Þ0, DR2

2
50, then~2.9! defines the polar web inR2;

~d! if DR2
1 Þ0, DR2

2
Þ0, then~2.9! defines the elliptic-hyperbolic web inR2.

The geometrical significance of the invariants is given by the following formula:

k25
ADR2

2

~DR2
1

!2 , ~2.19!

where k is interpretable as half the distance between the foci of the confocal conics in
elliptic–hyperbolic case.

In the following section we describe the vector space of Killing tensorsK 2(R1
2) from this

viewpoint and derive the correspondingI (R1
2)-invariants and conformalI (R1

2)-invariants to be
applied in the sequel to a classification problem in the Hamilton–Jacobi theory of separat
variables that is described in Sec. IV.

III. GROUP INVARIANTS OF THE VECTOR SPACE K 2
„R1

2
…

In this section the discussion proceeds from the general to the particular. We app
concepts introduced in the previous section to the study of the Killing tensors of valenc
defined in the Minkowski planeR1

2 that constitute the vector spaceK 2(R1
2).

Remark 3.1:Here and belowK denotes a Killing tensor of valence two.
The analysis presented in this section is parallel to the corresponding study carried out

authors in Ref. 20 of the Killing tensors of valence two defined the Euclidean planeR2, i.e., the
elements of the vector spaceK 2(R2). We observe first that in view of the formula~2.7!
dimK 2(R1

2)56. Alternatively, this fact can be verified by solving the corresponding Killing ten
equation@K ,g#50 in, ~say! pseudo-Cartesian coordinates (t,x)PR1

2 for the Lorentzian metricg
5diag(1,21) of R1

2. As expected, the general solution given by
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Ki j 5S A12ax1gx2 C1at1bx1gtx

C1at1bx1gxt B12bt1gt2 D , ~3.1!

contains six parametersA, B, C, a, b, andg ~constants of integration! that span the vector spac
K 2(R1

2). HereKi j are the contravariant components of the general Killing tensorKPK 2(R1
2). We

also note that the form of the general solution~3.1! is analogous to the general solution of th
Killing tensor equation in the Euclidean plane~2.9!. Next, in order to compute the
I (R1

2)-invariants and conformalI (R1
2)-invariants ofK 2(R1

2) we have to make use, in accordan
with the procedure described in the preceding section, of the Lie algebra isomorphism be
i (R1

2)5K 1(R1
2) and i S(R1

2), wherei S(R1
2) is the corresponding subspace ofX~S! generated by

the vector fields defined via the formula~2.10! and S.R6 is the space spanned by the s
parametersA,B,C, a, b, and g. In what follows, we establish the isomorphism directly
employing the general representation~3.1!.

Lemma 3.1: The vector space iS(R1
2) is a Lie subalgebra ofX~S! isomorphic to i(R1

2)
5K 1(R1

2).
Proof: Consider the Lie algebrai (R1

2) of the Lie groupI (R1
2) generated by the three Killing

vectors:

T5
]

]t
, X5

]

]x
, H5x

]

]t
1t

]

]x
. ~3.2!

They correspond, respectively, to the translations alongt and x and a hyperbolic rotation and
satisfy the following commutator relations:

@T,X#50, @T,H#5X, @X,H#5T. ~3.3!

The corresponding flows generated by the vector fields~3.2! are given by

sT~a,~ t,x!!5t1a, aPR,

sX~b,~ t,x!!5x1b, bPR, ~3.4!

sH~f,~ t,x!!5~ t coshf1x sinhf,t sinhf1x coshf!,

wherefPR is the~oriented! Lorentz angle. To define the mapp:Diff K 2(R1
2)→X(S) we use the

generic formula~3.1! and the definition~2.8!:

pS A012a0x1g0x2 C01a0t1b0x1g0tx

C01a0t1b0x1g0tx B012b0t1g0t2 D
5A0

]

]A
1B0

]

]B
1C0

]

]C
1a0

]

]a
1b0

]

]b
1g0

]

]g
,

for a particular element of DiffK 2(R1
2) defined byA0 ,B0 ,C0 ,a0 ,b0 ,g0 :

K0
25K0

2~A0 ,B0 ,C0 ,a0 ,b0 ,g0!PK 2~R1
2!.

Our next step is to define the vector fieldsV1 , V2 , andV3 in X~S! that correspond to the Killing
vectorsT, X, andH in X(R1

2), respectively, via the composition mapp+L employing the formula
~2.10!. They are found to be

V15p~LT~K !!52b
]

]B
1a

]

]C
1g

]

]b
,
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V25p~LX~K !!52a
]

]A
1b

]

]C
1g

]

]a
,

V35p~LH~K !!522CS ]

]A
1

]

]BD2~A1B!
]

]C
2b

]

]a
2a

]

]b
.

Note that the vector fieldsV1 , V2 , andV3 satisfy the commutator relations

@V1 ,V2#50, @V1 ,V3#52V2 , @V2 ,V3#52V1 . ~3.5!

Choosing2V1 , 2V2 , and2V3 as a basis of the Lie algebrai S(R1
2) immediately confirms that

it is isomorphic toi (R1
2) @see~3.3!#. h

Now we canbring the problem of finding I(R1
2)-invariants and conformal I(R1

2)-invariants of
K 2(R1

2) to the spaceS spanned by the six parameters A,B,C,a,b,g or any I(R1
2)-invariant

subspace ofK 2(R1
2). Indeed, the action ofI (R1

2) in S is equivalent to its action inS8, whereS8
is the parameter space spanned by the five parametersA9,C,a,b,g, where A95A1B and
A,B,C,a,b,g spanS and S8 is the five-parameter space of parameters corresponding on
subspace of nontrivial Killing tensorsQ(R1

2),K 2(R1
2). Thus, we can assume without loss

generality that contravariant components of the general nontrivial Killing tensorQPQ(R1
2) are

given by

Qi j 5S A912ax1gx2 C1at1bx1gtx

C1at1bx1gxt 2bt1gt2 D , ~3.6!

whereA,B,C,a,b,g are as in~3.1!.
Remark 3.2:We note that the general form~3.6! can be transformed to the form

Q̃i j 5S A-12ax1gx2 C1at1bx1gtx

C1at1bx1gxt A-12bt1gt2 D , ~3.7!

whereA-5(A1B)/2, by adding a multiple of the metric. Obviously, this transformation does
affect theI (R1

2)-invariants of the subspace of nontrivial Killing tensors.
Next, using the procedure described above we can employ the compositionF* 5p+L to

determine the vector fieldsV i8PX(S8),i 51, 2, 3 that correspond to the generators ofi (R1
2).

Corollary 3.1: LetQ(R1
2),K 2(R1

2) be the invariant subspace of nontrivial Killing tensors
valence two defined in the Minkowski plane. Then the vector space iS8(R1

2) spanned byV i8 ,i
51, 2, 3 is a Lie subalgebra ofX(S8) isomorphic to i(R1

2)5K 1(R1
2).

Proof: The proof is identical to that of Lemma 3.1. h

Employing Definition 2.2 and the result of Corollary 3.1 we obtain the following theorem
Theorem 3.1: (a) Assume in (3.6)gÞ0. Then a smooth function G:S→R is a conformal

I (R1
2)-invariant of Q(R1

2),K 2(R1
2) iff it has the following form:

G5uZ1ueF̃~DR
1
2

1
,DR

1
2

2
!, ~3.8!

where F̃:R2→R is a smooth function, ePR and DR
1
2

1
,DR

1
2

2
PS8 are homogeneous polynomials

A9,C,a,b,g given by

DR
1
2

1
5g, DR

1
2

2
5~a21b22gA9!224~gC1ab!2 ~3.9!

and

Z15g~A912C!2~a2b!2. ~3.10!
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(b) Assume in (3.6)gÞ0. Then a smooth function F:S→R is a I(R1
2)-invariant of

Q(R1
2),K 2(R1

2) iff it assumes the following form:

F5F~DR
1
2

1
,DR

1
2

2
!, ~3.11!

where A9,C,a,b,g are as in (3.6).
Proof: Recall that invariance of an object under the entire Lie group is equivalent to in

tesimal invariance under the infinitesimal generators of the corresponding Lie algebra. In v
Corollary 3.1 the vector fieldsV i8 ,i 51, 2, 3 given by

V185p~LT~Q!!5a
]

]C
1g

]

]b
,

V285p~LX~Q!!52a
]

]A9
1b

]

]C
1g

]

]a
,

V385p~LH~Q!!522C
]

]A9
2A9

]

]C
2b

]

]a
2a

]

]b

can be chosen as a basis of the Lie algebrai S8(R1
2). HereQ is given by~3.6!.

(a)⇒We solve the system of PDE’s

V i8~G!5e i , ~3.12!

for i 51,2,3. We view the system~3.12! as a system of three inhomogeneous linear partial dif
ential equations in five variables that can be conveniently solved by repeated application
method of characteristics. In the casegÞ0, we obtain solution~3.8!. We note that the existence o
a solution forcese15e250, while e in ~3.8! is e3 .

(a)⇐Straightforward.
(b)⇒The proof is analogous to part~a!. This time we solve by the method of characterist

a simpler system of PDE’s, namely,

V i8~F !50, ~3.13!

for i 51, 2, 3. The general solution is given by~3.11!.
(b)⇐Straightforward. h

Corollary 3.2: DR
1
2

i
, i 51, 2 given by (3.11) are I(R1

2)-invariants ofK 2(R1
2).

Definition 3.1: The quantitiesDR
1
2

i
, i 51, 2 are called the fundamental I(R1

2)-invariants of

K 2(R1
2).

Remark 3.3:As expected, in view of Theorem 2.2, we have obtained twoI (R1
2)-invariants:

dimS82dim i (R1
2)552352.

Remark 3.4:We note that theI (R1
2)-invariants of the subspace of nontrivial Killing tensors

K 2(R1
2) have a striking resemblance to theI (R2)-invariants of the subspace of nontrivial Killin

tensors ofK 2(R2) @see~4.18!#. In spite of such a similarity, however, the polynomialDR2
2 >0,

while DR
1
2

2
factors over the reals.

Corollary 3.3: Let Z65g(A962C)2(a7b)2. The functions I6 :S→R given by

I 6ªsgn~Z6! ~3.14!

are I(R1
2)-invariants ofQ(R1

2),K 2(R1
2).

Proof: We note first that
                                                                                                                



’s
o
owski

ned in

eral
ty and
ration

1090 J. Math. Phys., Vol. 45, No. 3, March 2004 McLenaghan, Smirnov, and The

                    
Z1Z25DR
1
2

2
.

Next, using formulas~3.4! for the flows of the generators ofi (R1
2), we obtain

Z̄65e72fZ6 ,

which implies the result. h

Various additional conformalI (R1
2)-invariants arise from the solution of the system of PDE

~3.12! used in the proof of part~a! of Theorem 3.1 wheng50. They will be used in the sequel t
solve the problem of classification of separable Hamiltonian systems defined in the Mink
planeR1

2.
Theorem 3.2: Let g50 in (3.7). Then G:S→R is a conformal I(R1

2)-invariant of
Q(R1

2),K 2(R1
2) iff

(a)

G5expS e3 arctanhS 2b

a D D F̃~a22b2!, ~3.15!

whena2Þb2. In this casee15e250.
(b)

G5uau2e3/2 expS e1~A922C!

4a D F̃~~A912C!a!, ~3.16!

whena25b2Þ0, a5b. In this casee15e2 .
(c)

G5uaue3/2 expS 2e1~A912C!

4a D F̃~~A922C!a!, ~3.17!

whena25b2Þ0, a52b. In this casee152e2 .
In each of the above cases, F̃ represents an arbitrary smooth function.
Using the results of Theorem 3.2 we can derive additionalI (R1

2)-invariants that will be used
in the forthcoming sections to classify special separable cases of Hamiltonian systems defi
R1

2.
Corollary 3.4: Letg50 in (3.6). Then we have

(i) F 5sgn(a22b2) is an I(R1
2)-invariant of Q(R1

2),K 2(R1
2),

(ii) let a25b2Þ0. Define

m6ª
A962C

a
. ~3.18!

Then we have
(a) then for I150, I 2521 ~i.e., a5b), F5sgn(m1) is an I(R1

2)-invariant of
Q(R1

2),K 2(R1
2),

(b) then for I1521, I 250 ~i.e., a52b), F5sgn(m2) is an I(R1
2)-invariant of

Q(R1
2),K 2(R1

2).

IV. HAMILTON–JACOBI THEORY OF SEPARATION OF VARIABLES AND GROUP
INVARIANTS OF KILLING TENSORS

Since the time of its inception in the 19th century the problem of integrability of a gen
Hamiltonian system defined by a natural Hamiltonian has been extensively studied. Its beau
richness are largely due to a profound connection with the Hamilton–Jacobi theory of sepa
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of variables.21–27To establish the requisite language of the theory to be used throughout this p
we recall briefly its basic concepts. Let (M ,g) be ann-dimensional pseudo-Riemannian manifol
Recall that a Hamiltonian system defined by a natural Hamiltonian function with a scalar pot
V, which can be written as

H~q,p!5 1
2 gi j ~q!pipj1V~q!, ~4.1!

can in many cases be integrated by quadratures by considering the corresponding Ham
Jacobi equation~HJE!. Here gi j are the contravariant components of the corresponding m
tensorg and (q,p)PT* M are the canonical position-momenta coordinates. The procedure
sists of a canonical coordinate transformation~CT! T:(q,p)→(u,v) to separable coordinates~SC!
~u,v!, with respect to which the Hamilton–Jacobi equation

1

2
gi j ~u!

]W

]ui

]W

]uj 1V~u!5E, v j5
]W

]ui , ~4.2!

admits a complete integral ~CI! W(u,c), satisfying the nondegeneracy conditio
deti]2W/]ui]cjin3nÞ0, wherec5(c1 ,...,cn) is a constant vector. The functionW is usually sought
in the form

W~u,c!5(
i 51

n

Wi~ui ,c!,

which is the essence of theadditive separation ansatz. In view of Jacobi’s theorem, onceW has
been found, the integral curves of the flow generated by~4.40! can be determined from th
equations

v i5
]W

]ui , bj5
]W

]cj
, t2t05

]W

]E
,

where i 51,...,n, j 51,...,n21. The inverse canonical transformation (u,v)→(q,p) yields the
solution in terms of the original position-momenta coordinates~q,p!. Geometrically, the
Hamilton–Jacobi equation and its solutionW can be interpreted as follows~see Benenti22!: In a
neighborhood of a regular point Eq.~4.2! determines a hypersurfaceH,T* M , while the set of
equationsv i5]W/]ui determine a Lagrangian submanifoldL,T* M , as an image of a close
one-formdW. ThereforeW is a solution to~4.2! iff H,L.

The principal special cases of the canonical transformations to separable coordinates
point transformation, in which case the separable coordinates are given byui5ui(q), i 51,...,n
and thegeneric (nonpoint) transformation, in which case we have:ui5ui(q,p), v i5v i(q,p), i
51,...,n. Moreover, the point transformation in this context is(non)orthogonaliff the metric
tensorg of ~4.40! is ~non!diagonal with respect to the separable coordinatesu1,...,un.

The existence of separable coordinates~u,v! is usually guaranteed by the existence of
additional geometrical structure associated with the dynamics of the Hamiltonian system d
by ~4.1!. Thus, in the case of a point transformation to separable coordinates, they can be
mined by the geometric properties of a certain Killing tensor~orthogonal separation of variables!,
or a Killing tensor in conjunction with an abelian Lie algebra of Killing vectors~nonorthogonal
separation of variables!.28 These Killing tensors correspond to first integrals quadratic in
momenta of the Hamiltonian system defined by~4.1!. When the canonical transformation to th
separable coordinates is not a point transformation, the separable coordinates~u,v! can be deter-
mined by the existence of either a~quasi-!bi-Hamiltonian structure or a Lax pair or both. A va
literature on the subject has emerged in recent years. Many papers have been devoted to t
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of integrable systems admitting bi-Hamiltonian and/or Lax representations from the point of
of separation of variables~see, for example, Refs. 29–35, as well as the relevant refere
therein!.

Orthogonally separable Hamiltonian systems defined by natural Hamiltonians of the type~4.1!
represent the most studied class of systems whose integrability can be asserted within the
work of the Hamilton–Jacobi theory. Examples of the Hamiltonian system belonging to this
include such well-known physical models as the harmonic oscillator, Coulomb–Kepler pote
the two integrable cases of the He´non–Heiles potential, Yatsun’s integrable potentials, the t
particle nonperiodic Toda lattice, Calogero–Moser potential, and others. Global properties
Hamiltonian systems defined on Riemannian manifolds have also been extensively stud
many authors~see Ref. 36 and the references therein!. Since the first paper by Liouville37 ~see also
Ref. 38 for historical details! devoted to the study of orthogonally separable Hamiltonians,
theoretical background has been developed by many well-known authors, including Mo39

Stäckel,40 Eisenhart,5 Kalnins and Miller,13 Benenti,28 and others~see also the relevant referenc
therein!. The compact and refined criterion of orthogonally separability due to Benenti28 subsumes
most of the previous results on orthogonal separability. It reads:

Theorem 4.1:The Hamiltonian system defined by (4.1) is orthogonally separable if and
if there exists a valence two Killing tensorK with pointwise simple and real eigenvalues, orthog

nally integrable eigenvectors such that d(K̂dV)50, where the linear operatorK̂ is given by

K̂ªKg.
The separable coordinates are defined by the integral curves of the eigenvectors ofK .28 When

n52 the separable coordinates are also defined by the eigenvalues and/or the eigenvectoK .
The tensorK satisfies the Killing tensor Eq.~2.1!, which in component form can be written a
follows:

@g,K # i jk5g~ i j
,,Kk),2K ~ i j

,,gk),50. ~4.3!

It should be mentioned, however, that in applications involving the Hamiltonian systems de
in higher dimensions often an auxiliary tensorL is required in order to construct the separab
coordinates. It is given byLª1/(n21)tr(K )g2K and called aconformal Killing tensor~CKT!.41

The eigenvalues ofL provide the coordinates of separations. Clearly, the Killing tensorsL andK
share the sameintegrableeigenvectors.

An important new facet to the theory of orthogonally separable Hamiltonian systems
added by Ferapontov and Fordy42,43 in the form of a connection between the theory of orthog
nally separable Hamiltonian systems and the theory of partial differential equations ofhydrody-
namic type. It appears that a system satisfying the conditions of Theorem 4.1 can be nat
associated with such a system of PDE’s. Moreover, the process of finding separable coordin
the original Hamiltonian system can then be related to the process of determining Rie
invariants in the corresponding system of hydrodynamic type. This fruitful idea has been ext
to the study of Hamiltonian systems with vector potentials~see the review in Ref. 43, and refe
ences therein!.

As has been previously mentioned, the study of orthogonally separable natural Hamilto
in the sense described above was initiated by Liouville.37 He considered the Hamiltonian syste
with two degrees of freedom modeling the motion of a particle on a curved surface. More
cifically, Liouville showed that if there exists a coordinate system (u,v) in which the Hamiltonian
enjoys the form

H5~A~u!1B~v !!21@ 1
2 ~e1pu

21e2pv
2!1C~u!1D~v !#, ~4.4!

then the canonical Hamilton equations can be integrated by quadratures. The form ofH also
implies that the corresponding HJE can be integrated by separation of variables. In~4.4! A(u),
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B(v), C(u), D(v) are smooth functions and (e1)25(e2)251. Note that the form~4.4! has been
derived without making any assumptions about the curvature of the two-dimensional ps
Riemannian space (M ,g).

In 1881 Morera39 solved the converse problem. Thus, he showed that if a Hamiltonian sy
with two degrees of freedom can be solved by separation of variables, then there exists a
of coordinates in which the Hamiltonian~4.1! assumes theLiouville form ~4.4!. He also showed
that in the Euclidean planeorthogonalseparation of variables occurred only in Cartesian, po
parabolic, and elliptic–hyperbolic coordinates, provided the Hamiltonian assumed the form~4.4!
in the separable coordinates. We note that there can exist other systems of coordinates with
to which the HJE separates, while the Hamiltonian~4.1! is not in the Liouville form~4.4!.

This remarkable equivalence can also be reformulated in the form of the celebratedBertrand–
Darboux–Whittaker theorem,47 which states that separability of the HJE corresponding to
Hamiltonian system with two degrees of freedom defined by~4.1! is equivalent to the existence o
a second first integral quadratic in the momenta:

F5Ki j ~q!pipj1U~q!, i , j 51,2, ~4.5!

whereKi j are the components of the corresponding Killing tensorK with pointwise simple and
real eigenvalues anddU52K̂dV. The theorem appears to be a particular case of Theorem
since the eigenvectors ofK in this case are automatically integrable. For a long time a proce
based on the Bertrand–Darboux–Whittaker theorem has provided a working method for in
ing the Hamiltonian systems with two degrees of freedom defined by~4.1!. More specifically, once
a second integral quadratic in the momenta has been found, the method consists of solv
second order PDE resulting from the involutiveness ofF andH. The solution is used to transform
a given Hamiltonian to the form~4.4!. The coordinates (u,v), thus determined, provide separab
coordinates for the associated HJE, which entails complete integrability of the Hamiltonian s
defined by~4.1!. However, even in the simplest case, namely when the Hamiltonian system~4.1!
is defined in the Euclidean plane, finding the separable coordinates following this scheme in
quite a few steps.47 The procedure is illustrated by the following example.

Example 4.1 (Method I. Second Integrable Case of Yatsun):Let a Hamiltonian system be
defined by the following Hamiltonian function:

H2~q1,q2,p1 ,p2! 5 1
2 ~p1

2 1 p2
2! 1 V2~q1,q2!, ~4.6!

where

V2~q1,q2! 5 22 S ~q1!4 1 2 ~q1!2 ~q2!2 1
2l

g2 ~q2!4 D 1 4 ~~q1!3 1 q1~q2!2 !

2 2 ~~q1!2 1 ~q2!2 !. ~4.7!

This system describes the equations of motion of an SU~2! Yang–Mills theory after O~4!-
symmetry reduction.44,45 It has been shown44,45 that the Hamiltonian system is completely int
grable if g252l admitting the following additional first integral independent of~4.6!:

F25~~q2!21 3
4!p1

22~2q121!q2p1p21~q121!q1p2
223~q1!422~q1!2~q2!21~q2!4

16~q1!312~q1!~q2!223~q1!2. ~4.8!

Therefore in view of the previous comments the Hamiltonian system in question can be s
by the Hamilton–Jacobi method of separation of variables. To find the separable coordinat
employ the procedure based on the Bertrand–Darboux–Whittaker theorem, which involves
ing the Hamiltonian function~4.6! to the form~4.4!:
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~1! Observe that the components of the Killing tensor are given by

K(1)5S 3
4 1~q2!2 1

2 q22q1q2

1
2 q22q1q2 2q11~q1!2

D. ~4.9!

~2! Write down the PDE implied by the compatibility conditiond(K̂dV)50:

S ]2V

]~q2!2
2

]2V

]~q1!2D~22q1q21q2!12
]2V

]q1]q2 S~q2!22~q1!21
3

4
1q1D1 ]V

]q1 6q21
]V

]q2 ~26q113!50.

~4.10!
~3! Perform the change of the variableq1→z1 1

2, q2→y, to obtain

S]2V

]z2 2
]2V

]y2Dzy1
]2V

]z]y
~y22z211!1

]V

]z
3y2

]V

]y
3z50. ~4.11!

~4! Consider~following Darboux!! the differential equation of the characteristics of~4.11!:

zy~dy22dz2!1~z22y221!dzdy50. ~4.12!

~5! Introduce the new variablesuªz2 andvªy2 to transform~4.12! into the following ODE:

Sdv
duD

2

~u2v!1
dv
du

~u2v21!50, ~4.13!

which is aClairaut’s equation, which has a general solution of the form

~m11!~mz22y2!2m50 ~4.14!

in the original variablesz,y.
~6! Rewrite ~4.14! in terms of a new parametera to get

z2

a21
y2

a221
51.

Observe that the characteristic curves of the PDE are two families of confocal conics. T
fore taking the parameters of the confocal hyperbolas and ellipses as coordinates, we

z5ab, y5@~a221!~12b!#1/2,

or

z5cosh~u!cos~v!, y5sinh~u!sin~v!.

~7! Write the PDE~4.11! in terms of new variablesa andb to obtain

~b22a2!
]2V

]a]b
12b

]V

]a
22a

]V

]b
50,

which has a general solution

V5
f ~a!2f~b!

a22b2

in the Liouville form.
~8! Finally, transform back to the original coordinatesq1 andq2 to find
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Hq151
2 1cosh~u!cos~v!,

q25sinh~u!sin~v!.
~4.15!

Therefore the separable coordinates are of the shifted elliptic–hyperbolic type.
~9! Transform the momenta and potential accordingly, to obtain the following Liouville form

the HamiltonianH2 in the elliptic–hyperbolic coordinates

H25

1
2 ~pu

21pv
2!1g~cos2~v!!2g~cosh2~u!!

cosh2~u!2cos2~v!
, ~4.16!

wherepu5]W/]u , pv5]W/]v, and

g~h!52h323h21 9
8 h. ~4.17!

Hence we conclude that the HamiltonianH2 is orthogonally separable in the (u,v) coordi-
nates.

For example, this is essentially the procedure used by Rauch–Wojciechowski48 to integrate
the second integrable case of the He´non–Heiles potential by the Hamilton–Jacobi method
separation of variables and obtain the transformations to the separable coordinates. Rece
method has been generalized to higher dimensions,49 in which case one has to deal not with
single PDE, but a system of PDE’s of the type~4.10! called theBertrand–Darboux system of
PDE’s.

The above example illustrates that the problem of integrating a Hamiltonian system b
Hamilton–Jacobi method of separation of variables consists essentially of two parts.First, one has
to determine the type of the system of separable coordinates involved and recall the
coordinate transformations from (q1,q2) to (u,v). At this stage the separable coordinates
defined up to the action of the isometry groupI (R2). Second, one has to locate the separab
coordinates (u,v) with respect to the given original coordinates (q1,q2), that is to take into
account any additional translation and/or rotation determined by the action ofI (R2). Thus, in
Example 4.1 the orthogonal separable coordinates have been determined to be shifted e
hyperbolic coordinates. The corresponding coordinate transformation from (q1,q2) to (u,v) is
given by ~4.15!.

It is clear that the whole procedure rests on the properties of the Killing tensor~4.9! as well as
the action of the isometry groupI (R2). This observation enabled the present authors to cons
ably simplify the procedure by making it completely algebraic.20 To this end, we determined th
action of the isometry groupI (R2) in the spaceK 2(R2) defined by the general form~2.9! and
derived theI (R2)-invariants DR2

1 and DR2
2 of ~2.9! as polynomial functions of the paramete

A,B,C,a,b,g:

DR2
1

5g, DR2
2

5~a22b21g~B2A!!214~gC1ab!2. ~4.18!

The functionsDR2
i , i 51,2 can be used to characterize the type of separable coordinate~s!, given

the Killing tensor defined by a first integral~4.1! quadratic in the momenta. The six paramete
A,B,C,a,b,g have also been used to determine any translation and/or rotation of the sep
coordinates (u,v) with respect to the original coordinates (q1,q2). See Table I in Ref. 20 for more
details. In order to illustrate the new method and compare it with Method I used above
reconsider the Hamiltonian system defined by~4.7! from this new viewpoint.

Example 4.2 [Method II (Ref. 20). Second Integrable Case of Yatsun]:To employ the new
method based on theI (R2)-group invariants of the Killing tensors, we again begin by consider
the Killing tensor defined by the first integral~4.8!.

~1! The corresponding Killing tensor defined by the first integral quadratic in the momen
found to be
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K (1)5S 3
4 1~q2!2 1

2 q22q1q2

1
2 q22q1q2 2q11~q1!2D . ~4.19!

~2! Comparing~4.19! with ~2.9!, we determine the parameters:A5 3
4 B5C5a50 b52 1

2,
andg51. Next, we use Table I in Ref. 20 to find after a simple computation that in additio
DR2

1
5g51Þ0, the secondI (R2)-invariant DR2

2
51/4Þ0. This indicates that the coordinates

separation are of the elliptic–hyperbolic type. Using the corresponding formulas presen
Table I,20 we find the constantsa51/2, b50 ~translations along theq1 andq2 axes, respectively!,
u50 ~rotation angle!, k51 ~the distance between the foci!. This immediately yields the transfor
mation formulas to the separable coordinates:

H q15 1
2 1cosh~u!cos~v !,

q25sinh~u!sin~v !,
~4.20!

which agrees with the results previously obtained.
Clearly, the new method considerably simplifies the process of integration by replacin

analyticalprocedure with analgebraicone~compare with Example 4.1!. Due to this fact,it is now
easy to incorporate the algorithm into a computer algebra package. The corresponding program
have been implemented in the computer algebra systemMAPLE.

In the present paper we take the next step in developing the algorithm by extendi
applicability to the Hamiltonian systems defined in the Minkowski planeR1

2. The situation in this
case is much more complicated than the case of Hamiltonian systems defined in the Eu
planeR2 due to the fact that there exist a larger number of separable coordinate systems. It
known25,15that in this setting there exist ten distinct~in a certain sense! types of separable system
of coordinates determined by the corresponding Killing tensors. Therefore one has to fi
appropriate set of invariants of the general Killing tensor that can be used to characterize e
the separable coordinate systems and to determine the corresponding transformations to s
coordinates.

V. SEPARABLE KILLING TENSORS IN THE LIOUVILLE–MORERA COORDINATES „u ,v …

In this section we extend our study to the Hamiltonian systems defined in the Minko
planeR1

2. We shall follow the general procedure based onI (R2)-invariants devised in Ref. 20 to
classify orthogonally separable Hamiltonian systems defined in the Euclidean planeR2. In order to
be able to employ the~conformal! I (R1

2)-invariants ofK 2(R1
2) to the classification problem, we

determine first the orthogonally-separable Hamiltonian systems defined inR1
2 with respect to a

special system of coordinates that is introduced below.
Consider a Hamiltonian system with two degrees of freedom defined by

H~q,p!5 1
2 gi j pipj1V~q!, ~5.1!

wheregi j , i , j 51,2 are the contravariant components of a Lorentzian metricg, which asserts tha
the underlying manifold (M ,g) is pseudo-Riemannian. According to the approach to the stud
integrability of Hamiltonian systems with two degrees of freedom defined in Riemannian s
introduced by Liouville,37 we claim that if the metricg as well as the potential functionV in ~5.1!
take on specialseparableforms in some coordinate system (u,v), the Hamiltonian system define
by ~5.1! can be integrated by quadratures with respect to (u,v). It has been shown in Ref. 53 tha
in the coordinates (u,v) the Hamiltonian function takes on the following form:

H5~A~u!1B~v !!21@ 1
2 ~pu

22pv
2!1C~u!1D~v !#, ~5.2!
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where A(u), B(v), C(u), and D(v) are arbitrary smooth functions. This setting also impl
additive separation of variables in the corresponding HJE~4.2!. Note that the metric entering th
formula ~5.2! enjoys theLiouville form:

ds25~A~u!1B~v !!~du22dv2!. ~5.3!

Conversely, following Morera,39 we can also conclude that if the Hamiltonian system defin
by ~5.1! can be integrated via additive separation of variables in the associated HJE~4.2!, the
Hamiltonian function~5.1! can be transformed to the form~5.2! with respect to the separabl
coordinates. Hence, in view of this classical equivalence, we call (u,v) the Liouville–Morera
(LM) separable coordinates.

It is easy to see that the Hamiltonian system defined by~5.1! in the LM coordinates admits an
additional first integral of motion of the form:

F5
B~v !pu

21A~u!pv
212~B~v !C~u!2A~u!D~v !!

A~u!1B~v !
. ~5.4!

Note, the integral of motion~5.4! is quadratic in the momenta with the corresponding~covariant!
Killing tensor KLMPK 2(R1

2) given by

KLM5~A~u!1B~v !! diag~B~v !,A~u!!. ~5.5!

Clearly, the functionsA(u) and B(v) are the eigenvalues of the linear operatorK̂5KLMg21,
whereg is the metric of~5.1!. Employing the corresponding eigenvectors ofKLM, one can show
by solving the Killing tensor equation~2.1! in the moving frame of the normalized eigenvectors52

that the most general solution has the following form:

K5l g1mKLM, ~5.6!

where l ,mPR are arbitrary constants. In this work we are concerned with the case whe
Riemann curvature tensor is zero. Solving the resulting differential equation allows us to
mine the ten admissible metrics along with the corresponding Killing tensors@corresponding to
~5.3! and ~5.6!, respectively#, which we list below~see Ref. 52 for more details!. In essence,
solving these differential equations yields the explicit formulas for the functi
A(u),B(v),C(u), and D(v) in ~5.3! and ~5.6!. Note that the eigenvaluesl1 ,l2 of the Killing
tensor~5.5! determine theten orthogonal separable coordinate webs:l i5const,i 51,2, provided
they are not everywhere constant. If one or both of them are everywhere constant, the corre
ing eigenvectors have to be also used. The orthogonal separable webs so defined can be e
to solve the associated HJE via additive separation of variables. In summary, the tenseparable
cases~SC! are determined by their respective metrics and Killing tensors:

SC1: H ds(1)
2 5du22dv2,

K (1)5diag~1,0!,
~5.7!

SC2: H ds(2)
2 5du22u2dv2,

K (2)5diag~0,u4!,
~5.8!

SC3: H ds(3)
2 5~u1v !~du22dv2!,

K (3)5~u1v !diag~v,u!,
~5.9!

SC4: H ds(4)
2 5~u22v2!~du22dv2!,

K (4)5~u22v2!diag~v2,u2!,
~5.10!
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SC5: H ds(5)
2 5k2~sinu1sinv !~du22dv2!,

K (5)5k2~sinu1sinv !diag~sinv,sinu!,
~5.11!

SC6: H ds(6)
2 5~eu1ev!~du22dv2!,

K (6)5~eu1ev!diag~ev,eu!,
~5.12!

SC7 :H ds(7)
2 5~eu2ev!~du22dv2!,

K (7)5~eu2ev!diag~2ev,eu!,
~5.13!

SC8: H ds(8)
2 5k2~sinhu1sinhv !~du22dv2!,

K (8)5k2~sinhu1sinhv !diag~sinhv,sinhu!,
~5.14!

SC9 :H ds(9)
2 5k2~coshu1coshv !~du22dv2!,

K (9)5k2~coshu1coshv !diag~coshv,coshu!,
~5.15!

SC10: H ds(10)
2 5k2~coshu2coshv !~du22dv2!,

K (10)5k2~coshu2coshv !diag~2coshv,coshu!.
~5.16!

Thus, once the coordinates of separation (u,v) for the Hamiltonian~5.1! and additional first
integral ~5.4! are available, it is not difficult to determine the type of separation of varia
occurring in the associated HJE~4.2!. Indeed, one has to simply compare the metric of
Hamiltonian~5.1! and Killing tensor of the additional first integral of motion~5.4! with the list
above and select the right SC. Then, the problem is solved. However, it is often the case
Hamiltonian function is determined initially with respect to the pseudo-Cartesian coordinat
which case~5.1! takes the form:

H~q,p!5 1
2 ~p1

22p2
2!1V~q1,q2!. ~5.17!

Thus, in order to solve the problem of integrability in this case, one needs to answer the foll
questions.

~1! Is the Hamilton–Jacobi equation of~5.17! orthogonally separable in one ormoreof the above
systems of coordinates?

~2! If yes, how does one determine the coordinate transformation~s! to the system~s! of separable
coordinates?

The first question can be solved by employing Theorem 4.1, which generalizes the result
cerning the geodesic case obtained by Eisenhart5 ~see also Ref. 13!. Next, one can make use of th
general solution of the Killing tensor equation~2.1! in the coordinates~5.17!:

Ki j 5S A12aq21g~q2!2 C2aq12bq22gq1q2

C2aq12bq22gq1q2 B12bq11g~q1!2 D . ~5.18!

By applying the compatibility conditiond(K̂dV)50 ~see Theorem 4.1! to ~5.18! one then obtains
all of the admissible Killing tensors defining the first integrals quadratic in momenta. If there
least one Killing tensor with real and pointwise distinct eigenvalues, the system defined by~4.1! is
orthogonally separable. The existence of more Killing tensors with the designated prope
indicates that the system issuperseparable.20,28,51

Finding the answer to the second problem is much more complex. It is largely due to th
that the separable coordinates defined by the ten Killing tensors above are defined only up
action of the isometry groupI (R1

2), i.e., up to the correspondinghyperbolic rotation and/or
translations of the Minkowski planeR1

2. Geometrically, this means that in general~due to the
existence of the potential functionV in ~5.1!! the two systems of coordinates ofR1

2 featured in this
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section, namely, (q1,q2) and (u,v) are not aligned inR1
2. It is our main objective therefore to us

the ~conformal! I (R1
2)-invariants of the spaceR1

2 to develop an effectivealgorithmic methodfor
determining the transformations to separable coordinates for the Hamiltonian system defi
~5.1!.

VI. SEPARABLE KILLING TENSORS IN THE CANONICAL PSEUDO-CARTESIAN
COORDINATES „t ,x …

Consider the geodesic Hamiltonian function defined inR1
2, which amounts to settingV(q)

5constant in~5.17!:

H~ t,x,pt ,px!5 1
2 ~pt

22px
2!, ~6.1!

where (t,x) arecanonical pseudo-Cartesian coordinates. Unlike the general case (V(q)Þconst)
described in the previous section, the corresponding Hamiltonian system is orthogonally sep
in all ten of the coordinate systems SC1-10. Moreover, we can choose pseudo-Cartesian
nates to have a particularly simple relation with the separable web in each of the separabl
SC1-10. We call the pseudo-Cartesian coordinates thus chosencanonical pseudo-Cartesian coor
dinates(t,x). The transformations (t,x)→(u,v) between the separable coordinates (u,v) defined
by each of the separable webs and the canonical pseudo-Cartesian coordinates (t,x) are listed
below, together with their corresponding Killing tensors obtained from~5.7! to ~5.16! via the
tensor transformation laws.

Coordinate transformations:
SC1

t5u,
~6.2!

x5v,

SC2

t5u coshv,
~6.3!

x5u sinhv,

SC3

t5 1
4 ~u1v !21 1

2 ~u2v !,

~6.4!
x52 1

4 ~u1v !21 1
2 ~u2v !,

SC4

t5 1
2 ~u21v2!,

~6.5!
x5uv,

SC5

t52&k cosS u

2
1

p

4 D cosS v
2

1
p

4 D ,

~6.6!

x52&k sinS u

2
1

p

4 D sinS v
2

1
p

4 D ,
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SC6

t5sinh~ 1
2 ~u2v !!12e~1/2!(u1v),

~6.7!

x5sinh~ 1
2 ~u2v !!22e~1/2!(u1v),

SC7

t5cosh~ 1
2 ~u2v !!12e~1/2!(u1v),

~6.8!

x5cosh~ 1
2 ~u2v !!22e~1/2!(u1v),

SC8

t5k&~cosh~ 1
2 ~u1v !!1sinh~ 1

2 ~u2v !!!,

~6.9!

x5k&~cosh~ 1
2 ~u1v !!2sinh~ 1

2 ~u2v !!!,

SC9

t52k& sinh
u

2
cosh

v
2

,

~6.10!

x52k& cosh
u

2
sinh

v
2

,

SC10

t52k& cosh
u

2
cosh

v
2

~6.11!

x52k& sinh
u

2
sinh

v
2

.

Separable Killing tensors in canonical pseudo-Cartesian coordinates:
SC1

S 1 0

0 0D , ~6.12!

SC2

S x2 2tx

2tx t2 D , ~6.13!

SC3

S 1
4 2x 2 1

4 1 1
2 t2 1

2 x

2 1
4 1 1

2 t2 1
2 x 1

4 1t
D , ~6.14!
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SC4

S 0 2x

2x 2t D , ~6.15!

SC5

S k22 1
4 x2 1

4 tx

1
4 tx k22 1

4 t2D , ~6.16!

SC6

S 1
4 x2 2 1

4 2 1
4 tx

2 1
4 2 1

4 tx 1
4 1 1

4 t2 D , ~6.17!

SC7

S 2 1
4 1 1

4 x2 1
4 2 1

4 tx

1
4 2 1

4 tx 2 1
4 1 1

4 t2D , ~6.18!

SC8

S 1
4 x2 k22 1

4 tx

k22 1
4 tx 1

4 t2 D , ~6.19!

SC9

S k21 1
4 x2 2 1

4 tx

2 1
4 tx k21 1

4 t2D , ~6.20!

SC10

S 2k21 1
4 x2 2 1

4 tx

2 1
4 tx 2k21 1

4 t2D . ~6.21!

Remark 6.1:Note that the Killing tensors~6.12!–~6.21! in the coordinates (t,x) are symme-
trized sums of~tensor! products of the Killing vectors~3.2!. In addition, we observe that th
formulas~6.12!–~6.21! are compatible with the general form~5.18!.

Figures 1–10 illustrate the ten separable webs defined by the eigenvectors of the res
Killing tensors ~6.12!–~6.21! in terms of the corresponding canonical pseudo-Cartesian co
nates~6.2!–~6.11! ~see also Refs. 14, 15!.

Remark 6.2:We can use the separable Killing tensors in the (t,x) coordinates to solve the
problem of classification in terms of theI (R1

2)-invariants ofK 2(R1
2). However, to solve the

problem of finding~point! transformations from the noncanonical pseudo-Cartesian coordin
(q1,q2) of ~5.17! to orthogonally separable coordinates (u,v) a more delicate analysis, whic
takes into account all the metric-preserving and signature-reversing transformations ofR1

2 includ-
ing the actions induced by the isometry groupI (R1

2), has to be undertaken.
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VII. RIGID MOTIONS

As explained in the previous section the canonical pseudo-Cartesian coordinates (t,x) have
been chosen to have a simple relation with the separable webs in each of the cases SC1
These choices are reflected in the coordinate transformations (t,x)→(u,v) defined by~6.2!–
~6.11!. It must be noted that even though the original coordinates (q1,q2) are also pseudo
Cartesian, they are equivalent to the coordinates (t,x) only modulo transformations which pre
serve the Lorentzian metricg of the Hamiltonian~4.1! or reverse its signature. The set of su
transformations forms a groupL ~under composition! generated by elements of the discrete gro
R5^R1 ,R2&, where

R1 : t̄ 5t, x̄52x ~spatial reflectionx↔2x!,

R2 : t̄ 5x, x̄5t ~permutation t↔x!,

FIG. 1. Separable case 1.

FIG. 2. Separable case 2.
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and the continuous groupI (R1
2). Note thatR consists of eight discrete transformations. Recall t

the set of isometriesI (R1
2) constitutes a Lie group that consists of all translationsta of R1

2 @which
is an abelian subgroup ofI (R1

2) isomorphic under vector addition toR2] and the set of linear
isometries O1(2) @the latter being a closed subgroup ofGL2(R)] I (R1

2) is commonly known as the
Poincarégroup or inhomogeneous Lorentz group. Note that the element of O1(2) defined by the
semiorthogonal matrix

S coshf sinhf

sinhf coshf D
for the correspondingfPR is called ahyperbolic rotationin R1

2 through an~oriented! Lorentz
anglef. O1(2) is not compact@unlike O~2!# and has four components. The canonical pseu
Cartesian coordinates (t,x) can be related to the given pseudo-Cartesian coordinates (q1,q2)
through the following parametrization of the groupL:

FIG. 3. Separable case 3.

FIG. 4. Separable case 4.
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S q1

q2D5ta+rf+r S t
xD5S coshf sinhf

sinhf coshf D F r S t
xD G1S a

bD , ~7.1!

wherer PR. Hence, once the problem of classifying the separable cases has been accomp
we can effect the transformation from the given coordinates (q1,q2) to the separable coordinate
(u,v) according to

~q1,q2!5ta+rf+r +T( i )~u,v !, ~7.2!

where T( i ) is the appropriate standard coordinate transformation@listed in ~6.2!–~6.11!# corre-
sponding to the separable case.

Recall that the components of any Killing tensor in Minkowski space have a similar
~2.9! with respect to any system of pseudo-Cartesian coordinates. Following the approach
oped in Ref. 20, we note that transformations~7.1! from the (q1,q2) pseudo-Cartesian coordinate

FIG. 5. Separable case 5.

FIG. 6. Separable case 6.
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to the (t,x) pseudo-Cartesian coordinates induces~under the tensor transformation laws! a trans-
formation on the parametersA,B,C,a,b andg of ~2.9!. In the following, the barred paramete
define the components of the Killing tensor of~4.5! in the coordinates (q1,q2).

The discrete transformationsR1 andR2 induce the following transformations:

R1 : Ā5A, B̄5B, C̄52C, ā52a, b̄5b, ḡ5g, ~7.3!

R2 : Ā5B, B̄5A, C̄5C, ā5b, b̄5a, ḡ5g. ~7.4!

Every continuous transformation of the Lie groupI (R1
2) can be parametrized according to@see

~3.4!#

S q1

q2D5ta+rfS t
xD5S coshf sinhf

sinhf coshf D S t
xD1S a

bD , ~7.5!

FIG. 7. Separable case 7.

FIG. 8. Separable case 8.
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and induces the following transformations on the parameters:

Ā5A cosh2 f22C coshf sinhf1B sinh2 f1gb222~a coshf1b sinhf!b,

B̄5A sinh2 f22C coshf sinhf1B cosh2 f1ga222~b coshf1a sinhf!a,

C̄5C~cosh2 f1sinh2 f!2~A1B!coshf sinhf,

1~aa1bb!coshf1~ab1ba!sinhf2gab, ~7.6!

ā5a coshf1b sinhf2gb,

b̄5a sinhf1b coshf2ga,

ḡ5g.

FIG. 9. Separable case 9.

FIG. 10. Separable case 10.
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Note that for a given separable case, the transformation~7.2! to the separable coordinates need n
be unique. In fact, the presence of the discrete groupR5^R1 ,R2& of transformations allows for
certain redundancies to occur. We formalize these ideas below.

Definition 7.1:(U,V)5c(u,v) is a trivial separable transformation if either:

(1) c(u,v)5(c1(u),c2(v)), or
(2) c(u,v)5(c1(v),c2(u))

wherec1 ,c2 :R→R are invertible maps.
Remark 7.1:Note that (u,v) are separable coordinates for the Hamilton–Jacobi equatio

(U,V) are.
Definition 7.2: Let rPR and T(n) be one of the standard coordinate transformations asso

ated with SC@n# ~i.e., (t,x)5T(n)(u,v)). We say that
(a) r is a type I trivial reflection if r+T(n)(u,v)5T(n)(c(u,v)), wherec(u,v) is a trivial sepa-

rable transformation.
(b) r is a type II trivial reflection if r induces a tensor transformation law which leaves invari

the components of the canonical separable Killing tensor associated with SC@n#.

We define r to be a trivial reflection with respect to SC@n# if it is either a type I or type II trivial
reflection.

Type I trivial reflections are redundant in the classification because they can be realize
composition of the standard coordinate transformation and a trivial separable transformat
(u,v)-space. Trivial reflections of type II are redundant because the components of the sep
Killing tensor with respect to given (q1,q2) coordinates~i.e., the coordinate system in which w
perform the classification! are the same for both~7.1! and ~7.5!.

To motivate these definitions, we consider the following examples:
Example 7.1:Suppose that we have a HamiltonianH which admits a separation of variable

of SC5 type and the transformation to separable coordinates (u,v) is given by

~q1,q2!5ta+rf~ t,x!, ~7.7!

~ t,x!5T(5)~u,v ! ~7.8!

for somea and f. Consider the trivial separable transformation (u,v)5(2U2 p/2 ,V). Then
R1+T(5)(U,V)5T(5)(c(U,V)). Thus,R1 is a type I trivial reflection with respect to SC5.

Example 7.2:Consider SC9. The parameters appearing in the components~6.20! of the cor-
responding separable Killing tensor with respect to (t,x) coordinates areA5B5k2, C5a5b
50, g5 1

4. These values are invariant under the transformation laws~7.3!, ~7.4! induced byR1 ,
R2 . Thus,R1 andR2 are type II trivial reflections with respect to SC9.

Examining each separable case, we generate the following list of trivial reflections~see Table
II !, and hence narrow down the list of discrete transformations which potentially play an ro

TABLE II. Relevant reflections for the separable cases of Minkowski space.

SC Type I Type II Reflections possibly needed

SC1 R1 ,R2 R1 none
SC2 R1 R1 ,R2 none
SC3 none (R1+R2)2 R1 ,R2 ,R1+R2

SC4 R1 R1 R2

SC5 R1 R1 ,R2 none
SC6 none R2 R1

SC7 none R2 R1

SC8 none R2 R1

SC9 R1 ,R2 R1 ,R2 none
SC10 R1 R1 ,R2 none
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the classification to be developed. In effect, we concentrate on developing a classificationup to
trivial reflection.

Note that in SC3, there are no type I trivial reflections, and (R1+R2)2 is the only type II trivial
reflection. It can be shown that the identity transformation,R1 , R2 , and (R1+R2)2 induce different
transformations of the components of the separable Killing tensor of SC3. Moreover, ever
ment ofR induces a transformation on the components of the SC3 separable Killing tensor
coincides with one of these four transformations.

The strategy for classifying the separable cases in the Minkowski plane is an extension
ideas presented in Ref. 20. More specifically, we derive invariants under the action ofI (R1

2) and
R5^R1 ,R2& which can be used to distinguish the Killing tensors~6.12!–~6.20!. These invariants
will lead to an efficient algorithm for constructing the transformation to separable coordina

VIII. CLASSIFICATION IN TERMS OF THE ISOMETRY AND REFLECTION GROUPS

Having considered invariants under the action of continuous transformations, we now
sider the effect of the discrete transformations on each of theI (R1

2)-invariantsI 1 ,I 2 ,g. Using the
transformation laws~7.3! and ~7.4!, we get

R1 : Ī 15I 2 , Ī 25I 1 , ḡ5g, ~8.1!

R2 : Ī 15I 1 , Ī 25I 2 , ḡ5g. ~8.2!

Hence, we can say that theunorderedlist $I 1 ,I 2% is invariant under hyperbolic rotations, tran
lations, and the reflectionsR1 ,R2 .

We now use the threeI (R1
2)-invariantsg, I 1 andI 2 , to classify the ten separable cases of

Minkowski spaceR1
2. Evaluating these invariants on each of the Killing tensors listed in~6.12!–

~6.21! ~i.e., representatives of each separable case SC1–SC10!, we arrive at the following classi-
fication scheme for the separable cases of Minkowski spaceR1

2. We summarize these results
Table III.

Remark 8.1:If g50, I 650 or 21, whereas ifgÞ0, I 6521,0, or11. Hence, there are nin
combinations ofg and$I 1 ,I 2%. Note that SC5 and SC10 are characterized by the same valu
the group invariantsg, I 2 , andI 1 . This agrees with the geometrical properties of the correspo
ing metrics, namely, they give rise to twodistinctcoordinate systems that cover two disjoint are
of the same space~for more details, see Refs. 27, 14, 15!.

IX. EQUIVALENT CLASSIFICATIONS

We note that the abovegroup invariantscheme allows the classification of the separable ca
SC1–SC10 modulo a hyperbolic rotation and translation of the spaceR1

2 and as such can b
compared with the classification derived by Kalnins14 for the Laplace equation defined inR1

2 and

TABLE III. Group invariant classification scheme of the ten separable cases of the Minkowski spaceR1
2.

Separable
case SC1 SC2 SC3 SC4 SC5

g 0 Þ0 0 0 Þ0
$I 1 ,I 2% $0% $0% $0,21% $21% $21%

Separable
case SC6 SC7 SC8 SC9 SC10

g Þ0 Þ0 Þ0 Þ0 Þ0
$I 1 ,I 2% $0,11% $0,21% $21,11% $11% $21%
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R1
3. An excellent exposition of these results based on the generators of the Lie symmetry a

of the Klein–Gordon equation can be found in Ref. 27. Indeed, recall that the product sepa
of variables in the Helmholtz equation

Dc1K2c50 ~9.1!

is equivalent to orthogonal separation of variables in the corresponding geodesic Hamiltonia54,55

In this setting the LaplacianD is a Casimir operator of the corresponding group of isometr
which clearly corresponds to the metric of the Hamiltonian~4.1!. Thus, the Laplacian acting in th
Minkowski spaceR1

2 takes the form

D5
]2c

]t2 2
]2c

]x2 .

In order to classify the separable systems in this case, Kalnins14 considered the generators of th
Lie algebrai (R1

2) ~in our notations! T, X, and H to construct inequivalent quadratic operato
corresponding to the ten separable cases. In our language these operators are the ten s
Killing tensors exhibited in Sec. VI, viewed, according to SPI, as sums of symmetrized pro
of T, X, andH.

A different approach to this problem for the geodesic equations inR1
2 has been developed b

Rastelli,15 who considered it from the point of view of singular points of the orthogonal separ
coordinates~which are naturally equivalent to the singular points of the eigenvalues of the s
rable Killing tensors! and both classified the ten separable cases and found the coordinate
formations to the separable coordinates from the given ones.

The method of classification presented in the previous section is equivalent to the clas
tions described above.

X. TRANSFORMATION FORMULAS TO SEPARABLE COORDINATES

The I (R1
2)-invariantsg, I 1 andI 2 of a Killing tensorKPK 2(R1

2) indicate, according to Table
III, which SC it corresponds to. Although being exhaustive, this classification does not te
where the corresponding separable web is located inR1

2 with respect to the origin or its orientatio
with respect to the given coordinate axes. Therefore a more delicate analysis is neces
formalize the procedure. In this section we analyze each separable case and find the corres
Lorentz anglef along with the parameters of translationa andb @see~7.2!#.

Let K be a particular solution of the Killing tensor equation~2.1! and the compatibility
conditiond(K̂dV)50. We assume that this particular solution is a nonmetric solution, i.e.,K is
linearly independent ofg. If multiples of the metric are the only Killing tensors compatible wi
the potentialV, then the Hamiltonian is not separable. Recall from~5.6! that K satisfies the
tensorial equationK5,g1mK (L ), whereK (L ) is one of the separable Killing tensors. In comp
nents,

Ki j 5,gi j 1mK̄i j
(L) , ,,mPR. ~10.1!

Note that if ~10.1! is written with respect to the pseudo-Cartesian coordinates (t,x), then the
right-hand side of the equation is determined according to the ten cases listed in Sec. VI.~There
are in fact only nine cases sinceK (5) andK (10) are linearly dependent.! The difficulty here is that
the left-hand side is not determined since the relation between (t,x) coordinates and given (q1,q2)
is not knowna priori. It is known that they are related by a proper or improper rigid motion~7.1!.
To determine the parametersa,b,f,k,r appearing in~7.1! in terms of the known information~i.e.,
A,B,C,a,b,g) appearing in the components ofK written with respect to (q1,q2), we adopt the
following approach:

~1! Use the group invariant classification~Table III! to determine which separable Killing tenso
K (L ) appears in Eq.~10.1!.
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~2! Starting with the (t,x) components of the appropriateK (L ) @see~6.12!–~6.21!#, use the tensor
transformation laws associated with~7.1! to write ~10.1! with respect to (q1,q2). Here,
a,b,f,k,r appearing in~7.1! are the parameters to be determined.

~3! Solve ~10.1!, expressinga,b,f,k in terms of A,B,C,a,b,g and determining whichr PR
must be used.

In carrying out step~2! of the above approach, we permit only the relevant reflections liste
Table II to complete the classification of each separable case. The components of the se
Killing tensors with respect to (q1,q2) coordinates are given below.

SC1: No reflections used,

K̄ (1)5S cosh2 f 2coshf sinhf

2coshf sinhf sinh2 f D . ~10.2!

SC2: No reflections used,

K̄ (2)5S ~q22b!2 2~q12a!~q22b!

2~q12a!~q22b! ~q12a!2 D . ~10.3!

SC3.11: No reflections used,

K̄ (3)5S 1
4 e2f2e2f~q22b! 2 1

4 e2f1 1
2 e2f~b2a1q12q2!

2 1
4 e2f1 1

2 e2f~b2a1q12q2! 1
4 e2f1e2f~q12a!

D . ~10.4!

SC3.12: ReflectionR2 used,

K̄ (3)5S 1
4 e2f1e2f~q22b! 2 1

4 e2f2 1
2 e2f~b2a1q12q2!

2 1
4 e2f2 1

2 e2f~b2a1q12q2! 1
4 e2f2e2f~q12a!

D . ~10.5!

SC3.21: ReflectionR1 used,

K̄ (3)5S 1
4 e22f1ef~q22b! 1

4 e22f1 1
2 ef~a1b2q12q2!

1
4 e22f1 1

2 ef~a1b2q12q2! 1
4 e22f1ef~q12a!

D . ~10.6!

SC3.22: ReflectionR1+R2 used,

K̄ (3)5S 1
4 e22f2ef~q22b! 1

4 e22f2 1
2 ef~a1b2q12q2!

1
4 e22f2 1

2 ef~a1b2q12q2! 1
4 e22f2ef~q12a!

D . ~10.7!

SC4.1: No reflections used,

K̄ (4)5S 2 sinhf~q22b! ~a2q1!sinhf1~b2q2!coshf

~a2q1!sinhf1~b2q2!coshf 2 coshf~q12a!
D . ~10.8!

SC4.2: ReflectionR2 used,

K̄ (4)5S 2 coshf~q22b! ~a2q1!coshf1~b2q2!sinhf

~a2q1!coshf1~b2q2!sinhf 2 sinhf~q12a!
D . ~10.9!

SC5: No reflections used,
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K̄ (5)5S k2~cosh2 f1sinh2 f!2 1
4 ~q22b!2 22k2 coshf sinhf1 1

4 ~q12a!~q22b!

22k2 coshf sinhf1 1
4 ~q12a!~q22b! k2~cosh2 f1sinh2 f!2 1

4 ~q12a!2 D .

~10.10!

SC6.1: No reflections used,

K̄ (6)5S 1
4 ~e2f1~q22b!2! 2 1

4 ~e2f1~q12a!~q22b!!

2 1
4 ~e2f1~q12a!~q22b!! 1

4 ~e2f1~q12a!2!
D . ~10.11!

SC6.2: ReflectionR1 used,

K̄ (6)5S 1
4 ~e22f1~q22b!2! 1

4 ~e22f2~q12a!~q22b!!

1
4 ~e22f2~q12a!~q22b!! 1

4 ~e22f1~q12a!2!
D . ~10.12!

SC7.1: No reflections used,

K̄ (7)5S 1
4 ~~q22b!22e2f! 1

4 ~e2f2~q12a!~q22b!!

1
4 ~e2f2~q12a!~q22b!! 1

4 ~~q12a!22e2f!
D . ~10.13!

SC7.2: ReflectionR1 used,

K̄ (7)5S 1
4 ~~q22b!22e22f! 2 1

4 ~e22f1~q12a!~q22b!!

2 1
4 ~e22f1~q12a!~q22b!! 1

4 ~~q12a!22e22f!
D . ~10.14!

SC8.1: No reflections used,

K̄ (8)5S 22k2 coshf sinhf1 1
4 ~q22b!2 k2~cosh2 f1sinh2 f!2 1

4 ~q12a!~q22b!

k2~cosh2 f1sinh2 f!2 1
4 ~q12a!~q22b! 22k2 coshf sinhf1 1

4 ~q12a!2D .

~10.15!

SC8.2: ReflectionR1 used,

K̄ (8)5S 2k2 coshf sinhf1 1
4 ~q22b!2 2k2~cosh2 f1sinh2 f!2 1

4 ~q12a!~q22b!

2k2~cosh2 f1sinh2 f!2 1
4 ~q12a!~q22b! 2k2 coshf sinhf1 1

4 ~q12a!2D .

~10.16!

SC9: No reflections used,

K̄ (9)5S k2~cosh2 f1sinh2 f!1 1
4 ~q22b!2 22k2 coshf sinhf2 1

4 ~q12a!~q22b!

22k2 coshf sinhf2 1
4 ~q12a!~q22b! k2~cosh2 f1sinh2 f!1 1

4 ~q12a!2 D .

~10.17!

SC10: No reflections used,

K̄ (10)5S 2k2~cosh2 f1sinh2 f!1 1
4 ~q22b!2 2k2 coshf sinhf2 1

4 ~q12a!~q22b!

2k2 coshf sinhf2 1
4 ~q12a!~q22b! 2k2~cosh2 f1sinh2 f!1 1

4 ~q12a!2 D .

~10.18!
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Now take any Killing tensorK with pointwise real and simple eigenvalues. With respec
given coordinates (q1,q2), it must have components of the form~2.9!, and must satisfy Eq.~10.1!,
whereK̄ i j

(L) has components according to one of the separable cases listed in~10.2!–~10.18!. To
identify which of these components must be used, we use the invariant classification provi
Table III. However, we refine this classification to distinguish subcases where reflection
required. According to Table II, we have to consider reflections for the separable cases SC3
SC6, SC7, and SC8. For these cases, we can use derived conformal invariants~which are sensitive
to certain reflections! to provide a classification of these subcases. We present the invariant
sification of subcases in Table IV.

By using the invariant classification of the separable cases listed in Tables III and IV, an
~10.1!, we can account for the action of the Lie groupI (R1

2) and find expressions for the param
etersa, b, f andk in terms of the givenA, B, C, a, b, andg. Thus, we have~see also Sec. IV
in Ref. 20! the transformation to separable coordinates (u,v):

S q1

q2D5~ ta+rf+r +T( i )!S u
v D , ~10.19!

wherer is an element of the discrete group of reflectionsR5^R1,R2&. Letting T̃( i )5r +T( i ) we get

Hq15t coshf1x sinhf1a
q15t sinhf1x coshf1b, S t

xD5T̃( i )S u
v D . ~10.20!

The values of the parametersa,b,f,k and the transformationT̃( i ) are given below for each
separable case.
SC1: g50, I 650 @Note, in this case, real and distinct eigenvalues occur iff (A1B)224C2

.0].

a,b arbitrary, sinh~2f!55
22C

A~A1B!224C2
, if A1B.0,

2C

A~A1B!224C2
, if A1B,0.

~10.21!

T̃(1) : H t5u,
x5v. ~10.22!

SC2:gÞ0, I 650

TABLE IV. Invariant classification of subcases.

Separable
case g $I 1 ,I 2% Subcase Invariant classification

SC3 0 $0,21% SC3.11: No reflections. m2,0
SC3.12:R2 used. m2.0
SC3.21:R1 used. m1.0
SC3.22:R1+R2 used. m1,0

SC4 0 $21% SC4.1: No reflections. a22b2,0
SC4.2:R2 used. a22b2.0

SC6 Þ0 $0,11% SC6.1: No reflections. I 150, I 2511
SC6.2:R1 used. I 1511, I 250

SC7 Þ0 $0,21% SC7.1: No reflections. I 150, I 2521
SC7.2:R1 used. I 1521, I 250

SC8 Þ0 $21,11% SC8.1: No reflections. I 1511, I 2521
SC8.2:R1 used. I 1521, I 2511
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a5
2b

g
, b5

2a

g
, f arbitrary. ~10.23!

T̃(2) : H t5u cosh~v !,
x5u sinh~v !. ~10.24!

SC3:g50,$I 1 ,I 2%5$21,0%
Definem65(A1B62C)/a.
Subcase 3.1: IfI 1521, I 250, then

a2b5
A1B12C

4a
~one parameter family!, ~10.25!

e3f5U A1B22C

2a U, ~10.26!

Subcase 3.2: IfI 150, I 2521, then

a1b5
2C2A2B

4a
~one parameter family!, ~10.27!

e3f5U 2a

A1B12C U, ~10.28!

SC4:g50, I 6521

a5
b~A1B!12aC

2~a22b2!
, b5

a~A1B!12bC

2~b22a2!
. ~10.29!

If a22b2,0, then tanhf5a/b and

T̃(4a) : H t5 1
2 ~u21v2!,

x5uv.
~10.30!

If a22b2.0, then tanhf5b/a and

T̃(4b) : H t5uv,

x5 1
2 ~u21v2!.

~10.31!
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SC5 and SC10:gÞ0, I 6521 (⇒DR
1
2

2
.0)

a52
b

g
, b52

a

g
, sinh~2f!5

2~gC1ab!

ADR
1
2

2 , k25
ADR

1
2

2

8g2 . ~10.32!

T̃(5) : H t52k& cosS u

2
1

p

4 D cosS v
2

1
p

4 D ,

x52k& sinS u

2
1

p

4 D sinS v
2

1
p

4 D ,

~10.33!

or

T̃(10) : H t52k& coshS u

2D coshS v
2D ,

x52k& sinhS u

2D sinhS v
2D . ~10.34!

SC6:gÞ0,$I 1 ,I 2%5$0,11%

a52
b

g
, b52

a

g
. ~10.35!

If I 150, I 2511 (⇒gC1ab,0), e2f52(gC1ab)/g2 and

T̃(6a) : H t5sinhS u2v
2 D12 expS u1v

2 D ,

x5sinhS u2v
2 D22 expS u1v

2 D . ~10.36!

If I 1511, I 250 (⇒gC1ab.0), e2f5g2/(gC1ab) and

T̃(6b) : H t5sinhS u2v
2 D12 expS u1v

2 D ,

x52sinhS u2v
2 D12 expS u1v

2 D . ~10.37!

SC7:gÞ0,$I 1 ,I 2%5$0,21%

a52
b

g
, b52

a

g
. ~10.38!

If I 150, I 2521 (⇒gC1ab.0), e2f5(gC1ab)/g2 and

T̃(7a) : H t5coshS u2v
2 D12 expS u1v

2 D ,

x5coshS u2v
2 D22 expS u1v

2 D . ~10.39!

If I 1521, I 250 (⇒gC1ab,0), e2f5g2/2(gC1ab) and
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T̃(7b) : H t5coshS u2v
2 D12 expS u1v

2 D ,

x52coshS u2v
2 D12 expS u1v

2 D . ~10.40!

SC8:gÞ0,$I 1 ,I 2%5$11,21% (⇒DR
1
2

2
,0),

a52
b

g
, b52

a

g
, k25

A2DR
1
2

2

8g2 . ~10.41!

If I 1511, I 2521, then

sinh~2f!5
a21b22g~A1B!

A2DR
1
2

2 ,

and

T̃(8a) : H t5k&S coshS u1v
2 D1sinhS u2v

2 D D ,

x5k&S coshS u1v
2 D2sinhS u2v

2 D D .

~10.42!

If I 1521, I 2511 then

sinh~2f!5
g~A1B!2a22b2

A2DR
1
2

2 ,

and

T̃(8b) : H t5k&S coshS u1v
2 D1sinhS u2v

2 D D ,

x52k&S coshS u1v
2 D2sinhS u2v

2 D D .

~10.43!

SC9:gÞ0, I 6511 (⇒DR
1
2

2
.0),

a52
b

g
, b52

a

g
, sinh~2f!5

22~gC1ab!

ADR
1
2

2 , k25
ADR

1
2

2

8g2 , ~10.44!

T̃(9) : H t52k&sinhS u

2D coshS v
2D ,

x52k& coshS u

2D sinhS v
2D .

~10.45!

Remark 10.1:The formulas above indicate that the parameterk that enters the transformatio
formulas ~6.6!, ~6.9!, ~6.10!, and ~6.11! is determined byDR

1
2

1
5g and DR

1
2

2
according to the

following formulas for the corresponding separable cases:
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SC5, SC9, SC10:k25
ADR

1
2

2

8DR
1
2

1 , ~DR
1
2

2
.0!,

SC8: k25
A2DR

1
2

2

8DR
1
2

1 , ~DR
1
2

2
,0!. ~10.46!

Note they bear a striking resemblance to the analogous formula~2.19! derived in the study of
Killing tensors of valence two defined in the Euclidean plane.

XI. THE ALGORITHM

The algorithm based on the results above for solving the Hamiltonian systems definedR1
2

mimics the corresponding algorithm described in Ref. 20 for the Hamiltonian systems defin
R2 and consists of the following major steps:

~1! For a given natural Hamiltonian defined in the pseudo-Cartesian coordinates (q1,q2) by
~5.17!, use the generic Killing tensor~2.9! and impose the compatibility conditiond(K̂dV)
50, to find the restrictions on the coefficients.

~2! Decompose the solution found in step~1! as follows:

K5,0g1(
i 51

n

, iK
( i), ~11.1!

where, i are arbitrary constants and$g,K (1), ...,K (n)% is a pointwise linearly independent s
of Killing tensors. Since dimK 2(R1

2)56, then n<5. If n50, then H is not orthogonally
separable. Ifn>2, thenH is superseparable.

~3! Each componentK ( i) in the decomposition~11.1! represents one of SC1–SC10. They can
determined by evaluating the invariantsg, I 2 , I 1 for eachK ( i). Then the results of the
previous section can be used to find the parametersa,b,k, andf. Finally, employ~7.5! to
perform the coordinate transformation from (q1,q2) to separable coordinates.

We stress that this algorithm is purely algebraic in the sense that once the parametersa,b,k,
andf are determined in each case, the transformation to separable coordinates amounts
braic operations presented in the previous section for SC1–SC10.

XII. DIAGONALIZATION OF CERTAIN SYSTEMS OF THE HYDRODYNAMIC TYPE

Recall that a Hamiltonian function~4.1! along with an additional first integral quadratic
momenta~4.5! gives rise to a quasilinear system of the hydrodynamic type in a natural way.
remarkable observation due to Ferapontov and Fordy42 ~see also Ref. 43 for more details! allows
us to use the classification above in terms of the group invariantsg, I 2, and I 1 in order to
diagonalize the corresponding system of hydrodynamic type and thus find its Riemann inva
Indeed, the Hamiltonian flows generated by the commutingH and F induce a two-dimensiona
surface parametrized by the ‘‘times’’k andt :

qk
i 5

]H

]pi
, qt

i 5
]F

]pi
,

or, taking into account the formulas~5.17! and ~2.9!, we may write

qk
15p1 ,

qk
252p2 ,
~12.1!
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qt
152@~A12aq21g~q2!2!p11~C2aq12bq22gq1q2!p2#,

qt
252@~C2aq12bq22gq1q2!p11~B12bq11g~q1!2!p2#.

Eliminating p1 andp2 , we arrive at the following system of hydrodynamic type:

qt
152@~A12aq21g~q2!2!qk

12~C2aq12bq22gq1q2!qk
2#,

~12.2!
qt

252@~C2aq12bq22gq1q2!qk
12~B12bq11g~q1!2!qk

2#.

At this stage we can use the information provided by the parametersA, B, C, a, b, g to
diagonalize the system~12.2!. Indeed, computing theI (R1

2)-invariantsg, I 2 and I 1 and then
transforming the given coordinates of the original Hamiltonian system to the separable coord
(u,v) according to the scheme of Sec. VI brings the original Hamiltonian system~i.e., H andF)
to the Liouville form ~5.2!–~5.4! and thus, the system of PDE’s~12.2! to the following diagonal
form:

ut5B~v !uk ,
~12.3!

vt5A~u!vk .

After a point transformation the system~12.3! can be brought to the form

ũt5 ṽũk ,
~12.4!

ṽt5ũṽk ,

with ũ and ṽ as the Riemann invariants of the associated system of hydrodynamic type
methods of solving of such systems of PDE’s are presented in Ref. 42.

XIII. APPLICATION: THE DRACH SUPERINTEGRABLE POTENTIALS

The method described in the preceding sections provides a systematic and straightf
means of determining separable coordinates for the Hamiltonian systems defined
Minkowski plane admitting first integrals of motion quadratic in the momenta. For an applic
of the method, we turn our attention to the well-known Drach potentials.56 Indeed, recall that in
1935, Drach listed ten scalar potentialsV(x,y) for a general Hamiltonian systems defined by
Hamiltonian of the form

H~x,y,px ,py!5pxpy1V~x,y!, ~13.1!

each of which admits an additional first integral cubic in the momenta. Note that the met
~13.1! is Lorentzian.

It has been shown recently by Ran˜ada57 and independently later by Tsiganov58 that seven out
of the ten integrable cases isolated by Drach are in fact superintegrable admitting, in ad
quadratic first integrals of motion. More specifically, it has been shown explicitly in Ref. 58
the seven integrable systems in question are of the Sta¨ckel-type.

It is easy to see that the signature-preserving point transformation

x5
1

&
~q11q2!, y5

1

&
~q12q2!, ~13.2!

brings the Hamiltonian system defined by~13.1! to the form~5.17!. After this transformation has
been performed we can employ the algorithm presented in Sec. XI to determine the trans
tions to separable coordinates and thus solve the corresponding Hamiltonian systems by
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tures. Indeed, as illustrative examples consider cases~b! and ~c! from the Drach list56 assuming
m51 anda51, respectively. The transformation~13.2! yields the following potentials with re-
spect to the pseudo-Cartesian coordinates (q1,q2):

Ṽ1~q1,q2!5
c1&

A~q1!22~q2!2
1

2c2

~q2!2
1

2c3q1

A~q1!22~q2!2~q2!2
, ~13.3!

Ṽ2~q1,q2!5
c1

2
~~q1!22~q2!2!1

2c2

~q2!2 1
2c3

~q1!2 , ~13.4!

wherec1 ,c2 ,c3PR are arbitrary constants. Following the algorithm, we use the generic Kil
tensor ~5.18! and impose the compatibility conditionsd(K̂dṼ1)50 and d(K̂dṼ2)50, respec-
tively. These conditions imply the corresponding Killing tensors have the following forms:

K Ṽ1
5S A1g~q2!2 2bq22gq1q2

2bq22gq1q2 2A12bq11g~q1!2D , ~13.5!

and

K Ṽ2
5S A1g~q2!2 2gq1q2

2gq1q2 B1g~q1!2D , ~13.6!

respectively, whereA, B, b, gPR are arbitrary constants. The presence of the arbitrary cons
indicates that the respective Hamiltonian systems are in factsuperintegrable. Indeed, according to
~11.1! the compatible Killing tensorsK Ṽ1

andK Ṽ2
decompose as follows:

K Ṽ1
5Ag1bK (4)1gK (2), ~13.7!

K Ṽ2
52Bg1~A1B!K (1)1gK (2), ~13.8!

whereg denotes the metric tensor and the Killing tensorsK (1), K (2), andK (4) correspond to SC1
SC2, and SC4, respectively@see~6.12!, ~6.13!, and ~6.15!#. This fact can also be independent
confirmed by evaluating the invariantsg, $I 2 ,I 1% and the parametersa, b, k, andf for K (1),
K (2), andK (4). Indeed, employing the results of Secs. VIII and X, we have

K (1): g50,$I 2 ,I 1%5$0%, f50,

K (2): gÞ0,$I 2 ,I 1%5$0%, a5b50, ~13.9!

K (4): g50,$I 2 ,I 1%5$21%, a5b5f50.

We conclude therefore that the Hamiltonian systems defined by~13.3! and~13.4! are orthogonally
su&perseparable. More specifically, the Hamiltonian system defined by~13.3! is separable with
respect to SC2 and SC4, while the Hamiltonian system defined by~13.4! with respect to SC1 and
SC2. The corresponding transformation formulas to separable coordinates are given by t
mulas~6.2! ~SC1!, ~6.3! ~SC2!, and~6.5! ~SC4! @see also~13.9! and ~10.20!#.

XIV. CONCLUSION

We wish to conclude our paper with another quotation from Gian-Carlo Rota:1

‘‘The apex of mathematical achievement occurs when two or more fields which were th
to be entirely unrelated turn out to be closely intertwined. Mathematicians have never de
whether they should feel excited or upset by such events.’’
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We have demonstrated how the ideas of classical invariant theory developed by many n
mathematicians of the 19th century, including Cayley, Gauss, Gordan, Hermite, Hilbert
Sylvester,3 can naturally be incorporated into the study of Killing tensors defined in pse
Riemannian spaces of constant curvature. A new set of group invariants has been brought
and applied to the problem of the classification of separable Hamiltonians in the Minkowski p
The application has enabled us to recognize their geometrical significance. The new meth
been also successfully applied by the authors to the study of Hamiltonian systems wit
degrees of freedom defined inR2 admitting first integrals that are cubic in the momenta.19 More
specifically, the corresponding set ofI (R2)-invariants ofK 3(R2) has led to a classification of th
first integrals up to their leading cubic terms. Analogous programs have been launched to stu
group invariants of the Killing tensors of valence two defined in two-dimensional space
nonzero constant curvature59 and in the Euclidean spaceR3 ~Ref. 60! ~see also Refs. 61 and 62!.
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51J. Friš, V. Mandrosov, Ya. A. Smorodinsky, M. Uhlir, and P. Winternitz, Phys. Lett.16, 354 ~1965!.
52R. G. McLenaghan and R. G. Smirnov, J. Nonlinear Math. Phys.9, Suppl. 1, 140~2002!.
53A. T. Bruce, R. G. McLenaghan, and R. G. Smirnov, J. Geom. Phys.39, 301 ~2001!.
54L. P. Eisenhart, Ann. Math.35, 284 ~1935!.
55M. N. Olevsky, Mat. Sb.27, 379 ~1950! ~in Russian!.
56J. Drach, Compt. Rend.200, 22 ~1935!.
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The Potts model with countable setF of spin values onZd is considered. It is
proved that with respect to Poisson distribution onF the set of limiting Gibbs
measures is not empty. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1643194#

I. INTRODUCTION

The Potts model@Potts~1982!# has received an increasing theoretical and experimental in
est in recent years, and at present a great many rigorous and approximate results are kno
extended summary of results and bibliography can be found in the review article by Wu~1982!
and references therein.

The model can be studied bothZd and Cayley treeJk, i.e., a graph having no cycles, from
each vertex of which emanates exactly (k11) edges. In the Potts model spin variabless(x)
which take values on a discrete setF5$0,1,2,. . . ,q%, q>2 are associated with each vertexx of
the Zd or treeJk. The Potts model on theZd or Cayley treeJk is defined by the Hamiltonian

H~s!52J (
^x,y&

ds(x)s(y)2h(
xPV

d0s(x) ,

whereV is Zd or the set of vertices inJk, the first sum is taken over all nearest neighbors,d in the
first and second sums is the Kroneker’s symbol.

In this paper we consider the case whenF is the set of non-negative integer numbers, i.e.,F
is a countable set. We show that for the Poisson distribution onF the set of limiting Gibbs
distribution is a nonempty set.

II. THE POISSON GIBBS MEASURES

Let F be the set of non-negative integer numbers. In this paper we consider the Potts
on the integer latticeZd, d>1. It is defined by the Hamiltonian

H~s!52J (
^x,y&

x,yPZd

ds(x)s(y)2h (
xPZd

d0s(x) ,

where s:Zd→F is a configuration and the first sum taken over all nearest neighbors, i.eix
2yi51 with ixi5maxuxiu.

Let V be the set of all configurations and for arbitrary finite subsetL,Zd; V~L! be a set of
all configurations~L! on L. For finiteVn5$xPZdu ixi5n%,Zd, the full energy of configuration
s(Vn) under boundary conditions̄(Zd\Vn), i.e., fixed configuration onZd\Vn , is defined the
following way:

a!Electronic mail: nasirgani@hotmail.com; gnasir@iiu.edu.my
11210022-2488/2004/45(3)/1121/7/$22.00 © 2004 American Institute of Physics
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H~s~Vn!us̄~Zd\Vn!!52J (
^x,y&,
xPVn

ds(x)s(y)2J (
^x,y&

xPVn ,yPZd\Vn

ds(x)s(y)2h (
xPVn

d0s(x) .

Let us consider the partition function onVn with respect to some measurel on F:

Zn„s̄~]Vn!…5E
V(Vn)

exp~2H„s~Vn!us̄~Zd\Vn!…! )
sPVn

dl„s~s!…,

where]Vn5Vn11\Vn .
As l is a discrete measure, then this integral is represented in the form of plurigenus,

Zn„s̄~]Vn!…5 (
xPVn

(
s(x)50

`

exp~2H„s~Vn!us̄~Zd\Vn!…! )
xPVn

l„s~x!…

5 (
xPVn

(
s(x)50

`

expS J (
^x,y&

x,yPVn

ds(x)s(y)1J (
^x,y&

xPVn ,yPZd\Vn

ds(x)s(y)

1h (
xPVn

d0s(x)D )
xPVn

l„s~x!….

If l is the counting measure, i.e.,l($ i %)51 for anyi PF, then the partition function reduce
to infinity for arbitrary boundary conditions̄(Z\Vn).

Let l be a probabilistic measure onF. Then the partition function is a finite under arbitra
boundary conditions̄(Zd\Vn) and conditional Gibbs measure on volumeVn has the following
form:

Pn„s~Vn!u s̄~Zd\Vn!…5

exp~2H„s~Vn!u s̄~Zd\Vn!…! )
xPVn

l„s~x!…

Zn„s̄~]Vn!…
,

that is,Pn is the discrete measure onV(Vn).
The main result is the following.
Theorem: For a Poisson distributionn on F, i.e., n( i )5exp(2l) (li/i!), where l is the

arbitrary positive number and the set of all limit Gibbs measure is a nonempty set.
Proof: The proof is based on the Dobrushin theorem about the existence of the limit of G

measures if the set of values of variabless(x), xPZd is the separable complete metric spa
@Dobrushin~1968, 1970!#.

Evidently, the setF of all non-negative integer numbers with discrete metric,

d~x,y!5H 1, xÞy;

0, x5y,
~1!

is the complete separable metric space.
Definition [Dobrushin (1968)]:Let M be a complete separable metric space. A continu

function h on M is called acompact, if for any tP(2`,`) the set$mPM : h(m)<t% is the
compact set inM .

As the set of all non-negative integer numbersF is complete separable metric space w
respect to discrete metric~1!, then arbitrary functionh on F is continuous. Evidently, there are
lot of compact non-negative functions onF. For example, the identity maph( i )5 i for any i
PF is a compact function.
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Theorem of Dobrushin †Dobrushin „1968, 1970…‡: Assume that there is a HamiltonianH,
for which is possible to find the following:~1! a compact non-negative functionh on the setF; ~2!
the system of numbers$c(x,y), xPZd,yPZd%, and a constantcP(0,1) with (yuc(x,y)u<c for
any xPZd, and numberK.0, such that for finite subsetV,Zd and arbitrary boundary condition
s̄(Zd\V) with maxxPV (yPZd\Vuc(x,y)uh„s̄(y)…,`, the conditional Gibbs measure is defined a

E h„s~x!… p„s(V)…us~Zd\V! )
yPV

dx„s~y!…<K1 (
y:yÞx

c~x,y!h„s̄~y!…,

wherex is a measure onF.
~3! For anyxPZd and for any continuous bounded functiong(s) on F there is the sequenc

of finite subsetWn,Zd,ønWn5Zd\$x%, the system of non-negative numbersd(n)(x,y), yÞx
with (yPZdd(n)(x,y)<D (n)→0 and the sequence of continuous boundary functionsf n„s(Wn)…
such that

U E g„s~x!…p„s~x!Us̄~Zd\$x%!…dx„s~x!…2 f n„s~Wn!…U<Dn1(
yÞx

d(n)~x,y!h„s~y!…,

for arbitrary boundary conditions̄(Zd\$x%) with (yÞxc(x,y)h„s̄(y)…,`.
Then there exists at least one limit Gibbs measure.
Let us take the functionh( i )5 i as a compact function. Then@see Sinai~1982!#, our problem

amounts to the finding of constantsK, c(x,y), cP(0,1) with (yuc(x,y)u<c,1 such that

(
s(x)50

`

s~x!exp~2H„s~x!us̄~]x!…n„s~x!…!

(
s(x)50

`

exp~2H„s~x!us̄~]x!…n„s~x!…!

<K1(
yÞx

c~x,y!s~y!, ~2!

where]x5$yPZdu ix2yi51%5$y1,y2, . . . ,y3d21%.
Assume

A5

(
s(x)50

`

s~x!exp~2H„s~x!us̄~]x!…n„s~x!…!

(
s(x)50

`

exp~2H„s~x!us̄~]x!…n„s~x!…!

5

(
j 50

`

j expS hd0 j1J(
i 51

3d-1

d j s̄(yi )D n~ j !

(
j 50

`

expS hd0 j1J(
i 51

3d-1

d j s̄(yi )D n~ j !

.

As for a Poisson measuren we havej n( j )5ln( j 21) for j >1 and for j 50 the first term in
the numerator is equal to zero; then

A5

l(
j 51

`

expS hd0 j1J (
i 51

3d21

d j s̄(yi )D n~ j 21!

(
j 50

`

expS hd0 j1J (
i 51

3d21

d j s̄(yi )D n~ j !

.

After the change of variablej 21 to j in the numerator, we have
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A5

l(
j 50

`

expS hd j 11,01J (
i 51

3d21

d j 11,s̄(yi )D n~ j !

(
j 50

`

expS hd0 j1J (
i 51

3d21

d j s̄(yi )D n~ j !

5l1l

(
j 50

` FexpS hd j 11,01J (
i 51

3d21

1d j 11,s̄(yi )D 2expS hd0 j1J (
i 51

3d21

d j s̄(yi )D Gn~ j !

(
j 50

`

expS hd0 j1J (
i 51

3d21

d j s̄(yi )D n~ j !

.

Assume

c~x,y!5H ~4d!21, if ix2yi51;

0 otherwise.

Then inequality~2! is essentially more simple and it is necessary to find a constantK, such
that

A<K1
1

4d (
i 51

3d21

s̄~yi !, ~3!

for all boundary configurationss̄(Zd\$x%).
In order to avoid numerous indices we are restricted to considering the cased51. ThenA has

the form

l1l

(
j 50

`

„B~ j !2B8~ j !…n~ j !

(
j 50

`

B8~ j !n~ j !

,

where

B~ j !5exp„hd j 11,01J~d j 11,s̄(x21)1d j 11,s̄(x11)!…

and

B8~ j !5exp„hd0 j1J~d j ,s̄(x21)1d j ,s̄(x11)!….

Then it is necessary to find a constantK such that

A<K1
s̄~x21!1s̄~x11!

4
, ~4!

for all boundary configurationss̄(Z\$x%).
Let us assume for definiteness, thatJ.0. We shall divide the domain$s̄(x21)>0, s̄(x

11)>0% into 4 subsets~Fig. 1!.
Let us divide the proof of the inequality~4! into three steps.
~1! If „s̄(x21),s̄(x11)…PF1 , then we can find a constantK1 , such that

A<K11
s̄~x21!1s̄~x11!

4
.
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It is possible asF1 is a finite set.
~2! For „s̄(x21),s̄(x11)…PF4 , we shall consider separately the following cases.

~a! Assumeus̄(x21)2s̄(x11)u>2. ThenA has the following form:

A5l1l
an~0!1bn„s̄~x21!21…2bn„s̄~x11!21…2bn„s̄~x11!…

exp~h!n~0!1exp~J!~n„s̄~x21!…1n„s̄~x11!…!1g

,l1l

S uaun~0!1bS s̄~x21!n~s̄~x21!!

l
2n„s̄~x21!…D

exp~h!n~0!

1l

bSs̄~x11!n~s̄~x11!!

l
2n„s̄~x11!…D

exp~h!n~0!

,l1l
uau

exp~h!
1

ubu
exp~h!n~0!

@s̄~x21!n„s̄~x21!…1s̄~x11!n„s̄~x11!…#

,lS 11
uau

exp~h!D1 bn~N0!

exp~h!n~0!
@s̄~x21!1s̄~x11!#,

wherea512exp(h), b5exp(J)21 andg512(n(0)1n„s̄(x21)…1n„s̄(x11)…).
If we chooseN0

a such that„exp(J)21…n(N0
a)/exp(h)n(0),1/4, then

K4
a5l1l

uexp~h!21u
exp~h!

.

~b! Let us̄(x21)1s̄(x11)u51. Then

A5l1l
an~0!1„exp~J!2exp~h!…n„s̄~x21!21…2bn„s̄~x11!…

exp~h!n~0!1exp~J!~n„s̄~x21!…1n„s̄~x11!…!1g

,l1l

uaun~0!1uexp~J!2exp~h!u•
s̄~x21!n„s̄~x21!…

l

exp~h!n~0!

5lS11
uau

exp~h!D1 uexp~J!2exp~h!us̄~x21!n„s̄~x21!…

exp~h!n~0!
,

wherea, b, g are as above.

FIG. 1. The partion of the domain into 4 subsets.
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If we chooseN0
b such that„exp(J)21…n(N0

b)/exp(h)n(0),1/2, then

K4
b5l1l

uexp~h!21u
exp~h!

5K4
a .

Let s̄(x21)5s̄(x11). Then

A5l1l
an~0!1b8n„s̄~x21!21…2b8n„s̄~x21!…

exp~h!n~0!1exp~2J!n„s̄~x21!…1g8

,lS 11
uexp~h!21u

exp~h! D1 exp~2J!21

exp~h!n~0!
s̄~x21!n„s̄~x21!…,

wherea512exp(h), b85exp(2J)21 andg8512n(0)2n„s̄(x21)….
If we chooseN0

c such that„exp(2J)21…/exp(h)n(0)n(N0
c),1/2, then forN05max(N0

a,N0
b,N0

c)
will be valid ~4! with K5l„11 uexp(h)21u/exp(h)… for all „s̄(x21),s̄(x21))PF4 .

~3! At last we consider the case„s̄(x21),s̄(x11)…PF2øF3 .

Let for definiteness 0<s̄(x21)<N0 and s̄(x11).N0 , that is „s̄(x21),s̄(x11)…PF2 .
Here we shall divide the proof of inequality~4! into four steps

~a! Assumes̄(x21)50. Then

A5l1l
„12exp~h1J!…n~0!1bn„s̄~x11!21…2bn„s̄~x11!…

exp~h1J!n~0!1exp~J!n„s̄~x11!…112n~0!2n„s̄~x11!…

,lS 11
uexp~h1J!21u

exp~h1J! D1 exp~J!21

exp~h1J!n~0!
n„s̄~x11!….

As exp(J).1, then for choosing aboveN0 it is evidently

„exp~J!21…n~N0!

exp~h1J!n~0!
,
„exp~J!21…n~N0!

exp~h!n~0!
,

1

4
.

~b! Assumes̄(x21)51. Then

A,lS11
uexp~h!2exp~J!u

exp~h! D1 exp~J!21

exp~h!n~0!
n„s̄~x11!…s̄~x11!,

and for choosingN0 , inequality~4! is valid. HereK5l„11 uexp(J)2exp(h)u/exp(h)….

~c! Assume 1,s̄(x21),N0 . ThenA is defined as case~2!~a! and

A,lS11
uexp~h!21u

exp~h! D1 exp~J!21

exp~h!n~0!
n„s̄~x21!…s̄~x21!1

exp~J!21

exp~h!n~0!
n„s̄~x11!…s̄~x11!.

As s̄(x11).N0 , 1,s̄(x21),N0 and

A,lS11
uexp~h!21u

exp~h! D1 exp~J!21

exp~h!n~0!
n„s̄~x21!…s̄~x21!1

1

4
s̄~x11!,

then at the expense of the extension the constant will be valid~4!.

~d! At last let s̄(x21)5N0 . Then it is enough to consider the cases̄(x11)5N011 and
again at the expanse of extension of constant will be valid. Thus all conditions of
brushin’s theorem are valid, so that the set of limiting Gibbs measures is not empty
same way we can prove inequality~2! for arbitrary positive integerd.

To prove similar theorem for Potts model on Cayley tree, we can use the theory of M
random fields. This result will be presented in other paper.
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Quasiperiodic functions theory and the superlattice
potentials for a two-dimensional electron gas

Andrei Ya. Maltseva)

L.D. Landau Institute for Theoretical Physics, 119334 ul. Kosygina 2, Moscow, Russia

~Received 16 August 2003; accepted 1 December 2003!

We consider Novikov problem of the classification of level curves of quasiperiodic
functions on the plane and its connection with the conductivity of two-dimensional
electron gas in the presence of both orthogonal magnetic field and the superlattice
potentials of a special type. We show that the modulation techniques used in the
recent papers on the two-dimensional~2-D! heterostructures permit us to obtain the
general quasiperiodic potentials for 2-D electron gas and consider the asymptotic
limit of conductivity whent→`. We use the quasiclassical approach introduced by
Beenakker for the modulated electron gas and investigate the level curves of qua-
siperiodic potentials~Novikov problem! to get the asymptotic behavior of conduc-
tivity in this limit. Using the theory of quasiperiodic functions we introduce here
the topological characteristics of the quasiperiodic potentials observable in the con-
ductivity. The corresponding characteristics are the direct analog of the ‘‘topologi-
cal numbers’’ introduced recently by Novikov and the present author in the con-
ductivity of normal metals. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1643543#

I. INTRODUCTION

In the present paper we consider the modern experimental techniques of potential mod
for the two-dimensional electron gas and show that they permit us to obtain the quasipe
potentials on the plane with different numbers of quasiperiods. Then we use the topological
concerning the geometry of the level curves of such potentials~the Novikov problem! to obtain the
asymptotic (t→`) behavior of the conductivity phenomena in these systems. Namely, we
sider the quasiclassical approach, where the quasiclassical cyclotron orbits drift along th
curves of potential in the presence of magnetic fieldB which makes the geometry of such lev
curves important for transport phenomena. Our approach is based on the topological metho
previously~by Novikov and the author! in the theory of normal metals~Refs. 19, 25, 30! and the
quasiclassical description of the transport phenomena in high-mobility 2-D electron gas intro
by Beenakker36 for the explanation of new oscillations inB-dependence of conductivity found i
the periodically modulated 2-D electron gas~Weiss, Klitzing, Ploog, and Weimann!.33

We will consider here the cases of potentials with 3 and 4 quasiperiods and use the
rather deep topological theorems concerning the Novikov problem obtained during the last
Let us say here that these two cases are actually the only cases which were studied seri
topology and where the very nice results were obtained. Namely, the full classification o
nonclosed level curves was obtained for the case of potentials with 3 quasiperiods on the pla
it was shown15,26 that only the so-called ‘‘topologically regular’’ level curves appear in the c
when the nonclosed level curves exist in the nonzero energy intervale1<V(r )<e2 . The corre-
sponding curves reveal the nice geometrical properties being bounded by the straight strips
finite width in the plane and passing through them. Moreover, it can be shown that the
directions of these strips always correspond to some topological numbers characterizing
tentialV(r ). Thus for the case of 3 quasiperiods these numbers can be represented as the

a!Electronic mail: maltsev@itp.ac.ru
11280022-2488/2004/45(3)/1128/22/$22.00 © 2004 American Institute of Physics
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ible integer triples (m1 ,m2 ,m3) which can be defined experimentally from the mean direction
potential level curves. For the case of 4 quasiperiods the corresponding numbers are the 4
which can again be defined from the mean directions of the topologically regular open level c
in the transport phenomena. However, in the last case the existence of topologically regula
level curves can be stated only for small perturbations of purely periodic potentials inR2.27

In this paper we show that the special modulations of 2-D electron gas give the quasipe
potentials on the plane and introduce the corresponding topological numbers and their con
with the modulation pictures. Let us say that the topological numbers of this kind were introd
already in the theory of normal metals,19,25,30where the ‘‘geometric strong magnetic field limit’’ in
the galvanomagnetic phenomena was considered. For this case only the situation with 3
eriods was important and the topological numbers had the form of the integer triples (m1 ,m2 ,m3).
Another feature of the situation in the normal metals is that just the Fermi energy leveleF is
important for the asymptotic behavior of conductivity in the ‘‘geometric limit.’’

As we already said, we will use here the ‘‘drifting orbits’’ approximation and consider the
t→` which corresponds to the ‘‘geometric limit’’ in the situation of 2-D electron gas. We c
sider in detail the electrical conductivity tensors ik in the asymptotic form fort→` when the
strong anisotropy ofs ik reveals the mean directions of topologically regular trajectories and g
the corresponding topological numbers.

Let us say also that the cases of chaotic behavior of the potential level curves are also p
for the quasiperiodic potentialsV(r ).16,22 The asymptotic behavior ofs ik is more complicated in
this case and we will not consider it here in detail. For the case of 3 quasiperiods, howev
generic behavior of conductivity should correspond to a topologically regular situation an
chaotic cases are ‘‘exclusive,’’ unlike the cases with big numbers of quasiperiods.

II. BASIC DEFINITIONS AND HISTORICAL NOTES

According to the standard definition the quasiperiodic functionf (r ), rPRn with N quasip-
eriods (N>n) is a restriction of a periodic functionF(R), RPRN with N linearly independent
periods l1 , . . . ,lN in the bigger linear spaceRN to some ‘‘plane’’Rn,RN. The corresponding
subspaceRn can then be given by a linear system,

a11y
11a12y

21¯1a1NyN5b1 ,

¯

aN2n,1y
11aN2n,2y

21¯1aN2n,NyN5bN2n .

We will say that the planeRn has the maximal irrationality if it is not parallel to any vectorl
belonging to the latticeL generated by vectorsl1 , . . . ,lN :

L5$p1l11¯1pNlN, p1 , . . . ,pNPZ%.

We will call the planeRn,RN rational if it contains~i.e., parallel to! exactly n linearly
independent vectors belonging toL.

Obviously the generic planesRn in RN have the maximal irrationality. It is easy to see al
that any vectorlPL parallel to the planeRn in the nongeneric situation becomes a period of
function f (r ) in Rn. The functionf (r ) corresponding to the rational planeRn,RN is ann-periodic
function in the ordinary sense. It is easy to see also that the generic quasiperiodic functiof (r )
with N quasiperiods has no periods inRn for N.n.

We are going to consider the casen52 such that the functionf (r )5 f (x,y) is a quasiperiodic
function on the two-dimensional planeR2. Namely, we will describe here the important features
the global geometry of the level curvesf (r )5const~Novikov problem! which will play the main
role for the phenomena discussed in this paper.
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Let us say here that the Novikov problem is still unsolved for the case of arbitraryN.2 and
we are going to deal here with the casesN53 andN54 where the new topological and physic
results were obtained during the last years~see Refs. 10–30!. According to the definition the
corresponding functionsf (r ) will be the restrictions of the periodic functions inR3 and R4 on
some two-dimensional planesR2. Let us say some words here about this situation.

We will start with the very important caseN53 where the full classification of the curve
f (r )5const is constructed now. This case plays an extremely important role for the galvan

netic phenomena in normal metals~see Refs. 19, 25, 30! where the function f̂ (p), p
5(p1 ,p2 ,p3) is defined in the space of quasimomenta of the Bloch electron in the crystal

function f (p) is a restriction of the three-periodic functionf̂ (p) on the two-dimensional plane
~orthogonal to the magnetic field! embedded inR3. The level curves off (p) are the intersections
of the corresponding planeP5R2 with the 3-periodic two-dimensional level surfaces of t

~smooth! function f̂ (p) ~dispersion relation!. From the physical point of view the level curves
the functionf are the quasiclassical electron trajectories in thep-space in the presence of magne
field B. We have in this case the one-parametric family of planesP orthogonal toB and the
one-parametric set of the quasiperiodic functions defined in the different planes. The fo
trajectory in the coordinate space is defined in this case by its form in thep-space, keeping all the
main features of global geometry. For instance the projection of orbit onxy-plane in r -space
coincides precisely with the trajectory inp-space rotated byp/2. We do not discuss here th
corresponding foundations in detail and just give a reference on the well-known books~Refs. 6–9!
where different points of this approach are considered. Let us give also the reference on the
papers,31,32 where the mathematically rigorous approach to a derivation of the correspon
system inp-space and the history of the question are represented. We also point out that on
trajectories close to the Fermi level are important for the case of normal metals.

The importance of the geometry of these trajectories for the galvanomagnetic phenome
pointed out in Refs. 1–3~see also survey articles4,5! where also the first examples of concre
two-dimensional periodic Fermi surfaces inR3 were considered. The problem of full classificatio
of such trajectories was set by Novikov in Ref. 10 and considered later in his school~Zorich,
Dynnikov, and Tsarev!.

Let us say here that this problem is rather complicated already forN53 and required the
nontrivial methods based on topology and dynamical systems theory to be solved complete
most important breakthroughs in this problem were made in Refs. 11 and 15, where the
important topological theorems about the nonclosed trajectories were proved.

Based on these methods the ‘‘topological quantum characteristics’’ observable in the co
tivity of normal metals were introduced in Ref. 19. These characteristics arise from the geo
of the Fermi surface and have the form of the triples of the integer numbers connected w
asymptotic behavior of conductivity forB→` ~see also the survey articles25,30!. For these physica
phenomena the additional property pointed out in Ref. 19 and called later the ‘‘topological
nance’’ played an important role. We will see here how all these properties can be revealed
two-dimensional electron gas in the quasiperiodic potentialV(r ).

Recently the full classification of the different trajectories in this situation was finishe
Dynnikov,22,26 which permits us to describe the total picture of the asymptotic behavior of
ductivity for B→` in normal metals with arbitrary complicated dispersion relations.30

The casen52, N54 was started by Novikov in Ref. 27 where the deep topological theo
analogous to the result of Ref. 11 for this situation was proved. Let us point out here that th
N54 looks very complicated from topological point of view and this theorem is the only d
topological result in this case up to now.

In this paper, however, we work with the coordinate space rather than with the momenta
and consider the quasiperiodic functionsV(r ) where r5(x,y) plays the role of the ordinary
coordinate vector on the plane. In this situation only one planeR2 embedded inR3 or R4 will be
important. However, also the global characteristics of the total family of potentials correspo
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to different parallel planes will arise through the action of the ‘‘quasiperiodic group’’ as we
see below.

III. THE QUASICLASSICAL TRAJECTORIES AND 2-D ELECTRON GAS

Let us introduce first the notations for the different level curves of potentialV(r ) according to
Refs. 22, 25, 26, 30. We will assume now that the functionV(r ) is a Morse function onR2, i.e.,
all the critical points ofV(r ) (“V(r )50) are nondegenerate (deti]i]jViÞ0). All the critical points
of V(r ) can then be just the nondegenerate local minima, the nondegenerate saddle point
nondegenerate local maxima. The local geometry of the level curves close to these critical
are shown in Figs. 1~a!–1~c!.

Let us call now the level curves ofV(r ) the quasiclassical drift trajectories according to o
further considerations.62 We will also put formally the arrows on the level curves according to
direction of drift in the magnetic field.

Definition 1: We call the trajectory nonsingular if it is not adjacent to the critical (sadd
point of the function V(r ). The trajectories adjacent to the critical points as well as the critic
points themselves we call singular trajectories (see Fig. 1).

Definition 2: We call the nonsingular trajectory compact if it is closed on the plane. We
the nonsingular trajectory open if it is unbounded inR2.

The examples of singular, compact and open nonsingular trajectories are shown in
2~a!–2~c!.

It is easy to see also that the singular trajectories have the measure zero among
trajectories on the plane.

The geometry of compact trajectories will not be interesting for us here since we are go
consider the ‘‘geometric’’ limit corresponding to the long lifetime between the two scatte
processes. In this limit we assume that every center of drifting cyclotron orbit belongs to the
trajectory for a rather long time. This means in particular that all compact trajectories w
passed many times before jumping to another trajectory due to the scattering act. This si
corresponds precisely to the ‘‘geometric strong magnetic field limit’’ considered in Refs. 1–3
25, 30 where the conductivity in normal metals was studied. However, in our situation
geometric limit does not correspond to strong magnetic field limit as we will see below.

Definition 3: We call the open trajectory topologically regular (corresponding to ‘‘topolo
cally integrable’’ case) if it lies within the straight line of finite width inR2 and passes through i
from 2` to ` [see Fig. 3(a)] All other open trajectories we will call chaotic [Fig. 3(b)].

In the simple case of periodic functionV(r ) (N52) all open trajectories are periodic and w
have only a ‘‘topologically regular’’ case according to our classification. However, in the qu
eriodic case the situation is much more complicated and the chaotic trajectories can exist a

FIG. 1. The level curves of the functionV(r ) close to the local minimum, the saddle-point and the local maximum
V(r ).

FIG. 2. The singular, compact and open nonsingular quasiclassical trajectories. The signs ‘‘1’’ and ‘‘ 2’’ show the regions
of larger and smaller values ofV(r ), respectively.
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for N53.16,22 These special trajectories can reveal rather complicated stochastic behavior f
general quasiperiodic potentials but fortunately the ‘‘generic’’ open trajectories are still topo
cally regular for the caseN53. Let us point out that this fact was formulated first by Novikov
the form of conjecture and plays now~together with ‘‘topological resonance’’! the crucial role for
topological phenomena in normal metals~Refs. 19, 25, 30!. Here we are also going to conside
mainly the ‘‘topologically regular’’ situation forN53 andN54, and we will show that the sam
‘‘topological numbers’’ can be observed also for two-dimensional electron gas in the sp
potentials ~quasiperiodic superlattices! built by the special experimental techniques
2-dimensional structures.

Let us describe now the quasiclassical approach for the two-dimensional electron gas t
are going to consider.

The quasiclassical consideration of the 2-D electron gas in the presence of rather
magnetic fieldB and a potentialV(r ) was started in Ref. 36 in connection with the oscillations
conductivity discovered in Ref. 33. The experiment in Ref. 33~Weiss, Klitzing, Ploog, and Wei-
mann! used the holographic illumination of high mobility AlGaAS–GaAS heterojunctions at
temperaturesT<4.2 K. The expanded laser beam was split into two parts which gave an
ference picture with the perioda on the two-dimensional sample. The magnetic fieldB was
directed normally to the sample and the electron behavior was determined by the magnet
and the additional periodic potential,

V~r !5V~x!, V~x1a!5V~x!,

arising after the holographic illumination. The amplitude ofV(x) was much smaller than th
Fermi energy of the system. Measuring the resistivity in the both directions along and perpe
lar to the interference fringes the authors of Ref. 33 found the magnetoresistance oscillat
1/B for magnetic fields smaller than needed for Shubnikov–de Haas oscillations.

This phenomenon was explained by Beenakker in Ref. 36 from the quasiclassical con
ation and called the ‘‘Commensurability oscillations.’’ According to the quasiclassical appr
the potentialV(x) should be averaged over the quasiclassical electron cyclotron orbit with ra
r B5mvF /eB on the Fermi level to get the effective averaged potentialV̄(x,B)5VB

eff(x) depending
on the magnetic fieldB. The condition of weakness of potentialV(x) @eVrms/eF!1, whereVrms

is the root mean square ofV(x)] should be imposed in this situation. The drift of the center
cyclotron orbit is then given by the equation

dr0

dt
5

e

B2 @“VB
eff~r0!3B#. ~1!

According to~1! we have the drift of the centers of cyclotron orbits along the level curve
VB

eff(r )5VB
eff(x) with the speed proportional toi“VB

eff(r )i on these curves. As was pointed out
Ref. 36 the drifting motion gives the anisotropic contribution to the conductivity in the p
depending on the potentialVB

eff(x). The crucial role for the magnetoresistance oscillations is t
played by the strong dependence ofVB

eff(r ) on the value ofB connected with the commensurabilit

FIG. 3. ‘‘Topologically regular’’~a! and ‘‘chaotic’’ ~b! level curves of the functionV(r ) in the planeR2.
                                                                                                                



ntial
ue
s in
ith this
rks

o

s
uation
els of
:

the
phe-

ns can
the

en two
etric

it

ifting

onics.
but still
tories

tials
ensu-

e
nstead

t this
ith the
et the
po-
Hall

neric

llumi-
ectron

1133J. Math. Phys., Vol. 45, No. 3, March 2004 Quasiperiodic functions theory

                    
of the cyclotron radiusr B ~for a given Fermi energy! and the period of potentiala. The corre-
sponding contribution to the conductivity was thus the oscillating function of 1/B due to the
periodic commensurability 2r B5ka with some integerk.

The explicit formulas for the conductivity was obtained in Ref. 36 for the model pote
having the formV(x)5Vx cos 2px/a. Obviously the main features of this picture will also be tr
for many generic periodic potentialsV(x). Let us also give here the references on the paper
Refs. 34, 35, 37, 42, 44, 45, 47–52, 54, 57, 60, 61, where different questions connected w
problem were considered~we are sorry for the impossibility to give here the complete list of wo
in this area!.

Let us consider now the works where the situation of potentialsV(r ) modulated both in thex
andy directions was considered. The potentialV(r )5V(x,y) was induced in this case by the tw
independent sets of interference fringes parallel to thex andy axes and the potentialV(x,y) was
the periodic function inR2 with two periods given by vectors (a,0) and (0,a).

As was found experimentally,47,49,50 the additional modulation in they direction suppresse
the commensurability oscillations in this case. The quasiclassical consideration of this sit
was made in Ref. 58 where again the drift of electron orbits along the constant energy lev
potentialV(x,y) was considered. Two types of the drift trajectories were considered in Ref. 58~1!
the ‘‘pinned orbits’’ ~corresponding to compact energy level curves!; ~2! the ‘‘drifting orbits’’
~corresponding to unbounded energy level curves in the plane!.

As was assumed in Ref. 58 only the contribution of the ‘‘drifting orbits’’ was important for
commensurability oscillations in this case and the ‘‘pinned orbits’’ were unessential for this
nomenon. According to this assumption the suppression of the commensurability oscillatio
be explained by the appearance of the ‘‘pinned orbits’’ for the potentials modulated both inx
andy directions. Unlike the case of potentials modulated just in thex direction the new condition
that the compact trajectories are passed many times by the centers of cyclotron orbits betwe
scattering acts appeared in Ref. 58. This requirement is similar to the condition of the ‘‘geom
strong magnetic field limit’’ considered in Refs. 1–3 for normal metals. However, the limB
→` does not correspond to the geometric limit in this situation and onlyt→` should be
considered as the geometric limit for this case. It is easy to see also that only periodic ‘‘dr
orbits’’ can appear for purely periodic potentialsV(x,y).

Let us also point out here that the analytic dependence of the resistance on the value ofB was
also calculated in Ref. 58 in the interesting interval for the model potentials having few harm
This dependence is more complicated compared with the case of 1-D modulated potentials
reveals the effect of commensurability also in this situation. The mean directions of trajec
that appeared in Ref. 58 were parallel tox andy axes and to the diagonaly52x in the different
examples. As was also pointed out in Ref. 58 the ‘‘drifting orbits’’ can exist only for poten
with the broken rotational symmetry which explains the maximal suppression of the comm
rability oscillations for the case of equal modulation intensity in both thex andy directions.

In this paper we will not consider in detail theB-dependence of conductivity for our mor
complicated potentials since it should reveal much more complicated behavior in this case. I
we are going to consider the geometric properties of the conductivity tensor in the limitt→`
arising from the global geometry of nonsingular open trajectories. Namely, we will show tha
type of potential can be considered as the particular case of the quasiperiodic potentials w
fixed number of quasiperiods and use the results obtained for the Novikov problem to g
‘‘topological characteristics’’ of the conductivity in this case. Let us say that this type of ‘‘to
logical quantities’’ arise in the completely different way compared, for example, with the
effect and characterize the geometry of the asymptotic of the conductivity tensor~but not its
absolute values!.

We will not also put any special conditions on potentialV(x,y) except the quasiperiodic
properties. The formulated results will have the general topological form valid for the ge
potentialsV(x,y).

Before we start the geometric consideration we want to say also that the holographic i
nation is not the unique way to produce the superlattice potentials for the two-dimensional el
                                                                                                                



e
th 1-D
d hex-
entials
ral 1-D
ials of
eneral
th 3
perpo-

riodic
here.
osi-
will

neral

level

is
which

l
lower

eriods

’

riodic
ngular
ce

1134 J. Math. Phys., Vol. 45, No. 3, March 2004 A. Y. Maltsev

                    
gas. Let us mention here the works,38–41,43,46,47,50,53,55,56where the different techniques using th
biasing of the specially made metallic gates and the piezoelectric effect were considered. Bo
and 2-D modulated potentials as well as more general periodic potentials with square an
agonal geometry appeared in this situation. We want to point out that the quasiperiodic pot
can also be made by these techniques in the same way using the superposition of seve
modulations. Actually these techniques give even more possibilities to produce the potent
different types even for the quasiperiodic situation. For example, the superposition of the g
periodic potential with the generic 1-D modulation will give the quasiperiodic potentials wi
quasiperiods which are more general than made just by 3 interference pictures. Also the su
sitions of two general periodic potentials on the plane will give the class of the quasipe
potentials with 4 quasiperiods more general than those which we will consider in detail
However, we would like for simplicity to restrict ourselves to the simpler pictures of superp
tions of 1-D modulation pictures which give already all the features of general behavior. We
also use everywhere the term ‘‘interference picture’’ for the modulation pictures. The ge
geometrical results will then be true for the other techniques also.

IV. NOVIKOV PROBLEM AND THE GEOMETRIC LIMIT FOR THE CASE OF 3
QUASIPERIODS

Let us come now to the Novikov problem and start the topological consideration of the
curves of quasiperiodic functions.

We will first describe the situation for the arbitrary periodic potentialV(x,y) with some
periods l1 ,l2PR2. This picture is rather simple from the topological point of view but it
convenient to give it here just to introduce the notations and to show the general approach
we are going to use. Let us consider the generic periodic functionf (r ) on R2 with the values
belonging to some interval@ f min ,fmax#. We are interested in the form of the level curvesf (r )
5c wheref min<c<fmax. It is easy to see that for the values ofc close to the minimal or maxima
value of f all such level curves are just the small closed loops bounding the small regions of
or higher values off @see Figs. 4~a! and 4~b!#.

It is not difficult to prove also that the extended trajectories~singular or nonsingular! always
exist in some closed connected ‘‘energy interval’’f 1<c< f 2 ( f min,f1<f2,fmax). In a generic
situation we havef 1, f 2 , but for special functionsf (r ) also the casef 15 f 2 is possible. This fact
is actually true for any quasiperiodic function and does not depend on the number of quasip
~the proof in Ref. 22 given forN53, works actually for anyN without any change!. Every
nonsingular open trajectory is periodic for the periodic functionf (r ) with the mean direction
given by some integral vectorl5m1l11m2l2 of lattice generated by periodsl1 ,l2 . We can see then
that every nonsingular open trajectory for periodicf (r ) corresponds to ‘‘topologically regular’
case.

It is easy to see also that there can be only the finite number of energy levels for the pe
Morse function where the singular trajectories can exist. We can claim then that the nonsi
open trajectories always exist in the generic casef 1, f 2 . The opposite statement is also true sin

FIG. 4. The level curves off (r ) close to the minimal and maximal values off .
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the nonsingular open trajectories are stable with respect to the small change of energy lev
typical situation of the generic case with the layers of open trajectories is shown in Fig. 5.

All the open trajectories do not intersect each other and have the common mean dir
passing in both the ‘‘direct’’ and the ‘‘opposite’’ way.

The opposite nongeneric casef 15 f 2 corresponds to the absence of the nonsingular o
trajectories in the plane. The typical picture forf 15 f 2 is a ‘‘singular net’’ on the levelf (r )5 f 1

5 f 2 and the closed trajectories at all the other levels~Fig. 6!. Let us pay here special attention
the last fact to compare this situation with the more complicated quasiperiodic case.

It follows also that the casef 15 f 2 always takes place for potentials with any kind of rot
tional symmetry since the nonsingular open trajectories cannot exist in this situation.

Let us give here also the references on the work59 where the nice quantization picture bas
on the topology of periodic quasiclassical drift trajectories in the magnetic field was consid

The generic periodic potentialsV(r ) arise in the experiments described above when the
independent interference pictures with arbitrary directions of interference fringes are presen
same sample. The potentialV(r ) is a functional of the total intensity of radiationI (r ) and has the
same periodicity for any~even nonlocal! translationally invariant dependence ofV(r ) on the field
I (r 8). For simplicity we will put the requirement that the functionalV(r )@ I # has the variational
derivativedV(r )/dI (r 8) decreasing for large enoughur2r 8u. We assume also that the function
V(r )@ I # is smooth, i.e., gives the smooth functionV(r ) for any smooth distributionI (r 8).

Let us now come to our main purpose and consider the potentialsV(r ) having the more
complicated form. Let us have now three independent interference pictures on the plane wit
different generic directions of fringesh1 ,h2 ,h3 and periodsa1 ,a2 ,a3 ~see Fig. 7!.

The total intensityI (r ) will be the sum of intensities,

I ~r !5I 1~r !1I 2~r !1I 3~r !,

of the independent interference pictures.
We assume that there are at least two noncoinciding directions~say h1 ,h2) among the set

(h1 ,h2 ,h3).

FIG. 5. The layers of open periodic trajectories with the ‘‘nontrivial’’ opposite directions@~1,1! and (21,21)] for the
generic periodic functionf (r ).

FIG. 6. The singular periodic net on the levelf (r )5 f 15 f 2 for the nongeneric periodic functionf (r ).
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Let us draw three straight linesq1 , q2 , q3 with the directionsh1 ,h2 ,h3 and choose the
‘‘positive’’ and ‘‘negative’’ half-planes for every lineqi on the plane. Let us consider now thre
linear functionsX(r ), Y(r ), Z(r ) on the plane which are the distances from the pointr to the lines
q1 , q2 , q3 with the signs ‘‘1’’ or ‘‘ 2’’ depending on the half-plane for the corresponding lineqi

~Fig. 8!.
The coordinates

R~r !5„X~r !,Y~r !,Z~r !…

now give the parametric representation of our planeP25R2 in the 3-dimensional spaceR3. The
total intensity I (r ) can be considered then as the restriction toP2 of the periodic function
Î (X,Y,Z):

Î ~X,Y,Z!5I 1~X!1I 2~Y!1I 3~Z!,

corresponding to the lattice inR3 generated by vectors (a1 ,0,0), (0,a2 ,0), (0,0,a3). The planeP2

passes through the origin according to Fig. 8~although it is not necessary if the linesq1 , q2 , q3

do not intersect at one point inR2).
Let us point out here that the standard inner product on the planeP2 does not coincide with

the product inR3 in this construction@from the metric point of view the planeR2 will be linearly
deformed in the embeddingR5R(x,y)]. However, the inner product will not be important at a
in our further considerations so we do not pay any attention to this fact. Let us just say tha
possible to introduce the special inner product inR3 such that it’s restriction onP2 will give the
standard metric inR2. Nevertheless, all the topological statements will be invariant under
group of all nondegenerate linear transformations and we will not need this construction a

We can define now the smooth periodic functionsV̂(X,Y,Z) and V̂B
eff(X,Y,Z) in R3 such that

the functionsV(x,y) and VB
eff(x,y) will be the restrictions ofV̂(X,Y,Z) and V̂B

eff(X,Y,Z) on the
planeP2. Indeed, consider any pointR5(X,Y,Z)PR3. Let us draw the two-dimensional plan

FIG. 7. The schematic sketch of the three independent interference pictures on the plane with different perio
intensities.

FIG. 8. The coordinatesX(r ), Y(r ) andZ(r ) on the plane.
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P28 through the pointR parallel to the planeP2. We have then the total intensityI 8(R) in the

plane P28 defined as the restriction ofÎ (X,Y,Z) on P28. Let us define now the function
V̂(X,Y,Z) andV̂B

eff(X,Y,Z) at the pointR as the corresponding functions defined in the planeP28
passing throughR using the functionalV(r )@ I # and the averaging over the cyclotron orbits
P28. It is easy to see that the functionsV̂(X,Y,Z), V̂B

eff(X,Y,Z) are the smooth periodic function
in R3 with periods (a1 ,0,0), (0,a2 ,0), (0,0,a3). Obviously the functionsV̂uP2 andV̂B

effuP2 give the
required potentialV(r ) and the effective potentialVB

eff(r ) in the initial two-dimensional planeR2.
Let us introduce now the important definition of the ‘‘quasiperiodic group’’ acting on

potentials described above. As we saw, our construction gives us the embeddingP2 of the initial
planeR2 in the three-dimensional spaceR3. At the same time we get the additional planesP28 in
R3 parallel toP2 with different I 8(r ), V8(r ), VB

eff8(r ) corresponding to the sameÎ (R), V̂(R) and
V̂B

eff(R). It is easy to see that the functionsI 8(r ), V8(r ), VB
eff8(r ) correspond to the case of thre

interference pictures with the same mean directions of fringes and periods (h1 ,a1), (h2 ,a2),
(h3 ,a3) but with shifted positions of maxima and minima for every interference picture.

Definition 4: We will say that all the potentials V8(r ) ~as well as VB
eff8(r ) for every given B)

are related by a ‘‘quasiperiodic group’’ of transformations.
According to the Definition 4 we define the action of a ‘‘quasiperiodic group’’ inR2 as the

parallel shifts of the planeP2 in the spaceR3. The ‘‘quasiperiodic group’’ is then the 3-parametr
Abelian group isomorphic to 3-dimensional torusT35R3/L,

L5m1~a1 ,0,0!1m2~0,a2 ,0!1m3~0,0,a3!,

~m1 ,m2 ,m3!PZ3,

containing the~noncompact! algebraic subgroup of ordinary translations inR2.
As we will see below, this definition will be very convenient in the consideration of o

trajectories for potentials of this type inR2. Namely, we will see that all the global properties
open trajectories will be the same for all potentials related by the ‘‘quasiperiodic group’’ in
case of generic (h1 ,a1), (h2 ,a2), (h3 ,a3). In other words, for the generic (h1 ,a1), (h2 ,a2),
(h3 ,a3) the global geometry of open trajectories will not depend on the positions of minima
maxima of the interference pictures and will be defined just by the set (h1 ,a1), (h2 ,a2), (h3 ,a3)
and the intensitiesI 1 , I 2 , I 3 @although the potentialsV(r ), VB

eff(r ) will be different in these cases#.
Let us say, however, that this property can be broken for the special (h1 ,a1), (h2 ,a2), (h3 ,a3)
corresponding to purely rational directions ofP2 in R3.

According to the previous definition we will say that the quasiperiodic potential has irr
nality 3 or maximal irrationality if it has no periods inR2. We will say that the potentialV(r ) has
irrationality 2 if it has only one~up to the integer multiplier! period inR2. We will say that the
potentialV(r ) has irrationality 1 if it has two linearly independent periods inR2.63 As can be
easily seen the last case corresponds to the purely periodic potentialsV(r ). It is easy to see also
that the potentialsV(r ) of irrationality 3, 2 and 1 correspond to the cases when the planeP2

contains no vectors belonging toL, just one~up to the integer multiplier! vector belonging toL
and two linearly independent vectors belonging toL, respectively. Obviously all the potentia
related by the ‘‘quasiperiodic group’’ have the same irrationality in the plane.

Let us discuss now briefly the connection of irrationality with the directions and period
interference pictures in our situation.

We assume as previously that there are at least two different directions of the interfe
fringes in our picture. The picture given by the two corresponding sets of interference fring
purely periodic inR2 with the periodsu1 , u2 parallel toh1 andh2 , respectively~see Fig. 9!.

We can see then that the total picture has a period inR2 if some nontrivial integer linear
combination,

m1u11m2u2 , ~m1 ,m2!PZ2/~0,0!,
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of periods u1 , u2 leaves invariant also the third interference picture corresponding to
(h3 ,a3).

The corresponding condition form1u11m2u2 can then be written in the form

~m1u11m2u2 ,j3!5ka3 , kPZ, ~2!

wherej3 is a unit vector orthogonal toh3 in the plane.
The equation~2! has no nontrivial solutions in the generic situation and can be satisfied

for specialh3 and a3 . It is not difficult to show that for purely rational potentialsV(r ) @two
linearly independent solutions of~2!# the directionh3 should also correspond to the integer vec
in the latticeL8 generated by vectorsu1 , u2 :

L85$m1u11m2u2 , ~m1 ,m2!PZ2%.

We can put for this caseh3;m1u11m2u2 for some integerm1 , m2 . Also the corresponding
perioda3 should satisfy the special condition in this situation. If we introduce the anglesu12, u13

between the directionsh1 , h2 and h1 , h3 , 0,u12<p/2, 0,u13<p ~Fig. 9! we can get the
relations for u13 and a3 which define all the pairs (h3 ,a3) corresponding to purely rationa
potentialsV(r ):

tg u135
m2a1 sinu12

m1a22m2a1 cosu12
, ~3!

k3a3 sinu125k1a1 sin~u121u13!1k2a2 sinu13, ~4!

wherem1 ,m2 ,k1 ,k2 ,k3PZ, (m1 ,m2)Þ(0,0), (k1 ,k2)Þ(0,0), k3Þ0.
For the case of just one period~irrationality 2! we can have either the condition~3! for u13

~‘‘ 1 rational’’ direction ofh3) but with a3 not satisfying to~4! or the condition~4! for a3 but with
u13 not satisfying to~3!.

It is easy to see that both cases of irrationality 1 and 2 have the measure zero amo
potentials constructed by three arbitrary interference pictures.

As we already said above the case of irrationality 1 corresponds to the purely periodic p
tials V(x,y). Let us however make here some remark. Namely, for arbitrary periodic pote
V(x,y) the corresponding periodsl1 , l2 can be much bigger than the values ofa1 , a2 , a3 . We can
conclude then that even the ‘‘topologically regular’’ periodic open trajectories can have a r
nontrivial structure on the rather long distances since the period of the trajectory is very big
width of the straight line containing the periodic trajectory can be also compatible with perio
V(x,y) in this case being quite big with respect to the periods of modulationsa1 , a2 , a3 . Also the
rational mean direction of the periodic trajectories can have a ‘‘rather big denominator’’ suc
this rationality will not play an essential role in the real picture. Instead, the typical fea
observable in the generic situation of irrationality 3 will appear on the distances smaller tha

FIG. 9. The periodic picture formed by two sets of parallel interference fringes with common directionsh1 , h2 and the
added third set with directionh3 .
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periodsu l1u, u l2u of potentialV(x,y). According to this remark we can actually try to consider t
potentials of irrationality 1 or 2 as the generic potentials of irrationality 3 if the periods of t
potentials are rather big. The special features connected with rationality can then be reveal
for very big values oft such that the free motion length is much larger thanu l1u, u l2u.

Let us formulate now~in our language! the first theorem about the open trajectories for
quasiperiodic potentialsV(r ) andVB

eff(r ) with 3 quasiperiods corresponding to the first theorem
the Novikov problem proved in Ref. 11.

Theorem 1: Consider the purely periodic potential V(0)(r ) (or VB
(0)eff(r )) generated by three

independent interference pictures with some parameters(h1
(0) ,a1

(0)), (h2
(0) ,a2

(0)), (h3
(0) ,a3

(0)) sat-
isfying to (3), (4). Then for all the potentials V(r ) (and VB

eff(r )) with parameters(h1 ,a1),
(h2 ,a2), (h3 ,a3) close enough to(h1

(0) ,a1
(0)), (h2

(0) ,a2
(0)), (h3

(0) ,a3
(0)) all the open nonsingular

electron trajectories will correspond to the topologically regular case only.
Using the same methods as in Ref. 11 it is possible to prove also that Theorem 1 will b

also for small variations of the intensitiesI 1(r ), I 2(r ), I 3(r ) of the laser beams and the form of th
functionalV(r )@ I #.

Let us say here that Theorem 1 makes a rather strong statement about the generic po
close to periodic ones. However, the corresponding ‘‘stability zones’’ for parame
(h1 ,h2 ,h3 ,a1 ,a2 ,a3) ~and I 1 , I 2 , I 3) depend on the initial values of (h1

(0) ,a1
(0)), (h2

(0) ,a2
(0)),

(h3
(0) ,a3

(0)) and become very small for the large values of periodsu l1u, u l2u of the initial potential.
Due to this reason Theorem 1 cannot say anything about arbitrary potentialV(r ) ~with 3 quasip-
eriods! since we can have the situation when it does not belong to any stability zone correspo
to any rational potentialV(0)(r ). Nevertheless, this theorem is very important and we will see
that only the result of this type can be formulated for the more complicated case of potential
4 quasiperiods.

Let us discuss now the general situation of arbitrary potentialsV(r ) with 3 quasiperiods. We
will start first with the generic situation of potentials of irrationality 3 and then discuss
additional features which can arise in the cases of irrationality 1 and 2. Let us make he
reference on the survey article,26 where the final theorems in the most complete form w
formulated. The development of this problem and the considerations of physical phenome
be found in Refs. 10–30. Let us say also that all the results in Ref. 26 and in all previous p
were formulated in another language using the 3-dimensional topology terminology. We w
discuss here the topological questions in detail and just claim that the following statements
derived from the topological theorems formulated in Ref. 26.

Theorem 2: Let us fix the value of B and consider the generic quasiperiodic potential VB
eff(r )

(of irrationality 3) taking the values in some intervalemin(B)<VB
eff(r )<emax(B). Then we have the

following.

(1) Open quasiclassical trajectories VB
eff(r )5c always exist either in the connected energy int

val,

e1~B!<c<e2~B!

@emin(B),e1(B),e2(B),emax(B)# or just at one energy value c5e0(B) [i.e. e1(B)5e2(B)
5e0(B)] .

(2) For the case of the finite interval@e1(B),e2(B)# all the nonsingular open trajectories cor
respond to the topologically regular case, i.e., lie in the straight strips of the finite width [
3(a)] and pass through them. All the strips have the same mean directions for all the e
levels cP@e1(B),e2(B)# such that all the open trajectories are on average parallel to ea
other for all values of c.

(3) The valuese1(B), e2(B) or e0(B) are the same for all the potentials of irrationality
connected by the‘‘ quasiperiodic group.’’

(4) For the case of the finite energy interval@e1(B),e2(B)# all the nonsingular open trajectories
also have the same mean direction for all the potentials (of irrationality 3) connected b
‘‘ quasiperiodic group.’’
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We can see from Theorem 2 that the ‘‘topologically integrable’’ situation is typical also for
case of quasiperiodic functions with 3 quasiperiods being connected with the generic
e1(B),e2(B). Let us say also that for the case of just one energy level@e1(B)5e2(B)
5e0(B)# containing the open trajectories both the topologically regular and ‘‘chaotic’’ behavio
open trajectories are possible~see Ref. 22!. This situation can be compared with the situation
purely periodic potentials where the nonsingular periodic open trajectories always appear
case of a finite energy interval@e1(B).e2(B)# but only the periodic ‘‘singular nets’’ are possibl
for the casee1(B)5e2(B)5e0(B). As we see here the quasiperiodic potentials give ano
possibility in the last case.

Let us consider now the asymptotic behavior of conductivity in the case of topologi
regular open trajectories whent→`. According to previous papers36,51,58we will divide here the
conductivity tensor in two partss0

ik(B) andDs ik(B) corresponding to the conductivity withou
any potentialV(r ) and an additional contribution due to potentialV(r ). We have then

s ik~B!5s0
ik~B!1Ds ik~B!.

In the approximation of the drifting cyclotron orbits the partss0
ik(B) and Ds ik(B) can be

interpreted as caused, respectively, by the~infinitesimally small! difference in the electron distri
bution function on the same cyclotron orbit~weak angular dependence! and the~infinitesimally
small! difference in the occupation of different trajectories by the centers of cyclotron orbi
different points ofR2 ~on the same energy level! as the linear response to the~infinitesimally!
small external fieldE. The asymptotict→` of both partss0

ik(B) and Ds ik(B) can then be
written from the same arguments used in Refs. 1–3 with some additional remarks specific f
situation. We will just say here that the first parts0

ik(B) has the standard asymptotic form:

s0
ik~B!;

ne2t

meff S ~vBt!22 ~vBt!21

~vBt!21 ~vBt!22D ,

for vBt@1 due to the weak angular dependence (;1/vBt) of the distribution function in the
same cyclotron orbit. We have then that the corresponding longitudinal conductivity decreas
t→` in all the directions inR2 and the corresponding condition is justvBt@1 in this case.

For the partDs ik(B) the limit t→` should, however, be considered as the condition t
every trajectory is passed for a rather long time by the drifting cyclotron orbits to reveal its g
geometry. Thus another parametert/t0 wheret0 is the characteristic time of completion of clos
trajectories should be used in this case and we should put the conditiont/t0@1 to have the
asymptotic regime forDs ik(B). In this situation the difference between the open and clo
trajectories plays the main role and the asymptotic behavior of conductivity can be calcula
the form analogous to that used in Refs. 1–3 for the case of normal metals. Namely,

Ds ik~B!;
ne2t

meff S ~t0 /t!2 t0 /t

t0 /t ~t0 /t!2D ,

in the case of closed trajectories and

Ds ik~B!;
ne2t

meff S * t0 /t

t0 /t ~t0 /t!2D ,

(* ;1) for the case of open topologically regular trajectories if thex-axis coincides with the mean
direction of trajectories.

We can see then that only the contribution of open orbits toDs ik(B) remains in~longitudinal!
conductivity fort→`. Let us say that these formulas give just the asymptotic form of cond
tivity for t→`. In the more precise form they should include also the multipliers proportion
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the parts of the phase volume filled by the closed and open trajectories and the appr
definition of meff in this situation. We will not, however, consider this part in detail since we
need only the anisotropy of the tensors ik in the ‘‘geometric limit.’’

The conditiont/t0@1 is much stronger thanvBt@1 in the situation described above ju
according to the definition of the slow drift of the cyclotron orbits. We can keep then just
condition in our further considerations and assume that the main part of conductivity is giv
Ds ik(B) in this limit. It is easy to see also that the magnetic fieldB should not be ‘‘very strong’’
in this case.

According to the remarks above we can write now the main part of the conductivity te
s ik(B) in the limit t→` for the case of topologically regular open orbits. Let us take thex axis
along the mean direction of open orbits and take they axis orthogonal tox. The asymptotic form
of s ik, i ,k51,2 can then be written as

s ik;
ne2t

meff S * t0 /t

t0 /t ~t0 /t!2D , t0 /t→0, ~5!

where* is some value of order of 1~constant ast0 /t→0).
The asymptotic form ofs ik makes possible the experimental observation of the mean d

tion of topologically regular open trajectories if the valuet/t0 is rather big.
Let us introduce here the ‘‘topological numbers’’ characterizing the regular open trajec

introduced first in Ref. 19 for the case of normal metals. We will give the topological definitio
these numbers using the action of the ‘‘quasiperiodic group’’ on the quasiperiodic potential
us assume for simplicity that the potentialVB

eff(r ) is generic and has irrationality 3. We assume th
we have the ‘‘topologically integrable’’ situation where the topologically regular open trajecto
exist in some finite energy intervale1(B)<c<e2(B). According to Theorem 2 the valuese1(B),
e2(B) and the mean directions of open trajectories are the same for all the potentials cons
from our potential with the aid of the ‘‘quasiperiodic group.’’ It follows also from the topologi
picture that all the topologically regular trajectories are absolutely stable under the action
‘‘quasiperiodic group’’~for the case of irrationality 3! and can just ‘‘crawl’’ in the plane for the
continuous action of such transformations.

Let us make now the following transformation.
We take the first interference picture„(h1 ,a1)… and shift continuously the interference fringe

in the direction of X(r ) ~orthogonal toh1) to the distancea1 keeping two other interferenc
pictures unchanged. It is easy to see that we will have at the end the same potentialsV(x,y) and
VB

eff(x,y) due to the periodicity of the first interference picture with perioda1 . Let us fix now some
energy levelcP„e1(B),e2(B)… and look at the evolution of nonsingular open trajectories@for
VB

eff(x,y)] while making our transformation. We know that we should have the parallel o
trajectories in the plane at every time and the initial picture should coincide with the final pi
according to the construction. The form of trajectories can change during the process bu
mean direction will be the same according to Theorem 2.64

We can claim then that every open trajectory will be ‘‘shifted’’ to another open trajector
the same picture by our continuous transformation. It is not difficult to prove that all the tr
tories will then be shifted by the same number of positionsn1 ~positive or negative! which
depends on the potentialVB

eff(x,y) ~Fig. 10!.
The numbern1 is always even since all the trajectories appear by pairs with the opposite

directions.
Let us now do the same with the second and the third sets of the interference fringes a

an integer triple (n1 ,n2 ,n3) which is a topological characteristic of potentialVB
eff(x,y) ~the ‘‘posi-

tive’’ direction of the numeration of trajectories should be the same for all these transformat!.
The triple (n1 ,n2 ,n3) ~defined up to the common sign! can be represented as

~n1 ,n2 ,n3! 5 M ~m1 ,m2 ,m3!,
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whereMPZ and (m1 ,m2 ,m3) is the indivisible integer triple. BothM and (m1 ,m2 ,m3) have the
topological meaning connected with the number of connected components carrying open
tories inR3 and the homological class of every component inT35R3/L up to the sign.

Let us mention that for periodic potentialsV(x,y) made just by two interference pictures wi
common directionsh1 , h2 the corresponding transformations are actually equivalent to the s
along the periodsu2 andu1 , respectively~Fig. 9!. It is not difficult to see that the correspondin
numbers (m1 ,m2) are equal then~up to the common sign! to (2 i 1 ,i 2) where (i 1 ,i 2) is the
indivisible integer mean direction of periodic open trajectories in the latticeL8 generated by
vectors$u1 ,u2%. It is easy to see also that the vectors$ X(r )/a1 , Y(r )/a2% give the dual basis to
the basis$u2 ,u1% and the mean direction of open orbits can be defined from the linear equa

m1X~r !/a11m2Y~r !/a250

on the plane.
It can be proved that the similar situation also takes place for the topologically regular

trajectories in the case of quasiperiodic potentialsV(r ). Let us omit here the detailed conside
ation of the topological picture and just say that the common direction of open trajectoriesR2

is defined completely by the triple (m1 ,m2 ,m3). Let us formulate here the corresponding sta
ment:

Theorem 3: Consider the functions

X8~r !5X~r !/a1 , Y8~r !5Y~r !/a2 , Z8~r !5Z~r !/a3 ,

in R2. The mean direction of the regular open trajectories is given by the linear equation:

m1X8~x,y!1m2Y8~x,y!1m3Z8~x,y!50 ~6!

where(m1 ,m2 ,m3) is the indivisible integer triple introduced above.
The triples (m1 ,m2 ,m3) coincide precisely with the ‘‘Topological Quantum Numbers’’ intr

duced in Ref. 19 for the conductivity in normal metals. Let us say that the condition~6! determines
completely the numbers (m1 ,m2 ,m3) ~from the mean direction of open trajectories! for potentials
of irrationality 3. This fact permits us to extract the values of (m1 ,m2 ,m3) from the direct
conductivity observations using the anisotropy of tensors ik(B). @The formula~6! is also true for
the case of so-called ‘‘stable’’ open trajectories for potentials of irrationality 1 and 2~see below!.
The triple (m1 ,m2 ,m3) generally speaking may not be defined uniquely from the mean direc
of open trajectories in these cases and the arguments based on quasiperiodic group play
main role in the definition of (m1 ,m2 ,m3). However, it can be measured from the direct cond
tivity observations also in these cases due to the stability of these numbers with respect
small change of parameters (h1 ,a1), (h2 ,a2), (h3 ,a3).]

FIG. 10. The shift of ‘‘topologically regular’’ trajectories by a continuous transformation generated by the special p
the ‘‘quasiperiodic group.’’
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The very important property of the integer triples (m1 ,m2 ,m3) is their stability with respect
to the small variations of all the parametersh1 , h2 , h3 , a1 , a2 , a3 , I 1 , I 2 , I 3 and even of the
form of dependence V(r )@ I #. This means that the space of paramet
(h1 ,h2 ,h3 ,a1 ,a2 ,a3 ,I 1 ,I 2 ,I 3) where the situatione2(B).e1(B) for the energy interval contain
ing the open trajectories takes place can be divided into different ‘‘stability zones’’Ga where the
relations~6! are valid for genericVB

eff(r ) with the same values of (m1
a ,m2

a ,m3
a). Let us emphasize

here that the mean directions of open trajectories are different for the different values of p
eters even within the same stability zoneGa and the equation~6! gives the fixed relation of thes
directions with the directions and periods of the interference fringes for a given stability zo

The zonesGa form an everywhere dense set in the total space of parameters and in gene
can have an infinite number of zones parametrized by the numbers (m1

a ,m2
a ,m3

a). The triples
(m1

a ,m2
a ,m3

a) form some subset of all possible integer triples (m1 ,m2 ,m3) ~defined up to the
common sign! and give an important topological characteristic of the potentialsVB

eff(r ) made by 3
interference pictures. The sizes of zonesGa decrease for the big numbers (m1

a ,m2
a ,m3

a) and the
total set $øGa% give a rather complicated subset in the space of parame
(h1 ,h2 ,h3 ,a1 ,a2 ,a3 ,I 1 ,I 2 ,I 3). Let us say also that the topologically regular open trajectories
also stable with respect to any variation of potentialVB

eff(r ) small enough which makes it possib
to observe them also for slightly imperfect quasiperiodic potentialsV(r ).

Before starting with special possibilities for the periodic~irrationality 1! or ‘‘partly periodic’’
~irrationality 2! potentials we will say here some words about the ‘‘chaotic’’ behavior of o
trajectories possible in the casee1(B)5e2(B)5e0(B). Let us say that fore1(B)5e2(B) both the
situations of topologically regular and chaotic behavior of open trajectories are possible
quasiperiodic case. The first situation always takes place when the correspondin
(h1 ,h2 ,h3 ,a1 ,a2 ,a3 ,I 1 ,I 2 ,I 3) belongs to the boundary of some stability zoneGa in the space of
parameters. In this case all the nonsingular open trajectories are topologically regular and
spond to the same numbers (m1

a ,m2
a ,m3

a). Another situation arises when the s
(h1 ,h2 ,h3 ,a1 ,a2 ,a3 ,I 1 ,I 2 ,I 3) is an accumulation point for the zonesGa but does not belong to
the boundary of anyGa . In this situation much more complicated chaotic behavior of open or
appear at the energy levelVB

eff(r )5e0(B). Obviously the ‘‘chaotic’’ behavior can be possible on
for potentials of irrationality 2 or 3. Let us say also that the cases of irrationality 2~Tsarev chaotic
behavior! and 3 ~Dynnikov chaotic behavior! demonstrate completely different types of chao
behavior in this situation.

The first example of chaotic open trajectory was constructed by Tsarev16,22 for the case of
irrationality 2. The corresponding chaotic trajectory, however, has an asymptotic directio
cannot be bounded by any straight strip of the finite width inR2. As was later proved by
Dynnikov,22 this situation always takes place for chaotic trajectories in the case of irrational
The asymptotic behavior of the conductivity tensor reveals also the strong anisotropy for largt in
this situation with slightly different from~5! dependence ont for t→`.

The more complicated chaotic trajectories were constructed by Dynnikov22 for the case of
irrationality 3 ~the approximate form of such kinds of trajectories is shown in Fig. 3~b!. The
trajectories of this second kind do not have any asymptotic direction inR2 ‘‘walking everywhere’’
in the plane. The form of the conductivity tensor for this type of trajectory was suggested in
24 and is more complicated, then~5!. We will not discuss here all the details and just say that
conductivity decreases in this case in all directions fort→` as some noninteger powers oft.65

Let us also add here that all the chaotic trajectories are completely unstable with respect
small variations of parameters (h1 ,h2 ,h3 ,a1 ,a2 ,a3 ,I 1 ,I 2 ,I 3) ~but remain chaotic with the
‘‘same geometric properties’’ under the action of the ‘‘quasiperiodic group’’!.

Let us discuss also theB-dependence of tensors ik(B) for the limit t→`. The value ofB
belongs here to some intervalB1<B<B2 such that both the drifting orbits approximation and t
conditiont/t0@1 ~as well the absence of quantum oscillations! are true. The effective potentia
VB

eff(r ) is a function ofB in this case and the geometry of trajectories depends onB through the
potentialVB

eff(r ). Let us just say here that it can also be proved using topological considera
that the topologically regular open orbits are also ‘‘locally stable’’ with respect to the s
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variations ofB. However, for rather big changes of value ofB it is possible to have ‘‘jumps’’ in
this picture and get different mean directions of open trajectories~as well as the chaotic cases! in
the different parts of the interval@B1 ,B2#. Let us add also that the structure of theB dependence
can be rather complicated in this case containing the infinite number of small subinterval
very big numbers (m1 ,m2 ,m3) as well as the chaotic cases.

Actually, all the theorems 1–3 can be reformulated in the same form if we add the para
B to parametersh1 , h2 , h3 , a1 , a2 , a3 , I 1 , I 2 , I 3 introduced above. The probability of ‘‘jumps
will then increase for the small stability zonesGa corresponding to big numbers (m1 ,m2 ,m3) and
the B-dependence ofs ik(B) will depend strongly on the part of the phase space. The cha
trajectories will be completely unstable with respect to any small variations ofB.

In the same way we can consider the ‘‘stability zones’’Ga
ext in the extended space of param

eters including the value of the magnetic fieldB. The total set$øGa
ext% will have then the

analogous structure containing in general the infinite number of zonesGa
ext and triples

(m1 ,m2 ,m3) being everywhere dense in the total set of parameters.
Let us formulate now the general conjecture of Novikov about the chaotic cases for pote

with 3 quasiperiods. In our situation we will assume that potentials are parametrized by p
eters,

~h1 ,h2 ,h3 ,a1 ,a2 ,a3 ,I 1 ,I 2 ,I 3!

or

~h1 ,h2 ,h3 ,a1 ,a2 ,a3 ,I 1 ,I 2 ,I 3 ,B!,

and maybe some additional parameters characterizing the functionalV(r )@ I #.
Novikov conjecture: The set of parameters corresponding to the chaotic behavior of

trajectories has measure zero in the total space of parameters.
Let us point out that the Novikov conjecture was strictly proved in the important case w

only the quasiclassical trajectories belonging to some fixed energy level are taken into acc22

This is precisely the situation arising in the conductivity in normal metals where only the tr
tories close to the Fermi surface are important. The more general situation was also inves
numerically29 for the case of the special analytic dispersion relations where the Novikov co
ture was also confirmed. However, the general proof of Novikov conjecture for an arbitrary
parameters is still unknown.

We will point out now some additional possibilities which can arise in the nongeneric ca
potentials of irrationality 1 or 2~see Ref. 26 for detailed mathematical considerations!.

Let us start with the case of irrationality 2 when only one periodl ~up to the integer multiplier!
exists inR2. All the parts~1!–~4! of Theorem 2 are also true for potentials of irrationality 2. W
need, however, to make one remark about the situation when the mean direction of the ‘‘top
cally regular’’ open trajectories coincides with the periodl of potential. Easy to see that the ope
trajectories are actually periodic inR2 in this case with the same periodl. In this situation some
‘‘additional pairs’’ of periodic open trajectories can arise and disappear under the action o
‘‘quasiperiodic group.’’ These pairs arise from the periodic sets of closed trajectories und
changing of positions of interference fringes@with the same (h1 ,h2 ,h3 ,a1 ,a2 ,a3)] and disappear
in the same way~Fig. 11!.

The trajectories of this kind are unstable with respect to the small variations of param
(h1 ,h2 ,h3 ,a1 ,a2 ,a3) and will be destroyed after any small variation which does not conserve
period l of potential. These trajectories always present for all the potentials of irrational
connected by the ‘‘quasiperiodic group’’~on the same energy levels! if they exist at least for one
of them. However, these trajectories can ‘‘jump’’ over the two-dimensional planeR2 disappearing
in one place and arising in the other under the action of group transformations. We can cal
trajectories ‘‘partly stable’’~or also ‘‘jumping’’! in contrary to the absolutely stable~‘‘crawling’’ !
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trajectories described above. It can be proved also that the phase volume corresponding
stable and ‘‘jumping’’ open trajectories is also the same for potentials connected by the q
eriodic group in this situation.

The triple of the integer numbers (n1 ,n2 ,n3) can be defined here in the same way as in
case of irrationality 3 but these additional pairs of trajectories should be completely ignored
the action of the ‘‘quasiperiodic group’’ is considered. The motion of stable open orbits~which
always exist in this situation! gives then the same topological numbersM and (m1 ,m2 ,m3) as for
close generic potentials.

All the trajectories still have the same mean direction in this situation and the asymptotic
~5! for t→` is also true in this case. The formula~6! is also valid for the directions of ope
trajectories with the same (m1 ,m2 ,m3). At the end we mention that the situation described ab
can arise only if the mean directions of stable open orbits coincide with the periodl of potential
VB

eff(r ) and is absent if it is not so. As we already mentioned the chaotic behavior is also po
for potentials of irrationality 2 but it is always simpler than for the irrationality 3 potentials.

Let us now say some words about the purely periodic potentials~irrationality 1! which can
also appear for special (h1 ,h2 ,h3 ,a1 ,a2 ,a3). As we already said all the open trajectories a
purely periodic in this case and only a ‘‘topologically integrable’’ situation is possible. We
mentioned already that the extended trajectories can exist here either in the continuous
interval e1(B)<c<e2(B) or just at one energy levelc5e0(B) ~periodic singular nets!. All the
values e1(B), e2(B), e0(B), however, are not necessarily invariant here with respect to
‘‘quasiperiodic group’’ action and can be different for different potentials connected by the ‘‘
siperiodic group’’ transformations. Also the mean directions of open orbits can be different fo
potentials belonging to the same orbit of the ‘‘quasiperiodic group.’’

We have then that unlike the cases of irrationality 3 or 2 the positions of interference m
and maxima can be important here for the conductivity behavior and the parameters (h1 ,a1),
(h2 ,a2), (h3 ,a3) do not determine the picture completely. It can be proved, however, tha
change of the mean directions of open orbits is possible only if the case of a ‘‘periodic sin
net’’ takes place at least for one~actually at least for two! potential belonging to the same orbit o
the ‘‘quasiperiodic group.’’ We can assume then that this situation takes place only if the pe
potential is prepared specially to have this property and it does not take place for potentia
rather big periodsl1 , l2 appearing ‘‘by chance’’ in the modulation picture. Thus we can assu
that the periodic potentials with rather bigl1 , l2 arising ‘‘by chance’’ can be considered actually
the generic potentials on the physical level of strictness and do not give any special featur

V. NOVIKOV PROBLEM FOR THE CASE OF POTENTIALS WITH 4 QUASIPERIODS

Let us consider now a more complicated case whenN54 and we have the potential made b
4 independent interference pictures~Fig. 12!.

FIG. 11. The arising and the disappearance of the periodic trajectories under the action of the ‘‘quasiperiodic gro
potentials of irrationality 2 or 1.
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The situation in this case is more complicated than in the caseN53 and no general classifi
cation of open trajectories exists at the time. We will present here the theorem of Novikov27 which
gives the statement analogous to the Zorich theorem~Theorem 1! in this situation.

Like in the previous case we define here the embedding of the planeR2 in the four-
dimensional spaceR4 using the functionsX(r ), Y(r ), Z(r ), W(r ) defined in the same way fo
four interference pictures. We will need also the functionsX8(r ), Y8(r ), Z8(r ), W8(r ) defined as

X8~r !5X~r !/a1 , Y8~r !5Y~r !/a2 ,

Z8~r !5Z~r !/a3 , W8~r !5W~r !/a4

~in the same way as previously for the caseN53).
The ‘‘total intensity function’’Î (R), RPR4 is defined here as

Î ~R!5I 1~X!1I 2~Y!1I 3~Z!1I 4~W!,

and is a periodic function with periods (a1,0,0,0), (0,a2,0,0), (0,0,a3,0), (0,0,0,a4) in R4. The
‘‘big potentials’’ V̂(R) andV̂B

eff(R) are also defined for every pointRPR4 through the functional
V(R)@ I # and the averaging over the cyclotron orbits in the planeP28PR4 passing through the
point R and parallel to the initial planeP2. It is easy to see again that the functionsV̂(R), V̂B

eff(R)
are the smooth 4-periodic functions inR4 and the potentialsV(r ), VB

eff(r ) are the restrictions of
V̂(R) and V̂B

eff(R) on the planeP2 embedded inR4. We can define again the action of th
‘‘quasiperiodic group’’ on the potentialsV(r ), VB

eff(r ) which is now isomorphic to the four
dimensional torusT45R4/L, where L is an integer lattice generated by vectors (a1,0,0,0),
(0,a2,0,0), (0,0,a3,0), (0,0,0,a4). Let us mention also that the action of this group can be defi
here in the same way as the shifts of positions of minima and maxima of the interference f
keeping the same the directionsh1 , h2 , h3 , h4 and periodsa1 , a2 , a3 , a4 .

Again the statement that the open trajectories always exist either on the connected
interval e1(B)<c<e2(B) or just at one energy levele0(B) for any VB

eff(r ) is true for the case of
4 quasiperiods. It can be also proved that the values ofe1(B), e2(B) or e0(B) are the same for
generic potentials belonging to the same orbit of the ‘‘quasiperiodic group.’’ Moreover, the g
behavior of open trajectories is also the same in this case for all such potentials and the asy
behavior of conductivity~which isa priori unknown here for the general case! does not depend on
the positions of maxima and minima for the fixed generic (h1 ,a1), (h2 ,a2), (h3 ,a3), (h4 ,a4).
These properties, however, can be destroyed for the specially made periodic potentialsV(r ) like in
the case of 3 quasiperiods.

Let us consider now the purely periodic potentialV(r ) formed now by four interference
pictures. We assume again that at least two~sayh1 , h2) directions of interference fringes are n
parallel to each other and give a double-periodic picture in the plane like in the case of pote
with 3 quasiperiods. Let us introduce the angles (u12, u13, u14) between the directionsh1 andh2 ,

FIG. 12. The potential with 4 quasiperiods made by 4 independent sets of interference fringes with directionsh1 , h2 , h3 ,
h4 and periodsa1 , a2 , a3 , a4 .
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h3 , h4 in the same way as in the case of three interference pictures. From the requirem
periodicity we then will have the same requirements~3!–~4! for the anglesu13, u14 and the
periodsa3 , a4 with some integer numbersm18 , m28 , k18 , k28 , k38 ~for u13 anda3) andm19 , m29 , k19 ,
k29 , k39 ~for u14 and a4). It is easy to prove that these conditions are also sufficient for
periodicity of the resulting potentialV(r ).

The theorem of Novikov permits us to formulate here the following property of the poten
VB

eff(r ) close enough to purely periodic potentials:
Theorem 4: Consider the purely periodic potential VB

(0)eff(r ) built by four interference pic-
tures with the directions and periods(h1

(0) ,a1
(0)), (h2

(0) ,a2
(0)), (h3

(0) ,a3
(0)), (h4

(0) ,a4
(0)). Then there

exists such small regionG of parametersh1 , h2 , h3 , h4 , a1 , a2 , a3 , a4 , I 1 , I 2 , I 3 , I 4

containing the initial potential VB
(0)eff(r ) that for all the generic potentials VB

eff(r ) corresponding to
the point ofG the following statements are true.

(1) All the nonsingular open trajectories lie in the straight strips of finite width and pass thro
them.

(2) All the regular trajectories have the mean direction inR2 given by the equation

m1X8~r !1m2Y8~r !1m3Z8~r !1m4W8~r !50,

with some integer (indivisible) 4-tuple(m1 ,m2 ,m3 ,m4) which is the same for all the (generic
points of ‘‘stability zone’’G.

(3) The mean direction of open trajectories are the same for generic potentials belonging
same orbit of the‘‘ quasiperiodic group.’’

Using Novikov theorem it is possible to prove also that the 4-tuples (m1 ,m2 ,m3 ,m4) can be
also defined through the action of the ‘‘quasiperiodic group’’ in the same way as in the cas
quasiperiods.

The asymptotic behavior of conductivity tensors ik is also the same in this case by the sa
reasons and the mean directions of the open trajectories@and the integer 4-tuples
(m1 ,m2 ,m3 ,m4)] can be measured experimentally.

According to Novikov theorem the regions with ‘‘topologically regular’’ behavior can
found in any~arbitrarily small! open region of parametersh1 , h2 , h3 , h4 , a1 , a2 , a3 , a4 , I 1 ,
I 2 , I 3 , I 4 andB. However, unlike the caseN53 there is no theorem here restricting the existen
of ‘‘chaotic’’ trajectories only to the case of just one energy level (e15e25e0) containing open
trajectories. As we mentioned already, the caseN54 is much more complicated from topologic
point of view and there is no general classification of open trajectories in this case at the ti
is not clear also if the topologically regular behavior corresponds here to the generic situat
not and the probability to find the chaotic behavior is unknown for this situation.

Let us now make some more general remark about the Novikov problem in connection
2-D potentialsV(r ). As can be seen, the potentialsV(r ) with rather many quasiperiods can b
considered also as an interesting model of random potentials on the plane. This model is
different from the standard models of random potentials but still can have common feature
them for bigN when the chaotic behavior of the open trajectories appears. However, there
strict theorems now which could connect Novikov problem with the problems of random p
tials on the plane.

VI. CONCLUSION

We considered the special type of superlattices modulations giving the quasiperiodic
tials V(r ) andVB

eff(r ) on the plane. For this type of potentials we considered the ‘‘geometric lim
(t→`) of conductivity in the presence of a magnetic field based on the global geometry o
level curves ofVB

eff(r ). The main attention was paid to the so-called ‘‘topologically regul
behavior of nonsingular open level curves for the cases of potentials with 3 and 4 quasiperi
was shown that it is possible to introduce the ‘‘topological numbers’’ characterizing the asym
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behavior ofs ik similar to the numbers introduced previously in the theory of normal metals.
the case of 3 quasiperiods it was possible to give also the description of the structure of the
of parameters giving potentialsVB

eff(r ) according to the topological type of their nonsingular op
level curves. For the case of 4 quasiperiods only the part of the space of parameters corres
to potentials close to ‘‘purely rational’’ was considered. It was shown that the correspon
‘‘topological numbers’’ having the form of the integer of 4-tuples can be also introduced in
case.
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Representations of SUq(2) are labeled by a phase playing the role of a Casimir
operator. The coproduct SUq(2) is used to form direct product representations
which can be reduced to irreducible ones. Direct product of two representations
with given phases can be reduced to a representation with any given phase. Coef-
ficients necessary for this procedure are calculated. The calculation can also be
performed in the Fourier transformed space which replaces the phase by an
integer. © 2004 American Institute of Physics.@DOI: 10.1063/1.1644753#

q-deformations of Lie groups and Lie algebras1–4 have attracted a lot of attention in rece
years and have been intensively studied. These deformations are endowed with a Hopf
structure and the coproduct of the Hopf algebra makes the construction of tensor produ
representations possible. For the special case of~nondeformed! SU~2! Lie algebra, this procedure
is very well known in physics and is called the addition of angular momentum. Forq-deformed
Lie algebras, this procedure is well investigated andq-Clebsch–Gordan coefficients5 have been
computed. Forq-deformed matrix Lie groups, however, this procedure exhibits some new m
ods and ideas. The irreducible* -representations of continuous functionsC(SUq(2)) on thequan-
tum group SUq(2) were classified in the late 1980s and it was found thatC(SUq(2)) has two
distinct families of irreducible representations, one of which is one dimensional and the ot
infinite dimensional.6,7 The tensor products of the irreducible representation of the algebr
C(SUq(2)) on thequantum group SUq(2) were studied by Lesniewski and Rinaldi.8 They proved
by using a number of combinatorial identities ofq-calculus that the tensor product of two infini
dimensional irreducible representations is equivalent to a direct integral of infinite dimens
irreducible representations. On the other hand, Van der Jeugt9,10 developed the representatio
theory for the Jordanian quantum algebraUh(sl(2)) andgave the closed form expressions for t
action of the generators ofUh(sl(2)) on thebasis vectors of finite-dimensional irreducible re
resentations. He also obtained a general formula for the Clebsch–Gordan coefficients.

In this paper, we investigate the decomposition of the tensor product of two irredu
representations ofC(SUq(2)) algebra generated by the elements belonging to a 232 SUq(2)
quantum matrix group by using the Hopf algebra coproduct and the Fourier transformed spa
has been shown by Vaksman and Soibelman,7 the representation space has a basisun,a& when
n P N is discrete anda P @0,2p)5S1. If the tensor product of representations after reduction
taken, then it is found that

un,a&5 (
n1 ,n2

C~n,aun1 ,a1 ,n2 ,a2! un1 ,a1& ^ un2 ,a2&.

Our approach is the same as that of Lesniewski and Rinaldi except that the dependenca,
a1, anda2 is handled more carefully. Note that there is no integration overa1 and/ora2 in the
11500022-2488/2004/45(3)/1150/6/$22.00 © 2004 American Institute of Physics
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formula above since the parametera denotes the eigenvalue of a central operator and is analo
to the total angular momentum quantum numberj of the Lie algebra SU~2! for which the analog
formula is given by

u j ,m&5 (
m11m25m

C~ j ,mu j 1 ,m1 , j 2 ,m2!u j 1 ,m1& ^ u j 2 ,m2&,

wherem is the magnetic quantum number and

j 5u j 12 j 2u,u j 12 j 2u11,...,j 11 j 2 .

It should be pointed out that for the quantum group SUq(2) there is no constraint on th
summation overn1 andn2 . It will be shown that all possible values ofn1 andn2 contribute to a
given value ofn. A similar remark is also valid fora1 , a2 , anda.

The well-known SUq(2) quantum matrix group is composed of the matrices4

U5S a 2qb

b* a* D .

Let A be the Hopf algebra over the complex numbers generated by the elementsa, a* , b, and
b* , satisfying the Hermiticity conditions (a* )* 5a, (b* )* 5b and the commutation relations

aa* 1q2bb* 51,

a* a1b* b51,

ab5qba,

ab* 5qb* a,

bb* 5b* b. ~1!

The coproductD:A°A^ A, the antipodeS:A°A and the co-unit«:A°C are defined by

D~a!5a^ a2qb^ b* , «~a!51, S~a!5a* ,

D~b!5a^ b1b^ a* , «~b!50, S~b!52q21b,

D~a* !5~D~a!!* , «~a* !51, S~a* !5a,

D~b* !5~D~b!!* , «~b* !50, S~b* !52q~b* !. ~2!

It can easily be seen that the defining commutation relations in~1! of the algebraA are
invariant underb↔b* . Therefore, it turns out to be that underb↔b* there exists a related secon
coproduct with

D~a!5a^ a2qb* ^ b,

D~b* !5a^ b* 1b* ^ a* ,

D~a* !5~D~a!!* ,

D~b!5~D~b* !!* . ~3!

Then one should look for a representation of the Hopf algebraA on a Hilbert space such tha
b is invertible. If b is not invertible, then its zero eigenvalue subspace is a trivial irreduc
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representation whereb50 anda is any unitary operator. Ifb is invertible, thena* a and the phase
of b form a commuting set. It should be noted thata* and a act as creation and annihilatio
operators, respectively. In other words, the actions ofa, a* , b, andb* on un,a& are

aun,a&5~12q2n!1/2un21,a&,

a* un,a&5~12q2n12!1/2un11,a&,

bun,a&5qneiaun,a&,

b* un,a&5qne2 iaun,a&, ~4!

wherea,bP@0,2p) and the normalization is chosen^n,aum,b&5dnmd(a2b). For a fixeda, we
denote the Hilbert space spanned byun,a& by Ha . Ha having different values ofa are orthogonal.

The coproduct given by~2! is an homomorphism from the Hopf algebraA into A^ A and
hence it can be used to find a representation ofA in Ha1

^ Ha2
.

Proposition 1:If u0,a;a1 ,a2& P Ha1
^ Ha2

is defined such that

D~a!u0,a;a1 ,a2&50,

D~b!u0,a;a1 ,a2&5eia u0,a;a1 ,a2&, ~5!

then

u0,a;a1 ,a2&5 (
n,m50

`
qnm

Af n~q2! Af m~q2!
ei (ma12na2)ei (n2m)aun,a1& ^ um,a2&, ~6!

where

un,a&[
~a* !n

Af n~q2!
u0,a& ~7!

with

f n~q2!5~12q2! ¯ ~12q2n!. ~8!

Proof 1: Let u0,a;a1 ,a2&5(n,m50
` Cn,m un,a1& ^ um,a2&, whereCn,m are the coefficients to

be determined so that the relations in~5! hold.
If the Hopf algebra coproduct relations given by~2! are taken into consideration together wi

~5!, then one gets the following recursion relations forCn,m :

Cn11,m115
qn1m11

A12q2(n11) A12q2(m11)
ei (a12a2)Cn,m ,

Cn,m5qm A12q2(n11) ei (a22a) Cn11,m1qn A12q2m ei (a12a)Cn,m21 . ~9!

The recursion relations above forCn,m have the unique solution

Cn,m5
qnm

Af n~q2! Af m~q2!
ei (ma12na2)ei (n2m)a ~10!

for C0,051. This can easily be verified by putting
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Cn,m5
qnm

Af n~q2! Af m~q2!
ein(a2a2) eim(a12a) Bn,m

into ~9! which leads toBn,m being independent ofn andm.
It should be pointed out thatun,a;a1 ,a2& can be computed as

un,a;a1 ,a2&5
~D~a* !!n

Af n~q2!
u0,a;a1 ,a2& ~11!

satisfying

D~a!un,a;a1 ,a2&5A12q2nun21,a;a1 ,a2&,

D~a* !un,a;a1 ,a2&5A12q2(n11)un11,a;a1 ,a2&,

D~b!un,a;a1 ,a2&5qneiaun,a;a1 ,a2&,

D~b* !un,a;a1 ,a2&5qne2 iaun,a;a1 ,a2&. ~12!

It is important to note that the recursion relations in~9! where the coefficientsCn,m are given
by ~10! have the appearance of Fourier series ina1 and a2 . In the Lesniewski and Rinald
approach,a1 anda2 are taken to be zero. Our approach suggests that the construction being
can also be performed in the Fourier dual space where instead of a phase 0<a,2p, one can use
an integerk P Z such that

un,a&5 (
k52`

`

eikaun,k&, ~13!

where the inverse of~13! reads

un,k&5
1

2p E
0

2p

un,a& e2 ika da ~14!

and ^n1 ,k1un2 ,k2&5dn1n2
dk1k2

.
The actions ofa, a* , b, andb* on un,k& are

aun,k&5A12q2nun21,k&,

a* un,k&5A12q2n12un11,k&,

bun,k&5qnun,k21&,

b* un,k&5qnun,k11&, ~15!

wheren P N andk P Z.
Proposition 2:If the analog of~5! in the Fourier dual spaceHk of Ha is given by

D~a!u0,k;k1 ,k2&50,

D~b!u0,k;k1 ,k2&5u0,k21;k1 ,k2&, ~16!

then
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n50 Af n~q ! f n2k~q !

•un,k11k2n& ^ un2k,k21n& if k<0

whereun,k& is given by~14! and f n(q2) is defined by~8!.
Proof 2: Let u0,k;k1 ,k2&5(n1 ,n2

Cn1 ,k1 ,n2 ,k2

k un1 ,k1& ^ un2 ,k2&, whereCn1 ,k1 ,n2 ,k2

k are the co-

efficients to be determined so that the relations in~16! hold. Then, the following recursion rela
tions are found:

Cn1 ,k1 ,n2 ,k2

k21 5Cn111,k1 ,n2 ,k211
k qn2A12q2(n111)1Cn1 ,k111,n221,k2

k qn1A12q2n2,

Cn1 ,k111,n2 ,k221
k 5

A12q2n112 A12q2n212

qn11n211 Cn111,k1 ,n211,k2

k . ~18!

Even though these recursion relations are rather difficult to handle, their solution can be
by considering the Fourier transform of~6!. The analog of~13! for u0,a;a1 ,a2& is

u0,a;a1 ,a2&5 (
k,k1 ,k252`

`

eikaeik1a1eik2a2u0,k;k1 ,k2&, ~19!

whereu0,k;k1 ,k2& is given by~18!.
Inverting ~20! and then using~6! together with~13!, one obtains

u0,k;k1 ,k2&5
1

~2p!3 E
0

2pE
0

2pE
0

2p

(
n,m50

`

(
k18 ,k2852`

`
qnm

Af n~q2! Af m~q2!

•ei (m2k11k18)a1 e2 i (n1k22k28)a2 ei (n2m2k)a
•un,k18& ^ um,k28& da da1 da2 .

Considering whetherk>0 or k<0, n5m1k or m5n2k is chosen, respectively, and hen
u0,k;k1 ,k2& is calculated to be the required solution given by~17!.

Then un,k;k1 ,k2& can be computed fromu0,k;k1 ,k2& given by ~17! by applying D(a* )
n-times; that is

un,k;k1 ,k2&5
~D~a* !!n

Af n~q2!
u0,k;k1 ,k2&. ~20!

The algebra defined by~1! for invertible b contains a central elementb21b* which is repre-
sented bye2 ia. Omitting this element from the algebra yields another consistent algebra w
defining relations are again~1! with one additional equationb5b* . However, this truncated
algebra is not endowed with a Hopf algebra structure and thus can not be considered t
quantum group. Although the representation of this truncated algebra is essentially the sa
given by ~4! with a50, direct products are not amenable to reduction as there is no copro
Hence formulas such as~6! and ~17! are direct consequences of the quantum group structure

The methods of this paper can readily be extended to representations of more general q
groups. One important point in this regard is the correct handling of the central elements
algebra. Although these central elements are represented by real or complex numbers
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representation, their nontrivial coproduct gives a highly nontrivial contribution to the decom
tion of the tensor product of two irreducible representations of the quantum group.
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The irreducible unitary representations of the extended
Poincaré group in „1¿1… dimensions
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We prove that the extended Poincare´ group in (111) dimensionsP̄ is non-
nilpotent solvable exponential, and therefore that it belongs to type I. We determine
its first and second cohomology groups in order to work out a classification of the
two-dimensional relativistic elementary systems. Moreover, all irreducible unitary
representations ofP̄ are constructed by the orbit method. The most physically
interesting class of irreducible representations corresponds to the anomaly-free
relativistic particle in (111) dimensions, which cannot be fully quantized. How-
ever, we show that the corresponding coadjoint orbit ofP̄ determines a covariant
maximal polynomial quantization by unbounded operators, which is enough to
ensure that the associated quantum dynamical problem can be consistently solved,
thus providing a physical interpretation for this particular class of
representations. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1644901#

I. INTRODUCTION

Much of the interest in the extended Poincare´ group in (111) dimensionsP̄ stems from the
fact that the Callan–Giddings–Harvey–Strominger~CGHS! model of two-dimensional dilatonic
gravity1 may be formulated as a gauge theory2 of P̄. The ‘‘string-inspired’’ CGHS theory is
particularly interesting because it generates an exactly solvable model of quantum gravity,
allows the investigation of several aspects of quantum black hole physics.3,4 An outstanding
problem in this context is the coupling of matter sources in an extended Poincare´ gauge-invariant
fashion.5–7

The main purpose of this paper is to prove thatP̄ is solvable exponential, so that the Berna
Pukanszky theory of exponential groups8,9 can be strictly applied to work out all its unitar
irreducible representations~irrep’s!. Some of these irrep’s were presented in Gadellaet al.10 but,
although it was mentioned11 that these irrep’s were calculated by the Mackey theory and the o
method, it was not shown thatP̄ has a regular semidirect product structure, nor thatP̄ is solvable
exponential. These authors adopt the same point of view as that of Carin˜enaet al.,12 which should
be contrasted with ours.

Our approach to the two-dimensional relativistic elementary systems is similar to that w
was adopted by Azca´rraga and Izquierdo13 with respect to a nonrelativistic particle of unit charg
in a constant magnetic field. Indeed, we show in this paper that the coadjoint orbit correspo
to the anomaly-free relativistic particle in (111) dimensions determines a covariant maxim
polynomial quantization for it, which provides a physical interpretation for the associated cla
irrep’s of P̄.

This paper is organized as follows. In Sec. II, we show thatP̄ is solvable exponential and
calculate its first and second cohomology groups. In Sec. III, we determine the coadjoint or

a!Electronic mail: ricardo@fma.if.usp.br
b!Electronic mail: rivelles@fma.if.usp.br
11560022-2488/2004/45(3)/1156/12/$22.00 © 2004 American Institute of Physics
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P̄ in order to classify the two-dimensional relativistic elementary systems and to work out e
itly all the irrep’s of P̄. In Sec. IV, we provide a physical interpretation for a particular class
irrep’s of P̄ through a covariant maximal polynomial quantization of the anomaly-free relativ
particle in (111) dimensions. Finally, in Sec. V we draw our conclusions and discuss fu
possible developments. We sketch the method of orbits in the Appendix, in order to provide
supplementary material for the understanding of Sec. III.

II. THE EXTENDED POINCARÉ GROUP IN „1¿1… DIMENSIONS P̄

The extended Poincare´ algebra ı̄2
1 is defined by means of an unconventional contraction o

pseudoextension13 of the anti–de Sitter algebra so~2,1! as

@Pa ,J#5A2h«a
bPb , @Pa ,Pb#5B«abI , and @Pa ,I #5@J,I #50, ~1!

wherea,bP$0,1%, «0152«0151, and the indicesa andb are raised and lowered by the metr
hab5diag(1,21) with hªdethab521. Throughout this paper, we shall adopt units wherec51.
The generators of translations arePaªT̄a , and their dimensions areL21. The generator of
Lorentz transformations isJªT̄2 , which is dimensionless. The central generator, the dimensio
which is @\#21, is IªT̄3 , and the central charge has dimension@B#5L223@\#.

The group lawg9(u9a,a9,b9)5g8(u8a,a8,b8)g(ua,a,b) determined by Eq.~1! is given by

u9b5u8b1L~a8!b
aua, a95a81a, and b95b81b1

B

2
u8c«cbL~a8!b

aua, ~2!

where L(a)a
b5da

bcosha1A2h«a
bsinha, and it corresponds to the coset decomposit

g(ua,a,b)5exp(uaPa)exp(aJ)exp(bI). The adjoint representation ofP̄ is given by

~Ad g!A
B5S La

b uc«c
aA2h 0

0 1 0

Buc«cdL
d

b 2
B

2A2h
uaua 1

D ,

and the invariant Casimir operator determines the metrichAB such that ^V,V&5hABVAVB

5VaVa22(B/A2h)V2V3 , for any vectorV5VAT̄A in ı̄2
1, with A, BP$0,1,2,3%. The dimensions

of the metric components are@hab#5L22, and@h23#5@h32#5@\#21.
The extended Poincare´ algebra has the structure of a semidirect product ı2̄

15so(1,1)3rwh,
where so(1,1)5R is the Abelian subalgebra generated byJ, and wh is the maximal nilpotent idea
spanned by$P0 ,P1 ,I %, which is isomorphic to the Lie algebra of the Weyl–Heisenberg gro
WH. The representationr of so~1, 1! on wh is given by the restriction of the adjoint representat
of ī 2

1 to so~1, 1!.
It is well-known that ı̄2

1 is solvable;5 however, it is also not nilpotent, since its descend

central series, ı2̄
11

5 ı̄2
1, ı̄2

12
5@ ı̄2

1 , ı̄2
11

#5wh, . . . , ı̄2
1k

5@ ı̄2
1 , ı̄2

1k21
#5wh ;k>2, does not vanish for

any value ofk. It is also not difficult to see that the extended Poincare´ groupP̄ and its Lie algebra
ı̄2
1 are solvable exponential, since for anyXP ı̄2

1 the eigenvalues ofad(X) are all real.14

As a consequence,P̄ is defined as the connected and simply connected image of ı2̄
1 by the

exponential mappingP̄5exp(ı̄2
1), and every elementgPP̄ belongs to a one-parameter subgrou

so the group law given by Eq.~2! holds globally. Another consequence is thatP̄ is homologically
trivial; therefore, the Van Est theorem13 ensures that the cohomology groups onP̄ are canonically
isomorphic to the corresponding cohomology groups on ı2̄

1.
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The first cohomology group of ı2̄
1 can be readily calculated,H0

1( ı̄2
1 ,R)5( ı̄2

1/@ ı̄2
1 , ı̄2

1#)* 5R. In
order to work out the second cohomology group, it is enough to show that the space o
cocyclesZ0

2( ı̄2
1 ,R),L2ı̄2

1 has the same dimension of the space of two coboundariesB0
2( ı̄2

1 ,R). It
turns out that dimH0

2( ı̄2
1 ,R)5dimZ0

2( ı̄2
1 ,R)2dimB0

2( ı̄2
1 ,R)50.

III. CONSTRUCTION OF THE IRREP’S OF P̄ BY ITS COADJOINT ORBITS

It will be shown in Sec. IV that the anomaly-free Lagrangian describing a relativistic par
in flat two-dimensional space–time must be invariant underP̄, consistently withH0

2(P̄,R)50. It
follows that the relevant dynamical group in two dimensions isP̄, so the adequate statement of t
principle of relativity in (111) dimensions should require that the equations of motion
covariant under the transformations ofP̄.

This means that the elementary particles in (111) dimensions must belong to irrep’s ofP̄ at
the quantum level, and constitute relativistic elementary systems in this sense. On the othe
the group-theoretic approach is concerned about a corresponding notion of elementary sy
the classical level, i.e., a system that cannot be decomposed into smaller parts without break
symmetry.15 It turns out that the irreducibility condition is translated naturally into a transitiv
one at the classical level; therefore, a classical elementary system is defined as a homog
symplectic manifold~HSM!. We say that an elementary system (S,V) is a Hamiltonian G-space,16

or a strictly homogeneous symplectic manifold, if further the dynamical groupG possesses a
Poisson action uponS.

We recall that, due to the Kirillov theorem,17 every HSM associated with some dynamic
group G is locally isomorphic to a coadjoint orbit ofG or to a coadjoint orbit of the centra
extension ofG by R. Then, if further all the coadjoint orbits ofG are simply connected an
H0

2(g,R)50, then the momentum mapping will be a symplectomorphism between every cla
elementary system (S,V) upon which the action ofg is globally Hamiltonian and a certain
coadjoint orbit.

Applying this theorem, we discover that every classical relativistic elementary system
which the action of ı̄2

1 is globally Hamiltonian is simply connected, and symplectomorphic to
of the coadjoint orbits ofP̄ that are calculated below, since it is a connected solvable expone
Lie group with H0

2( ı̄2
1 ,R)50 ~see Sec. II!. Although this classification does not exhaust all t

two-dimensional relativistic elementary systems, sinceH0
1(P̄,R)5R, it is general enough to

include the most physically interesting cases, such as the anomaly-free relativistic particle
11) dimensions.

The coadjoint orbit throughz5zAv̄A in ı̄2
1* is formed by the pointsm5uAv̄A satisfyinguA

5zB(Adg21)B
A , where$v̄A% is the basis of ı̄2

1* dual to $T̄A%. As a consequence, the followin

identities hold:uAuA5zAzA andu35z3 . The stability group ofzP ı̄2
1* is generated by the sub

algebra ı̄2z
1 , ı̄2

1 , which is the kernel of the Kirillov two-formBz(X,Y), formed by the vectors
YP ı̄2

1 for which ^z,@X,Y#&50, ;XP ı̄2
1. The dimension of the coadjoint orbit can be deduc

from the dimension of the stability group.
As the space of coadjoint orbits ofP̄ parametrizes both the set of relativistic elementa

systems in two dimensions and the unitary dual ofP̄, we will present the coadjoint orbits ofP̄
together with their associated irrep’s. The problem splits into three cases, and we will follo
methodology sketched in the Appendix for working out all the irrep’s ofP̄.

Sincead(X) is traceless for allXP ı̄2
1, P̄ is unimodular~i.e., D P̄51). Also, because the rea

eigenvalues ofad(X) are not all zero for everyXP ı̄2
1, P̄ is not quasinilpotent~see the Appendix!.

Consequently, in order to apply the method of orbits toP̄, we must find for anyzP ı̄2
1* a

subalgebrah, ı̄2
1 of a maximal dimension in the family of the subalgebras subordinate toz, further

satisfying Pukanszky’s condition.
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A. Case z3Å0

The coadjoint orbit is the two-dimensional surface diffeomorphic toR2 in the three-
dimensional hyperplaneu35z3 , defined by the equations

u25
uauaA2h

2Bu3
2

zAzAA2h

2Bu3
and u35z3 , ~3!

and passing through the pointz5(0,0,2 @(zAzAA2h)/2Bz3# ,z3). These coadjoint orbits are
classified byz3 andzAzA .

Since we may choose any point on the coadjoint orbit~see the Appendix!, we pickz. Denoting
by (J,P1 ,I ) the subalgebra of ı2̄

1 spanned by these vectors, whereP15P01P1 , it is clear that
h5(J,P1 ,I ) is subordinate toz, since its first derived algebra is@h,h#5(P1), which is orthogo-
nal to z or ^z,(P1)&50. The subalgebrah subordinate toz is also admissible, since its codimen
sion is 1, which is half the dimension of the coadjoint orbit, and it satisfies Pukanszky’s con
z1h',orb(z). Since any other admissible subalgebra leads to a unitary equivalent represe
~see the Appendix!, we chooseh.

The typical element of the subgroupH generated byh will be denoted byh(u1,a,b)
5exp(u1P1)exp(aJ)exp(bI), so that we can define~see the Appendix! the one-dimensional rep
resentation ofH by x(u1,a,b)5U(h(u1,a,b))5exp(i(2a @(zAzAA2h)/2Bz3# 1bz3)). The
adjoint representation of the subgroupH can be straightforwardly calculated, so that the modu
of H is given byDH(h)5udet(Adh)u215ea. The spaceL(P̄,H,U) invariant under right transla
tions onP̄ is formed by the complex functions satisfying the condition~see the Appendix!

F~h~u18,a8,b8!•g~ua,a,b!!5e2~a8/2!x~u18,a8,b8!F~g~ua,a,b!!,

FS gS La
b~a8!ub1u18,a81a,b81b1

B

2
u18ea8~u02u1! D D

5e2~ a8/2! expS i S 2a8
zAzAA2h

2Bz3
1b8z3D DF~g~ua,a,b!!. ~4!

This means that the spaceL(P̄,H,U) is determined by the value ofF at u05a5b50.
It is not difficult to see that every element ofP̄ can be uniquely written asg5h•k, where

hPH, kPK, andK is the one-parameter subgroup ofP̄ generated byP1P ı̄2
1. Choosing the Borel

mappings(x)ªk, wherexPX5H\P̄ and x5Hg5Hhk5Hk, we can identify the right-cose
spaceX with the subgroupK,P̄, in the sense thats(X)5K. The bi-invariant measure onP̄ splits
into dm(g)5DH,P̄(h)dns(x)dn(h), where the measure onX is determined by the right Haa
measure onK5R, dns(x)5dn(s(x)), which is only P̄-quasi-invariant, becauseD P̄(h)
ÞDH(h), and is recognized to be just the Lebesgue measuredm onR. Then, we can construct th
Hilbert spaceL2(X,ns ,C)5L2(R,dm), formed by the functions defined byf (x)5F(s(x)), for
everyFPL2(P̄,H,U) ~see the Appendix!, which obviously admits aP̄-invariant scalar product.

Solving the equations(x)g5hs(xg) for h5h(u1,a8,b8), where k5k(u1) and g

5g(u9a,a9,b9), we can realize the induced representation ind(P̄,H,U) on the separable Hilber
spaceL2(R,dm) of the square-integrable complex functions having compact support oR
through

@T~g! f #~u1!5e2~ a9/2! expF i S 2
zAzAA2h

2Bz3
a91S b91

B

2
u90u12

B

4
~~u90!22~u11u91!2!

2
B

4
e22a9~u902u12u91!2D z3D G f ~~u11u912u90!e2a9!. ~5!
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The corresponding representation of anyXP ı̄2
1 can be readily calculated, yielding

r~ I !5 i z3 , r~J!52
1

2
1 i S 2

zAzAA2h

2Bz3
1

B

2
~u1!2z3D 2u1

]

]u1 ,

r~P0!5 iBu1z32
]

]u1 , and r~P1!5
]

]u1 . ~6!

This representation is anti-Hermitian, and the operator identityr(J)5A2h(r(Pa)r(Pa)
1zAzA)/2Br(I ) holds. So, we can write these irrep’s simply asTzAzA ,z3(g(ua,a,b))
5exp(uar(Pa))exp(ar(J))exp(br(I)).

The irrep’sTzAzA ,z3 are faithful, and it can be shown that, in natural units and forB51, they
are unitary equivalent to the irrep’s ofP̄ presented in Gadellaet al.,10 but they are more genera
than the latter. Since the quantization of the corresponding elementary systems does n
anomalous~see Sec. IV!, the irrep’s in the formTzAzA ,z3 are the most physically interesting one
although they do not correspond to coadjoint orbits ofP̄ which are HSM’s forP.

B. Case z3Ä0 and zaÄ0

The coadjoint orbit is the point (0,0,z2,0) in the three-dimensional hyperplaneu350. These
coadjoint orbits are classified byz2 . It is clear that the subalgebrah5 ı̄2

1 is subordinate toz, since
its first derived algebra is@h,h#5wh, which is orthogonal toz or ^z,wh&50. The subalgebrah
subordinate toz is also admissible, since codimh50, which is half the dimension of the coadjoin
orbit, and it satisfies Pukanszky’s conditionz1h',orb(z). It is not difficult to see that there is no
other admissible subalgebra subordinate toz.

Denoting byh(ua,a,b)5exp(uaPa)exp(aJ)exp(bI) the typical element of the subgroupH
generated byh, we can~see the Appendix! define the one-dimensional representation ofH by
x(ua,a,b)5U(h(ua,a,b))5exp(iaz2). SinceH5P̄ is unimodular, the spaceL(P̄,H,U) invari-
ant under right translations onP̄ is formed by the complex functions satisfying the condition

F~h~u8a,a8,b8!•g~ua,a,b!!5x~u8a,a8,b8!F~g~ua,a,b!!,

FS gS La
b~a8!ub1u8a,a81a,b81b1

B

2
u8a«abL

b
c~a8!ucD D5exp~ ia8z2!F~g~ua,a,b!!.

~7!

This means the spaceL(P̄,H,U)5C is determined by the value ofF at ua5a5b50, or
F(g(ua,a,b))5exp(iaz2)F(e), so it is identified with the set of complex numbers.

It follows that the Hilbert spaceL2(P̄,H,U) is one-dimensional and it is formed by th
complex functionsFPL(P̄,H,U) for which iFi2,`, whereiFi25(F,F) and theP̄-invariant
scalar product is given by (F1 ,F2)5F1(e)F2(e). Consequently~see the Appendix!, we can
realize the induced representation ind(P̄,H,U) on the Hilbert spaceL2(P̄,H,U) through
@T(g)F#(g8)5exp(iaz2)F(g8), whereg5g(ua,a,b) andg85g(u8a,a8,b8). The corresponding
representation of anyXP ı̄2

1 is given byr(I )50, r(J)5 i z2 , andr(Pa)50.
The representation of ı2̄

1 on the Hilbert spaceC given above is clearly anti-Hermitian
therefore, the irrep’s of P̄ may be simply written as Tz2(g(ua,a,b))
5exp(uar(Pa))exp(ar(J))exp(br(I)), and the operator identityr(Pa)r(Pa)22B/A2h r(J)r(I )
52zAzA holds. We note that the irrep’sTz2 are obviously unfaithful and lack physical interes
although they correspond to coadjoint orbits ofP̄ which are HSM’s forP.
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C. Case z3Ä0 and zaÅ0

The coadjoint orbit is the two-dimensional surface diffeomorphic toR2, immersed in the
three-dimensional hyperplaneu350 and defined by the equation

uaua5zaza , ~8!

which can be a hyperbolic cylinder or a half-plane translationally invariant in the direction o
u2 axis. These coadjoint orbits are classified byza and gather into eight distinct families: tw
families with zaza,0, two with zaza.0, and the other four withzaza50 ~the u2 axis does not
belong to any family!.

As we may choose any point on the coadjoint orbit~see the Appendix!, we pick z
5(za ,z2,0). The subalgebrah5wh is subordinate toz, since its first derived algebra is@h,h#
5(I ), which is orthogonal toz or ^z,(I )&50. The subalgebrah subordinate toz is also admis-
sible, since codimh51, which is half the dimension of the coadjoint orbit, and it satisfies Puk
szky’s conditionz1h',orb(z). Since any other admissible subalgebra leads to a unitary eq
lent representation~see the Appendix!, we chooseh.

Denoting byh(ua,b)5exp(uaPa)exp(bI) the typical element of the subgroupH generated by
h, we can ~see the Appendix! define the one-dimensional representation ofH by x(ua,b)
5U(h(ua,b))5exp(iuaza). Due to the fact thatH5WH is unimodular, the spaceL(P̄,H,U)
invariant under right translations onP̄ is formed by the complex functions satisfying the conditi

F~h~u8a,b8!•g~ua,a,b!!5x~u8a,b8!F~g~ua,a,b!!,

FS gS ua1u8a,a,b81b1
B

2
u8a«abu

bD D5exp~ iu8aza!F~g~ua,a,b!!. ~9!

This means that the spaceL(P̄,H,U) is determined by the value ofF at ua5b50.
It is not difficult to see that every element ofP̄ can be uniquely written asg5h•k, where

hPH, kPK, andK is the one-parameter subgroup ofP̄ generated byJP ı̄2
1. Choosing the Borel

mappings(x)ªk, wherexPX5H\P̄ and x5Hg5Hhk5Hk, we can identify the right-cose
spaceX with the subgroupK,P̄, in the sense thats(X)5K. The bi-invariant measure onP̄ splits
into dm(g)5DH,P̄(h)dns(x)dn(h), where the measure onX is determined by the right Haa
measure onK5R, dns(x)5dn(s(x)), which isP̄-invariant, sinceD P̄(h)5DH(h), and is just the
Lebesgue measuredm on R. Then, we can construct the Hilbert spaceL2(X,ns ,C)
5L2(R,dm), formed by the functions defined byf (x)5F(s(x)) for everyFPL2(P̄,H,U) ~see
the Appendix!, which obviously admits aP̄-invariant scalar product.

Solving the equation s(x)g5hs(xg) for h5h(u8a,b8), where k5k(a) and g

5g(u9a,a9,b9), we can realize the induced representation ind(P̄,H,U) on the separable Hilber
spaceL2(R,dm) of the square-integrable complex functions having compact support oR
through @T(g) f #(a)5exp(iL(a)a

bu9bza)f(a1a9). The corresponding representation of anyX

P ı̄2
1 is given byr(I )50, r(J)5 ]/]a, andr(Pa)5 iL(a)b

azb .
The operator identityr(Pa)r(Pa)22(B/A2h) r(J)r(I )52zAzA holds and the representa

tion of ı̄2
1 on the Hilbert spaceL2(R,dm) is clearly anti-Hermitian, so the irrep’s ofP̄ may be

simply written asTza(g(ua,a,b))5exp(uar(Pa))exp(ar(J))exp(br(I)). It can be shown that the
irrep Tza is equivalent to the Wigner representation of the Poincare´ group in (111) dimensionsP
~see Gadellaet al.10 and Ali and Antoine18!. We note that the irrep’sTza are unfaithful and not too
interesting physically, since the quantization of the corresponding classical elementary s
looks anomalous, although they correspond to coadjoint orbits ofP̄ which are HSM’s forP.
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IV. THE ANOMALY-FREE RELATIVISTIC PARTICLE IN „1¿1… DIMENSIONS

It is known that the dynamics of the relativistic particle in a flat (111) dimensional space–
time M is described by the LagrangianLB5L01LWZ , where L052mAq̇2 and LWZ

52 (B/2) «abq̇
aqb. The central chargeB is similar to an applied electrical force driving th

particle into an uniformly accelerated relativistic motion5 and it is an additional free paramete
~besides the massm), fixed at the outset, that the relativistic particle theory must allow for, du
the existence of a nontrivial two cocycle in the second cohomology group of the Poincare´ group
in (111) dimensionsP. In fact, it was shown by Bargmann thatH0

2(P,R)5R then, as a conse
quence of the Le´vy–Leblond theorem,13 all the inequivalent LagrangiansLB quasi-invariant under
P are classified by the central chargeB.

However, it must be emphasized that the LagrangianLB is classically anomalous, since it i
quasi-invariant under the transformations ofP, while the three conserved Noether charges toge
with the identity$Na ,N2,1% constitute a Poisson bracket realization of ı2̄

1, assumingBÞ0 and
mÞ0. SinceH0

2(P̄,R)50 ~see Sec. II!, we can eliminate the classical anomaly by adding a th
term toLB , depending on an extra degree of freedomx with dimension of action and transformin
as x85x1b1 (B/2) ua«abL

b
cq

c under P̄. This addition neutralizes the Wess–Zumino te
LWZ , causing the new LagrangianL̄5LB2ẋ to be invariant under the transformations ofP̄. Now,
there are four conserved Noether charges$Na ,N2 ,N3% associated with the anomaly-free Lagran
ian L̄, which realize ı̄2

1 with the identically conserved chargeN3521 corresponding to the centra
generator realized by minus the identity.

Performing the Hamiltonian formulation of the system described byL̄, we learn thatx is an
internal gauge degree of freedom, corresponding to the phase of the particle’s wave function
quantum level. The reduced phase spaceGR

1 can be determined by observing that the constra
surfaceG1 is globally diffeomorphic toP̄, such that the action of the dynamical group uponG1

is simply transitive and free.
It is not difficult to see that the generators of the gauge transformations corresponding

two primary first-class constraintsfm span a subalgebra ofX(G1) which realizes a two-
dimensional Abelian subalgebra of ı2̄

1; therefore, the reduced phase spaceGR
1;R2 is diffeomor-

phic to the homogeneous coset space generated by the translationsPa and can be globally param
etrized by the space–time coordinatesqa. The spaceGR

1 is endowed with the symplectic form
V1R5dL1R5(B/2) «abdqa∧dqb, the canonical one form of which is given by the Wes
Zumino formL1R5(B/2) «abq

adqb.
It turns out that the symplectic manifold (GR

1 ,V1R) is a Hamiltonian G-space and hence
classical relativistic elementary system. Indeed (GR

1 ,V1R) is homogeneous under the action
the dynamical groupP̄, which has a Poisson action uponGR

1 , such that the globally Hamiltonian

vector fields at sPGR
1 are given by T̄

a

GR
1

(s)5 (]/]qa) , T̄
2
GR

1

(s)5A2h«a
bqb (]/]qa), and

T̄
3
GR

1

(s)50. The comoments are given byua
1R(s)5Bqb«ba , u2

1R(s)5 (m2/2B)
1 @B/(2A2h)# qaqa, andu3

1R(s)521. Note that they are not uniquely determined, sinceu2
1R is

defined up to an additive constant, consistently withH0
1(P̄,R)5R.

The identitiesuA
1Ru1RA(s)5 m2/A2h and u3

1R(s)521 hold, sou2
1R(s) is functionally

dependent on theua
1R(s), which are regarded as the fundamental dynamical variables, and

the fact that the comoments constitute a Poisson bracket realization of ı2̄
1, it is not difficult to see

that $qa,qb%5 @«ab(A2h)2#/B. The value of the momentum mappingmR
1(s)

5 (@uA
1R(s)#/\)v̄A at the origin s05(0,0) in GR

1 shall be denoted byz5mR
1(s0)

5(0,0,m2/(2B\),21/\), which satisfies

zAzA5
m2

A2h\2
and z352

1

\
. ~10!
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The second identity in Eq.~10! follows from the value ofu3
1R(s) and the definition of the

momentum mapping, so the quantization of (GR
1 ,V1R) satisfies Dirac’s quantum condition~this

will be shown later!.
Moreover, a straightforward calculation shows that19 the momentum mappingmR

1 :GR
1

→orb(z) is a symplectomorphism between the elementary system (GR
1 ,V1R) and the coadjoint

orbit (orb(z),b) through zP ı̄2
1* , with mR

1* b5(V1R/\). It follows that Eq. ~10! provides a
physical interpretation for the parameters labeling the irrepTzAzA ,z3 of P̄, which corresponds to
the relativistic elementary system (GR

1 ,V1R).

A. Quantization of the anomaly-free relativistic particle in „1¿1… dimensions

Before we address the quantum dynamics of the relativistic particle, though, let us clear
quantization of the system at the kinematical level. Letw(T̄A)ª ir(T̄A) be the Hermitian repre-
sentation of ı̄2

1 on the Hilbert spaceL2(R,dx) defined from Eq. ~6!, for z5(0,0,
2@(zAzAA2h)/2Bz3# ,z3) satisfying Eq.~10!, andj> ı̄2

1 be the finite-dimensional Lie subalgeb
of C`(GR

1) spanned by the comoments$uA
1R%. In addition, letl: ı̄2

1°C`(GR
1) be the lift of the

mappings: ı̄2
1°A(GR

1) induced by the left action ofP̄ on GR
1 , whereA(GR

1) denotes the set o
all the globally Hamiltonian vector fields onGR

1 . The mappingl(T̄A)5uA
1R is a Lie algebra

homomorphism and it is well-defined, sinceGR
1 is simply connected andH0

2( ı̄2
1 ,R)50.

Then, orb~z! determines the linear mapQª(1/z3) w+l21 from j onto the linear space
Op(D)5span$Q(uA

1R)% of ~in general! unbounded Hermitian~or symmetric! operators preserving
a fixed dense domain D in L2(R,dx), which satisfies Q($uA

1R ,uB
1R%)

52 i z3@Q(uA
1R),Q(uB

1R)# andQ(u3
1R)521. For the domainD, we can take the Schwartz spa

S(R,C),L2(R,dx) of rapidly decreasing smooth complex-valued functions, for instance.
Recalling thatu3

1R521, we can see that Dirac’s quantum condition is satisfied if and on
z352 (1/\), consistently with Eq.~10!. Furthermore, assuming thatD is a domain of essentia
self-adjointness for Op(D), we can see that the linear mapQ is actually a prequantization ofj in

the sense of Gotay,20 since the globally Hamiltonian vector fieldsT̄
A

GR
1

are complete. It is not
difficult to see thatS(R,C) is a domain of essential self-adjointness for the representationj
given by Op(D).

In order to determine the maximal Lie subalgebraO of C`(GR
1) that can consistently be

quantized, we will tie to the approach that aims at providing a quantization of the pair (O,b), i.e.,
a prequantization ofO which ~among other things! irreducibly represents a suitably chosen ba
algebra of observablesb,C`(GR

1).20 It turns out that the suitable basic algebra isb5wh
5span$u0

1R,u1
1R,u3

1R%, since the restriction ofQ to wh,j5span$uA
1R% provides actually a quan

tization of the pair (b,b), which is equivalent to the usual Schro¨dinger quantization of a one
dimensional nonrelativistic free particle.

In fact, in the coordinates ofGR
1 defined byqª2(u0

1R1u1
1R)/B52q11q0 and pªu1

1R

52Bq0, the expression of the associated quantization mapQ is exactly given by the Schro¨dinger
representation of wh in the position representation$ux&%; q̂ªQ(q)5x, p̂ªQ(p)52 i\ (]/]x),
and 1̂ªQ(1)51 on the domainD, such asD5S(R,C),L2(R,dx). The standard canonica
quantization is well-defined; however, there is no full quantization of (C`(GR

1),b) in which a Von
Neumann rule is compatible with the Schro¨dinger quantization.

Indeed, due to the strong Groenewold–Van Hove no-go theorem,20 there is no quantization o
(P,wh) on R2;GR

1 , where P denotes the polynomial subalgebra ofC`(GR
1) generated byb

5wh. It turns out that the only two distinct isomorphism classes of maximal Lie subalgebrasP
which contain wh are those represented byP2 and by the set of polynomialsS5$ f (q)p
1g(q)%, where P2 denotes the subspace of polynomials of degree at most 2, andf ,g are
polynomials.20

The quantization of the pair (P2,wh) is provided by the well-known extended metaplec
quantization. On the other hand, the only classical observable in this paper that will requir
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the comomentu2
1R , which is in P2,P but not in wh. For all the other observables that we w

consider, such as position, momentum, potential energy, relativistic energy, or the Hamiltonia
Schrödinger quantization will be enough. In particular, we will not consider any observableS.

In addition, a straightforward calculation shows that the extended metaplectic quantizatQ
of (P2,wh) is covariant with respect toP̄ in the sense that, for everyf (q,p) in P2,P,C`(GR

1)
and g5g(ua,a,b)PP̄, we have Q( f (q8,p8))5TzAzA ,z3(g21)Q( f (q,p))TzAzA ,z3(g), where
(q8,p8)5 l g(q,p) is the left action onGR

1 generated by the globally Hamiltonian vector fiel

T̄
A

GR
1

, andz satisfies Eq.~10!.

B. Quantum dynamics of the anomaly-free relativistic particle in „1¿1… dimensions

As far as the quantum dynamics of the system is concerned, we remark that the total
of the particle depends explicitly on time, so it does not provide a suitable Hamiltonian. Fo
reason, we turn to consider the dynamics from the point of view of the reduced phase spacGR

1 .
The volume two form of space–time determines the symplectic formV1R52 (B/A2h) vol,
which is expressed in the coordinates (q,p) of GR

1 by V1R52dp∧dq, with the Wess–Zumino
form given by minus the Liouville formL1R52pdq.

Up to gauge equivalence, the dynamics onGR
1 is specified byq0(t)5t

q1~t!5q1~t0!2Am21 p̃~t0!2/B1Am21 p̃~t!2/B,

and p̃(t)5 p̃(t0)1B(t2t0), for a givenp̃(t0), with t0PR. It follows that the proper time is
given by t85 m/B arsinh@p̃(t)/m#, and p̃(t) is the kinematical momentum, sincep̃(t)
5g(t)m (dq1/dt) (t).

Note that the equations forqa(t) are regarded as Hamilton equations, while that forp̃(t) is
an identity. Moreover, retaining the space–time meaning of the reduced phase space, the
line W of the particle is also a Hamiltonian flow in the symplectic manifoldGR

1 . Calculating

the globally Hamiltonian vector field corresponding to this flow,XH(t)5T̄
0
GR

1

(t)

1 @ p̃(t)/Am21 p̃(t)2#T̄1
GR

1

(t), and applying the antihomomorphism of Lie algebrasl

+s21(T̄
a

GR
1

)5ua
1R , we get the HamiltonianH(q,p,t).

The corresponding Hamiltonian operator splits into two partsĤ(q̂,p̂,t)5Ĥ0(q̂,p̂)
1V̂( p̂,t), where Ĥ0(q̂,p̂)52Bq̂2 p̂ and V̂( p̂,t)5 @ p̃(t)/Am21 p̃(t)2# p̂. Solving the eigen-
value problemĤ0uE&5EuE&, we discover thatĤ0 has continuous spectrum with the normaliz
eigenfunctions given bŷxuE&5 (1/A2p\) exp@2(i/\) (Ex1 (B/2) x2)#, so ^E8uE&5d(E82E).

Note that classicallyH05u0
1R5Bq1522Epot(q

1), soĤ0(q̂,p̂)522Êpot(q̂,p̂) has the mean-
ing of a potential energy operator. Besides this fact, the total energy operatorĤ(q̂,p̂,t)5E(t)
2 1

2Ĥ0(q̂,p̂), where E(t):5Am21 p̃(t)2 is the relativistic energy of the particle, satisfie

@Ĥ,Ĥ0#50; therefore the eigenvectors ofĤ0 are simultaneously total energy eigenstates. Th
the eigenvalues of the total energy operator are related with those ofĤ0 through Ĥ(t)uE&
5ET(t)uE&, whereET(t)5E(t)2E/2.

In terms of the base kets$uE&%, the state ket of the system is given att5t0 by ua&
5*2`

1`dE cE(t0)uE&, where cE(t0) is some known complex function ofE satisfying
*2`

1`dEucE(t0)u251. Then, for t.t0 , the state ket will be ua,t0 ;t&
5*2`

1`dEcE(t)e2 ( iE/\)(t2t0)uE&, where thecE(t)’s satisfy the coupled differential equations

i\
dcE

dt
~t!5E

2`

1`

dE8^EuV̂uE8&e@ i (E2E8)/\#(t2t0)cE8~t!.

Solving the resulting linear homogeneous partial differential equations, we get
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cE~t!5
1

A2p\uBu
expS 2

iE2

2B\ D E
2`

1`

Dl expF il

\B
~2E2Am21 p̃~t!21Am21 p̃~t0!2!Gdl,

where Dl5
1

A2p\uBu
E

2`

1`

cE~t0!expF iE

B\ S E

2
1l D GdE.

Suppose now that the system is initially prepared in an energy eigenstateua&5uE&, then at a
later timet.t0 the state will be given by

ua,t0 ;t&5expF i

2B\
~2~E2Am21 p̃~t!21Am21 p̃~t0!2!21E2!G•expF2

i

\
~E2Am21 p̃~t!2

1Am21 p̃~t0!2!~t2t0!G•uE2Am21 p̃~t!21Am21 p̃~t0!2&. ~11!

The probability as a function of time for the particle to be found in the stateuE8& is given by
u^E8ua,t0 ;t&u2/^a,t0 ;tua,t0 ;t& dE85d(E82E1Am21 p̃(t)22Am21 p̃(t0)2)dE8, which
equals 1 ifE85E2Am21 p̃(t)21Am21 p̃(t0)2 or zero otherwise. From Eq.~11!, we note that
the statesuE& are not stationary although they are total energy eigenstates, since thet-dependent
part of the Hamiltonian V̂( p̂,t) causes transitions to eigenstatesuE2Am21 p̃(t)2

1Am21 p̃(t0)2& of different energy.
In fact, the expectation value of the total energy operator, for instance,

^Ĥ&~t!5
^a,t0 ;tuĤua,t0 ;t&

^a,t0 ;tua,t0 ;t&
5

3E~t!

2
2

E~t0!

2
2

E

2

is t-dependent. It is not difficult to see that the function^Ĥ&(t) attains to a minimum att5t0

2@ p̃(t0)#/B, when its value iŝ Ĥ&(t02@ p̃(t0)/B#)5 3m/22@Am21 p̃(t0)2/2# 2 (E/2), which
only happens aftert0 if p̃(t0) satisfies the condition sign (B) p̃(t0),0; otherwise,̂ Ĥ&(t) is a
monotonically increasing function oft.t0 . For this reason, the presented quantum states
stable, even though there is no true ground state.

V. DISCUSSION

We showed that the extended Poincare´ group in (111) dimensionsP̄ is a connected solvable
exponential Lie group, withH0

2(P̄,R)50 andH0
1(P̄,R)5R ~see Sec. II!. These facts were im-

portant to apply the Kirillov theorem to perform a classification of the two-dimensional relativ
elementary systems and to work out explicitly all the irrep’s ofP̄ by the orbit method~see Sec.
III !. The particular class of irrep’sTzAzA ,z3 with z satisfying Eq.~10! turned out to be connecte
to a covariant maximal polynomial quantization of the anomaly-free relativistic particle in
11) dimensions, which provided a quantum-mechanical interpretation for the construction
most physically interesting case~see Sec. IV!.

We remark that the Bohr–Wilson–Sommerfeld condition21 is trivially satisfied by the
anomaly-free relativistic particle in (111) dimensions, and it does not yield the quantization
any observable quantity, which is consistent with the fact that the system is not conservati
the world lines are open. It is worth mentioning thatP̄ is related to the one-dimensional oscillat
group Os~1! by the Weyl unitary trick. However, the group Os~1! is not solvable exponential, an
the orbit method gives all its irrep’s only through holomorphic induction.22

It is remarkable that the extended metaplectic quantization of the anomaly-free relat
particle is covariant with respect toP̄, inasmuch as a covariant Stratonovich–Weyl kernel for
corresponding coadjoint orbits has not been found yet.10 However, this difficulty is not directly
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related to the fact that there is an obstruction to fully quantizing the system, since the
symplectic manifolds such asR2 or S2 for which the problem of the generalized Weyl–Wigne
Moyal quantization has successfully been solved,10 although obstructions have been found.20

The groupP̄ enjoys several properties in common with the groups WH, E~2!, and Aff1(1,R),
which found applications in fields such as electronics, signal processing, and quantum opt
all these groups have square-integrable representations, in a subsequent publication it w
interesting to test whether the irrep’sTzAzA ,z3 of P̄ are square integrable with respect to orb~z!.
This fact would allow us to work out the associated generalized coherent states, gene
wavelet transforms, and generalized Wigner functions,23 which would surely be an invaluabl
mathematical tool in the context of the phase-space formulation of the quantum anoma
relativistic particle in (111) dimensions.
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APPENDIX: THE METHOD OF ORBITS

Before considering the Bernat–Pukanszky theory of exponential groups,8,9 let us briefly re-
view the standard procedure to form a unitary induced representation, since the theory of in
representations developed by Mackey24,25 plays an essential role in the method of orbits.

Let H be a closed subgroup of a locally compact topological group with a countable baG
andU a one-dimensional unitary representation ofH on the complex numbersC. We introduce
the spaceL(G,H,U) of complex-valued measurable functionsF on G that satisfy the condition
F(hg)5DH,G(h)21/2U(h)F(g), whereDH,G(h)5DH(h)/DG(h), hPH, gPG, andg°DG(g)
is the modulus of the groupG.

The groupG can be identified withH3X, whereX is the rightG-spaceX5H\G, since every
element ofgPG can be written uniquely in the formg5hs(x) with xPX. Under this identifi-
cation, the right Haar measure onG splits into the product of a quasi-invariant measurens on X,
depending upon the choice of a Borel mappings of X into G having the property thats(Hg)
PHg, by the right Haar measure onH; dn(g)5DH,G(h)dns(x)dn(h). The measurens on X is
G-invariant if and only ifDG(h)5DH(h).

The spaceL(G,H,U) is clearly invariant under right translations onG. Let L2(G,H,U)
denote the Hilbert space generated by the square-integrable functionsF in L(G,H,U); then, we
call the unitary representationT acting by right translations upon the Hilbert spaceL2(G,H,U),
according to@T(g)F#(g8)5F(g8g), the representation induced in the sense of Mackey by
representationU and we will denote it by ind(G,H,U).

It is not difficult to see that there is an isomorphismF° f of the Hilbert spaceL2(G,H,U)
onto the Hilbert spaceL2(X,ns ,C), generated by the square-integrable complex functions ha
compact support onX with respect to the measurens , which associates a functionf
PL2(X,ns ,C) defined byf (x)5F(s(x)) with every FPL2(G,H,U). Under this isomorphism
the induced representations in the sense of Mackey can be realized on the Hilbert
L2(X,ns ,C) through @T(g) f #(x)5DH,G(h)21/2U(h) f (xg), where the elementhPH is defined
from the relations(x)g5hs(xg).

Now, we can sketch the orbit method. LetG be an exponential group,g its real exponential
Lie algebra, andg* its dual. We say that a subalgebrah,g is subordinate tozPg* if its first
derived algebra is orthogonal toz, or ^z,@h,h#&50. Denoting byH,G the subgroup correspond
ing to the subalgebrah subordinate tozPg* , we define the unitary one-dimensional represen
tion of H by U(expX)5exp(i^z,X&), which is related to the characterx of H simply by
x(expX)5U(expX), whereXPh.
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Then a unitary induced representation ind(G,H,U) of G is irreducible if and only if the
subalgebrah subordinate tozPg* is admissible, i.e., if its dimension is maximal in the family
all subalgebras subordinate toz and if it satisfies Pukanszky’s condition.9 The maximality condi-
tion is equivalent to dimh5dimg2 1

2dim orb(z), and Pukanszky’s condition requires that t
linear varietyz1H' is contained in orb~z!, whereH' denotes the orthogonal complement ofH in
g* . Bernat8 showed that the first condition implies the second one ifg is quasinilpotent~i.e., all
the real eigenvalues of ad(X) are zero, for allXPg), otherwise the two conditions are indepe
dent. In particular, every nilpotent group is quasi-nilpotent.

It can be shown26 that, for any givenz, there is a subordinate subalgebrah satisfying the two
conditions above. Moreover, ifh1 andh2 are, respectively, maximal dimension subalgebras s
ordinate to z1 and z2 , further obeying Pukanszky’s condition, then ind(G,H1 ,U1)
5 ind(G,H2 ,U2) if and only if z1 and z2 belong to the same coadjoint orbit, the equal s
indicating unitary equivalence. Reciprocally, any irrep ofG is representable in the form
ind(G,H,U) by specifyingh andz appropriately, thus establishing a canonical bijection betw
the spaceO(G) of coadjoint orbits and the unitary dualĜ of any solvable exponential Lie group
It is worth mentioning that every coadjoint orbit of the connected and simply connected sol
type I Lie groups~and, in particular, of the exponential groups! is integral ~i.e., satisfies the
integrality condition!.
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13J. A. Azcárraga and J. M. Izquierdo,Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics~Cam-

bridge University Press, Cambridge, 1995!.
14P. Bernat, N. Conze, M. Duflo, M. Le´vy-Nahas, M. Rais, P. Renouard, and M. Vergne,Représentations des Groupes d

Lie Résolubles~Dunod, Paris, 1972!.
15A. A. Kirillov, Bull., New Ser., Am. Math. Soc.36, 433 ~1999!.
16B. Kostant, inLectures in Modern Analysis and Applications III, Vol. 170 of Lect. Notes Math., edited by C. Taam

~Springer, Berlin, 1970!, pp. 87–208.
17A. A. Kirillov, Elements of the Theory of Representations~Springer, Berlin, 1976!.
18S. T. Ali and J. P. Antoine, Ann. I.H.P. Phys. Theor.51, 23 ~1989!.
19R. O. de Mello, Ph.D. thesis, Universidade de Sa˜o Paulo, Sa˜o Paulo~2001!.
20M. J. Gotay~1998!, revised and updated version of paper published in J. Nonlinear Sci.6, 469 ~1996!.
21N. Woodhouse,Geometric Quantization~Clarendon, Oxford, 1980!.
22R. F. Streater, Commun. Math. Phys.4, 217 ~1967!.
23S. T. Ali, N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, Ann. Henri Poincare1, 685 ~2000!.
24G. W. Mackey, Ann. Math.55, 101 ~1952!.
25G. W. Mackey, Ann. Math.58, 193 ~1953!.
26L. Pukanszky, J. Funct. Anal.2, 73 ~1968!.
                                                                                                                



of

ic
:

o
a of

e

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 3 MARCH 2004

                    
Multiplicative anomaly and zeta factorization
E. Elizalde and M. Tierz
Instituto de Ciencias del Espacio (ICE/CSIC), Institut d’Estudis Espacials de Catalunya
(IEEC/CSIC), Edifici Nexus, Gran Capita`, 2-4, 08034 Barcelona, Spain

~Received 29 October 2002; accepted 15 December 2003!

Some aspects of the multiplicative anomaly of zeta determinants are investigated. A
rather simple approach is adopted and, in particular, the question of zeta function
factorization, together with its possible relation with the multiplicative anomaly
issue is discussed. We look primordially into the zeta functions instead of the
determinants themselves, as was done in previous work. That provides a supple-
mentary view, regarding the appearance of the multiplicative anomaly. Finally, we
briefly discuss determinants of zeta functions that are not in the pseudodifferential
operator framework. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1646447#

I. INTRODUCTION

A pseudodifferential operator~CDO! A of orderm on a manifoldMn is defined through its
symbola(x,j), which is a function belonging to the spaceSm(Rn3Rn) of C` functions such that
for anya, b there exists a constantCa,b so thatu]j

a]x
ba(x,j)u<Ca,b(11uju)m2uau. The definition

of A is given ~in the distribution sense! by

A f~x!5~2p!2nE ei ^x,j&a~x,j! f̂ ~j! dj, ~1!

wheref is a smooth function (f PS) and f̂ its Fourier transform. Whena(x,j) is a polynomial in
j one gets a differential operator but, in general, the orderm can be even complex. ForA a
positive–definite ellipticCDO of positive ordermPR, acting on the space of smooth sections
an n-dimensional vector bundleE over a closed,n-dimensional manifoldM , the zeta function is
defined as

zA~s!5tr A2s5(
j

l j
2s , Res.

n

m
[s0 . ~2!

Heres0 is called the abscissa of convergence ofzA(s), which is proven to have a meromorph
continuation to the whole complex planeC ~regular ats0), provided thatA admits a spectral cut
Lu5$lPC;Arg l5u,u1,u,u2%, SpecAùLu5B ~the Agmon–Nirenberg condition!.

The Wodzicki ~or noncommutative! residue1 is the only extension of the Dixmier trace t
CDOs which are not inL (1,̀ ). Even more, it is the only trace one can define in the algebr
CDOs up to a multiplicative constant, and is given by the integral

resA5E
S* M

tr an~x,j! dj, ~3!

with S* M,T* M the co-sphere bundle onM ~some authors set a coefficient in front of th
integral!. If dim M5n52ordA (M compact Riemann,A elliptic, nPN) it coincides with the
Dixmier trace, and one has1
11680022-2488/2004/45(3)/1168/12/$22.00 © 2004 American Institute of Physics
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Ress51zA~s!5
1

n
resA21. ~4!

However, the Wodzicki residue continues to make sense forCDOs of arbitrary order and, even i
the symbolsaj (x,j), j ,m, are not invariant under coordinate choice, the integral in~3! is, and
defines a trace. In particular, the residua of the poles of the extended definition of zeta func
operators of complex order are also given by the noncommutative residue.

It is well known that the study of zeta functions is central—at least at a basic level, the
needed in fact in usual applications to physics2,3—for the issue of giving a sense to the definitio
of determinant of aCDO ~see Ref. 4 for the actual state of the art of this concept!. This definition
goes back to Ray and Singer:5 for an operatorA with spectruml i ,i PI ~here I needs not be
discrete, it can be a multi-index made up of parts of different nature!, formally

detA5)
i PI

l i5expS (
i PI

logl i D . ~5!

But from the definition of the zeta function

zA~s!5(
i PI

l i
2s , ~6!

it turns out that

zA8 ~0!52(
i PI

logl i . ~7!

It is most natural then to define~as Ray and Singer did! the determinant ofA by means of the zeta
function as5

detz A[exp@2zA8 ~0!#. ~8!

Note that this is adefinition, since the above manipulations are formal as long as the converg
properties of the expressions at hand are not fully specified, in accordance with the theorem
beginning of this section. This is taken care of by the analytical continuation provided in
definition of the zeta function ofA.

The definition of the determinant detz A only depends on the homotopy class of the spec
cut for A ~see above!. And one has the following~very useful! asymptotic expansion for the hea
kernel:

tr e2tA5 ( 8
lPSpecA

e2tl;an~A!1 (
nÞ j >0

a j~A!t2sj1 (
k>1

bk~A!tk ln t, t↓0, ~9!

where

an~A!5zA~0!, a j~A!5G~sj !Ress5sj
zA~s!, sj¹2N,

a j~A!5
~21!k

k!
@PPzA~2k!1c~k11!Ress52k zA~s!#, sj52k, kPN, ~10!

bk~A!5
~21!k11

k!
Ress52k zA~s!, kPN\$0%.
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This paper is organized as follows: in the next section we give a short but rather self-con
introduction to the appearance of the multiplicative anomaly6–18 of zeta determinants. In Sec. III
we point out certain particularities of this anomaly by presenting two very different cases: O
one hand, a new and rather general condition that guarantees the absence of anomaly and,
contrast, a quite particular and very simple case where the anomaly is already nonzero. T
Sec. IV, extending and complementing previous work on this subject,7,8 we pay attention to the
product of zeta functions rather than its associated determinants. This lead to the considera
det(B^C) instead of det(BC), with B andC two arbitrary operators. Thus, from that point of vie
we are able to obtain rather simple new expressions for determinants, mainly thanks to the
property of factorization of the zeta function. In the last section we present, in a somewhat
qualitative way, the relationship between all the previous concepts, multiplicative anomal
zeta factorization, with the appearance of complex poles in the zeta function and othe
functions that do not belong to the pseudodifferential operator framework. In the Appendix, d
the implementation in a regularization context, we investigate further the topic of zeta fun
factorization, presenting results, mainly from Number Theory, with two opposite points of v
the construction of DirichletL functions from multiplication of simple zeta functions on one ha
and the decomposition of a zeta function in terms of simpler factors on the other hand. This
to some physical interpretation for the associated heat kernel that we briefly discuss.

II. APPEARANCE OF THE MULTIPLICATIVE ANOMALY

Now, it would seem clear that, if we have a product of two commuting operators,

detz~AB!5expF(
i PI

log~l im i !G5expF(
i PI

~ logl i1 logm i !G5expF(
i PI

logl i1(
i PI

logm i G
5expF(

i PI
logl i G expF(

i PI
logm i G5detz A detz B. ~11!

But this isnot true, andonly oneof these steps fails to be true. Below we provide some spe
examples to help the reader understand where the problem is.

Actually, very much related with this is the fact that the zeta function trace

trz A5(
i PI

l i5zA~s521! ~12!

fails to satisfy the additive property; in general

trz~A1B!Þtrz A1trz B, ~13!

for, again, this is a regularized trace~involves analytical continuation! which is used with non-
trace-class operators~see also Ref. 4 for the general definition of the trace!.

As an example, consider the following commuting linear operators in an infinite-dimens
space, given in diagonal form by

A15diag ~1,2,3,4,...!, A25diag ~1,1,1,1,...!, ~14!

and their sum

A11A25diag ~2,3,4,5,...!. ~15!

The correspondingz-traces are easily obtained,

trz A15zR~21!52 1
12 , trz A25zR~0!52 1

2 ,
~16!
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trz~A11A2!5zR~21!2152 13
12 ,

zR being the Riemann zeta function. The last trace has been calculated according to the r
infinite series summation~see, e.g., Hardy9!. We observe that

trz~A11A2!2trz A12trz A252 1
2 Þ0. ~17!

Unlike for ordinary, finite dimensional determinants, for which we have the prope
det(AB)5det(A)det(B), for zeta determinants one rather has to consider, in general, an addi
piece~calledanomalyor defect!. It is usually written as

a~A,B!5 ln
det~AB!

det~A!det~B!
~18!

or

a~A,B!5zA8 ~0!1zB8 ~0!2zAB8 ~0!. ~19!

Thus the anomalya(A,B) will vanish if the derivatives ats50 of the respective zeta functio
satisfy the additive property. There is an explicit expression, due to Wodzicki, fora(A,B), that
simplifies enormously the calculation of the multiplicative anomaly in many cases.1

III. UNDERSTANDING ZETA TRACES AND ZETA DETERMINANTS

There exist many examples of simple cases with and without multiplicative anomaly.7,8 We
give now a condition that guarantees its absence. Consider the two following zeta function

zA~s!5(
i

l i
2s , ~20!

zB~s!5(
i

~cl i
a!2s5c2szA~as! with c,aPR. ~21!

The zeta function associated with the product of the eigenvalues is

zAB~s!5(
i

~cl i
a11!2s5c2szA~~a11!s!, ~22!

and thus

zAB~s!5c2szA~~a11!s!ÞzA~s!1c2szA~as!. ~23!

Performing the substitutions50, we have that

zAB8 ~0!5~a11!zA8 ~0!5zA8 ~0!1azA8 ~0!5zA8 ~0!1zB8 ~0!. ~24!

Therefore, in spite of the fact that the two zeta functions are different, their respective deriv
at zero are equal. This is enough to guarantee the absence of the multiplicative anomaly,
a(A,B)50. This is quite a general situation, since we have not fixed thel i at all. We have only
played with the relative difference between the spectra.

A rather different thing is to consider two spectra which are related by anadditiveconstant,

m i5l i1c. ~25!

For simplicity, let us restrict our analysis to the specific example
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ln5n, mn5n11, n51,2,3,. . . . ~26!

Thus

zA~s!5zR~s!, zB~s!5zR~s!21, ~27!

while the zeta function of the product is of Epstein type:7

zA~s!5 (
n51

`

~n21n!2s5 (
n51

`
G~n1s! 222n

n! G~s!
zH~2~n1s!,3/2!. ~28!

Thus

zA8 ~0!1zB8 ~0!52zR8 ~0!52 ln~2p!, ~29!

while

zAB8 ~0!5 (
n51

`
222n

n
zH~2n,3/2!, ~30!

which are not equal. Numerically

zAB8 ~0!50.4417, zA8 ~0!1zB8 ~0!521.8379, ~31!

even the signs are different and the anomaly, in such a simple case, is larger in absolute val
the individual results themselves,

a5zA8 ~0!1zB8 ~0!2zAB8 ~0!522.2796. ~32!

Up to now, we have addressed and tried to explain the problem by looking carefully i
various zeta functions involved in the process. Nevertheless, we can gain a new insight in
multiplicative anomaly issue through consideration of the factorizability properties of the c
sponding zeta functions, an analysis important by itself in, e.g., number theory.

IV. ZETA FUNCTION FACTORIZATIONS AND THE MULTIPLICATIVE ANOMALY

As explained, the main practical consequence about the existence of the multipli
anomaly is that, if, e.g., we want to compute

detA5det~BC!, ~33!

from the ~in principle simpler! determinants detB and detC, we have to take also into accoun
a(A,B). This is specially important when different factorizations ofA, say A5BC and A
5B8C8, are alternatively considered.8 We begin by introducing the associated zeta functions
we would use in the computation of the factor determinants,

zB~s!5(
i

l i
2s , ~34!

zC~s!5(
j

m j
2s . ~35!

But, instead of applying the usual and direct procedure as before, here we shall deal w
product of these two zeta functions,
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zD~s!5zB~s!zC~s!5(
i

l i
2s(

j
m j

2s . ~36!

Note that this is the zeta function of an operator,D, which is different from the previousA.
Actually, D5B^ C, as is immediate to realize. In fact, from

zB^ C~s!5(
i , j

~l im j !
2s5(

i
l i

2s(
j

m j
2s , Res.max $a,b%, ~37!

beinga, b, the abscissas of convergence of the individual series, and owing to the uniquen
the asymptotic continuation to the rest of the complex plane, it turns out that

zB^ C~s!5zB~s!zC~s!. ~38!

In particular,

zB^ C~s521!5zB~s521!zC~s521!, ~39!

that is

trz~B^ C!5trz B trz C, ~40!

which extends the corresponding property known to hold in finite dimensions.
Now, consider the respective determinants. Recall, to begin with, that in the finite cas

have

det~B^ C!5~detB!dim C ~detC!dim B, ~41!

where the dimensions refer to the spaces where the respective operators act. We will now
that this equation is maintained in the infinite dimensional situation~we will drop thez label from
the determinants, from now on!. In fact, we have@recall thatzB(0) is the zetaregularized dimen-
sion of the space in whichB acts, and the same for the rest#:

detB5exp@2zB8 ~0!#, detC5exp@2zC8 ~0!#, ~42!

detD5exp@2zD8 ~0!#5exp@2zB8 ~0!zC~0!2zB~0!zC8 ~0!#, ~43!

and we thus see, that

det~D !5~detB!zC(0)~detC!zB(0). ~44!

In the particular case whenzB(s) andzC(s) have the same value at zero~the two operators act on
a space of the same dimension!,10 zB(0)5zC(0)[z̃(0), we get

det~D !5~detB detC!z̃(0). ~45!

We have thus shown that the computation of detBdetC is, in a way, as close to that o
det(B^C) as it is to that of det(BC), provided when both operators act on the same space and
be multiplied. In fact, the determinant of their tensor product is given in terms of the product o
determinants of the individual operators by introducing the regularized dimension of the
where they act. Formally, it is a kind of exponential anomaly. But notice that this is actual
anomaly, since the exponent is constant~e.g., it does not depend on the particular operatorsB and
C chosen! and it is always equal to the regularized dimension of the space~as it should!. When
zB(0)5zC(0)5 z̃(0), let uscompare in more detail the two expressions: the one for the m
plicative anomaly
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det~BC!5detB detC ea(B,C), ~46!

with the other for the exponential anomaly, thus

exp~a~B,C!!5
det~BC!

detB detC
5

detA

~detD !1/z(0) . ~47!

This equation seems somewhat artificial, no wonder since it links two nondirectly related q
ties, as explained above. It can nevertheless be useful in practical determinations of the m
cative anomaly.

Some consequences and examples:In general, if one is dealing with factorizations of the typ

zA~s!5)
i

zAi
~s!, ~48!

the determinants are related as detA5)i(detAi)
) jÞizj(0). This can be useful for the computation o

determinants of multidimensional zeta functions, once its factorization is known. For a ge
m-dimensional zeta function, we can write its factorization asz(s)5) i

mz i
di(s) wheredi specifies

the dimension of the zeta function, withm5( idi .
A number of different examples can be worked out. For instance, if the zeta functions fa

are zero at the origin, then the associated multidimensional determinant is one. This is
happens, for example, for the product of harmonic oscillators,

)
n150

`

¯ )
nk50

` S n11
1

2D¯S nk1
1

2D51. ~49!

Actually, with little more effort a more general case can be considered,

ln1¯nk
5~n11c1!¯~nk1ck!, n1 ,...,nk50,1,2,3,... . ~50!

Here

z~s!5)
j 51

k

z j~s!, z j~s![zH~s,cj !. ~51!

Recalling that

zH~0,cj !5 1
2 2cj , zH8 ~0,cj !5 ln G~cj !2 1

2 ln~2p!, ~52!

we get

detA5)
j 51

k

det~Aj !
) iÞ jzH(0,cj )5)

j 51

k S A2p

G~cj !
D ) iÞ j (1/22ci )

, ~53!

which reduces to the expression above, Eq.~49!, in the particular example considered. This is
nice result of the regularization method.

A second example is the case of a multiple factorization,z (N)(s)5) i 51
N z i(s), in which at

least one of the zeta functions evaluated at the origin is zero@without losing generality let us
choosez1(0)50]. Then, the determinant associated withz (N)(s) is just

~e2z18(0)!) i 52
` z i (0), ~54!
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that is, the determinant of the zeta function which is zero at the origin, exponentiated wit
product of the other zeta functions at zero. Different situations of this type could be discus

V. BEYOND CDOs: THE CASE OF COMPLEX POLES

In this concluding section, we want to comment on the appearance, in some important
tions, of complex poles, and on its relationship with the multiplicative anomaly and with fa
izations. We begin by paying some attention to the anomaly free case~20! and~21! studied in Sec.
III. This case corresponds to two commuting operators, for which there is a simple express
the multiplicative anomaly, due to Wodzicki,1

a~A,B!5
res@~ ln~AbB2a!!2#

2ab~a1b!
, ~55!

wherea.0 andb.0 are the orders ofA andB, respectively.
In spite of the generality of~20! and~21!, it is clear that this is not the most general case ins

the class of commuting operators. To begin with, the fact that one is a function of the othe
sufficient but not a necessary condition for the commutation of the operators~think of the opera-
tors involved in the quantum mechanics of the hydrogen atom, for example!. In addition, one may
also argue that a more general function thanmn5 f (ln)5cln

a may be considered as well. Fo
example, an exponential functionf (ln)5exp(ln). It can be readily seen that with such a choi
we are outside the realm of pseudodifferential operators. For instance, just withln5n, thenmn

5exp(n), and then the associated zeta function is a geometric series:

zB~s!5 (
n51

`

e2ns5
1

~es21!
, ~56!

giving rise to infinitely many complex poles. Nevertheless, this spectra is indeed physic
shown in Ref. 11, and related toq deformations11 and to fractal geometry12 as well. Thus, it is also
rather reasonable to expect that associated regularized expressions~such as determinants! may be
of physical interest as well. In principle, one can proceed identically—depending on the p
meromorphic structure of the corresponding zeta function—with the formal definition. Likew
note that the case~20! and ~21!, not only holds foraPR, but also foraPC, as can be readily
seen from~22!–~24!. Therefore, it is still anomaly free but notice that a complexa introduces
complex poles~just as a simple example, considermn5n, then the complexa rotates the pole a
s51 to s5a21).

There are other circumstances where we are outside the pseudodifferential operator
work, but there is still interest in the short time asymptotics of the heat kernel or in zeta de
nants. This is exactly the case, for instance, when considering heat kernels in noncomm
spaces13 and when studying products of prime numbers,14 respectively. Indeed, the zeta functio
associated to the prime numbers is known,15

P~s!5(
p

p2s5 (
n51

`
m~n!

n
logz~ns!, ~57!

wherep are the prime numbers andm(n) is the Möbius function. Note that this function has a ric
pattern of logarithmic singularities in the complex plane but still the associateddeterminantis of
interest and actually follows directly from the derivative ofP(s).14 Additionally, in this type of
regularized products, one can look at multiplicative anomalies as well. For example, follo
Ref. 14 one can consider the Euler product representation of Riemann’s zeta function,

z~s!5

)
p

ps

)
p

ps21

, Res.1. ~58!
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This expression, considered together withP(s), gives rise to the following result:14

)
p

~p21!50 and )
p

~p221!548p2, ~59!

and the appearance of a multiplicative anomaly is manifest.
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APPENDIX: REMARKS ON ZETA FACTORIZATIONS

We have seen how the discussion of the multiplicative anomaly of determinants, has le
in a natural way, to the construction of a zeta function from the product of other zeta func
Generically, and following the previous notation, let us envisage

zD~s!5zB~s!zC~s!5(
i

l i
2s(

j
m j

2s . ~A1!

This turns out to be an important construction in number theory. Actually, even with the sim
zeta functions as factors, important and sophisticatedzD(s) are obtained. For example, with th
Riemann zeta function itself. In fact, from the Euler product of the Riemann zeta function
know that it has local factors of degree 1 at each prime, while automorphicL functions have local
factors of degree 2 at almost all places.16 This suggests that we can denote such product as

L~s!5zR~s!zR~s2k11!, ~A2!

with k>2. In Ref. 16 it is shown that theL function is actually

L~s!5 (
n51

`

sk21~n!n2s, ~A3!

wheresk is the arithmetic function~the generalized divisor function, or some over all the divis
of n to some power!, given by

sk~n!5(
dun

dk. ~A4!

This appears naturally in the Chowla–Selberg formula and its generalizations.7

This shows, in close relationship with the preceding section, how the product of eve
simplest of the zeta functions lead to an interesting object by the process considered abov
with important arithmetic properties~and some of theseL functions are useful in analytica
approaches to the study of algorithms17,18!. Even more, in general, increasingly complexL func-
tions are very often constructed or represented by a generic product of simplerL functions.16

Nevertheless, it seems apparent that instead of exploiting the useful idea of constructin
functions, it may also be worth to look at this relation from the other side, that is, as a deco
sition of the zeta function on the l.h.s. into several factors. To illustrate the approach fo
functions, let us just take into account the two simple examples considered in detail in Re
The zeta function
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z~s!5 ( 8
m,nPZ2

~m21n2!2s, ~A5!

with the summation extended over all pairs (m,n)Þ(0,0) in Z2, can be expressed as

z~s!54zR~s!•L~x4 ,s!. ~A6!

wherezR(s) is the Riemann zeta function andL(x4 ,s) is the Dirichlet zeta function correspond
ing to the characterx4 . Another interesting factorization is the following one, for a differe
particular case of the two-dimensional Epstein zeta function:

z~s!5 ( 8
m,nPZ2

~m21mn1n2!2s56zR~s!•L~x3 ,s!. ~A7!

Once again, we see the natural appearance ofL functions, whose determinants are of much inter
as well ~mainly in a number theoretical context; see Ref. 20 for a review!.

These factorizations are particular cases of a more general situation coming from alg
considerations in number theory.16 Very general statements are not always possible, but le
compare the previous with the classical results~due to Dirichlet! concerning primitive quadratic
forms of any determinant,

Q~x!5ax1
21bx1x21cx2

2 , ~a,b,c!51 ~A8!

~the parentheses meaning here maximum common divisor!, with D52detQ5b224ac,0 ~the
discriminant ofQ), and

xD~d!5S D

d D . ~A9!

Then, forn.0, (n,D)51, the character sum

r ~n;D !5vD(
dun

xD~d! ~A10!

gives the number of all representations ofn by representatives of forms of all classes of discrim
nantD. HerevD stands for the number of automorphs,

vD5H 6 if D523,

4 if D524,

2 if D,24.

~A11!

Notice how the discriminant gives the right character for theL function and the number o
automorphs the right prefactor in the previous example of factorization. Nevertheless, we
point out that these previous examples and the posterior discussion looks so simple, due to
that the examples correspond to discriminantsD for which the class numberh(D) ~the number of
equivalence classes of primitive binary quadratic forms! is one.

Factorization at the level of the heat kernels:Now, we pay attention to the meaning of the ze
factorization at the level of the respective associated heat kernels. SinceA2s and exp(2tA) are
related by the following expression:

A2s5
1

G~s!
E

0

`

ts21 exp~2tA!dt, ~A12!
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then the zeta function is, up to a gamma function, the Mellin transform of the heat kernel
interest of this expression, considered together with the factorization property, is that it allo
a probabilistic context, the product of random variables to be directly performed in Mellin s
~in contrast to the better known case of the addition of variables, where Fourier transfo
used!.21 Therefore, the zeta factorization implies also a product for the respective heat kerne
a product in the sense of probability theory, that is, the heat kernel~or in a number theoretica
context, the theta function! denotes the probability distribution function of a random variableXi ,
and then we have the productX5) i 51

n Xi . Nevertheless, for this to be exactly correct we sho
take into account the gamma function for each factor and for the resulting zeta function
example, in the case of a zeta function with two factors:

z~s!5z1~s!z2~s!→G~s!G~s!z~s!5G~s!z1~s!G~s!z2~s!→K~ t !•exp~2t !5K1~ t !•K2~ t !,

~A13!

where, in the last expressions, the products are in the sense explained above, and we have
fact thatG(s)5*0

`ts21 exp(2t)dt. Thus, the necessary introduction of gamma factors implies
we have to take into account possible products of the main heat kernel with an expon
distribution.

This stochastic point of view seems both interesting from the mathematical point of
where a probabilistic interpretation of zeta and theta functions is of interest,22 and also from a
physical point of view, where products of random variables very often constitute a role mod
what is known with the name of multiplicative or cascade processes.23

Last but not least, the factorization is potentially interesting from the practical point of
in the asymptotic study of the trace of the heat kernel~9! and ~10!. The contributions can be
considered separately, with the exception of the possible coincidence of poles or poles and
This fact introduces interesting phenomena that can be seen with the following example. Co
the product of two Riemann zeta functions,

z~s!5zR~s!zR~s!, ~A14!

which yield the well-knownL function,

z~s!5L~s!5 (
k51

`
d~k!

ks , ~A15!

with d(k) the divisor function again. Note the consistency with the previous case~A2!–~A4!. The
idea is now to construct another zeta function from two very similar factors,

z«~s!5zR~s~11«!!zR~s~12«!!, ~A16!

with «.0 a very small, real positive number. It seems that these two zeta functions shou
almost identical in the whole complex plane, except for the fact that, in the first one, we h
double pole ats51, while the second has two simple poles ats5(11«)21 and s5(12«)21,
very close one from the other for« small. Note that the pointlike structure of a pole allows to pl
that game. Now, from~9! and~10!, it is clear how different thet→0 expansion of the associate
trace of the heat kernel is, in the two cases. In the first case, we have

tr e2tA1;2
log t

t
, t↓0, ~A17!

in sharp contrast with the second case, where

tr e2tA2;GS 1

11« D t2[1/~11«)#1GS 1

12« D t2[1/~12«!] , t↓0. ~A18!
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We see that the case where the poles collide possesses a partition function which is
bigger the smaller the value oft is ~the classical limit!. Therefore, the associated partition fun
tions differ considerably in the classical limit. A deeper physical understanding of this pheno
seems to be an interesting open question.

1M. Wodzicki, ‘‘Non-commutative residue,’’ inLecture Notes in Mathematics, edited by Yu. I. Manin~Springer-Verlag,
Berlin, 1987!, Vol. 1289, Chap. I, p. 320.

2K. Kirsten,Spectral Functions in Mathematics and Physics~Chapman & Hall/CRC Press, Boca Raton, FL, 2001!; D. V.
Vassilevich, hep-th/0306138.

3E. Elizalde,Ten Physical Applications of Spectral Zeta Functions~Springer, Berlin, 1995!; E. Elizalde, S. D. Odintsov,
A. Romeo, A. A. Bytsenko, and S. Zerbini,Zeta Regularization Techniques with Applications~World Scientific, Sin-
gapore, 1994!; A. A. Bytsenko, G. Cognola, L. Vanzo, and S. Zerbini, Phys. Rep.266, 1 ~1996!.

4V. Mathai, R. B. Melrose, and I. M. Singer, math.DG/0206002.
5D. B. Ray, Adv. Math.4, 109 ~1970!; D. B. Ray and I. M. Singer,ibid. 7, 145 ~1971!; Ann. Math.98, 154 ~1973!.
6C. Kassel, Seminaire Bourbaki, Vol. 1988/89. Asterisque No. 177-178~1989!, Exp. No. 708, 199–229; M. Kontsevich
and S. Vishik, inFunctional Analysis on the Eve of the 21st Century, edited by S. Gindikin, J. Lepowsky, and R. L
Wilson @Prog. Math.~Birkhauser! 131, 173 ~1995!#; K. Okikiolu, Duke Math. J.79, 687 ~1995!.

7E. Elizalde, J. High Energy Phys.9907, 015~1999!; J. Comput. Appl. Math.118, 125~2000!; Commun. Math. Phys.198,
83 ~1998!.

8E. Elizalde, L. Vanzo, and S. Zerbini, Commun. Math. Phys.194, 613 ~1998!; E. Elizalde, G. Cognola, and S. Zerbin
Nucl. Phys. B532, 407 ~1998!; E. Elizalde, A. Filippi, L. Vanzo, and S. Zerbini, Phys. Rev. D57, 7430~1998!.

9G. H. Hardy,Divergent Series~Oxford University Press, Oxford, 1949!.
10Notice that this is an inescapable requirement if the ordinary product of the two operators is to make any sens
11M. Tierz, hep-th/0308121.
12M. L. Lapidus and M. van Frankenhuysen,Fractal Geometry and Number Theory (Complex Dimensions of Fra

Strings and Zeros of Zeta Functions), Research monograph~Birkhäuser, Boston, 2000!.
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On the Clebsch–Gordan problem for SU „1,1…: Coupling
nonstandard representations

Christopher C. Gerry
Department of Physics and Astronomy, Lehman College, City University of New York,
Bronx, New York 10468-1589

~Received 14 June 2003; accepted 25 November 2003!

The Clebsch–Gordan coefficients coupling two unitary, irreducible, positive dis-
crete series representations of SU~1,1!, are constructed. In contrast to the Clebsch–
Gordan coefficients obtained a long time ago by Holman and Biedenharn@Ann.
Phys.~N.Y.! 39, 1 ~1966!#, the derived coefficients are valid even when coupling
nonstandard representations such as those for which the corresponding Bargmann

indicesk may bek5 1
4 and/or 3

4 , values associated with the ‘‘two-photon’’ realiza-
tion of the su~1,1! Lie algebra, the corresponding representations covering the even
and odd number states, respectively, of the single-mode boson system. These non-
standard cases are actually representations associated with the covering group
SU(1,1). The results are extended to the coupling of three positive discrete series
and the corresponding SU~1,1! Racah coefficients are obtained. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1643542#

I. INTRODUCTION

The Lie group SU~1,1! and its associated Lie algebra su~1,1! plays a prominent role in many
areas of quantum mechanics. The Lie algebra su~1,1!, and those to which it is isomorphic
su(1,1);so(2,1);sp(2,R);sl(2,R),1 are known to be spectrum generating algebras~the corre-
sponding Lie groups being spectrum generating groups! for a number of systems, among the
being: the harmonic oscillator,2 the radial part of the Coulomb and the two and three-dimensio
harmonic oscillator problems,3 the singular oscillator,2,4 the Morse oscillator,5 and superfluid
helium.6 Beyond its role in generating spectra, it serves as a dynamical group for certain H
tonians of importance in quantum optics. Specifically, the single and double boson mode r
tions of the su~1,1! Lie algebra appear in the Hamiltonians for nonlinear interactions that gen
the single- and two-mode vacuum states.7 The states generated from the vacuum are specific ty
of SU~1,1! coherent states and they are associated with specific representations.

There has recently been some interest, particularly in the context of quantum optics,
coherent states obtained by coupling together different discrete representations of SU~1,1!. These
are coherent states associated with the representations of the direct product group S
^ SU(1,1) which is locally isomorphic to SO~2,2! much in the same way as SU(2)^ SU(2) is
locally isomorphic to SO~4!.8 There are many realizations of the corresponding Lie algebra su~1,1!
which in turn determine the allowed positive discrete unitary irreducible representations~UIRs!
which we denote asD k

1 , wherek is the Bargmann index9 and wherek.0. For what we shall call

the standardUIRs of the positive discrete series one hask5 1
2,1,32 ,... . Tocouple different repre-

sentations and obtain the states of the direct product representationDk1

1
^ Dk2

1 , we need the

SU~1,1! Clebsch–Gordan coefficients~CGCs!. The CCGs for the coupling SU(2)̂SU(2) are, of
course, the familiar coefficients of angular momentum theory. For the higher dimensional g
such as SU~3!, de Swart10 worked out a rather general scheme that can work for any irreduc
representation of any Lie algebra. For SU~1,1! the CCGs were derived many years ago by
number of authors, at least for coupling two standard representations.11 The realization of the
su~1,1! Lie algebra in terms of bilinear products of two sets of bose operators is associated
the standard UIRs. Bambah and Agarwal12 studied the four-mode coherent states of t
11800022-2488/2004/45(3)/1180/11/$22.00 © 2004 American Institute of Physics
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Barut–Girardello-type13 obtained by coupling together two two-mode realizations of the Lie
gebra su~1,1!, i.e., coherent states of the Lie algebra su(1,1)% su(1,1), or, equivalently, of the
direct product group SU(1,1)̂SU(1,1), by making use of the tabulated SU~1,1! CGCs as given
in Ref. 11. This works well because the relevant representations being coupled are the s
ones.~It is the standard representations that are relevant to the radial Coulomb and har
oscillator problems3 and the superfluid helium problem.13! But the representations associated w
the single-mode realizations, sometimes known as the ‘‘two-photon’’ algebra, are nonstand

that the Bargmann index is required to take the valuesk5 1
4 , 3

4 . These representations are actua
those associated with representations of the covering groupSU(1,1) for which anyk>0 is al-
lowed. ~The representations associated with the realizations for the singular oscillator2,4 and the
Morse oscillator5 are also those of the covering group.! In attempting to couple these nonstanda
representations, this author and Benmoussa14 found that the tabulated SU~1,1! CG coefficients
gave nonsensical results~see Appendix!. Part of the problem may be that many of these ol
papers adopt a notation for the state labels identical to that used in the case of su~2!, the algebra
of angular momentum. That notation tends to obscure important differences between the
sentations of SU~2! and SU~1,1!, quite apart from the fact that for the latter, the unitary repres
tations are all infinite dimensional. We say a little more on this below and in the Appendix. In
case, we rederived the relevant SU~1,1! CGCs in such a manner that allows the coupling of b
the standard and nonstandard representations. As in the familiar case of SU~2!, one can obtain a
recursion relation for the SU~1,1! CGCs.11 But the method we adopted in Ref. 14 seems to
different than any of the previous methods used and therefore we believe it is worthwh
elaborate on it apart from any specific application. The idea is to first construct a proper ‘‘gro
state in the coupled representation by first solving a simple recursion relation analytically
‘‘excited’’ states are then determined by the application of the coupled raising operator an arb
number of times on this ground state, along with the use of the binomial expansion. It is str
forward to extend the procedure to the coupling of three representations of SU~1,1! and to obtain
the SU~1,1! Racah coefficients. We believe that the methods used here have the virtue of re
simplicity.

The paper is organized as follows: We first review, in Sec. II, the su~1,1! Lie algebra and
relevant positive discrete UIRs. In Sec. III we couple two discrete series and derive the S~1,1!
Clebsch–Gordan coefficients. In Sec. IV we use the results of Sec. III to couple three di
series and obtain the SU~1,1! Racah coefficients. Section V contains some concluding remarks
mentioned above, an Appendix is included to illustrate what goes wrong with the tabu
SU~1,1! CGCs when attempting to couple nonstandard representations.

II. REVIEW OF SU„1,1… POSITIVE DISCRETE SERIES REPRESENTATIONS

The su~1,1! Lie algebra consists of the operatorsK0 , K6 , satisfying the commutation rela
tions

@K0 ,K6#56K6 , @K1 ,K2#522K0 . ~1!

The operatorK0 generates compact~circular! SU~1,1! transformations, whereas the combinatio
K15(K11K2)/2 andK25(K12K2)/2i generate noncompact~hyperbolic! SU~1,1! transforma-
tions. The Casimir operator

C5K0
22 1

2 ~K1K21K2K1! ~2!

commutes with all the elements of the Lie algebra. The relevant unitary irreducible represen
~UIRs! are the positive discrete seriesD k

1 , whose bases, which are eigenstates ofK0 andC, we

denote asuk,m&, wherek is the so-called Bargmann index taking on the valuesk5 1
2,1,32,2,... , and

wherem50,1,2,... ,̀ . These states satisfy the relations

K0uk,m&5~m1k!uk,m&, ~3!
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Cuk,m&5k~k21!uk,m&, ~4!

K1uk,m&5@~m11!~m12k!#1/2uk,m11&, ~5!

K2uk,m&5@m~m12k21!#1/2uk,m21&. ~6!

The statesuk,m& may be generated from the ‘‘ground’’ stateuk,0& according to

uk,m&5F G~2k!

m!G~2k1m!G
1/2

~K1!muk,0&. ~7!

We avoid the use of the alternative, pseudoangular mometum labeling of the states,u j ,n&, fre-
quently encountered in the literature,11,12where the eigenvalue ofC is now j ( j 11) and that ofK0

is n, wheren52 j ,2 j 11,2 j 12,... . @We usen instead ofm to avoid confusion with our labels
adopted for the SU~1,1! bases.# The allowed values ofj for the standard unitary irreducibl

representations arej 52 1
2 ,21,2 3

2 ,... . The CGCs derived in theu j ,n& notation are, at best
confusing to use in coupling nonstandard representations, and, as said above, lead to non
results~as discussed in the Appendix! owing to the peculiar fractional nature ofj and ofn required
for these representations. But the notationuk,m& is convenient becausem is alwaysa positive
integer or zero and the Bargmann indexk contains the fractional part of the spectrum ofK0 . This
turns out to be of an advantage in deriving the Clebsch–Gordan coefficients in what follow

Before proceeding to that, we briefly give examples of realizations of su~1,1! with standard
and nonstandard UIRs. The first we consider is the Schwinger-type15 two-boson realization given
as

K05 1
2 ~a1a1b1b11! K15a1b1, K25ab, ~8!

where the operatorsa andb are the bose operators of the two independent modes. The Ca
operator for this realization can be written as

C5 1
4 ~D221!, ~9!

where the operatorD5a1a2b1b is just the difference between the number of particles in
two modes. With the eigenvalue ofD denoted byq whereq is an integer, the Bargmann index
given byk5(11uqu)/2, whereuqu is the degeneracy parameter anduqu50,1,2,... . Thus we have

k5 1
2,1,32 ,..., so wehave the standard UIRs. Assuming that thea mode hasq more particles than

the b mode, the number states of the two modes,una& ^ unb&5una ,nb&, organize themselves into
D k

1 representations of su~1,1! given by uk,m&5un1q,n&, n50,1,2,...,̀ , k is given above and
from Eqs.~3! and ~8! we havem5n.

An example of a realization leading to nonstandard UIRs is3

K05 1
2 ~a†a1 1

2!, K15 1
2 a†2, K25 1

2 a2, ~10!

wherea anda† are Bose operators. The Casimir operator for this realization takes on the
C523/16 meaning that the allowed values of the Bargmann index are restricted tok51/4 and
k53/4, values clearly not included within the standard series of discrete UIRs. The corre
dence between the usual number states of a harmonic oscillator,un&, and the SU~1,1! basis states

uk,m& from Eq. ~10! is un&⇔uk,m& for n52(m1k)21/2. Note that fork5 1
4 we have n

50,2,4,..., while fork5 3
4 n51,3,5,... . Thus the Hilbert spaceH of the single boson mode is spl

into even and odd subspaces corresponding to the respective UIRs:H5D1/4
1

% D3/4
1 .

There is one other application of the su~1,1! Lie algebra, not related to the realization given

Eq. ~10!, but for which one may havek5 1
4 ~mod 1! or 3

4 ~mod 1! whose corresponding represe
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tations describe bosons and fermions, respectively, and which for generalk describes particles
with fractional statistics, e.g., anyons.16 These representations, along with those for the ‘‘tw
photon’’ algebra, are representations of the covering groupSU(1,1).

III. COUPLING TWO POSITIVE DISCRETE SERIES REPRESENTATIONS

Now suppose we have two sets of su~1,1! operators that we denote~1! and ~2!, i.e., K0,6
( i ) , i

51,2 such that

@K0
( i ) ,K6

( j )#56 K6
( i )d i , j , @K1

( i ) ,K2
( j )#522K0

( i )d i , j . ~11!

We then define the operators

K0ªK0
(1)1K0

(2) , K1 ª1
(1)1K1

(2) , K2 ªK2
(1)1K2

(2) , ~12!

which, of course, also satisfy the su~1,1! Lie algebra and generate the direct product gro
SU(1,1)̂ SU(1,1). Each of these algebras has its respective Casimir operator of the form
~2!. Denoting the Bargmann indices of the representations relevant to the realizations of the
algebras ask1 and k2 , the representations to be coupled we denote asDk1

1 :$uk1 ,m1&% and

Dk2

1 :$uk2 ,m2&%. The basis of the coupled representation we denote asuK,M ;k1 ,k2&, which we

may sometimes abbreviate asuK,M &. The eigenvalue ofK0 is M1K and that of the Casimir
operator isK(K21); that is, the coupled states satisfy Eqs.~3!–~6! with the replacementsk
→K andm→M . The Kronecker product of the two positive discrete series reduces to a sum
positive discrete series according to the Clebsch–Gordan decomposition

Dk1

1
^ Dk2

1 5 (
K5k11k2

`

D K
1 , ~13!

where the sum proceeds in integer steps. That is, the allowed values ofK are K5k11k21 l ,
wherel 50,1,2,...,̀ .

We now write the basis of the SU(1,1)^ SU(1,1) states as

uK,M ;k1 ,k2&5 (
m1 ,m2

C~k1 ,k2 ,K;m1 ,m2 ,M !uk1 ,m1&uk2 ,m2&, ~14!

where the numbersC(k1 ,k2 ,K;m1 ,m2 ,M ) are the SU~1,1! CG coefficients. We first consider th
ground state of the coupled representation whereM50:

uK,0;k1 ,k2&5 (
m1 ,m2

Cm1 ,m2
uk1 ,m1&uk2 ,m2&, ~15!

where for the moment, and for convenience, we have setC(k1 ,k2 ,K;m1 ,m2,0)5Cm1 ,m2
. Acting

on the state of Eq.~15! with the operatorK2 gives us, since we have a ground state,

K2uK,0;k1 ,k2&505( Cm1 ,m2
~K2

(1)1K2
(2)!uk1,m1&uk2 ,m2& ~16!

or, using Eq.~6!, equivalently,

05 (
m1 ,m2

Cm1 ,m2
$@m1~m112k121!#1/2uk1 ,m121&uk2 ,m2&

1@m2~m212k221!#1/2uk1 ,m1&uk2 ,m221&%. ~17!

This last expression we may rewrite as
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(
m1 ,m2

$Cm111,m2
@~m111!~m112k1!#1/21Cm1 ,m211@~m211!~m212k2!#1/2%uk1 ,m1&uk2 ,m2&50,

~18!

from which follows the recursion relation

Cm111,m2
52Cm1 ,m211F ~m211!~m212k2!

~m111!~m112k1!G
1/2

. ~19!

It is evident that only those states are coupled for whichm11m25const. Settingm11m25 l , l
50,1,2,...,̀ , the recursion relation can be solved to yield

Cq,l 2q5~21!qF S l
qD G~2k1!G~2k21 l !

G~2k11q!G~2k21 l 2q!G
1/2

C0,l , ~20!

whereC0,l is from normalization

C0,l5F (
r 50

l S l
r D G~2k1!G~2k21 l !

G~2k11r !G~2k21 l 2q!G21/2

. ~21!

Thus our ground state may now be written as

uK,0;k1 ,k2&5 (
q50

l

C~k1 ,k2 ,K;q,l 2q,0!uk1 ,q&uk2 ,l 2q&, ~22!

whereC(k1 ,k2 ,K;q,l 2q,0)5Cq,l 2q . Applying the operatorK05K0
(1)1K0

(2) to this last equa-
tion, it is easy to show that the allowed values ofK and hence the allowed representations
SU(1,1)̂ SU(1,1), are given byK5k11k21 l , l 50,1,2,...,̀ . The result in Eq.~22! is the proper
‘‘ground’’ state for the coupling of any two positive discrete UIRs of SU~1,1!.

To obtain the states forM.0, the ‘‘excited’’ states, we now apply to Eq.~22! the raising
operatorK1 of Eq. ~3.3b! M times. But we first, make use of Eq.~7! and rewrite Eq.~22! as

uK,0,k1 ,k2&5 (
q5o

l

C~k1 ,k2 ,K;q,l 2q,0!F G~2k1!G~2k2!

q! ~ l 2q!!G~2k11q!G~2k21 l 2q!G
1/2

3~K1
(1)!q~K1

(2)! l 2quk1,0&uk2,0&. ~23!

Now, writing

K1
M5~K1

(1)1K1
(2)!M5 (

p50

M S M
p D ~K1

(1)!p~K1
(2)!M2p, ~24!

applying it to Eq.~23!, and making multiple uses of Eq.~7!, we obtain

uK,M ;k1 ,k2&5F G~2K !

M !G~2K1M !G
1/2

(
q50

l

(
p50

M

C~k1 ,k2 ,K;q,l 2q,0!

3F ~p1q!! ~ l 1M2p2q!!G~2k11p1q!G~2k21 l 1M2p2q!

q! ~ l 2q!!G~2k11q!G~2k21 l 2q! G1/2

3uk1 ,p1q&uk2 ,l 1M2p2q&. ~25!

Note that there is degeneracy with respect top and q and therefore we need to collect th
coefficients of identicalp1q. We may then write our state as
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uK,M ;k1 ,k2&5 (
m150

l 1M

C~k1 ,k2 ,K;m1 ,l 1M2m1!uk1 ,m1&uk2 ,l 1M2m1&, ~26!

where

C~k1 ,k2 ,K;m1 ,l 1M2m1!

5 (
q50

l

(
p50

M

d~m1 ,p1q!~21!q
1

q! ~ l 2q!!G~2k11q!G~2k21 l 2q!

3H l !G~2K !G~2k1!G~2k21 l !~p1q!! ~ l 1M2p2q!!G~2k11p1q!G~2k21 l 1M2p2q!

M !G~2K1M ! J 1/2

3F (
r 50

l S l
r D G~2k1!G~2k21 l !

G~2k11r !G~2k21 l 2r !G21/2

, ~27!

and where, of course, it is understood thatK5k11k21 l . Note that we have dropped the redu
dantM by setting

C~k1 ,k2 ,K;m1 ,l 1M2m1![C~k1 ,k2 ,K;m1 ,l 1M2m1 ,M !. ~28!

Finally we can write our coupled state in the ‘‘standard’’ form

uK,M ;k1 ,k2&5 (
m150

l 1M

(
m250

`

C~k1 ,k2 ,K;m1 ,m2 ,M !uk1 ,m1&uk2 ,m2&, ~29!

where the SU~1,1! CGCs are now

C~k1 ,k2 ,K;m1 ,m2 ,M !5d~m2 ,l 1M2m1!C~k1 ,k2 ,K;m1 ,l 1M2m1!. ~30!

The key to the method we used here in deriving the CGCs is the separation of the integ
fractional parts of the spectrum of theK0 operators, natural in the notationuk,m&, as this allows
for simple binomial expansions of the form of Eq.~24!, i.e., in finite sums.

Because the CGCs are elements of a unitary transformation they must satisfy the ortho
ity condition:

dK8KdM8M5^K8,M 8;k1 ,k2uK,M ;k1 ,k2&

5(
m1

(
m18

C~k1 ,k2 ,K8;m18 ,l 81M 82m18!C~k1 ,k2 ,K;m1 ,l 1M2m1!

3dm
18m1

d l 81M8,l 1M

5(
m1

C~k1 ,k2 ,K8;m1 ,l 81M 82m1!C~k1 ,k2 ,K;m1 ,l 1M2m1!3d l 81M8,l 1M .

~31!

The left-hand side vanishes unlessM 85M and sinceK5k11k21 l and K85k11k21 l 8 the
condition thatl 85 l implies thatK85K. Thus we can write the orthogonality relation as
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(
m150

K2k12k21M

C~k1 ,k2 ,K8;m1 ,K82k12k21M2m1!

3C~k1 ,k2 ,K;m1 ,K2k12k21M2m1!5dK8K . ~32!

We now list some results from coupling nonstandard representations. We consider only
representations associated with the realization of the ‘‘two-photon’’ algebra given in Eq.~10!. For
k15 1

4 5k2 and for l 50 we have

uK5 1
2 ,M50; 1

4 , 1
4&5u 1

4,0&1u 1
4,0&25u0&1u0&2 ,

uK5 1
2 ,M51; 1

4 , 1
4&5

1

&
~ u 1

4,1&1u 1
4,0&21u 1

4,0&1u 1
4,1&2)5

1

&
~ u2&1u0&21u0&1u2&2),

uK5 1
2 ,M52; 1

4 , 1
4&5A3

8~ u 1
4,2&1u 1

4,0&21u 1
4,0&1u 1

4,2&2)1 1
2 u 1

4,1&1u 1
4,1&2

5A 3
8~ u4&1u0&21u0&1u4&2)1 1

2 u2&1u2&2 , ~33!

the first three states in the coupled representation. For the upper part of the right-hand s
have used the notationuki ,mi& i , where theki and mi have been replaced by their numeric
values, and for the lower part we have used the oscillator number states as given by the
lenceun& i⇔uki ,mi& with n52(mi1ki)21/2.

The sequence of states in Eq.~33! is already physically relevant. It is equivalent to th
sequence of states

uc2N&5S 1

2D N

(
p50

N F S 2p
p D S 2N22p

N2p D G1/2

u2p&1u2N22p&2 , ~34!

where number states are used on the right-hand side. These states are known as the arcsin17

as the associated joint photon number probabilities for finding 2p photons in mode 1 and 2N
22p photons in mode 2 form the distribution known in probability theory as the fix
multiplicative arcsine law of orderN.18 In fact, for the case of two-mode light fields, the stat
uc2N& will be generated by a 50:50 beamsplitter with twin input Fock states of the formuN&1uN&2 .

That is, (uN&1uN&2) in→
BS

uc2N&out.
17 The input twin Fock state, actually a superposition of tw

Fock states, can be generate from a down-conversion process with initial vacuum states i
modes.19 The superposition produced is just the two-mode squeezed vacuum state. The

uc2&5uK5 1
2 ,M51; 1

4 , 1
4 & was observed many years ago in a well known experiment perfor

by Hong et al.20 In another, more recent experiment, Ouet al.21 have observed the stateuc4&
5uK5 1

2 ,M52; 1
4 , 1

4 &. Furthermore, these states may have a practical application in ultra
resolution interferometry.22,23

For k15 1
4 5k2 , but now with l 51 such thatK5 3

2 , we have the sequence of states

uK5 3
2 ,M50; 1

4 , 1
4&5

1

&
~ u 1

4,0&1u 1
4,1&22u 1

4,1&1u 1
4,0&2)5

1

&
~ u0&1u2&22u2&1u0&2),

uK5 3
2 ,M51; 1

4 , 1
4&5

1

&
~ u 1

4,0&1u 1
4,2&22u 1

4,2&1u 1
4,0&2)5

1

&
~ u0&1u4&22u4&1u0&2),
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uK5 3
2 ,M52; 1

4 , 1
4&5

1

A32
~ u 1

4,1&1u 1
4,2&22u 1

4,2&1u 1
4,1&2)1A15

32
~ u 1

4,0&1u 1
4,3&22u 1

4,3&1u 1
4,0&2)

5
1

A32
~ u2&1u4&22u4&1u2&2)1A15

32
~ u0&1u6&22u6&1u0&2). ~35!

Notice that in these two examples, only even number states appear. Had we coupled repr
tions for k15k25 3

4 , only odd states would have appeared.
As a final example, we consider the case fork15 1

4 andk25 3
4 and for l 50:

uK51,M50; 1
4 , 3

4&5u 1
4,0&1u 3

4,0&25u0&1u1&2 ,

uK51,M51; 1
4 , 3

4&5 1
2 ~ u 1

4,1&1u 3
4,0&21)u 1

4,0&1u 3
4,1&2)5 1

2 ~ u2&1u1&21)u0&1u3&2),

uK51,M52; 1
4 , 3

4&5
1

2&
u 1

4,2&1u 3
4,0&21 1

2 u 1
4,1&1u 3

4,1&21 1
2A5

2
u 1

4,0&1u 3
4,2&2

5
1

2&
u4&1u1&21 1

2 u2&1u3&21 1
2A5

2
u0&1u5&2 ,

], ~36!

where, of course, we notice the presence of both even and odd states and that the firs
product states is always even and the second odd.

Coherent states of the Perelomov4 and Barut-Girardello13 types based on these coupled stat
and possible generation methods, have been discussed elsewhere.14,24

IV. COUPLING THREE POSITIVE DISCRETE SERIES

For the sake of completeness, we extend our considerations to the coupling of three S~1,1!
positive discrete series bases, i.e., the couplingDk1

1
^ Dk2

1
^ Dk3

1 . We first consider the grouping

(Dk1

1
^ Dk2

1 ) ^ Dk3

1 . Denotingk85k11k21 l and, using our previous result of Eq.~26! with an

obvious change in the notation, we have

uk8,m8&[uk8,m8;k1 ,k2&5 (
m150

l 1m8

C~k1 ,k2 ,K;m1 ,l 1m82m1!uk1 ,m1&uk2 ,l 1m82m1&. ~37!

Then, coupling to the third basis we have

uK,M ;k8,k3&5 (
m850

l 1M

C~k8,k3 ,K;m8,L1M2m8!uk8,m8&uk3 ,l 1M2m8&, ~38!

whereK5k81k31L5k11k21k31 l 1L. Upon substituting Eq.~37! into Eq. ~38! we have

uK,M ;k8,k3&5 (
m850

l 1M

(
m150

l 1m8

C~k1 ,k2 ,K;m1 ,l 1m82m1!C~k8,k3 ,K;m8,L1M2m8!

3uk1 ,m1&uk2 ,l 1m82m1&uk3 ,l 1M2m8&. ~39!

For the groupingDk1

1
^ (Dk2

1
^ Dk3

1 ) we first have
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uk9,m9&[uk9,m9;k2 ,k3&5 (
m250

l 1m9

C~k2 ,k3 ,k9;m2 ,l 1m82m2!uk2 ,m2&uk3 ,l 1m92m2&,

~40!

wherek95k21k31 l 8. Then

uK,M ;k9,k1&5 (
m950

L81M

C~k9,k1 ,K;m9,L81M2m9!uk9,m9&uk1 ,L81M2m9&, ~41!

and substituting Eq.~40! into Eq. ~41! we obtain

uK,M ;k9,k1&5 (
m950

L81M

(
m250

l 1m9

C~k2 ,k3 ,k9;m2 ,l 1m82m2!C~k9,k1 ,K;m9,L81M2m9!

3uk1 ,L81M2m9&uk2 ,m2&uk3 ,l 1m92m2&, ~42!

where now K5k11k91L85k11k21k31 l 81L8. Evidently, we must require thatl 1L5 l 8
1L8 as we must have the same value ofK for either coupling scheme. The coupled bases mus
related to each other by a unitary transformation of the form

uK,M ;k8,k3&5(
k9

U~k9,k8!uK,M ;k1 ,k9&. ~43!

Following the standard procedures as used in the case of SU~2! ~angular momentum!,25 it can be
shown that

U~k9,k8!5(
m1

(
m2

C~k1 ,k2 ,k8;m1 ,m2!C~k8,k3 ,K;m11m22 l ,m3!

3C~k2 ,k3 ,k9;m2 ,m3!C~k1 ,k8,K;m1 ,m21m32 l 8!. ~44!

One can then define the SU~1,1! Racah coefficientW in the standard way according to

W~k1 ,k2 ,K, k3 ;k8,k9!5@~2k811!~2k911!#21/2U~k9,k8!. ~45!

V. CONCLUSIONS

In this paper we have obtained Clebsch–Gordan coefficients allowing for the coupling o
unitary irreducible positive discrete series representations of SU~1,1! where one or both may be

nonstandard, e.g., with Bargmann indexk5 1
4 , 3

4 , associated with the ‘‘two-photon’’ algebra, or o

any case where the Bargmann index is not of the standard valuesk5 1
2,1,32 ,... . Wehave followed

this by coupling three representations and have obtained the SU~1,1! Racah coefficients allowing
for the transformation between different orders of couplings.

Possible applications, to be considered elsewhere, are to the coupling of, say, three
mode~two-photon! representations. Such states, and the corresponding coherent states, m
of interest in quantum optics for three mode fields or in the three-dimensional motion of a tra
ion. Other possibilities, such as the coupling of the ‘‘two-photon’’ SU~1,1! states with the two-
mode SU~1,1! states, are evident and are under investigation. Beyond applications in qua
optics, applications to the problem of coupling states of other systems associated with rep
tations ofSU(1,1), such as the case of the singular oscillator2,4 also of anyons,16 may be of interest
and will be discussed elsewhere.
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APPENDIX: WHEN GOOD CLEBSCH–GORDAN COEFFICIENTS GO BAD

In the work of Holman and Biedenharn,11 the su~1,1! bases are labeled using angular mome
tumlike statesu j ,n& ~we are usingn as before! such that

K0u j ,n&5nu j ,n&, Cu j ,n&5 j ~ j 11!u j ,n&, ~A1!

where, by comparison with Eqs.~3! and ~4!, n52 j ,2 j 11,2 j 12,... andj 52k. The coupled
states of two UIRs are given by the relation

uJ,N; j 1 , j 2&5 (
n152 j 1

Cn1 ,N2n1 ,N
j 1 , j 2 ,J u j 1 ,n1&u j 2 ,N2n1&, ~A2!

whereJ5 j 11 j 22s, s50,1,2,... , and the CG coefficientsCn1 ,N2n1 ,N
j 1 , j 2 ,J are given explicitly in the

Appendix of Ref. 12. We consider the ‘‘ground state’’ of the representation coupled for whs
50 andN52 j 12 j 2 . The corresponding CGCs are given by11

C
2 j 1 , j 12J,2J
j 1 , j 2 ,J

5~21!J2 j 12 j 2A22J21F ~ j 12 j 22J21!! ~2 j 12 j 22J22!

~22 j 121!! ~22J21!! G1/2

. ~A3!

For the case of coupling two standard representations, say fork152 j 15 1
2 5k252 j 2 the coupled

state is justuJ521,M51&5u j 152 1
2 ,n15 1

2 &u j 252 1
2 ,n25 1

2 & and the corresponding CGC i
unity as is easy to check. But for the case when coupling the nonstandard representations,
k152 j 15 1

4 5k252 j 2 and fors50 such thatJ521/2 we obtain

C 1
4 ,

1
4 ,

1
2

2
1
4 ,2

1
4 ,2

1
2
5A0F S 2

1

2
! D ~21!!

S 2
1

2
! D0!

G 1/2

5A6 `•0, ~A4!

a nonsensical result. Further, as displayed in Holman and Biedenharn11 the CGCsCn1 ,n2 ,N
j 1 , j 2 ,J are all

proportional toC
2 j 1 , j 22J,2J
j 1 , j 2 ,J thus rendering all coefficients suspect for the coupling of nonsta

ard representations within this scheme. In contrast, the coefficients derived above are well b

for the case in question. Fork15 1
4 5k2 , with l 50 we haveK5 1

2 . Then, from Eqs.~20!–~22! we
have

uK5 1
2 ,M50,k15 1

4 ,k25 1
4&5uk15 1

4 ,q50&uk25 1
4 ,l 2q50&, ~A5!

where we have, from Eq.~21!, C0,051 as it should. Thus there is no difficulty in coupling th
nonstandard cases and getting sensible results within the approach taken in this paper.
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Singularity confinement and algebraic integrability
S. Lafortunea) and A. Gorielyb)

Department of Mathematics, University of Arizona, Tucson, Arizona 85721-0089

~Received 11 October 2003; accepted 12 November 2003!

Two important notions of integrability for discrete mappings, algebraic integrability
and singularity confinement, have been used for discrete mappings. Algebraic in-
tegrability is related to the existence of sufficiently many conserved quantities and
singularity confinement is associated with the local analysis of singularities. In this
article, the relationship between these two notions is explored for birational autono-
mous mappings. The main result of this article is that algebraically integrable
mappings are shown to have the singularity confinement property. Using this result,
the proof of the nonexistence of algebraic conserved quantities for a class of dis-
crete systems is given. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1640797#

I. INTRODUCTION

One of the first notions of integrability was introduced by Liouville in the 19th century
Hamiltonian systems in classical mechanics. This type of integrability is based on qua
whose values do not change in time, the so-calledconstants of the motionor first integrals. For
instance, in many mechanical systems the total energy and the linear and angular mome
conserved through the dynamics and are examples of such constants. Liouville’s funda
contribution was to prove that if a given Hamiltonian systems admits enough first integrals,
be solved explicitly by quadratures. More precisely, a 2n-dimensional Hamiltonian system is sa
to beLiouville-integrableif it admits n functionally independent first integrals in involution~that
is their Poisson brackets commute! and such systems can be integrated by quadrature and en
particularly simple topology~the flow lives on products of tori and cylinders!. For systems ofn
first-order ordinary differential equations~ODEs! algebraic integrability is defined as the exis
tence (n21) functionally independent first integrals that are algebraic functions of the depe
variables. The existence of such first integrals is important for integrability as they can be u
reduce the dimensionality of the system.

In the particular case of Hamiltonian systems with more than one degree of freedom, alg
integrability corresponds to the notion of superintegrability~see Refs. 6, 7, and 16 and referenc
therein!. For a 2n-dimensional Hamiltonian system withn.1, the 2n21 first integrals needed fo
the property of algebraic integrability are more than then ones needed for complete Liouville
Arnold integrability.

A different notion of integrability was introduced by Painleve´ in the beginning of the 20th
century.8,25Although Painleve´’s goal was not to define a notion of integrability but rather to bu
new functions, his property is today widely used for the detection of integrable systems. An
is said to possess thePainlevéproperty1,9,21 if its general solution is single-valued in its maxim
domain of analytic continuation. The restrictions the Painleve´ property impose on the solutions a
so strong that an ODE exhibiting it may be considered for all practical purposes integrable.
formal links between the Painleve´ property and other notions of integrability have been est
lished~see, for example, Refs. 9 and 10!. Despite the fact that there is no general algorithmic w
to obtain sufficient conditions for a given ODE to have the Painleve´ property, necessary condition
can be derived. The algorithmic procedure to obtain such conditions is known as thePainlevétest

a!Electronic mail: lafortus@math.arizona.edu
b!Electronic mail: goriely@math.arizona.edu
11910022-2488/2004/45(3)/1191/18/$22.00 © 2004 American Institute of Physics
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or singularity analysisand is based on a local analysis of the solutions around movable iso
singularities.

The notions of algebraic integrability and singularity analysis of the solutions can be exte
to finite difference equations. One of the most effective ways to perform singularity analy
this context is given bysingularity confinement5,10–15,17,27–29which, like the Painleve´ test for
ODEs, imposes conditions on the singularities of the solutions. Although there exist many st
particular examples which indicate that singularity confinement is closely related to other n
of integrability, there is no clear-cut result which establishes this relationship in a forma
general framework. This article explores the relationship between the notion of algebraic in
bility and the property of singularity confinement in discrete mappings.

In the case of systems of ODEs, Yoshida9,32,33proved that the degree of a rational first integ
is closely related to some exponents that can be obtained through the application of the P´
test. In this article, we establish an equivalent result for discrete systems by showing that
larity confinement analysis provides necessary conditions for the existence of an algebra
integral. Moreover, a lower bound on the degree of rational first integrals can be obtained.

The rest of this article is organized as follows. In Sec. II, we define the notion of singu
and singularity confinement for birational autonomous discrete dynamical systems. In Sec.
study the local consequences of the existence of an algebraic first integral on the confinem
the singularities in the two-dimensional case. In Sec. IV, we extend the results of Sec.
arbitrary dimensions. Applications are discussed in Sec. V.

II. FORMULATION OF THE PROBLEM

In this section we introduce and illustrate the notion of singularity confinement by consid
a particular class of two-dimensional autonomous dynamical systems. These examples are
motivate a formal definition valid in arbitrary dimensions.

Throughout the article the following notation will be used: Ifg is an analytic function fromCp

to Cr , thenDg(x) is its Jacobianmatrix evaluated atxPCp. Whenp5r , theJacobianis denoted
by det(Dg(x)). If f is a complex-valued rational function onCp, then num(f ) and den(f ) re-
spectively denote the numerator and denominator off .

A. Simple examples

The basic idea of singularity confinement is to consider the properties of solutions clo
some singularities. To illustrate this concept, consider the class of two-dimensional co
dynamical systems of the form

S xn11

yn11
D5f~xn ,yn!5S g~xn ,yn!

xn
D , ~2.1!

whereg is a complex-valued rational function onC2,

g~x,y!5
p~x,y!

q~x,y!
,

andp, q are relatively prime polynomials. Two types of singularities can be distinguished for
systems. The singularities offirst typeare the roots ofq in C2, that is, the values (x,y) at which
the vector fieldf(x,y) in ~2.1! has a singularity. The singularities ofsecond typeare the points
where the Jacobian off is zero~this type of singularity was first considered in Ref. 12!. As an
example, consider the following discrete dynamical system:

S xn11

yn11
D5f~xn ,yn!5S 2xn2yn1a1

b

xn

xn

D , ~2.2!
                                                                                                                



aram-

ation

n
s not
e that
crete
ed

e

-called

1193J. Math. Phys., Vol. 45, No. 3, March 2004 Singularity confinement and algebraic integrability

                    
wherea andb are complex numbers. The analysis is performed for generic values of the p
etersa and b. Clearly the right-hand-side of~2.2! presents a singularity ifxn50. To study this
singularity we study the behavior of nearby solutions by introducing a small complex perturb
e, with ueu.0. We then sety0 to be any complex number andx05e. The iteratesxp andyp are
then determined for any positive nonzero integerp by the discrete dynamical system~2.2!. After
one iteration, we have

x15
b

e
1a2y01O~e!. ~2.3!

In the limit e→0, ux1u→` and, using~2.2! again,

x252
b

e
1y01O~e!, ~2.4!

x352e1O~e2!. ~2.5!

The limit e→0 of the next iteratex4 is well defined and given byy0 . Despite the fact that the
function f defined by~2.2! is not well defined on any point ofC2 of the form (0,y), the limit
(x,y)→(0,y) of f4(x,y) exists and is given by

lim
(x,y)→(0,y)

f4~x,y!5S y
0D . ~2.6!

Moreover, since the value of the limit~2.6! depends ony, the same limit applied on the Jacobia
of f4 is nonzero. The singularity is thus ‘‘confined’’ between the iterates 0 and 4 and doe
propagate further. This property of confinement is very particular and we show in this articl
it is closely related to the existence of a first integral for the system. A first integral for a dis
dynamical system of the form~2.1! is defined to be an analytic nonconstant complex-valu
function I defined almost everywhere onC2 which is preserved byf, that is

I ~ f~x!!5I ~x!, ~2.7!

for everyxPC2 for which ~2.7! makes sense. It is important to note that iff is not defined at a
point x* whereI is well-defined, then the value ofI at x* is still preserved underf in the limit
sense, i.e.,

lim
x→x*

I ~ f~x!!5I ~x* !. ~2.8!

This is a consequence of the fact thatf andI are continuous and defined almost everywhere inC2.
In the particular case of system~2.2!, one can check that the following polynomial,

I ~x,y!5xy~x1y2a!2b~x1y!, ~2.9!

is a first integral. Moreover, following~2.8!, the first integralI is preserved in the limit sens
through the iterations of the singularity of~2.2!. That is,

2by5I ~0,y!5 lim
(x,y)→(0,y)

I ~ f i~x,y!!, i 51,2,3,4. ~2.10!

Note that most integrable systems studied in this article are particular cases of the so
QRT-family of mappings.15,26
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The confinement property for the solutions of~2.1! does not hold in general. Although there
no formal result establishing how rare this confinement property might be, the fact that it do
hold for most systems of the form~2.1! has been well established in the literature.11,13,14,27–29

The following system is an example where singularities are not confined:

S xn11

yn11
D5f~xn ,yn!5S 2xn2yn1a1

b

xn
3

xn

D . ~2.11!

Consider the singularity (x* ,y* )5(0,y) and, as before, introducex05e andy0PC nonvanishing.
The next iterates arex15b/e31(a2y0)2e, x252b/e31y01O(e5), andx35e1O(e5). Fur-
ther, we find that, unlike the previous example, the appropriate cancellations allowing for co
ment do not occur and the next iterates are also diverging ate50, x452b/e31(a2y0)2e
1O(e5), andx5522b/e31y01O(e5). In general, the sequence of limitse→0 of the uxpu for
p.0 repeats the formal triplet~`, `, 0! indefinitely. This assertion is proven by induction bas
on the equality

f3S 2nb/e31y01O~e5!

nb/e31~a2y0!2e1O~e5! D5S 2~n11!b/e31y01O~e5!

~n11!b/e31~a2y0!2e1O~e5! D ~2.12!

for any positive integern. Therefore, the singularity is not confined. It is generally believed
systems which lack the confinement property will not be integrable. However, there is no de
result attached to this belief. We prove in the next sections that the analysis of the dynamic
the singularities can be used to conclude that~2.11! does not admit an algebraic first integral.

The following example illustrates the occurrence of the second type of singularity. Con

S xn11

yn11
D5f~xn ,yn!5S xn21

yn
12xn

xn

D . ~2.13!

At first sight, the point (xn,0) seems to be the only singularity. However, the Jacobian off in
~2.13! vanishes wheneverxn51. If x051 andy0Þ0, the next iterate as determined by~2.13! is
given byx152. We then havex255, x3512. It is not difficult to see thatxi grows with respect to
i , and that all iterates of (1,y0) under~2.13! with y0Þ0 are independent ofy0. The singularity
here only appears in the inverse of the Jacobian matrix and is not confined.

In the light of the previous examples, we can define the confinement property for singula
of discrete dynamical systems of the form~2.1!. A general definition will be given in the nex
section. Asingularity of the dynamical system~2.1! is defined to be any point (x* ,y* ) in C2 at
which the right-hand-side of~2.1! is undefined or at which the Jacobian off is zero. A singularity
(x* ,y* ) is said to beconfinedif there exists a positive integerN such that both limits

lim
(x,y)→(x* ,y* )

fN~x,y!, lim
(x,y)→(x* ,y* )

det~DfN~x,y!! ~2.14!

exist and the second limit is nonzero. The smallest numberN having this property is referred to a
the confinement number, that is the number of steps necessary for confinement.

The next example illustrates the case when a singularity of the second type is confine

S xn11

yn11
D5f~xn ,yn!5S ~xn21/a!~xn2a!

yn~xn2b!~xn21/b!

xn

D , ~2.15!
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wherea andb are two nonzero distinct complex numbers which are also both distinct froma
and 1/b. The right-hand-side~RHS! of ~2.15! presents a singularity of the second type ifxn5a
because the Jacobian off vanishes. Ifx05a andy0Þ0, the next iterate as determined by~2.15!
will be x150; thenx251/a andx3 takes an indeterminate form 0/0. Again, we introduce a sm
complex perturbatione, ueu.0, then setx05e to find that whene→0,

x3→y01a2
1

a
, ~2.16!

and we conclude that the singularity is confined. The dynamical system~2.15! has singularity of
the first type ifxn5b. Applying the same procedure as before with a perturbatione, one finds that
the limit e→0 of ux1u, x2 andx3 gives, respectively,̀ , 1/b andby0 /(b1y0(12b2)). Thus, any
singularity of the form (b,y0) with y0Þb/(b221) is confined in three steps. System~2.15! admits
the following rational first integral:

I ~x,y!5S b1
1

bD ~x1y!1S a1
1

aD S 1

x
1

1

yD2
~11x2!~11y2!

xy
. ~2.17!

The following example shows that the existence of a first integral does not imply tha
singularities are confined. The system

S xn11

yn11
D5f~xn ,yn!5S xn

2/yn

xn
D ~2.18!

has the following first integral:

I ~x,y!5
x y

x21y2 . ~2.19!

The RHS of~2.18! has a pole of order 1 at any point ofC2 of the form (x,0) with xÞ0. As before,
if we study this singularity by perturbation we conclude that there is no confinement sinc
Laurent expansions of the iterations of (x,e) under the discrete system~2.18! arounde50 are all
divergent. Although this singularity is not confined, one notices that any point of the form (x,0)
with xÞ0 does not have a unique preimage under~2.18!. Indeed, the expression definingf21

given by

f21~x,y!5S y
y2/xD ~2.20!

has a singularity of second type at (x,0) and all the points of this form are mapped to~0,0! under
f21. This example shows that if one wishes to establish a relationship between singularity
finement and first integrals, particular care should be given in distinguishing different singula

B. Preliminaries

The notion of singularity confinement will now be defined in a more general setting
considerp-dimensional autonomous discrete dynamical systems described by birational ma
on Cp. A birational mappingon Cp is a Cp-valued rational function which is one-to-one almo
everywhere inCp and whose inverse, where it exists, is also represented by a rational function
corresponding discrete dynamical systems are written

xn115f~xn!, xnPCp, nPZ, ~2.21!

where f is a birational mapping onCp with no explicit dependence onn. The i th iterate of x0

PCp under~2.21! is said toexist if the following limit,
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lim
x→x0

f i~x!, ~2.22!

exists. Thei th iterate is then defined to be that limit and is denotedFi(x0).
Definition: A singularity of type I for the discrete dynamical systemxn115f(xn) is a point

x* PCp at whichf is not defined. The set of singularity of type I associated with the mappingf in
Cp is denoted SI(f).

Definition: A singularity of type II for the discrete dynamical systemxn115f(xn) is a point
x* PCp such thatdet(Df(x* ))50. The set of singularity of type II inCp is denoted SII (f).

In the particular case of birational mappings, we have

SI~ f!5$x* PCpuden~ f i !~x* !50, for some i P$1,2,. . . ,p%%, ~2.23!

SII ~ f!5$x* PCpudet~Df~x* !!50%. ~2.24!

We call the setsSI(f) and SII (f) the singular sets of first and second type, respectively. The
singular set S(f) is defined as the union of both sets:

S~ f!5SI~ f!øSII ~ f!. ~2.25!

For both types of singularity we can define the property of confinement.
Definition: Let x* PCp be a singularity of type I or II for the systemxn115f(xn). The

singularity is said to beconfined if, for some icPN.0, the iterate Fi c(x* ) exists and
limx→x* det(Df i c(x))Þ0.

The lowest suchi c is referred to as theconfinement numberthat is the number of step
necessary for confinement. From now on, we assume thatf is a birational mapping. The following
lemma proves to be useful.

Lemma 2.1: The image of SII (f) under the mappingf lies inside an algebraic variety o
codimension 2.

That is, the birational mappingf is one-to-one only on the subset ofCp defined by

Of[Cp\S~ f!. ~2.26!

As a consequence, the functionf restricted toOf defines a rational diffeomorphism

f:Of→Of8[f~Of!, ~2.27!

whose inverse is also a rational function.
Proof: Assume thatSII (f)ÞB. Let x0PSII (f) and letx15f(x0). From the inverse function

theorem, it follows that

lim
x→x1

idet~D f21~x!!i5`. ~2.28!

Thus, for somei ’s in $1,2,. . . ,p%, the denominator of (f21) i evaluated atx1 is zero. Denote those
i by i k , k51,2,. . . ,r . We now prove that at least for onei k , num((f21) i k

) also vanishes atx1 .
By contradiction, suppose that none of these numerators vanishes atx1 . Thus

lim
x→x1

i f21~x!i5`. ~2.29!

On the other hand, we have

lim
x→x0

i f21~ f~x!!i5x0 , ~2.30!

which contradicts Eq.~2.29!. Thus,x1 must be in one of the following sets:
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Ai5$xPCpunum~~ f21! i !~x!5den~~ f21! i !~x!50%, i P$1,2,. . . ,p%. ~2.31!

This concludes the proof since each setAi is defined as the intersection of the zero level sets
two relatively prime polynomials. h

As mentioned earlier, the singularity confinement turns out to be closely related to the
tence of a first integral. This relationship will be explored in the next section.

Definition: A first integral of xn115f(xn) is an analytic function I:U,Cp→C where U is a
dense subset ofCp such that

~a! i(]I /]x1 , ]I /]x2 ,...,]I /]xp)iÞ0 almost everywhere in U, and
~b! I (f(x))5I (x).

A first integral can exist in several forms.
Definition: A first integral I ofxn115f(xn) is polynomial ~resp.rational ! if the function I(x)

is a polynomial (resp. rational) function ofxPCp. A complex-valued function f(x) is algebraic
over C if there exist s.0 and q0 , . . . ,qs rational in x such that

q01q1f 1¯1qsf
s50. ~2.32!

If s is the smallest positive integer such that (2.32) holds, the relation (2.32) is referred to a
minimal polynomial of f. A first integral I isalgebraic if the function I(x) is algebraic.

Many notions of integrability are used in the literature. In this article, we focus on alge
integrability. We are interested in determining precisely ‘‘how many’’ algebraic first integra
given discrete system must admit to be algebraically integrable. For instance, suppose t
algebraic functionsA1(x),A2(x),...,Ar(x) defined onCp are all first integrals for a given system
andF(z1 ,z2 ,...,zr) is algebraic onCr . Then, it is clear thatA(x)5F(A1(x),A2(x),...,Ar(x)) is
also a first integral. However, this new first integral adds no knowledge to the given problem
it depends on the other first integrals.

Definition: Let A1(x),A2(x),...,Ar(x) be smooth complex-valued functions defined on a
main D,Cp. Then

~a! A1 ,A2 ,...,Ar are functionally dependent if, for eachxPD, there is a neighborhood U o
x and a smooth complex-valued function F(z1 ,z2 ,...,zr) not identically zero on any subse
of Cp such that

F~A1~x!,A2~x!,...,Ar~x!!50. ~2.33!
~b! A1 ,A2 ,...,Ar are functionally independent if they are not functionally dependent whe

restricted to any open subset of D.

A simple way to determine if a set of functions is functionally independent is given by
following theorem~see, for example, Ref. 24!.

Theorem: Let A5(A1 ,A2 ,...,Ar) be a smooth function from a domain D#Cp to Cr . Then,
A1(x),A2(x),...,Ar(x) are functionally dependent if and only if DA(x* ) has rank strictly less
than r for all x* PD.

We introduce the notion of integrability considered in this article.
Definition: The discrete dynamical systemxn115f(xn) is said to bealgebraically integrable

if it admits (p21) algebraic functionally independent first integrals.
The following theorem is a direct extension of Brun’s9,23 theorem to discrete systems and

useful to extend the results we obtain for rational to algebraic first integrals.
Theorem: If a discrete dynamical system ofxn115f(xn) has k functionally independen

algebraic first integrals, then it has k functionally independent rational first integrals.
Proof: Let I be an algebraic first integral and let
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P~ I !5q01q1I 1¯1qs21I s211I s ~2.34!

be its minimal polynomial, whereqi is a rational function ofx. SinceI depends nontrivially onx,
there existsi such thatqi is a nonconstant rational function ofx. SinceI (f(x))5I (x), we have

q0~ f~x!!2q0~x!1~q1~ f~x!!2q1~x!!I ~x!1¯1~qs21~ f~x!!2qs21~x!!I s21~x!50.
~2.35!

SinceP is minimal, we haveqi(f(x)))5qi(x) and eachqi is a first integral. Now, letI 8 be another
independent first integral whose minimal polynomial is

P~ I 8!5q081q18I 81¯1qs821
8 I 8s8211I 8s8. ~2.36!

The independence between the two first integrals implies that there existi ,s,i 8,s8 such that
qi ,qi8 are two independent nonconstant rational first integrals. By induction, one can buk
independent rational first integrals. h

Therefore, algebraic integrability implies rational integrability and it is sufficient to cons
discrete dynamical systems of the form~2.21! which admit (p21) functionally independen
rational first integralsRi(x)5Pi(x)/Qi(x) where i 51,2,. . . ,p21 andPi and Qi are relatively
prime polynomials. LetLi ,c be the level set of the first integralRi corresponding to the valuec
PC. Sincef is continuous, it leaves invariant the closure of the level set given by

L̄ i ,c5$xPCpuPi~x!2c Qi~x!50%. ~2.37!

III. THE TWO-DIMENSIONAL CASE

In this section we study the local implications of algebraic integrability on the confineme
singularities for two-dimensional discrete dynamical systems. We consider a discrete dyn
systems of the form~2.21! which is algebraically integrable, that is, it possesses a nontr
rational first integralR(x)5P(x)/Q(x) whereP andQ are some polynomials overC2. Let Lc be
the level set ofR corresponding to the valuecPC.

We first focus our attention on singularities of the first type. The singular set of first typeSI(f)
is an algebraic variety since it is defined as the set of zeros of polynomials. We consid
irreducible decomposition is

SI~ f!5 ø
i 51

d

SI
( i )~ f!, ~3.1!

where each irreducible componentSI
( i )(f) is defined as the zero set of an irreducible polynomial

C2.
In example~2.18!, we showed that the existence of a rational first integral does not ensur

all singularities are confined. However, in this case it is not possible to ‘‘enter’’ the singula
meaning that it does not have a unique preimage under the mapping. Moreover, we kno
confinement is a generic property, that is, it is only concerned with dense subsets of irred
components ofSI . For instance, in example~2.15! all singularities of type I of the form (b,y0)
confine in three steps except a particular singularity defined byy05b/(b221). The next theorem
relates the confinement of singularities to the existence of a rational first integral.

Theorem 3.1:Consider a two-dimensional birational mappingxn115f(xn) and assume it has
a rational first integral R(x)5P(x)/Q(x). Then, for each irreducible component SI

( j )(f), we have
either
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~a! there exists kjPN.0 such that
lim

x→x*
fkj~x! ~3.2!

exists for almost allx* PSI
( j )(f), or

~b! there exists ljPN.0 such that SI
( j )(f) lies inside the singular set of the birational mappin

definingf2 l j .

Proof: Without loss of generality, takej 51. Consider two cases:
~1! SI

(1)(f)úL̄c for all cPC.
Let x* PSI

(1)(f) such that limx→x* i f i(x)i exists or is infinity~as opposed to undefined! for
i 51,2. Suppose thatx* PL̄c* for only onec* PC and that there is a neighborhood ofx* on L̄c*
whose only intersection with any of the singular sets associated with the mappingsf i , i
51,2,...,q11, (q is defined below! is x* itself. The set of points satisfying the above propert
is dense inSI

(1)(f). Let pi(e), i 51,2,..,q, be the paths inC2 such that
( i ) pi(e)PL̄c* for e small enough, that is,

P~pi~e!!2c* Q~pi~e!!50; and ~3.3!

( i i ) ipi(e)i→` ase→0 and at least one of the components ofpi(e) is of the form 1/e.

Note that the number of pathsq can depend on the complex numberc* but the values it can
take for differentc* can be bounded above by a number depending only on the degrees ofP and
Q.

Now, consider another pathx(s)PL̄c* ;s such that

lim
s→0

x~s!5x* . ~3.4!

Since there is a neighborhood ofx* on L̄c* whose only intersection withS(f) is x* , f(x(s)) is
well-defined fors nonzero and small enough. Moreover, sincef preservesL̄c* , f~x~s!! also lies in
L̄c* , and

lim
s→0

i f~x~s!!i5`. ~3.5!

Therefore, there exists a change of variables5s(e) of order O(es) for somes.0, so that
f(x(s)) is one of the pathspi defined above:

f~x~s~e!!!5pi~e!, ~3.6!

for some 1< i<q. Our claim is that there existsm with m<q11 such that the limit ass→0 of
fm(x(s)) exists and is finite. Suppose, by contradiction, that the iteratesfk(x(s)), k
51,2,3,...,q11, are all divergent ats50. Each iteratefk(x(s)) is associated with a unique pat
pi k

(e). This implies that thekth preimage ofpi k
(e) is finite in the limit e→0 and no other

f l(x(s)) for 1<k, l<q11 corresponds to the samepi k
(e). Hence the relation between theq

11 iterates that are divergent ats50 and the pathspi(e) is injective. This is a contradiction sinc
there are onlyq pathspi(e).

~2! There existscPC such thatSI
(1)(f),L̄c . Let

L̄c5 ø
i 51

r

L̄c
( i ) ~3.7!

be the irreducible decomposition ofL̄c for anycPC. If SI
(1)(f) lies inside the singular set off21,

then the theorem is proved. Otherwise, letkPN.0 be such thatSI
(1)(f) does not lie in a singular

set associated with the mappingsf2m, m51,2,...,k. Then,
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f2m~SI
(1)~ f!!5 ø

i PBm

L̄c
( i ) , 1< l<k, ~3.8!

where eachBm is a subset of$1,2,...,r %. Thek sets in~3.8! are distinct, otherwise, by contradic
tion, there existm1 ,m2PN.0 such that

f2m1~SI
(1)~ f!!5f2m2~SI

(1)~ f!!, 1<m1,m2<k. ~3.9!

This implies that

SI
(1)~ f!5f21~ f(m12m211)~SI

(1)~ f!!!, ~3.10!

which is a contradiction sincef is undefined almost everywhere onSI
(1)(f). Hence thek sets in

~3.8! are distinct. However, there are only finitely many possibilities for the setsBm in ~3.8!.
HenceSI

(1)(f) must lie inside the singular set off2 l 1 for somel 1 . h

Notice that condition~3.2! does not imply that the singularity is confined since the condit
that the Jacobian be nonzero must be satisfied. In order to solve this problem, singularities
II have to be considered. The singular set of second type is not, in general, an algebraic vari
its closure,

SII ~ f!5$x* PCpunum~det~Df~x* !!!50%, ~3.11!

is. Hence, it is possible to introduce the irreducible decomposition

SII ~ f!5 ø
i 51

s

SII
( i )~ f !̄, ~3.12!

where eachSII
( i )(f) is a subset ofSII (f). It is now possible to state the general theorem

singularities of second type.
Theorem 3.2:Consider a two-dimensional birational mappingxn115f(xn) and assume it has

a rational first integral R(x)5P(x)/Q(x). Then, for each irreducible componentSII
( j )(f), we have

either

(a) there exists kjPN.0 such that

lim
x→x*

det~Dfkj~x!! ~3.13!

exists and is nonzero for almost allxPSII
( j )(f), or

(b) there exists ljPN.0 such that SII
( j )(f) lies inside the singular set off2 l j .

Proof: The proof is similar to the proof of Theorem 3.1. Again, without loss of generality,
take j 51 and consider two cases.

~1! SII
(1)(f)úL̄c for all cPC.

The image ofSII
(1)(f) under the mappingf is a finite subset ofC2, thanks to Lemma 2.1

Moreover,SII
(1)(f) is not contained inside any level set. For any point in the image ofSII

(1)(f) it is
therefore possible to choose two distinct preimages inSII

(1)(f) which lie in two different level sets.
Sincef preservesL̄c , every point in the image ofSII

(1)(f) must lie in the set

ù
cPC

L̄c5$xPC2uP~x!5Q~x!50%. ~3.14!

The elements of this finite set are denotedsi , i 51,2,...,m. Note that in the case of a polynomia
first integral,Q(x)51 and this set is empty.
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Now, choosex* PSII
(1)(f) such thatx* PL̄c* for only onec* PC and there is a neighborhoo

of x* on L̄c* whose only intersection with any of the singular sets associated with the map
f i , i 51,2,...,q1r 11, (q and r are defined below! is x* itself. The set of points satisfying th
above properties is dense inSII

(1)(f). Consider theq pathspi(e) described in the proof of Theorem
3.1. Consider also ther pathswi(e), i 51,2,...,r , in C2 satisfying

~i! wi(e)PL̄c* for e small enough.
~ii ! wi(e)→sj i

ase→0 and one of the components (k51 or 2! of wi(e) is of the form (sj i
)k

1e for some 1< j i<m.

Now, consider another pathx(s)PL̄c* such that

lim
s→0

x~s!5x* . ~3.15!

Since there is a neighborhood ofx* on L̄c* whose only intersection withS(f) is x* , f(x(s)) is
well-defined fors nonzero and small enough. Moreover, sincef preservesL̄c* , f(x(s))PL̄c* ,
and

lim
s→0

f~x~s!!5si ~3.16!

for somei such that 1< i<r . Following the proof of Theorem 3.1,f(x(s)) can be associated with
a pathwj (e) ~whose limit ass→0 is si). Suppose by contradiction that thed1r 11 iterates
fk(x(s)), k51,2,...,d1r 11, are either divergent ats50 or have a limits→0 equal to one of
the si . Each iteratefk is associated with a pathpi k

(e) or wi k
(e). This implies that the uniquekth

preimage ofpi k
(e) or wi k

(e) must converge tox* ase→0. The preimage is unique because the

is a neighborhood ofx* on L̄c* whose only intersection with any of the singular sets associa
with the mappingsf i , i 51,2,...,q1r 11, (q andr are defined below! is x* itself. Sincex* is not
one of thesi , there cannot be two iteratesfk1(x(s)) and fk2(x(s)), k1 ,k2<q1r 11, associated
with the same path. Since there are onlyq1r 11 pathspi(e) andwi(e), there exists ak<q1r
11 such that the limits→0 of thekth iterate ofx~s! must be finite and not equal to onesi as
s→0. Therefore, the limits→0 of the Jacobian offk1 evaluated atx~s! must be a finite nonva-
nishing number. This ends the proof in the first case.

~2! There existscPC such thatSI
(1)(f),L̄c . The argument leading to the conclusion th

SII
( j )(f) lies inside the singular set off2 l 1 for somel 1 is identical to the second case considered

the proof of the preceding theorem. h

With Theorem 3.2, it is now easy to see that singularities of type I satisfying the cond
~3.2! are confined. Indeed, supposekj is the number considered in the first part of Theorem 3.1
the Jacobian offkj is zero almost everywhere onSI

( j )(f), thenSI
( j )(f) becomes a subset ofSII (f

kj).
According to the proof of Theorem 3.1 we know thatSI

( j )(f)úL̄c for all cPC. Thus, as a conse
quence of Theorem 3.2, the singularities inSI

( j )(f) must be confined. We can state a gene
theorem including both types of singularities. To do so, we introduce the irreducible decom
tion associated withS(f)

S~ f!5 ø
i 51

d1s

S( i )~ f!, ~3.17!

whered ands are defined in~3.1! and ~3.12!.
Theorem 3.3:Consider a two-dimensional birational mappingxn115f(xn) and assume it has

a rational first integral R(x)5P(x)/Q(x). Let S(f) be its singular set with irreducible compo
nents S( j )(f). Then, for each j, either
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~a! almost all singularities of S( j )(f) are confined in the same number of steps, or
~b! there exists ljPN.0 such that S( j )(f) lies inside the singular set off2 l j .

IV. ARBITRARY DIMENSIONS

In this section, we extend the results of the previous section to birational mappings of arb
dimensionp. The mappings are assumed to be algebraically integrable, that is, they admp
21) functionally independent first integralsRi(x)5Pi(x)/Qi(x), i 51,2,...,p21. Then, the clo-
sure of the level sets associated withcPCp21 is given by

L̄c5$xPCpuPi~x!2ci Qi~x!50, for 1< i<p21%5 ù
i 51

p21

L̄ i ,ci
, ~4.1!

with L̄ i ,ci
defined in~2.37!. A set of constantscPCp21 is said to beregular for the first integrals

R5(R1 ,R2 ,...,Rp21) if DR~x! has rank equal to (p21) almost everywhere onR21(c). The set
L̄c is then an algebraic variety of codimension (p21).

Our main Theorems 3.1–3.3 can be readily generalized to arbitrary dimensions and w
give here an outline of the proofs.

Theorem 4.1: Consider a p-dimensional birational mappingxn115f(xn) and assume it is
algebraically integrable with first integrals Ri(x)5Pi(x)/Qi(x), i 51,2,...,p21. Then for each
irreducible component SI

( j )(f), we have either

(a) there exists kjPN.0 such that

lim
x→x*

fkj~x! ~4.2!

exists for almost allxPSI
( j )(f), or

(b) there exists ljPN.0 such that SI
( j )(f) lies inside the singular set of the birational mappin

definingf2 l j .

Proof: Without loss of generality, takej 51. Consider two cases:
~1! SI

(1)(f)úL̄ i ,c for all cPC and 1< i<p21.
Let x* PSI

(1)(f) such that limx→x* i f i(x)i exists or is infinite~as opposed to undefined! for i

51,...,p. Suppose thatx* PL̄c* for only one c* PCp21 which is regular and that there is
neighborhood ofx* on L̄c* whose only intersection with the singular sets associated with
mappingsf i , i 51,2,...,q11, (q is defined below! is x* itself. The set of points satisfying th
above properties is dense inSI

(1)(f). Let q be the number of pathspi(e), i 51,2,..,q, in Cp such
that

~i! pi(e)PL̄c* for e small enough. That is,

Pk~pi~e!!2ck* Qk~pi~e!!50, k51,2,...,p21. ~4.3!

~ii ! ipi(e)i→` ase→0 and at least one of the components ofpi(e) is of the form 1/e.

Using the fact thatL̄c* is of codimensionp21, the rest of the proof follows exactly th
similar case in the proof of Theorem 3.1.

~2! There existscPC and i, 1< i<p21, such thatSI
(1)(f),L̄ i ,c . This part of the proof is

identical to the corresponding part in the proof of Theorem 3.1 except thatL̄ i ,c is considered
instead ofL̄c . h
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Theorem 4.2: Consider a p-dimensional birational mappingxn115f(xn) and assume it is
algebraically integrable with rational first integrals Ri(x)5Pi(x)/Qi(x), i 51,2,...,p21. Then,
for each irreducible componentSII

( j )(f), we have either

(a) there exists kjPN.0 such that

lim
x→x*

det~Dfkj~x!! ~4.4!

exists and is nonzero for almost allxPSII
( j )(f), or

(b) there exists ljPN.0 such that SII
( j )(f) lies inside the singular set off2 l j .

Proof: The proof is similar to the proof of Theorem 3.2 and the only difference comes in
first case, whenSII

(1)(f)úL̄ i ,c for all cPC and 1< i<p21. Following the proof of Theorem 3.2
for any point in the image ofSII

(1)(f) it is possible to choose two distinct preimages inSII
(1)(f)

which lie in two different level sets. Indeed, from Lemma 2.1, the image ofSII
(1)(f) under the

mappingf lies in a subset of codimension 2 insideCp. Sincef preservesL̄ i ,c , the points in the
image ofSII

(1)(f) must lie in the set

ù
cPC,i<p21

L̄ i ,c5$xPC2uPi~x!5Qi~x!50%. ~4.5!

Since the first integrals are functionally independent, the set defined above is finite. The res
proof is similar to the proof of Theorem 3.2 except that one should specify thatc* has to be
regular. h

Theorem 4.3: Consider a p-dimensional birational mappingxn115f(xn) and assume it is
algebraically integrable. Let S(f) be its singular set with irreducible components S( j )(f). Then, for
each j, either

~a! almost all singularities of S( j )(f) are confined in the same number of steps, or
~b! there exists ljPN.0 such that S( j )(f) lies inside the singular set off2 l j .

V. COROLLARIES AND APPLICATIONS

In the previous two sections, the existence of first integrals was assumed to obtain
information on the confinement property. Here, the information given by the singularity con
ment property is used to obtain global information on the discrete dynamical systems such
nonexistence of algebraic first integral and the degree of possible rational first integrals
results of this section can be considered as a discrete analog of Yoshida’s theorem9,32,33which, for
ODEs, relates the Kovalevskaya exponents given by the Painleve´ test to the degree of a rationa
first integral. The first corollary is a direct consequence of Theorem 4.3.

Corollary 5.1: Consider a p-dimensional birational mappingxn115f(xn) with a nonempty
singular set S(f). If there exists an irreducible components S( j )(f) in which almost all singularities
are not confining and such that S( j )(f)úS(f2k) for any positive k, then the system is not alge
braically integrable.

As an example of this corollary, we show that system~2.11!, defined by

f~x,y!5S 2x2y1a1
b

x3

x
D , ~5.1!

is not algebraically integrable. Recall that singularities of the form (0,y) are nonconfining. In
order to use Corollary 5.1 and prove that this mapping does not admit an algebraic first in
one must show that points of the form (0,y) are not generically in the singular set off2 l for some
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l .0. The singular set off21 consists of points of the form (x,0). Thus, we must prove that gener
iterates of (0,y) underf21 do not belong to the set of points of the form (x,0). The inverse of the
mapping~5.1! is given by

f21~x,y!5S y

2x2y1a1
b

y3
D . ~5.2!

This mapping can be obtained fromf of ~5.1! by interchangingx andy. Therefore, we can follow
the analysis performed in~2.12! to perform a Laurent expansion iny to show that

f22~x0 ,y0!5S b/y0
31~a2x0!2y01O~y0

5!

2b/y0
31x01O~y0

5! D . ~5.3!

Moreover, we have

f23S nb/y0
31~a2x0!2y01O~y0

5!

2nb/y0
31x01O~y0

5! D 5S ~n11!b/y0
31~a2x0!2y01O~y0

5!

2~n11!b/y0
31x01O~y0

5! D , ~5.4!

wheren is any positive integer. Hence, points of the form (0,y) are not generically sent to point
of the form (x,0) by applications off21 and, from Corollary 5.1, system~2.11! does not admit an
algebraic first integral.

In general, algebraic integrability restricts the possiblelocal behavior of singularities. Theo
rem 4.3 gives two possible local behaviors but, in each case, the singularity can have s
different global behaviors. Consider an irreducible component of the singular setS(1)(f). In the
proofs of Theorems 3.3 and 4.3, we considered two cases:S(1)(f)úL̄c and S(1)(f),L̄c . When
S(1)(f)úL̄c the singularities ofSI

(1)(f) are generically confined. In this case, two different types
global behavior can be expected. First, after meeting a finite number singularities, the ma
generically never meets other singularities~note that this must also be true in the backwa
direction, that is forf21). We will refer to such a behavior asglobal confinement. Second, the
singularities may be confined but not globally. Because, for each dynamical system of the
~2.21!, there are only finitely many irreducible parts toS(f), the mapping must, at one point, com
back to the initial singularity and takeSI

(1)(f) into itself. We say that such singularities a
periodic. We now define formally these two types of global behavior and illustrate them.

Definition: A singularityx* PCp for a birational mappingxn115f(xn) is said to beglobally
confined if there exist k8,k9PN.0 such thatx* ¹S(fk) for any k.k8 and x* ¹S(f2k) for any
k.k9.

An example of such a behavior is given by system~2.2!. For this system, points of the form
(x,0) are not sent to points of the form (0,y) through successive applications off. To prove this,
let (xn ,yn) be thenth iterate of (x,0). If n54k, an expansion off4(x,0) reveals that (x4k ,y4k)
5(kx1O(x2),(2k11)x1O(x2)), k51,2,.... This fact also implies thatx4k1352kx1O(x2)
and we conclude thatx4k13 and x4k are neither infinite nor vanishing. By contradiction assu
that there existsn such that (xn ,yn)5(0,y). Therefore, eithern54k11 or n54k12. However,
from Eq. ~2.4! we know thatxn12 is infinite which is a contradiction. We conclude that no itera
of (x,0) falls onto a point of the form (0,y) and singularities of the form (0,y) are globally
confined.

Definition: Consider the singular set of a birational mappingxn115f(xn) and one of its
irreducible component S( j )(f). If there is a kPN.0 such that fk(S( j )(f))5S( j )(f), then the
elements of S( j )(f) are said to beperiodic singularities of period k.

An example of such a behavior is given by a particular case of the Gambier system13,14
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S xn11

yn11
D5f~xn ,yn!5S ~yn1~1/a2a21!!xn2a11

xn1yn

121/yn

D , ~5.5!

wherea is a nonzero complex constant. The system~5.5! admits a singularity of type II at any
point of the form (x,a). Then the first iterate of a point of this form is given by (1/a21,1
21/a). But the Jacobians off2 andf3 at (x,a) are nonzero and the singularity is confined. It is n
globally confined sincef4(x,a)5f(x,a)5(1/a21,121/a) and the singularity is periodic. The
system admits the following first integral:

I ~x,y!5
y323y11

y~y21!
. ~5.6!

Now, consider the second case considered in the proofs of Theorems 3.3 and 4.3:S(1)(f),L̄ i ,c

for somec. If the singularities ofS(1)(f) are generically confined ink steps, thenfk(S(1)(f)) has to
be a set of the form of the RHS of~3.8!. Since there are only finitely many of those, th
singularities cannot be globally confined. So, either they are periodic, orS(1)(f) lies inside the
singular set offk for all k greater than a certaink8. It must also be true in the backward directio
and if the singularities are not periodicS(1)(f) lies inside the singular set off2k for all k greater
than a certaink9. We will refer to these singularities asubiquitous singularities. An example of
such a behavior is given by the singularities of Eq.~2.18! of the form (x,0). These singularities ar
not confined but they are in the singular set off2 l for any l .0 and, therefore, these singularitie
are ubiquitous. Note that singularities of the form (0,y) are also ubiquitous.

Definition: A singularityx* PCp of a birational mapping is said to beubiquitous if there exist
a k8PN.0 such thatx* PS(fk) for any k.k8 and a k9PN.0 such thatx* PS(f2k) for any k
.k9.

Given a discrete dynamical system of the form~2.21! and an irreducible componentS( j )(f) of
the singular set, one would like to be able to obtain information on the first integrals. The only
one can know if a given irreducible component of the singular set lies inside a level set
studying the global behavior of the singularity. If the singularity is globally confined, thenS( j )(f)
does not lie inside a level set, but if it is ubiquitous, then it does. If the singularities are per
no conclusion can be reached.

Information on first integrals can be obtained by studying singularities of type I. Conside
pathspi defined in the two-dimensional case in the proof of Theorem 3.1. The number of
paths is bounded above by the maximum of the degrees ofP and Q. Moreover, for each
SI

( j )(f)úL̄c for all c, considerkj8 , the lowest valuekj can take. Thenkj821 is the number of
different pathspi realized by iterating a point close to the singularity under the mapping. He
the following corollary holds.

Corollary 5.2: Consider a two-dimensional birational mapping with rational first integral
5P/Q. Consider also the irreducible components of the singular set of the first type SI

( j )(f) for
which the singularities are globally confined. Then the maximum of the degrees of P and
bounded below by the number

(
j

~kj821!, ~5.7!

where kj8 is given by the lowest value kj of Theorem 3.1.
In example~2.2!, the singular set has a unique component in which singularities are glo

confined withk54 and the degree of the first integral is exactlyk2153. Note, however, that the
corollary only provides a lower bound as shown in the following example,
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S xn11

yn11
D5f~xn ,yn!5S 2yn1xn1

a

xn

xn

D , ~5.8!

wherea is a nonvanishing complex number. Here again, one can check that singularities
form (0,y) are confined in four steps and since confinement is global, the lower bound fo
numerator and denominator of a first integral is 3. However, the rational first integralI 5P/Q with
lowest degree possible onP andQ is given by

I 5~xn2yn!2~xnyn2a!2, ~5.9!

which is of degree 6, not 3~note, however, the rather degenerate nature of the first integral!.
Next, we turn our attention to singularities of type II in the case whenSII

( j )(f)úL̄ i ,c for all c
and alli. From the proof of Theorems 3.2 and 4.2, one sees that, as long as the singularities
confined, the iterates ofSII

( j )(f)úL̄c must be roots of bothPi andQi for all rational first integrals
Pi /Qi . Therefore, we have the following corollary.

Corollary 5.3: Consider an algebraically integrable p-dimensional birational mapping with
the rational first integral R5P/Q. Consider also an irreducible component of the singular se
the second type SII

( j )(f) whose singularities are globally confined. Let kj be the corresponding
confinement number. Then the finite elements of the set

ø
i 51

kj 21

f i~SI
( j )~ f!!

are roots of both P and Q.
This corollary is best illustrated in example~2.15! where (0,a) and (1/a,0) are roots of both

the numerator and denominator of the rational function~2.17!.
The previous corollary has an immediate consequence for the existence of polynomia

integrals.
Corollary 5.4: Consider an algebraically integrable p-dimensional birational mapping. If this

system admits singularities of the second type which are globally confined, then there
polynomial first integral.

The last result concerns the case when the irreducible component of the singular set lies
the closure of a level set of the first integral. In Secs. III and IV, it was found that iffk ~for k
PN) is well-defined onS( j )(f) and its Jacobian is nonzero, thenfk(S( j )(f)) must be a set of the
form of the RHS of~3.8!, hence it lies on a level set. This is stated in the following corollary

Corollary 5.5: Consider a p-dimensional birational mappingxn115f(xn) together with an
irreducible component of the singular set S( j )(f) for which the singularities are ubiquitous. Iffk is
well-defined almost everywhere on S( j )(f) and its Jacobian is nonzero, thenfk(S( j )(f)) lies inside
the closure of a level set of the first integrals.

Note that the casek50 should also be included meaning thatS( j )(f) itself lies inside the
closure of a level set of the first integrals.

This corollary can be applied to example~2.18!. Since the two sets of singularities ((x,0) and
(0,y)) are ubiquitous, they are level sets of the first integral~2.19!.

As a final example, consider the system

S xn11

yn11
D5f~xn ,yn!5S 2yn1xn1

a

xn
2

xn

D , ~5.10!

where a is a nonzero complex number. This example was first used in Ref. 17 to show
singularity confinement is not sufficient for integrability. Following example~2.2!, it is easy to
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show that singularities of the form (0,y) are generically globally confined. However, numeric
analysis performed on this system strongly suggests that it exhibits chaotic behavior.17

VI. CONCLUSIONS

In this article, we defined different types of singularities and their confinement propert
autonomous discrete birational dynamical systems. The theory of singularity confinemen
developed more than 10 years ago11,12,27and different types of singularities have been implici
used. Here, in order to relate algebraic integrability to singularity confinement we have
necessary to give a formal definition of different singularities and their confinement proper

In Secs. III and IV, we showed that algebraic integrability for birational mappings implies
singularities are either locally confined or some preimages are not well-defined.

In Sec. V, we studied global properties of birational mappings and showed that there are
types of behavior for singularities compatible with algebraic integrability. Namely, singular
are either globally confined, periodic, or ubiquitous. Remarkably, in the seminal papers desc
singularity confinement, similar behaviors were found heuristically to be compatible
integrability.11–13,15,27,28However, the classical approach relies mostly on a local analysis o
singularities. An important aspect of the results shown in this article is that global properties
to be satisfied for a system to be algebraically integrable. To unify these different concep
define the confinement property for a discrete system in the following way:

Definition: A birational mapping is said to have theconfinement property if its singularities
are, generically, globally confined, periodic, or ubiquitous.

Then the most important result of this article can be rephrased as follows.
Theorem: An algebraically integrable birational mapping has the confinement property.
In particular, this result shows that every mapping in the QRT-family15,26has the confinemen

property both in the symmetric and asymmetric cases. This fact also holds for the recent
covered class of integrable birational discrete systems discovered in Ref. 22. Moreover
examples such as system~5.10!, we have strong numerical evidence that the confinement prop
is necessary but not sufficient for algebraic integrability.

In this article, we also found sufficient conditions for nonintegrability. Essentially, if sin
larities are confined in one direction and not in the other, the system cannot be algebr
integrable.

Finally, the remaining corollaries of Sec. V provide information on the existence and deg
rational first integrals directly from the singularity confinement procedure.

All the examples of integrable discrete systems considered in this article have a first in
of genus 0 or 1. It is not possible to find a birational mapping of infinite order preservin
algebraic curve of genus 2 or higher. The argument proving this fact is due to Veselov~Ref. 31, p.
35!. It makes use of the Hurwitz theorem which tells us that the automorphic group of an alge
curve of genus 2 or higher is finite.

Another important question concerns the relation between the confinement property and
types of integrability for discrete dynamical systems~see, for example, Refs. 2, 4, 5, 17, and 3!.
In particular, in a work by Bellon,3 the proof that two-dimensional birational mappings admitti
a first integral satisfy thealgebraic entropy4,17 integrability condition is given.

Since the only mappings studied here were birational, we could have made use of the
tive space in which the point at infinity plays no particular role. Hence only singularities of
II should be studied. However, the ideas presented in this article could not be extended for th
of nonautonomous or discrete dynamical systems that are not birational. For instance, th
grable nonrational mapping derived in Refs. 18–20 could not be studied. It is therefore cru
give a definition of singularity confinement that can be applied to general discrete systems
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Mathematical properties of a new Levin-type sequence
transformation introduced by C ˇ ı́žek, Zamastil, and Ska´ la.
I. Algebraic theory

Ernst Joachim Wenigera)

Institut für Physikalische und Theoretische Chemie, Universita¨t Regensburg,
D-93040 Regensburg, Germany

~Received 25 June 2003; accepted 2 December 2003!

Čı́žek, Zamastil, and Ska´la @J. Math. Phys.44, 962–968~2003!# introduced in
connection with the summation of the divergent perturbation expansion of the
hydrogen atom in an external magnetic field a new sequence transformation which
uses as input data not only the elements of a sequence$sn%n50

` of partial sums, but
also explicit estimates$vn%n50

` for the truncation errors. The explicit incorporation
of the information contained in the truncation error estimates makes this and related
transformations potentially much more powerful than, for instance, Pade´ approxi-
mants. Special cases of the new transformation are sequence transformations intro-
duced by Levin@Int. J. Comput. Math. B3, 371–388~1973!# and Weniger@Com-
put. Phys. Rep.10, 189–371~1989!, Secs. 7–9; Numer. Algor.3, 477–486~1992!#
and also a variant of Richardson extrapolation@Philos. Trans. R. Soc. London, Ser.
A 226, 299–349~1927!#. The algebraic theory of these transformations—explicit
expressions, recurrence formulas, explicit expressions in the case of special remain-
der estimates, and asymptotic order estimates satisfied by rational approximants to
power series—is formulated in terms of hitherto unknown mathematical properties
of the new transformation introduced by Cˇ ı́žek, Zamastil, and Ska´la. This leads to
a considerable formal simplification and unification. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1643787#

I. INTRODUCTION

The most important and most versatile systematic approximation method in quantum p
is eigenvalue perturbation theory~see, for example, Ref. 137!. Thus, the question, whether pe
turbation expansions converge or diverge, is of principal importance. Already in 1952, Dy56

had argued that perturbation expansions in quantum electrodynamics should diverge. A
1970, Bender and Wu10–12 showed in their work on anharmonic oscillators that factorially div
gent perturbation expansions occur also in nonrelativistic quantum mechanics. In the foll
years, many other quantum systems were investigated, and in the overwhelming majority f
ally divergent perturbation expansions were found~see, for example, Ref. 65, Table I or th
articles reprinted in Ref. 98!. Consequently, summation methods are needed to give the dive
perturbation series of quantum physics any meaning beyond mere formal expansions
extract numerical information from them. A very readable discussion of the usefulness of su
tion and related techniques from a physicist’s point of view can be found in the monograp
Bender and Orszag.8

Factorially divergent power series occur also in asymptotic expansions for special func
However, special functions can normally be computed via a variety of different representa
Accordingly, in mathematics there is usually no compelling need to use divergent serie
computational purposes, whereas in quantum physics it is frequently quite difficult or eve
possible to find alternatives to divergent perturbation expansions. Consequently, summatio

a!Electronic mail: joachim.weniger@chemie.uni-regensburg.de
12090022-2488/2004/45(3)/1209/38/$22.00 © 2004 American Institute of Physics
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niques are far more important in physics than in mathematics. Nevertheless, the evalua
special functions by summing divergent asymptotic expansions can be remarkably effectiv~see,
for example, Refs. 147, 150, 154, 161!.

In physics, the best known and most widely used summation techniques are
summation,16,17which replaces a divergent perturbation expansion by a Laplace-type integra
the method of Pade´ approximants,110 which transforms the partial sums of a power series t
rational function. Both approaches have been remarkably successful, but they have—like a
numerical techniques—certain shortcomings and limitations. For example, the Borel met
very powerful, but conceptually and computationally very demanding. From a technical po
view, Pade´ approximants can be applied remarkably easily, but they are not necessarily po
enough to sum all perturbation series of interest. For example, Graffi and Grecchi70 showed
rigorously that Pade´ approximants are not able to sum the perturbation expansion of the
anharmonic oscillator whose series coefficients grow roughly like (3n)!/n1/2 @Ref. 11, Eq.~3!#.
Accordingly, it is worth while to look for alternative techniques which are at least in some c
capable of producing better summation results.

Padéapproximants accomplish an acceleration of convergence or a summation by conv
the partial sums of a power series to a doubly indexed sequence of rational functions. This
done by other, albeit less well known nonlinear transformations~see, for example, Refs. 20, 21
33, 146, 166!. It is not so well known among nonspecialists that some of these transforma
sum many strongly divergent power series much more effectively than Pade´ approximants can do
it. Particularly suited for the summation of strongly divergent series is a class of sequence
formations introduced by Levin99 in 1973. These transformations use as input data not only
elements of a slowly convergent or divergent sequence$sn%n50

` , whose elements may for instanc
be the partial sumssn5(k50

n ak of an infinite series, but also explicit remainder estima
$vn%n50

` . Several generalizations and extensions of Levin’s transformation were derived lat
instance in Refs. 146, Secs. 7–9 or in Ref. 148. Further details as well as the description of
other Levin-type transformations can be found in a recent review by Homeier.82

The explicit incorporation of the information contained in the remainder estimates$vn%n50
`

makes all Levin-type transformation potentially very powerful~see for example the numerica
examples in Refs. 140, 141, 146!. In the case of divergent alternating series, the so-ca
delta transformation @Ref. 146, Eq. ~8.4-4!# was found to be particularly
useful.18,48–50,85,91,146–153,155,156,158,162,163

However, sequence transformations in general or the Levin-type transformations men
above in particular are not only useful for the summation of divergent perturbation expansio
recent years, many other successful applications of Levin-type transformations have been r
in the literature~see, for example, Refs. 2, 4–6, 13–15, 19, 39, 48, 49, 54, 55, 57, 63, 66, 7
77–84, 86–90, 92, 94, 95, 97, 100, 103, 108, 109, 111–114, 116–119, 127–130, 132, 13
142, 144–152, 154, 158, 161, 164, 165!. This list does not claim to be complete, but it suffices
show that Levin-type transformations are extremely useful computational tools which dese
be more widely known.

In connection with the summation of the perturbation series for a hydrogen atom
external magnetic field, Cˇ ı́žek, Zamastil, and Ska´la introduced a new sequence transformat
@Ref. 50, Eq.~10!#, which in the notation of Ref. 146 can be expressed as follows:

G k
(n)~qm ,sn ,vn! 5

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J sn1 j

vn1 j

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J 1

vn1 j

, k,nPN0 . ~1.1!

Here as well as later in the text it is always assumed that)k5 l
n ak51 holds if it is a so-called empty

product withl .n.
The sequence transformation~1.1! contains the as yet unspecified parametersqm with 1<m

<k21. As discussed in Sec. II in more details, several other sequence transformations
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obtained by specifying the parametersqm . If we for instance chooseqm5b with b.0, we obtain
Levin’s transformationL k

(n)(b,sn ,vn) ~Ref. 99! in the notation of Ref. 146@Eq. ~7.1-7!#, if we
chooseqm5b1m21, we obtainS k

(n)(b,sn ,vn) @Ref. 146, Eq.~8.2-7!#, which is the parent
transformation of the so-called delta transformation@Ref. 146, Eq.~8.4-4!# mentioned above, and
if we chooseqm5j2m11 with j.0, we obtainM k

(n)(j,sn ,vn) @Ref. 146, Eq.~9.2-6!#. Then,
there is a sequence transformationC k

(n)(a,b,sn ,vn) @Ref. 148, Eq.~3.2!# which—depending on
the value of the parametera—interpolates between Levin’s transformationL k

(n)(b,sn ,vn) and
S k

(n)(b,sn ,vn). It is obtained by choosingqm5b1@m21#/a.
Thus, the transformationG k

(n)(qm ,sn ,vn) introduced by Cˇ ı́žek, Zamastil, and Ska´la provides
a unifying concept for a large and practically important class of sequence transformations,
results derived forG k

(n)(qm ,sn ,vn) can immediately be translated to the analogous results fo
various special cases. However, so far only the explicit expression for this transformation
ratio of two finite sums according to~1.1! is known @Ref. 50, Eq.~10!#, and many other math
ematical properties of interest are unknown.

In Sec. II, the explicit expression forG k
(n)(qm ,sn ,vn) is rederived by applying a suitabl

annihilating difference operator to the model sequence~2.12! according to~2.9!. This annihilation
operator approach was originally introduced in Ref. 146, Sec. 3.2 in connection with a simp
derivation of the explicit expression for Levin’s transformation99 and the construction of explici
expressions for other, closely related sequence transformations~Ref. 146, Secs. 7–9!. This anni-
hilation operator approach does not only produce the explicit expression~1.1!, but it also provides
a convenient starting point for the derivation of a recursive scheme for the numerators a
nominators in~1.1!, which is done in Sec. III, and for a theoretical convergence analysis, w
will be done in Ref. 160.

In Sec. IV, simple explicit remainder estimates introduced by Levin99 and Smith and Ford,140

which in the terminology of Ref. 146 yield theu, t, v, and d variants of Levin’s sequence
transformation, are used in combination withG k

(n)(qm ,sn ,vn). The effectiveness of these remai
der estimates is motivated and studied via some model sequences. Surprisingly, thev type remain-
der estimate produces more effective asymptotic estimates for the truncation errors of these
sequences than the other simple remainder estimates. Moreover, it is shown that allt type variants
considered in this article are actually analogousd type variants in disguise.

In Sec. V, variants ofG k
(n)(qm ,sn ,vn) are studied which closely resemble the Richards

extrapolation process.115 These variants can be used in the case of logarithmic convergencr
51 in ~4.7!!, whose acceleration constitutes a formidable computational problem.

In Sec. VI, theu, t, d, andv variants ofG k
(n)(qm ,sn ,vn) are applied to the partial sums of

~formal! power series. This produces rational approximants that resemble Pade´ approximants,
which are defined via the accuracy-through-order relationship~6.3!. In the case of theu and d
variants, the resulting rational expressions are actually Pade´-type approximants, which satisfy th
modified accuracy-through-order relationship~6.16!.22,23 In the case of thet and v variants, the
resulting expressions are slight generalizations of a Pade´-type approximant. With the help of th
accuracy-through-order relationship~6.16!, which defines Pade´-type approximants, the accuracy
through-order relationships satisfied by these rational functions can be derived easily.
accuracy-through-order relationships are needed if the rational approximants derived
G k

(n)(qm ,sn ,vn) are to be used for the prediction of unknown power series coefficients.
This article is concluded in Sec. VII by a short summary and a critical assessment o

essential features of the new Levin-type transformation introduced recently by Cˇ ı́žek, Zamastil,
and Ska´la.50

Only the mathematical properties ofG k
(n)(qm ,sn ,vn) and its various special cases are trea

in this article, albeit in a relatively detailed way. Anybody interested in other sequence tra
mations should consult the monograph by Brezinski and Redivo Zaglia.33 It contains a wealth of
material and provides a very readable introduction to a rapidly growing subfield of nume
mathematics. The older history of sequence transformations up to about 1945 is treate
monograph by Brezinski,26 and the more recent history is discussed in two articles, also
Brezinski.27,31
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Finally, one should not forget that the study of sequence transformations remains incom
without the simultaneous study of Pade´ approximants. Here, I recommend the book by Baker a
Graves-Morris.3

II. EXPLICIT EXPRESSIONS VIA ANNIHILATION OPERATORS

Let us assume that$sn%n50
` is a slowly convergent or divergent sequence, whose elements

for instance be the partial sumssn5(k50
n ak of an infinite series. Asequence transformationis a

rule which maps a sequence$sn%n50
` to a new sequence$sn8%n50

` with hopefully better numerica
properties.

The basic step for the construction of a sequence transformation is the assumption t
elements of a convergent or divergent sequence$sn%n50

` can be partitioned into a~generalized!
limit s and a remainderr n according to

sn 5 s1r n , nPN0 . ~2.1!

A sequence transformation tries to accomplish an acceleration of convergence or a sum
by eliminating the remaindersr n as effectively as possible from the input datasn with the help of
numerical techniques. In realistic problems, a sequence transformation can only eliminate a
mations to the remainders. Consequently, the transformed sequence$sn8%n50

` will also be of the
type of ~2.1!, which means thatsn8 can also be partitioned into the~generalized! limit s and a
transformed remainderr n8 according to

sn8 5 s1r n8 , nPN0 . ~2.2!

The transformed remainders$r n8%n50
` are in general different from zero for all finite values ofn.

However, convergence is accelerated if the transformed remainders$r n8%n50
` vanish more rapidly

than the original remainders$r n%n50
` according to

lim
n→`

sn82s

sn2s
5 lim

n→`

r n8

r n
5 0 , ~2.3!

and a divergent sequence is summed if the transformed remaindersr n8 vanish asn→`.
In practice, an in principle unlimited variety of different types of remainders can oc

Therefore, it is essential to make some assumptions—either explicitly or implicitly—which
vide the basis for the construction of a sequence transformation.

Let us assume that we have sufficient reason to believe that the elements of a se
$sn%n50

` can for allnPN0 be expressed by an expansion of the following type:

sn 5 s 1 (
j 50

`

cj c j~n! . ~2.4!

Thec j (n) are assumed to beknownfunctions ofn, but otherwise essentially arbitrary, and thecj

are unspecified coefficients independent ofn. Hence, the ansatz~2.4! incorporates convergent a
well as divergent sequences, depending upon the behavior of the functionsc j (n) asn→`.

If we want to accelerate the convergence of$sn%n50
` to its limit s or to sum it in the case o

divergence with the help of a sequence transformation, we have to compute approximations
remainders( j 50

` cjc j (n) and to eliminate them from the input data. However, the remainder
the sequence~2.4! contain an infinite number of unspecified coefficientscj . Consequently, a
complete determination of the remainders and their subsequent elimination cannot be a
plished by purely numerical means.

Let us also assume that the functions$c j (n)% j 50
` form an asymptotic sequence asn→`, i.e.,

that they satisfy for allj PN0 ,
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c j 11~n! 5 o~c j~n!! , n→` . ~2.5!

The best, which a purely numerical process can accomplish, is the elimination of a finite nu
of the leading terms of~2.4!. Obviously, this corresponds to the transformation of the seque
~2.4! to a new sequence$sn8%n50

` whose elements satisfy

sn8 5 s 1 (
j 50

`

cj8 ck1 j~n! , nPN0 , kPN . ~2.6!

The cj8 are numerical coefficients that depend onk as well as on the coefficientscj in ~2.4!.
In ~2.6!, the original remainders( j 50

` cjc j (n) are not completely eliminated from the ele
ments of the input sequence~2.4!. Since, however, the functions$c j (n)% j 50

` are by assumption an
asymptotic sequence according to~2.5!, the transformed remainders( j 50

` cj8ck1 j (n) in ~2.6!
should at least for sufficiently large values ofkPN have significantly better numerical propertie
than the original remainders( j 50

` cjc j (n).
Assumptions about then-dependence of the truncation errorsr n can be incorporated into th

transformation process via model sequences. In this approach, a sequence transformation
structed which produces the~generalized! limit s of the model sequence

sn 5 s 1 r n 5 s 1 (
j 50

k21

cj c j~n! , kPN , nPN0 , ~2.7!

if it is applied tok11 consecutive elementssn , sn11 ,... , sn1k of this model sequence. Since th
c j (n) are assumed to be known functions ofn, an element of this model sequence containk
11 unknowns, the~generalized! limit s and thek unspecified coefficientsc0 , c1 ,... , ck21 .
Accordingly, it follows from Cramer’s rule that a sequence transformation, which is exact fo
model sequence~2.7!, can be expressed as the ratio of two determinants~see, for example, Ref. 33
Sect. 1.5!. However, determinantal representations will not be considered here since the
computationally unattractive. Fortunately, the sequence transformation, which is exact f
general model sequence~2.7!, can also be computed recursively, as shown independently
Schneider,131 Håvie,75 and Brezinski.24 An alternative recursive scheme, which is more econo
cal than the original recursive scheme, was later obtained by Ford and Sidi.67

A detailed discussion of the construction of sequence transformations via model sequen
well as many examples can for instance be found in the book by Brezinski and Redivo Zagl33 or
in Ref. 146.

Levin-type sequence transformations try to make the transformation process more effici
explicitly utilizing the information contained in remainder estimates$vn%n50

` . Thus, a sequence
transformation is constructed which is exact for the elements of the model sequence@Ref. 146, Eq.
~3.2-9!#

sn 5 s 1 vnzn , nPN0 . ~2.8!

The remainder estimatesvn are assumed to be known, and the correction termszn should be
chosen in such a way that the productsvnzn provide sufficiently accurate and rapidly converge
approximations to actual remainders. The principal advantage of this approach is that on
correction terms$zn%n50

` have to be determined. If good remainder estimates can be found
determination ofzn and the subsequent elimination ofvnzn from sn often leads to substantially
better results than the construction and subsequent elimination of other approximations tor n .

The model sequence~2.8! has another indisputable advantage: There exists a system
approach for the construction of a sequence transformation which is exact for this model seq
Let us assume that alinear operatorT̂ can be found which annihilates for allnPN0 the correction
term zn according toT̂(zn)50. Then, a sequence transformation, which is exact for the m
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sequence~2.8!, can be obtained by applyingT̂ to @sn2s#/vn5zn . SinceT̂ annihilateszn and is by
assumption linear, the following sequence transformationT is exact for the model sequence~2.8!
@Ref. 146, Eq.~3.2-11!#:

T~sn ,vn! 5
T̂~sn /vn!

T̂~1/vn!
5 s . ~2.9!

The construction of sequence transformations via annihilation operators was introduced i
146, Sec. 3.2 in connection with a rederivation of Levin’s transformation99 and the construction o
some other, closely related sequence transformations~Refs. 146, Secs. 7–9!.

Later, this annihilation operator approach was discussed and extended in books by Brez28

and Brezinski and Redivo Zaglia33 and in articles by Brezinski,27,29–31 Brezinski and Matos,32

Brezinski and Redivo Zaglia,34–36 Brezinski and Salam,37 Homeier,82 Matos,102 and Weniger.148

Simple and yet very powerful sequence transformations result~Ref. 146, Secs. 7–9! if the
annihilation operatorT̂ in ~2.9! is based upon the finite difference operatorD defined byD f (n)
5 f (n11)2 f (n). In the following text, it will always be tacitly assumed thatD acts on the
variablen only. As is well known, thekth power of the finite difference operator annihilates
polynomialPk21(n) of degreek21 in n according toDkPk21(n)50. Thus, the correction term
zn in ~2.8! should be chosen in such a way that multiplication ofzn by some suitable quantity
wk(n) yields a polynomialPk21(n) of degreek21 in n. If such awk(n) can be found, then

Dk @wk~n! zn# 5 Dk Pk21~n! 5 0 ~2.10!

and the weighted difference operatorT̂5Dkwk(n) annihilateszn . Thus, the corresponding se
quence transformation~2.9! is given by the ratio

T k
(n)~wk~n!usn ,vn! 5

Dk@wk~n!sn /vn#

Dk@wk~n!/vn#
. ~2.11!

The sequence transformation~1.1! introduced by Cˇ ı́žek, Zamastil, and Ska´la can be con-
structed via the model sequence@Ref. 50, Eq.~9!#

sn 5 s 1 vn (
j 50

k21
cj

)
m51

j

~n1qm!

, kPN , nPN0 , ~2.12!

for which it is exact.
It will become clear later~compare~4.5! and the discussion related to it! that in ~2.12! as well

as in the model sequences~2.16!, ~2.19!, ~2.23!, and~2.27!, which can be derived from~2.12!, it
makes sense to assumec0Þ0.

Both in the model sequence~2.12! as well as in the sequence transformation, which is deri
from it, we want to admitn50. Moreover, this model sequence should have a consistent beh
for all nPN0 . In particular, the signs of the terms in~2.12! should not depend onn. Thus, we
normally requireqm.0 for 1<m<k21, but otherwise these parameters are essentially arbit

Multiplication of the sum in~2.12! by )m51
k21 (n1qm) yields( j 50

k21cj)m5 j 11
k21 (n1qm), which is

a polynomial of degreek21 in n. Thus,T̂5Dk)m51
k21 (n1qm) is the operator which annihilate

the correction term in~2.12!, and we obtain from~2.9! the following difference operator repre
sentation for the sequence transformation introduced by Cˇ ı́žek, Zamastil, and Ska´la @Ref. 50, Eq.
~10!#:
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G k
(n)~qm ,sn ,vn! 5

Dk H )
m51

k21

~n1qm!J sn

vn

Dk H )
m51

k21

~n1qm!J 1

vn

, k,nPN0 . ~2.13!

It will become clear later that this difference operator representation is in some sense
fundamental and more important than the explicit expression which can be derived easily fr
We only have to insert the well-known relationship

Dkf ~n! 5 ~21!k (
j 50

k

~21! j S k
j D f ~n1 j ! ~2.14!

into the numerator and denominator of~2.13! to obtain

G k
(n)~qm ,sn ,vn! 5

(
j 50

k

~21! j S k
j D H )

m51

k21

~n1 j 1qm!J sn1 j

vn1 j

(
j 50

k

~21! j S k
j D H )

m51

k21

~n1 j 1qm!J 1

vn1 j

, k,nPN0 . ~2.15!

In the case of large transformation ordersk, terms that are large in magnitude occur in t
binomial sums in the numerator and denominator of~2.15!. The same problem occurs also
explicit expressions for other Levin-type sequence transformation discussed later. In the c
someFORTRANcompilers, this can easily lead to overflow. To decrease the magnitude of the t
it has become customary to include an additional normalization factor. Thus, we divide num
and denominator of~2.15! by )m51

k21 (n1k1qm) and obtain~1.1!. Such an approach is alway
possible since the coefficients of a ratio like~2.15! are only defined up to a common nonze
factor.

If we choose in ~2.12! qm5b with b.0, we obtain the model sequence for Levin
transformation99 in the notation of Ref. 146, Eq.~7.1-2!,

sn 5 s 1 vn (
j 50

k21
cj

~b1n! j , kPN , nPN0 . ~2.16!

Thus, the corresponding annihilation operator is given byT̂5Dk(b1n)k21 and Levin’s
transformation99 can in the notation of Ref. 146, Eq.~7.1-7! be expressed as follows:

L k
(n)~b,sn ,vn!5G k

(n)~b,sn ,vn!5
Dk@~b1n!k21sn /vn#

Dk@~b1n!k21/vn#
~2.17!

5

(
j 50

k

~21! j S k
j D ~b1n1 j !k21

~b1n1k!k21

sn1 j

vn1 j

(
j 50

k

~21! j S k
j D ~b1n1 j !k21

~b1n1k!k21

1

vn1 j

, k,nPN0 .

~2.18!

If we choose in~2.12! qm5b1m21 with b.0, we obtain the following model sequenc
@Ref. 146, Eq.~8.2-1!# for the sequence transformationS k

(n)(b,sn ,vn) which is a truncated fac-
torial series involving Pochhammer symbols (b1n) j5G(b1n1 j )/G(b1n):

sn 5 s 1 vn (
j 50

k21
cj

~b1n! j
, kPN , nPN0 . ~2.19!
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The fundamental properties of factorial series are for instance discussed in books by Nie105

and Nörlund.106,107

The annihilation operator for the model sequence~2.19! is given byT̂5Dk(b1n)k21 and the
sequence transformationS k

(n)(b,sn ,vn), which is exact for the model sequence~2.19!, can be
expressed as follows@Ref. 146, Eq.~8.2-7!#:

S k
(n)~b,sn ,vn!5G k

(n)~b1m21,sn ,vn!5
Dk@~b1n!k21sn /vn#

Dk@~b1n!k21 /vn#
~2.20!

5

(
j 50

k

~21! j S k
j D ~b1n1 j !k21

~b1n1k!k21

sn1 j

vn1 j

(
j 50

k

~21! j S k
j D ~b1n1 j !k21

~b1n1k!k21

1

vn1 j

, k,nPN0 .

~2.21!

The ratio~2.21! was originally derived by Sidi134 for the construction of explicit expressions fo
Padéapproximants of some special hypergeometric series. However, Sidi’s article134 provides no
evidence that he intended to use this ratio as a sequence transformation. Moreover, I am no
of any article of Sidi where the properties of the sequence transformationS k

(n)(b,sn ,vn) were
discussed or where it was applied. Later,S k

(n)(b,sn ,vn) was used in the Master’s thesis o
Shelef133 for the numerical inversion of Laplace transforms, but it seems that this Master’s t
was not published elsewhere. The first refereed and generally accessible article, where a
cation of~2.21! as a sequence transformation was described, is,165 where theu-variant~4.13! was
employed@Ref. 165, Eq.~9!#. The mathematical properties of~2.21! as a sequence transformatio
and in particular its connection with factorial series were developed independently of Sid
Shelef in~Ref. 146, Secs. 8 and 13! ~compare also Ref. 8 of Ref. 165!.

If we choose in~2.12! qm5j2m11 with j.0, we obtain the following model sequenc
@Ref. 146, Eq.~9.2-1!# for the sequence transformationM k

(n)(j,sn ,vn):

sn 5 s 1 vn (
j 50

k21
cj

)
m51

j

~j1n2m11!

~2.22!

5 s 1 vn (
j 50

k21
~21! j cj

~2j2n! j
5 s 1 vn (

j 50

k21 cj8

~2j2n! j
, kPN , nPN0 . ~2.23!

Thus, the corresponding annihilation operator is given byT̂5Dk(2j2n)k21 and the sequence
transformationM k

(n)(j,sn ,vn) can be expressed as follows@Ref. 146, Eq.~9.2-6!#:

M k
(n)~j,sn ,vn!5G k

(n)~j2m11,sn ,vn!5
Dk@~2j2n!k21sn /vn#

Dk@~2j2n!k21 /vn#
~2.24!

5

(
j 50

k

~21! j S k
j D ~2j2n2 j !k21

~2j2n2k!k21

sn1 j

vn1 j

(
j 50

k

~21! j S k
j D ~2j2n2 j !k21

~2j2n2k!k21

1

vn1 j

, k,nPN0 .

~2.25!

If we choose in~2.12! qm5b1@m21#/a with a,b.0, we obtain the following mode
sequence@Ref. 148, Eq.~3.1!# for the sequence transformationC k

(n)(a,b,sn ,vn):
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sn 5 s 1 vn (
j 50

k21
cj

)
m51

j

~b1n1@m21#/a!

~2.26!

5 s 1 vn (
j 50

k21
a j cj

~a@b1n# ! j
5 s 1 vn (

j 50

k21 cj8

~a@b1n# ! j
, kPN , nPN0 . ~2.27!

Thus, the corresponding annihilation operator is given byT̂5Dk(a@b1n#)k21 and the sequence
transformationC k

(n)(a,b,sn ,vn) can be expressed as follows@Ref. 148, Eq.~3.2!#:

C k
(n)~a,b,sn ,vn!5G k

(n)~b1@m21#/a,sn ,vn!5
Dk@~a@b1n# !k21sn /vn#

Dk@~a@b1n# !k21 /vn#
~2.28!

5

(
j 50

k

~21! j S k
j D ~a@b1n1 j # !k21

~a@b1n1k# !k21

sn1 j

vn1 j

(
j 50

k

~21! j S k
j D ~a@b1n1 j # !k21

~a@b1n1k# !k21

1

vn1 j

,

k,nPN0 . ~2.29!

Depending upon the value ofa.0, the sequence transformationC k
(n)(a,b,sn ,vn) interpo-

lates betweenS k
(n)(b,sn ,vn) and Levin’s sequence transformationL k

(n)(b,sn ,vn). If we choose
a51 in ~2.29! and compare the resulting expression with~2.21!, we find

C k
(n)~1,b,sn ,vn! 5 S k

(n)~b,sn ,vn! , ~2.30!

and if we use

lim
a→`

~a@b1n1 j # !k21

ak21 5 lim
a→`

)
m51

k21

~b1n1 j 1@m21#/a! 5 ~b1n1 j !k21 ~2.31!

in ~2.29! and compare the resulting expression with~2.18!, we find

lim
a→`

C k
(n)~a,b,sn ,vn! 5 L k

(n)~b,sn ,vn! . ~2.32!

Thus, the construction of explicit expressions for the Levin-type sequence transform
G k

(n)(qm ,sn ,vn), L k
(n)(b,sn ,vn), S k

(n)(b,sn ,vn), M k
(n)(j,sn ,vn), and C k

(n)(a,b,sn ,vn) with
the help of annihilation operators is almost trivial. However, the annihilation operator app
does not only work in the case of the comparatively simple annihilating difference operat
~2.13!, ~2.17!, ~2.20!, ~2.24!, and ~2.28!. In Ref. 146, Sec. 7.4 it was shown that Richards
extrapolation115 and Sidi’s generalized Richardson extrapolation process135 can be derived by
using divided differences as annihilation operators. Then, it was shown by Brezinski and R
Zaglia,34,35 Brezinski and Matos,32 and Matos102 that the majority of the currently known trans
formations for scalar sequence can be derived via the annihilation operator approach. The
alization of this approach to vector and matrix sequences was discussed by Brezinski and
Zaglia36 and Brezinski and Salam.37

III. RECURRENCE FORMULAS

In the theory of sequence transformations it is relatively uncommon that closed form ex
sions of the type of~1.1!, ~2.18!, ~2.21!, ~2.25!, and ~2.29! are known. The majority of the
currently known sequence transformations are defined and computed via recursive scheme
a computational point of view, the lack of an explicit expression is normally no disadvantage
use of recurrence formulas is in most cases~much! more efficient, in particular if a whole se
quence of transforms must be computed simultaneously.
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It is an additional advantage of the annihilation operator approach described in Sec. II
permits a convenient construction of a recursive scheme for the numerators and denomina
G k

(n)(qm ,sn ,vn). For that purpose, let us define

Gk
(n) 5 Gk

(n)~qm ,un! 5 DkXk
(n) , k,nPN0 , ~3.1!

Xk
(n) 5 Xk

(n)~qm ,un! 5 )
m51

k21

~n1qm! un , k,nPN0 . ~3.2!

Comparison with~2.13! shows thatGk
(n) corresponds apart from a missing phase factor (21)k to

the numerator in~2.15! if we chooseun5sn /vn , and to the denominator in~2.15! if we choose
un51/vn .

The quantitiesXk
(n) satisfy fork>2 the two-term recursion

Xk
(n) 5 ~n1qk21! Xk21

(n) . ~3.3!

Next, we use the commutator relationship@see Ref. 64 or Ref. 146, Eq.~7.2-2!#

Dk ~n1qk21! 2 ~n1qk21! Dk 5 k E Dk21 , ~3.4!

which can be proven by complete induction. This commutator can be rewritten as follows:

Dk ~n1qk21! 5 @~n1k1qk21! E 2 ~n1qk21!# Dk21 . ~3.5!

Here,E is the shift operator defined byE f(n)5 f (n11).
The combination of~3.1!, ~3.2!, ~3.3!, and~3.5! yields

Gk
(n) 5 Dk ~n1qk21! Xk21

(n) ~3.6!

5 @~n1k1qk21! E 2 ~n1qk21!# Dk21 Xk21
(n) ~3.7!

5 ~n1k1qk21! Gk21
(n11) 2 ~n1qk21! Gk21

(n) , k>2 , nPN0 . ~3.8!

Finally, we rescaleGk
(n) according to

Gk
(n) 5 Gk

(n)~qm ,un! 5
Gk

(n)~qm ,un!

)
m51

k21

~n1k1qm!

, k,nPN0 . ~3.9!

If we combine ~3.8! and ~3.9! and take into account that~3.1! and ~3.2! imply G0
(n)5un and

G1
(n)5un112un , respectively, we obtain the following recursive scheme for the numerators

denominators of the sequence transformation~1.1! introduced by Cˇ ı́žek, Zamastil, and Ska´la @Ref.
50, Eq.~10!#:

G0
(n) 5 un , nPN0 , ~3.10a!

G1
(n) 5 un11 2 un , nPN0 , ~3.10b!

Gk11
(n) 5 Gk

(n11) 2
n1qk

n1k1qk11 )
m51

k21
n1k1qm

n1k1qm11
Gk

(n) , kPN , nPN0 . ~3.10c!

If we chooseun5sn /vn , this recursive scheme produces the numerator of~1.1!, and if we choose
un51/vn , we obtain the denominator of~1.1!.
                                                                                                                



or and

ing

-

e

1219J. Math. Phys., Vol. 45, No. 3, March 2004 A new Levin-type sequence transformation. I.

                    
As shown in Ref. 146, Secs. 7.3, 8.3, and 9.3, recursive schemes for the numerat
denominator sums of the sequence transformationsL k

(n)(b,sn ,vn). S k
(n)(b,sn ,vn), and

M k
(n)(j,sn ,vn) can be derived in the same way. The recursive scheme@Ref. 146, Eq.~7.2-8!#

L0
(n) 5 un , nPN0 , ~3.11a!

Lk11
(n) 5 Lk

(n11) 2
~b1n!~b1n1k!k21

~b1n1k11!k Lk
(n) , k,nPN0 , ~3.11b!

produces the numerator and denominator sums in~2.18! if we chooseun5sn /vn and un

51/vn , respectively. We obtain~3.11! from ~3.10! by choosingqm5b.
Similarly, the recursive schemes@Ref. 146, Eq.~8.3-7!#

S0
(n) 5 un , nPN0 , ~3.12a!

Sk11
(n) 5 Sk

(n11) 2
~b1n1k21!~b1n1k!

~b1n12k21!~b1n12k!
Sk

(n) , k,nPN0 , ~3.12b!

and @Ref. 146, Eq.~9.3-6!!#

M0
(n) 5 un , nPN0 , ~3.13a!

Mk11
(n) 5 Mk

(n11) 2
j1n2k11

j1n1k11
Mk

(n) , k,nPN0 , ~3.13b!

produce the numerator and denominator sums in~2.21! and ~2.25!, respectively. The recursive
schemes~3.12! and ~3.13! can be obtained from~3.10! by settingqm5b1m21 andqm5j2m
11, respectively.

If we setqm5b1@m21#/a in ~3.10!, we obtain the recursive scheme for the interpolat
transformationC k

(n)(a,b,sn ,vn):

C0
(n) 5 un , nPN0 , ~3.14a!

C1
(n) 5 un11 2 un , nPN0 , ~3.14b!

Ck11
(n) 5 Ck

(n11) 2
~a@b1n#1k21!~a@b1n1k# !k21

~a@b1n1k11# !k
Ck

(n) , kPN ,nPN0 . ~3.14c!

This scheme produces the numerator and denominator sums of~2.29! if we chooseun5sn /vn and
un51/vn , respectively. The recurrence formula published in Ref. 148, Eq.~3.3! contains errors.

IV. LEVIN’S EXPLICIT REMAINDER ESTIMATES

It follows from ~2.13!, ~2.14!, ~2.17!, ~2.20!, ~2.24!, and~2.28! that all sequence transforma
tions considered in this article can be expressed as follows:

Tk
(n)~sn ,vn! 5

Dk $Pk21~n! sn /vn%

Dk $Pk21~n!/vn%
, kPN , nPN0 . ~4.1!

Here,Pk21(n) is a polynomial of degreek21 in n. Obviously, the remainder estimates$vn%n50
`

have to satisfy the minimal requirement thatDk$Pk21(n)/vn%Þ0 for all finite k,nPN0 . In the
following text, this will always be assumed.

The weighted difference operatorDkPk21(n) in ~4.1! is linear. Accordingly, such a sequenc
transformation satisfies
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Tk
(n)~sn ,vn! 5 s 1

Dk $Pk21~n! @sn2s#/vn%

Dk $Pk21~n!/vn%
, kPN , nPN0 . ~4.2!

This property of Levin-type transformations has some far-reaching consequences. Let us
that we can find for a given sequence$sn%n50

` a sequence$vn%n50
` of perfectremainder estimates

such that

sn 5 s 1 r n 5 s 1 c vn , cÞ0 , nPN0 . ~4.3!

The polynomialPk21(n) in ~4.1! is of degreek21 in n, which implies that it is annihilated byDk

according toDkPk21(n)50. Thus, the transformation problem is now trivial since~4.2! produces
the ~generalized! limit s of the sequence~4.3! ~Ref. 146, Theorem 12-8!,

Tk
(n)~sn ,vn! 5 s 1

cDkPk21~n!

Dk$Pk21~n!/vn%
5 s , kPN , nPN0 . ~4.4!

Unfortunately, the perfect remainder estimates satisfying~4.3! can only be found for practi-
cally more or less irrelevant model problems. In the case of realistic problems, we have to be
modest and can only hope to find remainder estimates that reproduce the leading order asym
of the actual remainders@Ref. 146, Eq.~7.3-1!#,

r n 5 sn 2 s 5 vn @c1O~1/n!# , cÞ0 , n→` . ~4.5!

This asymptotic condition does not fix remainder estimates uniquely. All Levin-type transfo
tions considered in this article are invariant under the transformationvn→gvn with gÞ0. Ac-
cordingly, all Levin-type transformations considered here are homogeneous functions of d
one in the sequence elements and of degree zero in the remainder estimates@compare Ref. 146,
Eq. ~12.3-1!#. Moreover, given a sequence$r n%n50

` of remainders it is usually possible to find
variety of genuinely different sequences$vn%n50

` , $vn8%n50
` , $vn9%n50

` ,... of remainder estimates
which all satisfy the asymptotic condition~4.5!.

In some exceptional cases, explicit analytical expressions for remainder estimates c
found. Let us for instance assume that the elements of the sequence to be transformed
partial sumssn5(k50

n ak of an infinite series and that the termsak have a sufficiently simple
analytical structure. Then it may be possible to derive an explicit expression for the trunc
error, from which explicit remainder estimates satisfying~4.5! can be derived.

In principle, such an analytical approach would be highly desirable, in particular sin
should then be possible to construct for a given sequence$sn%n50

` more effective remainde
estimates$ṽn

( l )%n50
` that do not only reproduce the leading order asymptotics of the remain

according to~4.5!, but several of the leading orders according to

r n 5 sn 2 s 5 ṽn
( l ) @c1O~n2 l !# , cÞ0 , n→` , ~4.6!

wherel .1 is a fixed positive integer. Improved remainder estimates of that kind should le
more efficient Levin-type transformations. Unfortunately, only relatively little work has been d
on the asymptotics of truncation errors(k5n11

` ak of infinite series asn→` beyond the leading
order. Moreover, in many applications of Levin-type transformations in particular in physics,
the numerical values of a finite string of sequence elements or series coefficients are availa
no explicit analytical expressions. In such a case, remainder estimates have to be construct
the numerical values of the input data via simple rules.

Levin-type sequence transformations are not limited to strongly divergent perturbation e
sions. They are able to accelerate the convergence of many series and sequences if
remainder estimates are used. In this context, it is helpful to introduce first some termin
which is common in the literature on convergence acceleration methods. Many practically re
sequences$sn%n50

` , which converge to some limits, satisfy
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lim
n→`

sn112s

sn2s
5 lim

n→`

r n11

r n
5 r . ~4.7!

If 0 ,uru,1 holds, we say that the sequence$sn%n50
` convergeslinearly, if r51 holds, we say

that this sequence convergeslogarithmically, and if r50 holds, we say that it convergeshyper-
linearly. Of course,uru.1 implies that the sequence$sn%n50

` diverges.
In this article, only linearly and logarithmically convergent as well as divergent sequence

considered. Hyperlinearly convergent sequences as for example the partial sums of the
series for the exponential exp(z) normally converge so well that it is not worth while usin
sequence transformations.

On the basis of purely heuristic arguments Levin99 and later Smith and Ford140 suggested
some simple remainder estimates which according to experience nevertheless work rem
well in a large variety of cases. These simple remainder estimates can be motivated by cons
simple model problems. For that purpose, let us assume that the elements of a sequence$sn%n50

`

of partial sums(n50
n an behave as follows:

sn ; s 1 zn11 nu Fa01
a1

n
1

a2

n2 1 ¯G , n→` . ~4.8!

This is a fairly general model sequence, which is able to describe the asymptotics of
practically relevant sequences asn→` and which Levin99 probably had in mind when he intro
duced his simple remainder estimates. Foruzu,1, the sequence~4.8! converges linearly to its limit
s, for z51 and Re(u),0, it converges logarithmically, and foruzu.1 it diverges.

From ~4.8! we obtain viaan5Dsn21 the leading orders of the asymptotic expansion of
terms of the infinite series(n50

` an . For z51 and Re(u),0 ~logarithmic convergence!, we find
with the help of the computer algebra systemMAPLE

an5nu H ua0

n
1

~u21!@2a12ua0#

2n2 1
~u22!@6a21~u21!$ua023a1%#

6n3 1 O~n23!J ,

n→` , ~4.9!

and for uzu,1 ~linear convergence!, we find

an5zn nu H ~z21!a01
ua01~z21!a1

n
1

~u21!@2a12ua0#12~z21!a2

2n2 1 O~n23!J ,

n→` . ~4.10!

If we compare~4.8! and ~4.9!, we see that in the case of logarithmic convergence the t
an5Dsn215O(nu21) cannot reproduce the leading order of the remainderr n5sn2s5O(nu).
However, the productnan5O(nu) reproduces the leading order of the remainder of the mo
sequence~4.8!. Thus, it is an obvious idea to use the remainder estimate99

vn 5 ~b1n!Dsn21 5 ~b1n!an ~4.11!

in Levin’s general transformation~2.18!, yielding Levin’su transformation in the notation of@Ref.
146, Eq.~7.3-5!#:

uk
(n)~b,sn! 5 L k

(n)~b,sn ,~b1n!Dsn21! , k,nPN0 . ~4.12!

Since Levin’s remainder estimate~4.11! reproduces the leading order of the remainder of
model sequence~4.8! for z51 and Re(u),0 ~logarithmic convergence!, it is not surprising that the
u transformation is an effective accelerator for many monotone, logarithmically converge
quences and series.
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In the case of linear convergence (uzu,1 in ~4.8!!, the asymptotic expansion~4.10! indicates
that the terman itself and not the productnan would be a natural estimate for the truncation er
in ~4.8!. However, the Levin-type transformations considered in this article nevertheless acce
convergence if instead of the ‘‘right’’ sequence$vn%n50

` of remainder estimates satisfying~4.5!
‘‘wrong’’ remainder estimatesvn85(n1b) lvn with l PN0 are used~see Theorems 12-14–12-1
and the discussion on pp. 310–311 of Ref. 146!. The use of ‘‘wrong’’ remainder estimates on
leads—depending on the magnitude ofl—to a decrease of the efficiency of the transformat
process~compare for instance Ref. 146, Theorem 13-12!. With the help of a generalization o
Germain-Bonne’s formal theory of convergence acceleration68 it can be proved rigorously that th
u transformation accelerates linear convergence~Ref. 146, Theorems 12-10, 12-11, and 12-16!.

Moreover, theu transformation is also capable of summing effectively many alterna
divergent series. According to Smith and Ford140,141 the u transformation is among the mos
versatile and powerful sequence transformations that are currently known. This explain
Levin’s u transformation is used internally in the computer algebra system Maple in the ca
convergence problems~see for example Ref. 51, pp. 51 and 125 or Ref. 76, p. 258!.

The remainder estimate~4.11! can also be inserted into the explicit expressions~2.21!, ~2.25!,
and ~2.29! for S k

(n)(b,sn ,vn), M k
(n)(j,sn ,vn), andC k

(n)(a,b,sn ,vn), yielding theu-type vari-
ants@Ref. 146, Eqs.~8.4-2! and ~9.4-2!#

yk
(n)~b,sn! 5 S k

(n)~b,sn ,~b1n!Dsn21! , k,nPN0 , ~4.13!

Yk
(n)~j,sn! 5 M k

(n)~j,sn ,~2j2n!Dsn21! , k,nPN0 , ~4.14!

uC k
(n)~a,b,sn! 5 C k

(n)~a,b,sn ,~b1n!Dsn21! , k,nPN0 . ~4.15!

In the case of the sequence transformationG k
(n)(qm ,sn ,vn) introduced by Cˇ ı́žek, Zamastil, and

Skála @Ref. 50, Eq.~10!# we choose theu-type remainder estimates according to

vn 5 ~n1q0!Dsn21 5 ~n1q0!an , ~4.16!

whereq0>0 is a suitable constant. Inserting this into~1.1! yields

uG k
(n)~qm ,sn! 5 G k

(n)~qm ,sn ,~n1q0!Dsn21!

5

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J sn1 j

~n1 j 1q0!Dsn1 j 21

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J 1

~n1 j 1q0!Dsn1 j 21

, k,nPN0 .

~4.17!

As discussed in more detail in Sec. VI~see the discussion following~6.14!!, this u-type transfor-
mation loses some important exactness properties ifq0.0 is essentially arbitrary and does n
satisfyq0P$q1 ,...,qm% because then@)m51

k21 (n1qm)#/(n1q0) is rational inn and does not sim-
plify to a polynomial of degreek22 in n. Thus, an obvious idea would be to chooseq05q1 . The
otheru-type transformations~4.12!, ~4.13!, ~4.14!, and~4.15! all satisfyq05q1 .

The asymptotic expansion~4.10! indicates that in the case linear convergence the terman is a
natural estimate for the truncation error of the sequence~4.8! with uzu,1. Thus, Levin99 proposed
for linearly convergent sequences and series the remainder estimate

vn 5 Dsn21 5 an , ~4.18!

which yields Levin’st transformation in the notation of@Ref. 146, Eq.~7.3-7!#:

tk
(n)~b,sn! 5 L k

(n)~b,sn ,Dsn21! , k,nPN0 . ~4.19!
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The t transformation is an effective accelerator for linear convergence and in particula
alternating series.140,141With the help of a generalization of Germain–Bonne’s formal theory
convergence acceleration68 it can be proved rigorously that Levin’st transformation accelerate
linear convergence~Ref. 146, Theorems 12-10, 12-11, and 12-16!. It is also able to sum many
alternating divergent series. However, a comparison of~4.8! and ~4.9! indicates that thet trans-
formation should fail to accelerate logarithmic convergence~for more details, see Ref. 146, Theo
rem 14-1!.

The use of the remainder estimate~4.18! in the explicit expressions~2.21!, ~2.25!, and~2.29!
for S k

(n)(b,sn ,vn), M k
(n)(j,sn ,vn), andC k

(n)(a,b,sn ,vn) yields thet-type variants@Ref. 142,
Eqs.~8.4-3! and ~9.4-3!#

tk
(n)~b,sn! 5 S k

(n)~b,sn ,Dsn21! , k,nPN0 , ~4.20!

Tk
(n)~j,sn! 5 M k

(n)~j,sn ,Dsn21! , k,nPN0 , ~4.21!

tC k
(n)~a,b,sn! 5 C k

(n)~a,b,sn ,Dsn21! , k,nPN0 . ~4.22!

In the case of the sequence transformationG k
(n)(qm ,sn ,vn) we obtain in this way,

tG k
(n)~qm ,sn! 5 G k

(n)~qm ,sn ,Dsn21!5

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J sn1 j

Dsn1 j 21

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J 1

Dsn1 j 21

,

k,nPN0 . ~4.23!

Inspired by Aitken’sD2 formula,1 Levin99 introduced as a third simple remainder estimate

vn 5
Dsn21Dsn

Dsn212Dsn
5

anan11

an2an11
. ~4.24!

The usefulness of this remainder estimate can be demonstrated by applying it to the
sequence~4.8!. For z51 and Re(u),0 ~logarithmic convergence! we obtain

anan11

an2an11
5 nu H 2

ua0

u21
2

ua1

~u21!n

1F ~u11!H ua0

12
2

~u22!a2

u21 J 2
a1

2

ua0
G 1

~u21!n21O~n23!J , n→` , ~4.25!

and for uzu,1 ~linear convergence! we obtain

anan11

an2an11
5 zn11 nu H 2 a0 2

a1

n
2 F zua0

~z21!2 1a2G 1

n2 1O~n23!J , n→` . ~4.26!

It is a remarkable feature of the remainder estimate~4.24! that it does not only reproduce th
leading order of the model sequence~4.8!, but both in the case of linear and logarithmic conv
gence also the next one. Thus, in the case of the model sequence~4.8! the reminder estimate~4.24!
satisfies~4.6! with l 52, whereas Levin’s other two remainder estimates~4.11! and ~4.18! only
satisfy~4.5!. Of course, it would be desirable to find other remainder estimate which are also
to reproduce more than the leading order asymptotics of the truncation error. Further resear
this direction should be of considerable interest.

The use of the remainder estimate~4.24! in ~2.18! yields Levin’s v transformation in the
notation of@Ref. 146, Eq.~7.3-11!#:
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vk
(n)~b,sn! 5 L k

(n)~b,sn ,Dsn21Dsn /@Dsn212Dsn# ! , k,nPN0 . ~4.27!

Levin’s v transformation is an effective accelerator for many linearly and logarithmic
convergent sequences and series. With the help of a generalization of Germain–Bonne’s
theory of convergence acceleration68 it can be proved rigorously that thev transformation accel-
erates linear convergence~Ref. 146, Theorems 12-10 and 12-11!. Thev transformation is also able
to sum many alternating divergent series. According to Smith and Ford,140,141thev transformation
has similar properties as theu transformation, which means that it is among the most versatile
powerful sequence transformations that are currently known.

The use of the remainder estimate~4.24! in the explicit expressions~2.21!, ~2.25!, and~2.29!
for S k

(n)(b,sn ,vn), M k
(n)(j,sn ,vn), andC k

(n)(a,b,sn ,vn) yields thev-type variants@Ref. 146,
Eqs.~8.4-5! and ~9.4-5!#

wk
(n)~b,sn! 5 S k

(n)~b,sn ,Dsn21Dsn /@Dsn212Dsn# ! , k,nPN0 , ~4.28!

Fk
(n)~j,sn! 5 M k

(n)~j,sn ,Dsn21Dsn /@Dsn212Dsn# ! , k,nPN0 , ~4.29!

vC k
(n)~a,b,sn! 5 C k

(n)~a,b,sn ,Dsn21Dsn /@Dsn212Dsn# ! , k,nPN0 . ~4.30!

In the case of the sequence transformationG k
(n)(qm ,sn ,vn) we obtain

vG k
(n)~qm ,sn! 5 G k

(n)~qm ,sn ,Dsn21Dsn /@Dsn212Dsn# !

5

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J ~Dsn1 j 212Dsn1 j !sn1 j

Dsn1 j 21Dsn1 j

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J Dsn1 j 212Dsn1 j

Dsn1 j 21Dsn1 j

, k,nPN0 .

~4.31!

The best simple estimate for the truncation error of a strictly alternating convergent se
the first term not included in the partial sum~Ref. 96, p. 259!. Moreover, the first term neglecte
is also an estimate of the truncation error of a divergent hypergeometric series2F0(a,b,2z) with
a,b,z.0 ~Ref. 40, Theorem 5.12-5!. Accordingly, Smith and Ford140 proposed the remainde
estimate

vn 5 Dsn 5 an11 . ~4.32!

This remainder estimate can also be motivated via the model sequence~4.8!. For z51 and
Re(u),0 ~logarithmic convergence!, we find

an115nu H ua0

n
1

~u21!@2a11ua0#

2n2 1
~u22!@6a21~u21!$ua013a1%#

6n3 1 O~n23!J ,

n→`, ~4.33!

and for uzu,1 ~linear convergence!, we find

an115zn11 nu H ~z21!a01
zua01~z21!a1

n
1

z~u21!@2a11ua0#12~z21!a2

2n2

1 O~n23!J , n→`. ~4.34!
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The use of the remainder estimate~4.32! yields Levin’s d transformation in the notation o
@Ref. 146, Eq.~7.3-9!#,

dk
(n)~b,sn! 5 L k

(n)~b,sn ,Dsn! , k,nPN0 . ~4.35!

If we compare~4.33! with ~4.9! and~4.34! with ~4.10!, we see that Levin’sd transformation
should have similar properties as Levin’st transformation. This is confirmed by experience: T
d transformation is a powerful accelerator for linear convergence and in particular for altern
series, and is also able to sum many alternating divergent series, but fails to accelerate loga
convergence. With the help of a generalization of Germain–Bonne’s formal theory of conver
acceleration68 it can be proved rigorously that thed transformation accelerates linear convergen
~Ref. 146, Theorems 12-10, 12-11, and 12-16!.

The use of the remainder estimate~4.32! in the explicit expressions~2.21!, ~2.25!, and~2.29!
for S k

(n)(b,sn ,vn), M k
(n)(j,sn ,vn), andC k

(n)(a,b,sn ,vn) yields thed-type variants@Ref. 146,
Eqs.~8.4-4! and ~9.4-4!#

dk
(n)~b,sn! 5 S k

(n)~b,sn ,Dsn! , k,nPN0 , ~4.36!

Dk
(n)~j,sn! 5 M k

(n)~j,sn ,Dsn! , k,nPN0 , ~4.37!

dC k
(n)~a,b,sn! 5 C k

(n)~a,b,sn ,Dsn! , k,nPN0 . ~4.38!

As already mentioned in Sec. I, the delta transformation~4.36! was found to be particularly
powerful in the case of factorially and hyperfactorially divergent alternating power s
as they for instance occur in the perturbation expansions of quan
physics18,48–50,85,91,146–153,155,156,158,162,163or in asymptotic expansions for speci
functions.147,150,154,161

In the case of the sequence transformationG k
(n)(qm ,sn ,vn) we obtain

dG k
(n)~qm ,sn! 5 G k

(n)~qm ,sn ,Dsn!5

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J sn1 j

Dsn1 j

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J 1

Dsn1 j

,

k,nPN0 . ~4.39!

In practical applications it happens relatively often that asymptotic expressionsan
(`) for the

termsan of a series are known that reproduce the leading order ofan asn→`. For example, the
coefficientscn of many divergent perturbation expansions, which are power series in some
pling constantg, satisfy~see for example, Ref. 65, Table I!

cn 5 ~21!n G~an1b! Rn @C 1 O~1/n!# , n→` , ~4.40!

wherea, b, C, andR are known constants.
The remainder estimate~4.24!, which leads to Levin’sv transformation, is in some sens

exceptional since reproduces not only the leading order of the truncation errors of the
sequence~4.8! as n→`, but also the next one. Normally, we can only expect that the sim
remainder estimates~4.11!, ~4.18!, ~4.24!, and~4.32! reproduce the leading order of the remaind
sn2s. However, the leading order of the truncation error is also reproduced if we use in~4.11!,
~4.18!, ~4.24!, and~4.32! not an andan11 but their limiting expressionsan

(`) andan11
(`) . Whether

this improves the transformation results or not, depends on the problem under considerati
cannot be decided by simple considerations. Nevertheless, it may well be worth a try. Ideas
kind were discussed in more detail in Refs. 83, 149 and also by Cˇ ı́žek, Zamastil, and Ska´la.50
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The t-type transformations~4.19!, ~4.20!, ~4.21!, ~4.22!, and~4.23! use the last terman of the
partial sumsn5(k50

n ak as an estimate for the truncation errorr n52(k5n11
` ak , whereas the

analogousd-type transformations~4.35!, ~4.36!, ~4.37!, ~4.38!, and~4.39! use the first terman11

not included in the partial sum as the remainder estimate. Thus, it looks thatt-type transformation
utilize the available information in some sense more effectively thand-type transformation since
they usean11 also for the construction of the next partial sumsn11 . This is, however, a superficia
judgment and it can be shown easily thatt-type transformations are actuallyd-type transforma-
tions is disguise.

It follows from ~2.13! that thet-type variant~4.23! of G k
(n)(qm ,sn ,vn) can be expressed a

follows:

tG k
(n)~sn ,Dsn21! 5

Dk H )
m51

k21

~n1qm!J sn

Dsn21

Dk H )
m51

k21

~n1qm!J 1

Dsn21

, k,nPN0 . ~4.41!

Next, we usesn5sn211Dsn21 in the numerator on the right-hand side and take into account
Dk annihilates polynomials of degreek21 in n. Thus,

Dk H )
m51

k21

~n1qm!J sn

Dsn21
5 Dk H )

m51

k21

~n1qm!J F sn21

Dsn21
1

Dsn21

Dsn21
G ~4.42!

5 Dk H )
m51

k21

~n1qm!J sn21

Dsn21
. ~4.43!

Inserting this into~4.41! shows that thet-type variant~4.23! of G k
(n)(qm ,sn ,vn) actually corre-

sponds to thed-type variant~4.39! with a shifted indexn85n21 and modified parametersqm8
5qm11:

tG k
(n)~qm ,sn!5G k

(n21)~qm11,sn21 ,Dsn21!5dG k
(n21)~qm11,sn21! ~4.44!

5

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J sn1 j 21

Dsn1 j 21

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J 1

Dsn1 j 21

,

k,nPN . ~4.45!

The othert-type transformations~4.19!, ~4.20!, ~4.21!, and~4.22! can also be expressed by th
correspondingd-type transformations~4.35!, ~4.36!, ~4.37!, and~4.38! according to

tk
(n)~b,sn! 5 L k

(n21)~b11,sn21 ,Dsn21! 5 dk
(n21)~b11,sn21! , ~4.46!

tk
(n)~b,sn! 5 S k

(n21)~b11,sn21 ,Dsn21! 5 dk
(n21)~b11,sn21! , ~4.47!

Tk
(n)~j,sn! 5 M k

(n21)~j11,sn21 ,Dsn21! 5 Dk
(n21)~j11,sn21! , ~4.48!

tC k
(n)~a,b,sn! 5 C k

(n21)~a,b11,sn21 ,Dsn21! 5 dC k
(n21)~a,b11,sn21! . ~4.49!

In these expressions, the casen50 deserves special consideration. Since we tacitly ass
s2m50 with mPN, the term withj 50 in the numerator sum of~4.45! vanishes forn50. This
can also be proved directly from the numerator sum in~4.23!. If we write thereDsn1 j 215an1 j

andsn1 j5(n50
n1 j an , we obtain forn50:
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(
j 50

k

~21! j S k
j D H )

m51

k21

~ j 1qm!J (
n50

j
an

aj

5 (
j 50

k

~21! j S k
j D H )

m51

k21

~ j 1qm!J F (
n50

j 21
an

aj
1

aj

aj
G ~4.50!

5(
j 51

k

~21! j S k
j D H )

m51

k21

~ j 1qm!J (
n50

j 21
an

aj
. ~4.51!

Here, we made use of the fact that(n50
j 21 an is for j 50 an empty sum which is zero. Thus, w

obtain for thet-type variant ofG k
(0)(qm ,s0 ,v0) the following expression:

tG k
(0)~qm ,s0! 5 G k

(21)~qm11,s21 ,Ds21! 5 dG k
(21)~qm11,s21! ~4.52!

5

(
j 51

k

~21! j S k
j D H )

m51

k21
~ j 1qm!

~k1qm! J sj 21

Dsj 21

(
j 50

k

~21! j S k
j D H )

m51

k21
~ j 1qm!

~k1qm! J 1

Dsj 21

, kPN . ~4.53!

The fact thatt-type transformations are actuallyd-type transformations in disguise can also
deduced from the recursive scheme~3.10! which contains all the other recursive schemes of S
III as special cases. If we choose the initial conditions in~3.10a! according toun5sn /Dsn21 , then
~3.10b! implies G1

(n)5D@sn /Dsn21#5D@sn21 /Dsn21#. Thus,~3.10c! with k>1 yields the same
results as if we had started the recursion with thed-type initial conditionsun5sn21 /Dsn21 .

Numerical cancellation increases the risk of losing accuracy. Therefore, it is probably
not to use thet-type initial conditionsun5sn /Dsn21 in the recursive scheme~3.10! or in any of
its special cases, but instead thed-type initial conditionsun5sn21 /Dsn21 .

V. RICHARDSON-TYPE TRANSFORMATIONS

Some of the most effective accelerators for logarithmically convergent sequences and
(r51 in ~4.7!!, which abound in scientific applications and which constitute formidable com
tational problems, can be derived with the help of interpolation theory. Thus, the existenc
function S of a continuous variable is postulated which coincides on a set of discrete argu
$xn%n50

` with the elements of the sequence$sn%n50
` to be transformed:

S~xn! 5 sn , nPN0 . ~5.1!

This ansatz reduces the convergence acceleration problem to an extrapolation problem. If
string sn , sn11 , ..., sn1k of k11 sequence elements is known, one can construct an approx
tion Sk(x) to S(x) which satisfies thek11 interpolation conditionsSk(xn1 j )5sn1 j with 0< j
<k. Next, the value ofSk(x) has to be determined forx→x` . If this can be done,Sk(x`) should
provide a better approximation to the limits5s` of the sequence$sn%n50

` than the last sequenc
elementsn1k used for its construction.

The most important interpolating functions are either polynomials or rational functions w
lead to different convergence algorithm~see, for example, Ref. 146, Sec. 6!. Here, only polyno-
mial interpolation will be considered. Thus, it is assumed that thekth order approximantSk(x) is
a polynomial of degreek in x,

Sk~x! 5 g0 1 g1x 1 ¯ 1 gkx
k , kPN , ~5.2!

or equivalently that the model sequence for the Richardson extrapolation scheme,115 whose con-
struction will be sketched below, is a polynomial of degreek in the interpolation pointsxn ,
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sn 5 s 1 (
j 50

k21

cjxn
j 11 , kPN , nPN0 . ~5.3!

For polynomials, the most natural extrapolation point isx`50. Accordingly, we assume tha
the interpolation pointsxn satisfy the conditions

x0.x1.¯.xm.xm11.¯.0 , ~5.4a!

lim
n→`

xn 5 0 . ~5.4b!

The choicex`50 implies that the approximation to the limits5s` in ~5.3! is to be identified with
the constant termg0 of the polynomial~5.2!.

Several different methods for the construction of interpolating polynomialsSk(x) are known
~see, for example, Ref. 52, Chap. III!. Since we are only interested in the constant termg0 of an
interpolating polynomialSk(x) and since in most applications it is desirable to compute simu
neously a whole string of approximantsS0(0),S1(0),S2(0),... with increasing polynomial degree
the most economical choice is Neville’s scheme104 for the recursive computation of interpolatin
polynomials. If we setx50 in Neville’s scheme, we obtain the following recursive scheme@see,
for example, Ref. 33, p. 73 or Ref. 146, Eq.~6.1-5!#

N 0
(n)~sn ,xn! 5 sn , nPN0 , ~5.5a!

Nk11
(n) ~sn ,xn! 5

xnN k
(n11)~sn11 ,xn11! 2 xn1k11N k

(n)~sn ,xn!

xn 2 xn1k11
, k,nPN0 . ~5.5b!

In the literature on convergence acceleration, this variant of Neville’s scheme is called Richa
extrapolation.115 In Ref. 146, Sec. 7.4 it was shown that this recursive scheme can also be d
with the help of the of the annihilation operator approach described in Sec. II by using di
differences as annihilation operators.

In most applications, Richardson extrapolation is used in combination with the interpo
pointsxn51/(n1b) with b.0. Then, the model sequence~5.3! assumes the following form:

sn 5 s 1
1

b1n (
j 50

k21
cj

~b1n! j , kPN , nPN0 . ~5.6!

This model sequence can be obtained from the model sequence~2.16! for Levin’s sequence
transformation by settingvn51/(b1n). Consequently,N k

(n) with xn51/(b1n) is a special
Levin transformation and can be expressed as the ratio of two finite sums according to~2.18!.
Since, however, the denominator of the ratio~2.18! can forvn51/(b1n) be expressed in close
form, N k

(n) possesses an even simpler closed form expression as a finite sum@see, for example,
Ref. 101, Lemma 2.1 on p. 313, or Ref. 146, Eq.~7.3-20!#

Lk
(n)~b,sn! 5 N k

(n)~sn ,1/~b1n!! 5 L k
n~b,sn ,1/~b1n!!

5 ~21!k (
j 50

k

~21! j
~b1n1 j !k

j ! ~k2 j !!
sn1 j , k,nPN0 . ~5.7!

Moreover, the recursive scheme~5.5! assumes the following form@Ref. 146, Eq.~7.3-21!#:

L0
(n)~b,sn! 5 sn , nPN0 , ~5.8a!
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Lk11
(n) ~b,sn! 5 Lk

(n11)~b,sn11! 1
b1n

k11
DLk

(n)~b,sn! , k,nPN0 . ~5.8b!

In the case of doubly indexed quantities likeLk
(n) it is always assumed thatD only acts on the

superscriptn but not on the subscriptk, i.e., DLk
(n)5Lk

(n11)2Lk
(n) .

A Richardson-type variant of the sequence transformation~1.1! introduced by Cˇ ı́žek, Za-
mastil, and Ska´la @Ref. 50, Eq.~10!# can be constructed easily. We only have set in~2.12! vn

51/(n1q0), whereq0 is a suitable constant. This yields the model sequence

sn 5 s 1 (
j 50

k21
cj

)
m51

j

~n1qm!

, k,nPN0 . ~5.9!

Thus, Dk)m50
k21 (n1qm) is the annihilation operator for the remainder of this model seque

yielding the following Richardson-type variant of the sequence transformation introduce
Čı́žek, Zamastil, and Ska´la @Ref. 50, Eq.~10!#:

RG k
(n)~qm ,sn! 5 G k

(n)~qm ,sn ,n1q0! 5

DkH )
m51

k21

~n1qm!J sn

DkH )
m51

k21

~n1qm!J , k,nPN0 . ~5.10!

Of course, this transformation can be expressed as the ratio of two finite sums according to~1.1!.
However, the denominator of~5.10! can be expressed in closed form. First, we observe that
products in the difference operator representation~5.10! are polynomials of degreek in n, satis-
fying

)
m50

k21

~n1qm! 5 nk 1 ~q01q11¯1qk21!nk21 1 ¯ . ~5.11!

Next, we use the well known relationshipDknk5k!, which can for instance be derived by itera
ing the commutator relationship~3.4!, and take into account that all polynomials of degr
0,1,...,k21 in n are annihilated byDk. Thus,

Dk )
m50

k21

~n1qm! 5 k! . ~5.12!

With the help of~2.14! we then obtain from~5.10!,

RG k
(n)~qm ,sn! 5 G k

(n)~qm ,sn ,1/~n1q0!! 5 ~21!k (
j 50

k21

~21! j

)
m51

k21

~n1 j 1qm!

j ! ~k2 j !!
sn1 j ,

k,nPN0 . ~5.13!

If we set hereqm5b, we obtain the sequence transformation~5.7! according to

RG k
(n)~b,sn! 5 G k

(n)~b,sn ,1/~b1n!! 5 Lk
(n)~b,sn! , k,nPN0 . ~5.14!

We can derive a recursive scheme forRG k
(n)(qm ,sn) by means of the techniques described

Sec. III. For that purpose, we express the numerator of the ratio on the right-hand side of~5.10! as
follows:

Qk
(n) 5 Qk

(n)~qm ,sn! 5 DkYk
(n) , k,nPN0 , ~5.15!

Yk
(n) 5 Yk

(n)~qm ,sn! 5 )
m50

k21

~n1qm! sn , k,nPN0 . ~5.16!
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The quantitiesYk
(n) satisfy fork>1 the two-term recursion

Yk
(n) 5 ~n1qk21! Yk21

(n) . ~5.17!

Next, we combine~5.15!–~5.17! with the commutator relationship~3.5!, yielding

Qk
(n)5Dk ~n1qk21! Yk21

(n) ~5.18!

5@~n1k1qk21! E 2 ~n1qk21!# Dk21 Yk21
(n) ~5.19!

5~n1k1qk21! Qk21
(n11) 2 ~n1qk21! Qk21

(n) , kPN , nPN0 . ~5.20!

Now, we only have to divide the recurrence formula~5.20! for the numerator of~5.10! by the
denominator according to~5.12! to obtain the recursive scheme

RG k
(0)~qm ,sn! 5 sn , nPN0 , ~5.21a!

RGk11
(n) ~qm ,sn! 5 RG k

(n11)~qm ,sn11! 1
n1qk

k11
DRG k

(n)~qm ,sn! , k,nPN0 . ~5.21b!

If we choose in~5.21! qm5b, we obtain the recursive scheme~5.8! for Lk
(n)(b,sn).

By specializing the parametersqm in ~5.13! and~5.21!, other Richardson-type transformation
and their recursive schemes can be obtained. If we chooseqm5x1m with x.0, we obtain the
Richardson-type variant of the sequence transformation~2.21! @Ref. 146, Eq.~8.4-11!#,

F k
(n)~x,sn! 5 RG k

(n)~x1m,sn! 5 S k
(n)~x11,sn ,1/~x1n!!

5 ~21!k (
j 50

k

~21! j
~x1n1 j !k

j ! ~k2 j !!
sn1 j , k,nPN0 , ~5.22!

and its recursive scheme@Ref. 146, Eq.~8.4-12!#

F 0
(n)~x,sn! 5 sn , nPN0 , ~5.23a!

Fk11
(n) ~x,sn! 5 F k

(n11)~x,sn11! 1
x1n1k

k11
DF k

(n)~x,sn! , k,nPN0 . ~5.23b!

If we choose in~5.13! and~5.21! qm5z2m with z.0, we obtain the Richardson-type varia
of the sequence transformation~2.25! @Ref. 146, Eq.~9.4-11!#,

P k
(n)~z,sn! 5 RG k

(n)~z2m,sn! 5 M k
(n)~z21,sn ,21/~z1n!!

5 (
j 50

k

~21! j
~2z2n2 j !k

j ! ~k2 j !!
sn1 j , k,nPN0 , ~5.24!

and its recursive scheme@Ref. 146, Eq.~9.4-12!#

P 0
(n)~z,sn! 5 sn , nPN0 , ~5.25a!

Pk11
(n) ~z,sn! 5 P k

(n11)~z,sn11! 1
z1n2k

k11
DP k

(n)~z,sn! , k,nPN0 . ~5.25b!

If we choose in~5.13! and ~5.21! qm5x1m/a with x,a.0, we obtain the Richardson-typ
variant of the sequence transformation~2.29!,
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RC k
(n)~a,x,sn! 5 RG k

(n)~x1m/a,sn! 5 C k
(n)~a,x11,sn ,1/~x1n!!

5
~21!k

ak (
j 50

k

~21! j
~a@x1n1 j # !k

j ! ~k2 j !!
sn1 j , k,nPN0 ,

~5.26!

and its recursive scheme

RC 0
(n)~a,x,sn! 5 sn , nPN0 , ~5.27a!

RCk11
(n) ~a,x,sn! 5 RC k

(n11)~a,x,sn11! 1
x1n1k/a

k11
D RC k

(n)~a,x,sn! , k,nPN0 .

~5.27b!

Depending upon the value ofa.0, RC k
(n)(a,x,sn) interpolates between the Richardson-ty

transformationsLk
(n)(b,sn) andF k

(n)(x,sn). If we choose in~5.26! a51 and compare the result
ing expression with~5.22!, we find

RC k
(n)~1,x,sn! 5 F k

(n)~x,sn! , ~5.28!

and if we use in~5.26!,

lim
a→`

~a@x1n1 j # !k

ak 5 lim
a→`

)
m50

k21

~x1n1 j 1m/a! 5 ~x1n1 j !k ~5.29!

together withx5b and compare the resulting expression with~5.7!, we find

lim
a→`

RC k
(n)~a,b,sn! 5 Lk

(n)~b,sn! . ~5.30!

VI. RATIONAL APPROXIMANTS

In theoretical physics and in applied mathematics, Pade´ approximants106 have become the
standard tool to overcome problems with slowly convergent or divergent power series.´
approximants can also be viewed as a special class of sequence transformations since the
form the partial sums

f n~z! 5 (
n50

n

gn zn , nPN0 , ~6.1!

of a ~formal! power series for some functionf into a doubly indexed sequence of rational fun
tions ~see, for example, Ref. 3, Chap. 1!:

@ l /m# f~z! 5
P[ l /m]~z!

Q[ l /m]~z!
5

p01p1z1¯1plz
l

11q1z1¯1qmzm , l ,mPN0 . ~6.2!

We also obtain rational approximants if theu, t, d, andv variants considered in Sec. IV ar
applied to the partial sums~6.1!. Nevertheless, there are some substantial differences bet
most sequence transformations and Pade´ approximants. Levin-type transformations can be co
puted via their explicit expressions, although it is normally preferable to compute them r
sively. The coefficientsp0 ,..., pl andq1 ,..., qm of the two Pade´ polynomialsP[ l /m] andQ[ l /m] in
~6.2! are, however, chosen in such a way that the Taylor expansion of the ratioP[ l /m] (z)/Q[ l /m] (z)
at z50 agrees with the power series forf as far as possible:
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Q[ l /m]~z! f ~z! 2 P[ l /m]~z! 5 O~zl 1m11! , z→0 . ~6.3!

This asymptotic condition leads to a system ofl 1m11 linear equations. If this system of equ
tions has a solution, it yields the coefficients of the polynomialsP[ l /m] (z) andQ[ l /m] (z) ~see, for
example, Ref. 3, Chap. 1!.

In most practical applications, Pade´ approximants are not computed via the defining system
equations, but with the help of recursive algorithms as for example, Wynn’s epsilon algorith167

Nevertheless, the accuracy-through-order relationship~6.3! guarantees that the Taylor expansi
of @ l /m# f(z) reproduces the partial sumf l 1m(z) from which it was constructed. If a sequenc
transformation is applied to the partial sums of a~formal! power series, it is by no means obviou
whether the resulting expression satisfies an accuracy-through-order relationship of the t
~6.3! ~see, for example, the discussion in Ref. 157!.

The accuracy-through-order relationship~6.3! is essential if Pade´ approximants are to be use
for the prediction of unknown series coefficients, which was first described and utilize
Gilewicz.69 This so-called Pade´ prediction is based on the fact that a Pade´ approximant is by
construction analytic at the origin. Accordingly, the power series

@ l /m# f~z! 5 (
n50

`

gn
[ l /m] zn ~6.4!

converges in a neighborhood ofz50. The accuracy-through-order relationship~6.3! implies
gn

[ l /m]5gn for 0<n< l 1m. The remaining coefficientsg l 1m1m11
[ l /m] with m>0 are in general

different from the corresponding coefficientsg l 1m1m11 of the power series forf (z). If, however,
the Pade´ approximants@ l /m# f(z) converge more rapidly tof (z) than the partial sumsf l 1m(z)
from which they are constructed, then the coefficientsg l 1m1m11

[ l /m] provide in particularly for
smaller values ofm approximants to the corresponding series coefficients. It is important to
that Pade´ prediction is not restricted to convergent power series. Thus, Pade´ prediction can pro-
duce useful results even if the power series is a factorially divergent perturbation expansio

In certain subfields of theoretical physics, the computation of more than a few coefficie
a perturbation expansion can be extremely difficult. Moreover, these coefficients are often a
by comparatively large relative errors. Under such adverse conditions, Pade´ approximants can be
used to make predictions about the leading unknown coefficients of perturbation expansi
well as to make consistency checks for previously calculated coefficients. Further details a
as many examples can be found in Refs. 9, 38, 41–47, 53, 58–62, 85, 91, 93, 120–126, 14
and references therein. Pade´ prediction can also be quite helpful in different contexts. For
ample, Pade´ prediction techniques developed in Ref. 157 were used in Ref. 9 to provide num
evidence that the factorially divergent perturbation expansion for an anharmonic oscillator,
Hamiltonian is non-Hermitian butPT-symmetric,7 is a Stieltjes series.

The prediction of unknown power series coefficients is not restricted to Pade´ approximants. In
principle, any other rational approximant, that also satisfies an accuracy-through-order relati
of the type of~6.3!, can be used. It seems that this idea was first formulated by Sidi and Lev136

and by Brezinski.25 Recently, it was found that Levin-type transformation like~4.35! and ~4.36!,
which satisfy forkPN and nPN0 the following asymptotic order estimates asz→0 @Ref. 163,
Eqs.~4.28! and ~4.29!#,

f ~z! 2 dk
(n)~b, f n~z!! 5 O~zk1n12! , ~6.5!

f ~z! 2 dk
(n)~b, f n~z!! 5 O~zk1n12! , ~6.6!

produce at least in some cases significantly more accurate predictions for unknown power
coefficients than Pade´ approximants.85,91,156Accordingly, it should be of interest to analyze n
only the rational approximants, which result if Levin-type transformations are applied to p
series, but also their accuracy-through-order relationships. In the case of Levin’st transformation,
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this was already done by Sidi and Levin,136 and the accuracy-through-order relationships for theu,
t, v, andd variants ofL k

(n)(b,sn ,vn), S k
(n)(b,sn ,vn), andM k

(n)(j,sn ,vn) were studied in Ref.
150, Sec. 5.7, albeit by a less elegant method.

In this section, theu, t, v, andd variants of the sequence transformationG k
(n)(qm ,sn ,vn)

introduced by Cˇ ı́žek, Zamastil, and Ska´la @Ref. 50, Eq.~10!# are applied to~formal! power series
and the accuracy-through-order properties of the resulting rational approximants are studied
the sequence transformationsL k

(n)(b,sn ,vn), S k
(n)(b,sn ,vn), M k

(n)(j,sn ,vn), and
C k

(n)(a,b,sn ,vn) can be obtained fromG k
(n)(qm ,sn ,vn) by specializing the parametersqm , all

results for uG k
(n)(qm , f n(z)), tG k

(n)(qm , f n(z)), dG k
(n)(qm , f n(z)), and vG k

(n)(qm , f n(z)) derived
here can immediately be translated to the analogous results for theu, t, d, andv variants of the
transformations mentioned above.

If we use the partial sums~6.1! of a ~formal! power seriesf (z)5(n50
` gnzn as input data, the

simple remainder estimates~4.16!, ~4.18!, ~4.24!, and ~4.32! for the u, t, v, and d variants of
G k

(n)(qm ,sn ,vn) translate tovn5(n1q0)gnzn, vn5gnzn, vn5gngn11zn11/@gn2zgn11#, and
vn5gn11zn11. Of course, these remainder estimates can only be used if the coefficients
power series forf satisfygnÞ0 for all nPN0 . In the following text, this will be tacitly assumed

If we apply theu variant ~4.17! of G k
(n)(qm ,sn ,vn) to the partial sums~6.1! of the ~formal!

power series forf , we obtain

uG k
(n)~qm , f n~z!! 5 G k

(n)~qm , f n~z!,~n1q0!gnzn!

5

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J zk2 j f n1 j~z!

~n1 j 1q0!gn1 j

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J zk2 j

~n1 j 1q0!gn1 j

, k,nPN .

~6.7!

uG k
(n)(qm , f n(z)) is the ratio of two polynomials of degreesk1n andk in z, and for its compu-

tation the partial sumsf n(z), f n11(z),...,f n1k(z) are needed. It resembles the Pade´ approximant
@k1n/k#, whose computation with the help of Wynn’s epsilon algorithm167 requires, however, the
partial sumsf n(z), f n11(z),...,f n12k(z).

In the case of the~modified! t variant ~4.45! of G k
(n)(qm ,sn ,vn), we obtain forn>1

tG k
(n)~qm , f n~z!! 5 G k

(n21)~qm11,f n21~z!,gnzn!

5

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J zk2 j f n1 j 21~z!

gn1 j

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J zk2 j

gn1 j

, kPN0 , nPN ,

~6.8!

and forn50, we obtain from~4.53!,

tG k
(0)~qm , f 0~z!! 5 G k

(21)~qm11,f 21~z!,g0z0!

5

(
j 50

k

~21! j S k
j D H )

m51

k21
~ j 1qm!

~k1qm! J zk2 j f j 21~z!

g j

(
j 50

k

~21! j S k
j D H )

m51

k21
~ j 1qm!

~k1qm! J zk2 j

g j

, kPN . ~6.9!

For n>1, tG k
(n)(qm , f n(z)) is the ratio of two polynomials of degreesk1n21 andk in z, and for

its computation the partial sumsf n21(z), f n(z),...,f n1k(z) are needed. Forn50, the degrees of
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the numerator and denominator polynomials arek21 and k, respectively. In that respec

tG k
(0)(qm , f 0(z)) resembles the Pade´ approximant@k21/k#, which is of importance in the conver

gence theory of Stieltjes series~see, for example, Ref. 3, Theorem 5.2.3!.
In the case of thed variant ~4.39! of G k

(n)(qm ,sn ,vn), we obtain

dG k
(n)~qm , f n~z!! 5 G k

(n)~qm , f n~z!,gn11zn11!

5

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J zk2 j f n1 j~z!

gn1 j 11

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J zk2 j

gn1 j 11

, k,nPN0 .

~6.10!

dG k
(n)(qm , f n(z)) is the ratio of two polynomials of degreesk1n andk in z, and for its compu-

tation the partial sumsf n(z), f n11(z),...,f n1k11(z) are needed.
In the case of thev variant ~4.31! of G k

(n)(qm ,sn ,vn), we obtain

vG k
(n)~qm , f n~z!! 5 G k

(n)~qm , f n~z!,gngn11zn11/@gn2zgn11# !

5

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J zk2 j~gn1 j2zgn1 j 11! f n1 j~z!

gn1 jgn1 j 11

(
j 50

k

~21! j S k
j D H )

m51

k21
~n1 j 1qm!

~n1k1qm! J zk2 j~gn1 j2zgn1 j 11!

gn1 jgn1 j 11

,

k,nPN0 . ~6.11!

vG k
(n)(qm , f n(z)) is the ratio of two polynomials of degreesk1n11 andk11 in z, and for its

computation the partial sumsf n(z), f n11(z),...,f n1k11(z) are needed.
Next, asymptotic order estimates of the type of~6.3! will be constructed for the rationa

approximants~6.7!–~6.11!. Here, it must be taken into account that an accuracy-through-o
relationship does not make any sense if the rational function reproduces exactly the funcf
represented by the power series. This is for instance the case ifu, t, d, and v variants of
G k

(n)(qm ,sn ,vn) are applied to the partial sums(n50
n zn5(12zn11)/(12z) of the geometric

series. For an analysis of these complications, let us consider theu variant~6.7!. If we introduce
the remainders of the partial sums~6.1! according to

r n~z! 5 f n~z! 2 f ~z! 5 2 (
n50

`

gn1n11 zn1n11 , ~6.12!

then the difference betweenf and theu variant ~6.7! can according to~4.2! be expressed a
follows:

f ~z! 2 uG k
(n)~qm , f n~z!!5 2 zk1n

(
j 50

k

~21! j S k
j D H )

m51

k21

~n1 j 1qm!J r n1 j~z!

~n1 j 1q0!gn1 j z
n1 j

(
j 50

k

~21! j S k
j D H )

m51

k21

~n1 j 1qm!J zk2 j

~n1 j 1q0!gn1 j

.

~6.13!

The denominator of this expression is by assumption of order O~1! asz→0. For the derivation of
an order estimate of the numerator, we can use~2.14! to obtain
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(
j 50

k

~21! j S k
j D H )

m51

k21

~n1 j 1qm!J r n1 j~z!

~n1 j 1q0!gn1 j z
n1 j

5 ~21!k FDk H )
m51

k21

~n1qm!J r n~z!

~n1q0!gnznG . ~6.14!

We now have to distinguish some special cases.
Let us first assume that theu type remainder estimatevn5(n1q0)gnzn is a perfect remainde

estimate according to~4.3!. Then,Dk acts on a polynomial of degreek21 in n, which means that
the right-hand side of~6.13! is annihilated. Accordingly,uG k

(n)(qm , f n(z)) is exact fork>1 and an
accuracy-through-order relationship of the type of~6.3! makes no sense.

Let us now assume that thet type remainder estimatevn5gnzn is a perfect remainde
estimate according to~4.3!, which is the case if the input data$ f n(z)%n50

` are the partial sums
(n50

n zn5(12zn11)/(12z) of the geometric series. Then, we again have to distinguish two ca
If q0P$q1 ,...,qk21%, the ratio)m51

k21 (n1qm)/(n1q0) simplifies to yield a polynomial of degre
k22 in n which is annihilated byDk. Accordingly, uG k

(n)(qm , f n(z)) is for k>2 exact for the
partial sums of the geometric series and an accuracy-through-order relationship makes no s
q0¹$q1 ,...,qk21%, the ratio)m51

k21 (n1qm)/(n1q0) does not simplify to yield a polynomial an
is not annihilated byDk. Accordingly,uG k

(n)(qm , f n(z)) is in this case not exact for the geometr
series.

The exactness for the geometric series is probably the most fundamental requiremen
sequence transformation in the case of linear convergence (0,uru,1 in ~4.7!!. This follows from
Germain–Bonne’s formal theory of convergence acceleration68 and its extension to Levin-type
transformations~Ref. 146, Sec. 12!. Consequently, it is probably a good idea that to chooseq0 in
in vn5(n1q0)Dsn21 according toq0P$q1 ,...,qm%. An obvious idea would be to chooseq0

5q1 . The remainder estimates of the otheru-type transformations~4.12!, ~4.13!, ~4.14!, and
~4.15! all satisfyq05q1 . Accordingly, theseu variants are fork>1 exact for the geometric series
This is also true for thet, d, andv variants~6.8!–~6.11! of G k

(n)(qm ,sn ,vn).
By analyzing expressions of the type of~6.13!, accuracy-through-order relationships f

uG k
(n)(qm , f n(z)), tG k

(n)(qm , f n(z)), dG k
(n)(qm , f n(z)), and vG k

(n)(qm , f n(z)) can be derived~see,
for example, Ref. 150, Sec. 5.7!. However, this can be done more elegantly this via the theor
Padé-type approximants which were introduced by Brezinski in Ref. 22 and fully developed i
monograph.23

As is well known, the coefficients of the numerator and the denominator polynomials
Padéapproximants are chosen in such a way that the asymptotic order estimate~6.3! is satisfied,
but it is not so well known that generalizations and modifications of Pade´ approximants can be
obtained by suitably modifying the asymptotic condition~6.3!. For example, let us consider th
rational approximants

~ l /m! f~z! 5
U ( l /m)~z!

V ( l /m)~z!
5

u01u1z1¯1ulz
l

v01v1z1¯1vmzm , l ,mPN0 . ~6.15!

We assume that the two polynomialsU ( l /m)(z) andV ( l /m)(z) are exactly of degreesl andm in z,
or equivalently thatulÞ0 andvmÞ0. Let us now assume that them11 coefficientsv0 , v1 ,...,
vm of the denominator polynomialV ( l /m)(z) are chosen according to some rule. Then, only
l 11 coefficientsu0 , u1 ,..., ul of the numerator polynomialU ( l /m)(z) have to be determined via
the modified asymptotic condition

V ( l /m)~z! f ~z! 2 U ( l /m)~z! 5 O~zl 11! , z→0 , ~6.16!

yielding
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U ( l /m)~z! 5 (
l50

l

vl zl f l 2l~z! . ~6.17!

The rational function (l /m) f(z) is a so-called Pade´-type approximant.22,23

Let us now setl 5k1n andm5k with k,n,PN0 in ~6.15!. Then,~6.17! implies

~k1n/k! f~z! 5
U (k1n/k)~z!

V (k1n/k)~z!
5

(
j 50

k

v j zj f k1n2 j~z!

(
j 50

k

v j zj

5

(
j 50

k

vk2 j zk2 j f n1 j~z!

(
j 50

k

vk2 j zk2 j

.

~6.18!

It follows from ~6.7! and~6.10! that uG k
(n)(qm , f n(z)) anddG k

(n)(qm , f n(z)) possess the following
general structure:

Tk
(n)~z! 5

(
j 50

k

l j
(k,n) zk2 j f n1 j~z!

(
j 50

k

l j
(k,n) zk2 j

5

(
j 50

k

lk2 j
(k,n) zj f n1k2 j~z!

(
j 50

k

lk2 j
(k,n) zj

, k,nPN0 . ~6.19!

Thus, uG k
(n)(qm , f n(z)) and dG k

(n)(qm , f n(z)) are Pade´-type approximants of the type of (k
1n/k) f(z) with v j5lk2 j

(k,n) .
It is a direct consequence of the defining asymptotic condition~6.16! that the Pade´-type

approximantTk
(n)(z) satisfies the accuracy-through-order relationship

f ~z! 2 Tk
(n)~z! 5 O~zk1n11! , k,nPN0 , z→0 . ~6.20!

This implies thatuG k
(n)(qm , f n(z)) as well as all the otheru-type transformations satisfies th

asymptotic order estimate

f ~z! 2 uG k
(n)~qm , f n~z!! 5 O~zk1n11! , k,nPN0 , z→0 . ~6.21!

Thus, all coefficientsg0 , g1 ,..., gk1n of the power seriesf (z)5(n50
` gnzn, that are used for the

construction ofuG k
(n)(qm , f n(z)), are reproduced by a Taylor expansion aroundz50.

For dG k
(n)(qm , f n(z)) we obtain the same asymptotic order estimate:

f ~z! 2 dG k
(n)~qm , f n~z!! 5 O~zk1n11! , k,nPN0 , z→0 . ~6.22!

In the context of the prediction of unknown power series coefficients, this is a highly un
come result: For the computation ofdG k

(n)(qm , f n(z)) we need the series coefficientsg0 , g1 ,...,
gn1k11 . Thus, the order term O(zk1n11) implies that a Taylor expansion ofdG k

(n)(qm , f n(z)) does
not reproduce all coefficients used for its construction. Moreover, the order estimates~6.5! and
~6.6!, which were derived in Ref. 163 by directly analyzing the corresponding expressions w
using the theory of Pade´-type approximants, indicate that we should instead get the order est

f ~z! 2 dG k
(n)~qm , f n~z!! 5 O~zk1n12! , kPN , nPN0 , z→0 . ~6.23!

It is indeed possible to derive this seemingly irregular accuracy-through-order relationsh
analyzing the Pade´-type approximantTk

(n)(z) more carefully. For that purpose, we rewrite~6.19!
as follows:
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Tk
(n)~z! 5 f ~z! 2 zk1n11

(
j 50

k

l j
(k,n) (n50

` gn1 j 1n11 zn

(
j 50

k

l j
(k,n) zk2 j

. ~6.24!

The denominator on the right-hand side is by assumption of order O~1! asz→0. Accordingly, the
asymptotic estimate~6.20! is normally optimal, and the improved asymptotic estimate~6.23! can
only hold if the z-independent part of the numerator vanishes, or equivalently
( j 50

k l j
(k,n)gn1 j 1150. For essentially arbitrary coefficientsl j

(k,n) this is certainly not true. How-
ever, in the case of alld-type transformations of this article we havel j

(k,n)5(21) j ( j
k )Pk21(n

1 j )/gn1 j 11 , wherePk21(n) is a suitable polynomial of degreek21 in n. Then, we have for
k>1

(
j 50

k

l j
(k,n) gn1 j 11 5 (

j 50

k

~21! j S k
j D Pk21~n1 j ! 5 ~21!k Dk Pk21~n! 5 0 .

~6.25!

This proofs the refined accuracy-through-order relationship~6.23!.
As discussed in more detail in Sec. IV,t-type transformations are actuallyd-type transforma-

tions in disguise, and~4.44! implies

tG k
(n)~qm , f n~z!! 5 dG k

(n21)~qm11,f n21~z!! . ~6.26!

Accordingly, for n>1 the asymptotic order estimate oftG k
(n)(qm , f n(z)) follows from the

asymptotic order estimate~6.23! of dG k
(n)(qm , f n(z)):

f ~z! 2 tG k
(n)~qm , f n~z!! 5 f ~z! 2 dG k

(n21)~qm11,f n21~z!! 5 O~zk1n11! ,

k,nPN , z→0 . ~6.27!

Thus, all coefficientsg0 , g1 ,..., gk1n of the power seriesf (z)5(n50
` gnzn, that are used for the

construction oftG k
(n)(qm , f n(z)) with n>1, are reproduced by a Taylor expansion aroundz50.

Next, we analyze the casen50 which is not covered by~6.27!. A comparison of~6.9! and
~6.19! shows thattG k

(0)(qm , f 0(z)) is not a Pade´-type approximant—the term proportional tozk is
missing in the numerator sum—but a closely related rational function of the following kind:

Tk
(21)~z! 5

(
j 50

k

l j
(k,21) zk2 j f j 21~z!

(
j 50

k

l j
(k,21) zk2 j

, kPN . ~6.28!

Accordingly, the defining accuracy-through-order relationship~6.16! of Padé-type approximants
cannot help us. However,Tk

(21)(z) can be reformulated as follows:

Tk
(21)~z! 5 f ~z! 2 zk

(
j 50

k

l j
(k,21) (

n50

`

g j 1n zn

(
j 50

k

l j
(k,21) zk2 j

, kPN . ~6.29!

The ratio on the right-hand side is of order O(zk) as z→0. This implies the asymptotic ode
estimatef (z)2 tG k

(0)(qm , f 0(z))5O(zk) as z→0, which does not agree with~6.27! and which
would be unsatisfactory since it indicates that not all coefficientsg0 , g1 ,..., gk are reproduced by
a Taylor expansion oftG k

(0)(qm , f 0(z)). Instead, we need an order term O(zk11). Accordingly, we
have to show that thez-independent part( j 50

k l j
(k,21)g j of the numerator on the right-hand side

~6.29! vanishes.
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For that purpose, we take into account that at-type transformations withn50 is according to
~4.44! or ~6.26! actually ad-type transformations withn521. As remarked above, alld-type
transformations satisfyl j

(k,n)5(21) j ( j
k )Pk21(n1 j )/gn1 j 11 , wherePk21(n) is a suitable poly-

nomial of degreek21 in n. Thus, we obtain fork>1 andn521:

(
j 50

k

l j
(k,21) g j 5 (

j 50

k

~21! j S k
j D Pk21~ j 21! 5 ~21!k Dk Pk21~n! un521 5 0 .

~6.30!

Inserting this into~6.29! yields

Tk
(21)~z! 5 f ~z! 2 zk11

(
j 50

k

l j
(k,21) (

n50

`

g j 1n11 zn

(
j 50

k

l j
(k,21) zk2 j

, kPN , ~6.31!

which proves the asymptotic order estimate

f ~z! 2 tG k
(0)~qm , f 0~z!! 5 O~zk11! , kPN , z→0 . ~6.32!

Consequently, the asymptotic order estimate~6.27! holds also forn50, and all series coefficient
g0 , g1 ,..., gk1n are reproduced by a Taylor expansion oftG k

(n)(qm , f n(z)) which were used for
its construction.

It follows from ~6.11! that the rational approximantvG k
(n)(qm , f n(z)) possesses like all othe

v-type transformations of this article the following general structure:

Vk
(n)~z! 5

(
j 50

k

l j
(k,n) zk2 j f n1 j~z! 1 z (

j 50

k

m j
(k,n) zk2 j f n1 j~z!

(
j 50

k

l j
(k,n) zk2 j 1 z (

j 50

k

m j
(k,n) zk2 j

, k,nPN0 . ~6.33!

Comparison with~6.19! shows thatVk
(n)(z) is no Pade´-type approximant. Accordingly, the defin

ing asymptotic condition~6.16! of Padé-type approximants cannot be applied. Fortunately,
analogous asymptotic order estimate forVk

(n)(z) can be derived easily. For that purpose, w
rewrite ~6.33! as follows:

Vk
(n)~z! 5 f ~z!2 zk1n11

(
j 50

k

l j
(k,n) (

n50

`

gn1 j 1n11 zn 1 z (
j 50

k

m j
(k,n) (

n50

`

gn1 j 1n11 zn

(
j 50

k

l j
(k,n) zk2 j 1 z (

j 50

k

m j
(k,n) zk2 j

.

~6.34!

The denominator on the right-hand side is by assumption of order O~1! asz→0. Accordingly, we
obtain the asymptotic order estimate

f ~z! 2 Vk
(n)~z! 5 O~zk1n11! , k,nPN0 , z→0 , ~6.35!

which implies

f ~z! 2 vG k
(n)~qm , f n~z!! 5 O~zk1n11! , k,nPN0 , z→0 . ~6.36!
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Now, we have the same problem as in the case of the suboptimal order estimate~6.22! for

dG k
(n)(qm , f n(z)): The order term O(zk1n11) in ~6.36! implies that a Taylor expansion o

vG k
(n)(qm , f n(z)) reproduces onlyg0 , g1 ,..., gn1k , whereasg0 , g1 ,..., gn1k11 are needed for

the computation ofvG k
(n)(qm , f n(z)). Thus, we need instead the order estimate

f ~z! 2 vG k
(n)~qm , f n~z!! 5 O~zk1n12! , kPN , nPN0 , z→0 . ~6.37!

This refined asymptotic estimate can only be true if thez-independent part of the first numerat
sum in ~6.34! vanishes, or equivalently if( j 50

k l j
(k,n)gn1 j 1150. For essentially arbitrary coeffi

cientsl j
(k,n) this is certainly not true. However, in the case of thev-type transformations of this

article we have just like in the case of thed-type transformationsl j
(k,n)5(21) j ( j

k )Pk21(n
1 j )/gn1 j 11 but m j

(k,n)5(21) j 11 ( j
k )Pk21(n1 j )/gn1 j , wherePk21(n) is a suitable polynomial

of degreek21 in n. Thus, ~6.25! holds which proves the accuracy-through-order relations
~6.37!.

In Sec. IV, it was mentioned that in some cases asymptotic expressionsan
(`) for the termsan

of an infinite seriess5(n50
` an are known which reproduce the leading order asymptotics ofan as

n→`, and that these asymptotic expressions can also be used in the simple remainder es
~4.11!, ~4.18!, ~4.24!, and ~4.32! since they also reproduce the leading order asymptotics of
remaindersr n5sn2s asn→`.

Thus, we now assume that asymptotic expressionsgn
(`) are known that reproduce the leadin

order asymptotics of the coefficients of the power seriesf (z)5(n50
` gnzn according to

gn 5 gn
(`) @c1O~1/n!# , cÞ0 , n→` . ~6.38!

If we use in G k
(n)(qm ,sn ,vn) the u-, t-, v-, and d-type remainder estimatesvn5(n

1q0)gn
(`)zn, vn5gn

(`)zn, vn5gn
(`)gn11

(`) zn11/@gn
(`)2zgn11

(`) #, andvn5gn11
(`) zn11, we obtain ra-

tional approximants which closely resemble theu, t, v, andd variants~6.7!, ~6.8!, ~6.10!, and
~6.11!, and which are also special cases of the rational functionsTk

(n)(z) andVk
(n)(z) defined in

~6.19! and ~6.33!, respectively. Consequently, these rational approximants satisfy for allk,n
PN0 the following asymptotic estimates asz→0:

f ~z! 2 G k
(n)~qm , f n~z!,~n1q0!gn

(`)zn! 5 O~zk1n11! , ~6.39!

f ~z! 2 G k
(n)~qm , f n~z!,gn

(`)zn! 5 O~zk1n11! , ~6.40!

f ~z! 2 G k
(n)~qm , f n~z!,gn11

(`) zn! 5 O~zk1n11! , ~6.41!

f ~z! 2 G k
(n)~qm , f n~z!,gn

(`)gn11
(`) zn11/@gn

(`)2zgn11
(`) # ! 5 O~zk1n11! . ~6.42!

Accordingly, all coefficientsg0 , g1 ,..., gk1n of the power series forf (z), which were used for
the construction of these rational approximants are reproduced by Taylor expansion.

Improved asymptotic estimates of the type of~6.23! or ~6.37! for thed- andv-type variants do
not hold here. The reason is that the coefficientsl j

(k,n) in ~6.19! and ~6.33! now satisfyl j
(k,n)

5(21) j ( j
k )Pk21(n1 j )/gn1 j 11

(`) . In general, we havegn1 j 11
(`) Þgn1 j 11 , which implies

that ( j 50
k l j

(k,n)gn1 j 1150 does not hold.
If we use inG k

(n)(qm ,sn ,vn) the remainder estimatesvn5(n1q0)gn
(`)zn, vn5gn

(`)zn, vn

5gn
(`)gn11

(`) zn11/@gn
(`)2zgn11

(`) #, andvn5gn11
(`) zn11, the poles of the resulting rational approx

mants are determined by the parametersqm in the products)m51
k21 (n1qm) and by the remainde

estimates, but they do not depend on the coefficientsgn of the power series forf . This highlights
once more the crucial importance of the remainder estimates for the success or the fai
Levin-type transformations. In contrast, both the numerator and the denominator coefficien
Padéapproximant@ l /m# f(z) depend via~6.3! on the coefficients of the partial sumf l 1m(z) which
was used for its construction.
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VII. SUMMARY AND OUTLOOK

Levin99 deserves credit for realizing that the efficiency of convergence acceleration and
mation processes can be enhanced considerably by using as input data not only the elemen
sequence$sn%n50

` to be transformed, but also explicit estimates$vn%n50
` for the truncation errors

of this sequence.
If the input data are the partial sums of an infinite series, and if sufficiently simple analy

expressions for the terms of this series are known, then it is possible to derive analytical es
for the truncation errors of these series. In principle, the use of specially designed ana
remainder estimates would be highly desirable, although the resulting expressions are no
generally applicable sequence transformations, but rather~optimized! approximation schemes fo
specific problems~see, for instance, the discussion in Ref. 159!.

However, convergence acceleration and summation methods are needed most if on
tively few elements of a slowly convergent or divergent sequence are available, and if apar
the numerical values of the input data virtually nothing is known. This is a scenario which ha
only too often if we try to sum divergent perturbation expansions of quantum physics. In s
situation there is obviously no chance of constructing analytical expressions for remainde
mates. Instead, we must construct the remainder estimates from the numerical values of th
data via simple rules. Fortunately, the simple remainder estimates proposed by Levin99 and later
Smith and Ford,140 which are discussed in Sec. IV, normally do the job. In spite of their simplic
they often work remarkably well.

If we approximate the remainderr n of a sequence elementsn by the productvnzn according
to ~2.8!, where zn is a so-called correction term, then we should take into account that
approximation scheme actually has two degrees of freedom. Levin99 originally assumed thatzn is
a truncated inverse power series according to~2.16!. This is certainly a very natural idea, and
leads to a very powerful sequence transformation.

Nevertheless, in some cases Levin’s transformation fails horribly for reasons which we d
completely understand. For example, it was found in Refs. 162 and 163 that Levin’s transf
tion diverges if it is used for the summation of the perturbation expansions for the ground
energies of the anharmonic oscillators~compare also Ref. 148, Table II or the discussion in R
150, Sec. 10.7!. A similar divergence of Levin’s transformation was observed by Cˇ ı́žek, Zamastil,
and Ska´la ~Ref. 50, p. 965! in the case of the hydrogen atom in an external magnetic fi
Fortunately, Levin’s choice forzn is not the only possibility, and at least for some problem
alternative correction terms produce significantly better results. For example, the so-called
transformation defined in~4.36! is based on the assumption thatzn is a truncated factorial serie
according to~2.19!. As mentioned before, this delta transformation is a very effective transfo
tion for slowly convergent and divergent alternating series. In particular, it produces very
summation results both in the case of the anharmonic oscillators147,148,150,149,153,155,162,163as well as
in the case of the hydrogen atom in an external magnetic field~Ref. 50, Tables I and II!.

The sequence transformationG k
(n)(qm ,sn ,vn) introduced by Cˇ ı́žek, Zamastil, and Ska´la50

permits a unified treatment of the mathematical properties of all sequence transformations,
correction terms are annihilated by difference operators of the type of

T̂ 5 Dk Pk21~n! . ~7.1!

Here,Pk21(n) is a suitable polynomial of degreek21 in n that can be obtained by specializin
the parametersqm in )m51

k21 (n1qm). All Levin-type transformations considered in this artic
belong to this class of sequence transformations. Consequently, all their mathematical pro
such as explicit expressions~Secs. II and V!, recurrence formulas~Sec. III!, and accuracy-through
order properties~Sec. VI! can be deduced from the corresponding properties ofG k

(n)(qm ,sn ,vn)
by specializing the parametersqm .

In addition, new sequence transformations can be constructed by specializing the para
qm in G k

(n)(qm ,sn ,vn). For example, Cˇ ı́žek, Zamastil, and Ska´la ~Ref. 50, Tables I and II! found
that in the case of the hydrogen atom in an external magnetic field at least for some co
                                                                                                                



m-
nsfor-

new

-

e for
ergent

good
. Nor-
e, this
igious
fer.
nsfor-

nce
tion or

ever-
rimen-
ork at

bined
s. Com-

radial

as,’’

ts,’’ J.

n

D

grals,’’

.

Phys.

LA-

1241J. Math. Phys., Vol. 45, No. 3, March 2004 A new Levin-type sequence transformation. I.

                    
constants better summation results can be obtained by choosingqm5m2 instead of choosingqm

5m which yields the delta transformation withb51. Such a quadratic dependence of the para
etersqm on m leads to a completely new sequence transformation. Thus, the sequence tra
mationG k

(n)(qm ,sn ,vn) introduced by Cˇ ı́žek, Zamastil, and Ska´la50 does not only permit a uni-
fication of already known transformations, but it also opens up the path for promising
research.

As discussed in more details in the following article,160 our current level of theoretical under
standing does not permit to predict which one of the numerous variants ofG k

(n)(qm ,sn ,vn) will
give best results for a given convergence acceleration or summation problem. So, if w
example use one of the numerous Levin-type transformation for the summation of a div
perturbation expansion, we are essentially conducting a numerical experiment. As every
experimentalist knows, a single experiment is only rarely able to provide a definite answer
mally, a whole set of related experiments is needed to obtain convincing evidence. Of cours
applies also to our numerical experiments. Therefore, we should not insist with a quasirel
zeal on using only a single~Levin-type! transformation which we for some reason may pre
Instead, it is usually a much better idea to compare the performance of several different tra
mations.

Levin-type transformations are not only very powerful but also very flexible. Experie
shows that they can handle successfully a large variety of different convergence accelera
summation problems. This is a direct consequence of the fact that the ansatzvnzn for r n according
to ~2.8! has two degrees of freedom which allows a considerable amount of fine-tuning. N
theless, Levin-type transformations are not a cure for all evils. Consequently, a good expe
talist should also take into account the possibility that Levin-type transformations may not w
all or that other transformations could produce better results.
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24Brezinski, C., ‘‘A general extrapolation algorithm,’’ Numer. Math.35, 175–180~1980!.
25Brezinski, C., ‘‘Prediction properties of some extrapolation methods,’’ Appl. Numer. Math.1, 457–462~1985!.
26Brezinski, C.,History of Continued Fractions and Pade´ Approximants~Springer-Verlag, Berlin, 1991!.
27Brezinski, C., ‘‘Extrapolation algorithms and Pade´ approximations: A historical survey,’’ Appl. Numer. Math.20, 299–

318 ~1996!.
28Brezinski, C.,Projection Methods for Systems of Equations~Elsevier, Amsterdam, 1997!.
29Brezinski, C., ‘‘Error estimates and convergence acceleration,’’ inError Control and Adaptivity in Scientific Computing,

edited by Bulgak, H. and Zenger, C.~Kluwer, Dordrecht, 1999!, pp. 87–94.
30Brezinski, C., ‘‘Difference and differential equations, and convergence acceleration algorithms,’’ CRM Proc. Lect.

25, 53–63~2000!.
31Brezinski, C., ‘‘Convergence acceleration during the 20th century,’’ J. Comput. Appl. Math.122, 1–21~2000!; reprinted

in Numerical Analysis2000, edited by Brezinski, C.~Elsevier, Amsterdam, 2000!, Vol. 2, pp. 1–21.
32Brezinski, C. and Matos, A. C., ‘‘A derivation of extrapolation algorithms based on error estimates,’’ J. Comput.

Math. 66, 5–26~1996!.
33Brezinski, C. and Redivo Zaglia, M.,Extrapolation Methods~North-Holland, Amsterdam, 1991!.
34Brezinski, C. and Redivo Zaglia, M., ‘‘A general extrapolation procedure revisited,’’ Adv. Comput. Math.2, 461–477

~1994!.
35Brezinski, C. and Redivo Zaglia, M., ‘‘On the kernel of sequence transformations,’’ Appl. Numer. Math.16, 239–244

~1994!.
36Brezinski, C. and Redivo Zaglia, M., ‘‘Vector and matrix sequence transformations based on biorthogonality,’’

Numer. Math.21, 353–373~1996!.
37Brezinski, C. and Salam, A., ‘‘Matrix and vector sequence transformations revisited,’’ Proc. Edinb. Math. So38,

495–510~1995!.
38Brodsky, S. J., Ellis, J., Gardi, E., Karliner, M., and Samuel, M. A., ‘‘Pade´ approximants, optimal renormalization scale

and momentum flow in Feynman diagrams,’’ Phys. Rev. D56, 6980–6992~1998!.
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On solvable potentials related to SO „2,2…. II.
Natanzon potentials
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International Center for Physics and Applied Mathematics, Trakya University,
P.O. Box 126, Edirne, Turkey
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General Natanzon potentials related to the SO~2,2! group are studied. The
S-matrices for systems under consideration are related to intertwining operators
between Weyl equivalent most degenerate principal series representations of
SO~2,2!. © 2004 American Institute of Physics.@DOI: 10.1063/1.1669057#

I. INTRODUCTION

The existence of Hamiltonians with nontrivial potentials which are exactly solvable is on
the most interesting problems in nonrelativistic quantum mechanics. By exactly solvable
means those Hamiltonians for which the spectrum, eigenfunctions and the scattering matric
be found explicitly. Apart from their beautiful mathematical structure, these models provid
cellent tools for studying various physical phenomena.

In particular, the Hamiltonians with Natanzon potentials1 are known to be exactly solvable
and much literature has been devoted to the study of these models.2–11An important point to stress
is that they possess hidden algebraic structures responsible for solvability. Moreover, it ha
shown by Wuet al.5 that both bound and scattering problems for Natanzon potentials ca
reduced to a representation theory problem ofso~2,2!. It appears that knowledge of the interrel
tion betweenso~2,2! algebra and an Euclidean algebrae(2)% e(2), which describes the asymptoti
properties of the system, allows pure algebraic calculation ofS-matrices.~This technique12 is
referred to as the Euclidean connection.! However, Natanzon potentials constructed in Ref. 5 is
the most general one related toso~2,2!. As we shall see, this lack of generality is due to the f
that only so(2,2).so(2)% so(2) subgroup reduction were considered in that paper. It is
worth to point out that the Euclidean connection technique works out only in cases in whic
reduction with respect to compact algebra is appropriate.

In a recent paper by one of the present authors13 was proposed a way which allows pu
algebraic calculation ofS-matrices for the systems whose Hamiltonians are related to the Ca
operatorC of some noncompact groupG. In that paper theS-matrices for the systems unde
consideration are associated with intertwining operatorsA between Weyl equivalent principa
series representations ofG. At this stage we note that the operatorA is said to intertwine the
representationsUx and U x̃ of the groupG ~Ref. 14! if relation

AUx~g!5U x̃~g!A for all gPG ~1.1!

or

AdUx~b!5dUx̃~b!A for all bPg ~1.2!

holds, wheredUx anddUx̃ are the corresponding representations of the algebrag of G.
It turns out that if HamiltonianH of the system belongs to the center of the enveloping alge

of G, i.e.,

H5 f ~C!, ~1.3!
12490022-2488/2004/45(4)/1249/18/$22.00 © 2004 American Institute of Physics
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then theS matrix coincide with intertwining operator between Weyl equivalent principal se
representations ofG. Moreover, it follows from Eq.~1.1! or ~1.2! that if the matrix of the
representation operator is diagonal in some subgroup basis then the matrix of the intert
operator is also diagonal. This fact leads to the suggestion that there might exist a cl
scattering systems for which

H5 f ~C!uH , ~1.4!

whereH are the subspaces occurring in the subgroup reductions. This is exactly what happ
the algebraic approaches proposed in Refs. 15, 16, 17, 12.~As usual,H is linear on the second
order Casimir operator ofG.) In this case the groupG describes fixed energy states of a family
dynamical systems with different potential strength. This is why the present groupG is called ‘‘the
potential group.’’17,12

It is clear that the scattering operatorsS for such systems are also related to the intertwin
operators, but now

S5AuH . ~1.5!

Moreover, there also exist other solvable models for which scattering operators are given b~1.5!
while the Hamiltonian of the systems are related to the Casimir operatorC as15

Q~H2E!5~C2q!uH , ~1.6!

whereq is an eigenvalue ofC andQ is some nontrivial operator. Observe that if we chooseQ
5const Eq.~1.6! reduces to~1.4! provided thatH is linear onC.

Equations~1.1! and~1.2! have much restriction power, determining the intertwining opera
up to a constant. Therefore, one can evaluate theS-matrix without writing a Schro¨dinger equation,
or wave functions. Moreover, one can use the well-developed theory of intertwining operato
semisimple Lie groups18–21 to obtain stringent restriction upon the structure of the scatte
matrices for many-body systems associated with semisimple Lie groups, or even to determ
completely.22

In a previous paper23 we gave the simple example of how the scattering problem for syst
with the SO~2,2! ‘‘potential group’’ structure can be solved within the framework of group theo
We discussed the one-dimensional potential scattering of systems for which the HamiltoniH
can be written as

H}~C11!uH , ~1.7!

where C is the Casimir operator of SO~2,2! and H is a subspace occurring in th
SO(2,2).SO(2)̂ SO(2), SO(2,2).SO(2)̂ E(1), SO(2,2).SO(2)̂ SO(1,1), SO(2,2)
.SO(1,1)̂ E(1) or SO(2,2).E(1)^ E(1) reduction. Here we show that the solution of t
scattering problem in the case of models with algebraic structure proposed in~1.6! is also possible
within this framework.

The content of the paper is arranged as follows: After the introduction, in Sec. II, we se
the basis of our approach. In Secs. III, IV, and V we discuss a class of quantum sca
problems related to most degenerate principal series representations of the group SO~2,2! in the
reductions with respect to SO(2)^ SO(2), SO(2)̂ E(1), and SO(2)̂ SO(1,1). Finally, we have
included in the Appendix some technical details of the calculation that for clarity were om
from the main text.

II. MAIN IDEA

Let R2,2 be a four-dimensional pseudo-Euclidean space with the bilinear form

@j,h# 5j1h11j2h22j3h32j4h4 . ~2.1!
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By SO~2,2! we denote the connected component of the group of linear transformation oR2,2

preserving the form~2.1!. We consider SO~2,2! as acting onR2,2 on the right. In accordance with
this we shall write the vector in the row formj5(j1 ,j2 ,j3 ,j4).

Let us denote$gi j (u)% i , j , i , j 51,2,3,4 the one-parameter subgroups of SO~2,2! consist-
ing of rotations or pseudorotations in thej i –j j -planes, that is, of transformations of the form

jk85jk , kÞ i , j , j i85j i cosu1j j sinu, j j852j i sinu1j j cosu ~2.2!

or

jk85jk , kÞ i , j , j i85j i coshu1j j sinhu, j j85j i sinhu1j j coshu, ~2.3!

respectively. The matrices

ai j 5
d

du
gi j ~u!U

u50

, i , j ~2.4!

form a basis of the Lie algebraso~2,2! of the group SO~2,2!. Defining

a15~a131a24!/2, b15~a132a24!/2,

a25~a232a14!/2, b25~a231a14!/2, ~2.5!

a35~a342a12!/2, b352~a121a34!/2,

one has

@a1 ,a2#5a3 , @b1 ,b2#5b3 ,

@a2 ,a3#52a1 , @b2 ,b3#52b1 , ~2.6!

@a3 ,a1#52a2 , @b3 ,b1#52b2 .

The generatorsai andbi separately form a Lie algebra of SO~2,1!. In other words SO~2,2! is the
product group of two SO~2,1! groups, i.e., SO(2,2)5SO(2,1)̂ SO(2,1). Let us note at this poin
that the group SO~2,1! has three subgroups SO~2!, SO~1,1!, andE(1) generated, for example, b
a3 , a1 , anda21a3 , respectively, whereE(1) is an Euclidean group in one dimension. It is al
worth noting that each UIR of SO~1.1! is doubly degenerate in principal series of UIR of SO~2.1!.

The most degenerate UIR of SO~2,2! are known to form three series:24,25 principal, supple-
mentary, and discrete. It is also known that only the principal series of SO~2,2! describe scattering
states. Consequently, the relevant unitary representations will be the principal series a
restrict the discussion to it.

The principal degenerate representation of SO~2,2! are characterized by the pairx5(r,«)
where« is equal to 0 or 1, while 0<r,`. The representations specified by labelsx5(r,«) and
x̃5(2r,«) are equivalent.~The representations labeled byx and x̃ have the same Casimi
eigenvalues. Such representations are called Weyl equivalent.! For the sake of simplicity, we
consider the representations with«50, although the case«51 can be also easily treated. We no
return to our main theme.

We want to construct the Hamiltonians for which the relation

Q~H2E!5@C2 j ~ j 12!#uH ~2.7!

holds, wherej specifies the most degenerate principal series of SO~2,2! and H is a subspace
occurring in subgroup reductions. The key to the construction of it lies in the observation th
Schrödinger energy eigenvalue equation for such systems is nothing but the condition impos
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the carrier space of SO~2,2! to be irreducible. Thus in order to find the Hamiltonians for t
systems under considerations we should look for a reducible representation of SO~2,2! containing
the principal series.

Let us consider a quasiregular representationT(g) of SO~2,2! realized in the Hilbert space o
square-integrable functionsf (j) on hyperboloidJ,

j1
21j2

22j3
22j4

251. ~2.8!

Generally, one can use for the construction of the quasiregular representation the carrie
L2(J,dm) with any quasi-invariant measuredm(j) on J. The representations with differen
measure are unitarily equivalent. They are given by26

T~g! f ~j!5~dm~jg!/dm~j!!1/2f ~jg!, ~2.9!

with the inner product

~ f , f 8!5E f ~j! f 8~j!dm~j!, ~2.10!

wheredm(jg)/dm(j) is the Radon–Nikodym derivative.
We can, without loss of generality, put

dm~j!5h~j!dj, ~2.11!

wheredj5dj1dj2dj3 /uj4u is an invariant measure onJ. The requirement that the measure
quasi-invariant implies only the condition

h~j!>0. ~2.12!

Then the~Hermitian! infinitesimal operatorsAi j 52 i (d/du) T(gi j (u))uu50 of the representation
T(g) corresponding to the one-parameter subgroupsgi j (u) are given by

iA125j2

]

]j1
2j1

]

]j2
1

1

2h S j2

]h

]j1
2j1

]h

]j2
D , iA145j4

]

]j1
1

j4

2h

]h

]j1
,

iA135j3

]

]j1
1j1

]

]j3
1

1

2h S j3

]h

]j1
1j1

]h

]j3
D , iA245j4

]

]j2
1

j4

2h

]h

]j2
,

iA235j3

]

]j2
1j2

]

]j3
1

1

2h S j3

]h

]j2
1j2

]h

]j3
D , iA345j4

]

]j3
1

j4

2h

]h

]j3
.

We are takingj1, j2 , andj3 as the independent variables onJ.
We now require the representation space to be irreducible.~We note that the representatio

~2.9! is decomposed onto principal and discrete series of most degenerate UIR of SO~2,2!.24,25!
Such a restriction is obtained if all functions are eigenfunctions of the Casimir operatorC

C f5 j ~ j 12! f , ~2.13!

whereC5A12
2 1A34

2 2A13
2 2A14

2 2A23
2 2A24

2 . Since we are interested only in the continuous sp
trum, we will put j 5212 ir. Next, imposing the reduction condition, one can extract co
sponding one-dimensional potentials from the Casimir operator.
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III. CLASS OF POTENTIALS RELATED TO SO „2,2…¤SO„2…‹SO„2… REDUCTION

As we mentioned above the quasiregular representations with different measure are u
equivalent. Although the representations with different measure are mathematically equiv
they may be related to different physical problems. For this reason, we shall consider the
regular representation with different measure.

We want to diagonalize the SO(2)^ SO(2) subgroup. Then, the reduction conditions are

A3f mk
(1)5m fmk

(1) , B3f mk
(1)5k fmk

(1) , ~3.1!

whereA3 andB3 are defined as

A35~A342A12!/2, B352~A121A34!/2. ~3.2!

~Here and in the following infinitesimal operators corresponding to generatorsai ,bi are denoted
by Ai ,Bi , respectively.! According to this we wantdm to be invariant under SO(2)̂SO(2). We
can, without loss of generality, putdm(j)5h(r )dj, wherer 5j1

21j2
2. Then the generatorsA12

andA34 are given by

A1252 i S j2

]

]j1
2j1

]

]j2
D , A3452 i j4

]

]j3
~3.3!

while

C52
]2

]j1
2 2

]2

]j2
2 1

]2

]j3
2 1S j1

21j2
2

j1h

]h

]j1
1I D ~ I 12!2

1

j1h

]h

]j1
S j1

]

]j1
1j2

]

]j2
11D

1
~j1

21j2
2!~j1

21j2
221!

2j1j2h

]2h

]j1]j2
2

~j1
21j2

2!~j1
21j2

221!

4j1
2h2 S ]h

]j1
D 2

~3.4!

with

I 5j1

]

]j1
1j2

]

]j2
1j3

]

]j3
, ~3.5!

where we have used

]h

]j2
5

j2

j1

]h

]j1
. ~3.6!

SinceA3 andB3 are sought to be diagonal, we introduce in place ofj1 , j2 , j3 the variables
x, a, b via

j15
1

A12z~x!
cos

a1b

2
, j25

1

A12z~x!
sin

a1b

2
,

j35A z~x!

12z~x!
cos

b2a

2
, 0<a, b,2p, 0<x,`, ~3.7!

wherez is a differentiable function onR1 with values in@0,1#. Then

A352 i
]

]a
, B352 i

]

]b
~3.8!

as we expected. If we compute the Casimir operatorC for this parametrization, it becomes
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C54
z~12z!2

ż2 H ]2

]x2 1S ḣ

h
2

z̈

ż
1

ż

z
D ]

]x

1
ż2

4z2 F ]2

]a222
11z

12z

]2

]a]b
1

]2

]b2 G1
1

2h
F ḧ2

ḣ2

2h
2S z̈

ż
2

ż

zD ḣG J , ~3.9!

where dots represent derivatives with respect tox, i.e., ż5dz/dx, z̈5d2z/dx2, etc. In order to
eliminate the term containing the first derivative we require

ḣ

h
2

z̈

ż
1

ż

z
50. ~3.10!

The solution to this equation is given by

h5 żz21. ~3.11!

~Sinceh must be positive we require thatż.0.) Substituting Eq.~3.11! into Eq. ~3.9!, one gets

C5
4z~12z!2

ż2 F ]2

]x2 1
ż2

4z2 S ]2

]a2 22
11z

12z

]2

]a]b
1

]2

]b2 11D1
1

2

ẑ

ż
2

3

4 S z̈

żD
2G . ~3.12!

Thus, the principal series of SO~2,2! in SO(2)3SO(2) basis can be realized in the Hilbert spa
spanned by eigenfunctions ofC, A3 , andB3 .

Let H mk
(1) be a one-dimensional subspace spanned byf mk

(1) with fixed m and k. Then the
Casimir operator restricted toH mk

(1) becomes a differential operator inx alone; it is found that

Cmk5
4z~12z!2

ż2 F ]2

]x2 1 ż2
~12z!12mk~11z!1~12m22k2!~12z!

4z2~12z!
1

1

2

ẑ

ż
2

3

4 S z̈

żD
2G ,

~3.13!

where Cmk denote the restriction ofC to H mk
(1) . Then it is not difficult to see that a class o

Natanzon hypergeometric potentials1

V~x!52
d2

dx2 1
f z~z21!1ho~12z!1h1z11

R

1S a1
a1~c12co!~2z21!

z~z21!
2

5D

4RD z2~12z!2

R2 , ~3.14!

which are defined in terms of six parametersf , ho , h1 , a, co , c1 and a functionz(x) satisfying

ż25
4z2~12z!2

R~z!
, ~3.15!

whereD5c1
224coc1 , R(z)5a(z21)z1co(12z)1c1z, are related toCmk as

~Cmk1r211!52
4z~12z!2

ż2 ~H2E!, H52
d2

dx2 1V~x! ~3.16!

provided
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12~m1k!25aE2 f ,

12~m2k!25c0E2h0 , ~3.17!

11r25c1E2h1 .

~For details see Refs. 5 and 27.!
As a consequence, one find exactly solvable Hamiltonians~3.14! which have a ‘‘broken

symmetry’’ in the sense thatHÞ f (C)uH
mk
(1). However, the Hamiltonians~3.14! have another kind

of algebraic structure. It follows from~3.16! that

~C1r211!uH
mk
1 5Q~x!~H2E! ~3.18!

with m, k, andr given by ~3.17! and

Q~x!52
4z~12z!2

ż2 . ~3.19!

Thus, the wave function of the Natanzon hypergeometric potential is related to the
function f mk

(1)(j), while theS-matrix is ~up to ar-dependent phase factor!

S5

GS 1

2
2

ir

2
1mDGS 1

2
2

ir

2
1kD

GS 1

2
1

ir

2
1mDGS 1

2
1

ir

2
1kD ~3.20!

~see Eq.~A17! of Ref. 23! wherem, k, andr are given by~3.17!. Moreover, from~A3!, ~A10!,
~3.11!, and~3.7! follows that

f mk
(1)~j!5exp~ ima1 ikb!Az

ż E0

2pE
0

2pUcos
u1w

2

A12z
2

Az cos
u2w

2

A12z
U222 j

eimw1 ikudwdu,

~3.21!

where j 5212 ir. Hence for the wave functions of the Natanzon potentials given in~3.14! we
have

C~x!}~ ż!2 ~1/2!z~11m2k!/2~12z!~21 j !/2
2F1S 11

j

2
2k,11

j

2
1m;11m2k;zD , ~3.22!

where2F1 is the hypergeometric function.28

IV. CLASS OF POTENTIALS RELATED TO SO „2,2…¤SO„2…‹E„1… REDUCTION

Now, the reduction conditions are

A3f ml
(2)5m fml

(2) , ~B21B3! f ml
(2)5l f ml

(2) .

Hence we require the quasi-invariant measuredm to be invariant under the transformations
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w

2
sin

w

2
0 0

2sin
w

2
cos

w

2
0 0

0 0 cos
w

2
2sin

w

2D PSO~2! ~4.1!
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0 0 sin
w

2
cos

w

2

and

exp@~b21b3!t#5S 1
t

2
0

t

2

2
t

2
1

t

2
0

0
t

2
1

t

2

t

2
0 2

t

2
1

D PE~1!. ~4.2!

According to this, we putdm5h(r )dj, where nowr 5(j11j3)21(j22j4)2. As a check, one
can immediately verify that such definedr is indeed invariant under the transformations given
~4.1! and ~4.2!. Then

2A352 i S j4

]

]j3
2j2

]

]j1
1j1

]

]j2
D ~4.3!

and

2~B21B3!52 i F ~j42j2!
]

]j1
1~j31j1!

]

]j2
1~j22j4!

]

]j3
G . ~4.4!

SinceA3 and B21B3 are sought to be diagonal we introduce in place ofj1 , j2 , j3 the new
variablesx,w,t by

j15
11z

2Az
cos

w

2
2

t

2Az
sin

w

2
,

j25
11z

2Az
sin

w

2
1

t

2Az
cos

w

2
, ~4.5!

j35
12z

2Az
cos

w

2
1

t

2Az
sin

w

2
,

with 0<x,`, 0,w,2p, 2`,t,`, wherez(x) is a differentiable function onR1 with values
in @0,1#. ThenA352 i (]/]w) , B21B352 i (]/]t), while
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C5
4z2

ż2 H ]2

]x2
1S ḣ

h
2

z̈

ż
D ]

]x
1 ż2S ]2

]t2
2

2

z

]2

]w]t
D 1

ḣ

2h
F ḧ

ḣ
2

ḣ

2h
2

z̈

ż
G J . ~4.6!

We now require

ḣ

h
2

z̈

ż
50,

which yields

h52 ż. ~4.7!

~Sinceh must be positive we require thatż,0.) Putting Eq.~4.7! into Eq. ~4.6!, one gets

C5
4z2

ż2 F ]2

]x2 1 ż2S ]2

]t2 2
2

z

]2

]w]t D1
1

2

ẑ

ż
2

3

4 S z̈

żD
2G . ~4.8!

Denote byCml a restriction ofC on the one-dimensional subspaceH ml
(2) spanned byf ml

(2) with
fixed m andl,

Cml5
4z2

ż2 F ]2

]x2 2 ż2S l22
2ml

z D1
1

2

ẑ

ż
2

3

4 S z̈

żD
2G . ~4.9!

Before proceeding further, note from~4.9! that Cml is the Schro¨dinger-type if

z2

ż2 51.

The solution to this equation is given by

z5exp~2x!, 0<x,`.

If we computeCml for this z, it becomes

Cml54
d2

dx2 24l2 exp~22x!18ml exp~2x!21.

Hence the Hamiltonian

H52
d2

dx2 1l2 exp~22x!22ml exp~2x!

is related to the Casimir operator as

H52 1
4 ~C11!uH

ml
(2).

~We are using units with 2M5\51.) Thus, the Mors Hamiltonian29 has the SO~2,2! potential
group structure; the scattering states that have the same energy but belong to different p
strengths are related to the UIR of the principal series of SO~2,2!. However for a class of Hamil-
tonians the relation~2.7! can be satisfied by a proper choice ofm, l, andr as a function of the
energy. It is not difficult to see that for Hamiltonians

H52
d2

dx2 1
g2z21g1z1ho11

R
1S s1

z
2s22

5D

R D z2

R2 , ~4.10!
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whereR(z)5s2z21s1z1co , D5s1
224s2co andz(x) satisfies

ż25
4z2

R~z!
~4.11!

the following relation holds:

Cml1r21152
4z2

ż2 ~H2E!, ~4.12!

provided

28ml5g12s1E, 4l25g22s2E, 11r25coE2ho . ~4.13!

The interaction potentials given in~4.10! are Natanzon confluent potentials1 which depends on six
parametersho , co , g1 , s1 , g2 , ands2 . @In ~4.10! we closely following the notation of Ref. 1.#

Thus, Natanzon confluent potentials in~4.11! are associated with the reduction intoso(2)
% e(1) in the sense that

~C1r211!uH
ml
(2)5Q~x!~H2E!, ~4.14!

where

Q~x!52
4z2

ż2 . ~4.15!

HenceS-matrices for these potentials are~up to ar-dependent phase factor!

S5ulu2 ir

GS 1

2
2

ir

2
1mD

GS 1

2
1

ir

2
1mD ~4.16!

~see Eq.~A22! of Ref. 23!. Moreover, it follows from~A3!, ~A16!, ~4.7!, and~4.5! that

C~x!}AżE
0

2pE
2`

` UAz cos
w

2
2

t

Az
sin

w

2U
222 j

eimw1 iltdwdt. ~4.17!

Hence, for the scattering solutions we have

C~x!}5
1

Aż
Wm,2(11 j )/2~2zl!, if l.0

1

Aż
W2m,2(11 j )/2~22zl!, if l,0,

~4.18!

whereWmn(z) is the Whittaker function.28

It is also worth mentioning that the solution to the conditionQ5const iss15s250. This
gives rise to the Morse potential, which was already known to possess SO~2,2! as the potential
group.
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V. CLASS OF POTENTIALS RELATED TO SO „2,2…¤SO„1,1…‹SO„2… REDUCTION

The basis functions corresponding to the considered reduction are the eigenfunctionsC,
A1 , andB3 , with

A1f mnt
(3) 5n f mnt

(3) , B3f mnt
(3) 5m fmnt

(3) , ~5.1!

wheret561 is the multiplicity label. We now choose the quasi-invariant measure in~2.9! as
dm5h(r )dj, with r 5j1j42j2j3 . Such a defined measure is invariant under the transforma
given by

exp~a1t !5S cosh
t

2
0 sinh

t

2
0

0 cosh
t

2
0 sinh

t

2

sinh
t

2
0 cosh

t

2
0

0 sinh
t

2
0 cosh

t

2

D PSO~1,1! ~5.2!

and

exp~b3w!5S cos
w

2
sin

w

2
0 0

2sin
w

2
cos

w

2
0 0

0 0 cos
w

2
sin

w

2

0 0 2sin
w

2
cos

w

2

D PSO~2!. ~5.3!

Then

2A152 i S j3

]

]j1
1j4

]

]j2
1j1

]

]j3
D , ~5.4!

and

2B352 i S j2

]

]j1
2j1

]

]j2
1j4

]

]j3
D . ~5.5!

The parametrization that we see for hyperboloid~2.8! must be such as to makeA1 , B3 , particu-
larly simple
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x15
1

A12z2
cosh

t

2
cos

w

2
2

z

A12z2
sinh

t

2
sin

w

2
,

x25
1

A12z2
sinh

t

2
cos

w

2
1

z

A12z2
cosh

t

2
sin

w

2
, ~5.6!

x35
1

A12z2
sinh

t

2
cos

w

2
2

z

A12z2
cosh

t

2
sin

w

2
.

Then

A152 i
]

]t
, B352 i

]

]w
, ~5.7!

while

C5
~12z2!2

ż2 H ]2

]x2 1S ḣ

h
2

z̈

ż
1

2żz

11z2D ]

]x
1

4ż2

~11z2!2 S ]2

]t22
4z

12z2

]2

]w]t
2

]2

]w2D
1

ḣ

2h F ḧ

ḣ
2

ḣ

2h
2S z̈

ż
2

2żz

11z2D G J . ~5.8!

Since we want the first derivative to vanish, we require

ḣ

h
2

z̈

ż
1

2żz

11z2 50. ~5.9!

Hence the functionh must be chosen to be

h5
ż

11z2 . ~5.10!

Substituting~5.10! into ~5.8!, one gets

C5
~12z2!2

ż2 H ]2

]x2 1
4ż2

~11z2!2 S ]2

]t2 2
4z

12z2

]2

]w]t
2

]2

]w2D2
ż2

~11z2!2 1
1

2

ẑ

ż
2

3

4 S z̈

żD
2J .

~5.11!

The restriction ofC to a subspaceH mn
(3) spanned byf mnt

(3) ,t561, for givenm and n yields the
differential operatorCmn ,

Cmn5
~12z2!2

ż2 H ]2

]x2 2
ż2

~11z2!2 S 114n224m22
16zmn

12z2 D1
1

2

ẑ

ż
2

3

4 S z̈

żD
2J . ~5.12!

Because of~2.7! we put

11n22m25a1E1b1 ,

11r2/45a2E1b2 , ~5.13!

2mn5a3E1b3 .

Then it is not difficult to see that the systems governed by Hamiltonians
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H52
d2

dx2 1
~b121!~12y2!2b3yA12y22b215/4

R

1
1

2 S a122a22
a2

2~12y2!
2

5D

8RD ~12y2!

R2 , ~5.14!

whereD5a3
214a2(a12a2), are related to SO~2,2! in the sense that

S Cmn1r21
1

4D52
4~12y2!2

ẏ2 @H2E# ~5.15!

provided

ẏ25
~12y2!2

R
, ~5.16!

whereR5a3yA12y21a1y21(a22a1). To simplify notation we have put

y5
2z

~11z2!
. ~5.17!

Moreover, for the scattering solutions we have

C6~x!}
~12y2!1/4

Aẏ
Q6 in,m

j /211 S 6 i y

A12y2D , ~5.18!

whereQm,n
j (z) is the generalized Legendre function of the second kind as defined by Azim30

The solutionC1 describes waves incident from the left whileC2 describes waves that ar
incident from the right.

It should be noted that the potential functions of this class admit a double degeneracy
wave function for every positive value of energy. The main reason for this is the fact that eac
of SO~1,1! is twofold degenerate in principal series of UIR of SO~2,1!. The scattering matrices ca
now be obtained as restriction of the intertwining operator ontoH mn

(3) ,

S5S R T

T RD , ~5.19!

where

R5
1

p
coshpnGS 1

2
2

ir

2
1 in DGS 1

2
2

ir

2
2 in D GS 1

2
2

ir

2
1mD

GS 1

2
1

ir

2
1mD ,

T5
2 i

p
sinh

pr

2
GS 1

2
2

ir

2
1 in DGS 1

2
2

ir

2
2 in D GS 1

2
2

ir

2
1mD

GS 1

2
1

ir

2
1mD

~see Eq.~A27! of Ref. 23!. According to this, the reflection and transmission coefficients are

uRu25
cosh2 pn

cosh2 pn1sinh2 pr
, uTu25

sinh2 pr

cosh2 pn1sinh2 pr
.
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This class of solvable potentials includes as special cases important families of Gino
potentials.2 Indeed, putting

a15
1

g4 2
1

g2 , a25
1

g4 , a350, b15d~d11!1
3

4
, b251, b350

with 0,g<1 and introducing Ginocchio’s variabley

y5
y

Ay21g2~12y2!
~5.20!

we have

H52
d2

dx2 1g2d~d11!~12y2!1
~12y2!~12g2!

4
@22y2~72g2!15~12g2!y4#.

~5.21!

Moreover, it follows from~5.16! and ~5.20! that

dy

dx
5~12y2!@12~12g2!y2#. ~5.22!

We also mention that in the special case ofg51 the Hamiltonian~5.21! reduces to the Po¨schl–
Teller Hamiltonian,31

H52
d2

dx2 1
d~d11!

cosh2 x
.

Observe that in this caseQ(x)524. Moreover the solution to the conditionQ5const gives rise
to the Scarf potential (a15a350).32

VI. CONCLUSION

In this paper we have shown how the group theory can be used to obtain a class o
dimensional Hamiltonians related to SO~2,2! in the sense of~2.7! and to solve the scatterin
problems. Using the quasiregular representation with any quasi-invariant measure, it was p
to treat a more general class of Natanzon potentials. We have seen how all the Natanzon po
can quite easily be extracted from the Casimir operator. The relationship between the Hami
and Casimir operators on the one hand and the scattering and intertwining operators on th
enabled us to write down an explicit expression for wave functions and scattering matrices
systems under consideration. We have only considered SO(2,2).SO(2)̂ SO(2),
SO(2,2).SO(2)̂ E(1), and SO(2,2).SO(2)̂ SO(1,1) reductions but in a manner amenable
be immediately extended to other subgroup reductions.

Finally we note that the scattering problems related to the reductions SO(2,2).SO(2)
^ SO(1,1), SO(2,2).E(1)^ SO(1,1) and SO(2,2).SO(2,1) are somewhat more complicat
than the one related to SO(2,2).SO(2)̂ SO(2), SO(2,2).SO(2)̂ E(1) and SO(2,2).E(1)
^ E(1) reductions since theS-matrix in the former case is a unitary 232 matrix while in the latter
it is a complex number of unit modulus. The reason for this is the fact that the subgroups S~1,1!
and SO~2,1! are degenerate in the principal series of SO~2,2!.
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APPENDIX: THE BASIS FUNCTIONS OF THE PRINCIPAL SERIES REPRESENTATIONS
ASSOCIATED WITH THE HYPERBOLOID

In this appendix we will give the integral representation for the basis functions of the
degenerate principal series representations induced by~2.9! which are related to the wave func
tions of the systems under consideration. The procedure will go as follows. We shall start w
most degenerate principal series representations of SO~2,2! associated with the cone.24 For such
realization of the principal series the basis functions have particularly simple form. The
interrelation between two alternative realizations of the principal series allows us to obta
integral representation mentioned above.

Since the representations~2.8! with different measure are unitarily equivalent we can, witho
loss of generality, putdm(j)5dj, wheredj5dj1dj2dj3 /uj4u is an invariant measure onJ. In
this case the Radon–Nikodym derivative equals to one and the representation, call itŤ, has the
simple form

Ť~g! f̌ ~j!5 f̌ ~jg! ~A1!

with inner product

~ f̌ , f̌ 8!5E f̌ ~j! f̌ 8~j!dj. ~A2!

Such defined quasiregular representation of course is unitarily equivalent to~2.9!. The unitary
mappingW which realizes the equivalence is given by

W: f→ f̌ 5h1/2f . ~A3!

The principal series of most degenerate representation of SO~2,2! characterized by the pai
x5(r,«), where« is equal to 0 or 1, while 0<r,` can be realized in the space of infinite
differentiable functionsF(z) on the coneB5$z:zPR2,2, z1

21z2
22z3

22z4
250%, homogeneous of

degreej 5212 ir and with parity«

F~az!5uau j sign« aF~z!. ~A4!

A representation operatorUx is defined by

Ux~g!F~z!5F~zg!. ~A5!

It is worth mentioning that the homogeneous functions on the cone are uniquely determin
their values on any contourG intersecting each generator at one point. Hence,Ux can be realized
in spaces of functions on these contours.

The interrelation betweenUx,x5(r,0), and the principal series representation induced
~A1! are given by integral transform24,25

f̌ ~j!5E
G
u@j,n#u222 jF~n!dn[~ IF !~j!, ~A6!

where @•,•# is given by ~2.1! and G is arbitrary contour on the coneB which intersects every
generator once; anddn is a quasi-invariant measure onG. Moreover the following intertwining
relation is held:

IU 5ŤI . ~A7!

Thus, Eq.~A6! allows us to obtain the integral representation for the basis functions of
principal series representations induced by~A1!.
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~i! The SO(2,2).SO(2)3SO(2) reduction. According to this we introduce the spheri
coordinate systems on the cone

z5vn, n5S cos
c1w

2
, sin

c1w

2
, cos

c2w

2
, sin

c2w

2 D , ~A8!

with 0<v,`, 0,c<2p , 0,w<2p. It follows from ~A4! that the functionsF(z) is uniquely
determined by its values on the direct product of two circlesGS ,

GS5H n:nPB,n5S cos
c1w

2
, sin

c1w

2
, cos

c2w

2
, sin

c2w

2 D J .

Then

Ux~g!F~n!5~vg! jF~ng!, ~A9!

wherevg and ng are determined from parametrization~A5! of ng, i.e., from ng5vgng . The
Casimir Ć operator of the representation~A9! is identically a multiple of the unitĆ[2r22 1

4,
while Á352 i (]/]w) ,B́352 i (]/]c). Therefore, the basis functions of~A9! in
SO(2,2).SO(2)3SO(2) reduction areFmk

(1)(n)5exp(imw1ikc). Then, due to~A6!, we come to
the following integral representation for the basis functions of the principal series represent
induced by~A1!,

f̌ mk
(1)~j!5E

0

2pUj1 cos
c1w

2
1j2 sin

c1w

2
2j3 cos

c2w

2
2j4 sin

c2w

2 U212 j

3exp~ imw1 ikc!dwdc, ~A10!

where the upper index 1 refers to the SO(2,2).SO(2)3SO(2) reduction. It is not difficult to see
that the basis functionsf̌ mk

(1) are indeed the eigenfunctions of the set of commuting operatorČ,
Ǎ3 , andB̌3 ,

Č f̌ mk
(1)5 j ~ j 12! f̌ mk

(1) , Ǎ3 f̌ mk
(1)5m f̌mk

(1) , B̌3 f̌ mk
(1)5k f̌mk

(1) , ~A11!

where

Č52
]2

]j1
2 2

]2

]j2
2 1

]2

]j3
2 1I ~ I 12!, I 5j1

]

]j1
1j2

]

]j2
1j3

]

]j3
, ~A12!

and

2Ǎ352 i S j3

]

]j1
1j4

]

]j2
1j1

]

]j3
D , 2B̌352 i S j2

]

]j1
2j1

]

]j2
1j4

]

]j3
D . ~A13!

~ii ! The reduction SO(2,2).SO(2)3E(1). According to this, we introduce new coordinat
on cone as follows:

z5vn,n5S cos
w

2
2t sin

w

2
, sin

w

2
1t cos

w

2
, cos

w

2
1t sin

w

2
, 2sin

w

2
1t cos

w

2 D , ~A14!

where 0<v,`, 0,w<2p,2`,t,`. Then the infinitesimal operatorsÁ3 and B́21B́3 have
the forms
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Á352 i
]

]w
, B́21B́352 i

]

]t
. ~A15!

By arguments very similar to those used to obtain~A10! we can show that

f̌ ml
(2)~j!5E

2`

` E
0

2pUj1S cos
w

2
2t sin

w

2 D1 j2S sin
w

2
1t cos

w

2 D2S j3 cos
w

2
1t sin

w

2 D
2j4S 2sin

w

2
1t cos

w

2 D U212 j

eimweiltdwdt, ~A16!

where the upper index 2 refers to the SO(2,2).SO(2)3E(1) reduction. We note that

Č f̌ ml
(2)5 j ~ j 12! f̌ ml

(2) , Ǎ3 f̌ ml
(2)5m f̌ml

(2) , ~B̌21B̌3! f̌ ml
(2)5l f̌ ml

(2) , ~A17!

where

2Ǎ352 i S j4

]

]j3
2j2

]

]j1
1j1

]

]j2
D ,

2~B̌21B̌3!52 i F ~j42j2!
]

]j1
1~j31j1!

]

]j2
1~j22j4!

]

]j3
G

and Č is given by~A12!.
~iii ! The SO(2,2).SO(2)3SO(1,1) reduction. This case is somewhat more complicated

the previous one. We find that the parametrizationz5vn, v.0 covers only with two choices o
n,

nt5S cosh
b

2
cos

w

2
2t sinh

b

2
sin

w

2
, t sinh

b

2
cos

w

2
1cosh

b

2
sin

w

2
,sinh

b

2
cos

w

2

2t cosh
b

2
sin

w

2
, t cosh

b

2
cos

w

2
1sinh

b

2
sin

w

2 D ,

t561,2`,b,`,0,w<2p, ~A18!

while the expressions forÁ1 and B́3 are given in both regions byÁ152 i (]/]b) and B́3

52 i (]/]w). Hence, we have the following integral representation for the basis functions c
sponding to SO(2,2).SO(2)3SO(1,1) reduction:

f̌ mnt
(3) 5E

2`

` E
0

2p

u@j,nt#u222 j exp~ imw!exp~ inb!dwdb, ~A19!

wheret561 is the multiplicity label andnt is given by~A18!. Indeed, the functionsf̌ mnt
(3) are

eigenfunctions of the set of commuting operatorsČ, Ǎ1 , andB̌3 ,

Čf mnt
(3) 5 j ~ j 12! f mnt

(3) , Ǎ1f mnt
(3) 5n f mnt

(3) , B̌3f mnt
(3) 5m fmnt

(3) , ~A20!

where
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2Ǎ152 i S j3

]

]j1
1j4

]

]j2
1j1

]

]j3
D ,

2B̌352 i S j2

]

]j1
2j1

]

]j2
1j4

]

]j3
D ,

and Č is given by~A12!.
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Spectral properties of a short-range impurity in a quantum
dot

J. Brüning,a) V. Geyler,b) and I. Lobanovc)

Institut für Mathematik, Humboldt-Universita¨t zu Berlin, Unter den Linden 6,
10099 Berlin, Germany

~Received 21 October 2003; accepted 15 December 2003!

The spectral properties of the quantum mechanical system consisting of a quantum
dot with a short-range attractive impurity inside the dot are studied in the zero-
range limit. The Green function of the system is obtained in an explicit form. In the
case of a spherically symmetric quantum dot, the dependence of the spectrum on
the impurity position and strength of the impurity potential is analyzed in detail.
The recovering of the confinement potential of the dot from the spectroscopy data
is proven; the consequences of the hidden symmetry breaking by the impurity are
considered. The effect of the positional disorder is analyzed. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1647693#

I. INTRODUCTION

Quantum dots~i.e., nanostructures with charge carriers confinement in all spatial direct!
have an atom-like energy spectrum and, therefore, make possible to fabricate quantum
with energy level spacing much greater than the temperature smearingkT at work temperatureT
~see, e.g., Ref. 1!. Moreover, dimension and shape of a quantum dot affect considerably the
important characteristics of the corresponding devices: Relaxation and recombination time,
recombination coefficient etc, thus a possibility arises to control such characteristics in ma
turing the devices.2–4 Another way to control the properties of a quantum dot is instilling
impurity into the dot. Therefore, the investigation of spectral properties of a quantum dot
impurities as well as the dependence of the spectrum on the geometric parameters of the
physical characteristics of the impurity is an important problem of nano- and mesoscopic p
~see, e.g., in Refs. 5–7, and references therein!. The case of a hydrogen-like impurity is one of th
most extensively studied up to now; however, the spectral problem in this case has no
solution. On the other hand, short-range impurities can be investigated in the framework
point potential theory~also called the zero-range potential theory!. An important peculiarity of the
point potential method is that the spectral problem for a point perturbed Hamiltonian is exp
soluble as soon as the Green function for the unperturbed operator is known in an explicit fo8,9

For modeling the geometric confinement of a quantum dot, quadratic~in other words, para-
bolic! potentials are successfully used10 ~see also examples of applications in Refs. 5–7, 11–!.
The reason is that the self-consistent solution to the corresponding system of the Poiss
Schrödinger equations leads to the confinement potential having the form of a truncated par
potential.16 Moreover, the Green function of the corresponding HamiltonianĤ0,

Ĥ052
\2

2m
D1

mV2

2
r 2 , ~1!

can be explicitly calculated17–19 ~hereV is the frequency of the oscillator,m denotes over the

a!Electronic mail: bruening@mathematik.hu-berlin.de
b!On leave of absence from Laboratory of Mathematical Physics, Department of Mathematics, Mordovian State Un

430000 Saransk, Russia. Electronic mail: geyler@mathematik.hu-berlin.de and geyler@mrsu.ru
c!Electronic mail: lobanov@mathematik.hu-berlin.de
12670022-2488/2004/45(4)/1267/24/$22.00 © 2004 American Institute of Physics
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paper the mass of the considered charged particle!. This makes possible to perform an exhaust
spectral analysis of the perturbation ofĤ0 by a point potential of arbitrary positionq and strength
a @we denote this perturbation byĤa(q)] and to analyze the behavior of the eigenvalues ofĤa(q)
as functions ofq anda. This analysis is the main goal of the paper. Note that a quite partic
case of the point perturbation ofĤ0 at q50 ~without obtaining any explicit form for the Gree
function! has been considered in Ref. 20. Point potential for modeling an impurity in a spher
symmetric quantum dot has been studied in the series of papers using the Green function
sentation by means of the Laplace transform of the propagator kernel, but this approach all
analyze~with numerical methods! the lowest impurity level only.6,13–15

It should be noted that point perturbations of the one-dimensional harmonic oscillators
been studied in detail earlier. This study was started in Ref. 21, where the spectral propertie
point perturbed harmonic oscillator have been considered in the context of the one-dimen
models for the toponium physics and the Bose–Einstein condensation.22 A strict mathematical
justification of results from Ref. 21 was done in Refs. 23 and 24; see also in Ref. 25. Undoub
our approach using the three-dimensional harmonic oscillator is more adequate for the an
the spectral properties of three-dimensional systems, in particular, the toponium. It shou
noted also that the one-dimensional harmonic oscillator perturbed by a point potential with
ing position and strength has been investigated in Refs. 26 and 27. A series of phenom
low-dimensional condensed matter physics can be analyzed by means of the Hamiltonian
perturbed oscillator: Impurity in a one-dimensional quantum well, one-dimensional channe
two-dimensional heterostructure subjected to a perpendicular uniform magnetic field etc., s
bibliography in the cited papers for details. However, the analysis given in Refs. 26, and
based on the properties of one-dimensional second-order differential operators and is not ex
to the three-dimensional case.

The paper is organized as follows. Preliminary results are collected in Sec. II. In Sec. I
consider point perturbations of the operator

Ĥ052
\2

2m
D1V , ~2!

with an infinitely growing potentialV. It turns out that the operatorĤa(q) can be defined and
investigated for the more generic case whenĤ0 is defined by Eq.~2!. In Sec. IV some importan
properties ofĤa(q) are established. In particular, a complete description of the spectrum
eigenfunctions ofĤa(q) is given in Theorem 1. As a consequence of this theorem we ge
falling of the considered particle on the attractive center as the potential strengtha tends to2`;
for a very particular case of the one-dimensional harmonic oscillator perturbed at the po
minimum this phenomenon was observed in Ref. 21. In Sec. V we define at fixeda a family of
continuous functions such that the values of these functions at the pointq form the complete
family of the eigenvalues ofĤa(q). Some elementary properties of these functions are establi
in Theorem 2. The main results of the paper are contained in Sec. VI, where the point pe
tions of the Hamiltonian of the harmonic oscillator are studied; the case of the isotropic harm
oscillator ~1! is considered in detail. These results are based on an explicit form of the G
function for the operator~1!. The detailed analysis of the dependence of the point levels on
positionq and on the strengtha is given in Theorem 3. In particular, ifqÞ0, then the point levels
never coincide with the eigenvalues of the unperturbed operatorĤ0. Therefore, we have here n
accidental degeneracy of the levels, which is a peculiarity of the one-dimensional model f
toponium.21,26 Hence, this degeneracy is an artifact of the one-dimensional model. Another
esting result is the asymptotic expression for the bound state ofĤa(q) @Eqs.~33!, and~34!#. These
equations show that at least for the isotropic harmonic oscillator its potential~i.e., the frequency
V! can be recovered from the dependence of the ground state of the point perturbation
support of the perturbation. Moreover, we argue that the form of the parabolic potentialV may be
recovered from the behavior of the excited energy for the ground state. Our conjecture is th
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property is true for a more general form of the potentialV. In this connection it is of interest to
note that the study of the excited energy is one of the main problems of the quantum dot ph6

The methods of Sec. VI allow us to analyze rigorously the phenomenon of so-called ‘‘posi
disorder’’ in quantum dots~including nonisotropic ones!. The relation of the degeneracy properti
of the eigenvalues ofĤa(q) at q50 to the symmetry properties of the unperturbed operatorĤ0 in
the phase space is briefly discussed in the conclusion of Sec. VI. In particular, the appeara
states with nonzero dipole momentum is noted.

II. PRELIMINARIES

Here we present for the convenience of readers some basic properties of point perturba
Schrödinger operators inL2(R3) ~see, e.g., Refs. 8, 28–31 for details!. We will consider only
Schrödinger operatorsĤ0 of the form~2!, where the potentialV is subordinated to the condition

~P1! VPL loc
p (R3) for some p.3;

~P2! V25min(V,0)PL2(R3)1L`(R3).

Conditions ~P1!, ~P2! are weaker than commonly used in applications conditionsV
PL loc

` (R3) and V>c with cPR but making use of~P1!, ~P2! requires no change in proving o
main results below. It is well known that under these conditionsĤ0 is semibounded from below
and essentially self-adjoint onC0

`(R3) ~see in Ref. 32 Theorem X.28!. Further we put, as a rule
\51, m51/2 and denote the obtained operator2D1V by H0. For the domainD(H0) of H0 we
haveC0

`(R3),D(H0),C(R3). This inclusion implies that the Green functionG0(x,y;z) for H0

~the integral kernel of the resolventR(z)5(H02z)21) is a Carleman operator, this means tha

E
R3

uG0~x,y;z!u2 dy , 1` for a.e. xPR3 . ~3!

Moreover, according to Theorem B.7.2 from Ref. 31, for every fixedz, zPC \spec (H0), the
function G0 obeys the following properties:

~G1! For every zPspec(H0) the function G0(x,y;z) is continuous in the domain$(x,y)PR3

3R3 :xÞy%;
~G2! uG0(x,y;z)u<c2(z)ux2yu21;
~G3! if ux2yu>d.0, then uG0(x,y;z)u<c3(d,d,z)exp(2d ux2yu) for somed.0. Moreover, if
Rez ,S [ infspec(H0), then arbitraryd with d2/2,S2Rez is suitable for this estimate.

From ~G1! we get, in particular, that~3! is valid for everyxPR3.
The crucial role in the point potential theory is played by the regularized Green functio

Greg
0 ~x,y;z!5G0~x,y;z!2

1

4p

1

ux2yu
. ~4!

In the particular cases, e.g., ifVPC`(R3), it is known that at fixedz this function has a continu
ous extension on the whole spaceR33R3 ~see, e.g., Ref. 33 or Theorem III.5.1 in Ref. 34!. We
need this property in the general situation and prove it under conditions~P1!, ~P2!.

It is sufficient to prove thatGreg
0 (x,y;z) is continuous with respect to~x,y! for somez5E0

,0. Indeed, then for everyzPC \spec (H0)

G0~x,y;z!5E
E0

z ]

]l
G0~x,y;l! dl1G0~x,y;E0! ,

where the path of integration lies in the resolvent setC \spec (H0). The function
(]G0/]l)(x,y;l) is jointly continuous with respect to~x,y! since it coincides with the integra
kernel of (H02l)22 and this kernel is continuous according to Theorem B.7.1 from Ref. 31

It is easy to see thatV can be represented in the formV5V11W, whereV1PC`(R3) and
obeys the property~P2! andWPLp(R3)ùL1(R3). DenoteH152D1V1 , S15 infspec (H1) and
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by G1 the Green function ofH1. Fix E0 , E0,min(S,S1), and introduce the functionF(x,y,z)
5G0(x,z;E0)W(z)G1(z,y;E0). Using properties~G2!, ~G3!, and the estimate

E
uy2au<r

dy

ux2yun
< c̃nr 32n , ~5!

where 0,n,3, r .0, a, xPR3, it is easy to prove thatF(x,y,•)PL1(R3) for all x,yPR3. In
virtue of the Lippmann–Schwinger relation

G0~x,y;E0!5G1~x,y;E0!1E
R3

G0~x,z;E0!W~z!G1~z,y;E0! dz,

and the continuity of the regularized Green function forH1, it remains to prove that the functio

I ~x,y!5E
R3

F~x,y,z! dz

is continuous onR33R3. Moreover,~G1! shows that it remains to prove the continuity ofI at
points of the form (x0 ,x0). To do this fix «.0 and findh.0 such that the relationsux2x0u
,h, uy2x0u,h imply uI (x,y)2I (x0 ,x0)u<«. Introduce the setsB1(h)5$z: uz2x0u,h%,
B2(h)5R3\B1(h), and for a measurable setB,R3 denoteI B(x,y)5*B F(x,y,z) dz. Then

uI ~x,y!2I ~x0 ,y0!u<uI B1(h)~x,y!u1uI B1(h)~x0 ,y0!u1uI B2(h)~x,y!2I B2(h)~x0 ,y0!u .

If x,y,zPB1(h), then by~G2!

uF~x,y,z!u< f ~z! ux2yu21uz2yu21 ,

where f PLp, therefore relation~5! and the Cauchy–Schwartz inequality lead to the estim
uI B1(h)(x,y)u1uI B1(h)(x0 ,y0)u<consth. On the other hand, ifx,yPB1(h/2), zPB2(h), then we
have from ~G3!: uF(x,y,z)u<g(z)exp(2d uzu), whered.0 and gPLp. Thus by ~G1! and the
Lebesgue majorization theorem,I B2(h)(x,y) is a continuous function onB1(h/2)3B1(h/2), and

the proof of continuity ofGreg
0 is completed.

Let qPR3, then the restriction ofH0 to the domain$ f PD(H0) : f (q)50% is a closed sym-
metric operatorS with the deficiency indices~1,1!. By definition, thepoint perturbation of H0,
supported onq is a self-adjoint extension ofS different fromH0. All the point perturbations ofH0

supported on a givenqPR3 form a one-parameter familyHa(q), aPR, of self-adjoin operators
such that the Green functionGa of Ha(q) is given by the formula

Ga~x,y;z!5G0~x,y;z!2@Q~z;q!2a#21G0~x,q;z!G0~q,y;z! , ~6!

which is a consequence of the Krein resolvent formula. HereQ(z;q)5Greg
0 (q,q;z) is the so-called

Krein Q-function. The operatorH0 corresponds formally toa5`; moreover,H0 is the Friedrichs
extension ofS.

The extension parametera has an important physical meaning, namely,Ha can be treated as
the HamiltonianH0 perturbed by a zero-range potential, in this casea is the strength of this
potential.8,35,36 In place of the strengtha, it is more convenient to use for applications so-call
‘‘scattering length’’,s , ,s51/(4pa) ~see in Refs. 8, 35, and 36 again!. More precisely,

,s5
m

2p\2a
,

and we see that,s has actually the dimension of the length.
                                                                                                                



, the

of

oten-

ch

t

esult.

by

.,

1271J. Math. Phys., Vol. 45, No. 4, April 2004 Spectral properties of a short-range impurity

                    
Note that according to the general results of the Krein self-adjoint extension theory
functionz°Q(z;q) is analytic in the domainC \spec(H0) for eachqPR3 and]Q(E;q)/]E.0 if
EPR\spec(H0).37 Remark that Q(z;q) can be continuously extended to some points
spec(H0). Further we assume thatQ(z;q) is continuously extended to all regular points.

It is easy to prove that for everyqPR3 the mappingz°G0(•,q;z) is an analytic function
from the domainC \spec (H0) to the Hilbert spaceL2(R3). DenoteG0(•,q;z) by gq(z), then we
can rewrite~6! in an operator form

Ra~z!5R0~z!2@Q~z;q!2a#21ugq~z!&^gq~z!u , ~7!

whereRa(z)5(Ha2z)21 andR0(z)5(H02z)21.
Note, thatgq(z) is a nonzero function for everyqPR3 and zPC \spec (H0). Indeed, other-

wise we havew(q)50 for everywPD(H0) that contradicts the inclusionC0
`(R3),D(H0).

In conclusion we mention a possibility to approximate the zero-range perturbation by p
tials with decreasing support. ForV50 the corresponding procedure is described in Ref. 8~Theo-
rem 1.2.5!. We sketch here the proof forH0 with potentialV having properties~P1!, ~P2!.

Let WPLcomp
2 (R3), in particular,W is a Rollnik function~see in Ref. 32, Sec. X.2!. Denote

v5uWu1/2, u5v sign(V), and letl(«) be a real-analytic function in a neighborhood of zero su
that l(0)51. For «.0 consider the operatorH«[H«(q)5H01«22l(«)W(«21(x2q)). Then
the resolventR«(z)5(H«2z)21 («.0) has the form

R«~z!5R0~z!2«l~«!A«@11B«#21C« ,

where A«, B«, C« are integral operators with the kernelsA«(x,y;z)5G0(x,«y1q;z)v(y),
C«(x,y;z)5G0(«x1q,y;z)u(x), B«(x,y;z)5«l(«)G0(«x1q,«y1q;z)u(x)v(y). Define A0

and C0 putting «50 in the formulas above, and defineB0 by the integral kernelB0(x,y)
5(4puy2xu)21u(x)v(y). All the operatorsA«, B« andC« («>0) belong to the Hilbert–Schmid
class andA«→A0, B«→B0, C«→C0 with respect to the Hilbert–Schmidt norm as«→10.
Moreover, using~4! we can prove that with respect to this norm

B«5B01«~l8~0!B01Q~z;q!uu&^vu!1o~«! .

Hence, the arguments using for the proof of Theorem 1.2.5 from Ref. 8 give the following r
Theorem A:

(1) Let^vuw&50 for all L 2-solutionsw of the equation B0w52w ~in particular, let21 be not an
eigenvalue of B0). Then H«(q)→H0 in the norm-resolvent sense as«→10;

(2) let 21 be a simple eigenvalue of B0 and w be a corresponding eigenfunction normalized
the condition̂ w̃uw&521, wherew̃5w sign(V). If ^vuw&Þ0, thenlim«→10H«(q)5Ha(q) in
the norm-resolvent sense, wherea52l8(0)u^vuw&u22;

(3) let 21 be a multiple eigenvalue of B0 with eigenfunctionsw1 ,...,wn normalized by the
conditions^w̃ j uwk&52d jk (w̃ j5w j sign(V)). If ^vuw j&Þ0 for some j andl8(0)Þ0, then
lim«→10H«(q)5Ha(q) in the norm-resolvent sense, where

a52l8~0!F (
j 51

n

u^vuw j&u2G21

.

j

III. POINT PERTURBATION IN THE CASE OF UNBOUNDED POTENTIAL V

Starting with this section we suppose additionally that

~P3! limur u→`V(r )51`.

In this caseR0(z) is a compact operator for allzPC \spec(H0) ~the Strichartz theorem; see, e.g
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in Ref. 38, Theorem XIII.69!. Therefore, spec(H0) consists of an unbounded sequencel0,l1

,¯,ln,¯ of eigenvalues with finite multiplicitykn . Consequently,Q(z;q) is a meromorphic
function of z. We are going to find the poles of this function.

Denote byLn the eigenspace associated withln , and choose inLn an orthonormal basis
Fn,k(r ), k51,...,kn . For everyqPR3 we denote

s~q!5$lnPspec~H0!:' f PLn s.t. f ~q!Þ0%

Lemma 1: The set of all poles of the functionz°Q(z;q) coincides withs(q).
Proof: Since (]G0/]z)(x,y;z) is the integral kernel for the operator (H02z)22, we have

according to the Mercer theorem

]

]z
G0~x,y;z!5 (

n50

`

(
k51

kn

~ln2z!22Fn,k~x!Fn,k~y! ,

where the series converges locally uniformly onR33R33(C \spec(H0)). Therefore,

]

]z
Q~z;q!5 (

n50

`

(
k51

kn

~ln2z!22uFn,k~q!u2 , ~8!

and the series converges locally uniformly on (C \spec(H0))3R3. The lemma follows from~8!
immediately. j

Lemma 2: For eachqPR3 the sets(q) is infinite. If V is bounded from below, thenl0

Ps(q).
Proof: Consider the space of continuous functionsC(R3) with the topology of compact

convergence. Due to the closed graph theorem and the relationD(H0),C(R3), the operator
R0(21): L2(R3)→C(R3) is continuous. Therefore, for everyf PD(H0) the Fourier expansion fo
f with respect to the basis (Fn,k)n,k converges locally uniformly. Assume that the sets(q) is
finite; let N5max$n: lnPs(q)% and P be the orthogonal projection ofL2(R3) on the subspace
M5L01...1LN . Then for everywPD(H0) the conditionsw(q)50 and (Pw)(q)50 are
equivalent. SinceM is finite dimensional, there ishPM such that for everywPM the conditions
w(q)50 and ^h u w&50 are also equivalent. Using the inclusionC0

`(R3),D(H0) we see that
there is a functionhPL2(R3) such that for everywPC0

`(R3) the conditionsw(q)50 and
^h u w&50 are equivalent. Obviously, this is impossible, hences(q) is infinite. If V is bounded
from below, then by Theorem XIII.48 from Ref. 38 the eigenfunctions ofH0 corresponding to the
ground statel0 have no zeros thereforel0Ps(q). j

Another property of the functionz°Q(z;q) we need further follows.
Lemma 3: The function Q(z;q) tends to2` as z→2`, zPR.
Proof: SinceH0 is the Friedrichs extension ofS, the statement follows from Proposition 4 o

Ref. 39. j

IV. SPECTRAL PROPERTIES OF Ha AT FIXED POSITION OF THE POINT
PERTURBATION

Here we describe the spectrum ofHa(q) for a fixedqPR3. Further, if it does not lead to a
misunderstanding, we omitq from the notations.

SinceHa is a rank one perturbation ofH0, the spectrum ofHa is discrete. Moreover, an
eigenvalueln of H0 of the multiplicity kn is an eigenvalue ofHa of the multiplicity kn21, kn or
kn11 @if kn51, the first case means, of course, thatln does not belong to spec(Ha)]. For
l¹spec(H0) we see from~7! thatl is an eigenvalue ofHa if and only if z5l is a solution to the
equation

Q~z;q!2a50. ~9!
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Denote by («n)nPN5(«n(q))nPN the strictly increasing sequence of all the poles ofQ(z;q).
Since (]Q/]E)(E;q).0 for EPR\spec(H0), Eq. ~9! has exactly one solution on each interv
(2`,«0),(«0 ,«1),... . Denote such solutions, which do not belong to spec(H0), by E0 ,E1 ,...,
whereE0,E1,¯ . The following theorem completely describes the eigenvalues and the e
functions ofHa(q).

Theorem 1: Let qPR3 be fixed. The spectrum of Ha5Ha(q) is discrete and consists of fou
nonintersecting partss1 ,s2 ,s3 ,s4 described as follows.

(1) s1 is the set of all solutionsEn to the Eq. (9), which do not belong tospec(H0). The
multiplicity of En in the spectrum of H0 is equal to 1.

(2) s2 is the set of alllnPs(q) that are multiple eigenvalues of H0. The multiplicity of the
eigenvaluelnPs2 in the spectrum of Ha is equal to kn21.

(3) s3 consists of allln , lnPspec (H0)\s(q), that are not solutions of~9!. The multiplicity of
the eigenvalueln in spec(Ha) is equal to kn .

(4) s4 consists of allln , lnPspec (H0)\s(q), such thatln is a solution of~9!. The multiplicity
of the eigenvalueln in spec(Ha) is equal to kn11.

The corresponding eigensubspaces are described as follows.

(1) The subspace spanned by the normalized eigenfunction

Fn5F]Q

]z
~En ;q!G2 1/2

gq~En! .

(2) The orthogonal complement in Ln of the function

Cn~x!5 (
k51

kn

Fn,k~q!Fn,k~x! ,

or, equivalently, the subspace of Ln of the form$ f PLn : f (q)50%.
(3) The subspace Ln .
(4) The direct sum of Ln and the space spanned by the function gq(ln), which is orthogonal to

Ln .

Proof: The proof is based on direct calculations with the help of following statements:
~A! The orthoprojector P(E0) on the eigenspace of a self-adjoint operator T corresponding to
isolated eigenvalue E0 has the form

P~E0!52Res@~T2z!21;z5E0#.

~B! Suppose P1 ,P2 and P11cP2 , where cPC, are orthoprojectors in a Hilbert space and P2

Þ0, then c equals0, 1 or 21.
The first statement is well known; we omit the easy proof of the second one. Denote byA(z),

A~z!5@Q~z;q!2a#21ugq~z!&^gq~z!u,

the second term in the representation~7! of the resolvent. Further, denote forE0PR

Pa~E0!52Res@Ra~z!;z5E0# ,

P0~E0!52Res@R0~z!;z5E0# ,

T~E0!5Res@A~z!;z5E0# ;

therefore, according to~7!

Pa~E0!5P0~E0!1T~E0! .
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Start with the proof of the first assertion of Theorem. It is obvious thats1,spec (Ha). Let
EnPs1 , then in a vicinity ofEn we have the following expansion:

Q~z;q!2a5
]

]z
Q~En ;q!~z2En!1O~z2En!2. ~10!

Therefore,

T~En!5F ]

]z
Q~En ;q!G21

ugq~En!&^gq~En!u . ~11!

Since obviouslyP0(En)50, we havePa(En)5T(En) and the normalized eigenfunction co
responding toEn is

Fn5F]Q

]z
~En ;q!G2 1/2

gq~En! . ~12!

Now consider an eigenvalueln of H0. In this casePa(ln)5P0(ln)1T(ln). According to
~8!, in a neighborhoodW of ln we have the following representation

gq~z!5Cn~•;q!~ln2z!211 f ~z! ,

where f is analytic function inW with values inL2(R3) and

Cn~x;q!5 (
k51

kn

Fn,k~q!Fn,k~x! .

Consider the following three cases:~a! lnPs(q); ~b! ln¹s(q) and Q(ln ;q)2aÞ0; ~c!
ln¹s(q) andQ(ln ;q)2a50.

Let us start with the case~a!. Since ln is a pole ofQ(•;q), we haveCn(•;q)Þ0 and
thereforeT5cP, whereP is the orthoprojector on the one-dimensional space spanned byCn

(•;q). SinceCn(•;q)PLn , in virtue of statement~B! c521, and the assertion~2! of Theorem is
proven.

In the case~b! according to Lemma 1,Fn,k(q)50 for all k51,...,kn ; henceCn(•,q)50 and
T(ln)50. This implies assertion~3! of Theorem.

Finally, in the case~c! we can use~10!–~12! with z5ln instead ofz5En , and obtain

T~ln!5uFn&^Fnu ,

according to~B!, this get the statement~4! of Theorem. j

For nPN denote byAn the set of allaPR such that the solutionEn[En(a) of Equation~9!
does not belong to the spectrum ofH0. Lemma 2 shows thatR\An is finite, moreover, ifV
bounded from below, thenA05R.

For all qPR3 we will denote«21(q)5l2152`. Using Lemmas 1 and 3 we get immed
ately the following proposition.

Proposition 1: For each nPN the functiona°En(a) strictly increases on An . Moreover,

lim
a→1`

En~a!5«n , lim
a→2`

En~a!5«n21 .

j

Remark:For n50 we have an interesting phenomenon of falling the considered particl
the point q ~the falling on the attractive center; cf. Ref. 21 for the case of a one-dimens
oscillator!. Indeed, using estimate (b8) from Theorem B.7.1 of Ref. 31, we obtain without an
difficulty uF0(x)u2→d(x2q) in an appropriate space of distributions asa→2` ~and therefore
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E0→2`). According to the standard interpretation of quantum mechanics, this relation m
that the probability to find the particle in a domain not containing the pointq tends to zero asE0

tends to2`.

V. DEPENDENCE OF THE SPECTRUM OF Ha„q… ON q

Here we are going to analyze the dependence of the eigenvalues ofHa on q. It is clear that
En(q) are continuous branches of the multi-valued function defined by Eq.~9!. This branches can
intersect at valuesln where a monodromy arises. To get a univalent enumeration of t
branches, we modify the parametrization of the eigenvalues ofHa given by Theorem 1~the
enumeration of the numbersEn(q) depends on the enumeration of poles«nPspec(H0), which in
its turn depends obviously onq!. For n521,0,... consider the setsXn defined as follows:X21

5R3, and

Xn5$qPR3:' f PLn s.t. f ~q!Þ0%5$qPR3:lnPs~q!% ,

for n>0. For all nPN the setR3\Xn is nowhere dense inR3 ~see in Ref. 38, Theorem XIII.63!.
According to Lemma 1, forn>0, the setXn coincides with the set of allqPR3 such thatln is a
pole of the functionQ(•;q). Since we do not suppose the potentialV is smooth, the function
Q(z;q) on the set (ln21 ,ln)3(Xn21ùXn), n>0, is not, generally speaking, smooth. Neverth
less, it is monotone and real analytic with respect to the first argumentz and continuous with
respect to the second argumentq. In this case the following simple variant of Implicit Functio
Theorem is applicable~see in Ref. 40 for the proof!:

Let J be an open nonempty interval of the real lineR, X be a topological space, and F: J
3X→R be a separately continuous function such that each partial function t°F(t,x), xPX, is
strictly monotone. Suppose that F(t0 ,x0)50 for some(t0 ,x0)PJ3X. Then there are an open
neighborhood U of the point x0 in X and a continuous function f: U→J such that (1)
F( f (x),x)50 for all xPU; (2) if U8 is another neighborhood of x0 , and g: U8→J is a function
with the property: F(g(x),x)50 for all xPU8, then U8,U, and fuU85g.

According to this version of Implicit Function Theorem, for anyqPXn21ùXn there exists a
unique solutionEn(q) to Eq. ~9! that belongs to (ln21 ,ln) andq°En(q) is a continuous func-
tion in Xn21ùXn .

Proposition 2: Every function En(q), n50,1,..., has a continuous extension to the who
spaceR3.

Proof: Fix n50,1,..., and let apoint q, qPR3\(Xn21ùXn), be given. Choose a sequen
(qk)kPN from Xn21ùXn which tends toq. First we note that the sequence (En(qk))kPN is bounded
in R. It is trivial for n.0. If n50, the sequence is bounded from above. We prove that
bounded from below as well. OtherwiseE0(qkl

)→2` for some subsequence (qkl
). Since

Q(E;q)→2` as E→2`, there existsA,l0 such thatQ(A;q),a. Then there existsNPN
such thatQ(A;qkl

),a andE0(qkl
),A if l>N. Therefore, fork>N we have

Q~E0~qkl
!;qkl

!2a , Q~A;qkl
!2a,0 ,

and we get a contradiction with the definition ofE0(qkl
).

By Bolzano–Weierstrass we can extract a subsequence (qkl
) from the sequence (qk) such that

the subsequence (En(qkl
)) has a limit, which we denote byE8. To prove that the sequenc

(En(qk)) tends toE8 andE8 is independent of the choice of a sequence (qk) tending toq we need
the following lemma concerning properties ofE8.

Lemma 5: The limit E8 has the properties:

(1) E8 is not a pole of the functionz°Q(z;q);
(2) if ln21,E8,ln , then E8 is a unique solution of Eq. (9) in the interval(ln21 ,ln);
(3) if E85ln21 , then limE→E8@Q(E;q)2a#>0;
(4) if E85ln , then limE→E8@Q(E;q)2a#<0.
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Proof of the lemma:

~1! First consider the casen.0. The functionQ̃n(z;q)5@Q(z;q)2a#(z2ln21)(z2ln) is con-
tinuous on the interval (ln22 ,ln11)3R3. SinceQ̃n(En(qkl

);qkl
)50, passing to the limitl

→` we get Q̃n(E8;q)50. Supposez5E8 is a pole of Q(z;q), then Q̃n(E8;q)
5Res@Q(z;q);z5E8#Þ0, and we get a contradiction. Forn50, we considerQ̃0(z;q)
5@Q(z;q)2a#(z2l0), and get the same result.

~2! It is sufficient to pass to the limitl→` in the identityQ(En(qkl
);qkl

)50.
~3! In virtue of statement~1! of the lemma, the functionz°Q(z;q) is continuous in a neighbor

hood of E8, and therefore there exists a limit limz→ln21
@Q(z;q)2a#5L. Assume thatL

,0, thenQ(E,q)2a,0 for someEP(ln21 ,ln). Choose somem such thatEn(qkm
),E.

SinceQ(z;q) increases on the interval (ln21 ,ln) as the function ofz, we obtain a contra-
diction:

05Q~En~qkm
!;qkm

!2a,Q~E;qkm
!2a,0 .

Statement~4! can be proven similarly to~3!. j

Let us return to the proof of the proposition. We prove that if a sequence (pk)kPN from
Xk21ùXk converges to the pointq, thenEn(pk)→E8.

SupposeEn(pk) does not converge toE8, then there exists a subsequence (pkl
) such that

En(pkl
)→E* , E* ÞE8. AssumeE* ,E8. Taking into account item~2! of Lemma 5 we getE*

5ln21 or E85ln . In both the cases we have

lim
z→E*

@Q~z;q!2a#>0 and lim
z→E8

@Q~z;q!2a#<0.

Take some real numbersE1 andE2 such thatE* ,E1,E2,E8. Then by the strict monotonicity
of z°Q(z;q) we have

0<Q~E1 ;q!2a,Q~E2 ,q!2a<0 .

This is a contradiction. j

The following theorem is the main result of this section.
Theorem 2: For each fixedaPR there is a sequence(En(q))nPN of continuous functions o

qPR3 with the following properties:

(1) ln21<En(q)<ln for all nPN.
(2) For eachqPR3 the set consisting of all En(q) and all the numbersln with multiplicities

kn.1 form the complete collection of the eigenvalues of the operator Ha(q).
(3) If ln21,En(q),ln , then En(q) is a unique solution of the Eq. (9) on the interv

(ln21 ,ln).
(4) If z5ln is a pole of the functionz°Q(z;q), then En21(q),ln,En(q).
(5) If z5ln is not a pole of the functionz°Q(z;q), then we have the following assertions:

(a) if Q(ln ;q)2a,0, then En(q)5ln,En11(q);
(b) if Q(ln ;q)2a.0, then En(q),ln5En11(q);
(c) if Q(ln ;q)2a50, then En(q)5ln5En11(q).

Proof: Consider the functionsEn(q) given by Proposition 2. Then~1! is obvious by definition
of En(q). Assertion~2! follows from Theorem 1. Assertions~3! and~4! were proven in Lemma 5
It remains to prove~5!.

Let ln be not a pole ofz°Q(z;q). SupposeQ(ln ;q)2a,0. For any positive integerm we
choose a numberEm8 such thatln21/m,Em8 ,ln ; then Q(Em8 ;q)2a,0. Further, we choose
points qmPR3 such thatln21 and ln are not poles of the functionz°Q(z;qm) ~that is qm

PXm21ùXm), and such thatuq2qmu,1/m andQ(Em8 ;qm)2a,0. Thenz5En(qm) is a solution
                                                                                                                



ns

a

en-

1277J. Math. Phys., Vol. 45, No. 4, April 2004 Spectral properties of a short-range impurity

                    
of the equationQ(z;qm)2a50 lying in the interval (ln21 ,ln). Since Q(z;qm) is a strictly
monotone function ofz on this interval, the inequalitiesEm8 ,En(qm),ln take place for allm.
ThusEn(qm)→ln andqm→q asm→`; therefore,ln5En(q) by the definition of the function
En(q). According to Lemma 5,Q(ln ;q)2a>0, if ln5En11(q); therefore ln,En11(q).
Hence, item~5a! is proved. The proofs of items~5b! and ~5c! are similar. j

Theorem 2 gives a useful description of the spectrum ofHa . Namely, denote byM the set
$mPN: km.1% and together with the functionsEn(q) introduce a sequence of constant functio
Lm

(k)(q)5lm , wheremPM , k51,...,km21. ThenEn(q)<Ln
(k)(q)<En11(q) for all nPM , k

51,...,kn21, and for any fixed qPR3 the union of the sequences (En(q))nPN and
(Lm

(k)(q))mPM ,k51,...,km21 forms the complete set of the eigenvalues ofHa(q) multiplicity count-

ing. If qPùn50
` Xn , then everyEn(q) is distinct from the numbersLm

(k)(q). SinceR\ùn50
` Xn is

the set of the first Baire category, for a genericq the point perturbation levelsEn(q) are distinct
from the levels of the unperturbed operatorH0.

VI. POINT PERTURBATIONS OF THE HARMONIC OSCILLATOR

Here we apply the results of the previous sections to the Hamiltonian~2! with the potential

V~r !5
mVx

2

2
x21

mVy
2

2
y21

mVz
2

2
z2 , ~13!

whereV j ( j 5x,y,z) are the frequencies of the oscillator. The functionV can be considered as
confinement potential of a quantum well inR3 with the characteristic sizes

L j5A \

2mV j
, j 5x,y,z

~numbers&L j are called alsolength parametersof the oscillator41!. Therefore the operator with
potential~13! can be used as the Hamiltonian of a~generally speaking, asymmetric! quantum dot.1

It is convenient to pass to dimensionless coordinatesx5r /L, whereL5A3 LxLyLz . In the coordi-
natesx5(x1 ,x2 ,x3) the operatorĤ0 takes the formĤ05\VH0, where

H052D1 1
4 ~v1

2x1
21v2

2x2
21v3

2x3
2! ,

V5A3 VxVyVz , v15
Vx

V
, v25

Vy

V
, v35

Vz

V

~hence,v1v2v351).
Further we discuss the properties ofH0. The spectrum of this operator consists of the eig

values

ln1n2n3
5v1~n111/2!1v2~n211/2!1v3~n311/2! ,

wheren1 ,n2 ,n3PN. The corresponding normalized eigenfunctions are

Fn1n2n3
~x!5wn1

~x1!wn2
~x2!wn3

~x3! ,

where

wnj
~xj !5S v j

2p D 1/4

~2njnj ! !21/2expS 2
1

4
v j xj

2DHnSAv j

2
xj D

is the oscillator function@Hn(x) is the Hermite polynomial of degreen].
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If the frequenciesv1 ,v2 ,v3 are independent over the ringZ ~this is the generic case!, then
the spectrum ofH0 is simple; therefore, the multiplicity of the eigenvalues ofHa(q) does not
exceed 2 and the parts2 of the spectrum spec (Ha(q)) is always empty. On the other hand, sin
Hn(0)50 if and only if n is odd,ln1 ,n2 ,n3

Pspec(Ha(0)) if and only if one of the numbersnj

( j 51,2,3) is odd; hence, spec(H0)\s(0) is always infinite. In addition, for alln.0 the setR3\Xn

is infinite.
In general case, there are no explicit expressions for the Green functions of the har

oscillator in terms of commonly used elementary or special functions. Nevertheless, in a n
of cases, the representation of the Green functionG0(x,y;E) as the Laplace transform of the he
kernelK(x,y;t) for H0 is very useful to investigate some properties of the KreinQ-function. The
heat kernel forH0 has the form~see, e.g., in Ref. 42!:

K0~x,y;t !5)
j 51

3 S 1

4pshv j t
D 1/2

expS 2
v j

4shv j t
~~xj

21yj
2!chv j t22xjyj ! D .

Using the heat kernelK f for the free HamiltonianH f52D,

K f~x,y;t !5~4pt !23/2expS 2
~x2y!2

4t D ,

and theQ-function for H f ,

Qf~z!52
A2z

4p
,

we get immediately from the formula

G~x,y;E!5E
0

`

etEK~x,y;t ! dt ,

that for Rez,(v11v21v3)/2 the following representation of theQ-function for H0 takes place:

Q~z;q!52
A2z

4p
1

1

~4p!3/2E
0

`S )
j 51

3 S 1

shv j t
D 1/2

expS 2
1

2
qj

2v j th
v j t

2 D2
1

t3/2D ezt dt . ~14!

It is clear from ~14! that (]Q/]qj )(E;q),0 for qj.0, if E,l05(v11v21v3)/2. Since
]Q/]E.0 for EPR\spec (H0), ~9! implies that]E0 /]qj.0. In particular, the depth of the lowes
impurity level l02E0(q) decreases ifuqu increases in such a way that the inner producta•q
remains positive for each vectora with positive coordinates. In the spherically symmetric ca
v15v25v3 , we have]Q/]q,0, whereq5uqu.0, and the depth decreases with increasing oq.
This phenomenon was discovered numerically for a spherically symmetric quantum dot in R
and calledpositional disorder. We see that the positional disorder is common to each parab
quantum dot, not only to the spherically symmetric one. The similar result is valid in the
dimensional case, i.e., for the case of impurities in a quantum well~see numerical results in Re
14!. Our arguments are valid in the two-dimensional case also, thus we have a strict proof
positional disorder in a two-dimensional quantum well.

The more detailed analysis is possible in the case of theisotropic oscillator: Vx5Vy5Vz

(5V), i.e., in the case of a spherically symmetric quantum dot. In this casev15v25v351 and
the spectrum ofH0 consists of the eigenvalues

ln5n1 3
2 , nPN ,
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whereln has the multiplicitykn5(n11)(n12)/2. In this case there are natural units of leng
~namely,L) and of energy (\V). Therefore, the following very important scaling properties tak
place. Denote byQ̂(z;q) the KreinQ-function for the operatorĤ0 keeping the notationQ(z;q)
for the Q-function of H0. Then

Q̂~z;q!5
1

\VL3 QS z

\V
;
q

L D54p
m

2p\2L
QS z

\V
;
q

L D .

Denotem/(2p\2L) by a0; obviously,a0 is strength of the point potential corresponding to t
scattering lengthL. Then Eq.~9! takes the form

4pQS z

\V
;
q

L D5
a

a0 , ~15!

or, equivalently,

4pQS z

\V
;
q

L D5
L

,s
.

Equation~15! shows that a change of the frequencyV does not change the numerical values
energy levels in the spectrum ofĤ0 if L is used as the unit of length,\V as the unit of energy and
a0 as the unit of point potential strength.

In the case of isotropic oscillator, the sets~q! has a simple description:
Proposition 3: LetVx5Vy5Vz . Thens(q)5$l2n : nPN%, if q50, and s(q)5spec(H0)

otherwise.
Proof: Eachln is equal toln1n2n3

, wheren11n21n35n. If n is odd, then at least one o
nj is odd, andCn1n2n3

(0)50. Therefore,ln¹s(0). On the other hand, ifn is even, then
Cn00(0)Þ0, and therefore,lnPs(0).

Let now qÞ0. First we remark that for allnPN the following assertion is valid:
Lemma 6: If Hn(x0)50, then Hn11(x0)Þ0.
Proof of the lemma:For all nPN the following relation takes place:43

Hn118 ~x!52~n11!Hn~x! .

If Hn(x0)5Hn11(x0)50, thenHn8(x0)50. Sincey5Hn(x) is a solution to the differential equa
tion y922xy812ny50, we haveHn(x)50 for all x; but this is impossible. j

Let us return to the proof of the proposition. Suppose thatqÞ0; without loss of generality we
can assumeq2Þ0. SinceH1(x)50 only for x50, and H0(x)Þ0 for all x, we havel0 ,l1

Ps(q). Let n.1. Suppose thatFn21,1,0(q)50, then according to Lemma 6,Fn,0,0(q)Þ0. j

Using Proposition 3 we can give the complete description of the spectrumHa(q) in the case
of an isotropicH0. Moreover, in this case the explicit form of the Green functionG0(x,x8;z) is
known, and therefore, we can give the explicit form of the KreinQ-function and eigenfunction o
Ha(q). In particular, the equation for the point perturbation levelsEn(q) can be obtained in an
explicit form. The mentioned Green function has the form18

G0~x,y;z!52
1

2~2p!3/2GS 1

2
2z D FU~2z;j!U8~2z;2h!1U8~2z;j!U~2z;2h!

ux2yu

1
U~2z;j!U8~2z;2h!2U8~2z;j!U~2z;2h!

ux1yu G , ~16!

wherej5(ux1yu1ux2yu)/2, h5(ux1yu2ux2yu)/2, U(n;z) is the parabolic cylinder function44

~in the Whittaker notationU(n;z)5D2n21/2(z)), andU8 denotes the derivative ofU with respect
to the second argument
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U8~z;y!5
]

]y
U~z;y! .

Using ~16!, we get the following expression for theQ-function:

Q~z;q!52
1

8~2p!3/2GS 1

2
2z D F ~q224z!U~2z,q!U~2z,2q!14U8~2z,q!U8~2z,2q!

2
2

q
~U8~2z,q!U~2z,2q!2U~2z,q!U8~2z,2q!!G , ~17!

whereq5uqu. Due to the symmetry of the problem, theQ-function depends onq only, so we shall
write often Q(z;q) instead ofQ(z;q). Introducing the notationU(z;y)5U(z;y)U(z;2y), we
can rewrite~17! in the sometimes more useful form

Q~z;q!52
1

4~2p!3/2GS 1

2
2z D F ~q224z!U~2z;q!2

1

q
U8~2z;q!2U9~2z;q!G , ~18!

where the prime denotes the derivative with respect to the second argument as before. Pa
limit we get atq50

Q~z;0!52
1

A8p

GS 3

4
2

z

2D
GS 1

4
2

z

2D . ~19!

It is interesting to compare~19! with the Krein Q-function Q(1)(z;0) for the one-dimensiona
harmonic oscillator:26

Q(1)~z;0!5223/2

GS 1

4
2

z

2D
GS 3

4
2

z

2D .

Curiously, in the case of the free HamiltonianH052D, the Q-functionsQd for d51 and for
d53 are also related as follows:

Q1
21~z!528pQ3~z! . ~20!

Namely, for the free HamiltonianQ1(z)5(2A2z)21, Q3(z)52(4p)21A2z. ForqÞ0 relation
~20! for Q-functions of the harmonic oscillators is violated.

It is useful to consider the behavior of the functionz°Q(z;q) near the singular points, i.e
near the poles and in a neighborhood of2`. Using properties of the parabolic cylinde
functions,43 we have

Q~z;0!52
~2n11!!!

~2p!3/2~2n!!! S 1

z2l2n
2 ln 2112

1

2 (
k51

n
1

k~112k!
1O~z2l2n!D ,

asz→l2n . If qÞ0, the coefficients for corresponding asymptotics are cumbrous enough, an
give the leading term only:
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Q~z;q!52
exp~2q2/2!

~2p!3/22n12n!
~2~n11!Hn

2~q/& !1&~q212q!Hn~q/& !Hn11~q/& !

1Hn11
2 ~q/& !!~z2ln!211O~1! , ~21!

asz→ln .
For Rez→2`, we have

Q~z;q!52
A2z

4p S 12
q2

8
z211

82q4

128
z221O~z23! D . ~22!

It is important to note that the leading term in~22! coincides with the KreinQ-function for the free
Hamiltonian2D.

Now consider the properties of the functionq°Q(z;q). SinceU(n;z) is an entire function of
z, the functionq°Q(z;q) at z¹spec(H0) can be extended to a real analytic even function onR
@see~18!#. In particular,

]

]q
Q~z;0!50 .

As to the second derivative, we can obtain after some algebra

]2

]q2 Q~z;0!5
1

8A6p F ~4z211!

GS 1

4
2

z

2D
GS 3

4
2

z

2D 28z

GS 3

4
2

z

2D
GS 1

4
2

z

2D G . ~23!

For the fixedzPR\spec(H0), the asymptotics ofQ at q→` is given by

Q~z;q!52
1

8p Fq2
2z

q
2

112z2

q3 1OS 1

q5D G . ~24!

This follows from the asymptotics forU(z;q) at q→`:45

U~z;q!5
A2p

GS 1

2
1z D F 1

X
1OS 1

X5D G ,

whereX5Aq214z.
Further the following formula will be also useful

]Q

]z
~z;0!5

1

4&p

GS 3

4
2

z

2D
GS 1

4
2

z

2D GS 1

2
2z D . ~25!

Here and below we use the standard notations43

G~z!5cS z

2
1

1

2D2cS z

2D ; c~z!5
G8~z!

G~z!
.

The plot of the graphs for the functionQ(z;q) is shown in Figs. 1 and 2.
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In the case of an isotropic oscillator, the functionsEn(q) depend only onq and we will denote
them by En(q). Further properties of these functions@and, in particular, of the spectrum o
Ha(q)] for the isotropic case are given in Theorem 3 below, which is one of the main resu
the article.

FIG. 1. Q as a function ofz for ~a! q50, ~b! q51/10, ~c! q51, ~d! q53.

FIG. 2. Q as a function ofq for (a) z50, (b) z51, (c) z52, (d) z53, (e) z54.
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Theorem 3: The following assertions take place.
(1) The functions En(q), nPN are real-analytic. Ifa50 and n.0, then in a vicinity of zero,

these functions are continuous branches of a two-valued analytic function.
(2a) E0(0),l0 for eacha, aPR.
(2b) If a.0, then E2n11(0)5l2n11 and l2n11,E2n12(0),l2n12;nPN.
(2c) If a,0, thenl2n,E2n11(0),l2n12 and E2n12(0)5l2n12;nPN.
(2d) If a50, then E2n11(0)5E2n12(0)5l2n11;nPN.
(3a) If aÞ0, then for any n.0

]En

]q
~0!50 . ~26!

If n50, then ~26! is valid for anya.
~3b! If a.0 ~respectively, a,0), then

]2En

]q2 ~0!5
1

8A6GS 1

2
2En~0! D S 4En

2~0!11

8p2a2 28En~0! D , ~27!

for any even (respectively, odd) n. If n50, then ~27! is valid for anya.
~3c! If a50, then (]E2n11 /]q)(0),0, (]E2n12 /]q)(0).0, and (u(]E2n11 /]q)(0)u

5u(]E2n12 /]q)(0)u;nPN.
~4! If qÞ0, thenln21,En(q),ln;nPN.
~5! limq→`En(q)5ln;nPN.
Proof: Item ~4! follows immediately from Proposition 3 and the definition of the functio

En . Formula~19! shows thatQ(z;0)50 if and only if z5l2n11 for somenPN; therefore, items
~2a!–~2d! follow from Theorem 2. Using the standard version of the implicit function theorem
the Proposition 3 again, we see thatEn(q) are real analytic atq.0. Moreover, item~3! of
Theorem 2 implies that~i! En(q) are real-analytic atq50 for evenn if a.0, ~ii ! En(q) are
real-analytic atq50 for oddn if a,0, and~iii ! E0(q) is real-analytic atq50 for anya. In all
these cases, the derivatives ofEn can be found from the equations

]Q

]z

]En

]q
1

]Q

]q
50 ,

]Q

]z

]2En

]q2 1
]2Q

]z2 S ]En

]q D 2

12
]2Q

]z]q

]En

]q
1

]2Q

]q2 50. ~28!

Since (]Q/]q)(E;0)50 if E¹spec(H0), equation~26! follows from ~28! in the considered
cases. In virtue of~26!, the second derivative ofEn is given by

]2En

]q2 ~0!52
]2Q

]q2 S ]Q

]z D 21

~En~0!;0!. ~29!

Substituting~23! and ~25! into ~29! and using~9! we get~27!.
Now consider the singular case whenEn(0), n>1, coincides with a point of the forml2m11 .

In a neighborhood of the point (En(0),0), introduce the function

Q̃a~z;q!5
Q~z;q!2a

GS 1

2
2z D ,
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which is smooth with respect to (z,q) and analytic with respect to the first argumentz. In a
vicinity of (En(0),0) we have

Q̃a~En~q!;q!50 . ~30!

Further,

]Q̃a

]z
5

1

G~1/22z!

]Q

]z
1~Q2a!

G8~1/22z!

G2~1/22z!
. ~31!

Since (]Q/]z)(z;0) is a finite number atz5l2m11 andG(1/22z) has a pole atl2m11 , the first
term in ~31! vanishes at the point (l2m11,0). The value of the functionG8(1/22z)/G2(1/22z) at
z5l2m11 is a nonzero finite number. Finally,Q(l2m11,0)50; thus]Q̃a /]q vanishes at the poin
l2m11 if and only if a50. Therefore, ifaÞ0, then each functionEn(q) has an analytic continu
ation in a neighborhood of the pointq50. Sinceq°Q̃a(l2m11 ;q) is an even function, we ge
easily ~26!.

Let now a50. Then

]2Q̃0

]z2 5
1

G~1/22z!

]2Q

]z2 12
G8~1/22z!

G2~1/22z!

]Q

]z
2Q

G9~1/22z!G~1/22z!22G82~1/22z!

G3~1/22z!
.

~32!

It is easy to see that the first and last terms in~32! vanishes at the point (l2m11,0), whereas the
second one does not. Therefore,]2Q̃0 /]z2Þ0 at the point (l2m11,0), andEn(q) being solutions
of ~30!, are continuous branches a two-valued analytic function in a vicinity of (l2m11,0). Ob-
viously, at the point (l2m11,0) the following relation is valid

]2Q̃0

]z2 S ]En

]q D 2

12
]2Q̃0

]z]q

]En

]q
1

]Q̃0

]z

]2En

]q2 1
]2Q̃0

]q2 50 .

Since]Q̃0 /]z50 at the considered point, we get the quadratic equation for]En /]q:

]2Q̃0

]z2 S ]En

]q D 2

1
]2Q̃0

]q2 50 .

As a result, we complete the proof of items~1! and~3c!. It remains to prove~5!. Fix nPN and let
«, 0,«,1, is given. According to~24! we can chooseq0.0 such thatQ(ln2«;q)2a,0 if
q>q0 . SinceQ(En(q);q)2a50 and the functionE°Q(E;q) increases in the intervalln21

,E,ln , we haveEn(q).ln2« as q>q0 . Moreover, En(q),ln , and the proof is com-
pleted. j

The structure of spec(Ha(q)) given by Theorem 3 is presented in Table I. The peculiarities
this table atq50 can be understood from the point of view the symmetry group of the prob
It is well known that for a generic spherically symmetric potentialV(r ), the eigenvaluesl of the
operatorH052D1V are parametrized by three quantum numbers:l5lnr ,l ,m , wherenr (nr

50,1,...) is the socalled principal~or total! quantum number;l ( l 50,1,...) is theorbital quantum
number, andm (m52 l ,2 l 11,...,l 21,l ) is the magnetic quantum number. Each eigenva
lnr ,l ,m is degenerate with multiplicity 2l 11, namely, lnr ,l ,m5lnr ,l ,m8 if m,m8P$2 l ,2 l

11,...,l 21,l %. This degeneracy is related to the invariance ofH0 with respect to the rotation
groupSO~3!: eigensubspaces ofH0 carry an irreducible representation of this group. In gene
lnr ,l ,mÞln

r8 ,l 8,m8 if nrÞnr8 or lÞ l 8. The eigenvalues of an isotropic harmonic oscillator have

additional~so-called accidental! degeneracy: Each eigensubspaceLn is decomposed on the sub
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spacesLn
( l ) with angular momentuml 5n,n22,...,0~if n is even! or l 5n,n22,...,1~if n is odd!.

This accidental degeneracy is related to the invariance of the HamiltonianH0 of an isotropic
harmonic oscillator with respect to the groupU~3!. Indeed,

H05(
j 51

3

aj
1aj1

3
2 ,

whereaj
1 andaj are standard creation and annihilation operators.41 Therefore,H0 is invariant with

respect to the transformation

aj→aj85(
j 51

3

uk jaj , aj
1→a8

j15(
j 51

3

uk j* aj
1 ,

where (ujk) is a unitary matrix. Ifq50, thenHa(0) is a spherically symmetric perturbation ofH0

that violates theU~3!-symmetry. To prove this, we note that operatorsaj
1ak are generators of the

Lie groupu(3). Therefore, ifHa(0) is invariant with respect to the considered representatio
U~3!, we must have@Ha(0),H0#50. On the other hand it is easy to show that forzPC \R the
operator@Ra(z),R0(z)# has a nonzero integral kernel.

Since point perturbations cannot change states with nonzero angular momentuml ~see, e.g.,
8!, the parts2 ~at q50) may contain only even eigenvaluesl2n and we see this in Table I. Sinc
all states fromLn have the same parity (21)n, the isotropic oscillator has no stationary states w
a nonzero dipole momentum.35 On the other hand every eigensubspace ofH0(0) with eigenvalue
from s4 have an eigenfunction withl 50 ~this is the eigenfunction from item 4 of Theorem 1!.
Therefore, point perturbations of an isotropic harmonic oscillator can lead to an appeara
eigenstates with nonzero dipole momentum.

An alternative tool to understand the energy degeneracy of the three-dimensional iso
oscillator gives the supersymmetry theory.46–48 We will not dwell here on this approach, neve
theless note that the analysis performed in the cited papers requires a modification in thes-channel
only.

The functionsEn depend not only on the position parameterq, but also on the strengtha; we
will denote these dependencies asEn5En(q,a). If E(q,a0) coincides with one of the number
Em , then in a vicinity ofa0 , the functiona°En(q,a) is a continuous branch of the invers
function to E°Q(E;q). It is already known from Proposition 1 that the following limits ta
place:

lim
a→1`

En~q;a!5ln , lim
a→2`

En~q;a!5ln21 ,

TABLE I. The structure of spec(Ha(q)).

q50 qÞ0

a.0 s15$E2n(0): nPN% s15$En(q): nPN%
s25$l2n12 : nPN% s25$ln11 : nPN%
s35$l2n11 : nPN% s35B

s45B s45B

a50 s15$1/2% s15$En(q): nPN%
s25$l2n12 : nPN% s25$ln11 : nPN%

s35B s35B

s45$l2n11 : nPN% s45B

a,0 s15$E2n11(0): nPN%ø$E0(0)% s15$En(q): nPN%
s25$l2n12 : nPN% s25$ln11 : nPN%
s35$l2n11 : nPN% s35B

s45B s45B
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wherel2152`. Now we make more precise this behavior. From~22! we get the asymptotics o
the functionE0(q;a) for the fixedq>0 asa→2`,

E0~q;a!5216p2a21
q2

4
1

1

128p2a2 1OS 1

a4D , ~33!

or in terms of the point perturbation of the initial operator~1!

E0~q;a!52
\2

2m l s
2 1

mV2q2

2
1

mV2l s
2

4
1O~ l s

4! , ~34!

where the scattering lengthl s tends to 0. Expression~34! means that up to the infinitely small term
O( l s

2) the ground state ofĤa(q) equals to the ground state of the point perturbation of the
Hamiltonian 2\2D/2m with the same scattering lengthl s shifted by the potentialV(r )
5mV2r2/2 at the pointr5q. Equation~34! shows that at least for the isotropic harmonic osc
lator its potential can be recovered from the dependence of the ground state of the point
bation on the position of the potential support. It is reasonable to suppose that this is true fo
general forms of the potentialV; we consider this conjecture elsewhere.

Now consider the behavior ofEn(q;a) in a vicinity of the poles ofQ(z,q). We start with the
general caseqÞ0. Using~21! we get asa→6`

En~q;a!5ln
62

exp~2q2/2!

~2p!3/22n12n!
~2~n11!Hn

2~q/& !1&~q212q!Hn~q/& !Hn11~q/& !

1Hn11
2 ~q/& !!a211O~a22!, ~35!

whereln
15ln andn>0 asa→1`, andln

25ln21 andn>1 asa→2`.
In the caseq50, we are in position to give a compact form for more precise asymptotic

En(q;a). Denote

Ln~a!5
~2n11!!!

~2p!3/2~2n!!!
a212S ~2n11!!!

~2p!3/4~2n!!! D
2S ln 2211

1

2 (
k51

n
1

k~112k!Da22.

For eigenvalues with even indices we have

E2n~0;a!5H l2n21 for a<0 and n>1

216p2a21
1

128p2 a221O~a24! for a→2` and n50

l2n2Ln~a!1O~a23! for a→1` and n>0 .

~36!

For the odd indices

E2n11~0;a!5H l2n11 for a>0

l2n2Ln~a!1O~a23! for a→2` .
~37!

Formulas~35!–~37! explain peculiarities in the plots of functionsEn on Figs. 3 and 4. Note tha
in Eqs.~33!–~37! the remainder terms depend onn.

The isotropic harmonic oscillator has an equidistant spectrum. After the perturbation
zero-range potential, the distances between energy levels are changed and become depe
the energy indexn. This is important in the connection with the problem of the control
modulation of the binding energy of the impurity center in quantum dots, that can be us
design nonlinear opto-electronic active elements.6 The asymptotic formulas~34!–~37! give very
accurate expressions for the excited energies in the most interesting case of a deep zero-ra
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(a→2`) as well as for the case of a shallow well (a→1`), which confirm numerical results
from Ref. 6. Note also that Proposition 1 and Theorem 3 imply a remarkable distinction be
the excited energy for the ground state and that for the other ones: The energyE1(q;a)
2E0(q;a) can take an arbitrary value depending onq and a; on the other hand, energiesln

2En(q;a) andEn11(q;a)2ln(n>1) are bounded by 1. Since at fixeda, a!21, the function
q°E1(q;a)2E0(q;a) is injective for moderate values ofq, the position of an impurity in the
quantum dot may be determined from the spectroscopy data.

We show the plot of the energiesE1(q;a)2E0(q;a) andl12E1(q;a) as functions ofq and
a on Figs. 5 and 6, respectively.

FIG. 3. En as a function ofq for ~a! a52a0, ~b! a50, ~c! a5a0.
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FIG. 4. En as a function ofa for ~a! q50, ~b! q51/10, ~c! q51, ~d! q53.

FIG. 5. The exciting energy as a function ofq for (a) a52a0, (b) a50, (c) a5a0.
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In conclusion we give the following remark. Letq: @0,̀ )→R be a smooth function obeying
the conditions

~H1! q>0 and the functionr °q(r )1r 2/4 is nondecreasing;
~H2! q8(r )<0, and letk0 and k1 be the first two eigenvalues of the operatorH01q52D
1r 2/41q(r ). It is proven in Ref. 49 thatk0 /k1,l0 /l1 , if qÞ0. Using Theorems 3 and A it is
easy to construct smooth functionsq with properties~H1! and
~H2a! q8(r )>0, such thatk0 /k1.l0 /l1 .
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We consider a simple one-dimensional quantum system consisting of a heavy and a
light particle interacting via a point interaction. The initial state is chosen to be a
product state, with the heavy particle described by a coherent superposition of two
spatially separated wave packets with opposite momentum and the light particle
localized in the region between the two wave packets. We characterize the
asymptotic dynamics of the system in the limit of small mass ratio, with an explicit
control of the error. We derive the corresponding reduced density matrix for the
heavy particle and explicitly compute the~partial! decoherence effect for the heavy
particle induced by the presence of the light one for a particular set up of the
parameters. ©2004 American Institute of Physics.@DOI: 10.1063/1.1647692#

I. INTRODUCTION

Decoherence has become the terminology for the irreversible suppression of interfere
the wave function of a quantum system due to the interaction with an ‘‘environment.’’7,3 The usual
picture of decoherence, in the simple setting of a two particle system, goes as follows. Su
one has a particleM with initial wave functionw(x)5w l(x)1w r(x), representing the superpos
tion of two wave packetsw l , more or less supported ‘‘on the left of the origin’’ and heading to
right, andw r supported more or less on the ‘‘right of the origin’’ with an average velocity point
to the left. Suppose that another particlem, described initially by the wave packetF(y), passes by
and interacts withM . Assuming a small mass ratio between the second and the first particle
conceivable that the evolution ofM will not be much affected by the interaction, while th
scattering process undergone by the particlem will depend strongly on the position of the heavi
particle. After interaction~which is assumed to be very fast! one then expects that the wav
function describing the state of the system is of the typec(x,y)5w l(x)F l(y)1w r(x)F r(y),
whereF l and F r will have spatial supports concentrated in distant regions for all later tim
Therefore, in the configuration space of the entire system the entangled state will appear
sum of two disjoint components and the possibility of interference of the heavy particle
packets will be reduced.

Notice that the reduced density matrix of the particleM has in this ideal case negligibl
off-diagonal elements. In this sense, interference has been reduced and the motion of the
M has become more ‘‘classical.’’ That is the way decoherence plays a role in the explanat
the emergence of classical behavior from quantum mechanics.

For the relevance of the mechanism of decoherence in the classical limit of Quantum
chanics in the language of Bohmian Mechanics see Ref. 1.

In this respect it is an interesting problem to separate ‘‘pure decoherence’’ from the

a!Electronic mail: duerr@mathematik.uni-muenchen.de
b!Electronic mail: figari@na.infn.it
c!Electronic mail: teta@univaq.it
12910022-2488/2004/45(4)/1291/19/$22.00 © 2004 American Institute of Physics
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effects which an environment usually produces, which are dissipation and fluctuation. That
would like to have the motion of the system not much affected by the interaction with
environment, while the environment produces decoherence. It is unclear whether these des
namely a good decoherence rate and a more or less unperturbed motion can be cons
fulfilled in realistic physical models.6

Explicit models where one can rigorously establish decoherence in this sense have
worked out in the last years. One such model has been studied in Ref. 4 where the interac
a particle with the radiation field has been considered. We shall now study another inter
which elaborates closer the idea of scattering of light particles~the environment! off a heavy
particle ~the system! ~see Refs. 8, 5, and 11 for similar ideas!.

We consider a very simple one-dimensional model of a system~a heavy particle of massM )
plus environment~one light particle of massm) interacting via a short range force~d-interaction!.
We consider this case as useful preparation for the treatment of a three-dimensional gas
particles interacting with the heavy particle, which we shall address in subsequent work.

We wish to stress some features that make the two-particle model withd-interaction~which
has the advantage of being analytically easily accessible! particularly suitable as a model fo
decoherence:

~1! There exists a simple dimensionless parameter in the problem, namely the fraction
massese5 m/M ;

~2! letting e become small while keepingM fixed allows to approximate the solution of th
Schrödinger equation of the two body problem by a scattering solution in which the h
particle acts as a scattering center for the light one. The error isO~e!. The time scale on which
this approximation holds is of course given by the time the light particle needs to pas
heavy particle. This approximation is the starting point of the analysis in Ref. 8;

~3! the decoherence effect~i.e., the amount by which the off diagonal elements of the redu
density matrix are reduced! can be explicitely computed@see~3.20! and the discussion fol-
lowing it# and is, in the relevant regime, of the order ofa0m\22d, whered is the initial
spread of the light particle anda0 is the strength of the potential@(a0m)21\2 is the effective
range of interaction# all of which can also be chosene-dependent.

We wish to warn the reader that the point interaction we look at here in form of thed-potential is
for finite a0 not a hard core interaction. The casea0→` corresponds to hard core.

The paper is organized as follows.
In Sec. II we introduce the model and characterize the asymptotic dynamics of the

particle system for small mass ratio and state the main approximation result.
In Sec. III we show the attenuation of the off-diagonal terms in the reduced density matr

the heavy particle and we compute explicitly the probability distribution for the position of
heavy particle, showing reduction of the interference effects with respect to the noninter
case.

In Sec. IV we give the proof of the main result of the paper.
In the Appendix we recall the derivation of the explicit solution of the Schro¨dinger equation

of the two-body system in interaction via a delta potential in dimension one.

II. EXPRESSION FOR SMALL MASS RATIO

In this section we shall study the Schro¨dinger equation for the two-particle system in o
dimension described by the Hamiltonian

H52
\2

2M
DR2

\2

2m
D r1a0d~r 2R!, a0.0. ~2.1!
                                                                                                                



o

alued

ysical

trical

1293J. Math. Phys., Vol. 45, No. 4, April 2004 Decoherence in a two-particle model

                    
In ~2.1! we have denoted byR the position coordinate of the heavy particle with massM and by
r the position coordinate of the light particle with massm. The interaction potential is chosen t
be a repulsive point interaction of strentha0 .

It is well known that~2.1! is a well defined positive and self-adjoint operator inL2(R2,drdR),
which is also a solvable model.2

In fact, for an arbitrary initial statec05c0(r ,R), the solution of the Schro¨dinger equation can
be explicitely written as~see Ref. 10 and the Appendix!

c~ t,r ,R!5E dr8dR8c0~r 8,R8!U0
nS t,

M

n
~R2R8!1

m

M
~r 2r 8! D

•FU0
m~ t,~r 2R!2~r 82R8!!2

ma0

\2 E
0

`

due2 (ma0 /\2) uU0
m~ t,u1ur 2Ru1ur 82R8u!G ,

~2.2!

where we have introduced the reduced mass and the total mass of the system

m5
mM

m1M
, n5m1M , ~2.3!

and the integral kernel of the free unitary groupU0
M(t) corresponding to the massM.0

U0
M~ t,x2x8!5e2 i ~ t/\! H0

M
~x2x8!5A M

2p i\t
ei ~M/2\t !(x2x8)2

, x,x8PR. ~2.4!

We are interested in the case of an initial state in a product form. Then we fix two real v
smooth functions~for ease of formulation we assume that they are in Schwartz spaceS!

f ,gPS, i f i5igi51, ~2.5!

wherei•i denotes the norm inL2(R). For later use, it will be convenient to chooseg even. Using
f andg we define now the states in such a way that we can easily read of the relevant ph
scales, i.e., we code the states by the physical parametersR0 ,P0 ,s,r 0 ,q0 ,d as follows:

f s,R0 ,P0
~R!5

1

&
@ f s,R0 ,P0

1 ~R!1 f s,R0,P0

2 ~R!#, ~2.6!

f s,R0 ,P0

6 ~R!5
1

As
f S R6R0

s De6 i ~P0 /\! R, ~2.7!

gd,r 0 ,q0
~r !5

1

Ad
gS r 2r 0

d Dei ~q0 /\! r , ~2.8!

s,d,R0 ,P0 ,q0.0, r 0PR, R0.s1d1ur 0u. ~2.9!

The choice~2.9! is not essential for the most part of the paper, but it sets already a geome
picture which puts the results in the right perspective@see below~2.10!#. Later on we shall use this
particular choice for computing effects. Note that the spread of the wave function ofM is not
given bys but by R0 .

The initial state that we consider in the following is

c0~r ,R!5gd,r 0 ,q0
~r ! f s,R0 ,P0

~R!. ~2.10!
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The initial state~2.10! is a~pure! product state for the whole system, i.e., no correlation is assu
between the two particles at time zero.

The heavy particle is assumed to be in a superposition of two spatially separated
packets, one localized inR52R0 with mean value of the momentumP0 and the other localized
in R5R0 with mean value of the momentum2P0 . The light particle is localized aroundr 0 , in
the region between the two wave packets, with positive mean momentumq0 .

To simplify the notation, in the rest of the paper we shall drop the dependence of the
state onR0 ,P0 ,r 0 ,q0 . Moreover, for the convenience of the reader, we collect here some not
which will be used later on

e5
m

M
, m5

e

11e
M , n5~11e!M , ~2.11!

a5
a0m

\2 , ~2.12!

k05
q0

\
, K5

P0

\
1k0 , ~2.13!

T : L2~R2,drdR!→L2~R2,dx1dx2!,

~Th!~x1 ,x2![hS x21
M

m1M
x1 ,x22

m

m1M
x1D , ~2.14!

D65~6R02s,6R01s!, ~2.15!

and finallyc will denote a positive numerical constant.
We shall now characterize the asymptotic behavior of the wave function for small value o

mass ratioe for the initial state~2.10!. Lettingm become small, keepingM fixed, the light particle
moves with speed at leastv;\/dm due to the uncertainty principle and the time by which t
light particle passesM is of the order ofR0 /v thus decreases withm, so thatM does not change
much its position during the passing ofm.

The limit dynamics will hence describe a situation in which the light particle is scattere
the heavy one being in some fixed position, while the heavy particle moves freely. Neverth
we shall find that the free motion of the heavy particle is modified by the scattering event. I
heuristic argument we kept all the other physical parameters fixed except for the inter
strength. In fact, in order to keep the interaction effective on the light particle we need to scaa0

in such a way thata0m'O(1). There is of course no need to keep the other parameters fixe
fact one may well imagined andR0 increasing withm, so that the kinetic energy ofm stays finite
and the spread of theM increases. We shall not discuss such choices here, but the estimat
detailed enough, so that other scalings can be easily discussed. This might become relev
model where the heavy particle is immersed in a gas of light particles. In order to formula
main result of this section, we define the integral operator

~W
1

g,x0h!~k!5
1

A2p
E dxh~x!~e2 ikx1Rg~k!e2 ix0kei ukuux2x0u!, g.0, x0PR,

~2.16!

Rg~k!52
g

g2 i uku
, ~2.17!

where the integral kernel in~2.16! is the generalized eigenfunction of the Hamiltonian
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Hg,x0
52 1

2 D1gd~•2x0!, ~2.18!

andRg(k) is the corresponding reflection coefficient~see e.g., Ref. 2!. Moreover we introduce the
wave operatorV

1

g,x0 associated toHg,x0
, explicitly given by

~V
1

g,x0h!~x!5@~W
1

g,x0!21h̃#~x!, ~2.19!

whereh̃ denotes the Fourier transform ofh.
With the above notation the asymptotic wave function, which will be denoted byca(t), is

explicitely characterized in the following theorem.
Theorem 1: Let s1.0, d1.0, a1.0, k1,` and let the initial state be given by (2.10) wit

s>s1 , d>d1 , a>a1 , k0<k1 .
Then for any t.0 there exist time independent constants A, B such that

ic~ t !2ca~ t !i,S A

t
1BD e, ~2.20!

where

ca~ t,r ,R!5A m

i\t
ei ~m/2\t ! r 2E dy fs~y!U0

M~ t,R2y!~W1
a,ygd!S mr

\t D
5A m

i\t
ei ~m/2\t ! r 2E dy fs~y!U0

M~ t,R2y!@~V1
a,y!21gd# S mr

\t D . ~2.21!

Remark 1:Note thatca(t,r ,R) is close to what we described in the introduction. Think off s

as consisting of two well concentrated wave packets, then the light particle scattered wave
tion is correlated with the two average positions of the heavy particles, as one can see ob
that the integration variabley in @(V1

a,y)21gd# appears as a scattering center.
The result of theorem 1 can be rephrased in terms of reduced density matrix for the

particle, which is defined by the integral operatorr̂(t) in L2(R) given by the kernel

r̂~ t,R,R8!5E drc~ t,r ,R!c̄~ t,r ,R8!. ~2.22!

We also introduce the integral operatorr̂a(t) defined by

r̂a~ t,R,R8!5E drca~ t,r ,R!ca~ t,r ,R8!

5E dy fs~y!U0
M~ t,R2y!E dzf s~z!U0

M~ t,R82z!I~y,z!, ~2.23!

where

I~y,z![E dk~W1
a,ygd!~k!~W1

a,zgd!~k!5~~V1
a,z!21gd ,~V1

a,y!21gd!. ~2.24!

Formula ~2.24!, obtained through heuristic considerations, has been the main ingredient
description of scattering induced decoherence in Ref. 8.

Observe that, from~2.23! and ~2.24! one has

r̂a~ t !5U0
M~ t !r̂0

aU0
M~2t !, ~2.25!
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wherer̂0
a is defined by the integral kernel

r̂0
a~y,z!5 f s~y! f s~z!I~y,z!. ~2.26!

It is easily seen thatI(y,z)5Ī(z,y), uI(y,z)u<1 and the equality holds only ify5z. Thenr̂0
a is

a self-adjoint and trace-class operator, withTr( r̂0
a)51; it is also positive since

~h,r̂0
ah!5E dyh̄~y!E dzh~z! f s~y! f s~z!E dk~Wa,ygd!~k!~Wa,zgd!~k!

5E dkU E dyh̄~y! f s~y!~Wa,ygd!~k!U2

. ~2.27!

Moreover we have

Tr~~ r̂0
a!2!5E dydzu f s~y!u2u f s~z!u2uI~y,z!u2,1. ~2.28!

We conclude thatr̂0
a and its free evolutionr̂a(t) are density matrices describing mixture states a

by Theorem 1, for anyt.0, one has

Tr~ ur̂~ t !2 r̂a~ t !u!,S A

t
1BD e. ~2.29!

This means that in our asymptotic regime the motion of the heavy particle is a free evolutio
the other hand, the presence of the light particle has a relevant effect, since it produces a tra
of the initial state of the heavy particle fromr̂0(y,z)5 f s(y) f s(z) to r̂0

a(y,z). We shall see in the
next section that this is the origin of the decoherence effect on the heavy particle.

Finally, it is worth to mention that the dynamics of the system can be equivalently desc
by the Wigner function. From~2.23! and ~2.24! we see that the asymptotic form of the reduc
Wigner function describing the motion of the heavy particle is the free evolution of

Ŵ0
a~R,P!5

1

2p E dxeiPxf sS R2
\

2
xD f sS R1

\

2
xDIS R2

\

2
x,R1

\

2
xD . ~2.30!

III. SIZE OF DECOHERENCE

Here we discuss an application of formulas~2.23! and~2.24! to a concrete example of quan
tum evolution and we give an explicit computation of the decoherence effect.

We shall consider the initial state~2.10! with the further assumptions~which are only done for
ease of presentation!

f ,gPC0
`~21,11! ~3.1!

and

s !
1

a
! R02ur 0u , d ! R02ur 0u, ~3.2!

i.e., the spreading in position of the wave packets~which are superposed in a gross superpositi!
of the heavy particle is much smaller than the effective range of the interaction and this, in
is much smaller than the separation between the two particles. Moreover the light particle i
separated from each wave packet of the heavy one.

Notice that~3.2! obviously impliess/R0 !1.
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Using assumptions~3.2! we can give an estimate of the basic objectI(y,z) for y,zPD6 and
then we can find a more suitable expression for the reduced density matrix of the heavy p
In order to formulate the result, we define the parameter

L5E dkug̃d~k!u2Ta~k!511E dkug̃d~k!u2Ra~k!, ~3.3!

where

Tg~k!52
ik

g2 ik
511Rg~k!, g.0, ~3.4!

is the transmission coefficient associated to a point interaction of strengthg ~see e.g., Ref. 2!. Then
we have

Proposition 2: Assume (3.2). Then

sup
y,zPD6

uI~y,z!21u,cS as1
1

a~R02ur 0u!
1

d

R02ur 0u D , ~3.5!

sup
yPD1,zPD2

uI~y,z!2Lu5 sup
yPD2,zPD1

uI~y,z!2L̄u,cS 1

a~R02ur 0u!
1

d

R02ur 0u D . ~3.6!

Proof: Using the shorthand notationb5ad, we note that foryPD2

1

Ad
~W1

a,ygd!S k

d D5ei (k0d2k)r 0 /dg̃~k2k0d!1Rb~k!ei (k0d1uku) r 0 /d 2 i (k1uku) y/dg̃~ uku1k0d!,

~3.7!

and foryPD1

1

Ad
~W1

a,ygd!S k

d D5ei (k0d2k)r 0 /dg̃~k2k0d!1Rb~k!ei (k0d2uku) r 0 /d 2 i (k2uku) y/dg̃~ uku2k0d!,

~3.8!

where we have used the fact that

g̃d~k!5Adg̃~kd2k0d!e2 i (k2k0)r 0. ~3.9!

Then fory,zPD2 we have

I~y,z!511E dkug̃~ uku1k0d!u2uRb~k!u2e2 i (k1uku) ~y2z!/d1E dkgD ~k2k0d!g̃~ uku1k0d!Rb

3~k!ei (k1uku) ~r 02y!/d1E dkgD ~ uku1k0d!g̃~k2k0d!Rb~k!e2 i (k1uku) ~r 02z!/d

511E
0

`

dkug̃~k1k0d!u2uRb~k!u2~e22ik ~y2z!/d21!1E
0

`

dkgD ~k2k0d!g̃~k1k0d!

3Rb~k!e2ik ~r 02y!/d1E
0

`

dkgD ~k1k0d!g̃~k2k0d!Rb~k!e22ik ~r 02z!/d

[11a11a21a3 , ~3.10!
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where we have used the identityRb1Rb12uR bu250 and the fact thatg̃ is even.
Using ~3.2! we easily estimatea1

ua1u<2
uy2zu

d E
0

`

dkug̃~k1k0d!u2kuRb~k!u2<4
s

d E
0

`

dkug̃~k1k0d!u2kuRb~k!u2<2 as.

~3.11!

For the estimate ofa2 it is convenient to integrate by parts

ua2u5U 1

2i

d

r 02y E0

`

dkgD ~k2k0d!g̃~k1k0d!Rb~k!
d

dk
e2ik~r 02y!/dU

5
d

2ur 02yu U E0

`

dk
d

dk
~gD ~k2k0d!g̃~k1k0d!Rb~k!!e2ik ~r 02y!/d2ug̃~k0d!u2U

<
d

R02ur 0u F 1

2p
S E drug~r !u D 2

1
1

b E
0

`

dkugD ~k2k0d!g̃~k1k0d!u

1E
0

`

dkugD 8~k2k0d!g̃~k1k0d!u1E
0

`

dkugD ~k2k0d!g̃8~k1k0d!uG
<

d

R02ur 0u F 1

2p
S E drug~r !u D 2

1
1

b
igi212i g̃8i G

<
d

R02ur 0u S 1

p
12i g̃8i D1

1

a~R02ur 0u!
. ~3.12!

The terma3 is analyzed exacly in the same way and then we get the estimate~3.5! for y,z
PD2. Since in the casey,zPD1 the computation is similar we conclude that~3.5! holds.

In order to prove~3.6! we consider the caseyPD1 and zPD2 ~the caseyPD2 and z
PD1 can be treated exactly in the same way! and we obtain

I~y,z!511E dkgD ~ uku1k0d!g̃~ uku2k0d!uRb~k!u2e22i uku r 0 /d 1 i (uku2k) y/d 1 i (uku1k) z/d

1E dkgD ~k2k0d!g̃~ uku2k0d!Rb~k!e2 i (uku2k) ~r 02y!/d

1E dkgD ~ uku1k0d!g̃~k2k0d!Rb~k!e2 i (uku1k) ~r 02z!/d

511E
0

`

dk~ ug̃~k2k0d!u2Rb~k!1ug̃~k1k0d!u2Rb~k!!

1E
0

`

dkgD ~k1k0d!g̃~k2k0d!uRb~k!u2e22ik ~r 02z!/d

1E
0

`

dkgD ~k1k0d!g̃~k2k0d!Rb~k!e22ik~r 02z!/d

1E
0

`

dkgD ~k1k0d!g̃~k2k0d!uRb~k!u2e22ik ~r 02y!/d

1E
0

`

dkgD ~k1k0d!g̃~k2k0d!Rb~k!e22ik~r 02y!/d. ~3.13!

The estimate of the last four terms of~3.13! proceeds exactly as the estimate ofa2 in ~3.12!. On
the other hand,
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11E
0

`

dk~ ug̃~k2k0d!u2Rb~k!1ug̃~k1k0d!u2Rb~k!!5E dkug̃~k2k0d!u2S 2 ik

b2 ik D ,

~3.14!

and this concludes the proof of the proposition. h

Proposition 2 allows us to find a further approximate form for the reduced density mat
Corollary 3: Under the assumptions (3.2) and for any t>0 we have

@Tr~~ r̂a~ t !2 r̂ f~ t !!2!#1/2,cS as1
1

a~R02ur 0u!
1

d

R02ur 0u D , ~3.15!

where

r̂ f~ t !5U0
M~ t !r̂0

f U0
M~2t !, ~3.16!

r̂0
f ~y,z!5

1

2
f s

1~y! f s
1~z!1

1

2
f s

2~y! f s
2~z!1

L

2
f s

1~y! f s
2~z!1

L̄

2
f s

2~y! f s
1~z!. ~3.17!

Proof:

Tr~~ r̂a~ t !2 r̂ f~ t !!2!5Tr~~ r̂0
a2 r̂0

f !2!

5
1

4 E dydzu f s
1~y! f s

1~z!~I~y,z!21!1 f s
2~y! f s

2~z!~I~y,z!21!

1 f s
1~y! f s

2~z!~I~y,z!2L!1 f s
2~y! f s

1~z!~I~y,z!2L̄ !u2

< sup
y,zPD1

uI~y,z!21u21 sup
y,zPD2

uI~y,z!21u21 sup
yPD1,zPD2

uI~y,z!2Lu2

1 sup
yPD2,zPD1

uI~y,z!2L̄u2. ~3.18!

Using proposition 2 we conclude the proof. h

From corollary 3 and theorem 1 we conclude that the reduced density matrix for the h
particle in the position representation can be approximated by the density matrix

r̂ f~ t,R,R8!5
1

2
~U0

M~ t ! f s
1!~R!~U0

M~2t ! f s
1!~R8!1

1

2
~U0

M~ t ! f s
2!~R!~U0

M~2t ! f s
2!~R8!

1
L

2
~U0

M~ t ! f s
1!~R!~U0

M~2t ! f s
2!~R8!1

L̄

2
~U0

M~ t ! f s
2!~R!~U0

M~2t ! f s
1!~R8!,

~3.19!

with an explicit control of the error.
If the interaction with the light particle is switched off, i.e., fora50, we haveL51 and then

~3.19! reduces to the pure state corresponding to the coherent superposition of the free ev
of the two wave packetsf s

6 .
On the other hand, ifa.0 one easily sees that 0,uLu,1 and then~3.19! is a mixed state for

which the interference terms are reduced by the factorL and this is the typical manifestation of th
~partial! decoherence effect induced by the light particle on the heavy one.

The relevant parameterL @see~3.3!# is defined in terms of the probability distribution of th
momentum of the light particleug̃d(k)u2 and of the transmission coefficientTa(k).

Then the decoherence effect is emphasized if the fraction of transmitted wave for the
particle is small.

In particular, rescaling the integration variable in~3.3!, one can also write
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L512E dzug̃~z!u2
ad

ad2 i ~z1k0d!
. ~3.20!

Notice that decoherence is maximal when the wavelength of the light particle is smaller th
comparable to the scattering length of the interaction (k0;a) and minimal fork0 large with
respect toa. Nevertheless it is worth stressing that~3.20! is an asymptotic formula whose effec
tivness is guaranteed only in the range of validity of the assumptions of theorem 1, from wh
is derived.

For k0!a the effect of decoherence is given by

L.E dzug̃~z!u2uTad~z!u2512E dzug̃~z!u2
a2d2

a2d21z2 , ~3.21!

where we have used the fact thatg̃ is even.
A further interesting question is the analysis ofr̂ f(t) in the momentum representation. Sin

momentum is a constant of motion, the density matrix is simply given by

1

\
r̃0

f S P

\
,
P8

\ D5
1

2\
f̃ s

1S P

\ D f̃ s
1S P8

\ D1
1

2\
f̃ s

2S P

\ D f̃ s
2S P8

\ D1
L

2\
f̃ s

1S P

\ D f̃ s
2S P8

\ D
1

L̄

2\
f̃ s

2S P

\ D f̃ s
1S P8

\ D . ~3.22!

It is then clear that the decoherence effect is present also in the momentum representatio
is measured by the same parameterL.

Moreover, if f̃ s
1 and f̃ s

2 are well separated, one easily realizes that the probability distribu
of the momentum remains essentially unchanged with respect to the unperturbed caseL51, the
error being of ordere.

We analyze now the evolution in the position representation of the heavy particle expl
the approximate reduced density matrixr̂ f(t).

We shall explicitely show that the typical interference fringes produced by the superpo
state when the interaction with the light particle is absent, i.e., forL51, are in fact reduced when
the light particle is present, i.e., foruLu,1.

In order to see the effect more clearly we assume

s

R0
!

\

sP0
. ~3.23!

The effect of the interference terms becomes more relevant when the supports of the two
packetsU0

M(t) f s
6 have the maximal overlapping and this approximately happens at the tit

5t[ R0M /P0 . Then, from~3.19!, we consider

n~t,R![r̂ f~t,R,R!5 1
2 @ u~U0

M~t! f s
1!~R!u21u~U0

M~t! f s
2!~R!u2

12R~L~U0
M~t! f s

1!~R!~U0
M~t! f s

2!~R!!#. ~3.24!

Using ~3.23! and a standard scattering estimate~see, e.g., Ref. 9! we obtain

~U0
M~t! f s

1!~R!5A P0s

2p\R0
E dx fS x1R0

s Dei ~P0 /\! x1 i ~P0/2\R0!(R2x)2

5AP0s

i\R0
ei ~P0 /\!(R2/2R0 1R2 R0/2) f̃ S P0s

\R0
RD1E0~R!, ~3.25!
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iE0i,
P0s2

2\R0
iD f̃ i . ~3.26!

Proceeding analogously for (U0
M(t) f s

2)(R) we find

n~t,R!5
P0s

\R0
U f̃ S P0s

\R0
RD U2S 11uLucosS 2P0

\
R1w D D1E1~R!, ~3.27!

iE1iL1,c
P0s2

\R0
, ~3.28!

where

L5uLueiw. ~3.29!

For uLu,1, formula~3.27! shows that the presence of the light particle determines a reductio
the amplitude of the oscillations and a shift of the corresponding phases.

Notice that the shift is negligible ifk0!a.

IV. PROOF OF THEOREM 1

The proof of theorem 1 will be obtained through the proof of three lemmas.
Lemma 4: Given the initial state (2.10), for any t>0 one has

ic~ t !2c1~ t !i,C1 e, ~4.1!

where

c1~ t,r ,R!5E dy fs~y!U0
nS t,

M

n
R1

m

M
r 2yD E dr8gd~r 81y!Ua0

m ~ t,r 2R,r 8! ~4.2!

and

C15F E dxx2E dyU ]

]y
~ f s~y!gd~x1y!!U2G1/2

. ~4.3!

Proof: Using the relative and the center of mass coordinates@see~2.14!#, from ~A4! one has

~Tc~ t !!~x1 ,x2!5~U0
n~ t !Ua0

m ~ t !Tc0!~x1 ,x2!, ~4.4!

whereUa0

m (t) is defined in~A10! of the Appendix and

~Tc0!~x1 ,x2!5 f sS x22
m

M
x1DgdS x21

M

n
x1D . ~4.5!

Moreover

~Tc1~ t !!~x1 ,x2!5E dx28dx18 f s~x28!gd~x181x28!U0
n~ t,x22x28!Ua0

m ~ t,x1 ,x18!

[~U0
n~ t !Ua0

m ~ t !Tc01!~x1 ,x2!, ~4.6!

where
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c01~r ,R!5 f sS M

n
R1

m

M
r DgdS r 2R1

M

n
R1

m

M
r D . ~4.7!

Then we have withm/M 5 e/(11e) , (M /n) 2152 e/(11e)

ic~ t !2c1~ t !i25iTc~ t !2Tc1~ t !i2

5iTc02Tc01i2

5E dx1dx2U f sS x22
m

M
x1DgdS x21

M

n
x1D2 f s~x2!gd~x11x2!U2

5E dx1dx2U f sS x22
e

11e
x1DgdS x21x12

e

11e
x1D2 f s~x2!gd~x11x2!U2

5E dx1dx2UFS x1 ,x22
e

11e
x1D2F~x1 ,x2!U2

, ~4.8!

whereF(x1 ,x2)5 f s(x2)gd(x11x2). By a simple Plancherel argument, we have that

E dx1dx2UFS x1 ,x22
e

11e
x1D2F~x1 ,x2!U2

5E dx1E dkuF̃~x1 ,k!~e2 i ~e/11e! x1k21! u2

<E dx1E dkuF̃~x1 ,k!u2S e

11e
x1kD 2

5S e

11e D 2E dx1x1
2E dx2U ]

]x2
F~x1 ,x2!U2

,

~4.9!

from which the lemma follows. h

Since a small value ofm in the interacting unitary groupUa0

m (t) is equivalent to a large value

of t, in the next lemma we use a typical scattering estimate to approximateUa0

m (t) in ~4.2!.

Lemma 5: Given the initial state (2.10), for any t.0 one has

ic1~ t !2c2~ t !i,
C2

t
e, ~4.10!

where

c2~ t,r ,R!5A m

2p i\t
A M

2p i\t
ei ~m/2\t ! r 21 i ~M /2\t ! R2E dj f s~j!ei ~M /2\t ! j2

e2 i (~M /\t ! R1 ~m/\t ! r )j

•E dr8gd~r 81j!S e2 i ~m/\t !(r 2R)r 82
ei ~m/\t ! ur 2Ruur 8u

12 i
\

a0t
ur 2Ru D ~4.11!

and

C25c
M

\ H E dxx4u f s~x!u21E dxu f s~x!u2F E dyy4ugd~y1x!u21
1

a3 S E dyugd~y1x!u D 2

1
1

a S E dyuyuugd~y1x!u D 2

1aS E dyy2ugd~y1x!u D 2G J 1/2

. ~4.12!

Proof: We shall first estimate the differencec1(t)2ĉ2(t), whereĉ2(t) is explicitly given by
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ĉ2~ t,r ,R!5A m

2p i\t
ei ~m/2\t !(r 2R)2E dy fs~y!U0

nS t,
M

n
R1

m

M
r 2yD E dr8gd~r 81y!

•S e2 i ~m/\t !(r 2R)r 82
ei ~m/\t ! ur 2Ruur 8u

12 i
\

a0t
ur 2Ru D . ~4.13!

From ~4.2! we have

~Tc1!~ t,x1 ,x2!5E dyU0
n~ t,x22y!w1~ t,x1 ,y!, ~4.14!

w1~ t,x1 ,x2!5 f s~x2!E dr8gd~r 81x2!Ua0

m ~ t,x1 ,r 8!, ~4.15!

and analogously forĉ2(t) we write

~Tĉ2~ t !!~x1 ,x2!5E dyU0
n~ t,x22y!w2~ t,x1 ,y!, ~4.16!

w2~ t,x1 ,x2!5A m

2p i\t
ei ~m/2\t ! x1

2
f s~x2!E dr8gd~r 81x2!S e2 i ~m/\t ! x1r 82

ei ~m/\t ! ux1uur 8u

12 i
\ux1u
a0t

D .

~4.17!

Using the isometric character of the operatorsT andU0
n(t) and the explicit expression ofUa0

m (t)

@see~A10!#, we have

ic1~ t !2ĉ2~ t !i25iTc1~ t !2Tc2~ t !i2

5iw1~ t !2w2~ t !i2

<2E dx1dx2U f s~x2!E dr8gd~r 81x2!

3S U0
m~ t,x12r 8!2A m

2p i\t
ei ~m/2\t ! x1

2
2 i ~m/\t ! x1r 8D U2

12E dx1dx2U f s~x2!E dr8gd~r 81x2!S ma0

\2 E
0

`

due2 ~ma0 /\2! u

3U0
m~ t,u1ux1u1ur 8u!2A m

2p i\t

1

12 i
\ux1u
a0t

ei ~m/2\t ! x1
2
1 i ~m/\t ! ux1uur 8u D U2

[~ I !1~ II !. ~4.18!

A standard estimate for the free unitary group~see, e.g., Ref. 9! gives
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~ I !5
m

p\t E dx2u f s~x2!u2E dx1U E dr8gd~r 81x2!~ei ~m/2\t ! r 82
21!e2 i ~m/\t ! x1r 8U2

5
1

p E dx2u f s~x2!u2E dx̄1U E dr8gd~r 81x2!~ei ~m/2\t ! r 82
21!e2 i x̄1r 8U2

52E dx2u f s~x2!u2E dr8ugd~r 81x2!u2uei ~m/2\t ! r 82
21u2

<
1

2 S m

\t D
2E dx2u f s~x2!u2E dr8r 84ugd~r 81x2!u2

5
e2M2

2~11e!2\2t2 E dx2u f s~x2!u2E dr8r 84ugd~r 81x2!u2, ~4.19!

where in the second line of~4.19! we used Plancherel theorem.
Concerning (II ), we introduce the change of variables

v5
ma0

\2 u, y15
m

\t
x1 , ~4.20!

and use the identity

E
0

`

dve2v1 i ~\ux1u/a0t !v5
1

12 i
\ux1u
a0t

. ~4.21!

Then

~ II !5
1

p E dx2u f s~x2!u2E dy1U E dr8gd~r 81x2!ei uy1uur 8u

•S ei ~m/2\t ! r 82E
0

`

dve2v1 i @~11e!/a# uy1uv1 i @(11e)m/2\ta2 #v21 i ~m/\ta! ur 8uv

2E
0

`

dve2v1 i11e/a uy1uvD U2

<
2

p E dx2u f s~x2!u2E dy1U E dr8gd~r 81x2!ei uy1uur 8uei ~m/2\t ! r 82E
0

`

dve2v1 i @~11e!/a# uy1uv

•~ei @(11e)m/2\ta2 #v21 i ~m/\ta! ur 8uv21!U2

1
2

p E dx2u f s~x2!u2E dy1U E dr8gd~r 81x2!

3ei uy1uur 8u~ei ~m/2\t ! r 82
21!

1

12 i
11e

a
uy1uU2

[~ III !1~ IV !. ~4.22!

The estimate of (IV) is trivial

~ IV !<
1

2p S m

\t D
2E dx2u f s~x2!u2E dy1

1

11S 11e

a D 2

y1
2
S E dr8r 82ugd~r 81x2!u D 2

<
e2M2a

2~11e!3\2t2 E dx2u f s~x2!u2S E dr8r 82ugd~r 81x2!u D 2

. ~4.23!
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For the estimate of (III ) it is convenient to integrate by parts the integral in the variablev

~ III !5
2

p E dx2u f s~x2!u2E dy1

1

11S 11e

a D 2

y1
2
U E dr8gd~r 81x2!ei uy1uur 8uei ~m/2\t ! r 82

•E
0

`

dve2v1 i @~11e!/a# uy1uv1 i [ ~11e)m/2\ta2 #v21 i ~m/\ta! ur 8uv ~11e!m

\ta S 11e

a
v1ur 8u D U2

<
2~11e!m2

p\2t2a E dx2u f s~x2!u2E dy1

1

11y1
2 F E dr8ugd~r 81x2!u E

0

`

dve2vS 11e

a
v1ur 8u D G2

<
2e2M2

~11e!\2t2a E dx2u f s~x2!u2F E dr8ugd~r 81x2!uS 11e

a
1ur 8u D G2

. ~4.24!

Finally, it remains to analyze the differencec2(t)2ĉ2(t). Using the explicit expression ofU0
n(t)

we have

c2~ t,r ,R!2ĉ2~ t,r ,R!5A m

2p i\t
A M

2p i\t
ei ~m/2\t !r 21 i ~M /2\t ! R2

3E dj f s~j!~ei ~M /2\t ! j2
2ei ~n/2\t ! j2

!e2 i @(M /\t ! R1 ~m/\t !r ] j

•E dr8gd~r 81j!S e2 i ~m/\t !(r 2R)r 82
ei ~m/\t ! ur 2Ruur 8u

12 i
\

a0t
ur 2Ru D . ~4.25!

Exploiting Plancherel theorem and the fact that the operator~2.16! is unitary one easily sees tha

ic2~ t !2ĉ2~ t !i2<S M

2\t D
2

e2E djj4u f s~j!u2. ~4.26!

From ~4.18!, ~4.19!, ~4.22!, ~4.23!, ~4.24!, ~4.26! we conclude the proof of the lemma. h

In the last step we approximate~4.13! using the fact that the coordinates of the heavy part
are slowly varying with respect to the coordinates of the light one.

Lemma 6: Given the initial state (2.10), for any t.0 we have

ic2~ t !2ca~ t !i,C3~ t ! e, ~4.27!

where

C3~ t !5F E dzz2E dxU ]

]x
~ f̃̂ s~z2x!g̃d~x!!U2G1/2

1
1

&p
H E dxdzFa21z2

a21x2 S E dr8uz~z,r 8!u D 2

1
a2z2

a21x2 S E dr8ur 8uuz~z,r 8!u D 2G J 1/2

, ~4.28!

with

C3~ t !,
C4

t
1C5 ~4.29!

and
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f̂ s~j!5 f s~j!ei ~M /2\t ! j2
, z~z,r 8!5E dj f̂ s~j!gd~r 81j!e2 izj. ~4.30!

Proof: From ~2.21! and ~4.11! we have

c2~ t,r ,R!2ca~ t,r ,R!

5A m

2p i\t
A M

2p i\t
ei ~m/2\t ! r 21 i ~M /2\t ! R2E dj f s~j!ei ~M /2\t ! j2

e2 i @(M /\t !R1 ~m/\t ! r ] j

•F E dr8gd~r 81j!~e2 i ~m/\t !(r 2R)r 82e2 i ~m/\t !rr 8!1E dr8gd~r 81j!

3S ei ~m/\t ! ur 2Ruur 8u

12 i
\

a0t
ur 2Ru

2
ei ~m/\t ! ur uur 8u

12 i
\

a0t
ur u D G[~c22ca! f r~ t,r ,R!1~c22ca! in~ t,r ,R!.

~4.31!

We will estimate separatly the two terms (c22ca) f r(t) and (c22ca) in(t).
Introducing the new integration variables

x5
m

\t
r , z5

MR1mr

\t
, ~4.32!

and the functionf̂ s(j) defined in~4.30!, we have

i~c22ca! f r~ t !i25
1

~2p!2 E dxdzU E dj f̂ s~j!e2 izjE dr8gd~r 81j!

3~e2 i (x2 @e/~11e!# z)r 82e2 ixr 8!U2

5
1

2p E dxdzU E dj f̂ s~j!e2 izjS g̃dS x2
e

11e
zDei (x2 @e/~11e!# z)j2g̃d~x!eixjD U2

5E dxdzU f̃̂ sS z2x1
e

11e
zD g̃dS x2

e

11e
zD2 f̃̂ s~z2x!g̃~x!U2

5E dxdzUGS x2
e

11e
z,zD2G~x,z!U2

, ~4.33!

where we introduced the functionG(x,z)5 f̃̂ s(z2x)g̃(x).
Proceeding as in~4.9! we find

i~c22ca! f r~ t !i2<S e

11e D 2E dzz2E dxU ]

]x
~ f̃̂ s~z2x!g̃~x!!U2

. ~4.34!

For the estimate of (c22ca) in(t) we use again the change of variables~4.32! and we introduce
the functionz(z,r 8) defined in~4.30!.

Then we have
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i~c22ca! ini2<
1

~2p!2 E dxdzU E dr8z~z,r 8!S ei ux2 @e/~11e!# zuur 8u

12
i

a
u~11e!x2ezu

2
ei uxuur 8u

12
i

a
uxu D U 2

<
1

2p2 E dxdzU 1

12
i

a
u~11e!x2ezu

2
1

12
i

a
uxuU2S E dr8uz~z,r 8!u D 2

1
1

2p2 E dxdz
a2

a21x2 U E dr8z~z,r 8!~ei ux2 @e/~11e!# zuur 8u2ei uxuur 8u!U2

<
e2

2p2 E dxdzFa21z2

a21x2 S E dr8uz~z,r 8!u D 2

1
a2z2

a21x2 S E dr8ur 8uuz~z,r 8!u D 2G ,
~4.35!

where we have used the estimates

U 1

12
i

a
u~11e!x2ezu

2
1

12
i

a
uxuU2

5
a2

a21x2

~ uxu2u~11e!x2ezu!2

a21~~11e!x2ez!2

<e2
a2

a21x2

~x2z!2

a21~~11e!x2ez!2 <S e

11e D 2 a21z2

a21x2

~4.36!

and

uei ux2 @e/~11e!# zuur 8u2ei uxuur 8uu<
e

11e
uzuur 8u. ~4.37!

The functionz(z,r 8) is smooth and, using repeated integration by parts, one easily sees tha
rapidly decreasing when its first argument goes to infinity. The computation is long but str
forward and we omit the details. The conclusion is that the integral in the last line of~4.35! is
finite. Along the same line one can verify that~4.29! holds, where the constantsC4 , C5 are
independent of time and then the proof of the lemma follows.

Proof of theorem 1:This is now a simple consequence of lemmas 4, 5, 6. Furthermore
constantsA,B can now be estimated, since they are given byA5C21C4 , B5C11C5 @see~4.1!,
~4.10!, ~4.27!, ~4.29!# and then the dependence ofA,B on the physical parameters characterisi
the initial state and the interaction can be seen from~4.3!, ~4.12!, and~4.28!.

We notice that, by simple rearrangments and rescaling, one can make such dependen
explicit. For instance, concerningC1 one has

C1
25E dzE dy~z2y!2ugd8~z! f s~y!1gd~z! f s8 ~y!u2

<2~2R0!2S E dzugd8S zu21E dyu f s8 ~y!u2D
<16F ig8i2S R0

d D 2

1S R0q0

\ D 2

12i f 8i2S R0

s D 2

12S R0P0

\ D 2G , ~4.38!

where we have used the fact that (z2y)2<(2R0)2 for zPsupp gd , yPsupp fs and we have
rescaled the integration variables.

A longer but similar computation can also be done for the other constantsC2 , C4 , C5 . h
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APPENDIX: EXPLICIT SOLUTION OF THE TWO-BODY PROBLEM

We recall here the solution of the Schro¨dinger equation

i\
]c~ t !

]t
5Hc~ t !, c~0!5c0 , ~A1!

whereH is the self-adjoint Hamiltonian inL2(R2,drdR) given by~2.1!. Using the unitary opera-
tor T @see~2.14!# one obviously has

THT215H0
n1Ha0

m , H0
n52

\2

2n
Dx2

, Ha0

m 52
\2

2m
Dx1

1a0d~x1!, ~A2!

where (x1 ,x2) are the relative and the center of mass coordinates

x15r 2R, x25
mr1MR

m1M
. ~A3!

Then the solution of~A1! can be written as

c~ t,r ,R!5~T21U0
n~ t !Ua0

m ~ t !Tc0!~r ,R!

5E dr8dR8c0~r 8,R8!U0
nS t,

M

n
~R2R8!1

m

M
~r 2r 8! DUa0

m ~ t,r 2R,r 82R8!,

~A4!

where the interacting unitary groupUa0

m (t) is given by

Ua0

m ~ t,x,x8!5e2 i ~ t/\! Ha0

m
~x,x8!, x,x8PR. ~A5!

We remark that the evolution~A4! factorizes into a product of a free evolution in the center
mass coordinate and a one-body interacting evolution in the relative coordinate only if the
state is of the formc(r ,R)5c1@(M /n )R1(m/M ) r #c2(r 2R).

In order to compute (Ua0

m (t)w0)(x)[w(t,x) one has to solve the one-body Schro¨dinger

equation

i\
]w~ t !

]t
52

\2

2m
Dxw~ t !1a0d~x!w~ t !, w~0!5w0 . ~A6!

Defining the rescaled wave function

u~s,z!5wS \s,
\

Am
zD , ~A7!

one finds thatu(s) satisfies the corresponding equation withm5\51

i
]u~s!

]s
52

1

2
Dzu~s!1a0

Am

\
d~z!u~s!, u~0!5u0 , u0~z!5w0S \

Am
zD . ~A8!

The solution of~5.8! can be found in Ref. 10.

u~s,z!5~Û0
1~s!u0!~z!2a0

Am

\ E
0

`

dve2a0 ~Am/\! vE dz8Û0
1~s,v1uzu1uz8u!u0~z8!, ~A9!
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where Û0
1(s) is the free propagator with\51. Noticing that (Ua0

m (t)w0)(x)5w(t,x)

5u(t/\ , (Am/\) x) one has

~Ua0

m ~ t !w0!~x!5~U0
m~ t !w0!~x!2

ma0

\2 E
0

`

due2 ~ma0 /\2! uE dx8U0
m~ t,u1uxu1ux8u!w0~x8!.

~A10!

Using ~A4! and ~A10!, we finally obtain the complete solution~2.2! of the Schro¨dinger equation
~A1!.
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Continuum singularities of a mean-field theory
of collisions
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Consider a complex energyz for an N-particle HamiltonianH and letx be any
wave packet accounting for any channel flux. The time-independent mean-field
~TIMF! approximation of the inhomogeneous, linear equation (z2H)uC&5ux&
consists of replacingC by a product or Slater determinantf of single-particle
statesw i . This results, under the Schwinger variational principle, in self-consistent
TIMF equations (h i2hi)uw i&5ux i& in single-particle space. The method is a gen-
eralization of the Hartree–Fock~HF! replacement of theN-body homogeneous
linear equation (E2H)uC&50 by single-particle HF diagonalizations (ei

2hi)uw i&50. We show how, despite strong nonlinearities in this mean-field
method, threshold singularities of theinhomogeneousTIMF equations are linked to
solutions of thehomogeneousHF equations. ©2004 American Institute of Phys-
ics. @DOI: 10.1063/1.1666978#

I. INTRODUCTION

After the success of the mean-field approach for bound state systems in various fie
physics, it was only natural to try the mean-field concept for scattering states as well. The o
attempt1 was the time-dependent Hartree–Fock~TDHF! method, where one solves the singl
particle equations of motion asinitial value problem in time. From the resulting solutions
various impact parameters, one may then calculate the classical cross section. With no sp
tion of the final state, the method is restricted to inclusive reactions. A serious, conceptual pr
arises from spurious cross-channel correlations:2,3 when projecting the TDHF Slater determina
for large times on an orthogonal set of channel wave functions, the expansion coefficients a
respective S-matrix vary in timead infinitum. To overcome the shortcomings of TDHF, the tim
dependent mean-field~TDMF! approach2–4 expands the density in two sets of~biorthogonal!
single-particle wave functions and solves the equations of motion as aboundaryvalue problem in
time, fixing initial and final densities. It has been proven that for TDMF an S-matrix can
defined which becomes asymptotically constant.2 The problem with TDMF lies in combining
self-consistency with given boundary conditions in time.3,5 No practicable algorithm for this
highly ‘‘nonlocal’’ problem exists up to date for use in actual numerical calculations. A t
approach is the time-independent mean field~TIMF! method,6 based on a Schwinger-type varia
tional principle7 for matrix elements of the resolvent or T-operator between given initial and
states. The method uses two sets of variational single-particle functions, analogous to TDM
leads to inhomogeneous equations of Hartree–Fock type which can be solved iteratively for
total energy of the system. TIMF is free of the conceptual and practical problems of TDHF
TDMF, respectively, and has been tested successfully on a number of simple systems. It
extended to incorporate particle–hole correlations, as has also been done for TDHF, w

a!Electronic mail: giraud@spht.saclay.cea.fr
b!Electronic mail: weiguny@uni-muenster.de
13100022-2488/2004/45(4)/1310/22/$22.00 © 2004 American Institute of Physics
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generalized random-phase-approximation.8 The present paper goes beyond the above proble9

by studying the continuum singularities of this TIMF approach for collisions.
Consider a finite numberN of particles. Factorized wave packets~shifted Gaussians in mo

mentum representation for example! make an overcomplete basis in their Hilbert space of w
functions. Hence, the calculation of a retarded Green’s function amplitudeD[^xu(z2H)21ux&,
where ~i! x is a product,ux&5) i 51

N ux i&, and ~ii ! each single-particle wave functionx i is real
rather than complex, makes a fully generic problem. Such factorization simplifications ar
physically restrictive and help in the analysis of a mean-field theory of collisions, the subje
this paper.

For the sake of simplicity, we deal so far with spinless, distinct particles only and short-r
interactionsv i j for the HamiltonianH5( i 51

N pi
2/(2mi)1( i . j 51

N v i j . The case of identical par
ticles can be treated later and, in the following, any reference to a Hartree method m
understood as a reference to a Hartree–Fock~HF! method if necessary. Again for simplicity, w
consider the calculation of diagonal collision amplitudes only,^kuV(E12H)21Vuk&, Born term
subtracted. Generalizations to distinct prior and post interactions,V,V8, are kept for future work.
The stateuk& is taken as a plane wave of relative motion in any two cluster channel ground
and the productux&[Vuk& is a square integrable state in theN-particle space. Finally,z is any
complex numberE1 iG, and the usual limitE1 at the end of any calculation readsG→10.

It is trivial to use the Schwinger variational principle7 and show thatD is the stationary value
of the functional

F[
^C8ux&^xuC&

^C8u~z2H !uC&
~1!

under variations ofC,C8. The corresponding Euler–Lagrange equations read, with reta
boundary conditions and arbitrary norms and phases ofC andC8

~z2H !uC&5ux&, ^C8u~z2H !5^xu. ~2!

The variational equations which occur in the time-independent mean-field~TIMF!6 theory of
collisions read

~h i2hi !uw i&5ux i&, ^w i8u~h i2hi !5^x i u, i 51, . . . ,N. ~3!

They are obtained from Eq.~1! whenx, and the approximationf, respectivelyf8, chosen forC,
respectivelyC8, are products of single-particle orbitals,x i ,w i ,w i8 , respectively. Such TIMF
equations are very simple.6 Except for a single-particle density operatorr defined nondiagonally
asr(r 8,r )5( iw i(r 8)w i8* (r ), they are just Hartree~–Fock! equations completed by a right-han
side, representing the image of the channel in single-particle space. In the following,F is re-
stricted to such factorized source functionsx and trial functionsf,f8 and will be labeledF. A
saddle value under such a restriction off,f8 is not necessarily unique anymore. It will be denot
by D instead ofD and may request an additional, identifying label. Now our claim is:bound and
unbound solutions of the usual Hartree(–Fock) equations

~ei2hi !uw i&50, ~4!

induce singularities of the one-body variational conditions, Eqs. (3).
This reminds one, naturally, of the strict connection between the singularities of the l

inhomogeneous problem (z2H)uC&5ux& in the N-body space and the solutions of the line
homogeneous Schro¨dinger equation (E2H)uC&50 in the same space. Because of the nonlin
nature of Eqs.~3!–~4! in single-particle space, our claim is not obvious, and will be qualified
this paper.

Actually, in a previous paper,10 the claim was already substantiated in part: those energiesEH ,
for which a bound Hartree~–Fock! solution fH is found, generate poles of the approxima
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amplitude D provided by saddle points of the restrictionF. Furthermore (z2EH)D
→u^xufH&u2/^fHufH& whenz→EH . Despite the nonlinearity of the approximation, such a re
due at such a pole is almost expected. The analogy with the poles ofD at exact eigenvalues fo
bound states is striking. We are now interested in a more difficult question, namely, is th
similar analogy at higher energies, when singularities of scattering and rearrangement co
~thresholds, cuts! occur?

In Sec. II we briefly recall a very simple, soluble model,11 used earlier among several oth
models to validateD as an approximation ofD. The model is reintroduced for pedagogical reaso
first, to illustrate a derivation of Eqs.~3!. Then, and mainly, it is used to provide a comple
investigation of singularities, for it boils down to manipulations of polynomials. In Sec. III
introduce an enriched model, exactly soluble too. Section IV contains a generalization an
cussion of the results obtained in Secs. II and III. Finally, Sec. V contains our conclusion.

II. FIRST MODEL, BARE PROPAGATION, SYMMETRIC MEAN FIELD, TWO-BODY
THRESHOLD

In this soluble model, there are only two one-dimensional particles with just their kin
energies, and different massesmi51/(2ai); hence,H5a1p1

21a2p2
2 . While the inversion ofz

2H is numerically trivial and allows a good validation11 of the TIMF approximation, the forma
expression of (z2H)21 in terms of one-body propagators (h12a1p1

2)21 and (h22a2p2
2)21 is

less trivial, as it demands a convolution. The TIMF method consists of replacing the convo
by just one product, namely,

~z2a1p1
22a2p2

2!21ux1x2&}~h12a1p1
2!21ux1&~h22a2p2

2!21ux2& . ~5!

This comes from variationsd/dw i of the functionalF. An additional simplification results from a
further remark: in those representations wherex and H are real, one finds from Eqs.~2! that
uC8&5uC* &, hence the possibility of just one trial functionC if one uses a Euclidean~ u ! rather
than a Hermitian̂ u & metric,

F[
~Cux! ~xuC!

~Cu~z2H !uC!
5

~xuC!2

~Cu~z2H !uC!
. ~6!

For the present two-particle model, the factorization ofx into two single-particle wave packet
with real wave functionsx1 ,x2 allows us to use the following form ofF:

F5
~x1x2uw1w2!

2

~w1w2u ~z2a1p1
22a2p

2! uw1w2!
5

~x1uw1!
2~x2uw2!

2

z~w1uw1!~w2uw2!2~w1ua1p1
2uw1!~w2uw2!2~w1uw1!~w2ua2p2

2uw2!
.

~7!

We assume thatx1 ,x2 are real in the momentum representation. The functional being insens
to the norms and global phases ofw1 ,w2 , elementary manipulations ofdF/dw i yield, in the same
momentum representation

w i~p!5
x i~p!

h i2aip
2 , i 51,2, ~8!

with

h i5z2

E dp w j
2~p! aj p

2

E dp w j
2~p!

5z2h j2

E dp x j
2~p!~aj p

22h j !
21

E dp x j
2~p!~aj p

22h j !
22

, i 51,2, j 51,2, and j Þ i .

~9!

It is convenient at this stage to define the integrals
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I i52~x i uw i !5E dp
x i

2~p!

aip
22h i

, i 51,2, ~10!

and notice that Eqs.~9! then read

I j

dh j

dI j
5z2(

i 51

2

h i , j 51,2. ~11!

If furthermore one defines auxiliary variablesv i by the conditions

h i5aiv i
2 , Iv i.0, i 51,2, ~12!

then it is useful to defineJj[aj I j . And, Eqs.~11! become

2 ajv j Jj

dv j

dJj
5z2(

i 51

2

ai v i
2 , j 51,2, ~13!

where a contour in the upper half plane of the complex variablep defines the integrals

Jj5E dp
x j

2~p!

p22v j
2 , j 51,2. ~14!

The special casesIh j→0, while Rh j>0 define cuts in the complexh j plane. These correspon
to Iv j→0 in thev j plane.

When the two particles are identical, it may be interesting to symmetrize and antisymm
Eqs.~13! as

(
i 51

2

ai v i Ji

dv i

dJi
5z2(

i 51

2

ai v i
2 , ~15!

and

a1 v1 J1

dv1

dJ1
2a2 v2 J2

dv2

dJ2
50 , ~16!

and identify cases where the mean field might break their symmetry. But, we shall kee
particles, and/or their channel wave packets distinct for a while.

A soluble model, involving only the manipulation of polynomials, is obtained if one choo
the forms of the wave packets as follows:

x j~p!5F g j

p @~p2K j !
21g j

2# G1/2

, j 51,2, ~17!

yielding the simple result

Jj5
ig j

v j@~v j2K j !
21g j

2#
1

1

~K j1 ig j !
22v j

2 5
2v j2 ig j

v j~v j2K j1 ig j !~v j1K j1 ig j !
. ~18!

Resulting polynomial equations turn out to have a lower degree ifK j50, for thenJj becomes
Jj521/@v j (v j1 ig j )#. As will be found in this and the next sections, two kinds of singularit
emerge:~i! ‘‘physical’’ ones, which essentially depend onz and are not very sensitive to ‘‘tech
nical’’ parametersK j ,aj ,g j , and~ii ! ‘‘technical’’ singularities, more sensitive to such paramete
The analytical continuation provided acrossh cuts12 by this v representation is clear.
                                                                                                                



Eqs.

ich

tion,

al

-

1314 J. Math. Phys., Vol. 45, No. 4, April 2004 B. G. Giraud and A. Weiguny

                    
Once Eqs.~13! have been solved, the saddle-point values of the functional read, using
~7!–~11!

D5
~a1v1

21a2v2
22z!J1J2

a1a2
. ~19!

The search for singularities ofD as a function of the physical energyz thus consists of eliminating
v1 ,v2 between Eqs.~13! and Eq.~19!. The former reads, after elementary manipulations wh
take advantage of Eq.~18! whenK15K250

2a1x2y1a1g2x22a2g2y212yz1g2z50, 2a2y2x1a2g1y22a1g1x212xz1g1z50,
~20!

where it was convenient to setv15 ix, Rx.0, andv25 iy , Ry.0. Equivalently, if we scalex
andy into x5g1x8 andy5g2y8, respectively, the same equations read

~A1x821z! ~112y8!2A2y8250, ~A2y821z! ~112x8!2A1x8250 , ~21!

with A1[a1g1
2 andA2[a2g2

2 . An elimination ofy between Eqs.~20! gives

2a1
3g1x72a1

2~4z2a1g1
21a2g2

2!x62a1z~8z2a1g1
214a2g2

2!x422a1g1z~3z1a2g2
2!x3

2z2~4z1a1g1
214a2g2

2!x224z2g1~z1a2g2
2!x2g1

2z2~z1a2g2
2!50, ~22a!

y 52
g2 ~a1 x312 x z1g1 z!

~2 x1g1! ~a1 x21z!
. ~22b!

The multiplicity of solutions is thus 7, which raises a problem for the identification of a solu
if possible unique, which accounts for a physical approximation.

In turn, if one inserts Eq.~18! into Eq. ~19!, one obtainsD as a rational function ofv1 ,v2 ,
or x,y as well. Upon taking advantage of Eq.~22b!, this rational fraction reduces into a ration
fraction of x only, hence a polynomial relation betweenD andx, with degree 1 forD

a1
2a2g2

2x3~g11x!2~a1x31g1z12xz!D

54a1
3x7~x1g1!1a1

2~a1g1
21a2g2

2112z!x6112a1
2g1zx51a1z~3a1g1

214a2g2
2

112z!x412a1g1z~a2g2
216z!x31z2~3a1g1

214a2g2
214z!x2

14g1z2~a2g2
21z!x1g1

2z2~a2g2
21z!. ~23!

The same result is obtained if one uses Eq.~7! instead of Eq.~19!.
An elimination ofx between Eq.~23! and Eq.~22a! finally gives a direct, polynomial condi

tion relatingD andz

z1
2z2

2~z111!~z211!~z11z211!D̄724z1z2~z111!~z211!~z1z224z124z224!D̄6

24@3z1
3z2

213z1
2z2

31~20z1
3z2158z1

2z2
2120z1z2

3!1~16z1
3188z1

2z2188z1z2
2116z2

3!

1~32z1
2184z1z2132z2

2!116~z11z2!#D̄5116@3z1
2z2

2139~z1
2z21z1z2

2!

1~32z1
2191z1z2132z2

2!148~z11z2!116#D̄4116@3z1
2z213z1z2

22~8z1
2191z1z218z2

2!

288~z11z2!264#D̄31192@2z1z214~z11z2!18#D̄2264~z11z2116!D̄125650,

~24!
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wherezi5aig i
2/z andD is scaled asD5D̄/z. The degree 7 forx in Eq. ~22a! is correctly reflected

here by the same degree forD ~and D̄). Conversely, given an amplitudeD, the degree of the
polynomial condition, Eq.~24!, with respect toz, is 4. Hence, there are 7 approximate amplitud
offered by TIMF for each energy, while the inverse problem, ‘‘given the TIMF amplitude, find
energy,’’ has 4 solutions.

This model, although soluble, thus creates a complicated Riemann surface. Criteria ar
essary to select one physical sheet, or physical pieces of sheets. Obvious candidates
conditionsRx>0,Ry>0 when Eqs.~20! are solved. Concerning Eq.~24!, the very definition of
D demands thatD be real and negative ifz is real and negative. Whenz.0 with a slight and
positive imaginary part, thenID must be negative. Those rootsD which show the same propertie
should thus help the identification of suitable sheets.

The argument is made much simpler if the ‘‘technical’’ parametersa1g1
2 anda2g2

2 are taken
equal to some common valueu. This amounts, in some sense, to consider identical partic
althougha1 may still differ from a2 . Then, Eq.~24! factorizes as

@424~u1z!D1u~u1z!D2#2@1618~3u24z!D

14~3u2110uz14z2!D21u2~2u1z!D3#50. ~25!

If u is used as a unit forz and similarly 1/u is used as a unit forD, this reads as well

@424~11z!D1~11z!D2#50, ~26a!

@1618~324z!D14~3110z14z2!D21~21z!D3#50. ~26b!

The presence of a squared polynomial as the first factor in Eq.~25! reflects a ‘‘symmetry break-
ing’’ by the mean-field approximation. Indeed, when analyzing the corresponding solutions o
~20!, one finds that each pair of roots$x,y%, with xÞy, is accompanied by a pair$y,x%, gener-
ating the same value ofD. Such a degeneracy thus makes, out of 4 of all the 7 solutions for$x,y%,
two distinct values forD. All told, D then takes 5 distinct values. The remaining 3 solutio
account for the degree 3 present in the second factor of Eq.~25!. It is easy to verify that such 3
solutions are ‘‘symmetric,’’ namely,x5y. Notice that the symmetry breaking generates a ratio
inverse function

zbk5
~Dbk22!2

Dbk~42Dbk!
, ~27!

while the symmetry conservation generates an equation of degree 2 forz. Sincezbk must be
counted twice, one recovers the 4 solutions of the inverse problem.

It turns out that the symmetry breaking sector violates the double condition,Rx.0, Ry
.0. Hence, the properties of this sector are listed in the Appendix only. Turning now to
symmetric amplitudeDsy , the choice of a physical branch is reasonably easy; see Figs. 1 a
In Fig. 1, the lower half plane contains a loop acceptable as a physical candidate. We verifie
Rx.0 for this loop. Despite a suitableRx.0 if z.0, the other branch in Fig. 1 is clearly no
acceptable, for it contains valuesDsy with positive imaginary parts. Nor can one accept the th
branch, seen in Fig. 2, despite its correct sign forIDsy , for it violates both the limitD→0 when
uzu→` and the obvious condition ‘‘RD,0 if z is real and negative.’’ Furthermore,Rx is found
unsatisfactory for this third branch.

Two values ofz generate branching forDsy . With a single rootD521/5, reasonable, a
double root D516, unphysical, occurs forz5227/16, with expansionD5162256/9 (z
127/16)68192/243@2(z127/16)3#1/2. Hence, a familiar square-root cut can be used to dis
tangle the two corresponding sheets, both unphysical. The valuez5227/16 does not represent
natural threshold for the present model. More physical, obviously, is the triple-root singul
D522, which occurs atz50, the true threshold. It is illustrated by Fig. 3, where a tiny imagin
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part Iz50.0001 was added in order to separate branches. It is noticed here that, althou
physical branch gives real values ofDsy when z,0 and complex values of the same whenz
.0, there are always one real root and two complex conjugate roots on both sides in the v
of z50. This happens indeed because the corresponding discriminant,D35256z2(27116z)3/(2
1z)4, actually changes sign, not forz50, but rather forz5227/16. This helps to understand th
nature of the unphysical singularity occurring atz5227/16. It gives an early ‘‘warning’’ of the
~cubic! physical threshold singularity,z50. An elementary, but slightly tedious calculation pr
vides the expansions of the 3 branches in the vicinity ofz50, namely,D5222 j 22/33 z1/3

1O(z2/3), where j is either 1, or any one of its complex cubic roots (216 i ))/2.
Consider Eqs.~21! and setA15A2 to factorize the resultant, Eq.~22a!. Then, scalex, y, and

z as proportional tog1 , g2 , andA1 , respectively. For the sake of simple numbers, this stric
amounts to setting a common valuea15a25g15g251; hence,A15A251, for those reduced
equations which govern the scaled variables and parameters. For the symmetry sector,x5y, both
equations, Eqs.~20!, then boil down to 2x312xz1z50. It is trivial to find that, at thresholdz
→0, all three roots have a leading termx5(2z/2)1/31O(z2/3), while, as already found

FIG. 1. ComplexD plane. Two trajectories of symmetry conserving amplitudes as functions ofRz whenIz51. Growing
blue dots:Rz grows from2` to 20. Growing red dots:Rz increases from10. The third trajectory lies far in the lowe
half. Color is available online at www-spht.cea.fr/articles/t02/148/

FIG. 2. ComplexD plane. All trajectoriesDsy whenIz50.075. Scales of trajectories made compatible by replacing r
from the origin by their square roots. Hence, for instance, announcing the double rootD516 whenz5227/16, blue
branches cross each other nearAD54. Growing blue dots:Rz grows from2` to 20. Growing red dots:Rz increases
from 10.
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Dsy5221O(z1/3). Obviously, below threshold, one must select the real rootx, which gives a
real amplitude. Conversely, above threshold, one must select that complexx which gives a re-
tarded amplitude.

All told, for Dsy , cuts needed in thez plane are a cut from 0 to1` for the cubic branching
and, for instance, a ‘‘technical’’ cut from2` to 227/16 to create an additional seam between
second and the third sheets.

Now we consider additional cuts, namely, those created by the conditionIv50, or, identi-
cally, by the conditionRx50. These occur because the solutions of realistic problems dem
numerical, iterative calculations ofh i and w i before obtainingD. This means inversions o
operators (aiv i

22hi) in sequences of successive approximations ofv’s ~and self-consistenth’s
when potentials are involved!. Obviously, every timeIv vanishes or becomes too small, nume
cal precautions are in order. Also, since the physical energy is on shell,z5E1 i01, with a
retardation boundary condition for many-body propagation, one would feel more comfortable
retardation also for the single-particle energiesh}v2. Advancedh8s are not to be ruled outa
priori , because it is well known that mean-field approximations can be excellent while bre
many-body symmetries. But, clearly, branches ofx’s which cross such cutsRx50 deserve some
cautious scrutiny.

For the present case whereA15A2 for ‘‘symmetric’’ bare propagations, and still with simpl
numbersai5g i51, our results are shown in Figs. 4 and 5.~For the academic, ‘‘symmetry break
ing’’ case, see the Appendix and Figs. 13 and 14.! Figure 4 is a contour plot of the produc
Rx1Rx2Rx3 of the real parts of the 3 roots as functions ofz in thez plane. Darker areas indicat
an increasing positive product~two out of the threeRx’s are,0), while the lighter areas mean
more and more negative one~one negativeRx only!. The product vanishes along the contour li
separating the light gray area from the moderate gray one. It will be noticed that this line co
the pointz50. Hence, the cut relevant toD and that relevant tox’s both contain the two-body
threshold. Notice, however, that, except at such a threshold, a realz induces complexh’s. Namely,
propagation energy cutsdo not follow the real axisin the z plane.

The next figure, Fig. 5, shows the trajectories of the roots when we freezeRz50.1, above
threshold, and letIz run from 21 to 11, hence allowing oneRx, then a second one, to chang
their signs. The sizes of dots are coded as follows: minimal forIz521, growing untilIz50,
minimal again for small positive values ofIz, then growing again untilIz51. The lower branch
is the best candidate for physical roots, because it provides a growing retardation, 0,Ih
[I(2x2), whenIz is positive and grows. As predicted from Fig. 4, there is an interval forIz
where 2 rootsx have a positiveRx.

To conclude this section, the main result derived from this elementary model with
propagation of two particles lies in the systematic,physical, two-body threshold found atz50 in
the energy plane (z plane! for all the mean-field quantities, whether amplitudesD or propagation

FIG. 3. ComplexD plane. Triple mergingDsy→22, with Iz50.0001,20.09,Rz,0.09. Lower right branch physical
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energiesh. This threshold is, obviously, a common feature of both the exact problem an
corresponding Hartree problem. For amplitudesD, a cut in thez plane extends from the thresho
0 to 1`, as seen in both the ‘‘symmetric’’ and ‘‘breaking’’ submodels. For propagation ener
h, the cut starts fromz50, indeed, but deviates from the real semiaxis. For bothDs andh’s, the
cost of the nonlinearity of the TIMF approach is reflected in additional, unphysical, ‘‘techn
singularities. But, such unphysical singularities are not beyond interpretation either, as sho
the analytical properties listed in this section. Incidentally, as discussed earlier,13 unphysical sin-
gularities may be washed out by a linear admixture of the various solutions of the non
mean-field problem. The next sections will show even better how physical cuts remain a s
cant feature of the TIMF approximation.

FIG. 4. Complexz plane. Cut caused by the conditionRx50 for symmetry conserving roots. The cut is the contour li
separating the lighter gray area from the darker gray one.

FIG. 5. Complexx plane. Trajectories of the symmetry conservingx’s whenRz50.1, whileIz crosses the cut shown by
Fig. 4. Blue dots growing whenIz grows from21 to 0. Red dots growing whenIz grows from 0 to 1.
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III. SECOND SOLUBLE MODEL, ONE-BODY THRESHOLD

Here again we consider two one-dimensional particles, and particle 2 is still free with a
kinetic energyh25a2p2

2 for its Hamiltonian. But, now the complete HamiltonianH5h11h2 ,
while still separable, involves a bound state for particle 1, because we seth15a1p1

2

2lux1&^x1u, with an attractive enough potential. For technical reasons which will soon bec
clear, the formlux1&^x1u of this potential makes use of the same wave packetx1 taken as a
channel wave packet. The numerical inversion ofz2H is still easy and allows another goo
validation of the TIMF approximation. The formal expression of (z2H)21 in terms of one-body
propagators (h12h1)21 and (h22h2)21 demands again a convolution and the TIMF meth
consists in replacing the convolution by a product

~z2h12h2!21ux1x2&}~h12h1!21ux1& ~h22h2!21ux2&. ~28!

This comes again from variationsd/dw i of the functionalF. And, a further remark can be
repeated: in those representations wherex andH are real, we obtainuC8&5uC* &; see Eqs.~2!.
Hence, the possibility of just one trial functionf under a Euclidean rather than a Hermitia
metric; see Eq.~6!. The factorization ofx into two real wave packetsx1 ,x2 essentially retains Eq
~7!, which actually becomes

F5
~x1x2uw1w2!2

~w1w2u ~z2h12h2! uw1w2!

5
~x1uw1!2~x2uw2!2

z~w1uw1!~w2uw2!2~w1uh1uw1!~w2uw2!2~w1uw1!~w2uh2uw2!
. ~29!

We use the samex1 ,x2 , real in the momentum representation. The functional being alw
insensitive to the norms and global phases ofw1 ,w2 , the same manipulations ofdF/dw i yield, in
the same momentum representation

uw1)5~h12h1!21ux1), ~h12a1p1
2!uw1)5ux1)2lux1)~x1uw1!,

w1~p!5
x1~p!

h12a1p2 @12l~x1uw1!#, ~30!

w2~p!5
x2~p!

h22a2p2 , ~31!

where it is better, temporarily at least, to retain the factorn5@12l(x1uw1)# for w1 . The same
quantityn, as will be seen shortly, cannot be discarded from the self-consistency conditions
pair h1 ,h2

h15z2

E dp w2
2~p! a2p2

E dp w2
2~p!

5z2h22

E dp x2
2~p!~a2p22h2!21

E dp x2
2~p!~a2p22h2!22

, ~32!

h25z2
~w1uh1uw1!

~w1uw1!
5z2h12

~w1u~h12h1!uw1!

~w1uw1!
5z2h12

~x1u~h12h1!21ux1!

~x1u~h12h1!22ux1!
. ~33!

Indeed, it is necessary to consider the matrix element

I15~x1u~h12h1!21ux1!, ~34!

and notice that Eqs.~32!–~33! become
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I 2

dh2

dI2
5z2h12h252

~x2uw2!

~w2uw2!
, I1

dh1

dI1
5z2h12h252

~x1uw1!

~w1uw1!
. ~35!

The integralsI 1 ,I 2 were already defined by Eq.~10!. Returning toI1 , and to the factorn which
accounts for the separable potential present inh1 , an elementary manipulation of Eq.~30! gives

~x1uw1!52I1 , I15
I 1

12lI 1
. ~36!

Again, we define auxiliary variablesv i by Eq.~12! and integralsJj[aj I j by contours in the uppe
half plane of the complex variablep. Then, Eqs.~35! become

2 a2v2J2

dv2

dJ2
5z2a1v1

22a2v2
2 , 2 a1v1I1

dv1

dI1
5z2a1v1

22a2v2
2 . ~37!

It will be recalled here that a~unique! bound state occurs forh1 for any positive value ofl, at an
energyh0,0, defined by the well-known condition

1

l
5E dp

x1
2~p!

a1p22h0
5

J1~v0!

a1
, h05a1v0

2 , Rv050, Iv0.0. ~38!

Indeed, the right-hand side is monotonically increasing whenh0 runs from2` to 0 and the same
right-hand side diverges ath050, see Eq.~18!, because of our choice of a Lorentzian form forx1

2 .
Accordingly, an explicit form of Eq.~38! is

l1a1v0~v01 ig1!50, Rv050, Iv0.0, ~39!

or, in terms ofh0

~h01l!21a1g1
2 h050, ~40!

with obvious scaling properties.~Indeed, if the scale is set byl for instance, it is convenient to
defineA15a1g1

2 , and the relevant scales are, obviously,A1 /l andh0 /l.) Threshold singularities
are expected for Eqs.~32!–~33! whenz reaches the one-body thresholdh0 , besides the already
found two-body thresholdz50.

The saddle-point valueD deduced from Eq.~29! reads, upon taking advantage of Eqs.~30!–
~37!

D5~a1v1
21a2v2

22z! I1 I 2 . ~41!

This formula, Eq.~41!, is an obvious generalization of Eq.~19!. In the same way as we did in th
previous section, we shall again eliminatev1 andv2 , or rather the strictly equivalent variable
x52 iv1 andy52 iv2 , between Eqs.~37! and Eq.~41!. It is then useful to define a paramet
A25a2g2

2 , quite similar toA1 , and it is also easy to predict that the solutionD(z) scales in terms
of A1 /l, A2 /l, z/l, andlD. The Lorentzian choice forx1 ,x2 , induces the following forms for
Eqs.~37!, when we replacea1 ,a2 by A1 /g1

2 ,A2 /g2
2 , respectively:

A1g2
2x212A1g2x2y2A2g1

2y21g1
2g2

2z12g1
2g2yz50, ~42a!

2g1g2
2lx1A2g1

2y212A2g1xy22A1g2
2x21g1

2g2
2z12g1g2

2xz50, ~42b!

y

g2
52

~lg1
21A1x2! x1~g112x!g1

2 z

~g112x!~A1x21g1
2z!

. ~42c!
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These scale obviously in terms ofx/g1 andy/g2 . It is then convenient to setg15g251 in Eqs.
~42!.

Simultaneously, under the same replacement ofa1 ,a2 by A1 /g1
2 ,A2 /g2

2 , respectively, we can
take advantage of Eqs.~36! and ~18! ~with K15K250) to let Eq.~41! become

@ A1A2~x2y21g2x2y1g1xy21g1g2xy!2A2g1
2~y1g2!ly # D 1A1g2

2x21A2g1
2y21g1

2g2
2z50.

~43!

Setg15g251. The elimination ofx andy between Eqs.~42!–~43! yields a degree 7 polynomia
condition forD

P~D,z,A1 ,A2 ,l![A2
2 ~A114l!2 @ ~z1l!21A1z # @ ~z1l1A2!21A1~z1A2! # D7

24A2~A114l! @ ~z1l!21A1z # @A1A2
215A1A2l18A2

2l112A2l214l3

1~23A1A224A2
214A1l14A2l14l2!z24~A112A21l!z224z3# D6

1¯264z~A11A2120l116z! D 1256z 5 0 , ~44!

which is too cumbersome to be listed here entirely. A factor@(z1l)21A1z# forces its coefficients
for both D7 and D6 to vanish whenz5h0 ; see Eq.~40!. Hence, two rootsD diverge at the
expected one-body threshold. We also notice that forz50 the two lowest degree coefficients ofP
vanish; hence, a double rootD50 occurs. But, for the sake of simplicity in this section, we sh
not elaborate much on the exact nature of this two-body threshold singularity for this se
model. Similarities with the behavior of the first model aroundz50 are likely. In the following,
we rather study in some detail the singularity atz5h0 .

The degree 7 forD is familiar from the model of the previous section. But, the degree foz
is now 5 rather than 4. We verified that the limitl→0 factorizesP(D,z,A1 ,A2 ,l) into a factor
z and a polynomial with degree 4 forz.

It is convenient to set special values for a numerical investigation, for instancea15g15A1

5g251 anda25A25l52. The full polynomial then reads

P53~11z!~41z!@27~31z!~61z!D112~210829z114z212z3!#D6

24~228081477z15984z213480z31690z4144z5 ! D5

18~258411760z13323z211387z31200z418z5!D428~214011195z11471z21420z3

132z4 ! D3132~241107z182z2112z3!D2216z~43116z!D164z. ~45!

Here, the bound state lies ath0521 with v05 i . The second solution,v0522i ,h0524, of
Eqs.~39!–~40! violates the conditionRx.0, and hence pertains to an unphysical sheet.

The 7 trajectories shown in Fig. 6 are those of the roots ofP, Eq. ~45!, whenRz runs from
27.5 to14. This range suffices here to obtain a reasonable estimate of the root behavior wh
energy runs from2` to 1`. For the sake of graphical convenience, a renormalizationD/(1
1uDu) forces largeDs back to the trigonometric circle. Also, a small imaginary partIz50.2 is set
to enforce the ruleID,0. Black dots~or lines when nearing dots fuse! correspond toRz,
24.1. Green and red ones correspond to23.9,Rz,21.1 and20.9,Rz, respectively. Finally,
blue and yellow ones investigate neighborhoods,24.1,Rz,23.9 and21.1,Rz,20.9, of
expected singularities atz524 andz521, respectively. It turns out that Fig. 6 does not yie
much information out of such ‘‘blue’’ and ‘‘yellow’’ segments, although it is clear that only t
‘‘loops’’ satisfy both rulesID,0, ;Rz and limuzu→` D50. Clearly, for a thorough investigatio
of all branchings and divergences, we should eliminateD betweenP and its derivative]P/]D,
then study the neigborhoods of all the roots of the obtained resultant
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R5z~11z!2~21z!~31z!~41z!2~61z!~3217z!2 ~2 426 112117 293 824z154 026 784z2

1121 209 152z31233 641 545z41328 920 768z51307 812 074z61191 171 112z7

179 534 245z8121 923 392z913 826 944z101380 928z11116 384z12 !3 . ~46!

This straightforward but lengthy task gives results too cumbersome to be published here, na
Still, it might be useful to compare Fig. 6 with a superposition of Figs. 2 and 11, keeping in
that symmetry breaking double roots of the previous model will now be disentangled. In
under the already-mentioned two criteria, namely,~i! D→0 if uzu→`, and ~ii ! ID,0, only the
‘‘tiny’’ loops selected from Figs. 2 and 11 survive. LettingIz→0, we obtained graphical evidenc
that such two loops grow in such a way that their ‘‘blue’’ and ‘‘yellow’’ segments show
diverging roots predicted from the factor (11z)(41z) in front of D7 and D6. With the same
renormalizationD/(11uDu), Fig. 7 confirms that two branches only are compatible with rules~i!
and~ii !, when we freezeRz521 and letIz.0 run. One of the ‘‘good’’ candidate roots diverge
for z521; see the green segment in the lower left part of Fig. 7. The other good candidatD1

.0.3120.21i ~see the small green segment at the beginning of the smallest trajectory in the
right angle of Fig. 7!, is a simple root as a function ofz in this area, and deserves little comme
The diverging root, however, because of its quadratic branching, deserves a study of its reci
d[D21. We setz5211Z and expandP, Eq. ~45!, at lowest orders with respect tod andZ

d7 P~d21,Z21,A151,A252,l52!5270~2d219Z!1O~Z d!. ~47!

The neglected term is of orderZ3/2, because, obviously, the leading order of the double roo
d563(2Z)1/2/&, real below and imaginary above threshold, respectively. A similar, strai
forward argument for the vicinity of the additional, but unphysical threshold atz524 yields the
leading orderd563(242z)1/2/(2&).

Among all the singularities of this second model, we shall mainly discuss the physical th
old z521. Eliminatez between Eq.~42a! and Eq.~42b!, or, equivalently, subtract the equation
Eqs.~37!, from each other, hence

FIG. 6. ~Color! ComplexD plane. Trajectories of the 7 roots of Eq.~45! when27.5<Rz<4 andIz50.2. Black dots or
lines correspond toRz,24.1. Blue, green, yellow, and red ones correspond to24.1,Rz,23.9, 23.9,Rz,21.1,
21.1,Rz,20.9, and20.9,Rz, respectively. Only two trajectories always keepID,0 and cancelD when uzu→`.
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a2v2J2

dv2

dJ2
5a1v1I1

dv1

dI1
, ~48!

a relation similar to Eq.~16!. To prove the statement that the static HF energyh0 indeed defines
a threshold solution of the TIMF equations, Eqs.~37!, it is enough to seth1→h0 , h2→0, and
z→h0 . This automatically inducesz2a1v1

22a2v2
2→0, naturally. Setg15g251, for a trivial

scaling. Then, Eq.~48! reads

A2 y2 ~11y!

112y
5

x @A1 x ~11x!2l#

112x
. ~49!

When A151 andA25l52, we know that the limits of interest arex→1, y→0, andz→21.
These satisfy the condition,Rx.0; hence, onlyRy must be investigated. DefineX5x21 and
Z5z11. Then, Eq.~49! boils down to 2y25X, at leading orders iny andX. Accordingly, Eq.
~42b!, for instance, boils down to 2y21Z50. For z,21 ~below threshold! the solutiony
→A(2z21)/2 is acceptable, with, simultaneously,x→2z. For z.21 ~above threshold!, how-
ever, we find that a small, but positiveIz is necessary to allow the conditionRy.0. This occurs
because forZ.0 the leading order,y2→2Z/2, actually generatesIy only. An expansion up to
higher orders is thus necessary for the knowledge ofRy. A straightforward, but slightly lengthy
calculation, yields

y5 iZ82
i

3
Z8 32

2

3
Z8 41

13 i

18
Z8 51O~Z8 6!, ~50!

whereZ8, a positive number, is defined asZ85AZ/25A(z11)/2. The ‘‘formal conjugate’’ of this
expansion

y52 iZ81
i

3
Z8 32

2

3
Z8 42

13 i

18
Z8 51O~Z8 6!, ~51!

FIG. 7. ~Color! ComplexD plane. Trajectories of the 7 roots of Eq.~45! if Rz521. Green, yellow, and red mean
,Iz,0.01, 0.01,Iz,2, and 2,Iz,8, respectively. Again, only two trajectories maintainID,0 and cancelD when
uzu→`.
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also holds, naturally.~Equivalently, it means the opposite choice ofZ8, namely,Z852AZ/2.)
Both expansions induce a negativeRy as long asZ is real and positive. The sign of thisRy can
be easily reversed, however, as soon as, above that thresholdz521, an imaginary partIz is
implemented. Another slightly cumbersome calculation defines, upon taking advantage of
Eq. ~50! or Eq.~51!, the condition for the border at which one of such roots acquires a positive
part. This is illustrated by Fig. 8. Near to that thresholdz521, the leading orders of the borde
condition give (Iz)25 2

9(Rz11)5. Other numerical values for the parametersg i , Ai , etc. modify
the numerical analysis, naturally, but leave intact the conclusion, namely, thatuIzu must have at
least a nonvanishing value above the threshold if one needs one of these two roots to be c
ible with the condition,Ry.0.

We show in Fig. 9 the trajectories ofy for 0,Iz,` when Rz520.6 is frozen at an
intermediate value between the thresholdsz521 and z50. Only one branch is of interes
because all the other branches either stay in theRy,0 sector or thex partner root showsRx
,0. The tiny blue segment at the beginning of this branch corresponds toIz,0.03, imaginary
parts too small for lettingy acquire a positive real part; see Fig. 8.

IV. A THEOREM

We return to the case whereN is any finite particle number. The two-body interactionV
5( i . jv i j contained in the physical HamiltonianH is assumed to be made of short-ranged pot
tials v i j . Then, the TIMF mean fieldsUi are also short ranged. For details of a further antisy
metrization with identical fermions, where the mean potential will be the sameU for all particles,
we refer to Ref. 8; the short range ofU remains, whether one considers its direct or exchange p
At present, we still retain the case of distinct particles. Equation~3! reads again

~h i2t i2Ui !uw i&5ux i&, ^w i8u~h i2t i2Ui !5^x i8u , ~52!

with

FIG. 8. ComplexZ[z11 plane. Below the plotted line, both roots described by Eqs.~50!–~51! showRy,0. Above that
line, one of them showsRy.0. The line contains both thresholdsZ50 andZ51.
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h i5z2
^f8uHuf&

^f8uf&
1

^w i8u~ t i1Ui !uw i&

^w i8uw i&
. ~53!

Notice that we now process a generalized argument, since we can also study nondiagonal e
^x8u(z2H)21ux&, wherex and x8 are products made of orbitalsx i and x i8 , respectively. The
Euclidean restriction is not implemented anymore. The trial functionsf andf8 are the products
made of orbitalsw i andw i8 , respectively. All such quantities and wave functions depend onz, but
we stress here that, because of the short range ofUi , the spectrum ofhi5t i1Ui has a fixed
continuum, extending from 0 to1` on the real axis of theh i complex plane. In general,Ui is
complex and the poles of (h i2hi)

21 need not be real; as a matter of fact, they move as funct
of z ~and of the choices ofx and x8). But, the continuum cut for the spectrum ofhi always
remains the same. It is therefore legitimate to ask the question, ‘‘What happens if one of thh i ’s
vanishes, hitting the threshold of the continuum ofhi?’’ Incidentally, it will be noticed that there
are many trajectories~sheets! of suchh i ’s as functions ofz. The multiplicity comes not only from
the existence ofN ‘‘momenta,’’ v i}6Ah i , with their 6 ambiguity,12 but it is also due to the
nonlinearity of the mean-field theory. For instance, in our second model we found seven s
see the seven roots for each quantityD(z), x(z), y(z) driven byz.

As a preliminary remark, we use Eqs.~53! to notice that the mismatch between any propa
tion energyh i and the corresponding self-energy^w i8u(t i1Ui)uw i&/^w i8uw i& does not depend oni .
Furthermore, we can take advantage of Eqs.~52! to relate the self- and propagation energies

^w i8u~ t i1Ui !uw i&

^w i8uw i&
5h i1

Ki dh i

dKi
, Ki5^x i8u~hi2h i !

21ux i&52^w i8ux i&52^x i8uw i& . ~54!

In other terms, the mismatch is measured by the ratio^x i8uw i&/^w i8uw i&5^w i8ux i&/^w i8uw i& as a
function of h i . When calculated at self-consistenth i(z)’s, such ratios do not depend oni any-
more.

Assume that the special vanishinghs readshs5 i«2, where« is real, positive, and infinitesi-
mal. This means that we select in thez complex plane a trajectory which in turn induces anhs

FIG. 9. Complexy plane. Trajectories ofy whenRz520.6 andIz increases from 0. Blue lines are trajectories for whi
eitherRx or Ry or both are negative. Only one branch, that long one in the lower right quadrant, survives the d
condition,Rx.0, Ry.0. Tiny blue segment, 0,Iz,0.03. Green segment, 0.04,Iz,0.2. Orange one, 0.3,Iz,1.8.
Red one, 2,Iz,4.
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trajectory leading to retarded, outgoing boundary conditions for that specialws and its partnerws8 .
For the sake of simplicity, set the inverse mass coefficientas to unity, or, equivalently, renormalize
hs and Us accordingly. In physical three dimensions, the partial wave componentsws, are de-
scribed by differential equations of the form

2
d2ws,

dr2 1F,~,11!

r 2 1Us,~r !2 i«2Gws,~r !

5xs,~r !2(
,8

E
0

`

dr8 Us,,8~r ,r 8! ws,8~r 8!, ;, , ~55!

whereUs,,8 is a short notation accounting for, if necessary, partial wave coupling and/or non
parts of Us . The source termxs is expanded in partial waves as well, naturally. It is th
convenient to denote the right-hand sides of Eqs.~55! as source termsjs,(r ). These are shor
ranged, obviously again. Similar equations hold forws8 .

For each,, let ss,(r ) be the regular solution, usually normalized asss,8 (0)51, of the
homogeneous, left-hand side of Eqs.~55!. The short range ofUs , and similar short ranges as
sumed for x and x8, make it that, when r→`, then ws,(r ) becomes .exp@ (i
21)« r/& # *0

`dr8 ss,(r8) js,(r8), with a similar asymptotic formula forws,8 . Let C, a real and
strictly positive number, be any convenient lower bound for the absolute values of these int
*sj and*sj8 in a neighborhood of«→0. This C exists, since such integrals are usually fin
and nonvanishing when«50. It is clear that, as«→0, there are no longer any exponential deca
or any asymptotic oscillations in the productwsws8 . Then, at this limit for«, the integral̂ ws8uws&
diverges, while obviously an integral such as^xs8uws& remains finite. The ‘‘mismatch’’ cancels ou

This indicates that, for anyiÞs, the ratiosKi dh i /dKi vanish simultaneously at their respe
tive energiesh i . Besides threshold limits for eachh i , there is an easy interpretation for such
situation, namely, each among suchN21 propagation energies converges towards a bound s
energy of itshi . Indeed, letdei be an infinitesimal difference betweenh i and an isolated eigen
value ofhi . Then, it is trivial, in an energy representation with biorthogonal eigenstates ofhi , to
see thatKi diverges at order (dei)

21, while dKi /dh i diverges at order (dei)
22.

The situation is thus representative of a Hartree~–Fock! solution for theN21 particle system.
This is confirmed by the observation that, since^ws8uws& diverges, the potentialUi /s induced by
particles upon any particleiÞs vanishes. Indeed, the short range ofv in the formula

Ui /s~r i !5

E dr8 v is~r i2r 8! ws8~r 8! ws~r 8!

^ws8uws&
, ~56!

makes the numerator converge;r i , while the denominator diverges. Any matrix eleme
^w i8ws8uvuw iws& will vanish too, for the same reason. Furthermore, the full matrix elem
^f8uHuf&/^f8uf& can always be split as

^f8uHuf&

^f8uf&
5

^f2s8 uH2suf2s&

^f2s8 uf2s&
1

^ws8u~ ts1Us!uws&

^ws8uws&
, ~57!

where the subscript2s refers to the subsystem where particles is removed. At the limit under
study, bothhs andKs dhs /dKs vanish. Hence, according to Eq.~54!, the self-energy for particle
s vanishes and the full matrix element^f8uHuf&/^f8uf& reduces to the subsystem valu
^f2s8 uH2suf2s&/^f2s8 uf2s&. Furthermore, setting i 5s in Eq. ~53!, we find that z
→^f2s8 uH2suf2s&/^f2s8 uf2s&. The threshold for the continuum of particles in the z plane
corresponds to the Hartree~–Fock! binding energy of the subsystem.
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Conversely, ifz converges towards a Hartree~–Fock! bound state energy of anN21 particle
system, it is easy to verify that at least one solution of the TIMF equations for theN particle
system consists of a threshold wave for the additional particle, as a spectator of the static s
for the subsystem.

Notice that several special particles, not just one, can be forced into their continuum th
olds simultaneously. For instance, if particles ands8 are such thaths5hs850, then all potentials
Ui /s and Ui /s8 , including Us/s8 and Us8/s , vanish, and z5^f2s2s8

8 uH2s2s8uf2s2s8&/
^f2s2s8

8 uf2s2s8&, a subsystem energy forN22 particles.
It can also be noticed that such singularities do not depend upon the source termsx andx8.

Indeed, the locations of such thresholds derive from homogeneous equations, where oH
appears.

The present theorem can be phrased in a way which generalizes the theorem of Ref.
only the mean-field binding energies of a system ofN particles define singularities of the TIMF
propagator, but the mean-field binding energies of its subsystems define thresholds of cuts
the additional particles become unbound.

V. DISCUSSION AND CONCLUSION

There are two parts in this work, namely, on the one hand, a couple of very special, ana
models, see Secs. II and III, and on the other hand, a theorem of a more general validity.

The systems described by our models are physically trivial, since they make noninter
particles. But, their mathematical interest is different. As stated at the beginning of this work
important, for large particle numbers, to validate the replacement of convolutions by st
products, and our models allow a detailed study of all singularities and nonlinearities intro
by the mean-field approximation. We investigated three representations, namely what hap
~i! the z plane~propagation energy!; see, for instance, Fig. 4;~ii ! the D plane~TIMF amplitude!;
see, for instance, Fig. 1;~iii ! pseudomomentum planes, such as, for instance the casex
52 iAh1 /a1; see Fig. 5. Since our models automatically implement an analytic continu
from physical to unphysical sheets, there is no cut to consider in the pseudomomentum co
planes. It is obvious, however, that for both pseudomomentax andy the imaginary axis represent
both rims of the cut which would be necessary in their respectiveh plane. Accordingly~see for
instance Fig. 8!, values ofz for which the real part of a pseudomomentum vanishes, or identic
for which a propagation energyh(z) becomes real and positive, make cuts in thez representation.
The zoology of the TIMF solutions turns out to be surprisingly rich. The main two conclus
provided by the models can be listed as follows.

~i! Except when the many-body propagation energyz has too small an imaginary part, th
TIMF equations always generate at least one branch of solutions where each single p
undergoes a retarded propagation and the TIMF amplitudeD shows all suitable propertie
needed for a reasonable approximation of a Green’s function matrix element; and

~ii ! The threshold of a single-particle continuum induces the threshold of a cut singular
the z representation; if one calls ‘‘projectile’’ that special particle becoming unbound,
‘‘target’’ the system made by the other particle, the corresponding threshold value fo
full propagation energyz is the binding energy of the ‘‘target.’’

The theorem derived in Sec. IV, valid for any particle numberN>2, extends this numerica
and analytical evidence. Hence, the mean-field theory of collisions mimics the connection be
singularities of the inhomogeneous problem (z2H)uC&5ux& and the solutions of the homoge
neous Schro¨dinger equation (E2H)uC&50. At this stage of our work, the similarity is restricte
however: we considered only partitions where a target is surrounded by one or several un
particles, and we have not proven thresholds defined by mean-field energies of partitioN1

1N25N, N1>2, N2>2, into two clusters, each of them carrying its full internal energy. Nor h
we considered even finer partitionsN11N21N35N, with N1>2, N2>2, N3>2, and so on. Last
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but not least, the present work lacks a clear description of the shapes of the cuts beyon
thresholds. The preliminary result obtained at the stage of Fig. 8, with a ‘‘border equation
(Iz)25 2

9(Rz11)5, is an omen of subtle arguments yet to be phrased.
Despite such questions still open, the TIMF approximation now appears like a theo

collisions endowed with properties, such as poles and thresholds, with sound interpretat
terms of Hartree~–Fock! energies of subsystems. The special role played by single-particle en
propagators (h2h)21 in the definition of such properties is a logical consequence of the fa
ization of trial wave functions, an essential ingredient of practical approximations. With
present and foregoing studies, TIMF appears as a reliable and practicable alternative to res
group~RGM! or generator coordinate~GCM! studies for application in nuclear astrophysics whe
there is still a demand for microscopic rather than phenomenological calculations of proc
relevant to element synthesis.
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APPENDIX: THE SYMMETRY BREAKING BRANCH OF THE FIRST MODEL

For the symmetry breaking sector of the first model, we again setai5g i51, scalingx,y,z and
ensuring the factorization of the resultant, Eq.~22a!. It is easy to analyze the singularities of th
direct solution of Eq.~26a!

Dbk5262S zbk

11zbk
D 1/2

, ~A1!

in terms of one cut from21 to 0 in the complexz plane, or, alternately, two cuts from2` to 21
and from 0 to1`, and observe that the square-root singularity atz50 seems to represent a ve
traditional threshold singularity. Less physical, the role ofz521 is to reflect the discriminan
D254z/(11z) of Eq. ~26a!.

In the forthcoming figures, we keepu51, as a natural scale for energies and inverse am
tudes. Figure 10 shows the graph ofzbk whenDbk is real and takes on all values from2` to 1`.
The symmetry axis atD52 is obvious from Eq.~27!. Since the physical amplitude is negativ
whenz is negative, the right lower branch of the graph is clearly unphysical, while the left lo
branch is a reasonable candidate for approximations.~Notice, however, that no real estimate of th

FIG. 10. Scaled energyz ~unit u! as a function of the ‘‘symmetry breaking’’ amplitudeD ~unit 1/u!.
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amplitude is offered for21<z<0.) In turn, the right upper branch is also ruled out, asD must
vanish whenz→1`. This leaves the left upper branch as a tolerable candidate for phy
approximates of the real~principal! part of D whenz is positive.

Rather than considering inverse functionsz(D), we then show in Figs. 11–12 the trajectorie
in a complex plane ‘‘D, ’’ of the solutions of Eq.~26a! whenRz takes on all values from2` to
1` and Iz is frozen at some fixed valueG. The physical situation corresponds toG501,
naturally, but Figs. 11–12 use larger values ofG for graphical convenience. For Fig. 11, we u
G50.075 andG50.4, which generate forDbk two ‘‘outer loops’’ and two ‘‘inner loops,’’ respec-
tively. The role ofD52 as a symmetry center is obvious. The shrinking of the loops wheG
increases comes from the fact that, asuzu→`, the dominant part of the symmetry breakin
equation isD(D24)50. Conversely, the evolution of such loops into ‘‘angles’’ whenG→0 is
transparent in Fig. 12, obtained withG50.02.

Only those solutions which lie in the lower half plane can be retained as physical candi
according to the condition ‘‘ifIz.0, thenID,0.’’ Hence, the general physical behavior ofDbk

is as follows.

~i! Whenz is real and increases from2` to 21, thenD decreases from 02 to 2`;

FIG. 11. ComplexD plane. Trajectories of symmetry breakingD whenIz50.075~outer loops! andIz50.4 ~inner ones!.
For Iz50.075, blue dots growing forRz growing between2` and 02 and red ones growing forRz growing from 01 to
1`. For Iz50.4, blue and red replaced by green and yellow, respectively.

FIG. 12. ComplexD plane. Lower loop trajectory ofDbk whenIz50.02 Blue dots growing forRz growing between2`
and 02. Red ones growing forRz growing from 01 to 1`.
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~ii ! Whenz is real and increases from21 to 0, thenD varies from 22 i` to 2; and
~iii ! WhenIz501 andRz increases from 0 to1`, thenD decreases from 21 i02 to i02.

This infinitesimal imaginary part hints thatDbk can at best approximate the principal part
D. This was already deduced from Fig. 10.

The ‘‘breaking’’ factor of the factorizing resultant between Eqs.~20! reads

x422 x3 z2x2 z22 x z~11z!2z ~11z!50, ~A2!

keeping in mind that its roots must be paired as (x,y). Figure 13 displays a contour plot of th
product of the corresponding four real parts of the roots as functions ofz. The corresponding cu
in thez plane is the border between the light gray and the darker gray areas. It is now made
branches. The right-hand branch, while not located on the real axis of thez plane, again contains
the two-body thresholdz50.

Then, Fig. 14 shows the trajectories of the four roots when we freezeRz50.1 and letIz run
from 21 to 11, allowingz to cross twice the right-hand side cut shown by Fig. 13. The size
the dots are coded like those of Fig. 5: minimal forIz521, growing untilIz50, minimal again
for small positive values ofIz, growing again untilIz51. The ‘‘vertical’’ branch on the right-
hand side of Fig. 14 has the unsatisfactory property that its ‘‘y partner,’’ according to Eq.~22b!, is
the loop-like, tiny branch on the left-hand side of Fig. 14. Hence,Rx Ry,0. In turn, the two
‘‘horizontal’’ branches on Fig. 14 are ‘‘x–y’’ partners and are partly located inside the right-ha
side of the complexx,y plane. But, actually the double condition,Rx.0, Ry.0, is never
satisfied. It must be concluded that the symmetry breaking sector is unphysical.

A trivial manipulation of Eqs.~20! shows that the pairing of roots, for this sector and su
special parameters, follows the rule

x y5z2x2y, hence y5
z2x

x11
, ~A3!

FIG. 13. Complexz plane. Cuts caused by the conditionRx50 for symmetry breaking roots. The cuts are the bord
between light gray and darker gray areas.
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which is its own inverse tranform, naturally. The rule is equivalent to Eq.~22b!, but simpler. Then,
if one definess[x1y, it is easy to reduce Eq.~A2! into

~z2s!25z~z11!, or z2s56@z~z11!#1/2, ~A4!

while shortening Eq.~A3! into

x y5z2s56@z~z11!#1/2. ~A5!

This means that Eq.~A2! factorizes into two distinct equations

x22x@z2~z1z2!1/2#1~z1z2!1/250 , ~A6a!

x22x@z1~z1z2!1/2#2~z1z2!1/250 . ~A6b!

It is easy to verify that each of these is invariant under the transform, Eq.~A3!; hence, each yields
a pair (x,y). A detailed analysis of all cases for such equations is trivial, but too lengthy t
published. Rather, it is enough and easy, actually, to setIz50, and plot, for instance for Eq.~A6a!,
its two numerical roots as functions ofz. It turns out that at least one of the roots always ha
negative real part. The same phenomenon occurs for Eq.~A6b!. All told, the symmetry breaking
sector does not respect the constraints requested simultaneously forRx andRy.
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FIG. 14. Complexx plane. Trajectories of the symmetry breakingx’s whenRz50.1, whileIz runs through one of the cuts
shown by Fig. 13. Blue dots growing whenIz grows from21 to 0. Red dots growing whenIz grows from 0 to 1.
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Quantum indistinguishability from general representations
of SU „2n …
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A treatment of the spin-statistics relation in nonrelativistic quantum mechanics due
to Berry and Robbins@Proc. R. Soc. London Ser. A453, 1771–1790~1997!# is
generalized within a group-theoretical framework. The construction of Berry and
Robbins is reformulated in terms of certain locally flat vector bundles over
n-particle configuration space. It is shown how families of such bundles can be
constructed from irreducible representations of the group SU(2n). The construc-
tion of Berry and Robbins, which leads to a definite connection between spin and
statistics~the physically correct connection!, is shown to correspond to the com-
pletely symmetric representations. The spin-statistics connection is typically broken
for general SU(2n) representations, which may admit, for a given value of spin,
both Bose and Fermi statistics, as well as parastatistics. The determination of the
allowed values of the spin and statistics reduces to the decomposition of certain
zero-weight representations of a~generalized! Weyl group of SU(2n). A formula
for this decomposition is obtained using the Littlewood–Richardson theorem for
the decomposition of representations of U(m1n) into representations of U(m)
3U(n). © 2004 American Institute of Physics.@DOI: 10.1063/1.1666979#

I. INTRODUCTION

In nonrelativistic quantum mechanics, the spin-statistics relation specifies the behav
many-body wavefunctions for indistinguishable particles under the exchange of a pair of p
labels, and asserts that the wavefunctions either remain the same or change sign acco
whether the spin of the particles,s, is integral or half-odd-integral. Nonrelativistic quantu
mechanics can be formulated in a logically consistent way without the spin-statistics relat
else with the wrong~i.e., physically incorrect! spin-statistics relation. Therefore, if one is to deri
the spin-statistics relation from within a nonrelativistic theory, the nonrelativistic theory mu
reformulated, with postulates different from the standard ones. Whether such a reformu
serves to explain the spin-statistics relation is, to some extent, a matter of judgment, and d
on the naturalness and simplicity of the assumptions introduced.

Such a reformulation was presented by Berry and Robbins3 ~referred to in what follows as
BR!. In BR, the representation of spin was made to depend on position so that, in contrast
standard formulation, then-particle wavefunction was single-valued on configuration space.
statistics of the wavefunction was determined by a topological property of this position-depe
spin representation. A calculation showed that the statistics were in accord with the phy
correct spin-statistics relation. The construction was based on Schwinger’s representation

a!Electronic mail: jon.harrison@physik.uni-ulm.de
b!Electronic mail: j.robbins@bristol.ac.uk
13320022-2488/2004/45(4)/1332/27/$22.00 © 2004 American Institute of Physics
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as number states of harmonic oscillators. Its implementation assumed without proof the solu
a certain topological problem; a solution was subsequently found by Atiyah.2 The extension to
relativistic wave equations was discussed by Anandan.1

To be compelling, a derivation of the spin-statistics relation should be based on ge
physical and mathematical principles, rather than a particular construction. In BR, it was sug
that certain properties of the construction introduced therein might be sufficient to ensu
correct spin-statistics relation. Later, it was shown that this is not the case,4 as alternative con-
structions exist which possess these properties but yield the wrong statistics. Thus, a non
istic derivation of the spin-statistics relation from general principles remains to be estab
along these lines. For a discussion of other nonstandard approaches to the spin-statistics
see Refs. 5 and 6. Our purpose here is to investigate a certain group-theoretical generaliz
the construction in BR. We begin in Sec. II by framing the underlying requirement, namely
wavefunctions be single-valued, in a geometrical context. The setting for the quantum desc
of n indistinguishable particles are certain vector bundles over configuration space, which w
n-spin bundles.n-spin bundles carry a representation of the spin-statistics groupS(n), which is
~nearly! the group generated by permutations and independent rotations ofn spinors~the precise
definition is given in Sec. II A!. The particular representation ofS(n) characterizes the spin an
statistics of the particles. The statistics are then embodied in a topological property of then-spin
bundle, namely, the monodromy of its flat connection. This formulation is in the spirit of ea
treatments by Leinaas and Myrheim13 and Sorkin.17

In Sec. III it is shown thatn-spin bundles can be constructed from irreducible representa
G f of the group SU(2n). The construction in BR is seen to be a particular case, correspondi
the completely symmetric representations of SU(2n). For the completely symmetric represent
tions, one obtains a definite connection between spin and statistics, indeed the physically
connection. In contrast, an arbitrary representation of SU(2n) does not necessarily engender
definite relation between spin and statistics; whether or not it does depends on the decomp
of certain representations of the spin-statistics group constructed fromG f.

This decomposition is carried out in Sec. IV. The calculation involves the evaluatio
integrals over characters of the spin-statistics group, and makes use of the Littlewood–Rich
formula for the decomposition of representations of U(k1 l ) into representations of U(k)
3U( l ). It turns out that for an arbitrary representation of SU(2n) and a given value of spin
various choices of statistics may be realized, including parastatistics~which correspond to repre
sentations of the symmetric group of dimension greater than one!.

Section V contains a summary and discussion of the results. A connection to a more g
problem in representation theory is described in the Appendix.

Throughout this paper we will use the following notation: Givenn elementsa1 ,...,an of a set
A, we let A denote the orderedn-tuple (a1 ,...,an). The action of a permutationsPSn on A is
denoted bys•A and defined by

s•A5~as21(1) ,...,as21(n)!. ~1.1!

Many of the results presented here are discussed in greater detail by Harrison.10

II. BUNDLE DESCRIPTION OF n-PARTICLE QUANTUM MECHANICS

The configuration spaceCn for n particles in three-dimensional space is the set ofn-tuples
R5(r1 ,...,rn). We will suppose the particles cannot coincide, so thatr jÞr k . If the particles are
indistinguishable, then permuted configurationsR ands•R are to be regarded as being the sam
We describe here a framework for quantum mechanics in which wavefunctions of identica
ticles are single-valued on configuration space; that is, the wavefunction at permuted con
tions is the same.

We first introduce in Sec. II A the particular irreducible representations of the spin-stat
group S(n), denoted byQsl, which correspond ton identical spins.n-spin-s bundles with
statisticsl are defined in Sec. II B. These are flat, Hermitian vector bundles over configur
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space whose fibers carry an irreducible representation of the spin-statistics group equiva
Qsl. This representation is required to be compatible with indistinguishability and the flat
nection. Wavefunctions are taken to be sections of the bundle, and operators representing q
observables are defined on them. The relation to the standard formulation of quantum mec
as well as that of BR, is discussed.

A. Representations of the spin-statistics group for identical spinors

Let Sn denote the symmetric group. The irreducible representations,Ll, of Sn are character-
ized by Young tableaux,l, of n boxes~equivalently, partitions ofn). Let dl denote the dimension
of the representationLl. Let ua&, a51,...,dl , denote an orthonormal basis forCdl ~with respect
to the standard inner product!. For sPSn , we write

Ll~s!ua&5La8,a
l

~s!ua8&, ~2.1!

where here and elsewhere a sum over repeated indices is implied. We may takeLl to be unitary,
so thatLa8,a

l (s) is a unitary matrix.
Let

~2.2!

denote the direct product ofn copies of SU~2!. SU(2)n describes the independent rotations ofn
spinors. Denote elements of SU(2)n by U5(u1 ,...,un), with ujPSU(2). States ofn spinors, all
of spin s, are unchanged if pairs of spinors are rotated through 2p, regardless of whethers is
integral or half-odd-integral. Let Nul(n),SU(2)n denote the subgroup generated by pairs
2p-rotations. It consists of elements of the form

U05~~21!e1I2 ,...,~21!enI2!, where ~21!e1
¯~21!en51 ~2.3!

(I2 is the 232 identity matrix!. Then-spin group, denoted by Spn(n), is defined by

Spn~n!5SU~2!n/Nul~n!, ~2.4!

and represents in a one-to-one fashion the independent rotations ofn spinors of the same spin
Given UPSU(2)n, let

Ū5U Nul~n! ~2.5!

denote the corresponding element of Spn(n) @that is,Ū is the coset of SU(2)n containing elements
which differ from U by an even number of 2p rotations#.

The spin-statistics group,

S~n!5Spn~n!’Sn , ~2.6!

is the semidirect product of then-spin group and the symmetric group. Elements are denote
(Ū,s), whereUPSU(2)n andsPSn , and multiplication is given by

~Ū,s!~U8,s8!5(U(s•U8),ss8). ~2.7!

@It is easy to check that the right-hand side of~2.7! is unchanged ifU andU8 are multiplied by an
even number of 2p rotations.# For brevity, when Spn(n) andSn are to be regarded as subgrou
of S(n), we will denote their elements simply byŪ ands respectively, rather than by (Ū,ISn

) and
(ISp(n) ,s).
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The complete set of irreducible representations of the spin-statistics group can be ob
from the general representation theory of semidirect products~see, e.g., Ref. 16!. Here we shall
only be interested in representations whose restriction to Spn(n) describesn spinors all of spins,
wheres is integral or half-odd-integral. It is easily established that each such irreducible r
sentation ofS(n) is characterized bys and, additionally, by an irreducible representationl of Sn .
We denote this representation byQsl, and describe it in the following.

Qsl acts on the (2s11)ndl-dimensional vector spaceV sl given by

~2.8!

Let

uM ,a&5um1& ^¯^ umn& ^ ua&, ~2.9!

whereM5(m1 ,...,mn) andmj ranges between2s ands in integer steps, denote a basis forV sl

orthonormal with respect to the standard inner products onC2s11 and Cdl. For ŪPSpn(n),
Qsl(Ū) is given by

Qsl~Ū !uM ,a&5Dm
18 ,m1

s
~u1!¯Dm

n8 ,mn

s
~un!uM ,a&, ~2.10!

where Dm,m8
s (u) denotes the standard spin-s representation of SU~2! on C2s11, and M 8

5(m18 ,...,mn8). @It is easy to check that the right-hand side of~2.10! is unchanged ifU
5(u1 ,...,un) is multiplied by an element of Nul(n).] For sPSn , Qsl(s) is given by

Qsl~s!uM ,a&5La8,a
l us•M ,a8&. ~2.11!

That is, the spin labelsM are permuted whileua& transforms according to the representationLl of
Sn . For a general element (Ū,s)PS(n), the expression forQsl(Ū,s) follows from ~2.10! and
~2.11! and the multiplication law~2.7!.

B. n -spin- s bundles with statistics l

For our purposes, ak-dimensional Hermitian vector bundle,E, over the configuration spac
Cn will be regarded as a field ofk-dimensional subspaces,ER , of a finite-dimensional Hilbert
space,V, depending smoothly onRPCn . ER is called the fiber ofE at R. A Hermitian inner
product onER is induced by the Hermitian inner product onV. A section ofE is a functionuC(R)&
on configuration space taking values inER . The inner product of two sections is given by

E
Cn

^C~R!uF~R!& dR. ~2.12!

The space of square-integrable sections forms a Hilbert space.
To represent spins and statisticsl, each fiberER must carry a representation of the spi

statistics group unitarily equivalent toQsl. Denote this representation byLR . We require thatLR

depend smoothly onR.
Operators representing spin, position and momentum may be defined on wavefuncti

follows. We consider the spin operators, denotedSop5(s1
op,...,sn

op), first. Consider the rotation o
the r th spinor about an axisêa by an anglet holding the other spinors fixed. This is described
U (r ,a)(t)5(u1(t),...,un(t))PSU(2)n, where

uj~ t !5H exp~2 itsa/2!, j 5r ,

I2 , otherwise
~2.13!
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~heres1 , s2 , s3 are the Pauli matrices!. Thensr ,a
op , theath component ofsr

op , is given by

u~sr ,a
opC!~R!&5

1

i

d

dt U
t50

LR~Ū (r ,a)~ t !! uC~R!&. ~2.14!

As the representationLR is unitary,sj
op , as defined by~2.14!, is self-adjoint. The representatio

property ofLR implies that the standard commutation relations for spin are satisfied.
Position operators,Rop5(r1

op,...,rn
op), are defined componentwise by

u~r j ,a
opC!~R!&5r j ,auC~R!&. ~2.15!

r j
op is Hermitian with respect to the inner product~2.12!, self-adjoint on a suitable domain, and th

position operators commute amongst each other and with the spin operators.
The definition of momentum operators requires a Hermitian connection onE. A Hermitian

connection associates to piecewise smooth pathsR(t)PCn a family of unitary maps between th
fibersER(t) . These unitary maps describe the parallel transport of spinors alongR(t). Momentum
operators may be defined in terms of the covariant derivative with respect to this connecti

A characteristic property of a connection is its curvature, which describes parallel tran
around infinitesimal closed paths. Nonvanishing curvature corresponds physically to the pr
of gauge~e.g., magnetic! fields. In order that our theory be capable of describing physics in
absence of fields, we shall require thatE admit a flat connection. This condition is not automa
cally satisfied; the existence of a flat connection depends on the topology of the bundle~just as the
fact that a two-torus admits a flat Riemannian metric, while a two-sphere does not, is a c
quence of their different Euler characteristics!.

For a flat connection, parallel transport around a closed path is trivial, provided the p
contractible. InCn , every closed path is contractible (Cn is simply connected!. Therefore,
parallel-transport with respect to a flat connection onE is path-independent, and depends only
the endpoints of the path. Therefore, a flat Hermitian connection onE is characterized by unitary
mapsTR8←R :ER→ER8 describing parallel transport fromR to R8. Path independence then implie
that

TR9←R8TR8←R5TR9←R . ~2.16!

Momentum operatorsPop5(p1
op,...,pn

op) are defined as follows. Let

E( j ,a)5~0,...,0,êa,0,...,0! ~2.17!

denote the tangent vector in configuration space on which thej th particle moves with unit velocity
in the directionêa while the other particles stay fixed. Then theath component ofpj

op is given by

u~pj ,a
opC!~R!&5

d

dt U
0

~TR←R1tE( j ,a)
uC~R1tE( j ,a)!&). ~2.18!

pj ,a
op is Hermitian with respect to the inner product~2.12! and is self-adjoint on a suitable domai

From ~2.15! it is easily verified that the position and momentum operators satisfy the stan
commutation relations. That the momentum operators commute amongst themselves follow
the fact that

TR←R1tETR1tE←R1tE1uF5TR←R1uFTR1uF←R1tE1uF , ~2.19!

which in turn follows from the path independence~2.16! of the connection, provided the displac
mentstE anduF are small enough so as not to make the particles coincide.
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The requirement that spin and momentum commute is equivalent to the requiremen
parallel transport be compatible with the representationLR . That is, we should have tha
LR8(Ū,s)TR8←R5TR8←RLR(Ū,s).

As a basis for subsequent discussion, let us formulate the standard description ofn-particle
quantum mechanics within the framework described above.~In this case, the vector bundle de
scription is unnecessary, of course, and appears artificial.! For this, take the fibersER to be
everywhere equal to the fixed vector spaceV sl. TakeLR , the representation of the spin-statisti
group, to be everywhere equal to the standard representationQsl. Parallel transport is everywher
taken to be trivial; i.e.,TR8←R is just the identity map onV sl. ThenE is just the Cartesian produc
Cn3V sl, and wavefunctionsuC(R)& are justV sl-valued functions onCn . Wavefunctions may be
expanded in the standard basisuM ,a& @cf. ~2.9!#,

uC~R!&5(
M

(
a51

dl

cM ,a~R!uM ,a&. ~2.20!

The definitions~2.14!, ~2.15! and ~2.18! of the position, spin and momentum operators yield
standard operations on the coefficientscM ,a(R),

r j
opcM ,a

S ~R!5r jcM ,a
S ~R!, ~2.21!

pj
opcM ,a

S ~R!52 i¹r j
cM ,a

S ~R!, ~2.22!

e2 iusj ,a
op

cM ,a
S ~R!5 (

m852s

s

Dmj ,m8
s

~e2 iu•sa!cM8,a
S

~R!, ~2.23!

where, in~2.23!, M 8 differs from M only in the j th component, in whichmj is replaced bym8.
We now introduce the requirement, basic to the formulation in BR, that for indistinguish

particles, the values of the wavefunction at permuted configurations should be the same. T
we require that

uC~s•R!&5uC~R!&, sPSn . ~2.24!

~Note that for this condition to be sensible, the fibers atR ands•R must be the same.! In this case,
the wavefunction is single-valued as a function of configurations in which the particles a
longer labeled. Wavefunctions in the standard description are not single-valued in this
Indeed, in the standard description, the coefficients of the wavefunction at permuted configu
are related by

cM ,a~s•R!5La,a8
l cs21

•M ,a8~R!, ~2.25!

so that the wavefunctions themselves satisfy

uC~s•R!&5Ls•R~s!uC~R!&. ~2.26!

Descriptions based on single-valued wavefunctions, but physically equivalent to the sta
description, are obtained by rewriting~2.26! as

uC~s•R!&5Ls•R~s!Ts•R←RuC~R!&. ~2.27!

In the standard description,~2.27! is the same as~2.26!, sinceTs•R←R is just the identity in this
case. In contrast, for single-valued wavefunctions,~2.27! becomes

Ls•R
21 ~s!5Ts•R←R . ~2.28!
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Thus, for a description in terms of single-valued wavefunctions to be equivalent to the sta
one, parallel transport is necessarily a nontrivial operation; between permuted configur
parallel transport induces the corresponding permutation of spins.

Let us now formalize the preceding considerations. Ann-spin-s bundle with statisticsl,
denoted byE sl, is defined to be a (2s11)dl-dimensional Hermitian vector bundle over th
configuration spaceCn endowed with the following properties:

~A! There exists a smooth family,LR , of unitary irreducible representations of the sp
statistics groupS(n) acting on the fibersER , unitarily equivalent toQsl.

~B! The fibers at permuted configurations are the same, i.e.,

Es•R5ER . ~2.29!

~C! There exists a flat Hermitian connection onE sl, characterized by unitary mapsTR8←R

describing parallel transport fromR to R8, satisfying the composition rule

TR9←R8TR8←R5TR9←R . ~2.30!

Parallel transport is compatible with the representationLR in the sense that

LR8~Ū,s!TR8←R5TR8←RLR~Ū,s!. ~2.31!

~D! Parallel transport between permuted fibers induces permutations, i.e.,

Ts•R←R5Ls•R~s21!. ~2.32!

The Hilbert spaceH of wavefunctions describingn indistinguishable particles of spins and
statistics l is the space of sections ofE sl with inner product~2.12! satisfying the single-
valuedness condition

uC~s•R!&5uC~R!&. ~2.33!

Observables are generated by combinations of the position, momentum and spin operator j
op ,

pj
op andsj

op , given by~2.15!, ~2.22! and~2.14!, respectively, which are invariant under permu
tions. These permutation-invariant operators preserve the single-valuedness condition~2.33!.

To establish explicitly the equivalence between this formulation and the standard one, a
as the treatment in BR, it is useful to introduce a parallel-transported basis for the fibersER . To
this end, we fix a reference configurationR0PCn . SinceLR0

is unitarily equivalent toQsl, there
exists an orthonormal basisuM ,a(R0)& of ER0

for which

LR0
~Ū,s!uM ,a~R0!&5QM8a8,Ma

sl
~Ū,s!uM 8,a8~R0!&. ~2.34!

A basis forER is defined via parallel transport as follows:

uM ,a~R!&5TR←R0
uM ,a~R0!&. ~2.35!

Because the representationLR is compatible with the flat connection, it follows that~2.34! holds
for all R.

WavefunctionsuC(R)& may be expanded in terms of this basis as

uC~R!&5cM ,a~R!uM ,a~R!&. ~2.36!

From the definitions~2.15!, ~2.18! and ~2.14!, it is readily verified that the position, momentu
and spins operators act on the componentscM ,a(R) as the standard operators~2.21!–~2.23!. The
condition~2.32! implies that the components at permuted configurations are related as in~2.25!, in
accord with the standard formulation.
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Apart from allowing parastatistics, the framework described here is equivalent to the
given in Sec. 2 of BR. There are, however, some differences in the formulation. In BR, prop
~A!–~D! are expressed directly in terms of the parallel-transported basis. For example, inst
property~C!, BR require that the parallel-transported basis satisfy

^M 8~R!u¹r j
M ~R!&50. ~2.37!

In this way, the formalism and terminology of vector bundles is avoided.
An advantage of the present formulation is that properties required by physical consider

are distinguished from those which depend on convention. For example,~2.37! implies the exis-
tence of a flat connection, but it implies, additionally, that it is a particular connection whic
flat—namely, the connection induced by the inner product onV, according to which vectors ar
parallel-transported by translating them to an infinitesimally displaced fiber and there proje
them perpendicularly. This choice of connection, while convenient, is nevertheless a ma
convention, and is not required by physical considerations.

Finally, we note that we could, if we wished, impose the single-valuedness condition
directly by taking n-particle configuration space to be the identified configuration spaceC̄n

5Cn /Sn consisting of~unordered! setsX5$r ,s,...,t% of n distinct points inR3. ~This is the point
of view taken by Leinaas and Myrheim13! Then wavefunctions would become functions ofX, or,
more precisely, sections of ann-spin bundle over the identified configuration spaceC̄n . However,
such a reformulation involves some additional mathematical complication, and, for this reaso
will confine our consideration of it to the following informal remarks.

The complication is due to the fact that there are no global Euclidean coordinates onC̄n ; it is
no longer sensible to refer to position, spin and momentum operators for a particular parti
place of individual momenta, for example, one must introduce generalized momentum ope
which are related to covariant derivatives along smooth vector fields onC̄n . A formulation in
terms ofC̄n does have some attractive aspects, though. Parallel transport between permute
in Cn becomes transport from a single fiber to itself around a noncontractible closed path iC̄n .
In this way, the statistics of the particles is reflected in the monodromy of the flat connect
topological property of the bundle.

III. SPIN BUNDLES SU „2n … REPRESENTATIONS

In this section we describe the construction ofn-spin bundles from representations
SU(2n). The construction is based on a connection between SU(2n) and the spin-statistics grou
S(n) ~Sec. III A!, which associates a representationD f of S(n) to an irreducible representationG f

of SU(2n) ~Sec. III B!. In general, the representationD f is reducible.n-spin bundles are con
structed from the representationsG f andD f and anSn-equivariant map fromCn to SU(n)/T(n)
~Sec. III C!.

WhetherG f determines a spin-statistics relation is discussed in Sec. III D. The questi
related to the decomposition ofD f into its irreducible components. A definite statistics for a giv
value of spin requires thatD f should contain only one irreducible representation ofS(n) with that
spin. This is the case for the completely symmetric representations, which correspond
construction in BR. The general case is discussed in Sec. IV.

A. The spin-statistics group and SU „2n …

Consider SU(2n), the group of 2n-dimensional unitary matrices of unit determinant. SU(2n

may be identified as a subgroup of SU(2n), with U5(u1 ,...,un)PSU(2)n identified with the
matrix
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U5S u1

u2 0

�

0 un

D . ~3.1!

@For simplicity, we will use the same symbol, in this instanceU, for both an element of SU(2)n

and for the corresponding matrix in SU(2n), and will do the same for some other subgroups
SU(2n) to be introduced below. Taken in context this usage should not introduce any ambig#
Similarly, SU(n), the group ofn-dimensional unitary matrices with unit determinant, may
identified with a subgroup of SU(2n), with gPSU(n), with components denoted bygrt , 1
<r ,t<t, identified with the SU(2n)-matrix

g5S g11I2 ¯ g1nI2

] � ]

gn1I2 ¯ gnnI2

D . ~3.2!

Finally, we letT(n) denote the subgroup of diagonal matrices in SU(n). From~3.2!, T(n) may be
identified as the subgroup of SU(2n) consisting of diagonal matrices of the form

t~Q!5S eiu1I2

eiu2I2 0

�

0 eiunI2

D , ~3.3!

whereQ5(u1 ,...,un) is ann-tuple of phases satisfying

eiu1
¯eiun51. ~3.4!

Note that SU(2)nùT(n) is just the subgroup Nul(n) of null rotations, which consists o
SU(2n)-matrices of the form

U05S ~21!e1I2

~21!e2I2

�

~21!enI2

D , ~3.5!

where (21)e1
¯(21)en51.

Let N(n),SU(n) denote the normalizer ofT(n) in SU(n), i.e., the subgroup of SU(n) which
leavesT(n) invariant under conjugation. It is straightforward to show that elements ofN(n) may
be parametrized by a permutationsPSn and ann-tuple of phasesF5(f1 ,...,fn) satisfying

eif1
¯eifn5 sgn~s! ~3.6!

@here sgn(s) denotes the parity ofs#, and are of the form

yrt~s,F!5d r ,s(t)e
if t. ~3.7!

Multiplication in N(n) is given byy(s,F)y(s8,F8)5y(ss8,s821
•F1F8), so that, formally,

N(n) may be regarded as the semidirect product,Sn’T(n). The quotientN(n)/T(n), the Weyl
group of SU(n), is isomorphic toSn .

Let M (n) denote the normalizer ofT(n) in SU(2n), i.e., the subgroup of SU(2n) which
leavesT(n) invariant under conjugation. ClearlyM (n) containsN(n) as a subgroup.M (n) also
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contains the SU(2n)-centralizer ofT(n), denoted byZ(n), i.e., the subgroup of SU(2n) whose
elements commute with all elements ofT(n). It is straightforward to show that elements ofZ(n)
are of the formU t(Q), whereUPSU(2)n. andt(Q)PT(n). It is then straightforward to show
that elements ofM (n) can be expressed as products of elements ofZ(n) andN(n), and thus are
of the form

x~U,s,F!5Uy~s,F!, ~3.8!

where the phasesF satisfy ~3.6!. Multiplication in M (n) is given by

x~U,s,F! x~U8,s8,F8!5x~Us•U8,ss8,s821
•F1F8!. ~3.9!

The parametrizationx(U,s,F) of ~3.8! is not unique. IfU is replaced byUU0 , with U0

PNul(n) given by ~3.5!, and F is replaced byF8, where f j85f j1ejp, then x(U,s,F) is
unchanged. In this way, we see that, formally,M (n) is isomorphic to SU(2)n›N(n)/Nul(n).

From these considerations, it follows that the quotientM (n)/T(n) is isomorphic to the spin-
statistics group, i.e.,

S~n!5Spn~n!’Sn>M ~n!/T~n!. ~3.10!

The isomorphism is given explicitly by

~Ū,s!°x~U,s,F!T~n!, ~3.11!

wherex(U,s,F)T(n) denotes a coset inM (n)/T(n). This association between SU(2n) and the
spin-statistics group is the basis of the constructions to follow.

B. Representations of the spin-statistics group from representations of SU „2n …

Let G f denote a unitary irreducible representation of SU(2n), labeled by a Young tableauf
5( f 1 ,...,f 2n) of up to 2n rows ~in fact, the last row off may be taken to be empty!. Let V denote
the Hermitian inner product space on whichG f acts. ~Of course,V depends on the choice o
representation, but to simplify the notation we will not indicate this explicitly.!

Under the restriction ofG f to T(n), V may be decomposed into a direct sum of orthogo
subspaces,V K, on which G f(t(Q)) is represented by the phase factor exp i(K•Q). Here K
5(k1 ,...,kn) is an n-tuple of integers, andK•Q5( j kju j . The subspaceV 0, corresponding to
K5(0,...,0), consists of vectors which are invariant underG f(T(n)).

Let us determine the action ofM (n) on the subspacesV K. Given x(U,F,s)PM (n), it
follows from ~3.9! that

G f~ t~Q!!G f~x~U,s,F!!•V K5G f~x~U,s,F!!G f~ t~s21
•Q!!•V K

5ei(K•(s21
•Q))G f~x~U,s,F!!•V K5ei(s•K)•QG f~x~U,s,F!!•V K.

~3.12!

Thus, under the action ofM (n), the subspacesV K are mapped into one another according to

G f~x~U,F,s!!•V K5Vs•K. ~3.13!

It follows from ~3.13! that V 0 is invariant underM (n). ThereforeG f restricts to a represen
tation of M (n) on V 0. SinceT(n),M (n) belongs to the kernel of this representation@asT(n)
leaves vectors inV 0 invariant#, G f(M (n)) reduces to a representation of the quotientM (n)/T(n),
which we denote byD f. SinceM (n)/T(n)>S(n) ~cf. 3.10!, D f is in fact a representation of th
spin-statistics group. From~3.11!, D f is given by

D f~Ū,s!5G f~x~U,F,s!!. ~3.14!
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In general, the representationD f of S(n) is reducible. Letn(f,sl) denote the multiplicity with
which the irreducible representationQsl, given by ~2.10!, appears in the decomposition ofD f.
This multiplicity will play a central role in what follows.

C. Construction of n -spin bundles

Let J:Cn→SU(n)/T(n) denote a smooth map fromn-particle configuration spaceCn to the
coset space SU(n)/T(n). Such a map may be represented byg(R), an SU(n)-valued function on
Cn which is smooth up to right multiplication by an element ofT(n). @That is, discontinuities in
g(R) can be removed locally by multiplying on the right by a discontinuousT(n)-valued func-
tion.# The symmetric groupSn acts onCn as permutations~i.e., R°s•R) and on SU(n)/T(n) as
the Weyl group@i.e., for y(s,F)PN(n), g T(n)°gy21(s,F) T(n)]. J is said to be equivarian
with respect toSn if, for all sPSn , J+s5s+J. In terms ofg(R), Sn-equivariance is equivalen
to

g~s•R! T~n!5g~R!y21~s,F! T~n!. ~3.15!

Atiyah2 has shown that there exist continuous~and therefore smooth! Sn-equivariant maps from
Cn to SU(n)/T(n). Let g(R) represent any such equivariant map@the results which follow do not
depend on the particular choice ofg(R)].

As in Sec. III B, letG f be an irreducible representation of SU(2n), and D f the associated
representation of the spin-statistics groupS(n). Supposen(f,sl).0, i.e.,V 0 contains a subspace
which we denote byV sl, which transforms underD f according to the irreducible representatio
Qsl of S(n). We may then construct ann-spin-s bundleE sl as follows. The fibersE R

sl,V are
given by

E R
sl5G f~g~R!!•V sl. ~3.16!

Sinceg(R) is smooth up to right multiplication by aT(n)-valued function andV sl is invariant
underG f(T(n)), it follows thatE R

sl depends smoothly onR.
Let us verify thatE sl has the properties~A!–~D! listed in Sec. II B. For~A!, we define the

representationLR on E R
sl by

LR~Ū,s!5G f~g~R!!D f~Ū,s!G f†~g~R!!, ~3.17!

where D f(Ū,s) is the representation ofS(n) given by ~3.14!. By assumption,D f is unitarily
equivalent toQsl on V sl, so it is evident from~3.17! thatLR is unitarily equivalent toQsl for all
R. Since the right-hand side of~3.17! is unchanged ifg(R) is multiplied on the right by a
~possibly discontinuous! T(n)-valued function, it is clear thatLR depends smoothly onR.

For ~B!, from the definition~3.16! and the equivariance property~3.15!, we have that

E s•R
sl 5G f~g~s•R!!•V sl5G f~g~R!!G f~y21~s,F!!•V sl5G f~g~R!!•V sl5E R

sl . ~3.18!

Thus the fibers at permuted configurations are the same.
For ~C!, we define the unitary mapsTR8←R describing flat parallel transport between the fibe

at R andR8 by

TR8←R5G f~g~R8!!G f†~g~R!!. ~3.19!

The right-hand side is unchanged ifg(R) is multiplied on the right by aT(n)-valued function, so
TR8←R is well defined and depends smoothly onR andR8. The composition law~2.30! is easily
verified. Compatibility with the representationsLR @cf. ~2.31!# follows from the definition ofLR in
~3.17! and the representation property ofG f.
                                                                                                                



he

1343J. Math. Phys., Vol. 45, No. 4, April 2004 Quantum indistinguishability from SU(2n)

                    
For ~D!, from ~3.19!, parallel transportTs•R←R between permuted fibersR ands•R is given
by G f(g(s•R))G f†(g(R)). The equivariance condition~3.15! implies this is equal to
G f(g(R))G f(y21(s,F))G f†(g(R)). From ~3.17!, the condition~2.32! follows.

D. Spin-statistics relations from SU „2n … representations?

Given an irreducible representationG f of SU(2n), the preceding construction determines t
statistics for spins unambiguously, provided that there is just one representationQsl with spin s
in the decomposition ofD f; equivalently, givenf ands, the multiplicityn(f,s,l) should vanish for
all but onel.

This is the case for the completely symmetric representations of SU(2n). The completely
symmetric representations correspond to Young tableaux with a single row. LetGd denote the
representation for a single row ofd boxes.Gd may be realized on the spaceV of homogeneous
polynomials of degreed in 2n variables,z5(z1 ,...,z2n)PC2n, and is given byGd( f )•P(z)
5P( f 21

•z) for f PSU(2n). Gd is unitary with respect to the inner product

^P,Q&5E
C2n

e2z* •z/2P* ~z!Q~z! d4nz ~3.20!

on V.
An orthogonal basis forV is given by the monomials

)
r 51

n

z1,r
ar z2,r

br , ~3.21!

where the sum of the exponentsaj and bj is given byd. The subspaceV 0, whose vectors are
invariant underT(n), consists of polynomials which are invariant underz°t21(Q)•z, where

t21~Q!•z5~e2 iu1z1 ,e2 iu1z2 , . . . ,e2 iunz2n21 ,e2 iunz2n!. ~3.22!

Such polynomials are linear combinations of the monomials~3.21! for which ar1br is indepen-
dent of r , so thatar1br5d/n. Thus, forV 0 to be nontrivial,d must be divisible byn.

Let us assume this is the case, so thatd/n is integral. Thens5d/2n is either integral or
half-odd-integral. Letmr5ar2s. Thenar5s1mr andbr5s2mr . It follows thatV 0 is spanned
by the (2s11)n monomials

)
r 51

n

z1,r
s1mrz2,r

s2mr , ~3.23!

where2s<mr<s ands6mr is integral. Under Spn(n), V 0 transforms asn spin-s spinors. As the
dimension ofV 0 is (2s11)n, it follows that there is a single irreducible representationQsl with
multiplicity one in the decomposition ofD f, and thatdl51, i.e., l is either the completely
symmetric or the completely antisymmetric representation ofSn .

l may be determined by considering the action of permutations on an element ofV 0, for
example,

Ps~z!5
def

z2
2sz4

2s
¯z2n

2s . ~3.24!

From ~3.7!, undery21(s,F), the even components transform asz2 j°e2 if jz2s( j ) . Thus, under
y(s,F), Ps(z) is multiplied by the phase factor e2sif1

¯e2sifn. From ~3.6!, this phase factor is
just sgn2s(s). Thus, the completely symmetric representations of SU(2n) of dimensiond52ns
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lead ton-spin-bundles with spins and Bose or Fermi statistics according to the parity of 2s, in
accord with the physically correct spin-statistics relation. This is precisely the result obtain
BR.

IV. CALCULATION OF THE MULTIPLICITIES

Given an arbitrary representationG f of SU(2n), we wish to determine for which spins a
n-spin-s bundle can be constructed, and, for those spins, whether the constructions have a
type of statistics. To this end, we calculate the multiplicitiesn(f,sl) with which the irreducible
representationQsl of S(n) appears in the representationD f. This is given by the following
integral:

n~ f,sl!5E
S(n)

dmS(n) Xsl* ~Ū,s!Xf~Ū,s!. ~4.1!

HereXsl andXf denote the characters of theS(n)-representationsQsl andD f, respectively, and
dmS(n) denotes the normalized Haar measure onS(n). Before evaluating the integral~4.1! in Sec.
IV B, we first introduce some background material and notation.

A. Preliminaries

1. Character formula for U„k …

Irreducible representations of thek-dimensional unitary group U(k) are labeled by Young
tableauxa5(a1,...,ak) of k rows~some of which may be empty!, wherea1>¯>ak>0 specify
the number of boxes in each row. Let

uau5a11¯1ak ~4.2!

denote the number of boxes in the tableau. Denote the eigenvalues of matrices in U(k) by
(exp ij1 ,...,exp ijk), and their eigenphases byj5(j1 ,...,jk). The charactersKk

a of the irreduc-
ible representations are functions ofj and are given by the Weyl character formula,

Kk
a~j!5

Uei(a11k21)j1 ei(a11k21)j2 ¯ ei(a11k21)jk

ei(a21k22)j1 ei(a21k22)j2 ¯ ei(a21k22)jk

] ] ]

eiakj1 eiakj2 ¯ eiakjk

U
Uei(k21)j1 ei(k21)j2

¯ ei(k21)jk

ei(k22)j1 ei(k22)j2
¯ ei(k22)jk

] ] ]

1 1 ¯ 1

U
. ~4.3!

Irreducible representations of SU(k) are obtained by restriction. On SU(k), the representationa
1r , which is obtained by addingr columns ofk boxes toa, is equivalent to the representationa.
SU(k) representations can be uniquely labeled by Young tableaux ofk21 rows ~some of which
may be empty!.

2. The Littlewood –Richardson theorem

Given an irreducible representationg of U(k1 l ), its restriction to the subgroup U(k)
3U( l ) is, in general, reducible, and may be decomposed into a sum of tensor products o
ducible representationsa and b of U(k) and U(l ), respectively. In terms of characters, th
decomposition takes the form
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Kk1 l
g ~j,h!5(

a,b
Yab

g Kk
a~j!Kl

b~h!, ~4.4!

wherej and h denote the eigenphases of elements of U(k) and U(l ), respectively. The coeffi-
cientsYab

g in the decomposition are given by the Littlewood–Richardson theorem, accordi
which Yab

g is the number of times that the tableaug can be constructed froma and b by the
following procedure: Boxes from the first row ofb are added toa so as to produce a new tablea
with the condition that no two boxes are placed in the same column of the new tableau. T
repeated with the second row ofb, with the additional condition that, on counting added boxes
the new tableau column-wise from right to left, and row-wise from top to bottom, the numb
added boxes from the first row ofb must always be greater than or equal to the number of ad
boxes from the second row. The procedure is continued for the other rows until all boxes frb
have been added toa. It is evident thatg can be constructed in this way only if the number
boxes ing equals the number of boxes ina and b together; that is,Yab

g vanishes unlessugu
5uau1ubu.

Equation ~4.4! generalizes to the decomposition of irreducible representationsg of U(k1

1¯1kc) restricted to the subgroup U(k1)3¯3U(kn), as follows:

Kk11¯1kc

g ~j1 ,...,jc!5 (
a1 ,...,ac

Ya1 ,...,ac

g )
b51

c

Kkb

ab~jb!. ~4.5!

Here theab’s are tableaux labeling irreducible representations of U(kb), and thejb denote the
eigenphases of elements of U(kb). The c-fold coefficientsYa1 ,...,ac

g may be obtained from the

twofold coefficientsYab
g by performing thec-fold decomposition inductively.

With ~4.5!, the (k11¯1kc)-fold determinants in the Weyl character formula~4.3! are re-
duced to sums of products of ratios of smaller,kb-fold determinants. However, this simplificatio
comes at a price; the Littlewood–Richardson coefficients are not easily calculated, and c
form expressions for them are not known.

The original statement of the Littlewood–Richardson theorem appears in Ref. 14. A m
version with proof may be found in Ref. 15. The application of the Littlewood–Richard
theorem to the unitary groups is discussed by Hagen and MacFarlane8 and Itzykson and
Nauenberg.11 A more detailed discussion of the rules for multiplying Young tableaux can be fo
in Ref. 9.

3. Characters for U(2) and SU(2)

We will need some results and notation particular to the groups SU~2! and U~2!. Irreducible
characters of SU~2! are denoted byxSU(2)

s (c), wheres is the spin and e6 ic denotes the eigenval
ues of elements of SU~2!, and are given by

xSU(2)
s ~c!5

sin~~2s11!c!

sin~c!
. ~4.6!

Irreducible representations of U~2! are labeled by tableauxa5(a1,a2) of two rows. The U~2!-
charactersK2

a(j1 ,j2) are related to the SU~2!-charactersxSU(2)
s (c) by

K2
a~1c1u,2c1u!5eiuauuxSU(2)

S(a) ~c!, ~4.7!

where

S~a!5~a12a2!/2 ~4.8!

denotes the value of spin associated with the U~2!-representationa.
The Clebsch–Gordan coefficientsC(s1 ,s2 ,s3) for SU~2! are defined by
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C~s1 ,s2 ,s3!5
1

p E
0

2p

dc sin2~c!xSU(2)
s1 ~c!xSU(2)

s2 ~c!xSU(2)
s3 ~c! ~4.9!

@note that sin2(c ) is the Haar measure with respect to classes of SU~2!#, and give the multiplicity
of the trivial representation in the decomposition of the tensor product of three SU~2!-
representations with spinss1 , s2 ands3 . It is an elementary result thatC(s1 ,s2 ,s3) equals one if
us12s2u<s3<s11s2 , and is zero otherwise. We define ther -fold Clebsch–Gordan coefficients b

C~s1 ,...,sr !5
1

p E
0

2p

dc sin2~c!xSU(2)
s1 ~c!¯xSU(2)

sr ~c!. ~4.10!

These are given inductively by

C~s1 ,...,sr ,sr 11!5(
s

C~s1 ,...,sr 21 ,s!C~s,sr ,sr 11!. ~4.11!

4. Cycle decomposition of permutations

The following notations will be used for permutations. LetsPSn . Denote the factorization o
s into disjoint cycles by

s5ŝ1¯ŝc(s) , ~4.12!

wherec(s) denotes the number of cycles in the factorization. Denote the length of a cycle i
decomposition, sayŝb , by uŝbu.

Let sPSn andU5(u1 ,...,un)PSU(2)n. For each cycleŝb in the factorization ofs, let ûb

denote the product of the corresponding components ofU, taken in the reverse order. That is,
ŝb5( jk¯ l ), then

ûb5ul¯ukuj . ~4.13!

Similarly, given ann-tuple of phases,Q5(u1 ,...,un), let

ûb5u l1¯1uk1u j . ~4.14!

Clearly

u11¯1un5 û11¯1 ûc(s) . ~4.15!

B. Evaluation of the integral

To evaluate the character integral~4.1!, it will be convenient to regardXsl andXf as charac-
ters on SU(2)n’S(n), i.e., as functions ofU ands rather thanŪ ands. Then

n~ f,sl!5
1

n! (
sPSn

E
SU(2)n

du1¯dun Xsl~U,s!* Xf~U,s!, ~4.16!

whereduj denotes the normalized Haar measure on SU~2!.
The characterXsl(U,s) may be evaluated as follows. From~2.10! and ~2.11!,

Xsl~U,s!5 (
a51

dl

(
M

^M ,auQsl~U,s!uM ,a&

5S (
a51

dl

La,a~s!D S (
M

Dms(1) ,m1

s ~u1!¯Dms(n) ,mn

s ~un! D . ~4.17!
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The sum overa yields xSn

l (s), the character of theSn-representationLl. The sum overM

factorizes into a product over the disjoint cyclesŝb of s and yields

Tr Ds~ û1!¯Tr Ds~ ûc(s)!, ~4.18!

whereûbPSU(2) is given by~4.13!. Let e6 iĵb denote the eigenvalues ofûb . Then

Xsl~U,s!5xSn

l ~s!)
b51

c(s)

xSU(2)
s ~ ĵb!. ~4.19!

We note thatXsl(U,s) is real, since the characters ofSn and SU~2! are real.
The characterXf(U,s) in ~4.16! may be expressed as

Xf~U,s!5Tr ~G f~x~U,s,F!!P0!. ~4.20!

Here the trace is taken over the carrier spaceV of the representationG f, F denotes phase
satisfying eif1

¯eifn5 sgn(s), and P0 denotes the Hermitian projection onto the subspaceV 0

given by

P05
1

~2p!n21 E dn21Q8 G f~ t~Q8!!, ~4.21!

where theQ8-integral is taken over 0<u j8<2p subject to the condition that eiu18¯eiun851. Sub-
stituting ~4.21! into ~4.20! we get that

Xf~U,s!5
1

~2p!n21 E dn21Q8 Tr G f~x~U,s,Q81F!!5
1

~2p!n21 E dn21Q Tr G f~x~U,s,Q!!,

~4.22!

where the integral overQ5(u1 ,...,un) in the last expression is restricted to eiu1
¯eiun5 sgn(s). It

is convenient to incorporate this restriction using the identity

1

~2p!n21 E dn21Q5 (
q52`

`

~ sgns!q
1

~2p!n E eiq(u11¯1un) . ~4.23!

We note that asQ on the right-hand side of~4.23! is unconstrained,x(U,s,Q) is, in general, an
element of U(2n) rather than SU(2n). Let m denote the eigenphases ofx(U,s,Q). Then
Tr G f(x(U,s,Q))5K2n

f (m), and~4.22! becomes

Xf~U,s!5 (
q52`

`

~ sgns!q
1

~2p!n E
0

2p

dnQe2 iq(u11¯un)K2n
f ~m!. ~4.24!

To determine the eigenphasesm of x(U,s,Q), it is convenient to represent vectors inC2n as
linear combinations of termsuv j& ^ u j &, whereuv j&PC2 and u j & is an orthonormal basis forCn.
From ~3.7! and ~3.8!, the action ofx(U,s,Q) is then given by

x~U,s,Q!(
j 51

n

uj j& ^ u j &5(
j 51

n

eiu j~us( j )uj j&) ^ us~ j !&. ~4.25!

Let ŝb5( jk¯ l ) be a cycle ins, and, as above, let e6 iĵb denote the eigenvalues ofûb . Let
u6wb&PC2 denote the associated eigenvectors ofûb . It is readily verified thatu6wb& ^ u l & are

eigenvectors ofxm(U,s,Q), with eigenvalues eim(6 ĵb1 ûb)/uŝbu, if and only if m is a multiple of
uŝbu.
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In general, ifuv& is an eigenvector of some positive integer poweruŝbu of a matrixM , with
r the associated eigenvalue ofM uŝbu, and if uv& is not an eigenvector of any smaller positive pow
of M , thenM has eigenvalues e2p ip/uŝbur1/uŝbu, wherep51,...,uŝbu. From these considerations w
may deduce that to each cycleŝb in s are associated 2uŝbu eigenphases ofx(U,s,Q), denoted by
hb5(hb,1 ,...,hb,uŝbu) and given explicitly by

hb,p5S 1 ĵb1 ûb12pp

uŝbu
,
2 ĵb1 ûb12pp

uŝbu D , p51,...,uŝbu. ~4.26!

The full set of eigenvalues ofx(U,s,Q) is

m5~h1 ,...,hc(s)!. ~4.27!

From ~4.27! it is apparent thatx(U,s,Q)PU(2n) is unitarily equivalent to the element o
U(2us1u)3¯3U(2usc(s)u) with eigenphasesh1 ,...,hc(s) for the factors. From the Littlewood–
Richardson formula~4.5!, the characterK2n

f (m) in ~4.24! is given by

K2n
f ~m!5K2n

f ~h1 ,...,hc(s)!5 (
b1 ,...,bc(s)

Yb1 ,...,bc(s)

f )
b51

c(s)

K uŝbu
bb ~hb!, ~4.28!

where thebb’s are tableaux labeling representations of U(2uŝbu). As noted in Sec. IV A 2, the
sum in ~4.28! may restricted to thosebb satisfying

(
b51

c(s)

ubbu5ufu. ~4.29!

From~4.26!, the charactersK uŝbu
bb (hb) can themselves be expressed as a product of U~2!-characters

by applying the Littlewood–Richardson theorem once more, as follows:

K uŝbu
bb ~hb!5K uŝbu

bb ~hb,1 ,...,hb,uŝbu!5 (
a1 ,...,auŝbu

Ya1 ,...,auŝbu

bb )
p51

uŝbu

K2
ap~hb,p!. ~4.30!

Here theap’s are tableaux labeling representations of U~2!, and the sum in~4.30! may be re-
stricted to thoseap satisfying

(
p51

uŝbu

uapu5ubbu. ~4.31!

Finally, the U~2!-characters are given explicitly@cf. ~4.7! and ~4.26!# by

K2
ap~hb,p!5eiuapu(2pp1 ûb)/uŝbuxSU(2)

S(ap)
~ ĵb /uŝbu!. ~4.32!

To proceed, we substitute the expression~4.19! for Xsl(U,s) and the expressions~4.24! and
~4.28!–~4.32! for Xf(U,s) into the integral~4.16!. The integration over SU(2)n can be arranged
so thatû1 ,...,ûc(s)PSU(2) are amongst the integration variables. Since the integrand dep
only on the ûb’s, any remaining SU~2!-integrals are trivially evaluated. Moreover, since t
integrand depends only on the eigenphasesĵb , we can make the replacement

E
SU(2)

dûb→
1

p E
0

2p

dĵb sin2~ ĵb!. ~4.33!
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Similarly, theQ-integral in~4.16! can be arranged so thatû1 ,...,ûc(s) are amongst the variables o
integration; in view of~4.15!, the integrand depends only on theûb’s, so the integrals over any
remaining components ofQ are trivially evaluated. Finally, as the terms in theSn-sum in ~4.16!
depend only the conjugacy class ofs and not ons itself, we may make the replacement

(
sPSn

→ (
[s] PSn

V [s] , ~4.34!

where@s# denotes the conjugacy class ofs andV [s] denotes the number of elements in@s# (V [s]

may be explicitly expressed in terms of the cycle lengthsuŝ1u,...,uŝc(s)u). In this way, Eq.~4.16!
for the multiplicities may be expressed as

n~ f,sl!5
1

n! (
[s] PSn

V [s]xSn

l ~s! (
q52`

`

~ sgns!q (
b1 ,...,bc(s)

Yb1 ,...,bc(s)

f )
b51

c(s)

I b Jb . ~4.35!

The factorI b , which contains the integral overub , is given by

I b5
1

2p E
0

2p

dûbei( ubbu/uŝbu2q) ûb, ~4.36!

where we have used~4.31!. The factorJb , which contains the integral overĵb and the sum over
the U~2!-tableauxap , is given by

Jb5 (
a1 ,...,auŝbu

Ya1 ,...,auŝbu

bb e2p i( (
p51

uŝbu
puapu)/uŝbu3

1

p

3E
0

2p

dĵb sin2~ ĵb!xSU(2)
s ~ ĵb!xSU(2)

S(a1)
~ ĵb /uŝbu!¯x

SU(2)

S(auŝbu)~ ĵb /uŝbu!. ~4.37!

The ûb-integral in ~4.36! is trivial, and vanishes unless

quŝbu5ubbu. ~4.38!

Summing overb in ~4.38! and using~4.29!, we get that

q5
ufu
n

. ~4.39!

Sinceq is an integer, it follows that at least one of theI b’s must vanish@and, therefore,n(f,sl)
must vanish# unlessn divides ufu. Assuming this to be so, the sum overq in ~4.35! collapses to
q5ufu/n.

We consider next the expression forJb . Since the integrand is 2p-periodic in ĵb , we can
make the replacement

E
0

2p

dĵb→E
0

2p

dĉb , ~4.40!

whereĉb5 ĵb /uŝbu. Using the identity

sin2~r ĉb!xSU(2)
s ~r ĉb!5sin2~ ĉb!xSU(2)

rs1(r 21)/2~ ĉb!xSU(2)
(r 21)/2~ ĉb!, ~4.41!
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which follows from the definition~4.6!, the resulting integral overĉb is of the form~4.10!, and
yields a (uŝbu12)-fold Clebsch–Gordan coefficient. We obtain

Jb5 (
a1 ,...,auŝbu

Ya1 ,...,auŝbu

bb e2p i( (
p51

uŝbu
puapu)/uŝbu

3 C~ uŝbus1 1
2 ~ uŝbu21!, 1

2 ~ uŝbu21!,S~a1!,...,S~auŝbu!!. ~4.42!

From ~4.35!, ~4.39! and ~4.42!, we get our main result for the multiplicities,

n~ f,sl!5
1

n! (
[s] PSn

V [s]xSn

l ~s!~ sgns! ufu/nA[s] , ~4.43!

where

A[s]5 (
b1 ,...,bc(s)

ubbu5uŝbu•ufu/n

Yb1 ,¯ ,bc(s)

f 3 )
b51

c(s) F (
a1 ,¯ ,auŝbu

Ya1 ,...,auŝbu

bb e2p i( (
p51

uŝbu
puapu)/uŝbu

3C~ uŝbus1 1
2 ~ uŝbu21!, 1

2 ~ uŝbu21!,S~a1!,...,S~auŝbu!!G . ~4.44!

For s5I5(1)¯(n) ~i.e., the identity element inSn), the expression~4.44! simplifies con-
siderably. In this case,c(s)5n and usbu51, so that eachbb is a U~2!-tableaux with ubbu
5ufu/n. The sum overap collapses toa5bb , and the corresponding Clebsch–Gordan coefficie
C(s,0,S(bb)), vanishes unlessS(bb)5s. It follows that thebb must all coincide with the U~2!-
tableauxb(f,n,s) given by

b~ f,s!5~~ ufu/2n1s!,~ ufu/2n2s!!. ~4.45!

We then obtain

~4.46!

Some simplification in~4.44! also occurs forn-cycles in Sn , e.g., s5(12̄ n), In this case
c(s)51 anduŝu5n, so that the sum overb collapses tob5f. We obtain

A[(12¯n)]5 (
a1 ,...,an

Ya1 ,...,an

f e2p i( (p51
n puapu)/n 3 C~ns1 1

2 ~n21!, 1
2 ~n21!,S~a1!,...,S~an!!.

~4.47!

The sum(ln(f,sl) gives the number ofn-spin-s representations, regardless of statisti
Using the character relation~see, e.g., Ref. 9!,

(
l

xl~s!5H n!, s5I,

0, otherwise,
~4.48!

we obtain from~4.43! and ~4.46! a simple expression for these summed multiplicities,
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~4.49!

C. Examples

In Sec. III D, we considered the case of completely symmetric representations, for whf
5(d). There we showed thatn((d),sl) vanishes unlessd52ns and unlessl is the trivial
~respectively, alternating! representation according to whethers is integral~respectively, half-odd-
integral!. This particular case is readily obtained from the general formulas~4.43! and ~4.44!.
Instead of doing so, we sketch below the analogous calculation for the completely antisym
representations of SU(2n). The result turns out to be rather different from the symmetric case
that onlys5 1

2 constructions are supported; the completely antisymmetric representations d
provide a systematic description for all spins. Thes5 1

2 statistics turn out to be bosonic in th
case.

Completely antisymmetric representations of SU(2n) correspond to single-columned tablea
of between 1 and 2n21 rows ~the 2n-rowed tableau is equivalent to the trivial representatio!.
Denote thed-rowed representation byf5(1)d. From ~4.39!, n((1)d,sl) vanishes unlessd5n
and, from~4.45! and ~4.49!, unlesss5 1

2. In this case, the expressions~4.43! and ~4.44! simplify
considerably. The sums over theap’s collapse to the single term where all theuapu ’s are equal to
one, and the sums over thebb’s collapse to the single term wherebb5(1)uŝbu. For these terms, the
Littlewood–Richardson coefficients and Clebsch–Gordan coefficients appearing in~4.44! are all
equal to one. We get that

A[s]5 )
b51

c(s)

e2p i( (
p51

uŝbu
p)/uŝbu5 )

b51

c(s)

~21! uŝbu115 )
b51

c(s)

sgn~ ŝb!5 sgn~s!. ~4.50!

Substituting the preceding into~4.43!, we obtain

nS ~1!n,
1

2
l D5

1

n! (
[s] PSn

V [s]xSn

l ~s!, ~4.51!

which vanishes unlessl is the trivial representation ofSn .
This result can also be obtained by following the calculation of Sec. III D and regardiz

5(z1 ,...,z2n) as Grassmann variables. Equivalently, this may be regarded as then-particle ver-
sion of the ‘‘anti-Schwinger’’ construction of Ref. 4, wherein the raising/lower operators of R
are made to satisfy anticommutation relations. The anticommutation relations are respons
the restriction tos5 1

2.
Next, we consider general representations for the case of two particles,n52. For simplicity,

we label the even and odd representations ofS2 by l51 andl52, respectively, with character
xS2

6 (s)56 sgn(s). As in ~4.45!, let

b~ f,s!5~~ ufu/41s!,~ ufu/42s!!. ~4.52!

From ~4.52! we can deduce that the multiplicitiesn(f,s6) vanish unlessufu is even andufu/42s is
a non-negative integer. From~4.43!, ~4.46! and ~4.47!, we get

n~ f,s6 !5
1

2
Yb(f,s),b(f,s)

f 6
~21!2s

2 (
a1 ,a2

Ya1 ,a2

f ~21! ua1uC~2s1 1
2 , 1

2 ,S~a1!,S~a2!!. ~4.53!

The simplest cases are the tableauxf5(2,0) andf5(1,1) with ufu52. Thens5 1
2 is the only

permitted value of the spin, andb(f,s) contains a single box. The tableau~2,0! corresponds to a
completely symmetric representation. As discussed in Sec. III D, this yields Fermi statisti
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spin-12, so thatn(f, 1
21)50 andn(f, 1

22)51. Equation~4.53! is readily evaluated for the tablea
~1,1!, and one finds the opposite result, namely, Bose statistics for spin-1

2 ~this case is equivalent to
the ‘‘anti-Schwinger construction’’ discussed in Ref. 4!.

For larger tableaux one typically finds that for each permitted value of spin, both multiplic
n(f,s1) and n(f,s2) are nonzero. Constructions based on such tableaux do not determ
spin-statistics relation. The smallest tableau where this occurs isf5(3,2,1) withs5 1

2. Evaluation
of ~4.53! shows there is one Fermi and one Bose representation. In fact, for larger tableau
typically finds thatn(f,s1) andn(f,s2) are nearly equal, and there are arguments to suggest
are either exactly equal, or else differ by 1, according to whether their sum, given byYb(f,s),b(f,s)

f ,
is even or odd. It turns out that most of the terms in the sum over tableaux in~4.53! cancel. First,
since the summand is symmetric ina1 anda2 , apart from the sign factor (21)ua1u, only terms for
which ua1u and ua2u have the same parity contribute. Amongst these remaining terms, the
factor is responsible for additional cancellations, due to the following fact: Ifa11e is the tableau
obtained by adding one box to the first row ofa1 , anda22e is the tableau obtained by removin
one box from the first row ofa2 , then the rules for multiplying tableaux imply that

Ya1 ,a2

f 5Ya11e,a22e
f . ~4.54!

Details may be found in Ref. 10.
To demonstrate the possibility of parastatistics, we consider the simplest case of three p

and the smallest SU~6! tableau,f5(2,1). From~4.45!, it follows that s5 1
2 is the only permitted

value of spin, and thatb(f, 1
2)5(1) consists of a single box. Letl5E denote the two-dimensiona

representation ofS3 @corresponding to the tableau~2,1!#, with characters

xS3

E ~ I!52, xS3

E ~~12!!50, xS3

E ~~123!!521, ~4.55!

and classes

V [I] 51, V [(12)]53, V [(123)]52 ~4.56!

~see, e.g., Ref. 9!. From ~4.43!, ~4.46! and ~4.47!, we get

n~~2,1!, 1
2 E!5 1

6 Y(1),(1),(1)
(2,1)

2 1
632 (

a1 ,a2 ,a3

Ya1 ,a2 ,a3

(2,1) ei~2p/3!(ua1u12ua2u)C~ 5
2 ,1,S~a1!,S~a2!,S~a3!!.

~4.57!

There are four sets of U~2!-tableauxa1 , a2 anda3 which may be multiplied to obtain the SU~6!
tableau~2,1! ~including cases where one or more of theaj are empty, which we denote byaj

50). For each combination we determine the Littlewood–Richardson coefficientYa1 ,a2 ,a3

(2,1) , the

Clebsch-Gordan coefficientC( 5
2,1,S(a1),S(a2),S(a3)), and the phase factor ei(2p/3)(ua1u12ua2u).

The results are summarized in the table below.

a1 a2 a3 Y C ei2p/3

~2,1! 0 0 1 0 1
~1,1! ~1! 0 1 0 ei2p/3

~2! ~1! 0 1 1 ei2p/3

~1! ~1! ~1! 2 1 1

~4.58!

Substituting~4.58! into ~4.57!, we obtain
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n~~2,1!, 1
2 E!51. ~4.59!

That is, a 3-spin-12 bundle with parastatistics may be constructed from the representationG (2,1) of
SU~6!.

V. DISCUSSION

We have reformulated the quantum kinematics of BR for indistinguishable spinning par
in terms of vector bundles overn-particle configuration space. Within this geometrical framewo
our main results concern a representation-theoretic generalization of the construction in B
have shown thatn-spin bundles can be constructed from irreducible representationsG f of the
group SU(2n). The construction makes use of representationsD f of the spin-statistics groupS(n)
associated toG f, as well the existence of a continuous,Sn-equivariant map from SU(n)/T(n) to
configuration spaceCn .2

The construction in BR is based on particular representations of SU(2n), namely, the com-
pletely symmetric representations. For a given number,n, of indistinguishable particles with spin
s, there is a unique completely symmetric representation of SU(2n), namely, the 2ns-fold sym-
metric tensor product of SU(2n) with itself, which leads to a description of the quantum kin
matics~i.e., which supports ann-spin bundle with spins). The statistics is necessarily in acco
with the physically correct spin-statistics relation.

Representations of SU(2n) other than the completely symmetric representations, corresp
ing to Young tableauxf of more than one row, typically support multiple values of spins, and for
a given spin may support distinct values of the statisticsl, including parastatistics. The values
spin and statistics supported by a given representationG f are determined by the multiplicitie
n(f,sl) of the irreducible representations of the spin-statistics group,S(n), in the decomposition
of D f.

Our main calculation is an evaluation of the multiplicitiesn(f,sl) using character methods
Equations~4.43! and~4.44! give the multiplicities as a finite sum over characters of the symme
group Sn , the n-fold Clebsch–Gordan coefficients of SU~2!, and the Littlewood–Richardson
coefficients for the decomposition of representations of U(n1m) into representations of U(n)
3U(m).

Our calculation is related to a more general problem in representation theory, name
decomposition of zero-weight representations of the Weyl groupW of a compact, connected Lie
group G associated with an irreducible representation ofG. It would be interesting to see i
alternative methods could be brought to bear on our calculation, as well as whether the m
used here might prove useful in other contexts. Our construction ofn-spin-bundles is similarly
related to the construction of flat zero-weight bundles over the coset spaceG/T ~whereT is a
maximal torus ofG), whose decomposition into a direct sum of subbundles irreducible u
monodromy leads to the decomposition problem described above.

Concerning the spin-statistics relation, in the first instance our results are similar to tho
Ref. 3. Within the group-theoretical framework considered here, the requisite properties
duced in Sec. II do not determine a connection between spin and statistics. When genera
sentations of SU(2n) are admitted alongside the completely symmetric representations, the
statistics relation is lost.

As argued in the Introduction, a derivation of the spin-statistics relation from a reformul
of quantum mechanics should be based on principles whose physical motivation is clear. T
played by the group SU(2n) in our considerations is not well motivated in this respect. One co
offer as motivation the fact that SU(2n) incorporates both rotations ofn spins@i.e., SU(2)n] and
the permutationsSn , but of course it is not the only group which does so.

However, the role played by the completely symmetric representations deserves furthe
sideration. They provide, at least as far as we have discerned, the only systematic means
the given framework, of associating a representation to a particular value of spin. It is sugg
too, that the scheme which works treats the spins in a completely symmetrical way; this
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seem appropriate for indistinguishable particles. Indeed, characteristic aspects of the com
symmetric representations may indicate a different approach to this nonrelativistic treatment
spin-statistics relation, which we hope to report on in future.
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APPENDIX: GENERAL SETTING

The construction ofn-spin bundles described in Sec. III is closely related to the follow
general problem~see, e.g., Ref. 12!. Let G be an irreducible unitary representation on a vec
spaceV of a compact Lie groupG with maximal torusT. V may be decomposed into weigh
spaces,V m, labeled by weightsm of T. The zero-weight spaceV 0 carries a representationD of the
Weyl group,W, of G, which is, in general, reducible. One can then ask for the decompositio
this representation of the Weyl group into its irreducible components.

To each weight spaceV m of the representationG is associated a Hermitian vector bundleE m

over G/T with Abelian G-invariant Hermitian connection. The curvature of this connection
pends linearly onm, and therefore vanishes on the zero-weight bundleE 0. If G is simply con-
nected, thenE 0 is trivial. However, the quotient bundleĒ05E 0/W over the quotient space
(G/T)/W, while locally flat, may be nontrivial. For simply connectedG, the fundamental group
of the quotient space is just the Weyl groupW, and the monodromy of the flat connection yiel
a representation ofW, which is precisely the representationD described above.

This setting can be further generalized by regardingG as a subgroup of a Lie groupF, and
regardingG as the restriction toG of a representation ofF. In this case, the natural structure grou
for the zero-weight bundle is the generalized Weyl groupV5M /T, whereM is theF-normalizer
of T.

The construction of Sec. III is an example belonging to this more general setting, wF
5SU(2n), G5SU(n), andT5T(n). The Weyl group of SU(n) is just Sn , and the generalized
Weyl groupV is the spin-statistics group,S(n)5SU(2)n’Sn /Nul(n). The n-spin bundles are
pullbacks, via theSn-equivariant mapJ:Cn→SU(n)/T(n), of zero-weight bundles ove
SU(n)/T(n).

This point of view is elaborated below.

1. Generalized Weyl group

Let G be a compact, connected semisimple Lie group with maximal torusT. Let N denote the
normalizer ofT, and W5N/T the Weyl group ofG. SupposeG is a subgroup of a compac
connected Lie groupF. Let M denote theF-normalizer ofT, i.e., the subgroup ofF which leaves
T invariant under conjugation. We call

V5M /T ~A1!

the generalized Weyl group ofG. Clearly the Weyl groupW is a subgroup ofV.
Let Z denote theF-centralizer ofT, i.e., the subgroup ofF whose elements commute with a

elements ofT. Z is a normal subgroup ofM . Therefore, the groupZN, consisting of productszy
of zPZ andyPN, is a subgroup ofM , and

ZN/T>Z/T’W, ~A2!

where in the semidirect productZ/T’W, an elementy TPW acts onz TPZ/T according to
z T→(yzy21) T. The isomorphism~A2! follows from consideration of the map
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zyPZN°~z T,y T!PZ/T’W. ~A3!

To show that this map is well defined, we need to check thatzy5z8y8 implies thatz T5z8 T and
y T5y8 T. But zy5z8y8 implies thatz85zt andy85t21y, wheretPZùN. SinceG is compact
and connected,ZùN5T, sotPT as required. It is evident that the map preserves multiplica
and that it is surjective. The kernel of the map consists of elementszy where z,yPT, and
therefore is justT itself, so that~A2! follows.

The spin-statistics groupS(n) is an example of a generalized Weyl group, withF
5SU(2n), G5SU(n), andT5T(n). The Weyl groupW is isomorphic toSn , Z/T is isomorphic
to Spn(n), and V, the generalized Weyl group, is isomorphic to the semidirect prod
Spn(n)’Sn , which is justS(n).

2. Zero-weight representations of the generalized Weyl group

Let it be givenT,G,F and N,M as above. Letf denote the~real! Lie algebra ofF,
Exp :f→F the exponential map, and ad the adjoint representation ofF on f. Let g,f denote the
Lie algebra ofG, andt,g the Lie algebra ofT ~i.e., the Cartan subalgebra ofG), with dual t* .
Denote the pairing betweenmPt* and tPt by m•t. The adjoint representation restricts to
representation ofM on t, denoted ad (M ). The co-adjoint representation ofM on t* , denoted
ad* (M ), is defined by

~ad* ~x!•m!•t5m•~ad~x!•t!. ~A4!

Let kert(Exp ) denote the lattice int mapped to the identity inT. A weight m of T is an element
of t* which is integer-valued on kert(Exp ). Irreducible representations ofT are labeled by
weights, and are given explicitly by Expt °exp(2p im•t).

Let G denote an irreducible unitary representation ofF on a finite-dimensional Hilbert spac
V. V may be decomposed into a direct sum of generalized weight spacesV m on whichG(T) acts
with weightm. ~In caseF5G, this is the usual weight-space decomposition ofV.! Let V 0 denote
the zero-weight space, i.e., the subspace of vectors invariant underT, for which m50.

For xPM and ExptPT, we have that

G~Expt!•~G~x!•V m!5G~x!•~G~Exp~ad~x21!•t!!•V m!

5exp~2p im•~ad~x21
•t!!!G~x!•V m

5exp~2p i~ad* ~x21!•m!•t !~G~x!•V m!, ~A5!

so that

G~x!•V m5V ad* (x21)•m. ~A6!

It follows that the zero-weight space,V 0, is invariant underM , so thatG restricts to a represen
tation of M on V 0. SinceT is contained in the kernel,G(M ) reduces to a representation of th
generalized Weyl groupV5M /T on V 0. Denote this representation byDG. In general,DG is
reducible. LetD denote an irreducible representation ofV, and letn~G,D! denote the multiplicity
of D in the decomposition ofDG into its irreducible components. The multiplicitiesn~G,D! are
naturally associated with a pair of irreducible representationsG andD of a compact connected Lie
groupF and the generalized Weyl groupV. A natural question is how to compute them. In ca
F5G5SU(n), this question has been discussed by Kostant.12

3. Weight bundles over GÕT

Associated to the weight spaceV m is a vector bundleE m overG/T. E m is a subbundle of the
trivial bundle G/T3V, with fibers Eg T given by G(g)•V m. By virtue of its embedding in the
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trivial bundle, there is an inducedG-invariant connection onE m, according to which a vecto

uc(t)&PEg(t) T is parallel transported along a curveg(t) TPG/T if and only if uċ(t)& is orthogo-
nal ~with respect to the inner product onV! to the fiberEg(t) T .

It is straightforward to derive an explicit formula for parallel transport along a one-param
subgroup,

g~ t !5Exp~ tj!, ~A7!

where jPg. We note thatG gives a representation onV of f, and, by restriction, ofg, by
anti-Hermitian linear transformations. We denote these Lie-algebra representations byG as well.
Let t',g denote the orthogonal complement oft in g with respect to the Killing form~asG is
compact and semisimple, the Killing form is negative definite!. It is a standard result~see, e.g.,
Ref. 7! that G(t') mapsV m into a direct sum of orthogonal subspacesV m8 ~the differencem8

2m is, in fact, a root ofg!. Given jPg, let j t1j t' denote its~unique! decomposition into
components int and t', respectively. Then, foruc&PV m, we have that

G~j!uc&52p i~m•j t!uc&1$ vectors orthogonal toV m%. ~A8!

It follows from ~A8! that the parallel transport ofuc& alongg(t) is given by

uc~ t !&5exp~22p im•j t!G~g~ t !!uc&. ~A9!

It follows that the induced connection~A9! is Abelian; under parallel transport around a clos
curve inG/T, a vector inE m returns to itself up to a phase factor.

Let

Xj~g T!5
d

dt
Exp~ tj!g Tu0 ,

Xh~g T!5
d

dt
Exp~ th!g Tu0

denote tangent vector fields atg T generated by the left action ofG. From ~A9! one can deduce
that the scalar-valued curvature two-formVm on Xj , Xh is given by

Vm~Xj ,Xh!~g T!5 im•~@j,h# t2@j t,h t# !. ~A10!

Since the left-invariant vector fields span the tangent bundle ofG/T, ~A10! determinesVm. The
curvature form, like the connection, is invariant under the action ofG.

4. Zero-weight bundle and representations of the generalized Weyl group

Suppose the representationG of F has a nontrivial zero-weight spaceV 0. From ~A10!, the
curvature of the associated zero-weight bundleE 0 vanishes, so that induced connection onE 0 is
flat. In this case, parallel transport with respect to a flat connection depends only on the hom
class of the path inG/T. If G/T is simply connected, parallel transport is path independent,
E 0 is globally flat, and therefore trivial. This is the case ifG itself is simply connected, as we wil
assume from now on. AsG is compact and connected,g(t)PG can be expressed Exp (tj(t)) for
somej(t)Pg. It follows from ~A9! that parallel transport inE alongg(t) T is given by

uf~ t !&5G~g~ t !!uf&. ~A11!

The zero-weight bundleE 0, in contrast to weight bundles with nonzero weights, desce
from a bundle overG/T to a bundle overG/N. We denote this reduced bundle byĒ0. Ē0 is a
                                                                                                                



eyl

ction
parallel
of the

f the

ase,’’

2001.

1357J. Math. Phys., Vol. 45, No. 4, April 2004 Quantum indistinguishability from SU(2n)

                    
subbundle of the trivial bundleG/N3V, with fibers given byĒg N5G(g)V 0. ~Note that sinceN
leavesV 0 invariant, this expression does not depend on the choice of representativeg for g N.)
The flat connection onE passes toĒ.

In general, theG/N is not simply connected; its fundamental group is isomorphic to the W
groupW5N/T, as follows from the fact thatG/N5(G/T)/(N/T)5(G/T)/W, andG/T is simply
connected by assumption. An isomorphism betweenW andp1(G/N,N), the fundamental group
based at the identity coset IN, is given explicitly as follows. Letg(t) N denote a closed path in
G/N beginning and ending atN. For definiteness, take 0<t<1 and g(0)5I. Then g(1) N
5I N implies thatg(1)PN. The map

g~ t ! N°g~1! T ~A12!

depends only on the homotopy class ofg(t) N. It is easily verified that~A12! preserves group
multiplication, and is 121 ~sinceT is connected andG is simply connected! and onto~sinceG is
connected!.

BecauseG/N is not simply connected, parallel transport with respect to the flat conne
need not be trivial, and can depend on the homotopy class of the path. For closed paths,
transport generates a unitary representation of the fundamental group, the monodromy
connection. In view of the preceding, the monodromy at the identity cosetN is naturally regarded
as a representation of the Weyl groupW. We denote this representation byDG, and compute it as
follows. GivenyPN, let g(t)PG be a smooth path inG with g(0)5I andg(1)5y. From~A11!,
parallel transport inĒ alongg(t) N is given by

uc~ t !&5G~g~ t !!uc&. ~A13!

DG is obtained from parallel transport att51, so that

DG~y!5G~y!. ~A14!

This is just the restriction toN of the representationDG of the generalized Weyl groupV on ĒN .
At an arbitrary fiberĒg N of the quotient bundle we can define a unitary representation o

generalized Weyl groupV, which we denote byLg N(y). For example, we can takeLg N(y)
5G(g)G(y)G†(g). A different choice of representativeg for g N would yield a different but
equivalent representation. Therefore, there is a well-defined decomposition ofĒ into a direct sum
of subbundlesĒa whose fibers transform according to irreducible representationsD of V. This
decomposition is determined by the multiplicitiesn~G,D! discussed in Appendix Sec. 1.
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Bound states in coupled guides. I. Two dimensions
C. M. Lintona) and K. Ratcliffe
Department of Mathematical Sciences, Loughborough University,
LE11 3TU, United Kingdom

~Received 2 December 2003; accepted 16 January 2004!

Bound states that can occur in coupled quantum wires are investigated. We consider
a two-dimensional configuration in which two parallel waveguides~of different
widths! are coupled laterally through a finite length window and construct modes
which exist local to the window connecting the two guides. We study both modes
above and below the first cutoff for energy propagation down the coupled guide.
The main tool used in the analysis is the so-called residue calculus technique, in
which complex variable theory is used to solve a system of equations which is
derived from a mode-matching approach. For bound states below the first cutoff a
single existence condition is derived, but for modes above this cutoff~but below the
second cutoff!, two conditions must be satisfied simultaneously. A number of re-
sults have been presented which show how the bound-state energies vary with the
other parameters in the problem. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1675931#

I. INTRODUCTION

Over the past decade or so there have been a number of theoretical investigations i
phenomena of bound states in quantum waveguides, and acoustic resonances~or trapped modes!
in acoustic waveguides. Though the two physical phenomena occur on vastly different scale
are intimately related. It is our intention in this and the following article to show how some o
techniques that have been developed for the calculation of resonant frequencies in the a
context can be used to provide accurate and efficient tools for the evaluation of bound
energies in a particular class of quantum configurations.

Theoretical investigations into quantum wires and quantum waveguides became imp
when it became possible to manufacture crystalline structures of high purity within a semico
tor material which are of the order of tens of nanometers in size and on whose boundar
wave functions are usually suppressed. As described in Duclos and Exner~1995!, these properties
make it reasonable to model the motion of an electron within such a microstructure as
~spinless! particle in an infinite guide with a vanishing potential on the guide boundary.
underlying equation is of course the Schro¨dinger equation, but for stationary problems this redu
to the Helmholtz equation, and thus the situation has direct analogs in the theories of acous
electromagnetic waves. Of interest here is the possible existence of nontrivial solutions
have finite energy. In quantum waveguides such solutions are known as bound states an
existence was explicitly demonstrated for the first time in Exner and Sˇeba~1989! for the case of
a curved, thin planar strip and a review of early theoretical work on bound states in c
quantum waveguides~in both two and three dimensions! can be found in Duclos and Exne
~1995!. Some early experimental work, in which computed bound-state energies were verifi
reported in Cariniet al. ~1992!. The existence of bound states can have a significant influenc
electron transport in mesoscopic systems.

In the acoustics literature, the same bounded solutions are typically referred to as ac
resonances, and the study of this phenomenon dates back to the experimental and theoreti
of Parker~1966, 1967!. In Parker’s setup the guide was a rigid duct, so the appropriate boun

a!Electronic mail: c.m.linton@lboro.ac.uk
13590022-2488/2004/45(4)/1359/21/$22.00 © 2004 American Institute of Physics
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conditions on the guide walls were of Neumann rather than Dirichlet type. Also, rather than
curved, the duct was perturbed by the inclusion of one or more splitter plates of finite le
Parker showed that such a geometry could support a nontrivial solution which was localize
to the plate~s! and which could be excited by vortex shedding from the plate edges when a
flow of a certain speed was created in the duct. These resonances are extremely importa
number of engineering applications such as flow-induced vibration in cooler tubes and the
of turbomachinery; see Parker and Stoneman~1989!, and the references cited therein.

Parker’s modes were rediscovered in the early 1990s in a completely different physica
ation: linear water waves in a wall-sided channel containing an obstacle. Here, there are c
stances in which the depth dependence can be removed from the problem, leaving the He
equation to be solved in a two-dimensional parallel-plate waveguide in which is situa
bounded obstacle. If this is a strip, then the problem is identical to the one considered by P
After some initial work showing that shapes other than plates could support bounded solutio~in
this context usually called trapped modes! Evans, Levitin, and Vassiliev~1994! proved that this
was the case for a very wide class of geometries.

The early work on these trapped modes focused on geometries which were symmetric
the guide centerline. This allows for a decomposition of the problem into independent symm
and antisymmetric parts, the latter exhibiting a cutoff frequency below which it is impossibl
energy to escape down the guide. In more formal language, the operator in the antisym
problem has a continuous spectrum which is bounded away from zero, and the region bel
continuous spectrum can be searched for discrete eigenvalues, corresponding to trapped
Perhaps the first function theoretical treatment of a problem of this type is that of Jones~1953!, in
which the author used comparison principles to prove the existence of discrete eigenvalues
the continuous spectrum for a class of semi-infinite guides.

The use of operator decomposition to create a gap below the continuous spectrum has
extremely useful in the search for trapped modes/acoustic resonances and has been ext
cover a number of different situations; see, for example, Linton and McIver~1998!; Groves
~1998!; Davies and Parnovski~1998!. It is, however, merely a device which makes resonan
relatively easy to find in certain situations, but it tells us nothing about the existence or othe
of discrete eigenvalues embedded within the continuous spectra of the relevant operators
has been achieved for this more difficult problem, though some early progress is reported in
and Porter~1998!; McIver et al. ~2001!, and McIver, Linton, and Zhang~2002!, and this will be
discussed in Sec. IV below.

The specific focus of our attention in this and the subsequent article is the study of co
quantum waveguides and techniques that can be used to establish the existence of and com
energies for bound states both in the discrete spectrum and embedded within the con
spectrum. In two dimensions the guides we will consider consist of two straight pa
waveguides connected through a window in the common boundary. Experimental observat
a waveguide with a similar configuration can be found in Hirayamaet al. ~1992! and Hirayama
et al. ~1993!. A numerical model, based on classical rebound effects in a straight wire fo
experimental specification described in Hirayamaet al. ~1992!, was provided in Takagaki and
Ploog ~1994!.

One of the first theoretical treatments of resonances in coupled guides was that of
~1993!, who calculated the transmissivity of a wire coupled either to infinite space or to an
wire via a small hole. Kunze showed that there are energies at which near resonances o
bound states in the wire become possible, and that these states cause a sharp downward d
conductance of the wire. However, it is the treatment given by Exneret al. ~1996! which forms the
starting point for our work. Exneret al. studied the bound states and scattering problems
parallel quantum waveguides of unequal width coupled laterally through a boundary window
same type of variational argument as that employed by Evans, Levitin, and Vassiliev~1994! was
used to show that the system always has at least one bound state for any window width. Mo
the boundary-value problem was solved using a mode-matching technique, which allows
construct the corresponding wave functions and determine how the bound-state energies
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on the parameters of the problem. Work by Bullaet al. ~1997! showed that if the window was
small enough so that only one simple eigenvalue below the continuous spectrum was prese
eigenvalue could be bounded from below, and this result was extended by Exner and Vu
~1996!, who showed that for a sufficiently small window a two-sided asymptotic estimate fo
gap between the continuous spectrum and this eigenvalue could be obtained. The case of a
waveguide containing a finite number of windows in the common boundary was conside
Exner and Vugalter~1997!, who showed that if the windows are small enough there is just
isolated eigenvalue. Upper and lower bounds of the gap between this eigenvalue and the c
ous spectrum were found using a variational approach. Other extensions to this type of an
including the incorporation of a magnetic field, or three laterally coupled guides, have been t
in Popov~2002! and Popov and Frolov~2003!.

We treat the same geometry as that considered in Exneret al. ~1996! with a coupled guide of
total widthd formed by two parallel guides of widthb andd2b linked via a window of length 2a
in their common boundary. After setting up the problem in Sec. II we investigate the existen
bound states below the first cutoff for the coupled guide in Sec. III. Our starting point
mode-matching analysis, but rather than solve the resulting system of equations numerical
Exneret al. ~1996!, we use the so-called residue calculus technique described in Mittra and
~1971! to derive an approximate solution which is extremely accurate unlessa/d is very small.
This approximation also provides a very useful insight into how to solve the full problem
numerically efficient way, and we show how an exponentially convergent linear system c
derived. Numerical results are presented and comparisons between the approximate and
lutions made. We find that bound states occur for any values of the parametersa/d andb/d. We
also use a variational argument to prove the existence of bound states for a sufficiently
window and to provide estimates to the bound-state energies. It is shown that the upper bo
these estimates provides a very good approximation to the actual computed energies.

The residue calculus technique is readily adapted to the more difficult problem of sear
for resonances above the first cutoff in the coupled guide, and bound states above the firs
and below the second cutoff are investigated in Sec. IV. The bound-state energies are sh
correspond to the intersection of two curves in parameter space, and we find that the num
parameters which can be fixed is reduced by 1. Thus, if we fix theb/d, then bound states occu
only for specific window widths. The possible existence of resonances between the seco
third cutoffs is also discussed. Here, we require the intersection of three lines and no so
appear to exist.

When the two guides which are coupled have identical widths (b/d51/2) the resulting prob-
lem has an extra symmetry, and this leads to some different results. Below the first cutoff th
essentially no difference and the results are just those obtained from the previous analysis
limit as b/d→1/2, though the extra symmetry means that the equal-width problem could be s
rather more easily. However, above the cutoff we find that bound states are found in a di
energy band, with those that were found for the unequal-width case disappearing asb/d→1/2.
Some results for these new modes are presented.

II. FORMULATION

We consider a pair of two-dimensional waveguides of widthsb and c, coupled laterally
through a window of width 2a in their common boundary. The total width isd5b1c, and we
assume without loss of generality thatb.d/2. The case whenb5d/2 can be treated more simpl
due to the extra symmetry in that case, and this in fact leads to a qualitative change in some
results which will be explored in Sec. IV. Cartesian axes are chosen so that thex axis coincides
with the lower boundary of the waveguide, and they axis is chosen so that the waveguide
symmetric about the linex50, as shown in Fig. 1. Our geometry is thus defined by two non
mensional parameters: the width of the window in the common boundary compared to the
of the whole guide, and the height of the window compared to the width of the full coupled g
(2a/d andb/d, respectively!.
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Initially we shall seek a solution which is even~symmetric! aboutx50, by considering the
regionx.0 and seeking a functionf(x,y) which satisfies

]f

]x
50 on x50, 0,y,d. ~2.1!

The functionf(x,y) must also satisfy the Helmholtz equation within the waveguide

~¹21k2!f50, 0,y,d except on y5b, x.a. ~2.2!

In the acoustic contextk5v/c, wherev is the frequency of oscillation andc is the speed of
sound, whereas in the related quantum-mechanical problemk252mE/\2, in which m is the mass
of the electron, andE is its total energy. In what follows, the parameterk will be referred to as the
energy. The functionf satisfies Dirichlet boundary conditions on the waveguide walls

f50 on y50, x.0, ~2.3!

f50 on y5b, x.a, ~2.4!

f50 on y5d, x.0, ~2.5!

and a radiation condition specifying that no waves propagate out to infinity

f→0 as x→`, ~2.6!

which can be shown~using Green’s theorem! to be equivalent in this problem to the statement t
f must possess finite energy

E
V

u¹fu2dV,`, ~2.7!

whereV is the interior of the coupled guide. We finally assumef is nonsingular, and that

¹f5O~r 21/2! as r[$~x2a!21~y2b!2%1/2→0, ~2.8!

anticipating a singularity in the derivative off at the edge of the window.
It is useful to split the domain into three regions as shown in Fig. 1. RegionI is b,y,d,

x.a, region II is 0,y,b, x.a, and regionIII is 0,y,d, 0,x,a. We can represent the
function f by a functionf i ( i 51,2,3) in each region, with the following continuity condition
applied at the boundaries between the regions:

f i5f3 ,
]f i

]x
5

]f3

]x
, on Li , i 51,2, ~2.9!

FIG. 1. Definition sketch.
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whereL1 is x5a, b,y,d, L2 is x5a, 0,y,b, and we will writeL3 for L1øL2 . We then
introduce the complete orthogonal sets

Cn
~1!~y!521/2sinnn~d2y!, nn5np/c, nPN, ~2.10!

Cn
~2!~y!521/2sinmn~b2y!, mn5np/b, nPN, ~2.11!

Cn
~3!~y!521/2sinln~d2y!, ln5~n11!p/d, nPN0 , ~2.12!

which satisfy

1

uLi u
E

Li

Cn
~ i !~y!Cm

~ i !~y!dy5dmn , i 51,2,3, ~2.13!

wheredmn is the Kronecker delta. Here and throughout, we use the symbolN for the set$1, 2, 3,...%
and the symbolN0 for the set$0, 1, 2,...%.

Separation of variables shows that the eigenfunction expansions for the three regions
written

f1~x,y!5 (
n51

`

Un
~1!

e2an~x2a!

2an
Cn

~1!~y!, an5~nn
22k2!1/2, ~2.14!

f2~x,y!5 (
n51

`

Un
~2!

e2bn~x2a!

2bn
Cn

~2!~y!, bn5~mn
22k2!1/2, ~2.15!

f3~x,y!5 (
n50

`

Un
~3!

coshgnx

gn sinhgna
Cn

~3!~y!, gn5~ln
22k2!1/2, ~2.16!

whereUn
( i ) , i 51,2,3, are unknown complex constants and various factors have been intro

for convenience. If we restrict the energy by

kb,p, ~2.17!

then, sinceb.d/2, the values ofan andbn , nPN will all be real and positive. As these term
appear in the eigenfunction expansions as coefficients of negative exponentials, the restric
energy produces exponential decay down the guide in both regionsI and II . We definekb5p as
the first cutoff of the coupled waveguide and consider the case of bound states whose ener
below this cutoff.

III. BOUND STATES BELOW THE FIRST CUTOFF

If kb,p thenan , bn , andgn , nPN, are all real and positive. However, providedkd.p,
g0 will be purely imaginary and the corresponding mode will be oscillatory in regionIII . We thus
anticipate that a necessary condition for the existence of bound states will be

p,kd,
dp

b
. ~3.1!

If we apply the continuity conditions~2.9!, we obtain
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(
n50

`

Un
~3!

cothgna

gn
Cn

~3!~y!55 (
n51

`

Un
~1!

Cn
~1!~y!

2an
, yPL1 ,

(
n51

`

Un
~2!

Cn
~2!~y!

2bn
, yPL2 ,

~3.2!

and

(
n50

`

Un
~3!Cn

~3!~y!55 (
n51

`

Un
~1!Cn

~1!~y!, yPL1 ,

(
n51

`

Un
~2!Cn

~2!~y!, yPL2 .

~3.3!

We can convert~3.2! and~3.3! into an infinite system of linear algebraic equations by multiplyi
each byCm

(3) , mPN0 , and integrating overL3 . This leads to

Um
~3!5 (

n51

`

Un
~1!dnm1 (

n51

`

Un
~2!enm , mPN0 , ~3.4!

Um
~3!

cothgma

gm
5 (

n51

` Un
~1!

2an
dnm1 (

n51

` Un
~2!

2bn
enm , mPN0 , ~3.5!

where we have defined

dnm5
1

d EL1

Cn
~1!~y!Cm

~3!~y!dy5
2nn~21!n sinlmc

d~gm
2 2an

2!
, mPN0 , nPN, ~3.6!

enm5
1

d EL2

Cn
~2!~y!Cm

~3!~y!dy5
2mn sinlmc

d~gm
2 2bn

2!
, mPN0 , nPN. ~3.7!

It is necessary thatgmÞan andgmÞbn for anyn andm and we can ensure this by assuming th
b/d is irrational, although Evans, Linton, and Ursell~1993!, Appendix D, show how continuity
arguments can be used to remove this restriction so that the conditions for bound states
obtained are valid for all values ofb/d.

Eliminating Um
(3) from ~3.4! and~3.5!, and substituting fordnm andenm from ~3.6! and~3.7!,

we can derive

(
n51

`

UnS 1

an2gm
1

zm

an1gm
D2 (

n51

`

VnS 1

bn2gm
1

zm

bn1gm
D50, mPN0 , ~3.8!

where we have defined

Un5
Un

~1!~21!nnn

an
, Vn5

Un
~2!mn

bn
, zm5e22gma. ~3.9!

So far we have only used the boundary conditions~2.1!–~2.6! and not the condition~2.8!, which
anticipates the singular behavior near the edge. Since(n51

` nte2nx5O(x212t) as x→01 ~see,
e.g., Martin, 1995!, consideration of the gradient off near the edge shows that

Un ,Vn5O~n21/2! as n→`. ~3.10!
                                                                                                                



c

e

ld then

hite-

e-

e

and

1365J. Math. Phys., Vol. 45, No. 4, April 2004 Bound states in coupled guides. I. Two dimensions

                    
A. Approximate solution

We now derive an approximate solution to~3.8! for largea, taking into account the asymptoti
behavior required from~3.10!. Note that sincegm , mPN, is real, the termszm , mPN, appearing
in ~3.8! decay rapidly to zero asa/d→`. A good approximation for largea is therefore to set
zm50 for mPN. The idea for this type of approximation~which is equivalent to assuming that th
two edges atx56a, y5b can be treated independently! goes back to Hurd~1954!, who was
studying the propagation of electromagnetic surface waves along a comb grating. We wou
have

(
n51

` S Un

an2gm
2

Vn

bn2gm
D52dm0z0(

n51

` S Un

an1g0
2

Vn

bn1g0
D , mPN0 , ~3.11!

a system of equations that can be solved explicitly using a method originally described in W
head~1951! and Berz~1951!.

Consider the quantities

I m5 lim
N→`

1

2p i ECN

f ~z!

z2gm
dz, Jm5 lim

N→`

1

2p i ECN

f ~z!

z1gm
dz, mPN0 , ~3.12!

whereCN is a sequence of contours~to be determined! on whichz→` asN→` and f (z) is a
meromorphic function which is assumed to have the following properties:

~P1! f (z) has simple poles atz5an andz5bn , nPN;
~P2! f (z) has simple zeros atz5gn , nPN, but not atz5g0 ; and
~P3! f (z)5o(1) asuzu→` on CN asN→`.

Condition P3 ensures thatI m50 andJm50. Applying Cauchy’s residue theorem to the int
grals in ~3.12!, we find

(
n51

`
R~ f :an!

an2gm
1 (

n51

`
R~ f :bn!

bn2gm
1dm0f ~g0!50, ~3.13!

(
n51

`
R~ f :an!

an1gm
1 (

n51

`
R~ f :bn!

bn1gm
1 f ~2gm!50, ~3.14!

whereR( f :z0) represents the residue off (z) at z5z0 , andmPN0 , in each case. If we normaliz
f (z) by setting

f ~g0!51, ~3.15!

then a comparison of~3.13! and ~3.14! with ~3.11! shows that the required solution of~3.11! is
given by

Un5R~ f :an!, Vn52R~ f :bn!, nPN, ~3.16!

provided~3.10! is satisfied and

f ~2g0!z0521. ~3.17!

If we can determine a suitablef (z) and sequence of contoursCN , then~3.17! is the condition for
the existence of bound states.

The method by whichf (z) can be constructed follows closely that given in Evans, Linton,
Ursell ~1993!, and we will simply note here that the a sequence of contoursCN can be constructed
so that the function
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f ~z!5h1g~z!, ~3.18!

where

h15expHg0

p
~b ln~d/b!1c ln~d/c!!J)

n51

`
~12g0 /an!~12g0 /bn!

~12g0 /gn!
, ~3.19!

g~z!5expH 2z

p
~b ln~d/b!1c ln~d/c!!J )

n51

`
~12z/gn!

~12z/an!~12z/bn!
, ~3.20!

has all the necessary properties. In fact,f (z)5O(z21/2) asuzu→` on CN asN→`. Note that the
fact thatgn;(n11)p/d rather thannp/d ~while an;np/c andbn;np/b) is crucial.

The condition for the existence of bound states~3.17! is

f ~ ig8!52e22ig8a, ~3.21!

where

g85 ig05~k22~p/d!2!1/2, ~3.22!

and this reduces to

g8~a2Q!5x1~n2 1
2!p, n an integer, ~3.23!

where

Q5
1

p
~b ln~d/b!1c ln~d/c!!, ~3.24!

x5 (
n51

` S tan21S g8

gn
D2tan21S g8

an
D2tan21S g8

bn
D D . ~3.25!

For the case of antisymmetry aboutx50, condition~2.1! is replaced by

f50 on x50, 0,y,d, ~3.26!

and the system of equations~3.8! becomes

(
n51

`

UnS 1

an2gm
2

zm

an1gm
D2 (

n51

`

VnS 1

bn2gm
2

zm

bn1gm
D50, mPN0 . ~3.27!

The approximate existence condition~3.21! becomes

f ~ ig8!5e22ig8a, ~3.28!

with exactly the same functionf as before, and this reduces to

g8~a2Q!5x1np, n an integer, ~3.29!

whereQ andx are defined as before.
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B. Full solution

The approximate solution derived above can be used as the basis for a very efficient num
solution to the problem. The ideas behind the method are described in detail in Mittra an
~1971!, and briefly in Jones~1994!, Sec. 2.12. We form a solution to~3.8! by considering the
quantities

I m5 lim
N→`

1

2p i ECN

f ~z!S 1

z2gm
1

zm

z1gm
Ddz, mPN0 , ~3.30!

where nowf (z) must satisfy

~P1! f (z) has simple poles atz5an andz5bn , nPN, and
~P2! f (z)5o(1) asuzu→` on CN asN→`.

We now let

f ~z!5g~z!h~z!, ~3.31!

whereg(z) is given by~3.20! and

h~z!511 (
n51

`
An

z2gn
, ~3.32!

for some unknown constantsAn . The functionh(z) is chosen to cancel the zeros ofg(z) at gn ,
and we anticipate that asa→`, h(z) will tend rapidly to 1, since the exponential termszn will
decay rapidly to zero. Thus, the constantsAm will also tend to zero rapidly asa→`.

If we apply Cauchy’s residue theorem to the integral in~3.30!, we obtain

(
n51

`

R~ f :an!S 1

an2gm
1

zm

an1gm
D1 (

n51

`

R~ f :bn!S 1

bn2gm
1

zm

bn1gm
D1 f ~gm!1zmf ~2gm!

50, mPN0 . ~3.33!

Comparing~3.33! with ~3.8!, we see thatUn5R( f :an), Vn52R( f :bn), nPN, provided~3.10! is
satisfied and

f ~gm!1zmf ~2gm!50, mPN0 . ~3.34!

For mPN this is equivalent to an infinite system of equations for the unknownsAm

Am1Bm(
n51

`
An

gm1gn
5Bm , mPN, ~3.35!

where

Bm52gme2gm~Q2a!
~am2gm!~bm2gm!

~am1gm!~bm1gm! )
n51
nÞm

`
~11gm /gn!~12gm /an!~12gm /bn!

~11gm /an!~11gm /bn!~12gm /gn!
.

~3.36!

Unlike ~3.8!, this system of equations is real and the presence of the factorzm in Bm shows that as
a→`, the coefficientsAm decay exponentially to zero. Moreover, the termsBm decay exponen-
tially as m→` and so the system can be solved very efficiently via a numerical trunca
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technique. It can be proved, using the methods described in Evans~1992!, Appendix B, and Evans
Linton, and Ursell~1993!, Appendix C, that the infinite system~3.35! has a unique solutionAn

with (n51
` An

2,` provideda/d is sufficiently large.
We now return to the one condition still to be satisfied, namely,~3.34! with m50. This is

e2ig8a52
f ~2 ig8!

f ~ ig8!
. ~3.37!

Now, sinceAn andgn are real fornPN, we can write

h~2 ig8!

h~ ig8!
5e2is, ~3.38!

where

s5arg~h~2 ig8!!5argS 12 (
n51

`
An

gn1 ig8D . ~3.39!

Then, withx andQ as before, the condition for the existence of bound states~3.37! reduces to

g8~a2Q!5x1s1~n2 1
2!p, n an integer. ~3.40!

This condition differs from the approximate condition~3.23! by the inclusion of the terms. This
depends ona/d, but it is clear that asa/d→`, s→arg(1)50.

For the case of antisymmetry aboutx50, ~3.34! becomes

f ~gm!2zmf ~2gm!50, mPN0 , ~3.41!

with the infinite system of equations equivalent to~3.35! being

Am2Bm(
n51

`
An

gm1gn
52Bm , mPN, ~3.42!

andBm is given by~3.36! as before. The condition for antisymmetric modes, equivalent to~3.40!,
is thus

g8~a2Q!5x1s81np, n an integer, ~3.43!

wheres8 is the argument ofh(2 ig8) with the constantsAn given by the solution of~3.42!.

C. Results

The systems of Eqs.~3.35! and ~3.42! need to be solved by truncation but, due to the ex
nential convergence of theBm terms, only a small truncation parameter is needed. In the follow
results a truncation parameter of 5 was used to assure high accuracy for all parameter valu
a 232 system is adequate unlessa/d is very small. Figure 2 shows results forb/d50.6 and
compares the nondimensional bound-state energies,kd/p, computed from the approximate solu
tion ~dashed lines! with those found from the full solution~solid lines!. The two curves on the lef
of the figure correspond to the first symmetric~aboutx50) mode, and the other two correspon
to the first antisymmetric mode. For all but the smallest values ofa/d, the results computed from
the full and approximate methods are indistinguishable. Only whena/d is less than about 0.5 do
the full solution and the approximate solution produce significantly different results.

In Fig. 3 a typical set of nondimensional bound-state energies,kd/p, computed from the full
solutions~3.40! and ~3.43!, is plotted againsta/d, for b/d50.75. The solid lines correspond t
modes symmetric aboutx50 and the dashed lines correspond to modes antisymmetric abx
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50. We see that asa/d increases the number of modes present also increases, and the
appear alternatively symmetric and antisymmetric from the cutoffkd5dp/b54p/3, and decrease
towardskd5p.

The variation of nondimensional bound-state energies withb/d whena/d53 is shown in Fig.
4. The solid lines represent symmetric modes, the dashed lines correspond to antisym
modes, and the dotted line represents the upper cutoffkb5p. It is clear that asb/d increases from
0.5, the number of modes present decreases and the energy of each of the modes d
slightly. The figure shows that modes are present for any value ofb/d in the interval@0.5, 1!.

D. Variational methods

Trapped modes occurring in two-dimensional acoustic waveguides containing long obs
symmetric about the centerline were considered by Khallaf, Parnovski, and Vassiliev~2000!. In
their paper the authors use variational arguments to provide estimates for the trapped

FIG. 2. A comparison of the nondimensional bound-state energies,kd/p, for modes symmetric and antisymmetric abo
x50 for the approximate solution~dashed! and the full solution~solid! plotted againsta/d whenb/d50.6.

FIG. 3. Nondimensional bound-state energies,kd/p, for modes symmetric~—! and antisymmetric~––! about x50,
plotted againsta/d whenb/d50.75.
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frequencies and also to prove that the number of trapped modes occurring is asympto
proportional to the obstacle’s length. We will extend their method to provide estimates fo
bound-state energies in our problem and to prove existence for a sufficiently large window
main difference between the two problems is that the laterally coupled guide under conside
here is not symmetric about the centerline of the waveguide.

Our waveguide can be thought of as an unbounded domainV defined as

V5$~0,̀ !3~0,d!%\$@a,`!3@b#%, ~3.44!

wherea.0 and 1
2,b/d,1. We are trying to find estimates for values ofl for which there is a

nontrivial solutionf(x,y) to the boundary-value problem

2¹2f5lf in V, ~3.45!

subject to the boundary conditions~2.3!–~2.6!, and ~2.1! for symmetric modes or~3.26! for
antisymmetric modes. In other words, we seek the eigenvalues of2¹2 ~defined on an appropriat
domain! and since wave-like modes can propagate to infinity ifkb.p, the continuous spectrum
for either the symmetric or the antisymmetric problem is the semi-interval@p2/b2,`).

We consider the Rayleigh quotient defined by

Q~f!5

E
V

u¹fu2dV

E
V

ufu2dV

, ~3.46!

and set

l15 inf
fPH0

1
\$0%

Q~f!. ~3.47!

~The symbolln has a different meaning in this section than elsewhere in the paper.! Here,H0
1 is

the Sobolev space consisting of all functions inL2(V) which also have square-integrable fir
partial derivatives and which vanish on the boundary ofV at the same places that the solutionf
does. In particular, the symbolH0

1 represents different spaces in the symmetric and antisymm
problems, since in the latter case functions inH0

1 must vanish onx50, 0,y,d. It is a standard
result ~see, e.g., Edmunds and Evans 1987, Chap. XI! that l1.0 is the lowest point of the

FIG. 4. Nondimensional bound-state energies,kd/p, for modes symmetric~—! and antisymmetric~––! about x50,
plotted againstb/d whena/d53. The dotted line is the curvekb5p.
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spectrum of our operator and, ifl1,p2/b2, thenl1 must be an eigenvalue of the problem~the
smallest! and the functionw1 for which Q(w1)5l1 is the associated eigenfunction~bound state!.
We can define

ln5 inf
fPH0

1
\$0%

f'w i ,i 51,2,...,n21

Q~f!, ~3.48!

and if ln,p2/b2, ln is thenth eigenvalue for the problem~arranged in order of increasing siz
and accounting for multiplicity!. If ln115p2/b2, there will be exactlyn eigenvalues below the
first cutoff. We label the eigenvalues below the continuous spectrum asl j ,s for the symmetric
problem~and we assume that there arens of them! and l j ,a for the antisymmetric problem~of
which there arena).

We now use the idea of Dirichlet–Neumann bracketing~see, e.g., Courant and Hilbert 195!
which is a consequence of the variational principle outlined above. The domainV is split into the
regions I, II , and III defined previously and we consider the eigenvalues associated with
region separately when an artificial boundary condition is imposed onL3 . We denote thej th
eigenvalue occurring in regioni with a Dirichlet ~respectively, Neumann! condition onL3 asl j

i ,D

~respectively,l j
i ,N). We also define a counting functionNi ,D(l) @respectively,Ni ,N(l)], as the

number of eigenvalues less thanl in region i, with a Dirichlet ~respectively, Neumann! condition
on L3 . An extra subscript~s or a! will be used whenever it is necessary to distinguish between
symmetric and antisymmetric problems. Ifl,p2/b2 we have

NI ,D~l!1NII ,D~l!1Ns
III ,D~l!<Ns~l!<NI ,N~l!1NII ,N~l!1Ns

III ,N~l!, ~3.49!

whereNs(l) is the total number of eigenvalues belowl for the symmetric problem. Note tha
Ns(p

2/b2)5ns .
A straightforward calculation shows that

$l j ,s
III ,D% j 51

` 5$~n21/2!2p2/a21~mp!2/d2%n,m51
` , ~3.50!

$l j ,s
III ,N% j 51

` 5$~n21!2p2/a21~mp!2/d2%n,m51
` , ~3.51!

and that there are no eigenvalues in regionsI or II , and so~3.49! becomes

Ns
III ,D~l!<Ns~l!<Ns

III ,N~l!, ~3.52!

providedl,p2/b2. It then follows~see, e.g., Behnkeet al., 2000! that

l j ,s
III ,N<l j ,s<l j ,s

III ,D , ~3.53!

for all j for which l j ,s,p2/b2. Hence

p2

a2 ~ j 21!21
p2

d2 <l j ,s<
p2

a2 ~ j 21/2!21
p2

d2 . ~3.54!

For the antisymmetric problem the eigenfunction expansions and eigenvalues can be reca
and ~3.54! becomes

p2

a2 ~ j 21/2!21
p2

d2 <l j ,a<
p2

a2 j 21
p2

d2 . ~3.55!

The result of superimposing these intervals onto Fig. 3 is shown in Fig. 5. Each mode a
between two estimates as required, and it can be seen that asa/d increases along each curve, th
estimate coming from the upper bound gives a better approximation to the energy.
                                                                                                                



by

ectrum
e em-

dary
ylinder

part
es are

ped
inton,

e-like
ist the
fficient
ameters
y band

1372 J. Math. Phys., Vol. 45, No. 4, April 2004 C. M. Linton and K. Ratcliffe

                    
Each interval of~3.54! and~3.55! whose right-end value is less thanp2/b2 contains precisely
one eigenvalue. Thus, there are at leastns symmetric bound states provided

a/d.~ns2
1
2!/Ad2/b221. ~3.56!

Similarly, there are at leastna antisymmetric bound states provided

a/d.na /Ad2/b221. ~3.57!

As b/d→1, the required value ofa/d tends to infinity in both cases. Similar results were found
Exneret al. ~1996!.

IV. BOUND STATES BELOW THE SECOND CUT-OFF

In this section we look for bound states whose energies are above the cutoff given by~2.17!,
i.e., kb.p. Any such mode corresponds to an eigenvalue embedded in the continuous sp
of the relevant operator. Numerical evidence for the existence of an isolated trapped mod
bedded in the continuous spectrum was given by Evans and Porter~1998! for the case of a rigid
circular cylinder placed on the centerline of a guide with either Neumann or Dirichlet boun
conditions on its walls. In each case the trapped mode was shown to occur for a single c
radius and at a specific frequency.

More recently, McIveret al. ~2001! showed that this trapped mode was not isolated, but
of a continuous branch of modes which exist for ellipses with varying aspect ratio. The ellips
defined by two geometrical parametersa and b, say, where (x/a)21(y/b)251, and embedded
trapped modes were found to exist for families of ellipses given bya5a(b), with the correspond-
ing frequency being of the formk5k(b). Further examples of branches of embedded trap
modes in geometries defined by two geometrical parameters were computed in McIver, L
and Zhang~2002!.

In general, it appears that for a given energy there will be a number of possible wav
modes which can transmit the energy down the guide, and in order for a bound state to ex
amplitudes of these modes must be zero. If one considers a geometry defined by a su
number of parameters then it may be possible to determine relationships between these par
which lead to bound states. The numbers of parameters needed will depend on the energ
considered and the boundary conditions for the problem~see, e.g., Lintonet al., 2002!.

FIG. 5. Nondimensional bound-state energies,kd/p, for modes symmetric and antisymmetric aboutx50 for the full
solution ~solid and dashed, respectively!, and the estimated intervals~dotted!, plotted againsta/d whenb/d50.75.
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Here, we will use this idea to find bound states between the first and second cutoffs
coupled waveguide~which is defined by two geometrical parameters!. We set up the problem with
eigenfunction expansions similar to those in Sec. II. The second cutoff is defined as the
below which only one mode can propagate in the regionx.a, i.e., one mode in either regionI or
region II . We also restrict the energy in such a way that two wave-like modes exist in the
region, the reason for which will become clear later. Thus, we assume

2p,kd,
dp

c
, when 1/2,b/d<2/3, ~4.1!

2p,kd,
2dp

b
, when 2/3<b/d,1. ~4.2!

For the symmetric problem the eigenfunction expansions for the three regions are

f1~x,y!5 (
n51

`

Un
~1!

e2an~x2a!

2an
Cn

~1!~y!, an5~nn
22k2!1/2, ~4.3!

f2~x,y!5 (
n52

`

Un
~2!

e2bn~x2a!

2bn
Cn

~2!~y!, bn5~mn
22k2!1/2, ~4.4!

f3~x,y!5 (
n50

`

Un
~3!

coshgnx

gn sinhgna
Cn

~3!~y!, gn5~ln
22k2!1/2, ~4.5!

whereCn
(1)(y), Cn

(2)(y), andCn
(3)(y) are given by~2.10!–~2.12!. These expansions are the sam

as~2.14!–~2.16! except that the sum in regionII starts fromn52, as we set the amplitude of th
mode corresponding tob1 equal to zero. With the restriction of frequency given by~4.1! and~4.2!,
g0 and g1 ~and b1) are purely imaginary whereasa1 , an , bn and gn , n>2 are all real and
positive.

After matching onx5a, we obtain

(
n51

`

UnS 1

an2gm
1

zm

an1gm
D2 (

n52

`

VnS 1

bn2gm
1

zm

bn1gm
D50, mPN0 , ~4.6!

whereUn , Vn , andzm are defined in~3.9!. The only difference between~4.6! and~3.8! is that the
summation forVn starts fromn52 instead ofn51. The condition~3.10! describing the behavio
of Un andVn for largen remains the same.

We now consider the same quantities as in~3.30!, except that nowf (z) must have simple
poles atz5an , nPN, andz5bn , n>2 as well as beingo(1) asz→`. We choose

f ~z!5exp~2zQ!g~z!h~z!, ~4.7!

whereQ is given by~3.24! and

g~z!5
1

12z/a1
)
n52

`
12z/gn

~12z/an!~12z/bn!
, h~z!511 (

n52

`
An

z2gn
. ~4.8!

The functiong(z) has the same behavior asz→`, as that given in~3.20! since one linear factor
has been removed from both the numerator and the denominator. Cauchy’s residue theore
gives
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(
n51

`

R~ f :an!S 1

an2gm
1

zm

an1gm
D1 (

n52

`

R~ f :bn!S 1

bn2gm
1

zm

bn1gm
D1 f ~gm!1zmf ~2gm!

50, mPN0 , ~4.9!

and henceUn5R( f :an) andVn52R( f :bn), provided~3.10! is satisfied and

f ~gm!1zmf ~2gm!50, mPN0 . ~4.10!

The coefficientsAn , n52,3,..., can be found from a real, exponentially convergent system
equations

Am1Bm(
n52

`
An

gm1gn
5Bm , m52,3,..., ~4.11!

where

Bm52gme2gm~Q2a!
~a12gm!~am2gm!~bm2gm!

~a11gm!~am1gm!~bm1gm! )
n52
nÞm

`
~12gm /an!~12gm /bn!~11gm /gn!

~11gm /an!~11gm /bn!~12gm /gn!
.

~4.12!

Whereas in the nonembedded case we had one extra condition to be satisfied, we no
two; namely~4.10! with m50 andm51. With g j52 ig j8 , whereg j85(k22l j

2)1/2, these condi-
tions reduce to

e2ig j8a52
f ~2 ig j8!

f ~ ig j8!
, j 50,1. ~4.13!

For bound states to exist, we must therefore have

g j8~a2Q!5x j1s j1~nj2
1
2!p, j 50,1, ~4.14!

satisfied simultaneously, where

x j52tan21S g j8

a1
D 1 (

n52

` S tan21S g j8

gn
D 2tan21S g j8

an
D 2tan21S g j8

bn
D D , ~4.15!

s j5arg~h~2 ig j8!!5argS 12 (
n52

`
An

gn1 ig j8
D , ~4.16!

andn0 andn1 are an arbitrary pair of integers.
For the case of antisymmetry aboutx50, the conditions change to

g j8~a2Q!5x j1s j81njp, j 50,1, ~4.17!

wheres j8 is the argument ofh(2 ig j8) with the An coefficients coming from

Am2Bm(
n52

`
An

gm1gn
52Bm , m52,3,..., ~4.18!

andBm given by ~4.12!.
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A. Results

For the numerical results in this section, the system of Eqs.~4.11! and ~4.18! were truncated
to 535 systems. However, in view of the fact that no modes are found fora/d smaller than about
0.7, the approximate solution in which we sets j50, j 50,1, gives indistinguishable results.

In Fig. 6 a typical set of nondimensional bound-state energies,kd/p, are plotted againsta/d
when b/d50.6, for which the relevant energy range is given by~4.1! as 2,kd/p,2.5. The
modes symmetric aboutx50 are represented by a cross and the modes antisymmetric abx
50 are shown by a circle. A detailed view of just five of these bound states is given in F
which also shows the solid lines corresponding to solutions of~4.14! and dashed lines correspon
ing to solutions of~4.17! for j 50,1, labeled with the correspondingn0 andn1 values. The bound
states correspond to the intersections of two lines. Modes only exist for certain values ofa/d, but
asa/d increases the number of bound states present in a smalla/d interval increases.

FIG. 6. Nondimensional bound-state energies for modes symmetric~3! and antisymmetric~s! aboutx50 plotted against
a/d, whenb/d50.6.

FIG. 7. A detailed view of part of Fig. 6 showing the curves corresponding to the solutions of~4.14! ~solid curves! and
~4.17! ~dashed curves! for j 50,1, labeled with the correspondingn0 and n1 values. The embedded bound states a
denoted by3 ~symmetric! ands ~antisymmetric!.
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The bound states symmetric aboutx50 obtained by keeping the integersn0 andn1 in ~4.14!
constant and varying eitherkd/p or a/d againstb/d are shown in Figs. 8~a! and~b!, respectively.
The vertical dotted line corresponds to the valueb/d52/3, and the other two dotted lines corr
spond to the upper cutoffs given in~4.1! and ~4.2!. Only a selection of results for whicha/d
,2 are given. It can be seen from Fig. 8~a! that the highest energy states appear when (n0 ,n1)
take the form (N,N21), with N large and the lower energies occur when (n0 ,n1)5(N,1) with N
large. Figure 8~b! shows that the lower values ofa/d appear when (n0 ,n1) take the form (N,N
21) with N small and asn0 increasesa/d increases. The figures also demonstrate that mo
exist for any value ofb/d in the range~0.5, 1! ~but for only specific values ofa/d).

In Linton et al. ~2002! acoustic resonances were found between the second and third c
for wave propagation down a rigid waveguide containing an off-center rigid plate aligned wit
guide walls. The coupled waveguide problem under consideration here can be set up for e
between the second and third cutoffs, with three wave-like modes appearing in the regionx,a
and two propagating modes in the regionx.a. Using the same techniques as above, we find
bound states exist provided three conditions are satisfied simultaneously. However, thes
conditions are found to be inconsistent.

B. The case b ÕdÄ1Õ2

If 2b5d the waveguide is symmetric about the midline parallel to the walls and this ca
used to simplify the analysis. The problem can be decomposed into one symmetric abo
midline and one antisymmetric about this line, and the latter problem is that of a parallel
waveguide with Dirichlet conditions on both walls, where there are no bound states. We
restrict attention to the symmetric problem. Bound states below the first cutoff are precisely
which are obtained by lettingb/d→1/2 in the preceding analysis.

However, in Sec. IV we found embedded bound states in the frequency range 2p,kd
,dp/c when 1/2,b/d<2/3. These modes do not exist whenb/d51/2. The additional symmetry

FIG. 8. Variation of~a! kd/p and ~b! a/d with b/d for modes symmetric aboutx50. The curves are labeled with th
values of (n0 ,n1) used to generate them.
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in the problem whenb/d50.5 allows embedded modes to be found in a higher energy band in
case. In fact, we now require

3p,kd,4p, ~4.19!

to allow for two wave-like modes in the inner region and one inx.a. The problem is set up much
as before; here, we will simply present some results.

In Fig. 9 the nondimensional bound-state energies are plotted againsta/d. The modes sym-
metric aboutx50 are shown by crosses and the modes antisymmetric aboutx50 by circles. Just
as in Fig. 7, the bound states correspond to the intersection of pairs of curves on which one
two necessary conditions for bound states is satisfied. It can be seen that there are no boun
whena/d is below some critical value, and that bound states occur only for specific values o
plate length. Asa/d increases, the number of bound states present in a smalla/d interval increases
as before.

V. CONCLUSION

In this article we have investigated the bound states that can occur in coupled quantum
Specifically, we have considered a two-dimensional configuration in which two pa
waveguides~of different widths! are coupled laterally through a finite length window and co
structed modes which exist local to the window connecting the two guides. The geometry
problem can be described in terms of the two parametersa/d andb/d, where the complete guide
is made up of two guides of widthsb andd2b, and the coupling window has length 2a.

Initially we sought modes below the first cutoff for the guide. Modes for which the energ
below this cutoff cannot propagate down the guide and so if any are found they must be loc
in space. The main tool used in the analysis is the residue calculus method, in which a func
a complex variable is constructed which has the property that when Cauchy’s residue theo
applied for some suitable contour, the system of equations derived from a mode-matchi
proach is obtained. The unknown coefficients then correspond to the residues of the co
function. If we assume that the window between the guides is long compared to the guide
then this method allows us to solve the problem explicitly, and this approximate solution can
be used as the basis for a full numerical solution. This leads to an exponentially convergent
of equations and high accuracy can be achieved with only a very few equations. In fact, for
the smallest values ofa/d, the explicit approximate solution is quite sufficient.

FIG. 9. Nondimensional bound-state energies,kd/p, for modes symmetric~3! and antisymmetric~s! aboutx50 plotted
againsta/d whenb/d51/2.
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A number of results have been presented which show that as the window length varies
states occur alternately symmetric and antisymmetric about the line of symmetry of the guid
that more modes appear as the window gets larger or as the widths of the two parts of the
get closer together~i.e., asb/d→1/2). Using a variational principle we were able to provide up
and lower bounds for the bound-state energies and prove the existence of such state
sufficiently large window. Asa/d increases, the bound-state energies tend towards their u
bounds.

For modes whose energies are above the first cutoff we were able to use a similar r
calculus technique to compute bound-state energies. Here, we are seeking bound state
energies are embedded in the continuous spectrum of the relevant operator, and this lead
need to satisfy two conditions simultaneously, where there was only one below the cutoff. B
the cutoff we could fix eithera/d or b/d and vary the other to get solutions. Above the cuto
bound states occur for any values ofb/dP(0.5,1) but only for specific values of the parame
a/d. When b/d51/2, the region in which these embedded modes occur is shifted to a h
energy band.
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Bound states in coupled guides. II. Three dimensions
C. M. Lintona) and K. Ratcliffe
Department of Mathematical Sciences, Loughborough University,
LE11 3TU, United Kingdom

~Received 2 December 2003; accepted 16 January 2004!

We compute bound-state energies in two three-dimensional coupled waveguides,
each obtained from the two-dimensional configuration considered in paper I@J.
Math. Phys.45, 1359–1379~2004!# by rotating the geometry about a different axis.
The first geometry consists of two concentric circular cylindrical waveguides
coupled by a finite length gap along the axis of the inner cylinder, and the second
is a pair of planar layers coupled laterally by a circular hole. We have also extended
the theory for this latter case to include the possibility of multiple circular windows.
Both problems are formulated using a mode-matching technique, and in the cylin-
drical guide case the same residue calculus theory as used in paper I is employed to
find the bound-state energies. For the coupled planar layers we proceed differently,
computing the zeros of a matrix derived from the matching analysis
directly. © 2004 American Institute of Physics.@DOI: 10.1063/1.1675932#

I. INTRODUCTION

Here we extend the ideas from paper I@J. Math. Phys.45, 1359–1379~2004!# to three
dimensions and consider two distinct types of problem. First, we treat the case where th
dimensional laterally coupled waveguide discussed in paper I is rotated about thex axis to produce
a three-dimensional waveguide. The guide then consists of a pair of concentric circular cylin
guides of widthsb andd coupled by a finite gap in the inner cylinder. We seek bound states w
energies are below the first cutoff for wave propagation down the guide using the residue ca
technique. Second, we consider the case where the coupled waveguide considered in pa
rotated about they axis. The waveguide consists of two planar layers of widthsb and d2b
coupled through a circular hole of radiusa in the common boundary. In fact, we set up t
problem for an arbitrary number of arbitrarily sized circular windows.

Early work on acoustic resonances in circular cylindrical waveguides was done by U
~1991!, who considered a rigid cylinder with a rigid sphere placed on the axis. Using the me
of multipole expansions, Ursell able to prove the existence of resonant states with certain a
variation, provided the sphere was sufficiently small. The method presented in this paper is
to that used by Evans and Linton~1994!, who developed an approximate solution for the existe
of trapped modes in an infinitely long, rigid, circular cylindrical tube containing a concen
rigid, open-ended circular cylinder of finite length. Linton and McIver~1998! proved that acoustic
resonances can exist when any rigid, thin obstacle is placed in a rigid cylindrical wavegu
constant cross section in such a way that its normal is everywhere perpendicular to the gen
of the cylinder. Similar results were also given in Groves~1998! and Davies and Parnovski~1998!.
The example of a cylindrical sleeve inside a circular cylindrical waveguide with Neumann
ditions on all boundaries considered in Evans and Linton~1994! was recalculated using the residu
calculus technique and extended to cover different angular variations.

In all the above examples, Neumann boundary conditions were imposed on the cylin
waveguide. A cylindrical guide with Dirichlet conditions on the boundary was considere
Witsch ~1990!. Witsch used the same idea as Ursell in that he specified the angular variat

a!Electronic mail: c.m.linton@lboro.ac.uk
13800022-2488/2004/45(4)/1380/14/$22.00 © 2004 American Institute of Physics
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produce a cutoff and then used a minimum–maximum principle to provide examples of eige
ues that can occur in the waveguide.

Much less work has been done on the second problem. Exner and Vugalter~1997! considered
the case when the hole was sufficiently small so that only one eigenvalue occurred belo
continuous spectrum. The authors were then able to provide upper and lower asymptotic
on the gap between the eigenvalue and the continuous spectrum. Further asymptotic resu
derived in Popov~2002!.

II. COUPLED CYLINDRICAL GUIDES

In this section we consider a rotation of the waveguide used in paper I about thex axis. We
introduce cylindrical polar coordinates (r ,u,x) so that the outer surface of the guide is atr 5d.
Inside the guide is placed an infinite, concentric cylinder of radiusb (,d), which has a gap of
length 2a along its axis. The inner cylinder is placed so that its surface is atr 5b and the gap is
at 2a,x,a, as shown in Fig. 1. The resulting geometry is axisymmetric about the liner 50;
hence, we are able to look for modes with angular variation cosmu, wheremPN0 . The quantity
m is to be regarded as fixed in what follows.

The geometry is symmetric aboutx50, allowing us only to consider the regionx.0 and seek
modes which are either symmetric or antisymmetric aboutx50. We begin by seeking mode
symmetric aboutx50 by looking for nontrivial solutionsf(r ,u,x), which satisfy

]f

]x
50 on x50, 0,r ,d. ~2.1!

The functionf(r ,u,x) must also satisfy the Helmholtz equation within the waveguide

~¹21k2! f50, 0,r ,d,x.0 except onr 5b, x.a, ~2.2!

and is subject to Dirichlet boundary conditions on the cylinders

f50 on r 5b, x.a, ~2.3!

f50 on r 5d, x.0, ~2.4!

and a radiation condition that stops waves propagating to infinity,

f→0 asx→`. ~2.5!

Finally, we assume thatf is nonsingular and

FIG. 1. Definition sketch.
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]f

]r
5O~r2 1/2! asr5@~x2a!21~r 2b!2#1/2→0, ~2.6!

anticipating singular behavior in the derivative off at the edge. The changes resulting fro
replacing~2.1! by an antisymmetric condition will be discussed later.

As in the two-dimensional case considered in paper I, we divide the interior of the guide
three parts. RegionI is the annular region between the outer and inner cylinders, i.e.,$r ,u,x:b
,r ,d,x.a%, region II is the interior of the inner cylinder, i.e.,$r ,u,x:0,r ,b,x.a%, and
region III is the gap of the inner cylinder, i.e.,$r ,u,x:0,r ,d,0,x,a%. We can represent the
function f by a functionf i(r ,u,x)5f̂ i(r ,x)cosmu, (i 51,2,3,mPN0) in each region and apply
the following continuity conditions at each region’s boundary:

f̂ i5f̂3 ,
]f̂ i

]x
5

]f̂3

]x
, on Li , i 51,2, ~2.7!

whereL1 is x5a,b,r ,d,L2 is x5a,0,r ,b, and we writeL35L1øL2 .
Complete orthogonal sets of functions ofr in each of the three regions are defined in terms

Bessel functions as follows. Letnmn be the nth positive zero of the cross produc
Jm(hd) Ym(hb)2Ym(hd) Jm(hb); then, functions appropriate for regionI are

Cmn
(1)~r !5pmn

(1)@Jm~nmnr ! Ym~nmnb!2Ym~nmnr ! Jm~nmnb!#, nPN. ~2.8!

This function satisfies~2.3! and ~2.4!, and with

pmn
(1)5

nmnp
1/2

21/2 S Jm
2 ~nmnb!

Jm
2 ~nmnd!

21D 2 1/2

, ~2.9!

we have the orthogonality condition~see Jones, 1986, p. 228!

E
Li

r Cmn
( i ) ~r ! Cms

( i ) ~r ! dr 5dns , n,sPN, ~2.10!

with i 51, wheredns is the Kronecker delta.
Similarly, for regionII we let j mn be thenth non-negative zero ofJm(h) and definemmnb

5 j mn . We then define

Cmn
(2)~r !5pmn

(2) Jm~mmnr !, nPN, ~2.11!

where

pmn
(2)5

21/2

b Jm11~mmnb!
, ~2.12!

which satisfies~2.3! and the orthogonality condition~2.10! with i 52.
For regionIII we let lmnd5 j m,n11 , and define

Cmn
(3)~r !5pmn

(3) Jm~lmnr ! nPN0 , ~2.13!

where

pmn
(3)5

21/2

d Jm11~lmnd!
. ~2.14!

Then,Cmn
(3) satisfies~2.4! and the orthogonality condition~2.10! with i 53.
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The appropriate eigenfunction expansions forf̂ are now

f̂1~r ,x!5 (
n51

`

Umn
(1) e2amn(x2a)

2amn
Cmn

(1)~r !, amn5~nmn
2 2k2!1/2, ~2.15!

f̂2~r ,x!5 (
n51

`

Umn
(2) e2bmn(x2a)

2bmn
Cmn

(2)~r !, bmn5~mmn
2 2k2!1/2, ~2.16!

f̂3~r ,x!5 (
n50

`

Umn
(3) coshgmnx

gmn sinhgmna
Cmn

(3)~r !, gmn5~lmn
2 2k2!1/2. ~2.17!

For decay down the guide we requireamn andbmn to be real and positive for alln, and so we
must have

kd,nm1d and kd,mm1d. ~2.18!

So as to allow one wave-like mode in the inner region, we also requiregm0 to be purely imaginary,
but gmn to be real and positive for all other values ofn, and hence

kd.lm0d5 j m1 . ~2.19!

We therefore anticipate that a necessary condition for the existence of bound states is

j m1,kd,min~mm1d,nm1d!. ~2.20!

A. Bound states below the first cutoff

We now use the continuity conditions~2.7! and proceed as in paper I. We obtain

Ums
(3)5 (

n51

`

Umn
(1) dns1 (

n51

`

Umn
(2) ens , sPN0 , ~2.21!

Ums
(3) cothgmsa

gms
5 (

n51

` Umn
(1)

2amn
dns1 (

n51

` Umn
(2)

2bmn
ens , sPN0 , ~2.22!

where we have defined

dns5
1

d EL1

rCmn
(1)~r !Cms

(3)~r ! dr , ~2.23!

ens5
1

d EL2

rCmn
(2)~r !Cms

(3)~r ! dr . ~2.24!

Using various standard integrals, recurrence relations, and Wronskian relations for Besse
tions, we can show that, providednmnÞlms andmmnÞlms

dns52
2 nmn Jm~lmsb!

~nmn
2 2lms

2 ! p1/2d Jm11~lmsd!
S Jm

2 ~nmnb!

Jm
2 ~nmnd!

21D 2 1/2

, sPN0 , nPN, ~2.25!

ens5
2 mmn Jm~lmsb!

d Jm11~lmsd! ~mmn
2 2lms

2 !
, sPN0 , nPN. ~2.26!
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Eliminating Umn
(3) from ~2.21! and ~2.22! and using~2.25! and ~2.26!, we obtain after some

simplification

(
n51

`

UmnS 1

amn2gms
1

zms

amn1gms
D2 (

n51

`

VmnS 1

bmn2gms
1

zms

bmn1gms
D50, ~2.27!

wheresPN0 and we have defined

Umn5
Umn

(1) nmn

p1/2amn
S Jm

2 ~nmnb!

Jm
2 ~nmnd!

21D 2 1/2

, Vmn5
Umn

(2) mmn

bmn
, andzms5e22gmsa. ~2.28!

The singular behavior required by condition~2.6! again influences the asymptotic behavior ofUmn

and Vmn as n→`. As in paper I, we can show that the edge condition is satisfied if bothUmn

5O(n21/2) andVmn5O(n21/2) asn→`.
We now use the residue calculus technique of Mittra and Lee~1971!, exactly as in paper I; the

details are different but the procedure is essentially the same as before. We will make ju
remark. The standard infinite product representation of the gamma function can be used t
that

)
n51

` S 12
zd

~n1m/213/4!p D
S 12

zc

np D S 12
zb

~n1m/221/4!p D 5
G~m/217/4! G~12zc/p! G~m/213/42zb/p!

G~m/217/42zd/p! G~m/213/4!
,

~2.29!

and then the asymptotic forms@see Abramowitz and Stegun, 1965, Eqs.~9.5.12! and ~9.5.27!#

lmnd5 j m,n11;~n1m/213/4!p1O~1/n!, ~2.30!

mmnb5 j mn;~n1m/221/4!p1O~1/n!, ~2.31!

nmn~d2b!;np1O~1/n! ~2.32!

asn→` can be used together with Stirling’s formula to derive the necessary asymptotic for
the functionf (z) equivalent to~3.18! of paper I.

The condition for the existence of bound states turns out to be

gm8 ~a2Q!5xm1sm1~n2 1
2!p, n an integer, ~2.33!

where

Q5
1

p
~b ln~d/b!1c ln~d/c!!, ~2.34!

xm5 (
n51

` S tan21S gm8

gmn
D 2tan21S gm8

amn
D 2tan21S gm8

bmn
D D , ~2.35!

and

sm5argS 12 (
n51

`
Amn

gmn1 igm8
D , ~2.36!

where the coefficientsAmn are the solutions to the exponentially convergent system of equa
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Ams1Dms(
n51

`
Amn

gms1gmn
5Dms, sPN, ~2.37!

with

Dms52gmse2gms(Q2a)
~ams2gms!~bms2gms!

~ams1gms!~bms1gms!

3 )
n51
nÞs

`
~11gms/gmn!~12gms/amn!~12gms/bmn!

~11gms/amn!~11gms/bmn!~12gms/gmn!
. ~2.38!

For the case of antisymmetry aboutx50, we replace the boundary condition~2.1! by

f50 on x50, 0,r ,d, ~2.39!

and the equivalent condition to~2.33! is

gm8 ~a2Q!5xm1sm8 1np, n an integer, ~2.40!

wherexm andQ are as before andsm8 is as in~2.36! but with the coefficientsAmn coming from
the system of equations

Ams2Dms(
n51

`
Amn

gms1gmn
52Dms, sPN. ~2.41!

B. Results

The results in this section are computed with the systems of equations~2.37! and ~2.41!
truncated to 535 systems. Typical results for the nondimensional bound-state energies whm
50 and 1 are shown in Figs. 2 and 3. In both figures the solid lines correspond to m
symmetric aboutx50 and the dashed lines to modes antisymmetric aboutx50.

In Fig. 2 nondimensional bound-state energies are plotted againsta/d whenb/d50.5. Asa/d
increases, more and more modes appear alternately symmetric and antisymmetric aboutx50 for
each value ofm. The upper and lower cutoffs for the existence of bound states are given by~2.20!

FIG. 2. Nondimensional bound-state energies for modes symmetric~—! and antisymmetric~– –! about x50 plotted
againsta/d whenb/d50.5.
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and depend onm. Whenm50 the modes appear from the cutoff given by the minimum ofkd
5 j 01/0.5'4.810 andkd5n01d'6.246, i.e.,kd52 j 01, and tend tokd5 j 01'2.405 asa/d in-
creases. This minimum value changes, however, whenm51, as the upper cutoff becomeskd
5n11d'6.393, which is less thankd52 j 11'7.663. Asa/d increases the modes corresponding
m51 tend tokd5 j 11'3.832.

In Fig. 3 nondimensional bound-state energies are plotted againstb/d when a/d53. The
upper plot corresponds tom51 and the lower plot tom50. The dotted lines appearing on bo
plots are the upper and lower cutoffs for the two differentm values and show where the frequen
ranges lie with respect to each other. Whenb/d→0 the only upper cutoff present for both plots
the one corresponding tokd5hm1 , whereas whenb/d→1 the upper cutoff is shown bykd
5d jm1 /b for both values ofm. When m50 the upper cutoff changes fromkd5h01d to kd
5 j 01d/b when b/d'0.436, and the largest number of modes appears at this value. Resu
higher values ofm show that asm increases, the value ofb/d when the upper cutoff changes als
increases.

III. LATERALLY COUPLED PLANAR WAVEGUIDES

We now turn our attention to the case where the two-dimensional laterally coupled wave
considered in paper I is rotated about they axis to produce a three-dimensional wavegu
consisting of two planar layers of widthsb andc5d2b coupled laterally through a circular hol
of radiusa in the common boundary. We assume for convenience thatb.d/2.

Circular cylindrical polar coordinates (r ,u,z) are introduced so that the waveguide is axisy
metric aboutr 50 and the planes lie atz50, z5b andz5d. We seek nontrivial solutionsf to

~¹21k2! f50, 0,z,d, r>0 except onx5b, r .a, ~3.1!

FIG. 3. Nondimensional bound-state energies for modes symmetric~—! and antisymmetric~– –! about x50 plotted
againstb/d whena/d53.
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subject to the boundary conditions

f50 on z50, r>0, ~3.2!

f50 on z5b, r .a, ~3.3!

f50 on z5d, r>0, ~3.4!

and a radiation condition specifying that no waves propagate out to infinity

f→0 asr→`. ~3.5!

The guide is divided into three regions. RegionI is $r ,u,z:r .a,b,z,d%, region II is
$r ,u,z:r .a,0,z,b%, and regionIII is $r ,u,z:r ,a,0,z,d%. As the geometry is axisymmetri
aboutr 50, we are able to look for a mode with angular variation cosmu, mPN0 , and can write
f i(r ,u,z)5f̂ i(r ,z)cosmu ( i 51,2,3), in each region and apply the continuity conditions

f̂ i5f̂3 ,
]f̂ i

]r
5

]f̂3

]r
, on Li , i 51,2, ~3.6!

whereL1 is r 5a,b,z,d, L2 is r 5a,0,z,b and we writeL3 for L1øL2 .
Suitable eigenfunction expansions in each region are

f̂1~r ,z!5 (
n51

`

Umn
(1) Km~anr !

anKm8 ~ana!
Cn

(1)~z!, an5~nn
22k2!1/2, ~3.7!

f̂2~r ,z!5 (
n51

`

Umn
(2) Km~bnr !

bnKm8 ~bna!
Cn

(2)~z!, bn5~mn
22k2!1/2, ~3.8!

f̂3~r ,z!5 (
n50

`

Umn
(3) I m~gnr !

gnI m8 ~gna!
Cn

(3)~z!, gn5~ln
22k2!1/2, ~3.9!

whereI m andKm are modified Bessel functions and

Cn
(1)~z!521/2sinnn~d2z!, nn5np/c, nPN, ~3.10!

Cn
(2)~z!521/2sinmn~b2z!, mn5np/b, nPN, ~3.11!

Cn
(3)~z!521/2sinln~d2z!, ln5~n11!p/d, nPN0 , ~3.12!

which satisfy

1

uLi u
E

Li

Cn
( i )~y!Cm

( i )~y! dy5dmn , i 51,2,3. ~3.13!

As in paper I, we anticipate that a necessary condition for the existence of bound states w

p,kd,
dp

b
, ~3.14!

since theng0 will be purely imaginary whereasan , bn and gn , nPN, will all be real and
positive. The mode corresponding tog0 will therefore be oscillatory in regionIII and all the other
modes will decay away from the hole.
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We now apply the continuity conditions~3.6!, multiply each of the resulting equations b
Cs

(3) ,sPN0 and integrate overL3 , then eliminateUms
(3) to obtain

(
n51

`

Umn
(1) dnsS I m~gna!

gsI m8 ~gsa!
2

Km~ana!

anKm8 ~ana! D 1 (
n51

`

Umn
(2) ensS I m~gna!

gsI m8 ~gsa!
2

Km~bna!

bnKm8 ~bna! D 50,

sPN0 , ~3.15!

wheredns andens are given by

dns5
1

d EL1

Cn
(1)~y!Cs

(3)~y! dy5
2nn~21!n sinlsc

d~gs
22an

2!
, sPN0 , nPN, ~3.16!

ens5
1

d EL2

Cn
(2)~y!Cs

(3)~y! dy5
2mn sinlsc

d~gs
22bn

2!
, sPN0 , nPN. ~3.17!

Equation~3.15! is not amenable to the same residue calculus treatment as we have used
other examples. Here, we solve it directly by truncating the value ofn ands11 with a truncation
parameterN. We then have to find the values ofkd for which the determinant of a~real! 2N
32N matrix is zero.

Figure 4 shows a typical set of nondimensional bound-state energies,kd/p, plotted against
a/d when b/d50.6. The results were computed using a truncation parameterN55. The solid
lines correspond to the modes whenm50, the dashed lines are whenm51, the dotted lines are
when m52, and the dot-dashed lines are form53. As the value ofa/d is increased the bound
states appear from the upper cutoffkd55p/3 and tend to the lower cutoffkd5p. The results
suggest that that bound states occur for alla/d except when the hole is small, and that as the va
of m is increased the value ofa/d below which modes do not exist increases.

However, Exner and Vugalter~1997! used variational techniques to show that for sufficien
small a/d there is just one bound state and that the ground-state eigenvalue,kd, then satisfies

d

b S 12
1

p2 exp~2c1 /a3! D 1/2

<kd<
d

b S 12
1

p2 exp~2c2 /a3! D 1/2

, ~3.18!

FIG. 4. Nondimensional bound-state energies,kd/p, plotted againsta/d when b/d50.6. The solid lines correspond to
m50, the dashed lines tom51, the dotted lines tom52, and the dot-dashed lines tom53.
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for some positivec1 and c2 . It is clear that for small windows, this will produce values ofkd
which differ from the upper cutoff by an extremely small amount and this explains why we
unable to compute bound-state energies whena/d is less than about 0.25.

It is fairly simple to extend the work above and consider the case of a pair of planar l
coupled laterally by a number of holes. For simplicity, we will consider the case where the
layers have the same width~i.e., b/d50.5) and the additional symmetry allows us to consider
symmetric and antisymmetric parts of the solution independently. The antisymmetric part is t
and so the problem then reduces to that of a planar guide of widthb with Dirichlet boundary
conditions on both walls, except for a number of circular disks on one side on which Neu
conditions are applied. The method that we use to analyze multiple circular windows is a sta
technique in studying the scattering of waves by arrays of circular cylinders; see, e.g., Linto
McIver ~2001!, Chap. 6.

We considerP (>1) disks and introduceP11 cylindrical polar coordinate systems, so th
(r ,u,z) is centered at the origin and (r j ,u j ,z), j 51, . . . ,P, are centered at the center of thej th
disk, which is assumed to have radiusaj . The walls of the waveguide are atz50 andz5b. The
various parameters relating to the relative positions and sizes of the disks are shown in Fig.
domain is divided up intoP11 parts and we represent the solution in the region above thej th
disk by f j

I , j 51, . . . ,P and the solution exterior to the disks byf II . We look for nontrivial
solutions to the Helmholtz equation in the guide subject to the boundary conditions

f II 50 on z50, ~3.19!

f j
I5f II 50 on z5b, j 51, . . . ,P, ~3.20!

]f j
I

]z
50 on z50, r j,aj , j 51, . . . ,P, ~3.21!

f II →0 asr→`. ~3.22!

We also need to apply continuity conditions at each region’s boundary

f j
I5f II ,

]f j
I

]r j
5

]f II

]r j
on r j5aj , j 51, . . . ,P. ~3.23!

FIG. 5. Plan view of two disks.
                                                                                                                



-

n

r

an

1390 J. Math. Phys., Vol. 45, No. 4, April 2004 C. M. Linton and K. Ratcliffe

                    
Separation of variables reveals that the appropriate eigenfunction expansions are

f j
I5 (

m52`

`

(
n50

`

Amn
j I m~anr j !

anI m8 ~anaj !
Cn

(1)~z! eimu j , j 51, . . . ,P, ~3.24!

f II 5 (
p51

P

(
m52`

`

(
n50

`

Bmn
p Km~bnr p!

bnKm8 ~bnap!
Cn

(2)~z! eimup, ~3.25!

wherean5(mn
22k2)1/2, bn5(nn

22k2)1/2, and

Cn
(1)~z!521/2sinmn~b2z!, mn5~n1 1

2!p/b, nPN0 , ~3.26!

Cn
(2)~z!521/2sinnnz, nn5np/b, nPN. ~3.27!

If we restrict the energy so that

p,kd,2p, ~3.28!

thena0 is purely imaginary, whereasan andbn , nPN will all be real and positive. This restric
tion allows for wave-like modes local to each disk, with decay asr becomes large.

In order to apply the continuity conditions~3.23!, the eigenfunction expansion in regionII
must be written in terms of the coordinatesr j andu j . This can be achieved using Graf’s additio
theorem, which shows that providedr j,Rjp for all p, we can write

f II ~r j ,u j ,z!5 (
m52`

`

(
n51

`

Bmn
j Km~bnr j !

bnKm8 ~bnaj !
Cn

(2)~z! eimu j

1 (
p51
pÞ j

P

(
m52`

`

(
n51

`

(
s52`

`

Bmn
p I s~bnr j !

bnKm8 ~bnaj !
Km2s~bnRjp! eisup Cn

(2)~z! ei(m2s)a jp,

~3.29!

whereRjp is the distance between the centers of disksj andp, anda jp is the angle of the cente
of disk p from disk j , measured as shown in Fig. 5.

We can then apply the matching conditions~3.23! and convert the resulting equations into
infinite system by multiplying each byC t

(1)(z)e2 iwu j , tPN0 , wPZ, j 51, . . . ,P, and integrating
over z in (0,b) andu j in ~0, 2p!. We obtain, after eliminatingAmn

j

(
p51

P

(
m52`

`

(
n51

`

Bmn
p Znmp,tw j50, tPN0 , wPZ, j 51, . . . ,P, ~3.30!

where

Znmp,tw j5H dttXtw jdmwdnt p5 j ,

dntYnmp,tw j pÞ j ,
~3.31!

Xtw j5Xt(2w) j5
I w~a taj !

a tI w8 ~a taj !
2

Kw~b taj !

b tKw8 ~b taj !
, ~3.32!

Ynmp,tw j5Km2w~bnRjp! ei(m2w)a jpS I w~a taj !I w8 ~bnaj !

a tI w8 ~a taj !Km8 ~bnaj !
2

I w~bnaj !

bnKm8 ~bnaj !
D , ~3.33!

and
                                                                                                                



s will

e

-

-

s

1391J. Math. Phys., Vol. 45, No. 4, April 2004 Bound states in coupled guides. II. Three dimensions

                    
dnt5
2

d E0

d/2

Cn
(2)~z!C t

(1)~z! dz5
4nn~21! t

d~m t
22nn

2!
. ~3.34!

A. Results

We solve~3.30! by introducing truncation parametersM andN so thatm andw vary between
6M , andn and t11 vary between 1 andN. Then, we write

l15n1N~m1M !1N~2M11!~p21!, ~3.35!

l2511t1N~w1M !1N~2M11!~ j 21!, ~3.36!

so that any positive integerl i between 1 andN(2M11)P corresponds to a unique triple (n,m,p)
for i 51, or (t,w, j ) for i 52. To find a solution of~3.30! we are required to find frequencieskd so
that the determinant of the resultingN(2M11)P3N(2M11)P matrix is zero. For the results
below, truncation parametersN55 andM53 were used.

We consider the case of two circular windows. In this situation the bound-state energie
be independent of the angle between the centers of the two disks (a12 anda21, in Fig. 5!. That
this is the case can be demonstrated as follows. The matrixZ has a 232 block structure and, if we
multiply the rows in the blocks corresponding toj 51 by exp(2ima12), the rows in the blocks
corresponding toj 52 by exp(2ima21), the columns in the blocks corresponding top51 by
exp(iwa21), and the columns in the blocks corresponding top52 by exp(iwa12), the resulting
matrix is independent of the anglesa12 anda21 and its determinant is a nonzero multiple of th
determinant ofZ and so will vanish for the same values ofkd.

Figure 6 shows the nondimensional bound-state energies,kd/p plotted against nondimen
sional separationR/d for two identical windows with radiusa5d. The dotted lines are the
bound-state energies from the single-window case whena/d51 and are labeled with the appro

FIG. 6. Nondimensional bound-state energies,kd/p, plotted againstR/d for the case of two identical windows with radiu
a5d. The dotted lines correspond to the bound states from the single-disk case witha/d51 and are labeled with the
appropriate values ofm. The dashed line corresponds to the upper cutoff.
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priate values ofm. They represent the limits for the energies asR/d→`. The dashed line is the
upper cutoffkd52p. All possible modes appear in the figure. However, if we took a larger v
of a/d we would have to use a larger truncation parameterM to find all the modes.

When the two disks are touching, i.e., whenR/d52, there are 14 bound states. There are t
modes around each dotted line corresponding tom50 and four modes around the other dott
lines ~two for the positive value ofm and two for the negative value ofm). The exception occurs
whenm563, as this mode is close to the upper cutoff and so only a single mode appears
the dotted line for eachm. As the value ofR/d is increased, which means that the disks are mo
apart, each pair of modes converges towards the limiting case.

Figure 7 shows the nondimensional bound-state energies,kd/p plotted againstR/d for two
circular windows for whicha/d51 anda/d50.75, respectively. The dotted lines are the boun
state energies from the single-window cases whena/d51 anda/d50.75, and are labeled with th
appropriate values ofm and again represent the limits for the energies asR/d→`. The dashed
lines are the upper and lower cutoffs. All possible modes appear in the figure. Between th
cutoffs we find that there are five modes from the single-window case witha/d51 and three
modes from the single-window case whena/d50.75. When the two windows are touching, i.e
whenR/d51.75, the bound-state energies are very different from the single-window value
as the separation is increased, the energies quickly approach the single-window values.
types of results were found by Evans and Porter~1997!, who computed trapped modes in th
vicinity of multiple cylinders in a channel.

IV. CONCLUSION

We have computed bound-state energies below the first cutoff in two three-dimen
coupled waveguides, each obtained from the two-dimensional configuration considered in p
by rotating the geometry about a different axis.

FIG. 7. Nondimensional bound-state energies,kd/p, plotted againstR/d for the case of two windows of radiia/d51 and
a/d50.75. The dotted lines correspond to the bound states from the single-window case witha/d51 anda/d50.75 and
are labeled with the appropriate values ofm. The dashed lines correspond to the upper and lower cutoffs.
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First, we have studied bound states in a waveguide consisting of two concentric ci
cylindrical waveguides coupled by a finite length gap along the axis of the inner cylinder
same residue calculus method which was used in paper I was used to compute boun
energies below the first cutoff for wave propagation down the guide. We were able to loo
modes with a given angular variation cosmu, mPN0 , and the bound states found are eith
symmetric or antisymmetric about the line of symmetry perpendicular to the axis of the cyl
The available energy band for bound states is dependent on the values ofm and the ratio of the
two radii. The results show that bound states occur for any value of the gap length and ra
radii, and the energies increase asm increases.

Second, we have considered the problem in which a pair of planar layers is coupled la
by a circular hole. The sophisticated residue calculus theory is not available in this case, b
were able to compute bound states by searching for the zeros of the determinant of a matrix
from a mode-matching approach. For this problem we can again consider a given angular va
cosmu, mPN0 , and find modes in each case.

We then extended the theory to cover the case of a number of circular windows conn
two planar guides of equal width and presented results for two circles, both when they ha
same radius and when they do not. In both situations we find that when the windows are fa
the bound states are equivalent to those occurring in the single-window cases, but that the e
vary considerably as the windows are moved closer together.
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The magnetic Weyl calculus
Marius Măntoiua) and Radu Puriceb)

Institute of Mathematics ‘‘Simion Stoilow’’ of the Romanian Academy,
P.O. Box 1-764, Bucarest, RO-014700, Romania

~Received 19 November 2003; accepted 7 January 2004!

In the presence of a variable magnetic field, the Weyl pseudodifferential calculus
must be modified. The usual modification, based on ‘‘the minimal coupling prin-
ciple’’ at the level of the classical symbols, does not lead to gauge invariant for-
mulas if the magnetic field is not constant. We present a gauge covariant quantiza-
tion, relying on the magnetic canonical commutation relations. The underlying
symbolic calculus is a deformation, defined in terms of the magnetic flux through
triangles, of the classical Moyal product. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1668334#

I. INTRODUCTION

The correspondence principle of quantum mechanics asks that for a given physical s
there should be a systematic way to convert classical observables into quantum observab
use for this the rather vague term ofquantization. For many given systems a true, managea
quantization is problematic, but there are important situations in which commonly accepted
tions exist. The purpose of the present article is to propose what we think to be the correct s
for the case of a nonrelativistic spinless particle, moving inRN, in the presence of a variabl
magnetic field. From the mathematical point of view, our results may be considered as a fir
towards a quantization of symplectic manifolds.

General principles assert essentially that classical observables are functions in phase
while quantum observables should be self-adjoint operators in some Hilbert space. Rathe
for some basic observables~positions, momenta, . . .! the prescription is either essentially uniqu
~may be due to some commutation relations!, or at least generally accepted. Thus, for ma
physical systems, quantization of all phase-space functions could be regarded as a sort o
tional calculus. But since, as a rule, the basic observables do not commute, one cannot rely
usual spectral theory to define this functional calculus. Roughly, quantization may be seen
mathematical problem of defining functions of several noncommuting self-adjoint operator
course, the features of the physical system both impose constraints and offer empirical sugg
with respect to this procedure.

In the absence of any magnetic field, a nonrelativistic spinless particle moving inRN is
quantized through the Weyl pseudodifferential calculus. Iff is a suitable function~‘‘symbol’’ !
defined on the phase spaceR2N, the corresponding operator is defined to act in the Hilbert sp
L2(RN) by the formula

@Op~ f !u#~x!ªE
R2N

dy dp ei (x2y)•pf S x1y

2
,pDu~y!. ~1!

In a certain sense~which can be made precise and which will be discussed below!, we may
write Op( f )5 f (Q,P) and interpret it as the action on the symbolf of the functional calculus
associated to the family of operators (Q1 , . . . ,QN ,P1 , . . . ,PN), whereQj is the multiplication by
the j th coordinate andPjª2 i ] j . The well-known rules of commutation between these posit

a!Electronic mail: marius.mantoiu@imar.ro
b!Author to whom correspondence should be addressed. Electronic mail: radu.purice@imar.ro
13940022-2488/2004/45(4)/1394/24/$22.00 © 2004 American Institute of Physics
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and momentum quantum observables play a decisive role in determining the explicit fo
above. They are thus also basic in deducing the explicit product rule (f ,g)° f +g and involution
f ° f ° leading toOp( f )Op(g)5Op( f +g) andOp( f )* 5Op( f °).

When a magnetic fieldB is turned on, we are faced with the problem of modifying t
formula for Op( f ) in a way taking into account the presence of the magnetic field in a cor
physical way. A mistaken procedure which appears from time to time in the literature i
following: One chooses a vector potentialA corresponding to the magnetic field (B5dA) and, by
an ~unjustified! application of the minimal coupling principle, one setsOpA( f )ªOp( f A), with
f A(x,p)ª f (x,p2A(x)). This is meant to be the action onf of the functional calculus associate
with the family Q1 , . . . ,QN ,P1 , . . . ,PN , whereP jªPj2Aj (Q) is the j th component of the
vector potential. But the resulting formula

@OpA~ f !u#~x!ªE
R2N

dy dk ei (x2y)•kf S x1y

2
,k2AS x1y

2 D Du~y! ~2!

5E
R2N

dy dp ei (x2y)•pei (x2y)•A(~x1y!/2)f S x1y

2
,pDu~y! ~3!

cannot be the right one, since it lacks gauge covariance: If one chooses another vector poteA8
associated toB, differing from the initial one by the gradient of a scalar function,A85A1¹r,
then the expected formula eirOpA( f )e2 ir5OpA8( f ) does not hold. In fact, this formula is re-

stored if one replaces the phase factorei (x2y)•A((x1y)/2) by ei (x2y)•*0
1dsA((12s)x1sy). It is reassuring

to note that2(x2y)•*0
1dsA((12s)x1sy) is in fact the circulationGA(@x,y#) of the vector

potentialA through the segment leading fromx to y. Thus the formula we propose instead of~2!
is

@OpA~ f !u#~x!ªE
R2N

dy dp ei (x2y)•pe2 iGA([x,y]) f S x1y

2
,pDu~y!. ~4!

The main purpose of our article is to give an explanation of these facts. As a prologu
doing this, in the next section we review some facts related to canonical commutation rel
and Weyl calculus when no magnetic field is present. The main topic will be the justification o
formula for Op( f ) as a sort of integrated form ofthe Weyl system, which is a family of unitary
operators$W(j)%j indexed by the points of the phase space and containing the relevant info
tion on the commutation relations between the operatorsQ andP. We claim no originality~see,
for example, Ref. 18!; we include this here because it seems to be an argument largely ign
which is basic to our approach. The symbolic calculus beyond the Weyl prescription is the fa
Moyal product. Other references emphasizing the connection between quantum mechan
pseudodifferential theory are Refs. 15 and 10.

When a magnetic field is present, the Weyl system has to be modified. Instead of the gr
translations, appearing naturally in the formula givingW(j) @see~8!#, one has to work with the
magnetic translations, forming a sort of generalized projective representation ofRN. This is pre-
sented in the Sec. III.

In Sec. IV, the formulaOpA for the functional calculus with magnetic field is deduced. F
this we apply the same strategy as in Sec. II, but using now the magnetic Weyl system, intro
in Sec. III. The setting relies on the choice of a vector potential, but now gauge covarian
available; equivalent vector potentials lead to unitarily equivalent operators. The basic expr
for OpA( f ) requires rather strong conditions on the functionf . But for large classes of magneti
fields one can extend it, as in the nonmagnetic case, to all tempered distributions, by a s
interpretation ofOpA( f ) as a linear continuous operator from the Schwartz spaceS(RN) to its
dual. This is based on a study of the distribution kernel of this operator. These and some
fundamental facts are also considered in Sec. IV.
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Beyond these operators lies a symbolic calculus which ismanifestly gauge invariant, being
defined only in terms of the magnetic field. The composition is a magnetic correction of the M
product, while the involution is just the usual complex conjugation of functions. In Sec. V
study this symbolic calculus. Once again an important problem is to extend the formulas
obvious integrability conditions are not satisfied. This is a more complicated task for the pr
than it was for the quantization itself, especially if one aims at obtaining*-algebras. We postpon
the application of the machinery of oscillatory integrals and classical symbol function space
future article. For our present purposes the strategy of extension by duality methods~see Refs. 13
and 14 for the nonmagnetic case! is more fruitful. It will lead to a large, interesting*-algebra of
distributions which will be calledthe magnetic Moyal algebra.

Of course, for certain problems, a well-justified norm on~restricted! * -algebras of symbols
could be very useful. It happens that this is easier to achieve after performing a partial F
transform. Surprisingly, one naturally encounters certainC* -algebras which were studied in pur
mathematics, with little connection with physics. These are special types of twisted crossed
ucts, associated to twisted actions ofRN on suitable AbelianC* -algebras of position observable
They were already related to quantum magnetic fields in Ref. 23; see also Refs. 11, 5 an
related works. In a future publication we shall extend their study and outline the connection
our pseudodifferential calculus.

Concerning the difference between the expressions~2! @or ~3!# and ~4! some comments are
necessary. In Sec. IV D we shall outline some situations when they give the same resu
admitting the convenient assumption that the components ofA are smooth functions with tem
pered growth, both~2! and~4! can be extended to any tempered distributionf . Thenwe shall have
OpA( f )5OpA( f ) for all f if and only if A is linear ~this is one of the most important case
appearing usually in the literature!. Remark that this condition corresponds to a constant magn

field, but it is not gauge invariant: for some otherA8 with dA85B5const,OpA8 andOpA8 will
be different!~The pseudodifferential calculus corresponding to a linearA was developed in Ref. 7
in connection with some problems in pure PDE theory; in fact the term ‘‘magnetic field’’ is n
explicitly mentioned.! One will also haveOpA( f )5OpA( f ) for any A if f is a polynomial of
order <2. The most studied magnetic operators are the Schro¨dinger magnetic Hamiltonians (P
2A(Q))21V(Q), cf. Ref. 1 and 24, for instance. They are obtained by quantizing the
between a quadratic function depending only onp and a function depending only onx, so no care
is needed in this case. However, even their study may involve applying the Weyl calculus to
complicated symbols. Anyhow, for polynomials of order three inp, ~2! and ~4! already give
different results. We remark that using the Weyl calculus coupled with the minimal cou
principle @as in~2!# for a nonconstant magnetic field and a complicated symbol is still legitim
as long as this is a technical tool and not the quantization of the classical observable repre
by the symbol. This is often the case in solid state physics, in arguments concerning the
substitution, as in Refs. 12 and 29.

Our feeling is that the magnetic Weyl calculus elaborated in this article is both an intere
mathematical object and a significant formalism for theoretical physics. From the mathem
point of view, we consider it interesting to use our calculus for some specific classes of sy
and obtain more detailed results and also to connect it with strict deformation quantiz
Moreover, obtaining precise estimations on theC* -norm of the objects in the Moyal algebra an
some variants of Calderon–Vaillancourt theorems is of much interest in spectral analysis,
mation quantization and semiclassical limit. These results may be then applied for qu
Hamiltonians~of Schrödinger or relativistic type! and obtain spectral and propagation informati
and to study their semiclassical limit and its dependence on the chosen quantization proced
this article we intended to be accessible to people that are only vaguely familiar with pseu
ferential theory; more technical developments or applications are deferred to future work
were encouraged in this attitude by a discussion with Joseph Avron and Omri Gat. A paper d
to someC* -algebras aspects of our magnetic Weyl calculus is in preparation in collaboration
Serge Richard.
                                                                                                                



ed out
ternal
ves a
rther
onical
nd the

r the

enta,

nical

lties

1397J. Math. Phys., Vol. 45, No. 4, April 2004 The magnetic Weyl calculus

                    
II. CANONICAL COMMUTATION RELATIONS AND PSEUDODIFFERENTIAL CALCULUS
WITHOUT MAGNETIC FIELDS

One of the main virtues of the standard pseudodifferential calculus~in Weyl form! lies in the
fact that it gives an answer to a fundamental problem in quantum mechanics. It can be figur
as the quantization of a physical system composed of a nonrelativistic particle without in
structure, moving in a Euclidean configuration space. We review this topic briefly, since it gi
solid motivation for our later treatment of the case in which a magnetic field is added. Fu
details may be found in Refs. 10 and 18, for example. At the root of this approach lie the can
commutation relations satisfied by the basic observables of the system, the positions a
momenta, and this is the main point we want to emphasize.

A. Framework

We have in view anN-dimentional nonrelativistic particle without internal structure~called
simply a particle! that is described classically inthe phase spaceJªX3X!, whereXªRN is the
configuration spaceandX! is its dual. The spaceJ is naturally endowed with the symplectic form
s:J3J→R given by

s~~q8,p8!,~q9,p9!!ªq9•p82q8•p9,

whereq•p denotes the canonical pairing onX3X!.
The classical observables are~smooth! real functions defined onJ. A particular role is played

by the Poisson bracket

$ f ,g%ªs~¹ f ,¹g!5(
j 51

N

~]pj
f ]qj

g2]pj
g ]qj

f !.

Real functions of classC` on the phase space form an infinite-dimentional Lie algebra unde
pointwise vector operations and the Poisson bracket.

The associated quantum system is described on the Hilbert spaceH5L2(X) in terms of the
family of self-adjoint operators (Qj ) j 51, . . . ,N and (Pj ) j 51, . . . ,N ~hereQj is the operator of mul-
tiplication with the j th component of the variable inH and Pjª2 i ] j ). The operators
(Qj ,Pj ) j 51, . . . ,N are the quantum version of the classical observables position and mom
given by the the canonical variables in phase spaceq1 ,...,qN ,p1 , . . . ,pN . These canonical vari-
ables satisfy the relations

$qi ,qj%50, $pi ,pj%50, $pi ,qj%5d i j , i , j 51, . . . ,N,

and the corresponding quantum observables should satisfy at their turn

i @Qi ,Qj #50, i @Pi ,Pj #50, i @Pi ,Qj #5d i j , i , j 51, . . . ,N,

as they actually do, at least formally.

B. The Weyl system

In principle, the choice of the Hilbert spaceL2(X) and of the explicit form of the operatorsQj

and Pj should be justified. It is widely accepted the vague prescription that to the cano
variablesqj andpj one should ascribe self-adjoint operatorsOp(qj ) andOp(pj ) acting in some
Hilbert spaceH, satisfying

i @Op~qi !,Op~qj !#50, i @Op~pi !,Op~pj !#50, i @Op~pi !,Op~qj !#5d i j , i , j 51, . . . ,N. ~5!

But an axiomatic approach relying on this formula is hard to conceive. The typical difficu
related to the~inevitable! nonboundedness of the operatorsOp(qj ) andOp(pj ) cannot be solved
by a priori arguments.
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For this and for several other reasons, it is preferable to rephrase all in terms of bo
operators. ForqPX and pPX!, let us setU(q)ªe2 iq•P and V(p)ªe2 iQ•p. These are unitary
operators inL2(X) given explicitly by

@U~q!u#~y!5u~y2q! and @V~p!u#~y!5e2 iy•pu~y!, uPL2~X!, yPX. ~6!

The mapsq°U(q) and p°V(p) are strongly continuous unitary representations ofX, respec-
tively X* , in L2(X) and the Weyl form of the canonical commutation relations,

U~q!V~p!5eiq•p V~p!U~q!, qPX, pPX!, ~7!

holds. Now there is no ambiguity in addressing the abstract problem of the classification of
(H,U,V), whereH is a Hilbert space andU:X→U(H), V:X!→U(H) are strongly continuous
unitary representations satisfying~7!. And there is a simple answer, given by the Stone–v
Neumann Theorem~for a more explicit statement and for the proof we look to Ref. 10!: If one also
assumes irreducibility of the family$U(q),V(p)uqPX,pPX!%, then any solution is unitarily
equivalent to~6! ~which is calledthe Schro¨dinger representation!. And a non-irreducible triple is
just a multiple of this Schro¨dinger representation.

A convenient way to condense the two objectsU andV into a single one is to definethe Weyl
system$W(j)ujPJ%,U(H) by

W~q,p!ªe~ i /2! q•p U~2q!V~p!5e2 ~ i /2! q•p V~p!U~2q!, qPX, pPX!. ~8!

A short calculation shows thatW satisfies

W~j!W~h!5e~ i /2! s(j,h) W~j1h!, j,hPJ, ~9!

i.e., W is a projective representation of the groupJ with two-cocycle~phase factor! e( i /2) s.
Of course,W can be defined for any abstract triple (H,U,V). But, as a consequence of th

Stone–von Neumann Theorem, it is enough to work with the Schro¨dinger representation. Th
correspondingW will be called the Schro¨dinger Weyl systemand is explicitly given onL2(X) by

@W~q,p!u#~y!5e2 i (~1/2! q1y)•p u~y1q!. ~10!

The representationsU and V can be recovered easily fromW by U(q)5W(2q,0) andV(p)
5W(0,p). One easily justifies the formulaW(j)5e2 is(j,R), whereR5(Q,P); s(j,R) signifies
here the~suitable defined! self-adjoint operatorQ•p2q•P.

The Weyl system is a convenient way to codify the commutation relations between the
operatorsQ andP. In the next paragraph, the quantization by pseudodifferential operators w
obtained as an integrated form of this Weyl system.

C. Pseudodifferential operators

If a family of self-adjoint operatorsS1 , . . . ,Sm is given such that for anyi , j , Si and Sj

commute, then one can define a functional calculus for this family by one of the two formu

f ~S!5E
Rm

f ~l!dES~l!5E
Rm

dt f̌~ t !e2 i t •S.

Here ES is the spectral measure~on Rm) of the family S1 , . . . ,Sm , under suitable assumption
t•Sªt1S11¯1tmSm is a well-defined self-adjoint operator andf̌ is the inverse Fourier tranform

of f , conveniently normalized.
If, once again,S1 , . . . ,Sm are self-adjoint, but they no longer commute, there is usually

reasonable spectral measureES . One can try to use the operator version of the Fourier invers
formula to define a functional calculus. The key point would be the ability of defining a sui
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analog ofe2 i t •S. This strategy is outlined in Ref. 2~see also Ref. 3! for very general situations
But the properties of the resulting functional calculus are quite modest if the commutation
tions of the operatorsSj have no interesting peculiarities.

We shall show how this program can be implemented for the casem52N, Sj5Qj if j
51, . . . ,N andSj5Pj for j 5N11, . . . ,2N. In an analoguous but more complicated way, in S
IV we shall do the same forSj5Qj if j 51, . . . ,N and Sj5P j

A for j 5N11, . . . ,2N, with P j
A

5Pj2Aj (Q) the j th component of the magnetic momentum defined by a vector potentialA. But
we stop for a moment to fix some conventions on Fourier transforms that will also be usefu
on.

In fact, we are faced with two problems: normalization and the choice of a good definitio
the symplectic space. The Lebegue measures onX, X! andJ are not the most convenient Haa
(5positive, translational invariant Borel! measures, since they lead to the appearance of spu
constants. Let us start with two arbitrary Haar measuresdx on X anddp on X* . One defines at the
level of tempered distributions

FX ,F̄X :S8~X!→S8~X* !, F X!,F̄X!:S8~X!!→S8~X!,

uniquely determined by the following actions on integrable functions:

~FXu!~p!5E
X
dx e2 ix•pu~x!, ~F̄Xu!~p!5E

X
dx eix•pu~x!,

~F X!v !~x!5E
X!

dp e2 ix•pv~p!, ~F̄X!v !~p!5E
X!

dp eix•pv~p!.

It is easily shown that there existsc.0 such that

F̄X* +FX5c idS8(X) and FX+F̄X!5c idS8(X!) .

Thus, by redefiningdx anddp, one getsF X
215F̄X! andF X!

21
5F̄X . We fix such a choice fordx

anddp, but obviouslydjªdx^ dp does not depend on this choice. We also set the symple
Fourier transforms

FJ ,F J
21 :S8~J!→S8~J!,

~FJ f !~j!5~F J
21f !~j!ªE

J
dh eis(j,h) f ~h!

and note thatFJ5I+(F̄X^ FX!), whereI:S8(X!3X)→S8(X3X!), (Ig)(x,p)ªg(p,x).
Now, for any Weyl system (H,W) we define~at least! for functions f :J→C with integrable

symplectic Fourier transform

Op~ f !ªE
J

dj ~F J
21f !~j! W~j!. ~11!

We do not insist on the precise interpretation of this formula; this will be done later on in the
complicated magnetic case.

Once again, by the Stone–von Neumann theorem, we are satisfied with the case
Schrödinger representation. By introducing the explicit form of the Schro¨dinger Weyl system, one
gets immediatly for anyuPL2(X)

@Op~ f !u#~x!5E
X
dyE

X!
dp ei (x2y)•pf S x1y

2
,pDu~y! ~12!
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and this is exactly the Weyl prescription to quantize classical symbols.
We note thatOp( f ) is an integral operator with kernelK f(x,y)ª@(1^ F̄X!) f #((x1y)/2 ,x

2y).
Then, by an elementary application of Schwartz’s kernel theorem, one gives a sense toOp( f )

for any f PS8(J) as a continuous linear operator fromS(X) to S8(X). In fact, all these operator
are of the formOp( f ) for some unique tempered distributionf .

D. The Moyal algebra

We turn now to the symbolic calculus. It is easy to see that by setting

~ f +g!~j!ª4NE
J

dhE
J

dz e22is(j2h,j2z) f ~h!g~z! ~13!

one will haveOp( f )Op(g)5Op( f +g), and thatOp( f )* 5Op( f °), with f °(x)ª f (x).
The noncommutative composition law+ is often calledthe Moyal product~or the Weyl prod-

uct!. It makes sense for suitable symbols, sayf ,gPS(J). For many purposes it is useful to exten
it to larger classes of functions and distributions. The standard approach~see Refs. 10, 18, 19, 2
and many others! is via oscillatory integrals. Better suited to our setting is the approach by du
of Refs. 4, 13 and 14 that we review now briefly.

Let us denote by (•,•) the dualityS8(X)3S(X)→C. By a simple calculation we see that fo
any three functionsf , g andh in S~J! we have

~ f ,g+h!5~ f +g,h!5~h, f +g!5~h+ f ,g!5~g,h+ f !.

Thus, we can extend+ to mappingsS(J)3S8(J)→S8(J) and S8(J)3S(J)→S8(J) by ( f
+G,h)ª(G,h+ f ) and (F+g,h)ª(F,g+h), for f ,g,hPS(J) and F,GPS8(J). This is already
useful and allows composingn symbols if all except one are in the Schwartz space.

Now set M(J)ª$FPS8(J)uF+S(J),S(J) and S(J)+F,S(J)%. Just by some ab-
stract nonsense one checks thatM~J! is a * -algebra under~the extension of! the Moyal product
+ and the involution °. In Ref. 13M~J! is calledthe Moyal algebraand some of its properties ar
studied. In particular it is shown thatM~J! is stable under all sorts of Fourier transforms, and
contains all the distributions with compact support and~thus! large classes of analytic functions.
also contains the family ofC` functions onJ with all the derivatives dominated by the sam
~arbitrary! polynomial.

We will reconsider this topic in greater detail in Sec. V, where the magnetic field will als
present.

III. THE MAGNETIC WEYL SYSTEM

We consider a quantum particle without internal structure moving inX5RN, in the presence
of a variable magnetic field. Themagnetic fieldis described by a closed continuous field
two-forms B defined onRN. In the standard coordinate system onRN, it is represented by a
continuous function taking real antisymmetric matrix values and verifying the cocycle rel
] jBkl1]kBl j 1] lBjk50 in a distributional sense. The reader will verify for himself that ma
constructions and assertions will still be valid for locally integrable fields; we assumed cont
for simplicity and to have a uniform framework.

It is well-known that any such fieldB may be written as the~distributional! differentialdA of
a field of one-formsA, the vector potential, that is highly nonunique~the gauge ambiguity!; by
using coordinates, one hasBjk5] jAk2]kAj for eachj ,k51,...,N.

In this section we shall deduce a formula for the analog of the Weyl system of Sec. II B
in which the magnetic field is also taken into account. One may proceed as in Sec. II B, wi
single modification which consists in replacing the translations by the magnetic translation@ex-
ponentials ofq•PA, wherePA

ªP2A(Q) is the magnetic momentum#. Just for a change, we
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proceed in a different, but equivalent, way. First we get directly the formula for our magnetic
system by exponentiating the self-adjoint operatorss@(q,p),(Q,PA)#5Q•p2q•(P2A(Q)),
(q,p)PJ. Then the magnetic translations and the magnetic form of the Weyl commut
relations are deduced as consequences.

The magnetic translations have long since appeared in the physical literature~see Refs. 22 and
31, for example!, especially in connection with problems in solid state physics. Most of the
they were used for the case of a constant field; some references are Refs. 5, 6, 16, 17 an

We stress that the new objects appearing in the magnetic case are two phase factors
defined as the imaginary exponential of the circulation of the vector potential; it enters the
nition of the magnetic translations, the magnetic Weyl system and~as a consequence, in Sec. IV!
in the expression of the magnetic pseudodifferential operators. The other one, an imagina
ponential of the flux of the magnetic field, appears in connection with multiplicative properti
the magnetic translations and of the magnetic Weyl system and~as a consequence, in Sec. V! in
the expression of the composition law defining the symbolic calculus. We hope that our trea
will constitute a source of unification of the various ‘‘nonintegrable phase factors’’ scattered i
literature on quantum magnetic fields.

A. The magnetic Weyl system

Given ak-form C on X and a compactk-surfaceg,X, we define

GC~g!ªE
g
C

~this integral having a well-defined invariant meaning!. We shall mainly encounter circulations o
one-forms along linear segments (g5@x,y#) and fluxes of two-forms through triangles (g
5^x,y,z&).

We denote byH the Hilbert spaceL2(X). For eachtPR we define

Wt
A :J→U~H!, Wt

A~x,p!ªe2 i t (Q1tx/2)•pLA~Q;tx!eitx•P, ~14!

where we introduced the exponential of the circulation of the vector potential

LA~q;x!ªe2 iGA([q,q1x])5e2 ix•*0
1ds A(q1sx). ~15!

We make the convention that the vector potential will always be taken continuous. Th
indeed, always possible, sinceB is supposed continuous, bythe transversal gauge

Ai~x!52(
j 51

N E
0

1

ds Bi j ~sx!sxj . ~16!

Noncontinuous vector potentials are not really useful in our framework, but they could al
handled either directly or by exploiting gauge covariance.

The next lemma says that$Wt
A(x,p)% tPR is the evolution group of the self-adjoint operat

Q•p2x•PA, suitably defined.
Lemma 1: We have Wt

A(x,p)5e2 i ts[(x,p),(Q,PA)] , where the self-adjoint operato
s@(x,p),(Q,PA)# is the closure of the restriction atS(X) of the sum S1T, with S5Q•p1x
•A(Q) and T52x•P.

Proof: It is known thatS1T is indeed essentially self-adjoint onCc
`(X) ~see Refs. 21 and 8!.

Thus, we can apply Trotter’s formula~see Ref. 27, Th. VII.31!. We setS5a(Q) and calculate
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~e2 ~ i /n! ta(Q)e~ i /n! tx•P!n

5e2~ i /n! ta(Q)e~ i /n! tx•Pe2 ~ i /n! ta(Q)e2 ~ i /n! tx•P

•e2i /n tx•Pe2 ~ i /n! ta(Q)e2 ~2i /n! tx•P

3e~3i /n! tx•P
¯e@(n21)i /n# tx•Pe2~ i /n! ta(Q)e2 @(n21)i /n# tx•Pe~ni/n! tx•P

5e2~ i t /n![a(Q)1a(Q1 tx/n)1¯1a(Q1 (n21)tx/n)]eitx•P.

One notes the appearance of a Riemman sum at the exponent, hence the last expression c

strongly toe2 i *0
t ds a(Q1sx)eitx•P. The proof is ended by remarking that

E
0

t

ds $~y1sx!•p1x•A~y1sx!%5ty•p1
t2

2
x•p1GA@y,y1tx#.

j

Another, more annoying, proof would consist in showing that for alljPJ, t°Wt(j) is a
strongly continuous unitary group inH and then doing the necessary derivations.

We note the obvious formulaWt
A(j)5W1

A(tj). The operatorW1
A(j) will be denoted simply

by WA(j).
Definition 2: The family $WA(j)%jPJ will be called the magnetic Weyl system associated

the vector potential A. We write down here, for further use, the action ofWA(j) on vectorsu
PH5L2(X):

@WA~x,p!u#~y!5e2 i (y1x/2)•pe2 iGA([ y,y1x])u~y1x!. ~17!

The usual Weyl system was a projective representation ofJ. Now the situation is of the sam
nature, but more involved. Forx,y,qPX, let us define

VB~q;x,y!ªe2 iGB(^q,q1x,q1x1y&). ~18!

We note that this is a continuous function ofq for fixed x andy, thus it defines a multiplication
operator inH.

Proposition 3: For any j5(x,k),h5(y,l )PJ one has

WA~j!WA~h!5e~ i /2! s(j,h)VB~Q;x,y!WA~j1h!. ~19!

Proof: By the Stokes theorem coupled with the relationB5dA, one gets for anyx,y,qPX the
equalityVB(q;x,y)5LA(q;x)LA(q1x;y)@LA(q;x1y)#21. Then~19! follows by a routine cal-
culation. j

Let us denote byC(X;U(1)) the group ~with pointwise multiplication! of all continuous
functions onX, taking values inU(1), themultiplicative group of complex numbers of modulu
1. One can interpretVB as a functionVB:X3X→C(X;U(1)). This function satisfies the follow-
ing two-cocycle conditions:

VB~q;x,0!5VB~q;0,y!51,
~20!

VB~q;x1y,z!VB~q;x,y!5VB~q1x;y,z!VB~q;x,y1z!.

They follow easily by direct calculations~for the second one use the Stokes theorem for the clo
two-form B and the tetrahedron of verticesq,q1x,q1x1y andq1x1y1z), but are also easy
consequences of Proposition 3. We also note thatVB(q;x,2x)51.
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B. The magnetic canonical commutation relations

By restricting toX, respectivelyX!, we recover the usualmagnetic translations, respectively,
the unitary group, generated by the position operators:

UA~x!ªWA~2x,0!5LA~Q;2x!e2 ix•P5LA~Q;2x!U~x!,
~21!

V~p!ªWA~0,p!5e2 iQ•p.

One has, analogously to~8!,

WA~x,p!ªe~ i /2! x•p UA~2x!V~p!5e2 ~ i /2! x•p V~p!UA~2x!, xPX, pPX!. ~22!

We get easily from~19! ~or by direct calculation! the commutation rules

V~p!V~k!5V~k!V~p!, UA~x!V~p!5eix•pV~p!UA~x! ~23!

and

UA~x!UA~y!5VB~Q;2x,2y!UA~x1y!, ~24!

that are the magnetic extension of the Weyl form of the canonical commutation relations.
For any xPX and anypPX!, the applicationsR{t°UA(tx)PU(H) and R{t°V(tp)

PU(H) are one-parameter unitary groups onH. We define self-adjoint generators~choosingx
5ej , resp.p5e j the j th element of the canonical orthogonal basis inRN)

Qjª i
]

]t U
t50

V~ te j !,

~25!

P j
A
ª i

]

]tU
t50

UA~ tej !5Pj2Aj~Q!.

On the common domain formed ofC`-functions with compact support we have the followin
commutation relations:

i @Qj ,Qk#50, i @Qj ,Pk#5d j k i @P j ,Pk#5Bjk~Q!. ~26!

If the magnetic field is not constant~or at least polynomial!, they are much more complex than
the nonmagnetic case; the successive commutators of the components ofB with the magnetic
momenta are nontrivial.

IV. MAGNETIC PSEUDODIFFERENTIAL OPERATORS

Our intention is to elaborate a functional calculus for thenoncommutativefamily of self-
adjoint operators$Qj ,Pk% j ,k51

N . We shall call itthe Weyl calculus with magnetic field. As in the
nonmagnetic case, we obtain it by an analog of the Fourier inversion formula, the magnetic
system of the preceding section playing the part of the imaginary exponential. The res
formula has the right gauge covariance. The operators involved are all integral operators
the kernel theorem they can also be defined for symbols which are tempered distribution
problem of identifying finite-rank, Hilbert–Schmidt and compact operators is also addresse
this, an extension of the classical Fourier–Wigner transform~cf. Ref. 10! is of great help. It also
showsa posteriori the irreducibility of our magnetic Weyl system. In the final part of the sect
we compare the magnetic Weyl calculus and the composition of the usual Weyl caculus w
minimal coupling prescription. They are different but, striking enough, they give the same res
many important cases. This explains perhaps the fact that the quantization of observabl
magnetic field has not been treated properly before in a suitable generality. We note, howev
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in Ref. 22 one finds~in a nonsystematic setting! the right attitude for the case of periodic symbo
depending only onp. We thank George Nenciu for drawing our attention to this reference.

Let us finally remark that for a constant magnetic field, using a linear vector potential, o
lead to a change of the canonic symplectic form of the spaceJ5X3X!, while for nonconstant
magnetic fields one is quantizing a symplectic manifold~with a nonconstant symplectic form o
the special typesBªs1B) associated to the same linear spaceJ.

A. The functional calculus

We define the linear mapping

OpA:F JL1~J!→B~L2~X!!, OpA~ f !ªE
J

dj ~F J
21f !~j! WA~j! ~27!

in a weak sense: ifu,vPHªL2(X), then ^v,OpA( f )u&5*Jdj (F J
21f )(j)^v,WA(j)u&. It

clearly satisfies the estimateiOpA( f )i<iF J
21f iL1.

Using the expression of the operatorsWA(j) given in ~14! and ~15! we obtain, at least
formally, the explicit form of the operatorsOpA( f ),

~OpA~ f !u!~x!5E
X
dyE

X!
dk ei (x2y)•kL̃A~x,y! f S x1y

2
,kDu~y!, ~28!

whereL̃A(x,y)ªe2 iGA([x,y])5LA(x;y2x). For A50 this is the usual Weyl prescription to qua
tize a classical symbol, encountered in the theory of pseudodifferential operators. For g
~continuous! A this is, in our opinion, the right formula that should stand forf (Q,PA).

In fact, the precise sense of~27! and~28! and of their equivalence depends on our assumpti
on f andu. In the next paragraphs, under certain hypothesis on the magnetic field, we shall
the very general case in whichf is a tempered distribution; then both formulas will make se
with a suitable reinterpretation and actually define the same object. Iff is subject to suitable strong
decay assumptions, then no special condition is needed~except our standing convention thatA is
continuous!. All is smooth, for example, iff is in the Schwartz classS~J!. On the other hand
once again without any assumption on the magnetic field,~27! can be extended straightforward
to f ’s that are Fourier transforms of bounded complex measures onJ. Now, of course,~28! needs
a reinterpretation.

To advocate our choice of the mappingOpA, an important point is to notegauge covariance:
Proposition 4: Let A and A8 be two continuous vector potentials defining the same continu

magnetic field: dA5B5dA8. Then there exists a real C1-function r on X such that A85A
1¹r and we have eir(Q)WA(j)e2 ir(Q)5WA1¹r(j) for all jPJ and eir(Q)OpA( f )e2 ir(Q)

5OpA1¹r( f ) for all f PFJL1(J).
Proof: It is well-known ~cf. Ref. 20, for example! that if dA5B5dA8 and A,A8 have

L loc
1 -components, then there existsr ~in some suitable local Sobolev space that does not ma

here! such thatA82A5¹r in a distributional sense. Now, since in our caseA and A8 are
continuous,r will be of classC1 by a simple argument. The two identities are verified by triv
calculations based on the relation

eir(Q)eix•Pe2 ir(Q)5e2 i [r(Q1x)2r(Q)]eix•P5e2 ix•*0
1ds ¹r(Q1sx)eix•P.

j

Remark:One implements Planck’s constant, at the level of the physical momentum, by s
P5\Dª2 i\¹. This gives for the magnetic Weyl system

W\
A~x,p!5e2 i (Q1 ~\/2! x)•pe2~ i /\! GA([Q,Q1\x])ei\x•D
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and the\-dependent magnetic two-cocycle will beV\
B(q;x,y)5e2 ( i /\) GB(^q,q1\x,q1\x1\y&). We

collect here, for the convenience of the reader, formulas for the magnetic Weyl calculus,

~Op\
A~ f !u!~x!5\2NE

X
dyE

X!
dk e~ i /\!(x2y)•ke2 ~ i /\! GA([x,y]) f S x1y

2
,kDu~y!,

and for the magnetic Moyal product~subject of Sec. V!,

~ f +\
Bg!~j!5S 2

\ D 2NE
J

dhE
J

dz e22~ i /\! s(j2h,j2z)e2 ~ i /\! GB(^q2y1x,x2q1y,y2x1q&) f ~h!g~z!.

In the sequel\ will always be 1.
Remark:One often uses instead of~1! the t-quantizations(tP@0,1#), given by~cf. Ref. 28!

@Op(t)~ f !u#~x!ªE
R2N

dy dp ei (x2y)•pf ~~12t!x1ty,p!u~y!.

They are somehow connected with the ordering ofQ and P in the expression off (Q,P). The
casest50 andt51 are called respectivelythe right and the left quantization. Rather often, in
texbooks, only the caset50 is treated. But the Weyl prescriptionOp[Op(1/2) is preferred in
quantum mechanics because of its nice propertyOp( f )* 5Op( f̄ ).

We obtain the magnetic analog ofOp(t) by replacingWA(j) with

W(t)
A ~x,p!ªei (12t)x•pUA~2x!V~p!5e2 i tx•pV~p!UA~2x!, xPX,pPX!.

A short formal calculation shows that the definitionOp(t)
A ( f )ª*Jdj (F J

21f )(j) W(t)
A (j)

leads to

@Op(t)
A ~ f !u#~x!ªE

R2N
dy dp ei (x2y)•pe2 iGA([x,y]) f ~~12t!x1ty,p!u~y!,

which allows a rigorous treatment analogous to that given forOpA[Op(1/2)
A in the sequel.

B. The distribution kernel

OpA( f ) is an integral operator having a kernel that can be defined in terms off and ‘‘the
phase function’’ L̃A. In fact, let us introduce the one-to-one linear change of varia
(x,y)°S(x,y)ª(x1 y/2 ,x2 y/2) and denote by the same symbolS the induced transformation
on functions (SF)(x,y)ªF(S(x,y))5F(x1y/2,x2y/2). The explicit form of the inverse is
S21(x,y)5((x1y)/2 ,x2y). We can now define@on S~J! for instance# the map

KA
ªL̃AS21~1^ F̄X!!, ~29!

composed of a partial Fourier transform, a change of variables and a multiplication operato
easy to verify thatOpA( f ) is the integral operator with kernelKAf . For functionsF defined on
X3X we shall denote byInt(F) the integral operator onL2(X) with kernelF, so that one can
write OpA( f )5Int(KAf ).

For further use we shall introduce two more notations, trying to emphasize the specia
played by the phase factorL̃A. We define ‘‘the zero magnetic field analog’’ ofKA, the mapK

ªS21(1^ F̄X!) and the magnetic integral operator associated to a kernelF as IntA(F)
ªInt(L̃AF). With these notations one may write for anyf PS(J)

OpA~ f !5Int~KAf !5IntA~K f !. ~30!
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We use now these facts to extend the operationOpA to distributions. Let us assume that th
components of the magnetic field areCpol

` functions, i.e., they are indefinitely derivable and a
derivative is polynomially bounded. These types of functions are also calledwith tempered
growth; their main virtue is that by multiplication they leave the Schwartz spaceS invariant, hence
they define by duality multiplication operators onS8. The formula~16! for the transversal gaug
shows that the vector potentialA can also be chosen of classCpol

` . By easy calculations,L̃A will
also beCpol

` in both variables. Then it is clear thatKA defines isomorphismsS(J)→̃S(X3X) and
S8(J)→̃S8(X3X).

On the other hand, let us recall that for any finite dimensional vector spaceV, the spacesS~V!
andS8(V) are nuclear and we have linear topological isomorphisms~see, for example, Ref. 30
Theorem 51.6 and its Corollary!

S~X! ^ S~X!>S~X3X!, S8~X! ^ S8~X!>S8~X3X!. ~31!

Here the tensor product is the closure of the algebraic tensor product for the injective
projective topologies that coincide in this case~we refer to Ref. 30, Theorem 50.1!. We shall be
interested in the following spaces of linear continuous operators:L@S(X),S8(X)#,
L@S8(X),S(X)# andL@S(X)#>L@S8(X)#. On all these spaces we consider the topology of u
form convergence on bounded sets. It is easy to see that we have the continuous linear in

L@S8~X!,S~X!#,B@L2~X!#,L@S~X!,S8~X!#. ~32!

The conclusions of Sec. 50 in Ref. 30 and the Corollary of Theorem 51.6 in Ref. 30 imply
isomorphically,

Int:S~X3X!→̃L@S8~X!,S~X!#, Int:S8~X3X!→̃L@S~X!,S8~X!#. ~33!

By putting together the information above about the operationsKA and Int, we get the
following result concerning our functional calculus:

Proposition 5: If the potential vector A is of class Cpol
` , the mapOpA defines linear topo-

logical isomorphisms

OpA:S~J!→̃L@S8~X!,S~X!#, OpA:S8~J!→̃L@S~X!,S8~X!#.

So ‘‘any’’ operator is~in a unique way! a magnetic pseudodifferential operator of the fo
OpA( f ) for some tempered distributionf and the regularizing operators are exactly those w
symbol in the Schwartz space.

Gauge covariance can be extended to this setting; we leave the details to the reader:
Proposition 6: Let A and A8 be two vector potentials of class Cpol

` defining the same magneti
field, dA5B5dA8. Then there exists a real functionrPCpol

` (X) such that A85A1¹r and
eir(Q)OpA( f )e2 ir(Q)5OpA1¹r( f ) for any fPS8(J); this second identity is valid in
L@S(X),S8(X)#.

C. The magnetic Fourier–Wigner transformation and special classes of operators

Definition 7: ~a! For any pair of vectorsu,v from H5L2(X) we define the function

W u,v
A :J→C, W u,v

A ~j!ª^v,WA~j!u&, ~34!

called the magnetic Fourier–Wigner transform of the couple(u,v).
~b! The map (v,u)°W u,v

A will be called the magnetic Fourier–Wigner transformation~de-
fined by the vector potentialA).

In fact OpA( f ) was defined bŷv,OpA( f )u&5*Jdj (F J
21f )(j)W u,v

A (j), u,vPH.
Proposition 8:(a) The magnetic Fourier–Wigner transformation extends to a unitary oper

tor W A:L2(X3X)→L2(J).
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(b) If A is of class Cpol
` , then the magnetic Fourier–Wigner transformation defines isomo

phismsW A:S(X3X)→S(J) and W A:S8(X3X)→S8(J).
Proof: Using the explicit form ofWA(j) we obtain

W u,v
A 5@~1^ FX!IS~L̃A!21#~u^ v̄ !, ~35!

whereI is the composition with the change of variables (x,y)°(y,x) on X3X. Under the right
asumption, each of the maps1^ FX , I, S and (L̃A)21 is an isomorphism between the correspon
ing spaces. One also uses the reinterpretationW u,v

A [W u^ v̄
A . j

An important direct consequence of this result is the following.
Corollary 9: The Weyl system with magnetic field WA:J→U@L2(X)# is irreducible, i.e.,

there are no nontrivial subspaces of L2(X) invariant under all the operators$WA(j)ujPJ%.
Proof: Suppose thatK is a closed nontrivial subspace ofL2(X), invariant under all the

operatorsWA(j), jPJ. Let vPK' be different from 0. Then for anyuPK\$0% we have
WA(j)uPK for any jPJ, so that

W u,v
A ~j!5^v,WA~j!u&50, ;jPJ.

Thus we deduce thatiW u,v
A iL2(J)50. But iW u,v

A iL2(J)5iuiivi and we get a contradiction.j
Remark:The Fourier–Wigner transformation also serves to express the operatorsOpA(F) in

a convenient way. Let us stick, for example, to the case in whichA has tempered growth. Then fo
all u,vPS(X) and FPS8(J), one haŝ v,OpA(F)u&5^W u,v

A ,F J
21F&, the left-hand-side being

interpreted as the anti-duality betweenS(X) and S8(X), while the right-hand-side as the ant
duality betweenS~J! @cf. Proposition 8,~b!# andS8(J).

We shall identify now finite-rank, Hilbert–Schmidt and compact operators.
Proposition 10:(a) For any u,vPH we haveuu&^vu5OpA(FJW u,v

A ).
(b) OpA induces a unitary map from L2(J) to B2(H), the ideal of Hilbert–Schmidt opera-

tors.
(c) The familyOpA@F JL1(J)# is dense in the closed idealK~H! of all compact operators in

H.
Proof: ~a! The operatoruu&^vu is an integral operator having the kernelu^ v̄. Thus

uu&^vu5Int~u^ v̄ !5OpA@~KA!21~u^ v̄ !#.

One has

~KA!21~u^ v̄ !5~1^ FX!S~L̃A!21~u^ v̄ !5~1^ FX!I~1^ F̄X!!~1^ FX!IS~L̃A!21~u^ v̄ !.

But, by a simple calculation, one gets (1^ FX)I(1^ F̄X!)5FJ . The point~a! follows by taking
~35! into account.

~b! On the intersectionF JL1(J)ùL2(J) we have OpA5Int+KA, where KA:L2(J)
→L2(X3X) is unitary andInt:L2(X3X)→B2(H) is also unitary ~a classical result!. But
F JL1(J)ùL2(J) is dense inL2(J).

~c! By ~b!, for all f PF JL1(J)ùL2(J) the operatorOpA( f ) is Hilbert–Schmidt, hence
compact. The spaceF JL1(J)ùL2(J) is dense inL2(J), thus OpA@F JL1(J)ùL2(J)# is
dense inB2(H) with respect to the Hilbert–Schmidt norm, hence also with respect to the ope
norm. It follows thatOpA@FJL1(J)ùL2(J)# is dense inK~H!. But OpA@F JL1(J)# is also
contained inK~H!, sinceF JL1(J)ùL2(J) is dense inFJL1(J) and iOpA( f )iB(H)<i f iF JL1

ªiF J
21f iL1, ; f . j

We see thatOpA has a strong tendency towards irreducibility:K~H! is, of course, irreducible,
thus, by density,OpA@F JL1(J)ùL2(J)# is also an irreducible family of operators inH. Other
results of this type may be obtained by density.
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D. The correct form of the minimal coupling principle

The loose form of the minimal coupling principle says that ‘‘when a magnetic fieldB5dA is
turned on, one should replace the canonical variablep with p2A(x). ’’ The question is, of course
at which stage should this replacement be performed when quantization of a classical obs
f is intended. The wrong answer is to composef :J→C with the change of variables
(x,p)°(x,p2A(x)) and then apply the Weyl calculus. As seen in the Introduction, this wo
give a gauge non-covariant formula. The right approach is to apply tof itself a modified~mag-
netic! Weyl calculus. And this modification is governed actually by the sound, elementary for
the minimal coupling principle: the quantum observableP is replaced byPA5P2A(Q) and this
object determines the expression of the Weyl systemWA, used in the definition off (Q,PA). One
could say that this is correct, sinceWA summarizes the commutation relations of the family
operators (Q1 , . . . ,QN ;P1

A , . . . ,PN
A) for which a functional calculus is requested.

However, one could ask for a more sophisticated~and not so clear ideologically! form of the
minimal coupling principle: find a transformationTA acting on phase-space functions such th
for any f , f (Q,PA) is obtained~also! by Weyl quantizing the symbolTAf [ f A. A brief examina-
tion of this topic follows.

Let us assume, for convenience, thatB and A are of classCpol
` . Both OpA and Op are

one-to-one~even isomorphic! from S8(J) to L@S(X),S8(X)#. Using notations from Sec. IV B
one has

OpA~ f !5Op~ f A!⇔Int~KAf !5Int~K f A!⇔ f A5K21KAf .

By using explicit formulas forKA andK and the identitySL̃AS215L̃A+S, one getsf A5TAf , with

TA:S8~J!→S8~J!, TA
ª~1^ FX!~L̃A+S!~1^ F̄X!!.

Formally ~or for suitablef ’s)

~TAf !~x,p!5E
X
E

X!
dydk eiy•[k2p1*21/2

1/2 dt A(x1ty)] f ~x,k!

5E
X
dy e2 iy•[ p2*21/2

1/2 dt A(x1ty)]~1^ F̄X!!] f ~x,y!.

One should compare this rather complicated formula~a sort of minimal coupling principle for
all observables! with

~MAf !~x,p!ª f ~x,p2A~x!!5E
X
E

X!
dydk eiy•[k2p1A(x)] f ~x,k!.

The rigorous expression behind this formal integral is

MA:S8~J!→S8~J!, MA
ª~1^ FX!SA~1^ F̄X!!,

with SA(x,y)5eiy•A(x), x,yPX.
A comparison of the explicit formulas forTA and MA shows once again the differenc

between the correct and the mistaken quantizations in a magnetic field:The correct one involves
circulations of the magnetic potential A through segments@x1 ,x2#, while for the wrong one the
same circulations are calculated by using the constant value Ax1 ,x2

ªA((x11x2/2)), taken at the

middle of the respective segment.
One has a complete characterization of the vector potentials for which the wrong quanti

is good:
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Lemma 11: One has TA5MA @which is equivalent toOpA( f )5Op(MAf ), ; f PS8(J)] if
and only if A is linear.

Proof: 1^ FX and1^ F̄X! being one-to-one, we haveTA5MA if and only if L̃A+S5SA, i.e.,
if and only if y•*21/2

1/2 dt @A(x1ty)2A(x)#50, ;x,yPX. A simple application of Taylor’s
formula shows that this is equivalent to the annulation of all the second derivatives of a
components ofA. j

One of the most important examples is the constant magnetic field. In this case, ever
would choose a linear potential vectorA and no care is needed in the choice of the quantiza
procedure. Most articles involving a functional calculus in a magnetic field are written for con
B and linear A. Note, however, that the identityTA5MA is not gauge invariant.

However, one can haveTAf 5MAf for anyA for certain special functionsf . This is obviously
true if f depends only on the variablexPX. Actually, in this caseOpA( f )5Op(MAf )5 f (Q).
Let us give some more interesting examples.

Proposition 12: Let f be a polynomial of order m in p, not depending on the variable in X.
If m<2, then TAf 5MAf , henceOpA( f )5Op(MAf ). This is no longer true for m53.

Proof: Let us consider the monomialf a(x,p)ªpa. Then we have (1^ F̄X!) f a5(2 i ])ad,
thus (TAf )(x,p)5@( i ]y)

ae2 i tA(x,p;y)#uy50 and (MAf )(x,p)5@( i ]y)
ae2 imA(x,p;y)#uy50 , where

the two phases are defined bytA(x,p;y)ªy•@p2*21/2
1/2 dt A(x1ty)# and mA(x,p;y)ªy•@p

2A(x)#. We concentrate on the casesm51,2,3. The following list of relations is needed:

i ]yj
e2 iw5~]yj

w!e2 iw, i 2]yk
]yj

e2 iw5~ i ]yk
]yj

w1]yk
w ]yj

w!e2 iw,

i 3]yl
]yk

]yj
e2 iw5~2]yl

]yk
]yj

w1 i ]yj
w ]yl

]yk
w1 i ]yk

w ]yl
]yj

w1 i ]yl
w ]yk

]yj
w

1]yl
w ]yk

w ]yj
w!e2 iw.

Note that]yj
mA(x,p;y)5pj2Aj (x), while the higher-order derivatives vanish.

A simple calculation gives

]yj
tA~x,p;y!5pj2E

21/2

1/2

dt Aj~x1ty!2 (
n51

N

ynE
21/2

1/2

tdt ~] jAn!~x1ty!,

and by taking the value iny50 one gets@]yj
tA(x,p;y)#uy505@]yj

mA(x,p;y)#uy505pj2Aj (x).
ThusTAf 5MAf for any first-order polynomial. This is not amaizing:OpA(pj )5PA was accepted
as a basic principle.

One also has

]yk
]yj

tA~x,p;y!52E
21/2

1/2

tdt ~] jAk1]kAj !~x1ty!2 (
n51

N

ynE
21/2

1/2

t2dt ~]k] jAn!~x1ty!.

By ‘‘miracle’’ this term vanishes iny50; then straightforwardlyTAf 5MAf also for second-orde
polynomials. This is significant, since most of the time people considered the casef (x,p)
5upu2, leading to the magnetic LaplacianDA5(PA)2; no care is needed in this case.

The situation changes drastically for third order polynomials. One has

]yl
]yk

]yj
tA~x,p;y!52E

21/2

1/2

t2dt ~]k] jAl1] l] jAk1] l]kAj !~x1ty!

2 (
n51

N

ynE
21/2

1/2

t3dt ~] l]k] jAn!~x1ty!,

which in y50 takes the value2 1
12(]k] jAl1] l] jAk1] l]kAj )(x). In this caseTAf ÞMAf . j
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V. THE MAGNETIC MOYAL ALGEBRA

We come now to an important point in the development of our functional calculus.
product of the operatorsOpA( f ) and OpA(g) is again an integral operator with a kernelKA( f
+Bg), which can formally be associated to the function onJ obtained by the following noncom
mutative composition law, calledthe magnetic Moyal product of the functions f and g:

~ f +Bg!~j!54NE
J

dhE
J

dz e22is(j2h,j2z)e2 iGB(^q2y1x,x2q1y,y2x1q&) f ~h!g~z!

54NE
J

dhE
J

dz e22is(h,z)e2 iGB(^q2x2y,q1x2y,q1y2x&) f ~j2h!g~j2z!; ~36!

herej5(q,p), h5(x,k), z5(y,l ). Thus we haveOpA( f +Bg)5OpA( f )OpA(g). We can also
define an involution~the same as in the nonmagnetic case! by f °(j)ª f (j) such thatOpA( f °)
5OpA( f )* .

The integral definingf +Bg is absolutely convergent only for restricted classes of symbols.
seeks to extend the composition law+B to large classes of distributions in such a way as to ob
~together with the involution °! * -algebras. For any choice of a magnetic potential, the functio
calculus with magnetic field will be a representation of these*-algebras. But the algebras them
selves are completely intrinsic, being defined only in terms of the magnetic field. We shall d
extension by duality, following the approach of Refs. 4 and 13~see also Refs. 14 and 9! valid in
the absence of the magnetic field. We obtain a magnetic analog of the Moyal algebra outli
Sec. II D; the terminology is that of the references above and it is suggested by some
fundamental work of Moyal~cf. Ref. 25!.

The standard technique of extending the composition law, based on oscillatory integra
classes of symbols, is less appropriate for our present purposes. But we intend to deal w
topic in a subsequent publication.

A. The magnetic Moyal product

Before discussing rigorously the sense of formula~36! for various assumptions onf , g andB,
we make some formal remarks. Note that ifB50, ~36! reduces to the usual composition
symbols~13! in the Weyl quantization. The magnetic correction consists of a phase factor de
in terms of the flux of the magnetic field through suitable triangles. The associativity of the a
composition law comes from the two-cocycle condition, the second identity in~20!. For this just
notice thate2 iGB(^q2y1x,x2q1y,y2x1q&)5VB(q2y1x;2y22q,2q22x) and do the right calcula-
tion. Finally, it is easy to check thatOpA( f +Bg)5OpA( f )OpA(g) whenever everything is well-
defined.

In general, if no special assumption onB is imposed, it is not so easy to define and use sha
the magnetic Moyal product. Forf ,gPF JL1(J) both OpA( f ) and OpA(g) are defined as
bounded linear operators inH5L2(X), but it is not clear if their product is of the formOpA(h)
for someh ~eventually inF JL1(J)). On the other hand, iff ,gPL1(J), then the integral in~36!
is absolutely convergent and defines a bounded continuous function onJ. However, we do not see
why this function should be integrable and, anyway, applyingOpA to all these is problematic. On
can also take advantage of Proposition 10~b! to endowL2(J) with the structure of a* -algebra, the
composition law coinciding with~36! on suitable subsets.

In fact many other solutions exist butthey do not seem to be natural enough in the pres
framework. In a future publication we will give another~equivalent! form of the magnetic Moyal
product~a ‘‘very twisted convolution’’! for which it will be relatively easy to define nice norme
*-algebras. Their pull-backs in the pseudo-differential representation involve a partial F
transformation that does not have an explicitly expressible range. So we postpone the s
magnetic composition laws for general~continuous! magnetic fields and turn to a special ca
which is, however, very comprehensive.

Proposition 13: Assume that the components of the magnetic field B are of class Cpol
` .
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(a) For any f,gPS(J) one has f+BgPS(J). The map+B:S(J)3S(J)→S(J) is bilinear
and continuous.

(b) For any continuous vector potential A such that dA5B, one has OpA( f +Bg)
5OpA( f )OpA(g).

Proof: One can prove thatS(J)+BS(J),S(J) directly, estimatingja]b( f +Bg) by involved
manipulations in~36!. This also gives the required continuity. We prefer to outline a simpler pr
based on integral kernels.

Let us chooseAPCpol
` (X,X!) such thatdA5B; this is possible by~16!. We know that the

maps KA
ªL̃AS21(1^ F̄X!):S(J)→S(X3X!), Int:S(X3X!)→L@S8(X),S(X)# and

OpA:S(J)→L@S8(X),S(X)# are topological isomorphisms and thatOpA5Int+KA. One checks
easily thatKA( f +Bg)5KA( f )‡KA(g), where (L‡M )(x,y)ª*Xdz L(x,z)M (z,y) is the compo-
sition rule of integral kernels~leading to the product of the integral operators involved!. These
facts and the continuity of ‡:S(X3X!)3S(X3X!)→S(X3X!) imply both the points~a! and~b!
for APCpol

` (X,X!).
The general case of a continuousA in ~b! is solved by gauge covariance, cf. Proposition 4~we

consider hereL@S8(X),S(X)# embedded inB@L2(X)#). j

SinceS~J! is obviously stable under involution, (S(J),+B,°) is a * -algebra~all the axioms
are easily verified! andOpA:S(J)→L@S8(X),S(X)# is a * -isomorphism. Unfortunately,S~J! is
too small for many purposes. For instance, functions depending only onx or on p are not
included.

B. Extension by duality

We start extending by duality the magnetic Moyal product with an asymmetric version
shall compose a Schwartz test function with a tempered distribution. The result isa priori a
tempered distribution, but we shall be able to get more precise information in certain case
components of the magnetic field will be always considered to be inCpol

` , thus the conclusions o
Proposition 13 hold.

The duality approach is facilitated by the next lemma:
Lemma 14: For any functions f and g inS~J! we have

E
J

dj ~ f +Bg!~j!5E
J

dj ~g+Bf !~j!5E
J

dj f ~j!g~j!5^ f̄ ,g&[~ f ,g!.

Proof: Of course, one needs only to show that*Jdj ( f +Bg)(j)5*Jdj f (j)g(j); the other
identities are trivial consequences.

The calculation will be straightforward by regularization. We choose sequences (an)nPN
PS(X), (bn)nPNPS(X!) such thatan→1 in S8(X) and bn→1 in S8(X!). Then it is shown
easily that

E
X
E

X!
dq dp ~ f +Bg!~q,p!an~q!bm~p!→E

X
E

X!
dq dp f~q,p!g~q,p!

for n,m→`. For this we use the explicit formula forf +Bg, Fubini’s theorem, the fact that th
Fourier transforms ofan andbm converge respectively to the distributiond and the annulation of
GB(^q2y1x,x2q1y,y2x1q&) for x5y. We leave the details to the reader. j

Corollary 15: For any three functions f, g and h inS~J! we have

~ f +Bg,h!5~ f ,g+Bh!5~g,h+Bf !.

Proof: Easy consequence of the lemma, the associativity of+B and the symmetry of (•,•).j
Definition 16:For any distributionFPS8(J) and any functionf PS(J) we define

~F+Bf ,h!ª~F, f +Bh!, ~ f +BF,h!ª~F,h+Bf !, ;hPS~J!.
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By using Proposition 13~a! and the definition it is straightforward to see the following.
Proposition 17: The above definition provides two bilinear continuous mappingsS8(J)

3S(J)→S8(J), resp.S(J)3S8(J)→S8(J).
One easily checks that (F+Bg)°5g°+BF° and (g+BF)°5F°+Bg°, for all FPS8(J) and g

PS(J). Associativity results as (f 1+BF)+Bf 25 f 1+B(F+Bf 2), for f 1 , f 2PS(J), FPS8(J) obvi-
ously hold, so one can define unambiguouslyf 1+B

¯+Bf n if one f j is a tempered distribution an
all the others are Schwartz test functions. Lemma 14 implies immediately that 1+Bf 5 f 5 f +B1,
; f PS(J).

Proposition 18: For any vector potential A with tempered growth, OpA is an involutive linear
continuous map: S8(J)°L@S(X),S8(X)#, satisfyingOpA(F+Bg)5OpA(F)OpA(g) and OpA(g
+BF)5OpA(g)OpA(F) for all F PS8(J) and gPS(J).

Proof: We already know thatOpA:S8(J)°L@S(X),S8(X)# is an isomorphism of topologica
vector spaces. The involution onL@S(X),S8(X)# is defined by antiduality (̂T* v,u&5^v,Tu&,
;u,vPS(X)). Then the formulaOpA(F)* 5OpA(F°) follows readily from the Remark in Sec
IV C. The relationsOpA(F+Bg)5OpA(F)OpA(g) and OpA(g+BF)5OpA(g)OpA(F) follow by
approximatingFPS8(J) with elementsf n of S~J!; all the continuity properties which are neede
are already proved.

C. The magnetic Moyal * -algebras

Definition 19: ~a! The spaces of distributions

ML~J!ª$FPS8~J! u F+Bf PS~J!, ; f PS~J!%

and

MR~J!ª$FPS8~J! u f +BFPS~J!, ; f PS~J!%

will be called, respectively,the leftand the right magnetic Moyal algebras.
~b! Their intersection

M~J!ªML~J!ùMR~J!

will be called the magnetic Moyal algebra.
The three spaces above depend on the magnetic field so, in principle, they would dese

index B.
For any two distributionsF andG in M~J! we can extend the magnetic Moyal product b

~F+BG,h!ª~F,G+Bh!, ;hPS~J!.

Proposition 20: The setM~J! together with the composition law+B defined as above and th
complex conjugation F°F° is an unital * -algebra, containingS~J! as a self-adjoint two-sided
ideal.

All the verifications are trivial. Since the constant functions are obviously inM~J!, it is
already clear that the*-algebraS~J! is enlarged. We shall see in Sec. V D that this enlargemen
substantial.

We study now the behavior ofOpA on symbols belonging to the magnetic Moyal algebra
Proposition 21: OpA is an isomorphism of * -algebras betweeenM~J! and

L@S(X)#ùL@S8(X)#.
Proof: Let us denote simplyS5S(X) andS85S8(X). We identify L(S)[L(S,S) with the

family of all the elementsTPL(S,S8) such thatTS,S. By the closed graph theorem, such aT
will automatically be continuous~and linear! as a mappingS°S. L~S! is obviously an algebra
with the composition of operators.
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Another algebra isL(S8)[L(S8,S8), which may be identified with the family of elemen
TPL(S,S8) that admit a continuous extension toS8. We recall that the involution onL(S,S8) is
defined by antiduality (̂T* u,w&5^u,Tw&, ;u,wPS). Then, plainly, L(S)* 5L(S8) and
L(S8)* 5L(S). ThusL(S)ùL(S8) is a * -algebra.

We know thatOpA is one-to-one; we calculate nowOpA@M(J)#. By the definition ofM~J!
and Proposition 5, T is in OpA@M(J)# if and only if TL(S8,S),L(S8,S) and
L(S8,S)T,L(S8,S). The last inclusion is equivalent toT* L(S8,S),L(S8,S). It is easy to see
that TL(S8,S),L(S8,S) if and only if TPL(S). One implication is trivial and the other on
follows once again from the closed graph theorem and from the fact that for anyvPS there exist
uPS8 and SPL(S8,S) such thatSu5v. Then, by taking alsoT* into account, we see tha
OpA@M(J)#5L(S)ùL(S8).

Let F,GPM(J). We calculate foruPS8 andhPS(J)

OpA~F+BG!@OpA~h!u#5OpA~F+BG+Bh!u5OpA~F !@OpA~G+Bh!u#

5@OpA~F !OpA~G!#OpA~h!u,

where we used Proposition 18. Since anyvPS can be written asOpA(h)u for someuPS8 and
hPS(J), the multiplicative property ofOpA on M~J! is shown.

The involutivity of OpA is valid onS8(J), as remarked before. j

Remark:Propositions 20 and 21 are the most important results. We note here rapidly
extra results concerning the magnetic Moyal algebras, all of an elementary nature. On
defines by duality products of the formF1+BG+BF2PS8(J) for F1PMR(J), F2PML(J) and
GPS8(J); S8(J) is a (MR(J),ML(J))-bimodule. In fact M L+BML,ML and M R

+BMR,MR , henceML and MR are algebras. But they are different and correspond to e
other by complex conjugation, soM is optimally defined as a*-algebra by the present method
The proof of Proposition 21 also leads toOpAML(J)5L(S) andOpAMR(J)5L(S8).

The next striking result shows once more the importance of the magnetic Moyal algeb
Proposition 22: One hasS8(J)+BS(J),MR(J) and S(J)+BS8(J),ML(J).
Proof:

OpA@S8~J!+BS~J!#5OpA@S8~J!#OpA@S~J!#5L~S,S8!L~S8,S!5L~S8!,OpAMR~J!,

thusS8(J)+BS(J),MR(J). The other inclusion is proved analogously. j

We note that both the inclusions are strict. For zero magnetic fieldf +G is smooth if f
PS(J) andGPS8(J), cf. Ref. 13.

D. Some important subclasses

We keep the setting of the preceding paragraphs, i.e., the components ofB ~and those ofA
when necessary! are of classCpol

` . Simple examples show readily thatM~J! is much larger than
S~J!. One shows easily that iff (x,p)5 f 1(x) depends only on the variable inX, thenOpA( f )
5 f 1(Q). If f 1 has tempered growth, thenf 1(Q)PL(S)ùL(S8), thus f PM(J) by Proposition
21. It is also quite obvious thatFJL1(J),M(J), sinceWA(j) is a continuous operator inS for
all jPJ. Actually, the same argument would also show that Fourier transforms of boun
complex measures onJ are also in the magnetic Moyal algebra. In the sequel we shall outli
less evident example.

Let Cpol,u
` (J),S8(J) be the space of indefinitely derivable complex functions onJ having

uniform polynomial growth at infinity; i.e.,f PCpol,u
` (J) when it is indefinitely derivable and

there existsmPN ~depending onf ! such that for any multi-indexaPN2N one hasu(]af )(j)u
<Ca^j&m for all jPJ.

Proposition 23: Cpol,u
` (J),M(J).

Proof: First we reduce our proof to a precise estimate. Classes of functionsT~J! will be
denoted briefly byT.
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For anymPR we setS0
m
ª$ f PC`u^•&2m]af PL`, ;aPN2N% and R0

m
ª$ f PC`u^•&2m]af

PL1, ;aPN2N%. The reason for introducing these function spaces is the fact thatCpol,u
` (J)

5ømPRS0
m5ømPRR0

m . This follows fromR0
m,S0

m,R0
m12N1« , valid for anymPR and any«

.0, which is shown by trivial estimates. So the proposition will be proved if we show
R0

m,M, ;mPR.
In fact the spacesS0

m were introduced only for comparison. They are the first constituent
Cpol,u

` you would think of, but technically the classesR0
m are better suited, sinceL1-inequalities in

initial spaces are within reach~for example we havei f +Bgi` <i f i1igi1). R0
m is a locally convex

space with the family of norms$r n
m%nPN , wherer n

m( f )ª( uau<ni]a@^•&2mf #i1 ~other, equivalent,
family is obtained by writing]a and ^•&2m in reversed order.!

SinceS is dense inR0
m , to show thatR0

m,M it will be sufficient to prove that for anyg
PS the mappingsS{ f ° f +BgPS andS{ f °g+Bf PS are continuous if on the initial spaceS we
consider the topology induced fromR0

m . We shall treat the first mapping; in fact this is enoug
sinceR0

m is left invariant by complex conjugation.
In the sequel we shall always writej5(q,p), h5(x,k) and z5(y,l ). We also set

fB(q,x,y)ªe2 iGB(^q2y1x,x2q1y,y2x1q&); it is a function inCpol
` with ufB(q,x,y)u51. By taking

into account the discussion above and the form of the seminorms onS, we see that it is enough to
prove that for anygPS, a,b,g,dPNN andmPR ~we shall takem to be an even positive integer!
there existnPN andC,` ~they both depend on everything! such that

iqapb]q
g]p

d~ f +Bg!i` <Crn
m~ f !.

Now the proof will proceed in several steps:
Step 1:A simple calculation gives

@qapb]q
g]p

d~ f +Bg!#~q,p!5 (
g8<g

Cg8
abgdE

J
E

J
dh dz qapb~k2 l !g8~y2x!d

3e22is(j2h,j2z)~]q
g2g8fB!~q,x,y! f ~h!g~z!.

The Leibnitz rule was used, as well as the two identities

]p
de22is(j2h,j2z)5~2i ! udu~y2x!de22is(j2h,j2z),

]q
g8e22is(j2h,j2z)5~2i ! ug8u~k2 l !g8e22is(j2h,j2z).

Step 2:Having in view the form ofr n
m , we write f (h)5^h&m@^h&2mf (h)# (m even!. By

developing, the factor̂h&m contributes with terms of the formxmkn. Thus, we need to estimat
objects as

E
J
E

J
dh dz qa1xa2~y2x!a3pa4ka5~k2 l !a6e22is(j2h,j2z)w~q,x,y!@^h&2mf ~h!#g~h!.

Herew is Cpol
` in all the variables; the zeroth order derivative is no longer bounded and this

cause some complications.
Step 3:The heart of the proof lies in exploiting the nice properties of the factore22is(j2h,j2z)

by integrations by parts~an oscillatory integral technique!. This works efficiently only with respec
to certain of the variables. We produce these variables by making linear combinations of
non-convenient ones. Let us write, for instance,p5(p2 l )1 l , k2 l 5(k2p)1(p2 l ) and k
5(k2 l )1 l 5(k2p)1(p2 l )1 l . Then, plainly, we are reduced to estimating terms of the fo
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E
J
E

J
dh dz qb1xb2~y2x!b3l b4~p2k!b5~p2 l !b6e22is(j2h,j2z)w~q,x,y!

3@^h&2mf ~h!#g~h!.

Step 4:We use

~p2k!b5~p2 l !b6e22is(j2h,j2z)5~2i !2ub5u~22i !2ub6u]y
b5]x

b6@e22is(j2h,j2z)#.

After an integration by parts and an application of Leibnitz’s rule we see that we are reduc
bound terms as

E
J
E

J
dh dz c~q,x,y!e22is(j2h,j2z)]x

g1@^h&2mf ~h!# l g2~]y
g3g!~z!

for some unboundedCpol
` -functionc. Actually, only the polynomial estimate onc itself will count

now.
Step 5:Polynomial bounds are very democratic with respect to the choice of variables; u

example inequalities of the form̂x1y&<21/2^x&^y&. Thus we can write

c~q,x,y!5F c~q,x,y!

^y& j^q2x& j^q2y& j G @^y& j^q2x& j^q2y& j #

and the first factor will be bounded forj large enough. By developing, we need to estimate

E
J
E

J
dh dz r~q,x,y!~q2x!d1~q2y!d2e22is(j2h,j2z)]x

d3@^h&2mf ~h!#yd4l d5~]y
d6g!~z!,

where nowr is bounded.
Step 6:But one has

~q2x!d1~q2y!d2e22is(j2h,j2z)5~22i !2ud1u~2i !2ud2u] l
d1]k

d2e22is(j2h,j2z).

We perform our last integration by parts, reducing ourselves to estimate

E
J
E

J
dh dz r~q,x,y!e22is(j2h,j2z)]k

d2]x
d3@^h&2mf ~h!#yd4@] l

d1]y
d6~ l d5g!#~z!.

Step 7: Obviously, this integral is dominated for anyj by i]k
d2]x

d3

3@^•&2mf #i1 iyd4@] l
d1]y

d6( l d5g)#i1 . The first factor is part of the normr n
m( f ) for some largen

and the second is one of the seminorms ofg in S. The proposition is proved and, as a bonus,
found out that (f ,g)° f +Bg extends to a bilinearjointly continuousmapping:R0

m3S→S. j

The classCpol,u
` (J) is indeed convenient. It has a very explicit definition and it contains

the polynomials in x and p. It also contains the classical symbol spacesSm(J)ª$ f
PC`(J)uu(]af )(j)u<Ca^j&m2uau, ;aPN2N% for all m.

The magnetic Moyal algebra is large indeed, but many distributions, even with a good b
ior at infinity, are not inside. The one-rank projectionuu&^uu is in L~S! if and only if uPS. Thus,
by Proposition 21, there are plenty of elements inL2(J) not belonging toM~J!.
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On the absolutely continuous and negative discrete
spectra of Schro ¨ dinger operators on the line with locally
integrable globally square summable potentials

Alexei Rybkina)

Department of Mathematical Sciences, University of Alaska, Fairbanks,
Fairbanks, Alaska 99775
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For one-dimensional Schro¨dinger operators with potentialsq subject to
(n52`

` (*n
n11uq(x)udx)2,`, we prove that the absolutely continuous spectrum is

@0,̀ !, extending the 1999 result due to Dieft–Killip. As a by-product we show that
under the same condition the sequence of the negative eigenvalues is 3/2-summable
improving the relevant result by Lieb–Thirring. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1650048#

I. INTRODUCTION

The main object of our consideration is the Schro¨dinger operator,

H52d2/dx21q~x!, on Rª~2`,`!, ~1.1!

with a real slowly decaying potentialq. For the background information, literature, and op
problems we refer to the recent surveys12,13by Simon. In this paper we will be concerned with th
essential support of the absolutely continuous~a.c.! spectrumsa.c.(H) of H for L2-type potentials
without smoothness assumptions. It was proved in 1999 by Dieft–Killip2 that

qPL2~R!1L1~R!⇒sa.c.~H !5R1ª@0,̀ !, ~1.2!

settling down one conjecture due to Kiselev–Last–Simon8 which drew considerable attention. W
are unable to review here the extensive literature devoted to it and refer the interested rea
e.g., Christ–Kiselev,1 Killip, 6 and the literature cited therein. Relevant to our note, the best Ch
Kiselev result is

qP l p„L1~R!…, 1,p,2⇒sa.c.~H !5R1 , ~1.3!

wherel p(L1) stands for the Birman–Solomyak class (0,p<`),

f P l p„L1~R!…⇔H E
n

n11

u f ~x!udxJ P l p~Z!, Z5$0,61,62, . . .%.

SinceL21L1, l 2(L1) there is a certain mismatch between~1.2! and ~1.3!. Killip 7 informed the
author about his conjecture that~1.3! holds forp52. In the present article we give an affirmativ
answer to this question. Actually we prove even more.

Theorem 1: Let q be real valued and from l2„L1(R)…. Then

sa.c.~H !5R1 , ~1.4!

and the negative discrete spectrum$2k j
2% satisfies

a!Electronic mail: ffavr@uaf.edu
14180022-2488/2004/45(4)/1418/8/$22.00 © 2004 American Institute of Physics
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(
j

k j
3,`. ~1.5!

Note that~1.5! extends the Lieb–Thirring bounds,9

(
j

k j
3<CE

R
q2~x!dx,

to includel 2(L1) potentials. The improved bounds will be given in Ref. 11.
We note that a complete treatment of rather general Dirac operators with square sum

potentials was recently done by Denisov3 who besides a proper analog of~1.2! also proved the
existence of relevant wave operators.

II. A LEMMA ON A WKB-TYPE ASYMPTOTICS

The following technical lemma will play a crucial role in our consideration.
Lemma 1: Let qP l 2„L1(R1)…, then the equation,

2u91q~x!u5l2u,xPR1 , ~2.1!

has a solutionC(x,l) which can be represented in the domainL of all points(x,l), xPR1 and
lPC1ª$lPC:Im l.0% such that

~ Im l!21
„21~ Im l!21

…

2iqxxi l 2(L1)
2 ,1/4 ~2.2!

[where xx is the indicator of (x,̀ )] in the form

C~x,l!5y~x,l!expH ilx1E
0

x

Q~s,l!dsJ , ~2.3!

where

Q~x,l!ª2E
x

`

e2il(s2x)q~s!ds, ~2.4!

and y(x,l) is some continuous function satisfying„(x,l)PL…,

uy~x,l!21u<4~ Im l!21
„21~ Im l!21

…

2iqxxi l 2(L1)
2 . ~2.5!

Proof: Let us prove first that ifqP l 2„L1(R1)… then Q(•,l)PL2(R) for every Iml.0.
Indeed, by Jensen’s inequality,

uQ~x,l!u25U(
n>0

E
n

n11

e2ilsq~s1x!dsU2

<H (
n>0

e22n Im lS E
n

n11

uq~s1x!udsD J 2

< (
n>0

e22n Im l
•(

n>0
e22 Im lnS E

n

n11

uq~s1x!udsD 2

5
1

12e22 Im l (
n>0

e22 Im lnS E
n

n11

uq~s1x!udsD 2

. ~2.6!

Integrating~2.6! with respect tox one has
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iQ~•,l!i2
2<S 11

1

2 Iml D (
n>0

e22 Im lnE
0

`S E
n

n11

uq~s1x!udsD 2

dx. ~2.7!

Observe now that

E
0

`S E
n

n11

uq~s1x!udsD 2

dx5 (
m>0

E
m

m11S E
x

x11

uqu D 2

dx

< (
m>0

S E
m

m12

uqu D 2

<2 (
m>0

H S E
m

m11

uqu D 2

1S E
m11

m12

uqu D 2J
54 (

m>0
S E

m

m11

uqu D 2

54iqi l 2(L1)
2 . ~2.8!

Plugging~2.8! into ~2.7!, one has

iQ~•,l!i2
2<S 11

1

2 Iml D (
n>0

e2Im ln
•4iqi l 2(L1)

2 <S 21
1

Im l D 2

iqi l 2(L1)
2 ,

that is

iQ2~•,l!i1<iQ~•,l!i2
2<S 21

1

Im l D 2

iqi l 2(L1)
2 . ~2.9!

By inspection

Q~x,l!ªexpH ilx1E
0

x

Q~s,l!dsJ
is a solution to

2u91„q~x!1Q2~x,l!…u5l2u. ~2.10!

If u1(x,l)5Q(x,l) is a solution to~2.10! then as the other solution we choose

u2~x,l!5Q~x,l!E
0

x

Q22~s,l!ds.

Rewriting the original equation~2.1! as

2u91„q~x!1Q2~x,l!…u2l2u5Q2~x,l!u, ~2.11!

by variation of parameters one easily verifies~formally! that ~2.11! implies (y5Q21u)

y~x,l!511E
x

`

K~x,s,l!y~s,l!ds, ~2.12!

with the kernel
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K~x,s,l!ªQ2~s,l!•Q2~s,l!E
x

s

Q22~ t,l!dt. ~2.13!

To justify this formal computation it is enough to show thatK(x,•,l)PL1 for every xPR1 ,l
PC1 . By ~2.9!, Q2(•,l)PL1 and it is only left to demonstrate thatQ2(s,l)*x

sQ22(t,l)dt is
bounded. Indeed,

UQ2~s,l!E
x

s

Q22~ t,l!dtU5U E
x

s

exp2H il~s2t !1E
t

s

Q~ t,l!dtJ dtU
<U E

0

s2x

exp2H 2Im ltS 12
1

Im l
iQ~•,l!i`D J U

<E
0

`

exp~2Im lt !dt5
1

Im l

and, by~2.9!, we have

iK~x,•,l!i1<
1

Im l
iQ2~•,l!i1<

1

Im l S 21
1

Im l D 2

iqi l 2(L1)
2 .

The standard iteration procedure completes the proof. j

Remark 1: One can easily see that, up to a factor, solution (2.3) has the WKB-type asym
behavior,

C~x,l!;expH ilx1
1

2il E
0

x

q~s!dsJ , x→`, ~2.14!

for everylPC1 . We, by no means, claim that Lemma 1 proves (2.14) for almost all reall for
every potential q from l2„L1(R1)…. Theorem 1 would be immediately proven then. It is a v
difficult open question and the best known result here belongs to Christ–Kiselev.1 Using some very
elaborate techniques, they showed that (2.14) holds for a.e. reall for qP l p„L1(R1)…,1,p,2.
This was exactly their way to prove (1.3). Our approach requires (2.14) only forlPC1 .

III. PROOF OF THEOREM 1

We employ the standard approach. We first get all necessary formulas for the trun
potentialsq̃ defined as

q̃~x!5q~x!x [ 2a,a]~x!, a.0;

x [ 2a,a] denotes the characteristic function of@2a,a#, and then pass to the limit whenq̃→q ~i.e.,
a→`). In the sequel, we agree to put˜ on top of every object related toq̃.

Let us evaluate the transmission coefficientT̃(l) for lPC1 in two different ways. Following
Faddeev–Zhakharov4 ~adopting the convention*ª*2`

` ),

T̃~l!5)
j

l1 i k̃ j

l2 i k̃ j
expH i E f̃ ~k!

k2l
dkJ , ~3.1!

where2k̃ j
2 are negative eigenvalues ofH̃ and

f̃ ~k!ª
1

p
loguT̃~k!u21. ~3.2!

Due to the general properties of the transmission coefficient, the functionf̃ is integrable, non-
negative, and even and hence
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E f̃ ~k!

k2l
dk52

1

l E f̃ ~k!dk1
1

l2 E k2 f̃ ~k!

k2l
dk52

1

l E f̃ ~k!dk1
2

l E
0

` k2 f̃ ~k!

k22l2 dk. ~3.3!

We have used here the obvious identity

1

k2l
52

k

l2 2
1

l
1

1

l2

k2

k2l
.

By the first Buslaev–Faddeev–Zhakharov trace formula,4

22(
j

k̃ j1E f̃ ~k!dk5
1

2 E q̃~x!dx, ~3.4!

and ~3.3! can be continued,

E f̃ ~k!

k2l
dk52

1

l E f̃ ~k!dk1
2

l E
0

` k2 f̃ ~k!

k22l2 dk52
2

l (
j

k̃ j2
1

2l E q̃~x!dx1
2

l E
0

` k2 f̃ ~k!

k22l2 dk.

~3.5!

Plugging~3.5! into ~3.1! one has

T̃~l!5)
j

l1 i k̃ j

l2 i k̃ j
e2i /lk̃ j

• expH 2i

l E
0

` k2 f̃ ~k!

k22l2 dkJ expH 1

2il E q̃~x!dxJ . ~3.6!

On the other hand, following Hinton–Klaus–Shaw,5

T̃~l!5
2il

m̃1~l2!1m̃2~l2!
„F̃1~l!F̃2~l!…21, ~3.7!

wherem̃6 are the Weylm-functions associated with2d2/dx21q̃(x),u(60)50 on L2(R6) and
F̃6 are the Jost functions ofH̃52d2/dx21q̃(x) on L2(R) corresponding to6`, respectively.
We recall that forqPL1(R) the equation

2u91q~x!u5l2u,xPR, Im l2>0,

has two linearly independent solutionsu6(x,l), referred to as Jost, subject to

u6~x,l!5e6 ilx
„11o~1!…,x→6`.

FunctionsF6 andm6 are related tou6 by

F6~l!ªu6~0,l!, m6~l2!ª6
d

dx
logu6~x,l!ux50 . ~3.8!

Evaluate nowF̃1(l)F̃2(l) in ~3.7!. SinceF̃1 and F̃2 are similar we handle onlyF̃1 . Directly
by definition ~2.4!, one verifies that

E
0

a

Q̃~s,l!ds5
1

2il E
0

a

q̃~s!ds2
Q̃~a,l!2Q̃~0,l!

2il
5

1

2il E
0

a

q̃~s!ds1
1

2il
Q̃~0,l!, ~3.9!

where we have observed thatQ̃(a,l)50. Comparingu1 with the solutionC from Lemma 1, one
has
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ũ1~x,l!5C̃~x,l!expH 2E
0

a

Q̃~s,l!dsJ
5C̃~x,l!expH 2

1

2il E
0

`

q̃~s!dsJ expH 1

2il E
0

`

e2ilsq̃~s!dsJ . ~3.10!

It follows from ~3.8!, ~3.9!, and~2.2! that

F̃1~l!5 ỹ1~l!expH 2
1

2il E
0

`

q̃~s!dsJ expH 1

2il E
0

`

e2ilsq̃~s!dsJ , ~3.11!

whereỹ1(l)ª ỹ(10,l). Analogously,

F̃2~l!5 ỹ2~l!expH 2
1

2il E
2`

0

q̃~s!dsJ expH 1

2il E
2`

0

e22ilsq̃~s!dsJ
with some functionỹ2 admitting a similar to the~2.3! estimate. Thus

„F̃1~l!F̃2~l!…215 ỹ21~l!expH 1

2il E q̃~x!dxJ expH i

2l E e2iluxuq̃~x!dxJ , ~3.12!

whereỹª ỹ1ỹ2 . Inserting~3.12! into ~3.7!, we finally arrive at

T̃~l!5 ỹ21~l!
2il

m̃1~l2!1m̃2~l2!
expH 1

2il E q̃~x!dxJ expH i

2l E e2iluxuq̃~x!dxJ . ~3.13!

Equate now the right hand sides of~3.6! and~3.13!. Takingl5 i and observing that the divergen
factor exp$21

2*q̃(x)dx% drops out from both sides, we obtain

)
j

11k̃ j

12k̃ j
e22k̃ j

• expH 2E
0

` k2

11k2 f̃ ~k!dkJ 5 H 22ỹ21~ i !

m̃1~21!1m̃2~21! J expH 1

2 E e22uxuq̃~x!dxJ .

~3.14!

Taking notice that due to basic facts of perturbation theory a change of the potentialq on a finite
interval does not effect the conclusions of the theorem, we alter, if needed, our potential to
condition ~2.2! for l5 i for all x>0 and supuk̃ j u,1. This makes every factor in~3.14! positive
and one can pass in~3.14! to the logarithms

(
j

S log
11k̃ j

12k̃ j
22k̃ j D1E

0

` 2k2

11k2 f̃ ~k!dk5
1

2 E e22uxuq̃~x!dx12ṽ, ~3.15!

where

ṽª2 ỹ21~ i !$m̃1~21!1m̃2~21!%21. ~3.16!

The sum in~3.15! has the lower bound23( j k̃ j
3 . Indeed, setting for the time beinga5k̃ j one has
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log
11a

12a
22a5 log~11a!2 log~12a!22a

5 (
n>0

~21!n
an

n11
1 (

n>0

an

n11
22a

52(
n>1

a2n11

2n11
>

2

3
a3,

and thus

(
j

S log
11k̃ j

12k̃ j
22k̃ j D>

2

3 (
j

k̃ j
3 .

It follows from ~3.15! that

1

3 (
j

k̃ j
31E

0

` k2

11k2 f̃ ~k!dk<
1

4 E e22uxuq̃~x!dx1ṽ. ~3.17!

Show now that the right hand side of~3.17! is uniformly bounded asq̃→q. Indeed, by~2.2! and
~2.5!,

u ỹ~ i !u215u ỹ1~ i !u21u ỹ2~ i !u21<2•254.

The other factor in~3.16! goes to„m1(21)1m2(21)…21 due to the general properties of th
Weyl m-function14 and henceṽ is uniformly bounded asq̃→q. Since

E e22uxuq̃~x!dx→E e22uxuq~x!dx, q̃→q,

we see that the right hand side of~3.17! is uniformly bounded too. Since both terms on the l
hand side of~3.17! are positive, recalling~3.2!, we arrive at

E
0

` k2

11k2 loguT̃~k!u21dk<C, ~3.18!

(
j

k̃ j
3<C, ~3.19!

with some finite constantC dependent only onq. Estimate~3.18! allows one now to use a lemm
by Deift–Killip2 ~see also Ref. 10!. Thus~1.4!, i.e., sa.c.(H)5R1 , is proven.

It is left to establish~1.5!. We can actually pass to the limit in~3.19!. To this end consider the
operatorH2ª2d2/dx21q2(x) whereq2 is the negative part ofq. In obvious notation, estimate
~3.19! for H̃2 reads~with possibly different constant! as

(
j

~ k̃ j
(2)!3<C. ~3.20!

But 0,a,b implies q2(x)x [ 2a,a] (x)>q2(x)x [ 2b,b] (x), which, in turn, yields

2d2/dx21q2~x!x [ 2a,a]~x!$2d2/dx21q2~x!x [ 2a,a]~x!,
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and it follows from the standard fact of perturbation theory thatk̃ j
(2) is a nondecreasing functio

of the cutoff point a for every fixed j . The latter combined with the uniform bound~3.20!
immediately yields

(
j

~k j
(2)!3<C. ~3.21!

What is left to observe that, by the same perturbation principal,k j<k j
(2) ~sinceH2#H) and

~3.21! implies ~1.5!. The theorem is proven.
Remark 2: Identity (3.15) can actually be viewed as the first formula in a certain chain of

rules. Our elementary arguments provide a short-cut to Theorem 1 but yet are not fine eno
derive those formulas in a compact form. The adequate approach is rather operator theor
and will be discussed in Ref. 11 where we also plan to improve on the results of Ref. 10
spirit of Theorem 1. At this point we only notice that (3.15) resembles the second (sic) Bus–
Faddeev–Zhakharov trace formula

1

3 (
j

k̃ j
31E

0

`

k2 f̃ ~k!dk5
1

16E q̃2~x!dx,

which was the main new insight of Ref. 2 proving (1.2) and which higher order analogs were
in Ref. 10.
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Quantum-mechanical scattering in exterior domains
with impenetrable periodic boundaries
and short-range potentials

A. W. Sáenza)

Naval Research Laboratory, Washington, DC 20375,
and Catholic University of America, Washington, DC 20064

~Received 10 July 2003; accepted 11 December 2003!

We study the scattering of a nonrelativistic particle in an exterior domain~5open
connected subset! V,Rn(n>2) containing a half-space and contained in another
half-space, and having an impenetrable periodic boundary]V. ‘‘Impenetrable’’
means that~generalized! homogeneous Dirichlet conditions are imposed on]V.
We prove the existence and completeness of the wave operatorsW6

5 limt→6` exp(itH1)P exp(2itH0) corresponding to the scattering of a nonrelativ-
istic particle inV by the combined effect of the boundary and a short-range poten-
tial present inV. Here H052D is the negative distributional Laplacian in the
Hilbert spaceH05L2(Rn), H152DD(V)1V, DD(V) being the Dirichlet Laplac-
ian in the Hilbert spaceH5L2(V), V an operator of multiplication inH by a
bounded measurable functionV(x) on V having the periodicity of the boundary,
and P:H0→H an identification operator. The operatorsW6 model the quantum-
mechanical scattering of low-energy atoms by crystal surfaces, withV modeling
the interaction between the incident particles and the surface atoms. This interac-
tion is idealized by assuming thatV(x) depends solely onxn whenxn.a, a being
a sufficiently large positive constant, andxn the component ofxPRn directed
perpendicularly to the surfaces of the above two half-spaces. Under this and other
hypotheses onV and V stated precisely in the paper, we prove thatW6 exist as
partially isometric operators whose initial sets have a transparent physical meaning.
Moreover, we prove the following:~a! RanW65Hscatt; and ~b! W6 are asymp-
totically complete, in the sense thatH5Hscatt% Hsurf. Here Hscatt and Hsurf are
suitably defined subspaces of scattering and surface states ofH. These results are
proved by using direct-integral techniques, asymptotic methods from the theory of
ODEs, and methods analogous to those of Lyford. The present paper generalizes an
earlier one by the author for the caseV50. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1650046#

I. INTRODUCTION

Theoretical studies of classical scattering, both acoustic and electromagnetic, by corr
surfaces go at least as far back as Lord Rayleigh and have an enormous literature.1 Quantum
mechanical scattering of low-energy atomic beams by crystal surfaces, modeled as impen
corrugated surfaces, has also received much attention.2 Much less work has been done on scatt
ing by such surfaces at a rigorous mathematical level. This includes research by Wilcox3,4 and the
present author.5,6

In Ref. 5, we studied quantum-mechanical scattering of nonrelativistic particles by an im
etrable periodic boundary, i.e., such that the pertinent wave functions obeyed~generalized! homo-
geneous Dirichlet conditions thereon. In the present paper we generalize this work to the c
which a short-range potential is present, which models the interaction between the particle a

a!Electronic mail: saenz@dave.nrl.navy.mil
14260022-2488/2004/45(4)/1426/21/$22.00 © 2004 American Institute of Physics
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surface atoms of a crystal. In more detail, we consider the quantum-mechanical scattering
a particle in an exterior domain~5open connected subset! V,Rn(n>2) with an impenetrable
corrugated boundary]V by the combined effect of the boundary and a short-range pote
present inV. ‘‘Impenetrable’’ means that the particle’s wave function obeys~generalized! homo-
geneous Dirichlet conditions on]V. Our point of view will be that of time-dependent two-Hilber
space scattering theory, in which the scattering is described by the wave operators

W65W6~H1 ,H0 ;P!5s2 lim
t→6`

exp~ i tH 1!P exp~2 i tH 0!. ~1.1!

HereH0 is the ‘‘unperturbed’’ Hamiltonian, defined as the negative distributional Laplacian2D in
H05L2(Rn), while H15H1V is the corresponding ‘‘perturbed’’ Hamiltonian,H being the nega-
tive Dirichlet Laplacian2DD(V) in H5L2(V) andV a maximal operator of multiplication inH
by a real-valued measurable function, also denoted byV, which models the above short-rang
interaction between the particle and the surface atoms. Moreover,P: H0→H is a suitable bounded
operator~identification operator!.

As to V, we assume that it contains a half-space and is contained in another half-spac
also suppose that it has the periodicity property (x̃,xn)PV⇒( x̃1n,xn)PV for all nPZn21,
where we writexPRn as (x̃,xn)PRn213R, xn being in a direction perpendicular to the boun
aries of these half-spaces. No smoothness or regularity conditions are imposed on]V by virtue of
a theorem of Lyford,7 as we shall explain in more detail in Sec. II. As to the potential functionV,
we assume it to be periodic in the sense thatV(x)5V( x̃,xn)5V( x̃1n,xn) for all xPV and all
nPZn21. We also suppose thatV(x) has certain boundedness and integrability properties,
depends only onxn for xn.a, wherea is a sufficiently large positive constant. The last conditi
allows us to use powerful results on the asymptotic behavior of solutions of ODEs in the re
proofs. On the other hand, it is a physically reasonable requirement, since for a large cl
short-range potentials with the mentioned periodicity property,V( x̃,xn) tends pointwise to a func
tion independent ofx̃ for xn→`.8

Our principal results are Theorems 3.1 and 3.2. The former asserts the completeness
wave operators~1.1!, and more precisely that RanW15RanW25Hscatt. HereHscatt is the sub-
space of scattering states, consisting of those functionsf PH that are evanescent from each regi
bounded by]V and a planexn5const. Theorem 3.2 states thatW6 are asymptotically complete
i.e., thatHscatt is the orthogonal complement with respect toH of the subspaceHsurf of surface
states. The latter subspace, first introduced in Ref. 9, consists of allf PH that remain ‘‘close’’ to
]V for all time. @Rigorous definitions ofHscatt and Hsurf are given by Eqs.~3.4! and ~3.5!,
respectively.#

The organization of this paper is as follows. In Sec. II we define the self-adjoint oper
H,H0,H1 ,V needed to constructW6 in ~1.1!. Section III has two subsections. In Sec. III A w
state Theorems 3.1 and 3.2, and Sec. III B is devoted to an overview of the methods of pr
these theorems, which rely heavily on direct-integral methods. A proof of Theorem 3.1 is giv
Sec. IV by using a theorem of Lyford10 based on work of Birman and Belopol’skii11 and employ-
ing a version of a theorem of Stinespring.12 In preparation for proving Theorem 3.2, we devo
Sec. V to studying the spectrum of a family of self-adjoint operatorshu@uP(0,1)n21# defined in
Sec. II, whose direct integral is unitarily equivalent toH, and prove that eachhu has an empty
singular continous spectrum. In Sec. V the asymptotic properties of solutions of a second
ODE satisfied by the expansion coefficients of certain locally square-integrable functions p
important role. In particular, the above spectral and asymptotic properties are essential ingr
of the proof of Theorem 3.2 presented in Sec. VI. There are three appendixes. Appendix A ex
our function-space notation, while Appendixes B and C state, respectively, a key local com
ness property and a lemma on asymptotic solutions of ODEs of the above type, both of
results being used in Sec. V.
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II. SELF-ADJOINTNESS OF A HAMILTONIAN OF A NONRELATIVISTIC PARTICLE IN AN
EXTERIOR DOMAIN V WITH AN IMPENETRABLE PERIODIC BOUNDARY AND
SUBJECTED TO A SHORT-RANGE POTENTIAL

For future reference, it is convenient to restate here the assumed properties of the e
domainV,Rn(n>2) that were mentioned in Sec. I:

~I! Rn213@b,`),V,Rn213@a,`), for some 0,a,b,1/2.
~II ! ~Periodicity! Write the pointsxPRn(n>2) as (x̃,xn), wherex̃PRn21,

xnPR. For all nPZn21, ~ x̃,xn!PV⇒~ x̃1n,xn!PV.

We consider a nonrelativistic particle inV whose evolution is governed by a self-adjoi
Hamiltonian operatorH1 acting in the Hilbert spaceH5L2(V), and defined as the operator su

H15H1V, ~2.1!

where~in suitable units! H denotes the kinetic energy operator of the particle, confined inV by the
surface]V on which we impose a generalized homogeneous Dirichlet condition, andV models its
interaction with the surface atoms.

More precisely,

H52DD~V!, ~2.2!

where DD(V) is the Dirichlet Laplacian inH, acting by D ~distributional Laplacian! on the
functions in its domain,

D„DD~V!…5L2~D;V!ùH0
1~V!. ~2.3!

Here L2(D;V) denotes the Hilbert space defined in Appendix A andH0
1(V) the usual Sobolev

space. These and other function spaces used in this paper are defined in that appendix. B~2.2!,
~2.3!, and a remarkable theorem of Lyford,7 the operatorH is self-adjoint for anarbitrary domain
V,Rn, and not merely for the domainV considered here.

We defineV as a maximal operator of multiplication inL2(V) by a real-valued measurabl
function onV, which will also be denoted byV and assumed to satisfy the following requireme

Condition 1: Vhas the periodicity property

V~x!5V~ x̃,xn!5V~ x̃1n,xn!, xPV,nPZn21, ~2.4a!

is bounded onV, and has the integrability property

VuvPL2~v!. ~2.4b!

Herev denotes the irregular semi-infinite cylinderv5$x5( x̃,xn)PV: x̃P(0,1)n21%, whose axis
is parallel to thexn axis.

Remarks:~1! The properties of the functionV which are stated in this condition and the fa
that it is real-valued entail that the corresponding operatorV is bounded and self-adjoint, an
hence that its domain isH. ThusH1 , as the operator sum of the~unbounded! self-adjoint operator
H andV is itself self-adjoint. Indeed,V is infinitesimally small wrtH, or V!H in symbols.13

~2! If the function V had not been required to be essentially bounded,H1 could have been
defined by~2.1!, understood in the sense of quadratic forms. However, this would greatly
plicate the treatment of the problems discussed in the paper. The boundedness of this fun
very natural from a physical viewpoint, since for the models of atomic crystal surfaces of in
here, the atomic cores lie in the complementRn\V of V, and henceV contains no infinite
singularities ofV.2 Finally, the integrability condition~2.4b!, which is reasonable for short-rang
potentials, plays an important role in the proof of the key Lemma 4.2.
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III. SCATTERING BY IMPENETRABLE PERIODIC BOUNDARIES WITH SHORT-RANGE
POTENTIALS: MAIN RESULTS AND STRATEGY OF PROOF

A. Statement of main results

As mentioned in Sec. I, Theorems 3.1 and 3.2 are our principal results. Before stating
we make some definitions and a further assumption onV.

Let K1 , K2 be self-adjoint operators in the respective Hilbert spacesH1 , H2 , K1 having a
purely absolutely continous spectrum, and letB:H1→H2 be a bounded operator. We define t
wave operators

W6~K2 ,K1 ;B!5s2 lim
t→6`

exp~ i tK 2! B exp~2 i tK 1!, ~3.1!

if they exist. The wave operators studied in this paper have the form~3.1!.
Theorems 3.1 and 3.2 deal with properties of the wave operators,

W6ªW6~H1 ,H0 ;P!, ~3.2!

which, as mentioned in the Introduction, describe scattering by the impenetrable periodic b
ary ]V when the short-range potentialV acts in the exterior domainV. As in Sec. II,H052D, the
negative distributional Laplacian acting in the Hilbert spaceH05L2(Rn), and P:H0→H
5L2(V) is defined by

~Pf !~x!5H f ~x!, xPV,

0, xPRn\V,
~3.3a!

f PH0, xPV.

For any measurable subsetA,Rn, we identifyL2(A) with the subspace ofL2(Rn) composed
of all f such thatf (x)50 a.e. onRn\A. Thus, the requirementsP:H0→H and~3.3a! are consis-
tent.

By Theorem 3.1, the wave operators~3.2! can be written asW6(H1 ,H0 ;J), a form that has
certain technical advantages. HereJ:H0→H is given by

~J f !5H j ~xn! f ~x!, x5~ x̃,xn!PV,

0, xPRn\V,
~3.3b!

where j PC`(R) is such that

j ~y!5 H0, y<1/2,
1, y>1. ~3.3c!

The requirementsJ:H0→H and ~3.3b! are therefore consistent.
An important role in what follows is played by the subspacesHscatt, Hsurf of scattering and

surface states, respectively, defined by

Hscatt5$ f PL2~V!: lim
t→6`

iexp~2 i tH 1! f iVr
50,1,r ,`%, ~3.4!

Hsurf5$ f PL2~V!: lim
t→6`

iexp~2 i tH 1! f iV\Vr
50,1,r ,`%, ~3.5!

whose physical significance was mentioned in Sec. I. Herei•iM denotes theL2(M ) norm for a
measurable subsetM,Rn and Mr5$( x̃,xn)PRn:xn,r %. We will also use the notationMr ,`

5$xPM :xn.r %.
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Besides assuming thatV satisfies condition1, we will suppose that it has the following
property, unless we make an explicit statement to the contrary.

Condition 2: V( x̃,xn)5w(xn);x5( x̃,xn)Pva,` , wherewPC`
„(a,`)…ùL1

„(a,`)… and a
.1 is a constant.

Remarks:We have already commented on the mathematical convenience and physica
sonableness of this condition in Sec. I. The infinite differentiability ofw in condition 2 is imposed
for ease of exposition, while the integrability requirement therein plays an essential role in pr
various key lemmas.

Theorem 3.1:Let conditions 1 and 2 be satisfied. Then we have the following:
~a! The operatorsW65W6(H1 ,H0 ;P) exist and equalW6(H1 ,H0 ;J);
~b! W6 are complete in the usual sense:

~W6!* W65E6 , ~3.6a!

W6~W6!* 5Pscatt, ~3.6b!

where E6 and Pscatt are projection operators having domainsH0 and H, respectively, with
E6H05H6 and PscattH5Hscatt. The initial sets of the partially isometric operatorsW6 are
explicitly given by

H65$ f PH0 : f̂ ~k!50, for a.e. k5~k1 ,...,kn!PRn, with kn"0%, ~3.7!

f̂ denoting theL2(Rn) Fourier transform off :

f̂ ~k!5~2p!2n/2L2~Rn!2 lim
r→`

E @2r •r #n exp~2 ik•x! f ~x!dx. ~3.8!

Remark:Equation~3.7! has a transparent physical meaning. Intuitively, in order for a w
packet f t in V evolving as exp(2itH0)f for large negative times, to arrive ‘‘near’’]V at time t
50, its Fourier transformf̂ t must have fort→` support intersecting the region of momentu
space withkn,0 in a set of positive measure. Again intuitively, if a wave packetgt in V, which
was ‘‘near’’ ]V at t50 is scattered, then the support ofĝt must, for large positive times, interse
the momentum–space region withkn.0 in a set of positive measure. This interpretation re
forces our contention that the wave operatorsW6(H1 ,H0 ;P) are appropriate for describin
quantum-mechanical scattering of nonrelativistic particles by the impenetrable periodic surfa]V
in the framework of the present model.

Theorem 3.2:Let conditions 1, 2 be satisfied. ThenW6 are asymptotically complete, in th
sense that

H5Hscatt% Hsurf. ~3.9!

B. Methods of proof

A central idea in the proofs of Theorems 3.1 and 3.2 is to replace the study of the
operatorsW6(H0,H0 ;P), in the technically more convenient formW6(H1 ,H0 ;J), by that of
W6(H1 ,H0 ;J0) and the related infinite family$W6(hu

1,hu
0;h),uPG% of wave operators con

structed by direct-integral methods. HereH052DD(V0), the negative Dirichlet Laplacian in th
Hilbert spaceH05L2(V0), acting by the negative distributional Laplacian on the functions in
domain, defined by~2.3!, with V replaced byV0, the half-space$( x̃,xn)PRn:xn.0%. Further-
more,J0:H0→H5L2(V) is defined asJ was in~3.3b!, but with H0 replaced byH0. The above
family of wave operators indexed byu will be defined later in this section, after we introduce t
necessary direct-integral machinery on which our proofs are heavily dependent.14

We define the single-fiber direct integrals,
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K05E
G

%

L2~v0!du, ~3.10a!

K5E
G

%

L2~v!du, ~3.10b!

of Hilbert spaces, wheredu is a Lebesgue measure inRn21 and where we note the relation

v0
ªG3R1.v5Vùv0, ~3.11!

between the cylindersv0 andv, G denoting the open (n21)-dimensional cube (0,1)n21. Note
that v0\v is bounded, as follows from~3.11! and properties~I! and ~II ! of V. This boundedness
is important for our purposes.

We define the unitary operatorsU0, U with domainsH05L2(V0), H5L2(V) and rangesK0,
K, respectively, as follows. Forf PL2(V) of bounded support, we set

~U f !u~x!5 (
nPZn21

exp~22p in•u! f ~ x̃1n,xn!,

~3.12!
uPG, x5~ x̃,xn!Pv,

where only a finite number of terms in the sum in~3.12! are nonvanishing onv. The set of all such
f ’s is dense inL2(V), and it is easy to prove thatU can be extended to the whole ofL2(V) as a
unitary operator ontoK. The operatorU0 is defined in the same way asU, except withV, v
replaced byV0, v0, respectively.U0, U have the crucial properties

U0H0~U0!215E
G

%

hu
0 du, ~3.13a!

UHU215E
G

%

hu du, ~3.13b!

wherehu
0 and hu are self-adjoint operators inL2(v0), L2(v), respectively. The operatorhu (u

PG) has domain

D~hu!5$ f PL2~D;v!ùH1~v!: f has an extension,

f̃ PL loc
2 ~D;V̄!ùH0,loc

1 ~V̄!, with property Pu%, ~3.14!

and acts as the negative distributional Laplacian on everyf PD(hu).
A function g:V→C is said to have propertyPu (uPG) if it has the form f (x)5 f ( x̃,xn)

5exp(2piu•x̃)3u(x̃,xn), whereu( x̃1n,xn)5u( x̃,xn) ;nPZn21.
Eachhu

0 (uPG) is defined in the same way ashu , except withv replaced byv0 ~Ref. 15!.
An obvious formal consequence of Eqs.~3.13b! and~2.1!, that is easily derived rigorously, i

that

UH1U215E
G

%

hu
1 du, ~3.15!

where eachhu
1 is a self-adjoint operator defined as the operator sum,

hu
15hu1vu , uPG, ~3.16!
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vu denoting the maximal operator of multiplication inL2(v) by the bounded, real, measurab
function vu5Vuv. Since UVU215*G

%vu du, as one shows by using the periodicity prope
~2.4a! and arguments similar, but simpler, than those used to prove~3.13b!, and sinceV!H, we
infer thatvu!hu ,16 and hence that eachhu

1 is self-adjoint by the Kato–Rellich theorem.
The relation

U exp~ i tH 1!U215E
G

%

exp~ i thu
1!du, tPR, ~3.17a!

formally expected in view of~3.15!, follows immediately from two facts. First, it holds if its rh
is replaced by exp(itUH1U

21).17 Second, exp(itUH1U
21)5U exp(itH1)U

21.18 Analogously,

U0 exp~ i tH 0!~U0!215E
G

%

exp~ i thu
0!du, tPR. ~3.17b!

Relations~3.17! will be used to prove Theorem 3.1.
The connection between the wave operatorsW6(H1 ,H0 ;P)5W6(H1 ,H0 ;J) and

W6(H,H;J0) that is of interest for our purposes is expressed by the relation

W6~H1 ,H0 ;J!5W6~H1 ,H0;J0!W6~H0,H0 ;P0!, ~3.18!

following from the existence of the wave operators on the rhs of~3.18! and the fact thatJ
5J0P0 . The existence ofW6(H,H;J0) will be proved in Sec. IV, while that ofW6(H0,H0 ;P0),
describing scattering from a flat surface, was proved previously.19 A decisive step in proving
Theorem 3.1 is to show that the wave operatorsW6(hu

1,hu
0;h) (uPG) are partial isometries tha

are complete in the usual sense, whereh:L2(v0)→L2(v) is defined by

~h f !~x!5H j ~xn! f ~x!, x5~ x̃,xn!Pv,

0, xPv0\v,
~3.19!

f PL2~v0!.

The fact that in the present Dirichlet contextv posseses the local compactness property for ev
bounded subset ofH1(v) ~Lemma B.1! is crucial in the proof of Theorem 3.1, which is based
a variant of results of Birman and Belopol’skii.11 Once the completeness of the operato
W6(hu

1,hu
0;h) is proved, Theorem 3.1 readily follows. As mentioned in Sec. I, a key ste

demonstrating Theorem 3.2 is to show that eachhu
1 (uPG) has an empty singular continou

spectrum, a fact asserted by Lemma 5.4.

IV. PROOF OF THEOREM 3.1

It is based on Lemmas 4.1 and 4.2 and Eq.~6.3a!. These lemmas concern properties of t
wave operators,

W6
u
ªW6~hu

1,hu
0;h!, uPG, ~4.1!

W65W6~H1 ,H0;J0!, ~4.2!

whereJ05JuV0 and h5Juv0, in accord with~3.19!. Equation~6.3a!, in whose derivation the
absence of the singular continous spectrum of thehu

1 plays an essential role, asserts the equality
the projection operatorsPac andPscatt. Here

UPacU
215E

G

%

Pac~hu
1!du, ~4.3!
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Pac(hu
1) denoting the orthogonal projection fromL2(v) onto the subspace of the absolute con

nuity of L2(v) wrt hu
1. Definition ~4.3! makes sense because each functionu°Pac(hu

1) from G
into the space of bounded linear operators inL2(v) is measurable and eachPac(hu

1) is bounded.20

Lemma 4.1:Suppose that condition 1 holds and that;uPG the wave operatorsW6
u in ~4.1!

exist and are partial isometries that are complete in the usual sense:

~W6
u !* W6

u 5I L2~v0! , ~4.4a!

W6
u ~W6

u !* 5Pac~hu
1!, ~4.4b!

whereI L2(v0) is the unit operator inL2(v0). Then the wave operatorsW6 in ~4.2! exist and are
complete in the sense that

~W6!* W65I L2~V0! , ~4.5a!

W6~W6!* 5Pac, ~4.5b!

whereI L2(V0) is the unit operator inL2(V0).
Proof: Define

Wt5exp~ i tH 1!J0 exp~2 i tH 0!, tPR, ~4.6!

and note that

UJ0~U0!215JªE
G

%

hu du, ~4.7!

wherehu5h(uPG). To prove~4.7!, it suffices to show thatUJ0f 5JU0f when f PL2(V0) is
equivalent to a function of bounded support, as can be done by using, in particular,~3.12! and the
fact that for each suchf only a finite number of summands in~3.12! do not vanish a.e.

By ~4.6!, ~3.17!, and~4.7!,

Wt5U21S E
G

%

Wt
udu DU0, tPR, ~4.8!

where

Wt
u5exp~ i thu

1!hu exp~2 i thu
0!, uPG, tPR. ~4.9!

Supposing thatW6
u 5s2 limt→6` Wt

u exists for eachuPG, and using~4.8! and unitarity, we
see that

iWt1
f 2Wt2

f iV
2 5E

G
iWt1

gu2Wt2
guiv

2 du,

~4.10!

f PL2~V0!, t1 ,t2PR,

whereg5U0f PK0g @see~3.10a!#. Now,
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iWt1
gu2Wt2

guiv<2iguiv , ~4.11!

at each sucht1 ,t2 ,u, sinceiWtguiv<1 for tPR, uPG. By ~4.10!, ~4.11!, and dominated con-
vergence,

lim
t1 ,t2→6`

iWt1
f 2Wt2

f iV
2 5E

G
lim

t1 ,t2→6`

iWt1
u gu2Wt2

u guiv
2 du50. ~4.12!

Hence,W6 exists if W6
u exist for eachuPG.

Next, we show that if Eqs.~4.4! hold for every suchu, then so do~4.5!. Indeed, from~4.8! we
find taking strong limits and again using dominated convergence:

W65U21S E
G

%

W6
u du DU0, ~4.13a!

which implies

~W6!* 5~U0!21S E
G

%

~W6
u !* du DU. ~4.13b!

But ~4.13!, ~4.4!, and~4.3! entail ~4.5!. h

Lemma 4.2:Equations~4.4! hold ;uPG if condition 1 is satisfied.
Before proving this lemma, we will use it to prove Theorem 3.1.
Proof of Theorem 3.1:~a! Since W6(H1 ,H0;J0) exist by Lemmas 4.1 and 4.2, an

W6(H0,H0 ;P0) exists,W6(H1 ,H0 ;J) exists by~3.18!. That W6(H1 ,H0 ;P)5W6(H1 ,H0 ;J)
follows by arguments virtually identical to those invoked in an analogous connection in the
of part ~a! of Theorem 2.1 of Ref. 5.

~b! By W6(H1 ,H0 ;P)5W6(H1 ,H0 ;J), ~3.18!, ~4.5!, and the corollary to Lemma B.1 in
Appendix B of Ref. 5 there follows a modified version of Eqs.~3.6! with Pscatt replaced byPac.
This result and~6.3a! entail that Eqs.~3.6! hold in their originally stated form.@We remind the
reader that~6.3a! is derived in Sec. VI under the assumption that conditions 1 and 2 h#
Equation~3.7! follows by arguments similar to ones adduced in the proof of part~b! of Theorem
2.1 of Ref. 5. h

Proof of Lemma 4.2:Assume that1 is satisfied. Then Lemma 4.2 holds if statements~i!–~iii !
below are true for alluPG and all bounded intervalsd,R:10

~i! hD(hu
0),D(hu

1), h* D(hu
1),D(hu

0).
~ii ! (h* h2I L2(v0))E(d;hu

0) and (hh* 2I L2(v))E(d;hu
1) are compact, whereE(d;hu

0),E(d;hu
1)

are the spectral measures ofhu
0,hu

1, respectively.
~iii ! (hu

1h2hhu
0)E(d;hu

0) is trace class.

We proceed to prove~i!–~iii !, fixing uPG and a bounded intervald,R until further notice.
Proof of (i): SinceD(hu

1)5D(hu), the relations~i! hold in the present case since they do
the caseV50 ~Ref. 5, pp. 2878–2879!.

Proof of (ii): The first property~ii ! was proved whenV50 ~Ref. 5, p. 2879!. Hence we only
need to establish the compactness of (hh* 2I L2(v))E(d;hu

1). Sincehh* 2I L2(v) is multiplication
by a C`(v) function of bounded support, it suffices to show that for an arbitrary sequ
$gm%mPN bounded inL2(v) (N5the positive integers!, the sequence$um5E(d;hu

1)gm%mPN is
precompact inL2

„v(r )… for large enoughr .0. Here is the proof. We first show that$um%mPN is
bounded inH1(v). Obviously, it is bounded inL2(v). Also, by umPD(hu

1)5D(hu),Du , ;m
PN, ~3.16!, the boundedness of the operatorsvu and hu

1E(d;hu
1) and that of the sequenc

$um%mPN in L2(v), it follows that
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i¹umiv
2 5^¹um ,¹um&v

5^um ,huum&v

<^um ,hu
1um&v1u^um ,vuum&vu

<^um ,hu
1um&v1constiumiv

2 <constiumiv
2 <const, ~4.14!

where ‘‘const’’ is independent ofm, and wherei•iM , ^•&M denote the norm and inner product
L2(M ), respectively, for a measurable subsetM,Rn.21 Hence$um% is bounded inH1(v). By
Lemma B.1, we thus conclude that$um% is precompact inL2

„v(r )… for eachr .0 for which
v(r )ÞB.

Proof of (iii): We continue to assume thatuPG is fixed and thatd,R is a fixed bounded
interval. We will need the fact~Ref. 5, p. 2876! that the spectral measureE(•;hu

0) of hu
0 is given

by

„E~d;hu
0! f …~x!5 (

nPZn21
E

R1

xd„kn~j!…wn~x,j! f̃ n~j!dj,

~4.15!
f PL2~v0!, a.e. xPv0,

where

f̃ n~j!5L2~R1!2 lim
r→`

E
v0~r !

wn~x,j! f ~x!dx,

wn~x,j!5~2/p!1/2exp@2p i ~n1u!.x̃#sinjxn ,

f PL2~v0!, nPZn21, a.e. jPR1 . ~4.16!

Here xd is the characteristic function of the intervald, knu(j)5j214p2un1uu2, and R1

5@0,̀ ). Theu-dependence of various functions is suppressed for notational convenience. Sd
is bounded, only a finite number of terms in the sum~4.15! are nonzero for a.e.xPv0.

Note that the mappingU from L2(v0) onto C5(nPZn21% L2(R1) defined by Uf

5$ f̃ n%nPZn21 is unitary. Hence condition~iii ! is equivalent to the condition that

~hu
1h2hhu

0!E~d;hu
0!U*

be trace class fromC to L2(v0). In turn, the latter condition is equivalent to requiring that t
mapping

f̃ n→~hu
1h2hhu

0!E
R1

f̃ n~j!wn~•,j!xd„kn~j!…dj

be trace class fromL2(R1) to L2(v) for eachnPZn21. This equivalence follows from the fact
that only a finite number of summands in~4.15! are nonvanishing a.e. onv0 and that the sum of
a finite number of trace class operators with the same domains and ranges is trace class. H
fix nPZn21 and proceed as follows. We first remark that

~hu
1h2hhu

0!E
R1

f̃ n~j!wn~•,j!xd„kn~j!…dj5E
R1

Mn~•,j! f̃ n~j!djªBnf̃ n ,

f PL2~v0!, nPZn21, ~4.17a!

where
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Mn5Mn8~x,j!1Mn9~x,j!, ~4.17b!

and where

Mn8~x,j!52$@d2 j ~xn!/dxn
2#wn~x,j!12@d2 j ~xn!/dxn

2#]wn~x,j!/]j#%xd„kn~j!…,
~4.17c!

Mn9~x,j!5V~x! j ~xn!wn~x,j!xd„kn~j!…, ~4.17d!

;nPZn21,xPv0,jPR1 , where, by definition,V(x)50 on v0\v. Equations~4.17! can be
readily justified. Indeed, note that*R1

f̃ n(j)wn(x,j)xd„kn(j)…dj is an infinitely differentiable

function ofx on v by dominated convergence. Consequently, the operatorhu
1h2hhu

0 acts on this
function ~which is in its domain! by (2D1Vuv) j 1 j D, whereD may be interpreted as the usua
rather than the weak Laplacian, and may be taken inside the integral sign by dominated c
gence. Given these facts,~4.17! follows by a brief calculation.

Write Bn5Bn81Bn9 , whereBn8 ,Bn9 are defined by~4.17a!, but with Mn replaced byMn8 ,Mn9 ,
respectively. Thus, in order to prove~iii ! it suffices to show thatBn8 ,Bn9 are trace class. This wil
now be done forBn9 , the proof forBn8 being analogous.

Note that

E
R1

S E
v
uMn9~x,j!u2 dxD dj,`, ~4.18!

in view of ~4.17d!, VuvPL2(v), the boundedness ofj, wn , and the fact thatxd„kn(•)… is of
bounded support. Note also that as a mapping fromR1 to L2(v), Mn9(• ,j) is continuous and has
a continuous first derivative]Mn9(• ,j)/]j on this support. The proof of these two facts is eleme
tary. By a version of a theorem of Stinespring12 due to Lyford,22 these properties ofMn9(• ,j)
imply that Bn9 is trace class.

V. SPECTRUM OF h u
1
„u«G…

A. Preliminary remarks

In this section, we will once more fixuPG, which again allows us to simplify the notation b
omitting u from various symbols. In particular, we write

kn54p2un1uu2, nPZn21. ~5.1!

If f PL loc
2 (v̄) has an extension toL loc

2 (V̄) having property Pu , then it has the
L loc

2 (v̄1,̀ )-convergent series representation

f ~x!5 (
nPZn21

f n~xn!hn~ x̃!, a.e. xPv1,̀ , ~5.2a!

in the open cylindrical subsetv1,̀ of v, where we recall thatv r ,`5$xPv:xn.r % and where

f n~xn!5E
G

hn~ x̃! f ~ x̃,xn!dx̃, nPZn21, a.e. xn.1, ~5.2b!

the set of functions

hn~ x̃!5exp@2p i ~n1u!.x̃#, x̃PG, nPZn21, ~5.2c!

being a complete orthonormal set inL2(G).
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By condition 2,V(x)5w(xn),;xPva,` for a fixed a.1, wherewPC`
„(a,`)…. Suppose

that this condition holds and thatf is as stated in the previous paragraph, and in addition is a w
~and therefore strict! solution of the elliptic equation,

2D f 1w~xn! f 5z f , xPva,` , ~5.3!

for somezPC. Then the restriction off to va,` is equivalent to aC`(va,`) function,23 with
which we will identify it w.l.g. This fact, thePu property off, and~5.1!, ~5.2b!, and~5.2c! entail
~via differentiation under the integral sign and partial integration! that *GD f ( x̃,xn).hn( x̃)dx̃
52d2f n(xn)/dxn

21knf n(xn) for xn.a. In turn, this leads to

d2f n~xn!

dxn
2 2@kn2z1w~xn!# f n~xn!50, xn.a, nPZn21, ~5.4!

with the aid of~5.2b! and~5.3!. Our discussions of the spectrum ofhu
1 in this section depend in an

essential way on the asymptotic behavior of the solutions of this ODE forxn→`.

B. Point spectrum of h u
1

By Lemma 4.2, the absolutely continuous spectrum ofhu
1 coincides with the spectrum ofhu

0,
since the latter spectrum is purely absolutely continuous. In this and the next section, w
discuss the singular spectrum ofhu

1. The main result of the present section, stated in Lemma
is that the eigenvalues ofhu

1 in suitable intervals are isolated and have finite multiplicity. Th
result will be used in Sec. V C to show that the singular continuous spectrum ofhu

1 is empty.
Lemma 5.1:Let conditions 1, 2 be satisfied. LetI ,R be a compact interval@A,B# or a

semi-infinite interval of the form~2`,B#, no kn’s being contained in either of these interva
@recall ~5.1!#. Thenhu

1 has a finite number of eigenvalues inI, each having finite multiplicity.
Proof: It will be by contradiction. Let$fm%mPN be an infinite orthonormal set of eigenfun

tions of hu
1 with eigenvalueslm lying in a compact interval@A,B# or ~2`,B# not containing any

kn’s. We claim that$fm%mPN is bounded inH1(v). This follows from two facts. First, since th
fm are orthonormal, this sequence is trivially bounded inL2(v). Second, for eachmPN,

i¹fmiv
2 5^fm ,2Dfm&v5^fm ,hu

1fm2vufm&v5lm1u^fm ,vufm&vu<B1const, ~5.5!

where ‘‘const’’ is independent ofm. The first equality in~5.5! follows from fmPD(hu
1) and the

formula mentioned in Ref. 21, and to derive the rest of~5.5! we have used~3.16!, vu!hu , the
boundedness ofvu , lm<B, and the fact thatifmiv51.

Next, we use the boundedness of$fm%mPN in H1(v) and other arguments to show that th
sequence has a subsequence that is Cauchy inL2(v). This is absurd and will thus complete th
proof of the lemma.

Since eachfmPL2(v) and its Fourier coefficients (fm)n(xn) in the expansion~5.2a! satisfy
a differential equation of the type~5.4! ~with z replaced bylm), and in view of Lemma C.1@see
especially Eqs.~C.3a! and ~C.4a!# and the definition ofAz(zPC) in Appendix C, it follows that

fm~ x̃,xn!5fm~ x̃,b1y!5 (
nPZn21,kn.lm

Cmn exp~2Akn2lmy!@11r~y,kn2lm!#hn~ x̃!,

xPvb,` , ~5.6!

in the L2(vb,`) sense. Hereb.a is a constant,y5xn2b.a2b @i.e., J in Lemma C.1 is (a
2b,`).@0,̀ ) in the present case#, theCmn are constants, and

ur~y,k!u5expS E
y

`

uq~j!udj/k D 21, k.0, y>0, ~5.7!
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whereq(y)5w(xn). Since*0
`uq(j)udj,` by 2, ~5.7! makes sense. Using~5.6! and the ortho-

normality of thehn( x̃), and choosingr .0 so large that

0,r~r ,p!,1/2, ~5.8a!

wherep5min$Akn2B:kn.B%, we obtain

ifmivb1r ,`

2 5 (
nPZn21,kn.lm

uCmnu2E
r

`

exp~22Akn2lmy!.@11r~y,kn2lm!#

< (
nPZn21,kn.lm

uCmnu2 exp~22Akn2lmr !.@11r~r ,p!#2/2Akn2lm

,~9/8! (
nPZn21,kn.lm

uCmnu2 exp~22Akn2lmr !/Akn2lm. ~5.9a!

Actually, we will chooser .0 even larger, and in fact so large that

0,r~r /2,p!,1/2, ~5.8b!

which implies~5.8a!. Doing this and proceeding similarly to the way in which we derived~5.8a!,
we see that both

ifmivb1r /2,̀
.~1/8! (

nPZn21
uCmnu2 exp~Akn2lmr !/Akn2lm, ~5.9b!

and ~5.9a! hold. By ~5.9a! and ~5.9b!,

ifmivb1r ,`

2 ,9 exp~2pr !ifmivb1r /2,̀

2 <9 exp~2pr !ifmiv
2 <9 exp~2pr !. ~5.10!

Now, the sequence$fm%mPN is bounded inH1(v) and eachfmPD(hu). Hence, by the local
compactness~LC! property of v ~Lemma B.1!, $fm%mPN has a subsequence$fm%mPT that is
Cauchy inL loc

2 (v̄). That is,

ifm2fnivb1s
→0, for m,nPJ and m,n→`, ~5.11!

;s.0, whereJ,N is independent ofs by the LC property. Henceforth, the indicesm,n will be
assumed to be inJ.

It is now easy to show that$fm%mPT is Cauchy inL2(v). Indeed, note that for an arbitrar
«.0 there existsn0PJ, such that

ifm2fnivb1r ,`

2 5ifmivb1r ,`

2 1ifnivb1r ,`

2 12ifmivb1r ,`
•ifnivb1r ,`

<36 exp~2pr !<«2/2, ;m,n>n0 , ~5.12!

if r is large enough. W.l.g., we will assume thatr is so large that~5.12!, as well as~5.8b!, and
therefore also~5.8a!, obtain. Moreover, by~5.11! there existsn1PJ such that

ifm2fnivb1r

2 <«2/2, ;m,n>n1 . ~5.13!

An immediate consequence of~5.11! and ~5.13! is that the subsequence$fm%mPJ is Cauchy in
L2(v). Since this is impossible,hu

1 has a finite number of eigenvalues inI, each having finite
multiplicity. h
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C. Absence of the singular continous spectrum of h u
1

This fact is asserted by Lemma 5.4. A key preliminary step in its proof is Lemma 5.3, w
states an important boundedness property of the resolvent ofhu

1 at points of the complex plane
approaching certain points of the real axis. In this section we assume that conditions 1 an
satisfied.

Before proving Lemmas 5.3 and 5.4, we introduce some terminology. We first define th

Du5$ f PL loc
2 ~D;v̄ !ùH loc

1 ~v̄ !: f has an extension,

to L loc
2 ~D;V̄!ùH0,loc

1 ~V̄ ! with property Pu%. ~5.14!

Second,f PL loc
2 (v̄) will be said to satisfy the outgoing~resp., incoming! radiation condition inv

if

f n~xn!;H const exp~2Akn2lxn!, if kn.l,

const exp~6 iAukn2luxn!, if kn,l,
~5.15!

holds forxn→` with the 1 ~resp.,2! sign for somelPR and allnPZn21. Third, we set

L5$lPR: l¹sp~hu
1!,lÞkn ,;nPZn21%, ~5.16!

wheresp(hu
1) denotes the point spectrum ofhu

1.
The next lemma will be used to prove Lemma 5.3.
Lemma 5.2:Suppose thatf PDu satisfies the incoming or outgoing radiation condition inv

and that the equation

2D f 1Ṽf 5l f ~5.17!

holds for somelPL in the distributional sense, whereṼ is the maximal operator of multiplication
by the functionVuv, V denoting the function with properties 1, 2 that was introduced in Sec. II
Then f 50.

Proof: We will prove the lemma by contradiction in the case whenf PDu satisfies the outgo-
ing radiation condition. It can be proved similarly when the incoming radiation condition obt
Obviously, the Fourier coefficientsf n(xn) of f (x) satisfy the ODE~5.4! with z replaced by
l;y5xn2b>0. Moreover, using Lemma C.1@particularly~C.3a! and~C.3b!#, we see that in the
present casef has theL loc

2 (v̄b,`)-convergent series representation,

f ~x!5 (
nPZn21

gn exp~snAukn2luy!@11rn~y!#hn~ x̃!, a.e. xPvb,` , ~5.18a!

where thegn’s are constants andsn521, i in the respective caseskn.l, kn,l ~the only ones
possible sincelPL), and wherern(y)5o(1) asy→`. Again using Lemma C.1 and argumen
analogous to those adduced to derive~5.18a!, one can show that] f /]xn is represented by the
L loc

2 (v̄b,`)-convergent series:

] f ~x!

]xn
5 (

nPZn21
gnsnAukn2luexp~snAukn2luy!@11 r̃n~y!#hn~ x̃!,

a.e. xPvb,` , ~5.18b!

where eachr̃n(y)5o(1) as y→`. Note that the only summands in~5.18a! and ~5.18b! not
vanishing a.e. are those for which eitherkn.l or kn,l, sincelPL.

By Lemma C.5 of Ref. 5,~5.18!, and the orthonormality of thehn , it follows that
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E
G
F f̄

] f ~x!

]xn
2 f

] f̄ ~x!

]xn
G ~ x̃,xn!dx̃5 (

nPZn21
F f̄ n

d fn

dxn
2 f n

d f̄n

dxn
G ~xn!50, xn.b. ~5.19!

Using the reality of the summands in~5.18b! whenkn.l, one sees that the contribution of suc
summands to the sum in~5.19! vanishes. On the other hand, the contribution of the terms w
kn,l, for which sn5 i , has the form shown on the lhs of the equation,

(
nPZn21,kn,l

ugnu2@11cn~y!#50, xn.b ~5.20!

~except for an unimportant factor 2i ). Herecn(y)5o(1) asy→`. Since the sum~5.20! contains
only a finite number of nonvanishing terms, we conclude thatgn50 if kn,l. By this result and
~5.18a!,

f ~x!5 (
nPZn21,kn.l

gn exp~2Akn2ly!@11rn~y!#hn~ x̃!, a.e. xPvb,` . ~5.18c!

Consequently,f PL2(vb,`). Since f PL loc
2 (v̄) holds as well, we conclude thatf PL2(v). More-

over, sinceD f 5v(x) f 1l f a.e. onv andvPL2(v), we see thatD f PL2(v), and hence thatf
PL2(D;v). Now, f PDu by hypothesis andDuùL2(D;v)5D(hu) by Lemma 7.2 of Ref. 5
~where ‘‘,,’’ ‘‘ ù’’ should read ‘‘ù,’’ ‘‘ ,,’’ respectively!. Therefore,f PD(hu)5D(hu

1) andhu
1f

5l f . But sincel¹sp(hu
1), it follows that f 50. h

The next lemma states in a precise fashion the boundedness property of the resolvRz

5(hu
12z1L2(v))

21 alluded to above.
Lemma 5.3:Let @g,d#,L be a compact interval andbP(a,`). Supposef PL2(v),

suppf ,vb , andi f ivb
51. Then

iRl6 is f i1,vc
<Kbc , ~5.21!

;cP(b,`), provided thatlP@g,d# andsP(0,1), whereKbc is a constant independent ofl, s,
f. ~See Appendix A for the definition ofi•i1,A .)

Proof: We will prove it by contradiction for the case of the1 sign in ~5.21!, the proof for the
2 sign being similar. Suppose the lemma is false for some finitec.b>a.1, wherea is the
constant in condition 2. Then there exist sequences$zk5lk1 isk%kPN and $ f k%kPN , with lk

P@g,d#, skP(0,1) andi f kivc
51, suppf k,vb ;kPN, such that

iRzk
f ki1,vb

>k, ~5.22!

for each suchk. Since@g,d#3(0,1)PR2 is bounded,$zk%kPN will be assumed to converge w.l.g
Hencelk→lP@g,d# andsk↓0(k→`). For sk→sÞ0 would contradict~5.22!.

Define

uk5iRzk
f ki1,vc

21 Rzk
f k , gk5iRzk

f ki1,vc

21 f k , kPN. ~5.23!

Henceiuki1,vc
51 for all suchk andgk→0 in L2(v) ask→`. Now ukPD(hu),Du . Since the

sequence$uk%kPN is obviously bounded inH1(v), Lemma B.1 implies that it has a subsequen
$uk%kPK , independent ofc and Cauchy inL2(vc). Directly from the definitions,

2Duk1w~y!uk5zkuk1gk5zkuk , kPN, a.e. xPvb,` , ~5.24!
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since suppf k,vb . Taking into account~5.24!, condition 2, and Lemma C.1, together with th
facts thatukPL2(v) and that ReAkn2zk.0, ;nPZn21;kPN, since ImzkÞ0 at each suchk
~recall the second sentence of the second paragraph of Appendix C!, it follows that every suchuk

is represented by theL2(vb,`)-convergent series,

uk~x!5 (
nPZn21

~uk!n~xn!hn~ x̃!, a.e. xPvb,` , ~5.25a!

where

~uk!n~xn!5Ckn exp~2Akn2zky!@11rkn~y!#,

nPZn21, y>0. ~5.25b!

Here

rkn~y!<Q~y!5expS E
y

`

uw~j!udj/PD 21, y>0, ~5.25c!

with P5min$Aukm2z j u,mPZn21, j PN,RezjP@g,d#,Im zjP(0,1)%.
We claim that

iukib1 j r ,b1~ j 11!r<iukib1r ,b12r , j 50,1,2,3,... , ~5.26!

if r is so large that

0,Q~r !,1, exp~22rP !
@11Q~r !#2

@12Q~r !#2 <1. ~5.27!

This claim can be proved similarly to~5.9a!.
Since $uk%kPK is Cauchy inL2(vc) and ~5.26! holds, this subsequence is also Cauchy

L loc
2 (v̄). By Duk52@zk1V(x)#uk ~a.e.xPv), $uk%kPK is Cauchy inL loc

2 (D;v̄) as well. There-
fore, uk→uPDu in L loc

2 (D;v̄) by Lemma 7.1 of Ref. 5, with

2Du~x!1V~x!u5lu~x!, a.e. xPv, ~5.28!

lP@g,d# denoting the limit of the sequence$zk%kPN as above.
We now show thatu satisfies the outgoing radiation condition, and hence thatu50 by Lemma

5.2. But sinceiuki1,vb
51 (kPK), this is absurd and will complete the proof.

We will write y5xn for convenience. Sinceuk→u in L loc
2 (v̄), it follows that (uk)n→un

PL loc
2 (R̄1) by Schwarz’s inequality, whereR15@0,̀ ). By a standard smoothness argument, t

entails pointwise convergence: (uk)n(y)→un(y) for y>0 ask→`. We thus have for each suchy
by ~5.24!, ~5.28!, and other arguments, analogous to those used to prove~5.4!:

d2~uk!

dy2 2@kn2zk1w~y!#~uk!n50, ~5.29a!

d2un

dy2 2@kn2l1w~y!#un50. ~5.29b!

Fixing nPZn21, and sincelPL, eitherkn.l @case~a!# or kn,l @case~b!#. We note that

exp~2Akn2zky!;H exp~ iAukn2luy! in case ~a!,

exp~2Aukn2luy! in case ~b!,
~5.30!
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ask→`. By the pointwise convergence property of (uk)n(y), together with~5.25b!, ~5.30!, and
Lemma C.1, it follows thatun(y) can be written as the linear combination,

un~y!5Cn8 exp~ iAukn2luy!@11rn
1~y!#1Dn8 exp~2 iAukn2luy!@11rn

1~y!#

[Cn8un
1~y!1Dn8un

2~y!, ~5.31!

wherern
6(y)5o(y) asy→` andun

6(y) are linearly independent solutions of~5.29b! for y>0.
Note also that by~C5! and the definition ofun

1(y),

un~y!5 lim
k→`

$Cnk exp~2Akn2zky!@11rkn~y!#%5Cnun
1~y!, ~5.32!

at each suchy, where the limitCkn→CnPC ask→` exists.24 By ~5.31! and ~5.32!,

Cnun
1~y!5Cn8un

1~y!1Dn8un
2~y!, y>0. ~5.33!

But ~5.33! and the linear independence ofun
6(y) implies thatDn850. Henceu(y) satisfies the

outgoing radiation condition. h

The main result of this section is as follows.
Lemma 5.4: hu

1 has an empty singular continuous spectrum.
Proof: Follows from Lemma 5.3 by the same arguments used to prove Lemma 7.6 in Reh

VI. PROOF OF THEOREM 3.2

It will be given after some preliminary remarks, definitions, and lemmas. We will assume
conditions 1 and 2 hold throughout this section.

Denoting byHac(hu
1) andHp(hu

1) the subspace of absolute continuity ofL2(v) wrt hu
1 and the

closed span of the eigenfunctions ofhu
1, respectively, it follows that

L2~v!5Hac~hu
1! % Hp~hu

1!, uPG, ~6.1!

since the subspace of singular continuity ofL2(v) wrt hu
1 is the zero subspace by Lemma 5.425

The projection operatorsPac, Ps with domainH5L2(V) play an important role in this section
The former operator was defined in~4.3!, and we define

UPsU
215E

G

%

Pp~hu
1!du, ~6.2!

whereU is the unitary operator fromH onto the single-fiber direct integral*G
%L2(v)du of Hilbert

spaces introduced in Sec. III B andPp(hu
1) the projection fromL2(v) into Hp(hu

1). Needless to
say, Ps exists for reasons analogous to those guaranteeing the existence ofPac that were men-
tioned in Sec. IV. As a byproduct of results in the present section, we will see that the equ

RanPac5Hscatt, ~6.3a!

RanPs5Hsurf ~6.3b!

hold, the first of which was used to prove Theorem 3.1.
The next three lemmas are needed to prove Theorem 3.2.
Lemma 6.1:~a! Hscatt andHsurf are mutually orthogonal subspaces ofH.
Proof: The same as that of Lemma 8.1, Ref. 5.
Lemma 6.2:RanPac,Hscatt.
Proof: Let f PRanPac. ThengªU f 5*G

%gu du is such thatguPHac(hu
1) for a.e.uPG. Fix

uPG for which this holds and fixa>1. Let Xa be the operator of multiplication inL2(v) by the
characteristic function ofva5$xPv:xn,a%. Let @c,d#,R be compact, withc5 inf of the spec-
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trum of hu
1, and denote byE(•;hu

1) the spectral measure ofhu
1. Then by the LC property ofv

~defined as stated in the Remark to Lemma B.1!, XaE(@c,d#;hu
1) is a compact operator inL2(v).

By guPHac(hu
1) and the Riemann–Lebesgue lemma,s2 limt→6` XaE(@c,d#;hu

1)exp(2ithu
1)gu

50. Since XaE(@c,d#;hu
1) is compact, s2 limt→6` XaE(@c,d#;hu

1)exp(2ithu
1)gu50. Since s

2 limd→` E(@c,d#;hu
1)5I L2

(v)
, it follows that26

lim
t→6`

iexp~2 i thu
1!guiva

50. ~6.4!

By ~3.17a! and ~3.12!,

iexp~2 i tH 1! f iVa

2 5E
G

iexp~2 i thu
1!guiva

2 du, ~6.5!

if f is of bounded support, but a simple density argument allows us to drop this requireme
~6.5!, together with

iexp~2 i thu
1!guiva

<iguiva
, ~6.6!

and the dominated convergence theorem, we infer that

lim
t→6`

iexp~2 i tH 1! f iVa

2 5E
G

lim
t→6`

iexp~2 i thu
1!guiva

2 du50, ~6.7!

and hence thatf PHscatt. h

Lemma 6.3:RanPs,Hsurf.
Proof: Similar to that of a result of Davies and Simon.27

Proof of Theorem 3.2:By ~6.1! and Lemmas 6.1–6.3,

H5RanPac% RanPs,Hscatt% Hsurf, ~6.8!

which immediately implies

H5Hscatt% Hsurf, ~6.9!

thus proving Theorem 3.2. h

Equations~6.3! are direct consequences of Lemma 6.1,~6.4!, and~6.5!.
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APPENDIX A: FUNCTION SPACE NOTATION

For a measurable subsetA,Rn(n>2), the norm and inner product in the complex vec
spaceL2(A) will be written as

i•iA , ^ &A ,

respectively.L2(D;A) denotes the complex Hilbert space of allf PL2(A) such thatD f PL2(A),
equipped with the norm

i f iD;A5~ i f iA
21iD f iA

2 !1/2,
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whereD and all other partial differential operators in this appendix should be understood i
distributional sense.

The only Sobolev spaces used in this paper areH1(A) and H0
1(A),H1(A). The norm of

H1(A) is denoted by

i f i1,A5S i f iA
21(

i 51

n

i] f /]xi iA
2 D 1/2

.

L loc
2 (D;Ā) denotes the Fre´chet space of~equivalence classes of! complex-valued functionsf

on A with f uA(r ), ] f /]xi uA(r )PL2(A(r )) @r .0,A(r )ÞB#, whose topology is generated by th
seminorms

i•i1,A~r ! , r .0, A~r !ÞB.

We also needH loc
1 (Ā), the Fréchet space composed of all such functionsf on A with f uA(r ),

] f /]xi uA(r )PL2
„A(r )… for all suchr, whose topology is generated by the seminorms

i•i1,A~r ! , r .0, A~r !ÞB.

Finally, H0,loc
1 (Ā) is a~closed! subspace ofH loc

1 (Ā) that is the completion ofC0
`(A) in theH loc

1 (Ā)
topology.

For Fréchet spaces,Ā has been used to indicate integrability up to the boundary.

APPENDIX B: LOCAL COMPACTNESS OF v

The main purpose of this appendix is to state Lemma B.1, which we use to prove Lemm
and 5.3.

An open subsetA,Rn(n>2) is said to have the local compactness~LC! property for a
bounded subsetB,H1(A) if B is precompact inL2

„A(r )… for eachr .0, with A(r )ÞB, i.e., if
for each suchr every sequence$ f n%nPN,B has a subsequence$ f nk

% such that$ f nk
uA(r )% is

Cauchy inL2
„A(r )….

Lemma B.1:v has the LC property for every bounded subsetH1(v),D(hu), ;uPG.
Remarks:In the caseA5v considered in the lemma, the above definition of LC is equiva

to that obtained by replacingv(r ) by v r .
Proof: This is a special case of Lemma 4.6 of Ref. 5.

APPENDIX C: LEMMA ON ASYMPTOTIC SOLUTIONS OF A SECOND-ORDER ODE

The lemma stated in this appendix is used in the proofs of Lemmas 5.1–5.3. In i
throughout the paper, we define the square root of a complex numberz by Az5exp(if/2)Auzu for
fªargzP(2p,p) and setAz5 iAuzu for z,0. It is important to note that this definition implie
that ReAz.0 if Im AzÞ0.

Lemma C.1:Let zPC\$0% and suppose thatqPC1(J) is absolutely integrable overJ, where
J.@0,̀ ) is an open interval. Then for 0<y,` the differential equation,

d2u

dy22@z1q~y!#u50, ~C1!

has two solutionsu6(y;z), linearly independent over this interval, satisfying the initial conditio

u6~y;0!51,
du6~y;0!

dy
56Az, ~C2!

and such that
                                                                                                                



a-
ima-

of

cox,

I:

n,

.1

1445J. Math. Phys., Vol. 45, No. 4, April 2004 Quantum-mechanical scattering

                    
u6~y;z!5exp~6Azy!@11r6~y;z!, ~C3a!

du6~y;z!

dy
56Az exp~Azy!@11s6~y;z!#, ~C3b!

wherer6(y), s6(y) areo(1) asy→` and are real for 0<y,` if z.0. Moreover,

ur2~y;z!u<expS E
y

`

uq~j!udj/Auzu D 21, ~C4a!

us2~y;z!u<expS E
0

`

uq~j!udj/Auzu D FexpS E
y

`

uq~j!udj/Auzu D 21G ~C4b!

for y in the latter interval. Finally, if (zj ) j PN,C\$0% denotes a sequence converging toẑ
PC\$0%, then

lim
j→`

u2~y;zj !5u2~y; ẑ!, ~C5!

for 0<y<`.
Remark:Properties ofr1(y;z), s1(y;z), andu1(y;z) analogous to those stated in~C4a!,

~C4b!, and~C5!, respectively, are readily derivable, but will not be needed.
Proof: Proofs of Eqs.~C3! are given in Ref. 28 for the case when ReAzÞ0. These equations

follow more easily by integral-equation arguments. In the remaining case, namelyz521, they are
readily proved by the integral-equation approach used to derive~C4!, which we now sketch.29 To
prove ~C4a!, one setsu2(y;z)5exp(2Azy)U(y;z), constructs a singular Volterra integral equ
tion for U(y;z), and obtains an estimate for this function by solving it by successive approx
tions. Inequality~C4b! follows by differentiating the above expression foru2(y;z) and using this
estimate and one for]U(y;z)/]y that is derivable analogously. Finally,~C5! follows by a standard
uniform-convergence argument using the solution of the said Volterra equation. h
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We propose the extension of some structural aspects that have successfully been
applied in the development of the theory of quantum fields propagating on a gen-
eral space–time manifold so as to include superfield models on a supermanifold.
We only deal with the limited class of supermanifolds which admit the existence of
a smooth body manifold structure. Our considerations are based on the Catenacci–
Reina–Teofillatto–Bryant approach to supermanifolds. In particular, we show that
the class of supermanifolds constructed by Bonora–Pasti–Tonin satisfies the crite-
ria which guarantee that a supermanifold admits a Hausdorff body manifold. This
construction is the closest to the physicist’s intuitive view of superspace as a mani-
fold with some anticommuting coordinates, where the odd sector is topologically
trivial. The paper also contains a new construction of superdistributions and useful
results on the wavefront set of such objects. Moreover, a generalization of the
spectral condition is formulated using the notion of the wavefront set of superdis-
tributions, which is equivalent to the requirement that all of the component fields
satisfy, on the body manifold, a microlocal spectral condition proposed by
Brunetti–Fredenhagen–Ko¨hler. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1669058#

I. INTRODUCTION

There are topics in the physical literature which do not exhaust themselves, but alwa
serve new analyses. Among these, the program to a quantum gravity theory has a significa
remaining an open problem of physics and an active area of current research. In spite of t
that many attempts have been made to include gravity in the quantization program, a satis
and definitive theory still does not exist. Many lines of research in quantum gravity deve
over the last decades, under different names, such as the Supergravity, Kaluza–Klein,
Twistors, D-brane, Loop Quantum Gravity, Noncommutative Geometry and Topos theories
elucidated the role of quantum gravity, without, however, providing conclusive results~see, for
instance, Ref. 1 for a recent review of the status of quantum gravity!. Whereas these good idea
stay only as good promises in the direction of a final theory of the quantum gravity, and sin
relevant scale of the Standard Model, or any of its supersymmetric extensions, is much bel
typical gravity scale, it seems appropriate to treat, in an intermediate step, some aspects of
in quantum field theory by considering the approach which describes the matter quantum
under the influence of a gravitational background. This framework has a wide range of ph
applicability, the most prominent being the gravitational effect of particle creation in the vic
of blackholes, raised up for the first time by Hawking.2

The study of quantum field theories on a general manifold has become an area of int

a!Present address: Universidade Federal do Espı´rito Santo ~UFES!, Departamento de Fı´sica, Campus Universita´rio de
Goiabeiras, Vito´ria, ES, Brasil. Electronic mail: dhtf@terra.com.br
14470022-2488/2004/45(4)/1447/27/$22.00 © 2004 American Institute of Physics
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research activity, and a substantial progress has been made on a variety of interesting prob
particular, great strides have been made towards the understanding of the question of h
spectral condition can be defined. While most of the Wightman axioms can be implemente
curved space–time, the spectral condition~which expresses the positivity of the energy! represents
a serious conceptual problem. On a flat space–time the Poincare´ covariance, in particular the
translations, guarantees the positivity of the spectrum, and fixes a unique vacuum state; b
general curved space–time, due the absence of a global Poincare´ group, there does not exist
useful notion of a vacuum state. As a result, the concept of particles becomes ambiguous,
problem of the physical interpretation becomes much more difficult. One possible resolut
this difficulty is to choose some quantities other than particles content to label quantum
Such an advice was given by Wald3 with the purpose of finding the expectation value of t
energy-momentum tensor. For free fields, this approach leads to the concept of Hadamard
The latter are thought to be good candidates for describing physical states, at least fo
quantum field theories in curved spacetime, according to the work of DeWitt and Brehme4 ~see
Refs. 5, 6, 7 for a general review and references!. In a seminal work, Radzikowski8 showed that
the global Hadamard condition can be locally characterized in terms of the wavefront se
proved a conjecture by Kay9 that a locally Hadamard quasifree Klein–Gordon state on any
bally hyperbolic curved space–time must be globally Hadamard. His proof relies on a ge
wavefront set spectrum conditionfor the two-point distribution, which has made the connect
with the spectral condition much more transparent~see also Refs. 10, 11!.

The wavefront set was introduced by the mathematicians Ho¨rmander and Duistermaat aroun
1971 ~Refs. 12, 13! in their studies on the propagation of singularities of pseudodifferen
operators, which rely on what is now known as a microlocal point of view. This subject is gro
of importance, with a range of applications going beyond the original problems of linear p
equations. In particular, the link with quantum field theories on a curved space–time is now
established, especially after Radzikowski’s work. A considerable amount of recent papers d
to this subject10,11,14–20emphasizes the importance of the microlocal technique to solving s
previously unsolved problems.

At the same time, it seems that not so much attention has been drawn to supersym
theories in this direction. Much of the progress made in understanding the physics of elem
particles has been achieved through a study of supersymmetry. The latter is a subject of
erable interest amongst physicists and mathematicians. It is not only fascinanting in its own
in the 30 years that have passed since its proposal, supersymmetry has been studied inten
the belief that such theories may play a part in a unified theory of the fundamental force
many issues are understood much better now. Although no clear signal has been observe
now, supersymmetry is believed to be detectable, at least if certain minimal models of p
physics turn out to be realized in nature, and calculations and phenomenological analy
supersymmetry models are well-justified in view of the forthcoming generation of machine
the new super collider LHC being buit at CERN, which is expected to operate in a few years
and will have probably enough high energy to reveal some of the predicted supersym
particles, such as neutralinos, sleptons and may be indirectly squarks. It also has proven
tool to link the quantum field theory and noncommutative geometry.21,22 Furthermore, in recen
years the supersymmetry have been instrumental in uncovering nonperturbative aspects o
tum theories.23,24All of this gives strong motivations for trying to get a deeper understandin
the structure and of the properties of supersymmetric field theories.

This work is inspired in the structurally significant, recent results on quantum fields p
gating in a globally hyperbolic, curved space–time, and represents a natural attempting t
struct a generalization of some of the conventional mathematical structures used in quantu
theory, such as manifolds, so as to include superfield models in supermanifolds~curved super-
spaces!. These structural questions are not without physical interest and relevance! It is th
pose of the present paper to study how such a construction can be achieved.

The outline of the paper is as follows: We shall begin in Sec. II by describing some g
properties of supermanifolds according to Rogers,25 and the problem of constructing their bodie
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in the sense of Catenacciet al.26 and Bryant.27 Then, by working with a class ofG` supermani-
folds constructed by Bonora–Pastin–Tonin28 ~BPT-supermanifolds!, we demonstrate that thi
class of supermanifolds satisfies the criteria which guarantee that a supermanifold admits a
dorff body manifold. In Sec. III, superdistributions on superspace are defined. We derive
results not contained in Ref. 29. In particular, we generalize straightforwardly the notio
distributions defined on a manifold to distributions defined on a supermanifold. In Sec. IV
discuss the algebraic formalism so as to include supersymmetry on a supermanifold. The
from this section may be seen as a natural extension of the ‘‘Haag–Kastler–Dimock’’ axiom30,31

for local ‘‘observables’’ to supermanifolds. In Sec. V, we summarize some basics on the de
tion of Hadamard~super!states. The focus of the Sec. VI will be on the extension of the Ho¨rman-
der’s description of the singularity structure~wavefront set! of a distribution to include the super
symmetric case. This fills a gap in the literature between the usual textbook presentation
singularity structure of superfunctions and the rigorous mathematical treatment based on m
cal analysis. In Sec. VII, we present the characterization of a type of microlocal spectral con
for a superstatevsusy with m-point superdistributionvm

susy on a supermanifold, in terms of th
wavefront set of superdistributions, which is equivalent to the requirement that all of the co
nent fields satisfy the microlocal spectral conditions11 on the body manifold. This is in accordanc
with the DeWitt’s remark32 which asserts that in physical applications of supersymmetric quan
field theories, the spectral condition of the GNS-Hilbert superspace is restricted to the or
GNS-Hilbert space that sits inside the GNS-Hilbert superspace. Finally, Sec. VIII contain
final considerations.

II. NOTIONS OF SUPERMANIFOLDS

This section introduces some few basic fundamentals on the theory of supermanifold
follow here the work of Rogers25 which is both general and mathematically rigorous. Roge
theory has an advantage, a supermanifold is an ordinary Banach manifold endowed with a
mann algebra structure, so that the topological constructions have their standard meanings
context see also Refs. 32–39.

We start by introducing first some definitions and concepts of a Grassmann–Banach a
i.e., a Grassmann algebra endowed with a Banach algebra structure. This leads to the key
of supercommutative superalgebra.

Definition 2.1: An algebra is said to be a supercommutative superalgebraL—or aZ2-graded
commutative algebra—ifL is the direct sumL5L0% L1 of two complementary subspaces su
that 1PL0 and L0L0,L0 , L0L1,L1 , L1L1,L0 . Moreover, for all homegeneous element,
y in L, xy5(21)uxuuyuyx, whereuxu50 if xPL0 anduxu51 if xPL1 . In particular, it follows that
the square of odd elements is zero.

Elements fromL0 andL1 are said to be homegeneous if they have a definite parity, i.e
elementxPL0 is said to haveevenparity, while an elementxPL1 is said to haveodd parity.
Products of homogeneous elements of the same parity are even and of elements of d
parities are odd.

We shall assume that the superalgebraL is a Banach space with normi•i satisfying the
condition

ixyi<ixiiyi ,;x,yPL; i1i51 .

Let L be a finite positive integer andG denote a Grassmann algebra, such thatG can naturally
be decomposed as the direct sumG5G0% G1 , whereG0 consists of the even~commuting! elements
andG1 consists of the odd~anti-commuting! elements inG, respectively. LetML denote the set of
sequences$(m1 ,...,mk)u1<k<L;m iPN;1<m1,¯,mk<L%. Let V represent the empty se
quence inML , and (j ) denote the sequence with just one elementj . A basis ofG is given by
monomials of the form$jV ,jm1jm2,...,jm1jm2

¯jmk% for all mPML , such thatjV51 and
j ( i )j ( j )1j ( j )j ( i )50 for 1< i , j <L. Futhermore, there is no other independent relations among
generators. ByGL we denote the Grassmann algebra withL generators, where the even and t
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odd elements, respectively, take their values.L being assumed a finite integer~the number of
generatorsL could be possibly infinite!, it means that the sequence terminates atj1

¯jL and there
are only 2L distinct basis elements. An arbitrary elementqPGL has the form

q5qb1 (
(m1 ,...,mk)PML

qm1 ,...,mk
jm1

¯jmk , ~2.1!

whereqb ,qm1¯mk
are real numbers. An even or odd element is specified by 2L21 real parameters

The numberqb is called the body ofq, while the remainderq2qb is the soul ofq, denoteds(q).
The elementq is invertible if, and only if, its body is nonzero.

With reference to supersymmetric field theories, the commuting variablex has the form

x5xb1xi j j
ij j1xi jkl j

ij jjkj l1¯ , ~2.2!

where xb ,xi j ,xi jkl ,... are real variables. Similarly, the anticommuting variables~in the Weyl
representation! u and ū5(u)* have the form

u5u ij
i1u i jkj ij jjk1¯ , ū5 ū ij

i1 ū i jkj ij jjk1¯ , ~2.3!

whereu i ,u i jk ,... arecomplex variables. The summation over repeated indices is to be under
unless otherwise stated.

Remark 2.1:As pointed out by Vladimirov–Volovich,40 from the physical point of view,
superfields are not functions ofu i ,u i jk ,... andxb ,xi j ,xi jkl ,..., butonly depend on these variable
through u and x, as it occurs with ordinary complex analysis where analytic functions of
complex variablesz5x1 iy are not arbitrary functions of the variablesx andy, but functions that
depend onx andy throughz. j

The Grassmann algebra may be topologized. Consider the complete norm onGL defined by41

iqip5S uqbup1 (
(m)51

L

uqm1¯mk
upD 1/p

. ~2.4!

A useful topology onG is the topology induced by this norm. The normi•i1 is called the Rogers
norm andGL(1) the Rogers algebra.25 The Grassmann algebraG equipped with the norm~2.4!
becomes a Banach space. In factG becomes a Banach algebra, i.e.,i1i51 andiqq8i<iqiiq8i for
all q,q8PG.

Definition 2.2: A Grassmann–Banach algebra is a Grassmann algebra endowed with a
nach algebra structure.

A superspace must be constructed using as a building block a Grassmann–Banach algGL

and not only a Grassmann algebra.
Definition 2.3: Let GL5GL,0% GL,1 be a Grassmann–Banach algebra. Then the

(m,n)-dimensional superspace is the topological spaceG L
m,n5GL,0

m 3GL,1
n , which generalizes the

spaceRm, consisting of the Cartesian product of m copies of the even part ofGL and n copies of
the odd part.

For an (m,n)-dimensional superspace, a typical element of this set used in physics is de
by (z)5(z1 ,...,zm1n)5(x1 ,...,xm ,u1 ,...,un/2 ,ū1 ,...,ūn/2). For instance, for the ~4,4!-
dimensional Minkowski superspace, which is the space of, e.g.,N51 Wess–Zumino model for-
mulated in superfield language and modeled asG L

4,45GL,0
4 3GL,1

4 , (z)
5(x1 ,...,x4 ,u1 ,u2 ,ū1 ,ū2). The norm on G L

4,4 is defined by izi5( i 51
4 ixi i1( j 51

2 iu j i
1(k51

2 i ūki . The topology onG L
4,4 is the topology induced by this norm—which is also t

product topology.
In supersymmetric quantum field theory, superfields are functions in superspace usually

by their ~terminating! standard expansions in powers of the odd coordinates
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F~x,u,ū !5 (
(g)50

G

f (g)~x!~u!(g) , ~2.5!

where (u)(g) comprises all monomials in the anticommuting variablesu and ū ~belonging to odd
part of a Grassmann–Banach algebra! of degreeugu; f (g)(x) is called a component field, whos
Lorentz properties are determined by those ofF(x,u,ū) and by the power~g! of ~u!. The follow-
ing notation, extended to more than oneu variable, is used~2.5!: (u)5(u1 ,ū1 ,...,un ,ūn), and~g!

is a multi-index (g1 ,ḡ1 ,...,gn ,ḡn) with ugu5( r 51
n (g r1ḡ r) and (u)(g)5) r 51

n u r
gr ū r

ḡr . In Eq.
~2.5!, for a ~4,4!-dimensional superspace,G5(2,2).

Rogers25 considered superfields inG L
m,n as G` superfunctions, i.e., functions whose coef

cientsf (g)(x) of their expansions are smooth functions ofRm into GL , extended fromRm to all of
G L

m,0 by z-continuation,25 which maps functions of real variables into functions of variables
G L

m,0 .
Definition 2.4: Let U be an open set inG L

m,0 and lete:G L
m,0→Rm be the body projection which

associates to each m-tuple (x1 ,...,xm)PG L
m,0 an m-tuple (e(x1),...,e(xm))PRm. Let V be an

open set inRm with V5e(U). We get through z-continuation—or ‘‘Grassmann analytic
continuation’’—of a function fPC`(V,GL) a function z( f )PG`(U,GL), which admits an expan
sion in powers of the soul of x

z~ f !~x1 ,...,xm!5 (
i 15¯5 i m50

L
1

i 1!¯ i m!
@]1

i 1
¯]m

i m# f ~e~x!!s~x1! i 1
¯s~xm! i m ,

where s(xi)5(xi2e(xi)) and e(xi)5(xi)b .
One should keep always in mind that the continuation involves only the even vari

z:C`(e(U))→G`(U), and thatz( f )(x1 ,...,xm) is a supersmooth function if their componen
are smooth for soulless values ofx. This justifies the formal manipulations in the physics lite
ture, where superfields are manipulated as if their even arguments were ordinary numbe37 a
supersmooth function is completely determined when its components are known on the b
superspace.

According to Definition 2.4, the superfieldF(x,u,ū)PG`(U,GL) admits an expansion

F~x,u,ū !5 (
(g)50

G

z~ f (g)!~x!~u!(g) ,

but here with suitablef (g)PC`(e(U),GL).
Now, we are going to consider some helpful aspects about supermanifolds, based on th

of Rogers,25 replacing the simple superspaceG L
m,n by a more general supermanifold. Rogers us

the concept ofG` superfunctions to define the concept ofG` supermanifolds~which can be
considered as Banach real manifoldsC` modeled onG L

m,n of dim N52L21(m1n)), with a
structure allowing for the definitions of neighboring points and continuous superfunctions
(m,n)-dimensionalG` supermanifold generalizes the concept of anm-dimensionalC` manifold:
just as a manifold is a Hausdorff topological space such that every point has a neighbo
homeomorphic toRm and has local coordinates (x1(p),...,xm(p)) in Rm, a supermanifold is a
topological space which locally looks likeG L

m,n ~but not necessarily in its global extent! and has
local coordinates (x1(p),...,xm(p),u1(p),...,un(p)) in G L

m,n , and whose transition functions ful
fill a suitable supersmoothness condition.

Definition 2.5: A supermanifold is in general a paracompact Hausdorff topological spaceM,
together with an atlas of charts$(Xa ,ka)uaPI %, over a Grassmann–Banach algebraGL , where
the Xa coverM and each coordinate function ka is a homeomorphic local map from Xa onto an

open subset X˜
a,G L

m,n , also Hausdorff.
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The existence of infinitely differentiable coordinates systems makes the supermanifold
entiable. The differentiable structure in this topological space is due toGr (r 5p or p5`)
structure of transition functions,kb+ka

21 , between overlapping coordinate patches,ka(XaùXb)
andkb(XaùXb), required to be supersmooth morphisms for anya,bPI . The local coordinates
are:

ui5pi+ka°~ i 51,...,m!,

v j5pj 1m+ka°~ j 51,...,n!.

In this senseG L
m,n is an example ofG` supermanifold, unlike of the coarse topology in t

DeWitt sense32 whose structure cannot be even a metric one.
Definition 2.6: Let X̃a be an open inG L

m,n and f:X̃a→GL , then:

(a) f is called G0 in X̃a if f is continuous in X˜ a .
(b) f is called G1 in X̃a if exist m1n functions Gkf :X̃a→GL , k51,...,m1n and functions

h:G L
m,n→GL such that

f~a1h,b1k!5f~a,b!1(
i51

m

hi$Gif~a,b!%1(
j51

n

kj$Gj1mf~a,b!%1ih,kih~h,k!,

and h(h,k)→0 whenih,ki→0. In this sense, Gi f→ f i8 .
We can generalize toGp, with finite p in the following: f is Gp in X̃a if is possible choose

Gkf which areGp21 with f PG1 em X̃a . If it is true to all p, f is calledG`. In fact, any function
which is absolutely convergent~power series! is G` on X̃a , in other words,

f ~z!5 (
k1¯km1n50

`

ak1¯km1n
z1

k1
¯zm1n

km1n,

f :X̃a→GL , X̃a,G L
m,n and ak1¯km1n

PGL.

Another important fact is theC` structure:

@Dpf ~z!#@,1,,2,...,,p#5 (
k1 ...kp51

m1n

l k1

1
¯ l kp

p ~Gkp
Gkp21

¯Gk1
f !~z!,

for all zPX̃a open inG L
m,n and l k1

1
¯ l kp

p P(G L
m,n)p. The latter denotes a product space ofp copies

of G L
m,n . In this way thep derivative of f PL@(G L

m,n)p,GL# are elements of continuousp-linear
maps of (G L

m,n)p into GL . This formalism is interesting and agrees to the Ho¨rmander’s one42 ~p.
11!, where f (p)PLp(Xa ,Xb), are elements of continuousp-linear forms fromXa to Xb .

Remark 2.2:The discussion of differentiability by Jadczyk–Pilch33 is simpler than the one
given by Rogers.25 In particular, knowing already that a functionf is a C` map between Banach
spaces, it is needed only to look at its first derivative to know whetherf is supersmooth or not
while according to Rogers an investigation of all derivatives is necessary. However, the conc
supersmoothness by Jadczyk–Pilch, and the concept ofG` differentiability by Rogers are equiva
lent. j

The body of a supermanifold:Now that the general idea of structure on a supermanifold
been introduced, it is time to restrict our attention to the case of fundamental interest: the pr
of constructing the body of aG` supermanifold which serves as the physical space–time. Rou
speaking, the body of a supermanifoldM is an ordinaryC` space–time manifoldM0 obtained
from M getting rid of all the soul coordinates. Because of its extreme generality, Rogers’ th
includes many topologically exotic supermanifolds which are not physically useful, admittin
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possibility of nontrivial topology in the anticommuting directions and classes of supermani
without a body manifold. But, intuition suggests that only a bodiedG` supermanifold can be
physically relevant!

The question of the existence of the body of a supermanifold was clarified in the pape
Catenacciet al.26 and Bryant.27 Their approach is independent of the atlas used, and it is base
the fact that anyG` supermanifoldM admits a foliationF. This type of structure is defined an
related to the natural notions of quotient and substructure on a supermanifold. As with
important concepts in mathematics, there are several equivalent ways of defining the notio
foliation. The simplest and most geometric is the following:

Definition 2.7: LetM be an (m,n)-dimensional supermanifold of class Gr , 0<r<p. A
foliation of class Gr , and of codimension m, is a decomposition ofM into disjoint connected
subsets$La%aPA , called the leaves of the foliation, such that each point ofM has a neighborhood
U and a system of Gr coordinates(x,u):U→GL,0

m 3GL,1
n such that for each leafLa , the compo-

nents of UùLa are described by surfaces on which all the body coordinatese(x1),...,e(xm) are
constant. We denote the foliation byF5$La%aPA .

The coordinates referred to in Definition 2.7 are said to be distinguished by the foliatioF.
Under certain regularity conditions onF, the quotient spaceM/F can be given the structure of a
ordinarym-dimensional differentiable manifoldM0 , which is called the body manifold ofM ~for
details see Ref. 26!. A G` supermanifold whoseF foliation is regular is called regular itself. O
regular supermanifolds the following theorem holds:

Theorem 2.8„Catenacci–Reina–Teofilatto Theorem…: Let M be a regular G` supermani-
fold. Then its bodyM0 is a C` manifold. h

As stated by Bryant,27 the necessity of regularity of the soul foliation in the sense
Catenacci–Reina–Teofilatto is not sufficient to guarantee that a supermanifold admits a
manifold. He derived necessary and sufficient conditions, namely, that leaves should be clos
do not accumulate, for the existence of a Hausdorff body manifold.

Theorem 2.9„Bryant Theorem 2.5…: Suppose thatM is a supermanifold. In order thatM
admits a body manifold, it is necessary and sufficient that the leaves of the soul foliation
closed inM and do not accumulate. h

For our purposes, it will be sufficient to consider the class ofG` supermanifolds constructe
by Bonora–Pasti–Tonin28 ~we shall call BPT-supermanifolds for brevity!, which has important
applications in theoretical physics—and fulfills Theorems 2.8 and 2.9, as we shall verify pres
These supermanifolds consist of the Grassmann extensions ofanyordinaryC` space–time mani-
fold. From a givenm-dimensional physical space–time, one constructs first an (m,0)-dimensional
supermanifold, and the (m,n)-dimensional supermanifold by taking the direct product withG L

0,n .
This construction is the closest to the physicist’s intuitive view of superspace as a manifold
some anticommuting coordinates, with the odd Grassmann variables being topologically tr

Remark 2.3:As a matter of fact, in any model involving fermions in a general space–time
supermanifold will need to be that constructed from the spinor bundle of the manifold in the
which we recall now: LetM be anm-dimensional body manifold andE be ann-dimensional
vector bundle overM. Suppose that$Ua% is a covering ofM by coordinate neighborhoods whic
are also trivialization neighborhoods ofE. Then, the corresponding (m,n)-dimensional super-
manifold has coordinate transition functions

xa
i 5fab

i ~xb!,

wherefab is thez continuation of the transition function forM and

ua
i 5gab j

i ~xb!ua
j ,

with gab :UaùUb→Gl(n) being the transition function forE. It is worthwhile to note that the
BPT-supermanifolds are examples of this construction when the bundleE is trivial. j
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For the convenience of the reader, we recall here the construction of Bonora–Pasti–T28

Let $(Ua ,ca)uaPI % be an atlas forM0 . For eachaPI consider the subsetXa of the Cartesian
productUa3G L

m,0 defined by

Xa5$~x,x̄!uxPUa ,x̄PG L
m,0 , and e~ x̄!5ca~x!%, ~2.6!

and defineka :Xa→G L
m,0 by ka(x,x̄)5 x̄ for (x,x̄)PXa . ka is a homeomorphism and its image

an open subset ofG L
m,0 .

An important property of thez-continuation is the composition of functions. LetU be an open
set in Rm, and let the map f :Rm→G L

k,0 be represented by the set ofC` functions
$ f i(x1 ,...,xm),i 51,...,m%. Definez( f ) as the set of functions$z( f i)%. Let V be an open set in
Rn, and consider the mapsf :U→V andg:V8→G L

k,0 , respectively, whereV8#V, and bothf ,g are
C` functions. Then

z~g+ f !5z~g!+z~ f !. ~2.7!

Now consider the disjoint unionM5øaPIXa . Two points ofM are equivalent if and only if
(x,x̄);(x8,x̄8), such that (x,x̄)PXa and (x8,x̄8)PXb andx5x8, x̄85z(cb+ca

21)( x̄). Of course
M is a Hausdorff space. Then consider the spaceMG equal to the spaceM modulo the equiva-
lence relation above. Theka’s provideMG with a G` differentiability structure, so thatMG is a
G` (m,0) supermanifold. LetpG :MG→M0 be a continuous and open projection. Loca
pGuXa

(x,x̄)5x for (x,x̄)PXa . SinceMG is a regular supermanifold, we find straightforwardl

that pG+ka
215ca

21+e for x̄Pka(Xa). This can be expressed by the commutative diagram:

Finally, we construct the (m,n)-dimensional supermanifoldM by taking the direct product o
MG with G L

0,n . The projectionpS :M→M0 is the composite mappG+g, whereg:M→MG is
the projection onto the first factor. The mapg is G`, unlike pG which is aC` function but not a
G`.

Corollary 2.10: LetM be a BPT-supermanifold. Then the leaves of the soul foliation
regular, closed inM and do not accumulate.

Proof: First of all, it is worthwhile noticing that, according to the construction of Bonor
Pasti–Tonin, two points of a BPT-supermanifold are in the same leaf if, and only if, they

equivalents in the sense defined above. Then the soul foliation can be defined byM/;5
def

M/F.
Once verified the corollary, we see that a BPT-supermanifold possesses an ordinary body m

defined by soul foliationM05
def

M/F, whereM0 denotes the body manifold.
In order to show that the leaves of a BPT-supermanifold are closed, the following con

ations are needed: we say that the soul foliation of a BPT-supermanifold is a Hausdorff spac
that the structure of their supermanifold is regular. This can be verified through the follo
theorem by Bryant27 ~Theorem 3.2!: Suppose thatM is a supermanifold of dimension (m,n) and
G5$Ui ,f i% is a good atlas; then the following conditions are equivalent:~i! G5$Ui ,f i% is a
regular superstructure onM, ~ii ! whens andt lie in Ui , s't impliess;t, and~iii ! the body map
e:M→M/F is locally modeled one0 :Bm,n→Rm in the sense that exist homeomorphism
f̄ i :eUi→e0f iUi such thatf̄ i+e uUI

5e0+f. When these conditions are satisfied,M/F is Haus-

dorff and is a smooth manifold of dimensionm with charts $eUi ,f̄ i%. For the case of the
equivalence relation (s;t) of a BPT-supermanifold, we see that it must be' in the Bryant sense
because embodies; and is transitive. Then' implies; on the same charts. This means that t
conditions of the Theorem 3.2 by Bryant must be properties of the BPT foliation, and hen
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Hausdorff and regular. Now, the fact that the leaves of a BPT-supermanifold are closed is
each point (e(s)) of M/; is closed, given that the BPT-supermanifolds is a Hausdorff space
the inverse application theorem guarantees that a leaf is necessarily closed, since beingF the leaf
in M, F5e21e(s) wheree21 is a continuous map.

Finally, we shall verify that the leaves of a BPT-supermanifold do not accumulate. Firs
shall suppose that the leaves of soul foliation accumulate43 in a given pair of points, e.g.
s1 ,s2PM. Note that asM/F is Hausdorff, given two pointsxPM/F and yPM/F with x
Þy, we can separate them by disjoint open sets. Choice, for example,es15x andes25y, where
e:M→M/F. Then, we also can chooses1PF8øS1 ~a transverse submanifold! and s2

PF8øS2 ~another transverse submanifold!. If this is true,s1 ,s2 must be in the same leaf, b
indicating thates15es2 contradicting the statement which a soul foliation is Hausdorff. Hen
the leaves do not accumulate. In order to complete the prove, we examine the conditioes1

5es2 . Due the possibility of choosing arbitrary transverse submanifolds, we selectS(s) and
S(t) through the some disjoint neighborhoods ofs and t, resp., such that does not exist aUi

which intersectsS(s) andS(t). But es15es2 implies thats and t are in the same chartUi , so
the leaves do not accumulate sinceS(s)øS(t)5B. h

The existence of a body manifold places us in a position to consider physically interpre
field theories on supermanifolds. In order to establish applicability in a physical system, we
to impose some restrictions regarding to the body manifoldM0 , associated with the superman
fold M. Apart from another aspects, the causality principle plays a crucial role in our constru
Therefore, we restrict our body manifold, (M0 ,g0), to be globally hyperbolic Lorentz manifold
by consisting of a four-dimensional smooth manifoldM0 ~any dimension would be possible! that
can be smoothly foliated by a family of acausal Cauchy surfaces6 and a smooth metricg0 with
signature~1, 2, 2, 2!. This means that the body manifold must be topologically equivalen
the Cartesian product ofR and a smooth spacelike hypersurfaceS ~a Cauchy surface!. S intersects
any endless timelike curve at most once. A four-dimensional globally hyperbolic Lorentz man
is orientable and time orientable, i.e., at eachxPM0 we may designate a future and past lig
cone continuously. Moreover,M0 is assumed to have a spin structure, so that one can con
spinors defined on it. It can be shown that a four-dimensional globally hyperbolic Lorentz m
fold admits a spin structure.44 In fact, Geroch44 pointed out that anoncompact, parallelizable
four-dimensional manifold admits a spin structure. Geroch’s parallelizability criterion applies
four-dimensional globally hyperbolic Lorentz manifold.

Remark 2.4:As it has been emphasized in Ref. 10, a natural background geometry that a
a supersymmetric extension of its isometry group can only be of the anti–de Sitter~AdS! type. In
other words, the global supersymmetry should not be compatible with most spacetimes, an
tion being the AdS space. This requirement seems to be an extremely restrictive condition
the AdS space has problems with closed timelike curves, apparently violating causality and
ing to problems during quantization. Namely, boundary conditions at infinity are needed. N
theless, one should remind that this result refers to extended supergravity theories with g
SO(N) internal symmetry;45 this is not, however, our case in this paper. Furthermore, this re
can mainly be justified by the heuristic form of introducing the superspace~which may be by-
passed taking into account the Rogers’ theory of a global supermanifold!. As stressed by Bruzzo,39

‘‘...the usual ways of dealing with superspace field theories are highly unsatisfactory fr
mathematical point of view. The superspace is defined formally, and, for instance, genera
dinate transformations are mathematically not well defined. As a consequence, there is now
for studying global topological properties of superspace.’’As it shall be tackled further on, Se
the mathematical structure of the supermanifolds chosen here leads to a natural formula
superdiffeormorphisms,G`, from (M,g) to (M 8,g8), from thez-continuation of ordinary dif-
feomorphisms, so that these structures become, projectively, well-defined isometries wh
M 85M and restricted to the ordinary body manifold. j
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III. SUPERDISTRIBUTIONS

In this section, as a natural next step, we extend the definition of the objects most widely
in physics: distributions. We define superdistributions on supermanifolds over the Grassm
Banach algebraGL , as continuous linear mappings toGL from the test function space ofG`

superfunctions with compact support. We derive some results not contained in Ref. 29.

A. Distributions on a manifold

To prepare for the extension of the theory of distributions to supermanifolds, we first con
their definition on manifolds. Following Ref. 42, the space–time manifoldM0 ~hereM0 denotes
an ordinary manifold obtained from a supermanifoldM by throwing away all the soul coordi
nates! is a Hausdorff space covered by charts (Xa ,ka), where the open setsXa are homeomorphic
neighborhoods to open sets inRn. A C` structure onM0 is a familyF5$(Xa ,ka)uaPI %, called
an atlas, of homeomorphismska , called coordinate functions, of open setsXa,M0 on open sets
X̃a,Rn, such that~i! if ka ,kbPF, then the mapkb+ka

21 :ka(XaùXb)→kb(XaùXb) is infinitely
differentiable,~ii ! M05øaPIXa . Let f PC0

`(Rn) denotes the set ofC` functions of compact
support onX̃a,Rn. Then, we can represent eachf by functionsf̄ of compact support onM0 by
f 5 f̄ +ka

21 , for eachka , where f̄ PC0
`(M0). Elements ofD 8(M0), the topological dual of

C0
`(M0), are distributionsu on M0 , by which we mean collections$uka

%kaPF of distributions

uka
PD 8(X̃a) such thatu is uniquely determined by theuka

and relationsu5uka
+ka . Moreover,

since for any other coordinate system one hasu5ukb
+kb in (XaùXb), it follows that ukb

5(ka

+kb
21)* uka

5uka
+(ka+kb

21) in (XaùXb).

B. Distributions on the flat superspace

With the purpose of defining superdistributions on supermanifolds, we must first con
superdistributions on an open setU,G L

m,n , whereG L
m,n denotes the flat superspace. We begin

introducing the concept of superdistributions as the dual space of supersmooth functions inG L
m,0 ,

with compact support, equipped with an appropriate topology, calledtest superfunctions. This can
be done relatively straightforward in analogy to the notion of distributions as the dual space
spaceC0

`(U) of functions on an open setU,Rm which have compact support, since the spa
G L

m,0 andG L
m,n are regarded as ordinary vector spaces of 2L21(m) and 2L21(m1n) dimensions,

respectively, over the real numbers.
Let V,Rm be an open set.V5e(U) regarded as a subset ofG L

m,0 , it is identified with the
body of some domain in superspace. LetC0

`(V,GL) be the space ofGL-valued smooth functions
with compact support inGL . Every functionf PC0

`(V,GL) can be expanded in terms of the bas
elements ofGL as

f ~x!5 (
(m1 ,...,mk)PML

0
f m1 ,...,mk

~x!jm1
¯jmk , ~3.1!

whereML
05

def

$(m1 ,...,mk)u0<k<L;m iPN;1<m1,¯,mk<L% and f m1 ,...,mk
(x) is in the space

C0
`(V) of real-valued smooth functions onV with compact support. Thus, it follows that th

spaceC0
`(V,GL) is isomorphic to the spaceC0

`(V) ^ GL .29 In accordance with definition 2.4, th
smooth functions ofC0

`(V,GL) can be extended fromV,Rm to U,G L
m,0 by Taylor expansion.

In order to define superdistributions, we need to give a suitable topological structure
spaceG0

`(U,GL) of GL-valued superfunctions on an open setU,G L
m,0 which have compact sup

port. According to a proposition by Rogers, everyG` superfunction on a compact setU,G L
m,0 can

be considered as a real-valuedC` function onU,RN, whereN52L21(m), regardingG L
m,0 and

GL as Banach spaces. In fact, the identification ofG L
m,0 with R2L21(m) is possible.26 We have here

an example of functoriality. Indeed, letX and Y denote aG` supermanifold and a Banac
                                                                                                                



e

t

in

th

e

ural
ve,

1457J. Math. Phys., Vol. 45, No. 4, April 2004 Supersymmetric fields on a supermanifold

                    
manifold C`, respectively. Then with each supermanifoldX we associate a Banach manifoldY,
via a covariant functorial relationl:X→Y, and with eachG` map f defined onX, a C` map
l~f! defined onY.26

Following, we shall first consider only the subsetCK
` of C0

`(U,RN) which consists of
functions with support in a fixed compact setK. Since by constructionCK

` is a Banach space, th
functionsCK

` have a natural topology given by the finite family of norms

ifiK,m5 sup
upu<m
xPK

uDpf~x!u , Dp5
] upu

]x1
p1
¯]xm

pm
, ~3.2!

wherep5(p1 ,p2 ,...,pm) is a m-tuple of non-negative integers, andupu5p11p21¯1pm de-
fines the order of the derivative. Next, letU be considered as a union of compact setsKi which
form an increasing family$Ki% i 51

` , such thatKi is contained in the interior ofKi 11 . That such
family exist follows from the Lemma 10.1 of Ref. 46. Therefore, we think ofC0

`(U,RN) as
ø iCKi

` (U,RN). We take the topology ofC0
`(U,RN) to be given by the strict inductive limi

topology of the sequence$CKi

` (U,RN)%. Of another way, we may define convergence

C0
`(U,RN) of a sequence of functions$fk% to mean that for eachk, one has

suppfk,K,U,RN such that for a functionfPC0
`(U,RN) we haveif2fkiK,m→0 as k

→`. This notion of convergence generates a topology which makesC0
`(U,RN), certainly, a

topological vector space.
Now, let F andE be spaces of smooth functions with compact support defined onU,G L

m,0

andU,RN, respectively. Ifl:E→F is acontravariantfunctor which associates with each smoo
function of compact support inE, a smooth function of compact support inF, then we have a map

ifiK,m→il~f!iK,m, ~3.3!

providing G0
`(U,GL) with a limit topology induced by a finite family of norms.

We now take a result by Jadczyk–Pilch,33 later refined by Hoyoset al.,34 which establishes as
a natural domain of definition for supersmooth functions a set of the forme21(V), whereV is
open inRm. Let e21(V) be the domain of definition for a superfunctionf PG0

`(e21(V),GL),
wheree21(V) is an open subset inG L

m,0 andV is an open subset inRm, and letf̃PC0
`(V,GL)

denotes the restriction off to V,Rm,G L
m,0 . Then, it follows that (]1

p1
¯]m

pmf)˜5]1
p1
¯]m

pmf̃,
where the derivatives on the right-hand side are with respect tom real variables. Now, suppos
V5ø i K̃ i where eachK̃ i is open and has compact closure inK̃ i 11 . It follows that C0

`(V,GL)
5ø iCK̃i

`
(V,GL). Then, one can giveC0

`(V,GL) a limit topology induced by finite family of

norms29

if̃i K̃,m5 sup
upu<m

xPK̃

uDpf̃~x!u5 sup
upu<m
xPK̃

H (
(m1 ,...,mk)PML

0
uDpf̃m1 ,...,mk

~x!uJ . ~3.4!

Finally, a suitable topological structure to the spaceG0
`(U,GL) of GL-valued superfunctions on

an open setU,G L
m,n which have compact support, it is obtained immediately by the nat

identification ofG L
m,n with R2L21(m1n) and by the obvious extension of the construction abo

which allows us define a limit topology induced to the spaceG0
`(U,GL) by finite family of norms,

il~f!iK,m1n5 sup
upu<m1n

zPK

uDp~l~f!!~z!u , Dp5
] uqu1ur u

]x1
q1
¯]xm

qm]u1
r 1
¯]un

r n
. ~3.5!

The derivatives] uqu/]x1
q1
¯]xm

qm commute while the derivatives] ur u/]u1
r 1
¯]un

r n anticommute, and
upu5uqu1ur u5( i 51

m qi1( j 51
n r j defines the total order of the derivative, withr j50,1.
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We are now ready to define a superdistribution in an open subsetU of G L
m,n . The set of all

superdistributions inU will be denoted byD8(U). A superdistribution is a continuous linea
functionalu:G0

`(U)→GL , whereG0
`(U) denotes the test superfunction space ofG`(U) super-

functions with compact support inK,U. The continuity ofu on G0
`(U) is equivalent to its

boundedness on a neighborhood of zero, i.e., the set of numbersu(f) is bounded for allf
PG0

`(U). The last statement translates directly into:
Proposition 3.1: A superdistribution u in UPG L

m,n is a continuous linear functional on
G0

`(U) if and only if to every compact set K,U, there exists a constant C and(m1n) such that

uu~f!u<C sup
upu<m1n

zPK

uDp~f!~z!u, fPG0
`~K !.

Proof: First, it is worth keeping in mind thatGL can be identified withR2L21
.26 In fact, a

number system assuming values in some Grassmann algebra withL generators is specified b
2L21 real parameters. LetF andE be spaces of smooth functions with compact support define
K,U,G L

m,n andK,U,R2L21(m1n), respectively. If we have a functorial relationl:F→E and a
linear functionalũ:E→R2L21

, we can composel with ũ to obtain the pullback ofũ by l, i.e.,
u5l* ũ5ũ+l, and hence a linear functionall* ũ:F→R2L21

. Then, the statement follows ifũ is
continuous onE. But this clear from proposition 21.1 of Ref. 46, which can be appliedverbatim
for a functionalũ on E. h

C. Distributions on a supermanifold

Next we will obtain an extension of basic results about superdistributions on the flat s
space in the case of general supermanifolds.

Definition 3.2: LetM a G` supermanifold. For every coordinate system pi+ka in M one has

a distribution uka
PD8(X̃a) where X̃a is an open fromG L

m,n such that

ukb
5$~pi+ka!+~kb

21+pi
21!%* uka

, ~ i 51,...,m1n!, ~3.6!

in kb(XaùXb), where pi is a projection into each copies( i ) from G m,n, such that xi5pi+ka and
yj5pj 1m+ka , with ( i 51,...,m; j 51,...,n). We call the system uka

a distribution u inM. The set

of every distribution inM is denoted byD8(M).
Theorem 3.3: Let X̃a ,aPI , be an arbitrary family of open sets inG L

m,n , and set X̃

5øaPI X̃a . If uaPD8(X̃a) and ua5ub in (X̃aùX̃b) for all a,bPI , then there exists one an

only one uPD8(X̃) such that ua is the restriction of u to X˜ a for everya.
To prove this theorem, it is interesting to state the following results:
Lemma 3.4: Let X˜ 1 ,...,X̃k be open sets inG L

m,n and let fPG0
`(ø1

kX̃a). Then one can find

faPG0
`(X̃a),a51,...,k, such thatf5(1

kfa and if f>0 can take allfa>0.
Proof: We can choose compact setsK1 ,...,Kk with Ka,X̃a , so that the suppf,ø1

kKa .
Every point in suppf has a compact neighborhood contained in someX̃a , a finite number of such
neighborhoods can be chosen which cover all of suppf. The union of those which belong toXa

is a compact setKa,X̃a . Now, if X̃ is an open set inG L
m,n andK is a compact subset, then on

can findfPG0
`(X̃) with 0<f<1 so thatf51 in a neighborhood ofK. So, we can choose

caPG0
`(X̃a) with 0<ca<1 andca51 in Ka , then the functions

f15fc1 ,f25fc2~12c1!,...,fk5fck~12c1!¯~12ck21!

have the required properties since
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(
1

k

fa2f52f)
1

k

~12ca!50,

because eitherf or some 12ca is zero at any point. h

Corollary 3.5: Let X̃1 ,...,X̃k be open sets inG L
m,n and K a compact subset,X̃a . Then one

can findfaPG0
`(X̃a) so thatfa>0 and (1

kfa<1 with equality in a neighborhood of K. h

Proof of the Theorem 3.3:If u is a distribution, then

u~f!5( ua~fa!, if f5( fa ~where faPG0
`~X̃a!!,

and the sum is finite. By the Lemma 3.4, everyfPG0
`(X̃) can be written as such a sum.

(fa50⇒(ua(fa)50, then we conclude that(ua(fa) is independent of how we choose th
sum. Let K5øsuppf compact setK,X̃ and using the corollary 3.5, we can choosecb

PG0
`(X̃b) such that (cb51 in K and the sum is finite. ThencbfaPG0

`(X̃aùX̃b) so
ua(cbfa)5ub(cbfa). Hence

( ua~fa!5( ( ua~facb!5( ( ub~facb!5( ubS cb( fa D50.

We have shown that if(fa50⇒(ua(fa) is zero, thenu is unique. In order to show thatu is
distribution, choose a compact setK,X̃ and a functioncbPG0

`(X̃b) with (cb51 in K and finite
sum. If fPG0

`(K) we havef5(fcb with fcbPG0
`(X̃b) so that the first equation this proo

gives

u~f!5( ub~fcb!,

but, if ub is a distribution, then

uub~fcb!u<C sup
upu<m1n

zPK

uDp~fcb!~z!u, fcbPG0
`~X̃b!,

where supDpf can be estimated in terms off, and so we conclude that

uu~f!u<C sup
upu<m1n

zPK

uDpf~z!u, fPG0
`~K !.

This completes our proof. h

Theorem 3.6: Let F be an atlas forM. If for every pi+kPF one has a distribution uk
PD8(X̃k) and the above definition is true when pi+k and pi8+k8 belongs toF, then there is one,
and only one, distribution uPD8(M) such that u+(k21+pi

21)5uk for every pi+kPF.
Proof: Let cPG` be a coordinate system inM. Theorem 3.3 states that there exists one, a

only one, distributionUcPD8(X̃c) in such a way for everypi+k, Uc5((pi+k)+c21)* uk in
c(XcùXk),X̃c . If cPF→Uc5uc , we can choosepi+k5c. Now, one definesu as a distribu-
tion, sinceUc satisfies~3.6! for both coordinate systemspi+k andpi8+k8. h

IV. ALGEBRAIC FRAMEWORK ON A SUPERMANIFOLD

In the usual treatment of quantum field theory in flat spacetime, the existence of a u
representation of the restricted Poincare´ group, P1

↑ , with generatorsPm fulfilling the spectral
condition spPm,V̄1 , is very essential. This unitary operator plays a key role in picking ou
preferred vacuum state, i.e., a state which is invariant under all translations. We choose a co
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system of physical states, with positive energies, just when it is possible to define this va
state and consequently the Fock space,F. One then defines observables as operators onF which
act upon the states. However, the characterization of the vacuum involves global aspects,
the case of a curved space–time it is not evident how to select a distinguished state. As
mentioned in the Introduction, due the absence of aglobal Poincare´ group there is no analogou
selection criterium on a curved spacetime: no vacuum state can be used as reference. To
stand the significance of this point under another point of view, we take into account that, ini
a theory defined on a globally hyperbolic Lorentz manifold could be reduced to the tangent
at a given point, one neglecting the gravitational effects. One finds that the tangent space
reduces to a free quantum field theory in a Minkowski space which has local translation inva
and a distinguished invariant state could be established by alocal unitary mapping. Nevertheless
this unitary operator depends on the region and there exists no unitary operator which do
mapping for all open regions simultaneously. Therefore, the problem of how to characteri
physical states arises. For the discussion of this problem on a general manifold, the setting
so-called algebraic approach to quantum field theory~see Refs. 6, 7, 47! is particularly appropri-
ate, because it treats all states on equal footing, especially the states arising of unitarily ine
lent representations.

The algebraic approach envolves the theory of* -algebras and their states and Hilbert spa
representations. In this framework the basic objects are the algebras generated by obse
localized in a given spacetime region. Fields are not mentioned in this setting and are rega
a type of coordinates of the algebras. The basic assumption is thatall physical information must
already be encoded in the structure of the local observables. Haag and Kastler introd
mathematical structure for the set of observables of a physical system by proposing th
so-called Haag–Kastler axioms30 for nets ofC* algebras, later generalized by Dimock31 for local
observables to globally hyperbolic manifolds. Recently, a new approach to the model indep
description of quantum field theories has been introduced by Brunetti–Fredenhagen–V48

which incorporates in a local sense the principle of general covariance of general relativity
giving rise to the concept of a locally covariant quantum field theory. The usual Haag–Kas
Dimock framework can be regained from this new approach as a special case.

In this section, we intend to discuss the algebraic formalism so as to include supersym
on a supermanifold. A straight formulation on a supermanifold can be performed over the
braic approach easily, since the construction of the algebradoes not depend ‘‘a priori’’ of the
manifold. Let us describe a physical theory in a general supermanifold from an extended f
lation of the ordinary theory in curved space–time. An observable algebra can be generate
Fsd( f sf), whereFsd are superdistributions~superfields! and f sf test superfunctions. A complet
superalgebra, like above, is represented byAsa5øOAsa(O), whereAsa denotes the superalgebr
with O,M denoting a bounded open region on a supermanifoldM. We shall assume we hav
assigned to every bounded open regionO in M the following properties:

~P.1! All Asa(O) are* -superalgebras containing a common unit element, where it is assu
that the following condition of isotony holds:

O1,O2⇒Asa~O1!�Asa~O2!.
This condition expresses the fact that the set, which we call in an improper way, of s
symmetric ‘‘observables’’ increases with the size of the localization region.~Certainly the set
of physically interesting observables are obtained taking the body.!

~P.2! We define the essential notion of locality so that the restriction of a compact regiO
PM to a compact region of the body of the supermanifold,ObPM0 , is causally separated
from another compact regionO b8PM0 . This implies in the spacelike commutativity
@Asa(O),Asa(O 8)#50. We see that this requirement is important, because only with
restriction we can work with causality: the notion of a suitable proper time curve w
intersects the Cauchy surface in a global hyperbolic spacetime makes sense only on th
manifold. So, there we can establish an evolution of Cauchy surfaces to give us a crite
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define a Hadamard form to the vacuum state. A superdistribution on a supermanifold
two-point function shows us that the causality is well-defined in this context. Therefore
now state: ifOb is causally dependent onO b8 , thenAsa(O),Asa(O 8).

~P.3! Following Dimock,31 we require that there be anAsa(O) for each supermanifoldM
equipped with some supermetricg, which generalizes the Lorentz metric, in a diffeomorph
class. Letk:M0→M 08 be a C` diffeomorphism on the body manifold, such thatk* (g08)
5g0 , whereg0 is a metric of signature~1, 2, 2, 2! of the body manifold. Thenz(k):M
→M 8 is a G` superdiffeomorphismz(k) from (M,g) to (M 8,g8) such thatz(k)* (g8)
5g, and there is an isomorphismaz(k) :Asa→Âsa such thataz(k)@Asa(O)#5Âsa(z(k)(O)).
One can also show thatz(idM0

)5 idM , where idM0
(idM) are the identity functions on

M0(M), respectively. Hence,az(idM0
)5a (idM) and, by Eq.~2.7!, we haveaz(k1)+az(k2)

5az(k1+k2) .

It is interesting, in a particular way, to choose a suitable* -algebra for a formulation of
quantum fields in connection to the Ga˚rding–Wightman approach.49 In quantum field theory, it is
natural to work with tensor product over test functions, since is usual the presence of mor
one field. Therefore, we introduce a tensor algebra of smooth superfunctions of compact s
over OPM, whereO is an open region in a supermanifold. Letf m be a test superfunction in
Dm(O), so thatF5 % mPNf m(z1 ,...,zm)PAsa(O), where herezi5(xi ,u i ,ū i) denotes the super
coordinates. In a same way we takevm(z1 ,...,zm)PDm8 (O), hereDm8 is the dual space ofDm

consisting ofm-point superdistributionsv5$vm%mPN , such thatvm belongs to the dual algebr
denoted byAsa8 (O). As we are working on involutive superalgebras, let us define the operatio
involution ~* ! by f m* (z1 ,...,zm)5 f m(zm ,...,z1), wheref m* 5 f m denotes the complex conjugation

A superstatev in this class of algebra is a normalized positive linear functionalv:Asa(O)
→GL , with v(F* F)>0 for all FPAsa(O). The normalization means thatv051. This net of
algebra is the Borchers–Uhlmann one.50 Such an algebra does not contain any specific dynam
information, which can be obtained by specifying a vacuum state on it. Once the vacuum sta
been specified, through the GNS construction which fixes a Hilbert superspace and a v
vector, one can extract from the corresponding time-ordered, advanced or retarded superfu
the desired information.

A superstate is said to satisfy the essential property oflocal commutativityif and only if for all
m>2 and all 1< i<m21 we have

vm~ f 1^¯^ f i ^ f i 11^¯^ f m!5vm~ f 1^¯^ f i 11^ f i ^¯^ f m!,

for all f iPG0
`(O), such that the restriction of eachf i on compact regions of the body of supe

manifold implies that the suppf i uOb
and suppf i 11uOb

are spacelike separated. Furthermore
superstatev is ‘‘quasifree’’ if the one-point superdistribution and all the truncatedm-point super-
distributions formÞ2 vanish, i.e., allm-point superdistributions are obtained from the two-po
superdistribution via relation:

v2m11~ f 1^¯^ f m!50 for m>0,

v2m~ f 1^¯^ f m!5 (
i 1,¯, i 2m

i k, j k
i 1 ,...,j 2m distinct

v2~ f i 1
^ f j 1

!v2~ f i 2
^ f j 2

!¯v2~ f i 2m
^ f j 2m

!,

for m>1.
It is a well-known result that the physical model can be described by the GNS constru

showing us how the Hilbert space is constructed and defining what are the operators~just the
algebra representation! acting in this space. According to conventional prescription, for getting
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Hilbert space we choose the quotient between the observable algebra and the idealNv ~to guar-
antee the scalar product existence!. In this stage the problem of several inequivalent representa
persists. In flat superspaces, the super-Poincare´ invariance of the vacuum state picks out t
correct representation.51 In general supermanifolds the case is more delicated; we will look
~super!Hadamard structures. This is motivated by the ordinary general manifold case. At la
choose an acceptable Hilbert superspace from the algebraic properties via GNS construc
the following identification:

vm~ f 1^¯^ f m!5^Vv ,pv~ f 1!¯pv~ f m!Vv&,

where hereVv is a distinguished vector in Hilbert superspace, andpv is the representation of th
elementsFPAsa(O) which play the role of self-adjoint linear operator acting in the Hilb
superspace over test superfunctions. In addition, we use the physical requirements on th
manifold in order to define whole set of superstates which are supposed to be distinguishe
certain generalized form of the spectral condition.11

Remark 4.1:The main features of Hilbert superspaces relevant for our purposes are su
rized as follows:~i! when the Grassmann algebraGL is endowed with the Rogers norm, eve
Hilbert superspace is of the formH5H^ GL , whereH is an ordinary Hilbert space~the existence
of such a subspaceH of H called a base Hilbert space is important in physical applications52!, ~ii !
theGL-valued inner product̂•,•&:H3H→GL respects the body operation^xb ,yb&5^x,y&b and
^x,x&b>0 for all PH, so thatxPH has nonvanishing body if and only if̂x,x&b.0. For
generalizations of some basic results of the theory of Hilbert space to Hilbert superspaces w
to the recent paper,41 and references therein. j

V. HADAMARD „SUPER…STATES

As already emphasized, the Hadamard state condition provides a framework in which w
improve our understanding to the problem concerning the determination of physically acce
states. The motivation for which we adopt the Hadamard structure of the vacuum state in
space–time quantum field theory is quite simple. In general, as we lost the possibility of pi
out a good representation for the model due the fact that now we have no more an inv
structure over the action of an isometry group~in the flat case, the global Poincare´ group!, we
must get another condition to choose. Since we are able to describe some aspects of a m
observing the evolution of the Cauchy surface~CS! coming from an asymptotic flat space, a ne
kind of invariance becomes natural, and this invariance arises from the preservation of
particular structure while the CS geometry is changing in determinated manifolds.

In particular, for states whose expectation values of the energy-momentum tensor opera
be defined by using the point separation prescription for renormalization, Fullinget al.53 showed
that if such states have a singularity structure of the Hadamard form in an open neighborh
a Cauchy surface, then they have their forms preservated independently of the Cauchy ev
In this case, the states are said to have the Hadamard form if they can be expressed as

DHad~x1 ,x2!5
U~x1 ,x2!

s~x1 ,x2!
1V~x1 ,x2! lnus~x1 ,x2!u1W~x1 ,x2!,

where s(x1 ,x2) is one-half of the square of the geodesic distance betweenx1 to x2 . In flat
space–time or in thex1→x2 limit in curved space–time,s5 1

2(x12x2)2. It is clear that this sing
suppDHad5$(x1 ,x2)us5 1

2(x12x2)250% ~we recall that the singular support of a distributionu
PD 8(X) is the smallest closed subsetY of X such thatuuX\Y is of classC`). U, V, andW are
regular functions for all choices ofx1 andx2 . The functionsU andV are geometrical quantitie
independent of the quantum state, and onlyW carries information about the state. Therefore,
free quantum field models in ordinary globally hyperbolic manifolds, the Hadamard form pla
important role: it is a strong candidate to describe an acceptable physical representation.
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The search for the Hadamard form in the superspace case is simple, since the latte
general, obtainable by applying the functiond2( ū2 ū8) ~or d2(u2u8)) and an exponential struc

tureeE(]x ,u,ū) to the ordinary Hadamard formDHad ~see proposition 7.3 below and Refs. 54, 55 f
details!, such that thesingularity structure region is not affected, i.e., it has a short distanc
behavior analogous to the short distance behavior discussed in the case of a general sp
manifold.56 This issue is recaptured in Sec. VI. Since we can deal with a supermanifold whic
a body manifold being a globally hyperbolic one~to guarantee this we just report to the constru
tion of Bonora–Pasti–Tonin28!, it is important to establish that onlyprojectivelysuper-Hadamard
structures make sense. The obvious explanation for this statement is that the structure mu
the global time notion, and consequently the argument of causality, but over a supermanifo
notion of causal curves are not well defined unless projectively. The tool to extend the Had
structure to the supersymmetric environment arises from the fact that the existence and uniq
of the Grassmannian continuation (z-continuation! for C` functions is checked. By a body pro
jection, we always get the ordinary Hadamard structure such that the latter must be invari
CS evolution on the body manifold. This is a consistent result, since we will show in the
section, through an alternative and equivalent characterization of the Hadamard conditio
Radzikowski8 which involves the notion of the wavefront set of a superdistribution, that
structure of singularity is not changed and is condensed in the ordinary region of any
superfunction, corroborating to the fact that only on the body of a supermanifold the cau
makes sense.

VI. MICROLOCAL ANALYSIS IN SUPERSPACE

Important progress in understanding the significance of the Hadamard form relates it to¨r-
mander’s concept of wavefront sets and microlocal analysis,8 in a particular way by the wavefron
set of their two-point functions. It satisfies the Hadamard condition if its wavefront set con
only positive frequencies propagating forward in time and negative frequencies backward in

The focus in this section will be on the extension of the Ho¨rmander’s description of the
singularity structure~wavefront set! of a distribution to include the supersymmetric case. T
well-known result that the singularities of a superdistribution may be expressed in a very s
way through the ordinary distribution is proved by functional analytical methods, in particula
methods of microlocal analysis formulated in superspace language.

A. Standard facts on microlocal analysis

The study of singularities of solutions of differential equations is simplified and the result
improved by taking what is now known as microlocal analysis. This leads to the definition o
wavefront set, denoted~WF!, of a distribution, a refined description of the singularity spectrum
similar notion was developed in other versions by Sato,57 Iagolnitzer,58 and Sjöstrand.59 The
definition, as known nowadays, is due to Ho¨rmander. He used this terminology due to an exist
analogy between his studies on the ‘‘propagation’’ of singularities and the classical construct
propagating waves by Huyghens.

The key point of the microlocal analysis is the transference of the study of singulariti
distributions from the configuration space only to the rather phase space, by exploring i
quency space the decay properties of a distribution at infinity and the smoothness propertie
Fourier transform. For a distributionu we introduce its wavefront set WF(u) as a subset in phas
spaceRn3Rn. The functorially correct definition of phase space isRn3(Rn)* . We shall here
ignore any attempt to distinguish betweenRn and (Rn)* . We shall be thinking of points (x,k) in
phase space as specifying those singular directionsk of a ‘‘bad’’ behavior of the Fourier transform
û at infinity that are responsible for the nonsmoothness ofu at the pointx in position space. So we
shall usually wantkÞ0. A relevant point is that WF(u) is independent of the coordinate syste
chosen, and it can be described locally.
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As it is well-known,42,60 a distribution of compact support,uPE 8(Rn), is a smooth function
if, and only if, its Fourier transform,û, rapidly decreases at infinity~i.e., as long as suppu does
not touch the singularity points!. By a fast decay at infinity, one must understand that for
positive integerN exists a constantCN , which depends onN, such that

uû~k!u<~11uku!2NCN , ; NPN; kPRn. ~6.1!

If, however,uPE 8(Rn) is not smooth, then the directions along whichû does not fall off suffi-
ciently fast may be adopted to characterize the singularities ofu.

For distributions does not necessarily of compact support, still we can verify if its Fo
transform rapidly decreases in a given regionV through the technique of localization. Mor
precisely, if V,X,Rn and uPD 8(X), we can restrictu to a distributionuuV in V by setting
uuV(f)5u(f), wheref is a smooth function with support contained in a regionV, with f(x)
Þ0, for all xPV. The distributionfu can then be seen as a distribution of compact suppor
Rn. Its Fourier transform will be defined as a distribution onRn, and must satisfy, in absence o
singularities inVPRn, the property~6.1!. From this point of view, all development is local in th
sense that only the behavior of the distribution on the arbitrarily small neighborhood o
singular point, in the configuration space, is relevant.

Let uPD 8(Rn) be a distribution andfPC0
`(V) a smooth function with supportV,Rn.

Then, fu has compact support. The Fourier transform offu produces a smooth function i
frequency space.

Lemma 6.1: Consider uPD 8(Rn) and fPC0
`(V). Thenfû(k)5u(fe2 ikx). Moreover, the

restriction of u to V,Rn is smooth on V if, and only if, for everyfPC0
`(V) and each positive

integer N there exists a constant C(f,N), which depends on N andf, such thatufû(k)u<(1
1uku)2NC(f,N), for all NPN and kPRn. h

If uPD 8(Rn) is singular inx, andfPC0
`(V) is f(x)Þ0; thenfu is also singular inx and

has compact support. However, in some directions ink-spacefû until will be asymptotically
limited. This is called the set ofregular directionsof u.

Definition 6.2: Let u(x) be an arbitrary distribution, not necessarily of compact support,
an open set X,Rn. Then, the set of pairs composed by singular points x in configuration s
and by its associated nonzero singular directions k in Fourier space

WF~u!5$~x,k!PX3~Rn\0!ukPSx~u!%, ~6.2!

is calledwavefront set of u. Sx(u) is defined to be the complement inRn\0 of the set of all k
PRn\0 for which there is an open conic neighborhood M of k such thatfû rapidly decreases in
M , for uku→`.

Remarks 6.1:We will now collect some basic properties of the wavefront set:

~1! The WF(u) is conic in the sense that it remains invariant under the action of dilatations
when we multiply the second variable by a positive scalar. This means that if (x,k)
PWF(u) then (x,lk)PWF(u) for all l.0.

~2! From the definition of WF(u), it follows that the projection onto the first variable
p1(WF(u))→x, consists of those points that have no neighborhood whereinu is a smooth
function, and the projection onto the second variable,p2(WF(u))→Sx(u), is the cone around
k attached to a such point denoting the set of high-frequency directions responsible f
appearance of a singularity at this point.

~3! The wavefront set of a smooth function is the empty set.
~4! For all smooth functionf with compact support WF(fu),WF(u).
~5! For any partial linear differential operatorP, with C` coefficients, we have

WF~Pu!#WF~u! .
~6! If u and v are two distributions belonging toD 8(Rn), with wavefront sets WF(u) and

WF(v), respectively; then the wavefront set of (u1v)PD 8(Rn) is contained in
WF(u)øWF(v).
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~7! If U,V are open set ofRn, uPD 8(V), and x:U→V a diffeomorphism such thatx* u
PD 8(U) is the distribution pulled back byx, then WF(x* u)5x* WF(u). j

Another result, which we merely state, is needed to complete this briefing on micro
analysis.

Theorem 6.3„Wavefront set of pushforwards of a distribution…: Let f:X→Y be a submer-
sion, and let uPE 8(X). Then

WF~ f * u!,$~ f ~x!,h!uxPX,~x,t f x8h!PWF~u! or t f x8h50%,

wheret f x8 denotes the transpose matrix of the Jacobian matrix fx8 of f . h

B. Wavefront set of a superdistribution

It is already well-known that the singularity structure of Feynman~or more precisely Wight-
man! superfunctions is completely associated with the ‘‘bosonic’’ sector of the superspace
though claims exist that the result is completely obvious, we do not think that a clear pro
available in the literature, to the best of our knowledge. In fact, there is a certain gap i
scientific literature between the usual textbook presentation of the singularity structure of
functions and the very mathematical treatement based on microlocal analysis. The purpose
present subsection is to fill this gap. As expected, our result confirms that the decay prope
an ordinary distribution hold also to the case of a superdistribution, i.e., no new singularity a
by taking into account the structure of the superspace.

Lemma 6.4: Let X,G L
m,0 be an open set, and u be a superdistribution on X taking value

GL , i.e., a linear functional u:G0
`(X)→GL . Let f be a supersmooth function with compa

support K,X. Thenfu is also supersmooth on K, if its components(fu)(e(x)) are smooth on
a compact set K8,V, whereV is the body of superspace. Therefore, the following estimate ho

ufû~k!u<~11ukbu!2NC~N,f! .

Indication of Proof:A schematic proof may be constructed along the lines suggeste
DeWitt:32 from definition 2.4 follows that functions ofx are in one-to-one correspondence w
functions ofxb ; this implies that in working with integrals overG L

m,0 one may for many purpose
proceed as if one were working over the body of superspace,V5$(x,0,0)PXue(x)PRm%. Be-
causefu(x) vanishes at infinity, independently of their souls, the contour inGL,0

m may be displaced
to coincide withV, without affecting the value of the integral. So, the theory of the Fou
transforms remains unchanged in form. For the sake of simplicity, we take the case for
s(x)5(x2e(x)) is a smooth singled-valued function ofe(x)5xb and L52 is the number of
generators ofG 2

1,0. This implies

fû~k!5E dx eikxfu~x!

5E dxb eikbxb~fu~xb!1 i xbfu~xb!ki j j
ij j !

5fû~kb!1~fû!8~kb!ki j j
ij j .

The proof follows one making use of repeated integrations-by-parts generalizing the
2 i kb

21(d/dxb eikbxb)5eikbxb,

fû~k!5
~ i ! ubu

kb
b H E dxb e2 ikbxb~Dxb

b ~fu~xb!!1Dxb

b ~xbfu~xb!!ki j j
ij j !J .

Taking the absolute value of both sides and using the Banach algebra property ofGL , we get the
estimate
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ufû~k!u<ufû~kb!u1u~fû!8~kb!uuki j u

<~11ukbu!2ubuS sup
ubu<m
xbPK8

uDxb

b ~fu~xb!!u1 sup
ubu<m
xbPK8

uDxb

b ~xbfu~xb!!uuki j u D . ~6.3!

This inequality clearly implies our assertion. Hence, in order that~6.3! be smooth, we only need
thatfû(k) be rapidly decreasing asukbu→`. The proof may be generalized to include the case
which s(x) is a multivalued function of the body andL is finite arbitrarily. We finish the proof by
observing that as expected the soul part ofk has a polynomial behavior. h

Lemma 6.5: By replacingG L
m,0 by G L

m,n in the Lemma 6.4, then in this case the followi
estimate holds:

ufû~k,u,ū !u<~11ukbu!2NC~N,f (g)!iu1ii ū1i¯iunii ūni .

Proof: First, we note that bothu andf areG` superfunctions which can be expanded a
polinomial in the odd coordinates whose coefficients are functions defined over the even c
nates,

u~x,u,ū !5 (
(g)50

G

z~u(g)!~x!~u!(g) and f~x,u,ū !5 (
(g)50

G

z~f (g)!~x!~u!(g) .

Then, the proof follows essentially by similar arguments to the proof of the previous lem
taking into account the polinomial behavior of odd variables,u andū. In fact,fu(x,u,ū) is linear
function in each odd coordinates separately, because each odd coordinate is nilpotent,
higher power of a odd coordinate can appear, i.e.,fu(x,u,ū) is an absolutely convergent serie
the odd coordinates w.r.t. the Rogers normi•i1 . Indeed,fu(x,u,ū) is analytic in the odd coor-
dinates. This suggests that to take the Fourier transform offu(x,u,ū) on the even variables mus
be sufficient to infer on the smoothness properties offu(x,u,ū):

fû~k,u,ū !5 (
(g)50

G

(
(m)50

L

~fû!(g),(m)~kb!~j!(m)~u!(g)

5 (
(g)50

G F E dxb eikbxb~~fu!(g)~xb!1 i xb~fu!(g)~xb!ki j j
ij j1¯ !G~u!(g) . ~6.4!

Then, taking the absolute value of both sides of~6.4!, we obtain from the Banach algebra prope
of GL and for each integerN the estimate

ufû~k,u,ū !u5U (
(g)50

G

(
(m)50

L

~fû!(g),(m)~kb!~j!(m)~u!(g)U
< (

(g)50

G

(
(m)50

L

u~fû!(g),(m)~kb!ui~u!(g)i

<~11ukbu!2NC~N,f (g)!iu1ii ū1i¯iunii ūni . ~6.5!

This proves the lemma. h

So, the odd sector of superspace does not produce any effect on the singular structuru.
Combining the results above, we have proven.

Theorem 6.6:The singularities of a superdistribution u are located at specific values of
body of x, the coordinates of thephysical space–time, independently of the odd coordinates. h
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Comment 6.1:That the body of the superspace is responsible for carrying all its sing
structure is not too surprising. Apparently, there exists no reason to have superspaces
topological properties are substantially different from its body, which is responsible for car
all observables, reflecting some measurable properties of the model. j

We sum up the preceding discussion as follows:
Definition 6.7 (Wavefront set of a superdistribution): The wavefront setWF(u) of a superd-

istribution u in a superspaceM is the complement of the set of all regular directed points in
cotangent bundle T* M0 , where M05e(M) is the body of superspace, excluding the triv
point kb50.

There is a more precise version of definition 6.7. As we have seen in Sec. III all o
foregoing definitions and statements about supermanifolds may be converted into corresp
definitions and statements about ordinary manifolds, since associated with a supermanifoldM of
dimension (m,n) is a family of ordinary manifolds, of dimensionsN52L21(m1n), (L
51,2,...). Theresulting manifold is called theLth skeleton ofM and denoted bySL(M).32 With
the aid of the family of skeletons we can define the pushforward~or direct image! of a superdis-
tribution. Let X,SL(M) and Y,M0 be open sets and lete be the natural projection from
SL(M) ~or M! to M0 , the body map. If we introduce local coordinatesx5(x1 ,...,xN) in X, then
Y is defined byxb5(x1 ,...,xm). There is a local relationship between the body and the skele
given by

SL~X! 5
diff.

Y3R2L21(m1n)2m .

Now, let u be a superdistribution onX, then the pushforwarde* u defined by e* u(w)
5u(e* w), wPC0

`(Y), it is a superdistribution onY. Using these concepts, we can establish
following:

Corollary 6.8: Lete:X,SL(M)→Y,M0 be the body projection, and let uPD8(X). Then

WF~e* u!,$~xb ,kb!PT* M0\0u ' x85~xm11 ,...,xN8!,~xb ,x8,kb,0!PWF~u!% ,

where N852L21(m1n)2m.
Proof: If x5(xb ,x8), wherexbPY, x8PRN8 ande:X→Y is the body map, then the Jacobia

matrix is of the formex85(1,0) and the statement follows by theorem 6.3. Thus, with any su
spaceM and body of superspaceM0 the singularities of a superdistributione* u are located in a
natural way in the set of projections of those points of the wavefront set of the superdistribuu
where singular directions are parallel to thexb-axis. h

Example 6.1:For the model of Wess–Zumino, which consist of a chiral superfieldF in
self-interaction, the Feynman superpropagators, in flat superspace, are54

DFF
F ~x,u,ū;x8,u8,ū8!52 i md2~u2u8!ei (usmū2u8smū8)]mDF~x2x8!,

D
F̄F

F
~x,u,ū;x8,u8,ū8!5ei (usmū1u8smū822usmū8)]mDF~x2x8!, ~6.6!

D
F̄F̄

F
~x,u,ū;x8,u8,ū8!5 i md2~ ū2 ū8!e2 i (usmū2u8smū8)]mDF~x2x8!,

whered2(u2u8)5(u2u8)2, with x,u,ū having the form~2.2! and~2.3!, respectively. According
to our analysis, the wavefront set of Feynman superprogators have the form

WF~Dsusy
F !5$~xb ,kb ;xb8 ,2kb8 ;x,0;x8,0!u~xb ,kb ;xb8 ,2kb8!PWF~Dsusy

F uM0
!%,

where susy5(FF;F̄F;F̄F̄), x5(xm11 ,...,xN8), x85(xm118 ,...,xN8
8 ), Dsusy

F uM0
[e* Dsusy

F is the
direct image of Feynman superpropagators on the body of superspace,
WF(Dsusy

F uM0
),OøD,8 with the off-diagonal piece given by
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O5$~xb ,kb ;xb8 ,2kb8!PT* M 0
2u~xb ,kb!;~xb8 ,kb8!,xbÞxb8 ,

kbPV̄6 if xbPJ6~xb8!%,

where the equivalence relation (xb ,kb);(xb8 ,kb8) means that there is a lightlike geodesicg con-
nectingxb andxb8 , such that at the pointxb the covectorkb is tangent tog andkb8 is the vector
parallel transported along the curveg at xb8 which is again tangent tog.

The diagonal piece is given by

D5$~xb ,kb ;xb ,2kb!PT* M 0
2\0uxbPM0 ,kbPT* M 0

2\0%.

For this reason, the Feynman superpropagators are singular only for pairs of points on the b
superspace that can be connected by a lightlike geodesic. j

We end this section quoting the main lesson on the microlocal analysis that we can us
the one about how the wavefront set may be lifted from superdistributions on open sets ofG L

m,n to
superdistributions on a smooth supermanifoldM. Such an extension can be achieved in analo
with the ordinary case. LetO be an open neighborhood ofzPM, which is assumed without los
generality to be covered by a single coordinate patch, anduPD8(O) be a superdistribution. Then
there exists a diffeomorphismx:O→U,G L

m,n , so thatx* uPD8(U) is the superdistribution
pulled back byx. Therefore WF(x* u)5x* WF(u). Now, let f be a supersmooth function wit
compact support contained withinO with f(z)Þ0—one should keep always in mind that ea
componentf (g)(e(x)) of f(z) is a smooth function and with support contained withinOb , where
Ob denotes an open neighborhood ofxbPM0 . Hence, the superdistributionuf can be seen as
superdistribution onG L

m,n which is of compact support, and given that there are no points bel
ing to the WF(u), the Fourier transform,uf̂, of uf is well defined as a superdistribution onG L

m,n

and satisfies the Lemma 6.5.

VII. A TYPE OF MICROLOCAL SPECTRAL CONDITION

We come back to the question of the Hadamard superstates. As repeatedly stated in thi
Hadamard states have acquired a prominent status in connection with the spectral conditi
are recognized as defining the class of physical states for quantum field theories on a g
hyperbolic space–time. Important progress in understanding the significance of Hadamard
was achieved by Radzikowski~with some gaps filled by Ko¨hler10! who succeeded in characteriz
ing the class of these states in terms of the wavefront set of their two-point functionv2 satisfying
a certain condition. He called this condition the wavefront set spectral condition~WFSSC!. He
proposed that a quasifree statev of the Klein–Gordon field over a globally hyperbolic manifold
a Hadamard state if and only if its two-point distributionv2 has wavefront set

WF~v2!5$~x1 ,k1!;~x2 ,k2!PT* M 0
2\$0%u~x1 ,k1!;~x2 ,2k2! and k1

0>0%, ~7.1!

so thatx1 and x2 lie on a single null geodesicg, (k1)m5gmn(k1)n is tangent tog and future
pointing, and whenk1 is parallel transported alongg from x1 to x2 yields 2k2 . If x15x2 , we
havek1

250 andk15k2 . Radzikowski in fact showed that this condition is similar to the spec
condition of axiomatic quantum field theory.49

Note that Eq.~7.1! restricts the singular support ofv2(x1 ,x2) to pointsx1 andx2 which are
null related. Hence,v2 must be smooth for all other points. This is known be true for theory
quantized fields on Minkowski space for spacelike related points. The key is the Bargman–
Wightman theorem which shows that this is obtainable by applying complex Lorentz transfo
tions to the primitive domain of analyticity determined by the spectral condition. Howev
similar prediction on the smoothness does not exist for timelike related points. Radzik
suggested to extend the right-hand side of Eq.~7.1! to all causally related points, in order t
include possible singularities at timelike related points.
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The microlocal characterization of Hadamard states may be applied equally well to an-point
function, with n.2. This generalization was achieved by Brunettiet al.11 They suggested a pre
scription which we recall now. LetGm denotes the set of all finite graphs,61 into some Lorentz
manifoldM0 , whose vertices represent points in the setV5$x1 ,...,xm%PM0 , and whose edges
e represent connections between pairsxi ,xj by smooth curves~geodesics! g(e) from xi to xj . To
each edgee one assigns a covariantly constant causal covector fieldke which is future directed if
i , j , but not related to the tangent vector of the curve. Ife21 denotes the edge with opposi
direction ase, then the corresponding curveg(e21) is the inverse ofg(e), which carries the
momentumke2152ke .

Definition 7.1 [mSC (Ref. 11)]: A statev with m-point distributionvm is said to satisfy the
Microlocal Spectral Condition if, and only if, for any m

WF~vm!#Gm,

whereGm is the set$(x1 ,k1),...,(xm ,km)% for which there exists a graph GPGm as described
above with ki5(ke(xi) where the sum runs over all edges which have the point xi as their
sources. The trivial momentum configuration k15¯5km50 is excluded.

Passing from a smooth manifold to a smooth supermanifold, it seems reasonable to
that a superstate satisfies a certain type of microlocal spectrum condition. A completely ana
statement to definition 7.1 can be achieved, once more with the aid of the family of skel
SL(M), and the graph theory. LetGr be a set of finite ‘‘supergraphs,’’ into someSL(M), whose
vertices represent points in the setV5$x1 ,...,xr%PSL(M). Locally the traditional notion of a
supergraph drawing is that its vertices are represented by points in the hyperplaneR2L21(m1n), its
edges are represented by curves—that are piecewise linear—between these points, and
curves meet only in common endpoints. Ife0 :R2L21(m1n)→Rm is the canonical projection, the
G̃5e0G is a graphy composed by the projection of those points of a supergraph whose ee
represent connections between pairsxbi

,xbj
PRm by curves fromxbi

to xbj
. Then, according to

Brunetti et al.,11 an immersion of a graphG̃ into the body manifoldM0 is an assignment o
vertices ofG̃ to points inM0 , and of the edges ofG̃ to piecewise smooth curves inM0 , e
→g(e) with sources(g(e))5xb(s(e)) and targett(g(e))5xb(t(e)), respectively, together with
a covariantly constant causal covector fieldkbe

on g such that:~i! if e21 denotes the edge with
opposite direction ase, then the corresponding curveg(e21) is the inverse ofg(e); ~ii ! for every
edgee the covectorkbe

is directed toward future ifxb(s(e)),xb(t(e)); ~iii ! kbe2152kbe
. Using

this construction, we establish:
Definition 7.2 (susymSC): A superstatevsusy with r-point superdistributionv r

susy is said to
satisfy a supersymmetric microlocal spectral condition if, and only if, for any r,

WF~v r
susy!5$~xb1

,x18 ,kb1
,0!;...;~xbr

,xr8 ,kbr
,0!uWF~e* v r

susy!#G̃ r%,

whereG̃ r is the set$(xb1
,kb1

);...;(xbr
,kbr

)% for which there exists a graph G˜ as described above

with kbi
5(kbe

(xbi
) where the sum runs over all edges which have the point xbi

as their sources.

The trivial momentum configuration kb1
5¯5kbr

50 is excluded.
Remarks 7.1:We would like to call attention to two important points:

~1! Definition 7.2 indicates that for a superstatevsusy the ~susymSC! is equivalent to the require
ment that all of the component fields satisfy the microlocal spectral conditions11 on the body
manifold. This observation is significant because it is in agreement with the DeWitt’s re
which asserts that, in physical applications of supersymmetric quantum field theorie
spectral condition of the GNS-Hilbert superspace is restricted to the ordinary GNS-H
space that sits inside the GNS-Hilbert superspace.

~2! Definition 7.2 provides us with a ‘‘global’’ microlocal spectral condition. In our setting
word ‘‘global’’ means that the singular support of all component fields is embodie
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WF(e* vm
susy). This is typical feature of supersymmetric theories in superspace language

instance, for the chiral superfield of Wess–Zumino,54 in analogy to the scalar component fiel
the Hadamard condition for a spinorial component field is formulated in terms of its two-p
distributionv2 . The latter are obtainable by applying the adjoint of the spinorial operato
a suitable auxiliary Hadamard state of the squared spinorial equation. For fixed spinor i
the wavefront set of the latter is contained in the r.h.s. of Eq.~7.1! and derivatives do no
enlarge the wavefront set. j

Next we give a example of an application of our definiton. We restrict ourselves to
simplest case of massive chiral/antichiral fields of the Wess–Zumino model in flat super
leaving other cases as the Wess–Zumino model, or supersymmetric gauge theories in
superspace for future works.

The free Wess–Zumino model in flat superspace:The simplestN51 supersymmetric model in
four dimension is the free model of Wess–Zumino,54 which consists of a chiral superfiel
F(x,u,ū), resp., antichiral superfieldF̄(x,u,ū), obeying the differential constraintD̄ ȧF50,
resp.,DaF̄50. As usual,

Da5
]

]ua
2 isaȧ

m ūȧ]m , D̄ ȧ52
]

]ūȧ
1 iuasaȧ

m ]m, ~7.2!

is a supersymmetric covariant derivatives. Our notations and conventions are those of Ref. 5
elements of theN51 superspace are parametrized by even and odd coordinatezM

5(xm,ua,ū ȧ), with m5(0,...,3),a5(1,2), ȧ5(1̇,2̇), whereu and its complex conjugateū, are
odd coordinates and by construction they anticommute with each other. In this case the
manifold isRm and the body map is the augmentation mape:G L

m,n→Rm.
The superfieldF(z) is a function mapping superspace into the even part of a Grassm

algebra.25 With the help of the commutation ruleD̄a (e2 iusmū]mf)5e2 iusmū]m(2]/]ūa)f, the
chiral superfield can be expanded in powers of the odd coordinates as

F~z!5e2 iusmū]m~w~x!1uc~x!1u2F~x!!, ~7.3!

with w5
def

221/2(A1 iB) andF5
def

221/2(D2 iE). A, B, andc are, respectively, the scalar, pseud
scalar, and spin-1/2 physical component fields ofF, whereasD andE are their scalar and pseu
doscalar auxiliary components. The latter are necessary for a classical off-shell closure
supersymmetry algebra~they do not correspond to propagating degrees of freedom in that ap
through nonderivative terms!.

As above, the antichiral superfieldF̄(z), with the help of the commutation rule

Da (eiusmū]mf)5eiusmū]m(]/]ua)f, can be expanded in component fields:

F̄~z!5eiusmū]m~w* ~x!1 ūc̄~x!1 ū2F* ~x!!. ~7.4!

The quantum version of the Wess–Zumino model is based on the classical field equat

1

16
D̄2F̄1

m

4
F50 ,

1

16
D2F1

m

4
F̄50. ~7.5!

Applying the operatorD2 to the first equation~resp.,D̄2 to the second equation!, multiplying the
second equation by 4m ~resp., the first equation!, and using the commutation relation@D2,D̄2#

58iDsmD̄]m116h; one may combine them in order to find

~hx1m2!F50, ~hx1m2!F̄50. ~7.6!
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To our classical superfieldsF and F̄, we associate quantum superfields, an operator-va
‘‘superdistributions,’’ smeared with ‘‘supertest’’ functions,

F~z!5e2 iusmū]m~ f ~x!1ux~x!1u2h~x!!,

F̄~z!5eiusmū]m~ f * ~x!1 ū x̄~x!1 ū2h* ~x!!, ~7.7!

with F(z),F̄(z)PG0
`(U,GL), theGL-valued superfunctions on an open setU,G L

m,n which have
compact support.

For all F(z),G(z)PG0
`(U,GL), we define the commutation relations

@F~ F̄ !,F~Ḡ!#5E dm~z!dm~z8! DFF
PJ ~z,z8!F̄~z!Ḡ~z8!,

@F̄~F !,F~Ḡ!#5E dm~z!dm~z8! D
F̄F

PJ
~z,z8!F~z!Ḡ~z8!, ~7.8!

@F̄~F !,F̄~G!#5E dm~z!dm~z8! D
F̄F̄

PJ
~z,z8!F~z!G~z8!,

wheredm(z)5
def

d8z5d4xd2ud2ū. We callDFF
PJ , D

F̄F

PJ
, andD

F̄F̄

PJ
the Pauli–Jordan superdistribu

tions, fundamental solutions of the homogeneous equations~7.6!. In fact they are two-point dis-
tributions, elements ofD8(U).

The vacuum expectation value of the productF(F)F(G) satisfies the relation

~V,F~F !F~G!V!5~w2
susy~z,z8!, F~z!G~z8!!. ~7.9!

The distributionw2
susy(z,z8) extends the Wightman formalism. For this reason, we callw2

susy(z,z8)
Wightman superdistribution of two-points.

The Wightman superdistribution ofn-points will be symbolically written under the form51

wn
susy~z1 ,,...,zn!5~V,F~x1 ;u1 ,ū1!¯F~xn ;un ,ūn!V!, ~7.10!

and

wn
susy~Fn!5E )

i 51

n

dm i wn
susy~z1 ,...,zn!Fn~z1 ,...,zn!. ~7.11!

In this definition, we have fixed the order in which we take the superdistribution and the sup
function.

Proposition 7.3: The two-point Hadamard, Pauli–Jordan, and Wightman superdistribution

have the following dependence in x,u,ū:

DFF
X ~x,u,ū;x8,u8,ū8!52 i md2~u2u8!ei (usmū2u8smū8)]mDX~x2x8!,

D
F̄F

X
~x,u,ū;x8,u8,ū8!5ei (usmū1u8smū822usmū8)]mDX~x2x8!, ~7.12!

D
F̄F̄

X
~x,u,ū;x8,u8,ū8!5 i md2~ ū2 ū8!e2 i (usmū2u8smū8)]mDX~x2x8!,

where X5(Had,PJ, W).
Idea of proof:We start from~6.6! and use the fact that in terms of even and odd solution

the homogeneous wave equation, the functionDF(x2x8) can be written as
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DF~x2x8!5 1
2 @ i DHad~x2x8!1«~x02x08!DPJ~x2x8!#. ~7.13!

Then, by replacing~7.13! in ~6.6!, we immediately get the Hadamard and Pauli–Jordan su
distribution as stated. The Wightman superdistribution is obtained directly from the fac
DPJ(x2x8)5DW(x2x8)2DW(x2x8) andDHad(x2x8)52 i (DW(x2x8)1DW(x2x8)). h

Proposition 7.4: Letvsusy be a state for the quantum Wess–Zumino model on the flat super
space, whose r-point superdistributionsv r

susy satisfy the Wightman axioms.62 Thenvsusy satisfies
definition 7.2.

Proof: This is an immediate consequence of corollary 6.8 above and theorem 4.6 of Ref.h

VIII. FINAL CONSIDERATIONS

Having proposed an extension of some structural aspects that have successfully been
in the development of the theory of quantum fields propagating on a general space–time m
so as to include superfield models on a supermanifold, it would be interesting to consid
perturbative treatment of interacting quantum superfield models, in particular the formulati
renormalization theory on supermanifolds. The main problem which still remains in this r
restrictive framework is the mathematically consistent definition of all powers of Wick ‘‘su
polynomials’’ and their time-ordered products for the noninteracting theory, which serve as
ing blocks for a perturbative definition of interacting superfields. Another work devoted t
solution is in progress,64 such that covariance with respect to supersymmetry is manifestly
served. The renormalization scheme underlying our construction is the one of Epstein–Glas
formulated, unlike the other renormalization schemes, in configuration space. Therefore,
comes appropriate to define carefully perturbative renormalization on a generic spacetime
fold. Recently, Brunetti and Fredenhagen16 ~with some gaps filled by Hollands and Wald65! have
shown that the Wick polynomials and their time-ordered products can be defined in glo
hyperbolic spacetimes. By the methods of this paper we can define powers of Wick ‘‘supe
nomials’’ and their time-ordered products for the noninteracting theory.
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Variational derivation of relativistic fermion–antifermion
wave equations in QED

Andrei G. Terekidi and Jurij W. Darewych
Department of Physics and Astronomy, York University,
Toronto, Ontario, M3J 1P3, Canada

~Received 16 July 2003; accepted 17 December 2003!

We present a variational method for deriving relativistic two-fermion wave equa-
tions in a Hamiltonian formulation of QED. A reformulation of QED is performed,
in which covariant Green functions are used to solve for the electromagnetic field
in terms of the fermion fields. The resulting modified Hamiltonian contains the
photon propagator directly. The reformulation permits one to use a simple Fock-
space variational trial state to derive relativistic fermion–antifermion wave equa-
tions from the corresponding quantum field theory. We verify that the energy ei-
genvalues obtained from the wave equation agree with known results for
positronium. © 2004 American Institute of Physics.@DOI: 10.1063/1.1649794#

I. INTRODUCTION

The description of relativistic bound and quasibound~i.e., unstable! few body systems con
tinues to be an active area of research. The traditional method of treating relativistic bound
in quantum field theory~QFT! is by means of the Bethe–Salpeter~BS! equation. However, this
approach has a number of difficulties, including the appearance of relative-time coordinate
negative-energy solutions. In practice, the interaction kernels~potentials! in the BS equation are
obtained from covariant perturbation theory, which may be of questionable validity for stro
coupled systems. In addition, the BS formalism is difficult to implement for systems of more
two particles.

An alternative approach might be the variational method, which is nonperturbative in
ciple. The variational method has not been widely used in quantum field theory, in contr
nonrelativistic systems describable by the Schro¨dinger theory, in part because of the difficulty o
constructing realistic yet tractable trial states.

It has been pointed out in previous publications1,2 that various models in QFT, including QED
can be reformulated, using mediating-field Green functions, into a form particularly convenie
variational calculations. This approach was applied recently to the study of relativistic two-
states in the scalar Yukawa~Wick–Cutkosky! theory.3–5 In the present paper we shall impleme
this approach to the realistic QED theory, where comparison with experimentally verified r
are possible. In particular, we shall use the reformulated QED Hamiltonian to derive a relat
fermion–antifermion wave equation and discuss its solution.

The reformulation of QED is presented in Sec. II, while the Hamiltonian and equal
quantization are given in Sec. III. In Sec. IV we use the variational principle with simple F
space trial states to derive the relativistic fermion–antifermion equations, and present their
tial wave’’ decomposition for all possibleJPC states. The relativistic radial equations are presen
in Sec. V, while their nonrelativistic and semirelativistic limits are given in Sec. VI. In Sec. VII
energy eigenvalues are shown to yield the correct fine and hyperfine structure for all
Concluding remarks are given in Sec. VIII.

II. REFORMULATION OF FIELD EQUATIONS AND LAGRANGIAN

The Lagrangian of QED is (\5c51)

L5c̄~x!~ igm]m2m2egmAm~x!!c~x!2 1
4 ~]aAb~x!2]bAa~x!!~]aAb~x!2]bAa~x!!. ~1!
14740022-2488/2004/45(4)/1474/23/$22.00 © 2004 American Institute of Physics
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The corresponding Euler–Lagrange equations of motion are the coupled Dirac–Maxwell
tions,

~ igm]m2m!c~x!5egmAm~x!c~x!, ~2!

and

]m]mAn~x!2]n]mAm~x!5 j n~x!, ~3!

where

j n~x!5ec̄~x!gnc~x!. ~4!

Equations~2! and~3! can be decoupled in part by using the well-known formal solution6,7 of the
Maxwell equation~3!, namely,

Am~x!5Am
0 ~x!1E d4x8Dmn~x2x8! j n~x8!, ~5!

whereDmn(x2x8) is a Green function~or photon propagator in QFT terminology!, defined by

]a]aDmn~x2x8!2]m]aDan~x2x8!5gmnd4~x2x8!, ~6!

andAm
0 (x) is a solution of the homogeneous~or ‘‘free field’’ ! equation~3! with j m(x)50.

We recall, in passing, that Eq.~6! does not define the covariant Green functionDmn(x2x8)
uniquely. For one thing, one can always add a solution of the homogeneous equation@Eq. ~6! with
gmn→0]. This allows for a certain freedom in the choice ofDmn , as is discussed in standard tex
~e.g., Refs. 6 and 7!. In practice, the solution of Eq.~6!, like that of Eq.~3!, requires a choice of
gauge. However, we do not need to specify one at this stage.

Substitution of the formal solution~5! into Eq. ~2! yields the ‘‘partly reduced’’ equations,

~ igm]m2m!c~x!5egmS Am
0 ~x!1E d4x8Dmn~x2x8! j n~x8! Dc~x!, ~7!

which is a nonlinear Dirac equation. To our knowledge no exact~analytic or numeric! solution of
Eq. ~7! for classical fields have been reported in the literature. However, approximate solu
have been discussed by various authors, particularly Barut and co-workers~see Refs. 8, 9, and
citations therein!. In any case, our interest here is in the quantized field theory.

The partially reduced equation~7! is derivable from the stationary action principle

dS@c#5dE d4xLR50 ~8!

with the Lagrangian density

LR5c̄~x!~ igm]m2m2egmA0
m~x!!c~x!2

1

2E d4x8 j m~x8!Dmn~x2x8! j n~x! ~9!

provided that the Green function is symmetric in the sense that

Dmn~x2x8!5Dmn~x82x! and Dmn~x2x8!5Dnm~x2x8!. ~10!

One can proceed to do conventional covariant perturbation theory using the reform
QED Lagrangian~9!. The interaction part of~9! has a somewhat modified structure from that
the usual formulation of QED. Thus, there are two interaction terms. The last term of~9! is a
‘‘current–current’’ interaction which contains the photon propagator sandwiched between th
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mionic currents. As such, it corresponds to Feynman diagrams without external photon line
term containingA0

m corresponds to diagrams that cannot be generated by the term containingDmn ,
including diagrams involving external photon lines~care would have to be taken not to doub
count physical effects!. However, we shall not pursue covariant perturbation theory in this w
Rather, we shall consider a variational approach that allows one to derive relativistic few-fe
equations, and to study their bound and scattering solutions.

III. HAMILTONIAN OF THE QUANTIZED THEORY IN THE EQUAL-TIME FORMALISM

We consider this theory in the quantized, equal-time formalism. To this end we write dow
Hamiltonian density corresponding to the Lagrangian~9!, with the term for the freeA0

m(x) field
suppressed since it will not contribute to the results presented in this paper. The relevant e
sion is

HR5H01HI , ~11!

where

H05c†~x!~2 i a•¹1mb!c~x!, ~12!

HI5
1

2E d4x8 j m~x8!Dmn~x2x8! j n~x!. ~13!

We construct a quantized theory by the imposition of anticommutation rules for the fer
fields, namely,

$ca~x,t !,cb
†~y,t !%5dabd3~x2y!, ~14!

while all other vanish. In addition, ifA0
mÞ0, there would be the usual commutation rules for

A0
m field, and commutation of theA0

m field operators with thec field operators.
To specify our notation, we quote the usual Fourier decomposition of the field oper

namely,

c~x!5(
s
E d3p

~2p!3/2S m

vp
D 1/2

@bpsu~p,s!e2 ip•x1dps
† v~p,s!eip•x#, ~15!

with p5pm5(vp ,p), and vp5Am21p2. Dirac spinorsu and v for free particles of massm,
where (gmpm2m)u(p,s)50, (gmpm1m)v(p,s)50, are normalized such that

u†~p,s!u~p,s!5v†~p,s!v~p,s!5
vp

m
dss , ~16!

u†~p,s!v~p,s!5v†~p,s!u~p,s!50. ~17!

The creation and annihilation operatorsb†, b of the ~free! fermions of massm, andd†, d for
the corresponding antifermions, satisfy the usual anticommutation relations. The nonvan
ones are

$bps ,bqs
† %5$dps ,dqs

† %5dssd3~p2q!. ~18!

IV. VARIATIONAL PRINCIPLE AND FERMION–ANTIFERMION TRIAL STATES

Unfortunately we do not know how to obtain exact eigenstates of the Hamiltonian~11!.
Therefore we shall resort to a variational approximation, based on the variational principle

d^cuĤ2Euc& t5050. ~19!
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For a fermion–antifermion system, the simplest Fock-space trial state that can be written do
the rest frame is

ucT&5(
s1s2

E d3pFs1s2
~p!bps1

† d2ps2

† u0&, ~20!

whereFs1s2
are four adjustable functions. We use this trial state to evaluate the matrix elem

needed to implement the variational principle~19!, namely,

^cTu:Ĥ02E:ucT&5(
s1s2

E d3pFs1s2
* ~p!Fs1s2

~p!~2vp2E! ~21!

and

^cTu:ĤI :ucT&5
e2m2

~2p!3 (
s18s28s1s2

E d3pd3p8

vpvp8
Fs1s2

* ~p!Fs
18s

28
~p8!

3S 2ū~p,s1!gmu~p8,s18!Dmn~p2p8!v̄~2p8,s28!gnv~2p,s2!

1ū~p,s1!gmv~2p,s2!Dmn~p1p8!v̄~2p8,s28!gnu~p8,s18! D , ~22!

wherep5(vp ,p), p85(vp8 ,p8), with p1p850 ~i.e., p1p85(2vp,0)) in the rest frame, and

Dmn~x2x8!5E d4k

~2p!4 Dmn~k!e2 ik•(x2x8). ~23!

We have normal-order the entire Hamiltonian, since this circumvents the need for mass
malization which would otherwise arise. Not that there is difficulty with handling mass renor
ization in the present formalism~as shown in various earlier papers; see, for example, Ref. 10,
citations therein!. It is simply that we are not interested in mass renormalization here, since
no effect on the two-body bound state energies that we obtain in this paper. Furthermo
approximate trial state~20!, which we use in this work, is incapable of sampling loop effec
Thus, the normal-ordering of the entire Hamiltonian does not ‘‘sweep under the carpet’’
effects, since none arise at the present level of approximation, that is with the trial stateucT&
specified in Eq.~20!.

The variational principle~19! leads to the following equation:

(
s1s2

E d3p~2vp2E!Fs1s2
~p!dFs1s2

* ~p!

2
m2

~2p!3 (
s1s2s1s2

E d3pd3q

vpvq
Fs1s2

~q!~2 i !Ms1s2s1s2
~p,q!dFs1s2

* ~p!50, ~24!

whereMs1s2s1s2
(p,q) is an invariant ‘‘matrix element,’’ which contains two terms:

Ms1s2s1s2
~p,q!5Ms1s2s1s2

ope ~p,q!1Ms1s2s1s2

ann ~p,q!, ~25!

where

Ms1s2s1s2

ope ~p,q!52ū~p,s1!~2 iegm!u~q,s1!iD mn~p2q!v̄~2q,s2!~2 iegn!v~2p,s2!,

~26!

Ms1s2s1s2

ann ~p,q!5ū~p,s1!~2 iegm!v~2p,s2!iD mn~p1q!v̄~2q,s2!~2 iegn!u~q,s1! ,

~27!

correspond to the usual one-photon exchange and virtual annihilation Feynman diagrams.
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At this point it is worthwhile to make a few comments about our Eq.~24! and to compare its
general features with other two-fermion equations, particularly field-theory based appro
Firstly we note that the present variational derivation leads to momentum-space Salpet
equations, with at most four independent componentsFs1s2

(p). The equations have only positive
energy solutions, as is evident from Eq.~24! with the interaction turned off, in which case on
E52vp.0 is obtained. This is in contrast to the BS equation, which is a 16-component equ
and contains both positive, negative and mixed energy solutions.

The interaction kernels, represented by the covariantM-matrices, result from the variationa
derivation, that is, they are not put in by hands. This is in contrast to two fermion equations,
are not derived from a underlying quantum field theory, such as various two-body generaliz
of the one-body Dirac equation. There are many such equations on the market, for exam
eight component two-fermion equation of Pilkuhn.11 In these treatments QFT effects, such as
virtual annihilation interaction@Eq. ~27!# do not arise naturally but need to be added in.

The fact that only the lowest order~‘‘tree level’’ ! diagrams appear in our Eq.~24! is a
reflection of the fact that we have used the simplest possible variational ansatz~20!. Even so, it is
important to note that, because of the reformulation discussed in Secs. II and III, their deri
does not require additional Fock-space terms in the variational state~20! as is the case in tradi
tional ~nonreformulated! treatments~e.g., Refs. 12–14!.

In the nonrelativistic limit, the functionsFs1s2
can be written as

Fs1s2
~p!5F~p!Ls1s2

, ~28!

where the nonzero elements ofL i j for total spin singlet (S50) states areL1252L2151/&,
while for the spin triplet (S51) states the nonzero elements areL1151 for ms511, L125L21

51/& for ms50, andL2251 for ms521. We use the notation that the subscripts 1 and 2 oL
correspond toms51/2 andms521/2 ~or ↑ and↓! respectively. Substituting~28! into ~24!, the
variational procedure, after multiplying the result byLs1s2

and summing overs1 ands2 , gives the
equation

~2vp2E!F~p!5
1

~2p!3 E d3q K~p,q!F~q!, ~29!

where

K~p,q!52 i
m2

vpvq
(

s1s2s1s2

Ls1s2
Ms1s2s1s2

~p,q!Ls1s2
. ~30!

To lowest-order inupu/m ~i.e., in the nonrelativistic limit!, the kernel~30! reduces toK5e2/up
2qu2, and so~29! reduces to the~momentum-space! Schrödinger equation

S p2

2m
2« DF~p!5

1

~2p!3 E d3 q
e2

up2qu2 F~q!, ~31!

where«5E22m andm5m/2. This verifies that the relativistic two-fermion equation~24! has the
expected nonrelativistic limit.

In the relativistic case we do not complete the variational procedure in~24! at this stage to ge
equations for the four adjustable functionsFs1s2

, because they are not independent in gene
Indeed we require that the trial state be an eigenstate of the total angular momentum oper~in
relativistic form!, its projection, parity and charge conjugation, namely, that
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F Ĵ2

Ĵ3

P̂
Ĉ
G ucT&5F J~J11!

mJ

P
C

G ucT&, ~32!

wheremJ5J,J21, . . . ,2J as usual. We present explicit forms for the operatorsĴ2, Ĵ3 in Appen-
dix A. The form forĴ2, Eq.~109!, in particular, is not readily found in standard texts and refere
books.

The functionsFs1s2
(p) can be written in the general form

Fs1s2
~p!5 (

,s1s2

(
ms1s2

f
s1s2

,s1s2
ms1s2~p!Y

,s1s2

ms1s2~ p̂!, ~33!

whereY
,s1s2

ms1s2(p̂) are the usual spherical harmonics. Here and henceforth we will use the no

p5upu, etc.~four-vectors will be written aspm). The orbital indexes,s1s2
andms1s2

depend on the

spin indexess1 ands2 and are specified by equations~32!. The radial coefficientsf
s1s2

,s1s2
ms1s2(p) in

the expansion~33! also depend on the spin variables.
Substitution of~33! into ~20! and then into~32! leads to two categories of relations among t

adjustable functions, as shown in Appendixes A and B. It follows that, for trial states of the
~20!, the total spin of the system is a good quantum number, and the states of the system s
into singlet states with the total spinS50 ~parastates! and into triplet states withS51 ~ortho-
states!. We should point out that this phenomenon is characteristic of the fermion antifer
systems, which are charge conjugation eigenstates, and does not arise for systems likem1e2.

A. The singlet states

In this case,s1s2
[,5J, m115m2250 and m125m215mJ . The nonzero components o

Fs1s2
(p) areF↑↓(p)[F12(p), F↓↑(p)[F21(p) and have the form

Fs1s2
~p!5 f s1s2

(sgl)J~p!Y
J

ms1s2~ p̂!, ~34!

where the relations betweenf 12
(sgl)J(p) and f 21

(sgl)J(p) involve the Clebsch–Gordan~C–G! co-

efficientsC
JmJ

(sgl)Jms1s2 , that is

f s1s2

(sgl)J~p!5C
JmJ

(sgl)Jms1s2f J~p!, ~35!

as is shown in Appendix A. We see that the spin and radial variables separate for the single
in the sense that the factorsf s1s2

(sgl)J(p) have a common radial functionf J(p). Thus, for the singlet

states we obtain

Fs1s2
~p!5C

JmJ

(sgl)Jms1s2f J~p!YJ
mJ~ p̂!. ~36!

The C–G coefficientsC
JmJ

(sgl)Jms1s2 have a simple form:CJmJ

(sgl)Jm115CJmJ

(sgl)Jm2250, CJmJ

(sgl)Jm125

2CJmJ

(sgl)Jm2151 ~see Appendix A!. Therefore for the singlet states we can write expression~20! in

the explicit form

ucT&5E d3pf J~p!YJ
mJ~ p̂!~bp↑

† d2p↓
† 2bp↓

† d2p↑
† !u0&. ~37!
                                                                                                                



otation

s

n for

antum

riplet

1480 J. Math. Phys., Vol. 45, No. 4, April 2004 A. G. Terekidi and J. W. Darewych

                    
These states are characterized by the quantum numbersJ,mJ parity P5(21)J11 and charge
conjugationC5(21)J. As we can see, the quantum numbers, ~orbital angular momentum!, and
total spinS are good quantum numbers for the singlet states as well. The spectroscopical n
is 1JJ .

B. The triplet states

The solution of the system~32! for S51 leads to two cases~Appendix A!, namely,,s1s2

[,5J, for which

Fs1s2
~p!5 f s1s2

(tr)J~p!Y
J

ms1s2~ p̂!, ~38!

and,s1s2
[,5J71, for which

Fs1s2
~p!5 f s1s2

J21~p!Y
J21

ms1s2~ p̂!1 f s1s2

J11~p!Y
J11

ms1s2~ p̂!, ~39!

where

m115mJ21, m125m215mJ , m225mJ11. ~40!

The expressions forf s1s2

, (p) in both cases involve the C–G coefficientsCJmJ

(tr),ms for S51 listed in

Appendix A, that is

f s1s2

(tr),~p!5CJmJ

(tr),msf ,~p!, ~41!

where the indexms is defined as

ms511, when ms1s2
5m11,

ms50, when ms1s2
5m125m21, ~42!

ms521, when ms1s2
5m22.

Thus, for the triplet states with,5J,

Fs1s2
~p!5CJmJ

(tr)Jmsf J~p!Y
J

ms1s2~ p̂!. ~43!

These functions correspond to states, which can be characterized by the quantum numberJ,mJ ,
parity P5(21)J11 and charge conjugationC5(21)J11. The orbital angular momentum,, as
well as the total spinS51, are good quantum numbers in this case. The spectroscopic notatio
these states is3JJ .

For the triplet states with,5J71 we obtain the result

Fs1s2
~p!5CJmJ

(tr)(J21)msf J21~p!Y
J21

ms1s2~ p̂!1CJmJ

(tr)(J11)msf J11~p!Y
J11

ms1s2~ p̂!, ~44!

which involves two radial functionsf J21(p) and f J11(p) corresponding to,5J21 and,5J
11. This means that, is not a good quantum number. Such states are characterized by qu
numbersJ, mJ , P5(21)J, charge conjugationC5(21)J and spinS51. In spectroscopic no-
tation, these states are a mixture of3(J21)J and3(J11)J states.

The requirement that the states be charge conjugation eigenstates@the last equation of~32!# is
intimately tied to the conservation of total spin. Indeed, a linear combination of singlet and t
states like
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Fs1s2
~p!5C1f s1s2

(sgl)J~p!Y
J

ms1s2~ p̂!1C2f s1s2

(tr)J~p!Y
J

ms1s2~ p̂!, ~45!

satisfies the first three equations of~32!. However, it is unacceptable for describing a fermio
antifermion system because the first and the second terms in~45! have different charge conjuga
tion. For a system of two particles of different mass~such asm1e2) charge conjugation is no
applicable, so that the total spin would not be conserved.

V. THE RELATIVISTIC RADIAL EQUATIONS AND APPLICATION TO POSITRONIUMLIKE
SYSTEMS

We return to Eq.~24! and replace the functionsFs1s2
(p) by the expression~36! for singlet

states and by~43! and~44! for triplet states. The variational procedure then leads to the follow
results:

For the singlet states,5J, P5(21)J11, C5(21)J, the radial equations are

~2vp2E! f J~p!5
m2

~2p!3 E q2dq

vpvq
K (sgl)~p,q! f J~q!, ~46!

where the kernel

K (sgl)~p,q!52 i (
s1s2s1s2mJ

E dp̂ dq̂ CJmJ

(sgl)s1s2s1s2Ms1s2s1s2
~p,q!YJ

mJ* ~ p̂!YJ
mJ~ q̂! ~47!

is defined by the invariantM -matrix and the coefficients

CJmJ

(sgl)s1s2s1s2[CJmJ

(sgl)JmsCJmJ

(sgl)JmsY (
n1n2mJ

~CJmJ

(sgl)Jmn!2. ~48!

Here we have summed overmJ , because of the (2J11)-fold energy degeneracy.
For the triplet states, we obtain different equations for the,5J, and,5J71 cases. Thus for

the states with,5J, P5(21)J11, C5(21)J11 the result is

~2vp2E! f J~p!5
m2

~2p!3 E q2dq

vpvq
K (tr)~p,q! f J~q!, ~49!

where the kernelK (tr) is formally like that of~47!, namely,

K (tr)~p,q!52 i (
s1s2s1s2mJ

CJmJ

(tr)s1s2s1s2E dp̂ dq̂ Ms1s2s1s2
~p,q!Y

J

ms1s2* ~ p̂!Y
J

ms1s2~ q̂!. ~50!

However it involves different C–G coefficients, namely,

CJmJ

(tr)s1s2s1s25CJmJ

(tr)JmsCJmJ

(tr)JmsY (
n1n2mJ

~CJmJ

(tr)Jmn!2. ~51!

For the triplet states with,5J71, we have two independent radial functionsf J21(p) and
f J11(p). Thus the variational equation~24! leads to a system of coupled equations forf J21(p)

and f J11(p). It is convenient to write them in matrix form,

~2vp2E!F~p!5
m2

~2p!3 E q2dq

vpvq
K~p,q!F~q!, ~52!

where
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F~p!5F f J21~p!

f J11~p!G , ~53!

and

K~p,q!5FK11~p,q! K12~p,q!

K21~p,q! K22~p,q!
G . ~54!

The kernelsKi j are similar in form to~47! and ~50!, that is

Ki j ~p,q!52 i (
s1s2s1s2mJ

CJmJi j
s1s2s1s2E dp̂ dq̂ Ms1s2s1s2

~p,q!Y
, j

ms1s2~ q̂!Y
, i

ms1s2* ~ p̂!. ~55!

However the coefficientsCJmJi j
s1s2s1s2 are defined by expression

CJmJi j
s1s2s1s25CJmJ

(tr), jmsCJmJ

(tr), imsY (
s1s2mJ

~CJmJ

(tr), ims!2, ~56!

where,15J21, ,25J11 andmS is as defined in Eq.~42!. The system~52! reduces to a single
equation forJ50 sincef J21(p)50 in that case.

Our Eq. ~24!, or its radial components~46!, ~49!, ~52!, contain the relativistic two-body
kinematics~kinetic energy, recoil effects! exactly, but the dynamics are included approximat
due to the limited nature of our trial state~20!. This limitation is reflected in the fact that th
interaction kernels of our equations contain only ‘‘tree-level’’ Feynman diagrams. Neverth
our Eqs.~46!, ~49!, ~52! have no negative-energy solutions, in contrast to the BS equation.
are variationally derived, hence the energy eigenvalues obtained from them will give mean
values for any strength of the coupling.

To our knowledge, it is not possible to obtain analytic solutions of the relativistic ra
momentum-space equations~46!, ~49!, and ~52!. Thus one must resort to numerical or oth
approximation methods. Numerical solutions of such equations are discussed, for example,
10, while a variational approximation has been employed in Ref. 5. However, in this paper w
concentrate on perturbativeO(a4) solutions, since it is important to verify that our equations yie
the correct fine structure for systems like positronium.

Our equations will yield energies which are incomplete beyondO(a4), because our varia
tional trial state~20!, as mentioned, reflects only ‘‘tree-level’’ Feynman diagrams, that is
radiative corrections are incorporated. One could, of course, augment them by the addi
invariant matrix elements corresponding to higher-order Feynman diagrams~including radiative
corrections! to the existingM-matrices in the kernels of our equations, as is done in the
formalism. Indeed, such an approach has been used in a similar, though not variational, tre
of positronium by Zhang and Koniuk.15 These authors show that the inclusion of invariant ma
elements corresponding to single-loop diagrams yields positronium energy eigenstates wh
accurate toO(a5,a5 ln a). However such augmentation of the kernels ‘‘by hand’’ would be c
trary to the spirit of the present variational treatment, and we shall not pursue it in this wo

VI. SEMIRELATIVISTIC EXPANSIONS AND THE NONRELATIVISTIC LIMIT

For perturbative solutions of our radial equations, it is necessary to work out expansions
relevant expressions to first order beyond the nonrelativistic limit. This shall be summarized
present section. We perform the calculation in the Coulomb gauge, in which the photon prop
has the form16

D00~k!5
1

k2 , D0 j~k!50, Di j ~km!5
1

kmkm
S d i j 2

kikj

k2 D , ~57!
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wherekm5(vp2vq ,p2q).
To expand the amplitudesM of ~26! and~27! to one order of (p/m)2 beyond the nonrelativ-

istic limit, we take the free-particle spinors to be

u~p,i !5F S 11
p2

8m2D
~s•p!

2m

G w i , v~p,i !5F ~s•p!

2m

S 11
p2

8m2D G x i , ~58!

as discussed in Appendix C. In this approximation the photon propagator takes on the form

D00~p2q!5
1

~p2q!2 , Di j ~p2q!.2
1

~p2q!2 S d i j 2
~p2q! i~p2q! j

~p2q!2 D . ~59!

Corresponding calculations give for the orbital part of theM-matrix

Ms1s2s1s2

ope(orb) ~p,q!5 ie2H 1

~p2q!2 1
1

m2 S 1

4
1

q•p

~p2q!2 1
~p3q!2

~p2q!4D J ds1s1
ds2s2

. ~60!

The terms of the expansion linear in spin correspond to the spin–orbit interaction:

Ms1s2s1s2

ope(s–o)~p,q!5
3e2

4m2 ws1

† xs2

† ~s(1)2s(2)!•~p3q!

~p2q!2 ws1
xs2

. ~61!

Here s(1) and s(2) are positron and electron spin matrices, respectively, defined as foll
s(1)ws1

xs2
5(s(1)ws1

)xs2
, s(2)ws1

xs2
5ws1

(s(2)xs2
). The quadratic spin terms or spin–sp

interaction terms are

Ms1s2s1s2

ope(s–s) ~p,q!5
ie2

4m2 ws1

† xs2

† H 2
~s(1)

•~p2q!!~s(2)
•~p2q!!

~p2q!2 1s(1)
•s(2)J ws1

xs2
.

~62!

Lastly, the virtual annihilation contribution is given by

Ms1s2s1s2

ann ~p,q!52
ie2

4m2 ws1

† xs2

† $s(1)
•s(2)%ws1

xs2
, ~63!

where we have excluded a divergent term, which appears in the Coulomb gauge calculatio
divergence is an artifact of the Coulomb gauge. It does not arise, for example, in the Lo
gauge, where only expression~63! is obtained. However the Lorentz gauge is not convenient
obtaining all otherO(a4) corrections because it contains spurious degrees of freedom~longitudi-
nal polarization! of the photon.

We have used expressions~60!–~63! to obtain the corresponding radial kernels. Details of
calculations can be found in Appendix D. We use the notationz5(p21q2)/2pq, andQl(z) is the
Legendre function of the second kind.17 The contributions of the various terms to the kernel are
follows:
Singlet stateswith ,5J (J>0), P5(21)J11, C5(21)J.

Orbital term

K (sgl)(o)~p,q!5
2pe2

pq
QJ~z!1

pe2

m2 S 2
J23

2 S p

q
1

q

pDQJ~z!1~J11!QJ11~z!22dJ,0D .

~64!

Spin–orbit interaction
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K (sgl)(s–o)~p,q!50. ~65!

Spin–spin interaction

K (sgl)(s–s)~p,q!5
2pe2

m2 dJ,0 . ~66!

Triplet states with ,5J (J>1), P5(21)J11, C5(21)J11.
Orbital term

K (tr)(o)~p,q!5
2pe2

pq
QJ~z!1

pe2

m2 S 2
J23

2 S p

q
1

q

pDQJ~z!1~J11!QJ11~z! D . ~67!

Spin–orbit interaction

K (tr)(s–o)~p,q!52
3pe2

m2

1

2J11
$QJ11~z!2QJ21~z!%. ~68!

Spin–spin interaction

K (tr)(s–s)~p,q!5
pe2

2m2 S p

q
1

q

pDQJ~z!2
pe2

m2

1

2J11
$JQJ11~z!1~J11!QJ21~z!%. ~69!

Triplet states with ,5J21 (J>1), ,5J11 (J>0), P5(21)J, C5(21)J.
The off-diagonal elements of the kernel matrix@Eqs. ~52!–~54!#, K12 and K21 which are

responsible for mixing of states with,5J21 and,5J11, get a nonzero contribution from the
spin-spin interactions only:

K12~p,q!5K21~p,q!5
pe2

5m2

AJ~J11!

~2J11! S p

q
QJ11~z!1

q

p
QJ21~z!22QJ~z! D . ~70!

The contributions to the diagonal elements of the kernel matrix are the following:
Orbital terms

K 11
(o)~p,q!5

2pe2

pq
QJ21~z!1

pe2

m2 S 2
J24

2 S p

q
1

q

pDQJ21~z!1JQJ~z!22dJ21,0D , ~71!

K 22
(o)~p,q!5

2pe2

pq
QJ11~z!1

pe2

m2 S 2
J22

2 S p

q
1

q

pDQJ111~J12!QJ12D . ~72!

Spin–orbit interaction

K 11
(s–o)~p,q!5

3pe2

m2

J21

2J21
~QJ~z!2QJ22~z!!, ~73!

K 22
(s–o)~p,q!52

3pe2

m2c2

J12

2J13
~QJ12~z!2QJ~z!!. ~74!

Spin–spin interaction

K 11
(s–s)~p,q!5

pe2

2m2

1

2J11 S S p

q
1

q

pDQJ21~z!22QJ~z! D , ~75!
                                                                                                                



nels
he

1485J. Math. Phys., Vol. 45, No. 4, April 2004 Relativistic wave equations in QED

                    
K 22
(s–s)~p,q!5

pe2

2m2

1

2J13 S S p

q
1

q

pDQJ11~z!22QJ12~z! D . ~76!

Annihilation term

K ann~p,q!52
2pe2

m2 dJ21,0. ~77!

We note that in the nonrelativistic limit only the first terms of the orbital part of the ker
survive. They have the common form 2p ie2Q,(z)/pq, hence all radial equations reduce to t
form

~2vp2E! f ,~p!5
m2e2

pvpp E0

`

dq
q

vq
Q,~z! f ,~q!. ~78!

Recalling, also, that

vp5Am21p2.mS 11
1

2 S p

mD 2D , ~79!

we obtain, in the nonrelativistic limit, the momentum-space Schro¨dinger radial equations

S p2

2m
2« D f ,~p!5

a

p

1

p E0

`

dq q QJ~z! f ,~q!, ~80!

wherea5e2/4p, m5 m/2 , «5E22m.

VII. ENERGY LEVELS: FINE AND HYPERFINE STRUCTURE

The relativistic energy eigenvaluesEn,J can be calculated from the expression

EE
0

`

dp p2f J~p! f J~p!5E
0

`

dp p2 2vpf J~p! f J~p!

2
m2

~2p!3 E
0

` dpp2

vp
E

0

`

dq
q2

vq
K (sgl,tr)~p,q! f J~p! f J~q! ~81!

for the singlet and,5J triplet states.
For the,5J71 triplet states the corresponding result is@see Eq.~52!#

EE
0

`

dp p2F†~p!F~p!5E
0

`

dp p2 2vpF
†~p!F~p!

2
m2

~2p!3 E
0

` dpp2

vp
E

0

`

dq
q2

vq
K~p,q!F†~p!F~q!. ~82!

To obtain results forE to O(a4) we use the forms of the kernels expanded toO(p2/m2) @Eqs.
~64!–~77!# and replacef ,(p) by their nonrelativistic~Schrödinger! form ~see~D10!, Appendix D!.
The most important integrals that we used for calculating~81! and~82!, are given in Appendix D.
In Appendix E we show that the contribution of kernelsK12 andK21 in ~82!, is zero atO(a4).
Thus, the energy corrections for the triplet states with,5J21 and,5J11 can be calculated
independently.

The results will be presented in the formD«5E22m1a2m/4n2.
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A. Singlet states „øÄJ „JÐ0…, PÄ„À1…J¿1, CÄ„À1…J
…

The kinetic energy corrections

D«K
(sgl)52

a4m

8 S 1

2J11

1

n3 2
3

8

1

n4D . ~83!

The potential energy corrections

D«P
(sgl)(o)52

a4m

8 S S 3

2J11
22dJ,0D 1

n3 2
1

n4D , ~84!

D«P
(sgl)(s–o)50, ~85!

D«P
(sgl)(s–s)52

a4m

4

dJ,0

n3 . ~86!

The total energy corrections

D« (sgl)52
a4m

8 S 4

2J11

1

n3 2
11

8n4D . ~87!

B. Triplet states „øÄJ „JÐ1…, PÄ„À1…J¿1, CÄ„À1…J¿1
…

The kinetic energy corrections

D«K
(tr)52

a4m

8 S 1

2J11

1

n3 2
3

8

1

n4D . ~88!

The potential energy corrections

D«P
(tr)(o)52

a4m

8 S S 3

2J11
22dJ,0D 1

n3 2
1

n4D , ~89!

D«P
(tr)(s–o)52

a4m

8

3

J~J11!~2J11!

1

n3 , ~90!

D«P
(tr)~s– s)5

a4m

8

1

J~J11!~2J11!

1

n3 . ~91!

The total energy corrections

D« (tr)52
a4m

8 S S 4

2J11
1

2

J~J11!~2J11! D 1

n3 2
11

8

1

n4D . ~92!

C. Triplet states „øÄJÀ1 „JÐ1…, PÄ„À1…J , CÄ„À1…J
…

The kinetic energy corrections

D«K
(tr)(J21)52

a4m

8 S 1

2J21

1

n3 2
3

8

1

n4D . ~93!

The potential energy corrections
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D«P
(tr)(o)(J21)52

a4m

8 F S 3

2J21
22dJ,1D 1

n3 2
1

n4G , ~94!

D«P
~ tr!(s–o)(J21)5

a4m

8

3~12dJ,1!

J~2J21!

1

n3 , ~95!

D«P
~ tr!(s–s)(J21)52

a4m

8 S 12dJ,1

J~2J11!~2J21!
2

2

3
dJ,1D 1

n3 , ~96!

D« (ann)5
a4m

4

1

n3 dJ,1 . ~97!

The total energy corrections

D«~ tr!(J21)52
a4m

8 S S 4

2J21
2

2~3J11!

J~2J11!~2J21!
22dJ,1D 1

n3 2
11

8

1

n4D . ~98!

D. Triplet states „øÄJ¿1 „JÐ0…, PÄ„À1…J , CÄ„À1…J
…

The kinetic energy corrections

D«K
(tr)(J11)52

a4m

8 S 1

2J13

1

n3 2
3

8

1

n4D . ~99!

The potential energy corrections

D«P
(tr)(o)(J11)52

a4m

8 F 3

2J13

1

n3 2
1

n4G , ~100!

D«P
~ tr!(s–o)(J11)52

a4m

8

3

~J11!~2J13!

1

n3 , ~101!

D«P
~ tr!(s–s)(J11)52

a4m

8

1

~J11!~2J13!~2J11!

1

n3 . ~102!

The total energy corrections

D«~ tr!(J11)52
a4m

8 S 2

2J13 S 21
3J12

~J11!~2J11! D 1

n3 2
11

8

1

n4D . ~103!

These results are in agreement with the well-known positronium fine structure results.18,19

VIII. CONCLUDING REMARKS

We have considered a reformulation of electrodynamics, in which covariant Green fun
are used to solve the field equations for the mediating electromagnetic field in terms of the fe
field. This leads to a reformulated Hamiltonian with an interaction term in which the ph
propagator appears sandwiched between fermionic currents.

The variational method within a Hamiltonian formalism of quantum field theory is use
determine approximate eigensolutions for bound relativistic fermion–antifermion states. T
formulation enables us to use the simplest possible trial state to derive a relativistic mome
space Salpeter-type equation for a positroniumlike system. The invariantM matrices correspond
ing to one-photon exchange and virtual annihilation Feynman diagrams arise directly i
interaction kernel of this equation.
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The trial states are chosen to be eigenstates of the total angular momentum operatorĴ2 and
Ĵ3 , along with parity and charge conjugation. A general relativistic reduction of the wave e
tions to radial form is given. For givenJ there is a single radial equation for total spin zero sing
states, but for spin triplet states there are, in general two coupled equations. We show h
classification of states follows naturally from the system of eigenvalue equations obtained w
trial state.

It is not possible, as far as we know, to obtain analytic solutions of our relativistic ra
equations nor the resulting eigenvalues of the particle–antiparticle system described. How
is possible to obtainO(a4) corrections analytically for all states using perturbation theory. T
results agree with well known results for positronium, obtained on the basis of the Bethe–Sa
equation,19 which lends credence to the validity of our variationally derived equations.

The method presented here can be generalized to include effects higher order in al
using dressed propagators in place of the bare propagators. This shall be the subject of
coming work.
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APPENDIX A: TOTAL ANGULAR MOMENTUM OPERATOR IN RELATIVISTIC FORM

The total angular momentum operator is defined by expression

Ĵ5E d3x:c†~x!~ L̂1Ŝ!c~x!:, ~A1!

where L̂5 x̂3p̂ and Ŝ5 1
2ŝ are the orbital angular momentum and spin operators. We use

standard representation for the Pauli matrices

ŝ5Fs 0

0 s
G , ~A2!

s15F0 1

1 0G , s25F0 2 i

i 0 G , s35F1 0

0 21G . ~A3!

Using the field operatorc(x) in the form ~15!, after tedious calculations we obtain

Ĵ15E d3qS L̂q1~bq↑
† bq↑1bq↓

† bq↓1dq↑
† dq↑1dq↓

† dq↓!

1 1
2 ~bq↑

† bq↓1bq↓
† bq↑1dq↓

† dq↑1dq↑
† dq↓!

D ,

Ĵ25E d3qS L̂q2~bq↑
† bq↑1bq↓

† bq↓1dq↑
† dq↑1dq↓

† dq↓!

1
i

2
~2bq↑

† bq↓1bq↓
† bq↑2dq↑

† dq↓1dq↓
† dq↑!D , ~A4!

Ĵ35E d3qS L̂q3~bq↑
† bq↑1bq↓

† bq↓1dq↑
† dq↑1dq↓

† dq↓!

1 1
2 ~bq↑

† bq↑2bq↓
† bq↓1dq↑

† dq↑2dq↓
† dq↓!

D .

Here L̂q is the orbital angular momentum operator in momentum representation:

~ L̂q! i[L̂qi52 i ~q3¹q! i . ~A5!
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Note that these expressions are valid for anyt, since the time-dependent phase factors of the fo
eivqt cancel out.

For the operatorĴ25 Ĵ1
21 Ĵ2

21 Ĵ3
2 we have

Ĵ25E d3qS ~ L̂q
21 3

4!~bq↑
† bq↑1bq↓

† bq↓1dq↑
† dq↑1dq↓

† dq↓!

1L̂q2bq↑
† bq↓1L̂q1bq↓

† bq↑1L̂q2dq↑
† dq↓1L̂q1dq↓

† dq↑

1L̂q3~bq↑
† bq↑2bq↓

† bq↓1dq↑
† dq↑2dq↓

† dq↓!

D

1
1

2 E d3q8d3q

¨

2L̂q8•L̂qS bq8↑
† bq8↑dq↑

† dq↑1bq8↑
† bq8↑dq↓

† dq↓
1bq8↓

† bq8↓dq↑
† dq↑1bq8↓

† bq8↓dq↓
† dq↓

D
1 1

2 ~bq8↑
† bq8↑dq↑

† dq↑2bq8↑
† bq8↑dq↓

† dq↓!

2 1
2 ~bq8↓

† bq8↓dq↑
† dq↑2bq8↓

† bq8↓dq↓
† dq↓!

1bq8↑
† bq8↓dq↓

† dq↑1bq8↓
† bq8↑dq↑

† dq↓

1L̂q81S bq8↑
† bq8↑dq↓

† dq↑1bq8↓
† bq8↓dq↓

† dq↑
1bq↓

† bq↑dq8↑
† dq8↑1bq↓

† bq↑dq8↓
† dq8↓

D
1L̂q82S bq8↑

† bq8↑dq↑
† dq↓1bq8↓

† bq8↓dq↑
† dq↓

1bq↑
† bq↓dq8↑

† dq8↑1bq↑
† bq↓dq8↓

† dq8↓
D

1~ L̂q831L̂q3!~bq8↑
† bq8↑dq↑

† dq↑2bq8↓
† bq8↓dq↓

† dq↓!

2~ L̂q832L̂q3!~bq8↑
† bq8↑dq↓

† dq↓2bq8↓
† bq8↓dq↑

† dq↑!

©
, ~A6!

where

L̂q15L̂q11 i L̂ q2 , L̂q25L̂q12 i L̂ q2 . ~A7!

The requirement that the trial state~20! be an eigenstate ofĴ2 and Ĵz leads to the system o
equations

~ L̂311!F115mJF11,

L̂3F125mJF12,

L̂3F215mJF21, ~A8!

~ L̂321!F225mJF22,

~J~J11!2L̂22222L̂3!F115L̂2~F121F21!,

~J~J11!2L̂221!F125F211L̂1F111L̂2F22,

~J~J11!2L̂221!F215F121L̂1F111L̂2F22, ~A9!

~J~J11!2L̂22212L̂3!F225L̂1~F121F21!.

Substitution of the expressions~33! for Fs1s2
and use of Eq.~A8! gives

m125m215mJ , m115mJ21, m225mJ11, ~A10!
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,115,225,125,215,, ~A11!

and

~J~J11!2,~,11!22mJ! f 11
, ~p!5A~,2mJ11!~,1mJ! f 12

, ~p!1A~,2mJ11!~,1mJ! f 21
, ~p!,

~J~J11!2,~,11!21! f 12
, ~p!5 f 21

, ~p!1A~,1mJ!~,2mJ11! f 11
, ~p!

1A~,2mJ!~,1mJ11! f 22
, ~p!,

~A12!

~J~J11!2,~,11!21! f 21
, ~p!5 f 12

, ~p!1A~,1mJ!~,2mJ11! f 11
, ~p!

1A~,2mJ!~,1mJ11! f 22
, ~p!,

~J~J11!2,~,11!12mJ! f 22
, ~p!5A~,1mJ11!~,2mJ! f 12

, ~p!1A~,1mJ11!~,2mJ! f 21
, ~p!.

The singlet states correspond to the solutionf 11
, (p)5 f 22

, (p)50, f 12
, (p)52 f 21

, (p) of this
system with,5J (J>0).

For the triplet states the solutions aref 12
, (p)5 f 21

, (p)[ f ,(p), and, for,5J21 (J>1):

~J2mJ! f 11
J21~p!5A~J2mJ!~J1mJ21! f J21~p!, ~A13!

~J1mJ! f 22
J21~p!5A~J1mJ!~J2mJ21! f J21~p!, ~A14!

for ,5J (J>1):

mJf 11
J ~p!52A~J1mJ!~J2mJ11! f J~p!, ~A15!

mJf 22
J ~p!5A~J2mJ!~J1mJ11! f J~p!, ~A16!

for ,5J11 (J>0):

~J111mJ! f 11
J11~p!52A~J2mJ12!~J1mJ11! f J11~p!, ~A17!

~J112mJ! f 22
J11~p!52A~J2mJ11!~J1mJ12! f J11~p!. ~A18!

It is convenient to introduce the table of coefficientsCJmJ

(tr),ms:

ms511 ms50 ms521

,5J21 A~J1mJ21!~J1mJ!

J~2J21!
A~J2mJ!~J1mJ!

J~2J21!
A~J2mJ21!~J2mJ!

J~2J21!

,5J
2A~J1mJ!~J2mJ11!

J~J11!

mJ

AJ~J11!
A~J2mJ!~J1mJ11!

J~J11!

,5J11 A~J2mJ11!~J2mJ12!

~J11!~2J13!
2A~J2mJ11!~J1mJ11!

~J11!~2J13!
A~J1mJ12!~J1mJ11!

~J11!~2J13!

These coefficients coincide with the usual Clebsch–Gordan coefficients forS51 except for a
factor 2 in the denominator, which we absorb into the normalization constant.
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APPENDIX B: PARITY AND CHARGE CONJUGATION

We consider the application of the parity operator to the trial state~20!:

P̂ucT&5(
s1s2

E d3pFs1s2
~p!P̂bps1

† d2ps2

† u0&5(
s1s2

E d3pFs1s2
~p!P̂bps1

† P̂21P̂d2ps2

† P̂21P̂u0&.

~B1!

Making use of the properties

P̂bps1

† P̂215hPb2ps1

† , P̂d2ps2

† P̂2152hPdps2

† , P̂u0&5u0&, ~B2!

wherehP is the intrinsic parity ((hP)251), it follows that

P̂ucT&5(
s1s2

E d3pFs1s2
~p!P̂bps1

† d2ps2

† u0&

52(
s1s2

E d3pFs1s2
~2p!bps1

† d2ps2

† u0&

5P(
s1s2

E d3pFs1s2
~p!bps1

† d2ps2

† u0&, ~B3!

where the parity eigenvalueP depends on the symmetry ofFs1s2
(p) in different states:

For the singlet states (,5J) we get from ~36! Fs1s2
(2p)5(21)JFs1s2

(p), so that P

5(21)J11.
For the triplet states with,5J we get from ~38! Fs1s2

(2p)5(21)JFs1s2
(p), henceP

5(21)J11.
For the triplet states with,5J61 we get from~39! Fs1s2

(2p)5(21)J11Fs1s2
(p), therefore

P5(21)J.
Charge conjugation is associated with the interchange of the particle and antiparticle. A

ing the charge conjugation operator to the trial state~20! we get

ĈucT&5(
s1s2

E d3pFs1s2
~p!Ĉbps1

† d2ps2

† u0& ~B4!

5(
s1s2

E d3pFs1s2
~p!Ĉbps1

† Ĉ21Ĉd2ps2

† Ĉ21Ĉu0&. ~B5!

Using the relations

Ĉbps1

† Ĉ215hCdps1

† , Ĉd2ps2

† Ĉ215hCb2ps2

† , Ĉu0&5u0&, ~B6!

where (hC)251, we obtain

ĈucT&5(
s1s2

E d3pFs1s2
~p!Ĉbps1

† d2ps2

† u0&

52(
s1s2

E d3pFs2s1
~p!bps1

† d2ps2

† u0&

5C(
s1s2

E d3pFs1s2
~p!bps1

† d2ps2

† u0&, ~B7!

where the charge conjugation quantum numberC depends on the symmetry ofFs1s2
(p) in differ-

ent states:
For the singlet states (,5J) we get from ~36! Fs1s2

(2p)5(21)J11Fs1s2
(p), henceC

5(21)J.
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For the triplet states with,5J we get from~38! Fs1s2
(2p)5(21)JFs1s2

(p), thereforeC

5(21)J11.
For the triplet states with,5J61 we get from~39! Fs1s2

(2p)5(21)J11Fs1s2
(p), so that

C5(21)J.

APPENDIX C: EXPANSION OF THE SPINORS

We recall the form of the particle spinors:

u~p,i !5NpF 1

~s•p!

vp1m
Gw i , ~C1!

where

w15F10G , w25F01G , Np5Avp1m

2m
. ~C2!

The antiparticle or ‘‘positron’’ representation for thev i(p) spinors has the form

v~p,i !5NpF ~s"p!

vp1m

1
Gx i , ~C3!

where

x15F01G , x252F10G . ~C4!

The normalization is

ū~p,i !u~p, j !5d i j , v̄~p,i !v~p, j !52d i j . ~C5!

Expanding in powers ofp/m and keeping the lowest non-trivial order terms,

~s•p!

vp1m
.

~s•p!

2m
, ~C6!

Np5Avp1m

2m
.11

p2

8m2 , ~C7!

we obtain the result

u~p,i !.S 11
p2

8m2D F 1

~s•p!

2m
Gw i5F S 11

p2

8m2D
~s•p!

2m

G w i , ~C8!

v~p,i !.S 11
p2

8m2D F ~s•p!

2m

1
Gx i5F ~s•p!

2m

S 11
p2

8m2D G x i . ~C9!
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APPENDIX D: SOME USEFUL IDENTITIES AND INTEGRALS

The following identity is useful for evaluating theM matrices:

~~p2q!•p!2

~p2q!4 5
p2

~p2q!2 2
~p3q!2

~p2q!4 . ~D1!

The angular integration in~47!, ~50!, ~55! involves the following integrals:

E dp̂ dq̂ F~ p̂"q̂!Y
J8

mJ8~ q̂!YJ
mJ* ~ p̂!52pdJ8Jdm

J8mJ
E d~ p̂•q̂!F~ p̂•q̂!PJ~ p̂•q̂!, ~D2!

E d~ p̂•q̂!
p̂•q̂

~p2q!2 PJ~ p̂•q̂!5
1

upuuqu S J11

2J11
QJ11~z!1

J

2J11
QJ21~z! D , ~D3!

E d~ p̂•q̂!
~p3q!2

~p2q!4 PJ~ p̂•q̂!5
~J11!~J12!

2~2J11!
QJ11~z!2

J~J21!

2~2J11!
QJ21~z!, ~D4!

whereF(p̂•q̂) is an arbitrary function ofp̂•q̂, PJ(x) is the Legendre polynomial, andQJ(z) is the
Legendre function of the second kind of orderJ.

The following integrals are needed for the calculation of the relativistic energy correctio

E
0

`E
0

`

dp dq p2q2f J~p! f J~q!52pS am

n D 3

dJ,0 , ~D5!

E
0

`E
0

`

dp dq pq fJ~p! f J~q!QJ~z1!5
pam

n2 , ~D6!

E
0

`E
0

`

dp dq p2q2f J~p! f J~q!QJ~z1!5E
0

`E
0

`

dp dq p3q fJ~p! f J~q!QJ~z1!

5pS am

n D 3S 4

2J11
2

1

nD , ~D7!

E
0

`E
0

`

dp dq p2q2f J~p! f J~q!QJ21~z1!5pS am

n D 3S 2

J
2

1

nD , ~D8!

E
0

`E
0

`

dp dq p2q2f J~p! f J~q!QJ11~z1!5pS am

n D 3S 2

J11
2

1

nD . ~D9!

Here f J is the nonrelativistic hydrogenlike radial wave function in momentum space19

f J~p![ f n
J~p!5S 2

p

~n2J21!!

~n1J!! D 1/2nJ12pJ22(J11)J!

~n2p211!J12 Gn2J21
J11 S n2p221

n2p211D , ~D10!

whereGn2J21
J11 (x) are Gegenbauer functions.

APPENDIX E: K12 , K21 KERNELS FOR øÄJÂ1 STATES

The contribution of the kernelK12 to the energy correction is

E dp dq p2q2K12~p,q! f J21~p! f J11~q!, ~E1!
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where

K12~p,q!5 (
s1s2s1s2

CJmJ12
s1s2s1s2E dp̂ dq̂ Ms1s2s1s2

ope(s–s) ~p,q!Y
J11

ms1s2~ q̂!Y
J21

ms1s2* ~ p̂!. ~E2!

This requires the following integral:

(
s1s2s1s2

CJmJ12
s1s2s1s2E d3p d3q f J21~p!Y

J21

ms1s2* ~ p̂!Ms1s2s1s2

ope(s–s) ~p,q! f J11~q!Y
J11

ms1s2~ q̂!. ~E3!

We calculate this form in coordinate space. The Fourier transform ofMs1s2s1s2
(p,q) is

Ms1s2s1s2
~p,q!5E d3r d3r 8Ms1s2s1s2

~r ,r 8!e2 i (p2q)•(r2r8), ~E4!

where theMs1s2s1s2
(r ,r 8) matrix is a local operator in general,16 that is

Ms1s2s1s2
~r ,r 8!5Ms1s2s1s2

~r !d~r2r 8!. ~E5!

We apply this transformation to theMs1s2s1s2

ope(s–s) (p,q) matrix @see Eq.~62!#. Because of the angula

integration in~E2!, only the first term in~62! survives. The Fourier transformation of that term

~s(1)
•~p2q!!~s(2)

•~p2q!!

4m2~p2q!2 → 3
~s(1)

•r !~s(2)
•r !

16pm2r 5 . ~E6!

Furthermore,

E d3pf J21~p!Y
J21

ms1s2* ~ p̂!e2 ip•r5Rn
J21~r !Y

J21

ms1s2* ~ r̂ !, ~E7!

E d3qf J11~q!Y
J11

ms1s2* ~ q̂!e2 iq•r5Rn
J11~r !Y

J11

ms1s2~ r̂ !, ~E8!

where

Rn
,~r !52

2

n2A~n2,21!!

~~n1, !! !3 e2r /nS 2r

n D ,

Ln1,
2,11S 2r

n D . ~E9!

The associated Laguerre functionLl
m(r) is related to the confluent hypergeometric function b

Ll
m~r!5~21!m

~l! !2

m! ~l2m!!
F~2l1m,m11;r!. ~E10!

The generating function for the Laguerre function is

Um~r,u![~21!m
um

~12u!m11 expS 2
ur

12uD5 (
l5m

` Ll
m~r!

l!
ul, ~E11!

hence
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(
s1s2s1s2

CJmJ12
s1s2s1s2E d3p d3q f J21~p!Y

J21

ms1s2* ~ p̂!Ms1s2s1s2

ope(s–s) ~p,q! f J11~q!Y
J11

ms1s2~ q̂!

5 (
s1s2s1s2

CJmJ12
s1s2s1s2E d3r Rn

J21~r !Y
J21

ms1s2* ~ r̂ !3S 3a
~s(1)

•r !~s(2)
•r !

16pm2r 5 DRn
J11~r !Y

J11

ms1s2~ r̂ !

5
3a

16pm2 E dr r 2
1

r 3 Rn
J21~r !Rn

J11~r !

3 (
s1s2s1s2

CJmJ12
s1s2s1s2E dr̂ Y

J21

ms1s2* ~ r̂ !~s(1)
• r̂ !~s(2)

• r̂ !Y
J11

ms1s2~ r̂ !. ~E12!

It follows that

(
s1s2s1s2

CJmJ12
s1s2s1s2E dr̂Y

J21

ms1s2* ~ r̂ !~s(1)
• r̂ !~s(2)

• r̂ !Y
J11

ms1s2~ r̂ !5
1

15

AJ~J11!

2J11
, ~E13!

but

E
0

`

dr r 2
1

r 3 Rn
J21~r !Rn

J11~r !50. ~E14!

The last expression can be proved in the following way. Let us consider the more general

E
0

`

dr r b12Rn
,~r !Rn

,8~r !. ~E15!

The generating function forRn
,(r ) is

Gn,~r ,u!52
2

n2A~n2,21!!

~~n1, !! !3 e2r /nS 2r

n D ,

~21!2,11
u2,11

~12u!2,12 expH 2
u

12u

2r

n J .

~E16!

Then we consider the expression

E
0

`

drr b12Gn,~r ,u!Gn,8~r ,v !5E
0

`

drr b12
4

n4A~n2,21!! ~n2,821!!

~~n1, !! !3~~n1,8!! !3 e22r /nS 2r

n D ,1,8

3
u2,11v2,811

~12u!2,12~12v !2,812
expH 2S u

12u
1

v
12v D 2r

n J
5

4

n4A~n2,21!! ~n2,821!!

~~n1, !! !3~~n1,8!! !3

u2,11v2,811

~12u!2,12~12v !2,812

3E
0

`

drS 2r

n D b121,1,8
expH 2S 11

u

12u
1

v
12v D 2r

n J .

~E17!

It is well known that
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E
0

`

drrbe2r5G~b11!, ~E18!

therefore

E
0

`

drS 2r

n D b121,1,8
expH 2S 11

u

12u
1

v
12v D 2r

n J
5S n

2D b13S ~12u!~12v !

12uv D b131,1,8
G~b131,1,8! ~E19!

and

E
0

`

drr b12Gn,~r ,u!Gn,8~r ,v !5
22b21

n2b11A~n2,21!! ~n2,821!!

~~n1, !! !3~~n1,8!! !3

3
u2,11v2,811~12u!b112,1,8~12v !b111,2,8

~12uv !b131,1,8

3G~b131,1,8!. ~E20!

We expand this expression in a series,

E
0

`

drr b12Gn,~r ,u!Gn,8~r ,v !5(
hh8

Chh8~n,b,,,,8!uhuh8. ~E21!

It is not difficult to show20 that the coefficientCn1,,n1,8 represents the integral

Cn1,,n1,8~n,b,,,,8!5E
0

`

drr b12Rn
,~r !Rn

,8~r !. ~E22!

Simple but tedious calculations show that this coefficient is zero forb523, ,5J21, ,85J
11. Thus the kernelK12 does not contribute to the energy corrections toO(a4). The same result
is obtained for the kernelK21.
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Ideally embedded space–times
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Due to the growing interest in embeddings of space–time in higher-dimensional
spaces we consider a specific type of embedding. After proving an inequality be-
tween intrinsically defined curvature invariants and the squared mean curvature, we
extend the notion of ideal embeddings from Riemannian geometry to the indefinite
case. Ideal embeddings are such that the embedded manifold receives the least
amount of tension from the surrounding space. Then it is shown that the de Sitter
spaces, a Robertson–Walker space–time and some anisotropic perfect fluid metrics
can be ideally embedded in a five-dimensional pseudo-Euclidean space. ©2004
American Institute of Physics.@DOI: 10.1063/1.1668333#

I. INTRODUCTION

In recent years the ideas of Kaluza and Klein have received new attention. Shortly aft
publication of the general theory of relativity Kaluza proposed to unify gravity and electrom
netism by adding an extra dimension. Klein suggested that this fifth dimension would be co
tified and unobservable on experimentally accessible energy scales. This idea of compactify
extra dimension has dominated the search for a unified theory and lead to the 11-dimen
supergravity theory and more recent ten-dimensional superstring theory~see Ref. 1 for an over-
view!.

Instead of compactifying the extra dimensions other approaches have been developed
space-time-matter~STM! theory2 the (311)-dimensional cosmologies may be recovered from
geometry of (411)-dimensional, vacuum general relativity. Matter in four dimensions is indu
by the shape of the embedded hypersurface and the five-dimensional Ricci flat geometry
recently the Randall–Sundrum scenario has gained a lot of support. In Refs. 3 and 4 they
solve the hierarchy problem between the observed Planck and weak scales by embedd
three-brane in a nonfactorizable five-dimensional metric.

From a mathematical point of view the theory of embeddings starts with the definition
manifold by Riemann. Shortly after the publication of his famous Habilitationsschrift~see, e.g.,
Ref. 5 for a translation! Schläfli 6 conjectured that anyn-dimensional Riemannian manifold coul
be locally and isometrically embedded in ad-dimensional Euclidean space withd5n(n11)/2.
This was proven by Janet and Cartan and extended to manifolds with indefinite metr
Friedman.7 The Janet–Cartan theorem as it became known implies that we at maximum ne
dimensions to locally and isometrically embed any four-dimensional space–time.

A lesser known theorem by Campbell and Magaard8 states that any analytical Riemannia
spaceVn(s,t) can be locally and isometrically embedded in a Ricci flat Riemannian s

Vn11( s̃, t̃ ), with s̃5s11,t̃ 5t or s̃5s, t̃ 5t11. This theorem has obvious applications in ST
theory.9 For further generalizations of the Campbell–Magaard theorem to embedding s

a!Electronic mail: stefan.haesen@kubrussel.ac.be
b!Electronic mail: leopold.verstraelen@wis.kuleuven.ac.be
14970022-2488/2004/45(4)/1497/14/$22.00 © 2004 American Institute of Physics
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which are Einstein, scalar field sourced or have nondegenerate Ricci tensor see Refs. 10–
In applications of the embedding theorems one often starts from a given metric and loo

the embedding space with the minimal dimension or one puts restrictions on the source typ13–15

In the following we will take a different approach by putting a restriction on the type of em
ding. Using some recently defined intrinsic curvature invariants on a manifold we prov
inequality between intrinsic and extrinsic curvatures of an embedded Lorentzian manifold
pseudo-Euclidean space. For a proof in the Riemannian case see Ref. 16. An embedding fo
the equality holds is called ideal and in this case the shape operators take on specified form
space–times which satisfy such an ideal embedding in a five-dimensional space are determ
the remainder all embeddings are local and isometric.

II. L-CURVATURES OF CHEN

Starting from a Lorentzian manifold (M ,g) with signature (m21(1),1(2)) isometrically
embedded in a pseudo-Euclidean space (En ,h) of signature (n21,1) or (m21,n2m11) we will
introduce the intrinsically definedL-curvature invariants of Chen.17

We denote the Levi-Civita connection onM with ¹ and onEn with ¹̃. The covariant deriva-
tive in En between two tangent vectorsX and Y on M can be decomposed in a tangential a
normal part,

¹̃XY5¹XY1V~X,Y!,

with V:TM3TM→N(M ) the second fundamental form. If we choose an orthonormal basis$jA%
in the normal spaceN(M ) of M and denote the signature of the basis vectors with«A

5h(jA ,jA)561, we can defineV as

V~X,Y!5 (
A5m11

n

«Ah~¹̃XY,jA!jA . ~1!

In the following greek indices run from 1 tom, latin indices from 1 ton and capital indices from
m11 to n, unless otherwise stated.

The integrability conditions for the existence of an embedding are given by the Ga
Codazzi–Ricci equations,18,19

Rabgm5(
A

«A$Vag
A Vbm

A 2Vam
A Vbg

A %, ~2!

¹gVab
A 2¹bVag

A 5(
B

«B$S g
BA Vab

B 2S b
BA Vag

B %, ~3!

¹bS a
BA 2¹aS b

BA 5(
C

«C$S b
CB S a

CA 2S a
CB S b

CA %1ggm$Vgb
B Vma

A 2Vga
B Vmb

A %, ~4!

with S a
AB the torsion vector. For an interpretation of this vector as a gauge field in a Kaluza–

view of embeddings see Ref. 20 and as a real connection on space–time see Ref. 21.
The mean curvature vector is defined as

HW 5(
A

«AgabVab
A jA .

Let $ea% be an orthonormal basis ofM . The sectional curvature of a two-plane spanned by
orthonormal vectors$ea ,eb% is defined by
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K~ea∧eb!5«abg~R~ea ,eb!eb ,ea!,

with «ab5«a«b . The scalar curvature of anr -plane sectionL spanned by the orthonormal vecto
$e1 ,...,er% is defined as

t~L !5 (
a,b

K~ea∧eb!, 1<a,b<r .

The scalar curvature of the whole Lorentzian manifold is denoted byR. Denote the constan
c(n1 ,...,nk) by

c~n1 ,...,nk!5

2S m1k2(
j 51

k

nj D
m1k212(

j 51

k

nj

.

We are now in a situation to define theL-curvature invariants of Chen in the pseudo-Riemann
case as

L~n1 ,...,nk!5c~n1 ,...,nk!@R2 inf$t~L1!1¯1t~Lk!uL j a non-nullnj -plane section,Li'L j%#,

and

L̂~n1 ,...,nk!5c~n1 ,...,nk!@R2sup$t~L1!1¯1t~Lk!uL j a non-nullnj -plane section,Li'L j%#.

Note that in our definition the plane sections can be timelike or spacelike.
$e1 ,...,em ,jm11 ,...,jn% be an orthonormal basis ofEn . Because we have space–time applic
tions in mind we takeM to be time-orientable, i.e., there exists a global nowhere-zero time
vector field which we denote withem . From ~1! we have

Vma
A 52h~em ,¹̃ea

jA!52h~ea ,¹̃em
jA!,

with A5m11,...,n anda51,...,m21.

Definition II.1: An embedding x:(M ,g)→(En21,1,h) is called causal-type preserving if¹̃ea
jA

is spacelike, ; A5m11,...,n and; a51,...,m21.
Definition II.2: An embedding x:(M ,g)→(Em21,n2m11 ,h) is called causal-type preserving

¹̃em
jA is timelike, ; A5m11,...,n.

From the above we see that causal-type preserving embeddings haveVma
A 50, ;a51,...,m

21.

III. IDEAL EMBEDDINGS

We can now formulate and prove an inequality relating the above intrinsically defined c
ture invariants and the square of the extrinsic mean curvature of the embedded manifold.

Theorem III.1: Let x:(M ,g)→(En ,h) be a causal-type preserving embedding of a Lore
zian m-dimensional manifold in a n-dimensional pseudo-Euclidean manifold. For any k-tuple
(n1 ,...,nk) we have that

iHi2>L~n1 ,...,nk!, ~5!

if (En ,h) has signature(n21,1) and

iHi2<L̂~n1 ,...,nk!, ~6!

if (En ,h) has signature(m21,n2m11).
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Proof: Starting from the Gauss equation~2! w.r.t. an orthonormal basis
$e1 ,...,em ,jm11 ,...,jn% we can express the scalar curvature ofM as

2R5 (
a,b51

m

«abRabab

5 (
A5m11

n

«A S (
a51

m

«aVaa
A D 2

2 (
A5m11

n

«A (
a,b51

m

«ab~Vab
A !2

5iHi22V2. ~7!

If we put, with k>1,

f52R2

m1k212(
j 51

k

nj

m1k2(
j 51

k

nj

iHi2,

g5m1k2(
j 51

k

nj ,

it is a small calculation to show that

iHi25g~f1V2!. ~8!

We choosejm11 alongHW and putaa5«aVaa
m11 . Equation~8! becomes

«m11S (
a51

m

aaD 2

5gH f1«m11 (
a51

m

~aa!21«m11 (
aÞb51

m

«ab~Vab
m11!2

1 (
A5m12

n

«A (
a,b51

m

«ab~Vab
A !2J . ~9!

If we use the notation

ā15a1 ,

ā25a21¯1an1
,

ā35an1111¯1an11n2
,

A

āk115an11¯1nk21111¯1an11¯1nk
,

āk125an11¯1nk11 ,

A

āg5am21 ,

āg115am ,

we have
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S (
a51

g11

āaD 2

5S (
a51

m

aaD 2

,

and

(
a51

g11

~ āa!25 (
a51

m

~aa!21 (
2<a1Þb1<n1

aa1
ab1

1 (
a2Þb2PQ2

aa2
ab2

1¯1 (
akÞbkPQk

aak
abk

,

with Q15$1,...,n1%, Q25$n111,...,n11n2%, . . . , Qk5$n11¯1nk2111,...,n11¯1nk%.
Equation~9! becomes

«m11S (
a51

g11

āaD 2

5gH f1«m11 (
a51

g11

~ āa!21«m11 (
aÞb51

m

«ab~Vab
m11!2

1 (
A5m12

n

«A (
a,b51

m

«ab~Vab
A !22«m11 (

2<a1Þb1<n1

aa1
ab1

2¯

2«m11 (
akÞbkPQk

aak
abkJ . ~10!

We need the following algebraic lemma:
Lemma III.1:16 If ā1 , . . . ,ān ,c are n11 (n>2) real numbers such that

S (
i 51

n

āi D 2

5~n21!S (
i 51

n

~ āi !
21cD ,

we have that2ā1ā2>c and equality holds iff ā11ā25ā35¯5ān .
Two separate cases appear. We first look at the case whenHW is spacelike, i.e.,«m1151. Using

the above lemma Eq.~10! becomes

ā1ā2>
1

2
f1

1

2 (
aÞb51

m

«ab~Vab
m11!21

1

2 (
A5m12

n

«A (
a,b51

m

«ab~Vab
A !2

2
1

2 (
2<a1Þb1<n1

aa1
ab1

2¯2
1

2 (
akÞbkPQk

aak
abk

.

Because

(
a jÞb j

aa j
ab j

52 (
a j ,b j

aa j
ab j

,

we have

(
j 51

k

(
a j ,b j PQj

aa j
ab j

>
1

2
f1 (

a,b51

m

«ab~Vab
m11!21

1

2 (
A5m12

n

«A (
a,b51

m

«ab~Vab
A !2. ~11!

Let L j be annj -dimensional subspace ofTpM such that

L j5 span$en11 ¯ 1nj 2111 , . . . ,en11 ¯ 1nj
%.

The scalar curvature of the plane section is given by
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t~L j !5 (
a j ,b j PQj

«a jb j (
A5m11

n

«A@Va ja j

A Vb jb j

A 2~Va jb j

A !2#.

Then, using the above notation we find

t~L1!1¯1t~Lk!5(
j 51

k

(
a j ,b j PQj

aa j
ab j

2(
j 51

k

(
a j ,b j PQj

«a jb j
~Va jb j

m11!2

1(
j 51

k

(
a j ,b j PQj

«a jb j (
A5m12

n

«A@Va ja j

A Vb jb j

A 2~Va jb j

A !2#.

If we use the inequality~11! and the notation

Qk115$n11¯1nk11, . . . ,m%,

Q5Q1ø¯øQkøQk11 ,

Q25~Q13Q1!ø¯ø~Qk3Qk!ø~Qk113Qk11!,

¹25~Q3Q!/Q2,

we have

t~L1!1¯1t~Lk!>
1

2
f1

1

2 (
A5m11

n

«A (
(a,b)P¹2

«ab~Vab
A !21

1

2 (
A5m12

n

«A(
j 51

k S (
aPQj

«aVaa
A D 2

.

~12!

The signature of the embedding spaceEn is chosen to be (n21,1) such that all«A51 and the
condition of causal-type preserving ensures that the terms with possible minus signs appea
the right-hand side vanish. We have

t~L1!1¯1t~Lk!>
1
2 f.

This holds for all mutually orthogonal subspacesL j , in particular for the infimum,

iHi2>L~n1 , . . . ,nk!. ~13!

The case whenHW is timelike is analogous and we find, instead of~12!,

t~L1!1¯1t~Lk!<
1

2
f1

1

2 (
A5m11

n

«A (
(a,b)P¹2

«ab~Vab
A !2

1
1

2 (
A5m12

n

«A(
j 51

k S (
a j PQj

«a j
Va ja j

A D 2

.

We choose the signature of the embedding space to be (m21,n2m11), i.e., all normal directions
are timelike. We find

t~L1!1¯1t~Lk!<
1
2f.

This holds again for all mutually orthogonal subspaces, in particular for the supremum,

iHi2<L̂~n1 , . . . ,nk!. ~14!
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It remains to show the inequality whenk50. Starting from~7! and again choosingjm11 alongHW ,
we find

2R5iHi22«m11 (
a51

m

~aa!22«m11 (
aÞb51

m

«ab~Vab
m11!22 (

A5m12

n

«A (
a,b51

m

«ab~Vab
A !2,

~15!

with aa5«aVaa
m11 . We have

(
a51

m

~aa!25S (
a51

m

aaD 2

22 (
a,b51

m

aaab5«m11iHi21 (
a,b51

m

~aa2ab!22~m21! (
a51

m

~aa!2,

m(
a51

m

~aa!25«m11iHi21 (
a,b51

m

~aa2ab!2>«m11iHi2.

If HW is spacelike,~15! with the above inequality becomes

2R<
m21

m
iHi22 (

aÞb51

m

«ab~Vab
m11!22 (

A5m12

n

«A (
a,b51

m

«ab~Vab
A !2.

The signature of the embedded space is chosen to be (n21,1) and because of the condition o
causal-type preserving, we find

iHi2>
2m

m21
R5L~0!. ~16!

The proof for the timelike case is similar. L

Notice that due to our choice of signature for the embedded spaceEn , HW is always non-null.
So we exclude the case of quasi-minimal embeddings.

If there is equality we can determine the form of the second fundamental forms.
Corollary III.1: There is equality in (5) or (6) at a point pPM iff there exists an orthonorma

basis at p such that the second fundamental forms take the form

Vm115S a1

a2

�

an

D ,

with a11¯1an1
5an1111¯1an11n2

5¯5an11¯1nk21111¯1an11¯1nk
5an11 ¯ 1nk11

5¯5am and

V r5S Ar1

Ar2

�

Ark

0

�

0

D ,

with Trace(Ar j )50, r 5m12, . . . ,n, j 51, . . . ,k.
As in Ref. 17 we have the following.
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Definition III.1: An isometric embedding x:(M ,g)→(En ,h) is called an ideal embedding i
and only if there exists a k-tuple(n1 ,...,nk) such that in a neighborhood U of a point pPM there
is equality in (5) or (6), respectively.

If the pseudo-Euclidean embedding space has signature (n21,1), an ideally embedded man
fold M means that the squared mean curvature ofM is minimal. BecauseHW measures the tensio
on M from the surrounding space an ideal embedding inEn21,1 can be considered asa best way
of living in a best worldfor the neighborhoodU.17 In the case of an embedding space w
signature (n2m11,m21) the situation is reversed. An ideally embedded manifold receives
maximum possible amount of tension from the surrounding space at each point ofM . Although
this situation is notideal we reserve the notation for both occasions.

IV. IDEALLY EMBEDDED SPACE–TIMES

Using the above notion of ideal embedding gives us a natural set of second fundamenta
to consider. Notice that this is the reverse situation usually adopted in the literature. The
often starts from a given metric and looks for the minimal embedding, i.e., with the least
dimensions, or one puts some constraints on the curvature tensor through the choice of
and/or Petrov type~although see Ref. 22 for a different approach!.

We will restrict our manifoldM to be a four-dimensional space–time embedded in a fi
dimensional pseudo-Euclidean space. The torsion vector is zero in this case, so~4! is trivially
satisfied and~3! simplifies significantly. We further only study those cases when there is equ
for a k-tuple with only spacelike plane sections. The case with a timelike plane section i
k-tuple will be considered separately.

We denote the orthonormal basis of an ideally embedded space–timeM for which the second
fundamental forms take their special forms as$ea%5$wW ,vW ,qW ,uW % with uaua521. From the above
corollary we have three possible cases:
~i! equality withk50,

Vab5mgab ;

~ii ! equality withk51, n52,

Vab5~m2l!wawb1lvavb1mqaqb2muaub ;

~iii ! equality withk51, n53,

Vab5~m2l2n!wawb1lvavb1nqaqb2muaub .

Before we determine the metrics which can be ideally embedded with one of the above s
fundamental forms we mention two results which limit the possible outcomes.

Theorem VI.1:23 No nonflat vacuum metric can be embedded in a five-dimensional pse
Euclidean space.

Theorem IV.2:13 There are no embedding class one solutions of the Einstein–Maxwell equa-
tions with a non-null electromagnetic field.

A. Case i

If we take as shape operator

Vab5mgab ,

i.e., the embedding is umbilical, the Codazzi equations~3! become

gab¹gm5gag¹bm,

or contracting overa andb gives¹gm50. The Gauss equations~2! give
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Rabgd52«m2ga[ggd]b ,

with m a constant. The space–time is a space of constant curvature, a de Sitter space if«51 or an
anti-de Sitter space if«521 ~Ref. 15, p. 103!. Due to our assumption of time-orientability th
space obtained from the de Sitter space in which points are identified by reflection throug
origin of the embedding space is excluded~Ref. 24, p. 130!.

B. Case ii

With respect to the orthonomal basis$wa,va,qa,ua%, ua timelike, the second fundamenta
form becomes

Vab52muaub1mqaqb1lvavb1~m2l!wawb .

If we decompose the covariant derivatives,

¹bua5waAb1vaBb1qaCb ,

¹bwa5uaAb1vaDb1qaEb ,

¹bva5uaBb2waDb1qaFb ,

¹bqa5uaCb2waEb2vaFb ,

the Codazzi equations give

lAa5¹wm ua1lAv va2¹ul wa ,

~l2m!Ba52¹vm ua2¹ul va2lAv wa ,

~2l2m!Da5lAv ua1~2l2m!Dq qa2¹wl va2¹v~m2l! wa , ~17!

lEa52¹wm qa1~2l2m!Dq va1¹ql wa ,

~l2m!Fa5¹vm qa1¹ql va2~2l2m!Dq wa ,

and

¹um 5 ¹qm 5 0,

with Av ,Dq scalars andua¹a5¹u , etc. There is no equation forCa .
The Ricci identities 2¹[g¹b]za5zsRsabg , with za one of the basis vectors, give

¹[aAb]2D [aBb]2E[aCb]5«m~m2l! u[bwa] , ~18!

¹[aBb]1D [aAb]2F [aCb]5«ml u[bva] , ~19!

¹[aCb]1E[aAb]1F [aBb]5«m2 u[bqa] , ~20!

¹[aDb]1B[aAb]2F [aEb]5«l~m2l! w[bva] , ~21!

¹[aEb]1C[aAb]1F [aDb]5«m~m2l! w[bqa] , ~22!

¹[aFb]1C[aBb]2E[aDb]5«ml v [bqa] . ~23!
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1. If lÄmÅ0

From the Codazzi equations we find¹vm 5 Av 5 Dq 5 0 and

¹bwa5¹w ln l ~uaub2vavb2qaqb!.

Let us denote the projection operator on the timelike hypersurface orthogonal towa by ha
b

5da
b2wawb. From the Gauss equations we find that

waRabgd50 ,

and sowa is a constant vector field~see Ref. 15, p. 553!, i.e., ¹bwa50 or l5m5const. If we
denote with3Rabgd the Riemann tensor of the timelike hypersurface, the Gauss equations

3Rabgd5Rabgd52«l2ha[ghd]b .

The timelike three-space is a space of constant curvature. We can then choose coordinat
that the metric reads

ds25dz21
dy21dx22dt2

@11 1
4 «l2~y21x22t2!#2

, ~24!

with l5const. Because the embedding is quasi-umbilical~i.e., there exist functionsf andc such
that Vab5fgab1cwawb) the metric is conformally flat.25 The Ricci tensor is

Rab52«l2hab ,

with Segrétype A1,@1~11,1!#, and the energy-momentum tensor does not satisfy any of the kn
energy conditions.24 Due to the observation that the Universe is accelerating, cosmological m
with such a strange equation of state are recently under investigation.

2. If lÄ0, mÅ0

From the Codazzi equations we find¹wm5Dq50 and

¹bva5¹v ln m ~uaub2wawb2qaqb!.

This is the previous case with the roles ofva andwa interchanged.

3. If mÄ2lÅ0

The Codazzi equations giveAv5¹vl5¹wl50. ThenAa5Ba5Da5Ea5Fa50. The Ricci
identity ~18! givesl50, so we must takemÞ2l.

4. If lÅ0, mÀlÅ0 and mÀ2lÅ0

Let pa
b5da

b2vavb2wawb be the projection operator on the two-spaceV2 orthogonal tova

andwa. The second fundamental forms of the embedding ofV2 in the space–time (M ,g) are

Vab
v 5p(a

g pb)
s ¹gvs5

¹vm

l2m
pab ,

and

Vab
w 52

¹wm

l
pab .

Using the Gauss equations we find for the Riemann tensor of the timelike two-spaceV2 ,
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2Rabgd52H «m21S ¹vm

l2m D 2

1S ¹wm

l D 2J pa[gpd]b . ~25!

It is a small calculation to show that the coefficient has zero-derivative in theu andq directions.
The two-spaceV2 is a space of constant curvature. We can choose coordinates such that

wa5~ef(y,z),0,0,0!, va5~0,ej(y,z),0,0!,

and the metric reads

ds25e2f(y,z)dz21e2j(y,z)dy21Y2~y,z!$dx22S2~x,k!dt2%, ~26!

with S(x,k)5sin(x), x or sinh(x) if k51, 0 or 21 and

kY225«m21S ¹vm

l2m D 2

1S ¹wm

l D 2

.

These metrics have a groupG3 working on the two-surface of constant curvature and there
have Petrov type D or O. Because the two-surface is timelike the energy-momentum c
cannot be a perfect fluid, a null electromagnetic field or pure radiation~see Ref. 15, Chap. 15! and
due to Theorems IV.1 and IV.2 also vacuum and an electromagnetic non-null field are not po
We can, however, interpret this space–time as filled with an anisotropic perfect fluid satisfyin
strong energy condition if and only if the extra dimension is timelike («521) andm andl satisfy
any of the following conditions:

~1! l.0, m.l,

~2! l.0 , 2l<m< 1
2 l,

~3! l,0 , 1
2 l<m<2l,

~4! l,0 , m,l.

C. Case iii

With respect to an orthonormal tetrad$wa,va,qa,ua% the shape operator takes the form

Vab52muaub1nqaqb1lvavb1~m2l2n!wawb . ~27!

If we use the same decompositions of the covariant derivatives as in the previous cas
Codazzi equations give

~l1n!Aa5¹wm ua1¹u~m2l2n! wa1~l1n!Av va1~l1n!Aq qa ,

~m2l!Ba52¹vm ua1~l1n!Av wa1¹ul va1~m2l!Bq qa ,

~m2n!Ca52¹qm ua1~l1n!Aq wa1~m2l!Bq va1¹un qa ,

~m22l2n!Da52~l1n!Av ua1¹v~m2l2n! wa1¹wl va1~m22l2n!Dq qa ,

~m2l22n!Ea52~l1n!Aq ua1¹q~m2l2n! wa1~m22l2n!Dq va1¹wn qa ,

~l2n!Fa52~m2l!Bq ua1~m22l2n!Dq wa1¹ql va1¹vn qa ,

with Av ,Aq ,Bq ,Dq scalars. The Ricci identities are

¹[aAb]2D [aBb]2E[aCb]5«m~m2l2n! u[bwa] , ~28!

¹[aBb]1D [aAb]2F [aCb]5«ml u[bva] , ~29!
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¹[aCb]1E[aAb]1F [aBb]5«mn u[bqa] , ~30!

¹[aDb]1B[aAb]2F [aEb]5«l~m2l2n! w[bva] , ~31!

¹[aEb]1C[aAb]1F [aDb]5«n~m2l2n! w[bqa] , ~32!

¹[aFb]1C[aBb]2E[aDb]5«nl v [bqa] . ~33!

Using the Gauss equations we find the Ricci tensor,

Rab5«$2m2uaub1n~2m2n!qaqb1l~2m2l!vavb1~m2l2n!~m1l1n!wawb%.
~34!

In the generic case the Segre´ type is A1,@111,1#. We will restrict the calculations in the following
to perfect fluid space–times. This meansm, l andn must satisfy one of the following conditions

~A! m53l, n5l,

~B! m52l, n5l,

~C! m52n, l523n,

~D! m52l, n523l.

The cases B, C, and D are the same with the roles of the spacelike vectors interchanged. Be
study the above cases in detail we give first the decomposition of the covariant derivative
timelike directionua into its irreducible parts ifl1nÞ0, m2lÞ0 andm2nÞ0.

The acceleration reads

u̇a5
¹qm

m2n
qa1

¹vm

m2l
va2

¹wm

l1n
wa , ~35!

the expansion

u5
¹u~m2l2n!

l1n
1

¹ul

m2l
1

¹un

m2n
, ~36!

the shear

sab5H 2¹u~m2l2n!

3~l1n!
2

¹ul

3~m2l!
2

¹un

3~m2n!J wawb1
~m1n!Av

m2l
w(avb)1

~m1l!Aq

m2n
w(aqb)

1H 2
¹u~m2l2n!

3~l1n!
1

2¹ul

3~m2l!
2

¹un

3~m2n!J vavb1
~2m2l2n!Bq

m2n
v (aqb)

1H 2
¹u~m2l2n!

3~l1n!
2

¹ul

3~m2l!
1

2¹un

3~m2n!J qaqb ,

and the vorticity

vab5
~m22l2n!Av

m2l
w[avb]1

~m2l22n!Aq

m2n
w[aqb]1

~l2n!Bq

m2n
v [aqb] . ~37!
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1. If mÄÀl and nÄlÅ0

From the Codazzi equations we findBq5Dq50 and ¹vl5¹ql50. Projecting the Ricci
identity ~29! on uavb and~30! on uaqb givesAv

25Aq
2 . If we further project~29! on uaqb we find

AvAq50, so

Av5Aq50 .

Combining~28!, ~29! and ~31! gives

~¹w ln l!254~¹u ln l!2, ~38!

¹u¹w ln l5 3
2 ¹u ln l ¹w ln l, ~39!

and ~29! then becomes

2¹u¹u ln l23~¹u ln l!224«l250. ~40!

If we differentiate~38! in the direction ofua and use~39! and~40! we find l50. This case does
not lead to ideally embedded perfect fluid space–times.

2. If mÄ3l and nÄl

From the Codazzi equations we findAv5Aq5Bq50 and¹wl5¹vl5¹ql50. We find that
ua is geodesic, hypersurface orthogonal and shearfree. The expansion of the timelike cong
with tangentua is given byu5 3

2¹u ln l. From the Ricci identities we have the equation

2¹u¹u ln l1~¹u ln l!2212«l250 . ~41!

It follows that if u50, l50 and space–time is flat. Therefore we takeuÞ0. We then choose
coordinates adapted to the timelike vector,ua5(0,0,0,u4). The metric becomes

ds25hi j dxidxj2~u4!2dt2 ,

with i , j 51,2,3. Thenu5u(t), l5l(t) and u45u4(t). The second fundamental form of th
embedding of the spacelike hypersurface orthogonal toua in (M ,g) is

V i j
u 5 1

3 uhi j .

The Riemann tensor of the three-space reads

3Ri jkl 52$«l22 1
9 u2%hi [khl ] j ;

the spacelike hypersurface is a space of constant curvature. The metric can be written,
coordinate transformationu4(t)dt→dt, as

ds25a2~ t !$dr 21S2~r ,k!~df21sin2~f!dc2!%2dt2 , ~42!

with

ka225«l22 1
9 u2, ~43!

andS(r ,k)5sin(r),r or sinh(r) if k51,0 or 21. This metric is a Robertson–Walker metric~see
Ref. 26 for the first results on the embedding of R-W models in flat five-dimensional spa!.
Combining~41! and ~43! a(t) must be a solution of

~] ta!25«c2a62k, ~44!
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with c5const andl5ca2. From the expression of the Ricci tensor~34! and the Einstein equa
tions we can write the energyr and pressurep of the perfect fluid as

kr53c2a4 and kp527c2a4,

with «511.

V. CONCLUSION

In the study of embeddings of a space–time in some higher-dimensional space attenti
focused primarily on intrinsic properties of the submanifold~e.g., the source type or Petrov type!.
But the fact that we embed our space–time metric in a greater space gives us the opportu
consider also extrinsic properties of our model. From this viewpoint an ideal embedding see
be the most natural and simple type of embedding to study. Ideally embedded space–times
the least amount of tension from the surrounding space. We found that ideally embedded
surfaces in a pseudo-Euclidean space contain the de Sitter spaces and a Robertson–Walke
Embeddings of the de Sitter and Robertson–Walker models were already considered by Po
Leon.27 It was later realized that his five-dimensional embedding space was flat2,28 and this was
used in, e.g., Ref. 29 to study the structure of the Big Bang.

Furthermore, a class of anisotropic perfect fluid models containing a timelike two-surfa
constant curvature has also been shown to be ideally embedded. Because the nonflat
models were excluded from our study due to Theorem IV.1 we will study them in a future p

1J. Overduin and P. Wesson, Phys. Rep.283, 303 ~1997!.
2P. Wesson,Space-Time-Matter~World Scientific, Singapore, 1999!.
3L. Randall and R. Sundrum, Phys. Rev. Lett.83, 3370~1999!.
4L. Randall and R. Sundrum, Phys. Rev. Lett.83, 4690~1999!.
5M. Spivak,A Comprehensive Introduction to Differential Geometry~Publish or Perish, Houston, 1975!, Vol. 2.
6L. Eisenhart,Riemannian Geometry~Princeton University Press, London, 1926!.
7A. Friedman, Rev. Mod. Phys.37, 201 ~1965!.
8J. Lidsey, C. Romero, R. Tavakol, and S. Rippl, Class. Quantum Grav.14, 865 ~1997!.
9S. Seahra and P. Wesson, Class. Quantum Grav.20, 1321~2003!.

10E. Anderson and J. Lidsey, Class. Quantum Grav.18, 4831~2001!.
11F. Dahia and C. Romero, J. Math. Phys.43, 3097~2002!.
12F. Dahia and C. Romero, J. Math. Phys.43, 5804~2002!.
13C. Collinson, J. Math. Phys.9, 403 ~1968!.
14J. Rosen, Rev. Mod. Phys.37, 204 ~1963!.
15H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt,Exact Solutions to Einstein’s Field Equations, 2nd

ed. ~Cambridge University Press, Cambridge, 2003!.
16B-Y. Chen, Jpn. J. Math.26, 105 ~2000!.
17B-Y. Chen,Riemannian Submanifolds, in Handbook of Differential Geometry, edited by F. Dillen and L. Verstraelen

~North-Holland, Amsterdam, 2000!, Vol. 1.
18H. Goenner, Gen. Relativ. Gravit.8, 139 ~1977!.
19H. Goenner,General Relativity and Gravitation: One Hunderd Years after the Birth of Albert Einstein~Plenum, New

York, 1980!, Vol. 1, p. 441.
20M. Maia and W. Mecklenburg, J. Math. Phys.25, 3047~1984!.
21M. Maia and E. Monte, J. Math. Phys.37, 1972~1996!.
22N. Van den Bergh, Class. Quantum Grav.13, 2817~1996!.
23P. Szekeres, Nuovo Cimento43, 3854~1966!.
24S. Hawking and G. Ellis,The Large Scale Structure of Space-time~Cambridge University Press, Cambridge, 1973!.
25R. Deszcz and L. Verstraelen, inGeometry and Topology of Submanifolds III, edited by L. Verstraelen and A. Wes

~World Scientific, Singapore, 1991!, p. 131.
26H. P. Robertson and T. W. Noonan,Relativity and Cosmology~Saunders, Philadelphia, 1968!.
27J. Ponce de Leon, Gen. Relativ. Gravit.20, 539 ~1988!.
28D. J. McManus, J. Math. Phys.35, 4889~1994!.
29S. Seahra and P. Wesson, Class. Quantum Grav.19, 1139~2002!.
                                                                                                                



the

way

hich
e

nding
er of
ov-
massive
nce we
t the old
extra

le even
n the
e
set of

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 4 APRIL 2004

                    
Homotopy structure of 5d vacua
Eun Kyung Park
The Liberal Arts Course, Kyungsung University, Pusan 608-736, Korea

Pyung Seong Kwona)
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It is shown that flat zero-energy solutions~vacua! of the 5d Kaluza–Klein theory
admit a nontrivial homotopy structure generated by certain Kaluza–Klein excita-
tions. These vacua consist of an infinite set of homotopically different space–times
denoted byM5

(n) , among whichM5
(0) and M5

(1) are especially identified asM4

3S1 andM5 , the vacuum states of the 5d Kaluza–Klein theory and the 5d general
relativity, respectively~whereMk represents thek-dimensional Minkowski space!.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1667611#

The 5d Kaluza–Klein theory is distinguished from the ordinary 5d general relativity by
fact that the background vacuum is assumed to be the productM43S1 instead ofM5 , whereMk

represents thek-dimensional Minkowski space. Having zero energy, the manifoldsM43S1 and
M5 are both qualified for the vacuum state of the 5d theory of gravity. Classically, there is no
to determine which is more appropriate than the other. The only basis for choosingM43S1 as the
vacuum state of the 5d Kaluza–Klein theory is that it includes the compactified dimension w
is crucial in order to admit an internal gauge group U~1! in the reduced theory. In fact, th
compactification is an essential ingredient of any higher dimensional theory~including string
theory! based on the Kaluza–Klein theory. The particle spectrum is then obtained by expa
around the vacuumM43S1; one finds a finite number of massless modes and an infinite tow
massive~excitation! modes. In traditional theories the low-energy physics would be mostly g
erned by the dynamics of the massless modes alone, because the energy scale of the
modes is about the order of the Planck scale. However, this is not to be the case anymore o
adopt the scenario that extra dimensions be very large. Recently, it has been suggested tha
hierarchy problem can be solved in the framework of higher-dimensional theories by taking
dimensions to be very large.1 In this scenario the energy scale of the massive modes~which is of
the order of the inverse of the radius ofS1) could sufficiently lower down to the level of low
energy physics, and one can imagine that the massive modes perhaps play an important ro
in the low energy limit. In this paper, we examine the effect of the massive excitations o
geometry or topology of the background space–timeM43S1. Then we end up with a remarkabl
result that 5d vacua admit a nontrivial homotopy structure; 5d vacua consist of an infinite
homotopically different space–times denoted byM5

(n) , where M5
(0) and M5

(1) are especially
identified asM43S1 andM5 , respectively. It is also conjectured thatM43S1 may not be the true
physical vacuum of the 5d Kaluza–Klein theory.

We start the discussion with a metric

ds252dt21dr21r 2~du21sin2 udf2!1F2~xa,x5!@dx51Am~xa,x5!dxm#2

5
4
gmndxmdxn1F2@dx51Amdxm#2

5
4
habv

avb1~v5!2 ~m,n,a50,1,2,3;a,b50,1,2,3!, ~1!

a!Author to whom correspondence should be addressed. Electronic mail: bskwon@star.ks.ac.kr
15110022-2488/2004/45(4)/1511/7/$22.00 © 2004 American Institute of Physics
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where
4
hab is the 4d flat Minkowski metric, and

va5em
a dxm, v55F~dx51Amdxm! ~2!

are basis one-forms of the orthonormal frame. From Eq.~1! we see that the fieldsF andAm have
x5-dependence, meaning that they include massive modes. In the reduced 4d sector,F andAm are
identified as the Brans–Dicke scalar and the U~1! gauge potential, respectively. The vierbeinea

m ,
on the other hand, are functions ofxa alone,2 so they commute with]5 . The nonvanishing
components of Riemann tensor are then calculated in the orthonormal frame to give3

5

Rabcd52 1
2~ f̂ abf̂ cd1 f̂

a[cf̂
bd] !, ~3!

5

Rabc55D[af̂ b]c2Fcf̂ ab , ~4!

5

Ra5b552D(aFb)2
1
4 f̂ acf̂ b

c 2FaFb , ~5!

where f̂ ab is defined byf̂ ab[F f ab and

f ab5ea
meb

n~DmAn2DnAm![ea
meb

n f mn ~Dm[]m2Am]5!, ~6!

Fa5ea
m~]mF2]5Âm!/F[ea

mFm ~Âm[FAm!, ~7!

Da5ea
m~¹m2Am]5![ea

mDm , ~8!

and, in Eq.~8!, ¹m represents the ordinary covariant derivative associated with the metric
4
gmn .

Also, f mn in Eq. ~6! is a generalization of the Maxwell field strength; it takes the same form as
conventional Maxwell field strength except that the ordinary derivative]m is replaced by the
covariant derivative4 Dm . Without x5-dependency the derivativeDm reduces to]m , and conse-
quently f mn becomes the conventional Maxwell field strength.

Now we look for flat~vacuum! solutions which satisfy the equations
5

Rabcd5
5

Rabc55
5

Ra5b5

50. A set of the simplest solutions to these equations may be obtained by setting

f mn5DmAn2DnAm50, ~9!

Fm5
1

F
~]mF2]5Âm!50, ~10!

and in particular Eq.~9! is immediately solved by an ansatz

At5Au5Af50, Ar5Ar~r ,x5!, F5F~r ,x5!. ~11!

Equation~11! is actually the most general ansatz preserving spherical symmetry, andAm in Eq.
~11! may be regarded as a pure gauge in the sense that it givesf mn50. With this ansatz, the metric
in Eq. ~1! can be recast into the form

ds252dt21dr̂21r 2~du21sin2 udf2!1
F2

11Âr
2 ~dx5!2 ~Âr[FAr !, ~12!

wheredr̂ is defined by
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dr̂5~11Âr
2!1/2dr1

FÂr

~11Âr
2!1/2

dx5. ~13!

Equation~13! indicates that the variabler̂ is a function ofr andx5, i.e., r̂ 5 f (r ,x5) with

] f

]r
5~11Âr

2!1/2,
] f

]x5
5

FÂr

~11Âr
2!1/2

. ~14!

With the aid of Eq.~10! one then finds from the equations in~14! that the condition]2f /]r ]x5

5]2f /]x5]r implies that] r Âr50; i.e., Âr must be a function ofx5 alone:

Âr[Y~x5!. ~15!

Thus the equations in~14! are now integrated to give

f 5 r̂ 5r ~11Y2!1/21g~x5!, ~16!

F5rY81
~11Y2!1/2

Y
g8, ~17!

whereg(x5), which has been introduced as an integral constant, is an arbitrary functionx5

alone, and the ‘‘prime’’ in Eq.~17! denotes thex5-derivative. Note thatÂr andF in Eqs.~15! and

~17! indeed describe the flat solution satisfying
5

RABCD50; one can readily check that they satis

Eq. ~10!. Now we impose the condition

lim
Y,Y8→0

F5const[F0 , ~18!

which suggests that the solution we are to find is the one that reduces to the Kaluza–Klein v
M43S1 asAm→0; note thatM43S1 with Am50 andF5const is also a solution to Eq.~10!. The
condition in Eq.~18! immediately implies that

g85F0Y, ~19!

and thereforeF in Eq. ~17! becomes

F5rY81F0~11Y2!1/2. ~20!

Using all this, one can show that the metric in Eq.~12! can be converted into the form

ds252dt21S 12
F0

2Y2

R2 D dr21
r2

11Y2
~du21sin2 udf2!1R2S dx51

F0Y

R2
dr D 2

, ~21!

wherer andR are defined by

r5 r̂ 2g5r ~11Y2!1/2, ~22!

R5FF0
2Y21S r

Y8

11Y2
1F0D 2G 1/2

. ~23!

So far, the functionY(x5) and the constantF0 have been entirely arbitrary except that th
should satisfy the condition~18!. Now let us take
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Yn~x5!5tan
nx5

2Rc
, F05dn0 ~n50,1,2,...!, ~24!

whereRc represents the compactification radius of the fifth-dimension@note that Eq.~24! respects
the condition~18! asn→0]. By Eqs.~15!, ~20!, and~24!, the gauge fieldAr becomes

Ar~r ,x5!5an~r !sin
nx5

Rc
~25!

with

an~r !5
Rc

nr12Rcdn0
, ~26!

which shows that takingYn(x5) as in Eq.~24! implies that we are considering a situation whe
the nth excitation of the gauge field~together with the scalar field induced by this gauge field! is
present in the background space–timeM43S1 @see Eq.~1!#. In this case the fieldF(r ,x5) takes
the form

F~r ,x5!5
nr

2Rc
sec2

nx5

2Rc
1dn0 , ~27!

and we see thatAr→0, F→1 for n50. Namely, then50 state simply describes the compactifi
vacuumM43S1 without any gauge or scalar field. FornÞ0, on the other hand, both fields a
present in the form ofAr;1/r and F;r , respectively@the presence of the gauge excitatio
necessarily demands the presence of the scalar field with a behavior ofF;r , as can be checked
from Eq. ~10!#. Then, what happens to the space–time by the presence of these excitationsF and
Ar? By Eq.~24!, the metric~21! simplifies to

ds252dt21dr21r2 sin2 xn~du21sin2 udf2!1~rdxn1dn0dx5!2 ~28!

with xn defined by

xn~x5!5
nx5

2Rc
1

p

2
, ~29!

which, after all, implies that the metric~28! is equivalent under~24! to the metric in Eq.~1! with
F andAm given by Eqs.~25! and ~27!. Indeed, forn50, it reduces to the flatM43S1:

ds~0!
2 52dt21dr21r2~du21sin2 udf2!1~dx5!2, ~30!

which is just the metric in Eq.~1! with Am50, F51. FornÞ0, on the other hand, the metric~28!
becomes

ds~n!
2 52dt21dr21r2@dxn

21sin2 xn~du21sin2 udf2!#, ~31!

the 5d flat Minkowski metric! The topology of space–time has been changed by the no
excitation modes. The toroidal compactificationM43S1 in Eq. ~1! has been converted into th
noncompact space–time described by the metric in Eq.~31!. Furthermore, let us change th
variablex5→yn by the equation

yn5x51
pRc

n
. ~32!
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Under Eq.~32!, the metric~1! @with Ar andF given by Eqs.~25! and ~27!# takes the same form
as before, i.e.,

ds252dt21dr21r 2~du21sin2 udf2!1F2~r ,yn!@dyn1Ar~r ,yn!dr#2 ~33!

with5

Ar~r ,yn!52an~r !sin
nyn

Rc
, F~r ,yn!5

nr

2Rc
csc2

nyn

2Rc
1dn0 , ~34!

but xn in ~31! is now written@from ~29!# as

xn~y!5
nyn

2Rc
~0<yn<2pRc!. ~35!

This is remarkable. Equation~35! suggests that the 5d vacua admit a nontrivial homotopy st
ture. Note that the anglexn varies from 0 tonp asyn makes a single turn from 0 to 2pRc around
S1, which in turn means that the set of variables (xn ,u,f) in ~31! covers the hypersurfaceS3 n
times when (yn ,u,f) in ~33! coversS23S1 just once. The 3d manifold described by (xn ,u,f)
can be regarded as a three-loopan(t1 ,t2 ,t3), wheret i , the coordinates of 3d cubeI 3 , are defined
by the map:t15yn/2pRc , t25u/p andt35f/2p, which is an homeomorphismf :S23S1→I 3 . A
collection of these three-loops which coverS3 n times constitutes thenth equivalence class of th
third homotopy groupp3(S3). The spatial subsector of the space–time described by Eq.~31! is
essentially a pile of such three-loops. This suggests that the space–time described by Eq.~31! ~let
us call it M5

(n)) belongs to thenÞ0 homotopy class ofp3(S3), thoughM43S1 with no excita-
tions especially belongs to then50 class since it is obtained by simply taking6 n50. Further, for
n51, it is obvious from Eq.~35! that M5

(n) is precisely identified as the ordinary 5d Minkows
spaceM5 . But note that, in general,M5

(n) is not M5 itself; M5
(n) is an n-fold cover of M5 .

Namely, it is a fiber bundle overM5 with fiber F a discrete set ofn points. In short, 5d vacua
consist of an infinite set of homotopically different space–timesM5

(n) , among which the cases o
n50 andn51 are especially identified as the background vacua of the 5d Kaluza–Klein th
and the 5d general relativity, respectively; i.e.,M43S15M5

(0) , andM55M5
(1) . Such a homo-

topy structure manifests itself once there is a defect, or a point particle atr50. With a defect or
point particle atr50, the spatial subsector ofM5 is not simply connected, and the three-loo
which containr50 are not shrinkable. So eachM5

(n) , a pile of such three-loops which enclose t
point r50 n times, belongs to a different homotopy class.

Though the above discussion has its own right in 5d Kaluza–Klein theories, it may be ap
to any other higher dimensional theories with toroidal compactification. For instance, in th
dimensional theory compactified onX3S1/Z2 ~or equivalently, in the strong coupling limit of th
E83E8 heterotic string! it is believed that the radius of the orbifoldS1 is larger than the volume
of the Calabi–Yau manifoldX, and there is a regime where our space–time app
five-dimensional.7,8 To the lowest order of the 11d Newton constantk, the ~5d sector of the!
ground state metric takes the form of the 5d Kaluza–Klein vacuumM43S1. So in this case the
vacua of the theory could admit the homotopy structure under discussion. If this is the case,
follows that the T-duality could break down due to the presence of the excitations. Note th
nÞ0 the compactified dimensionS1 disappears due to the excitation modes; the mapf :S23S1

→S3 takesS1 to the great circle ofS3. Thus the winding number~of the closed string! is not a
topological number here and consequently the term corresponding to winding modes do
exist in the mass formula, and it leads to the conjecture that the T-duality might break down
presence of excitations.

So far, we have considered only the~excitations of the! Kaluza–Klein components~i.e., 5d
metric components! as the source of the topology change of the space–time. But in the 5d
space–time there also exist other fields besides the Kaluza–Klein components.8 For instance, we
may consider the case where a 5d U~1! gauge field9 Am exists in the bulk space–time, with fiel
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strengthFmn ~see, for instance, Ref. 10!, and it takes the place of the Kaluza–Klein vectorAm .
Indeed, disregarding the componentsFm5 , one finds that the 4d effective action forAm takes the
same form as the action forAm , which suggests that the homotopy structure of the 5d vacua
be generated even by~the excitations of! bulk fields, rather than Kaluza–Klein components.

The result of this paper is quite analogous to the case of theu-vacua of the Yang–Mills theory
In both cases the vacua admit the same homotopy structure with an infinite set of hom
classes each of which is characterized by an integern. In the Yang–Mills theory the integern is
identified with the Pontryagin indexq;Tr* d4xFmnF̃mn , and the vacua belonging to differen
homotopy classes are connected by a Euclidean~instanton! solution. In the present paper th
integern is simply an excitation number of the pure gaugeAm , and the instanton solution inter
connecting two different vacua does not exist here. But notice that in our case there exist
transformations which mix the massive and massless modes11 of Am , and consequently the space
times belonging to different classes can be mixed by such gauge transformations. The
transformation which mixes the massive and massless modes can be generated by allowin
parameterj to depend onx5. For instance, the transformation which mixes thenth and (n2k)th
modes~in the Fourier exponential series! of Am takes the form~see Ref. 11!

dkAmn5dnk]mjk1 i ~n22k!jkAm~n2k! /Rc , ~36!

whereAmn andjn are thenth components of the Fourier exponential series

Am~xa,x5!5(
n

Amn~xa!einx5/Rc, ~37!

j~xa,x5!5(
n

jn~xa!einx5/Rc, ~38!

respectively, anddk represents the transformation induced byjk . SinceM5
(n) is equivalent to

M5
(0) plus thenth excitation~in the Fourier sine-series! of Am , the transformation~36! apparently

mixesM5
(n) with other space–times belonging to different classes. This is quite remarkable.

that a gauge transformation essentially does not change the physics of a system. But the
argument suggests thatM5

(n) is not invariant under a ‘‘large’’ gauge transformation of the for
~36!, which immediately leads us to suspect that space–timesM5

(n) ~most importantlyM5
(0)

5M43S1 andM5
(1)5M5) may not be the physical states of the theory. Namely, the sugge

conjecture is thatM43S1 may not be the true physical vacuum of the 5d Kaluza–Klein theor
serves as a vacuum only when we do not consider the ‘‘large’’ gauge transformation. The ph
vacuum of the 5d Kaluza–Klein theory may perhaps be a superposition of an infinite num
M5

(n) , analogously to the case of theu-vacua of the Yang–Mills theory.
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4The derivativeDm ~more generallyDm), acting on a tensor, leaves its components invariant under the gauge tra
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mation: x5→x585x51 f (xa), Am→Am8 5Am2]m f . For this, see A. Einstein and P. Bergmann, Ann. Math.39, 683

~1938!. Thus we see that Eqs.~3!–~5! are all expressed in gauge-covariant form.
5The metric~33! seems to have a singularity atyn50 ~or 2pRc) becauseF(r ,yn) in ~34! is singular there. However, this
singularity is obviously artificial; notice that the metric~33! is a flat solution satisfyingRABCD50 in orthonormal frame.

6Equation~35! @i.e., the variable changex5→yn in Eq. ~32!# is in fact applicable to then50 case either. Note that sinc
limn→0 nyn5pRc from ~32!, we see that the metric~33! reduces to the flatM 43S1 asn→0. This is the same result tha
we obtain from the metric~1! with Ar andF given by Eqs.~25! and ~27!.

7E. Witten, Nucl. Phys. B417, 135 ~1996!; T. Banks and M. Dine,ibid. 479, 173 ~1996!.
8A. Lukas, B. A. Ovrut, K. S. Stelle, and D. Waldram, Phys. Rev. D59, 086001~1999!; Nucl. Phys. B552, 246 ~1999!.
9Or it could be the remnant of dimensionally reduced higher-rank tensor fields.

10R. Sundrum, Phys. Rev. D59, 085010~1999!.
11L. Dolan and M. J. Duff, Phys. Rev. Lett.52, 14 ~1984!.
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Classification of static plane symmetric space–times
according to their matter collineations

M. Sharifa)

Department of Mathematics, University of the Punjab,
Quaid-e-Azam Campus Lahore-54590, Pakistan
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In this paper we classify static plane symmetric space–times according to their
matter collineations. These have been studied for both cases when the energy–
momentum tensor is nondegenerate and also when it is degenerate. It turns out that
the nondegenerate case yields eitherfour, five, six, seven, or ten independent matter
collineations in whichfour are isometries and the rest are proper. There exists three
interesting cases where the energy–momentum tensor is degenerate but the group
of matter collineations is finite-dimensional. The matter collineations in these cases
are eitherfour, six, or ten. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1650537#

I. INTRODUCTION

There exists a large body of literature on classification of space–times according to
isometries or Killing vectors~KVs! and the groups admitted by them.1–4 These investigations o
symmetries played an important role in the classification of space–times, giving rise to
interesting results with useful applications. As curvature and Ricci tensors play a significant r
understanding the geometric structure of metrics, the energy–momentum tensor enable
understand the physical structure of space–times. Symmetries of the energy–momentum
~also called matter collineations! provide conservation laws on matter fields. These enable u
know how the physical fields, occupying certain region of space–times, reflect the symmet
the metric.5

Some recent literature6–12 shows keen interest in the study of matter collineations~MCs!. In
one of the recent papers,12 the study of MCs has been taken for spherically symmetric space–t
and some interesting results have been obtained. In this paper, we address the same pro
static plane symmetric space–times. It turns out that static plane symmetric space–times
MC Lie algebra of 10, 7, 6, 5, and 4 dimensions apart from the infinite-dimensional algebr

Let (M ,g) be a space–time, whereM is a smooth, connected, Hausdorff four-dimensio
manifold andg is a smooth Lorentzian metric of signature~1 2 2 2! defined onM . The
manifold M and the metricg are assumed smooth (C`). We shall use the usual compone
notation in local charts, and a covariant derivative with respect to the symmetric connecG
associated with the metricg will be denoted by a semicolon and a partial derivative by a com
A smooth vector fieldj is said to preserve a matter symmetry13 on M if, for each smooth local
diffeomorphismf t associated withj, the tensorsT andf t* T are equal on the domainU of f t ,
i.e., T5f t* T. Equivalently, a vector fieldja is said to generate a matter collineation if it satisfi
the following equation:

£jTab50, ~1!

where £ is the Lie derivative operator,ja is the symmetry or collineation vector. Every KV is a

a!Present address: Department of Mathematical Sciences, University of Aberdeen, Kings C
Aberdeen AB24 3UE Scotland, United Kingdom. Electronic mail: msharif@maths.abdn.ac.uk
15180022-2488/2004/45(4)/1518/14/$22.00 © 2004 American Institute of Physics

                                                                                                                

http://dx.doi.org/10.1063/1.1650537


energy
bits
times is

um
n

he
nonde-
sor and
ly, Sec.

nerate
the

1519J. Math. Phys., Vol. 45, No. 4, April 2004 Classification of static plane symmetric space–times

                    
MC but the converse is not true, in general. Collineations can be proper~nontrivial! or improper
~trivial!. We define a proper MC to be a MC which is not a KV, or a homothetic vector~HV!. The
MC Eq. ~1! can be written in component form as

Tab,cj
c1Tacj ,b

c 1Tcbj ,a
c 50 ~a,b,c50,1,2,3!. ~2!

A plane symmetric space–time is a Lorentzian manifold possessing a physical stress–
tensor. This admitsSO(2)+R2 as the minimal isometry group in such a way that the group or
are spacelike surfaces of constant curvature. The metric for static plane symmetric space–
given in the form3

ds25en(x) dt22dx22em(x)~dy21dz2!, ~3!

wheren andm are arbitrary functions ofx. The surviving components of the energy–moment
tensor, given in Appendix A, areT0 , T1 , T2 , T3 , whereT35T2 and we have used the notatio
Taa5Ta for the sake of simplicity.

The MC equations can be written as follows:

T0,1j
112T0j ,0

0 50, ~4!

T0j ,1
0 1T1j ,0

1 50, ~5!

T0j ,2
0 1T2j ,0

2 50, ~6!

T0j ,3
0 1T2j ,0

3 50, ~7!

T1,1j
112T1j ,1

1 50, ~8!

T1j ,2
1 1T2j ,1

2 50, ~9!

T1j ,3
1 1T2j ,1

3 50, ~10!

T2,1j
112T2j ,2

2 50, ~11!

T2~j ,3
2 1j ,2

3 !50, ~12!

T2,1j
112T2j ,3

3 50. ~13!

These are the first order nonlinear partial differential equations in four variablesja(xb). We solve
these equations for the nondegenerate case, when

det~Tab!5T0T1T2
2Þ0, ~14!

and for the degenerate case, where det(Tab)50. The rest of the paper is organized as follows. T
next section contains a solution of MC equations when the energy–momentum tensor is
generate. In Sec. III, MC equations are solved for the degenerate energy–momentum ten
Sec. IV provides some examples admitting proper MCs for the nondegenerate case. Final
V contains a summary and discussion of the results obtained.

II. MATTER COLLINEATIONS IN THE NONDEGENERATE CASE

In this section, we shall evaluate MCs only for those cases which have a nondege
energy–momentum tensor, i.e., det(Tab)Þ0. To this end, we set up the general conditions for
solution of MC equations for the nondegenerate case.
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When we solve Eqs.~4!–~13! simultaneously, after some algebraic computations, we arriv
the following solution:

j052
T2

T0
F1

2
~y21z2!Ȧ11zȦ21yȦ3G1A4 , ~15!

j152
T2

T1
F1

2
~y21z2!A181zA281yA38G1A5 , ~16!

j25 1
2 z2~c1y1c3!1z~c2y1c4!2 1

6 c1y32 1
2 c3y21yA11A3 , ~17!

j352 1
2 y2~c1z1c2!2y~c3z1c4!1 1

6 c1z31 1
2 c2z21zA11A3 , ~18!

wherec1 ,c2 ,c3 ,c4 are arbitrary constants andAm5Am(t,x), m51,2,3,4,5 are integration func
tions. Here an overdot and a prime indicate the differentiation with respect to time andx
coordinate, respectively. When we replace these values ofja in MC, Eqs.~4!–~13!, we obtain the
following constraints onAm :

T08

T1
Ai812Äi50 ~ i 51,2,3!, ~19!

Ȧi5AT0

T2
f i~ t !, Ai85

AT1

T2
gi~ t !, ~20!

Ȧ452
T08

2T0AT1

g5~ t !, A4852
AT1

T0
ġ5~ t !, ~21!

c150, T28A1850, ~22!

T28

T2
A512A150, ~23!

T28

T2AT1

g2~ t !22c250, ~24!

T28

T2AT1

g3~ t !12c350, ~25!

T28

T2AT1

g5~ t !12A150, ~26!

T08

T2AT1

gi~ t !12Äi50, ~27!

where f i(t),gi(t), g5(t) are integration functions. Thus the problem of working out MCs for
possibilities ofAi ,A4 ,A5 is reduced to solving the set of Eqs.~15!–~18! subject to the above
constraints. We would solve these to classify MCs of the plane symmetry manifolds.

From Eqs.~24!–~26!, there arise two main cases:
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~1! S T28

T2AT1
D 8

Þ0; ~2! S T28

T2AT1
D 8

50.

Case (1):In this case, we haveT28Þ0 and hence Eq.~22! givesA15A1(t). Using these in Eq.
~26!, it follows that

T28

T0AT1

g5~ t !12A1~ t !50, ~28!

which implies thatg550 andA150. Thus we have from Eqs.~21! and~23! A550, A45c0 . Also,
Eqs.~24! and ~25! yield

g2505g3 , c2505c3 . ~29!

Now from Eqs.~19! and ~20!, we have

Aj850, Äj50, ḟ j50 ~ j 52,3!, ~30!

which gives

Aj~ t,x!5AT0

T2
cj t1cj 12 . ~31!

SinceAj8(t,x)50 which implies that either

~a! S T0

T2
D 8

50, or ~b! S T0

T2
D 8

Þ0.

In the first case 1~a!, we have the following MCs:

j (1)5] t , j (2)5]y , j (3)5]z , j (4)5z]y2y]z ,
~32!

j (5)5t]z2
T2

T0
z] t , j (6)5t]y2

T2

T0
y] t .

Thus we obtain six independent MCs in which four are the usual isometries of the plane sym
and the rest are the proper MCs. The MCs for the case 1~b! turns out to be the same as the minim
isometries for the plane symmetry.

Case (2):This case implies thatT28/T2AT1 5a, wherea is an arbitrary constant and can ha
the following two subcases according asa is nonzero or zero.

~a! aÞ0, ~b! a50.

For the case 2~a!, we use Eqs.~20!, ~22!, ~24!, and~25! so that

g252c2 /a, g3522c3 /a, A1850, ~33!

and

S T2

T0
D 8

Ȧi50. ~34!

The last equation further gives us the following two possibilities:
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~ i! S T2

T0
D 8

Þ0, ~ ii ! S T2

T0
D 8

50.

In the first case 2a~i!, Eqs.~20!, ~21!, ~23!, ~25!, ~36!, and~37! imply that

A55c5 , T08Ai850, A552
2c5

aAT1

, A4850, ~35!

and

Ȧ45
T08

aT0AT1

c5 . ~36!

This last equation implies that for (T08/T0AT1)8Þ0, we have the same MCs as KVs. Whe
T08/T0AT1 5b, whereb is an arbitrary constant, this further gives the following two subcase

~* ! bÞ0; ~** ! b50.

The case 2ai(* ), in addition to the usual isometries of plan symmetry, gives the following
proper MC:

j (5)5
b

a
t] t2

2

aAT1

]x1y]y1z]z . ~37!

For the case 2ai(** ), we haveT05const and we obtain the following MCs:

j (5)5yz1S z2

2
2

y2

2
2

2

a2T2
D ]z ,

j (6)5yz2S z2

2
2

y2

2
1

2

a2T2
D ]y , ~38!

j (7)5y]y1z]z .

This implies that we have seven independent MCs in which three are the proper MCs.
In the case 2a~ii !, we obtainT25gT0 , whereg is an arbitrary constant and this yields th

following MCs:

j (5)5
1

2 S t22
4

a2T0
2gy22gz2D ] t1

2

aAT1

]x1ty]y1tz]z ,

j (6)5
1

g
tz] t1

2

a2AT1

z]x1yz]y2
1

2 S t2

g
1

4

a2T2
1y22z2D ]z ,

j (7)5z] t2t]z ,

j (8)5
1

g
ty] t1

2

a2AT1

y]x2
1

2 S t2

g
1

4

a2T2
2y21z2D ]y2yz]z ,

j (9)5y] t2t]y ,
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j (10)5t] t1
2

aAT1

]x1y]y1z]z. ~39!

This shows that we have ten independent MCs including six proper MCs.
The case 2~b! implies thatT25const which yields that either

~ i! S ~AT0!8

AT1
D 8

50 or ~ ii ! S ~AT0!8

AT1
D 8

Þ0

For the first possibility 2b~i!, we have (AT0)8/AT1 5d, whered is an arbitrary constant an
gives two possibilities according to whether it is nonzero or zero:

~* ! dÞ0, ~** ! d50.

For the case 2bi(* ), we obtain the following MCs:

j (5)5
T2

AT0

z sindt] t2
T2

AT1

z cosdt]x1
T0

d
cosdt]z ,

j (6)5
T2

AT0

z cosdt] t1
T2

AT1

z sindt]x2
T0

d
sindt]z ,

j (7)5
T2

AT0

y sindt] t2
T2

AT1

y cosdt]x1
T0

d
cosdt]y ,

~40!

j (8)5
T2

AT0

y cosdt] t1
T2

AT1

y sindt]x2
T0

d
sindt]y ,

j (9)5
1

AT0

sindt] t2
1

AT1

cosdt]x ,

j (10)5
1

AT0

cosdt] t1
1

AT1

sindt]x ,

which yields ten independent MCs having six proper MCs.
In the case of 2bi(** ), we have the following MCs:

j (5)5
T2

AT1

z]x2E AT1dx]z ,

j (6)5
T2

AT1

y]x2t]z ,

j (7)5
T2

AT1

z] t2E AT1dx]y ,

~41!

j (8)5
T2

AT1

y] t2t]y ,
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j (9)5
1

T0
E AT1dx] t2

1

AT1

t]x ,

j (10)5
1

AT1

]x ,

giving ten independent MCs with six proper MCs.
The case 2b~ii ! further implies the following two possibilities:

~* ! S T0

2
AT1S T08

T0AT1
D 8D 8

50; ~** ! S T0

2
AT1S T08

T0AT1
D 8D 8

Þ0.

For 2bii(* ), we have (T0/2)AT1(T08/T0AT1)85e, where e is an integration constant an
gives further two cases when

~1 ! e50 and ~11 ! eÞ0.

In the case 2bii* (1), we haveT08/T0AT1 5xÞ0, and this gives the following MCs:

j (5)5S 1

xT0
2

x

4
t2D ] t1

1

AT1

t]x ,

~42!

j (6)5
x

2
t] t1

1

AT1

]x ,

yielding six independent MCs.
For the case 2bii* (11), we obtain

j (5)5S 1

T0
] t2

1

AT1

]xD eAht,

~43!

j (6)5S 1

T0
] t1

1

AT1

]xD e2Aht,

giving six independent MCs.
In the case 2bii(** ), we get MCs equal to the KVs.

III. MATTER COLLINEATIONS IN THE DEGENERATE CASE

In this section only those cases will be considered for which the energy–momentum ten
degenerate, i.e., det(Tab)50. Thus we would discuss the space–times when at least one of thTa

or their combination is zero. WhenTa50, we have trivially every direction is an MC. Th
remaining cases can be classified as follows:~1! When only oneTa is nonzero;~2! when twoTa’s
are nonzero; and~3! when threeTa’s are nonzero.

Case (1):This can further be grouped as follows:~a! T0Þ0, Ti50; ~b! T1Þ0, Tj

50, (i 51,2,3), (j 50,2,3).
The case 1~a! yields two possibilities according asT0850 or T08Þ0. For the first possibility, we

get

j05c0 , j i5j i~xa!. ~44!

The second possibility implies that
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j05j0~ t !, j152
2T0

T08
j̇0~ t !, jk5jk~xa! ~k52,3!. ~45!

Thus we have infinite-dimensional MCs.
The case 1~b! can be solved trivially and gives

j15
c1

AT1

, j j5j j~xa!, ~46!

which implies infinite-dimensional MCs.
Case (2): This case can be divided into the following cases:~a! Tl50, TkÞ0 (l

50,1 andk52,3); ~b! TlÞ0, Tk50.
In the first case, if we takeT25const, then we have the following MCs:

j l5j l~xa!, j25c0z1c1 , j352c0y1c2 , ~47!

which gives infinite-dimensional MCs. ForT28Þ0, we again have infinite-dimensional MCs give
by

j05j0~xa!, ~48!

j152
T2

T28
„f 8~u!1g8~u!…, ~49!

j25 f ~u!1g~v !, ~50!

j35i„2 f ~u!1g~v !…1c0 , ~51!

whereu5y1iz andv5y2iz.
For the second case 2~b!, it follows from Eqs. ~4!–~7! and ~9!–~10! that j l5j l(t,x), jk

5jk(xa). Also, Eq.~8! yieldsj15 f (t)/T1 . If we use this value in Eqs.~4!–~5! and eliminatej0,
we have

f̈ ~ t !5
T0

AT1
S T08

2T0AT1
D 8

f ~ t !. ~52!

From this equation, we see that forf 50, we have infinite-dimensional MCs given by

j05c0 , j l50, jk5jk~xa!. ~53!

For f (t)Þ0, we have

f̈ ~ t !

f ~ t !
5

T0

AT1
S T08

2T0AT1
D 8

5a, ~54!

wherea is an arbitrary constant. This gives two possibilities: eithera50 or aÞ0. For the first
possibility, we obtainT08/2T0AT1 5b, an arbitrary constant. This again yields the infinit
dimensional MCs given by

j05c1S 2
b

2
t22E AT1

T0
dxD 2c2bt1c0 , ~55!
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j l5
1

T1
~c1t1c2!, ~56!

jk5jk~xa!. ~57!

WhenaÞ0, we have infinite-dimensional MCs as follows:

j052
T08

2T0AaT1

~c1eAat2c2e2Aat1c3 !, ~58!

j l5
1

T1
~c1eAat1c2e2Aat!, ~59!

jk5jk~xa!. ~60!

Case (3):This case can be divided as follows:~a! T050, TiÞ0; ~b! T150, TjÞ0.
In the case 3~a!, it is easy to see that Eqs.~4!–~7! imply thatj0 is an arbitrary function of four

variables whilej i5j i(x,y,z). Further, it follows from Eqs.~8!–~11! and ~13! that

A1~y,z! ,kk2S T28

2T2AT1
D 8 T2

AT1

A1~y,z!50. ~61!

From here we have two possibilities—eitherA150 or A1Þ0. For the first possibility, we have th
following MCs:

j05j0~xa!, j150, j25c1z1c2 , j352c1y1c3 . ~62!

WhenA1Þ0, we obtain

A1~y,z! ,kk

A1~y,z!
5S T28

2T2AT1
D 8 T2

AT1

5a, ~63!

wherea is an arbitrary constant which may be zero or nonzero. The possibilitya50 implies that
T28/T2AT1 5b, an arbitrary constant and we have the following MCs:

j05j0~xa!, ~64!

j15
1

AT1

„~c1y1c2!z1c3y1c4…, ~65!

j252F S b

4
y21E AT1T2dxD c1z1

bc2

2
yz1S b

4
~ y22z2!1E AT1T2dxGc31

bc4

2
y2c5z1c7 ,

~66!

j352F S b

4
z21E AT1T2dxD c1y1

bc3

2
yz1S b

4
~z22y2!1E AT1T2dxD c21

bc4

2
zG1c5y1c6 .

~67!

For aÞ0, the MCs are given by

j05j0~xa!, j150, j25c0z1c1 , j352c0y1c2 . ~68!
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In the case 3~b!, when T05g and T25d, whereg and d are arbitrary constants, we have th
following MCs:

j05c4y1c5z1c0 , ~69!

j15j1~xa!, ~70!

j25c1z2
dc4

g
t1c3 , ~71!

j352c1y2
dc5

g
t1c3 . ~72!

If T08Þ0 andT2850, the MCs are given by

j05 f ~ t !, j152
2T0

T08
ḟ ~ t !, j25c1z1c2 , j352c1y1c3 . ~73!

WhenT28Þ0 andT08T2 /T0T28 5e50, we obtain the following MCs:

j05c0 , ~74!

j152
2T2

T28
„f 8~u!1g8~v !…, ~75!

j25 f ~u!1g~v !, ~76!

j352i„f ~u!2g~v !…1c1 , ~77!

whereu5y1iz andv5y2iz. For T28Þ0, eÞ0 and (T0 /T2)8Þ0, the proper MCs are given b

j (5)5t] t2
2T0

T08
]x ,

~78!
j (6)5i~z]y2y]z!.

This gives two proper MCs. IfT28Þ0, T05lT2 andT08Þ0, we get

j (5)5
1

l F ty] t2
2T2

T28
y]x1

1

2
~y22z22lt2!]y1yz]zG ,

j (6)5tz] t2
2T2

T28
z]x1yz]y2

1

2
~y22z22lt2!]z,

j (7)5t]t2
2T2

T28
]x1y]y1z]z,

~79!

j (8)5
1

2l
~y21z22lt2!] t1

2T2

T28
t]x2ty ]y2tz ]z,

j (9)5
1

l
y]t2t ]y,
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j (10)5
1

l
z]t2t ]t,

which yields six proper MCs. Finally, whenT28Þ0 and (T08T2 /T0T28)8Þ0, we have four indepen
dent MCs which are exactly the isometries of the plane symmetry. It is interesting to note th
last three subcases of this case give finite-dimensional MCs even for the degenerate case

IV. EXAMPLES ADMITTING PROPER MCs

In this section we construct examples which admit proper MCs for the nondegenerate en
momentum tensor. It can be seen from Eq.~A3! that the energy–momentum tensor will b
nonzero when neither of the metric functionsn andm are constants. If we choose thesen andm
such thatn5a ln x1b, m5c ln x1d, wherea,b,c,d are constants withaÞc then

T28

T2AT1

5
2~c22!

Ac~c12a!
5const5aÞ0, ~80!

T08

T0AT1

5
2~a22!

Ac~c12a!
5const5bÞ0. ~81!

This shows thataÞb asaÞc and hence the metric

ds25xa dt22dx22xc~dy21dz2!, ~82!

admits five MCs. It is pointed out that this metric possesses four KVs and therefore we hav
proper MC given by Eq.~37!. It can easily be shown that this space–time satisfies the condi
of the case 2ai(* ).

If we choosec52 anda>0 butaÞ2 in Eq. ~82!, it admits six MCs whereas this metric ha
four isometries and hence in this case we have two proper MCs as given by Eq.~42!. The resulting
space–time will satisfy the constraints of the case 2bii* (1).

When we choosea52 andc>0 butcÞ2 in the metric given by Eq.~82!, it yields seven MCs
in which four are the usual isometries while the remaining three are the proper MCs. This sa
the conditions of the case 2ai(** ). Finally, if we choosen5ax5m, then we obtain ten indepen
dent MCs and the constraint equations for the case 2a~ii ! are satisfied. The corresponding spac
time will take the following form:

ds25eax~dt22dy22dz2!2dx2. ~83!

This is the well known anti-de Sitter metric which has ten KVs and consequently in this cas
have no proper MC.

V. DISCUSSION AND CONCLUSION

It is known14 that when we classify plane symmetric space–times according to their KVs
get metrics which admit ten isometries~the spaces of constant curvature!, a space–time which
admits seven KVs~the Einstein metric! and a metric which has five KVs. There do not ex
metrics admittingG9 and G8 as the maximal isometry groups.15,16 The metric admitting five
isometries is given by

ds25en(x)dt22dx22e2~x/a!~dy21dz2! ~aÞ0!, ~84!

wherea is an arbitrary constant.
If we takem to be constant andn(x) either ln cosh2 ax, or 2ax or ln cos2 ax, we obtain three

different metrics corresponding to each value ofn with six KVs each. This corresponds to th
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degenerate case. The six isometries of each metric are given by Eqs.~B2!, ~B3!, and ~B3!
in Appendix B. These isometries satisfy the algebraSO(2)+R2] ^ SO(1,2) isomorphic to
SO(2)+R2] ^ SO(3) over complex fields. If we choosem and n both to be constant, then th
space–time turns out to the Minkowski space–time. All metrics other than those given
admit only the minimal isometry groupG4 satisfying the algebra@SO(2)+R2# ^ R.

In a recent paper,12 some interesting results have been obtained when we classify spher
symmetric space–times according to their energy–momentum tensor. In this paper, we ha
tended the same procedure to classify static plane symmetric space–times according to the

In the nondegenerate case, we obtain either four, five, six, seven, or ten independen
These contain the usual four isometries of the plane symmetry and the rest are the prope
For the degenerate energy–momentum tensor, most of the cases give infinite-dimensiona
The cases worth mentioning are those where we have a finite number of MCs even wh
energy–momentum tensor is zero. We obtain three such different cases having either four,
ten independent MCs. The results are summarized in the form of Tables I and II given bel

From these tables, it follows that each case has different constraints on the energy–mom
tensor. Finally, we have constructed some particular examples satisfying constraints of th
different cases given by 2ai(* ), 2ai(** ), 2a~ii !, and 2bii* (1). We have seen that the constrain

TABLE I. MCs for the nondegenerate case.

Cases MCs Constraints

1a 6 S T28

T2AT1
D 8

Þ0, S T0

T2
D 8

50

1b 4 S T28

T2AT1
D 8

Þ0, S T0

T2
D 8

Þ0

2ai* 5 S T28

T2AT1
D 8

50,
T28

T2AT1

Þ0, S T2

T0
D 8

Þ0,
T08

T0AT1

Þ0

2ai** 7 S T28

T2AT1
D 8

50,
T28

T2AT1

Þ0, S T2

T0
D 8

Þ0,
T08

T0AT1

50

2aii 10 S T28

T2AT1
D 8

50,
T28

T2AT1

Þ0, S T2

T0
D 8

50

2bi* 10 S T28

T2AT1
D 8

50,
T28

T2AT1

50, S ~AT0!8

T1
D 8

50,
~AT0!8

T1
Þ0

2bi** 10 S T28

T2AT1
D 8

50,
T28

T2AT1

50, S ~AT0!8

T1
D 8

50,
~AT0!8

T1
50

2bii* 1 6 S T28

T2AT1
D 8

50,
T28

T2AT1

50, S ~AT0!8

T1
D 8

Þ0,

S T0

2
AT1S T08

T0AT1
D 8D 8

50,
T0

2
AT1S T08

T0AT1
D 8

50

2bii* 11 6 S T28

T2AT1
D 8

50,
T28

T2AT1

50, S ~AT0!8

T1
D 8

Þ0,

S T0

2
AT1S T08

T0AT1
D 8D 8

50,
T0

2
AT1S T08

T0AT1
D 8

Þ0

2bii** 4 S T28

T2AT1
D 8

50,
T28

T2AT1

50, S ~AT0!8

T1
D 8

Þ0,

S T0

2
AT1S T08

T0AT1
D 8D 8

Þ0
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of the case 2ai(* ) give one proper MC, the case 2ai(** ) yields three proper MCs and th
constraints of the case 2bii* (1) give two proper MCs. However, the constraints of the case 2a~ii !
yield an anti–de Sitter metric which has ten isometries and hence there is no proper MC
case. In all other cases, we would have four isometries and find the proper MCs immediat

When the rank ofTa is 3, i.e.T150, we obtain the following metric:

ds25en dt22dx22e22n~dy21dz2!, ~85!

where n is an arbitrary function ofx only. It can be easily verified that this class of metri
represent perfect fluid dust solutions. The energy–density for the above metrics is given a

r5~2n923n82!en/2. ~86!

It is remarked here that the general solution of the constraint equations does not nece
give the interesting metrics. It may not even be necessary to get solved constraints gene
However, it would be interesting to solve the constraints involved or more examples shou
constructed.
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APPENDIX A

The surviving components of the Ricci tensor are

R0[R005
1
4 en~2n91n8212n8m8!,

R1[R1152 1
4 ~2n91n8214m912m82!,

~A1!
R2[R2252 1

4 em~2m912m821n8m8!,

R335R22.

The Ricci scalar is given by

R5 1
2 ~2n91n8212n8m813m8214m9!. ~A2!

Using Einstein field equations, the nonvanishing components of energy–momentum tensorTab are

T0[T0052 1
4 en~4m913m82!,

TABLE II. MCs for the degenerate case~only finite cases!.

Cases MCs Constraints

3bi 6 T150, TjÞ0~ j 50,2,3!, T28Þ0,
T08T2

T0T28
Þ0, S T0

T2
D 8

Þ0

3bii 10 T150, TjÞ0, T28Þ0, T05lT2 , T08Þ0

3biii 4 T150, TjÞ0, T28Þ0,
T08T2

T0T28
Þ0
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T1[T115
1
4 ~m8212n8m8!,

~A3!
T2[T225

1
4 em~2n91n821n8m81m8212m9!,

T335T22.

APPENDIX B

The four independent KVs associated with the plane symmetric space–times are given3

j (1)5] t , j (2)5]y , j (3)5]z , j (4)5z]y2y]z . ~B1!

The six independent KVs associated with the plane symmetric space–times withn either
ln cosh2 ax, or 2ax or ln cos2 ax andm to be constant are given by

j (1)5] t , j (2)5]y , j (3)5]z , j (4)5z]y2y]z ,

j (5)5cosat]x2sinat tanhax] t , ~B2!

j (6)5sinat]x2cosax tanhax] t ;

j (1)5] t , j (2)5]y , j (3)5]z ,

j (4)5z]y2y]z , j (5)52t]x2at2] t , ~B3!

j (6)5]x2at] t ;

j (1)5] t , j (2)5]y , j (3)5]z , j (4)5z]y2y]z ,

j (5)5coshat]x1sinat tanax] t , ~B4!

j (6)5sinhat]x1cosax tanax] t .

1G. H. Katzin, J. Levine, and W. R. Davis, J. Math. Phys.10, 617 ~1969!.
2A. Z. Petrov,Einstein Spaces~Oxford University Press, Pergamon, 1969!.
3H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselaers, and E. Hearlt,Exact Solutions of Einstein’s Field
Equations~Cambridge University Press, Cambridge, 2003!.

4G. Rcheulishrili, J. Math. Phys.33, 1103~1992!.
5A. A. Coley and O. J. Tupper, J. Math. Phys.30, 2616~1989!.
6G. S. Hall, I. Roy, and L. R. Vaz, Gen. Relativ. Gravit.28, 299 ~1996!.
7U. Camci and A. Barnes, Class. Quantum Grav.19, 393 ~2002!.
8J. Carot and J. da Costa,Proceedings of the 6th Canadian Conference on General Relativity and Relativistic Astro
ics, Fields Inst. Commun. 15~American Mathematical Society WC, Providence, RI, 1997!, p. 179; J. Carot, J. da Costa
and E. G. L. R. Vaz, J. Math. Phys.35, 4832~1994!.

9M. Tsamparlis and P. S. Apostolopoulos, J. Math. Phys.41, 7573~2000!.
10M. Sharif, Nuovo Cimento Soc. Ital. Fis., B116, 673 ~2001!; Astrophys. Space Sci.278, 447 ~2001!.
11U. Camci and M. Sharif, Gen. Relativ. Gravit.35, 97 ~2003!; Class. Quantum Grav.20, 2169~2003!.
12M. Sharif and S. Aziz, Gen. Relativ. Gravit.35, 1091~2003!; M. Sharif, J. Math. Phys.44, 5141~2003!.
13G. S. Hall, Gen. Relativ. Gravit.30, 1099~1998!.
14T. Feroze, A. Qadir, and M. Ziad, J. Math. Phys.42, 4947~2001!.
15I. P. Yegorov, Ph.D. thesis, Moscow State University, 1955.
16G. Fubini, Atti. R. Accad. Sci. Torino38, 404 ~1903!.
                                                                                                                



ant

re
al,
les
been

of
of a
tent of
m the

giving
rent

ness by
e of
ndent

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 4 APRIL 2004

                    
Symmetries of the energy-momentum tensor
of cylindrically symmetric static space–times

M. Sharifa)
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Quaid-e-Azam Campus Lahore-54590, Pakistan
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We investigate matter symmetries of cylindrically symmetric static space–times.
These are classified for both cases when the energy-momentum tensor is nonde-
generate and also when it is degenerate. It is found that the nondegenerate energy-
momentum tensor gives eitherthree, four, five, six, sevenor ten independent matter
collineations in whichthree are isometries and the rest are proper. The worth
mentioning cases are those where we obtain the group of matter collineations finite
dimensional, even the energy-momentum tensor is degenerate. These are either
three, four, fiveor ten. Some examples are constructed satisfying the constraints on
the energy-momentum tensor. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1668335#

I. INTRODUCTION

Let M be a space–time manifold with Lorentz metricg of signature (1,2,2,2). It is
assumed that the manifoldM , and the metricg, are smooth. There has been recent signific
interest in the study of the various symmetries~in particular, Ricci and matter collineations! that
arise in the exact solutions of Einstein’s field equations~EFEs!

Rab2 1
2 Rgab[Gab5kTab ~a,b50,1,2,3!, ~1!

wherek is the gravitational constant,Gab is the Einstein tensor,Rab is the Ricci, andTab is the
matter ~energy-momentum! tensor. Also,R5gabRab is the Ricci scalar. We have assumed he
that the cosmological constantL50. The theoretical basis for the study of the affine, conform
projective, curvature~CCs! and Ricci collineations~RCs! has been analyzed and many examp
have been discovered.1–5 The symmetries of the energy-momentum tensor have recently
studied.

We define a differentiable vector fieldj on M to be amatter collineationif

£jTab50, ~2!

where £ is the Lie derivative operator,ja is the symmetry or collineation vector. The study
matter collineations~MCs! derives from the mathematical interest in the invariance attributes
geometrical object, i.e., Einstein tensor. Since the Einstein tensor is related to the matter con
the space–time by the EFEs, the investigation of MCs seems to be more relevant fro
viewpoint of physics.

The study of symmetries played an important role in the classification of space–times,
rise to many interesting results with useful applications. It is well known that two diffe
collineations are not in general equivalent. For example, a Killing vector~KV ! is a MC but the
converse does not hold. Collineations have been classified by means of their relative proper
Katzin et al.6,7 This classification indicates that the basic collineation is the KVs. The rol
isometries is to restric the general form of the metric. Consequently, the number of indepe

a!Electronic mail: hasharif@yahoo.com
15320022-2488/2004/45(4)/1532/29/$22.00 © 2004 American Institute of Physics
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field equations would reduce and it would be easy to find the exact solutions. It is noted tha
are well-known metrics which do not have isometries.8 This does not imply that they do not adm
higher symmetries. The symmetry properties given by KVs lead to conservation laws.9–11A large
number of solutions of the EFEs with different symmetry structures have been found10 and clas-
sified according to their properties.12 Symmetries of the energy-momentum tensor~also called
matter collineations! provide conservation laws on matter fields. These enable us to know ho
physical fields, occupying in certain region of space–times, reflect the symmetries of the me13

There is a large body of recent literature which shows interest in the study of MCs.14–23 In a
recent paper,22 the study of MCs has been taken for spherically symmetric space–times and
interesting results have been obtained. We have also classified plane symmetric static spac
according to their MCs.23 In this paper, we extend the procedure to calculate MCs of cylindric
symmetric static space–times both for nondegenerate and also for degenerate cases. H
would not give details of the calculations as the procedure has been given in different pape22,23

The MC Eq.~2! can be written in component form as

Tab,cj
c1Tacj ,b

c 1Tcbj ,a
c 50. ~3!

The most general form of cylindrically symmetric static space–time is given by

ds25en(r ) dt22dr22el(r ) du22em(r ) dz2. ~4!

The only nonzero components of the energy-momentum tensor, given in Appendix A
T00, T11, T22, T33. We can write the MC equations as follows:

T08j
112T0j ,0

0 50, ~5!

T18j
112T1j ,1

1 50, ~6!

T28j
112T2j ,2

2 50, ~7!

T38j
112T3j ,3

3 50, ~8!

T0j0,1
0 1T1j ,0

1 50, ~9!

T0j ,2
0 1T2j ,0

2 50, ~10!

T0j ,3
0 1T3j ,0

3 50, ~11!

T1j ,2
1 1T2j ,1

2 50, ~12!

T1j ,3
1 1T3j ,1

3 50, ~13!

T2j ,3
2 1T3j ,2

3 50, ~14!

where prime8 indicates differentiation with respect tor . These yield the first order nonlinea
coupled partial differential equations in four variablesja(xb). The components of the energy
momentum tensor depend only onr . Here we have used the notationTaa5Ta for the sake of
brevity. We solve this set of equations for the nondegenerate case, when

det~Tab!5T0T1T2T3Þ0 ~15!

and for the degenerate case, where det(Ta)50.
The rest of the paper is organized as follows. The next section contains brief commen

results about MCs. In Sec. III, we shall solve the MC equations when the energy-mome
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tensor is nondegenerate and in the next section MC equations are solved for the deg
energy-momentum tensor. In Sec. V, we shall solve some of the constraints on energy-mom
tensor to obtain exact solution of EFEs. Section VI contains a summary and discussion
results obtained.

II. SOME GENERAL COMMENTS

Let j be a matter collineation. All KVs, homothetic vectors and special conformal Kil
vectors are MCs. However, the converse is not always true. In this case, the MC is called
or nontrivial. The study of MCs has many associated problems. Here we list these in comp
with the other symmetries.

~1! When we define affine and conformal vector fields onM we usually assume that the vect
field is at leastC2 andC3, respectively. Then it follows from Hallet al.4 that ja must be a
smooth vector field onM . However, forkPZ1 there exist MCs on smooth space–tim
which areCk but notCk11.

~2! We know that an affine and conformal vector fieldsja on M are uniquely determined by
specifyingja andj ;b

a and, respectively, by specifyingja and the components of its first tw
covariant derivativesj ;b

a andj ;bc
a at some pointpPM . However, the value ofja and all its

derivatives at some pointqPM may not be enough to determine uniquely a MCja on M . The
fact is that two MCs which agree on a nonempty open subset ofM may not agree onM .

~3! The set of all MCs onM is a vector space but in a similar way to the sets of CCs and R
and unlike the sets of affine and conformal vector fields, it could be infinite dimensiona
could fail to be a Lie algebra. The problem here arises from the fact that such collinea
must beC1 in order that the defining equations make sense. It is unfortunate that a m
Ricci or curvature collineation might turn out to be preciselyC1 and so the differentiability
may be destroyed under the Lie bracket operation. On the other hand, if we assume tha
areC` then we recover the Lie algebra structure but we are then forced to expel the col
tions which are not smooth. The infinite dimensionality may also lead to problems relat
the orbits of the resulting local diffeomorphism.4,24

~4! If the energy-momentum tensor is of rank 4 everywhere then we can think of this tenso
metric on the space–timeM . It then follows from the theory of Killing vectors that the famil
of MCs is, in fact, a Lie algebra of smooth vector fields onM , of finite dimension,<10, and,
in addition,Þ9 by Fubini’s theorem.12

III. MATTER COLLINEATIONS IN THE NONDEGENERATE CASE

In this section, we shall evaluate MCs only for those cases which have nondegenerate e
momentum tensor, i.e.,TaÞ0.

When we solve Eqs.~5!–~14! simultaneously, we get the following constraint equation:

T08j ,23
1 50. ~16!

This equation implies that either
~1! T0850,
or
~2! T08Þ0.

Case 1:In the first case we haveT052k1 , wherek1 is a nonzero constant which implies th
the MC equations yield the following four possibilities:

~a1! T2850, T3850,

~a2! T2850, T38Þ0,
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~a3! T28Þ0, T3850,

~a4! T28Þ0, T38Þ0.

Subcase 1(a1): This implies thatT25k2 andT35k3 , wherek2 andk3 are nonzero constants
In this case, in addition to the nonproper MCsj (1) , j (2) , j (3) given in Appendix B, we obtain the
following proper MCs:

j (4)5u] t1
k1

k2
t]u ,

j (5)52
1

k1
E AT1dr ] t1

1

AT1

t] r ,

j (6)5z] t1
k1

k3
t]z ,

j (7)5
1

AT1

] r , ~17!

j (8)5
u

AT1

] r2
1

k2
E AT1dr ]u ,

j (9)5
z

AT1

] r2
1

k3
E AT1dr ]z ,

j (10)5z]u2
k2

k3
u]z .

Thus we have 10 independent MCs in which seven are proper.
Subcase 1(a2): It follows that T25k2 , T38Þ0 which further yields the following two cases:

~b1! F T3

AT1
S T38

2T3AT1
D 8G 8

50,

~b2! F T3

AT1
S T38

2T3AT1
D 8G 8

Þ0.

The case 1a2(b1) gives

T3

AT1
S T38

2T3AT1
D 8

5a1 ,

wherea1 is an arbitrary constant which may be

~c1! a1.0, ~c2! a150, or ~c3! a1,0.

The first option 1a2b1(c1), whena1.0, gives the following proper MCs:
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j (4)5u] t1
k1

k2
t]u ,

j (5)5
eAa1z

AT1

] r2
T38e

Aa1z

2Aa1T3AT1

]z , ~18!

j (6)5
e2Aa1z

AT1

] r1
T38e

2Aa1z

2Aa1T3AT1

]z .

The second option 1a2b1(c2), whena150, yields the following three proper MCs:

j (4)5u] t1
k1

k2
t]u ,

j (5)5
1

T1
] r2a2z]z , ~19!

j (6)5
z

AT1

] r2S E AT1

T3
dr 1a2

z2

2 D ]z ,

wherea25T38/2T3AT1 is a nonzero constant.
The third option 1a2b1(c3) gives the same MCs as the first case 1a2b1(c1).
When we solve MC equations for the case 1a2(b2), we have only one proper MC given b

j (4)5u] t1
k1

k2
t]u . ~20!

Subcase 1(a3): The subcase 1(a3) is similar to the subcase 1(a2) and MCs follow by inter-
changingu andz coordinates.

Subcase 1(a4): Here we haveT28Þ0, T38Þ0 which gives rise to the following two possibili
ties:

~b1! F T2

AT1
S T28

2T2AT1
D 8G 8

50,

~b2! F T2

AT1
S T28

2T2AT1
D 8G 8

Þ0.

The first possibility 1a4(b1) implies that (T2 /AT1) (T28/2T2AT1)85a3 , wherea3 is an arbitrary
constant such that

~c1! a3.0, ~c2! a350, or ~c3! a3,0.

Whena3 is positive, 1a4b1(c1), it further gives the following two options:

~d1! F T3

AT1
S T38

2T3AT1
D 8G 8

50,

~d2! F T3

AT1
S T38

2T3AT1
D 8G 8

Þ0.
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For the option 1a4b1c1(d1), we obtain similar result to the case 1a2(b1). The option
1a4b1c1(d2) gives the following two cases:

~e1!
T2

T3
5constantÞ0, ~e2!

T2

T3
Þconstant.

The case 1a4b1c1d2(e1) yields one proper MC,

j (4)5z]u2
T2

T3
u]z , ~21!

and the case 1a4b1c1d2(e2) gives three independent MCs.
The case 1a4b1(c2), whena350, yieldsT28/2T2AT1 5a4 , wherea4 is a nonzero constan

which gives either

~d1! F T3

AT1
S T38

2T3AT1
D 8G 8

50,

or

~d2! F T3

AT1
S T38

2T3AT1
D 8G 8

Þ0.

The first possibility 1a4b1c2(d1) further divides into three cases according
(T3 /AT1) (T38/2T3AT1)85a1 ,

~e1! a1.0, ~e2! a150, or ~e3! a1,0.

The case 1a4b1c2d1(e1), whena1.0, MCs turn out to be similar to the case 1a2b1(c1). When
a150, i.e., in the case 1a4b1c2d1(e2), we have further two options, either

~ f 1!
T3

T2
5k5constantÞ0, or ~ f 2!

T3

T2
Þconstant.

In the option 1a4b1c2d1e2( f 1), we obtain the following four proper MCs:

j (4)52z]u1
u

k
]z ,

j (5)5
1

AT1

] r2a2u]u2a2z]z ,

~22!

j (6)5
u

AT1

] r2a2uz]z2S E AT1

T2
dr 1a2

u2

2
2ka2

z2

2 D ]u ,

j (7)5
z

AT1

] r2a2uz]u2S E AT1

T2
dr 2a2

u2

2k
1a2

z2

2 D ]z .

For the option 1a4b1c2d1e2( f 2), there is only one proper MC

j (4)5
1

AT1

] r1u]u2a2z]z . ~23!
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The case 1a4b1c2d1(e3), whena1,0, yields similar solution as the case 1a2b1(c3). The option
1a4b1c2(d2) gives similar result as the case 1a4b1c1(d2). The possibility 1a4b1(c3), whena3

,0, also gives similar solution as the case 1a2b1(c1).
In the case 1a4(b2), we have either

~c1!
T2

T3
5constant, or~c2!

T2

T3
Þconstant.

For the case 1a4b2(c1), it coincides with 1a4b1c1(d2) and in the case 1a4b2(c2), we get mini-
mal MCs, i.e., three.

Case 2:Now we evaluate MCs for the case whenT08Þ0. This case implies thatj ,23
1 50. Using

this value in Eqs.~12!–~14!, we obtain

S T2

T3
D 8

j ,3
2 50. ~24!

This implies that either

~a1! S T2

T3
D 8

50, or ~a2! S T2

T3
D 8

Þ0.

Subcase 2(a1): This yieldsT2 /T3 5k1 , wherek1 is a nonzero constant. Solving MC equatio
using this value, we obtain the following two cases:

~b1! S T28

2T2AT1
D 8

50, ~b2! S T28

2T2AT1
D 8

Þ0.

The case 2a1(b1) implies thatT28/2T2AT1 5b1 , a constant which yields that either

~c1! b150, or ~c2! b2Þ0.

For the case 2a1b1(c1), whenb150, it yields the following two groups:

~d1! S ~AT0!8

AT1
D 8

50, ~d2! S ~AT0!8

AT1
D 8

Þ0.

The first group 2a1b1c1(d1) gives 10 independent MCs in which seven are proper given by

j (4)5z]u2k1u]z ,

j (5)5
1

AT0

u sink2t] t2
1

AT1

u cosk2t] r1
AT0

k2T2
cosk2t]u ,

j (6)52
1

AT0

u cosk2t] t2
1

AT1

u sink2t] r1
AT0

k2T2
sink2t]u ,

j (7)5
1

k1AT0

z sink2t] t2
1

k1AT1

z cosk2t] r1
AT0

k2T2
cosk2t]u , ~25!

j (8)52
1

k1AT0

z cosk2t] t2
1

k1AT1

z sink2t] r1
AT0

k2T2
sink2t]u ,
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j (9)5
1

AT0

sink2t] t1
1

AT1

cosk2t] r ,

j (10)5
1

AT0

cosk2t] t1
1

AT1

sink2t] r ,

wherek25(AT0)8/AT1 is a nonzero constant. The second group 2a1b1c1(d2) gives further two
possibilities:

~e1!
T0

2AT1
S T08

T0AT1
D 8

5constant5b2 ,

~e2!
T0

2AT1
S T08

T0AT1
D 8

Þconstant.

In the first possibility 2a1b1c1d2(e1), we further have two options according to

~ f 1! b250, ~ f 2! b2Þ0.

The option 2a1b1c1d2e1( f 1) gives six independent MCs in which three proper MCs are given

j (4)5z]u2k1u]z ,

j (5)5S 1

b3T0
2

b3

4
t2D ] t1

1

AT1

t] r , ~26!

j (6)52
b3

2
t] t1

1

AT1

] r ,

where b35T08/T0AT1 is a nonzero constant. The possibility 2a1b1c1d2e1( f 2) also gives six
independent MCs. The three proper MCs are

j (4)5z]u2k1u]z ,

j (5)52
T08

2Ab2T0AT1

eAb2t] t1
1

AT1

eAb2t] r , ~27!

j (6)5
T08

2Ab2T0AT1

e2Ab2t] t1
1

AT1

e2Ab2t] r .

The case 2a1b1c1d2(e2) yields the same result as the case 1a4b1c1(d2), i.e., one proper MC.
The possibility 2a1b1(c2), i.e., nonzero value of the constantb1 , gives us two more options

~d1! S T2

T0
D 8

50, ~d2! S T2

T0
D 8

Þ0.

The first option 2a1b1c2(d1) gives 10 independent MCs. The seven proper MCs are

j (4)5z]u2k1u]z ,

j (5)5k3u] t1t]u ,
                                                                                                                



tries

e

1540 J. Math. Phys., Vol. 45, No. 4, April 2004 M. Sharif

                    
j (6)5
k3

k1
z] t1t]z ,

j (7)5
1

2 S t22
4

b1
2T0

1k3u21
k3

k1
z2D ] t2

2

b1AT1

t] r1tu]u1tz]z , ~28!

j (8)52k1tu] t1
2k1

b1AT1

u] r1
1

2 S 2
k1

k3
t21

4k1

b1
2T2

2k1u21z2D ]u2k1uz]z ,

j (9)5tz] t2
2

b1AT1

z] r1uz]u1
1

2 S k1

k3
t22

4k1

b1
2T2

2k1u21z2D ]z ,

j (10)5t] t2
2

b1AT1

] r1u]u1z]z ,

wherek352 T2 /T0 is a constant.
The second option 2a1b1c2(d2) further yields two possibilities,

~e1! S T08

T0AT1
D 8

50, ~e2! S T08

T0AT1
D 8

Þ0.

If it is zero, i.e., the case 2a1b1c2d2(e1), we have the following two proper MCs:

j (4)5z]u2k1u]z ,
~29!

j (5)5
b4

b1
t] t2

2

b1AT1

] r1u]u1z]z ,

whereb45T08/T0AT1 is a constant such thatb1Þb4 . If it is nonzero, i.e., 2a1b1c2d2(e2), we
have the same result as for the case 1a4b1c1(d2).

The case 2a1(b2), when (T28/2T2AT1)8Þ0, implies thatT28Þ0 which results the following
two possibilities:

~c1! SAT0

T2
D 8

50, ~c2! SAT0

T2
D 8

Þ0.

The first possibility 2a1b2(c1) gives six independent MCs in which three are the usual isome
and the remaining three are proper MCs given by

j (4)5z]u2k1u]z ,

j (5)5u] t1k4
2t]u , ~30!

j (6)5z] t1k1k4
2t]z ,

wherek45AT0 /T2 is a constant. The second possibility 2a1b2(c2) gives one proper MC as in th
case 1a1b1c1(d2).

Subcase 2(a2): Here we have (T2 /T3)8Þ0. If we use this constraint in MC Eqs.~7!, ~8!, and
~14!, we have

T28j ,3
1 505T38j ,2

1 . ~31!
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This gives rise to the following three possibilities:

~b1! T2850, T38Þ0,

~b2! T28Þ0, T3850,

~b3! T28Þ0, T38Þ0.

In the first case, we can write

T0

AT1
S T08

2T0AT1
D 8

5g1 ,
T3

AT1
S T38

2T3AT1
D 8

5g2 , ~32!

whereg1 andg2 are arbitrary constants. From here we have the following four different cas

~c1! g150, g250,

~c2! g1Þ0, g250,

~c3! g150, g2Þ0,

~c4! g1Þ0, g2Þ0.

The first case 2a2b1(c1) can be divided into the following two options according to

~d1! S T0

T3
D 8

50, or ~d2! S T0

T3
D 8

Þ0.

The first option 2a2b1c1(d1) gives seven independent MCs in which four are proper,

j (4)5S g3

2
t22E AT1

T0
dr1

g3

2k1
z2D ] t1

1

AT1

t] r1g3tz]z ,

j (5)5g3tz] t1
1

AT1

z] r1S k1g3

2
t22E AT1

T3
dr 1

g3

2
z2D ]z ,

~33!

j (6)5g3t] t1
1

AT1

] r1g3z]z ,

j (7)5z] t1k1t]z ,

wherek152 T0 /T3 andg352 T08/2T0AT1 are constants. The second option 2a2b1c1(d2) yields
only one proper MC given by

j (4)5g3t] t1
1

AT1

t] r1g4tz]z , ~34!

whereg452 T38/2T3AT1.
In the case 2a2b1(c2), wheng1Þ0, g250, we have either

~d1! g1.0, or ~d2! g1,0.

For 2a2b1c2(d1), wheng1.0, we obtain three independent MCs which are the usual isomet
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The case 2a2b1c2(d2), wheng1,0, we have two options

~e1! S T0

T3
D 8

50, or ~e2! S T0

T3
D 8

Þ0.

For the case 2a2b1c2d2(e1), we have only one proper MC given by

j (4)5
1

k1
z] t1t]z . ~35!

In the case 2a2b1c2d2(e2), we obtain the minimal symmetry.
The case 2a2b1(c3), wheng150, g2Þ0, is similar to the previous case 2a2b1(c2) by inter-

changingt andz.
The case 2a2b1(c4), wheng1Þ0, g2Þ0, yields the following four different possibilities:

~d1! g1.0, g2.0,

~d2! g1.0, g2,0,

~d3! g1,0, g2.0,

~d4! g1,0, g2,0.

The first possibility further gives two options according to

~e1! g2T0E AT1

T0
dr 1

T38

2AT1

50,

or ~e2! g2T0E AT1

T0
dr 1

T38

2AT1

Þ0.

The first option 2a2b1c4d1(e1) gives the minimal symmetry. The second option 2a2b1c4d1(e2)
further gives two possibilities,

~ f 1! S T0

T3
D 8

50, ~ f 2! S T0

T3
D 8

Þ0.

The case 2a2b1c4d1e2( f 1) yields four independent MCs in which the proper MC is given by

j (4)5z] t1k1t]z . ~36!

For the case 2a2b1c4d1e2( f 2), we have three independent MCs.
All other cases 2a2b1c4(d22d4) are similar to the previous case 2a2b1c4(d1).
The case 2a2(b2), whenT28Þ0, T3850, is similar to the first case 2a2(b1).
In the third case 2a2(b3), whenT28Þ0, T38Þ0, we further have the following two possibili

ties:

~c1! S T28

2T2AT1
D 8

50, S T38

2T3AT1
D 8

50,

~c2! S T28

2T2AT1
D 8

Þ0, S T38

2T3AT1
D 8

Þ0.
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For the first possibility 2a2b3(c1), we obtain the following three options:

~d1! S T2

T0
D 8

50, S T3

T0
D 8

Þ0,

~d2! S T2

T0
D 8

Þ0, S T3

T0
D 8

50,

~d3! S T2

T0
D 8

Þ0, S T3

T0
D 8

Þ0.

The first option 2a2b3c1(d1) yields five independent MCs in which three are the usual KVs
the remaining are the proper MCs given by

j (4)5g3t] t1
1

AT1

] r1g3u]u1g4z]z ,

~37!
j (5)5k2u] t1t]u ,

wherek252 T2 /T0 is a nonzero constant. The second option 2a2b3c1(d2) is similar to the first
one. The third case 2a2b3c1(d3) implies that either

~e1! S T08

2T0AT1
D 8

50, or ~e2! S T08

2T0AT1
D 8

Þ0.

For the first option 2a2b3c1d3(e1), we get one proper MC given by

j (4)5g3t] t1
1

AT1

] r1g3u]u1g4z]z . ~38!

In the second option 2a2b3c1d3(e2), we obtain the minimal symmetry.
The case 2a2b3(c2) also yields the same three possibilities,

~d1! S T2

T0
D 8

50, S T3

T0
D 8

Þ0,

~d2! S T2

T0
D 8

Þ0, S T3

T0
D 8

50,

~d3! S T2

T0
D 8

Þ0, S T3

T0
D 8

Þ0.

It is to be noted that we have excluded the possibility when both are constants as this leadsT2 /T3

to be constant which gives a contradiction. The first case 2a2b3c2(d1) gives only one proper MC,
i.e.,

j (4)5k2u] t1t]u . ~39!

The second case 2a2b3c2(d2) is similar to the previous one and the third case 2a2b3c2(d3) gives
the minimal MCs.
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IV. MATTER COLLINEATIONS IN THE DEGENERATE CASE

In this section only those cases will be considered for which det(Tab)50 which implies that at
least one of the components of the energy-momentum tensor is zero, i.e.,Ta50. The trivial case
is that when allTa are zero. In this case, every direction is in a MC. The remaining cases ca
divided into three main groups:

~1! when at least one ofTa is nonzero;
~2! when at least two ofTa are nonzero;
~3! when three ofTa are nonzero.

Case 1:This case can further be divided into the following four subcases:

~a1! T050, T150, T250, T3Þ0,

~a2! T050, T150, T2Þ0, T350,

~a3! T050, T1Þ0, T250, T350,

~a4! T0Þ0, T150, T250, T350.

When we use the values of 1(a1) in MC equations, we obtainj35j3(z) and Eq.~9! gives

j152
2T3

T38
j ,3

3 ~z!, ~40!

whereT38Þ0 andj0, j1 are arbitrary functions oft,r ,u,z. This gives infinite dimensional MCs
The second case 1(a2) is similar to the first one if we interchange the indices 2 and 3.

The third case 1(a3) givesj15j1(r ) and Eq.~7! yields

j15
c1

AT1

, ~41!

wherej0, j2, j3 are arbitrary functions oft,r ,u,z which gives infinite dimensional MCs. Th
fourth case 1(a4) yields the similar result as the case 1(a1) by interchanging the indices 0 and 3
Thus we obtain infinite dimensional MCs in all the possibilities of the case 1.

Case 2:This case has the following six possibilities:

~a1! T050, T150, T2Þ0, T3Þ0,

~a2! T050, T1Þ0, T250, T3Þ0,

~a3! T050, T1Þ0, T2Þ0, T350,

~a4! T0Þ0, T150, T250, T3Þ0,

~a5! T0Þ0, T150, T2Þ0, T350,

~a6! T0Þ0, T1Þ0, T250, T350.

When we replace the information of the subcase 2(a1) in MC equations, we obtainj0

5j0(t,r ,u,z), j25j2(u,z), j35j3(u,z), and

S T3

T2
D 8

j ,2
3 50. ~42!
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From here we have two options:

~b1! S T3

T2
D 8

50, ~b2! S T3

T2
D 8

Þ0.

For the first option 2a1(b1), MC equations yield

j ,22
2 1

1

c
j ,33

2 50, ~43!

j ,22
3 1

1

c
j ,33

3 50, ~44!

wherec5 T3 /T2 is a nonzero constant. Ifc.0, Eqs.~43! and ~44! yield the following solution:

j25 f 1S u1
iz

Ac
D 1 f 2S u2

iz

Ac
D , ~45!

j35g1S u1
iz

Ac
D 1g2S u2

iz

Ac
D . ~46!

Replacing the value ofj2 in Eq. ~8!, we obtain

j152
2T2

T28
F f 1,2S u1

iz

Ac
D 1 f 2,2S u2

iz

Ac
D G , ~47!

where T28Þ0 and j05j0(t,r ,u,z). If we take T25constant, MC equations give the followin
solution:

j05j0~ t,r ,u,z!, j15j1~ t,r ,u,z!,
~48!

j25c1z1c2 , j35c1u1c3 .

The option 2a1(b2) further divides into three cases,

~c1! T2850, T38Þ0,

~c2! T28Þ0, T3850,

~c3! T28Þ0, T38Þ0.

In the case 2a1b2(c1), we get the following solution:

j05j0~ t,r ,u,z!, j15
T3

T38
f ~z!,

~49!

j25c1 , j352
1

2 E f ~z!dz1c2 .

The case 2a1b2(c2) gives the similar results as the case 2a1b2(c1) by interchangingu andz.
If we solve MC equations for the possibility 2a1b2(c3), we have the following solution:
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j05j0~ t,r ,u,z!, j15
T2

T28
c1 ,

~50!
j25c1u1c2 , j35c3z1c4 .

For the subcase 2(a2), we further have the following two options from MC equations:

~b1! F T3

AT1
S T38

2T3AT1
D 8G 8

50,

~b2! F T3

AT1
S T38

2T3AT1
D 8G 8

Þ0.

Also j05j0(t,r ,u,z), j15j1(r ,z), j25j2(r ), j35j3(r ,z). The first possibility 2a2(b1) gives
(T3 /AT1) (T38/2T3AT1)85c, wherec is an arbitrary constant which implies that either

~c1! c.0, ~c2! c50, or ~c3! c,0.

The case 2a2b1(c1) yields the following solution:

j05j0~ t,r ,u,z!,

j15
1

AT1

~c1eAcz1c2e2Acz!, j25j2~r ,z!, ~51!

j352
T38

2AcT3AT1

~c1eAcz2c2e2Acz!1c3 .

For the case 2a2b1(c2), whenc50, we obtain

j05j0~ t,r ,u,z!,

j15
1

AT1

~c1z1c2!, j25j2~r ,z!, ~52!

j352c1E AT1

T3
dr 2

T38

2T3AT1
S c1

z2

2
1c2zD1c3 .

In the case 2a2b1(c3), whenc,0, the solution is similar to the previous case 2a2b1(c2).
The second possibility 2a2(b2) gives

j05j0~ t,r ,u,z!, j150,
~53!

j25j2~r ,z!, j35c1 .

The subcase 2(a3) gives similar results as the case 2(a2) by interchanging the indices 2 and 3
The subcases 2(a4) and 2(a5) yield results similar to the case 2(a1) if we interchange indices

0, 2 and 0, 3, respectively.
The subcase 2(a6) would give similar result as the case 2(a2) by interchanging the indices 0

3. It is to be noted that we again have infinite dimensional MCs in the case 2.
Case 3:The case, when only one component of the energy-momentum tensor is zero, w

four different subcases:
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~a1! T050, T1Þ0, T2Þ0, T3Þ0,

~a2! T0Þ0, T150, T2Þ0, T3Þ0,

~a3! T0Þ0, T1Þ0, T250, T3Þ0,

~a4! T0Þ0, T1Þ0, T2Þ0, T350.

The first subcase givesj05j0(t,r ,u,z) with the following two possibilities:

~b1! F T2

AT1
S 2

T28

2T2AT1
D 8G 8

50,

~b2! F T2

AT1
S 2

T28

2T2AT1
D 8G 8

Þ0.

In the first possibility 3a1(b1), we have (T2 /AT1) @2 (T28/2T2AT1)#85a1 , wherea1 is an arbi-
trary constant which can be such that

~c1! a1.0, ~c2! a150, ~c3! a1,0.

The case 3a1b1(c1), when a1.0 gives further three options according toa25(T3 /AT1)
3@2 (T38/2T3AT1)#8,

~d1! a2.0, ~d2! a250, ~d3! a2,0.

The first option 3a1b1c1(d1), whena2.0, gives either

~e1! Aa1

a2
1Aa2

a1
50, or ~e2! Aa1

a2
1Aa2

a1
Þ0.

For the first case 3a1b1c1d1(e1), we obtain

j05j0~ t,r ,u,z!, j150,
~54!

j25c1z1c2 , j35c1u1c3 .

In the second case 3a1b1c1d1(e2), we have the solution

j05j0~ t,r ,u,z!, j150,
~55!

j25c1z1c2 , j352c1k1u1c3 ,

wherek15T2 /T3 is a constant.
The second option 3a1b1c1(d2), whena250, yields the following solution:

j05j0~ t,r ,u,z!,

j15
1

AT1

@eiAa1u~c1z1c2!1e2iAa1u~c3z1c4!#,

~56!

j252
iT28AT1

2T2AT1

@eiAa1u~c1z1c2!2e2iAa1u~c3z1c4!#1c5 ,
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j352a3FeiAa1uS c1

z2

2
1c2zD1e2iAa1uS c3

z2

2
1c4zD G2@c1eiAa1u1c3e2iAa1u#E AT1

T3
dr 1c6 ,

wherea35T38/2T3AT1 is a constant.
The third option 3a1b1c1(d3), for a2,0, is similar to the first option 3a1b1c1(d1).
Now we come to the case 3a1b1(c2) whena150 which givesa452 (T28/2T2AT1), a con-

stant such that

~d1! a450, ~d2! a4Þ0.

In the case 3a1b1c2(d1), we havea25(T3 /AT1) @2 (T38/2T3AT1)#8 which yields the following
options:

~e1! a2.0, ~e2! a250, ~e3! a2,0.

For the case 3a1b1c2d1(e1), whena2.0, we have the following MCs:

j05j0~ t,r ,u,z!,

j15
1

AT1

@eiAa2u~c1z1c2!1e2iAa2u~c3z1c4!#,

~57!
j250,

j352
T38

i2Aa2T3AT1

~c1eiAa2z2c2e2iAa2z!.

The case 3a1b1c2d1(e2), when a250, we have further two possibilities according toa5

52 T38/2T3AT1, a constant such that

~ f 1! a550, ~ f 2! a5Þ0.

For the case 3a1b1c2d1e2( f 1), we get the following result:

j05j0~ t,r ,u,z!, j15
1

AT1

~c1u1c2z1c3!,

~58!

j252
c1

T2
E AT1dr , j352

c2

T3
E AT1dr .

For a5 to be nonzero, i.e., the case 3a1b1c2d1e2( f 2), we obtain

j05j0~ t,r ,u,z!, j15
1

AT1

~c1z1c2!,

~59!

j250, j35a5S c1

z2

2
1c2zD2c1E AT1

T3
dr .

The case 3a1b1c2d1(e3) whena2,0 is similar to the case 3a1b1c2d1(e1).
In the case 3a1b1c2(d2) whena2Þ0, we havea25(T3 /AT1) @2 (T38/2T3AT1)#8, a constant

which gives the following three options:

~e1! a2.0, ~e2! a250, ~e3! a2,0.
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The case 3a1b1c2d2(e1) yields the following solution:

j05j0~ t,r ,u,z!, j150,
~60!

j25~c1z1c2!, j352
T2

T3
c1u1c3 .

The case 3a1b1c2d2(e2), whena250, gives the following MCs:

j05j0~ t,r ,u,z!, j15
c1

T1
,

~61!
j25~a3c1u1c2!, j35a3c1z1c3 .

The last possibility 3a1b1c2d2(e3) whena2 is negative yields similar solution to the positive ca
3a1b1c2d2(e1).

The case 3a1b1(c3), whena1,0, is similar to the case 3a1b1(c1).
The case 3a1(b2) yields the following solution:

j05j0~ t,r ,u,z!, j150,
~62!

j25c1z1c2 , j35c3u1c4 .

The case 3(a2) whenT0Þ0, T150, T2Þ0, T3Þ0 gives the following two options:

~b1! T0850, ~b2! T08Þ0.

The first option 3a2(b1) gives either

~c1! S T28T3

T2T38
D 8

50, or ~c2! S T28T3

T2T38
D 8

Þ0.

The case 3a2b1(c1) gives one proper MC,

j (4)52
2T2

T28
b1] r1b1u]u1z]z , ~63!

whereb15T28T3 /T2T38 . For the case 3a2b1(c2), we have either

~d1! T28505T38 , or ~d2! T28Þ0, T38Þ0.

The case 3a2b1c2(d1) yields infinite dimensional MCs. For the case 3a2b1c2(d2), we get three
MCs which are the usual KVs.

The case 3a2(b2) divides into four groups:

~c1! S T0

T2
D 8

50, S T0

T3
D 8

50,

~c2! S T0

T2
D 8

50, S T0

T3
D 8

Þ0,

~c3! S T0

T2
D 8

Þ0, S T0

T3
D 8

50,
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~c4! S T0

T2
D 8

Þ0, S T0

T3
D 8

Þ0.

The first group 3a2b2(c1) gives 10 independent MCs in which seven are proper MCs given

j (4)52
k1

k2
z]u1u]z ,

j (5)5u] t1k1t]u ,

j (6)5z] t1k2t]z ,

j (7)5S u2

2
1

k1z2

2k2
1k1

t2

2 D ] t2
2k1T0

T08
t] r1k1tu]u1k1tz]z , ~64!

j (8)5tu] t2
2T0

T08
u] r1S k1

t2

2
1

u2

2
2

k1

k2

z2

2 D ]u1uz]z ,

j (9)5tz] t2
2T0

T08
z] r1uz]u1S k2

t2

2
2

k2

k1

u2

2
1

z2

2 D ]z ,

j (10)5t] t2
2T0

T08
] r1u]u1z]z ,

wherek152 T0 /T2 andk252 T0 /T3 are nonzero constants.
The second group 3a2b2(c2) when (T0 /T2)850, (T0 /T3)8Þ0 can give two more possibili-

ties whether

~d1! S T38T0

T3T08
D 8

5constant, ~d2! S T38T0

T3T08
D 8

Þconstant.

The case 3a2b2c2(d1), we have two proper MC given by

j (4)5u] t1k1t]u ,
~65!

j (5)5t] t2
2T0

T08
] r1u]u1cz]z ,

where T0 /T3 5c is an arbitrary constant. If it is not constant, i.e., the case 3a2b2c2(d2), we
obtain only one proper MC given by

j (4)5u] t1k1t]u . ~66!

The third group 3a2b2(c3) when (T0 /T2)8Þ0, (T0 /T3)850 would give the similar solution
as the previous one 3a2b2(c2).

The last group 3a2b2(c4) when (T0 /T2)8Þ0, (T0 /T3)8Þ0 would give the following four
possibilities:

~d1! S T08T2

T0T28
D 8

Þ0, S T08T3

T0T38
D 8

Þ0,
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~d2! S T08T2

T0T28
D 8

Þ0, S T08T3

T0T38
D 8

50,

~d3! S T08T2

T0T28
D 8

50, S T08T3

T0T38
D 8

Þ0,

~d4! S T08T2

T0T28
D 8

50, S T08T3

T0T38
D 8

50.

In the first possibility 3a2b2c4(d1), we have either

~e1!
T2

T3
5constant, or~e2!

T2

T3
Þconstant.

The case 3a2b2c4d1(e1) gives one proper MC. The proper MC is

j (4)5z]u2
T2

T3
u]z . ~67!

For the case 3a2b2c4d1(e2), we get three MCs which are KVs. The possibilities 3a2b2c4(d2) and
3a2b2c4(d3) are similar to the case 3a2b2c4(d1).

In the last possibility 3a2b2c4(d4), we obtain five MCs in which two are proper, i.e.,

j (4)5z]u2
T2

T3
u]z ,

~68!

j (5)5t] t2
2T0

T08
] r1

1

b2
u]u1

1

b2
]z ,

whereT08T2 /T0T28 5b2 , a constant. We also takeT2 /T3 to be constant.
The subcases 3(a3) and 3(a4) can be proceeded as the subcase 3(a1) and would give similar

results.

V. EXAMPLES OF FINITE DIMENSIONAL MATTER COLLINEATIONS

We see from Secs. III and IV that when we find MCs for the cylindrically symmetric st
space–times, we obtain different constraints on the energy-momentum tensor. If we solve
constraints, we can have exact solutions of EFEs or a class of solutions that can be obtai
this section, we would attempt to solve some of these constraints to get explicit forms o
metrics. We are not providing the details. Instead we provide a list of solutions and their prop
satisfying the constraints.

~1! When we solve the constraints of the case 2a1b2(c2), we obtain the following metric:
ds25cosh2 cr dt22dr 22~coshcr!21 du22~coshcr!21 dz2, ~69!

wherec is an arbitrary constant. This metric admits four MCs and also four isometries.
implies that there is no proper MC in this example but it has seven RCs. This metric h
anisotropic fluid with energy-density positive for 0<r ,(1/c)tanh21 (2/A7) and negative
for r> (1/c)tanh21 (2/A7).

~2! If we solve the constraints of the case 2a2b3c1d3(e1), the space–time would be
ds25~r /r 0!2a dt22dr 22~r /r 0!2b du22~r /r 0!2c dz2, ~70!

wherea, b, c, andr 0 are arbitrary constants such thata,b,cÞ0,1. The components of th
energy-momentum tensor for this metric are given in Appendix B. This metric has four
with three KVs giving one proper MC.
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~3! If we choose the values ofa, b, c such thata51, b5cÞ1 in Eq. ~70!, we get a metric
which admits seven MCs and four KVs satisfying the constraints 1a4b1c2d1e2( f 1). This
gives three proper MCs. It is obvious from the energy-momentum tensor given in Eq.~B2!
that the energy density will be positive for 0,b,2/3.

~4! When we takea5b5cÞ0,1 in Eq.~70!, we obtain a metric which satisfies the constrain
given in 2a1b1c2(d1). This space–time admits 10 MCs with six KVs and hence we h
four proper MCs in this example. It can be seen from the energy-momentum tensor
becomes singular atr 50.

~5! If we take b5cÞ0,1 in Eq. ~70!, we get a metric satisfying the constraints of the ca
2a1b1c2d2(e1) admitting five MCs but three KVs. This is another example admitt
proper MCs. We must take 0,b,2/3 to make the energy-density positive. It is to be no
that the resulting metric would represent a perfect fluid forb5a(a21)/(a11) and non-
null electromagnetic field whenb5a11.

~6! Taking n5l5m in Eq. ~4!, it satisfies the constraints of the case 2a1b2(c1). This metric
admits six MCs and also six KVs.

~7! When we choosea5bÞc such thata,cÞ0,1 in Eq.~70!, we obtain a metric satisfying the
constraints of the case 2a2b3c1(d1). This metric admits five MCs with four isometrie
hence giving one proper MC.

~8! If we take eithern5l or n5m in Eq. ~4!, we have the solution of the constraints given
2a2b3c2(d1). This metric admits four MCs and four isometries.

~9! Now solving the constraints of the case 2a2b3c2(d2), we obtain the following solution:
ds25~coshcr!21dt22dr 22cosh2 cr du22~coshcr!21 dz2. ~71!

It has four MCs and also four KVs but seven RCs. This space–time represents aniso
tachyonic fluid.

~10! If we takea52 1
4, b5c5 1

2 in Eq. ~70!, we getT150 which gives the degenerate case a
hence satisfies the constraints of the case 3a2b2c4(d4). This metric admits five MCs and
four KVs. Thus we have one proper MC in this degenerate case.

VI. CONCLUSION

We know from the classification of cylindrically symmetric static space–times accordin
their isometries that we either get three, four, five, six, seven or ten isometries. The ten and
KVs are admitted by the well known anti–de Sitter and anti-Einstein universes, respectively
six isometries are admitted by the Bertotti–Robinson metric with the isometry group SO
3)R3

^ SO(3).There is one class of metrics depending on one arbitrary function with six is
etries given by

ds25en~dt22dr 22du22dz2!. ~72!

There are three cases of five dimensional isometry groups. There are also three classes of
depending upon two arbitrary functions having four dimensional isometry groups given by

ds25en dt22dr 22em~du22dz2!, ~73!

ds25en~dt22dz2!2dr 22el du2, ~74!

ds25en~dt22du2!2dr 22em dz2. ~75!

All other metrics admit minimal isometry groupG3 .
This paper presents a complete classification of cylindrically symmetric static space–

according to their MCs. We have solved MC equations for both nondegenerate and dege
cases. The explicit forms of MCs are given in each case. We have also written the corresp
constraints on the energy-momentum tensor in each case. Finally, we have attempted t
some of these constraints to find the exact solution of EFEs.
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TABLE I. MCs of case~1! for the nondegenerate energy-momentum tensor.

Cases MCs Constraints

1~a1! 10 T0850, T28505T38

1a2b1~c1! 6 T0850, T2850, T38Þ0,

F T3

AT1
S T38

2T3AT1
D 8G 8

50,
T3

AT1
S T38

2T3AT1
D 8

5a1.0

1a2b1~c2! 6 T0850, T2850, T38Þ0, F T3

AT1
S T38

2T3AT1
D 8G 8

50,

a150

1a2b1~c3! 6 T0850, T2850, T38Þ0, F T3

AT1
S T38

2T3AT1
D 8G 8

50, a1,0

1a2~b2! 4 T0850, T2850, T38Þ0, F T3

AT1
S T38

2T3AT1
D 8G 8

Þ0

1~a3! 1~a2! T0850, T28Þ0, T3850

1a4b1c1~d1! 6 T0850, T28Þ0, T38Þ0, F T2

AT1
S T28

2T2AT1
D 8G 8

50,

T2

AT1
S T28

2T2AT1
D 8

5a3.0,

F T3

AT1
S T38

2T3AT1
D 8G 8

50

1a4b1c1d2~e1! 4 T0850, T28Þ0, T38Þ0, F T2

AT1
S T28

2T2AT1
D 8G 8

50,

a3.0, F T3

AT1
S T38

2T3AT1
D 8G 8

Þ0,
T2

T3
5constantÞ0

1a4b1c1d2~e2! 3 T0850, T28Þ0, T38Þ0, F T2

AT1
S T28

2T2AT1
D 8G 8

50,

a3.0, F T3

AT1
S T38

2T3AT1
D 8G 8

Þ0,
T2

T3
Þconstant

1a4b1c2d1~e1! 6 T0850, T28Þ0, T38Þ0, F T2

AT1
S T28

2T2AT1
D 8G 8

50,

a350, F T3

AT1
S T38

2T3AT1
D 8G 8

50,

a1.0

1a4b1c2d1e2~ f 1! 7 T0850, T28Þ0, T38Þ0,F T2

AT1
S T28

2T2AT1
D 8G 8

50,

a350, F T3

AT1
S T38

2T3AT1
D 8G 8

50, a150,
T3

T2
5constant

1a4b1c2d1e2~ f 2! 4 T0850, T28Þ0, T38Þ0, F T2

AT1
S T28

2T2AT1
D 8G 8

50,

a350, F T3

AT1
S T38

2T3AT1
D 8G 8

50, a150,
T3

T2
Þconstant

1a4b1c2d1~e3! 6 T0850, T28Þ0, T38Þ0, F T2

AT1
S T28

2T2AT1
D 8G 8

50,

a350, F T3

AT1
S T38

2T3AT1
D 8G 8

50, a1,0
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When the energy-momentum tensor is nondegenerate~Sec. III!, we obtain either three, four
five, six, seven or ten independent MCs. Out of these MCs, we obtain three isometries and t
are the nontrivial~proper! MCs. In the degenerate case~Sec. IV!, most of the possibilities lead to
infinite dimensional MCs. However, there are some worth mentioning cases where we obtain
dimensional MCs even with degenerate energy-momentum tensor. In these cases, we ge
three, four, five or ten independent MCs in which three are the usual KVs and the rest a
proper MCs.

The summary of the results can be given in the form of Tables I–V.
It is seen from Tables I–V that each case has different constraints on the energy-mom

tensor. If we solve these constraints, we may have exact solution of EFEs. We have atte
~Sec. V! 10 different constraints to obtain the energy-momentum tensor and the correspo
space–time. These cases are given by 1a4b1c2d1e2( f 1), 2a1b1c2(d1), 2a1b1c2d2(e1),
2a1b2(c1), 2a1b2(c2), 2a2b3c1(d1), 2a2b3c2(d1), 2a2b3c2(d2), 2a2b3c1d3(e1), 3a2b2c4(d4).
It turns out that the cases 2a1b2(c1), 2a1b2(c2), 2a2b3c2(d1), 2a2b3c2(d2), 2a2b3c1d3(e1) pro-
vide no proper MC. However, the cases 2a2b3c1(d1) and 3a2b2c4(d4) yield one proper MC, the
case 2a1b1c2d2(e1) gives two proper MCs, the case 1a4b1c2d1e2( f 1) yields three proper MCs
and the case 2a1b1c2(d1) gives four proper MCs. It is interesting to note that 3a2b2c4(d4) is the
case whereT150, i.e., the degenerate case but this provides finite dimensional MCs and we o
one proper MC in this case.

We have attempted some of the constraints to obtain exact solutions of EFEs which give
dimensional MCs. We have discussed some of the physical properties of the resulting s
times. It would be interesting to look for more solutions of the constraints or examples shou
constructed to satisfy the constraints.

APPENDIX A

The surviving components of the Ricci tensor are

R005
1
4 en~2n91n821n8l81n8m8!,

R1152 1
4 ~2n912l912m91n821l821m82!,

~A1!
R2252 1

4 el~2l91n8l81l821l8m8!,

R3352 1
4 em~2m91n8m81l8m81m82!.

TABLE I. ~Continued!.

Cases MCs Constraints

1a4b1c2~d2! 4 T0850, T28Þ0, T38Þ0, F T2

AT1
S T28

2T2AT1
D 8G 8

50,

a350, F T3

AT1
S T38

2T3AT1
D 8G 8

Þ0

1a4b1~c3! 6 T0850, T28Þ0, T38Þ0, F T2

AT1
S T28

2T2AT1
D 8G 8

50, a3,0

1a4b2~c1! 4 T0850, T28Þ0, T38Þ0, F T2

AT1
S T28

2T2AT1
D 8G 8

Þ0,
T2

T3
5constant

1a4b2~c2! 3 T0850, T28Þ0, T38Þ0, F T2

AT1
S T28

2T2AT1
D 8G 8

Þ0,

T2

T3
Þ constant
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TABLE II. MCs of case~2! for the nondegenerate energy-momentum tensor.

Cases MCs Constraints

2a1b1c1~d1! 10 T08Þ0, S T2

T3
D 8

50, S T28

2T2AT1
D 8

50,
T28

2T2AT1

5b150, S ~AT0!8

AT1
D 8

50

2a1b1c1d2e1~ f 1! 6 T08Þ0, S T2

T3
D 8

50, S T28

2T2AT1
D 8

50, b150, S ~AT0!8

AT1
D 8

Þ0,

T0

2AT1
S T08

T0AT1
D 8

5b25constant, b250

2a1b1c1d2e1~ f 2! 6 T08Þ0, S T2

T3
D 8

50, S T28

2T2AT1
D 8

50, b150, S ~AT0!8

AT1
D 8

Þ0,

b25constant,b2Þ0

2a1b1c1d2~e2! 4 T08Þ0, S T2

T3
D 8

50, S T28

2T2AT1
D 8

50, b150, S ~AT0!8

AT1
D 8

Þ0,

b2Þconstant

2a1b1c2~d1! 10 T08Þ0, S T2

T3
D 8

50, S T28

2T2AT1
D 8

50, b1Þ0, S T2

T0
D 8

50

2a1b1c2d2~e1! 5 T08Þ0, S T2

T3
D 8

50, S T28

2T2AT1
D 8

50, b1Þ0, S T2

T0
D 8

Þ0, S T08

T0AT1
D 8

50

2a1b1c2d2~e2! 4 T08Þ0, S T2

T3
D 8

50, S T28

2T2AT1
D 8

50, b1Þ0, S T2

T0
D 8

Þ0, S T08

T0AT1
D 8

Þ0

2a1b2~c1! 6 T08Þ0, S T2

T3
D 8

50, S T28

2T2AT1
D 8

Þ0, SAT0

T2
D 8

50

2a1b2~c2! 4 T08Þ0, S T2

T3
D 8

50, S T28

2T2AT1
D 8

Þ0, SAT0

T2
D 8

Þ0

2a2b1c1~d1! 7 T08Þ0, S T2

T3
D 8

Þ0, T2850, T38Þ0,
T0

AT1
S T08

2T0AT1
D 8

5g150,

T3

AT1
S T38

2T3AT1
D 8

5g250, S T0

T3
D 8

50

2a2b1c1~d2! 4 T08Þ0, S T2

T3
D 8

Þ0, T2850, T38Þ0, g150, g250, S T0

T3
D 8

Þ0

2a2b1c2~d1! 3 T08Þ0, S T2

T3
D 8

Þ0, T2850, T38Þ0, g1Þ0, g250, g1.0

2a2b1c2d2~e1! 4 T08Þ0, S T2

T3
D 8

Þ0, T2850, T38Þ0, g1Þ0, g250, g1,0, S T0

T3
D 8

50

2a2b1c2d2~e2! 3 T08Þ0, S T2

T3
D 8

Þ0, T2850, T38Þ0, g1Þ0, g250, g1,0, S T0

T3
D 8

Þ0

2a2b1~c3! 2a2b1~c2! T08Þ0, S T2

T3
D 8

Þ0, T2850, T38Þ0, g150, g2Þ0

2a2b1c4d1~e1! 3 T08Þ0, S T2

T3
D 8

Þ0, T2850, T38Þ0, g1Þ0, g2Þ0, g1.0,

g2.0, g2T0E AT1

T0
dr 1

T38

2AT1

50

2a2b1c4d1e2~ f 1! 4 T08Þ0, S T2

T3
D 8

Þ0, T2850, T38Þ0, g1Þ0, g2Þ0, g1.0,

g2.0, g2T0E AT1

T0
dr 1

T38

2AT1

Þ0, S T0

T3
D 8

50
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TABLE II. ~Continued.!

Cases MCs Constraints

2a2b1c4d1e2~f2! 3 T08Þ0, S T2

T3
D 8

Þ0, T2850, T38Þ0, g1Þ0, g2Þ0, g1.0, g2.0,

g2T0E AT1

T0
dr 1

T38

2AT1

Þ0, S T0

T3
D 8

Þ0

2a2b1c4~d2! 2a2b1c4~d1! T08Þ0, S T2

T3
D 8

Þ0, T2850, T38Þ0, g1Þ0, g2Þ0, g1.0, g2,0

2a2b1c4~d3! 2a2b1c4~d1! T08Þ0, S T2

T3
D 8

Þ0, T2850, T38Þ0, g1Þ0, g2Þ0, g1,0, g2.0

2a2b1c4~d4! 2a2b1c4~d1! T08Þ0, S T2

T3
D 8

Þ0, T2850, T38Þ0, g1Þ0, g2Þ0, g1,0, g2,0

2a2~b2! 2a2~b1! T08Þ0, S T2

T3
D 8

Þ0, T28Þ0, T3850

2a2b3c1~d1! 5 T08Þ0, S T2

T3
D 8

Þ0, T28Þ0, T38Þ0, S T28

2T2AT1
D 8

50,

S T38

2T3AT1
D 8

50, S T2

T0
D 8

50, S T3

T0
D 8

Þ0

2a2b3c1~d2! 5 T08Þ0, S T2

T3
D 8

Þ0, T28Þ0, T38Þ0, S T28

2T2AT1
D 8

50,

S T38

2T3AT1
D 8

50, S T2

T0
D 8

Þ0, S T3

T0
D 8

50

2a2b3c1d3~e1! 4 T08Þ0, S T2

T3
D 8

Þ0, T28Þ0, T38Þ0, S T28

2T2AT1
D 8

50,

S T38

2T3AT1
D 8

50, S T2

T0
D 8

Þ0, S T3

T0
D 8

Þ0, S T08

2T0AT1
D 8

50

2a2b3c1d3~e2! 3 T08Þ0, S T2

T3
D 8

Þ0, T28Þ0, T38Þ0, S T28

2T2AT1
D 8

50,

S T38

2T3AT1
D 8

50, S T2

T0
D 8

Þ0, S T3

T0
D 8

Þ0, S T08

2T0AT1
D 8

Þ0

2a2b3c2~d1! 4 T08Þ0, S T2

T3
D 8

Þ0, T28Þ0, T38Þ0, S T28

2T2AT1
D 8

Þ0,

S T38

2T3AT1
D 8

Þ0, S T2

T0
D 8

50, S T3

T0
D 8

Þ0

2a2b3c2~d2! 4 T08Þ0, S T2

T3
D 8

Þ0, T28Þ0, T38Þ0, S T28

2T2AT1
D 8

Þ0,

S T38

2T3AT1
D 8

Þ0, S T2

T0
D 8

Þ0, S T3

T0
D 8

50

2a2b3c2~d3! 3 T08Þ0, S T2

T3
D 8

Þ0, T28Þ0, T38Þ0, S T28

2T2AT1
D 8

Þ0,

S T38

2T3AT1
D 8

Þ0, S T2

T0
D 8

Þ0, S T3

T0
D 8

Þ0
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The Ricci scalar is given by

R5 1
2 ~2n912l912m91n821l821m821n8l81n8m81l8m8!. ~A2!

Using Einstein field equations~1!, the nonvanishing components of energy-momentum tensorTab

are

TABLE IV. MCs of case~2! for the degenerate energy-momentum tensor.

Cases MCs Constraints

2a1(b1) Infinite No. of MCs T050, T150, T2Þ0, T3Þ0, S T3

T2
D 8

50

2a1b2(c1) Infinite No. of MCs T050, T150, T2Þ0, T3Þ0, S T3

T2
D 8

Þ0,

T2850, T38Þ0

2a1b2~c2! Infinite No. of MCs T050, T150, T2Þ0, T3Þ0, S T3

T2
D 8

Þ0,

T28Þ0, T3850

2a1b2~c3! Infinite No. of MCs T050, T150, T2Þ0, T3Þ0, S T3

T2
D 8

Þ0,

T28Þ0, T38Þ0

2a2b1~c1! Infinite No. of MCs T050, T1Þ0, T250, T3Þ0,

S T3

AT1
S T38

2T3AT1
D 8D 8

50,
T3

AT1
S T38

2T3AT1
D 8

5c.0

2a2b1~c2! Infinite No. of MCs T050, T1Þ0, T250, T3Þ0,

S T3

AT1
S T38

2T3AT1
D 8D 8

50, c50

2a2b1~c3! Infinite No. of MCs T050, T1Þ0, T250, T3Þ0,

S T3

AT1
S T38

2T3AT1
D 8D 8

50, c,0

2a2~b2! Infinite No. of MCs T050, T1Þ0, T250, T3Þ0,

S T3

AT1
S T38

2T3AT1
D 8D 8

Þ0

2~a3! Infinite No. of MCs T050, T1Þ0, T2Þ0, T350

2~a4! Infinite No. of MCs T0Þ0, T150, T250, T3Þ0

2~a5! Infinite No. of MCs T0Þ0, T150, T2Þ0, T350

2~a6! Infinite No. of MCs T0Þ0, T1Þ0, T250, T350

TABLE III. MCs of case~1! for the degenerate energy-momentum tensor.

Cases MCs Constraints

1~a1! Infinite No. of MCs T050, T150, T250, T3Þ0

1~a2! Infinite No. of MCs T050, T150, T2Þ0, T350

1~a3! Infinite No. of MCs T050, T1Þ0, T250, T350

1~a4! Infinite No. of MCs T0Þ0, T150, T2Þ0, T350
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TABLE V. MCs of case~3! for the degenerate energy-momentum tensor.

Cases MCs Constraints

3a1b1c1d1~e1! Infinite No. of MCs T050, T1Þ0, T2Þ0, T3Þ0, S T2

AT1
S T28

2T2AT1
D 8D 8

50,

T2

AT1
S T28

2T2AT1
D 8

5a1.0,
T3

AT1
S T38

2T3AT1
D 8

5a2.0,

Aa1

a2
1Aa2

a1
50

3a1b1c1d1~e2! Infinite No. of MCs T050, T1Þ0, T2Þ0, T3Þ0, S T2

AT1
S T28

2T2AT1
D 8D 8

50,

a1.0, a2.0,Aa1

a2
1Aa2

a1
Þ0

3a1b1c1~d2! Infinite No. of MCs T050, T1Þ0, T2Þ0, T3Þ0, S T2

AT1
S T28

2T2AT1
D 8D 8

50, a1.0, a250

3a1b1c1~d3! Infinite No. of MCs T050, T1Þ0, T2Þ0, T3Þ0, S T2

AT1
S T28

2T2AT1
D 8D 8

50, a1.0, a2,0

3a1b1c2d1~e1! Infinite No. of MCs T050, T1Þ0, T2Þ0, T3Þ0, S T2

AT1
S T28

2T2AT1
D 8D 8

50, a150,

2
T28

2T2AT1

5a450, a2.0

3a1b1c2d1e2~ f 1! Infinite No. of MCs T050, T1Þ0, T2Þ0, T3Þ0, S T2

AT1
S T28

2T2AT1
D 8D 8

50,

a150, a450, a250, 2
T38

2T3AT1

5a550

3a1b1c2d1e2~ f 2! Infinite No. of MCs T050, T1Þ0, T2Þ0, T3Þ0, S T2

AT1
S T28

2T2AT1
D 8D 8

50,

a150, a450, a250, a5Þ0

3a1b1c2d1~e3! Infinite No. of MCs T050, T1Þ0, T2Þ0, T3Þ0, S T2

AT1
S T28

2T2AT1
D 8D 8

50,

a150, a450, a2,0

3a1b1c2d2~e1! Infinite No. of MCs T050, T1Þ0, T2Þ0, T3Þ0, S T2

AT1
S T28

2T2AT1
D 8D 8

50,

a150, a4Þ0, a2.0

3a1b1c2d2~e2! Infinite No. of MCs T050, T1Þ0, T2Þ0, T3Þ0, S T2

AT1
S T28

2T2AT1
D 8D 8

50,

a150, a4Þ0, a250

3a1b1c2d2~e3! Infinite No. of MCs T050, T1Þ0, T2Þ0, T3Þ0, S T2

AT1
S T28

2T2AT1
D 8D 8

50,

a150, a4Þ0, a2,0

3a1b1~c3! Infinite No. of MCs T050, T1Þ0, T2Þ0, T3Þ0, S T2

AT1
S T28

2T2AT1
D 8D 8

50, a1,0,

3a1~b2! Infinite No. of MCs T050, T1Þ0, T2Þ0, T3Þ0, S T2

AT1
S T28

2T2AT1
D 8D 8

Þ0

3a2b1~c1! 4 T0Þ0, T150, T2Þ0, T3Þ0, T0850, S T28T3

T2T38
D 8

50
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T0052 1
4 en~2l912m91l821m821l8m8!,

T115
1
4 ~n8l81n8m81l8m8!,

~A3!

T225
1
4 el~2n912m91n821m821n8m8!,

T335
1
4 em~2n912l91n821l821n8l8!.

TABLE V. ~Continued.!

Cases MCs Constraints

3a2b1c2~d1! Infinite No. of MCs T0Þ0, T150, T2Þ0, T3Þ0, T0850, S T28T3

T2T38
D 8

Þ0, T28505T38

3a2b1c2~d2! 3 T0Þ0, T150, T2Þ0, T3Þ0, T0850, S T28T3

T2T38
D 8

Þ0, T28Þ0, T38Þ0

3a2b2~c1! 10 T0Þ0, T150, T2Þ0, T3Þ0, T08Þ0, S T0

T2
D 8

50, S T0

T3
D 8

50

3a2b2c2~d1! 5 T0Þ0, T150, T2Þ0, T3Þ0, T08Þ0, S T0

T2
D 8

50, S T0

T3
D 8

Þ0, S T0

T2
D 8

50

3a2b2c2~d2! 4 T0Þ0, T150, T2Þ0, T3Þ0, T08Þ0, S T0

T2
D 8

50, S T0

T3
D 8

Þ0, S T0

T2
D 8

Þ0

3a2b2~c3! 3a2b2~c2! T0Þ0, T150, T2Þ0, T3Þ0, T08Þ0, S T0

T2
D 8

Þ0, S T0

T3
D 8

50

3a2b2c4d1~e1! 4 T0Þ0, T150, T2Þ0, T3Þ0, T08Þ0, S T0

T2
D 8

Þ0, S T0

T3
D 8

Þ0,

S T08T2

T0T28
D 8

Þ0, S T08T3

T0T38
D 8

Þ0,
T2

T3
5constant

3a2b2c4d1~e2! 3 T0Þ0, T150, T2Þ0, T3Þ0, T08Þ0, S T0

T2
D 8

Þ0, S T0

T3
D 8

Þ0,

S T08T2

T0T28
D 8

Þ0, S T08T3

T0T38
D 8

Þ0,
T2

T3
Þconstant

3a2b2c4~d2! 4 T0Þ0, T150, T2Þ0, T3Þ0, T08Þ0, S T0

T2
D 8

Þ0, S T0

T3
D 8

Þ0,

S T08T2

T0T28
D 8

Þ0, S T08T3

T0T38
D 8

50

3a2b2c4~d3! 4 T0Þ0, T150, T2Þ0, T3Þ0, T08Þ0, S T0

T2
D 8

Þ0, S T0

T3
D 8

Þ0,

S T08T2

T0T28
D 8

50, S T08T3

T0T38
D 8

Þ0

3a2b2c4~d4! 5 T0Þ0, T150, T2Þ0, T3Þ0, T08Þ0, S T0

T2
D 8

Þ0, S T0

T3
D 8

Þ0,

S T08T2

T0T28
D 8

50, S T08T3

T0T38
D 8

50

3~a3! 3~a1! T0Þ0, T1Þ0, T250, T3Þ0

3~a4! 3~a1! T0Þ0, T1Þ0, T2Þ0, T350
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APPENDIX B

Linearly independent KVs associated with the static cylindrical symmetric space–time
given by12

j (1)5] t ,

j (2)5]u , ~B1!

j (3)5]z .

The components of the energy-momentum tensor for the metric in Eq.~70! are

T05~r /r 0!2a~b1c2b22c22bc!/r 2,

T15~ab1bc1ca!/r 2,
~B2!

T252~r /r 0!2b~a1c2a22c22ac!/r 2,

T352~r /r 0!2c~a1b2a22b22ab!/r 2.
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Geodesic flow on „super- … Bott–Virasoro group
and Harry Dym family
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S.N. Bose National Centre for Basic Sciences, JD Block, Sector-3, Salt Lake,
Calcutta—700098, India, and Department of Mathematics, University of Colorado
at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, Colorado 80933-
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We show various Harry Dym type equations and Super Harry Dym equations,
introduced by Brunelli, Das, and Popowicz@2003 Supersymmetric extensions of
the Harry Dym hierarchy, J. Math. Phys.44, 4756–4767~2003!#, follow from the
geodesic flows on the Bott–Virasoro group and its supersymmetric generalization,
superconformal group. In fact, their bi-Hamiltonian structures can be derived from
the Lie Poisson structures on the~super-! Bott–Virasoro orbit. We also show that
that m2KdV or Calogero–Degasperis equation is also connected to the Bott–
Virasoro group. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1645978#

I. INTRODUCTION

The connection between the geodesic equation of the Bott–Virasoro group and the pe
Korteweg–de Vries~KdV! equation follows from the work of Ovsienko and Khesin,21 Segal,26,27

Witten,28 and others.10,12,13

The following three systems, the KdV equation, the Camassa–Holm equation, and the
Dym equation, are related to various hydrodynamical approximations of the famous Euler
tion of an incompressible ideal fluid, and all these equations follow from the geodesic flows o
Bott–Virasoro group.11,14,20,21

It is known that the geodesic motion on the group of all volume preserving Hilbert dif
morphisms of some Sobolev classHs yields the hydrodynamics of an incompressible ideal flu
This was formally derived by Arnold.2 Later, Ebin–Marsden8 established a proper geometr
setting for this problem.

Ovsienko and Khesin21 showed that the KdV equation is the Euler–Poincare´ equation~cf.
Refs. 17, 18! for a central extension of the group Diff(S1) group of diffeomorphisms of the circle
parametrized byx:0<x<2p. For all practical purposes we restrict ourselves to the spac
orientation preservingC`, the diffeomorphism ofS1, denoted by Diff1(S1).

It is natural to consider the Lie algebraVG of vector fields onS1 as its algebra. The dual o
this algebra is identifed with space of quadratic differential formsu(x)dx^ 2 by the following
pairing:

K u~x!dx2, f ~x!
d

dxL 5E
0

2p

u~x! f ~x!dx.

The Lie algebra of vector fields onS1, VG, has a unique nontrivial central extension by mea
of R,

0→R→VĜ→VG→0,

described by the Gelfand–Fuks cocycle~cf. Refs. 11, 12!,

a!Electronic mail: partha@bose.res.in
15610022-2488/2004/45(4)/1561/10/$22.00 © 2004 American Institute of Physics
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v1S f
d

dx
,g

d

dxD5E
S1

f 8g9 dx.

The extended Lie algebra of vector fields is called the Virasoro algebra.
The elements ofV̂G can be identifed with the pairs~2p periodic function, real number!. The

commutator inV̂G takes the form

F S f ~x!
d

dx
,aD ,S g~x!

d

dx
,bD G5S f g82g f8,E

S1
f 8g9D . ~1!

The dual spaceV̂G* can be identified to the set

$~l,u!ulPR andu is a quadratic diffferential%.

A pairing between a point„l, f (x) (d/dx)…PV̂G and a point (m,u dx^ 2) is given by

lm1E
S1

f ~x!u~x!dx.

Theorem 1.1:There exists a groupD̂iff 1(S1) which is a central extension ofDiff 1(S1) given
by Bott’s cocycle,

c:Diff 1~S1!3Diff 1~S1!→R,

such that

c~s1 ,s2!5E
S1

log~s1+s2!8d logs18 , ~2!

for s iPDiff 1(S1). This cocycle satisfes c(s1 ,s1
21)50.

The next theorem follows from the work of Lazutkin and Pankratova.15

Theorem 1.2:The spaceV̂G* can be identifed with theV̂G-module of Hill’s operators,

$m]x
21q%,

acting on distributions of weight2 1
2 as D̂iff 1(S1) modules.

The theories of infinite-dimensional super integrable system have drawn lots of interst
last two decades. As a consequence a number of well known integrable equations hav
generalized into supersymmetric integrable systems. Ovsienko and Khesin21 showed that super
symmetric KdV equation, introduced by Kupershmidt, can be obtained as a geodesic flow
invariantL2 metric on the group of superconformal transformations of two-dimensional dom

In an interesting paper Brunelli–Das–Popowicz3 proposed a supersymmetric version for t
well known Harry Dym system. In this paper, we show that these equations also arise
geodesic flow on the group of a superconformal group.

II. GEODESIC FLOWS AND HARRY DYM EQUATIONS

Let G be a Lie group andg be its corresponding Lie algebra and its dual is denoted byg* .
The dual spaceg* to any Lie algebrag carries a natural Lie–Poisson structure:

$ f ,g%LP~m!ª^@d f ,dg#,m&,

for any mPg* and f ,gPC`(S1).
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Lemma 2.1: The Hamiltonian vector field ong* corresponding to a Hamiltonian function f,
computed with respect to the Lie–Poisson structure is given by

dm

dt
5add f* m. ~3!

Proof: It follows from the following identities:

i Xf
dgum5LXf

gum5$ f ,g%LP~m!5^@dg,d f#,m&5^dg,add f* m&.

This implies thatXf5add f* m. Thus the Hamiltonian equationdm/dt 5Xf yields our result. h

Let I be an inertia operator,

I :g→g* ,

and thenmPG* evolve by

dm

dt
5~ I 21m!•m, ~4!

where the right hand side denotes the coadjoint action ofg on g* . This equation is called the
Euler–Poincare´ equation.

Definition 2.2: The Euler–Poincaré equation ong* corresponding to the Hamiltonian
H(m)5 1

2^I
21m,m& is given by

dm

dt
52adI 21m

* m.

It characterizes an evolution of a pointmPg* .
Proposition 2.3: LetVG be infnite-dimensional Lie group equipped with a right invaria

metric. A curve t→c(t) in VG is a geodesic of this metric iff u(t)5dct
Rc

t
21ċ(t) satisfes

d

dt
u~ t !52adu~ t !* u~ t !. ~5!

The Euler–Poincare´ equation is the Hamiltonian flow on the coadjoint orbits on the dua
Bott–Virasoro algebra generated by the Hamiltonian

H~u]x ,a!5
1

2 ES1
u2 dx1a2,

wherea is just a constant.
Lemma 2.4:

ad
„l, f (x) ~d/dx!…
* ~m,u!5~0,1

2 m f-12 f 8u12 f u8![~0,ũ!. ~6!

Proof: It follows from the definition
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K ad
„l, f (x) ~d/dx!…
* „m,u~x!dx2

…,S n,g~x!
d

dxD L 5 K ~m,u dx2!,ad
„l, f (x) ~d/dx!…S n,g~x!

d

dxD L
5K ~m,u!,S 1

2 ES1
f 8g9dx,F f ~x!

d

dx
,g~x!

d

dxG D L
5m

1

2 ES1
f 8g9 dx1E

S1
F f ~x!

d

dx
,g~x!

d

dxGu~x!dx.

h

The coadjoint action leaves the parameterm invariant, so we fixm51 and by the abusing the
notation we continue to denote it byV̂G* .

On the coadjoint orbit inV̂G* we define the Lie–Poisson structure:

$ f ,g%~u~x!,1!5E F S d f

duD S dg

duD 8
2S dg

duD S d f

duD 8
1S d f

duD 8S dg

duD 9Gdx,

whered f /du(x) is called the Fre´chet derivative and it is defined by

d

de
f ~u1ev,l!ue505E d f

du
~x!v~x!dx.

Using Eq.~4!, we know

ũ5 1
2 f-12 f 8u1ju85~ 1

2 ]x
312u]x1ux! f .

The operator (12]x
312u]x1ux) is called a symplectic operator. The Euler–Poincare´ equation

is the Hamiltonian flow on the coadjoint orbits inV̂G* generated by the Hamiltonian

H~u!5 1
2 ^„1,u~dx! ^ 2

…,„1,u~dx! ^ 2
…&.

Theorem 2.5:The Euler–Poincaréequation gives the KdV equation, it is a Hamiltonian flo
on the coadjoint orbits inV̂G* for the Hamiltonian function H(u)5 1

2u
2.

The Harry Dym equation is given by

wt5~w21/2!xxx . ~7!

This can be written as

wt5]3S dH1

dw D5~]w1w]!
]H2

dw
,

where

H15E
S1

dx~2w1/2!,

H25E
S1

dxS 1

8
w25/2wx

2D .
                                                                                                                



il-

or

e

ncil

f the

1565J. Math. Phys., Vol. 45, No. 4, April 2004 Geodesic flow on (super-) Bott–Virasoro group

                    
Theorem 2.6: The Euler–Poincaréequation gives the Harry Dym equation, it is a Ham
tonian flow on the coadjoint orbits inVG* (centerless) for the Hamiltonian function H(w)

5*S1dx( 1
8w

25/2wx
2).

Clarkson, Fokas, and Ablowitz7 proposed a generalization of the Harry Dym equation,

wt52~w21/2!xxx1gw1/2wx1aw23/2wx1dwx , ~8!

whereg, a, andd are coefffents. This equation reduces to the Harry Dym equation wheng5a
5d50.

Theorem 2.7: The Euler–Poincaréequation yields the generalized Harry Dym equation
Clarkson–Fokas–Ablowitz equation7 (d50), for the Hamiltonian function,

H~w!5E
S1

dxS 1

8
w25/2wx

2D2aE
S1

dx w21/21
2

3
gE

S1
dx w3/2.

Remark:One can incorporatedwx term through lightcone coordinate, that is, defining

]

]t8
5

]

]t
2g

]

]x
.

Another interesting equation, the Hunter–Zheng equation~cf. Ref. 2! also follows from the
same Hamiltonian structure with a Hamiltonian,

H5
1

2 ES1
~]22w!~]21w!2 dx.

Let us study the bihamiltonian structure of Harry Dym equation.22

Definition 2.8: Let MP be a Poisson manifold endowed with two Poisson bracket$•,•%0 and
$•,•%1 . We say that MP is a bi-Hamiltonian manifold if the linear combination,

$ f ,g%lª$ f ,g%01l$ f ,g%1 ,

of these brackets satisfes Jacobi identity for any valuel then$•,•%l is called a Poisson pencil.
In other words, a dynamical system,

dm

dt
5XH~m!,

on M is called bi-Hamiltonian if the vector fieldXH is Hamiltonian with respect to both th
Poisson brackets$•,•%0 and$•,•%1 .

Let us consider Poisson pencil$•,•%l is the deformation of$•,•%0 and the Casimir function of
$•,•%0 .

Let H(l) be the one parameter families of function such that

$H~l!, f %l50.

Let H(l)5(kHkl
2k and supposeG(l) be the another Casimir element on the Poisson pe

then from the recurence relation it can be proved6 that

$Hk ,Gj%15$Hk11 ,Gj%050.

Hence, we say that the coefficients of the Laurent expansion of the Casimir function o
pencil are in involution with respect to both the basis brackets.

Let us assume$•,•%0 to be a constant Poisson bracket.
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Definition 2.9: The constant Poisson bracket associated to a pointm0Pg* is the bracket
$•,•%0 on the dual spaceg* defined by

$ f ,g%0~m!ª^@d f ,dg#,m0&,

for any two smooth functions f and g on the dual space for anymPg* .
Remark:The constant bracket depends on the choice of the ‘‘freezing’’ pointm0 , while the

Lie–Poisson bracket is defned by the Lie algebra structure only.
The following proposition was shown by Khesin and Misiolek.14

Proposition 2.10: The brackets$•,•%LP and $•,•%0 are compatible for every ‘‘freezing’’ point
m0 .

Freezing at the point (u dx2,a)5(0,1) yields a truncated Hamiltonian operator,

O05]3.

Theorem 2.11: The Euler–Poincaré equation corresponds to ‘‘freezing’’ at the poin
(u dx2,a)5(0,1) yields a Harry Dym flow with respect to H5*S12w1/2.

III. SUPER HARRY DYM EQUATION

Let us consider a Lie superalgebra, the Neveu–Schwarz superalgebra,16 which contains the
Virasoro algebra as its even part.

The first and foremost characteristic property of super algebra is that all the additive gro
its basic and derived structures areZ2 graded. A vector superspace is aZ2 graded vector space
V5V01V1 . An elementv of V0 ~resp.,V1) is said to be even~resp., odd!. The super commutato
of a pair of elementsv,wPV is defined to be the element

@v,w#5vw2~21! v̄w̄wv.

The Neveu–Schwartz superalgebra has two parts: bosonic~even! and fermionic~odd!. These
are given by

SĜB5Vect~S1! % R, ~9!

SĜF5C`~S1!. ~10!

The Neveu–Schwarz superalgebra is an algebra on the space Vect(S1) % C`(S1) % R with the
bilinear operation

F S f ~x!
d

dx

f~x!

l

D ,S g~x!
d

dx

c~x!

m

D G51
~ f g82 f 8g1cf!

d

dx

S S f c82
1

2
f 8c D2S gf82

1

2
g8f D D

S a1E
S1

f 8g91a2E
S1

f g8 dx

12b1E
S1

f8c8 dx1b2E
S1

fc dx

2 . ~11!

Note that this algebra is the extension ofs Vect(S1) by the super Gelfand–Fuchs cocycle,
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cSuperS S f ~x!
d

dx
,f~x! D ,S g~x!

d

dx
,c~x! D D

5a1E
S1

f 8g9 dx1a2E
S1

f g8 dx12b1E
S1

f8c8 dx1b2E
S1

fc dx,

where the even part of this cocycle is cohomologous to the Gelfands–Fuchs cocycle and
fore, the corresponding central extension is isomorphic to the Virasoro algebra. Indeed, th
order term is a coboundary.

On this algebra, the ad-invariant, bilinearL2 norm is given by

K S f ~x!
d

dx
,f~x!,aD ,S g~x!

d

dx
,c~x!,bD L

L2

5E
S1

f g dx1E
S1

f]x
21c dx1ab.

Lemma 3.1:

ad
f̂
* û5S 2u f8~x!1u8 f 1a f-1 1

2 c8f1 3
2 cf8

f c81 3
2 f 8c1uf1bf9

D , ~12!

where a and b are constants.
Hence the super Hamiltonian operator associated to superconformal group is given by

Osuper5S ]u1u]1a]3 1
2 ]c1c]

1
2 ]c1c] u1b]2 D . ~13!

Let us consider a ‘‘super freezing’’ point,

„u dx2,f~x!,a,b…5~0,0,1,1!.

Corresponding to this point we defne the constant Poisson bracket$•,•%0 . This bracket yields the
super Harry Dym equation,

S w
c D

t

5S ]3
dH1

dw

]2
dH1

dc

D 5S ]3~w21/2!

]2~cxw
23/2D .

The second Hamiltonian structure is

OsHD5S ]u1u] 1
2 ]c1c]

1
2 ]c1c] u

D , ~14!

and the corresponding super Hamiltonian
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H5
1

8 ES1
~ux

2u25/2216cxcxxw
25/2215ccxwxxw

27/2115ccxxwxw
27/2!dx

yields super Harry Dym equation.3

IV. RECIPROCAL TRANSFORMATION AND INTEGRABLE FLOWS CONNECTED TO
BOTT–VIRASORO GROUP

In this section we show how several other integrable systems are connected to the ge
flows on the Bott–Virasoro group via reciprocal transformation. Reciprocal transformations
useful tool in the study of integrable partial differential equations. These transformations
been extensively employed in contimuum mechanics not only to solve nonlinear boundary
problems. These applications are described in detail in the works of Rogerset al.23,24 In our
present context, reciprocal transformation is shown to be a key component25 to connect the Harry
Dym system and modified modified KdV~or m2KdV) or Calogero–Degasperis system.4

Consider the following ‘‘modified’’ Gelfands–Fuchs cocycle~cf. Refs. 12, 13! on Vect(S1):

vmGFS f ~x!
d

dx
,g~x!

d

dxD5E
S1

~a f8g91b f8g!dx. ~15!

It is easy to check that the modified action of Vect(S1) on virreg* is given by the following lemma.
Lemma 4.1:

adf (x) d/dx ,l* ~u dx2,m!5„m~a fxxx1b fx!14 f 8u12 f u8,0…. ~16!

Let us choose a specific hyperplane in virreg* such thata51,b521.
Freezing at the point (u dx2,m)5(0,1) yields a truncated Hamiltonian operator,

O5~]32]!.

Theorem 4.2: The Euler–Poincaré equation corresponds to ‘‘freezing’’ at the poin
(u dx2,a)5(0,1) yields a Camassa–Holm flow,

wt5~]32]!w21/2, ~17!

with respect to H5*S12w1/2.
The integrable shallow-water equation investigated in Camassa and Holm,5 namely,

mt52~m]1]m!u, wherem5u2uxx1
1
2 k ~18!

has an associated hierarchy determined from the recursion operatorR5O2O 1
21, where

O15]2]3, whereO25m]1]m

are the first and second Hamiltonian operators. Applying the recursion operatorR three times~cf.
Ref. 1!, starting from the shallow-water wave equation~18!, gives the equation~17!. In the
standard Dym equation, the term] is absent. The equation~18! is also called the Fuchsteinner
Fokas–Camassa–Holm equation.5,9

Let us substitutew5A2r2 in the Camassa–Holm equation~17!. We obtain

r t5ar21@~r21!xxx2~r21!x#, ~19!

where 2A3a51.
Under the reciprocal transformation
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dX5rdx1a@r21~r21!xx2
1
2 @~r21!x#

22 1
2 ~r21!2#dt, dT5dt,

andL5 1/r, we obtain

LT1a@L$~L!XX2 1/2~AL!X
22 L2/2%#X50. ~20!

Let us set

u52AL,

so that

uT1a@uXXX2 ~1/2! uX
32~3/2! e22uuX#50. ~21!

The choicea521 delivers them2KdV equation.
Thus, we have seen that them2KdV or Calogero–Degasperis equation4 is also connected to

the geodesic flow on the Bott–Virasoro group.

V. CONCLUSION AND OUTLOOK

In this paper we have shown how several Harry Dym type equations are connected
geodesic flows on the Bott–Virasoro group. We have also studied their superanalogs. Th
connected to the geodesic flows on the superconformal group.

This result should be generalized to include deformed integrable systems. Recently M
and Neveu19 derived a new integrable classical 111-dimensional equation, given by

uxxt5ux2uuxxx22uxuxx1l]2~ux
3!,

from the columnar approximation of the Euler equations of an incompressible fluid with su
tension. It would be challenging to connect the Manna–Neveu equation with the Bott–Vir
group.
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Superfluidity of a Fermi liquid from the viewpoint of a
hierarchy of equations for reduced density matrices
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The hierarchy of equations for reduced density matrices relevant to thermodynamic
equilibrium with account taken of the spin obtained earlier is modified in order to
describe the state of a Fermi system with a condensate. Although the procedure is
to some extent analogous with the one carried out by the author earlier for a Bose
liquid peculiarities relevant to Fermi statistics complicate considerably the treat-
ment. As in the case of the Bose liquid the condensate phase can be superfluid as
well as nonsuperfluid, the physical causes of superfluidity being identical. A new
mechanism of fermion pairing that acts even in the case of a purely repulsive
Hamiltonian is pointed out. Special attention is given to the thermodynamics of a
superfluid Fermi system. The example of a hard-sphere system is used to find out
the form of phase diagrams, the character of the phase transition to a condensate
phase and the properties of the last. Noticeable dissimilarities from a Bose system
with the same Hamiltonian are revealed. Application of the present approach to
superconductivity is discussed as well. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1644903#

I. INTRODUCTION

In a recent paper1 to be referred to as I a hierarchy of equations fors-particle reduced density
matrices describing a system of nonzero-spin particles at thermodynamic equilibrium was d
the hierarchy being a quantum analogue of the equilibrium Bogoliubov–Born–Green–Kirkw
Yvon ~BBGKY! hierarchy. The hierarchy derived is an extension of the hierarchy obtained ea2

for spinless particles. The approach proposed in Ref. 2 permitted one not only to dedu
hierarchy but also to construct relevant thermodynamics. In a subsequent publication3 the ap-
proach was used for treatment of Bose condensation and thereupon of superfluidity in
systems, a new explanation of the phenomenon being proposed on this basis. At the same
was shown that the condensate cannot form in the case of spinless fermions and thereby
fluidity cannot exist in this case. Therefore, in order to consider superfluidity in fermionic sys
on a base of the approach it was necessary first to incorporate the spin into its framewor
being done in I our aim in the present paper is to study superfluidity of a Fermi liquid leaning
ideas of Ref. 3, which can provide a new method for studying the phenomenon.

The superfluidity of Fermi systems itself is worthy of special attention since in nature the
a fermionic system, liquid helium-3, which can be superfluid. However, still more important i
fact that consideration of systems comprising noncharged fermions~just noncharged particles ar
implied in the present paper! represents an essential step towards a treatment of such a phe
enon as superconductivity.

Theoretical studies of superconductivity are based mainly upon ideas of the Bard
Cooper–Schrieffer~BCS! theory4 and of Bogolyubov’s method,5 of which the latest development
are reflected in different reviews.6–8 In the present paper we shall proceed from the gen
principles formulated in Refs. 2 and 3 and we shall have no need of resorting to any extra id
argumentation of the type presented in the references cited just above. Doubtlessly, d

a!Electronic mail: mgvmi-mail@mtu-net.ru
15710022-2488/2004/45(4)/1571/22/$22.00 © 2004 American Institute of Physics
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approaches in the theory of superconductivity are of obvious physical interest as long a
enable one to obtain further insight into the essence of the phenomenon, which may have
erable utility especially in the light of problems of high-temperature superconductivity.

The organization of the paper is as follows. In Sec. II we modify the hierarchy obtained
in order to take account of the situation in which there is an exceptional state, a conde
proceeding along the lines of Ref. 3 and without resorting to Cooper’s idea that fermions co
into pairs that behave like bosons. Nevertheless the condensate can form although the rea
this is more complicated than in the case of bosons owing to the Pauli exclusion principle
existence of the condensate leads to the possibility of superfluidity just as in Ref. 3. In Sec.
consider the thermodynamics of a state with condensate. Section IV illustrates application
general theory established in the preceding sections using, as an example, a system of hard
wherein triplet correlations are neglected. In particular we shall construct a phase diagram
a region relevant to the condensate phase will be seen. Since the same example was cons
Ref. 3 this will enable us to compare the fermionic and bosonic condensate phases and to
that they exhibit different features. The results obtained and some other relevant questio
discussed in the concluding section.

This paper should be considered to be the second part of a work, the first part being p
For this reason we neither repeat the ideas of the present approach nor discuss previous
obtained with its help because all of this can be found in the introduction to paper I. When it
stipulated explicitly the definitions and notation of I are implied. For the sake of convenie
when referring to an equation of paper I we shall place I in front; so we shall write, e.g.,~I.2.16!
implying Eq. ~2.16! of I.

II. GENERAL EQUATIONS AND THEIR ANALYSIS

A. Hierarchy of equations in the presence of a condensate

When the spin of particles is taken into account the reduced density matricesRs(Xs ,Xs8) in a
condition of thermodynamic equilibrium have the form of~I.2.16!, namely,

Rs~Xs ,Xs8!5 (
n,Gs

ns~«n
~s!!CnGs

~Xs!CnGs
* ~Xs8!. ~2.1!

In this equation the quantities«n
(s) are eigenvalues of Eq.~I.2.11! and, therefore,n is in reality a set

of numbers that characterize eigenfunctions of Eq.~I.2.11!. For this reason the quantities«n
(s) and

therebyns(«n
(s)) are defined initially on a discrete point set in the relevantn-space whose dimen

sionality depends on the numbers. In paper I~see also Ref. 2! it is assumed that in a state o
thermodynamic equilibrium the functionsns(«n

(s)) are universal functions, which implies thatns’s
are continuous functions of a continuous variablez, i.e. ns5ns(z) while z5«n

(s) in ~2.1!.
According to the ideas of Ref. 3 the initial character of«n

(s) may manifest itself in that the
quantityns(«n

(s)) has an outlier at a certainn5n0 depending on the numbers, which amounts to
saying thatns(«n0

(s))5Dns1ns(z0) wherens(z0) is the limit of ns(z) asz→z05«n0

(s) . The part of

the system described byDns will be called the condensate according to the commonly acce
terminology. In this case Eq.~2.1! can be recast as

Rs~Xs ,Xs8!5Rs
~c!~Xs ,Xs8!1Rs

~n!~Xs ,Xs8!, ~2.2!

with

Rs
~c!~Xs ,Xs8!5(

Gs

Fs
~Gs!

~Xs!Fs
~Gs!*

~Xs8!, ~2.3!

Rs
~n!~Xs ,Xs8!5 (

n,Gs

ns~«n
~s!!CnGs

~Xs!CnGs
* ~Xs8!, ~2.4!
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where the superscript~c! means the condensate fraction and~n! the normal one, the function
ns(z) in ~2.4! being continuous now. When writing down~2.3! we imply that there is no externa
field that would act on the spins; thereby all solutions withn5n0 and different spin projections ar
singled out, none of them being distinguished anyhow. Upon assuming thatDns.0 the unknown
quantitiesDns are incorporated into the functionsFs

(Gs)(Xs) of ~2.3! which because of this differ
from Cn0Gs

(Xs) in the normalization. Therefore, according to~I.A10! they have the form

Fs
~Gs!

~Xs!5
1

s! (Prs

~s!

~6 !pPrsxGs
~Ss!ws~xs!, ~2.5!

while the functionsws(xs) satisfy the equation following from~I.2.11!

\2

2m (
j 51

~s!

¹ j
2ws~xs!1@«~s!2Us~xs!#ws~xs!50, ~2.6!

in which « (s) is written for «n0

(s) .

If, by analogy withn0 , several sets of numbersn are exceptional the relevant functions w
be labeled with an indexl. In this case instead of~2.2! and ~2.3! one will have

Rs~Xs ,Xs8!5 (
l,Gs

Fs,l
~Gs!

~Xs!Fs,l
~Gs!*

~Xs8!1Rs
~n!~Xs ,Xs8!. ~2.7!

Analogously with~2.2! we introduce also diagonal elements of the density matrices sum
up over the spin coordinates defined in~I.2.5!:

rs~xs!5rs
~c!~xs!1rs

~n!~xs!, ~2.8!

where upon implying~2.3!

rs
~c!~xs!5 (

Ss ,Gs

uFs
~Gs!

~Xs!u2. ~2.9!

As long as Eq.~2.4! is identical to~2.1! with the same presumptions as to the continuity
ns(z), for Rs

(n)(Xs ,Xs8) we have the same formulas as the ones of I forRs(Xs ,Xs8). Therefore, the
expression forrs

(n)(xs) coincides with~I.2.27!, namely,

rs
~n!~xs!5

1

2p i ~2p\!3ss! E dmsE
C
dzns~z!ys~xs ,ms ,z!

3(
P

~s!

~6 !pk~P!expF i

\ (
k51

s

r k~pk2Ppk!G , ~2.10!

with k(P)5(Ss
d(PSs ,Ss) and the functionys(xs ,ms ,z) satisfying Eq.~I.2.26!:

\2

2m (
j 51

s

¹ j
2ys1

i\

m (
j 51

s

pj¹jys1Fz2
1

2m (
k51

s

pj
22Us~xs!Gys51. ~2.11!

When deriving Eq.~I.2.24! from a hierarchy of equations forRs(Xs ,Xs8) of ~2.1! no continuity
condition was implied forns(«n

(s)) and consequently this equation can be used as it stands:

rs~xs!¹1Us~xs!5rs~xs!¹1(
j 52

s

K~ ur12r j u!1E rs11~xs11!¹1K~ ur2r s11u!dr s11 , ~2.12!
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upon supposing that there is no external fieldV(e)(r ). It will be recalled thatK(ur i2r j u) is the
two-body potential that describes interaction between particles.

Thus, just as in I we have again obtained a hierarchy of equations for diagonal eleme
reduced density matrices at thermodynamic equilibrium, which containsrs(xs), Us(xs),
ys(xs ,ms ,z) and nowws(xs) in addition. The equations are~2.5!, ~2.6!, ~2.8!–~2.12!. Equations
~2.9!, ~2.5!, and ~2.6! determiners

(c)(xs) as a functional of the effective potentialUs(xs) via an
auxiliary functionws(xs) while Eqs.~2.10! and ~2.11! determiners

(n)(xs) as a functional of the
same potentialUs(xs) via an auxiliary functionys(xs ,ms ,z). Eq. ~2.12! yields a functional de-
pendence ofUs(xs) on the full functionsrs(xs) andrs11(xs11) of ~2.8! thus closing the set o
equations and at the same time connecting thesth and (s11)th members of the hierarchy. Not
that Eq.~2.12! has a form similar to that of an equation of the classical BBGKY hierarchy2 It
remains to determine the functionsns(z), the quantities« (s) , the normalization ofws(xs), and
conditions on solutions of Eq.~2.6!, the conditions on solutions of Eq.~2.11! being discussed in
Ref. 2 seeing that Eq.~2.11! coincides with Eq.~2.22! of this last reference.

B. Supplementary equations and conditions

In order to find the quantities and conditions listed at the end of the preceding subsecti
turn to the interrelation between the reduced density matrices that follows from~I.2.4! at n5s
11:

~N2s11!Rs21~Xs21 ,Xs218 !5 (
ss51

k E
V
Rs~Xs21 ,r s ,ss ,Xs218 ,r s ,ss!dr s , ~2.13!

where we have made the replacements→s21 for convenience sake.9 In virtue of the linearity of
Eq. ~2.13! one can require it to be satisfied byRs

(c) andRs
(n) separately.

As long asRs
(n) obeys the same equations asRs in I Eq. ~2.13! permits one to arrive at an

equation forns(z) identical with ~I.2.29!. In order to solve this equation uniquely an extra co
dition onns(z) is required. To obtain the condition in question one may reason exactly as in
IV of Ref. 2. Let the system be made up of two mutually noninteracting subsystemsA andB, so
that the wave function of the system is of the formC5CACB . In this case the density matrice
should break up into two factors according to the definition of~I.2.2!:

Rs~Xs ,Xs8!5Cs
sa ,sbRsa

~Xsa

~a! ,Xsa

~a!8!Rsb
~Xsb

~b! ,Xsb

~b!8!, ~2.14!

wheres5sa1sb , the constantCs
sa ,sb depends on the manner in which one normalizesRsa

andRsb

~see Appendix A!, the indexa refers to the subsystemA andb to B. For simplicity we assume tha
the subsystemA alone has a condensate. Then as in~2.2!–~2.4! we shall have

Rsa
~Xsa

~a! ,Xsa

~a!8!5(
Gsa

F
sa

~Gsa
!
~Xsa

~a!!F
sa

~Gsa
!*

~Xsa

~a!8!1 (
na ,Gsa

nsa
~«na

~sa!
!CnaGsa

~Xsa

~a!!CnaGsa

* ~Xsa

~a!8!,

~2.15!

Rsb
~Xsb

~b! ,Xsb

~b!8!5 (
nb ,Gsb

nsb
~«nb

~sb!
!CnbGsb

~Xsb

~b!!CnbGsb

* ~Xsb

~b!8!. ~2.16!

Upon substituting this into~2.14! and taking into account that«n
(s)5«na

(sa)
1«nb

(sb) in the present

case2 we shall obtain an expression of the type~2.7! only if

ns~«na

~sa!
1«nb

~sb!
!}nsa

~«na

~sa!
!nsb

~«nb

~sb!
!. ~2.17!
                                                                                                                



rt

less

l

1575J. Math. Phys., Vol. 45, No. 4, April 2004 Superfluidity of a Fermi liquid

                    
This relation together with~I.2.29! entail Eqs.~I.2.30! and~I.2.31! ~details are given in Appendix
A!, namely,

ns~z!5Ase
2z/t, As5s! S r

k D s21S 2p\2

mt D 3~s21!/2

A; n1~z![n~z!5Ae2z/t, ~2.18!

wherer5N/V is the average number density,A andt are constants.
Having foundns(z) we now turn to the relationship of~2.13! as applied to the condensate pa

Rs
(c)(Xs ,Xs8). Upon placing Eq.~2.3! there and assuming thats!N we have, fors.1,

(
Gs21

Fs21
~Gs21!

~Xs21!Fs21
~Gs21!*

~Xs218 !5
1

N (
ss51

k

(
Gs

E
V
Fs

~Gs!
~Xs21 ,r s ,ss!Fs

~Gs!*
~Xs218 ,r s ,ss!dr s .

~2.19!

Let us find firstF1
(g)(r ,s) that, according to~2.5!, is of the form

F1
~g!~r ,s!5dgsw1~r !. ~2.20!

It will be recalled that the spin variables and the spin indexg run from 1 tok52S11 whereS
is the particle spin. As in I we limit ourselves to consideration of a spatially uniform bound
system upon putting2 U150. Then Eq.~2.6! at s51 becomes

\2

2m
¹2w1~r !1«~1!w1~r !50. ~2.21!

We take a solution of this equation which givesr1
(c)5rc5constant. Analogously to Eq.~2.8!

of Ref. 3 this solution is of the formw1(r )5C exp(ip0r /\) with p0
252m« (1) . The constantC that

can be considered to be real because a factor likeeia plays no part for~2.3! may be expressed in
terms ofrc by ~2.9!. We introduce the result into~2.20!:

F1
~g!~r ,s!5dgsArc

k
expS i

\
p0r D , «~1!5

p0
2

2m
. ~2.22!

Here we have also written down the quantity« (1) as a function ofp0 . Below we shall see that al
quantities relevant to the condensate are expressed in terms of the condensate densityrc and of the
vectorp0 .

Next, referring again to~2.5! one has

F2
~g1 ,g2!

~r1 ,s1 ,r2 ,s2!5 1
2 @dg1s1

dg2s2
w2~r1 ,r2!6dg1s2

dg2s1
w2~r2 ,r1!#. ~2.23!

We turn now to the relationship~2.19! putting s52. At given r s215r1 and r s218 5r18 the main
contribution to the integral in~2.19! asV→` results from regions whereur12r2u andur182r2u are
large ~cf. Sec. IV of Ref. 2!. In these regionsU2→0, and Eq.~2.5! at s52 becomes

\2

2m
~¹1

21¹2
2!w2

~`!~r1 ,r2!1«~2!w2
~`!~r1 ,r2!50, ~2.24!

the superscript~`! denoting the limiting value ofws . By analogy with the solution of Eq.~2.21!
the solution of~2.24! can be taken to be

w2
~`!~r1 ,r2!5B2 expF i

\
~q1r11q2r2!G , «~2!5

q1
21q2

2

2m
. ~2.25!
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It should be observed that the solution of~2.24! need not have any symmetry since the symme
required will emerge after substitution into~2.23!. If ~2.22! and ~2.23! together with~2.25! are
inserted into~2.19! at s52, one will obtain thatq15q25p0 and, besides,

B25A 2rcr

k~k61!
, «~2!5

p0
2

m
. ~2.26!

Some comment at this point is in order. In Ref. 3 it was pointed out that in the case of sp
fermions the condensate could not form. This follows directly from~2.26!: if one putsk51 ~i.e.,
S50) implying the lower sign in~2.26!, then the expression forB2 makes no sense unlessrc

50.10 Existence of the spin of fermions~the spin factork>2) leads to the result thatB2Þ0 if
rcÞ0. In other words, the spin permits one to surmount the difficulty that arises ats52 in the
case of spinless fermions.

If, however, one goes on reasoning in parallel with Ref. 3 farther, in the case of spin
fermions (k52) one will again encounter an analogous difficulty now at the next stage@s53 in
~2.19!#. The difficulty consists in the following. In Ref. 3 when considering an equation iden
with ~2.6! in the limit of large ur j2r ku ’s, one implied simplest asymptotic solutions having t
form ws

(`)(xs)}exp(iSqkr k /\) @cf. ~2.25!# which always turned out symmetric inr k becauseqk

5p0 @see Eq.~2.9! of Ref. 3#. On the other hand if the functionws(xs) in ~2.5! is symmetric, in
order thatFs

(Gs)(Xs) be antisymmetric it is necessary that the function relevant to the spin
ables shall be antisymmetric. The latter function can be expressed in terms of spinors. WS
51/2, however, there is no antisymmetric spinor of rank 3~see Ref. 11!. If S.1/2 ~i.e., k.2)
analogous difficulties occur fors.3. It would seem that there is no solution to Eq.~2.19! appro-
priate for fermions.

However, just ifs>3 there emerges a favourable circumstance. All solutions of Eq.~2.6! at
s52 can be taken to be symmetric or antisymmetric as in the case of the Schro¨dinger equation11

that Eq.~2.6! is identical with. It easy to see that antisymmetric solutions are not appropriat
our purposes.12 In the event thats>3, in addition to symmetric and antisymmetric solutions
equation of the~2.6! type always admits solutions that have no such symmetries.11 Just these las
solutions are helpful for us.

For s>3 we shall take solutions of~2.6! subject to the conditions

ws~xs!→Dsws21~xs21!expS i

\
p0r D , as ur su→`, ~2.27!

ws~xs!→0, as ur j u→` with j Þs, ~2.28!

whereDs is a constant to be chosen later. The physical bearings of the conditions of~2.27! and
~2.28! will be discussed below. Note that the conditions are not symmetric in allr1 ,...,r s . We
place Eq.~2.27! into ~2.6!, letting ur su→` and making use of the obvious fact2 that Us(xs)
→Us21(xs21) in this limit sinceU150. As a result we have

\2

2m (
j 51

s21

¹ j
2ws21~xs21!1F«~s!2

p0
2

2m
2Us21~xs21!Gws21~xs21!50. ~2.29!

Upon comparing this with Eq.~2.6! written for ws21(xs21) we see that the condition of~2.27! is
possible if

«~s!5«~s21!1
p0

2

2m
. ~2.30!

Because we know« (1) and« (2) by ~2.22! and ~2.26!, this relation determines all« (s) .
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We revert now to the right-hand side of~2.19!. Again, as in thes52 case, the main contri
bution to the integral asV→` is due to regions whereur su is large, and thereby the limiting
expressions of~2.27! and~2.28! have to be used with account taken of the fact that the vector s

is permuted according to~2.5!. By virtue of ~2.28! all permutations that involver s will give
integrals that increase more slowly thanV in the limit asV→`. For this reason we ought to retai
only those permutations that do not affectr s , which implies making use of~2.27!. Then the
integral in~2.19! is calculated at once while the summation overss andgs is readily carried out
thanks to~I.2.12!. If one compares the result with the left-hand side of~2.19! wherein~2.5! is put
one will see that~2.19! is fulfilled if

Ds5sAr

k
. ~2.31!

Thus, we have satisfied the last condition to which the density matrices are to be subject
condition being~2.19!. Together with this, we have uniquely formulated the problem concern
solution of Eq.~2.6! for s>3: the quantities« (s) are defined by~2.30! while the limiting form of
ws(xs) must be that of~2.27! and~2.28! whereinDs is given by~2.31!. We see that calculation o
ws21(xs21) determines the boundary conditions forws(xs) from which the normalization of
ws(xs) follows as well. Fors52 the boundary condition is~2.25! with ~2.26!, while for s51 the
solution is known by virtue of~2.22!. Just as in Ref. 3 there remain four arbitrary constantst, A,
rc , and p0 which are to be found from thermodynamic considerations and the normaliz
condition of ~I.2.6!.

C. Analysis and discussion of the results obtained

Turning now to the discussion of the physical bearings of the conditions of~2.27! and~2.28!
let us first consider the cases53 whenr s5r3 . The condition of~2.27! is usual and means tha
when particle 3 moves away, particles 1 and 2 are described by the wave functionw2(r1 ,r2). The
condition ~2.28! is rather unusual in our case. The fact that a wave function vanishes at in
implies that there is a bound state. Therefore, the condition of~2.28! amounts to saying tha
particles 1 and 2 form a bound state in the presence of particle 3 even if there is no boun
when particle 3 is absent@the above functionw2(r1 ,r2) corresponds to the scattering of particl
according to the discussion of Eq.~3.6! obtained below#. The possibility of such a situation i
quite understandable physically. Let us suppose that the interaction between each pair of p
is attractive but rather weak, so that they cannot form a bound state. Approach of a third p
diminishes the potential energy, and thereby the first two particles may form a bound state
the third is near. The aforesaid does not signify that all particles break up into pairs. The con
of ~2.28! for s54 is equivalent to saying that three particles form a bound state in the presen
a fourth particle. If one putss55 in ~2.28! one will conclude that four particles form a bound sta
when a fifth particle is near, and so on. It should be emphasized that the above argume
simplification, and is presented here for illustrative purposes only. In the matter of an intera
N-body system one cannot speak of states of two, three, etc. particles. The conditions of~2.27! and
~2.28! merely imply special correlations that arise in the case under study. From the dyna
point of view there occurs permanent formation and disintegration of groups of bound part

Nevertheless from the foregoing it follows that the condition of~2.28! can be fulfilled only if
there exists an attractive interaction between the particles. However, this does not at all am
saying that the interparticle potentialK(r ) must have an attractive part. The point is that~2.6!
contains an effective potentialUs(xs), and notK(r ). Even in the case of hard spheres the poten
Us(xs) has an attractive part which is due to the shielding effect~for an explanation of this effec
see, e.g., Ref. 13, Sec. 8.6!. Of course, other causes for the existence of an effective attractio
the event of a purely repulsive Hamiltonian are possible. In the BCS theory such an attrac
ascribed to an electron–phonon interaction. As is known it is difficult to explain high-temper
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superconductivity in the framework of the BCS theory. Perhaps, in the last case an importa
is played just by the shielding effect that is manifested at any density and temperatures reg
of the Hamiltonian.

Let us make a few remarks in addition. As was shown in Ref. 2, in the case of a Bose s
the normal phase cannot exist at temperaturesu'0. For this reason, as the temperature is lowe
there must necessarily emerge a condensate phase. With this corresponds the fact that in th
case the condensate phase exists whatever the interaction potentialK(r ) is3 @it occurs even in an
ideal gas whenK(r )[0]. In the case of a Fermi system the situation is different. According
the fermionic normal phase can exist even atu50. Consequently the fermionic condensate ph
need not exist necessarily for anyK(r ). The fermionic condensate phase occurs only when
conditions of~2.27! and ~2.28! can be fulfilled. In particular, these conditions cannot be satis
in an ideal gas. Therefore, the condensate phase cannot form in an ideal Fermi gas as is
in advance.

Equation~2.6! can have a solution corresponding to~2.27! and~2.28! in the case of bosons a
well. In Ref. 3 it was stated that condensate phases of different types are possible. The s
corresponding to~2.27! and ~2.28! provides an extra possible type of the condensate phase
bosons.

If the spin S of fermions is such thatk.2 ~i.e., S.1/2), symmetric solutions with the
simplest limiting formws

(`)(xs)}exp(iSqkr k /\) as in Ref. 3 are possible up tos5k. Only when
s>k, solutions must have the limiting form of~2.27! and~2.28!. Therefore, a variety of conden
sate phases may be obtained, depending on the integers at which~2.27! and~2.28! begin to hold.
Realized is the phase that provides an absolute minimum of the appropriate thermody
potential.

In the event of a Fermi liquid one can repeat the considerations expounded in Sec. IV o
3. Consequently, condensate phases of different types, either superfluid (p0Þ0) or nonsuperfluid
(p050), may happen even in the casek52.

It might seem at first sight that the first summand in~2.2! corresponds to condensation
fermions in one level, which contradicts the Pauli exclusion principle. In fact there is no co
diction. In paper I~see also Ref. 2! it was emphasized that the quantitiesns(«n

(s)) are no occupa-
tion numbers of levels for there are no single-particle levels in an interacting system, so th
cannot speak of condensation of particles in a level. Let us explain the absence of any con
tion with the Pauli principle in more detail. The principle stems from the antisymmetry of ferm
wave functions~if states of two fermions coincide the wave function vanishes identically owin
the antisymmetry!. In our case all fermion density matrices~and thereby the wave function itsel!
are antisymmetric with respect to the variables denoted briefly asXs andXs8 , which is immedi-
ately seen from~I.A10! and~2.5!. Just the requirement thatRs

(c)(Xs ,Xs8) should not vanish iden-
tically compelled us to resort to limiting conditions of types~2.27! and ~2.28!. In the case of
bosons that are not subjected to the Pauli principle, simpler solutions used in Ref. 3~see also
above! are possible.

Concluding the section let us calculate the momentum of the system. To this end, by m
use of~2.22! and ~2.2!–~2.4!, first we find the density matrixR1 :

R1~r ,s,r 8,s8!5
dss8

k H rc expF i

\
p0~r2r 8!G1rn expF2

mt~r2r 8!2

2\2 G J . ~2.32!

The second term is written here with the help of formulas of the next section. The momenP
of the system can be computed by Eq.~2.13! of Ref. 3 with additional summation over the sp
projections, so thatP5rcVp0 . Just as in the boson case of Ref. 3 the situation is analogous
that in which there areNc5rcV particles that move at a speed ofp0 /m without any dissipation of
energy.

It is worthy of remark that according to~2.32! the density matrices exhibit off-diagonal lon
range order~ODLRO! since they do not vanish in the limit asur2r 8u→`. ODLRO is due only to
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the condensate fraction because the first summand alone in~2.32! displays this feature. As is
known the existence of ODLRO is characteristic of superfluidity.14

III. THERMODYNAMICS

A. Transformation of equations

Before proceeding to thermodynamics it is worthwhile to transform some of the equa
obtained above. To this end instead ofws(xs) with s>3 we set up functionsus(xs) according to

ws~xs!5us~xs!expS i

\
p0(

k51

s

r kD . ~3.1!

When substituted into~2.6! with account taken of~2.30!, this yields the equation

\2

2m (
j 51

s

¹ j
2us~xs!1

i\p0

m (
j 51

s

¹jus~xs!2Us~xs!us~xs!50. ~3.2!

Note that this last equation coincides with Eq.~2.10! obtained in Ref. 3 for the boson case. T
relevant boundary conditions follow from~2.27! and ~2.28!:

us~xs!→Dsus21~xs21! as ur su→`, ~3.3!

us~xs!→0, as ur j u→` with j Þs. ~3.4!

At s52 it is more convenient to use another normalization ofu2 upon writing, instead of
~3.1!,

w2~r1 ,r2!5A 2rcr

k~k61!
u2~r1 ,r2!expF i

\
p0~r11r2!G . ~3.5!

It should be observed thatu2(r1 ,r2) is to be symmetric by virtue of~2.25!. In the case of
homogeneous media we deal with,u2(r1 ,r2) depends only upon the differencer5r22r1 , while
Eq. ~3.2! becomes

\2

m
¹2u2~r !2U2~r !u2~r !50, ~3.6!

with the condition thatu2(r )→1 as ur u→`, which follows from ~2.25! and ~2.26!. Such an
equation with this condition is characteristic of the problem of scattering of a particle with
propagation vectork50 by a fixed force field as was noted in Ref. 3. In particular instead of~3.6!
one may use Eq.~2.12! of this reference.

In uniform media one can put2 U150, so that Eq.~2.11! with s51 is readily solved to yield

y1~p,z!5
1

z2p2/2m
. ~3.7!

Now we calculater1
(n) by ~2.10! with the help of the residue theorem upon inserting~2.18! for

n1(z)[n(z). Next, recalling thatr1
(c)5rc we find r1 by ~2.8! and put it in the normalization

condition of ~I.2.6! with the result thatr5rc1rn wherer5N/V and

rn5
Ap

2
Akvt3/2 with v5

m3/2

&p2\3
. ~3.8!

In like fashion one gets~2.32! if use is made of~I.3.3! for R1
(n) .
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Calculation of thermodynamic quantities requires a knowledge of the pair density m
r2(r1 ,r2). We substitute~2.5! and ~3.5! into ~2.8! with ~2.9! and use the symmetry o
u2(r1 ,r2)5u2(r22r1) @see the remark following~3.5!#. We take~I.3.12! to calculater2

(n) . As a
result we obtain the following expression for the pair correlation functiong(r )5r2(r )/r2:

g~r !5
rc

r
u2

2~r !1
1

2p i ~2&p\!3r
E dqE

C
dzn~z!y~r ,q,z!Fk6expS i

\
qr D G , ~3.9!

while y(r ,q,z) obeys Eq.~I.3.13! in which U2(r ) replacesU2(ur u) since the functions are no
spherically symmetric ifp0Þ0.

The second term in~3.9! may be reduced to a form analogous with the right-hand side of
~I.3.14!. For use later we need~3.9! in the case of a spherical symmetry ofU2(r ) on condition that
the spectrum is continuous. In this case one can use~I.3.16! for the second term in~3.9! with the
result that

g~r !5 f cu2
2~r !1

1

p&r
(
l 50

`

@k6~21! l #~2l 11!E
0

`

nS \2k2

m DRkl
2 ~r !dk, ~3.10!

where f c5rc /r while Rkl satisfies Eq.~I.3.17! with the boundary condition of~I.3.18!.

B. The thermodynamics of a superfluid Fermi system

General ideas as to constructing thermodynamics in the framework of the present ap
were expounded in paper I. Modifications needed in order to take into account the presen
condensate can be made by analogy with the thermodynamics of a superfluid Bose syste
sented in Ref. 3. The sole difference with Ref. 3 comes about because of the spin of particl
thermodynamic formulas of Ref. 3 remain, however, as they stand because the factork in ~2.32!
cancels out owing to summation over the spin projections. Let us summarize the main featu
thermodynamics in the present case referring to Ref. 3 for details.

In the preceding section it was established that the density matrices are characterized
parameterst, A, rc , andp0 wherep0 is the magnitude of the vectorp0 ~the direction ofp0 plays
no role in uniform media!. The external parameters are implied to be the average number de
r5N/V and the temperatureu in units of energy (u5kBT). The parameterA is expressed in terms
of rc by ~3.8! with rn5r2rc . Instead ofrc we shall usef c5rc /r while instead oft it is more
convenient to employt̃5rnt/r5(12 f c)t.

If there is a superflow characterized by the vectorp0 the system cannot be isotropic. W
assume an axial symmetry with thez axis oriented alongp0 , so thatg(r )5g(r' ,z) where r'

5Ax21y2 ~by r is meant ur u!. It turns out that all thermodynamic quantities can, instead
g(r' ,z), be expressed in terms of two spherically symmetric functions~we presume that the
interaction potentialK(ur u) is spherically symmetric!, namely,

ḡ~r !5
1

r E0

r

g~Ar 22z2,z!dz, g̃~r !5
3

r 3 E
0

r

g~Ar 22z2,z!z2dz. ~3.11!

It will be noted that in the case of a spherical symmetry

ḡ~r !5g̃~r !5g~r !. ~3.12!

The parametersp0 , t̃, and f c can be found from the following equations:

f cp0
25pmrE

0

`

r 3
dK

dr
@ g̃~r !2ḡ~r !#dr, ~3.13!
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2u
]t̃

]u
13r

]t̃

]r
22t̃5

pr

3 E
0

`

drr 2H K~r !F3~ g̃2ḡ!212r
]ḡ

]r
1r S 3

]ḡ

]r
1

]g̃

]r D G
1r

dK

dr F2uS 3
]ḡ

]u
2

]g̃

]u D13rS ]ḡ

]r
2

]g̃

]r D G J , ~3.14!

]

] f c
E

0

`

r 2S 2K1r
dK

dr D ḡ~r ,t̃, f c ,p0 ,r!dr50. ~3.15!

When writing down~3.15! we assumed thatg(r ) as given by~3.9! does not depend explicitly
uponu while depending on other parameters.

Equation~3.15! plays another important role as well, namely, it yields a line in ther-u plane
where a solution relevant to the condensate phase bifurcates off the high-temperature s
This line represents a phase transition line if the transition is second order. To obtain the eq
of the line, in Eq.~3.15! one should putf c50, ḡ(r )5g(r ) and t̃5t(u,r) with t~u,r! relevant to
the high-temperature phase and given by equations of I. The equalityt̃5t(u,r) on the line serves
also as boundary condition for Eq.~3.14!.

Having solved Eqs.~3.13!–~3.15! one may compute the internal energyE by

E5
3

2
t̃N12pNrE

0

`

r 2K~r !ḡ~r !dr1
p

2
NrE

0

`

r 3
dK

dr
@ g̃~r !2ḡ~r !#dr. ~3.16!

The pressurep that is isotropic although there is a flow in the superfluid is given by

p5rt̃2
pr2

3 E
0

`

r 3
dK

dr
@3ḡ~r !2g̃~r !#dr. ~3.17!

With E(u,r) and p(u,r) at our disposal we can calculate the Helmholtz free energyF with the
help of a formula of Appendix B of I and thereupon all thermodynamic quantities.

It should be observed that in the condensate phase the quantityt plays a secondary par
insofar as the functionn(z) of ~2.18! characterizes now only a part of the particles. The role ot
goes over tot̃, which can be seen by comparing~3.16! and ~3.17! with ~I.3.7! especially when
~3.12! holds.

In summary, we see that the equations for density matrices of Sec. II and the equations
present section permit one to attain a full structural and thermodynamic description of a sup
Fermi systems, and one has no need of resorting to any extra ideas or argumentation besid
formulated initially in Refs. 2 and 3.

IV. HARD SPHERES UNDER THE NEGLECT OF TRIPLET CORRELATIONS

A. General consideration

In the present section we are coming to an example that illustrates how the general eq
derived in the preceding sections can be handled in order to produce concrete physical resu
shall consider a system of hard spheres in which triplet correlations are neglected, the
example being used in paper I as well as in Refs. 2 and 3

In the case of hard spheres

K~r !5H ` if r ,a

0 if r .a.
~4.1!

If the triplet correlations are disregarded thenU2(r )5K(r ) according to I, which drastically
simplifies the matter of findingg(r ) by ~3.10! and of solving Eqs.~3.13!–~3.15!.
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Before proceeding further a word should be said in this connection. When discussin
conditions of~2.27! and~2.28! we emphasized the specific nature of correlations necessary fo
conditions to be feasible, in particular ifs53. For this reason, if triplet correlations are negligib
the condensate phase could not exist. At the same time when studying the thermodynam
hard-sphere system the neglect of triplet correlations may prove to be not a bad approxi
even for a condensate phase. The reason lies in the fact that from Eqs.~3.13!–~3.17! it follows that
all thermodynamic quantities are determined by integrals of the type

I 5E
0

`

r nK̃~r !G~r !dr, ~4.2!

whereK̃(r )5K(r ) or dK/dr, andG(r ) depends ong(r ) and its derivatives@below we consider
the case in which~3.12! holds#. For the hard-sphere potential of~4.1! one hasK̃(r )[0 if r .a and
G(r )[0 if r ,a. Consequently in this instance, only values of the functions atr 5a contribute to
the integral of~4.2!. When two hard spheres come in contact, locations of other hard sphere
of little importance to the two spheres. For this reason the contact valueg(a) of the pair corre-
lation function should not depend appreciably upon triplet correlations. This is corroborated
fact that different quantities calculated in paper I and Ref. 2 upon neglecting the triplet correl
coincide rather well with the ones computed by other authors without disregarding these c
tions.

Below we shall findg(r ) upon discarding the triplet correlations, with the intention of us
solely the contact valueg(a). Of course, without special investigation one cannot wholly r
upon all results so obtained: some of them might be rather qualitative than quantitative. I
ticular, one cannot pass to the limita→0 in the formulas deduced below inasmuch as the va
a50 corresponds to an ideal gas while the condensate phase cannot exist in an ideal Fe
~see Sec. II C!.

If U2(r )5K(r ) with K(r ) given by ~4.1!, Eq. ~3.6! has a unique solution

u2~r !512
a

r
, ~4.3!

subject to two conditions, namely,u2(a)50 andu2(r )→1 asr→`.
In the approximation usedU2(r ) does not depend onu2(r ), hence the second term in~3.10!

will differ from ~I.5.1! only because of the value ofA given now by~3.8!. Upon denoting the
right-hand side of~I.5.1! with A from ~I.3.6! by gI(r ) we are led to

g~r !512
2a fc

r S 12
a

2r D1~12 f c!@gI~r !21#. ~4.4!

This function corresponds to a spherical symmetry, which entailsp050 on account of~3.12! and
~3.13!. Consequently, in the case considered in the present section we shall have a con
phase without superfluidity just as in the analogous case of bosons treated in Ref. 3. It sho
emphasized, however, that this result does nowise amount to saying that the hard-sphere
sate phase is necessarily nonsuperfluid. The result merely signifies that the exact valuep0

cannot be found if the triplet correlations are disregarded. We note in passing that Eq.~4.4! shows
that if f cÞ0 the decay of spatial correlations is slow asr→`, they decay proportionally to 1/r .
Therefore, the condensate phase is characterized by long-range correlations.

We calculate now the integrals entering into Eqs.~3.13!–~3.17! implying ~3.12!. Upon denot-
ing the first term of~3.10! asgc(r ), in Appendix B it is shown that in the case of the potential
~4.1! and of any continuous functionf (r ) one has

E
0

`

f ~r !K~r !
]gc

]r
dr5

rc\
2f ~a!

rma2 . ~4.5!
                                                                                                                



in

rthy

ucidate

ase is

al

int. Ac-
-

.

1583J. Math. Phys., Vol. 45, No. 4, April 2004 Superfluidity of a Fermi liquid

                    
A similar integral in whichgc is replaced by the second term of~3.10! may be calculated like
~I.5.2!. As a result, integrating by parts we obtain for spin-half fermions

E
0

`

r 3g~r !
dK

dr
dr52

a\2

m
@ f c1~12 f c!H2~ t̄ !#, ~4.6!

with t̄5a2mt/\2 andH2(j) defined in~I.5.6!. When integrating by parts we used the fact that
the present case, as can be shown analogously with~I.5.2! and ~4.5!, one has

E
0

`

r 2g~r !K~r !dr50. ~4.7!

All of these and~3.12! allow Eq. ~3.14! to be reduced to the form

2u
]t̃

]u
13r

]t̃

]r
22t̃5

4pa\2r

3m H f c1~12 f c!H2~ t̄ !2
a2mu

\2 H28~ t̄ !
]t̃

]u

2@12H2~ t̄ !1 t̄H28~ t̄ !#u
] f c

]u J , ~4.8!

where the prime overH28( t̄) denotes differentiation with respect to the argument. The notewo
is the fact that~4.8! is akin to Eq.~5.3! of Ref. 3. The internal energyE and the pressurep may
be calculated by~3.16! and ~3.17! with the help of~4.5! and ~4.6!, so that

E5
3

2
t̃N, p5rt̃1

2pa\2

3m
r2@ f c1~12 f c!H2~ t̄ !#. ~4.9!

The quantityt̄ that figures in~4.8! and~4.9! can be expressed in terms of the parameterst̃ and
f c defined in Sec. III:

t̄5
a2mt̃

\2~12 f c!
. ~4.10!

B. Phase transition

Having established general formulas for a hard-sphere system with condensate let us el
now the question as to whether a solution withf c.0 can branch off the high-temperature~normal!
solution considered in Sec. V of I, i.e., whether a phase transition to the condensate ph
possible. To this end one has to examine Eq.~3.15! following a remark in Sec. III. Substituting
Eqs.~4.6!, ~4.7!, and~4.10! reduces Eq.~3.15! to the form

H2~ t̄ !212 t̄H28~ t̄ !50. ~4.11!

According to~I.5.5! the functionf (j)5H2(j)212jH28(j) is positive ifj→`, while f (j),0 at
j50 with regard to~I.5.7!. Therefore, the equationf (j)50 has at least one solution. A numeric
calculation shows that the equation has a unique solution which isj5j0[0.395 628 3. Now Eq.
~4.11! amounts tot̄5j0 . Recall that in the case of spinless bosons Eq.~5.4! of Ref. 3 identical
with ~4.11! had no solution, and thereupon the condensate phase emerged at another po
cording to Appendix C in the condensate phase under study (]p/]V)u,0. Therefore, the conden
sate phase is stable and the bifurcation line is a second-order phase transitions line@a first-order
transition implies the existence of a region where (]p/]V)u.0: see, e.g., the solid curve in Fig
1 of Ref. 3; a van der Waals isotherm serves as another example#.
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In order to find the equation of that line it is necessary to insert the value oft̄ relevant to the
normal phase into Eq.~4.11!, that is, into the equationt̄5j0 . We shall consider the normal phas
in the approximation corresponding to~I.5.21!, which is equivalent to using the well-know
method of pseudopotentials. Then

t5t id1
2pa\2r

3m
, ~4.12!

wheret id is given by~I.3.10! with k52, that is to say, by

t id5
2

3 S r

2v D 2/3 G1~a!

G0
5/3~a!

, r52vu3/2G0~a!, ~4.13!

with a playing the role of a parameter.
After placing~4.12! and~4.13! in the equationt̄5j0 that amounts tot5j0\2/a2m we obtain

the phase transition line represented by curve 1 in Fig. 1 upon having recourse to num
calculation. Note thatt id5u whenr50 according to~4.13!, and thereby atn50 the line termi-
nates atũ5j0 . It should be pointed out that ifa→0, that is, ifn→0 we arrive at an ideal gas. A
the outset of this section we mentioned that the condensate phase could not occur in an id
Consequently, one should view the small values ofn in Fig. 1 with caution. On the other hand Fig
1 indicates that the condensate phase in a hard-sphere fermionic system will be observed
values ofn are not too large.

Insofar as the temperatures are supposed to be low, one may use the expansion~I.5.19! instead
of the rather complex~4.12! and ~4.13!. The approximation of~4.12! corresponds to retaining
corrections of ordern1/3, so that in the same approximation by~I.5.19! one has

t5
2

5 S 3r

4v D 2/3

1
p2u2

6 S 4v

3r D 2/3

1
2pa\2r

3m
. ~4.14!

In this case one can obtain the equation of the phase transition line in explicit form by equ
~4.14! andj0\2/a2m. In the notation of Fig. 1 this gives

ũ5)S 3n

p2D 1/3Aj02
1

5
~3pn!2/32

2

3
n. ~4.15!

The line corresponding to this equation is presented in Fig. 1 by curve 2. At largen curves 1
and 2 are close to each other, however at smalln they diverge drastically. This is due to the fa

FIG. 1. Line of phase transitions to the condensate phase~CP! in the phase diagram:ũ5a2mu/\2, n5pa3r. Curve 1
corresponds to Eqs.~4.12! and ~4.13!, curve 2 corresponds to the approximate equation of~4.15!.
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that the expansion of~I.5.19! fails for small r because it is an expansion in powers ofu/«0

whereas«0}r2/3. At the same time curve 2 may reflect the real physical picture better sinc
curve shows that the condensate phase does not exist ifn is too small. However, it is not clea
without special analysis whether the use of~4.14! yields all quantities correctly for anyr andu.

C. Properties of the condensate phase

Let us turn now to investigation of the condensate phase. In the condensate phase Eq~4.11!
provides a relationship betweent̃ and f c according to Sec. III. As~4.11! signifies thatt̄5j0 ,
thanks to~4.10! we have

f c512
a2mt̃

j0\2 . ~4.16!

Transforming Eq.~4.8! for t̃ we note that in the case under study the functionsH2( t̄) and
H28( t̄) are merely constants, which will be denoted as

h2
~0!5H2~j0!52.089 748, h25H28~j0!52.754 475. ~4.17!

Substituting~4.16! and ~4.17! into ~4.8! yields

2uS 11
2

3
ph2a3r D ]t̃

]u
13r

]t̃

]r
22S 11

2

3
ph2a3r D t̃5

4pa\2r

3m
, ~4.18!

where we have used the relationh2
(0)511j0h2 following from ~4.11!. We met with equations of

the type~4.18! more than once in paper I and Ref. 2 and solved them with the help of the me
of characteristics. So, the general solution of~4.18! is

t̃5r2/3expS 4

9
ph2a3r D H FF u

r2/3expS 2
4

9
ph2a3r D G1

4p\2

3mh2
1/3n@a~h2r!1/3#J , ~4.19!

whereF(x) is an arbitrary function and

n~x!5E
0

x

expS 2
4

9
pj3Ddj. ~4.20!

The last integral can be calculated analytically in the limits asx→0 andx→`.
In order to findF(x) we must, according to a note in Sec. III about the boundary conditio

Eq. ~3.14!, equate~4.19! and ~4.12! on the phase transition line, that is, on curve 1 of Fig. 1.
a result we get the following equations fort̃(u,r):

t̃5
\2

m
r2/3expS 4

9
ph2a3r D H j0

y2 expS 2
4

9
ph2y3D1

4p

3h2
1/3@n~ah2

1/3r1/3!2n~h2
1/3y!#J ,

~4.21!

2py31
~2p2!2/3G1~a!

G0
5/3~a!

y223j050, ~4.22!

u5
\2

m F p2r

&G0~a!
G 2/3

expF4

9
ph2~a3r2y3!G . ~4.23!

These equations determine the dependence oft̃ on u andr via two parametersa andy. For given
u andr we solve~4.22! and~4.23! for y upon eliminatinga, whereupon we findt̃ by ~4.21!. The
parametera varies from2` to 1` while the parametery changes from 0~this is the linen
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50) to y050.381 814 7~this is the lineũ50). On the phase transition liney5ar1/3, so that~4.21!
yields t̃5j0\2/a2m, as it should. It is convenient to organize real calculation as follows. F
givena one findsy by solving the cubic equation of~4.22! ~one is to choose the positive root th
exists always and is unique!. Taking a value ofr one computesu by ~4.23! and moreover the
relevant value oft̃ by ~4.21!.

If one proceeds on~4.14! the t̃(u,r) dependence is given by the two equations

t̃5
\2

m H r2/3F1

5
~3p2!2/31

p2/3m2u2

3\4~3r2!2/32
2

3
pyG1

4par

3 J , ~4.24!

2py31F3

5
~3p2!2/31

p2/3m2u2

\4~3r2!2/3Gy223j050. ~4.25!

Here one has only one parametery that varies within the same limits as above. In principle, up
solving the cubic equation of~4.25! for y and substituting the result into~4.24! one could obtain
the function t̃(u,r) in explicit form; however, the formula will be fairly complex. Since Eq
~4.24! and~4.25! do not much simplify the matter, in the following we carry out our investigat
on the basis of Eqs.~4.21!–~4.23! that are more exact.

The properties of the functiont̃(u,r) as given by~4.21!–~4.23! are considered in Appendix
C. As mentioned above,t̃5j0\2/a2m on the phase transition line. Then Eq.~4.16! gives f c50 as
it should. In Appendix C it is shown that]t̃/]u.0, and thereuponf c increases with decreasin
temperature. Atu50 one hast̃.0, and therefore,f c never reaches the valuef c51 ~except the
caser50). The value oft̃ at u50 can be found by~4.21! and~4.22! upon puttinga51`. Then
~4.22! entailsy5y0 @see the discussion following~4.23!# while ~4.21! gives the desired value oft̃.
Now Eq. ~4.16! yields the value off c at u50. This last value changes from 0 at the point whe
curve 1 of Fig. 1 intersects then axis, to 1 at the pointn5 ũ50.

Let us consider the heat capacityCV5(]E/]u)r . The internal energyE is given in ~4.9!, so
that CV5 3

2N]t̃/]u. As mentioned above]t̃/]u.0, therefore,CV.0 as it should. We may cal
culate the heat-capacity jump in the phase transition

DCV5CV
~c!2CV

~n! , ~4.26!

whereCV
(c) andCV

(n) are the heat capacities of the condensate and normal phases, respecti
the phase transition point. Calculation with the use of~4.21!–~4.23! and ~4.12! ~in the normal
phaseE5 3

2tN), and of~C2! as well, yields rather a complicated formula, namely,

DCV5
ar1/3GN@~114ph2a3r/3!G0

5/31h2a2~2p2r!2/3~3G0
2/G212G1!#

2G0G21@~4p!1/3G113ar1/3G0
5/31~2p2!2/3h2a3rG/3G21#

, ~4.27!

with G5G(a) defined in Appendix C. Here the parametera is determined by Eq.~4.23! with
y5a3r, which then coincides with the second equation of~4.13!. Since G.0 and 3G0

2

2G1G21.0 ~for the Fermi case!, from ~4.27! one hasDCV.0, which corresponds with the
Landau theory of phase transitions. The results of numerical calculations ofCV for two values of
n5pa3r are shown in Fig. 2. We see that the transition from the normal to the condensate
possesses all properties of an ordinary second-order phase transition.

We cannot compare the results obtained with experimental data on liquid3He because for
liquid 3He n50.83 ~see Ref. 2! whereas the hard-sphere condensate phase wherein triplet c
lations are negligible can exist only ifn<0.1749 according to Fig. 1. Whenn is great the role of
the triplet correlations becomes essential and the results of this section cannot be applied.
theless it is of interest to estimate the real temperatures that correspond to the phase dia
Fig. 1. If we takea52.56 Å characteristic of helium2 the temperature expressed in kelvins will b
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T5
\2

kBma2 ũ52.454ũ,

wherekB is the Boltzmann constant and the3He atom mass is taken form. Consequently the
maximum temperature for curve 1 of Fig. 1 (ũ50.3956) isT50.971 K, and for curve 2 (ũ
50.2136) it isT50.524 K. These temperatures far exceed those at which superfluid pha
liquid 3He are observed. Low densities, i.e., smalln, when the triplet correlations can be neglect
are characteristic of a vapor state. Perhaps the vapor state of3He would pass into a condensa
phase at temperatures close to the ones obtained above.

Concluding the section let us compare the boson and fermion condensate phases@implying the
potentialU2(r ) considered in the section#. In the boson case3 the transformation into the conden
sate phase is a first-order phase transition, the condensate fractionf c reaches unity even whenu
Þ0, properties of the condensate phase are strongly affected by details of the correlations~in order
to find completelyE andp for the phase even in a first approximation it is necessary to know
exact value oft in the normal phase!. In the fermion case the transformation into the condens
phase is a second-order phase transition, the condensate fractionf c never reaches unity even a
u50, properties of the condensate phase are not very sensitive to details of the correlatio@we
were able to find completely the expression fort̃ by confining ourselves to the terms written dow
in ~4.12!, which amounts to saying that the influence of higher powers ofa is alike in the normal
and condensate phases#. We see that the properties of the boson and fermion condensate p
differ appreciably even though the interparticle potential is the same.

V. CONCLUDING REMARKS

The present paper shows that the approach proposed in Ref. 2 and extended in paper I
to take the spin of particles into account enables one to investigate the condensate phase i
systems and superfluidity of these systems, the treatment of the fermionic superfluid be
principle the same as that of a bosonic superfluid. The present theory does not resort to C
idea of fermion pairing although there are some elements of pair formation in the theory b
phenomenon as a whole is rather intricate~see Sec. II C!. If one reasons in terms of pairing th
present theory indicates at once that, besides the well known mechanism of pairing connect
an electron–phonon interaction and other known mechanisms,6 a completely different mechanism
is possible which acts even in the case of a purely repulsive Hamiltonian. This last mechan
due to a specific collective effect, namely the shielding effect, and can be efficacious a
temperature whatsoever the Hamiltonian is.

FIG. 2. Temperature dependence of the heat capacitycV5CV /N for different values ofn. Curve 1:n50.1, curve 2:n
50.15. The jump ofcV corresponds to the phase transition. The notation is the same as in Fig. 1.
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The physical causes of fermion superfluidity and possible peculiarities of the phenomen
wholly analogous with the ones of boson superfluidity discussed in Ref. 3. At the same time
if a boson system and a fermion one are described by one and the same Hamiltonian the ch
of the phase transition to the condensate phase and the properties of this last phase ma
appreciably for the two systems.

The study of fermion superfluidity is an essential step towards a theory of such an imp
phenomenon as superconductivity, based upon the ideas of the present approach. In the
account must be taken of the fact that metals have a crystalline structure whereas only s
uniform systems were considered in the present paper. Note that some results concerning th
of a crystal on the basis of the approach proposed in Ref. 2 are already published.15

Of even greater importance is the fact that a superflow of charged particles is an ele
current, and thereby it always creates a magnetic field. Consequently in order to study sup
ductivity it is necessary to incorporate electromagnetic interactions in the framework o
present approach. Inasmuch as the quantum hierarchy for reduced density matrices the
approach is based upon is, to a considerable extent, analogous with the classical B
hierarchy2 one may treat the electromagnetic interactions leaning upon this analogy and res
for example, to methods of the theory of plasmas where the classical BBGKY hierarchy is w
employed for charged particle systems.

However, some considerations may be expressed even now as to the influence of the m
field upon the phenomena in question. In Ref. 3 it was mentioned that formation of cells
closed superflows in a confined volume would most likely be energetically unprofitable. If,
ever, the superflow is created by charged particles there appears a magnetic field. For this
the formation of a pattern of closed streamlines with opposite currents in different cells w
energetically favourable because, owing to this, the magnetic field and thereupon the ma
energy of the system might decrease just as in the case of a ferromagnet when magnetic d
form.

Reasoning along these lines one can offer a simple explanation for the Meissner ef~a
magnetic field does not penetrate into the bulk of a superconductor!. An external magnetic field
by acting on the supercurrents in the cells, reconstructs the pattern until the resultant ma
field within the body~the external field plus that due to the supercurrents! vanishes. This is
analogous to the case of a conductor in equilibrium into the interior of which an electrostatic
cannot penetrate. One may also draw a parallel between the action of the magnetic field
supercurrents and on the ‘‘molecular currents’’ in a diamagnetic molecule; inasmuch as the
tion of the supercurrent can be arbitrary the superconductior is a perfect diamagnetic while
molecule the molecular currents are fixed by the structure of the molecule. Of course
explanation of the Meissner effect and of its peculiarities requires an analysis of the above
archy with account taken of electromagnetic interactions.

It is also worth noting that, by analogy with the existence of a critical velocity in B
systems, there should be a critical supercurrent in charged Fermi systems. When the supe
exceeds the critical value, fermion superfluidity~i.e., superconductivity in this instance! breaks
down. The value of the critical supercurrent is determined by a formula analogous with~3.13! ~cf.
Ref. 3!.

APPENDIX A: THE CONDITION OF „2.17… ON THE FUNCTIONS n s„z…

In Ref. 2 and paper I the relation of~2.17! was discussed rather briefly. For this reason
consider the relation first for the nondegenerate case, i.e., for the case in which there
condensate, in more detail.

First of all we find the constantCs
sa ,sb that figures in Eq.~2.14!. If one normalizesRsa

andRsb

in the same manner asRs , that is, according to~I.2.2! then

Cs
sa ,sb5

N! ~Na2sa!! ~Nb2sb!!

~N2s!!Na!Nb!
, ~A1!
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whereNa and Nb are the number of particles in the subsystemsA and B, respectively (N5Na

1Nb). Equation~A1! can be readily got by integrating~2.14! and applying~I.2.3! to both the
sides.

Upon introducing a coefficient of proportionality we rewrite~2.17! as

ns~«na

~sa!
1«nb

~sb!
!5Bs

sa ,sbnsb
~«na

~sa!
!nsb

~«nb

~sb!
!. ~A2!

In order to find the coefficientBs
sa ,sb we remark first that to one eigenvalue«n

(s) of Eq. ~I.2.11!
corresponds! eigenfunctionscn(xs) obtained by permutation ofs arguments. This degenerac
must be taken into account when one substitutes expressions of the type~2.1! together with~A1!
and~A2! into ~2.14!. To make the number of terms on the left of Eq.~2.14! equal to the one on the
right the left side of~2.14! is to be divided bys! and the right side bysa! sb!, so that

Bs
sa ,sb5

s!

sa!sb!
Cs

sa ,sb5
ms

msa
msb

with ms5
s!N!

~N2s!!
's!Ns. ~A3!

When writing the last expression forms account is taken of the fact thats!N.
To solve the functional equation of~A2! we denote«na

(sa) by x and «nb

(sb) by y, take the

logarithm of both the sides and differentiate with respect tox:

1

ns~x1y!

dns~x1y!

d~x1y!
5

1

nsa
~x!

dnsa
~x!

dx
.

The right-hand side does not depend ony, hence the left-hand side cannot depend ony either, that
is to say, uponx1y5z. Therefore,

1

ns~z!

dns~z!

dz
5const. ~A4!

Denoting this last constant by21/t and integrating Eq.~A4! yields

ns~z!5Ase
2z/t. ~A5!

To determine the constantAs we place~A5! into ~A2!, which gives on account of~A3!

As

ms
5

Asa

msa

Asb

msb

. ~A6!

If one writes the indices as arguments and recalls thats5sa1sb one will see that Eq.~A6! is
identical with Eq.~A2! on condition that one setsBs

sa ,sb51. Therefore, forAs /ms one will have
an expression of the type~A5! with As51 and a new constantD instead ofe21/t, which amounts
to saying thatAs5ms Ds. Upon substituting this into~A5!, using the approximate expression f
ms of ~A3! and introducing a new constantz5ND one has finally

ns~z!5s! zse2z/t. ~A7!

The constantz can be found by placing~A7! into ~I.2.29! with the result that

z5
r

k S 2p\2

mt D 3/2

. ~A8!
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If in paper I one insertsA of ~I.3.6! into ~I.2.30! one will obtain an expression forns(z) that
wholly coincides with the one given by~A7! and~A8!. This shows that in the nondegenerate ca
in order to determine the functionsns(z) uniquely one need not resort to the normalizati
condition of ~I.2.6! that has led to~I.3.6!.

We turn now to the degenerate case, that is, to the case in which there is a condensa
of all it will be noted that the functionsns(z) satisfy a normalization condition which follows from
~2.1! if use is made of~I.2.3!:

(
n

ns~«n
~s!!5

N!

~N2s!!
, ~A9!

where we imply thatCnGs
(Xs)’s are normalized to unity. If we assume thatns(«n0

(s))5Dns

1ns(z0) as at the outset of Sec. II, the normalization of the continuous part ofns(z) changes
according to~A9!. As long as the quantitiesDns are not known in advance we have no pri
knowledge of the new normalization ofns(z) in ~2.4!. However, the remark following~2.22!
suggests that there is only one parameter, namelyrc , that determines the normalization of fun
tions relevant to the condensate fraction because the vectorp0 does not affect the normalization
Therefore the functionsns(z) contain only one unknown factor as well and Eq.~A2! should be
recast as

ns~«na

~sa!
1«nb

~sb!
!5B Bs

sa ,sbnsa
~«na

~sa!
!nsb

~«nb

~sb!
!, ~A10!

with an unknown coefficientB.
Now we shall arrive again at~A5! but As will contain an extra factor, owing toB, that cannot

be determined from~I.2.29! because any constant factor inns(z) cancels out whenns(z) is
substituted into~I.2.29!. Instead of~A7! and~A8!, in the degenerate case Eq.~I.2.29! yields ~2.18!
with a constantA that should be found otherwise. In Sec. IIIA is calculated from the normalizatio
condition of ~I.2.6!.

APPENDIX B: DERIVATION OF EQ. „4.5…

Instead of~4.1! we assume the potential

K~r !5H Km if r ,a

0 if r .a.
~B1!

We consider spherically symmetric solutions. Upon puttingU2(r )5K(r ) in ~3.6! and writing
u2(r )5x(r )/r we get

d2x

dr22
m

\2 K~r !x~r !50. ~B2!

Sinceu2→1 asr→`, this equation yields forr .a

u2~r !512
C1

r
. ~B3!

If r ,a, ~B2! leads to the following expression foru2(r ) finite at r 50:

u2~r !5
C2

r
sinhbr, b25

m

\2 Km . ~B4!

As usual the constantsC1 andC2 are specified by the condition thatu2(r ) and its derivative
shall be continuous atr 5a. As a result, whenr ,a
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u2~r !5
sinhbr

br coshba
. ~B5!

We consider now an integral of the form

E
0

`

f ~r !K~r !
]gc

]r
dr5Km

rc

r E
0

a

f ~r !
du2

2

dr
dr ~B6!

with an arbitrary functionf (r ) assumed to be continuous. On the right we have made use of~B1!
and replacedgc(r ) by the first term of~3.9!. From ~B5! it follows that if r ,a the functionu2(r )
is exponentially small whenb→`. For this reason only the value off (r ) at r 5a is of importance
for the integral in~B6!. Upon puttingf (r )5 f (a) the integral is easily evaluated and leads to~4.5!
in the limit asKm→`.

APPENDIX C: THE FUNCTION t̃„u,r… OF „4.21…–„4.23…

If one regardsy as a function ofu and r, from ~4.22! and ~4.23! one gets, on account o
formulas presented in Appendix F of Ref. 2,

F6G119S 2

p
G0

5D 1/3

y12ph2y3
G

G21
G ]y

]u
52

3Gy

2uG21
, ~C1!

whereG55G1(a)G21(a)29G0
2(a). A numerical calculation shows thatG.0. Consequently

]y/]u,0 ~in this inequality and below we assume thatrÞ0). Therefore,y is maximum atu
50, wheny5y0 @see the discussion following~4.23!#.

Upon keepingr constant and inspecting~4.21! one sees readily thatt̃ decreases with increas
ing y, which entails that]t̃/]u.0. Therefore,t̃ is minimum atu50. Substitutingy5y0 into
~4.21! one obtains numerically thatt̃.0 at u50. Hence, alwayst̃.0.

By analogy with~C1!, from ~4.21! to ~4.23! it follows that

]t̃

]u
5

21/3GG0
2/3~3j012pj0h2y312py3!

p4/3y2G21@6G119~2G0
5/p!1/3y12ph2y3G/G21#

. ~C2!

This confirms again that]t̃/]u.0. Likewise one can calculate the derivative]t̃/]r. One obtains,
however, an expression for it which is much more complicated than~C2! and difficult for analyti-
cal investigation. A numerical calculation shows that]t̃/]r.0.

The pressurep is given by~4.9!. With reference to~4.16! and ~4.17!, one has

p5rS 11
2

3
ph2a3r D t̃1

2pa\2r2

3m
. ~C3!

Sincet̃.0 and]t̃/]r.0 it follows immediately from this that]p/]r.0, i.e., (]p/]V)u,0.
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Existence of Gibbs state for continuous gas
with many-body interaction

O. V. Kutoviya)
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A continuous infinite system of point particles interacting via finite-range many-
body potentials of superstable type is considered in the framework of classical
statistical mechanics. We prove that for any temperature and chemical activity there
exists at least one Gibbs state. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1644323#

I. INTRODUCTION

One of the basic problems of equilibrium statistical mechanics is the construction of G
states for continuous particle systems with many-body interactions. In the pioneering wor
Greenberg7 and Moral13 the problem was analyzed via Kirkwood–Salsburg equations~KSE!. For
sufficiently small activity parameterz they proved existence of unique solution of KSE, but w
rather unnatural assumptions on the potentials which, in fact, take place only for finite rang
positive interactions. In Ref. 17 the convergence of the Brydges–Federbush-type cluster exp
is proved for dilute continuous systems withn-body (n<M ) interaction. The proof requires
stable potential satisfying an integrability condition and exponential decay of the many-
potentials at large distances. In the following paper15 the authors consider the system of hard-co
spheres interacting via infinite group of many body potentials~for all n) which are bounded and
integrable. They prove the convergence of the Mayer series for the pressure in thermody
limit and establish the region of analyticity in the activityz. In the recent work by Belitsky and
Pechersky3 the problem of existence and uniqueness of Gibbs state inRd with finite group of
n-body interactions was investigated using the technique of Dobrushin’s type.4,5

In this work we give a simple proof of the existence of Gibbs state with infinite group of m
body potentials. We establish some kind of modified Ruelle’s bound for finite volume correl
functions. It gives a possibility to prove existence of at least one Gibbs measure in thermody
limit. We consider these results as some further development in solving the problem.

In the next section we define the system and formulate main results. Section III is devo
the proof of these results. The basic technical lemma is outlined in the Appendix.

II. CORRELATION FUNCTIONS

A. Configuration space

Let Rd be ad-dimensional Euclidean space. ByO(Rd) andB(Rd) we denote the family of all
open and Borel sets, respectively.Oc(R

d), Bc(R
d) denote the systems of all sets inO(Rd), B(Rd),

respectively, which are bounded.
The set of positions$xi% i PN of identical particles is considered to be a locally finite subse

Rd and the set of all such subsets creates the configuration space:

a!Electronic mail: kutoviy@mathematik.uni-bielefeld.de
b!Electronic mail: rebenko@faust.kiev.ua
15930022-2488/2004/45(4)/1593/13/$22.00 © 2004 American Institute of Physics
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G5GRdª$g,Rdu ugùLu,`, for all LPBc~R
d!%,

whereuAu denotes the cardinality of the setA. The symbolu•u may also represent the Lebesg
measure of the set, but the meaning will always be clear from the context. For anyLPB(Rd) we
denote bygL the projection ofg on L and the corresponding configuration space byGL . We also
need to define the space of finite configurationsG0 :

G05 q
nPN0

G (n), G (n)
ª$h,Rd u uhu5n%, N05Nø$0%.

For everyLPBc(R
d) one can define a mappingNL :G→N0 of the form

NL~h!ªuhùLu.

The Borels-algebraB~G! is equal tos(NLuLPBc(R
d)) and additionally one may introduce th

following filtration

BL~G!ªs~NL8uL8PBc~R
d!, L8,L!,

see Refs. 10 and 11 for details.
By B(•) we denote the correspondings-algebras onGL and G0 . For a given intensity

measures5zdx (z.0) onB(Rd) and anynPN the product measures ^ n can be considered by
restriction as a measure on

~Rd! ñ5$~x1 ,...,xn!P~Rd!nu xkÞxl if kÞ l %

and hence as a measures (n) on G (n) through the map

symn :~Rd! ñ{~x1 , . . . ,xn!°$x1 , . . . ,xn%PG (n),

cf. Ref. 8. For simplicity we will write (x)n instead of$x1 , . . . ,xn%PG (n).
Define the Lebesgue–Poisson measurels on B(G0) by the formula:

lsª(
n>0

1

n!
s (n).

The restriction ofls to B(GL) we also denote byls . For a more detailed structure of th
configuration spacesG,G0 , GL , see Ref. 1.

B. Interactions and Hamiltonians

We consider a general type of many-body interaction specified by a family ofk-body poten-
tials Vk :Rdk→R, k>2. About the potentials$Vk%k>2 we will assume:

A1. Finite range:There exists a constantR.0, such that for anyk>2

Vk~x1 , . . . ,xk![0, if diam$x1 , . . . ,xk%.R.

A2. Continuity:

VkPC~~Rd! k̃!, k>2.

A3. Symmetry:For anyk>2, any (x1 , . . . ,xk)P(Rd)k, and any permutationp of numbers
$1,...,k%

Vk~x1 , . . . ,xk!5Vk~xp(1) , . . . ,xp(k)!.

A4. Translation invariance:For anyk>2, any (x1 , . . . ,xk)P(Rd)k, and anyaPRd
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Vk~x1 , . . . ,xk!5Vk~x11a, . . . ,xk1a!.

We are able now to introduce the HamiltonianUV:G0→Rø$`%, which corresponds to the
family of potentialsVª$Vk%k>2 and which is defined by

UV~h!5 (
k>2

(
$x1 , . . . ,xk%,h

Vk~x1 , . . . ,xk!, hPG0 , uhu>2.

For the fixed family of potentialsV we will write for shortU5UV and forLPBc(R
d), hPGL we

will sometimes writeUL(h) instead ofU(h).
A5. Strong superstability:For anyk>2 the potentialVk can be represented as

Vk5Vk
11Vk

(st) ,

whereVk
1 is a non-negative function such that for any (x1 ,...,xk)P(Rd)k\(Rd) k̃

Vk
1~x1 ,...,xk!51`,

andVk
(st) is stable, i.e., there exists a constantB>0 such that for any configurationhPG0 holds

UV(st)
~h!>2Buhu.

Let lPR1 be arbitrary. For eachr PZd we define an elementary cube

D~r !5$xPRdul~r i21/2!<xi,l~r i11/2!%.

These cubes form a partition ofRd, which we denote byD̄l . We will sometimes writeD instead
of D(r ), if a cubeD is considered to be arbitrary and there is no reason to emphasize tha
centered at the concrete pointr PZd. By Jl(Rd) we denote all finite unions of cubes of the for
D(r ) ~such sets are used in the construction of the Jordan measure!.

Let NPN andk>N11 be arbitrary. For anyXN5ø j 51
N D jPJl(Rd) we define

I k
k1 , . . . ,kNuk̄

~D1 , . . . ,DN!

ª sup
(x)ki

i
,D i , 1< i<N

(
D j8,XN

c ,

1< j < k̄

*
sup

y1PD18 , . . . ,yk̄PD
k̄
8

uVk
(st),2~x1

1 ,...,xkN

N ,y1 , . . . ,yk̄!u, ~1!

wherek̄>1, ki>1, i 51,...,N such thatk11¯1kN1 k̄5k, and

vk
k1 ,...,kN~D1 , . . . ,DN!ª inf

(x)ki

i
,D i ,1< i<N,

Vk
1~x1

1 , . . . ,xkN

N !, ~2!

where kiPN0 , (x)ki

i 5$x1
i ,...,xki

i %, 1< i<N such thatk11¯1kN5k. Vk
(st),2 denotes the

negative part ofVk
(st) , and the symbol(* means that the sum extends only over different cub

i.e., D i8ÞD j8 , iÞ j , 1< i , j < k̄.
A6. Attraction–repulsion relation:There existsl5l0.0 , such that for anyNPN and any

XN5ø j 51
N D jPJl0

(Rd) ~we omit dependence on the cubes in the notations of~1! and ~2!! the
following holds:

~i! for an arbitraryDPD̄l0
and anyk>2

Vk~x1,...,xk!>0, $x1 ,...,xk%,D;
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~ii ! for an arbitraryk>N11

vk
k1, . . . ,kN>4Ī k; k1,. . . ,kN

(N) , vN11
k1, . . . ,kN>4~ ĪN11

(N) 1B!, ~3!

and

Ī k; k1,. . . ,kN

(N) 5(
l>1

lI k1l
k1, . . . ,kNu l

,`, ĪN11
(N) 5(

l>1
lIN1l

1, . . . ,1u l,`, ~4!

k11¯1kN5k.

In the sequel we writeD̄ instead ofD̄l0
.

Remark 2.1: By the definition, Vk
st,2 describes attractive part of the k-body interaction. There-

fore, I k
k1 , . . . ,kNuk̄(D1 , . . . ,DN) describes only the attractive part of the k-body interaction of fixed

particles in cubesD1 , . . . ,DN with ‘‘dilute configuration,’’ i.e., no more than one particle i
located in any cubeD from XN

c 5Rd\XN , XN5ø j 51
N D j . Then, condition (4) means that the ener

of the k-body interaction decreases sufficiently fast with k. From the assumptionA6 and the

definition of Īk; k1 ,...,kN

(N) therein, it is clear that at least one cube fromD1 , . . . ,DN contains more

than one particle, and sovk
k1 , . . . ,kN should be greater than contributions of all k1 l -body attrac-

tive energies of interaction( l PN) for sufficiently smalll.

Remark 2.2: From the definition of Ik
k1 , . . . ,kNuk̄(D1 , . . . ,DN) (see (1)) it is clear that

I k
k1 , . . . ,kNuk̄

~D1 , . . . ,DN!<Ckl
2dk̄, l→0,

where Ck5Ck(l)>0 are some constants. Moreover, if Vk
(st),2 is bounded from below on

(Rd)k\(Rd) k̃, then Ck(l) has the following limit atl→0:

Ck~0!5E
(Rd) k̄

uVk
(st),2~x1

1 ,...,xkN

N ,y1 , . . . ,yk̄!udy1¯dyk̄ ,

where x1
1 ,...,xkN

N some fixed points inRd. For example, if we would have only pair potential,

satisfy (3) the positive part of the potential V2
1(x1 ,x2) should behave likeux12x2u2d2«, ux1

2x2u→0, for some«.0.
In the case of all orders of interactions, the k-body potentials, for k>3, can be chosen in such

a way that constants Ck , k>3 have behavior like Ck/k!, for some constant C.0. Under such

condition, I k
k1 , . . . ,kNuk̄(D1 , . . . ,DN) will behave likel2dCk11eCl2d

/k!. Therefore, to satisfy (3)
the positive part of the potentials Vk

1(x1 ,...,xk) should behave like

uxi2xj u2d2«
Ck11

k!
eCuxi2xj u

2d2«
, uxi2xj u→0, 1< i , j <k

for some«.0.
For a given ḡPG define the interaction energy betweenhPGL , LPBc(R

d) and ḡLc

5ḡùLc, Lc5Rd\L as

WL~huḡ !5 (
k>2

(
m1n5k
m,n>1

(
$x1 ,...,xm%,h

$y1 ,...,yn%,ḡLc

Vk~x1 ,...,xm ,y1 ,...,yn!.

Define

UL~huḡ !5UL~h!1WL~huḡ !.
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A7. The order of interaction:For anyLPBc(R
d), hPGL and ḡPG the interaction energy

WL(huḡ) does not become2` and the partition function

ZL~ḡ !5E
GL

exp$2UL~hu ḡ !%ls~dh!,`.

Remark 2.3: AssumptionA7 is important only for the next chapter, where the precise definit
of the Gibbs state on the configuration spaceG will be given. In fact, for the results of the prese
paper we do not need fulfillment ofA7 for all ḡPG, but only for empty boundary configuration
In turn, this fact is automatically ensured by assumptionA5.

C. Gibbs specification and correlation functions

Let LPBc(R
d) and letḡPG. The finite volume Gibbs state with boundary configurationḡ

for U, z.0 andb.0 is

mL~dhu ḡ !5
exp$2bUL~hu ḡ !%

ZL~ḡ !
lzs~dh!.

Under assumptionA7, the finite volume Gibbs state is well defined. Whenḡ5B, let
mL(dhuB)[mL(dh).

The corresponding finite-volume correlation functions for boundary configurationḡPG have
the following form:

rL~huḡ !5
1

ZL~ḡ !
E

GL

e2bU(høguḡ)ls~dg!, hPGL . ~5!

Let $pL% denote the specification associated withz, b and the HamiltonianU ~see Ref. 14!,
which is defined onG by

pL~Au ḡ !5E
A8

mL~dhu ḡ !,

whereA85$hPGL : hø(ḡLc)PA%, APB(G).
A probability measurem on G is called a Gibbs state forU, b andz if

m~pL~Au ḡ !!5m~A!

for everyAPB(G) and everyLPBc(R
d).

This relation is the well known~DLR!-equation~Dobrushin–Lanford–Ruelle equation!, see
Ref. 6 for more details. The class of all Gibbs states which correspond to the specific
$pL%LPBc(Rd) we denote byG(V,z,b).

D. Main results

Theorem 2.1:Suppose that the interaction family V satisfies the assumptionsA1–A6. Then,
for any LPJl0

(Rd) and anyb,z.0 there exists a constantj5j(b,z) (independent ofL) such

that the finite volume correlation functionrL(h)5rL(huB) satisfies the following inequality:

rL~h!<j uhue2 ~1/2! U1(h), hPGL . ~6!

Remark 2.4: The estimate (6) without exponent factor at the right-hand side is the well-k
Ruelle bound.18 We call (6) a generalized Ruelle bound. For the two-body interaction it
obtained in Refs. 1 and 16.

As a consequence of Theorem 2.1 the following theorem is fulfilled.
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Theorem 2.2:Let the interaction family V satisfyA1–A6. Then for any z.0 and b.0

G~V,z,b!ÞB.

Proof: Existence of the corresponding Gibbs state follows from the arguments which
based on the following observation. LetcPL1(Rd)ùC(Rd) be any positive function such tha
c(x)<1,xPRd, and leta(t), tPR1 be any continuous decreasing function with the followi
conditions:

~1! a0ª limt→01 a(t)51`;
~2! a1ª limt→1` a(t)>1.

Define,

Ga, c5H gPG U (
$x,y%,g

c~x!a~ ux2yu!c~y!,`J
and

Ea, c~g!5 (
$x,y%,g

c~x!a~ ux2yu!c~y!, gPGa, c.

As shown in Ref. 9, for any 0,D,` the set

$gPGuuEa,c~g!u<D%

is precompact inG, which is Polish space.
In this paper we considera as any continuous decreasing function such that

a~ ux2yu!<e~1/2! V2
1(x,y).

Obviously, chosen in such a way, this function satisfies the conditions above. Using the pro
of the so-calledK-transform~see Ref. 8! and the Theorem 2.1, for anyLPJl0

(Rd) we have

E
G
Ea, c~g!dmL~g!5E

R2d
c~x!a~ ux2yu!c~y!rL

(2)~$x,y%!dxdy,C,

whereCPR1 is some constant.
Therefore, by Prokhorov theorem the family of measures

$mL u LPJl0
~Rd!%

is precompact, which implies the existence of at least one limit measurem whenL↗Rd. We will
prove that corresponding limit measure is Gibbsian. LetmLn

, n>1, whereLn↗Rd, n→` be the
sequence which converges~in the sense of the Prokhorov theorem! to the measurem, and letrLn,
r be the corresponding correlation functions. It is well-known~see Ref. 6! that probability measure
m on G is Gibbs, iff m fulfills the Georgii–Nguyen–Zessinequation~GNZ!, i.e., for all positive,
B(Rd)3B(G) measurable functionsH the following holds

E
G
(
xPg

H~x,g!m~dg!5E
G
E

Rd
H~x,gø$x%!e2bW($x%ug)s~dx!m~dg!. ~7!

Moreover, using the Mecke formula~see Ref. 6!, one can show that~7! holds for any measure
mLn

, n>1.
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Let LPBc(R
d). The s-algebra B~G! is generated by sets of the formAùÃ with A

PBL(G), ÃPBRd\L(G) and every measure onG is uniquely determined by its values on the
sets.

Let us prove~7! for the functionH(x,g)51L(x)1A(g)1Ã(g). Let nPN be arbitrary. Using the
properties of theK-transform~see Ref. 8! we have

E
GLn

(
xPg

1L~x!1A~g!1Ã~g!mLn
~dg!<E

GLn

(
xPg

1L~x!mLn
~dg!5E

L
rLn~x!s~dx!<zjuLu.

~8!

The right-hand side of~7! for the measuremLn
is bounded by

E
Rd

1L~x!E
GLn

e2bW($x%ug)mLn
~dg!s~dx!5E

Rd
1L~x!rLn~x!s~dx!<zjuLu, ~9!

where we have used the definition of the correlation function and Fubini theorem. Hence,
exists some subsequence$mLnk

%k>1 which ensures the fulfillment of~7! for the limit measurem.

The proof for the general positive functionH follows from the fact that any positive measurab
function can be approximated by the simple functions.

III. THE PROOF OF THEOREM 2.1

The proof is based on the expansion of the Lebesgue–Poisson integral for the corr
functions~5! into the series over some kind of dense configurations~see Ref. 16 and definition
~3.4! therein!.

A. Cluster expansion in densities of configurations

The main idea of the construction consists in the use of the fact that if two or more par
are in one elementary cubeDPD̄ then Gibbs factor exp@2bV2(xi ,xj)#;exp@2bb#, where

b5 inf
DPD̄

inf
x1 ,x2PD

V2
1~x1 ,x2! ~10!

andb→`, whenl→0. The configurations with this property will be calleddenseconfigurations,
as opposed todilute configurations, in which no more than one particle is situated in any cube.
main technical idea consists in separation of the dilute parts of configurations from the dense
In order to do this we define an indicator function for the configurationgL , LPJl0

(Rd) in the
cubeD:

xn
D~gL! 5 xn

D~gD! 5H 1, for ugDu5n,

0, otherwise.

Then the indicator fordilute configurations is defined as

x2
D ~gD! 5 x0

D~gD!1x1
D~gD!

and fordenseconfigurations as

x1
D ~gD! 5 (

n>2
xn

D~gD!.

To obtain decomposition we use the following partition of the unity:
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1 5 )
D,L

@x2
D ~gD!1x1

D ~gD!# 5 (
v

)
D,L

xv(D)
D ~gD!, ~11!

wherev is the map fromD̄ùLª$DPD̄ : D,L% into the set$1, 2%, such thatv(D)51 or
2 for any DPD̄ùL. Inserting~11! into ~5! for ḡ5B, we get

rL~h! 5
1

ZL
(
v

E
GL

)
D,L

xv(D)
D ~gD!e2bU(høg)ls~dg!, ~12!

whereZL5ZL(B). Now we define the set

X5 ø
D,L : v(D)51

D.

Then the sum overv can be rewritten as the sum over all possible setsX in L. Namely,

rL~h! 5
1

ZL
(

B#X#L
E

GL

x̃1
X ~g!x̃2

Xc
~g!e2bU(høg)ls~dg!,

where

x̃6
X ~g! 5 )

D,X
x6

D ~gD!.

For anyXPJl0
(Rd), X#L define graphGR(X) with vertices in the centers of all elementa

cubesD,X and linesl (D,D8) iff dist(D,D8)<R. The number of lines depends on graphGR(X).
Definition 3.1: The set X is called R-connected if the corresponding graph GR(X) is con-

nected in ordinary way.
R-connected setX is denoted byXR. Then, every setX can be represented as some fix

partition

$X%n
R
ª$X1

R ,...,Xn
Rudist~Xi

R ,Xj
R!.R, for iÞ j %,

and so the sum over all possibleX in L can be rewritten as the sum over all possible sets$X%n
R ~for

n50, X5B). Furthermore, we replace the sum over all such sets by the sum overX1
R,...,Xn

R

independently, and remove the conditions dist(Xi
R ,Xj

R).R by introducing thehard-corepotential

xR
cor~X!n 5H 0, there existsXi

R , Xj
R , iÞ j , dist~Xi

R , Xj
R!<R,

1, otherwise.

Then we get

rL~h! 5
1

ZL
(
n>0

1

n! (
X1

R
#L

¯ (
Xn

R
#L

xR
cor~X!nE

GL

x̃1
X ~g!x̃2

Xc
~g!e2bU(høg)ls~dg!. ~13!

In the sequel, having in mind onlyR-connected components ofX, we drop indexR in the notation
Xi

R , and summation(X1#L¯(Xn#L , for simplicity, will be denoted by( (X)n
. Now, the last step

in arranging our decomposition is as follows. Define the set

X05 ø
D,L : dist(D, h)<R

D.

This set is fixed for fixed variable of the correlation functionrL(h). Now, for everyn> 0 we
split the sum over (X)n into two sums. The first one is over thoseXj , which do not intersect the
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regionX0 and the second one over those which intersectX0 . To distinguish the setsXj which do
not intersect and do intersectX0 , the latter sets are denoted byYj . There aren!/k!(n2k)!
possibilities when anyk setsXj do not intersectX0 and (n2k) setsYj intersectX0 . So the final
expansion is the following:

rL~h! 5
1

ZL
(
n>0

(
k50

n
1

k! ~n2k!! (
(X)k

(
(Y)n2k

xR
cor~~X!k ,~Y!n2k!

3E
GL

ls~dg!x̃1
X ~g!x̃2

Xc
~g!e2bU(høg), ~14!

where

X5X̃køỸn2kªFø
i 51

k

XiGø Fø
j 51

n2k

YjG .

B. The main estimates

As the first step, let us split the exponent in~14! into four parts: the part which corresponds
the positive part of the energy of the configurationh, the interactions of the particles inside th
region X0øỸn2k , inside L\(X0øỸn2k) and interactions between them. Note that interact
betweenX0øỸn2k and X̃k is zero due to the finite range of potential. Therefore, considering
PGL : gùh5B we get

e2bU(høg)5e2bU1(h)E1E2E0 ,

where

E1~X0øỸn2k!5e2bUst(h))
l 51

n2k

ebW(h u gYl
)2 1/2bU1(gYl

)2bUst(gYl
),

E2~X0øỸn2ku~X0øX!c!5e2bW(h u gX0\Ỹn2k
))
l 51

n2k

e2b[1/2 U1(gYl
)1W(gYl

u gXc)] ,

and

E0~Ỹn2k
c !5e2bU(gL\Ỹn2k

).

Lemma 3.1:

E1<ebBuhu)
l 51

n2k

)
D,Yl

ebBugDu2 ~1/2! bU1(gD). ~15!

Proof: Using A5 we have

U (st)~høg Ỹn2k
!>2BS uhu1 (

l 51

n2k

(
D,Yl

ugDu D
and

W1~hug Ỹn2k
!>0, U1~gYl

!> (
D,Yl

U1~gD!.

j
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Lemma 3.2: For anygPG and ḡPḠXc, XPJl0
(Rd), X#L

1
4 U1~gX!1W~gXuḡ !>2I ūgXu, ~16!

where Īª Ī 2
(1) ~see (4)), and

ḠXc5$gPGXc u ugùDu<1, for all D,Xc%.
j

Proof: See Appendix.
Let us define

]h5 ø
D : hùDÞB

D.

Now using the property of infinite divisibility of measurels and estimate~16! we can calculate
the part of integral in~14!

e2 ~1/2! bU1(h)E
GỸn2k

x̃
1

Ỹn2k~g!E1E2ls~dg!

<e2 ~1/4! bU1(h)1buhu ĪE
GỸn2k

x̃
1

Ỹn2k~g!e2bW(h u g(X0ù]h)\Ỹn2k
)E1

3)
l 51

n2k

e2b[ ~1/2! U1(gYl
)1W(gYl

u gXc)]ls~dg!. ~17!

AssumptionA6, estimate~15!, and trivial inequality

U1~h!> (
D,]h

U1~hD!

gives us the bound for the integral~17!,

ebuhu( Ī 1B)1b(D,]h Ī uhDu)
l 51

n2k

)
D,Yl

I D ,

where

I D5E
GD

x1
D ~gD!e2b ~1/2! U1(gD)1b(B1 Ī )ugDuls~dg!. ~18!

Focusing only on the two-body positive part of interaction and taking into account the defin
~10! we can estimate the last integral by

I D<«15 1
2 z2l0

2de2b(1/2) b22 Ī 22B) exp$zl0
de2b(3/2! b2 Ī 2B)%, ~19!

which is finite due toA6.
Now taking the maximum ofE0 in variableỸn2k ~we denote this maximum byȲn2k) and

using elementary estimate

xR
cor~~X!k ,~Y!n2k!<xR

cor~X!k ~20!

we can estimate the sum over (Y)n2k by the following lemma:
Lemma 3.3 (e.g., Ref. 12):
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(
YùX0ÞB

«1
uYu/ld

<uhuc~d!S R

l D d «

12«
5uhuK, ~21!

where c(d) is a constant which depends only on d and«54c(d)(R/l)d«1 .
For theproof in our case, see Ref. 16.
The last step is as follows. The expansion like~13! can be constructed for partition functio

ZL1
with L1,L. Denote it by

ZL1
5 (

k>0

1

k!
ZL1

(k) . ~22!

Taking into account all previous estimates we get

rL~h!<
1

ZL
e2 ~1/2! bU1(hL)1b(2 Ī 1B)uhu (

n>0
(
k50

n
~ uhuK !n2k

k! ~n2k!!
Z

L\Ȳn2k

k

5
1

ZL
e2 ~1/2! bU1(hL)1b(2 Ī 1B)uhu(

k>0

1

k! (l>0

~ uhuK ! l

l !
Z

L\Ȳl

k

5e2 ~1/2! bU1(hL)1b(2 Ī 1B)uhu(
l>0

~ uhuK ! l

l !

ZL\Ȳl

ZL
. ~23!

The fact thatZL1
<ZL2

for L1,L2 gives the inequality

rL~h!<e2 ~1/2! bU1(h)euhu(b(2 Ī 1B)1K).
j
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APPENDIX: PROOF OF THE LEMMA 3.2

Let X5ø j 51
N D j . Consider the configurationg with ugXu5m,ugD1

u5m1 , . . . ,ugDN
u5mN ,

mj>1 for j 51, . . . ,N and m11¯1mN5m. Let in the k-body interaction be involvedk̄>1
particles from the dilute configurationḡXcPḡXc and, correspondingly,q1 particles ofgX from D1 ,
which are situated in the pointsx1

(1) , . . . ,xq1

(1)PD1 , . . . , qN particlesx1
(N) , ...,xqN

(N) from DN . It is

clear thatq11¯1qN1 k̄5k and 0<qi<mi , k̄>1. Then the interaction energy betweenm par-
ticles of the configurationgX and k̄ particles of dilute configurationḡXc can be written in the
following form:

Wk~gXuḡXc!5 (
0<qi<mi ,k̄>1

q11¯1qN1 k̄5k

(
$x1

(1) ,...,xq1

(1)%PgD1

¯ (
$x1

(N) ,...,xqN

(N)%PgDN

3 (
$y1 ,...,yk̄%PḡXc

Vk~x1
(1) ,...,xq1

(1) ,...,x1
(N) , ...,xqN

(N) ,y1 ,...,yk̄!.
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Then taking into account~1! we obtain

2Wk~gXuḡXc!< (
0<qi<mi ,k̄>1

q11¯1qN1 k̄5k

)
i 51

N

Cmi

qi I k
q1 ,...,qNuk̄

~D1 ,...,DN!, ~A1!

whereCm
k 5m!/k!(m2k)!. Let in the sequenceq1 ,...,qN be nonzero correspondinglyql i

5kl i
particles fromD l i

, i 51,...,M involved ink-body interaction. Changing in~A1! to the summation
over kl 1

,...,kl M
:

2Wk~gXuḡXc!< (
M51

min$N, k21%

(
1< l 1, l 2,¯, l M<N

(
1<kl i

<ml i
,k̄>1

kl 1
1¯1kl M

1 k̄5k

)
i 51

M

C
ml i

kl i I
k

kl 1
,...,kl M

uk̄
~D l 1

,...,D l M
!.

~A2!

Let among the cubesD1 ,...,DN be N1 cubes with only one point ofg inside. Without loss of
generality, we suppose thatmj51, j 5N2N111,...,N. We suppose also that 1<N1,N. Split
the summation over 1< l 1, l 2,¯, l M<N into the summation over 1< l 1, l 2,¯, l S<N
2N1 over cubesD1 ,...,DN2N1

and the summation over 1< l 18, l 28,¯, l S8
8 <N1 over cubes

D18 ,...,DN1
8 . It is clear thatS1S85M andS can take integer values from 0 toM . Therefore, we

get additionallyM11 sums overS. Every value of 1< l 18,¯, l S8
8 <N1 corresponds to the dilute

configuration. Hence, using the definition~1! we can apply the following formula:

(
1< l 18, l 28,¯, l

S8
8 <N1

I
k

kl 1
,...,kl S

,1,...,1uk̄
~D l 1

,...,D l S
,D l

18
,...,D l

S8
8 !<I

k

kl 1
, . . . ,kl S

uk̄1S8
~D l 1

,...,D l S
!,

yielding

2Wk~gXuḡXc!< (
M51

min$N2N1 , k21%

(
1< l 1, l 2,¯, l M<N2N1

(
l 50

min$N1 , k2M21%

(
1<kl i

<ml i
,k̄>1

kl 1
1¯1kl M

1 k̄1 l 5k

)
i 51

M

C
ml i

kl i

3I
k

kl 1
, . . . ,kl M

uk̄1 l
~D l 1

,...,D l M
!1N* (

l 1851

min$N1 , k21%

I k
1uk21~D l

18
8 !,

whereN* 5min$N, k21%. Collecting the terms withM51, kl 1
51 in the first sum and the last sum

and selecting also the terms withkl 1
5kl 2

5¯5kl M
51, summing up all inequalities ink>2 and

taking into account thatN* <k21, we get

2W~gXuḡXc!< Ī ugXu1W11W2 ,

where

W15 (
M52

N2N1

(
1< l 1, l 2,¯, l M<N2N1

)
i 51

M

Cml i

1 (
k>M11

~k2M !I k
1,...,1uk2M~D l 1

,...,D l M
!,

W25 (
M51

N2N1

(
1< l 1, l 2,¯, l M<N2N1

(
k>M11

(
1<kl i

<ml i
kl 1

1¯1kl M
5k

)
i 51

M

C
ml i

kl i 3(
l>1

l I
k1 l

kl 1
,...,kl M

u l
~D l 1

,...,D l M
!.
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Using the same arguments, one can get almost the same inequality for the positive part of

U1~gX!>U0 ,

where

U05 (
M51

N2N1

(
1< l 1, l 2,¯, l M<N2N1

(
k>M11

(
1<kl i

<ml i
kl 1

1¯1kl M
5k

)
i 51

M

C
ml i

kl i 3v
k

kl 1
,...,kl M~D l 1

,...,D l M
!.

Now it is clear from the assumptionsA6 that

1
4 U0>W1 , and 1

4 U0>W2 ,

which gives~16!. It is not difficult to see~using direct computation! that condition 1<N1,N is
not essential in the proof of Lemma 3.2. j
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Equilibrium states for the Bose gas
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The generating functional of the cyclic representation of the canonical commutation
relations~CCR! representation for the thermodynamic limit of the grand canonical
ensemble of the free Bose gas with attractive boundary conditions is rigorously
computed. We use it to study the condensate localization as a function of the
homothety point for the thermodynamic limit using a sequence of growing convex
containers. The Kac function is explicitly obtained proving nonequivalence of en-
sembles in the condensate region in spite of the condensate density being zero
locally. © 2004 American Institute of Physics.@DOI: 10.1063/1.1649793#

I. INTRODUCTION

The interest in the phenomenon of standard Bose Einstein Condensation~BEC! revived in
recent years is due to the spectacular experimental work on Bosons in traps. We refer, e.g.,
9 and 12 for experimental and theoretical state of affairs. A renewed interest in old pro
connected with the phase transition accompanying BEC is at order. The generic model for B
the free Bose gas as already was pointed out by Bose and Einstein in 1925. On the le
mathematical physics, the understanding of the phase transition started with the well known
of Araki and Woods,1 where the generating functionals of the cyclic representations of the ca
cal commutation relations corresponding to the equilibrium states of the free Bose gas are
puted for periodic boundary conditions. Lewis and Pule´7,8,11 computed the grand canonical equ
librium states for a set of boundary conditions including the Dirichlet and Neumann boun
conditions but not the attractive boundary conditions. They are using the Kac method. An i
tant consequence of their result is the explicit computation of a nontrivial Kac density sho
nonequivalence of the canonical and grand-canonical ensembles in the condensate regi
next result is found in Ref. 3, where the same conclusion was obtained for generalized co
sations in some models of imperfect gases with diagonal interactions.

In the present paper we complete this computation of the equilibrium states for the free
gas withattractiveboundary conditions. About the relevance of this type of boundary conditi
see, e.g., Refs. 4 and 10. This model has a particular type of condensation, namely, conde
in quantum states corresponding to isolated points in the spectrum. It is well known5,10 that in this
case the condensate is situated at the ‘‘boundary’’ andnot uniformly spread out everywhere i
space. We give a precise formulation of the generating functional in the frame of the theo
generating functionals on the CCR in order to catch up the condensate. Finally we derive al
there isnonequivalenceof ensembles, something which was unclear until now because of the
that the quantum fluctuations show a pattern6 completely different from the free Bose gas wi
Dirichlet or Neumann boundary conditions. The intuition behind this fact is related to a wond
peculiarity of the free Bose gas withattractiveboundary conditions.5,10 If one takes the thermo

a!Electronic mail: lieselot.vandevenne@fys.kuleuven.ac.be
b!Electronic mail: andre.verbeure@fys.kuleuven.ac.be
c!Electronic mail: zagrebnov@cpt.univ-mrs.fr
16060022-2488/2004/45(4)/1606/17/$22.00 © 2004 American Institute of Physics
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dynamic limit using a sequence of growing convex domains with the point of homothety a
origin of the coordinates, thenlocally the condensation density is always equal to zero. A
by-product, our computations imply that the condensate is spatially situated in a region log
mically close to the boundary of these increasing domains. In the present paper we take d
positions of the homothety point for cubic containers to show that the density of this logarit
stratum of condensate inherits also a spacial anisotropy due to the choice of cubic cont
Finally remark that for the rotating bucket case,11 one has also the effect of the condensate be
increased at the boundary. But this is an effect of large angular momentum and not of the b
ary conditions as in our case.

II. CCR-REPRESENTATIONS AND THE GENERATING FUNCTIONAL

For details about the CCR algebra, we refer to Ref. 2.
Let h be a complex pre-Hilbert space with inner product~•,•!. A representation of the CCR

overh on a Hilbert spaceH is a mapf °W( f ) of h into the groupU~H! of unitary operators on
a Hilbert spaceH satisfying the Weyl relations:

W~ f 1!W~ f 2!5expH 2
i

2
Im~ f 1 , f 2!J W~ f 11 f 2! ~2.1!

such that for eachf Ph the mapl°W(l f ) of R into U~H! is strongly continuous. By Stone’
theorem, this continuity condition implies the existence of self-adjoint operatorsF( f ) such that

W~ f !5exp$ iF~ f !%. ~2.2!

TheseF( f ) are called field operators. The mapf °F( f ) is linear overR, but not linear overC.
Using theF( f ) we can now define the creation and annihilation operatorsa* ( f ) anda( f ) for
f Ph by

a* ~ f !5221/2$F~ f !2 iF~ i f !%, ~2.3!

a~ f !5221/2$F~ f !1 iF~ i f !%. ~2.4!

A state on the CCR-algebra is a linear functionalv:h→C with the properties

v~A* A!>0, v~1!51, for A linear combinations of theW~ f !, f Ph.

A representation (W,H,V) is called a cyclic representation ifV is a cyclic vector. A vectorV is
cyclic if the set$W( f )V% f Ph is dense inH. To each cyclic representation (W,H,V) of the CCR
corresponds a generating functionalE:h→C given by

E~ f !5v~W~ f !!5~V,W~ f !V!. ~2.5!

Proposition 2.1: A functionalE:h→C is the generating functional of a cyclic representation
the CCR if and only if it satisfies the following conditions:

(i) E(0)51,
(ii) ; f Ph:l°E(l f ) is continuous,
(iii) ; finite sets of complex numbers c1 ,...,cn and elements f1 ,...,f nPh : ( i( jE( f i

2 f j )e
(i/2) Im(fi ,f j)cicj>0.
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III. KAC-DENSITY AND EQUIVALENCE OF ENSEMBLES

A. Concrete setup

Let LL
n5@2L/2,L/2#n be a bounded region inRn with volumeV5Ln. We puthL5L 2(LL

n)
for the Hilbert space of the wave functions inLL

n with the scalar product (f ,g)hL

ª*L
L
ndxn f (x)g(x). ThenLL

n#LL8
n andhL#hL8 wheneverL<L8 via natural imbedding.

Let tL
s be the self-adjoint extension of the operator2DL ~with domain dom(2DL)

5C0
`(LL

n)) determined by the boundary conditions]nf1sf50 on ]LL
n . Here]n is the direc-

tional derivative in the direction of the outward normaln to ]LL
n . If the parameters,0, we say

that the boundary]LL
n is attractive.

First we have to solve the one-dimensional one-body eigenvalue problem onLL5
@2L/2,L/2#:

~ tL
sf!~x!5lf~x!

with boundary conditions (s,0):

5 S df

dx
2sf D

x52L/2

50,

S df

dx
1sf D

x5L/2

50.

Due to these attractive boundary conditions, there are two negative eigenvalues tending
same limit2s2 ~whenL→`) and an infinite number of positive eigenvalues~for Lusu.2):

eL~0!,eL~1!,0,eL~2!,eL~3!,¯ ,

eL~0!52s22O~e2Lusu!,

eL~1!52s21O~e2Lusu!,

k>2: S ~k21!p

L D 2

,eL~k!,S kp

L D 2

. ~3.1!

The corresponding eigenfunctions$fk
L%kPZ1

form a basis inhL and are given by

f0
L~x!5A2

L S 11
sinh~Lusu!

Lusu D 21/2

cosh~2usux!,

f1
L~x!5A2

L S 211
sinh~Lusu!

Lusu D 21/2

sinh~2usux!,

fk
L~x!55A

2

L S 11
sin~AeL~k!L !

AeL~k!L
D 21/2

cos~AeL~k!x!, for k even,

A2

L S 12
sin~AeL~k!L !

AeL~k!L
D 21/2

sin~AeL~k!x!, for k odd.

The eigenvalues and the wave functions of the corresponding multidimensional case have th
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EL~k!5(
i 51

n

eL~ki !,

ck
L~x!5)

i 51

n

fki

L ~xi !,

wherek5$ki% i 51
n PZ1

n andx5$xi% i 51
n PLL

n .

B. Kac density

The Kac density relates expectation values of observables in thecanonical ensembleand those
in thegrand canonical ensemble. The canonical equilibrium state for a free Bose gas in a cubeLL

n

of volumeV5Ln with total particle densityr and inverse temperatureb is given by

vL,b,r
can ~A!5

TrH
L,B
(n) A(n)e2bTL

s,(n)

TrH
L,B
(n) e2bTL

s,(n) , where n5@Vr#,dom~A(n)!,H L
(n) , ~3.2!

andTL
s,(n) is then-particle free Bose gas Hamiltonian in the cubeLL

n with boundary conditions
defined bys. Now we consider the grand canonical equilibrium state at chemical potentialm and
inverse temperatureb,

vL,b,m
g.c. ~A!5

TrFL,B
A exp$2b~TL

s2mNL!%

TrFL,B
exp$2b~TL

s2mNL!%
, dom~A!,FL,B . ~3.3!

Here TL
s5(kPZ

1
n EL(k)a* (ck

L)a(ck
L) is the free Bose gas Hamiltonian andNL5(kPZ

1
n NL,k

5(kPZ
1
n a* (ck

L)a(ck
L), is the particle number operator inFL,B , the boson Fock space ove

L 2(LL
n):

FL,B5FB~L 2~LL
n !!5 %

n50

`

HL,B
(n) ~3.4!

with HL,B
(n) the symmetrizedn-particle Hilbert space appropriate for bosons andHL,B

(0) 5C.
Notice that in the thermodynamic limitL→` the canonical ensemble statevb,r

can(•) may not
coincide with the equilibrium state of the grand canonical ensemble statevb,m̄(b,r)

g.c. (•) for the
corresponding particle densityr. Here m̄(b,r)5 limL→` m̄L(b,r) and m̄L(b,r) is a solution of
the grand canonical particle density equation~see also~3.22!!

r5vL,b,m̄L(b,r)
g.c. ~NL /V!. ~3.5!

By virtue of ~3.4! the states~3.2! and ~3.3! are related by

vL,b,m
g.c. ~A!5E

R1

KL,b,m
g.c. ~dj! vL,b,j

can ~A([Vj]) !, ~3.6!

whereA(n)5AdHL,B
(n) is a restriction of the operatorA on the subspaceHL,B

(n) and

KL,b,m
g.c. ~j!5

(
n50

[Vj]

exp~nbm!TrH
L,B
(n) exp~2bTL

(n)!

TrFL,B
exp$2b~TL2mNL!%

. ~3.7!

For a given grand canonical density~3.5!, the measure~3.7! takes the form
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KL,b,r~dj!ªKL,b,m̄L(b,r)
g.c. ~dj!5dj KL,b~j;r!, ~3.8!

and the limitKb(x;r)5 limL→` KL,b(x;r) is known as theKac density, see, e.g., Ref. 7. If the
Kac density happens to be ad-function with support atr, then clearly one has~strong! equivalence
of ensembles:

vb,m̄(b,r)
g.c. ~A!5vb,r

can~A!. ~3.9!

Otherwise there is onlyweakequivalence of ensembles, see Ref. 3.
The limit rc(b)ª limm→2ns2 limL→` vL,b,m

g.c. (NL /V) is the critical density for the free Bos
gas in a box with attractive boundary conditions. We shall show that in the model the can
and the grand canonical ensembles arenot equivalent in thepresenceof the Bose condensate, i.e
for r.rc(b), or for b.bc(r), whererc(bc(r))5r. The nonequivalence of ensembles in t
case of the free Bose gas withattractive boundariesis not the same phenomenon as in the case
the one with, for example Dirichlet,s5`, or Neumann,s50, boundary conditions. In the cas
of the attractive boundary conditions (s,0), the condensation phenomenon is asurface effect
~not a bulk effect as in the free Bose gas withs5` or s50): the condensate is located near t
walls, see Sec. IV B.

To determine the Kac density, we have to calculate~see~3.6!!

vL,b,m̄L(b,r)
g.c. ~W~ f !!5E

R1

KL,b,r~dj! vL,b,j
can ~W~ f !!

5E
R1

dj KL,b~j;r!vL,b,j
can ~W~ f !! ~3.10!

for any test functionf PC0
`(Rn), theC`-functions onRn with compact support. Therefore we firs

must calculate the limit of the expectation value of the exponential function:

vb,r
g.c.~W~ f !!ª lim

L→`

vL,b,m̄L(b,r)
g.c. ~W~ f !! ~3.11!

with $m̄L(b,r)%L solutions of the density equation~3.5!.
This is possible because the statesvL,b,m

g.c. , wherem,2ns2, arequasifree states, and these
are easily obtained by using thetruncated functionalsvL,b,r(¯)T , see, e.g., Ref. 2. The func
tionals are defined by the recursion relations:

vL,b,m
g.c. ~A1¯An!5 (

tPPn
)
JPt

vL,b,m
g.c. ~Aj (1) ,...,Aj (uJu)!T ~3.12!

for all Ai ( i 51,2) creation or annihilation operators andnPN. The sumtPPn is over all parti-
tionst of a set of n elements into ordered subsetsJ5$ j (1),...,j (uJu)%Pt. One can verify that the
truncated functionals associated to the equilibrium statesvL,b,m

g.c. satisfy

vL,b,m
g.c. ~a]~ f !!T5vL,b,m

g.c. ~a]~ f !!50,

vL,b,m
g.c. ~a* ~ f 1!,a* ~ f 2!!T5vL,b,m

g.c. ~a~ f 1!,a~ f 2!!T 50,

vL,b,m
g.c. ~a* ~ f 1!,a~ f 2!!T5S f 2 ,

1

eb(tL
s

2m)21
f 1D

hL

, ~3.13!
                                                                                                                



.
tion

tors

or the

r

1611J. Math. Phys., Vol. 45, No. 4, April 2004 Equilibrium states for the Bose gas

                    
with f , f 1 , f 2 ,...PhL , the space of testfunctions with support inLL
n , a]5$a or a* % andtL

s is the
self-adjoint extension of the Laplacian2DL corresponding to attractive boundary conditionss
,0 on ]LL

n . Then the nontrivial two-point functions~3.13! are explicitly given by

vL,b,m
g.c. ~a* ~ f 1!,a~ f 2!!T5vL,b,m

g.c. ~a* ~ f 1!a~ f 2!!

5 (
kPZ1

n
f̂ 2~k! f̂ 1~k!

1

eb(EL(k)2m)21
, ~3.14!

where the transformationf (x)° f̂ (k) of f PC0
`(Rn), is now defined by

f̂ ~k!ª~ck
L , f !hL

5E
LL

n
dxck

L~x! f ~x!, ~3.15!

the Fourier transforms for the basis oftL
s ~see Sec. III A!. Now,

~3.16!

where thevL,b,m
g.c. (F( f ),F( f ),...,F( f ))T are then-point truncated field correlation functions

Because of the fact thatvL,b,m
g.c. is a quasifree state, only the two-point truncated correla

function is nonvanishing, yielding

vL,b,m
g.c. ~W~ f !!5exp~2 1

2 vL,b,m
g.c. ~F~ f !,F~ f !!T!. ~3.17!

By virtue of ~2.3! and~2.4! it can be rewritten in terms of the creation and annihilation opera
a* ( f ) anda( f ),

vL,b,m
g.c. ~F~ f !,F~ f !!T5 1

2 ~ f , f !hL
1vL,b,m

g.c. ~a* ~ f !a~ f !! ~3.18!

so that the explicit form of the generating functional~3.17! becomes

vb,m
g.c.~W~ f !!5 lim

L→`

vL,b,m
g.c. ~W~ f !!5exp~2 1

4 ~ f , f !hL
2 1

2 lim
L→`

vL,b,m
g.c. ~a* ~ f !a~ f !!!. ~3.19!

A last remark about the thermodynamic limit. Notice that the grand-canonical ensemble f
free Bose gas exists only form, inf spec (tL

s). Therefore, the solution of Eq.~3.5! verifies the
inequality m̄L(b,r),2ns2. Since thecritical density,

lim
m→2ns2

lim
L→`

vL,b,m
g.c. S NL

Ln D5rc~b! ~3.20!

for the free Bose gas with attractive boundary conditionss,0 is finite for all dimensions greate
then, or equal to one,5,10 Bose–Einstein condensation occurs forr.rc(b),

r0~b!ªr2rc~b!5 lim
L→`

2nvL,b,m̄L(b,r)
g.c. S NL,0

Ln D.0, ~3.21!

whereNL,0 is the number-operator onFL,B of the zero modek50. The factor 2n is due to the
asymptotic degeneracy of the inf spec(tL

s)52ns21O(e2Lusu) for L→`, see Sec. III A. Notice
that ~3.21! implies that the solution of~3.5! for r.rc(b) has the asymptotics,

m̄L~b,r!52ns22
2n

b~r2rc~b!!Ln 1o~L2n!. ~3.22!
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We use this result in the computations of the thermodynamic limit of the generating func
below.

We conclude this section by the following statement about the explicit form of the Kac de
for the thermodynamic limit of the free Bose gas in thecubic box with attractive boundary
conditions.

Theorem 3.1:For the free Bose gas TL
s with attractive boundary conditionss,0 the limiting

Kac density has the form

Kb~j;r!5H d~j2r!, for r,rc~b!,

2nu~j2rc~b!!

~2n21!! ~r2rc~b!! F2n~j2rc~b!!

r2rc~b! G2n21

expH 2
2n~j2rc~b!!

r2rc~b! J , for r>rc~b!.

~3.23!

Here u(z<0)50 and u(z.0)51.
Proof: By the identity~3.10!, the Kac densityKb(j;r) is related to the thermodynamic lim

of the characteristic function of the particle densityNL /V for tPR1,

lim
L→`

vL,b,m̄L(b,r)
g.c. ~exp~ i tNL /V!!5E

R1

Kb,r~dj! vb,j
can~exp~ i t j!!

5E
R1

dj Kb~j;r!exp~ i t j!. ~3.24!

To calculate the limit in the left-hand side of~3.24!, we use that the statevL,b,m̄L(b,r)
g.c. (•) is

quasifree. Then

vL,b,m̄L(b,r)
g.c. ~exp~ i tNL /V!!5 )

kPZ1
n

H 12exp@2b~EL~k!2m̄L~b,r!!#

12exp@2b~EL~k!2m̄L~b,r!2 i t /bLn!# J . ~3.25!

Since the 2n lowest energy-levels, i.e., the levels for whichkPK<2n5$kPZ1
n :ki50,1; i

51,...,n% are exponentially degenerated whenL→`: EL(kPK<2n)52ns21O(e2Lusu), by vir-
tue of ~3.22! and ~3.25! we get that

lim
L→`

vL,b,m̄L(b,r)
g.c. ~exp~ i tNL /V!!5H exp~ i tr!, for r,rc~b!,

@12 i t22n~r2rc~b!!#22n
exp~ i trc~b!!, for r>rc~b!.

~3.26!

Therefore, by~3.24!, the Kac density~3.23! is the Fourier transformation of the right-hand side
~3.26!.

IV. THE GENERATING FUNCTIONAL

A. Condensate and generating functional

We are interested in the thermodynamic limit of the generating functionalvb,r
g.c.(W( f ))

5 limL→` vL,b,m̄L(b,r)
g.c. (W( f )) for any f PC0

`(Rn). To this end we choose the boxLL
n with L large

enough such that theL f ªsupp (f ) is contained inLL
n . We consider here the generating fun

tional vb,r
g.c.(W( f )) for f an element inC0

`(Rn).
Theorem 4.1:The generating functionalvb,r

g.c.(W( f )) on C0
`(Rn) is given by

vb,r
g.c.~W~ f !!5exp~2 1

4 ~ f , f !!exp~2 1
2 ~ f ,gs~b,r! f !!, ~4.1!

with operator gs(b,r) on L 2(Rn) defined by
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~gs~b,r! f !~x!5E
Rn

dyGs~b,r!~ ix2yi ! f ~y!,

Gs~b,r!~r !5~4pb!2n/2(
n51

`

e2r 2/4nb
e2nbm̄(b,r)

nn/2 , ~4.2!

wherem̄(b,r),2ns2 for r,rc(b) and m̄(b,r)52ns2 for r>rc(b) are limiting solutions of
the grand canonical density equation (3.5).

Proof: In order to determine the generating functionalvb,r
g.c.(W( f )), we have to compute

limL→` vL,b,m̄L(b,r)
g.c. (a* ( f )a( f )), see~3.19!. Since the attractive boundary conditionss,0 cre-

ate a gap in the spectrum spect (tL
s), and, respectively, in spect (TL

s), the calculations need a
separation of the negative eigenvalues from the positive part of the spectrum.

We consider first the one-dimensional case, when there are only two negative eigen
tending to2s2 for L→`, see Sec. III A. By virtue of~3.14! one gets for a givenf PC0

`(R1) that

lim
L→`

vL,b,m̄L(b,r)
g.c. ~a* ~ f !a~ f !!5 lim

L→`
(

kPZ1
1

u f̂ ~k!u2
1

eb(eL(k)2m̄L(b,r))21

5 lim
L→`

S u f̂ ~0!u2
1

eb(eL(0)2m̄L(b,r))21
1u f̂ ~1!u2

1

eb(eL(1)2m̄L(b,r))21

1 (
n51

`

enbm̄L(b,r)(
k52

`

e2nbeL(k)u f̂ ~k!u2D . ~4.3!

As mentioned before, we chooseLL large enough such that supp (f )5L f is contained inLL .
Then one estimates thatu f̂ (0)u2 has an asymptotics of the order ofO(e2Lusu) for largeL since

u f̂ ~0!u25U E
L f

dx f~x!f0
L~x!U2

5
2

L S 11
sinh~Lusu!

Lusu D 21U E
L f

dx f~x!cosh~2usux!U2

54usue2LusuU E
L f

dx f~x!cosh~2usux!U2

1o~e2Lusu!. ~4.4!

The integral in the last expression is independent ofL, because supp (f ) is finite and inside the
box LL . Similarly one gets forL→` that

u f̂ ~1!u254usue2LusuU E
L f

dx f~x!sinh~2usux!U2

1o~e2Lusu!. ~4.5!

Consider now the coefficients ofu f̂ L(0)u2 and of u f̂ L(1)u2 in ~4.3!. If r,rc(b), then m̄(b,r),
2s2, i.e.,eL(0)2m̄L(b,r).0 for largeL. Therefore, by virtue of~4.3!, ~4.4!, and~4.5!, both of
those terms are of the orderO(e2Lusu) for large L. If r>rc(b), then m̄L(b,r)52s2

1O(L21), and one gets for largeL,

H u f̂ ~0!u2
1

eb(eL(0)2m̄L(b,r))21
1u f̂ ~1!u2

1

eb(eL(1)2m̄L(b,r))21 J . 1
2 r0~b!L$u f̂ ~0!u21u f̂ ~1!u2%,

~4.6!
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wherer0(b)5r2rc(b) is the condensate density. Therefore, again by virtue of~4.4! and ~4.5!,
these terms vanish in the limitL→`.

Consider now the last term in the limit~4.3!. By virtue of ~3.15! for n51 ~see Sec. III A! we
can represent the sum overk>2 in the following explicit form:

2

L (
$k>2: even%

S 11
sin~AeL~k!L !

AeL~k!L
D 21

F̂L even~k!F̂L even~k!e2seL(k)

1
2

L (
$k>2: odd%

S 12
sin~AeL~k!L !

AeL~k!L
D 21

F̂L odd~k!F̂L odd~k!e2seL(k), ~4.7!

wheres5nb and

F̂L even~k!ªE
L f

dx cos~AeL~k!x! f ~x!, F̂L odd~k!ªE
L f

dx sin~AeL~k!x! f ~x!. ~4.8!

Since the spectrum$eL(k)%k>2 verifies the conditions~3.1! and f PC0
`(R1), the first and the

second series of terms in~4.7! are Darboux–Riemann sums for the corresponding integrals:

lim
L→`

H 2

L (
$k>2: even%

S 11
sin~AeL~k!L !

AeL~k!L
D 21

F̂L even~k! F̂L even~k!e2seL(k)

1
2

L (
$k>2: odd%

S 12
sin~AeL~k!L !

AeL~k!L
D 21

F̂L odd~k! F̂L odd~k!e2seL(k)J
5

1

p E
0

`

dk Re~eik •, f !hL
Re~eik •, f !hL

e2sk2
1

1

p E
0

`

dk Im~eik •, f !hL
Im~eik •, f !hL

e2sk2
.

~4.9!

The last expression of~4.9! yields

1

2p E
2`

`

dk ~eik •, f !hL
~eik •, f !hL

e2sk2
5~4ps!21/2E

R1
dxE

R1
dyf ~x! f ~y!expH 2

ux2yu2

4s J .

~4.10!

Finally, taking into account~4.4!–~4.6!, ~4.10!, and the fact thatm̄(b,r)<2s2,0, we get for the
limit ~4.3! in the one-dimensional case:

vb,r
g.c.~a* ~ f !a~ f !!5~ f ,gs,n51~b,r! f !hL

, ~4.11!

wheregs,n51(b,r) is the integral operator onL 2(R1) defined by

~gs,n51~b,r! f !~x!5E
R1

dy Gs,n51~b,r!~ ux2yu! f ~y! ,

Gs,n51~b,r!~r !5~4pb!21/2(
n51

`

e2r 2/4nb
e2nbm̄(b,r)

n1/2 .

Using the results for the one-dimensional case, one computes the two-point correlation fu
vb,r

g.c.(a* ( f )a( f )) in then-dimensional case. Since the first 2n wave functions$ck
L(x)%kPZ

1
n have

the same exponential behavior as in the one-dimensional case and since infL spect(tL
s)52ns2,

see Sec. III A, we get
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lim
L→`

vL,b,m̄(b,r)
g.c. ~a* ~ f !a~ f !!5 lim

L→`
(

kPZ1
n

u f̂ ~k!u2
1

eb(EL(k)2m̄L(b,r))21

5 (
n51

`

e2nbnm̄(b,r)~4pnb!2n/2E
Rn

dxE
Rn

dyf ~x! f ~y!

3expH 2
ix2yi2

4nb J ,

which implies~4.2!. By virtue of ~3.19! this finishes the proof of~4.1! and of the theorem for any
particle densityr.

Theorem 4.1 tells us that the condensate is not traceable by considering only strictly
observables. The characteristic functional on the CCR-C* -algebra of quasilocal observables coi
cides with the one without condensate. The reason for this is that the condensate is not h
neous but located in the vicinity of the container boundary.

In order to catch up the presence of the condensate or to get a complete picture of the s
one has to extend the algebra of observables to the weak closure of the CCR-C* -algebra with
respect to the limit Gibbs states. In the next paragraph we compute the limit functional o
relevant nonlocalized observables, and obtain a complete picture yielding the existence o
ciently many fields in the representation of anyw* -limit point of Gibbs states asL tends to
infinity. In fact our strategy will be to make a relevant choice of thehomothety pointfor the
thermodynamic limit of convex containers, in order to catch up the condensate.

Above and below we considered only the easy shape container limit, namely cubic b
Because of the particular inhomogeneous spreading of the condensate in the neighborhoo
box boundary, it is clear that this thermodynamic limit treatment can be very much shape d
dent. In this paper we do not enter into the details of this specific problem.

B. Condensate localization

Remark 4.2: It sounds curious that in spite of the nonzero condensate densityr
.rc(b), (3.21), there is no trace of it in the generating functional (4.1). This is in contrast to
Kac density (3.23), which explicitly depends on the condensate densityr2rc(b). To understand
this difference one has to take into account that (4.1) is localized on the support of the fu
f PC0

`(Rn), whereas the Kac density is a global function, depending on the condensate eve
is localized at ‘‘infinity,’’ sticked to the attractive boundaries.

In order to make this statement rigorous we start first with the one-dimensional case. L
function f PC0

`(R1) be such that supp(f )5(2d,d),(2L/2,L/2) andd,(ln L)/2usu. Consider
its shift over a distancegL(s)ªL/22(2usu)21 ln L:

f tgL(s)
~x![~tgL(s) f !~x!ª f ~x2@L/22~2usu!21 ln L# !. ~4.12!

Then f tgL(s)
PC0

`(2L/2,L/2).

To get the generating functional we compute now the limit of the corresponding two-
function ~3.19!:
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lim
L→`

vL,b,m̄L(b,r)
g.c. ~a* ~tgL(s) f !a~tgL(s) f !!

5 lim
L→`

(
k50

`

u f̂ tgL(s)
~k!u2

1

eb(eL(k)2m̄L(b,r))21

5 lim
L→`

S u f̂ tgL(s)
~0!u2

1

eb(eL(0)2m̄L(b,r))21
1u f̂ tgL(s)

~1!u2
1

eb(eL(1)2m̄L(b,r))21

1 (
k52

`

u f̂ t [gL(s)]
~k!u2

1

eb(eL(k)2m̄L(b,r))21
D . ~4.13!

Remark 4.3: Notice that in contrast to (4.3), the shift (4.12) corresponds simply to the c
of a new point of homothety for the thermodynamic limit (4.13). In (4.3), the point of homo
coincides with the origin of coordinates x50, whereas in (4.13) this point is L/2
2(2usu)21 ln L.

Now, and in contrast to~4.4!, u f̂ tgL(s)
(0)u2 goes likeL21 for largeL. Indeed,

u f̂ tgL(s)
~0!u25U E

gL(s)2d

gL(s)1d
dx~tgL(s) f !~x!f0

L~x!U2

5usuL21U E
2d

d
dx f~x!eusuxU2

1o~L21!.

Remark that forr.rc(b) the first term in~4.13! remains nowfinite in the limit L→`. Taking
into account~3.21! and ~3.22! one gets

lim
L→`

u f̂ tgL(s)
~0!u2

1

eb(eL(0)2m̄L(b,r))21
5

r0~b,r!

2
usuU E

2d

d
dx f~x!eusuxU2

. ~4.14!

The same reasoning for the second term in formula~4.13! gives a similar result:

lim
L→`

u f̂ tgL(s)
~1!u2

1

eb(eL(1)2m̄L(b,r))21
5

r0~b,r!

2
usuU E

2d

d
dx f~x!eusuxU2

. ~4.15!

By the same computations as used in the proof of Theorem 4.1, the third term in~4.13! yields for
r.rc(b):

lim
L→`

(
k52

`

u f̂ tgL(s)
~k!u2

1

eb(eL(k)2m̄L(b,r))21

5 (
n51

`

e2nbs2
~4pnb!21/2E

R1
dxE

R1
dy f~x! f ~y! expH 2

ux2yu2

4nb J . ~4.16!

Hence the two-point function for the one-dimensional problem becomes

lim
L→`

vL,b,m̄L(b,r)
g.c. ~a* ~tgL(s) f !a~tgL(s) f !!

5r0~b,r!usuU E
R1

dx f~x!eusuxU2

1~ f ,gs,n51~b,r! f !, ~4.17!

see~4.11! for the definition of the operatorgs,n51(b,r).
It is evident that one gets the same result for the shift of supp(f )5(2d,d) over a distance

2gL(s)52L/21(2usu)21 lnL , i.e.,
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lim
L→`

vL,b,m̄L(b,r)
g.c. ~a* ~t6gL(s) f !a~t6gL(s) f !!

5r0~b,r!usuU E
R1

dx f~x!e6usuxU2

1~ f ,gs,n51~b,r! f !, ~4.18!

where

~t6gL(s) f !~x!ª f ~x7@L/22~2usu!21 ln L# !. ~4.19!

Therefore, taking the thermodynamic limitL→` at one of the homothety points6gL(s), we get
that the generating functional depends on the Bose-condensate density forr>rc(b):

lim
L→`

vL,b,m̄L(b,r)
g.c. ~W~t6gL(s) f !!5exp~2 1

4 ~ f , f !!exp~2 1
2 Cs,n51

6 ~ f !2 1
2 ~ f ,gs,n51f !!,

~4.20!

where, by virtue of~4.18!, one has

Cs,n51
6 ~ f !5r0~b,r!usuU E

R1
dx f~x!e6usuxU2

. ~4.21!

Remark 4.4: Notice that this result is due to a fine (logarithmic) tuning of the position o
homothety points6gL(s). Indeed, take6gL(as), for 0,a,1, i.e., the homothety points ar
more distant from the boundary6L/2. Taking into account the explicit form of the eigenfunctio

for k50,1 one finds that nowu f̂ t6gL(as)
(k50,1)u2 goes for large L like L21/a. This implies that

both limits (4.14) and (4.15), and hence (4.21), vanish. So, the generating functional (4.20) h
same form as for thermodynamic limit with the homothety point at the origin. In contrast to
the choice1,a means that the homothety points are closer to the boundaries6L/2. Then

u f̂ t6gL(as)
(k50,1)u2 goes slower then L21. This implies that both limits (4.14) and (4.15), an

hence (4.21), becomes infinite. So, forr>rc(b) the generating functional (4.20) is zero, where
for r,rc(b) it is nontrivial with Cs,n51

6 ( f )50.
To interpret these results, consider thelocal particle density:

vL,b,m̄L(b,r)
g.c. ~a* ~x!a~x!!5 (

kPZ1
n51

ufk
L~x!u2

eb(eL(k)2m̄L(b,r))21
. ~4.22!

Here a(x) is the Bose-field operator such thata( f )5*Rn51dxf (x)a(x) for f PC0
`(LL

n51) and
N(x)5a* (x)a(x) is the local number operator, cf.~3.14!. Then by~3.5! and ~3.14!, the global
density is

vL,b,m̄L(b,r)
g.c. S NL

L D5
1

L E
LL

n51
dx vL,b,m̄L(b,r)

g.c. ~a* ~x!a~x!!. ~4.23!

Consider the thermodynamic limit of thelocal particle density at theorigin of the coordinatesx
50. Taking into account the explicit form of the eigenfunctions, one gets that

r~b,r; x50!ª lim
L→`

vL,b,m̄L(b,r)
g.c. ~a* ~x50!a~x50!!5

1

p E
R1

1
dk

1

eb(k22m̄(b,r))21
~4.24!

for r,rc(b), and
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r~b,r; x50!5 lim
L→`

vL,b,m̄L(b,r)
g.c. ~a* ~x50!a~x50!!

5
1

p E
R1

1
dk

1

eb(k21s2)21
5rc~b! ~4.25!

for r>rc(b) by ~3.22!. By inspection of~4.24! and~4.25! based on the explicit formulas for th
eigenfunctions one readily gets that

r~b,r; x!5r~b,r; x50! ~4.26!

for anyx in a boundeddomainD, containing the origin of the coordinatesx50. In particular we
get that the limitinglocal density forxPD corresponding to the first two modes (k50,1) is

r0~b,r; x!ª lim
L→`

(
k50,1

ufk
L~x50!u2

eb(eL(k)2m̄L(b,r))21
50. ~4.27!

On the other hand, theglobal Bose–Einstein condensation density~3.21! is also related exactly to
these two modes:

r0~b,r!5 lim
L→`

1

L (
k50,1

1

eb(eL(k)2m̄L(b,r))21
5r2rc~b!.0, ~4.28!

which is not present in~4.25!.
Consider now the local density of the Bose–Einstein condensation~4.27! at the homothety

points6gL(s). Then taking into account the explicit form of the eigenfunctionsfk50,1
L (x) and

~3.22!, we get that, in contrast to~4.27!, the local condensatedensity is

lim
L→`

(
k50,1

ufk
L~x56gL~s!!u2

eb(eL(k)2m̄L(b,r))21
5r0~b,r!usu. ~4.29!

The same arguments as above show that this condensate local density varies fromzero to infinity
when the parametera in the homothety point positions6gL(as) varies in the same interval.

Remark 4.5: These observations can be interpreted as follows: the Bose–Einstein condensate
for attractive boundary conditionss,0 is localized in a logarithmically narrow domain in th
vicinity of the boundary. In other words this kind of condensation is a surface phenomenon.
same time globally it is very ‘‘visible,’’ since the Kac density indicates a nonequivalenc
ensembles in the presence of the condensate, see Theorem 3.1.

For the generalization to then-dimensional case, we start with the correspondinglocal con-
densatedensity:

r0~b,r;x!ª lim
L→`

(
kP$Z1

n : ka50,1 ; a51,...,n%

uck
L~x!u2

eb(EL(k)2m̄L(b,r))21
. ~4.30!

Let x belong to a bounded domainDn, containing the origin of the coordinatesx50. Then using
the explicit expressions for the eigenfunctionsck

L(x), see Sec. III.A, and by the same argume
as above forn51, we obtain that the limit~4.30! is zero for all densitiesr.0.

The product structure:ck
L(x)5) i 51

n fki

L (xi), implies that this conclusion does not change

we consider instead ofxPDn, the condensate density in the vicinity of the points correspond
to the shifts where atleast oneamong then arguments remainsunshifted.

On the other hand, this structure and the asymptotics offk50,1
L (x) for uxu→` yields also that

for any kP$Z1
n :ka50,1 ;a51,...,n% one gets
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S )
a51

n

t6gL(aas)ck
LD ~x50!5usun/2L2 ~1/2!(a1

21
1a2

21
1¯1an

21)1o~L2 ~1/2!(a1
21

1a2
21

1¯1an
21)!

~4.31!

asL→`. Then, by virtue of~3.22!, the limit for the local condensate density becomesnontrivial:

lim
L→`

(
kP$Z1

n :ka50,1 ; a51,...,n%

US )
a51

n

t6gL(aas)ck
LD ~x50!U2

eb(EL(k)2m̄L(b,r))21
5usun~r2rc~b!!.0, ~4.32!

if and only if

a1
211a2

211¯1an
215n. ~4.33!

This means that the condensate~up to logarithmic deviations! is localized essentially in the
cornersof the hypercubeLL

n , whereL→`. We proved the following statement:
Theorem 4.6:Let x be in a bounded domain Dn, containing the origin of the coordinatesx

50, then the thermodynamic limit of the local particle density is

r~b,r; x!ª lim
L→`

(
kPZ1

n

uck
L~x!u2

eb(EL(k)2m̄L(b,r))21
5

1

pn E
R1

n
dk

1

eb(k22m̄(b,r))21
, ~4.34!

where m̄(b,r),2ns2 for r,rc(b) and m̄(b,r)52ns2 for r>rc(b). Thus r(b,r; x)
5rc(b) for r>rc(b), i.e., the local condensate densityr0(b,r; x)50 for anyr.0. Whereas at
the homothety points corresponding to the shifts)a51

n t6gL(aas) with parameters satisfying (4.33)

the local condensate density (4.32) is nontrivial. Moreover, besides being inhomogeneous it
anisotropic and essentially localized in the directions of the corners of the hypercubeLL→`

n .
Varying the parameters$aa%a51

n in the range(0,1`) one finds this local condensate dens
varying from zero to infinity.

Now we extend Theorem 4.1 on the basis of our discussion above of the condensate
ization and Theorem 4.6. Similar to the one-dimensional case, see Remark 4.4, our re
localized observable in then-dimensional case will be a functionf PC 0

`(Rn) such that supp(f )
5(2d1 ,d1)3(2d2 ,d2)3¯3(2dn ,dn),LL

n and with d5maxi51,...,n d i such that d
,(ln L)/2usu. Consider in each coordinate the shift over a distancegL(s)5L/22(2usu)21 ln L:

S )
a51

n

tgL(s) f D ~x!5 f ~x12~L/22~2usu!21 ln L !,...,xn2~L/22~2usu!21 ln L !!,

then)a51
n tgL(s) f PC 0

`(LL
n).

To get the generating functional in then-dimensional case, we compute the limit of th
corresponding two-point correlation function:
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lim
L→`

vL,b,m̄L(b,r)
g. c. S a* S )

a51

n

tgL(s) f D aS )
a51

n

tgL(s) f D D
5 lim

L→`
(

kPZ1
n
U)

a51

n

~ f̂ tgL(s)
!~k!U2

1

eb(EL(k)2m̄L(b,r))21

5 lim
L→`

S (
kP$Z1

n :ka50,1;a51,...,n%
U)

a51

n

~ f̂ tgL(s)
!~k!U2

1

eb(EL(k)2m̄L(b,r))21

1 (
n51

`

enbm̄L(b,r) (
kPZ1

n
\$Z1

n : ka50,1; a51, ..., n%

e2nbEL(k)U)
a51

n

~ f̂ tgL(s)
!~k!U2D .

~4.35!

This thermodynamic limit depends on the homothety point corresponding to the
)a51

n t6gL(aas) with parametersaa51. Notice that the factoru)a51
n f̂ tgL(s)

(k)u2 is of the order

O(L2n) for largeL:

U)
a51

n

f̂ tgL(s)
~k!U2

5U E
gL(s)2d1

gL(s)1d1
dx1¯E

gL(s)2dn

gL(s)1dn
dxn )

a51

n

~tgL(s) f !~x!ck
L~x!U2

5usunL2nU E
supp(f )

dx f ~x! )
a51

n

eusuxaU2

1o~L2n!, ~4.36!

and for anykP$Z1
n :ka50,1;a51,...,n%. Hence, by the same reasoning, which implies~4.32!,

the first 2n terms in~4.35! give

lim
L→`

(
kP$Z1

n :ka50,1;a51,...,n%
U)

a51

n

~ f̂ tgL(s)
!~k!U2

1

eb(EL(k)2m̄L(b,r))21

5r0~b,r!usunU E
Rn

dx f ~x!)
i 51

n

eusuxiU2

. ~4.37!

For the last term in~4.35!, we perform the computations as in Theorem 4.1, yielding

lim
L→`

(
kPZ1

n
\$Z1

n : ka50,1; a51, ..., n%

` U)
a51

n

f̂ tgL(s)
~k!U2

1

eb(EL(k)2m̄L(b,r))21

5 (
n51

`

e2nnbs2
~4pnb!2n/2E

Rn
dxE

Rn
dyf ~x! f ~y! expH 2

ix2yi2

4nb J . ~4.38!

So, taking the thermodynamic limitL→` at one of the homothety points$6gL(s)%a51
n , we get

now the generating functional forr>rc(b):

lim
L→`

vL,b,m̄L(b,r)
g. c. S )

a51

n

W~t6g(s) f !D
5exp~2 1

4 ~ f , f !!exp~2 1
2 Cs

6~b,r!~ f !2 1
2 ~ f ,gs~b,r! f !! ~4.39!

with
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Cs
6~b,r!~ f !5r0~b,r!usunU E

Rn
dx f ~x! )

a51

n

e6usuxaU2

. ~4.40!

Remark 4.7: Again this result is due to a fine (logarithmic) tuning of the position of
homothety points$6gL(s)%a51

n in the corner directions of the hypercubeLL
n . Indeed, take as in

Theorem 4.6 the shifts)a51
n t6gL(aas) , with (a51

n (aa)21.n, i.e., the homothety points are mor

distant from the corners of the hypercube. Taking into account the explicit form of the eigen

tions for kP$Z1
n :ka50,1;a51,...,n%, one finds now thatu)a51

n f̂ tgL(aas)
(k)u2 with kP$Z1

n :ka

50,1;a51,...,n% goes like L2(a1
21

1a2
21

1¯1an
21) for large L. This implies that the limits of the

first 2n terms (4.37), and hence (4.40), vanish. So, the generating functional (4.39) has the
form as for the thermodynamic limit with the homothety point at the originx50. In contrast to
that, the choice0,(a51

n (aa)21,n means that the homothety points are too close to the corn

of the hypercubeLL
n . Then u)a5

n f̂ t6gL(aas)
(k)u2 with kP$Z1

n :ka50,1;a51,...,n% goes to zero

slower then L2n. This implies that the limit (4.40) becomes infinite. So, forr>rc(b) the gener-
ating functional (4.39) is zero, whereas forr,rc(b) it is nontrivial with Cs

6( f )50.
Therefore, we proved the following theorem:
Theorem 4.8: The generating functionallimL→` vL,b,m̄L(b,r)

g. c. ()a51
n W(t6g(aas) f )) on

C0
`(Rn) is given by

lim
L→`

vL,b,m̄L(b,r)
g. c. S )

a51

n

W~t6g(aas) f !D
5exp~2 1

4 ~ f , f !!exp~2 1
2 Cas

6 ~b,r!~ f !2 1
2 ~ f ,gs~b,r! f !!, ~4.41!

with

Cas
6 ~b,r!~ f !5r0~b,r!usunU E

Rn
dx f ~x!)

i 51

n

e6usuxiU2

xn~a!,

~gs~b,r! f !~x!5E
Rn

dyGs~b,r!~ ix2yi ! f ~y!,

Gs~b,r!~r !5~4pb!2n/2(
n51

`

e2r 2/4nb
e2nbns2

nn/2 .

Here m̄(b,r),2ns2 for r,rc(b) and m̄(b,r)52ns2 for r>rc(b) are the limiting solutions
of the grand canonical density equation (3.5), r0(b,r)50 for r,rc(b) whereasr0(b,r)5r
2rc(b) for r>rc(b) and the functionxn(a)50,1,1`, respectively, forn,(a51

n (aa)21, n
5(a51

n (aa)21, and n.(a51
n (aa)21.

V. CONCLUDING REMARKS

The main results of our analysis for the free Bose gas with attractive boundary conditio
contained in the Theorems 3.1, 4.1, and 4.8.

In Theorem 3.1, we obtain a Kac density function showing nonequivalence of the cano
and the grand canonical ensemble in the presence of the condensate even if the condensat
is locally zero.

We learn from Theorem 4.1 that the condensation is not visible in the expectation valu
strictly localized observables because the Bose condensate is situated near the bounda
‘‘infinite container.’’ Nevertheless one should observe the effects of condensation in the eq
rium states, i.e., in the generating functional.
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Theorem 4.8 yields the answer. We make precise for which type of observables the e
rium states show their dependence on the condensate. This completes the rigorous analys
problem of~non!equivalence of ensembles for the free Bose gas with attractive boundary c
tions and the inhomogeneous condensate localization.

Finally we repeat that we analyzed only the problem taking the thermodynamic limits i
sense of homothetically increasing cubes, with the consequence that the condensate is
anisotropically in the direction of the corners of these cubes and is ‘‘localized at infinity.’’ To p
this we tune the homothety point position at the logarithmic~in the units of the cube size! distance
from the cube boundary. If instead one looks for the limit of spherical containers, this aniso
in the positioning of the condensate should disappear. Does one expect spontaneous s
symmetry breaking of the equilibrium states in this case?

ACKNOWLEDGMENT

The paper was initiated during V.A.Z.’s visit at the Instituut voor Theoretische Fysica,
Leuven. He wishes to thank the Instituut voor Theoretische Fysica for their hospitality.

1Araki, H. and Woods, E. J., ‘‘Representations of the canonical commutation relations describing a nonrelativistic
free Bose gas,’’ J. Math. Phys.4, 637–662~1963!.

2Bratteli, O. and Robinson, D. W.,Operator Algebras and Quantum Statistical Mechanics~Springer-Verlag, Berlin,
1996!, Vol. 2.

3Bru, J.-B., Nachtergaele, B., and Zagrebnov, V. A., ‘‘The equilibrium states for a model with two kinds of
condensation,’’ J. Stat. Phys.109, 143–176~2002!.

4Indekeu, J. O. and van Leeuwen, J. M. J., ‘‘Wetting, prewetting, and surface transitions in type-I supercondu
Physica C251, 290–306~1995!.

5Landau, J. and Wilde, I. F., ‘‘On the Bose–Einstein condensation of an ideal gas,’’ Commun. Math. Phys.70, 43–51
~1979!.

6Lauwers, J. and Verbeure, A., ‘‘Fluctuations in the Bose gas with attractive boundary conditions,’’ J. Stat. Phy108,
123–168~2002!.

7Lewis, J. T. and Pule´, J. V., ‘‘The equilibrium state of the free Boson gas,’’ Commun. Math. Phys.36, 1–18~1974!.
8Lewis, J. T. and Pule´, J. V., ‘‘The free boson gas in a rotating bucket,’’ Commun. Math. Phys.45, 115–131~1975!.
9Pitaevskii, L. and Stringari, S.,Bose–Einstein Condensation~Oxford University Press, Oxford, 2003!.

10Robinson, D. W., ‘‘Bose–Einstein condensation with attractive boundary conditions,’’ Commun. Math. Phys.50, 53–59
~1976!.

11Tuyls, P., Van Canneyt, M., and Verbeure, A., ‘‘Angular momentum fluctuations of the ideal Bose gas in a ro
bucket,’’ J. Phys. A28, 1–18~1995!.

12Zagrebnov, V. A. and Bru, J.-B., ‘‘The Bogoliubov model of weakly imperfect Bose gas,’’ Phys. Rep.350, 291–442
~2001!.
                                                                                                                



math-
y, since

es the
m
ative

al
d on
-
,
s was
tative
erator
hes to

erning

y the
seen

ometry
ctions,
ple, we
tion of
the

l

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 4 APRIL 2004

                    
Noncommutative geometry of super-Jordanian OSp h„2Õ1…
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Extending a recently proposed procedure of construction of various elements of
differential geometry on noncommutative algebras, we obtain these structures on
noncommutative superalgebras. As an example, a quantum superspace covariant
under the action of super-Jordanian OSph(2/1) is studied. It is shown that there
exist a two-parameter family of torsionless connections, and the curvature com-
puted from this family of connections is bilinear. It is also shown that the connec-
tions are not compatible with the metric. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1650538#

I. INTRODUCTION

Noncommutative geometry is one of the active fields in recent theoretical physics and
ematics. The physical interests seem to be focused on noncommutative differential geometr
it plays crucial roles in the context of string theory and quantum gravity.1,2 There exists various
approaches to noncommutative differential calculus. For instance, Connes’ approach involv
Dirac operator,1 Dubois–Violette’s method is based on derivations,3 and studies based on quantu
groups also exist.4–6Analogs of Riemannian connection, curvature and metric on noncommut
algebraA were introduced in Ref. 7, where the authors used only the leftA-module structure of
the differential forms. On the other hand, theA-bimodule structure of an algebra of differenti
forms was used to define a linear connection for a particular differential calculus base
derivations.8 Mourad also made essential use9 of the A-bimodule structure to define linear con
nection, torsion, and curvature on a noncommutative algebraA. In the procedure used in Ref. 9
a noncommutative generalization of the permutation operator on two copies of one-form
introduced. The generalized permutation operator plays a role in defining the noncommu
differential geometry. A general notion of connection based on a generalized transposition op
was introduced in Ref. 10. The above methodology was found to be useful in other approac
the noncommutative differential calculi. Furthermore, it was extended to other studies conc
differential calculi on noncommutative algebras such as SLq(2) covariant quantum plane,11 two-
parameter quantum plane,12 Jordanianh-deformed quantum plane,13,14matrix geometries,15 and so
on. The curvatures corresponding to the connections were also studied8,9,16 in this context.

In the present work, we follow the line of investigation developed in Refs. 8, 9, 16 to stud
noncommutative differential geometry associated with the quantized supergroups. It will be
that the ideas used there are also appropriate for studying noncommutative differential ge
on quantum superspaces. Following Refs. 8, 9, 16 we can naturally define linear conne
torsions, curvatures, and metrics on noncommutative quantum superspaces. As an exam
will study the quantum superspace covariant under the action of super-Jordanian deforma
OSp~2/1!. The super-Jordanian OSph(2/1) is introduced as a Hopf algebra dually related to
recently obtained triangular deformation of Lie superalgebra osp~2/1!;17 and it coincides with the
deformed OSp~2/1! supergroup studied by Juszczak and Sobczyck.18 We obtain the most genera
16230022-2488/2004/45(4)/1623/16/$22.00 © 2004 American Institute of Physics
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form of linear connections on the quantum superspace covariant under the action of OSph(2/1).
The curvatures and the metric will also be studied in the sequel.

We first briefly review the construction of a linear connection in a commutative geometry.9 Let
M be a manifold, andC(M) be an algebra of functions onM. The set ofk-forms is denoted by
Vk. The covariant derivativeD is a linear map fromV1 to V1

^ C(M)V
1 obeying the Leibnitz rule

D~ f j!5d f ^ j1 f Dj, f PC~M!, jPV1. ~1.1!

Since functions commute with forms, the Leibnitz rule may also be recast as

D~j f !5s~j ^ d f !1~Dj! f , ~1.2!

wheres is a permutation acting onV1
^ C(M)V

1:

s~j ^ h!5h ^ j, j, hPV1; ~1.3!

and the exterior derivatived is nilpotent:d250. In the context of commutative geometry the tw
Leibnitz rules~1.1! and ~1.2! are equivalent. However, in the noncommutative setting this is
the case, as functions and forms do not commute. The noncommutative covariant deriva
constructed in such a way that it is required9 to satisfy the two Leibnitz rules. Reflecting th
noncommutative nature of functions and forms, the operators can no longer be represented by
simple permutation element. It needs to be modified for noncommutative quantum spaces

Suppose the manifoldM is parallelizable and letv i be an arbitrary basis element ofV1. The
covariant derivative of a one-form is then uniquely determined byDv i . The linear connection is
defined byG i52Dv i . Namely, the covariant derivative defines the linear connection. Throug
this article, we use the terms ‘‘linear connection’’ and ‘‘covariant derivative’’ synonymously. Lep
be a projection ofV1

^ C(M)V
1 onto V2 such thatp(j ^ h)5j∧h. Then the mapQ:V1→V2

defined byQ5d2p+D is a bimodule homomorphism, that is, it maintainsQ( f j)5 f Q(j) and
Q(j f )5Q(j) f , where f PC(M). The torsion is defined byQ(v i). This construction of linear
connections will be extended to noncommutative superspaces associated with quantum
groups.

This paper is organized as follows: In the next section, we extend the differential geome
noncommutative algebras to noncommutative superalgebras. The super-Jordanian deform
OSp~2/1! is introduced in Sec. III. The quantum superspace which is covariant under the act
super-Jordanian OSph(2/1) is introduced, and the differential calculus on it in the sense of We
Zumino is constructed in Sec. IV. The linear connection on the quantum superspace is stu
Sec. V, and it is observed that the most general torsionless connection is a member of
parameter family. In Sec. VI, the curvature obtained from the linear connection is calculate
it is shown that the curvature is bilinear. The metric of the quantum superspace is also studi
show that the covariant derivative is not compatible with the metric. Section VII contain
concluding remarks.

II. NONCOMMUTATIVE EXTENSION OF SUPERSPACE GEOMETRY

Let A be a noncommutative algebra withZ2 grading. The grading is specified by parity o
elements ofA. An even~odd! elementf PA has a parityf̂ 50 (1). It isassumed that a differentia
calculus overA, describing, in particular, the one-forms and their commutation relations with
elements ofA, has been constructed. LetVk(A) andd denote the space ofk-forms overA and the
exterior derivative, respectively. The covariant derivativeD is defined as a mapD:V1→V1

^ AV1 subject to the following Leibnitz rules:

D~ f j!5d f ^ j1~21! f̂ f Dj, ~2.1!

D~j f !5~21!ĵs~j ^ d f !1~Dj! f , f PV0, jPV1, ~2.2!
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where s:V1
^ AV1→V1

^ AV1 refers to a noncommutative generalization of the permuta
map. The covariant derivative changes the parity of ak-form j by unity: D ĵ5 ĵ11, ~mod 2!. In

the commutative case wheres(j ^ h)5(21)ĵ ĥh ^ j, the two Leibnitz rules~2.1! and ~2.2! are
equivalent up to an overall sign

D~j f !5~21!ĵ f̂D~ f j!. ~2.3!

Using the definition of the covariant derivative, one can show that the maps is A-bilinear

s~ f j ^ h!5 f s~j ^ h!, s~j ^ h f !5s~j ^ h! f , f PV0, j,hPV1. ~2.4!

We now demonstrate the first relation in~2.4!. The second relation in~2.4! follows similarly. For
arbitrary elementsf ,gPV0 andjPV1, we computeD( f jg) in two different ways. Regarding i
asD( f •jg), we apply~2.1! and obtain

D~ f jg!5d f ^ jg1~21! f̂ f D~jg!5d f ^ jg1~21! f̂ 1 ĵ f s~j ^ dg!1~21! f̂ f ~Dj!g.

Alternately, for the choiceD( f jg)5D( f j•g) the Leibnitz rule~2.2! yields

D~ f jg!5~21! f̂ 1 ĵs~ f j ^ dg!1d f ^ jg1~21! f̂ f ~Dj!g.

As the above two computations must give identical results, it followss( f j ^ dg)5 f s(j ^ dg).
The covariant derivative may be extended as a linear map from then-fold tensored space

^
nV1 to the (n11)-fold tensored spacê (n11)V1. This is done recurrently while maintainin

the following extension of the Leibnitz rule

D~v ^ v8!5Dv ^ v81~21!v̂s12~v ^ Dv8!, ~2.5!

wherevPV1, v8P ^
n21V1 ands12 has a nontrivial structure in the first two sectors:

~2.6!

Let p be a projection ofV1
^ AV1 onto V2 defined by the wedge product on the forms

p~j ^ h!5j∧h. ~2.7!

The noncommutativity ofA, in general, demandsj∧hÞ2h∧j. Employing the projection opera
tor p, we define the torsionQ of the covariant derivativeD as a mapQ:V1→V2

Q:V1→V2, Q5d2p+D. ~2.8!

The torsion is always leftA-linear, whereas the condition

p+~s21!50 ~2.9!

is necessary for it to be rightA-linear. More explicitly, the torsion satisfies the relations

Q~ f j!5~21! f̂ f Q~j!, Q~j f !5Q~j! f , f PV0, jPV1. ~2.10!

The condition~2.9! is necessary for the validity of the second relation in~2.10!. Note that the
relation~2.9! has a sign difference from the nongraded case.11,15Since the proof is straightforward
we show only the second relation. The exterior derivative acts on the one-formj f as follows:
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d~j f !5~dj! f 1~21!ĵj∧d f5~dj! f 1~21!ĵ p~j ^ d f !,

while the action ofp+D on j f reads

p+D~j f !5p~~21!ĵ s~j ^ d f !1~Dj! f !.

Consequently, it follows

Q~j f !5Q~j! f 2~21!ĵ p+~s21!~j ^ d f !.

It is thus evident that condition~2.9! needs to be satisfied for the torsionQ to be rightA-linear.
The curvature is defined by the following map:16

p12D
2 : V1→V2

^ AV1, ~2.11!

wherep125p ^ 1. The torsionless conditionQ50 and the validity of the constraint~2.9! require
the curvature to be leftA-linear:

p12D
2~ f j!5 f p12D

2~j!, f PV0, jPV1. ~2.12!

We demonstrate this below. Employing the Leibnitz rule~2.5!, we compute

D2~ f j!5Dd f ^ j1~21!d f̂s12~d f ^ Dj!1~21! f̂ d f ^ Dj1 f D2j.

The left-hand side in~2.12! now reads

p12D
2~ f j!5p+Dd f ^ j2~21! f̂p12+~s1221!~d f ^ Dj!1 f p12D

2~j!.

The first and second terms in the above expression vanish because of the torsionless condi
the constraint~2.9!, respectively. Thus the curvature is leftA-linear. In general, the curvature i
not right A-linear. It is, however, known that there exist some cases for nongradedA where the
curvature is rightA-linear.11 We will find such an example for gradedA in the following sections.

Now let us define a metric. A metricg is a nondegenerateA-bilinear map

g : V1
^ AV1→A. ~2.13!

The metric is said to be nondegenerate if the following conditions hold:g(j ^ h)50 for all h
PV1 implies j50, and, simultaneously,g(j ^ h)50 for all jPV1 implies h50. Symmetry of
the metric is defined by using the extended permutations. A metric satisfyingg+s5g (g+s
52g) is known to be symmetric~skew-symmetric! in nature. If the following diagram is com
mutative, the covariant derivativeD is said to be compatible with the metricg, or, in short,D is
said to be metric:

V1
^ AV1

→
D

V1
^ AV1

^ AV1

g↓ 1^ g↓

A →
d

V1.

More explicitly, the above compatibility condition reads

d+g5~1^ g!+D. ~2.14!
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In the following sections an example of the differential geometry described here wi
presented. In this example, the algebraA is taken to be a quantum superspace covariant unde
action of a quantum supergroup OSph(2/1). The example will be constructed so as to keep
covariance of all relations.

III. SUPER-JORDANIAN DEFORMATION OF OSp „2Õ1…

In this section we introduce a quantum deformation of the supergroup OSp~2/1!. The conven-
tions adopted here regarding the graded Yang–Baxter equation are same as in Refs. 19 and
quantum supergroup discussed here is the dual Hopf algebra to the super-Jordanian de
Uh(osp(2/1)) algebra introduced recently. The study of super-Jordanian osp~2/1! algebra was
initiated by Kulish.21 It was further developed by the works of the present authors17 and Borowiec
et al.22 In Ref. 17, the universalR matrix of theUh(osp(2/1)) algebra was obtained up to O(h3)
where h is the deformation parameter. Its limiting classical value is described byh→0. The
fundamental representation of the generators of theUh(osp(2/1)) algebra is obtained by mappin
the deformed algebra on its classical counterpart. Although the two deformation maps gi
Ref. 17 provide two distinct sets of matrices for the fundamental representation, the pertinR
matrices computed for these two cases are identical. All the terms in the universalR matrix O(h3)
and above vanish in the fundamental representation, and, therefore, theR matrix in the said
representation is determined by the terms up to O(h2). TheR matrix, thus obtained, is given b

~3.1!

where the dot~•! is used instead of 0 for better readability. TheR matrix ~3.1! solves the graded
Yang–Baxter equation. The inverse of thisR matrix is given byR215R(2h); and identifying
h52p in ~3.1! theR-matrix given in Ref. 18 is reproduced. In Ref. 21, a contraction techniqu
applied to theR matrix in the fundamental representation of theUq(osp(2/1)) algebra to obtain
triangularR̃ matrix, which maintains the relationR̃i j

k,5Rji
,k with the R matrix given in~3.1!.

Now we explicitly write down the nonstandard deformed supergroup OSph(2/1). Since theR
matrix ~3.1! is the inverse of the one used in Ref. 18, the quantum supergroup OSph(2/1) is
identical to the one given in Ref. 18, where the deformed supergroup OSph(2/1) is constructed by
the FRT~Ref. 23! method. Let the inverse scattering matrixT in the fundamental representation
the super-Jordanian deformed OSph(2/1) is given by

T5~ t j
i !5S a a b

g e b

c d d
D , ~3.2!

where î 50(1) for i 5$1,3%($2%), and t̂ j
i 5 î 1 ĵ . Thus the entriesa,b,c,d,e are even elements

whereasa, b, g, d are odd ones. The RTT relation and deformed orthosymplectic condition
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TstJT5J, TJ21Tst5J21, J5S 0 0 1

0 1 0

21 0 2h/2
D ~3.3!

determine the relations among the entries ofT. The supertransposition ofT is defined by (Tst) j
i

5(21) î ( î 1 ĵ )t i
j . The matrixJ corresponds to the matrixC21 in Ref. 18. An error contained inC

of Ref. 18 is corrected. It follows from this definition that (AB)st5BstAst, ((Ast)st) j
i

5(21) î 1 ĵAj
i . Note that the matrixJ has the property

~21! â1b̂Jab5Jab . ~3.4!

This simplifies many relations in the later computations. Following Ref. 18 we express th
mentse,b, and g in terms of the remaining elementsa,b,c,d,a. The commutation relations
satisfied by the elementsa,b,c,d,a andd are summarized as

@a,b#5h~12a2!, @a,c#5hc2, @a,d#5h~cd2ca!,

@a,a#50, @a,d#5hcd, @b,c#5h~ca1dc!,

@b,d#5h~d221!, @b,a#5haa, @b,d#5h~dd1ca!,

@c,d#52hc2, @c,a#52hcd, @c,d#50,

@d,a#5h~da2dd!, @d,d#5hdc, $a,d%5h~ac2d2!,

a25
h

2
~a221!, d25

h

2
c2. ~3.5!

The other entries ofT may be algebraically solved as follows:

e511ad2
h

2
ac, b5ad2db2hdd2

h

2
g, g5ac2da2hdc. ~3.6!

Relations analogous to the classical supergroup OSp~2/1! exist for the nonstandard deformation

ad2bc1ad1
h

2
ac51, e215S 12ad1

h

2
acD S 12

h2

4
c2D 21

, ad1bg5
h

2
~ac2dc!.

~3.7!

For completeness, we also give the commutation relations involving the elementse,b, andg :

@a,e#5hgd, @b,e#5h~bd1ga!, @c,e#50,

@d,e#5hgd, @e,a#5h~ed1ga!, @e,b#5h~dd1ge!,

@e,g#5hcd, @e,d#5hcg, @a,b#5h~gd2ga!,

@b,b#5hbd, @c,b#52hcg, @d,b#50,

$a,b%5h~ea2ed!, $b,g%52h~dc1g2!, $b,d%5hce,

@a,g#5hgc, @b,g#5h~bc1ga!, @c,g#50,

@d,g#5hcg, $a,g%52hce, $g,d%50,

b25
h

2
~12d2!,g252

h

2
c2. ~3.8!
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As a consequence of the grading, the RTT relation

(
x,y

~21! ŷ( x̂1 î )Rxy
k, t i

x t j
y5(

x,y
~21! ŷ( k̂1 x̂)ty

, tx
k Ri j

xy ~3.9!

involves extra sign factors in the tensor products ofT and the identity matrix.
The coalgebra mappings of the quantum supergroup OSph(2/1) are, as usual, given by

D~T!5T^̇ T, e~T!5diag~1,1,1!. ~3.10!

The antipode is obtained from the coproduct:

S~T!5S d1
h

2
c 2b2

h

2
g 2b2

h

2
~a2d!1

h2

4
c

d e 2a1
h

2
d

2c g a2
h

2
c

D 5J21TstJ. ~3.11!

It is easy to see thatTS(T)5S(T)T5diag(1,1,1).

IV. DIFFERENTIAL CALCULUS ON QUANTUM SUPERSPACE

In this section, a quantum superspace covariant under the action of OSph(2/1) is introduced
and a differential calculus in the sense of Wess and Zumino6 is constructed. The quantum supe
space is a graded algebra, denoted byA, generated by two odd (u1 ,u2) and one even (x)
elements. The defining relations of the algebraA read

@u1 ,x#52hxu2 , $u1 ,u2%50, @u2 ,x#50,

u1
252

h

2
~x222u1u2!, u2

250. ~4.1!

It is straightforward to verify that the relations~4.1! are preserved under the action of OSph(2/1)
from the left

S u18

x8
u28
D 5S a a b

g e b

c d d
D S u1

x
u2

D . ~4.2!

The quantum superspace~4.1! has an important difference from that associated to the Jorda
quantum supergroup GLh(1/1) discussed in Refs. 24 and 25. In the quantum superspace cov
under the action of GLh(1/1), the deformation parameterh is a Grassmann variable, whereas t
quantityh in ~4.1! commute with all elements of the quantum superspace.

A scalar elementw exists in the quantum superspaceA:

w[XstJX5x222u1u2 , ~4.3!

where

X5S u1

x
u2

D , Xst5~2u1 ,x,2u2!. ~4.4!
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Then it is easy to show thatw is preserved by the left action of OSph(2/1). Note that the parity of
components ofX is X̂i511 î ~mod 2!. The fourth relation in~4.1! implies thatu1

2 is also a scalar
in the algebraA. Employing a solution of the nongraded Yang-Baxter equation the defi
relations~4.1! of the algebraA may be written in a compact form:

XiXj5(
k,,

Bk,
i j X,Xk, B12B13B235B23B13B12, ~4.5!

where the matrixB reads

~4.6!

The matrixB is related to theR matrix of the deformed supergroup OSph(2/1) as

R~h!xy
k,5~21!11 k̂1(11 x̂) ŷ~B~h!21!xy

k,5~21!11 k̂1 ŷ1 k̂l̂B~2h!xy
k, , ~4.7!

where the last equality follows from the relation (B(h)21)xy
k,5(21)k̂,̂1 x̂ŷB(2h)xy

k, .
The differential calculus on quantum space is an algebra generated by coordinatesXi , differ-

entials J i[dXi and derivatives] i5]/]Xi . The parity of differentials and derivatives are,
general,Ĵ i511X̂i , ]̂ i5X̂i . The differential calculus on quantum superspace using solution
the nongraded Yang–Baxter equation is developed in Ref. 26. These authors require the e
derivatived, which maps ak-form to a (k11)-form, to maintain three properties:~i! nilpotency,
~ii ! graded Leibnitz rule

d~ f ∧g!5~d f !∧g1~21! f̂ f ∧dg, f PVp, gPVq, ~4.8!

and~iii ! its action on a functionf (Xi) is given byd f5( iJ
i] i f . Employing these properties, th

following commutation relations amongXi , J i and] i may be determined:

J i`J j5(
k,,

~21!X̂i1Ĵ,
Bk,

i j J,`Jk, XiJ j5(
k,,

~21!X̂i
Bk,

i j J, Xk,

] jX
i5d i j 1(

k,,
Bk j

i , Xk], , ] j J i5(
k,,

~21!X̂j
~B21! j ,

ki J, ]k ,

] i] j5(
k,,

Bi j
k, ],]k . ~4.9!

Our convention of the matrixB differs from that in Ref. 26. We use the Yang–Baxter equation
the form ~4.5!, whereas the Yang–Baxter equation in the braid group formF12F23F12

5F23F12F23 is used in Ref. 26. They are related asFi j
k,5Bji

k, . The relations~4.9! are covariant
under the action of the super-Jordanian OSph(2/1):
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X8 i5(
j

t j
i Xj , J8 i5(

j
~21! î 1 ĵ t j

i J j , ] i85(
j

~21! î 1 ĵ~~Tst!21! j
i ] j . ~4.10!

To show the covariance, we need RTT-type relations forT andTst with the matrixB. They are
obtained via~3.9! and ~4.5!:

(
i , j

~21! b̂1 ĵ 1 î ĵ 1b̂î t i
a t j

b Bcd
i j 5(

i , j
~21! ĉ1 î 1 ĉd̂1d̂î Bi j

ab td
j tc

i , ~4.11!

(
i , j

~21! î 1â1 î ĵ 1 î b̂ t i
a t j

b Bi j
cd5(

i , j
~21! d̂1 ĵ 1d̂î 1 ĉd̂ Bab

i j td
j tc

i , ~4.12!

(
i , j

~21! î 1b̂î 1 ĉî 1d̂ ĵ t i
a t j

b Bci
jd5(

i , j
~21! ĉ1 î 1 ĵ 1 î ĉ Bja

bi tc
j td

i , ~4.13!

(
i , j

~21! ĉ1 î 1 ĵ 1 ĉî ~B21!a j
ib tc

j td
i 5(

i , j
~21! î 1b̂î 1 ĉî 1 ĵ d̂ t i

a t j
b ~B21! ic

d j , ~4.14!

wheret5(Tst)21. Introducing the notationsj15du1 , h5dx, j25du2 , the explicit form of the
OSph(2/1) covariant differential calculus on the quantum superspaceA is summarized as follows

~1! Coordinates
@u1,x#52hxu2, $u1,u2%50, @u2 ,x#50,

u1
252

h

2
~x222u1u2!, u2

250. ~4.15!

~2! Differentials
j1`h2h`j15hh`j2, j1`j22j2`j15hj2`j2,

h`j22j2`h50, h`h52
h

2
j2`j2 . ~4.16!

~3! Coordinates and differentials

@u1,j1#5hSu1j21xh2u2j12
h

2
u2j2D, $u1,h%5hxj2,

@u1,j2#5hu2j2, @x,j1#52hu2h, @x,h#52hu2j2,

@x,j2#50, @u2 ,j1#52hu2j2 ,

$u2 ,h%50, @u2 ,j2#50. ~4.17!
~4! Derivatives and coordinates

]1u1512u1]11hu2]1, ]1x5x]1, ]1u252u2]1,

]xu15u1]x2hx]1, ]xx511x]x1hu2]1, ]xu25u2]x ,

]2u152u1]22hSu1]11x]x1u2]21
h

2
u2]1D,

]2x5x]22hu2]x , ]2u2512u2]21hu2]1,

where ]15
]

]u1
, ]x5

]

]x
, ]25

]

]u2
. ~4.18!

~5! Derivatives and differentials
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]1j15j1]12hj2]1, ]1h52h]1, ]1j25j2]1,

]xj15j1]x2hh]1, ]xh5h]x1hj2]1, ]xj25j2]x ,

]2j15j1]21hSj1]11h]x1j2]21
h

2
j2]1D,

]2h52h]21hj2]x , ]2j25j2]22hj2]1. ~4.19!
~6! Derivatives

]1
250, ]1]x5]x]1 , ]1]252]2]1 ,

]x]25]2]x2h]1]x , ]2
25h~]1]22 1

2 ]x
2!. ~4.20!

V. OSph„2Õ1… SYMMETRIC TORSIONLESS CONNECTIONS

We have seen that a scalarw (;u1
2) exists in the quantum superspaceA. This scalar is an

OSph(2/1) invariant zero-form. Invariant one and two-forms under the action of the defor
supergroup OSph(2/1) also exist in the differential calculusA:

%5(
a,b

Jab XaJb5u1j21xh2u2j12
h

2
u2j2 , ~5.1!

x5(
a,b

Jab Ja`Jb50. ~5.2!

It is evident that the invariant two-formx is trivial. It is straightforward to verify the invariance o
% andx under the transformation~4.10!. Note that the% appears on the right-hand side of the fir
relation in~4.17!. It is easy to find the commutation relations between the invariant forms an
basis elements (Xa,Ja). For the zero-formw these relations read

Xaw5wXa, Jaw5wJa. ~5.3!

The commutation properties of the invariant one-form% are succinctly given by

Xa%5~21!X̂a
%Xa, Ja`%5~21!Ĵa

%`Ja. ~5.4!

In a more expanded version the above relations read

@x,%#5$u i ,%%50, i 5~1,2!, ~5.5!

h`%1%`h50, j i`%2%`j i50. ~5.6!

It is also straightforward to verify the relation

%`%50. ~5.7!

In order to determine the covariant derivative, it is necessary to find the action of the ext
permutations on V1

^ V1. This can be done by applying the covariant derivativeD on the second
relation in ~4.9!. Using the Leibnitz rules, we obtain

J i
^ J j1~21!X̂i

XiDJ j5(
k,,

~21!X̂i
Bk,

i j $~21!Ĵ,
s~J,

^ Jk!1~DJ,!Xk%.

This relation implies that the action ofs on J,
^ Jk, and the commutation relations betweenXi

andDJ j may be consistently described as
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J i
^ J j5(

k,,
~21!X̂i1Ĵ,

Bk,
i j s~J,

^ Jk!, ~5.8!

XiDJ j5(
k,,

Bk,
i j ~DJ,!Xk. ~5.9!

Using the property~4.7! the exchange relation~5.8! may be solved yielding the action ofs on the
tensored space of one-forms as follows:

s~Jk
^ J,!5(

i , j
~21! î ĵRi j

,k J i
^ J j[(

i , j
Ři j

k, J i
^ J j . ~5.10!

The matrix Ř has two important properties, namely,Ř is idempotent and satisfies a nongrad
Yang–Baxter equation

Ř251, Ř12Ř23Ř125Ř23Ř12Ř23. ~5.11!

As a consequence of the exchange of the superscripts in the definition~5.10! of Ř, it satisfies a
different form of Yang–Baxter equation from the one obeyed byR. The operators, therefore,
exhibits identical properties:

s251, s12s23s125s23s12s23. ~5.12!

The maps may now be explicitly written as follows:

s~j1^ j1!5j1^ j12hS j1^ j21h ^ h2j2^ j12
h

2
j2^ j2D ,

s~j1^ h!5h ^ j11hj2^ h,

s~j1^ j2!5j2^ j11hj2^ j2 ,

s~h ^ j1!5j1^ h2hh ^ j2 ,

s~h ^ h!52h ^ h2hj2^ j2 ,

s~h ^ j2!5j2^ h,

s~j2^ j1!5j1^ j22hj2^ j2 ,

s~j2^ h!5h ^ j2 ,

s~j2^ j2!5j2^ j2 . ~5.13!

The maps beingA-bilinear, the following relations hold:

s~j1^ % !5% ^ j1 , s~h ^ % !52% ^ h, s~j2^ % !5% ^ j2 ,

s~% ^ j1!5j1^ %, s~% ^ h!52h ^ %, s~% ^ j2!5j2^ %, ~5.14!

s~% ^ % !52% ^ %.

The explicit form of the maps being known, the relations~5.12! and ~2.9! may be verified by
direct computation.
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To derive the action of the covariant derivativeD on Ja, we compare the relation~5.9! with
~4.5! and the second relation in~4.9!. The comparison suggests thatDJa containsXa andJa as
factors. Another important observation is thatDJa has the same transformation property asXa

under the action of OSph(2/1) namely,

DJ8a5(
i

t i
a DJ i . ~5.15!

Thus the most general form ofDJa may be given by

DJa5c0XaÃ1c1~21! âJa
^ %1c2% ^ Ja, ~5.16!

whereci ( i 50,1,2) are real parameters andÃPV1
^ V1 satisfies

Ã85Ã, XaÃ5ÃXa. ~5.17!

It is not difficult to see that each term on the right-hand side of~5.16! has the same transformatio
property asXa under the action of the deformed supergroup OSph(2/1). Furthermore, each term o
~5.16! satisfies the same commutation relation as~5.9!. As we have seen in the beginning of th
section, the OSph(2/1) invariant two-formx is trivial so that the only possible choice forÃ is
given by

Ã5% ^ %. ~5.18!

In this way, we have seen that~5.16! and ~5.18! describe the most general linear connection.
Let us recall that our main interest is in torsionless connections, as the torsion-free con

is necessary for making the curvature leftA-linear. We restrict the linear connection obtain
above to be torsion-free:QJa50. As the nilpotency ofd constrainsdJa50, we obtain

QJa52p+DJa52c0%`%2c1~21!Ĵa
Ja`%2c2%`Ja52~c11c2!%`Ja50,

~5.19!

where we have used the relations~5.4! and ~5.7!. The torsion-free condition thus requiresc2

52c1 . Therefore, the general form of the OSph(2/1) symmetric torsionless connections is giv
by the following two-parameter family:

DJa5c0Xa% ^ %1c1~~21! âJa
^ %2% ^ Ja!. ~5.20!

More explicitly these connections read

Dj15c0u1% ^ %1c1~j1^ %2% ^ j1!,

Dh5c0x% ^ %2c1~h ^ %1% ^ h!, ~5.21!

Dj25c0u2% ^ %1c1~j2^ %2% ^ j2!.

For the torsionless connections~5.20!, it is easy to see

D%5(
a,b

Jab Ja
^ Jb1~c0w22c1!% ^ %. ~5.22!

Applying ~2.7!, ~5.2!, ~5.7! it immediately follows that

p~D% !50. ~5.23!
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VI. CURVATURE AND METRIC

A two-parameter family of OSph(2/1) symmetric torsion-free connections was obtained in
previous section. Since the generalized permutation operators satisfies the relation~2.9!, the
curvature computed from the connections are leftA-linear. Recall that curvatures are, in gener
not right A-linear. In the present case, however, the curvature is also rightA-linear. We exhibit
this by explicit computation. We also discuss the metric on the quantum superspaceA. It, how-
ever, turns out that the connections are not compatible with the metric.

To obtain the curvature, we applyp12D on ~5.20!. Each term is computed separately a
listed below:

p12D~Xa% ^ % !5Ja`% ^ %2(
b,c

~21!X̂a
Jbc Xa%`Jb

^ Jc,

p12D~~21! âJa
^ % !5(

b,c
Jbc Ja`Jb

^ Jc1~c0w22c1!Ja`% ^ %,

p12D~% ^ Ja!52c1Ja`% ^ %.

Combining the above results, the curvature is obtained as follows:

p12D
2Ja5~c02c1

21c0c1w!Ja`% ^ %1~c0~21! âXa%1c1Ja!`L, ~6.1!

where

L5(
a,b

Jab Ja
^ Jb5j1^ j21h ^ h2j2^ j12

h

2
j2^ j2 . ~6.2!

Note thatp(L)5x50. Expanding the first term in the right-hand side of~6.1! as

Ja`% ^ %5(
b,c

~21!X̂b
Jbc JaXb`% ^ Jc,

we express the curvature in terms of a two-formv

p12D
2Ja5(

b
vb

a
^ Jb, ~6.3!

where

vb
a5(

k
Jkb$~21! k̂$c0~21! âXaJk2~c02c1

21c0c1w!JaXk%`%1c1Ja`Jk%. ~6.4!

We now prove that the curvature obtained above is rightA-linear. To this end, we note that th
following relation may be established by direct computation:

@Xa, L#50. ~6.5!

Employing the second relation in~4.9!, in conjunction with the leftA-linearity of the curvature,
we obtain

p12D
2~JbXa!5(

i , j
~21!X̂i

~B21! i j
abXip12D

2J j . ~6.6!
                                                                                                                



fact
ir

s
f

n

f

1636 J. Math. Phys., Vol. 45, No. 4, April 2004 N. Aizawa and R. Chakrabarti

                    
Substituting~6.1! into ~6.6!, and then transferringXi to the right via Eqs.~4.9!, ~5.3!, ~5.4!, ~6.5!,
we demonstrate the intended result

p12D
2~JbXa!5~p12D

2Jb!Xa, ~6.7!

establishing the rightA-linearity of the curvature. In the above computation we have used the
that the matricesBi j

ab and (B21) i j
ab maintain the following relationship regarding the parity of the

indices:â1b̂5 î 1 ĵ .
Let us now turn to the metric, which is considered as a bilinear mapg:V1

^ AV1→A. To
completely determine the metric we need to know the action of the mapg on the basis element
of V1

^ V1. Settinggab5g(Ja
^ Jb), we require thatgab to be invariant under the action o

OSph(2/1):

g8ab[g~J8a
^ J8b!5(

k,,
g~~21! â1 k̂ tk

a Jk
^ ~21! b̂1 ,̂ t,

b J,!5(
k,,

~21! â1b̂1 k̂1 ,̂ tk
a gk,~ tst!,

b .

The above result, in conjunction with the identity~3.3!, immediately yieldsg8ab5gab, provided

we choosegk,5(21)k̂1 ,̂(J21)k,5(J21)k, . The OSph(2/1) invariant metric, therefore, is give
by

gab5g~Ja
^ Jb!5~J21!ab5S 2

h

2
0 21

0 1 0

1 0 0

D . ~6.8!

Denoting the components ofg21 by gab , we note that the invariant one-form% may be written in
terms of the metric

%5(
a,b

gabX
aJb.

The structure of the metric~6.8! implies

d+g~Ja
^ Jb!50. ~6.9!

The compatibility condition~2.14! now reads

~1^ g!+D~Ja
^ Jb!50. ~6.10!

To compute the left-hand side in~6.10!, we start by ordering the one-forms in the expression o%
to the left:

%5j2u11hx2j1u21
h

2
j2u25(

a,b
~21!X̂b

Jab JaXb. ~6.11!

We now readily obtain

g~% ^ Ja!5Xa, g~Ja
^ % !5~21!X̂a

Xa. ~6.12!

Following ~2.5! the action of the covariant derivative onV1
^ V1 is given as

D~Ja
^ Jb!5DJa

^ Jb1~21!Ĵa
s12~Ja

^ DJb!. ~6.13!
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Substituting~5.20! into ~6.13!, we observe that, as a consequence of the bilinearity ofg, we may
treat the first~proportional toc0) and the second~proportional toc1) terms in the right hand side
of ~5.20! separately. For the choicec150, we then obtain

D~Ja
^ Jb!5c0~Xa% ^ % ^ Jb1% ^ Ja

^ %Xb!,

which, in turn, yields

~1^ g!+D~Ja
^ Jb!5~21!X̂a

2c0%XaXb. ~6.14!

For the alternate choicec050, it follows that

D~Ja
^ Jb!5c1$~21! âJa

^ % ^ Jb22% ^ Ja
^ Jb1~21! â1b̂s12~Ja

^ Jb
^ % !%.

The right-hand side in~6.10! now reads

~1^ g!+D~Ja
^ Jb!5c1$~21! âJaXb22gab%1~21! â1b̂~1^ g!+s12~Ja

^ Jb
^ % !%.

~6.15!

The last term is computed by using~5.13! and ~6.12!. The result is listed below:

~1^ g!+D~j1^ j1!50,

~1^ g!+D~j1^ h!5c1~j1x1hu12hj2x!,

~1^ g!+D~j1^ j2!5c1S hx2
h

2
j2u21% D ,

~1^ g!+D~h ^ j1!52c1~j1x1hu11hhu2!,

~1^ g!+D~h ^ h!52c1~2hx2hj2u212% !,

~1^ g!+D~h ^ j2!52c1~hu21j2x!,

~1^ g!+D~j2^ j1!52c1S hx2
h

2
j2u21% D ,

~1^ g!+D~j2^ h!5c1~hu21j2x!,

~1^ g!+D~j2^ j2!50. ~6.16!

Together with~6.14!, it has been shown that (1̂g)+DÞ0, except for the trivial choicec05c1

50. Thus the covariant derivativeD is not compatible with the metric.

VII. CONCLUDING REMARKS

In the present work we have studied noncommutative spaces, linear connections, curv
and metrics associated with the quantized supergroups. Our approach is a naive extensio
differential geometry developed in Refs. 8, 9, 16. We have demonstrated that the ideas o
authors may be appropriately adapted to study the geometric objects related to the qu
supergroups. Specifically, we applied the extended differential geometry to the quantum
space covariant under the quantum supergroup OSph(2/1). We have seen that our particul
example has a two-parameter family of OSph(2/1) symmetric torsion-free connections. It turne
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out that the curvature of the connection was bilinear. The connection was, however, not co
ible with the metric. These properties are specific to our example. There could be other qu
superspace endowed with linear connections compatible with metric.

It may be of interest to recall the results related to the quantum spaces covariant
quantized SL~2! groups, and compare them with the present results. It is well-known that S~2!
admits two inequivalent deformations: the standardq-deformation and the Jordania
h-deformation. The quantum space forq-deformed SL~2! has a one-parameter family of torsion
less linear connections and it has been shown that there can be no compatible metric,11 whereas
the quantum space ofh-deformed SL~2! is more classical. It has a two-parameter family
torsion-free linear connections. A one-parameter subfamily of these connections is known
compatible with a metric.14 On the other hand, the Lie superalgebra osp~2/1! admits three in-
equivalent deformations.27 We are thus able to consider three deformations of the superg
OSp~2/1!: q-deformation,20 h-deformation,28 and super-Jordanian deformation. Theq and
h-deformations have the SL~2! counterparts, while super-Jordanian does not. The super-Jord
deformation can be regarded as an algebra intermediate betweenq andh-deformations. We have
seen that the quantum space for super-Jordanian OSph(2/1) is less classical since the connectio
are not metric. This leads us to the anticipate that the quantum space forh-deformed OSp~2/1! has
connections which are metric, while the connections on the quantum spaces related to the s
q-deformed supergroup OSpq(2/1) are not metric. This will be presented in a future work.
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Existence and uniqueness of global solution of the
Hasegawa–Mima equation

Boling Guoa) and Yongqian Hanb)
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Studies, P.O. Box 8009, Beijing, 100088, People’s Republic of China
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The Hasegawa–Mima equation is the simplest nonlinear model to investigate drift
waves and drift-wave turbulence. In this article, we establish the existence and
uniqueness of a global weak solution for the Cauchy problem of the two-
dimensional Hasegawa–Mima equation. Moreover, if the background particle den-
sity is homogeneous in thex-direction, there is a unique global regular
solution. © 2004 American Institute of Physics.@DOI: 10.1063/1.1667607#

I. INTRODUCTION

We consider the existence and uniqueness of a global solution for the following
dimensional~2D! Hasegawa–Mima equation,

] t~u2Du!1k]yu1$u,Du%50, ~x,y!PR2, t.0, ~1!

with initial datum

u~x,y,t50!5u0~x,y!, ~2!

wherek is a constant,D is the 2D Laplacian, and$•,•% denotes the Poisson bracket

$ f ,g%5~]xf !~]yg!2~]xf !~]yg!.

Equation~1! is the simplest and powerful 2D turbulent system. In plasma,6 Eq. ~1! describes
the time evolution of drift wave, andu describes the electrostatic fluctuations, wherek5]x ln n0

andn0 is the background particle density.13 In geophysical fluids,12 Eq. ~1! describes the temporal
evolution of geostrophic motion and is called the quasi-geostrophic potential vorticity equatio
the Rossby wave, andu is the geostrophic stream function. If we eliminate the termut of Eq. ~1!,
then Eq.~1! is changed into the Euler equation for inviscid incompressible homogeneous fl
The Euler equation has been actively studied by many authors~see Refs. 2–4, 10, 14, and 15 an
references therein!. The Hasegawa–Mima equation has been actively studied by way of num
simulation and analysis of Fourier ansatz, and some important characteristics of the 2D turb
have been found~see, e.g., Refs. 1, 5–8, and 11–13 and references therein!, but rigorous results ar
lacking. In the present work, we establish that Cauchy problem~1! and ~2! is global well-posed.
Our main results are stated as follows.

Theorem 1: Let k50, initial data u0PHm(R2)ùW`
2 (R2). Then for all time T.0 and integer

m>3 there is a unique regular solution u of problem (1) and (2) such that
PL`(@0,T#;Hm(R2)), utPL`(@0,T#;Hm21(R2)).

Theorem 2: Let initial data u0PH2(R2). Then for all time T.0 there is a weak solution u
of problem (1) and (2) such that uPL`(@0,T#;H2(R2)) and utPL`(@0,T#;H1(R2)). If u0

a!Electronic mail: gbl@mail.iapcm.ac.cn
b!Electronic mail: han–yongqian@mail.iapcm.ac.cn
16390022-2488/2004/45(4)/1639/9/$22.00 © 2004 American Institute of Physics
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PH2(R2)ùW`
2(R2), then the weak solution u of problem (1) and (2) is unique and for all2<p

,` we have uPL`(@0,T#;Wp
2(R2)). Moreover, if u0PH2(R2)ùW`

2 (R2) and k50, then u
PL`(@0,T#;H2(R2)ùW`

2 (R2)).
Definition 1: Let T.0, u0PHm(R2), m>2, and function uPL`(@0,T#;Hm(R2)) such that

E
0

TE
R2

~~u2Du!f t1kufy1$u,f%Du!dx dy dt1E
R2

u0f~x,y,0!dx dy50,

~3!
;fPC1~@0,T#;C0

`~R2!!, f~x,y,t !u t5T50.

If m52, the function u is said to be a weak solution of (1) and (2) in the interval@0,T#. If m
>3, the function u is said to be a regular solution of (1) and (2) in the interval@0,T#.

We first establish the existence and uniqueness of the global solution for the pert
Hasegawa–Mima equation

] t~u2Du!1k]yu1$u,Du%2lD~u2Du!50 ~4!

with initial datum

u~x,y,t50!5u0~x,y!, ~5!

where constant 0,l,1, and obtain the uniforma priori estimates for the solution of problem~4!
and ~5! relative to the coefficientl. Let l→0, and then Theorems 1 and 2 are proved.

In this paper, we use a variety of function spaces: Lebesgue spaceLp5Lp(R2), Sobolev
spacesHk(R2) andWp

k(R2), and the spacesLq(@0,T#;X) andC(@0,T#;X), whereX is one of the
spaces just mentioned. In order to simplify the exposition, different positive constants mig
denoted by the same letterC; if necessary, byC(¯) denote the constant depending only on t
quantities appearing in parentheses. The rest of this work is organized as follows. In Sec.
establisha priori estimates. In Sec. III, we establish the existence and uniqueness of solutio
the problem~4! and ~5!. In Sec. IV, we give the proof of Theorems 1 and 2.

II. A PRIORI ESTIMATES

In this section, we establisha priori estimates of solutions for the problem~4! and ~5!.
Lemma 1: Let initial data u0PHm(R2) (m>2) and u be the smooth solution of problem (

and (5). Then we have that

iu~•,t !iH21lE
0

t

iu~•,t!iH3dt<C~ iu0iH2!, ;t>0. ~6!

If u0PH2(R2)ùW`
2 (R2), then for all 2,p,` we have that

iu~•,t !iW
p
2<C~ iu0iH2,iu0iW

`
2 !~11pt2!, ;t>0. ~7!

Moreover, if u0PH2(R2)ùW`
2 (R2) and k50, then we have that

iu~•,t !iW
`
2 <C~ iu0iH2,iu0iW

`
2 !, ;t>0. ~8!

Here constants C(¯) are independent of p andl.
Proof: Taking the scalar product of the function 2u and the equation~4!, and then integrating

the result overR2 for the space variable (x,y) and over@0,t# for the temporal variablet, we have
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iu~•,t !iL2
2

1i¹u~•,t !iL2
2

12lE
0

t

~ i¹u~•,t!iL2
2

1iDu~•,t!iL2
2

!dt5iu0iL2
2

1i¹u0iL2
2 , ;t>0,

~9!

where we have used the fact

E
R2

$u,Du%u~x,y,t ! dxdy50, ;t>0.

Similarly, taking the scalar product of22Du and the equation~4!, and then integrating the
result overR2 for the space variable (x,y) and over@0,t# for the temporal variablet, we have

i¹u~•,t !iL2
2

1iDu~•,t !iL2
2

12lE
0

t

~ iDu~•,t!iL2
2

1i¹Du~•,t!iL2
2

!dt

5iDu0iL2
2

1i¹u0iL2
2 , ;t>0, ~10!

where we have used the following fact:

E
R2

$u,Du%Du~x,y,t ! dxdy50, ;t>0.

Putting together~9! and ~10!, we obtain~6!.
Now taking the scalar product ofpuu2Duup22(u2Du) ~for all 2,p,`) and the equation

~4!, and then integrating the result overR2 for the space variable (x,y), we get

d

dt
iu~•,t !2Du~•,t !iLp

p
2plE

R2
D~u2Du!•uu2Duup22~u2Du! dx dy

<pki¹u~•,t !iLpiu~•,t !2Du~•,t !iLp
p21, ;t>0, ~11!

where we have used the following fact:

E
R2

$u,Du%uu2Duup22~u2Du!~x,y,t ! dxdy50, ;t>0.

Note that

i¹u~•,t !iLp
p

52~p21!E
R2

~ u]xuup22u•]x
2u1u]yuup22u•]y

2u! dx dy

<pi¹u~•,t !iLp
p22iu~•,t !iLp~ iu~•,t !2Du~•,t !iLp1iu~•,t !iLp!, ~12!

iu~•,t !iLp<iu~•,t !iL2
2/piu~•,t !iL`

~p22!/p<iu~•,t !iL21iu~•,t !iL`. ~13!

Integrating by parts, we get

2plE
0

tE
R2

D~u2Du!•uu2Duup22~u2Du! dx dy dt

5p~p21!lE
0

tE
R2

~¹~u2Du!!2uu2Duup22 dx dy dt>0. ~14!

Inserting~6! and ~12!–~14! into ~11!, for all 2,p,` we get
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d

dt
iu~•,t !2Du~•,t !iLp<CkAp~11iu~•,t !2Du~•,t !iLp

1/2
!, ;t>0, ~15!

where constantC is independent ofl andp.
In the casek50, using~6!, ~13!, and~15! and the following fact,

iu02Du0iLp<iu0iLp1iDu0iLp<Ciu0iH11iDu0iL2
2/piDu0iL`

~p22!/p

<Ciu0iH11iDu0iL21iDu0iL`, ~16!

we get

iDu~•,t !iLp(R2)<C, ;t>0, 2<p,`, ~17!

where constantC is independent ofl andp. Fixing N.0, one has

iDu~•,t !iLp(BN)<iDu~•,t !iLp(R2)<C, ;t>0, 2<p,`,

where constantC is independent ofN, l andp; BN5$(x,y)PR2u x21y2<N2%. Let p→`. We
get

iDu~•,t !iL`(BN)5 lim
p→`

iDu~•,t !iLp(BN)<C, ;t>0,

where constantC is independent ofN andl. Let N→`. We have

iDu~•,t !iL`(R2)5 lim
N→`

iDu~•,t !iL`(BN)<C, ;t>0. ~18!

Estimate~8! is proved.
In the casekÞ0, using~15! and ~16!, for all 2,p,` one has

iu~•,t !2Du~•,t !iLp<C~11pt2!, ;t>0, ~19!

where constantC is independent ofl andp. Putting together~6!, ~13!, and~19!, we get estimate
~7!.

This completes the proof of Lemma 1.
Lemma 2: Let initial data u0PHm(R2)ùW`

2 (R2) (m>3) and u be the smooth solution o
problem (4) and (5). Then for all time0,T,` one has the following estimates:

i¹Du~•,t !iL2
2

1lE
0

t

iD2u~•,s!iL2
2 ds<C~T,iu0iH3,iu0iW

`
2 !, ;tP@0,T#, ~20!

where constant C(¯) is independent ofl in the case k50.
Proof: Differentiating Eq.~4! with respect to (x,y), we get

] t¹~u2Du!1k]y¹u1$u,¹Du%1$¹u,Du%2l¹D~u2Du!50. ~21!

Taking the scalar product of22¹Du and the equation~21!, and then integrating the result ove
R2 for the space variable (x,y), we have

d

dt
~ iDu~•,t !iL2

2
1i¹Du~•,t !iL2

2
!12l~ i¹Du~•,t !iL2

2
1iD2u~•,t !iL2

2
!

<2i]2u~•,t !iL`i¹Du~•,t !iL2
2 , ~22!
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where]2 denotes the differential operator of the second order:]a5]x
a1]y

a2 , a11a252, and we
have used the following facts:

E
R2

]y¹u•¹Du dx dy50, E
R2

$u,¹Du%•¹Du dx dy50, ;t>0.

In the casek50, inserting estimate~8! into ~22! and employing Gronwall’s inequality, we ge
~20!, where the constantC is independent ofl.

In the casekÞ0, applying estimate~6!, Gagliardo–Nirenberg’s inequality and Ho¨lder’s in-
equality, one has that

i]2u~•,t !iL`<CiDu~•,t !iL2
1/2iD2u~•,t !iL2

1/2,

i¹Du~•,t !iL2<CiDu~•,t !iL2
1/2iD2u~•,t !iL2

1/2, ~23!

i]2u~•,t !iL`i¹Du~•,t !iL2
2 <CiDu~•,t !iL2

3/2iD2u~•,t !iL2
3/2

<liD2u~•,t !iL2
2

1C~l!.

Putting together~22! and ~23!, we obtain~20!.
The proof of this lemma is completed.
Lemma 3: Let initial data u0PHm(R2)ùW`

2 (R2) (m>2) and u be the smooth solution o
problem (4) and (5). One then has the following estimates:

iu~•,t !iHm
2

1lE
0

t

iu~•,t!iHm11
2 dt<C~T,iu0iHm!, ;T.0, tP@0,T#, ~24!

where constant C(¯) is independent ofl in the case k50.
Proof: This lemma is proved by mathematical induction as follows. For the case of 2<m

<3, estimates~24! have been proved in Lemmas 1 and 2. Assume that~24! is valid for the case
m5M>3.

Differentiating Eq.~4! with respect to (x,y), we get

] t]
a~u2Du!1k]y]

au1 (
b11b25a

$]b1u,]b2Du%2l]aD~u2Du!50, ~25!

wherea, b1 andb2 are multi-index and]a is a differential operator of the (M21)th order. Taking
the scalar product of22]aDu and the equation~25!, and then integrating the result overR2 for
the space variable (x,y), we have

d

dt
~ i]a¹u~•,t !iL2

2
1i]aDu~•,t !iL2

2
!12l~ i]aDu~•,t !iL2

2
1i]a¹Du~•,t !iL2

2
!

<2 (
b11b25a, 1<ub1u<M22

i¹]b1u~•,t !iL`i¹]b2Du~•,t !iL2i]aDu~•,t !iL2

12i¹]au~•,t !iL4i¹Du~•,t !iL4i]aDu~•,t !iL2

<C~11iu~•,t !iHM11
2

!, ~26!

where we have used the induction assumption and the following facts:

E
R2

]y]
au•]aDu dx dy50, E

R2
$u,]aDu%•]aDu dx dy50, ;t>0,
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i¹]b1u~•,t !iL`<Ci¹]b1u~•,t !iH2,

i¹]au~•,t !iL4<Ci¹]au~•,t !iL2
1/2i¹]au~•,t !iH1

1/2,

i¹Du~•,t !iL4<Ci¹Du~•,t !iL2
12 1/2(M22) i¹Du~•,t !iHM22

1/2(M22) .

Summing overuau5M21 in ~26! and applying Gronwall’s inequality, we have

iu~•,t !iHM11
2

1lE
0

t

iu~•,t!iHM12
2 dt<C~T,iu0iHM11!, ;T.0, tP@0,T#, ~27!

where constantC(¯) is independent ofl in the casek50.
By induction, this lemma is proved.

III. SOLUTION OF THE PERTURBED HASEGAWA–MIMA EQUATION

It is easy to check thatetlD is the analytic semigroup generated bylD in Lp(R2) (2<p
,`). In what follows, we apply the abstract semigroup theory and its methods to establis
existence and uniqueness of the local solution~in time t) for the problem~4! and ~5!. Thanks to
the estimate~24!, we can extend the local solution to the global solution.

Lemma 4: Let u0PHm(R2), m>4. Then for all time0,T,` there exists a unique solutio
u of problem (4) and (5) such that uPC(@0,T#;Hm(R2)). Moreover, if k50, then we have

sup
0<t<T

iu~•,t !iHm<C, ~28!

where constant C is independent ofl.
Proof: Let w5u2Du. Thenu5(12D)21w and Eqs.~4! and ~5! are rewritten

] tw1k]y~12D!21w1$~12D!21w,w%2lDw50, ~29!

w~x,y,t !u t505w0~x,y!5u02Du0 . ~30!

As is well known,lD generates a analytic semigroupS(t)5etlD in L2(R2). Let

Y5$wuwPC~@0,T#;Hm~R2!!, taw~ t !PCa~~0,T#;Hm~R2!!, w~0!5w0 ,

iwiC([0,T];Hm)1@ taw#Ca((0,T];Hm)<r, 0,a,1, m>2%.

Define a nonlinear operatorG on Y, by G(w)5v, where v is the solution of the following
problem:

] tv1k]y~12D!21w1$~12D!21w,w%2lDv50, w~0!5w0 .

Note thatj/(11uju2) is a multiplier forLp(R2) (1,p,`). We have

i¹~12D!21w~•,t !iLp<Ciw~•,t !iLp, ;p.1.

By Theorem 4.3.5 of Ref. 9~pp. 137–139!, for every wPY, G(w)PC(@0,T#;Hm(R2)) and
taG(w)PCa((0,T#;Hm(R2)). Then, repeating the same procedure as that produced in the pro
Theorem 8.1.1 of Ref. 9~pp. 290–294!, there existsT.0 andr.0 such thatG: Y→Y is a
contraction, i.e., there existsT.0 and a unique local solutionu of problem~4! and~5! such that
uPC(@0,T#;Hm(R2)) (m>4). Employing the estimates of Lemma 3, we can extend this lo
solution into a unique global solution such that this global solution satisfies the estimate~28!.

This completes the proof of the lemma.
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Lemma 5: Let u0PH2(R2). Then for all time0,T,` there exists a solution u of problem
(4) and (5) such that uPC(@0,T#;H2(R2)) and

sup
0<t<T

iu~•,t !iH2<C. ~31!

Moreover, if u0PH2(R2)ùW`
2 (R2), then the solution u of (4) and (5) is unique and for all2

,p,` we have

sup
0<t<T

iu~•,t !iW
p
2<C~11pT2!, ~32!

sup
0<t<T

iu~•,t !iW
`
2 <C only for the case of k50. ~33!

Here the above constants C are independent of T, p andl.
Proof: Let u0e5he* u0 , e.0, he(x,y)5 (1/e2) he(x/e , y/e), whereh is the standard mol-

lifier. Thenu0ePH4(R2), iu0eiL`<iu0iL` and iu0e2u0iH2→0 ase→0.
Consider Eq.~4! with initial datum

u~x,y,0!5u0e~x,y!. ~34!

Applying the results of Lemma 4, for all time 0,T,` there exists a unique solutionue of the
problem ~4! and ~34! such thatuePC(@0,T#;H4(R2)). Thanks to the estimates~6!–~8!, let e
→0. We obtain that there exists a global solutionu for the problem~4! and ~5! such thatu
PC(@0,T#;H2(R2)) and sup0<t<Tiu(•,t)iH2<C; moreover, ifu0PH2(R2)ùW`

2 (R2), then for
all 2,p,` we have

sup
0<t<T

iu~•,t !iW
p
2<C~11pT2!,

sup
0<t<T

iu~•,t !iW
`
2 <C only for the case ofk50,

where constantsC are independent ofl.
Assume that there are two solutionsu andv of problem~4! and ~5! such that

u,vPC~@0,T#;Wp
2~R2!!, ;pP@2,̀ !, 0,T,`,

sup
0<t<T

max$iu~•,t !iH2,iv~•,t !iH2%<C, ~35!

sup
0<t<T

max$iu~•,t !iW
p
2,iv~•,t !iW

p
2%<C~11pT2!, ;p.2, ~36!

where constantsC are independent ofl. Let w5u2v. Thenw is the solution of the following
problem:

] t~w2Dw!1k]yw1$u,Dw%1$w,Dv%2lD~w2Dw!50, ~37!

w~x,y,0!50. ~38!

Taking the scalar product of 2w and the equation~37!, and then integrating the result overR2 for
the space variable (x,y), we have
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d

dt
iw~•,t !iH1

2
1lE

R2
u~ u¹wu21uDwu2!~x,y,t ! dx dy

<C~11pt2!11 2/pi¹w~•,t !iL2
22 2/p , ;p.2, t>0, ~39!

where we have used estimate~35! and ~36! and the following facts:

E
R2

$w,Dv%w dx dy50,

E
R2

$u,Dw%w dx dy5E
R2

~~uxx2uyy!wxwy1uxy~wywy2wxwx!! dx dy

<iDu~•,t !iLpi¹w~•,t !iL2p/~p22!i¹w~•,t !iL2

<C~11pt2!11 2/pi¹w~•,t !iL2
22 2/p , ;p.2.

From ~39!, we get

iw~•,t !iH1
2 <~Cp2~11t2!2t !p, ;p.2, t>0, ~40!

where constantC is independent of timet, p and l. Therefore, there exists aT.0 such that
C(11T2)2T< 1

2. Let p→`. One then has

iw~•,t !iH1
2

50, ;tP@0,T#. ~41!

This completes the proof of uniqueness of solution for problem~4! and ~5!.
Repeating the same procedure as that produced in the proof of Lemma 5, we can pro

following lemma.
Lemma 6: Let u0PH3(R2)ùW`

2 (R2). Then for all time0,T,` there is a unique solution u
of problem (4) and (5) such that uPC(@0,T#;H3(R2)). Moreover, if k50, then

sup
0<t<T

iu~•,t !iH31 sup
0<t<T

iu~•,t !iW
`
2 <C, ~42!

where constant C is independent ofl.

IV. SOLUTION OF THE HASEGAWA–MIMA EQUATION

The proof of Theorem 1:Using Lemmas 4 and 6, letl→0. We then have that there exists
global solutionu of the problem~1! and~2! such thatuPL`(@0,T#;Hm(R2)). Employing~3!, we
get utPL`(@0,T#;Hm21(R2)). Repeating the same procedure as that produced in the pro
Lemma 5, we can obtain that the regular solution of problem~1! and~2! is unique. Theorem 1 is
proved.

The proof of Theorem 2:Using Lemma 5, letl→0. We then have that there exists a glob
solution u of the problem~1! and ~2! such thatuPL`(@0,T#;H2(R2)). Employing ~3!, we get
utPL`(@0,T#;H1(R2)). If u0PH2(R2)ùW`

2 (R2), repeat the same procedure as that produce
the proof of Lemma 5. We can then obtain that the weak solution of problem~1! and~2! is unique.
Theorem 2 is proved.
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Eigenvalue distribution of large weighted random graphs
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M. Shcherbinaa) and V. Vengerovsky
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We study eigenvalue distribution of the adjacency matrixA(N,p) of weighted ran-
dom graphsG5GN,p . We assume that the graphs haveN vertices and the average
number of edges attached to one vertex isp. To each edge of the graphei j we
assign a weight given by a random variableai j with zero mathematical expectation
and all moments finite. In the first part of the paper, we consider the moments of
normalized eigenvalue counting functionsN,p of A(N,p). Assuming all moments of
a finite, we obtain recurrent relations that determine the moments of the limiting
measuresp5 limN→`sN,p . The method developed is applied to the Laplace opera-
tor DG closely related withA(N,p). Using the recurrent relations, we analyze the
form of sp for the both of random matrix families. In the second part of the paper
we consider the resolventsG(A,D)(z) of A(N,p) and DG of GN,p and study the
functions f N

(A,D)(z,u)5(1/N) (k51
N exp$2uGkk

(A,D)(z)% in the limit N→`. We derive
closed equations that uniquely determine the limiting functionsf (A,D)(z,u). These
equations allow us to prove the existence of the limitingsp for adjacency matrix
and the Laplace operator under a rather weak condition that only the fourth moment
of ai j is finite. Besides, equations forf (A,D)(z,u) give us the asymptotic expansions
for the Stieltjes transform of the limitingsp with respect toz2k andpk. © 2004
American Institute of Physics.@DOI: 10.1063/1.1667610#

I. INTRODUCTION

The spectral theory of graphs is an actively developing field of mathematics involvi
variety of methods and deep results~see Refs. 5, 6, and 11!. Given a graph withN vertices, one
can associate with it many different matrices, but the most studied are the adjacency mat
the Laplacian matrix of the graph. Commonly, the set ofN eigenvalues of the adjacency matrix
referred to as the spectrum of the graph. In these studies, the dimension of the matrixN is usually
regarded as a fixed parameter. The spectra of infinite graphs is considered in certain pa
cases of graphs having a certain regular structure~see, for example, Ref. 12!.

Another large class of graphs, where the limiting transitionN→` provides a natural approxi
mation, is represented by random graphs.4,13 In this branch, geometrical and topological propert
of graphs are studied for a wide variety of random graph ensembles. One of the classes
prime reference is thebinomial random graphoriginating by P. Erdo˝s ~see, e.g., Ref. 13!. Given
a numberpNP(0,1), this family of graphsG(N,pN) is defined by taking asV the set of all graphs
on N vertices with the probability

P~G!5pN
e(G)~12pN!(2

N)2e(G), ~1.1!

wheree(G) is the number of edges ofG. Most of the random graphs studies are devoted to
cases wherepN→0 asN→`.

a!Author to whom all correspondence should be addressed. Electronic mail: shcherbi@flint.ilt.kharkov.ua
16480022-2488/2004/45(4)/1648/25/$22.00 © 2004 American Institute of Physics
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Intersection of these two branches of the theory of graphs contains the spectral the
random graphs that is still poorly explored. However, a number of powerful tools can be emp
here because the ensemble of random symmetricN3N adjacency matricesAN is a particular
representative of the random matrix theory, where the limiting transitionN→` has been inten-
sively studied during half of century since the pioneering works by E. Wigner.22 Initiated by
theoretical physics applications, the spectral theory of random matrices has revealed dee
trivial links with many fields of mathematics.

Spectral properties of random matrices corresponding to~1.1! were examined in the limitN
→` both in numerical and theoretical physics studies.7–9,18,20,21There are two major asymptoti
regimes:pN@1/N and pN5O(1/N) and corresponding models can be called thedilute random
matricesand sparse random matrices, respectively. The first studies of spectral properties
sparse and dilute random matrices in the physical literature are related to Refs. 20, 21, a
where equations for the limiting density of states of sparse random matrices were derived. In
18 and 10 a number of important results on the universality of the correlation functions an
Anderson localization transition were obtained. Unfortunately, all these results were obtaine
nonrigorous replica and supersymmetry methods.

On a mathematical level of rigour, the eigenvalue distribution of dilute random matrices
studied in Ref. 16. It was shown that the normalized eigenvalue counting function of

1

ANpN

AN,pN
~1.2!

converges in the limitN,pN→` to the distribution of explicit form known as the semicircle
Wigner law.22 The moments of this distribution verify the well-known recurrent relation for
Catalan numbers and can be found explicitly. Therefore, one can say that the dilute ra
matrices represent explicitly solvable model~see also Refs. 20 and 21!.

In the series of papers in Refs. 2–4 and simultaneously in Ref. 15, the adjacency matr
the Laplace matrix of random graphs~1.1! with pN5pN were studied. It was shown that th
sparse random matrix ensemble can also be viewed as the explicitly solvable model. In par
one can derive recurrent relations that determine the moments of the limiting eigenvalue di
tion of AN,pN , N→`, depending on given value ofp.

In the present paper we generalize the results of Refs. 3 and 15 to the case of weighted
graphs. We study also the resolvent of the adjacency matrix and the Laplace operator o
weighted random graphs and derive rigorously equations for the Stieltjes transformg(z) of the
limiting eigenvalue distribution, obtained initially in Refs. 20, 21, and 18 by using the replica
the supersymmetry approaches. We stress that our approach allows us to prove the existen
limiting eigenvalue distribution under rather weak conditions, when only the fourth moment oai j

is required to be bounded. Using our results it is not difficult to obtain the asymptotic expan
for g(z) with respect toz2k. Since it is well known that the coefficients of this expansion are
moments of the limiting IDS, we rediscover the recurrent formulas for the moments. Be
constructing the asymptotic expansion ofg(z) with respect topk, it is easy to show that this
expansion is convergent forp,1. Since in the caseai j 51 the coefficients of this expansion a
the rational functions onz, we can conclude that the limiting spectrum is pure point and con
of the spectra of finite blocks only.

II. MAIN RESULTS

Let VN denotes the set ofN verticesv1 ,v2 , . . . ,vN . We define the setFVN
5VN→R of all real

functions f 5( f (v1), f (v2),...,f (vN)). Let us assume that each pair of vertices ofVN is either
connected by one nonoriented edge or not connected. Let us denote byEN the set of the edges an
by GN5(VN ,EN) the corresponding graph.

Assume that each edgee5(v i ,v j )P EN is assigned by the real weightj(e). Then one can
define a linear operatorDG

(j) :FVN
→FVN

by the relation
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DG
(j)~ f ~v i !!5 (

j :v j;v i

j~v i ,v j !•@ f ~v i !2 f ~v j !#, ~2.1!

where the sum goes over all verticesv j adjacent to givenv i . One can consider the operatorDG
(j)

as a generalization of the discrete analog of the Laplace operator on the graphGN .
Clearly,DG

(j) is a real symmetricN3N matrix that can be represented in the form

DG
(j)5B(N,j)2A(N,j),

whereA(N,j) is a weighted adjacency matrix ofGN ,

Ai j
(N,j)5H j~v i ,v j !, if v i;v j ,

0, if v i;” v j ,
~2.2!

andB(N,j) is a diagonal matrix

Bii
(N,j)5 (

j :v j;v i

j~v i ,v j !.

Note thatAii
(N,j)50 and

DG
(j)5diag@~MA(N,j)!#2A(N,j), ~2.3!

where

Mi j 512d i j 5H 0, if i 5 j ,

1, if iÞ j .

The set of eigenvaluesl1<¯<lN of A(N,j) is referred to as the spectrum of the graphG.
With these definitions in hand, we can introduce the randomly weighted adjacency ma

random binomial graphs. In this case the weightsj are represented by the following family o
random variables. LetJ5$ai j , i< j , i , j PN% be the set of jointly independent identically di
tributed ~i.i.d.! random variables defined on the same probability space and possessing th
ments

Eai j
k 5Xk,` ; i , j ,kPN, ~2.4!

whereE denotes the mathematical expectation corresponding toJ. We setaji 5ai j for i< j .
Given 0,p<N, let us define the familyDN

(p)5$di j
(N,p) , i< j , i , j P1, N% of jointly inde-

pendent random variables

di j
(N,p)5H 1

Ap
, with probability p/N,

0, with probability 12p/N.

~2.5!

We setdji 5di j and assume thatLN
(p) is independent ofJ.

Now one can consider the real symmetric matrixA(N,p)(v),

@A(N,p)# i j 5ai j di j
(N,p) , ~2.6!

that hasN real eigenvaluesl1
(N,p)<l2

(N,p)< ¯< lN
(N,p) .

The normalized eigenvalue counting function@or integrated density of states~IDS!# of A is
determined by the formula
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s~l;A(N,p)!5
]$ j :l j

(N,p),l%

N
.

Similarly we defines(l;DG
(j)).

In this paper we study the normalized eigenvalue counting functions by two compleme
approaches: the moments and the resolvent techniques. Corresponding results are repres
the following two subsections.

A. Moment relations approach

The first group of results concerns the averaged moments

Mk
(N,p)5EH E lkds~l;A(N,p)!J .

Theorem 1: Assuming conditions (2.4), there exist limits

lim
N→`

Ms
(N,p)5H mk

(p)5(
i 50

k

S~k,i !, if s52k,

0, if s52k21,

~2.7!

where numbersS(k,i ) are determined by the system of recurrent relations

S~ l ,r !5(
f 51

r S r 21
f 21D • X2 f

pf 21 •(
u50

l 2r

S~ l 2u2 f ,r 2 f !•(
v50

u S f 1v21
f 21 D •S~u,v ! ~2.8!

with the initial condition S( l ,0)5d l ,0 .
The next theorem deals with the moments

Ls
(N,p)5EH E lsds~l;DG!J .

Theorem 2: Assume that (2.4) holds. Then, given sPN, there exists the limit

lim
N→`

Ls
(N,p)5 l s

(p)5(
i 50

s

Ŝ~s,i !, ~2.9!

where numbersŜ(s,i ) are determined by the system of recurrent relations

Ŝ~ l ,r 1!5 (
g151

r 1 S r 121
g121D •S Ŝ~ l 2g1 ,r 12g1!•

Xg1

pg1/221 1 (
d5r 12g1

l 2r 1

Ŝ~d,r 12g1!• (
g251

l 2d-g1 S g11g221
g121 D

•

Xg11g2

p(g11g2)/221 (
r 251

l 2d-g1-g2 S r 21g221
g221 D •Ŝ~ l 2d2g12g2 ,r 2!D ~2.10!

with the initial condition

Ŝ~ l ,0!5d l ,0 .

We discuss these results later. Let us only note that ifai j [1 andp51, thenA(N,1) becomes
exactly the adjacency matrix ofG andDG

(a) takes the form of the Laplace operator on the graph
this case formula~2.8! is reduced to
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S~ l ,r !5(
f 51

r S r 21
f 21D •(

u50

l 2r

S~ l 2u2 f ,r 2 f !•(
v50

u S f 1v21
f 21 D •S~u,v ! . ~2.11!

This system of recurrent relations is obtained for the first time in Ref. 15. It is simpler than
derived in Ref. 2 to determinemk

(1) in ~2.7!. The difference is that our system~2.8! has one
variable of summation less than the system of Ref. 2. We explain this difference at the end o
IV.

In the caseai j [1 andp51 formulas~2.10! reduce to

Ŝ~ l ,r 1!5 (
g151

r 1 S r 121
g121D •S Ŝ~ l 2g1 ,r 12g1!1 (

d5r 12g1

l 2r 1

Ŝ~d,r 12g1!• (
g251

l 2d-g1 S g11g221
g121 D

• (
r 251

l 2d-g1-g2 S r 21g221
g221 D •Ŝ~ l 2d2g12g2 ,r 2!D .

B. Resolvent approach

The resolvent approach is a powerful tool of the spectral theory in general and the sp
theory of random matrices also. In particular, it allows us to simplify and generalize the pio
method of Wigner22 ~based on the analysis of the moments ofs! used to study the IDS of the
ensemble with independent Gaussian entries. The resolvent approach produces also a lot
results~see, e.g., Refs. 16 and 19, which are review papers, and references therein!. It is well
known that the trace of the resolvent is the Stiltjes transformgN(z) of the normalized counting
function of the matrix. Since the Stiltjes transform uniquely determines the measure, the pr
the existence of the limiting IDS is equivalent to the proof of the existence of the
limN→`gN(z)5g(z). Besides, the equations forg(z) give complete information about the limitin
IDS.

For anyz: Rz.0 consider the functionf N(u,z):R1→C:

f N~u,z!5
1

N (
k51

N

e2uak
2Gkk

(N,p)(z), Gkk
(N,p)~z!5~z2 iA (N,p)!kk

21 , ~2.12!

where$ai% i 51
` is a family of i.i.d. random variables which do not depend on$ai , j% i , j

` and have the
same probability distribution asa1,2.

Theorem 3: Assume thatm(a)5E$u(a2ai , j )%, the probability distribution of ai , j , possesses
the property

E a4dm~a!5X4,`. ~2.13!

Then (i) the variance of the function fN(u,z) defined by (2.12) vanishes in the limit N→`:

lim
N→`

E$u f N~u,z!2E$ f N~u,z!%u2%50; ~2.14!

(ii) there exists the limit

lim
N→`

E$ f N~u,z!%5 f ~u,z!; ~2.15!

and (iii) if we consider the classC of functions which are analytic with respect to z: Rz.0 and
for any fixed z: Rz.0 possessing the norm
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i f ~u,z!i5max
u.0

u f ~u,z!u

A11u
, ~2.16!

then the limiting function is the unique solution inC of the functional equation

f ~u,z!512u1/2e2pE uaudm~a!E
0

`

dv
J1~2uauAuv !

Av
exp$2zv1p f~v/p,z!%, ~2.17!

whereJ1(z) is the Bessel function

J1~z!5
z

2 (
k50

`
~2z2/4!k

k! ~k11!!
. ~2.18!

It is easy to see that Eq.~2.17! coincides with that obtained in Refs. 20 and 18 by the rep
trick and supersymmetry approach, respectively, by using the assumption that the solution
problem is replica symmetric~or an equivalent assumption for the saddle point method!. Our proof
is rigorous and it needs no additional assumption.

One can easily see that

2
]

]u
f N~u,z!U

u50

5
X2

N (
k51

N

E$Gkk
(N,p)~z!%5X2E$ igN,p~2 iz!%,

wheregN,p(z) is the Stieltjes transform of the normalized counting functions(l,A(N,p)):

gN,p~z!5E ds~l,A(N,p)!

l2z
.

Hence, Theorem 3 implies that for anyz: IzÞ0

lim
N→`

E$ugN,p~z!2E$gN,p~z!%u2%50,

i.e., the fluctuations ofgN,p(z) vanish in the limitN→`. And ~2.15! implies that

g~z!5 lim
N→`

E$gN,p~z!%52X2
21 ]

]u
f ~u,z!U

u50

. ~2.19!

Thus, Theorem 3 states that under condition~2.13! there exists the weak limits(l,A) of the
normalized counting measures(l,A(N,p)) and the Stieltjes transformgp(2 iz) can be obtained as
the first derivative of the solution of~2.17!.

If the random variables$ai , j% possess the 2mth moments, then on the basis of~2.17! it is easy
to construct an asymptotic expansion of the functionf (u,z) in z2k up to z22m:

f ~u,z!5 (
k50

2m

z2kPk~u!1o~z22m!, z→`,

wherePk(u) are some polynomials. Since for any polynomialP(u)

u1/2e2pE uaudm~a!E
0

`

dv
J1~2uauAuv !

Av
exp$2zv%P~v !5O~z21!,
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this expansion gives us recurrent formulas which express the coefficients ofPk(u) via the coef-
ficients ofPk21(u), . . . ,P1(u). By ~2.19! it is evident that the coefficientck1 of Pk(u) nearu is
thekth coefficient of the expansion ofgp(2 iz), in z2k. So,ck15(2 i )kMk , whereMk is thekth
moment of the limiting measures~l!.

Similarly, one can construct an expansion ofg(z) with respect topk. To this end it is more
convenient to study the case whenai j 51 and di j 50,1 with probabilities 12 p/N and p/N,
respectively. It is equivalent to the change of variablesz→zp21/2, u→up21/2. Then we get the
equation

f̃ ~u,z!512u1/2e2pE
0

`

dv
J1~2Auv !

Av
•exp$2zv1p f̃~v,z!%. ~2.20!

Let us seek the expansion of the formf̃ (u,z)511(pkf k(u,z). Since on the r.h.s. of~2.20! we
have the exponent ofp( f̃ (u,z)21), it is evident that~2.20! gives us the recurrent formula fo
f k(u,z) and f k(u,z) is a linear combination of the functionse2uRk,l (z) ( l 51, . . . ,k!) with Rk,l(z)
being rational functions ofz. It is easy to prove that the expansion is convergent, ifp,1.
Therefore we can differentiate it with respect tou. Hence, for the functiong̃(z) defined as in
Remark 1, we get the convergent expansiong̃(z)5(pkR̃k(z), whereR̃k(z) are the rational func-
tions of z. Thus, we can state that forp,1 the spectrum of the adjacency matrix consists o
from the spectrum of finite graphs.

Now let us study the IDS of the Laplace operator of the random graph. To this end for az:
Rz.0 define the functionf N

(D)(u,z):R1→C:

f N
(D)~u,z!5

1

N (
k51

N

e2 iuak2uak
2Gkk

(D,N,p)(z), Gkk
(D,N,p)~z!5~z2 iL (N,p)!kk

21 , ~2.21!

where$ai% i 51
` are defined by the same way as in~2.12!.

Theorem 4: Let the distribution of aj ,k satisfy condition (2.13). Then
(i) fluctuations of the function fN

(D)(u,z) defined by (2.21) vanish in the limit N→`:

lim
N→`

E$u f N
(D)~u,z!2E$ f N

(D)~u,z!%u2%50, ~2.22!

(ii) there exists the limit

lim
N→`

E$ f N
(D)~u,z!%5 f (D)~u,z!, ~2.23!

and (iii) the limiting function is the unique solution in the classC defined in Theorem 3 of th
functional equation

f (D)~u,z!5m̂~2u!2u1/2e2pE uaue2 iaudm~a!E
0

`

dv
J1~2uauAuv !

Av
exp$2zv1p f (D)~v/p,z!%,

~2.24!

wherem̂(u)5*eiuadm(a) is the Fourier transform of the measurem(a), defined in Theorem 3.

III. MOMENTS AND TREES

In this section we give an outlook of the method of computing moments. Rigorous descr
is given in the next section.

To study the mathematical expectation
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E
1

N
Tr~A(N,p)!k5

1

N (
i l51

N

E$Ai 1i 2
(N,p)Ai 2i 3

(N,p)
¯Ai ki 1

(N,p)%, ~3.1!

we give a further development to the method originated by E. Wigner~see, e.g., Ref. 22!. In this
approach the set of variablesI k5$ i 1 ,i 2 ,...,i k ,i 1%, i lP1, N, is regarded as a set of trajectorie
~walks! Wk of k steps. Each walk provides a contributionE$Ai 1i 2

(N,p)Ai 2i 3
(N,p)

¯Ai ki 1
(N,p)%. This math-

ematical expectation is nonzero only when each step (i j ,i j 11) appears an even number of times
this walk Wk . The order and the number of repetitions of the steps leads to partition of th
$Wk% of the walks into the classes of equivalence.

In the case of the Wigner ensembleA(N,N), the classes of equivalence were labeled by
plane rooted treest l of l edges fork52l . Such a tree can be run over by 2l steps starting and
finishing at the root and passing each edge two times exactly~there and back!. This path is made
in the lexicographical order. This means that each time when there is a choice where to g
most left edge is passed. The setTl of all treest l containsCl5(2l )!/ l !( l 11)! elements.

The situation is more delicate in the case of dilute matrices~2.6!, when p is fixed andN
→`. In Ref. 14 it is shown that the leading contribution to~3.1! in this limit is provided by the
walks I k ,k52l , that fall into the classes of equivalence described as follows.

We consider an elementtmPTm ,m< l , and construct a path of 2l steps over this tree. Eac
edge is passed even number of times. Ifm, l , then there exist one or several edges passed an
number of times, which is greater than 2. This path is made in the lexicographical orde
chooses the most left edge among those that are yet not passed. The number of such path
corresponding contribution were estimated in Ref. 14.

The case of a nonweighted adjacency matrix and corresponding Laplace operator is c
ered in Refs. 2 and 15, where these paths were computed exactly and recurrent relations f
number were obtained.

In the present paper we develop the method to compute these paths and correspondi
tributions in the case of weighted matrices. It is similar to the method of decomposition of tre
one edge that is a well-known combinatorial tool to obtain recurrent relations needed.

Let us briefly describe our method. Consider a treetm with m edges and the rootr and denote
by ~r,n! the edge that is passed first. If one removes this edge, one gets two subtreesG2 andG1

~see Fig. 1!.
Denote byf the number of passagesr→n. Then the path over the treetm is described as

follows: after the first passager→n one enters the treeG2 and goes over its edges. Each tim
when one gets into the vertexn, there is a choice of where to go: either to the leaveGu and enter
the subtreeG1 by n→r, or to continue the path overG2 . It is clear that the paths over th
subtreesG2 andG1 are performed independently. More precisely, when leaving the subtreeG1 ,
one keeps the information about its part already passed. Returning back to it by the pasn
→r, we continue this path with no regard to what part of the path overG1 is performed. The

FIG. 1. Decomposition oftm by the first edge~r, n!.
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number of passagesf over the edge~r,n! in direction (r,n)W determines the weight factorEa2 f

5X2 f .
This splitting of trees~and paths! in two parts leads to the recurrent relations for the num

of the paths and corresponding contributions.
Certainly this brief presentation does not reflect all of the details of the procedure. More

in the rigorous proof we study the classes of walksWk directly and the trees arise as someho
supplementary objects. We used them here as more visual illustrations than the walks.

IV. PROOF OF THEOREM 1
A. Walks and contributions

Using independence of familiesJ andLN
(p) , we have

Mk
(N,p)5E E$lkdsA(N,p)%

5ES 1

N (
i 51

N

@l i
(N,p)#kD

5
1

N
E~Tr@A(N,p)#k!

5
1

N (
j 151

N

(
j 251

N

¯ (
j k51

N

E~Aj 1 , j 2

(N,p)Aj 2 , j 3

(N,p)
¯Aj k , j 1

(N,p)!

5
1

N (
j 151

N

(
j 251

N

¯ (
j k51

N

E~aj 1 , j 2
aj 2 , j 3

¯aj k , j 1
!•E~dj 1 , j 2

(N,p)dj 2 , j 3

(N,p)
¯dj k , j 1

(N,p)!. ~4.1!

ConsiderWk
(N) the set of closed walks ofk steps over the set1, N:

Wk
(N)5$w5~w1 ,w2 ,...,wk ,wk115w1!:; i P1, k11 wiP1, N%.

For wPWk
(N) let us denotea(w)5) i 51

k awi ,wi 11
andd(N,p)(w)5) i 51

k dwi ,wi 11

(N,p) . Then we have

Mk
(N,p)5

1

N (
wPWk

(N)
Ea~w!•Ed(N,p)~w!. ~4.2!

Let wPWk
(N) and f ,gP1, N . Denote bynw( f ,g) the number of stepsf→g andg→ f :

nw~ f ,g!5]$ i P1,k: ~wi5 f ∧wi 115g!∨~wi5g ∧ wi 115 f !%.

Then

Ea~w!5)
f 51

N

)
g5 f

N

Xnw( f ,g) .

Given wPWk
(N) , let us define the setsVw5ø i 51

k $wi% and Ew5ø i 51
k $(wi ,wi 11)%, where

(wi ,wi 11) is a nonordered pair. It is easy to see thatGw5(Vw ,Ew) is a simple nonoriented grap
and the walkw covers the graphGw . Let us callGw the skeleton of walkw. We denote bynw(e)
the number of passages of the edgee by the walk w in direct and inverse directions. Fo
(wj ,wj 11)5ejPEw let us denoteaej

5awj ,wj 11
5awj 11 ,wj

. Then we obtain

Ea~w!5 )
ePEw

Eae
nw(e)

5 )
ePEw

Xnw(e) .

Similarly we can write
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Ed(N,p)~w!5 )
ePEw

E~@de
(N,p)#nw(e)!5 )

ePEw

1

N•pnw(e)/221 .

Then, we can rewrite~4.2! in the form

Mk
(N,p)5

1

N (
wPWk

(N)
)

ePEw

Xnw(e)

N•pnw(e)/221 5 (
wPWk

(N)
S 1

NuEwu11
•pk/22uEwu )

ePEw

Xnw(e)D 5 (
wPWk

(N)
u~w!,

~4.3!

whereu(w) is the contribution of the walkw to the mathematical expectation of the correspo
ing moment. To perform the limiting transitionN→` it is natural to separateWk

N into classes of
equivalence. Walksw(1) andw(2) are equivalent,w(1);w(2), if and only if there exists a bijec-
tion f between the sets of verticesVw

(1) andVw
(2) such that fori 51,2,...,k, wi

(2)5 f (wi
(1)),

w(1);w(2) ⇔ ' f : Vw
(1)→

bi j

Vw
(2) : ; i P1, k11 wi

(2)5 f ~wi
(1)!.

Let us denote by@w# the class of equivalence of walkw and byCk
(N) the set of such classes. It i

obvious that if two walksw(1) andw(2) are equivalent, then their contributions are equal:

w(1);w(2) ⇒u~w(1)!5u~w(2)!.

Cardinality of the class of equivalence@w# is equal the number of all mappingsf :Vw

→Rf,1, N i.e., N•(N21)•¯•(N2uVwu11). Then we can rewrite~4.3! in the form

Mk
(N,p)5 (

wPWk
(N)

S 1

NuEwu11
•pk/22uEwu )

ePEw

Xnw(e)D
5 (

[w] PCWk
(N)

S N•~N21!•¯•~N2uVwu11!

NuEwu11
•pk/22uEwu )

ePEw

Xnw(e)D
5 (

[w] PCWk
(N)

û~ @w# !. ~4.4!

B. Minimal and essential walks

To consider the setCk
(N) , it is convenient to relate a given class of equivalence@w# with one

particular walk from this class. More precisely, we give the rule to determine this walk tha
will call the minimal walk.

Definition 1: The walk w is a minimal walk, if w1 (the root of walk) has the number 1 and th
number of each new vertex is equal to the number of all already passed vertices plus 1.

Example 1:The sequences~1,2,1,2,3,1,4,2,1,4,3,1! and ~1,2,3,2,4,2,3,2,1,2,4,1,5,1! represent
the minimal walks.

Let us denote the set of all minimal walks ofWk
(N) by MWk

(N) . It is clear that there is only one
minimal walk at each class of equivalence and vice versa. Therefore we can rewrite~4.4! in the
form

Mk
(N,p)5 (

wPMWk
(N)

S N•~N21!•¯•~N2uVwu11!

NuEwu11
•pk/22uEwu )

ePEw

Xnw(e)D 5 (
wPMWk

(N)
û~ @w# !. ~4.5!

Walk w of Wk
(N) has at least k vertices. Hence,MWk

(1),MWk
(2),¯,MWk

( i ),¯,MWk
(k)

5MWk
(k)5¯ . It is natural to denoteMWk5MWk

(k) . Then~4.5! can be written as
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mk
(p)5 lim

N→`

Mk
(N,p)

5 lim
N→`

(
wPMWk

S N•~N21!•¯•~N2uVwu11!

NuEwu11
•pk/22uEwu )

ePEw

Xnw(e)D
5 lim

N→`
(

wPMWk
S NuVwu2uEwu21 )

ePEw

Xnw(e)

pk/221 D . ~4.6!

The setMWk is finite. Regarding this and~4.6!, we conclude that the minimal walkw has
nonvanishing contribution, ifuVwu2uEwu21>0. But for each simple connected graphG
5(V,E), uVwu<uEwu11, and the equality takes place if and only if the graphG is a tree.

Definition 2: The minimal walk w is an essential walk, if its contribution in the limit N→` is
not zero.

Clearly, each essential walk is a minimal walk that has a tree as a skeleton and vice
Then the number of passages of each edgee belonging to the essential walkw is even. Hence, the
limiting mathematical expectationmk

(p) depends only on the even moments of random variabl
a. It is clear that the limiting mathematical expectation limN→`M2s11

(N,p) is equal to zero.

C. First edge decomposition of essential walks

Let us start with necessary definitions. The first vertexw151 of the essential walkw is called
the root of the walk. We denote it byr. Let us denote the second vertexw252 of the essential
walk w by n. We denote byl half of walk’s length and byr the number of steps ofw starting from
root r. In Sec. III we explained that we derive the recurrent relations by splitting of the walk~or
of the tree! into two parts. To describe this procedure, it is convenient to consider the set o
essential walks of length 2l such that they haver steps starting from the rootr. We denote this se
by L( l ,r ). One can see that this description is exact, in the sense that it is minimal and
complete description of the walks we need. Denote byS( l ,r ) the sum of contributions of the walk
of L( l ,r ). Let us remove the edge (r,n)5(1,2) fromGw and denote byĜw the graph obtained
The graphĜw has two components. Denote the component that contains the vertexn by G2 and
the component containing the rootr by G1 . Add the edge~r,n! to the edge set of the treeG2 .
Denote the result of this operation byĜ2 . In Fig. 2 one can see examples ofG2 , G1 , Ĝ2 . Denote
by u the half of the walk’s length over the treeG2 and byf the number of steps~r,n! in the walk
w. It is clear that the following inequalities hold for all essential walks~except the walk of length
zero!: 1< f <r , r 1u< l . Let us denote byL1( l ,r ,u, f ) the set of the essential walks with fixe
parametersl , r , u, f and byS1( l ,r ,u, f ) the sum of contributions of the walks ofL1( l ,r ,u, f ).
Denote byL2( l ,r ) the set of the essential walks ofL( l ,r ) such that their skeleton has only on
edge attached the rootr. Also we denote byS2( l ,r ) the sum of contributions of the walk o
L2( l ,r ). Now we can formulate the first lemma of decomposition. It allows expressS as a
function of theS, S2 .

Lemma 1 (First decomposition lemma): The following relation holds,

S~ l ,r !5(
f 51

r

(
u50

l 2r

S1~ l ,r ,u, f !, ~4.7!

FIG. 2. Examples ofG2 , G1 , Ĝ2 .
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where

S1~ l ,r ,u, f !5S r 21
f 21D •S2~ f 1u, f !•S~ l 2u2 f ,r 2 f !. ~4.8!

Proof: The first equality is obvious. The second equality follows from the bijection

L 1~ l ,r ,u, f !→
bi j

L 2~ f 1u, f !3L ~ l 2u2 f ,r 2 f !3Q 1~r , f !, ~4.9!

whereQ 1(r , f ) is the set of sequences of 0 and 1 of lengthr such that there are exactlyf symbols
1 in the sequence and the first symbol is 1. Equality~4.8! is illustrated by Fig. 3.

Let us construct this mappingF. Regarding one particular essential walkw of L1( l ,r ,u, f ),
we consider the first edgee1 of the graphGw and separatew in two parts, the left and the righ
ones with respect to this edgee1 . Then we add a special code that determines the transitions
the left part to the right one and back through the rootr. Obviously these two parts are walks, b
not necessarily minimal walks. Then we minimize these walks. This decomposition is const
by the following algorithm. We run overw and simultaneously draw the left part, the right pa
and the code. If the current step belongs toGl , we add it to the first part, otherwise we add th
step to the second part. The code is constructed as follows. Each time the walk leaves the
sequence is enlarged by one symbol. If the current step is~r,n! and ‘‘0’’ otherwise, this symbol is
‘‘1.’’ It is clear that the first element of the sequence is ‘‘1,’’ the number of signs ‘‘1’’ is equa
f , and the full length of the sequence isr . Now we minimize the left and the right parts. Thus, w
have constructed the decomposition of the essential walkw and the mappingF.

Example 2:For w5(1,2,1,2,3,2,1,4,1,2,5,2,1,4,6,4,1,2,5,2,3,2,3,2,1,4,1) the left part, the
one, and the code are~1,2,1,2,3,2,1,2,4,2,1,2,4,2,3,2,3,2,1!, ~1,2,1,2,3,2,1,2,1!, ~1,1,0,1,0,1,0!,
respectively.

Let us denote the left part by (w( f )) and the right part by (w(s)). These parts are really walk
with the rootr. For each edgee in the treeĜ2 the number of passages ofe of the essential walk
w is equal to the corresponding number of passages ofe of the left part (w( f )). Also for each edge
e belonging to the treeG1 the number of passages ofe of essential walkw is equal to the
corresponding number of passages ofe of the right part (w(s)). The weight of the essential wal
is multiplicative with respect to edges. Then the weight of the essential walkw is equal to the
product of weights of left and right parts. The walk of zero length has unit weight. Combining
with ~4.9!, we obtain

S1~ l ,r ,u, f !5uQ 1~r , f !u•S2~ f 1u, f !•S~ l 2u2 f ,r 2 f !. ~4.10!

Taking into account thatuQ 1(r , f )u5( f 21
r 21), we derive from~4.10! ~4.8!.

Now let us prove that for any given elementsw( f ) of L 2( f 1u, f ), w(s) of L ( l 2u2 f ,r
2 f ), and the sequenceuPQ1(r , f ), one can construct one and only one elementw of
L1( l ,r ,u, f ). We do this with the following gathering algorithm. We go along eitherw( f ) or w(s)

and simultaneously draw the walkw. The switch fromw( f ) to w(s) and back is governed by th

FIG. 3. Decomposition ofL1 .
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code sequenceu. In fact, this procedure is inverse to the decomposition procedure described
up to the fact thatw(s) is minimal. This difficulty can be easily resolved, for example, by color
vertices ofw( f ) andw(s) in red and blue colors, respectively. Certainly, the common root ofw( f )

andw(s) has only one color. To illustrate the gathering procedures we give the following exam
Example 3:For w( f )5(1,2,1,2,3,2,1,2,4,2,1,2,4,2,3,2,3,2,1),w(s)5(1,2,1,2,3,2,1,2,1), u

5(1,1,0,1,0,1,0) the gathering procedure givesw5(1,2,1,2,3,2,1,4,1,2,5,2,1,4,6,4,1,2,5,2,3
3,2,1,4,1).

It is clear that the decomposition and gathering are injective mappings. Their domain
finite sets, and therefore the corresponding mapping~4.9! is bijective. This completes the proof o
Lemma 1. j

To formulate Lemma 2, let us give necessary definitions. We denote byv the number of steps
starting from the rootr except the step (r,n)W and byL3(u1 f , f ,v) the set of essential walks o
L2(u1 f , f ) with fixed parameterv. Also we denote byS3(u1 f , f ,v) the sum of weights of
walks ofL3(u1 f , f ,v). Let us denote byG1,2 the graph consisting of only one edge~r,n! and by
L4( f ) the set of essential walks of length 2f such that their skeleton coincides with the gra
G1,2. It is clear thatL4( f ) consists of only the one walk~1,2,1,2,...,2,1! of weightX2 f /pf 21. The
previous lemma allows us to express S2 as a function of S. The next lemma allows us to expr
S2 as a function of S. Thus, two lemmas allow us to express S as a function of S.

Lemma 2 (Second decomposition lemma):

S2~ f 1u, f !5 (
v50

u

S3~ f 1u, f ,v !, ~4.11!

S3~ f 1u, f ,v !5S f 1v21
f 21 D • X2 f

pf 21 •S~u,v !. ~4.12!

The first equality is trivial, the second one follows from the bijection

L 3~ f 1u, f ,v !→
bi j

L ~u,v !3L 4~ f !3Q2~ f 1v, f !, ~4.13!

whereQ2( f 1v, f ) is the set of sequences of 0 and 1 of lengthf 1v such that there are exactlyf
symbols 1 in the sequence and the last symbol of it is 1. The proof is analogous to the proof
first decomposition lemma. Equality~4.12! is illustrated by Fig. 4.

D. Recurrent relations for S

Combining these two decomposition lemmas and changing the order of summation, we
recurrent relations

S~ l ,r !5(
f 51

r S r 21
f 21D • X2 f

pf 21 •(
u50

l 2r

S~ l 2u2 f ,r 2 f !•(
v50

u S f 1v21
f 21 D •S~u,v !,

FIG. 4. Decomposition ofL3 .
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with the initial condition S(l ,0)5d l . This gives~2.8!.
Using this system of recurrent relations, one can obtain information about limitings. For

example, one can observe that the support of the limiting measures is unbounded even when th
support of the distribution of$ai , j% is finite. This fact follows from inequality

M4k>~C•k!k, ~4.14!

whereC is a constant. To explain~4.14!, let us denote byC the set of essential walks of length 4k
such that the rootr belongs to each of the edges of the skeleton and each edge is passe
times. The weight of the essential walk ofC is equal to (X4 /p)k. The cardinality ofC equals
(2k21)!!. This implies~4.14!.

Finally, let us note that using the technique developed, one can derive recurrent relatio
determine the coefficients of 1/p-expansion ofml

(p) :

ml
(p)5(

i 50

l 21 S (
r 50

l

S~ l ,r ,i !D • 1

p i . ~4.15!

Then we get

S~ l ,r ,i !5(
f 51

r S r 21
f 21D •X2 f•(

u50

l 2r

(
j 50

( l 2u2 f 21)•(12d l 2u2 f )

S~ l 2u2 f ,r 2 f , j !

•(
v50

u S f 1v21
f 21 D •S~u,v,i 2 f 2 j 11! ~4.16!

with the initial conditionS( l ,0,i )5d l•d i . We do not explain the detail of this derivation. Simil
formulas are obtained in Ref. 2. The difference is that in Ref. 2 matrices are not normaliz
1/Ap. This leads to expressions for 1/p-terms different from our~4.16!. Relations~4.12! provide
more information about the properties ofml

(p) than relations~2.8!. As the result,~4.13! are more
cumbersome than~2.8!.

V. LAPLACE OPERATOR

Regarding the Laplace operator, we have to modify our method. In this case the ra
variableD i i is given by the sum ofAi j and therefore is dependent on random variablesai j . Each
of the nondiagonal entries differs from the corresponding entry of the weighted adjacency m
by the sign only. Each diagonal entry ofDG

(j) equals the sum of all entries of the same line of t
corresponding weighted adjacency matrix. Taking into account this observation one can w

Ls
(N,p)5EH E lsds~l;DG!J

5E
1

N
Tr@DG#s

5E
1

N
Tr@B2A#s

5 (
i P1,Ns

(
bP$0,1%s

E~Ki 1i 2

(b1)
•Ki 2i 3

(b2)
•¯•Ki si 1

(bs)!, ~5.1!

whereKi j
(0)52Ai j , Ki j

(1)5Bi j . Let us introduce the symbol
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Mi j 512d i j 5H 0, if i 5 j ,

1, if iÞ j .

thenB can be rewritten in the form

Bi j 5H 0, if iÞ j ,

(
l 51

N

Ail •Mli , if i 5 j .
~5.2!

Given numbersb1 ,b2 ,...,bs , we substitute~5.2! into ~5.1! and change the order of sums overl ’s
andE$•% and observe that the mathematical expectation depends on the product ofA’s only. The
difference between this representation and that of~4.1! is that the momentLs

(N,p) is expressed as
the sum of weights of closed walks ofs steps. A step can be usual or special~double!. Let us
explain the nature of the special step that corresponds to the factorAi j •M ji . We denote it by an
arrow from i to j . To turn back to the walk we add the step (j ,i )W which is represented byM ji .
This step can be regarded as the imaginary one because it does not contribute to the lengt
walk and to the weight~mathematical expectation! of the walk. In the figures we denote th
special step corresponding to the factorAi j •M ji by an arrow fromi to j .

As before, we determine the classes of equivalence of the walks, the minimal walks, a
essential walks. In the case ofDG the essential walks are the minimal walks that have a tree
skeleton. Each of the usual steps (j ,k)W of the essential walk corresponds to one usual step (k, j )W
only. Then, if there areb usual steps (j ,k)W , c special steps (j ,k)W , andd special steps (k, j )W , then
the edge (k, j ) has the weight (21)2b

•X2b1c1d5X2b1c1d .
Let us give necessary definitions and formulate two analogs of the decomposition lem

Denote byl the number of usual and special steps of the essential walkw, by r 1 the number of
steps starting from the rootr and byf the number of usual and special steps (r,n)W . We denote by
L̂( l ,r 1) the set of the essential walks ofl steps such that they haver 1 steps starting from the roo
r and by Ŝ( l ,r 1) the sum of contributions of the walk ofL̂( l ,r 1). Let d be the length of the walk
over the treeG1 . Denote byL̂1( l ,r 1 ,d, f ) the set of essential walks with fixed parametersl , r 1 ,
d, and f and by Ŝ1( l ,r 1 ,d, f ) the sum of weights of walks ofL̂1( l ,r 1 ,d, f ). Let us denote by
L̂2( l ,r 1) the set of essential walks ofL̂( l ,r 1) such that their skeleton has only one edge attac
to the rootr and by Ŝ2( l ,r 1) the sum of contributions of the walks ofL̂2( l ,r 1).

Lemma 3 (Third decomposition lemma):

Ŝ~ l ,r 1!5(
f 51

r 1

(
d50

l 2 f

Ŝ1~ l ,r 1 ,d, f !, ~5.3!

Ŝ1~ l ,r 1 ,d, f !5S r 121
f 21 D •Ŝ2~ l 2d, f !•Ŝ~d,r 12 f !. ~5.4!

The first equality is trivial and the second one follows from the bijection

L̂1~ l ,r 1 ,d, f !→
bi j

L̂2~ l 2d, f !3L̂~d,r 12 f !3Q 1~r 1 , f !. ~5.5!

The proof is analogous to the proof of the first decomposition lemma. Equality~5.4! is
illustrated by Fig. 5.

To formulate the fourth decomposition lemma, let us give necessary definitions. We den
r 2 the number of steps starting from the rootr @excepting the usual and special steps (r,n)W ], by
n the number of usual steps (r,n)W , by f 1 the number of special steps (r,n)W and byf 2 the number
of special steps (n,r)W . Denote byL̂3( l ,n, f 1 , f 2 ,r 2) the set of essential walks with fixed param
eters l , n, f 1 , f 2 , r 2 such that their skeletons have only one edge attached to the rootr. Let
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Ŝ3( l ,n, f 1 , f 2 ,r 2) be the sum of weights of walks ofL̂3( l ,n, f 1 , f 2 ,r 2). Denote byL̂4(n, f 1 , f 2)
the set of essential walks of length 2n1 f 11 f 2 with fixed parametersn, f 1 , f 2 such that their
skeletons coincide with the graphG1,2. It is not hard to see that for the casen>1 one has the
equalityuL̂4(n, f 1 , f 2)u5( n

n1 f 1)•( n21
n1 f 221). It is clear that each of the walks ofL̂4(n, f 1 , f 2) has the

weight X2n1 f 11 f 2
/pn1 f 1/21 f 2/221.

Lemma 4 (Fourth decomposition lemma):

Ŝ2~ l ,r 1 ,d, f !5 (
n50

min$[( l 2d)/2)], f %

(
f 250

l 2d2 f 2n

(
r 250

l 2d2 f 2n2 f 2

Ŝ3~ l 2d,n, f 2n, f 2 ,r 2!, ~5.6!

Ŝ3~ l 2d,n, f 1 , f 2 ,r 2!

5H S n1 f 21r 221
r 2

D •S n1 f 1

n D •S n1 f 221
n21 D •Ŝ~ l 2d2n2 f 2 f 2 ,r 2!, if n>1,

d l 2d2 f 1
d f 2

d r 2

X2n1 f 11 f 2

pn1 f 1/21 f 2/221 , if n50 .

~5.7!

The first equality is trivial and the second one follows from the bijection

L̂2~ l 2d,n, f 1 , f 2 ,r 2!→
bi j

L̂~ l 2d22n2 f 12 f 2 ,r 2!3L̂3~n, f 1 , f 2!3Q2~n1 f 21r 2 ,n1 f 2!.
~5.8!

The proof is analogous to the proof of the first decomposition lemma. Equation~5.7! is
illustrated by Fig. 6.

Combining these two lemmas, we get an expression for Sˆ . This expression is the sum over a
admissible values off ,d,n, f 2 ,r 2 . Let us change the order of summation. On the one hand,
numbern of usual steps (r,n)W is not greater than the numberf of all steps (r,n)W ; on the other
hand, the inequality 2n1 f 1< l holds because each of the usual steps (r,n)W corresponds to the ste

FIG. 5. Decomposition ofL̂1 .

FIG. 6. Decomposition ofL̂3 .
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(n,r)W . Then n<min(r1, l2r1). The numberf 1 of special steps (r,n)W is not greater than the
numberr 1 of all steps starting from the rootr minus the numbern of usual steps (r,n)W . Then f 1

changes from 0 tor 12n. Now there are onlyl 2r 12n free steps. Then the numberf 2 of special
steps (n,r)W can be changed from 0 tol 2r 12n. Now it remainsl 2r 12n2 f 2 free steps. The
walk’s lengthd over the treeG1 is not less than the numberr 1 of steps starting from the rootr
minus the numbern1 f 1 of steps (r,n)W . Thenr 12 f 12n<d< l 2r 12n2 f 2 . Now there are only
l 2d22n2 f 12 f 2 free steps. In the casen50, the expression is simplified to( f 151

r 1 Cr 121
f 121

•Ŝ( l

2 f 1 ,r 12 f 1). The relations described above are illustrated by Fig. 7:

Ŝ~ l ,r 1!5 (
n51

min(r 1 , l 2r 1)

(
f 150

r 1-n S n1 f 1

n D S r 121
n1 f 121D • (

f 250

l 2r 1-n

~n1 f 221n21!•
X(2n1 f 11 f 2)

p(2n1 f 11 f 2)/221

3 (
d5r 12 f 12n

l 2r 1-n2 f 2

Ŝ~d,r 12n2 f 1!• (
r 250

l 2d-2n2 f 1- f 2 S r 21 f 21n21
r 2

D •Ŝ~ l 2d22n2 f 12 f 2 ,r 2!

1 (
f 151

r 1 S r 121
f 121D •Ŝ~ l 2 f 1 ,r 12 f 1! ~5.9!

with the initial condition

Ŝ~ l ,0!5d l ,0 .

Let us denoteg15 f 11n, andg25 f 21n. Using the identity(n51
min$g1,g2%(n

g1)•(n21
g221)5(g121

g11g221)

and ~5.9!, we get

Ŝ~ l ,r 1!5 (
g151

r 1 S r 121
g121D •S Ŝ~ l 2g1 ,r 12g1!•

Xg1

pg1/221 1 (
d5r 12g1

l 2r 1

Ŝ~d,r 12g1!

• (
g251

l 2d-g1 S g11g221
g121 D • Xg11g2

p(g11g2)/221 (
r 251

l 2d-g1-g2 S r 21g221
g221 D •Ŝ~ l 2d2g12g2 ,r 2!D .

If ai j [1 andp51, we obtain

FIG. 7. Relations between parameters.
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Ŝ~ l ,r 1!5 (
g151

r 1 S r 121
g121D •S Ŝ~ l 2g1 ,r 12g1!1 (

d5r 12g1

l 2r 1

Ŝ~d,r 12g1!• (
g251

l 2d-g1 S g11g221
g121 D

• (
r 251

l 2d-g1-g2 S r 21g221
g221 D •Ŝ~ l 2d2g12g2 ,r 2!D .

If we want to find the coefficients of 1/p-expansion ofl k
(p) ,

l k
(p)5 (

i 52k

k22 S (
r 150

k

Ŝ~k,r 1 ,i !D • 1

p i /2 , ~5.10!

we can apply the method described above. Then after some calculations we get the fol
recurrent relations:

Ŝ~k,r 1 ,i !5 (
g151

r 1 S r 121
g121D •S Ŝ~k2g1 ,r 12g1 ,i 122g1!•Xg1

1 (
d5r 12g1

k2r 1

(
j 52d

d22•(12dd)

Ŝ~d,r 12g1 , j !

• (
g251

k2d-g1 S g11g221
g121 D • Xg11g2

p(g11g2)/221 • (
r 251

k2d-g1-g2 S r 21g221
g221 D

•Ŝ~k2d2g12g2 ,r 2 ,i 122g12g22 j !D ~5.11!

with the initial condition Ŝ( l ,0,i )5d l ,0•d i ,0 .
Similar formulas are obtained in Ref. 2. The difference is that in Ref. 2 matrices are

normalized by 1/Ap. This leads to expressions for 1/p-terms different from our~5.11!.
In conclusion, let us discuss the limiting transitionp→` in ~2.8! and ~2.10!. Regarding the

first sum of the relation for the limiting moments of the adjacency matrix~2.8!, one can easily
observe that the terms withf .1 vanish in the limit of infinitep. Then gathering~2.8! with ~2.7!
leads to the recurrent relations

mk5X2(
u50

k21

mk212umu

that certainly determine the semicircle law.22

Let us turn to the Laplace case. In general, it is impossible to pass to the limitp→` in
relations~2.10! because there is the term of the orderp1/2. However, if one passes to the case
random variablesa with zero mean value,X150, then the limitp→` leads to the following
recurrent relations:

Ŝ~ l ,r 1!5X2•S ~r 121!•Ŝ~ l 22,r 122!1 (
d5r 121

l 2r 1

Ŝ~d,r 121!• (
r 251

l 2d-2

Ŝ~ l 2d22,r 2!D ~5.12!

with the initial condition Ŝ( l ,0)5d l ,0 .
These recurrent relations obviously differ from those for the semicircle law. Using the r

vent approach, we show at the end of Sec. 6 that the limiting moments

l s5 lim
p→`

l s
(p)5(

i 50

s

Ŝ~s,i !

determine the distribution known as the deformed semicircle law~see Ref. 16!.
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VI. PROOFS OF THEOREMS 3 AND 4

Proof of Theorem 3:It is easy to see thatG11
(N,p)(z) can be represented in the form

G11
(N,p)~z!5S z1 (

j ,k52

N

G̃jk
(N21,p)A1 j

(N,p)A1k
(N,p)D 21

, ~6.1!

where the matrix$G̃i j
(N21,p)(z)% i , j 52

N is the resolvent of the matrixiÃ (N21,p), which can be ob-
tained fromA(N,p) if we replace$A1 j

(N,p)% j 52
N , $Aj 1

(N,p)% j 52
N by zeros. We remark here that in ord

to simplify formulas in this section we assume thatAj j
(N,p)50. The general case can be studied

the same way. Let us use the formula~see Ref. 1!

e2ua2R512u1/2uau E
0

`

dv
J1~2uauAuv !

Av
exp$2R21v%, ~6.2!

which is valid for anyu>0, RR.0. Then, on the basis of~6.1!, we get

exp$2ua1
2G11

(N,p)%512u1/2ua1u E
0

`

dv
J1~2ua1uAuv !

Av
expH 2zv2v (

j ,k52

N

G̃i j
(N21,p)A1i

(N,p)A1 j
(N,p)J .

~6.3!

Denote

R̃N5(
j Þk

G̃jk
(N21,p)A1 j

(N,p)A1k
(N,p) . ~6.4!

One can see easily that

E$uR̃Nu2%<2
X2

2

NuRzu2
1

p2X1
4

N2uRzu2
1

pX1
2X2

N2uRzu2 . ~6.5!

Indeed,

E$uR̃Nu2%5 (
j 1Þ j 2Þk1Þk2

E$Gj 1k1

(N21,p)G̃j 2k2

(N21,p)A1 j 1

(N,p)A1 j 2

(N,p)A1k1

(N,p)A1k2

(N,p)%

14 (
j ,k1Þk2

E$G̃jk1

(N21,p)G̃jk2

(N21,p)uA1 j
(N,p)u2A1k1

(N,p)A1k2

(N,p)%

12(
j Þk

E$G̃jk
(N21,p)G̃jk

(N21,p)uA1 j
(N,p)u2uA1k

(N,p)u2%5I 14II 12III . ~6.6!

Averaging with respect to$A1,i
(N,p)% i 52

N and using the fact that$G̃i j
(N21,p)(z)% i , j 52

N do not depend on
A1,i

(N,p) , we obtain

I<X1
4 p2

N2 EH UN21(
j ,k

~z2 iÃ (N21,p)! jk
21U2J <

p2X1
4

N2uRzu2 ,

II <X1
2X2

p

N3 (
k1Þk2

E$@~z2 iÃ (N21,p)!~ z̄1 iÃ (N21,p)!#k1k2

21 %<
pX1

2X2

N2uRzu2 ,

III <
X2

2

N2 (
k

E$@~z2 iÃ (N21,p)!~ z̄1 iÃ (N21,p)!#kk
21%<

X2
2

NuRzu2
.
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Besides, since evidently

RH( G̃i j
(N21,p)A1i

(N,p)A1 j
(N,p)J >0, RH( G̃j j

(N21,p)UAj j
(N,p)U2J >0,

the inequalityue2z12e2z2u<uz12z2u ~valid for Rz1 ,Rz2>0) and~6.3! imply

exp$2ua1
2G11

(N,p)%512u1/2ua1u E
0

`

dv
J1~2ua1uAuv !

Av

3expH 2zv2v( G̃i j
(N21,p)uA1 j

(N,p)u2J 1 r̃ N~u!, ~6.7!

where

u r̃ N~u!u<uR̃Nuu1/2ua1u E
0

`

dvUJ1~2ua1uAuv !

Av
e2zvU<CuR̃Nuu1/2ua1uuRzu23/2.

Here and below we denote byC some constants~different in different formulas!, which do not
depend onN,z,p. Taking into account~6.5!, we get

E$u r̃ N~u!u2%<
Cup

NuRzu3 . ~6.8!

Averaging with respect toa1 and$A1,i
(N,p)% i 52

N we obtain

E$exp$2ua1
2G11

(N,p)%%512u1/2E dm~a1!ua1u E
0

`

dv
J1~2ua1uAuv !

Av

3EH expH 2zv2v(
j 52

N

G̃j j
(N21,p)uA1 j

(N,p)u2J J 1r N~u!,

~6.9!

r N~u!<
C~up!1/2

N1/2uRzu3/2.

Taking into account that$G̃i j
(N21,p)(z)% i , j 52

N do not depend onA1,i
(N,p) , we obtain

EHexpH 2v( Gj j
(N21,p)uA1 j

(N,p)u2J J 5EH )
j 52

N S S 12
p

ND1
p

N
e2va1 j

2 G̃j j
(N21,p)/pD J

5e2pEˆexp̂ p f̃N21~v/p,z!%‰1RN~v !,
~6.10!

uRN~v !u<
Cp2

N
.

Let us prove thatf̃ N21(v/p,z)5 (1/N) (e2va1 j
2 G̃j j

(N21,p)/p can be replaced byf N(v/p,z). To this
end consider the matricesA(N,p)(t)5(12t)A(N,p)1tÃ(N21,p), G(t,z)5(z2 iA (N,p)(t))21 and the
function

f N~u,z,t !5
1

N (
i 51

N

e2uai
2Gii (t,z). ~6.11!

It is easy to see that
                                                                                                                



1668 J. Math. Phys., Vol. 45, No. 4, April 2004 Khorunzhy, Shcherbina, and Vengerovsky

                    
U f̃ N21~u,z!2 f N~u,z!1
1

NzU5U 1

Nz
1

1

N (
i 52

N

e2uai
2G̃ii

(N21,p)(z)2
1

N (
i 51

N

e2uai
2Gii (z)U

5u f N~u,z,1!2 f N~u,z,0!u

5U E
0

1

dt
d

dt
f N~u,z,t !U

52U E
0

1

dt
u

N (
i 52

N

ai
2Gi j ~z,t !Aj 1

(N,p)G1i~z,t !e2uai
2Gii (z,t)U

<2
u

NuRzu2 F (
j 52

N

uai u4G1/2F (
j 52

N

uAj 1
(N,p)u2G1/2

, ~6.12!

where we have used thatiG(t,z)i<uRzu21. Therefore, for anyuPR,

E$u f̃ N21~u,z!2 f N~u,z!u2%<
u2X4

1/2X2
1/2

uRzu4N
1

1

N2uzu2
. ~6.13!

Hence,~6.9! and ~6.10! could be rewritten as

E$ f N~u,z!%512u1/2e2pE ua1udm~a1!E
0

`

dv
J1~2ua1uAuv !

Av
e2zvE$ep fN(v/p,z)%1r N8 ~v !,

~6.14!

E$ur N8
2~u!u%<

Cp2u

uRzu4N
.

Now let us prove~2.14!. Denote

dN~z,u!5 f N~z,u!2E$ f N~z,u!%

and observe that due to the symmetry of the problem

E$dN
2 ~z,u!%5

N21

N
~E$e2ua1

2G11(z)e2ua2
2G22(z)%2E$e2ua1

2G11(z)%E$e2ua2
2G22(z)%!1O~N21!.

~6.15!

We shall use the formulas@cf. ~6.1!#

G,,
(N,p)5F S z1 (

j ,k53

N

G̃jk
(N22,p)A, j

(N,p)A,k
(N,p)D 2S (

j ,k53

N

G̃jk
(N22,p)A1 j

(N,p)A2k
(N,p)D 2

3S z1 (
j ,k53

N

G̃jk
(N22,p)A

,̄, j

(N,p)
A

,̄k

(N,p)D 21G21

. ~6.16!

Here ,51,2, ,̄532, and G̃(N22,p)5(z2 iÃ (N22,p))21, where Ã(N22,p) can be obtained from
A(N,p) by replacingA1 j

(N,p) ,A2 j
(N,p) Aj 1

(N,p) ,Aj 2
(N,p) ( j 53, . . . ,N) by zeros. Similarly to~6.5!, one can

get that

EH U( G̃jk
(N22,p)A1 j

(N,p)A2k
(N,p)U2J <

Cp

NuRzu2
, EH U(

j Þk
G̃jk

(N22,p)A, j
(N,p)A,k

(N,p)U2J <
Cp

NuRzu2
.

Hence, using~6.2!, similarly to ~6.3!–~6.6!, we get
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E$e2ua1
2G11

(N,p)
e2ua2

2G22
(N,p)

%2E$e2ua1
2G11

(N,p)
%E$e2ua2

2G22
(N,p)

%

5ue22p E ua1uua2udm~a1!dm~a2!E
0

`E
0

`

dv1dv2

J1~2ua1uAuv1!J1~2ua2uAuv2!

Av1v2

e2zv12zv2

3@E$ep f̃N22(v1 /p,z)ep f̃N22(v2 /p,z)%2E$ep f̃N22(v1 /p,z)%E$ep f̃N22(v2 /p,z)%#1 r̃ N~u!,
~6.17!

E$u r̃ N~u!u%<
Cp

NuRzu2 .

By the same way as in~6.11!–~6.13! it is easy to prove that the estimate~6.13! remains valid if we
replacef̃ N21(u,z) by f̃ N22(u,z). Thus inequalities~6.17! remain valid if we replacef̃ N22(u,z)
by f N(u,z) on the r.h.s. of~6.17!.

Besides, since

u f N~v,z!u<max
i

e2uai
2
RGii

(N,p)
<1, ~6.18!

we have the bound

uE$ep fN(v1 /p,z)ep fN(v2 /p,z)%2E$ep fN(v1 /p,z)%E$ep fN(v2 /p,z)%u

<4e2pp2~E$udN~v1 /p,z!u2%1E$udN~v2 /p,z!u2%!. ~6.19!

Let us take the norm~2.16! and consider the Banach spaceB of all the functionsf:R1→C which
possess this norm. Considerfz(u)5dN(u,z).

Then, using~6.19! and the inequalityuJ1(x)u<1 ~see Ref. 1!, on the basis of~6.15!–~6.18! we
get

E$idN~u,z!i2%<
8X2e2pp2p

uRzu S 11
1

2puRzu DE$idN~u,z!i2%1
C

N
. ~6.20!

Hence, it is evident that there existsM.0, such that for anyz:Rz.M

E$idN~u,z!i2%<
C

N
. ~6.21!

Thus, for anyz:Rz.M , Eq. ~6.14! can be rewritten in the form

E$ f N~u,z!%512u1/2e2p E uaudm~a!E
0

`

dv
J1~2uauAuv !

Av
e2zvepE$ f N(v/p,z)%1 r̃ N8 ~u!,

~6.22!

E$u r̃ N8
2~u!u%<

Cp2u

N
.

Define the operatorFz :B→B of the form

Fz~f!~u!512u1/2e2p E uaudm~a!E
0

`

dv
J1~2uauAuv !

Av
e2zvepf(v/p). ~6.23!

Then for anyf1 , f2 if1,2i<1
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iFz~f1!2Fz~f2!i<X2
1/2E

0

` dv

Av
e2uRzuvev1/2/p1/2

if12f2i<
2X2

1/2Ape1/4puRzu

u2Rzu1/2 if12f2i .

Hence, there existsM1.0, such that for allz:Rz.M1

iFz~f1!2Fz~f2!i< 1
2 if12f2i .

Thus, if we denote byB0,15$f: ifi<1% the ball of radius 1 centered in the origin, then we obt
thatFz :B0,1→B0,1 and the restrictionFz on B0,1 is a contraction. Therefore, there exists the uniq
fixed point f (u,z) of the mappingFz :B0,1→B0,1 which is a solution of~2.17!, andE$ f N(u,z)%
→ f (u,z), asN→`. But sinceE$ f N(u,z)% for anyz: Rz.0 is an analytical function, the unique
ness theorem of complex analysis guarantees that Eq.~2.17! has a solution for anyz:Rz.0 and
E$ f N(u,z)%→ f (u,z), asN→`.

Similarly, sincedN(u,z) is a bounded analytical function,E$idN(u,z)i2%→0 (N→`) implies
that E$idN(u,z)i2%→0 for anyz:Rz.0.

Proof of Theorem 4:The proof of Theorem 4 repeats almost literally the proof of Theorem
We use the formula@cf. ~6.3!#

G11
(D,N,p)~z!5S z1 i (

j 52

N

A1 j
(N,p)1 (

j ,k52

N

G̃jk
(D,N21,p)A1 j

(N,p)A1k
(N,p)D 21

, ~6.24!

where $G̃i j
(D,N21,p)(z)% i , j 52

N is the resolvent of the matrixiD (N21,p), obtained fromD (N,p) by
replacing$A1 j

(N,p)% j 52
N $Aj 1

(N,p)% j 52
N with zeros. Then, similarly to~6.2!–~6.22! we obtain

E$ f N
(D)~u,z!%5m̂~2u!2u1/2e2pE uaueiuadm~a!E

0

`

dv
J1~2uauAuv !

Av
e2zvepE$ f N

(D)(v/p,z)%

1 r̃ N8 ~u!, E$u r̃ N8
2~u!u%<

Cp2u

N
. ~6.25!

Then we consider the Banach spaceB with the norm~2.16! and the operatorFz
(D) :B→B of the

form

Fz
(D)~f!~u!5m̂~2u!2u1/2e2pE uaueiuadm~a!E

0

`

dv
J1~2uauAuv !

Av
e2zv

•epf(v/p). ~6.26!

It is easy to see that there existsM1.0, such that for anyz:Rz.M1 the operatorFz
(D) :B0,1

→B0,1 and its restriction toB0,1 is a contraction.
Hence, there exists the unique fixed pointf (D)(u,z), which is a solution of~2.24!, and

E$ f N
(D)(u,z)%→ f (D)(u,z), asN→`. Similarly to Theorem 3 the statement of Theorem 4 can

derived from this fact.
In conclusion let us discuss the limiting transitionp→`. Assume thatX150. Then in the case

of the adjacency matrix, by using formula~6.1! we can write

G11
(N,p)~z!5S z1(

j 52

N

G̃j j
(N21,p) X2

N
1R̃N1RpD 21

, ~6.27!

whereR̃N is defined by~6.4! and

Rp5 (
j ,k52

N

G̃j j
(N21,p)~A1,j

2 2E$A1,j
2 %!.
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Then, sinceX150, in view of ~6.5! E$uR̃Nu2%→0, asN→` and

E$uRpu2%<(
j 52

N

uG̃j j
(N21,p)u2

X4

Np
1O~ uRzu22N21!5O~ uRzu22p21!1O~ uRzu22N21!.

Besides, similarly to the above consideration, it is easy to conclude that

E$uN21Tr G̃(N21,p)2N21Tr G(N,p)u2%→0,

E$uN21Tr G(N,p)2E$N21Tr G(N,p)%u2%→0, N→`.

We remark also that this self-averaging property can be obtained directly from Theorem~see
Sec. 2.2!.

Thus, we get that ifgN,p(z)5N21Tr (A(N,p)2z)21, then

E$ igN,p~2 iz!%5~z1X2E$ igN,p~2 iz!%!211o~1!.

Similarly to the proof of Theorem 3, we conclude that foruRzu large enoughE$gN,p(2 iz)%
→g(2 iz), asN,p→`, whereg(z) is the solution of the equation

g~z!5~X2g~z!2z!21,

satisfying conditionRg(z)Rz.0. So we have got once more the result of Ref. 16 that ifX1

50 andN,p→`, then the IDS ofA(N,p) tends to the Wigner semicircle law.
By the same way, using formula~6.24!, we get for theG(D,N,p)(z)

G11
(D,N,p)~z!5S z1 i (

j 52

N

A1 j
(N,p)1

X2

N
E$Tr G(D,N,p)~z!% D 21

1O~ uRzu22p21!1O~ uRzu22N21!.

~6.28!

Thus, since( j 52
N A1 j

(N,p) converge in distribution asN,p→` to the Gaussian random variable wi
zero mean and the varianceX2 , we get from~6.28! the equation

E$ igN,p
(D) ~2 iz!%5E e2v2/2dv

A2p
~z1 iv1E$ igN,p

(D) ~2 iz!%!21

and so we conclude that there exists

lim
N,p→`

E$ igN,p
(D) ~ iz!%5 ig (D)~ iz!,

whereig (D)( iz) is defined by the equation

g(D)~2 iz!5E e2v2/2dv

A2p
~ iz2v2X2gN,p

(D) ~2 iz!!21 ~6.29!

and the conditionRg(z)Rz.0. The last equation determines the Stieltjes transform of the
formed Wigner law~see Ref. 16!. The semicircle distribution is ‘‘deformed’’ by the normal on
and this makes the support of the corresponding IDS to be infinite. The moments of this def
Wigner law are determined by relations~5.12!.

Regarding the matrix of the Laplace operator~2.3!, it is easy to explain the result~6.29!. The
diagonal termB of ~2.3! is given by the sum of approximatelyp independent random variablesa
and this sum is normalized byAp. So, if the mathematical expectation ofa equals to zero, the
order of magnitude of the diagonal term of~2.3! remains finite asp→` and this equalizes it with
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the matrix A(N,p). Since the elements of these random matricesA and B become statistically
independent in the limitp→`, the limiting IDS results in the semicircle law given byA deformed
by the normal distribution provided byB.
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The determination of all syzygies for the dependent
polynomial invariants of the Riemann tensor.
I. Pure Ricci and pure Weyl invariants

A. E. K. Lim and J. Carminati
Mathematics and Computational Theory Group, School of Information Technology,
Deakin University, Waurn Ponds, Victoria 3217, Australia

~Received 8 September 2003; accepted 14 December 2003!

In this paper, we shall consider all pure Ricci and pure Weyl scalar invariants of
any degree, in a four-dimensional Lorentzian space. We present a general graph-
theoretic based reduction algorithm which decomposes, using syzygies, any pure
invariant in terms of the independent base invariants$r 1 ,r 2 ,r 3% or $w1 ,w2% @E.
Zakhary and J. Carminati, J. Math. Phys.42, 1474 ~2001!#. © 2004 American
Institute of Physics.@DOI: 10.1063/1.1646431#

I. INTRODUCTION

In recent years, there has been a considerable resurgence of interest into the classic pro
determining a complete1 set of polynomial invariants of the Riemann tensor in a four-dimensio
Lorentzian space.2–19Apart from being important in the classification of the Riemann tensor
in general the equivalence problem, the invariants also play a crucial role in revealing inter
geometrical properties of space–time.

Recall that an invariant of a set of tensors inn dimensions is classically defined to be
polynomial function of the components of those tensors that is invariant under some gro
transformations@in our case, the Lorentz Group or SO~1,3!# of the tensors. Acomplete set, I
5$I 1 ,I 2 , . . . ,I n%, of invariants is one having the property that any polynomial invariant can
expressed as apolynomial in I 1 ,I 2 , . . . ,I n , and no invariant in the set can be so expressed
terms of the remainingI i . Note that an algebraically independentset of invariants,
$I 1 ,I 2 , . . . ,I n%, is one for which an algebraic function,f , such thatf (I 1 ,I 2 , . . . ,I n)50 implies
that f [0. The main theorems of invariant theory are the following.6,20

First fundamental theorem: Any polynomial invariant of a set of tensors can be expresse
a linear combination of complete contractions of products of those tensors, together wit
metric or e j 1 . . . j n

.
Second fundamental theorem:Any identity between the invariants of a set of tensors in

dimensions can be obtained as a consequence of the fact that skew-symmetrizing ove11
indices will annihilate any tensor.

Recently, Sneddon7 has determined a complete set of invariants,K, using matrix theory. The
setK consists of 38 real invariants of maximum degree 12. Hence, due to their high degre
complexity, their usefulness would tend to be rather limited. To arrive at a more ‘‘manage
set, the concept of algebraic independence was introduced and this reduced the number o
ants to 18 with maximum degree 6.11–13 However, despite these contributions to the clas
problem, the explicit relationships between dependent and independent invariants via syz21

are still not completely understood. Indeed apart from a few special ‘‘exact’’ identities, the
that has been achieved so far is a numerical procedure leading to approximate relations.6

In this paper we intend to address this problem for the pure Weyl and pure Ricci invar
We denote the sets of pure Weyl and pure Ricci invariants asW and R, respectively. In the
SL~2,C! representation, these polynomial invariants can be equivalently defined as complet
tractions of arbitrary products of eitherCABCD or FABȦḂ , but not both. Initially, we consider the
sets of pure Weyl and Ricci invariants,Ŵ and R̂, where there is an even number of inde
16730022-2488/2004/45(4)/1673/26/$22.00 © 2004 American Institute of Physics
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contractions between any pair of spinors. We derive the general expression for the sy
relating any invariant withinR̂ or Ŵ to the invariants$r 1 ,r 2 ,r 3% or $w1 ,w2%,

11 respectively.
Furthermore, we introduce a graph-theoretical approach to establish that any pure invariant
Ŵ andR̂ is expressible as a polynomial syzygy of the invariants within these sets. This, in
answers the question partially alluded to by Bonanos.3,22We shall then present a general reducti
algorithm which decomposes using syzygies, any pure invariant in terms of$r 1 ,r 2 ,r 3% and
$w1 ,w2%.

II. GRAPHICAL REPRESENTATION OF THE INVARIANTS

We introduce a graphical notation, where any pure invariant may be represented as a d
multigraph. We shall call the ‘‘lines’’ in a directed grapharcs, and their undirected counterpar
edges.

Definition 1: We associate a unique directed multigraph GN with each pure Weyl invariant N.
The directed multigraph GN consists of a vertex set V5$v1 ,v2 , . . . ,vn%, where each element of V
is uniquely associated with each Weyl spinor, an arc set E5V3V, and a function m: V3V
→$0,1,2,3,4%. The multiplicity m(v j ,vk) of the arc (v j ,vk)PE is the number of contraction
between lower indices on the spinorv j and upper indices on the spinorvk .

It follows from this definition that theunderlying undirected graphof GN , which is obtained
by deleting all directions from the arcs ofGN , must be a 4-regular multigraph. Reversing t
direction of one arc is equivalent to raising the lower index and dropping the upper index in
of contracted indices, and has the effect of changing the overall sign of the invariant. For c
we shall, where required, use the subscriptGN to denote the multiplicity of the arc (v j ,vk) in the
specific graphGN asmGN

(v j ,vk).
We must first address the matter of conflicting definitions of degree. Each vertex i

underlying undirected graph ofGN is adjacent to four edges. In graph theoretic terms, the de
of each vertex in this underlying graph is therefore four. However, the degree of the polyn
invariantN is equivalent to the order~number of vertices! of its associated graph,GN . We will use
the phrase polynomial degree when referring to degree in the latter context.

We describeN as being connected if and only ifGN is a connected graph, otherwise we s
N is disconnected. IfGN is disconnected, its components~connected subgraphs! would correspond
to the connected factors of the disconnected invariant,N.

For the pure Weyl invariant,N, we define then3n matrix,A(GN) to be the adjacency matrix
of GN , where its vertex setV(GN) possessesn vertices corresponding to then Weyl spinors
contracted to formN. Each elementajk of A(GN),

A~GN!5@ajk#,

ajk5m~v j ,vk!, j ,k51,2,. . . ,n ~1!

is equivalent to the multiplicity of the arc from vertexv j to vertexvk . The sum of the entries in
row j corresponds to the outdegree ofv j , whereas the sum of the entries in columnk corresponds
to the indegree ofvk . Loops, which are arcs leaving and entering the same vertex, would act
correspond to contraction within a single Weyl spinor and the resulting invariant will be id
cally zero. Hence, we can assume that no loops are present in the graphs andaj j 5m(v j ,v j )50
without loss of generality. Since the sum of the outdegree and the indegree at each vertex m
four, the following condition holds:

(
k51

n

~ajk1ak j!54, j 51,2,. . . ,n.

Three examples of graphical representations of fifth-degree~polynomial!, pure Weyl invari-
ants are depicted in Fig. 1.
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Graphs GB1
, GB2

, and GB3
represent the invariantsB15CAB

C
D CABEFCE

GHJ

3CFCJK CD
GH

K , B25CAB
CD CCD

EF CEF
GH CGH

JK CJK
AB , and B35CABCDCABCDCEF

GH

3CGH
IJC IJ

EF , and are associated with the matrices:

A~GB1
!5F 0 2 0 0 1

0 0 0 0 0

0 1 0 0 0

1 1 1 0 1

0 0 2 0 0

G , A~GB2
!5F 0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

2 0 0 0 0

G ,

A~GB3
!5F 0 4 0 0 0

0 0 0 0 0

0 0 0 2 0

0 0 0 0 2

0 0 2 0 0

G .

InvariantsB1 and B2 are connected, whereas invariantB3 is disconnected, and possesses t
connected factors of lower polynomial degree:CABCDCABCD andCEF

GHCGH
IJC IJ

EF .
A directed multigraphG is orientediff m(v j ,vk)50 wheneverm(vk ,v j )Þ0 for j Þk. It will

be convenient for us to work with the oriented directed multigraphGN8 , which is formed by
reversing the directions of edges ofGN as necessary to satisfy the above condition.A(GN8) can be
formed fromA(GN) as follows:

A~GN8!5@ajk8 #, j ,k51,2,. . . ,n,

where

ajk8 5H ajk1ak j , j ,k,

0, j >k.
~2!

The invariantN is equivalent to its oriented formN8 up to a sign; the exact relationship bein
given by

N85~21!sN, ~3!

where

s5(
j .k

ajk ,

s being the number of arcs that have been reversed.

FIG. 1. Graphical representations of three pure Weyl invariants.
                                                                                                                



at of

t

-

en

ctions
ces. The

:

de for
ariants

nt

any

plex

1676 J. Math. Phys., Vol. 45, No. 4, April 2004 A. E. K. Lim and J. Carminati

                    
The graphical representation of the Ricci invariants is defined in a similar fashion to th
the Weyl invariants.

Definition 2: We associate a unique directed multigraph GN , with each pure Ricci invariant
N. The directed multigraph GN consists of a vertex set V5$v1 ,v2 , . . . ,vn%, where each elemen
of V is uniquely associated with each Ricci spinor, an arc set E5V3V, and two functions:
mS:V3V→$0,1,2%, and mD:V3V→$0,1,2%. Each arc(v j ,vk)PE is associated with two mul
tiplicities: the number of contractions between lower undotted indices on the spinorv j and upper
undotted indices on the spinorvk is mS(v j ,vk), whereas the number of contractions betwe
lower dotted indices on the spinorv j and upper dotted indices on the spinorvk is mD(v j ,vk).

The graphGN possesses two distinct types of arcs. Solid arcs correspond to contra
between undotted indices and dashed arcs correspond to contractions between dotted indi
multiplicities of the solid and dashed arcs (v j ,vk) are mS(v j ,vk) and mD(v j ,vk), respectively.
We associate with each type of arc anarc characteristic, Ã which is 1 for a solid arc andi for a
dashed arc. The total multiplicity betweenv j andvk , m(v j ,vk) is therefore defined as follows

m~v j ,vk!5mS~v j ,vk!1 imD~v j ,vk!. ~4!

An analogous distinction between irreducible and reducible invariants can also be ma
these invariants. Three examples of graphical representations of fifth-degree, pure Ricci inv
are depicted in Fig. 2. GraphsGC1

, GC2
, and GC3

represent the invariantsC1

5FABȦḂ FA
C

ȦĊ FC
DḊ

Ė FD
EĊ

ḊFBEḂ
Ė , C25FA

B
Ȧ

Ḃ FB
C

Ḃ
Ċ FC

D
Ċ

Ḋ FD
E

Ḋ
Ė FE

A
Ė

Ȧ , and C3

5FABȦḂ FABȦḂ FE
F

Ė
Ḟ FF

G
Ḟ

Ġ FG
E

Ġ
Ė . InvariantsC1 and C2 are connected, whereas invaria

C3 is disconnected, and possesses two connected factors of lower degree:FABȦḂFABȦḂ and

FE
F

Ė
Ḟ FF

G
Ḟ

Ġ FG
E

Ġ
Ė . As in the case for the pure Weyl invariants, reversing the direction of

one arc has the effect of changing the overall sign of the invariant.
For the pure Ricci invariants, applying the definition ofm(v j ,vk) in Eq. ~4! to the adjacency

matrix definition in Eq.~1! introduces a generalized adjacency matrix consisting of com
entriesajk .

The invariantsC1 , C2 , andC3 in Fig 2. are thus associated with the matrices:

A~GC1
!5F 0 11 i 0 0 11 i

0 0 1 0 0

0 0 0 11 i 0

0 i 0 0 1

0 0 i 0 0

G ,

A~GC2
!5F 0 11 i 0 0 0

0 0 11 i 0 0

0 0 0 11 i 0

0 0 0 0 11 i

11 i 0 0 0 0

G ,

FIG. 2. Graphical representations of three pure Ricci invariants.
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A~GC3
!5F 0 212i 0 0 0

0 0 0 0 0

0 0 0 11 i 0

0 0 0 0 11 i

0 0 11 i 0 0

G .

The sum of the real parts of the entries in rowj corresponds to the solid-arc outdegree ofv j ,
whereas the sum of the real parts of the entries in columnk corresponds to the solid-arc indegre
of vk . An analogous condition relating the imaginary parts of the matrix entries and the d
arcs holds. Also, loops are assumed not to be present in these graphs, and consequentlyaj j 50.
Since the sum of the outdegree and the indegree at each vertex must be two for both types
the following condition holds:

(
k51

n

~ajk1ak j!5212i , j 51,2,. . . ,n.

Equation~4! allows us to directly extend the definition of orientedness to the graphs as
ated with pure Ricci invariants:GN is oriented iff m(v j ,vk)50 wheneverm(vk ,v j )Þ0 for j
Þk. Given a pure Ricci invariantN, its oriented formN8 satisfies the conditions in Eqs.~2! and
~3!, where the numbers of arcs reversed to formN8 from N is given by

s5(
j .k

~xjk1yjk!,

whereajk5xjk1 iy jk .
When dealing with the pure Ricci invariants, it will be useful to consider the graph

representation of the conjugate of an invariant. Given some pure Ricci invariantN, the graphGN̄

associated with its conjugateN̄ is obtained fromGN simply by replacing all solid arcs with dashe
arcs, and all dashed arcs with solid arcs. SinceFABȦḂ is Hermitian, all pure Ricci invariants ar
real quantities.

For example, the graphGH associated with the pure Ricci invariantH is given in Fig. 3. The
aforementioned interchange of solid and dashed arcs will provide the graph,GH̄ associated with
the conjugate ofH, which is equal toH itself.

III. THE PURE WEYL INVARIANTS

A. Properties of the set Ŵ
The setŴ,W is defined to be the set of all pure Weyl invariants such that all contract

between Weyl spinors occur pairwise, and the contractions belonging to each pair have th
direction, i.e., are both from lower indices to upper indices or vice versa. Thus, a pure
invariant,N, is a member of the setŴ iff every arc in GN is of even multiplicity, i.e.,A(GN)
contains no odd integer elements. In Fig. 1, the invariant corresponding toB1 does not belong to
Ŵ, whereas the invariants corresponding toB2 andB3 are members ofŴ.

FIG. 3. The graphs corresponding to a pure Ricci invariant and its conjugate.
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Consider the setŴ c,Ŵ, which consists of the connected invariants withinŴ.
Lemma 1: All elements ofŴ are either elements ofŴ c, or are expressible as products o

elements ofŴ c.
Proof: Obvious. j

Lemma 2: For every integer n>2, there exists a unique element ofŴ c, with polynomial

degree n. We denote this element asŴ c(n).
Proof: The cases where the polynomial degree is 2 or 3 are trivial. Consider aconnected

directed multigraphG possessingn.3 vertices and a 4-regular underlying graph. We require
every arc be of even multiplicity, and arcs of multiplicity four, which would result in a disc
nected graph, are not permitted. Therefore,G possessesn distinct arcs, and each arc must be
multiplicity two. Since graphs possessing loops are disregarded, it also follows that each ve
G is incident with two distinct arcs. By appealing to elementary graph theory, which states
graph is an-cycle iff it is a connected 2-regular graph possessingn vertices, we conclude thatG
is a n-cycle with each edge replaced by an arc of multiplicity two. Given any two such dire
multigraphs, we can transform one into the other by reorienting its arcs; i.e., their asso
invariants are identical up to a sign. Given that all arcs inG are of multiplicity two, this trans-
formation will leave the sign of its associated invariant unchanged. Hence for eachn, there must
be a unique invariant belonging toŴ c. j

We shall now construct the general formula relating any invariant inŴ to the invariantsw1

and w2 . We begin by considering the members ofŴ c in the standard canonical frame, whe
C15C350. We construct the spinornVAB

CD via consecutive pairwise contractions ofn Weyl
spinors and collect its dyad expansion as follows:

It is straightforward to show that the coefficientsnP0 , nP2s , nP2a , andnP4 obey the follow-
ing recursion relations:

nP05n21P0C21n21P2sC0 ,

nP2s5
n21P2sC21n21P4C0 ,

~5!nP2a522~n21P2aC2!,

nP45n21P4C21n21P2sC4 ,

where

1P05C0 , 1P2s5
1P2a5C2 , 1P45C4 .

From these recursion relations, we derive the following expressions for the coefficients:

nP2s5 (
k50

bn/2c S n
2kD ~C0C4!k C2

n22k ,

nP2a5~22!n21 C2
n ,

nP05 (
k50

b~n21!/2c S n
2k11DC0~C0C4!k C2

n22k21,
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nP45 (
k50

b~n21!/2c S n
2k11DC4~C0C4!k C2

n22k21.

SinceŴ c(n) is the trace ofnVAB
CD , it follows that the formula forŴ c(n) in the standard

canonical frame, in terms of the Weyl curvature components, is

Ŵ c~n!5nVAB
AB52~nP2s2

nP2a!5~22C2!n12(
k50

bn/2c S n
2kD ~C0C4!k C2

n22k .

The following general syzygy relation can be derived from Eq.~5!:

Ŵ c~n!5w̃1Ŵ c~n22!1w̃2Ŵ c~n23!, n.3, Ŵ c~1!50, ~6!

where

w̃15
Ŵ c~2!

2
5

1

2
CABCDCABCD53w1

and

w̃25
Ŵ c~3!

3
5

1

3
CAB

CDCCD
EFCEF

AB52w2 .

All invariants belonging toŴ c in an arbitrary frame can therefore be expressed as a pol
mial function of the Weyl invariantsw1 andw2 ,

Ŵ c~n!5n (
2p13q5n

~p1q21!!

p!q!
w̃1

pw̃2
q .

Hence, as a consequence of Lemmas 1 and 2 and this relation forŴ c(n), we can express any
invariant withinŴ as a polynomial function ofw1 andw2 .

B. Invariants outside Ŵ

The pure Weyl invariants outsideŴ are associated with graphs that possess arcs of
multiplicity. If we can express these invariants as polynomials of invariants belonging toŴ, we
will have found the syzygies relating these invariants tow1 and w2 . As a consequence of th
second fundamental theorem, any polynomial syzygy relating the invariants outsideŴ to the
invariants insideŴ must be a consequence of the following identity:

3«A[B«CD]5«AB«CD1«AC«DB1«AD«BC[0,

which may be rewritten as

«AB«CD5dA
CdB

D2dA
DdB

C . ~7!

Contracting the identity in Eq.~7! with CA
FGHCBJKLCCSTUCD

XYZ leads to the following
identity which transforms a pair of contractions spanning four distinct Weyl spinors:

CCSTUC
C

FGHCD
XYZCDJKL5CCSTUC

D
FGHCD

XYZCCJKL1CCSTUCBFGHCCXYZCBJKL.
~8!
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In graphical notation, this identity is represented by transforming a pair of arcs spanning
distinct vertices~Fig. 4!. The contracted spinor associated with the graph on the left-hand
~LHS! of the equation is the sum of the two contracted spinors associated with the two grap
the right-hand side~RHS! of the equation, i.e.,T5T11T2 . The vertices labeledq, r , s, and t
correspond to the first, second, third, and fourth spinor in each term in Eq.~8!, respectively.

In the graphical representation, we shall use the symbol% to denote addition of the associate
spinors of two graphs. As expected, these edge transformations preserve the degree of eac
Contracting Eq.~7! ~or its conjugate! with appropriate products of four Ricci spinors will provid
the Ricci identities analogous to the Weyl identity in Eq.~8! where either a pair of solid arcs, o
a pair of dashed arcs, are transformed. From now on, we shall simply refer to the graphical
of these identities arising from Eq.~7! ~or its conjugate! as ‘‘the identity.’’ The arc transformations
in the graphical Ricci identities directly resemble those of the Weyl identity depicted in Fi
Note that if the pair of contractions transformed do not span four distinct spinors, Eq.~7! results
in a trivial identity.

We can establish the following properties ofGN8 .
Lemma 3: The total number of arcs of odd multiplicity incident with each vertex of GN8 is

even (or zero).
Proof: This immediately follows from the fact thatGN8 is oriented and every vertex in th

underlying undirected graph ofGN8 is of degree four. j

Lemma 4: For any pure Weyl invariant N¹Ŵ, the number of distinct arcs of odd multiplicit
in GN8 is even, and greater than or equal to four.

Proof: By elementary graph theory, ifGN8 possessesn vertices, the sum of all arc multiplici-
ties in GN8 will be 2n. Since the sum of all even arc multiplicities is even, it follows that th
must be an even number of odd multiplicities. Suppose we had someGN8 possessing only two arc
of odd multiplicity. By Lemma 3, it follows that both these arcs must connect one pair of ver
v j and vk , where bothm(v j ,vk) and m(vk ,v j ) are odd. This contradicts the fact thatGN8 is
oriented. Thus, ifN¹Ŵ, the minimum number of arcs of odd multiplicity inGN8 is four. j

We now intend to focus on the arcs of odd multiplicity inGN8 , and apply the arc transfor
mations in the identity to pair up these arcs. Consider the subgraph,SN8 , of the oriented directed
graph,GN8 wheremSN8

(v j ,vk)51 iff mGN8
(v j ,vk) is odd, andmSN8

(v j ,vk)50 otherwise. Recall
that the union of two graphs is defined such thatV(G1øG2)5V(G1)øV(G2) andE(G1øG2)
5E(G1)øE(G2). Thus,GN8 may be considered as the union of two edge-disjoint subgra
SN8 , andGN8

S , which contains the arcs of even multiplicity inGN8 ,

GN85SN8øGN8
S , ~9!

and where the adjacency matrices of these three graphs are related as follows:

A~GN8!5A~SN8!1A~GN8
S

!. ~10!

The elements ofA(SN8) and A(GN8
S ) may be obtained directly from the elementsajk8 of

A(GN8), in the following manner:

FIG. 4. The identity in Eq.~8! expressed in graphical notation.
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A~SN8!5@ajk8 mod 2#,

A~GN8
S

!5@ajk8 2~ajk8 mod 2!#. ~11!

We can now state our main theorem.
Theorem 1: For any pure Weyl invariant N¹Ŵ, SN8 is expressible, using the identity, as

finite sum of graphs consisting only of arcs of even multiplicity, S̃j ,

SN8[ %
j 51

n

cj S̃j , ~12!

where the coefficients cj are rational numbers.
The graph GN8 may then be expressed as

GN8[ %
j 51

n

cjGXj
,

where

GXj
5GN8

S
øS̃j . ~13!

The invariant N8 then obeys the following identity:

N85(
j 51

n

cjXj , ~14!

where XjPŴ, j 51,2,. . . ,n.
Proof: It immediately follows from Lemmas 3 and 4 thatSN8 possesses an even number

arcs and each of its connected components of its underlying undirected graph is Eulerian.
purpose of proving this theorem, we reorient the arcs ofSN8 to form a digraphSN9 such that each

FIG. 5. Complete decomposition of a 4-circuit into graphs consisting solely of arcs of even multiplicity.
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component ofSN9 has a~directed! Euler circuit. If the number of arcs reoriented iss8, then the
invariant N9 corresponding to the graphGN8

S
øSN9 is equivalent to (21)s8N8; and the original

invariantN is given by (21)s1s8N9. For convenience, we shall use the termk-circuit to mean a
circuit of lengthk.

Case 1: SN9 is connected.
In this caseSN9 possesses a Eulerian circuit of even length; the smallest possible c

consists of four edges. Consider the simplest case whereSN9 is a 4-circuit. As Fig. 5 shows
application of the identity relates this circuit to two new graphs: one of which possesses
edges and the other being a new 4-circuit.23 This new circuit can be decomposed in a simi
fashion, and ultimately we return to the original 4-circuit, with opposite sign. We can then
for an expression relatingSN9 to graphs where all vertices are paired, and by taking the unio
all terms in this expression withGN8

S , it can be used to construct the polynomial syzygy relat

N to invariants withinŴ according to Eqs.~13! and ~14!.
Next, we establish that whenSN9 possesses an Euler circuit of lengthk>6, wherek is even,

it is expressible entirely in terms of (k22)-circuits modulo the identity. We begin by denoting t
Euler circuit of SN9 as K0 , and sequentially label each vertex as shown in Fig. 6. The cu
arrow inK0 corresponds to a directed path of lengthk23. Applying the arc transformation of Fig
4 on the arcs~1,2! and (k21,k), depicted in bold, and reorienting the direction of various arcs
changing signs appropriately result in the identity shown in Fig. 6. This expressesK0 in terms of
a (k22)-circuit ~the remaining two edges may be oriented to form an edge of multiplicity tw!,
and a newk-circuit, denotedK1 . It will be convenient to represent thesek-circuits as their vertex
sequences, where we adopt the convention that each sequence begins and ends at th
labeled 1. We omit the final 1 in the sequence, as it is understood to be present. Thus, we re
the circuitK0 as (1,2,3,. . . ,k22,k21,k), andK1 as (1,k,2, . . . ,k23,k22,k21).

We subsequently transform the arcs (1,k) and (k22,k21) in K1 to produce another (k
22)-circuit, andK2 , which is ak-circuit possessing the vertex sequence (1,k21,k, . . .k24,k
23,k22) ~Fig. 7!. Note that the arcs transformed inK1 are distinct from the arcs formed from th
transformation ofK0 in the previous step, i.e., (k,2) and (k21,1). This is necessary to ensure th
we do not derive trivial relationships such as 050. Hence, we shall always choose to transfo
two arcs in thek-circuits such that the first arc connects the first two vertices in the ve
sequences, and the second arc connects the last two vertices in the vertex sequences.

At each step, thek-circuit is expressed as a (k22)-circuit, together with a newk-circuit with
opposite sign. Aftern steps following this procedure, we obtain an expression forK0 which is the

FIG. 6. First stage in the decomposition of ak-circuit.

FIG. 7. Second stage in the decomposition of ak-circuit.
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sum ofn terms associated with (k22)-circuits, and (21)nKn . The vertex sequence ofKn11 can
be obtained by applying the permutation

S 1 2 3 4 ¯ k23 k22 k21 k

1 k 2 3 ¯ k24 k23 k22 k21D ~15!

on the vertex sequence ofKn . This permutation is of orderk21, thereforeKk21[K0 , and since
k21 is odd, we will return to the original circuit with opposite sign afterk21 steps. We are thus
able to solve forK0 to obtain an equivalent expression entirely in terms of (k22)-circuits after
k21 steps.

Repeating this procedure with each of these (k22)-circuits will then result in an expressio
for K0 entirely in terms of (k24)-circuits. Further repetition of this process will successiv
reduce the lengths of the circuits by two, and we eventually expressK0 in terms of 4-circuits. By
Fig. 5, we can then expressK0 as a finite sum of graphs which only possess arcs of e
multiplicity.

In the above discussion all vertices in the circuit have been labeled as distinct. This
correspond to the case where all vertices in the underlying graph ofSN9 are of degree two. In the
event that vertices of degree four are present in the underlying graph ofSN9 , these vertices will
occur twice in the vertex sequence of a Eulerian circuit ofSN9 . For example, ifSN9 is the graph
in Fig. 8, then it corresponds to the vertex sequence (a,b,c,a,d,e).

This Eulerian circuit is still of even length, and despite the fact that vertexa appears twice in
the vertex sequence, we may decompose it in the manner described above to ultimately pai
arcs inSN9 . Owing to the vertex repetition in the vertex sequence, graphs possessing loops w
formed during this decomposition. In the vertex sequence representation, these would corr
to sequences with identical vertices next to each other. Whenever such graphs are forme
ultimately correspond to expressions possessing spinors of the formCA

AXY or CAB
AB . These

expressions are identically zero and thus at any stage of the decomposition, graphs pos
loops may be removed from the sum in Eq.~12! as they are formed.

Case 2: SN9 is disconnected.
Suppose thatSN9 consists of two disjoint circuits of lengthm andn, respectively. By Lemmas

3 and 4,m1n must be even. By transforming a pair of arcs such that one arc comes from
circuit, SN9 may be expressed in terms of graphs consisting of single circuits of lengthm1n,
reducing the problem to Case 1~Fig. 9!. The extension of this result to three or more disjo
cycles is obvious.

We have established that using the arc transformation of Fig. 4, the subgraphSN9 may be
expressed equivalently as the sum of graphs consisting solely of arcs of multiplicity two, an

FIG. 8. Expression of an unpaired subgraph possessing a vertex of degree four as an equivalent vertex sequ

FIG. 9. Expression of two disjoint unpaired subgraphs of lengthm andn in terms of single circuits of lengthm1n.
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get the corresponding decomposition ofSN8 @Eq. ~12!# by multiplying both sides of this equatio
by (21)s8. Taking the union of both sides of Eq.~12! with GN8

S will therefore provide the
decomposition ofGN8 in terms of graphs consisting solely of arcs of even multiplicity@Eq. ~13!#.
The associated invariant identity then expressesN8 as a polynomial of invariants withinŴ @Eq.
~14!#. j

In the preceding section it was established that every invariant withinŴ is expressible as a
polynomial function of the base invariantsw1 andw2 . Hence it follows from Theorem 1 that an
pure Weyl invariant is expressible as a polynomial function of the base invariants w1 and w2 .

IV. THE PURE RICCI INVARIANTS

A. Properties of the set R̂

We define the setR̂,R to be the set of all pure Ricci invariants such that consecu
contractions between spinors also occur pairwise, where each pair of contractions consists
contraction between a pair of undotted indices, and one contraction between a pair of
indices, such that both of these contractions are in the same direction. For convenience, w
call such a pair of contractions acouple, and any arc not belonging to a couple is said to
uncoupled. IfNPR̂, then all of the elements of its associated adjacency matrix,A(GN) satisfy the
condition xjk5yjk , and every element ofA(GN) is an integral multiple of 11 i . In Fig. 2, the
invariant corresponding toC1 does not belong toR̂, whereas the invariants corresponding toC2

andC3 are members ofR̂. In terms of the graphical representation adopted here, ifNPR̂, then
the arcs ofGN are paired such that;(v j ,vk)PE(GN), mS(v j ,vk)5mD(v j ,vk).

Let R̂c, R̂c,R̂, denote the set of all connected invariants withinR̂. We can establish two
properties of this set.

Lemma 5: All elements ofR̂ are either elements ofR̂c, or are expressible as products o

elements ofR̂c.
Proof: Obvious. j

Lemma 6: For every integer n>2, there exists a unique element ofR̂c with polynomial degree

n. We denote this element asR̂c(n).
Proof: This is obviously true forn52,3. Consider aconnecteddirected multigraphG pos-

sessingn.3 vertices. We require that every vertex in the underlying graph ofG be adjacent to
two solid edges and two dashed edges, and that arcs are paired in couples, resulting i
multiplicities of solid and dashed arcs between any given pair of vertices (v j ,vk). The presence of
two such couples between a pair of vertices would result in a disconnected graph, hence
at most one couple between every pair of vertices. Therefore,G possessesn distinct couples.
Since graphs possessing loops are disregarded, it also follows that each vertex inG is adjacent to
two distinct couples. By appealing to elementary graph theory, which states that a grap
n-cycle iff it is a connected 2-regular graph possessingn vertices, we conclude thatG is an-cycle
with each edge replaced by a couple. Given any two such directed multigraphs, we can tra
one into the other by reversing the directions of couples. This transformation reverses the di
of an even number of arcs and will leave the sign of its associated invariant unchanged.
there must be a unique invariant belonging toR̂c for eachn. j

We begin the construction of the general formula relating the invariants inR̂ to the invariants
r 1 , r 2 , and r 3 by considering the members ofR̂c in the standard canonical frame, whereF10

5F015F215F1250. The spinornxA
Y

Ȧ
Ẏ , which is constructedvia consecutive couple-by-coupl

contractions ofn Ricci spinors (n>2), may be written as
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It can be shown that the coefficientsnQ00, nQ11s , nQ11a , nQ20, nQ02, and nQ22 obey the
following recursion relations:

nQ005
n21Q00F111

n21Q11sF00,

nQ11s5
n21Q11sF111

n21Q00F22,

nQ11a52 n21Q11aF112
n21Q02F20,

~16!
nQ2052 n21Q20F112

n21Q11aF20,

nQ0252 n21Q02F112
n21Q11aF02,

nQ225
n21Q22F111

n21Q11sF22,

where

1Q005F00, 1Q11s5
1Q11a5F11, 1Q205F20, 1Q025F02, 1Q225F22.

The following expressions for the coefficients can be derived using these recursion rela

nQ005 (
j 50

b~n21!/2c S n
2 j 11DF00~F00F22!

j F11
n22 j 21,

nQ11s5(
j 50

bn/2c S n
2 j D ~F00F22!

j F11
n22 j ,

nQ11a5~21!n11(
j 50

bn/2c S n
2 j D ~F20F02!

j F11
n22 j ,

nQ205~21!n11 (
j 50

b~n21!/2c S n
2 j 11DF20~F20F02!

j F11
n22 j 21,

nQ025~21!n11 (
j 50

b~n21!/2c S n
2 j 11DF02~F20F02!

j F11
n22 j 21,

nQ225 (
j 50

b~n21!/2c S n
2 j 11DF22~F00F22!

j F11
n22 j 21.

The nth degree invariantR̂c(n) is the trace ofnxA
Y

Ȧ
Ẏ. We can therefore express the inva

ants inR̂c, in the standard canonical frame, in terms of the Ricci curvature components,
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nxA
A

Ȧ
Ȧ52~nQ11s2

nQ11a!52(
j 50

bn/2c S n
2 j D ~~F00F22!

j1~21!n~F20F02!
j ! F11

n22 j .

The following general syzygy relation can be derived from Eqs.~16!:

R̂c~n!5 r̃ 1R̂c~n22!1 r̃ 2R̂c~n23!1 r̃ 3R̂c~n24!, n.4, R̂c~1!50, ~17!

where

r̃ 15
R̂c~2!

2
5

1

2
FABȦḂ FABȦḂ5

3

2
r 1 ,

r̃ 25
R̂c~3!

3
5

1

3
FABȦḂ FBCḂĊ FA

C
Ȧ

Ȧ5r 2 ,

r̃ 35
2R̂c~4!2@R̂c~2!#2

8
5

1

4
@FABȦḂ FBCḂĊ FCDĊḊ FDAḊȦ22 r̃ 1

2#5
3

16
~4r 323r 1

2!.

All invariants belonging toR̂c in an arbitrary frame can therefore be expressed as a pol
mial function of the pure Ricci invariantsr 1 , r 2 , andr 3 , as follows:

R̂c~n!5n (
2p13q14r 5n

~p1q1r 21!!

p!q! r !
r̃ 1

pr̃ 2
qr̃ 3

r .

Thus, as a consequence of Lemmas 5 and 6 and this relation forR̂c(n), we can express any
invariant withinR̂ as a polynomial function ofr 1 , r 2 , andr 3 .

B. Invariants outside R̂
If the pure Ricci invariantN¹R̂, thenGN possesses uncoupled arcs. In order to relateN to

the invariants withinR̂, we need to apply the identity toGN to form couples from the uncouple
arcs. In this case, the identity is applied to transform either two solid arcs spanning four d
vertices, or two dashed arcs spanning four distinct vertices.

The graphGN8 satisfies the following properties.
Lemma 7: For each vertex of GN8 , the total number of uncoupled arcs incident with it is ev

(or zero), and these uncoupled arcs consist of an equal number of solid and dashed arcs.
Proof: Each vertex ofGN8 is incident with two solid arcs and two dashed arcs. Remov

couples incident with a vertex will leave behind an equal number of uncoupled solid arc
uncoupled dashed arcs incident with this vertex. j

Lemma 8: For any pure Ricci invariant N¹R̂, the total number of distinct uncoupled arcs
GN8 is even, and greater than or equal to four. These uncoupled arcs consist of an equal n
of solid and dashed arcs.

Proof: If GN8 possessesn vertices, the sum of all solid arc multiplicities inGN8 will be n, and
the sum of all dashed arc multiplicities inGN8 will be n. Since each couple consists of one so
and one dashed arc, it follows that there must be an equal number of solid and dashed un
arcs inGN8 . Suppose we had someGN8 possessing only two uncoupled arcs. By Lemma 7
follows that both these arcs must connect one pair of verticesv j and vk , where mS(v j ,vk)
5mD(vk ,v j )51, or mD(v j ,vk)5mS(vk ,v j )51. This contradicts the fact thatGN8 is oriented.
Thus, if N¹R̂, the minimum number of uncoupled arcs inGN8 is four. j

We construct the unpaired subgraphSN8 of GN8 by removing couples fromGN8 . We define
the relative arc abundance between a pair of verticesv j ,vk as the functiond: (v j ,vk)→$22,
21,0,1,2% where d(v j ,vk)5mGN8

S (v j ,vk)2mGN8

D (v j ,vk). If d(v j ,vk).0 then mSN8

S (v j ,vk)
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5d(vj ,vk) and mSN8

D (v j ,vk)50. However, if d(v j ,vk),0 then mSN8

D (v j ,vk)52d(v j ,vk) and

mSN8

S (v j ,vk)50. Finally, if d(v j ,vk)50 thenmSN8

S (v j ,vk)5mSN8

D (v j ,vk)50.

As an immediate consequence of Lemma 8, the relative arc abundance function satis
following global property:

(
V(GN8)

d~v j ,vk!50.

As in the case of the pure Weyl invariants,GN8 may be considered to be the union of tw
edge-disjoint subgraphs@Eq. ~9!#: SN8 , andGN8

S , whereGN8
S contains all of the couples present

GN8 . The adjacency matrices of these three graphs also satisfy the condition in Eq.~10!, and the
elements ofA(SN8) and A(GN8

S ) are related to the elements ofA(GN8), ajk8 in the following
manner:

A~SN8!5@h jk#,

A~GN8
S

!5@ajk8 2h jk#,

where

h jk5H d~v j ,vk!, d~v j ,vk!>0,

2 id~v j ,vk!, d~v j ,vk!,0.
~18!

Every nonzero entry inA(SN8) is either real or imaginary. We will make use of the followin
property ofSN8 .

Lemma 9: The arcs in SN8 may be reoriented to form SN9 , such that each component of SN9
is a single directed Euler circuit consisting of alternating solid and dashed arcs.

Proof: SupposeSN8 is connected. Lemma 8 requires thatSN8 possesses an even number
arcs. It also follows from Lemma 7 that each vertex of its underlying undirected graphUS is
incident with an equal number of solid and dashed edges. We begin by constructing an alte
path in the following manner. We start at vertexva in US and take any edge incident withva . If
we approach a vertexvb via a solid edge, the number of unused dashed edges incident withvb will
exceed the number of unused solid edges incident withvb by one. Similarly, if we approachvb via
a dashed edge, the number of unused solid edges incident withvb will exceed the number of
unused dashed edges incident withvb by one. Hence at any vertex we come to, we can alw
leave by an unused edge of different type. SinceUS is finite, we will eventually return tova ,
approaching it via an edge of different type from the edge we used to leave it in the first
Hence it follows that any vertex inUS lies on a circuit consisting of alternating solid and dash
edges.

Let C be the longest such circuit inUS . If C contains every edge inUS then it is a Euler
circuit and the lemma is true. Otherwise, ifC does not contain every edge inUS , we subtract the
edges ofC from US to give US2C . Each vertex inUS2C must be incident with an equal numbe
of solid and dashed edges. SinceUS is connected,C andUS2C must have a vertexV in common.
It follows from the previous paragraph thatV must lie on a circuitC1 consisting of alternating
solid and dashed edges in the component ofUS2C containing V. Given the circuit C
( . . . ve ,V,v f , . . . ) and thecircuit C1 ( . . . vs ,V,v t , . . . ), where, without loss of generality, w
assume the edges (ve ,V) and (vs ,V) are solid and the edges (V,v f) and (V,v t) are dashed, we
can construct an alternating circuitC2 ( . . . ve ,V,v t , . . .vs ,V,v f , . . . ). Thus,C2 is longer than
C, which contradicts the assumption thatC is the longest circuit inUS . Hence, the longest suc
C must contain every edge inUS and be a Euler circuit. We can subsequently reorient the arc
SN8 to form a directed alternating Euler circuit.

If SN8 is not connected, we first remove any isolated vertices present inSN8 , as these are
components ofSN8 that do not possess any arcs. We can then apply the above argument ind
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ally to each of the remaining connected components to show that each component may b
ented as required. j

We can now state the main result of this section.
Theorem 2: For any pure Ricci invariant N¹R̂, the sum SN8% SN8 is expressible, using the

identity, as a finite sum of graphs consisting only of couples, S̃j ,

SN8% SN8[ %

j 51

n

cj S̃j , ~19!

whereSN8 is the graph SN8 with solid arcs replaced by dashed arcs and dashed arcs replace
solid arcs, and the coefficients cj are rational numbers.

The sum GN8% GN8 may then be expressed as

GN8% GN8[ %

j 51

n

cjGXj
,

where

GXj
5GN8

S
øS̃j , ~20!

and it follows that the invariant N8 is given by

2N85(
j 51

n

cjXj , ~21!

where XjPR̂, j 51,2,. . . ,n
Proof: We first orientSN8 to obtainSN9 , and lets8 be the total number of arcs reoriente

Then, the invariantN9 corresponding to the graphGN8
S

øSN9 is equal to (21)s8N8. Therefore,

N5(21)s1s8N9.
Case 1: SN9 is connected.
By Lemmas 8 and 9,SN9 consists of a single Eulerian circuit which is alternating, i.e.

consists of alternating solid and dashed arcs and has an even number of arcs. The small
circuit possible consists of four arcs.

Consider the simplest case whereSN9 is an alternating 4-circuit. Performing arc transform
tions analogous to those shown in Fig. 4 results in an identity whereby the sum ofSN9 and its
‘‘conjugate,’’ SN9 is expressed in terms of graphs consisting entirely of couples~Fig. 10!.

FIG. 10. Decomposition of an alternating 4-circuit into couples.
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Taking the union of the left-hand side of Eq.~19! with GN8
S gives the sum (GN8

S
øSN9)

% (GN8
S

øSN9). The first term is simplyGN9 the graph associated withN9. The graphGN8
S consists

solely of couples, and is therefore invariant under the interchange of solid and dashed arcs.
GN8

S
øSN9 is the graphGN9 with solid and dashed arcs interchanged, and is hence associated

N9, which is equivalent toN9. Taking the union of the right-hand side withGN8
S results in graphs

consisting solely of coupled arcs. Hence, in this case,N9 can be expressed entirely in terms
invariants belonging toR̂. We emphasize that whileSN9 and its ‘‘conjugate’’~solid–dashed arc
interchange! SN9 are distinct graphs, their respective unions withGN8

S are associated with the sam
pure Ricci invariant owing to the fact that pure Ricci invariants are real.

Next, we extend this to show that whenSN9 is an alternatingk-circuit, wherek is even and
k>6, the sumSN9% SN9 is expressible entirely in terms of alternating (k22)-circuits modulo the
identity. Following what was done in the preceding section, we denoteSN9 asK0 and represent it
as the vertex sequence (1,2,3,. . . ,k22,k21,k). Applying the identity on the solid arcs (1,2) an
(k21,k), depicted in bold, and reorienting the direction of various arcs and changing
appropriately result in an expression forK0 in terms of an alternating (k22)-circuit and a new
alternatingk-circuit, K1 , possessing the vertex sequence (1,k,2, . . . ,k23,k22,k21) ~Fig. 11!.

The subsequent transformation of the dashed arcs (1,k) and (k22,k21) in K1 produces
another alternating (k22)-circuit, andK2 , which is an alternatingk-circuit which possesses th
vertex sequence (1,k21,k, . . .k24,k23,k22) ~Fig. 12!. As before, we always choose to tran
form two arcs in the circuit such that the first arc connects the first two vertices in the v

FIG. 11. First stage of the decomposition of an alternatingk-circuit.

FIG. 12. Second stage of the decomposition of an alternatingk-circuit.
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sequence, and the second arc connects the last two vertices in the vertex sequence. For e
the arcs transformed inK0 5(1,2,3,. . . ,k22,k21,k) were the solid arcs~1,2! and (k21,k). This
leads toK15(1,k,2, . . . ,k23,k22,k21), and the dashed arcs (1,k) and (k22,k21) are chosen
from it for the next transformation. Thus, in the alternating circuitK j , the pair of chosen vertice
will be solid or dashed whenj is even or odd, respectively.

After n applications of this procedure, we obtain an expression forK0 which is the sum ofn
terms associated with (k22)-circuits and (21)nKn . The vertex sequence ofKn11 can be ob-
tained by applying the permutation~15! on the vertex sequence ofKn and interchanging solid arc
with dashed arcs. For example,K05(1,2,3,. . . ,k22,k21,k) and its first arc~1,2! is solid. Ap-
plying permutation~15! on its vertex sequence and interchanging solid and dashed arcs givK1

5(1,k,2, . . . ,k23,k22,k21) with a dashed first arc (1,k). Permutation~15! is of orderk21,
therefore the vertex sequence ofKk21 will be identical to the vertex sequence ofK0 , namely
(1,2,3,. . . ,k22,k21,k). However, sincek21 is odd,Kk21 will possess solid arcs between th
vertices whereK0 possesses dashed arcs and vice versa. ThusKk21[K0 and we are able to
express the sumK01K0 entirely in terms of alternating (k22)-circuits afterk21 steps.

Repeating this procedure with each of these alternating (k22)-circuits leads to the fact tha
the sum of each (k22)-circuit and its conjugate is expressible entirely in terms of alterna
(k24)-circuits. ThusK01K0 is expressible entirely in this form. Further repetition of this proc
will successively reduce the lengths of the circuits by two at each stage, and we eventually e
K01K0 in terms of alternating 4-circuits. By Fig. 10, we can then expressK01K0 as a finite sum
of graphs which only possess coupled arcs.

In the event that vertices of degree four are present in the underlying graph ofK0 , these
vertices will occur twice in the vertex sequence ofK0 . For example, the graphSN9 in Fig. 13
corresponds to the vertex sequence (a,b,c,d,a,c, f ,g). We can still decomposeK0 in the above
manner, noting that whenever graphs with loops are formed by the arc transformations

ultimately correspond to expressions possessing spinors of the formFA
A

Ḃ
Ċ , FB

C
Ȧ

Ȧ or FA
A

Ȧ
Ȧ .

These expressions are identically zero and thus at any stage of the decomposition, graphs
ing loops may be removed from the sum in Eq.~19! as they are formed.

Case 2: SN9 is disconnected.
This reduces to Case 1 in a similar fashion to the pure Weyl invariants.
We have shown that the sumSN9% SN9 may be expressed equivalently as the sum of gra

consisting solely of couples via the application of the identity in Fig. 4. Multiplying both side

this equation by (21)s8 provides corresponding decomposition ofSN8% SN8 @Eq. ~19!#. Taking
the union of both sides of Eq.~19! with GN8

S will therefore provide the decomposition ofGN8
% GN8 in terms of graphs consisting solely of couples@Eq. ~20!#. The associated invariant identity
and the fact thatN85N8, finally provides the expression forN8 as a polynomial of invariants

within R̂ @Eq. ~21!#. j

In the preceding section we established that every invariant withinR̂ is expressible as a
polynomial function of the base invariantsr 1 , r 2 , andr 3 . It therefore follows from this theorem
that any pure Ricci invariant is expressible as a polynomial function of the base invariants r1 , r 2 ,
and r3 .

FIG. 13. Expression of a Ricci unpaired subgraph possessing a vertex of degree four as an equivalent vertex s
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V. COMPUTER IMPLEMENTATION

The proofs of Theorems 1 and 2 are constructive and provide general algorithms fo
decomposition of any pure Weyl or Ricci invariant into a polynomial function of the basis inv
ants $w1 ,w2% and $r 1 ,r 2 ,r 3%. The pure invariantN is provided as input in the form of its
associated oriented matrixA(GN8). It will be clear from the nature of the matrix entries~real or
complex! whether the invariant is a pure Weyl or pure Ricci invariant. The matricesA(SN8) and
A(GN8

S ) are obtained fromA(GN8) using Eqs.~11! or ~18!. A(SN8) is analyzed to determine
whetherSN8 is connected, and if it is not connected, transformations are made to expressSN8 in
terms of connected graphs~Case 2 of Theorems 1 and 2!. These graphs are reoriented to for
directed circuits while keeping track of any necessary sign changes. Each circuit is express
vertex sequence.

We shall provide the decomposition algorithm in terms of vertex sequences becaus
construction, which we use in the proof of the syzygy theorems, assures us that the decomp
process will terminate, and not give a trivial relation. We start by denoting each oriented circ
a list containing a multiplicative factor associated to that particular circuit and a secon
corresponding to the vertex sequence of the circuit. For example, ifSN9 is a single connected
k-circuit, it shall be denoted as@1,@1,2,3,. . . ,k22,k21,k##, where the multiplicative factor is
initially set as 1.

Transformation in the manner depicted by Fig. 6 and suitable arc reorientations will res
this particular circuit being expressed as the sum of two graphs:

@11,@k,1#,@2,3,. . . ,k22,k21## and @21,@1,k,2, . . . ,k23,k22,k21##.

The first graph possesses two subgraphs: a 2-circuit connecting thekth and first vertices in the
original sequence, and a (k22)-circuit connecting the middlek22 vertices in the original se
quence. The 2-circuit@k,1# may be considered to be, after reversing one edge and changing
an edge of multiplicity two betweenk and 1 in the case of the Weyl invariants, and a cou
betweenk and 1 in the case of the Ricci invariants. The second graph is ak-circuit, and the vertex
sequence of thisk-circuit is obtained by applying the permutation~15! on the original vertex
sequence~Fig. 6!.

After k21 successive transformations of the residualk-circuit, the original graph is expresse
as the sum of the negative of the originalk-circuit ~or its ‘‘conjugate’’ in the case of the pure Ricc
invariants! and k21 terms, each containing an arc of multiplicity two~or a couple! and a (k
22)-circuit. We can thus solve for the originalk-circuit, causing the multiplicative factors ass
ciated with the (k22)-circuits to halve. Each (k22)-circuit is passed to the reduction algorith
again and the reduction occurs recursively until the original circuit is expressed entirely in
of 2-circuits. Each 2-circuit@a,b# is transformed into arcs of even multiplicity~or couples! $a,b%
by reorienting one arc in each 2-circuit and changing sign appropriately, i.e,@c,@a,b#, . . . #
5@2c,$a,b%, . . . #. Each graph consisting solely of even multiplicity arcs or couples is su
quently translated back into matrix form and added toGN8

S to obtain each term in the syzygy ofN8
as per Eqs.~13! and ~14!, or ~20! and ~21!.

For example, consider the case whereSN8 is a single Eulerian 6-circuit, originating from
pure Weyl invariant. We representSN8 as @1,@1,2,3,4,5,6##. Transforming the 6-circuit five times
and solving forSN8 gives the following decomposition ofSN8 into 2-circuits and 4-circuits. Figure
14 depicts this stage of the decomposition,

SN85@ 1
2 ,@6,1#,@2,3,4,5##1@2 1

2 ,@5,1#,@6,2,3,4##1@ 1
2 ,@4,1#,@5,6,2,3##

1@2 1
2 ,@3,1#,@4,5,6,2##1@ 1

2 ,@2,1#,@3,4,5,6##. ~22!

Each 4-circuit is expressible via the reduction algorithm as three terms involving s
2-circuits. ThereforeSN8 is equivalent to the following expansion:
                                                                                                                



rc in

verted

a
mpo-
h
nt

.

iants

1692 J. Math. Phys., Vol. 45, No. 4, April 2004 A. E. K. Lim and J. Carminati

                    
SN85@ 1
4 ,@6,1#,@5,2#,@3,4##1@2 1

4 ,@6,1#,@4,2#,@5,3##1@ 1
4 ,@6,1#,@3,2#,@4,5##

1@2 1
4 ,@5,1#,@4,6#,@2,3##1@ 1

4 ,@5,1#,@3,6#,@4,2##1@2 1
4 ,@5,1#,@2,6#,@3,4##

1@ 1
4 ,@4,1#,@3,5#,@6,2##1@2 1

4 ,@4,1#,@2,5#,@3,6##1@ 1
4 ,@4,1#,@6,5#,@2,3##

1@2 1
4 ,@3,1#,@2,4#,@5,6##1@ 1

4 ,@3,1#,@6,4#,@2,5##1@2 1
4 ,@3,1#,@5,4#,@6,2##

1@ 1
4 ,@2,1#,@6,3#,@4,5##1@2 1

4 ,@2,1#,@5,3#,@6,4##1@ 1
4 ,@2,1#,@4,3#,@5,6##. ~23!

Each 2-circuit may then be converted into an arc of multiplicity two by reorienting one a
each circuit as described previously. Therefore,

SN85@2 1
4 ,$6,1%,$5,2%,$3,4%#1@ 1

4 ,$6,1%,$4,2%,$5,3%#1@2 1
4 ,$6,1%,$3,2%,$4,5%#

1@ 1
4 ,$5,1%,$4,6%,$2,3%#1@2 1

4 ,$5,1%,$3,6%,$4,2%#1@ 1
4 ,$5,1%,$2,6%,$3,4%#

1@2 1
4 ,$4,1%,$3,5%,$6,2%#1@ 1

4 ,$4,1%,$2,5%,$3,6%#1@2 1
4 ,$4,1%,$6,5%,$2,3%#

1@ 1
4 ,$3,1%,$2,4%,$5,6%#1@2 1

4 ,$3,1%,$6,4%,$2,5%#1@ 1
4 ,$3,1%,$5,4%,$6,2%#

1@2 1
4 ,$2,1%,$6,3%,$4,5%#1@ 1

4 ,$2,1%,$5,3%,$6,4%#1@2 1
4 ,$2,1%,$4,3%,$5,6%#. ~24!

Taking the union of this expression withGN8
S then gives the expression relatingGN8 to 15

graphs possessing only arcs of even multiplicity. This expression can be immediately con
into the identity relatingN8 to invariants withinŴ, and from there, to the base invariantsw1 and
w2 .

In the event thatSN8 is a single oriented alternating circuit of length six, originating from
pure Ricci invariant, the decomposition occurs in a very similar fashion. Applying the deco
sition as detailed in Theorem 2 expresses the sumSN8% SN8 as the sum of five terms, eac
consisting of a 2-circuit and a 4-circuit. Since bothSN8 andSN8 correspond to the same invaria
N8 after taking their unions withGN8

S ~see the proof of Theorem 2!, we can associateSN8% SN8
with 2N8, resulting in the validity of the application of the identity in Eq.~22! to this case.
Extending this argument yields the result that Eqs.~23! and~24!, also apply in the pure Ricci case
Equation~24! thus leads to the syzygy relatingN8 to the invariants withinR̂, and, from there, to
r 1 , r 2 , andr 3 . Examples of this decomposition process for both pure Weyl and Ricci invar
are given in the Appendix.

FIG. 14. Decomposition of a 6-circuit into 4-circuits and 2-circuits.
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It should be noted that the arc transformation in Fig. 4~or its dashed arc form! also corre-
sponds to well-defined operations on the elements of the matrix representations of these
i.e., the elements of the matricesA(GN1

)5@bjk# andA(GN2
)5@cjk# corresponding to the graph

GN1
and GN2

obtained via operating on arcs (q,r ) and (s,t) in GN8 , are equal to the matrix
elements ofA(GN8)5@ajk# with the exception of the following:

bqr5cqr5aqr2Ã, bst5cst5ast2Ã,

bqt5aqt1Ã, bsr5asr1Ã,

cqs5aqs1Ã, crt5art1Ã, ~25!

whereÃ is the arc-characteristic of the two arcs being transformed. We note that the transf
tion can only occur between two arcs of the same type, and hence produces new arcs w
same characteristic. It follows that each transformation as described above has a unique
teristic, Ã. Owing to the trace-free character of Ricci and Weyl spinors, if at any stage o
decomposition a matrix with a nonzero trace is formed, we can just remove this matrix fro
sum, and proceed as usual.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, we have introduced a radically new approach to the classical problem of
mining an independent set of polynomial invariants of the Riemann tensor. It is already
known that$w1 ,w2% and $r 1 ,r 2 ,r 3% form complete sets for the pure Weyl and Ricci invarian
respectively. However, our work builds on this knowledge by providing explicit formulas rela
invariants within the special familiesŴ andR̂ of pure Weyl and Ricci invariants to these sets, a
subsequently proving constructively that all other invariants may be related to these familie
can therefore now explicitly construct the polynomial syzygies relating any pure invaria
members of the aforementioned complete sets.

We have laid down a fundamental framework that intimately links spinors to graphs.
within this graph-theoretic setting that the construction of invariants becomes quite transpare
readily leads to algorithms which may be easily implemented on a computer. Our applicat
this formalism has thus far been limited to the pure Weyl and pure Ricci invariants. Howeve
approach is readily extendable to the mixed invariants. Work in this direction is current
progress and our results thus far look quite promising. This work will be reported in a subse
paper. Finally, we hope that the formulation established in this paper may well prove to
broader interest generally.

APPENDIX

Example 1: N85CABCDCA
EFGCBEF

HCH
JKLCJKL

MCCDGM.
The graphGN8 associated withN8 is shown in Fig. 15. The vertices ofGN8 are labeled as a

necessary step for the construction of its associated matrixA(GN8). All matrices in this example
are with respect to the vertex ordering$a,b,c,d,e, f %,

A~GN8!53
0 1 1 0 0 2

0 0 2 0 0 1

0 0 0 1 0 0

0 0 0 0 3 0

0 0 0 0 0 1

0 0 0 0 0 0

4 .
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The arc set ofGN8 is partitioned to give two subgraphs:GN8
S andSN8 , and their associated

matricesA(GN8
S ) andA(SN8) are related toA(GN8) via Eq. ~11!,

A~GN8
S

!53
0 0 0 0 0 2

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 0

0 0 0 0 0 0

4 , A~SN8!53
0 1 1 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

4 .

As expected, the arcs inSN8 may be reoriented to form an Eulerian circuit. Reorienting
two arcs (a,b) and (b, f ) in SN8 allows us to form the 6-circuitSN9 . This circuit can be expresse
as a vertex sequence of the form introduced in the computer implementation section by mak
identification$15a,25c,35d,45e,55 f ,65b%. In this notation,SN95@1,@1,2,3,4,5,6##. Since an
even number of arcs were reoriented to formSN9 from SN8 , the invariant,N9 associated with
(SN9øGN8

S ) will be identically equal toN8.
Equation~24! provides the decomposition ofSN9 in terms of graphs consisting solely of arc

of multiplicity two. Taking the union of this equation withGN8
S will give the relationship between

N8 and the invariants withinŴ. This may be practically achieved by constructing an appropr
matrix and adding it toA(GN8

S ). For example, the first term in Eq.~24!, S̃15@2 1
4,

$6,1%,$5,2%,$3,4%# will be associated with the matrixA(S̃1) corresponding to edges of multiplicit
two between the three pairs of vertices$b,a%, $ f ,c%, and$d,e%. The precise directions of thes
arcs of multiplicity two are not important, because changing the direction of any arc of multip
two will leave the original invariant unchanged. Therefore, we can reorient these arcs of
plicity two as necessary to form upper triangular matrices, which is a condition for the orie
ness of the graphs,

FIG. 15. Graphs associated with the decomposition process in Example 1.
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3 0 0 0 0 0 0

0 0 0 0 0 0

4
Thus, the first term in the syzygy,GX1

will be associated with the matrix

A~GX1
!5A~GN8

S
!1A~S̃1!53

0 2 0 0 0 2

0 0 2 0 0 0

0 0 0 0 0 2

0 0 0 0 4 0

0 0 0 0 0 0

0 0 0 0 0 0

4 .

Hence, from the matrix, it can be determined that the first termX1 , in the syzygy relatingN8

to the invariants withinŴ, is equivalent to2 1
4Ŵc(2)Ŵc(4). After doing the same for the

remaining terms in Eq.~24!, and cancellation of like terms with opposite signs, the followi
expression forN8 is obtained:

N85 1
4 @Ŵc~2!#32 1

2Ŵc~2!Ŵc~4!52w̃1
322w̃1

350.

Example 2: N85CABCDCABC
ECE

FGHCF
JKLCJK

MNCDMN
PCGHLP.

The graphGN8 is drawn and its vertices labeled as shown in Fig. 16. The matrices
constructed with respect to the ordering$a,b,c,d,e, f ,g%.

Partitioning the arc set ofGN8 as previously described gives the graphsGN8
S andSN8 , where

A~GN8
S

!53
0 2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 2

0 0 0 0 2 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

4 , A~SN8!53
0 1 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

4 .

Reorienting the two arcs (a, f ) and (f ,g) and removing the isolated vertexe transformsSN8
into SN9 , which can be expressed in vertex sequence notation as@1,@1,2,3,4,5,6## after making the
identification$15a,25b,35c,45d,55g,65 f %. The invariantN9 corresponding to (SN9øGN8

S )
is equal toN8 as an even number of arcs were reoriented. Taking the union of Eq.~24! with GN8

S

then gives the syzygy relatingN8 to invariants withinŴ, and from there, tow1 andw2 .
Following the procedure described in the previous example gives the following expressi

N8:

N85 1
4 @Ŵc~2!#2Ŵc~3!2 1

2Ŵc~2!Ŵc~5!522w̃1
2w̃25236w1

2w2 .

Example 3: N85FABȦḂFCD
Ȧ

ĊFD
E

Ḃ
ĖFA

FḊḞFB
G

Ḋ
ĠFE

H
Ė

ḢFGHĠḢFCFĊḞ.
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The graphGN8 is drawn and its vertices labeled as shown in Fig. 17. The matrices
constructed with respect to the ordering$a,b,c,d,e,x,y,z%.

Partitioning the arc set ofGN8 as previously described gives the graphsGN8
S andSN8 , where

A~GN8
S

!53
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 11 i

0 0 0 0 0 11 i 0 0

0 0 0 0 0 0 0 11 i

0 0 0 0 0 0 11 i 0

0 0 0 0 0 0 11 i 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

4 ,

A~SN8!53
0 i i 1 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 i 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

4 .

Reorienting the two edges (a,c) and (a,e) and removing all isolated vertices transformsSN8
into SN9 , which can be expressed in vertex sequence notation as@1,@1,2,3,4,5,6## after making the
identification$15a,25b,35c,45a,55d,65e%. The invariant (SN9øGN8

S ) is equal toN8 as an
even number of edges were reoriented. Note that the degree-4 vertexa is represented twice in

FIG. 16. Graphs associated with the decomposition process in Example 2.
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this sequence; the labels 4 and 1 both represent the same vertex,a. The decomposition of Eqs
~22!–~24! are still valid, however, any terms in these equations that have vertex 4 adjac
vertex 1 within the same circuit can be immediately disregarded as they ultimately corresp
graphs with loops at vertexa and are therefore associated with invariants which are identic
zero. As a consequence, we only need to consider 12 terms in Eq.~24! in this case. The first term
in Eq. ~24!, S̃15@2 1

4,$6,1%,$5,2%,$3,4%# will be associated with the matrix corresponding
couples between the three pairs of vertices$e,a%, $d,b%, and$c,a%. The precise direction of thes
couples are not important, because changing the direction of any couple will leave the o
invariant unchanged. Therefore, we are able to reorient these couples as necessary to form
triangular matrices,

A~S̃1!53
0 0 11 i 0 11 i 0 0 0

0 0 0 11 i 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

4 .

Thus, the first term in the syzygy,GX1
will be associated with the matrix,

FIG. 17. Graphs associated with the decomposition process in Example 3.
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0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Hence, it follows that the first term,X1 , in the syzygy relatingN8 to the invariants withinR̂
is 2 1

4R̂c(3)R̂c(5). Doing the same for the remaining terms in Eq.~24! then gives the syzygy
relatingN8 to invariants withinR̂, and, from there, tor 1 , r 2 , andr 3 . Following this procedure
yields

N85R̂c~8!2 1
2 $R̂c~3!R̂c~5!1@R̂c~4!#2%5 1

2r̃ 2
2r̃ 124r̃ 3

25 3
64 ~16r 2

2r 1248r 3
2172r 1

2r 3227r 1
4!.

1The classic problem involves ‘‘polynomial’’ completeness whereas recently the idea of algebraic completene
introduced~see Ref. 11!.

2S. Bonanos, J. Math. Phys.40, 2064~1999!.
3S. Bonanos, Gen. Relativ. Gravit.30, 653 ~1998!.
4G. E. Sneddon, Class. Quantum Grav.3, 1031~1986!.
5G. E. Sneddon, J. Math. Phys.37, 1059~1996!.
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An inverse problem in coupled mode theory
Paul Sacksa)

Department of Mathematics, Iowa State University, Ames, Iowa 50011
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We study an inverse problem for the Zakharov–Shabat system which is motivated
by an application to the design of co-directional couplers with prescribed response
properties. ©2004 American Institute of Physics.@DOI: 10.1063/1.1645977#

I. STATEMENT OF DIRECT AND INVERSE PROBLEM

In this paper we are interested in an inverse problem for a system of ordinary differ
equations which arises in the design of optical fiber devices. In the direct problem, we are
a coupling coefficientq(x), which is a bounded, complex valued function on@0,X#. For anyk
PC andxP@0,X# let A5A(x,k),B5B(x,k) denote the solution of

]A

]x
5 ikA1q* B,

]B

]x
52 ikB6qA, ~1.1!

with initial conditions

A~0,k!51, B~0,k!50. ~1.2!

The corresponding inverse problem is to determineq(x) on @0,X# given the scattering data,

$B~X,k!:kPR%. ~1.3!

A closely related problem is the system~1.1! with boundary conditions

A~0,k!51, B~X,k!50, ~1.4!

in which case the data for the inverse problem is

$B~0,k!:kPR%. ~1.5!

For convenience of reference, let us refer to~1.1!–~1.2!–~1.3! as P16 and ~1.1!–~1.4!–~1.5! as
P26 . @6 refers to the sign in the second equation of~1.1!. Here and elsewhere when the symbo
6 and7 are used it is understood that the top sign pertains to~1.1! in the1q case and the lowe
sign to the2q case.# Below we will say more about the distinctions among these four case

The system~1.1! is often referred to as the Zakharov–Shabat system, following the orig
work of Zakharov and Shabat23 showing that the Cauchy problem for the cubic Schro¨dinger
equation,

iC t5Cxx7C2C* , ~1.6!

can be solved by means of an inverse scattering transform based onP26 . In Ref. 23 the spatial
domain @0,X# is replaced byR, but if q in P26 is extended to be 0 outside of@0,X# then the
problem coincides with that of Ref. 23. This theory has been elaborated in many books and p
see, e.g., Refs. 1, 5, 20, 23, 24. See also Ref. 3 for a generalization of the1q case to a 2N
component system. The system~1.1! also arises in the description of the propagation of coup

a!Electronic mail: psacks@iastate.edu
16990022-2488/2004/45(4)/1699/12/$22.00 © 2004 American Institute of Physics

                                                                                                                

http://dx.doi.org/10.1063/1.1645977


tion is
n
t and

paper
do

fiber
blem

with

ns of

truc-
he data
eek to
any

ata
btain

of the

e do
er on

s

on. In

-

n nu-
e
ds
ewhat

1700 J. Math. Phys., Vol. 45, No. 4, April 2004 P. Sacks

                    
modes of electromagnetic waves in a waveguide. When the coefficient in the second equa
1q one has the so-called contra-directional case, while2q is the co-directional case. We mentio
also that~1.1! is related by a simple change of variables to the Dirac system for which direc
inverse scattering theory is of interest; see, for example, Refs. 6, 12.

The main motivation for the study ofP12 is the works,11,13 in which this problem arises in
connection with the design of optical fiber devices with certain prescribed properties. In this
we will allow both choices of sign in~1.1! since it seems to be conventional in the literature to
so, and is of mathematical interest, but we do not know of any specific application forP11 .
ProblemP26 has arisen in a larger number of recent works concerned with the design of
gratings~e.g., Refs. 9, 15, 19, 20, 22; see also Ref. 17 for a corresponding time domain pro!,
the1 sign being usually the physically significant case here. As mentioned above,P26 is by now
fairly well understood from a theoretical point of view—these papers are more concerned
computational issues.

Let us emphasize, however, that in the sort of application just mentioned, the questio
ultimate importance have to do with thedesignof the coupling coefficientq rather thanrecon-
structionof q. The literature on inverse scattering is concerned almost entirely with recons
tion, so that uniqueness of solutions and, to a somewhat lesser extent, characterization of t
for which a solution exists, are the principal concerns. By contrast in a design problem we s
choose a coefficientq so as to obtain a physical system with prescribed properties, and in m
cases these are idealized properties which are not physically realizable.@For example,B(X,k)
[0 outside of somek interval.# From the mathematical point of view it means we are given d
for which no solution exists, and we attempt to find a solution anyway—or, less facetiously, o
an ‘‘optimal’’ solution in some sense. There seems to be very little mathematical analysis
design problem from this point of view~see, e.g., Ref. 10 for some such work!, even for the
simpler case of Schro¨dinger scattering and none will be given in this paper either. However w
believe this is an important problem for future investigation, and that the material in this pap
the reconstruction problem forP16 will be useful for that.

To conclude this Introduction we discuss the difference in character between problemP16

and P26 , due to the different side conditions. In certain cases~see Sec. III! there is an exact
correspondence to an inverse scattering problem for a potentialV(x) in the more familiar Schro¨-
dinger equation. The case ofP26 corresponds to data beingL(k), the left hand reflection coeffi-
cient ~see below for a review of the definitions! whereas in the case ofP16 the data amounts to
L(k)/T(k), the ratio of the reflection coefficient to the transmission coefficient. The use ofL/T as
basic scattering data, in the case of a realV, has appeared in a few previous papers~Refs. 16, 18!,
but usually in a somewhat artificial way. Here it seems that there is a clear physical motivati
the Schro¨dinger scattering case it is not difficult to show thatL/T uniquely determinesL and
hence the potential, at least if there are no bound states~see Ref. 4 for a careful study of multi
plicity results when bound states are allowed!, and we will derive the analogous result forP16 .
The proof relies on analytic continuation, and thus does not immediately show how know
merical techniques forP26 could be adapted toP16 . From another point of view the invers
problemP26 is ‘‘local in depth,’’ whereasP16 is not, meaning that layer stripping type metho
cannot be used, at least in any direct way. One alternative computational approach, som
analogous to Ref. 18, will be discussed in Sec. VII.

II. CONSERVATION OF ENERGY AND BOUND STATES

Clearly a solution of~1.1!, ~1.2! exists on@0,X# for any kPC. Extendingq by zero for
x¹@0,X# we may assume when convenient thatA(x,k),B(x,k) are defined for allxPR,kPC. If
we let

E~x,k!5„uA~x,k!u27uB~x,k!u2
…, ~2.1!

then a simple calculation gives
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]E

]x
5 i ~k2k* !„uA~x,k!u26uB~x,k!u2…. ~2.2!

In particular forkPR,

uA~X,k!u27uB~X,k!u2[1. ~2.3!

A bound state of~1.1! is a nonzero solution of~1.1! for some fixedkPC with A(•,k),B(•,k)
PL2(R). Such solutions are impossible in the1q case of~1.1! since by~2.2! and the fact thatE
must be exponentially decaying at6` we must have ImkÞ0 and

05E
2`

` ]E

]x
~x,k! dx5 i ~k2k* !E

2`

`

„uA~x,k!u21uB~x,k!u2… dx. ~2.4!

In the 2q case bound states may exist, although only for sufficiently largeq. This is in contrast
to the standard Schro¨dinger scattering case in which any potentialV(x)<0,V(x)Ó0 has at least
one bound state. As is well known, it is the existence of such bound states which give rise
existence of solitary wave solutions of the cubic Schro¨dinger equation~1.6!.

It is easy to check that if Imk,0 andA(X,k)50 then both components are either identica
zero or exponentially decaying at both6`, hence$A(x,k),B(x,k)% is a bound state.

III. RELATION TO OTHER FORMS OF SCATTERING DATA

Consider the special case that6q5q* , i.e.,q is real in the1q case or imaginary in the2q
case. If we setc5A1B then straightforward computation gives

c91„k22V~x!…c50, ~3.1!

whereV56q81q2, a Schro¨dinger equation with~possibly complex! potentialV.
Proceeding as in the case of a real potential~e.g., Refs. 5, 7, 8! we introduce the standar

fundamental set of solutionsc2 ,c1 of ~3.1! which satisfy

c2~x,k!5H eikx1L~k!e2 ikx, x,0,

T~k!eikx, x.X;
~3.2!

c1~x,k!5H T~k!e2 ikx, x,0,

e2 ikx1R~k!eikx, x.X;
~3.3!

whereL,R are left and right hand reflection coefficients andT is the transmission coefficient.~It
may be checked that even in the case of complexV, the left and right transmission coefficien
coincide.!

From ~1.2! we clearly have

A~x,k!5eikx, B~x,k!50, x,0, ~3.4!

and

B~x,k!5B~X,k!e2 ik(x2X), A~x,k!5A~X,k!eik(x2X), x.X. ~3.5!

From ~3.4! it follows that

c~x,k!5c2~x,k!2
L~k!

T~k!
c1~x,k!, ~3.6!

so that
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c~x,k!5S T~k!2
L~k!R~k!

T~k! Deikx2
L~k!

T~k!
e2 ikx, x.X. ~3.7!

From this and~3.5! then

A~X,k!5eikXS T~k!2
L~k!R~k!

T~k! D , B~X,k!52e2 ikX
L~k!

T~k!
. ~3.8!

At least in the case of realq, the expression forA(X,k) can be further simplified, using standa
identities for Schro¨dinger scattering, to

A~X,k!5
eikX

T~k!*
, kPR. ~3.9!

The inverse problemP16 thus corresponds, in such a case, to Schro¨dinger inverse scattering
in which the available data is the ratioL/T of a reflection and transmission coefficient. B
comparison, the data for problemP26 would be simplyL(k), by a similar calculation, and so
amounts to a familiar problem. It is well known~e.g., Refs. 5, 7, 8! that a realV is uniquely
determined byL(k) if no bound states are present.

IV. UNIQUENESS

In the Schro¨dinger scattering case, whenV has no bound states it is not hard to see thatL/T
uniquely determinesL and henceV. Uniqueness forP16 amounts to essentially the same thing f
the system~1.1!.

Theorem 1: There is at most one solution ofP11 , and the same is true ofP12 if there are no
bound states.

Proof: First note from~2.3! that uA(X,k)u is known from the data, and it is not hard to che
that

A~X,k!5a* ~k* !eikX, ~4.1!

wherea(k) is defined in Eq.~1.3.3a! in Ref. 1 ~again with the understanding thatq has been
extended by zero outside of@0,X#). The functiona is entire anda(k)→1 asuku→` in the upper
half plane.

Recall from Sec. II that there can be no bound states in the case ofP11 , and the same is true
in the case ofP12 by hypothesis. From the last remark in Sec. II it follows thatA(X,k) has no
zeros in the lower half of the complex plane. Thusg(k)ª log„A(X,k)e2 ikX

… is analytic in the
lower half plane and tends to zero asuku→`. It follows by the usual Hilbert transform relatio
that the imaginary part ofg on the real axis is uniquely determined by its real part, that is to
the phase ofA(X,k) may be determined fromuA(X,k)u, and soA(X,k) is itself known. Finally
one may check that

$A~X2x,2k!/A~X,2k!,2B~X2x,2k!/A~X,2k!% ~4.2!

is a solution pair of~1.1! with q(x) replaced byq(x2X), satisfying side conditions~1.4! and
having known scattering data~1.5!. Thus q is uniquely determined according to the standa
results about problemsP26 . h

In the Schro¨dinger scattering case it is known~e.g., Theorem 2.3 of Ref. 18! thatL/T does not
uniquely determine the potential in the presence of bound states, hence we expect that t
bound state’’ hypothesis in the case ofP12 cannot be dispensed with. Numerical examples~see
Sec. VII below! also indicate this quite clearly. On the other hand in the more conventional
of Schrödinger scattering with dataL, even though bound state data is needed in genera
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uniquely determine a potential, this is not the case ifV is known to be supported in a half lin
~Refs. 2, 14!, i.e.,L(k) alone suffices to determineV in such a case. We conjecture that the sa
is true forP22 .

V. TIME DOMAIN PROBLEM

It is well known that problemP26 can be analyzed in terms of an associated hyperbolic ‘‘ti
domain’’ problem, which is recalled in~6.2! below; see, e.g., Refs. 9, 17, 19, 20. Here we der
a corresponding hyperbolic problem~5.15! for P16 . We remark that in the case ofP26 the
derivation of~6.2! requires an assumption that there be no bound states, but this hypothesis
needed in the case of~5.15!.

Let $a(x,t),b(x,t)% denote solutions of the hyperbolic problem inR2,

at1ax5q* ~x!b, bt2bx57q~x!a, ~5.1!

a~0,t !5d~ t !, b~0,t !50. ~5.2!

Regarding this as an evolution equation in the space variablex we see by the standard domain
dependence considerations that the support of the solution is in the triangle$(x,t):utu<x,X%.
Taking the Fourier transform int, using the convention

f̂ ~k!5E
2`

`

f ~ t !eikt dt, ~5.3!

we find that

2 ikâ1âx5q* b̂, 2 ikb̂2b̂x57qâ ~5.4!

and

â~0,k!51, b̂~0,k!50. ~5.5!

That is to sayA(x,k)5â(x,k),B(x,k)5b̂(x,k) is the solution of~1.1!, ~1.2!, since the solution is
unique.

By a standard propagation of singularity~geometric optics! arguments, we may obtain equiva
lent characteristic boundary conditions fora,b. The solution with q[0 is a(x,t)5d(x
2t),b(x,t)50, thus near the characteristict5x we should have

a~x,t !5d~x2t !1a~x!H~x2t !1 smoother terms, ~5.6!

b~x,t !5b~x!H~x2t !1 smoother terms, ~5.7!

where H denotes the unit step function anda, b are transport coefficients to be determine
Inserting these expansions into~5.1! and matching the coefficients of the most singular terms
get

a~x!56
1

2 E0

x

uq~s!u2 ds, b~x!56
1

2
q~x!. ~5.8!

When we carry out a similar calculation on the lower characteristict52x, substituting

a~x,t !5a~x!H~x1t !1 smoother terms, ~5.9!

b~x,t !5b~x!H~x1t !1 smoother terms, ~5.10!
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the relations

a~x!50, 2b8~x!57q~x!a~x! ~5.11!

are obtained. Thus

a~x!50, b~x!5b~0!, ~5.12!

and the continuity ofa,b from inside the coneutu,x then gives

b~0!56 1
2 q~0!. ~5.13!

Note that

A~X,k!5E
2X

X

a~X,t !eikt dt, B~X,k!5E
2X

X

b~X,t !eikt dt, ~5.14!

from which it follows thatA(X,•),B(X,•) are bandlimited functions, hence uniquely determin
by appropriate sampling.

We may now reformulate the inverse problemP16 as an overdetermined boundary val
problem: If B(X,k) is the data corresponding toq then there exist$a(x,t),b(x,t)% such that

at1ax5q* ~x!b, bt2bx57q~x!a, utu,x,X, ~5.15a!

b~x,x!56
1

2
q~x!, 0,x,X, ~5.15b!

a~x,2x!50, 0,x,X, ~5.15c!

b~X,t !5
1

2p E
2`

`

B~X,k!e2 ikt dk, utu,X. ~5.15d!

Note that the additional characteristic boundary conditions,

a~x,x!56
1

2 E0

x

uq~s!u2 ds, b~x,2x!56
1

2
q~0!, 0,x,X, ~5.16!

follow from ~5.15!, consistently with the expressions fora(x) in ~5.8! andb(x) in ~5.12!.

VI. NONLINEAR PLANCHEREL IDENTITY

In the context of inverse scattering for the Helmholtz equation, Sylvester, Winebrenne
Gylys-Colwell21 discovered an interesting identity relating theL2 norm of the coefficient to a
certain nonlinear functional of the scattering data. It was referred to as a nonlinear Plan
identity because in the weak scattering limit, the coefficient to data mapping becomes the F
transform, and so the identity in question goes over to the classical Plancherel equality.
section we will state and prove an analogous property for the inverse scattering problemP16 . For
the proof we will need a corresponding result forP26 , which as far as we know is also new
although the proof follows closely the pattern of Ref. 21.

Before proceeding let us note that if we setR(x,k)5B(x,k)/A(x,k) then it is easy to check
that R satisfies the Riccati type equation,

]R

]x
522ikR~x,k!2q* ~x!R~x,k!26q~x!, ~6.1!
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at least provided thatA(x,k)Þ0. Numerical methods forP26 have been developed which explo
~6.1! and the fact thatR(0,k),R(X,k) are known from the data and side conditions~Refs. 9, 19!.
For P16 , however, we only know thatR(0,k)50 and have no explicit way to obtainR(X,k).

We also will make use of the analog of~5.15! for P26 which is the following: IfB(0,k) is the
data corresponding toq there exists$a(x,t),b(x,t)% such that

at1ax5q* ~x!b, bt2bx57q~x!a, 0,x,t, ~6.2a!

b~x,x!57
1

2
q~x!, x.0, ~6.2b!

a~0,t !50, t.0, ~6.2c!

b~0,t !5
1

2p E
2`

`

B~0,k!e2 ikt dk, t.0. ~6.2d!

Here we are again regardingq(x) as defined to be zero outside of@0,X#. In the case ofP22 we
must assume in addition that no bound states exist, so thatb(0,t) is Fourier transformable with
respect to time. This solution corresponds to~5.1! with side conditions

a~x,t !5d~x2t !, b~x,t !50, t,0, ~6.3!

and may be derived in a manner analogous to~5.15!. See also Refs. 17, 20 for more about~6.2!.
In particular$a,b% may be viewed as a solution of~6.2a! for all t, which is zero fort,x. Since
b(0,t)50 for t,0 it follows thatB(0,k) is analytic in the upper half of the complex plane.

Theorem 2: In the case of problemP21 we have

2E
2`

`

log~12uB~0,k!u2! dk5pE
0

X

uq~x!u2 dx, ~6.4!

and in the case of problemP11 we have

E
2`

`

log„11uB~X,k!u2
… dk5pE

0

X

uq~x!u2 dx. ~6.5!

Proof: First consider the case ofP21 . Note from ~2.1!, ~2.2! that uA(x,k)u22uB(x,k)u2 is
equal to the constantuA(X,k)u2 for real k; hence A(x,k)50 is impossible forkPR or x
P@0,X#. Now multiply ~6.1! by R(x,k)* to get

R~x,k!*
]R

]x
~x,k!522ikuR~x,k!u22q* ~x!R~x,k!uR~x,k!u21q~x!R~x,k!* . ~6.6!

Taking the real part of this identity gives

]

]x
uR~x,k!u252„12uR~x,k!u2…Re„q* ~x!R~x,k!… ~6.7!

or

2
]

]x
log„12uR~x,k!u2

…52 Re„q* ~x!R~x,k!…. ~6.8!

We next claim that
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E
2`

`

R~x,k! dk52
p

2
q~x!, 0<x<X. ~6.9!

Given this, we integrate both sides of~6.8! with respect tok to get

]

]x E2`

`

log„12uR~x,k!u2… dk5puq~x!u2. ~6.10!

Finally integrate with respect tox from 0 toX, using the fact thatR(0,k)5B(0,k), R(X,k)50 to
obtain ~6.4!.

To verify the claim~6.9!, consider first the casex50 in which caseR(0,k)5B(0,k), the
Fourier transform of b(0,t). Since b(0,01)5 lim t→01 b(0,t)52 q(0)/2 and b(0,02)
5 limt→02 b(0,t)50, it follows that 1/2p *2`

` B(0,k); the inverse Fourier transform ofB(0,k)
evaluated att50 is the average of the one sided limits ofb(0,t), i.e.,

E
2`

`

R~0,k! dk5E
2`

`

B~0,k!52pS 2
q~0!

4 D , ~6.11!

which is the required result.
Now for any fixedx0P@0,X# it is not hard to check thatR(x0 ,k)5B̃(x0 ,k) whereÃ,B̃ solves

Ã85 ikA1q* B̃, B̃852 ikB1qÃ, x0,x,X, ~6.12!

Ã~x0 ,k!51, B̃~X,k!50. ~6.13!

The argument in the previous paragraph shows that*2`
` B̃(x0 ,k) dk52 (p/2) q(x0) and so~6.9!

follows for all xP@0,X#.
In the case of problemP11 , if A(x,k),B(X,k) is the solution of~1.1!, ~1.2!, and

A1~x,k!5
A~X2x,2k!

A~X,2k!
, B1~x,k!52

B~X2x,2k!

A~X,2k!
; ~6.14!

then one easily checks thatA1(x,k),B1(x,k) satisfies~1.1!, ~1.4! with coefficientq(x) replaced by
q1(x)5q(X2x). From the first part of the proof it then follows that

pE
0

X

uq~x!u2 dx5pE
0

X

uq1~x!u2 dx

52E
2`

`

log~12uB1~0,k!u2!dk

52E
2`

`

log~12uR~X,k!u2!dk

52E
2`

`

logS 1

11uB~X,k!u2Ddk, ~6.15!

where in the last equality we used the conservation property~2.3!. The conclusion~6.5! follows.h
Using the elementary inequalities log(11r)<r,r>0 andr<2 log(12r) for 0<r<1 and the

fact thatuB(0,k)u<1 in P21 we obtain the immediate corollaries,

E
2`

`

uB~X,k!u2 dk>pE
0

X

uq~x!u2 dx, ~6.16!
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in the case ofP21 and

E
2`

`

uB~0,k!u2 dk<pE
0

X

uq~x!u2 dx, ~6.17!

in the case ofP11 .
Similar properties can be proved for problemsP12 , P22 with further restrictions.
Theorem 3: Assume that there are no bound states and that A(x,k)Þ0 for xP@0,X# and k

PR. Then in the case of problemP22 we have

E
2`

`

uB~0,k!u2 dk>E
2`

`

log„11uB~0,k!u2
… dk5pE

0

X

uq~x!u2 dx, ~6.18!

and in the case of problemP12 we have

E
2`

`

uB~X,k!u2 dk<2E
2`

`

log~12uB~X,k!u2! dk5pE
0

X

uq~x!u2 dx. ~6.19!

VII. CONSTRUCTIVE METHODS

A simple approximate solution forP26 which may nevertheless be quite accurate for su
ciently small q’s is the Born approximation. If we replaceq by q01eq1 with corresponding
solutionsA01eA1 ,B01eB1 and match powers ofe we getA0(x,k)5eikx,B0(x,k)50 and

B181 ikB156q~x!eikx. ~7.1!

Solving with B1(0,k)50 leads to

B1~X,k!56e2 ikXE
0

X

q~s!e2iks ds, ~7.2!

and so by Fourier inversion,

q~x!'6
1

p E
2`

`

B~X,k!e2 ik(2x2X) dk. ~7.3!

The same result may be obtained by ignoring the quadratic term in~6.1!, or from ~5.15! as
explained below. This formula is exploited in Ref. 11~also Ref. 22 in the case ofP26). An
improved method based on the calculation of transfer matrices for piecewise constantq is pre-
sented in Ref. 13.

Several types of exact methods may be derived by first transforming the data forP16 to that
of P26 , in the manner indicated by the proof of the uniqueness result Theorem 1. From th
and ~2.3! one may obtainuA(X,k)u; a Hilbert transform calculation of loguA(X,k)u then yields
A(X,k) from which we obtain data for a reflected version ofP26 , according to~4.2!. One can
then proceed to use one of the methods which have been developed for a numerical solu
P26 , e.g., Refs. 9, 15, 19, 20. For this transformation it is necessary to assume that there
bound states. Furthermore the Hilbert transform step may present numerical difficulties ifB(X,k)
is known only on a coarse grid ofk values, whereas coarse sampling need not in itself b
problem due to the bandlimitation property ofB(X,k) discussed above.

A final possibility for an exact method which we discuss in more detail is based on
equivalent time domain problem~5.15!. Let us define the mappingq°L(q) by L(q)(t)
5b(X,t),utu,1 where$a(x,t),b(x,t)% is the solution pair of the well-posed characteristic boun
ary value problem,~5.15a!–~5.15c!. We may then attempt to obtainq as the solution of the
nonlinear operator equation,
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L~q!5g, ~7.4!

where g(t)5b(X,t) is known from the given data. Recalling thatb(X,t) has support in
@2X,X# it follows from ~5.14! that we may representg as a Fourier series,

b~X,t !5
1

2X (
n52`

`

BS X,
np

X De2 inpt/X, ~7.5!

involving only sampled values ofB(X,k). Of course in theoryb(X,t) is uniquely determined by
the data$B(X,kn)%n51

` wherekn is any sequence with a finite limit point, or a sequence tendin
6` with an appropriate asymptotic spacing. The coefficients in~7.5! will typically decay at a rate
O(1/n) and no faster, unless additional smoothness assumptions are made onq ~or more presicely
on theX periodic extension ofq).

A simple iterative scheme is the Newton–Kantorovich method,

FIG. 1. Reconstruction of real and imaginary parts of smaller coupling coefficientq(x) in P12 by the iteration scheme
~7.8!.

FIG. 2. Reconstruction of real and imaginary parts of larger coupling coefficientq(x) in P12 by the iteration scheme~7.8!.
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qn115qn2DL~0!21
„L~qn!2g…, ~7.6!

where the Fre´chet derivativeDL(0) is easily found to be

DL~0!z~ t !56
1

2
zS X1t

2 D . ~7.7!

The resulting scheme is thus explicitly

qn11~x!5qn~x!62g~2x2X!72L~qn!~2x2X!, ~7.8!

initialized, for example, byq0(x)50, in which caseq1(x)5DL(0)21g(x)562g(2x2X) is the
same as the Born approximation mentioned above, which could also be used as the initial

If the coupling coefficientq is sufficiently small then convergence ofqn to q in L2(0,X) can
be shown, essentially by the inverse function theorem and the fact thatL can be shown to have
suitable differentiability properties. The proof is very similar, e.g., to that of Corollary 3.1 of
18.

In general the scheme is not globally convergent. In the case ofP11 the inverse problem ha
a unique solution which must also be the unique solution ofL(q)5g, so if the sequenceqn

converges at all then it must be to the solutionq. In the case ofP12 the solution is not unique in
general, so the sequenceqn may converge to some other solution of the inverse problem.

In Fig. 1 a reconstruction is displayed together with the exact coupling coefficient forP12 . In
this exampleX51, and the dataB(1,np) is used forunu<50 to approximateb(1,t) using ~7.5!.
The direct problem~1.1!–~1.2! was solved using ode45 inMATLAB , and the time domain mapL
was approximated by means of a straightforward finite difference scheme in characteristic
dinates, with grid size extrapolation to improve the accuracy. The relative error inq is about 15%,
but essentially all of this may be attributed to the error inb(1,t) due to the truncation error in
~7.5!. That is to say, if we used more~or fewer! terms we will always find that the relative erro
in the computedq is comparable to the relative error inb(1,t). The results are very similar if we
repeat the calculation forP11 .

For a second example we replaceq in the previous case by 2q. We now find that the sequenc
qn does not converge at all in the case ofP11 , while in the case ofP12 the sequence converge
but to a different solution displayed in Fig. 2, consistent with the earlier discussion of nonun
ness. It seems clear that some alternative optimization approach could be used to obt
original q, provided a sufficiently accurate initial guess were available. We note that in the
example the identity~6.19! is satisfied, while in the second example it is satisfied by the comp
q(x), not by the originalq, leading one to surmise that the result of the computational method
described will be the unique choice ofq with the prescribed data~1.3! but with no bound states
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Comment on ‘‘Two-dimensional, highly directive currents
on largecircular loops’’ †J.Math.Phys.41,6130 „2000…‡

B. J. Stoyanova)

The Johns Hopkins University Applied Physics Laboratory,
11100 Johns Hopkins Road, Laurel, Maryland 20723

~Received 27 June 2003; accepted 27 December 2003!

Margetis and Fikioris, apparently unaware of the earlier results available in the
literature, used an elaborate Mellin transform technique to obtain an asymptotic
approximation for a particular case of a Bessel function integral. Here, the earlier,
more general results are pointed out. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1650536#

In Sec. III of a recent paper, Margetis and Fikioris1 use the Mellin transform technique t
obtain an asymptotic expansion up to the orderO(l27/2) for the particular casem5n50 of the
integral

I ~l!5E
0

p/2

Jm~l sinu!Jn~l sinu!du, ~1!

whereJm is themth-order Bessel function of the first kind andl is a large parameter tending t
infinity. Their application of this technique, which is elaborated in Ref. 13 of their paper,1 differs
in many technical details from the earlier work~see below!, where the Mellin transforms were
applied to more general cases of integral~1!. A major difference that should be noted here is
clever use by Margetis and Fikioris1 of an integration path in the complexu-plane in order to
obtain the contributions oscillatory inl, which arise from the upper limit of integration in~1!.

An asymptotic expansion of integral~1! up to the orderO(l23/2) for the particularm5n
50 case was originally obtained by Stoyanov and Farrell2 by a straightforward method based o
a heuristic approach. Referring to their paper,2 Margetis and Fikioris1 remark that ‘‘These authors
calculate only the first three terms of the asymptotic expansion@...#. Their method does not mak
use of the Mellin transform technique.’’ We point out that the Mellin transform technique
previously used by Wong3,4 to obtain the asymptotic expansion up to the orderO(l23) for a more
general casem5n.21/2 of integral ~1!. Then, Stoyanov, Farrell, and Bird5 used both the
straightforward method originally introduced in Ref. 2 and the Mellin-transform technique
certain simplifications and modifications to obtain the asymptotic expansions to the same or
the general case Re(m1n).21 of integral ~1!, as well as for another, Hankel-type integra
Furthermore, the complete~i.e., infinite! asymptotic expansions for the two integrals treated
Ref. 5 have also been obtained by Stoyanov, Farrell, and Bird6 by using the generalized hype
geometric and Meijer functions.
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Supersymmetric exact sequence, heat kernel and super
Korteweg–de Vries hierarchy
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Departamento de Matema´ticas, Universidad Simo´n Bolı́var, Apartado 89000,
Caracas 1080A, Venezuela

A. Restucciab)
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Caracas 1080A, Venezuela
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We introduce the freeN51 supersymmetric derivation ring and prove the existence
of an exact sequence of supersymmetric rings and linear transformations. We apply
necessary and sufficient conditions arising from this exact supersymmetric se-
quence to obtain the essential relations between conserved quantities, gradients and
the N51 super Korteweg–de Vries~KdV! hierarchy. We combine this algebraic
approach with an analytic analysis of the super heat operator. We obtain the explicit
expression for the Green’s function of the super heat operator in terms of a series
expansion and discuss its properties. The expansion is convergent under the as-
sumption of bounded bosonic and fermionic potentials. We show that the
asymptotic expansion whent→01 of the Green’s function for the superheat opera-
tor evaluated over its diagonal generates all the members of theN51 super KdV
hierarchy. © 2004 American Institute of Physics.@DOI: 10.1063/1.1650047#

I. INTRODUCTION

The analysis of supersymmetric quantum problems has been recently considered in
relevant physical contexts. At very high energies one way of studying theM -theory, which has
been proposed as a theory of unification of all known interactions in nature, is through M
models describing supersymmetric quantum problems. The supersymmetry is one of the r
ingredients of these models. In particular the presence of supersymmetry may change com
the spectrum of the quantum Hamiltonian. The bosonic Hamiltonian in the case of theD511
supermembrane, with Minkowski target space, has a discrete spectrum while its supersym
extension has a continuous spectrum. Moreover in that case the Green’s function does not
representation in terms of the Feynman path integral since the potential is not bounded from
in some directions in spite of the fact that the SUSY Hamiltonian is nonnegative. These sy
are very closely related to certain supersymmetric integrable systems. These models in them
are a great help in understanding integrable systems. TheN51,2 supersymmetric extensions of th
Korteweg–de Vries~KdV! equations were found several years ago,1–4 while N53 andN54 have
been considered more recently in Refs. 5, 6, 7. The bi-Hamiltonian structure of the supe
equations was studied in Refs. 8, 9. For a review ofN51 andN52 super KdV equations see Re
10. Extensions of the supersymmetric model have been proposed in Ref. 11.

In the first part of this work we focus on the algebraic structure ofN51 supersymmetric

a!Electronic mail: sandrea@usb.ve
b!Electronic mail: arestu@usb.ve
c!Electronic mail: asotomay@zeus.unexpo.edu.ve
17150022-2488/2004/45(5)/1715/15/$22.00 © 2004 American Institute of Physics
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models. We introduce the ‘‘Free SUSY derivation ring on a single fermionic generator’’ w
contains a parity automorphism, a canonical superderivation and a supersymmetric gradi
erator. We established an exact sequence of SUSY rings and linear transformations. Sev
these relations were already known in the literature.2,12 This is a general algebraic constructio
valid for one-dimensional supersymmetric models. Using necessary and sufficient condition
ing from the exact sequence we obtain the essential relations between conserved quantiti
dients and theN51 SKdV hierarchy. In the second part of this work we use the exact sequ
together with an analytic analysis of the super heat kernel to show that the asymptotic exp
when t→01 of the Green’s function for the superheat operator, evaluated over its diag
generates all the left hand members of the SKdV hierarchy. Using the symmetry properties
Green’s function we obtain an iterative procedure to obtain all the gradients and members
SKdV hierarchy. The algebraic approach arising from the exact SUSY sequence together w
analytic approach arising from the analysis of the Green’s function of the super heat op
combine to give a satisfactory description of the SKdV hierarchy.

II. THE FREE SUPERSYMMETRIC DERIVATION RING ON A SINGLE FERMIONIC
GENERATOR

A. Definitions

A ring A is associative but not necesarily commutative. It is ‘‘oriented’’ when there is g
a ring automorphismP:A→A satisfying P25I , as well asP( f 1g)5P f1Pg and P( f g)
5(P f )(Pg). An elementf of A is ‘‘oriented’’ when P f56 f , f being called ‘‘bosonic’’ when
P f5 f and ‘‘fermionic’’ when P f52 f . The oriented ring (A,P) is said to be ‘‘commutative’’
when

f g5g f~21!st

whereverf ,gPA satisfyP f5(21)s f , Pg5(21)tg. In this situation the commutation formula

u f5 f ~Psu!,

holds for all uPA, given thatP f5(21)s f ; this follows from u5u01u15boson1fermion. A
linear mapD:A→A is called an ‘‘ordinary derivation’’ when

DP5PD,

D~uv !5~Du!v1u~Dv !,

for all u,vPA, and is called a ‘‘superderivation’’ when

DP52PD,

D~uv !5~Du!v1~Pu!~Dv !.

The two definitions may be combined by saying thatP(D)5(21)d when

DP5~21!dPD,

D~uv !5~Du!v1~Pdu!Dv.

Then, if (A,P) is commutative andf satisfiesP f5(21)s f , the productf D will also be a
derivation, with

P~ f D !5~21!s1d.
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Thus a fermionicf times a bosonicD will be a fermionic f D, and similarly for the other three
cases.

B. Construction of the ring A

We may begin with the commutative ringB of all polynomials in the commuting letter
b2 ,b4 ,b6 , . . . . The ordinary derivations]/]bn :B→B all commute, asn runs through even
positive integers. ThenA is the supersymmetric extension ofB, constructed as follows. LetM
5$1,3,5, . . .% be the set of all positive odd numbers, and let 2M5$f,1,3,13, . . .% be the collection
of all finite subsets ofM, including the empty setf. ThenA is to consist of all finitely supported
functions f :2M→B. The product of two elementsf andg, evaluated at a finite subsetE,M, is
defined to be

~ f g!~E!5 (
AøB5E

f ~A!g~B!«~A,B!.

Here the function«:2M32M→$21,0,1% is defined to be

«~A,B!5 )
aPA

)
bPB

«~a,b!,

where«:M3M→$21,0,1% is defined by

«~a,b!5H 1, a,b,

0, a5b,

21, a.b.

If the number of elements inE is uEu, then the above sum has 2uEu terms, since«(A,B)Þ0 only
occurs whenA and B are disjoint. The parity automorphismP:A→A is given by (P f )(E)
5 f (E)(21)uEu.

The easy formula«(A,B)5«(B,A)(21)uAuuBu makes it clear that (A,P) is commutative.
WhenB,C,M are disjoint, one has«(A,BøC)5«(A,B)«(A,C). This shows that the prod

uct operation is associative, the value of (f g)h5 f (gh) on E,M being given by

(
AøBøC5E

f ~A!g~B!h~C!«~A,B!«~A,C!«~B,C!.

This completes the construction of the oriented ring (A,P). The generating element
a1 ,a2 ,a3 , . . .PA are now to be identified.

The inclusionB,A is realized by associating eachbPB with that function 2M→B which
sends the empty setf to b, and everything else to zero. Thus, form even, am(f)5bm and
am(E)50 for all nonemptyE,M.

Whenp is an odd positive integer,ap :2M→B is defined byap(p)51PB andap(E)50 for
all other finite subsets ofM.

This gives us$a1 ,a2 ,a3 , . . . %,A.
Evidently Pan5(21)nan . Further, if 1<p1,p2,¯,pn are odd, the produc

ap1
ap2

¯apm
PA takes the value11 on the subset$p1 ,p2 , . . . ,pn%,M and zero everywhere else

Therefore every element ofA may be written as a finite polynomial in the elemen
a1 ,a2 ,a3 , . . . .
                                                                                                                



ermion

gle

: the
m

1718 J. Math. Phys., Vol. 45, No. 5, May 2004 Andrea, Restuccia, and Sotomayor

                    
C. Derivations of A
The fundamental superderivation ofA is defined by

D5a2

]

]a1
1a3

]

]a2
1a4

]

]a3
1¯ .

It sendsa1→a2→a3→¯ , exchanging bosons and fermions. This suggests that (A,P,D) is in
some sense the natural model of an oriented superderivation ring generated by a single f
a1 .

The square of a superderivation is an ordinary derivation. ThusD2 restricted toB,A sends
a2→a4→a6→¯ , and the pair (B,D2) can be called the free bosonic derivation ring on a sin
generator.

The inclusionsDAn,An which follow from DE5ED will be used later in the proofs of the
exact sequence.

D. The supersymmetric gradient operator

Given hPA we ask whetherf ,A exists with h5D f . A linear operatorM :A→A with
MD50 would give at least a necessary condition.

In analogy with the bosonic case, for which it is known the gradient operatorM , it can be
found that the SUSYM operator has the expression

M5
]

]a1
1D

]

]a2
2D2

]

]a3
2D3

]

]a4
1D4

]

]a5
1¯ .

It is a linear operator sendingA into itself, and we have seen that the equationMh50 is a
necessary condition for the existence off PA with D f 5h.

Later it will be shown that the conditionMh50 is also sufficient.~With respect to parity we
note thatPM52M P.)

E. Operators and adjoints

Given (A,P,D) as constructed: a ‘‘differential operator’’ is a linear map ofA into itself
having the form

L5(
0

N

l nDn,

with coefficientsl nPA. L is the identically zero mapA→A if and only if all the coefficients are
zero.

ThenOpA is defined to be the set of all differential operators. It is an associative ring
composition of two operators has the same form, becauseDn( f I ) can be expanded as a finite su
( r 50

n grD
r , by using the defining property ofD on products of elements ofA.

ComposingL with the parity automorphismP:A→A we find that

PLP5(
0

N

~Pln!~2D !n.

ThereforeOpA is also an oriented ring, its parity automorphism given byL→PLP. As
before,L can be called ‘‘oriented’’ ifPL56LP, ‘‘fermionic’’ in one case and ‘‘bosonic’’ in the
other.

We now ask how to integrate by parts inA. Supposeu,vPA are oriented elements with
Pu5u(21)a,Pv5v(21)b. Starting withDPOp , we compute
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D~uv !5~Du!v1~21!au~Dv !

5~Du!v1~21!a~Dv !u~21!a(b11)

5~Du!v1~Dv !u~21!ab.

This can be written as (Du)v[(2Dv)u(21)ab if the congruence notationf [g in A is
defined to mean thatf 2g5Dh for somehPA.

More generally,L andL* POpA may be said to be ‘‘mutually adjoint’’ if

~Lu!v[~L* v !u~21!ab,

for all orientedu,v as above. Thus,D* 52D, while a zeroth order operatorl 0I is its own adjoint.
The uniqueness of the adjoint operator is argued as follows: ifL50 then everyh5L* v

satisfieshu[0 for all uPA. However, it can be shown that for any nonzerohPA there existu
such thathu cannot be of the formD f for any f PA.

Consequently,L50 in OpA implies that allL* v50 in A, and henceL* 50 in OpA. This
shows that anyLPOpA can have at most one adjointL* POpA, and furthermore that (L* )*
5L.

The commutation of the constructionsL→PLP andL→L* is shown by applyingP to the
congruence,

~LPu!Pv[~L* Pv !Pu~21!ab.

Thus if L has an adjoint then so doesPLP, and

~PLP!* 5PL* P.

The existence of adjoints for all differential operators must now be shown.
Proposition: SupposeK,LPOpA have adjoints, and thatPKP5K(21)k,PLP5L(21)l.

ThenKL has an adjoint, and it is given by

~KL !* 5L* K* ~21!kl.

The proposition generalizes inmediately to finite products of operatorsL1L2¯Lm in which
eachLk has an adjoint and is oriented withPLkP5Lk(21)lk. Then

~L1L2¯Lm!* 5~Lm* Lm21* ¯L1* !~21!m,

m5 (
1< i , j <m

l il j .

Thus lD k, whenPl56 l , has an adjoint6Dk( l I ), the sign depending onk and the parity ofl .
This proves that everyLPOpA possesses a unique adjointL* POpA, the bijectionL↔L*
satisfying (L* )* 5L.

We conclude by computing the adjoint ofDplD q,p1q5m. If Pl52 l then all them11
exponents are11 andm5m(m11)/2.

Then

~DplD q!* 5~2D !ql ~2D !p~21!m(m11)/2

5DqlD p~21!m1m(m11)/2

5Dq~Pml !Dp~21!m(m11)/2.

On the other hand, ifPl51 l then all but one of the exponentsl1 , . . . ,lm11 is 11, the
remaining exponent being zero. Then
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~DplD q!* 5~2D !ql ~2D !p~21!m(m21)/2

5DqlD p~21!m(m11)/2

5Dq~Pml !Dp~21!m(m11)/2.

But everyl PA is uniquely the sum of a boson and a fermion. Therefore, for anyl PA and
any nonnegative integersp andq, the adjoint ofDplD qPOpA is given by

~DplD q!* 5Dq~Pml !Dp~21!m(m11)/2,

wherep1q5m.

F. Frechet derivative

The construction of the Frechet derivative operator gives a linear mapA→A, sending f
→L f . Given f (a1 ,a2 , . . . ,an) an element ofA, the action ofL f on a fermionic elementv
PA,Pv52v, may be defined by

L fv5
d

de U
e50

f ~a11ev,a21eDv, . . . ,an1eDn21v !.

The coefficients ofL f are obtained as follows. Ifq is odd and f 5gaqh with g and h
independent ofaq , we have (]/]aq) f 5(Pg)h, while g(Dq21v)h5g(Ph)(Dq21v) sinceDq21v
is fermionic. ThereforeDq21v is multiplied on the left by„P(]/]aq) f …. If m is even then]/]am

is an ordinary derivation andDm21v is bosonic. In this case there is no anticommutation, a
Dm21v is multiplied on the left by] f /]am . Combining these two cases, we obtain the gene
formula

L f5 (
n51

` S Pn
] f

]an
DDn21,

which gives the Frechet derivative operatorL fPOpA for any f PA.
Applying L f to the generating elementa1PA we get

L fa15 (
n51

` S Pn
] f

]an
Dan .

But han5an(Pnh) for all hPA. HenceL fa15E f , connectingL f to the Euler operatorE.
The adjoint operator toL f may be written down using the results of the previous section

L f* 5 (
n51

`

~21!n(n21)/2Dn21S S P
] f

]an
I D D .

Applying the operator parity automorphismK→PKP we get

PLf* P5 (
n51

`

~21!
n~n21!

2
~2D !n21S ] f

]an
I D .

The coefficient of the identity operator is readily accessible since

Dn21S ] f

]an
I D5S Dn21

] f

]an
D I 1~?!D1¯ .
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After checking the6 signs we see that this coefficient is just the supersymmetric gradienM f
of f : thus

L f* 5~PM f !I 1~?!D1¯ .

Going back to the equationMh50, we see that this condition would imply the existence
KPOpA satisfyingLh* 5KD and hence alsoLh56DK* if h is oriented. Applying this operato
equation to the generating elementa1PA, we find thatEh5D f for somef PA.

ThusMh50 impliesh[0, at least whenh is oriented andEh5nh,n.0. But the two extra
conditions are no obstacle.

Proposition:Given hPA, with a zero constant term. ThenMh50 if and only if h5D f for
somef PA.

Proof: The equationPM52M P shows thath6Ph also has a zero gradient. Replacingh by
either summand inh5boson1 f ermion, we may suppose thath is oriented. The presentation

A5A0% A1% A2%¯ ,

by eigenspaces of the Euler operator permitsh to be written ash5h01h11h21¯ , in which
h050 by hypothesis. Then, sinceMAn,An21 the conditionMh50 implies Mhn50 for all n
>1.

By what was said earlier, there existf n with D f n5Ehn5nhn . Thereforeh5D( f 11 1
2 f 2

1 1
3 f 31¯) and the proof is complete.

In the next section we will need to know the interaction between thef→L f construction and
the parity automorphismP:A→A. The formulaLP f52PLf P is easily verified by

S Pn
]

]an
P f DDn215~21!nS Pn11

] f

]an
DDn21

52S PS Pn
] f

]an
D D ~2D !n21.

G. Gradients and operators

We wish to determine which elementsgPA are of the formMh for somehPA: in the
applications this asks whichg are gradients of possible conserved quantities. Here are two f
that can be proven easily.

~i! For any f PA, the Frechet derivative operators off and of D f are connected by the
equation

LDf5DLf .
~ii ! Wheng5Mh, the Frechet derivative operator ofg is antisymmetric:

Lg* 52Lg .

Evidently the second fact gives a necessary condition forg to be a gradient. But it is also
sufficient.

Proposition: Given gPA. The antisymmetry equationLg* 52Lg in OpA is necessary and
sufficient for the existence ofh with Mh5g.

Proof: Suppose first thatg is oriented and satisfiesEg5ng,n>0, as well as the hypothesi
Lg* 52Lg . If Pg5g(21)n, then the Frechet derivative operator of elementh5a1g is given by

Lh5~Pg!I 1 (
n51

` S Pn~21!na1

]g

]an
DDn21

5~Pg!I 1a1Lg .
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From LPg52PLgP we see thatLg has orientation opposite to that ofg, that is, PLgP
5Lg(21)n11. This permits the adjoint ofLh to be calculated as

Lh* 5~Pg!I 1Lg* ~a1I !~21!n11

5~21!n$gI1Lg~a1I !%.

This shows that (21)nLh* 5(g1Eg)1(?)D1¯ .
But it was seen before thatLh* 5(PMh)I 1(?)D1¯ . ObservingPM52M P and Ph

5h(21)n11, we conclude thatM (a1g)5g1Eg5(n11)g in consequence of three assumptio
made at the beginning of this proof. Returning now to the general case, we note that op
adjoints, Frechet derivative operators, and the parity automorphism are interconnected by

~PLgP!* 5PLg* P5LPg52PLgP.

Thus, if gPA has an antisymmetric Frechet derivative operator then so doPg andg6Pg.
Hence it suffices to treat only the case of orientedg. Expandingg5g01g11g21¯ by homo-
geneous components inA0% A1%¯ , we observe that the coefficients ofLgn

andLgn
* fall within

An21 . Therefore the antisymmetry ofLg implies the antisymmetry of all theLgn
. From what was

said beforeg5Mh with h5a1(g01 1
2g11 1

3g21¯).
This completes the proof.

H. Summary: the exact sequence

A ring A, the ‘‘free SUSY derivation ring on a single fermionic generator’’ has been c
structed. It has a parity automorphismP, a canonical superderivationD, and a SUSY gradien
operatorM .

Necessary and sufficient conditions have been given for recognizing which elements ofA are
derivatives and which are gradients. In terms of the SUSY gradient operatorM , the Frechet
derivative operatorLg , and the operator adjoint constructionL→L* , these conditions are ex
pressed by the following exact sequence of rings and linear transformations:

OpA← A← A← A←R←0

D f← f

Mh← h

Lg1Lg* ← g.

The sequence is exact in that the kernals of the outgoing transformations coincide wi
images of the incoming transformations.

III. THE SUSY HEAT OPERATOR

The ordinary heat equation with potentialu(x) and temperature functionf (x,t) is

Luf 50, Lu5
]

]t
2D1u~x!.

Its Green’s function evaluated at a field pointp5(x,t) and source pointq5(x8,0) may be written
asG(p,q)5Gt(x,x8). For fixedx8 and variablex and t it satisfies the above heat equation wi
initial value

lim
t↓0

Gt~x,x8!5d~x2x8!.
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When the potential is zero the Green’s function is

gt~x2x8![g~x2x8,t !5
1

A4pt
expS 2

~x2x8!2

4t D .

It has the basic properties

~ i! gt~x2x8!.0;

~ ii ! E
Rn

gt~x2x8!dx51;

~ iii ! gt1s~x2x8!5E
Rn

gs~y2x8!gt~x2y!dy. ~1!

These properties allow the definition of the conditional Wiener measure, which may be
to express the Green’s functionGt(x,x8) of the operatorLu by the Feyman–Kac formula,13 when
the potentialu(x) is real and bounded from below.

For bounded potentials the Green’s function admits an asymptotic expansion,

Gt~x,x8!5g~x2x8,t ! (
n50

`
1

n!
an~x,x8!tn,

in which the coefficientsan(x,x8) are determined recursively bya0(x,x8)51,

„n1~x2x8!]x…an~x,x8!5„]x
21u~x!…an21~x,x8!.

On the diagonalx5x8, one has

an~x,x!5gn„u~x!,u8~x!,...…,

a finite polynomial in the potential functionu(x) and its derivatives.
Then the equations of the KdV hierarchy,14 for unknown functionsw(x,t), are

wt5
]

]x
gn~w,wx ,wxx ,...!.

We now present a supersymmetric extension of this construction. The potential and th
perature function now have their values in an exterior algebraL, also called a Grassmann algebr

If anticommuting generators ofL are written asu,u2 ,u3 ,...,um then every element ofL has
a unique presentation,

F5j1uu,

wherej andu are in the subalgebra ofL generated byu2 ,u3 ,...,um . Then, defining]uF5u, we
obtain a superderivation]u :L→L, that is,

]u~F1F2!5~]uF1!F21F̄1~]uF2!,

whereF→F̄ is the parity automorphism ofL.
The operatorD5]u1u]x then acts on ‘‘superfields,’’ that is, on differentiable functionsR

→L. UsingF1 andF2 to designate superfields, one can check
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D~F1F2!5~DF1!F21F̄1~DF2!,

D25]x .

It will be assumed that the potentialF is fermionic:F̄52F meaning thatj̄52j and ū5u.
If we take the dimension ofx to be 1:

@x#51,

then one must have

@u#5 1
2 ,

@D#52 1
2 ;

consequently,

@u#522,

@F#5@j#52 3
2 .

The most general supersymmetric extension ofLu , assuming positive powers ofD, becomes then

L5
]

]t
2~D42DF1lFD !,

wherel is a constant, dimensionless parameter.
When the superpotentialF is zero, it reduces to the heat operator, while ifj50 andu50 it

reduces toLu .
The parameterl already appeared in the analysis of Mathieu1 for all supersymmetric exten

sions of the KdV equation. The casel51 was related to the integrable supersymmetric extens
of the KdV equation. We will consider in what followsl51.

There are two supersymmetric extensions ofd(x2x8).
d(x2x8)d(u2u8) andd(x2x82uu8)5d(x2x8)2uu8d8(x2x8) are both invariants unde

the supersymmetric transformations,

x→x1uh, u→u1h,

x8→x81u8h, u8→u81h. ~2!

We may then consider two Green’s functions according to each possible initial condition. W
denote the corresponding Green’s function byK t(x,x8,u,u8) andGt(x,x8,u,u8), respectively.

The Green’s function for the potentialF, as a function of the source pointq5(x8,0) and field
point p5(x,t), is to be a functionK t(x,x8,u,u8), Gt(x,x8,u,u8) having values inL and satis-
fying LK t50,LG t50 when t.0, while limt↓0K t5d(x2x8)d(u2u8), limt↓0Gt5d(x2x8)
2uu8d8(x2x8).

K t andGt are related by

2D8K t5Gt ,

in which

D85
]

]u8
1u8

]

]x8
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is the superderivative with respect to (x8,u8).
The Green’s functionK t may then be expressed as

K t~x,x8;u,u8!5Kt~x2x8,u2u8!2^D̃@F~ x̃,ũ !K t̃~ x̃2x8,ũ2u8!#Kt2 t̃~x2 x̃,u2 ũ !& x̃, t̃ ,ũ

1^^D̃@F~ x̃,ũ !K t̃~ x̃2x8,ũ2u8!#D5 @F~x5 ,u5 !Kt52 t̃~x52 x̃,u52 ũ !#

3Kt2 t5~x2x5 ,u2u5 !& x̃, t̃ ,ũ&x5 ,t5,u52¯,

where

Kt~x2x8,u2u8!5gt~x2x8!~u2u8!,

0, t̃ , t5,¯,t,

D̃5 ũ
]

] x̃
1

]

]ũ
,

and

^•& x̃, t̃ ,ũ5E ]

]ũ
~• !u ũ50 dx̃ d t̃.

The integration onx̃ is over R, the integration on thet̃ variable is according to the abov
ordering while the integration on the odd coordinate means@]/]ũ#ũ50 and it must be performed
in the order indicated in our formula. We will show that this series expansion is convergent,
the assumption of bounded potentials.

The generic term of the expansion may be constructed from the previous one rep
Kt2 t5(x2x5 ,u2u5 ) by D̂@F( x̂,û)Kt̂2 t5( x̂2x5 ,û2u5 )#Kt2 t̂(x2 x̂,u2 û) and performing an overal
integration onx̂,û, t̂ where this point is an intermediate one witht5, t̂,t.

The explicit expansion forGt turns out to be, after some calculations,

Gt~x,x8;u,u8!5gt~x2x82uu8!2^F~ x̃,ũ !gt̃~ x̃2x82 ũu8!gt2 t̃~x2 x̃2uũ!& x̃, t̃ ,ũ

1^^F~ x̃,ũ !gt̃~ x̃2x82 ũu8!F~x5 ,u5 !gt52 t̃~x52 x̃2u5 ũ !gt2 t5~x2x52uu5 !& x̃, t̃ ,ũ&x5 ,t5,u5

2¯ .

The generic term of the expansion may be constructed from the previous one rep
gt2 t5(x2x52uu5 ) by F( x̂,û)gt̂2 t5( x̂2x52 ûu5 )gt2 t̂(x2 x̂2uû) and performing an overall integra
tion on x̂,û, t̂ where this point is an intermediate one witht5, t̂,t.

In the bosonic limit, whenj(x)50 and u5u850, the integration on the odd variablesũ
becomes straightforward and the formula reduces to

Gt~x,x8;0,0!uj505gt~x2x8!2^u~ x̃!gt̃~ x̃2x8!gt2 t̃~x2 x̃!& x̃, t̃

1^^u~ x̃!gt̃~ x̃2x8!u~x5 !gt52 t̃~x52 x̃!gt2 t5~x2x5 !& x̃, t̃&x5 ,t52¯ .

This is exactly the Green’s functionG for the operatorLu5] t2D2u(x). If we assumeu(x)
to be bounded and continuous:

uu~x!u,M ,

it then follows, using the semigroup property for the Green’s function, that
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uGt~x,x8!u,etMgt~x2x8!.

It may also be shown that the convergent expansion forGt(x,x8) is equal to the Feynman–Ka
formula,

Gt~x,x8!5E dWt~x,x8!expS 2E
2 t/2

1 t/2

u„x~s!…dsD ,

wheredWt(x,x8) denotes the Wiener measure for the continuous paths betweenx8 andx. When
u(x) is real and bounded both formulas are exactly the same. However, the Feynman–K
mula may be established even whenu(x) is bounded from below andD1u(x) is ~essentially!
self-adjoint, while the expansion in terms of the potential is valid whenu is bounded without
assuming the self-adjoint property of the operator.

Gt(x,x8) is positive. This property arises directly from the Feynman–Kac formula.
It also satisfies

Gt~x,x8!5Gt~x8,x!,

under the interchange of the positions of the field point and the source one.
In the next section we will analyze these properties for the supersymmetric extensions

considering.

IV. THE SUSY GREEN’S FUNCTION AND THE SKdV HIERARCHY

The Green’s functionGt depends onx, u andx8, u8 and on the components of the superp
tential u andj. In order to analyze the transformation law, under supersymmetry, ofGt we will
write explicitly its dependence onu andj, Gt(x,x8;u,u8;u,j). Under the supersymmetric trans
formations:

x→x1dx5x2hu,

u→u1du5u1h,

F→F1dF5F2hu~x!1huj8~x!,

the components ofF transforms as

u→u1du5u2hj8,

j→j1dj5j2hu.

Gt is then invariant under these transformations. That is,

Gt~x1dx,x81dx8;u1du,u81du8;u1du,j1dj!5Gt~x,x8;u,u8;u,j!. ~3!

To show this invariance property ofGt we notice that

~F1dF!~ x̃,ũ !5F~ x̃2d x̃,ũ2dũ!.

We then evaluate the left hand member of~3! using the previous expansion formula and perfo
a change of variable at each intermediate pointx̃,ũ:

x̃→ x̃15 x̃2d x̃,

ũ→ ũ15 ũ2dũ,
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with a Jacobian equal to 1.
We then use the property that the combination (x52 x̃2u5 ũ) is invariant under this change o

coordinates. We end up with the relation~3!.
The other symmetry of the SUSY Green’s functionGt is

Gt~x,x8;u,u8;u,j!5Gt~x,x8;u8,u;u,j!. ~4!

It follows by performing changes of variables on the time arguments at each integrand on
term of the expansion. In terms of the components ofGt it means

Gt~x,x8;u,u8!5At~x,x8!1u8Bt~x,x8!1uCt~x,x8!1uu8Dt~x,x8!,

At~x,x8!5At~x8,x!,

Bt~x,x8!5Ct~x8,x!,

Dt~x,x8!52Dt~x8,x!.

We will now evaluateGt by performing all integrations on the odd variables. We start eva
ating Gt(x,x8;0,0;u,j). We denote

x̃, t̃⇒x5 ,t55Gt52 t̃~x5 ,x̃!, the bosonic propagator;

x̃, t̃ x5 ,t552
1

2

~x52 x̃!

~ t52 t̃ !
gt52 t̃~x52 x̃!; the fermionic propagator.

An arrow followed by a vertexj(x5 ) denotes multiplication of the propagator by the vertex a
integration on the corresponding coordinatesx5 ,t5.

The Green’s function atu5u850 may then be expressed by

Gt~x,x8;0,0;u,j!5x8,t8⇒x,t1x8,t8⇒j j⇒x,t1x8,t8⇒j j⇒j j⇒x,t

1x8,t8⇒j j⇒j j⇒j j⇒x,t1¯ .

It can be shown that this expansion on the fermionic vertexj is convergent providedu(x) is
bounded andj(x) is bounded in the following sense. It is possible to express the product

j~x5 !j~x5 !5
1

2
~x2x5 ! f ~x5 ,x̃!, ~5!

since the left hand member is antisymmetric onx̃↔x5 . We assume then that

uu~x!u,M ,

f ~x5 ,x̃!,M2. ~6!

The square arises from dimensional arguments. In fact, let us remember that@j#523/2 and
@u#522 and hence@ f # must be24. After replacing~5! in the expression ofGt(x,x8;0,0;u,j),
the contributions of the fermionic propagator times the fermionic vertices may be worked o
terms of derivatives ofgt . One may then use~6! and the semigroup properties forgt to obtain a
bound for the series expansion ofGt(x,x8;0,0;u,j).

The complete expression forGt(x,x8;u,u8), expressed in terms of its value atu5u850, is
the following:
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Gt~x,x8;u,u8!5Gt~x,x8,0,0!2u^G t̃ 2t8~ x̃,x8,0,0!j~ x̃!g
t2 t̃
8 ~x2 x̃!& x̃, t̃

1u8^j~ x̃!g
t̃ 2t8
8 ~ x̃2x8!Gt2 t̃~x,x̃,0,0!& x̃, t̃

2uu8^^j~ x̃!g
t̃ 2t8
8 ~ x̃2x8!Gt52 t̃~x5 ,x̃;0,0!j~x5 !g

t2 t5
8 ~x2x5 !& x̃, t̃&x5 ,t5 .

Just as in the bosonic case,Gt possesses an asymptotic expansion:

Gt~x,x8,u,u8!5gt~x2x82uu8!(
k50

`
tk

k!
Gk~x,x8!,

in which each term has the form

Gk~x,x8!5Ak~x,x8!1uBk~x,x8!1u8Ck~x,x8!1uu8Dk~x,x8!.

The approximation ofGt by its asymptotic expansion proves thatAk , Bk , Ck , Dk have the same
x,x8 symmetry as noted before. As before,Gk is constructed from the potentialF(x)5j(x)
1uu(x) by an iterative procedure starting withG0(x,x8)51.

Formally equatingx with x8 andu with u8 we define

gk~x!5Ak~x,x!12uB~x,x!.

This must be a polynomial inj(x), u(x), and their derivatives. But it turns out to be expressi
as a polynomial inF5j1uu,DF5u1u]xj,D2F5]xj1u]xu,... .

These polynomials can be seen as elements of the free supersymmetric derivation rin
single fermionic generator, but in the notationF5a1 ,DF5a2 ,... .

The first few such polynomials are

g252a2 ,

g652a613a2
222a1a3 ,

g105~2a10110a2a615a4
2210a2!32~4a1a71a3a5215a1a2a3!.

They have been shown to be gradients of conserved quantities of the SKdV1 equation, whose
unknown functionV(x,t) is to satisfy

V t52D6V13V~D3V!13„~DV!~D2V!….

The symmetry of the asymptotic Green’s function permits the derivation, after several ca
tions, of the recursive algorithm,

D2gn145~D612a1D324a2D21a3D22a4I !gn2a1l n ,

D2l n52a2Dgn1a3gn .

The members of the super KdV hierarchy are then given byMgn with

M5D523a1D22a2D22a3I .

In particularMg2 is the super KdV equation of Mathieu,1 the same one appearing above.
One may use necessary and sufficient conditions arising from the exact sequence esta

in Sec. II to showgn are the gradients of conserved quantities of the SKdV hierarchy.
                                                                                                                



se-

ain the

erator,

r and
bosonic
e is no

d with
lgebraic
more
g, for

1729J. Math. Phys., Vol. 45, No. 5, May 2004 Supersymmetric exact sequence

                    
V. CONCLUSIONS

We introduced the freeN51 supersymmetric derivation ring. We established the exact
quence of supersymmetric rings and linear transformations:

OpA← A← A← A←R←0

D f← f

Mh← h

Lg1Lg* ← g.

Several of these relations were already known in the literature.2,12

We used necessary and sufficient conditions arising from this exact sequence to obt
essential relations between conserved quantities, gradients, and theN51 super KdV hierarchy. We
combine these algebraic conditions together with an analytical analysis of the superheat op

L5
]

]t
2~D42DF1FD !.

We found an explicit series expansion for the Green’s function of the superheat operato
discussed its properties. The expansion is convergent under the assumption of bounded
and fermionic potentials as established in Sec. IV. This analysis may be relevant since ther
rigorous Feynman–Kac formula for the fermionic case.

Finally we show that the asymptotic expansion whent→01 of the Green’s function ofL ,
evaluated over its diagonal, generates all the members of theN51 super KdV hierarchy.

The exact sequence of SUSY rings and linear transformations may also be constructe
N.1 SUSY generators; we hope to discuss this extension elsewhere. We expect that the a
construction established in the first part of this work may have a natural extension for
general finite-dimensional quantum systems. This would be of great help in understandin
example, the quantum behavior of the supermembrane and superD-brane theories.15–17
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The polysymplectic formalism in local field theory, developed by Gu¨nther@J. Diff.
Geom.25, 23 ~1987!#, is revised. A new approach and new results on momentum
maps and reduction are given. ©2004 American Institute of Physics.
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I. INTRODUCTION

Günther’s paper1 gives a geometric Hamiltonian formalism for field theories. The cru
device is the introduction of a vector-valued generalization of a symplectic form, call
polysymplectic form. One of the advantages of this formalism is that one only needs the ta
and cotangent bundle of a manifold to develop it.

In this paper our purpose is, first, to clarify the Gu¨nther’s formalism, second, give new resu
on momentum maps and reduction for this formalism.

We describe his polysymplectic formalism using a standard notation as that in
Abraham–Marsden2 book. We show that the polysymplectic structures used by Gu¨nther to de-
velop his formalism could be replaced by thek-symplectic structures defined by Awane.3–5 So this
formalism could be called thek-symplectic formalism.

We believe that this clarifies Gu¨nther’s paper.1 We present new examples of the formalism
new results about momentum maps, and we extend the reduction procedures by Marsd
Weinstein and Kostant-Souriau to polysymplectic manifolds.

Let us remark here that the polysymplectic formalism developed by Sardanashvily
co-workers,6,7 based on a vector valued form on some associated fiber bundle, is a dif
description of classical field theories of first order than the polysymplectic formalism propos
Günther.

In Secs. II–IV we develop the Gu¨nther’s formalism: in Sec. II the field theoretic phase spa
is introduced as the Whitney sum (Tk

1)* Q of k-copies of the cotangent bundleT* Q of a manifold
Q. This space is the canonical example of polysymplectic manifold. A particular case of poly
plectic manifolds are thek-symplectic manifolds~see Refs. 3–5, 8, and 9!.

The field theoretic state space is introduced in Sec. II as the Whitney sumTk
1Q of k-copies of

the tangent bundleTQ of a manifoldQ. This manifold has a canonicalk-tangent structure define
by k tensor fields of type~1, 1! satisfying certain algebraic properties. Thek-tangent manifolds
were introduced by de Leo´n et al.,10,11 and they generalize the tangent manifolds~see Refs.
12–17!.

Section III is devoted to give a geometric interpretation of the second order partial differe
equations. Here we show that these equations can be characterized using the canonicalk-tangent
structure ofTk

1Q, which generalizes the case of Classical Mechanics.
Hamiltonian and Lagrangian formalisms are developed in Sec. IV. We present two ne

a!Electronic mail: angelmrey@edu.xunta.es
b!Electronic mail: modesto@zmat.usc.es
17300022-2488/2004/45(5)/1730/22/$22.00 © 2004 American Institute of Physics
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amples, the electrostatic equations as an example of the Hamiltonian formalism, and the th
a vibrating string as an example of the Lagrangian formalism.

We prove that the Lagrangian formalism can be developed using the canonicalk-tangent
structure ofTk

1Q, or the Legendre transformation by Gu¨nther.1

A natural extension of these formalisms is the geometric description of first order cla
field theories given in terms ofk-cosymplectic manifolds. This description can be found in Re
18 and 19.

In Sec. V we discuss symmetries and conservation laws of classical field theories in te
momentum maps generalizing the concept of momentum map in mechanics. Some res
conservation laws and a Noether theorem obtained by Gu¨nther1 are recalled. We extend the resul
about momentum maps inT* Q andTQ, to the polysymplectic manifolds (Tk

1)* Q andTk
1Q. In

fact we show that the conservation law, given in Theorem 4.2.2 of Abraham–Marsden,2 for a
symplectic manifold, can be extended to (Tk

1)* Q. We also present a generalized Noether theor
on Tk

1Q, which is a generalization of Corollary 4.2.14 by Abraham–Marsden.2

Reduction for symplectic manifolds is generalized to the polysymplectic structures in Se
So, we obtain ‘‘the reduced phase space’’Mm of a polysymplectic manifold, we give an explic
realization ofMm for M5(Tk

1)* Q, and we reduce the HamiltonianH:(Tk
1)* Q→R to Mm . An

example of reduction for the left action ofG on (Tk
1)* G, whereG is a Lie group, is presented. W

study the particular caseG5SO(3)3¯

k
3SO(3).

Finally, let us remark that the reduction problem was also discussed in the different f
works of the classical field theory, the GIMMSY20 paper is probably the most ambitious progra
to develop full description of the reduction theory, not only on the finite dimensional setting b
multisymplectic form, but also on the infinite dimensional setting of the associated Cauchy s

II. POLYSYMPLECTIC MANIFOLDS

A. The cotangent bundle of k 1-covelocities of a manifold

Let Q be a differentiable manifold of dimensionn, tQ :TQ→Q its tangent bundle and

tQ* :T* Q→Q its cotangent bundle. Let us denote by (Tk
1)* Q5T* Q%¯

k
% T* Q the Whitney sum

of k copies ofT* Q, with projection mapt* :(Tk
1)* Q→Q, t* (a1(q),...,ak(q))5q.

(Tk
1)* Q can be canonically identified with the vector bundleJ1(Q,Rk)0 of k1-covelocities of

the manifold Q, the manifold of 1-jets of maps with target at 0PRk and projection map
t* :J1(Q,Rk)0→Q, t( j q,0

1 s)5q, say,

J1~Q,Rk!0[T* Q%¯

k

% T* Q,

j q,0
1 s[~ds1~q!, . . . ,dsk~q!!,

wheresA5pA+s:Q→R is theAth component ofs, andpA :Rk→R is the canonical projection
1<A<k. For this reason we shall also call to (Tk

1)* Q the bundle of k1-covelocities of the
manifold Q.

If ( qi) are local coordinates onU#Q, then the induced local coordinates (qi ,pi), 1< i<n,
on T* U5(tQ* )21(U), are given by

qi~aq!5qi~q!, pi~aq!5aqS ]

]qi ~q! D , ~1!

and the induced local coordinates (qi ,pi
A), 1< i<n, 1<A<k, on (Tk

1)* U5(t* )21(U) are given
by

qi~a1~q!,...,ak~q!!5qi~q!, pi
A~a1~q!,...,ak~q!!5aA~q!S ]

]qi ~q! D .
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Let us denote by$r 1 ,...,r k% the canonical basis ofRk.
Definition II.1 (Günther1): A closed nondegenerateRk-valued 2-form,

v̄5 (
A51

k

vA^ r A ,

on a manifold M of dimension N is called apolysymplectic form.The pair (M ,v̄) is called a
polysymplectic manifold.

We shall introduce now thecanonical polysymplectic structureon (Tk
1)* Q. The canonical

polysymplectic structurev̄5(A51
k (v0)A^ r A , on (Tk

1)* Q is defined by

~v0!A5~tA* !* ~v0!, 1<A<k ,

wheretA* :(Tk
1)* Q→T* Q is the projection on theAth-copyT* Q of (Tk

1)* Q, andv052du0 is
the canonical symplectic structure ofT* Q, beingu0 the Liouville 1-form defined by

u0~aq!~X̃aq
!5aq~~tQ* !* ~aq!~X̃aq

!!, aqPT* Q, X̃aq
PTaq

~T* Q!.

One can also define the 2-forms (v0)A by (v0)A52d(u0)A where (u0)A5(tA* )* u0 . Thus
the canonical symplectic structure onT* Q is locally given by

v052du052d~pi dqi !5dqi∧dpi , ~2!

and the canonical polysymplectic structure ((v0)1 ,...,v0)k) on (Tk
1)* Q is locally given by

~v0!A52d~u0!A52d~pi
A dqi !5dqi∧dpi

A . ~3!

Definition II.2 (Günther1): A polysymplectic formv̄ on a manifold M is calledstandardiff for
every point of M there exists a local coordinates system such thatvA is written locally as in (3).

So the canonical polysymplectic formv̄ on (Tk
1)* Q is standard.

B. The tangent bundle of k 1-velocities of a manifold

For an arbitrary manifoldQ, let us denote byTk
1Q the Whitney sumTQ%¯

k
% TQ of k copies

of TQ, with projectiont:Tk
1Q→Q, t(v1(q),...,vk(q))5q.

Tk
1Q can be identified with the manifoldJ0

1(Rk,Q) of thek1-velocities ofQ, that is, 1-jets of
maps with source at 0PRk and with projection mapt:Tk

1Q→Q, t( j 0,q
1 s)5s(0)5q, say

J0
1~Rk,Q![TQ%¯

k
% TQ,

j 0,q
1 s[~v1~q!, . . . ,vk~q!!,

whereq5s(0) andvA5s* (0)@(]/]tA) (0)#.
So we shall callTk

1Q the tangent bundle of k1-covelocities of Q. If ( qi) are local coordinates
on U#Q then the induced local coordinates (qi ,v i), 1< i<n, on TU5tQ

21(U) are given by

qi~vq!5qi~q!, v i~vq!5vq~qi !,

and the induced local coordinates (qi ,vA
i ), 1< i<n, 1<A<k, on Tk

1U5t21(U) are given by

qi~v1~q!,...,vk~q!!5qi~q!, vA
i ~v1~q!,...,vk~q!!5vA~q!~qi ! .

We shall introduce now thecanonical k-tangent structureon Tk
1Q.

Definition II.3: For a vector Xq at Q, and for A51,...,k, we define its vertical A-lift (Xq)A as
the vector on Tk

1Q given by
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~Xq!A~v1~q!,...,vk~q!!5
d

ds
~v1~q!,...,vA21~q!,vA~q!1sXq ,vA11~q!,...,vk~q!! us50

for all points (v1(q),...,vk(q))PTk
1Q.

In local coordinates we have

~Xq!A5ai
]

]vA
i ~4!

for a vectorXq5ai (]/]qi).
Thecanonical k-tangent structureon Tk

1Q is the set (S1,...,Sk) of tensor fields of type~1, 1!
defined by

SA~v !~Zv!5~t* ~v !~Zv!!A, for all ZvPTv~Tk
1Q!, v5~v1~q!,...,vk~q!!,

for eachA51,...,k.
From ~4! we have in local coordinates

SA5
]

]vA
i ^ dqi . ~5!

The tensorsSA can be regarded as the (0,...,0,1
A

,0,...,0)-lift of the identity tensor onQ to Tk
1Q

defined by Morimoto.21

Remark II.1:The k-tangent manifolds were introduced as a generalization of the tan
manifolds by de Leo´n et al.10,11The canonical model of these manifolds isTk

1Q with the structure
given by (S1,...,Sk).

To develop later the Lagrangian formalism, we shall construct now a polysymplectic stru
on Tk

1Q, for each regular LagrangianL:Tk
1Q→R, using its canonicalk-tangent structure.

Definition II.4: A Lagrangian L:Tk
1Q→R is called regular if and only if

detS ]2L

]vA
i ]vB

j DÞ0, 1< i , j <n, 1<A,B<k. ~6!

Let us consider the 1-forms (uL)A5dL+SA , 1<A<k. In a local coordinates system (qi ,vA
i )

we have

~uL!A5
]L

]vA
i dqi , 1<A<k. ~7!

Introducing the following 2-forms (vL)A52d(uL)A , 1<A<k, one can easily prove the
following proposition.

Proposition II.1: L:Tk
1Q→R is a regular Lagrangian if and only if((vL)1 , . . . ,(vL)k) is a

polysymplectic structure on Tk
1Q. j

This polysymplectic structure, associated toL, was also introduced by Gu¨nther1 using the
Legendre transformation.

The Legendre mapFL:Tk
1Q→(Tk

1)* Q, was introduced by Gu¨nther,1 and we rewrite it as
follows: if (v1(q), . . . ,vk(q))P(Tk

1)qQ,

@FL~v1~q!, . . . ,vk~q!!#A~wq!5
d

ds
L~v1~q!, . . . ,vA~q!1swq ,...,vk~q!! us50 ,

for eachA51,...,k. We deduce thatFL is locally given by
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~qi ,vA
i !→S qi ,

]L

]vA
i D . ~8!

In fact, from ~7! and ~8!, we easily obtain the following Lemma.
Lemma II.1: For every1<A<k, (vL)A5(FL)* (v0)A , where (v0)1 , . . . ,(v0)k are the

2-forms of the canonical polysymplectic structure. j

Then, from~8! we obtain the following.
Proposition II.2: Let L be a Lagrangian. The following conditions are equivalent: (1) L

regular, (2) FL is a local diffeomorphism. (3)((vL)1 , . . . ,(vL)k) is a polysymplectic structure on
Tk

1Q. j

III. SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS ON Tk
1Q

A. k -vector fields

Let M be an arbitrary manifold andt:Tk
1M→M its tangent bundle ofk1-velocities.

Definition III.1: A section X:M→Tk
1M of the projectiont will be called a k-vector fieldon

M .

SinceTk
1M is the Whitney sumTM %¯

k
% TM of k copies ofTM, we deduce that ak-vector

field X defines a family ofk-vector fieldsX1 , . . . ,Xk on M by projectingX onto every factor.
Definition III.2: An integral section of the k-vector field(X1 , . . . ,Xk) passing through a point

xPM on M is a mapf:U0,Rk→M , defined on some neighborhood U0 of 0PRk, such that

f~0!5x, f* ~ t !S ]

]tA ~ t ! D5XA~f~ t !! f or all t PU0 , 1<A<k, ~9!

or equivalently,f satisfies X+f5f (1), wheref (1) is the first prolongation off defined by

f (1):U0,Rk→Tk
1M ,

t→f (1)~ t !5 j 0
1f t , f t~ t̄ !5f~ t̄ 1t !,

for all t̄ ,tPRk such that t̄1tPU0 .
In local coordinates,

f (1)~ t1, . . . ,tk!5S f i~ t1, . . . ,tk!,
]f i

]tA ~ t1, . . . ,tk! D , 1<A<k , 1< i<n. ~10!

We say that ak-vector field (X1 ,...,Xk) on M is integrable if there is an integral sectio
passing through each point ofM .

Remark III.1:Let us consider the trivial bundlep:E5Rk3M→Rk. A jet field g on p ~see
Ref. 22! is a section of the projectionp1,0:J1p[Rk3Tk

1M→E[Rk3M . If we identify each
k-vector fieldX on M with the jet fieldg5( idRk,X), that isg(t,q)5(t,X1(q), . . . ,Xk(q)), then
the integral sections of the jet fieldg correspond to thesolutionsof the k-vector fieldX.

We remark that iff is an integral section of ak-vector field (X1 , . . . ,Xk) then each curve on

M defined byfA5f+hA , wherehA :R→Rk is the natural inclusionhA(s)5(0,...,0,s
A

,0,...,0), is
an integral curve of the vector fieldXA on M , with 1<A<k.

B. Second order partial differential equations on Tk
1Q

The aim of this section is to characterize the integrablek-vector fields onTk
1Q such that their

integral sections are canonical prolongations of maps fromRk to Q.
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Definition III.3: A k-vector field on Tk
1Q, that is, a sectionj[(j1 , . . . ,jk):Tk

1Q→Tk
1(Tk

1Q)
of the projectiontT

k
1Q :Tk

1(Tk
1Q)→Tk

1Q, is a second order partial differential equation~SOPDE! if

and only if it is also a section of the vector bundle Tk
1(t):Tk

1(Tk
1Q)→Tk

1Q, where Tk
1(t) is defined

by Tk
1(t)( j 0

1s)5 j 0
1(t+s).

From a direct computation in local coordintes we obtain that the local expression of a SO
j is

jA~qj ,vC
j !5vA

i ]

]qi 1~jA!B
i ~qj ,vC

j !
]

]vB
i , 1<A<k. ~11!

From ~9!, ~10!, and~11! we deduce the following proposition.
Proposition III.1: Letj be an integrable k-vector field on Tk

1Q. The necessary and sufficien
condition forj to be a second order partial differential equation is that its integral sections
first prolongationsf (1) of mapsf:Rk→Q. That is

jA~f (1)~ t !!5~f (1)!* ~ t !S ]

]tA ~ t ! D ,

for all A51, . . . ,k. These mapsf will be called solutions of the SOPDEj.
From ~10! and ~11! we have the following.
Proposition III.2: f:Rk→Q is a solution of the SOPDEj5(j1 , . . . ,jk), locally given by

(11), if and only if

]2f i

]tA]tB ~ t !5~jA!B
i ~f (1)~ t !!.

If j:Tk
1Q→Tk

1(Tk
1Q) is an integrable SOPDE, then for all integral sectionss:U,Rk→Tk

1Q
we have (t+s)(1)5s, wheret:Tk

1Q→Q is the canonical projection.
Now we show how to characterize the SOPDE’s using the canonicalk-tangent structure of

Tk
1Q.

Definition III.4: The Liouville vector field C on Tk
1Q is the infinitesimal generator of th

following flow:

R3Tk
1Q→Tk

1Q,

~s,~v1~q!,...,vk~q!!!→~es v1~q!,...,es vk~q!! ,

and in local coordinates has the form

C5(
i ,B

vB
i ]

]vB
i . ~12!

We can writeC5C11¯1Ck whereCA are the canonical vector fields onTk
1Q given by the

following flows:

R3Tk
1Q→Tk

1Q,

~s,~v1~q!,...,vk~q!!!→~v1~q!,...,vA21~q!,es vA~q!,vA11~q!,...,vk~q!! .

In local coordinates,

CA5(
i

vA
i ]

]vA
i . ~13!
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From ~5!, ~11!, ~12!, and~13! we deduce the following.
Proposition III.3: A k-vector field j5(j1 , . . . ,jk) on Tk

1Q is a SOPDE if and only if
SA(jA)5CA , for all 1<A<k, where(S1, . . . ,Sk) is the canonical k-tangent structure on Tk

1Q.

IV. HAMILTONIAN AND LAGRANGIAN FORMALISMS

A. Hamiltonian formalism

We recall the Hamilton formalism developed by Gu¨nther1 using polysymplectic structures
showing that the role played by symplectic manifolds in classical mechanics is here played
polysymplectic manifolds.

Let (M ,vA ,1<A<k) be a polysymplectic manifold and let us consider the vector bun
morphismV] defined by

V]: Tk
1M→T* M ,

~14!

~X1 , . . . ,Xk!→V]~X1 , . . . ,Xk!5 (
A51

k

ıXA
vA .

Definition IV.1: Let H:M→R be a function on M. Any k-vector field(X1 , . . . ,Xk) on M such
that

V]~X1 , . . . ,Xk!5dH ~15!

will be called an evolution k-vector field on M associated with the Hamiltonian function H.
It should be noticed that in general the solution to the above equation is not unique. In fa

solutions are given by (X1 , . . . ,Xk)1(kerV]).
If M is a standard manifold we have coordinates (qi ,pi

A) on M . Then from Definition III.2,
~14! and ~15! we deduce the following.

Proposition IV.1: If (X1 , . . . ,Xk) is an integrable evolution k-vector field associated to H,
then its integral sectionsf(tB)[(f i(tB),f i

A(tB)) are solutions of the Hamilton field equation
corresponding to H,

]H

]qi 52 (
A51

k ]f i
A

]tA ,
]H

]pi
A 5

]f i

]tA , 1< i<n, 1<A<k. ~16!

Remark IV.1:Thek-symplectic manifolds were introduced in Awane3–5 and they coincide with
the standard polysymplecticmanifolds. In the Hamiltonian formalism Gu¨nther uses a standar
polysymplectic manifold in order to have local coordinates (qi ,pi

A), which is equivalent to con-
sider ak-symplectic manifold. We explain this now.

Definition IV.2 (Awane3): A k-symplectic structure on a manifold M of dimension N5n
1kn is a family(vA ,V;1<A<k), where eachvA is a closed 2-form and V is an integrabl
nk-dimensional distribution on M such that

(i) vAcV3V
50, (i i) ù

A51

k

kervA5$0%.

In this case(M ,vA ,V) is called a k-symplectic manifold.
Theorem IV.1 (Awane3): Let (vA ,V;1<A<k) be a k-symplectic structure on M. About

every point of M we can find a local coordinate system(qi ,pi
A), 1< i<n, 1<A<k, such that

vA5dqi∧dpi
A , 1<A<k. ~17!

The canonical model ofk-symplectic manifolds is also (Tk
1)* Q and the canonica

k-symplectic structure (vA ,V;1<A<k), on (Tk
1)* Q is given by
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vA5~v0!A5~tA* !* ~v0!, V~ j q,0
1 s!5ker~t* !* ~ j q,0

1 s!.

Therefore, the 2-forms of the canonical polysymplectic structure and the cano
k-symplectic structure on (Tk

1)* Q coincide.
From ~17! we know that the standard polysymplectic structures and thek-symplectic struc-

tures coincide. Indeed, ifv̄5(A51
k vA^ r A is a standard polysymplectic structure onM , given a

local adapted coordinate system (qi ,pi
A) we can define, locally, the distributionV, of dimension

nk, by dq15¯5dqn50. Then, (v1 ,...,vk ,V) is a k-symplectic structure onM .
For this reason, the Gu¨nther’s formalism, called polysymplectic formalism, could be cal

k-symplectic formalism.
Example IV.1:We shall use the above formalism to obtain an intrinsic version for the e

trostatic equations. ConsiderR3 with a metric g with componentsgi j . Let s:R3→R be the
electric potential andP5(P1 ,P2 ,P3):R3→R3 the electric field. Denote by (t1,t2,t3) the standard
coordinates onR3, and setAg5Adetgij . By r (t) we denote the scalar function which gives t
density of electric charge onR3.

In this example we suppose thatr (t) is constantr (t)5r , that is, the distribution of the electri
charge is constant onR3, and that the metricg on R3 is the Euclidean metric.

Let us consider onM5(T3
1)* R the canonical polysymplectic structure ((v0)1 ,(v0)2 ,(v0)3).

We denote by (q,p1,p2,p3) the local coordinates on (T3
1)* R induced by the standard coordina

(q) on R, and define a Hamiltonian functionH:(T3
1)* R→R by

H~q,p1,p2,p3!54prq1
1

2 (
A51

3

~pA!2 .

Consider the equation

V]~X1 ,X2 ,X3!5 (
A51

3

ıXA
~v0!A5dH, ~18!

where (X1 ,X2 ,X3) is a 3-vector field on (T3
1)* R.

Let f:R3→(T3
1)* R,f(t)5(c(t),c1(t),c2(t),c3(t)) be an integral section of an evolutio

3-vector field which is a solution of~18!. Then we obtain

4pr 52S ]c1

]t1 1
]c2

]t2 1
]c3

]t3 D , c A5
]c

]tA , 1<A<3,

which are the electrostatic equations, and then the componentsc(t) and (c1(t),c2(t),c3(t)) of f
are the electric potentials and the electric fieldP5(P1 ,P2 ,P3) on R3, respectively. So Eq.~18!
is a geometric version of the electrostatic equations.

B. Lagrangian formalism

In classical mechanics the symplectic structure of Hamiltonian theory and the tangent
ture of Lagrangian theory play complementary roles~see Refs. 13, 15, and 16!.

In this section, we recall the Lagrangian formalism developed by Gu¨nther1 using the polysym-
plectic structures. Here we can see how the polysymplectic structures and thek-tangent structures
play also a complementary role in field theory.

Given a Lagrangian function of the formL5L(qi ,vA
i ) one obtains, by using a variationa

principle, thegeneralized Euler–Lagrange equationsfor L:

(
A51

k
d

dtA S ]L

]vA
i D 2

]L

]qi 50, vA
i 5

]qi

]tA . ~19!
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Let L:Tk
1Q→R be a regular Lagrangian and let us consider the polysymplectic stru

((vL)1 , . . . ,(vL)k) on Tk
1Q defined by L. Let us observe that whenL is regular then

((vL)1 , . . . ,(vL)k ,V) is a k-symplectic structure onTk
1Q.

Let VL
] :Tk

1(Tk
1Q)→T* (Tk

1Q) be the morphism defined by ((vL)1 , . . . ,(vL)k) as in~14!, we
can set the following equation:

VL
]~X1 , . . . ,Xk!5dEL , ~20!

whereEL5C(L)2L, andC is the Liouville vector field onTk
1Q.

Proposition IV.2: Let L be a regular Lagrangian. Ifj5(j1 ,...,jk) is a solution of (20) then it
is a SOPDE. Moeover ifj is integrable then the solutions ofj are solutions of the Euler–Lagrange
equations (19).

Proof: It is a direct computation in local coordinates using~6!, ~7!, ~11!, and~12!. j

Example IV.2:In this example we consider the theory of a vibrating string. Coordinates (t1,t2)
are interpreted as the time and the distance along the string, respectively. Iff(t1,t2) denotes the
displacement of each point of the string as function of the timet1 and the positiont2, the motion
equations are

s
]2f

]~ t1!2 2t
]2f

]~ t2!2 50, ~21!

wheres andt are certain constants of the mechanical system.
We shall show that the equations~21! can be described as the Euler–Lagrange equat

associated to a LagrangianL defined on the jet bundleTk
1Q with Q5R andk52. Let us denote by

(x,v1 ,v2) the coordinates ofT2
1R and consider the Lagrangian

L: T2
1R→R,

~x,v1 ,v2!→ 1
2 ~sv1

22tv2
2!.

SinceL is regular there exists a polysymplectic structure, ((vL)1 ,(vL)2), associated toL
given in local coordinates by (vL)15s dv1∧dx, (vL)252t dv2∧dx.

The energyEL5C(L)2L is locally given byEL5 1
2 (sv1

22tv2
2) and

dEL5sv1 dv12tv2 dv2 . ~22!

Now we consider the mapVL
] :T2

1(T2
1R)→T* (T2

1R), and let us suppose that there exis
(j1 ,j2) solution of the equation

VL
]~j1 ,j2!5ıX1

~vL!11ıX2
~vL!25dEL , ~23!

then, from Proposition IV.2 we know that (j1 ,j2) is a SOPDE. Let us suppose that (j1 ,j2)
PT2

1(T2
1R) are locally given by

jA5vA

]

]x
1~jA!1

]

]v1
1~jA!2

]

]v2
, 1<A<2, ~24!

thus, if (j1 ,j2) is a solution ofVL
](j1 ,j2)5dEL , from ~22! and ~24! we have

s~j1!12t~j2!250. ~25!

If f:R2→R, f5f(t1 ,t2) is a solution ofj5(j1 ,j2), then from Proposition III.2 and~25!
we obtain
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05s~j1!12t~j2!25s
]f

]t1
2 2t

]f

]t2
2 ,

thus equation~23! is a geometric version for the equations~21!.

V. THE MOMENTUM MAP

Let G be a Lie group andG its Lie algebra. We shall use the notationsGk5G3¯

k
3G and

Gk* 5(G3•••
k

3G)* .
The adjoint representation Ad:G→Aut(G) induces, for anygPG, the map Adg

k :G k→G k

defined by

Adg
k~j1 ,...,jk!5~Adgj1 ,...,Adgjk! , ~j1 ,...,jk!PGk,

and thus an actionF:G3Gk→G k, defined by

F~g,h!5Adg
k~h! , gPG, h5~h1 ,...,hk!PGk,

and we shall call it thek-adjoint actionof G on G k.
The representation Adk:G→Aut(G k), g→Adg

k , induces adk5(Adk)* (e):G→End(G k),
which is given by

adj
k~j1 ,...,jk!5~adjj1 ,...,adjjk! , jPG,~j1 ,...,jk!PG k ,

where adjjA5@j,jA#.
Now, for anygPG we define Adg

k* :G k* →G k* by

Adg
k* ~m!5m+Adg

k , mPG k* ,

and we definek-coadjoint actionF:G3G k* →G k* by

F~g,m!5Adg21
k* ~m! , gPG, mPG k* . ~26!

The representation Adk* :G→Aut(G k* ), g→Adg
k* , induces adk* 5(Adk* )* (e):G

→End(G k* ), given by

~adj
k* ~a!!~j1 ,...,jk!5~a+adj

k!~j1 ,...,jk! , aPG k* ,~j1 ,...,jk!PG k.

Definition V.1: Let(M ,v1 ,...,vk) be a polysymplectic manifold. An actionF:G3M→M of
the Lie group G on M, is called polysymplectic ifFg* vA5vA for all gPG and all A51,...,k.

If G5TeG is the Lie algebra of the Lie groupG, then for anyjPG we consider the funda
mental vector fieldjM defined by

jM~x!5~Fx!* ~e!~j!5
d

ds
F~expsj,x! us50 , xPM .

Definition V.2: Let (M ,v) be a symplectic manifold with a symplectic actionC:G3M
→M . The map J:M→G* is said to be a momentum map for the actionC if

i jM
v5dĴ~j! , f or all jPG, ~27!

where Ĵ(j):M→R is the map defined by Jˆ (j)(x)5J(x)(j) , xPM .
Taking into account~14! we introduce the following definition.
Definition V.3: Let(M ,v1 ,...,vk) be a polysymplectic manifold. The map J:M→G k* is said

to be a momentum map for the actionF if
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(
A51

k

i (jA)M
vA5dĴ~j1 ,...,jk! , f or all ~j1 ,...,jk!PG3¯

k
3G , ~28!

where Ĵ(j1 ,...,jk):M→R is the map defined by

Ĵ~j1 ,...,jk!~x!5J~x!~j1 ,...,jk! , xPM .

Our definition of momentum map coincides with the definition given by Gu¨nther1 in Remark
6.6. Let us observe that ifJ is a momentum map

d~ Ĵ~0,...,0,j
A

,0,...,0!!5 i jM
vA , ;jPG, 1<A<k. ~29!

Definition V.4: A momentum map J:M→(G3¯

k
3G)* is calledAdk* -equivariant if

J~Fg~x!!5Adg21
k* J~x! , ;gPG,xPM . ~30!

In the following theorem, we resume Theorem 6.2, Proposition 6.8, and Theorem 6.
Günther,1 given by ~i!, ~ii !, and~iii !, respectively.

Theorem V.1: Let F be a polysymplectic action of G on M. Let H be a G-invariant Hamil-
tonian function, and letf:U→M be an integral section of a evolution k-vector field
((XH)1 ,...,(XH)k) associated with the Hamiltonian function H.

(i) Let us suppose thatF is a strongly polysymplectic action, which means

i jM
vA5dFj

A , f or all jPG, 1<A<k, ~31!

for some function Fj :M→Rk. Then Trace d(Fj+f)50, that is

(
A51

k

d~Fj
A+f!~ t !S ]

]tA ~ t ! D50.

(ii) Let us suppose thatF has momentum map J. Then Trace d(P+f)50, that is

(
A51

k

d~PA+f!~ t !S ]

]tA ~ t ! D50,

where PA5 Ĵ(0,...,0,j
A

,0,...,0):M→R for all jPG.
(iii) Let us assume thatV52du andu are G-invariant. Then Trace d(u(jM)+f)50, that is

(
A51

k

d~uA~jM !+f!~ t !S ]

]tA ~ t ! D50, f or all jPG.

Proof: It is a consequence of~9!, ~14!, ~28!, ~31! and the fact thatH is G-invariant. j

Günther1 remarks that~i! and ~ii ! are a version of the classical Noether theorem, which s
that the infinitesimal generators of canonical transformations induce conserved currents;~iii ! is the
usual version of the field theoretic Noether theorem.

The following theorem, which generalizes the Theorem 4.2.10 in Abraham–Marsden,2 will
allow us to construct momentum maps for the manifolds (Tk

1)* Q andTk
1Q. It is equivalent to the

Proposition 6.9 in Gu¨nther.1
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Theorem V.2: Let F be a polysymplectic action of the Lie group G on the polysymple
manifold (M ,v1 ,...,vk). If we assume that the polysymplectic structurevA is exact, that isvA

52duA , and the action leaves eachuA invariant, that isFg* uA5uA for all gPG, then J:M

→(G3¯

k
3G)* defined by

J~x!~j1 ,...,jk!5 (
A51

k

~uA!~x!~~jA!M~x!! , xPM , ~j1 ,...,jk!PG3¯

k
3G, ~32!

is an Adk* -equivariant momentum map for the actionF.
Proof: SinceL(jA)M

uA50 we obtaini (jA)M
duA52d(uA(jA)M) , and from ~28! we obtain

~32!. To prove Adk* -equivariance we must show that

Ĵ~j1 ,...,jk!~Fg~x!!5Adg21
k* J~x!~j1 ,...,jk!5J~x!~Adg21j1 ,...,Adg21jk!,

that is,

(
A51

k

uA~~jA!M !~Fg~x!!5 (
A51

k

uA~x!~~Adg21jA!M~x!!.

But this follows immediately from the identity (Adg21j)M5(Fg)* jM , jPG, together with
the invariance of eachuA underFg . j

Now, following Abraham–Marsden,2 we extend the results about momentum maps inT* Q
andTQ, to the polysymplectic manifolds (Tk

1)* Q andTk
1Q.

If f :Q→Q, is a diffeomorphism then we can define the diffeomorphismTk* f :(Tk
1)* Q

→(Tk
1)* Q, by

Tk* f ~a1~q!,...,ak~q!!5~a1~q!+ f * ~ f 21~q!!,...,ak~q!+ f * ~ f 21~q!!!.

Proposition V.1: For any diffeomorphism f:Q→Q we have (Tk* f )* (u0)A5(u0)A and
(Tk* f )* (v0)A5(v0)A , where (v0)A52d(u0)A , 1<A<k, is the canonical polysymplecti
structure on(Tk

1)* Q.
Proof: Analogous to the proof of Theorem 4.2.10 in Abraham–Marsden,2

~Tk* f !* ~u0!A5~tA* +Tk* f !* u05~T* f +tA* !* u05~~tA* !* +~T* f !* !u05~tA* !* u05~u0!A .
j

An actionF:G3Q→Q can be lifted to an actionFT* :G3(Tk
1)* Q→(Tk

1)* Q defining

FT* ~g,~a1~q!,...,ak~q!!!5~a1~q!+~Fg21!* ~Fg~q!!,...,ak~q!+~Fg21!* ~Fg~q!!!. ~33!

Let us observe that (FT* )g5Tk* Fg21, then from Proposition V.1 and Theorem V.2, w
obtain the following.

Corollary V.1: (i) If F is an action of G on Q thenFT* is a polysymplectic action of G on
(Tk

1)* Q.

(ii) FT* has anAdk* -equivariant momentum map J:(Tk
1)* Q→(G3¯

k
3G)* given by

J~u!~j1 ,...,jk!5 (
A51

k

~u0!A~u!~j (T
k
1)* Q~u!!5 (

A51

k

aA~q!~~jA!Q~q!!, ~34!

where u5(a1(q),...,ak(q)).
Proof: ~i! It is a consequence of Proposition V.1.
~ii ! It is a consequence of Theorem V.2 and the following identity:
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~u0!A~u!~~jA!(T
k
1)* Q~u!!5~~tA* !* u0!~u!~jA!(T

k
1)* Q~u!

5u0~tA* ~u!!~~tA* !* ~u!~jA!(T
k
1)* Q~u!!

5tA* ~u!~~tQ* +tA* !* ~u!~j (T
k
1)* Q~u!!!5aA~q!~~jA!Q~q!!,

where in the last identity we have used thattQ* +tA* 5t* and (t* )* (j (T
k
1)* Q)5jQ+t* . j

When the manifoldM is (Tk
1)* Q and we have a momentum mapJ on (Tk

1)* Q, then for each
fixed A51,...,k, we can define the mapJA :T* Q→G* by

JA~aq!~j!5J~0,...,0,aq

A

,0,...,0!~0,...,0,j
A

,0,...,0! , ~35!

whereaq andj are in theAth position,qPQ.

If we denote byi A :T* Q→(Tk
1)* Q the inclusion mapaq→(0,...,0,aq

A
,0,...,0) then

ĴA~j!~aq!5 Ĵ~0,...,0,j
A
,0,...,0!~0,...,0,aq

A
,0,...,0!5~ Ĵ~0,...,0,j

A
,0,...,0!+ i A!~aq! .

Lemma V.1: JA is a momentum map on T* Q.
Proof: For anyjPG, aqPT* Q, vaq

PTaq
(T* Q), we have

dĴA~j!~aq!~vaq
!5@dĴ~0,...,0,j

A

,0,...,0!~ i A~aq!!+di A~aq!#~vaq
!

5~ i j(Tk
1)* Q

vA!~ i A~aq!!@~ i A!* ~aq!~vaq
!#

5~ i j(Tk
1)* Q

~tA* !* v0!~ i A~aq!!@~ i A!* ~aq!~vaq
!#

5v0~tA* ~ i A~aq!!! ~~tA* !* ~ i A~aq!!~j (T
k
1)* Q~ i A~aq!!!,~tA* + i A!* ~aq!~vaq

!!

5v0~aq! ~jT* Q~aq!,vaq
! .

We have used that (tA* )* (j (T
k
1)* Q)5jT* Q+tA* , which holds fromtA* +F (a1 ,...,ak)

T* 5CaA
+tA* where

C:G3T* Q→T* Q is the canonical action induced by the actionF:G3Q→Q. j

The conservation law given in Theorem 4.2.2 in Abraham–Marsden2 for a symplectic mani-
fold can be extended in the following way to (Tk

1)* Q.
Proposition V.2: LetF be an action of G on Q, CT* the induced action of G on T* Q, and

FT* the induced action of G on(Tk
1)* Q.

Let J be theAdk* -equivariant momentum map given in (34) and let JQ be one of the momen
tum maps on T* Q induced by J.

If X is a vector field on(Tk
1)* Q, then we have the following.

(i) J is an integral for X if and only if JQ is an integral for all (tA* )* X, 1<A<k.
(ii) If f:Rk→(Tk

1)* Q is an integral section of an integrable evolution k-vector field
((XH)1 ,...,(XH)k) and J is an integral for all(XH)A , then J is constant alongf.

Proof: ~i! From ~28! and the identities

i jT* Q
v05dĴQ~j! , ;jPG, vA5~tA* !* v0 , ~tA* !* ~jA!(T

k
1)* Q5~jA!T* Q+tA* , ~36!

Ĵ~j1 ,...,jk!5 (
A51

k

Ĵ~0,...,0,jA

A

,0,...,0! , ~37!
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we deduce

dĴ~j1 ,...,jk!~X!5 (
B51

k

d~ ĴQ~jB!+tB* !~X!. ~38!

Let us suppose thatJ is an integral ofX. So, takingjA5j andjB50 for all BÞA we obtain from
~38! dĴQ((tA* )* X)50, for each A, 1<A<k. Therefore JQ is an integral for (tA* )* X, A
51,...,k.

Now let us suppose thatJQ is an integral for all (tA* )* X, then from~38! we deduce thatJ is
an integral forX.

~ii ! By Definition III.2 we have

05~XH!A~f~ t !!~ Ĵ~j1 ,...,jk!!5
]

]tA ~ t !~ Ĵ~j1 ,...,jk!+f!.

j

A generalized Noether theorem, which is a generalization of Corollary 4.2.14
Abraham–Marsden2 is the following.

Corollary V.2: Let G act on Q byF:G3Q→Q and let FT denote the k-tangent action
FT:G3Tk

1Q→Tk
1Q, defined by

FT~g,v1~q!,...,vk~q!!5~~Fg!* ~q!~v1~q!!,...,~Fg!* ~q!~vk~q!!!

for all (v1(q),...,vk(q))PTk
1Q, qPQ, gPG.

Let L be a regular Lagrangian on Tk
1Q with (uL)A5(FL)* (u0)A , as usually. If we suppose

that L is invariant under the actionFT, that is L+Fg
T5L, for all gPG, then we have the

following.
(i) (Fg

T)* (uL)A5(uL)A , for all gPG, A51,...,k;

(ii) the momentum map J:Tk
1Q→(G3¯

k

3G)* for the actionFT is given by

J~u!~j1 ,...,jk!5 (
A51

k

tA* ~FL~u!!~~jA!Q~q!!, ~39!

and it is Adk* -equivariant.
Proof: ~i! Using the definition ofFL and the invariance ofL under the actionFT we obtain

FL+Fg
T5Fg

T* +FL. Then, from Corollary V.1 and sinceFL+Fg
T5Fg

T* +FL we obtain easily that
(Fg

T)* (uL)A5(uL)A .
~ii ! It is a consequence of Theorem V.2 and the fact that

~uL!A~u!~jA!T
k
1Q~u!5tA* ~FL~u!!~~jA!Q~t* ~u!!!,

which can be obtained as follows:

~uL!A~u!~jA!T
k
1Q~u!5~~FL !* ~u0!A!~u!~~jA!T

k
1Q~u!!

5~tA* !* u0~FL~u!!~~FL !* ~u!~jA!T
k
1Q~u!!

5u0~tA* ~FL~u!!!~~tA* +FL !* ~u!~jA!T
k
1Q~u!!

5tA* ~FL~u!!~~tQ* +tA* +FL !* ~u!~jT
k
1Q~u!!!

5tA* ~FL~u!!~jA!Q~t* ~u!! ,

where in the last identity we have used thattQ* +tA* +FL5tQ and (tQ) (jA)T
k
1Q5jQ . j
*
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Example V.1:Let us consider any Riemannian metricg5^ , & on a manifoldQ. The Lagrang-
ian L5 1

2 gi j (q)vA
i vB

j on Tk
1Q is regular and the Legendre tranformationFL:Tk

1Q→(Tk
1)* Q is

locally given by (qi ,vA
i )→(qi ,pi

A5gi j (q)vA
j ). Then working onTk

1Q, Corollary V.2 gives the
momentum map

J~u!~j1 ,...,jk!5 (
A51

k

tA* ~FL~u!!~jA~q!!5 (
A51

k

g~q!~vA~q!,jA~q!! ~40!

for all u5(v1(q),...,vk(q))PTk
1Q.

VI. REDUCTION

Let (M ,v1 ,...,vk) be a polysymplectic manifold andF:G3M→M a polysymplectic action
of the Lie groupG on M . If G is the Lie algebra ofG we have

Tp~Gp!5$jM~p!ujPG% , ;pPM , ~41!

whereGp is the orbit ofp andjM is the fundamental vector field ofM , underF, corresponding
to j.

Let us assume that this action has an Adk* -equivariant momentum mapJ:M→G k* . For m
PG k* , we denote byGm5$gPGuAdg21

k* (m)5m% the isotropy subgroup ofG under the
k-coadjoint action. The orbit spaceMm5J21(m)/Gm is well defined. IfmPG k* is a regular value
of J, thenJ21(m) is a submanifold ofM and if we assume thatGm acts freely and properly on
J21(m) then we know thatMm is a manifold, being the canonical projectionpm :J21(m)→Mm a
submersion.

For the proof of the next theorem~which generalizes the Theorem 4.3.1 in Ref. 2! it is
important to find next result.

Lemma VI.1: Under the conditions above, for any pPJ21(m), we have the following:
(i) Tp(Gmp)5Tp(Gp)ùTp(J21(m));
(ii) T p(J21(m)) is the ((A51

k vA^ r A)-orthogonal complement of Tp(Gp).
Proof: The proof of assertion~i! is exactly the same as that in Lemma 4.3.2

Abraham–Marsden.2 The assertion~ii ! is an immediate consequence of~28! and the identity
Tp(J21(m))5ker J* (p). j

Theorem VI.1: Let (M ,v1 ,...,vk) be a polysymplectic manifold on which the Lie group a
polysymplectically and let J:M→G k* be anAdk* -equivariant momentum map for this actio
Assume thatmPG k* is a regular value of J and that the isotropy group Gm , under theAdk*
action on G k* , acts freely and properly on J21(m). Then Mm5J21(m)/Gm has a unique
polysymplectic structure((vm)1 ,...,(vm)k) with the property

pm* ~vm!A5 i m* vA , ;A51,...,k,

wherepm :J21(m)→Mm is the canonical projection and im :J21(m)→M is the inclusion.
Proof: We define (vm)A by

~~vm!A~@v#,@w# !5vA~v,w! , ;v,wPTp~J21~m!!,

where @v#5(pm)* (p)(v) and @w#5(pm)* (p)(w). Since pm and (pm)* are surjective the
2-forms (vm)A , A51,...,k are unique.

From ~ii ! in Lemma VI.1 we deduce thatvA(jM ,v)50 for all vPTp(J21(m)), therefore
sinceT[ p] (J

21(m)/Gm)5Tp(J21(m))/Tp(Gmp) we deduce from~41! that (vm)A is well defined.
The assertionpm* (vm)A5 i m* vA is evident, from it one obtains that (pm)* (d(vm)A)50, and since
pm and (pm)* are surjective thend(vm)A50.

For nondegeneracy of ((vm)1 ,...,(vm)k), suppose
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(
A51

k

~vm!A~@v#,@w# !50, for all wPTpJ21~m!,

hencevA(v,w)50 for all wPTp(J21(m)) and for all AP$1,...,k%. Now using~ii ! of Lemma
VI.1 we deduce thatvPTp(Gp) and from~i! of the same Lemma we obtain thatvPTp(Gmp).
Therefore@v#50 sinceT[ p] (J

21(m)/Gm)5Tp(J21(m))/Tp(Gmp). j

Theorem VI.2: Let us consider M5(Tk
1)* Q with the canonical polysymplectic structure. L

FT* be the polysymplectic action (33) on M and J the momentum map given by (34).
Under the assumptions of the Theorem VI.1, if H:(Tk

1)* Q→R is a Hamiltonian such that

(a) H is invariant under the actionFT*

(b) there exists an evolution k-vector field((XH)1 ,...,(XH)k) associated with H which are in
variant

~Fg
T* !* ~XH!A5~XH!A , ;A51,...,k, ;gPGm ~42!

and

J is an integral f or all ~XH!A , A51,...,k, ~43!

then we have the following.
(i) For each A51,...,k, the flow Ft

A of (XH)A leaves J21(m) invariant and commutes with th
action of Gm on J21(m), and so it induces canonically a flow Ht

A on Mm satisfyingpm+Ft
A

5Ht
A+pm .
(ii) If Y A is the generator of Ht

A , then (Y1 ,...,Yk) is an evolution k-vector field on Mm

associated with a Hamiltonian function Hm :Mm→R satisfying Hm+pm5H+ i m . Such Hm is called
the reduced Hamiltonian.

Proof: ~i! From ~43!, for eachA51,...,k and eachaPJ21(m), we haveJ(Ft
A(a))5J(a)

5m, A51,...,k, and thenFt
A

uJ21(m) :J21(m)→J21(m).

From ~42! we deduce thatFt
A+Fg

T* 5Fg
T* +Ft

A , for all gPGm , A51,...,k. This property lets
us define an induced flowHt

A on Mm , for eachA51,...,k, by Ht
A(@a#)5@Ft

A(a)#, @a#PMm .
Now the identitypm+Ft

A5Ht
A+pm , is obvious for allA51,...,k.

~ii ! SinceH is invariant under the action ofG, we can define the functionHm :Mm→R by
Hm(@a#)5H(a), for all @a#PMm . So, we have

Hm+pm5H+ i m . ~44!

Sincepm+Ft
A5Ht

A+pm , we have

~pm!* +~XH!A5YA+pm , 1<A<k. ~45!

Using i m* vA5pm* (vm)A , ~44! and ~45!, one easily proves that dHm5(A51
k i YA

(vm)A , that is,
(Y1 ,...,Yk) is an evolutionk-vector field onMm associated with the reduced Hamiltonian functi
Hm . j

Remark VI.1:If each flowFt
A preservesvA , that is (Ft

A)* vA5vA , for all A51,...,k, then
each flowHt

A preserves (vm)A , that is (Ht
A)* (vm)A5(vm)A , for all A51,...,k.

Indeed, from the fact

pm* ~Ht
A!* ~vm!A5~Ht

A+pm!* ~vm!A

5~pm+Ft
A!* ~vm!A5~Ft

A!* pm* ~vm!A5~Ft
A!* i m* vA5 i m* vA5pm* ~vm!A

and taking into account thatpm* is a surjective submersion, we obtain the assertion.
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Next, we shall show that in the case ofM5(Tk
1)* Q, the reduced manifoldMm is in fact the

k-cotangent bundle (Tk
1)* (Q/Gm) of the manifold Qm5Q/Gm if G5Gm where mPG k* is a

regular value ofJ.
Theorem VI.3: Let G act on Q and hence on(Tk

1)* Q as in (33) and let J be the
Adk* -equivariant momentum map defined in (34). We suppose that all conditions from hypo
of the Theorem VI.1 hold and that Gm acts freely and properly on Q. Additionally, we assume tha
there exist Gm-equivariant 1-forms (am)1 ,...,(am)k on Q, such that ((am)1 ,...,(am)k)
PJ21(m) and we define on(Tk

1)* Q the polysymplectic structure

~Vm!A5~v0!A2~tQ* !* d~am!A , A51,...,k,

wheretQ* :(Tk
1)* Q→Q is the canonical projection, which allow us to consider on(Tk

1)* Qm the
corresponding induced polysymplectic structure.

Then there is an induced polysymplectic embeddingFm :Mm→(Tk
1)* Qm onto a subbundle

over Qm and this mapFm is a diffeomorphism if and only ifG5Gm .
Proof: SinceT* Qm5Fm /Gm whereFm5$aqPT* Q u aq(jQ(q))50,;jPGm%, we have

~Tk
1!* Qm5~Fm /Gm! %¯

k
% ~Fm /Gm!5~Fm %¯

k
% Fm!/Gm ,

where

Fm %¯

k
% Fm5$~a1~q!,...,ak~q!!P~Tk

1!* Q u aA~q!~jQ~q!!50,;jPGm ,A51,...,k%.

On the other hand,

J21~m!5H ~a1~q!,...,ak~q!!P~Tk
1!* QU(

A51

k

aA~q!~~jA!Q~q!!5m~j1 ,...,jk!,;j1 ,...,jkPGJ ,

and we defineCm :J21(m)→Fm %¯

k
% Fm by

Cm~a1~q!,...,ak~q!!5~a1~q!2~am!1~q!,...,ak~q!2~am!k~q!! .

Since (a1(q),...,ak(q)),((am)1(q),...,(am)k(q))PJ21(m), we have that (am)A(q)(jQ(q))

5aA(q)(jQ(q))5m(0,...,0,j
A
,0,...,0) foreachA51,...,k, and thereforeCm is well defined.

The mapCm is a translation in each component and it is polysymplectic, that is, for anA
51,...,k, we have

Cm* ~~Vm!AuFm %¯

k
% Fm

!5~v0!AuJ21(m) .

In fact, a simple computation shows thatCm* ((u0)A)1(tQ* )* (am)A5(u0)AuJ21(m) . Also, Cm is an
embedding~if and only if G5Gm).

Since (am)1 ,...,(am)k areGm-equivariant and as a consequence of definition ofFT* , the map
Cm passes to the quotient defining

Fm :Mm[J21~m!/Gm→~Tk
1!* Qm[~Fm /Gm! %¯

k
% ~Fm /Gm!

by

Fm~@a1~q!,...,ak~q!# !5~@a1~q!2~am!1~q!#,...,@ak~q!2~am!k~q!# !.

Clearly Fm is an embedding~and onto if and only ifG5Gm). The induced polysymplectic
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structure ((Ṽm)A,1<A<k) on (Tk
1)* Qm defined by the polysymplectic structure ((Vm)A,1<A

<k) on (Tk
1)* Q allow us to consider the polysymplectic structure (Fm* (Ṽm)A,1<A<k) on Mm .

It is easy to see thatpm* (Fm* (Ṽm)A)5 i m* vA and from unicity of Theorem VI.1 it follows thatFm

is polysymplectic. j

Example of reduction:Let G be a Lie group and denote byL:G3G→G the action ofG on
itself by left translations, that is,Lg5Lg for all gPG. Let LT* be the induced action on (Tk

1)* G
defined in~33!. SincejG(g)5(Rg)* (e)(j) for any jPG and for anygPG, from ~34! we know
that the momentum mapJ:(Tk

1)* G→G k* of this action is

J~a1~g!,...,ak~g!!~j1 ,...,jk!5 (
A51

k

aA~g!~~jA!G~g!!5 (
A51

k

aA~g!~~Rg!* ~e!jA! ,

and thenJ21(m) is given by

H ~a1~g!,...,ak~g!!P~Tk
1!* GU(

A51

k

aA~g!~~Rg!* ~e!jA!5m~j1 ,...,jk!, ;j1 ,...,jkPGJ ,

for any mPG k* ~eachmPGk* is a regular value ofJ).
If we consider, for eachA51,...,k the right-invariant 1-form (am)A , defined by

~am!A~g!5m+ i A+~Rg21!* ~g! , ;gPG,

wherei A :G→Gk is the natural inclusion,i A(j)5(0,...,0,j
A
,0,...,0) , then

J21~m!5$~~am!1~g!,...,~am!k~g!!ugPG% ~46!

and thereforeJ21(m) can be identified withG.
By a direct computation it is easy to see that

Gm5$gPG u ~Lg!* ~am!A5~am!A , ;A51,...,k%,

which means thatGm acts onJ21(m) by left translations.
ThusJ21(m)/Gm[G/Gm[G•m,G k* , that is, the reduced phase space is naturally iden

able with the orbit ofm in G k* under thek-coadjoint action, from which we deduce~using
Theorem VI.1! that G•m is a polysymplectic manifold. Fork51 this is the statement of th
Kirillov–Konstant–Souriau theorem.

Now, we want to compute explicitly the polysymplectic structure ((vm)A ,1<A<k) on G
•m. Let r:J21(m)→G•m be the map given by ((am)1(g),...,(am)k(g))→Adg21

k* (m) so that
from Theorem VI.1r* (vm)A5 i m* (v0)A , for all 1<A<k, where ((v0)A ,1<A<k) is the canoni-
cal polysymplectic structure on (Tk

1)* G and i m :J21(m)→(Tk
1)* G is the natural inclusion.

First we computei m* (v0)A . Let us observe that

Tam(g)J
21~m!5$~am+Rg!* ~e!~j!ujPG% ,

becauseJ21(m) is the graph ofam :G→J21(m), am(g)5((am)1(g),...,(am)k(g)). Then

i m* ~v0!A~am~g!!~~am!* ~g!~~Rg!* ~e!~j!!,~am!* ~g!~~Rg!* ~e!~h!!!

5~~am!A!* v0 ~g!~~Rg!* ~e!~j!,~Rg!* ~e!~h!!

52d~am!A~g!~~Rg!* ~e!~j!,~Rg!* ~e!~h!!

52d~am!A~X̃j ,X̃h!~g!5~am!A~@X̃j ,X̃h#!~g!52~am!A~X̃[ j,h] !~g!52~m+ i A!~@j,h#!,

~47!
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whereX̃j , X̃h are the right invariant vector fields corresponding toj,hPG, respectively.
On the other hand, we obtain by a direct computation

r* ~vm!A~am~g!!~~am!* ~g!~~Rg!* ~e!~j!!,~am!* ~g!~~Rg!* ~e!~h!!!

5~vm!A~Adg21
k* m!~~Adgj!G k* ~Adg21

k* m!,~Adgh!G k* ~Adg21
k* m!!. ~48!

Therefore, from~47! and ~48! we have

~vm!A~Adg21
k* m!~jG k* ~Adg21

k* m!,hG k* ~Adg21
k* m!!52~Adg21* ~m+ i A!!~@j,h#! , ~49!

for any element Adg21
k* m P G•m.

Remark VI.2:Let us observe that the forms of the polysymplectic structure ((vm)A ,1<A
<k) on G•m coincides with the forms obtained by Awane.4,5

Example VI.1:Now we will describe the reduction in the caseG5SO(3)3¯

k
3SO(3).

A basis for the Lie algebra so(3) of the Lie group SO~3! is

E15S 0 0 0

0 0 21

0 1 0
D , E25S 0 0 1

0 0 0

21 0 0
D , E35S 0 21 0

1 0 0

0 0 0
D .

The mapj :R3→so(3):x5x1e11x2e21x3e3°X5x1E11x2E21x3E3 is an isomorphism of
the Lie algebras (R3,3) and (so(3),@ , #) where 3 denotes the vectorial product. With th
isomorphism the action of so~3! on R3 is given by

j ~x! y5S 0 2x3 x2

x3 0 2x1

2x2 x1 0
D S y1

y2

y3

D 5x 3 y . ~50!

The isomorphismk:R3→so(3)* is given byk(x)5x1E11x2E21x3E3 and so

k~x!~ j ~y!!5^x,y& , ~51!

whereE1,E2,E3 is the dual basis ofE1 ,E2 ,E3 .
It is well known that, the adjoint representation Ad:SO(3)→Aut(so(3)) is given by

AdA~ j ~x!!5 j ~Ax! . ~52!

Thus, the adjoint representation Ad:SO(3)3¯

k
3SO(3)→Aut(so(3)* %¯

k
% so(3)* ) is given by

Ad(A1 ,...,Ak)~ j ~x1!,...,j ~xk!!5~ j ~A1x1!,...,j ~Akxk!! , ~53!

where (A1 ,...,Ak)PSO(3)3¯

k
3SO(3), (x1 ,...,xk)PR33¯

k

3R3.
We shall use the following isomorphisms:

so~3!* %¯

k
% so~3!* →

F
~so~3!3¯

k
3so~3!!* ,

~a1 ,...,ak!→F~a1 ,...,ak!,

whereF(a1 ,...,ak)(X1 ,...,Xk)5( i 51
k a i(Xi), and

~so~3!3¯

k
3so~3!!* →

F21

so~3!* %¯

k
% so~3!* ,
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m→F21~m!5~m+ i 1 ,...,m+ i k!,

wherei j (X)5(0,...,0,X
j
,0,...,0).

From ~51! we have

F~k~x1!,...,k~xk!!~ j ~y1!,...,j ~yk!!5 (
a51

k

^xa ,ya& . ~54!

Let us denote byG5SO(3)3¯

k
3SO(3) and byG5so(3)%¯

k
% so(3) its Lie algebra. Now

we shall describe thek-coadjoint orbit of

mPG k* 5~~so~3! %¯

k
% so~3!!3¯

k
3~so~3! %¯

k
% so~3!!!* .

Let m:G3¯

k
3G→R be an element ofG k* . We definemaPG* by ma5m+ i a where i a :G→G

3¯

k
3G is the inclusion in thea-factor, that is,i a(X1 ,...,Xk)5(0,...,0,(X1 ,...,Xk),0,...,0) .

Let (m̂a)bPR3 such thatma5F(k((m̂a)1),...,k((m̂a)k)). Then from~26!, ~52!, and~54! the
k-coadjoint action is given by

F~~A1 ,...,Ak!,m!5Ad(A
1
21 ,...,A

k
21)

k*
~m!5(

a,b

k

^Ab~m̂a!b , j 21~2 !& . ~55!

Thus, using the above identifications, from~55! we deduce that thek-coadjoint action

F:G3~G3¯

k
3G!* →~G3¯

k
3G!*

with G5SO(3)3¯

k
3SO(3) andG5so(3)%¯

k
% so(3), can beidentified with the natural action

F:G3~R33¯

k
3R3!3¯

k
3~R33¯

k
3R3!→~R33¯

k
3R3!3¯

k
3~R33¯

k
3R3!,

F~~A1 ,...,Ak!,~~x1!1 ,...,~x1!k!,...,~~xk!1 ,...,~xk!k!!

5~~A1~x1!1 ,...,Ak~x1!k!,...,~A1~xk!1 ,...,Ak~xk!k!! .

Then, thek-coadjoint orbit (SO(3)3¯

k
3SO(3))•m of m is

$~~A1~m̂1!1 ,...,Ak~m̂1!k!,...,~A1~m̂k!1 ,...,Ak~m̂k!k!! u AaPSO~3!, a51,...,k%,S2~ i~m̂1!1i !

3¯3S2~ i~m̂1!ki !3¯

k
3S2~ i~m̂k!1i !3¯3S2~ i~m̂k!ki !,

whereS2(i(m̂a)bi) is the sphere of radiusi(m̂a)bi in R3, a,b51,...,k. Obviously each orbit is

diffeomorphic toS23¯

k
3S2.

From the example of reduction above we know that the orbit (SO(3)3¯

k
3SO(3))•m is a

polysymplectic manifold. From~49! and~52! we obtain the polysymplectic structure ofG•m : if
A[(A1 ,...,Ak)PG, X5(X1 ,...Xk),Y5(Y1 ,...Yk)PG, the polysymplectic structure is given b

~vm!a~A•m!~XG k* ~A•m!,YG k* ~A•m!!5 2 (
b51

k

^Ab~m̂a!b ,xb3yb& , a51,...,k,

where j (xb)5Xb , j (yb)5Yb . In fact we have
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~vm!a~~A1 ,...,Ak!•m!~XG k* ~~A1 ,...,Ak!•m!,YG k* ~~A1 ,...,Ak!•m!!

5 2Ad(A1 ,...,Ak)21* ~m+ i a!~@~X1 ,...,Xk!,~Y1 ,...,Yk!# !

5 2Ad(A1 ,...,Ak)21* ~m+ i a!~@X1 ,Y1#,...,@Xk ,Yk# !

52 ~~m+ i a!+Ad(A1 ,...,Ak)21!~ j ~x13y1!,...,j ~xk3yk!!

52 ~m+ i a!~ j ~A1
21~x13y1!!,...,j ~Ak

21~xk3yk!!!

5 2F~k~~m̂a!1!,...k~~m̂a!k!!( j ~A1
21~x13y1!!,...,j ~Ak

21~xk3yk!!)

5 2 (
b51

k

^~m̂a!b ,~Ab!21~xb3yb!&5 2 (
b51

k

^Ab~m̂a!b ,xb3yb&,

where the Lie bracket@X,Y# in so~3! is identified with the vectorial productx3y in R3.
In the casek51, it is well known that the coadjoint orbit SO(3)•m,so(3)* .R3 is the

sphereS2(imi) of radiusimi and the symplectic structure is

vm~A•m!~XG* ~A•m!,YG* ~A•m!!52^Am̂,x3y&, k~m̂!5m ,

that is, the area element given by the normal vectorAm̂ applied to the tangent vectorsx andy.
~Also see Refs. 23–31.!
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By applying higher powers of Bogoliubov’s transformation operatorb†5n* a
1m* a† to the even and odd coherent states we construct mathematically two new
types of quantum states. Various special functions and mathematical formulations
are used to obtain the matrix elements for the states in the coherent state represen-
tation. The nonclassical nature of these states is found to be related to their quan-
tum coherence in phase space. The interference effects can also be regarded as a
consequence of the oscillatory behavior of the special functions in the structure of
the states. ©2004 American Institute of Physics.@DOI: 10.1063/1.1688434#

I. INTRODUCTION

Since the even and odd coherent states were proposed by Dodonovet al. in 19741 and Hillery
in 19872 for a single mode field they have attracted considerable attention in quantum optic
quantum properties of these states have been studied in detail,3,4 and various schemes for the
realization have been proposed.5–8 In addition, multimode even and odd coherent fields9 as well as
certain excited states related to the even and odd states10 have been investigated as important typ
of nonclassical fields. In recent years the possible application of similar superpositions of ev
odd states have been proposed as quantum entangled states which may be used to realize
teleportation.11,12

Through a new mathematical formulation we define two general classes of quantum
which are broader than the even/odd coherent states1,2 and the excited even/odd coherent state10

They are generated bym-fold application of Bogoliubov’s transformation operatorb†, also known
as the pseudocreation operator, on the even/odd coherent states to obtain what we call,
tively, the generalized excited even/odd coherent states. It is our purpose to construct thes
in the coherent state representation which can describe the relationship and properties o
states. We also examine the nonclassical behavior of several quasiprobability distributions,
influence of the phase relation between two parametersm andn on the probability distributions of
these nonclassical fields. Our results show that these states are in fact two new general cl
quantum states which exhibit remarkable nonclassical characteristics different from prev
known states.1,2,10,13–15

II. REPRESENTATIONS OF TWO NEW CLASSES OF QUANTUM STATES

We consider a single mode of the field described in terms of the boson annihilation
creation operatorsa anda†. The evenua&E and oddua&O coherent states can be defined as
eigenstates of the double-annihilation operatoraa,

aaua&E(O)5a2ua&E(O) , ~1!

a!Electronic mail: wuweio@yahoo.com
17520022-2488/2004/45(5)/1752/10/$22.00 © 2004 American Institute of Physics
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and may be written explicitly as

ua&E5
1

Acosh~ uau!2 (
n50

`
a2n

A~2n!!
u2n&, ~2!

ua&O5
1

Asinh~ uau!2 (
n50

`
a2n11

A~2n11!!
u2n11&. ~3!

The even/odd coherent states can also be written as the superposition of two coherent staua&
and u2a&, which have the form

ua&E5 1
2 exp~ 1

2 uau2!@coshuau2#21/2~ ua&1u2a&), ~4!

ua&O5 1
2 exp~ 1

2 uau2!@sinhuau2#21/2~ ua&2u2a&), ~5!

whereu6a& is a coherent state. We now make use of a linear transformation of the annihi
and creation operators or the Bogoliubov transformation operatorb, defined by

b5b~m,n!5ma1na†, ~6!

where the complex parametersm andn obey umu22unu251, m,nPC. The basic operatorsb and
b† satisfy the same canonical commutation relation asa,a†, i.e.,

@b~m,n!,b†~m* ,n* !#51. ~7!

This transformation operatorb was first used by Bogoliubov in solid state physics16 and later
by Yuen to derive his two-photon coherent states.14 Its Hermitian adjoint operatorb†(m* ,n* ) is

b†~m* ,n* !5n* a1m* a†. ~8!

We now apply the Bogoliubov operatorb†(m* ,n* ) m-times to the even/odd coherent states1,2

based on the above representation and obtain two new types of quantum states, the gen
excited even coherent statesua,m,m,n&E ~GEECS! and the generalized excited odd cohere
statesua,m,m,n&O ~GEOCS!. They may be written, respectively, as

ua,m,m,n&E5NE
1/2b†mua&E ~9!

and

ua,m,m,n&O5NO
1/2b†mua&O , ~10!

wherem is a non-negative integer, andNE
1/2 andNO

1/2 are normalization constants.
In order to examine the properties of the generalized excited even/odd coherent stat

need to obtain the matrix elements based on the coherent state representations of Eqs.~9! and~10!.
The general matrix elementsAl,r

n,m(a* ,b) andBl,r
n,m(a* ,2b) can be defined as

Al,r
n,m~a* ,b!5^aubnala†rb†mub&, ~11!

Bl,r
n,m~a* ,2b!5^aubnala†rb†mu2b&. ~12!

To calculate the matrix elements we need to employ the mathematical formulas of Refs. 1
and 17, so from Eqs.~6!, ~7!, and~8! we have
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b†m
~m* ,n* !5@n* a1m* a†#m5 (

k50

[m/2]

(
M50

m22k

dM ,m22k2M
m ~m* ,n* !a†Mam22k2M, ~13!

wheredM ,N
m (m* ,n* ) is a c-number factor defined by

dM ,N
m ~m* ,n* !5

m!

M !N! ~m2M2N!!!
~n* !1/2(m2M1N)~m* !1/2(m1M2N). ~14!

We thus have

Al,r
n,m~a* ,b!5^aubnala†rb†mub&

5 (
M ,N

m

(
K,L

n

dM ,N
m ~m* ,n* !dK,L

n ~m,n!a* LbN^aua(K1l)a†(M1r)ub&, ~15!

Bl,r
n,m~a* ,2b!5^aubnala†rb†mu2b&

5 (
M ,N

m

(
K,L

n

dM ,N
m ~m* ,n* !dK,L

n ~m,n!a* L~2b!N^aua(K1l)a†(M1r)u2b&. ~16!

We now calculate the matrix elements explicitly. To do this, we set

GK1l
M1r~a* ,b,2a* b!5^aub&FK1l

M1r~a* ,b,2a* b!, ~17!

where

FK1l
M1r~a* ,b,2a* b!5H b [(K1l)2(M1r)]~M1r!!L (M1r)

[(K1l)2(M1r)]~2a* b!,
~k1l!>~m1r!,

a* [( M1r)2(K1l)]~K1l!!L (K1l)
[( M1r)2(K1l)]~2a* b!,

~k1l!<~m1r!.

~18!

In deriving ~13!–~16! we have employed the associated Laguerre polynomialLm
(k)(x) and the

normally ordered expression of the operator

Lm
(k)~x!5 (

n50

~m1k!! ~2x!n

~m2n!!n! ~n1k!!
~k.21!, ~19!

ana†m55 n!m!(
l 50

m
a†lal 1n2m

~m2 l !! l ! ~ l 1n2m!!
, n>m,

n!m!(
l 50

m
a†(l 1m2n)al

~m2 l !! l ! ~ l 1m2n!!
, n<m.

~20!

To determine the upper and lower limits of the fourfold summation(M ,N
m (K,L

n we use Eq.~14! to
find the optimum values ofM andN. It is easy to see that for any numbersr andk we may choose
N to be

N5m2M22r 5H 2k22r whenm2M is even,

~2k11!22r whenm2M is odd.
~21!

If we select r 50 then N is a series of non-negative integers 2k11,2k,2k21, . . . ,2,1,0. This
shows that the even and odd numbers appear alternately, and the upper limit ofM is 2k11 or 2k,
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M5H m22k, k50,1,2, . . . @m/2#,

m2~2k11!, k50,1,2, . . . @~m21!/2#.
~22!

Similarly, whenK is even or odd, we have

L5H 2k22r whenn2K is even,

~2k11!22r whenn2K is odd,
~23!

and so

K5H n22k, k50,1,2, . . . @n/2#,

n2~2k11!, k50,1,2, . . . @~n21!/2#.
~24!

Furthermore, we can rewrite the matrix elementAl,r
n,m(a* ,b) of Eq. ~15! as the sum of an even an

odd term,

^aubnala†rb†mub&5 (
M ,N

m

(
K,L

n

dM ,N
m ~m* ,n* !dK,L

n ~m,n!a* LbN^aua(K1l)a†(M1r)ub&

5g2k1g2k11 . ~25!

Next we note that after inserting Eqs.~21!–~24! into ~14! we obtain

g2k5 (
k50

[m/2]

(
r 50

k GK1l
m22k1rm!m* (m22k1r )n* (2k2r )b (2k22r )

~m22k!! ~2k22r !! ~2r !!!

3 (
k50

[n/2]

(
r 50

k
n!m (n22k1r )n (2k2r )a* (2k22r )

~n22k!! ~2k22r !! ~2r !!!

5m* m (
k50

[m/2] GK1l
m22k1rm!

~m22k!! ~2k!! S iAn*

m* D 2k

H2kS iAn*

m*
b D

3mn (
k50

[n/2] GK1l
n22k1rn!

~n22k!! ~2k!! S iAn

m D 2k

H2kS iAn

m
a* D ~26!

and

g2k115 (
k50

[ ~m21!/2]

(
r 50

k GK1l
m2(2k11)1rm!m* [m2(2k11)1r ]n* [(2k11)2r ]b [(2k11)22r ]

@m2~2k11!#! @~2k11!22r #! ~2r !!!

3 (
k50

[ ~n21!/2]

(
r 50

k
n!m [n2(2k11)1r ]n [(2k11)2r ]a* [(2k11)22r ]

@n2~2k11!#! @~2k11!22r #! ~2r !!!

5m* m (
k50

[ ~m21!/2] GK1l
m2(2k11)1rm!

@m2~2k11!#! ~2k11!! S iAn*

m* D 2k11

H2k1! S iAn*

m*
b D

3mn (
k50

[ ~n21!/2] GK1l
n2(2k11)1rn!

@n2~2k11!#! ~2k11!! S iAn

m D 2k11

H2k11S iAn

m
a* D . ~27!

In deriving ~26! and ~27! we have used the even and odd order Hermite polynomials
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H2k~x!5~2k!! (
r 50

k
~21!rx2k22r

~2k22r !! ~2r !!!
, ~28!

H2k11~x!5~2k11!! (
r 50

k
~21!rx(2k11)22r

@~2k11!22r #! ~2r !!!
. ~29!

In Eqs.~26!–~27!, we should take note of the range ofm andn. It can be proved that, no matte
whetherm and n are even or odd, we always haveg2k5g2k11 for k5@m/2#,@(m21)/2# ~or
@n/2#,@(n21)/2#). We now rewrite the upper and lower limits ofM by replacing 2k @or (2k
11)] with s and ofK by replacing 2k @or (2k11)] with t, so that

Al,r
n,m~a* ,b!5^aub&(

s50

m

(
t50

n

Fn1l2t
m1r2s~b,a* ,2a* b!Rs

m~m* ,n* ,b!St
n~m,n,a* !, ~30!

Bl,r
n,m~a* ,2b!5^au2b&(

s50

m

(
t50

n

Fn1l2t
m1r2s~2b,a* ,a* b!Rs

m~m* ,n* ,2b!St
n~m,n,a* !,

~31!

where

Fq
p~b,a* ,2a* b!5H p!b (q2p)Lp

(q2p)~2a* b!, q>p,

q!a* (p2q)Lq
(p2q)~2a* b!, q<p,

~32!

Rs
m~m* ,n* ,b!5m* m~s

m!S iAn*

m* D s

HsS 1

i
An*

m*
b D , ~33!

St
n~m,n,a* !5mn~ t

n!S iAn

m D t

HtS 1

i
An

m
a* D . ~34!

In order to solve the matrix element equations~30! and~31! by means of a general approach, w
modify the elements by replacinga* with 2a* andb with 2b. We can show the following:

~i! when (n1l)2(m1r) is even,

Al,r
n,m~a* ,b!5Al,r

n,m~2a* ,2b!,
~35!Bl,r

n,m~a* ,2b!5Bl,r
n,m~2a* ,b!;

~ii ! when (n1l)2(m1r) is odd,

Al,r
n,m~a* ,b!52Al,r

n,m~2a* ,2b!,
~36!Bl,r

n,m~a* ,2b!52Bl,r
n,m~2a* ,b!.

The normalization constantsNE andNO in Eqs.~9! and ~10! can thus be readily obtained i
the coherent state representation whenm5n, a5b, andl5r50,

NE5E^aubmb†mua&E5
exp~ uau2!@Am~a!1Bm~a!#

2 cosh~ uau2!
, ~37!

NO5O^aubmb†mua&O5
exp~ uau2!@Am~a!2Bm~a!#

2 sinh~ uau2!
. ~38!

We note here thatJl,r
m (a) and Kl,r

m (a) are related by a set of the sum of the matrix eleme
Al,r

m (a* ,a) andBl,r
m (a* ,2a),
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Jl,r
m ~a!5Jl,r

m,m~a* ,a!5Al,r
m,m~a* ,a!1Bl,r

m,m~a* ,2a!, ~39!

Kl,r
m ~a!5Kl,r

m,m~a* ,a!5Al,r
m,m~a* ,a!2Bl,r

m,m~a* ,2a!, ~40!

Jm~a!5Am~a!1Bm~a!,Km~a!5Am~a!2Bm~a!, ~41!

wherel andr are non-negative integers.

III. QUASIPROBABILITY FUNCTION OF THE QUANTUM STATES

We shall use the general matrix elementsAl,r
n,m(a* ,b), Bl,r

n,m(a* ,2b), Al,r
n,m(2a* ,2b), and

Bl,r
n,m(2a* ,b) defined above, and calculate the quantum statistical properties of these new

of quantum states. It is well known that the quasiprobability distribution functions are extre
useful in the mathematical description of quantum mechanical systems.13,18–20They include theP
function,Q function, and Wigner function, which are all closely related to the quantum statis
behavior of a microscopic system. Our results are expected to give distribution functions c
teristic of quantum fields.21 To this purpose we first consider the fact that theP, Q, and W
functions may be obtained in the integral form of the density matrixr5 (1/p) *P(z)uz&^zud2z,
whereuz& is the coherent state. We have thus established the relationship between the mat
the mathematical structure of the GEECS and GEOCS in the coherent state space.

A. P function representation

To determine theP distribution of the ua,m,m,n&E(O) state it is customary to use th
Glauber–Sudarshan representation, so the density matrix is

r5ua,m,m,n&E(O)(O)E^a,m,m,nu5E PGEE(GEO)~z!uz&^zud2z. ~42!

By the double-Fourier transform22 we have

PGEE(GEO)~z!5
euzu2

p2 E d2b^2bua,m,m,n&E(O)(O)E^a,m,m,nub&3exp@zb* 2z* b#, ~43!

where@zb* 2z* b# is an imaginary variable which is known to be integrable and satisfies

E d2b exp@6~zb* 2z* b!#5p2d2~z!. ~44!

We thus have

PGEE~a,z!5
euzu22uau2

Jm~a! (
s50

m

(
t50

m

Rs
m~m* ,n* ,a!St

n~m,n,a* !
] (2m2s2t)

]z(m2s)]z* (m2t) $~21!s1td2~z2a!

1d2~z1a!1~21!sd~z2a!d~z1a!* 1~21! td~z1a!d~z2a!* %, ~45!

PGEO~a,z!5
euzu22uau2

km~a! (
s50

m

(
t50

m

Rs
m~m* ,n* ,a!St

n~m,n,a* !
] (2m2s2t)

]z(m2s)]z* (m2t) $~21!s1td2~z2a!

1d2~z1a!2~21!sd~z2a!d~z1a!* 2~21! td~z1a!d~z2a!* %. ~46!

In deriving ~45! and ~46!, we have utilized Eqs.~33! and ~34!, and the relationship

Rs
m~m* ,n* ,2a!5~21!sRs

m~m* ,n* ,a!,
~47!

St
m~m,n,2a* !5~21! tSt

m~m,n,a* !,
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which can be easily proved fora52a, a* 52a* . From the doubled-function we see that
PGEE(a,z) andPGEO(a,z) are extremely singular, which is a characteristic typical of noncla
cal states. In particular, for the parameter valuesn50 and m51, the distribution functions
PGEE(a,z) andPGEO(a,z) reduce toPEE(a,z) andPEO(a,z), which are theP functions of the
excited even/odd coherent states from previously known states.10

B. Q function representation

The quasiprobabilityQ function, also known as the Husimi function, is given in the diago
element of the density matrixr associated with the GEECS and GEOCS states,

QGEE~a,z!5
1

pJm~a! (
s50

m

(
t50

m

Rs
m~m* ,n* ,a!St

m~m,n,a* !z* (m2s)z(m2t)

3$exp@2uz2au2#1~21!s1t exp@2uz1au2#1~21! t

3exp@2z* ~z2a!2a* ~z1a!#1~21!s exp@2z* ~z1a!1a* ~z2a!#%,

~48!

QGEO~a,z!5
1

pKm~a! (
s50

m

(
t50

m

Rs
m~m* ,n* ,a!St

m~m,n,a* !z* (m2s)z(m2t)

3$exp@2uz2au2#1~21!s1t exp@2uz1au2#2~21! t

3exp@2z* ~z2a!2a* ~z1a!#2~21!s exp@2z* ~z1a!1a* ~z2a!#%.

~49!

Because the GEECS and GEOCS are superpositions of the coherent statesua& and u2a&, a
three-dimensional plot in phase space with respect to the complex numberz5x1 iy of their
QGEE(a,z) andQGEO(a,z) functions displays two peaks when argn5argm, argn52argm, and
a5a11 ia2 . Figures 1~a! and 1~b! show theQGEE(a,z) andQGEO(a,z) distributions, which can
be seen even more clearly by projecting symmetrically aboutx onto a two-dimensional comple
plane. However, we observe that for a givenm, n, andm the functionsQGEE(a,z) andQGEO(a,z)
for a Schro¨dinger-cat-like state can be analytically derived from the definitions in~9! and~10!. We
see from Fig. 1~a! that QGEE(a,z) has two split peaks which then move in opposite directio
with appropriate choices ofm andn whenm and uau are fixed, and as the parametern increases
(n520.4,20.6, and21), oscillations appear between the two peaks. As the value ofn increases,
the oscillations become more pronounced and the peaks smaller. In Fig. 1~b! for the function
QGEO(a,z), as the degree of excitationm increases the two peaks move in opposite directi
while their height decreases and their distance becomes wider forn520.8 (m50,2, and 4,
respectively!. No matter how the parametersn, m, and m are chosen for arga5 p/2, the
QGEE(a,z) andQGEO(a,z) functions always exhibit some oscillatory behavior. This is related
the negative parts of the Wigner function since theQ function can be regarded as a smooth
Wigner function.

C. Wigner function representation

The Wigner function is also a useful measure for studying the nonclassical features of
tum states. The form through the density operator associated with the coherent state repres
is given by

W~z!5
2e2uzu2

p2 E d2^2burub&exp@2~zb* 2z* b!#. ~50!

Because the above case is an imaginary variable transformation in the complex plane, we
integration and Leibnitz’s formulas,
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E d2b

p
@zubu21j* ubu1hb* #5S 2

1

z DexpS 2
jh

z D ~z>21! ~51!

and

S ]2n

]j* n]jnDe2j* j5~21!nn!e2j* jLn~2uju2!. ~52!

From Eq.~50! and after performing a two-dimensional Fourier transformation, theWGEE(a,z)
andWGEO(a,z) functions can be expressed in the following form:

WGEE~a,z!5
2e2uzu22uau2

pJm~a! (
s50

m

(
t50

m

Rs
m~m* ,n* ,a!St

n~m,n,a* !

3$exp@ uju2#Gm2t
m2s@j* ,j,uju2#1~21!s1t exp@ uhu2#Gm2t

m2s@h* ,h,uhu2#1~21! t

3exp@2h* j#Gm2t
m2s@h* ,j,h* j#1~21!s exp@2j* h#Gm2t

m2s@j* ,h,j* h#%, ~53!

WGEO~a,z!5
2e2uzu22uau2

pKm~a! (
s50

m

(
t50

m

Rs
m~m* ,n* ,a!St

n~m,n,a* !

3$exp@ uju2#Gm2t
m2s@j* ,j,uju2#1~21!s1t exp@ uhu2#Gm2t

m2s@h* ,h,uhu2#2~21! t

3exp@2h* j#Gm2t
m2s@h* ,j,h* j#2~21!s exp@2j* h#Gm2t

m2s@j* ,h,j* h#%, ~54!

wherej52z2a,h52z1a, and

FIG. 1. The Q function of QGEE(a,z) and QGEO(a,z) in the case ofa150, a252, argn5argm, for ~a! m53,
n520.4,20.6,21 and~b! n520.8, m50,2,4.
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Gq
p~j,h* ,h* j!5H ~21!pp! j (q2p)Lp

(q2p)~h* j!, q>p,

~21!qq!h* (p2q)Lq
(p2q)~h* j!, q<p.

~55!

Exact analytical expressions for the generalized excited even/odd coherent states when, m,
andm are varied can be obtained from expressions~53! and~54!. Let us look at the special cas
of arga5arg(a11ia2)5 p/2, i.e., corresponding toa150,a252. The nonclassical properties o
the GEECS and GEOCS can be seen even more clearly by projecting the three-dimension
of WGEE(a,z) andWGEO(a,z) onto the two-dimensional (x,y) plane. Figures 2 and 3 show th
distributions of theWGEE(a,z) andWGEO(a,z) contours for different values ofn, m, m, anduau.
We see thatWGEE(a,z) is a function of a complex numberz5x1 iy when argn5argm. As the
degree of excitation increases (m.1) the peak of theWGEE(a,z) function begins to split into two
peaks, which then move in opposite directions whenn520.1 andm52, as can be seen in Fig. 2
For the GEOCS state in Fig. 3, theWGEO(a,z) function also splits into two peaks whenm anduau
are fixed, and the distance between them increases asn becomes more negative. Both sets
contours are symmetrical about they50 plane, exhibiting the two mirror-symmetrical Gaussi
hills of the Wigner function distributions and reflecting the superposition of the Schro¨dinger
cat-like state. At the center where the two peaks split there are marked oscillations. We see

FIG. 2. The Wigner functionWGEE(a,z) in the case ofa150, a252, n520.1, argn5argm for m53.

FIG. 3. The Wigner functionWGEO(a,z) in the case ofa150, a252, m52, argn5argm for n520.5.
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greater the value ofm for the GEECS, the stronger the oscillation between the two highest pe
On the other hand, the GEOCS state is also greatly affected by changes inn andm.

IV. CONCLUSION

By means of specific mathematical procedures we have obtained two new classes of qu
states in the coherent state representation. The general expressions for these states r
previously known quantum states for special values of the parameters given. For example
n50 andm51, they reduce to the excited even/odd coherent states,10 which further reduce to the
even/odd coherent states whenm50.1,2 Through numerical computation of various quantum pro
erties, i.e., theP function,Q function, and Wigner function, we find that these new states exh
highly nonclassical characteristics. The quantum interference patterns are very pronounc
narrow, while parts of the central region of the Wigner function are negative. It is obvious
these results all deviate considerably from a Gaussian distribution. The oscillatory behavior
states is due to the structure of their formulation; since they are superpositions of the co
statesua& and u2a& their probability distributions undergo destructive or constructive inter
ence. We can also see that the interference effects are a consequence of the oscillatory n
the associated Laguerre and Hermite polynomials, and the exponential factors which make
functionsRs

m(m* ,n* ,b),St
n(m,n,a* ), andGq

p(h* ,j,h* j) in the Wigner function.
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We study transitions in the topological structure of a family of divergence-free
vector fieldsu(•,t) near an interior point. It is shown that structural bifurcation
occurs att0 if u(•,t0) has an isolated degenerate singular pointx0PM̊ with zero
index and nonzero Jacobian atx0 , and with nonzero acceleration in the direction
normal to the~unique! eigenspace of the Jacobian. This result is carried out by
analyzing the orbit structure ofu near such an isolated degenerate interior singular
point of u(•,t0). Applications to typical interior separation phenomena in two-
dimensional fluid flows are addressed as well. ©2004 American Institute of Phys-
ics. @DOI: 10.1063/1.1689005#

I. INTRODUCTION

The main objective of this paper is to derive a rigorous kinematic theory for the typ
interior separation phenomena in two-dimensional fluid flows. This is part of a research pro
on the use of topological ideas to study the spatial–temporal structure of 2D incompressibl
flows in physical space, along with its stability and bifurcations. This program consists of res
in two areas:~a! the study of the topological structure of divergence-free vector fields, an
evolution in time or with respect to an arbitrary parameter, and~b! the study of the structure an
evolution of velocity fields for 2D incompressible fluid flows governed by a class of equations
comprises the Navier–Stokes equations, the Euler equations, and the quasigeostrophic e
of rotating flows. The objectives of this research program are consistent with the progra
Newton and his collaborators, using in particular the vorticity in their analysis; see Ref. 6 an
reference therein.

In this paper, we address structural bifurcation for a family of divergence-free vector
u(•,t) near an interior point. Structural bifurcation near boundary singular points was carrie
by the authors in collaboration with Michael Ghil, leading to a rigorous characterization
boundary layer separation for 2D incompressible fluid flows; see Refs. 2 and 3 and the
article5 for details.

More precisely, we shall show that structural bifurcation occurs att0 if u(•,t0) has an isolated
degenerate singular pointx0PM̊ with zero index and nonzero Jacobian atx0 , and with nonzero
acceleration in the direction normal to the~unique! eigenspace of the Jacobian.

Technically speaking, the main results are carried out by analyzing the orbit structureu
near such an isolated degenerate interior singular point ofu(•,t0). We now summarize the analy
sis. For this purpose, we consider the Taylor expansion of the divergence-free vector
u(•,t) at t0 (0,t0,T)

u~x,t !5u0~x!1~ t2t0!u1~x!1o~ ut2t0u!,

a!Electronic mail: showang@indiana.edu
17620022-2488/2004/45(5)/1762/15/$22.00 © 2004 American Institute of Physics
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u0~x!5u~x,t0!,

u1~x!5
]

]t
u~x,t0!.

First we observe by the structural stability theorem, Theorem 2.4, that structural bifurc
can only occur near a degenerate singular pointx0 , i.e., the determinant of the Jacobian ofu at x0

is zero: detDu(x0)50. Generically, we only have to examine then the case where Jacobian its
not zero:Du(x0)Þ0; see Theorem 5.5.

Second, further analysis shows that a degenerate singular pointx0PM̊ of uPDr(TM)
(r>1) with nonzero JacobianDu(x0)Þ0 can only be one of the three cases:

~1! a degenerate center,
~2! a degenerate saddle such that the four orbits connected tox0 are tangent to each other atx0 ,

and
~3! a point with ind(u,x0)50 such that the angle between the two orbits connected tox0 is zero.

Again, the genericity result given in Theorem 5.5 shows that we only have to conside
structural bifurcation in the third case, i.e., near an interior degenerate singular point suc
ind(u,x0)50 and the angle between the two orbits connected tox0 is zero.

Third, whenDu(x0)Þ0 but detDu(x0)50, there is a unique eigendirection ofDu(x0) corre-
sponding to the zero eigenvalue. Lete1 be the eigenvector, ande2 is orthogonal toe1 . Then we
are able to derive the main theorems of this paper, Theorems 4.4 and 4.5. In addition to d
characterization of the structural transition near the bifurcation point, in particular, we are a
show that structural bifurcation occurs at (t0 ,x0) if x0 is an isolated degenerate singular point
u0(x), and

ind~u0,x0!50,

Du0~x0!Þ0,

u1~x0!•e2Þ0.

Fourth, the bifurcation obtained in these two theorems corresponds directly to typical in
separation phenomena in two-dimensional fluid flows, and is generic; see Theorems 5.2 a

The paper is organized as follows. In Sec. II, we recall some preliminaries, includi
structural stability theorem, and a singularity classification theory for 2D divergence-free v
fields. Section III classifies interior degenerate singular points, and identifies some useful an
to verify kinematic conditions. Section IV states and proves the main structural bifurcation
rems. Genericity and connections to interior separation phenomena of fluid flows are giv
Sec. V.

II. PRELIMINARIES

We first recall some basic facts and definitions on structural stability and bifurcatio
divergence-free vector fields. LetM,R2 be a closed and bounded domain withCr (r>1) bound-
ary ]M . Let TM be the tangent bundle ofM , andCr(TM) be the space of allCr vector fields on
M . Let

Dr~TM!5$vPCr~TM!uvnu]M50, divv50%,

wheren is the unit outward normal vector on]M andvn5v•n.
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The structural stability theorems of divergence-free vector fields with various boundary
ditions, obtained by the authors in Ref. 4, are useful in the study of structural bifurcation. Her
only introduce the structural stability theorem inDr(TM) ~for divergence-free vector fields with
no-normal flows!.

Definition 2.1: Two vector fields u,vPDr(TM) are called topologically equivalent in
Dr(TM) if there exists a homeomorphism ofw:M→M , which maps orbits of u to orbits ofv and
preserves their orientation.

Definition 2.2: A vector fieldvP is called structurally stable in Dr(TM) if there exists a
neighborhoodO,Dr(TM) of v such that for any uPO, u andv are topologically equivalent.

Definition 2.3: Let uPC1(@0,T#,Dr(TM)). We say that u(x,t) has a bifurcation in its local
structure in a neighborhood U,M of x0 at t0 (0,t0,T) if, for any t2,t0 and t0,t1 with t2

and t1 sufficiently close to t0 , the vector fields u(•,t2) and u(•,t1) are not topologically equiva-
lent locally in U,M , and we say that u(•,t) has a bifurcation at t0 in its global structure if U
5M .

A point pPM is called a singular point ofuPDr(TM) if u(p)50; a singular pointp of u is
called nondegenerate if the Jacobian matrixDu(p) is invertible;u is called regular if all singular
points are nondegenerate. Then the following theorem provides necessary and sufficient con
for structural stability of a divergence-free vector field inDr(TM).

Theorem 2.4„Ma and Wang4
…: A divergence-free vector field uPDr(TM) (r>1) is struc-

turally stable in Dr(TM) if and only if

(1) u is regular;
(2) all interior saddle points of u are self-connected; and
(3) each saddle point of u on]M is connected only to saddle points on the same conne

component of]M .

Moreover, the set of all structurally stable vector fields is open and dense in Dr(TM).
From the above definitions and the structural stability theorem, the local structural bifurc

can only occur at degenerate singularity points. For bifurcation near boundary points, we re
interested reader to Ref. 2. Here in this paper we address the bifurcation near an interior s
point.

For this purpose, letpPM be an isolated singular point ofvPCn
r (TM); then

ind~v,p!5deg~v,p!,

where deg(v,p) is the Brouwer degree ofv at p.
Let pP]M be an isolated singular point ofv, andM̃,R2 be an extension ofM , i.e., M,M̃

such thatpPM̃ is an interior point ofM̃ . In a neighborhood ofp in M̃ , v can be extended by
reflection to ṽ such thatp is an interior singular point ofṽ, thanks to the no-normal flow
condition, i.e.,v•nu]M50. Then we define the index ofv at pP]M by

ind~v,p!5 1
2 ind~ ṽ,p!.

Let pPM be an isolated singular point ofvPCn
r (TM). An orbit g of v is said to be a stable

orbit ~respectively, an unstable orbit! connected top, if the limit set v(x)5p @respectively,
a(x)5p] for xPg.

Theorem 2.5„Ref. 2…: Let pPM be an isolated singular point ofvPDr(TM), r>1. Then p
is connected only to a finite number of orbits and the stable and unstable orbits connecte
alternate when tracing a closed curve around p. Furthermore,

(1) when pPM̊ , p has2n (n>0) orbits, n of which are stable, and the other n unstable, wh
the index of p is

ind~v,p!512n,
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(2) when pP]M , p has n12 (n>2) orbits, two of which are on the boundary]M , and the index
of p is

ind~v,p!52
n

2
.

III. INTERIOR DEGENERATE SINGULARITIES

A. Characterization of degenerate singularities with nonzero Jacobian

The structural stability theorem~Theorem 2.4! suggests studying the structure of divergen
free vector fields near degenerate singular points. To this end, we now introduce some le
characterizing degenerate interior singularities with nonzero Jacobians, which are useful for
ing interior structural bifurcation.

Lemma 3.1: Let uPDr(TM) (r>1), and x0PM̊ be an isolated singular point of u. If the
index ind(u,x0)Þ1,0,21, then the Jacobian matrix

Du~x0!50. ~3.1!

Proof: By Theorem 2.5, the index of an interior singular point of a divergence-free vector
is determined by the 2n (n>0) orbits connected tox0 , i.e., ind(u,x0)512n. Hence, by assump
tion, n>3.

Let g be an orbit ofu connected tox0 . Let (x1 ,x2) be the orthogonal coordinate system wi
x0 as its origin, and with itsx1-axis tangent tog at x0 . Thenu can be expressed locally by

u~x!5S a b

c 2aD S x1

x2
D1o~ uxu!,

~3.2!

Du~x0!5Du~0!5S a b

c 2aD .

We shall prove thata5b5c50 in several steps as follows.
Step 1:We show thata5c50. By definition, thex1-axis is tangent tog at x050, which yields

lim
xPg
x→0

u2~x!

u1~x!
50. ~3.3!

In addition, for (x1 ,x2)Pg, x25o(ux1u). Hence, we infer from~3.2! and ~3.3! that

lim
xPg
x→0

u2~x!

u1~x!
5 lim

xPg
x→0

cx12ax21o~ uxu!
ax11bx21o~ uxu!

5 lim
xPg

x1→0

cx11o~ ux1u!
ax11o~ ux1u!

5
c

a
50.

Hence c50. By ind(u,x0)Þ1,21, the singular pointx0 of u is degenerate. Thereforec50
implies thata50.

Hence when ind(u,x0)Þ1,21, u can be expressed nearx050 as

u1~x!5bx21o~ uxu!,
~3.4!

u2~x!5o~ uxu!.

Step 2:Consider the case where there is another orbitg1 of u connected tox0 , and the angle
betweeng1 andg is u different from 0 andp. Then by~3.4! we deduce that
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lim
xPg1
x→0

u2~x!

u1~x!
5 lim

xPg1
x→0

o~ uxu!
bx21o~ uxu!

5tanuÞ0

which yields thatb50. Hence~3.1! holds true in this case.
Step 3:Consider the case where all orbits connected tox0 are tangent tog at x0 . Let O

PM be a sufficiently small neighborhood ofx0 , Fi (1< i<2n) be the domains inO enclosed by
the orbits connected tox0 , and theu i be the angle of the boundary ofFi at x0 . It is easy to see
that in eachFi with u i50, there exists at least a curvilinear segment, i , with x0 being its end
point, such thatu1(x)50, xP, i ~see Fig. 1!. Hence, there are at least 2(n21) curvilinear seg-
ments inO with x0 as their common end point whereu150. On the other hand, by the implic
function theorem, ifbÞ0 in ~3.4!, then there is a unique curveL,O with x0PL such that
u1(x)50, xPL, i.e., there are only two line segmentsL5,1ø,2 in O along whichu150; hence
if n>3 it follows thatb50 and~3.1! holds true.

This completes the proof of this lemma. h

Lemma 3.2: Let uPDr(TM) (r>1), and x0PM̊ be an isolated singular point of u. If the
index ind(u,x0)50, and the angleu between the two orbits connected to x0 is different from0,
then (3.1) holds true.

Proof: By Step 2 in the proof of Lemma 3.1, it suffices to prove~3.1! whenu5p. In this case
the two orbitsg1 andg2 connected tox0 form a curveG with the x1-axis tangent toG at x0 . By
Theorem 2.5, it is obvious that for anyx2.0 sufficiently small, we have

signu1~0,x2!5signu1~0,2x2!,

which, together with~3.4!, yields thatb50. This proof is complete. h

From Lemma 3.1, we see that a degenerate singular pointx0PM̊ of uPDr(TM) (r>1) with
nonzero JacobianDu(x0)Þ0 can only be one of the three cases:

~1! a degenerate center;
~2! a degenerate saddle such that the four orbits connected tox0 are tangent to each other atx0 ;

and
~3! a point with ind(u,x0)50 such that the angle between the two orbits connected tox0 is zero.

We now take a further examination of these cases.
Let x0PM̊ be an isolated degenerate singular point ofuPDr(TM) (r>1) with nonzero

Jacobian,Du(x0)Þ0. SinceDu(x0) is a degenerate matrix,Du(x) has an eigenvectore1 satis-
fying

Du~x0!e150, ue1u51. ~3.5!

Let e2 be a unit vector, which is orthogonal toe1 , and satisfies that

Du~x0!e25ae1 , ~3.6!

FIG. 1. Sketch illustrating the proof of Lemma 3.1.
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for some constantaÞ0.
For simplicity, we always take the orthogonal coordinate system (x1 ,x2) with the origin atx0 ,

x1-axis andx2-axis pointing, respectively, in thee1 and e2 directions. In this case, the matri
Du(x0) and the vectorse1 ,e2 can be written as follows:

Du~x0!5Du~0!5S 0 a

0 0D , aÞ0,

~3.7!
e15~1,0!, e25~0,1!.

Geometrically,e1 ande2 can be illustrated as in Fig. 2.

B. Index and kinematic conditions

We now make connections between the index ofu at x0 and different orders ofu in its Taylor
expansion nearx0 . Let x0PM̊ be an isolated degenerate singular point ofu, and

Du~x0!Þ0, ~3.8!

]m~u~x0!•e2!

]e1
m H 50, 1<m,n,

Þ0, m5n.
~3.9!

Under the conditions~3.8! and ~3.9!, the vector fieldu(x) has the Taylor expansion, by~3.7!, as
follows:

u~x!5 H ax21 f ~x1!1x2g1~x!,
bx1

n2x2f 8~x1!1x2
2g2~x!1o~ ux1un!, ~3.10!

wherea,bÞ0, f (x1)5o(ux1u), andgi(0)50 (i 51,2). Letk5degf be defined by

lim
z→0

f ~z!

zk 5lÞ0, k<`.

Lemma 3.3: Let x0PM̊ be an isolated degenerate singular point of u satisfying (3.8)
(3.9).

(1) If 2k.n11, then

ind~u,x0!5H 0, as n5 even,

21, as n5 odd anda•b.0 in (3.10),

1, as n5 odd anda•b,0.
(2) If either 2k,n11, or 2k5n11 and abÞ2kl2, then ind(u,x0)521.

FIG. 2. ~a! The case with index 1,~b! the case with index21, and~c! the case with index 0.
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Proof: Proof of Assertion~1!. Let

ut~x!5 H ax21t@ f ~x1!1x2g1~x!#,
bx1

n1t@2x2f 8~x1!1x2
2g2~x!1o~ ux1un!#,

where 0<t<1. Since 2k21.n, it is easy to see that there exists a neighborhoodU,M of x0

(50), such thatut(x) has only a singular pointx50 in U for all tP@0,1#. By the homotopy
invariance of the index, we derive that

ind~u0 ,x0!5 ind~u1 ,x0!5 ind~u,x0!. ~3.11!

In a neighborhood ofx50, orbits ofu05(ax2 ,bx1
n) are given by the following equations:

a

2
x2

22
b

n11
x1

n115C, 0<uCu,d. ~3.12!

Obviously, we can see from~3.12! that if n5 even, the flow ofu0 in a neighborhood ofx50 is as
shown in Fig. 2~c!. If n5 odd, whena•b.0 ~respectively,a•b,0) the flows ofu0 looks as
shown in Fig. 2~b! @respectively, as shown in Fig. 2~a!#. Thus, we derive from~3.11! this claim.

Proof of assertion (2):We take«.0 sufficiently small, and consider singular points of t
following vector field nearx50:

u«5 H ax21 f ~x1!1x2g1~x!,
bx1

n2x2f 8~x1!1x2
2g2~x!1o~ ux1un!2«.

By assumption,f can be expressed nearx50 by

f ~x1!5lx1
k1o~ ux1uk!, lÞ0, 1,k<

n11

2
.

Thus, singular points ofu« in a small neighborhood ofx50 satisfy the equation below

x252
l

a
x1

k1o~ ux1uk!,

~3.13!

bx1
n1

1

a
kl2x1

2k215«1o~ ux1u2k21!.

Obviously, when 2k21,n, or 2k215n andabÞ2kl2, ~3.13! has a unique solution

x«;S C«1/~2k21!,2
l

a
Ck«k/~2k21!D ,

where

C5H ak21l22, as 2k21,n,

a~ab1l2!21, as 2k215n and abÞkl2.

It is easy to check that

sign detDu«~x«!521, ~3.14!

for any «.0 sufficiently small. By the invariance of index sums in a small domain wit
perturbation we refer from~3.14! that ind(u,x0)521. The proof of this lemma is complete.h
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IV. STRUCTURAL BIFURCATION NEAR INTERIOR SINGULAR POINTS WITH INDEX
ZERO

A. Main theorems

Let uPC1(@0,T#,Dr(TM)) (r>1) be a one-parameter family of divergence-free vec
fields. We consider the Taylor expansion ofu(x,t) at t0 (0,t0,T),

u~x,t !5u0~x!1~ t2t0!u1~x!1o~ ut2t0u!,

u0~x!5u~x,t0!, ~4.1!

u1~x!5
]

]t
u~x,t0!.

We start with the following assumptions for the structural bifurcation.
Assumption(H1): Let x0PM̊ be an isolated degenerate singular point ofu0(x). Suppose that

ind~u0,x0!50, ~4.2!

Du0~x0!Þ0, ~4.3!

u1~x0!•e2Þ0, ~4.4!

wheree2 is the unit vector defined as in~3.6!.
Assumption(H2): Under the conditions of Assumption (H1), we also assume thatu0PCn

nearx0PM̊ for somen>2, and

]k~u0~x0!•e2!

]e1
k H 50, for 1<k,n5even,

Þ0, for k5n5even.
~4.5!

Remark 4.1:The conditions~4.2! and~4.3! imply by Lemma 3.2 that the flows ofu0 nearx0

is as shown in Fig. 2~c!, i.e., both orbits ofu0 connected tox0 are tangent to each other atx0 , and
the eigenvectore1 of Du(x0) is their common tangent vector. We shall see later that the condit
~4.2! and ~4.3! are generic for the interior structural bifurcation.

Remark 4.2:In view of fluid mechanics applications, condition~4.4! is equivalent to nonzero
acceleration of the flow in the orthogonal direction to the eigenvectore1 of Du(x0). This is a
natural condition for the structural bifurcation.

Remark 4.3:Condition~4.5! is a technical condition, which by Lemma 3.3 ensures the re
larity of the bifurcated singular points ofu(x,t) from (x0 ,t0). In addition, from~3.7! we can see
that the integer numbern satisfying~4.5! must ben>2.

The interior structural bifurcation ofu(x,t) near a singular point with index zero is describ
by the following theorems.

Theorem 4.4:Let uPC1(@0,T#,Dr(TM)) (r>1) satisfy Assumption(H1). Then

(1) the vector field u has a bifurcation in its local structure at(x0 ,t0). More precisely, u(x,t) has
no singular point in a small neighborhood of x0 for any t,t0 ~or t.t0) sufficiently close to
t0 , and u(x,t) bifurcates at least two singular points from x0 as t.t0 ~or t,t0), and

(2) if x0PM̊ is a unique singular point with index zero of u0, then u(x,t) has a bifurcation in its
global structure at t5t0 .

Theorem 4.5: Let uPC1(@0,T#,Dr(TM)) (r>1) satisfy Assumption(H2). Then, u(x,t)
bifurcates from(x0 ,t0) exactly two nondegenerate singular points, one of which is a center
another is a saddle.
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Remark 4.6:Both Theorems 4.4 and 4.5 study structural bifurcation ofu near an interior point
x0 with ind(u0,x0)50. When ind(u0,x0) is different from zero, interior structural bifurcation ma
not occur as we shall see in Examples 5.6 and 5.7. In addition, Theorem 5.5 shows th
bifurcation given in Theorems 4.4 and 4.4 is generic.

This is quite different from the structural bifurcation near a boundary singular point; see
2 and 3. We have shown in Refs. 2 and 3 that under suitable necessary conditions,u(x,t) will
always be a structural bifurcation near a boundary singular point with index different from21/2.
Reference 2 considers vector fields with free-slip boundary conditions, while Ref. 3 deals
vector fields with Dirichlet boundary conditions, which is related to boundary layer separ
problems in viscous fluid flows.

B. Proof of Theorem 4.4

To investigate the structural bifurcation ofu(x,t) at t0 , by the Taylor expansion~4.1! and
condition~4.4! it suffices to consider only the topological structure of the first-order approxima
u06«u1 of ~4.1! for «.0 sufficiently small.

By Lemma 3.2, letg1 andg2 be the two orbits ofu0(x) connected tox0PM̊ . The eigenvector
e1 of Du0(x0) is a common tangent vector ofg1 andg2 at x0 @see Fig. 3~a!#.

Both orbitsg1 andg2 divide a neighborhood ofx0 into open domains I and II as shown in Fig
3~a!. Since the angles betweene1 and the vectors ofu0 on g1 andg2 vary from 0 top, and by
assumption that angleu betweene1 with u1(x0) satisfies 0,u,p, there exist curves,1 in
domain I and curve,2 in domain II connected tox0 , such thatu1 are parallel tou0 on ,1 and,2

@see Fig. 3~b!#. Obviously the singular points ofu06«u1 are only on the curves as,1 and ,2 .
Without loss of generality, we assume thatu0 andu1 have a reverse orientation on,1 and,2 , i.e.,
u0 and 2«u1 have the same orientation on,1 and ,2 . By condition ~4.4! it follows that u0

2«u1 has no singular points in,1 and,2 , and therefore has no singular points in a neighborh
of x0 . Becausex0PM̊ is an isolated singular point ofu0, the valuesuu0(x)u are variant from 0 to
a d.0 sufficiently small on,1 and,2 , i.e.,

0,uu0~x!u,d ; xP,1ø,2 ,
~4.6!

sup,1ø,2
uu0u5d, inf,1ø,2

uu0u50.

FIG. 3. Sketch illustrating the proof of Theorem 4.4.
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It follows from ~4.6! that there is an«0.0 sufficiently small such that for any 0,«,«0 the
vector fieldu01«u1 has at least a singular point on each of,1 and,2 , i.e., u01«u1 has at least
two singular points nearx0 . Thus,u01«u1 and u02«u1 are not topologically equivalent in a
neighborhood ofx0 . The first assertion is proved.

Obviously, if x0 is a unique singular point ofu0(x) with index zero, thenu01«u1 and u0

2«u1 are not topologically equivalent onM . Hence,u(x,t) has a globally structural bifurcation
at t5t0 . This theorem is proved. h

C. Proof of Theorem 4.5

By Assumption (H2) and Lemma 3.3 the vector fieldu0(x) has the Taylor expansion atx0

(x50) as follows:

u0~x!5 H ax21 f ~x1!1x2g1~x!,
bx1

2m2x2f 8~x1!1x2g2~x!1o~ ux1u2m!, ~4.7!

whereaÞ0, bÞ0, and

f ~x1!5o~ ux1um1 1/2!,

f 8~x1!5o~ ux1um2 1/2!, ~4.8!

gi~0!50 ~ i 51,2!.

By ~4.4!, we have

u1~x!5 Hl11h1~x!,
l21h2~x!, ~4.9!

wherel2Þ0 andhi(x)5O(uxu), i 51,2.
By Theorem 4.4, one ofu06«u1 has no singular points, and another has at least two sing

points nearx0 for all «.0 sufficiently small. We assume thatu02«u1 has singular points, i.e.
b.0 in ~4.7! and l2.0 in ~4.9!. We need to prove that the equations below have exactly
solutions

ax21x2g1~x!5l1«1«h1~x!2 f ~x1!, ~4.10!

bx1
2m2x2f 8~x1!1x2

2g2~x!5o~ ux1u2m!5l2«1«h2~x!. ~4.11!

By the implicit function theorem, we derive from~4.8! and ~4.10! that

x25a21l1«2 f ~x1!1G~«,x1!,
~4.12!

G~«,x1!5o~ u«u,ux1um1 1/2!.

Setting~4.12! in ~4.11!, we get the algebraic equation

bx1
2m5l2«1a21l1« f 8~x1!1«•O~ uxu!1o~ u«u,ux1u2m!, ~4.13!

whereb,l2.0. It is clear that for any«.0 sufficiently small, the equation~4.13! has exactly two
solutions

x156~b21l2!1/2m«1/2m1o~«1/2m!.

Thus, we deduce that the vector fieldu02«u1 has exactly two singular pointsx(«)
5(x1(«),x2(«)) as follows:
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x1
6~«!56~b21l2!1/2m«1/2m1o~«1/2m!,

~4.14!
x2

6~«!5a21l1«1o~«,ux1
6um1 1/2!.

Finally, we shall show thatx6(«) are nondegenerate for all«.0 sufficiently small. By divu
50, we have

detD~u02«u1!x5x(«)52S ]

]x1
~u1

02«u1
1! D 2

2
]

]x2
~u1

02«u1
1!•

]

]x1
~u2

02«u2
1!

5@by ~4.8! and ~4.14!#

562mab~b21l2!~2m21!/2m«~2m21!/2m1o~«~2m21!/2m!,

which yields that

detD~u02«u1!H .0, asx5x2,

,0, asx5x1.

Thus, we prove thatu02«u1 has exactly two singular pointsx1 andx2 for any«.0 sufficiently
small, andx2 is a center,x1 is a saddle, which are nondegenerate. This proof is complete.h

V. APPLICATIONS TO INTERIOR SEPARATION OF FLUID FLOWS

A. Interior separation of fluid flows

We start with a typical example, illustrating how structural bifurcation occurs in the interio
fluid flows.

Let uPC1(@0,T#,Dr(TM)), andx0PM̊ be an isolated singular point ofu0(x)5u(x,t0), 0
,t0,T.

Example 5.1:Consider the case where the index ofu0(x) at the singular pointx0PM̊ is zero,
and the Jacobian matrix atx0 is nonzero, i.e.,

ind~u0,x0!50, Du0~x0!Þ0.

The structural bifurcation occurs as shown in Fig. 4, which corresponds to interior sepa
phenomena in fluid mechanics.

When t5t02« with «.0 small, the flow ofu(x,t02«) given by Fig. 4~a! exhibits no
singular points in a neighborhood ofx0 . At t5t0 , u05u(x,t0) is given by Fig. 4~b!, which has an
isolated singular pointx0PM̊ with index zero. Whent5t01« for «.0 small, u(x,t01«) is
given by either Fig. 4~c! or Fig. 4(c8) or even more complicated circulation patterns in the ba
flow region. As we shall see in Theorem 5.5, the flow pattern given by Fig. 4~c! is generic. In other
words, the flow transition from Fig. 4~a!, to Fig. 4~b!, and then to Fig. 4~c!, or vice versa, is in
general the pattern transition obtained both experimentally and numerically. For instance,
axisymmetric plume shown Fig. 5, which is reproduced from Ref. 1, the three ‘‘bubbles’’ w
caused by interior separation as described here.

We now address interior flow separation from a rigorous analysis point of view.
Theorem 5.2:Let uPC1(@0,T#,D1(TM)) satisfy Assumption(H1). Then

(1) there must be some centers of u separated from x0PM̊ as shown schematically in either Fig
4(c) or Fig. 4(c8);

(2) the centers (back flows) are enclosed by a closed orbit lineg(t) consisting of orbits of
u(•,t), and g(t) converges/shrinks to x0 as t→t0 ; and

(3) if Assumption(H2) is satisfied, then the center separated from x0PM̊ is unique, as shown in
Fig. 4(c).
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The centers in Figs. 4~c! and 4(c8) correspond, in a real fluid, to isolated vortices or, in t
case of figure-eight ones, to pairs of co-rotating vortices. This theorem is a direct corolla
Theorems 4.4 and 4.5 and a stability lemma of extended orbits.

We now introduce this stability lemma.

FIG. 5. The three ‘‘bubbles’’ in the axis symmetric plume, generated by interior bifurcations, reproduced from R

FIG. 4. Schematic of structural bifurcation for the case index (u0,x0)50, a typical case in fluid flows.
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Definition 5.3: LetvPCr(TM) be a vector field. A curveg,M is called an extended orbit o
v, if

(i) it is a union of curves
g5ø

i51
gi ;

(ii) either g i is an orbit ofv, or g i consists of both orbits and singular points ofv, and
(iii) if g i and g i 11 are orbits ofv, then thev-limit set ofg i is thea-limit set ofg i 11 ,

v~gi!5a~gi11!,
namely, the end points ofg i are singular points ofv, and the starting end point ofg i 11 is
the finishing end point ofg i .

The pointw15a(g1) is called the starting point of the extended orbitg.
We have the following stability lemma for extended orbits. The result of this lemma has

proved by Ma and Wang4 in Step 2 of the proof of Lemma 4.5 in their paper. This lemma is qu
useful in analyzing the orbits of families of vector fields, and thus in solving some problems
incompressible fluid flows. Here we only state the result.

Lemma 5.4: (stability of extended orbits, Ref. 4) LetvnPCr(TM) be a sequence of vecto
fields with limn→` vn5vPCr(TM). Suppose thatgn,M is an extended orbit ofvn and the
starting points p1

n of gn converge to p1 . Then the extended orbitsgn of vn converge to an extende
orbit g of v with starting point p1 .

B. Genericity of structural bifurcation with index zero

In the following, we shall show that the type of structural bifurcation as shown in Fig. 4~c!,
i.e., one center interior separation, is generic in the interior structural bifurcation. This is re
ably different from the structural bifurcation near the boundary.2,3,5 It also explains why interior
separation to multiple centers and the interior flow separation from the singularities with no
index are seldom observed in fluid motions.

Let x0PM̊ and 0,t0,T be given. We define a topological spaceB,C1(@0,T#,D2(TM)) as
follows:

B5$uPC1~@0,T#,D2~TM!!uu0~x0!50, detDu0~x0!50,u05u~•,t0!%

with the topology ofC1(@0,T#,D2(TM)). Obviously, the spaceB contains all vector fields in
C1(@0,T#,D2(TM)), which have a bifurcation in their local structure at (x0 ,t0). It is easy to see
that the set

B05H uPB U Du0~x0!Þ0,
]2~u0~x0!•e2!

]e1
2 Þ0, u1~x0!•e2Þ0J

is open and dense inB, wheree1 and e2 are as in~3.5! and ~3.6!, andu1(x)5 (]/]t) u(x,t0).
From Lemma 3.3, it immediately follows the following genericity theorem of structural bifu
tion.

Theorem 5.5„Genericity of structural bifurcation …: For any uPB0 , u has a bifurcation in
its local structure at(x0 ,t0). More precisely, u bifurcates from(x0 ,t0) exactly two nondegenerat
singular points, one of which is a center and another is a saddle, as shown in Figs. 4(a)–4(c).
Moreover, the set B0 is open and dense in the topological space B, which contains all vector fields
in C1(@0,T#,D2(TM)) having a locally structural bifurcation at(x0 ,t0).

Proof: If uPB0 , thenu0PD2(TM), andu0 has the Taylor expansion~3.10! with n52, and

degf 5k>2 @by f PC2 and f ~z!5o~ uzu!#.
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Hence, by Lemma 3.3, we have

ind~u0,x0!50.

Then this theorem follows from Theorems 4.4–4.5. The proof is complete. h

C. Examples of no structural bifurcation

We know that for a locally structurally stable singular point of a vector fieldvPDr(TM), its
index obeys

ind~v,x0!5H 2 1
2 , x0P]M ,

21 or 11, xPM̊ .

For a vector fieldu(x,t)5u0(x)1(t2t0)u1(x)1o(ut2t0u) the structural bifurcation theorem
given in Ref. 2 amounts to saying that ifx0 is a boundary singular point with ind(u0,x0)Þ2 1

2 and
u1(x0)Þ0 for x0P]M , thenu(x,t) has a bifurcation in its local structure at (x0 ,t0). However, for
an interior singular pointx0PM̊ of u0 with ind(u0,x0)Þ1 or 21, the vector fieldu(x,t) may
have no structural bifurcation near (x0 ,t0). In the following, we give two examples to show thi

Example 5.6:Figures 6~a!–6~c! illustrates a structural evolution of a vector fieldu(x,t) near
x0PM̊ as time t crosses t0 , where ind(u0,x0)52n (n.1), u05u(x,t0), and u1(x0)
5 (]/]t) u(x0 ,t)Þ0.

In Fig. 6, we see that the vector fieldsu(x,t02«) given by~a! andu(x,t02«) given by~c! are
topologically equivalent for all«.0 small. Hence,u(x,t) has no structural bifurcation at (x0 ,t0).

Example 5.7:Let ind(u0,x0)50, andDu0(x0)50, and the structure ofu0 nearx0 is illustrated
by Fig. 7~a!.

FIG. 6. Schemaatic phase diagrams, showing no structural bifurcation, as explained in Example 5.6.

FIG. 7. Sketch showing no bifurcation given in Example 5.7.
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Let thex1-axis of the coordinate system in Fig. 7~b! be tangent to the orbit line, in ~a! at x0 .
The angles betweenu0(x) and thex1-axis nearx0 vary in the shadow domain I in~b!. Hence if the
angle betweenu1(x0) and thex1-axis is in the domain II in~b!, thenu1(x) is transversal tou0(x)
nearx0 , which implies that the vector fieldu(x,t)5u0(x)1(t2t0)u11o(ut2t0u2) has no struc-
tural bifurcation near (x0 ,t0).
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After a detailedab initio description of the exterior structure of graphs as handled
by Connes and Kreimer in their work on renormalization~illustrated by the ex-
ample of thef3 model in six dimensions! we spell out in detail their study of the
Lie algebra of infinitesimal characters and of the group of characters of the Hopf
algebra of Feynman graphs. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1639958#

I. INTRODUCTION

These notes are a comment on basic aspects of the Connes–Kreimer work1 describing renor-
malization in terms of a Hopf algebraH of Feynman graphs. They consign our effort to understa
the central, but in Ref. 1 somewhat periferally treated notion of ‘‘exterior structure of graphs
offer them as an aid to comprehension providing missing or understressed details. Prior
exterior structure, the somewhat involved recipe for the Hopf coproduct is spelled out in d

As an application we give detailed descriptions of the Lie algebraL of infinitesimal characters
of H ~as the semidirect product of its Lie subalgebraL c by its Abelian idealL0), and of the group
G of characters ofH ~as the semidirect product of its subgroupGc by its Abelian normal subgroup
G0).

As in Ref. 1 we discuss the case of thef3 modeld56 with Lagrangian

L5 1
2~]f!21 1

2m
2f21gdimf3 ~gdim5m32d/2g!. ~* !

II. NAKED GRAPHS

~i! A naked graphG is a~nonvoid! set oflinesandvertices, where each vertex touches at lea
one line and each line touches at least one vertex. There are thus two kinds of lines: indee

~1! either touches two vertices~internal lines!, or
~2! touches one vertex at one of its extremities~external lines!.

~ii ! In the case of the model~* ! above a vertex@generally one has as many types of vertic
as there are terms in the Lagrangian, each term yielding one type of vertex#

~1! either touches three lines~three-vertices!: then drawn as̀ ~standing forgdimf3), or
~2! touches two lines~two-vertices!, of either the kind(0)

-3- , or the kind(1)
-3- @standing, respectively

for m2f2 and]f)2].

~iii ! We consider only naked graphs withN>2 external lines. We discard thevacuum-graphs
(N50) and thetadpoles~N51!.

~iv! We retain only 1PI~one-particle-irreducible! naked graphs, namely,

~1! connected,

*Dedicated to Rudolf Haag on his eightieth birthday.
a!Electronic mail: kastler.daniel@wanadoo.fr
17770022-2488/2004/45(5)/1777/10/$22.00 © 2004 American Institute of Physics
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~2! which cannot be disconnected by cutting one interior line@Observe that an exterior line of
1PI graph cannot touch a two-vertex. The graphs(0)

-3- , (1)
-3- , and` are not disconnectable b

cutting an interior line, they have to be explicitly discarded.#,
~3! having at least one loop~this discards the graphs(0)

-3- or (1)
-3- and`!.

~v! Terminology and notation: the set of 1PI naked graphs is as follows the unionVøS:

~1! the 1PI naked graphs withN.2 external lines are calledN-vertex graphs. Their set is denoted
by VN with V5øN.2VN .

~2! the 1PI naked graph with two external lines are calledself-energy graphs. Their set is denoted
by S.

~vi! A special role will be played by the superficially divergent graphs, whose set isV3øS in
the case of our model~* !.

III. DRESSED GRAPHS

~i! For the 1PI graph withN>2 external lines we set

EG5$~p1 ,...,pN!PRn;p11¯1pN50% ~1!

and select appropriate setsS(EG) of test functions and dual setS8(EG) of distributions.@For G
PV3 , respectively,GPS, S(EG) should contain the constants, respectively, the constants an
function p2.] A dressed graphis a couple~G,s!, GPVøS, sPS8(EG) linear in its external
structures. For a fixedGPVøS we identify the vector spaces (G,S8(EG)) andS8(EG).

~ii ! For GPV3 with f0(p)51, pPEG , we constrains0PS8(EG) as follows@this specifies
s0 up to a choice depending on the type of theory at hand; we then setG (0)5(G,s0)]:

^s0 ,f0&51 ~2!

yielding the codimension-1 annihilator: with associated dual direct splitting

S~EG!05$fPS~EG!;^s0 , f &50%, ~3!

H S~EG!5Cf0% S~EG!0 ,
S8~EG!5Cs0% f0

' . ~4!

@A dual direct splittingof a pair (S,V) of vector spaces in separating duality^•,•& is a pair of
direct splittings

HV5U % W,
S5Q % C

such that the pairs (Q,U) and (C,V) are both in separating duality, and one has^Q % 0,0% W&
5^0% C,U% 0&50. Observe that the described situation follows from the latter requirement i
pairs (S,V) and (Q,U) are both in separating duality.#

~iii ! For GPS, with f0(p)5m2, f1(p)5p2, pPEG , we specify as followss0 , s1

PS8(EG):

H ^s0 ,f0&51
^s0 ,f1&50, H ^s1 ,f0&50

^s1 ,f1&51, ~5!

yielding the codimension-2 annihilator and associated dual direct splitting

S~EG!05$ f P~S~EG!;^s0 , f &5^s1 , f &50%, ~6!
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H S~EG!5Cf01Cf1 % S~EG!0 ,

S8~EG!5Cs01Cs1 % Cf0
'ùCf1

' .
~7!

@~5! specifiess0 and s1 up to a choice depending on the type of theory at hand. We
G (0)5(G,s0), G (1)5(G,s1). Note that we chose our notational conventions in such a way
the casesGPV3 and GPS differ merely in that the indexi has the single value 0 forV3 , and
ranges over$0,1% for S.#

IV. THE HOPF ALGEBRA H

We wrote this paper so that the hurried reader can skip this section at first reading.
~i! As an algebraH is the symmetric~i.e., polynomial! algebra

H5 % nPNV∨n5C11 % n>1V∨n ~8!

over the vector space

V5 % GPVøSS8~EG! ~finite direct sums! ~9!

of finite direct sums% GPVøS(G,s) of dressed 1PI graphs~G,s!, GPVøS, sPS8(EG). @Note that
V is in separating duality withV85 % GPVøSS(EG) consisting of finite direct sums of pairs (G, f ),
GPVøS, f PS(EG), the duality being specified bŷ(G, f ),(G8,s)&5dGG8^s, f &. We shall write
(G,f i)5G ( i ), i 50 if GPV, i 50 or 1 if GPS.#

~ii ! Counit e: linear multiplicative s.t.e~l1!5l, lPC, and Kere5H15 % n>1V∧n.
~iii ! CoproductD: it suffices to specifyD s-linearly on all symbols~G,s!, GPVøS, s

P(S8(EG). Denoting byGI , gI the vacuum graphs obtained from the naked graphG, g by removing
all its ~open! external lines we define asubgraphg of G ~consisting of some vertices ofG and the
lines touching them! asadmissiblewhenever

~1! gPV3øS ~⇔g is superficially divergent!,
~2! gI ,

Þ
GI ,

~3! g is obtained fromgI by adding to it all lines ofG ~interior and exterior! touching it. The
dressed graphsg ( i ) , i 50 or 0,1, are then those in III~ii !, respectively,~iii !. We then specify
the linear multiplicative coproductD by askingD151^1 and

D~G,s!5~G,s! ^ 111^ ~G,s!1D8~G,s!, ~G,s!PV, ~10!

with

D8~G,s!5SPg~ i ! ^ ~G/Pg~ i ! ,s! ~11!

the sum being over all productsPg ( i ) s.t.

~1! all factorsg are admissible, the mutual intersections of the correspondinggI being all void~the
g themselves may intersect!,

~2! the sum is over all combinations of indices.

The graphG/Pg ( i ) is obtained by replacing inG eachg ( i ) by the vertex with label~i!.
These requirements yield anN-graded connected bialgebra for the grading defined by

number of loops~>1, cf. Ref. 2,~iv!!, hence a Hopf algebra by Ref. 2 Proposition 2.7, moreo
a CMK Hopf algebra in the sense of Ref. 2 Definition 3.1 suitably generalized.@The definition of
CMK-algebras in Ref. 23 should be altered to accommodate graphs with exterior struc
replace the basis$xi% of V by a direct sumV5 % iXi ~in our case% GPVøSS8(EG)).#
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V. THE LIE ALGEBRA L

At the cost of some duplication we wrote this section in a manner independent of the pr
ing one. The notion of CMK algebra should be adapted to our situation as we just mention

SinceH is a CMK Hopf algebra its Lie algebra of algebraic infinitesimal characters is
algebraic dual ofV5 % GPVøSS8(EG), cf. Ref. 2 Proposition 3.3. In order to deal with a reasona
topological dualL of V we defineL as the above subsetV8:

L>V85 % GPVøSS~EG! ~finite direct sums of elements~G, f !PL , f PS~EG!!, ~12a!

the linear form (G, f ), fPS(EG) ~vanishing onC1ø( % n>2V∨n) taking onV the values:

^~G, f !,~G8,s!&5dGG8^s, f &, ~G8,s!PV,sPS~EG8!. ~12b!

This choice will actually ensure that@Z1* Z2#PL for Z1 , Z2PL as shown by the computation o
the Lie bracket@Z1* Z2#5Z1* Z22Z2* Z1 , Z1 , Z2PL , to which we now proceed. Since th
elements ofL are concentrated in polynomial grade one, computing^Z1* Z2 ,x&5^Z1^ Z2 ,D8x&
for Z1 , Z2PL , xPH∧u5V, involves the special case ofD8 in ~11! where all productsP figuring
there have only one factor:D8 is then replaced by a reduced algorithmD r8 which we now describe
ab initio: one has forGPVøS:3

D r8~G,s!5 (
g!G

(
i

g~ i ! ^ ~G/g~ i ! ,s!. ~13a!

~i! Recall that a subgraphg,G of GPVøS is admissible~notationg!G! whenever

~a! gPV3øS ~⇔g is superficially divergent!,
~b! gI'GI
~c! g is obtained fromgI by adding to it all the open lines ofG ~interior and exterior! which it

touches.

The dressed graphsg ( i ) , i 50 or 0, 1, are then those encountered above.
~ii ! The graphG/g ( i ) obtained by replacingg

~1! by ` if g is a 3-vertex graph~we might then as well writeG/g!,
~2! by ( i )

-3- , i 51 or 2, if g is a self-energy graph.

If we separate the contributions of 3-vertex and self-energy graphs,~13a! reads

D r8~G,s!5 (
g!G,gPV3

g~0! ^ ~G/g,s!1 (
g!G,gPS

(
i 51,2

g~ i ! ^ ~G/g~ i ! ,s!. ~13b!

We have now owing to~13a! and ~12b! for Z15(G1 , f 1), Z25(G2 ,f2)PL , ~G,s!PV, G1 , G2 ,
GPVøS, f 1PS(EG1

) f 2PS(EG2
), sPS8(EG):

^Z1* Z2 ,~G,s!&5^Z1^ Z2 ,~D r8~G,s!&5 (
g!G

(
i

dG1g^s i , f 1&dG2G/g~ i!
^s, f 2&, ~14!

which, introducing the notation:

ni~G1 ,G2 ;G!5#$g,G admissible;g>G1 and G/g~ i!>G2%, G1 ,G2 ,GPVøS, ~15!

is turned into
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^Z1* Z2 ,~G,s!&5(
i

ni~G1 ,G2 ;G!^s i f 1&^s, f 2&5(
i

ni~G1 ,G2 ;G!^s i , f 1&^~G, f 2!,~G,s!&.

~16a!

In other terms one has in restriction toV:

Z1* Z2uV5 (
GPVøS

(
i

ni~G1 ,G2 ;G!^s i , f 1&~G, f 2!. ~16b!

Note that nonvanishing ofni(G1 ,G2 ;G) requires the two facts:

G1PV3øS ~⇔G1 is superficially divergent!, ~* 1!

G and G2 have the same external lines. ~* 2!

From ~16a! follows

@Z1* Z2#5 (
GPVøS

(
i

ni~G1 ,G2 ;G!^s i , f 1&~G, f 2!2 (
G8PVøS

(
i

ni~G2 ,G1 ;G8!^s i , f 2&~G8, f 1!]

~17!

the bracket@Z1* Z2# thus belongs actually toL .
Consider now the subspaceL0 of L spanned by the annihilator~3! and ~6!, recalled to be

S~EG!05$ f P(S~EG! s.t. H ^s0 , f &50% if GPV3

^s0 , f &5^s1 , f &50 if GPSJ , ~18!

together with the (G, f ), GPøn.3Vn , f P(S(EG); and further the subspaceL c of L spanned by
the (G, f ), GPV3øS, f P(EG)c5linear span of

H f050 if GPV3

f0 and f1 if GPS
.

Those definitions are subsumed by the dual direct splitting

H V5Vc5 lin$~G,s i !,GPV3øS% % L c
'

L5L c5 lin$~G,f i !,GPV3øS% % L05 lin$~G, f !,GPV3øS, f PS~EG!0%

1 lin$~G, f !,GPøn.3Vn , f PS~EG!

~19!

Lemma 1:~i! One hasL0* L uV50, thus@L0* L0# vanishes:L0 is an Abelian Lie subalgebra o
L .

~ii ! One has@L* L0#,L0 :L0 is a Lie ideal ofL .
~iii ! One has@L c* L c#,L c :L c is a Lie subalgebra ofL .
Proof: ~i! If Z1PL0 in ~16a! one hasG1PV3øS by (* 1), G1 thus lies in the first summand o

L0 in ~19! whencef 1PS(EG)0 , thus by~18! the vanishing of̂ s i , f 1& right-hand side of~16b!.
~ii ! By ~i! ~17! reads forZ1PL andZ2PL0 :

@Z1* Z2#5 (
GPVøS

(
i

ni~G1 ,G2 ;G!^s i , f 1&~G, f 2!, ~20!

which, owing to (* 2), belongs toL0 .
~iii ! We makeZ1 , Z2PL c in ~17!, then G1 , G2PV3øS by ~19!. Now (* 2) says thatG,

respectively,G8, have the same external lines asG2 , respectively,G1 , they thus both belong to
V3øS hence the right-hand side of~17! belongs toL c .
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The next theorem describes the structure ofL by first stating howL is built up fromL c and
L0 ~moral of the preceding Lemma!; and then formulating the Lie bracket ofL c ~for that matter its
pre-Lie product! in terms of ‘‘grafting the graph of the first factor at the vertices of the second’’
basic algorithm aspect of the theory.

Theorem A: ~i! The Lie algebraL is the semidirect product of its subalgebraL c by its Abelian
ideal L0 ~cf. Appendix B!:

L5L c›L0 . ~21!

~ii ! After regauging as follows the basis ofL c :

G~ i !→G8~ i !5S~G!G~ i !, G~ i !5~G,f i !PL c , ~22!

whereS(G) is the number of automorphisms of the naked graphG @mappings of the naked grap
onto itself which do not change it# we have

@G18
~ i !

* G28
~ j !#5(

v
~G18

~ i !+vG28!~ j!2(
v

~G28
~ j !+vG18!~ i !, G18

~ i ! , G28
~ j !PL c , ~23a!

in fact separately

G18
~ i !

* G28
~ j !uV5(

v
~G18

~ i !+vG28!~ j !, G18
~ i ! , G28

~ j !PL c , ~23b!

a sum over verticesv of G28 , where the notation (G18
( i )+vG28)

( j ) stands forgrafting G18
( i ) on G28 at

v, namely:

Summarizing this somewhat lenghty recipe:~23b! is a sum over verticesv of G28
( j ) ‘‘of type

G18
( i )’’ by graphs replacing these vertices~irrespective of the order of legs! by the naked graphG1 .

In conformity with (* 2) all those graphs have the same exterior structure asG2 . Convention~22!
aims at getting a sum~23b! without coefficients.

Proof: ~i! IndeedL is the direct sumL c% L0 of the subalgebraL c and the idealL0 ~cf.
Appendix B!.

~ii ! Check of~23b!: let G1
( i ) , G2

( j )PL c with G18
( i ) , G28

( j ) as in~22!: we have by~16b! owing to
(* 1):

G1
~ i !

* G2
~ j !uV5 (

GPV3øS
(

i
nk~G1 ,G2 ;G!dki~G,f j !5 (

GPV3øS
(

i
ni~G1 ,G2 ;G!~G,f j !,

whereG1>g whilst G2>G/g ( i ) for g,G admissible, i.e., (G,f j) is a multiple of (G18
( i )+vG28)

( j ):
we have to find which multiple. Now from the definition~15! of ni(G1 ,G2 ;G) follows that
S(G1)S(G2)ni(G1 ,G2 ;G) is the numberS(G) of automorphisms of the naked graphG. Equation
~16a! is thus turned into~23b!.
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VI. THE GROUP G

Call G the group of continuous characters ofH, viz., the subgroup of its algebraic characte
x ~cf. Ref. 2, Definition 12, Proposition 13! for which ^x,~G,s!&, GPVøS, sPS8(EG) is continu-
ous ins. By multiplicativity xPG is uniquely determined by its restrictionxuV8 each continuous
linear form of V being the restriction of a uniquexPG ~its ‘‘multiplicative extension’’: the
restrictionx→xuV and the multiplicative extensionxuV→x are inverse of each other!. We will
accordingly handle the elementsxPG by handling their restrictionsxuV . Recall that the produc
of G is the convolution product* ~under whichG is closed!, hence that its unit element is th
counit e of H.

Call Hc the smallest subalgebra ofH containing the (G,s i), GPV3øS, i 50 for GPV3 , i
50 or 1 forGPS ~equivalentlyHc5C11 % n>1Vc

∨n). Definitions~10! and~11! of the coproduct of
H implying the inclusionDVc,Hc^ Hc , henceDHc,Hc^ Hc by the multiplicativity ofD, Hc is
a Hopf subalgebra ofH whose counit is the restrictioneuHc

.
Denoting byGc the subgroup of algebraic characters ofHc continuous for the topology of the

exterior structure, the restrictionr to Hc of the characters ofG:

rx5xuHc
, xPG ~24!

is a group homomorphism:G→Gc whose kernelG0 is the normal subgroup ofG consisting of the
xPG restricting onHc to the unit character, viz., the couniteuHc

of Hc . Sincee is multiplicative,
a xPG belongs toG0 iff xuVc

coincides witheuVc
50:

G05$xPG;xuHc
5euHc

%5$xPG;x vanishes onVc%. ~25!

Lemma 2:~i! G0 is an Abelian normal subgroup ofG.
~ii ! Defining r8: Gc→G by

r8c~abbreviatedc̃ !5 H c on Vc

0 on L c
', cPGc , ~26!

yields the lift of a split exact sequence of group homomorphisms:

1→G0→G�
r8

r

Gc→1, ~27a!

that isr8 is a group homomorphism fulfilling:

r+r85 idGc
. ~27b!

Proof: ~i! We noted thatG0 is normal. Proof thatG0 is Abelian: letx0 , x08PG0 , we have for
all dressed graphs~G,s!, using~25! and the fact that~10!, ~11! imply D8(G,s)PHc^ H:

^x0* x08 ,~G,s!&5^x0^ x08 ,D~G,s!&5^x0^ x08 ,~G,s! ^ 111^ ~G,s!1D8~G,s!&

5^x0 ,~G,s!&1^x08 ,~G,s!&1^x0^ x08 ,D8~G,s!&5^x~G,s!&1^x8,~G,s!&.

~ii ! It suffices to check~27! which is obvious from~26!.
Theorem B: ~i! G is the semi-direct product@One has to make a choice of the order of facto

in the definition of the semidirect product of groups. This choice is adapted to the order of fa
in the definition of the semidirect product of Lie algebra in Theorem A above—changing t
opposite order of factors follows from a trivial calculation.# of its subgroupsr8Gc>Gc andG0 :
we haver8GcùG05$e% and G5r8Gc* G0 . Consequently eachxPG is uniquely written as a
product
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x5c̃* x0 with c̃5r8cPr8Gc~cPrGc!, and x0PG0 , ~28a!

specifically

c̃5~r8+r!x ~c5rx! and x05@~r8+r!x#21* x. ~28b!

~ii ! The product inG then reads

~ c̃* x0!* ~ c̃8* x08!5~ c̃* c̃8!* @~adc̃821~x0!!* x08#, ~29a!

where

adx~x0!5x* x0* x21PG0 , x0PG0 , xPG, ~29b!

yields a group homomorphism@Trivial on G0 , its interesting part is its restriction tor8Gc , cf.
~29a!.# ad:G→Aut G0 into the automorphism group ofG0 .

~iii ! ad(r8Gc) acts as follows: one has with the sum as specified in~11! for c̃Pr8c, c
PGc , x0PG0 :

^adc̃~x0!,~G,s!&5^x0 ,~G,s!&1S^c,Pg~ i !&^x0 ,~G/Pg~ i ! ,s!&, GPVøS, sPS8~EG!.
~30!

Proof: ~i! Check of r8GcùG05$e%: if cPGc fulfills r8cPG0 we have using~27b! (r
+r8)c5c5ec , thusr8c5e sincer8 is a homomorphism of groups.

Uniqueness of the decomposition~28a!, ~28b!:

r8c* x05r8c8* x08 implies ~r8c!21* r8c85x0* ~x08!21Pr8GcùG05$e%.

Existence of the decomposition~28a!, ~28b!:

~1! one hasx0PG0 , indeed by~27b! rx05@(r+r8+r)x#21* rx5(rx)* (rx)215e,
~2! one has~28a!, indeedr8c* x05(r8+r)x* x05(r8+r)x* @(r8+r)x#21* x5x.

~ii ! Check of~29a!: we have:c̃* x0* c̃8* x085c̃* c̃8* c̃821* x0* c̃8* x08 .
~iii ! First notice that~30! makes sense,̂c,Pg ( i )& denoting the value ofPg ( i )PHc for c

PGc . We check~30! separately for~G,s! in the complementary subspacesVc andL c
' , cf. ~19!.

For (G,s)PVc , ^adc̃(x0),(G,s)& and ^x0 ,(G,s)& vanish by~25!: indeedx0PG0 by as-
sumption whence adc̃(x0)PG0 by normality ofG0 ; furthermorê x0 ,(G/Pg ( i ) ,s)& vanishes by
~25! because (G/Pg ( i ) ,s)PVc has the exterior structures.

Assume now (G,s)PL c
' , our assumptionc̃Pr8c, cPGc , entailingc̃uVPL c . Recalling

D8~G,s!5SPg~ i ! ^ ~G/Pg~ i ! ,s!PHc^ Vc , ~11!

for convenience, we compute the left-hand side of~30!:

^adc̃~x0!,~G,s!&5^c̃* x0* c̃21,~G,s!&5^~c* x0! ^ c̃21,D~G,s!&

5^~ c̃* x0! ^ c̃21,~G,s! ^ 111^ ~G,s!1D8~G,s!&

5^c̃* x0 ,~G,s!&1^c̃21,~G,s!&1^c* x0 ,D8~G,s!&.

Now ^c̃21,(G,s)&50 sincec̃21uVPL c . And ^c̃* x0 ,D8(G,s)&50 by ~25! and~11!, we are thus
left with
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^c̃* x0 ,~G,s!&5^c̃ ^ x0 ,D~G,s!&

5^c̃ ^ x0 ,~G,s! ^ 111^ ~G,s!1D8~G,s!&

5^c̃,~G,s!&1^x0 ,~G,s!&1^c̃ ^ x0 ,D8~G,s!&

5^x0 ,~G,s!&1^c̃ ^ x0 ,D8~G,s!&,

because, as above,^c̃,(G,s)&50, sincec̃uVPL c . Plugging in~11! we finally get

^c̃* x0 ,D8~G,s!&5^c̃,SPg~ i !&1x0 ,~G/Pg~ i ! ,s!,

where the first term can be written as in~30! in view of ~27a!.
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APPENDIX A: THE AUGMENTATION IDEAL

Here is a more synthetic version of results scattered in Ref. 2.
Proposition: LetH(∧,15e1,D,e)5 % nPNHn, Hn5$hPH,Yh5nh%, be an N-graded con-

nected Hopf algebra~i.e., H05C1) with augmentation idealH15Kere and assume in addition
that H5 % nPNV∨n, V is a linear subspace ofH1 spanned by Y-homogeneous elements. We h:

H5C1% H1, ~A1!

H15 % n>1Hn, ~A2!

H15 % n>1V∨n. ~A3!

Subsuming we have the threefold equation

H5C1% H H1

Hne1Hn

Hne1VDn .
~A4!

Proof: ~A1! holds for arbitrary Hopf algebras for whichee is an idempotent with imageC1
and kernelH15Kere, indeed one has forhPH: ee(eeh)5ee(e(h)1)5e(e(h))5eeh with
lm ee5C1 since ee(h)5e(h)1 and ee(1)5e151; and with Keree5H1 since ee(h)5e(h)1
50 holds iff e(h)50.

~A2! is a property ofN-graded connected Hopf algebras: check of.: sincee+Y50 ~cf. Ref.
2, 2.2 ~ii !! for hPHn, >1, 05e(Yh)5ne(h) implies e(h)50. Check of,: let hPH1: by
connectivityh5l11h8 with, lPC and h8P % n>1Hn. Hencee(h)505l1e(h8)5l by what
precedes, thush5h8P % n>1Hn.

~A3!: check of.: by definitionV,H1. HenceV∨n,H1∨n,H1. Check of,: by definition
eachhPH is of the formh5l11h9, lPC, h9P % n>1V∨n. If hPH1e(h)5l10, hencel50,
hP % n>1V∨n.

APPENDIX B: SEMIDIRECT PRODUCT OF LIE ALGEBRAS

In what follows the ground field isC, or, for that matter, any field of characteristic zero.
Definition-Lemma:Let L 8 and J be two Lie algebras. Thesemidirect productL of L 8 by J

~denoted byL5L 8›J! is defined either as
~i! the vector spaceL 8%J with Lie bracket given as follows in terms of the Lie brackets ofL 8

andJ: with x,yPL 8, j ,kPJ:
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~1! @x% 0,y% 0#5@x,y# % 0, x,yPL 8,
~2! @0% j,0% k#50% @ j ,k#, j ,kPJ,
~3! @x% 0,0% j #52@0% j ,x% 0#50% u(x) j , xPL 8, j PJ,

whereu is a Lie algebra homomorphism fromL 8 to the Lie algebra of derivations ofJ.
~ia! This defines a Lie algebraL .
~ii ! the Lie algebraL5L 8%J whereL 8 is a Lie subalgebra andJ is a Lie ideal.
Proof: Check of~ia! from ~i!: antisymmetry of the Lie bracket is obvious. The Jacobi iden

J(X,Y,Z)5@X,@Y,Z##1@Y,@Z,X##1@Z,@X,Y##50 is checked as follows: withx,y,zPL 8,
j ,k,l PJ:

J~x% 0,y% 0,z% 0!50⇐L 8 is a Lie algebra: indeed one has

@x% 0,@y% 0,z% 0##5@x% 0,@y,z# % 0#5@x,@y,z## % 0

J~0% j ,0% k,0% l !50⇐J is a Lie algebra: indeed one has

@0% j ,@0% k,0% l #5@0% j ,0% @k,l #50% @ j ,@k,l #

J~0% j ,y% 0,z% 0!50⇐u~@y,z# !5u~y!u~z!2u~z!u~y!: indeed one has

@0% j ,@y% 0,z% 0##1@y% 0@z% 0,0% j ##1@z% 0,@0% j ,y% 0##

5@0% j ,@y,z## % 0]1@y% 0,0% u~x! j #2@z% 0,0% u~y! j #

520% u~@y,z# ! j 10% u~y!u~z! j 20% u~z!u~y! j

520% ~2u~@y,z#1u~y!u~z!2u~z!u~y!! j

J~0% j ,0% k,z% 0!50⇐u~z! is a derivation ofJ indeed one has

@0% j ,@0% k,z% 0##1@0% k,@z% 0,0% j ##1@z% 0,@0% j ,0% k##

52@0% j ,0% u~z!k#1@0% k,0% u~z! j #1@z% 0,0% @ j ,k##

520% @ j ,u~z!k#10% @k,u~z! j #10% u~z!@ j ,k#

50% ~u~z!@ j ,k#2@u~z! j ,k#2@ j ,u~z!k# !

Implication (i )⇒( i i ): obvious.
Implication ~ii !⇒~i!: ~1! respectively,~2! are the definition of the brackets of the Lie suba

gebrasL8 respectivelyJ. the first equation~3! is obvious, the second arises from the fact thatJ is
a Lie ideal, withu(x) depending linearly onx. The fact thatu(x) is a derivation ofJ, and thatu
a Lie-algebra map results from former arguments in the reversed direction.

1A. Connes and D. Kreimer, Commun. Math. Phys.210, 249 ~2000!.
2D. Kastler,Connes-Moscovici-Kreimer Algebras~Fields Institute Communications, Toronto, 2001!, Vol. XX.
3J. P. Serre,Lie Algebras and Lie Groups. Lectures given at Harvard University~Benjamin, New York, 1965!.
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Geodesic distances on density matrices
Anna Jenčováa)
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We find an upper bound for geodesic distances associated to monotone Riemannian
metrics on positive definite matrices and density matrices. ©2004 American In-
stitute of Physics.@DOI: 10.1063/1.1689000#

I. INTRODUCTION

The notion and importance of Fisher information is well established in statistics and pro
ity theory. As a measure of distinguishability of probability densities, the Fisher information
used by Rao to define a Riemannian metric on probability spaces. On the simplex of prob
vectorsPn5$p5(p1 , . . . ,pn), ( i pi51,pi.0,i 51, . . . ,n%, this is the unique metric contractin
under Markovian mappings, by the Chentsov uniqueness theorem. OnPn , the Fisher metric is

lp~x,y!5(
i

pi
21xiyi , x,yPTpPn .

The geometry ofPn with this metric is quite simple. By

p°2~Ap1, . . . ,Apn!, ~1!

it is isometric with an open subset in the sphere of radius 2 inRn.5 The metric can be extended t
the set Mn5$p5(p1 , . . . ,pn), pi.0% of all finite ~strictly positive! measures on the se
$1, . . . ,n%. Using the isometry~1! and elementary geometry inRn, we may compute the geodes
distance for the Fisher metric inPn andMn :

D~p,q!52 arccosS (
i

ApiAqi D , p,qPPn

~the Bhattacharya distance! and

d~p,q!52S (
i

~Api2Aqi !
2D 1/2

, p,qPMn .

The last expression is related to the Hellinger distanceH(p,q) by d(p,q)5A2H(p,q). The
Hellinger distance belongs to the family of Czisza´r’s f -divergences

D f~p,q!5E f ~q/p!dp.

Here f is a convex function. As it was shown in Ref. 1, the metric given by the Hessia
f -divergence is a constant multiple of the Fisher metric.

In the case of a quantum system, the situation becomes more complicated. In the si
case, the states of the system are represented by density matrices. In analogy with mani
classical probability densities, a quantum version of the Fisher information metric must b

a!Electronic mail: jenca@mat.savba.sk
17870022-2488/2004/45(5)/1787/8/$22.00 © 2004 American Institute of Physics
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creasing under stochastic maps. Contrary to the classical case, this monotonicity conditio
not specify the metric uniquely. In fact, it was shown by Petz that the monotone metrics c
labeled by operator-monotone functions.

As it was mentioned in Ref. 5, there is no general formula for geodesic path and distan
monotone metrics. Explicit expressions are known only in two particular cases, namely the
metric and the Wigner–Yanase metric. In the present paper, we find an upper bound f
geodesic distances for all monotone metrics. This is done in a simple way: Follo
Uhlmann,18,19 we obtain the Bures geodesics from certain purifying lifts of curves of den
matrices and then make use of a duality relation between the smallest~Bures! and the largest
~RLD! of monotone metrics. It is also shown that this upper bound is related to a part
noncommutative version of the Hellinger distance.

II. THE MANIFOLD AND MONOTONE METRICS

Let Mn be the algebra ofn by n complex matrices. The set of faithful positive linear fun
tionals onMn is identified with the cone of positive definite matrices. This set, with the differ
tiable manifold structure inherited fromMn , will be denoted byM. Let D,M denote the
submanifold of density matrices inM, that is,

D5$rPM:Tr r51%.

The tangent space toM at rPM is TrM5$xPMn :x5x* %. If rPD, then the tangent spac
TrD is the subspace of traceless matrices inTrM.

Let l be a Riemannian metric onM. Then we will say thatl is a monotone metric if

lT(r)~T~h!,T~h!!<lr~h,h!, rPM, hPTrM,

for all completely positive trace preserving mapsT. It is an important result of Petz16 that a
Riemannian metric is monotone if and only if it has the form

lr~h,k!5Tr hJr~k!,

whereJr is given by the operator mean

Jr5Rr
21@ f ~Lr /Rr!#21. ~2!

Here Lr and Rr are the left and the right multiplication operators andf :(0,̀ )→R is an
operator monotone function which is symmetric, that is,f (t)5t f (t21). It is immediate from~2!
that under the normalizationf (1)51, any monotone metric is equal to the Fisher metric
commutative submanifolds. Moreover, we have

2t

11t
< f ~ t !<

11t

2

for all symmetric normalized operator monotone functions.12 Accordingly, there is a greatest an
a smallest element in the set of monotone metrics.

The smallest monotone metric is obtained forf (t)5(11t)/2. It is called the Bures metric
because it is related to the Bures distance~see also Sec. IV!. The operator

Jr~h!5g, rg1gr52h,

is the symmetric logarithmic derivative~see Refs. 9, 18, and 2!.
The greatest monotone metric corresponds to the functionf (t)52t/(11t). In this caseJr is

the right logarithmic derivative~RLD!
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Jr~h!5 1
2 ~r21h1hr21!

~see Refs. 9, 16, and 17!. More examples of monotone metrics can be found in Sec. V.

III. STANDARD REPRESENTATION AND MONOTONE METRICS

The standard representation of the algebraMn is obtained ifMn is endowed with the Hilbert–
Schmidt inner product

^x,y&5Tr x* y.

Let us denote the resulting Hilbert space byH. ThenMn is represented onH by

f:Mn→B~H !, a°La ,

whereLa is the left multiplication operatorLaw5aw, wPH. Each elementr in M has a vector
representative, or purification,w in H, such that

Tr ra5^w,Law& ;aPMn .

ThenwPH is a vector representative ofrPM if and only if r5ww* .
Let r t , tPI , be a smooth curve inM. A curvewt in H, such thatwt is a vector representativ

of r t for all tPI , is called a lift ofr t . In this case, the tangent vectors are related by

ṙ t5ẇtwt* 1wtẇt* . ~3!

Let us denote the corresponding projection of the tangent spacesTwH→Tww* M by P.
Let w0w0* 5r0 . There are many lifts ofr t throughw0 . Among such lifts, there is a unique lif

with minimal Hilbert space length

l H~wt!5E
I
A^ẇt ,ẇt&dt.

It will be called the horizontal lift.
The horizontal lift was introduced in Refs. 18 and 19, where the geometric phase wa

tended to mixed states. It was shown that the above minimalization problem leads to the co

wt* ẇt5ẇt* wt ~4!

for all t. The curveswt in H, satisfying this condition, are called horizontal curves. The tang
vectors to horizontal curves atwPH form a real vector subspaceHw5$gw, g5g* %. Let Hw be
endowed with the inner product Re^•,•&. Then it is a real Hilbert space, called the horizon
subspace. For eachhPTww* M, there is a unique elementĥ in Hw satisfyingh5P(ĥ). It follows
that the inner product inHw can be projected ontoTww* M. As it turns out, this projection define
a Riemannian metric onM. Moreover,

4 Re^ĥ,k̂&52Trh~Lr1Rr!21~k!, h,kPTrM, ~5!

is exactly the Bures metric.
The commutant off(Mn) is the algebra of right multiplication operatorsRaw5wa, a

PMn , on H. For eachsPM, there is an elementwPH such that

^w,Raw&5Tr sa.
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This element is given bys5w* w. For each curves t in M, let us consider the curveswt in H

satisfying wt* wt5s t . The tangent vectors of such curves satisfyṡ t5P̃(ẇt), where P̃:TwH
→Tw* wM is given by

P̃~x!5x* w1w* x.

We may now proceed exactly as before, choosing for eachs t the shortest of these curves. It
quite clear thatwt is the shortest curve if and only ifwt* is horizontal; equivalently,ẇtPH̃wt

ª$wtg, g5g* % for all t. Moreover, we have

xPHw⇔x* PH̃w* . ~6!

If we now project the real Hilbert space structure fromH̃w to Tw* wM, using the projectionP̃, we
will, of course, get the Bures metric again. On the other hand, it is easy to see that for er

5ww* andhPTrM, h̃ª 1
2h(w* )21 is the unique element inH̃w satisfyingh5P(h̃). We may

therefore define

lr~h,k!ª4 Rê h̃,k̃&5 1
2Tr r21~hk1kh!, ~7!

which is the RLD metric. This shows that there is a duality relation between the Bures metr
RLD ~see also Refs. 14 and 10!.

IV. THE GEODESIC DISTANCES

Let l be a Riemannian metric onM. A curve r t , tP@0,1#, is a geodesic path inM if its
length

l l~r t!5E
0

1

Alr t
~ ṙ t ,ṙ t!dt

is the minimum of lengths of all curves connectingr0 andr1 . This length is then the geodes
distance ofr0 andr1 . Let us denote bydl the geodesic distance for the metricl in M and byDl

the geodesic distance inD.
For the Bures metric, the geodesic paths and distances were obtained by Uhlmann18,19 as

follows. Let r0 andr1 be two elements inM and letr t be a curve connecting them. Ifwt is the
horizontal lift of r t , then by~5!

l Bures~r t!52l H~wt!,

hence minimizing the Bures length means minimizing the Hilbert space length of horizonta
of curves connectingr0 andr1 . From the definition of horizontality, this minimum is attained
the line segmentwt5tw11(12t)w0 , such thatiw02w1i is minimal overw0w0* 5r0 , w1w1*
5r1 . This happens if and only ifw1 and w0 are parallel amplitudes, that is, these satisfy U
mann’s parallelity condition

w1* w0>0. ~8!

For eachw0 there is a uniquew1 parallel tow0 , given by19

w15r0
21/2~r0

1/2r1r0
1/2!1/2r0

21/2w0 .

The geodesic path inM, connectingr0 andr1 , is then

r t5~ tw11~12t !w0!~ tw11~12t !w0!* ,
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and the geodesic distance is

dBures~r0 ,r1!52iw02w1i52ATr r01Tr r122Tr ~r0
1/2r1r0

1/2!1/2.

This is called the Bures distance.
Let r t now be a curve inD. Then all lifts ofr t are curves on the unit sphereS in H. If w0 ,

w1PS, the shortest curve connecting them lies on the large circle inS through them. The length
of such arcs forw0w0* 5r0 andw1w1* 5r1 is minimal if w0 andw1 are parallel amplitudes and
by definition, in this case the arc is also horizontal. Hence, the Bures geodesic inD is

r t5
~w01~12t !w1!~ tw01~12t !w1!*

i tw01~12t !w1)i2

for parallel amplitudesw0 andw1 and the Bures distance

DBures~r0 ,r1!52 arccos Trw0w1* 52 arccos Tr~r0
1/2r1r0

1/2!1/2.

The duality of the Bures and RLD metrics leads to the following upper bound for the R
geodesic distance.

Proposition 4.1:Let r0 , r1PM. Then

dRLD~r0 ,r1!<dBures~r0 ,r0
21/2~r0#r1!2r0

21/2!,

where

r0#r15r0
1/2~r0

21/2r1r0
21/2!1/2r0

1/2

is the geometric mean. Ifr0 and r1 are in D, the same holds for geodesic distances DRLD and
DBures.

Proof: Let w05r0
1/2 and letwPH be such thatw0 andw satisfy the parallelity condition~8!.

Then the curvewt5tw1(12t)w0 is the horizontal lift of the Bures geodesic connectingr0 and
ww* , in particular,ẇtPHwt

for all t. Thenwt* is a lift of a curver t in M, connectingr0 and

w* w and by~6!, ẇt* PH̃w
t*
. Consequently, by~7!,

dRLD~r0 ,w* w!< l RLD~r t!52iw* 2w0* i52iw2w0i5dBures~r0 ,ww* !.

From the parallelity condition,w5qw0 for someq5q* .0. Let us choosew such that

r15w* w5r0
1/2q2r0

1/2.

Thenq5(r0
21/2r1r0

21/2)1/2 and

ww* 5r0
21/2~r0#r1!2r0

21/2.

The statement for distances inD is proved exactly the same way. h

Remark 4.1:Let w0 , w andq be as in the proof of the previous proposition. Then we ha

iw02wi25Tr r01Tr r122Trr0q

and

dBures~r0 ,r0
21/2~r1#r0!2r0

21/2!52ATr r01Tr r122Trr0#r1 ~9!

so thatr0 andr1 can be exchanged.
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Remark 4.2:Let r t5wt* wt andq be as in the proof of Proposition 4.1. Then, in general,r t is
not the RLD geodesic. Indeed, it can be easily computed that for the RLD metric, the geo
equation reads

r̈ t1
1

Lr t
1Rr t

~ ṙ t
2!2 ṙ tr t

21ṙ t5a~ t !ṙ t ,

wherea is a smooth functiona:I→R ~see also Ref. 3!. We have

r t5wt* wt5r0
1/2~11t~q21!!2r0

1/2.

It can be shown by direct computation that the geodesic equation is satisfied if and only if

q~r0q2qr0!5~r0q2qr0!q,

which, for self-adjoint operators, impliesqr05r0q. It follows that the inequality in Proposition
4.1 is strict, unlessr0 andr1 commute. In that case, the geodesic distances are the same f
monotone metrics.

In Ref. 17, a class of generalized relative entropies

Hg~r0 ,r1!5Tr r0g~r0
21/2r1r0

21/2!

was introduced; hereg is an operator convex function. This is a noncommutative version of
f -divergence. It was shown in Ref. 17 that the generalized entropyHg leads to a constant multiple
of the RLD metric for infinitesimaly close elements inD.

It is easy to see that the right hand side of~9! is equal toA2Hg0
(r0 ,r1), where

g0~ t !5212t24t1/2. ~10!

Note that on commuting elements,Hg0
is equal to the Hellinger distance.

By maximality of the RLD metric, we obtain the following.
Corollary 4.1: Letr0 ,r1PM and letl be a monotone metric. Then

dBures~r0 ,r1!<dl~r0 ,r1!<A2Hg0
~r0 ,r1!,2ATr r01Tr r1.

If r0 , r1PD, then

2 arccos Tr~r0
1/2r1r0

1/2!1/2<Dl~r0 ,r1!<2 arccos Trr0#r1,p.

V. THE WYD METRICS

The Wigner–Yanase–Dyson~WYD! metrics are defined by

lr
a~h,k!5

]2

]t]s
Tr f a~r1th! f 2a~r1sk!us,t50 ,

where

f a~x!5H 2

12a
x~12a!/2, aÞ1,

log~x!, a51.
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As it was shown in Ref. 8, these metrics are monotone foraP@23,3#. The family of WYD
metrics is important in quantum information geometry~see Refs. 7, 11, and 6!. As special cases
for a561, we get the well known Bogoljubov–Kubo–Mori metric and fora563 we get the
RLD metric.

The smallest in this family is the Wigner–Yanase~WY! metric, obtained fora50. The WY
metric has the form

lr~h,k!54Trh~ALr1ARr!22~k!.

The corresponding geodesic path and distance was computed in Ref. 5, using a noncomm
version of the square root map~1! and a pullback technique. We will show that these can also
easily obtained using a similar method as in the Bures case.

Let r t be a curve inM. Among its liftswtwt* 5r t , we will again choose a horizontal one. I
this case, the liftwt is horizontal if it is contained in the natural positive cone atw0 , that is, if
wt5r t

1/2u0 for all t. In this case, the horizontal subspace isHw
0 5$gu, g5g* %, wherew5r1/2u is

the polar decomposition ofw. Each tangent vectorhPTww* M has a unique horizontal lifth0

5guPHw
0 , such thath5P(h0)5gr1/21r1/2g. The induced metric

lr~h,k!54 Rê h0,k0&54Trh~Lr
1/21Rr

1/2!22~k!

is the WY metric. Note that in this casexPHw
0 if and only if x* PHw*

0 , so that the WY metric is
self-dual, in the sense mentioned in Sec. III. Let us also remark that it is possible to obtain
monotone metrics in a similar manner~see Refs. 4 and 10!.

Now let r0 andr1 be inM and letr t be a curve connecting them. Again, the WY length
r t is twice the Hilbert space length of its horizontal liftwt5r t

1/2u0 . Therefore,r t is the geodesic
path if wt5tr1

1/2u01(12t)r0
1/2u0 , that is,

r t5~ tr1
1/21~12t !r0

1/2!2

and the geodesic distance is

dWY~r0 ,r1!52ir0
1/22r1

1/2i52ATr r01Tr r122Trr0
1/2r1

1/2.

Similarly, if r0 , r1PD, then r t is a geodesic path if and only ifwt lies on the large circle
connectingr0

1/2u0 andr1
1/2u0 . Hence

r t5
~ tr1

1/21~12t !r0
1/2!2

i tr1
1/21~12t !r0

1/2i2

and

DWY~r0 ,r1!52 arccos Trr0
1/2r1

1/2.

Let us denote byDs,r5LsRr
21 the relative modular operator. In Ref. 15, a class of qua

entropies was introduced by

Sg~r,s!5Tr r1/2g~Ds,r!~r1/2!,

whereg is an operator convex function. This is another quantum version of thef -divergences. It
is easy to see that

dWY~r0 ,r1!5A2Sg0
~r0 ,r1!, ~11!
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whereg0 is given by~10!. It was proved in Ref. 13 that each monotone metric can be obtaine
the Hessian ofSg for a suitable operator convex functiong. The choiceg5g0 leads to the WY
metric.

From the previous section and the fact that the WY metric is the least element in the fam
WYD metrics, we obtain the following.

Corollary 5.1: Letl be a WYD metric andr0 ,r1PM. Then

A2Sg0
~r0 ,r1!5dWY~r0 ,r1!<dl~r0 ,r1!<A2Hg0

~r0 ,r1!,

where g0(t)5212t24t1/2. If r0 ,r1PD, then

2 arccos Trr0
1/2r1

1/2<Dl~r0 ,r1!<2 arccos Trr0#r1 .
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Locality and orthomodular structure of compound
systems
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A P-lattice is defined as as-complete, orthomodular atomic latticeL which is
formed by the set of propositions of a physical system. A composition of physical
systems in the framework of P-lattices is considered and some notions of locality
are given. It is shown that the following statements about compound systems are
equivalent.~a! All atoms of a compound system are reducible to those of its sub-
systems.~b! All pure states of a compound system are separable into those of its
subsystems.~c! A compound system has statistical property independence.~d! At
least one of the subsystems is classical.~e! Bell-type inequalities hold. ©2004
American Institute of Physics.@DOI: 10.1063/1.1690490#

I. INTRODUCTION

According to so-called logico-algebraic approaches to physics, one of the differences be
classical and quantum mechanics is in whether distributive law holds in their propositional
tures; the lattices of observational propositions in classical mechanics are distributive and th
quantum mechanics are not~see, e.g., Ref. 1!.

On the other hand, Bell2 found another difference. He showed that stochastic inequal
following from a kind of locality condition, which holds for classical mechanics, can be viola
by quantum mechanical predictions. According to experimental results and philosophical d
sions, one must recognize some nonlocality in quantum mechanics~henceforceBell-type argu-
ments!.

The questions now arise: Is there any relation between the two new features of qu
mechanics, i.e., nondistributivity and nonlocality? For example, could the nondistributive p
sitional structure of a compound system imply the nonlocal feature of the system? Or, would
features merely tell how large the differences between classical and quantum picture of reali
Studies which have been made on the matter can be divided into two groups: One group,
focuses on the role of joint probabilities in the Bell-type arguments, studies connections be
propositional structures and certain stochastic inequalities for them.3–6 The other group, which
focuses on the role of locality in the Bell-type arguments, formulates locality conditions
propositional structures and studies connections between nonlocality and nondistributivity.7–13

However, very few attempts14 have been made to unify the two ways. What seems to
lacking is a logical and conceptual clarification of notions such as ‘‘classicality’’ and ‘‘locality
the Bell-type arguments. The purpose of this article is to clarify these notions within a la
theoretical approach, and to establish the logical connections among propositional struct
sub- and compound systems, locality conditions and Bell-type inequalities.

II. PROPOSITIONAL STRUCTURES OF PHYSICAL SYSTEMS

Presupposing definitions of standard lattice-theoretical notions~see, e.g., Ref. 15!, let us begin
with basic definitions and notations for our arguments~see also Ref. 10!.

a!Electronic mail: teppei@hps.sci.hokudai.ac.jp
17950022-2488/2004/45(5)/1795/9/$22.00 © 2004 American Institute of Physics
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A P-lattice is a s-complete, orthomodular atomic latticeL which is formed by the set o
propositions of a physical system.16 A distributive P-lattice is calledclassical, which is isomorphic
to the Borels-field of some phase space in classical mechanics. An irreducible P-lattice is c
quantum, which is isomorphic to the lattice of all closed subspaces of some Hilbert space.

For notation, (a,b) C denotes that elementsa,bPL commute with each other,C~L! stands for
the center ofL, andA~L! for the set of all atoms ofL.

A s-additive probability measurem on a P-latticeL is called astate, and the set of states i
denoted byM. The setM is s-convex. An element of the extremal subsetMp of M is called a
pure state. Further, we shall suppose the Jauch–Piron condition for pure states, i.e.,m(a)51
5m(b) imply m(a∧b)51 for anymPMp .

A pair (L,Mp) of a P-latticeL and a setMp of pure states onL is calledcompleteif there
is a bijective correspondence betweenA~L! andMp such thatm(x)51 for all xPA(L) and all
mPMp . A complete pair (L,Mp) is called aphysical system. We shall say that a physical syste
is classical~resp.quantum! if the P-lattice is classical~resp. quantum!.

Let S be a set of pure states on a P-latticeL. We say that a statem is thesuperpositionof the
states inS if

S~a!51 @ i.e., s~a!51 for ;sPS#⇒m~a!51for ;aPL.

If ( L,Mp) is a physical system, we putS̄5$mPMpuS(a)51⇒m(a)51% for any S#Mp .
In the following sections, we prove some theorems. For their proofs, we shall appea

quently to the following two theorems:
Theorem 1 ~e.g., Ref. 17, Lemma 3.10!: Let L be as-complete orthomodular lattice, and le

a,b1 ,b2 ,... be elements ofL. If (a,bi) C for all i , then (a,bi
') C, (a,∨bi) C and (a,∧bi) C.

Theorem 2 @Foulis–Holland~e.g., Ref. 18, Theorem 3!#: Let L be an orthomodular lattice,
and let a,b,c be elements ofL. If one of them commutes with the other two, then triple(a,b,c) is
distributive.

III. DESCRIPTIONS OF COMPOUND SYSTEMS

Over the last few decades, a considerable number of studies have been made on the
tion of compound systems in lattice-theoretical approaches. Unfortunately, there is a well-k
open problem in the case of compound systems consisting of two quantum subsystems7–12,19

However, our purposes are not to deal with the problem but to consider some proper
compound systems if such a description is possible. With this problem in mind, let us now t
our task.

We shall be almost exclusively concerned with a compound systemS consisting of two
subsystemsS1 andS2 . Let us state how to describe the situation in terms of P-lattices. By u
P-latticesLi associated with subsystemsSi ( i 51,2), we define a P-lattice associated with t
compound systemS as follows.10,13

Definition 1: LetL1 and L2 be P-lattices. A P-lattice L is called a compound P-lattice if

(i) there exist two injectives-orthohomomorphisms hi :Li→L( i 51,2),
(ii) h 1(p)∧h2(q)PA(L) for every pPA(L1), qPA(L2),
(iii) (h1(a),h2(b)) C for every aPL1 , bPL2 , and
(iv) h1(L1)øh2(L2) generatesL.

Further, by using physical systems (Li ,Mpi
) associated withSi ( i 51,2), we define a physica

system associated withS as follows.10

Definition 2: Let(L1 ,Mp1
) and(L2 ,Mp2

) be physical systems. We say that a physical sys

(L,Mp) is a compound physical system of(L1 ,Mp1
) and (L2 ,Mp2

) if there exist mappingsa,b
such that
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(i) a:L13L2→L, b:Mp1
3Mp2

→Mp ,

b~m1,m2!~a~a1,a2!!5m1~a1!m2~a2! for aiPLi ,miPMpi
~ i 51,2!,

(ii) $mPMpum(a)51%5$b(m1 ,m2)ub(m1 ,m2)(a)51% for aPL of the form

a5∧k51
N a~a1

k ,a2
k!, ai

kPLi ~ i 51,2! or

a5a~a1 ,I 2!', a1PL1 or a5a~ I 1 ,a2!', a2PL2 ,
(iii) a@L13L2# generatesL, and
(iv) b@Mp1

3Mp2
#5Mp .

A connection between compound P-lattices and compound physical systems is given by t
lowing theorem.

Theorem 3 ~Ref. 10, Theorem 4!: Let (L,Mp) be a compound physical system of(L1 ,Mp1
)

and (L2 ,Mp2
). Let us put

h1 :L1→L , a1°a~a1 ,I 2!, h2 :L2→L , a2°a~ I 1 ,a2!.

ThenL is a compound P-lattice of L1 and L2 .
From these definitions, the following expected results are obtained.~For similar result in other

schemes, see Ref. 11.!
Theorem 4 ~Ref. 20, Corollaries 1 and 2!: Let (L,Mp) be a compound physical system

(L1 ,Mp1
) and (L2 ,Mp2

).

(i) L is distributive if and only if bothL1 and L2 are distributive.
(ii) L is irreducible if and only if bothL1 and L2 are irreducible.

This theorem seems to assure that Definitions 1 and 2 grasp the notion of composition
classical and quantum mechanics have in common.

IV. SUFFICIENT CONDITIONS FOR BELL-TYPE INEQUALITIES

In this section, we shall consider some important notions concerning Bell-type argument
examine connections among them. Furthermore, we shall show that these notions are su
conditions for deriving Bell-type inequalities mentioned later. Let us begin with some definit

Definition 3: Let(L,Mp) be a compound physical system of(L1 ,Mp1
) and (L2 ,Mp2

).

(1) We say that(L,Mp) has property reducibility if the set of all atoms ofL is of the form
A~L!5$h1~q1!∧h2~q2!uq1PA~L1!,q2PA~L2!%.

(2) We say that(L,Mp) has state separability if the set of all pure states onL is of the form

Mp5b@Mp1
3Mp2

#.

Intuitively, the property reducibility means that all physical properties of a whole system
merely the sum of, or are supervenient on, those of its subsystems.~We say that there exists
holistic propertyin a compound physical system, if it does not have property reducibility.! The
state separability reflects a notion that spatially separated systems always possess states
own, which determine the state assigned to the compound system.~We say that there exists
nonseparable statein a compound physical system, if it does not have state separability.!

Remark that from a philosophical point of view, the notions of reducibility and separab
should be distinguished from each other as Healey21 pointed out; that is, while the term ‘‘reduc
ibility’’ is used to describe part-whole relations, the term ‘‘separability’’ is based on spa
temporal relations. However, we shall identify these notions by virtue of the following theo

Theorem 5: Let (L,Mp) be a compound physical system of(L1 ,Mp1
) and (L2 ,Mp2

). The

following statements are equivalent.
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(a) (L,Mp) has property reducibility.
(b) (L,Mp) has state separability.

Proof: @(a)⇒(b)#: Since (L,Mp) is complete, there is an atomaPA(L) such thatm(a)
51 for anymPMp5b@Mp1

3Mp2
#. From ~a!, there existxPA(L1) andyPA(L2) such that

a5h1(x)∧h2(y)5a(x,I 2)∧a(I 1 ,y)5a(x,y) ~where last equality is due to Proposition 2 of Re
10!. Further, there existm1PMp1

andm2PMp2
such thatm1(x)51 andm2(y)51, and we have

m~a~x,y!!515m1~x!m2~y!5b~m1 ,m2!~a~x,y!!.

Then we getm5b(m1 ,m2)Pb@Mp1
3Mp2

#, and henceb@Mp1
3Mp2

##b@Mp1
3Mp2

#. It is

obvious by definition that the opposite inclusion holds. As a result we haveb@Mp1
3Mp2

#

5b@Mp1
3Mp2

#.

@(b)⇒(a)#: There existm1PMp1
andm2PMp2

such thatm5b(m1 ,m2) for any mPMp

5b@Mp1
3Mp2

#. Further, there existxPA(L1) andyPA(L2) such thatm1(x)51 andm2(y)
51 for m1 andm2 . Then we have

15m1~x!m2~y!5b~m1 ,m2!~a~x,y!!5m~a~x,y!!,

which means that an atom corresponding tomPMp is of the forma(x,y)5h1(x)∧h2(y). There-
fore we getA(L)5$h1(q1)∧h2(q2)uq1PA(L1),q2PA(L2)%. h

As a consequence, we shall simply say in the following argument that (L,Mp) hassepara-
bility if it has one~hence both! of these features.

An implication of having separability is shown in the following theorem, which has b
given by Pykacz and Santos.14 ~Their scheme is slightly different from ours, but the method
their proof can be applied to ours.!

Theorem 6 ~Ref. 14, Theorem 2!: Let (L,Mp) be a compound physical system of(L1 ,Mp1
)

and (L2 ,Mp2
). If (L,Mp) has state separability, the following Clauser–Horne version of Bell’s

inequalities,

m~ h1~a!∧h2~b! !1m~ h1~c!∧h2~b! !1m~ h1~c!∧h2~d! !

2m~ h1~a!∧h2~d! !2m~ h1~c! !2m~ h2~b! !<0, ~1!

holds for any mPMp and for any quadruple(h1(a),h2(b),h1(c),h2(d)), where a,cPL1 and
b,dPL2 .

Let us suppose that the inequalities~1! are violated in some compound physical system. Th
Theorem 6 tells us that such a system cannot have separability. That is, such a system is ei )
that there is an atomic property which cannot be reducible to the properties possessed
subsystems, or (i i ) that the subsystems do merely not possess any of thier own properties
seems to be the reason that violations of Bell’s inequalities in quantum mechanics have
regarded as problematic.

So far, we have seen a connection between separability and Bell-type inequalities. Reca
for example, the property reducibility is a restriction on the set of all atoms of a comp
physical system. The questions now arise: For what structure is such a restriction permitte
more directly,from what structure are Bell-type inequalities derived?As for the former question,
the following theorem has been proved by the author.13

Theorem 7 ~Ref. 13, Corollary!: Let (L,Mp) be a compound physical system of(L1 ,Mp1
)

and (L2 ,Mp2
). The statement(a) in Theorem 5 is equivalent to the following statement.

(c) At least one ofL1 and L2 is distributive.

Consequently, we can see that the statements~a!, ~b! and~c! are equivalent. Finally, with the
aid of Theorem 6, we can show a new connection among propositional structures of su
compound system and Bell-type inequalities.
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Theorem 8: Let (L,Mp) be a compound physical system of(L1 ,Mp1
) and (L2 ,Mp2

). If at

least one ofL1 andL2 is distributive, the Clauser–Horne version of Bell’s inequalities (1) hold fo
any mPMp and for any quadruple(h1(a),h2(b),h1(c),h2(d)), where a,cPL1 and b,dPL2 .

It should be noticed that there are seemingly no locality conditions in the statement of
rem 8.

V. A NECESSARY CONDITION FOR BELL-TYPE INEQUALITIES

In the previous section, we considered a question such that: From what structure are Be
inequalities derived? And we answered the question by establishing Theorem 8. Now we m
the converse question, to which little attention has been given:What structure do Bell-type in
equalities imply?More accurately,what structure does the compound physical system hav
Bell-type inequalities always hold for the system?In this section, we shall try to answer th
question.

The following lemma is helpful for our purpose.
Lemma 1: Let(L,Mp) be a physical system such thatL is nondistributive. Then, for any

distinct atoms x,yPA(L) such that x is not orthogonal to y,

m~x!51 ⇒ m~y!Þ0,1 for mPMp .

Proof: Suppose thatm(x)51.

~i! In the case ofm(y)51:
Due to the Jauch–Piron condition, we havem(x∧y)51. On the other hand, sincex andy
are distinct atoms, it follows thatx∧y5B so thatm(x∧y)50, which is a contradiction.

~ii ! In the case ofm(y)50:
15m~x!<m~x∨y!5m~$~x∨y!∧y'%∨y!5m~~x∨y!∧y'!1m~y!5m~~x∨y!∧y'!.

Hence m((x∨y)∧y')51. Due to the Jauch–Piron condition and due to the fact
x∧y'5B, it follows that 15m($(x∨y)∧y'%∧x)5m(B)50, which is a contradiction.

So we conclude thatm(y)Þ0,1. h

We shall now answer the question mentioned above. The following theorem, which
converse of Theorem 8, is also true.

Theorem 9: Let (L,Mp) be a compound physical system of(L1 ,Mp1
) and (L2 ,Mp2

). If the

following Clauser–Horne version of Bell’s inequalities

m~ h1~a!∧h2~b! !1m~ h1~c!∧h2~b! !1m~ h1~c!∧h2~d! !

2m~ h1~a!∧h2~d! !2m~ h1~c! !2m~ h2~b! !<0

holds for any mPMp and for any quadruple(h1(a),h2(b),h1(c),h2(d)), where a,cPL1 and
b,dPL2 , then at least one ofL1 and L2 is distributive.

Proof: Suppose that bothL1 andL2 are nondistributive. Then we can choose distinct ato
a,a8,c,c8PA(L1) such that a'a8, c'c8 and a∨a85c∨c8. Similarly, choose distinct
b,b8,d,d8PA(L2) such thatb'b8, d'd8 andb∨b85d∨d8. Let X denotea∨a8 andY denote
b∨b8. It is easily seen that

~h1~a!∧h2~b!!∨~h1~a!∧h2~b8!!∨~h1~a8!∧h2~b!!∨~h1~a8!∧h2~b8!!5h1~X!∧h2~Y!.

Therefore, it follows that dim(h1(X)∧h2(Y))54. @Remark that by definition, for example
h1(a)Þh2(b).]

First, we shall show thatGª(h1(c8)∨h2(d))∧(h1(a)∨h2(b8))∧(h1(a8)∨h2(d8)) is not a
null elementB. If G5B, then
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h1~X!∧h2~Y!5h1~X!∧h2~Y!∧G'

5h1~X!∧h2~Y!∧@~h1~c8!'∧h2~d!'!∨~h1~a!'∧h2~b8!'!∨~h1~a8!'∧h2~d8!'!#.

~2!

Due to Theorem 1,h1(X)∧h2(Y) commutes withh1(c8)'∧h2(d)', h1(a)'∧h2(b8)' and
h1(a8)'∧h2(d8)'. Hence~2! reduces to

~h1~c!∧h2~d8!!∨~h1~a8!∧h2~b!!∨~h1~a!∧h2~d!!. ~3!

Since the element~3! is a join of three atoms, its dimension is less than or equal to 3, w
contradicts with dim(h1(X)∧h2(Y))54. So we conclude thatGÞB. By atomicity of L, there
exists an atomq such thatq<G. It follows that q<G<(h1(c8)∨h2(d))∧(h1(a8)∨h2(d8)). By
using the fact thath2(d) commutes withh1(c8) andh1(a8)∨h2(d8) ~due to Theorem 1! and by
applying Foulis–Holland’s theorem, we have

q<~h1~c8!∨h2~d!!∧~h1~a8!∨h2~d8!!

5@h1~c8!∧~h1~a8!∨h2~d8!!#∨@h2~d!∧~h1~a8!∨h2~d8!!#

5~h1~c8!∧h2~d8!!∨~h1~a8!∧h2~d!!<h1~X!∧h2~Y!.

Second, we shall consider a pure statem such thatm(q)51. Since

q<h1~c8!∨h2~d!, h1~a!∨h2~b8!, h1~a8!∨h2~d8!,

we have

15m~h1~c8!∨h2~d!!5m~h1~a!∨h2~b8!!5m~h1~a8!∨h2~d8!!,

or, equivalently, we have

05m~h1~c8!'∧h2~d!'!5m~h1~a!'∧h2~b8!'!5m~h1~a8!'∧h2~d8!'!.

SinceX∧c'5c8<c', i.e., c<c8' so thath1(c)∧h2(d)'<h1(c8')∧h2(d)'5h1(c8)'∧h2(d)',
we obtainm(h1(c)∧h2(d)')50. Similarly, we obtain

m~h1~a!'∧h2~b!!5m~h1~a!∧h2~d!!50. ~4!

Hence we have

m~h1~c!!5m~h1~c!∧h2~d!!1m~h1~c!∧h2~d!'!5m~h1~c!∧h2~d!!, ~5!

m~h2~b!!5m~h1~a!∧h2~b!!1m~h1~a!'∧h2~b!!5m~h1~a!∧h2~b!!. ~6!

Third, we shall show thatq is not orthogonal toh1(c)∧h2(b). Sinceq<h1(X)∧h2(Y), it
follows that

q∧~h1~c!∧h2~b!!'5q∧h1~X!∧h2~Y!∧~h1~c!∧h2~b!!'

5q∧@~h1~c8!∧h2~Y!!∨~h1~X!∧h2~b8!!#

<G∧@~h1~c8!∧h2~Y!!∨~h1~X!∧h2~b8!!#

5~h1~c8!∨h2~d!!∧~h1~a!∨h2~b8!!∧~h1~a8!∨h2~d8!!

∧@~h1~c8!∧h2~Y!!∨~h1~X!∧h2~b8!!#. ~7!
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By using Theorem 1, it follows thath1(c8)∧h2(Y) commutes with h1(c8)∨h2(d) and
h1(X)∧h2(b8). Then, by applying Foulis–Holland’s theorem, we can see

~h1~c8!∨h2~d!!∧@~h1~c8!∧h2~Y!!∨~h1~X!∧h2~b8!!#

5@~h1~c8!∨h2~d!!∧~h1~c8!∧h2~Y!!#∨@~h1~c8!∨h2~d!!∧~h1~X!∧h2~b8!!#

5~h1~c8!∧h2~Y!!∨@~h1~c8!∧h1~X!∧h2~b8!!∨~h2~d!∧h1~X!∧h2~b8!!#

5~h1~c8!∧h2~Y!!∨~h1~c8!∧h2~b8!!5h1~c8!∧h2~Y!. ~8!

Therefore, by applications of Foulis–Holland’s theorem, the right-hand side of~7! reduces to

h1~c8!∧h2~Y!∧~h1~a!∨h2~b8!!∧~h1~a8!∨h2~d8!!

5@~h1~c8!∧h2~Y!∧h1~a!!∨~h1~c8!∧h2~Y!∧h2~b8!!#∧~h1~a8!∨h2~d8!!

5h1~c8!∧h2~b8!∧~h1~a8!∨h2~d8!!

5h1~c8!∧@~h1~a8!∧h2~b8!!∨~h2~b8!∧h2~d8!!#5h1~c8!∧h1~a8!∧h2~b8!5B.

Hence we conclude thatq∧(h1(c)∧h2(b))'5B, i.e., the atomq is not orthogonal to
h1(c)∧h2(b). By virtue of Lemma 1, we obtain

m~h1~c!∧h2~b!!Þ0. ~9!

Finally, we shall show that our supposition forL1 and L2 leads to a contradiction. By the
premise of the theorem, the following inequality,

m~h1~a!∧h2~b!!1m~h1~c!∧h2~b!!1m~h1~c!∧h2~d!!

2m~h1~a!∧h2~d!!2m~h1~c!!2m~h2~b!!<0, ~10!

holds for our choice ofa,b,c,d andm. From ~5! and ~6!, this inequality reduces to

m~h1~c!∧h2~b!!<m~h1~a!∧h2~d!!. ~11!

However, it follows from~4! thatm(h1(c)∧h2(b))50, which contradicts with~9!. Therefore, we
conclude that at least one ofL1 andL2 must be distributive. h

We would like to add one to our results. The following notion often appears in Bell-
arguments.

Definition 4: Let(L,Mp) be a compound physical system of(L1 ,Mp1
) and (L2 ,Mp2

). We

say that(L,Mp) has statistical property independence if for any state mPMp and for any x
PL1 and yPL2 it holds that

m~h1~x!∧h2~y!!5m~h1~x!! m~h2~y!!.

Further, we say that there exists anonlocal correlationin a compound physical system, if it doe
not have statistical property independence. The following theorem can be obtained.

Theorem 10:Let (L,Mp) be a compound physical system of(L1 ,Mp1
) and (L2 ,Mp2

). The

statement(b) in Theorem 5 is equivalent to the following statement.
(d) (L,Mp) has statistical property independence.

Proof: @(b)⇒(d)#: Since there exist somem1PMp1
and m2PMp2

for any statem

Pb@Mp1
3Mp2

#, it follows that for anyxPL1 andyPL2
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m~h1~x!∧h2~y!!5b~m1 ,m2!~a~x,y!!5m1~x!m2~y!5m1~x!m2~ I 2!m1~ I 1!m2~y!

5b~m1 ,m2!~a~x,I 2!! b~m1 ,m2!~a~ I 1 ,y!!5m~h1~x!! m~h2~y!!,

which shows that (L,Mp) has statistical property independence.
@(d)⇒(b)#: Suppose that (L,Mp) has statistical property independence. Then, by virtue

Theorem 2 of Ref. 14, it follows that the Clauser–Horne version of Bell’s inequalities~1! holds for
anymPMp and for anya,cPL1 andb,dPL2 . Due to Theorem 9, we conclude that at least o
of L1 and L2 is distributive. This statement is equivalent to the statement~b! by Theorem 5
and 7. h

VI. CONCLUDING REMARKS

In summary, we have the following results.
Corollary: Let (L,Mp) be a compound physical system of(L1 ,Mp1

) and (L2 ,Mp2
). The

following statements are equivalent.

(a) (L,Mp) has property reducibility.
(b) (L,Mp) has state separability.
(c) At least one ofL1 and L2 is distributive.
(d) (L,Mp) has statistical property independence.
(e) The Clauser–Horne version of Bell’s inequalities

m~ h1~a!∧h2~b! !1m~ h1~c!∧h2~b! !1m~ h1~c!∧h2~d! !

m~ h1~a!∧h2~d! !2m~ h1~c! !2m~ h2~b! !<0 ~12!

hold for any mPMp and for any a, cPL1 and b, dPL2 .

Or, equivalently, we have the following.
Corollary: Let (L,Mp) be a compound physical system of(L1 ,Mp1

) and (L2 ,Mp2
). The

following statements are equivalent.
(a8) There exists a holistic property in(L,Mp).
(b8) There exists a nonseparable state in(L,Mp).
(c8) Both L1 and L2 are nondistributive.
(d8) There exists a nonlocal correlation in(L,Mp).
(e8) The Clauser–Horne version of Bell’s inequalities (12) violate for some mPMp and for some
a,cPL1 and b,dPL2 .
The connections among distributivity of P-lattices, the separability and the Bell-type inequa
~12! are summarized as in Table I.

In conclusion, we would like to state the following two points.
~I! According to Pykacz and Santos,14 it has been an open question whether Gisin’s resu22

within the usual Hilbert-space formalism for quantum mechanics, which has shown that fo
entangled state there are projectors violating Bell’s inequalities, could be also obtained
lattice-theoretical approaches. Now, our results partially answer the question. That is, it fo

TABLE I. ( L1 ,Mp1
) and (L2 ,Mp2

) are physical systems respectively associated with systemsS1 andS2 . (L,Mp) is the
compound physical system of them. This table shows connections among features ofL1 andL2 , those of (L,Mp) and the
Clauser-Horne version of Bell’s inequalities~12!.

L1 L2 Properties of (L,Mp) Bell-type inequalities~12!

Distributive Distributive Distributive and separable s

Either ~not both! distributive Nondistributive and separable s

Nondistributive Nondistributive Nondistributive and nonseparable 3
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from our results that if the system has nonseparable states, there exists at least one pair o
and elements violating Bell-type inequalities~12!. Remark that it is still an open question wheth
for any nonseparable state there are elements violating inequalities~12!.

~II ! It is important to distinguish two type of nondistributivity~nonclassicality! of compound
physical systems; one results from the case where only one ofL1 andL2 is nonclassical. Another
results from the case where bothL1 andL2 are nonclassical. Only for the latter case the Bell-ty
inequalities~12! can be violated~see Table I!. Therefore,nonclassicality of a compound physic
system by itself has nothing to do with whether Bell-type inequalities for the system are viola
not. In order to see the relation, we need to refer to a whole construction of the system.
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Anisotropic scattering kernel: Generalized and modified
Maxwell boundary conditions
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This article presents a model of a scattering kernel of boundary conditions for the
Boltzmann equation. The proposed scattering kernel is based on an anisotropic
accommodation argument. Three parameters equal to the momentum accommoda-
tion coefficients are shown as characterizing the influence of each direction. First
the new scattering kernel is derived from a phenomenological criticism of the first
form of the scattering kernel proposed by Maxwell; then the same result is estab-
lished from an analytic approach based on the spectral nature of the linear integral
operator associated to the scattering kernel problem. As a result, the model provides
a correct form of scattering kernel to handle the influence of each direction in
particle collisions with the wall. Finally independent accommodation of each inter-
nal mode is added to extend the model to the case of polyatomic gases. ©2004
American Institute of Physics.@DOI: 10.1063/1.1690491#

I. INTRODUCTION

The problem of writing good boundary conditions for the Boltzmann equation in rarefied
flows is to find an operator called the scattering kernel in kinetic theory. The first known scat
kernel was proposed by Maxwell and is based on phenomenological argument.1 However, in
various situations this kernel fails to reproduce correctly the phenomena occurring at the w2,3

Indeed the Maxwell boundary condition corresponds to an isotropic conception of the reflec
the wall; so, in this approach, the three velocity components are considered as equivalen
accommodation process.

Another class of scattering kernel is the CL~Cercignani–Lampis! model by Cercignani
et al.3,4 The authors extend the research to a more general field of operators and obtain
flexible model. However, as is well-known, this class of scattering kernels is not totally efficie
describe physically gas behavior close to the wall.4 Moreover, some results in particle simulatio
of rarefied gas flows seem to show that none of the existing models of the scattering kern
reproduce all the features of the real gas dynamics.5

Generally the existing models of the scattering kernel do not describe the interplay be
the different degrees of freedom~i.e., the three velocity components of the particle and its inte
energy modes! in interaction with the wall.5 This would explain the partial inefficiency of thes
models to reproduce the behavior of high speed nonequilibrium flows near the wall. The
purpose of this article is to propose a new model of scattering kernel by considering more po
reflection types of particles at the wall. In this way we attempt to eliminate any isotropic cha
of momentum accommodation in the velocity reflection process, and we introduce three
cients to take into account the influence of the velocity directions.

From Sec. II to Sec. VI, we consider only unstructured atom-like molecules. In Sec. I
basic conditions required for a scattering kernel are briefly analyzed and discussed. In Sec
Maxwell phenomenological argument is recalled and we present the new model. In Sec.

a!Electronic mail: kokou.dadzie@polytech.univ-mrs.fr
b!Electronic mail: gilbert.meolans@polytech.univ-mrs.fr; http://www.polytech.univ-mrs.fr
18040022-2488/2004/45(5)/1804/16/$22.00 © 2004 American Institute of Physics
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develop a consistent analytical approach to build the new scattering kernel. In Sec. V the
cients introduced in the modeling are shown to equal the well known momentum accommo
coefficients. Finally, in Sec. VI the new kernel is involved in a more complete model chara
izing molecules with internal modes by using a phenomenological derivation.

II. CONDITIONS REQUIRED FOR THE SCATTERING KERNELS

Let us consider a particle hitting the wall, as shown in Fig. 1.V8 is the velocity of the
impinging gas particle referred to the wall,V85(Vx8 ,Vy8 ,Vz8)P$V85R23R3R% and V is the
velocity of the reflected one referred to the wall,V5(Vx ,Vy ,Vz)P$V5R13R3R%. These ve-
locities reduce to peculiar velocities when the slip velocity at the wall is neglected.VR is defined
asVR5(2Vx ,Vy ,Vz).

The kernel,B(V8,V), is the density of probability that a molecule impinging the wall at a
point X of the wall with velocityV8 is reflected at the same point with velocityV. This kernel,
which turns the impinging particles at the wall into reflected ones, must satisfy some
physical conditions. The least obvious of them is the reciprocity relation. This relation is a
essary condition for a good scattering kernel in the kinetic theory of gases.6,7

According to the scattering kernel probability density property, kernelB(V8,V) must satisfy

B~V8,V!>0 , ~1!

and also the normalization condition

E
V

B~V8,V!dV51. ~2!

Finally, the balance of particles hitting the wall at positionX and reflected with velocityV at
a given time may be written8

Vxf ~V!5E
V8

uVx8u f ~V8!B~V8,V!dV8 , ~3!

where f (V) is the gas particle distribution function given by the Boltzmann equation.
In the thermodynamic equilibrium state between the gas and the wall at the same tempe

the time reversibility assumption of the thermodynamic equilibrium state may be formulat
follows:3,7,9 the number of gas particles which hit the wall during timet, with velocity V8, and
reflect with velocityV at positionX of the wall, is equal to the number of particles with incide
velocity 2V reflected with velocity2V8 at the same timet, at the same positionX of the wall.
This may be written

FIG. 1. Particle hitting the wall.
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uVx8u f 0~V8!B~V8,V!5uVxu f 0~2V!B~2V,2V8!, ~4!

where f 0(V)5 n/(CwAp)3 e2 iVi2/Cw
2

is the Maxwellian distribution function of the gas in equ
librium state at the temperature of the wall.Cw

2 52kTw /m, whereTw is the wall temperature,k is
the Boltzmann constant,m is the molecular mass of gaseous particles andn is their numerical
density. The time reversibility assumption means that all detailed balancing of energy exc
between the gas and the wall in the thermodynamic equilibrium state at any timet is equal to zero.
This state of thermodynamic equilibrium between the gas and the wall at the same tempera
a reference state. Owing to this fact, any scattering kernel in kinetic theory must be valida
the property~4!, called the reciprocity relation.

Note that the normalization condition~2! is equivalent to

E
V8

B~2V,2VR8 !dV851.

From this remark, the reciprocity relation also leads to

E
V8

uVx8u f 0~V8!B~VR8 ,V!dV85uVxu f 0~2V!. ~48!

It is also necessary to note that the required conditions formulated above characte
physical situation at the wall involving the conservation of the particle flux and then a binary
short interaction between the solid atoms and gaseous particles.9 So the model presented he
excludes the gas dissociation and various steps involved in catalysis~chemical reaction at the wall
adsorption, etc .!.

III. PHENOMENOLOGICAL APPROACH TO SCATTERING KERNELS

A. Maxwell scattering kernel

The first form of the scattering kernel proposed by Maxwell is given by

BM~V8,V!5~12a!d~V2VR8 !1a
2

Cw
4 p

Vxe
2 iVi2/Cw

2
. ~5!

BM(V8,V) is a linear combination of two elementary kernels: the Dirac function for
specular reflection part and the exponential function for the diffuse reflection part at tempe
Tw of the wall;a, called the accommodation coefficient, represents the weight of the diffusio
the gas collision process at the wall.

Before writing this scattering kernel Maxwell made several phenomenological commen
the nature of the surface in contact with the gas, which can be found in the appendix of R
First, he assumed the surface to be a ‘‘perfectly elastic smooth surface.’’ Then each mo
striking the surface had its normal component reversed while the other components we
altered by the impact; the scattering kernel in this case was simply given byd(V2VR8 ). Second,
he assumed the surface to be a perfectly absorbing surface so that each particle hitting t
was absorbed before being reemitted, and the velocity of each reemitted particle was oriente
the surface towards the gas. But the probability of any particular magnitude and direction
velocity would be the same as in a gas at rest in the thermal equilibrium state at the temp

of the wall; in this case, this led to the diffusive scattering kernel given by (2/Cw
4 p) Vxe

2 iVi2/Cw
2
.

Finally, Maxwell decided to consider the real reflecting surfaces as an intermediate s
between these two extreme perfect surfaces and then proposed the linear combination~5!.

In our view, the scattering process on a real surface must be more complicated than
described by the sum of the scattering kernels of the two extreme perfect surfaces. It is eas
that the two elementary scattering kernels written for the two perfect surfaces are isotropic
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this is reasonable for these two types of perfect surfaces. Then, using a linear combination o
two elementary scattering kernels, the result will still be an isotropic one, but we cannot be
that a scattering kernel characterizing any real surface is an isotropic one. Moreover, in the
~5!, the weight of the diffusion in any direction is represented by the same coefficienta: this
description cannot be considered as correct, as pointed out by various authors.2,10

B. Our scattering kernel proposal

In order to write a general scattering kernel for any kind of real surface, we return to
investigation of various possible types of accommodation which can occur during a pa
collision with the wall. Then we have to consider a more general type of accommodation tha
isotropic one, in which of course the normal component of the incoming particle velocity mu
reversed during the collision. We can thus assume elementary processes where diffusi
specular reflection are mixed: each of the velocity components can be altered or not by th
independently of others. This argument leads us to consider the eight elementary operator
below:

B0~V8,V!5d~Vx1Vx8!d~Vy2Vy8!d~Vz2Vz8!, ~6a!

Byz~V8,V!5
1

pCw
2 d~Vx1Vx8!e2 Vy

2/Cw
2
e2 Vz

2/Cw
2
,

Bxz~V8,V!5
2

Cw
3Ap

Vxd~Vy2Vy8!e2 Vx
2/Cw

2
e2 Vz

2/Cw
2
,

Bxy~V8,V!5
2

Cw
3Ap

Vxd~Vz2Vz8!e2 Vx
2/Cw

2
e2 Vy

2/Cw
2
,

Bxyz~V8,V!5
2

pCw
4 Vxe

2 Vx
2/Cw

2
e2 Vy

2/Cw
2
e2 Vz

2/Cw
2
, ~6b!

Bz~V8,V!5
1

CwAp
d~Vx1Vx8!d~Vy2Vy8!e2Vz

2/Cw
2
,

By~V8,V!5
1

CwAp
d~Vx1Vx8!d~Vz2Vz8!e2Vy

2/Cw
2
,

Bx~V8,V!5
2

Cw
2 Vxd~Vy2Vy8!d~Vz2Vz8!e2Vx

2/Cw
2
.

It is easy to show that each of these elementary kernels satisfies positivity and normal
conditions. These kernels also satisfy the reciprocity relation~more details are given in Appendi
A!. The coefficients appearing in front of each operator are normalizing coefficients obtain
calculating*VBk(V8,V)dV .

Each of these elementary kernels represents a particular possible situation of accommo
Then the complete scattering kernel will be a linear combination of the elementary kern
which the combination coefficients will represent the weight of each kind of accommodation
wall. This complete scattering kernel may be written

B~V8,V!5(
k

mkBk~V8,V!, ~7!
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with

(
k

mk51. ~8!

If we introduce three coefficients,a j ( j 51,2,3) satisfyinga jP@0,1#, to quantify the influence
of each direction in a particle accommodation process by the wall, and taking into ac
condition ~8!, the coefficientsmk may be written

mxz5axaz~12ay!, mxy5axay~12az!, myz5ayaz~12ax!,

mx5ax~12ay!~12az!, mxyz5axayaz, m05~12ax!~12ay!~12az!, ~9!

my5ay~12ax!~12az!, mz5az~12ax!~12ay!.

According to this last relationship, the complete scattering kernel~7! satisfies the positivity
and the normalization properties. It obviously satisfies the reciprocity relation since the elem
kernels satisfy it.

It is clear that neglecting the elementary kernels with incomplete diffusion or incom
specular reflection in the full scattering kernel~7!, the result reduces to the sum of the kernels~6a!
and ~6b! which represents the Maxwell scattering kernel. Moreover, it is easy to show tha
Maxwell boundary conditions give satisfactory results for values ofa close to 1: indeed, if the ga
is in a state very close to thermodynamic equilibrium at the temperature of the wall, the
important reflection is the reflection with complete accommodation in all directions.

In the following section, an analytical method to build the complete scattering kernel~7! is
presented.

IV. ANALYTICAL FORMULATION OF THE NEW SCATTERING KERNEL

Let us consider the problem of finding operatorB(V8,V), satisfying the conditions listed in
Sec. II, and let us write the transformation

K~V,V8!5@ uVx8u f 0~V8!#1/2@ uVxu f 0~V!#21/2B~VR8 ,V!. ~10!

Since f 0(V) is a known function, the problem of findingB(V8,V) is equivalent to finding
K(V,V8). Instead of studying the problem inK(V,V8), we can study the linear integral associat
operatorA defined by the relation

A~c!5E
V8

K~V,V8!c~V8!dV8 . ~11!

This integral operator is defined in the Hilbert space of square summable functions ofV noted
L2(V) @i.e., c(V)PL2(V)], where the scalar product is defined as follows:

^c,w&5E
V

c~V!w~V!dV .

Therefore, the problem is reduced to an eigenvalue problem, and then to discussing the s
nature of operatorA.

It is to be noted that the above formulation of the scattering kernel problem, throug
transformation~10!, is especially convenient to solve the linearized form of the Boltzman equa
~LBE!.11,12

Assuming that the operatorA has a purely discrete spectrum, its kernelK(V,V8) can be
written
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K~V,V8!5 (
n50

`

lncn~V!cn~V8!, ~12!

wherecn(V)PL2(V) is an eigenfunction of the operatorA and ln is its corresponding eigen
value. According to positivity and normalization conditions required inB(V8,V), the operatorA
must be non-negative and its eigenvalues satisfylnP@0,1# for any n P N.

From now the eigenfunctioncn(V) is assumed to be in the form

c r~Vx!c l~Vy!cm~Vz!5)
j 51

3

ckj
~Vj !.

Since the eigenfunctioncn(V) is a square summable function, we haveckj
(Vj )PL2(V j ), where

V j denotes the scalar space associated toVj . Moreover, the family of the function setckj
(Vj ),

kjPN, must be a function basis of the Hilbert spaceL2(V j ) @note that this assumption will lea
immediately to the coming property~16!#. The eigenvalues of operatorA becomel rlm , and we
can assumel rlm5l rl llm , in respect to the respective scalar products in the different Hil
spacesL2(V j ) andL2(V). Finally, the expression~12! can be replaced by

K~V,V8!5 (
r ,l ,m

l rl llmc r~Vx!c l~Vy!cm~Vz!c r~Vx8!c l~Vy8!cm~Vz8!. ~13!

The sum in the right member of~13! can be written as the product of three infinite sums:

K~V,V8!5)
j 51

3

(
k50

`

lkj
ckj

~Vj !ckj
~Vj8!. ~14!

Let us put

c0x
~Vx!5

&

Cw
uVxu1/2e2Vx

2/2Cw
2
,

c0y
~Vy!5~CwAp!21/2e2Vy

2/2Cw
2
,

c0z
~Vz!5~CwAp!21/2e2Vz

2/2Cw
2
.

Each ofc0 j
(Vj ) functions satisfies

ic0 j
~Vj !i j

25E
V j

@c0 j
~Vj !#

2dVj
51.

From the relation (48), it may be deduced that the functionc0(V)5c0x
(Vx)c0y

(Vy)c0z
(Vz) is an

eigenfunction of operatorA, associated to eigenvaluel0x
l0y

l0z
51 ~see demonstration in Appen

dix B!. This first eigenfunction takes an important part in the solution of the problem beca
corresponds to the maximal eigenvalue ofA, and so leads to an equilibrium state. Indeed, in
equilibrium state between the gas and the wall, the most physically convenient scattering ke
the complete accommodation kernel, which is assigned here toc0(V). Therefore any good mode
of a scattering kernel must converge to this equilibrium scattering kernel. This point match
basic assumption founding the reciprocity relation which is that any scattering kernel mu
valid when a thermodynamic equilibrium exists between the gas and the wall.
                                                                                                                



ection

s:

rs

1810 J. Math. Phys., Vol. 45, No. 5, May 2004 S. K. Dadzie and J. G. Méolans

                    
In agreement with the concept of three distinguishable degrees of freedom in the refl
process, we introduce three coefficientsa j , related to the set of eigenvalues byl0 j

51 andlkj

5(12a j ) for kÞ0 with a jP@0,1#; relation ~14! becomes

K~V,V8!5)
j 51

3 S c0 j
~Vj !c0 j

~Vj8!1~12a j !(
k51

`

ckj
~Vj !ckj

~Vj8!D , ~15!

which may be rewritten

K~V,V8!5)
j 51

3 S a jc0 j
~Vj !c0 j

~Vj8!1~12a j !(
k50

`

ckj
~Vj !ckj

~Vj8!D .

Finally, by using the following property,

(
k50

`

ckj
~Vj !ckj

~Vj8!5d~Vj2Vj8!, ~16!

we obtain the result

K~V,V8!5)
j 51

3

~a jc0 j
~Vj !c0 j

~Vj8!1~12a j !d~Vj2Vj8!!. ~17!

By developing the product~17! we obtainK(V,V8) as a sum of elementary operators as follow

K~V,V8!5(
k

mkKk~V,V8!, ~18!

where mk is given again by the relations~9! of Sec. III, and where the elementary operato
Kk(V,V8) are written below:

K0~V,V8!5d~Vx2Vx8!d~Vy2Vy8!d~Vz2Vz8!,

Kyz~V,V8!5
1

pCw
2 d~Vx2Vx8!e2 Vy

2/2Cw
2
e2 Vz

2/2Cw
2
e2 Vy8

2/2Cw
2
e2 Vz8

2/2Cw
2
,

Kxz~V,V8!5
2

Cw
3Ap

uVxVx8u
1/2d~Vy2Vy8!e2 Vx

2/2Cw
2
e2 Vz

2/2Cw
2
e2 Vx8

2/2Cw
2
e2 Vz8

2/2Cw
2
,

Kxy~V,V8!5
2

Cw
3Ap

uVxVx8u
1/2d~Vz2Vz8!e2 Vx

2/2Cw
2
e2 Vy

2/2Cw
2
e2 Vx8

2/2Cw
2
e2 Vy8

2/2Cw
2
,

~19!

Kxyz~V,V8!5
2

pCw
4 uVxVx8u

1/2e2Vx
2/2Cw

2
e2 Vy

2/2Cw
2
e2 Vz

2/2Cw
2
e2 Vx8

2/2Cw
2
e2 Vy8

2/2Cw
2
e2 Vz8

2/2Cw
2
,

Kz~V,V8!5
1

CwAp
d~Vx2Vx8!d~Vy2Vy8!e2 Vz

2/Cw
2
e2 Vz8

2/Cw
2
,

Ky~V,V8!5
1

CwAp
d~Vx2Vx8!d~Vz2Vz8!e2 Vy

2/2Cw
2
e2 Vy8

2/2Cw
2
,
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Kx~V,V8!5
2

Cw
2 uVxVx8u

1/2d~Vy2Vy8!d~Vz2Vz8!e2 Vx
2/2Cw

2
e2 Vx8

2/2Cw
2
.

It is easy to verify that the elementary operatorsKk(V,V8) given above correspond to th
elementary kernelsBk(V8,V) given in Sec. III, through transformation~10!; so the complete
operatorK(V,V8) obtained from relation~18! corresponds exactly to the scattering kernel giv
by relation~7!.

Referring now directly to Eqs.~15! and ~13!, it is clear that our choice corresponds to
spectral expansion ofK(V,V8) involving eight different eigenvalues, namely, 1, (
2ax), (12ay), (12az), (12ax)(12ay), (12ax)(12az), (12ay)(12az),(12ax)(12ay)
3(12az). Of course this choice also corresponds to a degeneracy of the eigenfunction
associated to each eigenvalue, except for the maximum eigenvalue; therefore, as shown a
is not necessary to specify the eigenfunctions.

As is well known, the classical CL model and its extensions by Lord13,14 to polyatomic
molecules are derived from another procedure based on a more general relation:12

K~V,V8!5 (
n,m50

`

lnmwn~V!wm~V8!, ~20!

where thewk function is specified. As it can be seen, kernels built on this general form could
automatically insure the properties listed above for good scattering kernels~i.e., positivity, nor-
malization, and reciprocity properties!.12 Moreover, in these CL scattering kernel models t
normal and the tangential components of the velocity of the molecule colliding with the wa
considered as independent, and then the scattering kernel is written separately in norm
tangential parts. This aspect of the CL models was recently criticized as not allowing inte
between the various components of the impinging particle velocity.5

V. RELATIONS WITH ACCOMMODATION COEFFICIENTS

In this section the physical meaning of the parameters involved in the kernel is clarifie
doing, we prove that thea j coefficients respectively equal the accommodation coefficientsb j of
the momentum components.

First mk may be easily shown to represent the weight of particles reflected according
processk in the flux of reflected particles. This property appears obvious when integrating th
members of Eq.~3! over the reflected velocity range, usingB(V8,V) expressions given in relation
~7! and ~9!. Moreover, the scattering is built using three independent coefficientsa j : then it can
be seen that taking into account condition~8!, the mk coefficients are necessarily given by rel
tions ~9!.

On the other hand, the momentum accommodation coefficientsb j are defined as9

b j5
F j

22F j
1

F j
22F j

e . ~21!

whereF j
2 is the incoming flux at the wall of the momentumj component,F j

1 is the correspond-
ing reflected flux, andF j

e is the reflected flux in the hypothetical situation of perfect accomm
dation to the wall. These various momentum fluxes may be written for each component:

F j
25E

V8
muVx8uVj8 f 2~V8!dV8 ,

~22!

F j
15E

V
muVxuVj f

1~V!dV ,
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where f 2(V) and f 1(V) are respectively the incident and the reflected distribution funct
Remembering thatf 1(V) is given by~3! and using expression~7! of B(V8,V), F j

1 is written

F j
15E

V8
muVx8u f

2~V8!(
k

mkS E
V

VjBk~V8,V!dVD dV8 . ~23!

And F j
e for total perfect accommodation~i.e., ax5ax5ax51) is written

F j
e5E

V8
muVx8u f

2~V8!S E
V

VjBxyz~V8,V!dVD dV8 . ~24!

A. Calculation of by and bz

First the caseVj5Vy is dealt with.
According to the expression ofBxyz(V8,V), VyBxyz(V8,V) is an odd function of theVy

component, therefore,

E
V

VyBxyz~V8,V!dV50

and thenFe50, so we can write

by512
Fy

1

Fy
2 .

On the other hand, looking at relation~23!, the contribution of each partial kernelBk(V8,V) in
Fy

1 expression can be estimated separately by

E
V

VyBk~V8,V!dV .

Each of these partial integrals can be calculated easily and give for anyk either 0 orVy8 . As a
result we obtain

(
k

mkE
V

VyBk~V8,V!dV5Vy8~m01mx1mz1mxz!,

and

F j
15~m01mx1mz1mxz!F j

2 .

It results directly that

by512~m01mx1mz1mxz!,

which, according to the normalization condition~8!, is also equal to

by5my1mxy1myz1mxyz. ~25!

Similarly we obtain forbz

bz5mz1mxz1myz1mxyz. ~26!

By using themk expressions given by relations~9!, Eqs.~25! and ~26! lead to
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by5ay ~27!

and

bz5az. ~28!

B. Calculation of bx

Now Vj5Vx is considered.
Using the same definition of the various fluxes with respect to the sign of the incident flu

can write

Fx
25E

V8
mVx8

2f 2~V8!dV8 . ~29!

The calculation of the partial integrals involved in relation~23!,

E
V

VxBk~V8,V!dV ,

gives in this case either2Vx8 or CwAp/2 for anyk. As a result we obtain

(
k

mkE
V

VxBk~V8,V!dV52Vx8~m01my1mz1myz!1
CwAp

2
~mx1mxy1mxz1mxyz!.

Using the flux expressions~29! and ~23!, this result leads to

Fx
22Fx

15~12~m01my1mz1myz!!Fx
22

CwAp

2
~mx1mxy1mxz1mxyz!E

V8
muVx8u f

2~V8!dV8 .

We also have

E
V

VxBxyz~V8,V!dV5
CwAp

2

and so

Fx
22Fx

e5Fx
22

CwAp

2 E
V8

muVx8u f
2~V8!dV8 .

Consequently, remembering condition~8!, it results that

bx5mx1mxy1mxz1mxyz. ~30!

Replacingmk by relations~9! once more, the result shows

bx5ax .

The classical Maxwell model predicted the same value of the various accommod
coefficients.9 However it is well-known, notably from the measurements of accommodation c
ficients by various procedures,15–17 that these coefficients do not have the same value; and
description of equivalent accommodation is not physically consistent.18 In the new model we can
see that the three parameters introduced in the theoretical modelling equal the three accom
tion coefficients of momentum component fluxes which are basically different.
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VI. EXTENSION OF THE NEW MODEL TO POLYATOMIC GASES

In polyatomic gases the internal state of a molecule is characterized by the rotation
vibrational energies,Eir and Eiv , and depends on quantum numbersir and iv. In addition,
because of the degeneracy of rotational levels, a weight factor (gir 52ir 11) is involved in the
distribution function expression. The distribution functions of impinging and emerging part
are linked by the following relation@generalizing relation~3!#:9,19

Vxf i
1~V,Eir ,gir ,Eiv!

5 (
ir 8,iv8

E
V8

uVx8u f
2~V8,Eir 8 ,gir 8 ,Eiv8!PG~V8,Eir 8 ,gir 8 ,Eiv8 ,V,Eir ,gir ,Eiv!dV8 ,

~31!

where PG(V8,Eir 8 ,gir 8 ,Eiv8 ,V,Eir ,gir ,Eiv) is the generalized scattering kernel for molecu
considered with internal modes. Of course normalization and non-negative conditions are
generalized to

(
ir ,iv

E
V

PG~V8,Eir 8 ,gir 8 ,Eiv8 ,V,Eir ,gir ,Eiv!dV51 ~32!

and

PG~V8,Eir 8 ,gir 8 ,Eiv8 ,V,Eir ,gir ,Eiv!>0. ~33!

Furthermore, for the reciprocity condition, we admit the form given by Kuscer9 which, excluding
external magnetic fields, assumes the form

uVx8ue
2 iV8i2/Cw

2
e2« ir 8e2« iv8~2ir 811!PG~V8,Eir 8 ,Eiv8 ,V,Eir ,Eiv!

5Vxe
2 iVi2/Cw

2
e2« ir e2« iv~2ir 11!PG~2V,Eir ,Eiv ,2V8,Eir 8 ,Eiv8!, ~34!

with

« ir 5
Eir

kTw
, « iv5

Eiv

kTw
. ~35!

Reference 19 presents, phenomenologically, a scattering kernelP characterizing the interaction o
diatomic molecules with internal modes at the wall~this kernelP is recalled in Appendix C!. In
kernelP the translation mode was taken as a whole~without interplay between the three transl
tional degrees of freedom!, so, when applied to unstructured molecules,P reduced to a classica
Maxwell kernel. Nevertheless, a partial accommodation concept was employed in theP derivation
allowing different accommodations of the various modes~translation, rotation, vibration!. In fact,
this concept was analogous to those used in the new model to disconnect the three tran
degrees in the accommodation process. From Ref. 19,P may be immediately rewritten:

P5S ~12au!d~V2VR8 !1au

2

Cw
4 p

Vxe
2 V2/Cw

2 D ~~12a r !~12av!P̃01av~12a r !P̃v

1a r~12av!P̃r1ava r P̃rv!, ~36!

whereau , av anda r are real parameters independent of the microscopic state of the mole
and are considered in@0,1#, and
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P̃05d~Eir 82Eir !d~Eiv82Eiv! , P̃rv5
e2« ir

Qr
~2i r11!

e2« iv

Qv
,

P̃v5d~Eir 82Eir !
e2« iv

Qv
, P̃r5

e2« ir

Qr
~2ir 11!d~Eiv82Eiv!.

The quantitiesQv andQr involved in P̃x (x5v,r ,rv) are the partition functions defined at th
wall temperature:

Qr5(
iv

~2ir 11!e2« ir , Qv5(
iv

e2« iv.

Now, in operatorP in ~36!, let us replace the first parenthesis corresponding to the clas
Maxwell scattering kernel by the new kernel proposed in relation~7! and ~9!. So a general
scattering kernel is obtain in the form

PG5S (
k

mk* Bk~V8,V! D ~~12a r !~12av!P̃01av~12a r !P̃v1a r~12av!P̃r1ava r P̃rv!,

~37!

where themk* are expressed by relations~9! using the directional parametersax* , ay* , andaz* .
The superscript (* ) is used to indicate that the physical meaning of the three parameters is n
shown in the polyatomic modeling frame.

Considering the properties of its parts,PG visibly satisfies the normalization and non
negativity conditions. Furthermore,PG is a sum of partial operators assuming the factorized fo
P̃xBk ~wherex refers to the internal accommodation process!. It is clear that theBk satisfying
condition~4! implies thatP̃xBk satisfies the generalized reciprocity condition~34!. Consequently,
PG also satisfies~34! as a linear combination ofP̃jBk terms. So a good anisotropic scatterin
kernelPG has been obtained phenomenologically.

Furthermore, in relation~37! the part in the first parenthesis of the second member conc
the translation mode. Introducing into itau defined asau512m0* 5(kÞ0mk* , this part assumes
the form

PG5~12au!d~V2VR8 !1au (
kÞ0

lk* Bk~V8,V!, ~38!

where

lk* 5
mk*

au
, (

kÞ0
lk* 51. ~39!

In this last form the complete specular reflection appears separately from all the proces
which partial or complete accommodation occurs.

Integrating on velocity and summing over quantum numbers on the left and right sides o
~31!, it is easily shown thatmk* represents~asmk for the unstructured molecules! the part of the
particle flux reflected according to the directional processk. The analytical systematic derivatio
of PG and further physical interpretation ofax* , ay* , az* , av , a r , andau will be presented in a
subsequent study.

Regarding now the process from the point of view of energy transfer, the comments giv
Ref. 19 can be extended. The thermal kinetic energy of the particle flow may be exchan
collisions at the wall: at the statistical level the specular kernels reflect the effect of e
collisions at the wall for the translational mode, while diffusive kernels represent the effec
inelastic collisions for this same mode. In the present model the influence of these ine
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collisions is considered independently for each translational degree~i.e., for each direction!. Sta-
tistically the scattered distribution function is no longer accommodated in the same way acc
to the normal and tangential directions: and on the microscopic level this means that the
energy transfers of an impinging molecule change according to its velocity direction with re
to the wall.

In the same manner the three energy modes may interplay when exchanging energy
wall, and, so, in operatorsP̃0 , P̃r , P̃v , and P̃rv the effects of elastic or inelastic collisions fo
each internal mode appear independently.

VII. DISCUSSION

The new model proposed in this article presents many aspects which allow realisti
surface interactions to be described. First, the model takes into account the anisotropic eff
the interacting process at the wall. This anisotropic character of the surface derives basical
its physical properties and/or from its suitable treatment. Consequently the real physical pro
of the wall are embedded in the three accommodation coefficients of the momentum compo
Existing models rarely involve three directional parameters as the present model does: the
approaches using a three parameter representation2,20 are based on the suggestion of a shift
Maxwellian to describe the reemitted distribution function of a monatomic gas from a
surface and the parameters are arbitrary constants.21 Here the new model gives an anisotrop
description of the interaction in the sense employed by Kuscer9 i.e., the new kernel operator is n
longer invariant under rotation about the normal axis at the solid surface; moreover, in th
model the parameters are shown to be the accommodation coefficients themselves so it is p
to relate them to physical measurements.15–18,22 In addition, in polyatomic cases, the prese
model allows independent accommodation processes at the wall for the various energy
which seems a realistic description if, for example, the very different situations occurring a
wall for vibrational or translational accommodation are kept in mind.23,24 Then, it is to be noted
that the present model also appears as an improvement with respect to two well-known crit
opposed to the methods based on the scattering kernel concept. The first criticism formula
Cercignani3 concerns the Maxwellian-type kernel: for a given monochromatic beam this m
predicts a sharp maximum in the number of molecules at the angle corresponding to sp
reflection, which is contradicted by experiments;25 it is clear that this maximum is smoothed in th
new model@see relation~38!#. The second criticism recently formulated by Brunoet al.,5 is not
completely justified because it is based, in a part, on studies of reactive or dissociated flow
as is well-known, the scattering kernel modeling cannot give correct results in such a case b
of the assumption of the wall impermeability involved in it. But, on the other hand, the comm
of the authors requiring the introduction of interplay between the velocity directions and
various energy modes is, in our opinion, completely justified. In the present model, precisely
an interplay is present, and the separating procedure of velocity components, which appear
CL models3 ~also when extended to internal modes13,14,26! is not employed here.

A final argument in defense of the new model is its simplicity: as seen above the ph
interpretation of the various parts of the kernel is straightforward. Moreover, the model is
to-use: first the calculations are simplified because the kernel only depends on the reflec
croscopic space parameters; then, from the account of different kinds of accommodation
moment components a preponderant weight can be given to a particular accommodation p
so the model may be easily simplified according to the geometrical symmetry or the ph
conditions of the problem.

VIII. CONCLUDING REMARKS

We have derived an anisotropic model of a scattering kernel. For the unstructured mole
three directional parameters involved in the model have been shown to be equal to the acc
dation coefficients of the fluxes of the momentum components at the wall.
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We have also extended the new model to polyatomic structured molecules. In this d
only a phenomenological derivation has been presented. The corresponding analytical meth
further calculations to relate parametersax* , ay* , az* , av , a r , au to the accommodation coef
ficientsb j of momentum fluxes and to accommodation coefficients of the energy fluxes w
presented in a subsequent study. These relationships are not expected to be very simple, e
because the constant parameters introduced in the model refer to direct exchanges betwe
molecular mode and the wall, while the energy accommodation coefficients involve direc
change with the wall for each mode and also intermode exchanges. Finally, even if n
confirmed in applications, many arguments have been developed, showing the consistency
cal pertinence and usefulness of the new scattering kernel.

APPENDIX A: B k„V8,V… SATISFIES THE RECIPROCITY RELATION

The property for operatorBzy is demonstrated. For the rest of the operators the demonstra
are similar:

uVx8u f 0~V8!Bzy~V8,V!5uVx8u
n

~CwAp!3
e2 iV8i2/Cw

2 1

pCw
2 d~Vx1Vx8!e2 Vy

2/Cw
2
e2 Vz

2/Cw
2
,

and

uVxu f 0~2V!Bzy~2V,2V8!5uVxu
n

~CwAp!3
e2 iVi2/Cw

2 1

pCw
2 d~Vx1Vx8!e2 Vy8

2/Cw
2
e2 Vz8

2/Cw
2
.

In these two expressions, there appear the same terms iny and z; the full equality of both the
expressions comes from the property of the Dirac function.

APPENDIX B: c0 AS AN EIGENFUNCTION OF OPERATOR A

A~c0!5E
V8

@ uVx8u f 0~V8!#1/2@ uVxu f 0~V!#21/2B~VR8 ,V!c0~V8!dV8 .

Replacingc0 and f 0(V) by their expression in this integral:c05(&/Cw
2Ap) uVxu1/2e2 iVi2/2Cw

2

and f 0(V)5 (n/(CwAp)3) e2 iVi2/Cw
2
, it is found

A~c0!5
&

Cw
2Ap

E
V8

uVxu21/2uVx8ue
iVi2/2Cw

2
e2 iV8i2/Cw

2
B~VR8 ,V!dV8 .

The reciprocity relation (48) leads to

E
V8

uVx8ue
2 iV8i2/Cw

2
B~VR8 ,V!dV85uVxue2 iVi2/Cw

2
,

and, consequently,

A~c0!5
&

Cw
2Ap

uVxu1/2e2 iVi2/2Cw
2

5c0.

APPENDIX C: KERNEL OPERATOR OF REF. 19

The full scattering kernel of Ref. 19 is given by
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P5~12au!~12a r !~12av!P11~12au!~12a r !avP21~12au!a r~12av!P31~12au!

3a ravP41au~12a r !~12av!P51aua r~12av!P61au~12a r !avP71aua ravP8 ,

whereau ,a r ,av are real parameters independent of the microscopic state of the molecule
specular operators with elastic and inelastic parts for each internal mode are given by

P15d~V82VR! d~Eir8 2Er !d~Eiv8 2Ev!,

P25d~V82VR! d~Eir8 2Er !
e2« iv,w

Qv,w
,

P35d~V82VR!
e2« ir ,w

Qr ,w
~2ir 11!d~Eiv8 2Ev!,

P45d~V82VR!
e2« ir ,w

Qr ,w
~2ir 11!

e2« iv,w

Qv,w
.

The diffusive operators with elastic and inelastic parts, for each internal mode, are give

P55
2

pCw
4 Vxe

2vw
2
d~Eir 2Eir8 !d~Eiv2Eiv8 !,

P65
2

pCw
4 Vxe

2vw
2 e2« ir ,w

Qr ,w
~2ir 11!d~Eiv2Eiv8 !,

P75
2

pCw
4 Vxe

2vw
2
d~Eir 2Eir8 !

e2« iv,w

Qv,w
,

P85
2

pCw
4 Vxe

2vw
2 e2« ir ,w

Qr ,w
~2ir 11!

e2« iv,w

Qv,w
,

with

1

Cw
4 5S m

2kTw
D 2

.

In Ref. 19,Er andEv defined as mean energy per molecule have been used by error. The c
parameters to use anywhere in this reference areEir andEiv .
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We study the discrete part of spectrum of a singular non-self-adjoint second-order
differential equation on a semiaxis with an operator coefficient. Its boundedness is
proved. The result is applied to the Schro¨dinger boundary value problem2Du
1q(x)u5l2u, uu]D50, with a complex potentialq(x) in an angular domain.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1695446#

I. INTRODUCTION

As is known, the Schro¨dinger problem with a complex potential appeared in the theory
quantum mechanical systems with dissipative energy~see Refs. 1 and 9!. As for non-self-adjoint
operators, they arose, in general, of studying nonclosed physical systems~see Refs. 5 and 9; fo
details we refer to Refs. 4 and 6!. In this paper we study the discrete part of spectrum of
non-self-adjoint operatorLa , generated in the Hilbert spaceL2((0,̀ ),l 2) by the expression

Lau52
d2u

dx2
1

b~a!

x2
u1Q~x!u

and the boundary condition

u~0!50,

where

b~a!5H S S kp

a D 2

2
1

4D dk jJ , k, j 51,2,..., Q~x!5$qjk~x!% j ,k51
` ,

vk5kp/a¹ Z (k51,2,...), qjk(x)5qk j(x) is a complex-valued function,Q(x), xP@0,̀ ), is an
l 2-valued function such thatiQ(x)i<Ce2ex with somee.0 @ iQ(x)i denotes the norm of the
operatorQ(x) acting in the spacel 2].

In the case whereb(a)5$ l ( l 11)d l j %, l 50,1,2,..., the spectrum ofLa was investigated, and
the expansions in its eigenfunctions were obtained~see Ref. 7!. Using the general spectral theo
of self-adjoint operators, the expansions in eigenvectors ofLa were studied in Ref. 3 forqk j(x)
5q̄ jk(x), b(a)5$ l j ( l j11)d jk%, where the numbersl j>0 are such that limj→` l j5`. In this case
the operatorLa is self-adjoint in the spaceL2((0,̀ ),l 2). But in the situation under consideratio
La is non-self-adjoint, and there is no a general theory to investigate its spectrum. Therefo
start from studying the characteristic properties ofLa .

In what follows we denote byL2,e((0,̀ ),l 2) the set of l 2-valued vector functionsf (x)
5( f 1(x), f 2(x),...,f n(x),...), strongly measurable on@0,̀ ! and satisfying the condition
18200022-2488/2004/45(5)/1820/6/$22.00 © 2004 American Institute of Physics
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E
0

`

i f ~x!i2e2exdx5E
0

`

(
j 51

`

u f j~x!u2e2exdx,`.

The setL2,e5L2,e((0,̀ ),l 2) is a separable Hilbert space with respect to the inner product

~ f ,g!5E
0

`

~ f ~x!,g~x!!2e2exdx

@here (f (x),g(x)) denotes the inner product inl 2]. We also setL2,0((0,̀ ),l 2)5L2((0,̀ ),l 2).

II. INVESTIGATION OF THE DISCRETE PART OF SPECTRUM

Let L0 be the operator defined inL2((0,̀ ),l 2) by the differential expression

L0u52
d2u

dx2
1

b~a!

x2
u

and the boundary condition

u~0!50.

It is obvious that the operatorL0 is self-adjoint.
By Ga (t,t,l) we mean the resolvent kernel of the operatorLa :

Ga~t,t,l!5
p

2i
Att 3H $Jvk

~lt !Hvk

~1!~lt!dk j% if t.t

$Jvk
~lt!Hvk

~1!~lt !dk j% if t<t,

whereJv(x) andHv
(1)(x) are the Bessel and Hankel functions of the first kind, respectively. If

apply (L02l2)21 to both sides of the equationLau5l2u, we will get

u~t,l!5E
0

`

Ga~t,t,l!Q~ t !u~ t,l!dt. ~2.1!

Evidently that the set ofl for which Eq. ~2.1! has a nontrivial solution coincides with th
eigenvalue set of the equationLau5l2u. SinceGa(t,t,l) is a diagonal matrix,

iGa~t,t,l!i l 2
5

p

2
max

vk

AttuJvk
~lt !Hvk

~1!~lt!u.

It follows from Ref. 2 that

AttJv1n~lt !Hv1n
~1! ~lt!5

n!G~v !lv2v21

pG~n12v !
~tt !v1~1/2!E

21

1 Hv
~1!~lAt21t222tts!

~At21t222tts!

3Cn
v~s!~12s2!v2~1/2!ds, ~2.2!

whereCn
v(s) is the Gegenbauer function,12 and if Rev.21

2, 2~p/2!,argl,3p/2, x.0, then

Hv
~1!~lx!5

xvei ~lv2~p/2!v2~p/4!!

GS v1
1

2D E
0

`S 11
i t

2l D v2~1/2!

tv2~1/2!e2xtdt. ~2.3!

Let us estimateAttJv1n(lt)Hv1n
(1) (lt) when 0,v<1/2.
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Taking into account that for eachlP~2~p/2!,argl,~3p/2!! there exists a positive numberb
such thatu2l1 i t u>b and u2l1 i t uv2(1/2)<bv2(1/2) as 0,v<1/2, we obtain from~2.3! the in-
equality

uHv
~1!~lx!u<C1

xv

Aulu
e2~ Im l!x

1

uluv2~1/2! E0

`

tv2~1/2!e2xtdt5C2

e2Im lx

uluvAx
, t<t,

whereC1 andC2 are some constants, whence

AttuJv1n~lt!Hv1n
~1! ~lt !u

<
Cn!G~v !~tt !v11/2

G~n12v !
e2Im lut2sign~ Im l!tu E

0

` Cn
v~cosg!~sing!2v

~12cosg!v/211/4tv11/2
dg, t<t.

~2.4!

Since for largen,

uCn
v~cosg!u<

CG~n12v !

AnG~2v !G~n1v11/2!~sing!v

~see Ref. 12!, inequality~2.4! implies the estimate

uAttJv1n~lt!Hv1n
~1! ~lt !u<

Cn! tv11/2

AnG~n1v11/2!
E

0

p sinv a

~12cosa!v/211/4
da

5C1

tv1~1/2!

nv
e~2Im lut2sign~ Im l!tu!.

In the same way, we obtain

AttuJv1n~lt !Hv1n
~1! ~lt!u<C

tv1~1/2!

nv
e~2Im lut2sign~ Im l!tu! as t>t.

So, if n is large, the estimate

;tP@0,̀ !, ;tP@0,̀ !,

AttuJv1n~lx,!Hv1n
~1! ~lx.!u<C

1

nv
~tv1~1/2!1tv1~1/2!!e~2Im lut2sign~ Im l!tu! ~2.5!

is valid, wherex,5min(t,t), x.5max(t,t).
If we let v→0, then, as is known from Ref. 2,

Cn
v~cosg!;

G~n12v !G~v1 1
2!

AnpG~2v !G~n1v1 1
2!
H cos@~n1v !g2 1

2 gp#

~sing!v
1O~n2~3/2!!J as n→`.

Therefore fort,t andv→0, we have
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AttJv1n~lt!Hv1n
~1! ~lt !;C

lvG~n11!~tt !v1~1/2!

AnGS n1v1
1

2D E
0

p Hv
~1!~lAt21t222ttg!

~At21t222t1g!v
cosngdg

;Ctv1~1/2!e~2Im lut2sign~ Im l!tu!E
0

p

lvtv1~1/2!

3e~ Im lut2sign~ Im l!tu!
Hv

~1!~lAt21t222ttg!

~At21t222t1g!v
~sing!v cosngdg.

~2.6!

Since

Ulv~tt !v1~1/2!e~ Im lut2sign~ Im l!tu!
Hv

~1!~lAt21t222ttg!

~At21t222t1g!v
~sing!vU< C

~12cosg!1/4
,

and

E
0

p da

~12cosa!1/4
,`,

the coefficient of cosng in ~2.6! is absolutely integrable. By the Riemann–Lebesgue Lemma

AttuJv1n~lt!Hv1n
~1! ~lt !u5o~1!tv1~1/2!e~2Im lut2sign~ Im l!tu!, ~2.7!

whereo(1)→0 asn→`.
A similar argument yields

AttuJv1n~lt!Hv1n
~1! ~lt !u5o~1!tv1~1/2!e~2Im lut2sign~ Im l!tu! as t,t. ~2.8!

Formulas~2.5!, ~2.7!, and~2.8! imply that

AttuJv1n~lt!Hv1n
~1! ~lt !u5~tv11/21tv11/2!o~1!e~2Im lut2sign~ Im l!tu!, ~2.9!

where limn→` o(1)50 and 0<t, t,`.
Analogously, it can be shown that~2.9! holds if 1

2,v,1.
One can see from estimate~2.9! that for all t and t, the diagonal entries of the matri

Ga(t,t,l) become vanishingly small withn→`. In view of ~2.2!, the functionGa(t,t,l), whose
values are operators inl 2 , is an analytic function ofl in the domain2~p/2!,argl,~3p/2!. We
summarize the above assertions in the following lemma:

Lemma: For all t and t, and 2~p/2!,argl,~3p/2!, the matrix Ga(t,t,l) is a compact
operator inl 2 . If we fix t andt, thenGa(t,t,l) is an analytic operator function ofl in the domain
2~p/2!,argl,~3p/2!.

Let

Se5H lPC:2
p

2
,argl,

3p

2
,Im l.2

e

2J .

The following theorem holds:
Theorem 1: If lPSe , then the integral operator on the right-hand side of~2.1! is compact in

L2,e((0,̀ ),l 2).
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Proof: First of all we note that the operatorGa(t,t,l)Q(t) is compact as a product of th
compact operatorGa and the bounded operatorQ acting in l 2 . By ~2.9!, under the conditions on
Q(x) the inequality

iGa~t,t,l!Q~ t !i<C max
t,t

~tv11/21tv11/2!e2Im lut2sign~ Im l!tue2et ~2.10!

is fulfilled.
Denote byEN the infinite diagonal matrix whose firstN entries on the main diagonal are 1 an

all the rest are equal to 0. It follows from~2.10! that the kernel

AN~t,t,l!5Ga~t,t,l!ENQ~ t !EN

is of Hilbert–Schmidt-type inL2,e((0,̀ ),l 2) aslPSe .
If lPSe , then the sequence of kernelsAN converges toGa(t,t,l) (N→`) in the norm of an

operator inL2,e(0,̀ ; l 2). Since a limit of a sequence of compact operators is a compact ope
the proof is complete.

Let us consider the following integral equation:

u~ t !5v~ t !2E
0

`

Ga~t,t,l!Q~ t !u~ t !dt, ~2.11!

wherev(t)PL2,e((0,̀ ),l 2) and u(t)PL2,e((0,̀ ),l 2) are a known and unknown vector-value
functions, respectively.

Theorem 2: Equation~2.9! is solvable inL2,e((0,̀ ),l 2) for all lPSe except for at most a
countable set of points from this set. If there exists infinitely many pointsl for which this equation
is not solvable, then the limit points of suchl belong to the boundary ofSe .

Proof: The integral equation~2.9! may be written in the form

u5v2A~l!u. ~2.12!

By Lemma and Theorem 1,A(l) is an analytic function oflPSe , whose values are compac
operators inl 2 .

As is done in Ref. 8, it can be shown that Eq.~2.10! has a unique solution forlPSe with large
ulu. It follows from the Gohberg theorem~see Ref. 10, Chap. I, Theorem 5.1! that the number of
points, at which the operatorI 2A(l) has no inverse, is not greater than countable, and if th
exists infinitely many such points, their limit points belong to the boundary ofSe . This completes
the proof of the theorem.

Theorem 3: The numberl2(Im l.0) is an eigenvalue of the operatorLa if and only if Eq.
~2.1! has no nontrivial solutions inL2,e((0,̀ ),l 2).

Proof: Assume thatl2(Im l.0) is an eigenvalue ofLa , and u(t,l) is the corresponding
eigenfunction. Thenu(t,l) satisfies ~2.1!. Since u(t,l)PL2((0,̀ ),l 2), we have u(t,l)
PL2,e((0,̀ ),l 2). This shows that the sufficiency is fulfilled.

To prove the necessity, suppose that the vector-valued functionu(t,l)PL2,e(0,̀ ; l 2) satisfies
Eq. ~2.1!. ThenQ(t)u(t,t) belongs toL2((0,̀ ),l 2). SinceGa(t,t,l) is the resolvent kernel o
the self-adjoint operatorL0 , u(t,l)PL2(0,̀ ; l 2).

Applying the expression

2
d2

dt2
1

B~a!

t2
2l2

to both sides of~2.1! makes sure that
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2
d2u

dt2
1

B~a!u

t2
1Q~t!u5l2u.

As is seen from~2.1!, the boundary conditionu(0)50 is satisfied, too. So, the numberl2 is an
eigenvalue of the operatorLa , which is what had to be proved.

In Ref. 11 ~see also Ref. 3!, it was shown that the operatorLa has no positive eigenvalues
Using Theorems 2 and 3, we arrive at the following result:

Theorem 4:The discrete part of spectrum ofLa forms a bounded set. If this set is infinite the
it has only one limit point which is equal to zero.

Example:Let D be an angular domain in the planex5(x1 ,x2) with center at zero and angl
a. Moreover,a is chosen in the way thatvk5(kp/a)¹Z (n51,2,...). In the spaceL2(D) we
consider the operatorL generated by the Schro¨dinger differential expression

Lu52Du1q~x!u

and the boundary conditionuu]D50. We assume also that the conditionuq(x)u<ce2euxu, e.0, is
satisfied.

Let fn(w)5A(2/a) sin (pn/a)w. The functions$fn(w)%n51
` form a complete orthonorma

system inL2(0,a). We look for a solution of the equationLu5l2u in polar coordinates so tha

u~x,l!5(
j 51

`
1

Ar
uj~r ,l!f j~w! ~r 5uxu!.

Then determination of the eigenvalues of the operatorL is reduced to finding those of the operat
La . As a result, we can state that the eigenvalues of the non-self-adjoint operatorL form a
bounded set, and if this set has a limit point, then this limit point is equal to zero.
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We consider the time evolution of states for continuous infinite particle systems
which corresponds to nonequilibrium diffusion dynamics. For initial statesm0

which are perturbations of the equilibrium we obtain a bound for finite volume
nonequilibrium correlation functions and their continuity in time uniformly in vol-
ume for any finite time interval. This gives the possibility to construct the time
evolution of correlation functions and corresponding states in the thermodynamic
limit. © 2004 American Institute of Physics.@DOI: 10.1063/1.1690489#

I. INTRODUCTION

A diffusion of an interacting infinite particle system can be described by an infinite syste
stochastic differential equations of the so-called gradient type:

dxi~ t !52 (
j ,iÞ j

¹f~xi~ t !2xj~ t !!dt1A2

b
dwi~ t !. ~1.1!

Here f:Rd\$0%→R (f(x)5f(2x)) is an interaction potential,wi(t) are independent standar
Wiener processes inRd and the parameterb.0 is the inverse temperature of the system. T
physical background and motivation can be found in the article by Spohn1 and references therein
The set of positions$xi% i PN of identical particles is a locally finite subset inRd and the set of all
such subsets is theconfiguration spaceG:

Gª$g,Rd u ugùKu,` for any compact K,Rd%,

whereuAu is the cardinality ofA. Heuristically, any Gibbs measurem on G corresponding to the
interactionf and the inverse temperatureb is a stationary measure of the Markov process defi
by ~1.1!. The corresponding Markov generator can be calculated by Ito’s formula and defin
L2(G,m) on some domain of smooth cylinder functionsF by the following expression:

~HF !~g!5 (
xPg

S 2
1

b
Dx1¹xUf~g!•¹xDF~g!, ~1.2!

a!Electronic mail: kondrat@mathematik.uni-bielefeld.de
b!Author to whom correspondence should be addressed. Electronic mail: rebenko@faust.kiev.ua
c!Electronic mail: roeckner@mathematik.uni-bielefeld.de
18260022-2488/2004/45(5)/1826/23/$22.00 © 2004 American Institute of Physics
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where

Uf~g!5 (
$x,y%,g

f~x2y!, ¹xUf~g!5 (
yPg\x

¹f~x2y!, xPg. ~1.3!

Under some natural restrictions on the class of interaction potentialsf the generatorH has a
self-adjoint extension inL2(G,m) ~see Ref. 2!.

A rigorous study of~1.1! has been initiated by Lang3 who has proved the existence of th
so-called equilibrium stochastic dynamics which corresponds to~1.1! for a superstable, three time
continuously differentiable potential with finite range. In more recent works by Osada,4 Yoshida5

and Albeverioet al.2 the equilibrium stochastic dynamics was constructed by Dirichlet fo
methods for a wide class of potentialsf. The existence of the nonequilibrium dynamics w
proved by Rost6 and Lippner7 in the one-dimensional case and by Fritz8 for smooth superstable
finite range potentials in the cased<4.

To construct the nonequilibrium dynamics one can consider the corresponding semigroTt

5e2tH̃ on some classF~G! of observablesF:G→R defined by the Kolmogorov equation

]Ft

]t
52H̃Ft , F0PF~G!, ~1.4!

whereH̃ is the Friedrichs extension ofH on L2(G,m) for some fixed Gibbs measurem. On the
other hand, instead of the evolution of observables one can consider the evolution of stat
the evolution of probability measures onG. Such evolution is defined by the adjoint semigroup v
the following equation:

d

dt
m t52H* m t . ~1.5!

In the case of a finite particle system this equation can be rewritten in terms of the den
D(t,g) w.r.t. Lebesgue measuredg5dx1 ¯ dxN (ugu5N,`). Then~1.5! is, sometimes, called
the generalized Smoluchowski equation~see, e.g., Ref. 9!.

For infinite particle systems initial statesm0 are not absolutely continuous w.r.t. any standa
measure and the time evolution of densities has no rigorous sense. Below we consider a
native approach in terms of correlation functions which correspond to the states of the syst
define these correlation functions we introduce the space offinite configurationsG0 :

G0ª ø
nPN0

G (n), G (n)
ª$gPG u ugu5n%, N05Nø$0%. ~1.6!

G0 is naturally equipped with the Borels-algebraB(G0) given by the disjoint union of the
measurable spaces (G (n),B(G (n))). For any boundedYPB(Rd) the topology of

GY
(n)
ª$gPG u gù~Rd\Y!5B, ugu5n%

is induced by the bijection betweenGY
(n) and the symmetrizationỸn/Sn of Ỹn ~see Ref. 10 for

details!, whereSn is the permutation group over$1, . . . ,n%,

Ỹn
ª$~x1 , . . . ,xn! u xiPY, xiÞxj ,iÞ j %,

and we denote byGY5øn50
` GY

(n) the set of configurations inY.
Starting with an intensity measures5zdx (z.0) on B(Rd) we introduce the product

measures ^ n on (Rd,B(Rdn)) and denotes (n)
ªs ^ n+(sn)21, where sn is the mapsn :Rdn

{(x1 , . . . ,xn)°$x1 , . . . ,xn%PG (n). The Lebesgue–Poisson measurels on B(G0) is defined by
the formula
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lsª(
n>0

1

n!
s (n). ~1.7!

Definition 1.1: Let G:G0→R be a measurable function with local support [i.e., there exist
boundedLPB(Rd) such that G�(G0\GL)50] . Define the function KG: G→R as

~KG!~g!ª (
hbg

G~h!. ~1.8!

The summation in (1.8) is taken over all finite subconfigurationsh,g.
Remark 1.1:Functions onG can be considered asobservablesof our infinite particle system,

and functions onG0 can be interpreted asquasi-observables. The mapping~1.8! was introduced by
Lenard11 in order to give an abstract definition of the correlation functions in classical statis
mechanics. For a detailed study of properties of theK-transform in the framework of harmoni
analysis on configuration spaces we refer to Refs. 12–14.

For a given probability measurem on B~G! one can define the correlation measurerm on
B(G0) by

rm~A!ªE
G
~K1A!~g!m~dg!, ~1.9!

where1A is the indicator function of a setAPB(G0). Assuming thatrm is absolutely continuous
w.r.t. ls we can define the correlation functional

k~h!5km~h!ª
drm

dls
~h!. ~1.10!

In statistical physics it is useful to work with the corresponding family of correlation functio

k(n)
ªk�G (n), n>0. ~1.11!

Under certain general conditions on the interaction potential the correlation functionsk(n)

5k(n)(x1 , . . . ,xn)ªk(n)(x)n are bounded measurable functions on some Banach space~for ex-
ample,Ej in Ref. 15!. For anyGPL1(G0 ,rm) the following formula is true~see Ref. 12 for
details!:

E
G
~KG!~g!m~dg!5E

G0

G~h!rm~dh!5E
G0

G~h!k~h!ls~dh!. ~1.12!

To construct the dynamics for correlation functions, let us consider theK-transform of the
generatorH which is defined by

Ĥ5K21HK ~1.13!

on a proper setF0(G0) of functions onG0 ~quasi-observables!. The corresponding evolution o
quasi-observables is given then by the following equation:

]Gt

]t
52ĤGt , G0PF0~G0!. ~1.14!

We can define the time evolution of correlation functions via the duality relation:

E
G0

Gt~h!k0~h!ls~dh!5E
G0

G0~h!kt~h!ls~dh!. ~1.15!
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Then the adjoint operator (Ĥ)* 5..HB in L2(G0 ,ls) is the generator of the evolution semigroup f
the correlation functional, i.e.,

]

]t
kt52HBkt . ~1.16!

Using ~1.2! and~1.13!–~1.15! we can show that~1.16! has the following form~see Ref. 14!:

]

]t
kt~h!5 (

xPh
¹xF 1

b
¹xkt~h!1¹xUf~h!kt~h!1E dx8¹f~x2x8!kt~x8øh!G , hPG0 .

~1.17!

In terms of the correlation functions this equation has the following hierarchical structure:

]

]t
kt

(m)~x!m5
1

b (
j 51

m

Dxj
kt

(m)~x!m1(
j 51

m

(
kÞ j

m

~~¹f!~xj2xk!¹xj
1~Df!~xj2xk!!kt

(m)~x!m

1(
j 51

m E
Rd

dx8@~¹f!~xj2x8!¹xj
1~Df!~xj2x8!#kt

(m11)~~x!m ,x8!. ~1.18!

This equation appeared for the first time on a heuristic level in Ref. 16. In the present co
the hierarchy~1.16!–~1.18! is a direct consequence of the Kolmogorov equation~1.4!. It is called
sometimes the Bogoliubov diffusion hierarchy and it is analogous to the BBGKY hierarch
Hamiltonian dynamics. Note that some approaches to investigating this chain of equations
case of a smooth interaction potentialf were proposed in Refs. 17–20.

The problem of existence of solutions of hierarchy~1.18! is additionally complicated by the
fact that one should check that the obtained solutionkt corresponds to some statem t . Otherwise
we cannot prove that we construct the evolution of some initial statem0 . This problem was not
discussed in Refs. 17–20. More precisely, for regular types of interaction potentials, low pa
density and sufficiently small interval of time evolution the solution of the diffusion hierar
~1.18! in the thermodynamic limit was obtained without any analysis of the existence o
dynamics for the corresponding states. In this article we obtain the existence of statem t using a
general theorem about the connection between states and positive-definiteness of the corr
ing correlations functions.14,21

Remark 1.2:Note that in theoretical physics a hierarchical system of equations is acc
very often as the definition of the dynamics of an infinite particle system. Such situation
place, e.g., in Hamiltonian dynamics where the BBGKY hierarchy is considered as the defi
of the evolution. Let us mention that, in general, connections between the BBGKY hier
approach and the state evolution are not investigated enough as pointed out in Ref. 22, S
From the physical point of view the property of positivity for correlation functions is very imp
tant. But it is not enough to reconstruct the corresponding state.11 A constructive condition which
guarantees such reconstruction was proposed in Ref. 12~see also Ref. 21!. This is the positive-
definiteness of the sequence of correlation functions@see below~2.25!–~2.27!#. The situation is the
same as in the classical problem of momentum~see, e.g., Ref. 23!. From this point of view many
results on existence of solutions of the BBGKY hierarchy~see, e.g., Refs. 24 and 25! should be
completed by a proof for the existence of the dynamics of states for every particular cla
models, as it has been done for stationary solutions in Ref. 26 and for the one-dimen
nonstationary case in Ref. 27.

In this article we consider some class of singular superstable interactions~see Sec. III!. Our
main strategy is based on a construction of the semigrouppB

t which corresponds to the evolutio
equation~1.16!. For appropriate initial datak0 it provides a global solution to the diffusio
hierarchy~1.16!–~1.18!:
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kt~h!5~pB
t k0!~h!. ~1.19!

We obtain an expression for the operatorpB
t which can be easily defined on the Banach sp

Lb
1(G0 ,ljs) of ljs-integrable functionals for some appropriate weightj ~see Sec. II!. But for

most cases, which are interesting from a physical point of view, the correlation functiona
initial particle distributions do not belong toLb

1(G0 ,ljs). Typically, they are only bounded and w
need to extend the domain of the operatorpB

t to some class of bounded functionals. But from o
point of view it would be very naive to hope that a global solution to the hierarchy~1.16!–~1.18!
can be obtained for all initial data. Even in the case of a finite number of particles the singu
of the interaction potential does not allow us to define the evolution of arbitrary initial s
Generally speaking one can expect existence of a solution only if the initial correlation func
are chosen in a proper way. In this article we consider a class of initial functionals which c
spond to some perturbations of the equilibrium statem5mf which is constructed byf. The idea
is that, as the equilibrium state is a perturbation of the free state~Poisson ideal gas!, the nonequi-
librium state should be some perturbation of the equilibrium Gibbs state. Such a choice
initial state is very natural from a physical point of view and were used by many authors
main result~Theorem 4.1! is the following. Consider an initial statem0 which corresponds to a
superstable potential

V5f1c, ~1.20!

wheref is the potential by which our dynamics~1.1! is governed andc is a superstable, lowe
regular interaction potential~see Sec. III!. For the given measurem0 we consider a family of finite
volume measuresm0

L @for boundedLPB(Rd)] and the corresponding family of initial correlatio
functionalsk0

L(h):15

k0
L~h!5E

G0

ls~dg!D 0
L~høg! ~1.21!

with

D 0
L~h!5ZL

211GL
~h!e2bUV(h), hPG0 , ~1.22!

ZL5E
G0

ls~dh!1GL
~h!e2bUV(h). ~1.23!

For such initial correlation functionals we construct a solution of~1.16! as

kt
L~h!5~pB

t k0
L!~h!. ~1.24!

Our main technical result consists in the proof of a bound, uniform inL, for these correlation
functionals:

kt
L~h!<c1

uhu , hPG0 c15c1~z,b,T!, tP@0,T#, ~1.25!

for any time interval@0,T#. We obtain this result using the well-known technique of superstab
estimates in classical statistical mechanics28 and its generalization to the quantum case w
Boltzman statistics.29

In our case this technique needs some modification. We should also note that as in Ref.
need the restrictiond<3 on the dimensiond of the system. It is connected with estimating t
contribution of long Wiener trajectories in a functional integral representation for the correl
functions. Using~1.25! and the continuity in time~uniformly in L! @see~4.27!# we conclude that
there exists a thermodynamic limit forkt

L and these limit functionalskt satisfy the equation~1.16!
in a weak sense.
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The structure of this paper is as follows: In Sec. II we construct the operatorpB
t and derive a

representation forkt
L . In Sec. III we discuss the class of interactions. In Sec. IV we recall s

auxiliary constructions and formulate our main result. The proof of the main theorem is pres
in Sec. V. The basic technical lemmas are outlined in the Appendix.

II. CORRELATION FUNCTIONS

In this section we construct the semigroup connected with the diffusion hierarchy~1.16!–
~1.18! and derive a representation for the finite volume correlation functions~1.24!. Let us define
an operatorK0 on quasi-observables as

K0Gª~KG!�G0 . ~2.1!

Then we can construct the operator

HFªK0ĤK0
21 . ~2.2!

On smooth quasi-observables the operatorHF acts by the following formulas

HFG5~~HFG!(n)~x!n!n50
` , G5~~G!(n)~x!n!n50

` , ~2.3!

where

~HFG!(n)~x!n5~HF
(n)G(n)!~x!n5(

j 51

n S 2
1

b
Dxj

1¹xj
Uf~x!n•¹xj DG(n)~x!n . ~2.4!

HF
(n) is the generator of the stochastic dynamics for ann-particle system:

dxi~ t !52 (
iÞ j 51

n

¹f~xi~ t !2xj~ t !!dt1A2

b
dwi~ t !, i 51, . . . ,n. ~2.5!

The problem of existence of the stochastic dynamics~2.5! with a singular potential is analyzed i
Refs. 30 and 31. The operatorHF

(n) is generated by the Dirichlet form

~HF
(n)G(n),G(n)!L2(G

0
(n) ,m

f
(n))5

1

b (
j 51

n E
G0

(n)
u¹jG

(n)u2dmf
(n) , ~2.6!

where

mf
(n)
ªe2bUf(•)ns (n) ~2.7!

ands (n) is defined in~1.7!.
Then using~1.14!–~1.15! and ~2.1!–~2.2! one can write forpB

t the following representation:

pB
t 5e2tHB5K0* e2tHF* ~K0

21!* 5De2tHF* D21. ~2.8!

Here the operatorsDªK0* andD21 are defined inL1(G0 ,ljs), j.2, by the following formulas
~see Ref. 12 for details!:

~DF !~h!5E
G0

ls~dg!F~høg!, ~2.9!

~D21F !~h!5E
G0

ls~dg!~21! uguF~høg!. ~2.10!
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Remark 2.1:In our approach the representation~2.8! for pB
t is a direct consequence of th

Kolmogorov equation~1.4! without any reference to the hierarchical structure of~1.17! and~1.18!.
In the same way from the Liouville equation one can obtain the corresponding representat
the Hamiltonian dynamics.14 Representations like~2.8! appeared earlier. They were obtained
application of the method of ‘‘creation’’ and ‘‘annihilation’’ operators for classical statistical m
chanics~see Refs. 32–35!. For connections with the diffusion hierarchy see Ref. 19.

Remark 2.2:It will be clear from the considerations below that in the case of a sta
interaction potentialf for which 2Df is also stable, the operatorpB

t can be defined on a Banac
spaceLb,j with the norm

iGib,j5E
G0

ljs~dh!e~1/2! bUf(h)uG~h!u,`, GPLb,j
1 . ~2.11!

To obtain a representation for finite volume correlation functionskt
L we take into account the

definition of the operatorD and rewrite~1.21! in the form

k0
L~h!5~DD 0

L!~h!. ~2.12!

Then due to~2.8! and ~1.20! the following representation is true:

kt
L~h!5S DFe2tHF* S 1

ZL
e2bUfe2bUc1GL

D G D ~h!5S DF 1

ZL
e2tHF~e2bUc1GL

!e2bUfG D ~h!,

~2.13!

where we use the fact that the operatorHF @see ~2.4!# is a self-adjoint operator in
L2(G0 ,e2bUfls).

Now, to get an integral representation forkt
L we use a functional integral representation for t

operatore2tHF in ~2.13!. First of all, note that the operatorHF has the Fock structure~2.3! and

~2.4!, so we only need a representation fore2tHF
(n)

in L2(G0
(n) ,mf

(n)). To get it we use the well-
known ground state transformation~see, e.g., Ref. 36, Sec. 2, and Ref. 23, Chap. 7!

L2~G0
(n) ,mf

(n)!{ f °e2 ~1/2! bUf f PL2~G0
(n) ,s (n)!. ~2.14!

The corresponding generatorH̃F
(n) in L2(G0

(n) ,s (n)) has the following form,

H̃F
(n)52

1

b (
j 51

n

Dxj
1Ṽ~x!n , ~2.15!

with the effective potential

Ṽ~x!n5Ṽ1~x!n1Ṽ(2Df)~x!nª(
j 51

n S b

4
u¹xj

Uf~x!nu22
1

2
Dxj

Uf~x!nD . ~2.16!

For the domain of the operatorH̃F
(n) we haveD(H̃F

(n)).C0
`(G0

(n)), where C0
`(G0

(n)) denotes
C`-functions onG0

(n) with compact supports. It can be shown that for any superstable potentf

the effective potentialṼ(x)n is bounded from below for any fixedn. But for the class of potentials
under consideration it is even superstable~see Sec. III!. Therefore, we can apply the Feynman

Kac formula for the kernel of the semigroupe2tH̃F
(n)

, whereH̃F
(n) is considered in the sense of

form sum~2.15! Ref. 37, Chap. 2. As a result, we get

~e2tHF
(n)

!~~x!n ;~y!n!5e~1/2! bUf(x)n2 ~1/2! bUf(y)nE
(V tb)n)j 51

n

Wxj ;yj

tb ~dv j !e
2b*

0

tbdtṼ(v(t))n,

~2.17!
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where

V tb
ªC~@0,tb#→Rd!, tb5tb21, ~2.18!

Wx;y
tb is the conditional Wiener measure on the spaceV tb with conditionsv j (tb)5xj andv j (0)

5yj . It implies the following useful representation:

kt
L~h!5E

Rdm
djE

(V tb)m
Wh;j

tb ~dv!mr t
L~v!m , ~2.19!

whereh5$x1 , . . . ,xm%, j5$y1 , . . . ,ym%, dj5dy1¯dym , and

r t
L~v!m5 (

n>0

1

n! E s̃L~vm11!¯E s̃L~vm1n!D̃0
L~v~0!!m1ne2Ũ(v)m1n. ~2.20!

In ~2.20! we use the following notations:

Ũ~v!m1nª
1

2
bUf~x!m1n1E

0

tb
dt@U2Df~v~t!!m1n1U¹f

1 ~v~t!!m1n#, ~2.21!

U¹f
1 ~x!m1nª (

j 51

m1n F1

4
bu¹xj

Uf~x!m1nu2G>0, ~2.22!

D̃0
L~v~0!!m1nªe~1/2! bUf(v(0))m1nD 0

L~v~0!!m1n , ~2.23!

and

E s̃L~dv!~¯ !5zE dxE
L

dyE Wx;y
tb ~dv!~¯ !. ~2.24!

A representation like~2.19! and~2.20! was obtained also in Refs. 17 and 18 as the general
solution of the finite volume diffusion hierarchy~1.18!.

Remark 2.3:It is not hard to show that the sequencekt
L(h) is positive-definite in the sense o

Refs. 12 and 13, which is the following.
Definition 2.1:13 The sequencekt

L(h) is positive-definite if

E
G0

~G!Ḡ!~h!kt
L~h!ls~dh!>0 for all GPBbs~G0!. ~2.25!

HereBbs(G0) is the set of all bounded measurable functions with bounded support,Ḡ denotes the
complex conjugate ofG, and!-star is the convolution, which is defined in the following way:

K~G1!G2!5KG1•KG2 . ~2.26!

~See Ref. 13 for details.!
Now, inserting~1.24! into ~2.25! and using the representation~2.8!, ~2.12!, ~2.17! and the

property~2.26! ~which is true, also, forK0 @see~2.1!# we obtain
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E
G0

~G!Ḡ!~h!ptDD 0
L~h!ls~dh!

5E
G0

~G!Ḡ!~h!K0* e2tHF* D21DD 0
L~h!ls~dh!

5E
G0

e2tHF~K0G!~h!~K0Ḡ!~h!D 0
L~h!ls~h!

5E
G0

ls~dh!E
(Rd) uhu

dh8~e2tHF
uhu

!~huh8!u~K0G!~h8!u2D 0
L~h!>0 ~2.27!

Positive definiteness together with the bound~1.25! gives a possibility to reconstruct the corr
sponding sequence of states~measures! m t

L .
Representation~2.19! and ~2.20! is reminiscent to the representation of reduced density

trices by correlation functionals in quantum statistical mechanics with Boltzman statistics~see
Refs. 38 and 39!. This analogy enables us to apply powerful techniques from quantum stati
mechanics in the considered model. Following Ref. 40, we construct the configuration spacGV tb

over the spaceV tb of Wiener trajectories inRd. Define configurationg̃ as the infinite set of
trajectoriesvPV tb such that the set of values of these trajectories at timet50 is a configuration
g0PG. Then define the configuration space of trajectories with initial pointsv(0) in L
PBc(R

d):

GV
L

tbª$g̃PGV tbug0PGL%.

In the same way the Lebesgue–Poisson measurels̃
L with intensity measures̃L is defined by

~1.7!. Then for the ‘‘correlation functionals’’r t
L(h̃), h̃PGV

L

tb , the following representation is

true:

r t
L~h̃ !5E

GV
L

tb

ls̃
L~dg̃ !D̃0

L~h0øg0!e2Ũ(h̃øg̃), ~2.28!

whereŨ(h̃øg̃) is defined by~2.21! with h̃øg̃5$v1 , . . . ,vm1n% and D̃0
L as defined in~2.23!.

Remark 2.4:In the following we writeh,g,j,...,V,VL , instead ofh̃,g̃,j̃, . . . ,V tb,VL
tb and

ht,gt,jt, . . . , . . . ,tP@0,tb# for the sets of values of the corresponding configurations at timt.
Note that these sets fort.0 are not configurations inG0 because some points of their values c
coincide~intersection of trajectories!.

III. THE CLASS OF INTERACTION POTENTIALS

In this section we describe a class of interaction potentials which allow us to solv
problem formulated in the Introduction. As it was mentioned in Remark 2.2, even to defin
operatorpB

t on Lb,j
1 we have to consider a rather narrow class of interaction potentials.

restrictions on the potential imposed below are, however, rather dictated by the technique
superstability estimates for functional integrals. We hope that the stochastic dynamics, ac
exists for a more wide class of potentials and initial states. This point of view is supported b
fact that the equilibrium stochastic dynamics exists for a wide class of physically reaso
potentials~see, e.g., Ref. 2!.

To define the said class of superstable interactions we denote byD̄ a partition ofRd into half
open unit cubesD centered at the pointsr PZd ~see Ref. 28 for details!:

Rd5 ø
D, D̄

D, ;D,D8PD̄, DùD85B.
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We assume the following conditions to hold:
~A1! Smoothness:

f, cPC3~Rd\$0%!.

~A2! Superstability:

; i 51,2,3 'Ai.0, Bi>0: Uv i
~g!> (

DPD̄

~Ai ugDu22Bi ugDu!,

with v15f, v252Df andv35c.
~A3! Lower-regularity:
For anyX,Y,Rd and configurationsgXPGX , gYPGY , define

Wv i
~gXugY!5 (

xPgX ,yPgY

v i~x2y!. ~3.1!

Then

2Wv i
~gXugY!< (

D,D8PD̄

Cv i
~D,D8!ugDuugD8u, ~3.2!

where

Cv~D,D8!5 sup
xPD,x8PD8

v2~x2x8!,

and v252min(v,0). We also require the existence of positive decreasing functionsC i(k) on
positive integers such that

C i~k!> sup
D,D8PD̄;d~D,D8!5k

Cv i
~D,D8! ~3.3!

and

(
k50

`

C i~k!kd1m i215Fm i
,1` ~3.4!

with m15m3. 1
2, m2.2 3

2 and

d~D,D8!5 max
1<a<d

inf
xPD,x8PD8

ux(a)2x8~a!u.

Now we describe some classF of potentials which satisfy~A.1!–~A.3!. Let

f~x!5f1~x!1fst~x!,
~3.5!

f1~0!51`, f1~x!.0,

2Df1~0!51`, 2Df1~x!.0,
~3.6!

fst~x!5
1

~2p!d E dkeixkf̃~k!, f~k!>0,
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E dkf̃~k!,`, E dkk2f̃~k!,`. ~3.7!

As an example~for d53) of such a potential we can choose some function which ha
asymptotic behavior near the origin like

f1~x!;
C1

uxua
, 0,a<1 for uxu,r 0 , r 0.0,

and is sufficiently fast decreasing asuxu↗1`. This is clear from a direct calculation which give

2D
1

uxua
5

a~12a!

uxua12 , ~3.8!

which is positive fora,1.

IV. RUELLE’S CONSTRUCTIONS. MAIN RESULT

Our main technical tool is the technique of superstability estimates proposed by Ruel28 for
classical statistical mechanics. Later Espositoet al.29 generalized this technique for the case
quantum statistical mechanics and proved the boundedness of the reduced density m
~RDMs! for the Maxwell–Boltzmann statistics.

In this section we briefly recall some basic constructions which were made in Refs. 28 a

A. Lq-cubs

For somea.0 ~to be fixed later! let

l q5@eaq#, qPN, ~4.1!

where@x# is the integer part ofxPR1 and

Lq5@2 l q2 1
2 ,l q1 1

2#
d, uLqu5~2l q11!d. ~4.2!

We also set the origin in the center of some cubeD1PD̄. So, every cubeLq is the union of
cubesD from D̄. And for convenience we suppose that for one of the trajectoriesvPh we have
v(0)50PD1,Rd. Following Ref. 29 we also introduce the sequence

w~q!5quLqu. ~4.3!

We extensively use the following properties~see Ref. 29 for details!. For given «.0, a
.0 's0 such that fors>s0

11a,
l s11

l s
,ea(11«),

w~s11!

w~s!
,ea(d1«(d11)), ~4.4!

or for «,«05122ae2a ~a is sufficiently small!

l s11

l s
,112a,

w~s11!

w~s!
,~112a!d11. ~4.5!
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We also need the following lemma:
Lemma 4.1 (see Ref. 29): Let

r ~k!5min$r PNu l q1r. l q1k, ;q>1, kPN%. ~4.6!

Then

r ~k!<11
1

a
log~k12!. ~4.7!

B. An extension of the functionals r t
L
„h…

The functionalsr t
L are defined on the configuration spaceGVL

, whereVL is the space of
continuous trajectoriesv~t! @see~2.18!# with v(0)PL. But in the construction we are going t
apply we need to consider functionalsr t

L on the trajectories which take values in the bound
cubeLq or in its complimentLq

c . In this case some trajectories can be discontinuous because
take their values inLq not for all tP@0,tb# but only in some intervals@t1 ,t2#, @t3 ,t4#, etc. So
for tP(t2 ,t3), . . . they are not defined. In this case the definition ofŨ(hLq

øg) and therefore

r t
L(hLq

) becomes ambiguous. To avoid these difficulties we repeat the construction propo
Ref. 29.

Let B(@0,tb#) be thes-algebra of Borel sets in@0,tb# with VB the set of all measurable
functions:

ṽ:B→Rd, BPB~@0,tb#!. ~4.8!

Now we define a new configuration space by

GṼ5ø
n>0

G
Ṽ

(n)
, ~4.9!

where for n50 G
Ṽ

(0)
is a nonempty set which, however, consists of the trajectoriesṽ whose

domainB have zero Lebesgue measure and

G
Ṽ

(n)
5Ṽ1

^ n2symm, Ṽ15 ø
BPB([0,tb])

VB . ~4.10!

Then, instead ofŨ(v)m1n5Ũ(høg), h5$v1 , . . . ,vm%, g5$vm11 , . . . ,vm1n% we define
Ũ(h̃øg) by the same formula~2.21! and ~2.22!, but instead ofUvk

(v(t))m1n , k51,2 (v1

5f,v252Df) we set forṽ jPṼ1

(
1< i , j <m1n

xD(ṽ i )ùD(ṽ j )
~t!vk~ṽ i~t!2ṽ j~t!!, ~4.11!

whereD(ṽ) is the domain ofṽ. For fixedh̃PGṼ the function

Ũ~ h̃ø• !:GV→R

is measurable onGV w.r.t. thes-algebra of Borel sets corresponding to the topology of point-w
convergence~see Ref. 29 for details!. Finally, we define

r̃ t
L~h̃ !5E

GVL

ls̃
L~dg̃ !D̃0

L~h̃0øg0!e2Ũ(h̃øg), ~4.12!
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which is an extension of definition~2.28! @hereh̃ has a different sense than in~2.28! ~see Remark
2.4!#.

It is clear that forhPGVL

r t
L~h!5 r̃ t

L~h̃ !. ~4.13!

Then for any bounded measurableX,L we define the mappX :GVL
→GṼL

, such that for any
gPGVL

pXg5~pXv1 , . . . ,pXv ugu!, ~4.14!

wherepXv jPṼL and its domain is the measurable set

B5$tP@0,tb#uv~t!PX%.

If B has nonzero Lebesgue measure, then (pXv)(t)5v(t), tPB, and if B has zero measure
thenpXvPG

Ṽ

(0)
. We need also the maps:GVL

→GṼL
, which is

g→s~g!5 ø
DPD̄

pDg. ~4.15!

The union is taken over allDPD̄, such thatpDg has a domain of nonzero Lebesgue measure
is clear that

r̃ t
L~h̃ !5 r̃ t

L~s~h!!. ~4.16!

C. Partitions of GVL

For everytP@0,tb# and a given configurationh̃PGṼL
we introduce some characteristics of

given configurationgPGVL
:

Eq
t~j!5ELq

t ~j!5 (
D,Lq

ujD
t u2, j5h̃øg, ~4.17!

whereujD
t u is the number of all trajectories fromj which take values inD at timet. We also denote

Et(j) by the same expression~4.17! with summation over allDPD̄.
Then we define three factors

Eq
(1)~j!5Eq

tb~j!, ~4.18!

Eq
(2)~j!5E

0

tb
dtEq

t~j!, ~4.19!

Eq
(3)~j!5Eq

0~j!, ~4.20!

which correspond to the factors exp$21/2bUf(h̃ tbøg tb%, exp$bUDf(h̃øg)% and D̃0
L(h̃0øg0),

respectively, to be controlled, and define

Eq~j!5(
i 51

3

Eq
( i )~j!. ~4.21!

Following Ref. 29 we can now construct a partition ofGVL
in the following way. For some

large integerq0 ~to be fixed later! we introduce
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Gq0215$gPGVL
uEm~j!<w~m! for all m>q021%, ~4.22!

and forq>q0

Gq5$gPGVL
uEq21~j!.w~q21!, but Em~j!<w~m! for m>q%. ~4.23!

Then forq>q021 let xq(g) be an indicator function of the setGq and for the partition

GVL
5 ø

q>q021

Gq ~4.24!

we consider the partition of the unity:

15 (
q>q021

xq~g!. ~4.25!

D. Main result

Theorem 4.1: For the interactionsf(x) (xPRd, d<3), which satisfy (A1)–(A3), and for
initial distributions (1.21)–(1.23) there exist constants c15c1(z,b,T) and c25c2(z,b,T) such
that

kt
L~x!m<c1

m , h[$x1 , . . . ,xm%PGL . ~4.26!

For any t1 ,t2P@0,T#

u^kt1
L ,w&2^kt2

L ,w&u<c2
miwimut12t2u, ~4.27!

uniformly in L and tP@0,T#. Here

^kt
L ,w&5E

Rdm
kt

L~x!mw~x!m~dx!m, ~4.28!

where(dx)m5dx1• ••• • dxm , for (x)m5$x1 , . . . ,xm%, wPC0
`(Rdm),

c2
m5max$mj1

mb21, m~m21!j1
m, mj1

m11%, ~4.29!

and

iwim5 max
1< j <m

iD jwiL1(Rmd)1max
j Þk

i¹jw•¹kfiL1(Rmd)1max
j

i¹fiL1(Rd)i¹jwiL1(Rmd) . ~4.30!

Remark 4.1:For potentialsfPF it is clear thati¹fiL1(Rd),` ~see Sec. III!.
Remark 4.2:From ~4.26!, by compactness, we can choose a sequence (Ln)n51

` , Ln,Ln11 ,
Ln↗Rd, so that we get a limit point~in the weak sense! for kt

Ln . Hence by diagonal argument w
obtain the existence of a corresponding limit for any rationaltP@0,T#. Then from the continuity
property~4.27! the existence of a weak-limit forkt

L follows for all tP@0,T#. And, finally, using
positive-definiteness@see Remark 2.3,~2.25!–~2.27!# of kt

L for anyL,Rd we get a limit statem t

~not unique!, such thatK* m t5rm t
5ktls .

V. PROOF OF THE MAIN THEOREM

First we note that neglecting the positive part of the effective potentialṼ(x)n @see~2.16!# we
get
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r̃ tb
L ~h̃L!<r5 tb

L ~h̃L!, ~5.1!

where

r5 tb
L ~h̃L!5 r̃ tb

L ~h̃L!uṼ1[0 .

Then, the main technical point of the proof is the following proposition.
Proposition 5.1: Under the same hypothesis as in Theorem 4.1 there exist a smalla.0, a

sufficiently large integer q05q0(a), constants h(q0),K(q0), and a positive decreasing functio
«(q) such that

r5 tb
L ~h̃L!<C0e2 ~1/4! bAE(hLq0

)r5 tb
L ~h̃L

q0

c !1 (
q>q0

Cqe2 ~1/4! bAE(h̃Lq
)r5 tb

L ~h̃L
q
c!, ~5.2!

with

A5min$A1 , 2A2 , A3%,

C05eh(q0)1K(q0), Cq5e2 ~1/8! bAw(q21)1«(q)w(q21)1K(q0), q>q0 .

The proof of Theorem 4.1 follows from the next lemma.
Lemma 5.1: Let

S~ h̃ !5$DPD̄u'tP@0,tb# and vPh̃ such that v~t!PD%.

Then

r tb
L ~h̃ !<e2 ~1/4! bAE(h̃)1duS(h̃)u, ~5.3!

with d. logD, D5C01(q>q0
Cq .

Proof: We shall proceed by induction. Leth̃8 be a subconfiguration ofh̃. We assume tha
~5.2! is true for any suchh̃8. Then from~5.2!

r5 tb
L ~h̃L!<C0e2AE(h̃Lq0

)2AE(h̃Lq0

c )1duS(h̃Lq0

c )u1 (
q>q0

Cqe2AE(h̃Lq
)2AE(h̃Lq

c)1duS(h̃Lq
c)u

<e2AE(h̃L)1duS(h̃L)u,

sinceuS(h̃L
q
c)u<uS(h̃L)u21. Taking into account~5.1! we get~5.3!. h

Proof of Theorem 4.1:Using ~5.3! from ~2.19! we get

kt
L~x!m<zm)

j 51

m E dyjE Wxj ,yj

tb ~dv j !e
2AE(v j )1duS(v j )u.

Using the Schwartz inequality, the estimate@see Ref. 29,~A.21!#

E Wx,y
tb ~dv!e2duS(v)u<~2ptb!2d/2I ~2d!, I ~2d!5E W0,0

tb ~dv!e2duS(v)u,

and the trivial estimate

E dyS E Wx,y
tb ~dv! D 1/2

<23d/4pd/4td/4
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we obtain~4.26! with

c15z~~4p!dI ~2d!!1/2.

In the same way one can prove Eq.~4.27!. Indeed, we have by~1.18! that

^kt1
L ,w&2^kt2

L ,w&5E
t1

t2
dtK dkt

L

dt
,wL

5E
t1

t2
dt(

j 51

m

@^kt
L ,D jw&2^kt

L ,¹jw•¹jUf&2^^kt
L ,¹jf&¹jw&#.

Using ~4.26! we get~4.27! with the constants~4.29! and ~4.30!. h

Proof of Proposition 5.1:Inserting~4.25! into ~4.12! we get

r5 t
L~h̃L!5 (

q>q021
I q~ h̃L!, ~5.4!

with

I q~ h̃L!5E ls̃
L~dg!xq~g!D̃0

L~h̃L
0 øg0!e2U5 (h̃øg), ~5.5!

where

U5 ~ h̃øg!5Ũ~ h̃øg!2Ṽ1~høg!. ~5.6!

To estimate~5.5! we construct a further partition ofGq :29

Gq5Gq,L5Gq,Lq
øGq,L

q
cøGq,]Lq

s øGq,]Lq

l ,

whereGq,Lq
is the configuration of those trajectories which are completely contained inLq , Gq,L

q
c

are trajectories completely outside ofLq , i.e., inLq
c , Gq,]Lq

s are short trajectories, which cross th

boundary ofLq but do not leaveLq12 andGq,]Lq

l are long trajectories, which cross]Lq and leave

Lq12 . By the infinite-divisibility of the Poisson–Lebesgue measurels̃ , for any functionF(g)
PL1(GVL

,ls̃
L) which can be represented as

F~g!5F1~gLq
!F2~ ḡL

q
c!F3~z]Lq

!F4~ z̄]Lq
! ~5.7!

for

g5gLq
øḡL

q
cøz]Lq

ø z̄ ]Lq
, gLq

PGLq
, ḡL

q
cPGL

q
c, z]Lq

PG]Lq

s , z̄ ]Lq
PG]Lq

l

the following formula is true:

E ls̃
L~dg!F~g!5E

Gq,Lq

l
s̃

Lq~dg!F1~g!E
Gq,Lq

c
l

s̃

Lq
c

~dḡ !F2~ ḡ !

3E
Gq,]Lq

s
ls̃

L~dz!F3~z!E
Gq,]Lq

l
ls̃

L~dz̄ !F4~ z̄ !.

But in our case the function
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F~g!5xq~g!D̃0
L~h̃L

0 øgL
0 !e2U5 (h̃øg) ~5.8!

does not satisfy~5.7!. So, our next step is to estimate~5.8! as a product of some functions as
~5.7!.

Due to ~5.6!, ~2.21! and ~2.22! we have

U5 ~ h̃øg!5
1

2
bUv1

~ h̃ tbøg tb!1bE
0

tb
dtUv2

~ h̃tøgt!,

with v15f, andv252Df. Then for anytP@0,tb# we can write for the energyUv i
(h̃tøgt) the

following decomposition:

Uv i
~ h̃tøgt!5Uv i

~ h̃Lq

t øgLq

t ø~pLq
z!tø~pLq

z̄ !t!1Uv i
~ h̃

L
q
c

t
øḡ

L
q
c

t
!1Uv i

~~pL
q
cz!tø~pL

q
cz̄ !t!

1Wv i
~ h̃Lq

t øgLq

t ø~pLq
z!tø~pLq

z̄ !tuh̃
L

q
c

t
øḡ

L
q
c

t
ø~pL

q
cz!tø~pL

q
cz̄ !t!

1Wv i
~ h̃

L
q
c

t
øḡ

L
q
c

t u~pL
q
cz!t!1Wv i

~ h̃
L

q
c

t
øḡ

L
q
c

t u~pL
q
cz̄ !t!, ~5.9!

where in the same way as forŨ we use the substitution~4.11! to define the interaction energyWv i

for ṽPṼ1 . Now to estimate the various terms in~5.9! we prove some lemmas.
Lemma 5.2: For each positive, integer q andtP@0,tb#

Uv i
~ h̃Lq

t øgLq

t ø~pLq
z!tø~pLq

z̄ !t!>
1

4
AiEq

t~j!1
1

2
AiEq

t~ h̃Lq
!2

Bi
2

Ai
uLqu. ~5.10!

Proof: The proof follows from Lemma A.1~see the Appendix! and the definition ofEq
t(j).

h

By the stability condition we have

Uv i
~~pL

q
cz!tø~pL

q
cz̄ !t!>2Bi~ uzu1u z̄u!. ~5.11!

Lemma 5.3: Letja andja8 be subconfigurations ofjPGq andja contained inLq1a andja8 in

Lq
c . Then for anytP@0,tb# there exist a small enougha, sufficiently large q0

(1) , a constant

hi
(a)(q0

(1)) and a decreasing function« i
(a)(q) on the integers, such that for each q>q0

(1)21

2Wv i
~ja

t uja8
t!<H hi

(a)~q0
(1)! for q5q0

(1)21,

« i
(a)~q!w~q21! for q>q0

(1) .
~5.12!

Remark 5.1:We use Lemma 5.3 witha50 for the fourth term in~5.9! (j05h̃Lq
øgLq

, j08

5h̃L
q
cøḡL

q
cøpL

q
cjøpL

q
cz̄) and with a52 for the fifth term of ~5.9! (j25pL

q
cz, j28

5h̃L
q
cøḡL

q
c).

Proof: Let us prove the lemma fora50, i 51 and forq>q0
(1) which we chose later. Taking

i 51, a50 andt5tb in Lemma A.2 and using the fact that

Eq11\q21
(1) ~j tb!<Eq11\q21~j!5Eq11~j!2Eq21~j!

and because ofjPGq , Eq21(j).w(q21) andEm(j)<w(m) for m>q, we have
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2Wv1
~j0

tbuj0
8tb!<

1

2
Fm1

@w~q11!2w~q21!#1
1

2
b«1

(1)~q!w~q!

1
1

2
b«2

(2)~q!w~q!(
k51

`

~ak
(1)2ak11

(1) !w~q1k11!, ~5.13!

whereak
(1)5C1( l q1k2 l q). Then from~4.5! we have

w~q11!2w~q21!,@~112a!2d1221#w~q21!, ~5.14!

w~q!,~112a!d11w~q21!. ~5.15!

From the definitions~4.1!–~4.3!, choosinga sufficiently small and

q0
(1).2

2

a
log~12e22a!, ~5.16!

it is easy to calculate thatq1k11,(2/a)log(lq1k112lq11) and

(
k51

`

~ak
(1)2ak11

(1) !w~q1k11!<c~a! (
l q112 l q

`

C1~m!~2m11!d log~m11!5c~a!«0~q!

~5.17!

with c(a)52a21(11a). Now from ~5.13!–~5.16! we have~5.12! for q>q0
(1) with

«1
(0)~q!5 1

2 bFm1
@~112a!2d1221#1 1

2 b«1
(1)~q!~112a!d11

1 1
2 b«2

(1)~q!~112a!d11c~a!«0~q!. ~5.18!

The proofs for the casesi 52 anda52,i 51,2 are the same.
Now we consider the caseq5q0

(1)21. The only difference in the proof lies in estimating th
first term in Eq.~A2!. As gPGq021 this term cannot be very small and we estimate it by

E
q

0
(1)\q

0
(1)22

tb ~j tb!<Eq0
~j!<w~q0

(1)!.

Then inequality~5.12! for q5q0
(1)21 holds with

hi
(a)5@ 1

2 bFm i
1 1

2 b«1
( i )~q0

(1)!1 1
2 b«2

( i )~q0
( i )!#«~q0

(1)!.

h

And finally the sixth term of~5.9! can be estimated by
Lemma 5.4: Letz̄ be some subconfiguration ofgPGq , contained inLm , m.q. Then there

exist a q0
(2) large enough and some constant b5b(a,d), such that for each q>q0

(2)

2 1
2 bWv1

~~pL
q
cz̄ ! tbuh̃

L
q
c

tb ø~pL
q
cg! tb!< 1

2 bbFm1
u z̄uw~m!1/2, ~5.19!

2bWv2
~pL

q
cz̄uh̃L

q
cøpL

q
cg!<tbFm2

u z̄uw~m!1/2. ~5.20!

Proof: The proofs of~5.19! and~5.20! are almost the same. Let us prove for example~5.19!.
Using Lemma A.3. witht5tb , j15pL

q
cz̄, j25h̃L

q
cøpL

q
cg and taking into account that form

.q
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Em1r (k)
tb ~j!<Em1r (k)~j!<w~m1r ~k!!,

asj5h̃øg andgPGq we get

2
1

2
bWv1

~¯u¯ !<
1

2
bb1u z̄u(

k51

`

C1~k!~k11!~d21!/2w~m1r ~k!!1/2.

@See for r (k) Eqs. ~4.6! and ~4.7!.# Using ~4.4!, ~4.7! and ~3.4! we get ~5.19! with b
5b1 exp@a/2(d1«(d11))#2d211m, «5min$122ae2a,(2m21)(a11)21% andq0

(2)5s0 ~see~4.4!,
~4.5! for definition of s0). h

And finally we present some inequalities for the initial density distribution~1.21!–~1.23!.
Lemma 5.5: Let the potentialsf and c satisfy~A.1!–~A.3!. Then

1o. For any Lq,L, q>q021, and jL
0 PGq there exist A3.0 and B3>0 such that

D̃0
L~jL

0 !<e[ 2A3b(D,Lq
ujD

0 u21B3b(D,Lq
ujD

0 u]D̃0
L~j

L
q
c

0
! ~5.21!

2o. For any partition

jL
q
c5 j̄

LsùL
q
c

0
ø j̃

L
q
c

0
, j̄

LsùL
q
c

0
ù j̃

L
q
c

0
5B, s.q, ~5.22!

there exists C3>0 such that

D̃0
L~j

L
q
c

0
!<eC3bu j̄

LsùLq
c

0
uw(s)1/2

D̃0
L~ j̃

L
q
c

0
!. ~5.23!

Proof: The proof is a direct consequence of Ruelle’s technique.28

Now we collect all the estimates~5.10!–~5.12!, ~5.19!, ~5.20!, ~5.21!, and~5.23! to obtain for
q>q05max$q0

(1),q0
(2)% @see~5.16!#:

I q~ h̃L!<e2 ~1/4! bAEq(h̃Lq
)2~1/8! bAw(q21)1«0(q)w(q21)1«1(q)w(q21)E l

s̃

Lq~dg!E l
s̃

Lq12~dz!eBuzu

3E l
s̃

Lq
c

~dḡ !e2U5 (h̃Lq
cøḡ)D̃

0
Lq

c

~ h̃
L

q
c

0
øḡ0! )

m>q13
E l

s̃

Lm~dz̄ (m)!eBu z̄(m)u1Cu z̄(m)uw(m)1/2

~5.24!

with

A5min$A1 , 2A2 , 2A3%,

B5max$ 1
2 bB1 , TB2 , bB3%,

C5max$ 1
2 bbFm1

, TbFm2
, C3%,

and

e0~q!5
~112a!d11

q FbB1
2

2A1
1

TB2
2

A2
1

bB3
2

A3
G ,

«1~q!5 (
i P$1,2%

(
aP$0,2%

« i
(a)~q!. ~5.25!
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Now from the definition of the Poisson–Lebesgue measure we get

E l
s̃

Lq~dg!<e«2(q)w(q21), «2~q!5
z~112a!d11

q
, ~5.26!

E l
s̃

Lq12~dz!eBuzu<e«3(q)w(q21), «3~q!5
z~112a!3d13

q
eB, ~5.27!

E l
s̃

Lq
c

~dḡ !e2U5 (h̃Lq
cøḡ)D̃

0
Lq

c

~ h̃
L

q
c

0
øḡ0!<r5 tb

L ~h̃L
q
c!. ~5.28!

Applying the same arguments as in~5.26! and~5.27!, making a partition of all long trajectoriesz̄
in ~5.24! according to their lengths and using the resummation formula we get

I q
(4)[ )

m>q13
E l

s̃,]Lq

Lm ~dz̄ (m)!eBu z̄(m)u1Cu z̄(m)uw(m)1/2

5 (
k50

`
eBk

k! (
m1 , . . . ,mk>q13

E s̃Lm1
~dz̄ (m1)! ¯ s̃Lmk

~dz̄ (mk)!eC( j 51
k w(mj )

1/2
.

Then we use~see Ref. 29 or 38!

E s̃Lm
~dz̄ (m)!<z

uLmu
~2ptb!d/2e2c ~ l m

2 /2tb!~a2/(112a)4

with c5c(d) and get

I q
(4)<ezeBf (Tb), Tb5T/b, ~5.29!

where

f ~Tb!5 (
m>q013

~2l m11!d expH 2c
l m
2

2tb

a2

~112a!4 1Cm1/2~2l m11!d/2J .

Obviously we havef (Tb),` for d<3.
As a result we get~5.1! for q>q0 with «(q)5(0< j <3« j (q) andK5zeBf (Tb).
In the same way we have forq5q021

I q021<e2 1/4bAEq0
(h̃Lq0

)1h(q0)1Kr5 L~h̃L
q0

c !,

with

h~q0!5 (
i P$1,2%

(
aP$0,2%

hi
(a)~q0!.

As a result we get~5.1! from ~5.24!, ~5.26!–~5.29! with «(q)5(0< j <3« j (q) and K(q0)
5zeBf (Tb). h
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APPENDIX: PROOF OF THE BASIC LEMMAS

Lemma A.1: For anytP@0,tb# and qPN and h̃t,gt,Lq ,

Uv i
~ h̃Lq

t ø~pLq
g!t!>

1

4
AiEq

t~jt!1
1

2
AiEq

t~ h̃Lq

t !2
Bi

2

Ai
uLqu. ~A1!

Proof: From the superstability condition~A.2! ~see Sec. III! we obtain

Uv i
~ h̃Lq

t ø~pLq
g!t!>Ai (

D,Lq

ujD
t u22Bi (

D,Lq

ujD
t u.

Then ~A1! follows from the inequalities2n>2Ain
2/4Bi2Bi /Ai andEq

t(j)>Eq
t(h̃). h

Lemma A.2: LettP@0,tb#, qPN and j1PGṼLq1a
with a50 or a52, jPGṼLq

c , j1øj2,j

PGq . Then there exist positive, decreasing functions«1
( i )(q),«2

(I )(q) such that

2Wv i
~j1

t uj2
t !<Fm i

Eq1a11\q21
t ~j!1«1

( i )~q!Eq1a
t ~j!1«2

( i )~q!w~q!(
k51

`

~ak
i 2ak11

i !Eq1a1k11
t ~j!,

~A2!

with ak
i 5C i( l q1a1k2 l q1a).

Proof: From the regularity assumption~A3!,

2Wv i
~j1

t uj2
t !<

1

2 (
D,Lq1a

(
D8,Lq

c
C i~D,D8!@ ujD

t u21ujD8
t u2#. ~A3!

According to the partitionsLq1a5Lq1a21ø(Lq1a\Lq1a21), Lq
c5(Lq1a11\Lq)øLq1a11

c we
write down the r.h.s. of~A3! as

2Wv i
~j1

t uj2
t !<

1

2 (
D,Lq1a\Lq21

(
D8,Lq1a11\Lq

C i~D,D8!ujD
t u2

1
1

2 (
D,Lq21

(
D8,Lq1a11\Lq

C i~D,D8!ujD
t u21

1

2 (
D,Lq1a

(
D8,Lq1a11

c
C i~D,D8!ujD

t u2

1
1

2 (
D,Lq1a

(
D8,Lq1a11\Lq

C i~D,D8!ujD
t u2

1
1

2 (
D,Lq1a

(
D8,Lq1a11

c
C i~D,D8!ujD8

t u2

<
1

2
Fm i

Eq1a\q21
t ~j!1

1

2
F ( i )~ l q2 l q21!Eq21

t ~j!1
1

2
F ( i )~ l q1a112 l q1a!Eq1a

t ~j!

1
1

2
Fm i

Eq1a11\q
t ~j!1

1

2 (
DPLq1a

(
k51

`

C i~ l q1a1k2 l q1a!Eq1a1k11\q1a1k~j!

<Fm i
Eq1a11\q21

t ~j!1F ( i )~ l q2 l q21!Eq1a
t ~j!

1
1

2
uLq1au(

k51

`

~ak2ak11!Eq1a1k11
t ~j!,
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where we have used the summation over layersLq1a1k11\Lq1a1k , some resummation formula
As a result we obtain~A2! with «1

( i )(q)5F ( i )( l q2 l q21)5supDPLq21
(D8PL

q
cC i(D,D8) and «2

( i )

5221(q1a)21. h

Lemma A.3: LettP@0,tb#, qPN, j1 contained inLs , s.q, j2 , contained inLq
c and

j1øj2,jPGq . Then there exists q0
(2) such that for q>q0

(2)

2Wv i
~j1

t uj2
t !<b1uj1

t u(
k50

`

C i~k!~k11!~d21!/2~Es1r (k)
t ~j!!1/2, ~A4!

with b15b1(d) and r(k), which is defined in (4.6).
Proof: Using the regularity assumption~A.3! and Schwartz inequality we get

2Wv i
~j1

t uj2
t !< (

DPLs
(

D8PLq
c

C~D,D8!uj1,D
t uuj2,D8

t u

<(
k50

`

C i~k! (
DPLs

uj1,D
t uS (

D8,d(D,D8)5k

12D 1/2S (
D8,d(D,D8)5k

uj2,D8
t u2D 1/2
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Using the analogy with stationary axisymmetric solutions, we present a method to
generate new analytic cosmological solutions of Einstein’s equation belonging to
the class ofT3 Gowdy cosmological models. We show that the solutions can be
generated from their data at the initial singularity and present the formal general
solution for arbitrary initial data. We exemplify the method by constructing the
Kantowski–Sachs cosmological model and a generalization of it that corresponds
to an unpolarizedT3 Gowdy model. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1695448#

I. INTRODUCTION

Gowdy metrics,1,2 which are exact solutions of Einstein’s vacuum field equations, repre
cosmological models with various possible topologies (S3,S13S2,T3) and are spatially compac
inhomogeneous space–times admitting two commuting spacelike Killing vector fields. They
special importance for the study of formation of singularities in general relativity. Many effor3–6

have been made in order to derive and analyze these types of solutions, especially by
numerical methods. The physical structure of these metrics is sufficiently simple to expect th
singularities can be analyzed in detail, but their mathematical structure is sufficiently compl
so that the global dynamical behavior is still far from being completely understood. One o
most intriguing questions concerns the structure of the curvature singularity that is expec
appear at certain spacelike boundary of the associated space–time. Many studies have b
voted to the so-called ‘‘asymptotically velocity term dominated’’~AVTD ! behavior which states
that near the singularity each point in space is characterized by a different spatially homoge
cosmology.8 The idea of AVTD behavior was originally proposed in Ref. 9 more than 30 y
ago, but is still being debated. Numerical analysis of the Gowdy models have shown that th
become AVTD near the singularity, except at a set of isolated points, where there are ‘‘spik
the behavior of the metric functions. The origin of these spikes is investigated in Ref. 6. G
metrics have been also analyzed as toy models in quantum midisuperspace gravity.7

Numerical methods have been extensively used to investigate Gowdy models, but on
cently it has been argued that solutions generating techniques can be applied in this case10–12 to
generate new solutions and that even a ‘‘simple change of coordinates’’ can be applied to r
pret certain stationary axisymmetric solutions asS13S2 Gowdy cosmological models.13 The
reason why these methods can be used also in this case is due to the well-known fact t
solution generating techniques are applicable to any space–time which admits two~commuting!
Killing vector fields. In this work, we will concentrate onT3 Gowdy cosmological models an
will see that a complex coordinate transformation, together with a complex change of m
functions, allows us to apply in a straightforward manner the well-known solution gener

*We would like to dedicate this work to the memory of Professor Nail Sibgatullin who unexpectly passed away on
12, 2004.

a!Electronic mail: asanchez@nuclecu.unam.mx, amac@xanum.uam.mx
b!Electronic mail: quevedo@physics.ucdavis.edu
18490022-2488/2004/45(5)/1849/10/$22.00 © 2004 American Institute of Physics
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techniques that have been intensively used for stationary axisymmetric solutions.
This paper is organized as follows: In Sec. II we derive the ‘‘transformation’’ that rel

stationary axisymmetric solutions with GowdyT3 models. We will show that due to this analog
the AVTD behavior in GowdyT3 is mathematically equivalent to the behavior of stationa
asixymmetric solutions near the axis of symmetry. In Sec. III we show that Sibgatullin’s me
for constructing solutions can be applied in the case of GowdyT3 models and in Sec. IV we
present several examples of exact solutions generated by using this method. Finally, Se
devoted to the conclusions and some remarks about different possibilities of generalizin
results derived in this work.

II. STATIONARY AXISYMMETRIC SOLUTIONS AND GOWDY T 3 MODELS

Consider the line element for stationary axisymmetric spacetimes in the Lewis–Papa
form14

ds252e2c~dT1vdf!21e22c@e2g~dr21dz2!1r2df2#, ~1!

wherec, v, andg are functions of the nonignorable coordinatesr andz. The ignorable coordi-
natesT andf are associated with the two Killing vector fieldsh I5]/]T andh II5]/]f. The field
equations take the form

crr1
1

r
cr1czz1

e4c

2r2 ~vr
21vz

2!50, ~2!

vrr2
1

r
vr1vzz14~vrcr1vzcz!50, ~3!

gr5r~cr
22cz

2!2
e4c

4r2 ~vr
22vz

2!, ~4!

gz52rcrcz2
1

2r
e4cvrvz , ~5!

where the lower indices represent partial derivative with respect to the corresponding coor
Consider now the following coordinate transformation (r,t)→(t,s) and the complex chang

of coordinates (f,z)→(d,x) defined by

r5e2t, T5s, z5 ix, f5 id, ~6!

and introduce the functionsP, Q, andl by means of the relationships

c5
1

2
~P2t!, Q5 iv, g5

1

2 S P2
l

2
2

t

2D . ~7!

Introducing Eqs.~6! and ~7! into the line element~1!, we obtain

2ds25e2l/2et/2~2e22tdt21dx2!1e2t@eP~ds1Qdd!21e2Pdd2#. ~8!

Let us taket>0 ~what seems reasonable in virtue that the radial coordinater5e2t>0) and
‘‘compactify’’ the new coordinates as 0<x, s, d<2p ~a less reasonable condition since in ge
eral2`,z,1` andT>0). The line element~8! with the coordinatest, x, s, andd in the range
given above is known as the line element for GowdyT3 cosmological models.6 Furthermore, one
can verify by direct calculation that the action of the transformations~6! and ~7! on the field
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equations~2!–~5! yields exactly the field equations for the Gowdy cosmological models wh
after some algebraic manipulations can be written as a set of two second order differentia
tions for P andQ,

Ptt2e22tPxx2e2P~Qt
22e22tQx

2!50, ~9!

Qtt2e22tQxx12~PtQt2e22tPxQx!50, ~10!

and two first order differential equations forl

lt5Pt
21e22tPx

21e2P~Qt
21e22tQx

2!, ~11!

lx52~PxPt1e2PQxQt!. ~12!

It should be emphasized that this method for ‘‘deriving’’ the Gowdy line element from the
tionary axisymmetric one involves real as well as complex transformations at the level of co
nates and metric functions. It is, therefore, necessary to demand that the resulting metric fu
P, Q, and l be real. That means that in general it is not possible to take an axisymm
stationary solution and apply the transformations to obtain a Gowdy cosmological model.
resulting functions are not real, they cannot be physical reasonable solutions to the real eq
~9!–~12!. These transformations can be used only as a guide to get some insight into the fo
the new solutions. In any case, the corresponding field equations have to be invoked in o
confirm the correctness of the solution.

A very useful form for analyzing the field equations of space–times with two~commuting!
Killing vector fields is the Ernst representation. In fact, this convenient form for the field equa
was first proposed for axisymmetric stationary solutions,15 but since then it has been applied
many different configurations.16–18Here we will present the Ernst representation of the main fi
equations~9! and~10! which is especially adapted to the coordinates used here. To this end,
introduce a new coordinatet and a new functionR5R(t,x) by means of the equations10–13

t5e2t, Rt5te2PQx , Rx5te2PQt . ~13!

Then, the field equation~9! can be expressed as

t2S Ptt1
1

t
Pt2PxxD1e22P~Rt

22Rx
2!50, ~14!

whereas Eq.~10! for the functionQ turns out to be equivalent to the integrability conditionRtx

5Rxt . However, an alternative and convenient equation is obtained by introducing Eq.~13!
directly into Eq.~10!. So we obtain

tePS Rtt1
1

t
Rt2RxxD22@~ teP! tRt2~ teP!xRx#50, ~15!

an equation which of course becomes an identity if the integrability conditionRtx5Rxt is satis-
fied. We can now introduce the complex Ernst potentialE and the complex gradient operatorD as

E5teP1 iR, and D5S ]

]t
,i

]

]x D , ~16!

which allow us to write the main field equations in theErnst-type representation

Re~E!S D2E1
1

t
Dt DED2~DE!250. ~17!
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It is easy to verify that the field equations~14! and~15! can be obtained as the real and imagina
part of the Ernst equation~17!, respectively. For the sake of completeness, we rewrite the sy
of first order, partial, differential equations~11! and ~12! in terms of the Ernst potential:

l t52
t

2
~C1C1* 1C2C2* !, ~18!

lx52
t

2
~C1C1* 2C2C2* !, ~19!

where

C65
1

Re~E!
~Et6Ex!2

1

t
, ~20!

and the asterisk denotes complex conjugation.
If the Ernst potentialE is known, then it is easy to recover the metric functionsP, Q, andl

which enter the line element~8! of GowdyT3 cosmological models. In fact, from Eq.~16! one can
algebraically construct the functionsP andR. Then the functionQ can be obtained by solving th
system of two first order partial differential equations given in~13!. Notice that the integrability
condition of this last system is satisfied by virtue of Eq.~17!. Finally, the system~18! and~19! for
the functionl can be solved by quadratures since its integrability condition coincides with
Ernst equation~17!. Consequently, all the information about any GowdyT3 cosmological model is
contained in the corresponding Ernst potential.

One of the most important properties of the Ernst representation~17! is that it is very appro-
priate to investigate the symmetries of the field equations. In particular, the symmetries
Ernst equation for stationary axisymmetric spacetimes have been used to develop the m
solution generating techniques,19 like the Bäcklund method, Belinsky–Zakharov inverse scatteri
method, the Hoenselaers–Kinnersley–Xanthopoulos method, and others~for an introductory re-
view and detailed references, see Ref. 20!. In all these methods it is necessary to start from a giv
‘‘seed’’ solution which has to be specified in the whole space–time~except, perhaps, in the region
where the metric possesses true curvature singularities!. An alternative approach for exploring th
symmetries inherent in the Ernst equation was explicitly developed by Sibgatullin21 and consists
of constructing exact solutions to the Ernst equation from initial data specified only on ce
hypersurface~submanifold! of the space–time. For instance, in the case of stationary axisym
ric space–times, Sibgatullin’s method allows one to construct exact solutions from their da
the axis of symmetry. In the following sections we will show that Sibgatullin’s method ca
applied in the case of Gowdy cosmological models and will present several examples
application.

III. CONSTRUCTING SOLUTIONS FROM AVTD DATA

As we have mentioned above, an important property of Gowdy cosmological models
AVTD behavior near the initial singularity. In the case ofT3 models it can be shown that th
singularity is approached in the limitt→`. The AVTD behavior implies that at the singularity a
spatial derivatives of the field equations can be neglected and only the temporal beha
relevant. On the other hand, the transformation~6! indicates that the limitt→` is equivalent to
the limit r→0; however, this is true only at the level of coordinates and a more detailed an
is necessary to make sure that this analogy is also valid at the level of explicit solutions. T
end, let us consider the system of partial differential equations forc andv given in Eqs.~2! and
~3!. If we neglect the spatial dependence onz, which accoring to the transformation~6! is equiva-
lent to the spatial dependence onx in Gowdy models, then we obtain a system of different
equations which can be solved by quadratures and yields
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c5 1
2 ln@a~r11c1b2r12c!#, v5

ib

a~r11c1b2r12c!
1 id, ~21!

wherea, b, c, andd are arbitrary real functions ofz. Clearly, this solution is meaningless whe
considered as a stationary axisymmetric spacetime. However, if we now follow the prescr
given in Eqs.~6! and ~7! for obtaining Gowdy models, we will find that solution~21! ‘‘corre-
sponds’’ to the Gowdy model

P5 ln@a~e2ct1b2ect!#, Q5
b

a~e22ct1b2!
1d, ~22!

where nowa, b, c, andd are to be considered as arbitrary real functions of the coordinatex. It
is straightforward to verify that the expressions given in Eq.~22! satisfy the Gowdy field equation
~9! and~10! in its ‘‘truncated’’ form, i.e., when the spatial derivatives are neglected. The solu
~22! is known in the literature as the AVTD solution for GowdyT3 models6 and dictates the
behavior of these models near the singularityt→`. Thus, we have ‘‘derived’’ the AVTD solution
starting from its stationary axisymmetric counterpart. This is a further indication that the beh
of Gowdy models at the initial singularity is mathematically equivalent to the behavior of sta
ary axisymmetric solutions at the axis. For the sake of completeness we also quote here th
of the functionl corresponding to the AVTD solution~22! that can be obtained by integrating E
~11!:

l5l02c2 ln t, ~23!

wherel0 is an additive constant. Furthermore, the corresponding AVTD Ernst potential ca
obtained by introducing Eq.~22! into Eqs.~16! and ~17!. Then,

E5a@e2(11c)t1b2e2(12c)t#1 iRavtd with Rx
avtd522abc. ~24!

If we define

E~t→`,x!5e~x! ~25!

as the Ernst potential at the singularity, we see from Eq.~24! that for cP(21,1) only the imagi-
nary part remains,e(x)5 iRavtd. This means that the real part ofe(x) is arbitrary and sinceRavtd

is given in terms of the real part it is also arbitrary. Ifc¹(21,1), the Ernst potential diverges a
the singularity for arbitrary values of the functionsa andb. In the limiting casec561, the Ernst
potential at the singularity is regular, but again no conditions appear for the behavior o
functions a and b. Consequently, the AVTD behavior does not impose any conditions on
functione(x). We will now see that it is possible to use this function to construct the corresp
ing Ernst potentialE(t,x).

Sibgatullin’s method21 has been developed to construct exact stationary axisymmetric
tions starting from their data on the axis of symmetry. It is based upon the fact that the
equation possesses symmetry properties associated with an infinite-dimensional Lie group
transforms one solution of this equation into another solution of the same equation. This im
remarkable analyticity properties that make it possible to reduce the Ernst equation to a sys
linear integral equations which can be integrated explicitly if initial data is known, for instanc
the axis of symmetry. It is clear that the Ernst-type representation~17! possesses similar symmetr
properties. On the other hand, we have shown that the behavior of stationary axisymmetri
tions near the axis is mathematically equivalent to the behavior of GowdyT3 cosmological models
near the singularity. Thus, it should be possible to construct Gowdy cosmological models s
from the value of the corresponding Ernst potential at the singularity. It turns out that Sibgatu
method can be generalized in a straightforward manner to include the case of Gowdy mo
detailed explanation of the procedure necessary to obtain the system of linear integral eq
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associated with the Ernst equation is given in Ref. 21. Here we will only quote the main ste
the construction. Assume that the value of the Ernst potential is known at the initial singu
i.e., e(x) is given. Then, the Ernst potential can be generated by means of the integral equ

E~ t,x!5
1

p E
21

1 e~j!m~j!

A12s2
ds, ~26!

where the unknown functionm~j! has to be found from the singular integral equation

E
21

1 m~j!@e* ~h!1e~j!#

~s2k!A12s2
ds50, ~27!

with the normalization condition

E
21

1 m~j!

A12s2
ds5p, ~28!

wherej5x1ts, h5x1tk, with s,kP@21,1#.
Notice that for this method no condition is imposed on the behavior ofe(x). This is in

accordance with the result obtained above about the AVTD behavior of the Ernst potential ne
singularity. Oncee(x) is given in any desired form, one only has to calculate the integral~26! to
find the Ernst potential. However, to calculate this integral one first has to find the functionm~j!
by means of the singular equation~27! and the normalization condition~28!. In practice, for a
given e(j) one has to make a reasonable ansatz form~j! such that it allows the existence o
solutions for the integral singular equation~27!.

IV. EXAMPLES OF GOWDY T 3 MODELS

The cases where the Ernst potential at the initial singularity behaves as a rational functi
relatively easy to analyze. In this section we will present two such examples. Let us consid
following simple example of an Ernst potential at the singularity

e~x!5
x02x

x01x
, ~29!

wherex0 is a real constant. The first step of the construction is to find the unknown functim
according to Eqs.~27! and ~28!. A reasonable ansatz is again a rational function21

m5A01
A1

j2j1
, ~30!

where j1 is the root of the equatione(j)1ẽ(j)50 ~in this casej15x0) and A0 , A1 , are
functions oft andx. To handle the integrals which follow from the singular integral equation
use the following standard formulas

E
21

1 ds

A12s2
5p, ~31!

E
21

1 ds

~a1 isb!A12s2
5

p

Aa21b2
, ~32!
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E
21

1 ds

~s2k!~s2g!A12s2
5

p

~k2g!Ag221
, ~33!

wherea, b, andg are arbitrary constants.
Introducing Eq.~30! into the normalization condition~28!, we obtain

A01
A1

r 2
51, ~34!

wherer 25A(x2x0)22t2, whereas the integral singular equation~27! leads to

A02
A1~r 11r 2!

2x0r 2
50 . ~35!

The last two equations can be used to find the explicit values ofA0 and A1 which then can be
replaced in the result of the integration of Eq.~26! and yield

E~ t,x!52A02
A122x0A0

r 1
5

2x02r 12r 2

2x01r 11r 2
, ~36!

wherer 15A(x1x0)22t2. It is easy to check that indeed this is a solution to the Ernst equa
~17!. Since the resulting Ernst potential is real, the solution corresponds to a polarized (Q50)
Gowdy model. The expression for the metric functionP can easily be obtained from the definitio
~16! and Eq.~36!, and the remaining functionl can be calculated~up to an additive constant! by
quadratures from Eqs.~18! and ~19!:

l5 lnF1

t

~r 1r 2!2

~r 11r 212x0!4G . ~37!

The physical significance of this solution becomes plausible in a different system of coord
which we introduce in two steps. Let us first introduce in the~t,x!-sector of the line element~8!
coordinatesx andy by means of the relationships

e22t5t25x0
2~12x2!~12y2!, x5x0xy, ~38!

or the inverse transformation law

x5
r 11r 2

2x0
, y5

r 12r 2

2x0
, ~39!

so that the metric functions become

P5 lnF 12x

x0A~12x2!~12y2!~11x!
G , l5 lnF ~x22y2!2

x0A~12x2!~12y2!~11x!4G . ~40!

The second transformation affects now all the sectors of the line element~8! and is defined by

x5
T

x0
21, y5cosu, s5r , d5f. ~41!

Then, after some algebraic manipulations, the metric can be written as

2ds252S 2x0

T
21D 21

dT21S 2x0

T
21Ddr21T2~du21sin2 udf2!, ~42!
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an expression that can immediately be recognized as the Kantowski–Sachs cosmo
model.23,24 Thus, we have shown that the Kantowski–Sachs metric can be constructed fro
value of its Ernst potential at the singularity~29!.

Consider now the more general case

e~x!5
x02x2 ix1

x01x1 ix1
, ~43!

wherex0 andx1 are real constants. The unknown functionm~j! can be sought in the form

m5A01
A1

j2j1
1

A2

j2j2
, ~44!

wherej1,256a56Ax0
22x1

2 are the roots of the equatione(j)1e* (j)50. Substituting Eq.~44!
in the integral equation~27! we obtain the system

2A01
A1

x01 ix11a
1

A2

x01 ix12a
50 , ~45!

2
A1~a1 ix1!

r 2~x01 ix11a!
1

A2~a2 ix1!

r 1~x01 ix12a!
50 , ~46!

wherer 65A(x6a)22t2. On the other hand, the normalization condition~28! yields

A01
A1

r 2
1

A2

r 1
51 , ~47!

an equation which together with Eqs.~45! and~46! form a closed algebraic system that determin
the coefficients of the functionm:

A05
a~r 11r 2!1 ix1~r 12r 2!

a~r 11r 2!1 ix1~r 12r 2!12ax0
,

A15
r 2~a2 ix1!~x01 ix11a!

a~r 11r 2!1 ix1~r 12r 2!12ax0
, ~48!

A25
r 1~a1 ix1!~x01 ix12a!

a~r 11r 2!1 ix1~r 12r 2!12ax0
.

Finally, we calculate the Ernst potential according to Eq.~26! and obtain

E~ t,x!52A01
A1~x02 ix12a!

r 2~x01 ix11a!
1

A2~x02 ix11a!

r 1~x01 ix12a!
5

2ax02a~r 11r 2!2 ix1~r 12r 2!

2ax01a~r 11r 2!1 ix1~r 12r 2!
.

~49!

The calculation of the corresponding metric functions can be carried out as described in t
section. When integrating the systems of first order differential equations~13! for Q and~18! and
~19! for l, constants of integration appear which we choose such that a simpler representa
obtained in terms of the coordinates used. To write down the final form of the metric functio
is convenient to use the coordinates (x, y) as defined in Eq.~39! with x0 replaced bya. Then

P5 ln
x0

22a2x22x1
2y2

aA~12x2!~12y2!@~x01ax!21x1
2y2#

, ~50!
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Q5
2x1x0~12y2!~x01ax!

x0
22a2x22x1

2y2 , ~51!

l5 ln
x0

3~x22y2!2

A~12x2!~12y2!@~x01ax!21x1
2y2#2

. ~52!

This metric corresponds to an unpolarized generalization of the Kantowski–Sachs cosmo
model which is obtained in the limiting casex150.

It is easy to see that near the singularity (t→`) the general Ernst potential~49! approaches
the corresponding AVTD potential as given in Eq.~43!. This could be interpreted as an indire
proof of the AVTD behavior of the solution obtained here. A more direct proof can be give
analyzing the hyperbolic velocityv5APt

21e2PQt
2 ~see Ref. 4!. In terms of the coordinatesx and

y, the hyperbolic velocity of the solutions~50! and~51! is given as a rather cumbersome expre
sion. Nevertheless, it is possible to perform an analysis of its behavior by considering the di
domains of the coordinates according to the definition equation~39!. One can show that in genera
0<v,1 which according to Ref. 4 implies that the solution is AVTD.

An important property of the method presented here is that it allows us to calcula
arbitrary GowdyT3 cosmological solution with any degree of accuracy. To this end, let us ex
in Eq. ~26! the value of the Ernst potentiale(j) in Fourier series,

e~j!5 (
k50

`

ek~ t,x!cos~kw!, ~53!

wheree05e(x) and we have represented the parameters ass5cosw. Then the unknown function
m~j! can be expanded in a similar way,

m~j!5 (
k50

`

mk~ t,x!cos~kw!. ~54!

The normalization condition~28! can easily be calculated and implies thatm051. Furthermore,
the general solution of the integral equation~26! can be written as21

E~ t,x!5e~x!1
1

2 (
k51

`

ekmk . ~55!

According to Eq.~27!, the coefficientsmk have to satisfy the following system of algebra
equations:

(
l 51

`

mk~ek1 l2ek1 l* 1euk2 l u2euk2 l u* !522ek . ~56!

Thus, once the value of the Ernst potential is given at the initial singularity@e(x)5E(x,t
→`)# the general solution of the Ernst equation reduces to an infinite series with coeffic
satisfying a set of pure algebraic equations.

V. CONCLUSIONS

We have shown that it is possible to generate GowdyT3 cosmological models starting from
their data near the initial singularity. To this end, we first show that the GowdyT3 line element can
be obtained from the line element of stationary axisymmetric solutions by means of com
transformation that involves the metric functions and the coordinates. The behavior of stat
axisymmetric solutions at the axis of symmetry is shown to be mathematically equivalent
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behavior of GowdyT3 models near the singularity. In particular, we have derived the AV
solution from its stationary axisymmetric counterpart. We then use the Ernst representation
field equations and apply Sibgatullin’s method to the Ernst potential which can be given
singularity as any arbitrary function of the angle coordinatex. In particular, we have shown tha
the Kantowski–Sachs cosmological model can be derived in this manner by starting fr
specific form of the Ernst potential in terms of a rational function. We then have foun
unpolarized generalization of the Kantowski–Sachs cosmological model. This generalizatio
been obtained in the same way as the Kerr metric is obtained from its value at the a
symmetry by using Sibgatullin’s method.21 It is possible to consider more general examples
Ernst potentials at the axis in terms of rational functions. It turns out that the system of in
equations~27! and~28! forms a closed algebraic system from which the value of the functionm~j!
can be found and the expression for the Ernst potential can be calculated.22 This method could also
be applied in the case of Gowdy cosmological models considered here.

By expanding the value of the Ernst potential at the singularity in terms of a Fourier ser
is possible to write explicitly the general solution for this type of models~including the unpolar-
ized case! by using only a recurrence algebraic formula. This is a result that could find s
application in numerical investigations since it allows us to ‘‘control’’ the accuracy of the ana
by truncating the series at any desired level.
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On the extra phase correction to the semiclassical spin
coherent-state propagator
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The problem of an origin of the Solari–Kochetov extra-phase contribution to the
naive semiclassical form of a generalized phase-space propagator is addressed with
the special reference to the su~2! spin case which is the most important in applica-
tions. While the extra-phase correction to a flat phase-space propagator can
straightforwardly be shown to appear as a difference between the principal and the
Weyl symbols of a Hamiltonian in the next-to-leading order expansion in the semi-
classical parameter, the same statement for the semiclassical spin coherent-state
propagator holds provided the Holstein–Primakoff representation of the su~2! al-
gebra generators is employed. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1695599#

I. INTRODUCTION

The spin coherent-state path integral appears to be very useful in many physical problem
involve quantum su~2! spins. In particular, one of its most significant practical applications is
study of spin tunneling in the semiclassical limit.1–4 However, as it was remarked in Ref. 5, th
straightforward computation of the semiclassical propagator6 or the tunnel splitting7 yields results
that are incorrect beyond the leading semiclassical order. Examples of other systems wh
large spin limit gives a good qualitative picture, while the first quantum correction is e
ignored or fixed by heuristic considerations, can be found in Ref. 8.

Recently, Stoneet al.5 have restored the reliability of the semiclassical expression for the
coherent-state propagator, thus effectively rehabilitating the use of the continuous-time
coherent-state path integral. The crucial point in that approach is the recognition of an impo
and the explanation of the origin of a previously discovered quantum correction9–11 to the naive
form of the semiclassical coherent-state propagator. It has been pointed out that the fun
determinant arising from the evaluation of the functional integral about the classical path
sesses a U~1! gauge anomaly, its proper regularization resulting in the extra-phase contribu
Originally Solari9 obtained this extra-phase correction through a careful calculation of the
integral in the discrete-time approximation. Kochetov10 derived it independently considering th
continuous-time version of the spin coherent-state path integral in the semiclassical lim
discrete-time evaluation similar to that of Solari was carried out by Vieira and Sacramento11 who
have also reproduced the same result.

The relevance of the Solari–Kochetov phase has been justified in the application of th
coherent-state path integral to the calculation of the tunnel splitting of the classically dege
ground state for a family of models that includes a realistic approximation to the molecular m
Fe8 .8 It has been also noticed in Ref. 12 that the modification of the Gutzwiller trace formula13 for
systems with a coupling of the translational and spin degrees of freedom should also conta
extra phase in the combined limit\→0, S→`, \S5const.

In this article we offer a point of view on the origin of the Solari–Kochetov phase, wh
complements the analysis made in Ref. 5.

a!Electronic mail: pletmikh@tfp.physik.uni-karlsruhe.de
18590022-2488/2004/45(5)/1859/14/$22.00 © 2004 American Institute of Physics
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To establish our notations we briefly outline in Sec. II some basic facts concerning qua
tion on cotangent bundles and coadjoint group orbits, the phase space manifolds that ar
frequently encountered in applications. In Sec. III we consider in detail semiclassical propa
on flat phase spaces. We observe that the arising extra phase can be interpreted as a d
between the principal and the Weyl symbols of a Hamiltonian in the next-to-leading order in\. On
the other hand, various symbols, or various quantization schemes, are closely related
operator ordering procedures. One can then alternatively state that the extra phase is the di
between the naive classical Hamiltonian and the expectation value of the Weyl-ordered ope14

Obviously, both formulations are equivalent, though the former provides a more efficient w
compute the extra phases, since it is based on the Wigner–Weyl calculus and implies an ex
use of the Moyal formula.15

In Sec. IV we discuss the semiclassical spin coherent-state propagator and its s
ingredient—the Solari–Kochetov phase. We also briefly outline the relation between the cov
and contravariant quantization schemes which are usually employed for the path integral co
tion in the spin case.

To obtain the Solari–Kochetov phase using the analogy with the flat case we, in the first
need a proper definition of a Weyl symbol of the quantum spin Hamiltonian. The point is t
standard Weyl quantization is well-defined on a classical phase spaceM , provided it appears as
cotangent bundle to a certain configuration spaceQ, M5T* Q. While Q may in principle be a
compact manifold,T* Q is always noncompact. A classical phase space of a spin is, howev
compact finite volume manifold, the two-sphereS2, which is not a cotangent bundle. Therefor
there does not seem to exist any natural global definition of appropriate Weyl symbols of the~2!
spin operators.

To partly circumvent this apparent difficulty, we employ in Sec. V a special Holste
Primakoff representation of the su~2! algebra.16 It expresses the su~2! generators in terms ofâ, â†,
â†â—the standard generators of the Heisenberg–Weyl algebra, and allows for a formal ap
tion of the standard Wigner–Weyl calculus to spin Hamiltonians. We then are able to defin
Weyl symbols of the spin operators, provided the semiclassical representations of su~2! are con-
sidered, and to determine their difference from the components of the classical spin. This
ence appears to be well-defined in the semiclassical limitS→`, exactly reproducing the Solari–
Kochetov phase.

II. PHASE-SPACE QUANTIZATION

The classical phase space can be thought of as a pair (M ,w) whereM is a 2n-dimensional
Riemannian manifold andw stands for a closed nondegenerate symplectic two-form on it. A gr
of canonical transformationsG acting onM transitively leavesw invariant. Quantization onM
amounts to constructing a complex line bundle overM with a connection one-formu such that
du5w. A quantum Hilbert space is then constructed out of sections of the bundle. When lift
the bundle, the action ofG gives rise to a unitary but reducible representation ofG. In order to
select an irreducible component, the action ofG is restricted to the subspace of those sectio
which are covariantly constant alongn linearly independent vector fieldsx1 , . . . ,xn on M such
that w(x i ,x j )50. This procedure is usually referred to as fixing of the polarization.17

To illustrate these definitions we briefly discuss two examples of phase spaces, which
to be our main concern here, cotangent bundles and coadjoint group orbits.

Local coordinates on a cotangent bundleM5T* Q can always be separated into ‘‘coord
nates,’’qj , and ‘‘momenta,’’pj , which are canonically conjugated to theqj , with the globally
defined canonical symplectic one-formu5(1/\)(pjdqj2qjdpj ). Covariantly constant section
f (q,p) along the vector fieldx5]p ~we put for simplicityn51) are then defined by

¹pfª~]p1 iup! f 50, ~1!

where f (q,p);eipq/\c(q). The quantum Hilbert space appears then as the space of sq
integrable functionsc(q). When considering the time evolution, one usually picks up initial a
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final states as the eigenstates of the operatorq̂, q̂uq0&5q0uq0&, which corresponds to the choic
c(q);d(q2q0). Analogously, the choicex5]q results in quantization in terms of th
p-dependent sections,f (q,p);e2 ipq/\c(p). In the following we will be considering quantum
propagators onT* Q having the form

K~pf ,qi ,T!ª^pf ue2 iĤ T/\uqi&, ~2!

where initial and final quantum states belong to different polarizations.
Formally, the Weyl symbol of the operatorĤ(q̂,p̂) is given by

HW~q,p!5E
Q

dxAgeipx/\^q2x/2uĤuq1x/2&, ~3!

whereg denotes the determinant of a restriction of a full metric tensor ontoQ. As already said, the
separation of the local coordinates into (q,p) is defined on a cotangent bundle globally~because
u exists globally!. Accordingly, the symbolHW(q,p) is defined on the phase space manifoldT* Q
globally as well.

The second important class of classical phase spaces is the so-called coadjoint orbits
groups.17 These symplecticG-homogeneous manifolds appear as natural classical phase spa
the instances where quantum Hamiltonians allow for representations in terms of the Lie
generators. For example, the quantum spin dynamics is governed by a Hamiltonian built out
su~2! generators. Spin classical phase space appears then as an SU~2! orbit—the two-sphereS2,18

which is a compact curved manifold. It can be covered by two local charts with complex co
nates (z,z̄) and (w,w̄) defined by projections from the North and South Poles, respectively.

Since there is no globally defined symplectic one-form onS2, it does not admit a globa
separation of coordinates intoq’s andp’s. Instead, the locally defined su~2! symplectic one-forms
~in the representation with spinS) u15 iS( z̄dz2zdz̄)/(11uzu2) and u25 iS(w̄dw2wdw̄)/(1
1uwu2), wherew51/z, are related in the charts’ overlap by a U~1! gauge transformation,u1

5u21 iSd log(z/z̄).
The covariantly constant section of the monopoleP(S2,U(1)) bundle that forms a quantum

Hilbert space for spin can be chosen as an su~2! coherent state. In particular,

¹z̄uz&1ª~] z̄1 iu1 z̄!uz&150, ~4!

where uz&1 denotes the su~2! coherent state in the local chart (z,z̄). The su~2! quantum phase-
space propagator can then be written down in the form

K~ z̄f ,zi ,T!ª1^zf ue2 iĤ T/\uzi&1 , ~5!

where the initial and final states belong to different polarizations.
Given a spin quantum HamiltonianĤ, its classical symbol may be conveniently chosen as

expectation value in the coherent state, the so-called covariant symbol of the spin-dep
operator,H1

cov( z̄,z)51^zuĤuz&1 . In spite of its appearance, this symbol is defined globally onS2:
the P(S2,U(1)) local sections are related in the charts’ overlap by the U~1! gauge transformation

2^1/zuz&15~z/ z̄!SPU~1!. ~6!

Therefore,H1
cov( z̄,z)5H2

cov(w̄,w) for w51/z.
Concluding the section, we may state: though it might be in principle possible to const

Weyl symbol for the su~2! spin locally onS2, there seems to be no way to extend such a defini
globally to the whole sphere.
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III. FLAT PHASE-SPACE PROPAGATOR

The well-known van Vleck representation for the semiclassical propagator on a flat co
ration space19 has its counterpart in the phase spaceT* R2 which is the semiclassical approxima
tion for the propagator~2!

K~pf ,qi ,T!5
1

A2p\
S 2

]2Rcl

]pf]qi
D 1/2

eiRcl(pf ,qi ,T)/\, ~7!

where

Rcl~pf ,qi ,T!52
1

2
~pfqcl~T!1pcl~0!qi !1E

0

T

dtS 2
1

2
~ ṗclqcl2pclq̇cl!2H~qcl ,pcl! D . ~8!

The classical dynamics of the system is governed by the principal symbolH(q,p) of the quantum
HamiltonianĤ:

q̇5
]H~q,p!

]p
, q~0!5qi , ~9!

ṗ52
]H~q,p!

]q
, p~T!5pf . ~10!

We would also callH(q,p) the naive classical Hamiltonian since it can be obtained by
‘‘dropping hats’’ in Ĥ.

Formally, the principal symbolH(q,p) is obtained in the limit\→0 of the Weyl symbol~3!.
The Weyl symbol of the product of two operators is given by the Moyal product15 of two respec-
tive symbols. The Moyal formula can be written in the symbolic form

~ F̂Ĝ!W5FW* GW5FW ei\L/2 GW , ~11!

where the operator

L5
]Q

]q

]W

]p
2

]Q

]p

]W

]q
~12!

is associated with the Poisson bracket

FWLGW5$FW ,GW%q,p5
]FW

]q

]GW

]p
2

]FW

]p

]GW

]q
. ~13!

Expanding~11! into a series of\, we obtain the leading and the next-to-leading contributions
the Moyal formula

~ F̂Ĝ!W5FWGW1
i\

2
$FW ,GW%q,p1O~\2!. ~14!

Respectively, the leading contribution to the Weyl symbol of the commutator

~@ F̂,Ĝ# !W5~ F̂Ĝ2ĜF̂ !W5FW* GW2GW* FW5 i\$FW ,GW%q,p1O~\3! ~15!

establishes the ‘‘correspondence principle’’ between commutators and Poisson brackets.
However, the expression~7! is, in general, incorrect. Besides the Morse index that acco

for the number of conjugate points,20 there may appear another discrepancy between the re
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sentation of~7! and that of a correct asymptotic propagator. It happens when the quantum H
tonian contains the terms that mixq̂ and p̂. UnlessĤ is Weyl ~symmetrically! ordered, it is not
sufficient to take into account just the principal symbolH(q,p) for the calculation ofRcl .

Thus, we make here the following proposition: in the semiclassical evaluation of the p
gator of type~7! it is necessary to use the Weyl symbol of the quantum Hamiltonian:

HW~q,p!5H~q,p!2dH~q,p!1O~\2!, dH~q,p!;O~\!. ~16!

Though the classical dynamics is governed by the principal symbol, or naive classical H
tonian,H(q,p), the next order termdH(q,p) divided by\, nevertheless, contributes to the pha
of the semiclassical propagator. If the quantum Hamiltonian is a polynomial inq̂ and p̂, it is easy
to calculatedH(q,p) using the Moyal formula~14! and the obvious fact that (q̂)W5q and
( p̂)W5p.

Let us introduce the complex variables

a5
1

&
~q1 ip !, ā5

1

&
~q2 ip !. ~17!

They are normalized to be the Weyl symbols of the operators

Â5
1

&
~ q̂1 i p̂ !, Â†5

1

&
~ q̂2 i p̂ !, ~18!

which satisfy the commutation relation

@Â,Â†#5\. ~19!

We can define the Weyl symbolsFW(ā,a) andGW(ā,a) and the Poisson bracket

$FW~ ā,a!,GW~ ā,a!%ā,a5 i S ]FW

]ā

]GW

]a
2

]FW

]a

]GW

]ā D ~20!

by making a change of variables~17! in FW(q,p) andGW(q,p) and in the Poisson bracket~13!,
respectively. In turn, after the transformation~18! the operator which is Weyl-ordered inÂ,Â†

converts into the operator Weyl-ordered inq̂,p̂. Note also that for the Weyl-ordered operat
~either in Â,Â† or in q̂,p̂), its Weyl symbol yields the principal symbol, the higher order ter
being identically zero. This justifies the above definition of the Weyl symbolsFW(ā,a) and
GW(ā,a).

Taking into account a definite correspondence between the symbols and the ordering
dures, we can therefore interpret the emergence of the extra phasedH/\ as an artifact of the
operator ordering.

For a more detailed explanation, we would like to discuss the results of Ref. 21. In parti
there has been established the relation between semiclassical results for a propagator o
within different quantization schemes. The ‘‘l-quantization’’ infers the choice of thel-symbol22

H (l)~ ā,a!5Tr@ĤR̂l~ā,a!#, lP@0,1#, ~21!

where

R̂l~ā,a!5
1

p\ E d2je2(122l) j̄j/2\e$j(ā2Â†)2 j̄(a2Â)%/\. ~22!
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The particular cases ofl50,1
2,1 correspond to the covariant~coherent-state!, Weyl and contra-

variant symbols, respectively. The arbitraryl-symbol is linked to the covariant symbol through th
relation

H (0)~ ā,a!5~ T̂l~D!H (l)!~ ā,a!, T̂l~D!5e\lD, ~23!

whereD5]2/]a]ā is the Laplace–Beltrami operator on the complex plane.
In the semiclassical limit\→0 the expression~23! can be expanded as

H (0)5H (l)1\lDH (l)1O~\2!. ~24!

Therefore, for arbitraryl,l8P@0,1# we have

H (l8)5H (l)2\~l82l!DH (l)1O~\2!. ~25!

The expression for the semiclassical propagator reads21

Kscl
f lat5S i

]2R cl
(l)

]ā f]a i
D 1/2

expH i
R cl

(l)

\
1 i S 1

2
2l D E

0

T

B(l)dtJ , ~26!

where

R (l)~ ā f ,a i ,T!52
i

2
~ ā facl~T!1ācl~0!a i2ua f u22ua i u2!

1E
0

T

dtS 2
i

2
~aG clacl2āclȧcl!2H (l)~ ācl ,acl! D ~27!

and

B(l)5DH (l)5DH (1/2)1O~\!5DH (0)1O~\!. ~28!

The terms of the orderO(\) in B(l) as well as the dependence of the prefactor onl are inessential
due to the very structure of the asymptotic expression~26!. O(\)-terms are also negligible in th
classical equations of motion:

ȧ52 i
]H (l)

]ā
1O~\!, a~0!5a i , ~29!

aG 5 i
]H (l)

]a
1O~\!, ā~T!5ā f . ~30!

Note that forl5 1
2 ~Weyl quantization! the B-term drops out from~26!. Since the semiclas

sical propagator should not depend onl, i.e., on the choice of the quantization scheme,
extra-phase correction just compensates for the difference betweenl and Weyl symbols in the
next-to-leading order in\ @see~25! for l85 1

2].
Suppose that the quantum HamiltonianĤ belongs to a family of specifically ordere

Hamiltonians,23 also parametrized bylP@0,1#,

Ĥl~Â†,Â!5
1

~p\!2 E d2ad2bH~ ā,a!e(122l)b̄b/2\e$b(ā2Â†)2b̄(a2Â)%/\, ~31!

where the particular cases ofl50,1
2,1 correspond to the normal, Weyl and antinormal orderin

respectively. One can establish the one-to-one correspondence between the operators~31! and the
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symbols~21!. It follows from the observation that thel-symbol of thel-ordered operator yields
the principal symbolH(ā,a). Thus, the result~26! of Ref. 21 actually proves our proposition fo
the Hamiltonians~31!.

The problem of the extra-phase contribution was often encountered in the coheren
semiclassics based on the covariant quantization scheme. We can illustrate it with the fol
example.

Let us consider the normally ordered operator

Ĥl505(
m,n

hmnÂ
†mÂn. ~32!

Its covariant~coherent-state! symbol

H (0)~ ā,a!5^auĤ0ua&5(
m,n

hmnā
man ~33!

is found from~21! with l50, or, equivalently, by taking an expectation value in the Heisenb
Weyl coherent state

ua&5e2āa/2\eaÂ†/\u0&, ^aua&51. ~34!

Obviously, the covariant symbol~33! coincides with the principal symbol.
The Weyl symbol of~32! is

H (1/2)5(
m,n

hmnā
man1

i\

2 (
m,n

hmn$ā
m,an%ā,a1O~\2!5H (0)2

\

2
DH (0)1O~\2!. ~35!

Thus, we can deduce that

dH

\
5

1

2
DH (0). ~36!

The same expression for the phase correction has been derived in Ref. 24, where the
approximation in the Bargmann representation has been considered. In the caseh115v andhmn

50 for m,nÞ1, we see thatdH/\5v/2. When multiplied byT, it exactly coincides with the
required phase correction to the semiclassical coherent-state propagator of the harmonic os
Its inclusion is sometimes referred to as a restoration of zero-point energy in the first orde\.

IV. SEMICLASSICAL SPIN COHERENT-STATE PROPAGATOR

A quantum spin HamiltonianĤ5Ĥ( ŝ) is a function of spin algebra generators which sati
the su~2! commutation relations

@ ŝ1 ,ŝ2#52ŝ3 , @ ŝ3 ,ŝ6#56 ŝ6 , ~37!

whereŝ65 ŝ16 i ŝ2 .
There actually exist two quantization schemes for spin25—covariant and contravariant—tha

are usually employed for the path-integral construction and its further semiclassical appro
tions.

The covariant quantization scheme is based on the coherent-state representation of th
tum Hamiltonian: the covariant symbol is defined as an expectation value

Hcov~ z̄,z![H~ z̄,z!51^zuĤuz&1 ~38!

in the spin coherent state
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uz&15~11 z̄z!2Sezŝ1uS,2S&, 1^zuz&151, ~39!

where uS,2S& is the lowest spin state in the 2S11-dimensional representation of SU~2!. The
second family of the spin coherent states is given by

uw&25~11w̄w!2Sewŝ2uS,S&, 2^wuw&251, ~40!

uS,S& being the highest spin state.
In the sequel, all spin coherent states will be drawn from the first family,uz&ªuz&1 .
The spin coherent-state propagator~5! can be approximated in the semiclassical limitS→`

by

Kscl~ z̄f ,zi ,T!5S i
~11 z̄fzcl~T!!~11 z̄cl~0!zi !

2S

]2Rcl

]zi] z̄f
D 1/2

eiRcl( z̄f ,zi ,T)1~ i /2!*0
TfSK(t)dt. ~41!

The validity of this formula has been proven in Ref. 5. It has been also shown that the deg
its accuracy, assuming errors of at mostO(1/S), is uniform inT.

The leading contribution to the phase ofKscl is the classical action

Rcl~ z̄f ,zi ,T!52 iS$ ln@~11 z̄fzcl~T!!~11 z̄cl~0!zi !#2 ln@~11uzf u2!~11uzi u2!#%

1E
0

TH 2 iS
zG clzcl2 z̄clżcl

11 z̄clzcl
2H~ z̄cl ,zcl!J dt. ~42!

~Note the distinction up to a factor ofi in our notation and that of Ref. 5 as well as the differen
in the normalization of the spin coherent states.! Classical trajectorieszcl(t),z̄cl(t) are to be found
from the classical equations of motion

ż52 i
~11 z̄z!2

2S

]H

] z̄
, z~0!5zi , ~43!

zG5 i
~11 z̄z!2

2S

]H

]z
, z̄~T!5zf . ~44!

The Solari–Kochetov phase, or the first quantum phase correction toKscl , is expressed
through

fSK~ t !5
1

2 S ]

] z̄

~11 z̄z!2

2S

]H

]z
1

]

]z

~11 z̄z!2

2S

]H

] z̄ D U
z5zcl ,z̄5 z̄cl

~45!

and represents the main subject of our discussion.
In particular, for a Hamiltonian linear in the spin operators

Ĥ5C"ŝ5 1
2 C1ŝ21 1

2 C2ŝ11C3ŝ3 , ~46!

whereC65C16 iC2 , we obtain the spin coherent-state symbol

H~ z̄,z!5S
C1z1C2z̄

11 z̄z
2SC3

12 z̄z

11 z̄z
, ~47!

and the Solari–Kochetov phase correction

1
2 fSK52 1

4 ~C1zcl1C2z̄cl!1 1
2 C3 . ~48!
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Another example is the Hamiltonian of the Lipkin–Meshkov–Glick~LMG! model26

ĤLMG5
w

&~2S21!
~ ŝ1

2 1 ŝ2
2 !1

Sw

&
, ~49!

which is quadratic in the spin operators. In this case we have

HLMG~ z̄,z!5&Sw
z̄21z2

~11 z̄z!2 1
Sw

&
~50!

and

1

2
fSK

LMG52
w

&

~ z̄21z2!~21 z̄z!

~11 z̄z!2 . ~51!

The latter has been calculated in Ref. 8, and its inclusion into the semiclassical propaga
provided the correct result for the tunnel splitting of the ground state in the LMG model.

To complete the presentation of the semiclassical spin propagator, we would also l
mention another quantization scheme which relies on the contravariant symbolHctr( z̄,z) given by

Ĥ5
2S11

p E d2z

~11 z̄z!2 Hctr~ z̄,z!uz&^zu. ~52!

As follows from Ref. 25, the relation between the covariant and contravariant symbols i
semiclassical limitS→` reads

Hcov~ z̄,z!5@11D1O~1/S2!#Hctr~ z̄,z!, ~53!

where

D5
~11 z̄z!2

2S

]2

]z] z̄
~54!

is the Laplace–Beltrami operator acting on the complex projective planeCP15S2 which is a
Kähler homogeneous manifold SU~2!/U~1!. In view of ~53!, one may convert formula~41! into a
form suitable for the quantization by contravariant symbols.

V. SOLARI–KOCHETOV PHASE FROM HOLSTEIN–PRIMAKOFF REPRESENTATION

Now we would like to derive the Solari–Kochetov phase exploiting the paradigm of the
III. For this purpose we employ the Holstein–Primakoff representation16 for the spin operators

ŝ15 ŝ11 i ŝ25â†A2S2â†â,

ŝ25 ŝ12 i ŝ25A2S2â†â â, ~55!

ŝ35â†â2S,

in terms of the standard annihilation and creation operatorsâ and â† with the commutation
relation@ â,â†#51. It is easy to check that the operators~55! satisfy the su~2! algebra~37! as well
as

1
2 ~ ŝ1ŝ21 ŝ2ŝ1!1 ŝ3

25S~S11!. ~56!
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Besides the representation~55!, there actually exist other representations of the spin algeb
terms of bosonic operators. For the review of their properties and applications in physics, w
to Refs. 27 and 28.

It is also worth mentioning that in Ref. 29, where the instanton picture of spin tunneling i
LMG model was also considered, the sort of the Holstein–Primakoff representation was u
order to obtain the correct ground-state energy splitting. The authors established some h
rule which, however, required an adequate interpretation~see Discussion in Ref. 29!. Our ap-
proach will allow us to refine their prescription and to establish the link to the consideration o
LMG model made in Ref. 8.

Let us introduce the semiclassical parameterh51/(2S) and defineÂ5âAh and Â†5â†Ah,
such that

@Â,Â†#5h. ~57!

We also define the operators

Ŝ15hŝ15Â†A12Â†Â,

Ŝ25hŝ25A12Â†Â Â, ~58!

Ŝ35hŝ35Â†Â2 1
2 ,

which satisfy the commutation relations

@Ŝ1 ,Ŝ2#52hŜ3 , @Ŝ3 ,Ŝ6#56hŜ6 . ~59!

The square root in~58! should be understood as an expansion in a Taylor series

A12x511(
l 51

`

blx
l ~60!

with x replaced byÂ†Â.
One can immediately notice that the operators~58!, when expressed throughÂ andÂ†, do not

depend explicitly onh, and that~57! is similar to ~19!. This enables us to apply formally th
Moyal formula~14! with the Poisson bracket~20! to the operators~58!, replacing everywhere\ by
h. Consideringa andā to be the ‘‘Weyl symbols’’ ofÂ andÂ†, respectively, we can thus defin
the ‘‘Weyl symbols’’ of the operators~58!.

First we find

~Â†Â!W5āa2
h

2
1O~h2!, ~61!

~ÂÂ†!W5āa1
h

2
1O~h2!, ~62!

~~Â†Â! l !W5~ āa! l2
hl

2
~ āa! l 211O~h2!. ~63!

Exploiting the latter relation and the trivial equality

d

dx
A12x52

1

2A12x
5(

l 51

`

lblx
l 21 ~64!
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we establish

~A12Â†Â!W5A12āa1
h

4

1

A12āa
1O~h2!. ~65!

Further use of the Moyal formula~14! leads to the desired definitions

~Ŝ1!W5~Â†A12Â†Â!W5āA12āa1
h

2

ā

A12āa
1O~h2!,

~Ŝ2!W5~A12Â† ÂÂ!W5aA12āa1
h

2

a

A12āa
1O~h2!, ~66!

~Ŝ3!W5S Â†Â2
1

2D
W

5āa2
1

2
2

h

2
1O~h2!.

We can construct the approximate realization of the su~2! algebra with respect to the Poisso
bracket~20!. Taking into account~15! and the commutation relations~59! we deduce that

i $~Ŝ1!W ,~Ŝ2!W%ā,a52~Ŝ3!W1O~h2!, ~67!

i $~Ŝ3!W ,~Ŝ6!W%ā,a56~Ŝ6!W1O~h2!. ~68!

These formulas can be checked by straightforward calculation using~66!.
There exists, however, a subtlety that should be spelled out here. The spin operators~58! act

in the finite Hilbert space in contrast to the operatorsq̂,p̂ andĤ(q̂,p̂) in the flat case which act in
a different—infinite—Hilbert space. Nevertheless, the ‘‘Weyl symbols’’~66! of the operators~58!
do make sense locally in the semiclassical limith→0, and, as we shall see, reproduce the Sola
Kochetov phase. Similarly to the flat case, we are going to recognize it for a Hamiltonian line
the spin operators

Ĥ5
1

h
C"Ŝ5

1

h F1

2
C1Ŝ21

1

2
C2Ŝ11C3Ŝ3G ~69!

in the difference between its principal and ‘‘Weyl symbols’’

H~ ā,a!2HW~ ā,a!5dH~ ā,a!1O~h!. ~70!

@There is a small distinction in notations in comparison with the flat case since the classical
and the naive classical Hamiltonian for spin are already divided by the semiclassical paramh
and thereforeH(ā,a) anddH(ā,a) are of orderO(h21) andO(1), respectively.#

According to ~66! the principal symbol and the next-order correction of~69! are given,
respectively, by

H~ ā,a!5
1

h F1

2
C1aA12āa1

1

2
C2āA12āa1C3S āa2

1

2D G , ~71!

dH~ ā,a!52
C1a1C2ā

4A12āa
1

1

2
C3 . ~72!

To compare these expressions with~47! and ~48!, respectively, we use the Darboux transfo
mation
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z5
a

A12āa
, z̄5

ā

A12āa
. ~73!

It makes the Ka¨hler symplectic structure locally flat and converts the classical equations of m
~44! into

ȧ52 ih
]H~ ā,a!

]ā
1O~h!, aG 5 ih

]H~ ā,a!

]a
1O~h!. ~74!

The termsO(h) appear due to the finiteness of the (a,ā) phase space which is a disc on th
complex plane. However, they become negligible ash→0. All the other terms in~74! have the
orderO(1).

Thus, after the transformation~73! we observe the coincidence of the principal symbols~47!
and ~71! and obtain the desired relation

1
2 fSK5dH. ~75!

Our consideration is not restricted to the case of Hamiltonians linear in spin operators
formula ~75! can be proved valid when the Hamiltonian is a more general element of the e
oping algebra~i.e., a polynomial in spin operators!.

Let us consider, for example, the Hamiltonian

Ĥ5c•
~2S2n!!

~2S21!!
~ ŝ1

n 1 ŝ2
n !, ~76!

wheren is an arbitrary integer number. Forn52 andc5w/& it coincides~up to the constant
factor! with the Hamiltonian of the LMG model~49!.

We note that it is important to introduce theS-dependent coefficient in~76! so that to make
the respective covariant symbol proportional toS:

Hcov5c•2S
z̄n1zn

~11 z̄z!n . ~77!

This allows us to identify~77! with the principal symbol, or classical Hamiltonian, which conta
the leading-in-S term only.

First, we calculate the Solari–Kochetov phase according to the original formula~45!, and
obtain

1

2
fSK52c•

n

2

~ z̄n1zn!~n1 z̄z!

~11 z̄z!n . ~78!

Now we would like to show that the same expression can be obtained from~75! using the
Holstein–Primakoff representation. We rewrite the Hamiltonian~76! in terms of the operators
~58!,

Ĥ5c•h2n
~h212n!!

~h2121!!
~Ŝ1

n 1Ŝ2
n !, ~79!

and find its ‘‘Weyl symbol’’
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~Ĥ !W5c•
1

h S 11
hn~n21!

2 D F z̄n1zn

~11 z̄z!n 1
hn

2

z̄n1zn

~11 z̄z!n21G1O~h!

5c•F1

h

z̄n1zn

~11 z̄z!n 1
n

2

~ z̄n1zn!~n1 z̄z!

~11 z̄z!n G1O~h!. ~80!

This expression is derived due to

~Ŝ1
n !W5~ āA12āa!n1

hn

2
ān~A12āa!n221O~h2!5

z̄n

~11 z̄z!n 1
hn

2

z̄n

~11 z̄z!n21 1O~h2!,

~81!

~Ŝ2
n !W5~aA12āa!n1

hn

2
an~A12āa!n221O~h2!5

zn

~11 z̄z!n 1
hn

2

zn

~11 z̄z!n21 1O~h2!,

~82!

and

~N2n!!

N!
5N2nS 11

1

N

n~n21!

2
1OS 1

N2D D , ~83!

for N[2S5h21. The relations~73! have been also employed.
Thus, we see that the leading term in~80! coincides with~77!, and the next-to-leading term i

in agreement with~78!. We note that in our derivation of the Solari–Kochetov phase it w
important to expand in a series ofh the h-dependent coefficient—the ratio of two factorials—
which was inherited from the quantum Hamiltonian~79!.

VI. DISCUSSION

We put forward a proposition to determine the extra-phase correction in the semicla
expression for a propagator as the difference between the principal and the Weyl symbol
quantum Hamiltonian. Based on the Wigner–Weyl calculus, it becomes a well-defined an
cient computational prescription.

We offered to exploit this paradigm for the case of the spin propagator, making use o
Holstein–Primakoff representation of the su~2! algebra. However, there exists a subtle issue c
cerning the finiteness of the spin Hilbert space. It also shows up on the classical level: the cl
phase space in such a representation is a flat disc which has finite volume. Nevertheless
semiclassical limitS→` the difference between the principal and the ‘‘Weyl symbols’’ appear
be well-defined. This is also confirmed by the possibility to construct the su~2! algebra realization
in terms of the Poisson bracketi $•,•%ā,a with the required accuracy@modulo termsO(h2)].
Obviously, this amounts to defining the spin Weyl symbols only locally.

We applied the developed prescription for the calculation of the phase correction t
semiclassical spin coherent-state propagator for systems with the Hamiltonian which is
linear or nonlinear in spin operators. The presented consideration can be straightforwardly
alized for any Hamiltonian which is a polynomial in spin operators. Our prescription is ra
simple from a computational point of view, and it does not require the use of the polynomial t
operators~cf. Ref. 14!.

In summary, we would like to motivate the usefulness of the ‘‘Weyl symbol’’ for spin with
following reference. The idea to introduce such a symbol is employed in order to revea
similarity between the phase corrections to the semiclassical flat and spin propagators,
appears quite naturally when one considers the semiclassical limit of the Holstein–Primakof~HP!
representation including the next-to-leading term. In Ref. 29 the Lipkin–Meshkov–Glick~LMG!
model~quadratic in spin! has been considered using the sort of the HP representation. The a
recognized the necessity of the phase correction to the semiclassical spin propagator with
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approach and formulated the heuristic rule for its calculation. However, they stated the lack
adequate interpretation. On the other hand, the consideration of the LMG model made in
uses the original Solari–Kochetov expression for the phase correction. The relation betwee
two approaches is missing, although both of them have led to the correct result. Thus, intro
the ‘‘Weyl symbol’’ for spin helps to bridge the gap between two different interpretations of
same extra-phase correction.
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Green functions of the Dirac equation with
magnetic-solenoid field

S. P. Gavrilov,a) D. M. Gitman,b) and A. A. Smirnovc)

Institute of Physics, University of Sao Paulo, P. O. Box 66318,
05315-970 Sao Paulo, Brazil
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Various Green functions of the Dirac equation with a magnetic-solenoid field~the
superposition of the Aharonov–Bohm field and a collinear uniform magnetic field!
are constructed and studied. The problem is considered in 211 and 311 dimen-
sions for the natural extension of the Dirac operator~the extension obtained from
the solenoid regularization!. Representations of the Green functions as proper time
integrals are derived. The nonrelativistic limit is considered. For the sake of com-
pleteness the Green functions of the Klein–Gordon particles are constructed as
well. © 2004 American Institute of Physics.@DOI: 10.1063/1.1699483#

I. INTRODUCTION

In the present paper we continue our previous study1–3 of the Dirac equation with a magnetic
solenoid field, constructing and studying various Green functions of this equation. We reca
the magnetic-solenoid field is the collinear superposition of the constant uniform magnetic
and the Aharonov–Bohm~AB! field. The AB field is a field of an infinitely long and infinites
mally thin solenoid. Recently the interest in such a field configuration has been renew
connection with planar physics problems, quantum Hall effect, and the Aharonov–Bohm eff
cyclotron and synchrotron radiations.4–9

In principle, the Green functions can be constructed whenever complete sets of soluti
the Dirac equations are available. In this connection, one should recall that solutions of the
equation with the magnetic-solenoid field in 211 and 311 dimensions were obtained in Ref.
The singularity of the AB field demands a special attention to the correct definition of the D
operator. The need for self-adjoint extensions in the case of the Dirac Hamiltonian with the
AB field in 211 dimensions was recognized in Refs. 10 and 11 where certain boundary c
tions at the origin were established. The regularized case and peculiarities of the behavi
spinning particle in the presence of the magnetic string were considered in Refs. 12 and 1
problem of the self-adjoint extension of the Dirac operator with the magnetic-solenoid field
studied in Refs. 2, 3, and 14. In 211 dimensions, a one-parametric family of self-adjoint Dir
Hamiltonians specified by the corresponding boundary conditions at the AB solenoid was
structed, and the spectrum and eigenfunctions for each value of the extension paramete
found. In 311 dimensions, a two-parametric family of the self-adjoint Dirac Hamiltonians
constructed on the condition that the spin polarization is conserved. The corresponding sp
and eigenfunctions for each value of the extension parameters were found as well. In Refs
3 the procedure of solenoid regularization was also considered. The procedure implies cons
the finite solenoid and then making its radius go to zero. This procedure specifies some pa
boundary conditions. The values of the extension parameters corresponding to the solenoi
larization case were determined in 211 and 311 dimensions. Further, we call the correspondi
extension the natural extension. Nonrelativistic propagators for the spinless and spin-1/2 p

a!Present address: Departamento de Fisica e Quimica, UNESP, Campus de Guaratingueta, Brazil. On leave fro
State University, 634041, Russia. Electronic mail: gavrilovsp@hotmail.com

b!Electronic mail: gitman@dfn.if.usp.br
c!Electronic mail: saa@dfn.if.usp.br
18730022-2488/2004/45(5)/1873/14/$22.00 © 2004 American Institute of Physics
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moving in the pure AB field were considered mainly in the relation to the AB effect. The pr
gator of the spinless particle was found in Refs. 15, 16, and 17 as a sum of partial propa
corresponding to homotopically different paths in the covering space of the physical backg
The nonrelativistic propagator of the spin-1/2 particle in the AB field for a particular value o
self-adjoint extension parameter was discussed in Ref. 18. The relativistic scalar case for
field was studied in Ref. 19. The propagators and the AB effect in general gauge theorie
considered in Refs. 20 and 21. Recently, vacuum polarization effects in the AB field have ar
great interest, see, for example, Refs. 22 and 23 and references therein.

In the present paper, we construct and study the Green functions of the Dirac particle
magnetic-solenoid field in 211 and 311 dimensions. The physical importance of the problem
stressed by the fact that the knowledge of the Green functions in such a configuration allow
to study quantum~and quantum field! effects in the magnetic-solenoid field on a regular base
technical specificity of the problem is related to the necessity to take into account all the
liarities related to the self-adjoint extension problem of the Dirac operator in the background
consideration. In Sec. II we consider the (211)-dimensional case in detail. Here, constructing
Green functions, we use the exact solutions of the Dirac equation that are related to the s
values of the extension parameter. These values correspond to the natural extension, se
The representations of the Green functions as proper time integrals are derived. In additi
calculate the nonrelativistic Green functions as well. In Sec. III we extend the results to t
11)-dimensional case. In the Appendix, for the sake of completeness, we present the
functions of the relativistic scalar particle.

We note that the magnetic-solenoid field belongs to such type of fields that do not viola
vacuum stability. For such fields a unique stable vacuum exists, and quantum field definiti
the Green functions below hold true.24 In particular, the causal propagatorSc(x,x8) and the
anticausal propagatorSc̄(x,x8) are defined by the expressions

Sc~x,x8!5 i ^0uTĉ~x!cC ~x8!u0&, ~1!

Sc̄~x,x8!5 i ^0uĉ~x!cC ~x8!Tu0&, ~2!

whereĉ(x) is the quantum spinor field in the Furry representation, satisfying the Dirac equ
with the magnetic-solenoid field,u0& is the vacuum in this representation. The symbol of
T-product acts on both sides: it orders the field operators to its right-hand side and antiorder
to its left-hand side. The functionsSc(x,x8), Sc̄(x,x8) can be expressed via the function
S7(x,x8),

Sc~x,x8!5u~Dx0!S2~x,x8!2u~2Dx0!S1~x,x8!, Dx05x02x08, ~3!

Sc̄~x,x8!5u~2Dx0!S2~x,x8!2u~Dx0!S1~x,x8!, ~4!

and the latter can be calculated via a complete set6ca(x) of solutions of the Dirac equation with
the magnetic-solenoid field as

S7~x,x8!5 i(
a

6ca~x! 6c̄a~x8!. ~5!

The solutions with the subscript~1! belong to the positive energy spectrum, whereas the solut
with the subscript~2! belong to the negative energy spectrum. Viaa all possible quantum num
bers are denoted.

The Dirac equation with the magnetic-solenoid field has the form

~gnPn2M !c~x!50. ~6!
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Here Pn5 i ]n2qAn(x), x5(xn), q is an algebraic charge, for electronsq52e,0, M is the
electron mass, andAn(x) are potentials of the magnetic-solenoid field. In the (311)-dimensional
casen50,1,2,3 andgn are the corresponding gamma-matrices. In the (211)-dimensional case
n50,1,2 and in what follows, we employ the letterG to denote the gamma-matrices. We use
these matrices the following representation:

G05s3, G15 is2, G252 is1,

wheres i are the Pauli matrices. In cylindric coordinates (w,r ), x15r cosw, x25r sinw, the
potentials of the magnetic-solenoid field have the form

A050, eA15@ l 01m1A~r !#
sinw

r
, eA252@ l 01m1A~r !#

cosw

r
,

~A350 in 311!, A~r !5eBr2/2. ~7!

HereB is the magnitude of the uniform magnetic field, and the magnitudeBAB of the AB field is
given by the expressionBAB5Fd(x1)d(x2), where F is the AB-solenoid flux, (l 01m)
5F/F0 , F052p/e. It is supposed thatl 0 is integer and 0<m,1.

The functionsS7(x,x8) obey the Dirac equation~6!, whereas the causal and anticausal pro
gators obey the nonhomogeneous Dirac equations:

~gnPn2M !Sc~x,x8!52d~x2x8! , ~gnPn2M !Sc̄~x,x8!5d~x2x8!.

We note that the commutation functionS(x,x8), the advancedSadv(x,x8) and the retarded
Sret(x,x8) Green functions can be expressed in terms ofSc(x,x8), Sc̄(x,x8) as follows:

S~x,x8!5S2~x,x8!1S1~x,x8!5sgn~Dx0!@Sc~x,x8!2Sc̄~x,x8!#, ~8!

Sadv~x,x8!52u~2Dx0!S~x,x8!, Sret~x,x8!5u~Dx0!S~x,x8!. ~9!

II. 2¿1 DIMENSIONAL CASE

A. Sets of exact solutions

First we study the (211)-dimensional case, for which, as known,2,3 the Dirac operator with
the magnetic-solenoid field in 211 dimensions possesses a one-parameter family of self-ad
extensions. That provides a one-parameter family of boundary conditions at the origin. Foll
Refs. 2 and 3, we denote the extension parameter asQ. Generally speaking, the AB symmetry
violated for the spinning particle, which is therefore sensible to the solenoid flux sign. As
demonstrated in Refs. 2 and 3, the valuesQ56p/2 correspond to the natural extension,Q
52p/2 if the flux is positive andQ5p/2 if the flux is negative. Below we present a set
solutions 6ca(x) of ~6! which we will use for Green function construction according to t
formulas~5!. We consider the problem separately for two values of the extension paramete

We start with the caseQ52p/2. The positive energy spectrum is given by1« and the
negative energy spectrum is given by2« ,

1«52 2«5AM21v. ~10!

Both branches are determined by the spectrum of the quantityv which is defined below. The
solutions6ca(x) can be expressed via the solutionsu(x) of the squared Dirac equation. The latt
solutions have the form

6um,l ,s~x!5e2 i 6«x0
um,l ,s~x'!,

~11!
x'5~x1,x2!, m50,1,... , l 50,61, . . . , s561,
                                                                                                                



1876 J. Math. Phys., Vol. 45, No. 5, May 2004 Gavrilov, Gitman, and Smirnov

                    
where

um,l ,s~x'!5Aggl~w!fm,l ,s~r !ys , lÞ0,

um,0,11~x'!5Agg0~w!fm,0,11~r !y11 ,

um,0,21~x'!5Agg0~w!fm,21
ir ~r !y21 , g5euBu,

and

gl~w!5
1

A2p
expH iwF l 2 l 02

1

2
~11s3!G J ,

y115S 1
0D , y215S 0

1D .

The functionsfm,l ,s(r ), fm,21
ir (r ) are expressed via the Laguerre functionsI m1a,m(r) as

fm,l ,s~r !5I m1unu,m~r! , fm,21
ir ~r !5I m2m,m~r!,

~12!
r5gr 2/2 , n5m1 l 2~11s!/2.

We recall that the Laguerre functionsI m1a,m(r) are related to the Laguerre polynomialsLm
a (x)

@8.970, 8.972.1~Ref. 25!# as

I m1a,m~x!5A m!

G~m1a11!
e2x/2xa/2Lm

a ~x!.

For the magnetic fieldB.0, the spectrum ofv corresponding to the functionsum,l ,s(x') is

v5H 2g~m1 l 1m!, l 2~11s!/2>0,

2g~m1~11s!/2!, l 2~11s!/2,0,
~13!

except the functionsum,0,21(x') for which the spectrum ofv is

v52gm. ~14!

Then the complete set6ca with a5(m,l ) has the form

6cm,l~x!5N~GP1M ! 6um,l ,21~x!. ~15!

The latter form provides correct expressions both forvÞ0 andv50, since the states withv
50 can only be expressed in terms of the spinors withs521 @we note that1c[0 for v50,
nevertheless it is convenient to remain in~11! u1 with 1«5M ]. The normalization factor with
respect to the usual inner product (c,c8)5*c†(x)c8(x)dx reads

N5H @2u6«u~ u6«u2M !#21/2, vÞ0,

@2M #21, v50.

The quantum numberl characterizes the angular momentum of the particle,m is the radial
quantum number, see Ref. 1.

For B,0 the spectrum of states differs nontrivially from the expressions given by Eqs.~13!
and ~14!. Herev corresponding toum,l ,s(r ) is
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v5H 2g~m2 l 112m!, l 2~11s!/2,0,

2g~m1~12s!/2!, l 2~11s!/2>0,
~16!

except the functionsum,0,21(x') for which the spectrum ofv is

v52g~m112m!. ~17!

Now we go to the case with the extension parameterQ5p/2. We recall that one needs fo
self-adjoint extensions of the radial Dirac Hamiltonian only in the subspacel 50 to which we refer
to as the critical subspace. Thus, the only solutions in thel 50 subspace must be subjected to t
one of asymptotic condition from a one-parametric family of boundary conditions asr→0. By this
reason forQ5p/2, the solutions only differ from~11! in the subspacel 50,

um,0,11~x'!5Agg0~w!fm,11
ir ~r !y11 , fm,11

ir ~r !5I m1m21,m~r!,
~18!

um,0,21~x'!5Agg0~w!fm,0,21~r !y21 ,

where the spectrum forum,0,11(x') is given as

v52g~m1m!, B.0, ~19!

v52gm, B,0. ~20!

B. Construction of Green functions

The main point in constructing the Green functions is the summations in the represen
~5!. In the case under consideration, this summation can be done with the help of special re
which can be established for the solutions of the Dirac equation.

Let us start with the calculation of the Green functions for the extension parametQ
52p/2 and B.0. In this case, taking into account that the eigenfunctionsu of the equation
@(GP')21v#u50 corresponding to anyvÞ0 obey the equations

GP' 6um1 ,l ,2s~x!52 iAv 6um2 ,l ,s~x!, l<0 , P'5~0,P1 ,P2!,

~21!
GP' 6um,l ,2s~x!5 iAv 6um,l ,s~x!, l>1, m65m1~16s!/2,

and the explicit form of the solutions6cm,l , one can verify that foru«uÞM the following
relations hold true:

6cm,l~x! 6c̄m,l~x8!5~GP1M !
1

2 6«
e2 i 6«Dx0

(
s561

fm2 ,l ,s~x' ,x'8 !Js , l<0,

~22!

6cm,l~x! 6c̄m,l~x8!5~GP1M !
1

2 6«
e2 i 6«Dx0

(
s561

fm,l ,s~x' ,x'8 !Js , l>1,

where

fm,l ,s~x' ,x'8 !5
g

2p
ei [ l 2 l 02(11s)/2]DwI m1a,m~r!I m1a,m~r8!,

~23!

Dw5w2w8, a5H m1 l 2~11s!/2, l>1,

2@m1 l 2~11s!/2#, l<0,
J615~16s3!/2.
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The above relations and Eqs.~3! and ~5! allow us to represent the causal Green function in
following form:

Sc~x,x8!5~GP1M !Dc~x,x8!,
~24!

Dc~x,x8!5 i (
m,l ,s

Fu~Dx0!
e2 i 1«Dx0

2 1«
2u~2Dx0!

e2 i 2«Dx0

2 2«
Gfm,l ,s~x' ,x'8 !Js .

Then we can use the representations

u~Dx0!
e2 i 1«Dx0

2 1«
2u~2Dx0!

e2 i 2«Dx0

2 2«
5

1

2p i E2`

` e2 ip0Dx0

«22p0
22 i e

dp0 , ~25!

1

«22p0
22 i e

5 i E
0

`

e2 i («22p0
2)s ds, ~26!

in Eq. ~24!. Integrating overp0 , we obtain finally

Dc~x,x8!5E
0

`

f ~x,x8,s!ds,

~27!

f ~x,x8,s!5
1

2~ps!1/2e~2 iDx0
2/4s! eip/4 e2 iM 2si (

m,l ,s
e2 ivsfm,l ,s~x' ,x'8 !Js .

The path of the integration overs is deformed so that it goes slightly below the singular poi
sk5kp/g, k51,2, . . . .

Using ~5!, ~22!, and the representation

2u~2Dx0!
e2 i 1«Dx0

2 1«
1u~Dx0!

e2 i 2«Dx0

2 2«
5

1

2p i E2`

` e2 ip0Dx0

«22p0
21 i e

dp0 ,

~28!
1

«22p0
21 i e

5 i E
20

2`

e2 i («22p0
2)s ds,

instead of~25! and ~26! we obtain from~4!,

Sc̄~x,x8!5~GP1M !D c̄~x,x8!, D c̄~x,x8!5E
20

2`

f ~x,x8,s!ds, ~29!

wheref (x,x8,s) is given by Eq.~27!. The negative values fors are defined ass5usue2 ip, and the
path of integration overs is deformed so that it goes slightly below the singular points2sk .

We now consider the summations in~27!. Applying the formula@8.976~1! ~Ref. 25!# we can
sum overm to get

(
m50

`

e2 i2mgsI m1a,m~r!I m1a,m~r8!5expH i

2
~r1r8!cot~gs!J eiagseigs

2i sin~gs!
e2 ipa/2Ja~z!,

z5Arr8/sin~gs!, ~30!

whereJa(z) are the Bessel functions@8.402 ~Ref. 25!#, and for negatives we take args52p
10.
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Similar results can be obtained for the caseB,0. Here one should use the solutions cor
sponding to the spectrum ofv ~16! and~17!. Then these results can be united to obtain express
which hold true for any sign ofB,

f ~x,x8,s!5 (
l 52`

`

f l~x,x8,s!, f l~x,x8,s!5A~s! (
s561

F l ,s~s!e2 iseBsJs ,

~31!

A~s!5
eB

8p3/2s1/2sin~eBs!
expH ip

4
2 iM 2s2 i l 0DwJ

3expH 2
i ~Dx0!2

4s
1

ieB

4
~r 21r 82!cot~eBs!J ,

F l ,s~s!5eil sDwe2 i ( l s1m)eBse2 ipu l s1mu/2Ju l s1mu~z!, l s5 l 2~11s!/2, lÞ0,

~32!
F0,11~s!5e2 iDwei (12m)eBse2 ip(12m)/2J12m~z!, F0,21~s!5e2 imeBseipm/2J2m~z!.

Now we consider the summation overl . One can see that the following relations hold tru

(
l 51

`

F l ,21~s!5(
l 51

`

F l 11,11~s!5e2 imeBsY~z,Dw2eBs,m!,

(
l 521

2`

F l ,21~s!5 (
l 521

2`

F l 11,11~s!5e2 imeBsY~z,2Dw1eBs,2m!,

where

Y~z,h,m!5a1~z!1Ỹ~z,h,m!, Ỹ~z,h,m!5(
l 52

`

al~z!, al~z!5eih l~2 i ! l 1mJl 1m~z!.

~33!

The evaluation of the sum in~33! can be done in a similar way to what was done in Ref. 26. Th
exist all ]zal(z) on the half-line, 0,z,`, and the relation@8.471 ~2! ~Ref. 25!#, ]zJn(z)
5@Jn21(z)2Jn11(z)#/2, can be used. The seriesỸ(z,h,m) converges and the series of deriv
tives ( l 52

` ]zal(z) converges uniformly in~0,̀ !. It is a sufficient condition to write down
]zỸ(z,h,m)5( l 52

` ]zal(z). Thus, one arrives to a differential equation with respect toY(z,h,m),

d

dz
Y~z,h,m!52Y~z,h,m!i cosh1

1

2
~2 i !m@2 ieihJm~z!1J11m~z!#. ~34!

that is true on the half-line, 0,z,`. The solution of~34! reads

Y~z,h,m!5
1

2
~2 i !mE

0

z

ei (y2z)cosh@2 ieihJm~y!1J11m~y!#dy. ~35!

This is also valid forY(z,2h,2m).
It is useful to introduce the following function:

f nc~x,x8,s!5(
lÞ0

f l~x,x8,s!.

It defines the part of the Green functions that is the same for all extensions. With the help
function Y(z,h,m) ~33!, ~35! one can write
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f nc~x,x8,s!5A~s!e2 imeBse2 ieBss3
$Y~z,Dw2eBs,m!1Y~z,2Dw1eBs,2m!

1@e2 ipm/2Jm~z!2e2 i (Dw2eBs)e2 ip(12m)/2J12m~z!#J11%. ~36!

The functionf 0(x,x8,s) is specific for each extension. It is reasonable to mark it with a supers
that assumes the values of the extension parameter. Thus, forQ52p/2,

f 0
(2p/2)~x,x8,s!5A~s!e2 imeBs@e2 iDwe2 ip(12m)/2J12m~z!J111e2 ieBss3

eipm/2J2m~z!J21#.
~37!

Accordingly, the functionf (x,x8,s) acquires the same superscript,

f (2p/2)~x,x8,s!5 f nc~x,x8,s!1 f 0
(2p/2)~x,x8,s!. ~38!

For the extension parameterQ5p/2, one obtains

f 0
(p/2)~x,x8,s!5A~s!e2 imeBs@e2 iDwe2 ip(m21)/2Jm21~z!J111e2 ieBss3

e2 ipm/2Jm~z!J21#,
~39!

f (p/2)~x,x8,s!5 f nc~x,x8,s!1 f 0
(p/2)~x,x8,s!.

Besides, one can consider particles with ‘‘spin-down’’ polarization in 211 dimensions. The
corresponding wave functionsc (21)(x) can be presented as

c (21)~x!5s1~GP2M !u~x! ,

where u(x) are solutions~11! of the squared Dirac equation. The propagator related to s
particles can be expressed in terms of the functionDc(x,x8) ~24!,

S(21)
c ~x,x8!52s1~GP2M !Dc~x,x8!s1 .

At this point we should make some remarks.
One can see that there exists a simple relation between scalar Green functions and

functions of the squared Dirac equation~for the above considered extensions!. Consider this
relation in the example of causal Green functions. First of all, we note that the Klein–Go
equation differs from the squared Dirac equation by the Zeeman interaction term. Then we c
~remembering the origin of the quantum numberl for both spinning and spinless particles! that the
scalar propagator can be derived fromDc(x,x8) by only retaining the terms withs521 only. The
term eBs3, which is responsible for the Zeeman interaction with the uniform magnetic field
to be removed. The Zeeman interaction with the solenoid flux, influencing the terms withl 50,
depends on the flux sign and can be repulsive or attractive. The repulsive contact interactio
is physically equivalent to the spinless case, since in both cases the corresponding wave fu
vanish at the origin. The necessary boundary condition is realized for the extension par
Q5p/2. Thus, one can obtain the scalar Green functions using the coefficients ofJ21 in
f l(x,x8,s) ~31!, ~32! and f 0

(p/2)(x,x8,s) ~39!. By following such prescriptions, one arrives at th
expression~A1! obtained by direct calculation.

In the spinless case there is no physically preferred orientation of the planex1x2. Therefore,
the solenoid flux direction does not matter, i.e., the AB symmetry,l 0→ l 011, is conserved. The
direction of the uniform magnetic field does not matter as well. This can be observed fro
explicit form of the Green functions~A1! where the changeB→2B is equivalent to the choice o
the opposite orientation of the plane,l→2 l , Dw→2Dw, F→2F. In the spinning case the
given spin direction breaks the symmetry related to the plane orientation. The Zeeman inte
of the spin with the background violates the AB symmetry as well as the symmetry with re
to the changeB→2B.

As is known, influence of the solenoid flux on the particle is observed only when the fl
not equal to an integral number of quanta (mÞ0). In this connection it is instructive to conside
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the Green functions for the particular casem50. We note that the partf nc(x,x8,s) ~36! of the
function f (x,x8,s) is regular everywhere, while the partf 0(x,x8,s) is singular at the origin. Thus
taking the limitm→0 in ~36! and using the relationJ1(y)52J08(y) we get

f nc~x,x8,s!5A~s!e2 ieBss3
$e2 iz cos(Dw2eBs)2J0~z!1@J0~z!1 ie2 i (Dw2eBs)J1~z!#J11%.

The corresponding expression forf 0(x,x8,s) can be obtained in the following way. We restrict th
range ofz to 0,d,z,`, whered!1. Then we take the limitm→0 and use the continuity of the
Bessel functions with respect to its index. At the end we construct the analytic continuation
obtained expressions over the interval~0,d!. Thus, starting from either~37! or ~39! we get

f 0~x,x8,s!5A~s!@2 ie2 iDwJ1~z!J111eieBsJ0~z!J21#,

where the superscript is no longer necessary. Thus, the explicit form off (x,x8,s) is

f ~x,x8,s!5
eB

8p3/2s1/2sin~eBs!
expH ip

4
2

i ~Dx0!2

4s
2 iM 2s2 ieBss3J

3expH 2 i l 0Dw1
ieB

4
~r 21r 82!cot~eBs!2

ieBrr8 cos~Dw2eBs!

2 sin~eBs! J . ~40!

Making a transformation to Cartesian coordinates in~40! and settingl 050, one can obtain the
known result of the uniform magnetic field, see for example, Ref. 27.

C. Nonrelativistic case

Consideration of the Green functions in the background under question in the nonrelat
case is important for various physical applications. Below we study this case in detail
solutions of the Schro¨dinger equation for ‘‘spin-up’’ particles~1! and antiparticles~2! in the case
Q52p/2 read

1fm,l~x!5e2 iEx0A g

2p
ei ( l 2 l 021)wfm,l ,11~r !, E5

vm,l ,s

2M
,

~41!

2fm,l~x!5e2 iEx0A g

2p
e2 i ( l 2 l 0)wfm,l ,21~r !, lÞ0,

2fm,0~x!5e2 iEx0A g

2p
eil 0wfm,21

ir ~r !, ~42!

where the valuesvm,l ,s are defined bym,l ,s with the help of formulas~13!, ~14! for B.0, and
~16!, ~17! for B,0. The solutions1fm,l(x) ( 2fm,l(x)) for the ‘‘spin-down’’ case can be obtaine
from the solutions2fm,l(x) (1fm,l(x)) for the ‘‘spin-up’’ case with the changew→2w in ~41!,
~42!.

The retarded Green functions for particles and antiparticles are defined as

Sret,(6)~x,x8!5u~Dx0!(
l

Sl
(6)~x,x8!, Sl

(6)~x,x8!5 i(
m

6fm,l~x! 6fm,l* ~x8!,

~43!

Snc
(6)~x,x8!5(

lÞ0
Sl

(6)~x,x8!,

where the partSnc
(6)(x,x8) is the same for all extensions, whereasS0

(6)(x,x8) is specific for each
extension. Carrying out the summations in~43! one obtains
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Sl
(6)~x,x8!5Anr~x,x8!e7 igte6 i ( l 62 l 0)Dwe2 i u l 61mugte2 ipu l 61mu/2Ju l 61mu~znr!,

Anr~x,x8!5
g

4p sin~gt!
expF i

2
~r1r8!cot~gt!G , ~44!

Snc
(1)~x,x8!5Anr~x,x8!e2 i l 0Dwe2 i (11m)eBt$e2 ipm/2Jm~znr!2e2 iDweieBte2 ip(12m)/2J12m~znr!

1Y~znr ,Dw2eBt,m!1Y~znr ,2Dw1eBt,2m!%, ~45!

Snc
(2)~x,x8!5Anr~x,x8!eil 0Dwei (12m)eBt$Y~znr ,2Dw2eBt,m!1Y~znr ,Dw1eBt,2m!%,

~46!

znr5Arr8/sin~gt!, t5Dx0/2M , l 65 l 2~161!/2, lÞ0,

whereas forl 50,

S0
(1)(7p/2)~x,x8!5Anr~x,x8!e2 i ( l 011)Dwe2 imeBte7 ip(12m)/2J6(12m)~znr!, ~47!

S0
(2)(7p/2)~x,x8!5Anr~x,x8!eil 0Dwei (12m)eBte6 ipm/2J7m~znr!. ~48!

The Green function in the ‘‘spin-down’’ case can be obtained with the changeDw→2Dw in
~44!–~48! and with the changeS(6) by S(7) in all the functionsS(x,x8) in ~44!–~48!. Thus, one
can see that the Green functions for the nonrelativistic particle is irregular atr 50 when the
contact interaction is attractive.

We note that for the limiting caseB50 ~the uniform magnetic field is absent!,
Sl

(1)(2p/2)(x,x8) coincide with the known expression for the spinless particle,15–17which is natu-
ral in the case of a repulsive contact interaction.Sl

(1)(p/2)(x,x8) for B50 coincide with the
corresponding expressions obtained in Ref. 18.

III. 3¿1 DIMENSIONAL CASE

To obtain the Green functions in 311 dimensions we use the orthonormalized solutio

6Cp3 ,m,l ,s(x) of the Dirac equation found in Refs. 2 and 3. The quantum numbersm, l have the
same meaning as in the (211)-dimensional case,p3 is thex3 component of the momentum, an
s is the spin quantum number. The positive energy spectrum is given by1« and the negative
energy spectrum is given by2« . They both are expressed via the quantityv as

1«52 2«5AM21p3
21v. ~49!

The spectra ofv are given in~13!, ~14! for B.0, and in~16!, ~17! for B,0. ForvÞ0, one can
present the solutions6Cp3 ,m,l ,s in the following form:

6Cp3 ,m,l ,s~x!5N~gnPn1M ! 6Up3 ,m,l ,s~x!,

6Up3 ,m,l ,s~x!5
1

A2p
e2 i 6«x02 ip3x3

Um,l ,s~x'!,

Um,l ,s~x'!5S um,l ,s~x'!

s3um,l ,s~x'! D , N5@2u6«u~ u6«u1p3!#21/2, ~50!

whereas forv50,

6Cp3,0,l ,2j~x!5N~gnPn1M ! 6Up3,0,l ,2j~x!, j5sgn~B!,
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whereum,l ,s(x') are the two-spinors defined in~11!.
We are going to construct the Green functions using the solutions that correspond

natural extensions of the Dirac operator, i.e., for the extension parameters chosen asQ115Q21

5Q, andQ56p/2. First we consider the caseQ52p/2, andB.0. We note that forvÞ0,

gnP'nUm,l ,2s5 iAvUm,l ,s , l>1,
~51!

gnP'nUm1 ,l ,2s52 iAvUm2 ,l ,s , l<0,

whereP'5(0,P1 ,P2,0). The summations in~5! can be done similarly to the (211)-dimensional
case by the help of some important relations derived by us for the solutions~50!. Namely, for the
states with a givenvÞ0, the following relations hold true:

(
s561

6Cp3 ,m,l ,s~x! 6C̄p3 ,m,l ,s~x8!

5 (
s561

1

2 6«
~gnPn1M !

1

2
~11sS3! 6fp3 ,m,l ,s~x,x8!, l>1,

~52!

(
s561

6Cp3 ,m1 ,l ,2s~x! 6C̄p3 ,m1 ,l ,2s~x8!

5 (
s561

1

2 6«
~gnPn1M !

1

2
~11sS3! 6fp3 ,m1 ,l ,2s~x,x8!, l<0,

and forv50, we have

6Cp3,0,l ,21~x! 6C̄p3,0,l ,21~x8!5
1

2 6«
~gnPn1M !

1

2
~12S3! 6fp3,0,l ,21~x,x8!,

where

6fp3 ,m,l ,s~x,x8!5
1

2p
e2 i 6«Dx02 ip3Dx3

fm,l ,s~x' ,x'8 !, Dx35x32x83. ~53!

The functionsfm,l ,s(x' ,x'8 ) are defined in~23!. Therefore,

Sc~x,x8!5~gnPn1M !Dc~x,x8!,

Dc~x,x8!5 i (
m,l ,s

E
2`

`

dp3

1

2
~11sS3!Fu~Dx0!

1

2 1« 1fp3 ,m,l ,s~x,x8!

2u~2Dx0!
1

2 2« 2fp3 ,m,l ,s~x,x8!G . ~54!

Applying the relations~25!,~26!, one obtains the proper time integral representation forDc,

Dc~x,x8!5E
0

`

f ~x,x8,s!ds, f ~x,x8,s!5 (
l 52`

`

f l~x,x8,s!,

f l~x,x8,s!5D~s! (
s561

F l ,s~s!e2 iseBs
1

2
~11sS3!,
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D~s!5
eB

16p2s sin~eBs!
expH i

4s
@~Dx3!22~Dx0!2#2 iM 2sJ

3expH 2 i l 0Dw1
ieB

4
~r 21r 82!cot~eBs!J , ~55!

whereF l ,s(s) are defined in~32!.
Carrying out similar calculations forB,0 one can verify that~55! is valid for both signs of

B. Therefore, for any sign ofB, we get

f nc~x,x8,s!5(
lÞ0

f l~x,x8,s!5D~s!e2 ieBs(m1S3)H Y~z,Dw2eBs,m!1Y~z,2Dw1eBs,2m!

1@e2 ipm/2Jm~z!2e2 i (Dw2eBs)e2 ip(12m)/2J12m~z!#
1

2
~11S3!J ,

f 0
(2p/2)~x,x8,s!5 1

2 D~s!e2 imeBs@e2 iDwe2 ip(12m)/2J12m~z!~11S3!

1eieBseipm/2J2m~z!~12S3!#,

f (2p/2)~x,x8,s!5 f nc~x,x8,s!1 f 0
(2p/2)~x,x8,s!, ~56!

Using the corresponding solutions for the caseQ5p/2, we obtain

f 0
(p/2)~x,x8,s!5 1

2 D~s!e2 imeBs@e2 iDwe2 ip(m21)/2Jm21~z!~11S3!1eieBse2 ipm/2Jm~z!~12S3!#,

f (p/2)~x,x8,s!5 f nc~x,x8,s!1 f 0
(p/2)~x,x8,s!. ~57!

IV. SUMMARY

Various Green functions of the Dirac equation with the magnetic-solenoid field are
structed as sums over exact solutions of this equation. We stress that doing that we had to ta
account all the peculiarities related to the self-adjoint extension problem of the Dirac opera
the background under consideration. Both 211 and 311 dimensional cases are considere
Compact form for the Green functions was obtained thanks to the important relations~22! and~52!
derived by us for the exact solutions under consideration. The representations of the Gree
tions as proper time integrals are constructed. The kernels of the proper time integrals are
sented both as infinite sums over the orbital quantum numberl and as simple integrals. The Gree
functions are obtained for two natural self-adjoint extensions, one for the positive solenoi
and the other one for the negative solenoid flux. The physical motivation for the choice of
extensions is their correspondence to the presence of the point-like magnetic field at the orig
their close relation to the MIT boundary conditions.23,28,29Thus, the considered cases are of m
interest for applications. Other values of the extension parameter correspond to additional
interactions,30 and some of the values are of physical interest as well. To find a closed for
Green functions for the arbitrary value of the extension parameter is a more complicated tas
spectra of the corresponding extensions in the critical subspace are no longer periodic for
situation that requires to apply more exquisite calculation methods. We suppose to consid
issue in the future.

In addition, the nonrelativistic Green functions are constructed. The latter Green functio
represented for all possible types of 211 dimensional nonrelativistic particles.
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APPENDIX

For the sake of completeness we consider here the Green functions for the scalar p
They are defined by Eqs.~3!, ~4!, ~8!, and~9!, whereS7(x,x8) read

S7~x,x8!56 i( 6fn~x! 6fn* ~x8!,

and 6fn(x) form a complete set of orthonormalized solutions of the Klein–Gordon equa
Here we consider the natural extension of the Klein–Gordon operator for which solutions
11 dimensions and the related spectrum read3

6fm,l~x!5
1

A2«
e2 i 6«x0A g

2p
ei ( l 2 l 0)wI m1u l 1mu,m~r!,

6«56AM21v, v5g@112m1u l 1mu1j~ l 1m!#,

l 50,61,62, . . . , m50,1,2, . . . .

Using Eqs.~25!, ~26!, ~28!, and ~30!, we calculate the causal and anticausal propagators. T
have the form

Sc~x,x8!5E
0

`

f sc~x,x8,s!ds, Sc̄~x,x8!5E
20

2`

f sc~x,x8,s!ds,

f sc~x,x8,s!5(
l

f l
sc~x,x8,s! ,

f l
sc~x,x8,s!5A~s!eil Dwe2 i ( l 1m)eBse2 ipu l 1mu/2Ju l 1mu , ~A1!

f sc~x,x8,s!5A~s!e2 imeBs@e2 ipm/2Jm~z!1Y~z,Dw2eBs,m!1Y~z,2Dw1eBs,2m!#,

whereA(s) is given in~31!, andY(z,h,m) in ~33!, ~35!. The expression~A1! can be generalized
for the (D11)-dimensional case, whereD is the number of spacial dimensions, with the sub
tution A(s) in ~A1! by A(D)(s),

A(D)~s!5A~s!expH i

4s (
k53

D

~Dxk!
2J S e2 ip/2

4ps D (D22)/2

, D>3.
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The role of the irreducible representations of the Poincare ´
group in solving Maxwell’s equations

Harry E. Mosesa)
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Maxwell’s equations are universally solved when the charge and current densities
are given, without reference to the transformation properties of the fields or charge
density–current density four vector. However these transformation properties are
generally held to beessentialphysical properties of the fields and the charge
density–current density four-vector. They are required if the consequences of rela-
tivity are to hold. The way the fields and four-vectors transform constitutes a
representation of the Poincare´ group which can be reduced to the irreducible rep-
resentations of that group first given by Wigner. The use of the irreducible repre-
sentations corresponds to the expansion of the fields and currents into modes which
have the simplest possible transformation properties. These modes can be identified
as wave functions of particles of spin 1 and massm (0<m,`). We compare the
solutions of Maxwell’s equations utilizing the ‘‘usual’’ time-dependent Green’s
function and the method introduced in this paper. The solutions are identical, if we
assume that the fields created by the time-dependent sources have the same initial
values for the fields. Among the new results, we demonstrate the mechanism by
which one can transform transverse fields for which the charge density is zero to
fields that are partially longitudinal and for which the charge density source is not
zero under Poincare´ transformations of the space–time coordinates. We give a
concrete example of a transverse current density source and one for a longitudinal
current density source and show that sources lead to a mass spectrum of the pho-
tons. Longitudinal current densities always lead tononcausal~as noncausal is com-
monly understood! solutions for the fields. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1704847#

I. INTRODUCTION AND SUMMARY

The Poincare´ group is the Lorentz group to which is added the translations of space and
It seems universally accepted that the electromagnetic fields transform under the Poincare´ trans-
formations as an antisymmetric tensor and the current–density, charge density transform
four-vector, These requirements are at the heart of special relativity and its extension to g
relativity. Maxwell’s equations are invariant under transformations of this group. However, st
as it might seem, Maxwell’s equations do not seem to have been solved under the requirem
Poincare´ invariance as a constraint. The intent of this paper is to solve Maxwell’s equations
this requirement. We proceed by expanding the field tensor and the current-density, charge-
four-vector into the irreducible representations of the Poincare´ group first given by Wigner. Such
representations are the simplest representations and the expansionsmustexist for invariance. This
method of obtaining solutions leads to surprising results. Only the discrete zero mass and n
mass representations of spin 1 and positive energy are involved in the expansions. The ze
expansions can be used for transverse fields~i.e., photons!, only if the mass zero components o
transverse part of the current density vector vanishes. Second, if there is a transverse
dependent current density which does not have a time interval during which the current van

a!Electronic mail: b.moses@rcn.com
18870022-2488/2004/45(5)/1887/32/$22.00 © 2004 American Institute of Physics
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only nonzero mass representations may appear in the expansions of the currents and field
ever, once the zero mass components are removed in this latter case, the solution of Ma
equations obtained using the method of expansions of the present paper are identical
‘‘usual’’ solution obtained through the use of time-dependent Green’s functions if the initial
ditions of both methods of solution are the same.

Another result is that solutions of Maxwell’s equations, withlongitudinalcurrent densities and
corresponding charge densities as sources, are not causal even though thetransversefield solu-
tions originating from transverse current densities are! Possibly this paradox can be resol
redefining causality.

Only nonzero mass representations can occur in the transverse current densities that a
as sources for transverse fields. Is it possible that when the sources are operative, photo
mass? What is the nature of these masses? Can they be sources of gravity or can they be
by other masses? It would seem difficult to answer these questions experimentally, but the
Poincare´ invariance brings the possibility of photons with mass to one’s attention.

II. INTEGRATION OF MAXWELL’S EQUATIONS USING TIME-DEPENDENT GREEN’S
FUNCTIONS

Maxwell’s equations in Gaussian units are

¹W 3EW ~xW ;t !52
1

c

]HW ~xW ;t !

]t
,

¹W 3HW ~xW ;t !5
1

c

]EW ~xW ;t !

]t
1

4p

c
jW ~xW ;t !,

~1!
¹W •EW ~xW ;t !54pr~xW ;t !,

¹W •HW ~xW ;t !50 .

We shall solve these equations using group theory. However, they can also be solved as a
value problem using a time-dependent Green’s function. Do these two methods give dif
results? To make the discussion as clear as we can, we shall address the problem of the cre
a transverse electromagnetic field by a pulsed transverse current density. Let the time inter
the pulse is on be given byt1,t,t2 . We shall assume that there is no proper subinterval such
the transverse current densityjW(xW ;t) vanishes.1 The solution of the initial value problem for th
case that there is no electromagnetic field before the current density is turned on is2

EW ~xW ;t !5
4p

c2 E
t1

t

dt8 E dxW8
]2

]t2 D~xW2xW8;t2t8! jWT~xW8,t8!,

~2!

HW ~xW ;t !5
4p

c
¹W 3 E

t1

t

dt8E dxW8
]

]t
D~xW2xW8;t2t8! jWT~xW8,t8! .

In the above equationst.t1 . Moreover, the functionD(xW ;t) is

D~xW ;t !5
1

4pr
h~r 2ct! wherer 5uxW u ~3!

andh(x) is the Heaviside function

h~x!5H 0 if x,0

1 if x>0 .
~4!
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The current densityjWT(xW ;t) is the transverse part of the current density.
We now state an important theorem. Let there be a second way of solving Maxwell’s

tions with the initial condition that the field be zero fort,t1 . The two methods of solution will
yield the same result. The proof is simple. LetDW E(xW ;t) andDW H(xW ;t) be the difference of the fields
of the two solutions. ThenDW E and andDW H satisfy Maxwell’s equations without current densities
a source. Then the requirement that the the two original fields be zero whent,t1 leads immedi-
ately toDW E5DW H[0. The solution obtained using group theory and that using Green’s func
will look different but will be the same. For the sake of completeness we shall indicate a v
potentialAW (xW ;t) in the radiation gauge which can be used to obtain the general transverse
tromagnetic field of Eqs.~2! and ~3!,

AW ~xW ;t !52
4p

c E
t1

t

dt8E dxW8
]

]t
D~xW2xW8;t2t8! jWT~xW8;t8!.

Then

EW ~xW ;t !52
1

c

]

]t
AW ~xW ;t !,

~5!

HW ~xW ;t !5¹W 3AW ~xW ;t ! .

III. EIGENFUNCTIONS OF THE CURL OPERATOR

The irreducible representations of the Poincare´ group for zero mass representations are giv
in Ref. 3, and for nonzero mass representations in the format of Foldy and Shirokov.4

For the sake of brevity we shall assume that the reader has available two published pa
which the writer has expanded wave functions in terms of the finite mass and ma
representations.5,6 We shall also use the eigenfunctions of the curl operator discussed in Ref.
shall repeat some of the material in Ref. 7 with slight changes in notation. The eigenfunctio
the curl operator constitute a generalization of the three-dimensional Fourier transformation
enable us to handle simply problems involving the curl and divergence operators as they
vector fields. Let us introduce three-component ‘‘vectors’’8 QW (pW ,l) for l50,61 and a real vector
pW by

QW ~pW ,0!52
pW

p
,

QW ~pW ,l!52
l

&
S p1~p11 ilp2!

p~p1p3!
21,

p2~p11 ilp2!

p~p1p3!
2 il,

p11 ilp2

p D for l561 . ~6!

These vectors satisfy the orthogonality and completeness relations

QW * ~pW ,l!•QW ~pW ,l8!5dl,l8 ,
~7!

(
l50,61

Qi* ~pW ,l!Qj~pW ,l!5d i , j .

In Eq. ~7! Qi(pW ,l) is the i th component ofQW (pW ,l).
Further properties of the vectorsQW (pW ,l) are
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pW •QW ~pW ,l!50 for l561,

pW •QW ~pW ,0!52p where p5upW u,

pW 3QW ~pW ,l!52 ilpQW ~pW ,l!, ~8!

QW * ~pW ,l!52QW ~pW ,2l! for l561,

QW * ~2pW ,l!52
p12l ip2

p11l ip2
QW ~pW ,l! .

The eigenfunctionsxW (xW upW ,l) of the ¹W 3 operator are

xW ~xW upW ,l!5
eipW •xW

~2p!3/2QW ~pW ,l! . ~9!

From the orthogonality and completeness properties of the vectorsQW (pW ,l) @Eq. ~7!# we
deduce these properties of the vectorsxW (xW upW ,l),

E dxW xW * ~xW upW ,l!•xW ~xW upW 8,l8!5dl,l8d~pW 2pW 8!,

~10!

(
l50,61

E dpW x i* ~xW upW ,l!xW ~xW 8upW ,l!5d i , jd~xW2xW 8! ,

wherex i(xW upW ,l) is the i th component ofxW (xW upW ,l). These eigenvectors have the properties

¹W 3xW ~xW up,l!5lpxW ~xW upW ,l!,

¹W •xW ~xW upW ,l!50 for l561,

¹W •xW ~xW upW ,0!5
2 ip

~2p!3/2eipW •xW, ~11!

xW * ~xW upW ,l!52
p12 ilp2

p11 ilp2
xW ~xW u2pW ,l!,

E dxW xW * ~xW upW ,l!•xW * ~xW upW 8,l8!52
p12 ilp2

p11 ilp2
d~pW 1pW 8!dl,l8 .

From the properties of the eigenvectors we see thatevery vector VW (xW ) can be decompose
uniquely into a sum of two vectors,

VW ~xW !5VW L~xW !1VW T~xW !, ~12!

where

VW L~xW !5E dpW g~pW ,0!xW ~xW upW ,0!,

VW T~xW !5 (
l561

E dpW g~pW ,l!xW ~xW upW ,l! and where
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g~pW ,l!5E dxW xW * ~xW upW ,l!•VW ~xW ! . ~13!

Since

¹W 3VW L~xW !50,
~14!

¹W •VW T~xW !50,

VW L(xW ) is the longitudinal part ofVW (xW ) andVW T(xW ) is the transverse part in the Helmholtz deco
position of the vector. It is seen thatVW L(xW ) andVW T(xW ) are linearly independent. Indeed they a
orthogonal in the following sense:

E dxW VW L* ~xW !•VW T~xW !50 . ~15!

IV. THE SOLUTION OF THE TIME-DEPENDENT MAXWELL’S EQUATIONS USING
GROUP THEORY

A. The Bateman–Cunningham form of the equations

We proceed to solve Maxwell’s equations using the irreducible representations of the Po´
group.

A very convenient way of writing Maxwell’s equations is the following: Define the vec
cW (xW ;t) by

cW ~xW ;t !5EW ~xW ;t !2 iHW ~xW ;t ! . ~16!

Then Maxwell’s equations are

¹W 3cW ~xW ;t !52 i
1

c

]

]t
cW ~xW ;t !24p

jW~xW ;t !

c
,

~17!
¹W •cW ~xW ;t !54pr~xW ;t ! .

The vectorcW (xW ;t) undergoes relatively simple transformations under the coordinate transfo
tions of the Poincare´ group ~see Refs. 5 and 6!. Without going into details at this time, it can b
shown that the helicity operatorPW •JW /uPW u, wherePW 5$P1 ,P2 ,P3% are the infinitesimal generator
of the translations andJW5$J1 ,J2 ,J3% are the infinitesimal generators of the rotations, has on
finite number of point eigenvalues. Since imaginary mass and continuous zero mass h
infinite number of eigenvalues for the helicity operator, such representations are precluded
expansion ofcW (xW ;t). Thus we need only consider discrete 0 mass representations and rea
representations for spin 1 in the expansion ofcW (xW ;t).

B. Mass and Maxwell’s equations

One of the labels used in characterizing the irreducible representations is themass m. The
range ofm is 0<m,`. Let us denote the four-vector current density byi(xW ;t):

i~xW ;t !→$cr~xW ;t !, jW~xW ;t !%. ~18!

The fieldcW (xW ;t) is a sum of representations corresponding tom. It can be shown that the rang
and values ofm in the decomposition ofcW (xW ;t) are the same as those fori(xW ;t). Let us assume
that m can take on discrete values$m1 ,m2 ,...% and continuous values in some rangeR. Then
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cW (xW ;t) can be written as a sum of representations over the discrete values ofm and an integral
over the continuous values.9 ThencW (xW ;t) and i(xW ;t) can be written as a sum of representatio
over the discrete values ofm and an integral over the continuous values,

cW ~xW ;t !5(
mi

cW mi
~xW ;t !1E

R
dm cW m~xW ;t !,

~19!

i~xW ;t !5(
mi

imi
~xW ;t !1E

R
dm im~xW ;t ! .

For any value ofm, cW m(xW ;t) and im(xW ;t) satisfy Maxwell’s equations:

¹W 3cW m~xW ;t !52 i
1

c

]

]t
cW m~xW ;t !24p i

jWm~xW ;t !

c
,

~20!
¹W •cW m~xW ;t !54prm~xW ;t ! .

If we prescribe the irreducible representations inim(xW ;t), we can find the irreducible repre
sentations incW m(xW ;t) through these equations.

In the next sections we shall give the irreducible representations forcW m(xW ;t) and im(xW ;t).
Surprisingly, the case for whichm50 is quite different than that for whichmÞ0.10

V. THE REDUCTION OF c¢ m„x¢ ; t … AND im„x¢ ; t … FOR ZERO MASS

Them50 representations are considered first. They correspond to a point eigenvalue om at
m50. We use the results of Ref. 6 with the notation of Ref. 7,

cW 0~xW ;t !5cW 0,L~xW ;t !1cW 0,T~xW ;t ! , ~21!

wherecW 0,L(xW ;t) is the longitudinal part ofcW 0(xW ;t) andcW 0,T(xW ;t) is the transverse part,

cW 0,L~xW ;t !52E dpW

p
@xW ~xW upW ,0! f 0~pW ,0!e2 ipct1xW * ~xW upW ,0!h0* ~pW ,0!eipct#,

~22!

cW 0,T~xW ;t !52 (
l561

E dpW

p
@p2lxW ~xW upW l! f 0~pW ,l!e2 ipct1plxW * ~xW upW ,l!h0* ~pW ,l!eipct# .

The functionsf 0(pW ,l), h0(pW ,l) transform under the irreducible representations of the Poin´
group for mass zero, positive energy, and helicityl. We shall show how these functions may b
obtained from similar functions in the expansion ofi0(xW ;t).

The vector part ofi0(xW ;t), which is the current densityjW0(xW ;t), is expanded as11

jW0~xW ;t !5 jW0,L~xW ;t !1 jW0,T~xW ;t ! , ~23!

where jW0,L(xW ;t) is the longitudinal part of the current density andjW0,T(xW ;t) is the transverse part

jW0,L~xW ;t !

c
5E dpW @xW ~xW upW ,0!k0~pW ,0!e2 icpt1x* ~xW upW ,0!k0* ~pW ,0!eicpt#,

~24!
jW0,T~xW ;t !

c
5 (

l561
E dpW

p
@xW ~xW upW ,l!k0~pW ,l!e2 icpt1xW * ~xW upW ,l!k0* ~pW ,l!eicpt# .
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Finally, the charge densityr0(xW ;t) is coupled to the longitudinal part of the current dens
through

r0~xW ;t !5
1

~2p!3/2E dpW @k0~pW ,0!ei (pW •xW2cpt)1k0* ~pW ,0!e2 i (pW •xW2cpt) . ~25!

The three amplitudesk0(pW ,l) for l50,61 are independent of each other. If k0(pW ,0)[0, then the
current density is purely transverse and the charge density is zero. More generally, Max
equations can be solved independently for the transverse and longitudinal fields. From the
erties of the vectorsxW (xW upW ,0), it is seen that the equation of continuity is satisfied:

]r0~xW ;t !

]t
1¹W • jW0,L~xW ;t !50 . ~26!

A. The solution of Maxwell’s equations for the transverse fields in terms of the
transverse current densities

Maxwell’s equations for the transverse fields in terms of the transverse currents are

¹W 3cW 0,T~xW ;t !52 i
1

c

]

]t
cW 0,T~xW ;t !24p i

jW0.T~xW ;t !

c
,

~27!
¹W •cW 0,T~xW ;t !50 .

We turn our attention to the first term of Eq.~27!. It is not clear at this point whether this se
of equations can be integrated. We shall show thatthey cannot be integrated unless the transve
current density is identically zero. The only solution, then, is a solution of Maxwell’s equatio
without sources, i.e., a radiation field. One finds from Eq.~22!

¹W 3cW 0,t~xW ;t !1 i
1

c

]

]t
cW 0.T~xW ;t !52 (

l561
E dpW

p
$p2lp3@l11#xW ~xW upW ,l! f 0~pW ,l!e2 icpt

1plp@l21#xW * ~xW upW ,l!h0* ~pW ,l!eicpt% . ~28!

Summing overl we have

¹W 3cW 0,T~xW ;t !1 i
1

c

]

]t
cW 0,T~xW ;t !522 E dpW

p
$xW ~xW upW ,1! f 0~pW ,1!e2 icpt

2xW * ~xW upW ,21!h0* ~pW ,21!eicpt% , ~29!

or

¹W 3cW 0,T~xW ;t !1 i
1

c

]

]t
cW 0,T~xW ;t !522 E dpW

p
$xW ~xW ;t ! f 0~pW ,1!e2 icpt1 m~pW ,21!xW ~xW u2pW ,21!

3h0* ~pW ,21!eicpt% . ~30!

In Eq. ~30! and later

m~pW ,l!5
p12 ilp2

p11 ilp2
. ~31!

In Eq. ~31! use2pW as the variable of integration in the term involvingxW (xW u2pW ,21). Then Eq.
~30! leads to
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¹W 3cW 0,T~xW ;t !1 i
1

c

]

]t
cW 0,T~xW ;t !522 E dpW

p
@xW ~xW upW ,1! f 0~pW ,1!e2 icpt

1m~pW ,21!xW ~xW upW ,21!h0* ~2pW ,21!eicpt# . ~32!

Similarly,

jW0,T~xW ;t !5 (
l561

E dpW

p
xW ~xW upW ,l!@k0~pW ,1!e2 icpt2m~pW ,l!k0* ~2pW ,l!eicpt# . ~33!

The vectorsxW (xW upW ,1) andxW (xW upW ,21) are linearly independent. We first equate the coefficients
both sides of Eq.~27!,

f 0~pW ,1!e2 ipct52p i @k0~pW ,1!e2 icpt2m~pW ,1!k0* ~2pW ,1!eicpt# . ~34!

On using the fact thateicpt and e2 icpt are also linearly independent, we find on equating
coefficients ofeicpt,

k0~pW ,1![0. ~35!

Similarly

k0~pW ,21![0 . ~36!

Thus from Eq.~33!, we have the result that thetransverse current is zero for zero mass repres
tations as a condition of integrability.

The functionsf 0(pW ,21) andh0(pW ,1) are not obtained by this substitution, since the coe
cients in front of these quantities are zero. The amplitudes are arbitrary. The vectorcW 0,T(xW ;t) using
these undetermined amplitudes, namely,

cW 0,T~xW ;t !52E dpW

p
@xW ~xW upW ,21! f 0~pW ,21!e2 icptxW * ~xW upW ,1!h0* ~pW ,1!eicpt# , ~37!

is an arbitrary solution of thehomogeneousMaxwell’s equations. The functionsf 0(pW ,21) and
h0(pW ,1) can be obtained by imposing initial conditions on the transverse electromagnetic
EW 0,T(xW ;t) andHW 0,T(xW ;t) or, equivalently onEW 0,T(xW ;t) and (]/]t)EW 0,T(xW ;t).

B. The solution for the longitudinal fields in terms of the longitudinal current densities

The longitudinal fieldcW 0,L(xW ;t) has as its expansion the first of Eq.~22!. Since the right-hand
side of Eq.~20! is real,

H0,L[0 . ~38!

Thus we need only findEW 0,L(xW ;t). The two equations from whichEW 0,L(xW ;t) can be calculated are

¹W •EW 0,L~xW ;t !54pr0,L~xW ;t !, ~39!

]

]t
EW 0,L~xW ;t !524p jW0,L~xW ;t !. ~40!

The ‘‘traditional’’ way of finding EW 0,L(xW ;t) is to use Eq.~39!. SinceEW 0,L(xW ;t) is longitudinal, we
may introduce the scalar potentialV0(xW ;t):

EW 0,L~xW ;t !52¹W V0~xW ;t ! . ~41!
                                                                                                                



at the
he

n. The
at

-
e

e

t

s

ible

city

1895J. Math. Phys., Vol. 45, No. 5, May 2004 The role of the irreducible representations

                    
Then, on substituting into Eq.~39!, one obtains Poisson’s equation,

¹2V0~xW ;t !524pr0~xW ;t ! . ~42!

On using the well-known solution of Eq.~42!, the longitudinal field is

EW 0,L~xW ;t !5¹W E dxW
r0~xW ;t !

uxW2xW 8u
. ~43!

This result is a generalization of the static situation. It has the consequence, however, th
longitudinal field will not be causal. A change inr0(xW ;t), in general, would cause a change in t
field which is transmitted instantaneously over entire space. Moreover, from Eq.~43! it is seen that
EW 0,L(xW ;t) falls off as 1/r 2, as is the case with most static fields.

To test this situation mathematically, Keller12 has suggested using Eq.~40! to obtain the
longitudinal fields, assuming that the current density, rather than the charge density, is give
charge density is then obtained from Eq.~39!. We shall give a simple example later to show th
the use of current densities or charge densities gives the same results.

Using Eqs.~25! and~24! we see that bothjW0,L(xW ;t) depend upon thesinglecomplex function
k0(pW ,0). One finds

f 0~pW ,0!5h0~pW ,0!54pk0~pW ,0! . ~44!

ThuscW 0,L(xW ;t) is real as before.Any complex functionk0(pW ,0) can be used to provide a longitu
dinal electric field. On the other hand,longitudinal electric fields cannot exist without a charg
density. Though we have shown this result form50, an identical proof holds for arbitrary positiv
values ofm.

VI. THE REDUCTION OF c¢ m„x¢ ; t … AND im„x¢ ; t … FOR NONZERO MASS SOLUTIONS OF
MAXWELL’S EQUATIONS

We now consider nonzero mass expansions ofcW (xW ;t)5EW (xW ;t)2 iHW (xW ;t) into the irreducible
representations of the Poincare´ group corresponding to nonzero massm and spin 1. The subscrip
m will be used to indicate that we are working in such a representation. The energycv(m,p) will
appear where

v~m,p!5Am2c21p2 . ~45!

Equation~4.15! of Ref. 6 gives us the reduction ofcW m(xW ;t) to the irreducible representation
of massm and spin 1 in the Foldy–Shirokov form. Using a vector notation the reduction is

cW m~xW ;t !5mcF E dpW

v~m,p!
ei [ pW •xW2cv(m,p)t] H v~m,p! fWm~pW !2

pW

v~m,p!1mc
@pW • fWm~pW !#

2 i @pW fWm~pW !#J 1E dpW

v~m,p!
e2 i [ pW •xW2cv(m,p)t] H v~m,p!hW m* ~pW !

2
pW

v~m,p!1mc
@pW •hW m* ~pW !#2 i @pW 3hW m* ~pW !#J G . ~46!

The vectorsfWm(pW ) andhW m(pW ) are in the space of vectors on which the operators of the irreduc
representations act.

In order to splitcW m(xW ;t) into its transverse and longitudinal parts we introduce the heli
representation of Ref. 11. We expand the vectorsfWm(pW ) andhW m(pW ) as follows:13
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fWm~pW !5 (
l50,61

QW ~pW ,l!i l f m~pW ,l!,

~47!

hW m~pW !5 (
l50,61

QW ~pW ,l!i lhm~pW ,l! .

Using the results of our earlier discussion of the eigenfunctions of the curl operator, we ca
expandcW m(xW ;t) in terms of these eigenfunctions. We can thereby expresscW m(xW ;t) as the sum of
its longitudinal and transverse parts:14

cW m~xW ;t !5cW m,L~xW ;t !1cW m,T~xW ;t !, ~48!

where

cW m,L~xW ;t !52 Reimc E dpW

v~m,p!
@xW ~xW upW ,0! f m~pW ,0!e2 icv(m,p)t1xW * ~xW upW ,0!hm* ~pW ,0!eicv(m,p)t# .

~49!

The transverse part, namely,cW m,T(xW ;t) is

cW m,T~xW ;t !5mci (
l561

l E dpW

v~m,p!
@~v~m,p!2lp!xW ~xW upW ,l! f m~pW ,l!e2 icv(m,p)t

1~v~m,p!1lp!xW * ~xW upW ,l!hm* ~pW ,l!eicv(m,p)t#. ~50!

The reduction of the four-vector current densityim(xW ;t) into its longitudinal and transverse par
is similar. The longitudinal partjWm,L(xW ;t) is

jWm,L~xW ;t !

c
52 Reimc (

l561
E dpW xW ~xW upW ,0!km~pW ,0!e2 icv(m,p)t. ~51!

In the above and subsequent equations Re means ‘‘real part’’ of the mathematical expr
which follows.

The transverse part of the current density, denoted byjWm,T(xW ;t) is

jWm,T~xW ;t !

c
52 Reimc (

l561
l E dpW

v~m,p!
xW ~xW upW ,l!km~pW ,l!e2 icv(m,p)t . ~52!

Finally, the charge densityrm(xW ;t) is given in terms of the longitudinal component of th
current density by

r~xW ;t !522 Re
mc

~2p!3/2E dpW

v~m,p!
km~pW ,0!ei [ pW •xW2cv(m,p)t . ~53!

The transverse current densityj m,T(xW ;t) satisfies the required divergence condition

¹W jWm,T~xW ;t !50 .

The longitudinal part of the current density and charge density satisfy the requisite equa
continuity:

¹W • jWm,L~xW ;t !1
]r~xW ;t !

]t
50 .
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There is an essential distinction between them50 and themÞ0 cases. In them50 case. the
amplitudesk0(pW ,l) transform into new amplitudes under changes of framewhich do not involve
summations overl. That is, the variablel is aninvariant of all the transformations of the Poincar´
group. A consequence is that longitudinal fields and current densities remain longitudinal
and current densities under all transformations of the group. Similarly, transverse fields an
rent densities remain transverse fields and current densities under all the transformationThis
result is not true for nonzero mass.15

A. The solution of Maxwell’s equations for the transverse fields in terms of the
transverse current densities

We want now to find the solution of Maxwell’s equations for the transverse fields in term
the transverse current densities. Thus we wish to solve

¹W 3cW m,T~xW ;t !52 i
1

c

]

]t
cW m,T24p i

jWm,T~xW ;t !

c
,

~54!
¹W •cW m,T~xW ;t !50 ,

for mÞ0.
As in the massless case, the second of Eq.~54! is trivially satisfied. Our attention is thu

directed to the first of the equations. Then

f m~pW ,l!52hm~pW ,l!52
4p ikm~pW ,l!

m2c2 for l561 . ~55!

Hence,

cW m,T~xW ;t !5
4p

mc (
l561

lE dpW

v~m,p!
$@~v~m,p!2lp!xW ~xW upW ,l!km~pW ,l!e2 icv(m,p)t#

1@~v~m,p!1lp!xW * ~xW upW ,l!km* ~pW ,l!eicv(m,p)t#%. ~56!

However,

cW m,T~xW ;t !5EW m,T~xW ;t !2 iHW m,T~xW ;t ! ~57!

so that

EW m,T~xW ;t !5
4p

mc (
l561

lE dpW @xW ~xW upW ,l!km~pW ,l!e2 icv(m,p)t1xW * ~xW upW ,l!km* ~pW ,l!eicv(m,p)t#,

~58!

HW m,T~xW ;t !52
4p i

mc (
l561

E p dpW

v~m,p!
@xW ~xW upW ,l!km~pW ,l!e2 icv(m,p)t

2xW * ~xW upW ,l!km* ~pW ,l!eicv(m,p)t# .

It is readily proved that the fields of Eq.~58! satisfy Maxwell’s equations with the current give
by Eq. ~52!. For mÞ0 the transverse current density determines the transverse electromag
field completely. There is no room for initial conditions. One must add a solution of the homog
neous Maxwell’s equations, which will contain modes of zero mass only, if initial conditions
to be imposed.
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B. An example of a simple transverse current density and its transverse field

All transverse current densities and corresponding solutions for the fields are given by
tion km(pW ,l) for l561. We shall take the functionkm(pW ,l) to be particularly simple:

km~pW ,l!5Jd~px!d~py!d~pz2P!dl,m . ~59!

In the above equationm511 or m521 andP.O. In analogy to the scalar case, the gene
transverse current and corresponding electromagnetic field are superpositions of such
waves.16 The current densityjWm,T has anx and ay component,17

j x~z;t !52
1

A4p3

J

v~m,P!
sin@Pz2cv~m,P!t#,

j y~z;t !52
1

A4p3

Jm

v~m,P!
cos@Pz2cv~m,P!t#, ~60!

j z~z;t ![0 .

We can now give the physical meaning ofm ~or more generallyl!. If m or ~l! equals 1,jW is
circularly polarized in a directionoppositeto the direction of propagation. Ifm or l equals21,
the wave is circularly polarized in the direction of propagation. Circular polarization is a m
relativistic notion than linear polarization. Moreover, circular polarization has onlytwo values,
whereas linear polarization must be described by a continuum of values.

We can also find the electromagnetic fields, also circular polarized, from Eq.~54!,

Ex~z;t !5
2Jm

mAp
cos@Pz2cv~m,P!t#,

Ey~z;t !52
2J

mAp
sin@Pz2cv~m,P!t#,

Ez~z;t ![0,
~61!

Hx~z;t !52
2J

mAp

P

v~m,P!
sin@Pz2cv~m,P!t#,

Hy~z;t !5
2J

mAp

Pm

v~m,P!
cos@Pz2cv~m,P!t#,

Hz~z;t ![0 .

It is perhaps useful to note that whenP→` so that v(m,P)→P, the solution for massm
becomes that for zero mass, i.e., for the source-free circularly polarized electromagnetic wav
amplitude 2J/m. This result is consistent with the observation that when the momentum
massive particle is sufficiently high, many results reduce to the case of a zero mass partic
a photon in the usual sense.

C. The solution for the longitudinal fields in terms of the longitudinal current densities

We now can proceed to find the longitudinal fields in terms of the charge densities
longitudinal current densities. In a development very close to that for the zero mass case w
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HW m,L~xW ;t ![0,
~62!

f m~pW ,0!5hm~pW ,0!54pkm~pW ,0! .

The longitudinal electric field, longitudinal current density, and charge density are closely re
superpositions of waves. Since these waves have a finite velocity for a given value ofpW , they are
causal in a sense.Any choice ofkm(pW ,0) ~including m50) will lead to a longitudinal wave of
massm. We have thus given longitudinal currents which give rise to electric fields which
longitudinally polarized. In a later section we shall give a simple example of a longitud
current density, charge density, and time-dependent longitudinal electric field, which gives a
peting view about the notion of causality for longitudinal fields.

D. Transverse fields when there are no transverse current densities

It is clear, using the above-mentioned methods, that there can be no time-dependent l
dinal fields formÞ0 as well asm50 if there are no longitudinal current densities and cor
sponding charge densities. We can also ask the question what are thetransversefields if there are
no transverse currents. One can show that the only fields are the zero mass fields wh
discussed earlier.

VII. THE INITIAL VALUE PROBLEM FOR ELECTROMAGNETIC FIELDS: GENERAL
CONSIDERATIONS

Usually electromagnetic problems are solved in a time-independent setting. We are
interested, however, in cases in which the current density and charge density are pulsed tim18 For
this reason we use the time-dependent approach which uses the full set of the time-dep
Maxwell’s equations. Thus let us consider current densitiesjW(xW ;t) and charge densitiesr(xW ;t)
which are nonzero only during the time intervalt1,t,t2 .19 Let us consider the case before th
pulse is turned on, i.e., fort,t1 . The only solution of Maxwell’s equations for transverse wav
are those corresponding tom50. The solution is found as an initial value problem in whi
EW 0,T(xW ;t0) and HW 0,T(xW ;t0) are given fort0,t1 . The solution in terms of influence functions
identical to that of the nonrelativistic treatment~Ref. 6!

For t.t2 our solution for the field is again a transverse field without a current source.
initial conditions are those for the homogeneous transverse field ast→t2 from below. Fort1,t
,t2 we require that the currents that contain nonzero mass modes be present. As we sha
the following, we shall require that the range of mass is 01,m,`. Single mass fields are
exceptional if the current density is prescribed. In particular, the value ofm50 is excluded
because there can be no transverse currents in this case. Instead, we can pickm as close to 0 as we
like from above.

VIII. A SET OF FOUR-DIMENSIONAL EIGENFUNCTIONS OF THE CURL OPERATOR:
EVALUATION OF THE EXPANSION COEFFICIENTS

A. Orthogonality of the eigenfunctions

For the sake of a more nearly ‘‘manifestly covariant’’ notation, we shall enlarge our defini
slightly. We define the four-dimensional eigenfunctions of the curl operatorJW (xW ;tupW ,l,m) by

JW ~xW ;tupW ,l,m!5
1

~2p!1/2e2 icv(m,p)txW ~xW upW ,l! . ~63!

Theorem: The four-dimensional eigenfunctionsJW (xW ;tupW ,l,m) satisfy the orthogonality rela
tions
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E dxWE
2`

`

dt JW * ~xW ;tupW ,l,m!•JW ~xW ;tupW 8l8,m8!

5
1

c3 d~pW 2pW 8!dl,l8d~m2m8!
v~m,p!

m
. ~64!

From Eqs.~10! and ~63!,

E dxWE
2`

`

dt JW * ~xW ;tupW ,l,m!•JW ~xW ;tup8,l8,m8!

5
1

2p
d~pW 2pW 8!E

2`

`

dt exp$ ict@v~m8,p!2v~m,p!#%

5
1

c
d~pW 2pW 8!dl,l8d@v~m8,p!2v~m,p!# . ~65!

But on usingd-function identities and the fact thatm1m8>0,

d@v~m8,p!2v~m,p!#5d@~v~m8,p!2v~m,p!!~v~m8,p!1v~m,p!!#

3@~v~m8,p!1v~m,p!!#

5d@~~m8c!21p2!2~~mc!21p2!#~v~m8,p!1v~m,p!!

5
1

c2 d@~m82m!~m81m!#~v~m8,p!1v~m,p!!

5
1

c2 d~m82m!
v~m,p!

m
. ~66!

On using Eq.~66! in Eq. ~65!, Eq. ~64! follows.
Finally, one can show

E dxWE
2`

`

dt JW * ~xW ;tupW ,l,m!•JW * ~xW ;tupW 8,l8,m8!50 . ~67!

B. Eigenfunctions and eigenvalues of the mass

The functionskm(pW ,l) are eigenfunctions corresponding to eigenvaluesm in the continuous
spectrum of the mass 0<m,` except in the following cases: If there are values ofm in the
vicinity of m1 ,m2 ,... such that

km~pW ,l!5d~m2mi !k̂mi
~pW ,l! ~68!

and such that

(
l561

miE dpW

v~mi ,p!
uk̂mi

~pW ,l!u2,` , ~69!

thenmi is apoint eigenvalue of the mass for which the corresponding eigenfunction isk̂mi
(pW ,l).

Point eigenvalues can be added to the current density by choosing functionsk̂mi
(pW ,l) which

satisfy Eq.~69!. Generally we shall be interested in nonzero point eigenvalues, since a zero
eigenvalue in the current density is a situation in which Maxwell’s equations cannot be integ
The case in whichm50 in thecontinuousspectrum contributes nothing.20
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C. The completeness relation for the eigenfunctions

In a rather similar fashion one can obtain the completenessTheoremif there are no point
eigenvaluesmi ,

(
l50,61

E
0

`

m dmE dxW

v~m,p!
J i* ~xW ;tupW ,l,m!J j~xW8;t8upW ,l,m!5

1

c3 d i , jd~xW2xW8!d~ t2t8! .

~64a!

In Eq. ~64a! J i(xW ;tupW ,l,m) is the i th component of the vectorJW (xW ;tupW ,l,m).
We shall now restrict our discussion to them.0 case, since that form50 has already been

discussed. For a general transverse current densityjWT(xW ;t) we have the expansion

jWT~xW ;t !

c
5A8p c Rei (

l561
E

0

`

m dm E dpW

v~m,p!
JW ~xW ;tupW ,l,m!km~pW ,l! . ~70!

Thus forl561,21

km~pW ,l!5
2 ic2

A2p
E

2`

`

dtE dxW JW * ~xW ,tupW ,l,m!• jWT~xW ;t !. ~71!

Also

EW T~xW ;t !5Re
A128p3

c3 (
l561

lE
0

` dm

m E dpW JW ~xW ;tupW ,l,m!km~pW ,l!,

~72!

HW T~xW ;t !5Re
A128p3

c3 i (
l561

E
0

` dm

m E p dpW

v~m,p!
JW ~xW ;tupW ,l,m!km~pW ,l! .

The longitudinal part of the current density is

jWL~xW ;t !52A2p c ReE
0

`

m dmE dpW JW ~xW ;tupW ,0,m!km~pW ,0! . ~73!

The charge density is

r~xW ;t !522 Re
1

~2p!3/2E
0

`

m dmE p dpW

v~m,p!
km~pW ,0! ei [ pW •xW2cv(m,p)t] . ~74!

The equation of continuity is again satisfied.
Because of the completeness and orthogonality relations,any current density jW(xW ;t)

5 jWT(xW ;t)1 jWL(xW ;t) can be expanded as in Eqs.~70! and~73!. The charge densitymustbe given by
Eq. ~74!.22 In the expansions we can include point eigenvaluesmi by requiring corresponding
d(m2mi) functions in the coefficientskm(pW ,l).

The expansions for the four-current density or for fields do not in themselves assure us t
theory is Poincare´-invariant. One must have the same expansions inany frame of reference. This
invariance of expansions can be achieved by requiring the amplitudeskm(pW ,l) to transform as
massm, spin 1, and positive energy representations in the helicity description of the irredu
representations of the Poincare´ group.
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IX. VELOCITY OF CURRENT DENSITY WAVES AND ELECTROMAGNETIC WAVES

Equations~54! and ~55! indicate that for waves of a single frequency, current-density
fields, the waves propagate with a velocitycv(m,p)/p. That is, these waves propagate with
velocity greater than the speed of light. Relativity is generally thought to preclude this resul
usual reconciliation with relativity involves the assumption that we are dealing with agroup and
that it is the group whose velocity we require. The usual expressions for the group velocity fo

vg5cH ]

]p
v~m,p!J

p5p0

5
cp0

v~m,p0!
,c . ~75!

In deriving this result it is assumed thatkm(pW ,l) has a sharp peak atp[upW u5p0 .23

One of the difficulties which we have found is that one has approximate periodicity inp-space
even when the peak is not extremely sharp.24

However, the principal difficulty, as pointed out by Stratton, is that it is hard to define velo
in a dispersive medium. When the mass is zero, velocity is relatively easy to define becau
wave moves rigidly with increasing time. One can follow any point as it moves. When the
dispersion, it is not clear how to define velocity because the wave changes form with time

X. IS A QUANTUM INTERPRETATION FOR MASSIVE PHOTONS POSSIBLE? A BASIS
FOR CONJECTURES

We have not needed a quantum interpretation for the complex amplitudeskm(pW ,l) to obtain
our results. In the spirit of the application of group theory to quantum mechanics it is tempti
call the complex amplitudeskm(pW ,l) wave functions of a particle of spin 1 and massm. Perhaps
one can be made more comfortable with this idea by reviewing the process by which the dy
cal variables of relativistic quantum particles are introduced from classical analogues an
they are related to the infinitesimal generators of the Poincare´ group. This relationship is implicit
or explicit in most treatments of the application of the theory of Poincare´ groups to elementary
particle theory.

A. The infinitesimal generators of the Poincare ´ group

1. Poincaré transformations: Parametrization of the transformations

Let us consider the time–space four-vectorxm with the components$x052x05ct,xi5xi% for
i 51,2,3. We define thetranslation transformation T(am) as mappingxm into the four-vectorx8m

where

xm85T~am!xm[xm2am. ~76!

The inverse transformationT21(am) is

T21~am!xm5xm1am . ~77!

To define the pure rotation transformation and pure Lorentz transformation it is conveni
regard the four-vectorxm as being a column vector which we shall denote byxc . We usexW to
denote the vector which is made up of the space components ofxc . The properrotation trans-
formation is accomplished using a three-by-three matrix acting onxW to produce a vectorxW8. The
transformation is such that the length ofxW8 is equal to the length ofxW and the determinant of the
matrix is unity. The componentx0 of xc is unaffected by this transformation. The matrix is call
the rotation matrix and is uniquely characterized by a vectoruW . By one of Euler’s theorems on
rotations,every proper rotation can be accomplished by a rotation around an axis. The direction
of uW is the direction of the axis of rotation andu5uuW u, (0,u,2p) is the angle of rotation. We
therefore parametrize the rotation byuW and denote both the rotation and the associated matrix
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R(uW ). As is well known the product of two rotations is also a rotation. That is, if one performs
rotations one after the other, the resulting transformation is also a rotation. One says that th
rotations form a group.

Thepure Lorentz transformationmaps the set of time–space coordinates from an initial fra
to a moving from whose axes are parallel to the axes of the original frame and whose o
coincide at timet50 in both frames. In addition one requires that the sign of time is preserve
to use an accepted term, the transformation is orthochronous. The transformation and the
ated 434 transformation matrix will be denoted byL(bW ), where the direction ofbW points in the
direction of the line connecting the origin of the moving frame to the origin of the fixed fra
The absolute valueb5ubW u is found from

coshb5
1

A12~v/c!2
, ~78!

wherev is the velocity of the moving frame with respect to the original frame. The set of p
Lorentz transformations donot form a group, since the product of two Lorentz transformatio
involves the introduction of a rotation matrix.

The Poincare´ group can have many parametrizations but the number of independent p
eters is ten. We shall parametrize the group using the four parameters, which are the comp
of the column vectoram, the three components ofuW , and the three components ofbW . An element
of the Poincare´ transformation will be written asG(am,uW ,bW ) where

G~am,uW ,bW !5T~am!R~uW !,L~bW ! . ~79!

The multiplication law

G~am,uW ,bW !G~am8,uW 8,bW 8!5G~am9,uW 9,bW 9! ~80!

is obtained by carrying out the transformations of the four-vectorxm in the order indicated. One
will be able to find the set of parametersam9,uW 9,bW 9 in terms of the setsam,uW ,bW andam8,uW 8,bW 8.
The transformations also include the identityG(0,0,0) and the inverse ofG(am,uW ,bW ), namely
L(2bW )R(2uW )T(2am). The abstract Poincare´ consists of elements which we shall also label
G(am,uW ,bW ) which are in a one-to-one correspondence with the set of transformations. To h
representation of the group we must have Hilbert space upon which unitary operatorsG(am,uW ,bW )
acting on elements of the Hilbert space have the same multiplication properties as the a
group elementsG(am.uW ,bW ). In general, the Hilbert space of representations can be split up
subspaces on which the operators of the representation can act without taking the vector
subspace out of the subspace. One of the objectives of representation theory is to find al
subspaces which have no other proper subspaces in them that can support a representati
such subspace and the operators having the group properties acting on it constitute anirreducible
representation of the group. What we have done in Refs. 5 and 6 and applied in the presen
is to show how one can obtain the irreducible representation of the electromagnetic field
currents and find solutions of Maxwell’s equations with sources in terms of the irreducible r
sentations. Moreover, the solutions satisfy the relativistic properties required of them. In
follows we shall discuss the relationship between the group operators and the dynamical va
of relativistic particles to indicate where our conjecture comes from. Instead of usingG as above
to indicate the unitary operators which represent the group elements, we shall useG to prevent an
overload of notation.
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2. The infinitesimal generators of the representation

The group memberT(am)5G(am,0,0),R(uW )5G(0,uW ,0),L(bW )5G(0,0,bW ) can be written in
the form

T~am!5expS i (
m50,1,2,3

amPmD ,

R~uW !5exp~ iuW •JW !, ~81!

L~bW !5exp~ ibW •KW ! .

In Eq. ~81! Pm (m50,1,2,3) are Hermitian operators and are the infinitesimal generators o
translation operators. SimilarlyJi andKi are the infinitesimal generators of the rotation and p
Lorentz transformation operators.

One can find the commutation rules for the infinitesimal generators from the multiplic
laws of the unitary operatorsG(am,uW ,bW ). For later use it is convenient to introduce the opera
H5cP0, which will be called the energy operator or Hamiltonian. The commutation rules fo
infinitesimal generators are

@H,Pi #50,

@Pi ,Pj #50,

@J1,J2#5J3 ~cyc.!,

@Ji ,Pi #50,

@J1,P2#5@P1,J2#5 iP3 ~cyc.!,
~82!

@Ji ,Ki #50,

@J1,K2#5@K1,K2#5 iK 3 ~cyc.!,

@K1,K2#52 iJ3 ~cyc.!,

@Ki ,H#5 icPi ,

@Ki ,Pj #5 id i j .

We have indicated that the infinitesimal generators can be obtained from the finite unitary
tors which represent the group. Remarkably, one can findall the irreducible representations of th
infinitesimal generators and integrate them to obtain the unitary operators.

If the infinitesimal generators are given in an irreducible representation, then the operaM
defined by

M5
1

c
AH2

c2 2(
i 51

3

~Pi !2 ~83!

is a real positive number called the ‘‘mass.’’ Those representations for whichM50 and which are
of interest to us, are further classified by their helicityl, again a constant for each representat
which takes on one of the valuesl50,61. These representations for whichl561 are identified
with a free photon. ForM.0 the helicity no longer labels the representation but the ‘‘spi
which in our case is unity, is a label. The sign of the energy is another marker for the irredu
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representations for bothM50 andM.0. The negative energy representations are ‘‘converted
positive energy representations through the use of anti-unitary operators. The ‘‘wave func
which we have introduced in Sec. III are in the Hilbert space of the irreducible representatio
the Poincare´ group.

B. The dynamical variables of quantized relativistic particles

We shall motivate our conjectures that the irreducible representations of the Poincare´ group
introduce the notion of photons with mass. We shall show that knowing the irreducible repr
tations of the Poincare´ group is equivalent to knowing the quantum dynamical variables o
particle of spin 1.

Quantization of classical particle dynamics is carried out by replacing the classical Po
bracket of two classical dynamical variables by a commutator of corresponding quantum ope
divided by i times Planck’s constant, i.e.,

$a,b%→ @A,B#

i\
.

In the abovea and b are two classical dynamical variables andA,B are the corresponding
quantum dynamical variables.

The dynamical variables of an unquantized relativistic particle are taken to be the
components of the momentumpi5pi , the energyH5cAm2c21( i 51

3 (pi)2 and the angular mo-
mentum tensor Jmn5xmpn2xnpm.25 The time-like component of the momentum fo
momentum–energy four-vectorp0 is p05H/c.

The angular momentum tensor is written in nonrelativistic form as

J15J23 ~cyc.!, ~84!

Ki5J0i . ~85!

The quantitiesJi are the components of the angular momentum vector. The dynamical vari
Ki are called ‘‘boosts’’ and are somewhat analogous to the position variablesxi .

We now denote the quantum dynamical variable analogues by the subscript ‘‘q’’ and the
operators corresponding to the infinitesimal generators without this subscript. We find th
quantum variables satisfy thesamecommutation rules as the infinitesimal generators up to a s
factor. All the quantum relativistic dynamical variables are given by

Pq
i 5Pi\,

Jq
i 5Ji\,

~86!
Kq

i 5Ki\,

Hq5H\.

If m is the mass in the Poincare´ description~dimensiontime/length2! and mq in the quantized
particle description~dimensionmass!, then

mq5m\ . ~87!

The functions which we have calledkm(pW ,l) are wave functions upon which the infinitesim
generators of the Poincare´ representationsand the dynamical variables of quantized relativist
particles act. It should also be noted that the quantum particle operators have the correct p
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dimensions. For example, if the Poincare´ infinitesimal generatorsPi ~or rather their eigenvalues!
have the dimension 1/length, then the eigenvalues of the particle operatorsPq

i have the correct
dimensions of linear momentum.

We shall give an example of how the commutation relations of the quantum operato
obtained from the Poisson brackets of the classical dynamical variables. LetK1 and K2 be the
classical boost dynamical variables,

K15x0p12x1p0,
~88!

K25x0p22x2p0.

Furthermore,

p05Am2c21(
i 51

3

~pi !2. ~89!

Then the Poisson bracket ofK1,K2 is

$K1,K2%5(
i 51

3 F]K1

]xi

]K2

]pi 2
]K2

]xi

]K1

]pi G . ~90!

Also

]K1

]xi 52d i1p0,

~91!
]K2

]pi 52x2
]p0

]pi .

But

]p0

]pi 5
pi

p0 . ~92!

Thus

(
i 51

3 F]K1

]xi

]K2

]pi G5x2p1. ~93!

Similarly,

(
i 51

3 F]K2

]xi

]K1

]pi G5x1p2. ~94!

Therefore the Poisson bracket is

$K1,K2%5x2p12x1p252J3. ~95!

To introduce quantization we replaceK1,K2,J3 by Hermitian operators and the Poisso
bracket by the commutator

$K1,K2%→
@Kq

1 ,Kq
2#

i\
52Jq

3, ~96!
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or

@Kq
1 ,Kq

2#52 i\Jq
3

as required.

XI. MOVING FRAMES OF REFERENCE AND THE CREATION OF LONGITUDINAL
FIELDS FROM TRANSVERSE AND THE CONVERSE

We shall now prove that even if one starts out with a purely transverse current density
transverse field in an original frame of reference, a longitudinal current density and field app
a frame of reference moving with respect to the first. Moreover, in the moving frame there w
a charge density, even if there were none in the original frame in which Eq.~53! holds. For a
purely transverse fieldkm(pW ,0)[50.

Let us consider a frame moving along thez axis such that the space coordinates of the mov
frame remain parallel to those of the original frame and that the two frames coincide whe
time t equals zero in both frames. Then the coordinates in the new frame are related to those
old by

ct85
ct

A12~v/c!2
,

z85
z

A12~v/c!2
2ct

v/c

A12~v/c!2
,

~97!
x85x,

y85y.

The amplitudes in the original frame will be denoted bykm(pW ,l) and that in the moving frame by
km8 (pW ,l). Then the principal result of this section is taken from Ref. 11:

km8 ~pW ,l!5exp@ ibJ3#km~pW ,l!. ~98!

In Eq. ~98! J3 is the infinitesimal boost operator which operates onkm(pW ,l) in a manner de-
scribed in Ref. 11. As before, the scalarb is related to the velocityv of the Lorentz transformation
Eq. ~97! as follows:

coshb5
1

A12~v/c!2
. ~99!

The exponent operator in Eq.~98! is a global operator which represents the effect of afinite
Lorentz transformation as in Eq.~97!. Let us consider the case in which the velocity of the mov
framev is much less than the velocity of light.26 Then

v
c

!1,

~100!

b'
v
c

.

For such velocities
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exp@ ibJ3#'11 i
v
c

J3 . ~101!

Thus on using Eq.~2.6! of Ref. 11

km8 ~pW ,l!'F12
vv~m,p!

c

]

]p3
G km~pW ,l!1 i

v
c

mc

p2 ~p1T11p2T2!km~pW ,l!. ~102!

The operatorsT1 andT2 act only on the variablel50,61 in km(pW ,l). It is these operators which
can introduce longitudinal polarization even when the amplitudekm(pW ,0)[0. Conversely, if the
field is longitudinally polarized in the original frame, it will generally have a transverse com
nent in the moving frame.27

To show howT1 andT2 act onkm(pW ,l) we introduce the related operatorsT6 through

T65T16T2 . ~103!

Then

T1km~pW ,l!5A22lA11lkm~pW ,l21!,
~104!

T2km~pW ,l!5A21lA12l km~pW ,l11! .

From the above equation we see that our assertion is proved.

XII. A SIMPLE EXAMPLE: A SPHERE OF CONSTANT CHARGE DENSITY UNDER
PULSED ROTATIONS

We shall consider the source of electromagnetic waves to be a sphere of radiusa which
contains a charge of uniform densityr. The origin of the sphere is at the origin of coordinates. F
time t,2t and t.t, wheret.0, the sphere is stationary. But for2t,t,t the sphere rotates
about thez axis with a constant angular velocityV. For t,2t andt.t there is no current at all
either transverse or longitudinal. Since the charge density is constant in time, the equa
continuity is trivially satisfied. For2t,t,t the current is purely transverse and again
equation of continuity is satisfied.

A. The longitudinal field

We shall first dispose of the problem of finding the longitudinal current density and
longitudinal electromagnetic field. It is obvious that the longitudinal current density is zero
that the longitudinal field is a purely electrostatic field with only a radial componentEr(r ) given
by

Er~r !5
Q

r 2 for r .a . ~105!

B. The transverse current density

The transverse current densityjWT(xW ) during the time2t,t,t is

jWT~xW !5r~r !vW , ~106!

r~r !5H r for r ,a

0 for r .a.
~107!

We define the vector angular velocityVW 5VkW wherekW is the unit vector on thez axis. ThenvW
5VW 3xW .
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Polar coordinates inxW space will be denoted by$r ,û,f̂%. In pW space they will be indicated by
$p,u,f%. In terms of polar coordinates

jWT~xW !5r~r !Vr sinû aW f̂ ~108!

for 2t,t,t. For all other values oft, jWT[0. The vectoraW f̂ is the unit vector inxW space in the
f̂ direction.

C. Generalized spherical harmonics

It is now convenient to introduce generalized spherical~or surface! harmonicsYj
m,l(u,f).

The numberj is either 0 or a positive integer or half-odd integer. The numbersl,m take on the
values 2 j ,2 j 11,...,j 21,j . The generalized spherical harmonics are useful when descr
functions, vectors, and tensors.28 These functions are generalized spherical harmonics in the s
that a subset of them are ‘‘ordinary’’ spherical harmonics,

Yj
m,0~u,f![Yj ,m~u,f! ~109!

when j is an integer.29 The generalized spherical harmonics satisfy the following orthogonality
completeness relations:

E
0

2p

dfE
0

p

sinu du Yj
m,n * ~u,f! Yj 8

m8,n
~u,f!5d j , j 8dm,m8 ,

~110!

(
j 5unu

`

(
m52 j

j

Yj
m,n~u,f! Yj

m,n* ~u8,f8! sinu5d~u2u8!d~f2f8! .

The spherical harmonicsY1
m,l(u,f) play a central role. Explicitly they are given by30

Y1
1,1~u,f!5

1

4
A3

p
~11cosu!,

Y1
1,0~u,f!52 A 3

8p
eif sinu,

Y1
1,21~u,f!5

1

4
A3

p
e2if~12cosu!,

Y1
0,1~u,f!52 A 3

8p
e2 if sinu,

~111!

Y1
0,21~u,f!52 A 3

8p
eif sinu,

Y1
21,1~u,f!5

1

4
A3

p
e22if~12cosu!,

Y1
21,0~u,f!5A 3

8p
e2 if sinu,

Y1
21,21~u,f!5

1

4
A3

p
~11cosu! .
                                                                                                                



hat

f polar

ve

1910 J. Math. Phys., Vol. 45, No. 5, May 2004 Harry E. Moses

                    
D. Calculation of the wave function k m„p¢ ,l…

In this section we shall computekm(pW ,l) from the current density Eq.~108! by using Eq.
~65!. We only need findkm(pW ,l) for l561, since the current density is transverse so t
km(pW ,0)[0.

Through the use of the formulas forJW (xW ,tupW ,l,m),

km~pW ,l!5
rV

~2p!2 E
2t

t

dt eicv(m,p)tE
0

`

r 3 dr E
0

2p

df̂E
0

p

sin2 û dû@aW f̂•QW * ~pW ,l!#e2 ipW •xW .

~112!

But

E
2t

t

dt eicv(m,p)t52
sincv~m,p!t

cv~m,p!
. ~113!

Now we shall evaluate the integral

E
0

2p

df̂ E
0

p

dû sin2 û@aW f̂•QW * ~pW ,l!#e2 ipW •xW .

We recollect thatf̂ andû refer to the polar angles ofxW andf andu refer to the polar angles ofpW .
The expression in square brackets in the above double integral involves the two sets o
angles.

It can be shown that

aW f̂•QW * ~pW ,l!52 iA2p

3 (
m561

e2 imf̂Y1
ml~u,f! . ~114!

Also

e2 imf̂ sinû5A8p

3
mY1*

m0~ û,f̂ ! ~115!

and

e2 ipW •xW54p (
q50

`

(
s52q

q

~2 i !qj q~pr !Yq*
s0~u,f!Yq

s0~ û,f̂ ! . ~116!

In the above equationj n(x) is the usual spherical Bessel function.~Of coursep5upW u and r
5uxW u.) On using the orthogonality properties of the generalized spherical harmonics we ha

km~pW ,l!52
8

3
rV

sinv~m,p!ct

cv~m,p! (
m561

mY1
ml~u,f!Y1*

m0~u,f!E
0

a

dr r 3 j 1~pr !. ~117!

On using the explicit forms for the generalized spherical harmonics

(
m561

m Y1
ml~u,f!Y1*

m0~u,f!52&
3

8p
le2 ilf sinu ~118!

and thus

km~pW ,l!5
&

p
rV

sin@v~m,p!ct#

cv~m,p!
le2 ilf sinuE

0

a

dr r 3 j 1~pr ! . ~119!
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We need only evaluate the integral. We give this integral below:

E
0

a

dr r 3 j 1~pr !5
1

p4 G~pa! , ~120!

whereG(x) is the function

G~x!53x cosx1~231x2!sinx . ~121!

Thus we have found the transform of the current density explicitly as

km~pW ,l!5
&

p
rV

sin@v~m,p!ct#

cv~pW ,l!
le2 ilf sinu

1

p4 G~pa! . ~122!

One can also write Eq.~122! in terms of dimensionless variables,

km~pW ,l!5Ck̂m~ p̂W ,l! . ~123!

In Eq. ~123! C5(&/p)rVa3t. The functionk̂m is the dimensionless form ofkm and is given in
terms of the dimensionless variablesm̂, p̂ andx defined below:

k̂m̂~ p̂W ,l!5
sin@Am̂21 p̂2 x#

Am̂21 p̂2
le2 ilf sinu

G~ p̂!

p̂4 ,

p̂5pa,

x5
ct

a
,

m̂5mca. ~124!

When we considerkm(pW ,l) to be a wave function used in fractions to provide probability dis
butions, we may setC to be equal to unity, since it cancels out in the numerator and denomin
of the ratio. We can then drop the caret over the variables and evaluate probabilities in a d
sionless setting.

1. Use of k m„p¢ ,l… to find the mass distribution for the rotating sphere of charge

It is not a difficult matter to find the electromagnetic field due to the rotating sphere of ch
The easiest way, perhaps, is to calculateEW (xW ;t) andHW (xW ;t) using Eq.~72!. We focus our attention
on finding the consequences of consideringkm(pW ,l) to be the wave function of a massive photo

2. Consequences of the notion of a massive photon: Arguments for and against its
existence

We shall use Eq.~122! as the wave function. We shall concentrate on obtaining the probab
of finding the massm in an interval when the current is on.

Knowledge of the wave functionkm(pW ,l) enables us to obtain the probability distributio
P(m) that the massm lies in the intervalD as

E
D

P~m!dm .

From quantum mechanics,
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P~m!5

m (
l561

E
0

2p

df E
0

p

du sinuE
0

`

dp@p2/v~m,p!#ukm~pW ,l!u2

E
0

`

dm m (
l561

E
0

2p

df E
0

p

du sinuE
0

`

dp@p2/v~m,p!#ukm~pW ,l!u2
. ~125!

Then the probability that a measurement of massm in a small intervalD aboutm0 is

P~m0!D . ~126!

At this point it seems desirable to give arguments for and against the existence of m
photons based on the requirements of relativity as a constraint on the solutions of Max
equations. The principal reason for identifyingkm(pW ,l) with the photon wave function is tha
when this identification is carried out for the case of no current density, this identification lea
the correct results for zero-mass photons, including second quantization. Also one obta
correct decompositions for both the real and complex vector fields and for solutions of the
equation for both zero- and nonzero masses.31 Furthermore, as indicated earlier, the functi
km(pW ,l) is theonly wave function32 for quantized relativistic particles of spin 1. The electroma
netic fields cannot be expressed in terms of any other function if they are to transform
Lorentz transformations in the customary way.

The principal argument against massive photons is that they have not yet been found~But
neither have they been sought for in modern times.! Another argument against their existence
thatP(m) which gives the mass distribution is, in our example, independent of the charge d
r or angular velocityV of the rotating sphere of charge, though the strength of the electromag
field doesdepend on these quantities. Perhaps the independence ofP(m) on rV is one of the
paradoxes of quantum theory as opposed to classical theory. A somewhat similar situation
for the electron–positron field for which the ‘‘sea of electrons’’ is assumed to fill the nega
energy band, even when no electron is lifted out of the sea and the sea cannot be observ

XIII. EVALUATION OF THE PROBABILITY DISTRIBUTION OF MASS P„m … IN OUR
EXAMPLE

We shall now evaluate the probability distributionP(m) of Eq. ~125!, which will give an
indication of which masses to expect in our problem. The massesm are perhaps the most inte
esting aspect of photons with mass.

A. The evaluation of the denominator

We denote the denominator byD,

D5 (
l561

E
0

2p

dfE
0

p

sin3uE
0

`

dm mE
0

` dp

p6

sin2@v~m,p!x#

@v~m,p!#3 @G~p!#2. ~127!

Summing overl and integrating overu andf allow us to write

D5EE
0

`

dm mE
0

` dp

p6

sin2@v~m,p!x#

@v~m,p!#3 @G~p!#2 . ~128!

In the above equationE is a numerical constant which will cancel out in the ratio of numerator
denominator in the expression forP(m). We may thus setE51. We shall now carry out the
integration overm.

We introduce the variablej by

j5v~m,p!x .

Then
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E
0

`

dm
m sin2@v~m,p!x#

@v~m,p!#3 5xE
xp

` sin2 j

j2 5xFp2 2Si~2xp!1
sin2 xp

xp G . ~129!

Thus the denominator of the probability ratio is

D5xE
0

` dp

p6 Fp2 2Si~2xp!1
sin2 xp

xp G uG~p!u2 . ~130!

This integral is a single integral overp which we shall evaluate numerically for several values
the nondimensional timex.

B. The expression for the probability density

We shall now give the probability densityP(m) in terms of the dimensionless variablesm,x.
We shall denote the probability density, at the nondimensional timex, by P(m,x). The

probability that a measurement of the massm will give a value ofm within an intervalD aboutm
at the nondimensional timex is P(m,x)D where

FIG. 1. The probability densityP(m) for x50.1.

FIG. 2. The probability densityP(m) for x51.0.
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P~m,x!5
1

x

mE
0

` dp

p6

sin2@v~m,p!x#

@v~m,p!#3 @G~p!#2

E
0

` dp

p6 Fp2 2Si~2xp!1
sin2xp

xp G@G~p!#2

. ~131!

C. Figures for P„m … for several values of time interval of rotation

We have calculated and graphedP(m) for three values ofx, namely,x50.1, 1.0, and 10.
These three values ofx are representative of the cases for whichct is short, equal to long,
respectively, compared to the radiusa of the sphere which contains the charge~Figs. 1–3!.33

It is clear from these graphs that there is a continuous distribution of masses for the pr
which we have discussed. The writer hopes to obtain probability distributions for other trans
current distributions.

XIV. A DISCUSSION OF THE LONGITUDINAL FIELD: AN EXAMPLE OF A TIME-
DEPENDENT LONGITUDINAL CURRENT DENSITY AND THE ASSOCIATED
LONGITUDINAL ELECTRIC FIELD

Most of our discussion has centered on time-dependent transverse current densities an
verse electromagnetic fields because these are of great practical interest. But longitudinal
densities and longitudinal electric fields~there are no magnetic fields! also have properties which
are surprising. We shall give an example which can, perhaps, be tested experimentally.

A. General considerations of longitudinal current densities and electric fields

Longitudinal current densities as a source of fields are much more easily treated math
cally than transverse current densities and fields. If we have a longitudinal current density,
well’s equations become

]

]t
EW L~xW ;t !524p jWL~xW ;t !,

HW L~xW ;t ![0, ~132!

¹W •EW L~xW ;t !54pr~xW ;t !.

It would appear that we could use either the longitudinal current densityjW(xW ;t) or the charge
densityr(xW ;t) and get the same answer. We shall see that this is, in fact, true.

FIG. 3. The probability densityP(m) for x510.0.
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We shall assume that the current density is pulsed and that it is zero fort,2T,0 and t
.T. We can use Professor Keller’s suggested method of solving Eq.~132! without reducing the
fields and currents to irreducible representations of the Poincare´ group. Thus we find the electric
field EW L(xW ;t) from the first of Eq.~132!:

EW L~xW ;t !55
EW s0~xW ! for t,2T,

Es0~xW !24pE
2T

t

jWL~xW ;t8!dt8 for 2T,t,T

Es0~xW !24pE
2T

T

jWL~xW ;t8!dt8 for t.T .

~133!

In the above equationEW s0(xW ) is the static electric field which may exist before the longitudin
current is pulsed. It could be due to a static charge density. Whent.T, the electric field is again
independent of time and may be regarded as the static field due to a charge distribution
from the pulsed current. Thus fort.T we writeEW L(xW ;t)[EW s1(xW ). We first solve the problem for
which EW s0(xW )[0. The charge density after the current density pulse has been initiated is th

r~xW ;t !55
1

4p
¹W •EW L~xW ;t !

0 for t,2T

2E
2T

t

dt8 ¹W • jWL~xW ,t8! for t.2T .

~134!

Clearly the equation of continuity is satisfied.

B. Example: An expanding balloon with surface charge

As an example, we consider an expanding balloon, the surface of which has an ind
refraction close to unity. The expansion starts at timet52T, at which time the radius of the
balloon isR0 and continuous to timet5T at which time the radius isR1 . The radius for any time
t with 2T,t,T is denoted byR(t). The radius is assumed to grow with constant velocityu.
Thus

R~ t !5ut1
R11R0

2
,

~135!

u5
R12R0

2T
.

The total charge in the balloon isQ which is uniformly distributed on the surface of th
balloon. The charge distributionr(xW ;t) is then

r~xW ;t !5
Q

4p

d~r 2r ~ t !!

R2~ t !
. ~136!

Thusr(xW ;t) depends only uponr and t. It is readily verified that

E dxW r~xW ;t !5Q ~137!

as required. The current density is
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jW~xW ;t !5H r~xW ;t !uW for 2T,t,T

0 for all other values oft,
~138!

and uW 5uaW r whereaW r is e unit vector along the radius. We can find the electric field from
~132!. Initially we setEW s050.

Then

EW L~xW ;t !55
0 for t,2T

2
Q

r 2 for 2T,t,T and R0,r ,R~ t !

2
Q

r 2 aW r for t.T and R0,r ,R1 .

~139!

In all domains of space–time other than those appearing in Eq.~139! EW L(xW ;t)50.
This result forEW l(xW ;t) would be valid if the charge on the balloon were created insta

neously at timet52T. A more realistic approach would be to put the charge on the bal
beforethe balloon began to expand. In this case

EW s0~xW ;t !5H 0 for r ,R0

Q

r 2 aW r for r .R0 .
~140!

We now add this field to the field of Eq.~139!. We obtain

EW L total5H 0 for r ,R~ t !

Q

r 2 aW r for r .R~ t !.
~141!

This result is precisely the same as though we used Gauss’s theorem as is generally done
the field due to a spherical distribution of charge in elementary potential theory.

This result is general. One can use electrostatic theory with time-dependent source de
r(xW ;t) to obtain longitudinal fields. We shall now prove this theorem in general. The proof
generalization of a similar theorem for zero mass components of the field which we treated e

Since EW L(xW ;t) is a longitudinal~i.e., irrotational! field, the field can be represented as
gradient of a scalar potential.

EW L~xW ;t !52¹W V~xW ;t !. ~142!

Then the last of Eq.~132! becomes

¹2V~xW ;t !524pr~xW ;t ! . ~143!

This equation is, of course, Poisson’s equation for potentials with a source distributionr(xW ;t).
Then the longitudinal field is easily solved for

EW L~xW ;t !5¹W E dxW
r~xW8;t !

uxW2xW8u
. ~144!

Thus thetime-dependentlongitudinal field is easily obtained from atime-dependentsource distri-
bution. This result is a simple generalization of the method of obtaining electrostatic fields
source distributions.
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There is an astonishing consequence.Longitudinal fields are not causal! Maxwell’s equation
have noncausal solutions!Longitudinal electric fields travel with infinite speed just as Newton
gravitational fields do.

We are left with a problem, if causality, as usually understood, is to be preserved. It w
seem that Maxwell’s equations have to be modified. Otherwise, if we want to keep Maxw
equations as they are, we shall have to alter our notion of the meaning of causality. Fr
experimental point of view, one should test whether indeed a change in the longitudinal
travel with a finite speed if the source distribution is changed abruptly.

The problem of causality of all solutions of Maxwell’s equations seems not to have
generally understood or discussed, at least in modern times.

To finish the discussion of longitudinal electric fields, the longitudinal current density ca
found from the first of Eq.~132! or, equivalently, from the equation of continuity. If one starts w
this current density and solves for the longitudinal field, one gets the same field that one
with and the same charge density. The circle is closed.
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Group averaging in the „p ,q … oscillator representation
of SL „2,R…

Jorma Loukoa) and Alberto Molgadob)
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Nottingham NG7 2RD, United Kingdom
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We investigate refined algebraic quantization with group averaging in a finite-
dimensional constrained Hamiltonian system that provides a simplified model of
general relativity. The classical theory has gauge group SL(2,R) and a distin-
guishedo(p,q) observable algebra. The gauge group of the quantum theory is the
double cover of SL(2,R), and its representation on the auxiliary Hilbert space is
isomorphic to the (p,q) oscillator representation. Whenp>2, q>2 andp1q[0
~mod 2!, we obtain a physical Hilbert space with a nontrivial representation of the
o(p,q) quantum observable algebra. Forp5q51, the system provides the first
example known to us where group averaging converges to an indefinite sesquilinear
form. © 2004 American Institute of Physics.@DOI: 10.1063/1.1689001#

I. INTRODUCTION

In quantization of constrained systems, an elegant proposal to obtain a physical inner p
is to average unconstrained quantum states in an auxiliary Hilbert space over the gauge gro1–13

When the averaging is formulated within refined algebraic quantization4,8,12 and converges in a
sufficiently strong sense, it provides either the unique rigging map, and hence the unique
product on the states that satisfy the constraints, or a proof that the system does not admit a
map.8 Given the equivalence of refined algebraic quantization to a wide class of metho
choosing the physical inner product,13,14 group averaging thus provides considerable control o
the quantization.

When the gauge group is compact, the averaging necessarily converges. For a nonc
gauge group the averaging need not converge on all of the auxiliary Hilbert spaceHaux but may
still converge on a suitable dense linear subspaceF, and this is sufficient for recovering th
physical Hilbert spaceHRAQ. The choice of the test spaceF thus has a mathematical role i
ensuring convergence, but it also has a deep physical role in thatF determines the algebra o
operators represented onHRAQ.8,14 While quantization with group averaging can be carried
without the explicit construction of any physical observables, in concrete examples one ma
to chooseF so that certain explicitly known physical observables of interest are contained i
algebra represented onHRAQ.

In this paper we study a quantum mechanical system whose constraints mimic the H
tonian structure of general relativity.15 The constraint set consists of two ‘‘Hamiltonian’’-typ
constraints, quadratic in the momenta, and one ‘‘momentum’’-type constraint, linear in the
menta, and the classical gauge group generated by these constraints is SL(2,R). The unreduced
phase space isT* Rp1q.R2(p1q), wherep>1 andq>1. The system was introduced by Montes
nos, Rovelli and Thiemann withp5q52,16 and its quantization withp5q52 was studied in
Refs. 10 and 16–18 within Ashtekar’s algebraic quantization,19,20 in Ref. 21 within algebraic
constraint quantization,22,23 in Refs. 10 and 24–26 within group theoretic quantization,27,28and in
Ref. 10 within refined algebraic quantization with group averaging.4,8 All these quantizations

a!Electronic mail: jorma.louko@nottingham.ac.uk
b!Electronic mail: pmxam@nottingham.ac.uk
19190022-2488/2004/45(5)/1919/25/$22.00 © 2004 American Institute of Physics
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relied in one way or another on a distinguished classicalo~2,2! observable algebra, constructing
quantum theory in which these observables are promoted into quantum operators. Within
averaging,10 it was in particular found that a judicious choice for the test space is necessa
achieve both convergence of the averaging and the inclusion of theo~2,2! observables in the
physical operator algebra.

For p.2 and q52, the system has been studied in the context of a ‘‘two-time’’ phys
interpretation in Refs. 29–32. The casep5q52 is currently being studied33 within the master
constraint program.34 Related systems with SL(2,R) gauge invariance have been studied in Re
35–37.

We wish to quantize this system with group averaging for generalp andq, using test states
built from eigenstates of the harmonic oscillator Hamiltonians that arise in the oscillator r
sentation of SL(2,R).38 Whenp>2, q>2 andp1q[0 ~mod 2!, we obtain a quantum theory in
which the classicalo(p,q) observables are promoted into a nontrivially represented ope
algebra. When (p,q)5(1,3) or~3,1!, we obtain a quantum theory with a one-dimensional phys
Hilbert space that is annihilated by all theo(p,q) observables. For other values ofp and q we
recover no physical Hilbert space. In particular, forp5q51 the group averaging converges to
indefinitesesquilinear form, in a sense strong enough for the uniqueness theorem of Re
imply that the system admits no rigging maps. This is the first example known to us in w
group averaging fails to produce a Hilbert space owing to indefiniteness of the would-be
product.

We show further that all our group averaging quantum theories can be obtained within
tekar’s algebraic quantization,19,20 using theo(p,q) observables to determine the physical inn
product, and we display explicitly the correspondence between the two schemes. We ha
gained sufficient control over theo(p,q) algebra to ascertain whether algebraic quantization m
for somep andq yield also quantum theories not recovered by the group averaging, but we
that this does not happen forp1q[1 ~mod 2!, nor does it happen forp1q[0 ~mod 2! if p
<3 andq<3.

We also give a detailed description of the classical reduced phase space. The reduce
space contains a symplectic manifold if and only ifp>2 andq>2. This manifold is separated b
the o(p,q) observables, and it is connected if and only ifp>3 and q>3. This suggests tha
interesting quantum theories should exist only whenp>2 andq>2, possibly with some subtletie
when min(p,q)52. As outlined above, this agrees with our findings.

The rest of the article is as follows. Section II introduces and analyzes the classical sy
Section III discusses algebraic quantization, laying out the task for generalp andq and complet-
ing it for max(p,q)<3. Refined algebraic quantization with group averaging is carried out in
IV for min(p,q)>3 and in Sec. V for other values ofp andq.

Section VI presents a summary and concluding remarks. Appendix A collects some
properties of SL(2,R), and Appendixes B–E contain the proofs of several technical results s
in the main text.

II. CLASSICAL SYSTEM

In this section we analyze a classical constrained system with the unreduced phase
T* Rp1q, wherep>1 and q>1. The system was introduced forp5q52 in Ref. 16, and our
discussion of the gauge transformations and the distinguishedo(p,q) observables generalizes th
observations of Ref. 16 in a straightforward manner. We shall, however, show that the struc
the reduced phase space depends sensitively onp andq.

A. The system

The system is defined by the action

S5E dt ~p"u̇1p"v̇2NH12MH22lD !, ~2.1!
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whereu andp are real vectors of dimensionp>1, v andp are real vectors of dimensionq>1, and
the overdot denotes differentiation with respect tot. p and p are, respectively, the moment
conjugate tou andv, the symplectic structure is

V5(
i 51

p

dpi∧dui1(
j 51

q

dp j∧dv j , ~2.2!

and the phase space isGªT* Rp1q.R2(p1q). N, M and l are Lagrange multipliers associate
with the constraints

H1ª
1
2 ~p22v2!,

H2ª
1
2 ~p22u2!, ~2.3!

Dªu"p2v"p.

The Poisson algebra of the constraints is thesl(2,R) Lie algebra~see Appendix A!,

$H1 ,H2%5D,

$H1 ,D%522H1 , ~2.4!

$H2 ,D%52H2 ,

and the system is a first class constrained system.39,40 The finite gauge transformations onG
generated by the constraints are

S u
pD°gS u

pD , S p

v D°gS p

v D , ~2.5!

whereg is an SL(2,R) matrix. The gauge group is thus SL(2,R). As the Hamiltonian is a sum o
the constraints, the constraints entirely determine the dynamics.

B. Classical observables

Recall that an observable is a function onG whose Poisson brackets with the first cla
constraints vanish when the first class constraints hold.40 Consider onG the functionsOk jªxk

3xj , wherexk5(uk ,pk)
T for 1<k<p, xp1k5(pk ,vk)

T for 1<k<q, and the cross stands fo
the scalar-valued cross product onR2. As the SL(2,R) action onR2 preserves areas,~2.5! shows
that Ok j are invariant under the gauge transformations. HenceOk j are observables. The Poisso
algebra of these observables is theo(p,q) Lie algebra,

$Oi j ,Okl%5gikOj l 2gil Ojk1gjl Oik2gjkOi l , ~2.6!

where

The algebra generated by$Oi j % is denoted byAclass. The finite transformations thatAclassgener-
ates onG are

S u
pD°RS u

pD , S p
vD°RS p

vD , ~2.8!
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whereR is an O(p,q) matrix, in the connected component Oc(p,q). Note that as none of the
above relies on the constraints being satisfied, the SL(2,R) action ~2.5! and the Oc(p,q) action
~2.8! commute on all ofG, not just on the subset where the constraints hold.

It will be useful to decompose the basis$Oi j % of Aclassaso(p,q)5o(p) % o(q) % p, wherep is
spanned by the observables transverse to those in the Lie algebra of the maximal compa
group Oc(p)3Oc(q).41 Explicitly, we write

Ai jªOi j 5uipj2uj pi , 1< i<p, 1< j <p,

Bi jªOp1 i ,p1 j5v ip j2v jp i , 1< i<q, 1< j <q, ~2.9!

Ci jªOi ,p1 j5uiv j2pip j , 1< i<p, 1< j <q,

whereAi j Po(p), Bi j Po(q) andCi j Pp.
Other observables of interest inAclass are the Casimir elements of the universal envelop

algebra ofo(p,q).42 We consider only the quadratic Casimir observable,

Cª1

2 (
i jkl

gi j gklOikOj l 5(
i , j

~Ai j !
21(

i , j
~Bi j !

22(
i , j

~Ci j !
2524H1H22D2, ~2.10!

where the last equality follows by direct computation. When the constraints hold,C thus vanishes.

C. Reduced phase space

Let Ḡ be the subset ofG where the constraints hold. The reduced phase space, denoted bM,
is the quotient ofḠ under the gauge action~2.5!. As the Hamiltonian is a linear combination of th
constraints, there is no dynamics onM, and M can be identified with the space of classic
solutions. As the functions inAclassare gauge invariant, they project to functions onM: We use
for these functions the same symbols.

For p5q52, the generic sectors ofM were found in Refs. 16 and 21 and the global pro
erties ofM were exhibited in Ref. 10. We now analyzeM for generalp>1 andq>1.

Ḡ is clearly connected. Hence alsoM is connected.
To proceed, we decomposeḠ into three subsets. LetḠ05$q0%, whereq0 is the origin ofG,

u5p505v5p. Let Ḡex contain all other points ofḠ at which at least one of the pairs~u, p! and
~v, p! is linearly dependent. Finally, letḠ reg contain the rest ofḠ. We refer toḠex and Ḡ reg as
respectively the ‘‘exceptional’’ and ‘‘regular’’ parts ofḠ. We show in Appendix B that the gradi
ents of the constraints are all vanishing onḠ0 , linearly dependent but not all vanishing onḠex,
and linearly independent onḠ reg. Ḡ0 and Ḡex are nonempty for allp and q, while Ḡ reg is
nonempty if and only ifp>2 andq>2.

As Ḡ0 , Ḡex and Ḡ reg are preserved by the gauge transformations, they project onto dis
subsets ofM. We denote these sets respectively byM0 , Mex andMreg and analyze each in turn

1.M0

M0 contains only one point, the projection ofq0 . All observables inAclassvanish onM0 .

2.Mex

As q0¹Ḡex, the constraintsH1505H2 show that all points inḠex have (u,p)Þ(0,0) and
(v,p)Þ(0,0). Given a point at which the pair~u, p! is linearly dependent, there thus exists
gauge-equivalent point withu50 and p251, at which the constraints implyp50 and v251.
Given a point at which the pair~v, p! is linearly dependent, a similar argument shows that th
exists a gauge-equivalent point at whichp50, v251, u50 andp251. Thus, each point inḠex is
gauge-equivalent to a point that satisfies
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v25p251, u505p. ~2.11!

It follows that both the pair~u, p! and the pair~v, p! are linearly dependent onḠ.
The gauge transformations that preserve the set~2.11! act on it either trivially or by

~v,p!°~2v,2p!. ~2.12!

Mex can therefore be represented as the quotient of the set~2.11!, with topologySp213Sq21,
under theZ2 action generated by~2.12!. If in particular p51 ~respectivelyq51), Mex has
topologySq21 (Sp21). If p5q51, Mex contains just two points.

Other representations ofMex are obtained by replacing in~2.11! the first equations byv2

5p25r , wherer is an arbitrary prescribed positive number. This shows that in the topology oM
induced fromG, every open set that includesM0 includes alsoMex.

Equations~2.9! and~2.11! show that all observables inAclassvanish onMex. Equations~2.2!
and~2.11! show that the projection of the symplectic formV vanishes onMex. We refer toMex

as the ‘‘exceptional’’ part ofM.

3.Mreg

Whenp51 or q51 ~or both!, Ḡ reg and hence alsoMreg are empty. We now assumep>2 and
q>2.

We show in Appendix B that the gradients of the constraints are linearly independent onḠ reg.
It follows ~Ref. 40, Sec. 1.1.2 and Appendix 2A! that Mreg is a manifold of dimension 2p12q
26 with a symplectic form induced fromG. We refer toMreg as the ‘‘regular’’ part ofM.

Given a point inḠ reg, the linear independence of the pair~u, p! implies that there exists a
gauge-equivalent point at whichu"p50 andu25p2.0. The constraints imply that at this poin
v"p50, v25p2 andp25u2. Hence each point inḠ reg is gauge-equivalent to a point that satisfi

u25p25v25p2.0, u"p5v"p50. ~2.13!

The gauge transformations that preserve the set~2.13! are ~2.5! with

g5S cosu sinu

2sinu cosu D , ~2.14!

where 0<u,2p. It follows thatMreg can be represented as the quotient of the set~2.13! under
the U(1) action given by~2.5! and ~2.14!.

We show in Appendix C thatAclassseparatesMreg: Given two distinct points inMreg, there
exist functions inAclass that take distinct values at the two points.

For p5q52, Mreg consists of four connected components,10,16,21 which can be pairwise
joined into two connected symplectic manifolds by adding certain points fromMex.10

Supposep52 andq.2. Within each gauge equivalence class in~2.13!, there is a unique
representative at whichp150 andu1.0. It follows that at this pointp2Þ0 andu250. A gauge
transformation byg5diag(up2u,up2u21) brings this point to

v251, v"p50, p2.0, p5~0,e!, u5~ upu,0!, ~2.15!

wheree561. For eache, the set~2.15! is recognized as the cotangent bundle overSq21, with the
zero fibers omitted. HenceMreg consists of two connected components, given by~2.15! with the
respective values ofe. Equations~2.2! and ~2.15! show that the symplectic structure of th
cotangent bundle description is precisely the symplectic structure induced fromG. For eache, it is
possible to include the zero fibers by allowingp250 in ~2.15!; this means adding fromMex the
subset represented uniquely by~2.11! with p5(0,e) andp50. Note that because of the identifi
cation ~2.12! in ~2.11!, this subset ofMex is the same for both signs ofe. The mechanism of
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pairwise smoothly joining the disconnected sectors forq52 ~Ref. 10! is not available now be-
cause the fibers without origin are disconnected forq52 but connected forq.2.

The caseq52 andp.2 is isomorphic top52 andq.2.
When p.2 andq.2, Mreg is connected. We have not found a simpler description of

global properties in this case. Convenient local gauge fixings are introduced in Appendix C

III. ALGEBRAIC QUANTIZATION

In this section we apply the algebraic quantization framework of Ref. 19, adoptingAclassas
the classical observable algebra whose complex conjugation relations are promoted into a
ness relations. Seeking solutions to the quantum constraints by separation of variables, we
Sec. III A that necessary conditions for obtaining a quantum theory with a nontrivially repres
observable algebra arep>2, q>2 and p1q[0 ~mod 2!. The casep5q52 was analyzed in
Refs. 10 and 16. In Sec. III B we complete the quantization forp5q53.

Detailed expositions of algebraic quantization can be found in Refs. 19 and 20.

A. Setup for pÐ1 and qÐ1

We take the elementary ‘‘position’’ and ‘‘momentum’’ operators to act on smooth funct
C(u,v) as

ûC~u,v!5uC~u,v!, p̂ C~u,v!52 i“uC~u,v!,
~3.1!

v̂ C~u,v!5vC~u,v!, p̂C~u,v!52 i“vC~u,v!,

so that@ ûk ,p̂ j #5 idk j and @ v̂k ,p̂ j #5 idk j . Inserting these operators into the classical constra
~2.3! and making a judicious ordering choice, we obtain the quantum constraints

Ĥ1ª2 1
2 ~Du1v2!, ~3.2a!

Ĥ2ª2 1
2 ~Dv1u2!, ~3.2b!

D̂ª2 i S u"“u2v"“v1
p2q

2 D , ~3.2c!

whereDu ~respectively,Dv) stands for the Laplacian inu ~v!. The nonderivative term inD̂ is
needed to make the commutators close as thesl(2,R) Lie algebra,

@Ĥ1 ,Ĥ2#5 iD̂ ,

@Ĥ1 ,D̂#522iĤ 1, ~3.3!

@Ĥ2 ,D̂#512iĤ 2.

We define the quantum observablesÔi j by substituting the elementary quantum operat
~3.1! in the expressions of the classical observablesOi j . These quantum observables commu
with the quantum constraints~3.2!, and their commutators form theo(p,q) Lie algebra, obtained
by hatting ~2.6! and multiplying the right-hand side byi . As Oi j are real, we introduce on th
algebra generated by$Ôi j % an antilinear involution byÔi j

! 5Ôi j . We denote the resulting sta
algebra of quantum observables byA phys

(!) .
Following ~2.9!, we decompose the basis ofA phys

(!) as
                                                                                                                



it

1925J. Math. Phys., Vol. 45, No. 5, May 2004 Group averaging in the (p,q) oscillator

                    
Âi jªÔi j 52 i ~ui]uj
2uj]ui

!, 1< i<p, 1< j <p;

B̂i jªÔp1 i ,p1 j52 i ~v i]v j
2v j]v i

!, 1< i<q, 1< j <q; ~3.4!

Ĉi jªÔi ,p1 j5uiv j1]ui
]v j

, 1< i<p, 1< j <q.

The quantum quadratic Casimir observable is

Ĉª1

2 (
i jkl

gi j gklÔikÔj l 5(
i , j

~Âi j !
21(

i , j
~B̂i j !

22(
i , j

~Ĉi j !
2

522~Ĥ1Ĥ21Ĥ2Ĥ1!2D̂22
1

4
~p1q!~p1q24!, ~3.5!

where the last equality follows by direct computation. In contrast to the classical Casimir~2.10!,
Ĉ vanishes on states annihilated by the constraints only forp1q54.

We seek states annihilated by the constraints,

Ĥ1C~u,v!50, Ĥ2C~u,v!50, D̂C~u,v!50, ~3.6!

by separation of variables. Ifp>2 andq>2, we make the ansatz

C~u,v!5c~u,v !Ylku
~u (u)!Yjkv

~u (v)!, ~3.7!

whereuªuuu, vªuvu andYlku
(u (u)) @respectivelyYjkv

(u (v))] are the spherical harmonics on un
Sp21 in u (Sq21 in v!.43,44 Here u (u) denotes the coordinates onSp21, the indexl ranges over
non-negative integers, the eigenvalue of the scalar Laplacian onSp21 is 2 l ( l 1p22), the index
ku labels the degeneracy for eachl , and similarly for the quantities appearing inYjkv

(u (v)). We
extend the ansatz~3.7! to p51, in which caseu (u)

ªu1 /uP$1,21%, l P$0,1%, the indexku takes
only a single value and can be dropped, and the spherical harmonics areYl(u

(u))ª(u (u)) l /&, and
similarly for q51. For all p>1 andq>1, Eqs.~3.6! then reduce to

F 1

up23

]

]u S up21
]

]uD2 l ~ l 1p22!1u2v2Gc~u,v !50, ~3.8a!

F 1

vq23

]

]v S vq21
]

]v D2 j ~ j 1q22!1u2v2Gc~u,v !50, ~3.8b!

S u
]

]u
2v

]

]v
1

p2q

2 Dc~u,v !50. ~3.8c!

The general solution to~3.8c! is c(u,v)5u(22p)/2v (22q)/2x(z), wherezªuv. Substituting
this in ~3.8a! and ~3.8b!, we find that the indices satisfy

2l 1p52 j 1q ~3.9!

andx~z! satisfies the Bessel equation of orderl 1(p22)/2.43

Equation ~3.9! shows that solutions exist only whenp1q[0 ~mod 2!. If p51 or q51,
inspection of~3.9! further shows that solutions exist only when (p,q)5(1,1), ~1,3! or ~3,1!. Let us
consider these exceptional cases first.
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Whenp5q51, the linearly independent solutions areC6ªexp(6iu1v1), A phys
(!) is generated

by the single observableĈ11, and Ĉ11C656 iC6 . The representation ofA phys
(!) on Vphys

ªspan$C6% is irreducible, but the only sesquilinear forms in whichĈ11 is symmetric have
indefinite signature.

When p51 andq53, the only~smooth! solution isC0ªv21 sin(u1v), which is annihilated
by all operators inA phys

(!) . Promoting span$C0% into a one-dimensional Hilbert space gives thu
quantum theory in whichA phys

(!) is represented trivially. The situation forp53 andq51 is similar.
We therefore see that necessary conditions for obtaining a quantum theory with a non

representation ofA phys
(!) are p>2, q>2 andp1q[0 ~mod 2!. When these conditions hold, w

have found for the quantum constraints the linearly independent solutions

C l jk ukv
ªd2l 1p,2j 1q u(22p)/2v (22q)/2Jl 1(p22)/2~uv !Ylku

~u (u)!Yjkv
~u (v)!, ~3.10!

whereJl 1(p22)/2 is the Bessel function of the first kind.43 The Bessel function of the second kin
has been excluded to makeC l jk ukv

smooth atuv50. The motivation for this exclusion may b
debatable within algebraic quantization, but we shall see that it is precisely the smooth so
~3.10! that will emerge from group averaging in Secs. IV and V.

To proceed, we would need to examine the representation ofA phys
(!) on span$C l jk ukv

%. The
representation of theo(p) % o(q) subalgebra is given directly by its representation on the sphe
harmonics,43,44but the observablesĈi j mix the states in a more complicated way. The special c
p5q52 was analyzed in Refs. 10 and 16. In Sec. III B we address the special casep5q53.

B. Completion for pÄqÄ3

Whenp5q53, the states~3.10! can be written as

C lmn5 j l~uv !Ylm~u (u)!Yln~u (v)!, ~3.11!

wherel ranges over non-negative integers,j l(uv) is the spherical Bessel function of the first kin
of order l ,43 m andn are integers satisfyingumu< l andunu< l and theY’s are the usual spherica
harmonics onS2.43 We write Vphysªspan$C lmn%.

We introduce forA phys
(!) the basis

L̂3ªÂ12,

L̂6ªÂ236 iÂ31,

Ĵ3ªB̂12,

Ĵ6ªB̂236 iB̂31,

Ĉ0ªĈ33, ~3.12!

Ĉ1
6
ªĈ316 iĈ32,

Ĉ2
6
ªĈ136 iĈ23,

Ĉ3
6
ª~Ĉ111Ĉ22!6 i ~Ĉ212Ĉ12!,

Ĉ4
6
ª~Ĉ112Ĉ22!6 i ~Ĉ211Ĉ12!.
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Note that theL̂ ’s ~respectively,Ĵ’s! are a standard raising and lowering operator basis for theo~3!
algebra inu ~v!.43 The action of the basis~3.12! on Vphys can be computed from standard pro
erties of the spherical harmonics and spherical Bessel functions43,45 and is displayed in Table I. It
follows that Vphys is invariant underA phys

(!) . We show in Appendix D that the representation
A phys

(!) on Vphys is irreducible.
The star-relations of the basis~3.12! read

~ L̂3!!5L̂3 ,

~ L̂6!!5L̂7 ,

~ Ĵ3!!5 Ĵ3 ,
~3.13!

~ Ĵ6!!5 Ĵ7 ,

~Ĉ0!!5Ĉ0 ,

~Ĉk
6!!5Ĉk

7, 1<k<4.

From Table I it follows by direct computation that these star-relations coincide with the ad
relations in the inner product

TABLE I. The action ofA phys
(!) on Vphys. Whenever the indices of aC on the right-hand side go outside the allowed

range, the numerical coefficient vanishes and the term is understood as zero.

L̂3Clmn 5 mClmn

Ĵ3Clmn 5 nClmn

L̂6Clmn 5 A~ l 6m11!~ l 7m!C l ,m61,n

Ĵ6C lmn 5 A~ l 6n11!~ l 7n!C l ,m,n61

Ĉ0C lmn 5
A~ l 2m11!~ l 1m11!~ l 2n11!~ l 1n11!

2l 13
C l 11,m,n

1
A~ l 2m!~ l 1m!~ l 2n!~ l 1n!

2l 21
C l 21,m,n

Ĉ1
6C lmn 5 7

A~ l 2m11!~ l 1m11!~ l 6n11!~ l 6n12!

2l 13
C l 11,m,n61

6
A~ l 2m!~ l 1m!~ l 7n!~ l 7n21!

2l 21
C l 21,m,n61

Ĉ2
6C lmn 5 7

A~ l 6m11!~ l 6m12!~ l 2n11!~ l 1n11!

2l 13
C l 11,m61,n

6
A~ l 7m!~ l 7m21!~ l 2n!~ l 1n!

2l 21
C l 21,m61,n

Ĉ3
6C lmn 5 2

A~ l 6m11!~ l 6m12!~ l 7n11!~ l 7n12!

2l 13
C l 11,m61,n71

2
A~ l 7m!~ l 7m21!~ l 6n!~ l 6n21!

2l 21
C l 21,m61,n71

Ĉ4
6C lmn 5 1

A~ l 6m11!~ l 6m12!~ l 6n11!~ l 6n12!

2l 13
C l 11,m61,n61

1
A~ l 7m!~ l 7m21!~ l 7n!~ l 7n21!

2l 21
C l 21,m61,n61
                                                                                                                



f

8. A

s

of

-

en-

1928 J. Math. Phys., Vol. 45, No. 5, May 2004 J. Louko and A. Molgado

                    
~C lmn ,C l 8m8n8!AQª~2l 11!d l l 8dmm8dnn8. ~3.14!

We show in Appendix D that the only inner products onVphys with this property are multiples o
~3.14!.

The physical Hilbert space is the Cauchy completion ofVphys in the inner product~3.14!. It
carries by construction a densely defined representation ofA phys

(!) in which the quadratico~3,3!
Casimir ~3.5! has the value23.

IV. REFINED ALGEBRAIC QUANTIZATION FOR pÐ3, qÐ3

We now turn to refined algebraic quantization. In this section we takep>3 andq>3. The
remaining values ofp andq will be treated in Sec. V.

We employ refined algebraic quantization with group averaging as formulated in Ref.
review can be found in Ref. 12 and an outline adapted to the present situation in Ref. 10.

A. Auxiliary Hilbert space and representation of the gauge group

We introduce the auxiliary Hilbert spaceHaux.L2(Rp1q) of square integrable function
C(u,v) in the inner product

~C1 ,C2!auxªE dpu dqv C1C2, ~4.1!

where the overline denotes complex conjugation. The quantum constraints~3.2! are essentially
self-adjoint onHaux, and exponentiating2 i times their algebra yields a unitary representation
the universal covering group of SL(2,R). Denoting this representation byU, the group elements
in the Iwasawa decomposition~A3! are represented by

U~exp~me2!!5exp~2 imĤ2!, ~4.2a!

U~exp~lh!!5exp~2 ilD̂ !, ~4.2b!

U~exp@u~e12e2!# !5exp~2 iu~Ĥ12Ĥ2!!. ~4.2c!

The operators in~4.2a! and ~4.2b! act as

@exp~2 imĤ2!C#~u,v!5E dqv8

~2p im!q/2expF i

2 S ~v2v8!2

m
1mu2D GC~u,v8!, ~4.3a!

@exp~2 ilD̂ !C#~u,v!5expFl2 ~q2p!GC~e2lu,elv!. ~4.3b!

In ~4.2c! we haveĤ12Ĥ25Ĥu
sho2Ĥv

sho, whereĤu
sho andĤv

sho are the harmonic oscillator Hamil
tonians of unit mass and angular frequency in respectivelyu and v. It follows that U(exp@u(e1

2e2)#) is periodic inu with period 2p when p1q[0 ~mod 2! and with period 4p when p1q
[1 ~mod 2!. This means that the gauge group is SL(2,R) whenp1q[0 ~mod 2! and the double
cover of SL(2,R) whenp1q[1 ~mod 2!. U is isomorphic to the (p,q) oscillator representation
of the double cover of SL(2,R)38 via the Fourier transform inv.

B. Test space

The next step is to introduce a linear space of test states inHaux. The harmonic oscillator
Hamiltonians inU(exp@u(e12e2)#) suggest that we make use of the harmonic oscillator eig
states inu andv,
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C l jmnkukv
~u,v!ªulv je2 ~1/2!(u21v2)Lm

l̃ ~u2!Ln
j̃ ~v2!Ylku

~u (u)!Yjkv
~u (v)!, ~4.4!

wherel , j , m andn are non-negative integers,l̃ and j̃ are defined by

l̃ª l 1~p22!/2, j̃ª j 1~q22!/2, ~4.5!

uªuuu, vªuvu, theL ’s are the generalized Laguerre polynomials45,46and theY’s are the spherica
harmonics in the notation of Sec. III. These states satisfy

Ĥu
shoC l jmnkukv

5EuC l jmnkukv
, Euª2m1 l 1~p/2!52m1 l̃ 11,

~4.6!
Ĥv

shoC l jmnkukv
5EvC l jmnkukv

, Evª2n1 j 1~q/2!52n1 j̃ 11,

and they are orthogonal inHaux,

~C l jmnkukv
,C l 8 j 8m8n8k

u8kv8
!aux5

G~ l 1m1~p/2!!G~ j 1n1~q/2!!

4G~m11!G~n11!
d l l 8d j j 8dmm8dnn8dkuk

u8
dkvkv8

.

~4.7!

We setF0ªspan$C l jmnkukv
%5$P(u,v)exp@21

2(u
21v2)#%, whereP(u,v) is an arbitrary polynomial

in $ui% and$v i%. F0 is clearly dense inHaux and mapped to itself by the quantum constraints~3.2!.
Let G denote the gauge group, and letdg be the~left and right! invariant Haar measure onG.

An L1 functionh on G defines onHaux the bounded operatorĥª*Gdg h(g)U(g), and the set of
all such operators generates an algebraÂG . Starting withF0 , we first take the closure under th
algebra generated by$U(g)ugPG%, then take the closure underÂG , and adopt the resulting spac
F as our test space.F is a dense linear subspace ofHaux, invariant under bothÂG and the algebra
generated by$U(g)ugPG%, and it hence satisfies the test space postulates of Ref. 8.

C. Physical Hilbert space

We now construct a rigging map by averaging states inF over G.
We define onF the sesquilinear form

~f2 ,f1!gaªE
G

dg ~f2 ,U~g!f1!aux. ~4.8!

We show in Appendix E, Theorem E.3, that the integral in~4.8! is absolutely convergent for al
f1 ,f2PF, and (• ,•)ga is hence well defined. We also show that (• ,•)ga vanishes forp1q[1
~mod 2!. For the rest of this subsection we takep1q[0 ~mod 2!.

Let F* be the algebraic dual ofF and let f @f# denote the dual action off PF* on f
PF. We define the antilinear maph:F→F* by

h~f1!@f2#ª~f1 ,f2!ga, ~4.9!

and we define on the image ofh the sesquilinear form (• ,•)RAQ by

~h~f1!,h~f2!!RAQªh~f2!@f1#. ~4.10!

We need to investigate whether the image ofh is nontrivial and whether (• ,•)RAQ is positive
definite. If yes,h is a rigging map and the physical Hilbert space is the Cauchy completion o
image ofh in (• ,•)RAQ.

Note first that iff iPF andhiPL1(G), ~4.8! and ~4.9! imply8
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h~ ĥ1f1!@ ĥ2f2#5S E
G

dg h1~g! D S E
G

dg h2~g! Dh~f1!@f2# ~4.11!

and h(f1)@U(g)f2#5h(U(g)f1)@f2#5h(f1)@f2# for all g. Hence it suffices to evaluat
h(f1)@f2# for f1 ,f2PF0 .

By Proposition E.4 in Appendix E, Fubini’s theorem implies that we can represent the im
of h as functions onRp1q5$(u,v)%, acting onfPF by

f @f#5E dpu dqv f ~u,v!f~u,v!, ~4.12!

and evaluateh by

h~f!5E
G

dg U~g!f, ~4.13!

where the integral is taken in the sense of pointwise convergence onRp1q. The value of~4.13! can
be read off from the results in Appendix D.1 of Ref. 10, by matching our~E6! to Eq.~D3! in Ref.
10. The result is

h~C l jmnkukv
!54p2~21!m dmn

G~ l 1m1~p/2!!

~2l 1p22!G~m11!
C l jk ukv

, ~4.14!

whereC l jk ukv
is as in~3.10!. The action ofC l jk ukv

on F0 reads~Ref. 46, p. 244!

C l 8 j 8k
u8kv8

@C l jmnkukv
#5~21!md2l 1p,2j 1qd l l 8d j j 8dmndkuk

u8
dkvkv8

G~ l 1m1~p/2!!

2G~m11!
. ~4.15!

Hence the image ofh is nontrivial and spanned by$ C l jk ukv
%. From ~4.10!, ~4.14! and~4.15! we

find

~ C l 8 j 8k
u8kv8

,C l jk ukv
!RAQ5

2l 1p22

8p2 d2l 1p,2j 1qd l l 8d j j 8dkuk
u8
dkvkv8

. ~4.16!

Hence (• ,•)RAQ is positive definite,h is a rigging map, and we have a physical Hilbert spa
HRAQ. The group averaging sesquilinear form onF0 reads

~C l 8 j 8m8n8k
u8kv8

,C l jmnkukv
!ga52p2~21!m1m8 d2l 1p,2j 1qdmndm8n8d l l 8d j j 8dkuk

u8
dkvkv8

3
G~ l 1m81~p/2!!G~ l 1m1~p/2!!

~2l 1p22!G~m811!G~m11!
. ~4.17!

The uniqueness theorem of Ref. 8 shows that every rigging map for our triple (Haux,U,F) is a
multiple of the group averaging rigging maph.

The algebraA phys
(!) is represented onHaux by ~3.4!. This representation leavesF invariant and

commutes withU(g), and the star-relation in this representation coincides with the adjoint ma
Haux. It follows that HRAQ carries an antilinear representationr of A phys

(!) , such that the star-
relation coincides with the adjoint map onHRAQ. In the notation of~3.4!,

r~Ôi j !: f °Ôi j f̄ . ~4.18!

This shows that the algebraic quantization set up in Sec. III yields a quantum theory
isomorphically embedded in our group averaging quantum theory wheneverp>3, q>3 andp
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1q[0 ~mod 2!, even though we were able to complete the algebraic quantization explicitly
for p5q53. Apart fromp5q53, we do, however, not know whether this quantum theory is
only one arising from the algebraic quantization forp>3, q>3 andp1q[0 ~mod 2!.

V. REFINED ALGEBRAIC QUANTIZATION FOR pË3 OR qË3

In Sec. IV we assumedp>3 andq>3. We now discuss refined algebraic quantization
lower p or q. By interchange ofu andv, it suffices to considerp<q.

A. pÄ1, qÌ3

When p51 andq.3, we defineHaux and F as in Sec. IV. Theu1 dependence of the tes
states~4.4! can be written in terms of Hermite polynomials asHl 12m(u1)exp(21

2u1
2) ~Ref. 46, p.

240!, but the notation in~4.4! covers alsop51, the spherical harmonics onS0 being as described
in Sec. III A. We drop the redundant indexku and write

f l jmnk~u1 ,v!ªC l jmn0k5ulv je2 ~1/2!(u21v2)Lm
l̃ ~u2!Ln

j̃ ~v2!Yl~u (u)!Yjk~u (v)!, ~5.1!

wherel P$0,1% and l̃ 5 l 2 1
2.

As a preliminary, letYj 0(u (v)) denote the zonal spherical harmonics, which depend only
vq /v and are given by Gegenbauer polynomials.43 The recursion relations for the Gegenbau
polynomials and the generalized Laguerre polynomials46 allow an explicit computation of the
action ofĈ1q on f l jmn0 . We find

Ĉ1qf0 jmn052Wq j@~n1 j̃ !f1,j 21,m21,n,01~n11!f1,j 21,m,n11,0#

1Wq, j 11~f1,j 11,m21,n21,01f1,j 11,mn0!, ~5.2a!

Ĉ1qf1 jmn05Wq j@~m1 1
2!~n1 j̃ !f0,j 21,mn01~m11!~n11!f0,j 21,m11,n11,0#

2Wq, j 11@~m1 1
2!f0,j 11,m,n21,01~m11!f0,j 11,m11,n0#, ~5.2b!

where

Wq jª2F j ~ j 1q23!

~2 j 1q22!~2 j 1q24!G
1/2

for j .0,

~5.3!
Wq0ª0,

and anyf l jmn0 on the right-hand side withm,0 or n,0 is understood as zero.
Now, by Theorem E.3, the group averaging converges in absolute value. Whenq is even, the

u dependence in~E7! shows that the image ofh is trivial. In the rest of this subsection we takeq
odd and show that the image ofh is trivial also in this case.

It suffices to show that (f l 8 j 8m8n8k8 ,f l jmnk)ga vanishes. Whenl 5 l 851, we can proceed as in
Sec. IV C and the result follows from~4.17!. When l 50 or l 850, ~E7! shows that it suffices to
consider (f0 jm8n80 ,f0 jmn0)ga. Theu-dependence in~E7! shows that the integral overu gives zero
unless 2m52n1 j 1(q21)/2, and a similar observation withU(g) conjugated to act on the firs
argument shows that the integral overu gives zero unless 2m852n81 j 1(q21)/2. Whenq
5514a, a50,1,..., it therefore suffices to consider (f0,2s,n81s1a11,n8 ,f0,2s,n1s1a11,n)ga,
wheres, n and n8 are non-negative integers and we have suppressed the last index of thf’s,
understood to take the value zero. Whenq5314b, b51,2,..., it similarly suffices to consider
(f0,2s11,n81s1b11,n8 ,f0,2s11,n1s1b11,n)ga, wheres, n andn8 are non-negative integers.

Let q5314b, b51,2,... . Recall thatĈ1q is self-adjoint inHaux and commutes withU(g).
We compute
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Wq,2s11@~n1s1b1 1
2!~f0,2s11,n81s1b11,n8 ,f0,2s11,n1s1b,n21!ga1~n1s1b11!

3~f0,2s11,n81s1b11,n8 ,f0,2s11,n1s1b11,n!ga#

52~f0,2s11,n81s1b11,n8 ,Ĉ1qf1,2s,n1s1b,n!ga

52~Ĉ1qf0,2s11,n81s1b11,n8 ,f1,2s,n1s1b,n!ga50, ~5.4!

where the first equality follows from~5.2b! and the last from~5.2a! and~4.17!. By induction inn,
~5.4! implies (f0,2s11,n81s1b11,n8 ,f0,2s11,n1s1b11,n)ga50.

Let then q5514a, a50,1,... . An argument similar to ~5.4! shows that
(f0,2s,n81s1a11,n8 ,f0,2s,n1s1a11,n)ga vanishes fors.0. Whens50, we compute

Wq1@~n1a1 3
2!~n12a1 5

2!~f0,0,n81a11,n8 ,f0,0,n1a11,n!ga1~n1a12!~n11!

3~f0,0,n81a11,n8 ,f0,0,n1a12,n11!ga#

5~f0,0,n81a11,n8 ,Ĉ1qf1,1,n1a11,n!ga5~Ĉ1qf0,0,n81a11,n8 ,f1,1,n1a11,n!ga5 0,

~5.5!

where the last equality follows from~5.2a! and ~4.17!. By induction inn, it therefore suffices to
consider (f0,0,n81a11,n8 ,f0,0,a11,0)ga. A similar argument inn8 shows that it suffices to conside
(f0,0,a11,0,f0,0,a11,0)ga.

In (f0,0,a11,0,U(g)f0,0,a11,0)aux, we use~E7! and perform the elementary integration overv.
We then integrate overG in the Haar measuredg5 1

2dz dm du. The integration overu is elemen-
tary. Changing the variables in the inner integral fromu to yªu2/z and in the outer integral from
m to tªmz/(z11), we find that (f0,0,a11,0,f0,0,a11,0)ga equals a numerical constant times

E
0

`

dz
za1 1/2

~z11!2a1 3/2E
2`

` dt

~11 i t !2a1 5/2E
0

`

dy y2 1/2La11
2 1/2~zy! La11

2 1/2~y!

3expF2
1

2
~z11!~12 i t !yG . ~5.6!

We interchange the order of thedt anddy integrals in~5.6!, justified by the absolute convergenc
of the double integral, and perform thedt integral as a contour integral, finding that~5.6! equals
a numerical constant times

E
0

`

dz za1 1/2E
0

`

dy y2a11La11
2 1/2~zy! La11

2 1/2~y!exp@2~z11!y#. ~5.7!

In ~5.7! we interchange the order of thedz anddy integrals, justified by the absolute convergen
of the double integral. Changing the variable in the new inner integral fromz to xªzy, we obtain

E
0

`

dy ya2 1/2La11
2 1/2~y! e2yE

0

`

dx xa1 1/2La11
2 1/2~x! e2x. ~5.8!

The integrals in~5.8! have factorized, and the integral overy vanishes by the orthogonality of th
generalized Laguerre polynomials.46

B. pÄ1, qÄ3

Whenp51 andq53, we defineHaux as in Sec. IV. WithF defined as in Sec. IV, the integra
in ~4.8! is not absolutely convergent forl 5 j 50, and we have not found a weaker unambiguo
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sense of convergence. Theu-dependence in~E7! however suggests that if group averaging can
made well-defined, it should annihilate states withl 5 j 50. We shall achieve this by suitabl
modifying the test space.

Dropping the redundant indexku , we introduce the statesf l jmnk by ~5.1! with q53. We
defineF0

mod
ªspan($f l jmnku l 1 j .0%ø$cmn%), where

cmnª
2

)
F S m1

1

2D S n1
3

2Df00mn01~m11!~n11!f00,m11,n11,0G . ~5.9!

Using the basis~3.4! of A phys
(!) , properties of the spherical harmonics onS2 ~Refs. 43 and 45! and

properties of the generalized Laguerre polynomials,46 it can be verified thatF0
mod is invariant

underA phys
(!) . In particular, formulas~5.2! and ~5.3! hold with q53, implying

Ĉ13f11mn05cmn2
4

A15
F S m1

1

2Df0,2,m,n21,01~m11!f0,2,m11,n,0G , ~5.10a!

Ĉ13cmn5
4
3 ~m1 1

2!~n1 3
2!~f11,m21,n21,01f11mn0!1 4

3 ~m11!~n11!

3~f11mn01f11,m11,n11,0!. ~5.10b!

We claim thatF0
mod is dense inHaux. If this were not the case, there would exist a nonz

vectory5( l jmnkal jmnkf l jmnkPHaux that is orthogonal to all vectors inF0
mod. By ~4.7!, orthogo-

nality with eachf l jmnk with l 1 j .0 impliesal jmnk50 for l 1 j .0. By ~4.7! and ~5.9!, orthogo-
nality with eachcmn impliesa00mn01a00,m11,n11,050, from which~4.7! further shows thaty has
finite norm only if y is the zero vector. HenceF0

mod is dense inHaux.
Following Sec. IV withF0 replaced byF0

mod, we first take the closure ofF0
mod under the

algebra generated by$U(g)ugPG%, then take the closure underÂG , and adopt the resulting spac
Fmod as our test space.Fmod is a dense linear subspace ofHaux, invariant underA phys

(!) , ÂG and
the algebra generated by$U(g)ugPG%, and satisfies hence the test space postulates of Ref. 8
show in Appendix E, Theorem E.5, that the integral in~4.8! converges in absolute value for a
f1 ,f2PFmod.

To evaluate (f2 ,f1)ga on Fmod, it suffices to considerf1 ,f2PF0
mod. When bothf1 andf2

have l 51, we can proceed as in Sec. IV C, arriving at~4.12!–~4.17!. When f1 and f2 have
differing values of l , j or k, ~E7! shows that (f2 ,f1)ga vanishes. What remains i
(f0 jm8n8k ,f0 jmnk)ga with j .0 and (cm8n8 ,cmn)ga. The vanishing of the former follows as i
Sec. V A, noting that~5.4! holds also forb50. For the latter, we use~5.10a!, the self-adjointness
of Ĉ13 on Haux and the vanishing of (cm8n8 ,f0 jmn0)ga for j .0 and compute

~cm8n8 ,cmn!ga5~cm8n8 ,Ĉ13f11mn0!ga5~Ĉ13cm8n8 ,f11mn0!ga50, ~5.11!

where the last equality follows from~5.10b! and ~4.17!.
The evaluation of (f2 ,f1)ga is now complete. The only nonzero contribution comes fr

states withl 51, in which case formulas~4.12!–~4.17! hold. The image ofh is one-dimensional,
spanned by$ C0 %, whereC0 is the state~3.10! with l 51 and j 50 and reads explicitly~Ref. 43,
Sec. 7.11! C05v21 sin(u1v). The inner product~4.16! is positive definite, and we obtain a one
dimensional physical Hilbert spaceHRAQ.

As F0
mod is invariant underA phys

(!) , HRAQ carries an antilinear representation ofA phys
(!) . A direct

calculation shows that all operators in this representation annihilateC0, and the representation i
trivial. The quantum theory found in algebraic quantization in Sec.~III A ! is thus anti-
isomorphically embedded in the group averaging quantum theory.
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C. pÄ1, qÄ2

Whenp51 andq52, andHaux andF are as in Sec. IV, the integral in~4.8! is not absolutely
convergent forl 5 j 50. It may be possible to modify thel 5 j 50 sector ofF as in Sec. V B above
but as nowp1q[1 ~mod 2!, any test space built from linear combinations of the harmo
oscillator eigenfunctions will give anh with trivial image.

D. pÄqÄ1

When p5q51, andHaux and F are as in Sec. IV, the integral in~4.8! is not absolutely
convergent forl 50 or j 50 and is unambiguously divergent for example forf15f25C0000.

We attempt to cure the divergence by modifying the zero angular momentum secto
technical simplicity, we choose at the outset to work with states that are symmetric
(u1 ,v1)°(2u1 ,2v1).

Let Haux
s ,Haux be the Hilbert subspace of vectors symmetric under (u1 ,v1)°(2u1 ,2v1).

Dropping the redundant indicesku andkv , we write

f lmn~u1 ,v1!ªC l lmn005ulv le2 ~1/2!(u21v2)Lm
l̃ ~u2!Ln

l̃ ~v2!Yl~u (u)!Yl~u (v)!, ~5.12!

wherel P$0,1% and l̃ 5 l 2 1
2. $f lmn% is clearly an orthogonal basis forHaux

s .
Let F0

s
ªspan$cmn ,f1mn%, where

cmnª2@~m1 1
2!~n1 1

2!f0mn1~m11!~n11!f0,m11,n11#. ~5.13!

We then find~Ref. 46, p. 241!

Ĉ11cmn54@~m1 1
2!~n1 1

2!~f1mn1f1,m21,n21!1~m11!~n11!~f1mn1f1,m11,n11!#,
~5.14a!

Ĉ11f1mn5cmn, ~5.14b!

whereĈ11 ~3.4! is the single generator ofA phys
(!) . HenceF0

s is invariant underA phys
(!) , and it can be

shown as in Sec. V B thatF0
s is dense inHaux

s . We build fromF0
s a test spaceFs satisfying the

postulates of Ref. 8 as in Sec. V B. The integral in~4.8! then converges in absolute value for a
f1 ,f2PFs: The proof is a verbatim adaptation of that of Theorem E.5.

We need to evaluate (f2 ,f1)ga on Fs. It suffices to considerf1 ,f2PF0
s . Clearly

(cm8n8 ,f1mn)ga50. For (f1m8n8 ,f1mn)ga we proceed as in Sec. IV C and arrive at~4.12!–~4.17!,
the last of which reads

~f1m8n8 ,f1mn!ga52p2~21!m1m8dmndm8n8

G~m1 3
2!G~m81 3

2!

G~m11!G~m811!
. ~5.15!

To find (cm8n8 ,cmn)ga, we use the self-adjointness ofĈ11 on Haux
s and compute

~cm8n8 ,cmn!ga5~cm8n8 ,Ĉ11f1mn!ga

5~Ĉ11cm8n8 ,f1mn!ga

522p2~21!m1m8dmndm8n8

G~m1 3
2!G~m81 3

2!

G~m11!G~m811!
, ~5.16!

where the first equality follows from~5.14b! and the last one from~5.14a! and ~5.15!.
                                                                                                                



-

s

-

that

d of

e test
ging
-
ntation

space
-
ilbert
uanti-

-
f.
ace

traints
e

1935J. Math. Phys., Vol. 45, No. 5, May 2004 Group averaging in the (p,q) oscillator

                    
We see that (• ,•)ga is anindefinitesesquilinear form. Hence the maph defined by~4.9! is not
a rigging map and we do not recover a Hilbert space. The indefiniteness of (• ,•)ga further implies,
by the uniqueness theorem of Ref. 8, that the triple (Haux

s ,U,Fs) admits no rigging maps.
The image ofh is two-dimensional, spanned by$ C00 ,C11%, whereC00 andC11 are given

by ~3.10! and read explicitly~Ref. 43, Sec. 7.11!

C005
1

A2p
cos~u1v1!, ~5.17a!

C115
1

A2p
sin~u1v1!. ~5.17b!

The manifestly indefinite sesquilinear form~4.10! on the image ofh is given by ~4.16!. The
representation ofA phys

(!) induced on the image ofh by ~4.12! is anti-isomorphic to the representa
tion obtained in Sec. III A on the solution space to the algebraic quantization constraints.

E. pÄ2, qÌ2

Whenp52 andq.2, we defineHaux andF as in Sec. IV. Theorem E.3 in Appendix E show
that the group averaging converges in absolute value.

Whenq is odd, theu dependence in~E7! shows that the image ofh is trivial.
Suppose then thatq is even. Whenl .0 andl 8.0, we arrive at Eqs.~4.12!–~4.17! as in Sec.

IV C. When l 50 or l 850, it can be shown that (C l 8 j 8m8n8k
u8kv8

,C l jmnkukv
)ga vanishes: The argu

ments follow those in Sec. V A so closely that we will not spell them out here. This means
Eqs.~4.12!–~4.17! hold for all values of the indices in the sense that terms involvingd2l 11,2j 1q for
l 50 are understood to vanish. Hence the situation is similar to that forp>3, q>3 and p1q
[0 ~mod 2! in Sec. IV. The image ofh is nontrivial, (• ,•)RAQ is positive definite,h is a rigging
map, and the representation ofA phys

(!) on the physical Hilbert space is as described at the en
Sec. IV C.

F. pÄqÄ2

The casep5q52 was analyzed in Ref. 10. Group averaging does not converge on th
space of Sec. IV, but thel 5 j 50 sector of the test space can be modified so that group avera
converges and the physical observable algebra includesA phys

(!) . The physical Hilbert space decom
poses into a direct sum of four Hilbert subspaces, each of them carrying a distinct represe
of A phys

(!) .

VI. DISCUSSION

We have discussed the quantization of a constrained system with unreduced phase
R2(p1q), classical gauge group SL(2,R) and a distinguishedo(p,q) algebra of classical observ
ables. We employed refined algebraic quantization, using group averaging on an auxiliary H
space to find the inner product on the physical Hilbert space. We took care to select the q
zation input so that when a quantum theory is recovered, the classicalo(p,q) algebra gets pro-
moted into an operator algebra represented on the physical Hilbert space.

When p>2, q>2, p1q.4 andp1q[0 ~mod 2!, we found a quantum theory with a non
trivial representation of theo(p,q) observables. Forp5q52, a similar result was obtained in Re
10. For (p,q)5(1,3) or ~3,1!, we found a quantum theory with a one-dimensional Hilbert sp
and a trivial representation of theo(p,q) observables. For other values ofp andq we found no
quantum theory.

We also discussed Ashtekar’s algebraic quantization, solving first the quantum cons
without an inner product and then promoting the classicalo(p,q) algebra into operators whos
star-relations determine the physical inner product. For all values ofp and q for which
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group averaging gave a quantum theory, algebraic quantization gave a quantum theory
~anti-!isomorphically embedded in the group averaging theory. Forp5q53, we showed that this
algebraic quantization theory is unique.

With both algebraic quantization and group averaging, qualitative changes emerged dep
on whetherp and q are less than, equal to, or greater than 2. This could be expected from
properties of the classical reduced phase space: The reduced phase space contains a sy
manifold when and only when min(p,q)>2, and this symplectic manifold is connected when a
only when min(p,q)>3. However, a phenomenon not expected on classical grounds was
neither algebraic quantization nor group averaging gave a quantum theory forp1q[1 ~mod 2!.
The technical reason was that both quantization schemes represented theo(p) % o(q) subalgebra
of o(p,q) by integer-valued rather than half-integer-valued angular momenta. Obtaining qua
theories forp1q[1 ~mod 2! by some ‘‘fermionic’’ modification might be an interesting cha
lenge.

For p5q51, both algebraic quantization and group averaging failed to give a qua
theory, for closely related reasons. Algebraic quantization led to a two-dimensional vector sp
solutions to the constraints, but requiring theo~1,1! generator to be symmetric forced the sesq
linear form on this vector space to be indefinite. In group averaging, a judicious choice of th
space ensured convergence of the averaging and the inclusion of theo~1,1! generator in the
would-be physical observable algebra, but the outcome was the same indefinite sesquiline
on the same two-dimensional vector space as in algebraic quantization. It is not clear whet
casep5q51 has physical interest, especially as the reduced phase space consists of jus
points, non-Hausdorff close to each other, but from the mathematical point of view this pro
the first example known to us where group averaging fails to produce a Hilbert space ow
indefiniteness of the would-be inner product. As the uniqueness theorem of Ref. 8 does not a
positive definiteness, the theorem is applicable here and implies that our test space adm
rigging maps.

We assumed throughoutp>1 andq>1. If eitherp or q vanishes, the action~2.1! still defines
a classical theory, but the reduced phase space then consists of a single point. Algebraic
zation in the representation of Sec. III gives no solutions to the constraints, and when
averaging based on the harmonic oscillator eigenstates converges, it gives an identically va
sesquilinear form owing to theu dependence inU(g)C ~E7!.

Finally, one would like to characterize the representations ofo(p,q) on our physical Hilbert
spaces in terms of invariants,42 as done in Refs. 10, 16, and 21 forp5q52. The value of the
quadratic Casimir operator can be read off from~3.5!. As our representation of the gauge group
the auxiliary Hilbert space is isomorphic to the oscillator representation of SL(2,R),38 the joint
representation theory of the dual pair (O(p,q),SL(2,R))47,48 may be useful with this question.
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APPENDIX A: SL „2,R…

In this appendix we collect some relevant properties of SL(2,R). The notation follows
Ref. 38.

SL(2,R) consists of real 232 matrices with unit determinant. The Lie algebrasl(2,R) is
spanned by the matrices

hªS 1 0

0 21D , e1
ªS 0 1

0 0D , e2
ªS 0 0

1 0D , ~A1!

whose commutators are
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@h , e1#52e1,

@h , e2#522e2, ~A2!

@e1 , e2#5h.

Elements of SL(2,R) have the unique Iwasawa decomposition

g5exp~me2!exp~lh!exp@u~e12e2!#, ~A3!

or explictly

g5S 1 0

m 1D S el 0

0 e2lD S cosu sinu

2sinu cosu D , ~A4!

wheremPR, lPR and 0<u,2p. The unique Iwasawa decomposition of the universal cove
group of SL(2,R) is given by ~A3! with 2`,u,`, and that of the double cover by 0<u
,4p. The left and right invariant Haar measure readsdg5e2l dl dm du.

APPENDIX B: LINEAR INDEPENDENCE OF THE CONSTRAINTS

In this appendix we show that the gradients of the constraints are all vanishing onḠ0 , linearly
dependent but not all vanishing onḠex, and linearly independent onḠ reg.

From ~2.3!, the gradients of the constraints read

dH15(
i

~pidpi2v idv i !,

dH25(
i

~p idp i2uidui !, ~B1!

dD5(
i

~uidpi1pidui2p idv i2v idp i !.

For a,b,gPR, the equationadH11bdH21gdD50 is equivalent to

gu1ap5052bu1gp,
~B2!

gp1av5052bp1gv.

Ḡ0 is clearly the set where the gradients of all the constraints vanish.
On Ḡex, we saw in Sec. II that each point can be brought to the form~2.11! by a gauge

transformation~2.5! with somegPSL(2,R). Given such ag, ~B2! is satisfied bya5(g12)
2, b

52(g11)
2 and g5g11g12, where at least one ofa and b must be nonvanishing since det(g)

Þ0. Hence the gradients of the constraints are linearly dependent onḠex.
On Ḡ reg, the pair~u, p! @as well as the pair~v, p!# is linearly independent, and~B2! implies

a5b5g50. Hence the gradients of the constraints are linearly independent onḠ reg.

APPENDIX C: SEPARATION OF Mreg BY Aclass

In this appendix we show that the classical observable algebraAclass separatesMreg. We
assumep>2 andq>2, which is necessary and sufficient forMreg to be nonempty. The casep
5q52 was treated in Refs. 10, 16, and 21.
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Let Mi , 1< i<p, be the subset ofMreg whose points have a representative inḠ reg satisfying
the gauge conditions~2.13! with ui

21pi
2.0. It follows thatMiùMjÞB for all i and j and

Mreg5 ø
i 51

p

Mi . ~C1!

Lemma C.1:Let ãPMreg and b̃PMreg such that there is noMi containing bothã and b̃.
ThenAclassseparatesã and b̃.

Proof: Let a5(u,p,v,p)PḠ reg and b5(u8,p8,v8,p8)PḠ reg be representatives of, respe
tively, ã and b̃, each satisfying~2.13!. As the pair~u, p! is linearly independent, there existi

Þ j such thatuipj2uj piÞ0. It follows that ãPMiùMj . By assumption thenb̃¹MiøMj ,
which impliesui85pi85uj85pj850. HenceAi j (ã)5uipj2uj piÞ0 but Ai j (b̃)5ui8pj82uj8pi850,
which shows that the observableAi j in ~2.9! separatesã and b̃. j

Remark:Repeating the proof withã and b̃ interchanged shows that points satisfying t
conditions of Lemma C.1 exist only forp>4.

Theorem C.1: AclassseparatesMreg.
Proof: By Lemma C.1, it suffices to consider individually eachMk .
From now on letMk be fixed. We saw in Sec. II C 3 thatMreg can be represented as th

quotient of the set~2.13! under theU(1) action given by~2.5! with ~2.14!. Within Mk , each
U(1) equivalence class in~2.13! has a unique representative that satisfiespk50 and uk.0.
Performing on this representative a gauge transformation~2.5! with g5diag(uk

21 ,uk), we obtain a
point in G satisfying

u25p2.0, p25v2.0,

u"p5v"p50, ~C2!

pk50, uk51.

It follows that Mk can be represented as the subset ofG satisfying~C2!.
Let now ã,b̃PMk such thatA(ã)5A(b̃) for all APAclass. Let a5(u,p,v,p) and b

5(u8,p8,v8,p8) be the respective representatives ofã and b̃ in the gauge~C2!. We shall show
that a5b. We use the basis~2.9! of Aclass.

Consider the observablesAi j . From Ai j (ã)5Ai j (b̃) we obtain

uipj2uj pi5ui8pj82uj8pi8, ~C3!

where 1< i<p and 1< j <p. With i 5k and j Þk, the gauge conditions~C2! show that~C3!
reduces topj5pj8 . The gauge conditions~C2! imply directly thatpk5pk8 . Hencep5p8.

Multiplying ~C3! by pj and summing overj gives

p2ui2~u"p!pi5~p"p8!ui82~u8"p!pi8. ~C4!

Using p5p8 and ~C2!, ~C4! reduces toui5ui8 . Henceu5u8.
Consider then the observablesCi j . From Ci j (ã)5Ci j (b̃) we obtain

uiv j2pip j5ui8v j82pi8p j8, ~C5!

where 1< i<p and 1< j <q. With i 5k, ~C2! shows that~C5! reduces tov j5v j8 . Hencev
5v8.

Substitutingu5u8, p5p8 and v5v8 in ~C5! gives pi(p j2p j8)50. As p2.0, this implies
p j5p j8 . Hencep5p8. j
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APPENDIX D: A phys
„!… ON Vphys FOR pÄqÄ3

In this appendix we analyze the representation ofA phys
(!) on Vphys for p5q53, displayed in

Table I. We show first that this representation is irreducible. We then show that the only
products in which the star-relations~3.13! become adjoint relations are multiples of~3.14!.

Proposition D.1:Let U,Vphys be a linear subspace invariant underA phys
(!) , UÞ$0%. Then

U5Vphys.

Proof: Recall that the operatorL 2̂
ªL̂0

21 1
2(L̂1L̂21L̂2L̂1) satisfiesL 2̂C lmn5 l ( l 11)C lmn .

Let uPU, uÞ0. Thenu5(almnC lmn , where only finitely manyalmn are nonzero. Letl 0 be the
largestl for which somealmn is nonzero. Thenu(1)

ª) l , l 0
@L 2̂2 l ( l 11)#u5k(mnal 0mnC l 0mn ,

where kÞ0. Acting on u(1) finitely many times with L̂1 and Ĵ1 gives the vectoru(2)

5a(2)C l 0l 0l 0
Þ0, andu(3)

ª(L̂2) l 0( Ĵ2) l 0u(2)5a(3)C l 000Þ0. HenceC l 000PU.

A direct computation from Table I shows thatĴ2Ĉ1
1C l002( l 21)Ĉ0C l00 is a nonzero mul-

tiple of C l 11,00 for all l and Ĵ2Ĉ1
1C l001( l 11)Ĉ0C l00 is a nonzero multiple ofC l 21,00 for l

.0. It follows by induction thatC l00PU for all l . Acting on C l00 with L̂6 and Ĵ6 shows that
C lmnPU for all values of the indices. j

Proposition D.2: Let~• ,•! be an inner product in which the star-relations~3.13! become
adjoint relations. Then(C lmn ,C l 8m8n8)5r (2l 11)d l l 8dmm8dnn8 , where r is a positive constant.

Proof: The adjointness relations imply that the operatorL 2̂ introduced in the proof of Propo
sition D.1 is self-adjoint. Hence l 8( l 811)(C lmn ,C l 8m8n8)5(C lmn ,L 2̂C l 8m8n8)
5(L 2̂C lmn ,C l 8m8n8)5 l ( l 11)(C lmn ,C l 8m8n8), which shows that (C lmn ,C l 8m8n8) vanishes for
lÞ l 8. By standard angular momentum techniques in theo~3! subalgebras generated, respective
by the L̂ ’s and theĴ’s ~see, for example, Ref. 49!, we then find

~C lmn ,C l 8m8n8!5Ald l l 8dmm8dnn8, ~D1!

whereAl depends only onl .
To determineAl , we use the self-adjointness ofĈ0 . Writing C lªC l00 and using the action o

Ĉ0 from Table I and~D1!, we compute

~ l 11!2

2l 11
Al5

~ l 11!2

2l 11
~C l ,C l !

5~C l ,Ĉ0C l 11!

5~Ĉ0C l ,C l 11!

5
~ l 11!2

2l 13
~C l 11 ,C l 11!

5
~ l 11!2

2l 13
Al 11, ~D2!

from which by inductionAl5(2l 11)A0 . j

APPENDIX E: CONVERGENCE OF THE GROUP AVERAGING

In this appendix we provide the group averaging convergence results needed in the ma
When not mentioned otherwise,p andq are arbitrary positive integers.

To begin, considerU(g)C l jmnkukv
. Writing g in the Iwasawa decomposition~A3!, ~4.2! gives

U~g!5exp~2 imĤ2!exp~2 ilD̂ !exp~2 iu~Ĥ12Ĥ2!!. ~E1!
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As C l jmnkukv
is an eigenstate ofĤ12Ĥ2 with eigenvalueEu2Ev , ~4.3! yields

U~g!C l jmnkukv
5

z( j̃ 2 l̃ )/2e2 iu(Eu2Ev)

~2p im!q/2 Ylku
~u (u)!E

0

`

dv8 ul~v8! j 1q21Lm
l̃ ~u2/z!Ln

j̃ ~z~v8!2!

3expF2
1

2 S u2

z
1z~v8!2D1

i

2 S mu21
v21~v8!2

m D G
3E dVv8 expS 2

i

m
~v"v8! DYjkv

~u (v8)!, ~E2!

wherezªe2l and we are assumingmÞ0, vÞ0 anduÞ0.
We need to evaluate the angular integral in~E2!. Supposeq.2. We writev"v85vv8 cosg and

expand the exponential under the angular integral by~Ref. 44, p. 98!

eit cosg5
1

2
GS q22

2 D (
a50

`

i a~2a1q22!
J(q2212a)/2~ t !

~ t/2!(q22)/2 Ca
(q22)/2~cosg!. ~E3!

We then expand the Gegenbauer polynomialCa
(q22)/2(cosg) as

Ca
(q22)/2~cosg!5

4pq/2

G~~q22!/2!~2a1q22! (k
Yak~u (v)!Yak~u (v8)!, ~E4!

which follows from formula 11.4~2! in Ref. 43~correcting a typographical error in the normaliz
tion factor, as seen from the final step of the proof on p. 247!. Using the orthonormality of the
spherical harmonics, we obtain

E dVv8 expS 2
i

m
~v"v8! DYjkv

~u (v8)!5~2p!q/2i 2 j S vv8

m D (22q)/2

J(q2212 j )/2~vv8/m!Yjkv
~u (v)!.

~E5!

For q52, ~E5! follows by recognizing the angular integral as a representation ofJj , and forq
51 it follows from the relation ofJ61/2 to trigonometric functions~Ref. 43, Secs. 7.3.1 and 7.11!.
Hence, for allp>1 andq>1, we have

U~g!C l jmnkukv
5

i 2 j̃ 21z( j̃ 2 l̃ )/2e2 iu(Eu2Ev)

m
Ylku

~u (u)!Yjkv
~u (v)! u(22p)/2v (22q)/2

3E
0

`

dv8 ul̃ ~v8! j̃ 11Jj̃ ~vv8/m!Lm
l̃ ~u2/z!Ln

j̃ ~z~v8!2!

3expF2
1

2 S u2

z
1z~v8!2D1

i

2 S mu21
v21~v8!2

m D G . ~E6!

Performing the integral in~E6! gives ~Ref. 50, formula 7.421.4!

U~g!C l jmnkukv
5e2 iu(Eu2Ev)z( j̃ 2 l̃ )/2~11 imz!2 j̃ 21S 12 imz

11 imzD
n

Ylku
~u (u)!Yjkv

~u (v)!

3 ulv j Lm
l̃ ~u2/z! Ln

j̃ S zv2

11m2z2D3expF2
1

2 S 1

z
2 im Du22

1

2 S z

11 imzD v2G .

~E7!

We can now use~E7! to prove the convergence results.
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Proposition E.1: Let l˜1 j̃ .0. Then(C l 8 j 8m8n8k
u8kv8

,U(g)C l jmnkukv
)aux is integrable in abso-

lute value over G.
Proof: It suffices to considerl 85 l , j 85 j , ku85ku and kv85kv , for otherwise the integrand

vanishes.
In C l jm8n8kukv

U(g)C l jmnkukv
, we use~4.4! and ~E7! and expand the product of the genera

ized Laguerre polynomials as a sum of numerical constants times terms of the form

~u2!r 8~v2!s8S u2

z D r S zv2

11m2z2D s

, ~E8!

wherer , s, r 8 ands8 are non-negative integers. Integrating overu andv term by term, we find
that (C l jm8n8kukv

,U(g)C l jmnkukv
)aux is a sum of terms whose respective absolute values are

merical constants times

z( l̃ 1 j̃ )/2111s1r 8~11m2z2!(s82s)/2

@~z11!21m2z2#11( l̃ 1 j̃ 1r 1r 81s1s8)/2
. ~E9!

An elementary analysis shows that sufficient conditions for~E9! to be integrable overG in the
Haar measuree2l dl dm du5 1

2dz dm du are

l̃ 1 j̃ 12r 12s.0,
~E10!

l̃ 1 j̃ 111r 12s.0,

which hold sincel̃ 1 j̃ .0 by assumption. j

Proposition E.2: Let l˜1 j̃ .0 and p1q[1 ~mod 2!. Then the value of the integral in Propo
sition E.1 is zero.

Proof: As p1q[1 ~mod 2!, G is the double cover of SL(2,R) and the range ofu in ~E1! is
u is 0<u,4p. By Proposition E.1, we may perform the integral overu first, and the
u-dependence in~E7! shows that this integral evaluates to zero. j

Theorem E.3: Let p>2, q>2 and p1q.4. Then the integral in (4.8) converges in absolu
value for all f1 ,f2PF. If p1q[1 ~mod 2!, the value of the integral is zero.

Proof: It suffices to considerf1 ,f2P$C l jmnkukv
%. The inequalities onp andq imply that the

conditions of Propositions E.1 and E.2 are satisfied. j

Proposition E.4: Let l˜.0 and j̃.0. ThenC l jm8n8kukv
U(g)C l jmnkukv

is integrable in absolute

value over G3Rp1q.
Proof: In C l jm8n8kukv

U(g)C l jmnkukv
, we use~4.4! and ~E7!, expand the product of the gen

eralized Laguerre polynomials as in the proof of Proposition E.1 and consider the individual
in this expansion. We nowfirst take the absolute value and then integrate. The integrals ovu,
u (u) and u (v) are bounded by constants, the integrals overu and v are convergent and easil
performed, and an elementary analysis shows that the remaining*dz dm integral is convergent
provided l̃ .0 and j̃ .0. j

Theorem E.5: Let p51, q53 and let Fmod be as in Sec. V B. Then the integral in (4.
converges in absolute value for allf1 ,f2PFmod.

Proof: The only case not covered by Proposition E.1 isf15cmn , f25cm8n8 .
In cm8n8U(g)cmn , we use~5.12!, ~5.13! and ~E7! and expand the generalized Laguer

polynomials of argumentu2/z andzv2/(11m2z2) as polynomials in their respective argumen
Inequalities~E10! in the proof of Proposition E.1 show that it suffices to keep only the cons
                                                                                                                



of

R.

urg

/17,

ool Of

1942 J. Math. Phys., Vol. 45, No. 5, May 2004 J. Louko and A. Molgado

                    
terms of these polynomials. Doing this, and integrating overu1 andv by 7.414.8 in Ref. 50, we
obtain two terms whose absolute values are numerical constants times

z2

@~z11!21m2z2#2 3F ~z21!21m2z2

~z11!21m2z2G (m81n8)/2

, ~E11!

which is integrable in the measuredz dm. j
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43A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,Higher Transcendental Functions, Vol. 2, Bateman Manu-

script project~McGraw–Hill, New York, 1953!.
44N. Ja. Vilenkin and A. V. Klimyk,Representation of Lie Groups and Special Functions~Kluwer Academic, Dordrecht,

1993!, Vol. 2.
45G. Arfken, Mathematical Methods for Physicists, 2nd ed.~Academic, New York, 1970!.
                                                                                                                



ical

1943J. Math. Phys., Vol. 45, No. 5, May 2004 Group averaging in the (p,q) oscillator

                    
46W. Magnus, F. Oberhettinger, and R. P. Soni,Formulas and Theorems for the Special Functions of Mathemat
Physics, 3rd ed.~Springer, Berlin, 1966!.

47R. Howe, J. Funct. Anal.32, 297 ~1979!.
48A. Paul and E. C. Tan, Pac. J. Math.187, 349 ~1999!.
49K. T. Hecht,Quantum Mechanics~Springer, New York, 1993!, Sec. 14 C.
50I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products, 4th ed.~Academic, New York, 1980!.
                                                                                                                



ired for

that of

se of
estab-
field

-
s are
ues for

s

local

ed
and

th
on
l cal-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 5 MAY 2004

                    
On the generalized function calculus for infrared
and ultraviolet singular quantum fields
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New theorems on properties of the generalized functions defined on Gelfand–
Shilov’s spacesSa

0 are established. These functional classes are universal for the
operator realization of quantum field theories whose infrared or/and ultraviolet
behavior is more singular than that of the standard Wightman quantum field theo-
ries ~QFT’s!. The leading role in these applications is played by the notion of a
carrier cone of analytic functional which generalizes and replaces the notion of
support of distribution. An explicit representation for the generalized functions with
a given carrier cone is obtained. It is proved that the restrictions of functionals
defined onSa

0 to the spaces with smaller subscripts have the same carrier cones.
The precise characterization of the relation between the carrier cones of multilinear
forms with respect to their arguments and the carrier cones of their associated
generalized functions is given. Applications of the obtained results to indefinite
metric QFT and to nonlocal models are discussed. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1695094#

I. INTRODUCTION

In this paper, we present some results concerning the generalized function classes requ
the operator realization and nonperturbative investigation of quantum field theory~QFT! models
with singular infrared or/and ultraviolet behavior. These classes are considerably wider than
tempered distributions used originally for formulating the general principles of QFT,1,2 and than
those of ultradistributions corresponding to the strictly localizable Jaffe fields.3 Moreover, they
provide a means for the efficient treatment of singularities much more severe than tho
hyperfunctions proposed for further elaborating the axiomatic approach and, particularly,
lishing a more symmetrical relation between QFT in Minkowski space–time and Euclidean
theory.4 The suitable test function spaces areSa

b introduced by Gelfand and Shilov,5 with the
superscript satisfyingb,1. The spacesSa

0 are minimal among them, and their dual spacesSa8
0

consisting of continuous linear functionals defined onSa
0 provide us with the most general frame

work for constructing the mentioned QFT models. The properties of functionals of this clas
just the subject of our investigation. The theorems established below have obvious analog
0,b,1 and the proofs are even simpler in that case. The spaceSa8

0 is exactly the Fourier-
transformed space of Roumieu’s ultradistributions6 of class$kak% and the study of its properties i
also interesting from this viewpoint.

The highly singular generalized functions have long been used in the theory of non
interactions for generalizing the Wightman axiomatic approach~see, e.g., Ref. 7 for a review! as
well as for constructing phenomenological models.8 At present this is perhaps the best develop
branch of nonlocal QFT which is interesting in view of a possible interplay with string theory
even proposed as an alternative to string theory.9 There are also attempts to connect it wi
noncommutative field theory.10,11 The main motivation for the study of generalized functi
classesSa8

0 is the desire to obtain a generalization of the distributional and hyperfunctiona

a!Electronic mail: soloviev@lpi.ru
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culus required for the consistent quantization of gauge theories in a generic covariant gaug
relevance of Gelfand–Shilov’s spaces to this problem was first pointed out by Moschell
Strocchi.12,13 In particular, the use of them enables one to obtain the complete ope
realization14,15 of the Wick-ordered entire functions of indefinite metric free fields that ente
building blocks in the exact solutions of some simple gauge models.

In nonlocal field theory, the singularities are ultraviolet by their nature and fields are
defined on averaging with configuration-space test functions belonging toSa

b with a suitableb
,1. On the contrary, when dealing with gauge theories and indefinite metric infrared singula
we have to use such test functions in momentum space. In both cases, the main difficulty
these functions are analytic and cannot vanish in any nontrivial domain. Because of th
possibility of the proper generalization of the microcausality axiom in the former case and
spectral condition in the latter is not immediately evident. It has been shown,16,17however, that an
angular localizability property is preserved even forb50 and every functionalvPSa8

0 has a
unique minimal carrier cone which can be called the ‘‘quasisupport’’ ofv. It is natural to use this
notion for the mentioned generalizations. As shown in Ref. 18, there is an interrelation be
this notion and the concept of analytic wave front set of ultradistribution. By taking this fact
account, it has been possible to construct a new derivation18,19 of the CPT and spin-statistic
theorems which covers nonlocal quantum fields with arbitrary high energy behavior. Thi
proach was also applied20 to Euclidean formulation of QFT without positivity21 and an appropriate
generalization of the reconstruction theorem was suggested.

However, there are several questions concerning properties of the generalized functions
class Sa8

0 , which have not been given due attention although they are important for fu
developments. The aim of this paper is to give the complete and clear answers to three o

In Sec. II, on doing some preliminaries, we derive a structure theorem for elements oSa8
0

with a given carrier cone. It is well known that the structure of usual Schwartz’s distribu
supported by a closed setM is described by the representation

~v, f !5 (
uqu<N

E Dqf dmq ,

wheremq are measures of tempered growth, whose supports can be chosen contained inM if this
set satisfies some regularity conditions. This representation is widely used in applications a
generalized to ultradistributions.6,22 An analogous representation for elements ofS805S8̀0 was
assumed in some works23 on nonlocal QFT. However, as explained in Ref. 18, its rigorous d
vation from the basic definitions, e.g., from those of Refs. 16 and 17 is a nontrivial task. The
difficulty in deriving such representations, which has been pointed by Komatsu22 and is often
overlooked by other authors, lies in the need of proving the equivalence of two natural but a
different topologies on a subspace of an inductive limit, see below. To our knowledge, there
consideration of this issue forSa8

0 in the existing literature. It should be emphasized that
structure theorem of Sec. II is helpful in actual applications, for instance, it is required
extending the theory of Lorentz invariant distributions to the functional classes under stud
Ref. 24.

In Sec. III we consider the relation between the carrier properties of a multilinear forw
defined onSa

0(Rd1)3¯3Sa
0(Rdn) and those of the generalized functionv determined byw on

Sa
0(Rd11•••1dn) by the nuclear theorem. In the QFT context,w is a vacuum expectation value an

v is the corresponding Wightman function. Ifw regarded as a functional off jPSa
0(Rdj), with

other variables held fixed, is carried byK j , then the productK13¯3Kn is a carrier ofv, but
these two properties proved to be nonequivalent. So, the situation is distinct from the case
usual distributions and this raises the question of what really is the relevant property ofv. This
point is important for the extension20 of the Osterwalder–Schrader theory to infrared singu
fields. Moreover, a similar subtlety should be taken into account in deriving the reconstru
theorem for QFT in terms of Fourier hyperfunctions. Since translating the carrier propertiesw
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into those ofv presents difficulties and this procedure was not described anywhere, we
perform it in a simple manner, by using the uniform boundedness principle.

In Sec. IV, we show that the notion of carrier cone is independent of the indexa specifying
the test function space. More precisely, we prove that the restriction ofvPSa8

0 to any nontrivial
smaller spaceSa8

0 , a8,a, has the same carrier cones asv. Such a proof is also lacking in th
literature, although this question is not only of theoretical significance but raises in con
applications. For instance, it faces us in proving19 that the vacuum expectation valu
^F0 , @f(x),f(x8)# 2

(1)
C0&, wheref is a nonlocal field of the classSa8

0 with an integer~half-

integer! spin, is carried by the closed cone$(x,x8)PR8:(x2x8)2>0%.
We will attempt to elucidate the above questions with a minimal amount of technical wor

particular, where possible, we use the language of Hilbert space theory familiar to theo
physicists and apply theorem quoting proofs. Some technical details are moved to the App
The final section contains conclusions and outlook.

II. STRUCTURE THEOREM

We start by recalling the original definition5 of the spaceSa
0(Rd). It consists of all smooth

functions onRd such that

uDqf ~x!u<Cbuqu e2ux/au1/a
, ~1!

whereC, a, b are positive constants depending onf . The choice of norm inRd is inessential here
because all these norms are equivalent, and it can be adapted to each specific applicati
space is nontrivial fora.1 only, and this condition is supposed to be met throughout w
follows. The definition ofSa

0(Rd) can be reformulated in terms of complex variables since ev
element of this space allows an analytic continuation to the whole ofCd and the resulting entire
functions satisfy the estimateu f (x1 iy)u<C exp$2ux/au1/a1buyu%. Analogous spaces can b
associated16,17 with cones inRd. Namely, if U,Rd is an open cone, thenSa

0(U) is defined to be
the space of all smooth functions onRd satisfying~1! for xPU. It is natural to regard this spac
as the inductive limit of the Banach spacesSa,a

0,b (U) whose norms are defined by

i f iU,a,b5 sup sup
xPU qPZ1

d

ub2uqu] qf ~x!u eux/au1/a
, ~2!

whereZ1 is the set of non-negative integers. This limit coincides with that of the Banach sp
Ea,a

0,b (U) of entire functions endowed with the norms

i f iU,a,b8 5 sup
zPCd

u f ~z!u exp$ux/au1/a2bdU~x!2buyu% ~z5x1 iy !, ~3!

wheredU(x) is the distance ofx from U.
A closed coneK,Rd is said to be a carrier ofvPSa8

0 if v can be continuously extended t
each ofSa

0(U), whereU.K\$0%. ~If this inclusion holds, we say thatK is compact inU and use
also the notationUcK.25! Taking into account thatSa

0 is dense in every spaceSa
0(U),17 this

means thatv belongs to the dual space of the inductive limitSa
0(K)5 lim→

Uc K

Sa
0(U), which is

identified with a vector subspace ofSa8
0 . In order to gain a better insight into the construction

Sec. III, we remark that$U:UcK% is a directed set andSa
0(U) is an increasing family of space

only if the closed coneK is nondegenerate. For the degenerate cone consisting of the orig
associated spaceSa

0($0%) is the space of all entire analytic functions of order 1 and finite type,
satisfying the estimateu f (z)u<C ebuzu, zPCd. By Theorem 6 of Ref. 16 every elementf
PSa

0($0%) allows the decompositionf 5 f 11 f 2 , wheref 6PSa
0(U6) andU6 are arbitrary open
                                                                                                                



th

s

.
erties

onto a
ariables
e

t

eorem
rs in

p the

n

1947J. Math. Phys., Vol. 45, No. 5, May 2004 Generalized function calculus for singular fields

                    
cones such thatŪ1ùŪ25$0%. Because of this, the inductive topology onSa
0($0%) determined by

the canonical injectionsSa
0(U)→Sa

0($0%), whereU runs through all open cones, coincides wi
that determined by the two injectionsSa

0(U6)→Sa
0($0%).

The spaceSa
0(U) can also be represented16 as the inductive limit of the Hilbert space

Ha,a
0,b (U) of entire functions with the scalar products

^ f , g&U,a,b5E f ~z! g~z! e2(ux/au1/a2bdU(x)2buyu) dx dy. ~4!

As a consequence, it is a nuclear DFS space, i.e., strong dual of a nuclear Fre´chet–Schwartz space
Spaces of this type, for which the abbreviation DFN is also used, have nice topological prop
convenient in applications and exploited below. In particular, we will use Pta´k’s version26 of the
open mapping theorem, which shows that every continuous linear mapping of a DFS space
barrelled space is open. Clearly, an analogous representation is possible in terms of real v
and that is just what we need now. LetLa,a

0,b (U) be the space of all infinitely differentiabl
functions onRd for which the norm corresponding to the scalar product

~ f , g!U,a,b5(
q

b22uqu E
U

] qf ~x! ] qg~x! e2ux/au1/a
dx ~5!

is finite.
Lemma 1: For any open cone U, the space Sa

0(U) coincides with the inductive limi
lim
→

La,a
0,b (U) (a,b→`).

For the proof we refer to Appendix A.
Theorem 1: Let U be an open cone inRd. EveryvPSa8

0(U) can be written as

v~ f !5(
q
E

U
vq~x! ] qf ~x! dx, ~6!

wherevq are locally integrable functions satisfying the condition

(
q

buqu E
U

uvq~x!u e2ux/au1/a
dx,` f or all a,b.0. ~7!

In particular, such a representation is valid for any functional of class Sa8
0 whose quasisupport is

contained in Uø$0%.
Proof: Lemma 1 enables us to reduce the derivation of this representation to Riesz’s th

characterizing the dual of a Hilbert space. At first we replace the exponential that occu
definition ~5! by the function (11uxu)22d(kPZ

1
d x2ka22ukuk22ak. This leaves the limit space

lim
→

La,a
0,b (U) unaltered because

c expS 2a

e (
j 51

d

uxj u1/aD<(
k

x2k

k2ak <Ce expS 2a

e (
j 51

d

u~11e!xj u1/aD ,

wheree.0 can be taken arbitrarily small. For the spaces modified in such a way, we kee
same notationLa,a

0,b (U) and introduce another family of Hilbert spaces. Namely, letL a,a
0,b (U) be

the space consisting of twice multi-indexed sequencesF5$ f kq% of square-integrable functions o
U and endowed with the scalar product

~G, F !U,a,b5(
k,q

a22ukub22uquk22akE
U

gkq~x! f kq~x! dx. ~8!
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ThenLa,a
0,b (U) is identified with a subspace ofL a,a

0,b (U) by means of the mapping

i : f→ f kq5~11uxu!2dxk] qf . ~9!

This subspace, being complete, is evidently closed. Let us provide the image of lim
→

La,a
0,b (U) in

lim
→

L a,a
0,b (U) with the topology induced by that of the latter space.

Lemma 2: The spacelim
→

La,a
0,b (U) has the same continuous dual space as the subsp

i (lim
→

La,a
0,b (U)) of lim

→
L a,a

0,b (U).

Proof: For brevity we introduce the designations,

Ln5La,n
0,n ~U !, Ln5L a,n

0,n ~U ! ~n51,2, . . .!, L5 lim
→

Ln , L5 lim
→

Ln .

Since the unit closed ball in a Hilbert space is weakly compact, the continuous injectionLn

→Ln11 are evidently weakly compact. Therefore the statement of interest follows from The
7 of Ref. 27. To apply it, we only need to verify thatL is closed inL. Let FPLm\L. SinceLm is
closed inLm , there exists a ballBm5$GPLm :iGim<e% such that (F1Bm)ùLm5B. The map-
ping Lm→Lm11 is continuous under the weak topologies, thereforeBm is weakly compact not
only in Lm but also inLm11 . The subspaceLm11 does not meetF1Bm , becauseLm11ùLm

5Lm , and so 0¹F1Bm1Lm11 . FurthermoreLm11 is weakly closed inLm11 since subspace
have the same closure under any topology consistent with duality. By Theorem I.1.1 of Re
the setF1Bm1Lm11 is also weakly closed. Hence, there is a ballBm115$GPLm11 :iGim11

<e1% such thatBm11ù(F1Bm1Lm11)5B or, equivalently, (F1Bm1Bm11)ùLm115B. The
setBm1Bm11 is absolutely convex and weakly compact inLm11 as well as inLm12 . We proceed
along the same lines and obtain an increasing sequence of absolutely convex neighborhooUn of
F in the spacesLn , n>m, such thatUn are disjoint withLn . The subspaceL does not meet their
union which is a neighborhood ofF in L by the definition of inductive topology. Therefore,L is
indeed closed inL and Lemma 2 is proved.

Thus, everyvPSa8
0(U) may be regarded as a continuous linear form on a subspac

lim
→

L a,a
0,b (U) and, by the Hahn–Banach theorem, it has a continuous extensionv̂ to the whole

space. Now the Riesz theorem shows that, for everya andb, there is a uniqueGPL a,a
0,b (U) such

that v̂(F)5(G, F)U,a,b for all FPL a,a
0,b (U). Using the designationhkq5a22ukub22uquk22akgkq ,

this may be rewritten as

v̂~F !5(
k,q

E
U

hkq~x! f kq~x! dx . ~10!

The functionshkq belong toL2(U) and do not depend ona andb. In fact, each ofhkq is entirely
determined by the values ofv̂ on thoseF all of whose components are zero exceptf kq which is
an arbitrary element ofL2(U), and all suchF ’s are contained in every spaceL a,a

0,b (U). Substi-
tuting the specifiedF ’s in ~10!, setting f kq5hkq and using the continuity ofv̂ on L a,a

0,b (U), we
obtain

uv̂~hkq!u5ihkqiL2(U)
2 <CihkqiU,a,b5Ca2ukub2uquk2akihkqiL2(U) . ~11!

Taking into account that~11! holds for any positivea andb ~although with different constantsC),
we can changea for 2a andb for 2b and obtain

(
k,q

aukubuqukakihkqiL2(U),`, ~12!
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which again is valid for alla, b. When being applied to elements of the initial space by
embedding rule~9!, Eq. ~10! takes the form

v~ f !5(
k,q

E xkvkq~x! ] qf ~x! dx, ~13!

wherevkq(x)5
def

(11uxu)2dhkq(x). These functions are integrable onU and, applying Schwarz’s
inequality, we see that~12! holds true after replacingihkqiL2(U) by ivkqiL1(U) . Then making use
of the inequalitykak/uxku>exp$2(ad/e)uxu1/a%, we conclude that

(
k,q

buqu E uxkvkq~x!u e2ux/au1/a
dx,`,

wherea andb are arbitrary positive numbers as before. By Levi’s theorem, the convergence
number series(k* uxkvkquexp$2ux/au1/a% dx implies that the series(kuxkvkqu converges almos
everywhere to a function integrable with the weight exp$2ux/au1/a%. Calling this functionvq and
performing thek summation in~13!, which is possible by the same argument, we arrive at~7! and
finish the proof.

The above derivation is vastly simplified in the case of functionals carried by the origin
means of the mappingf→ f q5] qf (0), thespaceSa

0($0%) is identified with the inductive limit of
the Hilbert spaces whose elements are sequences of complex numbers satisfying(b2uquu f qu2

,`. Therefore, everyvPSa8
0($0%) can be written as(vq] qd(x). Clearly, the analogue of~7! is

of the form limuqu→` uvqu1/uqu50. This simple fact is helpful, for instance, in proving24 that every
Lorentz invariant functionalvPSa8

0(R4) carried by the closed light coneV̄ admits a Lorentz
invariant splitting into two functionals of the same class with carriersV̄1 and V̄2 .

Remark 1:Komatsu’s theorem27 is called for the derivation of representation~6! because in
general the topology induced on a subspace by an inductive limit topology is different from
inductive limit of induced topologies. That theorem shows that the discrepancy between
topologies is unessential in the case of injective limits of weakly compact sequences of l
convex spaces. The replacement of the Banach spaces with the original norms~2! by an equivalent
sequence of Hilbert spaces makes it possible to exploit this property. We could show thatSa

0(U)
is topologically isomorphic to its image in lim

→
L a,a

0,b (U), but there is no need to appeal to this mo
subtle fact here.

Remark 2:The caseb.0 differs only by the additional factorqbq on the right-hand sides o
the analogues of~6! and ~7!. Whenb.1, the use of measures instead of integrable function
preferable, because their supports can be chosen contained in suppv. However, this gives no
advantage in the nonlocalizable caseb,1. The results of the next section show that not ev
vPSa8

0(K) admits a representation like~6! with measures supported byK.
When applied to the vacuum expectation values in QFT’s with singular infrared or ultrav

behavior, Theorem 1 exhibits their structure and distinguishing features as opposed to thos
usual Wightman functions.1,2 In extending the axiomatic approach to fields whose infrared sin
larities violate positivity, it is natural to assume that the Wightman functionswn(x1 , . . . ,xn) are
well defined as ultradistributions of class$kak% with a suitablea. Then the most general formu
lation of spectral condition is the requirement that the Fourier transforms of the functionaWn

related to the translation invariantwn’s by Wn21(x12x2 , . . . ,xn212xn)5wn(x1 , . . . ,xn) be
carried by the closed coneV̄1

(n21) , where V̄15$pPR4:p2>0,p0>0%. A Paley–Wiener–
Schwartz-type theorem17 shows that this condition makes possible the analytic continuation o
Wightman functions into the usual domains containing Euclidean points and moreover, it
weakest one ensuring such an analyticity. On the other hand, dealing with nonlocal ultra
singular fields$fi% defined onSa

0(R4) in configuration representation, we say thatfi and fi8
commute~anticommute! asymptotically for large spacelike separations of their arguments if
functional^F, @fi(x),fi8(x8)# 2 C& is carried by the closed cone
(1)
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$~x,x8!PR8:~x2x8!2>0% ~14!

for anyF, C belonging to the cyclic spaceD0 generated from the vacuum by polynomials in t
fields $fi%. Theorem 1 clarifies, in particular, the relation between the asymptotic commuta
and some other generalizations of local commutativity which were proposed for extendin
PCT and spin-statistics theorems to nonlocal fields. In particular, a representation similar~6!
was assumed and exploited23 for functionals defined onS05S`

0 . However this space is not a DF
space and has more complicated topological structure, which leaves open the question of r
derivation of that representation. From a technical point of view, the employment ofSa

0 is more
convenient and in this respect it is desirable to be sure that the restriction ofvPS80 to Sa

0 has the
same carrier cones asv. Below we argue that this is the case.

III. CARRIERS OF FUNCTIONALS DEFINED BY MULTILINEAR FORMS

The theory of multilinear forms on products of test function spaces is important for
applications of interest because the vacuum expectation values of quantum fields are ju
forms. As known, in the standard axiomatics1,2 these are uniquely extendable to tempered dis
butions by Schwartz’s nuclear theorem and the content of theory can be reformulated in te
these Wightman distributions. We want to show that such a possibility is preserved in the
general framework of spacesSa

0 and then we face the problem of continuous extension of mu
linear forms to the completions of their domains in a weaker topology. This matter is much
complicated than continuous extension of linear forms~see, e.g., Ref. 26! but we will show that in
our case it suffices to use the barrelledness ofSa

0 . This property is practically equivalent to th
applicability of the uniform boundedness principle which is well known in the theory of Hilb
spaces. It is inherited by inductive topologies and because of this the spacesSa

0 , being the
inductive limits of Hilbert spaces, possess this property. A subtlety is thatSa

0 are nonmetrizable
and we cannot identify topological properties with their sequential form. WhenA andB are sets
in a nonmetrizable topological space, we say thatA is sequentially dense inB if every point ofB
is the limit of a sequence lying inA and convergent in the topology of this space.

Lemma 3: If L is a sequentially dense subspace of a locally convex space E1 and E2 is a
barrelled space, then every bilinear separately continuous form w defined on L3E2 has a unique
extension to E13E2 which is bilinear and separately continuous.

Proof: For each fixedgPE2 , the formw( f ,g) can be uniquely extended toE1 by continuity.
Letting ŵ denote this extension, we have to show that it is linear and continuous ing for each
fixed f PE1 . That is just what is ensured by the barrelledness ofE2 , because iff nPL, f n→ f ,
then regardingf n as elements ofE28 @whose values ong arew( f n ,g)] and applying Theorem 4.6
of Ref. 26, we see that their pointwise convergence tof (g)5w( f ,g) implies thatf (g) is also an
element ofE28 .

We now note that every multilinear separately continuous formw on Sa
0(U1)3¯3Sa

0(Un)
defines a unique linear functionalvPSa8

0(U13¯3Un) such that

w~ f 1 , . . . ,f n!5v~ f 1^¯^ f n!, f jPSa
0~U j ! . ~15!

In the case of bilinear forms, this is an immediate consequence of the relation17

Sa
0~U1! ^̂ iSa

0~U2!5Sa
0~U13U2!, ~16!

where the indexi indicates that the tensor product space is equipped with the inductive topo
and the hat means the corresponding completion. Under this topologization, the dual space
tensor product is canonically identified with the space of bilinear separately continuous form26 In
the general case of multilinear forms, we may use the corresponding generalization of fo
~16!, derivable analogously. It perhaps should be noted that for DFN spaces the binary ope
^̂ i is associative and this gives another way for drawing the same conclusion.
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Theorem 2: Let Kj be closed cones inRdj , j 51, . . .n, and let w be a multilinear separatel
continuous form on Sa

0(Rd1)3¯3Sa
0(Rdn) with the following property:

~* ! For every j, the cone Kj is a carrier of all the linear functionals on Sa
0(Rdj) that are

determined by w( f 1 , . . . ,f n) with the arguments fi ,iÞ j , held fixed.
Then the functionalv defined by w in Sa8

0(Rd11¯1dn) is carried by the cone K13¯3Kn .
Proof: For the sake of simplicity, we setdj5d for all j . It suffices to show that every con

Rd( j 21)3K j3Rd(n2 j ) is a carrier ofv, because then their intersection is also a carrier by Theo
2 of Ref. 16. We putj 51 without loss of generality. Letn52 and letU1 be an open cone inRd

such thatK1bU1 . According to Theorem 5 of Ref. 17, every element ofSa
0(U1) can be approxi-

mated by elements of someHa,a
0,b (Rd) in the norm ofHa,a

0,b (U1). So, by Lemma 3,w can be
extended to a bilinear separately continuous form onSa

0(U1)3Sa
0(Rd). This form in turn deter-

mines a continuous linear functional onSa
0(U13Rd), which is an extension ofv because

Sa
0(Rd) ^ Sa

0(Rd) is dense in inSa
0(R2d). Thus,v allows a continuous extension even to a spa

larger thanSa
0(K13Rd) since, for every open coneU in which K13Rd is compact, there is aU1

such thatU13Rd,U, but the converse is not in general true. Next we use the induction on.

Consider ann-linear form w (n.2) as bilinear onL3E2 , where L5 ^

n21

Sa
0(Rd) and E2

5Sa
0(Rd). By the induction hypothesis, it is separately continuous under the topology induc

L by that ofSa
0(U13Rd(n22)). Every element of the latter space can be approximated by elem

of L in the norm ofHa,a
0,b (U13Rd(n21)) with a andb large enough. This follows from the sam

approximation theorem combined with Lemma 1 of Ref. 17 which shows that, for any pair of
cones,Ha,a

0,b (U13U2)5Ha,a
0,b (U1) ^ Ha,a

0,b (U2) with the Hilbert tensor product on the right. Apply
ing Lemma 3 again, we conclude thatv has a continuous extension toSa

0(U13Rd(n21)) and so the
coneK13Rd(n21) is a carrier ofv as was to be proved.

In order to characterize precisely those elements ofSa8
0(Rd11¯1dn) that are generated by th

multilinear forms with property~* !, we use the following definition.
Definition: Let K j be closed cones inRdj , j 51, . . . ,n. We denote bySa

0(K1 , . . . ,Kn) the
linear span of the images of the canonical mappingsSa

0(U13¯3Un)→Sa
0($0%), whereU j runs

through the open cones inRdj such thatK jbU j , and endow it with the inductive topology b
these mappings. IfvPSa8

0(Rd11¯1dn) has a continuous extension toSa
0(K1 , . . . ,Kn), then we

say thatv is multiplicatively carried by the coneK13¯3Kn .
It can be shown that this definition is equivalent to Definition 2 of Ref. 20, where the

‘‘strong’’ was used instead of ‘‘multiplicative’’ and auxiliary spaces associated with arbitrary co
were exploited. Because of the obvious inclusionSa

0(K13¯3Kn),Sa
0(K1 , . . . ,Kn), any mul-

tiplicative carrier cone of a functional is its carrier cone.
Lemma 4: For any system of closed cones, Sa

0(K1 , . . . ,Kn) is a DFN space.
Proof: It suffices to take well-known inheritance properties of DFN spaces into accoun

particular, finite direct sums, quotient spaces~modulo closed subspaces! and injective limits of
sequences of DFN spaces are DFN. So, the conclusion of Lemma 4 is evident if allK j are
nondegenerate, because thenSa

0(U13¯3Un) is an increasing family equivalent to an increasi
sequence. Now, let some ofK j be degenerate. We form new systems (K18 , . . . ,Kn8) and
(K19 , . . . ,Kn9), replacing the degenerate cones by the positive orthants in the first case a
negative ones in the second case and leaving the other cones unchanged. From the decom
theorem of Ref. 16, it follows that every element ofSa

0(K1 , . . . ,Kn) can be decomposed into
sum of functions belonging toSa

0(K18 , . . . ,Kn8) andSa
0(K19 , . . . ,Kn9). When being endowed with

the inductive topology with respect to the latter spaces,Sa
0(K1 , . . . ,Kn) becomes a DFN space

because then it is identified with a quotient space of direct sum of two DFN spaces, an
topology coincides with the original one by the open mapping theorem.

It is not difficult to show thatSa
0(K13¯3Kn)5Sa

0(K1 , . . . ,Kn) only in the two trivial cases
when allK j are degenerate or whenK j5Rdj for all j , and only then their duals coincide becau
DFN spaces are reflexive. The proof of this assertion is beyond the scope of the present pa
we give a simple explaining example. Namely, letK15R and letK2 be the nonpositive semiaxi
R̄2 . Clearly ezPSa

0(R2) for any a.1 and f 1(z1) ez2PSa
0(R,R̄2)5Sa

0(R3R2) for every f 1
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PSa
0(R). According to Ref. 5, the spaceSa

0(R) contains a non-negative functionf 0 such that
f 0(0).0 and u f 0(x1 iy)u<e22uxu1/a1uyu. The convolutionf 1(x)5*e2uju1/a

f 0(x2j) dj also be-
longs toSa

0(R) and satisfies the lower bound

f 1~x!>E
21

11

e2ux2ju1/a
ga~j! dj>e2(uxu11)1/aE

21

11

ga~j! dj>c e2uxu1/a
. ~17!

The estimate~17! shows that the functionf 1(z1) ez2 increases indefinitely along each of the re
rays lying in the half-planex2.0 and hence does not belong to any spaceSa

0(U), whereUcR
3R̄2 . It follows thatSa8

0(R,R̄2)ÞSa8
0(R3R̄2).

Theorem 3: A functional vPSa8
0(Rd11¯1dn) is generated by a multilinear form on

Sa
0(Rd1)3¯3Sa

0(Rdn) with property ~* ! if and only if it has a continuous extension
Sa

0(K1 , . . . ,Kn).
Proof: We may use thel -norm uxu5(uxj u in Rd11¯1dn and substitute(uxj u1/a for uxu1/a in

definition ~3!. ThendU13¯3Un
(x)5(dU j

(x) and the indicator function defined by the expone

tial in ~3! is multiplicative. It follows that the mappingf j→ f 1^¯^ f j ^¯^ f n from Sa
0(U j ) to

Sa
0(U13¯3Un) is continuous and hence the multilinear forms that correspond to functiona

Sa8
0(K1 ,...,Kn) possess property ~* !. To derive the converse implication (* )⇒v

PSa8
0(K1 ,...,Kn), which is the main point of the theorem under discussion, we need two lem
Lemma 5: Let U1 , U2 , and U be open cones inRd1, Rd2, and Rd, respectively, and let

V1bU1 , V2bU2 . Then every function fPSa
0(U13U23U) allows a decomposition of the form

f 5 f 11 f 2 , where f1PSa
0(V13Rd23U) and f2PSa

0(Rd13V23U).
This is a simplified version of Lemma 2 in Ref. 20.
Lemma 6: Let E be a vector space and let L0 , L1 , L2 be its subspaces endowed with loca

convex topologies and such that L0,L1ùL2 . Assume that L11L2 and L1ùL2 are equipped with
the inductive and projective topologies, respectively. If L0 is dense in each of L1 , L2 , L1ùL2 and
the injections L0→L1 , L0→L2 are continuous, then

~L11L2!85L18ùL28 ,

where the dual spaces are regarded as vector subspaces of L08 .
Proof: Note thatL0 is dense inL11L2 if it is dense inL1 andL2 and so the natural mappin

(L11L2)8→L08 is injective along withL18→L08 andL28→L08 . Clearly, (L11L2)8,L18ùL28 and we
only need to show the converse inclusion. LetvPL18ùL28 and let v1 , v2 be its continuous
extensions toL1 , L2 . Since the projective topology onL1ùL2 is the upper bound of the topolo
gies induced by those ofL1 and L2 , the functionalsv1 and v2 are continuous onL1ùL2 and
hence coincide on this subspace by the denseness condition. Therefore, the formulav̂( f 11 f 2)
5v1( f 1)1v2( f 2) defines a linear extension ofv to L11L2 which is continuous by the definition
of inductive topology.

End of the proof of Theorem 3:We again setdj5d for simplicity. Letw be a multilinear form
with property~* !. In deriving Theorem 2, we have shown that its associated functionalv belongs
to Sa8

0(Rd( j 21),K j ,Rd(n2 j )) for every j 51, . . . ,n. At first assume thatK jÞ$0% for all j . Denote
by E the spaceSa

0(K1 ,K2 ,Rd(n22)) and by L1 and L2 the images ofSa
0(K1 ,Rd(n21)) and

Sa
0(Rd,K2 ,Rd(n22)) in this space. By Lemma 5, we haveE5L11L2 . If the sum is endowed with

the inductive topology, then this equality holds not only algebraically but also topologically b
open mapping theorem. The intersectionL1ùL2 is identified, as a set, with the inductive limit o
directed family of spacesSa

0(U), where U is the union of open conesU13Rd(n21) and Rd

3U23Rd(n22), with U1 , U2 running through the conic neighborhoods ofK1 , K2 . By the ap-
proximation theorem,17 Sa

0 is dense in each of them and so inL1ùL2 endowed with the inductive
limit topology which is obviously stronger than the projective topology determined by the in
tions L1ùL2→L1 , L1ùL2→L2 . Applying Lemma 6, we conclude that v
PSa8

0(K1 ,K2 ,Rd(n22)). Repeating the same line of argument, we obtainv
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PSa8
0(K1,K2,K3,Rd(n23)) and so on. Now, let some ofK j be degenerate. Then we setE

5Sa
0(K1 , . . . ,Kn), L15Sa

0(K18 , . . . ,Kn8), andL25Sa
0(K19 , . . . ,Kn9), where the systems of cone

are defined in Lemma 4. From what has been said, it follows thatvPL18ùL28 and applying Lemma
6 completes the proof.

It should be noted that in the usual case of tempered distributions onRd13¯3Rdn, the
situation is quite different because the projections of their supports ontoRdj certainly contain
supports of those distributions that are obtained by fixing the other arguments. Clearly, th
ference has its origin in using the conic neighborhoods~in other words, the radial compactificatio
of Rd) in the definition of carrier cones of the functionals belonging toSa8

0(Rd).
When applied to nonlocal fields defined on the test function spaceSa

0(R4), Theorems 2 and 3
enable one to express the asymptotic commutativity condition stated in Sec. II in terms
corresponding generalized Wightman functions onSa

0(R4n). Namely, the functional defined by

^C0 , fi1
~x1!¯fik21

~xk21!@fik
~xk!,fik11

~xk11!# 2
~1 !

fik12
~xk12!¯fin

~xn!C0&,

where the sign2 or 1 corresponds to the type of commutation relation betweenfik
andfik11

, is
carried and even multiplicatively carried by the coneR4(k21)3V83R4(n2k21), with V8 defined by
~14!. As a consequence, that condition is actually fulfilled on a larger domainD1 spanned by the
vacuumC0 and all vectors of the form

E fi1
~x1! . . . fin

~xn! f ~x1 , . . . ,xn! dx1¯dxn C0 ~n51,2, . . .!,

where f PSa
0(R4n). The notion of multiplicative carrier cone is particularly essential for form

lating the spectral condition for the quantum fields whose infrared singularities violate pos
and, specifically, for generalizing the Osterwalder–Schrader theorem to such QFT’s.20 The em-
ployment of this notion results in effective estimates for the Schwinger functions and enable
to develop Euclidean formulation in complete analogy to the usual case of tempered distri
fields. It is significant that the spectral condition stated in such a way is fulfilled for the W
ordered entire functions of indefinite metric free fields.

IV. INDEPENDENCE OF THE QUASISUPPORT FROM THE INDEX a

Theorem 4: Let vPSa8
0 and let1,a8,a. If the restrictionvuSa8

0 is carried by a closed cone
K, then so isv.

Proof: This statement, combined with the obvious converse implication, can be express
the relation

Sa8
0ùSa8

80
~K !5Sa8

0~K !, ~18!

where all the spaces are regarded as vector subspaces ofSa8
80 , which is permissible by the ap

proximation theorem.17 For K5$0%, equality ~18! is valid by definition and the coneK will
henceforth be assumed nontrivial. We begin by deriving the dual formula

Sa
0~K !5Sa

01Sa8
0

~K ! ~19!

and then apply Lemma 6. Letf PEa,1
0,b(U), UcK. @Taking advantage of the dilation invariance

the spaces involved, we seta51 without loss of generality. From now on, we shall also use
Euclidean norm inRd and the system of norms~3! dropping the prime.# Choose a non-negativ
function x0PC0

` with support in the ballBe5$x:uxu,e% and such that*x0(x) dx51 and set

x~x!5E
U

x0~x2j! dj.
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Let us consider the decomposition

f 5 f 11 f 2 , f 1~z!5 f ~z!x~x!, f 2~z!5 f ~z!~12x~x!!.

The functionsf 1 and f 2 are not analytic but behave properly at infinity ofCd. Indeed, we have

u f 1~z!u<i f iU,1,b exp$2uxu1/a1buyu1be% ~20!

sincedU(x)<e for xPsuppx. Further, letV be an open cone such thatKbVbU. Then there is
a constantg.0 such thatdV(x)>guxu for all points of supp(12x) except for a compact subse
At these points, we haveb dU(x)<b dV(x)<b̄dV(x)2ḡuxu, where b̄.b and ḡ5b̄2b. There-
fore,

u f 2~z!u<C i f iU,1,b exp$2ḡuxu1buyu1b̄dV~x!%. ~21!

To obtain an analytic decomposition, we write

f 5 f 181 f 28 , f 185 f 12c, f 285 f 21c

and subjectc to the equations

]c

] z̄j
5h j , where h j5

def

f
]x

] z̄j
5

1

2
f

]x

]xj
~ j 51, . . . ,d!. ~22!

The functionsh j (z) are nonzero only forxP]U1Be , where]U is the boundary ofU, and
satisfy the estimate

uh j~z!u<Cj i f iU,1,b exp$2uxu1/a1buyu%. ~23!

It remains to verify that there exists a solution of Eqs.~22! with the required behavior at infinity
First we shall show that this behavior can be characterized by a plurisubharmonic function,
enables us to apply an existence theorem due to Ho¨rmander.28

Lemma 7: For every pair U8, U of open cones inRd such that U8bU and for each system o
numbersa,a8,b,b8,e satisfying a.a8.1, b8.Ad b.0, 0,e,1/b, there is a plurisubhar-
monic functionr(z) with the following properties:

r~z!>2uxu1/a1buyu for xP]U1Be , ~24!

r~z!<2uxu1/a1b8uyu1C everywhere, ~25!

r~z!<2uxu1/a81b8uyu1C for xPU8, ~26!

where C is a sufficiently large constant.
The proof of this lemma is given in Appendix B.
Let us go on with our proof of Theorem 4. We choose a coneU8 so thatVbU8bU, take a

function r defined by Lemma 7, and denote by% the strictly plurisubharmonic function 2r1(d
13)ln(11uzu2). Using~23! and~24!, we see thath jPL2(Cd,e2%¸21 dl), where dl stands for the
Lebesgue measure onCd and

¸ 5
def

inf
z
(
j ,k

]2%~z!

]zj] z̄k

z j z̄k

uzu2 >~d13!inf
z
(
j ,k

]2 ln~11uzu2!

]zj] z̄k

z j z̄k

uzu2 >
d13

~11uzu2!2 ,

with the last lower bound taken from Ref. 28, Sec. 15.1. The functionsh j satisfy the consistency
conditions]h j /] z̄k5]hk /] z̄j by definition, and Theorem 15.1.1 of Ref. 28 shows that the sys
of Eqs.~22! has a solutionc such that
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E ucu2e2% dl<E uhu2e2%¸21 dl<
1

d13 E uhu2e22r

~11uzu2!d11 dl<C8i f iU,1,b
2 , ~27!

where we made use of~23! and ~24! in the last step. This implies that

cPL2~Cd,e2(ux/au1/a2b9uyu) dl! and cPL2~Cd,e2(ux/au1/a82b9uyu2b8dV(x)) dl!

for eacha.1 and for eachb9.Ad b. The former membership relation is ensured by~25! and the
latter follows from~26! since forx¹U8, we havedV(x)>g8uxu with someg8.0 and the expo-
nent in question evidently does not exceed2%1C9 by ~25! again. Referring back to~4!, ~20!, and

~21!, we conclude that the analytic functionsf 18 and f 28 belong, respectively, to the spacesHa,a
0,b9

andHa8,a
0,b9 (V) and so relation~19! is proved. To complete the proof, it remains to verify thatSa8

0

is dense in the intersectionSa
0ùSa8

0 (K) endowed by its natural~i.e., projective! topology. This is
considerably simpler than proving the denseness ofSa8

0 in Sa8
0 (K) since the elements of intersec

tion decrease like exp(2uxu1/a) outside the coneK, in contrast to an arbitrary function inSa8
0 (K)

which has an exponential growth. Namely, an approximating sequencewn can be constructed by
settingwn5snw, wheresn(z) is a sequence of Riemann sums for the integral*s0(z2j) dj, with
s0 a function inSa8

0 whose integral is unity. The sequencewnPSa8
0 is obviously bounded in both

the spacesSa
0 andSa8

0 (K) and converges tow uniformly on compact subsets ofCd by the Vitali–
Montel theorem. Thus, by the standard argument,5 wn→w in the topology of either of these
spaces. Applying Lemma 6 concludes the proof.

Corollary: Let V be an open connected cone inRd and let a8.1. Suppose that g(z) is an
analytic function on the tubular domainRd1 iV with the property that, for any«,R.0 and every
cone V8bV,

ug~z!u < C«,R~V8! exp$« uIm zu21/(a821)% ~ Im zPV8, uzu<R!. ~28!

If the boundary value of g is an ultradistribution of class$kak%, wherea.a8, then this function
satisfies a stronger bound of the same type, witha substituted fora8.

This is a direct consequence of Theorem 4 combined with Theorem 4 of Ref. 17 which s
that the Laplace transformation is an isomorphism of the algebra of analytic functions with g
property~28! onto the spaceSa8

0(V* ), whereV* is the dual cone ofV.
Remark 3:An analogue of Theorem 4 forSa8

b , where 0,b,1, can be derived more easily
Namely, it suffices to apply Theorem 5.18 of Ref. 24 which shows that, forv in Sa8

b , the condition
of belonging toSa8

b(K) amounts to a falloff property of the convolutionv* f , f PS12b
b , in the

complementary coneCK. Any similar proof is impossible forb50 because of the absence of
smallest space among the familySa

0 .
Theorem 4 has been stated in Ref. 19 without a proof and used there in deriving

auxiliary theorems, which generalize the well-known fact that the odd Lorentz invariant dis
tions have support in the closed light cone and which play a significant part in proving the
invariance of nonlocal QFT’s satisfying the asymptotic commutativity condition as well a
extending the spin-statistics relation to nonlocal fields. The role of Theorem 4 in these applic
can be illustrated, in particular, by the following example.

Theorem 5: Let f be a field defined on the space Sa
0 , a.2, and satisfying all the standard

axioms except temperedness and locality. Assume it transforms according to an irreducib
resentation of the groupSL~2,C! and let W(x12x2) be the Wightman generalized function dete

mined by the vacuum expectation value^C0 , f(x1)f* (x2)C0&. Then the closed light coneV̄
5$j:j2>0% is a carrier of the functional

W~j!7W~2j!, ~29!
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where the upper and lower signs correspond to the cases of integer and half-integer spin, r
tively.

In deriving Theorem 5 we are to regularize the ultraviolet behavior ofW through the multi-
plication of the Fourier transformW̃ by the Lorentz invariant functionv(p/m), where v(p)

5v0(p2), v0PS0
a8(R), 1,a8,a, suppv0,(21,1), andv0(t)51 for utu<1/2. Theorem 7 of

Ref. 19 shows that the regularized functionalW̃m allows a continuous extension to the spa

Sa2a8
a8 . In particular, ifa.2 anda8,a21, thenW̃m has no worse than exponential growth

the order 1/(a2a8),1 and hence its Laplace transformWm is well defined and holomorphic in
the usual tubular domainR42 iV1 . This enables us to apply the Bargmann–Hall–Wightm

theorem1,2 and to assert that the support of the functionalFm5
def

Wm(j)7Wm(2j), which is de-

fined on the spaceSa8
a2a8 containing functions of compact support providinga8,a21, lies in V̄

and thereforeFm has a continuous extension toSa8
0 (V). The extensionF̂m can be defined by

(F̂m , f )5(Fm ,x f ), wherex is a multiplier forSa8
a2a8 which is equal to 1 in ane-neighborhood of

V̄, vanishes outside the 2e-neighborhood and satisfies the estimateu] qx(x)u<Chuquq(a2a8)q. It is

readily verified that the multiplication byx is a continuous map fromSa8
0 (V) into Sa8

a2a8 . Taking
into account that the Fourier transforms of functions belonging toEa8, a

0, b have support in the bal
of radius;b, wherev(p/m)51 for m large enough, and using the denseness ofSa8

0 in Sa8
0 (V),

we conclude that the nonregularized functional~29! also has a continuous extension toSa8
0 (V).

Finally, Theorem 4 makes possible a further extension toSa
0(V̄), which completes the proof. In th

same manner it is used in deriving an analogue19 of Theorem 5 for then-point vacuum expectation
values.

V. CONCLUDING REMARKS

A number of works~see, e.g., Ref. 23 and references therein! on nonlocal QFT exploit anothe
Gelfand–Shilov’s class of test-function spacesSb, b,1. The generalized functions belonging
S8b have the same type of singularity as elements ofSa8

b but grow at infinity no faster than a
polynomial. Their carrier cones can be defined24 in a manner analogous to that used in Sec. II.
pointed in Sec. II, the spacesSa

b are more convenient in operation because their topolog
structure is simpler, and in this respect it is worth noting that the restriction ofvPS8b to Sa

b has
the same carrier cones asv. The proof of this fact forb50 is more complicated than th
derivation of Theorem 4, but the above construction can be adapted to this case by using L
5.11 of Ref. 24. Theorem 4 can also be extended to the multiplicative carriers. As alrea
marked, the notion of multiplicative carrier cone is best suited for generalization of the sp
condition to gain the Euclidean formulation of local QFT’s without positivity. Perhaps it is
sonable to impose an analogous condition on the generalized functions that serve as kerne
positive semidefinite scalar product defining an auxiliary Hilbert structure29 which is associated
with the set of Wightman functions to identify the physical states. It is hardly surprising
highly singular generalized functions should be incorporated into the mathematical tools of
tum field theory with indefinite metric. This simply brings the distributional framework of Q
into coordination with the presence of nonphysical degrees of freedom and appears to be e
for the complete implementation of the gauge symmetry. What is more, the employment o
a formalism might contribute to a better insight into the Higgs effect and the confinement m
nism, as discussed in Refs. 13 and 14. The theorems established in Refs. 16–18 and c
mented by the results presented here enable one to work with the analytic functionalsSa8

0

almost as easily as with the usual tempered distributions and may be of use in the further ri
investigation of the singular QFT models.
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APPENDIX A: PROOF OF LEMMA 1

We denote the norm ofLa,a
0,b (U) by i•iU,a,b9 . Let jPU, and suppose that the neighborho

B(j,e)5$x:ux2ju,e% of this point is contained in U. Then i] qf iL2(B)

<Ce i f iU,a,b9 buqu e2uj/au1/a
. By Sobolev’s lemma we have

u] qf ~j!u<Ce8 (
uku<[d/2]11

i] q1kf iL2(B)<Ce9 i f iU,a,b9 buqu e2uj/au1/a
. ~A1!

Therefore, every element ofLa,a
0,b (U) allows an analytic continuation to the whole ofCd. If f n is

a Cauchy sequence in this space, than it converges uniformly on compact sets ofCd and hence its
limit f is an entire function. All derivatives] qf are obviously square integrable onU with the
weight exp$2ux/au1/a% and the positive series determiningi f iU,a,b9 2 is convergent since its partia
sums are bounded by the number supni f niU,a,b9 2 . Thus,La,a

0,b (U) is a Hilbert space. For eacha

.a8 andb.b8, we havei f iU,a,b9 <Ci f iU,a8,b8 and hence the Banach spaceSa,a8
0,b8 (U) with norm

~A1! is continuously embedded intoLa,a
0,b (U). Conversely, using inequality~A1! at the points ofU

whose distance to the boundary is greater thane and applying the Taylor expansion to estima
] qf elsewhere, we see that the normi f iU,a,b9 is not weaker thani f iU,a,b . Thus the limit spaces in
question are indeed the same.

APPENDIX B: PROOF OF LEMMA 7

Let u be a unit vector inRd andu.0. We denote byRu the ray$lu: l>0% and byKu,u the
circular cone$lx: ux2uu<u, l>0%. Assume thatu is less than the angular separation betwe
the conesU, U8. It suffices to prove that, for everyuP]U, there exists a plurisubharmoni
function ru(z) bounded by~25! and satisfying estimates of the form~24! and ~26! but for x
PRu1Be and forx¹Ku,u , respectively. Then the upper envelope

r~z!5 lim
z8→z

sup$ru~z8!:uP]U, uuu51% ~B1!

satisfies all the required conditions becauseU8,CKu,u for every uP]U. The function~B1! is

plurisubharmonic since the family$ru% is locally uniformly bounded above. The spaceS0
a8(R),

which is the Fourier transform ofSa8
0 (R), contains a non-negative even functionv such that

suppv,@2d, d#, *v(t) dt51, anduv (k)(t)u<A0a0
kka8k, wherea0 andd can be taken arbitrarily

small, see Ref. 5, Sec. IV.8.3. LetV be the convolution ofv by the characteristic function of th
segmentutu<b1d and let 112d/b,p/3. Then cosjt.1/2 for uju,1/b and tPsuppV. Let us
estimate the Laplace transformṼ(z) of V in the strip uRezu,1/b. Taking into account that
*V(t) dt52(b1d), we get

uṼ~z!u>ReE eit zV~ t ! dt>
1

2 Eutu.b
e2t Im z V~ t ! dt>

1

2
ebuIm zu E

t.b
V~ t !dt5

d

2
ebuIm zu.

~B2!

Therefore, the subharmonic functionr0(z)5 ln(2uṼ(z)u/d) is bounded from below bybuIm zu in
that strip. According to Ref. 5, we haveṼPEa8,1

0,b12d if a0 is small enough, and so

r0~z!<2uRezu1/a81~b12d!uIm zu1A. ~B3!
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We may assume without loss of generality thatu is the first basis vector and then defineru to be
the upper envelope of the family

r0~z12j!1(
j .1

r0~zj !2uju1/a, j.2e.

If xPRu1Be , then x1.2e and uxj u,e,1/b for all j .1. Settingj5x1 , we see that~B2!
ensures the required lower bound onru . Further, using~B3! and the elementary inequalitie
( j .1uxj u1/a8>( j .1uxj u1/a2C8, ux12ju1/a1uju1/a>ux1u1/a, and (uyj u<Aduyu, we conclude that
ru satisfies~25! providedd is small enough. Finally, ifx¹6Ku,u , then( j .1uxj u1/a8>uu8xu1/a8

with someu8.0, and if xP2Ku,u , we haveux12ju>ux1u for j>0 and ux12ju1/a8>ux1u1/a8

2e1/a8 for the rest ofj. Therefore, the last desired bound onru is also satisfied and so Lemma
is proved.
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Integrable and superintegrable quantum systems
in a magnetic field
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Integrable quantum mechanical systems with magnetic fields are constructed in
two-dimensional Euclidean space. The integral of motion is assumed to be a first or
second order Hermitian operator. Contrary to the case of purely scalar potentials,
quadratic integrability does not imply the separation of variables in the Schro¨dinger
equation. Moreover, quantum and classical integrable systems do not necessarily
coincide: the Hamiltonian can depend on the Planck constant\ in a nontrivial
manner. ©2004 American Institute of Physics.@DOI: 10.1063/1.1695447#

I. INTRODUCTION

The purpose of this article is to study the integrability properties of a quantum particle mo
in an external magnetic field. More specifically, we will consider the Schro¨dinger equation in a
two-dimensional Euclidean space with the Hamiltonian

H52
\2

2
~]x

21]y
2!2

i\

2
@A~x,y!]x1]xA~x,y!1B~x,y!]y1]yB~x,y!#1V~x,y!. ~1.1!

The vector and scalar potentials (A,B) andV are to be determined from the requirement th
the system should be integrable, i.e., a well-defined quantum mechanical operatorX should exist,
that commutes with the Hamiltonian, i.e.,

@H,X#50. ~1.2!

In this particular study, we shall restrict to the case whenX is a first or second order polyno
mial in the momenta. We shall be particularly interested in the case of superintegrable sy
when two independent operators,X1 andX2 , commuting with the Hamiltonian exist. In genera
X1 and X2 do not commute with each other, but together generate an algebra of oper
commuting withH.

In classical mechanics, integrable systems are of interest, because they have regular t
ries. Indeed, their motion is restricted to a torus in phase space. Superintegrable systems a
more regular. Trajectories are completely determinded by the values of the 2n21 integrals of
motion. In particular, all bounded trajectories are periodic, as in the case of the harmonic o
tor, or Kepler problem.

In quantum mechanics, integrability, i.e., the existence ofn integrals of motion, provides a
complete set of quantum numbers, characterizing the system. Moreover, it simplifies the c

a!Electronic mail: berube@crm.umontreal.ca
b!Present address: Colle`ge Jean-de-Bre´beuf, 3200 chemin de la Coˆte-Sainte-Catherine, Montre´al, QC H3T 1C1, Canada

Electronic mail: jberube@brebeuf.qc.ca
c!Electronic mail: wintern@crm.umontreal.ca
19590022-2488/2004/45(5)/1959/15/$22.00 © 2004 American Institute of Physics
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tion of energy levels and wave functions. Superintegrability, in all cases studied so for, e
exact solvability. This means that energy levels in superintegrable systems can be cal
algebraicly, i.e., they satisfy algebraic rather than transcendental equations.

Previous searches for integrable and superintegrable systems in quantum mechanics
trated on scalar potentials only.1–10It was established that for scalar potentials the existence of
and second order integrals of motion implies the separation variables in the Schro¨dinger equation,
and also in the Hamilton–Jacobi equation in classical mechanics. Moreover, for scalar pot
and second order integrals of motion, classical and quantum integrable systems coincid~i.e.,
classical and quantum potentials are the same!.

Surprisingly, when third order integrals are considered, a new phenomenon occurs: inte
and superintegrable quantum systems that have no classical counterpart.11–14 Indeed, in the clas-
sical limit \→0 the potential vanishes,V(x,y)→0 and we obtain free motion.

Previous studies of integrability in magnetic fields were conducted in the framework of
sical mechanics.15,16It was established that the existence of second order integrals of motion
presence of magnetic fields no longer implies the separation of variables. However, the integ
motion were still classified into equivalence classes under the action of the Euclidean grou
the highest order terms have the same form as in the case of a purely scalar potential.

In this paper we restrict ourselves to the two-dimensional Euclidean spaceE(2), theHamil-
tonian~1.1! and to first, or second order integrals. In Sec. II we formulate the problem of fin
the integrals of motion, first in the classical, then in the quantum case. We show that the
mining equations in the two cases are the same for first order integrals of motion, not howe
second order ones. Section III is devoted to first order integrals of motion. They are shown to
if and only if the magnetic field and an effective scalar potential are invariant under e
translations, or rotations. We also show that superintegrability with two~or more! first order
integrals occurs only for a constant magnetic field and effective potential. In Sec. IV we con
a specific class of second order operators which we call ‘‘Cartesian integrals.’’ In the absenc
magnetic field they lead to separation of variables in Cartesian coordinates. We also sho
superintegrability with one Cartesian integral and a second integral of any~quadratic! type occurs
only for a constant magnetic field. In the Cartesian case there is no difference between cl
and quantum integrability. Polar integrability and superintegrability are investigated in Sec.
cases of integrability with one ‘‘polar’’ integral of motion are identified. The quantum case di
from the classical one and the magnetic field can depend on the Planck constant\ in a nontrivial
manner. In Sec. VI we show that a polar integral can exist simultaneously with any other
pendent second order integral only if the magnetic field is constant. The final Sec. VII is de
to conclusions and open problems.

II. FORMULATION OF THE PROBLEM

A. Classical mechanics

Since we will be comparing results in quantum and classical mechanis, let us briefly rec
late some results obtained earlier.15,16 The classical counterpart of the Hamiltonian~1.1! is

H5 1
2 ~px

21py
2!1A~x,y!px1B~x,y!py1V~x,y!, ~2.1!

wherepx andpy are the momenta conjugate tox andy, respectively. The classical equations
motion in the Hamiltonian form are

ẋ5
]H

]px
5px1A, ẏ5

]H

]py
5py1B,

ṗx52
]H

]x
52Vx2Axpx2Bxpy , ṗy52

]H

]y
52Vy2Aypx2Bypy . ~2.2!
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The equation of motion~2.2! can be rewritten in the Newton form as

ẍ52Wx1V ẏ,

ÿ52Wy2V ẋ, ~2.3!

W5V2 1
2 ~A21B2!,

V5Ay2Bx . ~2.4!

The equations of motion~2.3! are invariant under a gauge transformation of the potentia

V~x,y!→Ṽ~x,y!5V1~A,¹f!1 1
2 ~¹f!2,

A~x,y!→Ã~x,y!5A1¹f, ~2.5!

where we have putA5(A,B) andf5f(x,y) is an arbitrary smooth function. Thus, the quantiti
that are of actual physical importance are the magnetic fieldV and the effective potentialW.

A classical first integral of motion is postulated to have the form

C5 f 1~x,y!ẋ1 f 2~x,y!ẏ1m~x,y!. ~2.6!

The determining equations for the funtionsf 1 , f 2 , andm are obtained from the requiremen

$H,C%5
dC

dt
50, ~2.7!

when Eq.~2.2! are satisfied, i.e.,C is a constant on the solutions of the equations of motion
Poisson commutes with the Hamiltonian.

Similarly, a classical second order integral of motion has the form

C5g1~x,y!ẋ21g2~x,y!ẏ21g3~x,y!ẋẏ1k1~x,y!ẋ1k2~x,y!ẏ1m~x,y!. ~2.8!

The determining equations for the functionsgi , ki , and m are again obtained from th
condition ~2.7!.

The equations for the coefficients of the first and second order classical integrals of m
were derived and partially solved elsewhere.15,16 We shall give them again below as classic
limits of the corresponding equations in the quantum case. To facilitate a comparison, we
rewrite the classical integrals in terms of momenta, rather than velocities, i.e., substituteẋ5px

1A, ẏ5py1B.

B. Quantum mechanics

In quantum mechanics an integral of motion will be a Hermitian operatorX that commutes
with the HamiltonianH.

Let us first consider a first order integral in the momenta:

X52
i\

2
~ f 1]x1]xf 11 f 2]y1]yf 2!1 f 1A1 f 2B1m. ~2.9!

The classical limit of the operator~2.9! is the integral~2.6!; f 1 , f 2 , andm are functions ofx
andy.

The commutator@X,H# with H as in Eq.~1.1! will contain second, first, and zero order term
in the derivatives. Setting the coefficients of all of them equal to zero, we obtain the followin
of determining equations:
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f 1,x50, f 2,y50, f 1,y1 f 2,x50, ~2.10!

2 f 2V1mx50, f 1V1my50, f 1Wx1 f 2Wy50. ~2.11!

We see that the Planck constant\ does not figure in Eqs.~2.10! and ~2.11!. Hence these
equations must coincide with their classical limit, and indeed, they do.15 In particular, Eq.~2.10!
implies

f 15ay1b, f 252ax1g, ~2.12!

wherea, b, andg are real constants. Hence the leading terms~independent ofA, B, andm) of the
operatorX of Eq. ~2.9! lie in the Lie algebrae(2) of the Euclidean groupE(2), generated by

P152 i\]x , P252 i\]y , L352 i\~y]x2x]y!. ~2.13!

Thus, we have

X5aL31bP11gP21a~yA2xB!1bA1gB1m. ~2.14!

We shall write the second order operator corresponding to the integral~2.8!, after symmetri-
zation, as

X52 1
2 \2$2g1]x

212g2]y
212g3]x]y1~2g1,x1g3,y!]x1~2g2,y1g3,x!]y1g1,xx1g2,yy1g3,xy%

2
i\

2
$~4g1A12g3B12k1!]x1~4g2B12g3A12k2!]y12g1Ax12g1,xA12g2By12g2,yB

1g3Ay1g3Bx1Ag3,y1Bg3,x1k1,x1k2,y%1g1A21g2B21g3AB1k1A1k2B1m. ~2.15!

The commutativity condition@H,X#50 implies the following set of determining relations:

g1,x50, g2,y50, g1,y1g3,x50, g2,x1g3,y50, ~2.16!

k1x2g3V50, k2y1g3V50,

2V~g12g2!1k1y1k2x50,
~2.17!

2g1Wx1g3Wy1k2V2mx50,

2g2Wy1g3Wx2k1V2my50,

k1Wx1k2Wy1
\2

4
~g2xVy2g1yVx!50. ~2.18!

Equations~2.16! and ~2.17! are the same as the classical ones.15 Equation~2.18! is however
different. It involves the Planck constant and reduces to the classical case only in the li\
→0. Thus, in the presence of a nonconstant magnetic fieldV(x,y), classical and quantum inte
grability differ!

Equation~2.16! can be solved as in the classical case15 and they imply

g15ay22by1d,

g25ax21gx1z,

g3522axy1bx2gy1j, ~2.19!
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where the greek letters represent real constants. Substituting~2.19! into ~2.15! we obtain the
operatorX in the form

X5a@~L31yA2xB!21\2#2 1
2 b@~L31yA2xB!~P11A!1~P11A!~L31yA2xB!#

2 1
2 g@~L31yA2xB!~P21B!1~P21B!~L31yA2xB!#1d~P11A!21z~P21B!2

1j~P11A!~P21B!2
i\

2
~2k1]x1k1,x12k2]y1k2,y!1k1A1k2B1m. ~2.20!

Thus, the leading part of Eq.~2.20! lies in the enveloping algebra ofe(2). ForA5B50 this
coincides with the case of a scalar potential.1,2,17As in the scalar case we can simplify Eq.~2.20!
by Euclidean transformations and linear combinations with the Hamiltonian. The operatorX is
transformed into a similar operator, with new values of the constantsa, . . . ,j. Four classes of such
operators exist, represented by

XC5~P11A!22
i\

2
~2k1]x1k1,x12k2]y1k2,y!1k1A1k2B1m, ~2.21!

XR5~L31yA2xB!21\22
i\

2
~2k1]x1k1,x12k2]y1k2,y!1k1A1k2B1m, ~2.22!

XP52
1

2
$~L31yA2xB!~P11A!1~P11A!~L31yA2xB!%

2
i\

2
~2k1]x1k1,x12k2]y1k2,y!1k1A1k2B1m, ~2.23!

XE5~L31yA2xB!21\21s@~P11A!22~P21B!2#

2
i\

2
~2k1]x1k1,x12k2]y1k2,y!1k1A1k2B1m, s.0. ~2.24!

In the case of a purely scalar potential the existence of a commuting operator of the typXC ,
XR, XP, or XE implies that the Schro¨dinger equation will allow separation of variables in Car
sian, polar, parabolic, or elliptic coordinates, respectively. In the last cases is related to the
interfocal distance for the elliptic coordinates.

Substituting Eq.~2.19! into Eq. ~2.18! we obtain

k1Wx1k2Wy1
\2

4
@~2ax1g!Vy2~2ay2b!Vx#50. ~2.25!

Thus, for the special casea5b5g50 classical and quantum integrability will coincide.

III. FIRST ORDER INTEGRABILITY AND SUPERINTEGRABILITY

A first order integral~2.9! in quantum mechanics will exist if the overdetermined syst
~2.10! and ~2.11! has a solution. The general solution of Eq.~2.10! is given by Eq.~2.12!.
Substituting into~2.11! we obtain

~ax2g!V1mx50, ~ay1b!V1my50, ~ay1b!Wx1~2ax1g!Wy50. ~3.1!
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We are only interested in cases with a magnetic field present, i.e.,VÞ0. With no loss of
generality, we need only distinguish two cases:

1. a51, b5g50.
We obtain

W5W~r!, V5V~r!, r5Ax21y2. ~3.2!

We see that in this case the magnetic fieldV and the effective scalar potential must b
spherically symmetric. The potentials in the Hamiltonian~1.1! can by a gauge transformation b
taken into

A5E V~r!rdr

Ar22x2
, B50, V5W~r!1 1

2 A2. ~3.3!

The integral of motion is

X5L31yE V~r!rdr

Ar22x2
2E rV~r!dr. ~3.4!

2. a5b50, g51.
The magnetic field and effective potential are translationally invariant

V5V~x!, W5W~x!, ~3.5!

and we can take

A5Vy, B50, V5W1 1
2 y2V2,

X5P21E V~x!dx. ~3.6!

The system~1.1! will be first order superintegrable if at least two first order integrals~2.14!
exist. This is only possible if the magnetic field and effective potential are constant:

V5V0 , W5W0 . ~3.7!

In this case actually three operators commuting with the Hamiltonian exist and we hav

H5
1

2
~ i\]x2Vy!22

\2

2
]y

2 , ~3.8!

X15P1 , X25P21xV0 , X35L32 1
2 ~x22y2!V0 , ~3.9!

where we have chosen the gauge to be such that

A5V0y, B50, V5 1
2 V2y2. ~3.10!

The classical equations of motion~2.2! are easily solved. The trajectories are circles~and are
hence all closed!. The Schro¨dinger equation allows the separation of variables in Cartesian c
dinates. The solution is

C~x,y!5ei ~l/\! xf ~y!, ~3.11!

where f (y) satisfies the harmonic oscillator equation
                                                                                                                



s

fy

amil-

riables

al

e

1965J. Math. Phys., Vol. 45, No. 5, May 2004 Integrable and superintegrable quantum systems

                    
f 92H S Vy1l

\ D 2

2
2E

\2 J f 50. ~3.12!

The integrals of motion~3.9!, together with the constantV, satisfy the commutation relation
of a central extension of the Euclidean Lie algebra:

@X1 ,X2#52 i\V0 , @X3 ,X1#52 i\X2 , @X3 ,X2#5 i\X1 . ~3.13!

Only three of the integralsX1 , X2 , X3 , andH can be independent and indeed they satis

X1
21X2

212V0X322H50. ~3.14!

In polar coordinates the Schro¨dinger equation

H 1

2 S i\ cos~f!] r2
sin~f!

r
]f2Vr sin~f! D 2

2
1

2 S sin~f!] r1
cos~f!

r
]fD 2J C5EC

~3.15!

R-separates,16,18 rather than separates, and we have

C~r ,f!5e2 ~ i /4! Vr 2 sin 2fJm~kr !eimf, k252E1mV, ~3.16!

whereJm(kr) is a Bessel function.

IV. CARTESIAN INTEGRABILITY AND SUPERINTEGRABILITY

A. Integrability

In order to find integrable systems with a second order operator commuting with the H
tonian, we must solve the system~2.16!–~2.18!. To do this, we first transformX to its canonical
form, i.e., one of~2.21!–~2.24!. We start with the simplest case, namelyXC of ~2.21!. We call this
the ‘‘Cartesian’’ case, because for a purely scalar potential it corresponds to separation of va
in Cartesian coordinates. It corresponds toa5b5g5z5j50 andd51 in Eq. ~2.20!. Equation
~2.25! implies that the determining equations~2.16!, ~2.17!, and~2.18! are the same in the classic
and quantum cases@the \2 term in Eq.~2.18! vanishes#. For purely scalar potentialsV5k15k2

50 we reobtain the known resultW5W0(y)1m(x).1 From now on we assumeVÞ0. For
completeness, we reproduce the result obtained earlier15 in the classical case, since it is valid in th
quantum case as well:

V5 f xx1gyy ,

W5
a

3
~g2 f !32

b1d

2
~g2 f !21~c1k2e!~g2 f !,

k152gy , k252 f x ,

m52
a

3
~g312 f 323g f2!1b~ f g2 f 2!1

d

2
~g22 f 2!1c~g22 f !1eg2k f . ~4.1!

Herea, b, c, d, e, andk are constants and the functionsf 5 f (x) andg5g(y) satisfy

f xx5a f21b f1c, gyy52ag21dg1e,

f xÞ0, gyÞ0. ~4.2!
                                                                                                                



nd

r
f the

t

eir
s are

d
s

ons

phe-
d order

1966 J. Math. Phys., Vol. 45, No. 5, May 2004 J. Bérubé and P. Winternitz

                    
Two exceptional cases occur when we havef x50 or gy50. These however implyV
5V(x), W5W(x) or V5V(y), W5W(y), respectively. Then a first order invariant exists a
the second order one is simply its square. The general solution of Eq.~4.2! are elliptic functions.

B. Cartesian superintegrability

We shall now assume thatV andW are such that one Cartesian integralX1 exists, i.e., they
satisfy Eq.~4.1!. We require that a second integralX2 of the type~2.20! should exist, in addition
to the considered Cartesian one. We can simplify the integralX2 by translation and by linea
combinations withX1 andH. Rotations cannot be used, since they would change the form o
operatorX1 and of the Hamiltonian. Two cases must be considered,aÞ0 anda50.

Case 1:aÞ0
We seta51, by a translation we transform (b,g)→(0,0), by linear combinations we se

(d,z)→(0,0). We are left with an operatorX2 in the form~2.20! with a51, b5g5d5z50. The
constantj and functionsk1 , k2 andm must be determined from the system~2.17! and~2.18!. Let
us consider the case whenV andW are as in Eq.~4.1!. The first two equations imply

k1522y~x fx2 f !2x2ygyy1j f x1jxgyy1C1~y!,

k25xy2f xx12x~ygy2g!2jy fxx2jgy1C2~x!. ~4.3!

We substitutek1 , k2 , V, and W into the remaining four equations and investigate th
compatibility. After somewhat lengthy calculations we obtain a simple result: the equation
compatible forVÞ0 if and only if V and W are constant. We arrive at the case~3.7!, already
investigated in Sec. III.

Case 2:a50
In order to obtain an independent second order integral we must haveb21g2Þ0 and we can

normalizeb21g251 and putd5z5j50 ~by linear combinations withH and X1). The set of
Eqs.~2.16!–~2.18! is then again compatible only forV andW constant.

The conclusion of this section is that forVÞ0 Cartesian superintegrability with two secon
order integrals exists only in a trivial sense. ThusV5V0 , W5W0 and all second order integral
are reducible: they are polynomials in the three first order ones.

V. POLAR INTEGRABILITY

We now request that one second order integral should exist and that it be of the form~2.22!.
We shall call this operatorXR a polar type integral. Let us transform the determining equati
~2.17! and ~2.18! to polar coordinatesx5r cos(f), y5r sin(f). The resulting equations are

Pr50, P1Qf50, ~5.1!

2r 3V2Pf2rQr1Q50, ~5.2!

mf22r 2Wf1rPV50, mr2QV50, ~5.3!

\2

2
Vf1PWr1

1

r
QWf50, ~5.4!

where we have putP5k1 cos(f)1k2 sin(f) andQ52k1 sin(f)1k2 cos(f).
We see that Eq.~5.4! contains a term proportional to\2. It follows that in this case quantum

integrable systems will differ from classical ones, at least if we haveVfÞ0. In the classical limit
\→0 the quantum systems will reduce to classical ones, or to free motion. This is a new
nomenon. In the absence of magnetic fields, classical and quantum systems with secon
integrals of motion coincide.

Equations~5.1! imply
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P52 f 8~f!, Q5 f ~f!1R~r !, ~5.5!

with f (f) and R(r ) to be determined. We shall use primes and dots to denote derivatives
respect tof andr , respectively. We again assumeVÞ0. Indeed, forV50 we obtain the known
case of a scalar potential, separable in polar coordinates:W5W0(r )1 W1(f)/r 2.

We solve Eq.~5.2! for the magnetic field

V52
1

2r 3 ~ f 91 f 1R2rṘ!. ~5.6!

From Eq.~5.3! we obtain a compatibility condition (mrf5mfr), namely,

2r 2Wrf14rWf1
3 f 8

2r 3 ~ f 91 f 1R2rṘ!1
f 8R̈

2r
1

1

2r 3 ~ f 1R!~ f-1 f 8!50. ~5.7!

Using Eq.~5.4! to eliminateWf from Eq. ~5.7!, we obtain, for

f 1RÞ0, f 8Þ0 ~5.8!

an equation forW(r ,f) that we can solve

Wrr 1
~3~ f 1R!2rṘ!

r ~ f 1R!
Wr2

\2Ṙ~ f-1 f 8!

4r 3f 8~ f 1R!
1

3~ f 1R!

4r 6 ~ f 91 f 1R2rṘ!

1
~ f 1R!R̈

4r 4 1
~ f 1R!2

4r 6f 8
~ f-1 f 8!50. ~5.9!

We obtain

W5
\2~ f-1 f 8!

8r 2f 8
2

3 f ~ f 91 f !

32r 4 2
f-
8 f 8

r 6u̇22
r 2

8
~r 3ü13r 2u̇!22

f 2~ f-1 f 8!

32f 8r 4 2
F f

2r 2

1S 3 f 9

8
1

f f-
8 f 8 D ru̇1

3 f 9

4
u2

f

4r
~r 3ü13r 2u̇!1Fr 3u̇1W0 , ~5.10!

whereF5F(f) and W0(f) are two new functions, introduced as integration ‘‘constants.’’ W
have also introduced the functionsu(r ) andS(r ), satisfying

Ṡ~r !5
1

r 3 R~r !, u̇~r !5
1

r 3 S~r !. ~5.11!

Let us first consider the two special cases in Eq.~5.8!.
For f (f)1R(r )50, Eq. ~5.6! implies V50 and we are not interested in this case.
In the casef 8(f)50 we have

P50, Q5Q~r !, W5W~r !, m5
Q2

4r 2 ,

k152Q~r !sin~f!, k25Q~r !cos~f!, ~5.12!

and the classical and quantum cases coincide. Moreover, a first order integral exists and the
order one is its square.

Let us return to the generic case~5.10! with conditions~5.8! satisfied. We substituteW of Eq.
~5.10! into Eqs.~5.3! and ~5.4! to obtain
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m5
f f 9

4r 2 1
f 2

4r 2 1
f R

2r 2 2
f 9S

2
1

R2

4r 2 1m0~f!, ~5.13!

m0852 f 8F, ~5.14!

û1
6

r
ü2

r 3u̇2

2 S f-
f 8 D 8 1

f 8
1S 6

r 2 1
C

2r 2f 8
1

4F8

f 8 D u̇1
3 f-
r 3f 8

u1
4A

r 7f 8
1

4B

r 5f 8
1

4W08

r 3f 8
50,

~5.15!

where

A52
9 f f-

32
2

f 2

32S f-
f 8 D 8

2
15f 8 f 9

32
2

3 f f 8

4
,

B5
\2

8 S f-
f 8 D 8

2
f F8

2
2

3 f 8F

2
,

C56 f-1 f S f-
f 8 D 8

. ~5.16!

The next task is to solve Eq.~5.15!. Notice that this is not a partial differential equation.
involves four unknown functionsu(r ), f (f), F(f), andW0(f), each depending on one variab
only. Hence, we can consider this equation to be an ordinary differential equation foru(r ), and
then establish the compatibility conditions on the other unknowns for which thef dependence will
cancel. The complete analysis is rather lengthy and involves the consideration of many s
cases. We shall only present the main arguments and final results.

Case 1:

S S f-
f 8 D 8S 1

f 8D D 8
50. ~5.17!

All subcases lead to the following solution~or special cases thereof!:

f 5C01C1 cos~f!1C2 sin~f!,

F5K1 , W05K2f 1K3 . ~5.18!

Equation~5.15! then reduces to

û1
6

r
ü1

3

r 2 u̇2
3

r 3 u2
15C0

8r 7 2
6K1

r 5 1
4K2

r 3 50. ~5.19!

The general solution of Eq.~5.19! is

u52
C0

8r 4 1
2K1

r 2 1
4K2

3
1ar1

b

r
1

c

r 3 , ~5.20!

and hence we have

S5
C0

2r 2 24K11ar32br2
3c

r
,

R52C013ar52br313cr. ~5.21!
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Finally, the magnetic field and effective potential in this case are

V56ar22b, ~5.22!

W522ar~C1 cos~f!1C2 sin~f!!1
ab

2
r 423acr22a2r 6. ~5.23!

SinceV does not depend onf the classical and quantum cases are the same. The corres
ing classical integral of motion is

CR5~xẏ2yẋ!21~2C22~3ar52br313cr !sin~f!!ẋ1~C11~3ar52br313cr !cos~f!!ẏ

2
3bcr2

2
1

9acr4

2
2

3abr6

2
12C1ar3 cos~f!2C1br cos~f!12C2ar3 sin~f!

2C2br sin~f!1
9a2r 8

4
1

b2r 4

4
1

9c2

4
. ~5.24!

Case 2:

S S f-
f 8 D 8S 1

f 8D D 8
Þ0. ~5.25!

A complete analysis19 shows that Eq.~5.15! in this case is consistent only if we have

u5
a

8r 4 1
b

2r 2 1c ~5.26!

and hence

S52
a

2r 2 2b, R5a. ~5.27!

Moreover, the functionf (f) must satisfy

~ f 1a!2S f-
f 8 D 8

124f 8~ f 1a!19 f-~ f 1a!115f 8 f 950. ~5.28!

The functionsF(f) andW0(f) are given explicitly in terms off (f) as

F52
b f-
4 f 8

1
\2

4~ f 1a!3 S ~ f 1a!2
f-
f 8

22~ f 1a! f 91~ f 8!2D1
C1

~ f 1a!3 ,

W05
b2f-
8 f 8

1bF2
3c f9

4
1C2 . ~5.29!

We integrate Eq.~5.28! twice and puty5 f 1a to obtain the second order equation

y952
2

y
~y8!223y1

4A

y
1

B22A2

y3 , ~5.30!

whereA andB are constants.
This equation has a first integralK, in terms of which we have

y4~y8!252y612Ay41~B22A2!y21K. ~5.31!
                                                                                                                



of

nc-

mial

e

1970 J. Math. Phys., Vol. 45, No. 5, May 2004 J. Bérubé and P. Winternitz

                    
This equation can be written as a quadrature that will express the independent variablef as a
function of y in terms of elliptic integrals. The results are not very illuminating, so instead
presenting them, we restrict ourselves to some special cases. Let us first rewrite Eq.~5.31! as

y4~y8!252~y22y1
2!~y22y2

2!~y22y3
2![T~y!, ~5.32!

where the rootsy1 , y2 , andy3 are related to the constantsA, B, andK by the formulas

K5y1
2y2

2y3
2 , B22A252~y1

2y2
21y2

2y3
21y3

2y1
2!, 2A5y1

21y2
21y3

2 . ~5.33!

If all the rootsyi are real and distinct, the behavior of the polynomialT(y) as a function ofy
is shown in Fig. 1~a!.

If all roots are distinct (0,y3,y2,y1,`), real periodic solutions are obtained for2y3

<y<y3 , y2<y<y1 , and2y1<y<y2 . However, these are expressed in terms of elliptic fu
tions and the period is not a multiple ofp. Constant solutions of Eq.~5.32! are obviouslyy
56yk , k51, 2 or 3.

Elementaryf dependent real finite periodic solutions are obtained whenever the polyno
T(y) has multiple roots. The corresponding solutions are

~1! y35y250, y1.0 @see Fig. 1~b!#

y5y1 sin~f2f0!; ~5.34!

~2! 05y3,y2,y1 @see Fig. 1~c!#

FIG. 1. Roots of the polynomialT(y) in Eq. ~5.32!. ~a! Three pairs of simple roots;~b! one quadruple root, a pair of singl
ones;~c! one double root, two pairs of single ones;~d! one pair of double roots and one of simple ones.
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y56
1

&
Ay1

21y2
21~y1

22y2
2!sin 2~f2f0! ~5.35!

or in terms ofA andB:

y56AA1B sin 2~f2f0!; ~5.36!

~3! 0,y3,y25y1 @see Fig. 1~d!#.
In this case we give the solutiony implicitly as

22Ay1
22y3

2 arcsinS y

y3
D1y1S arcsinS y3

21yy1

y3~y1y1!
D D 2arcsinS y3

22yy1

y3~y2y1!
D 562Ay1

22y3
2~f2f0!.

~5.37!

The solution is real, finite, and periodic for2y3<y<y3 .
For any solutiony(f) of Eq. ~5.31! we obtain a magnetic field and effective potential in t

form

V52
f 91 f 1a

2r 3 , ~5.38!

W5
\2

8r 2 S 11
2 f 9

f 1a
2

~ f 8!2

~ f 1a!2D2
~ f 1a!2

32r 4 S f-
f 8

14D2
3 f 9~ f 1a!

32r 4 2
C1

2r 2~ f 1a!2 1C2 .

~5.39!

The functionsP, Q, andm figuring in the polar integral are

P52 f 8~f!, Q5 f ~f!1a,

m5
f f 91~ f 1a!21a f9

4r 2 2
b f9

2
2

C1

~ f 1a!2 1
\2

4~ f 1a!2 ~2~ f 1a! f 92~ f 8!2!. ~5.40!

Let us sum up the results of this section. Three different cases of polar integrability exist.
are given by Eqs.~5.12!, ~5.22!–~5.24! and~5.38!–~5.40!, respectively. The last case provides
example where the quantum system and the classical one differ. Indeed, the Planck c
figures explicitly in the effective potentialW and in the integral of motion.

VI. POLAR SUPERINTEGRABILITY

Let us assume that we have a Hamiltonian~1.1! that is ‘‘polar integrable,’’ i.e., allows an
integral of motion of the formXR as in Eq.~2.22!. The magnetic fieldV and effective potentialW
must hence have one of the three forms established in Sec. V. For the system to be superint
it must allow at least one further integral, by assumption of the form~2.20!. We can simplify this
second integral by linear combinations withXR and withH and also by rotations, since they wi
not destroy the form ofXR ~nor H). Thus, in Eq.~2.20! we takea50, z52d. Furthermore, we
can assumeb21g2Þ0, since otherwise we would be in the case of Cartesian superintegrab
already treated in Sec. IV. By a rotation and normalization, we can setb51, g50. It follows that
the second integralX2 is of the parabolic type, conjugate toXP of Eq. ~2.23!.

The determining equations forX2 , obtained from~2.17! and ~2.18! are

k1,x2~x1j!V50, k2,y1~x1j!V50, ~6.1!

22bVy1k1,y1k2,x50, ~6.2!
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22yWx1~x1j!Wy1k2V2mx50,

~x1j!Wx2k1V2my50, ~6.3!

k1Wx1k2Wy1
\2

4
bVx50. ~6.4!

For each of the three polar integrable systems we obtain the same result, namely, Eqs.~6.1!–
~6.4! are compatible only ifV5V0 and W5W0 are constant. Then we have three first ord
integrals and the corresponding second order integrals are polynomial in the first order on

VII. CONCLUSIONS

We have constructed all integrable quantum systems with a vector and scalar potentia@as in
Eq. ~1.1!# that possess either a first order integral, or a second order one of the Cartesian, o
type.

It is interesting to compare such systems with a nonzero magnetic fieldV with systems
allowing a scalar potential only.

~1! The first difference is that forVÞ0 quantum and classical integrable systems with sec
order integrals do not necessarily coincide. The Planck constant\ can figure in a nontrivial
way in the potentials and integrals of motion.

~2! The existence of a first order integral of motion implies a geometrical symmetry, bot
VÞ0 and V50. Indeed, a first order integral exists if and only if we have eitherV
5V(r ), W5W(r ), or V5V(y), W5W(y) ~up to Euclidean transformations!. The functions
V andW are arbitrary in both cases.

~3! The existence of a second order integral forV50 implies that the Schro¨dinger equation will
allow separation of variables in Cartesian, polar, parabolic, or elliptic coordinates. In eac
the potentialV(x,y) depends on two arbitrary functions of one variable. ForVÞ0 the coor-
dinates no longer separate. The requirement that an irreducible second order integral
exist for VÞ0 is much more restrictive than forV50. The quanttitiesV(x,y) andW(x,y)
again depend on two functions of one variable, however these functions obey certain or
differential equations. They are hence determined completely, up to some arbitrary con
For instance, in the Cartesian case, they are elliptic functions, or degenerate cases of
functions.

~4! For V50 four families of superintegrable systems inE(2) exist,1 each depending on thre
parameters. ForVÞ0 we have shown that superintegrability with first order integrals of
Cartesian, or polar type, exists only forV andW constant.

Several related problems are presently under consideration. To complete the study of qu
integrability in E(2) for VÞ0 we must still consider parabolic and elliptic integrability. ForV
50 their is a close relation between superintegrability and exact solvability.20 For VÞ0 the
requirement of superintegrability seems to be too restrictive. An important question is wh
some of the integrable systems found in this article are actually exactly solvable.
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A statistical complexity measure with nonextensive
entropy and quasi-multiplicativity
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The properties of a statistical complexity measure that are characterized by nonex-
tensivity in entropy have been investigated, which is of so-called disequilibrium
type. Considering the composition law for two systems with different nonextensivi-
ties ~quasi-multiplicativity!, a nontrivial relation between the nonextensive param-
eters and the fluctuating bit number in information theory has been mentioned. To
see the time evolution of the nonextensive complexity measure, we examine sys-
tems having a lognormal distribution, the underlying dynamics for which is known
to obey a random multiplicative process in the presence of a boundary
constraint. ©2004 American Institute of Physics.@DOI: 10.1063/1.1695600#

I. INTRODUCTION

In recent times, quantifying the complexity of a system has been the chief focus of
across various branches of science and has been drawing renewed attention.1–3 Up to the present
date, different definitions of the complexity have been proposed. Among these, a few n
definitions include algorithmic complexities~Kolmogorov–Chaitin complexity4 and Lempel-Ziv
complexity5!, effective measure of complexity by Grassberger,6 logical depth by Bennett,7 and
thermodynamical depth by Lloyd and Pagels.8 These definitions of complexities have been use
in describing the symbolic dynamics of maps; however, they have the disadvantage of comp
calculations. Especially in physics, a measure of statistical complexity is considerably essen
most of the proposals for complexity measures, utilizing the concept of entropy or relevant
mation can be regarded as a basic ingredient for quantifying the phenomenon. In the la
years, keen interest in developing new definitions for statistical measure of complexity bas
probabilistic descriptions of physical systems has emerged. One of these is the disequili
based complexity, i.e., LMC~López-Ruiz–Mancini–Calbet!9 complexity measureC ~defined as
C5H•D where H is the Shannon entropy andD disequilibrium! that has adopted quadrat
distances of each state for assessing the equiprobability. The other one is the simple mea
complexity proposed by SDL~Shiner, Davison, and Landsberg!.10 It is defined as the product of
measure oforder and a measure ofdisorder in a system.

Another current proposal in the applications is to determine the innovative uses of co
tional entropy, which are known as the multiscale entropy11 and the diffusion entropy analysis12

~these studies use the Shannon entropy without resorting to the introduction of a new com
measure!. In these past studies, considerable attention has been paid to extract the usefu
mation in order to discriminate, for example, health and disease from a physiologic time seri
we require a quantification of their complexities. Their leitmotif was to overcome the fact th
increase in conventional entropy does not always accommodate a growth of dynamical co
ity.

In the present study, we intend to use nonextensive entropy instead of extensive~additive!
Shannon entropy for defining the statistical measure of complexity from its starting point

a!Present address: Department of Physics, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Toyko 112-8610
Electronic mail: yamano@amy.hi-ho.ne.jp
19740022-2488/2004/45(5)/1974/14/$22.00 © 2004 American Institute of Physics
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rationale for adopting nonextensive entropy is as follows: It is difficult to imagine that the c
plexity of a system becomes twice its original when the system size is doubled. However,
two or more systems are merged, it seems rather natural to assume that complexity of a
increases or decreases on the basis of symmetry, hierarchy, and acclimation. Although the
tensivity property of the LMC measure has already been described in Ref. 13, we shall cla
nonadditive feature on entropy in order to incorporate this assumption into the measure.

We seek a possibility for defining a statistical measure of complexity based on the T
entropy14 instead of the Shannon entropy forC ~another notation will be used subsequently! and
take a stance that the statistical complexity measure should vanish or be negligible for both
ordered and highly disordered systems. As explained in an earlier paper,9 these extreme situation
with zero complexity correspond with the perfect crystal in the former case and the ideal gas
latter case. In order to describe the perfect crystals, only a minimal amount of informati
needed because the constituent atoms are symmetrically arrayed completely. A sufficient
of information on the crystals is available from the lattice constant and symmetry~fcc, bcc, etc.!
only. On the other hand, the state of a system can be found in the phase space with a
probability in the case of ideal gases. In such a case, we have to specify a large num
variables for defining the system; therefore, it requires maximum information. These two stat
extrema in terms of the order and information, and we assume that the system has a
complexity at an intermediate state.3

In effect, we do not regard nonextensivity as an impediment to the legitimate definition o
statistical measure of complexity, because various kinds of physical systems exist for whi
traditional extensive statistical mechanics appears to be inadequate.15,16Therefore, a nonextensiv
thermostatistics can be a possible basis for providing a descriptive framework for dealing w
above mentioned complexity measure. In this sense, the complexity measure as well as
need not be extensive. Therefore, examining the consequences of using a nonextensive en
the complexity measure might provide a hint posed by some applications. For this purpo
have presented some properties of the complexity measure and have also shown that it
some properties of the LMC.

The paper has been organized as follows: In Sec. II, the statistical measure of comple
introduced with the nonextensive entropy of Tsallis and the basic properties are investigated
the lines of Ref. 17. The nonadditivity in the complexity measure is associated with the fluctu
bit number of systems on the basis of the concept of quasi-additivity in Sec. III. In Sec. IV
time evolution of the present complexity measure is demonstrated by applying the const
random multiplicative process. Finally, the results of the present study are summarized in t
section. The exact expressions of the complexity measure are given in the Appendix for
probability distributions, which are often encountered in natural sciences.

II. A NONEXTENSIVE STATISTICAL MEASURE OF COMPLEXITY AND ITS PROPERTIES

In the present study, a continuous expression instead of the discrete one is conside
general, translation of any entropy from its discrete form to the continuous form requires
ematical precision. However, in this case, we simply assume that the continuous entropy of
takes the form18

Hq~p~x!!5
1

12q F E pq~x!dx21G . ~1!

López-Ruizet al.9 proposed a quantity called the disequilibrium, whose measure is a dis
from the equiprobable state. In the discrete case, it is expressed as

D~$pi%!5(
i 51

n

~pi21/n!2, ~2!
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whereD attains the maximum value for a fully ordered state and vanishes in the case of
pletely disordered states or equiprobable states. It is interesting to note that the disequilib
the same form as the alternative entropy, proposed by Bruckner and Zeilinger19 in quantum
measure of information. In order to make the present paper self-contained, the properties oD are
briefly restated. The equiprobable states can be expressed as the rectangular function,

p~x!5H 1

2l
~2 l<x< l !

0 ~otherwise! ,

~3!

which results in a well-defined disequilibrium for the continuous case. Then, from the defin
we have

E
2 l

l S p~x!2
1

2l D
2

dx5E
2 l

l

p2~x!dx2
1

2l
. ~4!

Moreover, we may redefine the disequilibrium asD(p(x))5*2 l
l p2(x)dx, which ensures positiv-

ity in any distribution. Accordingly, distributions are measured from equiprobabilities in the co
of our consideration. When a system is in the equiprobable state with largel , the value ofD is
minimum, and whenl become small~peaked shape at zero point!, thenD tends toward infinity.
From the view point of the information theory,D is found to be nonextensive13 sincel consecutive
sequences of binary variables,Xi ,Xi 11 , . . . ,Xi 1 l 21[X( l ), whose valuesXi are generated from a
discrete finite alphabet of size 2, have the disequilibriumD(X( l ))5(p2(xl)2 1/2l <1222 l ,
where p(xl) is the joint probability over the length sequencel . If the chain of variables is
generated by i.i.d.~independent and identically distributed!, we can factorize the joint probability
into each probability occurring atXi . However, the above expression is also valid for all Mark
chains. Therefore the disequilibrium does not grow linearly with the length of the wordl , thereby
concluding that the disequilibrium of this sequence becomes nonextensive in the long se
limit l→`. This property is clearly incompatible with the conventional extensive statistical
chanics. Nevertheless, in the subsequent sections, we have concluded that there is no clea
for measure of complexity to be extensive. Therefore, the disequilibrium without modifying
extensivity shall be used and the form of multiplying the two nonextensive quantities to ob
complexity measure would be adopted for the present consideration. The discussion of C´n
et al.17 also holds for the use of the Tsallis entropy in defining the statistical measure of com
ity.

The complexityCq(p(x)) for a continuum number of statesx with support on the segmen
@2 l ,l # with *2 l

l p(x)dx51 is defined as follows:

Cq~p~x!!ªHq~p~x!!D~p~x!!5S E l

2 l
pq~x!dx21

12q
D S E

2 l

l

p2~x!dxD . ~5!

To guarantee the positivity ofCq for each continuous distribution, we take theq-exponential20 of
Hq . The new expressionĈq is regarded as the statistical measure of complexity for the syst

Ĉq~p~x!!ªĤq~p~x!!D~p~x!!5eq
Hq(p(x))D~p~x!!. ~6!

As for the probability distributions that maximize this type of complexity measure, using
maximum complexity approach’’ by the Lagrange multipliers method does not help in obta
the analytical form of the probability distributionspi ’s. Therefore, the complexity measure h
been regarded as a function of entropy in previous studies.9,21,22
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A. Properties of Ĉq

We investigate the invariance under theb translation anda rescaling transformation on th
normalized density functionp(x) defined onR, wherea(.0) andb are real numbers. The new
probability distribution ispa,b(x)5ap@a(x2b)#, which also satisfies the normalization,

E
R
pa,b~x!dx51. ~7!

The effect of the transformation is thatb shifts the peak position of the density function while t
a determines its broadness. Whena.1, pa,b(x) has a narrow peak, whereas ifa,1, it becomes
broader. After the transformation, we calculateHq(pa,b) with the help of the change of variable
y5a(x2b),

Hq~pa,b~x!!5

E
R
pa,b

q ~x!dx21

12q

5
1

12q Faq21S E
R
pq~y!dy21D 1aq2121G

5aq21Hq~p!1 lnqa. ~8!

Therefore we have

Ĥq~pa,b~x!![eq
Hq(pa,b(x))

5$11~12q!Hq~pa,b~x!!%1/~12q!5
eq

Hq(p(x))

a
. ~9!

SinceD(pa,b(x))5aD(p(x)), the new complexity measure isinvariant under the present trans
formation:

Ĉq~pa,b~x!!5Ĥq~pa,b~x!!D~pa,b~x!!5
eq

Hq(p(x))

a
aD~p~x!!5Ĉq~p!. ~10!

López-Ruizet al.9 namedĈ1 as ‘‘the shape complexity’’ because the translation and resca
transformation used in the present study do not alter the original shape of distribution cu
must be noted that this invariance cannot be established when we use the Re´nyi entropy because
of the expressionHq

(R)(pa,b(x))5Hq
(R)(p)1 (q21)/(12a) ln a. It might be thought that the

probability distributions can be analytically determined, which maximizesĈq , by adopting the
maximum complexity approach with a suitable constraint~normalization of probability!; however,
this approach is not feasible. Hence, it was unavoidable to regard the complexity measu
function of entropy in Refs. 21 and 22 for further considerations.

B. Invariance under replication

There have been discussions regarding the properties that the complexity measure
possess. Of all these, Lloyd and Pagels8 insisted on the invariance under replication of distrib
tions. Catala´n et al.17 showedĈ1 to be a definite replica invariant; as a result theĈ1 of m replicas
for a given distribution are equal to that of the original one. Below, we show, along the lin
Ref. 17, that the use of the Shannon entropy in the complexity measureĈ is not unique choice for
this purpose.

Using n copies of the original distributionp(x), which is a compactly supported densi
function, with *2`

` p(x)dx51, themth replica is denoted as
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pm~x!5
1

An
p@An~x2lm!# ~1<m<n!, ~11!

wherelm is the center of themth distribution,m51,...,n, and the support of eachpm(x) is all
disjoint. It can be easily observed that the union of all the replicass(x)5( i 51

n pm(x) is normalized
because*2`

` pm(x)dx51/n. Each replica satisfies

Hq~pm~x!!5S 1

An
D 11q

Hq~p~x!!1
~An!212q21

12q
, D~pm!5

D~p!

nAn
. ~12!

Since the supports ofm replicas on intervals onR are disjoint, we have the following equation

Hq~s~x!!5

E
R
S (

i 51

n

pm~x!D q

dx21

12q

5

nE
R
pq~x!dx21

12q

5nHq~pm~x!!1
n21

12q

5n~An!212qHq~p~x!!1
n~An!212q21

12q
, ~13!

D~s~x!!5
D~p~x!!

An
. ~14!

This leads toĤq(s(x))5eq
Hq(s(x))

5Aneq
Hq(p(x)) , which makes the complexity measure invariab

i.e., Ĉq(s(x))5Ĥq(s(x))D(s(x))5Ĉq(p(x)). Thus, the complexity measure property shown
the LMC case could also be observed whenqÞ1.

Continuity is not an evident property in the present definition. To verify the continuity of
complexity measure, let us use a useful concept which was introduced by Catala´n et al.,17 i.e., the
concept of near-continuity. If similar density functions are given on a common support in si
systems, the associated complexity measures must have values that are close to each o
discuss this aspect by considering the two rectangular density functions used in the stu
Catalán et al.17 One of the density functions is defined on the interval@21,0# as follows:

j [ 21,0]~x!5H 1 ~21<x<0!

0 ~otherwise!.
~15!

The other density function is defined on the interval@21,L# as

gd,L~x!5H 12d ~21<x<0!

d

L
~0<x<L !

0 ~otherwise!,

~16!

where 0,d,1 andL.1. It must be noted that limd→0gd,L(x)5j [ 21,0] (x), thus resulting in the
problem of whether or not theĈq for each density function converges to the same value in
limiting case. Straightforward calculations indicateHq(j [ 21,0])50 andD(j [ 21,0])51, leading to
Ĉq(j [ 21,0])51 and we obtain the expression
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Hq~gd,L!5
~12d!q1dqL12q21

12q
, D~gd,L!5~12d!21

d2

L
. ~17!

Therefore, the corresponding complexity measure is expressed as

Ĉq~gd,L!5@~12d!q1dqL12q#1/~12q!F ~12d!21
d2

L G . ~18!

From the above equation, we can conclude that the support is maintained and the near-co
condition is satisfied in this limited process irrespective of the value of the nonadditive para
q:

lim
d→0

Ĉq~gd,L!5Ĉq~j [ 21,0]!51. ~19!

Since @ limL→`Ĉq(gd,L)→(12d)(22q)/(12q)#Þ15Ĉq(j [ 21,0]) for 1,q when the support be
comes large, the compactness condition is not satisfied despite the fact that they a
d-neighboring distributions.23 In such a case, the near-continuity declines in the limitL→`.

C. Ĉq in terms of Re´nyi entropy

The present statistical complexity measure can be expressed with Re´nyi entropy,24

Hq
(R)~pi !5

ln (
i

pi
q

12q
, ~20!

which recovers the Shannon entropy as a special case limq→1Hq
(R)52( i pi ln pi5H(S). Since the

probability distribution of a system can convey all information that we possess, we often u
entropy as an indication of the degree of randomness. However, the localized or delocalized
of the system cannot be quantified only by the standard entropy. Therefore, our area of inte
to identify the extent of complexity for a system. For quantification of the characteristic
complexity for a system, the Re´nyi entropy appears in quantum systems as a measure of loca
tion and ergodicity in phase space,25 which informs about the shape of distributions. In Ref. 25
was shown that the differences of Re´nyi entropiesH1

(R)2H2
(R) , which are referred to as th

structural entropy, can be a candidate for the spatial characterization of one-particle eige
~e.g., spatial localization of the charge distributions!.

In the previous section, we redefined the disequilibriumD as a squared sum for each dist

bution measured from a uniform distribution. SinceD can be expressed asD5eln (ipi
2

5e2H2
(R)(pi), we find thatĈ1 can be expressed as follows:

Ĉ15eH(S)
D5eH1

(R)
2H2

(R)
. ~21!

Similarly, since the Tsallis entropy can be expressed asHq(pi)5 (e(12q)Hq
(R)

21)/(12q), we
obtain

Ĉq5eq
Hq
•D5eHq

(R)
2H2

(R)
. ~22!

Accordingly, the present statistical measure of complexity with Tsallis type nonextensive en
can be expressed by exponential of the difference betweenqth order Re´nyi entropy and the secon
order one. The exact form ofĈq for the various distributions calculated have been provided in
Appendix. If q<2 (q.2), thenĈq>1 (Ĉq,1) holds due to the fact that ifa<b, thenHa

(R)

>Hb
(R) . It is noteworthy that the uniform distribution, which can be viewed as a disperse

highly delocalized system, has the same complexity value~unity! as that for an extremely local
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ized system. This fact can be easily confirmed by considering a distribution, which assum
value of 1/e for 2e/2<x<e/2 and 0 for other cases, wheree determines the localized region. I
this case, therefore, we haveHq

(R)5H2
(R)5 ln e. The focus of our attention lies in determining th

manner in which a systems’s measure of complexity changes when the value of nonext
parameter is varied. For this purpose, we show the behavior ofĈq with respect toq in Fig. 1 for
three distributions~uniform, Gaussian, and exponential! and in Figs. 2 and 3 for the Weibul
distribution and the gamma distribution, respectively.

Although, by definition, Ĉq is made of the two nonextensive quantities, that is,
q-exponentiated Tsallis entropy and the disequilibrium, an assertion regarding its expressivit
an extensive quantity can be made~note that the Re´nyi entropy is an extensive quantity!.

III. THE QUASI-MULTIPLICATIVITY OF Ĉq AND FLUCTUATION OF BIT NUMBER

The quantity( i pi
q , which plays a central role in the generalized entropy, can be related t

bit number.26 The bit number is defined asBi5 log pi , which has an opposite sign to the inform
tion content in Shannon information theory. Assuming thatq is close to unity, the Taylor expan
sion in q21 enables the expression( i pi

q to be written as

FIG. 1. The behavior of the statistical measure of complexity with respect toq for exponential, Gaussian, and uniform
distributions.

FIG. 2. The behavior of the statistical measure of complexity with respect toq for the Weibull distribution~for c50.9 and

c510.0). The dotted curve representsĈq for the exponential distribution, which corresponds to the casec51 and the
black circle denotes the valuee/2 when q51. Note that the curves pass through the value 1 whenq52 for all the
distributions. The inset shows the original distributions whena51.0.
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(
i

pi
q5(

i
pie

(q21)log pi5 (
k50

`
^Bi

k&~q21!k

k!
, ~23!

where ^Bi
k&5( i piBi

k . Thus, the expectation value of the negative bit number comprises
Shannon entropy. When a joint probability ofN systems is factorized into each component and
number of events is the same for all components, Eq.~24! is obtained using the formula shown i
Eq. ~25!:

(
i 1 ,...,i N

pi 1 ,...,i N
q 5S (

i
pi

qD N

5S (
k50

`
~q21!k^Bi

k&
k! D N

5 (
(sns5N

N!

n1!n2!¯
~1!n1~~q21!^Bi&!n2

¯S ~q21!s^Bi
s&

s! D ns

¯ , ~24!

~A11A21¯ !N5 (
(sns5N

N!

n1!n2!¯
~A1!n1~A2!n2

¯~As!
ns
¯ . ~25!

In what follows, we consider the caseN52 and assume that two independent systemsX andY,
each of which has a different nonadditive index (qX andqY , respectively! and both these system
are unified to form one systemX1Y with a new nonadditive indexqnew such that the composition
of the statistical measure of complexity is as follows:

ĈqX

X ~pi !3ĈqY

Y ~pj !5Ĉqnew

X1Y~pi j !. ~26!

This may be referred to as ‘‘the composition law by multiplication.’’ ‘‘The composition law
sum’’ inevitably involves the issue of additivity or nonadditivity in entropy, whereas the mult
cation conflation does not incur this problem. Subsequently, we assume that the two syste
identical in the level of their probability distributions, which ensures that the fluctuation of th
number is the same during the composition process as shall be seen in the following sect

FIG. 3. The behavior of the statistical measure of complexity with respect toq for the gamma distribution~for a50.9 and

a55.0). The dotted curve representsĈq for the exponential distribution, which corresponds to the casea51 and the black
circle denotes the valuee/2 whenq51. Note that the curves pass through the value 1 whenq52 for all the distributions.
The inset shows the original distributions whenb51.0.
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To begin with, the quantity ln((ipi
q) can be expanded as (q21)^Bi&2(q21)2(^Bi

2&
2^Bi&

2)/21O((q21)3). If the first two terms in Eq.~23! are regarded as infinitesimal quantitie
compared to unity, then the single Re´nyi entropy can be expressed as

Hq
(R)52^Bi&2 1

2 ~q21!~^Bi
2&2^Bi&

2!1¯ . ~27!

When a higher order moment of the bit number in the expression of entropy is required, h
order terms need to be incorporated inq21 for ln(11x) type expansion. For our present focus,
is sufficient to expand it up to the second order inq21 because the fluctuation of the bit numb
appears as the coefficient ofq21. Therefore,ĈqX

X is approximately expressed as

ĈqX

X 5eHqX

(R)
2H2

(R)
;e(12 qX/2)(^Bi

2&2^Bi &
2) ~qX;1!. ~28!

Accordingly, the product of the statistical measure of complexity for independent syste
reduced to~up to the first order inq21),

ĈqX

X 3ĈqY

Y 5e(12 qX/2)(^Bi
2&2^Bi &

2)e(12 qY/2)(^Bi
2&2^Bi &

2). ~29!

On the other hand, by using Eq.~24!,

(
i j

pi j
qnew52 lnS (

i
pi

qnewD;2~qnew21!^Bi&1~qnew21!2~^Bi
2&2^Bi&

2!1¯ , ~30!

the composed complexity measureĈqnew

X1Y satisfies

Ĉqnew

X1Y5eHqnew

(R) (pi j )2H2
(R)(pi j );e2(qnew22)(^Bi

2&2^Bi &
2). ~31!

Therefore, the present composition law implies a relation amongqX , qY , andqnew, namely,

S 12
qX

2 D1S 12
qY

2 D52~qnew22!. ~32!

Based on this, we haveqnew5(qX1qY)/2. If qX5qY51, thenqnew also becomes unity. For thi
case, the LMC complexity measure with the exponentiated Shannon entropy was used.

This relation suggests that the composition of two independent systems necessarily in
the average and the variance of bit number whenq is close to unity. In other words, the change
the nonadditivity indices relates to the fluctuation of the Shannon entropy. This fact had
indicated when the interpretation of the nonextensive parameterq from the system’s fluctuating
temperature were analyzed in Ref. 26. If the fluctuation is sufficiently small, i.e.,^Bi

2&2^Bi&
2

!1, then Eqs.~28! and ~31! are approximately expressed as (12 qX/2)b and 12(qnew22)b,
respectively, where we putb5^Bi

2&2^Bi&
2. Therefore, we have the following relation:

b5

1
2 ~qX1qY!2qnew

~12 qX/2!~12qY/2!
. ~33!

Note that the above expression is symmetric inqX andqY . WhenqX5qY5qnew51, there is no
fluctuation in systems. As special cases, we have two types ofquasi-multiplicativities.

~i! The caseqX5qY5q ~type I quasi-multiplicativity!: This case corresponds to the situati
where two identical systems form a single new system with a new entropic index that is dif
from its original. This is the case where Beck introduced the concept of quasi-additivity in Re
in the context of addition of two entropies. In this case, the above relation reduces to

b5
q2qnew

~12 q/2!2 . ~34!
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~ii ! The caseqnew5qX or qnew5qY ~type II quasi-multiplicativity!: This case describes th
circumstances where the new entropic index is absorbed either into the index ofX or that ofY.
Substitutingqnew5qX in Eq. ~33! and then arranging it, the relation appears as

^Bi
2&2^Bi&

2

2
5

1

qnew22
2

1

qY22
. ~35!

In this case, the difference between the reciprocal of the displacements from two in the n
tensive index is equivalent to half of the fluctuation.

IV. TEMPORAL BEHAVIOR OF Ĉq FOR THE RANDOM MULTIPLICATIVE PROCESS

It is noteworthy that both the LMC measure andĈq provide time-independent values for th
standard diffusion~i.e., Wiener process!, indicating that these quantities can measure the shap
distributions. This time independency comes from the fact that in the standard diffusion pr
the dispersion changes with the passage of time; however, the Gaussian forms are ma
during the process~see the Appendix!. In this sense, the present disequilibrium based comple
measure captures only the information on shapes of distributions except for the similarity.

It is interesting to observe how the complexity measure evolves with time, or the tran
behavior of it. To achieve this end, we examine a lognormal distribution whose form is a res
the Levy and Solomon’s random multiplicative processes with a boundary constraint of
time.27 The random multiplicative process that Levy and Solomon considered is express
x(t11)5l tx(t) with a stochastic random positive variablel t , wherex(t) is the position of a
particle at timet. The probability distribution for this process at asymptotic time is found to b
the following form:28

p~x,t !5
1

A2pDt

1

x
expF2

1

2Dt
~ ln x2vt !2G , ~36!

wherev is the drift velocity, defined as an average of logarithm ofl t with respect to the prob-
ability distribution ofl t , andD is its dispersion. Our key interest is in the time regime such t
x@e(vt12Dt), whose distributions are clearly distinguished from the power law formp(x,t)
;1/x. For this distribution, the disequilibrium can be expressed as

D~p~x,t !!5E
e

`

p2~x,t !dx5
e2(v2 D/4)t

2pDt E
ln e

`

dye2(y2 @~2v2D!/2# t)2/Dt ~37!

where y5 ln x is a quantity that arises due to the change of variables. Since the distrib
becomes singular atx50, we always sete<x. This leads the following interpretation: the lowe
bounde is the boundary that keeps the position of particle away from it at timet ~repulsive effect
introduced in Ref. 27!. The physical description for this process and a derivation based on
random walk analogy are provided in detail in Ref. 28. Furthermore, with the definition of
function *j

`e2z2
dz5Ap(12erf@j#)/2, the following expression is obtained:

D~p~x,t !!5
e2(v2 D/4)

4ApDt
~12erf@j#!, ~38!

wherej is

j5
1

ADt
H ln e2S v2

D
2 D tJ . ~39!
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Since j.0, the above expression is valid only fort, ln e/(v2D/2). Similarly, the entropy is
calculated as

Hq~p~x,t !!5

E
e

`

pq~x,t !dx21

12q
. ~40!

The integral of the numerator for the above equation can be calculated as

E
e

`

pq~x,t !dx5E
ln e

`

dye2~q/2Dt !(y2vt)2
e(12q)y5A2Dt

q

Ap

2
~12erf@t#!e(12q)(v1 @~12q!/2q#Dt),

~41!

wheret is the lower bound of integration that appears due to the change of variables and
a positive value,

t5A q

2DtS ln e2S v1
12q

q
DD t D.0. ~42!

Accordingly, when q.0(,0), the above expression describes the time range lne/(v1(1
2q)D/q),t(.t). Therefore, the following expression is obtained:

eq
Hq(p(x,t))

5@11~12q!Hq~p~x,t !!#1/~12q!

5A2pDt~2Aq!1/~q21!~12erf@t#!1/~12q!e(v1 @~12q!/2q#Dt). ~43!

Combining this with Eqs.~38! and ~39!, we have the expression

Ĉq~p~x,t !!5
A2

4
~2Aq!1/~q21!~12erf@j#!~12erf@t#!1/~12q!e@~22q!/4q#Dt. ~44!

In general,Ĉq exhibits varied behavior depending on the value of diffusion constant and th
the boundary constraint. The temporal evolution for some parameter values has been sh
Figs. 4 and 5.

V. SUMMARY

In this work, a statistical complexity measure has been examined with a nonextensive e
based on the LMC type~disequilibrium-based! measure. The LMC measure can be regarded

FIG. 4. The change in the complexity measure with time for the random multiplicative process with a boundary con
for different values ofq. The parameters are set asv51.5, D52.5, ande52.1.
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one class of measures that satisfies the so-called one-hump criterion—possessing concav
respect to the order parameter such as entropy.2,3,29The more general types of complexity measu
are categorized according to their behavior as a function of disorder~or order! using SDL
classification10 with two parameters, and this is referred to as the simple measure for comp
~see also consequent discussions for its validity13,30–32!. Although it is difficult to choose a specific
measure among these, we think that the LMC type complexity measure deserves to be inve
as a prototype. In the LMC measure, the one-hump criterion is realized by using a quan
disequilibrium. Hence, this criterion has been retained in this study.

In general, analyzing the compositions of two systems that are characterized by dif
nonextensive parameters is essential because the probability of two complex systems hav
same nonextensive value may be rare. In the case of a physical system, a series of analyse
to the conclusion that the entropy composition with the same nonextensive parameter result
equibration~the zeroth law of thermodynamics! that occurs when normalized temperature is us
over the system’s temperature itself.33 The concept of the quasi-multiplicativity was introduced f
the composed system, thereby the idea of defining the statistical complexity measure in te
a system’s bit number leads to the formulation of two kinds of quasi-multiplicativity under
condition where the nonextensivity is small (q;1).

Although static distributions yield single values corresponding to their shapes, it is intere
to note how the present measure of complexity changes with time under a specific~often nonlin-
ear! dynamics. In ordinary diffusion process~i.e., Wiener process!, the shape of distribution
maintains the Gaussian form during its evolution, resulting in that the present measure o
plexity yields a constant value. As a specific illustration, a random multiplicative process
considered, in which probability distribution of the position of a particle at asymptotic time o
a lognormal distribution. Observations revealed that the measure increased with time for di
values ofq; however, the relation depends on the value of the lower bound~boundary condition!.
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FIG. 5. The change in the complexity measure with time for the random multiplicative process with a boundary con
for different values ofe, with nonextensivity fixed atq51.5. The values of parameters forv andD are identical to those
used in Fig. 4.
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APPENDIX: Ĉq AND Ĉ FOR DIFFERENT KINDS OF DISTRIBUTIONS

Given below are the explicit forms of the present complexity measure defined by Eq~6!
@equivalently by Eq.~22!# for some distribution functions, which are often encountered in
various branches of science.

1. Uniform distribution

p~x!5
1

b2a
~a<x<b!. ~A1!

We have H (S)(p(x))52*a
bp(x)ln p(x)dx5ln(b2a). Furthermore,Hq

(R)(p(x))5 ln(b2a), ;q

whenceĈq5Ĉ51.

2. Gaussian distribution

p~x!5
1

A2ps2
e2 x2/2s2

~0,s!. ~A2!

We have H (S)(p(x))52*2`
` p(x)ln p(x)dx5ln(A2ps)1 1

2. Furthermore, Hq
(R)(p(x))

5 (lnAq)/(q21) 1 ln(A2ps) and H2
(R)(p(x))5 ln(A2ps)1 (ln2)/2. Hence Ĉq5Aq1/(q21)/2

and Ĉ5Ae/2.

3. Exponential distribution

p~x!5
1

l
e2 x/l ~x,l.0!. ~A3!

We have H (S)(p(x))52*0
`p(x)ln p(x)dx5ln l11. Furthermore,Hq

(R)(p(x))5 ln l2 (ln q)/(1
2q) and H2

(R)(p(x))5 ln(2l). Hence Ĉq5q1/(q21)/2 and Ĉ5 e/2. Note that limq→1Ĉq5e/2
5Ĉ.

4. Pareto distribution

p~x!5
aka

xa11 ~0,a, 0,k<x!. ~A4!

We have H (S)(p(x))52*k
`p(x)ln p(x)dx5ln (k/a) 111 1/a. Furthermore, Hq

(R)(p(x))
5 ln@@k/(q(a11)21)# (a/k)q#/(12q) and H2

(R)(p(x))5 ln@k(2a11)/a2#. Hence Ĉq

5(k/a) e111/a@@k/(q(a11)21)# (a/k)q#1/(12q) and Ĉ5 ae(111/a)/(2a11).

5. Weibull distribution

p~x!5
c

a
xc21e2 x2/a ~x,c,a.0!. ~A5!

H (S)(p(x))52*0
`p(x)ln p(x)dx5 @(c21)/c# g1ln (a1/c/c) 11, whereg50.577 215 66 . . . is Eul-

er’s constant. Furthermore,Hq
(R)(p(x))5 @1/(12q) # ln@cq21a(12q)/cqq(1/c 21)2 1/cG(q(12 1/c)

1 1/c))] and H2
(R)(p(x))5 ln@ca 21/c21/c 22G(221/c)#21. Hence Ĉq521/c 22qq/(q21) 2 1/cG(2

21/c)@G(q(121/c)1 1/c)#1/(12q). The value ofĈ is calculated to be 21/c 22e11(12 1/c)gG(2
2 1/c).
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Remark:Whenc51, Ĉ and Ĉq are reduced toe/2 andq1/(q21)/2, respectively, because th
Weibull distribution recovers the exponential distribution. The formĈq is independent of the scal
parametera; however, it is affected by the value of the shape parameterc.

6. Gamma distribution

p~x!5
xa21e2 x/b

baG~a!
~x,a,b.0!. ~A6!

We haveH (S)(p(x))52*0
`p(x)ln p(x)dx5ln(bG(a))1(12a)c(a)1a, wherec(a)5dG(a)/da

is the digamma function. ThenĈ5e(12a)c(a)1a2122a G(2a21)/G(a). On the other hand, we
have Hq

(R)(p(x))5@ 1/(12q) # ln@b12qq2q(a21)21G(q(a21)11)/@G(a)#q# and H2
(R)(p(x))

52 ln@2122a G(2a21)/b@G(a)#2#. Hence Ĉq52122aq@q/(q21) #a21G(2a21)@G(a)#q/(q21) 22

3@G(q(a21)11)#1/(12q).
Remark:Whena51, Ĉ and Ĉq are reduced toe/2 andq1/(q21)/2, respectively, because th

gamma distribution recovers the exponential distribution. The scale parameterb does not get
modified to the formĈq ; however, it is influenced by the value of the shape parametera.
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Associated Bessel functions and the discrete
approximation of the free-particle time evolution
operator in cylindrical coordinates
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A central finite difference approximation for the radial contributionD r to the La-
placian¹25D r1D r'

(r ) is considered in a three-dimensional cylindrical coordi-
nate system (r ,u,z). A free-particle Schro¨dinger time evolution operator is con-
structed by exponentiation,e( i /2) j¹2

5¯e2(1/2)j2[Dr ,Dr'
(r )] e( i /2) jDr'

(r ) e( i /2) jDr

→¯e( i /2) jDr. Denoting the central finite difference approximation ofD r by
(1/Dr 2) T, the matrixS[e( i /2) lT, with l5 j/Dr 2, is shown to be similar to a
particular unitary representationUVK of the group of motions on Euclidean three-
space that has been described by Vilenkin and Klimyk. The matrix elements ofUVK
generalize the Bessel function and provide an approximation of the leading term in
the radial contribution to the evolution operator. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1695601#

I. INTRODUCTION

We work in standard cylindrical coordinates (r ,u,z) and denote the Laplacian as¹2

5]2/]r21 (1/r )(]/]r ) 1 (1/r 2)(]2/]u2) 1 ]2/]z2 [D r1Duz(r ), where D r5]2/]r 2 1 (1/r )(]/
]r ). Let H52 (\2/2m) ¹2 denote the Hamiltonian of a free spinless particle of massm, and
C(r ,u,z,t) denote its Schro¨dinger wavefunction. Integration of the Schro¨dinger equation gives

C~r ,u,z,t1dt !5edt] tC~r ,u,z,t !5e~ i\dt/2m! ¹2
C~r ,u,z,t !. ~1!

The evolution operator may be expanded using the Zassenhaus formula as

e~ i\dt/2m! ¹2
5¯eA3dt3eA2dt2e~ i\dt/2m! Duz(r ) e~ i\dt/2m! Dr, ~2!

where theA2 ,A3 , . . . areanti-Hermitian operators. To each order indt the decomposition of the
evolution operator is in terms of unitary operators, so that the norm ofC is preserved as the
‘‘dynamics’’ unfolds. A numerical algorithm based on this expansion will be uncondition
stable. In this note we develop a unitary approximation for the radial contribution toe( i\dt/2m) ¹2

in
terms of a set of special functions, theassociated Bessel functions, that have been defined b
Vilenkin and Klimyk.

We employ a uniform discrete lattice approximation with lattice spacingDr for the radial
coordinater→r n5(n1 1

2)Dr ,nPN (n50,1,2,...). Theaction ofD r on C is approximated by
$D r C%n' (1/Dr 2) (TC)n where (TC)n5Cn1122 Cn1Cn211 @1/2 (n1 1

2)# (Cn112Cn21).
The matrix elements ofT are

a!Electronic mail: pnash@utsa.edu
19880022-2488/2004/45(5)/1988/6/$22.00 © 2004 American Institute of Physics
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Tnn85dn n821S 11
1

2 ~n1 1
2!
D ) 1dn n8~22! 1dn n811S 12

1

2 ~n1 1
2!
D , ~3!

wheren,n8PN. Let l5\ dt/m Dr 2. We show below that a unitary approximation toe( i\dt/2m) Dr

is given by

S5e~ i /2! lT, ~4!

up to a similarity transformation. It will be seen that the matrix elements ofS have a simple,
remarkable realization in terms of Vilenkin and Klimyk’s associated Bessel functions.

II. ELEMENTARY PROPERTIES OF S

Let us define matricesT̂ and Ŝ by

T̂nn85dn n821S 11
1

2 n11D 1dn n811S 12
1

2 n11D , ~5!

wheren,n8PN, and

Ŝ5e~ i /2! lT̂, ~6!

so thatS5e2 il e( i /2) lT̂5e2 il Ŝ. This is a change of variable that deletes the diagonal ma
elements fromT̂ and removes the simple exponentiall-dependence fromŜ.

We also define a ‘‘weight’’ matrixW by

Wn n85dn n8A2n11, ~7!

n,n8PN. W corresponds to the radial weight functionr in this cylindrical coordinate system. It i

not too difficult to show that the similarity transform ofŜ by W, U5WŜW215We( i /2) lT̂W21

5e( i /2) lWT̂W21
is a unitary matrix. For brevity we putQ[WT̂W21 so thatU5e( i /2) lQ.

Lemma 1:Q is symmetric andU5e( i /2) lQ is unitary.
Proof: To show thatQ is symmetric consider

Qn n85~WT̂W21!n n8

5A 2n11

2n811
~ T̂!n n8

5A 2n11

2n811Fdn n821S 11
1

2 n11D 1dn n811S 12
1

2 n11D G
5A 2n11

2n811
@dn n821 1 dn n811#1A 1

~2n11!~2n811!
@dn n821 2 dn n811#

[A 2n11

2n811
sn n8 1A 1

~2n11!~2n811!
Dn n8 ,

where s is symmetric and D is antisymmetric. We see thatQn n82Qn8 n

52 A1/(2n11)(2n811)@(n2n8) sn n8 1 Dn n8#. Clearly (n2n8) sn n8 1 Dn n8 is ~possibly!
nonvanishing only whenn85n61. However, in both cases (n2n8) sn n8 1 Dn n850. HenceQ is
symmetric~thusU is also symmetric!. The fact thatQ is a real symmetric matrix implies thatU
5e( i /2) lQ is unitary. h

SinceU is unitary and symmetric andUn n85A(2n11)/(2n811) Ŝn n8 we immediately have

Ŝn8 n5 Ŝn n8
T

5
2n11

2n811
Ŝn n8 , ~8!
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whereT denotes the transpose. This is equivalent to

ŜT5W2 Ŝ W22. ~9!

III. GENERATING FUNCTION FOR THE Ŝn n 8„l…

We now turn to the problem of expressing the matrix elementsŜn n8(l) in terms of known
special functions. We note that, for eachnPN, (n850

` Ŝn n8(l) Ŝn8 n
* (l)51, so that each row of

Ŝ(l), $Ŝn n8(l)%n8PN defines a square summable sequence.
We shall construct a vector generating function with componentshn(l,j), where nPN,

21<j<1 andlPR, that will yield the matrix elementsŜn n8(l) upon ‘‘projection’’ onto suitable
basis functions. LetPn(j) denote the Legendre polynomial of order n satisfying@(n11)/(2n

11)# Pn11(j) 1 @n/(2n11)# Pn21(j) 5j Pn(j). For each row ofŜ(l), a generating function is
defined as a simple discrete Fourier–Legendre transform of the columns of this row ofŜ(l) with
weightsPn8(j),

hn~l,j![ (
n850

`

Ŝn n8~l! Pn8~j!5 (
n850

`
2n811

2n11
Ŝn8 n~l! Pn8~j!. ~10!

SinceuPn8(j)u<1 and$Ŝn n8(l)%n8PNPl l
2 , this series is convergent for21<j<1 andlPR.

The generating function may be associated with a partial differential equation whose so
depends on initial values provided by the following.

Lemma 2:

(
n850

`

Ŝn n8~l!5 (
n850

`
2n811

2n11
Ŝn8 n~l!5eil. ~11!

Proof: Note thatT ~not T̂) annihilates constant vectors. LetF denote the constant colum
vector with a one in each row,Fn51, n50,1,2,... . ThenTF50 andSF5F5 e2 il ŜF. The
action of Ŝ on F is (ŜF)n5(n850

` Ŝn n8(l) Fn85(n850
` Ŝn n8(l), which must yield (ŜF)n

5eil Fn5eil. Hence(n850
` Ŝn n8(l)5(n850

`
@(2n811)/(2n11)# Ŝn8 n(l)5eil.

With this initial value in hand, it is not difficult to calculate the following.
Lemma 3:

eil j Pn~j!5 (
k50

`

Ŝn n8~l! Pn8~j!, ~12!

where Pn8(j) is a Legendre polynomial satisfying@(n811)/(2n811)# Pn811(j) 1 @n8/(2n8
11)# Pn821(j) 5j Pn8(j).

Proof: Let hn(l,j)[(n850
` Ŝn n8(l) Pn8(j)5(n850

`
@(2n811)/(2n11)# Ŝn8 n(l) Pn8(j).

hn(l,j) is subject to the ‘‘initial’’ conditionshn(0,j)5(n850
` dn n8Pn8(j)5Pn(j) and hn(l,1)

5(n850
` Ŝn n8(l)5eil by Lemma 2.
To generate a partial differential equation forhn(l,j), consider the one-parameter subgro

Ŝn n8(l1l8)5(k50
` Ŝn k(l) Ŝk n8(l8). The Fourier–Legendre transformation yieldshn(l1l8,j)

5 (n850
`

(k50
` Ŝn k(l) Ŝk n8(l8) Pn8(j). Differentiating this result with respect tol8, then putting

l850 yields (]/]l) hn(l,j)5@(]/]l8) hn(l1l8,j)#l850 5(n850
`

(k50
` Ŝn k(l)@(]/]l8) Ŝk n8

3(l8)#l850 Pn8(j) 5( i /2) (k50
` Ŝn k(l)(n850

` T̂k n8 Pn8(j) 5 i (k50
` Ŝn k(l) @@(k11)/(2k11)#

3Pk11(j) 1 @k/(2k11)# Pk21(j)#5 i (k50
` j Pk(j) Ŝn k(l)5 i j hn(l,j). Integration and ap-

plication of the initial conditions giveshn(l,j) 5 Pn(j) ei l j. h
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IV. MATRIX ELEMENTS Un n 8 AS KNOWN SPECIAL FUNCTIONS

An integral representation ofUn n85A(2n11)/(2n811) Ŝn n8 and an expansion in terms o
spherical Bessel functions may obtained by multiplying Eq.~12! by Ph(j) d j and integrating over
21<j<11. This gives the following theorem.

Theorem 1 (Ûn n8(l)):

Un n8~l! 5
A~2n11!~2n811!

2 E
21

11

eil jPn~j!Pn8~j!d j

5
A~2n11!~2n811!

2p (
k50

min(n n8)

i n1n822k @2~n1n822k!11#

3
~n1n82k!!

~n2k!! ~n82k!!k!

G~n2k1 1
2!G~n82k1 1

2!G~k1 1
2!

G~n1n82k1 3
2!!

j n1n822k~l!

5 Jn n8 0
4

~2 il!. ~13!

Here j n denotes a spherical Bessel function of the first kind. For reference, we recall th
recursion relations for the spherical Bessel functions are (2n11) j n8(l)5n jn21(l)2(n
11) j n11(l) and (2n11) j n(l)5l @ j n21(l)1 j n11(l)# ~Ref. 2!, and thatj n(0)5dn 0 .

In the next to last equation of Eq.~13! we have used Bauer’s addition theorem~Ref. 4, p. 368!
eilj5(h50

` (2h11)i hj h(l) Ph(j) and Adams’1 product decomposition

Pn~j!Pn8~j!5
1

2p (
k50

min(n n8)

@2~n1n822k!11#
~n1n82k!!

~n2k!! ~n82k!!k!

3
G~n2k1 1

2G~n82k1 1
2!G~k1 1

2!

G~n1n82k1 3
2!!

Pn1n822k~j! . ~14!

In the last equation of Eq.~13!, Jn n8 0
4 (2 il) denotes the matrix elements of Vilenkin an

Klimyk’s unitary irreducible representation of the group of motions on Euclidean three-spac
generalizes the Bessel function@Ref. 3, p. 101, Eq.~5!#. They have named these functionsasso-
ciated Bessel functions. This correspondence is discussed in more detail in the Conclusion.

V. USEFUL RECURRENCE RELATIONS

Recurrence relations can reduce the amount of computation required to calculate a num
the Ŝn n8 when using a set of these functions in a zeroth-order approximation to the solution
scattering problem.

A simple recurrence relation may be obtained from

22 i
]

]l
Sn n8~l!5@T̂Ŝ#n n85@ ŜT̂#n n8 . ~15!

The result is consistent with the recurrence relation obtained by differentiating Eq.~13! with
respect tol and using (2n811)j Pn8(j)5 (n811)Pn811(j) 1 n8 Pn821(j). More generally, a
generator of parity recurrence relations for theŜn n8(l) may be obtained by differentiating Eq
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~12! with respect toj, then multiplying by (12j2) and recalling the Legendre polynomial recu
rence relation (12j2)(]/]j) Pn(j)5 n @Pn21(j) 2 j Pn(j)#. This yields

~12j2!~]/]j! $eil j Pn~j!%

5eil j $ il ~12j2!Pn~j! 1 n @Pn21~j! 2 j Pn~j!#%

5@ il ~12j2! 2 n j #$eil j Pn~j!% 1 n $eil j Pn21~j! %

5@ il ~12j2! 2 n j #H (
k50

`

Ŝn k~l! Pk~j!J 1 n H (
k50

`

Ŝn21 k~l! Pk~j!J
5 (

k50

`

Ŝn k~l! ~12j2!
]

]j
Pk~j!5 (

k50

`

Ŝn k~l! k @Pk21~j! 2 j Pk~j!#.

Hence

(
k50

`

@ Ŝn k~l! $@ il ~12j2!1 ~k2 n! j #Pk~j!2k Pk21~j! % 1 n Ŝn21 k~l! Pk~j!#50. ~16!

Multiplying Eq. ~16! by d j and integrating over21<j<11 yields, forn.0,

i l ~ Ŝ0 n~l! 2 Ŝ2 n~l! ! 2
3

2
~21 n!Ŝ1 n~l! 1 n

3

2

~2n11!

~2n21!
Ŝ0 n21~l! 5 0. ~17!

Here we have used 15P0(j),j5P1(j),j25 1
3(P0(j)12P2(j)).

The general relation is obtained by multiplying Eq.~16! by Ph(j) d j and integrating over
21<j<11. We may assume thath.0 since the caseh50 has just been evaluated. We obta
the following.

Proposition 1 (General parity recurrence relation): The parity recursion relations for

Ŝh n(l) , h 5 0,1,2,..., are given by Eq. (17) for h50 and

il
2~h21h21!~2h11!

~2h13!~2h21!
Ŝh n~l! 2 il

~h11!~h12!

~2h13!
Ŝh12 n~l! 2 il

h~h21!

~2h21!
Ŝh22 n~l!

2 ~h121n!~h11! Ŝh11 n~l! 1 h~h212n! Ŝh21 n~l!

1
n~2n11!

~2n21!~2h11!
Ŝh n21~l! 5 0 ~18!

for h.0.

VI. CONCLUSION

In this section we adopt the notation of Vilenkin and Klimyk.3 Let ISO(n21) denote the
group of motions ofn21-dimensional Euclidean spaceEn21 . Let xPEn21 ; every gPISO(n
21) has the actiongx5kx1a, wherekPSO(n21) is a rotation ofEn21 about the origin and
aPRn21. The groupISO(n21) is isomorphic to the group ofn3n real matrices of the form

g~k,a!5S k a

0T 1D ,

where0T5(0,...,0) hasn21 components.
Let
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Dk m j
n 5

22 j 1n25

p
G2S j 1

n23

2 D F ~k2 j !! ~m2 j !! ~2k1n23!~2m1n23!

~k1 j 1n24!! ~m1 j 1n24!! G1/2

, ~19!

ar
T5(0,...,0,r ) and gr5g(identity,ar); Vilenkin and Klimyk3 show that the matrix element

tk m j
n R (gr) of the representationTn R(gr) of ISO(n21) possess the integral representation

tk m j
n R ~gr !5Dk m j

n E
0

p

eR r cos(f)Ck2 j
j 1(n23)/2~cos~f!!Cm2 j

j 1(n23)/2~cos~f!!sin2 j 1n23~f! df ,

~20!

whereCk
j is the Gegenbauer polynomial. The representation is unitary whenR5 i r,rPR. In our

case we see thatUn n8(l)5Jn n8 0
4 (2 il). Vilenkin and Klimyk show that Jk m j

n (2 i R r)
5tk m j

n R (gr) defines a generalization of the Bessel function that they call the associated B
functions. Hence the associated Bessel functionsJn n8 0

4 (2 il) provide an approximation for the
leading term in the radial contribution of the evolution operator.

1Adams, J. C.,et al. ‘‘On the expansion of the product of any two Legendre’s coefficients. . . ,’’ Proc. R. Soc. London27,
63–71~1878!.

2Magnus, W., Oberhettinger, F., and Soni, R.,Formulas and Theorems for the Special Functions of Mathematical Phy,
3rd ed.~Springer Verlag, Berlin, 1966!.

3Vilenkin, N. and Klimyk, A.,Representation of Lie Groups and Special Functions, Vol. II~Kluwer, Dordrecht, 1993!.
4Watson, G.,A Treatise on the Theory of Bessel Functions,2nd ed~Cambridge University Press, Cambridge, 1944!.
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For the nonrotating Ban˜ados, Teitelboim, and Zanelli black hole, the distributional
curvature tensor field is found. It is shown to have singular parts proportional to a
d-distribution with support at the origin. This singularity is related, through Ein-
stein field equations, to a point source. Coordinate invariance and independence on
the choice of differentiable structure of the results are addressed. ©2004 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1699482#

I. INTRODUCTION

The (211)-dimensional black hole of Ban˜ados, Teitelboim, and Zanelli~BTZ!1,2 provides us
with a useful model to study various classical and quantum aspects of black hole physics3 The
BTZ black hole shares many of the properties of the more complicated (311)-dimensional Kerr
black hole. However, it differs from the Kerr solution in which it is asymptotically anti–de S
rather than asymptotically flat. Furthermore, by admitting closed time-like curves, the ro
BTZ black hole has no curvature singularities. Nevertheless, when there is no angular mom
the space–time fails to be Hausdorff at the origin and turns out to be singular.2

The purpose of this work is to analyze the distributional BTZ black hole geometry for
nonrotating case. There are several reasons to carry out such analysis. The nonrotating BT
hole provides an example of a singular space–time whose singularities cannot be identifie
the unboundedness of some scalar constructed from the curvature tensor. In this sense, it re
the well-known conical singularities4 whose meaning has attracted wide interest for many yea5

On the other hand, besides the fact that the distributional analysis has not been considered h
regularization procedures required to multiply distributions need not be invoked in the calcu
of the distributional nonrotating BTZ black hole curvature tensor. Most of the distributi
treatments of the (311)-dimensional Schwarzschild6–8 and Kerr black holes7 rely on suitable
regularization procedures; while general regularization procedures using Colombeau’s gene
functions9 to obtain the distributional curvature associated to the Schwarzschild10 and Kerr
geometries11 and to a conical singularity12–14 have been put forward~see also Refs. 6 and 15 fo
other approaches to conical singularities!. We show that the nonrotating BTZ black hole met
belongs to the class of semiregular metrics, as defined in Ref. 16, for which a direct distribu
meaning may be assigned to the curvature tensor field. Notice that not many semiregular
are known. It has been shown that the (311)-dimensional Minkowski metric with an angula
deficit, and a certain kind of traveling wave metric are semiregular.16 Recently, the metric asso
ciated to the (211)-dimensional space–time around a point source4 was demonstrated to be
third example.8

In order to consider the coordinate dependence of the results, the distributional descrip
the BTZ black hole space–time is carried out in Schwarzschild coordinates and in Kerr–S
coordinates. We find the distributional Ricci and Einstein tensor fields for the nonrotating
19940022-2488/2004/45(5)/1994/9/$22.00 © 2004 American Institute of Physics
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black hole, which turn out to be equivalent in both coordinate systems. This indicates
although the intermediate calculations depend upon the choice of coordinates, the final resu
not. Remarkably, a complete agreement with what is physically expected is found. The dis
tional curvature tensor becomes, besides the constant curvature part, ad-distribution supported a
the origin. Furthermore, this singularity is related through Einstein field equations to a
source.

The paper is organized as follows. In the next section, following the procedure of Ref. 1
distributional curvature and Einstein tensor fields are found for the nonrotating BTZ soluti
Schwarzschild coordinates. In Sec. III, we carry out the distributional analysis using the K
Schild form of the BTZ solution, and the question of whether one can also obtain these res
the distributional limit of a suitable regularized metric is addressed. The last section is devo
summarize and discuss the coordinate invariance~and differentiable structure dependence! of our
results.

II. BTZ BLACK HOLE IN SCHWARZSCHILD COORDINATES

The nonrotating BTZ black hole solution1,2 written in Schwarzschild coordinates is given b

gab52S 2m1
r 2

l 2 Ddta dtb1S 2m1
r 2

l 2 D 21

dr a dr b1r 2 dwa dwb , ~1!

where2`,t,`, 0,r ,`, and 0<w,2p, with the surfacesw50,2p identified. The dimen-
sionless quantitym is the mass parameter. In (211)-dimensions we have

Rabc
d5gacRb

d2gbcRa
d1db

dRac2da
dRbc2

1
2 ~gacdb

d2gbcda
d!R ~2!

and from~1! we obtain

Rab52
2

l 2 gab . ~3!

Hence,~1! has constant negative curvature.
The BTZ metric~1! is a solution of the vacuum Einstein field equations with cosmolog

constantL521/l 2,

Rab2 1
2 gabR1Lgab50, ~4!

and may be obtained by identifying certain points of~the covering manifold of! the anti–de Sitter
space.1,2 For m.0, ~1! describes a black hole of massm with horizon atr 15Aml. For m<0 the
horizon disappears and there is no black hole. The solution with21,m,0 may be associated t
the metric generated by a point source at the origin.17 The solution withm521 is anti–de Sitter
space. The massless black hole,m50, is commonly considered as the vacuum state. For a rev
of the properties of BTZ black holes see Ref. 3.

In ~1!, Agww5r represents the radius associated with the proper circumference. The
with x5r cosw andy5r sinw we have

gab5hab1S 11m2
r 2

l 2 Ddta dtb2S l 21ml22r 2

ml22r 2 D 1

r 2 ~x dxa1y dya!~x dxb1y dyb!, ~5!

wherer 5Ax21y2 andhab is the ordinary Minkowski metric onR 3. The metric~5! is singular
whenr 50, except form521. This singularity is not a coordinate singularity. The spinless B
black hole is geodesically incomplete18 and the singularity atr 50 corresponds to fixed points o
                                                                                                                



ribu-

s

y

ntrac-
condi-

of the
rt on a

ly, by
se

t in

nts

dinates

t

1996 J. Math. Phys., Vol. 45, No. 5, May 2004 Pantoja, Rago, and Rodrı́guez

                    
the identifications from which the BTZ solution is obtained.19 Assuming that~5! can be extended
to r 50, we look for the distributional curvature tensor and its relation with a possible dist
tional source.

Suppose (M,gab) are given such that

~1! gab and (g21)ab exist almost everywhere and are locally integrable,
~2! the weak first derivative¹cgab of gab in a smooth derivative operator¹c exists and the tensor

Cab
c [ 1

2 ~g21!cd~¹agbd1¹bgad2¹dgab!, ~6!

andCm[b
d Ca]c

m are locally integrable.
Following Ref. 16, these are sufficient conditions forRabc

d to be definable as a distribution b
the usual coordinate formula,

Rabc
d5R̃abc

d12¹[bCa]c
d 12Cm[b

d Ca]c
m , ~7!

whereR̃abc
d is the curvature tensor associated to the smooth derivative operator¹c and we shall

say thatgab is a semiregular metric.
A semiregular metric may have no distributional Einstein tensor due to the fact that co

tions of the metric with the curvature tensor may have no sense as distributions. Stronger
tions can be imposed to isolate the class of metrics for which the distributional meaning
Einstein tensor is ensured, but then the distributional curvature tensor must have its suppo
submanifold of codimension of at most one.20 Metrics for surface layers21 lie in this class, but
neither strings nor point particles can be described by metrics in this class. Alternative
considering Colombeau’s generalized functions,9 distributional curvatures can be defined for tho
cases where a direct calculation would not work, but we will not consider it here.

We shall prove that~5! is a semiregular metric. We take for the differentiable structure tha
which t,x, andy form a smooth chart. For a test tensor fieldUab on R 3 we have

gab@Uab#[E
R 3

gabU
abvh5E

R 3
habU

abvh1E
R 3

S 11m2
r 2

l 2 DUttvh

2E
R 3

S l 21ml22r 2

ml22r 2 Ddr a dr bUabvh , ~8!

wherevh is the volume element associated tohab and it is understood that all tensor compone
are Cartesian components as functions of Cartesian coordinates. Form.0 we require thatUab be
a test tensor with support onr ,Aml, while for m,0 we simply require thatUab be a test tensor
of compact support. The black vacuum can not be handled in the Schwarzschild-type coor
because the last term in the right-hand side of~8! is not locally integrable form50. Note that,
with this choice, the natural volume elementvg associated togab agrees with the volume elemen
vh of hab .

It follows that

gab@Uab#5E
R 3

habU
abvh1E

R 3
S 11m2

r 2

l 2 DUttvh2E
R 3

S l 21ml22r 2

ml22r 2 D
3~cos2 wUxx1cosw sinw~Uxy1Uyx!1sin2 wUyy!vh . ~9!

Therefore,gab is locally integrable formÞ0.
Next, letUab be a test tensor field onR 3. For

~g21!ab[hab1S l 21ml22r 2

ml22r 2 D ] t
a] t

b2S 11m2
r 2

l 2 D ] r
a] r

b , ~10!
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we have

~g21!ab@Uab#5E
R 3

habUabvh1E
R 3

S l 21ml22r 2

ml22r 2 D Uttvh2E
R 3

S 11m2
r 2

l 2 D
3~cos2 wUxx1cosw sinw~Uxy1Uyx!1sin2 wUyy!vh . ~11!

Therefore, (g21)ab is locally integrable formÞ0.
We now calculate the weak derivative inhab of gab . Let Uabc be a test tensor field. We find

¹cgab@Ucab#[2E
R 3

gab¹cU
cabvh5E

R 3
WcabU

cabvh , ~12!

whereWcab is the locally integrable but not locally square integrable tensor given by

Wcab52
2r

l 2 dr cS dta dtb1S m2
r 2

l 2 D 22

dr a dr bD2
1

r S l 21ml22r 2

ml22r 2 D r dwc~r dwa dr b1r dr a dwb!.

~13!

From ~6!, we find

Cab
c 5

2r ~ml22r 2!

l 4 dta dtb ] r
c2

r

ml22r 2 ~dr a dtb1dta dr b!] t
c

1
r

ml22r 2 dr a dr b ] r
c1

1

r

ml21 l 22r 2

l 2 r 2 dwa dwb ] r
c , ~14!

which is locally integrable. On the other hand,

2Cm[b
d Ca]c

m 5
4r

ml22r 2 dt [adr b] S r

ml22r 2 dr c ] t
d2

r ~ml22r 2!

l 4 dtc ] r
dD

22
ml21 l 22r 2

~ml22r 2!l 2 ~r 2 df [adtb] dfc] t
d2r 2 df [adr b] dfc ] r

d !, ~15!

which is locally integrable. Hence,gab is a semiregular metric in the differentiable structu
chosen.

Now, contracting~7! and using~14! and ~15! we find for the Ricci tensor ofgab ,

Rac@Uac#[2E
R 32B«

Cac
b ¹bUacvh2E

R 32B«

Cma
b Cbc

m Uacvh , ~16!

where

2E
R 32B«

Cac
b ¹bUacvh5E

r 5«
dr b Cac

b Uacs1E
r .«

¹bCac
b Uacvh , ~17!

with s the volume element induced on the surfacer 5constant by the metrichab , B« is the«-ball
around the origin with«→0 and

¹bCac
b 52

2~ml222r 2!

l 4 dta dtc12
ml2

~ml22r 2!2 dr a dr c22
r 2

l 2 dwa dwc , ~18!

which is a locally integrable tensor.
From ~16! and ~15!, ~17!, and~18! we find
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Rac@Uac#5p~11m!E dt~Uxx~ t,0W !1Uyy~ t,0W !!2
2

l 2 ER 3
gacU

acvh , ~19!

wheregac is the locally integrable tensor defined by~9!. Thus we obtain

Rac5p~11m!d (0)
(2)~dxa dxc1dya dyc!2

2

l 2 gac . ~20!

Note that ;m.21, the Ricci tensor has a singular part proportional to ad distribution. As
expected, form521 the singular part of the curvature is absent, as follows from the fact th
this case we have AdS3 space–time. Since for21,m,0, there is no horizon, we have a nake
singularity atr 50. Form.0 we have a singularity atr 50 hidden by a horizon atr 15Aml. As
stated before, form50 the metric~8! is not a semiregular metric and the massless BTZ black h
cannot be properly discussed from the above derivation.

We now calculate the Einstein tensor ofgab . Following Ref. 8 we will concentrate on th
mixed-index Einstein tensor fieldGa

b . Define

Ga
b5Ra

b2 1
2 ~g21!cdR̃cdd

a
b1~g21!cdCm[c

e Ce]d
m da

b

1¹[c~Ce]d
e ~g21!cd!da

b1Cd[c
e ¹e]~g21!cdda

b , ~21!

where

Ra
b5~g21!acR̃cb12¹[c~Cd]b

c ~g21!ad!12Cb[c
c ¹d]~g21!ad12~g21!adCm[c

c Cd]b
m . ~22!

We shall say that~21! is the Einstein tensor distribution of~5!, whenever each term in th
right-hand sides of~21! and ~22! may be interpreted as a distribution.

From ~14!, ~15!, and~22! we find

Rd
c5¹b~~g21!adCb

ac!5¹bS 2
r

l 2 ] t
d dtc ] r

b2
rl 2

~ml22r 2!2 ] t dr c ] t
b1

r

l 2 ] r
d dtc ] t

b

22
r

l 2 ] r
d dr c ] r

b1
ml21 l 22r 2

rl 2 ]w
d dwc ] r

bD . ~23!

Note that the right-hand side of~23! is the derivative of a locally integrable tensor. Therefore
distributional meaning can be given to~23!.

An analogous calculation to that of~20! leads to

Ra
b5p~11m!d (0)

(2)~]x
a dxb1]y

a dyb!2
2

l 2 ~] t
atb1]x

a dxa1]y
a dyb!. ~24!

Finally, from ~14! and ~15! and ~21! and ~24! we obtain

Ga
b2

1

l 2 ~] t
atb1]x

a dxa1]y
a dyb!52p~11m!d (0)

(2)] t
a dtb . ~25!

Remarkably enough, the right-hand side of~25! resembles the physically expected result for t
distributional energy momentum tensorTa

b52md (0)
(3)] t

a dtb of the Schwarzschild four-
dimensional black hole.22,6–8,10~The Schwarzschild metric is not a semiregular metric and can
be handled with the methods used here to obtain its distributional curvature.8!

Now, let us consider the dependence of these results on the coordinate system. No
whether or not a metric is semiregular depends in general on the differentiable structure im
on the manifold. In this section, the choice of the manifold differentiable structure was ma
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the basis of an interpretation of the coordinate system in which the metric is given: w
Cartesian coordinates associated with the Schwarzschild coordinates. In the next section
tributional curvature and Einstein tensor fields are evaluated using the Kerr–Schild form
BTZ metric. This amounts to change both the coordinates and the differentiable structure.

III. BTZ BLACK HOLE IN KERR–SCHILD COORDINATES

In previous works the Kerr–Schild form of the Schwarzschild metric has been proved
useful, from both conceptual and technical points of view, for the analysis of the distribut
Schwarzschild geometry from quite different approaches.22,7,11,10In the following we shall prove
that the nonrotating BTZ solution in Kerr–Schild coordinates is a semiregular metric.

The AdS3 black hole solution of BTZ is given in the Kerr–Schild form by23

gab5hab1 f kakb , ~26!

wherer 5Ax21y2 and

f 5S 11m2
r 2

l 2 D , ka5dta1
1

r
~x dxa1y dya!, ~27!

with ka5habkb a null vector field with respect tohab and gab . It follows that there are two
metrical structures,hab andgab , associated to the manifold. Furthermore,

ka¹akb5ka¹a
gkb50, ~28!

where¹a and¹a
g are the derivatives inhab andgab , respectively, i.e.,ka is geodetic with respec

to hab andgab . Hence, the conditions of the Kerr–Schild class are met by the decomposition~26!
and~27!, a fact that will be used later. We choose as the underlying manifold structure that oR 3

with the smooth metrichab in Cartesian coordinates$t,x,y%. Note that in Kerr–Schild coordinate
r is a spacelike coordinate;r .0, which is not the case in Schwarzschild-type coordinates. N
also that the natural volume elementvg associated togab agrees with the volume elementvh of
hab .

Now,

~g21!ab5hab2S 11m2
r 2

l 2 D S ] t
a2

1

r
~x]x

a1y]y
a! D S ] t

b2
1

r
~x]x

b1y]y
b! D . ~29!

Clearly,gab and (g21)ab are locally bounded and locally integrable;m.
The weak derivative inhab of gab exists almost everywhere and is given by

¹cgab@Ucab#5E
R 3

WcabU
cabvh , ~30!

where

Wcab52
r

l 2 dr c~dta1dr a!~dtb1dr b!1
1

r S 11m2
r 2

l 2 D r dwc~r dwa~dtb1dr b!

1~dta1dr a!r dwb!, ~31!

which is locally integrable;m.
From ~6!, it follows
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Cc
ab5

2r

l 2 ~dr a~dtb1dr b!1dr b~dta1dr a!!~] t
c2] r

c!1
2r

l 2 S 11m2
r 2

l 2 D ~dta1dr a!~dtb1dr b!

3~] t
c2] r

c!1
2r

l 2 ~dta1dr a!~dtb1dr b!] r
c2

2

r S 11m2
r 2

l 2 D r 2 dwa dwb~] t
c2] r

c!, ~32!

which is locally integrable;m. Note thatCb
ab50.

Finally, from ~32! we find

2Cm[b
d Ca]c

m 52
r 2

l 4 ~dta dr b2dr a dtb!~dtc1dr c!~] t
d2] r

d!2
1

l 2 S 11m2
r 2

l 2 D
3~~dta1dr a!r dwb2r dwa~dtb1dr b!!r dwc~] t

d2] r
d!, ~33!

which is locally integrable;m. Therefore the metric~26! is semiregular. Furthermore, since~26!
is a semiregular metric;m, we can now consider the distributional geometry of the BTZ bla
hole including them50 black vacuum.

We now calculate the Ricci tensor of~26!. We have

Rac@Uac#52E
R 32B«

Cb
ac¹bUacvh2E

R 32B«

2r

l 2 kakc Uacvh . ~34!

An analogous calculation to that of~20! leads to

Rac5p~11m!d (0)
(2)~dxa dxc1dya dyc!2

2

l 2 gac , ~35!

wheregac is the locally integrable tensor~26!. Note that~35! is equivalent to~20! which was
obtained using Schwarzschild-type coordinates.

Calculations analogous to the ones done previously show that

Ra
b5p~11m!d (0)

(2)~]x
a dxb1]y

a dyb!2
2

l 2 ~] t
atb1]x

a dxb1]y
a dyb!, ~36!

which is equivalent to~24! and

Ga
b2

1

l 2 ~] t
atb1]x

a dxa1]y
a dyb!52p~11m!d (0)

(2)] t
a dtb ~37!

which is equivalent to~25!.
Now, it would be interesting to see if the distributional curvatures obtained above can a

obtained employing regularization methods. This is far from being obvious, since for co
singularities the results of the regularization approaches taken so far6,12–14,8are in disagreemen
with the ones obtained following the procedure of Ref. 16 which is the one that we have
ployed. A property of the Kerr–Schild class of metrics is that the mixed Ricci curvature te
takes the form

Ra
b5 1

2 ~¹a¹c~ f kckb!1¹b¹c~ f kck
a!1¹c¹c~ f kakb!! ~38!

~recall that¹a is the derivative inhab) which allows a distributional evaluation wheneverf kakb is
a well-defined distribution.7 However, it should be kept in mind that due to the nonlinear chara
of the curvatures, we must first regularize, then carry out the nonlinear operations and
compute the distributional limits.

For the metric tensor~26! and ~27!, f is indeed a smooth function and althoughka is a
nonsmooth vector field,f kakb is a locally integrable tensor field,
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f kakb@Ub
a#5E

R 3
f kakb Ub

avh5E
R 3

S 11m2
r 2

l 2 D ~Ut
t1cosw~Ux

t1Ut
x!1sinw~Uy

t1Ut
y!

1cos2 w Ux
x1cosw sinw~Ux

y1Uy
x!1sin2 w Uy

y!vh . ~39!

Hence, due to the fact that~38! turns out to be second derivatives of a distribution it is th
possible to carry out the calculation, without specifying the regularization procedure, req
only that the regularization chosen retains the Kerr–Schild form of the metric~for a discussion on
this point see Refs. 7, 11, and 10!.

Now, let us exemplify the calculation of the distributional Ricci tensor field by the evalua
of the first term of~38! explicitly. We have

¹a¹c~ f kckb!@Ub
a#[E

R 32B«

f kckb¹a¹cU
b

avh

52E
r 5«

dr c f kckb¹aUb
as1E

r 5«
] r

a¹c~ f kckb!Ub
as

1E
r .«

¹a¹c~ f kckb!Ub
avh . ~40!

The first term on the right-hand side of~40! is of order« and vanishes in the limit«→0, the third
term contributes to the Ricci curvature in the regionR 32B« . For the second term we have

E
r 5«

] r
a¹c~ f kckb!Ub

as5E
r 5«

S 2
2r

l 2 1S 11m2
r 2

l 2 D 1

r D ~dtb1dr b! ] r
aUb

a s

5p~11m!E dt~Ux
x~ t,0W !1Uy

y~ t,0W !!

5p~11m!d (0)
(2)~]x

a dxb1]y
a dyb!@Ub

a#. ~41!

Analogous calculations for the remaining terms of~38! lead to

Ra
b5p~11m!d (0)

(2)~]x
a dxb1]y

a dyb!2
2

l 2 ~] t
atb1]x

a dxb1]y
a dyb!, ~42!

and we obtain for the Einstein tensor

Ga
b52p~11m!d (0)

(2)] t
a dtb1

1

l 2 ~] t
atb1]x

a dxa1]y
a dyb!, ~43!

which are the same results obtained in~36! and ~37!.

IV. DISCUSSIONS

As noted above, the distributional Ricci tensor fields~20! and ~35! are equivalent, as is the
case with the mixed index versions~24! and~36!. We take~35! and~36!, which are valid;m, as
the distributionalRab andRa

b Ricci tensor fields. The nonrotating BTZ black hole geometry
singular and this singularity is a curvature singularity proportional to ad-distribution supported a
the origin. As follows from~35! and ~36!, even for them50 black vacuum this singularity is
present. As expected, form521 ~anti–de Sitter space–time! a nonsingular space–time is reco
ered.
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On the other hand,~25! and ~37! are equivalent. Hence, we take~37! as the distributional
Einstein tensor fieldGa

b of the nonrotating BTZ black hole. As expected on physical grounds,
distributional energy momentum tensorTa

b of the BTZ black hole geometry is then given by

Ta
b52~11m!d (0)

(2)] t
a dtb , ~44!

where we have set the gravitational constantG equal to1
8. Note that~44! is a nonzero distribution

for m50. The constant shift in the mass is due to the fact that in~1! the zero point of energy ha
been set so that the mass vanishes when the horizon size, the length of the minimal geodes
horizon, goes to zero.2 As follows from the fact that the singular parts of the distribution
curvature and Einstein tensor fields are equal to zero only form521, if the zero of energy is
adjusted so that anti–de Sitter space has zero mass then 11m→m.

Finally, let us briefly discuss the coordinate independence of these results. As already
tioned in Sec. II, whether or not a given metric is semiregular depends in general on the
entiable structure imposed on the underlying manifold. In Secs. II and III, the choice o
differentiable structure was made on the basis of an interpretation of the coordinate sys
which the metric is given. In this sense, the choice of coordinates determines the differen
structure of the underlying manifold. Here we find that the distributional curvature and Ein
tensor fields are well defined and that they are equivalent in both descriptions. Furthermo
have shown that the same distributional mixed index Ricci and Einstein tensor fields c
obtained by standard regularization approaches. Thus, in a restricted sense, the present
tional treatment in Schwarzschild and Kerr–Schild coordinates provides invariant results f
distributional curvature and Einstein tensor fields of the BTZ black hole geometry.
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Fisher–Hartwig asymptotics refers to the largen form of a class of Toeplitz deter-
minants with singular generating functions. This class of Toeplitz determinants
occurs in the study of the spin–spin correlations for the two-dimensional Ising
model, and the ground state density matrix of the impenetrable Bose gas, amongst
other problems in mathematical physics. We give a new application of the original
Fisher–Hartwig formula to the asymptotic decay of the Ising correlations above
Tc , while the study of the Bose gas density matrix leads us to generalize the
Fisher–Hartwig formula to the asymptotic form of random matrix averages over
the classical groups and the Gaussian and Laguerre unitary matrix ensembles. An-
other viewpoint of our generalizations is that they extend to Hankel determinants
the Fisher–Hartwig asymptotic form known for Toeplitz determinants. ©2004
American Institute of Physics.@DOI: 10.1063/1.1699484#

ENCOMIUM

In celebration of Freeman Dyson on his

S 32S 40960001

25600 D 3

26S 40960001

25600 D1AF32S 40960001

25600 D 3

26S 40960001

25600 D G2

21D 1/6

th

birthday.~This radical appears in the works on Ramanujan,1 who is very dear to Dyson.!
Dyson’s legendary works2 on random matrices are now standards in physics, mathematic

fields far~ther! afield. These works and, in particular his powerful log-Coulomb gas model, de
oped to liberate the mathematics where none yet exists, are the very essential tools in our o
pursuits.3

I. INTRODUCTION

Fisher–Hartwig asymptotics refers to the largen form of a class of Toeplitz determinant
Dn@g#. By definition, the entries of the latter depend only on the difference of the row and co
indices, and thus

Dn@g#5det@gj 2k# j ,k51, . . . ,n ~1.1!

for some$gk%k50,61,62, . . . . Crucial to the structure of the asymptotic form of~1.1! are analytic
properties of the so-called symbol

a!Electronic mail: p.forrester@ms.unimelb.edu.au
b!Electronic mail: n.frankel@physics.unimelb.edu.au
20030022-2488/2004/45(5)/2003/26/$22.00 © 2004 American Institute of Physics
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g~u!ª (
n52`

`

gneinu, ~1.2!

or more particularly the decay of the Fourier coefficients of logg(u). Explicitly, let

logg~u!5 (
p52`

`

cpeipu. ~1.3!

Then if

(
p52`

`

upucpc2p,` ~1.4!

a strong form of the Szego¨ limit theorem~see, e.g., Refs. 4 and 5! asserts that forn→`,

Dn@g#5expS nc01 (
k51

`

kckc2k1o~1!D . ~1.5!

Two cases for which~1.4! will not hold are wheng(u) has a jump discontinuity or a zero fo
some2p,u<p. It is for such singular symbols~in the case of a zero it is the logarithm of th
symbol which is singular! that Fisher and Hartwig6 sought the asymptotic form of~1.1!. Symbols
with singularities of this type have the functional form

logg~u!5 loga~u!2 i (
r 51

R

br argei (ur1p2u)1(
r 51

R

ar logu222 cos~u2u r !u

5 loga~u!1(
r 51

R

~~ar1br !log~11ei (u2(ur1p))!1~ar2br !log~11ei (ur1p2u)!!.

~1.6!

Here2p,argz<p anda(u) is assumed to be sufficiently smooth that if we write

loga~u!5 (
p52`

`

cpeipu ~1.7!

@cf. ~1.3!# then the condition~1.4! holds. By using data following from the fact that special cas
of ~1.6! correspond to Toeplitz determinant expressions for the spin–spin correlation in the
dimensional Ising model at criticality~see Sec. II below!, the asymptotic form of which had
previously been calculated,7 Fisher and Hartwig6 conjectured that for some range of parame
values$ar%r 51, . . . ,R , $br%r 51, . . . ,R ,

Dn@g# ;
n→`

ec0ne(r 51
R (ar

2
2br

2)log nE, ~1.8!

whereE is independent ofn. Subsequently this was proved for various ranges of parameter v
~see e.g., Ref. 8! and furthermore the constant was determined to be given by

E5e(k51
` kckc2k)

r 51

R

e2(ar1br )log a2(ur )e2(ar2br )log a1(ur ) )
1<rÞs<R

~12ei (us2ur )!2(ar1br )(as2bs)

3)
r 51

R
G~11ar1br !G~11ar2br !

G~112ar !
, ~1.9!
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whereG is the BarnesG-function and

loga1~u!ª(
p51

`

cpeipu, loga2~u!ª (
p52`

21

cpeipu. ~1.10!

Our interest is in applications and generalizations of the Fisher–Hartwig asymptotic for
~1.8!. We begin in Sec. II with an application of~1.8! to the calculation of the asymptotic form o
the spin–spin correlation for the two-dimensional Ising model above criticality. In Sec. III
well-known equivalence of the Toeplitz determinant~1.1! to a random matrix average over th
unitary group U(n) is revised. This average is in turn equivalent to the partition function of
one-component log-gas on a circle, subject to a one-body potential with Boltzmann factorg(u) at
the special couplingb52. As such there is a natural generalization for couplingsb.0, and in the
casebr50, r 51, . . . ,R this can be used to predict the corresponding generalization of~1.8!.
Moreover, in the special casea(u)51, R51 the sought asymptotic form can be deduced from
exact formula valid for generalar ,br . This can be used to extend the conjectured generaliza
of ~1.8! to nonzerobr .

In Sec. IV we recall the problem of computing the asymptotic form of the density matrix
impenetrable bosons in Dirichlet and Neumann boundary conditions. This is immediately i
fiable as an average over the classical groups Sp(N) and O1(2N), respectively, with the function
being averaged over having two zeros, and thus analogous to the random matrix formulation
Toeplitz determinant~1.1! with symbol~1.6! in the caseR52, br50. We point out that the sam
class of averages over the groups O1(2N11) or O2(2N11) result from considering the densit
matrix for the impenetrable Bose gas in the case of mixed Dirichlet and Neumann bou
conditions. In Ref. 9 the sought asymptotics were calculated on the basis of a combinat
analytic and log-gas arguments, and a Fisher–Hartwig-type generalization~with br50) conjec-
tured. The conjecture of Ref. 9 can used to predict the asymptotic form in the case of
Dirichlet and Neumann boundary conditions. Moreover we show that this asymptotic form c
proved by making use of asymptotic formulas recently obtained10 for Toeplitz plus Hankel deter-
minants

det@aj 2k1aj 1k11# j ,k50, . . . ,n21 ~1.11!

in the case of singular generating functions~1.6!.
In addition to averages over the classical groups, the study of the density matrix for im

etrable bosons naturally leads to the question of obtaining the asymptotic form of average
the eigenvalue probability density function for the GUE and LUE, in the case that the fun
being averaged over has zeros. Here the GUE denotes the Gaussian unitary ensemble of
Hermitian matrices, and the LUE denotes the Laguerre unitary ensemble of positive d
matrices with complex entries. These random matrix averages are equivalent to pure H
determinants,

det@aj 1k# j ,k50, . . . ,n21 , an5E
2`

`

a~x!xn dm~x!, ~1.12!

where dm(x)5e2x2
dx for the GUE and dm(x)5xae2x dx, x.0 for the LUE. Conjectures for

such asymptotic forms are given in Sec. V. The paper ends with some concluding remarks
universal form for Hankel asymptotics in Sec. VI, and attention is also drawn to the fluctu
formula perspective of our asymptotic results.
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II. SPIN–SPIN CORRELATIONS FOR THE TWO-DIMENSIONAL ISING MODEL

In the two-dimensional Ising model on a square lattice each site (i , j ) of the lattice exists in
one of two possible statess i j 561 with coupling between nearest neighbors in the horizontal
vertical directions. Explicitly, the joint probability density function for a particular configurat
$s i j % of the states on a (2N11)3(2N11) lattice is given by

P2N11~$s i j %!5
1

Z2N11
expS K1 (

j 52N

N

(
i 52N

N21

s i j s i 11 j1K2 (
i 52N

N

(
j 52N

N21

s i j s i j 11D , ~2.1!

whereZ2N11 is the normalization. The spin–spin correlation function between the spins00 at the
center of the lattice, and the spins i* j* at site (i * , j * ) is, in the infinite lattice limit, defined as

^s00s i* j* &5 lim
N→`

(
$s i j %

s00s i* j* P2N11~$s i j %!. ~2.2!

Onsager knew of, but never published~see instead, e.g., Ref. 11! a Toeplitz determinant form
for the case of~2.2! for which (i * , j * )5(n,n) and thus lies on the diagonal. Explicitly

^s00snn&5det@ai 2 j # i , j 51, . . . ,n , ap5
1

2p E
2p

p

h~u!e2 ipu du, ~2.3!

where

h~u!ªS 11~1/k!e2 iu

11~1/k!eiu D 1/2

, k5sinh 2K1 sinh 2K2 . ~2.4!

Also, in the case of~2.2! with ( i * , j * )5(0,n) so that the two spins lie in the same row, Onsag
and Kaufmann12 expressed~2.2! as the sum of two Toeplitz determinants. A different approach
this problem was undertaken by Potts and Ward,13 who obtained instead the single Toepli
determinant form

^s00s0n&5det@ ãi 2 j # i , j 51, . . . ,n , ãp5
1

2p E
2p

p

h̃~u!e2 ipu du, ~2.5!

where

h̃~u!ªS ~11a1eiu!~11a2e2 iu!

~11a1e2 iu!~11a2eiu! D
1/2

~2.6!

with

a1ªe22K2 tanhK1 , a2ª
e22K2

tanhK1
.

The formula obtained in Ref. 12 was shown to be identical to~2.3!, ~2.4! by Montroll, Potts, and
Ward.14 We remark that ifa1 ,a2 in ~2.6! andk in ~2.4! are regarded as parameters not specifi
by K1 ,K2 , then settinga150,a251/k in the former gives~2.4!.

A detailed study of the asymptotic form of~2.6! was undertaken by Wu.7 Indeed, it was the
asymptotic form of~2.5! at the critical coupling

a1,a251 ~2.7!

obtained in Ref. 7 which, partially at least, inspired the formulation of the Fisher–Har
asymptotic formula~1.8!.6 To see how~1.8! relates to~2.5! with parameters~2.7!, note
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log h̃~u!ua2515 logS 11a1eiu

11a1e2 iuD 1/2

1 i arge2 iu/2. ~2.8!

For ua1u,1 this has the structure of~1.6! with

a~u!5S 11a1eiu

11a1e2 iuD 1/2

, R51, br52
1

2
, ar50, u r52p.

Recalling the definitions~1.3! @with g(u) replaced bya(u)] and ~1.10!, application of ~1.8!
implies

^s00s0n&u
a1,1

a251 ;
n→`

S 11a1

12a1
D 1/4ApG2~1/2!

n1/4 , ~2.9!

where use has been made of the functional equation

G~z11!5G~z!G~z!,

in agreement with the result of Wu.
The high temperature phase corresponds to couplings

a1,1,a2 , a1a2,1. ~2.10!

In this case logh̃(u) is of the form~1.6! with

a~u!5S ~11a1eiu!~11eiu/a2!

~11a1e2 iu!~11e2 iu/a2! D
1/2

, R51, br521, ar50, u r52p. ~2.11!

With R51,br521,ar50 we see that the Fisher–Hartwig asymptotic formula~1.8! breaks down
because according to~1.9! the constantE contains the factorG(0)50 and thus vanishes. To
obtain the asymptotics in this case the approach taken in Ref. 7 was to relate it back to the o
strong Szego¨ theorem, multiplied by an auxiliary factor. Here we will show that by transform
~2.6!, a form of logh̃(u) can be obtained which has the general structure~1.6! but is distinct from
the specification~2.11!. We will see that applying the Fisher–Hartwig formula then correc
reproduces the result of Wu for the leading asymptotic decay in the high temperature phas

For this purpose, let us introduce the notationf (u)[g(u) to mean that

E
2p

p

f ~u!e2 ipu du5c2pE
2p

p

g~u!e2 ipu du

for some c independent ofp. According to the definitions~2.6! and ~2.11! we have h̃(u)
5e2 iua(u). Now, since withz5eiu, h̃(u) is an analytic function ofz in the annulus 1/a2,uzu
,a2 , by Cauchy’s theorem

1

2p E
2p

p

h̃~u!e2 ipu du5E
C
h̃~u!z2p

dz

2p iz

for any simple closed contour encircling the origin in this annulus. ChoosingC to be the circle
with radiusa2 ~the outer boundary of the annulus! shows
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h̃~u![
e2 iu

a2
S 11a1a2eiu

11~a1 /a2!e2 iuD 1/2 ~11eiu!1/2

~11e2 iu/a2
2!1/2

5
1

a2

1

~11e2 iu/a2
2!1/2S 11a1a2eiu

11~a1 /a2!e2 iuD 1/2

e23iu/4u11eiuu1/2.

This is of the form~1.6! with

a~u!5
1

a2

1

~11e2 iu/a2
2!1/2S 11a1a2eiu

11~a1 /a2!e2 iuD 1/2

, R51, br52
3

4
, ar5

1

4
, u r52p.

~2.12!

Application of ~1.8! implies

^s00s0n&u
a1a2,1

a1,1,a2 ;
n→`

a2
2n

~pn!1/2~12a1
2!1/4~12a2

22!21/4~12a1a2!21/2 ~2.13!

in agreement with the result of Wu.7 Moreover the Fisher–Hartwig formula~1.8! with R51 has
been proved15 for parameter values satisfying all three of the inequalities,

Rea1>0, Rea11Reb1.21, Rea12Reb1.21.

These inequalities are satisfied by the parameters in~2.12! and so the Fisher–Hartwig formul
provides a proof of~2.13!.

III. b-GENERALIZATION OF THE FISHER–HARTWIG FORMULA

It is well known, and easy to verify, that the Toeplitz determinant~1.2! can be written as a
random matrix average according to

Dn@g#5K )
l 51

n

g~u l !L
U(n)

. ~3.1!

Here U(n) refers to the eigenvalue probability density function for the unitary group

1

~2p!nn! )
1< j ,k<n

ueiuk2eiu j u2, 2p,u l<p. ~3.2!

As first noted by Dyson,2 ~3.2! is proportional to the Boltzmann factor for the one-compon
log-potential Coulomb gas on a circle, at the special couplingb52. From the log-gas viewpoin
a natural generalization of~3.2! is the probability density functionCbEn proportional to the
Boltzmann factor for the same statistical mechanical system but with general couplingb.0,

1

~2p!nCn,b
)

1< j ,k<n
ueiuk2eiu j ub, Cn,b5

G~nb/211!

~G~b/211!!n . ~3.3!

The identity~3.1! then allows us to formulate ab-generalization of the Toeplitz determinant~1.2!
as the average

Dn
(b)@g#ªK )

l 51

n

g~u l !L
CbEn

. ~3.4!
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Choosingg(u) according to~1.6! in this we obtain a naturalb-generalization of the Toeplitz
determinant with a Fisher–Hartwig symbol. In the casebr50, r 51, . . . ,R, the log-gas viewpoint
can be used to conjecture the corresponding analogue of the asymptotic formula~1.8!.

Let

Zn
(b)@g~u!#ª

1

~2p!n E
2p

p

du1¯E
2p

p

dun )
l 51

n

g~u l ! )
1< j ,k<n

ueiuk2eiu j ub. ~3.5!

As the first step, guided by both the log-gas viewpoint and the structure of~1.8!, we conjecture the
factorization

Zn
(b)Fa~u!)

j 51

R

ueiu2eif j uqjbG
Zn1(

j 51
R qj

(b)
@1#

;e2( j 51
R qj log a(u j )

Zn
(b)@a~u!#

Zn1(
j 51
R qj

(b)
@1#

Zn
(b)F)

j 51

R

ueiu2eif j uqjbG
Zn1(

j 51
R qj

(b)
@1#

.

~3.6!

From the work of Johansson,5,16 with the Fourier expansion of loga(u) specified by~1.7! and
assuming the coefficients satisfy~1.4!, it has been proved for generalb.0 that

Zn1Q
(b) @a~u!#

Zn1Q
(b) @1#

;ec0(n1Q)e(2/b)(k51
` kckc2k. ~3.7!

Regarding the second ratio on the right-hand side of~3.6!, as first noted in Refs. 17 and 18 an
revised in Ref. 20, the log-gas viewpoint suggests that forn→` we have the factorization

)
1< j ,k<R

ueiuk2eiu j ubqjqk

Zn
(b)F)

j 51

R

ueiu2eif j uqjbG
Zn1(

j 51
R qj

(b)
@1#

;)
j 51

R Zn
(b)F)

j 51

R

ueiu2eif j uqjbG
Zn1qj

(b) @1#
. ~3.8!

The large-n expansion of a ratio closely related to the product on the right-hand side of~3.8! is
known for b rational, in particular

b/25s/r , s and r relatively prime. ~3.9!

Thus we have18

)
j 51

R Zn
(b)F)

j 51

R

ueiu2eif j uqjbG
Zn

(b)@1#
;nq2b/2Aq , ~3.10!

where

Aqªr 2q2b/2)
n50

r 21

)
p50

s21
G2~q/r 1n/r 2p/s11!

G~2q/r 1n/r 2p/s11!G~n/r 2p/s11!
. ~3.11!

Finally, the formula forCn,b in ~3.3! together with Stirling’s formula shows

Zn
(b)@1#

Zn1q
(b) @1#

;~G~b/211!!q~nb/2!2qb/2. ~3.12!

Combining the above results gives the soughtb-generalization of the Fisher–Hartwig formu
in the casebr50.

Conjecture 1: Letb be rational and of the form (3.9), and let a(u) be as assumed for th
validity of (3.7). For qjb.21 we expect
                                                                                                                



a-

and
e

f

2010 J. Math. Phys., Vol. 45, No. 5, May 2004 P. J. Forrester and N. E. Frankel

                    
K )
l 51

N S a~u l !)
j 51

R

ueiu l2eif j uqjbD L
CbEn

;
n→`

ec0(n1( j 51
R qj )n(b/2)( j 51

R qj
2
E(b), ~3.13!

where, with Aq specified by (3.11),

E(b)5e2( j 51
R qj log a(u j )e(2/b)(k51

` kckc2k )
1< j ,k<R

ueiuk2eiu j u2bqjqk)
j 51

R

Aqj
. ~3.14!

It is of interest to extend Conjecture 1 to include a factor

)
j 51

R

e2 i (b/2)br argei (f j 1p2u)
~3.15!

in the average, and so obtain ab-generalization of the Fisher–Hartwig formula for general p
rameters. Although we do not have a log-gas interpretation of the factor~3.15!, the caseR51
substituted in~3.13! with a(u)51 gives an average which can be evaluated in closed form,
the corresponding asymptotics computed for rationalb. This together with the structure of th
original Fisher–Hartwig formula~1.8!, ~1.9! allows us to formulate the soughtb-generalization.

Now, by rotational invariance, independent of the value off

K )
l 51

n

e2 i (b/2)b argei (f1p2u l )ueiu l2eifubqL
CbEn

5K )
l 51

n

eibbu l /2u11eiu lubqL
CbEn

5
Zn

(b)@eibbu/2u11eiuubq#

Zn
(b)@1#

. ~3.16!

But, from the theory of the Selberg integral~see, e.g., Ref. 3!, we know the right-hand side o
~3.16! has the explicit gamma function evaluation

f n~2cq,c!

f n~c~q1b!,c! f n~c~q2b!,c!
, where f n~a,c!ª)

j 50

n21
~a1 jc !!

~ jc !!
, cªb/2. ~3.17!

For cPZ1 it was shown in Ref. 18 that

f n~a,c! ;
n→`

exp~an logn!cane2ann 2(c21)a/21a2/2c)
p50

c21
G~2p/c11!

G~~a2p!/c11!
, ~3.18!

while for r ands relatively prime

f rn~a,s/r !5 )
n50

r 21
f n~a1sn/r ,s!

f n~sn/r ,s!
. ~3.19!

Using ~3.19! and ~3.18! in ~3.17! it follows that for b rational of the form~3.9!,

K )
l 51

n

eibbu l /2u11eiu lubqL
CbErn

;
n→`

~rn !(b/2)(q22b2)Aq,b , ~3.20!

where
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Aq,bªr 2(q22b2)b/2)
n50

r 21

)
p50

s21
G~~q1b!/r 1n/r 2p/s11!G2~~q2b!/r 1n/r 2p/s11!

G~2q/r 1n/r 2p/s11!G~n/r 2p/s11!
.

~3.21!

Note that in the caseb50 this reduces to~3.11!, ~3.10! as it must.
Knowing how, from the Fisher–Hartwig formula~1.8!, ~1.9!, to generalize from the caseR

51, general parameters, and the case generalR but br50 (r 51, . . . ,R), to the case of genera
parameters and generalR lets us use~3.13! and ~3.20! to formulate ab-generalization of the
Fisher–Hartwig formula for general parameters.

Conjecture 2: Letb be rational and of the form (3.9), and let a(u) be as assumed for th
validity of (3.7). We expect, for some range of parameters$bj% and $qj%,

K )
l 51

n

a~u l !)
j 51

R

e2 i (b/2)bj argei (f j 1p2u l )ueiu l2eif j uqjbL
CbEn

;
n→`

ec0nn(b/2)( j 51
R (qj

2
2bj

2)Ẽ(b),

~3.22!

where, with Aq,b specified by (3.21),

Ẽ(b)5e(2/b)(k51
` kckc2k)

r 51

R

e2(qr1br )log a2(ur )e2(qr2br )log a1(ur )

3 )
1<rÞs<R

~12ei (us2ur )!2b(qr1br )(qs2bs)/2)
j 51

R

Aqj ,bj
. ~3.23!

IV. FISHER–HARTWIG ASYMPTOTICS FOR AVERAGES OVER THE ORTHOGONAL
AND SYMPLECTIC GROUPS

A problem in mathematical physics which, along with the Ising correlations, motivated
Fisher–Hartwig formula~1.8! is the impenetrable Bose gas on a circle. If the circle has circ
ference lengthL, it was shown by Lenard19 that the ground state density matrixrN11

C (x) has the
Toeplitz determinant form

rN11
C ~x;0!5

1

L
det@aj 2k

C ~x!# j ,k51, . . . ,N ,

~4.1!

al
C~x!ª

1

2p E
2p

p

ue2p ix/L1eiuuu11eiuue2 i l u du.

The symbol in~4.1! is of the form~1.6! with

a~u!51, R52, a15a25 1
2 , b15b250, u150, u252px/L. ~4.2!

Now a fundamental issue relating to the Bose gas is the occupationl0 of the zero momentum
state, which quantifies the phenomenon of Bose–Einstein condensation~see, e.g., Ref. 20!. In the
present system, which is translationally invariant,l0 is related to the density matrix by the simp
formula

l05E
0

L

rN11
C ~x;0! dx5LE

0

1

rN11
C ~LX;0! dX. ~4.3!

For fixed 0,X,1 one thus seeks theL→` asymptotic form ofrN11
C (LX;0). In anunpublished

work as of 1968, made available to the authors of Ref. 6 and subsequently published in 121

Lenard obtained for the sought expansion
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rN11
C ~LX;0!;r0

G4~3/2!

A2p
S p

N sin~pX! D
1/2

, ~4.4!

wherer0 denotes the bulk density. Lenard obtained~4.4! as an upper bound, which soon after w
shown to be attained by Widom.22 Applying the Fisher–Hartwig formula~1.8! with variables~4.2!
reproduces~4.4!.

According to~3.1! the Toeplitz formula~4.1! can equivalently be written as the U(N) average

rN11
C ~x;0!5

1

L K )
l 51

N U2 sinS px

L
2

u l

2 D U U2 sin
u l

2 U L
U(N)

. ~4.5!

The study of the ground state density matrices for the impenetrable Bose gas on a line of leL
with Dirichlet or Neumann boundary conditions leads to formulas analogous to~4.5!, only now the
averages are with respect to the eigenvalue probability density functions for the classical
Sp(N) and O1(2N), respectively~see, e.g., Ref. 3 for the specification of these PDFs!. Thus one
has20

rN11
D ~x;y!5

2

L
sin

px

L
sin

py

L K )
l 51

N U2S cos
px

L
2cosu l D UU2S cos

py

L
2cosu l D U L

Sp(N)

,

~4.6!

rN11
N ~x;y!5

1

2L K )
l 51

N U2S cos
px

L
2cosu l D UU2S cos

py

L
2cosu l D U L

O1(2N)

.

Impenetrable bosons on the interval@0,L# with Dirichlet boundary conditions atx50 and Neu-
mann boundary conditions atx5L also relate to a classical group. Thus from the fact that
single particle wave functions are given by

fk
M~x!5A2

L
sin

p~k21/2!x

L
~k51,2, . . .!

~the superscriptM stands for ‘‘mixed’’! we see that the ground state wave function

c0
M~x1 , . . . ,xN!5

1

AN!
udet@fk

M~xj !# j ,k51, . . . ,Nu

has the product form

c0
M~x1 , . . . ,xN!5

1

AN!
S 1

2AL
D N

)
l 51

N

2 sin~pxl /2L ! )
1< j ,k<N

2ucospxk /L2cospxj /Lu.

The square of this quantity coincides with the eigenvalue PDF of the classical group O1(2N
11) with u5px/L ~for this we ignore the fixed eigenvalue atu50). From this fact, as in the
derivation of~4.6! detailed in Ref. 20, it follows that

rN11
M ~x;y!5

2

L
sin

px

2L
sin

py

2L K )
l 51

N U2S cos
px

L
2cosu l D UU2S cos

py

L
2cosu l D U L

O1(2N11)

.

~4.7!

Using a combination of analytic calculations based on the Selberg correlation integral,23 and
physical arguments based on log-gas analogies, the largeN, fixed x/L, y/L, N/L limit of the
density matrices~4.6! was computed in Ref. 9 to be equal to
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rN11
D ~x;y!;rN11

N ~x;y!;r
G4~3/2!

A2N

~X~12X!!1/8~Y~12Y!!1/8

uX2Yu1/2 U
Y5(11cospy/L)/2
X5(11cospx/L)/2

. ~4.8!

Here we will show how recent rigorous asymptotic analysis10 of Toeplitz and Hankel determinant
~1.11! with Fisher–Hartwig-type symbols can be used to prove thatrN11

M (x;y) exhibits the same
asymptotic form~4.8!. We will also show how a result of Ref. 10 can be used to confirm
asymptotic form of a more general class of averages over O1(2N11) which can be deduced from
a conjecture in Ref. 9, and how this conjecture in turn can be used to predict analogous a
totics in the case of averages over Sp(N) and O1(2N).

To begin we require a simple to verify identity noted in Ref. 24.
Lemma 1: Suppose g(u)5g(2u) and set gj5(1/2p) *2p

p g(u)e2 i j u du. We have

det@gj 2k1gj 1k11# j ,k50, . . . ,N215K )
j 51

N

g~u j !L
O2(2N11)

5K )
j 51

N

g~p2u j !L
O1(2N11)

.

~4.9!

Note that by the assumption ong(u) the matrix in~4.9! is symmetric. Also, the average i
~4.7! is an even function ofu l and corresponds to the special case

g~u!52Ucos
px

L
2cosuU 2Ucos

py

L
2cosuU

5S U222 cosS u2
px

L D UU222 cosS u1
px

L D UU222 cosS u2
py

L D UU222 cosS u1
py

L D U D 1/2

~4.10!

of ~4.9!. We observe that~4.10! is an example of a symbol of the form~1.6!. Fortunately, recent
rigorous works25,10 have determined the asymptotic form of the Hankel plus Toeplitz determi
in ~4.9! for all symbols~1.6!, with the restriction that forg(u) even@the case of interest in relatio
to ~4.9!#, u rÞ0,6p. Let us recall the result of Ref. 10, Theorem 6.1, simplified so that it rel
to the even case of~1.6! with eachbr50.

Theorem 1: Let

logg~u!5 loga~u!1(
r 51

R

ar~ log~2ucosu2cosu r u!!, ~4.11!

where a(u) is an even periodic function with the property that the Fourier expansion o
logarithm (1.7) satisfies (1.4), together with some technical assumptions (for the latter, whic
not be necessary, see Ref. 10). We have

det@gj 2k1gj 1k11# j ,k50, . . . ,N21;e(N1( j 51
R aj )c0~2N!(r 51

R ar
2
E, ~4.12!

where

E5)
r 51

R
G2~11ar !

G~112ar !
e1/2 (k51

` kck
2
1(k51

` c2k21e2( j 51
N aj log a(u j )

3)
r 51

R u12eiuruar

u11eiuruaru12e2iuruar
2 )

1<r ,s<R
~ u12ei (ur2us)uu12ei (ur1us)u!22aras. ~4.13!

Recalling~4.9! it follows from Theorem 1 that
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K )
j 51

N U2S cos
px

L
2cosu j D U U2S cos

py

L
2cosu j D U L

O2(2N11)

;~2N!1/2G4~3/2!
u11ep ix/Lu1/4

u12ep ix/Lu3/4

u11ep iy /Lu1/4

u12ep iy /Lu3/4

1

u12ep i (x2y)/Lu1/2u12ep i (x1y)/Lu1/2.

~4.14!

Substituting this in~4.7! shows

rN11
M ~x,y!;

~2N!1/2

2L
G4~3/2!

u12e2p ix/Lu1/4u12e2p iy /Lu1/4

u12ep i (x2y)/Lu1/2u12ep i (x1y)/Lu1/2

5r
G4~3/2!

A2N

~X~12X!!1/8~Y~12Y!!1/8

uX2Yu1/2 U
Y5(11cospy/L)/2
X5(11cospx/L)/2

, ~4.15!

thus rigorously establishing the asymptotic form~4.8! derived, but not rigorously proved, in Re
9 for the cases of Dirichlet and Neumann boundary conditions.

The eigenvalue distributions for Sp(N), O1(2N), O2(2N11), and O1(2N11) are propor-
tional to

)
l 51

N

~11cosu l !
l1~12cosu l !

l2 )
1< j ,k<N

~cosuk2cosu j !
2, 0<u l<p ~4.16!

for (l1 ,l2)5(1,1), (0,0), (1,0), and~0,1!, respectively~our convention is not to include the delt
function corresponding to a fixed eigenvalue, nor the delta functions corresponding to the
gate eigenvalues!. Thus to obtain the asymptotics of the averages in~4.6! it is sufficient to obtain
the asymptotics of

K )
l 51

N

)
r 51

R

~2ucosu l2cosf r u!2arL
CN(l1 ,l2)

, ~4.17!

whereCN(l1 ,l2) refers to the normalized form of~4.16!. In the cases (l1 ,l2)5(1,0) or ~0,1!,
due to the identity~4.9!, we can read off the asymptotic form from~4.12!. But for general (l1 ,l2)
the asymptotic form of~4.17! is not included in Theorem 1. Instead, we will use a conjecture fr
Ref. 9 to formulate the result.

Let us first recall the conjectured asymptotic form from Ref. 9. Define

Hn,l1 ,l2
@ f ~x!#ªE

0

1

dx1¯E
0

1

dxn )
l 51

n

f ~xl !xl
l1~12xl !

l2 )
1< j ,k<n

uxk2xj u2. ~4.18!

Then the argument given in Ref. 9 predicts

Hn,l1 ,l2Feh(x))
r 51

R

uyr2xu2qrG
Hn1(

j 51
R qj ,l1 ,l2

@1#
;expF n1(

r 51

R

qr1~l11l2!/2

p E
0

1 h~x!

@x~12x!#1/2dxG
3expF (

r 51

R

~2qr1qr
2!log 2nGK, ~4.19!

where
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K5)
j 51

R

yj
2l1qj~12yj !

2l2qj )
1< j ,k<R

uyk2yj u22qjqke2(l1h(0)1l2h(1))/2e2(r 51
R qrh(yr )

3expF 1

4p2 E
0

1

dx
h~x!

~x~12x!!1/2E
0

1

dy
h8~y!~y~12y!!1/2

x2y G
3)

r 51

R

~yr~12yr !!2qr
2/2)

r 51

R
1

pqr

G2~qr11!

G~2qr11!
. ~4.20!

@Unfortunately there are a number of inaccuracies in the reporting of the conjecture in Ref. 9
term Hn1(

j 51
R qj ,l1 ,l2

@1# in the denominator on the left-hand side of~4.19! has mistakenly been

written asHn,l1 ,l2
@1# in Eqs.~90!, ~94!, ~96!, and~97!; the factors) j 51

R yj
2l1qj(12yj )

2l2qj are
missing and should be paired with)1< j ,k<Ruyk2yj u22qjqk throughout; and the term
e2(l11l2)[h(0)1h(1)]/4 in ~96! and ~97! should reade2(l1h(0)1l2h(1))/2.]

In preparation for relating this to the average~4.17! let

hS 1

2
~11cosu! D5c012(

n51

`

cn cosnu. ~4.21!

We then have that

1

p E
0

1 h~x!

~x~12x!!1/2dx5
1

p E
0

p

hS 1

2
~11cosu! D du5c0 , ~4.22!

1

2
~l1h~0!1l2h~1!!5

1

2
~l11l2!c01 (

n51

`

cn~l11~21!nl2!, ~4.23!

while ~4.21! together with the cosine expansion

log~2ucosu2cosfu!52 (
n51

`
2

n
cosnu cosnf

shows

1

4p2 E
0

1

dx
h~x!

~x~12x!!1/2E
0

1

dy
h8~y!~y~12y!!1/2

x2y
5

1

2 (
n51

`

ncn
2 . ~4.24!

Also, as noted in Ref. 9,

Hn,a,b@1#5
G~n111a!G~n111b!G~n111a1b!

G~11a!G~11b!G~2n111a1b!
G~n12!. ~4.25!

Since26

log
G~n111a!

G~n111b!
;

n→`

~b2a!n1
a2b

2
log~2p!1S ~a2b!n1

a22b2

2 D logn1o~1! ~4.26!

we deduce

Hn,a,b@1#

Hn1Q,a,b@1#
;

24nQ12Q212Q(a1b)

~2pn!Q . ~4.27!
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Finally we note that under the change of variables

xl5
1
2 ~11cosu l !

the integrand in~4.18! contains as a factor the~un-normalized! eigenvalue probability density
function ~4.16!. Explicitly, with h̃(u)ªh(1/2 (11cosu)) we have

Hn,l1 ,l2Feh(x))
r 51

R

uyr2xu2qrG
Hn,l1 ,l2

@1#
U

yr51/2(11cosfr )

5K )
l 51

n

eh̃(u l ))
r 51

R U 1

2
~cosf r2cosu l !U2qrL

CN(l1 ,l2)

.

~4.28!

Making use of~4.22!–~4.28! shows that the asymptotic formula~4.19! for the integral~4.18!
is equivalent to an asymptotic formula generalizing Theorem 1.

Conjecture 3: Letloga(u) have the Fourier expansion (1.7), with coefficients satisfying (1
We expect that for N→`,

K )
l 51

N

a~u l !)
r 51

R

u2~cosf r2cosu l !u2arL
CN(l111/2,l211/2)

; e(N1(r 51
R ar )c0~2N!(r 51

R ar
2
K̃,

~4.29!

where, with E specified by (4.13),

K̃5)
r 51

R
1

u11eifru2(l121)aru11eifru2l2ar
e2(n51

` cn(l1211(21)nl2)E. ~4.30!

We can apply some checks to~4.19!. As already remarked, with (l1 ,l2)5(1,0) the probabil-
ity density functionCN(l1 ,l2) coincides with the eigenvalue probability density function f
O2(2N11), and~4.29! must coincide with~4.12!, as indeed it does. Also, changing variabl
u l°p2u l and interchangingl1 and l2 leaves~4.16! invariant, and thus the average~4.17!
invariant if we also setf r°p2f r , a(u)°a(p2u) @and thuscn°(21)ncn]. Recalling the
definition ~4.13! of E we see that~4.30! exhibits this symmetry. Another check follows from
factorization identity, relating an average over the unitary group to a product of averages ov
orthogonal and symplectic groups.27,24,28

Proposition 1: With g(u)5g(2u) we have

K )
l 51

2N11

g~u l !L
U(2N11)

5K )
l 51

N11

g~u l !L
O1(2N12)

K )
l 51

N

g~u l !L
Sp(N)

. ~4.31!

With

g~u!5a~u!)
r 51

R

~2ucosu2cosf r u!2ar

in ~4.31! we see that the conjectured asymptotic form~4.29! for the right-hand side is consisten
with the Fisher–Hartwig formula~1.8!.

The identity~4.31! is also of interest for providing an exact formula for the product of
density matrix in Dirichlet boundary conditions and in Neumann boundary conditions. Thu
calling ~4.6! we see from~4.31! that
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1

L2 sin
px

L
sin

py

L K )
l 51

2N11 U2S cos
px

L
2cosu l D UU2S cos

px

L
2cosu l D U L

U(2N11)

5rN12
N ~x,y!rN11

D ~x,y!.

V. IMPENETRABLE BOSONS IN A HARMONIC TRAP AND RANDOM MATRIX
AVERAGES OVER THE GUE AND LUE

From a physical viewpoint the most relevant setting for the impenetrable Bose gas is co
ment by a harmonic potential~see Refs. 20 and 29 and references therein!. Then the ground state
wave functionc0

H is proportional to

)
l 51

N

e2xl
2/2 )

1< j ,k<N
uxk2xj u,

and uc0
Hu2 is identical to the eigenvalue probability density function for the Gaussian un

ensemble of complex Hermitian matrices. The combination of log-gas arguments and a
calculation based on the Selberg correlation integral used to analyze~4.18! was used in Ref. 29 to
analyze the asymptotic form of

e2( j 51
R 2Nqryr

2
GN,A2NF )

r 51

R

ux2yr u2qrG
GN1(

r 51
R qr ,A2N@1#

, ~5.1!

where

GN,a@ f ~x!#ªE
2`

`

dx1¯E
2`

`

dxN )
l 51

N

f ~xl !e
2a2xl

2

)
1< j ,k<N

uxk2xj u2, ~5.2!

in the special caseR52, q15q251/2 which specifies the ground state density matrix. As our fi
point of interest we will generalize this calculation to generalR andqr (qr.21/2).

The log-gas perspective18 suggests the factorization

)
1< j ,k<R

uyj2yku2qjqke2(r 51
R 2Nqryr

2
GN,A2NF )

r 51

R

ux2yr u2qrG
GN1(

r 51
R qr ,A2N@1#

;
N→`

)
r 51

R

e22Nqryr
2 GN,A2N@ ux2yr u2qr#

GN1qr ,A2N@1#
. ~5.3!

Next, from the theory of Selberg correlation integrals,23 for qrPZ>0 we have the duality formula30

GN,a@~x2yr !
2qr#

GN,a@1#
5

G2qr ,a@~yr1 ix !N#

G2qr ,a@1#
. ~5.4!

It is a fairly straightforward exercise, detailed in Ref. 30, Sec. 5.3 for a related problem, to u
saddle point method to compute the largeN expansion of the integral on the right-hand side
~5.4!. One finds

e22Nqrxr
2
G2qr ,A2N@~yr1 ix !N# ;

N→`
S 2qr

qr
D ~Gqr ,1

@1# !2e2qrN222qrN~4N!2qr
2
~12yr

2!qr
2/2. ~5.5!

Also, we know~see, e.g., Ref. 3! the exact evaluation
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Gn,1@1#522n(n21)/2pn/2G~n12!, ~5.6!

which together with the asymptotic expansion~4.26! implies

GN,A2N@1#

GN1q,A2N[1]
;

N→`

22Nq1q22q

pq eqNN2q. ~5.7!

Combining~5.4!–~5.7! gives the asymptotic formula

e22Nqryr
2 GN,A2N@ ux2yr u2qr#

GN1qr ,A2N@1#
;

N→`

G2~qr11!

G~2qr11!

22qr
2
2qr

pqr
Nqr

2
2qr~12yr

2!qr
2/2 ~5.8!

which we have proved forqrPZ>0 , and conjecture as being valid for allqr.21/2. This same
result can also be deduced from results in Ref. 31. Substituting this in~5.3! gives the sought
asymptotic form of~5.1!.

Conjecture 4: Let qr.21/2, and let GN,a@ f # be given by (5.2). We expect

e2(r 51
R 2Nqryr

2
GN,A2NF )

r 51

R

ux2yr u2qrG
GN1(

r 51
R qr ,A2N@1#

;
N→`

)
1< j ,k<R

uyj2yku22qjqk

3)
r 51

R
G2~qr11!

G~2qr11!

22qr
2
2qr

pqr
Nqr

2
2qr~12yr

2!qr
2/2. ~5.9!

An extension of~5.9! can also be formulated. Leta(x) be analytic on@21,1#. Then it has
rigorously been proved that16

GN,A2N@ea(x)#

GN,A2N@1#
;

N→`

expS 2N

p E
21

1

a~x!A12x2 dxD
3expS 1

4p2 E
21

1

dx
a~x!

~12x2!1/2E
21

1

dy
a8~y!~12y2!1/2

x2y D . ~5.10!

The structure of~4.19! in the casel15l250 suggests how~5.10! can be combined with~5.9! to
generalize the latter.

Conjecture 5: Let a(x) be analytic on@21,1#. It is expected that

e2(r 51
R 2Nqryr

2
GN,A2NFea(x))

r 51

R

ux2yr u2qrG
GN1(

r 51
R qr ,A2N@1#

;
N→`

~RHS~5.10!!uN°N1(
r 51
R qr

~RHS~5.9!!e2(r 51
R qra(yr ). ~5.11!

We remark that in the special casea(x)5kx, Conjecture 5 can be reduced to Conjecture 4.
see this, use completion of squares to note

GN,A2NFekx)
r 51

R

ux2yr u2qrG5ek2/8GN,A2NF )
r 51

R Ux1
k

2N
2yrU2qrG .

According to Conjecture 4 we have
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e2(r 51
R 2Nqr (yr2k/4N)2

GN,A2NFekx)
r 51

R

ux1
k

2N
2yr u2qrG

GN1(
r 51
R qr ,A2N@1#

;
N→`

RHS~5.10!

and thus

e2(r 51
R 2Nqryr

2
GN,A2NFekx)

r 51

R

ux2yr u2qrG
GN1(

r 51
R qr ,A2N@1#

;ek2/8 RHS~5.10! e2(r 51
R qryr.

Since~4.24! gives

1

4p2 E
21

1

dx
a~x!

~12x2!1/2E
21

1

dy
a8~y!~12y2!1/2

x2y U
a(x)5kx

5
k2

8

this is in agreement with~5.11!.
Let us now turn our attention to a variation of the impenetrable Bose gas in a harmonic

which also has the features of being related to a random matrix ensemble. In reduced un
Hamiltonian for the system is

H52(
j 51

N
]2

]xj
2 1(

j 51

N S a8~a821!
1

xj
2 1xj

2D , xj.0. ~5.12!

Thus in addition to the harmonic well, the particles are restricted to the half line by a repu
potential~requiringa8.1) at the origin proportional to 1/r 2. This is the noninteracting case of th
so-called typeB Calogero–Sutherland Hamiltonian,32 for which the interacting case has 1/r 2 pair
repulsion. The ground state wave function for~5.12! is proportional to

)
l 51

N

e2xl
2/2~xl

2!a8/2 )
1< j ,k<N

uxk
22xj

2u. ~5.13!

We recognize the square of the ground state wave function as being identical to the prob
density function for the singular values ofn3N complex Gaussian matrices witha85n2N
11/2 ~see, e.g., Ref. 3, Chap. 2!. Changing variablesxl

2°xl this is refered to as the Laguerr
unitary ensemble. The problem of computing the asymptotic form of the density matrix fo
system suggests analyzing the asymptotic form of the more general quantity

)
r 51

R

yr
2a8qre24Nqryr

2
LNF )

r 51

R

ux22yr
2u2qrG

LN1(
r 51
R qr

@1#
, ~5.14!

where

LN@ f #ªE
0

`

dx1¯E
0

`

dxN )
l 51

N

f ~xl !xl
2a8e24Nxl

2

)
1< j ,k<N

uxk
22xj

2u2, ~5.15!

in analogy with~5.1!.
From a log-gas perspective, the integrand in~5.15! corresponds to a one-component syst

interacting on the half-linex.0, subject to a one-body confining potential 2Nx22(a8
21/2)logx. In addition to the electrostatic energy2 logux2x8u at the pointx due to the interaction
with a charge atx8, there is also a term2 logux1x8u due to the interaction with an image charg
at 2x8 ~outside the system, sincex8.0). In keeping with the image charge interpretation,

each charge atx one requires a term2 1
2 logu2xu to account for the interaction between a char

and its own image~the factor of 1/2 is because this energy is shared between the charge a
image, the latter being outside the system!. From this viewpoint we can interpret
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)
1< j ,k<R

uyk
22yj

2u2qjqk)
r 51

R

~2yr !
qr

2
e2qr4Nyr

2
uyr u(2a821)qr

LNF )
r 51

R

ux22yr
2u2qrG

2(r 51
R qrLN1(

r 51
R qr

@1#

as a ratio of partition functions for log-gas systems, and analogous to~5.3! we expect the factor-
ization into

)
r 51

R

~2yj !
qj

2
e2qr4Nyr

2
uyr u(2a821)qr

LN@ ux22yr
2u2qr#

2qrLN1qr
@1#

~5.16!

for N→`.
To analyze~5.16! in the limit N→` we make the change of variablesxl

2°xl and introduce

L̃N,c@ f #ªE
0

`

dx1¯E
0

`

dxN )
l 51

N

f ~xl !xl
a821/2e2cxl )

1< j ,k<N
~xk2xj !

2 ~5.17!

so that it reads

)
r 51

R

~2yr !
qr

2
e2qr4Nyr

2
yr

(2a821)qr
L̃N,4N@ ux2yr

2u2qr#

L̃N1qr ,4N@1#
. ~5.18!

To proceed further, we use the fact that forqPZ>0 we have the duality formula33

L̃N,c@ ux2tu2q#

L̃N,c@1#ua°a12q

5
1

M2q~a,N!
E

21/2

1/2

dx1¯E
21/2

1/2

dx2q )
l 51

2q

ep ixl (a2N)

3u11e2p ixlua1Ne2cte2p ixl )
1< j ,k<2q

ue2p ixk2e2p ix j u2, ~5.19!

where on the right-hand sidea5a821/2 and

Mn~a,b!ªE
21/2

1/2

dx1¯E
21/2

1/2

dxn )
l 51

n

ep ixl (a2b)u11e2p ixlua1b )
1< j ,k<n

ue2p ixk2e2p ix j u2

5
G~n111a1b!

G~11a1b!

G~11a!

G~n111a!

G~11b!

G~n111b!
G~n12! ~5.20!

~for the last equality see, e.g., Ref. 3!. If we suppose temporarily thataPZ>0 , the right-hand side
of ~5.19! with c54N can be written as the contour integral

1

M2q~a,2N!
E

C

dz1

2p iz1
¯E

C

dz2q

2p iz2q
)
l 51

2q

~11zl !
a~111/zl !

Ne24Ntzl )
1< j ,k<2q

~zk2zj !~1/zk21/zj !,

~5.21!

where C is any simple closed contour which encircles the origin. To analyze this forN→`,
following Ref. 33 where the caseq51 was considered, we note theN-dependent terms in the
integrand have a stationary point when

z5z6ª2 1
2 6 i 1

2 ~1/t21!1/2. ~5.22!

By deforming the contourC to pass throughz1 for q of the integrations, and to pass throughz2

for the remainingq integrations, we readily deduce from the representation~5.21! of ~5.19! that
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e2qr4Nyr
2
yr

(2a821)qr~2yr !
qr

2
L̃N,4N@ ux2yr

2u2qr#

5
L̃N,4N@1#ua8°a812qr

M2qr
~a821/2,N!

e2qr4Nyr
2
yr

(2a821)qr~2yr !
qr

2S 2qr

qr
De24Nyr

2qr (z11z2)1Nqr logu111/z1u2

3
1

uz1u4qr
2 uz12z2u2qr

2
u11z1uqr (2a821)S 1

2p D 2qr

3UN2 S 1

z1
2 2

1

~11z1!2DU2qr
2

~Gqr
@1# !2. ~5.23!

Now, with t5yr
2 in ~5.22!

z11z2521, U11
1

z1
U2

51, uz12z2u25S 1

yr
2 21D ,

~5.24!

u11z1u25uz1u25
1

4yr
2 , U 1

z1
2 2

1

~11z1!2 U516yr
4S 1

yr
2 21D 1/2

,

so the right-hand side of~5.23! simplifies to

L̃N,4N@1#ua8°a812qr

M2qr
~a821/2,N!

N2qr
2S 1

2p D 2qr S 2qr

qr
D22qr

2
22qr (2a821)~Gqr

@1# !2~12yr
2!qr

2/2. ~5.25!

Furthermore we know~see, e.g., Ref. 3!

L̃N,c@1#5c2N22N(a821/2)
G~N12!G~a81N11/2!

G~a811/2!
, ~5.26!

and making use of~5.22! it follows from the asymptotic expansion~4.26! that

L̃N,4N@1#ua8°a812qr

L̃N1qr ,4N@1#M2qr
~a821/2,N!

N2qr
2
;22(qr

2
1qr (a821/2))Nqr

2
2qr. ~5.27!

Substituting~5.27! in ~5.25!, evaluatingGqr
@1# therein according to~5.6! and simplifying we

obtain theN→` expansion

e2qr4Nyr
2
yr

(2a821)qr~2yr !
qr

2 LN@ ux22yr
2u2qr#

2qrLN1qr
@1#

;
G2~qr11!

G~2qr11!

23qr
2
2qr

pqr
Nqr

2
2qr~12yr

2!qr
2/2,

~5.28!

proved forqrPZ>0 and expected to be true for allqr.21/2. Substituting this in~5.16! gives, as
a conjecture, the sought asymptotic form of~5.14!.

Conjecture 6: For N→`, and assuming qr.21/2 for each r51, . . . ,R,
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)
r 51

R

yr
2a8qre24Nqryr

2

LNF )
r 51

R

ux22yr
2u2qrG

LN1(
r 51
R qr

@1#
; )

1< j ,k<R
uyk

22yj
2u22qjqk

3)
r 51

R
G2~qr11!

G~2qr11!

22qr
2

pqr
Nqr

2
2qry

r

2qr
2
1qr~12yr

2!qr
2/2.

~5.29!

It is of interest to extend~5.29! in an analogous way to how~5.11! extends~5.9!. First we use
~4.19! with qr50, and~5.10! to conjecture that fora(x) analytic on@0,1#,

LN@ea(x)#

LN@1#
;expS 4~N1~2a821!/4!

p E
0

1

a~x!A12x2 dxD
3expS 1

p2 E
0

1

dx
a~x!

~12x2!1/2E
0

1

dy
ya8~y!~12y2!1/2

x22y2 D e2a8a(0)/2. ~5.30!

Combining this with~5.29! as in ~5.11! gives us the LUE analogue of Conjecture 5.
Conjecture 7: Let a(x) be analytic on@0,1#. It is expected that

)
r 51

R

yr
2a8qre24Nqryr

2
LNFea(x))

r 51

R

ux22yr
2u2qrG

LN1(
r 51
R qr

@1#
;

N→`

~RHS~5.30!!uN→N1(
r 51
R qr

3~RHS~5.29!!e2(r 51
R qra(yr ). ~5.31!

We can check the consistency of~5.11! and ~5.31!. For this we make use of a factorizatio
identity analogous to Proposition 1.28

Proposition 2: Let g(u)5g(2u). We have

G2N,a@g~x!#

G2N,a@1#
5

LN,a
(0) @g~x!#

LN,a
(0) @1#

LN,a
(2) @g~x!#

LN,a
(2) @1#

, ~5.32!

where

LN,a
(p) @g~x!#ªE

2`

`

dx1¯E
2`

`

dxN )
l 51

N

g~xl !uxl upe2a2xl
2

)
1< j ,k<N

~xk
22xj

2!2.

Let a(x) be even and choose

a5A4N, g~x!5ea(x))
r 51

R

ux22yr
2u2qr.

According to Conjecture 5,

e22a2(r 51
R qryr

2 G2N,a@g~x!#

G2(N1(
r 51
R qr ),a

@1#
;

N→`

expS 4

p S 2N12(
r 51

R

qr D E
0

1

a~x!A12x2 dxD
3expS 1

p2 E
0

1

dx
a~x!

~12x2!1/2E
0

1

dy
ya8~y!~12y2!1/2

x22y2 D
3 )

1< j ,k<R
uyj

22yk
2u24qjqk)

r 51

R

~12yr
2!qr

2
u2yr u22qr

2

3

R
G2~qr11! 22qr

2
2qr

~2N!qr
2
2qr

2

e22(r 51
R qra(yr ).
S )

r 51 G~2qr11! pqr D
~5.33!
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For the right-hand side of~5.32! as implied by Conjecture 7 to be consistent with this we requ

24(r 51
R qr

G2N,A4N@1#

LN@1#ua850LN[1] ua851
;

G2(N1(
r 51
R qr ),A4N@1#

LN1(
r 51
R qr

@1#ua850LN1(
r 51
R qr

@1#ua851
. ~5.34!

But the method of derivation of~5.32! given in Ref. 28 shows that for generaln,

G2n,A4n@1#

Lnua850Lnua851
522n

~2n!!

~n! !2 ;
24n

~pn!1/2,

verifying ~5.34!.
Let us now apply Conjecture 7 to the calculation of the density matrixrN11

L (x,y) for the state
~5.13! with N11 particles,

rN11
L ~x,y!ª

N11

CN11
e2x2/22y2/2~xy!a8E

0

`

dx1¯E
0

`

dxN )
l 51

N

xl
2a8e2xl

2
ux22xl

2uuy22yl
2u

3 )
1< j ,k<N

~xk
22xj

2!2, ~5.35!

where

CN11ªE
0

`

dx1¯E
0

`

dxN11 )
l 51

N11

xl
2a8e2xl

2

)
1< j ,k<N11

~xk
22xj

2!2.

In terms of the average~5.15! we thus have

2ANrN11
L ~2ANX,2ANY!5~N11!e22NX222NY2

~XY!a8

LNF)
l 51

N

ux22X2uux22Y2uG
LN11@1#

.

On the right-hand side we can apply Conjecture 7 withR52, q15q251/2 and so obtain the
asymptotic form

2ANrN11
L ~2ANX,2ANY!;2AN

G4~3/2!

p

~XY!1/4

uX22Y2u1/2~12X2!1/8~12Y2!1/8. ~5.36!

The asymptotic form~5.36! can in turn be used to specify the occupationsl j of the low-lying
effective single particle statesf j , which by definition satisfy the eigenvalue equation

E rN~x,y!f j~y! dy5l jf j~x!. ~5.37!

Thus, with x52ANX, y52ANY and j fixed, introducing the scaled effective single partic
states34,20

~4N!1/2f j~x!°w j~X!,

substituting~5.38! and using the fact thatrN
L (x,y) is supported onx,yP@0,2AN# we obtain the

explicit integral equation

2E
0

1 X1/4~12X2!1/8w j~X!

uX22Y2u1/2 dX5l̄ j

w j~Y!

Y1/4~12Y2!1/8, ~5.38!

where
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l j5AN
G4~3/2!

p
l̄ j . ~5.39!

We see immediately that the occupations of the low-lying effective single particle state
proportional toAN, as has been found for the impenetrable Bose gas in periodic boun
conditions,19,20 in a harmonic trap34,29 and in Dirichlet and Neumann boundary conditions.9 An
appropriate analysis similar to that undertaken in Ref. 29, Appendix B gives the same upper
on l̄0 as found for the same quantity in the case of the harmonic trap,29 but a detailed analysis o
~5.38! remains.

VI. CONCLUDING REMARKS

A. Universal form for Hankel asymptotics

Analogous to~3.1!, Hankel determinants are related to log-gas partition functions accordin
the formula

det@aj 1k# j ,k50, . . . ,n215
1

n! E2`

`

dx1 e2nV(x1)
¯E

2`

`

dxn e2nV(xn))
l 51

n

a~xl ! )
1< j ,k<n

~xk2xj !
2

5..An~e2nV(x)!@a~x!#, ~6.1!

where

ap5E
2`

`

a~x!xpe2nV(x) dx.

For V(x) an even degree polynomial independent ofn with positive leading coefficient and no rea
zeros, it was proved by Johansson16 that

An~e2nV(x)!@ea(x)#

An~e2nV(x)!@1#
;

n→`

expS nE
c1

c2
a~x!r~x! dxD

3expS 1

4p2 E
c1

c2
dx

a~x!

A~x2c1!~c22x!
E

c1

c2
dy

a8~y!A~y2c1!~c22y!

x2y D .

~6.2!

Herer(x) is the scaled density in the log-gas system corresponding toAn(e2nV(x))@1#, supported
on @c1 ,c2# and normalized so that

E
c1

c2
r~x! dx51.

The asymptotic formula~5.10! corresponds to the special caseV(x)5 1
2 x2, r(x)5 (2/p)A12x2

of ~6.2!. To extend Conjecture 5 to more generalV this suggests we simply write the latter in term
of r(x).

Conjecture 8: Under the conditions of the validity of (6.2) we expect
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e2n(r 51
R qrV(yr )

An~e2nV(x)!Fea(x))
j 51

r

ux2yj uqjG
An1(

j 51
R qj

~e2nV(x)!@ea(x)#

;
n→`

e2(r 51
R qra(yr ) )

1< j ,k<R
uyk2yj u22qjqk

3)
r 51

R
G2~qr11!

G~2qr11!
~2pn!qr

2
2qr~r~yr !!qr

2
. ~6.3!

We remark that in the caseR51, ea(x)51, this conjecture~together with some corroborativ
analysis! was formulated earlier by Bre´zin and Hikami31 ~see also Ref. 35!.

Conjecture 7 can similarly be extended, although we work with the quantity~5.17! in favor of
~5.15! so as to have a Hankel determinant interpretation according to~6.1!. In the log-gas system
corresponding to~5.17! one hasr(x)5 (2/px1/2) (12x)1/2. Recalling the equality between~5.16!
and~5.18!, and writingyr

2°yr , a(x1/2)°a(x) we see that Conjecture 7 can be rewritten to imp

)
r 51

R

yr
(a821/2)qre24Nqryr

L̃N,4NFea(x))
r 51

R

ux2yr u2qrG
L̃N1(

r 51
R qr ,4N@ea(x)#

;
N→`

e2(r 51
R qra(yr ) )

1< j ,k<R
uyk2yj u22qjqk

3)
r 51

R
G2~qr11!

G~2qr11!
~2pN!qr

2
2qr~r~yr !!qr

2
, ~6.4!

thus assuming the universal form~6.3! and suggesting the following analogue of~6.2! and Con-
jecture 8.

Conjecture 9: Let V(x) be a polynomial independent of n, with positive leading coefficien
and no real zeros on@0,̀ !. Let

Ãn~xae2nV(x)!@a~x!#ª
1

n! E0

`

dx1 x1
ae2nV(x1)

¯E
0

`

dxn xn
ae2nV(xn))

l 51

n

a~xl ! )
1< j ,k<n

~xk2xj !
2.

~6.5!

Analogous to (6.2) we expect that

Ãn~xae2nV(x)!@ea(x)#

Ãn~xae2nV(x)!@1#
;

n→`

expS nE
0

c2
a~x!r~x! dxD

3expS 1

4p2 E
0

c2
dx

a~x!

Ax~c22x!
E

c1

c2
dy

a8~y!Ay~c22y!
x2y D , ~6.6!

wherer(x) is the scaled density in the log-gas corresponding to A˜
n(xae2nV(x))@1#, with support

on @0,c2#. Furthermore, with the same meaning ofr(x), we expect

)
r 51

R

yr
ae2nqrV(yr )

Ãn~xae2nV(x)!Fea(x))
j 51

r

ux2yj uqjG
Ãn1(

j 51
R qj

~xae2nV(x)!@ea(x)#
;

n→`

RHS~6.3!. ~6.7!
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As a final comment on this point, we note that the universal form given by the right-hand
of ~6.3! is also exhibited by the Fisher–Hartwig formula~1.8!. Thus, withzrªeiur we see that

DnFea(u))
r 51

R

ueiu2zr uG
Dn1(

j 51
R @ea(u)#

;
n→`

RHS~6.3!u
r(y)5N/2p

yr5zr .

B. Further Toeplitz and Hankel structures

The identity~4.9! of Lemma 1 has counterparts for averages over Sp(N) and O1(2N).24

Lemma 2: Suppose g(u)5g(2u), set gj5(1/2p)*2p
p g(u)e2 i j u du, and let CN(l1 ,l2) refer

to the normalized form of (4.16). We have

det@aj 2k1aj 1k# j ,k50, . . . ,N215K )
j 51

N

g~u j !L
O1(2N)

5 K )
j 51

N

g~u j !L
CN(0,0)

,

~6.8!

det@aj 2k2aj 1k12# j ,k50, . . . ,N215K )
j 51

N

g~u j !L
Sp(N)

5 K )
j 51

N

g~u j !L
CN(1,1)

.

Choosingg(u) as in~4.11!, Conjecture 3 gives the asymptotic behavior of the right-hand s
in ~6.8!, and thus the conjectured form of these Toeplitz and Hankel structures.

C. Fluctuation formula perspective and future directions

Let pªp(x1 , . . . ,xN) be anN-dimensional probability density function. The stochastic qu
tity A5( j 51

N a(xj ), with the$xj% sampled fromp, is referred to as a linear statistic. Its distributio
PA(t) is defined by

PA~ t !5K dS t2(
j 51

N

a~xj !D L
p

, ~6.9!

and taking the Fourier transform of this gives

P̃A~k!5K )
j 51

N

eika(xj )L
p

. ~6.10!

The structure of the average~6.10! is common to the averages studied in this paper. As
illustration of the content of the asymptotic formulas from this viewpoint, consider Johans
result ~3.7!. Written in terms of the average~3.1! with g(u)5eika(u), it reads

Dn
(b)@eika(u)# ;

n→`

eikc0ne2(2/b)k2(n51
` ncnc2n, ~6.11!

where$cn%n50,61, . . . are the Fourier coefficients in the expansion ofa(u),

a~u!5 (
n52`

`

cneinu. ~6.12!

A key feature of the exponents in the exponentials on the right-hand side of~6.11! is that they form
a quadratic polynomial ink. Thus substituting this in~6.9! and taking the inverse transform give
the Gaussian distribution
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PA~ t ! ;
n→`

1

~2ps2!1/2e2(t2m)2/2s2
~6.13!

with

m5nc0 , s25
4

b (
p51

`

pcpc2p . ~6.14!

As noted by Johansson,5 in the caseb52 this gives a Gaussian fluctuation formula interpetat
of Szego¨’s theorem. A peculiar feature is that although the mean is proportional ton, the variance
is O~1!, so fluctuations are strongly suppressed. It is formulas of the type~6.13!, ~6.14! which led
to the successful theoretical explanation of the phenomenon of universal conductance fluct
in mesoscopic wires~see, e.g., Ref. 36!, in which the conductance—an orderN quantity—is
written as a linear statistic of certain eigenvalues and is shown to have O~1! fluctuations with
variance given by an analytic formula of the type~6.14!.

All our generalizations of the Fisher–Hartwig formula involve a term of the formeQ2 log n as
the first correction to the leading order behaviorec0n. However again when written as an avera
of the type~6.10! the exponential of a quadratic ink again results. Consider for example~3.13!.
With $cn% specified by~6.12! we have

^eika(u)1 ikb( j 51
R qj logueiu2eif j u&CbEn

;
n→`

eikc0ne2k2(b/2)(( j 51
R qj

2)log n

and thus, as first noted in Ref. 37, with

A5(
l 51

N S a~u l !1b(
j 51

R

qj logueiu l2eif j u D
the asymptotic form of the corresponding distribution is given by the Gaussian~6.13! with

m5nc0 , s25bS (
j 51

R

qj
2D logn.

Thus the variance diverges logarithmically. This class of Gaussian fluctuation theorem has
use in the application of random matrix theory to the study of the statistical properties of the
of the Riemann zeta function.38,39The study of the statistical properties of the zeros of families
L-functions requires averages over the different classical groups.40–43We might anticipate that ou
new results of Sec. IV will find application in this topic.

Of course it remains to prove the conjectures of this paper. Of these, Conjecture 2 is th
general, as it involves Fisher–Hartwig-type parameters$qj%, $bj% as well as the log-gas typ
parameterb. It is also of interest to extend Conjectures 3, 8, and 9 to this level of gener
Another direction of generality is to extend the domain of integration from a circle or line
two-dimensional region.44,45
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Adiabatic approximation of the Schro ¨ dinger–Poisson
system with a partial confinement: The stationary case

Olivier Pinauda)

MIP, Laboratoire CNRS (UMR 5640), Universite´ Paul Sabatier,
31062 Toulouse Cedex 04, France
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Asymptotic quantum transport models of a two-dimensional gas are presented. The
models are the stationary versions of those introduced in a previous paper by Ben
Abdallah, Méhats, Pinaud. The starting point is a singular perturbation of the three-
dimensional stationary Schro¨dinger–Poisson system posed on bounded domain.
The electron injection in the device is modeled thanks to open boundary conditions.
Under a small density assumption, the asymptotics lead to a full two-dimensional
first-order approximation of the initial model. An intermediate model, called the
‘‘2.5D adiabatic model’’ in Ben Abdallah, Me´hats, Pinaud is then introduced. It
shares the same structure as the limit but is shown to be a second-order approxi-
mation of the three-dimensional model. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1688432#

I. INTRODUCTION

The paper presents the stationary versions of the models previously analyzed in Ref. 11
models, first introduced in Refs. 32 and 33 in a formal approach, were originally implemen
a stationary framework and with open boundary conditions. The objective of the paper is,
Ref. 11, to prove rigorously the asymptotics derived in Refs. 32 and 33. Before going int
details, we recall the motivations of the introduction of open boundary conditions and con
systems.

In nanoscale semiconductor, the electronic transport can be described in various way
often, like in resonant tunneling diodes,15,22,29,31the electrons are injected, through a wave gu
or quantum wire, into an active device where all the important physical effects take place.
sequently, due to the ultrashort scale, a quantum description is needed into the device while
leads, two situations are possible: the transport can be considered either as classical or as q
Then, the different descriptions have to be connected at the interface lead-active reg
quantum–quantum case was first treated in Ref. 26 thanks to the introduction of suitable bo
conditions and was analyzed in Ref. 6 while a classical–quantum one was studied in Ref. 5
other examples of such coupling can be found in Refs. 7, 8, 12, and 18.

Besides, the operation of many quantum devices relies on the formation of a bidimen
electron gas. Such a system is obtained by confining the electrons in one direction and al
for transport in the two other directions, the confining appearing at some junctions be
different layers. The reduced extension of the electron gas results, at low temperature,
increase of the mobility and therefore to a ballistic transport.2,25,30Again, at this level, severa
strategies can be used: the transport along the nonconfined directions can be considered
classical or as quantum. The classical–quantum description give rises to the theory of sub
which is widely used in the semiconductor physics literature.2,3,17,38 Such a model has bee
rigourously derived in Ref. 9 and analyzed in Ref. 10.

The situation described in the paper is a fully quantum model: a heterostructure coup
electrons reservoirs through wave guides is considered. The electrons behavior is assume

a!Electronic mail: pinaud@mip.ups-tlse.fr
20290022-2488/2004/45(5)/2029/22/$22.00 © 2004 American Institute of Physics
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quantum both in the device and in the leads and the electrons gas is assumed to be confi
particular direction. The initial model is a three-dimensional Schro¨dinger–Poisson system, wher
the electrons are described by a mixed state,

2DCl
«1

1

«2 VcS z

« DCl
«1V«Cl

«5E«Cl
« , ~1.1!

2DV«5n«, ~1.2!

n«5E
L

uCl
« u2 dm~l!1boundary conditions, ~1.3!

wherem represents the statistics of the injected electrons andl is a set of quantum numbers wit
values inL, and« can be seen as the ratio between the kinetic and the confining energies
electrons, see Ref. 11 for more details on the scaling. The external potential (1/«2) Vc(z/«) is a
confining potential and the potentialV« is the self-consistent potential due to space charge eff
and is expected to be slowly varying in thez direction. Due to the strong confinement, the wa
functions concentrate around the plane$z50% and the transport effects are almost two dime
sional. In Ref. 11, in a time-dependent and whole space picture, the limit«→0 was performed.
The electronic densityn«(t,x,z) concentrates into a surface densityns(t,x)d(z) and the limit
model was called2D surface density model. This model involves bidimensional Schro¨dinger
equations, coupled to a bidimensional equation for the potential. An intermediate model, call
2.5D adiabatic model, first introduced in Refs. 32 and 33, was also derived and was shown
a second order approximation of the initial model. This model couples 2D Schro¨dinger equations
and a 3D equation for the potential. It has been shown numerically in Refs. 32 and 33, th
2.5D model gives results in a very good agreement with those of the 3D model with a much
computational cost. In this paper, we will develop a similar strategy to justify the asymptoti
the stationary framework. The differences in the analysis come from the boundedness
transport domain and the stationary character of the problem. This requires to derive ne
mates for the Poisson equation and to take particular care of the existence and uniquenes
of the nonlinear stationary problem. More precisely, the results are proven under three
hypothesis: the first one states that the electrons are injected into the device on the groun
and is necessary in order to obtain«-independent estimates. The two others hypothesis are dir
related to uniqueness result concerning the solutions of the open Schro¨dinger–Poisson system
stated in Ref. 6. In order to have uniqueness, one requires a weak coupling between the¨-
dinger and the Poisson equations and also requires a statistics of injection avoiding the
states of the device.

Within the time-dependent picture, quantum confining on very general surfaces have
previously investigated in Refs. 16, 23, and 28 for the linear Schro¨dinger equation. As pointed ou
in Ref. 37, the quantum constrained system can be related to the Born–Oppenheimer the
molecular dynamics.24,35 Even if these theories are mainly developed in a time-dependent
linear framework, they share similar properties with the problem presented in this paper.
different cases, the electron dynamics is located on the eigenspaces of the confining~or transverse!
Hamiltonian and is governed by an effective potential. In the present work, the main diffi
stems from the nonlinearity due to the Coulombian interaction.

The paper is organized as follows: in Sec. II we introduce the spectral elements o
confining operator, which enable to define the 2.5D adiabatic model; then we present in deta
different models where special care is given to boundary conditions; the main results of the
are presented in Sec. III; in Sec. IV we obtain some«-independent estimates for~1.1!–~1.3! and
we give existence and uniqueness results for the approximate models; in Sec. V, we prove
2.5D model is a second order approximation while in Sec. VI, the 2D model is proven to be
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a first order approximation; Sec. VII is devoted to some extensions and comments; fina
appendix contains some basic results on the Schro¨dinger equation and some regularity estima
for the Poisson equation which are used all along the paper.

II. NOTATIONS AND PRESENTATION OF THE MODELS

In the paper,V0 denotes a regular domain of dimension 2. First, we define the follow
functional space.

Definition 2.1: Let1<p, q<1`. Then

Lx
qLz

p5H uPL1~V03R!, iuiLq,p5S E
V0

iu~x,• !iLp(R)
q dxD 1/q

,1`J
~with an obvious generalization of this definition for q51`). In the sequel,Lp(V03R) will be
more simply denotedLp.

For a functionf 5 f (z) belonging toL1(R) we denotê f &5*Rf (z)dz. In particular, ifn(x,z)
is the particle density, the surface density is defined byns(x)5^n(x,•)&.

A. Spectrum of the confinement operator

We introduce the properties of the confining potentialVc . We assume that it satisfies the
Assumption 2.2: The rescaled confining potential Vc5Vc(z) is a non-negative real-valued

function in Lloc
2 (R) such that

lim
uzu→1`

Vc~z!51`.

Under this assumption, the operatorA52 1
2(d

2/dz2) 1Vc defined onX5L2(R) with the domain

D~A!5$uPH2~R! such thatVc uPL2~R!%

is self-adjoint, non-negative, and has a compact resolvent~see, e.g., Ref. 34!. Hence, its spectrum
is purely discrete and consists in a strictly increasing sequence of non-negative real nu
tending to infinity (Ep)pPN* . Moreover, the associated eigenfunctions (xp)pPN* , chosen real-
valued, form an orthonormal basis ofL2(R) and verify

;a.0, ;pPN* , 'Ca,p.0, such that, ;zPR, uxp~z!u<Ca,p e2a uzu. ~2.1!

The partial Hamiltonian involved in~1.1! is obtained by rescalingA:

A«52
1

2

d2

dz2 1Vc
«52

1

2

d2

dz2 1
1

«2 VcS z

« D .

This operatorA« on X5L2(R) has the domain

D~A«!5$uPH2~R! such thatVc
« uPL2~R!%.

Its eigenfunctions (xp
«)pPN* and eigenvalues (Ep

«)pPN* can be deduced by a simple rescaling fro
those ofA:

xp
«~z!5

1

A«
xpS z

« D , Ep
«5

Ep

«2 .

We shall denote byPp
« the orthogonal projector onspan(xp

«). The spaceL2(R2,span(xp
«)) will

be called thepth subband. With an abuse of notation, we shall also denote byPp
« the orthogonal

projectorI^ Pp
« of L2(R3) on L2(R2,span(xp

«)).
The following technical lemma, proved in Ref. 11, will be used several times in this pa
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Lemma 2.3: Let V«PW1,a(R) with aP@1,1`#. Then for any pPN* we have

i@Pp
« ,V«#iL(L2(R))<Cp «121/a i]zV

«iLa(R) ,

where@•,•# denotes the commutator of operators and Cp only depends on p.
Notice that this type of commutator estimates was already used in the semiclassical ana

electrons motion in periodic crystals. In that case, the projector is the projector on the e
bands related to the Bloch decomposition, see Refs. 27 and 4.

B. Definition of the models

For the sake of completeness, the open boundary conditions introduced in Ref. 26 are d
step by step in Appendix A. We set now the geometry of the device.

The device domain consists in an active region, denoted byV03R connected to semi-infinite
electrons reservoirs byn leadsV j3R, j 51,...,n, see Fig. 1 for a schematic drawing of the devi
in V03@21,1# and Fig. 2. The full domain of the device isV3R, whereV5ø j 50

n V j . The
boundary ofV0 is split into a partG0 andn partsG j , j 51,...,n. We denote byv0 the boundary
(G03R)ø(V03$z56`%). The transport directions are denoted byxª(x1 ,x2) and the confined
direction byz. The local coordinates of the leadj , j Þ0 are denoted byh j andj j , see Fig. 2. The
confining potential insures that the electrons stay around the planeP5$xPV,z50%, see Figs. 1
and 2.

1. The 3D model

The 3D model is obtained by coupling the Poisson equation to a set of Schro¨dinger equations
to be solved on the domainV03R with open boundary conditions. A single electron injected w
an energyE« is represented by a wave functionC« solution of the Schro¨dinger equation

2DC«~x,z!1~Vc
«~z!1V«~x,z!!C«~x,z!5E« C«~x,z! in V03R, ~2.2!

whereVc
« is a confining potential andV« is, up to now, a given potential supported only inV0

3R. C« satisfies the nonhomogeneous open boundary conditions derived in Appendix A:

]C«

]h j
U

G j

5Zj
3D@E«#~C«!1Sj

3D@E«#, ~2.3!

FIG. 1. The device projected in$zP@21,1#%.
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C«50 on v0 . ~2.4!

The electrons populate the different sub-bands starting from the first sub-band. In Ref. 11, a
close to the one presented is analyzed in the time-dependent picture. Therein, the«-independent
estimates are obtained using crucially the Stricharz estimates introduced by Castella in Re
order to solve the Schro¨dinger–Poisson system inL2. This theory does not useH1 energy esti-
mates. Obviously, within the stationary framework, the Stricharz estimates are not availab
one needsH1 theory to obtain energy estimates. In the time-dependent picture, when the
condition has a nonzero component on a sub-band with indexp>2, «-independenta priori bounds
in H1 are only derived on a small time interval while the time interval can be made arbitr
large for wave functions supported only on the first sub-band. Therefore, there is a little ho
obtain estimates for the stationary problem if the electrons populate the upper sub-bands.
quently, we will only focus on the electrons injected on this first sub-band by assumin
following hypothesis.

Assumption 2.4: LetQm
j andE m

j be the eigenfunctions and eigenvalues of the jth transversal
Schrödinger operator2]j j

2 with Dirichlet boundary conditions. Then, we suppose that the e

trons are injected in the lead j0 , on the first sub-band, on the transversal mode m0 and with a
longitudinal kinetic energy k2. This implies thatSj

3D522 d j
j 0 ik Qm0

j x1
« and E«5E1

«1Em0

j 0 1k2.

The wave functionsC« are thus parametrized byl5(m0 , j 0 ,k), C«
ªCl

« ~the dependence on
the parameter 1 of first sub-band is omitted!. Notice that the assumption is compatible with som
physical situations called electrical quantum limit, see for instance the numerical simulatio
Refs. 32 and 33, where only the first sub-band is populated. This hypothesis is often veri
structures like T-stubs, quantum couplers, or various types of transistors. Indeed, in
dimensional electron gases, the electron occupancy in the second sub-band is usually
fraction ~typically less than 10%! of the total electron density, see Refs. 36 and 20. Nerverthe
in parabolic quantum well structures, the electrons population in the sub-bands can be ca
controlled and the densities in two lowest sub-band can be similar to within 30%, see Refs. 1
21.

Assumption 2.4 thus implies that the boundary condition~2.3! reads

FIG. 2. The planeP.
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]Cl
«

]h j
U

G j

5Zj
3D@E1

«1El#~Cl
« !22 d j

j 0 ik Qm0

j x1
« . ~2.5!

In order to take into account self-consistent effects, the electrons are supposed to be injecte
statel by a source in the leads and the electronic density is assumed to be in a mixed state.

n«~x,z!5E
L

uCl
«~x,z!u2 dm~l!5 (

j 051

n

(
m051

` E
R1

!
F~ j 0 ,m0 ,k!uC j 0 ,m0 ,k

« ~x,z!u2 dk, ~2.6!

whereF( j 0 ,m0 ,k) is the statistics of injection andL is the set

L5@0, . . . ,n#3N!3R1
! .

The electrons being charged particles, they generate a self-consistent potentialV« through the
Poisson equation. It is assumed that the nonlinear interaction takes place only in the active
the domainV03R. Hence,V« solves

2DV«5n« on V03R, ~2.7!

V«50 on ]V03R, ~2.8!

V«→0 as uzu→`. ~2.9!

The fact that the electrons are injected on the first sub-band does not imply that the wave fu
Cl

« has only a contribution on this sub-band. Indeed, the different sub-bands are coupled th
the z-dependence ofV«. Nevertheless, it will be shown that the upper sub-bands are we
populated since the potentialV« is slowly varying with respect to the variablez. The 3D model
finally read as follows.

The 3D model:

2DCl
«~x,z!1~Vc

«~z!1V«~x,z!!Cl
«~x,z!5~E1

«1El! Cl
«~x,z! in V03R,

Cl
«50 on v0 ; Cl

« satisfies ~2.5! on G j3R, j Þ0,
~2.10!

2DV«5n« on V03R, n«~x,z!5E
L

uCl
«~x,z!u2 dm~l!,

V«50 on ]V03R; V«→0 as uzu→`.

Existence and uniqueness:The model presented in Ref. 6 is slighty different from the
model but the results can be easily adapted. It is proven in Ref. 6 that, for a generalm satisfying
an assumption of boundedness of the support, the 3D model admits a weak solutionCl

« in
H1(V03R). More precisely, the obtained density reads

n«5E
L

uCl
« u2 dm~l!1 sum of bound states.

This last statement means that the electrons having adequate energies are trapped into th
region. In other words, the bound states of the device can be excited by the injected be
electrons~see Ref. 6 for more details!. This implies, conjugated with the nonlinear character of
problem, the nonuniqueness of the solutions. Morever, the wave function satisfies estimate
type
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iCl
« iL2<

C

uE «2Elu
, ~2.11!

whereE « denotes an energy of the bound states. This leads to a nonintegrable singularity
computation of the density. To derive the asymptotic models, the nonuniqueness property
fundamental but in order to obtain error estimates, we need to recover uniqueness. This
done thanks to the uniqueness result of Ref. 6: if the bound states are avoided by the statm
and if the nonlinearity is supposed to be weak enough the solutions are unique. Moreover, t
that the bound states are avoided implies also, thanks to~2.11!, some uniform bounds with respec
to l. This leads to the following definition.

Definition 2.5: Assume that V« is a given regular potential. Consider the operator2D1Vc
«

1V«2E1
« equipped with Dirichlet boundary conditions onv0 and with the homogeneous tran

parent boundary conditions (2.3) onG j3R, j 51,..,n with Sj
3D@E1

«1El#ª0. According to Ref. 6,
this operator has a purely discrete spectrum and we will call ‘‘energies of the bound state
eigenvalues(E i

«(V«)) i>1 .
In order to simplify the analysis and to avoid additional technicalities, we set in the sim

way to make the electrons avoid the bound states, see Ref. 6. The requirement is given
following

Assumption 2.6: The measurem has a bounded support such that, forlPsuppm, there exists
C.0, «-independent such that

C<E 1
«~0!2El .

This implies that the electrons avoid all the bound states. Indeed, by the maximum principV«

is positive and thenE 1
«(0)<E 1

«(V«). Notice that above, this choice ofm is «-independent since
E 1

«(0) is also«-independent. This assumption is rather stringent in the general case and som
to waive this restriction are proposed in Sec. VII. Nevertheless, in the case of confined dev
low temperatures, this hypothesis may nearly be verified. Indeed, in these structures, the
statistics of injection is a Fermi–Dirac statistics. It reads

F~E«!5
1

11expS EF
« 2E«

kBT D ,

where kB is the Boltzmann constant,T the temperature, andEF
« the rescaled Fermi level. In

practical,

EF
« 5E1

«1O~1!,

and the Fermi–Dirac reads

F~E«!5
1

11expS El1O~1!

kBT D ,

which exhibits an exponential decay at low temperatures and also at high energies.
The theorem of Ref. 6 reads, for given«, after a slight adaptation.
Theorem 2.7: (Ref. 6) There existsd~«! positive, such that for everym satisfying assumption

2.6 and

m~L!,d~«!

the 3D model admits a unique solution.
We shall see in the sequel thatd~«! can be chosen«-independent.
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2. The 2D surface density model

The 2D surfacic density model is the coupling between many 2D Schro¨dinger equations and
a 2D potential. When« goes to zero,uxp

«u2 concentrates around 0 and becomes then a D
measure. This leads to the definition of the limit model by replacing the self-consistent pot
by its trace on the plane$xPV0 ,z50% and by replacing the 3D density by a 2D density mu
plied by a Delta measure. The boundary condition~2.5! becomes

]cl

]h j
U

G j

5Zj
2D@El#~cl!22 d j

j 0 ik Qm0

j , ~2.12!

where

Zj
2D@El#~cl!5 (

m51

Nj (El)

ikm
j ~El!cm, j~0!Qm

j ~j j !2 (
m5Nj (El)11

`

km
j ~El! cm, j~0! Qm

j ~j j !.

The 2D surface density model then reads

2Dxcl~x!1V~x,0!cl~x!5El cl in V0 ,

cl50 on G0; cl satisfies ~2.12! on G j , j Þ0,
~2.13!

2DV~x,z!5ns~x!d~z! on V03R, ns5E
L

uclu2 dm~l!,

V50 on ]V03R; lim
uzu→`

V50 a.e. on V0 .

Definition 2.8: Assume that V is a given regular potential. Consider the operator2Dx

1V(•,0) equipped with Dirichlet boundary conditions onG0 and with the homogeneous tran
parent boundary conditions (2.12) onG j , j 51,..,n without source term. According to Ref. 6, th
operator has a purely discrete spectrum and we will call ‘‘energies of the 2D bound state
eigenvalues(Ei(V(•,0))i>1 .

3. The 2.5D model

The 2.5D adiabatic model is an intermediate model between the fully 3D model and th
surfacic density one. It takes into account the small thickness of the electron gas and con
coupling a set of two-dimensional Schro¨dinger equations and the three-dimensional Poisson e
tion:

2Dxcl
«1^V«ux1

«u2& cl
«~x!5El cl

« in V0 ,

cl
«50 on G0 ; cl

« satisfies ~2.12! on G j , j Þ0,
~2.14!

2DV«5n«ux1
«u2 on V03R, n«5E

L
ucl

« u2 dm~l!,

V«50 on ]V03R; lim
uzu→`

V«50 a.e. onV0 .

Remark 2.9: According to Definition 2.8, the energies of the bound states of the 2.5D
are naturaly denoted by(Ei(^V

«ux1
«u2&)) i PN!. Morever, if V is a potential independent of th

variable z, it comes easily thatEi(V)5E i
«(V).
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III. MAIN RESULTS

In this paper, we will prove the following theorems.
Theorem 3.1: Suppose that Assumptions 2.2, 2.4, and 2.6 are satisfied. Then, there exh

positive«-independent such that, for everym satisfying Assumption 2.6 and

m~L!,h,

the 3D model (2.10) and the 2.5D adiabatic model (2.14) admit unique weak solutions, re
tively, denoted by(Cl

3D ,V3D) and by(cl
2.5D,V2.5D). Moreover, h can be chosen such that we ha

the following error estimates, uniformly inl, for a.0, for pP@1,2),

iCl
3D2cl

2.5Dx1
«iW1,p(V0 ,L2(R))5O~«12a!, ~3.1!

iV3D2V2.5DiW1,p(V0 ,L`(R))5O~«22a!. ~3.2!

Furthermore the surfacic densities defined by ns
3D5*L^uCl

3Du2& dm(l) and ns
2.5D

5*Lucl
2.5Du2 dm(l) satisfy

ins
3D2ns

2.5DiW1,p(V0)5O~«22a! ;a.0, ;pP@1,2!. ~3.3!

Theorem 3.2: Suppose that Assumptions 2.2, 2.4, and 2.6 are satisfied. Then, there exh
positive«-independent such that, for everym satisfying Assumption 2.6 and

m~L!,h,

as «→0, the unique solution(cl
2.5D,n2.5D,V2.5D) of the 2.5D adiabatic model converges to t

unique solution(f2D,ns
2D ,V2D) of the 2D surfacic density model (2.13) in the following sense:

a.0, for pP@1,2),

icl
2.5D2f2DiW1,p(V0)5O~«12a!, ~3.4!

iV2.5D2V2DiW1,p(V0 ,L`(R))5O~«12a!, ~3.5!

ins
2.5D2ns

2DiW1,p(V0)5O~«12a!, ~3.6!

where ns
2D5*Lufl

2Du2 dm(l) and ns
2.5D5*Lucl

2.5Du2 dm(l). Furthermore, we have the following
bound from below:

iV2D2V2.5DiL21ins
2D2ns

2.5DiL2>C «, ~3.7!

where C does not depend on«.
A straightforward consequence of these theorems is the following.
Corollary 3.3: Suppose that Assumptions 2.2, 2.4, and 2.6 are satisfied. Then, und

notations of Theorems 3.1 and 3.2, there existsh positive«-independent such that, for everym
satisfying Assumption 2.6 and

m~L!,h,

the 3D model converges as«→0 to the 2D model. Furthermore, we have the estimate

C1 «<iV2D2V3DiL21ins
2D2ns

3DiL2<C2 «12a.
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IV. «-INDEPENDENT ESTIMATES AND WELL-POSEDNESS

In this section, we shall obtain some«-independent estimates for the 3D and the 2.5D mod
To this aim, we will use Proposition A.1 for both models. Besides, the well-posedness of th
and 2.5D models will also be studied.

Proposition 4.1: Let V« andCl
« be the solutions of the 3D model. Then, under assumption

2.4, and 2.6 we have the following estimates, uniformly inl,

iCl
« iH1(V0 ,L2(R))<C, ~4.1!

i~I2P1
«!Cl

« iL2<C «, ~4.2!

iV«iW1,p(V0 ,Hs(R))<C f or pP~1,̀ !, s, 3
2 , p~112s!,8, ~4.3!

i~I2P1
«!Cl

« iH1(V0 ,L2(R))<C «12a, a.0, ~4.4!

where C is«-independent.
Proof: The proof of~4.1! and~4.2! is a direct application of Proposition A.1 Indeed, accordi

to the maximum principleV« is positive and according to hypothesis 2.4,Cl
« satisfies the bound

ary condition~A10! with a51. It suffices to apply~A12! and ~A13! with f 50 to conclude.
The estimate~4.3! will be obtained by using the regularity properties of the Poisson equa

given in Appendix B. To this aim, we first remark that*Lu¹xCl
« u2dm(l) PL1 and

*LuCl
« u2dm(l)PLx

pLz
1 , for all pP@1,̀ ), thanks to~4.1! and the embeddingH1(V0)�Lp(V0),

p,`. This implies by interpolation, that forr ,2,

¹xn
«52 Re E

L
Cl

« ¹xCl
« dm~l!PLr ,1.

It suffices then to apply~B3! to conclude.
To prove~4.4!, we form the quantitywl

«
ª(I2P1

«)Cl
« . It can be easily seen thatwl

« solves

2Dwl
«1~Vc

«~z!1V«~x,z!!wl
«5~E1

«1El! wl
«1@P1

« ,V«#Cl
« ~4.5!

with boundary conditions~A10! with a50 and~A11!. Hence, the estimate~A12! of Appendix A
with f 5@P1

« ,V«#Cl
« implies

iwl
« iH1(V0 ,L2(R))<Ci@P1

« ,V«#Cl
« iL2<C «121/pi]zV

«iL
x
4L

z
piCl

« iL
x
4L

z
2

thanks to Lemma 2.3. We conclude the proof by using~4.1! and by noticing that~4.3! implies that
]zV

« is bounded inLx
4Lz

p for any p,`, thanks to the embeddingH1/22 (1/p)(R)�Lp(R), for p
P@2,̀ ), see Ref. 1. h

Proposition 4.2: Let V« andcl
« be the solutions of the 2.5D model. Then, under Assumpt

2.2, 2.4, and 2.6, we have the following estimates, uniformly inl,

icl
« iH1(V0)<C, ~4.6!

iV«iW1,p(V0 ,Hs(R))<C f or pP~1,̀ !, s, 3
2 , p~112s!,8, ~4.7!

where C is«-independent.
Proof: To prove~4.6! and in order to apply Proposition A.1, we form artificially the functio

Fl
«(x,z)ªcl

«(x) x1
«(z) which solves

2DFl
«1~Vc

«1^V« ux1
«u2&!Fl

«5~E1
«1El! Fl

« in V03R
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equipped with boundary conditions~A10! with a51 and~A11!. ~A12! concludes then the proo
sinceV« is positive by the maximum principle.

The estimate~4.7! is proven analogously to~4.3! by using~4.6!. h

The existence and uniqueness of solution for the 2.5D and the 2D models are direct a
tions of Theorem 7.2 of Ref. 6. The result is the following.

Theorem 4.3: Let Assumptions 2.2, 2.4, and 2.6 be verified. LetCl
3DPH1(V03R) be a

solution of the 3D model. Then, there exists anh positive such that, for everym satisfying
Assumption 2.6 and

m~L!,h,

the 3D, the 2.5D, and the 2D models admit unique weak solutions. The solutions in H1(V0) of the
2.5D and the 2D models are, respectively, denoted bycl

2.5D and fl
2D . Moreover, we have the

estimates, uniformly inl,

ifl
2DiH1(V0)<C, ~4.8!

iV2DiW1,p(V0 ,Hs(R))<C f or pP~1,̀ !, s, 3
2 , p~112s!,8. ~4.9!

Sketch of the proof:The basic tools are the Leray–Schauder fixed point theorem and
regularity properties of the Poisson equation. The positivity of the potentialsV2D and V2.5D

coupled to Assumption 2.6 imply direct bounds on the densities thanks to~A12! with f 50 and
a51. It follows, thanks to the Poisson equation, Lemmas B.1 and B.2, some compactness
erties of the mapping and then to the existence result. The uniqueness is given by the fact
fixed point procedures become contractions if the densities are small enough inL1 norm. To this
aim, we notice that, thanks to~4.1!, ~4.6! for n3D andn2.5D, and thanks to~A12! for n2D,

in3DiL1<Cm~L!, in2.5DiL1<Cm~L!, in2DiL1<Cm~L!,

and then it suffices to chooseh small enough such that each of the Leray–Schauder mapping
contractions. Equations~4.8! and ~4.9! are direct applications of~A12! and Lemma B.2.

V. THE 2.5D MODEL IS A SECOND ORDER APPROXIMATION

In this section, we end the proof of Theorem 3.1 initiated in the preceding section. The
strategies are the same as Ref. 11. We assume that we are under the hypothesis of Theo
which insure that the 3D and 2.5D models admit unique solutions. We denote respective
(Cl

3D ,V3D) and (cl
2D ,V2D), these solutions. We start by proving~3.2! by settingV3D2V2.5D

5V1R1
«1R2

« with

2DV5ux1
«u2~ns

3D2n2.5D!, 2DR1
«5r 1

« , 2DR2
«5r 2

«

equipped with boundary conditions~B2! and where

ns
3D5E

L
E

R
uP1

«Cl
3Du2 dzdm~l!, r 1

«52 ReE
L

P1
«Cl

3D ~I2P1
«!Cl

3D dm~l!,

r 2
«5E

L
u~I2P1

«!Cl
3Du2 dm~l!.

Estimating the remainder terms R1
« and R2

« : Thanks to~4.1! and ~4.4!, we have directly, for
r ,2 andd.0,

ir 1
«iW1,r (V0 ,L1(R))<C «12d,
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ir 2
«iW1,r (V0 ,L1(R))<C «22d,

iz r1
«iW1,r (V0 ,L1(R))<izx1

«iL2(R) «12a<C «22a.

This implies thatR2
« is almost of order two whileR1

« is, up to now, almost of order one. To get on
order more forR1

« , we will use~B5! of Appendix B. To this aim, we remark by orthogonality o
P1

«Cl
3D and (I2P1

«)Cl
3D that

E
R
r 1

«~x,z! dz50.

Thereby,~B5! applies. Choosings5 1
21a, b5122a with a positive and close to 0, we obtain

for all d positive andp,2,

iR1
«iW1,p(V0 ,H1/21a(R))<C «22d,

iR2
«iW1,p(V0 ,H1/21a(R))<C «22d

which leads to bounds inW1,p(V0 ,L`(R)) thanks to the embeddingH1/21a(R)�L`(R) for all a
positive.

It remains now to treatV. In order to estimateux1
«u2(ns

3D2n2.5D), we use the Schro¨dinger
equation solved bywl

«
ªP1

«Cl
3D2x1

« cl
2.5D:

2Dwl
«1Vc

«wl
«1^V3D ux1

«u2& wl
«5~E1

«1El!wl
«1 f «1g«

equipped with the transparent homogeneous boundary conditions~A10! with a50 and where

f «52P1
« V3D ~I2P1

«!Cl
3D, g«5^~V2.5D2V3D! ux1

«u2&x1
«cl

2.5D.

Remarking that

P1
« V3D ~I2P1

«!5P1
«@P1

« ,V3D#,

we deduce from Lemma 2.3,~4.3! and ~4.4! that, ford strictly positive,

i f «iL2<C «121/pi]zV
3DiL

x
4L

z
pi~I2P1

«!Cl
« iH1(V0 ,L2(R))5O~«22d!

thanks to the embeddingH
1
22 (1/p)(R)�Lp(R), for pP@2,̀ ). Besides, according to~4.6!, for r

.2

ig«iL2<CiV3D2V2DiL
x
r L

z
`

and we obtain finally, thanks to~A12!, ~4.22!, and~4.6!, that

iwl
« iH1(V0 ,L2(R))<Ci f «iL21Cig«iL2<O~«22d!1CiV3D2V2DiL

x
r L

z
`,

ins
3D2n2.5DiW1,p(V0)<Cm~L!1/2 S E

L
iwl

« iH1(V0 ,L2(R))
2 dm~l! D 1/2

<O~«22d!1C m~L! iV3D2V2DiL
x
r L

z
`,

for d.0, r .2, andp,2. Applying ~B3! in order to boundV, we find, according to the abov
estimate,
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iViW1,p(V0 ,L`(R))<C «22d1C m~L! iV3D2V2DiL
x
r L

z
`.

Gathering now the different estimates onR1
« , R2

« , andV leads to

iV3D2V2DiW1,p(V0 ,L`(R))<C «22d1C m~L! iV3D2V2DiL
x
r L

z
`.

Choosing r< @2p/(22p)# and m~L! small enough end the proof thanks to the embedd
W1,p(V0)�Lr(V0).

VI. THE 2D MODEL IS A FIRST ORDER APPROXIMATION

In this section, we end the proof of Theorem 3.2. We first assume that we are und
hypothesis of Theorem 4.3 which insure that the 2D and 2.5D models admit unique solution
denote, respectively, by (cl

2.5D,V2.5D) and (fl
2D ,V2D), these solutions. We start by proving~3.5!

by writing

2D~V2.5D2V2D!5ux1
«u2~ns

2.5D2ns
2D!1ns

2D ~ ux1
«u22d~z!! ~6.1!

equipped with the boundary conditions~B2!. In order to apply~B3! to ~6.1!, we first estimate the
quantityns

2.5D2ns
2D by using the Schro¨dinger equation solved bywl

«
ªx1

«(cl
2.5D2fl

2D):

2Dwl
«1Vc

«wl
«1^V2.5Dux1

«u2& wl
«5~E1

«1El!wl
«1 f «

equipped with the transparent homogeneous boundary conditions~A10! with a50 and where

f «5~V2D~•,0!2^V2.5Dux1
«u2&!x1

«fl
2D.

Estimating the source term f«: We have

i f «iL2<~ iV2D2V2.5DiL
x
pL

z
`1i^~V2D~•,0!2V2D! ux1

«u2&iLp(V0)!ifl
2DiH1(V0)

<CiV2D2V2.5DiL
x
pL

z
`1Ci]zV

2DiL
x
pL

z
a^z121/aux1

«u2&,

p.2<CiV2D2V2.5DiL
x
pL

z
`1O~«12d!, d.0,

where we used the estimates~4.8!, ~4.9! and the embeddingsH1(V0)�Lq(V0), q,` and
H1/22 (1/a)(R)�La(R), aP@2,̀ ). Applying now ~A12! in order to estimatewl

« , we obtain
uniformly in l, thanks to the above estimate of the source termf «, for p.2, d.0, andr ,2,

iwl
« iH1(V0 ,L2(R))<CiV2D2V2.5DiL

x
pL

z
`1O~«12d!, ~6.2!

ins
2.5D2ns

2DiW1,r (V0)<Cm~L!iV2D2V2.5DiL
x
pL

z
`1O~«12d!. ~6.3!

It remains now to estimate the second part on the right-hand side of~B2!. To this aim, we find,
according to~B6!, for r ,2, p(112(s1b))<4r , s1b, 3

2,

i~2D!21~ns
2D ~ ux1

«u22d~z!!!iW1,p(V0 ,Hs(R))<C^zux1
«u2&bins

2DiW1,r (V0) .

Sinceins
2DiW1,r (V0) is bounded forr<2 thanks to~4.8! and sincê zux1

«u2&5O(«) thanks to 2.1,
we have finally, by choosingb512d, s5 1

21 (d/2),

i~2D!21~ns
2D ~ ux1

«u22d~z!!!iW1,p(V0 ,Hs(R))<O~«12d!. ~6.4!
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We are able now to estimate the differenceV2D2V2.5D by applying ~B3!. Gathering the
bounds~6.1!, ~6.3!, and~6.4! and thanks to the embeddingH1/21a(R)�L`(R), a.0, we find, for
d.0, q,2, andp.2,

iV2D2V2.5DiW1,q(V0 ,L`(R))<Cm~L!iV2D2V2.5DiL
x
pL

z
`1O~«12d!.

Choosingp< 2q/(22q) andm(L) small enough end the proof of~3.5!.
In order to prove~3.4! and ~3.6!, it suffices to apply~3.5!, ~6.2!, and~6.3!.
The estimate from below:For the proof of~3.7!, we introduce (ei ,l i) i PN* , the Hilbertian

decomposition of thex-Laplacian equipped with Dirichlet boundary condition on]V0 . Let g
PL2(V03R) and letu be the solution of2Du5g on the domainV03R with Dirichlet boundary
conditions on](V03R). It can be easily seen that the Fourier transformû of u reads

û~x,j!5(
i>1

~ ĝ~•,j!,ei~• !!L
x
2

l i1j2 ei~x!

and thus, thanks to the Fourier–Plancherel equality

iuiL2
2

5i~2D!21 giL2
2

5(
i>1

E
R
dj U~ ĝ,ei !L

x
2

l i1j2 U2

.

Hence, using the above equality, we find

i~2D!21~ns
2D ~ ux1

«u22d~z!!!iL2
2

5(
i>1

E
R
dj U~ns

2D ,ei !L
x
2

l i1j2 U2

U E
R
ux1

«u2~e2 i jz21! dzU2

>(
i>1

U~ns
2D ,ei !L

x
2

l i11
U2

E
0

1

djU E
R
ux1

«u2~e2 i jz21! dzU2

>C ins
2DiH21(V0)

2 E
0

1

djU E
R
ux1u2~e2 i«jz21! dzU2

. ~6.5!

Moreover, pointwise inj z, as«→0, we have

e2 i « j z21

2 i « j z
→1.

Consequently, definingh by

h~«!

«2 5
1

«2 E
0

1

djU E
R
ux1u2~e2 i«jz21! dzU2

,

the Lebesgue dominated convergence theorem implies that

h~«!

«2 → 1

3 U ER
z ux1u2 dzU2

5C.

To conclude, we come back to~6.1! and ~6.5!. By noticing thatins
2DiH21(V0)5C, there exists

finally C0 «-independent such that

iV2D2V2.5DiL2
2

1ins
2D2ns

2.5DiL2
2 >i~2D!21~ns

2D ~ ux1
«u22d~z!!!iL2

2 >C0 «2.

This ends the proof.
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VII. REMARKS

We considered here a model without exterior potential. The analysis still holds if a re
enough potential is added, for instance, a potential inLp(V0 ,W1,̀ (R)), with p.2.

We also assumed that the open setV0 is regular. This hypothesis can be weakened if
boundary conditions prescribed for the Poisson equation are modified: for instance, consid
square, we put Dirichlet boundary conditions in two parallel interfaces and Neumann conditi
the orthogonal ones.

All the analysis presented in the paper strongly relies on the Assumption 2.6 which is es
in order to obtain existence and uniqueness results. We conjecture that all the results still
this assumption is replaced by the

Assumption 7.1: The measurem has a bounded support and there existsd positive,
«-independent, such that, ; i>1,

inf
lPsuppm

uEl2Ei~0!u.d,

where theEi are the energies of the bound states introduced in Definition2.8.
This assumption means that the statistics avoids the bound states of the linear open¨-

dinger equation, see Ref. 6 for more details. To prove the theorems under this framework, o
to show that the statistics still avoids the bound states when considering a nonzero self-con
potential. This can be done by a careful analysis of the open Schro¨dinger equation and by settin
a statistics whose total mass is weak enough such that there existsh~d! such that,; i>1,

inf
lPsuppm

uEl2Ei~V«!u.h~d!.

On the other hand, following again,6 a limit absorption procedure can be performed as well. O
may add to the energyE«, a complex termin with n.0. Then all the results applies withou
Assumption 2.6. Then, the limitn goes to zero has to be investigated and the difficulty in this s
is to obtainn-independent estimates. This will require a precise statement of the rate of co
gence inn in order to preserve the different errors estimates. To conclude, the Assumption 2
be actually weakened but this improvment involves more technicalities than in the present a
and not directly related to the purpose of this work.
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APPENDIX A: THE LINEAR SCHRÖ DINGER EQUATION ON OPEN DOMAINS

In this section, we derive the open boundary conditions introduced in Ref. 6 and we give
estimates for the solution of the Schro¨dinger equation equipped with such conditions. More p
cisely, we seek a generalized eigenfunctionC« solution of the Schro¨dinger equation associate
with the energyE«, this means

2DC«~x,z!1~Vc
«~z!1V«~x,z!!C«~x,z!5E« C«~x,z! in V3R, ~A1!

C« is bounded, ~A2!

C«50 on ]~V3R!, ~A3!
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where Vc
« is a confining potential and was defined in Introduction andV« is a given regular

potential, supported only inV03R. The equation~A1! is, in the leadj ,

~2]z
22Dj j ,h j

!C«~j j ,h j ,z!1Vc
«~z!C«~j j ,h j ,z!5E« C«~j j ,h j ,z!, j Þ0 , ~A4!

wherej j andh j are the local coordinates of the leadj , see Fig. 2. The boundary conditions a
obtained by explictly solving the Schro¨dinger equation in each lead. For this purpose, letQm

j and
E m

j , be the eigenfunctions and eigenvalues of thej th transversal Schro¨dinger operator2]j j

2 with

Dirichlet boundary conditions.C« can be written under the form, in the leadj ,

C«~h j ,j j ,z!5(
p

Pp
«C«5(

p,m
Cp,m, j

« ~h j !Qm
j ~j j !xp

«~z!,

whereCp,m, j
« is the component ofC« on the basis (Qm

j
^ xp

«)p,m and solves

2
]2Cm,p, j

«

]h j
2 5~E«2Ep

«2E m
j !Cm,p, j

« . ~A5!

Hence, setting

km
j ~E«2Ep

«!5AuE«2Ep
«2E m

j u,

Nj~E«2Ep
«!5sup$m>1, E«2Ep

«.E m
j %,

we obtain

Cm,p, j
« ~h j !5am,p

j e2 ikm
j h j1bm,p

j eikm
j h j if m<Nj~E«2Ep

«!, ~A6!

Cm,p, j
« ~h j !5bm,p

j e2km
j h j if m.Nj~E«2Ep

«!. ~A7!

The modes associated withm<Nj (E«2Ep
«) are the propagating modes and the modes assoc

with m.Nj (E«2Ep
«) are the evanescent modes. The coefficientsam,p

j are known whereas thebm,p
j

are the reflection–transmission coefficients and deduced from the solution. The boundary
tions onG j are obtained by eliminating thebm,p

j coefficients and the result is,6,26

]C«

]h j
U

G j

5Zj
3D@E«#~C«!1Sj

3D@E«#, ~A8!

where

Zj
3D@E«#~C«!5 (

p51

` S (
m51

Nj (E«2Ep
«)

ikm
j ~E«2Ep

«!Cp,m, j
« ~0! Qm

j ~j j !

2 (
m5Nj (E«2Ep

«)11

`

km
j ~E«2Ep

«! Cp,m, j
« ~0! Qm

j ~j j !D xp
« ,

Sj
3D@E«#522(

p51

`

(
m51

Nj (E«2Ep
«)

ikm
j ~E«2Ep

«! am,p
j Qm

j ~j j ! xp
«~z!.

To summarize, the problem is solved only on the bounded domainV03R with the boundary
conditions~A8! andC50 on v0 .
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We rewrite now these boundary conditions in the case of the nonlinear transport model o
II B 1. According to Assumption 2.4, the energyE« is equal toE1

«1El , whereEl5Em0

j 0 1k2 and

am,p
j 5dp

1 dm
m0 d j

j 0 . This implies thatSj
3D takes the simpler form

Sj
3D@E1

«1El#522 d j
j 0 ik Qm0

j ~j j ! x1
«~z!.

Finally, in order to derive estimates for more general problems, we consider the follo
system:

2DC«~x,z!1~Vc
«~z!1V«~x,z!!C«~x,z!5~E1

«1El! C«~x,z!1 f ~x,z! in V03R, ~A9!

]C«

]h j
U

G j

5Zj
3D@E1

«1El#~C«!22a d j
j 0 ik Qm0

j ~j j ! x1
«~z!, ~A10!

C«50 on v0 , ~A11!

wherea is a positive parameter andf a given source term. The well-poseness of this system
been studied in Ref. 6.

Proposition A.1: LetC« be the solution of (A9)–(A11). Let fPL2(V03R), V«PL`(V0

3R) and V« non-negative a.e. Then, under Assumption 2.2, 2.4, and 2.6, we have, uniformll,

iC«iH1(V0 ,L2(R))<C ~2a1i f iL2!, ~A12!

i~I2P1
«!C«iL2<C « ~2a1i f iL2!, ~A13!

where C is a generic constant«-independent.
Proof: Consider the kinetic energy alongx and the kinetic energy alongz defined by

E kin,x
« 5E

V03R
u¹xC

«u2 dx dz, E kin,z
« 5E

V03R
u]zC

«u2 dx dz.

The potential energy and the external potential energy are, respectively, defined by

E pot
« 5E

V03R
V«uC«u2 dx dz, E ext

« 5E
V03R

Vc
« uC«u2dx dz.

We introduce also the energy coming from the boundary terms

E BC
« 52(

j 51

n E
G j 3R

]C«

]h j
U

G j

C« dj j dz.

A standard energy estimate for the Schro¨dinger equation, obtained after multiplication of~A9! by
Cl

« and some integration by parts, yields

E kin,x
« 1E kin,z

« 1E pot
« 1E ext

« 1ReE BC
« 5~E1

«1El!iC«iL2
2

1E
V03R

f C«dx dz, ~A14!

Im E BC
« 50. ~A15!

Besides, the boundary condition~A10! implies that
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ReE BC
« 5(

j 51

n

(
p51

`

(
m5Nj (El1E1

«
2Ep

«)11

`

km
j ~El1E1

«2Ep
«!uCp,m, j

« u222a k Im C1,m0 , j 0

« ,

~A16!

Im E BC
« 5(

j 51

n

(
p51

`

(
m51

Nj (El1E1
«
2Ep

«)

km
j ~El1E1

«2Ep
«!uCp,m, j

« u212a k ReC1,m0 , j 0

« 50, ~A17!

and we first deduce from~A16! and ~A17! that

uC1,m0 , j 0

« u<2a ~A18!

0<ReE BC
« 12a k Im C1,m0 , j 0

« . ~A19!

Moreover, according to Ref. 6, the operator2D1Vc
«1V«2E1

« equipped with~A10! and
~A11! with a50, has a compact resolvent and denote (E i

«(V«)) i PN* its spectrum and (F i
«) i PN* its

associated eigenvectors. SinceV«>0, thenE 1
«(V«)>E 1

«(0) and it can be easily seen thatE 1
«(0) is

«-independent. It follows, after a projection ofC« on the basis (F i
«) i PN* that

E kin,x
« 1E kin,z

« 1E pot
« 1E ext

« 1ReE BC
« 12a k Im C1,m0 , j 0

« 2E1
«iC«iL2

2
5(

i>1
E i

«~V«!u~C«,F i
«!u2.

Injecting this relation in~A14! leads to

~E 1
«~0!2El!iC«iL2

2 <(
i>1

~E i
«~V«!2El!u~C«,F i

«!u2<4a2 k1i f iL2iC«iL2,

where we used~A18! for the second inequality while the first inequality follows from the fact th
E i

«(0)<E i
«(V«) sinceV« is positive. We use now crucially Assumption 2.6 which implies th

E 1
«(0)2El.C, whereC is «-independent and this gives theL2 estimate, uniform inl,

iC«iL2<C~2a Ak1i f iL2!. ~A20!

To conclude the proof, we come back to~A14! and by using~A19! and ~A20!, we obtain

E kin,x
« 1E kin,z

« 1E pot
« 1E ext

« <E1
«iC«iL2

2
1C~4a21i f iL2

2
!,

whereC depends on suplPsuppmEl . Since

E kin,z
« 1E ext

« 5 (
p51

`

Ep
«iPp

«C«iL2
2

and sinceV« is non-negative, we haveE pot
« >0 and finally

E kin,x
« 1

1

«2 ~E22E1!i~I2P1
«!C«iL2

2 <C~4a21i f iL2
2

!

which ends the proof. h

APPENDIX B: THE POISSON EQUATION WITH L x
r L z

1 DENSITIES

This section deals with the regularity of the solution of the Poisson equation

2DV5n on V03R, ~B1!
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V~•,z!50 on ]V0 , lim
uzu→`

V~x,z!50. ~B2!

In the whole section,Lx
pLz

q denotes the spaces introduced in Definition 2.1.
Lemma B.1: (i) Let V be the solution of (B1) and (B2), let nPLx

r Lz
1 with rP(1,̀ ). Then for

s, 3
2 and p(112s)<4r , we have

iViLp(V0 ,Hs(R))<CiniL
x
r L

z
1. ~B3!

(ii) Besides, for s, 1
2 and p(312s)<4r , we have also

i¹xViLp(V0 ,Hs(R))<CiniL
x
r L

z
1. ~B4!

(iii) Let nPLx
r Lz

1 such that z nPLx
r Lz

1 , with rP(1,1`) and *R n(•,z)dz50. Then, for0
<b<1, pP@2,1`), s1b, 3

2 and p(112(s1b)<4r , we have

iViLp(V0 ,Hs(R))<Ciz niL
x
r L

z
1

b iniL
x
r L

z
1

12b
. ~B5!

(iv) Assume that n(x,z)5ns(x) (r(z)2d(z)) where nsPLr(V0) with rP(1,1`), wherer
PL1(R), non-negative such that zrPL1(R) and iriL1(R)51. Then, for0<b<1, pP@2,1`),
s1b, 3

2 and p(112(s1b)<4r , we have

iViLp(V0 ,Hs(R))<Ciz riL1
b insiLr (V0) . ~B6!

Proof: Taking the Fourier transform of~B1! with respect toz leads to

2DxV̂~x,j!1j2 V̂~x,j!5n̂~x,j!,

where

V̂~x,j!5E
R
V~x,z! e2 i z j dz, n̂~x,j!5E

R
n~x,z! e2 i z j dz. ~B7!

Since 2Dx , equipped with Dirichlet boundary conditions onV0 , is a sectorial operator on
Lp(V0), for pP(1,1`), we have

iV̂~•,j!iLp(V0)<
1

j2 i2DxV̂~•,j!1j2V̂~•,j!iLp(V0)<
1

j2 i n̂~•,j!iLp(V0) . ~B8!

Moreover,~B8!, ~B7!, and standard elliptic estimates imply

iV̂~•,j!iW2,p(V0)<Ci n̂~•,j!iLp(V0) , ~B9!

whereC does not depend onj. Besides, forp>2, we have thanks to the Ho¨lder inequality,

iViLp(V0 ,Hs(R))
p

5E
V0

S E
R
~11j2s! uV̂~x,j!u2 dj D p/2

dx

< I 1

11ja I
Lp/(p22)(R)

E
V0

E
R
~11j (2s1a)p/2! uV̂~x,j!up dj dx

<CE
R
~11j (2s1a)p/2! iV̂~•,j!iLr (V0)

r iV̂~•,j!iL`(V0)
p2r dj, ~B10!
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as soon as

0<12
2

p
,a, 1<r<p<`.

Coupling now~B8! and ~B9! and using the embeddingW2,r(V0)�L`(V0), for r .1, leads to

iViLp(V0 ,Hs(R))
p <CE

R
~11j (2s1a)p/2! iV̂~•,j!iLr (V0)

r iV̂~•,j!iW2,r (V0)
p2r dj

<CE
R
~11j2r 2(2s1a)p/2!21 i n̂~•,j!iLr (V0)

p dj

<CiniL
x
r L

z
1

p
if

1

j2r 2(2s1a)p/2PL1~@1,1`!!, ~B11!

where we used the fact thatun̂(x,j)u<in(x,•)iL1(R) . After some easy algebra, this gives the fin
conditions for~B3!,

2<p,`, s< 3
2 , p~112s!,4r .

For ~B4!, we use a classical interpolation equality in Ref. 13 which insures that

i¹xV̂iLp(V0)<CiDxV̂iLr (V0)
1/2 iV̂iLt(V0)

1/2 <CiDxV̂iLr (V0)
1/2 iV̂iLr (V0)

r /2r iV̂iL`(V0)
1/2[12 ~r /t)# ~B12!

with 1/p 5 1
2@(1/t) 1 (1/r ).# This inequality implies, together with~B8!, ~B9!, for t>r .1,

i¹xV̂iLp(V0)<
C

j r /t i n̂iLr (V0) . ~B13!

ReplacingV by ¹xV in ~B11!, using estimates~B9! and ~B13!, we obtain by proceeding as fo
~B11!,

i¹xViLp(V0 ,Hs(R))
p < I 1

11jaI
Lp/(p22)(R)

E
V0

E
R
~11j (2s1a)p/2! u¹xV̂~x,j!up dj dx

<CE
R
~11j rp/t2(2s1a)p/2!21 i n̂~•,j!iLr (V0)

p dj<CiniL
x
r L

z
1

p

as soon as

0<12
2

p
,a,

1

p
5

1

2 S 1

t
1

1

r D , r<t,
rp

t
2

1

2
~2s1a!p.1.

This concludes the proof of~B4! after some easy manipulations.
We end now the proof of Lemma B.1 by proving~B5!. If *Rn dz50, it can easily remarked

that

Un̂~x,j!

j U5U1j ER
~e2 i z j21!n~x,z! dzU<izn~x,.!iL1(R) ,

sinceue2 i z j21u<uz ju, ;(k,j)PR2. This leads to, thanks to~B11!,
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iViLp(V0 ,Hs(R))
p <CE

R
~11j2r 2(2s1a)p/22bp!21 S i n̂~•,j!iLr (V0)

p

jp D b

~ i n̂~•,j!iLr (V0)
p

!12b dj

<Ciz niL
x
r L

z
1

b p iniL
x
r L

z
1

(12b) p
if

1

j2r 2(2(s1b)1a)p/2PL1~@1,1`!!,

which gives the result.
For ~B6!, we just remark that

n̂~x,j!5ns~x!E
R
~e2 i z j21!r~z! dz

which is exactly the same form as above. h

In the same way, ifn is given byn(x,z)ªns(x) d(z), we have the following.
Lemma B.2: (i) Let V be the solution of (B1) and (B2) with n(x,z)ªns(x)d(z), where ns

PLr(V0) with rP(1,̀ ). Then, for s, 3
2 and p(112s)<4r , we have

iViLp(V0 ,Hs(R))<CiniLr (V0) . ~B14!

Besides, for s, 1
2 and p(312s)<4r , we have also

i¹xViLp(V0 ,Hs(R))<CiniLr (V0) . ~B15!
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‘‘Pseudo-cohomology,’’ as a refinement of Lie group cohomology, is soundly stud-
ied aiming at classifying the symplectic manifolds associated with Lie groups. In
this study, the framework of symplectic cohomology provides fundamental new
insight, which enriches the analysis previously developed in the setting of Cartan–
EilenbergH2(G,U(1)) cohomology. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1695093#

I. INTRODUCTION

From the strict mathematical point of view, the orbits of the coadjoint representation o
groups provide a source for symplectic manifolds on which a given Lie group acts as a gro
symplectomorphisms, i.e.,G-symplectic manifolds. Even, for finite-dimensional semisimp
groups, this mechanism essentially exhausts all models of they. TheseG-symplectic manifolds
could then be considered as phase spaces of physical systems for whichG can be called the ‘‘basic
symmetry.’’ From the physical point of view, however, the simplest physical systems~the free
nonrelativistic particle, for instance! possess a phase space endowed with a symplectic form w
associated Poisson bracket realizes the Lie algebra of a central extension of the basic ‘‘cla
symmetry. Central extensions of Lie groups by U~1!, associated with projective unitary represe
tations, were classified long ago by Bargmann1 by means of the cohomology groupH2(G,U(1)).2

Later, the momentum map from the phase space to the coalgebraG* of the basic ‘‘classical’’
symmetry group, constructed with the set of Noether invariants of the physical system, wa
by Souriau3 to define the symplectic cohomology groupHS

1(G,G* ) characterizing equivalently the
central extensions of a simply connected groupG.

In this paper we revisit the notion of Lie group ‘‘pseudo-cohomology’’ in an attemp
classify all possible~quantizable! G-symplectic manifolds for an arbitrary Lie groupG, in such a
way that both coadjoint orbits and phase spaces realizing central extensions can be put t
into ~‘‘pseudo’’-!cohomology classes. By the way, the prefix ‘‘pseudo’’ had its origin4 in the fact
that the corresponding central extensions are trivial from the mathematical point of view
associated cocycle being a coboundary, although they behave as if they were non-trivial in
aspects, as we shall show.

Our study here is made in the language of symplectic cohomology of Lie groups. The in
provided by the natural and explicit role of phase spaces in symplectic cohomology offers a
intuitive understanding of the significance of pseudo-cohomology in classifying dynamics, a
as an easier mathematical handling which allows a generalization of the mathematical
obtained in its original presentation.5,6

Roughly speaking, pseudo-cohomology emerges as a refinement of the equivalence cla
2-cocycles in the cohomology groupH2(G,U(1)). Thefirst clues for the need of such a refin
ment occurred when studying the problem of the Ino¨nü-Wigner contraction of centrally extende
20510022-2488/2004/45(5)/2051/22/$22.00 © 2004 American Institute of Physics
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Lie groups ~see Saletan7!. An example of this need appears in the contraction Poinc´
→Galileo where a special kind of trivial 2-cocycles in the Poincare´ group, become true~non-
trivial! 2-cocycles for the Galileo group in thec→` limit. The underlying reason is that, while th
2-cocycle is well-behaved in the limit, its generating function is not, thus occurring a generat
cohomology.4 The second indication for the need of pseudo-cohomology appeared in the co
of generalized Hopf fibrations of semi-simple Lie groups related to Cˇ ech~true, i.e., noncobound
ary! cocycles of coadjoint orbits. Such pseudo-cocycles play in fact a fundamental role i
explicit construction of the local exponent associated with Lie-algebra cocycles of the corres
ing Kac–Moody groups.8

In spite of these antecedents, the importance of pseudo-cohomology is more evident
framework of Group Approach to Quantization~GAQ!, a group theoretical quantization schem
designed for obtaining the dynamics of a physical system out of a Lie group.9 In particular, GAQ
starts from a central extensionG̃ of a Lie groupG by U~1! in such a way that the symplecti
form of the classical phase space is derived from the 2-cocycle which defines the central
sion. Nevertheless, the correspondence between central extensions and symplectic form
one-to-one. The most obvious illustration of this is the case of groups with trivial cohomo
groupH2(G,U(1)) ~such as the Poincare´ group in 311 dimensions or finite-dimensional sem
simple groups!. In fact, even though these groups do not admit nontrivial central extens
genuine symplectic structures and dynamics can be derived out of them.4,8 The rationale for this is
the existence of 2-cocycles which are coboundaries, and therefore trivial from the cohomo
point of view, but which do define authentic symplectic structures. Coboundaries with this
erty are calledpseudo-cocycles, giving rise to trivial central extension referred to aspseudo-
extensions.

The study of this mechanism and the characterization of the classes of pseudo-exte
associated with nonequivalent symplectic structures, led in an explicit way to the notio
pseudo-cohomology, constituting the more systematic and clarifying approach to the prob5,6

This standardview of pseudo-cohomology is described in the next section.

II. PSEUDO-COHOMOLOGY IN GAQ

As commented in the introduction, GAQ is a formalism devised for obtaining the~quantum or
classical! dynamics of a physical system out of a Lie group~of its symmetries!. The starting point
is a central extensionG̃ of the symmetry groupG by U~1! ~or R to recover the classica
dynamics!, determined by a 2-cocycle~local exponent! j:G3G→R. The group law then reads

g 95g 8* g , z 95z 8zei j(g 8,g), ~1!

whereg 9,g 8,gPG andz 9,z 8,zPU(1). On the LiegroupG̃ we have at our disposal left- an
right-invariant vector fields. If we choose a coordinate system ($gi% i 51

dim G,z) in G̃, a basis for the
vector fields is given byX̃i

L and X̃i
R , respectively, and their dual sets of left- and right-invaria

1-forms are denoted byuL( i ) and uR( i ), respectively. One of the left-invariant 1-forms,Q

[uL(z), the U~1!-component of the left-invariant canonical 1-form on the Lie groupG̃, is chosen
as the connection 1-form of the principal bundle U(1)→G̃ →G, thus defining a notion ofhori-
zontality.

This connection 1-form, named the quantization 1-form, depends directly on the 2-cocj
and can be used to define a symplectic structure in a unique manner. In fact, ifGQ is the charac-
teristic distribution ofQ, i.e., the intersection of the kernel ofQ and dQ, thenG̃ /GQ is a quantum
manifold P.9,10 This means thatG̃ /GQ is a contact manifold with contact 1-formQuP . The
quantum manifoldP is in turn a U~1! Principal bundle U(1)→P→

p
S with base a symplectic

manifold,S5P/U(1) endowed with a symplectic formv such thatp* v5dQ.
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The symplectic structure (S,v) is not completely determined by the cohomology class
which the 2-cocyclej belongs. In fact, different yet cohomologous 2-cocycles can lead to c
pletely different symplectic structures (S,v) ~think, for instance, of a semisimple Lie group, wit
trivial cohomology but with many different kinds of symplectic structures determined by
coadjoit orbits!. This phenomenon suggests, again, a refinement in the classification of 2-co
in such a way that a one-to-one correspondence between the refined classes and the sy
structures could be established. This refinement will define pseudo-cohomology. Therefo
latter is intrinsically tied to the classification of possible symplectic structures constructed ou
Lie group.

The main idea for the definition of these subclasses inH2(G,U(1)) can beintuited from the
expression ofQ in terms of the 2-cocyclej:

Q5
dz

i z
1

]j~g8,g!

]gi U
g85g21

dgi . ~2!

If, now, a 2-coboundaryjl(g8,g)5l(g8* g)2l(g8)2l(g) generated by the functionl:G
→R, is added toj, the expression for the new quantization 1-formQ8 @as the U~1!-component of
the canonical 1-form for the centrally extended Lie group defined byj1jl] is given by

Q85Q1Ql5Q1l i
0uL( i )2dl, ~3!

wherel i
0[ @]l(g)/]gi # ug5e . Thus, the new termQl added to the connection 1-formQ by the

inclusion of a 2-coboundary depends only, up to a total differential, on the gradient at the id
l0 of the generating functionl(g). In fact, if we denoteQl05l i

0uL( i ), then the total differential
disappears when the presymplectic 2-form dQ is considered, in such a way that dQ85dQ
1dQl0.

From these considerations two conclusions can be drawn:

~i! A 2-coboundary contributes nontrivially to the connection 1-formQ and to the symplectic
structure determined by dQ, if and only if l0Þ0.

~ii ! This contribution depends only~up to a total differential, which does not affect the sym
plectic structure! on the local properties of the generating functionl(g) at the identity of
the group, through its gradient at the identityl0.

A 2-coboundaryjl such thatl0Þ0 is named apseudo-cocycle. The name reflects the fact tha
they are trivial 2-cocycles but, from the dynamical point of view, behave as if they were nontr
If we consider the groupG centrally extended by this pseudo-cocyclejl , the extended groupG̃
is isomorphic toG3U(1). However, we will refer to this extension as apseudo-extension, to
underline the fact that, although trivial as a central extension, it can lead to a nontrivial symp
structure and nontrivial dynamics.

The next point to explore is the conditions under which two different 2-coboundaries,jl and
jl8 , generated by functionsl andl8 with different gradients at the identityl0 andl80, deter-
mine the same symplectic structure (S,v), up to symplectomorphisms. This condition will defin
a refined equivalence relation inside each cohomology class. For the sake of simplicity, we
restrict ourselves to simply connected Lie groups.

The clue in the definition of the new equivalence relation is given by the fact thatl0 defines
an element ofG* , the dual of the Lie algebraG of G, usually named thecoalgebra. This can be
seen by noting thatQl05l i

0uL( i ) defines, at the identity ofG, an element ofG* given by
Ql0ug5e5l0. It is also important to note thatQlug5e50PG* ~due to the presence of dl!, in such
a way that the quantization 1-formQ verifiesQug5e5(0,...,0,1)PG̃* , whatever the 2-cocyclej
we are considering~hereG̃* is the dual of the extended algebraG̃ associated with the extende
group G̃). This fact will be of relevance in the relationship between pseudo-cohomology
symplectic cohomology.
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Once we have established thatl0PG* , it is natural to propose their classification in acco
dance with the coadjoint orbits. This will prove to be the correct ansatz, provided we us
correct coadjoint action.

A bit of notation is in order. Let us denote the equivalence class of the cocyclej, defining a
certain central extensionG̃ of G by U~1!, by @@j##PH2(G,U(1)). We aregoing to introduce a
further partition in each class@@j## into equivalence subclasses@j#.

For the sake of clarity, we shall firstly define this partition for the trivial cohomology c
@@j##0 , made out of trivial cocycles, i.e., 2-coboundariesjl . This would be enough for group
with trivial cohomologyH2(G,U(1))50 ~that is, with only the trivial class!, such as finite-
dimensional semisimple groups or the Poincare´ group ~in 311 dimensions!. It is also valid for
fully centrally extended groupsG̃, for whichH2(G̃ ,U(1))50. The case of groups with nontrivia
cohomology or nonfully central-extended groupsG̃, with H2(G̃ ,U(1))Þ0, will be considered in
Sec. II B.

A. The trivial class

Given a Lie groupG, a natural action ofG on G* is provided by the coadjoint actionCoad,
defined as the dual of the adjoint action ofG on G. More explicitly, with the adjoint action ofG
on G given byAdg(X)5(Rg21

T Lg
T)(e)•X, wheregPG, XPG andLg

T , Rg
T stand for the tangen

application to the left and right translations, respectively, the coadjoint actionCoad:G
→Aut(G* ) has the formCoad(g)m(X)5m(Adg21(X)), wheremPG* . It is also convenient to
make explicit the infinitesimal version of this action. Linearizing on theg variable we obtain the
coadjoint action of the Lie algebra on the coalgebra: (Coad)T(e)[coad:G→End(G* ). Its ex-
plicit expression is given bycoadX(m)(Y)5m(ad X(Y))5m(@X,Y#), with X,YPG and m
PG* .

The orbits of this action are specially relevant in our study. Given a pointmPG* , the orbit
through this point by the action of the whole groupG is Orb(m)5$Coad(g)m / gPG%, diffeo-
morphic toG/Gm whereGm is the isotropy group ofm. The coadjoint action determines a foliatio
of G* in orbits, in such a way that any point belongs to one~and just one! orbit @by definition, the
point m belongs toOrb(m)], and two points in the same orbit are always connected by
coadjoint action.

Coadjoint orbits of Lie groups are interesting from the physical point of view since
possess a natural symplectic structure@Orb(m),v# with the symplectic form given by

vn~Xn ,Yn!5n~@X,Y# !,Xn ,YnPTn ~Orb~m!!, ~4!

wherenPOrb(m),G* , Xn ,YnPTn(Orb(m)) andXPG is related toXnPTn (Orb(m)) by Xn

5coad(X)n, and analogously forYn andY ~note we are using the fact thatG* is a linear space
in order to identify its points with tangent vectors!.

There is a close relationship between pseudo-extensions and coadjoint orbits, that
stated as follows. A pseudo-extension characterized by the generating functionl(g) with gradient
at the identityl0Þ0 defines a presymplectic form dQl5dQl0 depending only onl0. In the
trivial case we are discussing in this section, the quotient ofG̃ by the characteristic subalgebr
GQl0[kerQlùker dQl0, defines a quantum manifoldP, and the quotientS5G̃ /(GQl03U(1))
;G/GQl0 is a symplectic manifold with symplectic formvl0 given by p* vl05dQl0, where
p: P→S is the canonical projection andGQl0 is the~connected! subgroup associated withGQl0 .
G/GQl0 is in fact locally diffeomorphic to a coadjoint orbit~the one passing throughl0). This can
be seen by noting the following:

~a! The presymplectic form adopts the expression

dQl05 1
2 lk

0Ci j
k uL( i )∧uL( j ), ~5!

when using the Maurer–Cartan equations, and therefore,
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dQl0~Xi
L ,Xj

L!5lk
0Ci j

k 5l0~@Xi
L ,Xj

L# ! ~6!

where$Xi
L% is a basis forG andl0PG* , thus reproducing~4! ~before falling down to the

quotient!.
~b! The characteristic groupGQl0 coincides with~the connected component of! the isotropy

group ofl0, Gl0 under the coadjoint action, thus defining~locally! the same quotient space
At the infinitesimal level, a vectorY5YiXi

L belongs toGQl0 if Yilk
0Ci j

k 50,; j , which is the
same condition forY to belong toG l0.

Using the transformation properties of left-invariant 1-forms under translation by the gro
is easy to check that

Ad~g!* ~Ql0!5QCoad(g)l0, ~7!

whereAd(g)* denotes the pull-back of the adjoint action of the group on itself~conjugation!,
acting onuL( i ), and on the right-hand sideCoad(g) acts onl0.

Although the connection 1-form is given byQl rather thanQl0, the symplectic form is
determined by justl0, and it transforms in a similar way,

Ad~g!* ~dQl0!5dQCoad(g)l0. ~8!

These results can be summarized in the following proposition.
Proposition 1: Let G be a Lie group and consider two coboundariesjl1

and jl2
with gener-

ating functionsl1(g) andl2(g), defining the (trivial) central extensions G˜
1 and G̃2 , respectively.

If Ql1
and Ql2

are the quantization one-forms associated with each group, and GQl1
0 and GQl2

0

their respective characteristic subgroups, the two symplectic spaces G˜
1 /(GQl1

03U(1)) and

G̃2 /(GQl2
03U(1)), with symplectic forms given byvl

1
0 and vl

2
0 such thatdQl

1
05p* vl

1
0 and

dQl
2
05p* vl

2
0, respectively, are symplectomorphic if there exists hPG such that

l1
05Coad~h!l2

0 , ~9!

the symplectomorphism being given by Ad(h):

dQl
1
05Ad~h!* dQl

2
0. ~10!

Proof: It simply remains to prove that the two spacesG̃1 /(GQl1
03U(1)) and G̃2 /(GQl2

0

3U(1)) are diffeomorphic. Since the extensions are trivial,G̃i , i 51,2 are isomorphic toG
3U(1), thereforeG̃i /(GQl i

03U(1))'G/GQl i
0 , i 51,2. If l1

05Coad(h)l2
0, thenGQl1

0 andGQl2
0

are conjugated subgroups by the adjoint action and this implies that the two spacesG/GQl i
0 , i

51,2 are diffeomorphic.
This suggests us to define the equivalence relation in@@j##0 in the following way.
Definition 1: Two coboundariesjl and jl8 with generating functionsl and l8, respectively,

belong to the same equivalence subclass@j# of @@j##0 if and only if the gradients at the identity o
the generating functions are related by

l085Coad~g!l0 , ~11!

for some gPG.
We shall denote by@j#l0 the equivalence class of coboundaries ‘‘passing through’’l0. The

equivalence relation introduced in this way will be named pseudo-cohomology, even thoug
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equivalence relation does not define a cohomology in the usual sense, and the subclass of~trivial!
central extensions defined by alljlP@j#l0 will be called the central pseudo-extension associa
with @j#l0.

The conditionl085Coad(g)l0 means thatl0 andl08 are related by the coadjoint action o
the groupG. Therefore,l0 and l08 lie in the same coadjoint orbit ofG in G* . A pseudo-
cohomology class is therefore directly associated with a coadjoint orbit inG* .

If l085l0, then jl , jl8P@j#l0. Thus, we can always choose a representative eleme
each subclass ‘‘linear’’ in the local coordinate system,jl0(g)5l i

0gi . If the local coordinates$gi%
are canonical, and if we restrict ourselves to canonical 2-cocycles~see Ref. 1!, then two co-
homologous 2-cocycles differ in a 2-coboundaryjl with l(g) linear in the canonical coordinates
Then pseudo-cohomology is a further partition of ‘‘linear’’ coboundaries into equivalence cla
through the coadjoint action of the groupG on G* ~for the trivial class, at the moment!.

However, the correspondence between pseudo-cohomology classes and coadjoint orb
Lie groupG is not onto. The relation is established in the following theorem.

Proposition 2: Pseudo-cohomology classes are associated with coadjoint orbits which s
an integrality condition: the symplectic 2-formv naturally defined on the coadjoint orbit by (4
has to be of integer class.

In fact, this integrality condition is required forjl0 to define a global coboundary onG;
nonintegral coadjoint orbits ofG cannot be related to central pseudo-extensions ofG, since they
do not define a proper~global! Lie group.

Proof: A ~pseudo-!centrally extended Lie group gives rise to a quantum manifold in the s
of geometric quantization~see Sec. II! when taking quotient by the characteristic subalgeb9

Therefore, as a consequence of the necessary and sufficient condition for the existenc
quantization of a given symplectic manifold~see Refs. 10 and 9!, the closed 2-form on the
coadjoint orbit is of integer class.

Let us see another way of looking at the integrality condition. The vectorl0 is an element of
G* and, therefore, it is a linear mapping fromG to R. It is easy to check that when restricted toG l0

~the Lie algebra of the isotropy groupGl0 of the coadjoint orbit passing throughl0), l0 defines
a one-dimensional representation of the latter. Then, the integrality condition on the coadjoin
parallels the requirement forl0 of being exponentiable~integrable! to a unitary character of the
groupGl0 ~note however that this remark resorts to the level of representation theory of the g
whereas the above-stated theorem involves only the Lie group structure!.

This relationship between integrality condition of the coadjoint orbit and ‘‘integrality’’ of
character defined byl0 reveals, in passing, that the coadjoint orbit method
Kostant–Kirillov,11,12 intended to obtain unitary irreducible representations of Lie groups u
~what in Physics is now known as! geometric quantization10 on coadjoint orbits of Lie groups, is
a particular case of the induced representation technique of Mackey.13

Let us denote byǦ the central pseudo-extension ofG, characterized byjl0. It defines a
central pseudo-extension ofG:

@X̌i
L ,X̌j

L#5Ci j
k ~X̌k

L1lk
0X0! , ~12!

whereX0 is the~central! generator associated with U~1! ~our convention is to takeX05 i I in any
faithful unirrep ofǦ). The left-invariant vector fields ofǦ ~denoted with check! are related to
those ofG by

X̌i
L5Xi

L1~Xi
Ll2l i

0!X0 , ~13!

with a similar relation for the right-invariant vector fields.
From this point of view, central pseudo-extensions are on the same footing as true~nontrivial!

central extensions, and we can employ with them the same techniques for obtaining~projective!
unirreps ofG ~especially for semisimple Lie groups!. Once a projective representation ofG
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~which is a true representation ofǦ, the pseudo-extended group! has been obtained in this way, i
order to obtain the true~nonprojective! representations ofG associated with it we simply redefin
the generators in the following way:

X̌i
L→X̌i

L1l i
0X05Xi

L1~Xi
Ll!X0 , ~14!

or, equivalently, redefine the functions of the Hilbert space carring the representation by mu
ing them by an appropriate factor.

B. Nontrivial classes

Let us consider now nontrivial cohomology classes@@j##Þ@@j##0 , in the case of groupsG
with nontrivial cohomology, or extended groupsG̃ which still admit further central extensions
that is, withH2(G̃ ,U(1))Þ0.

In order to proceed, a representative elementjP@@j## must be chosen. We can add toj a
coboundaryjl generated by a functionl, with nontrivial gradient at the identity ofG. The
resulting cocyclej85j1jl defines a new central extensionG̃ 8 of G isomorphic, from the
group-theoretical point of view, toG̃. The question is whether these pseudo-extensions ca
classified into equivalence classes leading to the same symplectic structures, as in the cas
trivial class of Sec. II A. The naive classification in coadjoint orbits of the groupG does not work
in this case~since there is a mixture of true cohomology and pseudo-cohomology!, and there is no
clue, at this level, of how the classification should be done.

The direct relation between pseudo-cohomology and coadjoint orbits obtained for the
class, allows us to resort to symplectic cohomology, as a tool for classifying symplectic stru
~see Sec. III!, to come in our help. In this framework, it will be shown that a classification
pseudo-cocyles in the nontrivial classes is possible and entails a slight generalization with r
to that of the trivial class, in the sense that the classification should be done using the de
coadjoint action~associated with the central extension determined by the nontrivial class w
considering!.

III. SYMPLECTIC COHOMOLOGY

In the preceding section we have seen how GAQ can be used to define symplectic stru
out of a Lie group, naturally leading to the notion of pseudo-cohomology. In this section
review a different approach to the discussion of the symplectic structures defined in terms o
groupG. First, we briefly recall the fundamentals of the so-called symplectic cohomology oG.
The rationale for this structure can be found in the context of momentum mapping~Ref. 3 and
below!. Second, we use this mathematical structure to classify a family of symplectic s
which generalize the ones obtained by the coadjoint action of a groupG.

A. Lie group cohomology. Symplectic cohomology

Given a Lie groupG, an Abelian Lie groupA and a~left! actionL of G on A, we define the
n-cochainsgn as mappings

gn :G3¯

n)3G→A, ~15!

in such a way that the standard sum of mappings

~gn1gn8!~g1 ,...,gn!5gn~g1 ,...,gn!1gn8~g1 ,...,gn! ~16!

endows the space ofn-cochains, denoted asCL
n(G,A), with the structure of an Abelian group. Th

coboundary operatorsd:CL
n(G,A)→CL

n11(G,A) are defined by
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~dgn!~g1 ,...,gn ,gn11![L~g1!~gn!~g2 ,...,gn ,gn11!

1(
i 51

n

~21! ign~g1 ,...,gigi 11 ,gi 12 ,...,gn11!

1~21!n11gn~g1 ,...,gn!, ~17!

satisfying the nilpotency conditiond+d50. We can define the subspaces ofn-cochainsZn

[Ker(d),CL
n(G,A), whose elements areclosed n-cochainsand Bn[Im(d),CL

n(G,A), whose
elements aren-coboundaries. Two exactn-cochains are equivalent if their difference is a coboun
ary. Cohomology groups are defined by this equivalence

HL
n~G,A!5

Zn

Bn ~18!

and their elements are calledn-cocycles. For the first cohomology groups the expression of~17!
takes the form

~dg0!~g!5L~g!g02g0 ,

~dg1!~g1 ,g2!5L~g1!g1~g2!2g1~g1g2!1g1~g1!,

~dg2!~g1 ,g2 ,g3!5L~g1!g2~g2 ,g3!1g2~g1 ,g2g3!2g2~g1g2 ,g3!2g2~g1 ,g2!. ~19!

As we will see below, the generalization of the coadjoint action and its associated
naturally involves a cohomological structure. In order to address this point, we conside
general elements above and chooseA5G* andL5Coad, i.e., the coadjoint action ofG on G* .
This choice leads in particular to the cohomology groupHCoad

1 (G,G* ), where a 1-cocycleg:G
→G* is characterized by (dg[0)

g~g8g!5Coad~g8!g~g!1g~g8!, ~20!

meanwhile a 1-coboundary has the form (Dm[dm)

Dm5Coad~g!m2m, gPG,mPG* . ~21!

Symplectic cohomologyHS(G,G* ) is defined out of this cohomology group by restricting t
1-cocycles to functionsg which satisfy the following antisymmetry condition on its differenti
gT:

gT~e!~X,Y![gT~e!•X~Y!,
~22!

gT~e!~X,Y!52gT~e!~Y,X! ;X,YPG.

The reason for this condition will be apparent in the next section.
For the sake of completeness, we mention that the cohomology groupH2(G,U(1)) wefound

in the preceding section and which classifies the central extensions of the Lie groupG, is obtained
by settingA5U(1) andL as the trivial representation in the general construction above of
group cohomology. Second and third lines in~19! then define the expression of a coboundary a
the cocycle condition.

B. Deformed coadjoint orbits

As we have seen in Sec. II A, orbits of the coadjoint action of a groupG on its coalgebraG*
constitute a class of symplectic manifolds characterized in terms of group-theoretical stru
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Symplectic cohomology provides a way of introducing a notion ofaffine-deformationsof coad-
joints actions which allow us to generalize the notion of coadjoint orbit. Defining the map
g°Coadg(g)

Coadg~g!m0[Coad~g!m01g~g!, m0PG* , ~23!

the condition for this expression to actually define a~left! action of G on G* , i.e.,
Coadg(g8g)m5Coadg(g8)(Coadg(g)m), reduces to expression~20!, which is simply the co-
cycle condition inHS(G,G* ).

On the other hand, and denoting the orbit ofCoadg through the pointm0PG* by Orbg(m0),
we note thatg functions which differ by a coboundary,~21!, define the same set of orbits. In fac
since

Coadg1Dm
~g!m05Coadg~g!m01Coad~g!m2m5Coadg~g!~m1m0!2m, ;gPG,;m0PG* ,

~24!

we realize thatOrbg1Dm
(m0) andOrbg(m01m) coincide modulo a translation bym. Therefore,

if we allow m to vary on G* , each element inHCoad
1 (G,G* ) characterizes a family of orbits

~modulo translations! obtained from the deformed coadjoint action onG* .
Finally, the antisymmetry condition ongT(e) is necessary in order to define a symplec

structure onOrbg(m). If we define

G~X,Y![gT~e!•X~Y! ~25!

the following theorem follows~Ref. 3!.
Theorem: The orbitOrbg(m),G* admits a symplectic formv which is pointwise given by

vn~Xn ,Yn!5n~@X,Y# !1G~X,Y!, nPOrbg~m!,Xn ,YnPTn ~Orbg~m!!, ~26!

whereXPG is related toXnPTn (Orbg(m)) by Xn5coadg(X)n and analogously forYn andY
@wherecoadg[(Coadg)T(e)].

C. Convergence with the problem of central extensions

In Sec. II the techniques of GAQ were used in order to define a specific symplectic stru
that could be used as the support for the Hamiltonian description of a classical system
algorithm started from a U~1!-centrally extended Lie groupG̃, where the 2-cocycle which define
the central extension permits the identification of the set of variables building the sought
space~for concreteness, those coordinates associated with nonvertical vector fields whic
absent from the characteristic module ofQ[uL(z)). However, the object classifying the nonis
morphic U~1!-central extensions ofG, H2(G,U(1)), is not fineenough in order to classify the
specific symplectic spaces, since some ambiguity still remains linked to the choice of the p
lar coboundary for the 2-cocycle.

In an analogous manner, the approach followed in this section, based on deformed co
actions, permits the classification of the different classes of deformed coadjoint orbits b
elements ofHS(G,G* ), but not the characterization of individual symplectic spaces.

Therefore, the crucial mathematical structures of both approaches, the groupsH2(G,U(1))
andHS(G,G* ), respectively, need to be refined in order to account for such specific symp
manifolds.

Even at this intermediate step, a nontrivial convergence occurs between the conce
different problems of classifying the central extensions of a given Lie groupG by U~1!, on the one
hand, and the affine deformations of the coadjoint actions onG* , on the other hand. In fact, th
same object classifies the solutions to both problems, sinceH2(G,U(1))'HS(G,G* ).

Although we shall dwell on this point in Sec. III C 2, we can outline this equivalence
noting that, for simply connected groups, the isomorphismH2(G,U(1))'H2(G,U(1)) issatisfied
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and therefore it is enough to discuss the equivalence at the infinitesimal level.~On behalf of
concision, we avoid a presentation of Lie algebra cohomology and refer the reader to st
references like Ref. 14. We just note that for simply connected groups, Lie algebra cohom
emerges as an infinitesimal version of Lie group cohomology.! In fact, the cocycle condition~20!
implies the following condition on its differentialG(X,Y):

G~@X,Y#,Z!1G~@Y,Z#,X!1G~@Z,X#,Y!50, ~27!

which, together with the antisymmetry condition~22!, G(X,Y)52G(Y,X) defines a 2-cocycle in
H2(G,U(1)) @from the point of view of the central extensions of the Lie algebraG ~27! is simply
the Jacobi identity for the central generator in the Lie algebra; see Ref. 14#. Likewise the infini-
tesimal expression of the coboundary condition~21! implies

Gcob~X,Y!5m~@X,Y# ! for some mPG* , ~28!

which is the coboundary condition inH2(G,U(1)).
In Sec. II, pseudo-extensions have been introduced as the element necessary to accoun

specific symplectic manifolds, that we can construct out of a Lie groupG via a central extension
of it. However the discussion was carried out only for the trivial class ofH2(G,U(1)). For the
nontrivial cohomology classes the analysis was not so straightforward. However the conve
with the approach based on symplectic cohomology, and which aims directly at the probl
defining symplectic structures completely in terms of a Lie group, sheds a new light o
problem. From this perspective, the characterization of a specific symplectic structure for~in
general nontrivial! cohomology classg of H2(G,U(1))'H2(G,U(1)), simply parallels the char-
acterization of a particular orbit in the family of orbits defined byCoadg .

1. Singularization of coadjoint orbits in symplectic cohomology

In order to singularize a specific symplectic manifold out of the family defined by a coc
in HS(G,G* ), i.e., in order to characterize a particular deformed coadjoint orbit, we have
options.

~i! We can fix a pair (g,m0), whereg specifies the cocycle which defines the deformation
the action andm0 precises a point in the orbit. In this case, varying the second entry
scan all the possible orbits.

~ii ! Alternatively, we can fix the pointm0 in the coalgebra and vary instead the representa
of the cocycleg by modifying the coboundary,Dm . Since the coalgebra is a linear spac
there is a canonical choice for the fixed pointm0 : the zero vector. We can see from
expression~24! that the set of spaces constructed this way is the same that the one d
with option ~i!, although translated with respect to them in such a way that all these s
share the zero vector inG* .

However both characterizations are redundant since different pairs (g,m0), or alternatively
different specific representativesg1Dm , give rise essentially to the same orbits. Therefore i
necessary to establish an equivalence relationship in order to eliminate this ambiguity. The
sis of Sec. II A. establishing the relationship between specific symplectic structures and p
cohomology understood as a refinement of a true cohomology, suggests us to choose the
terization ~ii ! for the deformed orbits. In fact, it directly leads to a refinement of symple
cohomology, intrinsically tied to group cohomology.

In this sense we have to determine under which conditions two coboundariesDm and Dm8
generate the same orbit. A direct computation shows that if there exists an elementhPG such that
m5Coadg(h)m8 ~that is, if m andm8PG* belong to the sameg-orbit! then

Coadg1Dm
~g! 05Coadg1Dm8

~gh! 01m82m ;gPG. ~29!
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Sincem82m is independent ofg, spaces spanned by the action ofCoadg1Dm
and Coadg1D

m8

through the zero inG* coincide, modulo a rigid translation. These orbits are trivially symplec
morphic, the symplectomorphism being this translation inG* .

Summarizing with the language of symplectic cohomology, individual symplectic space
sociated with deformed coadjoints actions are classified by refinement of symplectic cohom
in such a way that two coboundariesDm andDm8 are equivalent ifm andm8 belong to the same
g-orbit. In other words, these individual symplectic spaces are classified by elementsmPG*
modulo the correspondingg-deformed coadjoint action. Note the similarity with Definition 1,
which it directly generalizes in the context of deformed coadjoint orbits.

2. Pseudo-cohomology from symplectic cohomology

In this section we see in a more systematic way the close relation between ps
cohomology and symplectic cohomology for the nontrivial classes (H2(G,U(1))Þ0). The idea is
to investigate how the coadjoint actionCoadof G on G* is modified by a central extension. Th
result is that whenG is centrally extended by a 2-cocyclej, the coadjoint action of the extende
groupG̃, denoted byCoad̃, acting onG̃* 5G* 3R, turns out to be

Coad̃~ g̃!m̃5~Coad~g!m1mzF~g!,mz!, ~30!

where g̃5(g,z)PG̃ , zPU(1) and m̃5(m,mz)PG̃* . Here F(g)PG* , and it is related to the
2-cocylej through the quantization 1-formu, by Fi(g)5 i X̃

i
RQ. These functions are nothing othe

than the Noether invariants of the classical theory.9 Observe thatCoad̃(g̃) does not depend onz,
and thatmz does not change by this extended action@these two facts are related to the cent
character of U~1!#. Since the casemz50 reproduces the original coadjoint actionCoadof G, let
us supposemzÞ0.

From ~30! it can be derived thatCoad̃(g) can be restricted to the foliations ofG̃* of constant
mz , which can be identified withG* . SinceCoad̃ is an action, so it is its restriction, and th
implies thatF(g) must verify the condition~this relation can also be checked by direct comp
tation!:

F~g8g!5Coad~g8!F~g!1F~g8!. ~31!

Therefore Noether invariants are nothing other than 1-cocycles for the coadjoint actionCoad
of G. Even more, they are symplectic, since its differential at the identity is precisely the
algebra 2-cocycle. Therefore,Coad̃ can be identified with a deformed coadjoint actionCoadg ,
with g(g)5mzF(g).

Without losing generality, we can takemz51. Let us see what happens toCoadg when we
add toj a coboundaryjl generated byl(g). A simple calculation shows thatg changes tog8
5g1gl , wheregl is given by

gl~g!5Coad~g!l02l0. ~32!

Surprisingly, gl is a symplectic coboundary, associated withl0PG* , and, what is more
important, it depends just onl0, not on the particular choice ofl. This simple relation has dee
consequences since it provides the close relation between pseudo-cocycles and symplect
mology. It also guides us in the correct definition of subclasses of pseudo-cocycles for the
trivial case, using the characterization of single coadjoint orbits found in the symplectic coh
ogy setting~see Sec. III C 1!.

According to this, and since the quantization 1-formQ for any central extensionG̃ charac-
terized by the 2-cocyclej always verifiesQue5(0,0,...,1) ~that is, m50 andmz51), we can
singularize a deformed orbit inG* by considering

Coad̃~ g̃! Que5~Coadg~g! 0,1!5~Coad~g! 01F~g!,1!5~F~g!,1!. ~33!
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That is, this orbit is the image of the Noether invariants. This fact simply affirms that Noe
invariants parametrize classical phase spaces.

The question now is that if we add to the 2-cocyclej a pseudo-cocyclejl generated byl(g)
with gradient at the identityl0, does it define a new deformed coadjoint orbit? Can we define
equivalence relation among pseudo-cocycles as for the case of the trivial class?

Again, from the symplectic cohomology framework~see Sec. III C 1!, we have the answer
First we define the following.

Definition 2: Two coboundariesjl and jl8 with generating functionsl and l8, respectively,
define two cocyclesj1jl , j1jl8 belonging to the same equivalence subclass@j# of @@j## if and
only if the gradients at the identity of the generating functions are related by

l085Coadg~g!l0 , ~34!

for some gPG, whereCoadg stands for the deformed coadjoint action, which is equivalent to

coadjoint actionCoad̃ of G̃ on G̃* 5G* 3R, where G̃ is the central extension associated wi
the two-cocyclej.

According to this definition, equivalent pseudo-extensions~for the nontrivial class@@j##! are
determined by generating functions whose gradient at the identity lie in the same coadjoint o
G̃.

The ultimate justification of this definition is the following proposition.
Proposition 3: Given a Lie group G and a 2-cocyclej on G, consider the two coboundarie

jl1
andjl2

with generating functionsl1(g) andl2(g). Define the central extensions G˜
1 and G̃2

characterized by the two-cocyclesj1jl1
andj1jl2

, respectively, and construct the quantizatio

1-formsQ15Q1Ql1
and Q25Q1Ql2

, following expressions~2! and ~3!. The two symplectic

spaces G˜ 1 /(GQ1
3U(1)) and G̃2 /(GQ2

3U(1)), with symplectic formsv1 and v2 , such that

dQ15p* v1 anddQ25p* v2 , respectively, are symplectomorphic if there exists hPG such that

l1
05Coadg~h!l2

0 , ~35!

the symplectomorphism being given by Ad˜(h̃),

dQ15~Ad̃~ h̃!!* dQ2 , ~36!

where h̃is such that p(h̃)5h, with p:G̃ →G the canonical projection.
Proof: Even though the result can be shown by direct calculation, the most straightfor

derivation comes from splitting the central extension into two steps. First, the central extens
j alone is constructed, and this groupG̃ is taken as the departing point for a second triv
extension byjl1

and jl2
. The study of the trivial class inG̃ amounts for the study of tha

nontrivial class inG characterized by the cocyclej. At this point we can apply Proposition 1 to th
trivial extension ofG̃ and then take advantage of the identification between the nontrivial
(G* -component inG̃* ) of Coad̃ in G̃ andCoadg in G, which follows from expression~30! and
its subsequent discussion. This leads directly to the claimed result.

As in the case of the trivial class, the correspondence between pseudo-cohomology cla
@@j## and ‘‘deformed’’ coadjoint orbits inG* is not onto. Only when we demand these coadjo
orbits to satisfy the integrality condition~that is, to be quantizable!, the correspondence with
pseudo-cohomology classes is one-to-one. The proof of this statement is the same as in th
case, see Ref. 9.

IV. SIMPLE PHYSICAL EXAMPLES

For the sake of completeness we shall include some simple examples of relevant elem
physical phase spaces which can be obtained along the general lines here drawn.
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A. The Poincare´ group in 1 ¿1 dimensions

The simplest physical example of a phase space associated with a pseudo-cocycle corr
to the 111 dimensional relativistic particle. The ordinary Poincare´ group in 311 dimensions is
the semidirect product of the Lorentz group~SO~3,1!! by the four-dimensional space–time tran
lations. In 111 dimensions, any elementg can be parametrized by two space–time translati
x0, x, and the boost velocityv[c thx in SO~1,1!, or u5gv, whereg5 1/A12v2/c2.

We should comment that although the standard 311 Poincare´ group has trivial cohomology
the 111-Poincare´ group admits a nontrivial cocycle associated with the space–time transl
subgroup. However, we shall disregard this cocycle, which has no 311 dimensional analogue
~that is, we shall restrict ourselves to the trivial cohomology class!. We dwell, therefore, on the
setting of Sec. II A.

The composition law, in terms of the parametrization (x0[ct,x,u), is

x095x081g8x01
u8

c
x,

x95x81g8x1
u8

c
x0,

u95gu81g8u. ~37!

Right- and left-invariant vector fields are easily obtained by deriving the group law,

Xx0
L

5g
]

]x0 1
u

c

]

]x
, Xx0

R
5

]

]x0 ,

Xx
L5g

]

]x
1

u

c

]

]x0 , Xx
R5

]

]x
,

Xu
L5g

]

]u
, Xu

R5g
]

]u
1

x0

c

]

]x
1

x

c

]

]x0 . ~38!

The Lie algebraG of the 111 Poincare´ group is the one satisfied by, say, left-invariant vec
fields,

@Xx0
L ,Xx

L#50,

@Xx0
L ,Xu

L#52
1

c
Xx

L , ~39!

@Xx
L ,Xu

L#52
1

c
Xx0

L ,

and the Casimir for this algebra isĈ5(Xx0
L )22(Xx

L)2.
The left-invariant 1-forms~dual to the set of left-invariant vector fields! are given by

uL(x0)5g dx02
u

c
dx,

uL(x)52
u

c
dx01g dx,

uL(u)5
1

g
du . ~40!
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We can parametrize a vectorl0 in G* by its expansion coefficients in the basis associa
with, say, the left-invariant forms on the group,uL( i ), at the identitye of the group. That is,l0

52P0uL(x0)ue1PuL(x)ue2KuL(u)ue ~the minus signs are chosen for convenience, to reprod
standards results!.

We shall construct all possible pseudo-extensions of the 111 Poincare´ group by means of an
arbitrary pseudo-cocycle generated by a function with nontrivial gradientl0PG* at the identity.
Let us define the generating functionl(g)52P0x01Px2Ku, whose gradient at the identity i
l0 ~note that we have chosen a linear function in the coordinates!.

The question is how many different~nonequivalent! pseudo-extensions can we construct
the 111 Poincare´ group. The answer, as we already know, is given by the different coad
orbits in G* .

The generating functionl(g) previously introduced defines a pseudo-cocyclejl5l(g8* g)
2l(g8)2l(g),

jl~g8,g!52P0S ~g821!x01
u8

c
xD1 PS ~g821!x1

u8

c
x0D2 K~~g21!u81~g821!u!.

~41!

This defines a central pseudo-extensionG̃ of G by U~1!, with group law given by~37!
together with

z95z8zei jl(g8,g). ~42!

Left- and right-invariant vector fields for the pseudo-extended group are (X05]/]f, f5
2 i lnz)

X̃x0
L

5g
]

]x0 1
u

c

]

]x
1S 2P0~g21!1P

u

cDX0 ,

X̃x
L5g

]

]x
1

u

c

]

]x0 1S 2P0

u

c
1P~g21! DX0 ,

X̃u
L5g

]

]u
1K~g21!X0 ,

~43!

X̃x0
R

5
]

]x0 ,

X̃x
R5

]

]x
,

Xu
R5g

]

]u
1

x0

c

]

]x
1

x

c

]

]x0 1S 2P0

x

c
1P

x0

c
2K~g21! DX0 .

The Lie algebraG̃ of the pseudo-extended group is

@X̃x0
L ,X̃x

L#50,

@X̃x0
L ,X̃u

L#52
1

c
~X̃x

L1PX0!,

@X̃x
L ,X̃u

L#52
1

c
~X̃x0

L
2P0X0! . ~44!
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The quantization 1-form is given by

Q5
dz

i z
2P0uL(x0)1PuL(x)2KuL(u)2dl

5
dz

i z
2P0~uL(x0)2dx0!1P~uL(x)2dx!2K~uL(u)2du!, ~45!

where uL( i ) are given by Eq.~40!. The characteristic subalgebra is generated byGQ5^P0X̃x0
L

1PX̃x
L&.

The Noether invariants are defined asFi5 i X̃
i
RQ, which can be rewritten asFi5 i X

i
RuL( j )l j

0

2l i
0 , wherei X

i
RuL( j ) turn out to be the matrix elements associated with the coadjoint action.

is, for the case of trivial cohomology~or the trivial cohomology class!, Noether invariants coincide
with symplectic coboundariesgl @see Eq.~32!#. In this case, the coadjoint action is given by t
matrix

Coad~x0,x,u!5S g 2
u

c
0

2
u

c
g 0

gx

c
2

ux0

c2

gx0

c
2

ux

c2 1

D . ~46!

The Noether invariants prove to be, then

Fx052~g21!P02
u

c
P,

Fx5
u

c
P01~g21!P,

Fu52S gx

c
2

ux0

c2 D P01S gx0

c
2

ux

c2 D P. ~47!

The Noether invariants are not independent but, rather, they satisfy the relation

~Fx02P0!22~Fx1P!25P0
22P2[C. ~48!

The functionC:G* →R is named a Casimir function, and it is invariant under the coadjoint act
Casimir functions are closely related to Casimir operators, in fact they can be consider
classical ~commutative! version of the Casimir operators. Since they are invariant under
coadjoint action, coadjoint orbits are included in the level sets of the Casimir functions.

With the help of the Casimir functions we can obtain the coadjoint orbits inG* avoiding their
direct computation, which can be rather involved. For the case of the 111 Poincare´ group there
is a single Casimir function, the one already foundC5P0

22P2, whose level sets are conics sinc
it is a quadratic function. We should only care about the fact that level sets can be discon
~coadjoint orbits of connected Lie groups are connected! or, even nondifferentiable manifolds. I
these cases, the level set is the disjoint union of two or more~even infinite! coadjoint orbits.

Three cases should be distinguished:C.0,C,0, or C50.

~1! In the caseC.0 we haveP056AC1P2 andKPR. This is the translation in theK axis of
the upper and lower hyperbolas, with vertices (6AC,0,K), respectively.
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~2! In the caseC,0 we haveP56AC1P0
2 andKPR. This is the translation in theK axis of

the left and right hyperbolas, with vertices (0,6A2C,K), respectively.
~3! In the caseC50 we haveP056P and KPR. This is the union of four half-planes

(6P,P,K) with eitherP.0 or P,0, andKPR, and the union of zero-dimensional coadjoi
orbits (0,0,K), KPR.

Physically, the caseC.0 corresponds to the mass shell conditionP0
22P25C5m2c2, rep-

resenting relativistic particles with rest massm56AC/c, or particles with positive and negativ
energiesP056Am2c21P2 ~they can be also interpreted as particles moving forward and b
ward in time!. The caseC,0 corresponds to tachyons with ‘‘imaginary mass’’m5 AC/c moving
in the right and left directions~with P.0 or P,0, respectively!. And the caseC50 corresponds
to photons moving forward and backward in time and in the right and left direction.

When passing to 311 dimensions, and discarding the spin, the caseC.0 remains essentially
the same, the two sheets~for each value ofC) of the mass shell condition. The caseC,0, due to
rotations, become a single connected orbit for each value ofC ~a particle moving to the right can
be converted to a particle moving to the left by a rotation!. In the caseC50, the four half-planes
become two coadjoint orbits, associated with the future and past light cones. The zero-dime
orbits (0,0,K) with KÞ0 do not have a counterpart in 311 dimensions@the origin ~0,0,0! is
always a zero dimensional orbit for any Lie group#.

Now we select a particular pointl0 in each coadjoint orbit, which will be used to define
pseudo-extension of the 111 Poincare´ group~different choices ofl0 in the same coadjoint orbi
will lead to equivalent pseudo-extensions!. For the caseC5m2c2.0, the easiest choice isl0

5(6mc,0,0) @note that, by our sign convention, particles with positive energy are associated
(2mc,0,0)]. For thecaseC,0, we can usel05(0,6A2C,0), and for the caseC50 we use
l05(6n,6n,0) with n.0.

Finally, all coadjoint orbits satisfy the integrality condition, therefore there is a one-to
correspondence between coadjoint orbits and pseudo-cohomology classes for this group.

Group contraction Poincare ´\Galileo
Coming back to the original motivation for pseudo-cohomology in terms of Ino¨nü–Wigner

contractions, we shall present an example of generation of cohomology from pseudo-cohom
by means of group contraction.

In general, given a pseudo-cohomology class and the corresponding quantization groG̃,
with quantization 1-formQ, an Inönü–Wigner contraction with respect to the characteristic s
group GQ of Q automatically leads to a contracted groupG̃c which proves to be a nontrivia
extension by U~1! of the contractionGc of G by the same subgroupGQ .

Let us consider the pseudo-cohomology class of the 111 Poincare´ group associated with the
upper sheet of the mass-shellP0

22P25m2c2. We can choose as representative pointl0

5(2mc,0,0), and consider the pseudo-extension associated with the pseudo-cocyclejl with
generating function,

l~g!52mcx0, ~49!

so that

jl~g8,g!52mc~x092x082x0!52mcS ~g821!x01
u8

c
xD52~p082mc!x02p8x , ~50!

wherep[mu andp0[Am2c21p25mcg.
We should realize that in the nonrelativistic limit,c→`, jl is well-behaved, in fact

jl→jm[2mv8x2 1
2 mv82t , ~51!

which coincides with the true cocycle of the 111 version of the Galilei group~64! ~see the next
section!, whereasl, itself, proves to be ill-defined.
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Particularizing~43! for this case we have the left-invariant vector fields,

X̃x0
L

5g
]

]x0 1
u

c

]

]x
2mc~g21!X0 ,

X̃x
L5g

]

]x
1

u

c

]

]x0 2muX0 ,

X̃u
L5g

]

]u
~52!

with commutation relations

@X̃x0
L , X̃x

L#50,

@X̃x0
L , X̃u

L#52
1

c
X̃x

L ,

@X̃x
L , X̃u

L#52
1

c
~X̃x0

L
2mcX0! , ~53!

and it should be again remarked that, under the nonrelativistic limit,~53! goes to the 111 version
of the Galilean algebra~68!.

The left-invariant 1-formQ is

Q5p dx2~p02mc!dx01
dz

i z
, ~54!

and its differential

dQ5dp∧dx2
p

p0 dp∧dx0 ~55!

is a presymplectic form that, taking quotient by the characteristic subalgebra, becomes th
plectic form on the upper sheet of the mass-shellP0

22P25m2c2, i.e., the co-adjoint orbit of mas
m in the co-algebra of the Poincare´ group. The symplectic structure also goes, in the limic
→`, to the symplectic structure of the 111 version of the Galilei group~69! and ~70!.

B. Phase space of the nonrelativistic spinning particle

The next example corresponds to a family of phase spaces associated with a refineme
nontrivial cohomology class in the 311 Galilei group. In order to illustrate the ideas in Sec. I
we first discuss the classification of these spaces as orbits of deformed coadjoint actions@in the
spirit of option ~ii ! in Sec. III C 1#, and then we present the results in the framework of cen
extensions~Sec. III C 2!.

1. Deformed coadjoint orbits

Let us explicitly write the composition law of the 311 Galilei group,

t95t81t,

xW 95xW 81R~eW 8!xW1vW 8t,
~56!

vW 95vW 81R~eW 8!vW ,

eW 95A12
e82

4
eW 1A12

e2

4
eW 82

1

2
eW 83eW ,
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where the rotation matrixR(eW ) has the explicit form

R~eW !5~12e2/2!I 2A12
e2

4
eW 3 •1

1

2
~eW • !eW . ~57!

We can parametrize a vectorm in the coalgebra by its expansion coefficients in the basis ass
ated with the left-invariant forms,uL( i ), at the identity elemente of the group. That is,m
52EuL(t)ue1Piu

L(xi )ue2Qiu
L(v i )ue1Jiu

L(e i )ue . The coadjoint action,Coad(t,xW ,vW ,eW ), has then
the expression

~2E8,PW 8,2QW 8,JW8!5Coad~ t,xW ,vW ,eW !~2E,PW ,2QW ,JW !

E85E1vW •R~eW !PW ,

PW 85R~eW !PW ,
~58!

QW 85R~eW !QW 2tR~eW !PW ,

JW85R~eW !JW1xW3R~eW !PW 2vW 3R~eW !QW .

As discussed previously, the study of the symplectic manifolds obtained by deforming this
joint action demands the introduction of a symplectic cocycleg. In the case of the 311 Galilei
group, there exists a one-dimensional family~vector space! of nontrivial cohomology classes. A
representative~a basis! for this family can be chosen as3

gm~ t,xW ,vW ,eW !5m~2 1
2vW •vW ,vW ,2xW1vW t,xW∧vW !, ~59!

where the parameterm will be related to the mass of the free particle. In order to classify
symplectic manifolds, we construct different representatives of the symplectic cocycle by
correctinggm with a symplectic coboundaryDm and, then, applyingCoadgm1Dm

to the 0 vector.
Choosing as the generator of the coboundary the vectorm5(2E0,0,0,jnW ), wherenW is an arbitrary
unit vector andE0 is considered the ‘‘internal energy,’’ we find

Dm5Coad~ t,xW ,vW ,eW !~2E0,0,0,jnW !2~2E0,0,0,jnW !5~0,0,0,jR~eW !nW 2 jnW !. ~60!

The orbits are then generated by the action

Coadgm1Dm
~ t,xW ,vW ,eW !05S 2

m

2
vW •vW ,mvW ,2m~xW2vW t !,mxW∧vW 1 jR~eW !nW 2 jnW D ,

;t,xW ,vW ,eW . ~61!

From this expression, one can characterize the orbits as subspaces inR1131313 defined by the
constraints

E5
1

2m
PW 2, ~JW2~mxW∧vW 2 jnW !!25 j 2. ~62!

In the casej Þ0, this is an eight-dimensional space, which can be seen as the topological p
of R313 parametrized by the position and momentum of the particle, (QW ,PW ), times a sphere of
radius j related to aspinningangular momentum. These orbits could be regarded as the clas
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phase space for the quantization of the free particle with massm and spinj . In the casej 50, the
second constraint expands into three,JW5xW∧mvW , giving rise to the six-dimensional phase space
a particle without spin.

Finally, we note that these spaces in fact exhaust all possible orbits. This can be seen b
the result that orbits are classified by elementsmPG* modulo g-orbits: Dm and Dm8 give rise
~modulo a rigid translation! to the same orbit if and only if the relationm85Coadg(h)m holds for
someh. In our case,m5(2E0,0,0,jnW ), and denotingh5(t,xW ,vW ,eW ), we find

m85S 2E02
m

2
vW •vW ,mvW ,2m~xW2vW t !, jR~eW !nW 1mxW∧vW D . ~63!

Under free variation of the parameters in this expression,R10 is fully spanned. In addition, noting
that the parameterE0 simply induces a rigid translation of the orbits, we conclude thatm
5(0,0,0,jnW ) covers all possible different cases up to symplectomorphism~in fact, it suffices with
varying j , the direction ofnW being irrelevant!.

2. Quotient spaces in the extended Galilei group

We now study the way in which this family of symplectic spaces parametrized byj , emerges
from pseudo-cohomology classes. First, the Galilei group must be extended by introducing
group variablez. The composition law~56! is completed with

z95z8zei jm(g8,g)ei j j (g8,g) ,

wherejm(g8,g) is the ‘‘standard’’ cocycle given by

jm~g8,g!52mvW 8•R~eW8!xW2 1
2 mvW 82t , ~64!

and j j (g8,g) is the pseudo-cocycle generated by the function of the rotation parameters~with
nontrivial gradient at the identity!

l j~g![ jnW •eW . ~65!

Again, nW is an arbitrary unit vector in the ‘‘spin-quantization direction.’’ In this way, the expl
law for the parameterf[2 i Logz is

f95f81f2mS vW 8•R~eW8!xW1
1

2
vW 82t D

1 jnW •SA12
e82

4
eW 1A12

e2

4
eW 82

1

2
eW 83eW2eW 82eW D . ~66!

The left-invariant vector fields are straightforwardly computed,
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X̃t
L5

]

]t
1vW •

]

]xW
2

1

2
mv2X0 ,

X̃xW
L5S ]

]xW
2mvW X0D •R~eW !,

X̃vW
L5

]

]vW
•R~eW !,

X̃eW
L5A12

e2

4

]

]eW
2

1

2
eW 3

]

]eW
1 j S SA12

e2

4
21D nW 2

1

2
eW 3nW DX0 ,

X̃f
L 5

]

]f
[X0 , ~67!

providing the following nontrivial commutators:

@X̃e i
L , X̃e j

L
#5h i j .

k~X̃ek
L

1 jnkX0!,

@X̃t
L , X̃v i

L
#52X̃xi

L , @X̃e i
L ,X̃xj

L
#5h i j .

kX̃xk
L ,

@X̃xi
L , X̃v j

L
#5md i j X0 , @X̃e i

L ,X̃v j
L

#5h i j .
kX̃vk

L .

~68!

Again, from~67!, the precontact 1-formQ and the presymplectic 2-form dQ can be derived, with
the result

Q5mvW •dxW2
1

2
mv2 dt1

~nW 3SW !•dSW

j 1SW •nW
1

dz

i z
, ~69!

dQ5m dvW ∧dxW2mvW •dvW ∧dt1
nW •~dSW ∧

3

dSW !

2nW •SW
, ~70!

where we have introduced the ‘‘spin’’ parameterSW [ jR(eW )nW ~which is related to Noether invari
ants for the rotations group!.

Finally, the quotient of the Galilei group by the kernel of dQ leads to the 414 dimensional
symplectic manifolds with the topologyR33R33S2, for j Þ0, and toR33R3, for j 50. It must be
stressed that the half-integral value of the spin,j , is associated with the winding number of th
applicationeil j : SU(2)→ U(1), which generate the cocycleei j j , where SU~2! is the universal
covering of the rotation subgroup, SO~3!.

We can make explicit contact with the deformed coadjoint orbit approach, by illustratin
formula ~33!, where F(g)5(F1(g), . . . ,F10(g))5( i X̃

1
RQ, . . . ,i X̃

10
R Q). Calculating the right-

invariant vector fields,

X̃t
R5

]

]t
,

X̃xW
R5

]

]xW
,
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X̃vW
R5t

]

]xW
1

]

]vW
2mxWX0 ,

X̃eW
R5xW3

]

]xW
1vW 3

]

]vW
1A12

e2

4

]

]eW
1

1

2
eW 3

]

]eW
1 j S SA12

e2

4
21D nW 1

1

2
eW 3nW DX0 ,

X̃f
R5

]

]f
[X0 , ~71!

we obtain

F~ t,xW ,vW ,eW !5~ i X̃
1
RQ, . . . ,i X̃

10
R Q!5~2 1

2 mvW 2,mvW ,2m~xW2tvW !,xW∧mvW 1 jR~e!nW 2 jnW !,

which is exactly the set of representatives for the symplectic cocycle,gm(t,xW ,vW ,eW )1Dm , that we
have employed in the discussion of the symplectic orbits for the Galilei group.

V. FINAL REMARKS

In this paper we have established a neat characterization of the concept of pseudo-coho
as the mathematical object classifying the singleG-symplectic spaces that can be constructed
of a Lie groupG. The role of symplectic cohomology has been crucial in this analysis:~a! on the
one hand, it provides a clearer setting for the problem than the one based on central extensi~b!
on the other hand, it offers a straightforward bridge for the translation of the results int
language of central extensions.

This characterization is something more than an academic problem, since these sym
spaces constitute the classical phase spaces of the quantum theories associated with a fun
symmetry. Thea priori knowledge of the available classical structures provides a most valu
information in the study of the quantum theory. In this sense, and although this paper focu
the discussion of classical structures, a remark on their quantum counterparts is in order.
once the classification of symplectic spaces~deformed coadjoint orbits! associated with a symme
try group has been done by means of pseudo-cohomology, the question on the existe
nonequivalent quantizations corresponding to a given coadjoint orbitS naturally arises. As is
well-known from geometric quantization3 ~see also Ref. 10! such a variety of nonisomorphi
quantum manifolds is classified byp1* (S), i.e., the dual group of the first homotopy group of t
classical phase space. Although this problem goes beyond the scope of the present work, w
are interested in the classification of symplectic spaces, not in their quantization, let us rema
when considering multiply connected coadjoint orbits there exists the possibility of fin
pseudo-cocycles associated with the same coadjoint orbit and which leads to nonequivale
resentations~see the end of Sec. II A for the relation between pseudo-extensions and quantiz!,
hence to nonequivalent quantizations. These pseudo-cocycles are generated by nonho
functions having the same gradient at the identity. An example of this situation can be found
case of the SL~2,R! group which admits two nonequivalent classes of unirreps associated wit
multiply connected coadjoint orbits.15,16A precise analysis of this example can be seen in Ref.
As a consequence, the classification of nonequivalent representations associated with th
coadjoint orbit would require a further refinement in the characterization of pseudo-cohom
classes.

It should be stressed that although pseudo-cohomology with values on U~1! classifies quan-
tizableG-symplectic manifolds through the integrality condition, general classicalG-symplectic
manifolds can be regained by considering pseudo-cohomology with values on the additive
R, rather than U~1!. In fact, the Group Approach to Quantization recovers Classical Mechanic
the Hamilton–Jacobi version, by just considering the additive groupR instead of the multiplica-
tive one U~1!, the former being a local approximation to the latter.
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Integrable mixing of A nÀ1 type vertex models
S. Grillo and H. Montani
Centro Atómico Bariloche and Instituto Balseiro,
8400-S. C. de Bariloche, Rio Negro, Argentina
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Given a family of monodromy matricesT0 ,T1 , . . . ,TK21 corresponding to inte-
grable anisotropic vertex models ofAnm21 type, m50,1,. . . ,K21, we built up a
related mixed vertex model by means of gluing the lattices on which they are
defined, in such a way that integrability property is preserved. The gluing process is
implemented through one-dimensional representations of rectangular quantum ma-
trix algebras A(Rnm21

:Rnm
), namely, thegluing matriceszm . Algebraic Bethe an-

satz is applied on a pseudovacuum space with a selected basis and, for each ele-
ment of this basis, it yields a set of nested Bethe ansatz equations matching up to
the ones corresponding to anAm21 quasiperiodic model, withm equal to
minmPZK

$rankzm%. © 2004 American Institute of Physics.

@DOI: 10.1063/1.1704846#

I. INTRODUCTION

There exists a deep link between solvable two-dimensional vertex models in statistica
chanics and the quantum Yang–Baxter~YB! equation, where it appears as a condition for in
grability related to some basic quantities of the model.1,2 This linking relies on the existence of a
underlying symmetry, the quantum group,3,4 which comes to provide a nice algebraic framewo
to study these systems. There, solutions of the YB equation are representations of some q
relations defining the quantum group structure and, through a process called baxterization5 they
connect with the monodromy matrices of the model. From an algebraic point of view, baxt
tion makes an ordinary quantum group into a YB algebra. In this way, different representatio
a YB algebra lead to different integrable lattice models.

The main aim of this work is to present a gluing process of models associated to seve
algebras preserving the integrability of the total system. We restrict ourselves to those YB al
YBn , nPN, coming from baxterization of the quantum groups A(Rn),4 i.e., the duals of
Uq(sun).3 Beside algebras YBn , the gluing process also involves their rectangular generalizat
YBn,m , defined as the spectral parameter dependent versions of the rectangular quantum
algebras A(Rn :Rm).6 Here A(Rn :Rn)5A(Rn) and, accordingly, YBn,n5YBn . The process is
based on the existence of algebra homomorphisms YBn,m→YBn,p^ YBp,m , the cocomposition
maps, that generalize the concept of coproduct in a bialgebra. Such maps can be used to
representations of a given YB algebra YBn as a product of representations of another algeb
YBm , mÞn, in an analogous way as the standard coproduct is used for building up usual
representations. More precisely, given familiesTm andzm , m50,1,. . . ,K21, of representations
of YBnm

and YBnm21 ,nm
, respectively, cocomposition maps ensure operatorTmix5z0^̇ T0^̇¯

^̇ zK21^̇ TK21 is a representation of YBnK21
~symbol ^̇ will be defined in the next section!. If

eachTm defines the monodromy matrix of a given vertex model, we sayTmix is that of the mixed
model with gluing matriceszm .

We shall see that this procedure is compatible with the algebraic Bethe ansatz meth
solving these models, in the sense there exists a set of pseudovacuum vectors with res
which these techniques can be applied. Moreover, we show a set of nested Bethe ansatz e
identical to the ones corresponding to anAm21 quasiperiodic model, withm equal to
minmPZK

$rankzm%, is related to each one of these vectors.
20730022-2488/2004/45(5)/2073/17/$22.00 © 2004 American Institute of Physics

                                                                                                                

http://dx.doi.org/10.1063/1.1704846


the
gluing
B alge-
liza-

ls and

al

-

ote

d
ts

e
-

gets

,

2074 J. Math. Phys., Vol. 45, No. 5, May 2004 S. Grillo and H. Montani

                    
This work is organized as follows: in Sec. II, we review some well known facts on
connection between YB algebras and integrable lattice models; in Sec. III, we describe the
process and the gluing matrices as one-dimensional representations of the rectangular Y
bras; finally in Sec. IV, we prove integrability of mixed vertex models, showing that diagona
tion of mixed transfer matrices reduces to solve nested Bethe equations of a family ofA-type
vertex models.

II. YANG–BAXTER ALGEBRAS AND INTEGRABLE VERTEX MODELS

To start with, we describe briefly the connection between two-dimensional vertex mode
An21 type solutions of the YB equation.

Let us consider the class of YB operators or constantR-matrices,

@Rn#ab
kl 5H q da

k dkl, a5b;

da
k db

l 1~q21/q! da
l db

k , a,b; 1<a,b,k,l<n;

da
k db

l , a.b;

~1!

qPC\$0,1%, related to the standard Hopf algebra deformations of the simple Lie algebrasAn21 ,
i.e., the quantum groupsUq(sun) and A(Rn), nPN. Baxterization process yields the spectr
parameter dependent versionsRn(x)5xRn2PRn

21P/x of eachRn , with Pi j
kl5d i

ld j
k the permuta-

tion matrix andxPC. Then, for everyNPN a related integrable~inhomogeneous! lattice model7

is defined by a monodromy matrixT8T(n,N)(x;a) with entries~sum over repeated indices con
vention is assumed!

Ta
b5Ra

b1~x/a0! ^ Rb1

b2~x/a1! ^¯^ RbN21

b ~x/aN21!, 1<a,b<n, ~2!

being a5(a0 , . . . ,aN21) a vector ofCN. OperatorsRa
b(x):Cn→Cn are entries of a matrixR

5R(x) such that@Ra
b(x)# i

j5@Rn(x)#ai
b j in the canonical basis ofCn. Compact notationT5R

^̇¯ ^̇ R, where^̇ denotes matrix multiplication between consecutive factors, will be used. N
thatT(n,1)5Rn5R. These models are the anisotropic analogs of theAn21 invariant vertex models
with periodic boundary conditions. Quasiperiodic versions7 are given by elementsY in the sym-
metry group ofRn(x), i.e.,YPGL(n) and@Rn(x),Y ^ Y#50. Related monodromy matrices rea
TY5T•Y. Equation~2! defines operatorsTa

b :(Cn) ^ N→(Cn) ^ N that describe the statistical weigh
assigned to each vertex configuration in a given row of the lattice, graphically,

If the lattice hasN8 rows, the partition function isZ5trace(tN8), being t5(aTa
a the transfer

matrix. On the other hand, the operatorsTa
b(x;a), as it is well known, give a representation of th

YB algebra related toRn(x). This algebra, which we shall indicate YBn , is generated by inde
terminatesTi

j (x), 1< i , j <n; xPC, subject to relations

@Rn~x/y!# i j
kl Tk

r ~x! Tl
s~y!5Tj

l ~y! Ti
k~x! @Rn~x/y!#kl

rs ; 1< i , j ,r ,s<n. ~3!

These relations entail the formal integrability of the system. In fact, by taking the trace, one
@ t(x),t(y)#50 for all x,yPC, i.e., the transfer matrix is a generating function ofconserved
quantities. Beside this, the model is effectively solved by means of algebraic Bethe ansatz8,9,10

where the central ingredient is the existence of an eigenstatevP(Cn) ^ N of each entryTa
a ~and

consequently of the transfer matrixt!, such thatTa
b v50 for all aÞb and a>2, and T1

b v
Þc v, ;cPC, for all b>2. For latter convenience, let us expressT in the block form

T5F A Bj

Ci Di j
G ; 1< i , j <n21,
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i.e., defineA8T1
1, Bj8T1

j 11, Ci8Ti 11
1 andDi j 8Ti 11

j 11. Then,v is an eigenstate ofA and of each
diagonal entryDi i , fulfilling Ci v50 andDi j v50 for iÞ j . A vector satisfying these condition
is calledpseudovacuum vector. On the other hand, sinceBj v5T1

j 11 vÞc v for all j , eachBj (x)
plays the role of a creation operator. Applying them repeatedly onv ~varying j from 1 ton21 and
x satisfying the so-called Bethe equations! we generate new eigenstates for the transfer ma
namely theBethe vectors, giving a priori a complete set of eigenstates fort. In such a case we sa
the system is exactly solvable or completely integrable.11 Nevertheless, sometimes not only
vector but apseudovacuum subspace12,13 is needed in order to insure complete integrability. Th
will be our case.

Since each YBn is a bialgebra, with coalgebra structure

D:Ti
j~x!°Ti

k~x! ^ Tk
j ~x!, «:Ti

j~x!°d i
j , ~4!

for every couple of monodromy matricesT(n,N) andT(n,P) as above we have another one,

T(n,N1P)5T(n,N)
^̇ T(n,P), with entries Ta

b(n,N1P)5Ta
c(n,N)

^ Tc
b(n,P) ,

giving again a representation of YBn . Furthermore, ifv andf are the pseudovacuums ofT(n,N)

andT(n,P), thenv ^ f defines a pseudovacuum forT(n,N1P). Consequently the enlarged model,
the gluing of T(n,N) and T(n,P), is also integrable. In particular, thermodynamic limitN→`
preserves integrability. But, can we glue models which give representations of different YB
bras, e.g., YBn and YBm with nÞm, and such that a pseudovacuum exists for the resulting mo
The aim of this paper is to answer last question. More precisely, we build up from a fa
$Tm :mPZK% of puremodels, i.e.,Tm5T(nm ,Nm), nm ,NmPN, amixingof them by means of gluing
the lattices on which they are defined, in such a way that resulting mixed model can be sol
means of algebraic Bethe ansatz techniques.

III. THE GLUING PROCESS

For any pair (Rn ,Rm) of matrices~1!, there exist an associated quadratic algebra A(Rn :Rm).
They are called rectangular quantum matrix algebras.6 There are also parameter dependent v
sions, the algebras YBn,m , generated by indeterminatesTi

j (x), 1< i<n, 1< j <m andxPC, and
defined by the quadratic relations

@Rn~x/y!# i j
kl Tk

r ~x! Tl
s~y!5Tj

l ~y! Ti
k~x! @Rm~x/y!#kl

rs , ~5!

1< i , j <n, 1<r ,s<m. Obviously, YBn,n5YBn . In the same way as for the constant case,6,14

there exist homomorphisms

Dp :YBn,m→YBn,p^ YBp,m ; n,m,pPN; ~6!

inherited from the cocomposition notion of the internalcoHom objects, enjoying the coassocia
tivity property (Dp^ id)D r5( id ^ D r)Dp .15 In the n5m5p cases, these reduce to the usu
comultiplication maps@see Eq.~4!#. In particular, we have morphisms

YBm→YBm,n^ YBn^ YBn,m^ YBm

for all n,m. Now, consider pure monodromy matricesT(n,N) andT(m,P) related to YBn and YBm ,
and representationsl andb of YBm,n and YBn,m , respectively, wherel andb denote rectangula
matrices whose coefficients are representative of the corresponding generator algebra el
Mentioned morphism impliesl ^̇ T(n,N)

^̇ b ^̇ T(m,P) gives a representation of YBm . As we do not
want to add new degrees of freedom others than the related to the original modelsT(n,N) and
T(m,P), we askl and b to be constant~i.e., spectral parameter independent! one-dimensional
representations. In this casel ^̇ T(n,N)

^̇ b ^̇ T(m,P) gives an operator on (Cn) ^ N
^ (Cm) ^ P, which
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we shall call thegluing of T(n,N) andT(m,P) through matricesl andb. It is worth remarking that
this is not the gluing operation defined by Majid and Markl.6 Physically,l andb define vertices
with statistical weights

la
b and bc

d , 1<a,d<m and 1<b,c<n.

In general, for a family of pure monodromy matrices as described above, we can define amixing
of them, namely,

Tmix5l0^̇ T0^̇ l1^̇ T1^̇¯ ^̇ lK21^̇ TK21 , ~7!

where eachlm is a constant one-dimensional representation of the rectangular YB alg
YBnm21 ,nm

(modK). Graphically,

being I m and Jm multi-indices for spaces (Cnm) ^ Nm on which eachTm acts. Since the quadrati
relations~5! and the cocomposition maps~6!, one may see thatTmix provides a representation o
YBnK21

. This is a direct consequence of the algebra map

YBnK21
→YBnK21 ,n0

^ YBn0
^ YBn0 ,n1

^¯^ YBnK22 ,nK21
^ YBnK21

. ~8!

Of course, these representations are highly reducible in general, as we shall see later.

A. Constant one-dimensional representations of YB n,m

Representationslm appearing in~7! match exactly with one-dimensional representations
A(Rn :Rm), i.e., rectangular matriceslPMat@n3m# in C such that

@Rn# i j
kl lk

r l l
s5l j

l l i
k @Rm#kl

rs ; 1< i , j <n, 1<r ,s<m. ~9!

We are considering the same parameterqÞ0,1 for all involvedR-matrices. Otherwise, the onl
solution to~9! is the trivial one. Using an explicit form ofRn given in ~1!, the last equation is
equivalent to

l i
r l j

r50, 1<r<m, 1< i< j <n,

l i
r l i

s50, 1<r ,s<m, 1< i<n,

l i
r l j

s50, 1<r ,s<m, 1< j , i<n.

First and second lines imply coefficients ofl in a given column and row, respectively, are nu
except for almost one of them. The last line says, ifl i

jÞ0, then all coefficientsla
b with i ,a, b

, j , and witha, i , j ,b, are null. Thus, each solutionl of ~9! is a diagonal matrix to which
columns and rows of zeros were added. From that it follows immediately the set of solutio
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all m,n form a semigroupoid, or a category, generated by the Abelian groupsDn of invertible n
3n diagonal matrices, and also by matricess i

nPMat@n3(n11)# and ] i
nPMat@(n11)3n#, i

51, . . . ,n11, nPN, given by

s i
n5F Id ( i 21)3( i 21) O( i 21)3(n2 i 12)

O13( i 21) O13(n2 i 12)

O(n2 i )3( i 21) Id (n2 i )3(n2 i 12)

G ,

] i
n5F Id ( i 21)3( i 21) O( i 21)31 O( i 21)3(n2 i )

O(n2 i 12)3( i 21) O(n2 i 12)31 Id (n2 i 12)3(n2 i )
G ,

beingOn,m the n3m null matrix. In fact, a general solution of Eq.~9! has the form

l5] j b

n21
¯ ] j 1

k D s i 1
k
¯ s i a

m21PMat@n3m#;

a,b>0, m2a5n2b5k>0, ~10!

with i 1<¯< i a<m, j 1<¯< j b<n, andDPDk . If a ~resp.b) is equal to zero, then factors o
types ~resp.]! do not appear. Such a solution hask nonnull entries equal to the diagonal elemen
of D, a numbera of null columns in positionsi 1 , . . . ,i a , andb null rows in positionsj 1 , . . . ,j b .
Note that rankl5k.

Matricess i
n and] i

m , which give solutions to~9! for m5n11 andn5m11, respectively, are
related each other by matrix transposition, i.e.,] i

n5(s i
n) t, and enjoy relations

s j
n21 s i

n5s i
n21s j 11

n , i< j ;

] i
n11 ] j

n5] j 11
n11 ] i

n , i< j ;

s j
n11 ] i

n115] i
n s j 21

n , i , j ;

s j
n ] i

n5Id, i 5 j ;

s j
n11 ] i

n115] i 21
n s j

n , i> j 11.

In spite of these relations, they donot define the simplicial category. Note that, for instanc
s j

n ] j 11
n ÞId. Nevertheless we nameD5∨n,mPNDn,m the category formed out by them.
On the other hand, as it is well known, the group of diagonal matricesDn defines precisely the

symmetry group ofRn , given by matricesDPGL(n) such that@Rn ,D ^ D#50. Moreover, they
are also the symmetry group ofRn(x) or Rn(x,y)5Rn(x/y). Let us mention that, whenRn(x,y)
is changed by a similarity transformationQ(x) ^ Q(y) such thatQk

l (x)5dk
l x2l /n, the group en-

larges toDn3Zn .7 This is why systems related to suchR-matrices were calledZn-symmetric
vertex models.16

ElementsDPDn give rise to multiparametric solutions (id ^ D)21 Rn (D ^ id) of the YB
equation,17 and related twist transformations of original quantum groups.14,18Associated integrable
models differ from the original ones by a twisting of the boundary conditions.19 We shall see later
that also in mixed models the role of matricesD is to make a twist on the boundary condition

The commutation relations between elements ofD5∨nPNDn andD can be written

D s i
n5s i

n Di
1 , ] i

n D5Di
1 ] i

n ,

s i
n21 D5Di

2 s i
n21 , D ] i

n215] i
n21 Di

2 , ~11!
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being Di
15diag(d1, . . . ,di21,1,di , . . . ,dn) and Di

25diag(d1, . . . ,di21,di11, . . . ,dn) wheneverD
5diag(d1, . . . ,dn)PDn . It is worth mentioning thatl can also be expressed as a productl
5z D8, wherezPD is obtained froml by takingD5Id, andD8PDn is the result of passingD
to the right, through matricess ’s, using commutation rules~11!.

B. Equivalent forms for a mixed monodromy matrix

From results of last section, it is clear that any mixed model has a monodromy matrix

l0•R0^̇ l1•R1^̇¯ ^̇ lN21•RN21 , ~12!

with Rn5Rnn for some related dimensionnn , andln5zn Dn , wherezn is in Dnn21 ,nn
andDn in

Dnn
. HerenPZN . Equation~7! corresponds to the case in which there existK numbersNm , m

PZK , giving a partition ofN and such that

RMm
5¯5RMm1Nm215RnMm and ln5Idnn

for nÞM0 , . . . ,MK21 , ~13!

being M050 andMm5(s50
m21Ns for 1<m<K21. Furthermore, Eq.~12! can be brought to an

equivalent form

Tmix5z0•R0^̇ z1•R1^̇¯ ^̇ zN21•RN21 Y, ~14!

whereY is an element ofDnN21
. To see that, let us define matricesDn

(k)PDnk
, kPZN , by

Dn
(k)5H Idnk

, 0<k,n,

Dn , k5n,

and for eachk.n by the solution ofDn zn11 zn12 ¯ zk5zn11 zn12 ¯ zk Dn
(k) . We mean by

‘‘the solution’’ of the last equation the inversible diagonal matrixDn
(k) that arises when passing, i

the first member, the matrixDn to the right using~11!. Then ~12! and ~14! are similar through
PnPZN

^ kPZN
Dn

(k) , andY5PnPZN
Dn

(N21) .
In other words, every mixed model is physically equivalent to a twisted version of anothe

whose corresponding matricesln are in the categoryD. The role of matricesD ’s is to implement
a twisting of the boundary conditions. Accordingly, we can describe each mixingTmix in terms of
a family of elements znPDnn21 ,nn

, the gluing matrices, and a diagonal matrixY

5diag(t1, . . . ,tnN21
) of DnN21

, theboundary matrix.
Another useful expression for the monodromy matrices of these models can be given fro

following observation. Any matrixlPDn,m of rank k ~note thatk<m,n) may be writtenl

5P l̂ P8, wherel̂5]n
n21

••• ]k11
k sk11

k
¯ sm

m21PMat@n3m#, that is,

l̂5S Idk Ok3(m2k)

O(n2k)3k O(n2k)3(m2k)
D , ~15!

andP,P8 are appropriate permutations. More precisely, if

l5] j b

n21
¯ ] j 1

k s i 1
k
¯ s i a

m21, i 1<¯< i a<m, j 1<¯< j b<n

@see Eq.~10!#, then we can choose, for instance,PPMat@n# andP8PMat@m# to be

P5Cj b ,n Cj b21 ,n ¯ Cj 1 ,n and P85Ci 1 ,m¯ Ci a21 ,m Ci a ,m ,

respectively, beingCr ,s , r<s, the matrix that acting on the right~resp. left! makes a cyclic
permutation sending thesth column~resp. row! to ther th one, and acts as an identity for the re
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of columns~resp. rows!. Hence, for a given family of gluing matrices we havezn5Pn ẑn Pn8 .
Introducing last expression forzn into Eq.~14!, and making a similarity transformation̂nPZN

Pn8 ,
an equivalent system

T̃mix5P0 ẑ0•R̃0•Q0 ^̇ ẑ1•R̃1•Q1^̇¯ ^̇ ẑN22•R̃N22•QN22^̇ ẑN21•R̃N21 PN218 Y, ~16!

whereQn5Pn8 Pn11 and R̃n5(Pn8^ Pn8) Rn (Pn8^ Pn8)
21, follows. That is,

T̃mix5~ ^ nPZN
Pn8! Tmix ~ ^ nPZN

Pn8!21. ~17!

It can be seen for an arbitrary permutation that

R̃a
a~x!5Ra

a~x!, and R̃a
b~x!5x2«ab Ra

b~x! for aÞb, ~18!

where coefficients«ab takes values21,0,1 depending on the considered permutation. We s
show in the next section that mixed models with

P05PN218 5IdnN21
, and Qn5Idnn

, ;nPZN21 , ~19!

are solvable by means of algebraic Bethe ansatz techniques@actually,~19! can be slightly relaxed
and askQn5Idnn

,;nPZN , instead#. Furthermore, we shall see complete integrability impl
transfer matrix obtained from~16! is similar to the trace of

Tmix5 ẑ0•R0^̇ ẑ1•R1^̇¯ ^̇ ẑN21•RN21 Y. ~20!

Thus, we can solve all vertex models with gluing matriceszn5Pn ẑn Pn8 satisfying~19! by solving
those withTmix given in Eq.~20!. In addition, allẑn can be supposed to have the same rank.

IV. INTEGRABILITY OF MIXED VERTEX MODELS

In order to show exact solvability of these models~or unless of a subclass of them!, since
needed commutation rules follow from map~8!, we must prove there exists a suitable set
pseudovacuum vectors forTmix from which all its eigenstates and corresponding eigenvalues
be constructed. In other terms, using block form

Tmix5F Amix Bj
mix

Ci
mix Di j

mixG ; 1< i , j <nN2121,

we look for elementsFPH mix5 ^ nPZN
Cnn which are eigenvectors ofAmix and of each diagona

entryDi i
mix , such thatCi

mix F50, andDi j
mix F50 for iÞ j . In this way, we build up recursively al

eigenvalues and eigenstates by applying repeatedly operatorsBj
mix to the mentioned vectors. Com

pleteness problem will be studied separately. Of course, the smaller the rank of involved
matrices, the smaller the set of monomials inBj

mix and the bigger the number of pseudovacuu
vectors we need to construct the complete set of eigenstates. In the singular case for
rankzn50 for somen, we haveTmix50 and accordingly every vector ofH mix is trivially a
pseudovacuum vector, and no creation operator is needed in order to diagonalize the t
matrix tmix. Note in this case, operatorsBj

mix are null. Thus we can have pseudovacuum vec
which are annihilated by operatorsBj

mix and still be able to build up an eigenstate basis fortmix.
We actually show exact solvability for a particular class of mixed models. Concretely

concentrate ourself in monodromy matrices whose related gluingszn satisfy Eq.~19!.
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A. The pseudovacuum subspace

Let us first consider the mixed models with monodromy matricesTmix defined by Eq.~20!,
that is, eachzn5 ẑn is of the form~15!. They are a particular case of those with gluing matric
satisfying~19!. At the end of this section the general case will be addressed. In order to sim
our calculations, we shall suppose

m8rankz0<rankzn for all nPZN . ~21!

This can be reached by a similarity transformation cyclically permuting tensor factors of the
spaceH mix. Of course,m<rankzn<min$nn21,nn% (modN). Also, we supposem.0, since for
m50 diagonalization ofTmix is immediate. Note that~21! implies

Ta
b mix50 for a.m, ~22!

and in particular

tmix5 (
a51

nN21

Ta
a mix5 (

a51

m

Ta
a mix5Amix1 (

i 51

m21

Di i
mix . ~23!

For a<m we have~nonsum overb)

Ta
b mix5tb @Rn0#a

c1^ @Rn1#c1

c2
¯ @RnN22#cN22

cN21^ @RnN21#cN21

b , ~24!

where sum over eachcn is in the interval 1<cn<rankzn .
Let us indicate bye1 , . . . ,en the elements of the canonical basis ofCn. ThenH mix is spanned

by vectors of the formef 0
^¯^ ef N21

, which can be identified with an obvious subsetF of
functions f :ZN→N:n° f n . In particular, givenf PF, we denoteV f the corresponding vector o
H mix. We shall show there exists a set of pseudovacuum vectors, on which algebraic Bethe
will be applied, labeled by the subsetF0 of functions

f PF/Imagef ,$1%ø$nPN:n.m%. ~25!

More precisely, there exist vectorsF fPH mix, f PF0 , expanding a space

H 08span$V fPH mix: f PF0%,H mix, ~26!

namely, the pseudovacuum subspace, and fulfilling

Amix F f5t1 d )
nP f 21(1)

G~x/an! F f ,

Di i
mix F f5t i 11 d F f~ i ,m!, DiÞ j

mix F f5Ci
mix F f50, ~27!

being d5)nPZN
1/G(x/an) and G(x)5(xq21/qx)/(x21/x). In particular for theequal rank

case, i.e., if rankzn5m for all n, thenF f5V f . Note thatH0,kerCi
mix ; i .

We also show

Bj
mix F fÞc F f if 1PImagef ; otherwise, Bj

mix F f50; ~28!

i.e., eachBj
mix creates new states whenf 21(1)ÞB. Using that we construct a set of Bethe vecto

from eachF f , with j from 1 tom and f 21(1)ÞB, and generate in this way all eigenstates of t
transfer matrix.

To find the vectorsF f we need some previous results.
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1. The action of Tmix on vectors V f

Let us evaluate the entriesTa
b mix on each vectorV f . From Eq. ~22! it follows that

Ta
b mix V f50 for all a.m. So we only considera<m. As usual,7 we normalize operatorsRa

b

5Rnn
a
b(x/an):Cnn→Cnn in such a way that on the canonical basis ofCnn,

Ra
b ek5H da

b /G~x/an! ek , kÞa,

~da
b1~12da

b! csg(b2a)~x/an!! eb , k5a,
~29!

beingc6(x)5(q21/q) x61/(xq21/qx). Then, from~24! and the first part of~29!, it follows that

Ta
b mix V f5tb da

b )
nPZN

1/G~x/an! V f5ta da
b d V f ~30!

if a¹Imagef , i.e., if f (n)Þa for all nPZN . In particular

Ta
b mix V f50 if a¹Imagef ø$b%. ~31!

Also, if f PF0 and 1,a<m, since in this casea¹Imagef @see~25!#, we have that

Di i
mix V f5Ti 11

i 11 mix V f5t i 11 d V f , for 1< i ,m,

Di j
mix V f5Ti 11

j 11 mix V f50, for 1< i , j ,m, iÞ j , ~32!

Ci
mix V f5Ti 11

1 mix V f50, for 1< i ,m,

putting i 5a21 in ~30!. Otherwise, letsa be the first integer such thatf (sa)5a, that is, f (n)
Þa for all n,sa and f (sa)5a. Let us write

V f5Vga
^ ea^ V f a

, with ga, f a:Zsa
,ZN2sa21→N. ~33!

If sa5N21, we takeV f a
equal to 1. Then, using~24! and~29! again~note thata does not belong

to Imagega) we have

Ta
b mix V f5 (

i 51

rankzsa

Ca,i Vga
^ ei ^ T̂i

b mix V f a
,

Ca,i5Da,i )
n,sa

1/G~x/an!; Da,i5da
i 1~12da

i ! csg(i 2a)~x/asa
!. ~34!

Here, operatorsT̂i
b mix are given by the lastN2sa21 factors ofTmix. From Eq.~31! applied to

T̂i
b mix V f a

, sinceCa,iÞ0 for all 1< i<rankzsa
, the nonzero terms of~34! are those withi inside

I a5$ i PImagef aø$b%: i<rankzsa
%. If b is the unique element ofI a andb¹Imagef a, then

Ta
b mix V f5tb Ca,b S )

nÞsa

1/G~x/an! D Vga
^ eb^ V f a

5tb Ca,b d G~x/asa
! Vga

^ eb^ V f a
.

~35!

Otherwise, suppose there existsc1PI aùImagef a, and let sac1
be the first integer such tha

f a(sac1
2sa)5c1 . ThenT̂c1

b mix V f a
5( i PI ac

Cac1 ,i Vgac1
^ ei ^ T̂i

b mix V f ac1 with

1
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Cac1 ,i5Dc1 ,i )
sa,n,sac1

1/G~x/an!, V f a
5Vgac1

^ ec1
^ V f ac1,

I ac1
5$ i PImagef ac1ø$b%: i<rankzsac1

%.

A recursive process easily follows and the generic term reads

T̂ck

b mix V f ac1 ¯ck215 (
i PI ac1 ¯ck

Cac1¯ck ,i Vgac1 ¯ck
^ ei ^ T̂i

b mix V f ac1 ¯ck,

with Cac1¯ck ,i5Dck ,i )sac1 ¯ck21
,n,sac1 ¯ck

1/G(x/an). Of course,c1PI aùImagef a,

I ac1c2¯cj 21
5$ i PImagef ac1c2¯cj 21ø$b%: i<rankzsac1 ¯cj 21

% ~36!

and cjPI ac1c2¯cj 21
ùImagef ac1c2¯cj 21 for 2< j <k. The process ends whenbPI ac1¯ck

,
b¹Imagef ac1¯ck, and we chooseck115b. In this case

T̂ck

b mix V f ac1 ¯ck215tb Cac1¯ck ,b )
n.sac1 ¯ck

1/G~x/an! Vgac1 ¯ck
^ eb^ V f ac1 ¯ck.

In particular, writing Ta
b mix V f5(gPF tab

f g Vg we have the given sequence of numbe
c1 , . . . ,ckPImagef defined by a functiong such thattab

f gÞ0, being

Vg5Vga
^ ec1

^ Vgac1
^ ec2

^ Vgac1c2
^¯^ Vgac1c2 ¯ck21

^ eck
^ Vgac1 ¯ck

^ eb^ V f ac1c2 ¯ck.
~37!

Note thatV f can be written

V f5Vga
^ ea^ Vgac1

^ ec1
^ Vgac1c2

^¯^ Vgac1c2 ¯ck21
^ eck21

^ Vgac1c2 ¯ck
^ eck

^ V f ac1c2 ¯ck.
~38!

Furthermore, definingJf g5$sa ,sac1
, . . . ,sac1¯ck

% andc05a, and recallingck115b, we have
@compare with Eq.~35!#

tab
f g5tb d )

j 51

k11

Dcj 21 ,cj )
nPJf g

G~x/an!. ~39!

If # @ f 21(a)#5k11 anda5b, the sequence of numbersci5a, i 51, . . . ,k, corresponds to the
vectorVg5V f . Also, Jf f5 f 21(a) and accordingly, sinceDa,a51,

taa
f f 5ta d )

nP f 21(a)

G~x/an!. ~40!

Comparing~37! and ~38!, we see that functionsg such thattab
f gÞ0 necessarily satisfy

Imagegø$a%5Imagef ø$b%. ~41!

In addition, for each elementmPImagef , mÞa,b, functiong must hold

#@g21~m!#5#@ f 21~m!#, ~42!

and
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#@g21~a!#5#@ f 21~a!#2~12dab!,

#@g21~b!#5#@ f 21~b!#1~12dab!. ~43!

Now, defining the classes of functionsC,F, in such a way thatf ,gPC iff

Imagef 5Imageg and #@ f 21~m!#5#@g21~m!#

for all m contained in their respective images, we can write

Ta
b mix V f5 (

gPC2a
1b

tab
f g Vg, if f PC, ~44!

whereC2a
1b is the class given by functionsg satisfying~41!, ~42!, and ~43!. Let us note thatC

5C2a
1b iff a5b. Then, denoting

H X8span$V fPH mix: f PX% for each X,F, ~45!

spacesHC areTa
a mix-invariant for alla. On the other hand, whenaÞb ~sinceCÞC2a

1b), vector
V f cannot be written as a linear combination of vectorsVg’s appearing in~44! ~they form a
linearly independent set of vectors!. That is, Ta

b mix V f is not proportional toV f . Also, if
a¹Imagef , thenC2a

1b5B and consequentlyTa
b mix V f50, such as follows from Eq.~30! for a

Þb. Last observations translate for operatorsBj
mix into equations

Bj
mix V fÞc V f , if f 21~1!ÞB; Bj

mix V f50 otherwise. ~46!

Let us briefly study the reducibility of the action onH mix of the algebra generated by oper
tors Tmix. It follows from Eq. ~36! that, if M5maxn$rankzn%, numbersc1 , . . . ,ck and ck115b
must be smaller than or equal toM . This implies Ta

b mix50 for b.M , and we can restrict
ourselves to thea,b<M case. Also, comparing~37! and~38!, if f (n).M theng(n)5 f (n). As a
consequence, besides~41!, ~42!, and~43!, condition

g~n!5 f ~n! ;nPZN such that g~n!, f ~n!.M ~47!

is necessary in order to havetab
f gÞ0. Thus, defining the classesE,F as those whose function

satisfy ~47!, it is clear that spacesHE are invariant under the action ofTmix. It actually can be
found smaller invariant spaces insideHE , dependinglocally on the ranks of gluing matrices, bu
we will not discuss it here.

For the equal rank case we havem5M , and accordingly the classesE are in bijection with
elements ofF0 . Thus, we can decomposeH mix into Tmix-invariant subspacesHE( f ) labeled by
elements ofF0 . In addition, by a simple inspection of coefficients~39!, it can be shown the action
on HE( f ) and HE(g) are equivalent providedf 21(1)5g21(1). Moreover, in the homogeneou
case, namely,an51 for all n, above equivalence still holds when #@ f 21(1)#5#@g21(1)#.

In the following subsection we diagonalize~when possible! the operatorAmix restricted to
eachHC , and show its eigenvectors, whenC,F0 , are precisely the pseudovacuum vectors we
looking for.

2. Diagonalization of Amix and vectors F f

Let us consider a class of functionsC. Using Eqs.~40! and ~44! for a5b51, and defining
af g8t11

f g for f Þg, we have that

Amix V f5af V f1 (
gPC,gÞ f

af g Vg, af5t1 d )
nP f 21(1)

G~x/an!. ~48!
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Now, we are going to show there exists a total order relation between the functions ofC, such that
w.r.t. this order we can write

Amix V f5af V f1(
g, f

af g Vg. ~49!

In other words, operatorAmix restrictedHC is represented by a triangular matrix w.r.t. the result
ordered basis@recall Eq.~45! for X5C].

To see that, let us consider a functionf PC. Assign to f n the number 1 iff n51 or 0 if f n

Þ1. Denotebf the binary expression related to the sequencef 0 , . . . ,f N21 . From Eqs.~37! and
~38! for a5b51, we see thatbf.bg ~as real numbers! for f Þg, since unless onef n51 were
moved to the right. This impliesaf g50 if bf<bg, that is,

Amix V f5af V f1 (
bg,bf

af g Vg. ~50!

So let us define an order, between the elements ofC by sayingg, f if bg,bf , and whenbg

5bf we choose an arbitrary order. Using that and equation above, Eq.~49! follows immediately.
Since eigenvalues ofAmix are given by the numbersaf , in order to insure its diagonalizability

we can ask the considered model to be completely inhomogeneous, i.e.,anÞam for all n,m
PZN . ThenafÞag providedf 21(1)Þg21(1). Thus, eigenvalues are distinct, unless those rela
to the f th andgth rows for which f 21(1)5g21(1). But f 21(1)Þg21(1) if bf.bg. Therefore
@see Eq.~50!#, Amix does not mix vectors related to rows with the same diagonal entries,
accordinglyAmix is diagonalizable. Actually, we just can insureAmix5Amix(x) is diagonalizable
for almost all valuesx of the spectral parameter. Note that for some isolated pointsxoPC, we can
haveaf(xo)5ag(xo), in spite of conditionf 21(1)Þg21(1) holds.

Using usual recursion formulas for diagonalizing triangular matrices, we can define for
subspaceHC the basisF f , f PC, given by

F f5H VminC, f 5minC ,

V f1(
g, f

x f g Fg, f .minC ,
~51!

with

x f g5H ag1g /~ag12ag!, f 5g1,

S af g 2 (
g,h, f

af h xhgD /~af2ag!, f .g1.
~52!

Here minC is the minimalf PC w.r.t. the defined order, andg1 is the first element inC bigger than
g. Equation ~52! must be understood as a recursive formula onf for each g. Because
@Amix(x),Amix(x8)#50 for all x,x8PC @that follows from commutation relations given in~3!#,
operatorsAmix(x) can be diagonalized simultaneously. Thus numbersx f g and vectorsF f do not
depend on the spectral parameter.

Let us note diagonal entriesDi i
mix can be diagonalized as above. But this is not enough

diagonalizetmix, since operatorsAmix andDi i
mix do not commute among themselves. Neverthele

last operators restricted toH0 do commute, and accordingly can be simultaneously diagonali
This follows from the facts thatH0,kerCi

mix and that Eq.~3! implies

@ Di i
mix~x!,Amix~y!#52Bi

mix~x! Ci
mix~y! c2~x/y!1Bi

mix ~y! Ci
mix~x! c1~x/y!.

Now, let us see that vectorsF f for f PF0 , given by~51! and~52!, satisfy Eqs.~27! and~28!.
Since they are eigenvectors ofAmix with eigenvaluesaf , the first part of~27! follows immediately.
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For the second part, noteF f is a linear combination of vectorsVg with g insideC. Also note, if
f PF0 , then the class defined byf is insideF0 too. Hence, using Eq.~32! we arrive at the wanted
result. The same happens for~28! using Eq.~46!.

For the equal rank case, it can be shown thataf g50 for all f PF0 . In fact, setsI 1c1¯cj
defined

by ~36! ~putting a5b51) has 1 as the unique element, and consequently the only pos
sequence isci51 for i 51, . . . ,#@ f 21(1)#21. Such sequence corresponds to the vectorV f . Then,
the latter is an eigenvector ofAmix ~without any inhomogeneity condition!. In other words,Amix

restricted toH0 is represented by a diagonal matrix for the basisV f , f PF0 , and accordingly
F f5V f .

To end this subsection let us say last results, valid for monodromy matricesTmix of the form
~20!, also holds for those given by Eq.~16! and satisfying condition~19!. In fact, on the canonica
basise1 , . . . ,enn

of Cnn, using Eqs.~18! and ~29!, we have that

R̃a
b nn ek5H da

b /G~x/an! ek , kÞa,

~da
b1~12da

b! ~x/an!2«ab
n

csg(b2a)~x/an!! eb , k5a.

Then, applyingT̃a
b mix to a vectorV f we arrive at Eqs.~30! or ~34!, depending on Imagef , where

the second term of coefficientsCi @see Eq.~34!# must be just changed by a factor (x/as)2«ai
s

.
Therefore, all above results follow. In particular, all we have said forAmix is also true forÃmix, and
the former is diagonalizable iff so is the latter. There is a minor change in coefficientsaf g , and
consequently in the linear combinations~51! that define eigenvectors ofÃmix. Denoting the latter
by F̃ f , and recalling Eq.~17!, we conclude

Theorem 1: Given a mixed vertex modelTmix5z0•R0^̇ z1•R1^̇¯ ^̇ zN21•RN21 Y, with

gluing matriceszn5Pn ẑn Pn8 satisfying Eqs. (19) and (21), and assumingAmix is diagonalizable
(e.g.,Tmix is completely inhomogeneous), it follows that vectors

F f8~ ^ nPZN
Pn8!21 F̃ f , f PF0 ,

are pseudovacuum states forTmix satisfying Eqs. (27) and (28). Whenrankzn5m ;n, Amix is
diagonalizable andF f8( ^ nPZN

Pn8)
21 V f . h

All that can be rephrased in terms of our original mixed monodromy matrices, i.e., in the
~7!. We just must regard them as particular cases of~12! subject to~13!.

B. Nested Bethe equations

Let Tmix be a monodromy matrix as that given in theorem above. Thanks to the alg
embeddings YBn21�YBn , n.1, which are a direct consequence of equations

@Rn21#ab
kl 5@Rn#ab

kl , for 1<a,b,k,l<n21,

it follows that Ta
b mix for a,b<m satisfy relations corresponding to the YB algebra YBm . Then,

following standard techniques for eachF fPH0 ,7,20 that is, proposing as eigenstates fortmix @see
~23!# the Bethe vectors

C f5C j 1¯ j r 1 Bj 1

mix~x1 ;a! ¯ Bj r

mix~xr ;a! F f , j 1 , . . . ,j r,m,

and separating in the so-calledwantedand unwantedterms, we arrive at a set of nested Bet
ansatz equations which in its recursive form are given by

)
p51

r 1

G~xk
(1)/xp

(1)!

)
nP f 21(1)

G~xk
(1)/an!

L1~xk
(1)!1t1 )

p51

r 1

G~xp
(1)/xk

(1)!50,
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)
p51

r l

G~xk
( l )/xp

( l )!

)
v51

r l 21

G~xk
( l )/xv

( l 21)!

L l~xk
( l )!1t l )

p51

r l

G~xp
( l )/xk

( l )!50 ~ l .1!, ~53!

and

Lm21~x!5tm ,

L l~x!5

)
p51

r l 11

G~x/xp
( l 11)!

)
u51

r l

G~x/xu
( l )!

L l 11~x!1t l 11 )
p51

r l 11

G~xp
( l 11)/x! ~ l ,m22!, ~54!

wherel 51, . . . ,m21, k51, . . . ,r l , and 0<r l <r l 21<#@ f 21(1)#. Thus, Bethe equations relate
to a givenF fPH0 , are the ones corresponding to anAm21 type quasiperiodic vertex model wit
nf8#@ f 21(1)# sites per row and inhomogeneity vectora f5(an0

,an1
, . . . ,annf21

), such thatn i

P f 21(1) andn i,n i 11 for all i PZnf
.

When #@ f 21(1)#50 we have no Bethe equations. Note in this caseBj
mix F f50 for all j

,m @see Eq.~28!#.
For each solution

x5$x( l )5~x1
( l ) , . . . ,xr l

( l )!: l 51, . . . ,m21%

of Eqs.~53! and ~54!,

L f~x;x!5d )
k51

r 1

G~x/xk
(1)! L1~x!1t1 d )

nP f 21(1)

G~x/an! )
k51

r 1

G~xk
(1)/x! ~55!

gives an eigenvalue oftmix. Note thatL f(x;x)5Lg(x;x) if f 21(1)5g21(1). This is the main
source of degeneracy for the transfer matrix. It can be seen eachL f(x;x) differs by a factor
)n¹ f 21(1)1/G(x/an) from the corresponding eigenvalue related to the mentionedAm21 model.
EigenvectorsC f(x), i.e., the Bethe vectors, can also be given recursively, but now through ve
C lP(Cm2 l) ^ r l with coordinates (C l)

j 1¯ j r l ~w.r.t. the canonical basis ofCm2 l) such that

C f~x!5~C1! j 1¯ j r 1 Bj 1

mix~x1
(1) ;a! ¯ Bj r 1

mix~xr 1

(1) ;a! F f , ~56!

for 1< l<m22

C l5~C l 11! j 1¯ j r l 11 Bj 1

(m2 l ,r l )~x1
( l 11) ;x( l )! ¯ Bj r l 11

(m2 l ,r l )~xr l 11

( l 11) ;x( l )! v l ,

and Cm2151. Here j 1 , . . . ,j r l 11
,m. We are denoting byv l the pseudovacuum for the pur

monodromy matrixT(m2 l ,r l ). Let us mention, in thel th level of the nesting process the involve
monodromy matrix actually is the twisting

T(m2 l ,r l )
•Y l , being Y l5diag~t1 , . . . ,tm2 l !,

which also hasv l as pseudovacuum vector.
Summing up, we have constructed a set of eigenvectors fortmix by applying creation operator

Bj
mix’s over allF f , f PF0 . In the following section we address the combinatorial completenes

that set of states.
By last, let us say that Eqs.~53! and ~54! do not depend either on permutationsPn ,Pn8

defining the gluing matrices ofTmix ~recall conditions of theorem above!, or on the set of ranks o
the latter. They only depend on the minimumm5minn$rankzn% of that set, on the boundary matri
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Y, and on the inhomogeneity vectora. Hence, assuming complete integrability, the spectrum
the related transfer matrixtmix, which would be given by the numbersL f(x;x) defined in~55!,
only depends onm, Y, anda. Accordingly,

Theorem 2: Assuming complete integrability, every mixed model with gluing matrices s
fying Eq. (19) is physically equivalent to one with monodromy matrix of the form (20)
satisfying the equal rank condition:rankzn5m for all n. h

C. Combinatorial completeness

In this section we are going to show that Eq.~56! ~varying indicesj from 1 to m, functions
f in F0 , and x along solutions of~53! and ~54!! defines unless dimH mix5)nPZN

nn different
vectors. That is to say, we have a set of Bethe vectors from which,a priori, a basis of eigenstate
for the related transfer matrix can be extracted. To see that, we shall assume combin
completeness of Bethe ansatz equations related to theAn21 vertex models, i.e., for a model with
N sites in a row we suppose there is unless (n21)r ( r

N) different solutions for the Bethe equation
corresponding tor creation operators. This has been shown21 for n52, but we do not know abou
any similar result for biggern. In our case, we would be saying for each vectorF f with f
PF0 , there exists unless a number (m21)r ( r

nf ) of different solutions of~53! and ~54! corre-
sponding tor 15r creation operators. Recall thatnf5#@ f 21(1)#. Let us first see why this assump
tion is useful for our purposes.

It is enough to analyze the case of monodromy matrices given by~20!. The other cases, i.e.
those given by~14! and satisfying~19!, follow analogously. So let us come back to Sec. IV A
and consider the action of operatorsBj

mix with j ,m, on vectorsV f with f PF0 . Suppose first that
rankzn5m for all n. For a51 andb5 j 11, sequencesci51, i 51, . . . ,k, with 1<k,nf define
terms proportional to vectorsVg5V f m, j , with mP f 21(1), f m, j (n)5 f (n) for all nÞm and
f m, j (m)5 j 11. That is, we change a vectore1 by a vectorej 11 in positionmP f 21(1). They are
the only possible sequences. Thus, the action of eachBj

mix , j 51, . . . ,m21, on a vectorV f gives
rise to a linear combination ofnf linearly independent vectors. Existence ofnf different solutions
to Eqs.~53! and~54! for r 151 and for eachj , is a necessary condition to obtainnf l.i. eigenstates
from the set of Bethe vectors. Then, varyingj from 1 to m21, we shall have,a priori, (m
21) nf l.i. eigenstates. ApplyingBi

mix and Bj
mix we have (m21)2 vectors, each one of them

having nf (nf21)/2 l.i. terms. In general, if we applyr creation operators toV f , we have (m
21)r vectors with related (r

nf ) terms. Now it becomes clear why our assumption is needed.
same argument can be given for the general rank case. There, when an operatorBj

mix acts onV f

we have as above the terms proportional toV f m, j , mP f 21(1), together with additional terms
given by vectorsVhs, j with h belonging to the same class off . Thus, the latter appears as term
whenBj

mix is applied toVh. Accordingly, in order to avoid overcounting, we do not have to ta
them into account.

Let us come back to our original problem. If combinatorial completeness holds there
unless a number( r 50

nf (m21)r ( r
nf )5((m21)11)nf5mnf of Bethe vectors for each functionf

PF0 . Thus, since 0<nf<N for every f PF, the total number of Bethe vectors is( f PF0
mnf

5(k50
N mk pk , beingpk the number of functionsf PF0 such thatnf5k. Let us calculatepk . It is

clear that the number of functionsf in F0 with the same preimagef 21(1) is

)
nPZN

~nn2m!«n, «n5H 0, nP f 21~1!,

1, otherwise.
~57!

In terms of numbers«0 , . . . ,«N21 , the conditionnf5#@ f 21(1)#5k can be characterized by a
equality«01¯1«N215N2k. Then, in order to obtainpk we must sum over all configuration
of «0 , . . . ,«N21 («n equal to 0 or 1!, such that last condition holds, i.e.,
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pk5 (
«0 , . . . ,«N21

)
nPZN

~nn2m!«n d«01¯1«N21 ,N2k . ~58!

Accordingly,

(
k50

N

mk pk5 (
k50

N

mk S (
«0 , . . . ,«N21

)
nPZN

~nn2m!«n d«01¯1«N21 ,N2kD
5 (

«0 , . . . ,«N21
)

nPZN

~nn2m!«n (
k50

N

mk d«01¯1«N21 ,N2k

5 (
«0 , . . . ,«N21

)
nPZN

~nn2m!«n mN2(«01¯1«N21)

5mN (
«0 , . . . ,«N21

)
nPZN

S nn

m
21D «n

.

But

(
«0 , . . . ,«N21

)
nPZN

S nn

m
21D «n

5 )
nPZN

S (
«n

S nn

m
21D «nD

5 )
nPZN

S S nn

m
21D 0

1S nn

m
21D D

5 )
nPZN

nn

m

5m2N )
nPZN

nn ,

and consequently( f PF0
mnf5)nPZN

nn , as we wanted to see.

V. CONCLUSIONS

From the last equation we see that, under conditions of Theorem 1 and assuming co
integrability,H mix can be decomposed into a direct sum ofmnf-dimensional spacesHf , each one
of them generated by the Bethe vectors related with somef insideF0 . Note this sum, in general
is not orthogonal w.r.t. the usual scalar product in^ nPZN

Cnn. Thinking of the quantum spin ring
related to our vertex model, whose HamiltonianH is constructed from the logarithmic derivativ
~if there exists! of the transfer matrix, states ofHf can be interpreted as those of an anisotro
Am21 type spin chain withnf sites, which arelocalizedon the subringZnf

; f 21(1),ZN . In other
words, we have decomposed a mixed spin model as a direct sum ofAm21 type ones with different
numbers of sites and generically different inhomogeneities. Multiplicity of these models is
by ~57! @recall eigenvalues~55! only depend onf through f 21(1)]. In connection with Theorem
2 let us say that for the equal rank case, since we haveHf5HE( f ) ~see at the end of Sec. IV A 1!,
described decomposition~which results orthogonal! and mentioned multiplicity are direct conse
quences of the facts that last spaces areTmix-invariant, and that corresponding actions on spa
Hf andHg are equivalent whenf 21(1)5g21(1).

In the homogeneous case we have in addition actions onHf andHg are equivalent still when
nf5ng . In other terms, for the homogeneous equal rank case we can writeH mix as the orthogona
direct sumH mix5 % k50

N Cpk^ Hf k
@see ~58! for numberspk], being f k some function withnf k

5k.
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Concluding, we have presented a procedure for gluing different integrable vertex mod
such a way that the integrability of the whole system is preserved. This procedure relies on
generalization of the coalgebra structure to the case of rectangular quantum matrices an
representations, enhancing the deep linking between these algebraic structures and integr
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Double product integrals and Enriquez quantization
of Lie bialgebras I: The quasitriangular identities
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Let T~L! be the space of all tensors over a Lie algebraL in which the Lie bracket
is obtained by taking commutators in an associative algebra. We show thatT~L!
becomes a Hopf algebra when equipped with a noncommutative modification of the
shuffle product together with the standard coproduct. A definition is given of di-
rected double product integrals as iterated single product integrals driven by formal
power series with coefficients in the tensor product ofL with an appropriate asso-
ciative algebra. For the Hopf algebraT(L)@@h## of formal power series we show
that elements R@h# of (T(L) ^ T(L))@@h## satisfying (D ^ id)R@h#
5R@h#13R@h#23, (id^ D)R@h#5R@h#13R@h#12,and which are unitalized by the
counit in either copy ofT~L!, can be characterized as such directed double product
integrals))(11dW ^ dQ r @h#) wherer @h# is a formal power series with coefficients
in L^ L and vanishing constant term. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1649796#

I. INTRODUCTION

Enriquez1 has introduced a new method of functorial quantization of Lie bialgebras base
deformation of the Hopf algebra got by equipping the vector space of tensorsT~L! over a Lie
bialgebraL with the shuffle multiplication, defined by

~L1^ L2^¯^ Lm!~Lm11^ Lm12^¯^ Lm1n!5 (
pPSm,n

L p(1)^ L p(2)^¯^ L p(m1n) , ~1!

whereSm,n is the set of permutations of (1,2,...,m1n) which conserve the order of (1,2,...,m)
and of (m11,m12,...,m1n), and the coproduct defined by

D~L1^ L2^¯^ Lm!5 (
k50

m

~L1^ L2^¯^ Lk! ^ ~Lk11^ Lk12^¯^ Lm!. ~2!

Enriquez’ method suggests an alternative more algebraic approach to the quantization pro
that of Etingof and Kazhdan.2

In Ref. 4 it was shown that in the case of a Lie algebraL whose Lie bracket is formed by
taking commutators in a not necessarily unital associative algebra,T~L! can be equipped with a
noncommutative associative unital multiplication in which the homogeneous components
productg5ab of two tensors are given in terms of those ofa andb by

gn5 (
AøB5$1,2,...,n%

a uAu
A b uBu

B . ~3!

a!Electronic mail: robin.hudson@ntu.ac.uk
20900022-2488/2004/45(5)/2090/16/$22.00 © 2004 American Institute of Physics
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Here the sum is over all 3n ordered pairs (A,B) of not necessarily disjoint subsets whose union
$1,2,...,n%, and we use the place notation thata uAu

A indicates that the homogeneous componenta uAu
is placed in the tensor product of theuAu copies ofL within ^

nL labeled by the elements ofA,
b uBu

B is defined analogously, so that sinceAøB5$1,2,...,n% all copies ofL within ^
nL are

occupied bya uAu
A b uBu

B , and double occupancies are reduced using the multiplication inL. The
shuffle product~1! corresponds to restricting the sum in~3! to disjoint pairs (A,B). Alternatively
we may define the multiplication~3! by bilinear extension of its action on homogeneous prod
tensors, which is:

~L1^ L2^¯^ Lm!~Lm11^ Lm12^¯^ Lm1n!5 (
j 5m∨n

m1n

(
(P1 ,P2 ,...,Pj )PPj

LP1
^ LP2

^¯^ LPj
,

~4!

wherePj is the set of ordered partitions (P1 ,P2 ,...,Pj ) of $1,2,...,m1n% into j subsets such that

~i! Each subsetP is either a singleton$ i %, in which caseLP5Li , or a pair $k,l % with
kP$1,2,...,m% and l P$m11,m12,...,m1n%, in which caseLP5LkLl ;

~ii ! the permutation (P1 ,P2 ,...,Pj ) of (1,2,...,m1n), in which each pair is in increasing
order, is an element ofSm,n .

Remark:We are grateful to the referee for the interesting observation that the multiplic
~4! is similar to the general product formula for multizeta functions

z~s1 ,s2 ,...,sm!5 (
1< j 1, j 2,¯, j m,`

j 1
s1 j 2

s2
¯ j m

sm,

of interest in number theory, namely,

z~s1 ,s2 ,...,sm!z~sm11 ,sm12 ,...,sm1n!5 (
j 5m∨n

m1n

(
(P1 ,P2 ,...,Pj )PPj

z~sP1
,sP2

,...,sPk
!,

wheresP5sj if P is a singleton$ j % andsP5sj1sk if P is a pair$ j ,k%.
Motivated by quantum stochastic calculus, we refer to~3! or ~4! as theItô shuffle productand

the corresponding algebra as theItô shuffle algebra. We shall show below that this algebra is al
a Hopf algebra under the co-product~2!. The subspaceS~L! of T~L! comprising symmetric tensor
is a sub-Hopf algebra isomorphic to the universal envelopingU algebra ofL.

By replacing~3! by

gn5 (
AøB5$1,2,...,n%

huAùBua uAu
A b uBu

B ,

we can makeT(L)@@h## into a formal deformation of the Enriquez-type.9

Enriquez’ method depends firstly on finding an elementR@h# of the deformed Hopf algebra
which satisfies the quasitriangular identities

~D ^ id!R@h#5R@h#13R@h#23, ~ id^ D!R@h#5R@h#13R@h#12. ~5!

In the present work we shall find a characterization of such elements of the Hopf algebraT(L)
3@@h## as directed double product integrals, whose definition will now be explained.

We introduceright and left differential maps dW and dQ from T~L! to T(L) ^ L and to L
^ T(L) by linear extension of their actions on homogeneous product tensors

dW ~L1^ L2^¯^ Lm!5~L1^ L2^¯^ Lm21! ^ Lm ,
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dQ ~L1^ L2^¯^ Lm!5L1^ ~L2^ L3¯^ Lm!.

WhenT~L! is equipped with the shuffle product~1! these satisfy the Leibniz formulas

dWQ ~ab!5dWQ ~a!b1adWQ ~b!, ~6!

in whichT(L) ^ L andL^ T(L) are regarded asT~L!-bimodules using the natural tensorial actio
got by linear extension of

a~b ^ L !5~a ^ L !b5~ab! ^ L, a~L ^ b!5~L ^ a!b5L ^ ~ab!. ~7!

To see that~6! holds fordW , for example, we may decompose into two parts the sum on the r
hand side of~1! according to whether or notp(m1n) belongs to$1,2,...,m% or to $m11,m
12,...,m1n%, and then applydW to both sides. It is evident from actions on homogeneous pro
tensors that the iterates

d~n!
�

5~dWQ ^ id ^ n21L!+~dQW ^ id ^ n22L!+¯+dWQ , n51,2,...,

of both the left and right differential maps satisfy

&n50
` d~n!

�
5D,

where we make the identifications

T~L! ^ T~L!5 %
n50

`

~T~L! ^ ~ ^
nL!!5 %

n50

`

~~ ^
nL! ^ T~L!!. ~8!

If we replace the shuffle product~1! by the Itô shuffle product~4! we find, instead of the
Leibniz formula~6!, theLeibniz–Itô formula

dWQ ~ab!5dWQ ~a!b1adWQ ~b!1dWQ ~a!dWQ ~b!, ~9!

where now the first two terms on the right-hand side refer to the tensorial actions defined b~7!,
but in which the multiplications are now given by~3!, and the third term refers to the tens
product multiplication of the Itoˆ shuffle product inT~L! with the given multiplication inL. ~9!

may be seen to hold fordW , for example, by decomposing the inner sum on the right-hand sid
~4! into three parts, according to whether the final elementLSj

is such thatSj is a singleton

$ i %,$1,2,...,m%, a singleton$k%,$m11,m12,...,m1n% or a pair$ i ,k%.
The Leibniz formula~6! shows that the right or left differential map defines a differen

calculus in the sense of Woronowicz10 when T~L! is equipped with the shuffle product an
T(L) ^ L or L^ T(L) is equipped with the tensorial biaction defined by~7!. In the case of the Itoˆ
shuffle product the Leibniz–Ito formula~9! can be reduced to the Leibniz formula~6! by modi-
fying either the right or left actions. For example, if we define •W: (T(L) ^ L)3T(L)→T(L) ^ L by

M •Wa5Ma1MdW a,

where the first term is the tensorial action~7! with Itô shuffle product and the second is the tens
product multiplication inT(L) ^ L then, using the formula~9!, it may be verified that •W defines a
right action, compatible with the corresponding left tensorial action, in terms of which~9! assumes
the Leibniz form
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dW ~ab!5dW ~a!•Wb1adW ~b!.

Alternatively a similar modification may be made to the left action to achieve the Leibniz form
But the asymmetry of the two corresponding Woronowicz calculus~which are not bicovariant in
the sense of Ref. 10! make them impractical to use in what follows. Henceforth we always ass
that T~L! is equipped with the Itoˆ shuffle product and thatT~L! acts correspondingly onT(L)
^ L or L^ T(L) according to~7!, so that~9! holds. Correspondingly, we regard the spaceT(L)
3@@h## of formal power series as a Hopf algebra under the convolution multiplication for
from the Itôshuffle multiplication and action ofD on coefficients.

In Ref. 7 we formulated an algebraic theory of product integrals of the form)(11dL@h#)
whereL@h# is an element of the spacehL@@h## of formal power series with coefficents inL and
with vanishing zero order coefficient. While this theory is originally formulated in terms o
quantum stochastic calculus of which the associative algebraL is the algebra of Itoˆ differentials,
its algebraic character ensures a reformulation independent of the quantum stochastic cont
that each product integral of the theory has an indefinite version living inS(L)@@h##, or equiva-
lently in U @@h##. In this form, in view of Ref. 4, the theory can be set up for an arbitr
commutator Lie algebraL. Product integrals of this type are characterized among all elem
X@h# of S(L)@@h## by the grouplikeness conditions

«~X@h# !51, D~X@h# !5X@h# ^ X@h#, ~10!

where« denotes the co-unit. Note that the simple product integralX@h#5)(11dL@h# can be
defined as the solution of the differential equation

dX@h#5X@h# ^ dL@h#, «~X@h# !51, ~11!

whose unique solution is well defined algebraically.3

In Ref. 8 we developed a corresponding theory of double product integrals of the
))(11dr@h#) where r @h# is an element ofh(L^ L)@@h##, again in the quantum stochast
context. In order to obtain a theory whose indefinite version would live in (U^ U)@@h## or equiva-
lently in (S(L) ^ S(L))@@h## the double products were symmetrized in a way which preve
them from enjoying some cogent mathematical properties.

In the present work we shall develop a theory of double product integrals without the
metry assumption, which thus live not in (S(L) ^ S(L))@@h##, but in (T(L) ^ T(L))@@h##. We
must now distinguish between forward, mixed, and backward double products))(11dW

^ dW r @h#), ))(11dQ ^ dW r @h#), ))(11dW ^ dQ r @h#) and))(11dQ ^ dQ r @h#), for which we also use

the abbreviated notations )
→→

(11dr@h#), )
→←

(11dr@h#), )
←→

(11dr@h#), and )
←←

(1
1dr@h#), respectively. We shall show that each such double product integral can be defin
two different ways, as a simple product integral, which is the solution of an algebraic differe
equation, generalizing~11!, but in which the driving term which generalizesL@h# has coefficients
living in the tensor product ofL with another associative algebra called the system algebra, a
itself also essentially a simple product integral of the same type driven byr @h#Ph(L^ L)@@h##
where one of the two copies ofL plays the role of the system algebra. That the two definitio
agree may be regarded as loosely analogous to Fubini’s theorem.5 More precisely the agreemen
may be regarded as a continuous algebraic version of the identity

)
j

→ S )
k

→

~11xj ,k!D 5)
k

→ S )
j

→

~11xj ,k!D , ~12!

which holds8 whenever the elementsxj ,k of a unital associative algebra are weakly commuting
the sense thatxj ,k commutes withxj 8,k8 wheneverj Þ j 8 andkÞk8 ~but not necessarily whenj
5 j 8 but kÞk8, for example!.
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We shall show that these double product integrals can then be characterized analogo

~10!, for example, an elementR@h# of (T(L) ^ T(L))@@h## is of form )
→←

(11dr@h#) if and only
if it satisfies~5! as well as

~« ^ id!R@h#5~ id^ «!R@h#51.

The next stage in Enriquez’ quantization procedure is to require thatR@h# satisfy, in addition
to ~5!, the quantum Yang–Baxter equation

R@h#12R@h#13R@h#235R@h#23R@h#13R@h#12, ~13!

in (T(L) ^ T(L) ^ T(L))@@h##. In a subsequent paper we shall establish a condition onr @h#

necessary and sufficient for the mixed double integral)
→←

(11dr@h#) to satisfy~13!.
We use the following notational conventions. IfA is a vector space we denote byA@@h## the

space of formal power series with coefficients inA and byhA@@h## the subspace ofA@@h## of
elements for which the coefficient ofh0 is zero. WhenA is a not necessarily unital associativ
algebra we equipA@@h## with the convolution product

(
N50

`

hNAN (
N50

`

hNBN5 (
N50

`

hN(
j 50

N

AN2 jBj .

Linear maps fromA are extended toA@@h## by action on the coefficients. IfV1 ,V2 ,...,Vn are
vector spaces andp is a permutation of (1,2,...,n), we denote byt p the linear map fromV1

^ V2^ ••• ^ Vn to Vp(1)^ Vp(2)^ ••• ^ Vp(n) which appropriately permutes the components
product tensors.

II. T„L… AS A HOPF ALGEBRA WITH THE ITÔ SHUFFLE PRODUCT

Let L be a finite dimensional associative algebra, not necessarily unital, over a fieldF of
characteristic zero fixed once and for all. We are interested inL as a Lie algebra under th
commutator Lie bracket@L,K#5LK2KL and in the universal enveloping algebraU of this Lie
algebra. Let

T~L!5 %
n50

`

~ ^
nL!,

denote the vector space of all tensors overL. It is well known thatT~L! becomes a Hopf algebr
under the coproductD defined by linear extension of its action on homogeneous product ten
~2! when the multiplication is the shuffle product~1!; we call this theshuffleHopf algebra. The
antipode is defined by linear extension of the map

L1^ L2^¯^ Lm°~21!mLm^ Lm21^¯^ L1 . ~14!

Our first task is to show thatT~L! remains a Hopf algebra under the coproductD when the shuffle
multiplication is replaced by~3!.

Theorem 1: D is multiplicative for the Itoˆ shuffle product~3!.
Proof: Let a,bPT(L). To lighten notation we temporarily denote the right differential mapdW

by d. We show that, forn50,1,2,..., thenth rank component ofD~ab! under the identification
~8!, which is

~~d^ id ^ n21L!+~d^ id ^ n22L!+¯+d!~ab!,

is equal to thenth rank component ofD~a!D~b!, which by ~3! is
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(
AøB5$1,2,...,n%

~~~d^ id ^ uAu21L!+~d^ id ^ uAu22L!+¯+d!~a!!A,

~~~d^ id ^ uBu21L!+~d^ id ^ uBu22L!+¯+d!~b!!B.

Here we use the place notation that, for example, the superscriptA indicates that the term to which
it is attached occupies the tensor product ofT~L! and those copies ofL within ^

nL labeled by
elements ofA and the two terms are multiplied using the multiplication~3! in T~L! together with
that in L in case of double occupancy. The proof is by induction onn beginning with the
observation that whenn50 both expressions are equal toab. For general nonzeron we divide the
sum in the second expression into three parts depending on whethern belongs toAùBc, to
AcùB, or to AùB, and write it as

(
CøD5$1,2,...,n21%

$~~~d^ id ^ uCuL!+~d^ id ^ uCu21L!+¯+d!~a!!Cø$n%~~~d^ id ^ uDu21L!

+~d^ id ^ uDu22L!+¯+d)~b!)D1~~~d^ id ^ uCu21L!+~d^ id ^ uCu22L!+¯+d!~a!!C

3~~~d^ id ^ uDuL!+~d^ id ^ uDu21L!+¯+d!~b!!Dø$n%

1~~~d^ id ^ uCuL!+~d^ id ^ uCu21L!+¯+d!~a!!Cø$n%

3~~~d^ id ^ uDuL!+~d^ id ^ uDu21L!+¯+d!~b!!Dø$n%%.

This may be expressed as

~d^ id ^ nL!S (
CøD5$1,2,...,n21%

~~~d^ id ^ uCu21L!+~d^ id ^ uCu22L!+¯+d!~a!!C

3~~~d^ id ^ uDu21L!+~d^ id ^ uDu22L!+¯+d!~b!!DD ,

as is seen by applying the Leibniz–Itoˆ formula ~9! to each product occuring in the latter sum
Making the inductive assumption that

(
CøD5$1,2,...,n21%

~~~d^ id ^ uCu21L!+~d^ id ^ uCu22L!+¯+d!~a!!C~~~d^ id ^ uDu21L!

+~d^ id ^ uDu22L!+¯+d)~b!)D

5~~d^ id ^ n22L!+~d^ id ^ n23L!+¯+d!~ab!

completes the proof. h

Equipped with the Itoˆ product and the co-productD, T~L! becomes a bialgebra equipped wi
the same unit 1T(L)5(1 F,0,0,...) andco-unit

«:T~L!5 %
n50

`

^
nL{~a0 ,a1 ,a2 ,...!°a0 ,

as the shuffle Hopf algebra. Since the Itoˆ multiplication acts on homogeneous tensors by add
terms of lower rank to the shuffle product the argument that a deformation bialgebra of a
algebra is itself a Hopf algebra3 may be adapted to conclude that the new bialgebra is equip
with a antipode whose action on homogeneous tensors is got by adding lower rank terms t~14!.
We call the resulting Hopf algebra theItô–Hopf algebra.
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III. SIMPLE PRODUCT INTEGRALS WITH A SYSTEM ALGEBRA

Let A be a possibly nonunital associative algebra which we call thesystem algebra. Let l @h#
be an element ofh(A^ L)@@h## and write l @h#5( j 51

d l j@h# ^ L j where l j@h#PA0@h# and
(L1,L2,...,Ld) is a basis forL. We consider the infinite sum

(
n51

-
l @h#� l @h#�¯� l @h#

~n!

5 (
n51

`

�nl @h#. ~15!

Here the notation is as follows. The composition� denotes multiplication inhA@@h## and ten-
soring inL, thus

�nl @h#5 (
j 1 ,...,j n51

d

)
r 51

n

l j r
@h# ^ ~L j 1^ L j 2^¯^ L j N!.

The sum~15! can be rearranged as a well defined element(N51
` hNXN of h(A^ T(L))@@h##.7 If A

is unital then the elementX@h#51 A^ T(L)1(N51
` hNXN of (A^ T(L))@@h## is the unique solution

of the algebraic differential equation

~ id A^ dW !X@h#5X@h#�dl@h#, ~ id A^ «!X@h#51 A .

We denote it byA)(11dW l @h#). In the nonunital case we define the original rearranged sum~15!

in h(A^ T(L))@@h## to be thedecapitatedproduct integralA)̂(11dW l @h#). In a similar way,
starting from an elementm@h#5( j 51

d L j
^ mj@h# of h(L^ A)@@h## we define the product integral

) A~11dW m@h# !51 T(L) ^ A1 (
n51

`

�nm@h#

51 T(L) ^ A1 (
N51

`

(
j 1 , j 2 , . . . , j N51

d

)
r 51

N

~L j 1^ L j 2^¯^ L j N! ^ )
r 51

N

mj r
@h#,

in (T(L) ^ A)@@h## in the unital case, and

)̂ A~11dW m@h# !5 (
n51

`

�nm@h#5 (
N51

`

(
j 1 , j 2 , . . . , j N51

d

~L j 1^ L j 2^¯^ L j N! ^ )
r 51

N

mj r
@h#,

in h(T(L) ^ A)@@h## whenA is nonunital. Thus the position of the subscriptA indicates whether
the system algebra is tensored to the right or the left ofT~L!. We distinguish theseforward product
integrals from the correspondingbackwardproduct integrals

A) ~11dQ l @h# !, A)̂ ~11dQ l @h# !, ) A~11dQ m@h# !, )̂ A~11dQ m@h# !,

which are solutions of left differential equations. For example,

A) ~11dQ l @h# !51 A^ T(L)1�̃nl @h#

51 A^ T(L)1 (
N51

`

(
j 1 , j 2 , . . . , j N51

d

)
r 51

N

l j r
@h# ^ ~L j N^ L j N21^¯^ L j 1!,

where the symbol�̃ denotes multiplication inA@@h## combined with tensoring in the opposit

direction in L, so that for example (a^ L) �̃(b^ K)5ab^ (K ^ L). A)(11dQ l @h#) solves the
differential equation
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~ id A^ dQ !X@h#5dl@h#�X@h#, ~ id A^ «!X@h#51 A .

The theorem which follows generalizes to the case where there is a nontrivial system a
the characterization7 of grouplike elements ofS(L)@@h## as simple product integrals. In prepar
tion for the proof, note that

~ id T(L) ^ « ^ id L!+~ id T(L) ^ dW !+D5dW ,

as follows from comparison of actions of the two sides on product tensors, and hence

~ id A^ T(L) ^ « ^ id L!+~ id A^ T(L) ^ dW !+~ id A^ D!5 id A^ dW . ~16!

The symbol� is used now to denote the operation from (A^ T(L))@@h##3(A^ T(L))@@h## to
(A^ T(L) ^ T(L))@@h## got by tensoring multiplication fromA3A to A with the tensor product
composition fromT(L)3T(L) to T(L) ^ T(L). We regardD as a map fromT(L)@@h## to
(T(L) ^ T(L))@@h## by action on coefficients.

Theorem 2: Let l@h#Ph(A^ L)@@h## whereA is assumed unital. Then

~ id A^ D!A) ~11dW l @h# !5A) ~11dW l @h# !�A) ~11dW l @h# !

and

~ id A^ «!A) ~11dW l @h# !51 A .

Conversely, let X@h# be an element of(A^ T(L))@@h## satisfying

~ id A^ D!X@h#5X@h#�X@h#, ~ id A^ «!X@h#51 A . ~17!

Then there exists an element l@h#Ph(A^ L)@@h## such that X@h#5A)(11dW l @h#).
Proof: Applying the map idA^ D to

A) ~11dW l @h# !51 A^ T(L)1 (
N51

`

(
j 1 , j 2 , . . . , j N51

d

)
r 51

N

l j r
@h# ^ ~L j 1^ L j 2^¯^ L j N!,

using ~2! we obtain

1 A^ T(L) ^ T(L)1 (
N51

`

(
j 1 , j 2 , . . . , j N51

d

)
r 51

N

l j r
@h# ^ (

s50

N

~L j 1^ L j 2^¯^ L j s! ^ ~L j s11^ L j s12^¯

^ L j N!51 A^ T(L) ^ T(L)1 (
N51

` S (
j 1 , j 2 ,...j s51

d

(
s50

N

)
r 51

s

l j r
@h# ^ ~L j 1^ L j 2^¯^ L j s!D

�S (
j s11 , j s12 , . . . , j N51

d

)
r 5s11

N

l j r
@h# ^ ~L j s11^ L j s12^¯^ L j N!D

5S 1 A^ T(L)

1 (
N51

`

(
j 1 , j 2 , . . . , j N51

d

)
r 51

N

l j r
@h# ^ ~L j 1^ L j 2^¯^ L j N!D

�S 1 A^ T(L)1 (
N51

`

(
j 1 , j 2 , . . . , j N51

d

)
r 51

N

l j r
@h# ^ ~L j 1^ L j 2^¯^ L j N!D

5S A) ~11dW l @h# ! D�S A) ~11dW l @h# ! D ,
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also

~ id A^ «!A) ~11dW l @h# !51 A1 (
N51

`

(
j 1 , j 2 , . . . , j N51

d

)
r 51

N

l j r
@h# ^ «~L j 1^ L j 2^¯^ L j N!51 A ,

as required.
To prove the converse we adapt the corresponding proof for the caseA5F.4 Thus letX@h#

satisfy ~17! and be of form 1A^ T(L)1Y@h#, where Y@h#Ph(A^ T(L))@@h##. Applying
(id A^ T(L) ^ « ^ id L)+(id A^ T(L) ^ dW ) to (idA^ D)X@h#5X@h#�X@h# and using~16! we obtain
that X@h# satisfies the differential equation

~ id A^ dW !X@h#5X@h#�dl@h#, ~ id A^ «!X@h#51 A ,

wherel @h#5(id A^ « ^ id L)X@h#PA^ T(L)@@h##. Comparing coefficients ofh0 we see that

~ id A^ dW !X05X0�dl0 , ~ id A^ «!X051 A .

SincedW is degree reducing on the graded algebraT~L! this can hold only ifl 050. Hencel @h#
Ph(A^ T(L))@@h## and the proof is complete. h

Corollary 3: Let l@h#Ph(A^ L)@@h## where A is possibly nonunital. Then the elemen

Y@h#5A)̂(11dW l @h#) of (A^ T(L))@@h## satisfies

~ id A^ D!Y@h#5Y@h# ^ 1 T(L)1t (1,3,2)~Y@h# ^ 1 T(L)!1Y@h#�Y@h#

and

~ id A^ «!Y@h#50 A .

Conversely, let Y@h# be an element of(A^ T(L))@@h## satisfying these conditions. Then there

exists an element l@h#Ph(A^ L)@@h## such that Y@h#5A)̂(11dW l @h#).
Proof: We adjoin a unit toA if it lacks one. Then the Corollary follows from the Theorem

writing A)(11dW l @h#)51 A^ T(L)1A)̂(11dW l @h#) andX@h#51 A^ T(L)1Y@h#. h

Analogous characterisations hold to those of Theorem 2 and its corollary for product inte
of form ) A(11dW m@h#) and )̂ A(11dW m@h#). To formulate the analogues for backward direct
products we need the composition�̃ in which elements ofA are multiplied and elements ofT~L!
are tensored, but in the reverse direction.

Theorem 4: Let l@h#Ph(A^ L)@@h## whereA is assumed unital. Then

~ id A^ D!A) ~11dQ l @h# !5A) ~11dQ l @h# !�̃A) ~11dQ l @h# !

and

~ id A^ «!A) ~11dQ l @h# !51 A .

Conversely, let X@h# be an element of(A^ T(L))@@h## satisfying

~ id A^ D!X@h#5X@h#�̃X@h#, ~ id A^ «!X@h#51 A . ~18!

Then there exists an element l@h#Ph(A^ L)@@h## such that X@h#5A)(11dQ l @h#).
This Theorem and its Corollary which follows are proved analogously to Theorem 2 an

Corollary.
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Corollary 5: Let l@h#Ph(A^ L)@@h## where A is possibly nonunital. Then the elemen

Y@h#5A)̂(11dQ l @h#) of (A^ T(L))@@h## satisfies

~ id A^ D!Y@h#5Y@h# ^ 1 T(L)1t (1,3,2)~Y@h# ^ 1 T(L)!1Y@h#�̃Y@h#

and

~ id A^ «!Y@h#50 A .

Conversely, let Y@h# be an element of(A^ T(L))@@h## satisfying these conditions. Then there

exists an element l@h#Ph(A^ L)@@h## such that Y@h#5A)̂(11dQ l @h#).
Now let l @h#5( j 51

d l j@h# ^ L j and m@h#5(k51
d mk@h# ^ Lk be elements ofh(A^ L)@@h##.

We say that they areA-commuting if eachl j@h# commutes with eachmk@h# as elements of
A@@h##. A-commuting elementsh(L^ A)@@h## are defined analogously.

Theorem 6: Let l@h# and m@h# be A-commuting elements of h(A^ L)@@h## and let

n@h#5 l @h#1m@h#1 l @h#m@h#,

where l@h#m@h# is formed using the tensor product associative multiplication inA^ L. Then ifA
is unital

A) ~11dW l @h# !A) ~11dW m@h# !5A) ~11dW n@h# !,

and in the nonunital case

A)̂ ~11dW l @h# !1A)̂ ~11dW m@h# !1A)̂ ~11dW l @h# !A)̂ ~11dW k@h# !5A)̂ ~11dW n@h# !.

Proof: In the unital caseX@h#5A)(11dW l @h#) andY@h#A)(11dW m@h#) are, respectively, the
unique solutions of the differential equations

~ id A^ dW !X@h#5X@h#�dl@h#, ~ id A^ «!X@h#51 A

and

~ id A^ dW !Y@h#5Y@h#�dm@h#, ~ id A^ «!Y@h#51 A .

By the Leibniz–Itôformula, their product satisfies

~ id A^ dW !~X@h#Y@h# !5~~ id A^ dW !X@h# !Y@h#1X@h#~ id A^ dW !Y@h#

1~~ id A^ dW !X@h# !~ id A^ dW !Y@h#

5~X@h#�dl@h# !Y@h#1X@h#~Y@h#�dm@h# !

1~X@h#�dl@h# !~Y@h#�dm@h# !

5X@h#Y@h#�dl@h#1X@h#Y@h#�dm@h#1X@h#Y@h#�dl@h#dm@h#

5X@h#Y@h#�dn@h#,

where in the penultimate line we used theA-commutativity of l @h# and m@h#. Also, since« is
multiplicative,

~ id A^ «!~X@h#Y@h# !5~ id A^ «!X@h#~ id A^ «!Y@h#51 A .
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ThusZ@h#5X@h#Y@h# is the unique solution of the differential equation

~ id A^ dW !Z@h#5Z@h#�dn@h#, ~ id A^ «!Z@h#51 A ,

which is A)(11dW l @h#). If A is nonunital we adjoin a unit. Then, by the unital case,

S 1 A^ T(L)1A)̂ ~11dW l @h# !D S 1 A^ T(L)1A)̂ ~11dW k@h# !D 5S 1 A^ T(L)1A)̂ ~11dW n@h# !D ,

that is

1 A^ T(L)1A)̂ ~11dW l @h# !1A)̂ ~11dW k@h# !1A)̂ ~11dW l @h# !A)̂ ~11dW k@h# !

51 A^ T(L)1A)̂ ~11dW n@h# !

Cancelling the unit on both sides completes the proof. h

Analogous results hold for backward product integrals and for right system algebras.

IV. DEFINITION OF DOUBLE PRODUCT INTEGRALS

Now let r @h# be an element ofh(L^ L)@@h##. Regarding the left copy ofL in L^ L as the
system algebra we may form the decapitated product integralL)̂(11dW r @h#). This is an element
of h(L^ T(L))@@h##, so, regardingT~L! as a unital right system algebra, we may form the prod
integral) T(L)(11dW ( L)̂(11dW r @h#))). In thesame way, regarding the right copy ofL in L^ L as
the system algebra, we may form, first the decapitated product integral)̂ L(11dW r @h#) in (T(L)
^ L)@@h##, and then the product integralT(L)) (11dW ()̂ L(11dW r @h#))). We shall prove the ‘‘Fu-
bini theorem,’’ thatT(L)) (11dW ()̂ L(11dW r @h#))) and ) T(L)(11dW ( L)̂(11dW r @h#))) are equal,
so that we may define their common value to be the double product integral))(11dW ^ dW r @h#)

5 )
→→

(11dr@h#). By changing directions of the single products we define)
→←

(11dr@h#),

)
←→

(11dr@h#), and )
←←

(11dr@h#) similarly. For example,

)
→←

~11dr@h# !5) T(L)S 11dW S L)̂ ~11dQ r @h# !D D 5T(L)) S 11dQ S )̂ L~11dW r @h# !D D .

We shall prove the Fubini theorem by showing that both definitions are equivalent to a
more explicit but less intuitive form, in fact essentially the unsymmetrized version of the defin
used in Ref. 8. To describe this third form we need some combinatorial preliminaries.

For each natural numberN let M(N) denote the set of rectangular matricesM all of whose
entriesM jk are either 0 or 1 with the properties that each row and each column contains a
one entry 1, that is(kM jk.0 for each fixedj and ( jM jk.0 for each fixedk, and the total
number of entries 1 isN, ( j ,kM jk5N. For exampleM(1)5$@1#% and

M~2!5H F1 0

0 1G ,F0 1

1 0G ,F11G ,@1 1#J .

EachM(N) is finite since an element can have at mostN rows and columns and each entry mu
be 0 or 1. LetMPM(N) havem rows andn columns. We are going to define a correspond
element)Mr @h# of (( ^

mL) ^ ( ^
nL))@@h##.
                                                                                                                



n

e

Let us
f

f the
ching

n-

2101J. Math. Phys., Vol. 45, No. 5, May 2004 Double product integrals and Enriquez quantization

                    
We say that an orderingv5(( j 1 ,k1),( j 2 ,k2),...,(j mn , j mn)) of the elements of the Cartesia
product$1,2,...,m%3$1,2,...,n% is allowed if ( j ,k) precedes (j 8,k8) whenever bothj , j 8 andk
,k8. For example, therow andcolumnorderings

v→5~~1,1!,~1,2!,...,~1,n!,~2,1!,~2,2!,...,~2,n!,...,~m,1!,~m,2!,...,~m,n!!,

v↓5~~1,1!,~2,1!,...,~m,1!,~1,2!,~2,2!,...,~m,2!,...,~1,n!,~2,n!,...,~m,n!!,

are allowed orderings, but there are many others.
Given an allowed orderingv5(P1 ,P2 ,...,Pmn) we construct the correspondingreduced

ordering vM5(Q1 ,Q2 ,...,QN)5(( j 1 ,k1),( j 2 ,k2),...,(j N ,kN)) by deleting from v those P
5( j ,k) for which the matrix elementM j ,k50. Finally we define the element)M

(v)r @h# of
(( ^

mL) ^ ( ^
nL))@@h## using place notation as

)
M

(v)

r @h#5r @h# ( j 1 ,k1)r @h# ( j 2 ,k2)...r @h# ( j N ,kN).

Here the coefficients of the formal power seriesr @h# ( j ,k) occupies thej th copy ofL in ^
mL and

thekth copy ofL in ^
nL. The defining properties ofM(N) ensure that every copy ofL in ^

mL
and in ^

nL is occupied; multiple occupancies are reduced using the multiplication inL.
Lemma 7:)M

(v)r @h# is independent of the choice of allowed orderingv.
Proof: By adjoining a unit and setting all terms withM j ,k50 equal to this, we may assum

that allM j ,k51. The second term of the allowed orderingv must be either~1,2! or ~2,1! since any
other choice would make it impossible to subsequently place at least one of these terms.
show that if the second term is~1,2! then)M

(v)r @h#5)M
(v→)r @h#. A similar argument shows that i

the second term is~2,1! then )M
(v)r @h#5)M

(v↓)r @h#. Since it follows from~12! that )M
(v→)r @h#

5)M
(v↓)r @h#, this proves the Lemma. Suppose that the second, third, . . . , kth terms ofv are

(1,2),(1,3), . . . ,(1,k) but the (k11)th is not (1,k11). @Then it must be~2,1!.# If k5n we may
detach the first row to the left of the ordering and argue by induction that the ordering o
remaining (m21)n terms is equivalent to the corresponding row ordering and hence, reatta
the first row, that)M

(v)r @h#5)M
(v→)r @h#. If k,n then r @h#1,k11 commutes with all preceding

terms exceptr @h#1,1,r @h#1,2, . . . ,r @h#1,k since these are of the formr @h# j ,k8 with j .1 andk8
,k. Hence we may mover @h#1,k11 to immediately followr @h#1,1r @h#1,2••• r @h#1,k, effectively
increasingk by 1. Iterating, we arrive at the casek5n already proved. h

We denote by)Mr @h# the common value of the products)M
(v)r @h#. It is evidently a formal

power series of which the coefficents ofh0,h1,h2,...,hN21 vanish. Thus(N51
` (MPM(N) )Mr @h#

is a well defined element ofh(T(L) ^ T(L))@@h##. We can also rearrange it as

(
N51

`

(
MPM(N)

)
M

r @h#5 (
m,n51

`

(
MPMm,n

)
M

r @h#,

whereMm,n denotes the finite subset oføN51
` M(N) consisting ofm3n matrices.

For natural numbersm,n, we introduce the setsAm,n of ordered m-tuples A
5(A1 ,A2 , . . . ,Am) of nonempty subsets whose union is$1,2,...,n%, andBm,n of orderedn-tuples
(B1 ,B2 , . . . ,Bn) of nonempty subsets whose union is$1,2,...,m%. There is a one–one correspo
dence between elements ofMm,n , Am,n , andBm,n given by

M j ,k51⇔kPAj⇔ j PBk , j 51,2,...,m, k51,2,...,n.

For eachMPMm,n , evaluating)Mr @h# using the row allowed ordering we get
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)
M

r @h#5~r @h#1,a1,1,�r @h#1,a1,2�¯�r @h#1,a1,uA1u!

� ~r @h#2,a2,1,�r @h#2,a2,2�¯�r @h#2,a2,uA2u!

� ¯

� ~r @h#m,am,1�r @h#m,am,2�¯�r @h#m,am,uAmu!,

where the corresponding elements ofAm,n are given by Aj5$aj ,1,aj ,2,¯,aj ,uAj u%, j

51,2,...,m. Here the inner compositions� denote multiplication inL on the left and tensoring on
the right, while the outer compositions� denote tensoring on the left and tensoring disjo
indices and multiplying coincident indices on the right. Thus in particular

(
N51

`

(
MPM(N)

)
M

r @h#5 (
m,n51

`

(
APAm,n

~r @h#1,a1,1,�r @h#1,a1,2�¯�r @h#1,a1,uA1u!

� ~r @h#2,a2,1,�r @h#2,a2,2�¯�r @h#2,a2,uA2u!

� ¯

� ~r @h#m,am,1�r @h#m,am,2�¯�r @h#m,am,uAmu!. ~19!

Similarly, using the column allowed ordering, we get

(
N51

`

(
MPM(N)

)
M

r @h#5 (
m,n51

`

(
BPBm,n

~r @h#b1,1,1�r @h#b2,1,2�¯�r @h#buB1u,1!

� ~r @h#b1,2,2�r @h#b2,2,2�¯�r @h#buB2u,2!

� ¯

� ~r @h#b1,n ,n�r @h#b2,n ,n�¯�r @h#buBnu ,n!, ~20!

where the elements ofBPBm,n are given byBk5$b1,k,b2,k,¯,buBku,k%, k51,2,...,n.
We are now ready to prove the multiplicative Fubini theorem.
Theorem 8:

) T(L)S 11dW S L)̂ ~11dW r @h# !D D 51 T(L) ^ T(L)1 (
N51

`

(
MPM(N)

)
M

r @h#

5T(L)) S 11dW S )̂ L~11dW r @h# !D D .

Proof: To prove the first equality let us denote the element)̂ L(11dW r @h#)) of L^ T(L) by
R@h# and use place notation to write it in the form

R@h#5 (
N51

`

r @h#1,N11�r @h#1,N12�¯�r @h#1,2N,

where� denotes multiplication in the left hand copy ofL and tensoring inL on the right. Thus

) T(L)S 11dW S L)̂ ~11dW r @h# !D D 51 T(L) ^ T(L)1 (
N51

`

R@h#1�R@h#2�¯�R@h#N,

where now the superscripts denote places in^
NL and� now denotes tensoring inL on the left

and multiplication inT~L! on the right. Carrying out these multiplications using~3! we obtain
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) T(L)S 11dW S L)̂ ~11dW r @h# !D D
5 1 T(L) ^ T(L)1 (

m,n51

`

(
APAm,n

~r @h#1,a1,1�r @h#1,a1,2�¯�r @h#1,a1,uA1u!

� ~r @h#2,a2,1�r @h#2,a2,2�¯�r @h#2,a2,uA2vu!

� ¯

� ~r @h#m,am,1

� r @h#m,am,2�¯�r @h#m,am,uAmu!,

which is precisely 1T(L) ^ T(L)1(N51
` (MPM(N))Mr @h# by ~19!. The second equality is prove

similarly using~20!. h

V. CHARACTERIZATION THEOREM

Theorem 9: Double product integrals satisfy the pairs of relations

~ id T(L) ^ D! )
→→

~11dr@h# !5S )
→→

~11dr@h# !D 1,2S )
→→

~11dr@h# !D 1,3

,

~D ^ id T(L)! )
→→

~11dr@h# !5S )
→→

~11dr@h# !1,3S )
→→

~11dr@h# !D 2,3

,

~ id T(L) ^ D! )
→←

~11dr@h# !5S )
→←

~11dr@h# !D 1,3S )
→←

~11dr@h# !D 1,2

,

~D ^ id T(L)! )
→←

~11dr@h# !5S )
→←

~11dr@h# !D 1,3S )
→←

~11dr@h# !D 2,3

,

~ id T(L) ^ D! )
←→

~11dr@h# !5S )
←→

~11dr@h# !D 1,2S )
←→

~11dr@h# !D 1,3

,

~D ^ id T(L)! )
←→

~11dr@h# !5S )
←→

~11dr@h# !D 2,3S )
←→

~11dr@h# !D 1,3

,

~ id T(L) ^ D! )
←←

~11dr@h# !5S )
←←

~11dr@h# !D 1,3S )
←←

~11dr@h# !D 1,2

,

~D ^ id T(L)! )
←←

~11dr@h# !5S )
←←

~11dr@h# !D 2,3S )
←←

~11dr@h# !D 1,3

,

in (T(L) ^ T(L) ^ T(L))@@h##, together with

~« ^ id T(L)!)
**

~11dr@h# !5~ id T(L) ^ «!)
**

~11dr@h# !51 T(L) , ~21!

in each case. Conversely if R@h#P(T(L) ^ T(L))@@h## satisfies any one of these pairs of relatio

together with (21) then there exists an element r@h#Ph(L^ L)@@h## such that R@h#5 )
**

(1
1dr@h#).
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Proof: We shall prove the characterziation theorem for forward double product inte

)
→→

(11dr@h#); the others are proved similarly using appropriate variants of Theorems 2 a
and their corollaries.

Writing )
→→

(11dr@h#)5) T(L)(11dW ( L)̂(11dW r @h#))) and using Theorem 2 we get

~ id T(L) ^ D! )
→→

~11dr@h# !5~ id T(L) ^ D!S T(L)) S 11dW S )̂ L~11dW r @h# !D D D
5 S T(L)) S 11dW S )̂ L~11dW r @h# !D D D
� S T(L)) S 11dW S )̂ L~11dW r @h# !D D D

5 S )
→→

~11dr@h# !D 1,2S )
→→

~11dr@h# !D 1,3

.

Also

~ id T(L) ^ «! )
→→

~11dr@h# !5~ id T(L) ^ «!S T(L)) S 11dW S )̂ L~11dW r @h# !D D D 51 T(L) .

Similarly, writing )
→→

(11dr@h#)5) T(L)(11dW ( L)̂(11dW r @h#))) and using the analogue o
Theorem 2 for right system algebras we have

~D ^ id T(L)! )
←→

~11dr@h# !5~D ^ id T(L)!S ) T(L)S 11dW S L)̂ ~11dW r @h# !D D D
5 S ) T(L)S 11dW S L)̂ ~11dW r @h# !D D D
� S ) T(L)S 11dW S L)̂ ~11dW r @h# !D D D

5 S )
→→

~11dr@h# !D 1,3S )
→→

~11dr@h# !D 2,3

and

~« ^ id T(L)! )
←→

~11dr@h# !5~« ^ id T(L)!S ) T(L)S 11dW S L)̂ ~11dW r @h# !D D D 51 T(L) ,

as required.
Conversely letR@h#P(T(L) ^ T(L))@@h## satisfy

~ id T(L) ^ D!R@h#5~R@h# !1,2~R@h# !1,3, ~22!

~D ^ id T(L)!R@h#5~R@h# !1,3~R@h# !2,3, ~23!
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~ id T(L) ^ «!R@h#5~« ^ id T(L)!R@h#51 T(L) . ~24!

Using the converse of Theorem 2 we deduce from~22! and the left hand equation of~24! that
R@h#5T(L))(11dW l @h#) for some elementl @h#Ph(T(L) ^ L)@@h##. We expressR@h#5T(L))(1
1dW l @h#) as

R@h#5~1 T(L) ,l @h#,l @h#� l @h#,...,�nl @h#,...!, ~25!

as an element ofT(L) ^ T(L)5 % n50
` (T(L) ^ ( ^

nL)), where� denotes multiplication inT~L! on
the left and tensoring inL on the right. Using the right hand equation of~24! and the multiplica-
tivity of «, we find that

1 T(L)5~« ^ id T(L)!R@h#5~1 F ,~« ^ id L!l @h#,^
2~~« ^ id L!l @h# !,...,^ n~~« ^ id L!l @h# !,...!,

from which, since 1T(L)5(1 F,0,0,...), it follows that

~« ^ id L!l @h#50 L . ~26!

Similarly, applyingD ^ id T(L) to both sides of~25! and using~23! we get

~1 T(L) ,l @h#,l @h#� l @h#,...,�nl @h#,...!�~1 T(L) ,l @h#,l @h#� l @h#,...,�nl @h#,...!

5~R@h# !1,3~R@h# !2,3

5~D ^ id T(L)!R@h#

5~D ^ id T(L)!~1 T(L) ,l @h#,l @h#� l @h#,...,�nl @h#,...!,

where the outer� on the left denotes tensoring inT~L! on the left and multiplication inT(L)
5 % n50

` ( ^
nL) on the right. We compare the entries inT(L) ^ T(L) ^ L within % n50

` @T(L)
^ T(L) ^ ( ^

nL)# in this identity. From~3! contributions to the entry on the left can come on
from composing terms of rank not exceeding 1. Thus we find that

t (1,3,2)~ l @h# ^ 1 T(L)!11 T(L) ^ l @h#1 l @h#� l @h#5~D ^ id T(L)!l @h#. ~27!

Using the analogue of Corollary 3 for right system algebras it follows from~26! and ~27! that
l @h#5)̂ L(11dW r @h#) for somer @h#Ph(L^ L)@@h##. Hence

R@h#5T(L)) S 11dW S )̂ L~11dW r @h# !D D 5 )
→→

~11dr@h# !.

h
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Comment on ‘‘Double product integrals and Enriquez
quantization of Lie bialgebras I: The quasitriangular
identities’’ †Hudson and Pulmannova ´ , J. Math. Phys.
45, 2090 „2004…‡

B. Enriquez*
RMA (CNRS), rue Rene´ Descartes, F-67084 Strasbourg, France

~Received 13 February 2004; accepted 13 February 2004; published 14 April 2004!

@DOI: 10.1063/1.1695095#

The purpose of this article is to derive both the ‘‘Fubini theorem’’ and the ‘‘quasitriang
relations’’ shown by the authors of the preceding paper1 at the same time, not using the results
their Sec. IV. We first recall these results, using the notation of the paper.

Let r @h#PhL^ L@@h##. Set

X5 (
n.0

r 0,1
¯r 0,nPhL^ T~L!@@h##

@the product ofL is used in the factorL, concatenation is used inT~L!#,

Z5 (
n>0

X1,̀
¯Xn,`PT~L! ^ T~L!@@h##

@concatenation in the firstT~L!, product in the secondT~L!#,

Y5 (
n.0

r 1,̀
¯r n,`PhT~L! ^ L@@h##

~concatenation then product!,

Z85 (
n>0

Y0,1
¯Y0,nPT~L! ^ T~L!@@h##

~product then concatenation!.
Theorem 1: (1) (‘‘Fubini theorem’’) Z5Z8. (2) (‘‘Quasitriangular relations’’)

~D ^ id!~Z!5Z1,3Z2,3, ~ id^ D!~Z!5Z1,3Z1,2.

Proof: Let T(L)05 % i .0L^
i
, L̃5L% F1 ~L̃ is L with a unit adjoined!.

Lemma 2: The mapa:T~L̃!→L, 1°1, and taking xPT(L)0 to its homogeneous component1

of rank 1 is an algebra homomorphism.
Proof of Lemma:Clear.
Proof of Theorem:We have obviously (D ^ id)(Z)5Z1,3Z2,3. Let us prove (id̂ D)(Z)

5Z1,3Z1,2. Setu5(id^ D)(Z) andv5Z1,3Z1,2. Thenu, vPT(L) ^ 3@@h##. Moreover bothu andv
satisfy (D ^ id^ 2)(x)5x1,3,4x2,3,4. To apply Theorem 4 of Hudson and Pulmannova it remain
check that

~a ^ id^ 2!~u!5~a ^ id^ 2!~v !.

*Electronic mail: enriquez@math.u-strasbg.fr
21060022-2488/2004/45(5)/2106/2/$22.00 © 2004 American Institute of Physics
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Now (a ^ id^ 2)(u)5(id^ D)(X) and (a ^ id^ 2)(v)5X1,3X1,2 using the Lemma and the fact tha
(a ^ id)(Z)5X. Since (id̂ D)(X)5X1,3X1,2 we are done. Therefore,Z satisfies both quasitrian
gularity identities.

Z8 obviously satisfies (id̂ D)(Z8)5(Z8)1,3(Z8)1,2. SinceZ also satisfies this relation we wil
apply Theorem 4 of Hudson and Pulmannova to proveZ85Z. For this we need to prove tha
(id^ a)(Z)5(id^ a)(Z8). Now the Lemma implies that

~ id^ a!~Z!5 (
n>0

~ id^ a!~X!1,̀
¯~ id^ a!~X!n,`,

and since (id̂ a)(X)51 we get (id̂ a)(Z)5Y. We also have (id̂ a)(Z8)5Y, so by Theorem
4 of Hudson and Pulmannova,Z5Z8. This proves ‘‘Fubini’s theorem.’’ SinceZ5Z8, Z8 also
satisfies both quasitriangularity identities. h

1R. L. Hudson and S. Pulmannova, ‘‘Double product integrals and Enriquez quantization of Lie bialgebras
quasitriangular identities,’’ J. Math. Phys.45, 2090–2105~2004!.
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Erratum: ‘‘Properties of the symplectic structure of
general relativity for spatially bounded space–time
regions’’ †J. Math. Phys. 43, 3984 „2002…‡

Stephen C. Ancoa)

Department of Mathematics, Brock University, St. Catharines, Ontario L2S 3A1, Canada

Roh S. Tung
Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China

~Received 4 February 2004; accepted 19 February 2004; published 14 April 2004!

@DOI: 10.1063/1.1704848#

The left side of Eqs.~3.15! and~3.24! should contain a projection operator ‘‘PS’’ with respect
to the 2-surfaceS: i.e.,

PS~Lveab!5k~v !eab

and

PS~Lu6eab!5k6eab .

The sentences before and after Eqs.~4.53!–~4.55!, ~4.62!–~4.65!, ~4.79!–~4.81!, and~4.89!–
~4.91! all refer to 2-spheresS that lie outside any horizon.

The sentence after Eq.~4.91! should refer to thenormal part of Pa.
In Eq. ~4.37!, the log expressions are missing a termR2: i.e.,

ln~R21k~u!/k~v !!.

Likewise, the formula in the sentence after Eq.~4.37! should be changed to

~Pi
D!a5 1

2¹a
S ln~R21k~u!/k~v !!.

a!Electronic mail: sanco@brocku.ca
21080022-2488/2004/45(5)/2108/1/$22.00 © 2004 American Institute of Physics
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Erratum: ‘‘Covariant Hamiltonian boundary conditions in
General Relativity for spatially bounded space–time
regions’’ †J. Math. Phys. 43, 5531 „2002…‡

Stephen C. Ancoa)

Department of Mathematics, Brock University, St Catharines, Ontario L2S 3A1, Canada

Roh S. Tung
Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China

~Received 4 February 2004; accepted 5 February 2004; published 14 April 2004!

@DOI: 10.1063/1.1704849#

The right-side of Eq.~3.55! should contain the final equality ‘‘58eebcdue
aub

adGa
ab(u)’’: i.e.,

Qbcd~u,du!512u [c
m ud

ndG̃b]mn~u!58eebcdue
au b

adGa
ab~u!.

In Eq. ~3.69!, a ‘‘d ’’ is missing onJabc(j;u): i.e.,

VS~u,du,Lju!5E
S
dJabc~j;u!24jdE[abc

m ~u!dud]m2E
]S

jcQabc~u,du!.

The sentence before Eq.~3.74! should have at the end: ‘‘, using identity~3.4!,’’

a!Electronic mail: sanco@brocku.ca
21090022-2488/2004/45(5)/2109/1/$22.00 © 2004 American Institute of Physics
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Nonsingular G2 stiff fluid cosmologies
L. Fernández-Jambrina
E.T.S.I. Navales, Universidad Polite´cnica de Madrid, Arco de la Victoria s/n,
E-28040 Madrid, Spain

L. M. González-Romero
Departamento de Fı´sica Teo´rica II, Facultad de Ciencias Fı´sicas,
Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040 Madrid, Spain

~Received 24 November 2003; accepted 19 February 2004; published
online 19 April 2004!

In this paper we analyze Abelian diagonal orthogonally transitive space–times with
spacelike orbits for which the matter content is a stiff perfect fluid. The Einstein
equations are cast in a suitable form for determining their geodesic completeness. A
sufficient condition on the metric of these space–times is obtained, that is fairly
easy to check and to implement in exact solutions. These results confirm that
nonsingular space–times are abundant among stiff fluid cosmologies. ©2004
American Institute of Physics.@DOI: 10.1063/1.1705715#

I. INTRODUCTION

After the discovery of the first nonsingular perfect fluid cosmological model by Senovilla,1 the
possibility of constructing regular cosmologies was renewed. The interest for regular cosmo
had stifled for nearly 30 years due to the powerful singularity theorems~cf., for instance, Refs. 2
and 3!, which seemed to preclude such space–times under very general requirements, s
chronology protecting, energy and generic conditions. The open way to regular cosmologie
found in the violation of some technical premises of the theorems. For instance, in Ref. 4
shown that the Senovilla space–time did not possess a compact achronal set without ed
could not have closed trapped surfaces.

However, the first results were not encouraging. The extension of the Senovilla solutio
family of space–times left the set of regular models limited to a zero-measure subset surro
by space–times with Ricci and Weyl curvature singularities.5 During the following decade only a
few new nonsingular cosmologies were added to the list.6

Another estrategy to approach singularities arose with the publication of regu
theorems.7–9 Whereas singularity theorems stated general sufficient conditions for the appea
of singularities, these theorems aimed the contrary, namely particular conditions to achieve
space–times.

The application of the conclusions of Ref. 8 to a restricted family of stiff fluids provided
unexpected result. The set of known nonsingular perfect fluid cosmologies was enlarged
huge family depending on two nearly arbitrary functions.10

The purpose of this paper is the extension of those results to determine which space
among Abelian diagonal orthogonally transitive space–times with spacelike orbits and with
fluid as matter content are nonsingular. Instead of restricting to an integrable family of solutio
the Einstein equations, we analyze the whole set of diagonal cylindrical stiff fluid space–
with a spacelike transitivity surface element.

With this aim in mind we write in Sec. II the Einstein equations for such space–times an
cast them in a form suitable for the application of the theorems. The analysis of the restri
imposed by regularity conditions is done in Sec. III. Finally in Sec. IV we check the possibili
constructing regular space–times with nonvaninishing matter scalar space averages on
hypersurfaces in order to support the validity of a regularity conjecture by Senovilla.11
21130022-2488/2004/45(6)/2113/11/$22.00 © 2004 American Institute of Physics
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II. EQUATIONS FOR G2 STIFF FLUID SPACE–TIMES

As it has been stated in the introduction, we shall focus on space–times endowed w
Abelian orthogonally transitive group of isometriesG2 acting on spacelike surfaces, since this
the framework where most nonsingular space–times have been found so far. We further
that generators for the group can be found that are mutually orthogonal. We follow Ref.
writing the Einstein equations for such space–times using a formalism based on differential

If the generators of the isometry group are chosen to be$j,h%, we may write an orthonorma
tetrad,$u0,u1,u2,u3%, where justu2 andu3 lie in lin$j,h%. We may impose that these 1-forms b
Lie-invariant under the isometry group.12 The metric is written as

ds252u0
^ u01u1

^ u11u2
^ u21u3

^ u3. ~1!

Making use of the spacelike congruence foru2 and its kinematical quantities, we may defin
the tetrad basis according to the vanishing torsion equations,

du05n∧u1, ~2a!

du15n∧u0, ~2b!

du25a∧u2, ~2c!

du35~b2a!∧u3, ~2d!

wheren is just a connection in theu0–u1 subspace,a is an ‘‘acceleration’’ foru2 andb is related
to the expansion of the surface element in theu2–u3 subspace, sinced(u2∧u3)5b∧u2∧u3.

The integrability conditions for these equations are easily obtained by exterior different
of the system,

db50, ~3a!

da50. ~3b!

Finally, Einstein field equations are written in terms of these differential forms as an ex
system,

d* a1b∧* a5~ 1
2 T2T22!u

0∧u1, ~4a!

d* b1b∧* b5~T112T00!u
0∧u1, ~4b!

dn1a∧* a2b∧* a5 1
2 ~T002T111T221T33!u

0∧u1, ~4c!

d* b̃1b∧* b̃12~a2b!∧* ã12n∧b̃5~T001T11!u
0∧u1, ~4d!

db̃1b∧b̃12~a2b!∧ã12n∧* b̃52T01u
0∧u1, ~4e!

for a matter content defined by the energy-momentum tensorT5Tabu
a

^ ub.
The tilde denotes a reflection in theu0–u1 subspace, that is, ifa5au01bu1, then ã5au0

2bu1. The* denotes the Hodge duality operator in the same subspace,* a52au12bu0.
Integration of the first Bianchi equations~3a! and ~3b!,

a52dU, ~5a!
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b5
d ln r

r
, ~5b!

allows integration of Cartan equations in terms of two functions,z, f,

u25e2U dz, u35reU df, ~6!

that we take as coordinates in order to write the metric in a conventional form,

g5e2K~2dt21dr2!1e22U dz21r2e2U df2. ~7!

The coordinates are adapted to the Killing fields, so thatj5]z , h5]f . The nonignorable
coordinatest, r are chosen so that the metric is isotropic in the subspace spanned byu0 andu1,

u05eK dt, u15eK dr. ~8!

The range for these coordinates is the usual one,

2`,t, z,`, 0,r ,`, 0,f,2p, ~9!

if we require the space–time to be cylindrically symmetric. The remaining metric functions,K, U,
andr, depend just ont and r .

The connection in this case isn5* dK.
This is the general framework for an orthogonally transitive diagonal space–time with s

like orbits. If the matter content is a perfect fluid with 4-velocityu, pressurep, and densitym, the
Bianchi equations for such energy-momentum tensor,

T5mu^ u1p ~g1u^ u!, ~10!

may be written in compact expressions involving the kynematical 1-forms,

du1
1

m1p
dp∧u50, ~11a!

d* u1S b1
dm

m1pD∧* u50, ~11b!

which state that the fluid is irrotational.
We might chooseu05u for writing the Einstein equations, as it was done in Ref. 10, but si

we aim full generality, we shall not follow that way and explore arbitrary possibilities of alignm
for this 1-form. Preserving the unitarity ofu, we may parametrize it in terms of a functionj,

u52u0 coshj2u1 sinhj, ~12!

so that the Einstein equations for a perfect fluid take the following form:

Utt2Urr 1
1

r
~Utr t2Urr r !5

p2m

2
e2K, ~13a!

r tt2r rr 5~m2p!re2K, ~13b!

Ktr r1Krr t5r tr1Utr r1Urr t12rUtUr1e2Kr
m1p

2
sinh 2j, ~13c!
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Ktr t1Krr r5
r tt1r rr

2
1Utr t1Urr r1rS Ut

21Ur
21e2K

m1p

2
cosh 2j D , ~13d!

Krr 2Ktt1
Urr r2Utr t

r
1Ur

22Ut
25

m1p

2
e2K, ~13e!

and the energy-momentum conservation laws yield

Kr2j t1
pr cosh2 j1~m t2pt!sinhj coshj2m r sinh2 j

m1p
1

r t coshj2r r sinhj

r
sinhj50,

~14a!

Kt2j r1
m t cosh2 j1~pr2m r !sinhj coshj2pt sinh2 j

m1p
1

r t coshj2r r sinhj

r
coshj50.

~14b!

The system of equations becomes much simpler if we restrict to stiff fluids,m5p,

Utt2Urr 1
1

r
~Utr t2Urr r !50, ~15a!

r tt2r rr 50, ~15b!

Ktr r1Krr t

r
5

r tr1Utr r1Urr t

r
12UtUr1e2Kp sinh 2j, ~15c!

Ktr t1Krr r

r
5

r tt1r rr

2r
1

Utr t1Urr r

r
1Ut

21Ur
21e2Kp cosh 2j, ~15d!

Krr 2Ktt1
Urr r2Utr t

r
1Ur

22Ut
25p e2K, ~15e!

Kr2j t1
pr

2p
1

r t coshj2r r sinhj

r
sinhj50, ~15f!

Kt2j r1
pt

2p
1

r t coshj2r r sinhj

r
coshj50. ~15g!

The reason why the stiff fluid equations are easy to integrate is that the metric functionsU, r
decouple from the pressure, which only appears in the equations for the conformal facK.
Therefore the stiff fluid case is fairly similar to vaccuum and can be generated from this on

A further simplification can be obtained if we taker as coordinate. This is fully compatibl
with an isotropic parametrization, since equation~15b!,

05d* b1b∧* b5dS * dr

r D1
dr∧* dr

r2 5
d* dr

r
,

states that* dr is also an exact differential form.
We taker5r as a spatial coordinate, since every known nonsingular solution has a su

element with spacelike gradient. With this choice of coordinates the differential system bec
even simpler,
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Utt2Urr 2
Ur

r
50, ~16a!

Kt5Ut12rU tUr1e2Kpr sinh 2j, ~16b!

Kr5Ur1r ~Ut
21Ur

2!1e2Kpr cosh 2j, ~16c!

Krr 2Ktt1
Ur

r
1Ur

22Ut
25pe2K, ~16d!

Kr2j t1
pr

2p
2

sinh2 j

r
50, ~16e!

Kt2j r1
pt

2p
2

sinhjcoshj

r
50. ~16f!

The integrability condition,Krt5Ktr , for ~16b! and ~16c! requires that a combination o
functions be an exact differential form,

dH5e2Krp~sinh 2j dt1cosh 2j dr !, ~17!

from which we can readj and the pressure, ifK is known,

tanh 2j5
Ht

Hr
, upu5

e22K

r
AHr

22Ht
2. ~18!

The integrability ofdH is also a consequence of the energy-momentum conservation e
tions ~16e! and ~16f!.

For consistency these expressions imply that the gradient ofH be spacelike and thatHr be
positive in order to have positive pressure.

The simple case,j50, for which u is parallel to the time direction corresponds toH
5gr 2/2, whereg is a positive constant.

The remaining system of differential equations,

Utt2Urr 2
Ur

r
50, ~19a!

Hrr 2Htt5
AHr

22Ht
2

r
, ~19b!

Kt5Ut12rU tUr1Ht , ~19c!

Kr5Ur1r ~Ut
21Ur

2!1Hr , ~19d!

is formed by a reduced wave equation in polar coordinates forU on the plane and a nonlinea
wave equation forH. Once these equations are solved, we are left with a quadrature forK. The
integrability of this quadrature is guaranteed by the other equations.

As it has already been stated, these equations are pretty similar to those of vaccuum. T
diference is the additional conformal factor defined byH.

Regularity of the metric at the axisr 50 is already implicit in the equations, provided th
metric functions are regular. Following Ref. 13, we have a regular axis whenever
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lim
r→0

^gradD,gradD&
4D

5e2(U2K)ur 5051, D5^]f ,]f&5r 2e2U. ~20!

But according to Eqs.~17!, ~19c!, and ~19d!, K and U are equal at the axis, except for
constant, since

Kr~ t,0!5Ur~ t,0!, Kt~ t,0!5Ut~ t,0!, ~21!

if pressure andK are regular functions, so thatHt(t,0)505Hr(t,0), and therefore condition~20!
is fulfilled either by taking the constant equal to zero or conveniently rescaling the an
coordinate.

The problem of obtaining solutions forH is solved by the Wainright–Ince–Marshma
formalism.14 Solutions to~19b! may be generated from solutions of the reduced wave equatio
the plane with timelike gradient,

s tt2s rr 2
s r

r
50, s t

22s r
2.0, ~22!

by a quadrature identical to the one which definesK2U in the vacuum case,

Ht52rs ts r , ~23a!

Hr5r ~s t
21s r

2!. ~23b!

The functionsH generated by this mechanism have trivially a spacelike gradient and po
radial derivative. The fluid properties may be read directly from the generating function,

tanh 2j5
2s ts r

s t
21s r

2 , p5e22K~s t
22s r

2!. ~24!

The function that generates thej50 case iss5Agt.
Using this formalism, the remaining system of equations is formed by a quadrature an

reduced wave equations,

Utt2Urr 2
Ur

r
50, ~25a!

s tt2s rr 2
s r

r
50, ~25b!

Kt5Ut12rU tUr12rs ts r , ~25c!

Kr5Ur1r ~Ut
21Ur

2!1r ~s t
21s r

2!. ~25d!

III. NONSINGULAR MODELS

We have obtained a fairly simple system of equations~25a!–~25c! that will be useful for
analyzing the regularity of the solutions. Following Ref. 2 we take causal geodesic comple
as our definition for regularity.

Even if we have regular metric components, geodesic completeness of the space–time
guaranteed and we have to check explicitly that every timelike and lightlike geodesic i
space–time can be extended to all values of the affine parameter, that is, in the parametriza
which the geodesic equations take the form
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ẍi1G jk
i ẋ j ẋk50, ~26!

in terms of the Christoffel symbols.
Fortunately, results concerning causal geodesic completeness of diagonal Abelian or

nally transitive space–times have already been obtained in Ref. 8. The conclusions of tha
may be condensed in two theorems. We follow the simplified version of Ref. 10.

Theorem 1: A diagonal Abelian orthogonally transitive space–time with spacelike or
endowed with a metric in the form~7! with C2 metric functionsK,U,r, wherer has a spacelike
gradient, is future causally geodesically complete provided that along causal geodesics.

~1! For large values oft and increasingr ,
~a! (K2U2 ln r)r1(K2U2ln r)t>0, and either (K2U2 ln r)r>0 or u(K2U2 ln r)ru&(K

2U2ln r)r1(K2U2ln r)t ,
~b! Kr1Kt>0, and eitherKr>0 or uKr u&Kr1Kt ,
~c! (K1U) r1(K1U) t>0, and either (K1U) r>0 or u(K1U) r u&(K1U) r1(K1U) t .

~2! For large values oft, a constantb exists such that
K~t,r!2U~t,r!

2K~t,r!
K~t,r!1U~t,r!1ln r~t,r!

J>2lnutu1b.

Theorem 2: A diagonal Abelian orthogonally transitive space–time with spacelike or
endowed with a metric in the form~7! with C2 metric functionsK,U,r, wherer has a spacelike
gradient, is past causally geodesically complete provided that along causal geodesics.

~1! For small values oft and increasingr ,
~a! (K2U2 ln r)r2(K2U2ln r)t>0, and either (K2U2 ln r)r>0 or u(K2U2 ln r)ru&(K

2U2ln r)r2(K2U2ln r)t .
~b! Kr2Kt>0, and eitherKr>0 or uKr u&Kr2Kt .
~c! (K1U) r2(K1U) t>0, and either (K1U) r>0 or u(K1U) r u&(K1U) r2(K1U) t .

~2! For small values oft, a constantb exists such that
K~t,r!2U~t,r!

2K~t,r!
K~t,r!1U~t,r!1ln r~t,r!

J>2ln utu1b.

Therefore now we just have to verify under which conditions these theorems can be app
stiff fluid space–times. Since the theorems do not make use of Einstein equations, it is ex
that when we take them into account the conditions will not be so restrictive as they seem

We begin with future-pointing geodesics. The first part of the theorem is a set of conditio
the derivatives of the metric functions.

~1!
~a! From ~19c! and ~19d! we obtain

~K2U2ln r!t1~K2U2ln r!r5r~Ut1Ur!
21Ht1Hr2

1

r
.

The sum of the derivatives ofH is always positive, sinceHr.uHtu in order to have
positive pressure. In fact, this is ther (s t1s r)

2 term in the Wainright–Ince–Marshma
formalism. This expression is positive if eitheruUt1Ur u or Ht1Hr (us t1s r u in the
Wainright–Ince–Marshman formalism! does not decrease as 1/r or faster for large values
of t and r . That is, we need eitherU or H to overcome the negative term. Under su
conditions, the second part of the premise,

~K2U2ln r!r5r~Ut
21Ur

2!1Hr2
1

r
>0,

is also satisfied.
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~b! Once~1! ~a! is fulfilled, this condition,

Kt1Kr5Ut1Ur1r ~Ut1Ur !
21Ht1Hr.0,

is trivial, since the only possible negative contribution would be that ofUt1Ur and this is
counteracted byHt1Hr if it decreases as 1/r or faster, or byr (Ut1Ur)

2 if it does not.
Following a similar line of thought we also conclude that

Kr5Ur1r~Ut
21Ur

2!1Hr

is positive for large values oft and r .
~c! The last set of conditions on the derivatives,

~K1U!t1~K1U!r52~Ut1Ur!1r~Ut1Ur!
21Ht1Hr>0,

Kr1Ur52Ur1rU r
21Hr>0,

is also a consequence of~1! ~a!. Therefore the first part of the theorem is satisfied if

r 12«uUr1Utu
or

r 12«~Hr1Ht!
J →” 0 ~27!

for large values oft andr . The conclusion for past-pointing geodesics is quite similar.
just have to change the sign of the time derivatives,

r12«uUr2Utu
or

r 12«~Hr2Ht!
J →” 0 ~28!

for large values ofr and small values oft. For instance, these restrictions are trivial for t
j50 case, sinceH5gr 2/2 does not decrease.

~2! The dependence on the matter content of the space–time may be removed from these
tions, since we may write

K~t,r!5U~t,r!1E
0

r

dr8~r8Ur
2~t,r8!1r8Ut

2~t,r8!1Hr~t,r8!!5U~t,0!1E
0

r

dr8 Kr~ t,r 8!, ~29!

and according to~19d! or ~25d! Kr is a positive term if the first part of the theorem is satisfie
~a! The first condition is tautological since

K~t,r!2U~t,r!5E
0

r

dr8 ~r8Ur
2~t,r8!1r8Ut

2~t,r8!1Hr~t,r8!!.0.

~b! For geodesics along the axis, this condition requires for large values of the time coor
that

K~ t,0!5U~ t,0!>2 1
2 lnutu1b, ~30!

and for general geodesics the only difference is the positive term in~29!. Therefore~30! is
the only restriction for all geodesics.

~c! The same restriction is achieved likewise when applied to the expressionK1U1 ln r.

Therefore we are left with just three regularity conditions on the metric of an Abelian diag
orthogonally transitive space–time with spacelike orbits and with a stiff perfect fluid as m
content. We may summarize these results in two theorems:

Theorem 3: A cylindrical space–time with a stiff perfect fluid as matter content, endow
with a metric in the form~7! with C2 metric functionsK,U,r is future geodesically complete i
the gradient of the surface element is spacelike and
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~1! For large values oft, U(t,0)>2 1
2ln utu1b.

~2! Either r 12«uUr1Utu or r 12«(Hr1Ht) does not tend to zero for large values oft and r .

Theorem 4: A cylindrical space–time with a stiff perfect fluid as matter content, endow
with a metric in the form~7! with C2 metric functionsK,U,r is past geodesically complete if th
gradient of the surface element is spacelike and

~1! For small values oft, U(t,0)>2 1
2ln utu1b.

~2! Either r 12«uUr2Utu or r 12«(Hr2Ht) does not tend to zero for small values oft and large
values ofr .

For vaccuum space–times both theorems hold just dropping the conditions on the deriv
of H.

The restrictions imposed by both theorems in order to have a nonsingular space–tim
rather simple to implement, sinceU is just a solution of the wave equation andH is related to
another one. We may state that regularity conditions are quite weak for stiff fluids, since it is
easy to provide solutions that fulfill such requirements. For instance,

Corollary: A metric with arbitraryH and a functionU which grows for largeutu and for large
r makes the spacetime geodesically complete.

It is not difficult to derive such functions. The solutions to the reduced wave equation i
plane can be written as solutions of the initial value problem,

Utt2Urr 2
Ur

r
50,

~31!
U~0,r !5 f ~r !, Ut~0,r !5g~r !.

The solution to this problem can be written in closed form,15

U~x,y,t !5
1

2p E
0

2p

dfE
0

t

dR R
g~x1R cosf,y1R sinf!

At22R2

1
1

2p

]

]t E0

2p

dfE
0

t

dR R
f ~x1R cosf,y1R sinf!

At22R2
, ~32!

for initial dataU(x,y,0)5 f (x,y), Ut(x,y,0)5g(x,y), taking into account thatf andg are to have
circular symmetry.

If we split U in U f andUg , the terms depending, respectively, on the initial data forU and
its derivative, we notice thatU f is even in the time coordinate whereasUg is odd. This implies that
if U f satisfies the first condition in theorem 3 for future-pointing geodesics, it will fulfill it
past-pointing geodesics too. On the contrary, ifUg satisfies it for future-pointing geodesics, it ma
not fulfill it for past-pointing ones, unless it behaves for large values ofutu slower than a logarithm.
Therefore one is to require either thatU f dominates overUg for largeutu or that both terms behav
slower than a logarithm in order to have nonsingular behavior.

IV. DISCUSSION

In this paper we have derived sufficient conditions for an Abelian diagonal orthogo
transitive space–time with spacelike orbits and with a stiff perfect fluid as matter content
geodesically complete. One of the metric functions appears to be determinant for the regula
the space–time. These conditions are easy to check and do not mean much restriction o
space–times.

This means that nonsingular space–times are not as scarce as it was thought, conside
reduced list of geodesically complete perfect fluid cosmologies in the literature. Further w
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needed with more generic symmetries and matter contents in order to clarify the issue, sin
perfect fluids are rather peculiar. They may be interpreted as a massless scalar field and t
the limiting case for which a barotropic perfect fluid with linear equation of state satisfies e
energy condition. These space–times also fulfill the generic condition and are causally sta

The latter assert is true since they possess a cosmic time, which is the coordinatet. This
coordinate has a timelike gradient everywhere. Therefore,2 these space–times satisfy weaker ca
sality conditions. For instance, the chronology condition is true for them and no closed c
curves are possible.

As it was stated in the introduction, the existence of these nonsingular space–times is p
because they do not possess causally trapped sets. They obviously do not contradict t
singularity theorems. They just fall out of their scope.

Another interesting point that is worthwhile mentioning is that the regularity theorems ap
to encourage a growingK for large values ofutu. This seems to support a conjecture that states
the spatial average value of the pressure in nonsingular space–times is zero,11 sincep decreases
with largeK according to~24!,

p5e22K~s t
22s r

2!. ~33!

In our regular space–times, constantt sheets are Cauchy hypersurfaces and we may write
whole system of equations as an initial value problem forU, K, andH for any constantt. Without
breaking the generality of the result, we may focus ont50. The initial value problem can be state
as

Utt2Urr 2
Ur

r
50, ~34a!

s tt2s rr 2
s r

r
50, ~34b!

Kt5Ut12r ~UtUr1s ts r !, ~34c!

U~0,r !5 f ~r !, Ut~0,r !5g~r !, ~34d!

s~0,r !5 f s~r !, s t~0,r !5gs~r !, ~34e!

K~0,r !5h~r !, ~34f!

and the remaining equation in the system,

Kr5Ur1r ~Ut
21Ur

21s t
21s r

2!, ~35!

is used to complete the initial data,

h~r !5U~0,0!1E
0

r

dr8 Kr~0,r 8!5 f ~r !1E
0

r

dr8 r 8$g~r !21 f 8~r !21gs~r 8!21 f s8 ~r 8!2%.

~36!

In order to know the pressure on the hypersurfacet50 we just have to prescribe the initia
data,

p~0,r !5e22h(r )$gs~r !22 f s8 ~r !2%. ~37!

We show that it must necessarily vanish at infinity if the space–time is causally geodes
complete.
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If the term gs
22 f s8

2 in the pressure does not tend to zero at infinity, thes terms would
contribute toh asr 2 ~if gs

21 f s8
2 tends to a constant! or greater. Unless a negativef overcomes this

quadratic term, we would have a pressure decreasing as a Gaussian exponential and the av
t50 would be zero.

But f cannot beat a quadratic term, because thef 8 term in the integral would mean a positiv
r 4 contribution toh, and we would have again a negative exponential. That is, ifgs

22 f s8
2 does not

vanish at infinity, it grows much slower than the exponential term decreases and the pressur
to zero.

The only possibility we have left then is a positive exponential. This means a negativeh. If
we wantf to overcome just thef 8 term inh, we requireu f (r )u< ln r for large values ofr , a very
narrow strip.

But we also need to keep under control thes terms inh. They remain bounded for larg
values ofr if r 2(gs

21 f s8
2) tends to zero. This means that thes term in the pressure decreas

faster thanr 22. Admitting that h(r ) might behave as2 ln r for large r , the exponential in the
pressure would be ar 2 term, that cannot compensate thes term.

Therefore, pressure tends to zero for larger on constant time hypersurfaces, thereby supp
ing Senovilla’s conjecture in Ref. 11.
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The appearance of the resolved singular hypersurface
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A classical phase space with a suitable symplectic structure is constructed together
with functions which have Poisson brackets algebraically identical to the Lie alge-
bra structure of the Lie group SU(n). In this phase space we show that the orbit of
the generators corresponding to the simple roots of the Lie algebra give rise to
fibers that are complex lines containing spheres. There aren21 spheres on a fiber
and they intersect in exactly the same way as the Cartan matrix of the Lie algebra.
This classical phase space bundle, being compact, has a description as a variety.
Our construction shows that the variety containing the intersecting spheres is ex-
actly the one obtained by resolving the singularities of the varietyx0x12x2

n50 in
C 3. A direct connection between this singular variety and the classical phase space
corresponding to the Lie group SU(n) is thus established. ©2004 American In-
stitute of Physics.@DOI: 10.1063/1.1723700#

I. INTRODUCTION

It has long been known that there is an intriguing algebraic correspondence betwe
Cartan matrix of simply laced Lie groups and the intersection matrix of spheres that appear
certain simple singularities are resolved.1 The reason for such a correspondence has also been
known within the framework of algebraic groups.2 That this correspondence might be more th
a mathematical curiosity was established when it was shown that duality in string theory
effective use of such a link.3 A type 2A string compactified on aK3 surface~a four-dimensional
surface! was conjectured to be dual to a heterotic string compactified onT4 ~the four torus!. A test
of this conjecture required the zero mass excitations in the two theories to match. The zer
excitations at the type 2A end came from certain singular points that appear on theK3 surface in
a certain limit while those at the heterotic string end came from gauge excitations associate
an SU(n) Lie group. The excitations at the type 2A end were ‘‘classical’’ solitonic-type excitat
while those at the heterotic end were ‘‘quantum’’ gauge excitations. This result suggests that
between minimally resolved singularities and the ‘‘classical limit’’ of simply laced Lie gro
might exist.

In this paper we establish such a link. We demonstrate this link explicitly for the Lie gr
SU~2!, SU~3!, and SU~4!. Generalization to SU(n) is then straightforward. We find, using a Gau
decompositionZ1HZ2 , whereZ1 is an upper triangular matrix with unit diagonal elements,H is
a diagonal matrix,Z2 is a lower triangular matrix with unit diagonal elements that the class
phase space, in which Poisson brackets mirror the Lie algebra structure, can be constructe
a standard coherent state approach.4 We use the Gauss decomposition in order to use the Bo
Weil Theorem. This theorem shows how irreducible representations of a compact Lie groupG can

a!Electronic mail: smr@bose.res.in
b!Electronic mail: sen@maths.tcd.ie
21240022-2488/2004/45(6)/2124/10/$22.00 © 2004 American Institute of Physics
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be constructed as holomorphic sections overG/T, where T is the maximal torus ofG. The
approach thus describes the group in terms of complex variables and is thus a natural set
making contact between the group and complex algebraic varieties. We have

Borel–Weil Theorem 1 ~Ref. 5!: The space of holomorphic sections of the line bundlel

over G/T is nontrivial if l is the highest weight of an irreducible representation of G. Whenl is
the highest weight then this space of holomorphic sections is a realization of the represen
space Vl of G.

The coherent state approach is an explicit way of implementing the Borel–Weil Theorem
is made, in this approach, of the fact thatG/T5Gc /B, whereGc is the complexification ofG and
B is the Borel subgroup. In terms of the Gauss decompositionB is generated byH andZ2 . It is
in this framework that we search for and identify classical phase space. For SU(n) the phase space
is CPn21. This is a Kähler symplectic manifold. It is identified cleanly inGc /B as follows. We
first introduce some definitions. Triangular matrices with unit diagonal elements are called u
tent.Z1 ,Z2 are unipotent. We claim that by using unipotent group elements of a special kin
can construct the required Ka¨hler symplectic manifold. To do this the unipotent elements u
must have two special features. First they must mutually commute. Second the number
ments that commute with the these unipotent elements must equal the rankr of the group. Such
elements are called regular. In this coherent state approach the symplectic structure is deriv
a Kähler potential which we construct from a scalar product using the group elements des
acting on the highest weight vector for the fundamental representation. It is then shown th
expectation value of the generators of the Lie algebra have Poisson brackets, defined in te
this symplectic structure, isomorphic to the Lie algebra of the group. On this Ka¨hler phase space
a fiber bundle structure can be constructed whose fibers are complex curves, containing in
ing spheres. The fiber bundle considered is constructed from the orbit of group elements
from the simple roots of the corresponding Lie algebra. In our construction we classif
unipotent elements ofZ1 in the following way:

One class has a centralizer~elements of the group commuting among themselves! of dimen-
sion equal to the rankr of the group. These are the regular elements. The other class comes
the generators of the Lie algebra for simple roots. These are unipotent elements that commu
r 12 group elements. Such elements are called subregular. These unipotent subregular e
play a crucial role in our construction. The special unipotent regular elements are used to co
classical phase space. This is done by acting on the highest weight vector with the the el
described. Choosing to work with the highest weight vector is the way the quotienting ofGc by B
is implemented in this framework. The unipotent subregular elements acting on a point o
phase space give rise to a fiber containing intersecting spheres. The way these spheres
can be summarized in the form of an intersection matrix. This intersection matrix is found
identical to the negative of the Cartan matrix of the Lie algebra. We show this explicitly for S~3!
where there are two intersecting spheres, for SU~4! where there are three spheres and for SUn)
where there aren21 spheres. Precisely such intersecting spheres also appear when certa
gular points are resolved on the hypersurfacex0x12x2

n50, where (x0 ,x1 ,x2)PC 3, the space of
three complex variables. In Sec. II we summarize the basic facts we need from the the
resolution of singularities. In Sec. III the classical phase space for the Lie groups SU~2!, SU~3!,
and SU~4! is constructed and the link with the resolved singularities established. Finally in Se
we summarize our conclusions.

II. RESOLVING SINGULARITIES

Consider the hypersurfaceVn in C 3 defined by the algebraic equation:

Vn~x0 ,x1 ,x2!5x0x12x2
n50, ~1!

wheren is an integer>2 and (x0 ,x1 ,x2)PC 3. We have the following definition:1,6

Definition: A point(x0 ,x1 ,x2)PVn50 is a singular point of the hypersurface if]xi
Vn50 at

that point.
                                                                                                                



an

rface
re

ss

are

n

n

in
f the

sider

e

s

int. To

t

eres
ndard

2126 J. Math. Phys., Vol. 45, No. 6, June 2004 S. K. Paul and S. Sen

                    
It follows from the definition that the point~0,0,0! i.e., the origin is a singular point of the
hypersurfaceVn[x0x12x2

n50, for n>2. Indeed a simple definition of this hypersurface as
orbifold is possible. To see this setx05jn, x15hn, x25jh, where (j,h)PC 2. We note that in
terms of these variablesj,h the equationx0x12x2

n50 is identically satisfied, i.e.,j,h parametrize
the hypersurfaceVn50. There is however one restriction on the variablesj,h when they are on the
hypersurfaceVn50 namely the point~j,h! must be identified with (v1/nj,v21/nh), wherev is an
nth root of identity (vn51). Thus the hypersurfaceVn50 can be identified with the orbifold
C 2/Zn with Zn action defined by (j,h)→(v1/nj,v21/nh), vn51.

There is a standard method of minimally resolving this singularity,1,6 i.e., of constructing a
globally well defined hypersurface which is in 1–1 correspondence with the original hypersu
Vn50 except at the point~0,0,0!. The singular point is ‘‘blown up.’’ We describe this procedu
first for the casen52 andn53 and then for the general case wheren.3.

Let us introduce the spaceC 33P 2, whereP 2 is the complex projective two space~henceforth
we denoteCPn by P n). Points inC 33P 2 can be written as the pair ((x0 ,x1 ,x2),@s0 ,s1 ,s2#)
where (x0 ,x1 ,x2)PC 3 and@s0 ,s1 ,s2# is an element ofP 2, i.e., it represents the equivalence cla
of points (s0 ,s1 ,s2) under the equivalence relation (s0 ,s1 ,s2);l(s0 ,s1 ,s2), wherel is a com-
plex numberÞ0. Next we introduce the spaceC 3(P 2,R). This is defined as the set:

C 3~P 2,R!5$~x0 ,x1 ,x2!,@s0 ,s1 ,s2#uxisj5xjsi ,; i , j %. ~2!

Geometrically the restrictionxisj5xjsi means thatsi is proportional toxi . This gives a space
consisting of points (x0 ,x1 ,x2) in C 3 and lines through the origin and these points. These lines
elements ofP 2. Thus for all points inC 3, other than the origin, the element ofP 2 is uniquely
fixed by (x0 ,x1 ,x2). There is thus a 1–1 correspondence between points inC 3 and the pair of
points inC 3(P 2,R) defined by Eq.~2!. For the origin however the situation is different. Whe
x05x15x250, there is no restriction on@s0 ,s1 ,s2#. Thus the origin ofC 3 is replaced by the
entireP 2 in C 3(P 2,R); it is ‘‘blown up.’’ Let us now study the way the hypersurfacex0x12x2

2

50 behaves inC 3(P 2,R). To see the way the singular point inV250 in C 3 gets mapped in
C 3(P 2,R) we approach the origin inC 3. This is done by scaling the points (x0 ,x1 ,x2) in C 3 by
t and letting t→0. Note that the constraintsxisj5xjsi; i , j imply that xi5ksi ~where k
5constant). Thus (tx0 ,tx1 ,tx2)5tk(s0 ,s1 ,s2), i.e., we get from Eqs.~1! and ~2! in the t→0
limit, points onV250 satisfys0s12s2

250 in P 2. We now have the following theorem.
Theorem 2 ~Ref. 7!: A polynomial equation of degree n inP 2 describes a compact Rieman

surface of genus g with g5 1
2(n21)(n22).

In our case the polynomial equations0s12s2
250 in P 2 is of degree 2. Hence the surface

P 2 is a genus zero surface, i.e., topologically it is a sphere. Thus the singular point o
hypersurfacex0x12x2

250 in C 3 is replaced by a sphere inC 3(P 2,R). The singularity has been
resolved by a process of ‘‘blowing up’’ tuning the singular point into a sphere. We next con
the casen53. Repeating the procedure for then52 case we find, the points@s0 ,s1 ,s2# satisfying
Eq. ~1! for n53, i.e., V350 and Eq.~2! in the vicinity of the origin now have to satisfy th
polynomial equationt2(s0s12kts2

3)50, i.e., the equations0s150 in the t→0 limit. This gives a
pair of spheresP 1’s in P 2 ~theorem 2! corresponding to settings050, s150. These two sphere
intersect once at the point~0,0,1! in P 2. For n>4, we again get the equations0s150 in the limit
t→0 and a pair of spheres. However the intersection of these spheres is still a singular po
see this we choose to describeC 3(P 2,R) by first selecting a point inP 2, say, (s0 ,s1 ,s2) with
s2Þ0. Choosing this point does not uniquely fix a point inC 3 but gives a line through the poin
(s0 ,s1 ,s2) and the origin inC 3. Let us sets25y2 s05y0y2 , s15y1y2 , where (y0 ,y1 ,y2)PC 3.
Finally sety25x2 . Thenx05y0y2 , x15y1y2 , and 05x0x12x2

n5y2
2(y0y12y2

n22)50. By con-
structiony2Þ0. Soy0y12y2

n2250. For n>4 this hyperplane has a singularity at the originy0

5y15y250, wheres050, s150. The process of blowing up has to be repeated. The sph
produced by this process of blowing up self-intersect in an invariant way. Following a sta
procedure1 it can be shown that the self-intersection of the spheres can be taken to be22. We
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summarize the results presented regarding the way the spheres in the ‘‘resolved singu
intersect in the form of a matrix. Forn53, we have the intersection matrix (1

22
22

1 ). For n54 we
have

S 22 1 0

1 22 1

0 1 22
D .

This intersection information can be encoded in the form of a Dynkin diagram shown in F
where each dot denotes a sphere with self intersection22 and a line joining two dots denot
intersection between two spheres with intersection number one. The construction describe
extends to the case of arbitraryn where the diagram is shown in Fig. 2.

III. THE CLASSICAL PHASE SPACE FOR THE LIE GROUPS SU „2…, SU„3…, AND SU„4…

We now look at the classical origins of the Lie groups SU~2!, SU~3!, and SU~4! in the
following sense. The groups have a local structure encoded by their Lie algebras. We will c
associated phase space, defined with a suitable symplectic structure, the classical counte
the Lie group if functions on the phase space can be constructed which have Poisson b
algebraically identical to the Lie algebra structure of the Lie group. The construction we
describe involves coherent states associated with the Lie group of interest.4 We start by quickly
summarising the results for SU~2!. This simple example contains a crucial ingredient needed
our subsequent analysis. Let us introduce the highest weight representation for SU~2!, which we
write as the vector (1

0). The coherent stateul& is then defined as

ul&5elJ1S 0
1D , J15S 0 1

0 0D[e12, ^lul&5~11ll̄!, ~3!

l being a complex variable. We then construct the Ka¨hler potentialV(l,l̄)5k• log(11ll̄). This
gives rise to a symplectic form on the coordinate chartl0Þ0 in P 1 as well as the Fubini–Study
metric,6,8 wherel5l1 /l0 . The symplectic structure is given by

vll̄5]l]l̄V~ll̄ !,v5vll̄dl∧dl̄1vl̄ldl̄∧dl, ~4!

where the symplectic matrix is given by

@v#5k•S 0
1

~11ll̄!2

2
1

~11ll̄!2
0

D , ~5!

k is a constant. We next note that

FIG. 1. Dynkin diagram 1.

FIG. 2. Dynkin diagram 2.
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X15
^luJ1ul&

^lul&
5

2l

11ll̄
,

X25
^luJ2ul&

^lul&
5

2l̄

11ll̄
,

X05
^luJ0ul&

^lul&
5

12ll̄

11ll̄
, ~6!

with J25e21, J15e12, J05e112e22, whereei j stands for the 333 matrix with one in thei j th
position and zero elsewhere, andX1 ,X2 , X0 are functions on the phase spaceP 1 described by
the complex variablel and the symplectic formv given by Eq.~4!.

FurthermoreX1X21X0
251, i.e., these functions represent points onS2. Also

$X1 ,X2%5~v21!ll̄]lX1]l̄X21~v21!l̄l]l̄X1]lX252iX0 ,

$X0 ,X6%56X6 , ~7!

for suitable choice ofk. Thus the expectation values of the generatorsJ6 , J0 in the normalized
state vectorul& represent the classical functions whose quantization, achieved by replacing P
brackets by commutators leads to the Lie algebra structure. The classical phase space of S~2! is
thus S2 or P 1. Note that the presence ofS2 could be spotted simply by evaluating*vdl∧dl̄
54p, wherev is given by Eq.~4! and noting that the curvature of the phase space manifo
constant and positive. Also the metric on the phase space derived from the Ka¨hler potential can be
seen to be precisely the metric onS2. The emergence ofS2 for the Lie group SU~2! is the key
observation we want to record. For the groups SU~3!, SU~4! we will construct appropriate Ka¨hler
forms which describe the classical phase space associated with these groups. It will th
demonstrated that the fiber obtained from the orbit of the generators corresponding to simpl
of the Lie algebra acting on this phase space contain intersecting spheres. The spheres ca
be identified by the presence of nontrivial cycles with*v54p on the fiber and a sphere metric
an appropriate subspace. The intersection properties of these spheres can be determined
the methods of differential topology.6 We demonstrate that the spheres described intersect
manner precisely mirroring the Dynkin diagram of the group. Such a result was established b
and Steinberg in a different setting~see the theorem by Tits and Steinberg in the article
Brieskorn in Ref. 2!. We saw in Sec. II that the spheres present when the singular hypersu
considered there was resolved also contain intersecting spheres of exactly the same kind. W
make use of the following theorems:

Chow’s Theorem 3 ~Refs. 6, 7!: A compact hypersurface can always be represented by
algebraic variety in a higher dimensional projective space.

Theorem 4 ~Ref. 7!: A complex curve inC n can always be embedded inC 3.
The space constructed here is compact and hence the system can be represented as

braic variety and the intersecting spheres, present inC n21, can be embedded inC 3.
With the help of these theorems we see that the fibers containing the intersecting sphe

be embedded inC 3. Thus the two different mathematical objects: the resolved singular curve
the algebraic curve present in the phase space bundle of SU(n) both live in C 3 and both contain
the same number of spheres that intersect in the same way.

Now for the details. For SU~3! we again work with the fundamental representation a
introduce the coherent state
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un1 ,n2&5en1e13en2e23S 0
0
1
D 5S n1

n2

1
D . ~8!

Note that

g5en1e131n2e235S 1 0 n1

0 1 n2

0 0 1
D

has generatorse13, e23 that commute. Furthermoreg commutes withe13 ande23 so that dimension
of the center ofg is 25rank of SU~3!. It is thus a regular element in SU(3,c). The element is also
unipotent as it is an upper triangular matrix with unit diagonal elements.

The Kähler potential is given by

V~n1 ,n2 ,n̄1 ,n̄2!5k• log^n1 ,n2un̄1 ,n̄2&5k• log~11n1n̄11n2n̄2!5k• log^nun& ~9!

and the symplectic structure determined by

v i j̄ 5k•]n i
]n̄ j

V,v5v i j̄ dn i∧dn̄ j ~10!

is precisely that onP 2 ~Refs. 6 and 8! in the coordinate chartn08Þ0, (n08 ,n18 ,n28) being the
homogeneous coordinates andn1 ,n2 stand forn18/n08 and n28/n08 . Also the symplectic structure
~10! can be proved to be global.6 It is then easy to verify that the commutation relations of SU~3!
are reflected in the Poisson brackets between the functions^ei j & and ^ekl&, where

^ei j &5
^n1n2uei j un1n2&

^n1n2un1n2&
.

Note that

@v#5S 0 a 0 b

2a 0 2b8 0

0 b8 0 c

2b 0 2c 0

D , ~11!

@v21#5
1

ac2bb8 S 0 2c 0 b8

c 0 2b 0

0 b 0 2a

2b8 0 a 0

D , ~12!

where

a5]n1
]n̄1

log^nun&,b5]n1
]n̄2

log^nun&,c5]n2
]n̄2

log^nun& ~13!

and prime stands for complex conjugate.
We now proceed to construct fibers on this phase space:
The generators corresponding to the simple roots of SU~3! aree12, e23 and the group element

PZ1 are eme12, ele23. They are unipotent subregular elementsPZ1 . To see this setx5eme12.
Then y5eae131b(h112h2)1ge321de12PSU(3,c), wherea, b, g, d are complex parameters, com
mutes withx. So dimension of the center ofx in SU(3,c) is 452125rank of SU(3)12. Thus
x is subregular in SU(3,c). Similarly the elementele23 is subregular. We now consider the orbi
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of eme12 andele23 at the base point on the phase space

S n1

n2

1
D .

We have thenm-orbit andl-orbit as the fiber elements as

S n1

n2

1
D

and

S n1

n21l

1
D .

Relabeling the first orbit as

S z1

n2

1
D

we can associate with it a Ka¨hler potential log(11z1z̄1). This is a sphereP 1. Similarly thel orbit
is also a sphere. To demonstrate that these two spheres intersect with intersection numb
consider

eme12ele23S n1

n2

1
D .

The commonz1–z2 ~the first two coordinates! plane has an associated Ka¨hler potential log(1
1z1z̄11z2z̄2). The symplectic structure is then given by Eq.~10! with i , j 51,2. We now note the
following theorems:

Theorem 5 ~Ref. 6!: The de Rham cohomology and Dolbeault cohomology groups forP n are
related:

H
]̄

p,p
~P n!>HDR

2p >C.

Theorem 6 ~Ref. 6!: The intersection of the two surfacesCi and Cj are given byCi•Cj

51/(4p)2 *v i∧v j , where the integration is in the space containing the surfaceCi andCj and is
a space of dimension four andv i , v j are (de Rham cohomology) elements of HDR

2 (M ,R).
The cohomology groups associated with the symplectic form constructed are Dolbeault

mology groups while the intersection formula is valid for de Rham cohomology groups. How
for P n they are equivalent~Theorem 5!. We can thus determine intersection of spheres by sim
evaluating (1/(4p)2) *v∧v, where the relevant four-dimensional manifold~complex dimension
2! is the commonz1–z2 plane. This is precisely seen to be one. Thus the two spheres on the
intersect once with intersection number one.

The procedure outlined can be repeated for SU~4!. This time
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un&5un1 ,n2 ,n3&5en1e14en2e24en3e34S 0
0
0
1
D 5S n1

n2

n3

1
D ~14!

and the Ka¨hler potential is

V~n1 ,n2 ,n3 ,n̄1 ,n̄2 ,n̄3!5k• log^nun&5k• log~11n1n̄11n2n̄21n3n̄3!. ~15!

Here again

v i , j̄ 5]n i
]n̄ j

log^nun&,v5v i , j̄ dn i∧dn̄ j ~16!

is a symplectic structure onP 3. The corresponding@v# and @v21# matrices are given by

@v#5S 0 a 0 b 0 c

2a 0 2b8 0 2c8 0

0 b8 0 d 0 f

2b8 0 2d 0 2 f 8 0

0 c8 0 f 8 0 g

2c 0 2 f 0 2g 0

D , ~17!

where the primed entries stand for complex conjugates and

@v21#5
1

N S 0 dg2 f f 8 0 f c82gb8 0 b8 f 82dc8

f f 82dg 0 bg2c f8 0 cd2b f 0

0 c f82bg 0 ag2cc8 0 bc82a f8

gb82 f c8 0 cc82ag 0 a f2b8c 0

0 b f2cd 0 b8c2a f 0 ad2bb8

dc82b8 f 8 0 a f82bc8 0 bb82ad 0

D ,

~18!

where

N25det@v#, a5]n1
]n̄1

log^nun&, b5]n1
]n̄2

log^nun&, c5]n1
]n̄3

log^nun&,

d5]n2
]n̄2

log^nun&, f 5]n2
]n̄3

log^nun&, g5]n3
]n̄3

log^nun&, ~19!

and the prime denotes complex conjugate. Using@v21# from Eq. ~18! it is again straightforward
to verify that the commutation relations of SU~4! are reflected in the Poisson bracket between
functions^ei j & and ^ekl& where again̂ ei j &[ ^nuei j un&/^nun&.

Finally we look at the fiber. The unipotent subregular elements corresponding to the s
roots areeme12, ele23, andere34. So we havem, l, andr orbits on the fiber at the base point

S n1

n2

n3

1
D .

Each element acts on a 2-complex dimensional subspace. It is easy to determine, as w
shown for the SU~3! case that an individual orbit isP 1 on the fiber. Two generators intersect
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they act on a common subspace i.e., group elements corresponding toe12 ande23 both act on the
space labeled by 2, whilee34 ande12 have no common subspace. A differential topology way
spotting this is to construct the vector obtained by actingeme12 ele23, say, on the base point. Th
variablesm, l appear in the 1,2 position. Setting the variables corresponding to 1,2 asz1 , z2 the
symplectic structure can be constructed from the corresponding Ka¨hler potential and

1

~4p!2 E v∧v5
1

~4p!2 E 2~vz1z̄1
vz2z̄2

2vz1z̄2
vz2z̄1

!dz1∧dz̄1∧dz2∧dz̄2

gives the intersection. Similarlye23, e34 will give rise to intersection in the subspacez2–z3 . The
intersection corresponding toe12, e34 will be zero since they have no subspace in common. H
we have to evaluate*v∧v in the subspace 1,2 or 3,4 in each of whichv∧v vanishes. Hence
there is no intersection. The intersection properties of the orbits described easily generalize
case of SU(n).For SU(n) the symplectic structure will come from the group elements constru
from the generatorse12, e13,...,e1n while the simple roots aree12,e23,...,en,n21 . It is the orbit of
the group elements generated by these simple roots acting at any point on phase space t
fibers containingn21 intersecting spheres.

IV. CONCLUSIONS

We have shown in two examples, i.e., for SU~3! and SU~4! how a classical phase space can
associated with these groups. In this phase space the orbit of the generators correspondin
simple roots of the Lie algebra gives rise to intersecting spheres as fibers. For SU(n) the fiber of
the bundle consists ofn21 ~equal to the rank of SU(n)) intersecting spheres. These sphe
intersect precisely as the negative of the Cartan matrix of SU(n). A simple understanding of how
this happens is provided in our work. The structure of SU(n), contained in the commutation
properties of the simple roots of its Lie algebra, is exactly the structure used to construct th
of these generators in phase space. This structure in phase space gives rise to the resolve
associated with a singular variety. An algebraic group demonstration of the relationship be
simple singularities of the ADE type and simply laced Lie groups of ADE type was prove
Brieskorn,2 where the role of the unipotent subregular elements of the groups was stressed a
earlier result regarding intersecting spheres of Tits and and Steinberg~theorem by Tits and Stein
berg discussed in the article by Brieskorn in Ref. 2! stated. Our explicit construction uses unip
tent regular elements of a special kind~viz., ones involving mutually commuting generators! to
construct classical phase space and confirms the role played by subregular unipotent elem
making contact with resolved singularity. In our physically motivated approach it is geometr
very clear why unipotent subregular elements are crucial: they are the group elements tha
from the simple roots of the Lie algebra. The classical phase space for SU(n) is shown explicitly
to be contained inGc /B as CPn21. The orbit of the generators of the simple roots of t
corresponding Lie algebra then provide a local trivialization of a bundle contained inGc /B with
the classical phase space as the base. It is in the fiber of this space that the variety corres
to the resolved singularity is contained. Our construction extends easily to SU(n). Extention of the
construction described here to the D,E groups should be straightforward. It is pleasing tha
sical phase space is where the resolved singular variety corresponding tox0x12x2

n50 makes its
appearance. Our work thus provides confirmation of the classical/quantum corresponden
covered in string theory between groups and singularities.
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Perturbations of ground states in weakly interacting
quantum spin systems

D. A.Yarotskya)

Institute for Information Transmission Problems, Laboratory 4,
B. Karetny 19, 127994 Moscow, Russia
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We consider a general weak bounded finite range perturbation of a general free
quantum spin Hamiltonian on a lattice. We prove that if the free Hamiltonian has a
nondegenerate ground state and a spectral gap, then the perturbation also has a
ground state, and estimate the localization of the spectrum in the corresponding
ground state representation. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1705718#

I. INTRODUCTION AND RESULTS

We consider a weak finite range perturbation of a free quantum lattice Hamiltonian w
nondegenerate ground state and a spectral gap. It is natural to expect that in this situatio
must exist some sort of a general perturbation theory for the ground and low-lying excited
and in this report we establish certain results supporting this point of view.

This problem has been studied earlier for a variety of models. A possible approach her
obtain the ground state as a zero temperature limit of temperature Gibbs states, which
analyzed using Trotter-type~in particular, Feynman–Kac! formulas and cluster expansions; low
lying excitations can also be analyzed in this way.1,3,6,17,18,20In Refs. 7, 8 Kennedy and Tasak
used this method to develop a general perturbation theory for weak quantum perturbati
classical systems with a finite spin space.

There is, however, a more direct way to the ground states, suggested by Kirkwoo
Thomas in Ref. 9. The key idea is to write a special ansatz for it and substitute into the S¨-
dinger equation. The resulting~Kirkwood–Thomas! equation can then be solved in a sense u
formly in the volume. These authors applied this technique to obtain infinite volume ground
and to establish short- or long-range order in certain spin-1/2 models.

The method was subsequently generalized to higher spins and used to prove the unique
a translationally invariant ground state by Matsui in Refs. 13, 14. In Ref. 4, Datta and Ken
simplified it and employed to find quasi-particle states. In particular, they showed tha
Kirkwood–Thomas equation can be conveniently viewed as a fixed point equation for c
contraction mapping. Also see Ref. 5 for an application to interface states.

In this paper we give a further generalization of the method. While in the previous app
tions it was assumed that the Hilbert space of the model is realized as a functional space
ground state as a Gibbs measure, we show that this is not necessary and the method work
generalC* -algebraic framework~though a significant role in the proofs is played by a comm
tative subalgebra!.

We give now the precise statements.
We consider a quantum spin system on the latticeZn. Suppose that for eachxPZn there is a

Hilbert spaceHx ~generally infinite-dimensional! assigned to this site. The Hilbert space of t
model confined to a finite volumeL,Zn is then

HLª^ xPLHx .

a!Electronic mail: yarotsky@mail.ru
21340022-2488/2004/45(6)/2134/19/$22.00 © 2004 American Institute of Physics
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In HL we consider a HamiltonianHL , having the form

HL5HL,01FL .

HereHL,0 is a free Hamiltonian:

HL,05 (
xPL

hx .

We assume that eachhx is a non-negative self-adjoint, generally unbounded operator onHx with
a nondegenerate ground stateVxPHx :

hxVx50,

and a uniform in anx spectral gap:

hxuHx*Vx
>1. ~1!

In order to introduce the perturbationFL we fix a finite subsetL0,Zn and set

FL5 (
xPZn:L01x,L

fx . ~2!

Here L01x is a shift of L0 and fx a self-adjoint bounded operator onHL01x . SinceFL is
bounded,HL is self-adjoint and Dom (HL)5 Dom (HL,0). We will assume that supxPZnifxi is
finite and small enough.

The first theorem shows the existence of the finite volume ground states and gives a s
localization estimate.

Theorem 1: There exists a constant c15c1(L0).0 such that ifsupxifxi,c1 then for any
finite L the Hamiltonian HL has a nondegenerate ground stateVL :

HLVL5ELVL , HLuHL*VL
.EL1.

Moreover, denote

H̃LªHL2EL1.

There exists a constant c25c2(L0) such that

Sp~H̃L!, ø
aP Sp~HL,0!

$z:uz2au<c2sup
x

ifxia%. ~3!

In particular, this gives a lower bound on the spectral gap:

H̃LuHL*VL
>~12c2sup

x
ifxi !1. ~4!

The second result concerns the thermodynamic limit of the ground states. LetB(HL) be the
algebra of bounded operators inHL for any finiteL, and

A`ª ø
L,Zn,uLu,`

B~HL!

the full local algebra. Define the ground states found above as states onB(HL) ~i.e., normalized
positive linear functionals!:
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vL~A!ª~AVL ,VL!, APB~HL!,

whereVL is assumed normalized. LetL↗Zn mean thatL converges toZn in the sense that it
eventually contains any finite subset.

Theorem 2: There exists the thermodynamic limit of the finite volume ground states as a
v` on the quasi-local algebraA`, in the sense that for any APA` one has

vL~A! →
L↗Zn

v`~A!.

Finally we consider the thermodynamic limit of the Hamiltonian. Let (H` ,p` ,V`) be the
cyclic representation ofA`, associated with the statev` :

„p`~A!V` ,V`…H`
5v`~A!.

Theorem 3: There exists a self-adjoint operator H` on H` , which is the weak resolvent limi

of H̃L in the following sense: for any A,BPA` and zPC \R,

„~H̃L2z!21AVL ,BVL… →
L↗Zn

„~H`2z!21p`~A!V` ,p`~B!V`….

Moreover, H`V`50 and estimates (3),(4) hold with H˜
L ,HL ,VL replaced by H̀ ,H` ,V` , and

Sp (HL,0) replaced by

Sp~H`,0!ªH (
xPZn

axUaxP Sp~hx!,axÞ0 only for finitely many xJ .

We prove our main result, Theorem 1, in two steps: first we find the ground state~in some
implicit form!, and then prove the spectral estimate~3!. In the first step we follow the procedur
developed by Datta and Kennedy in Ref. 4. We rewrite the Kirkwood–Thomas equation as a
point equation for a certain mapping, which is proved to be a contraction on a properly define
We introduce, however, a different, more general ansatz for the ground state, which allows
treat abstract Hamiltonians without referring to special functional realizations.

Our derivation of the spectral estimate~3! partly relies on ideas from the Malyshev–Minlo
method of isolating invariant many-particle subspaces of cluster operators.12 @We remark that if
the model is translationally invariant and Sp (hx) discrete, then Sp (H`,0) is also discrete andH`

is expected to have a particle structure. Some of the one-particle subspaces can then be
as the invariant subspaces corresponding to certain isolated components of the spectrum
by the relation~3!.2,3,10,15,16,19,20# But technically our treatment is different and more simple than
the original Malyshev–Minlos approach. Namely, we explicitly represent the renormalized H
tonian as a sum of an operator similar to the free Hamiltonian and a relatively bounded, in
special sense, perturbation. The conclusion about the spectrum then follows directly from
vent expansions relevant for relatively bounded perturbations, like in the well-known K
Rellich and KLMN theorems.

A natural conjecture for the model considered in our report is the uniqueness of the in
volume ground state. We plan to give a proof of this in a subsequent publication.

II. PROOF OF THEOREM 1

In this section we fix a finite volumeL ~throughout the paper all the proper subsets ofZn will
be finite!; the dependence onL will be occasionally suppressed in the notation.

By the standard perturbation theory,HL has a nondegenerate ground state if supxifxi,c with
some constantc, depending onL. We will show that the constant can in fact be chosen indep
dent ofL, and the ground state can be found in the form of some multiplicative expression.
we introduce some notation. Let
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Hx8ªHx*Vx

and

HI8ª^ xPIHx8 , V I ,0ª^ xPIVx ,

for any BÞI ,L. Throughout the paper byuI ,v I , etc. we will always denote vectors fromHI8 .
It follows that

HL*VL,05 %
BÞI ,L

HI8^ VL\I ,0 ~5!

~with HL8 ^ VB,0[HL8 ). Now let ṼL be the ground state vector ofHL , normalized by the con-
dition

~ṼL ,VL,0!51.

Then there exists a unique collection of vectors$uIPHI8%BÞI ,L such that

ṼL5VL,01 (
BÞI ,L

uI ^ VL\I ,0 , ~6!

and findingṼL is reduced to finding this collection. It is more natural, however, to search fo
corresponding truncated objects, rather thanuI themselves. Namely, for any collection$uI

PHI8%BÞI ,L we can define another collection$v IPHI8%BÞI ,L by

uI5 (
$I 1 ,...,I k%PP(I )

^ l 51
k v I l

, ;I ,L,IÞB, ~7!

whereP(I ) is the set of all partitions ofI into disjoint nonempty subsets. Such a collection ex
and is uniquely determined by the inverse relation

v I5 (
$I 1 ,...,,I k%PP(I )

~21!k21~k21!! ^ l 51
k uI l

. ~8!

The perturbed ground stateṼL can be obtained fromVL,0 by a ‘‘dressing transformation,’
connected with the above decompositions. For anyv IPHI8 , define the one-dimensional ‘‘creatio
operator’’ v̂ IPB(HI) by

v̂ IV I ,05v I , v̂ I uHI*V I ,0
50. ~9!

These operators have some useful properties. First of all, they commute: for anyuI ,vJ one has

@ ûI ,v̂J#50. ~10!

Moreover,

ûI v̂J50, if I ùJÞB. ~11!

Finally,

i v̂ I i5iv I i . ~12!

Now it easily follows from~10!, ~11! that for any collection$v I%BÞI ,L ,
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expS (
BÞI ,L

v̂ I DVL,05VL,01 (
BÞI ,L

(
$I 1 ,...,I k%PP(I )

~ ^ l 51
k v I l

! ^ VL\I ,0 .

So we see that a collection$v I%BÞI ,L is related toṼL by Eqs.~6!, ~7! if and only if

ṼL5expS (
BÞI ,L

v̂ I DVL,0 . ~13!

Since the decomposition~5! is invariant with respect toHL,0 , relations~7!, ~8! imply that the rhs
of ~13! lies in Dom (HL)„5 Dom (HL,0)… if and only if v IP Dom (HI ,0) for all I ~whereHI ,0

5(xPIhx).
We will find ṼL in the form~13!. Precisely, let us fix anyl.1. We will show that there exists

a constantc15c1(l,L0).0 such that if supxifxi,c1 thenṼL has the form~13! with

max
xPL

(
I ,L:xPI

iHI ,0v I ildI11<1, ~14!

wheredI is the minimal length of a connected graph containingI .
To this end we substitute the ansatz~13! into the Schro¨dinger equation,

HLṼL5ELṼL , ~15!

and find

expS 2 (
BÞI ,L

v̂ I DHL expS (
BÞI ,L

v̂ I DVL,05ELVL,0 . ~16!

Recall thatHL5HL,01FL . A simple computation shows that for anyxPL,

hx expS (
BÞI ,L

v̂ I DVL,05 (
I ,L:xPI

(
J,L\I

(
$I 1 ,...,I k%PP(J)

~hxv I ! ^ ~ ^ lv I l
! ^ VL\(ItJ)

5expS (
BÞI ,L

v̂ I D (
BÞI ,L

hxv̂ IVL,0

~by t we denote a disjoint union!. Therefore

expS 2 (
BÞI ,L

v̂ I DHL,0 expS (
BÞI ,L

v̂ I DVL,05HL,0 (
BÞI ,L

v̂ IVL,05 (
BÞI ,L

HI ,0v ÎVL,0 ,

and Eq.~16! becomes

(
BÞI ,L

HI ,0v ÎVL,01expS 2 (
BÞI ,L

v̂ I DFL expS (
BÞI ,L

v̂ I DVL,05ELVL,0 . ~17!

Now, let PI :HL→HI8 be the operator, defined for eachI ,L by

u5 (
I ,L

~PIu! ^ VL\I ,0 , ;uPHL

~whereHB8 [C). Let T be the map on the linear space of collections$v I%BÞI ,L , defined by

T~$v I%BÞI ,L!ª$uI%BÞI ,L , ~18!
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where

uIª2~HI ,0uH
I8
!21PI expS 2 (

BÞI ,L
v̂ I DFL expS (

BÞI ,L
v̂ I DVL,0 . ~19!

The inverse (HI ,0uH
I8
)21 is well-defined, since the spectral gap condition~1! implies

HI ,0uH
I8
>uI u1. ~20!

We see now that Eq.~17! is equivalent to the fixed point~Kirkwood–Thomas! equation,

T~$v I%BÞI ,L!5$v I%BÞI ,L , ~21!

on the space of collections@the eigenvalueEL has been eliminated; it can be found by substitut
the solution of~21! onto the lhs of~17! and taking the scalar product withVL,0]. Consider the
Banach spaceKl of collections$v IPHI8ù Dom (HI ,0)%BÞI ,L , equipped with the norm

i$v I%BÞI ,Lil ªmax
xPL

(
I ,L:xPI

iHI ,0v I ildI11. ~22!

We will show thatT is a contraction in the unit ball in this space and hence has there a un
fixed point.

Let us first estimateiT($uI%)2T($v I%)il for any two collections$uI%,$v I%PKl . We begin by
expanding~19! using the identity

~23!

~with the k50 term equal toFL). Let

T5 (
k50

`
1

k!
T(k),

whereT(k) is the contribution toT coming from thek-th term in ~23!. It follows that

iT~$uI%!2T~$v I%!il<(
k51

`
1

k!
iT(k)~$uI%!2T(k)~$v I%!il ~24!

~becauseT(0) is a constant map!. To estimate thek-th term in this sum we use~2! and write

~25!

So we see that

T(k)~$uI%!2T(k)~$v I%!5(
l 51

k

Tl
(k)~$uI%,$v I%!, ~26!
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whereTl
(k) is the contribution toT(k)($uI%)2T(k)($v I%) from the l th term in ~25!, i.e., for l 51,

T1
(k)~$uI%BÞI ,L ,$v I%BÞI ,L!5$wI%BÞI ,L ,

where

wI52~HI ,0uH
I8
!21PI (

y:L01yPL
(

BÞI 1 ,...,I k,L
@ ...†@fy ,ûI 1

2 v̂ I 1
#,v̂ I 2

‡,...,v̂ I k
#VL,0 ,

etc. We will consider thel 51 term first. By~22!,

iT1
(k)~$uI%,$v I%!il5max

xPL
(

I ,L:xPI
I (

y:L01yPL
(

BÞI 1 ,...,I k,L
PI@ ...†@fy ,ûI 1

2 v̂ I 1
#,v̂ I 2

#,...,v̂ I k
]VL,0IldI11. ~27!

Now we make some observations concerning

PI@ ...†@fy ,ûI 1
2 v̂ I 1

#,v̂ I 2
‡,...,v̂ I k

#VL,0 . ~28!

Expanding the commutators, we see that the norm of this expression does not exceed

2ksup
z

ifziiuI 1
2v I 1

i)
s52

k

iv I s
i , ~29!

because of~12!. Next, note that~28! can be nonzero only if

I sù~L01y!ÞB, ;s51,...,k ~30!

and

I 5t
s51

k

„I s\~L01y!…tJ, with some J,L01y. ~31!

Indeed, sinceûI 1
2 v̂ I 1

,v̂ I 2
,...,v̂ I k

commute with each other,~28! can be nonzero only if@fy ,ûI 1

2 v̂ I 1
#Þ0 and @fy ,v̂ I s

#Þ0 for all s52,...,k, which implies ~30!. To see~31!, note that after
expanding the commutators in~28! we get 2k terms of the form

PIŵI s(1)
¯ŵI s(t)

fyŵI s(t11)
...ŵI s(k)

VL,0 , ~32!

where

wI s
ªH uI 1

2v I 1
, for s51,

v I s
, else,

ands is a permutation. If~28! is nonzero, then at least one of the terms~32! is nonzero. For this
term, by~11! I s(1) ,...,I s(t) do not overlap and alsoI s(t11) ,...,I s(k) do not overlap, so that it ha
the form

PIŵI (1)
(1) fyŵI (2)

(2) VL,0 , ~33!
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where I (1)5ts51
t I s(s) ,I (2)5ts5t11

k I s(s) and wI (1)
(1)

5 ^ s51
t wI s(s)

,wI (2)
(2)

5 ^ s5t11
k wI s(s)

. As fy

PB(HL01y),

fyŵI (2)
(2) VL,05 (

K,L01y
ŵKt(I (2)\(L01y))

(3) VL,0 ,

with some vectorswKt„I (2)\(L01y))
(3… PHKt„I (2)\(L01y)…

8 . It follows that ~33! can be nonzero only if

I (1)ù„I (2)\(L01y)…5B and I 5I (1)t„I (2)\(L01y)…tK with someK,L01y,KùI (1)5B, in
which case~33! equals

wI (1)
(1)

^ wKt„I (2)\(L01y)…
(3) .

In particular, this implies~31!.
Now, for any giveny,I 1 ,...,I k there exist at most 2uL0u sets I obeying ~31!. Further,~30!

implies the inequality

dI<d(ø
s51
k I s)ø(L01y)<(

s51

k

dI s
1dL0

, ~34!

which in turn implies

ldI11<ldL0
2k11)

s51

k

ldI s
11<ldL0)

s51

k

ldI s
11.

It follows from these observations and the bound~29! that ~27! does not exceed

max
xPL

( ~x!iuI 1
2v I 1

ildI 1
11S )

s52

k

iv I s
ildI s

11D ldL02k2uL0usup
z

ifzi , ~35!

where( (x) is the sum over all thosey,I 1 ,...,I k , for which I sù(L01y)ÞB,s51,...,k, and x
P(øs51

k I s)ø(L01y). We will estimate ~35! by rearranging summation in it. Sincex
P(øs51

k I s)ø(L01y), and becauseI 2 ,...,I k enter into~35! symmetrically, we have

( ~x!<( 1
~x!1( 2

~x!1~k21!( 3
~x!,

where

( 1
~x!
ª (

y:L01y{x
(

z1 ,...,zkPL01y
(

I s{zs ,s51,...,k
,

( 2
~x!
ª (

I 1{x
(

y:(L01y)ùI 1ÞB
(

z2 ,...,zkPL01y
(

I s{zs ,s52,...,k
,

( 3
~x!
ª (

I 2{x
(

y:(L01y)ùI 2ÞB
(

z1 ,z3 ,...,zkPL01y
(

I s{zs ,s51,3,...,k
.

First we estimate the(1
(x) term. Sincey and each ofzs can be chosen in at mostuL0u ways, this

term does not exceed
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uL0uk11S max
z1

(
I 1{z1

iuI 1
2v I 1

ildI 1
11D S )

s52

k

max
zs

(
I 1{zs

iv I s
ildI s

11D ldL02k1uL0usup
z

ifzi . ~36!

Recall that for anyI andwI ,

iHI ,0wI i>uI uiwI i , ~37!

by ~20!. It follows then by the definition of the norm~22! that

~36!<uL0uk11ldL02k1uL0usup
z

ifzii$uI2v I%ili$v I%il
k21 .

The (2
(x) term does not exceed

uI 1uuL0ukS max
x

(
I 1{x

iuI 1
2v I 1

ildI 1
11D S )

s52

k

max
zs

(
I 1{zs

iv I s
ildI s

11D ldL02k1uL0usup
z

ifzi , ~38!

becausey can be chosen in at mostuI 1uuL0u ways, while each ofzs can be chosen then in at mo
uL0u ways. Again, by~37! and the definition of the norm,~38! is not greater than

uL0ukldL02k1uL0usup
z

ifzii$uI2v I%ili$v I%il
k21 . ~39!

Similarly, the(3
(x) term can be bounded by~39! too. We conclude that

iT1
(k)~$uI%,$v I%!il<~k1uL0u!uL0ukldL02k1uL0usup

x
ifxii$uI2v I%ili$v I%il

k21 . ~40!

If l 52,...,k, we have a similar bound forTl
(k) with i$v I%il

k21 replaced byi$uI%il
l 21i$v I%il

k2 l

in ~40!. Finally, if i$v I%il<1 andi$uI%il<1, then by~24!,~26!,

iT~$uI%!2T~$v I%!il<(
k51

`
1

k!
k~k1uL0u!uL0ukldL02k1uL0usup

x
ifxii$uI2v I%il . ~41!

So we see that if supxifxi<c18 , where

c185
1

2 S (
k51

`
1

~k21!!
~k1uL0u!uL0ukldL02k1uL0u D 21

, ~42!

then

iT~$uI%!2T~$v I%!il< 1
2 i$uI2v I%il ,

for any two collections$uI%,$v I% from the unit ball.
Now we estimateiT($v I%)il . Consider the zero collection$0% and note thatT(k)($0%)50 for

k>1; hence

iT~$0%!il5iT(0)~$0%!il5max
x

(
I {x

I (
y:L01y{x

PIfyVL,0IldI11<uL0u2uL0uldL0
11sup

x
ifxi .

In particular, if supxifxi<c19ª(uL0u2uL0uldL0
11)21/2, then iT($0%)il<1/2. It follows that if

supxifxi<c1ªmin(c18 ,c19); then for any$v I% from the unit ball we have

iT~$v I%!il<iT~$v I%!2T~$0%!il1iT~$0%!il<1/211/251.
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So we see that if supxifxi<c1 , then T is a contraction in the unit ball inKl , and hence the
Kirkwood–Thomas equation~21! there has a unique solution, which we will denote
$v I

(gs)%BÞI ,L . It obeys condition~14! and the vector

ṼL5expS (
BÞI ,L

v̂ I
(gs)DVL,0

is a solution of the Schro¨dinger equation~15! with someEL . However, we have not proved ye
that thisṼL is the ground state and that it is non-degenerate. This will be seen from the sp
analysis ofHL given below.

Note first that anyuPHL can be uniquely expanded as

u5 (
I ,L

ûIṼL ,

with someuIPHI8 ~where ûB is a multiple of1!. Indeed, by the commutativity of the creatio
operators this relation is equivalent to

expS 2 (
BÞK,L

v̂K
(gs)Du5 (

I ,L
ûIVL,0 ,

i.e.,

uI5PI expS 2 (
BÞK,L

v̂K
(gs)Du. ~43!

It is easy to check thatuP Dom (HL) iff uIP Dom (HI ,0) for all I .
Now recall that we definedH̃L5HL2EL1, so thatH̃LṼL50. Below we will decomposeH̃L

into the sum

H̃L5H̃L,01F̃L ; ~44!

H̃L,0 will be a ‘‘simple’’ operator andF̃L will be ‘‘small’’ with respect toH̃L,0 ; both will haveṼL

as a zero eigenvector.
To this end take someI ,L anduIPHI8ù Dom (HI ,0). First we note that

HL,0ûIṼL5ûIHL,0ṼL1HI ,0uÎṼL .

Indeed, ifHL,0 is bounded, this formula follows because

HI ,0uÎ5@HL,0 ,ûI #;

for an unboundedHL,0 one can justify it by a direct calculation. Then

H̃LûIṼL5ûI H̃LṼL1HI ,0uÎṼL1@FL ,ûI #ṼL5HI ,0uÎṼL1@FL ,ûI #ṼL .

So we can define the operatorsH̃L,0 ,F̃L on Dom (H̃L,0)ª Dom (HL,0) and Dom (F̃L)ªHL by

H̃L,0ûIṼLªHI ,0uÎṼL , F̃LûIṼLª@FL ,ûI #ṼL , ~45!

and by linearity. We will rewriteF̃L in a more convenient form using creation operators. Nam
for all I ,J,L anduIPHI8 , define (FLuI)JPHJ8 by
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F̃LûIṼL5 (
J,L

~FLuI !̂JṼL . ~46!

Applying ~43!, we find

~47!

Let us estimate(Ji(FLuI)Ji . Recall that

PJ†...@@fy ,ûI #,v̂K1

(gs)#,...,v̂Ks

(gs)
‡VL,0 , ~48!

can be nonzero only if (L01y)ùIÞB and (L01y)ùKtÞB for all t51,...,s. Moreover, for
y,K1 ,...,Ks fixed there are at most 2uL0u different setsJ, for which ~48! can be nonzero. Using
also the fact that the norm of~48! is not greater than 2s11ifyiiuI i) t51

s ivKt

(gs)i , we find that

(
J,L

i~FLuI !Ji<iuI isup
x

ifxi

3(
s50

`
2s111uL0u

s! (
y:(L01y)ùIÞB

(
y1 ,...,ysPL01y

(
Kt{yt ,t51,...,s

)
t51

s

ivKt

(gs)i .

Recall thati$v I
(gs)%il<1 and hence maxx(K{xivK

(gs)i<1. It follows that

(
J,L

i~FLuI !Ji<iuI isup
x

ifxiuI u(
s50

`
2s111uL0u

s!
uL0us11.

So if we set

c25(
s50

`
2s111uL0u

s!
uL0us11,

then

(
J,L

i~FLuI !Ji<c2sup
x

ifxiiHI ,0uI i . ~49!

By assumption and~42!, supxifxi,c18,1/c2 , so the inequality~49! indicates a sort of ‘‘relative
boundedness’’ ofF̃L wrt H̃L,0 . Our spectral estimate~3! will follow from this inequality. Let us
introduce a new normi•i1 ~equivalent to the usual norm! in HL by

I (
I ,L

ûIṼLI
1

ª(
I ,L

iuI i .

Then for anyz¹ Sp (HL,0),
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iF̃L~H̃L,02z!21i15max
I ,L

sup
iuI i51

(
J,L

i~FL~HI ,02z!21uI !Ji

<max
I ,L

sup
iuI i51

c2sup
x

ifxiiHI ,0~HI ,02z!21uI i5 sup
aP Sp (HL,0)

c2supxifxia

uz2au
.

Let

f ~a!ª
c2supxifxia

uz2au
,

and suppose now that

zPOLª ù
aP Sp(HL,0)

$zPC:uz2au.c2sup
x

ifxia}. ~50!

Then f (a),1 for all aP Sp (HL,0). Clearly f is continuous on the closed set Sp (HL,0), and
lima→1` f (a)5c2supxifxi,1. It follows that supaP Sp (HL,0)

f (a),1 and therefore

iF̃L~H̃L,02z!21i1,1. ~51!

Let

SL,N~z!ª~H̃L,02z!21(
k50

N

„2F̃L~H̃L,02z!21
…

k.

Then by~51!,

SL,N~z! →
N→`

SL~z!ª~H̃L,02z!21(
k50

`

„2F̃L~H̃L,02z!21
…

k,

with a boundedSL(z). Moreover,

~H̃L2z!SL,N~z!5~H̃L,02z1F̃L!SL,N~z!511~21!N~F̃L~H̃L,02z!21!N11 →
N→`

1.

The closedness ofH̃L thus implies (H̃L2z)SL(z)51. SinceH̃L is self-adjoint, this means tha
H̃L2z is invertible forzPOL , which proves the spectral estimate~3!.

Now to finish the proof of Theorem 1 it remains to show thatṼL is a nondegenerate groun
state ofH̃L . It follows from ~3! that H̃L>0, soṼL is a ground state. The nondegeneracy can
deduced by a continuity argument. Consider the family of operatorsHL

(d)5HL,01dFL param-
etrized bydP@0,1#. If H̃L

(d)5HL
(d)2EL

(d) are the corresponding renormalized operators, they
obey the common spectral estimate~3! and hence 0 is an isolated eigenvalue for all of them.
the continuity of the resolvents (HL

(d)2z)21 in d it follows then that the multiplicity of 0 is
constant ind, i.e., identically equals 1.

III. PROOF OF THEOREM 2

In the previous section we showed that if supxifxi,c1 , then for any finiteL the ground state
of HL can be found by solving the Kirkwood–Thomas equationTL($v I%BÞI ,L)5$v I%BÞI ,L ,
where TL is the map ~18!–~19! on the Banach spaceKl,L of collections $v I

PHI8ù Dom (HI ,0)%BÞI ,L , equipped with the norm~22!. This map is a contraction in the un
ball in Kl,L and has a unique fixed point$v I

(L,gs)%BÞI ,L there.
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In fact, one can consider the Kirkwood–Thomas equation for an arbitrary, not neces
finite, subset ofZn, and in particular forZn itself. Namely, letKl,` be the Banach space o
collections$v IPHI8ù Dom (HI ,0)%BÞI ,Zn with I running over the finite subsets ofZn. The norm
is defined as in~22!, but with supxPZn instead of maxxPL and with summation extended to all finit
I {x. The mapT` can be defined by

T`~$v I%BÞI ,Zn!ªH lim
L↗Zn

uI
(L)J BÞI ,Zn,

where

$uI
(L)%BÞI ,LªTL~$v I%BÞI ,L!.

Alternatively, one can defineT` directly, using the commutator expansion~23! with the summa-
tion extended to all finite subsets. Conditions~30!, ~31! and uniform bounds derived in th
previous section ensure thatT` is well-defined and is a contraction in the unit ball ofKl,` . The
corresponding Kirkwood–Thomas equationT`($v I%BÞI ,Zn)5$v I%BÞI ,Zn then has there a uniqu
solution, which we will denote by$v I

(`,gs)%BÞI ,Zn. We begin by proving that the finite volum
solutions converge to this infinite volume solution.

Lemma 1: Let d˜ I ;Lc be the minimal length of a connected graph containing I and at least
point of Lc

ªZ n\L. There exists c˜5 c̃(l,L0).0 such that ifsupxifxi, c̃ then for any finiteL,

max
xPL

(
I ,L:I {x

iHI ,0~v I
(L,gs)2v I

(`,gs)!il d̃I ;Lc11<1.

In particular, for any I,

v I
(L,gs) →

L↗Zn

v I
(`,gs) .

Proof: Let Dv I
(L)

ªv I
(L,gs)2v I

(`,gs) for BÞI ,L. Then the collection$Dv I
(L)%BÞI ,L satisfies

the fixed point equation,

$Dv I
(L)%BÞI ,L5TL;Lc~$Dv I

(L)%BÞI ,L!, ~52!

where the mapTL;Lc on Kl,L is defined by

TL;Lc~$v I
(L)%BÞI ,L!ªTL~$v I

(`,gs)1v I
(L)%BÞI ,L!2$v I

(`,gs)%BÞI ,L . ~53!

Let us introduce a new normi•il,L;Lc in Kl,L by

i$v I%BÞI ,Lil,L;Lcªmax
xPL

(
I ,L:I {x

iHI ,0v I il d̃I ;Lc11.

This new norm is clearly equivalent to the old normi•il,L , defined by~22!. We will prove that
TL;Lc is a contraction in the unit ball inKl,L wrt this new norm, if supxifxi, c̃ with somec̃
5 c̃(l,L0) ~there is no loss of generality in this assumption, sincec1 in the hypothesis of Theorem
1 can be taken smaller!.

Indeed, for any two collections$uI%,$v I%PKl,L by ~53! we have

iTL;Lc~$uI%!2TL;Lc~$v I%!il,L;Lc5iTL~$v I
(`,gs)1uI%BÞI ,L!2TL~$v I

(`,gs)1v I%BÞI ,L!il,L;Lc.
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We can estimate this norm in the same way as we estimatediTL($uI%)2TL($v I%)il,L in the

previous section; the only difference is the factorl d̃I ;Lc11 instead ofldI11 in the definition of the
norm. So instead of~34! we use the inequality

d̃I ;Lc<d̃(ø
s51
k I s)ø(L01y);Lc<d̃I l ;Lc1(

sÞ l
dI s

1dL0
.

As a result we arrive at the following analog of~41!:

iTL;Lc~$uI%!2TL;Lc~$v I%!il,L;Lc<(
k51

`
k1uL0u
~k21!!

uL0ukldL02k1uL0usup
x

ifxii$uI2v I%il,L;Lc

3„max~ i$v I
(`,gs)1uI%il,L ,i$v I

(`,gs)1v I%il,L!…k21. ~54!

Suppose thati$uI%il,L;Lc<1 and i$v I%il,L;Lc<1. From the inequalitiesi•il,L<i•il,L;Lc and
i$v I

(`,gs)%il,L<1 we see that max(̄ )<2 in ~54!. It follows that if supxifxi, c̃, where

c̃5
1

2 S (
k51

`
k1uL0u
~k21!!

uL0ukldL022k211uL0u D 21

,

then

iTL;Lc~$uI%!2TL;Lc~$v I%!il,L;Lc< 1
2 i$uI2v I%il,L;Lc.

Now let us estimateiTL;Lc($0%)il,L;Lc, which equals

iTL~$v I
(`,gs)%BÞI ,L!2$v I

(`,gs)%BÞI ,Lil,L;Lc. ~55!

Recall that$v I
(`,gs)%BÞI ,Zn5T`($v I

(`,gs)%BÞI ,Zn); so the norm~55! can be estimated by expand
ing T`($v I

(`,gs)%BÞI ,Zn) and TL($v I
(`,gs)%BÞI ,L) into commutator series in

PI@¯@fx ,v̂ I 1

(`,gs)#,...,v̂ I k

(`,gs)#VL,0 and comparing the resulting terms. Clearly, the expansion

T` contains that forTL ; the extra terms are those for whichI t,” L for somet. For suchI t we have
d̃I t ;Lc5dI t

and hence we can write

d̃I ;Lc<(
s51

k

dI s
1dL0

,

instead of~34!. Repeating again the estimates of the previous section, we find

iTL;Lc~$0%!il,L;Lc<(
k51

`
k1uL0u
~k21!!

uL0ukldL02k1uL0usup
x

ifxi ,

which is less than 1/2 if supxifxi, c̃.
HenceTL;Lc is a contraction in thei•il,L;Lc-unit ball and Eq.~52! has a unique solution

there. It only remains to check that this solution is the same as$Dv I
(L)%BÞI ,L . This again follows

by a continuity argument. Consider, as before, the familyHL
(d)5HL,01dFL ,dP@0,1#. As is easy

to see, both$Dv I
(d,L)%BÞI ,L and the above-mentioned solution continuously depend ond; since

they are equal ford50, they are equal for alld. h

The remaining part of the proof is quite analogous to the standard cluster expansion for
fields and our exposition will be sketchy.

Let A act onHL ; then, by definition,
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vL~A!5
~AṼL ,ṼL!

iṼLi2
.

First consider the ‘‘partition function’’ZLªiṼLi2. We have

ZL5 IexpS (
BÞI ,L

v̂ I
(L,gs)DVL,0I 2

511 (
BÞI ,L

I (
$I 1 ,...,I k%PP(I )

^ s51
k v I s

(L,gs)I 2

.

For anyL1,L, set

ZL1

(L)
ª11 (

BÞI ,L1
I (

$I 1 ,...,I k%PP(I )
^ s51

k v I s

(L,gs)I 2

.

In particularZL
(L)5ZL ,ZB

(L)51. Then for any nonemptyL1,L and anyxPL1 ,

ZL1

(L)5ZL1\$x%
(L) 1 (

L2,L1 :L2{x
KL2

(L)ZL1\L2

(L) , ~56!

where

KL2

(L)
ª (

$I 1 ,...,I k%,$J1 ,...,Jl %PP(L2):
$I 1 ,...,I k ,J1 ,...,Jl %conn.

~ ^ s51
k v I s

(L,gs) ,^ t51
l vJt

(L,gs)!, ~57!

and summation in the last formula is overconnecteddouble partitions ofL2 , i.e., such that the
collection$I 1 ,...,I k ,J1 ,...,Jl% cannot be decomposed into two non-empty subcollections, wh
unions do not overlap. Now suppose thatA acts onHL1

andBÞL1,L. Then

vL~A!5 (
L2,L\L1

MA,L1 ,L2

(L)
ZL\(L1tL2)

(L)

ZL
, ~58!

where

MA,L1 ,L2

(L)
ª (

L3 ,L4,L1
(

$I 1 ,...,I k%PP(L2tL3),
$J1 ,...,Jl %PP(L2tL4):

$I 1 ,...,I k ,J1 ,...,Jl ,L1%conn.

~A^ s51
k v I s

(L,gs) ,^ t51
l vJt

(L,gs)!.

Lemma 2 (cluster estimates): Ifl>2 and supxifxi,c1(l,L0), then for any xPL,

(
L1{x

uKL1

(L)uldL1
11<1, ~59!

and for anyBÞL1,L and APB(HL1
),

(
L2,L\L1

uMA,L1 ,L2

(L) uldL1tL2<cL1
iAi , ~60!

with some constant cL1
.

Proof: We will prove ~59!; ~60! is analogous. All the connected double partitions of finite s
containingx can be uniquely generated by a successive choice ofI ’s andJ’s as follows. For any
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nonemptyI ,Zn fix somex(I )PI . ChooseI 1{x. Then proceed by induction. Suppose we ha
already chosen a connected family$I 1 ,...,I k ,J1 ,...,Jl% such that theI ’s are mutually disjoint, and
the J’s are mutually disjoint. Set

L (k1 l )
ª@~tn51

k I n!\~tn51
l Jn!#t@~tn51

l Jn!\~tn51
k I n!#

and consider two possibilities.
~1! L (k1 l )5B. Then the family$I 1 ,...,I k ,J1 ,...,Jl% forms a connected double partition o

some set containingx.
~2! L (k1 l )ÞB. Then considerx(L (k1 l )). If x(L (k1 l ))P(tn51

k I n)\(tn51
l Jn); then choose

Jl 11 such that Jl 11{x(L (k1 l )) and Jl 11ù(tn51
l Jn)5B. Otherwise, if x(L (k1 l ))

P(tn51
l Jn)\(tn51

k I n), chooseI k11 such thatI k11{x(L (k1 l )) and I k11ù(tn51
k I n)5B. Then

repeat the inductive step.
Clearly, all the connected double partitions of finite sets containingx can be obtained in this

way. Now we bound the scalar product in~57! by )s51
k iv I s

(L,gs)i) t51
l ivJt

(L,gs)i . If

$I 1 ,...,I k ,J1 ,...,Jl% is a connected double partition ofL1 , thendL1
<(s51

k dI s
1( t51

l dJt
. It fol-

lows that

(
L1{x

uKL1

(L)uldL1
11<l (

n52

` S max
y

(
I {y

iv I
(L,gs)ildI D n

(n is the number of elements in a double partition!. Using the bound~14! and the inequalityl
>2, we find

(
L1{x

uKL1

(L)uldL1
11<l (

n52

`

l2n5
1

l21
<1.

h

The desired convergence ofvL(A) follows now for sufficiently largel from the expansions
~56!, ~58!, cluster estimates and Lemma 1 by standard arguments.11

IV. PROOF OF THEOREM 3

We introduce the commutative subalgebrasUL ,U` , generated by the creation operators:

ULªH (
I ,L

ûIUuIPHI8J , uLu,`,

U`ª ø
uLu,`

UL .

Note that ifAPUL , theniAi5iAVL,0i .
Lemma 3: (a) If APU` and AÞ0, thenp`(A)V`Þ0.
(b) The setp`(U`)V` is dense inH` .
Proof: ~a! Let APUL ; then for anyL1.L by the commutativity

iAVL1
i5

iAṼL1
i

iṼL1
i

5

I expS (
I ùLÞB

I ,L1 :
v̂ I

(L1 ,gs)D A expS (
IÞB

I ,L1\L:
v̂ I

(L1 ,gs)D VL1,0I
I expS (

I ùLÞB

I ,L1 :
v̂ I

(L1 ,gs)D expS (
IÞB

I ,L1\L:
v̂ I

(L1 ,gs)D VL1,0I . ~61!

It follows from the bound~14! that
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I expS 6 (
I ,L1 :

I ùLÞB

v̂ I
(L1 ,gs)D I<expS uLusup

x
(
I {x

iv I
(L1 ,gs)i D<euLu,

and hence

~61!>e22uLu

IA expS (
IÞB

I ,L1\L:
v̂ I

(L1 ,gs)D VL1,0I
I expS (

IÞB

I ,L1\L:
v̂ I

(L1 ,gs)D VL1,0I 5e22uLuiAVL,0i5e22uLuiAi .

Taking the limitL1↗Zn, we find

ip`~A!V`i25v`~A* A!5 lim
L1↗Zn

vL1
~A* A!5 lim

L1↗Zn

iAVL1
i2>e24uLuiAi2.

~b! Let APAL , thenAVL5( I ,LûI
(L)VL , where

uI
(L)5PI

(L)expS 2 (
BÞI ,L

v̂ I
(L,gs)DA expS (

BÞI ,L
v̂ I

(L,gs)DVL,0

@see~43!#. Fix A and letL↗Zn; expanding the rhs and using Lemma 1, one finds that there
limits,

uI
(`)

ª lim
L↗Zn

uI
(L) ,

and then, using Theorem 2,

AV`5 (
I ,Zn

ûI
(`)V` ,

with an absolutely convergent series on the rhs. In particular, it follows thatp`(U`)V` is dense
in A`V` and hence inH` . h

Recall that for the renormalized HamiltonianH̃L in a finite volumeL we had the decompo
sition H̃L5H̃L,01F̃L , where Dom (H̃L)5$( I ,LûIVLuuIPHI8ù Dom (HI ,0)%, and on this do-
main,

H̃L,0S (
I ,L

ûIVLD 5 (
I ,L

HI ,0uÎVL ,

F̃LS (
I ,L

ûIVLD 5 (
I ,L

(
J,L

~FLuI !̂JVL

@see~44!–~47!#. Using the expansion~47! and Lemma 1, we find that there exist the limits

~F`uI !Jª lim
L↗Zn

~FLuI !J ,

and, moreover,

(
J,Zn

i~F`uI !Ji<c2sup
x

ifxiiHI ,0uI i , ~62!
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as in ~49!.
Now we can define the limiting HamiltonianH` . First we define it on the subspaceD,H` ,

consisting of vectors of the formp`(( I ûI)V` , where the sum is finite anduI

PHI8ù Dom (HI ,0) for all I ; then we will take the closure. On the domainD we set

H`uDªH`,01F` ,

where

H`,0p`S (
I

ûI DV`ªp`S (
I

HI ,0uÎ DV` ,

F`p`S (
I

ûI DV`ªp`S (I
(

J,Zn
~F`uÎ !JDV` .

OperatorH`uD is well-defined by Lemma 3~a! and inequality~62!. Using Theorem 2 and the
symmetricity of the finite-volume HamiltoniansH̃L , one deduces thatH`uD is symmetric. Now
let H` be the closure ofH`uD . First we prove that it is self-adjoint. LetzPO`ªùLOL , where
OL is defined in~50!. Then for anyuPp`(U`)V` , using inequality~62! and arguing as in the
proof of Theorem 1, we see that one can form the series

SZn~z!u5~H`,02z!21(
k50

`

„2F`~H`,02z!21
…

ku, ~63!

defining an element ofH` . The closedness ofH` then implies thatSZn(z)uP Dom (H`) and
(H`2z)SZn(z)u5u. Sincep`(U`)V` is dense inH` by Lemma 3~b!, it follows that Ran (H`

2z)5H` and henceH` is self-adjoint with the series~63! being its resolvent foru
Pp`(U`)V` andzPO`ù(C \R). But the expression~63! is analytic inz in O` and hence the
spectral measure for suchu is supported onR\O` ~this follows, e.g., from Stone’s resolven
formula for spectral projectors!. By the density of suchu’s, we conclude that Sp (H`),R\O` ,
which is the desired spectral localization estimate.

Now suppose thatAPU` andzPO` . Then for anyL large enough, expressing the resolve
via SL(z) and using the expansions forSL ,F̃L , we can find ALPUL such that (H̃L

2z)21AVL5ALVL . Since the expansion forF̃L converges to that forF` , there existsA`

5 limL↗ZnAL , and (H`2z)21p`(A)V`5p`(A`)V` . It follows then by Theorem 2 that for an
BPA` ,

„~H̃L2z!21AVL ,BVL…5vL~B* AL! →
L↗Zn

v`~B* A`!5„~H`2z!21p`~A!V` ,p`~B!V`….
~64!

Sincep`(U`)V` is dense inH` , this convergence extends to allAPA` . Finally, the extension
to zPC \R follows by Vitali’s theorem.

It only remains to show that 0 as an eigenvalue ofH` is nondegenerate. Since it is a nond
generate eigenvalue ofH̃L in any finite volumeL, for anyAPB(HL) we have

~QLAVL ,AVL!5u~AVL ,VL!u2, ~65!

whereQL is the projector onto Ker (H̃L) in HL . Let g be a contour inO` , surrounding 0; then
by the Cauchy formulaQL52(2p i )21*g(H̃L2z)21 dz we can use~64! to take the limitL↗Zn

in ~65! and write

„Q`p`~A!V` ,p`~A!V`…5u„p`~A!V` ,V`…u2,
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whereQ` is the projector onto Ker (H`) in H` . Hence, Ker (H`) contains only multiples of
V` .
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Working within the HPO~History Projection Operator! Consistent Histories for-
malism, we follow the work of Savvidou on~scalar! field theory@J. Math. Phys.43,
3053 ~2002!# and that of Savvidou and Anastopoulos on~first-class! constrained
systems@Class. Quantum Gravt.17, 2463~2000!# to write a histories theory~both
classical and quantum! of Electromagnetism. We focus particularly on the foliation-
dependence of the histories phase space/Hilbert space and the action thereon of the
two Poincare´ groups that arise in histories field theory. We quantize in the spirit of
the Dirac scheme for constrained systems. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1723702#

I. INTRODUCTION

Our aim in this paper is to demonstrate the application of certain ideas and technique
have been developed within the HPO~History Projection Operator! histories formalism over
recent years to the theory of Electromagnetism. Specifically, we follow up on two pieces of
which are naturally combined therein:

Field theory. In Ref. 1, Savvidou describes the histories theory of the~classical and quantum!
scalar field. This has the important feature that there exist two distinct Poincare´ groups. The
‘‘internal’’ group is simply the histories analog of that of the standard theory, but there also e
an ‘‘external’’ group that explicitly performs changes of the foliation. This is important a
provides a way of relating quantities that are defined with respect to different foliations. T
groups arise as a consequence of one of the most powerful and interesting features of h
theories, namely that there exist two distinct types of time transformation each of which repr
a distinct quality of time: ~a! the internal time~‘‘time of becoming’’!, which is related to the
dynamics of the particular system in question, and~b! the external time~‘‘time of being’’ !, which
is related to the causal ordering of events, i.e., the kinematics.~For a detailed exposition of the
HPO continuous time histories program, the reader is referred to Ref. 2.!

Constrained systems.In Ref. 3, Savvidou and Anastopoulos describe an algorithm for wo
ing with systems with first-class constraints within the HPO formalism. They focused specifi
on parametrized systems, i.e., those systems whose Hamiltonian is itself a first-class constr
a natural precursor to understanding ‘‘histories’’ general relativity, and demonstrated tha
histories on the reduced phase spaceretainedtheir intrinsic temporal ordering. The quantizatio
algorithm is in the spirit of the Dirac scheme for constrained systems.~For progress with this
enterprise, see Refs. 4–6.!

The theory of Electromagnetism, as a field theory with first-class constraints, thus per
combines the above pieces of work, but also brings something new to each when studied
the histories framework. In the first instance we shall see explicitly how the histories phase
and reduced phase space depend on the foliation and discuss the importance of the extern
in this respect. Second, we will have to deal with the fact~not tackled in detail in Ref. 3! that our
constraints have continuous spectra, and thus the physical Hilbert space cannot be a tru
subspace of the full~unconstrained! Hilbert space.

The outline of the paper is as follows: in Sec. II we give a brief account of those aspects

a!Electronic mail: aidan.burch@ic.ac.uk
21530022-2488/2004/45(6)/2153/18/$22.00 © 2004 American Institute of Physics
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Histories program most relevant to our needs, and then we present the histories theory o
tromagnetism, starting with the classical theory in Sec. III, and then its quantization in Sec. I
conclude in Sec. V.

Finally we note that the classical history theory of vector fields has been studied by Nolt7

as well as their BRST quantization,8 though he follows a fundamentally different approach wh
centers on defining five component vector fields to incorporate the two times.

II. THE HISTORIES PROGRAM

The consistent histories version of quantum mechanics was originally developed in the
by Griffiths9 and then built on~each with different emphases! by Omnès10 and then Gell-Mann and
Hartle11 and Hartle.12 The main aim~particularly of the latter! was to develop a quantum mecha
ics of closed systems.

As formulated by Gell-Mann and Hartle, a history,a, is represented by a class operator,Ca ,
that is a product of Heisenberg picture projection operators. Dynamic information is contain
the decoherence functional, defined on a pair of histories as

d~a,b!5tr~Ca
†r0Cb!, ~2.1!

wherer0 is the density matrix describing the initial state of the system. If a history is part
‘‘consistent’’ set, then probabilities~in the usual Kolmogorov sense! may be assigned to th
individual histories according top(a)5d(a,a).

The HPO formalism was developed initially by Isham13 and Isham and Linden14 who sought
a histories version of single-time quantum logic. To this end they re-defined the class oper
a tensorproduct ofSchrödingerpicture operators, so it would be a genuine projection operato
some suitable ‘‘history’’ Hilbert space. This formalism was extended to the case of contin
time histories by Isham and co-workers,15,16in which the ‘‘history group’’—analogous to the usua
Heisenberg–Weyl group—was introduced. However, this structure lacked any clear notion o
evolution. It was only with Savvidou’s introduction of the action operator—the quantum anal
the classical Hamilton–Jacobi action functional—that the temporal structure of histories t
was established in the form as it is used now~see Ref. 17!. It is these two—the history group an
action operator—that are the key elements of any history theory.

A. The history group

By introducing the history group, a HPO theory may be seen as seeking a suitable rep
tation of a certain algebra, e.g., for a~nonrelativistic! particle moving on the real line~see Ref. 2!
and a continuous time label,tPR, the ~nonzero! commutation relation is (\51)

@xt ,pt8#5 id~ t2t8!. ~2.2!

This algebra is isomorphic to that of a field theory in one spatial dimension, and field-the
techniques are usefully employed to find a suitable representation. Following Araki,18 the proper
representation of this algebra is selected by requiring that the Hamiltonian exist as a self-a
operator, and it will come as no surprise that a Fock representation provides the necessar
tory’’ Hilbert space.

In histories quantum scalar field theory~see Ref. 1!, after foliating Minkowski space with a
unit timelike vector,nm , we have

@f~X! ,p~X8!#5 id4~X2X8!, ~2.3!

where we are using a ‘‘pseudo-covariant’’ notationX5n•t1xn (xn is a four vector such tha
n•xn50). @We use the metric signature (1,2,2,2).] A representation of this algebra is foun
in terms of creation and annihilation,b†(X) and b(X), on the ~history! Fock space,Vscalar

5exp„L2(R4,d4X)…. Indeed, it is found that all foliation dependent representations existon the
sameFock space.
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B. The action operator

The other key element of a histories theory is the action operator,S(g) ~see Ref. 17!. It is this
that is the generator of time transformations of a HPO theory, combining the Liouville ope
V(g), which generates time translations in the external~kinematical! time label, and the Hamil-
tonian,H(g), which generates time translations in the internal~dynamical! time label. For our
nonrelativistic particle, the action would be written as

S~g!5V~g!2H~g!5E dt@ptẋt2Ht~pt ,xt!#~g!, ~2.4!

whereHt is a one parameter family of Hamiltonians.
In the field theory case, we have two Poincare´ groups, with the Hamiltonian being the tim

translations generator of the internal group, and the Liouville being the time translations gen
of the external group. The generators of the internal group are time-averaged versions
generators of the standard group, but it is the external group that is the novel object, as th
of this group generateschanges of the foliationas well. Its action on the foliation-dependent sca
field is given by

extU~L!nf~X!extU~L!215Lnf~L21X! ~2.5!

@whereU(L) is the unitary operator that generates the Lorentz transformation# and thus we have
a way of relating quantities defined with respect to different foliations.

Finally, we note, without going into great detail, that there is an analogous formalism
classical histories which we will use to write the classical history theory of EM below~see Chap.
5 of Ref. 2 for further details!. This involves thinking of a history as a map from the real line in
the classical phase space,G. A natural symplectic structure can be defined onP ~the history phase
space!, giving rise to the Poisson algebra. The equations of motion can be expressed by
that, for any functionF on P, their solutions,gcl , will satisfy

$F,S%~gcl! 5 0. ~2.6!

C. The constrained systems algorithm

The theory of constrained systems was extensively studied by Dirac,19 though we primarily
use Refs. 20 and 21. In essence, a first-class constraint,f(x,p)50, is to be seen as a generator
gauge transformations which partitions the phase space,G ~and, thus, the constraint surface! into
orbits. The reduced phase space,G red, is then isomorphic to the space of orbits. There exist
unique ‘‘reduction’’ of a functionF on G to a functionF̃ on G red if F has a weakly vanishing
Poisson bracket with the constraint. Dirac quantization proceeds by constructing the uncons
Hilbert space,H, writing the constraint as an operator, and then defining the physical Hilbert s
as that linear subspace~modulo considerations of the constraint spectrum! of H which is spanned
by those eigenvectors of the constraint whose corresponding eigenvalue is zero.

In histories theory3 we write the ~time-averaged! constraint asFl(g)5*dt l(t)f(xt ,pt)
3(g). As above, the action of the constraint will partitionP ~the history phase space! into orbits,
and we can defineP red ~the reduced phase space! as the space of equivalence classes of histo
on the constraint surface,Ch . ~Histories will be equivalent if they lie on the same orbit.! Again,
there will be a unique ‘‘reduction’’ of any function,F, on P to a function, F̃, on P red if
$F,Fl%'0.

The quantization algorithm for a histories theory follows the spirit of the Dirac scheme, b
described above. It is implemented, once the constraint is suitably defined as an operator,
observing that we require

d~eiFlae2 iFl,eiFlbe2 iFl!5d~a,b!. ~2.7!
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To meet this requirement~modulo, as above, issues concerning the nature of the constraint
trum! we define a projector,E, onto the closed linear subspace of the~unconstrained! history
space,V, corresponding to the zero eigenvalue ofFl and then substitutea for EaE in the
expression for the decoherence functional~evidentlyeiFlE5E).

We are now in a position to put these ideas into practice, writing the classical histories t
of Electromagnetism in the next section, and its quantization in the subsequent one.

III. ELECTROMAGNETISM—CLASSICAL

We begin with a brief review of the standard theory.

A. Basics

The EM Action is

S52
1

4 E d4x FmnFmn, ~3.1!

whereFmn5]mAn2]nAm . The equations of motion are computed from settingdS50, and we get

]mFmn50. ~3.2!

To write this in Hamiltonian form we first define the momentum conjugate to the vector pote

pm5
dL

dȦm

5Fm0. ~3.3!

So p i5] iA02]0Ai52@(“A0) i1Ȧi #5(EI ) i , and we have the following constraints:

p050 ~3.4!

~this is a primary, first-class constraint!, and the Gauss Law constraint~this is a secondary, first
class constraint!,

] ip
i50, ~3.5!

derived from the consistency condition that the primary constraint be conserved in time
$H,p0%50 ~whereH is the canonical Hamiltonian given below!. In terms of the observable fields
EI andBI 5¹3AI the canonical Hamiltonian is written as

H5E d3x S 1

2
EI 21

1

2
BI 22A0¹•EI D . ~3.6!

1. Poincaré invariance in the standard theory

The generators of the Poincare´ group of the standard theory are ‘‘taken over’’~in time-
averaged form! to the histories theory as the ‘‘internal’’ group. Following Ref. 22, these
derived from the energy–momentum tensor~to which a total divergence has to be added!:

Q̃mn52Fmr]nAr1 1
4 hmnF21]r~FmrAn!. ~3.7!

The ten generators of the Poincare´ group are then written as

Pa5E d3x Q̃0a, ~3.8!
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Mab5E d3x ~xaQ̃0b2xbQ̃0a!. ~3.9!

From these, we deduce the explicit, canonical form of the Hamiltonian, linear momen
angular momentum and boost generators to be, respectively,

H5E d3xS 2
1

2
p ip

i1
1

2
~¹3AI !22A0] ip

i D , ~3.10!

Pi5E d3xp j ] iAj , ~3.11!

Ji5e i jkE d3x~p lxj ]kAl1p jAk!, ~3.12!

Ki5E d3x2xi S 2
1

2
p jp

j1
1

2
~¹3AI !22A0 ] jp

j D ~3.13!

~where we have chosenx050 in the expression for the boost!. This algebra closes only weakly
i.e., subject to the Gauss Law constraint, a fact that will be of significance when we come
quantization.

We now turn to the histories formulation of classical electromagnetism.

B. The histories phase space, P

The phase space of canonical EM isG5„Ai(xI ),p j (xI )…, and a history is defined to be a pat

g:R→G, ~3.14!

t°„Ai~ t,xI !,p j~ t,xI !…. ~3.15!

The space of histories,P, is defined to be the space of all such smooth pathsg. As explained
before we can use a ‘‘covariant-like’’ notation, writingX5n•t1xn wherenm is a unit time-like
vector, sot5n•X andxn is ‘‘ n-spatial,’’ i.e.,n•xn50.

However, we wish to find a representation of the time-averaged canonical expressions
phase space coordinated by„Am(X),pn(X)…. This is so we can write a representation of both t
internal and external groups on the same space. This is achieved using then-spatial projector,
Pmn , introduced earlier, along with the foliating timelike vector,nm . In this notation, we write the
foliation dependent~canonical! fields nAmªPm

n An ~and likewise for the conjugate momenta!. The
Hamiltonian is written as

Hn5E d4X S 1

2
@Pmnpmpn1~¹s

mAs!~¹mdAd!#1nrArPmn ]mpnDx~n•X! ~3.16!

~where the subscript ‘‘n’’ refers to the particular foliation, and we have introduced the notat
¹msAs[emnrsnn ]rAs). This is the generator of time translations of the internal group. We t
define the Liouville operator~the generator of time translations in the external group!:

Vn5E d4X pmnr ]rAm , ~3.17!

and thus can write the action functional:

Sn5Vn2Hn . ~3.18!
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It is the action functional that is to be understood as the ‘‘true’’ generator of time translations
theory, naturally intertwining the two modes of time represented by the Hamiltonian and Liou
operators. The fundamental Poisson brackets are now

$Am~X!,An~Y!%505$pm~X!,pn~Y!% ~3.19!

and

$Am~X!,pn~Y!%5dm
n d4~X2Y!. ~3.20!

We now turn to the central issue of Poincare´ invariance.

C. The Poincaré groups

As was the case for the scalar field, we seek representations for two Poincare´ groups on the
history space: one associated with the internal time label, and one associated with the extern
label. The generators for spatial translations and spatial rotations will be the same for each
so we focus our attentions on the time translation and boost generators in each case.

1. The internal Poincare ´ group

The generators of the internal Poincare´ group will be time-averaged versions of the generat
of the standard theory@Eqs.~3.10!–~3.13!#. The time translation generator is, of course, just
Hamiltonian of Eq.~3.16! and we define the boost ats50 as

intK~m!52mmE d4X XmS 1

2
@Pmnpmpn1~¹s

mAs!~¹mdAd!#1nrArPmn]mpnD , ~3.21!

wheremm is a space-like vector, i.e.,n•m50, parametrizing the boost. Given a functionA on P,
we can denote the one parameter group of transformations it generates ass°TA(s) and its action
on the algebra of functions,B, as

~3.22!

So, we first define the classical analog of the Heisenberg picture fields by

TH~s!@nAm~X!#5nAm~X,s!, ~3.23!

TH~s!@npm~X!#5npm~X,s!, ~3.24!

and can now see explicitly the sense in which the Hamiltonian generates time translations
internal time label by looking at its action on the ‘‘Heisenberg’’ picture fields:

TH~t!@nAm~X,s!#5nAm~X,s1t!, ~3.25!

TH~t!@npm~X,s!#5npm~X,s1t!. ~3.26!

The internal boost generator will mix the internal time parameter, ‘‘s, ’’ with the spatial
coordinates

TintK(m)
@nAm~X,s!#5nAm„L

21~X,s!…, ~3.27!

TintK(m)
@npm~X,s!#5npm

„L21~X,s!…, ~3.28!
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whereL21(X,s) is related to (X,s) ~the time label ‘‘t ’’ is, of course, constant! by the Lorentz
boost parametrized bymm, i.e., the velocity of the moving frame is given by

v i5c
tanhumumi

umu
. ~3.29!

2. The external Poincare ´ group

In contrast to the definition of the generators of the internal group, we use the covariant
„Am(X),pm(X)… in the definition of the generators for the external Poincare´ group. These are

Pm5E d4X pn ]mAn ~3.30!

and

Mmn5E d4X@pr~Xm]n2Xn]m!Ar#1smn, ~3.31!

wheresmn is the spin term, given by

smn5E d4X~pmAn2pnAm!. ~3.32!

As before, we are particularly interested in the actions of the time translation generatorV5P0 and
the boosts generatorK(m)5nmmnMmn. These are therefore written as

V5E d4X pmnn ]nAm ~3.33!

and

extK~m!5mmE d4X@~n•X!pn ]mAn2Xmprnn ]nAr#1nmmnsmn. ~3.34!

The effect of the Liouville functional is to generate the following algebra automorphism
which we can clearly see that it generates time translation in the external time label:

TV~t!@Am~X,s!#5e2tns]s
Am~X,s!5Am~X8,s!, ~3.35!

TV~t!@pm~X,s!#5e2tns]s
pm~X,s!5pm~X8,s!, ~3.36!

whereX8 is the point inM associated with the pair (xI ,t1t).
Let us now turn to the transformations generated by the external boosts. These will m

external time parameter, ‘‘t, ’’ with the spatial coordinates. The finite transformations can
written as

TextK(m)
@Am~X,s!#5Lm

n An„L
21~X!,s…, ~3.37!

TextK(m)
@pm~X,s!#5Ln

mpn
„L21~X!,s…. ~3.38!

As previously stated, the role of the external group is an interesting one, and it is this t
one of the novel features of histories field theory. The effect of the external boosts is to m
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spatial coordinate with the external time label ‘‘t ’’ and, as the phase space has an implicit foliati
dependence, it will also boost the foliation vector itself, thus generating transformations be
different foliation-dependent representations.

D. The reduced phase space, P red

Our next task is to follow the algorithm of Ref. 3 to ascertain a suitable description o
reduced phase space,P red, on which the true degrees of freedom of the theory are defined. To
end, we are interested in the actions of the constraints on the phase space~and in particular the
history constraint surface,Ch) because, by examining their action, we can define suitable coo
nates~i.e., ones constant along the orbits! for the reduced phase spaceP red.

We write the time-averaged analogs of the constraints of the standard theory as follow

Cl5E d4X l~X!nmpm'0, ~3.39!

Fl5E d4X l~X!Pmn ]mpn'0, ~3.40!

and consider their action on the coordinates ofP. UnderCl we have

„Am~X!,pm~X!…→„Am~X!2l~X!nm ,pm~X!…. ~3.41!

UnderFl we have

„Am~X!,pm~X!…→„Am~X!1Pm
r ]rl~X!,pm~X!…. ~3.42!

Evidentlypm(X) is constant along the orbits, so we just seek a quantity associated with the v
potential that is gauge invariant.

Equations~3.41! and ~3.42! tell us that the transverse components of the vector pote
remain constant along the orbits of the constraints and are thus good coordinates forP red, whereas
the scalar and longitudinal components correspond to the degenerate directions ofCl and Fl ,
respectively.~This state of affairs is more clearly seen if we use a Fourier transform and wo
momentum space.! If we combine this knowledge with a look at the constraints themselves, w
~if we were to Fourier transform them! readily show us that the constraint surface,Ch , is defined
by p05pL50, where these are, respectively, the scalar and longitudinal components o
conjugate momentum, we can deduce thatP red is suitably coordinated by„Am

'(X),pm
'(X)…, where

the superscript ‘‘'’’ indicates the transverse components, and these are defined by

Am
'~X!5S n]m

n]n

nD
2Pm

n DAn~X! ~3.43!

~and likewise forp') and wheren]m is shorthand forPm
a]a and the~invertible! partial differential

operatornD is defined as

~nD f r!~X!5~Pmn]m]n! f r~X!. ~3.44!

The ~nonzero! Poisson bracket relation on the reduced phase space is given by

$Am
'~X!,p'n~X8!%5Tm

n d4~X2X8!, ~3.45!

where

~Tm
n f n!~X![S n]m

n]n

nD
2Pm

n D f m~X!. ~3.46!
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We are now in a position to examine whether or not we can write a representation of th
Poincare´ groups onP red.

E. The reduced Poincare ´ algebras

As explained in Sec. II C, for a function on the whole phase space to reduce to a corres
ing function on the reduced phase space, it is necessary that its Poisson bracket with th
straints is weakly zero. We expect to find that the generators of theinternal Poincare´ group reduce
to P red. However, we do not expect to find a full representation of theexternalPoincare´ group on
the reduced phase space. In Ref. 1 the foliation dependence of the phase space was empha
not explicit. In the case of EM we shall see this dependence explicitly as the action of the ex
boost will affect the definition ofP red and so we do not expect to find a reduced version of
generator. We now turn to the explicit results.

As before, we are only interested in the time translation and boost generators of each P´
group and thus we need only compute the Poisson brackets ofS, intK(m) and extK(m) with the
constraints. We find the following results~recall thatCl is the ‘‘p0’’ constraint andFl the Gauss
Law constraint!:

$S,Cl%5Cl̇2Fl'0 ~3.47!

and

$S,Fl%5Fl̇'0. ~3.48!

So the action functional weakly commutes with both constraints and so can be reduce
functional S̃ acting onP red.

The internal boost generator has the following Poisson brackets with the constraints:

$ intK~m!,Cl%5F2maXal'0 ~3.49!

and

$ intK~m!,Fl%50. ~3.50!

This in line with what we expected, i.e., that the generators of the internal Poincare´ group com-
mute with the constraints and thus we have a representation of the internal group onP red. ~Of
course, something would be quite amiss if we did not have this as the internal group
histories analog of the Poincare´ group of standard Maxwell theory.!

The external boost generator forms the following Poisson brackets with the constraints

$extK~m!,Cl%5C (nbXbma]a2mbXbna]a)l2E d4X l~X!mapa ~3.51!

and

$extK~m!,Fl%5Cma]al1E d4X„na]al~X!…mbpb. ~3.52!

Neither of these are weakly zero, and so the external boost generator cannot be reducedP red.
For those functions thatcan be reduced, we use the coordinates for the reduced phase

that we worked out in the previous section. The Hamiltonian and Liouville functionals on
reduced phase space are written as follows:

H̃5E d4X
1

2
~p'mpm

'1Am
'n DA'm!, ~3.53!
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Ṽ5E d4X p'mnn ]nAm
' , ~3.54!

where we have used, in the expression for the Hamiltonian,

Am
nGmnAn5Am

' nDA'm, ~3.55!

with nD defined in Eq.~3.44!. Thus the action functional onP red is written as

S̃5Ṽ2H̃, ~3.56!

and the classical paths which are solutions to the equations of motion are those which sat

$S̃,F̃%~gcl!50, ~3.57!

for all functionsF̃ defined onP red.

IV. ELECTROMAGNETISM—QUANTIZATION

For the quantization of the theory we continue to follow the algorithm laid down by Savv
and Anastopolous, which, as outlined in Sec. II C, essentially follows the Dirac scheme. We
the history space,V, by consideration of the history group, and define the constraints the
However, as we mentioned, the constraints have continuous spectra, and thus the physica
space,Vphys, will not be a genuine subspace of the history Hilbert space. This will be expli
demonstrated. And so we are led to a creative implementation of the algorithm~the central idea
here is due to Savvidou25!, in which the physical Hilbert space is defined separately, based o
analysis, in terms of coherent states, of how the constraints act onV. Appropriate mappings are
then defined betweenV andVphys such that objects on one can be related to objects on the o

A. The History Hilbert space V
So the first stage is to define the History Hilbert space. Following the methods of Refs. 1

1, we start by defining the History Algebra:

@Am~X!,An~X8!#50, ~4.1!

@pm~X!,pn~X8!#50, ~4.2!

@Am~X!,pn~X8!#5 idm
n d4~X2X8!, ~4.3!

or, in its more rigorous, smeared form:

@Am~ f m!,An~ f 8n!#50, ~4.4!

@pm~hm!,pn~h8n!#50, ~4.5!

@Am~ f m!,pn~hn!#5 i E d4X dm
n f m~X!hn~X!, ~4.6!

where f m(X), hm(X) are elements of a suitable space of smearing functions which we will le
unspecified beyond saying that it must at least be a subspace of% i 51¯4LR

2(R4,d4X) i . Let us
denote this spaceTR . It is natural to seek a Fock representation of this algebra, and th
achieved by first taking the complexification of the space of smearing functions, i.e.,TC5TR
% TR and then exponentiating the resulting space to giveV5eTC. The Fock space thus defined wi
carry a natural representation of the above History Algebra, which we seek explicitly belo
terms of creation and annihilation operators:
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@bm~X!,b†n~X!#5dm
n d4~X2X8!. ~4.7!

1. The representation of „A,p… in terms of „b †,b …

We can easily write a representation of the fully covariant fields„Am(X),pm(X)…:

Am~X!5
1

&
„bm~X!1bm

† ~X!…, ~4.8!

pm~X!52
i

&
„bm~X!2bm

† ~X!…. ~4.9!

However, what we require in order to define the Hamiltonian is foliation-dependent fields. S
start from a normal-ordered analog of the classical unconstrained Hamiltonian:

nH5..
1

2 E d4X~Pmn npm
npn1nAm

nGmn nAn!: ~4.10!

and may think, at first, to define

nAm~X!5
1

&
~nGm

n !21/4
„bn~X!1bn

†~X!…, ~4.11!

npm~X!52
i

&
~nGm

n !1/4
„bn~X!2bn

†~X!…. ~4.12!

However, there is a problem here, as the operatorGmn has zero eigenvalues, and is, therefore,
invertible. To see this, it is easier to use ‘‘canonical notation,’’ i.e.,G i j 5] i] j2d i j ]k]

k. We then
examine the action of this operator on an element,f i(x), of the smearing function space—whic
we split into its transverse and longitudinal components,f i5 f i

'1 f i
i—and find

G i j f i~x!5G i j „f i
'~x!1 f i

i
~x!…5G i j f i

'~x!. ~4.13!

So the longitudinal components of the smearing functions are the zero eigenvectors ofG i j . If we
now split the Hamiltonian into its transverse and longitudinal parts, we find~reverting to the full
‘‘histories’’ notation, and dropping then superscript for ease!,

H5
1

2 E d4X~pm
'p'm1Am

' nDA'm1pm
i p im!, ~4.14!

where the operatornD was defined in Eq.~3.44!. And now we see that the transverse part of t
Hamiltonian is, in essence, that of the usual ‘‘harmonic oscillators,’’ whereas the longitudina
is that of a ‘‘free particle.’’ This form now prompts us towards the correct definition of the fi
in terms of the creation and annihilation operators:

nAm~X!5
1

&
nD21/4

„bm~X!1bm
† ~X!…, ~4.15!

npm~X!52
i

&
nD1/4

„bm~X!2bm
† ~X!…. ~4.16!
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Now, on the one hand, we can consider the Fock space in terms of the orthonorma
obtained by a continual application of the creation operator on a translationally invariant va
state~defined bybmu0&50). However, it has also proved very useful to consider the Fock sp
in terms of coherent states—indeed, in Ref. 15, these were vital to the demonstration tha
exists a natural isomorphism between an exponential Hilbert space and the ‘‘continuous
product’’ of Hilbert spaces so vital to the Histories program. In the next section, we make u
the technology of coherent states~an excellent reference is Ref. 23! as we seek to define th
Physical Hilbert space.

B. The Physical Hilbert space Vphys

Recall that the constraints are written as

Cl5E d4X l~X!nmpm, ~4.17!

Fl5E d4X l~X!Pmn ]mpn . ~4.18!

Substituting for the fields in terms of the creation and annihilation operators, these becom

Cl5
2 i

2 E d4X l~X!nm
nD1/4~bm2b†m!, ~4.19!

Fl5
2 i

2 E d4X l~X!Pmn]m
nD1/4~bn2bn

†!. ~4.20!

It is clear that these constraints are self-adjoint operators onV, and also that they have continuou
spectra, so the physical Hilbert space will not be a genuine subspace. However, by consid
of the Fock space,V, in terms of coherent states we are led naturally to the correct definitio
Vphys, and explicitly show in what sense the latter is not a true subspace of the former.

The Weyl operator which generates the~overcomplete! set of coherent states is written as

U@ f ,h#5exp@ i „nAm~ f m!2npn~hn!…#u0&, ~4.21!

5exp@bm
† ~zm!2bm~z* m!#u0&, ~4.22!

with zm(X)5 (1/&) „nD1/4hm(X)1 i nD21/4f m(X)…. The un-normalized coherent states onV are
defined for eachzm(X)PTC as

uexpz&5ebm
† (zm)u0&. ~4.23!

Their overlap is given by

^expzuexpz8&5e^z,z8& ~4.24!

@where the inner product iŝz,z8&5*d4Xzm* (X)z8m(X)] and there exists a measure,ds@z#, such
that

15E uexpz&^expzuds@z#. ~4.25!

~That this measure exists was demonstrated in Ref. 15.! With the aid of this resolution of unity, we
can thus define an integral representation ofV in terms of wave functionals,c@z#:
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uc&5E uexpz&^expzuc&ds@z#5E c@z#uexpz&ds@z#. ~4.26!

Furthermore, we can write a differential representation of a general operator,O on V:

^expzu:O~bm
† ,bm!:uc&5OS zm* ,

d

dzm*
Dc@z#. ~4.27!

Given this last construction, we can now rewrite the constraint operators as follows:

^expzuCluc&5E d4XgmS d

dz* m 2z* mDc@z# ~4.28!

@wheregm(X)5 (2 i /2) l(X) nD1/4nm] and, similarly,

^expzuFluc&5E d4XwmS d

dz* m 2z* mDc@z# ~4.29!

@wherewm(X)5 ( i /2) Pm
n ]nl(X) nD1/4].

So now we can consider the action of the constraints on a general wave functionalc@z#,
finding

eiClc@z#5e2 ~1/2!^g,g&2 i ^z,g&c@z1 ig#, ~4.30!

and, similarly,

eiFlc@z#5e2 ~1/2!^w,w&2 i ^z,w&c@z1 iw#. ~4.31!

We can now explicitly see thatVphys will not be a subspace ofV as we require the subspace to
invariant under the action of the constraints, and are thus essentially looking for solutions
pair of equations

c@z#5c@z1 ig#, ~4.32!

c@z#5c@z1 iw#. ~4.33!

The solutions to these will bec@z'#, wherezm
'(X) are only the transverse components ofzm(x)

defined as

zm
'~X!5S n]m

n]n

nD
2Pm

n D zn~X! ~4.34!

~where n]m is just shorthand forPm
r ]r). However, it is clear that the corresponding wav

functionals, c@z'#, will not be square integrable. To see this, we need only cons
*** uc@z'#u2ds@z'#ds@z0#ds@zi# which will be infinite on account of the contributions from th
integrations over the scalar and longitudinal parts. This leads us to the conclusion that wh
need to do is to construct the physical Hilbert spaceseparatelyso that the wave-functionals
c@z'#, are square-integrable, and then define a suitable mapping fromV to Vphys.

Equipped with what we know from the classical theory, and what we have ascertained
the analysis above, we constructVphys in the usual way—first by positing the algebra

@Am~ f'm!,An~ f 8'n!#50, ~4.35!

@pm~h'm!,pn~h8'n!#50, ~4.36!
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@Am~ f'm!,pn~hn
'!#5 i E d4X dm

n f'm~X!hn
'~X!, ~4.37!

where the smearing functions belong toT R
'5LR

2(R4,d4X) % LR
2(R4,d4X). We then take the com

plexification of this spaceT C
'5T R

'
% T R

' and exponentiate the resulting space to giveVphys

5eT C
'

. We can then write a representation of the transverse fields in terms of the creatio
annihilation operators of this Fock space:

nAm
'~X!5

1

&
nD21/4

„bm
'~X!1bm

'†~X!…, ~4.38!

npm
'~X!52

i

&
nD1/4

„bm
'~X!2bm

'†~X!…, ~4.39!

where

@bm~z'm!,b†n~zn8
'!#5^z',z8'&, ~4.40!

andzm
'(X)5 (1/&) „ nD1/4hm

'(X)1 i nD21/4f m
'(X)….

In direct analogy toV, we can considerVphys in terms of the un-normalized coherent stat
defined by

uexpz'&Vphys
5ebm(zm

')u0&, ~4.41!

and these will admit a resolution of unity:

15E uexpz'&^expz'uds@z'#, ~4.42!

and thus an integral representation foruc&PVphys:

uc&5E c@z'#uexpz'&Vphys
ds@z'#. ~4.43!

We now define a mapping betweenV andVphys:

L:V→Vphys,

uexpz&V °L~ uexpz&V)[uexpz'&Vphys
, ~4.44!

whereuexpz'&Vphys
is defined as in Eq.~4.41!. We define the~continuous! dual mapping:

L†:Vphys* →V* ~4.45!

by

V phyŝ
expz'uL†uexpw&V5V phyŝ

expz'uLuexpw&V . ~4.46!

We can now use these maps~and the fact that, due to the Riesz Lemma~see, e.g., Ref. 24!, there
is an isomorphism between a Hilbert space,H, and the space of continuous linear functionals,H* ,
from H to C! to relate objects onVphys to objects onV:

bVphys
5LbVL†. ~4.47!
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Having now established the relationship between the ‘‘full’’ Hilbert space,V, and the ‘‘physical’’
Hilbert space,Vphys, we can now turn to the issue of Poincare´ invariance and use Eq.~4.47! to
define the action operator onVphys.

C. The Poincaré groups

In the case of classical histories electromagnetism, we proved the existence of the two
carégroups on the histories phase space,P, and analyzed their ‘‘reduction’’ to the reduced pha
space,P red, by considering their compatibility with the constraints. We demonstrated the
tence of the internal group onP, finding that the algebra closed only weakly, i.e., was o
satisfied on the constraint surface. We then proved the existence of a ‘‘reduced’’ internal Po´
group onP red, with the generators written in terms of the transverse components of the field
also demonstrated the existence of the external Poincare´ on P, but found that the external boos
generator did not commute with the constraints, and thus could not be represented onP red. This,
as we shall see in greater detail in the quantum case below, results from the fact thatP andP red

are foliation dependent, and that the external boost boosts the foliation vector as well. So
now discuss the issue of Poincare´ invariance in the quantum theory.

1. The internal Poincare ´ group

Our starting point for the internal Poincare´ group is~a normal ordered version of! the uncon-
strained Hamiltonian given in Sec. IV A 1 and repeated here:

H5
1

2
:E d4X~pm

'p'm1Am
' nDA'm1pm

i pLm!: . ~4.48!

In terms of the creation and annihilation operators@Eqs.~4.38!–~4.39!#, this reads as

H5E d4XFbm
'† nD1/2b'm2

1

4
„~bm

i
2bm

i†!nD1/2~bim2bi†m!…G . ~4.49!

However, while the transverse part can easily be shown to exist in the usual way, the longit
part does not generate automorphisms which are unitarily implementable on account of th
ence of terms quadratic inbm andbm

† . And so the Hamiltonian does not exist onV as a self-adjoint
operator. Of course, this is no tragedy and we half-expected it anyway as we had already
the classical case that the algebra of the internal group closed only weakly.

What is important is that a representation of the internal group can be found onVphys. This is
straightforward. The generators are taken straight from the classical case, suitably order
then written in terms ofbm

' andbm
'† using Eqs.~4.38!–~4.39!. They are

H̃5E d4Xbm
'† nD1/2b'm, ~4.50!

P̃~m!5 imnE d4Xbm
'† ]nb'm, ~4.51!

J̃~m!5 i emnrsnmmnE d4X~ba
'†Xr ]sb'a1b'†rb's!, ~4.52!

K̃~m!5mnE d4Xbm
'† nD1/4Xn nD1/4b'm, ~4.53!

where we have used an obvious shorthand for operators onVphys @see Eq.~4.47!#, i.e.,

b'm[bVphys

m 5LbV
mL†. ~4.54!
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The analysis of this group is essentially the same as the classical case. We define the Hei
picture fields:

bm
'~X,s!5eisH̃bm

'~X!e2 isH̃, ~4.55!

bm
'†~X,s!5eisH̃bm

'†~X!e2 isH̃. ~4.56!

The Hamiltonian generates transformations in the internal time label ‘‘s, ’’ and the internal boost
mixes the internal time parameter with the spatial coordinates. These transformations all ha
constant ‘‘t ’’ ~where ‘‘t ’’ is the external time parameter!.

2. The external Poincare ´ group

As in the case of the scalar field, one of the novel features of histories theories is the exi
of a second Poincare´ group—the external group—that is associated with the external time la
‘‘ t.’’ Again we start from the classical expressions, suitably ordered:

Pm5..E d4X pn ]mAn : ~4.57!

Mmn5..E d4X@pr~Xm]n2Xn]m!Ar1~pmAn2pnAm!#: ~4.58!

Note that these expressions use the covariant fields defined in Eqs.~4.8!–~4.9!, and thus we write

Pm5 i E d4Xb†n ]mbn , ~4.59!

Mmn5 i E d4X@b†r~Xm]n2Xn]m!br1~b†mbn2b†nbm!#. ~4.60!

As in the classical case, the Liouville operator,V5nmPm, generates translations in the extern
time parameter. And it is the external boost generator,extK(m)5nmmnMmn that is of the most
importance as we can see in its action on foliation dependent objects:

U~L!nAm~X!U~L!215Lm
n LnAn~L21X!, ~4.61!

whereU(L)5eiK (m). The crucial point here is that it generates Lorentz transformations on
foliation vector as well. Let us now analyze this issue in a bit more detail.

Though the set of all coherent states is independent of the foliation vector,nm ~they are
eigenstates of the annihilation operator!, the definition of them in terms of the Weyl generato
Eqs. ~4.21!–~4.22! is clearly not. It is thus that the Fock space,V, depends upon the choice o
foliation. Now, as in the case of the scalar field, all the foliation-dependent representations
history algebra exist on the same Fock space,V, and extK(m) relates the objects defined wit
respect to a foliation ‘‘n, ’’ with those same objects defined with respect to the foliation ‘‘Ln. ’’ For
example, underextK(m), the constraint operators will transform

nCk →
extK~m!

LnCk , ~4.62!

nFk →
extK~m!

LnFk . ~4.63!

Now the mapL from V to Vphys is also evidentlyn-dependent and thusVphys also depends on the
choice of foliation used to defineV. However, whereas all foliation-dependent representations
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exist onV ~and we can thus talk about transformations between them!, the physical Hilbert spaces
nVphys andLnVphys ~where, we trust, the point of the added superscript is self-evident!, are clearly
different. This is why there will be no representation ofextK(m) on Vphys. Mathematically~and
analogously to the classical case! this situation is represented by the fact that the external b
does not~weakly! commute with either of the constraints.

Of course, we can still relate the important quantities onnVphyssuch as the action,nS, to those
same quantities onLnVphysvia the prescription given at the end of Sec. IV B, i.e., by mapping b
to V, boosting there, and then mapping toLnVphys.

The other generators will be represented onVphys, we just make use of Eq.~4.47! to define
them. The most important of these is the Liouville operator, and this will be defined on
physical Hilbert space as

Ṽ5 i E d4Xbn
'† nm]mb'n. ~4.64!

This will generate time transformations in the external time label, ‘‘t, ’’ on the physical Hilbert
space. We thus arrive, using Eqs.~4.50! and~4.64!, at the definition of the action operator on th
physical Hilbert space:

S̃5Ṽ2H̃. ~4.65!

V. CONCLUSION

Our aim in this paper has been to construct a histories theory of Electromagnetism work
the HPO consistent histories framework. As a vector field theory with two first class constr
we have built on the work of Savvidou1 on scalar field theory, as well as demonstrating
application of the constrained systems algorithm developed by Savvidou and Anastopoulo3

Classically, we defined the histories phase space and the two Poincare´ groups that are a featur
of histories field theories. The constraints partition the constraint surface~and indeed the whole
phase space! into orbits, and by defining coordinates that are constant on each orbit, we defin
reduced phase space that carries the physical degrees of freedom of the theory. We stre
importance of the foliation dependence of the phase space~and thus the reduced phase spa!
focusing particularly on the action of the external boost generator which transforms be
different foliations.

Quantizing within the Dirac scheme, we first constructed the Hilbert space of the un
strained theory~V!, motivated by finding a suitable representation of the History algebra. We
defined the constraints as operators, and, making use of the technology of coherent states
to define the physical Hilbert space (Vphys). As the constraints have continuous spectra, this w
not going to be a true linear subspace of the full Hilbert space. We got around this iss
analyzingV in terms of coherent states, which led to a definition ofVphys in terms of just the
transverse components of the vector field and their conjugate momenta~or, more strictly, the space
of test functions!. We then defined a suitable mapping fromV to Vphys and used this to define th
action operator onVphys.
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We consider the existence in arbitrary finite dimensionsd of a positive operator
valued measure~POVM! comprised ofd2 rank-one operators all of whose operator
inner products are equal. Such a set is called a ‘‘symmetric, informationally com-
plete’’ POVM ~SIC–POVM! and is equivalent to a set ofd2 equiangular lines in
Cd. SIC–POVMs are relevant for quantum state tomography, quantum cryptogra-
phy, and foundational issues in quantum mechanics. We construct SIC–POVMs in
dimensions two, three, and four. We further conjecture that a particular kind of
group-covariant SIC–POVM exists in arbitrary dimensions, providing numerical
results up to dimension 45 to bolster this claim. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1737053#

I. INTRODUCTION

In quantum theory, measurements are represented bypositive operator valued measure
~POVMs!. A POVM is termedinformationally completeif its statistics determine completely th
quantum state on which the measurement is carried out.2,4,20,21In order to be maximally efficient
at determining the state, such a measurement should also berank-one; i.e., the measuremen
operators orPOVM elementsshould be positive multiples of projectors onto pure states, in wh
case each POVM element corresponds uniquely~up to a phase! to a subnormalized vector inCd.
A particularly appealing and potentially useful measurement is one which issymmetric, meaning
all pairwise inner products between the POVM elements are equal. Such a POVM is a ‘‘sym
ric, informationally complete positive operator-valued measure,’’ or SIC–POVM for short. Th
of vectors comprising a SIC–POVM has also been studied in a very different context, where
a different name: it is a set ofd 2 equiangular lines inCd, first studied by Lemmens and Seidel19

and subsequently by many others.5–7,11,16–18,22,24In quantum information theory such measur
ments are relevant to quantum state tomography,3 quantum cryptography,9 and to foundational
studies8 where they would make for a particularly interesting ‘‘standard quantum measurem
The outstanding question we address in this paper is whether SIC–POVMs exist in any
dimension.

We conjecture that SIC–POVMs exist in all finite dimensions and, moreover, that there
in all finite dimensions a SIC–POVM that is covariant under a standard representationZd

3Zd . To state the conjecture, let us formalize the definition of a SIC–POVM. The sim
definition is that a SIC–POVMP is a set ofd 2 normalized vectorsufk& in Cd satisfying

u^f j ufk&u25
1

d11
, j Þk. ~1!
21710022-2488/2004/45(6)/2171/10/$22.00 © 2004 American Institute of Physics
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More precisely, the POVM elements ofP are the subnormalized projectorsufk&^fku/d5Pk /d,
which have pairwise Hilbert–Schmidt inner product (P j ,Pk)/d

25Tr@P j
†Pk#/d

251/d 2(d11)
for j Þk. It turns out that the other properties of a SIC–POVM, i.e., completeness and info
tional completeness, follow from Eq.~1!, as we show in Sec. II.

We can now state our conjecture.
Conjecture 1: For any dimension dPN, let $uk&%k50

d21 be an orthonormal basis forCd, and
define

v5exp~2p i /d!, D jk5v jk/2(
m50

d21

v jmuk% m&^mu , ~2!

where % denotes addition modulo d. Then there exists a normalizeduf&PCd such that the set
$D jkuf&% j ,k51

d is a SIC–POVM P.
Analytic solutions are known ford52,3,8,16 and to this list we addd54. Additionally,

computer calculations reveal numerical solutions~with an accuracy better than 1 part in 108) in
dimensions up to 45, some derived using the aforementioned group, but others using other s
groups. These results are detailed herein according to the following plan. Section II stat
problem in the language of frame theory and derives a connection to the problem of fi
spherical t-designs. Section III specializes to the group-covariant case and explains wh
conjecture might be generally true. Section IV presents our analytic solutions ford52,3,4, and
Sec. V the method of obtaining the numerical results. Finally, in Sec. VI we discuss po
approaches to a general proof, as well as related open questions.

II. FRAMES AND SPHERICAL t -DESIGNS

The concepts of frame theory provide a simple and elegant means of putting our prob
a general setting, for a SIC–POVM is a particular kind of frame. Frames are a generalizat
basis sets, with the requirements of orthogonality and normalization relaxed. For a
dimensional vector spaceH, a collection of vectorsuck&PH is a frame if there exist constant
0,a<b,` such that

a^juj&<(
k

u^juck&u2<b^juj& ~3!

for all uj&PH. Any collection of vectors is a frame in the subspace spanned by the vectors
constantsa andb are called theframe bounds, and ifa5b, the frame is said to betight. Theframe
operator is the positive operator

S5(
k

uck&^cku. ~4!

It should be immediately clear that for a tight frameS5aI. This tight-frame condition is equiva
lent to the completeness condition for the corresponding POVM elementsuck&^cku/a, and thus
rank-one POVMs and tight frames are the same mathematical object.

Now let Sd,Cd be the subset consisting of vectors that have unit norm. Any frame ca
rewritten in terms of the corresponding normalized vectors, but tightness is not preserved
this transformation. For a frame$uck&PSd%k51

n made up of normalized vectors, the quantity

Tr@S2#5(
j ,k

u^c j uck&u2 ~5!

is called theframe potential. We consider only frames made up of normalized vectors through
the following.

A useful theorem due to Benedetto and Fickus1 states the following.
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Theorem 1 „Benedetto–Fickus…: Given any d and n, let $uck&PSd%k51
n be a set of normal-

ized vectors with frame operator S. Then

Tr@S2#>max~n,n2/d !. ~6!

Furthermore, the bound is achieved if and only if$uck&% consists of orthonormal vectors, whe
n<d, or is a tight frame, when n>d.

Proof: The proof is so simple that we can include it here for completeness. Denotin
ordered eigenvalues ofS by l1>l2>¯>ld , we first note that the number of nonzero eige
values is at mostq5min(n,d ). Thus we have

Tr@S#5n5 (
k51

q

lk and Tr@S2#5 (
k51

q

lk
2. ~7!

Minimizing Tr@S2# subject to the constraint Tr@S#5n gives the inequality. Equality holds if an
only if lk5n/q, k51,...,q. Thus for n<d, S is a projector onto ann-dimensional subspace
implying that the vectorsuck& are orthogonal, and ifn>d, S5(n/d)I , implying that the set
$uck&% is a tight frame. h

Since the frame potential ofP is Tr@S2#5d 35n2/d, the theorem establishes immediately th
P is a tight frame, henceP is also a POVM.

For P to be informationally complete, thed 2 operatorsPk5ufk&^fku must be linearly inde-
pendent so that they span the space of operators. The linear independence follows from
ering the rank of their Gram matrix (P j ,Pk)5Tr@P j

†Pk#5(dd jk11)/(d11), which being cir-
culant ~each row is a cyclic shift of the previous row!, has eigenvalues given by the Fouri
transform of one of the rows. A simple calculation reveals that due to the combination of co
term and Kronecker delta, the eigenvalues are exactly the same as the values in any row. S
eigenvalues are zero, the Gram matrix has full rank, the projection operatorsPk are linearly
independent, andP is informationally complete.

Since every rank-one POVM is a tight frame, a SIC–POVMP is clearly something more. To
fully elucidate the properties and applications ofP, we need to introducespherical t-designs.
Building on the result of Benedetto and Fickus, we can establish a connection between fram
sphericalt-designs applicable to the SIC–POVM problem.

A spherical t-designis a set ofn normalized vectors$ufk&PSd% such that the average valu
of any tth order polynomialf t(c) over the set$ufk&% is equal to the average off t(c) over all
normalized vectorsuc&. Note that if a set is at-design, it is also ans-design for alls<t, since an
sth order polynomial is also atth order polynomial. Sphericalt-designs were originally develope
as subsets of the real sphereSd; here we apply the concept to the setSd.

Let H5Cd, Ht be thet-fold tensor product of such spaces, andSt be the symmetric subspac
of Ht , and consider a functionf t :H→C defined as

f t~c!5^C tuFtuC t&, uC t&5uc& ^ t, uc&PH, ~8!

where the choice off t is equivalent to a choice of a symmetric operatorFtPB(St). Such a
function is atth order polynomial function onH. We can decomposeFt into a sum of product
operators, i.e.,Ft5(k^ j 51

t Aj ;k ; thus any such function can be decomposed into monomial te
like

^C tu ^

j 51

t

Aj uC t&5)
j 51

t

^cuAj uc&. ~9!

Without loss of generality, we can restrict our attention to such monomial functions and re
them as
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f t~c!5)
j 51

t

Tr@Aj uc&^cu#5TrF S ^

j 51

t

Aj DPc
^ tG , Pc5uc&^cu. ~10!

Since the set$ufk&% is a t-design if and only if the average of anyf t over $ufk&% is equal to
its average over alluc&PSd, we are led to compute the average of an arbitrary monomial te

^ f t&5E dc TrF S ^

j 51

t

Aj DPc
^ tG5TrF S ^

j 51

t

Aj D E dc Pc
^ tG5TrF S ^

j 51

t

Aj DKtG . ~11!

Hence we focus on findingKt , since it effectively takes the average off t . A sphericalt-design is
then a set of vectors for which

St5 (
k51

n

uFk
t &^Fk

t u5nKt , uFk
t &5ufk&

^ t. ~12!

Note thatSt is the t-fold tensor-product analog of the frame operatorS.
To find the operatorKt , note thatKt has support only on the symmetric subspaceSt . Further,

becauseKt is invariant under anyU ^ t for UPSU(d), we conclude thatKt}Psym, the projector
ontoSt . ~Recall thatSt is an irreducible invariant subspace of the group consisting of the op
tors U ^ t.) Finally, to determine the constant of proportionality, we consider the average o
trivial function f t(c)51. Equation~11! then becomes Tr@Kt#51, and sinceSt has dimension
( d21

t1d21), we have

Kt5
t! ~d21!!

~ t1d21!!
Psym. ~13!

For t51, we see that a 1-design is a tight frame made up of normalized vectors and, henc
a POVM made up of equally weighted rank-one projectors.

Equation~12! now says that the set$ufk&% is a t-design if and only if the set$uFk
t &% is a tight

frame onSt , whence we can apply Theorem 1 to obtain the following result.
Theorem 2: A set of normalized vectors$ufk&PSd%k51

n with n>( d21
t1d21) forms a spherical

t-design if and only if

Tr@St
2#5(

j ,k
u^f j ufk&u2t5

n2t! ~d21!!

~ t1d21!!
. ~14!

Furthermore, this value is the global minimum ofTr@St
2#.

This theorem links the sphericalt-design property with the minimization of thetth frame
potential, Tr@St

2#. Immediately we can infer that every SIC–POVM is a 2-design since Tr@S2
2#

5( j ,ku^f j ufk&u452d3/(d11), the required value for a 2-design. The converse is also t
namely, every 2-design withn5d2 elements is a SIC–POVM. To show this, letl jk

5u^f j ufk&u2, j Þk, and interpret thesel jk as coordinates inRd2(d221). Using the values of the
frame potentials for a 2-design withn5d2 elements, we can write

(
j Þk

l jk5Tr~S2!2d25
d2~d221!

d11
and (

j Þk
l jk

2 5Tr~S2
2!2d25

d2~d221!

~d11!2 . ~15!

The first equation describes a plane and the second a sphere. They intersect at the single
point l jk51/(d11), thus showing that all 2-designs withd2 elements are SIC–POVMs. Thes
considerations make clear that the crucial distinguishing property of a SIC–POVM is that it i
a 2-design. Moreover, this ensures that minimizing the second frame potential, as we do
numerical work reported in Sec. IV, yields vectors that do indeed form a SIC–POVM.
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Furthermore,d2 is the smallest number of elements a 2-design can have, so a SIC–POV
a minimal2-design~see also Ref. 16!. Theorem 2 does not provide the minimum number of sta
nmin , for a t-design ind dimensions, but we can establish lower bounds. For thet52 case,
consider again the steps leading to the definition of the operatorKt . In carrying out the average o
the functionf 2 , we could have written

^ f 2&5TrFA2E dc uc&^cuA1uc&^cu G5Tr@A2G~A1!# ~16!

and thus considered the superoperatorG:B(Cd)→B(Cd). HereG(UAU†)5UG(A)U† for any U
PSU(d), so by Schur’s lemma,G is some linear combination of projectors onto the invaria
subspaces ofU acting onB(Cd). These invariant subspaces are~i! the (d 221)-dimensional
subspace of traceless operators and~ii ! the one-dimensional subspace spanned by the ide
operatorI . Thus we can writeG5aI1bI whereI(A)5A andI (A)5Tr@A#I ~i.e.,I is the identity
superoperator, andI projects onto the identity operator!. To find a and b, we first let A15A2

5I , which gives the functionf 2(c)51, so that Eq.~16! yields d(a1bd)51. Next we consider
A15A25uf&^fu, for which ^ f 2&5*dc u^fuc&u45a1b. We can use Eqs.~11! and~13! to show
that ^ f 2&52/d(d11); combined with the previous result, this impliesa5b51/d(d11). There-
fore, G has no null subspace, must be rank-d 2, and cannot be constructed from less thand 2

linearly independent rank-one superoperators. Similar arguments can be applied to all sp
t-designs. By similar rearrangements, we can make several different types of operatorsKt8 , and
the rank of each serves as a lower bound on the number of vectors required to comprise at-design.

III. GROUP COVARIANCE

Our results are obtained by considering group-covariant sets, so it is appropriate to spe
to this case. The SIC–POVMP is group covariant if there exists a groupG with a d-dimensional
projective unitary representation$Ug% such that~i! P is invariant under anyUg , i.e., for any
uf j&PP and anyUg , Uguf j&PP ~up to a phase!, and~ii ! $Ug% acts transitively onP, i.e., for any
uf j&,ufk&PP, there existsUg such thatUguf j&5ufk& ~also up to a phase!. Assuming group
covariance simplifies the search for SIC–POVMs. We simply search for a fiducial vector suc
P5$Uguf&% is a SIC–POVM~note that the transitivity property implies that the order ofG must
be at leastd 2). To do this, we use groups such that$Uguf&% is a 1-design, i.e., a POVM, for an
normalized vectoruf&, and then we search for a particular vectoruf& such thatu^fuUguf&u2

51/(d11) for all gÞe. All other inner products are then guaranteed to have this value due t
group action.

We suspect the case of group covariance to be general for the following reason. Consi
map a:Sd→B(Cd) that takes a normalized vector to the corresponding projector, i.e.,a(uf j&)
5uf j&^f j u. Now consider the operators

s j5A d

d21 S uf j&^f j u2
I

dD . ~17!

Being both traceless and Hermitian, these operators lie in a subspace ofB(Cd) that is isomorphic
to Rd221; indeed, since (s j ,s j )51, they all lie on the unit sphere inRd 221. This sphere is a
generalization of the Bloch sphere for two-dimensional systems, the difference being thatd
.2, not all operators on the sphere are images of vectors inSd under the mapa. From the
SIC–POVM condition~1!, one finds immediately that

~s j ,sk!52
1

d 221
; j Þk. ~18!

This is the condition for thed 2 operators$s j% to form a regular simplex inRd 221, whose
automorphism group is the permutation groupSd2. Given this result, some group covarian
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seems natural. One is tempted to think that from here it is a simple matter to establis
existence of the setP. This is not the case, however, as working in the operator space obscur
very difficult task of determining when a given operator is the image of some element ofSd under
the mapa. In the same vein, most of the elements of the permutation group cannot be repre
in this framework as unitary transformations ofCd; thus, while we know that anyG satisfying the
conditions above must be a subgroup ofSd2, it is not obvious which subgroups are candidate

The outstanding choice forG is the groupZd3Zd , as described in the conjecture. We note
passing that using this group to find a SIC–POVM makesP a Gabor or Weyl–Heisenberg frame
this being the definition of such a frame;10 such a SIC–POVMP is useful in defining finite-
dimensional analogs of the familiarP andQ quasidistributions of infinite dimensions. The group
usefulness here stems from the fact that, for any normalizeduc&PSd,

Sc5(
jk

D jkuc&^cuD jk
† 5dI, ~19!

a fact readily checked by direct calculation.
The property in Eq.~19! of producing a 1-design for any input state is quite general.

following argument is adapted from Proposition 3 of Ref. 23. Any set ofd 2 orthogonal unitary
operatorsTj , thus satisfying Tr@Tj

†Tk#5dd jk , is a complete set for expanding operators inB(Cd);
the unitary operators$D jk% are one example of operators that satisfy this orthogonality condi
It is a simple matter to turn the completeness relation into(kTkCTk

†5d Tr@C#I for any operator
C. Simply consider the inner product of two arbitrary operatorsA and B. The completeness
relation means that

~A,B!5
1

d (
k

~A,Tk!~Tk ,B!. ~20!

SettingA5uf1&^f2u andB5uc1&^c2u @which we can do without loss of generality because su
outer products spanB(Cd)], we find

^f1uc1&^c2uf2&5
1

d (
k

^f1uTkuf2&^c2uTk
†uc1&, ~21!

from which it follows that(kTkuf2&^c2uTk
†5d ^c2uf2&, whence the result follows.

Thus the property of producing a 1-design regardless of the fiducialuf0& is common to all
groups of sized 2 whose representation operators are a complete, orthogonal set. Such g
were introduced by Knill in connection with quantum error-correcting codes and are called
error bases’’ or unitary error bases.14,15 Klappenecker and Ro¨tteler have kindly detailed all such
nice error bases up to dimension 10, so we can apply them to the problem at hand.12,13,25Only the
nice error bases associated with the groupZd3Zd exist in every dimension, thus accounting f
our focus on this group.

IV. ANALYTIC SIC–POVMS

Here we concentrate specifically on using the groupZd3Zd . Fixing the representation opera
tors D jk of this group we can determine the set of fiducial vectors that under the group a
make a SIC–POVM. From this we can determine also the number of distinct SIC–PO
generated by our fixed representation. In three dimensions there are an uncountably infinit
ber of such covariant SIC–POVMs, but in two dimensions there are just two, and in four, 1
write the fiducial state as
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uf&5(
k

r ke
iukuk&, ~22!

where we can, of course, immediately chooseu050.

A. dÄ2

The two solutions, represented as column vectors in the standard basis, are

H 1

A6
S A31)

eip/4A32) D ,
1

A6
S 2A32)

eip/4A31) D J . ~23!

These have a simple interpretation on the Bloch sphere, where the nontrivial group operat
simply rotations byp about thex, y, andz axes, respectively. Then the Bloch vectors of the t
fiducial states are6(1,1,1)/), and the two SIC–POVM states thus formed are regular tetrahe
each one related to the other by inversion of the Bloch vectors.

B. dÄ3

For r 0 satisfying 1/&,r 0,A2/3, define

r 6~r 0!5 1
2 r 06 1

2A223r 0
2. ~24!

Hence 0,r 2<1/A6<r 1,1/&,r 0<A2/3. The complete set of fiducial states, represented
column vectors in the standard basis, is then

H S r 0

r 1eiu1

r 2eiu2
D ,S plus all vectors formed

by permuting of elementsDU u1 ,u2PH p

3
,p,

5p

3 J ,
1

&
,r 0<A2

3J
øH S 1/&

eiu1/&
0

D ,S plus all vectors formed
by permuting of elementsDU 0<u1,2pJ . ~25!

C. dÄ4

Now let

r 05
121/A5

2A22&
, r 15~&21!r 0 , r 65 1

2
A111/A56A1/511/A5, ~26!

along with

a5arccos
2

A51A5
, b5arcsin

2

A5
, ~27!

and define the set

V[$~~21!m~a/21b/4!1p~m12n17 j 11!/4 , p~2k11!/2 , ~21!m~2a/21b/4!

1p~m12n13 j 14k11!/4!u j ,k,m50,1 and n50, . . . ,3%. ~28!

The complete set of fiducial states, represented as column vectors in the standard basis,
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H S r 0

r 1eiu1

r 1eiu1

r 2eiu2

D ,S r 0

r 2eiu2

r 1eiu1

r 1eiu1

D ,S plus all vectors formed
by cycling of elementsDU ~u1 ,u1 ,u2!PVJ . ~29!

V. NUMERICAL SIC–POVMS

Because analytic solutions to the SIC–POVM condition~1! are so few, our conjectures ar
based almost entirely on numerical evidence~even thed54 solution was originally inspired by
close examination of numerical solutions!. To find numerical instances ofP, we simply minimize
the second frame potential Tr@S2

2# over sets ofd 2 normalized vectors generated by a represen
tion of Zd3Zd from a vectoruf&. It is also possible to vary independently thed 2 elements ofP,
but this is much less efficient; taking advantage of the group-covariance conjecture permit
search a space ofO(d) complex parameters instead ofO(d 3) complex parameters.

The quantity that we minimize,( j ,ku^fuD jkuf&u4, is proportional to the frame potential be
cause of the group covariance. Since it is a quartic function ofuf&, we have to use numerica
methods to minimize it, using either Mathematica~simpler! or C11 ~much faster!. The method
used is an adaptive conjugate gradient method; this has the advantage of converging with
nential rapidity to a local minimum, but the disadvantage of being insensitive to global condi
As a result, the most time-intensive portion of the computation by far is identifying one o
global minima among the many local minima.

Once the correct minimum is located, we quickly obtainP such that Eq.~1! is satisfied to an
accuracy of 1028. The sole exception to this rule isd53 ~where an exact analytic solution i
known!: in d53 there exists a continuously infinite family of solutions, and this degene
makes numerical solution difficult. For every dimension betweend55 andd545, however, we
have foundZd3Zd-covariant solutions to within machine precision.26

Additionally, in small dimensions, one can attempt an exhaustive search forall possibleZd

3Zd-covariant SIC–POVMs, by simply running the minimization many times with differ
presumptive fiducial states, tabulating all the while the distinct SIC–POVM fiducial states fo
Table I lists the results for the number of distinct SIC–POVMs.

Finally, we have tested some of the other nice error bases tabulated by Klappeneck
Rötteler. These are also easy handled, and although not all groups were tested, at least fou
were found to generate SIC–POVM sets. In the notation of the library of small groups us
GAP3, GAP4, and MAGMA, these groups are G~36,11!, G~36,14!, G~64,8!, and G~81,9!. Each of
these solutions has an accuracy of 10215 in the individual vector inner products. Perhaps surp
ingly, many of the tabulated groups do not seem to yield group-covariant SIC–POVMs.

VI. ODDS AND ENDS

A rigorous proof of existence of SIC–POVMs in all finite dimensions seems tantalizi
close, yet remains somehow distant. Although the numerical evidence makes very clear t
evance of the groupZd3Zd , this is not definitively established. Given the apparent importanc

TABLE I. Number of SIC–POVM sets generated by a fixed representation
of the groupZd3Zd in dimensions 2 through 7. The infinity in dimension 3
is uncountable.

d #~SIC–POVMs!

2 2
3 `
4 16
5 80
6 96
7 336
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Zd3Zd , it would seem to be just a short step to some general form for an operator w
eigenvectors could be a fiducial state, but a proof by this method has not been forthcomin
instance, in three dimensions the Fourier transform operator has an eigenvector that is a
state~the one associated with the eigenvaluei ), but this does not hold in general. In five dime
sions a fiducial vector can be found among the degenerate eigenvectors of a particularZ3 subgroup
of the normalizer ofZd3Zd in SU(d), but there is no such subgroup at all in the normalizer
dimension seven. The group-theoretic structure of SIC–POVMs is exceedingly rich, howeve
ongoing efforts to understand the full automorphism group of a SIC–POVM might yield ins
into operators that yield fiducial states. We hope that by establishing the framework and pro
motivating numerical results in this paper, a proof might be completed.

Finally, regardless of whether their existence can be proved rigorously, SIC–POVMs a
to exist in many dimensions. They might be of use in many areas of quantum inform
theory—signal ensembles, quasidistributions on discrete phase space, error-correcting cod
quantum measurement, just to name a few. In addition, they appear to be connected to a
of interesting mathematical problems, including spherical codes and the putative existe
mutually unbiased bases.
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A method to generate traveling wave solutions of the generalized modified
Kadomtsev–Petviashvili equation is reported and several physical solutions, in-
cluding conditions of their existence, are presented. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1737813#

I. INTRODUCTION

As is well known, the Kadomtsev–Petviashvili equations~KPI, KPII! are universal models for
the propagation of weakly nonlinear dispersive long waves which are essentially one directional,
with weak transverse effects.1 Both KPI and KPII have been solved by the inverse scattering
technique.2 Certain physical problems3,4 motivated the investigation of generalizations of the KP
equations.5 Recently, the (211)-dimensional modified KP equation6

c t2
1
8 ~cxxx26c2cx16cx]x

21cy13]x
21cyy!50 ~1!

was solved by a decomposition procedure.7 The generalized KPI equation

~c t1~cq11!x1cxxx!x2cyy50, qPR , ~2!

used as a model to describe the evolution of sound waves in antiferromagnetics,3 was treated by a
virial method.8

In this article we consider the generalized modified Kadomtsev–Petviashvili equation
~gmKPE!

cxt1~~a1bcq!cqcx!x1ccxxxx2s2cyy50, ~3!

wherea,b,c,q are real constants ands2561.

II. TRAVELING WAVE SOLUTIONS

We look for real traveling wave solutions

c~x,y,t !5g~z!, ~4!

with z5x1ky1vt. The ansatz~4! implies ]x
215k]y

21 and hence Eqs.~1! and ~2! are particular
cases of Eq.~3!, subject to ansatz~4!. Our main purpose is to prove the following theorem.

Theorem: Suppose thatq is real,qÞ0,61/2,61,62 and the parametersa,b,c,k,s,v satisfy
the condition

a2

~q11!~q12!2 >
b~v2k2s2!

2q11
. ~5!
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Then there exists a real and bounded solution of Eq.~3! of the form ~4!. Moreover, for

k2s22v
c

,0 ~6!

this solution is periodic and for

k2s22v
c

>0 ~7!

this solution is solitary wavelike.
Remark 1:The exact solutions from this Theorem can be found in Eqs.~22! and ~23!.
Proof of Theorem:Substitution of Eq.~4! into Eq. ~3! leads to the ODE

~v2k2s21agq1bg2q!gzz1cgzzzz1~agq2112bg2q21!q~gz!
250 ~8!

that can be integrated once to yield

~v2k2s21agq1bg2q!gz1cgzzz5C1 , ~9!

whereC1 is an arbitrary constant. For simplicity we continue withC150. Applying the transfor-
mation

g~z!5 f ~z!1/q, qÞ0 ~10!

and multiplying byf 32 (1/q), Eq. ~9! reads

1

q3 $c~q21!~2q21!~ f z!
323c~q21!q f fzf zz

1q2f 2~~v2k2s21~a1b f ! f ! f z1c fzzz!%50. ~11!

We look for particular real solutionsf (z) of Eq. ~11! that satisfy

R~ f ![~ f z!
25a f 414b f 316g f 214d f 1e. ~12!

As is well known9,10 these solutionsf (z) can be expressed in terms of Weierstrass’ elliptic func-
tion `. The coefficientsa, b, g, d, e in Eq. ~12! have to be determined by the parameters of the
gmKPE.

Equation~12! implies

f zz52a f 316b f 216g f 12d,

f zzz56~g12b f 1a f 2! f z . ~13!

Inserting Eqs.~12! and ~13! into Eq. ~11! and dividing byf z one obtains

1

q3 $~bq21ca~q11!~2q11!! f 41~aq212cb~q11!~q12! ! f 3

1~6cg1vq22k2s2q2! f 212cd~q21!~q22! f 1ce~q21!~2q21!%50 . ~14!

The sought for coefficientsa, b, g, d, e and the parameterq can be determined from Eq.~14!.
Disregarding the caseq50 ~the gmKPE is linear in this case! and excluding first the cases

q56 1
2 ,61,62, ~15!

and setting equal to zero the coefficients off n in Eq. ~14! one obtains
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a52
b•q2

c~q11!~2q11!
, b52

aq2

2c~q11!~q12!
,

g5
q2~k2s22v !

6c
, d5e50, cÞ0. ~16a!

If q is equal to one of the values in~15!, Eq. ~14! yields for q52 1
2

b52
a

6c
, g5

k2s22v
24c

, d5e50, b50, cÞ0, ~16b!

and arbitrarya;
for q521

g5
k2s22v

6c
, d5e50, a5b50, cÞ0, ~16c!

and arbitrarya, b;
for q522

a52
4b

3c
, g5

2~k2s22v !

3c
, d5e50, a50, cÞ0, ~16d!

and arbitraryb;
for q5 1

2

a52
b

12c
, b52

a

30c
, g5

k2s22v
24c

, d50, cÞ0, ~16e!

and arbitrarye;
for q51

a52
b

6c
, b52

a

12c
, g5

k2s22v
6c

, cÞ0, ~16f!

and arbitraryd, e;
for q52

a52
4b

15c
, b52

a

6c
, g5

2~k2s22v !

3c
, e50, cÞ0, ~16g!

and arbitraryd.
Summing up, a subset of traveling wave solutions to Eq.~3! is determined by the ODE~12!

where f (z)5g(z)q. The coefficientsa, b, g, d, e are given by Eqs.~16! relating the coefficients
to the parameters of Eq.~3! (a,b,c,q) and of the ansatz (k,v).

It is known since 1865~Ref. 11! that solutions to Eq.~12! are given by

f ~z!5 f 01

AR~ f 0!
d`~z;g2 ,g3!

dz
1 1

2 R8~ f 0!@`~z;g2 ,g3!2 1
24 R9~ f 0!#1 1

24 R~ f 0!R-~ f 0!

2@`~z;g2 ,g3!2 1
24 R9~ f 0!#22 1

48 R~ f 0!R-8~ f 0!
,

~17!
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where the prime denotes differentiation with respect tof and f 0 is any constant, not necessarily a
zero ofR( f ). The invariantsg2 ,g3 of Weierstrass’ elliptic functioǹ (z;g2 ,g3) are related to the
coefficients ofR( f ) according to12

g2 5 ae24bd13g2, ~18!

g3 5 age12bgd2ad22g32eb2. ~19!

The discriminant@of ` andR ~Ref. 13!#

D5g2
3227g3

2 ~20!

is suitable to classify the behavior off (z). In general,f (z) is periodic.14 If D50, g2>0, g3

<0, f (z) is solitary wavelike and given by15

f ~z! 5 f 01
R8~ f 0!

4Fe12
R9~ f 0!

24
13e1 csch2~A3e1z!G , ~21!

wheree15A3 2g3 and f 0 now is a simple root ofR( f ). In general,f (z) ~according to Eqs.~17!
and~21!! is not real and bounded. Conditions for real and bounded solutionsf (z) can be obtained
by considering the phase diagrams ofR( f ).16

Inspection of Eqs.~16! shows that in most casesd5e50 holds or eitherd or e is zero ande
or d is arbitrary. Thus a large set of solutions of Eq.~12! can be found by choosingd5e50 in
Eqs. ~16! simplifying the evaluation of the phase diagrams considerably. Following the lines of
Ref. 10 real and bounded solutionsf (z) are associated to phase diagrams shown in Fig. 1. The
periodic bounded solutions to Eq.~12! are associated to diagrams~a!, ~e!. Choosingf 0 in Eq. ~17!
as the simple root

f 052
4b1A~4b!2224ag

2a

evaluation of Eq.~17! yields

f ~z!5
2~4b1A~4b!2224ag!~g22`~z;3g2,2g3!!

2~4b225ag1bA~4b!2224ag22a`~z;3g2,2g3!!
, ~22!

subject to 2b223ag>0, g,0. These two inequalities are equivalent to the conditions~5! and
~6!. Thus, a subset of periodic solutionsf (z) of Eq. ~12! compactly is represented by Eq.~22!,
where the coefficientsa, b, g are related to the parametersa,b,c,s2,k,v according to Eqs.
~16a!–~16g!.

Solitary wavelike solutions are represented by phase diagrams~b!, ~c!, ~d!, ~f!, ~g!, ~h! in Fig.
1.

Evaluation of Eq.~21! yields

f 6~z!5

g~64b1A~4b!2224ag!S g22113g2 csch2SA3g3

2
zD D

2S 64b21bA~4b!2224ag7ag~51g!273ag3 csch2SA3g3

2
zD D ~23!
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for diagrams~b! and~f!, where the upper and lower sign corresponds to~b! and~f!, respectively,
and subject toa>0, g.0 and 2b223ag>0. If a,0, g.0, 2b223ag>0 ~diagram~i!! two
solitary wavelike solutionsf 1(z) and f 2(z) exist, represented by Eq.~23!. The conditions for
these two cases are equivalent to the conditions~5! and ~7!.

By taking the limiting case (g→0) of Weierstrass’ elliptic function in Eq.~22!, diagrams~c!,
~g! are associated with

f ~z!5
4b

2a14b2z2 , ~24!

representing algebraic solitary wavelike solutions.
To find the solutions corresponding to diagrams~d!, ~h! of Fig. 1 (a.0,b"0,g5 2b2/3a) we

choosef 052 (b/a) in Eq. ~17! and substitutè (z;g2 ,g3) for the limiting caseD50, g35
2 (8b6/27a3),0 according to17

`~z;g2 ,g3!5A3 2g3S 11
3

sinh2~3A6 2g3z!
D

to obtain the kink solitary wavelike solutions

FIG. 1. Phase diagrams associated to real and bounded solutions ifd5e50.
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f ~z!52
a

g F11tanhS bz

Aa
D G , a.0, b"0. ~25!

Thus we may conclude that this theorem is proved.
Remark 2:The modified Korteweg–de Vries equation~mKdVE!

c t16c2cx1cxxx50

is a particular case of Eq.~3! (q51,a50,b56,c51,k50). Thus the parameters in~16f! are given
by a521,b50,g52 (v/6) andd, e arbitrary. Since we assumed~for simplicity! d5e50 in
deriving Eqs.~22!–~25! these solutions belong to the subset of solutions restricted byd5e50
~e.g., if g51 we obtainf 656A6 sech(A6z) according to Eq.~23!!. In this case all solutions
~with g.0 arbitrary! of the mKdVE exhibit a sech-shape behavior. IfdÞ0,eÞ0 the analysis of
the gmKPE and its relation to the mKdVE seems rather involved.

Remark 3:To evaluate the traveling wave~Weierstrass! solutionsc5 f (x1ky1vt)1/q of Eq.
~3! we have to discriminate between positive and negativeq and between positive and negativef
~cf. Fig. 1!.18 If q is positive andf is positive, real and bounded,c(x1ky1vt) is real and given
by Eqs.~22!–~25! subject to the corresponding constraints~cf. Figs. 1~a!–1~d!, partly ~i!! for the
various triples$a, b, g% according to Eqs.~16!. In this caseq is restricted either by~16e!–~16g! or
by ~16a! with q.0, subject to restrictions fora, b, g so that f is positive~cf. Figs. 1~a!–1~d!,
partly ~i!!.

If f is negative, real and bounded, the restrictions for positiveq are different. In this case the
parameterq must satisfy

q5
1

2m
, mPN. ~26!

Thus, the cases~16f!, ~16g! have to be excluded, the cases~16b!, ~16e! are consistent with~26! if
a, b, g fullfill the constraints forf to be negative~cf. Figs. 1~e!–1~h!, partly ~i!!. These constraints
also must be satisfied in case~16a!. Hence one obtains for this case

a,0, b,0, g<0 or a.0, b.0, g.0S or g5
2b2

3a D or a,0, g.0, ~27!

with

a5
2b

2c~11m!~112m!
, b5

2a

2c~112m!~114m!
, g5

k2s22v
24cm2 , mPN ~28!

as constraints forq5 1/2m, if f , represented by Eqs.~22!–~25!, is negative, real and bounded. If
q is negative,f (z) may be unbounded butf 50 must be excluded forg(z) to be real and bounded.
The conditionf Þ0 is satisfied for a certain interval in~a!, ~e! of Fig. 1. Phase diagram~a! is
associated tof .0 so thatg(z) is real and bounded for negativeq with no further restriction.
Diagram~e! is related tof ,0 leading toq52 (1/2m) ,mPN.

It follows from these remarks and the proof of the Theorem that we proved the following
corollaries.

Corollary 1: Let q521/2 or q522. Assume that in Eq.~3! b50 if q52 1
2 anda50 if q

522, respectively. Assume also that the following condition:

2b223ag>0 ~29!

holds, wherea, b, g satisfy ~16b! and ~16d!, respectively. Then there exists a real and bounded
solution of Eq.~3! of the form~4! and this solution is periodic if condition~6! holds and solitary
wavelike if condition~7! is valid.
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Corollary 2: Let q51/2,q51 or q52. Assume that inequality~29! is satisfied and the con-
ditions

D50, g2>0, g3<0 ~30!

hold, wherea, b, g, d, e are given by~16e!, ~16f!, and ~16g!, respectively. Then there exists a
solitary wavelike solution of Eq.~3! of the form~4! which is real and bounded. If the conditions
~30! are not satisfied, then Eq.~3! has a periodic solution of the form~4! which is also real and
bounded.

Remark 4:If q521, we have to assume, in order to use the method, thata50 andb50 ~cf.
~16c!!. In this case Eq.~8! will be linear with constant coefficients~corresponding toq50 in Eq.
~3!! and can be solved by standard methods.

III. SUMMARY

We have shown that via an ansatzc(x,y,t)5g(z)5( f (z))1/q, z5x1ky1vt, and subject to
the nonlinear ordinary differential equation~12! a rather large set of solutions to the gmKPE can
be obtained. Periodic and solitary wave solutions can be presented in compact form in terms of
Weierstrass’ elliptic functions and its limiting cases (D50, g3<0), respectively. A phase diagram
analysis~cf. Fig. 1! yields conditions for the existence of real bounded solutions and conditions for
the parameters$a,b,c,s2,k,v,q% of the gmKPE.
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A grading of a Lie algebra is called fine if it cannot be further refined. Fine gradings
provide basic information about the structure of the algebra. There are six fine
gradings of the semisimple Lie algebra of typeA13A1 over the complex number
field. An explicit description of all the fine gradings ofA13A1 is given in terms of
the four-dimensional representationo(4,C) of the algebra. ©2004 American In-
stitute of Physics.@DOI: 10.1063/1.1737054#

I. INTRODUCTION

This paper is the fourth one in a series,1–3 containing description of maximal gradings, i.e
gradings not refinable any further, for simple/semisimple Lie algebras of particular types.

The algebraD25o(4,C) is exceptional among the classical Lie algebras by the fact that
not simple. It is semisimple and consists of two idealsA1 . This widens its group of automor
phisms, and thus the number of its fine gradings is bigger than one would expect for an alge
dimension 6. Compare that, e.g.,B25C2 of dimension 10 has three fine gradings,A2 of dimension
8 has four fine gradings,A35D3 of dimension 15 has eight fine gradings. All the fine gradings
the three cases mentioned—A2 , B25C2 , andA35D3—are found in Refs. 1–3. The fine grading
of sl(3,C) ~i.e., A2) and of its real forms are found in Ref. 1, in Ref. 2 there are the fine grad
of sp(4,C), o(5,C), and of their real forms~i.e., C25B2). Finally, in Ref. 3 the fine gradings o
sl(4,C) ando(6,C) ~i.e., A35D3) are given.

The nonsimplicity ofo(4,C) also implies the rich structures of fine gradings of real form
Existence of an automorphism that permutes the two idealssl(2,C) determines which of the fine
gradings ofo(4,C) appear in the real forms ofo(4,C). In principle, one could study the fin
gradings of real forms independently of the complex algebra. However, the gradings of real
are naturally related to the gradings of the complex algebra. For simplicity of the presentati
have chosen to describe the fine gradings of the real forms separately in the forthcoming pap
us point out that the number of fine gradings of the real forms varies between two on the rea
o(4) and six on the real formo(2,2).

The algebraD2 has two nonequivalent representations of dimension 4. One of them is o
typeo(4,C)5$XPC434u XK1KXT50%, whereK5KT, detKÞ0. Often one putsK5I 4 , and then
the algebra is represented by matrices that are skew symmetric with respect to transpositi

The second representation of dimension 4 is reducible. It decomposes into two irred
ones of dimension 2 each. In each of them one of the ideals is represented trivially. In terms
highest weights of the representations one has the representation(1)(0)1(0)(1), while the first
case is irreducible with the highest weight~1!~1!. The reducible representation can be written

a!Electronic mail: patera@crm.umontreal.ca
b!Electronic mail: pelantova@km1.fjfi.cvut.cz
c!Electronic mail: svobodov@km1.fjfi.cvut.cz
21880022-2488/2004/45(6)/2188/11/$22.00 © 2004 American Institute of Physics
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H S A 0

0 BD U A,BPC232,tr A5tr B50J .

Isomorphic gradings in these different representations look different. Moreover, the red
representation admits a symplectic invariant form so that it can be viewed as representi
subalgebra of typesl(2,C)1sl(2,C) of sp(4,C).

II. PRELIMINARIES

A. Basic terminology

For motivation and for general comments concerning our undertaking, we refer the rea
Refs. 2 and 3. Here we confine ourselves to our immediate task, namely the fine gradi
o(4,C). A fine gradingG of a Lie algebraL is a decomposition ofL into a direct sum of subspace
0ÞL j,L, j PJ,

G:L5 %
j PJ

L j , ~1!

such that for each pairj ,k of indices from the index setJ the commutator fulfills

@L j ,Lk#,Ll ~2!

for somel PJ. With suitable choice of the index setJ, we are able to ensure that the indexl from
~2! turns into@L j ,Lk#,L j 1k for @L j ,Lk#Þ0. In order to do so we embed the index setJ into an
additive commutative group. The indicesj PJ can be multicomponent ones. We use here fr
one up to four components.

A fine grading cannot be further refined while remaining a grading: it decomposes th
algebra into a maximal number of subspaces. Particularly interesting are the gradings
decompose the algebra into the sum of one-dimensional subspaces. Indeed, they provide
which is convenient to work with. A graded basis reflects structural properties of the Lie al
such as the simplicity of commutation relations of the generators.

Fine gradings have a special position among all the gradings. That is because out of t
gradings one can derive all gradings of the algebra, namely by ‘‘coarsening’’ the fine grading
merging some of the grading subspaces. However, it is a rather complicated process and c
the result is only known for Lie algebras of rank 2.

GradingsG1 :L5 % j PIL j andG2 :L5 % mPJKm of the Lie algebraL are equivalent when

~i! uIu5uJu and
~ii ! there exist an automorphismh on L and a bijectionp:I→J fulfilling the propertyh(L j )

5Kp( j ) for all j PI. Equivalence of the gradingsG1 andG2 is denoted byG1>G2 .

The Lie algebrao(4,C) is a direct sum of twosl(2,C) algebras. Thus some of the fine gradin
of o(4,C) arise from fine gradings ofsl(2,C). Therefore it is logical to begin by description of fin
gradings of the Lie algebrasl(2,C).

B. Fine gradings of the Lie algebra sl „2,C…

The Lie algebrasl(2,C) consists of 232 matrices with zero trace, i.e.,

sl~2,C!5H S a b

c 2aD U a,b,cPCJ . ~3!

Its two fine gradings are notorious. They are also the two types of fine gradings that oc
all the Lie algebras of the typesl(n,C): one is the Cartan~root! grading, the other one is the Pau
grading~studied in Ref. 4!. ~See Table I.!
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It is convenient to present here also the graphs depicting the commutation relations with
gradings. The vertices of the graph stand for the grading subspaces, each of them denote
label of the subspace. It is convenient to visualize a grading as follows. Two vertices are con
by an edge when the two corresponding subspaces do not commute, i.e., their commutat
not equal zero. In that case, necessarily, their commutator must fall into one of the gr
subspaces; its label is given by the grading property~2!. Note that the labels are always chosen
such a way that the label of the commutator of two subspaces is the sum of labels of th
commuted subspaces~using a suitable modulo!. ~See Fig. 1.!

An important use of these graphs is the following:Two fine gradings are equivalent if and
only if their graphs of commutators are equivalent.

Later on, when a fine grading of the Lie algebrao(4,C) is in the form of a direct sum of two
fine gradings ofsl(2,C), the graph related to that grading is purely composed of two approp
graphs.

C. MAD-groups on o „4,C…

When describing fine gradings of a complex simple Lie algebraL we can follow the result
published in Ref. 5~using subgroups of the group AutL of all automorphisms onL).

Theorem 2.1:A decompositionG:L5 % jL j is a fine grading of a simple Lie algebra L ove
an algebraically closed field of characteristic zero if and only if there exists a maximal Ab
subgroupG,Aut L of diagonalizable automorphisms on L (MAD-group) such thatG is a decom-
position of L into simultaneous eigensubspaces Lj of all elements fromG.

But o(4,C)5sl(2,C)3sl(2,C) is not simple, so only one implication in the aforesaid theor
holds, thus that each fine grading ofo(4,C) is a decomposition ofL into simultaneous eigenspace

FIG. 1. These graphs depict commutation relations in the two fine gradings of the Lie algebrasl(2,C): Y1 represents the
Cartan grading andY2 the Pauli grading. When summing the labels in order to obtain the label of the commutator w
mod 3, mod 2,2, respectively, forY1 , Y2 .

TABLE I. The two nonequivalent fine gradings of the Lie algebrasl(2,C);
the index setsJ are embedded into additive groupsZ3 ,Z23Z2 , respectively,
so that they reflect the commutation relations between the grading sub-
spaces.

Cartan grading Pauli grading

Y1 :sl(2,C)5L0% L1% L2 Y2 :sl(2,C)5L01% L10% L11

L05C•S 1 0

0 21
D L015C•S 0 1

21 0
D

L15C•S 0 0

1 0
D L105C•S 1 0

0 21
D

L25C•S 0 1

0 0
D L115C•S 0 1

1 0
D

J,Z3 J,Z23Z2

@L j ,Lk#5L j 1k mod 3 @L jk ,Llm#5L ( j 1 l )(k1m)mod 2,2

for all j ,kPJ, j Þk for all ( j ,k),(l ,m)PJ,( j ,k)Þ( l ,m)
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of all automorphisms from some MAD-group. But there exists a MAD-group in Auto(4,C) which
generates a grading that is not fine.

However, we use this method with the six nonconjugate MAD-groups ono(4,C). Five of
them generate a fine grading ofo(4,C), one of them does not; namely the maximal torus. T
torus generates a grading with one two-dimensional and four one-dimensional subspaces.
theless, the two-dimensional subspace can be split into two one-dimensional subspaces so
obtain a decomposition ofo(4,C) which remains a grading. All the six~nonequivalent! fine
gradings ofo(4,C) consist of six one-dimensional subspaces. With each of the fine grading
provide a graph depicting the commutation relations in the grading. It is obvious from these g
that the six fine gradings are nonequivalent.

In terms of 434 matrices the Lie algebrao(4,C) is expressed as

oK~4,C!5$XPC434u XK1KXT50% ~4!

with KPC434 symmetric (KT5K) and nonsingular. All the representationsoK(4,C) are equiva-
lent, and, having a grading on one of them, we can transfer it onto another representa
o(4,C) by L j̃5AdM L j with a suitable matrixM . We provide our results on the representati
oK(4,C) with

K5S 0 1

21 0D ^ S 0 1

21 0D 5S 0 0 0 1

0 0 21 0

0 21 0 0

1 0 0 0

D ,

which reflects howo(4,C) arises as a product of two Lie algebrassl(2,C):

o~4,C!55 XPC434UXS 0 0 0 1

0 0 21 0

0 21 0 0

1 0 0 0

D 1S 0 0 0 1

0 0 21 0

0 21 0 0

1 0 0 0

D XT506
55 S a b c 0

d e 0 c

f 0 2e b

0 f d 2a

DU a,...,f PC6 , ~5!

~sl~2,C! ^ I !1~ I ^ sl~2,C!!5H S A B

C 2AD ^ I J 1H I ^ S D E

F 2D D J

55 S A1D E B 0

F A2D 0 B

C 0 2A1D E

0 C F 2A2D

DU A,...,FPC6 . ~6!

As well as for each Lie algebra of the typeo(n,C) ~with the exception ofn58), the group
Aut o(4,C) contains only inner automorphisms AdA with APO(4,C),

O~4,C!5$APC434uAKAT5K%.

The inner automorphism AdA acts on elementsXPo(4,C) by AdA(X)5A21XA.
                                                                                                                



in

of all

In this

e.,

2192 J. Math. Phys., Vol. 45, No. 6, June 2004 Patera, Pelantová, and Svobodová

                    
As already mentioned, there are six~nonequivalent! fine gradings ofo(4,C) corresponding to
six ~nonconjugate! MAD-groupsH1 ,...,H6 listed in Table II~derived from Ref. 6!. The symbols
sk , k50,1,2,3, stand for 232 Pauli matrices,

s05S 1 0

0 1D , s15S 0 1

1 0D , s25S 0 1

21 0D , s35S 1 0

0 21D . ~7!

We describe each MAD-groupH by listing out a group of matricesHAd such thatH
5$AdAuAPHAd%.

The three MAD-groupsH1 ,H2 , andH3 contain only such automorphisms AdA , whereA is
a direct sum of two parts,A1^ I and I ^ A2 ~with I ,A1 ,A2PC232). It follows that the three fine
gradingsG1 ,G2 , andG3 generated byH1 ,H2 , andH3 , respectively, have basis elements either
the form X5Y^ I or X5I ^ Y, YPsl(2,C). They arise asG5(Y j ^ I ) % (I ^ Yk), Y j ,Yk being
one of the two fine gradings ofsl(2,C) described in Table I.

The remaining three fine gradingsH4 ,H5 , andH6 do not conserve such a nice structure.

III. THE SIX FINE GRADINGS OF THE LIE ALGEBRA O„4,C…

As explained in Sec. II C, we find the fine gradings as simultaneous eigensubspaces
elements~automorphisms! of a MAD-groupHk . But we never need to use all elements fromHk

when searching for the fine grading, but just a few of them, sometimes even one is enough.
section we provide a list of all the six nonequivalent fine gradings ofo(4,C); not only in terms of
basis elements of the grading subspacesL j , but also in terms of so-called grading labels, i.
indices j PJ such that@L j ,Lk#,L j 1k for all j ,kPJ, @L j ,Lk#Þ0 @as described in~2!#; the index
setJ being a subset of a finite additive group. This embedding ofJ into an additive group is very

TABLE II. The full list of nonconjugate maximal Abelian subgroups of diagonalizable automorphisms~MAD-groups! on
o(4,C): MAD-group H5$AdAuAPHAd %.

HAd

H1 $A5diag(a,a21)^diag(b,b21),a,bPC\$0%%
H2 $A5s j ^ sk , j ,k50,1,2,3%
H3 $A5s j ^ diag(a,a21),aPC\$0%%

H4 5AP56Sa 0 0 0

0 1 0 0

0 0 1 0

0 0 0 a21

D,6Sa 0 0 0

0 0 1 0

0 1 0 0

0 0 0 a21

D6 ,aPC\$0%6
H5 5AP5S«1 0 0 0

0 «2 0 0

0 0 «2 0

0 0 0 «1

D,S«1 0 0 0

0 0 «2 0

0 «2 0 0

0 0 0 «1

D,S 0 0 0 «1

0 «2 0 0

0 0 «2 0

«1 0 0 0

D,S 0 0 0 «1

0 0 «2 0

0 «2 0 0

«1 0 0 0

D6 ,«j5616
H6 5AP56S1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D,6S1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1

D, 6S1 0 0 0

0 0 1 0

0 21 0 0

0 0 0 21

D,6S1 0 0 0

0 0 21 0

0 1 0 0

0 0 0 21

D,

6S0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

D,6S0 0 0 1

0 0 21 0

0 21 0 0

1 0 0 0

D, 6S0 0 0 21

0 21 0 0

0 0 1 0

1 0 0 0

D,6S0 0 0 21

0 1 0 0

0 0 21 0

1 0 0 0

D66
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useful because the indicesj PJ provide the vital information on the structure of the fine gradin
namely the commutation relations.~It can of course occur thatj 1k¹J for somej ,kPJ. In this
case, necessarily,@L j ,Lk#50.)

The additive group into whichJ is embedded is not uniquely defined. However, we use
smallest possible~regarding its order!.

A. Fine gradings of o „4,C… corresponding to the MAD-groups H1 , H2 , and H3

These fine gradings are composed of gradingsY1 andY2 of the algebrasl(2,C) as depicted
in Table III. The graded subspaces ofY1 are labeled by the groupZ3 and the graded subspaces
Y2 are labeled by the groupZ23Z2 . Therefore, the fine gradingG1 is labeled byZ33Z3 , the fine
gradingG2 is labeled byZ23Z23Z23Z2 , and the fine gradingG3 is labeled byZ23Z23Z3 .

The graphs corresponding to the gradingsG1 , G2 , andG3 are formed by two independen
components, each of them representing one of the gradingY i of sl(2,C).

B. G4 , fine grading of o „4,C… corresponding to the MAD-group H4

Now we are coming to the three fine gradings that cannot be expressed as (Y j ^ I ) % (I
^ Yk), Y j ,Yk being fine gradings ofsl(2,C). Instead there are only three pairs of commuti
grading subspaces~i.e., only three zeroes in all the commutations!. ~See Fig. 2.!

The fine gradingG4 is obtained with the use of just one element

AdAPH4 , A5S a 0 0 0

0 0 1 0

0 1 0 0

0 0 0
1

a

D ;

TABLE III. The three fine gradings ofo(4,C) which are purely a compo-
sition of fine gradingsY j of sl(2,C). Y1 is the Cartan~root! grading of
sl(2,C) with indices from the additive groupZ3 , Y2 is the Pauli grading of
sl(2,C) with indices from the additive groupZ23Z2 .

G15(Y1^ I ) % (I ^ Y1) Cartan/root grading
G25(Y2^ I ) % (I ^ Y2)
G35(Y2^ I ) % (I ^ Y1)

FIG. 2. This graph depicts the commutation relations in the fine gradingG4 of o(4,C). The graph is connected and thus th
grading is not a direct sum of gradings ofsl(2,C) as were the cases ofG1 , G2 , andG3 . Commuting two subspaces show
in the graph as summing the respective labels mod 6.
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the eigenvalues corresponding to the eigensubspaces of AdA are listed in Table IV.
The index setJ of indices denoting subspacesL j equals the additive groupZ6 ,

@L j ,Lk#,L j 1k mod 6,

L0 :X15S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21

D , L3 :X45S 0 0 0 0

0 1 0 0

0 0 21 0

0 0 0 0

D ,

L1 :X25S 0 0 0 0

1 0 0 0

1 0 0 0

0 1 1 0

D , L4 :X55S 0 0 0 0

1 0 0 0

21 0 0 0

0 21 1 0

D , ~8!

L2 :X35S 0 1 21 0

0 0 0 21

0 0 0 1

0 0 0 0

D , L5 :X65S 0 1 1 0

0 0 0 1

0 0 0 1

0 0 0 0

D .

C. G5 , fine grading of o „4,C… corresponding to the MAD-group H5

All automorphisms from the MAD-groupH5 have just two possible eigenvalues, namely61.
Thus at least three automorphisms AdAPH5 are needed to splito(4,C) into six one-dimensiona
eigensubspaces. We use the following triplet AdA1

,AdA2
,AdA3

:

A15S 0 0 0 1

0 21 0 0

0 0 21 0

1 0 0 0

D , A25S 0 0 0 1

0 0 21 0

0 21 0 0

1 0 0 0

D , A35S 0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

D .

The relationship between the grading subspacesL j of o(4,C) and these automorphisms can
described as follows:

L jkl5$XPo~4,C!u AdA1
X5~21! jX, AdA2

X5~21!kX, AdA3
X5~21! lX%,

and, clearly, the index setJ is embedded into the additive groupZ23Z23Z2 . ~See Fig. 3.!
Let us continue by providing the list of basis elements of the grading subspaces:

TABLE IV. Eigenvalues of AdA corresponding to eigensubspacesL j , grad-
ing subspaces ofo(4,C) in the fine gradingG4 .

Eigensubspace L0 L1 L2 L3 L4 L5

Eigenvalue 1 a 2a21 21 2a a21
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L001:X15S 0 1 1 0

21 0 0 1

21 0 0 1

0 21 21 0

D , L010:X45S 0 0 0 0

0 1 0 0

0 0 21 0

0 0 0 0

D ,

L100:X25S 0 1 21 0

21 0 0 21

1 0 0 1

0 1 21 0

D , L110:X55S 0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

D , ~9!

L111:X35S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21

D , L011:X65S 0 1 21 0

1 0 0 21

21 0 0 1

0 21 1 0

D .

The commutation relations are expressed with help of the indicesj PJ by

@L jkl ,Lmno#,L ( j 1m)(k1n)( l 1o)mod 2,2,2 for @L jkl ,Lmno#Þ0.

D. G6 , fine grading of o „4,C… corresponding to the MAD-group H6

Finally we have come to the last case, the fine grading generated by the MAD-groupH6 . ~See
Fig. 4.! This MAD-group contains not only automorphisms with eigenvalues61, but also with
complex eigenvalues6 i , so we are able to reach a splitting into six one-dimensional subsp
eigenspaces with the use of two elements AdA1

,AdA2
PH6 only,

A15S 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

D , A25S 1 0 0 0

0 0 1 0

0 21 0 0

0 0 21

D ,

the latter one with complex eigenvalues. The indicesj PJ,Z23Z4 of subspacesL j are set down
in accordance with the eigenvalues by

FIG. 3. This graph depicts the commutation relations in the fine gradingG5 of o(4,C). Commuting two subspaces show
in the graph as summing the respective labels mod 2,2,2.
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L jk5$XPo~4,C!u AdA1
X5~21! jX,AdA2

X5 i kX%.

The list of basis elements ofL j follows:

L10:X15S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21

D , L03:X45S 0 1 i 0

1 0 0 i

i 0 0 1

0 i 1 0

D ,

L12:X25S 0 0 0 0

0 1 0 0

0 0 21 0

0 0 0 0

D , L11:X55S 0 1 2 i 0

21 0 0 2 i

i 0 0 1

0 i 21 0

D , ~10!

L01:X35S 0 1 2 i 0

1 0 0 2 i

2 i 0 0 1

0 2 i 1 0

D , L13:X65S 0 1 i 0

21 0 0 i

2 i 0 0 1

0 2 i 21 0

D .

Commutation relations within this grading are summoned by

@L jk ,Llm#,L ( j 1 l )(k1m)mod 2,4 for @L jk ,Llm#Þ0.

E. Nonequivalence of the six fine gradings G1 ,...,G6

Having two fine gradingsG1 :L5 % j PIL j andG2 :L5 % mPJKm of a Lie algebraL, we callG1

and G2 equivalent when bothuIu5uJu and there exist an automorphismh on L and a bijection
p:I→J fulfilling the property h(L j )5Kp( j ) for all j PI. From the structural point of view
equivalent gradings are the same because the commutation relations are the same. Thus
only interested in nonequivalent fine gradings ofo(4,C).

It is a general rule that ifH1 ,H2,Aut L are Abelian subgroups of diagonalizable autom
phisms on the Lie algebraL andG1 ,G2 gradings ofL generated by subgroupsH1 ,H2 , respec-
tively, then the gradingsG1 and G2 are equivalent if and only if the subgroupsH1 andH2 are

FIG. 4. This graph depicts the commutation relations in the fine gradingG6 of o(4,C). Commuting two subspaces show
in the graph as summing the respective labels mod 2,4.
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conjugate, i.e.,H25h21H1h for some hPAut L. We have six nonconjugate MAD-group
H1 ,...,H6 in Aut o(4,C) ~according to Ref. 6!, and thus our six fine gradingsG1 ,...,G6 are
nonequivalent, since they are generated byH1 ,...,H6 .

But their nonequivalence can also be easily seen from the graphs provided with each
fine gradings, since these graphs reflect directly the commutation relations among the g
subspaces.

Clearly none of the gradingsG1 ,G2 ,G3 is equivalent to any of the gradingsG4 ,G5 ,G6 , just
because of the number of commuting subspaces~one pair of noncommuting subspaces cor
sponds to one edge in the graph!. Nonequivalence of the gradingsG1 ,G2 ,G3 follows from the fact
that they arise as compositions of the fine gradingsY1 ,Y2 of sl(2,C) as described in Table III, and
Y1 is not equivalent toY2 .

Now it remains to show the nonequivalence of gradingsG4 ,G5 ,G6 :

~i! G4 contains a subspaceM5L0 such that@M ,L j #,L j for all the grading subspacesL j ;
G5 ,G6 do not contain such a subspaceM .

~ii ! In G5 there exists a triplet of grading subspaces such that they make up a three-dimen
subalgebra ofo(4,C). In the graph they are represented by vertices 1,3,5. Again, this is
the case ofG6 .

So we have two independent proofs of nonequivalence of our six fine gradingsG1 ,...,G6 .

IV. CONCLUSION

There is indeed a number of applications of the fine gradings described above as w
further questions one may ask related to the gradings of botho(4,C) and its real forms:

~i! One of the motivations for studying the gradings in general is given by the graded
tractions of a concrete algebra, in particular the contraction ofo(4,C) which preserves the
chosen grading. Due to the large number of possible gradings such contraction will
many Lie algebras.

~ii ! The inhomogeneouso(4,C), which is a semidirect product ofo(4,C)qT4 , whereT4 is
Abelian subalgebra of four translations inC4, is complex form of the Poincare Lie algebr
This is one of the most exploited algebras of physics. Knowledge of the fine gradin
o(4,C) enables one to describe all fine gradings of complex Poincare Lie algebra and
representations. Even more interesting would be the contractions of infinite dimen
representations of the Poincare Lie algebra.7,8

~iii ! Let us notice thato(4,C) is a maximal semisimple subalgebra of the exceptional sim
algebraG2 and thus the six fine gradings found foro(4,C) can be extended to fine grading
of G2 .

~iv! It would be interesting to describe also the gradings in terms of representations and fi
eigenspaces of MAD-groups for all the representation spaces.

~v! This work is a basis for study of gradings of the real forms.
~vi! As among the real forms ofo(4,C) is the Lorenz algebrao(3,1), one feels motivated to

study the gradings of the infinite dimensional representation ofo(3,1). Indeed, those are
the representations ofo(3,1) of particular interest in physics applications.

~vii ! It would be useful to know all the gradings ofo(4,C) ~not only the fine ones! and their
hierarchy. There are tens of these gradings because we are dealing with a sem
algebra.

~viii ! Another interesting point to study would be the normalizer of each grading in the gro
automorphisms Auto(4,C). They describe, in particular, the symmetries of the contrac
equations, hence they simplify the process of solving the contraction equations.9

~ix! Unexplored application of the normalizers is their action on the universal enveloping
bra of o(4,C).

~x! It is useful to notice that, because of the embeddingo(4,C),sl(4,C), we obtain from the
eight fine gradings ofsl(4,C) the six fine gradings ofo(4,C).
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~xi! The graphical presentation of the gradings introduced in this paper offers the possibi
study gradings of more complicated Lie algebras in terms of the corresponding grap
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length

E. Brüninga)
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Since there are indications~from string theory and concrete models! that one must
consider relativistic quantum field theories with a fundamental length the question
of a suitable framework for such theories arises. It is immediately evident that
quantum field theory in terms of tempered distributions and even in terms of Fou-
rier hyperfunctions cannot meet the~physical! requirements. We argue that quan-
tum field theory in terms ofultra-hyperfunctionsis a suitable framework. For this
we propose a set of axioms for the fields and for the sequence of vacuum expec-
tation values of the fields, prove their equivalence, and we give a class of models
~analytic, but not entire functions of free fields!. © 2004 American Institute of
Physics. @DOI: 10.1063/1.1737055#

I. INTRODUCTION

Relativistic quantum field theory is defined in terms of a set of conditions for which the
strong physical motivation. These conditions are~1! relativistic covariance,~2! energy momentum
spectrum compatible with the principles of special relativity,~3! existence of a vacuum state, an
~4! completeness of the field. Then there two conditions in which several technical assum
enter:~5! fields as operator-valued generalized functions~what class of generalized functions?!,
~6! uniqueness of the vacuum state. Last, but not least, there is the condition of~7! local commu-
tativity of field operators at spacelike separations.

The first mathematically rigorous realization of all these conditions in one theory is th
Wightman and Ga˚rding1 where fields are defined as operator valued tempered distributions,
powerful characterization of such a theory in terms of the sequence of vacuum expectation
of the fields has been derived. Soon a number of physically important general results~existence of
a PCT operator, connection between spin and statistics, scattering theory, dispersion relatio!
were derived. Furthermore one soon learned that theories with nonunique vacuum state
decomposed into theories with a unique vacuum and one learned that the apparently
condition of local commutativity of field operators at sufficiently large spacelike separa
implies local commutativity at all spacelike separations.~More details are given in the textbook.2!

According to string theory there is a length,.0 such that one cannot distinguish even
which occur in a distance smaller than,. For example, the T-duality of string theory implies th
equivalence of two string theories with toroidal compactification whose radii areR and a8/R.
Therefore, in string theory, the existence of a fundamental length is suggested. In a di
smaller than the fundamental length, the space–time is melted down~see Refs. 3, 4!. Moreover in
string theory there is some discussion about space–time uncertaintyDTDX>,s

2 , which also
suggests the existence of a fundamental length~see Refs. 5, 6!.

a!Electronic mail: bruning@ukzn.ac.za
b!Electronic mail: shigeaki@pm.tokushima-u.ac.jp
21990022-2488/2004/45(6)/2199/33/$22.00 © 2004 American Institute of Physics

                                                                                                                

http://dx.doi.org/10.1063/1.1737055


ntum

e
ts, i.e.,
n

using

t
s in
ation

ener-
to be

s of
func-
able to
high
19. In

ed in
in test

hilov
any

an be
pin-
highly
ngth
exis-
r than

izable

th, a
vide
ed in

ents
rt
as the

unt.

2200 J. Math. Phys., Vol. 45, No. 6, June 2004 E. Brüning and S. Nagamachi

                    
How can we take the existence of a fundamental length into account in a relativistic qua
field theory?

In Wightman’s framework, in terms of the field operatorsA(x), locality is expressed as th
condition that the commutator of the field operators vanishes for spacelike separated poin
by A(x)A(y)2A(y)A(x)50 for all x,yPR4 with (x2y)2,0. Even if one replaces this conditio
by the apparently weaker condition that this commutator vanishes for all pointsx,yPR4 which are
spacelike separated and are in a certain distance of at least,.0 from each other, i.e., (x2y)2

,2,2,0, one can prove that this commutator vanishes for all spacelike separated points by
the other axioms of the theory~see, for instance, Theorem 19.3 of Ref. 7!.

The situation is the same in hyperfunction quantum field theory~see Ref. 8!. The reason is tha
the n-point functionals in both theories are boundary values of holomorphic function
Im(zi112zi)PV1 and as such, distributions and hyperfunctions have the same type of localiz
property, expressed by the fact that both form a sheaf over space–time~see, for instance, Ref. 9!.
Thus, in order to formulate a quantum field theory with a fundamental length, a space of g
alized functions different from both Schwartz distributions and Fourier hyperfunctions has
used.

By a variety of reasons, the problem to formulate relativistic quantum field theory in term
generalized functions which are different from Schwartz distributions and/or Fourier hyper
tions, has been addressed in the past. One of the main physical motivations was to be
describe relativistic quantum field theories not only with polynomial but with exponential
energy behavior. Some prominent articles about this and related problems are Refs. 10–
these articles, roughly, it is argued that the resulting theory is nonlocalizable if it is formulat
terms of generalized functions for which the underlying test-function space does not conta
functions of compact support.

In Refs. 19, 20, QFT is formulated in terms of generalized functions over the Gelfand–S
spaceS0. Such a theory is so singular that the condition of locality cannot be defined in
generalized sense. But instead of it, a condition which is called asymptotic commutativity c
defined. By replacing local commutativity by asymptotic commutativity, PTC theorem, s
statistics relation and the existence of S-matrix are shown. We do not consider these
singular cases, but we consider the quasilocal case, i.e., the theory with a fundamental le,
indicated from string theory. For this theory, PTC theorem, spin-statistics relation and the
tence of S-matrix are valid because the axioms of QFT with a fundamental length is stronge
those of QFT with test-function spaceS0.

In Ref. 21 a different position is proposed by arguing that generalized functions are local
in a natural way as soon as they form a sheaf over space–time~this then allows localizable
relativistic quantum fields which do not admit any test function of compact support, Ref. 21!.

Clearly, in order to formulate a relativistic quantum field theory with a fundamental leng
different type of generalized functions has to be used. The following simple example will pro
some insight into the properties of the class of generalized functions which could be us
theories with fundamental length.

Let $an% be a sequence of real numbers. The support of the distribution( i 50
N and (n)(x) is $0%,

but (n50
` and (n)(x) does not define a distribution unless all except finitely many of the coeffici

an vanish. If limn→`@n!an#1/n50, then(n50
` and (n)(x) converges to a hyperfunction. The suppo

of this limit is the same as the supports of the approximating sums, i.e., the hyperfunction h
support$0%.

Now consider the casean5an/n! and take the underlying space of test functions into acco
If f (z) is a holomorphic function inuIm zu,,, then, foruau,,, we have

K (
n50

`
an

n!
d (n)~x!, f ~x!L 5 (

n50

`
~2a!n

n!
f (n)~0!5 f ~02a!5^d~x1a!, f ~x!&,

that is, as an equation for functionals defined on the function spaceT(T(2,,,)) whose elements
are holomorphic functions inT(2,,,)5R1 i (2,,,),C, the identity
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(
n50

`
an

n!
d (n)~x!5d~x1a!

holds, i.e., the sequence of generalized functionsSN5(n50
N (an/n!) d (n)(x) with support $0%

converges@weakly, in the dual space ofT(T(2,,,))] to the generalized functiond(x1a)
with support $2a%, as N→`. However, if uau.,, then this sequence does not converge
T(T(2,,,))8.

This phenomenon can be understood as follows. Ifuau,,, then elements inT(T(2,,,))8 do
not distinguish between the points$0% and$2a%, but if uau., then elements inT(T(2,,,))8 can
distinguish between the points$0% and$2a%. Sinceuau,, is arbitrary, one can say that elemen
in T(T(2,,,))8 do not distinguish between points which are separated by less than,. Spaces of
functionals with this property have been studied under the name of ultra-hyperfunctions in
22, 23.

In this paper we propose to formulate relativistic quantum field theory with a fundam
length , in terms of tempered ultra-hyperfunctions, i.e., those ultra-hyperfunctions which a
the Fourier transform as an isomorphism of topological vector spaces. To this end we introd
analogy to the test function spaceT(T(2,,,)) of the above example, the test-function spa
T(T(R4)) of tempered ultra-hyperfunctions according to Refs. 22, 23. Section II studies the
properties of this space. Furthermore, the range of the Fourier transform onT(T(R4)) is deter-
mined. It is a space which we callH(Rn;Rn) and which is characterized explicitly as a projecti
limit of Fréchet spaces. This space too is studied in Sec. II.

The following sections contain our proposal of a relativistic quantum field theory with
damental length,.0 in terms of tempered ultra-hyperfunctions. At first it seems impossibl
reconcile the requirements of relativistic covariance with the existence of a fundamental l
Note however that the Poincare´ group acts~smoothly! on the test-function spaceT(T(R4)) and
thus by duality on the fields. The fundamental length is introduced into the theory by the d
guished localization property of ultra-hyperfunctions.

Naturally, the condition of locality~local commutativity! differs considerably from that o
standard quantum field theory. We explain our proposal ofextended local commutativitywhich is
considered to be the counterpart of local commutativity in standard quantum field theory i
steps.

In a first step we have to ensure that, in a quantum field theory with fundamental len,,
field operatorsA(x1) andA(x2) at two distinct pointsx1 andx2 can only be distinguished if the
distance between the two pointsx1 andx2 is greater than,. In the light of our discussion of the
elementary example given above, we propose to express this condition as follows: The fun

T~T~R4!! ^ T~T~R4!!{ f 1^ f 2→~F,A~ f 1!A~ f 2!C! ~1.1!

can be extended continuously toT(T(L,)) in some Lorentz frame, for arbitrary elementsF, C in
the domain of the field operatorsA( f ), where

T~L,!5$~z1 ,z2!PC4•2;uIm z12Im z2u1,,%

and

uxu15ux0u1uxu, uxu5A(
i 51

3

~xi !2. ~1.2!

In a second step we introduce our concept ofextended local commutativitywhich is defined
by the condition that the carrier of the functional onT(T(R4)) ^ T(T(R4))

f 1^ f 2→~F,A~ f 1!A~ f 2!C!2~F,A~ f 2!A~ f 1!C! ~1.3!

is contained in the set
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W,5$~z1 ,z2!PC4•2;z12z2PV,%,

that is, the functional can be extended continuously toT(W,), whereV, is a complex neighbor-
hood of the light coneV as defined in Sec. III.

The localization properties of tempered ultra-hyperfunction are very different from tho
Fourier hyperfunctions and Schwartz distributions, but the spectral condition is not so
different from that of Schwartz distributions because the Fourier transformation of tem
ultra-hyperfunctions are distributions~see Proposition 2.5!. From this condition it follows that
Wn21(z) is holomorphic in a domain

VR,e5ø
i 51

n21

VR,e,i , ~1.4!

where for somee,R.0,

VR,e,i5$zPC4(n21);Im z iPV11~,2e,0!,
~1.5!

Im z jPV11~R,0!, j Þ i %.

In Sec. IV we study the basic properties of the sequence ofn-point functionalsWn in a
relativistic quantum field theory with fundamental length. As a consequence of the defining
ditions we get that the functionWn(z) is analytically continued to~1.4! ~Proposition 4.7!. Wn(z)
is analytically continued to the extended domain which contains real points. This enables
prove, using extended local commutativity, thatWn(z) is a symmetric function on its domain o
holomorphy~Theorem 4.11!.

Having collected all basic properties of the sequence ofn-point functionals we can prove in
Sec. V, that the fields can be reconstructed from the sequence of itsn-point functionals~recon-
struction theorem!.

Obviously one would like to have examples of ultra-hyperfunction quantum fields. In Sec
we use the reconstruction theorem to show that the fieldA(x)5..ef(x)2

:, defined by the free neutra
scalar fieldf(x), satisfies all our axioms of a relativistic quantum field theory with a fundame
length.

Finally, in an Appendix, we prove Theorem 2.13 which guarantees the uniqueness
extensions~1.1! and ~1.3!.

In order to put our results in a proper perspective we conclude the Introduction with a c
of remarks on related research.

Remark 1.1:The type of generalized functions to be used in a relativistic quantum field th
is not givena priori, one must make a choice, in accordance with the physical constraints
would like to incorporate.

In Ref. 14, the test-function spaceS1,l(R4) is used. By this choice,Wn21(z) is analytic in

$zPC4(n21);Im z iPV11&~,,0!%, ~1.6!

where ,51/el and the theory ofA(x)5:ef(x)2
: defined by the free fieldf(x) is excluded

because the Wightman functionWn21(z) of A(x) is analytic only in~1.4!. However with the
choice of the projective limit of these spaces, i.e.,

T~T~R4!!5 lim
0←l

S1,l~R4!,

a theory ofA(x)5..ef(x)2
: can be formulated as we are going to show. The absence of the f

& in ~1.5! is due to the choice of the norm~1.2! instead of Euclidean norm.
Remark 1.2:In 1969 Iofa and Fainberg11 formulated a nonlocalizable quantum field theo

They used the test-function spaceM(R4n) with the seminorms
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if̃ik5 sup
p;m<k

g~kipi2!uDmf̃~p!u,

whereg(t2) is an entire function of first order growth and typer with respect tot, i.e.,

lim
ipi→`

ln g~ ipi2!

ipi 5r.

One can show thatM(R4n) is just the spaceH(R4n;R4n), the space of Fourier transforms of th
test-function spaceT(T(R4n)) of tempered ultra-hyperfunctions~see Remark 2.3!.

The Fourier transformW̃n21(q1 ,...,qn21) of the n-point functionalsWn21(j1 ,...,jn21) of
their theory in the relative coordinates belongs toM(R4(n21)), and the growth ofW̃n21(q) is
rnAkn which depends onn. In Ref. 11, Iofa and Fainberg assume that

lim
n

rnAkn5 ,̃.0. ~1.7!

Then Wn21(z) is again analytic in~1.6! and excludes the theory ofA(x)5..ef(x)2
:. We do not

require condition~1.7! or something equivalent. We think it is too restrictive.
Remark 1.3:As we discussed above, a relativistic quantum field theory with a fundam

length cannot be formulated in terms of generalized functions with standard localization p
ties. Accordingly one faces the problem of how to include the physical condition of quasiloc
or ,-locality of the fields. Above we had indicated that we propose to use a condition of exte
local commutativity.

In Ref. 11, a condition of quasilocality is defined by symmetry of the~analytically continued!
Wightman functions in their domain of holomorphy. In Ref. 14, quasilocality is defined essen
in the same way as our condition of extended local commutativity, i.e., it is defined as a cont
condition of the expectation values of the field commutators in a topology associated
,-neighborhood of the light cone.

Though the formulation of quasilocality seems to be the same, the properties of Wigh
functionals in both theories are different because different types of generalized functions are

Remark 1.4:The important result Theorem 4.11, i.e., the result that extended local comm
tivity implies the symmetry of the analytically continued Wightman functions on their domai
holomorphy or, in the above terminology, quasilocality follows from the standard strategy~see
Refs. 2, 14, 24, 25! by using extended tubesIext

n21(,) and by proving this symmetry first in rea
points in these extended tubesIext

n21(,).
As in Ref. 14 the symmetry of the Wightman functions at these real points of analyticity~Jost

points! is shown first by suitable approximations for sufficiently distant Jost points. For our
of a different type of generalized functions these approximations are done in suitable open
borhoods of explicitly chosen distant Jost points and all necessary estimates are done exp

II. TEMPERED ULTRA-HYPERFUNCTIONS

For any subsetA of Rn, denote byT(A)5Rn1 iA,Cn the tubular set with baseA. For a
convex compact setK of Rn, Tb(T(K)) is, by definition, the space of all continuous functionsf on
T(K) which are holomorphic in the interior ofT(K) and which satisfy

i f iT(K), j5sup$uzpf ~z!u;zPT~K !,upu< j %,`, j 50,1,..., ~2.1!

where p5(p1 ,...,pn) and zp5z1
p1
¯zn

pn . Tb(T(K)) is a Fréchet space with the seminorm
i f iT(K), j . If K1,K2 are two compact convex sets, we have the canonical injection,

Tb~T~K2!!→Tb~T~K1!!. ~2.2!

For a convex open setO in Rn we define
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T~T~O!!5 lim
←

Tb~T~K !!, ~2.3!

whereK runs through the convex compact sets contained inO and the projective limit is taken
following the restriction mappings~2.2!.

Definition 2.1: Atempered ultra-hyperfunctionis by definition a continuous linear functiona
on T(T(Rn)).

The Fourier transformationF is well defined onT(T(Rn)) by the standard formula~2.8!. In
order to determine the range ofF on T(T(Rn)) we introduce another function space.

The gauge functionalhK of a compact convex setK,Rn is defined by

hK~x!5sup$^x,j&;jPK%. ~2.4!

For a convex compact setK of Rn, denote byHb(Rn;K) the space of allC` functions f on Rn

which satisfy, forj 50,1,...,

i f iK, j5sup$exp~hK~x!!uDpf ~x!u;xPRn, upu< j %,`. ~2.5!

Equipped with the system of seminormsi f iK, j , Hb(Rn;K) is a Fréchet space. IfK1,K2 are two
compact convex sets, thenhK1

<hK2
and thus one has the canonical injections:

Hb~Rn;K2!→Hb~Rn;K1!. ~2.6!

For a convex open setO,Rn the spaceH(Rn;O) is the projective limit of the spacesHb(Rn;K)
along the restriction mappings~2.6!, i.e.,

H~Rn;O!5 lim
←

Hb~Rn;K !, ~2.7!

whereK runs through the convex compact sets contained inO.
In order to relate the spaceH(Rn;Rn) to the Schwartz spaceS(Rn) we derive a more direc

characterization ofH(Rn;Rn). Observe that for any convex compact setK,Rn there is a number
k.0 such thatK#@2k,k#n. For the setsK5@2k,k#n the gauge functionhK is easily determined:

hK~x!5sup$^x,j&;jPK%5k(
i 51

n

uxi u,

and the system of continuous norms takes the form, using the notationuxu5( i 51
n uxi u,

i f iK, j5sup$exp~hK~x!!uDpf ~x!u; upu< j , xPRn%5sup$ekuxuuDpf ~x!u; upu< j , xPRn%.

Thus, the spaceH(Rn;Rn) can be defined as the projective limit of the spacesHb(Rn;K) along the
restriction mappings~2.6!, whereK5@2k,k#n, 0,k,`. Accordingly, the spaceH(Rn;Rn) is the
space of allC ` functions onRn which, together with all derivatives, decrease faster than
~linear! exponential. An easy consequence is the following.

Corollary 2.2:

(1) The space H(Rn;Rn) is continuously embedded into the Schwartz spaceS(Rn).
(2) The elements ofS(Rn) are multipliers for the space H(Rn;Rn), and for each gPS(Rn) the

map f°g f is a continuous linear map of H(Rn;Rn) into itself.

Proof: See Refs. 22, 23. h

Remark 2.3:Since

lim
ipi→`

ln g~ ipi2!

ipi 5r,
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it follows that g(t2);ert as utu→`. Therefore the system of norms

if̃ik5sup$g~kixi2!uDpf̃~x!u; xPRn, upu<k%

and

if̃iK, j5sup$exp~hK~x!!uDpf̃~x!u; xPRn, upu< j %

are equivalent. It follows that the spaceM(Rn) of Iofa and Fainberg11 and the spaceH(Rn;Rn)
are the same.

The following theorem collects the basic facts about the spaces introduced above.
Theorem 2.4:For the spaces introduced above the following statements hold, for any co

open set O.

(1) The spaceD(Rn) of all C` functions with compact support is dense in H(Rn;O).
(2) The space H(Rn;Rn) is dense in H(Rn;O).
(3) H(Rm;Rm) ^ H(Rn;Rn) is dense in H(Rm1n;Rm1n).

Proof: For the proof of the first two items we refer to Refs. 22, 23. To prove the last item
a(x)PH(Rm;Rm) @respectively,b(x)PH(Rn;Rn)] such thata(x)51 @respectively,b(x)51]
for uxu,1 anda(x)50 @respectively,b(x)50] for uxu>2. If f PH(Rm1n;Rm1n) then f m(x,y)
5a(x/m)b(y/m) f (x,y) converges tof in H(Rm1n;Rm1n) and f m is the limit of a sequence
$a(x/m)b(y/m)Pk(x,y)%,H(Rm;Rm) ^ H(Rn;Rn) in H(Rm1n;Rm1n). h

Proposition 2.5: The Fourier transformation f° f̃ [Ff ,

f̃ ~p!5~2p!2n/2E
Rn

f ~z!ei ^p,z& dz, ~2.8!

is a topological isomorphism between the spacesT(T(O)) and H(Rn;O), for any open convex
nonempty set O,Rn. The inverse transformation is

f ~z!5F̄ f̃ 5~2p!2n/2E
Rn

f̃ ~p!e2 i ^p,z& dp. ~2.9!

Proof: See Refs. 22, 23. h

Proposition 2.6: Let O,Rn be a nonempty convex open subset. Then the spaces H(Rn;O) and
T(T(O)) are nuclear Fréchet spaces and thus, in particular, reflexive.

Proof: In the case ofO5Rn, Hasumi22 proved this result, and his proof is valid in the gene
case. We sketch it forH(Rn;O). Let K be a convex compact subset ofO. Then the mappingFK

defined byf( f )5exp(hK(x))f(x) is a continuous linear mapping ofH(Rn;O) into the Schwartz
spaceS(Rn). Moreover, if f is C` andfK( f )PS(Rn) for any convex compact subsetK of O then
f PH(Rn;O). HenceH(Rn;O) is the projective limit ofS(Rn) with respect to the mappingsfK .
SinceS(Rn) is nuclear,H(Rn;O) is also nuclear by Proposition 50.1 of Ref. 26. h

Theorem 2.7 ~Corollary of Theorem 34.1 of Ref. 26!: Let E be a Fre´chet space, E1 a
metrizable space, G a locally convex space. Then a separately continuous bilinear map
3E1 into G is continuous.

Theorem 2.8 ~Kernel theorem for ultra-hyperfunctions!: Let M be a separately continuou
multilinear map of@T(T(R4))#n into a Banach space G. Then there is a unique continuous linea
map F ofT(T(R4n)) into G such that, for all fiPT(T(R4)), i 51,...,n,

M ~ f 1 ,...,f n!5F~ f 1^¯^ f n!.

Proof: It follows from Theorem 2.7 thatM is continuous, that is, there exist a constantC and
seminormsi f iT(Ki ), j i of the form ~2.1! such that
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iM ~ f 1 ,...,f n!i<C)
i 51

n

i f i iT(Ki ), j i. ~2.10!

This shows thatM is continuously extended to) i 51
n Tb(T(Ki)). For any finite familyK1 ,...,Kn of

compact setsKi there is k.0 such thatKi#K5@2k,k#4 for i 51,...,n. Since i f i iT(Ki ), j i

<i f i iT(K), j i for all i , we can assume in~2.10!: Ki5K for i 51,...,n.
Introduce modified Cauchy kernels as follows. Denote

h~ t !5 )
a50

3
e2(ta)2

2p i t a and hz~ t !5h~ t2z!. ~2.11!

If uIm zau>l.k, then hz(t) is a continuous function oft in T(K) which is holomorphic in the
interior of T(K) andhzPTb(T(K)). Moreover,hz is a Tb(T(K))-valued continuous function fo
uIm zau>l.k as follows. Choosed.0 such thatuIm (z2z)au>l.k for uzu<d and fixedz. For any
e.0 there existsR.0 such that

sup$utphz1z~ t !u;tPT~K !,utu>R,uzu<d,upu< j %,e.

Sincehz(t) is uniformly continuous on a compact setT(K)R5$tPT(K);utu<R%, for any e8.0
there exists 0,d8<d such that

uhz1z~ t !2hz~ t !u5uhz~ t2z!)2hz~ t !u,e8,

for any tPT(K)R and uzu<d8. Hence

F~z!5M ~hz1
,...,hzn

! ~2.12!

is a well-defined vector-valued continuous function foruIm zi
au.l, a50,...,3, i 51,...,n. For any

r . l .0 andl ,uIm zau<r, a straightforward estimate shows

ihziT(K), j5sup$utph~ t2z!u;tPT~K !,upu< j %

5sup$u~ t1z!ph~ t !u;t1zPT~K !,upu< j %<C~11uzu! j . ~2.13!

The inequality

iF~z!i<C)
i 51

n

~11uzi u! j ~2.14!

follows from the estimate~2.10! for l ,uIm zi
au<r.

Next we consider the integration of the vector valued functionF(z). For the reader’s conve
nience we recall some useful propositions about Pettis integration of functions whose values
a Suslin spaceE. For our purpose, we only have to know that a separable Fre´chet space is a Suslin
space. In the following propositions,T denotes a set,A a s-algebra of subsets ofT, and m a
s-finite positive measure defined onA.

Definition 2.9 (Definition 1 of Ref. 27): Let E be a quasicomplete locally convex Haus
space. A function f:T→E is weakly m-summable if̂ f (•),x8& is m-integrable for each x8PE8.
The function f is said to be m-summable (or Pettis integrable) if f is weakly m-summable and if
for each set APA there exists an element*Af dmPE such that̂ *Af dm,x8&5*A^ f ,x8&dm for
all x8PE8.

Proposition 2.10 (Theorem 1 of Ref. 27): Given a function f:T→E with values in a locally
convex Suslin space, the following conditions are equivalent:

(a) f21(B)PA for every Borel subsets B,E,
(b) for every x8PE8 the scalar function̂ f (•),x8& is measurable.
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Proposition 2.11 (Theorem 3 of Ref. 27): Let f:T→E be a measurable function such th
* u f up dm,` for every continuous seminorm p of a quasicomplete locally convex Suslin spa.
Then f is m-summable.

Proposition 2.12 (Secs. I, IX of Ref. 27): (a) If u:E1→E2 is a continuous linear map, and i
f :T→E1 is summable, then u+ f is summable and*u+ f dm5u* f dm.

(b) Let x→uxub be a lower semicontinuous generalized seminorm on E and f:T→E measur-
able. Thenu f (•)ub is measurable andu* f dmub<* u f ub dm.

After these preparations, letG5G11G2 be the path inC defined by

G65$zPC;z56x6 ir , 2`,x,`%,

and f jPT(T(R4)).
Sincez→hzf j (z)PTb(T(K)) is continuous and therefore measurable by Proposition 2.1

follows from the inequality 2.13 and Proposition 2.11 thathzf j (z) is summable.
Applying Proposition 2.12 and the Cauchy integral formula

E
G4

hzf ~z!dz5 f ~ t !,

we have

M ~hz1
,...,hzj 21

, f j , f j 11 ,...,f n!5M S hz1
,...,hzj 21

,E
G4

hzj
f j~zj !dzj , f j 11 ,...,f nD

5E
G4

M ~hz1
,...,hzj 21

,hzj
, f j 11 ,...,f n! f j~zj !dzj .

This gives

M ~ f 1 ,...,f n!5E
G4
E

G4
¯E

G4
F~z1 ,z2 ,...,zn! f 1~z1! f 2~z2!¯ f n~zn!dzn¯dz2 dz1

5F~ f 1^¯^ f n!.

Moreover, the integral

F~ f !5E
G4
E

G4
¯E

G4
F~z1 ,z2 ,...,zn! f ~z1 ,z2 ,...,zn!dzn¯dz2 dz1

for f PT(T(R4n)) defines a continuous mapping,

F:T~T~R4n!!{ f→F~ f !PG.

In fact, F(z) f (z) is continuous and therefore measurable by Proposition 2.10, and it follows
~2.14! that

iF~z!i u f ~z!u<Ci f iT(K), j 12)
i 51

n

~11uzi u!22

for zPG4, whereK5@2r ,r #4n. Thus, using Proposition 2.12, we have

iF~ f !i<C8i f iT(K), j 12.

This completes the proof. h

For an open setV in Rn and a positive numbere introduce the setVe defined by
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Ve5$zPCn;' xPV,uRez2xu1uIm zub,e%,

whereuyub is a norm ofRn satisfyinguyub>uyu for the Euclidean normuyu. Let Kp be the closure
of Ve/(111/p) in Cn andLp5$wPCm;uIm wu<p%. Let U5Ve3Cm andM p5Kp3Lp . Tb(M p) is, by
definition, the space of all continuous functionsf on M p which are holomorphic in the interior o
M p and satisfy, fork51,2,... ,

i f iM p ,k5sup$uzswt f ~z,w!u;~z,w!PM p ,usu1utu<k%,`;

Tb(M p) is a Fréchet space with the seminormsi f iM p ,k.
If k,m, then we have the canonical injections

Tb~Mm!→Tb~Mk!. ~2.15!

We define

T~U !5 lim
←

Tb~Mm!, ~2.16!

where the projective limit is taken following the restriction mappings~2.15!.
Theorem 2.13:T(T(Rn1m)) is dense inT(U).
Proof: The proof is similar to the proofs of Proposition 2.4 of Ref. 28 and Proposition 9.1

Ref. 29. For more details we refer to the Appendix. h

Let V be a closed convex cone inRn and define thee-neighborhood ofV by

Ve5$y;' xPV, ux2yu<e%.

Lemma 2.14: There exists a C`-functionfe with support contained in V3e such thatfe51 in
Ve and

u]afeu<Cae2uau,

where Ca depends only ona and n.
Proof: Let x be a positiveC` function which has support in the unit ball$x;uxu,1%, such that

*x dx51. Thenxe(x)5e2nx(x/e) has the support in the ball$x;uxu,e% and*xe dx51. Letv be
the characteristic function ofV2e and fe5v* xe . ThenfPC`(Rn) has support inV3e , and 1
2fe5(12v)* xe vanishes inVe . Moreover, we have

u]afeu<E u]axeudx5e2uau E u]axudx,

and

u]afeu<Cae2uau

for Ca.0. It is clear thatCa depends only ona andn. h

Remark 2.15:Note that Lemma 2.14 is just a concise summary of Sec. 1.4 of Ref. 29.
Theorem 2.15:Let V be a closed convex cone and K a convex compact set inRn. Define a

function hK,V(j), jPRn, and a set VK
0 as follows [see Eq. (2.4) for the definition of hK]:

hK,V~j!5sup
xPV

hK~x!2^x,j&, and VK
0 5$jPRn;hK,V~j!,`%.

Then for everymPH(Rn;O)8 with support in the cone V there is a function

m̂~z!5^m,ei ^•,z&& ~2.17!
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with the following properties: m̂ is well defined and holomorphic in the interior ofRn3 iVK
0 and

satisfies there the following estimate, for a suitable K,O,

um̂~z!u<C~11uzu! j exp~hK,V~ Im z!!. ~2.18!

m̂ is called the Fourier–Laplace transform ofm.
Proof: We choose aC` functionfe with support contained inV3e such thatfe51 in Ve and

u]afeu<Cae2uau.

Then we have forzPRn3 iVK
0

u^m,ei ^•,z&&u5u^m,fee
i ^•,z&&u<Cifee

i ^•,z&iK, j

<C sup$exp~hK~x!!uDa~fe~x!ei ^x,z&!u;uau< j ,xPRn%

<C8 exp~hK,V~ Im z!13euIm zu! (
uau< j

e2uau~11uzu! j 2uau.

The estimate~2.18! follows if we take e51/(11uzu). The standard argument shows thatz
→fee

i ^•,z&PH(Rn;O) is complex differentiable in the interior ofRn3 iVK
0 . h

Remark 2.17:Theorem 7.4.2 of Ref. 29 proves this theorem for Schwartz distributions
gether with its converse.

Remark 2.18:Let uxu`5max$ux0u,uxu% be a norm inR4 andV̄1 the closed forward light cone in
R4. AbbreviateV5V̄1

n and for, i.0 introducehK(x)5( i 51
n , i uxi u` . Then we estimate

hK,V~j!5 sup
xiPV̄1

(
i 51

n

~, i uxi u`2^xi ,j i&!<(
i 51

n

sup
xiPV̄1

~, i uxi u`2^xi ,j i&!.

Let V1 be the open forward light cone. It follows

sup
xPV̄1

2^x,h&,`

for hPV1 . Let j i5h i1(, i ,0)PV11(, i ,0). Sinceuxu`5x0 in V̄1 , we find

sup
xiPV̄1

~, i uxi u`2^xi ,j i&!5 sup
xiPV̄1

~, ixi
02^xi ,h i&2xi

0, i !5 sup
xiPV̄1

2^xi ,h i&,`.

Thus the set

V1~,1 ,...,,n!5$~j1 ,...,jn!PR4n;j iPV11~, i ,0!% ~2.19!

is contained inVK
0 .

III. AXIOMS FOR QUANTUM FIELD THEORIES WITH FUNDAMENTAL LENGTH

The discussion in the Introduction had shown that the framework of standard quantum
and the framework of hyperfunction quantum fields do not allow a fundamental length in
formulation of the condition of local commutativity. Thus, for such a theory, a new framework
to be used. We argue that quantum fields in terms of ultra-hyperfunctions is a suitable frame
Accordingly we start by listing the defining conditions of an ultra-hyperfunction quantum
theory~UHFQFT! ~here we restrict ourselves to the case of a neutral scalar field!. We begin in the
spirit of our paper8 by defining such a field as a relativistic quantum field over the test-func
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spaceE5T(T(R4)) for ultra-hyperfunctions. While most conditions only need minor modifi
tions, the condition of local commutativity has to be formulated in such a way as to tak
existence of a fundamental length into account.

As usual, the defining conditions of an UHFQFT allow one to deduce a set of propertie
the sequences of vacuum expectation values or Wightman functions. In the following section
of conditions for the sequence of all vacuum expectation values is isolated which allow o
reconstruct the ultra-hyperfunction quantum field.

We begin by collecting some properties of the test-function space, in the sense of Ref
Lemma 3.1: The test-function space E5T(T(R4)) has the following properties:

(1) E admits the Fourier transformF as an isomorphism of topological vector spaces.
(2) On E and Ẽ5FE there are continuous involutions f° f * which satisfy(Ff )* 5F̄f * for all

f PE.
(3) The restricted Poincare´ group G acts on E by continuous linear mappingsag :E→E, g

PG such that for all fPE and all gPG one hasag( f )* 5ag( f * ), and g°ag( f ) is a
continuous map G→E. G acts on the test-function space E5T(T(R4)) as follows:

G{g5~a,L!→ag~ f !~z!5 f ~L21~z2a!!.

Proof: For the first item see Proposition 2.5. The proof of the second point is a straightfor
calculation. For the proof of~3! see the Appendix. h

Definition 3.2: A quadruple(H,U,F0 ,A) satisfying conditions(Hi), i 51,2,3,4,5is called a
relativistic quantum field theory with fundamental length, or an ultra-hyperfunction quantum
field theory.

(H1) Fields over E5T(T(R4)): A field A over E with state spaceH, domainD and cyclic
unit vectorF0 is specified in the following way.

~a! The state spaceH is a separable complex Hilbert space.
~b! The domainD is a dense subspace ofH containing the cyclic unit vectorF0 .
~c! The fieldA is a linear map fromE into the algebraL(D,D) of linear operatorsD→D such

that the following conditions hold.

~i! For all F,CPD, f→(F,A( f )C) is a continuous linear mapE→C.
~ii ! For eachf PE, the adjoint operatorA( f )* of the densely defined operatorA( f ) in H is an

extension ofA( f * ).

(H2) Poincarécovariance:A field (A,H,D,F0) over E is said to be Poincare´ covariant if,
and only if, there is a unitary continuous representationU of the restricted Poincare´ groupG on
the Hilbert spaceH such that, for allgPG and all f PE,

U~g!D5D, U~g!A~ f !U~g!* 5A~ag~ f !!.

(H3) Energy-momentum spectrumS: The energy-momentum spectrumS of the theory equals
the spectrums(P) of the infinitesimal generatorP5(P0,P1,P2,P3) of the time–space transla
tions in the representationU, i.e.,

U~a!5U~a,1!5eia•P, aPR4.

$p50% is an isolated eigenvalue ofP. The rest of the spectrum ofP is contained in the ‘‘forward
light cone’’

V15$~q0,q!PR4;q0.uqu,qPR3%.

(H4) Uniqueness of the vacuum state:The subspaceH0 of translation invariant vectors inH
is one-dimensional and is generated by the cyclic vectorF0PD. Accordingly, this cyclic vector
F0 is called the vacuum vector of the theory and it follows that
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D05 lin$F0 ,A~ f 1!¯A~ f n!F0 : f kPE, n51,2,...%

is dense inH.
Before we can formulate the last condition of local commutativity, respectively, causality

theory with finite fundamental length,, we need to introduce some notation and formulate so
related results. We define the normuxu1 for x5(x0,x)PR4 by

uxu15ux0u1uxu, uxu5A(
i 51

3

~xi !2,

and denote

L,5$x5~x1 ,x2!PR4•2;ux12x2u1,,%.

Next define the open setV of all strictly timelike points inR4 by

V5$jPR4;~j0!22j2.0%,

and the,-neighborhoodV, of V in C4,

V,5$zPC4;' xPV,uRez2xu1uIm zu1,,%.

Finally we introduce the set of all pairs of points inC4 whose difference belongs to thi
,-neighborhood,

W,5$~z1 ,z2!PC4•2;z12z2PV,%.

Then we can formulate the last defining condition (H5).
(H5) Extended causality or extended local commutativity:In some Lorentz frame, for any

given C,FPD and any,8.,, the functional

E^ E{ f 1^ f 2→~F,A~ f 1!A~ f 2!C!PC

can be extended to a continuous linear functional onT(T(L,8)) and moreover,

E^ E{ f 1^ f 2→~F,A~ f 1!A~ f 2!C!2~F,A~ f 2!A~ f 1!C!PC

can be extended to a continuous linear functional onT(W,8).

IV. PROPERTIES OF VACUUM EXPECTATION VALUES FOR UHF QUANTUM FIELDS

A. Preliminaries

Given a UHFQFT (H,U,F0 ,A), we want to analyze the properties of itsvacuum expectation
valuesdefined by

Wn~ f 1^¯^ f n!5~F0 ,A~ f 1!¯A~ f n!F0! ; f iPE~1!, i 51,...,n, ~4.1!

for all nPN.
Proposition 4.1: For any givenCPD and every n51,2,... there is a continuous linear

mapping

Cn :E~n![T~T~R4n!!→H
satisfying, for all fjPE5E(1), j 51,...,n,

Cn~ f 1^ f 2^¯^ f n!5A~ f 1!A~ f 2!¯A~ f n!C. ~4.2!
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Proof: Let F,CPD andnPN be given. Then, by the first axiom,

T~T~R4!!n{~ f 1 ,...,f n!→~F,A~ f 1!¯A~ f n!C!

is a separately continuousn-linear form. Therefore Theorem 2.8 implies that there existsF
PT(T(R4n))8 such that

F~ f 1^¯^ f n!5~F,A~ f 1!¯A~ f n!C!.

Next for g5 f 1^¯^ f nP ^
nT(T(R4)), we defineCn(g)5A( f 1)¯A( f n)C and extend it to

^
nT(T(R4)) by linearity. By Theorem 2.4, for anyf PT(T(R4n)) there exists a sequence$gnP

^
nT(T(R4))% such thatgn→ f as n→`. ThereforeiCn(gn)2Cn(gm)i2→0 asn,m→`. Thus

Cn(gn) converges to a vectorCn( f ) and evidentlyCn( f ) is continuous linear mapping from
T(T(R4n)) to H. h

Apply Proposition 4.1 to the special case whereCPD is the vacuum vectorF0 of the theory.
Then we have continuous linear mappings

Fn :E~n!5T~T~R4n!!→H, n51,2,...

which extend the mappings

^
nE~1!{ f 1^ ¯ ^ f n°A~ f 1!A~ f 2!¯A~ f n!F0 .

As an immediate consequence we get the following proposition.
Proposition 4.2: For every n51,2,3,..., the vacuum expectation value (4.1) has a continu

linear extension to an elementWnPT(T(R4n))8.

B. Implications of extended local commutativity I

Proposition 4.3: For any given n>2 and iP$1,...,n21% introduce the set

Li
,5$x5~x1 ,...,xn!PR4n;uxi2xi 11u1,,%.

Then, for any ,8., and any 1< i<n21, WnPT(T(R4n))8 actually belongs to

T(T(Li
,8))8,T(T(R4n))8.

Proof: Let hPT(T(R4 j )) andgPT(T(R4k)). It follows from axiom (H5) that

E^ E{ f 1^ f 2→~F j~h* !,A~ f 1!A~ f 2!Fk~g!!5Wn~h^ f 1^ f 2^ g!

is extended continuously toT(T(L,8)), and we have the following separately continuous mu
linear form:

T~T~R4 j !!3T~T~L,8!!3T~T~R4k!!{~h, f ,g!→Wn~h^ f ^ g!.

According to Theorem 2.7, a separately continuous multilinear form on Fre´chet spaces is jointly
continuous. Therefore we have

uWn~h^ f ^ g!u<CihiT(K1), j 1i f iT(K2), j 2ihiT(K3), j 3,

where ihiT(K1), j 1, i f iT(K2), j 2, ihiT(K3), j 3 are some of the defining seminorms ofT(T(R4 j )),
T(T(L,8)), T(T(R4k)), respectively. The estimate

ihiT(K1), j 1i f iT(K2), j 2ihiT(K3), j 3

5sup$uz1
p1h~z1!z2

p2f ~z2!z3
p3g~z3!u;~z1 ,z2 ,z3!PT~K13K23K3!,upi u< j i%

<ih^ f ^ giT(K13K23K3), j 11 j 21 j 3
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shows that Wn(h^ f ^ g) can be extended continuously toT(T(Li
,8)) because ih^ f

^ giT(K13K23K3), j 11 j 21 j 3 is one of the defining seminorms. h

In the same way one proves the following proposition.
Proposition 4.4: For n>2 and iP$1,...,n21% denote

Wi
,5$~z1 ,...,zn!PC4n;zi2zi 11PV,%

and define

ci
n~ f !~z1 ,...,zn!5 f ~z1 ,...,zi ,zi 11 ,...,zn!2 f ~z1 ,...,zi 11 ,zi ,...,zn!.

ThenWn+ci
n belongs toT(Wi

,8)8 for any ,8.,.

C. Analysis of the spectral condition

Let F̃n be the Fourier transform ofFn defined by

F̃n~ f̃ !5Fn~ f !.

For the vector-valued tempered ultra-hyperfunctionFn , F̃n is a continuous linear mapping,

F̃n :H~R4n;R4n!→H,

according to Proposition 2.5. In order to analyze the support properties ofF̃n we proceed as in
Refs. 25, 30 and introduce the following change of variables:

~q0 ,...,qn21!5xn
21~p1 ,...,pn!, qk5 (

j 5k11

n

pj , z05z1 , z j5zj 112zj , j 51,...,n21.

Then we have

pn5qn21 , pk5qk212qk , k51,...,n21, zk5 (
j 50

k21

z j , k51,2,...,n,

and thus

(
j 51

n

zj•pj5^z,p&5^z,xn~q!&5^z,q&5 (
j 50

n21

z j•qj .

The translation of a functionf PE(n) by aPR4 is defined in the natural way asf a(x1 ,...,xn)
5 f (x12a,...,xn2a) and thus the Fourier transform of the translated function isf̃ a(p1 ,...,pn)

5eia•(k51
n pk f̃ (p1 ,...,pn). As a function of the variables (q0 ,...,qn21) the Fourier transformF̃n is

denoted byZ̃n , i.e.,

Z̃n~ f̃ +xn!5F̃n~ f̃ !.

The unitary group of translations has a spectral representationU(a)5*Seip•aE(dp) where the
spectral measureE(dp) has its support inS. Thus, by spectral calculus, for any integrable co
tinuous functionh on R4,

~2p!22E
R4

h~a!U~a!da5h̃~P!
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is a bounded function of the generatorP5(P0 ,P1 ,P2 ,P3) of the translation group. Forh
PS(R4) we have

h̃~P!Fn~ f !5~2p!22E
R4

h~a!U~a!Fn~ f !da5~2p!22 E
R4

h~a!Fn~ f a!da

5~2p!22E
R4

h~a!F̃n~ f̃ a!da5~2p!22E
R4

Z̃n~h~a! f̃ a+xn!da

5Z̃nS ~2p!22E
R4

h~a! f̃ a+xn daD 5Z̃n~ h̃~q0!• f̃ +xn!,

where we used Propositions 2.10, 2.11, 2.12 and the relation

E
R4

h~a! f̃ a~p!da5h̃~q0!• f̃ ~p!.

The assumptions of Propositions 2.10 and 2.11 are satisfied because of the continuia

→ f̃ a which follows from Lemma 3.1 and the fact thati f̃ aiK, j is a polynomially increasing
function of a.

If f̃ +xn5g̃1^ g̃2 with g̃1PH(R4;R4) and g̃2PH(R4(n21);R4(n21)) then, for anyhPS(R4),
the relation

h̃~P!Z̃n~ g̃1^ g̃2!5Z̃n~~ h̃•g̃1! ^ g̃2! ~4.3!

results.
Proposition 4.5: For any g˜ 2PH(R4(n21);R4(n21)), the vector-valued generalized function

H~R4;R4!{g̃1→Z̃n~ g̃1^ g̃2!

has its support inS.
Proof: Take anyg̃1PD(R4) with support inR4\S. Then there ish̃PD(R4\S) which is equal

to 1 on suppg̃1 . It follows h̃g̃15g̃1 and h̃(P)50. We conclude

Z̃n~ g̃1^ g̃2!5Z̃n~~ h̃•g̃1! ^ g̃2!5h̃~P!Z̃n~ g̃1^ g̃2!50.

Hence the support property follows. h

Recall that the vacuum expectation valuesWn have the following representation

Wn~ f n!5^F0 ,Fn~ f n!&5^F0 ,F̃n~ f̃ n!&5^F0 ,Z̃n~ f̃ n+xn!& ~4.4!

for all f nPT(T(R4n)) and thusf̃ nPH(R4n;R4n). Pick a test functionh̃PH(R4;R4). Then, be-
cause of the spectral properties of the operatorP, we know

h̃* ~0!F05h̃~P!* F0 , ~4.5!

and thus ifh̃(0)51, because of Eq.~4.3!,

Wn~ f n!5^F0 ,Z̃n~ h̃~q0!• f̃ n+xn!&,

or, if f̃ n5(g̃1^ g̃n21)+xn
21 with g̃kPH(R4k;R4k), then

W̃n~~ g̃1^ g̃n21!+xn
21!5W̃n~~~ h̃•g̃1! ^ g̃n21!+xn

21!. ~4.6!
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This prepares for the following proposition.
Proposition 4.6: For n52,3,... there is W̃n21PH(R4(n21);R4(n21))8 such that

~a!

W̃n~~ g̃1^ g̃n21!+xn
21!5g̃1~0!W̃n21~ g̃n21! ~4.7!

for all g̃n21PH(R4(n21);R4(n21)) and all g̃1PH(R4;R4), i.e.,

W̃n+xn~q0 ,...,qn21!5~2p!2d~q0!W̃n21~q1 ,...,qn21!;

~b! suppW̃n-1 # S n-1.

Proof: Take any test functionh̃PH(R4;R4) with h̃(0)51. Then, by Eqs.~4.3!, ~4.1!, and
~4.5!,

W̃n~~ g̃1^ g̃n21!+xn
21!5^F0 ,Z̃n~~ h̃•g̃1! ^ g̃n21!&

5^F0 ,g̃1~P!Z̃n~ h̃^ g̃n21!&

5^g̃1~P!* F0 ,Z̃n~ h̃^ g̃n21!&5g̃1~0!^F0 ,Z̃n~ h̃^ g̃n21!&.

Now define a functionalW̃n21 by

W̃n21~ g̃n21!5^F0 ,Z̃n~ h̃^ g̃n21!& ; g̃n21PH~R4(n21);R4(n21)!. ~4.8!

The properties ofZ̃n imply that this functional belongs toH(R4(n21);R4(n21))8. If h̃ j

PH(R4;R4) are two test functions withh̃ j (0)51 for j 51,2, thenh̃5h̃12h̃2 is a test function
with h̃(0)50. Now pick any test functiong̃ with g̃(0)51. Then, as above, we get

^F0 ,Z̃n~ h̃^ g̃n21!&5^F0 ,Z̃n~~ g̃•h̃! ^ g̃n21!&5h̃~0!^F0 ,Z̃n~ g̃^ g̃n21!&50.

It follows ^F0 ,Z̃n(h̃1^ g̃n21)&5^F0 ,Z̃n(h̃2^ g̃n21)&, and this shows thatW̃n21 is well defined
by Eq. ~4.8! and part~a! follows.

In order to prove the support property~b! take any g̃1PH(R4 j ;R4 j ) and g̃2

PH(R4(n2 j );R4(n2 j )) and denotef̃ 15g̃1+x j
21, respectively,f̃ 25g̃2+xn2 j

21 . Explicitly this means

~ f 1* )̃~p1 ,...,pj !5gD 1~2p12¯2pj ,2p12¯2pj 21 ,...,2p1!,

respectively,

f̃ 2~pj 11 ,...,pn!5g̃2~pj 111¯1pn ,pj 121¯1pn ,...,pn!.

Note that

d~p11¯1pn!~ f 1* )̃~p1 ,...,pj !5d~p11¯1pn!gD 1~2p12¯2pj ,2p12¯2pj 21 ,...,2p1!

5d~q0!gD 1~qj ,qj 21 ,...,q1!5d~q0!~ g̃1!* ~q1 ,...,qj !.

Now use part~a! to evaluate

~ Z̃j~ g̃1!,Z̃n2 j~ g̃2!!5~F̃ j~ f̃ 1!,F̃n2 j~ f̃ 2!!5~F j~ f 1!,Fn2 j~ f 2!!5Wn~ f 1* ^ f 2!5W̃n~~ f 1* )̃ ^ f̃ 2!

5~2p!2^W̃n21~q1 ,...,qn21!,~ g̃1!* ~q1 ,...,qj !g̃2~qj ,...,qn21!&.

Finally chooseg̃15g̃11^ g̃12 with g̃11PH(R4;R4),g̃12PH(R4( j 21);R4( j 21)) and g̃25g̃21^ g̃22

with g̃21PH(R4;R4),g̃22PH(R4(n2 j 21);R4(n2 j 21)). Then the above identity shows that
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~ Z̃j~ g̃1!,Z̃n2 j~ g̃2!!5~2p!2W̃n21~~ g̃12!* ^ ~gD 11•g̃21! ^ g̃22!,

and by Proposition 4.5 and choosingj 51,...,n21, we conclude that the support ofW̃n21 is
contained inSn21. h

D. Basic analyticity

According to Proposition 4.6 the distributionsW̃n21 have their supports inSn21#V̄1 . Hence
we can apply Theorem 2.16 to them and conclude that their Fourier–Laplace trans
Ŵn21(z1 ,...,zn21) are analytic in a set which containsR4(n21)1V1(,1 ,...,,n21) for suitable
, i.0 @see Eq.~2.19!#. Next we take extended local commutativity into account and show
these Fourier–Laplace transforms can be analytically continued to a much larger domain o
lyticity described in the following proposition. These analytic continuations of theŴn21 are
denoted byWn21 .

Proposition 4.7: There exist decreasing functions Ri j (r ) defined for ,,r such that
Wn21(z1 ,...,zn21) is holomorphic in

ø
i 51

n21

$zPC4(n21);Im z iPV11~,8,0!, Im z jPV11~Ri j ~,8!,0!, ,,,8, j Þ i %, ~4.9!

and polynomially increasing there.
Proof: Observe the fact that an element inH(R4(n21);O)8 is an element inHb(R4(n21);K)8

for some compact setK,O. For any compact setK in

Li
,85$yPR4n;uyi 112yi u1,,8%,

we can choosee,Ri j .0 so that the set

Ki
e,R5$~h0 ,...,hn21!PR4n;uh i u1<,82e i , uh j u1<Ri j , j Þ i %

containsK, whereh05y1 , h j5yj 112yj ( j 51,...,n21). It follows from Proposition 4.3 tha

W̃n is extended toH(R4n;Li
,8) for any ,8.,. This implies that there existk, e i5e i(,8) and

Ri j 5Ri j (,8) such that

uW̃n~ f̃ !u<Ci f̃ iK
i
e,R ,k

for f̃ PH(R4n;Li
,8). The functionRi j (r ) can be chosen such thatRi j (,8)>Ri j (,9) when ,8

,,9. Let uqu`5max$uq0u,uqu%. Then we have

hK
i
e,R~q!5~,82e i !uqi u`1(

j Þ i
Ri j uqj u` .

Since the support ofW̃n21 is contained inV̄1
n21 , it follows from Theorem 2.16 and Remark 2.1

that Wn21(z) is holomorphic in

$zPC4(n21);Im z iPV11~,8,0!,Im z jPV11~Ri j ~,8!,0!, ,,,8, j Þ i %

and polynomially increasing there fori 51,...,n21. This completes the proof. h
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Now chooseRPR such thatWn21(z1 ,...,zn21) is holomorphic onGR
n21 , where GR5R4

3( iR,0,0,0),C4. This holomorphic function defines a functional onT(T(R4(n21))) ~denoted in
the same way! according to the following formula:

Wn21~g!5E
GR

n21
Wn21~z1 ,...,zn21!g~z1 ,...,zn21!dz1¯dzn21 ~4.10!

for all gPT(T(R4(n21))). One expects thatWn21(g)5W̃n21(g̃) holds. We prepare the proof o
this basic relation by the following proposition.

Proposition 4.8: Let k8.k.0, K85$qPR4;uqu1<k8%, K5$qPR4;uqu1<k%, g
PHb(R4;K8) and gx(p)5eixpg(p). Then the mapping

R4{x→gxPHb~R4;K ! ~4.11!

is continuous at x50.
Proof: The fundamental theorem of calculus giveseizp215 izp*0

1eitzp dt and thus, using the
well-known estimate (a.0) xe2ax< 1/ae, ; x>0, for zÞ0, uzu,d/2,

sup
pPR

ueizp21ue2dupu<
2

ed
uzu.

Observe the decomposition

~eixp21!5 (
k50

3

~eixkpk
21! )

j 5k11

3

eix j pj

and the obvious boundupj u<upu` . Then the above estimate implies

e2dupu`ueixkpk
21u )

j 5k11

3

ueix j pj
u→0

asx→0 uniformly in p. This estimate can easily be extended to include derivatives,

uDa~eixp21!ue2dupu5u~ ix !aeixpue2dupu`→0,

asx→0 uniformly in p. SincegPHb(R4;K8) satisfies

uDqg~p!uek8upu`<Mq,k8,`,

we conclude

uDq~eixp21!Drg~p!uekupu`<Mr ,k8uD
q~eixp21!ue2dupu`→0,

asx→0 uniformly in p, whered5k82k. By using Leibniz’ formula, we finally get

uDq$~eixp21!g~p!%uekupu`→0

asx→0, uniformly in p. This shows that the mapping~4.11! is continuous atx50. h

Now consider aC` function f on R4 with all derivatives bounded such thatf (q)51 in the
neighborhoodSe and f (q)50 outside ofV12e.S2e . Then forR.k, ei zqf (q)PHb(R4;K) for
zPGR , and it follows from Proposition 4.8 that the mapping

GR{z→ei zqf ~q!PHb~R4;K !

is continuous, and
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iei zqf ~q!iK, j<C)
j 51

4

~11uz j u! j

for someC.0. Let f n21(q1 ,...,qn21)5) j 51
n21f (qj ). Then Propositions 2.10 and 2.11 imply th

W̃n21~ g̃!5W̃n21~ f n21•g̃!5W̃n21S ~2p!22(n21)E
GR

n21
f n21~q!ei ^z,q&g~z!dz D

5~2p!22(n21)E
GR

n21
W̃n21~ f n21~q!ei ^z,q&!g~z!dz

5~2p!22(n21)E
GR

n21
W̃n21~ei ^z,q&!g~z!dz

5E
GR

n21
Wn21~z1 ,...,zn21!g~z1 ,...,zn21!dz1 ...dzn215Wn21~g!.

E. Implications of Poincare ´ covariance and quasilocality

For ,.0 introduce

Ii
n21~, !5 ø

uPV1 ,u251,,,,8

Ii
n21~,8,u!,

where

Ii
n21~,8,u!5$zPC4(n21);Im z iPV11,8u, Im z jPV11Ri j ~,8!u, j Þ i %

and then

Iext,i
n21~, !5$zPC4(n21);'LPL1~C!, Lz5~Lz1 ,...,Lzn21!PIi

n21~, !%.

Let In215In21(,) be the convex envelope ofø i 51
n21Ii

n21(,). Then it follows from Bochner’s
theorem on tubular domains~see Sec. 17.5 of Ref. 31! thatWn21(z1 ,...,zn21) is analytic inIn21.
Moreover, it can be analytically continued to

Iext
n215$zPC4(n21);'LPL1~C!, Lz5~Lz1 ,...,Lzn21!PIn21%,

which is equal to the convex envelope ofø i 51
n21Iext,i

n21(,), since the Bargman–Hall–Wightma
theorem holds also in this case. The proof of the ordinary local case~see Ref. 7! is also applicable
to our case.Wn(z1 ,...,zn) is holomorphic in the domain

Gn5$~z1 ,...,zn!;~z22z1 ,...,zn2zn21!PIext
n21%.

Denote

L1~C!{L~ t !5S cost i sint

0

i sint cost

1 0

0

0 1

D ,
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L1
↑ {R~u!5S 1 0 0

0
cosu 2sinu

0
sinu cosu

0 0 1

D .

Let j .0 and introduce the functions

Ej~z!5~ j /p!2(n21) expH 2 j (
k51

n21

(
a50

3

~zk
a!2J .

Lemma 4.9: Let R.0 be a sufficiently large number as specified for (4.10) andr
5(r1 ,...,rn21) be a real element ofIext

n21 satisfying j1 iaPGn for uj2ru<d for somed
>AnR and for any real a such that ak5(ak

0 ,0,0,0).Then we have

E
GR

n21
Wn21~z!Ej~z2r!dz→Wn21~r!

as j→`.
Proof: Since

uexp$2 j ~z2r!2%u<exp$2 j @~j2r!22~n21!R2#%

andWn21(z) is polynomially bounded, we have

U E
GR

n21 ,uj2ru>d
Wn21~z!Ej~z2r!dzU<Cd,Rj 2(n21) exp$2 j ~d22~n21!R2!%

for some constantCd,R.0. Thus, ifd2>nR2 this contribution tends to zero asj→`. Changing
the path~surface! of integration, we have

E
GR

n21 ,uj2ru<d
Wn21~z!Ej~z2r!dz5E

S
Wn21~z!Ej~z2r!dz1E

uj2ru<d
Wn21~j!Ej~j2r!dj

~4.12!

by Cauchy–Poincare´ theorem, where

S5$zPCn21;uj2ru5d,yj
05tR,<t<1,j 51,...,n21%.

SinceEj (z2r)→0 for zPS as j→` andS is compact, the first term of~4.12! vanishes while
the second term tends toWn21(r) becauseEj (j2r) tends tod(j2r). h

There exist real pointsr satisfying the condition of Lemma 4.9. In fact, it follows from
Proposition 4.7 that for any,8., there existsS.0 such thatz5(z1 ,...,zn21)PI k

n21 for zk

PGR8 ,z jPGR ( j Þk) for all R>S andR8>,8. We suppose,8<S.
Let r j5( ia j1a j ,3U1b j ,bj ,cj ) whereU>S,ua j u,ub j u<U, andaj ,bj ,cj are arbitrary real

numbers. ThenL(p/2)r j5( i (3U1b j ),2aj1 ia j ,bj ,cj ) andr5(r1 ,...,rn21)PI ext
n21 .

Let r j5( ia j1a j ,bj ,3U1b j ,cj ). Then R(2p/2)r j5( ia j1a j ,3U1b j ,2bj ,cj ) and r
PIext

n21 .
Let s be the permutation ofk andk11, that is,s(k)5k11,s(k11)5k ands( j )5 j for j

Þk,k11, and r j5(0,3An jR,3Ans( j )R,0). Then r j5r j 112r j5(0,3AnR,3An(s( j 11)
2s( j ))R,0) and thereforerPIext

n21 . Moreover if uj j2r j u<AnR, j1 iaPI ext
n21 . Thusr satisfies

the condition of Lemma 4.9.
Let sr5r85(r18 ,...,rn218 ), wherer j85r s( j 11)2r s( j ) . Thensr also satisfies the condition

of Lemma 4.9 sincer j85(0,3An(s( j 11)2s( j ))R,3An jR,0).
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The transpositions of zk and zk11 , 1<k<n21, is expressed in terms of the differenc
variablesz j in the following way~compare Sec. IV C!:

zk→zk852zk ,

zk21→zk218 5zk211zk ,

zk11→zk118 5zk111zk ,

z j85z j for the remaining indicesj .

The following proposition follows from Lemma 4.9.
Proposition 4.10: For the pointsr, r8PIext

n21 as above one has, as j→`,

E
GR

n21
Wn21~z!~Ej~z2r!2Ej~z82r!!dz→Wn21~r!2Wn21~r8!.

The transformation (z1 ,...,zn)→(z0 ,...,zn21)5ln(z1 ,...,zn) introduced in Sec. IV C, maps th

setWk
,8 to the set

Vk
,85$~z0 ,...,zn21!PC4n;zkPV,8%.

For g1PT(T(R4)) andg2PT(T(R4(n21))) define

f ~z1 ,...,zn!5~g1g2!~ln~z1 ,...,zn!!PT~T~R4n!!.

As earlier one gets

Wn~ f !5E
R4

g1~x!dxE
GR

n21
Wn21~z1 ,...,zn21!g2~z1 ,...,zn21!dz1¯dzn21 ,

which corresponds to Eq.~4.7!. Therefore we deduce

~Wn+ck
n!~ f !5E

R4
g1~x!dxE

GR
n21

Wn21~z!~g2~z!2g2~z8!!dz

and the functional

T~T~R4(n21)!!{ f→E
GR

n21
Wn21~z!~ f ~z!2 f ~z8!!dz

belongs toT(Vk
,8)8.

Sincerk5(0,3AnR,23AnR,0),

Re~zk2rk!
25~Rezk2rk!

22~ Im zk!
2>~3/AnR2,8!22,82

if zkPV,8, and

(
j 51

n21

Re~z j2r j !
2>~3/AnR2,8!22,822~n22!R2

if zkPVk
,8 . If we takeR>,8, this estimate implies
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sup

zPVk
,8 ,uIm z j u<R

uEj~z2r!u<~ j /p!(n21)/2exp$2 j 5nR2%→0

as j→`. Similarly we get that for any multi-indexp, as j→`,

sup

zPVk
,8 ,uIm z j u<R

uzpEj~z2r!u→0

and this in turn gives

E
GR

n21
~Wn21~z!2Wn21~z8!!Ej~z2r!dz→0

for j→`. This and Proposition 4.10 show thatWn21(r)5Wn21(r8) and thus

Wn~r 1 ,...,r k ,r k11 ,...,r n!5Wn~r 1 ,...,r k11 ,r k ,...,r n!.

Therefore we can formulate the main result of this section as follows:
Theorem 4.11:On their respective domains of holomorphy the n-point or Wightman functions

Wn are symmetric.

V. FUNCTIONAL CHARACTERIZATION OF UHQFT

The analysis of the preceding sections has shown that the sequence of vacuum expe
values of an ultra-hyperfunction quantum field theory has a number of specific properti
analogy to standard quantum field theory we single out a set of properties of these va
expectation values which actually characterizes an ultra-hyperfunction quantum field theory
isomorphisms.

Properties of UHQFT functionals:

~R0! W051, WnPT(T(R4n))8 for n>1, and Wn( f * )5Wn( f ), for all f PT(T(R4n))[E(n),
where f * (z1 ,...,zn)5 f ( z̄n ,...,z̄1).

~R1! Wn( f )5Wn( f (a,L)) for all (a,L)PP 1
↑ , all f PT(T(R4n)), and alln51,2,....

~R2! For any finite setf 0 , f 1 ,...,f N of test functions such thatf 0PC, f nPT(T(R4n)) for 1<n
<N, one has

(
m,n50

N

Wm1n~ f m* ^ f n!>0.

~R3! For all n52,3,... and alli 51,...,n21 denote

Li
,5$x5~x1,...,xn!PR4n;uxi2xi 11u1,,%,

Wi
,5$~z1 ,...,zn!PC4n;zi2zi 11PV,%.

Then, for any,8.,,

~i! WnPT(T(R4n))8 belongs toT(T(Li
,8))8 and

~ii ! Wn+ci
n belongs toT(Wi

,8)8,
where

~Wn+ci
n!~ f !5Wn~ci

n~ f !!,

ci
n~ f !~x1 ,...,xn!5 f ~x1 ,...,xi ,xi 11 ,...,xn!2 f ~x1 ,...,xi 11 ,xi ,...,xn!.

~R4! For the Fourier transform W̃nPH(R4n;R4n)8 of Wn , there exists W̃n21

PH(R4(n21);R4(n21))8 such that

W̃n+xn~q0 ,...,qn21!5~2p!2d~q0!W̃n21~q1 ,...,qn21!
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and suppW̃n21,Sn21.

~R5! For a spacelike vectoraPR4 andgnPE(n) introduce, for alll.0,

gn,l~x1 ,...,xn!5gn~x12la,...,xn2la!.

Then, for everyf mPE(m) andgnPE(n) asl→`,

Wm1n~ f m^ gn,l!→Wm~ f m!Wn~gn!.

The properties~R0!–~R2! are obvious from the definitions.~R3! and ~R4! are shown in the
preceding section.~R5! is shown without using locality condition as in the book of Jost.25

Theorem 5.1 ~Reconstruction theorem!: To a given sequence(Wn)nPN of tempered ultra-
hyperfunctions satisfying the conditions (R0)–(R5), there corresponds a neutral scalar field A( f )
which obeys all the axioms(H1) – (H5) and has the given tempered ultra-hyperfunctions
vacuum expectation values. The field A is unique up to isomorphisms.

Sketch of the proof:The proof of the theorem differs from the standard one~see for instance
Refs. 1, 25! only with regard to those points related to local commutativity. Accordingly
comment only on these aspects.

~R3! implies that, for arbitraryF5Fm( f m) andC5Fn(gn), the functional

E^ E{h^ k→~F,A~h!A~k!C!5Wm1n12~ f m* ^ h^ k^ gn!

can be extended continuously to a functional onT(T(L,)) and moreover

E^ E{h^ k→~F,A~h!A~k!C!2~F,A~k!A~h!C!

can be extended continuously to a functional onT(W,). It follows from the Theorems 2.4 an
2.13 that the above extension is unique. This implies H5 . h

VI. MODELS

We are going to construct models of relativistic quantum fields with a fundamental leng
constructing a sequence ofn-point functionals which satisfies conditions~R0!–~R5! and then
applying the reconstruction theorem 5.1. Our starting points are the well-known results of J32

on formal Wick power series of free fields. If we consider the power series of a free fieldf,

r ( i )~x!5 (
n50

`

an
( i ) :f~x!n:

n!
, ~6.1!

then we have the following theorem.
Theorem 6.1~Theorem A.1 of Ref. 32!: As a formal power series

~V,r (1)~x1!¯r (n)~xn!V!5 (
r i j 50; 1< i , j <n

`
A~R!TR

R!
, ~6.2!

r i j 5r j i , r ii 50, Ri5(
j 51

n

r i j , A~R!5)
j 51

n

aRj

( j ) ,

R! 5 )
1< i , j <n

~r i j !!, TR5 )
1< i , j <n

~ t i j !
r i j , ~6.3!

t i j 5~V,f~xi !f~xj !V!5Dm
(2)~xi2xj !.

Therefore
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~V,r ( i )~x!r ( i )~y!V!5 (
n50

` an
( i )2

n!
Dm

(2)~x2y!n,

Dm
(2)~x!5~2p!23E

R3
@2v~k!#21e2 iv(k)x0

eik"x dk

@k•x5k0x02k"x, v~k!5Ak21m2#.

If the coefficients$an
( i )% satisfy limn→`@ uan

( i )u2/n! #1/n50 then the series~6.1! defines a hyperfunc-
tion quantum field~see Ref. 33!.

Now we assume that for somes.0

lim sup
n→`

@ uan
( i )u2/n! #1/n5s. ~6.4!

For example, consider

r~x!5..egf(x)2
ª(

n50

`

gn
:f~x!2n:

n!
5 (

n50

`

gn
~2n!!

n!

:f~x!2n:

~2n!!
. ~6.5!

Then

s5 lim
n→`

Fg2n
~2n!!

~n! !2 G1/2n

52g

and

~V,r~x!r~y!V!5 (
n50

` S gn
~2n!!

n! D 2 1

~2n!!
Dm

(2)~x2y!2n.

Since

~12x!2a511ax1
a~a11!

2!
x21¯1

a~a11!¯~a1n21!

n!
xn1¯ ,

and fora51/2

a~a11!¯~a1n21!

n!
5

~2n!!

4nn!

1

n!
,

we get, in the sense of formal power series,

~V,r~x!r~y!V!5@124g2Dm
(2)~x2y!2#21/2. ~6.6!

Now we investigate the convergence of this power series, in the sense of tempered
hyperfunctions. To this end consider the power series

(
r i j 50; 1< i , j <n

`
A~R!ZR

R!
~6.7!

in the variableszi j (1< i , j <n), whereZR5)1< i , j <n(zi j )
r i j . Let
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iRi5 (
1< i , j <n

r i j ~6.8!

and t i j (1< i , j <n) be positive constants. Suppose

lim sup
iRi→`

F uA~R!uTR

R! G1/iRi

<1.

Then the fact that the series~6.7! converges ifuzi j u,t i j (1< i , j <n) follows from the following
theorem of Lemire.

Theorem 6.2: The associated convergence radii(r 1 ,...,r n) of a series(an1 ,...,nn
z1

n1
¯zn

nn

satisfy

lim sup
n11¯1nn→`

@ uan1 ,...,nn
ur 1

n1
¯r n

nn#1/(n11¯1nn)51.

The multinomial theorem implies

Ri ! )
j 51,j Þ i

n t i j
r i j

~r i j !!
<S (

j 51,j Þ i

n

t i j D Ri

and according to Eqs.~6.3! and ~6.8! we know

(
i 51

n

Ri52iRi , )
i 51

n

)
j 51,j Þ i

n

~r i j !! 5~R! !2, )
i 51

n

)
j 51,j Þ i

n

t i j
r i j 5~TR!2;

hence

F uA~R!uTR

R! G2

5

)
i 51

n

uaRi

( i )u2~TR!2

~R! !2 5)
i 51

n S uaRi

( i )u2 )
j 51,j Þ i

n t i j
r i j

~r i j !!
D

and

F uA~R!uTR

R! G1/iRi

5)
i 51

n F uaRi

( i )u2 )
j 51,j Þ i

n t i j
r i j

~r i j !!
G 1/2iRi

5)
i 51

n F uaRi

( i )u2

Ri !
Ri ! )

j 51,j Þ i

n t i j
r i j

~r i j !!
G 1/2iRi

<)
i 51

n F uaRi

( i )u2

Ri !
S (

j 51,j Þ i

n

t i j D RiG 1/2iRi

5)
i 51

n F S uaRi

( i )u2

Ri !
D 1/RiS (

j 51,j Þ i

n

t i j D GRi /2iRi

.

Suppose thattkk11,1/s, and the othert i j ’s are so small that

(
1< i , j <n

t i j ,
1

s
.

This then implies

lim sup
iRi→`

)
i 51

n F S uaRi

( i )u2

Ri !
D 1/RiS (

j 51,j Þ i

n

t i j D GRi /2iRi

<1

and the power series~6.7! is convergent foruzi j u,t i j (1< i , j <n). Now we consider the case o
m50 for simplicity. In this case the growth of the two-point function of the free field is easie
estimate. Recall
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D0
(2)~x!5 lim

e→10
~2p!22@~x02 i e!22x2#21,

u~x02 i e!22x2u5ux22e222i ex0u.

We claim that we can finde>0 such that

u~2p!22@~x02 i e!22x2#21u,1/s.

For x2<0, ux22e222i ex0u>ux22e2u>ux2u1e2, and for x2>0, ux22e222ix0u>ux22e2

22i eAx2u5x21e2, and (ux2u1e2)21,(2p)2/s is equivalent toe2.s/(2p)22ux2u. Choose a
numberr 8.As/(2p) and define

e~x!5Amax$r 82 2ux2u,0%. ~6.9!

For such a choice one has

u~2p!22@~x02 i e~x!!22x2#21u,1/s.

Finally we fix the fundamental length for these models,

,5As/~2p!. ~6.10!

It is easily seen that for any,8., there existe(x) such that

$~x01 i e~x!,x1,x2,x3!;xPR4%,V,8.

Therefore, for any,8., there existsR.0 such that~in formal but suggestive notation!

Wn21~z!5Wn~z!5~F0 ,r~z1!¯r~zk!r~zk11!¯r~zn!F0!

is a well-defined holomorphic function for

Im zk5Im~zk112zj !PV11~,8,0,0,0!

and

Im z j5Im~zj 112zj !PV11~R,0,0,0! ~ j Þk!. ~6.11!

This implies thatWn satisfies the condition~i! of the axiom~R3!. That is, the mapping

T~T~R4n!!{ f→W~ f !5E
) i 50

n21G i

Wn21~z!g~z!dz0¯dzn21

is continuous and can be extended continuously to

T~T~Lk
,8!!{ f→W~ f !5E

) i 50
n21G i

Wn21~z!g~z!dz0¯dzn21 ,

where, withe(x) according to~6.9! andR sufficiently large,

Gk5$~x01 i e~x!,x1,x2,x3!;xPR4%, G j5$~x01 iR,x1,x2,x3!;xPR4%

andg(z)5 f (z0 ,z01z1 ,...,z01¯1zn21). Now consider the formula
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)
1< i , j <n

~ t i , j !
r i , j5~ tk,k11!r k,k11 )

1< i , j <n, iÞk, j Þk11
~ t i , j !

r i , j

3 )
1< i ,k

~ t i ,k!
r i ,k )

k11, j <n
~ tk, j !

r k, j

3 )
1< i ,k

~ t i ,k11!r i ,k11 )
k11, j <n

~ tk11,j !
r k11,j .

The transposition ofxk andxk11 causes the transposition of (tk,k11) r k,k11 and (tk11,k)
r k11,k in

the first line, and the transposition of the second line and the third line. Ifxk and xk11 are
spacelike separated, thentk,k115tk11,k . The function

Wn21
k ~z!5~F0 ,r~z1!¯r~zk11!r~zk!¯r~zn!F0!

is also holomorphic in a domain defined by~6.11! and

2Im zkPV11~,8,0,0,0!.

Moreover, ifzk lies inR4\V,8, the functionsWn21(z) andWn21
k (z) are well defined and coincide

Thus we have

~Wn+ck
n!~ f !5E

) i 50
n21G i

Wn21~z!g~z!dz0¯dzn212E
2Gk) iÞkG i

Wn21
k ~z!g~z!dz0¯dzn21

5E
Gk

,8) iÞkG i

Wn21~z!g~z!dz0¯dzn212E
2Gk

,8) iÞkG i

Wn21
k ~z!g~z!dz0¯dzn21 ,

where

Gk
,5$~x01 i e~x!,x1,x2,x3!;xPR4ùV,%

and we used the fact thatWn21(z) andWn21
k (z) coincides forzkPR4\V,8. The above formula

shows that the functionalWn+ck
n belongs toT(T(Wk

,8))8 for any,8., which shows condition~ii !
of axiom ~R3!. We can show thatWn’s satisfy the axioms~R0!, ~R1!, ~R2!, and~R5! in a similar
way as Ref. 34 where it is shown that if the coefficients$an

( i )% satisfy limn→`@ uan
( i )u2/n! #1/n50

then the series~6.1! define hyperfunction quantum fields. There, a Wick polynomialrN(x) is
introduced as a truncation ofr(x),

rN~x!5 (
n50

N

gn
:f~x!2n:

n!
.

Then the Wightman functionsW n
N(x)5(F0 ,rN(x1)¯rN(xn)F0) for rN(x) satisfy all the stan-

dard Wightman axioms, and they converge weakly toWn(x)5(F0 ,r(x1)¯r(xn)F0) asN→`
in the sense of tempered ultra-hyperfunctions. Thus they satisfy the above axioms. The p
spectral condition~R4! is easier than the case of hyperfunction quantum field theory bec
W̃n21

N (q) andW̃n21(q) are distributions, andW̃n21
N (q) converge weakly toW̃n21(q) asN→` in

the sense of distributions. Since the limit in the sense of distributions preserves the suppor~R4!
is valid for r(x). Accordingly we formulate the main result of the section.

Theorem 6.3 ~Existence of fields with fundamental length!: For a free fieldf of mass m
50 the Wick power series (6.1) (or more specifically (6.5) define ultra-hyperfunction qua
fields with a fundamental length, given by Eqs. (6.4) and (6.10).
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APPENDIX A: PROOF OF LEMMA 3.1 „3…

Here we showg°ag( f ) is a continuous mapG→E5T(T(R4)). Since Fourier transforma
tion is a homeomorphism betweenE and Ẽ5FE5H(R4,R4), it suffices to show the actionG
→Ẽ is continuous. The following two propositions show this.

Proposition A.1: Let fPH(R4,R4). Then, as h→0,

i~ei ^h,x&21! f ~x!iK, j→0.

Proof: Note that for anye.0, there existsR.0 such that

sup
uxu>R,upu< j

exp~hK~x!!uDp~ei ^h,x&21! f ~x!u,e

uniformly for uhu<d.0. The proposition follows from the following identity:

lim
h→0

sup
uxu<R,upu< j

exp~hK~x!!uDp~ei ^h,x&21! f ~x!u→0.

h

Proposition A.2: LetL(t) be a one-parameter subgroup of the Lorentz group such
L(0)5I , and fPH(R4,R4). Then, as t→0,

i f ~L~ t !x!2 f ~x!iK, j→0.

Proof: The proof goes parallel to the preceding proposition. For anye.0, there existsR
.0 such that uniformly int, utu<d.0,

sup
uxu>R,upu< j

exp~hK~x!!uDp~ f ~L~ t !x!2 f ~x!!u,e.

Again the proposition follows from the following identity:

lim
t→0

sup
uxu<R,upu< j

exp~hK~x!!uDp~ f ~L~ t !x!2 f ~x!!u→0.

h

APPENDIX B: PROOF OF THEOREM 2.13

First we recall thatVe is an open set defined by

Ve5$zPCn;' xPV,uRez2xu1uIm zub,e%

for e.0 and an open setV in Rn. Kp is the closure ofVe/(111/p) in Cn, Lp5$wPCm;uIm wu
<p%, andU5Ve3Cm, M p5Kp3Lp .

Lemma B.1: Let fj be a sequence inT(U) and fPT(U). If the sequencei f j iM p ,k ( j
51,2,...) is bounded, and if fj converges to f uniformly on Mp8ùCn1m then fj converges to f in

the normsi f j iM p8 ,k8 with p8<p and k8,k.
Proof: We may assumef 50. Let Cp,k5sup$i f j iM p ,k, j 51,2,...%. For arbitrarye.0 we can

chooseR.0 such thatCp,kR
k82k,e. Then
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uzsf j~z!u,Cp,kR
k82k,e ~B1!

for zPM p8 with uzu>R and usu<k8. On the other hand, there existsNPN such thatu f j (z)u
,eR2k8 for j .N and zPM p8 with uzu<R. This together with~B1! meansi f j iM p8 ,k8,e for j
.N. h

Lemma B.2: Lete.0 and Ce5exp supj PN@(n/2)log(j/p)2je2/(11d)#. Then0,Ce,` and
the function

Ej~z!5~ j /p!n/2 expH 2 j (
k51

n

zk
2J

satisfies

uEj~z!u<Ce exp$2 j Duxu2%

on the set$z5x1 iyPCn;uxu>e and uyu<e/(11d)%, whereD5(d212d)/(11d)2.
Proof: See Lemma 2.3 of Ref. 28. h

Now we define fore,d.0,

Vd
e5$zPCn;'xPV,uRez2xu/~11d!1uIm zub,e%

and letKp,d denote the closure of

Vd
e/(111/p)5$zPCn;'xPV,uRez2xu1~11d!uIm zub,e~11d!/~111/p!%

in Cn. Observe thatKp,d,Ve if d,1/p.
Proposition B.3: Let f(z,w)PT(U) and define fj

p(z,w) for j 51,2,..., and d,1/p by

f j
p~z,w!5E

Kp,dùRn
Ej~z2j! f ~j,w!dj,

then fj
pPT(T(Rn1m)) and for any k.0 and 0,p8,p, as j→`,

i f j
p2 f iM p8 ,k→0.

Proof: SinceEj (z) is entire analytic,f j
p(z,w) is also entire analytic.f PT(U) implies that for

any p.0,M.0,N.0, there exists a constantC such that

u f ~z,w!u<C
1

~11uzu2!M~11uwu!N ~B2!

holds for (z,w)PM p . Let r .0 and estimate the integral accordingly,

sup
uIm zu<r ,uIm wu<r

uzswt f j
p~z,w!u< sup

uIm zu<r ,uIm wu<r
E

Kp,dùRn
uzswtEj~z2j! f ~j,w!udj

<C sup
uIm zu<r

E
Kp,dùRn

uzsEj~z2j!u
1

~11uju2!M dj

<C~ j /p!n/2ejr 2
sup

xPRn
E

Kp,dùRn
~r 1uxu! usue2 j (x2j)2 1

~11uju2!M dj.

Since
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~r 1uxu! usue2 j (x2j)2/2
1

~11uju2!M

is a bounded function ofx andj for M.usu, this estimate can be continued by

sup
uIm zu<r ,uIm wu<r

uzswt f j
p~z,w!u<C8~ j /p!n/2ejr 2E

Rn
e2 j (x2j)2/2dj,`.

This showsf j
pPT(T(Rn1m)). Next we show that the boundsi f j

piM p ,k<C for someC.0 hold
uniformly with respect toj . To show this, we define a surfaceG(z) for z5x1 iyPKp,d as
follows:

G~z!:$jPRn;uj2xu,~11d!uyub,e~11d!/~111/p!%→Kp,d,Ve,Cn,

j→z5j1 iy S 12
uj2xu

~11d!uyub
D .

Then f j
p(z,w) is written as

f j
p~z,w!5E

Kp,dùRn,uj2xu>(11d)uyub
Ej~z2j! f ~j,w!dj1E

G(z)
Ej~z2z! f ~z,w!dz1∧¯∧dzn .

~B3!

Let e85e(11d)/(111/p) and

gj
p~z,w!5E

Kp,dùRn,e8>uj2xu>(11d)uyub
Ej~z2j! f ~j,w!dj1E

G(z)
Ej~z2z! f ~z,w!dz1 ∧¯∧ dzn ,

and

hj
p~z,w!5E

Kp,dùRn,uj2xu>e8
Ej~z2j! f ~j,w!dj.

The relevant bound for the functionhj is

sup
(z,w)PM p

uzswthj
p~z,w!u5 sup

(z,w)PM p

E
Kp,dùRn,uj2xu>e8

uzswtEj~z2j! f ~j,w!udj

<C sup
zPKp,d

E
Kp,dùRn,uj2xu>e8

uzsEj~z2j!u
1

~11uju2!M dj.

For z5x1 iyPKp,d,Ve we haveuyu<uyub<e8/(11d) and so, forj with uj2xu>e8, by Lemma
B.2, we haveuEj (z2j)u<Ce exp(2jDuj2xu2) ( j 51,2,...). Accordingly we continue this estimat
by

<CCe sup
zPKp,dùRn

E
Kp,dùRn,uj2xu>e8

~ uxu1e/2! usu exp~2 j Dux2ju2!u
1

~11uju2!M dj

<C8E
Rn

uexp~2 j Dux2ju2/2!udj,C9,

whereC9 does not depend onj .
In order to estimategj

p(z,w), take into account that
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2Rê z2j,z2j&52ux2ju21uyu<2ux2ju21uyub
2<2ux2ju2~d212d!/~11d!2

52Dux2ju2

if ux2ju.(11d)uyub , and

2Rê z2z,z2z&52ux2ju21ux2ju2/~11d!2<2Dux2ju2

if zPG(z) and Rez5j. This gives

ugj
p~z,w!u<CE

uj2xu<e8
~ j /p!n/2 exp~2 j Dux2ju2!

1

~11uju2!M

1

~11uwu2!N dj

<C8
1

~11uxu2!M

1

~11uwu2!N E
uj2xu<e

~ j /p!n/2 exp~2 j Dux2ju2!dj

<C9
1

~11uxu2!M

1

~11uwu2!N E
Rn

exp~2 j Duju2!udj<C-
1

~11uzu2!M

1

~11uwu2!N .

Thus we conclude thati f j
piM p ,k<C for some positive constantC uniformly in j , i.e., the se-

quencei f j
piM p ,k ( j 51,2,...) is bounded.

Next we show that the sequencef j
p converges tof uniformly on M p8ùCn1m with 0,p8

,p. Let (z,w)PM p8 . It follows from ~B2! that u f (z,w)2 f (z,w)u<CuRez2Rezu for z andz in
the integral~B3!, and therefore we have

U f j
p~z,w!2 f ~z,w!E

Kp,dùRn
Ej~z2j!djU<CE ~ j /p!n/2e2 j Dux2juux2judj<C8 j 21/2.

Since Rêz2j,z2j& has a positive lower bound whenzPKp8 andjPRn\Kp,d ,

12E
Kp,dùRn

Ej~z2j!dj5E
Rn\Kp,d

Ej~z2j!dj

is exponentially decreasing asj→`. It follows from Lemma 1 thati f j
p2 f iKp8 ,k→0 as j→`.
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20W. Lücke, Acta Phys. Austriaca55, 213 ~1984!.
                                                                                                                



2231J. Math. Phys., Vol. 45, No. 6, June 2004 Relativistic quantum field theory

                    
21S. Nagamachi and E. Bru¨ning, Lett. Math. Phys.63, 141 ~2003!.
22M. Hasumi, Tohoku Math. J.13, 94 ~1961!.
23M. Morimoto, Proc. Jpn. Acad.51, 87 ~1975!.
24R. F. Streater and A. S. Wightman,PCT, Spin and Statistics, and All That~Benjamin, New York, 1964!.
25R. Jost,The General Theory of Quantized Fields~American Mathematical Society, Providence, RI, 1965!.
26F. Treves,Topological Vector Spaces, Distributions and Kernels, Pure and Applied Mathematics~Academic, New York,

1967!.
27G. Thomas, Trans. Am. Math. Soc.212, 61 ~1975!.
28T. Nishimura and S. Nagamachi, Math. Japonica35, 293 ~1990!.
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Phase-space Green’s functions for modeling time-
harmonic scattering from smooth inhomogeneous objects
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The paper deals with inhomogeneous medium Green’s functions in the phase-space
domain by which the phase-space~local! spectral distributions of the field, scattered
by a high contrast object due a genetic time-harmonic incidence, are evaluated.
Two forms of phase-space Green’s functions are considered: one that links induced
sources in the configuration-space to phase-space distributions of the scattered
field, while the other one directly links the phase-space distribution of the incident
field to phase-space distributions of the scattered field. The scattering mechanism is
described in terms of local samplings of the object function which are localized in
the object domain according to the scattered- and incidence-processing parameters.
Applications in the field of inverse scattering may be expected to yield fast and
efficient algorithms, due to the capability of analytically evaluating~forward! scat-
tering Green’s functions. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1737812#

I. INTRODUCTION

The conventional spectral elements for wave synthesis are Green’s functions or plane w1

However, tracking theseglobal basis functions in inhomogeneous environments or through in
actions with objects is complicated, and the resulting representation integrals are spectra
tributed. Invoking constructive interference yields local observables in the form of ray fields
in many situations a wider spectral range of basis functions is required.2 Instead of using globa
basis functions that lead to distributed integrals, the representation may be localizeda priori by
using phase-space~PS! spectral representations in which thelocal basis wave-functions are beam
Each beam basis function then accounts for the radiation from a finite region in the source d
thereby leading to compact spectral representations.

Several PS expansion schemes for wave propagation have been introduced. Forpoint source
configurations the source field can be expanded into an angular spectrum of beams that e
from the source in all directions3 ~see also extension to the time-domain in Ref. 4!. A different
class of expansions applies forextended sourceconfigurations, utilizing a spectrum of shifted an
tilted beams which emanate in all directions from all points in the source domain. Several
native formulations for time-harmonic fields have been introduced:5–11 In Refs. 8, 10, and 11, they
have been placed within a unified PS format in which a PS distribution of beam propaga
locally matched to the source distribution. Recently, discrete PS spectral representations ha
introduced, based on the discrete Wilson basis12 and on frame theory.13

Inhomogeneous medium Green’s functions are of fundamental significance for modeling
propagation, inverse scattering, numerical methods, etc. Green’s functions are wave obje
link sources in the configuration space,r 8, to the configuration observation domain,r , by a
convolution integral. These wave objects are global in nature in the sense that each point inr 8
source domain contributes toall points in ther -observation domain, hence, the difficulty
evaluating of these wave objects, both analytically and numerically. Since modeling wave p
gation directly in the configuration-space implies global Green’s functions, transferring the
via phase-space~windowed-! Fourier transform facilitates the search afterlocalized Green’s func-
tion, which can be easily evaluated both asymptotically and numerically~see Ref. 3 and also
22320022-2488/2004/45(6)/2232/16/$22.00 © 2004 American Institute of Physics
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extension to the time-domain in Ref. 14!. Furthermore, since wave interactions with scatter
medium have been found to be local in nature, it is suggested that the evaluation of G
functions should not be carried out in the configuration-space but rather in aphase-space~PS!
transform domain, which extracts local radiation properties of the data and by that synth
local wave-medium interactions.15,16 The above considerations have been applied in prev
publications to the simple case of scattered field due to plane-wave incidence within the
approximation.15,16The present contribution constitutes a general framework for the synthesi
analysis ofinhomogeneousbackground scattering due to agenericincident wave with applications
to inverse scattering, integral equation representation for propagation and scattering, and

Following this strategy, we are concerned with the field scattered by an object whi
characterized by a wave velocity ofv(r ), where r5(x1 ,x2 ,z) is the conventional Cartesia
coordinate system, embedded in a homogeneous medium of save speedvo ~see Fig. 1!. The total
field u(r ), with a e2 ivt time-dependence assumed and suppressed, satisfies the scalar He
equation

@¹21k2~r !# u~r !50, k~r !5v/v~r !, ~1!

subject to Sommerfeld radiation conditionr̂•¹u(r )2 iku(r )5o(r 21), for r→`.
In the present investigation, the propagation of the fieldu(r ) in the inhomogeneous medium

is formulated by the use of an inhomogeneous backgroundvb(r ) wave speed profile, and th
deviation of the scattering mediumv(r ) from the backgroundvb(r ) is described by the so-calle
object function

O~r !5vo
2@v22~r !2vb

22~r !#. ~2!

The scattering object is illuminated by an incident field,ub
i (r ), defined by the initial field distri-

bution onz50 planeuo
i (x). Note thatuo

i (x) consists of incident~i.e., having sources inz,0 half
space! field constituents only, and is therefore, independent of the background medium.

We are concerned with applying PS~local! spectrum techniques to the scattered field, the
fore, the scattered field constituents shall be evaluated over planar apertures~observation planes!,
characterized byzs50, wherer s5(xs,zs) with xs5(x1

s ,x2
s) are the Cartesian coordinate syste

associated with the observation plane~see Fig. 1!. The scattered field over the observation pla
ub

s(xs)[@u(r )2ub
i (r )#uzs50 , satisfies the Lipman–Schwinger integral equation

ub
s~xs!5ko

2E d3r 8O~r 8!u~r 8!Gb~r s,r 8!uzs50 , ko5v/vo , ~3!

FIG. 1. Physical configuration; the object functionO(r ) is illuminated by an incident waveub
i (r ) defined by its initial field

distribution over thez50 plane, whereas, the scattered fieldub
s(r ) is measured on a data planezs50 between which the

object is situated.
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whereu5ub
i 1ub

s is the total field propagating invb background medium, andGb is the inhomo-
geneousbackgroundmedium Green’s function

@¹21kb
2~r !# Gb~r ,r 8!52d~r2r 8!, kb~r !5v/vb~r !. ~4!

Here and henceforth, subscriptb denotes background dependent constituents. Equation~3! de-
scribes the scattered field in terms of induced sources,O(r 8)u(r 8), which are radiating in the
perturbed mediumvb(r ). The backgroundvb-medium Green’s function,Gb(r ,r 8), propagates
these induced sources to the aperturezs50 via the spatial convolution integral in~3!. Relation~3!
has been used for the so-called ‘‘Distorted Wave Born Approximation,’’ in which the total
u(r 8) on the right-hand side of~3!, is replaced by the incident fieldub

i (r 8) propagating in the
background medium~see also discussion following~15!!. This approximation is used for itera
tively solving ~forward! propagation and scattering problems, and for inverse scattering. In
following sections we will aim at obtainingPS Green’s functionsthat link sources to scattere
fields in a PS transform domain, rather than in the configuration-space.

II. CONFIGURATION-SPACE TO PHASE-SPACE GREEN’S FUNCTIONS

In order to obtainPS Green’s functionsthat link sources to scattered PS field distributions,
shall project the scattered field distribution onto the PS~local! domain. In the next subsections, w
shall define the~global! plane-wave spectrum and PS transform of the scattered field which
required for the formulation of the PS Green’s function representation.

A. Space-wave-number „global … transforms

The wave number~plane-wave! spectrum,ũo(j), of an initial field distribution,uo(x), on a
planar surface is defined by the spatial Fourier transform

ũo~j!5E
2`

`

d2x uo~x!exp~2 iko j " x!, ~5a!

where, here and henceforth, plane-wave spectral distribution is denoted by superscript . I~5a!,
j5(j1 ,j2) is the normalized spatial wave number vector~with respect toko5v/vo), and x
5(x1 ,x2). Accordingly, the reconstruction of the initial field distribution is

uo~x!5S ko

2p D 2E d2j ũo~j! exp~ iko j " x!. ~5b!

The normalization with respect to the wave numberko anticipates extension to the time-domai
renderingj frequency-independent, with direct geometrical interpretation in terms of the spe
plane-wave propagation angles. For the sake of simplicity, integration limits are omitted o
integrals extending from2` to 1`.

B. Phase-space processing of the scattered field

In this section, we summarize the PS analysis and synthesis formalisms that paramete
scattered field on the initial planezs50 ~for further details refer to Ref. 11!. For the desiredlocal

spectral analysis of the field distribution, we generate thePS spectral distribution, Ub
s(X̄s), via a

windowed Fourier transform of the distribution in the configuration-space,

Ub
s~X̄s!5E d2xs ub

s~xs! Ws* ~xs;X̄s!, Ws~xs;X̄s!5ws~xs2 x̄s!exp@ ikoj̄ s
• ~xs2 x̄s!#, ~6!

where, here and henceforth, superscripts denotes scattered field constituents, the asterisk den
the complex conjugate andX̄s5( x̄s,j̄ s). Here,ws(xs) is a spatial window function, centered a
xs5(0,0). The vectorX̄s incorporates the configuration-spectrumPS coordinates( x̄s,j̄ s), whence
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Ub
s(X̄s) is referred to as aPS distributionof the initial field distributionub

s(xs) over thezs50
plane. The transform in~6! extracts fromub

s(xs) the local spectrum around thej̄ s-directed propa-
gation at the window centerx̄s. In typical propagation/scattering problems, the spectrum at a g
x̄s is localized about a preferred spectral directionj̄ s( x̄s) that describes the~stationary! direction
of propagation of the field atx̄s point ~the so-called Lagrange manifold!. Consequently, the PS
spectrumUs(X̄s) is localizeda priori about the subdomain (x̄s,j̄ s)5( x̄s,j̄ s( x̄s)) in theX̄s-domain
~see synthetic examples in Refs. 8, 11!. Note that the PS spectrum of the scattered field depend
the specific background medium profile,vb(r ), since according to~3!, both the inhomogeneou
medium Green’s function, the medium object function, and the incident field propagating i
vb(r ) medium, affect the scattered field.

The degree of spatial and spectral localization achieved by the PS transform can be qua
in terms of the spatial and spectral RMS widths of the window, defined, respectively, by

Dxs5
1

Ns F E d2xsuxsu2 uws~xs!u2G1/2

, ~7a!

Djs5
ko

2pNs F E d2jsuj su2 uw̃s~j s!u2G1/2

, ~7b!

wherew̃s(j s) is the plane-wave distribution~5a! of the windowws(xs), and

Ns5F E d2xsuws~xs!u2G1/2

5
ko

2p
F E d2jsuw̃s~j s!u2G1/2

~8!

is theL xs
2 norm ofws. Note thatDxsDjs>1/ko according to the uncertainty principle. The inver

PS transform is given by11

ub
s~xs!5S ko

2pNsD 2E d4X̄s Ub
s~X̄s! Ws~xs;X̄s!, ~9!

whereWs is given in~6!. This representation has been used to obtain a PS field representati
homogeneous medium in the 2D~Refs. 8, 17! and 3D~Ref. 11! frequency- and time-domains.

C. PS Green’s functions

In order to establish the locally-transformed Data–Object relation, we insert~3! into ~6!,
obtaining

Ub
s~X̄s!5ko

2E d3r 8O~r 8!u~r 8!Bb
s~r 8;X̄s!, ~10!

with the scattering propagators

Bb
s~r 8;X̄s!5E d2xs Ws* ~xs;X̄s!Gb~r s;r 8!uzs50 , ~11!

whereGb(r ,r 8) is the background medium Green’s function in~4! andWs(xs;X̄s) is given in~6!.
Equation~10! describes the local spectrum of the data in terms of a spatial convolution integ
the induced sourcesO(r 8)u(r 8) in the configuration-space, withBb

s(r 8;X̄s). Comparing relation
~10! with the Lipman–Schwinger equation in~3!, one finds that the two have essentially the sa
form. Therefore,Bb

s(r 8;X̄s) may be regarded asconfiguration-space to phase-space~CS2PS!
Green’s function~see Appendix A for operator representation of the CS2PS Green’s function!. The
CS2PS Green’s function propagates the contribution of the configuration-space induced sou
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the PS transform of the data over the observation plane. Also, from~11!, we note that the scat
tering propagators satisfy the wave equation in thevb background medium, and therefore, for
proper choice of window functionws, may be evaluated asymptotically using the method
scribed in Sec. IV C~see also Fig. 2!. Finally, usingu(r )5ub

i (r )1ub
s(r ), we rewrite~10! in the

form

Ub
s~X̄s!5Ui

s~X̄s!1Us
s~X̄s!, ~12!

where

Ui
s~X̄s!5ko

2E d3r 8O~r 8!ub
i ~r 8!Bb

s~r 8;X̄s!, ~13!

and

Us
s~X̄s!5ko

2E d3r 8O~r 8!ub
s~r 8!Bb

s~r 8;X̄s!, ~14!

in which Us
i andUs

s are the contributions of the sources induced by either the incident or scat
fiels, respectively. The above exact formalism may be used for the Distorted Wave Born Ap
mation ~DWBA! in which the total fieldu(r 8) in the exact formulation~3! is replaced by the
incident fieldub

i (r 8) propagating in the background medium. The DWBA is often used for solv
high contrast scattering iteratively, especially in inverse scattering scenarios. In the framew
the DWBA, we may use

Ub
s~X̄s!'Ui

s~X̄s!. ~15!

The scattering propagators,Bb
s(r 8;X̄s), result in a beam wave objects which, for the case of

Gaussian window in~23!, are Gaussian beams localized about ray trajectories~i.e., beam-axes!.
Therefore, the CS2PS mapping in~10! ~or ~13!!, is obtained by integrating over induced sourc
locally about beam-axes. The ray trajectories that describe the beam-axes depend on the
ground mediumvb and on the processing parameters:x̄s determines the emanating point of the r
from the data plane whilej̄ s sets its direction in ther 8 ~source! domain~see Fig. 2!.

FIG. 2. Configuration-space to phase-space Green’s function; the CS2PS Green’s function is obtained by a spa

gration of the induced sourcesu(r 8)O(r 8) multiplied by the scattering propagator,Bb
s(r 8;X̄s). This results in a link

between the total field propagating in the background medium, and a single phase-space constituent of the scatte

Ub
s(X̄s). The integration domain is limited to points near theBb

s beam-axis; thus, unlike the Lipman–Schwinger integ
~3!, the PS spectral distribution of the scattered field synthesizes wave interaction only near the beam-axis.
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The CS2PS representation in~10! or ~12!, has several advantages over the Lipman–Schwin
representation:~a! the inhomogeneous Green’s function,Gb(r ,r 8) is difficult to evaluate both
analytically and numerically, while the scattering propagators may be evaluated asympto
~see Sec. IV C!; ~b! the integration domain in~3! includes the entire object domain, since t
induced sources,O(r 8)u(r 8) exist in the entire object domain and contribute to each pointxs on
the observation plane. Using the CS2PS relation, the integration domain is limited to point
the local Green’s function~beam-! axis, since the beam exhibits Gaussian decay away from its
~see ~49! and Fig. 2!. Though the induced sources exist in the entire object domain, the
transform for a given set of PS variables,X̄s, extracts from the scattered field only those const
ents that are scattered in the directionj̄ s and are aimed at the pointx̄s; and finally,~c! there exist
applications in which the PS spectrum, rather than the scattered field, needs to be evaluated15,16In
such cases, direct evaluation using PS Green’s function in~10! is more efficient than the conven
tional route of possibly solving~3!, followed by PS processing via~6!.

The CS2PS mapping in~10! exhibitsa priori localization in the source domain only about th
coordinatestransverseto the beam-axis. Furthermore, the incident fieldub

i (r ), propagating in the
inhomogeneous background medium,vb(r ), has no closed form analytic expression. In the n
section, we shall apply local processing to bothscatteredand incidentfields, resulting ina priori
localization in all three coordinates, as well as analytical~asymptotic! expressions for the loca
incident propagators and Green’s functions.

III. PHASE-SPACE TO PHASE-SPACE GREEN’S FUNCTIONS

Following the strategy outlined in the previous section, we shall now consider applyin
processing to bothscatteredand incident fields. The PS transform operations over the scatte
field have been introduced in Sec. II B. Next we define, in a similar way, the operations rela
local processing of the incident field.

A. Local processing of the incident field

We generate theincident fieldPS spectral distribution in a way similar to~6!, i.e.,

Ui~X̄ i !5E d2x uo
i ~x! Wi* ~x;X̄ i !, Wi~x;X̄ i !5wi~x2 x̄i !exp@ ikoj̄ i

•~x2 x̄i !#, ~16!

where, as in~6!, wi(x) is a spatial window function. Here and henceforth, superscripti denotes
incidentfield constituents andX̄ i5( x̄i ,j̄ i) are the incidencePS coordinates. A key feature in~16!
is that, unlike the scattered local spectrum, the incident one isindependentof the propagation
medium,vb(r ). The window’s properties~RMS widths, etc.! have been presented in Sec. II
~relations~7!, ~8!!.

Using the inverse transform~as in~9! with s→ i ), the PS superposition~16! of the initial field
can be propagated into the regionz.0, giving

ub
i ~r !5S ko

2pNi D 2E d4X̄i Ui~X̄ i !Bb
i ~r ;X̄ i !, ~17!

whereNi is the L x
2 norm of wi ~similar to ~8!!, and thePS incident propagator Bb

i is the field
radiated by each PS window elementWi(x;X̄ i) in ~9!, and can therefore be expressed
Kirchhoff-type integration of the form

Bb
i ~r ;X̄ i !5E 2Wi~x;X̄ i !]z8Gb~r ;r 8!uz850 , ~18!

whereGb(r ;r 8) is thevb medium Green’s function, andWi is given in ~16!.
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The representation in~17! describes the radiated field as a continuous superposition of sh
and tilted beams, centered at and directed alongx̄ andj̄, respectively. The PS distributionUi(X̄ i)
defines the excitation strengths of these beams via local matching to the aperture fielduo

i (x).

B. PS Green’s functions

By inserting the incident field PS representation in~17! into ~13!, and inverting the order of
integration, one obtains

Ui
s~X̄s!5S ko

2

2pNi D 2E d4X̄i Ui~X̄ i !E d3r 8O~r 8!Bb
i ~r 8;X̄ i !Bb

s~r 8;X̄s!. ~19!

Equation~19! links contributions of PS initial field distribution to the PS scattered field distri
tion over thezs50 observation plane in the following manner: the windowed incident~initial-!
field distribution is propagated into ther 8 configuration-space via the local domain PS incide
propagatorsBb

i (r 8;X̄ i), which are beam-type wave objects. For a givenX̄ i , the beam emanate
from the processing-dependent point,x̄i , in a processing-dependent direction,j̄ i , into r 8 space.
The PS scattering propagators,Bb

i (r 8;X̄ i), accumulate, viad3r 8 integration, contributions of the
incident beams to the local scattered field PS distribution at pointx̄s on the observation plane
arriving from direction j̄ s. The PS spectral distribution of the scattered field is obtained
collecting these contributions from all beams emanating from the incidence plane points,
directions via thed4X̄i integration. The contribution of each incident-window element to
scattered PS spectrum is weighted by the PS distribution of the initial incident field.

In order to gain insight into the scattering mechanism, we rewrite~19! in the form

Ui
s~X̄s!5ko

2E d4X̄i Ui~X̄ i !Cb~X̄s,X̄ i !, ~20!

where

Cb~X̄s,X̄ i !5E d3r 8O~r 8!Lb~r 8;X̄ i ,X̄s!, ~21!

is hereby termed thephase-space to phase-space~PS2PS! Green’s function, andLb(r 8;X̄ i ,X̄s) is
a sampling window in ther 8-object domain

Lb~r 8;X̄ i ,X̄s!5S ko

2pNi D 2

Bb
i ~r 8;X̄ i !Bb

s~r 8;X̄s!. ~22!

Relation~20! presents the PS spectrum of the time-harmonic scattered field distribution in ter
local spatial samples ofO(r ) ~Fig. 3!. Since bothBb

i (r 8;X̄ i) andBb
s(r 8;X̄s) are beam-like wave

objects, the multiplication in~22! results in alocal scattering cellwhich exhibits a spatial Gauss
ian decay away from its center over the intersection of the incident and scattered beam-axe
Lb provides windowing along the beam-axis as determined by the PS parametersX̄ i andX̄s. The
above results imply that the interaction of the incident spectral beam with the object domain,
parameterized in terms of scattered Gaussian beam propagators~i.e., the scattered PS spectrum!,
occurs as if each scattered beam werespecularly reflectedfrom the local medium inhomogeneitie
~see Fig. 3 and further discussion following~56!!.

IV. GAUSSIAN WINDOWS

In this section, we examine the special case of Gaussian windows, which have bee
extensively for modeling beam propagation since they maximize the PS localization as impl
the uncertainty principle, and yield analytically trackable beam-type propagators.3,8,14,11
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A. Definitions

For locally ~PS-!processing the scattered field distribution, we use a Gaussian window w
spatial and spectral distributions are

ws~xs!5expF i

2
koxs Gs

•xsG , w̃s~j s!5
2p i

koGs expF2
i

2
koj s ~Gs!21

•j sG , ~23!

whereGs5GsI , with I being the unity matrix andGs5G r
s1 iG i

s is the window complex paramete
with G i

s.0. Anticipating extension to the time-domain, definition~23! has been constructed so th
the frequencyko5v/vo appears explicitly in the exponent, whileGs is frequency-independent.
These features may be used to construct collimated time-domain wave objects.Gs is a complex
symmetric matrix with ImGs positive definite, so that the quadratic phase in the exponent in~23!,
xs Gs

•xs5@(x1
s21x2

s2)#Gs, has a positive imaginary part that is generating a smooth Gaus
window which is strongest foruxsu50 and weakens asuxsu increases. The spatial and spect
localization can be quantified in terms of the spatial and spectral RMS widths of the win
given in ~7!, ~8!

~Ns!25p/~koG i
s!, Dxs51/AG i

sko5Djs /uGsu. ~24!

Note the uncertainty principleDxsDjs5uGsu/G i
sko>1/ko with an equality forG r

s50.
Following the definition in~23!, we shall define theincident field distribution processing

window, wi(x), having the same structure as in~23!, with the processing parameterG i , i.e.,

wi~x!5expF i

2
kox Gi

•xG , Gi5G i I , ~25!

etc. All the parametrization and analysis following~23! apply to wi by replacingGs→G i and
xs→x in ~23!–~24!.

B. Special case: The Born approximation

In order to gain insight into the PS2PS mapping process, we first consider the Born ap
mation in which the background medium is thehomogeneousmedium vo . In this case, the
background Green’s function is free-space Green’s function,G(r ,r 8)5exp(ikour2r 8u)/(4pur

FIG. 3. Phase-space to phase-space mapping phenomenology; the phase-space transform, applied to both in
scattered field distributions, synthesizes local reflections between isolated local cells,Ln , dynamically oriented and located

according to the phase-space processing parametersX̄ i andX̄s. The PS2PS Green’s function in~21! is obtained by a spatial
windowing of the object function with the scattering cells.
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2r 8u) and the PS propagators and scattering cells yield clear and simple asymptotic expre
The general scattering over an inhomogeneous background is discussed in Sec. IV C.

1. Asymptotic evaluation of the scattering propagators

The formal integral representation of the scattering propagators using Gaussian window
be obtained by inserting~23! into ~11!, with Gb5G being free-space Green’s function. Altern
tively, a plane-wave spectral representation may be more useful for asymptotic evaluati
order to obtain such a representation, we insert free-space Green’s function plane-wave s
representation1

G~r ,r 8!5S ko

2p D 2E d2j
1

22ikoz
exp@ iko~j•~x2x8!1zuz2z8u!# ~26!

into ~11! and invert the order of integration, yielding

Bb
s~r s;X̄s!5S ko

2p D 2E d2j
i

2koz
w̃s* ~j2 j̄ s!exp@ iko~2j•~xs2 x̄s!2zzs!#, ~27!

wherew̃s(j) is given in~23!. For the Gaussian~scattering! window in ~23!, the scattering propa
gator has been evaluated asymptotically in Ref. 15 with connection to the PS processing of
plane-wave excited scattering. It was found there that if the window is ‘‘large’’ on a wavele
scale,Bb

s(r s;X̄s) in ~27! yields collimated beam fields in ther 8-domain. Via asymptotic evaluation
and paraxial approximation, one obtains

Bb
s~r ;X̄s!5

i

2koz̄s
AdetGi~zb

s!

detGs~0!
expF ikoS 2zb

s1
1

2
xb

sGs~zb
s!•xb

sD G , ~28!

where

Gs~zb
s!5F ~2zb

s2 z̄s2
/Gs* !21 0

0 ~2zb
s21/Gs* !21G , ~29!

with z̄s5A12 j̄ s
• j̄ s. In ~28!, we utilize thebeam-coordinates(xb1

s ,xb2

s ,zb
s), defined, for a given

PS pointX̄s, by the rotation transformation

F xb1

s

xb2

s

zb
s
G5F cosq̄s cosw̄s cosq̄s sinw̄s 2sinq̄s

2sinw̄s cosw̄s 0

sinq̄s cosw̄s, sinq̄s sinw̄s cosq̄s
G F x1

s2 x̄1
s

x2
s2 x̄2

s

zs
G , ~30!

where (q̄s,w̄s) are the spherical angles associated with the unit-vector~see Fig. 4!

kR s5~ j̄ s,z̄ s!5~sinq̄s cosw̄s,sinq̄s sinw̄s,cosq̄s!. ~31!

Thus, thezb
s axis coincides with the beam-axis in the positive~outward! kR s direction; the trans-

verse coordinatesxb
s5(xb1

s ,xb2

s ) are rotated such thatxb2

s is parallel to thezs plane whilexb1

s lies

in the plane (j̄ s,kR s) with its positive direction defined so thatj̄ s
• x̂b1

s .0 ~see Fig. 4!. Furthermore,

the system (xb
s ,zb

s) is defined to be right-handed. Accordingly, the linear phasej̄ s
•(xs2 x̄s) im-

plied by the window function in thezs50 plane is operative in thexb1

s directionbut notin thexb2

s

direction. Consequently,j̄ s affects only theG11
s term in ~29! but not theG22

s term, thereby describ-
ing astigmaticbeams.
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The parameters of this astigmatic beam field, may be obtained by rewriting the dia
elements in~29! in the formG5diag(G1,G2) whereG1,2

s (zb
s)5(2zb

s1Z1,2
s 2 iF 1,2

s )21 with

Z1
s52 z̄s2

G r
s/uGsu2, Z2

s52G r
s/uGsu2, ~32!

are identified as the beamwaist location in the (zb
s ,xb1,2

s ) plane, and

F1
s5 z̄s2

G i
s/uGsu2, F2

s5G i
s/uGsu2, ~33!

are the correspondingcollimation lengths. Furthermore, thebeam widthsin the (zb
s ,xb1,2

s ) plane,

D1,2
s are found from ReGs(zb

s), giving

D1,2
s 5AF1,2

s /koA11~zb
s2Z1,2

s !2/Fs
1,2
2 , ~34!

and thephase front radius of curvature, R1,2
s may be obtained from ImGs(zb

s), giving

R1,2
s 5~Z1,2

s 2zb
s!1F1,2

2 /~Z1,2
s 2zb

s!. ~35!

The beam propagator astigmatism is caused by the beam tilt which reduces the effective
beam width in thexb1

direction. Note that the waist locationZ, the collimation lengthF as well
as the phase as a whole, are frequency-independent. However, beam widthD is frequency depen-
dent, being proportional toko

21/2. These properties identify the scattering propagators as ‘‘
diffracting’’ wave packets.18

2. Asymptotic evaluation of the incident propagators

Using Gaussian windows, the PS incident propagators,Bb
i (r ;X̄ i) may be evaluated by insert

ing free-space Green’s function into~18!. In the present context it is convenient to express
free-space propagators by the plane-wave representation

Bb
i ~r ;X̄ i !5S ko

2p D 2E d2j w̃~j2 j̄ i ! exp@ iko~j•~x2 x̄i !1zz!#. ~36!

FIG. 4. Scattering propagators’ local beam-coordinates; for a given PS spectral parameterX̄s, the corresponding phase

space scattering propagatorBb
s(r 8;X̄s) behaves like a collimated beam generated in ther 8-domain, whose axis reache

point x̄s on the z8s50 plane along the direction of the beam-axis unit-vectorkR s. The figure depicts the global fixed
(x18

s ,x28
s ,z8s) coordinate frame as well as the beam-centered coordinates (xb1

8s ,xb2
8s ,zb8

s) ~referenced to thez8s50 plane!,
which extend along the beam-axis and along the two orthogonal directions perpendicular to the beam-axis.
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If w is wide on a wavelength scale then the spatial and spectral distributions ofw̃ are localized
aroundx5 x̄i and j5 j̄ i , respectively. Consequently,Bb

i (r ;X̄ i) behaves like a collimated beam
whose axis emerges from thez50 plane atx5 x̄i with a direction

k̄ i5~ j̄ i ,z̄ i !, z̄ i5A12uj̄ i u2, ~37!

whereuj̄ i u25 j̄ i
• j̄ i . Next, the general formulation for the scattering process is evaluated fo

special case of the Gaussian windows in~25!. These windows enable closed form asympto
evaluation of the PS2PS Green’s function,Cb(X̄s,X̄ i), and the scattering cellLb . Via asymptotic
evaluation and paraxial approximation, one obtains11

Bb
i ~r ;X̄ i !5AdetGi~zb

i !

detGi~0!
expF ikoS zb

i 1
1

2
xb

i Gi~zb
i !•xb

i D G , ~38!

where

Gi~zb
i !5F ~zb

i 1 z̄ i 2/G i !21 0

0 ~zb
i 11/G i !21G , ~39!

with z̄ i5A12 j̄ i
• j̄ i . In ~38!, we utilize the beam-coordinates (xb1

i ,xb2

i ,zb
i ) defined, for a given

PS pointX̄ i , by the transformation in~30! with (q̄s,w̄s)→(q̄ i ,w̄ i) where (q̄ i ,w̄ i) are the spherica
angles associated with the unit-vector

kR i5~ j̄ i ,z̄ i !5~sinq̄ i cosw̄ i ,sinq̄ i sinw̄ i ,cosq̄ i !. ~40!

The parametrization of the beam field in~38! may be obtained in a similar manner to~32!–~35!.
The asymptotic beams in~38! facilitate insight into the role of the paraxial approximatio

these beams do not satisfy the boundary conditionBi(r ;X̄ i)uz505Wi(x;X̄ i), since near thez50
plane, the paraxial approximationzb

i @Axb1

i 21xb2

i 2 is invalid. The paraxially approximated~as-

tigmatic! beam is obtained by projecting the initial window onto the transverse planezb
i 50 over

which the initial effective beam width in thexb1

i direction is reduced by a factor ofz̄ i whereas the

width in thexb2

i direction remains unchanged. Therefore, the paraxial beam boundary cond

on a plane transverse to the beam propagation direction (zb
i 50) are

Bi~rb
i ;X̄ i !uz

b
i 505expF i

2
koxb

i Gparax
i

•xb
i G , ~41!

with

Gparax
i 5FG i / z̄ i 2 0

0 G i G . ~42!

Comparing the scattering propagator in~28! to the incident propagator in~38!, one finds that they
have a similar Gaussian beam type form. They differ mainly in the beam-axis directions: in~40!
the beam-axis is directed along theoutgoingdirection~i.e., towards the scattering object! whereas
in ~31!, the scattering propagators are directedaway from the object. Furthermore, the inciden
beam is forward propagating~i.e., accumulates positive phase along the beam-axis!, whereas the
2zb

s term in ~29! implies that the scattering propagators areback-propagatedinto the scattering
object domain.
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3. PS2PS mapping

Next, we examine the local scattering cell in ther 8 object domain,Lb(r 8;X̄), under the Born
approximation. By inserting~38! with ~28! into ~22!, one obtains

Lb~r 8;X̄ i ,X̄s!5
iko

3

8z̄s~pNi !2
AdetGi~zb

i !

detGi~0!
AdetGs~zb

s!

detGs~0!

3expF ikoS zb
i 2zb

s1
1

2
xb

i Gi~zb
i !•xb

i 1
1

2
xb

sGs~zb
s!•xb

sD G . ~43!

Relation~43! describes a local 3D spatial window; it is centered at the intersection of the inc
and scattering propagators axes, where bothxb

i andxb
s are zero, and exhibits a Gaussian decay

the transverse coordinatesxb
i and xb

s increase. The orientation of the cell is determined by
rotation transformation in~30! for incident and scattering propagators, and by the proces
parametersG i andGs. For the special caseG i5Gs, the exponent in~43! contains the sum ofxb

i

andxb
s . Since both are determined by a rotation transformation of the~30! kind, the result is a new

rotation transformation that bisects the incident directionkR i in ~37! with the scattering directionkR s

in ~31!. Therefore, the interaction of the incident spectral beam with the object domain,
parameterized in terms of scattered Gaussian beam propagators, occurs as if each scatter
werespecularly reflectedfrom the local medium inhomogeneities~see Fig. 3 and further discus
sion following ~56!!.

C. Propagation in the perturbed medium

Next, we consider the propagation of beam propagators~such asBb
i andBb

s) in an inhomo-
geneous mediumwith a wave velocityvb(r ).

1. Local beam-coordinates

An asymptotic solution for general beam-type propagation in an inhomogeneous med
given in Ref. 3~see also extension to the time-domain in Refs. 14 and 19!. It has been shown ther
that the field is propagating along a ray trajectory,S ~see Fig. 5!. Denotings as the arc length
along the ray trajectory, the ray local coordinates are defines by the unit-vectorst̂, n̂, n̂b5 t̂3n̂,
denoting the tangent, normal, and bi-normal ofS at a pointro(s) on S, respectively. They are
related by the Fernet equations20

ro85 t̂, t̂85Kn̂, n̂852K t̂1kn̂b , n̂b852kn̂, ~44!

where the prime denotes a derivative with respect tos, K is the curvature ofS, andk is its torsion.
The ray coordinates are nonorthogonal forkÞ0. A locally orthogonal coordinate system along t
ray may be obtain by transverse rotation of the unit-vectors20 ~see Fig. 5!

FIG. 5. Local beam-coordinates and ray trajectories; the beam propagator is propagating along ray trajectoryS. The local
orthogonal coordinate systemr5ro(s)1x1x̂11x2x̂2 , wheres is the arc length along the ray trajectory, is obtained by
rotation transformation in~45!.
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S x̂b1

x̂b2
D 5S cosu 2sinu

sinu cosu D S n̂
n̂b

D , ~45!

whereu~s! satisfies

u8~s!5k~s!. ~46!

Points near the ray may now be expressed as

r5ro~s!1nn̂~s!1nbn̂b~s!5ro~s!1xb1
x̂b1

1xb2
x̂b2

, ~47!

where the coordinate frame (s,xb1
,xb2

) is locally orthogonal with dr5 t̂hsds1 x̂b1
dxb1

1 x̂b2
dxb2

, with the Lame´ coefficient

hs512K~s!@x1 cosu1x2 sinu#512K~s!n. ~48!

2. Asymptotic evaluation of the scattering propagator

The ray coordinate system may now be applied to the scattering propagators,Bb
s(r 8;X̄s). Each

propagator arrives at the observation plane to pointx̄s from a directionj̄ s; thus, we associate a ra
coordinate system to each beam, so that ray parameterss, xb1

andxb2
are all processing param

eters (X̄s)-dependent, and are denoted asss5s(X̄s), xb
s5(xb1

(X̄s),xb2
(X̄s)), etc. The inhomo-

geneous medium in the high frequency-localized beam excitation regime may be modelled
wave speed along the excited ray and its second order transverse derivative matrixVb

(2)(ss),
whose (i j ) elements are]xbi

]xbi
vbuSs . Using the ray coordinate frame, the paraxially appro

mated scattering propagators may be evaluated in the high frequency regime, giving~see details in
Appendix B!

Bb
s~r s;X̄s!5

i

2koz̄s
Avb~ss!

vo

detQb
s~0!

detQb
s~ss!

exp@ iFb
s~r s;X̄s!#, ~49!

with

Fb
s~r s;X̄s!52F E

0

ss

ds8kb~s8!G1
1

2
kb~ss!xb

s Gb
s~ss!•xb

s , ~50!

wherekb(ss)5v/vb(r )urPSs is the wave number along the excited raySs. The transverse matrix
Gs(ss) is a complex symmetric 232 matrix with ImGs positive definite. One may calculateGs by
the standard procedure of solving the matrix Riccati equation, setting

Gb
s~ss!5vb~ss!Pb~ss!Qb

21~ss!, ~51!

and solving, alongSs, the first order system of coupled differential equations

Qb8~ss!5vb~ss!Pb~ss!, Pb8~ss!52vb~ss!22Vb
(2)~ss!Qb~ss!, ~52!

where the prime denotes a derivative with respect to the argument. Relation~52! is subject to the
initial conditions

Qb~0!5I , Pb~0!5voGs. ~53!

As in the special case of homogeneous background medium~i.e., the Born approximation! in ~28!,
one can show that ifGs(0) is symmetric with ImGs(0) positive definite, thenGs(ss) has these
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properties for allss, and thatQ(ss)Þ0 for all ss. Following the procedure in~32!–~35!, one
identifies ReGs(ss) and ImGs(ss) as the beam curvature and beam-amplitude matrices, res
tively. Note that the special case of the Born approximation in~28!, in which the background
medium is homogeneous, may be obtained by substitutingvb(r )5vo into ~49!–~53!.

The scattering propagators,Bb
s(r 8;X̄s), are backpropagating along the ray trajectory initiati

from the scattered data plane inzs50, from a processingx̄s-dependent point, in a processin
j̄ s-dependent direction. The propagator exhibits a Gaussian decay normal to the ray trajecto
in xb

s .

3. Asymptotic evaluation of the incident propagators

For the case of the incident propagators,Bb
i (r 8;X̄ i), in ~18!, each propagator emanates fro

point x̄i on the initial distribution plane, in a directionj̄ i ~see Fig. 3!; thus, the ray coordinate
associated with each processed beam are denoted accordingly ass i5s(X̄ i), etc. As in~49!, the
inhomogeneous medium may be modeled by the wave number along the excited ray,kb(s i), and
its second order transverse derivative matrixVb

(2)(s i) along the beam-axis. Using the ray coord
nate frame, the paraxially approximated scattering propagators may be evaluated in th
frequency regime in a manner similar to~49!, giving

Bb
i ~r ;X̄ i !5Avb~s i !

vo

detQb
i ~0!

detQb
i ~s i !

exp@ iFb
i ~r ;X̄ i !# ~54!

with

Fb
i ~r ;X̄ i !5F E

0

s i

ds8kb~s8!G1
1

2
kb~s i !xb

i Gb
i ~s i !•xb

i , ~55!

where the matrixGb
i (s i) is found by solving~52! along the incident beam-axiss iPS i with the

initial conditionsQb(0)5I andPb(0)5voGi .

4. PS2PS mapping

Next, we consider the scattering cell under Gaussian windows processing. By ins
Bb

s(r 8;X̄s) in ~49! with Bb
i (r 8;X̄ i) in ~54! into ~22!, we obtain the asymptotic expression for t

scattering cell

Lb~r 8;X̄ i ,X̄s!5
iko

8p2z̄sNi
A vb~ss!vb~s i !/vo

2

detQb
s~ss!detQb

i ~s i !
exp$ i @Fb

s~r s;X̄s!1Fb
i ~r ;X̄ i !#%, ~56!

whereFb
s andFb

i are given in~50! and~55!, respectively. Relation~56! implies the following: The
local scattering cell exhibits Gaussian decay normal to both the incident and scattering ray
tories ~i.e., in xb

i and xb
s). Thus, the window center is located at the intersection of the incid

spectral beamBb
i (r 8;X̄ i) and the scattered beam propagatorBb

s(r 8;X̄s) axes. Therefore, the loca
tion of the scattering cell is resolved by the PS processing parametersX̄s andX̄ i , which determine,
via ~30!, the PS propagators ray trajectories~see Fig. 3!.

The localization in the object domain as determined byLb(r 8;X̄ i ,X̄s) may be interpreted by
using fundamental wave physics. Consider an incident propagator emanating fromz50 plane
from point x̄i at angleū i along rayS i , arriving at thezs50 scattering plane at pointx̄s at angleūs.
In this case, the scattering propagator,Bb

s(r ;X̄s), corresponding tox̄s and ūs, backpropagates
along the same ray trajectorySs5S i , and the corresponding scattering cell exhibits Gauss
decayonly in the transverse coordinates (xb1

,xb2
) and not along the~shared! beam-axis. There-

fore, the integration domain in~21! is local only normal toS i , which indicates the stationar
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contribution to PS spectral distribution at that particularX̄s in accord with the Fermat principle

Furthermore, the phase accumulation alongS i , 2*0
s i

ds8kb(s8), when introduced into~21!, acts
as a ‘‘scaled Fourier transform’’ operating along the ray trajectory; thus, large contributions tCb

in ~21! arise from medium variationsalong S in accord with fundamental 1D wave physics.

V. CONCLUDING REMARKS

Inhomogeneous medium Green’s function in the phase-space domain were presented,
the phase-space spectral distributions of the field scattered by a high contrast object to a
time-harmonic incident field. Two forms of phase-space Green’s function were presented:~a! A
configuration-space to phase-spaceGreen’s function that links induced sources in the obj
domain to phase-space distributions of the scattered field is obtained by applying PS trans
the scattered field over planar surfaces; and~b! a phase-space to phase-spaceGreen’s function,
which directly links incident- to scattered-phase-space distribution, obtained by applying th
transform toboth incident and scattered field distributions,s. The scattering mechanism has be
described in terms of local samplings of the object function which are localized in the o
domain according to the scattered- and incidence-processing parameters. The special
Gaussian windows has been considered and asymptotic expressions for the PS Green’s fu
and scattering cells have been derived for both the Born approximated- and the ge
inhomogeneous medium profiles. The wave phenomenology associated with the PS Green
tions and the scattering mechanism have also been explored.

Equations~20!–~22! establish the building blocks for aninverse scatteringprocedure in which
the strong scatterer is found via iterative algorithm where at thenth iteration, the background
vb(r )5vn(r ) is known, and the sampling operation in~20! is inverted to evaluateO(r ), from
which the nextvn11 is found. This operation may be carried out for large scatterers since it ca
shown that under appropriate illuminating conditions, the operation in~20! may be reduced to 1D
samplings along the~synthesized! scattered ray trajectories.
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APPENDIX A: OPERATOR REPRESENTATION OF CS2PS GREEN’S FUNCTION

In order to establish the scattering propagators in~11! as Green’s functions, an operato
equation associated with the CS2PS is derived hereby. We define the Helmholtz op
(L1u)(r )

~L1u!~r ![@¹21kb
2~r !#u~r !, ~A1!

and the inverse-PS operator (L2U)(X̄)

~L2U !~X̄![S ko

2pNsD 2E d4X̄s U~X̄,zs! Ws~xs;Xs!, ~A2!

where U(X̄,zs) are PS distributions over planar surfaces of constantzs. Next, we define the
cascade operator (LU)(X̄)5@L1(L2U)(X̄)#@r #. Using ~9!, in ~1!, we identify the operator equa
tion

~LUs!~X̄s!52 f ~r !, f ~r !5ko
2O~r !u~r !. ~A3!

The Green’s function,Bb
s , associated with the operator Eq.~A3! is obtained by solving
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~LBb
s!~X̄s!52d~r2r 8! ~A4!

and the resolvent operator ofL, Us5(L21f )(r ) takes the form in~10!, thereby identifyingBb
s in

~11! as a Green’s function. Furthermore, by substituting~11! into ~A3! and inverting the order of
integration, one finds that the PS scattering propagators satisfy definition~A4!.

APPENDIX B: EVALUATION OF EQ. „49…

In order to establish Eq.~49!, we note that generic solution for beam-type wave obje
propagating in the background mediumvb(r ), along the raySs, is given by3,14,19

Bb
s~r !5AAvb~ss!

vo

detQb~0!

detQb~ss!
exp@ iFb~r !#, ~B1!

whereA is a constant, and the phase

Fb~r !56F E
0

ss

ds8kb~s8!G1
1

2
kb~ss!xb Gb~ss!•xb . ~B2!

Since, according to~11!, the scattering propagatorBb
s(r 8;X̄s) satisfies wave equation~1! with

v(r )5vb(r ), we seek for solutions in the form of~B1!. Under the paraxial approximation, th
initial distribution of the scattering propagator over thezs50 plane may be replaced by the initia
parameter matrix~see discussion following~42!!

Gparax
s 5FGs* / z̄s2

0

0 Gs* G , ~B3!

over thezb
s50 plane. Note that the projected initial paraxial distribution, which was origin

obtained for homogeneous medium, may serve for inhomogeneous propagation as well, as
the initial plane is embedded in an homogeneous medium, since in the high-frequency
Bremmer-type reflections are negligible, and the beam-type field is forward propagating alo
ray trajectories.3,14 Therefore, we may use the homogeneous background asymptotic field in~28!
with the above-mentioned initial distribution in the general solution~B1! yielding ~49!. Note that
solution~49! satisfies the radiation condition of sources in thezs,0 as exhibited by the propaga

tion phase accumulation of2*0
ss

ds8kb(s8) for ss,0 ~see also Fig. 4!.
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Quantizing the line element field
Mark D. Robertsa)
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A metric with signature (2111) can be constructed from a metric with signature
(1111) and a double-sided vector field called the line element field. Some of
the classical and quantum properties of this vector field are studied. ©2004
American Institute of Physics.@DOI: 10.1063/1.1738190#

I. INTRODUCTION

The difference between a Lorentzian and a positive definite metric can be expresse
double-sided vector fieldU called the line element field. This is done in Ref. 4, p.38, but th
only the ratio of vectors in the two spaces is considered; this appears to be the only refere
the line element field and it is from it that the nomenclature is taken. Thus the study of fie
extented objects in Lorentzian space–time is reduced to the study of the same object in a p
definite space and the study of the corresponding line element field. In particlular this can b
for gravity, where the positive defininte action is sometimes called the Euclidean action.3

In Sec. II some examples of positive definite metrics are presented and how to chang
signature via a vector field is shown; this is successively generalized to vanishing shift metri
then the general theory, next the first derivatives are studied, and expressed in terms of a
sion tensor. The second derivatives of the metric are governed by the Riemann tensor wh
be expressed by independent terms in the contorsion and Christoffel connection. In Sec.
Einstein–Hilbert action is decomposed into a positive definite part and a line element field
the line element field part is varied with repect to bothU andU̇. The variation with respect toU̇
gives the momentum. Quantization is implemented by replacing this momentum by a differ
operator to give a modified Klein–Gordon equation. Then the lowest order approximation
modified Klein–Gordon equation is calculated, and the wave function is calculated for
specific space–times.

Notation used includes the bracket notation of Ref. 4, p. 20,

2V(a,c)5Va,c1Vc,a52V(a;c)12$ca
e %Ve , 2V[a,c]52V[a;c]5Va,c2Vc,a , ~1!

the scalars constructed from the expansion and vorticity Ref. 4, p. 82,

vab[ha
chb

dV[c;d] , uab[ha
chb

dV(c;d) , sab[uab2 1
3 habu,

u[uabh
ab5Va;bhab5V a

a , v2[vabvab , s2[sabsab , ~2!

and vector fields

Ua for a general vector,

Va for a normalization of this to61, ~3!

Wa for a specific vector.

a!Electronic mail: mark.roberts@surrey.ac.uk, http://www.maths.surrey.ac.uk/personal/st/Mark.Roberts
22480022-2488/2004/45(6)/2248/10/$22.00 © 2004 American Institute of Physics
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II. CURVATURE
A. Relationship between a positive definite metric and a Lorentzian metric

For a given positive definite metricp
21

ab and vector fieldU11a , one can construct a Lorent
zian space–time with covariant metric

g
21

ab522
U

11

a U
11

b

U
11

2
1 p

11

ab , ~4!

This can be illustrated using the positive definite Schwarzschild metric

ds
11

251 S 12 2m
r

Ddx0
21 S 12 2m

r
D 21

1r 2dS2
2 , dS2

25du21sin2 udf2,

W
11

a5 SA12 2m
r

,0D , W
11

a W
11

a511, ~5!

or the positive definite Robertson–Walker metric

ds
11

251dx0
21R2dS3

2 , dS3
25dx21 f 2~x!~du21sin2 udf2!, W

11

a5~1,0!, ~6!

then using~4! the space–time metric is recovered. Instead ofU it is often convenient to work with
the unit vector

Va5
Ua

A6U2
, U25UaUb p

11
ab, ~7!

There is a problem of what the contravariant form ofg
21

, p andU should be. One can generaliz
~5! and~6! to a positive definite space with shift-free metric (Ni50); being shift-free implies tha
the metric has no crossgt i terms and can be represented thus

p
11

ab5~q2,pi j !, p
11

ab5 S 1
q2

,pi j D , det~ p
11

ab!5q det~pi j !,

W
11

a5~q,0!, W
11

a5~1/q,0!. ~8!

No cross metric termsgt i50, allowsWa to have only one component, if there is a cross te
gt iÞ0, then eitherWa or Wa or both, will have more than one component. Now one can const
a Lorentzian space–time with covariant metric

g
21

ab5~2p2,pi j !, det~ g
21

ab!52det~ p
11

ab!. ~9!

Consistency seems to require

g
21

ab522 V
11

a V
11

b1 p
11

ab5 S 2 1
p2

,pi j D . ~10!

Note that only cross terms inV occur so perhapsV
21

could have been used;~17! shows that this

is not the case. TakingV
21

a5 V
11

a and raising using this metric

W
21

a5 S 2 1
p

,0D , W
21

2521, ~11!

so that V
21

is a timelike vector. Similarly takingp
21

ab5 p
11

ab and raising indices using~10! gives

p
21

ab5 p
11

ab. ~12!
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Some products using the above tensors are

g
21

c
c [ g

21
ab g

21

bc5 p
11

c
a 22 V

11
a V

11

c ,

p
11

ab g
21

bc52 V
21

a V
21

c1 g
21

c
a ,

2 V
21

a5 V
21

b g
21

bc , V
21

a5 V
21

c g
21

c
a 52 V

21

c p
11

ab, p
11

ac V
21

c52 V
21

a. ~13!

Collecting this together consistency requires

g
21

ab522 U
11

a U
11

b

U
11

2
1 p

11
ab, ~14!

and

V
21

a5 V
11

a , V
21

a52 V
11

a, p
21

ab5 p
11

ab , p
21

ab51 p
11

ab . ~15!

B. Common pitfalls

The above system is new and slips can be made by relying on ones intuition from stu
spacetimes using the projection tensor, defined here at~18! below, or confusing the~21! and
~11! spaces. For any metric there is the equationgabg

bc5da
c , which can be contracted to

gabg
ab5dimension of the space54. The most common pitfall is to use this equation thus

45ga
a5

?

22VaVa1pa
a522VaVa14, ~16!

suggesting thatV is null, contrary to assumption. The correct calculation is

45 g
21

ab g
21

ab5S 22 U
11

a U
11

b

U
11

2
1pabD S 22

U
11

a U
11

b

U
11

2
1pabD 5S 4 U

11
2

U
11

2
2222D U

11
2

U
11

2
14,

~17!

which also serves as showing thatU
11

rather thanU
21

should be used forg
21

in ~14!. The projection
tensor is defined as

h
21

ab[ g
21

ab1
U

21

a U
21

b

2 U
21

2
5 p

11

ab22
U

11

a U
11

b

U
11

2
2

U
21

a U
21

b

U
21

2
5 p

21

ab1
U

21

a U
21

b

U
21

2
5 p

11

ab2
U

11

a U
11

b

U
11

2
,

~18!

where in this case the indices can be raised and lowered without change of form.

C. First derivatives of the metric

Having formed the metric the next problem is the properties of its first derivatives. To
the connectionG with g in terms of the connection$ % with p one has

2G
g

abc[gba,c1gca,b2gbc,a

52$abc%14U22~2Ua$bc
e %Ue2UaU (b;c)1UbU [c;a]1UcU [b;a] !

14U24Ue~2UaU (bU .;c)
e 2UbUcU .a

e !, ~19!
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where in the last two terms the bracket notation 1 forU [a;b] and U (a;b) is used; the covarian
derivatives on the rhs of~20! are formed withp. Raising with the metric~10!

G
g

bc
a [ g

21
adG

g

dbc , ~20!

so that

G
g

bc
a 5

p

H a
bcJ 1L

p

e
a

p

H e
bcJ 1K

p

bc
a , ~21!

it is found thatL50 implying that the system is covariant. From~21! there is the relation betwee
the covariant derivatives.

V
11

a;b
21

5 V
11

a;b
11

2Kab
c V

11

c , ~22!

The contorsion tensorK, define by~21!, can be expressed in terms of the auxiliary tensorsJ& M

2Kbc
a 518U22U (bJc)

a14U22UaU (bc)22U24Mbc
a ,

Jab[U [a;b]22U22UbUcU [a;c] , ~23!

Mbc
a [~U2!aUbUc1~U2!bUaUc1~U2!cU

aUb22U22UaUbUcU
e~U2!e ,

where (U2)c5(UaUa)c52UaUa;c . There is no term in the accelerationsU̇a, U̇b, or U̇c, M
vanishes ifU is a constant vector. Some properties of the contorsionK are

Kac
a 50, Kba

a 50, Kbc
a 5Kcb

a , UbUcKbc
a 50,

UaKbc
a 52Ubc22U22~U (bU̇c)1UeU (bU .c)

e !12U24UbUcUeU̇
e, ~24!

the dot being formed with thep covariant derivatives; such systems involving a connection an
contorsion occur repeatedly in the study of curvature; for instance, in geometries involving to
and/or metricity such as the geometries of Weyl and Schouten,11 the study of a conformal factor
and the study of weak metric perturbations.9 Alternatively the contorsion can be expressed
terms of the decomposed vector field for a~21! Lorentzian space–time defineu as in ~2! and

vab[ha
chb

dV[c;d] , uab[ha
chb

dV(c;d) , sab[uab2 1
3 uhab , Ẋabc . . . [VeXabc . . . ;e ,

~25!

which allow the covariant derivative of a~21! space–time to be decomposed

Ua;b5uab1vab1U22UbU̇a1U22UaUeUeb2U24UaUbUeU̇e , ~26!

choosing a constant vector field this reduces to Ref. 4, Eq.~4.17!. Now Eqs.~24! are in the~11!
space and~25! are in a~21! space–time; they can be related using the projection tensor~18!. The
projection tensor~18! can be applied to~26! to give the projections of the covariant derivative

ha
chb

dU (c;d)5U (a;b)2U22U (aU̇b)2
1
2 U22U (a~U2!b)1

1
2 U24UaUb~U̇2!,

ha
chb

dU [c;d]5U [a;b]2U22U̇ [aUb]2
1
2 U22U [a~U2!b] . ~27!
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To transfer these quantities to the~11! space, the projection tensor~18! shows that it is only

necessary to note that the negative quantityU25 U
21

a U
21

a,0 is changed to the positive quantit

U25 U
11

a U
11

a.0, and also that the covariant derivative in the expansion is changed using~22!.
UeKab

e is 22 timesuab so that the sign ofuab in the ~11! space is the negative of the form i
~27! and from~25!. In particular the expansion~2! becomes

2u5U .;a
a 2

~U̇2!

U2 . ~28!

Using ~24! and ~27! the contorsion tensor is found to be

Jab5vab2
U̇ (aUb)

U2 1
U (a~U2!b)

2U2 , Kbc
a 5

4

U2 U (bvc)
a2

2

U2 Uaubc22AU2S U̇a

AU2D UbUc

U4 .

~29!

D. Second derivatives of the metric

The second derivatives are governed by the Riemann tensor, the Riemann tensor con
with a Lorentzian metric can be decomposed into the Riemann tensor constructed with a p
definite metric and the contorsion

R
g

a
bcd5R

p
a

bcd12K .[dubu;c]
a 12K .[cueu

a K .d]b
e , ~30!

such decompositions of the Riemann tensor also happen for several other systems:~1! Weak field
gravity requires that the metric be of the formgab5hab1wab , whereh is a flat metric andw is
a small adjustment to it, in this case the connection constructed fromw is a contorsion tensor, an
the analog of~30! is of the formRie5]K1K3K, ~2! weakly perturbed gravity requires that th
metric be of the formg5ḡ1w, whereḡ is a given background metric andw is a small adjustmen
to it, again the connection constructed fromw is a contorsion tensor, and the analog of~30! is of
the formRie5R īe1]K1K3K, cf Eq. ~111!,4 ~3! a metric conformal to another Eq.~2.28!4 ĝ
5V2g, gives a contorsion given by the last term of Eq.~2.29!,1 and the analog of~30! is of the
form Rîe5V22Rie1]K, ~4! different geometries such as those of Weyl and Schouten11 also
have connections which split up into a Christoffel part and a contorsion part and then
equations of the same form as~30!. The important thing is that these examples and~30! all have
no crossL term in ~21!, L50 showing that the connection can be split into a Christoffel part
a contorsion part and nothing else.

III. QUANTIZATION

A. The Lagrangian

Contracting the expression for the Riemann tensor~30! and using~9! the Einstein–Hilbert
Lagrangian becomes

LH5A2gR
g

5Adet~pab!@R
p

12K .[bu.u;a]
ab 12K .[aueu

a K .. b
eb] #5L11L21L3 , ~31!

L1 is given by the first term in the square brackets@#, and is the positive definite action, sometim
called the Euclidean action and this has previously been studied;L2 & L3 are given by the second
and third terms in the square bracket@#, and are new and they are easiest to describe in term
the decomposed vector quantities~25! thus
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L252
2

U2 ~ u̇2u2!22S 1

AU2 S Ua

AU2D °D
a

[ l 11 l 21 l 3 ,

~32!

L35
4v2

U2 2
4

U4 F S Ua

AU2D °

UaG 2

[ l 41 l 5 , v2[vabvab ,

where (U2)° is the absolute derivative ofU2, explicitly (U2)°5(U2);aUa. Expanding~32! l 5

50. Varying with respect toU,

d l 1

dUc 522U22uc12~~U22UeU2!e!c22U22~U22Ue!e~U2!c24Uc~U22~22U f ! fU
e!e

24U24~U22Ue!e~U2!°Uc ,

d l 2

dUc 54~U22u!c14U24u~U2!c28Uc~U24uUe!e28U26~U2!°Uc , ~33!

d l 4

dUc 528~U22vce!e14U22vce~2U̇e2U2~U2!e!,

d l 3

dUc 5
d l 5

dUc 50.

B. The momentum

In order to produce momenta it is necessary to vary with respect toU̇c

d l 1

dU̇c
52

4uUc

U4
,

d l 2

dU̇c
518

uUc

U4
,

d l 3

dU̇c
5

d l 3

dU̇c
5

d l 3

dU̇c
50. ~34!

Therefore

Pa5
d

dU̇a
~ l 11 l 2!5

4uUa

U4
. ~35!

This equation is not fully invertible in terms of the momentaP thusUa5 f (P)Pa , but is partially
invertible in terms of both the momentaP and the vector fieldU thusUa5 f (P,U)Pa ,

Ua

AU2
5

Pa

AP2
, ~36!

and partially invertible in terms of the expansionu and momentaP thusUa5 f (P,u)Pa ,

Ua5~4u!1/3P2 4/3Pa . ~37!

~35! gives the constraint

l5PcP
c2

16u2

U6 . ~38!

This is the only constraint so that quantization can be achieved via
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Pa→2 i\¹a , ~39!

with U and henceu remaining unchanged. Plancks constant\ is of the same dimensions as actio
explicitly Mass3Length23Time21, so that~39! has introduced a ‘‘mass’’ into the system.

C. The modified Klein–Gordon equation

Applying ~39! to the constraint gives a modified Klein–Gordon equation

lc52\2S h1
16u2

\2U6Dc50. ~40!

D. Approximation

Defining

S[2 i\ ln c ~41!

and then substitutingS from ~41! for c everywhere in~40!, the modified Klein–Gordon equatio
~40! becomes

2 i\S.a
s 1SaSa2

16u2

U6 50, ~42!

expanding in terms of\ using

Sa5Pa1\ea1O~\2!, ~43!

the \0 term of ~43! is just the constraint~38!, the\1 term of ~43! is

2ıP .a
a 12eaPa50, ~44!

For u50, the Lagrangiansl 1 andl 2 vanish as doesP, so that to lowest order\0, Sa50, implying
that the wave functionc is a constant to lowest order, thus foru50 the wave function has no
dynamical information corresponding to the classical theory.

U remains unchanged during quantization, but once a solutione to ~43! is known, one would
hope to be able to calculates the\1 order correction toU and henceg. There is a problem with
trying this, asP is only partially invertible~36! and~37! this cannot be done without an addition
assumption. Here this assumption is thatu remains negligible to order\1 in the quantum theory,
then it is possible to find the correction toU from ~37!, denoting the quantum quantities with
‘‘ * ’’ U becomes

Ua* 5~4u!1/3S4/3Sa . ~45!

Substituting forS using ~43! and expanding

Ua* 5Ua1
\

4

U4

u S ea2
8

3

Uce
c

U2 UaD1O~\2!, ~46!

with this value ofU* it is now possible to investigate whether the assumption thatu is negligible
by noting
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2u* [U .;a* a2U* 22~U* 2!°52u1
\

4 FU4

u S ea2
8

3
U22UcecU

aD G
a

1
5\

6 FU22S U4eaUa

u D °

2
~U2!°eaUa

u G1O~\2!. ~47!

Substituting forU* the change in the metric is

gab* 5gab1
\

u
~Uce

cUaUb2U2U (aeb)!1O~\2!. ~48!

The change in the metric can also be directly calculated from the wave function

gab* 2gab22U22UaUb522U22Ua* Ub* 522S2 4/3SaSb52\2~2 i\ ln c!2 4/3c22cacb .
~49!

E. Examples of exact spaces

The modified Klein–Gordon equation~40! can be studied for particular examples, for e
ample, in Robertson–Walker space–time~6! it is

c0013
R0

R
c01

144

\2

R0
2

R2 c2
l ~ l 12!

R2 c50, ~50!

where the last term comes from decomposing the ‘‘spatial’’ part into spherical harmonics R
Sec. IV A. For the Milne universe, which is flat whenk521,8 R5t and ~50! has solution

c5At216A12a, a5
144

\2 2 l ~ l 12!, ~51!

so thatg* is of the form f \2/t2. For deSitter space Ref. 4, p.125,R5exp(AL/3t) and whenl
50 50 has solution

c5A exp~ 1
2A3L~216A1216/\2!t !, ~52!

so thatg* is of the form f \2.

IV. CONCLUSION

A. Things not looked at

Things not looked at here include:

~1! Any relationship to analytic continuation, whether for quantum field theory on curved s
time or for the energy condition Ref. 4, p. 89;

~2! any classical or quantum detailed mechanism or perturbation whereby a positive definite
could change to a Lorentzian space–time, for example, in the early universe;

~3! the connection with the Kubo–Martin–Schwinger2 condition where the transformationt
→ i t has thermal properties;

~4! a quantized line element field might fluctuate, this fluctuation could be thought of in term
the tetrad rather than the metric, leading to fluctuating null cones, compare Penrose,6

~5! any comparison with the Toll12–Scharnhorst10 effect, where fluctuations in the quantum ele
trodynamical vacuum cause fluctuations in the speed of light;

~6! any comparison with the average size of these fluctuations, compare Elliset al.1 and Yu and
Ford;13
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~7! not only can the difference between the two signatures be thought of as a vector field, a
difference between tensors constructed from the resulting metrics is tensorial, the B
identities will also differ by a tensorial object constructed from the line element field and
gives another way of investigating conservation laws for the two signatures, compare R

B. The classical theory

The transformation between some specific positive definite spaces and Lorentzian spa
can be achieved via a line element fields 5 and 6. This can be generalized to shift-free an
arbitrary metrics; there is a problem of what the contravariant form of the metric shoul
consistency requires~14!. Once the Lorenztian metric has been expressed in terms of a po
definite metric and a vector field it is possible to study first derivatives. In~21! L50 so that the
Lorentzian connection splits up into the positive definite connection and a contorsion term
structed from the line element fieldU; this is similar to many other systems, such as tho
involving Schouten11 geometries and weak perturbations;9 that L50 perhaps is not surprising a
the decomposition of the Lorentzian metric is covariant. The form of the contorsion tenso~24!
involves a lot of terms when expressed solely in terms ofU, however, using rotation and shear
takes a simpler form~29!. Covariant derivatives in Lorentzian spacetime and the positive defi
space are equated via~22!, so that the difference is expressible asVcKab

c and this is proportional
to the expansion ofU, changing spaces has the effect of changing the sign of the expan
Second derivatives of the line element fieldU can be calculated once the contorsionK is known
via ~30!.

C. The quantum theory

To quantize the system it is necessary to have more information, such as what the Lagr
and momentum are. Here the vacuum-Einstein–Hilbert Lagrangian is assumed~31!, and further
that it can be decomposed into a positive definite part and a line element field part which
well-defined and useful variations. Variations with respect to the metric and the line elemen
~33! can be done, however, of more use is variation with respect toU̇ which is taken to give a
momentum~35!; variations with respect to dotted quantities also occur in the quantizatio
perfect fluids.7 The momentum obeys the constraint~38!. The two-sided nature ofU, the Lorent-
zian metric is invariant underU→2U; and the ability to useU of different sizes to construct th
Lorentzian metric do not seem to lead to further constraints. Quantization can be achiev
~39!. The problem with this is that it introduces a mass into the system. The classical theory
a theory involving length and time, however, Planck’s constant has dimensionsMass
3Length23Time21, so that using it in quantization introduces new quantities of dimen
Mass. Theories, such as the vacuum-Einstein equations, involving just length and time are u
reversible, in the sense that the sign on the time coordinate can be changed and the field eq
still obeyed; however, this is no longer necessarily the case once quantities of dimensions o
have been introduced, as illustrated by the fact that things fall down not up. This is not o
problem for the theory under study here, similarly using\ in quantization of the vacuum-Einstei
equations will introduce a mass. The specific wave functions~51! and~52! illustrate the above, of
the two terms in the square root one is dimensionless ‘‘1’’ and the other is dimensionful
proportional to\22. A way of avoiding the above is to divide\ by the Planck mass or perhaps a
arbitrary mass so that objects of dimensions of mass no longer occur in the quantum syste
by analogy with the point particle one could perhaps pre-multiply the line element field Lag
ian by an arbitrarym, but on the analysis so far such anm does not occur naturally, perhaps
might do so in an extended theory which in some way incorporates thatU is not necessarily of
unit size. Any given Lorentzian metric can be constructed from many different sets of a po
definite metric and a line element field. For example flat space–time can be expressed
Minkowski metric and this can be constructed from a diagonal metric and unit expansion fre
element field; also flat space–time can be expressed by the Milne universe~51! for which U has
expansion. In the first case there is no expansion and hence no momentum or quantum th
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the second there is with wave function~51!. Thus it might be that ‘‘Euclidean’’ quantum gravit
expresses the full quantum nature of a Lorentzian space–time if the relating line element fi
expansion free; however, the main application of such theories is to the early universe
expansion is the most salient feature.
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The relativistic Dirac–Morse Green’s function
A. D. Alhaidaria)

Physics Department, King Fahd University of Petroleum and Minerals,
Box 5047, Dhahran 31261, Saudi Arabia
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Using a recently developed approach for solving the three-dimensional Dirac equa-
tion with spherical symmetry, we obtain the two-point Green’s function of the
relativistic Dirac–Morse problem. This is accomplished by setting up the relativis-
tic problem in such a way that makes comparison with the nonrelativistic problem
highly transparent and results in a mapping of the latter into the former. The
relativistic bound states energy spectrum is easily obtained by locating the energy
poles of the Green’s function components in a simple and straightforward
manner. ©2004 American Institute of Physics.@DOI: 10.1063/1.1738950#

INTRODUCTION

Despite all the work that has been done over the years on the Dirac equation, its
solutions for local interaction has been limited to a very small set of potentials. Since the or
work of Dirac in the early part of last century up until 1989 only the relativistic Coulomb prob
was solved exactly. In 1989, the relativistic extension of the oscillator problem~Dirac–Oscillator!
was finally formulated and solved by Moshinsky and Szczepaniak.1 Recently, and in a series o
articles,2–6 we presented an effective approach for solving the three-dimensional Dirac equ
for spherically symmetric potential interaction. The first step in the program started with
realization that the nonrelativistic Coulomb, oscillator, andS-wave Morse problems belong to th
same class of shape invariant potentials which carries a representation of so~2,1! Lie algebra.
Therefore, the fact that the relativistic version of the first two problems~Dirac–Coulomb and
Dirac–Oscillator! were solved exactly makes the solution of the third, in principle, feasi
Indeed, the relativistic Dirac–Morse problem was formulated and solved in Ref. 2. The b
state energy spectrum and spinor wave functions were obtained. Taking the nonrelativisti
reproduces the familiar Schro¨dinger–Morse problem. Motivated by these findings, the same
proach was applied successfully in obtaining solutions for the relativistic extension of yet an
class of shape invariant potentials.3 These included the Dirac–Scarf, Dirac–Rosen–Morse I an
Dirac–Pöschl–Teller, and Dirac–Eckart potentials. Furthermore, using the same form
quasiexactly solvable systems at rest mass energies were obtained for a large class of po
relativistic potentials.4 Quite recently, Guoet al. succeeded in constructing solutions for the re
tivistic Dirac–Woods–Saxon and Dirac–Hulthe´n problems using the same approach.7 In the
fourth and last article of the series in our program of searching for exact solutions to the
equation,5 we found a special graded extension of so~2,1! Lie algebra. Realization of this supe
algebra by 232 matrices of differential operators acting in the two component spinor space
constructed. The linear span of this graded algebra gives the canonical form of the radial
Hamiltonian. It turned out that the Dirac–Oscillator class, which also includes the Dirac–Cou
and Dirac–Morse, carries a representation of this supersymmetry.

The central idea in the approach is to separate the variables such that the two coupl
order differential equations resulting from the radial Dirac equation generate Schro¨dinger-type
equations for the two spinor components. This makes the solution of the relativistic problem
attainable by simple and direct correspondence with well-known exactly solvable nonrelat
problems. There are two main ingredients in the formulation of the approach that makes it

a!Electronic mail: haidari@mailaps.org
22580022-2488/2004/45(6)/2258/8/$22.00 © 2004 American Institute of Physics
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The first is a unitary transformation of the Dirac equation which, of course, reduces to the id
in the nonrelativistic limit. The second is the introduction, in a natural way, of an auxi
potential component which is constrained to depend, in a particular way, on the indepe
potential function of the problem.

The main objective in all previous applications of the approach was in obtaining the dis
energy spectrum and spinor wave functions.2–7 In this article, however, we demonstrate how
utilize the same approach in generating the two-point Green’s function which is an impo
object of prime significance in the calculation of physical processes where relativistic e
become relevant. The main contribution here is in obtaining the relativistic Green’s functio
the Dirac–Morse problem, which is then used to give the relativistic bound states energy sp
in a simple and direct manner. For completeness and clarity of presentation, we start by g
brief account of how to construct the Green’s function of the nonrelativistic problem by tr
forming that of another~reference! problem which belongs to the same class. We take the th
dimensional isotropic oscillator as the reference problem and use ‘‘point canonical transf
tion’’ ~PCT!8,9 to map it into the Green’s function of the nonrelativisticS-wave Morse problem.
This is possible because, as stated above, the two problems belong to the same class whic
a representation of the dynamical symmetry group SO~2,1!.

MAPPING OF GREEN’S FUNCTION UNDER PCT

The nonrelativistic radial Green’s functionG,(r,r8,E) of the three-dimensional isotropic os
cillator satisfies the following time-independent Schro¨dinger equation:

F2
d2

dr2 1
,~,11!

r2 1v4r222EGG,~r,r8,E!522d~r2r8!, ~1!

where, is the angular momentum quantum number,v is the oscillator frequency, andE is the
nonrelativistic energy. The nonrelativistic Green’s function of theS-wave Morse problem, on the
other hand, satisfies the following equation:2,9

F2
d2

dr 2 1A2e22mr2A~2B1m!e2mr22EGgm~r ,r 8,E!522d~r 2r 8!, ~2!

wherem is the potential range parameter.A andm are real and positive. It is to be noted that o
definition of the radial Green’s function differs by a factor of (rr 8)21 from other typical defini-
tions. Now, we apply to Eq.~1! the following transformation:

r5q~r !, G,~r,r8,E!5p~r !gm~r ,r 8,E!p* ~r 8!. ~3!

If the result is a mapping into Eq.~2! then this transformation will be referred to as point canoni
transformation~PCT!. The action of~3!, for real functions, on Eq.~1! maps it into the following
equation:

F2
d2

dr 2 1S q9

q8
22

p8

p D d

dr
1S q9

q8

p8

p
2

p9

p D1,~,11!S q8

q D 2

1~q8!2~v4q222E!Ggm~r ,r 8,E!

52
2~q8!2

p~r !p~r 8!
d~q~r !2q~r 8!!, ~4!

where the primes on the transformation functionsp and q denote derivatives with respect tor .
Identifying this with Eq. ~2! and using the relationq8d(q(r )2q(r 8))5d(r 2r 8) gives p(r )
5Adq/dr and results in the following constraint on the transformation~3! to be a PCT:

A2e22mr2A~2B1m!e2mr22E5~q8!2~v4q222E!1,~,11!S q8

q D 2

1
3

4 S q9

q8D
2

2
1

2

q-
q8

. ~5!
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This constraint is solved by taking the PCT functionq(r )5e2mr /2, which will result in the
following PCT parameter map:

v2→ 2A

m
,

E→ 4A

m S B

m
1

1

2D , ~6!

,→ 2

m
A22E2

1

2
.

It should be noted that since PCT is a map of one equation into another, then the above re
parameter relation is a ‘‘correspondence’’ between the parameters of the two problems and
equality of the parameters. That is we obtain, for example, the corresponden,

→ (2/m) A22E2 1
2 but not the equality,5 (2/m) A22E2 1

2 . In fact, the right-hand-side term i
continuous while the left is, of course, not.

Now, the nonrelativistic radial Green’s function for the three-dimensional oscillator is
known.10 It could be written as

G,~r,r8,E!5

GS 2,13

4
2E/2v2D

v2G~,1 3
2!

1

Arr8
ME/2v2,@~2,11!/4#~v2r,

2 !WE/2v2,@~2,11!/4#~v2r.
2 !,

~7!

whereG is the gamma function andr, (r.) is the smaller~larger! of r andr8. Ma,b andWa,b

are the Whittaker functions of the first and second kind, respectively.11 The two mappings~3! and
~6! transform this Green’s function into the following one for the nonrelativistic Morse proble12

gm~r ,r 8,E!5

GS 1

m
A22E2B/m D

AGS 11
2

m
A22ED em(r 1r 8)/2M~B/m! 1 ~1/2! , ~1/m! A22ES 2A

m
e2mr .D

3W~B/m! 1 ~1/2! , ~1/m! A22ES 2A

m
e2mr ,D . ~8!

The switching of arguments of the Whittaker functions is becauser, (r.) corresponds to
r . (r ,), respectively. Next, we set up the relativistic problem using the approach ment
above to obtain the relativistic extension of this Green’s function for the Dirac–Morse prob

SOLVING THE DIRAC EQUATION

In atomic units (m5\51) and taking the speed of lightc5|21, we write the Hamiltonian
for a Dirac spinor coupled to a four-component potential (A0 ,AW ) as follows:

H5S 11|A0 2 i|sW •¹W 1 i|sW •AW

2 i|sW •¹W 2 i|sW •AW 211|A0
D , ~9!

where | is the Compton wavelength scale parameter\/mc and sW are the three 232 Pauli
matrices. It is to be noted that this type of coupling does not support an interpretation of (A0 ,AW )
as the electromagnetic potential unless, of course,AW 50 ~e.g., the Coulomb potential!. That is, the
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wave equation with this Hamiltonian is not invariant under the usual electromagnetic g
transformation. Imposing spherical symmetry and writing (A0 ,AW )5@|V(r ), r̂W(r )#, where r̂ is
the radial unit vector, gives the following two component radial Dirac equation:

S 11|2V~r !2« |Fkr 1W~r !2
d

dr G
|Fkr 1W~r !1

d

dr G 211|2V~r !2«
D S f 1~r !

f 2~r ! D50, ~10!

where« is the relativistic energy andk is the spin–orbit quantum number defined ask56( j
1 1

2) for ,5 j 6 1
2. V(r ) and W(r ) are real radial functions referred to as the even and

components of the relativistic potential, respectively. Equation~10! results in two coupled first
order differential equations for the two radial spinor components. Eliminating one compone
favor of the other gives a second order differential equation. This will not be Schro¨dinger-type
~i.e., it contains first order derivatives! unlessV50. To obtain Schro¨dinger-type equation in the
general case we proceed as follows. A global unitary transformationU(h)5exp@(i/2) |hs2# is
applied to the Dirac equation~10!, whereh is a real constant parameter ands2 is the 232 matrix
( i 0

0 2 i). The Schro¨dinger-type requirement relates the two potential components by the linear
straint V(r )5z@W(r )1k/r #, wherez is a real parameter which is related to the transformat
parameterh by sin(|h)56|z. This results in a Hamiltonian that will be written in terms of on
one arbitrary potential function; either the even potential componentV(r ) or the odd oneW(r ).
Moreover, the solution of the problem is obtained for a given value ofk. The unitary transforma-
tion together with the potential constraint map Eq.~10! into the following one, which we choos
to write in terms of the even potential component:2,3

S C2«1~161!|2V |S 7z1
C

z
V2

d

dr D
|S 7z1

C

z
V1

d

dr D 2C2«1~171!|2V
D S f1~r !

f2~r ! D50, ~11!

whereC5cos(|h) and (f2
f1

)5U( f 2
f 1

). This gives the following equation for one spinor compone
in terms of the other

f7~r !5
|

C6« F2z6
C

z
V~r !1

d

dr Gf6~r !. ~12!

On the other hand, the resulting Schro¨dinger-type wave equation for the two spinor compone
reads

F2
d2

dr 2 1S C

z D 2

V27
C

z

dV

dr
12«V2

«221

|2 Gf6~r !50. ~13!

In all relativistic problems that have been successfully tackled so far, Eq.~13! is solved by
correspondence with well-known exactly solvable nonrelativistic problems.2–7 This correspon-
dence results in two parameter maps~one for each spinor component! relating the relativistic to
the nonrelativistic problem. Using these maps and the known solutions~energy spectrum and wav
functions! of the nonrelativistic problem one can easily and directly obtain the relativistic en
spectrum and spinor wave functions. An alternative, but equivalent, approach to the one
above is to postulate the one-parameter two-component equation~11! as the relativistic wave
equation and show that in the nonrelativistic limit (|→0) the nonrelativistic problem is recov
ered. However, in this case, one cannot claim that the relativistic problem is a unique exten
the nonrelativistic one.
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RELATIVISTIC GREEN’S FUNCTION

Now to the issue at hand—the Green’s function. The relativistic 434 two-point Green’s
function G(rW,rW8,«) satisfies the inhomogeneous matrix wave equation (H2«)G52|2d(rW
2rW8), where the energy« does not belong to the spectrum ofH. For problems with spherica
symmetry, the 232 radial componentGk(r ,r 8,«) of G satisfies (Hk2«)Gk52|2d(r 2r 8),
whereHk is the radial Hamiltonian operator in Eq.~11!. Once again, our definition of the radia
component of the Green’s function differs by a factor of (rr 8)21 from other typical definitions. We
write Gk as

Gk~r ,r 8,«!5S G k
11 G k

12

G k
21 G k

22D , ~14!

whereGk(r ,r 8,«)†5Gk(r 8,r ,«). Let F5(f2
f1

) andF̄5(
f̄2

f̄1

) be the regular and irregular solution
of Eq. ~13!, respectively. Using these two solutions,Gk could be constructed as

Gk~r ,r 8,«!5
1

Vk~«!
@u~r 82r !F~r ,«!F̄T~r 8,«!1u~r 2r 8!F̄~r ,«!FT~r 8,«!#, ~15!

whereu(r 82r ) is the Heaviside unit step function andVk(«) is the Wronskian of the regular an
irregular solutions,

Vk~«!5|21FT~r ,«!S 0 1

21 0D F̄~r ,«!5|21@f1~r ,«!f̄2~r ,«!2f2~r ,«!f̄1~r ,«!# ~16!

which is independent ofr as can be verified by differentiating with respect tor and using Eq.~12!.
Equation~15! results in the following expressions for the elements ofGk :

G k
66~r ,r 8,«!5

1

Vk~«!
f6~r , ,«!f̄6~r . ,«!, ~17!

G k
67~r ,r 8,«!5

1

Vk~«!
@u~r 82r !f6~r ,«!f̄7~r 8,«!1u~r 2r 8!f7~r 8,«!f̄6~r ,«!#. ~18!

The equations satisfied by these elements are obtained from (Hk2«)Gk52|2d(r 2r 8). They
parallel Eqs.~12! and ~13! for f6 and read as follows:

F2
d2

dr 2 1S C

z D 2

V27
C

z

dV

dr
12«V2

«221

|2 GG k
66~r ,r 8,«!52~C6«!d~r 2r 8!, ~19!

G k
76~r ,r 8,«!5

|

C6« F2z6
C

z
V~r !1

d

dr GG k
66~r ,r 8,«!. ~20!

Using the exchange symmetryr↔r 8 of Gk , then it is sufficient to solve Eq.~20! only for either
G k

21 or G k
12 depending on the sign in the transformation constraint sin(|h)56|z. That is, we

write

G k
21~r ,r 8,«!5G k

12~r 8,r ,«!5
161

2

|

C1« F2z1
C

z
V~r !1

d

dr GG k
11~r ,r 8,«!

1
171

2

|

C2« F2z2
C

z
V~r 8!1

d

dr 8GG k
22~r ,r 8,«! ~21!

corresponding to sin(|h)56|z, respectively. These developments will now be applied to
problem.
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DIRAC–MORSE GREEN’S FUNCTION

In this setting, the Dirac–Morse problem is the system described by Eq.~11! with V(r )
52Be2mr and C5A/t, wheretA.0.2,5,6 The parameters are related byt25A 21|2B 2 with
z5B/t. Consequently, Eq.~19! for the diagonal elements of the radial Green’s function read
follows:

F2
d2

dr 2 1A 2e22mr2A~2«B/A6m!e2mr2
«221

|2 GG m
66~r ,r 8,«!52~A/t6«!d~r 2r 8!.

~22!

Comparing this with Eq.~2! gives the following two maps between the relativistic and nonre
tivistic problems. The map concerningG m

11 is

gm52G m
11/~A/t1«!,

A5A or A52A,
~23!

B5«B/A or B52«B/A2m,

E5~«221!/2|2.

The choiceB5«B/A or B52«B/A2m depends on whetherA.0 or A,0, respectively. On the
other hand, the map forG m

22 is as follows:

gm52G m
22/~A/t2«!,

A5A or A52A,
~24!

B5«B/A2m or B52«B/A,

E5~«221!/2|2.

Similarly, the choiceB5«B/A2m or B52«B/A depends on whetherA is positive or negative,
respectively. The two mappings~23! and ~24! transform the nonrelativistic Green’s function~8!
into the following solutions of Eq.~22!:

G m
115

A
t

1«

2uAu
em(r 1r 8)/2

G~112b!

3H G~b2a!Ma11/2,bS 2A
m

e2mr .DWa11/2,bS 2A
m

e2mr ,D , A.0,

G~11b1a!M2a21/2,bS 22A
m

e2mr .DW2a21/2,bS 22A
m

e2mr ,D , A,0,

~25!
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G m
225

A
t

2«

2uAu
em(r 1r 8)/2

G~112b!

3H G~11b2a!Ma21/2,bS 2A
m

e2mr .DWa21/2,bS 2A
m

e2mr ,D , A.0,

G~b1a!M2a11/2,bS 22A
m

e2mr .DW2a11/2,bS 22A
m

e2mr ,D , A,0,

~26!

where a5«B/mA and b5 (1/m|) A12«2. The off-diagonal elements ofGm are obtained by
substituting these in Eq.~21!, which could be rewritten in terms of the variablex
5 (2A/m) e2mr as

G m
21~x,x8,«!5G m

12~x8,x,«!52
|m

A
t

1«

161

2Axx8
S x

d

dx
1

x

2
1

B
mt

2
1

2DAxx8G m
11

2
|m

A
t

2«

171

2Axx8
S x8

d

dx8
2

x8

2
1

B
mt

2
1

2DAxx8G m
22 . ~27!

Using the differential formulas of the Whittaker functions11 we obtain the following expression
for the off-diagonal elements of the Dirac–Morse Green’s function, depending on the cho
sign in sin(|h)56|z, as

G m
21~r ,r 8,«!5G m

12~r 8,r ,«!

52
|B
A F S 171

2 DG m
221S 161

2 DG m
11G6em(r 1r 8)/2

3
|m

2A
G~11b2a!

G~112b! F2u~r 2r 8!Ma21/2,bS 2A
m

e2mr DWa11/2,bS 2A
m

e2mr 8D
1~b1a!u~r 82r !Ma11/2,bS 2A

m
e2mr 8DWa21/2,bS 2A

m
e2mr D G , A.0, ~28!

G m
21~r ,r 8,«!5G m

12~r 8,r ,«!

52
|B
A F S 171

2 DG m
221S 161

2 DG m
11G6em(r 1r 8)/2

3
|m

2A
G~11b1a!

G~112b! F ~b2a!u~r 2r 8!M2a11/2,bS 22A
m

e2mr D
3W2a21/2,bS 22A

m
e2mr 8D2u~r 82r !M2a21/2,bS 22A

m
e2mr 8D

3W2a11/2,bS 22A
m

e2mr D G , A,0. ~29!

One can easily verify that the relativistic bound states energy spectrum of the Dirac–M
problem2,5,6 is located at the energy poles of these components of the Green’s function. T
simply and directly obtained by taking the argument of the gamma function in the numerator
equal to2n, wheren50,1,2,... . That is by takingb2a52n for A.0 andb1a52n for A
,0 giving the following spectrum:
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«n5
A
t2 @m|2Bn6At22~m|An!2#, n50,1,2,...,nmax, ~30!

wherenmax< (1/m|) A11(|B/A)2.
Finally, it might be worthwhile looking at the nonrelativistic limit (|→0) of the Green’s

function. One can easily show that in this limit,

«'11|2E, a'
B

mA ~11|2E!, b'
1

m
A22E, t'A1|2B 2/2A. ~31!

Substituting these in formulas~25! and ~26! for the diagonal elements of the Green’s functi
shows that their behavior in the limit isG m

11'gm and G m
22'|2gm . On the other hand, the

off-diagonal elementsG m
67 go to the limit like|, except for the first term in formulas~28! and

~29! which is proportional to|G m
22 . This term goes to the limit like|3. Therefore, the relativistic

behavior of the 232 radial Green’s function could be written symbolically as

Gm;S 1 |1|3

|1|3 |2 D . ~32!
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A technique to identify solvable dynamical systems,
and a solvable generalization of the goldfish
many-body problem
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A simple approach is discussed which associates to~solvable! matrix equations
~solvable! dynamical systems, generally interpretable as~interesting! many-body
problems, possibly involving auxiliary dependent variables in addition to those
identifying the positions of the moving particles. We then focus on cases in which
the auxiliary variables can be altogether eliminated, reobtaining thereby~via this
unified approach! well-known solvable many-body problems, and moreover a
~solvable! extension of the ‘‘goldfish’’ model. ©2004 American Institute of Phys-
ics. @DOI: 10.1063/1.1739297#

I. INTRODUCTION AND MAIN RESULTS

Several decades ago certain many-body problems were introduced and shown to be s
first in the quantal context and then as classical dynamical systems~for a review of these results
in the classical context, including a capsule account, with appropriate references, of the
history of these developments, see Ref. 15!. The seed model9,23,10of this development~that over
the last few decades featured in many hundreds, perhaps thousands, of pape! is
characterized—in the classical context to which our treatment is confined—by the Newt
equations of motion

z̈n52 g2 (
m51,mÞn

N

~zn2zm!23 ~1!

~the factor 2 in the right-hand side is of course conventional in view of the arbitrariness o
constantg2, and throughout this paper superimposed dots denote differentiations with resp
the independent variablet, which we always assume to bereal and we interpret as ‘‘time’’; the
remaining notation is, we trust, self-explanatory!.

The Newtonian equations of motion of a related model, usually associated~at least for imagi-
nary values of the constantg! with the name of Sutherland,31 reads

z̈n52 g2 (
m51,mÞn

N

cosh@g ~zn2zm!# $g21 sinh@g ~zn2zm!#%23 ~2!

~this model reduces of course to the previous one forg50).
Another solvable model, to which the honorary name of ‘‘goldfish’’ has been attribute

view of the neatness of its equations of motion16 ~a name also extended to its nonintegrab
variants characterized by the presence of arbitrary coupling constants,20 as well as to its integrable
variants characterized by only ‘‘nearest-neighbor’’ interactions17!, features the Newtonian equa
tions of motion~with velocity-dependent two-body forces!

a!Electronic mail: francesco.calogero@roma1.infn.it
22660022-2488/2004/45(6)/2266/14/$22.00 © 2004 American Institute of Physics
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z̈n52 (
m51,mÞn

N
żn żm

zn2zm
, ~3!

while the Newtonian equations of motion of an, also solvable, variant of it reads

z̈n52 (
m51,mÞn

N

żn żm g coth@g~zn2zm!# ~4!

~note that the factor 2 in the right-hand side of the last two equations is now essential to gua
the integrable, indeed solvable, character of these many-body models; of course the seco
reduces to the first forg50). The names of Ruijsenaars and Schneider are appropriately as
ated with these two latter models, which belong to a hierarchy of integrable dynamical sy
introduced by them;30,15 although actually the two specific models quoted above,~3! and~4!, had
been shown to be solvable earlier.11,15

Solvable variants of the first and third of these models,~1! and ~3!, characterized by the
remarkable property that theirgenericsolution is isochronous~i.e., completely periodic with a
fixed period independent of the initial data!, are also well known.9,1,18,15The Newtonian equations
of motions of theseisochronousmodels read, respectively,

z̈n1v2 zn52 g2 (
m51,mÞn

N

~zn2zm!23, ~5!

z̈n2 i v żn52 (
m51,mÞn

N
żn żm

zn2zm
, ~6!

where thepositiveconstantv characterizes the relevant periodT via the standard relation

T5
2 p

v
. ~7!

The simplest way to obtain these generalized equations,~5! respectively~6!—which of course
reduce to~1! respectively~3! for v50—and to thereby demonstrate the origin of their remarka
property ofisochronicity~as well as showing that their solution is trivially related to the solut
of ~1! respectively,~3!!, is via the following simple change of variables~sometimes called ‘‘the
trick’’: see, for instance, Refs. 12, 14, 18, 15!. First, merely rewrite the original equations~1!
respectively~3! with the following, merely notational, change: replacezn(t) with, say,zn(t), and
correspondingly, say,żn with z8 and z̈n with zn9 , where the appended primes denote of cou
differentiations with respect to the new independent variablet, so that~1! reads

zn952 g2 (
m51,mÞn

N

~zn2zm!23, ~8!

and likewise~3! read

zn952 (
m51,mÞn

N zn8 zm8

zn2zm
. ~9!

Then, to transform~8! into ~5!, set

zn~ t !5exp~2 i v t ! zn~t!, t5
exp~2 i v t !21

2 i v
, ~10!
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and likewise to transform~9! into ~6! set ~even more simply!

zn~ t !5 zn~t!, t5
exp~ i v t !21

i v
. ~11!

The second of these equations of motion,~6!, requires of course that the motion be conside
in the complexplane, so that~in self-explanatory notation!

zn5xn1 i yn; ~12a!

but this condition, far from detracting from the ‘‘physical’’ significance of this many-body mo
allows to interpret it13,15as describing the motion ofN particles in the horizontal plane~immersed
in ordinary, three-dimensional, space!, via the introduction of thereal vectors

rn5~xn , yn , 0!, ~12b!

since it is easily seen that thecomplexequations of motion~6! become then the following New
tonian ~rotation- and translation-invariant! equations of motion in the~real, horizontal! plane:

r̈n2v k̂∧ ṙn52 (
m51,mÞn

N

r nm
22

•@ ṙn~ ṙm•rnm!1 ṙm~ ṙn•rnm!2rnm~ ṙn• ṙm!#. ~13!

Here k̂ is the unit vector orthogonal to the horizontal plane,

k̂5~0, 0, 1!, ~14a!

so that~consistently with the standard definition of vector product in three-dimensional spac
~12b! and ~14a!!

k̂∧rn5~2yn , xn , 0!; ~14b!

and we use~here and below, see~37!! the short-hand notation

rnm[rn2rm ~15a!

so that

r nm
2 5~rn2rm!25r n

21r m
2 22 ~rn•rm!. ~15b!

After this terse review of results which might by now be considered classical,15 let us intro-
duce our main findings. First of all—as detailed in the following section—we provide a sim
approach that yields directly, in a unified manner, the solution of all the models reported a
and that moreover opens the way to the identification and study of more general solvable m
characterized by equations of motion somewhat analogous to those reported above, a
generally also requiring the introduction of additional ‘‘auxiliary variables.’’ The study of s
models is however postponed to subsequent papers. In this paper we mainly focus on the
fication of models which generalize the models described above, with particular attention to
that allow the complete elimination of the auxiliary variables.

The first class of solvable models is characterized by the following Newtonian equatio
motion:

z̈n2a
żn

2

zn
52 (

m51,mÞn

N

gnm gmn ~zn zm!2a F 2

~zn2zm!3 1
a

zm ~zn2zm!2G . ~16!
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Here and throughouta is a constant, and we shall whenever convenient also use~provided a
Þ1) the constanta related to it as follows:

a5
1

12a
, a5

a21

a
. ~17!

For instance via the change of dependent variables

zn5wn
a ~18!

the Newtonian equations of motion~16! become

ẅn5a22 (
m51,mÞn

N

gnm gmn wn
a21 wm

2(a21) ~wn
a2wn

a!23
•F11a2~12a! S wn

wm
D aG , ~19a!

ẅn5a22 (
m51,mÞn

N

gnm gmn wn
2(a11) wm

22(a11) ~wn
2a2wn

2a!23
•F12a2~11a! S wn

wm
D 2aG .

~19b!

Note the remarkable identity of the right-hand sides of~19a! and~19b!, which are obtained from
each other viaa⇒2a.

In the special casea51 ~corresponding via~17! to a5`) the formula~18! is replaced by

zn5exp~2 g wn!, ~20!

and it is easily seen that~16! then becomes

ẅn522 ~4 g2!22 (
m51,mÞn

N

gnm gmn cosh@g ~wn2wm!# $g21 sinh@g ~wn2wm!#%23. ~21!

In these equations of motion,~16!, we interpret the quantitieszn[zn(t) as ‘‘particle coordi-
nates’’ ~or alternatively we reserve such an interpretation for the quantitieswn(t), see~18! and
~20!!, while the ‘‘auxiliary variables’’gnm[gnm(t) evolve in time according to the following
~first-order! equations:

ġnm1gnm @Fn2Fm#52 (
,51;,Þn,m

N

gn, g,m z,
2a
•$~zn2z,!221a ~zn2z,!21 z,

21

2@~zm2z,!221a ~zm2z,!21 z,
21#%, nÞm. ~22!

The quantitiesFn in the left-hand side of these evolution equations can be assignedarbi-
trarily , as explicit functions of time or as functions of the dependent variableszm and gm, ,
without spoiling the solvability of the model~16! with ~22! nor indeed affecting the time-evolutio
of the particle coordinateszm(t) ~a proof of this, apparently remarkable but eventually obvio
fact is given in the following section!. To ~better! exploit this freedom we now set

Fn5 f n2 (
,51,,Þn

N

gn, z,
2a@~zn2z,!221a ~zn2z,!21 z,

21#, ~23!

and we thereby rewrite~22! as follows:
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ġnm1gnm @ f n2 f m#2gnm $gnm zm
2a@~zn2zm!221a ~zn2zm!21 zm

21#2gmn zn
2a@~zn2zm!22

2a ~zn2zm!21 zn
21] %

5 (
,51;,Þn,m

N

z,
2a $~gnm gn,2gn, g,m! @~zn2z,!221a ~zn2z,!21 z,

21#

2~gnm gm,2gn, g,m! @~zm2z,!221a ~zm2z,!21 z,
21#%, nÞm. ~24!

We now observe that, in the special casea50, these evolution equations simplify to read

ġnm1gnm @ f n2 f m#2gnm ~gnm2gmn! ~zn2zm!22

5 (
,51;,Þn,m

N

$~gnm gn,2gn, g,m! ~zn2z,!222~gnm gm,2gn, g,m! ~zm2z,!22%, nÞm.

~25!

They therefore admit, forf n50 ~or equivalently forf n5 f !, the simple solution

gnm5 i g, ġ50, ~26!

whereby the equations of motion~16! ~with a50) reproduce the classical model~1! ~and of
course the same outcome also obtains, up to a merely notational change, from the equa
motion ~19! with a51, which corresponds toa50, see~17!!.

Likewise, fora51, the equations of motion~24! simplify to read

ġnm1gnm @ f n2 f m#2gnm ~gnm2gmn! zn zm ~zn2zm!22

5 (
,51;,Þn,m

N

z, $~gnm gn,2gn, g,m! zn ~zn2z,!22

2~gnm gm,2gn, g,m! zm ~zm2z,!22%, nÞm. ~27!

They therefore admit, forf n50 ~or equivalently forf n5 f !, the simple solution

gnm54 i g2 g, ġ50, ~28!

whereby the equations of motion~21! reproduce~up to a merely notational change! the classical
model ~2!.

And the third case in which the complete elimination of the auxiliary variablesgnm can be
achieved is fora52, when the evolution equations~24! read

ġnm1gnm @ f n2 f m#2gnm ~zn2zm!22 $gnm zm
3 ~2 zn2zm!2gmn zn

3 ~2 zm2zn!% ~29!

5 (
,51;,Þn,m

N

z,
3 $~gnm gn,2gn, g,m! ~zn2z,!22 ~2 zn2z,!

2~gnm gm,2gn, g,m! ~zm2z,!22 ~2 zm2z,!%, nÞm, ~30!

hence they admit, forf n5 i g zn
2 , again the solution~26!, which yields again, when inserted in~19!

with a521 ~which corresponds toa52, see~17!!, again the original model~1! ~up to the
notational replacement ofzn with wn).

The solvable character of the equations of motion~16! ~or, equivalently,~19!! with ~22! is
exhibited by the following neat result~applicable for any value of the constanta, excepta51):
the N coordinateszn[zn(t) are theN eigenvalues of theN^ N matrix
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U~ t !5A S 11
B

a
t D a

, ~31a!

where the two constantN^ N matricesA, B are given in terms of the initial data by the followin
formulas:

A5diag@zn~0!#, ~31b!

Bnm5dnm

żn~0!

zn~0!
2~12dnm!

gnm~0! @zn~0! zm~0!#a

zn~0! @zn~0!2zm~0!#
. ~31c!

In the special casea51 the same prescription applies, except for the replacement of~31a! with

U~ t !5A exp~B t!. ~32!

These results are demonstrated in the following section, where the formulas suitable to obt
time evolution of the auxiliary variablesgnm(t) are also given. In the special cases identifi
above in which these variables reduce to a constant independent of the indicesn, m and can
therefore be essentially eliminated, reproducing thereby, as described above, the classical
~1! and ~2!, the solutions described here reproduce of course the well-known results orig
obtained by Olshanetsky and Perelomov.26,27,15

The second class of solvable models is characterized by the Newtonian equations of m

z̈n2a
żn

2

zn
5 (

m51,mÞn

N

hnm hmn żn żm F 2

zn2zm
1

a

zm
G . ~33a!

Here the notation is, we trust, self-explanatory, see above. The auxiliary variableshnm[hnm(t)
evolve now according to the~first-order! equations

ḣnm1hnm ~12hnm hmn! F żn2 żm

zn2zm
2

a

2 S żn

zn
1

żm

zm
D G

52 (
,51;,Þn,m

N

ż, H hn, ~h,n hnm1h,m! F ~zn2z,!211
a

2
z,

21G
1h,m ~hm, hnm1hn,! F ~zn2z,!211

a

2
z,

21G J 2hnm ~Fn2Fm!, nÞm.

~33b!

We now note that, remarkably, for the assignmentFn50 ~or, essentially equivalently,Fn

5F), the latter equations of motion admit the trivial solution

hnm521, ~34!

entailing that the equations of motion~33a! become

z̈n2a
żn

2

zn
5 (

m51,mÞn

N

żn żm F 2

zn2zm
1

a

zm
G . ~35a!

The solution of the more general model~33! is described in the following section; in thi
section we restrict attention to these Newtonian equations of motion,~35a!, that obviously can be
rewritten in the following form:
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z̈n52 (
m51,mÞn

N
żn żm

zn2zm
1a (

m51

N
żn żm

zm
. ~35b!

But before reporting the solution of the corresponding initial-value problem, let us inte
two remarks.

First we note that clearly, fora50, these equations of motion reproduce the Newton
equations of motion~3! of the standard goldfish model, while fora51, via ~20!, they become~4!
and for a52, via ~18! with a521, they reproduce again the equations of motion~3! of the
standard goldfish model~up to the notational replacement ofzn with wn).

Next, we apply to them the trick described above, see~11!, obtaining thereby the following
modified version of these equations of motion:

z̈n2 i v żn52 (
m51,mÞn

N
żn żm

zn2zm
1a (

m51

N
żn żm

zm
, ~36!

which of course reduce to the previous ones,~35b!, when the costantv vanishes. Let us as wel
exhibit their reformulation~achieved as above, see the paragraph following~11!! in the guise of
the following Newtonian equations of motion of a~real, rotation-invariant! N-body problem in
the ~horizontal! plane:

r̈n2v k̂∧ ṙn52 (
m51,mÞn

N

r nm
22

•@ ṙn~ ṙm•rnm!1 ṙm~ ṙn•rnm!2rnm~ ṙn• ṙm!#

1 (
m51

N

r m
22 ~a11a2 k̂∧ !•@ ṙn~ ṙm•rm!1 ṙm~ ṙn•rm!2rm~ ṙn• ṙm!#, ~37!

where of course the tworeal ‘‘coupling constants’’a1 anda2 are the real and imaginary parts o
a, a5a11 i a2 .

As implied by the treatment detailed in the following section, the solution of the initial-v
problem for the Newtonian equations of motion~35! is provided by the following prescription: th
particle coordinateszn(t) are theN eigenvalues of theN^ N matrix ~31a! ~for aÞ1) respectively
~32! ~for a51), with the constantN^ N matrix A given by~31b! and the constantN^ N matrix
B given by

Bnm5@zn~0!#21 @ żn~0! żm~0!#1/2. ~38a!

But the dyadic character of this matrix entails

Bp5bp21 B, p51, 2, 3, . . . ~38b!

with

b5 (
n51

N
żn~0!

zn~0!
, ~39!

implying that a more explicit expression of the matrixU(t), the eigenvalues of which yield th
particle coordinateszn(t), can be given in this case than~31a! ~for aÞ1) respectively~32! ~for
a51), namely,

Unm~ t !5dnm zn~0!1b21 F S 11
b t

a D a

21G @ żn~0! żm~0!#1/2, if aÞ1, ~40a!

Unm~ t !5dnm zn~0!1b21 @exp~b t!21# @ żn~0! żm~0!#1/2, if a51. ~40b!
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Note that this matrix is written as the sum of twoN^ N matrices, one diagonal and the oth
dyadic, both depending remarkably neatly on the data of the initial-value problem~see~39!!.

The diligent reader will verify that this prescription reproduces the previously kn
results11,15 in the cases (a50, a51, a52, corresponding respectively toa51, a5`, a521)
when, as discussed above, the model~35! reduces, possibly up to simple changes of depend
variables, to the classical models~3! or ~4!; while a discussion of the behavior of the solutions
the model~35! for arbitrary values of the constanta, and of the~richer! model ~36!, is tersely
outlined in Sec. III, where we also show how the solution of these models can be reduced a
to the solution of the standard goldfish model. The corresponding, remarkably neat, presc
detailing the solution of the initial-value problem for the~isochronousversion of the! generalized
goldfish model~36! or ~37! asserts thatthe coordinates zn(t) are the N roots of the following
algebraic equation in z:

(
n51

N
żn~0!

z2zn~0!
5b H F11

b @exp~ i v t !21#

i a v Ga

21J 21

, if aÞ1, ~41a!

(
n51

N
żn~0!

z2zn~0!
5b H expFb @exp~ i v t !21#

i v G21J 21

, if a51, ~41b!

with the constant b defined in terms of the initial data by (39) and of coursea related to a by (17).
Obviously key to the behavior of these solutionszn(t) is the time evolution of the right-hand side
of these formulas, which, forpositivev, is clearly periodic with periodT, see~7!, in the~not new!
a51 case, it is as well periodic with the same periodT for arbitrary a provided the initial data
entail via ~39! the inequality

U11
i b

v U.Ub

vU, ~42a!

namely,

Im~b!,
v

2
~42b!

~we assume here for definiteness thatv is positive, v.0), and it is instead periodic forarbitrary
~but real! a with the, generally different, period

T̃5
T

a
5~12a! T5

2 ~12a! p

v
~43!

if the inequality~42! is reversed, Im(b).v / 2.

II. THE TECHNIQUE

The point of departure of our treatment is theN^ N matrix equation

Ü5a U̇ U21 U̇, ~44!

wherea is an arbitrary~scalar! constant. As can be easily verified, foraÞ1 this matrix evolution
equation has thegeneralsolution ~31a! with ~17! where, in terms of the initial-value problem,

A5U~0!, ~45a!

B5@U~0!#21 U̇~0!, ~45b!
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while in the special casea51 ~entailing, via~17!, a5`), U(t) is given by~32!.
We now introduce the parametrization of theN^ N matrix U(t) in terms of itsN eigenvalues

zn(t) and of its diagonalizingN^ N matrix R(t):

U5R Z R21, ~46a!

Z5diag@zn#. ~46b!

Before proceeding to obtain the evolution equations implied by~44! for the diagonal matrixZ(t)
and for the diagonalizing matrixR(t), or rather~see below! for the matrixM (t) defined in terms
of R(t) by the formula

M5R21 Ṙ, ~47!

let us note that the formulas~46! define the matrixR only up to multiplication from the right by
an arbitrary diagonal matrix, say

D5diag@dn#, ~48!

since replacing in~46a! R with

R̃5R D ~49!

is clearly of no consequence. The corresponding change of the matrixM ,

M̃5R̃21 R8 5D21 M D1D21 Ḋ, ~50a!

namely,

M̃nn5Mnn1
ḋn

dn
, ~50b!

M̃nm5dn
21 Mnm dm , nÞm, ~50c!

entails essentially that in our parametrization of theN^ N matrix U(t) ~via ~46! with ~47!! theN2

matrix elements of this matrix get replaced by theN elementszn(t) of the diagonal matrixZ(t)
~namely, by theN eigenvalues of the matrixU(t): see~46!! and by theN (N21) off-diagonal
elementsMnm(t) ~with nÞm) of the N^ N matrix M (t), while theN diagonal elementsMnn(t)
can be arbitrarily adjusted by choosing appropriately the elementsdn(t) of the diagonal matrix
D(t), see~50b! ~of course, up to a corresponding adjustment of the corresponding off-diag
elements, see~50c!!.

Differentiation with respect to the independent variablet of ~46a! yields, using~47!,

U̇5R $Ż1@M , Z#% R21, ~51a!

Ü5R $Z̈1@Ṁ , Z#12 @M , Ż#1@M , @M , Z##% R21. ~51b!

Here and throughout we use of course the standard notation@X, Y#[X Y2Y X for the commu-
tator of two matrices.

Hence insertion of these formulas in the matrix evolution equation~44! yields

Z̈1@Ṁ , Z#12 @M , Ż#1@M , @M , Z# #5a $Ż1@M , Z# % Z21 $Ż1@M , Z# %, ~52a!

namely, by separating the diagonal and off-diagonal terms,
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z̈n2a
żn

2

zn
52 (

m51,mÞn

N

Mnm Mmn ~zn2zm! F21
a ~zn2zm!

zm
G , ~52b!

Ṁnm ~zn2zm!1Mnm F2 ~ żn2 żm!2a ~zn2zm!S żn

zn
1

żm

zm
D G

5 (
,51;,Þn,m

N

Mn, M ,m F ~zn2z,!1~zm2z,!1
a ~zn2z,! ~zm2z,!

z,
G

2Mnm ~zn2zm! ~Fn2Fm!, nÞm, ~52c!

where we did set

Mnn[Fn ~53!

and, consistently with the observation made above, we retain the freedom to assign arb
theseN quantitiesFn ~as given functions of time, or possibly of the dependent variableszn(t) and
Mnm(t) with nÞm; see below!. Note that the ‘‘source terms’’Fn could be altogether eliminate
from the evolution equations~52c! via the transformation

Mnm~ t !5M̃nm~ t ! expH E
0

t

dt8 @Fm~ t8!2Fn~ t8!#J , ~54!

which entails the replacement of~52b! and ~52c! with

z̈n2a
żn

2

zn
52 (

m51,mÞn

N

M̃nm M̃mn ~zn2zm! F21
a ~zn2zm!

zm
G , ~55a!

M8 nm ~zn2zm!1M̃nm F2 ~ żn2 żm!2a ~zn2zm!S żn

zn
1

żm

zm
D G

5 (
,51;,Þn,m

N

M̃n, M̃ ,m F ~zn2z,!1~zm2z,!1
a ~zn2z,! ~zm2z,!

z,
G , nÞm ~55b!

~namely, just the elimination of the terms involving the quantitiesFn and Fm , and a merely
notational change!. This of course explains why the quantitiesFn(t) can be assigned essential
arbitrarily, without affecting the time-evolution of the ‘‘particle coordinates’’zn(t) ~but such an
assignment will of course affect the off-diagonal elements of the matrixM (t), as implied by the
relation ~54!!.

Before proceeding further we like to point out that the approach presented here is by no
quite new. Indeed, for the casea50, equations analogous to those reported above,~52!, have
appeared in the literature quite often, both in analogous, and in somewhat different, contex
for instance, Refs. 21, 32, 4, 28, 34, 33, 35, 24, 5, 6, 22, 25, 3, 2.

We now set

Mnm5~zn2zm!22 ~zn zm!a gnm , nÞm, ~56!

and we thereby obtain, from~52b!, the Newtonian equations of motion~16!, and from~52c! the
evolution equations~22!. The results reported in the previous section, regarding the solutio
these equations, are thereby justified in the light of the developments reported above~in this
section!, and they are complemented by the formulas detailing the time evolution of the quan
gnm(t) that are rather obviously implied by~31! and ~32! via the relations~46!, ~47!, and ~56!.
Note that the easiest way to get these results is to make the~permissible and convenient! assump-
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tion R(0)51, entailing U(0)5A5diag@zn(0)# ~see ~31a!, ~31b! and ~46!!, U̇(0)5A B5Ż(0)
1@M (0), Z(0)# ~see ~31a!, ~51a! and ~46b!! and Mnm(0)5@zn(0)2zm(0)#22 @zn(0) zm(0)#a

gnm(0) ~see~56!!.
Likewise, the different assignment~suggested by the structure of the Lax matrix introduced

Ref. 7!

Mnm5~zn2zm!21 ~ żn żm!1/2hnm , nÞm, ~57!

yields, from~52b!, the Newtonian equations of motion~33a!, and from~52c! the evolution equa-
tions ~33b! ~note that, to get them, we must also use~33a!!.

These latter developments imply that the solution of the initial-value problem for the m
~33! is given by the following simple rule:the ‘‘particle coordinates’’ zn(t) are the N eigenvalues
of the N̂ N matrix (31a) (for aÞ1) respectively (32) (for a51), with the constant N̂ N matrix
A given by (31b) and the elements of the constant N^ N matrix B reading now

Bnm5@zn~0!#21$dnm żn~0!2~12dnm! hnm~0! @ żn~0! żm~0!#1/2%. ~58!

These formulas provide the solution of the initial-value problem of the model~33!, as regards the
time evolution of the particle coordinateszn(t); and they clearly imply the corresponding resu
reported in the previous section for the model~35! ~which obtains from~33! via ~34!!. As for the
time-evolution of the auxiliary variablehnm(t) in the more general case~~33! without ~34!!, as
above we leave its derivation as an easy task for the diligent reader: again, the easiest wa
these results—as well as those mentioned in the first part of this paragraph—from~46!, ~47! and
~57!, is to make the assumptionR(0)51, entailingU(0)5A5diag@zn(0)# ~see~31a!, ~31b! and
~46!!, U̇(0)5A B5Ż(0)1@M (0), Z(0)# ~see ~31a!, ~51a! and ~46b!! and Mnm(0)5@zn(0)
2zm(0)#21 @ żn(0) żm(0)#1/2hnm(0) ~see~57!!.

III. GENERALIZED GOLDFISH MODEL

In this section we discuss tersely the solution, obtained in Sec. II and detailed at the e
Sec. I, of the generalized goldfish model~35!, as well as of itsisochronousversion~36!; and at the
end we show how the generalized goldfish model~35! can be reduced back to the standa
goldfish model~3!.

Clearly the key function determining the behavior of the solutions of the generalized go
model ~35! is

b~a; t !5b21 F S 11
b t

a D a

21G if aÞ1, ~59a!

b~`; t !5b21 @exp~b t!21# if a51 ~59b!

~see~40! with ~39!!, and likewise the function characterizing the behavior of the solutions of
isochronousversion~36! ~as reported at the end of Sec. I! is b~a;t! with t defined by~11! ~of
courset reduces tot whenv vanishes, namely when the model~36! reduces to~35!!. We leave to
the alert reader the amusing task to analyze the various behaviors that may emerge, depen
the values of the constantsa ~hencea, see~17!! andv and on the initial data. The more interestin
case to consider is of course that characterized by all the variables, and the constants~with the
possible exception ofv! beingcomplex—also in view of the interpretation of the correspondi
motions as taking place in the real horizontal plane. The remarks reported at the end of
provide a useful hint; the following, completely explicit, solution of the model~35! ~immediately
extendable to theisochronousmodel ~36! via the replacement oft with t, see~11!! in the N52
case,
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z1,2~ t !5 1
2$z1~0!1z2~0!2b~a; t ! @ ż1~0!1 ż2~0!#

6@$z1~0!2z2~0!2b~a; t ! @ ż1~0!2 ż2~0!#%214 @b~a; t !#2 ż1~0! ż2~0!#1/2% ~60!

may be useful to explore what tipically happens. But such an analysis is likely to be enlight
~perhaps even amusing! only if it is actually done rather than just read, so we provide no furt
elaboration here.

Finally let us show how the generalized goldfish model~35! can be reduced back to th
standard goldfish model~3!. To this end we rewrite~35! as follows:

z̈n52 (
m51,mÞn

N
żn żm

zn2zm
1a żn r , ~61a!

with

r[r ~ t !5 (
n51

N
żn~ t !

zn~ t !
. ~61b!

Time-differentiation of this formula yields

ṙ[ (
n51

N F z̈n

zn
2S żn

zn
D 2G , ~62a!

ṙ[a r22 (
n51

N S żn

zn
D 2

12 (
n,m51;mÞn

N
żn żm

~zn2zm! zn
, ~62b!

ṙ[a r22 (
n51

N S żn

zn
D 2

1 (
n,m51;mÞn

N
żn żm

~zn2zm! S 1

zn
2

1

zm
D , ~62c!

ṙ[a r22 (
n51

N S żn

zn
D 2

2 (
n,m51;mÞn

N
żn żm

zn zm
, ~62d!

ṙ[~a21! r 2 ~62e!

~to go from ~62a! to ~62b! we used~61!; from ~62b! to ~62c!, the possibility to exchange th
indicesm andn; and the next two steps are, we trust, pretty obvious, see~61b!!. From the last
equation,~62e!, we immediately infer~see~61b! and ~39!, entailingr (0)5b)

r ~ t !5
b

11~12a! b t
. ~63!

Hence the equations of motion of the generalized goldfish model, see~35! or equivalently~61!,
can be recast in the following form:

z̈n2
a b żn

11~12a! b t
52 (

m51,mÞn

N
żn żm

zn2zm
. ~64!

And it is now easy to check that via the change of dependent variables

zn~ t !5zn~t!, t5b~a; t ! ~65!
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with b(a; t) defined precisely as above, see~59!, one gets forzn(t) just the equations of motion
of the standard goldfish model, see~9!. ~Note moreover that this change of variables,~65! with
~59!, implieszn(0)5zn(0), żn(0)5zn8(0).) This result provides of course another route to obt
the findings reported above for the generalized goldfish model~35! ~see the last paragraph of Se
II !; or one can use the equivalent, but perhaps neater, version11,15 of the solution of the goldfish
model ~9! according to which the coordinateszn(t) coincide with theN roots of the following
algebraic equation inz:

(
n51

N zn8~0!

z2zn~0!
5

1

t
, ~66!

which implies via~65!, for the generalized goldfish model~35!, that the coordinateszn(t) coincide
with the N roots of the following algebraic equation inz:

(
n51

N
żn~0!

z2zn~0!
5

1

b~a; t !
, ~67!

with b(a; t) given by ~59! with ~39!; as well as the corresponding result for theisochronous
generalized goldfish model~36! reported at the end of Sec. I.

IV. OUTLOOK

Clearly the approach described in this paper can be applied more generally, by taking
matrix evolution equations than~44! as point of departure; this will be done in separate papers~for
instance, the findings obtained by replacing~44! with the solvable matrix equation

Ü1a U̇1bU50 ~68!

are reviewed in a joint paper with Jean–Pierre Franc¸oise;19 and several other solvable matr
evolution equations are under consideration jointly with Mario Bruschi8!.

Finally let us note that in this paper we focussed on many-body problems defined byNew-
tonian equations of motions~possibly with additional auxiliary variables!; we did not discuss
the possibility that these equations be embeddable in aHamiltonian ~or perhaps in a
quasi-Hamiltonian29! formalism, nor the~possibly related! possibility to ascribe a ‘‘physical’’
meaning~possibly as ‘‘spin’’ degrees of fredom associated with Euler angles32! to the auxiliary
variables. Such reformulations open the way to the investigation of these models in a q
context. These remain as tasks for the future.
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Group classification of a class of third-order nonlinear evolution equations gener-
alizing KdV and mKdV equations is performed. It is shown that there are two
equations admitting simple Lie algebras of dimension three. Next, we prove that
there exist only four equations invariant with respect to Lie algebras having non-
trivial Levi factors of dimension four and six. Our analysis shows that there are no
equations invariant under algebras which are semi-direct sums of Levi factor and
radical. Making use of these results we prove that there are three, nine, thirty-eight,
fifty-two inequivalent KdV-type nonlinear evolution equations admitting one-,
two-, three-, and four-dimensional solvable Lie algebras, respectively. Finally, we
perform a complete group classification of the most general linear third-order evo-
lution equation. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1737811#

I. INTRODUCTION

The purpose of this article is classifying equations of the form

ut5uxxx1F~x,t,u,ux ,uxx!, ~1.1!

which admit nontrivial Lie~point! symmetries. The standard Korteweg–de Vries~KdV! equation,

ut5uxxx1uux ,

belongs to the family of evolution equations~1.1!. Classification of the KdV equation with vari
able coefficients~vcKdV!,

ut5 f ~x,t !uux1g~x,t !uxxx , f •gÞ0, ~1.2!

by their symmetries is done in Ref. 1, where it is shown that the vcKdV can admit at
four-dimensional Lie point symmetry group and those having four-dimensional symmetry g
can be transformed into the ordinary KdV equation by local point transformations. In Ref. 2
~1.2! is investigated from the point of view of its integrability. It is shown, in particular, t
equations of the form~1.2! with a three-dimensional Lie point symmetry group have a propert
‘‘partially integrability.’’
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Our motivation is the same as for classifying vcKdV equations. We start with a rather ge
class of nonlinear equations generalizing~1.2! for gx50. Note that anyt dependent coefficient o
uxxx in ~1.1! can be normalized by a reparametrization of time. The main advantage o
classification is that, if we know that the equation under study admits a nontrivial symmetry g
then it is usually possible to apply the whole spectrum of the methods and algorithms of Lie
analysis. This enables us to derive exact analytical solutions of equations that, under study
their integrability properties, find linearizing transformations, etc. Note that the connectio
tween Lie point symmetries and integrability was discussed in Refs. 2, 3.

Recently, a novel generic approach to group classification of low-dimensional partial d
ential equations~PDEs! has been developed in Ref. 4. The full account of ideas and algorit
applied can be found in the review paper5 where the approach in question has been applied
classify the most general second-order quasi-linear heat-conductivity equations admitting
trivial Lie point symmetries. Here we adopt the same approach which basically consists of
steps. We first construct the equivalence group, namely, the most general group of point tr
mations that transform any equation of the form~1.1! to a ~possibly different! equation belonging
to the same class. Also, we find the most general element of the symmetry group together
determining equation forF. As a second step, we realize low-dimensional Lie algebras by ve
fields of the above form up to equivalence transformations. To this end, we use various res
the structure of abstract Lie algebras.6–9 A review of the classification results of nonisomorph
finite-dimensional Lie algebras can be found in Ref. 5. In the last step, after transforming
metry generators to canonical forms, we proceed to classifying equations that admit non
symmetries. We do this by inserting these generators into the symmetry condition and solv
F.

Let us mention that similar ideas have been used by Winternitz and co-workers for the
classification of several nonlinear partial differential equations1,10,11 and of discrete dynamica
systems.12–14Note also that group classification of the nonlinear wave and Schro¨dinger equations
in the same spirit has been done in Refs. 15, 16.

The paper is organized as follows. In Sec. II we present the determining equations f
symmetries and the equivalence group. Section III is devoted to the classification of the equ
invariant under low-dimensional symmetry groups. In Sec. IV we perform a classification of l
equations in the class~1.1!. A discussion of results and some conclusions are presented in the
section.

II. DETERMINING EQUATIONS AND EQUIVALENCE TRANSFORMATIONS

The Lie algebra of the symmetry group of Eq.~1.1! is realized by vector fields of the form

X5t~x,t,u!] t1j~x,t,u!]x1f~x,t,u!]u . ~2.1!

In order to implement the symmetry algorithm we need to calculate the third order prolo
tion of the field vector field~2.1!,17–19

pr(3)X5X1f t]ut
1fx]ux

1fxx]uxx
1fxxx]uxxx

, ~2.2!

where

f t5Dtf2utDtt2uxDtj,

fx5Dxf2utDxt2uxDxj,

fxx5Dxf
x2uxtDxt2uxxDxj,

fxxx5Dxf
xx2uxxtDxt2uxxxDxj.
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HereDx andDt denote the total space and time derivatives. In order to find the coefficients o
vector field we require that the prolonged vector field~2.2! annihilate Eq.~1.1! on its solution
manifold,

pr(3)X~D!uD5050, D5ut2uxxx2F. ~2.3!

Equating coefficients of linearly independent terms of invariance criterion~2.3! to zero yields an
overdetermined system of linear PDEs~called determining equations!. Solving this system we
obtain the following assertion.

Proposition 2.1: The symmetry group of the nonlinear equation (1.1) for an arbitrary (fi
function F is generated by the vector field

X5t~ t !] t1S ṫ

3
x1r~ t ! D ]x1f~x,t,u!]u , ~2.4!

where the functionst(t), r(t) and f(x,t,u) satisfy the determining equation

23 ux ṙ2x ux ẗ29 ux uxx fuu23 ux
3 fuuu13 f t29 uxx fxu29 ux

2 fxuu29 ux fxxu23 fxxx

13~fu2 ṫ ! F1~2 uxx ṫ23 uxx fu23 ux
2 fuu26 ux fxu23 fxx! Fuxx

1~ux ṫ23 ux fu23 fx! Fux
23 f Fu23 t Ft2~3 r 1x ṫ ! Fx50. ~2.5!

Here the dot over a symbol stands for the time derivative.
If there are no restrictions onF, then~2.5! should be satisfied identically, which is possib

only when the symmetry group is a trivial group of identity transformations. Here we sha
concerned with the identification of all specific forms ofF for which nontrivial symmetry groups
occur. The basic idea is to utilize the fact that for an arbitrarily fixed functionF all admissible
vector fields form a Lie algebra. This immediately implies the idea of using the classical resu
the classification of low-dimensional Lie algebras obtained mostly in the late 1960s.6–8 Saying it
another way, we need to construct a kind of representation theory on low-dimensional Lie al
generated by Lie vector fields preserving the manifold~2.5!.

Our classification is up to equivalence under a group of locally invertible point transfo
tions,

t̃ 5T~x,t,u!, x̃5Y~x,t,u!, ũ5U~x,t,u!, ~2.6!

that preserve the form of the equation~1.1!, but ~possibly! change functionF into a new one,
namely, we have

ũ t̃5ũx̃x̃x̃1F̃~ x̃, t̃ ,ũ,ũx̃ ,ũx̃x̃!. ~2.7!

Inserting~2.6! into ~1.1! and requiring that the form of the equation be preserved, we arrive a
following assertion.

Proposition 2.2: The maximal equivalence groupE has the form

t̃ 5T~ t !, x̃5Ṫ1/3x1Y~ t !, ũ5U~x,t,u!, ~2.8!

where ṪÞ0, UuÞ0.
We note that the Lie infinitesimal technique can also be used to obtain the equivalence

~2.8!. It is straightforward to prove that both approaches produce the same results.
We make use of equivalence transformations~2.8! to transform vector fieldX into a conve-

nient ~canonical! form.
Proposition 2.3: Vector field~2.4! is equivalent within a point transformation of the form~2.6!

to one of the following vector fields:
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X5] t , X5]x , X5]u . ~2.9!

Proof: Transformation~2.8! transforms vector field~2.4! into

X→X̃5t~ t !Ṫ~ t !] t̃1@ 1
3 ~tṪ21T̈1 ṫ !~ x̃2Y!1tẎ1rṪ1/3#] x̃

1@tUt1~ 1
3 ṫx1r!Ux1fUu#] ũ . ~2.10!

There are two cases to consider.
~I! f50. ChooseU5U(u) so that we have

X̃5t~ t !Ṫ~ t !] t̃1@ 1
3 ~tṪ21T̈1 ṫ !~ x̃2Y!1tẎ1rṪ1/3#] x̃1fUu] ũ . ~2.11!

Now if t50, thenrÞ0 ~otherwiseX would be zero!, and we chooseT(t) to satisfy

Ṫ5r23.

In this caseX̃ is transformed into] x̃ .
If tÞ0, then we chooseT andY to satisfy

Ṫ5t21, tẎ1rṪ1/350.

With this choice ofT andY vector fieldX̃ is transformed into] t̃ .
~II ! fÞ0. If t5r50 then we can chooseU to satisfy fUu51 so that we haveX̃5] ũ .

Otherwise,U can be chosen to satisfy

tUt1~ 1
3 ṫx1r!Ux1fUu50.

Hence we recover Case I.
Summing up, the vector field~2.4! is equivalent, up to equivalence underE, to one of the three

standard vector fields]x ,] t ,]u . This completes the proof.

III. GROUP CLASSIFICATION OF LINEAR EQUATIONS

To the best of our knowledge no group classification of the most general linear third-
PDE appears in the literature. So we devote this section to the group classification of third
PDEs:

ut5 f 1~x,t !uxxx1 f 2~x,t !uxx1 f 3~x,t !ux1 f 4~x,t !u1 f 5~x,t !. ~3.1!

If we perform the local change of variables (x,t,u)→( x̃, t̃ ,ũ) preserving the form of~3.1!,

t̃ 5t, x̃5F~x,t !, u5V~x,t !v~ x̃, t̃ !1G~x,t !, VÞ0, FxÞ0, ~3.2!

we obtain

v t̃5 f 1Fx
3v x̃x̃x̃1$3 f 1V21@VxFx

21VFxFxx#1 f 2Fx
2%v x̃x̃1$ f 1V21@3VxxFx13VxFxx1VFxxx#

1 f 2V21@2VxFx1V fxx#1 f 3Fx2Ft%v x̃1$ f 1V21Vxxx1 f 2V21Vxx1 f 3V21Vx1 f 42V21Vt%v

1V21@ f 1Gxxx1 f 2Gxx1 f 3Gx1 f 4G1 f 52Gt#.

Now we choose the functionsF,V, andG in ~3.2! to satisfy constraints,
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f 1Fx
351,

Gt5 f 1Gxxx1 f 2Gxx1 f 3Gx1 f 4G1 f 5 ,

3 f 1Fx
2Vx1@3 f 1FxFxx1 f 2Fx

2#V50,

and thus normalizef 1(x,t)→1, and setf 2(x,t)→0, f 5(x,t)→0.
Thus ~3.1! reduces to the following particular form:

ut5uxxx1A~x,t !ux1B~x,t !u. ~3.3!

HereA,B are arbitrary smooth functions ofx and t.
The most general equivalence transformation preserving the class of equations~3.3!, which is

a subset of~2.8!, reads as

t̃ 5T~ t !, x̃5Ṫ1/3x1Y~ t !, ũ5V~ t !u, ~3.4!

with ṪÞ0, VÞ0.
Performing change of variables~3.4! transforms Eq.~3.3! to become

ũ t̃5ũx̃x̃x̃1Ãũx̃1B̃ũ, ~3.5!

where the coefficientsÃ,B̃ are expressed in terms of the functionsA,B and their derivatives as
follows:

Ã5Ṫ21~AṪ1/32 1
3 T̈Ṫ2 2/3x2Ẏ!,

~3.6!
B̃5Ṫ21~B1V21V̇!.

As Eq. ~3.3! is linear, it admits trivial infinite-parameter group having the generator

X~b!5b~x,t !]u , b t5bxxx1Abx1Bb ,

and the one-parameter group generated by the operatoru]u . These symmetries give no nontrivia
information about the solution structure of the equation under study and therefore are negle
the sequel.

The nontrivial invariance group of Eq.~3.3! is generated by operators of the form

X5t~ t !] t1~ 1
3 ṫx1r~ t !!]x1a~ t !u]u , ~3.7!

functionst,r,a,A andB satisfying equations

3ȧ23Bṫ23tBt2Bx~3r1xṫ !50,
~3.8!

23ṙ2xẗ22Aṫ23tAt2Ax~3r1xṫ !50.

ProvidedA5A(x,t), B5B(x,t) are arbitrary functions,t5r50, ȧ50. So in this case Eq
~3.3! admits trivial symmetries only.

Transformation~3.4! leaves operatorX15u]u invariant while transforming operator~3.5! to
become

X →
(3.4)

X̃5tṪ] t̃1@t~ 1
3 T̈Ṫ2 2/3x1Ẏ!1Ṫ1/3~ 1

3 ṫx1r!#] x̃1~tV̇1aV!u] ũ . ~3.9!

That is why, if tÞ0 in ~3.7!, then putting
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Ṫ5t21, Y52E t

r~j!t2 4/3~j!dj,

and takingV as a nonzero solution of the equation

tV̇1aV50,

in ~3.4! transforms~3.9! to the canonical form of the generator of time displacements

X̃5] t̃ .

Next, if t50, rÞ0 in ~3.7!, then puttingṪ5r23 in ~3.4! yields the operator

X̃5] x̃1aũ] ũ .

Finally, if t5r50, ȧÞ0 in ~3.7!, we putT5a in ~3.4! thus getting the operator

X̃5 t̃ ũ] ũ .

Taking into account the above considerations, we see that there are transformations~3.4!, that
transform operator~3.7! to one of the following inequivalent forms:

] t , ]x , ]x1 f ~ t !u]u ~ ḟ Þ0!, tu]u .

In what follows, we analyze each of the above operators separately.
OperatorX15] t . The system of determining Eqs.~3.8! for this operator reads as

Bt5At50,

whence it follows thatA5A(x), B5B(x). Inserting these functions into~3.8! yields

3ȧ23Bṫ2Bx~3r1xṫ !50,

23ṙ2xẗ22Aṫ2Ax~3r1xṫ !50.

Analyzing the above system of ordinary differential equations shows that for the case
consideration Eq.~3.3! admits an invariance group whose dimension is higher than one if and
if the following occurs.

~1! A5mx22, B5nx23, umu1unuÞ0 with the additional symmetry operatort] t1
1
3x]x ;

~2! A50, B5«x («561) with the additional symmetry operator] t1«tu]u ;
~3! A5B[0 with the additional symmetry operators]x ,t] t1

1
3x]x .

OperatorX25]x . If Eq. ~3.3! is invariant underX2 , thenA5A(t), B5B(t). What is more,
it follows from ~3.6! that there are transformations~3.4!, which reduce equation~3.3! to the form
~3.5! with Ã5B̃[0. So we arrive at the already known case.

OperatorX35]x1 f (t)u]u ( ḟ Þ0). If Eq. ~3.3! admits operatorX3 , then we haveA50, B

5 ḟ x. Inserting these expressions into~3.8! yields

ṙ50, ẗ50, ȧ5r ḟ ,
~3.10!

3t f̈ 14ṫ ḟ 50.

From the first three equations it follows thatr5C1 , t5C2t1C3 , a5C1f 1C4 ,
C1 ,C2 ,C3 ,C4PR. Hence we conclude that the last equation of system~3.10! takes the form
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3~C2t1C3! f̈ 14C2 ḟ 50.

Analyzing this equation we see that extension of the symmetry algebra of Eq.~3.3! with A

50, B5 ḟ x is only possible when

f 53mt2 1/3, mÞ0;

f 5«t, «561.

The second case has already been considered. In the first case the basis of nontrivial inv
algebra is formed by the operators]x13mt21/3u]u , t] t1

1
3x]x .

OperatorX45tu]u . Inserting the coefficients of this operator into~3.8! leads to the contra-
diction 350, whence it follows that the operatorX4 cannot be a symmetry operator of Eq.~3.3!.

We summarize the above classification results of in Table I, where we give the forms
functionsA andB and basis operators of the nontrivial symmetry algebras of the correspon
equations~3.3!.

So the equationut5uxxx has the highest symmetry within the class of equations~3.3!. Its
maximal finite-dimensional symmetry algebra is four-dimensional.

Note that according to Ref. 5 the class of nonlinear equations of the form

ut5F~ t,x,u,ux!uxx1G~ t,x,u,ux!, FÞ0, ~3.11!

contains five nonlinear equations admitting five-dimensional symmetry algebras. Furthermo
equation admitting six-dimensional symmetry algebra is equivalent to the heat equation. It
linear heat conductivity equationut5uxx that possess the largest symmetry group within the c
of second-order equations~3.11!.

This is not the case for the class of third-order PDEs under consideration in the present
We shall see that there are examples of nonlinear equations that admits higher symmetry a
than does the linear equation. For instance, the nonlinear Schwarzian KdV equation~4.14! admits
a six-dimensional symmetry algebra.

IV. CLASSIFICATION OF EQUATIONS INVARIANT UNDER SEMI-SIMPLE ALGEBRAS
AND ALGEBRAS HAVING NONTRIVIAL LEVI DECOMPOSITIONS

In order to describe equations~1.1! that admit Lie algebras isomorphic to the Lie algebr
having nontrivial Levi decomposition, we need, first of all, to describe equations whose invar
algebras are semi-simple.

The lowest order semi-simple Lie algebras are isomorphic to one of the following th
dimensional algebras:

TABLE I. Symmetry classification of 3.3.

N A B Symmetry operators

1 A~x! B~x! ]t

2 0 ḟ~t!x ]x1f~t!u]u , ḟÞ0
3 mx22, mPR nx23, nPR,

umu1unuÞ0
] t ,t] t1

1
3 x]x

4 0 «x, «561 ] t ,]x1«tu]u

5 0 2mt24/3x,

mPR, mÞ0

]x13mt21/3u]u ,

t] t1
1
3 x]x

6 aPR 0
] t ,]x ,t] t1

1
3 ~x22at!]x
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sl~2,R!:@X1 ,X3#522X2 , @X1 ,X2#5X1 , @X2 ,X3#5X3 ;

so~3!:@X1 ,X2#5X3 , @X2 ,X3#5X1 , @X3 ,X1#5X2 .

Taking into account our preliminary classification we conclude that one of the basis ope
reduces to one of the canonical forms] t ,]x ,]u .

First, we study realizations of the algebra so~3! within the class of operators~2.4!.
Let X15] t and let the operatorsX2 ,X3 be of the form~2.4!. Checking commutation relation

@X1 ,X2#5X3 ,@X3 ,X1#5X2 we see that

X253a cost] t1@2ax sint1b cos~ t1g!#]x1w~x,u!cos„t1c~x,u!…]u ,

X3523a sint] t2@ax cost1b sin~ t1g!#]x2w~x,u!sin„t1c~x,u!…]u .

Herea, b, g are arbitrary real constants andw, c are arbitrary real-valued smooth functions.
The third commutation relation@X2 ,X3#5X1 implies that 9a2521. As this equation has no

real solutions, there are no realizations of so~3! with X15] t .
The same assertion holds for the cases whenX15]x andX15]u . So the class of operator

~2.4! contains no realizations of the algebra so~3!. This means that there are no so~3!-invariant
equations of the form~1.1!.

Theorem 4.1:There exist no realizations of the algebraso~3! in terms of vector fields~2.4!.
Hence no equation of the form~1.1! is invariant underso~3! algebra.

Similar reasoning yields that there are three inequivalent realizations of the algebra sl~2,R! by
operators of the form~2.4!,

$] t ,t] t1
1
3 x]x ,2t2] t2

2
3 tx]x%,

$] t ,t] t1
1
3 x]x ,2t2] t2

2
3 tx]x2x3]u%,

$]u ,u]u ,2u2]u%.

Inserting the coefficients of basis operators of the first realization of the algebra sl~2,R! into
invariance criterion yields the following classifying equations:

2uxxFuxx
1uxFux

2xFx23F50,

t~2uxxFuxx
1uxFux

2xFx23F !2xux50,

from which we get the equationxux50. Consequently, the realization in question cannot
invariance algebra of the equation under study.

The two remaining realizations of sl~2,R! do yield invariance algebras of equation~1.1!. The
forms of the functionF in the corresponding invariant equations read as

$] t ,t] t1
1
3 x]x ,2t2] t2

2
3 tx]x2x3]u% : F52x23@2xux1 1

9 x2ux
22G~v1 ,v2!#,

v153u2xux , v256u2x2uxx ;

$]u ,u]u ,2u2]u% : F52 3
2 ux

21uxx
2 1uxG~x,t !.

As any semi-simple or simple algebra contains either so~3! or sl~2,R! ~or both! as
subalgebra~s!,20 the above result can be utilized to perform the classification of equations~1.1!
admitting invariance algebras isomorphic to one having a nontrivial Levi decomposition.

First we turn to the equation
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ut5uxxx2
3
2 ux

21uxx
2 1uxG~x,t !. ~4.1!

Applying the Lie infinitesimal algorithm we see that the maximal invariance algebra of
~4.1! is spanned by the operatorsX15]u , X25u]u , X352u2]u , and

X45t~ t !] t1~ 1
3 ṫx1r~ t !!]x , ~4.2!

functionst, r andG satisfying the equation

~xṫ13r!Gx13tGt12ṫG1xẗ13ṙ50. ~4.3!

By direct verification we ensure that the form of basis operators of the realization of sl~2,R!
under study is not altered by the transformations

t̃ 5T~ t !, x̃5Ṫ1/3x1Y~ t !, ũ5gu, ṪÞ0, gÞ0. ~4.4!

As transformation~4.4! reduces~4.2! to the form

X4 →
(4.4)

X̃45t~ t !Ṫ~ t !] t̃1@ 1
3 ~tṪ21T̈1t!~ x̃2Y!1tẎ1rṪ1/3#] x̃ ,

we can putX45] t or X45]x within the equivalence relation.
ProvidedX45] t , it follows from ~4.3! that G5G̃(x) in ~4.1!. Next, if X45]x , then neces-

sarily G5G̃(t). Consequently, the class of Eqs.~4.1! contains two inequivalent equations:

ut5uxxx2
3
2 ux

21uxx
2 1uxG̃~x! ~4.5!

and

ut5uxxx2
3
2 ux

21uxx
2 1uxG̃~ t !, ~4.6!

which are invariant under extensions of the algebra sl~2,R!. Namely, they admit algebra
sl(2,R) % $] t% and sl(2,R) % $]x%, correspondingly. What is more, if the functionG̃5G̃(x) in ~4.5!
is arbitrary, the given algebra is maximal~in Lie sense! invariance algebra of Eq.~4.5!.

Equation~4.6! is reduced to PDE~4.5! with G̃(x)50 with the help of the change of variable

t̃ 5t, x̃5x1E t

G̃~j! dj, u5v~ x̃, t̃ !.

Therefore, we can restrict our further considerations to Eq.~4.5!, where we need to differentiat
between the casesG̃50 andG̃Þ0.

Classifying Eq.~4.3! with G5G̃(x) reads as

~xṫ13r!G̃x12ṫG̃1xẗ13ṙ50.

Hence it follows that there are two cases providing for extension of the symmetry alg
Namely, the case whenG̃50, which gives rise to two additional symmetry operatorsX55t] t

1 1
3x]x and X65]x . Another case of the extension of symmetry of Eq.~4.5! is when G̃

5lx22 (lÞ0). If this is the case,~4.5! admits the additional operatorX55t] t1
1
3x]x .

Now we turn to the equation
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ut5uxxx22x22ux2 1
9 x21ux

21x23G~v1 ,v2!,

~4.7!
v153u2xux , v256u2x2uxx .

First of all, we ensure that the class of PDEs~4.7! does not contain equations whose inva
ance algebras possess semi-simple subalgebras of the dimensionn.3.

It is common knowledge20 that there are four types of abstract simple Lie algebras over
field of real numbers:

• The typeAn21 (n.1) contains four real forms of the algebras sl(n,C): su(n), sl(n,R),
su(p,q) (p1q5n,p>q),su* (2n).

• The type Bn (n.1) contains two real forms of the algebra so(2n11,C): so(2n11),
so(p,q) (p1q52n11,p.q).

• The type Cn (n>1) contains three real forms of the algebra sp(n,C): sp(n), sp(n,R),
sp(p,q) (p1q5n,p>q).

• The typeDn (n.1) contains three real forms of the algebra so(2n,C): so(2n),so(p,q) (p
1q52n, p>q),so* (2n).

The lowest order classical semi-simple Lie algebras are three-dimensional. The next
sible dimension for classical semi-simple Lie algebras is six. There are four nonisomorphic
simple Lie algebras: so~4!, so~3,1!, so~2,2! and so* (4). As so(4)5so(3)% so(3), so* (4)
;so(3)% sl(2,R), and the algebra so~3,1! contains so~3! as a subalgebra, the algebra so~2,2! is the
only possible six-dimensional semi-simple algebra that might be invariance algebra of Eq.~4.7!.
Taking into account that so(2,2);sl(2,R) % sl(2,R) and choosing so(2,2)5$X1 ,X2 ,X3%
% $X̃1 ,X̃2 ,X̃3%, whereX1 ,X2 ,X3 form a basis of sl~2,R!, which is invariance algebra of~4.7! and
X̃1 ,X̃2 ,X̃3 are of the form~2.4!, we require the commutation relations

@Xi ,X̃j #50 ~ i , j 51,2,3!

to hold, whence

X̃j5l j]u ~ j 51,2,3!,

wherel j are arbitrary real constants. Hence we conclude that the class of operators~2.4! does not
contain a realization of so~2,2!.

The same result holds for eight-dimensional semi-simple Lie algebras sl~3,R!, su~3!, su~2,1!.
As su* (4);so(5,1) and the algebra so~5,1! contains so~4! as a subalgebra, the class

operators~2.4! contains no realizations ofAn andDn (n.1) type algebras that are inequivalent
the algebra sl~2,R!.

The same assertion holds true forBn (n.1) andCn (n>1) type Lie algebras. Indeed,B2

type algebras contain so~4! and so~3,1! and what is more,

sp~2,R!;so~3,2!.so~3,1!, sp~1,1!;so~4,1!.so~4!, sp~2!;so~5!.so~4!.

What remains to be done is to consider the exceptional semi-simple Lie algebras that
to one of the following five types:20 G1 ,F4 ,E6 ,E7 ,E8 . We consider in some detailG1 type Lie
algebras.

The typeG1 contains one compact real formg2 and one noncompact real formg28 . As
g2ùg28;su(2)% su(2);so(4) and the algebra so~4! has no realization within the class of oper
tors ~2.4!, the latter contains no realizations of typeG1 .

Summing up, we conclude that class of PDEs~4.7! contains no equations, whose invarian
algebras are isomorphic ton-dimensional semi-simple Lie algebras~or contains the latter as
subalgebras! undern.3.
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Consider now Eqs.~4.7!, whose invariance algebras has nontrivial Levi factor. First, we t
to equations which are invariant with respect to the Lie algebras that can be decomposed
direct sum of semi-simple Levi factor and radical, sl(2,R) % L, L being a radical. To this end, w
will study possible extensions of the algebra sl~2,R! by operators~2.4!.

Let sl(2,R)5$X1 ,X2 ,X3%, whereX1 ,X2 ,X3 , form a basis of the invariance algebra of E
~4.7!. Then it follows from

@Xi ,Y#50 ~ i 51,2,3!,

Y being an operator of the form~2.4!, thatY5l]u , l5const. HenceL is the one-dimensional Lie
algebra spanned by the operator]u . For Eq.~4.7! to admit the algebra sl(2,R) % $]u%, the equation

Gv1
12Gv2

50,

has to be satisfied, whence

G5G̃~s!, s5x2uxx22xux .

Consequently, an equation of the form~4.7! admits invariance algebra which is the direct sum
semi-simple Levi factor and radical iff it reads as

ut5uxxx22x22ux2 1
9 x21ux

21x23G̃~s!, s5x2uxx22xux . ~4.8!

As Eq. ~4.8! contains an arbitrary function of one variable, we can perform direct gr
classification by a straightforward application of the Lie infinitesimal algorithm. The determi
equation for coefficients of the infinitesimal symmetry operator are of the form

~a! fuuu50;

~b! 3fuuG̃s118fuu19xfxuu1
1
3 ~x21r2fu!50;

~c! 6x21~fxu1x22r!G̃s19x22sfuu13r t1xt tt16x21~3fxu12x22r!

19fxxu2
2
3 x21fx50;

~d! @23x23~fu12x21r!s16x22fx23x21fxx#G̃s13x23~fu13x21r!G̃29x22fxus

13@f t2fxxx12x22fx#50.

It follows from ~a! that

f5 f ~x,t !u21g~x,t !u1h~x,t !, ~4.9!

where f ,g,h are arbitrary smooth functions. Inserting~4.9! into ~b! yields

6 f G̃s136f 118x fx1 1
3 ~x21r2g!2 2

3 f u50.

Taking into account that functionsf ,r,g,G̃ do not depend onu, we get

f 50, g5x21r.

So that equation~c! reduces to

3r t1xt tt112x23r1 2
3 x23ru2 2

3 x21hx50.
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Hence it follows that

r50, h5 1
2 x3t tt1h̃~ t !.

Finally, inserting the obtained expression forw into equation~d! gives

t ttt50, h̃t50,

whence

t5C1t21C2t1C3 ,

h̃5C4 .

HereC1 ,C2 ,C3 ,C4 are arbitrary~integration! constants.
Summing up, we conclude that the algebra sl(2,R) % $]u% is the maximal invariance algebr

admitted by Eq.~4.8!. It cannot be extended by specifying the form of an arbitrary funct
G̃(s),s5x2uxx22xux .

What remains to be done is classifying Eqs.~4.7!, whose invariance algebras are isomorph
to semi-directsums of a semi-simple Levi factor and radical, i.e., whose invariance algebras
the following structure: sl(2,R)�L. To perform this classification we utilize the classification
these type of Lie algebras obtained by Turkowski.21

We choose sl(2,R)5$v1 ,v2 ,v3% with

v1522t] t2
2
3 x]x , v25] t , v352t2] t2

2
3 tx]x2x3]u .

According to Ref. 21, there is only one five-dimensional Lie algebra of the desired
sl(2,R)�L with L5$e1 ,e2%, operatorse1 ,e2 satisfying the commutation relations:

@e1 ,e2#50, @v1 ,e1#5e1 , @v1 ,e2#52e2 ,

@v2 ,e1#50, @v2 ,e2#5e1 ,

@v3 ,e1#5e2 , @v3 ,e2#50.

As operatorse1 ,e2 are necessarily of the form~2.4!, we easily get that

e15uxu23/2]u , e25tuxu23/2]u .

However, checking the invariance criterion for the above realization we find that the algeb
question cannot be invariance algebra of an equation of the form~4.7!.

According to Ref. 21, there exist three six-dimensional Lie algebras that are semi-direct
of semi-simple Levi factor and radical, algebraL being of the formL5$e1 ,e2 ,e3%. Nonzero
commutation relations fore1 ,e2 ,e3 read as

~1! @v1 ,e1#52e1 , @v2 ,e2#52e1 , @v3 ,e1#5e2 ,

@v1 ,e3#522e3 , @v2 ,e3#5e2 , @v3 ,e2#52e3 ;

~2! @v1 ,e1#5e1 , @v2 ,e2#5e1 , @v3 ,e1#5e2 ,

@v1 ,e2#52e2 , @e1 ,e2#5e3 ;

~3! @v1 ,e1#5e1 , @v2 ,e2#5e1 , @v3 ,e1#5e2 ,
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[v1 ,e2] 52e2 , [e1 ,e3] 5e1 , [e2 ,e3] 5e2 .

Solving the above relations we see that the corresponding realizations cannot be inva
algebras of Eq.~4.7!.

Next, we consider seven-dimensional algebras from the Turkowski’s classification. Acco
to Ref. 21 there are five inequivalent algebras of the targeted dimension. Four of them cont
above five- and six-dimensional algebras as subalgebras. So we need to consider only t
algebra sl(2,R)�L, whereL5$e1 ,e2 ,e3 ,e4% and the following commutation relations hold:

@v1 ,e1#53e1 , @v2 ,e2#53e1 ,

@v3 ,e1#5e2 , @v1 ,e2#5e2 ,

@v2 ,e3#52e2 , @v3 ,e2#52e3 ,

@v1 ,e3#52e3 , @v2 ,e4#5e3 ,

@v3 ,e3#53e4 , @v1 ,e4#523e4 .

The most general form of operatorse1 ,e2 ,e3 ,e4 satisfying the above relations is as follows:

e15uxu2 9/2]u , e253tuxu2 9/2]u ,

e353t2uxu2 9/2]u , e45t3uxu2 9/2]u .

However, verifying the invariance criterion yields that this algebra cannot be the symmetry
bra of Eq.~4.7!.

Thus we proved that the class of PDEs~4.7! contains no equations admitting symmet
algebras of the dimensionn<7, which are semi-direct sums of the Levi factor and radical. I
natural to conjecture that the same assertion holds for an arbitraryn. To prove this fact we need
to consider in full details classification of nonlinear equations~1.1!, whose invariance algebras a
solvable.

Let us sum up the above results as theorems.
Theorem 4.2:The class of PDEs (1.1) contains two inequivalent equations whose invari

algebra are semi-simple„sl(2,R)…,

ut5uxxx2
3
2 ux

21uxx
2 1uxG~x,t !;

ut5uxxx2x23@2xux1 1
9 x2ux

22G~v1 ,v2!#,

v153u2xux , v256u2x2uxx .

The maximal invariance algebras of the above equations under arbitrary G read as

sl1~2,R!5$]u ,u]u ,2u2]u%;

sl2~2,R!5$] t ,t] t1
1
3 x]x ,2t2] t2

2
3 tx]x2x3]u%.

Theorem 4.3: Nonlinear equation (1.1) whose invariance algebra is isomorphic to a
algebra having nontrivial Levi decomposition is represented by one of the following equatio

ut5uxxx2
3
2 ux

21uxx
2 1uxG̃~x!, sl1~2,R! % $] t%; ~4.10!

ut5uxxx2
3
2 ux

21uxx
2 1lx22ux , lÞ0, sl1~2,R! % $] t ,t] t1

1
3 x]x%; ~4.11!
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ut5uxxx2
3
2 ux

21uxx
2 , sl1~2,R! % $] t ,]x ,t] t1

1
3 x]x%; ~4.12!

ut5uxxx22x22ux2 1
9 x21ux

21x23G̃~s!, s5x2uxx22xux , sl2~2,R! % $]u%, ~4.13!

where G̃ is an arbitrary function of x ors. Moreover, the associated symmetry algebras
maximal.

Note that Eq.~4.12! can be expressed in the form

ut

ux
5$u;x%, ~4.14!

where$u;x% denotes the Schwarzian derivative ofu with respect tox. It is known that a nonpoint
transformation taking this equation into the usual KdV exists.

V. CLASSIFICATION OF EQUATIONS INVARIANT UNDER LOW-DIMENSIONAL
SOLVABLE SYMMETRY ALGEBRAS

In this section we apply the strategy summarized in the Introduction to identify represen
classes of equations of the form~1.1! invariant under one-, two-, and three-dimensional solva
symmetry algebras. In order to approach this task in a systematic manner we realize all p
inequivalent algebras in terms of vector fields~2.4! under the action of the equivalence groupE.

A. Equations with one-dimensional symmetry algebras

We assume that for a givenF, Eq. ~1.1! is invariant under a one-parameter symmetry gro
generated by the vector field~2.4! with coefficients subject to the constraint~2.5!. We make use of
Proposition 2.3 which characterizes the canonical forms of the vector fieldX of ~2.4!. We then
substitute the coefficients of the canonical vector field into the determining equation~2.5!, which
is a first order linear homogeneous PDE forF, and solve the latter in order to construct invaria
equations.

According to Proposition 2.3 we have three types of one-dimensional symmetry algebr

A1,1: X15] t , A1,2:X15]x , A1,3:X15]u . ~5.1!

The corresponding invariant equations will have the form

A1,1: ut5uxxx1F~x,u,ux ,uxx!, ~5.2a!

A1,2: ut5uxxx1F~ t,u,ux ,uxx!, ~5.2b!

A1,3: ut5uxxx1F~x,t,ux ,uxx!. ~5.2c!

Theorem 5.1: There are three inequivalent classes of Eqs. (1.1) invariant under o
parameter symmetry group. Their representatives are given by (5.2).

B. Equations with two-dimensional symmetry algebras

There are two isomorphy classes of two-dimensional Lie algebras, Abelian and non-Ab
satisfying the commutation relations@X1 ,X2#5kX2 , k50,1. We denote them byA2,1 andA2,2.

1. Abelian

We start from each of the one-dimensional cases obtained in~5.1! and add to it vector fields
X2 of the form ~2.4! commuting withX1 . We then simplifyX2 by equivalence transformation
leaving the vector fieldX1 invariant. For further details we refer the reader to Ref. 4. The s
dardizedX2 and the restricted form ofF in ~5.2! are then substituted into~2.5!. Solving this
equation will further restrict the form of the functionF. The number of variables ofF reduces by
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one, three variables in this case. Thus, we find that there exist precisely four classes o
dimensional Abelian symmetry algebras represented by the following ones:

A2,1
1 : X15] t , X25]x , F5F~u,ux ,uxx!; ~5.3!

A2,1
2 : X15] t , X25]u , F5F~x,ux ,uxx!; ~5.4!

A2,1
3 : X15]x , X25a~ t !]x1]u , F52ȧuux1F̃~ t,ux ,uxx!; ~5.5!

A2,1
4 : X15]u , X25g~x,t !]u , gxÞconst; ~5.6!

F5~gt2gxxx!gx
21ux1F̃~x,t,v!, v5gxxux2gxuxx .

2. Non-Abelian

Imposing thatX1 reads as~5.1! and X2 is in generic form and that they satisfy@X1 ,X2#
5X2 , we find that five classes of symmetry algebras exist. Those algebras and nonlinear fun
F are represented by

A2,2
1 : X15] t , X252t] t2

x

3
]x ,

F5x23F̃~u,v1 ,v2!, v15xux , v25x2uxx ;

A2,2
2 : X1523t] t2x]x , X25]x ,

F5t21F̃~u,v1 ,v2!, v15t1/3ux , v25t2/3uxx ;

A2,2
3 : X152u]u , X25]u , F5uxF̃~x,t,v!, v5ux

21uxx ;

A2,2
4 : X15]x2u]u , X25]u ;

F5e2xF̃~ t,v1 ,v2!, v15exux , v25exuxx ;

A2,2
5 : X15] t2u]u , X25]u ,

F5uxF̃~x,v1 ,v2!, v15etux , v25etuxx .

Theorem 5.2:There exist nine classes of two-dimensional symmetry algebras admitted b
(1.1). They are represented by the algebras A2,1

1 ,...,A2,1
4 and A2,2

1 ,...,A2,2
5 .

C. Equations with three-dimensional symmetry algebras

1. Decomposable algebras

A Lie algebra is decomposable if it can be written as a direct sum of two or more Lie alg
L5L1% L2 with @L1 ,L2#50. There are two types of 3-dimensional decomposable Lie algeb
A3,153A15A1% A2% A3 with @Xi ,Xj #50 for i , j 51,2,3 and A3,25A2,2% A1 with @X1 ,X2#
5X2 , @X1 ,X3#50, @X2 ,X3#50.

We start from the two-dimensional algebras in~5.3! and add a further linearly independe
vector fieldX3 in the form ~2.4! and impose the above commutation relations. We simplifyX3

using equivalence transformations leaving the space$X1 ,X2% invariant. We present the following
result without proof. We emphasize that there exist several realizations that do not produce
ant equations of the form~1.1!:
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A3,1
1 : X15] t , X25]x , X35]u , F5F~ux ,uxx!;

A3,1
2 : X15] t , X25]u , X35 f ~x!]u ,

F52
f-
f 8

ux1F̃~x,v!, v5 f 9ux2 f 8uxx ;

A3,2
1 : X152t] t2

x

3
]x , X25] t , X35]u ,

F5x23F̃~v1 ,v2!, v15xux , v25x2uxx ;

A3,2
2 : X1523t] t2x]x , X25]x , X35]u ,

F5t21F̃~v1 ,v2!, v15tux
3 , v25t2uxx

3 ;

A3,2
3 : X1523t] t2x]x , X25]x , X35t1/3]x1]u ,

F52 1
3 t22/3uux1t21F̃~v1 ,v2!, v15tux

3 , v25t2uxx
3 ;

A3,2
4 : X15]x2u]u , X25]u , X35e2xf ~ t !]u , f Þ0,

F52S 11
ḟ

f
D ux1e2xF̃~ t,v!, v5ex~ux1uxx!;

A3,2
5 : X15]x2u]u , X25]u , X35a~ t !]x , aÞ0,

F52
ȧ

a
ux ln~exux!1uxF̃~ t,v!, v5ux

21uxx ;

A3,2
6 : X15]x2u]u , X25]u , X35] t ,

F5e2xF̃~v1 ,v2!, v15exux , v25exuxx ;

A3,2
7 : X15] t2u]u , X25]u , X35e2t f ~x!]u , f 8Þ0,

F52
f-1 f

f 8
ux1e2tF̃~x,v!, v5et~ f 9ux2 f 8uxx!;

A3,2
8 : X15] t2u]u , X25]u , X35]x ,

F5e2tF̃~v1 ,v2!, v15etux , v25etuxx ;

A3,2
9 : X15] t2u]u , X25]u , X35] t1l]x , lÞ0,

F5exp~x/t2l!F̃~v1 ,v2!,

v15exp~ t2x/l!ux , v25exp~ t2x/l!uxx ;

A3,2
10 : X15] t2u]u , X25]u , X35] t ,
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F5uxF̃~x,v!, v5ux
21uxx .

2. Nondecomposable algebras

The isomorphy classes of these algebras are represented by the following list:

A3,3: @X2 ,X3#5X1 , @X1 ,X2#5@X1 ,X3#50;

A3,4: @X1 ,X3#5X1 , @X2 ,X3#5X11X2 ;

A3,5: @X1 ,X3#5X1 , @X2 ,X3#5X2 ;

A3,6: @X1 ,X3#5X1 , @X2 ,X3#52X2 ;

A3,7: @X1 ,X3#5X1 , @X2 ,X3#5qX2 ~0,uqu,1!;

A3,8: @X1 ,X3#52X2 , @X2 ,X3#5X1 ;

A3,9: @X1 ,X3#5qX12X2 , @X2 ,X3#5X11qX2 , q.0.

Remark:Solvable nondecomposable algebras can be written as semidirect sums of
dimensional subalgebra$X3% and an Abelian ideal$X1 ,X2%. Note that the algebrasA3,6 andA3,8

are isomorphic toe~1,1!, ande~2!, respectively. The algebraA3,3 is a non-Abelian nilpotent algebr
~Heisenberg algebra!.

The commutation relations of the algebras in question can be represented in the matri
tion

S @X1 ,X3#

@X2 ,X3# D 5JS X1

X2
D , @X1 ,X2#50,

whereJ is a 232 real matrix that can be taken in Jordan canonical form.
A solvable three-dimensional Lie algebra always possesses a two-dimensional Abelian

We assume that the ideal$X1 ,X2% is already of the form~5.3! and add a third elementX3 in the
form ~2.4! acting on the ideal. Imposing commutation relations and simplifying with equivale
transformations~2.6! ~we consider each canonical form of the matrix individually! yield the
realizations of solvable Lie algebras together with the corresponding invariant equations.

There exist nine classes of realizations of nilpotent algebras which give rise to inva
equations:

A3,3: J5S 0 0

1 0D . ~5.7!

A3,3
1 : X15] t , X25]u , X35t]u1l]x , l.0,

F5
x

l
1F̃~ux ,uxx!;

A3,3
2 : X15]u , X25]x , X35x]u1b~ t !]x , ḃÞ0,

F52
ḃ

2
ux

21F̃~ t,uxx!;

A3,3
3 : X15]u , X25]x , X35x]u1l] t , lÞ0,
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F5F̃~ t23lux ,uxx!;

A3,3
4 : X15]u13lt1/2]x , X25]x ,

X356lt3/2] t13lt1/2x]x1~x23lt1/2u!]u , lÞ0,

F52 3
2 lt21/2uux1t22F̃~v1 ,v2!, v15tux2

1

3l
t1/2, v25t3/2uxx ;

A3,3
5 : X15]x , X25] t , X35t]x1]u ,

F52uux1F̃~ux ,uxx!;

A3,3
6 : X15]u , X25~ f ~x!2t !]u , X35] t , ~ f 8Þ0!,

F52~11 f-!~ f 8!21ux1F̃~x,v!, v5 f 9ux2 f 8uxx ;

A3,3
7 : X15]u , X25~ t2x!]u , X35]x ,

F5ux1F̃~ t,uxx!;

A3,3
8 : X15]u , X252x]u , X35]x ,

F52F̃~ t,uxx!;

A3,3
9 : X152x21]u , X25]u , X35]x2x21u]u ,

F53x21uxx1x21F̃~ t,v!, v52ux1xuxx ;

A3,4: J5S 1 0

1 1D ; ~5.8!

A3,4
1 : X15]u , X25] t , X35t] t1

x

3
]x1~u1t !]u ,

F53 lnx1F̃~v1 ,v2!, v15x22ux , v25x21uxx ;

A3,4
2 : X15]x , X25]u2 1

3 ln t]x , X353t] t1x]x1u]u ,

F5
1

3t
uux1t22/3F̃~ux ,v!, v5t1/3uxx ;

A3,4
3 : X15]u , X25]x , X353t] t1x]x1~u1x!]u ,

F5t22/3F̃~v1 ,v2!, v15ux2 1
3 ln t, v25t1/3uxx ;

A3,4
4 : X15a~ t !]x1]u , X25]x ,

X35~a8!21a2] t1~11a!x]x1@x1~12a!u#]u , a8Þ0,

a2a91~31a!~a8!250,
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F52a8uux1a24 exp~2a21!F̃~v1 ,v2!,

v15a3 exp~2a21!uxx , v25a2ux2a;

A3,4
5 : X15]u , X25„2t1 f ~x!…]u , X35] t1u]u , f 8Þ0,

F52~11 f-!~ f 8!21ux1etF̃~x,v!, v5e2t~ f 9ux2 f 8uxx!;

A3,4
6 : X15]u , X252x]u , X35]x1u]u ,

F5exF̃~ t,v!, v5e2xuxx ;

A3,5: J5S 1 0

0 1D ; ~5.9!

A3,5
1 : X15] t , X25]u , X35t] t1

x

3
]x1u]u ,

F5F̃~v1 ,v2!, v15x22ux , v25x21uxx ;

A3,5
2 : X15]x , X25]u , X353t] t1x]x1u]u ,

F5t22/3F̃~ux ,t1/3uxx!;

A3,5
3 : X15]u , X25 f ~x!]u , X35] t1u]u , f 8Þ0,

F52 f-~ f 8!21ux1etF̃~x,v!,

v5e2t@ f 9ux2 f 8uxx#;

A3,6: J5S 1 0

0 21D ; ~5.10!

A3,6
1 : X15] t , X25]u , X35t] t1

x

3
]x2u]u ,

F5x26F̃~x4ux ,x5uxx!;

A3,6
2 : X15]x , X25]u1lt2/3]x , X353t] t1x]x2u]u ,

F52
2l

3
t21/3uux1t24/3F̃~ t2/3ux ,tuxx!;

A3,6
3 : X15]u , X25e2t f ~x!]u , X35] t1u]u , f 8Þ0,

F5~2 f 2 f-!~ f 8!21ux1etF̃~x,v!, v5e2t~ f 9ux2 f 8uxx!;

A3,6
4 : X15]u , X25e2 f 21xh~ t !]u , X35 f ~ t !]x1u]u , f hÞ0,

F52@4 f 222 1
2 hh21f 1 f 21f 8x#ux1ef 21xF̃~ t,v!,
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v5e2 f 21x~2ux2 f uxx!;

A3,7: J5S 1 0

0 qD , 0,uqu,1; ~5.11!

A3,7
1 : X15] t , X25]x , X35t] t1

x

3
]x , q51/3,

F5ux
3F̃~u,ux

22uxx!;

A3,7
2 : X15] t , X25]x , X35t] t1

x

3
]x1u]u , q51/3,

F5F̃~v1 ,v2!, v15u22/3ux , v25u21/3uxx ;

A3,7
3 : X15] t , X25]u , X35t] t1

x

3
]x1qu]u , qÞ0,61,

F5x3(q21)F̃~v1 ,v2!, v15x123qux , v25x223quxx ;

A3,7
4 : X15]x , X25]u1lt (12q)/3]x , X353t] t1x]x1qu]u ,

qÞ0,61, lPR,

F5
l

3
~q21!t2(q12)/3uux1F̃~v1 ,v2!,

v15t2(q21)/3ux , v25t2(q22)/3uxx ;

A3,7
5 : X15]u , X25e(12q)t f ~x!]u , X35] t1u]u , f 8Þ0, qÞ0,61,

F5@~12q! f 2 f-#~ f 8!21ux1etF̃~x,v!,

v5e2t@ f 9ux2 f 8uxx#;

A3,7
6 : X15]u , X25e(12q) f 21(t)xh~ t !]u ,

X35 f ~ t !]x1u]u , f •hÞ0, qÞ0, 61,

F52@~12q!2f 21 f 21f 8x2~12q!21f h21h8#ux1ef 21xF̃~ t,v!,

v5e2 f 21x@~12q!ux2 f uxx#.

Remark:The algebraA3,7 has another realization,

$X15] t ,X25]x ,X35t] t1
1
3 ~x1b0t !]x1u]u%,

that is isomorphic toA3,7
2 under the change of basis

X1→X11
b0

2
X2 , X2→X2 , X3→X3 .
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Note that its equivalence to the latter is established by the change of variables,

t̃ 5t, x̃5x2 1
2 b0t, ũ5u.

That is why we have excluded it from the above list:

A3,8: J5S 1 21

1 0 D ; ~5.12!

A3,8
1 : X15]x , X25a~ t !]x1]u ,

X352
1

ȧ
~11a2!] t2ax]x1~au2x!]u ,

F52ȧuux1~11a2!22F̃~v1 ,v2!,

v15~11a2!ux2a, v25~11a2!3/2uxx ,

wherea(t), ȧÞ0 satisfies

~11a2!ä1aȧ250; ~5.13!

A3,9: J5S q 21

1 q D , q.0; ~5.14!

A3,9
1 : X15]x , X25a~ t !]x1]u ,

X352
1

ȧ
~11a2!] t1~q2a!x]x1@~q1a!u2x#]u ,

F52ȧuux1exp$2q arctana%~11a2!22F̃~v1 ,v2!,

v15~11a2!ux2a, v25~11a2!3/2exp$2q arctana%uxx ,

wherea(t), ȧÞ0 satisfies

~11a2!ä1~a23q!ȧ250. ~5.15!

Remark:a(t) can be obtained implicitly by quadratures as

Ea

exp~23q arctanj!~11j2!1/2dj5c1t1c0 .

Theorem 5.3:There are thirty-eight inequivalent three-dimensional solvable symmetry a
bras admitted by Eq. (1.1).

VI. EQUATIONS WITH FOUR-DIMENSIONAL SOLVABLE ALGEBRAS

For dimL54, we proceed exactly in the same manner as above. We start from the a
standardized three-dimensional algebras, and add a further linearly independent elementX4 , and
require that they form a Lie algebra.
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A. Decomposable algebras

The list of decomposable four-dimensional Lie algebras consists of the twelve alge
4A15A3,1% A1 , A2,2% 2A15A3,2% A1 , 2A2,25A2,2% A2,2, A3,i % A1 ( i 53,4,...,9). We preserve
the notations of the previous section.

There are four inequivalent realizations of the algebra 2A2,2 which are invariance algebras o
PDEs of the form~1.1!. We give these realizations together with the corresponding inva
equations:

2A2,2
1 : X152t] t2

x

3
]x , X25] t , X35]u , X45eu]u ,

F5ux
323uxuxx1x22uxF̃~v!, v5x~ux

21uxx2ux!;

2A2,2
2 : X1523t] t2x]x , X25]x , X352u]u1lt1/3]x , X45]u ,

F5
l

3t
v1 lnuv1u1

v1

t
F̃~v!, v15t1/3ux , v5t1/3ux

21uxx ;

2A2,2
3 : X15]x2u]u , X25]u , X35

1

l
] t , X45exp~lt !]x ,

F52lxux2lux lnuuxu1uxF̃~v!, v5ux
21uxx ;

2A2,2
4 : X15]x2u]u , X25]u , X35l] t , X45el21t2x]u , lÞ0,

F5~11l21!ux1e2xF̃~v!, v5ex~ux1uxx!;

2A2,2
5 : X15] t2u]u , X25]u , X35b~]x1g] t!2] t ,

X45egx2t]u , bgÞ0,

F5e(g2b21)x2tF̃~v!2g21~11g3!ux ,

v5et1(b212g)x~gux2uxx!.

Equations invariant under the algebra A2,2% 2A15A3.2% A1 :

A3,2
6

% $X4%: X15]x2u]u , X25]u , X35] t , X45e2x]u ,

F52ux1e2xF̃~v!, v5ex~ux1uxx!;

A3,2
6

% $X4%: X15]x2u]u , X25]u , X35] t , X45]x ,

F5uxF̃~v!, v5uxxux
21 ;

A3,2
7 ~ f 5elx, lÞ0! % $X4%: X15] t2u]u , X25]u ,

X35elx2t]u , X45]x1l] t , lÞ0,

F52~l311!l21ux1e2t1lxF̃~v!,

v5et2lx~lux2uxx!;
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A3.3
1

% $X4%: X15] t , X25]u , X35t]u1l]x ,

X45] t1l21x]u1b]x , l.0, bPR,

F5l21x2bux1F̃~uxx!;

A3,5
3

% $X4%: X15]u , X25]x , X35x]u1l] t , X45] t1b~]x1l21t]u!,

lÞ0, bPR, F5b~l21t23ux!1F̃~uxx!;

A3,5
6 ~ f 5l21x, lÞ0! % $X4%: X15]u , X25~l21x2t !]u ,

X35] t , X45] t1l]x , lÞ0,

F52ux1F̃~uxx!;

A3,5
9

% $X4%: X152x21]u , X25]u , X35]x2x21u]u , X45] t ,

F53x21uxx1x21F̃~v!, v52ux1xuxx ;

A3,4
1

% $X4%: X15]u , X25] t ,

X35t] t1
1
3 x]x1~u1t !]u , X45x3]u ,

F53 lnx22x22ux1F̃~v!, v5x21uxx22x22ux ;

A3,4
5 ~ f 5lx, lÞ0! % $X4%: X15]u ,

X25~2t1lx!]u , X35] t1u]u ,

X45]x1l] t , lÞ0,

F52l21ux1et2lxF̃~v!, v5e2t1lxuxx ;

A3,4
6

% $X4%: X15]u , X252x]u ,

X35]x1u]u , X45] t ,

F5exF̃~v!, v5e2xuxx ;

A3,5
1

% $X4%: X15] t , X25]u ,

X35t] t1
x

3
]x1u]u , X45x3]u ,

F522x22ux1F̃~v!, v5x21uxx22x22ux ;

A3,6
1

% $X4%: X15] t , X25]u ,

X35t] t1
x

3
]x2u]u , X45x23]u ,
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F5220x22ux1x26F̃~v!, v54x4ux2x5uxx ,

A3,6
3 ~ f 5e22b21x, bÞ0! % $X4%: X15]u , X25e2(t2b21x)]u ,

X35] t1u]u , X45] t1b]x , bÞ0,

F52~b14b22!ux1et2b21xF̃~v!,

v5e2t1b21x~2ux1buxx!;

A3,6
4 ~ f 5h51! % $X4%: X15]u , X25e2x]u ,

X35]x1u]u , X45] t ,

F524ux1exF̃~v!, v5e2x~2ux2uxx!;

A3,7
1

% $X4%: X15] t , X25]x ,

X35t] t1
1
3 x]x , X45u]u ,

F5u22ux
3F̃~v!, v5ux

22uuxx ;

A3,7
3

% $X4%: X15] t , X25]u ,

X35t] t1
x

3
]x1qu]u , X45x3q]u ,

qÞ0, 61,

F52~3q21!~3q22!x22ux1x3(q21)F̃~v!,

v5x123q@~3q21!ux2xuxx#;

A3,7
5 ~ f 5e21(12q)b21x,bÞ0! % $X4%: X15]u , X25e(12q)(t2b21x)]u , X35] t1u]u ,

X45] t1b]x , bÞ0, qÞ0, 61,

F52@b1~12q!2b22#ux1et2b21xF̃~v!,

v5e2t1b21x@~12q!ux1buxx#;

A3,7
6 ~ f 5h51! % $X4%: X15]u , X25e(12q)x]u ,

X35]x1u]u , X45] t , qÞ0, 61,

F52~12q!2ux1exF̃~v!,

v5e2x@~12q!ux2uxx#.

Remark:The A3,7
1

% A1 invariant equation is
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ut5uxxx1
ux

3

u2 F̃~v!, v5
uuxx

ux
2 . ~6.1!

If, in particular, F̃5cv2, c5const, namely,

F5cux
21uxx

2 , ~6.2!

the symmetry algebra is further extended byX55]u to a five-dimensional one.

B. Nondecomposable algebras

The set of inequivalent abstract four-dimensional Lie algebras contains ten real nond
posable Lie algebrasA4,i5$X1 ,X2 ,X3 ,X4% ( i 51,...,10).4,5 They are all solvable and therefor
can be written as semidirect sums of a one-dimensional Lie algebra$X4% and a three-dimensiona
ideal N5$X1 ,X2 ,X3%. For A4,i ( i 51,...,6), N is Abelian, for A4,7,A4,8,A4,9 it is of type A3,3

~nilpotent!, and forA4,10 it is of the typeA3,5. The nonzero commutation relations read as

A4,1: @X2 ,X4#5X1 , @X3 ,X4#5X2 ;

A4,2: @X1 ,X4#5qX1 , @X2 ,X4#5X2 ,

@X3 ,X4#5X21X3 , qÞ0;

A4,3: @X1 ,X4#5X1 , @X3 ,X4#5X2 ;

A4,4: @X1 ,X4#5X1 , @X2 ,X4#5X11X2 ,

@X3 ,X4#5X21X3 ;

A4,5: @X1 ,X4#5X1 , @X2 ,X4#5qX2 ,

@X3 ,X4#5pX3 , 21<p<q<1, pqÞ0;

A4,6: @X1 ,X4#5qX1 , @X2 ,X4#5pX22X3 ,

@X3 ,X4#5X21pX3 , qÞ0, p>0;

A4,7: @X2 ,X3#5X1 , @X1 ,X4#52X1 ,

@X2 ,X4#5X2 , @X3 ,X4#5X21X3 ;

A4,8: @X2 ,X3#5X1 , @X1 ,X4#5~11q!X1 ,

@X2 ,X4#5X2 , @X3 ,X4#5qX3 , uqu<1;

A4,9: @X2 ,X3#5X1 , @X1 ,X4#52qX1 ,

@X2 ,X4#5qX22X3 , @X3 ,X4#5X21qX3 , q>0;

A4,10: @X1 ,X3#5X1 , @X2 ,X3#5X2 ,

@X1 ,X4#52X2 , @X2 ,X4#5X1 .

In order to obtain realizations of solvable four-dimensional symmetry algebras of PDE
belong to the class~1.1!, we addX4 in the generic form~2.4! to the already constructed three
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dimensional symmetry algebras and impose the above commutation relations. Once the alg
found we insertX4 into Eq.~2.5! and solve it for the functionF. The form ofF which is invariant
under a three-dimensional algebra is further restricted:

A4,1
1 : X15]u , X25]x , X35] t , X45t]x1x]u ,

F52 1
2 ux

21F̃~uxx!;

A4,1
2 : X15]u , X25x]u , X35] t , X45]x1tx]u ,

F5 1
2 x21F̃~uxx!;

A4,2
1 : X15] t , X25]u , X35]x , X453t] t1x]x1~x1u!]u ,

F5uxx
2 F̃~euxuxx!;

A4,2
2 : X15]x , X25]u , X35] t , X45t] t1

x

3
]x1~ t1u!]u ,

F5
3

2
lnuuxu1F̃~v!, v5

uxx
2

ux
;

A4,2
3 : X15] t , X25]u , X3523q21 ln x]u ,

X45qt] t1
1
3 qx]x1u]u , qÞ0,

F522x22ux1x3(q2121)F̃~v!, v5x123q21
ux1x223q21

uxx ;

A4,2
4 : X15x3(12q)]u , X25]u , X35] t ,

X45t] t1
1
3 x]x1~u1t !]u , qÞ0,1,

F52~223q!~123q!x22ux13 lnx1F̃~v!, v5~223q!x22ux2x21uxx ;

A4,3
1 : X15]u , X25]x , X35] t , X45t]x1u]u ,

F52ux lnuuxu1uxF̃S uxx

ux
D ;

A4,3
2 : X15] t , X25]u , X3523 lnx]u ,

X45t] t1
1
3 x]x ,

F522x22ux1x23F̃~v!, v5xux1x2uxx ;

A4,3
3 : X15]u , X25ex]u , X35] t ,

X45]x1~u1tex!]u ;

F52ux1xex1exF̃~v!, v5e2x~ux2uxx!;
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A4,4
1 : X15]u , X2523 lnx]u , X35] t ,

X45t] t1
1
3 x]x1~u23t ln x!]u ;

A4,5
1 : X15] t , X25]x , X35]u , X45t] t1

x

3
]x1ku]u , kÞ0,

1

3
,

F5ux
3(12k)/(123k)F̃~v!, v5ux

(3k22)/(123k)uxx ;

A4,5
2 : X15] t , X25]x , X35]u ,

X45t] t1
x

3
]x1

u

3
]u ,

F5uxx
2 F̃~uxx!;

A4,5
3 : X15] t , X25u, X35x3(q2p)]u ,

X45t] t1
1
3 x]x1qu]u , qÞp, q•pÞ0,

F52@3~q2p!21#@3~q2p!22#x22ux1x3(q21)F̃~v!,

v5@3~q2p!21#x123qux2x223quxx ;

A4,7
1 : X15]u , X25]x , X35x]u2 1

3 ln t]x , X453t] t1x]x12u]u ,

F5
1

6t
ux

21t21/3F̃~uxx!;

A4,7
2 : X15]u , X25x]u1b]x , X352]x ,

X452b2~b8!21] t1~12b!x]x1~2u2 1
2 x2!]u , b5b~ t !, b8Þ0,

b2b91~b23!~b8!250,

F52 1
2 b8ux

21b23e2b21
F̃~v!, v5b2uxx2b;

A4,7
3 : X15]u , X25~lx32t !]u , X35] t ,

X45t] t1
1
3 x]x1~2u2 1

2 t21ltx3!]u , lÞ0,

F52 1
3 l21~116l!x22ux13lx3 ln x1x3F̃~v!, v52x25ux2x24uxx ;

A4,7
4 : X15]u , X25~ t2x!]u , X35]x ,

X453t] t1~x12t !]x1S xt2
x2

2
12uD ]u ,

F52ux1t21/3F̃~v!1
t

4
, v5uxx1

1

3
ln t;
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A4,7
5 : X15]u , X252x]u , X35]x ,

X453t] t1x]x1S 2u2
x2

2 D ]u ,

F5t21/3F̃~v!, v5uxx1
1
3 ln t;

A4,7
6 : X152x21]u , X25]u , X35]x2x21u]u ,

X453t] t1x]x1~u1 1
2 x!]u ,

F53x21uxx1x21t2 1/3F̃~v!, v52ux1xuxx2
1
3 ln t;

A4,8
1 : X15]x , X25] t , X35t]x1]u , X45t] t1

x

3
]x2

2

3
u]u ,

F52uux1ux
5/3F̃~ux

24/3uxx!;

A4,8
2 : X15]u , X25] t , X35t]u1l]x , X45t] t1

x

3
]x1

4

3
u]u ,

F5
x

l
1ux

1/3F̃~v!, v5ux
22/3uxx , l.0;

A4,8
3 : X15]u , X25]x , X35x]u1lt (12q)/3]x ,

X453t] t1x]x1~11q!u]u , qPR,

F5
l~q21!

6
t2(21q)/3ux

21t (q22)/3F̃~v!, v5t (12q)/3uxx , lÞ0, uquÞ1;

A4,8
4 : X15]u , X25]x , X35x]u1l] t ,

X453t] t1x]x14u]u , lÞ0,

F5~ t23lux!
1/3F̃~v!, v5uxx

3 ~ t23lux!
2;

A4,8
5 : X15]u , X25~lx32t !]u , X35] t ,

X45qt] t1
1
3 qx]x1~11q!u]u , l•qÞ0,

F52 1
3 l21~116l!x22ux1x3q21

F̃~v!, v52x2(213q21)ux2x2(113q21)uxx ;

A4,8
6 : X15]u , X25~ t2x!]u , X35]x ,

X453qt] t1q~x12t !]x1~11q!u]u ,

F52ux1t ~1/3!(122q)q21
F̃~v!, v5t ~1/3!(q21)q21

uxx ;

A4,8
7 : X152x21]u , X25]u , X35]x2x21u]u ,
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X453qt1qx]x1u]u , qÞ0,

F53x21uxx1x21t ~1/3!(q21)q21
F̃~v!, v5t ~1/3!(q21)q21

~2ux1xuxx!;

A4,8
8 : X15]u , X252x]u , X35x]x , X453qt] t1qx]x1~11q!u]u ,

F5t ~1/3!(122q)q21
F̃~v!, v5t ~1/3!(q21)q21

uxx .

Remarks:

• There exists a realization ofA4,6:

A4,6
1 : X15] t , X25tanc]u , X35]u ,

X452t] t1
2
3 x]x1@p1tanc#u]u ,

c5 3
2 ln x, pPR.

However there are no equations that can be invariant under this algebra.

• The algebraA4,8
1 is isomorphic to the KdV algebra which is the semidirect sum of

nilradical ~maximal nilpotent ideal! h(2)5$X1 ,X2 ,X3% and the dilation D5$X4%:

A4,9
1 : X15]u , X25]x , X35a~ t !]x1x]u ,

X452
~11a2!

ȧ
] t1~q2a!x]x1S 2qu2

x2

2 D ]u , qPR,

F52 1
2 ȧux

21~11a2!23/2exp~q arctana!F̃~v!, v5~11a2!uxx2a,

~11a2!ä1~a23q!ȧ250.

The functiona(t), ȧÞ0 is a solution of the ordinary differential equation~5.15!:

A4,10
1 : X15]u , X252tanx]u , X35] t1u]u ,

X45b] t1]x1u tanx]u , bPR,

F522ux23 tanxuxx1et2bx secxF̃~v!,

v5ebx2t~cosxuxx22 sinxux!.

We sum up the above results as a theorem.
Theorem 6.1:There exist fifty-two inequivalent four-dimensional symmetry algebras adm

by Eq. (1.1). The explicit forms of those algebras as well as the associated invariant equatio
given above.

VII. DISCUSSION AND CONCLUSIONS

In this paper we provide a symmetry classification of the KdV type equations involvin
arbitrary function of five arguments. We find that the equivalence classes of invariant equ
involve an arbitrary function of four, three, two variables and one variable as soon as the
metry algebra is one-, two-, three- and four-dimensional, respectively. In particular, we st
symmetries of the most general third order linear evolution equation. What came out from t
our surprise, is that the symmetry group allowed is four-dimensional at most, while ther
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nonlinear equations with symmetry algebras greater than four. This result is in contrast
second-order evolution equations. It is exactly the linear heat equation that allows for the ma
symmetry algebra.

To complete the classification list, it only remains to obtain the inequivalent equations in
ant under solvable algebras of the dimension dimL>5. But this would require to going through
large number of isomorphism classes. To give an idea of the complexity of this task let us
that there are sixty-six classes of nonisomorphic real, solvable Lie algebras of dimension fiv
dimension six, there exist ninety-nine classes of them with a nilpotent element. We plan to d
a separate article to study equations admitting higher-dimensional symmetry algebras.

WheneverF is an arbitrary function of its arguments, the symmetry algebras given in
paper are maximal. In particular, if we impose the requirement that functionF is be independen
of uxx then we find thatf5R(t)u1S(x,t) in ~2.4!. In this case, invariance under fou
dimensional algebras will forceF to depend on an arbitrary constant rather than on an arbit
function. Then, they may admit symmetry groups of the dimension higher than four. We
analyzed this restricted class of equations and obtained that the only equation whose sym
algebra is higher than four is the one corresponding to the realizationA4,1

1 for F̃5const. On the
other hand, for the specific choices ofF̃ involving one variable, the equations with fou
dimensional symmetry algebras may be invariant under larger symmetry groups. For instan
particular case of the equation invariant underA4,1

1 obtained by settingF̃5cuxx
4/3, c5const admits

an additional symmetry group generated by the dilation operatorX553t] t1x]x2u]u .
We only presented representative lists of equivalence classes of invariant equations. Al

invariant equations can be recovered from these lists by applying the point transformations~2.6!.
In other words, an equation in the class~1.1! will have a symmetry group with dimension sati
fying dimL<6 if and only if it can be transformed to one in the~canonical! equations from the
list.

As we mentioned, our classification is performed within point transformations of coordin
Two equations are equivalent if one can be obtained from the other by a change of variabl
the other hand, consider a special case of~6.2! for c523/4,24

ut5uxxx2
3

4

uxx
2

ux
,

which additionally allows a symmetry group generated by$]u%. Though this equation is equiva
lent to the third-order linear equationv t5vxxx under the~no-point! transformationv5Aux, we
treat them as inequivalent.

To give a reader an insight into possible applications of the results of this article, we con
a subclass of Eqs.~1.1!,

ut5uxxx1uux1 f ~ t !u, ~7.1!

which arises in several physical applications such as the propagation of waves in shallow w
variable depth.

When f (t) is arbitrary,~7.1! admits a two-dimensional Abelian symmetry algebra genera
by

X15]x , X25j~ t !]x2 j̇~ t !]u , j5E expH E f ~ t ! dtJ dt. ~7.2!

By the change of dependent variableũ5u/ j̇, the generators are transformed to the realizationA2,1
3

with a52j. The corresponding invariant equation takes the form

ũt5ũxxx1 j̇ũũx ,
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which is a particular case of~1.2!.
For the special casef (t)5atk (aÞ0), the algebra is larger and we have the followi

possibilities for the algebra to be either three- or four-dimensional.
~1! (a,k)5(a,21), aÞ21: The equation admits the three-dimensional indecompos

solvable symmetry algebra spanned by

X15]x , X25t11a]x2~11a!ta]u , X35t] t1
x

3
]x2

2

3
u]u , ~7.3!

with nonzero commutation relations

@X1 ,X3#52
1

3
X1 , @X2 ,X3#52

3a12

3
X2 .

For a521/3, the algebra is isomorphic, up to the scaling of basis elements, toA3,5, for
21,a,2 1

3, to A3,7.
For a522/3 it is isomorphic to the decomposable solvable algebraA3,2 and a suitable basis

is

X15]x , X25t1/3]x2
1

3
t22/3]u , X35t] t1

x

3
]x2

2

3
u]u .

With the equivalence transformation

t̃ 5t, x̃5x, ũ523t2/3u,

the basis elements are transformed, up to scaling, to the realizationA3,2
3 . The transformed equation

is

ũt5ũxxx2
1
3 t22/3ũũx .

This equation belongs to the class corresponding to the realizationA3,2
3 .

We note that a member of~1.2! for f 51, g5t2 ~see Ref. 1! is equivalent, under appropriat
point transformation, to the above equation. Similarly, the particular casea52a/(11a), a
Þ0,1,2 is equivalent tof 51, g5ta of ~1.2!. In this case, the symmetry algebra is indecomposa
and solvable.

~2! (a,k)5(21,21): the spherical KdV~sKdV! equation.
In this case the equation is invariant with respect to a three-dimensional symmetry al

We choose its basis to be

X15]x , X25 ln t]x2
1

t
]u , X35t] t1

x

3
]x2

2

3
u]u , ~7.4!

with nonzero commutation relations

@X3 ,X1#52 1
3 X1 , @X3 ,X2#5X12 1

3 X2 .

It is easy to see that this algebra is isomorphic toA3,4. Under the transformationũ53tu, the
generators are transformed to the realizationA3,4

2 . The sKdV equation takes the form

ũt5ũxxx1
1

3t
ũũx ,

which is a particular case of the equation invariant under the algebraA3,4
2 .
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We note that a member of~1.2! for f 51, g5e3t1 is equivalent to the case~2!, i.e. the sKdV
equation.

~3! (a,k)5(a,0): The basis of the symmetry algebra reads as

X15]x , X25eat~]x2a]u!, X35] t , ~7.5!

with nonzero commutation relation@X3 ,X2#5aX2 . The algebra is isomorphic toA3,2. With the
transformationũ5e2atu the equation is transformed to a special case of~1.2! for f 51,g5eat.

~4! (a,k)5(21/2,21): the cylindrical KdV~cKdV! equation.
In this case the symmetry algebra is four-dimensional. In a convenient basis we have

X152At]x2
1

At
]u ,

X254t3/2] t12xAt]x2S x

At
14AtuD ]u , ~7.6!

X35]x , X453t] t1x]x22u]u ,

with nonzero commutation relations

@X2 ,X3#52X1 , @X1 ,X4#52 1
2 X1 , @X2 ,X4#52 3

2 X2 , @X3 ,X4#5X3 .

We see that the symmetry algebra of the cKdV equation is isomorphic to the algebraA4,8 with
q51. The existence of such an isomorphism is a necessary, but not sufficient condition for a
point transformation to exist, transforming the two equations into each other. Comparing
generators with~2.10! and choosing~2.8! suitably, for example, first transforming the commutin
elements$X1 ,X3% into $] x̃ , t̃ ] x̃1] ũ% and then transforming the remaining ones with the aid of
freedom left in equivalence transformations we arrive at

t̃ 52t21/2, x̃5t21/2x, ũ5tu1
x

2
,

which establishes the equivalence of the Lie algebra with basis~7.6! and the cKdV equation to the
KdV algebra (A4,8

1 ) and KdV equation. This connection between the KdV and cKdV equation
well-known in the literature.19

As a further comparison of the results obtained in the article we consider

ut1uxxx1 f ~u!ux
k50, k.0, ~7.7!

which is clearly a special case of~1.1!. Group classification of this equation is given in a table~see
Table II!.22 These results can immediately be derived from those obtained in this paper
directly or performing a change of independent or dependent variables.

Note that the equations that do not appear in the classification list can be recovered from
by suitable point transformations.

A number of integrable KdV type equations can be reproduced by restricting the arb
functions contained in invariant equations of this article. For example, the realizationA3,7

2 is
equivalent to$] t ,]x ,t] t1x/3]x2u/3]u% under the transformationu→u21/3. We have the invari-
ant function

F5u4F̃~v1 ,v2!, v15u22ux , v25u23uxx .

SettingF̃5v1 produces the modified KdV~mKdV! equation
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ut5uxxx1u2ux . ~7.8!

Since the maximal symmetry algebra of the mKdV equation is three-dimensional, it is no
morphic to the KdV algebra. This implies that there is no point transformation, transformin
mKdV equation into KdV equation. In this respect let us mention that there is the well-kn
nonlocal transformation~Miura transformation!,

ũ5u26A6iux ,

taking the mKdV~7.8! into the KdV equationũt5ũxxx1ũũx . Another integrable equation whic
can be obtained from our classification is23

ut5uxxx13~uxxu
213uux

2!13u4ux .

Its symmetry algebra is isomorphic toA3,7
2 . Note that this equation can be linearized by a cha

of dependent variable.
Let us mention that a classification based on higher order symmetries of third order inte

nonlinear equations of the form

ut5uxxx1F~u,ux ,uxx! ~7.9!

is given in Ref. 24. We should also note that the question of finding PDEs admitting Lie
symmetries is different than finding integrable PDEs. In the latter case one requires the ex
of a generalized one as opposed to Lie point symmetries. For the classification of integrable
we refer the reader to Refs. 25–27.

Finally, let us point out that in a very recent work28 a class of integrable~in the sense of
existence of an infinite number of generalized symmetries! third order evolution equations of th

TABLE II. Symmetry classification of~7.7!.

N k f(u) Symmetry generators Symmetry algeb

1 arb. arb. ]t ,]x A2,1
1

2 k un
]t ,]x ,t]t1

x

3
]x1

k23

k1n21
u]u , k1nÞ1 A3,7

2

3 k eu
]t ,]x ,t]t1

x

3
]x1~k23!]u

A3,7
2

4 k 1 ]t ,]x ,t]t1
x

3
]x1

k23

3~k21!
u]u ,]u , kÞ1 A4,3

1

5 3 arb. ]t ,]x ,t]t1
x

3
]x

A3,7
1

6 3 u22
]t ,]x ,t]t1

x

3
]x ,u]u

A3,7
1

% A1

7 3 1 ]t ,]x ,t]t1
x

3
]x ,]u

A3,7
1

% A1

8 1 un1c ]t ,]x ,t]t1
x

3
]x2

2

n
u]u , nÞ0 A3,7

2

9 1 u ]t ,]x ,t]t1
x

3
]x2

2

3
u]u ,t]x1]u

A4,6
1

10 1 eu1c ]t ,]x ,t]t1
1
3 ~]x12ct!]x2

2
3 ]u

A3,7
2

11 1 1 ]t ,]x ,t]t1
1
3 ~x12t!]x ,u]u ,g~x,t!]u

gt1gxxx1gx50

Linear equation
(N56 in Table I!
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form ~7.9! for specificF admitting recursion operators have been analyzed. Among others
special cases corresponding toF̃53v and F̃53/223v of ~6.1! produce the following equation
with 4-dimensional symmetry algebraA3,7

1
% A1 :

ut5uxxx13u21uxuxx ,

ut5uxxx23u21uxuxx1
3
2 u22ux

3 ,

both of which were shown to admit recursion operators. This fact indicates that many equ
with relatively large symmetry groups in our classification are among the most probable c
dates for being integrable.

We note that the maximal symmetry algebra of the first equation of the above list is infi
dimensional with basis elements:

X15] t , X25]x , X35t] t1
x

3
]x1

u

2
]u ,

X~r!5r~x,t !u21]u , r t5rxxx .

The existence of an infinite-dimensional symmetry algebra suggests linearizability of the eq
by point transformations and, indeed, it is linearized by the change of dependent va
v(x,t)5u2(x,t)/2.
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In this paper, we construct a covariant differential calculus on a quantum plane with
two-parametric quantum group as a symmetry group. The two cases d250 and
d350 are completely established. We also construct differential calculin52 and
n53 nilpotent on super quantum spaces with one and two-parametric symmetry
quantum supergroup. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1738949#

I. INTRODUCTION

A noncommutative quantum~super! space1,2 is an unital, associative algebra with a quantu
~super! group as a symmetry group. These objects3,4 have enriched the arena of mathematics a
mathematical physics: they appear in the context of theory of knots and braids,5 as well as in the
study of Yang–Baxter equations.6 Quantum~super! groups are deformations of the envelopin
~super! algebra of classical Lie groups in the sense that one recovers the classical~super! com-
mutator when the deformation parameters go to some particular values. Usually the genera
a quantum~super! group are assumed to commute with the noncommuting coordinates o
corresponding~super! plane. As a consequence, the quantum~super! plane admits a quantum
group as a symmetry group with only one parameter: (GLq(1/1))GLq(2).7 More generally, one
can obtain a multiparametric quantum~super! group, if one relaxes this property~commutation
between space coordinates and group generators!, namely, GLp,q(1/1)8 and GLp,q(2),9 respec-
tively, in the two-dimensional quantum superplane and quantum plane cases.

Many authors8,10–16 have also studied differential calculus with nilpotencyn52 on ~super!
spaces with one or two-parameter~super! group as symmetry groups. An adequate way leading
generalization of this ordinary differential calculus arises from the graded differential algebra17–22

The latter involves a complex parameter that satisfies some conditions allowing to obtain
sistent generalized differential calculus. The most important property of this calculus is th
operator ‘‘d’’ satisfies$dn50/dlÞ0, 1< l<n21% and it contains as a consequence, not only fi
differentials dxi , i 51, . . . ,m, but involves also higher order differentials dj xi , j 51, . . . ,n21.

In this paper, we construct covariant differential calculus d350 on certain quantum~super!
spaces with one or two-parametric quantum group as a symmetry groups. We will show th
differential calculus is covariant under the algebra with a quantum group structure. The co
j , which appears in the Leibniz rule, is a third root of unity and will be an interesting
nontrivial aspect of the differential calculus that we will introduce.

This paper is organized as follows:
In Sec. II we start by recalling the two-parameter quantum group acting on a two-dimen

quantum plane. We also establishn52 and n53 covariant differential calculi on this spac
following the Coquereauxet al. approach.14,15 It will be noticed that some modifications hav
been brought up to this approach in order to adapt it to the two-parameter quantum group

a!Electronic mail: moreagl@yahoo.co.uk
b!Electronic mail: lhassoun@fsr.ac.ma
c!Electronic mail: y-hassou@fsr.ac.ma
d!Electronic mail: hzakkari@hotmail.com
23140022-2488/2004/45(6)/2314/9/$22.00 © 2004 American Institute of Physics
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metry and then53 differential calculus. In Sec. III, the same method will be applied to const
the n52, n53 covariant differential calculus on 111-dimensional superspace with one para
eter quantum supergroup as a supersymmetry group. In Sec. IV we generalize the results
III by taking the two-parameter quantum group acting covariantly on the superspace.

II. DIFFERENTIAL CALCULUS ON A TWO-PARAMETRIC QUANTUM PLANE

A. Preliminaries

The two-dimensional quantum plane is an associative algebra generated by two nonco
ing coordinatesx andy1,2,14 satisfying the relation

xy5q yx , qÞ0,1 ~qPC!. ~1!

In order to have a two-parameter quantum group GLp,q8(2) as a symmetry group of such
space,9 one must assume that the coordinates do not commute in general with elements d
this group. Indeed, for a generic elementT5(c d

a b) of GLp,q8(2), therelations between the matri
entries and the coordinates are assumed to be9

x a5q11a x, y a5q21a y,

x b5q12b x, y b5q22b y,
~2!

x c5q13c x, y c5q23c y,

x d5q14dx, y d5q24dy.

The coordinatesx andy transform underT and tT ~transposed matrix! as

S x
yD→T S x8

y8 D5S a b

c dD S x
yD ,

S x
yD→tT S x9

y9 D5S a c

b dD S x
yD .

The requirement that the transformed coordinates obey a similar relation as Eq.~1! ~not
necessarily with the same deformation parameterq), i.e.,

x8y85q̄ y8x8, q̄PC, ~3!

x9y95 q% y9x9, q% PC, ~4!

and taking account of the defining relations of GLp,q8(2),13

ab5p ba, cd5p dc,

ac5q8 ca, bd5q8 db, ~5!

p bc5q8 cb, ad2da5S p2
1

q8D bc,

for some nonzerop, q8 with pq8Þ21, implicates further constraints on the involved paramet

q̄5q%

and
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q1151, q215qq821k,

q125q̄p21, q225qq̄p21@ q̄2~p2q821!k#,
~6!

q135q̄q821, q235qq̄q821@ q̄2~p2q821!k#,

q145q̄q821k, q245qq̄2q821p21@ q̄2~p2q821!k#.

One can check that the matrixT5(c d
a b) is indeed an element of the quantum group GLp,q8(2)

and is consistent with Hopf algebra structures.9 For supplementary properties and results conce
ing the quantum group GLp,q8(2) see, for example, Ref. 13.

It is clear that many quantum planes could be associated to this two-parameter qu
group, depending on choices of theqi j ’s. In the following, we shall confine our selves to the ca
q̄5q, which corresponds to the standard definition of the quantum plane.

B. Differential calculus with nilpotency nÄ2 „d2Ä0…

Our aim in this section, is to construct a differential calculus on the previously de
quantum plane. We proceed using the same approach as the one adopted in Refs. 14, 15,

We start by defining the exterior differential ‘‘d’’ which satisfies the usual properties, nam

~i! linearity;
~ii ! nilpotency,

d250;
~iii ! Leibniz rule,

d~uv !5d~u!v1~21!nud~v !,

whereuPVn. Vn is the space of forms with degreen,

d:Vn→Vn11.

V0 is the algebra of functions defined on the quantum plane. We have also

d~x!5dx, d~y!5dy, and d~1!50. ~7!

From ~2!, we deduce

~dx!a5q11a~dx!, ~dy!a5q21a~dy!,

~dx!b5q12b~dx!, ~dy!b5q22b~dy!,
~8!

~dx!c5q13c~dx!, ~dy!c5q23c~dy!,

~dx!d5q14d~dx!, ~dy!d5q24d~dy!.

One can writea priori x dx,x dy,y dx, andy dy in terms of (dx)x,(dy)x,(dx)y, and (dy)y,
by means of 16 unknown coefficients.14 Imposing the covariance of the obtained relations un
GLp,q8(2), and differentiating Eq.~1!, permit to fix 15 of the 16 unknown coefficients. Th
associativity of the expression (x dx)dy5x(dx dy) enables us to fix the last unknown paramet

We notice that in the usual case Glq(2) this approach yields directly the desired different
calculus. However, when GLp,q8(2) is a symmetry group, we obtain additional conditions on
parametersk andq8,

q85q , k5
q8

p
. ~9!
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Then Eq.~6! becomes

q115q1351 , q125q145q215q235qp21 , q225q245q2p22. ~10!

So, the covariant differential calculus is given by

x dx5
1

pq
dx x, x dy5

1

p
dy x,

y dy5
1

pq
dy y, y dx5S 1

pq
21D dy x1

1

q
dx y, ~11!

dx dy52
1

p
dy dx, ~dx!25~dy!250,

and the differential algebra isVx,y
q,p5$x,y,dx,dy%.

It is remarkable that the differential calculus on the quantum plane with GLq(2), as asym-
metry group,11,12,14can be obtained from the two-parameter one Eq.~11! in the p→q limit.

As in the ordinary case, the differential operator d can be realized by

dªdx ]x1dy ]y .

Based on this realization one can construct a gauge field theory on the two-parameter qu
plane. This should be achieved formally as in Ref. 20.

The nilpotent differential calculus can be extended to higher orders, as there is no rea
constrain this one ton52 nilpotency.17–20,23–27

In the following section, we generalize the differential calculus on the quantum plane
one-parameter symmetry group20 to the two-parameter one, this is done by extending then52
differential calculus obtained here ton53 case.

C. Differential calculus with nilpotency nÄ3 „d3Ä0…

Let us introduce the differential operator ‘‘d’’ that satisfies the following conditions:

~i! linearity;
~ii ! nilpotency,

d350 , d2Þ0;
~iii ! Leibniz rule,

d~uv !5~du!v1~ j !nud~v !.

where j is the cubic root of unity:j 5e2ip/3,11 j 1 j 250. u is an element ofVn, the
space of forms with degreen. It is a subspace of the differential algebraṼx,y

q,p

5$x,y,dx,dy,d2x,d2y%. The new objects d2x and d2y which appear are defined by

d~dx!5d2~x!5d2x , d~dy!5d2~y!5d2y,

these are ‘‘forms’’ with degree two.

In order to ensure the covariance of the differential calculus under the two-parameter
metry group GLp,q8(2), weproceed as in the preceding section. However, instead of the last
where we have used the associativity property, we shall use the independence between
different 2-formsz d2z8 and dz dz8, wherez, z85x,y. Below, we will discuss how to recover thi
property.

The same constraints onq8 andk, Eq. ~9!, are recovered, thus theqi j ’s are the same as in Eq
~10!. The covariant differential calculus is then given by
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x dx5 j 2 dx x, x dy52
jq

11qp
dy x1

j 2qp21

11qp
dx y,

y dy5 j 2 dy y, y dx5
j 22qp

11qp
dy x2

jp

11qp
dx y,

x d2x5 j 2 d2x x, x d2y52
jq

11qp
d2y x1

j 2qp21

11qp
d2x y,

y d2y5 j 2 d2y y, y d2x5
j 22qp

11qp
d2y x2

jp

11qp
d2x y, ~12!

dx d2x5 j d2x dx, dx d2y52
q

11qp
d2y dx1

jqp2 j 2

11qp
d2x dy,

dy d2y5 j d2y dy, dy d2x5
j 2 j 2qp

11qp
d2y dx2

p

11qp
d2x dy,

dx dy5q dy dx, d2x d2y5q d2y d2x.

Moreover, a realization of ‘‘d’’ in terms of partial derivatives,

d5dx ]x1dy ]y ~13!

permits us to have (dx)35(dy)350.20

We note that the differential algebraṼx,y
q,p , defined above, is not associative. One can ch

this statement by first assuming that this property~associativity! is preserved, then deriving som
inconsistent relations. Especially, one expects, due to this assumption, the two expre
(x dx)dy andx(dx dy) to be equal. However, using~12! and successively moving the parenthes
one obtains two expressions which are manifestly not equal, unlesspq5 j 2.

Thus, the differential algebraṼx,y
q,p is associative only whenpq5 j 2, otherwise it is not.

Another associative 3-nilpotent differential algebra, forpq5 j , can be constructed basing o
the method already mentioned in Sec. II B, with a proper substitution of the differential ope
d250 with the one d350, (d2Þ0). It follows from this method that the commutation relatio
between the coordinates and their first order differentials are given~by the first ones! in ~11!. The
first, second, and third differentiations of these relations give rise to the remaining commu
relations betweenx, y, dx, dy, d2x, and d2y.

The results of Ref. 20~i.e., differential calculus on a reduced quantum plane, respectiv
with q351 andqN51) can be recovered as limiting cases of the one obtained here~12!; this is
done by taking the adequate limitp→q ~respectively, withq351 andqN51).

It is also remarkable that the casen53 differential calculus was applied to introduce inte
esting ‘‘Higher order gauge theories.’’18–20Indeed, an interesting manner to do this~in the present
case! is to pursue the same steps of Ref. 20.

Another important question arises at this step is how to adapt the techniques applied in
II B and II C to the quantum superplane. This will be developed in the next section.

III. DIFFERENTIAL CALCULUS ON A ONE-PARAMETER QUANTUM SUPERPLANE

A. nÄ2 differential calculus

The 111 dimensional quantum superspace, in Manin’s approach,2,7 is an algebra generate
by a bosonic and a fermionic coordinate satisfying the relations

xu5q ux, qÞ0,1, ~14!
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u250. ~15!

In analogy with the quantum plane, a symmetry supergroup of this space is GLq(1/1), and a
generic element of this supergroup is a supermatrix:T5(g d

a b), wherea, d are bosonic element
commuting withx and u while b, g are fermionic elements commuting withx, anticommuting
with u and obeying the following relations:

ab5q ba, db5q bd,

ag5q ga, dg5q gd

bg1gb50, b25g250,

ad2da5~q212q! bg. ~16!

These relations can also be obtained by imposing the invariance of Eqs.~14! and ~15! under
T and stT5(b d

a 2g) ~supertranspose!.
Many authors studied the differential calculus on this superspace.8,10,27,28Here we construct

the differential calculus based on the same technique adopted by Couquereauxet al.14 which is
used in the preceding section, with however, some modifications to adapt it to this superspa
introduce an exterior differential operator ‘‘d’’ satisfying the properties:

~i! linearity,

d~lu!5~21!l̂ l d~u!, ~17!

where the parityl̂50,1 respectively, ifl is a bosonic or a fermionic element.
~ii ! Nilpotency,

d250.
~iii ! Leibniz rule,

d~uv !5~du!v1~21! û~21!deguu~dv !, ~18!

whereû is the parity ofu and degu is the degree of the differential formu.

Note that consistency requires that du commutes witha, d, b, g and dx commutes witha, d
and anticommutes withb, g.

The same method applied in Sec. II B yields

x dx5q22 dx x, x du 5 q21 du x,

u du5du u, u dx 5 ~12q22! du x2q21 dx u, ~19!

dx du5q21 du dx, ~dx!2 5 0,

and the associative differential algebra is denotedVx,u
q 5$x,u,dx,du%.

As in Sec. II C, one can apply the same method to generalize the differential calculus o
superspace to higher orders (d350). This is the aim of the next section.

B. Differential calculus on superspace with nilpotency nÄ3 „d3Ä0…

We proceed as in Sec. II C, in order to construct then53 covariant differential calculus on
superspace. We introduce a differential operator ‘‘d’’ satisfying the usual requirements, na
linearity is the same as in Eq.~17!, the nilpotency will be changed ton53 (d350) and the
Leibniz rule, Eq.~18! becomes

d~uv !5~du!v1~21! û~ j !deguu~dv !. ~20!
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The resulting differential algebraṼx,u
q is generated by,x, u, dx, du, d2x, and d2u satisfying

x dx5 j 2 dx x, x du52
jq

11q2 du x1
j 2q221

11q2 dx u,

u du5du u, u dx5
q22 j 2

11q2 du x1
jq

11q2 dx u,

dx du52q du dx, ~du!250,

x d2x5 j 2 d2x x, x d2u52
jq

11q2 d2u x1
j 2q221

11q2 d2x u,

~21!

u d2u52d2u u, u d2x5
j 22q2

11q2 d2u x2
jq

11q2 d2x u,

dx d2x5 j d2x dx, dx d2u5
q

11q2 d2u dx1
jq22 j 2

11q2 d2x du,

du d2u5 j 2 d2u du, du d2x5
j 2q22 j

11q2 d2u dx2
q

11q2 d2x du,

d2x d2u5q d2u d2x, ~d2u!250.

Let us point out that the differential algebraṼx,u
q is not associative, unlessq5 j . In the case

qÞ j , one can recover this property by following the same steps mentioned at the end of Se
with the adequate modifications.

IV. DIFFERENTIAL CALCULUS ON A TWO-PARAMETER QUANTUM SUPERPLANE

A. Differential calculus with nilpotency nÄ2 „d2Ä0…

In this section, we generalize the results of Sec. III, in the sense that we choose a
parametric quantum supergroup GLp,q8(1/1) as a symmetry group for the superplane Eqs.~14! and
~15!. This group will be introduced using the same method as in Sec. II.8,9

The entries of a matrix elementT5(g d
a b) of GLp,q8(1/1) satisfy the following nontrivial

relations:

ab5p ba, db5p bd,

ag5q8 ga, dg5q8 gd,
~22!

p bg1q8 gb50, b25g250,

ad2da5~q8212p! bg.

As it is done in Sec. II this superspace is covariant underT andstT ~supertranspose!, and the
analogous of Eq.~2! are
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x a5k a x, u a5qq̄q821p21k a u,

x b5q̄p21k b x, u b52qq̄2q821p22k b u,
~23!

x c5q̄q821k c x, u c52qq̄2q822p21k c u,

x d5q̄2q821p21k dx, u d5qq̄3q822p22k du.

We are interested in establishing a covariant differential calculus on this superspace in th
q̄5q% 5q. To achieve this construction, forn52, we introduce a differential operator ‘‘d’’ satis
fying the same properties as in Sec. III B@linearity Eq.~17!, nilpotency, and Leibniz rule Eq.~18!#.
The associative differential algebraVx,u

p,q5$x,u,dx,du% is generated by the following relations:

x dx5~qp!21 dx x, x du5p21 du x,

u du5du u, u dx5~12~qp!21! du x2q21 dx u, ~24!

dx du5p21 du dx, ~dx!250.

We have usedq85q andk5 q/p, which, as in Eq.~9!, are consequences of the requireme
of the covariance ofVx,u

p,q under GLp,q8(1/1).
As expected, in the limitp→q, we recoverVx,u

q and relations~19!.

B. Differential calculus with nilpotency nÄ3 „d3Ä0…

The technique used in Secs. II C and III C, allows us to construct then53 differential algebra
Ṽx,u

p,q5$x,u,dx,du,d2x,d2u%,

x dx5 j 2 dx x, x du52
jq

11qp
du x1

j 2qp21

11qp
dx u,

u du5du u, u dx5
qp2 j 2

11qp
du x1

jp

11qp
dx u,

dx du52q du dx, ~du!250,

x d2x5 j 2 d2x x, x d2u52
jq

11qp
d2u x1

j 2qp21

11qp
d2x u,

~25!

u d2u52d2u u, u d2x5
j 22qp

11qp
d2u x2

jp

11qp
d2x u,

dx d2x5 j d2x dx, dx d2u5
q

11qp
d2u dx1

jqp2 j 2

11qp
d2x du,

du d2u5 j 2 d2u du, du d2x5
j 2qp2 j

11qp
d2u dx2

p

11qp
d2x du,

d2x d2u5q d2u d2x, ~d2u!250.

The same limit as in Sec. II C, namely,p→q, yields Ṽx,u
q . The differential algebraṼx,u

p,q is
not associative. In order to restore this property we proceed as mentioned at the end of Se
and III B.
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One physical application of the differential calculi~Secs. III and IV! is to construct a super
symmetric gauge field theory on the quantum superplane~with one or two parameter quantum
supergroup as symmetry groups; the latter will be a generalization of the former!. However, this is
not straightforward, since one should first start by defining a supersymmetric covariant deriv

V. CONCLUSION

In this paper, we have constructed differential calculi on certain quantum~super! spaces.
Namely, then52 andn53 nilpotent differential calculi on the quantum plane with two param
ric quantum group (GLp,q(2)) as asymmetry group was obtained. We have also considered
cases of quantum superplanes related to the one and two-parametric quantum supe
GLq(1u1) and GLp,q(1u1), as symmetry groups, respectively. The relatedn52 andn53 differ-
ential calculi were also established.

In general, the differential calculus can be applied to formulate gauge field theories.29–31As a
consequence, the results obtained here permit us to construct gauge theories on the corres
noncommutative spaces.32 Indeed, for the quantum space~Sec. II!, this can be done using the sam
techniques of Ref. 20, where the symmetry group is a one parameter.

The noncommutative supersymmetric case~Secs. III and IV! will be treated in the same
fashion, with however, more care since it is essential first, to define a covariant supersym
derivative.33,34

We note that the differential calculus was also applied to derive a corresponding qua
oscillator, where the latter is seen as a representation of the former.35 It will be interesting to
achieve this with the differential calculus in Sec. II, as the resulting quantum oscillator wi
two-parameter dependent.
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We obtain the exact nontopological soliton lattice solutions of the associated Lame´
equation in different parameter regimes and compute the corresponding energy for
each of these solutions. We show that in specific limits these solutions give rise to
nontopological~pulse-like! single solitons, as well as to different types of topologi-
cal ~kink-like! single soliton solutions of the associated Lame´ equation. Following
Manton, we also compute, as an illustration, the asymptotic interaction energy
between these soliton solutions in one particular case. Finally, in specific limits, we
deduce the soliton lattices, as well as the topological single soliton solutions of the
Laméequation, and also the sine-Gordon soliton solution. ©2004 American In-
stitute of Physics.@DOI: 10.1063/1.1738952#

I. INTRODUCTION

Over the years, extensive research has been carried out seeking the exact soliton solu
both periodic~e.g., sine-Gordon, double sine-Gordon! and nonperiodic~e.g.,f4, f6) field theory
models. For example, the exactly solvable sine-Gordon~SG! equation1 and its quasi-exactly solv
able ~QES! partner, i.e., the double sine-Gordon equation~DSG!, have exact single soliton2,3 as
well as soliton lattice4 solutions.

There have been some advances in the study of the hyperbolic analogues of these pr
the exactly solvable hyperbolic analogue of the SG equation is the sine-hyperbolic Gordon~ShG!
equation.5 This potential has only one minimum and thus does not support~topological! soliton
solutions. The hyperbolic analogue of the DSG equation is the double sine-hyperbolic G
~DShG! equation, which is a QES double-well potential with exact single soliton and so
lattice solutions.6

However, not much is known regarding the elliptic analogues of these problems. The e
generalization of the SG is the Lame´ equation7 but, as far as we are aware of, its single soliton a
soliton lattice solutions have not been worked out yet. One would surmise that the elliptic
logue of the DSG equation is the Associated Lame´ ~AL ! equation.8–10Nevertheless, we find below
that this is not the case. There are many physical contexts in which the Lame´ equation arises, such
as bond-order and charge density wave systems,11 nonlinear elasticity,12 and other contexts, e.g
phase slips in superconductors, magnetoelastic interaction on curved surfaces and sym
monopoles.13 The Laméequation appears in systems with a single periodicity such as a
dimensional array of identical atoms with a certain strength of the potential. The AL equ
would arise from two alternating types of atoms with different strengths of the potential. M
over, one expects an AL equation in many of the above physical systems in the prese
external—electric, magnetic or stress—fields.

Our goal in the present paper is to obtain the exact single soliton and soliton lattice sol
for both the AL and Lame´ elliptic potentials. In particular, we obtain here the soliton latt
23230022-2488/2004/45(6)/2323/15/$22.00 © 2004 American Institute of Physics
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solutions of the AL equation in different parameter regimes corresponding to different shap
the AL potential. The advantage of this approach is that the corresponding single puls
topological soliton solutions of the AL equation can be immediately obtained from the la
solution in suitable limits. Furthermore, the soliton lattices and topological single soliton solu
of the Laméequation are easily obtained by taking a different appropriate limit. Besides
asymptotic interaction between the solitons can also be readily obtained by using Ma
formalism.14

Our results can be summarized as follows: We show that there are six different soliton
solutions of the AL equation for different values of the parameters. From these six solution
obtain the corresponding AL single soliton solutions. It turns out that while in five cases thes
topological ~kink-like! single solitons, in one case we have a nontopological~pulse-like! single
soliton solution. From the AL soliton lattice solutions, by taking appropriate limits, we also ob
the corresponding Lame´ soliton lattices and single soliton solutions~which are also new!.

These results will serve as a background for future statistical mechanics studies of the A
Lamé elliptic potentials. The problem of finding the partition function of the system can
mapped onto the spectral problem of a Schro¨dinger equation with the potential.15 Generally
speaking, the Schro¨dinger equations with periodic potentials belong to a class known as H
equations,8 and they lead to a band structure of the energy spectrum of the system. For both t
and DSG potentials one could calculate~either exact or approximate! statistical and thermody
namical properties16,17 through a knowledge of the spectral band structure~or, at least, of the band
edges! and of their soliton and phonon solutions, respectively. Both AL and Lame´ are also periodic
potentials with a band structure.7,9,10Although we do not pursue this any further here, our res
will provide the basis for the thermodynamics of these systems, in particular the contributi
the nonlinear soliton excitations to the specific heat, etc.15

The plan of the paper is as follows. In Sec. II we discuss some salient features of th
potential and consider the limits that lead to the Lame´ potential. The readers who are interest
only in the single soliton and soliton lattice solutions of the Lame´ equation can then directly go t
Sec. V. In Sec. III we obtain the nontopological soliton lattice solutions of the AL equatio
different regimes in the parameter space and also compute the corresponding energies. In
we obtain the topological and pulse single soliton solutions of the AL equation by taking
appropriate limits of the various nontopological solutions obtained in the preceding section
worth emphasizing here that in one special case, we obtain two different kinds of topolo
solutions of the AL equation. As an illustration, in one particular case, we also estimat
asymptotic interaction between these single solitons.14 ~In all the other cases one can follo
exactly the same procedure, and thus we will not consider these here.! As a crosscheck on ou
results, we recover in appropriate limit, the sine-Gordon soliton solution. In Sec. V we show
by taking an appropriate limit in the above results, we can also obtain the~previously not known!
kink lattice and the topological single soliton solutions of the Lame´ equation. Finally, in Sec. VI
we summarize the results obtained in this paper and indicate some open problems.

II. THE ASSOCIATED LAMÉ POTENTIAL

Consider the following family of periodic potentials labeled by a pair of real parameters~p, q!:

VAL~f,k!5pk2 sn2~f,k!1qk2
cn2~f,k!

dn2~f,k!
1C5pk2 sn2~f,k!1qk2 sn2~f1K~k!,k!1C, ~1!

that are calledAssociated Lame´ potentials~since the corresponding Schro¨dinger equation is called
the Associated Lame´ equation!.8–10 Here sn(f,k) and cn(f,k) are, respectively, the sine an
cosine amplitude Jacobi elliptic functions of real modulusk(0<k<1) and period 4K(k);
dn(f,k) is the d-amplitude Jacobi elliptic function of modulusk and period 2K(k); and K(k)
denotes the complete elliptic integral of the first kind, see Refs. 18 and 19. We will choos
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constantC in the potential so that the absolute minimum of the potential—with respec
f—equals zero,Vmin50. The potential is periodic with period 2K(k), except in the limitp5q
when the period reduces toK(k), as it is clear from Eq.~1!.

The caseq50 corresponds to the standard Lame´ potential VL(f,k). There are two more
cases in which the potential~1! reduces to the Lame´ potential. Namely, whenp50 and also when
p5q, as shown below. Therefore in all the calculations below we will admit thatpÞ0 and
pÞq; the results for the standard Lame´ potential will be recovered in the limitq→0, and we refer
to these results whenever the potential reduces to the standard Lame´ one. From a physical point o
view, if one thinks of a Lame´ potential~p, 0! as due to a one-dimensional array of atoms w
spacing 2K(k) and ‘‘strength’’ p, then the Associated Lame´ potential ~p,q! results from two
alternating types of atoms spaced byK(k) with strengthsp andq, respectively. If the two types o
atoms are identical~which makesp5q), one expects a potential of periodK(k).

In addition, whenk→0, andupu, uqu→`, so thatupuk2→P5finite anduquk2→Q5finite, the
potential~1! reduces to the sine-Gordon potential,

VSG5~P signp2Q signq!sin2 f, ~2!

and the results we present below reduce to the well-known ones for the sine-Gordon pote
Note that we cannot recover the DSG equation under any limiting condition in the para

space of the AL equation. Indeed, the only limit where one can get sinusoidal functions
Jacobi elliptic functions of modulusk is the above-mentioned limitk→0 ~of course, withupu,
uqu→`, so thatupuk2→P5finite anduquk2→Q5finite, otherwise the potential trivially become
a flat one!, when one obtains the SG, andnot the DSG equation.

It is also worth noting that under the transformationf→f1K(k) the AL potential ~1!
VAL(p,q) goes over intoVAL(q,p) and hence forp.0, q>0, as well as forp,0, q<0, without
loss of generality, we shall always consider the case ofp2.q2. Further, instead of considerin
both the possibilities ofp.0, q<0 and p,0, q>0, it suffices to consider just the case
p.0, q<0, but nowp2 can be bigger as well as smaller thanq2.

Finally, consider the case ofp5q, when, by using the Landen transform18 and choosing the
constantC52pk2, the AL potential~1! can be written as

VAL~f,k!5~12k8!2VLF ~11k8!f,
12k8

11k8G , ~3!

wherek85A12k2 is the complementary elliptic modulus. For the rescaled fieldf̄5(11k8)f
and in the rescaled space coordinatex̄5(11k8)x the field equations@see next section, Eq.~5!#
will remain the same as that for the simple Lame´ potential. Note that thep5q case cannot be
obtained as a limit ofq→p (qÞp), since—as already mentioned—whenp5q the periodicity of
the potential~1! is K(k), while for pÞq it is 2 K(k), see also Ref. 9.

III. SOLITON LATTICE SOLUTIONS OF THE AL POTENTIAL

For the scalar fieldf5f(x,t) the dynamics is described by the second-order hyperb
differential equation

]2f

]t2 2
]2f

]x2 52
]VAL

]f
. ~4!

In the stationary casef5f(x), this reduces simply to

d2 f

dx2 5
]VAL

]f
, ~5!

that can be easily integrated, at least formally, by quadratures. The time-dependent soluti
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immediately obtained from here by Lorentz boosting to velocityv, i.e., x→(12v2)21/2(x
2vt). The physically meaningful solutions~bounded atx→6`) are given by

6&~x2x0!5E
f~x0!

f~x! df̃

AVAL~f̃,k!2A2

, ~6!

wherex0 and A2[upuk2a2 are the two~suitably chosen! integration constants. Of course,Vmin

50<A2,Vmax, whereVmin/max is the absolute minimum/maximum of the potential energy w
respect tof. In fact, in view of the conditionVAL(f̃,k)2A2>0, the actual value ofA2 determines
the appropriate integration domain in Eq.~6!.

Depending on the values of the parametersp and q, the potentialVAL(f,k) has different
behaviors in one period 0<f,2K(k), and hence the nature of the solutions in Eq.~6! is also
different. There are three cases to be considered separately, namely~I! whenp.0 andq>0, ~II !
whenp,0 andq<0, and, finally,~III ! whenp.0 andq<0. Note that in what follows we shal
use the shorthand notationG[Auqu/upu.

A. Case I: pÌ0 and qÐ0

As explained above, in this case it is sufficient to consider 0>G,1. Note that the caseG
50 corresponds to the standard Lame´ potential. Depending on the value ofG, the potential
VAL(f,k) can have different behaviors in one period 0<f,2K(k).

Case I.1:0<G<k8.
Here 0<k85A12k2<1 is the complementary elliptic modulus. The potentialVAL(f) has

only one minimum,Vmin50 ~atf50), and one maximum,Vmax5pk2(12G2) @atf5K(k)], in one
period@note that we have chosenC52pk2G2 in Eq. ~1! in order to haveVmin50]. The plot of the
potentialVAL as a function off is given in Fig. 1~a!, where the solid and the dashed horizon
lines correspond to two choices of the parameterA2. Under the change of variablez̃
5sn2(f̃,k), Eq. ~6! can be rewritten as

2A2pk4x56E
z

1 dz̃

A~z12 z̃!~12 z̃!~ z̃2z2!~ z̃20!
, ~7!

wherez5sn2(f,k), x050 for f05K(k) ~by choice!, andA25pk2a2 with 0<a2,(12G2). The
value of a2 determines the limits of the integration interval in the above equation, through
conditionV(f1,2)2pk2a250; one finds thatz1,25sn2(f1,2) are given by

z1,25
12G2k821a2k2

2k2 F16A12
4k2a2

~12G2k821a2k2!2G , ~8!

andz1.1.z>z2.0. Then the integral in~7! can be evaluated using the formula 3.147~5! of Ref.
18 and one is finally led to the nontopological soliton lattice solution

sn2~f,k!5
@~z12z2!2z1~12z2!sn2~y,t !#

@~x12z2!2~12z2!sn2~y,t !#
. ~9!

Here y5A2pk4(z12z2)x and the period of the lattice 2L52K(t)/A2pk4(z12z2) is controlled
by the modulus

0,t5Fz1~12z2!

z12z2
G1/2

<1. ~10!

Note thatf oscillates betweenK(k) and sn21(Az2) @respectively,2K(k) and2sn21(Az2)],
i.e., it is indeed a nontopological solution@it does not connect two adjacent degenerate minima
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the potential, that are separated by a distance—in thef space—of 2K(k)]. In Fig. 1~b! we give a
plot of the solution~i.e., the fieldf as a function ofx! with solid and dashed curves correspondi
to the two choices ofA2 as in Fig. 1~a!, while the dotted curve represents the topological sin
soliton solution~corresponding toA250)—see Sec. IV.

We emphasize that there are no ‘‘cusps’’ or slope discontinuities in the actual solutionsf(x).
In order to represent the field in the same range 0,f(x),K(k) in Fig. 1~b! and in the subsequen
figures we have plotted modulo 2K(k) the absolute value of the actual fieldf(x). This is possible
because iff(x) is a solution then2f(x) and 2K(k)2f(x) are also solutions. Specifically, fo
solutions that attain the valueK(k) such as in Fig. 1~b!, the actual field isf(x) in @0,2L#,
2K(k)2f(x) in @2L,4L#, f(x) in @4L,6L#, and so on. Similarly, for solutions that attain ze
field value such as in Fig. 3~b!, the actual field isf(x) in @0,2L#, 2f(x) in @2L,4L#, f(x) in
@4L,6L#, and so on.

One can compute the energy corresponding to a period 2L of this soliton lattice:

ESL5E
2L

L F1

2 S d2f

dx2 D1VAL~f!Gdx

5E
2L

L

@2VAL~f!2A2#dx

54E
0

L

VAL~f!dx22LA2

54pk2E
0

L

sn2@f~x!,k#dx14p2k2G2E
0

L H cn2@f~x!,k#

dn2@f~x!,k#
21J dx22Lp2k2a2. ~11!

After some algebraic manipulations, using the solution~9! one obtains

ESL52A 2p

z12z2
H Fz1K~ t !2~z121!PS 12z2

z12z2
,t D G2

a2K~ t !

2 J
2G2F z1k82

12z1k2 K~ t !2
z121

12z1k2 PS ~12z2!~12z1k2!

~z12z2!k82 ,t D G , ~12!

FIG. 1. Case I.1: 0<G<k8. ~a! The shape of the potentialVAL(f). The solid and the dashed horizontal lines correspo
to two choices of the integration parameterA2. ~b! The soliton lattice solution@i.e., the fieldf(x)] with solid and dashed
curves corresponding to the two values ofA2 in ~a!. Thex axis is not labeled because the two lattices have different sp
periods. The dotted curve represents the topological single soliton solution corresponding toA250 ~for the sake of clarity
we have displaced the origin of thex axis for this curve!. Note that in~b! and all subsequent figures we have plotteduf(x)u
modulo 2K(k). There are no ‘‘cusps’’ in the actual fieldf(x).
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whereP(z0 ,t) denotes the complete elliptic integral of the third kind.18,19

Case I.2: k8,G,1.
The potential VAL(f) has now two minima:Vmin(f50)50 and a local minimum

Vmin
l @f5K(k)#5pk2(12G2), and two symmetric maxima aroundf5K(k), namely, Vmax

5pk2@(12Gk8)/k#2 for f5sn21@A(12Gk8)/k2#, 2K(k)2sn21@A(12Gk8)/k2#. The plot of the
potentialVAL(f) as a function off is given in Fig. 2~a!, where the solid and the dashed horizon
lines correspond to the two choices of the integration constantA2 as explained below. Note that i
this case it makes no sense to consider either the limit of the Lame´ potential~i.e., G→0), or that
of the sine-Gordon potential~i.e., k→0, pk2→P, qk2→Q). There are two possible situation
depending on the value ofA25pk2a2.

Case I.2(i): Vmin<A25pk2a2,Vmin
l , i.e., 0<a2,12G2.

One recovers the same soliton lattice solution as above, Eq.~9!, with the same modulust, Eq.
~10!, and the same energy per period of the lattice, Eq.~12!.

Case I.2(ii): Vmin
l <A25pk2a2,Vmax, i.e., 12G2<a2,@(12Gk8)/k#2. Then the integral~6!

becomes

2A2pk4x56E
z2

z dz̃

A~12 z̃!~z12 z̃!~ z̃2z2!~ z̃20!
, ~13!

with z5sn2(f,k) and 1.z1>z.z2 @z1,2 have the same expressions as above, Eq.~8!#. One can
evaluate this integral using the formula 3.147~4! of Ref. 18 and obtain the following nontopolog
cal soliton lattice solution

sn2~f,k!5
z1z2

z12~z12z2!sn2~w,n!
, ~14!

with w5A2pk4z1(12z2)x, and the modulusn given by

0,n5A z12z2

z1~12z2!
<1; ~15!

FIG. 2. Case I.2:k8,G,1. ~a! The shape of the potentialVAL(f). The solid and the dashed horizontal lines correspo
to two choices of the integration parameterA2, namely, Case I.2~i!: Vmin<A25pk2a2,Vmin

l , i.e., 0<a2,12G2 ~solid
line!; and Case I.2~ii !: Vmin

l <A25pk2a2,Vmax, i.e., 12G2<a2,@(12Gk8)/k#2 ~dashed line!. ~b! The soliton lattice
solution@i.e., the fieldf(x)] with solid and dashed curves corresponding to the two values ofA2 in ~a!, i.e., respectively,
to Case I.2~i! and Case I.2~ii !. The x axis is not labeled because the two lattices have different periodicities. We
plotted uf(x)u modulo 2K(k).
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therefore, the soliton lattice has a spatial period 2L52K(n)/A2pk4z1(12z2). Note thatf varies
between sn21(Az1) and sn21(Az2) @respectively,2sn21(Az1) and 2sn21(Az2)] when x varies
over one spatial period: indeed, this solution is nontopological.

In Case I.2~ii ! in order to compute the energy for one spatial period 2L, it is useful to shift the
potential by2Vmin

l 52pk2(12G2), so that the minimum of the potential explored by the solit
lattice is equal to zero. One finds

ESL54E
0

L

VAL~f!dx22LVmin
l 22Lp2k2a2

52A 2p2

z1~12z2!Fz2PS z12z2

z1
,nD2G2

k82z2

12k2z2
PS z12z2

z1~12k2z2!
,nD2

a21~12G2!

2 G .
~16!

The plot of the solutions in Case I.2 is given in Fig. 2~b!, where the solid line corresponds t
the nontopological soliton lattice solution of Case I.2~i!, while the dashed line corresponds to t
nontopological soliton lattice solution of Case I.2~ii !. Note that in the appropriate limits~see Sec.
IV ! these two types of solutions give birth to a topological@Case I.2~i!# and a nontopologica
single soliton@Case I.2~ii !# solution, respectively.

B. Case II: pË0 and qÏ0

As explained above, here again it suffices to focus only on the domain 0<G,1, and we must
distinguish between two different behaviors of the potential, depending on the value ofG.

Case II.1:0<G<k8.
The potentialVAL(f,k) has only two extrema in@0,2K(k)), namely, an absolute maximum

Vmax5upuk2(12G2) for f50, and an absolute minimumVmin50 for f5K(k) @with the choice of
the shiftC5upuk2 in Eq. ~1!#. A plot of the potential is given in Fig. 3~a!.

One can repeat the integration scheme described in the preceding case. In particular,
ering z5sn2(f,k), Eq. ~6! becomes

2A2upuk2x56E
0

z dz̃

A~z12 z̃!~12 z̃!~z22 z̃!~ z̃20!
, ~17!

where this time

FIG. 3. Case II.1: 0<G<k8. ~a! The shape of the potentialVAL(f). The solid horizontal line corresponds to th
integration parameterA2. ~b! The soliton lattice solution@i.e., the fieldf(x)] corresponding to the value ofA2 in ~a!. We
have plotteduf(x)u modulo 2K(k).
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z1,25
11k22G22a2k2

2k2 F16A12
4k2~12G22a2!

~11k22G22a2k2!2G , ~18!

z1.1>z2.z.0, and 0<a2,(12G2). This integral can be evaluated using formula 3.147~2! of
Ref. 18 and one obtains the following nontopological soliton lattice:

sn2~f,k!5
z1z2 sn2~y,r !

~z12z2!1z2 sn2~y,r !
. ~19!

Herey5A2upuk4(z12z2)x and the modulusr that controls the density of solitons in the lattice
given by

0,r 5Az2~z121!

z12z2
<1. ~20!

The period of the lattice is 2L52K(r )/A2upuk4(z12z2) and one notices thatf varies between 0
and sn21(Az2) @respectively, 0 and2sn21(Az2)] in one period. A plot of the solution is given in
Fig. 3~b!.

One can compute the energy for one period 2L of this lattice,

ESL52A 2upu
z12z2

H F2~z121!K~r !1z1PS 2
z2

z12z2
,r D G

2G2F2
z121

12z1k2 K~r !1
z1k82

12z1k2 PS 2
z2~12z1k2!

z12z2
,r D G2

a2K~r !

2 J . ~21!

Case II.2: k8,G,1.
In this case, the potentialVAL(f,k) has two maxima and two degenerate minima in o

period 0<f,2K(k). Namely, an absolute maximum,Vmax5upu(12Gk8)2 ~for f50!; a relative
maximumVmax

l 5upu(G2k8)2 @for f5K(k)]: and two absolute minimaVmin50 situated symmetri-
cally aroundK(k) @for f5sn21A(12Gk8)/k2, 2K(k)2sn21A(12Gk8)/k2]. Note that we used
a shift C5upu(122Gk81G2) in the expression~1! of the potential. A plot of the potential as
function of f is given in Fig. 4~a!.

FIG. 4. Case II.2:k8,G,1. ~a! The shape of the potentialVAL(f). The solid horizontal line corresponds to the integrati
parameterA2. ~b! The two nontopological soliton lattice solutions@i.e., the fieldf(x)] corresponding to the value ofA2

in ~a!; the solid line represents Solution 1~see the main text!, while the dashed line represents Solution 2. We have plo
uf(x)u modulo 2K(k).
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The very existence of adjacent degenerate minima of the potential separated by di
barriers to the right and to the left~on thef axis! implies that in this case one will have tw
different soliton lattices~and, correspondingly, two different topological single soliton solution!.
This is similar to the DSG case.2–4

We follow the same type of integration procedure as that described above.
Case II.2(i): When Vmin<A25upuk2a2,Vmax

l , i.e., 0<a2,(G2k8)2/k2, Eq. ~6!, under the
change of variablez5sn2(f,k), leads to two different types of solutions.

Solution 1:for 0,z<z2,z1,1, one has

2A2upuk4x56E
0

z dz̃

A~12 z̃!~z12 z̃!~z22 z̃!~ z̃20!
, ~22!

where now

z1,25
2~12Gk8!2a2k2

2k2 H 16A12
4@~12Gk8!22a2k2#

@2~12Gk8!2a2k2#2J . ~23!

Equation~22! can be integrated using formula 3.147~2! of Ref. 18, thus obtaining

sn2~f,k!5
z2 sn2~w,s!

~12z2!1z2 sn2~w,s!
, ~24!

with w5A2upuk4z1(12z2)x and the modulus

0,s5A~12z1!z2

~12z2!z1
<1. ~25!

It is a nontopological soliton lattice, withf oscillating between 0 and sn21(Az2) @respectively, 0
and2sn21(Az2)]. Its energy for one period 2L52K(s)/A2upuk4z1(12z2) is given by

ESL52A 2upu
z1~12z2! H F ~G2k8!2

k2 2
a2

2 GK~s!1PS 2
z2

12z2
,sD2G2PS 2

z2k82

12z2
,sD J . ~26!

Solution 2:for 0,z2,z1<z,1 one obtains from Eq.~6!,

2A2upuk456E
z

1 dz̃

A~12 z̃!~ z̃2z1!~ z̃2z2!~ z̃20!
, ~27!

with z5sn2(f,k) andz1,2 given by Eq.~23!. This integral can be solved using formula 3.147~7!
of Ref. 18, thus leading to the following nontopological pulse-like lattice:

sn2~f,k!5
z1

z11~12z1!sn2~w,s!
, ~28!

with w5A2upuk4z1(12z2)x and the moduluss given by the same expression as above, Eq.~25!.
Of course, one notices immediately that this soliton lattice is different from the previous one
~24!. In one period 2L52K(s)/A2upuk4z1(12z2), f oscillates between sn21Az1 andK(k) @re-
spectively,2sn21Az1 and2K(k)].

The energy corresponding to one period 2L of this pulse lattice is given by

ESL5sA 2upu
z1~12z2! H F ~12Gk8!2

k2 2
a2

2 GK~s!1PS 2
12z1

z1
,sD1G2PS 2

12z1

z1k82 ,sD J . ~29!
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A plot of the solutions is given in Fig. 4~b! where the solid and dashed lines correspo
respectively, to the Solution 1 and Solution 2. Therefore, as expected, we obtained two di
soliton lattices~with two different limiting cases of topological single solitons!. Note that the
terms ‘‘large’’ and ‘‘small’’ applied to the topological solitons do not refer, as usual, to the len
of the interval they cover inf space, but to the height of the barrier they ‘‘encounter.’’3

Case II.2(ii): When Vmax
l <A25upuk2a2,Vmax, i.e., (G2k8)2/k2<a2,(12Gk8)2/k2 there is

no soliton lattice solution.

C. Case III: pÌ0 and qÏ0

Unlike the last two cases, herep2 can be. or ,q2. However, it turns out that in this
case, whatever the value ofG5Auqu/p, the potentialVAL(f) has only two extrema in one perio
0<f,2K(k), namely, an absolute minimumVmin50 for f50 and a maximumVmax

5pk2(11G2) for f5K(k). Note that we chooseC5pk2G2 in Eq. ~1!. A plot of the potential
VAL(f) is given in Fig. 5~a!. With z5sn2(f,k), Eq. ~6! now becomes

2A2pk4x56E
z

1 dz̃

A~z12 z̃!~12 z̃!~ z̃2z2!~ z̃20!
, ~30!

with

z1,25
~11G2k821a2k2!

2k2 F16A12
4k2a2

~11G2k821a2k2!2G , ~31!

z1.1>z.z2.0. Using the formula 3.147~5! of Ref. 18, one can evaluate the integral in Eq.~30!,
thus obtaining a nontopological soliton lattice,

sn2~f,k!5
@~z12z2!2z1~12z2!sn2~y,t !#

@~z12z2!2~12z2!sn2~y,t !#
. ~32!

Herey5A2pk4(z12z2)x and the elliptic modulus

0,t5Az1~12z2!

z12z2
<1. ~33!

FIG. 5. Case III:p.0 andq<0. ~a! The shape of the potentialVAL(f). The solid horizontal line corresponds to th
integration parameterA2. ~b! The soliton lattice solution@i.e., the fieldf(x)] corresponding to the value ofA2 in ~a!. We
have plotteduf(x)u modulo 2K(k).
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In one period 2L52K(t)/A2pk4(z12z2), f oscillates between sn21Az2 andK(k) @respectively,
2K(k) and2sn21Az2]. A plot of the solution is given in Fig. 5~b!.

The energy corresponding to one period 2L of this lattice is

ESL52A 2p

z12z2
H Fz1K~ t !2~z121!PS 12z2

z12z2
,t D G

2G2k82F z1

z1k221
K~ t !2

z121

k82~z1k221!
PS 2

~12z2!~z1k221!

k82~z12z2!
,t D G2

a2K~ t !

2 J . ~34!

IV. SINGLE SOLITON SOLUTIONS OF THE AL POTENTIAL

Having obtained the soliton lattice solutions of the AL problem, it is now straightforwar
consider the specific limits of the integration constantA2 and to obtain the corresponding sing
soliton solutions of the Associated Lame´ potential and compute their energy.

Cases I.1 and I.2(i):The limit of a single soliton~that corresponds to the period of the latti
L→`) is obtained fort↗1 @a2↘0; z1→(12G2k82)/k2 andz2↘0]. One notices that nowf can
vary continuously between2K(k) andK(k) while x explores the whole real axis; therefore, o
obtains a topological single-soliton~kink-like! solution,

sn~f,k!56A 12G2k82

12G2k821k82~12G2!sinh2~y* !
, ~35!

wherey* 5A2pk2(12G2k82)x. The corresponding energy of this single kink-like soliton is o
tained from Eq.~12!, using the relations

limr↗1P~n2,r !5 limr↗1

K~r !

12n22
n

2~12n2!
lnS 11n

12nD . ~36!

It may be noted that all the divergences cancel mutually, thus leading to a finite energy
single soliton:

EK5A2pF lnS A12G2k821k

A12G2k822k
D 2G lnS A12G2k821~Gk!

A12G2k822~Gk!
D G . ~37!

Following Manton14 one can compute the asymptotic interaction energy between two sol
in the array, or between a soliton and an antisoliton. As an illustration we will consider
particular soliton solution; for all the other cases one can follow exactly the same procedu

From Eq.~35! one obtains the asymptotic shape of the soliton, e.g., forx→1`:

fas'F4~12G2k82!

k82~12G2! G1/2

exp~2A2pk2~12G2k82!x!. ~38!

Then, if 2L@1 is the distance between two solitons in the array, according to Ref. 14
asymptotic interaction energy is

U~2L !'2
8~2pk2!1/2~12G2k82!3/2

k82~12G2!
exp~22LA2pk2~12G2k82!!. ~39!

If one considers now the small parametera2!1 that measures the distance from the single soli
limit, according to the results in Sec. III we can obtain the asymptotic expression for 2L as

2L'
1

A2pk2~12G2k82!
lnS 16~12G2k82!2

a2k82~12G2! D , ~40!
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and thus

U~a2!'A pk2

2~12G2k82!
a2, ~41!

that corresponds to a repulsive asymptotic interaction between two solitons in the array. O
consider also the asymptotic interaction energy between a soliton and an antisoliton and
simply U(a2)'2Apk2/@2(12G2k82)#a2, i.e., an attractive interaction.

Sine-Gordon limit:Taking now the limitk→0, with upu,uqu→`, so thatupuk2→P5finite and
uquk2→Q5finite, in the expressions of the AL single soliton solution, Eq.~35!, one obtains the
correct kink-like solution of the sine-Gordon potential in Eq.~2!, namely,

sinfSG56sech~y* !, ~42!

with y* 5A2P(12G2)x, and the energy

ESG52A2P~12G2!. ~43!

Case I.2(ii): The single soliton limitL→` @i.e., n↗1; a2↘(12G2), z1→1, andz2→(1
2G2)/k2] reads

sn~f,k!56A 12G2

12G21~G22k82!sech2~v* !
, ~44!

with v* 5A2pk2(G22k82)x. It represents a nonlopological~pulse-like! soliton, with f varying
betweenK(k) and sn21(A(12G2)/k2) @respectively,2K(k) and2sn21(A(12G2)/k2)] whenx
runs over the real axis, i.e., it does not connect two adjacent degenerate minima of the po

Its energy is obtained from Eq.~16! and reads

ES5A2pFG lnS ~Gk!1AG22k82

~Gk!2AG22k82D 2 lnS k1AG22k82

k2AG22k82D G . ~45!

Case II.1:Consider now the single soliton limitr↗1@a2↘0,z1→(12G2)/k2, andz2→1].
One obtains the following topological~i.e., kink-like! soliton:

sn~f,k!56A 12G2

k822G21~12G2!sinh2~y* !
sinh~y* !, ~46!

with y* 5A2upuk2(k822G2)x, of energy

EK52A2upuFarctanS k

k822G2D 2G arctanS ~Gk!

Ak822G2D G , ~47!

where we took the limitr↗1 in Eq. ~21! using the relation

limr↗1P~2n2,r !5 limr↗1

K~r !

11n2 1
n

11n2 arctan~n!. ~48!

Note that one can also consider the limit of the sine-Gordon potential in this case and
the correct sine-Gordon soliton.

Case II.2(i): Solution 1: large topological kink:Considering the single soliton limit
s↗1@a2↘0,z1,2→(12Gk8)/k2#, one obtains a ‘‘large’’ topological kink, that interpolates b
tween two adjacent minima ‘‘across’’ the large barrierVmax of the potential
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sn~f,k!56A 12Gk8

k8~G2k8!1~12Gk8!tanh2~v* !
tanh~v* !, ~49!

with v* 5A2upuk8(12Gk8)(G2k8)x. Its energy is found from Eqs.~26! and ~48! as

EK52A2upuFarctanA 12Gk8

k8~G2k8!
2G arctanAk8~12Gk8!

G2k8
G . ~50!

Case II.2(i): Solution 2: small topological kink:Considering now the single soliton limi
s↗1@a2→0,z1,2→(12Gk8)/k2#, one obtains a ‘‘small’’ topological kink, that interpolates b
tween two adjacent minima ‘‘across’’ the small barrierVmax8 of the potential

sn~f,k!56A 12Gk8

12Gk81k8~G2k8!tanh2~v* !
, ~51!

with v* 5A2upuk8(12Gk8)(G2k8)x. Its energy is found from Eqs.~29! and ~48!,

EK52A2upuFG arctanA G2k8

k8~12Gk8!
2arctanAk8~G2k8!

12Gk8
G . ~52!

Case III: The single soliton limitt↗1@a2↘0,z1→(11G2k82)/k2,andz2→0# represents a
topological soliton,

sn~f,k!56A ~11k82G2!

11G2k821k82~11G2!sinh2~y* !
, ~53!

with y* 5A2pk2(11G2k82)x. Its energy is given by

EK5A2pF lnS A11G2k821k

A11G2k822k
D 12G arctanS ~Gk!

A11G2k82D G . ~54!

Here again one can consider the limit of the sine-Gordon potential and obtain the c
sine-Gordon soliton of energyESG52A2P(11G2).

V. SOLITON LATTICE AND SINGLE SOLITON SOLUTIONS OF THE LAME´ POTENTIAL

Let us now consider the standard Lame´ potential

VL~f,k!5pk2 sn2~f,k!. ~55!

Recall thatp is a real parameter and sn(f,k) is the sine amplitude Jacobi elliptic function of re
modulusk (0<k<1) and period 4K(k), whereK(k) denotes the complete elliptic integral of th
first kind, see Refs. 18 and 19. As emphasized in Sec. II, the Lame´ potential can be obtained from
the Associated Lame´ potential for special limiting values of the two parameters~p,q! of the latter,
Eq. ~1!.

We shall next demonstrate explicitly that having obtained the AL soliton lattice and s
soliton solutions, one can immediately obtain the~previously not known! corresponding solutions
of the Laméproblem by taking suitable limits of the appropriate AL solutions.

A. Lamé soliton lattice solutions

Starting from the AL soliton lattice solutions and considering the limitG→0, we obtain the
two following types of Lame´ soliton lattice solutions.

Cases I.1 and III(p.0): These lead to type I Lame´ soliton lattice solution. The solution is
given by Eq.~9! with simpler forms forz1 ,z2 , namely,z151/k2, z25a2 @5A2/upuk2, see Eq.
~6!#:
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sn2~f,k!5
~12k2a2!2~12a2!sn2~y,t !

~12k2a2!2k2~12a2!sn2~y,t !
, ~56!

wheret5@(12a2)/(12k2a2)#1/2 andy5A2pk2(12k2a2)x. As a result the Lame´ soliton lattice
energy per period 2L52K(t)/A2pk2(12k2a2) of the lattice has the simpler form

ESL52A 2pk2

12k2a2 F S 1

k22
a2

2 DK~ t !2
k82

k2 PS k2~12a2!

12k2a2 ,t D G , ~57!

where recall thatP(z0 ,t) denotes the complete elliptic integral of the third kind.18,19

Case II.1(p,0): This produces type II Lame´ soliton lattice solution. In this case the solutio
is in fact the same as that given by Eq.~19!, except that nowz1 ,z2 take the simpler valuesz1

51/k2, z2512a2:

sn2~f,k!5
~12a2!sn2~y,r !

12k2~12a2!1k2~12a2!sn2~y,r !
, ~58!

with r 5@k82(12a2)/@12k2(12a2)#1/2 andy5A2upuk2@12k2(12a2)#x. As a result the Lame´
soliton lattice energy per period 2L52K(r )/A2upuk2@12k2(12a2)# of the lattice now reads

ESL52A 2upuk2

12k2~12a2! F2S k82

k2 1
a2

2 DK~r !1
1

k2 PS 2
k2~12a2!

12k2~12a2!
,r D G . ~59!

B. Lamé single soliton solutions

We can now easily obtain the corresponding Lame´ topological~kink-like! single soliton so-
lutions, either by taking the appropriate limits of the Lame´ soliton lattice solutions, or of the AL
single soliton solutions.

Type I (p.0): For example, consideringG50 in the expressions for the AL soliton solutio
as given by Eq.~35!, the corresponding Lame´ one soliton solution turns out to be

sn~f,k!5
1

A11k82 sinh2~y* !
, ~60!

wherey* 5A2pk2x. The corresponding energy is then given by

EK5A2p lnS 11k

12kD , ~61!

where we have used Eq.~37!. The asymptotic~repulsive! interaction between two solitons, usin
Manton’s method14 from Eq. ~41!, is given byU(a2).Ap/2ka2.

Type II (p,0): ConsideringG50 in the expressions for the AL soliton solution as given
Eq. ~46! the corresponding Lame´ soliton solution turns out to be

sn~f,k!5
sinh~y* !

Ak821sinh2~y* !
, ~62!

wherey* 5A2upuk2k82x. The corresponding energy is given by

EK52A2upu arctanS k

k8D , ~63!

where we have used Eq.~47!.
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VI. CONCLUSION

We have obtained and presented a taxonomy of the exact soliton lattice and single
solutions, as well as their corresponding energies, for the Associated Lame´ equation8–10 in various
parameter regimes. The class of solutions turns out to be very rich depending on the para
~p,q! of the AL potential, Eq.~1!. In appropriate limits we also obtained the single soliton a
soliton lattice solutions of the Lame´ equation. The topological and nontopological nature of
different solutions was discussed. As an illustration of Manton’s method14 we also computed, in a
particular case, the asymptotic interaction energy between these solitons. In addition to
relevance in the study of nonlinear phenomena, these solutions provide valuable information
domain walls in field theory, materials and many physical systems. It would be worthwh
study the stability of these solutions, and also the exact thermodynamical properties of
systems.
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On bosonic limits of two recent supersymmetric
extensions of the Harry Dym hierarchy
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Two generalized Harry Dym equations, recently found by Brunelli, Das, and
Popowicz in the bosonic limit of new supersymmetric extensions of the Harry Dym
hierarchy@J. Math. Phys.44, 4756~2003!#, are transformed into previously known
integrable systems: one, into a pair of decoupled KdV equations, the other one, into
a pair of coupled mKdV equations from a bi-Hamiltonian hierarchy of
Kupershmidt. ©2004 American Institute of Physics.@DOI: 10.1063/1.1745128#

I. INTRODUCTION

Integrable supersymmetric differential equations have been attracting much attention in
ern mathematical physics and soliton theory~see, e.g., Ref. 1, and references therein!. Supersym-
metric extensions of known integrable bosonic~or classical! systems are of particular interes
because, if the numberN of Grassmann variables is greater than one, those extensions can
erate, in their bosonic limits, some new integrable classical systems which generalize the
ones.

Recently, Brunelli, Das, and Popowicz2 studied supersymmetric extensions of the Harry D
hierarchy, and found, as bosonic limits ofN52 supersymmetric extensions, the following tw
new classical generalizations of the Harry Dym equation:

w0,t5
1
2~w0

21/2!xxx ,

w1,t5
1

64~216w1,xxxw0
23/2196w1,xxw0,xw0

25/2172w1,xw0,xxw0
25/22258w1,xw0,x

2 w0
27/2

26w1,xw1
2w0

27/219w1
3w0,xw0

29/22108w1w0,xxw0,xw0
27/21219w1w0,x

3 w0
29/2!, ~1!

and

w0,t5
1

16~8~w0
21/2!xxx26w1,xw1w0

25/219w1
2w0,xw0

27/2!,

w1,t5
1

32~28w1,xxxw0
23/2148~w1,xw0,x!xw0

25/22144w1,xw0,x
2 w0

27/226w1,xw1
2w0

27/219w1
3w0,xw0

29/2

112w1w0,xxxw0
25/22126w1w0,xxw0,xw0

27/21177w0,x
3 w1w0

29/2!, ~2!

wherew0 and w1 are functions ofx and t. Note that in system~1!, in the seventh term of the
right-hand side of its second equation, we have corrected a misprint made in Ref. 2: the de
w0 should be27/2 there.

In the present paper, we find chains of transformations which relate these new gene
Harry Dym ~GHD! equations~1! and ~2! with previously known integrable classical systems.
Sec. II, the GHD equation~1! is transformed into a pair of decoupled KdV equations. In Sec.
the GHD equation~2! is transformed into a pair of coupled mKdV equations which belongs to
bi-Hamiltonian hierarchy of the modified dispersive water waves equation of Kupershmidt3 ~see
also Ref. 4, p. 84!. Section IV contains concluding remarks.

a!Permanent address: Institute of Physics, National Academy of Sciences, 220072 Minsk, Belarus. Electron
saks@pisem.net
23380022-2488/2004/45(6)/2338/5/$22.00 © 2004 American Institute of Physics
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II. TRANSFORMING THE FIRST GHD EQUATION

Unfortunately, there are no generally applicable methods of transforming a given non
system into another one, less complicated or better studied. In order to find necessary tran
tions, one usually follows the trial and error way in combination with some heuristic cons
ations. In the present case, we also used this way.

First, the transformation

w05u~x,t !22, w15v~x,t !, t°24t ~3!

brings the GHD equation~1! into the following simpler form:

ut5u3uxxx ,

v t5u3vxxx19u2vxuxx112u2uxvxx127uvuxuxx1
57
2 vux

31 75
2 uux

2vx1 9
8u

6v3ux1 3
8u

7v2vx .
~4!

Second, we try to transformx, u, andv in ~4! as follows:

x5p~y,t !, u~x,t !5py~y,t !, v~x,t !5q~y,t !. ~5!

This is an extension of the transformation used by Ibragimov5 to relate the original Harry Dym
equation with the Schwarzian-modified KdV equation. In the case of scalar evolution equa
the Ibragimov transformation~i.e. ~5! with v5q50) is an essential link in chains of transform
tions between constant separant equations and nonconstant separant ones.6,7 Also the transforma-
tion ~5! appeared recently in Ref. 8, as an essential link in a chain of transformations betw
system of symmetrically coupled Harry Dym equations and the Hirota–Satsuma syste
coupled KdV equations.

The transformation~5! really works in the present case and relates the system~4! with the
system

pt5pyyy2
3
2py

21pyy
2 ,

qt5qyyy19py
21pyyyqy127py

22pyypyyyq118py
22pyy

2 qy

19py
21pyyqyy1

3
2py

23pyy
3 q1 3

8py
6q2qy1 9

8py
5pyyq

3. ~6!

To verify this, one may use the following identities:

u]x5]y , ut5pyt2py
21pyypt , v t5qt2py

21qypt . ~7!

Note that ~5! is not an invertible transformation: it maps the system~6! into the system~4!,
whereas its application in the opposite direction, from~4! to ~6!, requires one integration byy. We
have omitted the termsa(t)py anda(t)qy in the right-hand sides of the first and second equati
of ~6!, respectively, where this arbitrary functiona(t) appeared as a ‘‘constant’’ of that integratio

Third, we make the transformation

f ~y,t !5py
21pyy , g~y,t !5py

3q, ~8!

admitted by the system~6! owing to the form of its equations, and obtain the pair of decoup
mKdV equations

f t5~ f yy2
1
2 f 3!y , gt5~gyy1

1
8g

3!y . ~9!

Needless to say that the pair of Miura transformations
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a~y,t !56 f y2 1
2 f 2, b~y,t !56 1

2igy1 1
8g

2, ~10!

with independent choice of the6signs, relates~9! with the two copies of the KdV equation

at5ayyy13aay , bt5byyy13bby . ~11!

III. TRANSFORMING THE SECOND GHD EQUATION

We follow the same three-step transformation as used in Sec. II.
First, the transformation~3! brings the GHD equation~2! into the form

ut5u3uxxx2
9
4u

7v2ux2 3
4u

8vvx ,

v t53u2vuxxx1u3vxxx136uvuxuxx112u2vxuxx

112u2uxvxx124vux
3136uux

2vx1 9
4u

6v3ux1 3
4u

7v2vx . ~12!

Second, we apply the transformation~5! to the system~12! and obtain

pt5pyyy2
3
2py

21pyy
2 2 3

8py
7q2,

qt53py
21pyyyyq124py

22pyypyyyq112py
21pyyyqy1qyyy23py

23pyy
3 q

1 27
2 py

22pyy
2 qy19py

21pyyqyy1
9
4py

5pyyq
31 3

8py
6q2qy , ~13!

where the termsa(t)py and a(t)qy , with arbitrary a(t), have been omitted in the right-han
sides of the first and second equations, respectively.

Third, the transformation~8! relates the system~13! with the following system of coupled
mKdV equations:

f t5~ f yy2
3
4ggy2 1

2 f 32 3
8 f g2!y ,

~14!
gt5~gyy13g fy2 3

2 f 2g2 5
8g

3!y .

The system~14! does not admit any further transformation into a system of coupled K
equations. It is possible to transform~14! into a system of a KdV–mKdV type, but we will no
follow this way. Instead, we notice that the system~14! is invariant under the change of variable
f ° f , g°2g. Therefore the transformation

f 5c1~a1b!, g5c2~a2b!, ~15!

with any nonzero constantsc1 and c2 , relates the system~14! with a system of symmetrically
coupled mKdV equations fora(y,t) andb(y,t), which is invariant undera°b, b°a. Systems
of symmetrically coupled mKdV equations possessing higher-order generalized symmetrie
classified by Foursov.9 The choice of

c151, c256 i ~16!

in the transformation~15! brings the system~14! into the form

at5~ayy13aay23bay1a326a2b13ab2!y ,
~17!

bt5~byy13bby23aby1b326b2a13ba2!y ,

which is exactly the case~K! in the Foursov classification.9

Foursov9 proved that the system~17! represents the third-order generalized symmetry of
system of coupled Burgers equations
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at5~ay1a222ab!y , bt5~2by12ab2b2!y , ~18!

and found the bi-Hamiltonian structure of this hierarchy with the Hamiltonian operators

P5S 0 ]y

]y 0 D ,

~19!

Q5S 22a]y2ay ]y
21~a2b!]y1ay

2]y
21~a2b!]y2by 2b]y1by

D .

In its turn, the system of coupled Burgers equations~18! has a long history. As a system o
coupled second-order evolution equations possessing higher-order symmetries, it appeare
classifications of Mikhailov, Shabat, and Yamilov10 and Olver and Sokolov.11 Moreover, the bi-
Hamiltonian structure~19! turns out to be not new. Indeed, the transformation

a52r , b5s2r , t°2 1
2t ~20!

relates the system~18! with the modified dispersive water waves equation

r t5
1
2~2r y12rs2r 2!y ,

~21!
st5

1
2~sy22r y22r 212rs1s2!y,

which was introduced, together with its bi-Hamiltonian structure, by Kupershmidt3 ~see also Ref.
4, p. 84!. The bi-Hamiltonian structures of~18! and~21! are related by the transformation~20! as
well. For this reason, the system~17! is equivalent to a third-order member of the bi-Hamiltoni
hierarchy of the modified dispersive water waves equation~21!.

IV. CONCLUSION

In this paper, we found chains of transformations which relate the new GHD equations~1! and
~2! of Brunelli, Das, and Popowicz with previously known integrable systems. The transfo
tions ~3!, ~5!, ~8!, and~10! relate the GHD equation~1! with the pair of decoupled KdV equation
~11!. The transformations~3!, ~5!, ~8!, ~15! with the choice of~16!, and ~20! relate the GHD
equation~2! with a third-order member of the bi-Hamiltonian hierarchy of the modified disper
water waves equation~21!.

It can be observed in the literature~see, e.g., Refs. 5, 6, 7, 10, and references therein! that
quite often a newly-found remarkable equation turns out to be related to a well-studie
equation through an explicit chain of transformations. In such a situation, one gets a possibil
to study the new equation directly but to derive its properties from the well-known properti
the corresponding old equation, using the transformations obtained. Now this applies to th
generalized Harry Dym equations of Brunelli, Das, and Popowicz as well.
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The pseudosymmetry condition on a manifold is a generalization of the notion of
spaces of constant curvature. A complete algebraic classification of the pseudosym-
metric space–times based on the Petrov type of the Weyl tensor and the Segre´ type
of the Ricci tensor is presented. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1745129#

I. INTRODUCTION

The most simple generalizations of the flat pseudo-Euclidean space–time, i.e., Mink
space, are the spaces of constant curvature. For these spaces the sectional curvatureK does not
depend on the point nor on the tangent plane at any point. Their Riemann tensor is given

Rabgm5K~gaggbm2gamgbg!,

and the space–times of constant curvature are the de Sitter and anti–de Sitter space–tim1

Cartan introduced a further generalization by considering the Riemannian spaces for
every local geodesic reflection is an isometry. These are called the locally symmetric spac
are characterized by the curvature condition

¹R50,

or equivalently by the property that their sectional curvature is invariant under parallel trans
along any curve. The symmetric Riemannian spaces were classified by Cartan2 and the locally
symmetric space–times were classified by Petrov.3,4

Of course, the curvature tensor of every locally symmetric space also satisfies the re
R•R50, or in local coordinates:

~R•R!abgsmn5~¹m¹n2¹n¹m!Rabgs52Rmnr[aRb]gs
r 12Rmnr[gRs]ab

r 50.

The study of these so-called semisymmetric spaces was initiated by Cartanet al. and revital-
ised by Nomizu,5 Takagi,7 and Sekigawa,6 leading to their classification by Szabo´.8 The semisym-
metric spaces are characterized geometrically by the property that the sectional curvature
plane remains invariant after a parallel translation of the plane along an infinitesimal para
gram. The semisymmetric space–times were classified by Petrov.3

From this notion of semisymmetry we can define a scalar that in general depends on th
in the manifold and two planes,p spanned byu andv, andp! spanned byX andY, as follows:

L~p,p,p!!5
~R•R!~u,v,v,u;X,Y!

Q~g,R!~u,v,v,u;X,Y!
,

a!Electronic mail: Stefan.Haesen@kubrussel.ac.be
23430022-2488/2004/45(6)/2343/4/$22.00 © 2004 American Institute of Physics
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wherebyQ(g,R) is the ~0,6!-Tachibana tensor given in component form as

Q~g,R!abgsmn52gm[aRb]ngs22gn[aRb]mgs12gm[gRs]nab22gn[gRs]mab .

The vanishing of this tensor is a necessary and sufficient condition for a space to be of co
curvature;9 the scalarL is therefore only defined onUR5$xPMuQ(g,R)Þ0 at x%.

A manifold for whichL(p,p,p!) is isotropic, i.e., only depends on the pointp, but not on the
planesp and p!, is called pseudosymmetric in the sense of Deszcz.10–12 These spaces are
further generalization of the spaces of constant curvature. We remark that there is no theore
corresponding to that of Schur, i.e.,L(p) is not necessarily constant; there exist ample exam
of pseudosymmetric manifolds which are not of constant type.

The pseudosymmetric Einstein space–times were classified in Ref. 13. Here we pres
full classification of the pseudosymmetric space–times, showing in particular that they are
Petrov types D or N or conformally flat.

II. PSEUDOSYMMETRIC SPACE–TIMES

We classify the general pseudosymmetric space–times by using the Newman–Penro
malism~see, e.g., Ref. 14 for an introduction!. Consider a general null tetrad$ l a,na,ma,m̄a%, with
the relationsl ana5152mam̄a. The space–time metric can then be written as

gab52l (anb)22m(am̄b) .

After projection of the pseudosymmetry condition,

Rmnr[aRb]gs
r 1Rmnr[gRs]ab

r 2L$gm[aRb]ngs2gn[aRb]mgs1gm[gRs]nab2gn[gRs]mab%50,

on a general null tetrad, we find 34 algebraic relations between the Ricci and Weyl scalars.
given below will suffice to present the classification, the other 18 relations are automat
satisfied in each of the cases we will consider:

2C0~C22L!22~C1!25LC0 , ~1!

2C4~C22L!22~C3!25LC4 , ~2!

F02~C̄12F10!2F01~C̄212L!1F00F125LF01, ~3!

C3F202C4F1050, ~4!

F01F221F02~C32F21!2F12~C212L!5LF12, ~5!

C3F222C4F1250, ~6!

2C1C31C0C423C2~C212L!53LC2 , ~7!

2C3F0122F11~C2212L!2F02F201F00F2252LF11, ~8!

C3F212C4F1150, ~9!

C0F2012C1F1023C2F0050, ~10!

C̄0F0222F01F102F00~C̄222F1112L!5LF00, ~11!

C0F2212C1F1223C2F0250, ~12!
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C0F222C1F121C̄3F012C̄4F0050, ~13!

C̄4F0012F01F122F02~C̄212F1112L!5LF02, ~14!

C4F0212C3F1223C2F2250, ~15!

and

C4F0222F12F212F22~C222F1112L!5LF22. ~16!

The above relations hold for a general null tetrad. For each Petrov type there exists a pr
tetrad, adapted to the principal null directions of the Weyl tensor, which makes a number of
scalars zero.

If the space–time is of Petrov type I, we can find a null tetrad such thatC05C450 and
C1Þ0, C2Þ0, andC3Þ0. But from ~1! and ~2! we then find the contradictionC15C350.

In a Petrov type II space–time we can construct a null tetrad such thatC05C15C450,
C2Þ0, andC3Þ0. But then again we find a contradiction with~2!.

If the space–time is of Petrov type D we can choosel a and na along the two double
degenerate null directions such thatC05C15C35C450 andC2Þ0. Equations~1!–~16! are
then satisfied if and only ifF0i5F2i50 andL52(C212L). This is only possible whenC2 is
real.

In a Petrov type III space–time we can always construct a null tetrad such thatC05C1

5C25C450 andC3Þ0. But then Eq.~2! gives again a contradiction.
If the space–time is of Petrov type N we can find a null tetrad such thatC05C15C2

5C350 and C4Þ0. The pseudosymmetry relations~1!–~16! are satisfied if and only ifF0i

5F1i50 andL522L.
A space–time is conformally flat, i.e., Petrov type O, ifC i50, ; i 50,...,4. Equations~1!–

~16! then reduce to

2F00~F112L!22F01F105LF00, ~17!

F00F122F02F1022F01L5LF01, ~18!

2F01F1222F02~F111L!5LF02, ~19!

F00F222F02F2024F11L52LF11, ~20!

F01F222F02F2122F12L5LF12, ~21!

2F22~F112L!22F12F215LF22. ~22!

In summary we have the following:
Theorem II.1: ~i! Petrov type I, II, and III space–times are not pseudosymmetric.
~ii ! A Petrov type D space–time is pseudosymmetric iff w.r.t. the principal null tetrad the R

tensor has the formRab52R12l (anb)12R34m(am̄b) ~i.e., the Segre´ type is @~1,1!~11!#! and L
52(C212L) with real C2 .

~iii ! A Petrov type N space–time is pseudosymmetric iff w.r.t. the principal null tetrad
Ricci tensor has the formRab5R22l al b1R12gab ~i.e., the Segre´ type is @2,~11!#! andL522L.

~iv! A Petrov type O space–time is pseudosymmetric iff the Ricci tensor satisfies the rel
~17!–~22!.

For L50 the above theorem yields the classification of the semisymmetric space–time~see
e.g., Ref. 3, p. 350 for an alternative way of classifying the semisymmetric space–times!.

Theorem II.2: ~i! Petrov type I, II, III space–times are not semisymmetric.
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~ii ! A Petrov D space–time is semisymmetric iff w.r.t. the principal null tetrad the Ricci te
has the formRab52R12l (anb)12R34m(am̄b) ~i.e., the Segre´ type is @(1,1)(11)#) and realC2

522L.
~iii ! A Petrov type N space–time is semisymmetric iff w.r.t. the principal null tetrad the R

tensor has the formRab5R22l al b ~i.e., the Segre´ type is @~1,111!#!.
~iv! A Petrov type O space–time is semisymmetric iff the Ricci tensor satisfies the rela

~17!–~22! with L50.
Using the Segre´ type of the Ricci tensor we obtain information about the possible ma

content of the pseudosymmetric space–times. We hereafter consider only the physicall
relevant cases of vacuum, Einstein, perfect fluid, and electromagnetic~non-!null Maxwell fields.

Corollary II.1: ~i! Every vacuum Petrov type D space–time with realC2 w.r.t. the principal
null tetrad is pseudosymmetric~e.g., the Schwarzschild and Kantowski–Sachs metrics!. Every
Petrov type D non-null Maxwell field (R125R34) is pseudosymmetric and also every Petrov ty
D Einstein space (R1252R34) is pseudosymmetric. Petrov type D perfect fluids and electrom
netic null fields are not pseudosymmetric.

~ii ! A Petrov type N Einstein space–time (R2250) is pseudosymmetric. Space–times
Petrov type N vacuum, perfect fluid or electromagnetic~non!-null field, are not pseudosymmetri
(LÞ0).

~iii ! Einstein and perfect fluid~e.g., Robertson–Walker! conformally flat space–times ar
pseudosymmetric. In the latter case the proportionality factor equalsL52 1

3r, r being the energy
density. Electromagnetic~non-!null Petrov type O space–times are not pseudosymmetric.

Because a Petrov type D vacuum space–time is only pseudosymmetric ifC2 is real this
excludes the Kinnersley class15 II.E. The metrics in the Kinnersley classes I~i.e. the NUT space–
times!, II.F, III.A, and IV.A are all pseudosymmetric. In the other classes only those with
nonvanishing Weyl scalar are pseudosymmetric. As such, for example, the Kerr metric,
belongs to Kinnersley class II.A, is readily seen to be not pseudosymmetric~as mentioned already
in Ref. 13, although we would like to point out here that the calculations done there for this
fact were not correct!.
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We present the extended-object approach for the explanation and calculation of the
self-force phenomenon~often called ‘‘radiation-reaction force’’!. In this approach,
one considers a charged extended object of a finite sizee that accelerates in a
nontrivial manner, and calculates the total force exerted on it by the electromag-
netic field ~whose source is the charged object itself!. We show that at the limite
→0 this overall electromagnetic field yields a universal result, independent of the
object’s shape, which agrees with the standard expression for the self force acting
on a point-like charge. Previous implementation of this approach ended up with
expressions for the total electromagnetic force that includeO(1/e) terms which do
not have the form required by mass-renormalization.~In the special case of a
spherical charge distribution, this}1/e term was found to be 4/3 times larger than
the desired quantity.! We show here that this problem was originated from a too
naive definition of the notion of ‘‘total electromagnetic force’’ used in previous
analyses. We then derive the correct notion of total electromagnetic force. This
completely cures the problematicO(1/e) term, for any object’s shape, and yields
the correct self force at the limite→0. In particular, for a spherical charge distri-
bution, the above ‘‘4/3 problem’’ is resolved. ©2004 American Institute of Phys-
ics. @DOI: 10.1063/1.1737052#

I. INTRODUCTION AND SUMMARY

When an electrically charged particle accelerates~nonuniformly! in flat space–time, it exerts
a force on itself. This force, known as theself force~or ‘‘radiation-reaction force’’!, results from
the particle’s interaction with its own electromagnetic field. Early investigations by Abraham1 and
Lorentz,2 in the case of nonrelativistic motion, showed that the self force is proportional to
time derivative of the acceleration. Later, Dirac3 obtained the covariant relativistic expression f
the self force:

f self
m 5 2

3 q2~ ȧm2a2um! , ~1!

whereq is the electrical charge,um andam denote the four-velocity and four-acceleration, resp
tively, an overdot denotes a proper-time derivative, anda2[amam .4 Dirac derived this expression
by considering the momentum flux through a ‘‘world-tube’’ surrounding the particle’s worldl
and demanding energy–momentum conservation.

The fact that a particle can exert a force on itself is obviously intriguing. One of the wa
make sense of this phenomenon is by considering a charged, rigid, extended object of finitee.
A model of a continuously charged, finite-size object has the obvious advantage that the e
magnetic field is everywhere regular, allowing~in principle! an almost straightforward calculatio
of all electromagnetic forces involved~this is of course not the case when a point-like charge
considered, as the field is singular at the particle’s location!. On physical grounds, one woul
expect that an extended object of a sufficiently small size will behave like a point-like par

a!Electronic mail: pheran@techunix.technion.ac.il
23470022-2488/2004/45(6)/2347/18/$22.00 © 2004 American Institute of Physics
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~One should expect finite-size correction terms, which may depend on the object’s shape, b
would hope these corrections would become negligible for a sufficiently small object.!

For a finite-size extended object, each charge element exerts an electromagnetic force
other charge element. Then, roughly speaking, the overall electromagnetic force that the c
object exerts on itself is the sum of the contributions of all mutual forces between all pairs
object’s charge elements. In the case of a static object this sum always vanishes. Howeve
accelerating object this sum generically does not vanish due to the energy–momentum ex
between the charged object and the electromagnetic field. In particular, the electromagnetic
tion field carries energy and momentum away from the object to infinity~hence the name
‘‘radiation-reaction force’’!.

Recognizing that the overall mutual electromagnetic force does not vanish, one is temp
identify this overall force with the notion of the self force acting on a charged particle. Thus
would hope that at the limit where the object’s size is taken to zero, a universal result~independent
of the object’s size and shape! will be obtained, which will coincide with Eq.~1!. Many attempts
have been made to derive this extended-object total force. Two types of models have bee
sidered: objects that are continuously charged,2,5–7 and objects with a finite number of discre
charges.7 The simplest model of a discretely charged rigid object is the ‘‘dumbbell,’’ i.e., a fix
length rod with two point charges located at its two edges. The previous analyses of bo
continuous and discrete models revealed that indeed the overall electromagnetic force d
generally vanish. But these analyses also indicated a fundamental difficulty~which we shortly
explain!, which made it impossible to derive the universal small-size limit of this force. The
of this paper is to provide a simple resolution to this difficulty.

Let f sum
m denote the sum of~or, in the continuous model, the double-integral over! all mutual

electromagnetic forces, acting on all charge elements at a particular moment.~By ‘‘particular
moment’’ we refer here to a hypersurface of simultaneity in the particle’s rest frame; se
following.! We would like to explore howf sum

m depends one. For all types of electrically charged
objects, the small-e dependence off sum

m is found to be of the form

f sum
m 5c21

m /e1c0
m1O~e! . ~2!

The O(e) term will not concern us here, as it vanishes at the limite→0. The coefficientsc0
m and

c21
m depend on the object’s worldline, but are~by definition! independent ofe.

The O(e21) term is the problematic term, as it diverges at the limit of interest, i.e.,e→0.
Obviously, the small-object limit does not make sense if we do not know how to handl
problematic termc21 /e.

Now, there is a standard procedure ofmass-renormalization, often used for eliminating such
O(e21) terms. However, the very nature of this procedure requires that the undesiredO(e21)
term will be of the form2cam, wherec is a parameter that is independent of the time and
state of motion~though it may depend on the object’s size and shape!: A force term of the form
am

•const can be dropped, because it is experimentally indistinguishable from an inertial te
the equation of motion~see Sec. II!. In order for the whole theory to make sense~assuming that
interaction energy equally contributes to the inertial mass!, the constantc must be equal to the
object’s electrostatic energy, which we denoteEes. ~Recall that the latter scales likee21.)

The problem is that the termc21
m /e is actually not equal to 2Eesa

m—and, furthermore,
generally it is not in the form2cam, nor is it even in the direction ofam. In the special case o
a spherical charge distribution, several authors found2,5–7 that the termc21

m /e indeed takes the
form 2cam, but withc5(4/3)Ees. This is the well-known ‘‘4/3 problem.’’ In this special case th
mass-renormalization procedure still makes sense from the operational point of view~because any
force term of the form2cam is experimentally indistinguishable from an inertial term!, though the
logical consistency of the theory may be questioned. The situation is worse, however, wh
charge distribution is asymmetric. In such a situation one generally finds that the problemati
c21

m /e is not even in the direction ofam. Clearly, this type of divergent term cannot be removed
mass renormalization. A simple demonstration of this situation was given by Griffiths and O7
                                                                                                                



ell is

s
e

istic

r ‘‘4/3
to be
e

clear.
ial 4/3
at no
ass-

mass-

which
in

‘‘mo-

the

rce
be pro-

bbell.

as an
ludes
ividual
m
ct
ges as

d. Note
hey are

these
g on
ides us
o

for

2349J. Math. Phys., Vol. 45, No. 6, June 2004 Calculation of the self force

                    
who considered a one-directional motion of a dumbbell. They found that when the dumbb
oriented perpendicular to the direction of motion, thenc21

m /e52Eesa
m as desired. However, if the

dumbbell is co-directed with the motion, thenc21
m /e52cam with c52Ees. Furthermore, if the

dumbbell is oriented in any other direction, the termc21 /e will not be co-directed witham.
Clearly, in such a generic situation the problematic termc21

m /e cannot be removed by mas
renormalization. As a consequence, the limite→0 of f sum

m does not make a physical sense. W
note that this problem arises even if the object’s motion is treated in a fully relativ
manner8—as long as the quantityf sum

m is considered.
It should be noted that in the case of a spherical charge distribution there is anothe

problem’’: When the object is in slow motion, the electromagnetic-field momentum turns out
4/3 times the electromagnetic-field energy times the velocity.2 We may refer to this problem as th
‘‘inertial 4/3 problem’’ ~as opposed to the ‘‘mass-renormalization 4/3 problem’’!. We shall not
address this problem here. The relation between these two ‘‘4/3 problems’’ is not completely
Poincare´10 introduced the nonelectromagnetic internal stresses in order to resolve the inert
problem. On the other hand, the analysis presented in the following clearly indicates th
consideration of the nonelectromagnetic internal forces is required for solving the m
renormalization 4/3 problem.11

In this paper we shall provide a simple and natural solution to the above-mentioned
renormalization problem. We shall show that the overall mutual electromagnetic force isnot the
quantity f sum

m ~i.e., the naive sum or integration over all mutual forces!; By employing simple
energy–momentum considerations we show that the overall mutual electromagnetic force,
we denotef mutual

m , is the sum~or integral! over all mutual forces, each multiplied by a certa
kinematic factor representing the proper-time lapse of each charge element between two
ments’’ ~i.e., between two neighboring hypersurfaces of simultaneity; see Sec. II!. This kinematic
factor is of the form 11O(e); and theO(e) correction ~when multiplying the mutual forces
}e22) leads to a difference betweenf sum

m and f mutual
m , proportional toe21, which is exactly the

amount required to correct the problematic termc21
m /e. Namely, whenf mutual

m is expanded in
powers ofe, it takes a form similar to Eq.~2!, but with anO(1/e) term which is precisely of the
form 2Eesa

m. This O(1/e) term is naturally removed by mass renormalization.
After we have eliminated the problematicO(e21) term in Eq.~2!, we are left with the regular

term c0
m . It is this term which should yield the desired expression for the self force. With

anticipation that the self force should be universal, one would expectc0
m to depend only on the

object’s total chargeq, and not on the way it is distributed. In fact, the very nature of the self-fo
phenomenon—the force that a charge exerts on itself—suggests that the self force must
portional toq2. For continuous charge distributions, the termc0

m is indeed found to be}q2 and it
can be brought to the form~1!. However, for discrete charge distributionsc0

m is found to depend
on the charge distribution. This is best demonstrated in the simplest discrete model, the dum
In this case,c0

m ~like the mutual forces! is proportional to the productq1q2 , rather than toq2

5(q11q2)2, whereq1 andq2 denote the two edge charges. This apparent inconsistency h
obvious origin: The overall force exerted on the dumbbell by the electromagnetic field inc
not only the mutual forces between different charges, but also the forces that each of the ind
charges exertson itself ~which we shall refer to as the ‘‘partial self force,’’ to distinguish it fro
the ‘‘overall self force’’ acting on the dumbbell!. Obviously, it would be inconsistent to negle
these partial self forces: By universality considerations, one may view each of the point char
a very small extended charged object; And, the result of our analysis, namely,c0

mÞ0, should apply
to each of these individual charged objects as well, therefore, these forces cannot be ignore
that the partial self forces do not depend on the other charges in the extended object, so t
by definition independent ofe. Therefore they do not affect the divergent termO(e21), but merely
add to the termc0

m . The need to include these partial self forces might appear disturbing, as
quantities are initially unknown. However, basic considerations imply that the self force actin
each charged object must be proportional to the square of its charge. This observation prov
with the required expression for the partial self forces~more precisely, the relation of the latter t
the overall self forces!. The inclusion of the partial self forces leads to a universal expression
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the overall electromagnetic force acting on the dumbbell~or on any other discrete charge distr
bution!, which is indeed proportional to the square of the total charge as desired, and
coincides with Eq.~1!. We further show in Sec. IV that for a continuous charge distribution
contribution of the partial self forces vanishes. Therefore, in the continuous case the quanc0

m

~i.e., the properly weighted integral of the mutual electromagnetic forces! directly yields the
desired universal expression for the self force, Eq.~1!.

The overall mutual forcef mutual
m may naturally be viewed as the sum~or double-integral! of the

contributions of allpairs of charge element. The contribution of each such pair is the sum o
two mutual forces, each weighted by the above-mentioned kinematic factor. In summing the
forces, the dominantO(e22) term always cancels out~leaving a weaker divergence}e21 that is
in turn handled by mass-renormalization!. This leading-order cancellation occurs for each p
separately, suggesting that the fundamental element in any extended-object model is the sin
of charges. Once the single-pair system is well understood, the analysis of any charge distr
will follow quite immediately—essentially by summing~or double-integrating! over all pairs of
charge elements. We shall therefore start by analyzing thedumbbell model, i.e., a pair of point-like
charges separated by a fixed-length rod. Then we shall consider a discrete system with an a
numberN of charges. Then, taking the infinitesimal limit~in which N→`), we shall analyze the
case of continuous charge distribution. In all cases the object~and the charge distribution! is
regarded as rigid, and we allow it to move~nonrotationally! along an arbitrary worldline. For both
the discrete and continuous cases, we obtain the same universal result: After calculating the
mutual electromagnetic forcef mutual

m , mass-renormalizing it, and then taking the limite→0, we
recover the desired expression~1! for the self force.

We should mention here previous analyses which seemingly overcame the
renormalization 4/3 problem in the spherical case. First, Fermi16 carried out an extended-objec
analysis of a different type: Instead of summing the contributions of all mutual forces, he
structed an effective relativistic Hamiltonian of a charged rigid body, and derived the equat
motion from this Hamiltonian. It seems that no ‘‘4/3 problem’’ is encountered in this met
Later, Nodvick used a similar method17 and obtained the correct expression for the self fo
~note, however, that these analyses16,17 only considered spherically symmetric distribution
whereas we are treating here an arbitrary charge distribution!. Also, after this work was completed
we became aware of a previous work by Pearle,12 in which he analyzed the case of a spherica
symmetric charged object. In this analysis he took into account the above-mentioned kin
weighting factor which expresses the proper-time lapse of each charge element. Then, in
complicated calculation he obtained the correctO(1/e) term, namely,2Eesa

m, thereby overcom-
ing the 4/3 problem in the case of spherical charge distribution. We believe that our analy
simpler, more transparent, and it is also much more general; In particular, the analysis pre
here resolves the mass-renormalization problem forany type of charge distribution.

An outline of the analysis given here was published recently, focusing on the ca
dumbbell-like charge distribution.18 Here we present the full calculations, and also analyze
detail extended objects with an arbitrary number of point charges, as well as continuously c
extended objects~these cases were only briefly mentioned in Ref. 18!.

In Sec. II we analyze the dumbbell model, i.e., the case of two point-like charges. We
formulate the dumbbell’s relativistic kinematics. Then we calculate the mutual forces, obtain
sum f sum

m , and ~following Griffiths and Owen7! demonstrate the severe mass-renormaliza
directionality problem discussed earlier. Then we use energy–momentum considerations
struct the correct expression for the overall mutual electromagnetic forcef mutual

m . We show that the
latter is free of the mass-renormalization problem. In Sec. III we extend the analysis to a s
with an arbitrary number of point-like charges. Finally, in Sec. IV we consider the case
continuous charge distribution. In all three cases we obtain, at the limite→0, the universal result
~1!.
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II. A CHARGED DUMBBELL

A. The general approach

We consider a dumbbell made of a rigid rod with two point charges located at its two e
The forces acting on the dumbbell~or on its parts! may be schematically divided into sever
types:

~1! Electromagnetic forces: the forces exerted on the two charges by the electromagnet
they produce.

~2! The ‘‘other internal forces:’’ the inter-atomic~or ‘‘elastic’’ ! forces that are responsible for th
dumbbell’s rigidity.

~3! External forces: forces exerted on the dumbbell by external fields.19

The electromagnetic forces acting on the two charges are divided into two types:~i! mutual
electromagnetic forces, i.e., forces that one charge exerts on the other one@more precisely, it is the
force that the electromagnetic field produced by one charge~in the sense of the retarded Lienard
Wiechert solution! exerts on the other charge#; and~ii ! the self forces that each of the two charg
exerts on itself, which we shall refer to as the ‘‘partial self forces’’~to be distinguished from the
overall self force acting on the dumbbell!. The justification and necessity of including the part
self forces in our analysis is discussed in the following, but two remarks should be made a
at this stage: First, the partial self forces are not relevant to the mass-renormalization prob
they only affect the termc0

m ~above!, not the problematic termc1
m/e. Second, these partial se

forces are very significant for a system of two charges~they contribute at least as much as t
mutual forces do!, but they become less important in a system including a large numberN of point
charges~assuming that the magnitude of the individual charges scales line 1/N). This is because
the number of mutual forces scales likeN2, whereas the number of partial self forces scales
N. Most important, the contribution of partial self forces vanishes at the continuum limit, a
discuss in Sec. IV.

In Newtonian theory it is usually presumed that the sum of any pair of mutual forces
always vanish; however, when electromagnetic interactions are concerned, this presumptio
not hold. Its failure may be attributed to the long range of the electrodynamical intera
between two charges. It is this long range which is responsible for the electromagnetic ra
phenomena~which transport energy and momentum away from the interacting charges!. On the
other hand, the nonelectromagnetic internal forces are assumed here to be of ‘‘short ran20

Hence, it will be assumed that upon summation these forces will always cancel out~except for a
‘‘mass-renormalization like’’ term, which is the interaction energy associated with these fo
multiplied by the four-acceleration!. For this reason, the nonexternal forces that are relevant to
calculations to follow are only the electromagnetic ones, namely,~i! the two mutual forces be
tween the two charges, and~ii ! the two ‘‘partial self forces.’’

B. Dumbbell’s structure and kinematics

The dumbbell consists of two point charges situated at the edges of a rigid rod of a p
length 2e. We shall assume thate is small compared to 1/a, wherea denotes the norm of the
acceleration vector. Throughout this section we shall use the subscripts ‘‘1’’ or ‘‘ 2’’ to denote the
quantities associated with the two dumbbell’s edges. The two electric charges are therefo
notedq1 andq2 , respectively, and the total charge isq[q11q2 . We donot require the two
charges to be equal. We assume thate is time-independent and that the dumbbell moves in
nonrotational manner~see the following!.

We take the dumbbell’s central point~i.e., half way between the two edges! to represent the
dumbbell’s motion. The worldline of this representative point is denotedzm(t), wheret is the
proper time along the central worldline. The four-velocity and four-acceleration of the ce
worldline are defined in the usual manner,um[ żm andam[u̇m, where an overdot denotes diffe
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entiation with respect tot. We denote the two rod’s edges byz1
m (t) and z2

m (t). At any given
moment~by ‘‘moment’’ we mean here a hypersurface of simultaneity in the momentary rest fr
of the central point! the two rod’s edges are located at~see Fig. 1!

z6
m ~t![zm~t!6ewm~t! , ~3!

wherewm(t) is a unit spatial vector, satisfying

wmwm51, wmum50. ~4!

The time evolution ofwm is completely determined by its role here as a vector representi
nonrotating rod:~i! As a unit vector, its norm should be time-independent~corresponding to a rod
of fixed length!, which impliesẇmwm50; ~ii ! as a spatial vectorwm should be normal to the
worldline at all times. Differentiating the second equation in~4! we obtain

ẇmum52wmam . ~5!

~iii ! Since we assume thatwm is nonrotating in the momentary rest frame ofzm(t), ẇm should be
free of any spatial component, i.e.,

ẇm5c~t!um , ~6!

wherec(t) is some~yet unspecified! scalar. The last demand, combined with the second equa
in ~4!, guarantees that restriction~i! is satisfied. Substituting Eq.~6! in ~5! we find

c~t!5wmam .

We thus arrive at the evolution law

ẇm5umanwn5umaw , ~7!

where we have introduced the scalaraw[wlal. This is in fact an implementation of the mor
general Fermi–Walker transport law~see, e.g., Ref. 21!, ėm5(uman2unam)en , to a spatial vector
wm.

Next, we calculate the four-velocities and accelerations of the dumbbell’s edges. We d
the proper times along the worldlines of the two rods’ edgesz6

m by t6 , respectively. Note tha

FIG. 1. A space–time diagram describing the dumbbell’s kinematics.t is the time coordinate~in some inertial reference
frame!, andz schematically represents a spatial coordinate. The dumbbell is represented by a straight bold line, w
black points representing the two edge pointsz6

m . Two such bold lines are shown, representing the dumbbell’s locatio
space–time at two moments separated by an infinitesimal time interval dt. The three thin solid lines are the worldlines o
the central pointzm and the two edge pointsz6

m .
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generallyt1 andt2 differ from t ~and from each other!. The four-velocities of the two charge
are defined in the usual manner,u6

m [dz6
m /dt6 . Differentiating Eq.~3!, with respect tot6 , we

obtain

u6
m 5~um6eẇm!

dt

dt6
5F ~16eaw!

dt

dt6
Gum . ~8!

Taking the norm of the two sides of this equation, recalling that bothum andu6
m are of unit norm,

we find that the term in square brackets is just unity, namely,

dt6

dt
516eaw . ~9!

It now immediately follows that

u6
m 5um . ~10!

These are the two key features of the rod’s kinematics.
Equation~10! indicates that in the rest frame of the dumbbell’s central point, the two e

~and similarly any other point on the dumbbell! are at rest as well. We can therefore identify th
reference frame as the rest frame of the entire dumbbell. Since at any moment there e
reference frame in which the entire dumbbell is momentarily at rest, it is justified to view this
of motion as a rigid motion.

We denote bya6
m the four-accelerations of the two edge points, namely,a6

m 5du6
m /dt6 . From

Eqs.~9! and ~10! it immediately follows that

a6
m 5

am

16eaw
. ~11!

C. Mutual forces

At the heart of the dumbbell’s model are the mutual forces acting between the two charg
determine these forces, we need an expression for the retarded electromagnetic field tenFmn

that a single point chargeq moving on an arbitrary worldlinezm(t) produces at a nearby poin
zm1 êŵm, whereê is a small positive number (ê52e), andŵm is a unit spatial vector satisfying
ŵmŵm51,ŵmum50. Later we shall apply the limite→0, and therefore we shall only need a
expression forFmn valid up to zero order inê. Such an expression was derived by Dirac:3

Fmn>
q

A~11 êaŵ!
F S umŵn

ê2 1
amun

2ê
1

a2umŵn

8
2

ȧmŵn

2
2

aŵamun

2
2

2

3
ȧmunD2~m↔n!G

>q F S umŵn

ê2 1
amun2aŵumŵn

2ê
2

2

3
ȧmun1ẐmnD2~m↔n!G , ~12!

whereaŵ[alŵl,

Ẑmn[
a2umŵn

8
2

ȧmŵn

2
1

3aŵ
2 umŵn

8
2

3aŵamun

4
, ~13!

a2[amam, and throughout this paper the ‘‘>’’ symbol denotes an equality up toO(e) correction
terms.Ẑmn is the collection of all terms that are proportional toê0 and to an odd power ofŵ. Such
terms will cancel out when summing the contributions of the two charges~see the following!. The
electromagnetic fieldF1

mn that the chargeq2 produces at the location of chargeq1 is obtained by
substituting in Eqs.~12! and ~13! q→q2 , a→a2 , ȧ→da2 /dt2 , ŵm→wm, aŵ→a2

l wl , and
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ê→2e ~the four-velocity is unchanged, asu6
m 5um). The electromagnetic fieldF2

mn that the
chargeq1 produces at the location of the chargeq2 is obtained in a similar manner, by subs
tuting in these equationsq→q1 , a→a1 , ȧ→da1 /dt1 , ŵm→2wm, aŵ→2a1

l wl , and ê
→2e. Let us denote byf 1

m ( f 2
m ) the Lorentz force that the charge ‘‘2’’ ~‘‘ 1’’ ! exerts on the other

charge ‘‘1’’ ~‘‘ 2’’ !:

f 6
m 5q6F6

mnun .

By virtue of Eq.~12! this becomes

f 6
m >q1q2unF S 6

umwn

4e2 1
a7

m un2~a7
l wl!umwn

4e
2

2

3
ȧ7

m un6Z6
mnD 2~m↔n!G , ~14!

where

Z6
mn[

a7
2 umwn

8
2

ȧ7
m wn

2
1

3~a7
l wl!2umwn

8
2

3~a7
l wl!a7

m un

4
,

and ȧ7
m [da7

m /dt7 . Next we re-expressf 6
m in terms of the accelerationam and proper timet of

the central point~rather than those of the source charges!. To this end we use Eq.~11!, and expand
a7

m in e. Since the acceleration does not appear in theO(e22) term, it is sufficient to carry out this
expansion up to first order ine:

a7
m 5am~16eaw!1O~e2! .

Note thatȧ7
m only appears in theO(e0) term, hence it can be replaced byȧm. @The same holds for

all factorsa7
m anda7

2 that appear in theO(e0) term.# We find

f 6
m >q1q2unF S 6

umwn

4e2 1
amun2awumwn

4e
2

2

3
ȧmun6ZmnD2~m↔n!G , ~15!

where

Zmn[Z6
mn~a7

m →am!1
awamun2aw

2 umwn

4
.

Note thatZmn is O(e0), and is the same for the two charges. Recalling thatunun521, wnun

5anun50, andȧnun52a2 ~the latter identity is obtained by differentiatinganun50), we find

f 6
m >q1q2 F6

wm

4e2 2
am1wmaw

4e
1

2

3
~ ȧm2a2um!6ZmG , ~16!

whereZm[un(Zmn2Znm).

D. Naive sum of the mutual forces

Next we calculate the sum of the two mutual forces, i.e., the quantityf sum
m :

f sum
m [ f 1

m 1 f 2
m >2

q1q2

2e
~am1wmaw!1

4

3
q1q2~ ȧm2a2um! . ~17!

This quantity would be the simplest candidate for the dumbbell’s self force; However, as al
discussed in the previous section, it suffers from a serious problem: The first term on the
hand side is proportional to 1/e, and hence diverges at the limit of interest,e→0. The usual way
to eliminate such an undesiredO(e21) term is by the procedure ofmass renormalization~see the
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following!; However, from the very nature of this procedure, it will only be applicable if the te
to be removed is of the formam

•const~a constant that scales like 1/e!. Instead, in Eq.~17! the
term am1wmaw is orientation-dependent. Furthermore, this term isnot co-directed witham. This
difficulty was observed by Griffiths and Owen.7,22 @Note that adding the two ‘‘partial self forces
would not change this situation, as it does not affect theO(e21) term—see the following.#

E. Energy–momentum balance

The above-mentioned pathology of theO(1/e) term clearly indicates thatf sum
m is not a valid

candidate for the dumbbell’s self force. The reason is thatf sum
m does not correctly represent th

overall mutual force. To understand the reason for this, we shall now employ simple con
ations of energy–momentum conservation. These considerations will indicate the appropria
to sum the two mutual forces, in order to obtain the correct expression for the overall mutual

Let us denote the total dumbbell’s four-momentum, at a given momentt, by pm(t). This
quantity is to be obtained by integrating the appropriate components of the dumbbell’s s
energy tensor over the hypersurface of simultaneity, which we denotes. Recalling thatun is
normal tos, we may write this integral as

pm[2E
s
T(dumb)

mn und3s . ~18!

Here d3s is a volume element, andT(dumb)
mn denotes the dumbbell’s stress–energy tensor,not

including the electromagnetic field. The integration is performed over the entire volume o
dumbbell~the integrand vanishes off the dumbbell!.

It is worth emphasizing two points here: First, the integration is carried out over ahypersur-
face of simultaneity, i.e., a constant-time hypersurface in a Lorentz frame where the dumbb
instantaneously at rest, andnot over a hypersurfacet5const of some fixed Lorentz frame. This
the natural covariant way to define the time-dependent four-momentum of a rigid body.23 Second,
we choose not to include the electromagnetic stress–energy tensor inpm, because the electromag
netic contribution is not well localized: It is partly scattered throughout the space in the for
electromagnetic waves. The nonelectromagnetic part, however, is by assumption well-loc
and hence monitoringpm(t) will provide us with the desired information concerning the dum
bell’s motion. Note that the external field~i.e., the above-mentioned ‘‘external force’’! is also not
included inT(dumb)

mn .
From energy–momentum conservation it follows thatpm(t) will only change due to externa

forces acting on the dumbbell~if such exist!, and due to energy–momentum exchange between
dumbbell and the electromagnetic field. The electromagnetic energy–momentum excha
manifested by the electromagnetic forces acting on the two charges. In an infinitesima
interval dt, the change inpm(t) will be given by

dpm5dp1
m 1dp2

m 1dpext
m , ~19!

where dpext
m is the contribution of the external force, and dp6

m denote the contributions from th
electromagnetic forces acting on the two charges.24 Let us denote these electromagnetic forces
f (em)6

m . As discussed earlier,f (em)6
m includes both the mutual electromagnetic forcef 6

m , and the
partial self force acting on the6 charge, which we denotef̂ 6

m :

f (em)6
m 5 f 6

m 1 f̂ 6
m . ~20!

Note that simple consistency considerations require us to include the partial self forces
analysis: Our calculation shows~as many previous analyses did! that there is a nonvanishing se
force acting on a charged object~the dumbbell, in our specific model!; this force is found to be
universal~at the limit of smalle!, namely it is independent of the object’s size and orientation
must therefore apply toanysufficiently small charged object—and, in particular, to the two po
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chargesq1 and q2 . Later we shall employ a simple argument to quantitatively relate the
partial self forcesf̂ 6

m to the overall self force acting on the dumbbell.~It should be emphasized tha
the calculation below yields a nonvanishing overall self force even if one does not take
account the partial self forces; Nevertheless the resultant expression for the self force wo
incorrect in such a case, due to the inconsistency.! Note that the need for adding the partial se
forces is also made obvious from the following observation: Without the partial self forces
overall mutual electromagnetic force is proportional to the productq1q2 , whereas the overall sel
force of the dumbbell~like that of any charged particle! must be proportional toq25(q1

1q2)2. Adding the partial self forces compensates for this difference exactly, as we show
following.

Let us now calculate dp1
m , the energy–momentum exchange of the ‘‘1’’ charge with the

electromagnetic field, between the two hypersurfaces of simultaneityt and t1dt. An observer
located at the ‘‘1’’ charge will measure a proper-time interval dt1 between these two hypersu
faces. Therefore, the amount of electromagnetic energy–momentum transfer isp1

m

5 f (em)1
m dt1 . Similar considerations will apply of course to the other charge ‘‘2’’; therefore,

dp6
m 5 f (em)6

m dt6 . ~21!

Combining Eqs.~19!, ~21!, and~20!, we obtain

dpm5~ f 1
m 1 f̂ 1

m !dt11~ f 2
m 1 f̂ 2

m !dt21dpext
m . ~22!

Defining the overall force acting on the system to bef m[dpm/dt, we find

f m>F H f 1
m dt1

dt
1 f 2

m dt2

dt J 1~ f̂ 1
m 1 f̂ 2

m !G1 f ext
m . ~23!

Note that since the external force is presumably regular~i.e., it is well-behaved at the limit of
small e!, and dt6 /dt→1 at the limit e→0, we can simply take dpext

m > f ext
m dt. For the same

reason, since the partial self forces are presumably regular, too, we can ignore the factors dt6 /dt

multiplying f̂ 6
m . It is only the mutual forcef 6

m , which includes negative powers ofe, that requires
one to make the distinction between dt and dt6 .

The overall mutual electromagnetic forcef mutual
m is the term in curly braces in Eq.~23!:

f mutual
m 5 f 1

m dt1

dt
1 f 2

m dt2

dt
. ~24!

Using Eqs.~9! and ~16!, and again neglecting terms that vanish ase→0, we find

f 6
m dt6

dt
5~16eaw! f 6

m >q1q2 F6
wm

4e2 2
am

4e
1

2

3
~ ȧm2a2um!6Z̃mG ,

where

Z̃m5Zm2
aw~am1wmaw!

4
.

It now follows that

f mutual
m >2

q1q2

2e
am1

4

3
q1q2~ ȧm2a2um! . ~25!

The overall electromagnetic contribution to the total forcef m acting on the dumbbell~not
including the external force! is the term in square brackets in Eq.~23!, i.e., the sum off mutual

m and
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the two partial self forces. We shall refer to it as the ‘‘bare self force’’~because subsequently w
shall apply to it the mass-renormalization procedure, to obtain the ‘‘renormalized self force’’!, and
denote itf bare

m . It is given by

f bare
m 5 f mutual

m 1~ f̂ 1
m 1 f̂ 2

m !52
q1q2

2e
am1

4

3
q1q2~ ȧm2a2um!1~ f̂ 1

m 1 f̂ 2
m !1O~e! . ~26!

F. Mass renormalization and the renormalized self force

In Eq. ~26! @like in Eq. ~25!# theO(1/e) term has the desired form2Eesa
m, whereEes is the

dumbbell’s electrostatic energy~at rest!:

Ees[q1q2/2e .

This is exactly the type ofO(1/e) term that is cured by mass renormalization, as we now bri
discuss.

The expression for the self force is to be used for predicting the dumbbell’s motion, thr
an equation of motion of the formmbarea

m5 f m, where f m refers to the total force acting on th
dumbbell, i.e.,f m5 f bare

m 1 f ext
m . ~In the following we shall further discuss the justification to th

equation of motion.! Similarly, mbarerefers to the so-called ‘‘bare mass,’’ i.e., the total dumbbe
energy~in the momentary rest frame! not including the electromagnetic/electrostatic interacti
energy. We now add the termEesa

m to both sides of the equation of motion. Defining the ‘‘reno
malized mass’’mren and ‘‘renormalized self force’’f ren

m by

mren[mbare1Ees, f ren
m [ f bare

m 1Eesa
m , ~27!

the equation of motion now takes the form

mrena
m5 f ren

m 1 f ext
m .

This is the ‘‘renormalized equation of motion.’’ Note thatmren is nothing but the total dumbbell’s
energy~including the electrostatic interaction! while at rest. This is in fact the measured physic
mass of the dumbbell. To simplify the notation, we shall hereafter omit the suffix ‘‘ren,’’ deno
the renormalized mass bym and the ‘‘renormalized self force’’ byf self

m . The equation of motion
now reads

mam5 f self
m 1 f ext

m ,

where

f self
m [ f bare

m 1Eesa
m5 4

3 q1q2~ ȧm2a2um!1~ f̂ 1
m 1 f̂ 2

m !1O~e! . ~28!

Now that we eliminated the problematicO(1/e) term, we can safely take the limite→0. It is
at this limit where we expect to obtain the universal expression for the self force. In this lim
the O(e) correction terms vanish, and we find

f self
m 5 4

3 q1q2~ ȧm2a2um!1~ f̂ 1
m 1 f̂ 2

m ! . ~29!

As it stands, Eq.~29! provides a single relation for three unknowns,f̂ 6
m and f self

m . In order to
extract from it the expression forf self

m , we need to relate the latter to the two partial self forcesf̂ 6
m .

Since the self force is the force that a charge experiences due to its own field, it must be p
tional ~for a prescribed worldline! to q2, whereq is the particle’s charge. In the limit of interes
e→0, the trajectories of the two charges6, and also that of the dumbbell itself~i.e., the repre-
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sentative point!, all converge to the same worldline. Therefore, the two partial self forcesf̂ 6
m will

be given byf̂ 6
m 5(q6

2 /q2) f self
m , whereq5q11q2 is the dumbbell’s total charge. Substituting th

in Eq. ~29!, rewriting it as

4

3
q1q2~ ȧm2a2um!5 f self

m 2~ f̂ 1
m 1 f̂ 2

m !5F12
q1

2

q2 2
q2

2

q2 G f self
m , ~30!

and noting that the term in square brackets is nothing but 2q1q2 /q2, we finally obtain the desired
expression for the self force:

f self
m 5 2

3 q2~ ȧm2a2um!. ~31!

This agrees with Dirac’s3 expression~1!.
To summarize, let us formulate all elements of the above-mentioned construction off self

m by a
single mathematical expression. This expression takes the form

f self
m 5

q2

2q1q2
lim
e→0

F ~11eaw! f 1
m 1~12eaw! f 2

m 1
q1q2

2e
amG . ~32!

This involves the following manipulations, which are all justified~and necessitated! by simple
physical considerations:~i! the proper-time weighting of the two mutual force~the factors (1
6eaw); ~ii ! mass renormalization~the last term in the square brackets!; ~iii ! the inclusion of the
partial self forces~the factorq2/2q1q2); and~iv! taking the limite→0. This expression yields a
universal, orientation-independent, result, which conforms with the well-known expression~1! for
the self force.

Finally, we briefly discuss the justification of the~‘‘bare’’ ! equation of motionmbarea
m5 f m in

our case. We havedefinedthe total forcef m as the proper-time derivative of the dumbbel
nonelectromagnetic energy–momentumpm. Let us transform to a Lorentz frame in which th
dumbbell is momentarily at rest. In this frame Eq.~18! reads

pm[E
t5const

T(dumb)
m0 d3xi , ~33!

wherexi denotes the three spatial Cartesian coordinates. For simplicity let us approxima
dumbbell’s stress–energy by that of a continuous matter~plus, possibly, arbitrary number of poin
masses situated at fixed locations on the dumbbell!. Since the matter that composes each elem
of the dumbbell is momentarily at rest,T(dumb)

i0 vanishes, and hencepi50. The dumbbell’s energy
in the rest frame is

p0[E
t5const

T(dumb)
00 d3xi ~rest frame!. ~34!

This is by definition the dumbbell’s bare mass. Thus, in the momentary rest frame we hapm

5(mbare,0,0,0). Rewriting this in a covariant form~valid in any Lorentz frame!, we obtain

pm5mbareu
m .

Since the dumbbell is approximated as rigid, its composition does not change in time, hencmbare

is time-independent. Differentiating nowpm with respect to proper time, we obtain the desir
equation of motion

f m5mbarea
m .
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Recall that this is the ‘‘bare’’ equation of motion. After mass renormalization, we obtain
equation of motion in its final, renormalized form:25

mam5 f self
m 1 f ext

m 5 2
3 q2~ ȧm2a2um!1 f ext

m . ~35!

III. EXTENDED OBJECT WITH N POINT CHARGES

In this section we shall consider a rigid extended object with an arbitrary numberN of point
charges located on it. The charges are denotedqi , where hereafter Roman indices likei , j , . . . run
from 1 to N. The total charge isq5( i qi . We shall calculate the overall self force acting on t
object by a natural extension of the method used earlier in the dumbbell case.

A. Extended object kinematics

We start by describing the extended object kinematics. We choose~quite arbitrarily! a repre-
sentative point inside this object and denote its worldline byzm(t), and its four-velocity and
four-acceleration byum[dzm/dt andam[dum/dt, respectively, wheret is the proper time along
this worldline.

The location of a chargei at each momentt is given by27

zi
m~t![zm~t!1e iwi

m~t!, ~36!

wheree i>0 is the distance of the chargei from the representative point, andwi
m(t) is a unit

spatial vector normal toum(t). We denote the proper time of this worldline byt i and its four-
velocity and four-acceleration byui

m[dzi
m/dt i andai

m[dui
m/dt i , respectively.

Since the object is rigid, and it moves in a nonrotational manner, the time evolution o
spatial vectorswi

m is given by the Fermi–Walker transport,

ẇi
m5~uman2unam!wi

n5umanwi
n. ~37!

Repeating the above-presented dumbbell kinematic calculations, we again find that

dt i

dt
511e iamwi

m ~38!

and

ui
m5um . ~39!

Again, the last equality implies that in the momentary rest frame of the representative poi
charges are~momentarily! at rest too. One also finds that

ai
m5

am

11e ianwi
n. ~40!

We shall be interested in the limit in which the object’s size is taken to be arbitrarily smal
its shape~including the location of the charges! is unchanged in this limiting process. To descri
this limit mathematically, lete.0 denote the object’s size, e.g., its ‘‘radius’’~i.e., half the maximal
distance between pairs of object’s points!. We now define

e i[ea i .

The parametersa i are thus dimensionless numbers of order unity or smaller. The above-n
limiting process is thus described bye→0 with all parametersa i kept fixed.

In the calculations to follow we shall make use of the results that were obtained in Sec
the dumbbell case. Recall, however, that in the latter case the representative point was ch
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half the distance between the two charges. This cannot be done in the present case~as long as
N.2). In order to allow the implementation of the dumbbell results to our case, we shall
need to consider, for each pair of chargesi , j , the worldline of the central point between these tw
charges, which we denotezi j

m :

zi j
m~t![ 1

2 @zi
m~t!1zj

m~t!#5zm~t!1 1
2 @e iwi

m1e jwj
m# .

Obviously there exists a numbere i j >0 and a unit vectorwi j
m such thate i j wi j

m5(1/2)(e iwi
m

1e jwj
m). Thene i j is the distance of this central point from the representative point, and~for e i j

.0) wi j
m is a vector normal toua which satisfies the Fermi–Walker transport law, as one

easily verify. We denote the proper time along the worldlinezi j
m(t) by t i j , and the four-velocity

and four-acceleration byui j
m[dzi j

m/dt i j andai j
m[dui j

m/dt i j , respectively. Obviously all the above
mentioned kinematic relations satisfied by the point chargezi

m(t), e.g., Eqs.~38!–~40!, are also
satisfied by a central pointzi j

m(t). Of particular importance for the analysis to follow is the relati

ai j
m dt i j

dt
5am , ~41!

which follows from Eqs.~38! and ~40! ~with ‘‘ i ’’ replaced by ‘‘i j ’’ !.
Let us finally emphasize that, for a particular pairi , j , the three pointszi

m , zj
m , andzi j

m satisfy
all the dumbbell’s kinematic relations satisfied by the three dumbbell’s pointsz1

m , z2
m , andzm,

correspondingly. This will allow us to apply all the above-mentioned dumbbell results to any
i , j , though with the dumbbell’s central pointzm replaced byzi j

m ~andt by t i j , etc.!. The dumb-
bell’s lengthê52e is of course replaced by the distance between the chargesi and j , which we
denoteê i j .

B. Calculation of the self force

To derive the self force acting on the extended object we shall use energy–momentum
siderations similar to those of Sec. II. The four-momentum of the extended objectpm(t) is defined
just as in the dumbbell case, by the integral~18! over a hypersurface of simultaneity. In analog
with Eq. ~19!, we now have

dpm5(
i 51

N

dpi
m1dpext

m , ~42!

where dpi
m denotes the contribution from all the electromagnetic forces~sourced by all object’s

charges! acting on thei th charge, and dpext
m denotes the contribution from the overall extern

force. The electromagnetic energy–momentum exchange with the chargei is

dpi
m5 f (em)i

m dt i ,

where f (em)i
m is the overall electromagnetic forces acting on the chargei , given by

f (em)i
m 5 f̂ i

m1(
j 51
j Þ i

N

f j→ i
m .

Here f j→ i
m denotes the electromagnetic force that the chargej exerts on the chargei , and f̂ i

m

denotes the partial self force acting on this charge. Therefore,

dpm5dpext
m 1(

i 51

N

f̂ i
mdt i1(

i 51

N

(
j 51
j Þ i

N

f j→ i
m dt i .
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Since the external force is presumably well behaved ase→0 ~it is essentially independent ofe!,
we can use dpext

m > f ext
m dt, without bothering which proper time exactly one should use. For

same reason we may replace dt i multiplying the partial self force by dt. Defining the overall force
acting on the object to be

f m5
dpm

dt
,

we obtain

f m>F(i 51

N

(
j 51
j Þ i

N
dt i

dt
f j→ i

m 1(
i 51

N

f̂ i
mG1 f ext

m . ~43!

The overall mutual force is the term including the double-sum overi and j :

f mutual
m 5(

i 51

N

(
j 51
j Þ i

N
dt i

dt
f j→ i

m 5
1

2 (
i 51

N

(
j 51
j Þ i

N
dt i j

dt F dt i

dt i j
f j→ i

m 1
dt j

dt i j
f i→ j

m G . ~44!

Consider the last term in square brackets, for a particular pair of chargesi , j . This pair satisfies a
‘‘dumbbell kinematics’’; namely, the kinematic relations between the worldlines of the three p
zi

m , zj
m , andzi j

m are exactly the same as those satisfied by the three dumbbell’s pointsz1
m , z2

m , and
zm, correspondingly. This allows us to apply the dumbbell’s results to this new two-charge sy
In particular, Eqs.~24! and ~25! now yield

dt i

dt i j
f j→ i

m 1
dt j

dt i j
f i→ j

m >2
qiqj

ê i j
ai j

m1
4

3
qiqj~ ȧi j

m2ai j
2 um! ,

whereê i j is the distance between the two charges, andȧi j
m[dai j

m/dt i j . Note thatê i j , like all other
object’s distances, scales likee ~the object’s size!. Since the last term at the right-hand side is
ordere0, we are allowed to replacet i j andai j

m by the corresponding representative-point quan
ties, t andam ~which we cannot do when treating the other term, the one proportional to 1ê i j ).
With the aid of Eq.~41! we obtain

dt i j

dt F dt i

dt i j
f j→ i

m 1
dt j

dt i j
f i→ j

m G>2
qiqj

ê i j
am1

4

3
qiqj~ ȧm2a2um! .

Notice that in the last expression all kinematic quantities are those associated with the rep
tative point, and the only reference to the two charges is throughqi , qj , andê i j . Substituting this
result back in Eq.~44! we obtain

f mutual
m >2Eesa

m1
2

3 S (
i 51

N

(
j 51
j Þ i

N

qiqj D ~ ȧm2a2um! , ~45!

where

Ees[
1

2 (
i 51

N

(
j 51
j Þ i

N
qiqj

ê i j
. ~46!

This last expression is exactly the electrostatic energy of the system ofN charges~the factor 1/2
corresponds to the fact that every pairi , j appears twice in this sum!.

The overall~bare! self forcef bare
m is the term in square brackets in Eq.~43!, which we write as
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f bare
m 5 f mutual

m 1(
i 51

N

f̂ i
m52Eesa

m1
2

3 S (
i 51

N

(
j 51
j Þ i

N

qiqj D ~ ȧm2a2um!1(
i 51

N

f̂ i
m1O~e! . ~47!

Implementing now the mass-renormalization procedure, given by Eq.~27!, and then taking the
limit e→0, we obtain the renormalized self force:

f self
m 5

2

3 S (
i 51

N

(
j 51
j Þ i

N

qiqj D ~ ȧm2a2um!1(
i 51

N

f̂ i
m . ~48!

To factor out the partial self forces, we again use the fact that the self force is quadratic
charge, namely,

f̂ i
m5~qi

2/q2! f self
m ,

whereq[( i qi is the total charge. Transferring all partial self forces to the left-hand side and
multiplying by q2, we obtain

Fq22(
i 51

N

qi
2G f self

m 5
2

3
q2F(i 51

N

(
j 51
j Þ i

N

qiqjG ~ ȧm2a2um! .

Noting that the two terms in square brackets are equal, we obtain the self force in its final

f self
m 5

2

3
q2~ ȧm2a2um! . ~49!

The equation of motion is given by Eq.~35!, just as in the dumbbell case.

IV. CONTINUOUSLY CHARGED EXTENDED OBJECT

In this section we shall consider a rigid extended object which is continuously charged. A
we denote the object’s size~e.g., its ‘‘radius’’! by e. Let (X,Y,Z) be a system of comoving
Cartesian coordinates that parametrize the three-dimensional hypersurface of simultaneity,
R̄[(X,Y,Z). The representative point~an arbitrary point of the object! is taken to be, e.g., atR̄
50. Note that the worldline of any point of fixedR̄ satisfies all the kinematic relations describ
in Sec. III. The charge distribution is denotedr(X,Y,Z). We assume that the charge distributio
is fixed ~in the object’s frame!, i.e., r(X,Y,Z) is independent of the proper timet.

The calculation of the self force proceeds in full analogy with the discrete case discus
Sec. III, with the discrete chargeqi replaced by the infinitesimal charge elementq
[rdX dY dZ, and with the summations replaced by integrals. There is a remarkable diffe
between the two cases, though: In the discrete case, the demand for consistency required u
into account the partial self forces. No such partial self forces appear in the continuous ca~see
the following!. This makes the continuous case simpler and more elegant.

One can follow all the considerations and calculations of Sec. III, up to Eq.~47!. In the
continuous variant of this equation, the double-sum becomes a double-integral:

(
i 51

N

(
j 51
j Þ i

N

qiqj→E E r~R̄1!r~R̄2!d3R̄1d3R̄25q2 , ~50!

whereq[*r(R̄)d3R̄ is the total charge. On the other hand, the term including the partial
forces has only one summation. This term disappears in the continuous case: At the limitN→`
~in which the individual charges scale like 1/N) the magnitude of the individual partial self force
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scales likeqi
2}1/N2, whereas their number only scales likeN. Therefore, the overall contribution

of the partial self forces scales like 1/N→0.28 ~This is to be contrasted with the situation of th
mutual electromagnetic forces: The magnitude of the mutual forces scales like 1/N2 too, but their
number scales likeN2, so the overall mutual force attains a nonvanishing value at the limN
→`.) The integral analog of Eq.~47! is thus

f bare
m 52Eesa

m1 2
3 q2~ ȧm2a2um!1O~e! , ~51!

whereEes is the integral analog of Eq.~46!:

Ees[
1

2
E E r~R̄1!r~R̄2!

uR̄12R̄2u
d3R̄1d3R̄2 . ~52!

Note thatEes is the electrostatic energy of the continuous charge distribution.
The mass-renormalization~27! now removes the irregular termEesa

m in Eq. ~51!, and~after
taking the limite→0) one arrives at the final expression for the self force:

f self
m 5 2

3 ~ ȧm2a2um! . ~53!
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A (d11)-dimensional dispersionless PDE is said to be integrable if its
n-component hydrodynamic reductions are locally parametrized by (d21)n arbi-
trary functions of one variable. The most important examples include the four-
dimensional heavenly equation descriptive of self-dual Ricci-flat metrics and its
six-dimensional generalization arising in the context of sdiff(S2) self-dual Yang–
Mills equations. Given a multidimensional PDE which doesnot pass the integra-
bility test, the method of hydrodynamic reductions allows one to effectively recon-
struct additional differential constraints which, when added to the equation, make it
an integrable system in fewer dimensions. As an example of this phenomenon we
discuss the second commuting flow of the dispersionless KP hierarchy. Considered
separately, this is a four-dimensional PDE which doesnot pass the integrability test.
However, the method of hydrodynamic reductions generates additional differential
constraints which reconstruct the full (211)-dimensional dispersionless KP
hierarchy. © 2004 American Institute of Physics.@DOI: 10.1063/1.1738951#

I. INTRODUCTION

We address the problem of integrability of multidimensional dispersionless PDEs of the

F~u,ui ,ui j !50, ~1!

whereu is a ~vector-! function of d11 independent variables. For definiteness, let us cons
(311)-dimesional PDEs in four independent variablest,x,y,z. Equations of this type naturally
arise in mechanics, mathematical physics, general relativity, and differential geometry. Let u
for exact solutions of~1! of the formu5u(R1, . . . ,Rn) where the Riemann invariantsR1, . . . ,Rn

solve a triple of commuting diagonal systems

Rt
i5l i~R! Rx

i , Ry
i 5m i~R! Rx

i , Rz
i 5h i~R! Rx

i . ~2!

Notice that the number of Riemann invariants is allowed to be arbitrary. Thus, the original
tidimensional equation~1! is decoupled into a collection of commuting (111)-dimensional sys-
tems in Riemann invariants. In some cases one first needs to rewrite the original PDE~1! in a
quasilinear form to make the method work: see examples in Sec. II. Solutions of this type, k
as nonlinear interactions ofn planar simple waves, were investigated in gas dynamics
magnetohydrodynamics.32,4,29 Later, they appeared in the context of the dispersionless
hierarchy.14–16,18,24,25,3We will call a multidimensional equation integrable if it possesses su
ciently manyn-component reductions of the form~2! for arbitrary n ~the precise definition fol-
lows!. Exact solutions arising within this approach can be viewed as dispersionless analog
n-gap solutions.

a!Center for Nonlinear Studies, Landau Institute for Theoretical Physics, Kosygina 2, Moscow, 117940, Russia. Ele
mail: e.v.ferapontov@lboro.ac.uk

b!On leave from Institute of Mechanics, Ufa Branch of the Russian Academy of Sciences, Karl Marx Str. 6, Ufa, 4
Russia. Electronic mail: k.khusnutdinova@lboro.ac.uk
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Partial classification results of (211)-dimensional integrable systems of hydrodynamic ty
~the integrability is understood in the above sense! were obtained in our recent publications.12,13

Integrable second order PDEs of the formutt5 f (uxx ,uxt ,uxy) were classified in Ref. 28. Particu
larly interesting examples arise in the theory of self-dual and Einstein–Weyl spaces,30,8–11in the
context of the Dirichlet boundary problem in multiconnected domains,22 and the Whitham aver-
aging procedure~in particular, the dispersionless limit! applied to (211)-dimensional solitonic
PDEs.20,21,34

We recall, see Ref. 33, that the requirement of commutativity of the flows~2! is equivalent to
the following restrictions on their characteristic speeds:

] jl
i

l j2l i 5
] jm

i

m j2m i 5
] jh

i

h j2h i , ~3!

iÞ j , ] j5]/]Rj ; no summation. Once these conditions are met, the general solution of~2! is given
by the implicit generalized hodograph formula33

v i~R!5x1l i~R!t1m i~R! y1h i~R!z, i 51, . . . ,n, ~4!

wherev i(R) are characteristic speeds of the general flow commuting with~2!, that is, the genera
solution of the linear system

] jv
i

v j2v i 5
] jl

i

l j2l i 5
] jm

i

m j2m i 5
] jh

i

h j2h i . ~5!

Substitutingu(R1, . . . ,Rn) into ~1! and using~2! one arrives at an over-determined system
l i(R),m i(R),h i(R), andu(R) as functions of the Riemann invariantsRi . This system implies, in
particular, that the characteristic speedsl i ,m i , andh i satisfy an algebraic relation which can b
interpreted as the dispersion relation for the system~1!.

One can show that the requirement of existence of nontrivial three-component reducti
already sufficiently restrictive implying, in particular, the existence ofn-component reductions fo
arbitraryn.12 This phenomenon is similar to the well-known three-soliton condition in the Hi
bilinear approach19 ~recall that two-soliton solutions exist for arbitrary PDEs transformable
Hirota’s bilinear form and, therefore, cannot detect the integrability!, and the condition of three
dimensional consistency in the classification of discrete integrable systems on quad-graph1 One
can show that the maximum number ofn-component reductions a (d11)-dimensional PDE may
possess is parametrized, modulo changes of variablesRi→ f i(Ri), by (d21)n arbitrary functions
of one variable. Therefore, we propose the following.

Definition: A (d11)-dimensional PDE is said to be integrable if its n-component reductions
are locally parametrized by(d21)n arbitrary functions of one variable.

One of the most important examples of PDEs in four dimensions which are integrable i
sense is the second heavenly equation,

u tx1uzy1uxxuyy2uxy
2 50,

descriptive of self-dual Einstein spaces30 ~see Example 2 of Sec. II!. Its equivalent first heavenly
form was discussed in the recent publication11 where it was shown thatn-component reductions
are parametrized by 2n arbitrary functions of a single variable. It would be interesting to comp
these reductions with the solitonic reductions of Ref. 7. The requirement of existenc
n-component reductions parametrized by 2n arbitrary functions of one variable appears to be ve
strong, indeed, the heavenly equation is the only nonlinear PDE of the form

u tx1uzy5 f ~uxx ,uxy ,uyy!,

which passes the integrability test~see the Appendix!.
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An interesting six-dimensional integrable generalization of the heavenly equation,

u t t̃1uzz̃1u txuzy2u tyuzx50,

arises in the context of sdiff(S2) self-dual Yang–Mills equations.31 Its n-component reductions
are parametrized by 4n arbitrary functions of a single variable~Example 5 of Sec. III!. We would
like to thank M. Dunajski for drawing our attention to this equation.

Another integrable example is the six-dimensional system

mt5nx1nmr2mnr , nz5my1mns2nms ,

see Sec. III. Itsn-component reductions depend on 4n arbitrary functions of one variable. Unde
the additional constraintsmr5nr50, s5x, z5t, this system is descriptive of hyperCR Einstein
Weyl structures;6 it was investigated in a series of recent publications.27,9,26

In the Example 3 of Sec. II we apply our method to the four-dimensional PDE

Fxz5FxxFxy1Fyt,

which is the second flow of the dispersionless KP~dKP! hierarchy

Fxt5
1
2 Fxx

2 1Fyy ,

Fxz5FxxFxy1Fyt ,

see, e.g., Ref. 5. It is demonstrated that, considered separately, this equation isnot integrable~as
a four-dimensional PDE!, the fact which is not at all surprising. What is more important,
method of hydrodynamic reductions allows one to effectively reconstruct the differential
straintFxt5

1
2Fxx

2 1Fyy which, when added to the equation, generates the (211)-dimensional dKP
hierarchy.

Although the method of hydrodynamic reductions provides an infinity of~implicit! solutions
parametrized by arbitrarily many functions of one variable, the question of solving the initial v
problem for integrable multidimensional dispersionless PDEs remains open. A detailed inve
tion of the behavior and singularity structure of solutions describing nonlinear interactio
planar simple waves is beyond the scope of this paper.

II. EXAMPLES

In this section we list some examples of multidimensional PDEs which are integrable i
sense of hydrodynamic reductions.

Example 1:Let us consider the first two flows of the dispersionless KP hierarchy,

Fxt5
1
2 Fxx

2 1Fyy ,

Fxz5FxxFxy1Fyt , ~6!

which, in the new variables

Fxx5u, Fxy5v, Fyy5w, Fyt5s, Fxt5
1
2 u21w, Fxz5uv1s,

assume the quasilinear form

uy5vx , vy5wx , v t5sx , wt5sy , ut5~ 1
2 u21w!x , uz5~uv1s!x ,

~7!
v t5~ 1

2 u21w!y , vz5~uv1s!y , sx5~ 1
2 u21w!y , ~ 1

2 u21w!z5~uv1s! t .

Notice thatu satisfies the dispersionless KP equation,
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~ut2uux!x5uyy .

Looking for reductions in the formu5u(R1, . . . ,Rn), v5v(R1, . . . ,Rn), w5w(R1, . . . ,Rn), s
5s(R1, . . . ,Rn) where the Riemann invariantsRi satisfy~2!, and substituting into~7!, one readily
obtains

] iv5m i] iu, ] is5l im i] iu, ] iw5~m i !2] iu, ~8!

along with the dispersion relations

l i5u1~m i !2, h i5v12um i1~m i !3. ~9!

The compatibility condition] i] jv5] j] iv implies

] i] ju5
] jm

i

m j2m i ] iu1
] im

j

m i2m j ] ju, ~10!

while the commutativity condition~3! results in

] jm
i5

] ju

m j2m i . ~11!

The substitution of~11! into ~10! implies the Gibbons–Tsarev system foru(R) andm i(R),

] jm
i5

] ju

m j2m i , ] i] ju52
] iu] ju

~m j2m i !2 , ~12!

iÞ j , which was first derived in Refs. 15 and 16 in the context of hydrodynamic reduction
Benney’s moment equations. For any solutionm i ,u of the system~12! one can reconstructl i ,h i

andv,s,w by virtue of the relations~9! and~10!, which are automatically consistent. The gene
solution of the system~12! depends, modulo reparametrizationsRi→ f i(Ri), on n arbitrary func-
tions of one variable, thus manifesting the fact that PDEs~6! constitute a (211)-dimensional
integrable system.

Example 2:The so-called second heavenly equation,

u tx1uzy1uxxuyy2uxy
2 50, ~13!

is descriptive of self-dual Ricci-flat metrics.30 Introducing the variablesuxx5u, uxy5v, uyy

5w, u tx5p, uzy5v22uw2p, one can rewrite~13! in a quasilinear form,

uy5vx , ut5px , vy5wx , v t5py ,
~14!

vz5~v22uw2p!x , wz5~v22uw2p!y .

Hydrodynamic reductions are sought in the formu5u(R1, . . . ,Rn), v5v(R1, . . . ,Rn), w
5w(R1, . . . ,Rn), p5p(R1, . . . ,Rn) where the Riemann invariantsR1, . . . ,Rn solve a triple of
commuting hydrodynamic type systems~2!. The substitution into~14! implies

] i p5l i] iu, ] iv5m i] iu, ] iw5~m i !2] iu, ~15!

along with the dispersion relation

l i52vm i2w2u~m i !22m ih i . ~16!

Substitutingl i into the commutativity conditions~3!, and taking into account that the compatib
ity conditions for the relations] i p5l i] iu, ] iv5m i] iu imply
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] i] ju5
] jm

i

m j2m i ] iu1
] im

j

m i2m j ] ju,

one arrives at the following system:

] jm
i5

~m j2m i !2

h j2h i1u~m j2m i !
] ju, ] jh

i5
~m j2m i !~h j2h i !

h j2h i1u~m j2m i !
] ju,

] i] ju52
m j2m i

h j2h i1u~m j2m i !
] iu] ju. ~17!

Solving equations~17! for m i ,h i andu, determiningl i from ~16! and calculatingp,v,w from Eqs.
~15! @which are automatically compatible by virtue of~17!#, one obtains the generaln-component
hydrodynamic reduction of the heavenly equation. Moreover, the commutativity conditions
also be satisfied identically.

We emphasize that the system~17! is in involution and its general solution depends onn
arbitrary functions of one variable. Indeed, one can arbitrarily prescribe the restrictions ofm i and
h i to the Ri-coordinate line. This gives 2n arbitrary functions. Moreover, one can arbitrari
prescribe the restriction ofu to each of the coordinate lines, which provides extran arbitrary
functions. However, since reparametrizationsRi→ f i(Ri) leave the system~17! invariant, one
concludes that generaln-component reductions are locally parametrized by 2n arbitrary functions
of one variable. This supports the evidence that the heavenly equation~13! is a true four-
dimensional integrable PDE.

Obviously, the same method applies to other equivalent forms of the heavenly equation~13!.
For instance, hydrodynamic reductions of the first heavenly equation

VxyVzt2VxtVzy51

were investigated in detail in Ref. 11. Another possibility is to work with the evolutionary for17

of the heavenly equation,

c tt5cxyczt2cxtczy .

In both cases one can derive analogues of equations~17! which, although involutive, look some
what more complicated.

The requirement of existence ofn-component reductions~parametrized by 2n arbitrary func-
tions of one variable! is very strong indeed: as demonstrated in the Appendix, the heav
equation~13! is the only nonlinear PDE of the form

u tx1uzy1 f ~uxx ,uxy ,uyy!50,

which passes the integrability test.
Remark:The heavenly equation~and equivalent forms thereof! belongs to the class of specia

Monge–Ampe´re equations which can be defined as follows. Consider a functionu(x1, . . .xk) and
introduce ak3k symmetric matrixU5uui j u of its second partial derivatives. A special Monge
Ampere equation with constant coefficients is a PDE of the form

M01M11 ¯ 1Mk50,

whereMl is a constant-coefficient linear combination of all distinctl 3 l minors ofU, 0< l<k.
Here, for instance,M0 is a constant,Mk5detU5Hessu, etc. Equivalently, this PDE can b
obtained by equating to zero a constant-coefficientk-form in 2k variablesxi ,ui . It is an interest-
ing problem to classify integrable PDEs within this class, in particular, fork54. We emphasize
that the casek53 is understood completely: one can show that, fork53, any special Monge–
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Ampére equation is either linearizable by a contact transformation~in this case it is automatically
integrable by the method of hydrodynamic reductions!, or contact equivalent to either of the thre
nondegenerate forms,23,2

Hessu51, Hessu5u111u221u33, Hessu5u111u222u33.

We have verified directly that these three PDEs arenot integrable by the method of hydrodynam
reductions.

Example 3:Let us consider the second flow of the dispersionless KP hierarchy,

Fxz5FxxFxy1Fyt , ~18!

see Example 1. The question is: should it be regarded as a four-dimensional integrable PD
will see that the answer to this question is negative, moreover, the method of hydrody
reductions applied to this equation reconstructs additional differential constraints which,
added to~18!, generate the (211)-dimensional dKP hierarchy. In the new variables

Fxx5u, Fxy5v, Fyy5w, Fyt5s, Fxt5p, Fxz5uv1s,

Eq. ~18! assumes the quasilinear form

uy5vx , vy5wx , v t5sx , wt5sy , ut5px , uz5~uv1s!x ,

v t5py , vz5~uv1s!y , sx5py , pz5~uv1s! t . ~19!

Looking for reductions in the formu5u(R1, . . . ,Rn), v5v(R1, . . . ,Rn), w5w(R1, . . . ,Rn), s
5s(R1, . . . ,Rn), p5p(R1, . . . ,Rn), where the Riemann invariantsRi satisfy~2!, and substituting
into ~19!, one readily obtains

] iv5m i] iu, ] is5l im i] iu, ] iw5~m i !2] iu, ] i p5l i] iu, ~20!

along with the dispersion relation

h i5v1um i1m il i . ~21!

The compatibility condition] i] jv5] j] iv implies

] i] ju5
] jm

i

m j2m i ] iu1
] im

j

m i2m j ] ju, ~22!

while the commutativity condition~3! results in

] jm
i5

m j1m i

l j2l i ] ju, ] jl
i5

m j1m i

m j2m i ] ju. ~23!

The substitution of~23! into ~22! implies the over-determined system form i(R), l i(R), and
u(R),

] jm
i5

m j1m i

l j2l i ] ju, ] jl
i5

m j1m i

m j2m i ] ju,

~24!

] i] ju52
m j1m i

~m j2m i !~l j2l i !
] iu] ju,

iÞ j , which is analogous to the system~17!. There is one crucial difference: the system~24! is not
in involution. Calculating compatibility conditions]k(] jm

i)2] j (]km
i)50, ]k(] jl

i)2] j (]kl
i)

50, and]k(] j] iu)2] j (]k] iu)50, one arrives at extra relations
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@~m i !2~lk2l j !1~mk!2~l j2l i !1~m j !2~l i2lk!#

3@mkm j~lk2l j !1m im j~l j2l i !1m imk~l i2lk!#50. ~25!

Thus, there are two cases to consider.
Case 1:Equating to zero the first set of square brackets in~25!,

~m i !2~lk2l j !1~mk!2~l j2l i !1~m j !2~l i2lk!50,

one obtainsl i5a(m i)21b. The substitution of this ansatz into~24! implies (m i)2] ja1] jb
5] ju, so thata5a, b5u1b where a,b are arbitrary constants. Thus,l i5a(m i)21u1b.
Substitutingl i into the equation] i p5l i] iu and using~20! one obtains, upon elementary integr
tion, p5 1

2u
21bu1aw1g. Expressed in terms of second derivatives ofF, this constraint reads

Fxt5
1
2 Fxx

2 1bFxx1aFyy1g.

One can show that the constantsa,b,g are not essentials and can be reduced toa51,b5g50.
Thus, the method of hydrodynamic reductions applied to the PDE~18! reconstructs the first flow
of the dKP hierarchy,Fxt5

1
2Fxx

2 1Fyy .
Case 2:Equating to zero the second set of square brackets in~25!,

mkm j~lk2l j !1m im j~l j2l i !1m imk~l i2lk!50,

one obtainsl i5(a/m i) 1b. The substitution of this ansatz into~24! implies ] ja1m j] ju
1m i(] jb1] ju)50, so thata52v1a, b52u1b wherea,b are arbitrary constants. Thus,l i

5@(a2v)/m i # 1b2u. Substitutingl i into the equation] is5l im i] iu and using~20! one has,
upon elementary integration,s52uv1au1bv1g. Expressed in terms of second derivatives
F, this constraint reads

FxxFxy1Fyt5aFxx1bFxy1g.

Again, the constantsa,b,g are not essentials and can be reduced to zero. The resulting cons
Fyt1FxxFxy50 characterizes stationary points of the flow~18!. We have checked that this con
straint is integrable in the sense of hydrodynamic reductions@as a (211)-dimensional PDE#.

In any case, we conclude that Eq.~18! is not integrable as a four-dimensional PDE. This
manifested by the fact that the system~24!, which governs hydrodynamic reductions, is not
involution.

Example 4:Let us consider the system

mt5nx , nz5my1mnx2nmx , ~26!

which, in the limit z5t, has been extensively investigated in Refs. 27, 9, and 26. Looking
reductions in the formm5m(R1, . . . ,Rn), n5n(R1, . . . ,Rn) where the Riemann invariantsRi

satisfy ~2!, one obtains

] in5l i] im, m i5l ih i2ml i1n.

The commutativity conditions~3! imply

] jh
i5] jm, ] i] jm50,

hence, up to reparametrizationsRi→w i(Ri), one has

m5(
k

Rk, h i5 f i~Ri !1(
k

Rk,
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where f i(Ri) are arbitrary functions of a single variable. The characteristic speedsl i solve the
linear system

] jl
i

l j2l i 5
1

f j~Rj !2 f i~Ri !
.

We refer to Ref. 27 for the general formula forl i and further discussion of this example in th
(211)-dimensional limitz5t. Thus,n-component hydrodynamic reductions of the system~26!
are parametrized by 2n arbitrary functions of one variable@n functionsf i(Ri) plusn functions in
the general solution of the linear system forl i ]. Therefore, the four-dimensional system~26! is
integrable. Notice that it can be obtained as the condition of commutativity of two vector fi

@]z2m]x2l]x , ]y2n]x2l] t#50,

l5const, compare with Ref. 9. Some further multidimensional generalizations of this examp
discussed in Sec. III.

Example 5:The six-dimensional generalization of the heavenly equation,

u t t̃1uzz̃1u txuzy2u tyuzx50, ~27!

has been proposed in Ref. 31. Introducing the variablesu tx5a, uzy5b, u ty5p, uzx5q, uzz̃

5r , u t t̃5pq2ab2r , one can rewrite~27! in a quasilinear form,

ay5px , az5qt , bt5pz , bx5qy , bz̃5r y , qz̃5r x ,
~28!

pz̃5~pq2ab2r !y .

Hydrodynamic reductions are sought in the forma5a(R1, . . . ,Rn), b5b(R1, . . . ,Rn), p
5p(R1, . . . ,Rn), q5q(R1, . . . ,Rn), r 5r (R1, . . . ,Rn), where the Riemann invariant
R1, . . . ,Rn solve the commuting equations

Rx
i 5l i~R! Rz

i , Ry
i 5m i~R! Rz

i , Rz̃
i 5h i~R! Rz

i , Rt
i5b i~R! Rz

i , R
t̃

i
5g i~R! Rz

i .

The substitution into~28! implies

] i p5b i] ib, ] i r 5
h i

m i ] ib, ] iq5
l i

m i ] ib, ] ia5
l ib i

m i ] ib, ~29!

along with the dispersion relation

h i5b im iq1l i p2b il ib2m ia2b ig i . ~30!

Substitutingh i into the commutativity conditions

] jl
i

l j2l i 5
] jm

i

m j2m i 5
] jh

i

h j2h i 5
] jb

i

b j2b i 5
] jg

i

g j2g i ,

and taking into account that the compatibility conditions for the relations] i p5b i] ib imply

] i] jb5
] jb

i

b j2b i ] ib1
] ib

j

b i2b j ] jb,

one arrives at the following system:
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] jb
i

b j2b i 5
] jl

i

l j2l i 5
] jm

i

m j2m i 5
] jg

i

g j2g i 5
l i2l jm i /m j

q~m j2m i !1b~l i2l j !1g i2g j ] jb,

~31!

] i] jb5
l i~11m j /m i !2l j~11m i /m j !

q~m j2m i !1b~l i2l j !1g i2g j ] ib] jb.

Solving equations~31! for b i , l i , m i , g i , andb, determiningh i from the dispersion relation~30!
and calculatingp,r ,q,a from Eqs.~29! @which are automatically compatible by virtue of~31!#,
one obtains the generaln-component reduction of Eq.~27!. The commutativity conditions will be
satisfied identically. We have checked that the system~31! is in involution and its general solution
depends, up to reparametrizationsRi→w i(Ri), on 4n arbitrary functions of one variable.

III. MULTIDIMENSIONAL LINEARLY DEGENERATE SYSTEMS OF HYDRODYNAMIC
TYPE

In the recent publication,13 we gave a complete characterization of two-compon
(211)-dimensional integrable systems of hydrodynamic type,

S v
wD

t

1A~v,w!S v
wD

x

1B~v,w!S v
wD

y

50,

which possess infinitely many hydrodynamic reductions. The integrability conditions consti
complicated overdetermined system of second order PDEs for 232 matricesA and B. In the
particular case when the matrixA is assumed to be linearly degenerate,

A5S w 0

0 v D , ~32!

these conditions imply

B5S f ~w!

w2v
2aw2

f ~v !

w2v

f ~w!

v2w

f ~v !

v2w
2av2

D ,

where f is a cubic polynomial,f (v)5av31bv21gv1d, anda,b,g,d are arbitrary constants. A
remarkable property of this example is thatanymatrix in the linear pencilB1mA is also linearly
degenerate@that is, reduces to the diagonal form~32! after an appropriate change of depende
variables#. Explicitly, one has

B5dB11gB21bB31aB45dS 1

w2v
1

w2v

1

v2w

1

v2w

D 1gS w

w2v
v

w2v

w

v2w

v
v2w

D 1bS w2

w2v
v2

w2v

w2

v2w

v2

v2w

D
1aS vw2

w2v
v3

w2v

w3

v2w

wv2

v2w

D .

Let us introduce the (511)-dimensional system,
                                                                                                                



.

-

fore,
e

2374 J. Math. Phys., Vol. 45, No. 6, June 2004 E. V. Ferapontov and K. R. Khusnutdinova

                    
S v
wD

t

1AS v
wD

x

1B1S v
wD

y

1B2S v
wD

z

1B3S v
wD

s

1B4S v
wD

r

50.

Notice that an arbitrary linear combination of matricesA andB1 ,B2 ,B3 ,B4 is linearly degenerate
In the new variablesm5v1w, n5vw, this system reduces to

mt1nx1nmr2mnr50, nt1mnx2nmx1my1nz1mns2nms50,

taking a fully symmetric form

mt̃5nx̃1nmr̃2mnr̃ , nz̃5mỹ1mns̃2nms̃ , ~33!

after the obvious linear change of independent variables. In the limits̃5 x̃, mr̃5nr̃50 it reduces
to the system~26! from Example 4. Notice that the system~33! arises as the condition of com
mutativity of two vector fields,

@] z̃2m] s̃2l] x̃1lm] r̃ , ] ỹ2n] s̃2l] t̃1ln] r̃ #50.

Let us demonstrate that the system~33! possesses enough hydrodynamic reductions and, there
should be regarded as an integrable system in 511 dimensions. Looking for reductions in th
form m5m(R1, . . . ,Rn), n5n(R1, . . . ,Rn) where the Riemann invariantsRi solve five commut-
ing systems,

R
t̃

i
5l i~R! Rx̃

i , Rỹ
i 5m i~R! Rx̃

i , Rz̃
i 5h i~R! Rx̃

i , Rr̃
i 5b i~R! Rx̃

i , Rs̃
i 5g i~R! Rx̃

i ,

and substituting into~33!, we obtain

~l i2nb i !] im5~12mb i !] in, ~h i2mg i !] in5~m i2ng i !] im.

Setting] in5w i] im, one obtains expressions forl i andm i in the form

l i5nb i1~12mb i !w i , m i5ng i1~h i2mg i !w i ,

as well as the consistency condition

] i] jm5
] jw

i

w j2w i ] im1
] iw

j

w i2w j ] jm.

Inserting the expressions forl i andm i into the commutativity conditions

] jl
i

l j2l i 5
] jm

i

m j2m i 5
] jh

i

h j2h i 5
] jb

i

b j2b i 5
] jg

i

g j2g i ,

one ends up with the following equations forh i , b i , g i , w i , andm:

] jh
i

h j2h i 5
] jb

i

b j2b i 5
] jg

i

g j2g i 5
b ih i2g i

~12mb j !~h i2mg i !2~12mb i !~h j2mg j !
] jm,

] jw
i

w j2w i 5
b ih j2g i1m~g ib j2g jb i !

~12mb j !~h i2mg i !2~12mb i !~h j2mg j !
] jm, ~34!

] i] jm5
g j2g i1b ih j2b jh i12m~g ib j2g jb i !

~12mb j !~h i2mg i !2~12mb i !~h j2mg j !
] im] jm.
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It has been verified directly that this system is in involution and its general solution dep
modulo reparametrizationsRi→ f i(Ri), on 4n arbitrary functions of one variable, thus manifestin
the integrability of the (511)-dimensional system~33!.
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APPENDIX A: HYDRODYNAMIC REDUCTIONS

Here we apply the method of hydrodynamic reductions to the classification of integ
PDEs of the form

u tx1uzy5 f ~uxx ,uxy ,uyy!. ~A1!

Introducing new variablesuxx5u, uxy5v, uyy5w, u tx5p, uzy5 f (u,v,w)2p, one rewrites~A1!
in the quasilinear form

uy5vx , ut5px , vy5wx , v t5py ,
~A2!

vz5~ f ~u,v,w!2p!x , wz5~ f ~u,v,w!2p!y .

Hydrodynamic reductions are sought in the formu5u(R1, . . . ,Rn), v5v(R1, . . . ,Rn), w
5w(R1, . . . ,Rn), p5p(R1, . . . ,Rn) where the Riemann invariantsR1, . . . ,Rn solve a triple of
commuting hydrodynamic type systems~2!. The substitution into~A2! implies

] i p5l i] iu, ] iv5m i] iu, ] iw5~m i !2] iu, ~A3!

along with the dispersion relation

l i5 f u1 f vm i1 f w~m i !22m ih i . ~A4!

Substitutingl i into the commutativity conditions~3!, and taking into account that the compatib
ity conditions for the relations~A3! imply

] i] ju5
] jm

i

m j2m i ] iu1
] im

j

m i2m j ] ju,

one arrives at the following system:

] jm
i5

Si j

f w~m j2m i !1h i2h j ] ju, ] jh
i5

h j2h i

m j2m i

Si j

f w~m j2m i !1h i2h j ] ju,

~A5!

] i] ju5
2

m j2m i

Si j

f w~m j2m i !1h i2h j ] iu] ju;

here

Si j 5 f uu1~m i1m j ! f uv1~~m i !21~m j !2! f uw1m im j f vv1m im j~m i1m j ! f vw1~m i !2~m j !2f ww .

Compatibility conditions for the system~A5! are of the form

]k~] jm
i !2] j~]km

i !5~¯ ! ] ju]ku, ]k~] jh
i !2] j~]kh

i !5~¯ ! ] ju]ku,

]k~] j] iu!2] j~]k] iu!5~¯ ! ] ju]ku,
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where dots~¯! denote complicated rational expressions inm i , m j , mk and h i , h j , hk whose
coefficients are functions of the derivatives off up to third order. Equating these rational expre
sions to zero one arrives at the following system forf :

f uu5 f ww5 f uv5 f wv5 f vv22 f uw5 f vvv50.

Up to elementary changes of variables, the general nonlinear solution of this system corre
to the second heavenly equation~13!.

APPENDIX B: CONCLUDING REMARKS

We have demonstrated that the requirement of existence of sufficiently manyn-component
reductions can be used as the effective criterion providing the test for integrability of multidi
sional dispersionless PDEs. We believe that using the approach outlined in this paper alon
the available computer algebra packages~we have used Mathematica 5.0!, one can obtain com-
plete lists of multidimensional integrable systems within various particularly interesting cla
hyperbolic systems of hydrodynamic type being one of them. Partial classification results c
found in Refs. 12, 13, and 28. The main problems arising here are the complexity of integra
conditions~making difficult their geometric analysis!, and the volume of symbolic calculation
required.
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It is known that the chiral part of any 2D conformal field theory defines a 3D
topological quantum field theory: quantum states of this TQFT are the CFT con-
formal blocks. The main aim of this paper is to show that a similar CFT/TQFT
relation exists also for the full CFT. The 3D topological theory that arises is a
certain ‘‘square’’ of the chiral TQFT. Such topological theories were studied by
Turaev and Viro; they are related to 3D gravity. We establish an operator/state
correspondence in which operators in the chiral TQFT correspond to states in the
Turaev–Viro theory. We use this correspondence to interpret CFT correlation func-
tions as particular quantum states of the Turaev–Viro theory. We compute the
components of these states in the basis in the Turaev–Viro Hilbert space given by
colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde
formula. The later is obtained from our expression for a zero colored graph. Our
results give an interesting ‘‘holographic’’ perspective on conformal field theories in
two dimensions. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1745127#

I. INTRODUCTION

To put results of this paper in a somewhat general context we recall that any conforma
theory~CFT! defines a topological quantum field theory~TQFT!, see Refs. 1–4. The TQFT arise
by extracting a modular tensor category from the CFT chiral vertex operator algebra. Th
explained in Ref. 5, any modular category gives rise to a 3D TQFT. The TQFT can be~partially!
described by saying that its Hilbert space is the space of~holomorphic! conformal blocks of the
CFT. The canonical example of such CFT/TQFT correspondence is the well-known relatio
tween Wess–Zumino–Witten~WZW! and Chern–Simons~CS! theories. Let us emphasize th
this is always a relation between the holomorphic sector of the CFT~or its chiral part! and a
TQFT. As such it is not an example of a holographic correspondence, in which correlation
tions ~comprising both the holomorphic and antiholomorphic sectors! of CFT on the boundary
would be reproduced by some theory in bulk.

It is then natural to ask whether there is some 3D theory that corresponds to thefull CFT. A
proposal along these lines was put forward some time ago by Verlinde,6 who argued that a relation
must exist between the quantum Liouville theory~full, not just the chiral part! and 3D gravity.
Recently one of us presented7 some additional arguments in favor of this relation, hopefu
somewhat clarifying the picture. The main goal of the present paper is to demonstrate that
relation between the full CFT and a certain 3D theory exists for a large class of CFT’s. Na
we show that given a CFT there is a certain 3D field theory, which is a TQFT, and which
rather natural spin-off of the corresponding ‘‘chiral’’ TQFT. The TQFT in question is not new,

a!Electronic mail: freidel@ens-lyon.fr
b!Address from September 1, 2004: School of Mathematical Sciences, University of Nottingham, University Park

tingham, NG7 2RD, United Kingdom. Electronic mail: krasnov@aei.mpg.de
23780022-2488/2004/45(6)/2378/27/$22.00 © 2004 American Institute of Physics
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the one defined by Turaev–Viro,8 and described in great detail in Ref. 5. This paper is thus aim
at a clarification of the relation between the Turaev–Viro~TV! 3D TQFT’s and CFT’s in two
dimensions.

The point that given a CFT there exists a relation between the full CFT and some 3D T
is to some extent contained in recent works on boundary conformal field theory, see Refs. 2
9, and references therein, and also a more recent paper.10 As is emphasized, e.g., in Ref. 4, the fu
CFT partition function on some Riemann surfaceX ~possibly with a boundary! is equal to the

chiral CFT partition function on the doubleX̃. There is then a certain ‘‘connecting’’ 3D manifol

M̃ whose boundary]M̃ is the doubleX̃. Using the chiral CFT/TQFT relation one obtains a 3

TQFT in M̃ that reproduces the chiral partition function onX̃, and thus the full partition function
on X. This formalism turns out to be very useful for analyzing the case whenX has a boundary.

Our analysis was motivated by the above picture, but the logic is somewhat different. In

of working with the chiral TQFT in the connecting 3-manifoldM̃ we work directly with a
3-manifoldM whose boundary isX, and the Turaev–Viro TQFT onM . The two approaches ar
clearly related as the TV theory is a ‘‘square’’ of the chiral TQFT. However, bringing the Tura
Viro TQFT into the game suggests some new interpretations and provides new relations.
most notably, we establish an operator/state correspondence in which the chiral TQFT op
correspond to states in the TV theory, and the trace of an operator product corresponds to
inner product. We use this to interpret the CFT correlators as quantum states of TV theory.
using the fact that a basis in the Hilbert space of TV theory onX is given by colored trivalent
graph states, we will characterize the CFT correlation functions by finding their compone
this basis. Thus, the relation that we demonstrate is about a 3D TQFT on a 3-manifoldM and a
CFT on the boundaryX of M . It is therefore an example of a holographic correspondence, w
this is not obviously so for the correspondence based on a chiral TQFT in the connecting ma

M̃ .
The holography discussed may be viewed by some as trivial, because the three-dime

theory is topological. What makes it interesting is that it provides a very large class of exam
Indeed, there is a relation of this type for any CFT. Importantly, this holography is not limite
any AdS type background, although a very interesting subclass of examples~not considered in this
paper, but see Ref. 7! is exactly of this type.

As the relation chiral CFT/TQFT is best understood for the case of a rational CFT, we
restrict our analysis to this case. Our constructions can also be expected to generalize to
tional and even noncompact CFT’s with a continuous spectrum, but such a generaliza
non-trivial, and is not attempted in this paper. Even with noncompact CFT’s excluded, the cl
CFT’s that is covered by our considerations, namely, rational CFT, is still very large. To des
the arising structure in its full generality we would need to introduce the apparatus of cat
theory, as it was done, e.g., in Ref. 5. In order to make the exposition as accessible as poss
shall not maintain the full generality. We demonstrate the CFT/TQFT holographic relation us
compact group WZW CFT~and CS theory as the corresponding chiral TQFT! as an example.

We shall often refer to the TV TQFT as ‘‘gravity.’’ For the case of chiral TQFT being
Chern–Simons theory for a groupG5SU(2) this ‘‘gravity’’ theory is just the usual 3D Euclidea
gravity with positive cosmological constant. However, the theory can be associated to any
The reader should keep in mind its rather general character.

In order to describe the holographic correspondence in detail we will need to review~and
clarify! the relation between CS theory and gravity~or between the Reshetikhin–Turaev–Witte
and Turaev–Viro invariants! for a 3-manifold with boundary. We found that the expositions of t
relation available in the literature~see Refs. 5, 11! are rather brief and sketchy. This paper provid
a more detailed account and obtains new results. In particular, the operator/state correspo
established in this paper is new.

Finally, we would like to emphasize that the approach presented in this paper is not equ
to that of Refs. 2, 3, 4, 9, even though it was motivated by these papers. Thus, most
discussion only concerns the diagonal-type partition functions, while Ref. 4 is applicable
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more general case. It would be of interest to study the relation to Refs. 2, 3, 4, 9 in more
and also extend the approach presented here to modular invaraint partition functions o
types. We shall not attempt this in the present paper.

The paper is organized as follows: In Sec. II we review the quantization of Chern–Si
theory. Section III is devoted to the Turaev–Viro theory. We then review the definitio
3-manifold invariants in Sec. IV, and some facts on the Verlinde formula in Sec. V. The
material starts in Sec. VI, where we discuss the CS/TV operator/state correspondence a
arising relation between the CS and TV Hilbert spaces. In Sec. VII we interpret the CFT pa
function as a TV quantum state, and compute components of this state in a natural basis in
Hilbert space given by graphs. We conclude with a discussion.

II. CHERN–SIMONS THEORY

This section is a rather standard review of CS theory. We discuss the CS phase spa
Hilbert space that arises as its quantization, review the Verlinde formula, and a particular b
the CS Hilbert space that arises from a pant decomposition. The reader may consult, e.g., R
and 5 for more details.

A. Action

The Chern–Simons~CS! theory is a three-dimensional TQFT of Witten-type. The CS the
for a groupG is defined by the following action functional:

SCS
2 @A#5

k

4p E
M

TrS A∧dA1
2

3
A∧A∧AD2

k

4p E
]M

dz∧dz̄ Tr~AzAz̄!. ~2.1!

HereM is a three-dimensional manifold andA is a connection on the principalG-bundle overM .
For the case of a compactG that we consider in this paper the action is gauge invariant~modulo
2p! when k is an integer. The second term in~2.1! is necessary to make the action princip
well-defined on a manifold with boundary. To write it one needs to choose a complex structu
]M . As ]M is a 2D Riemann surface, complex structures on it are same as conformal struc
Thus, one has to make a choice of the conformal structure. Then the term in~2.1! is the one
relevant for fixingAz̄ on the boundary. Another possible choice of boundary condition is to fixAz .
The corresponding action is:

SCS
1 @A#5

k

4p E
M

TrS A∧dA1
2

3
A∧A∧AD1

k

4p E
]M

dz∧dz̄ Tr~AzAz̄!. ~2.2!

B. Partition function

The partition function arises~formally! by considering the path integral for~2.1!. For a closed
M it can be given a precise meaning through the surgery representation ofM and the
Reshetikhin–Turaev–Witten~RTW! invariant of links. Before we review this construction, let
discuss the formal path integral for the case whenM has a boundary. For example, let th
manifold M be a handlebodyH. Its boundaryX5]H is a ~connected! Riemann surface. Reca
that TQFT assigns a Hilbert space to each connected component of]M , and a map between thes
Hilbert spaces toM . The map can be heuristically thought of as given by the path integral. F
manifold with a single boundary component, which is the case for a handlebodyH, TQFT onH
gives a mapF:H X

CS→C mapping the CS Hilbert space ofX into C. This map can be obtained from
the following Hartle–Hawking~HH! type state:

F~AI !5E
Az̄5AI

DA eiSCS
2 [A] . ~2.3!
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The path integral is taken over connections inH with the restriction ofA on X fixed. More
precisely, with the choice of boundary term in the action as in~2.1!, one fixes only the antiholo-
morphic partAI 5Az̄ of the connection onX, as defined by an auxiliary complex structure. T
result of the path integral~2.3! is the partition function of CS theory onH. It can be thought of as
a particular quantum stateF(AI ) in the CS Hilbert spaceH X

CS. The inner product inH X
CS is

~formally! defined as

^C1uC2&5E
A
DAI DAI e2 ~k/p!*]Md2z Tr(AI zAI z̄) C1~AI !C2~AI !. ~2.4!

Here d2z5dz∧dz̄/2i is the real measure on the boundary. The above mentioned mapF:H X
CS

→C is given by

F~C!5^FuC&5E
A
DAI DAI e2 ~k/p!*]Mdz2 Tr(AI zAI z̄) F~AI !C~AI !. ~2.5!

The stateF(AI )PH X
CS depends only on the topological nature of the 3-manifold and a framin

M .

C. Phase space

To understand the structure of the CS Hilbert spaceH CS it is natural to use the Hamiltonian
description. Namely, near the boundary the manifold has the topologyX3R. Then the phase spac
P CS of CS theory based on a groupG is the moduli space of flatG-connections onX modulo
gauge transformations:

P X
CS;A/G. ~2.6!

It is finite dimensional.
Let X be a ~connected! Riemann surface of type (g,n) with g>0, n.0, 2g1n22.0.

Denote the fundamental group ofX by p(X). The moduli spaceA can then be parametrized b
homomorphismsf:p(X)→G. The phase space is, therefore, isomorphic to

P X
CS;Hom~p~X!,G!/G, ~2.7!

where one mods out by the action of the group at the base point. The fundamental gr
generated bymi ,i 51,...,n andai ,bi ,i 51,...,g satisfying the following relation:

m1¯mn@a1 ,b1#¯@ag ,bg#51. ~2.8!

Here @a,b#5aba21b21. The dimension of the phase space can now be seen to be

dimP X
CS5~2g1n22!dimG. ~2.9!

The fact that~2.7! is naturally a Poisson manifold was emphasized in Ref. 13. The Poi
structure described in Ref. 13 is the same as the one that comes from CS theory. For the
a compactX the space~2.7! is actually a symplectic manifold. For the case when punctures
present the symplectic leaves are obtained by restricting the holonomy ofAI around punctures to
lie in some conjugacy classes in the group. An appropriate power of the symplectic structu
be used as a volume form on the symplectic leaves. Their volume turns out to be finite. On
expects to get finite dimensional Hilbert spaces upon quantization.

D. Hilbert space

The Hilbert spaceH X
CS was understood12,14to be the same as the space of conformal blocks

the chiral Wess–Zumino–Witten~WZW! theory on a genusg-surface withn vertex operators
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inserted. Let us fix irreducible representationsR5$r1 ,...,rn% of G labeling the punctures. The
dimension of each ofH X

CS can be computed using the Verlinde formula:15,16

dimH X
CS5(

r

Sr1r¯Srnr

S0r¯S0r
~S0r!222g. ~2.10!

The sum is taken over irreducible representationsr, Srr8 is the modular S-matrix, see~4.3! below
for the case of SU~2!, andS0r5h dimr , whereh is given by~4.2!.

E. Pant decomposition

The states fromH X
CS can be understood as the HH type states given by the path integral

a handlebodyH with Wilson lines in representationsR intersecting the boundaryX transversally
at n points. A convenient basis inH X

CS can be obtained by choosing a pant decomposition ofX. A
pair of pants is a sphere with 3 holes~some of them can be punctures!. A Riemann surfaceX of
type (g,n) can be represented by 2g1n22 pants glued together. For example, the surface of t
~0,4! with 4 punctures can be obtained by gluing together 2 spheres each with 2 punctures a
hole. Note that a pant decomposition is not unique. Different pant decompositions are rela
simple ‘‘moves.’’ A pant decomposition can be conveniently encoded in a tri-valent graphD with
2g1n22 vertices and 3g12n23 edges. Each vertex ofD corresponds to a pair of pants, an
each internal edge corresponds to two holes glued together. Open-ended edges ofD end at punc-
tures. We shall call such edges ‘‘loose.’’ There are exactlyn of them. The graphD can be thought
of as a 1-skeleton of the Riemann surfaceX, or as a Feynman diagram that corresponds to
string world-sheetX. The handlebodyH can be obtained fromD as its regular neighborhoo
U(D), so thatD is insideH and the loose edges ofD end at the punctures. Let us label the loo
edges by representationsR and internal edges by some other~non-null! irreducible representa
tions. It is convenient to formalize the labeling ofD in a notion ofcoloring f. A coloring f is the
map

f:ED→I, f~e!5rePI ~2.11!

from the setED of edges ofD to the setI of ~non-null! irreducible representations of the quantu
groupG. The loose edges are colored by representations fromR. The CS path integral onH with
the spin networkDf inserted is a state inH X

CS. See below for a definition of spin network
Changing the labels on the internal edges one gets states that span the wholeH X

CS. Different
choices of pant decomposition ofH ~and thus ofD! lead to different bases inH X

CS.

F. Inner product

The inner product~2.4! of two states of the type described can be obtained by the follow
operation. Let one state be given by the path integral overH with Df inserted and the other byH
with Df8 inserted, where both the graph and/or the coloring may be different in the two state
us invert orientation of the first copy ofH and glue2H to H across the boundary~using the
identity homomorphism! to obtain some 3D spaceH̃ without boundary. We will refer toH̃ as the
double of H. For H being a handlebody withg handles the doubleH̃ has the topology of a
connected sum:

H̃;#g21S23S1. ~2.12!

The loose ends ofD are connected at the punctures to the loose ends ofD8 to obtain a colored
closed graphDføDf8 insideH̃. The inner product~2.4! is given by the CS path integral overH̃

with the spin networkDføDf8 inserted. This path integral is given by the RTW evaluation
DføDf8 in H̃, see below for a definition of the RTW evaluation.
                                                                                                                



ture.
impor-
useful

r to

ion

e

uare of
y.

on a

n.

pace

k, the

2383J. Math. Phys., Vol. 45, No. 6, June 2004 2D conformal field theories and holography

                    
III. GRAVITY

The material reviewed in this section is less familiar, although is contained in the litera
We give the action for Turaev–Viro theory, discuss the phase space, then introduce certain
tant graph coordinatization of it, define spin networks, and describe the TV Hilbert space. A
reference for this section is the book of Turaev~Ref. 5 and Ref. 17!.

A. Action

What we refer to as ‘‘gravity’’ arises as a certain ‘‘square’’ of CS theory. We will also refe
this gravity theory as Turaev–Viro~TV! theory, to have uniform notations~CS-TV!.

To see how the TV theory~gravity! arises from CS theory, let us introduce two connect
fields A andB. Consider the corresponding CS actionsSCS@A#,SCS@B#. Introduce the following
parametrization of the fields:

A5w1S p

k De, B5w2S p

k De. ~3.1!

Here w is a G-connection, ande is a one-form valued in the Lie algebra ofG. The TV theory
action is essentially given by the differenceSCS

2 @A#2SCS
1 @B#, plus a boundary term such that th

full action is

STV@w,e#5E
M

TrS e∧f~w!1
L

12
e∧e∧eD . ~3.2!

The boundary condition for this action is that the restrictionwO of w on X5]M is kept fixed. Here
L is the ‘‘cosmological constant’’ related tok as k52p/AL. For G5SU(2) the TV theory is
nothing else but the Euclidean gravity with positive cosmological constantL. We emphasize,
however, that the theory is defined for other groups as well. Moreover, it also exists as a sq
a chiral TQFT for any TQFT, that is even in cases when the chiral TQFT is not a CS theor

B. Path integral

Similarly to CS theory, one can consider HH type states given by the path integral
manifold with a single boundary component. Thus, for a manifold being a handlebodyH we get
the TV partition function:

T~wO !5E
wuX5wO

DwDe eiSTV[w,e] . ~3.3!

The integral is taken over bothw,e fields in the bulk with the restrictionwO of the connection fixed
on the boundary. The TV partition functionT(wO ) is thus a functional of the boundary connectio
It can also be interpreted as a particular state in the TV Hilbert spaceH X

TV .
States fromH X

TV are functionals of the boundary connection. The inner product on this s
can be formally defined by the formula

^C1uC2&5
1

Vol G EA
DwO C1~wO !C2~wO ! ~3.4!

similar to ~2.4!. Note, however, that the measure in~3.4! is different from that in~2.4!. We shall
see this below when we describe how to compute TV inner products in practice.

C. Relation between TV and CS states

Formally, the following relation between TV and CS states exists. As one can easily chec
difference of two CS actions in the parametrization~3.1! is given by
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SCS
2 @A#2SCS

1 @B#5STV@w,e#1
1

2 E]M
Tr~e∧w!2

k

2p E
]M

dz∧dz̄ TrS wzwz̄1S p

k D 2

ezez̄D .

~3.5!

Therefore,

eiSCS
2 [A] 2 iSCS

1 [B] 2 ~k/p!*]Md2z Tr(Az̄Bz)5eiSTV[w,e] 1 ~2p/k!*]Mdz2 Tr(ezez̄). ~3.6!

Hered2z5dz∧dz̄/2i is the real measure on]M. Note that the last term in the exponential on t
left hand side is the same as in the CS inner product~2.4!. From this expression one can read o
a prescription for obtaining the TV stateT(wO ). Indeed, let us integrate the left-hand side over b
A,B, keepingAz̄ ,Bz fixed on the boundary. Let us denote the result byF(Az̄ ,Bz). We have

F~Az̄ ,Bz!5C~Az̄!C̄~Bz! e2 ~k/p!*]Md2z Tr(Az̄Bz). ~3.7!

To get T~w! one must takeF(Az̄ ,Bz) in the parametrization~3.1!, multiply the result by an
exponential factor and integrate over the restrictioneO of e on the boundary:

T~wO !5E DeO e2 ~2p/k! *]Mdz2 Tr(ezez̄) FS wO z̄1S p

k DeO z̄ ,wO z2S p

k DeOzD . ~3.8!

The functionalF(Az̄ ,Bz) is a vector in the Hilbert spaceH CS
^ H CS. We should view~3.8! as a

transform between this Hilbert space andH TV. This transform will play an important role in wha
follows. Below we shall see how the result of the transform~3.8! can be found in practice.

D. Phase space

The TV phase space is basically two copies ofP CS, but with an unusual polarization. Th
polarization onP TV is given bye, w, which are canonically conjugate variables. Note that ther
no need to choose a complex structure in order to define this polarization.

It turns out to be very convenient to think ofP TV as some deformation of the cotange
bundleT* (A/G) over the moduli spaceA/G of flat connections onX. Note, however, that the TV
connectionwO on the boundary is not flat, so the configuration space for TV theory is not reall
moduli space of flat connections. One does getA/G as the configurational space in an importa
limit k→`, in which thee∧3 term drops from the action~3.2!. Thus, it is only in this limit that the
TV phase space is the cotangent bundleT* (A/G). For a finitek the TV phase space is compact~as
consisting of two copies ofP CS), while T* (A/G) is not. We will see, however, that it is essential
correct to think ofP TV as a deformation ofT* (A/G) even in the finitek case. The compactnes
of P TV will manifest itself in the fact that after the quantization the range of eigenvalues ofe is
bounded from above.

These remarks being made we write

P TV;Tk* ~A/G!, ~3.9!

whereTk* is certain compact version of the cotangent bundle. The phase space becomes th
cotangent bundle in thek→` limit. We will not need any further details on spacesTk* . As we
shall see the quantization ofP TV is rather straightforward once the quantization of the cotang
bundle is understood.

We note that the dimension

dimP TV52~2g1n22!dimG ~3.10!

is twice the dimension of the phase space of the corresponding CS theory, as required. A
nient parametrization of the cotangent bundle phase space can be obtained by using grap
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E. Graphs

The graphs one considers are similar to those that arise in the Penner coordinatization18 of the
moduli space of punctured Riemann surfaces. Namely, givenX, introduce a trivalent closed fa
graphG with the numberF of faces equal to the numbern of punctures. Such a graph can b
obtained by triangulating the surfaceX using punctures as vertices, and then constructing a
graph. What arises is exactly a graphG. See Fig. 1 for examples ofG. Note that different
triangulations lead to different graphs, soG is by no means unique.

Because the graph is trivalent 3V52E, where V is the number of vertices andE is the
number of edges. We also have the Euler characteristics relation:

F2E1V5222g. ~3.11!

We thus get that the numberE of edges ofG is E53(2g1n22).
Note that the graphG does not coincide with the graphD introduced in the previous section

There is, however, a simple relation between them that is worth noting. Let us, as in the pr
section, form the doubleH̃5Hø2H. It is a closed 3-manifold obtained by gluing two copies
the handlebodyH across the boundaryX. Let us take a graphD in H, and another copy ofD in
2H. These graphs touch the boundary]H5X at the punctures. Gluing these two copies ofD at
the punctures one obtains a closed graphDøD in H̃. It is a trivalent graph with 2(2g1n22)
vertices and 3(2g1n22) edges. Now consider the regular neighborhoodU(DøD) of DøD in
Hø2H. This is a handlebody, whose boundary is of genus

G52g1n21. ~3.12!

The surface]U(DøD) can be obtained by taking two copies ofX, removing some small disks
around the punctures, and identifying the resulting circular boundaries to get a closed s
without punctures. We have the following:

Lemma: The surface]U(DøD) is a Heegard surface for Hø2H. The complement o
U(DøD) in Hø2H is a handlebody that is the regular neighborhood U(G) of the graphG on
X.

Proof: The complement ofU(DøD) in Hø2H can be seen to be the cylinderX3@0,1# with
n holes cut in it. So, it is indeed a handlebody of genus~3.12!. Its 1-skeleton that can be obtaine
by choosing a pant decomposition is the trivalent graphG.

F. Graph connections

GivenG equipped with an arbitrary orientation of all the edges, one can introduce what c
called graph connections. Denote the set of edgese of G by E. We use the same letter both for th
setE of edges and for its dimension. A graph connectionA is an assignment of a group eleme
to every edge of the graph:

A:E→G, A~e!5gePG. ~3.13!

FIG. 1. A fat graphG for the ~a! sphere with 4 punctures;~b! torus with one puncture.
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One can also introduce a notion of graph gauge transformations. These act at vertices oG. A
gauge transformation is parametrized byV group elements. Let us introduce:

H:V→G, H~v !5hvPG. ~3.14!

HereV is the set of vertices ofG. For an edgeePE denote bys(e) ~source! the vertex from which
e originates, and byt(e) ~target! the vertex wheree ends. The action of a gauge transformationH
on a graph connectionA is now as follows:

AH~e!5hs(t)
21 ge hs(e) . ~3.15!

The space of graph connections modulo graph gauge transformations can now be see
isomorphic toG^ E/G^ V. Its dimension is given by~2.9!. We thus get a parametrization of the C
phase spaceP CS based on a graphG:

P CS;G^ E/G^ V. ~3.16!

The TV phase space is the cotangent bundle

P TV;Tk* ~G^ E/G^ V!. ~3.17!

As we shall see, it is rather straightforward to quantize the noncompact,k→` version ofP TV,
that is the cotangent bundle. The quantum states are given by spin networks.

G. Spin networks

To quantize the cotangent bundleT* (A/G) one introduces a Hilbert space of functionals
the moduli space of flat connections. A complete set of such functionals is given by spin netw
These functions will thus form~an over-complete! basis in the Hilbert space of TV theory. The
also serve as observables for CS quantum theory, see below.

Before we define these objects, let us introduce some convenient notations. Denote the
irreducible representationsr of the quantum groupG by I. Introduce a coloringc:E→I,c(e)
5re of the edges ofG with irreducible representations ofG. A spin networkGc is a functional on
the space of graph connections:

Gc:G^ E→C. ~3.18!

Given a connectionA the value ofGc(A) is computed as follows. For every edgee take the group
elementge given by the graph connection in the irreducible representationre . One can think of
this as a matrix with two indices: one for the sources(e) and the other for the targett(e).
Multiply the matrices for all the edges ofG. Then contract the indices at every tri-valent vert
using an intertwining operator. The normalization of intertwiners that we use is specified i
Appendix. The definition we gave is applicable toG5SU(2). Inthis case the trivalent intertwine
is unique up to normalization. For other gauge groups one in addition has to label the verti
G with intertwiners, so that a spin network explicitly depends on this labeling. The functi
~3.18! so constructed is invariant under the graph gauge transformations~3.14! and is thus a
functional on the moduli space of flat connections modulo gauge transformations. As such i
element of the Hilbert space of TV theory. It is also an observable on the CS phase space~3.16!.

H. Quantization

We can define the Hilbert spaceH TV of Turaev–Viro theory to be the space of gaug
invariant functionalsC(wO ) on the configurational spaceG^ E/G^ V. This gives a quantization o
the k→` limit, but a modification for the case of finitek is straightforward. As we discusse
above, a complete set of functionals onG^ E/G^ V is given by spin networks. We denote the sta
corresponding to a spin networkGc by uGc&. They form a basis of states inH TV:
                                                                                                                



nity in

r

h
. To
cts

.
heory.

. Thus,
n the

g

ion.

s for

s
give
ef.

a
more

2387J. Math. Phys., Vol. 45, No. 6, June 2004 2D conformal field theories and holography

                    
H TV5Span$uGc&%. ~3.19!

One can construct certain momenta operators, analogs ofe;]/]wO in the continuum theory. Spin
networks are eigenfunctions of these momenta operators. To specialize to the case of finitek one
has to replace all spin networks by quantum ones. That is, the coloring of edges ofG must use
irreducible representations of the quantum group, which there is only a finite set.

The spin network statesuGc& form an overcomplete basis inH TV, in that the TV inner product
between differently colored states is nonzero. However, these states do give a partition of u
that

(
c

S )
ePEG

dimreD uGc&^Gcu ~3.20!

is the identity operator inH TV. This will become clear from our definition of the TV inne
product, and the definition of the TV invariant in the next section.

It seems from the way we have constructed the Hilbert spaceH TV that it depends on the grap
G. This is not so. ChoosingG differently one gets a different basis in the same Hilbert space
describe an effect of a change ofG it is enough to give a rule for determining the inner produ
between states from two different bases.

I. Inner product

The inner product onH TV is given~formally! by the integral~3.4! over boundary connections
To specify the measure in this integral, one has to consider the path integral for the t
Namely, consider a 3-manifoldX3@21,1# over X, which is a 3-manifold with two boundary
components, each of which is a copy ofX. The TV path integral overX3@21,1# gives a kernel
that should be sandwiched between the two states whose inner product is to be computed
the measure in~3.4! is defined by the TV path integral. The measure, in particular, depends o
level k.

In practice the inner product of two statesGc Gc8, where both the graphs and the colorin
may be different, is computed as the TV invariant for the manifoldX3@21,1# with Gc on X

3$21% andGc8 on X3$1%. Further details on the TV inner product are given in the next sect

IV. 3-MANIFOLD INVARIANTS

In this section we review the definition of RTW and TV invariants. The main reference
this section are Refs. 19 and 20.

A. Reshetikhin–Turaev–Witten invariant

The RTW invariant of a closed 3-manifold~with, possibly, Wilson loops or spin network
inserted! gives a precise meaning to the CS path integral for this manifold. The definition we
is for M without insertions, and is different from, but equivalent to the original definition in R
21. We follow Roberts.19

Any closed oriented 3-manifoldM can be obtained fromS3 by a surgery on a link inS3. Two
framed links represent the same manifoldM if and only if they are related by isotopy or
sequence of Kirby moves, that is either handle-slides or blow-ups, see Refs. 19 or 22 for
detail. LetL be a link giving the surgery representation ofM . DefineVLPC to be the evaluation
of L in S3 with a certain elementV inserted along all the components ofL, paying attention to the
framing. The elementV is defined as follows, see Ref. 19. It is an element ofH T

CS, whereT is the
torus, and is given by

V5h(
r

dimr Rr . ~4.1!
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The sum is taken over all irreducible representationsrPI, the quantity dimr is the quantum
dimension, andRr is the state inH T

CS obtained by inserting the 0-framed unknot in ther’s
representation along the cycle that is noncontractible inside the solid torus havingT as its bound-
ary. The quantityh is given by

h225(
r

dimr
2 . ~4.2!

For example, forG5SU(2) h5A2/k sin(p/k)5S00, where

Si j 5A2

k
sinS ~ i 11!~ j 11!p

k D , k>3. ~4.3!

With the normalization chosen, theS3 value of a 0-framed unknot withV attached ish21, while
61 framed unknots withV attached give certain unit modulus complex numbersr 61. For G
5SU(2) r 5exp(2ip/422p i (31k2)/4k).

Let us now continue with the definition of the RTW invariant. Define bys(L) the signature
of the 4-manifold obtained by attaching 2-handles to the 4-ballB4 alongL,S35]B4. Define

I ~M !5hr 2s(L) VL. ~4.4!

This is the RTW invariant of the manifoldM presented byL. We use the normalization o
Roberts,19 in which the RTW invariant satisfiesI (S3)5h,I (S23S1)51, as well as the connecte
sum ruleI (M1#M2)5h21I (M1)I (M2).

B. Turaev–Viro invariant

The original Turaev–Viro invariant is defined8 for triangulated manifolds. A more convenien
presentation20 uses standard 2-polyhedra. Another definition is that of Roberts.19 It uses a handle
decomposition ofM . We first give the original definition of Turaev and Viro.

Let T be a triangulation of 3D manifoldM . We are mostly interested in case thatM has a
boundary. Denote byVT the number of vertices ofT, and by$e%,$ f %,$t% collections of edges,
faces and tetrahedra ofT. Choose a coloringm of all the edges, so thatm(e)5re is the color
assigned to an edgee. The Turaev–Viro invariant is defined as

TV~M ,Tu]M ,mu]M !5h2VT(
m

)
e¹]M

dimre)t
~6 j ! t . ~4.5!

Here (6j ) t is the 6j -symbol constructed out of 6 colors labeling the edges of a tetrahedront, and
the product is taken over all tetrahedrat of T. The product of dimensions of representatio
labelling the edges is taken over all edges that do not lie on the boundary. The sum is take
all coloringsm keeping the coloring on the boundary fixed. The invariant depends on the re
tion Tu]M of the triangulation to the boundary]M , and on the coloringmu]M of this restriction.
The invariant is independent of an extension ofTu]M insideM .

Note that the TV invariant is constructed in such a way that for a closed 3-manifolM
5M1øM2 obtained by gluing two manifoldsM1 ,M2 with a boundary across the boundary t
invariant TV(M ) is easily obtained once TV(M1,2,T1,2u]M1,2

,m1,2u]M1,2
) are known. One has to

triangulate the boundary ofM1,2 in the same wayT1u]M1
5T2u]M2

, multiply the invariants for
M1,2, multiply the result by the dimensions of the representations labelling the edge
T1,2u]M1,2

5Tu]M , and sum over these representations. The result is TV(M ):

TV~M !5 (
mu]M

S )
eP]M

dimreDTV~M1 ,Tu]M ,mu]M !TV~M2 ,Tu]M ,mu]M !. ~4.6!
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This, together with the definition of the TV inner product as the TV invariant forX3I establishes
that ~3.20! is indeed the identity operator inH TV.

C. Roberts invariant

We shall now introduce the more general invariant of Roberts. We consider the case w
boundary.

Consider a handle decompositionD of M . The canonical example to have in mind is th
handle decomposition coming from a triangulationT of M . A thickening of the corresponding
dual complexT* then gives a handle decomposition. The vertices of the dual complex~baricenters
of tetrahedra of the triangulation! correspond to 0-handles, edges ofT* ~faces ofT) correspond to
1-handles, faces ofT* ~edges ofT) give 2-handles, and 3-cells ofT* ~vertices of T) give
3-handles. The union of 0- and 1-handles is a handlebody. Choose a system of meridian d
it, one meridian disk for every 1-handle. Now specify the system of attaching curves for 2-ha
If the handle decomposition came from a triangulation there are exactly 3 attaching curves
each 1-handle. Frame all meridian and attaching curves using the orientation of the bound
the handlebody. Denote the corresponding link byC(M ,D). Insert the elementV on all the
components ofC(M ,D), paying attention to the framing, and evaluateC(M ,D) in S3. This gives
the Roberts invariant forM :

R ~M !5hd31d0VC~M ,D !. ~4.7!

Hered3 ,d0 are the numbers of 3- and 0-handles correspondingly. Note that to evaluateVC(M ,D)
in S3 one needs to first specify an embedding. The result of the evaluation does not depend
embedding, see Ref. 19. Moreover, the invariant does not depends on a handle decomposD
and is thus a true invariant ofM .

When the handle decompositionD comes from a triangulationT the Roberts invariant~4.7!
coincides with the Turaev–Viro invariant~4.5!. An illustration of this fact is quite simple and use
the 3-fusion~A2!, see Ref. 19 for more detail.

Lemma (Roberts): The described above system C(M ,D) of meridian and attaching curves fo
a handle decomposition D of M gives a surgery representation of M#2M .

This immediately implies the theorem of Turaev and Walker:

TV ~M !5h I ~M#2M !5uI ~M !u2. ~4.8!

Below we shall see an analog of this relation for a manifold with boundary. All the facts m
tioned make it clear that the TV invariant is a natural spin-off of the CS~RTW! invariant.

D. TV inner product

Recall that the Turaev–Viro inner product between the graph statesuGc& was defined in the
previous section as the TV path integral onX3I . The TV path integral is rigorously defined by th
TV invariant ~4.5!. Here we describe how to compute the inner product in practice. The pres
tion we give is from Ref. 20, Sec. 4.d. We combine it with the chain-mail idea of Roberts19 and
give this chain-mail prescription.

The product^GcuGc8& is obtained by a certain face model onX. Namely, consider the
3-manifoldX3I , whereI is the interval@21,1#. PutGc on X3$21% andGc8 on X3$1%. Both
graphs can be projected ontoX5X3$0%, keeping track of under- and upper-crossings. By us
an isotopy ofX the crossings can be brought into a generic position of double transversal cro
of edges. We thus get a graph onX, with both 3 and 4-valent vertices. The 3-valent vertices co
from those ofGc,Gc8, and 4-valent vertices come from edge intersections between the
graphs. The inner product is given by evaluation inS3 of a certain chain-mail that can be con
structed fromGc,Gc8. Namely, let us take one 0-framed link for every face, and one 0-framed
around every edge of the graphGcøGc8 on X. We get the structure of links at vertices as is sho
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in the following drawings:

~4.9!

Denote byC(G,G8) the obtained collection of links. The inner product is given by

^GcuGc8&5hVG1VG81Vint~GcøGc8. VC~GøG8!!. ~4.10!

HereVG ,VG8 are the numbers of 3-valent vertices of graphsG,G8 correspondingly, andVint is the
number of 4-valent vertices coming from intersections. The expression in brackets must be
ated inS3. Using the 3-fusion~A2! one can easily convince oneself that~4.10! coincides with the
prescription given in Ref. 20.

We would also like to note an important relation for the TV inner product that expresses
the RTW evaluation:

^GcuGc8&5I ~X3S1,Gc,Gc8!. ~4.11!

The evaluation is to be carried out in the 3-manifoldX3S1. This relation that does not seem
have appeared in the literature. A justification for it comes from our operator/state correspon
see below. Let us also note that a direct proof of a particular subcase of~4.11! corresponding to
one of the graphs being zero colored is essentially given by our proof in the Appendix of the
theorem of Sec. VII. We decided not to attempt a direct proof of~4.11! in its full generality.

Turaev theorem: Let us note the theorem 7.2.1 from Ref. 5. It states that the TV invarian
H with the spin networkGc on X5]H equals the RTW evaluation ofGc in Hø2H:

TV ~H,Gc!5I ~Hø2H,Gc!. ~4.12!

This is an analog of~4.8! for a manifold with a single boundary, and is somewhat analogous to
relation ~4.11! for the TV inner product.

V. VERLINDE FORMULA

The purpose of this somewhat technical section is to review some facts about the Ve
formula for the dimension of the CS Hilbert space. Considerations of this section will motiv
more general formula given in Sec. VII for the CFT partition function projected onto a
network state. This section can be skipped on the first reading.

A. Dimension of the CS Hilbert space

Let us first obtain a formula for the dimension of the CS Hilbert space that explicitly s
over all different possible states. This can be obtained by computing the CS inner product. I
as we have described in Sec. II, a basis inH X

CS is given by spin networksDf. With our choice of
the normalization of the 3-valent vertices the spin network statesuDf& are orthogonal but no
orthonormal. Below we will show that the dimension can be computed as

dimH X
CS5(

f
S )

int e
dimreD ^DfuDf&5(

f
S )

int e
dimreD I ~Hø2H,DføDf!, ~5.1!

where the sum is taken over the colorings of the internal edges. The coloring of the edges ofD that
end at punctures are fixed.
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To evaluateDføDf we proceed as follows. Let us project the graphDøD to X. We note that
there is a canonical way to do this projection so that there are exactly two 3-valent vertic
DøD on each pair of pants, and there are exactly two edges ofDøD going through each
boundary circle of a pair of pants. For example, the part ofDøD projected on a pair of pants with
no punctures looks like

~5.2!

One gets a similar structure when projecting on a pair of pants with punctures. In that case t
holes in the center are replaced by punctures and loose edges ofD are connected at the puncture
to the loose edges of the other copy ofD.

Let us now form a linkLD whose components are circles along which one glues the
boundaries together. There are 3g1n23 such circles, in one-to-one correspondence with inte
edges ofD. We push all components ofLD slightly out of X. Using the prescription of the
Appendix of Ref. 20 for computing the RTW evaluation ofM with a graph inserted, one obtain

I ~Hø2H,DføDf!5h3g1n23~DføDf.VLD!. ~5.3!

The evaluation on the right-hand side is to be taken inS3. This relation establishes~5.1!. Indeed,
there are exactly two edges ofDøD linked by every component ofLD . Using the 2-fusion we ge
them connected at each pair of pants, times the factor ofh21/dimre

. The factors ofh are canceled
by the prefactor in~5.3!, and the factors of 1/dimre

are canceled by the product of dimensions
~5.1!. What remains is the sum over the colorings of the internal edges of the product ofNi jk for
every pair of pants. This gives the dimension. This argument also shows that the statesuDf& with
different coloringf are orthogonal.

B. Computing the dimension: Verlinde formula

The sum over colorings of the internal edges in~5.3! can be computed. This gives the Verlind
formula. Let us sketch a simple proof of it, for further reference.

We first observe that, using the 3-fusion, the Verlinde formula for the 3-punctured spher
be obtained as a chain-mail. Namely,

~5.4!

The Verlinde formula forNi jk can be obtained by using the definition~4.1! of V and the recou-
pling identity ~A4! of the Appendix. The computation is as follows:

~5.5!

This is the Verlinde formula~2.10! for the case of a 3-punctured sphere. We have used the fac
h diml5S0l . The above proof of the Verlinde formula forNi jk is essentially that from Ref. 12.
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The general Verlinde formula~2.10! can be obtained using a pant decomposition ofX and
taking a sum over labelings of the internal edges ofD of the product ofNi jk one for every pair of
pants. To get~2.10! one just has to use the unitarity( lSil Sjl 5d i j of the S-matrix.

C. Verlinde formula using graph G: No punctures

Here we find a different representation of the Verlinde dimension. It was noticed in Re
that the Verlinde formula can be obtained using a certain gauge theory on a graph onX. Here we
reinterpret this result using a chain-mail. We first derive a formula for a Riemann surface w
punctures. It is obtained by starting from a graphG corresponding to a surface with some numb
n of punctures. Then a sum is carried over the labels at the punctures, so the end result d
only on the genusg, but not onn.

Consider a fat trivalent graphG that representsXg,n . Let us form a chain-mailC(G) as
follows. Let us introduce a curve for every face of the fat graphG, and a linking curve around
every 3(2g1n22) edges ofG, so that the obtained structure of curves at each 3-valent vert
as in ~4.9!. Insert the elementV along each component ofC(G), and evaluate the result inS3.
What is evaluated is just the chain-mail forG, no spin network corresponding toG is inserted. We
get the following result:

Theorem „Boulatov…: The dimension of the Hilbert space of CS states on Xg is equal:

dimH Xg

CS5hVG VC~G!. ~5.6!

The expression on the right-hand side is independent of the graphG that is used to evaluate it.
To prove this formula we use the 2-strand fusion. We get that all of then different colorings

on the links ofG become the same. Denote byr the corresponding representation. The resul
then obtained by a simple counting. Each 3(2g1n22) of links around edges introduces th
factor ofh21/dimr . Every 2(2g1n22) vertices ofG gives a factor of dimr . Each ofn faces of
G gives another factor ofh dimr . All this combines, together with the prefactor to give

dimH Xg

CS5(
r

~h dimr!222g, ~5.7!

which is the Verlinde formula~2.10! for the case with no punctures.

VI. OPERATORÕSTATE CORRESPONDENCE

This section is central to the paper. Here we discuss a one-to-one correspondence b
observables of CS theory and quantum states of TV theory. The fact that the algebra of o
ables in CS theory is given by graphs is due to Refs. 24 and 25, see also references belo
notion of the connecting 3-manifoldM̃ is from Refs. 4 and 9. The operator/state corresponde
of this section, as well as the arising relation between the CS and TV Hilbert spaces, altho
some extent obvious, seems new.

A. CS observables and relation between the Hilbert spaces

We have seen that a convenient parametrization of the moduli spaceA/G is given by the graph
G connections. An expression for the CS Poisson structure in terms of graph connection
found in Ref. 24. A quantization of the corresponding algebra of observables was develo
Refs. 25–29~see also Ref. 30 for a review!. As we have seen in Sec. III a complete set

functionals onA/G is given by spin networks. Spin networks thus become operatorsĜc in the CS
Hilbert spaceH X

CS. We therefore get a version of an operator/state correspondence, in whic
states correspond to observables of CS theory.

The fact that a CS/TV operator/state correspondence must hold follows from the re
between the phase spaces of the two theories. Namely, as we have seen in Sec. III, the T
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space is given by two copies of the phase space of Chern–Simons theory:P TV5P CS
^ P̄CS, where

the two copies have opposite Poisson structures. This means that in the quantum the
following relation must hold:

H X
TV;H X

CS
^ H 2X

CS ;End~H X
CS!. ~6.1!

Thus, the TV Hilbert space is isomorphic to the direct product of two copies ofH CS. The above
isomorphism is given formally by the formula~3.8!. We shall denote it byI . It identifies the TV

spin network statesuGc& with the CS spin network observablesĜc. This statement deserves som
explanation. The TV spin network states are wave functionals of the connectionwO :T(wO )5T(Az

1Bz ,Az̄1Bz̄), whereas Chern–Simons states are functionalsC(Az ,Bz̄). Thus, the isomorphism
~6.1! can be understood as a change of polarization. Being a change of polarization it inter
the operator algebras acting on the two sides of~6.1!. The polarization we have chosen for the T
Viro model is the one for whichê;(Â2B̂) acts trivially on the TV vacuum state. Using th

intertwinning property ofI this means thatI (u0&TV) is commuting with all CS operatorsĜc. It is
therefore proportional to the identity in End (H X

CS). It follows from here that the operator tha
corresponds to the TV stateuGc& is the CS spin network operator:

I ~ uGc&TV)5ĜcI ~ u0&TV)}Ĝc. ~6.2!

Thus, the described isomorphism~6.1! given by the change of polarization indeed identifies T
graph states with the CS spin network operators.

Another important fact is as follows. Being a change of polarization, the isomorphism~6.1!
preserves the inner product. Since the inner product on the right-hand side of~6.1! is just the CS
trace, we get an important relation:

TrCS~ ĜĜ8!5^GuG8&TV . ~6.3!

In other words, the trace of the product of operators in the CS Hilbert space is the same
inner product in the TV theory. This relation is central to the operator/state correspondence
consideration. Let us now describe the isomorphism~6.1! more explicitly.

B. Connecting manifold M̃

A very effective description of the above operator/state correspondence uses the ‘‘conn
manifold’’ M̃ . It is a 3-manifold whose boundary is the Schottky doubleX̃ of the Riemann surface
X. Recall that the Schottky double of a Riemann surfaceX is another Riemann surfaceX̃. For the
case of a closedX, the surfaceX̃ consists of two disconnected copies ofX, with all moduli
replaced by their complex conjugates in the second copy. ForX with a boundary~the case not
considered in this paper, but of relevance to the subject of boundary CFT, see, e.g., Refs. 4! the
doubleX̃ is obtained by taking two copies ofX and gluing them along the boundary. Conside
3-manifold

M̃5X̃3@0,1#/s, ~6.4!

wheres is an antiholomorphic map such thatX̃/s5X, ands reverses the ‘‘time’’ direction. See
e.g., Ref. 4 for more detail on the construction ofM̃ . The manifoldM̃ has a boundary]M̃5X̃,
and the original surfaceX is embedded intoM̃ . For the case of a closedX, relevant for this paper
the manifoldM̃ has the topologyX3I , whereI is the intervalI 5@0,1#, see Fig. 2.

Consider the RTW evaluation of a spin networkGc in M̃ . It gives a particular state inH
X̃

CS
:

I ~M̃ ,Gc!PH
X̃

CS
. ~6.5!
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However, we have

H
X̃

CS
;H X

CS
^ H 2X

CS ;End~H X
CS!. ~6.6!

Thus ~6.5! gives an operator inH X
CS for every graph stateuGc&PH X

TV .

C. Operator product

In the realization described the product of two operatorsĜc,Ĝc8 is an element ofH
X̃

CS

obtained by evaluating inM̃ both Gc andGc8:

I ~M̃ ,Gc,Gc8!PH
X̃

CS
. ~6.7!

D. Trace

The trace of an operatorĜc is obtained by gluing the two boundaries ofM̃ to form a closed
manifold of the topologyX3S1:

TrCS~ Ĝc!5I ~X3S1,Gc!. ~6.8!

One can similarly obtain the trace of an operator product:

TrCS~ ĜcĜc8!5I ~X3S1,Gc,Gc8!. ~6.9!

In view of ~6.3!, the above relation establishes~4.11!.

E. Identity operator

It is easy to see that the operator/state correspondence defined by~6.5! is such that the zero
colored graphG0 corresponds to the identity operator in the CS Hilbert space:

Ĝ05 Î . ~6.10!

Indeed, insertion ofG0 into M̃ is the same asM̃ with no insertion, whose RTW evaluation give
the identity operator inH CS.

F. Matrix elements

We recall that a basis inH X
CS is obtained by choosing a pant decomposition ofX, or, equiva-

lently, choosing a trivalent graphD, with a coloringf. The matrix elementŝDfuĜcuDf8& are
obtained by the following procedure. Take a handlebodyH with a graphDf in it, its loose ends

FIG. 2. The manifoldM̃ .
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ending at the punctures. The boundary ofH is X, so that we can glueH from the left toM̃ . One
similarly takes2H with Df8 in it, and glues it toM̃ from the right. One connects the punctur
on the boundary ofH to those on the boundary of2H by strands insideM̃ . What one gets is a
closed manifold of the topologyHø2H, with closed graphsDføDf8 andGc sitting inside it.
The matrix elements are obtained as the evaluation:

^DfuĜcuDf8&5I ~Hø2H,DføDf8,Gc!. ~6.11!

VII. CFT PARTITION FUNCTION AS A STATE

Here we interpret the CFT partition function~correlator! as a particular state in the Hilbe
space of TV theory. We also compute components of this state in the basis of states given
networks.

A. CFT partition function

The partition function of any CFT holomorphically factorizes. To understand this holomor
factorization, and the relation to the chiral TQFT, it is most instructive to consider the par
function as a function of an external connection. Namely, let CFT be the WZW model coup
an external connection~gauged model!, and consider its partition functionZX

CFT@m,m̄,z,z̄,AI z ,AI z̄#
on X. Note that no integration is carried overAI yet. Thus, the above quantity is not what is usua
called the gauged WZW partition function. The later is obtained by integrating overAI . The
introduced partition function depends on the moduli~both holomorphic and antiholomorphic!
m,m̄, on positions of insertions of vertex operators coordinatized byz,z̄, and on both the holo-
morphic and anti-holomorphic components of the connectionAI on X. The partition function
holomorphically factorizes according to

ZX
CFT@m,m̄,z,zO,AI z ,AI z̄#5(

i
C i@m,z,AI z#C̄ i@m̄,z̄,AI z̄#. ~7.1!

HereC i@m,z,AI z# are the~holomorphic! conformal blocks with respect to the affine Lie algebra~in
the case of WZW theories that we consider!. The conformal blocks can be thought of as formi
a basis in the Hilbert spaceH X

CS of CS theory onX. More precisely, there is a fiber bundle ov
the moduli spaceMg,n of Riemann surfaces of type (g,n) with fibers isomorphic toH Xg,n

CS . The

conformal blocks are~particular! sections of this bundle, see Ref. 31 for more detail. Note that
sum in ~7.1! is finite as we consider a rational CFT. As was explained in Ref. 14, the usual
partition function is obtained by evaluating~7.1! on the ‘‘zero’’ connection. The formula~7.1! then
gives the factorization of the usual partition function, withC i@m,z,0# being what is usually called
the Virasoro conformal blocks.

Instead of evaluating~7.1! on the zero connection one can integrate overAI . The result is the
partition function of the gauged model, which gives the dimension of the CS Hilbert space

dimH X
CS5

1

Vol G EA
DAI ZX

CFT@m,m̄,z,z̄,AI z ,AI z̄#. ~7.2!

The value of the integral on the right-hand side is independent of moduli~or positions of insertion
points!.

A particular basis of states inH X
CS was described in Sec. II and is given by statesuDf&. Let us

use these states in the holomorphic factorization formula~7.1!. We can therefore think of the
partition function~correlator! as an operator in the CS Hilbert space:

ẐX
CFT5(

f
S )

int e
dimreD uDf& ^ ^Dfu. ~7.3!
                                                                                                                



erator,

, and it
recent

ursue

ce of
ert

es in
ro

r
s to be
on

he

2396 J. Math. Phys., Vol. 45, No. 6, June 2004 L. Freidel and K. Krasnov

                    
The dimension of the CS Hilbert space is obtained by taking the CS trace of the above op
which gives~5.1!.

The CFT partition function~7.3! is the simplest possible modular invariant~the diagonal! that
can be constructed out of the chiral CFT data. There are other possible modular invariants
is an ongoing effort to try to understand and classify different possibilities, see, e.g., the
paper.10 In this paper we only consider and give a TV interpretation of the simplest invariant~7.3!.
Our TV interpretation might prove useful also for the classification program, but we do not p
this.

B. CFT partition function as a state

The formula~7.3! for the partition function, together with the operator/state corresponden
the previous section imply thatZX

CFT can be interpreted as a particular state in the TV Hilb
space. We introduce a special notation for this state:

uZX
CFT&PH X

TV . ~7.4!

In order to characterize this state we first of all note thatẐX
CFT is just the identity operator inH X

CS:

ẐX
CFT5 Î . ~7.5!

The representation~7.3! gives the decomposition of the identity over a complete basis of stat
H X

CS. Using~6.10! we see that the stateuZX
CFT& is nothing else but the spin network state with ze

coloring, together with a set of strands labeled with representationsR and taking into account the
punctures:

uZX
CFT&5uG0,R&. ~7.6!

Another thing that we are interested in is the components ofuZX
CFT& in the basis of spin

networksuGc&. In view of ~4.11! we have

^GcuZX
CFT&5I ~X3S1,R,Gc!. ~7.7!

The evaluation inX3S1 is taken in the presence ofn links labeled by representationsR. Note that
all the dependence on the moduli ofX is lost in~7.7!. However, the coloringc of G can be thought
of as specifying the ‘‘geometry’’ ofX, see more on this below.

C. Zero colored punctures

Here, to motivate the general formula to be obtained below, we deduce an expression fo~7.7!
for the case where the colors at all punctures are zero. In this case there is no extra link
inserted inX3S1, and ~7.7! reduces tô GcuG0&. This can be evaluated using the prescripti
~4.10!. One immediately obtains

^GcuG0&5hVG~Gc.VC~G!!5h222g(
$r f %

)
f PFG

dimr f )vPVG

~6 j !v . ~7.8!

HereC(G) is the chain-mail forG, as defined in the formulation of the theorem~5.6!. In the last
formula the sum is taken over irreducible representations labeling the faces of the fat graphG, the
product of 6j -symbols is taken over all vertices ofG, and the 6j -symbols (6j )v are constructed
out of three representations labeling the edges incident atv, and three representations labeling t
faces adjacent atv. The last formula is obtained using the 3-fusion recoupling identity~A2!.
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D. Verlinde formula

The dimension of the CS Hilbert space can be obtained as the inner product ofuZX
CFT& with the

‘‘vacuum’’ state uG0&PH X
TV , which corresponds to the spin network with zero~trivial represen-

tation! coloring on all edges:

dimH X
CS5^G0uZX

CFT&. ~7.9!

Expression~7.9! gives an unusual perspective on the Verlinde formula: it appears as a part
case of a more general object~7.7!.

E. General formula

Here we find the result of the evaluation~7.7!. As we have just explained,~7.7! must reduce
to the Verlinde formula~2.10! when the graphG has zero colors. We have seen in Sec. V that
least for the case with no punctures, the Verlinde formula can be obtained from the chai
C(G) with no graphG inserted. We have also seen in~7.8! that for the case with no punctures th
quantity~7.7! is given by the evaluation ofC(G) together with the graph. Thus, a natural propo
for ~7.7! is that it is given by the evaluation~5.6!, with the graphG added, and with an additiona
set of curves taking into account the punctures. This results in:

Main Theorem: The CFT partition function (correlator), interpreted as a state of TV theo
projected onto a spin network state is given by

^GcuZX
CFT&5h222g2n(

$r f %
)

f PFG

Sr ir f i
)

vPVG

~6 j !v . ~7.10!

A proof is given in the Appendix.

VIII. DISCUSSION

Thus, the CFT partition function~correlator! receives the interpretation of a state of T
theory. This state is the TV ‘‘vacuum’’ given in~7.6! by the graph with zero coloring. Thus, quit
a nontrivial object from the point of view of the CFT, the partition function receives a ra
simple interpretation in the TV theory.

We note that, apart from the partition function stateuZCFT&, there is another state inH TV with
a simple CS interpretation. This is the state that can be denoted as

uH&PH TV. ~8.1!

It arises as the TV partition function for a handlebodyH. The TV invariant~4.5! for a manifold
with boundary has the interpretation of the TV inner product ofuH& with a spin network state:

TV~H,Gc!5^HuGc&. ~8.2!

In view of the Turaev theorem~4.12!,

^HuGc&5I ~Hø2H,Gc!. ~8.3!

From this, and the relation~6.11! for the matrix elements it can be seen that the stateuH&
corresponds in CS theory to the operator

Ĥ5uD0& ^ ^D0u, ~8.4!

which is just the projector on the CS ‘‘vacuum’’ stateD0, given by the zero colored pant decom
position graphD. We note that the TV stateuH& has a rather nontrivial expression when deco
posed into the spin network basis. Thus, the described relation between CS and TV theori~the
operator/state correspondence! is a nontrivial duality in that simple objects on one side corresp
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to nontrivial objects on the other: CFT correlators, nontrivial from the point of view of CS, are
TV ‘‘vacuum’’ states; the nontrivial TV handlebody stateuH& is a rather trivial ‘‘vacuum’’ projec-
tor on the CS side.

We would like to emphasize that the CFT partition function stateuZX
CFT& does not coincide

with the TV partition function stateuH& on a handlebodyH. However, the stateuZX
CFT& can be

interpreted as a certain sum of TV handlebody states, provided a certain generalization
Turaev theorem~4.12! holds. An attempt to prove this generalized Turaev theorem would lea
too far, so we shall formulate it as a conjecture:

Conjecture 1: LetTV((H,Df),Gc) denote the Turaev–Viro invariant for a manifold H with a
spin networkDf inserted in it, and a spin networkGc on the boundary. This invariant can b
evaluated as the RTW invariant for the double Hø2H:

TV~~H,Df!,Gc!5I~~H,Df!ø2~H,Df!,Gc!. ~8.5!

The justification for this conjecture is the theorem~4.12!, which is nothing but~8.5! with no graph
D insertion. Let us now introduce a set of statesuH,f & obtained as the TV partition function
inside a handlebodyH with a spin networkDf inserted inside. From the point of view of C
theory these states are just the projection operators:

Ĥf5uDf&^Dfu. ~8.6!

Indeed, let us compute the TV inner product between the stateuH,Df& and a spin network state
uGc&:

^H,fuGc&5TV~~H,Df!,Gc!. ~8.7!

If the above conjecture holds this equals to the right hand side of~8.5!. The later, on the othe
hand, is equal to

^DfuĜcuDf&. ~8.8!

This implies~8.6!. Using relation~8.6! the CFT partition function as a state in TV Hilbert spa
can be represented as a sum of HH-type TV states obtained as the TV partition function
handlebody with spin network insertion:

uZCFT&5(
f

S )
int e

dimreD uH,f &. ~8.9!

This formula should be contrasted with the usual AdS/CFT prescription, which states that th
partition function on the boundary is obtained as a sum of gravity partition functions o
manifoldsH that haveX as a boundary. In other words, one must sum over all ways to fill in
surfaceX so that the resulting 3-manifoldH is non-singular inside. As we see, the ‘‘holograph
arising in our context is different. Instead of taking a sum over all nonsingular manifoldsH that
haveX as the boundary, in~8.9! one takes some fixedH, but sums over all labelings of the grap
D sitting insideH. The graphD is a 1-skeleton ofH; it can be thought of as a singularity insid
the handlebody. Thus, to obtain the CFT partition function~modular invariant! one sums over
labelings of the singularity insideH. This is a finite sum. The sum over different ways to fill inX
is, on the other hand, infinite. It would be of interest to find if there is any relation between
two sums. If no such relation exists then the holographic prescription~8.9! predicted by our
analysis is different from the AdS/CFT one.

Thus, we have seen that there are two TV states that correspond to CFT modular inva
one is the TV vacuum~7.6! that gives the diagonal modular invariant, the other is the handleb
stateuH& that gives the trivial modular invariant~8.4!. An interesting question is what other stat
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in TV give CFT modular invariants. An answer to this question may be instrumental in un
standing the structure of rational CFT’s, see the recent paper10 for a discussion along these line

Let us now discuss a physical interpretation of the formula~7.10!. We note that the objec
~7.7! can be interpreted as the CFT partition function on a surfaceX whose ‘‘geometry’’ is
specified by the stateuGc&. This ‘‘geometry’’ should not be confused with the conformal geome
of X, on which the usual CFT partition function depends. Once the stateuZX

CFT& is projected onto
uGc& the dependence on the moduli ofX is traded for the dependence on the coloringc of G. All
the dependence on the moduli is encoded in the spin network states. Let us first discu
dependence on the ‘‘geometry’’ as specified by the colored graphGc, and then make comments a
to the dependence ofuGc& on the moduli.

To understand the spin networkGc as specifying the ‘‘geometry’’ ofX we recall, see Sec. III,
that uGc& are eigenstates of the ‘‘momentum’’ operatorse;]/]wO . In this sense they are states
particular configuration of thee field on the boundary. To understand this in more detail let
consider the TV partition function TV(H,Gc). Let us take the simple example of the 4-punctur
sphere. Thus, we takeH5B3, a 3-ball. We will put all representations at the punctures to
trivial. In view of the Turaev theorem~4.12!, TV(B3,Gc)5I (S3,Gc). Thus, forX5S2, the TV
invariant is given simply by the evaluation of the spin networkGc in S3. In our simple example
of the 4-punctures sphere this evaluation is a single 6j -symbol. Let us now restrict ourselves to th
caseG5SU(2). As wehave mentioned above, the TV theory in this case is nothing else bu
gravity with positive cosmological constant. On the other hand, it is known that the qua
(6 j )-symbol has, for largek and large spins, an asymptotic of the exponential of the class
Einstein–Hilbert action evaluated inside the tetrahedron:

~6 j !;eiSTV[tet]1c.c. ~8.10!

This fact was first observed32 by Ponzano and Regge for the classical (6j )-symbol. In that case
one evaluates the classical gravity action inside a flat tetrahedron. The action reduces to a
ary term~the usual integral of the trace of the extrinsic curvature term!, which for a tetrahedron is
given by the so-called Regge action:

STV@ tet,L50#;(
e

l eue , ~8.11!

where the sum is taken over the edges of the tetrahedron, andl e ,ue are the edge length and th
dihedral angle at the edge correspondingly. Dihedral angles are fixed once all the edge len
specified. Ponzano and Regge observed that the (6j )-symbol has the asymptotic of~8.10! with the
action given by~8.11! if spins labeling the edges are interpreted as the length of edges. A si
~8.10! interpretation is true for the SUq(2) (6j )-symbol, as was shown in Ref. 33. The gravi
action in this case is that with a positive cosmological constantL5(k/2p)2, and is evaluated in
the interior of tetrahedron inS3 whose edge length are given by spins. To summarize, in th
examples the (6j )-symbol gets the interpretation of the exponential of the classical gravity ac
evaluated inside a tetrahedron embedded in eitherR3 or S3, depending on whether one takes t
classical limitk→` or considers a quantum group with finitek. The tetrahedron itself is fixed
once all edge length are specified. The edge length are essentially given by the spins. We a
that the graphG in this example is the dual graph to the triangulated boundary of the tetrahe
in question.

Thus, the TV partition function~given by a single (6j )-symbol! inside a 4-punctured spher
~tetrahedron! has the interpretation of the gravity partition function inside the tetrahedron wit
boundary geometry~edge length! fixed by the spins. This interpretation ofGc is valid also for
other surfaces. One should think ofGc as specifying the geometrye on X. The TV invariant is, in
the semi-classical limit of large representations, dominated by the exponential of the cla
action evaluated inside the handlebody. The geometry inside is completely determined
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geometry of the surface, in other words, the spins. The interpretation is valid not only for S~2!,
but also for other groups. In such a general case the notion of ‘‘geometry’’ is more complicat
described by the fielde and the TV action~3.2!.

The bottom line is that the TV spin network statesuGc& should be thought of as specifying th
‘‘geometry’’ of X. The quantity~7.10! then receives the interpretation of the CFT partition fun
tion on a surfaceX whose ‘‘geometry’’ is specified byGc.

The other question is how the statesuGc& depend on the moduli of the surface. The fact th
the graphG is the same as the one used in the Penner18 coordinatization of the moduli spac
suggests that this dependence may be not very complicated. In fact, we believe that for the
SL~2,R! or SL~2,C! that are relevant in the description of the moduli spaces, the dependen
rather simple: the described above ‘‘geometry’’ in this case must coincide with the usual conf
geometry of the surface. An argument for this is as follows. In the Penner coordinatization
moduli space, or in any of its versions34,35 the moduli are given by prescribing a set of re
numbers: one for each edge of the graphG. The numbers specify how two ideal triangles are glu
together across the edge, see Refs. 34, 35 for more detail. For the case whenG5SLq(2,R), as is
relevant for, e.g., Liouville theory, see Ref. 36, the representations are also labeled by a sing
number. We believe that the Penner coordinates and the representations that label the ed
simply dual to each other, in the sense of duality between the conjugacy classes of element
group and its irreducible representations. A similar proposal for the relation between the~2!
spin and length was made in Ref. 6. Thus, there is some hope that the dependenceuGc& on the
moduli can be understood rather explicitly, at least for some groups. Having this said we no
considerations of the present paper do not immediately generalize to the case of nonc
groups, relevant for the description of the moduli spaces. It is an outstanding problem to de
a noncompact analog of the Verlinde formula, not speaking of the formula~7.10!. Thus, at this
stage of the development of the subject considerations of this paragraph remain mere g
However, progress along these lines may be instrumental in developing a better techniq
integrating over the moduli spaces, and thus, eventually, for a better understanding of the st
of string theory.
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APPENDIX A: SOME RECOUPLING IDENTITIES

The 2-fusion identity:

~A1!

The 3-fusion identity:

~A2!

The 3-vertex is normalized so that
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~A3!

whereNi jk is the multiplicity with which the trivial representation appears in the tensor produ
i , j ,k. For SU~2! this is either zero or one. In order to obtain~A1! from ~A2! it is necessary to take
into account the normalization~A3!.

Another recoupling identity uses the modular S-matrix:

~A4!

The dots on the right-hand side mean that the open ends can be connected~in an arbitrary way! to
a larger graph.

APPENDIX B: PROOF

Here we give a proof of the main theorem.

1. Genus zero case

We start by working out the simplest case of the 3-punctured sphere. We chooseG to be given
by a dumbbell. We thus need to compute the following evaluation:

~B1!

Here we have used the observation~5.4! to replace two trivalent vertices ofDøD by a link with
V inserted. Let us now slide the curve along whichV is inserted to go all around the graphG, thus
making one of the curves of the chain-mailC(G). In the next step we add two more curves fro
C(G) that go around punctures, and at the same time add two meridian curves withV inserted.
This addition of two pairs ofV linked does not change the evaluation in view of the killi
property ofV. The steps of sliding theV and adding two new pairs of curves is shown here:

~B2!

The last step is to use the sliding property ofV to slide the links labeledi , j insideG:
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~B3!

One can now use the recoupling identity~A4! to remove the curvesi , j ,k at the expense o
introducing a factor ofh21Sii 8 /dimi 8 and similarly for other loops. Herei 8 is the representation
on the loop fromC(G) going around the puncturei . The elementV on that loop must be
expanded to~4.1!. The factorh dimi 8 from that expansion is canceling the factor we got wh
removing the loopi . What is left is theS-matrix elementSii 8 , with no extra factors. One can now
use the 3-fusion identity~A2! to get the formula~7.10!. One uses the 3-fusion 2 times, whic
producesh22. This combines with the factor ofh in ~B1!–~B3! to give h21, as prescribed by
~7.10! for the caseg50,n53. One can easily extend this proof to the caseg50 arbitrary number
of punctures. To understand the general case, we first find a surgery representation forX3S1.

2. Surgery representation for XÃS1

Let us first understand the genus one case. A surgery representation forX1,13S1 is given by
the following link:

~B4!

One must insert the elementV into all components, and evaluate inS3. Representing all theV’s
as the sum~4.1! and using the recoupling identity~A4! it is easy to show that~B4! gives the
correct expressionhI (L)5(r8Srr8 /S0r8 for the dimension. The same surgery representation
noticed in Ref. 37. The generalization to higher genus and to a larger number of punctu
straightforward. It is given by the following link:

~B5!

3. General case

We will work out only the~1,1! case. General case is treated similarly. We first note that
formula ~7.10! for the ~1,1! case can be obtained as the result of the following evaluation:
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~B6!

This link is to be evaluated inS3 and, as usual, the result multiplied by the factor ofh. This gives
~7.10! specialized to the case~1,1!. It is now a matter of patience to verify that by the isotro
moves inS3 the above link can be brought to the form:

~B7!

This is the correct surgery representation forX1,13S1 with the graphG inside. Thus,~7.10! indeed
gives the evaluationI (X3S1,Gc), which, in view of ~7.7!, proves the theorem.
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The Leibniz bracket of an operator on a~graded! algebra is defined and some of its
properties are studied. A basic theorem relating the Leibniz bracket of the commu-
tator of two operators to the Leibniz bracket of them is obtained. Under some
natural conditions, the Leibniz bracket gives rise to a~graded! Lie algebra structure.
In particular, those algebras generated by the Leibniz bracket of the divergence and
the Laplacian operators on the exterior algebra are considered, and the expression
of the Laplacian for the product of two functions is generalized for arbitrary exte-
rior forms. © 2004 American Institute of Physics.@DOI: 10.1063/1.1738188#

I. INTRODUCTION

In mathematical physics, some operators of interest are not derivations of the unde
algebraic structures. Their complement to the Leibniz rule of derivation defines then a pr
called the Leibniz bracket. The Leibniz bracket of a linear operator on an algebra is thus a b
form that gives rise to a new algebra, called the Leibniz algebra. Leibniz algebras presen
esting properties, and this work concerns them.

In particular, if the Leibniz bracket of an operator~its adjoint action! is a derivation, the
operator is of degree odd and its square vanishes or is also a derivation, then the Leibniz
is a Lie bracket.

This is the case, for example, in the antibracket formalism context,1 for the exterior derivative
considered as a second order differential operator on the differential forms of finite codime
the antibracket can then be defined as the corresponding Leibniz bracket, and some of its
properties are simple consequences of the general results obtained here.

A similar situation occurs for the divergence operator over the exterior algebra, for whic
Leibniz bracket is nothing but the Schouten2,3 bracket~in another different context, an equivale
result has been obtained by Koszul4!. The expression obtained here relating the Schouten bra
to the divergence operator is of interest in mathematical physics. It allows, for example, to e
Maxwell equations in terms of Schouten bracket and to studyproper variationsof Maxwell
fields.5,6 It has been also used to express the electromagnetic field equations in a non linear
which solves, in part, an old problem concerning the existence and physical multiplicity o
electromagnetic fields in general relativity.6,7

The Leibniz bracket of the commutator of two operators admits a simple expression: It
commutator of the Leibniz bracket of every one of them with respect to the operation defin
the Leibniz bracket of the other one. For the Laplacian operator, whichappearsas the~graded!
commutator of the divergence and the exterior derivative, the above expression may be a
directly to it, giving the following interesting result: The Leibniz bracket of the Laplace oper

a!Electronic mail: bartolome.coll@obspm.fr
b!Electronic mail: joan.ferrando@uv.es
24050022-2488/2004/45(6)/2405/6/$22.00 © 2004 American Institute of Physics
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acting over the exterior algebra equals the Leibniz bracket of the exterior derivative acting
the Schouten algebra. This gives an interesting generalization to the exterior algebra of th
known expression for the Laplacian of a product of functions, and it has been applied
analysis of harmonic coordinates in General Relativity.8

II. LEIBNIZ ALGEBRA OF A GRADED OPERATOR

~a! Let E5 % Ea be a commutative graded group and+:E3E→E an operation verifyingEa

+Eb#Ea1b1k . Although it is always possible to regraduateE so that k vanishes, we shall retain th
above graduation to avoid confusion when using different operations, as we shall do; such a k will
be called thedegreeof the operation+ ~with respect to this graduation!.

The known properties~and concepts! on a graded groupE concerning an operation+ of degree
zero admit an equivalent form, depending generically on the degree k, when an arbitrary g
tion is considered. Thus, the k-graded operation+ is commutative~resp.anticommutative! if it
verifies A+B5e(21)(a1k)(b1k)B+A with e51 ~resp.e521), and it isassociativeif A+(B+C)
5(A+B)+C.

If E is a module and+ is bilinear,~E, +! is said a k-graded algebra. A derivation of degreer is
a r-graded endomorphismD on E, D(Ea)#Ea1r , verifying the Leibniz ruleD(A+B)5DA+B1
(21)(a1k)rA+DB. An anticommutative k-graded algebra~E, @,#! verifying the Jacobi identityr
(21)(a1k)(c1k)@@A,B#,C#50 is said a k-graded Lie algebra. Jacobi identity states, equivalentl
that the (a1k)-graded endomorphism adA, adA(B)5@A,B#, is a derivation on~E, @,#!. If ~E, +! is
a k-graded associative algebra, the commutator defines a k-graded Lie algebra.

Let E be a graded group,+ a k-graded operation andP a p-graded operator. WhenP does not
satisfy the Leibniz rule, its ‘‘deviation’’ interests us. So we give the following definition:
Leibniz bracketLP^+& of P with respect to+ is the (p1k)-graded operation given by

LP^+&~A,B!5A+P~B!1~21!p(a1k)@P~A!+B2P~A+B!#. ~1!

Of course,P verifies the Leibniz rule iff the Leibniz bracketLP^+& vanishes identically.
The Leibniz bracket of a linear operator with respect to a bilinear operation is a bil

operation, so that:when ~E, +! is a k-graded algebra andP is a p-graded endomorphism,
(E,LP^+&) is a (k1p)-graded algebra. We call it theLeibniz algebraof P on ~E, +!. If P andQ are,
respectively, p- and q-graded endomorphisms, their commutator@P,Q#5PQ2(21)pqQP is a
(p1q)-graded endomorphism. Then, taking into account thatLP^+& andLQ^+& are, respectively,
(p1k)- and (q1k)-graded bilinear operations, and applying successively relation~1!, one obtains
the fundamental result:

Theorem 1: In a k-graded algebra~E, +!, the Leibniz bracket of the commutator of tw
endomorphisms is related to the Leibniz bracket of every one of them by

L[P,Q]^+&5LQ^LP^+&&2~21!pqLP^LQ^+&&. ~2!

In Marx’s style:9 The Leibniz bracket of the commutator@P, Q# of two endomorphismsP andQ
on the algebra~E, +! equals the graded difference between the Leibniz bracket ofQ on the Leibniz
algebra (E,LP^+&) of P and the Leibniz bracket ofP on the Leibniz algebra (E,LQ^+&) of Q.

In particular, asP25P"P is a 2p-graded operator, it follows thatfor any odd-graded operator
P, one has

LP2^+&5LP^LP^+&& , ~3!

Let us note thatLP^x& may be thought asan operatorLP over any operation x onE. In this sense,
theorem 1 says thatL[P,Q]^x&5@LQ ,LP#^x&, and relation~3! says thatLP2^x&5(LP)2^x&.

Theorem 1 shows directly the well known result that ifP andQ are derivations on~E, +!, so
is @P, Q#. Also, from ~3!, it follows:

Lemma 1: The squareP2 of an endomorphismP of odd degree is a derivation on~E, +! iff P
is a derivation on(E,LP^+&).
                                                                                                                



-

sub-

e

er

d

2407J. Math. Phys., Vol. 45, No. 6, June 2004 On the Leibniz bracket

                    
On the other hand, if the operation+ is commutative or anticommutative, i.e.,A+B5e
(21)(a1k)(b1k)B+A, one can find the following result:

LP^+&~A,B!5e~21!(a1k1p)(b1k1q)1pLP^+&~B,A!, ~4!

that is to say, for a k-graded commutative (resp. anticommutative) algebra~E, +!, the
(k1p)-graded Leibniz algebra(E,LP^+&) is commutative (resp. anticommutative) ifP is even-
graded, and it is anticommutative (resp. commutative) ifP is odd-graded.

Let us denote, for simplicity,$A,B%P5LP^+&(A,B). Then, when~E, +! is a k-graded associa
tive algebra andP an endomorphism, one has

$A,B+C%P2$A,B%P+C5~21!p(b1k)@$A+B,C%P2A+$B,C%P#. ~5!

~b! Let (F,+) be a 0-graded associative and commutative algebra generated by its
module F1 , $,%P be the Leibniz bracket of the p-graded endomorphismP on (F,+), $A,B%P
[LP^+&(A,B), and ad$A%P be the adjoint of A in the Leibniz algebra (F,$,%P), i.e., ad$A%P(B)
[$A,B%P .

From the commutativity of (F,+) and relation~4!, Eq. ~5! may be written$C,B%ad$A%P

5(21)ca$A,B%ad$C%P
. Then, it follows:for any p-graded endomorphismP in (F,+), one has

ad$C%ad$A%P
5~21!ca1a1pad$A%ad$C%P

. ~6!

In particular, ad$A%P obeys the Leibniz rule on the set$C%3F iff ad$C%P does it on the set
$A%3F. Thus, iff ad$X%P is a derivation for everyXPF1 , ad$A%P verifies the Leibniz rule on
F13F. But an endomorphism that verifies the Leibniz rule onF1+F is a derivation on (F,+), so
that one has:

Lemma 2: Ifad$X%P is a derivation on(F,+) for any X ofF1 , thenad$A%P is a derivation on
(F,+) for every A ofF.

If P is a derivation on its induced Leibniz algebra (F,$,%P), the Leibniz rule may be written
@P,ad$A%P#5ad$P(A)%P . Then, applying theorem 1 it follows that ad$A%P is a derivation on
(F,$,%P) when ad$A%P and ad$P(A)%P are derivations on (F,+). From this result and lemma 2 on
has:

Lemma 3: Ifad$X%P is a derivation on(F,+) for any XPF1 and if P is a derivation on
(F,$,%P), thenad$A%P is a derivation on(F,$,%P) for any APF.

For p odd, lemma 1 states thatP is a derivation on (F,$,%P) iff P2 do it on (F,+). On the other
hand, it follows from relation~4! that (F,$,%P) is a p-graded anticommutative algebra. But und
this condition Jacobi identity says equivalently that ad$A%P is a derivation on (F,$,%P). All that
and lemma 3 lead to the following result:

Theorem 2: For p odd, ifP2 andad$X%P , for any X inF1 , are derivations on(F,+) then the
Leibniz algebra(F,$,%P) is a p-graded Lie algebra.

III. SCHOUTEN BRACKET, DIVERGENCE OPERATOR, AND LAPLACIAN

~a! Let Lp ~resp.L!p) be the set of p-forms~resp.p-tensors! over the differential manifoldM ,
that is to say, the set of completely antisymmetric covariant~resp. contravariant! tensor fields.
Then, L5 % Lp ~resp. L!5 % L!p) with the exterior product∧ is a 0-graded associative an
commutative algebra over the function ringx5x(M ): the exterior covariant algebra~resp. ex-
terior contravariant algebra!. We shall denote bya, b, g the elements ofL, and byA,B,C those
of L!, with corresponding degreesa,b,c.

Denote the interior producti (A)b, @ i (A)b#b2a5(1/a!) AaI baI ,b2a if a<b, by (A,b) and put
(b,A)5(21)a(b2a)(A,b). When XPL1, one has the usual interior producti (X) which is a
derivation of degree21 on ~L, ∧!. Moreover, one has

~g,A∧B!5~~A,g!,B!1~21!ab~~B,g!,A! if c5a1b21, ~7!
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~A∧B,g!5~B,~A,g!!, ~g,A∧B!5~~g,B!,A! if c>a1b. ~8!

Suppose now thatM is a n-dimensional and oriented manifold, and leth be a ~covariant!

volume element,h! being its ~contravariant! dual: hp,n2ph!p8,n2p5e(n2p)21dp
p8 ,e561.

Then, the Hodge operators are given by* A5(h,A), * a5(h!,a) and verify ** A5e
(21)a(n2a)A. Therefore, ifa1b<n,

* ~A∧B!5~* B,A!, * A∧b5* ~b,A! . ~9!

The set of real numbersR being a sub-ring of the set of functionsx, ~L, ∧! and (L!,∧) are
x-algebras andR-algebras. The exterior differentiationd is a 1-gradedR-derivation on~L, ∧!,
and the codifferentiation~divergence up to sign! is a (21)-gradedR-endomorphism given byd
5e(21)na* d* . Then, from~9! it follows,

d~A,b!5~dA,b!1~21!r~A,db!, r 5a2b.0. ~10!

~b! It is known that forX,YPL!1, d(X∧Y)5(dX)Y2(dY)X2LXY, whereLX denotes the
Lie derivative operator with respect to the vector fieldX. So that the operatord is not a derivation
on (L!,∧). Thus, it is possible to consider the Leibniz bracket$ , %d of the codifferential operator
on the exterior contravariant algebra (L!,∧),

~21!a$A,B%d5dA∧B1~21!aA∧dB2d~A∧B! . ~11!

Taking into account relations~7!, ~8!, and~10!, it is not difficult to show that, for any~a1b21!-
form g, one has

~21!ai ~$A,B%d!g5~d~g,B!,A!1~21!ab~d~g,A!,B!2~dg,A∧B! . ~12!

The Schouten bracket$ , % of two contravariant tensors2 is a first order differential concomitan
that generalize the Lie derivative.3 For p-tensors~antisymmetric contravariant tensors! this bracket
is defined by its action over the closed forms,10 i ($A,B%)g5(d(g,B),A)1(21)ab(d(g,A),B).
Comparing this relation and~12!, it follows $A,B%5(21)a$A,B%d , and one has the following
form of the Koszul4 result:

Theorem 3: The Schouten bracket is, up to a graded factor, the Leibniz bracket of
operatord on the exterior contravariant algebra(L!,∧): $,%5(21)a$,%d . Explicitly:

$A,B%5dA∧B1~21!aA∧dB2d~A∧B!, ~13!

This result justifies that we nameLeibniz–Schouten bracketthe Leibniz bracket$,%d of the op-
eratord on the exterior contravariant algebra. Is is worth pointing out that both, the Scho
bracket and the Leibniz–Schouten bracket, define on the exterior contravariant algebr
equivalentstructures of (21)-graded algebra, which we name, respectively,Schouten algebraand
Leibniz–Schouten algebra. Althought equivalent, it is to be noted that the Schouten algebra d
not satisfies the standard writing of a Lie algebra properties, meanwhile the Leibniz-Sch
algebra does. Let us see that.

It is not difficult to see that;XPL!1, ;APL!p, one has$X,A%5LXA; that shows how the
Schouten bracket generalizes the Lie derivative. Let us write$A,B%[LAB, ;A,BPL!; as it is
known, LX ,XPL!1, is a derivation andd is a (21)-graded endomorphism on the 0-grad
associative and commutative algebra (L!p,∧) such thatd250. As a consequence, the Leibniz
Schouten bracket$,%d satisfies the hypothesis of theorem 2 and sothe Leibniz–Schouten algebra
(L!,$,%d) is a (21)-graded Lie algebra, that is,$L!a,L!b%d#L!a1b21 and

$A,B%d52~21!(a21)(b21)$B,A%d , R ~21!(a21)(c21)$$A,B%d ,C%d50. ~14!
                                                                                                                



–

any

with

tor, it

tive

cket

the

r the

2409J. Math. Phys., Vol. 45, No. 6, June 2004 On the Leibniz bracket

                    
The Schouten bracket$,% also satisfies$L!a,L!b%#L!a1b21, and the properties of the Leibniz
Schouten Lie algebra~14! can equivalently be written in terms of the Schouten bracket as

$A,B%5~21!ab$B,A%, R ~21!ac$$A,B%,C%50 . ~15!

Let us note that these last relations~15! satisfied by the Schouten algebra do not reduce, by
regraduation, to the standard ones of a Lie algebra.

Jacobi identity equivalently states, the following generalization for the Lie derivative
respect to the Lie bracket:

L $A,B%52~21!a@LA ,LB#.

Also, from lemmas 1 and 2 and taking into account the properties of the codifferential opera
follows that:(i) The codifferential operatord is a R-derivation on the Leibniz–Schouten algebra:

2d$A,B%5$dA,B%1~21!a$A,dB%.

(ii) The operator LA is a R-derivation on the exterior contravariant algebra:

LA~B∧C!5LAB∧C1~21!b(a21)B∧LAC.

The property~i! gives the generalization of the commutator of the codifferential and Lie deriva
operators:

@d,LA#[dLA1~21!aLAd52LdA .

On the other hand, Eq.~10! may be written@ i (b),d#5 i (db). But i (v) is a derivation on
(L!,∧) for any 1-form v. Then, taking into account theorem 1, we haveLi (v)^$ %d&
5Li (dv)^∧&. In particular, whenv is a closed 1-form, theni (v) is a derivation on the Leibniz–
Schouten algebra.

~c! Suppose nowM endowed with a~pseudo-!Riemannian metricg, allowing to identify~L,
∧! and (L!,∧). The Laplacian operator is then thegradedcommutator of the differential and
codifferential operators:

D5@d,d#[dd1dd .

It is known thatD is not a derivation on the exterior algebra. From theorem 1 its Leibniz bra
is given by:

Theorem 4: The Leibniz bracket of the Laplacian operator on the exterior algebra equals
Leibniz bracket of the exterior derivative on the Leibniz–Schouten algebra: LD^∧&5Ld^$ %d&.
Explicitly:

Da∧b1a∧Db2D~a∧b!5$da,b%1~21!a$a,db%1d$a,b%, ~16!

wherea and b are arbitrary a- and b-forms, respectively.
This theorem gives the generalization to the exterior algebra of the expression fo

Laplacian of a product of functions:D f .h1 f .Dh2D( f .h)52(d f ,dh).
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In earlier work on the one-dimensional sech2 potential energy@I. A. Howard and
N.H. March, Int. J. Quantum Chem.91, 119 ~2003!# it has been shown that both
electron densityr(x) and kinetic energyt(x) are low-order polynomials in the
potentialV(x), for a small number of bound states. Here all attention is focused on
the continuum states for the sech2 potential with a single bound state. The tool
employed is the Slater sum, which satisfies a partial differential equation. This is
first solved explicitly for the bound state, and then the solution is generalized to
apply to the continuum. Again, considerable simplification is exhibited for this
specific choice of potential. A brief discussion is included of a central sech2(r)
potential. © 2004 American Institute of Physics.@DOI: 10.1063/1.1745126#

I. BACKGROUND AND OUTLINE

March and Murray,1,2 in early work on the properties of Fermions moving independently
one-body potentialV(r ), calculated the canonical density matrixC(r ,r0 ,b) by perturbation
theory to all orders inV, with the unperturbed state described by plane waves.C(r ,r0 ,b) can be
written exactly in terms of the eigenfunctionsc i(r ) and the corresponding eigenvaluese i of the
Hamiltonian

H r52
\2

2m
¹ r

21V~r ! ~1.1!

as

C~r ,r0 ,b!5 (
all i

c i~r !c i* ~r0!exp~2be i !: b5~kBT!21. ~1.2!

Here, we shall mainly be concerned with the one-dimensional counterpart, i.e., a potential
V(x), but of the very specific form

2m

\2 V~x!522g2 sech2~gx!. ~1.3!
24110022-2488/2004/45(6)/2411/9/$22.00 © 2004 American Institute of Physics
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In a quite different context, Montroll3 has utilized this potential~1.3! in discussing electronic ban
structure via a quantum network model.

In Montroll’s study,3 as well as in the book of Landau and Lifshitz,4 it was recognized that this
potential energy~1.3! generates a single bound state, with wave function

c~x!5Ag

2
sech~gx! ~1.4!

corresponding to electron densityr(x) given by

r~x!5
g

2
sech2~gx!52

m

2g\2 V~x!, ~1.5!

where in the last step Eq.~1.3! has been utilized. This result has been generalized to include a
bound states by two of us,5 the kinetic energy densityt(x) being shown, as withr(x), to be a
low-order polynomial in this sech2 potentialV(x). In density-functional parlance, this therefo
constitutes a specific example of the Legendre transform of the single-particle kinetic ener
Nagy and March6 pointed out recently, the perturbation theory of March and Murray2 and the
subsequent derivation by Stoddart and March7 of the kinetic energy densityt(r ) in particular,
already constitute an example of the Legendre transform of the single-particle kinetic ener

However, to date these results2,7 have only been summed to all orders inV(r ) for the har-
monic oscillator potential, as in the investigation of Sondheimer and Wilson.8 So it remains of
interest to investigate whether one can solve explicitly for the sech2 potential. In particular, one
wishes to handle the entire continuous spectrum, as well as the bound states, generated
potential.

Before outlining the present study, a referee has asked us to emphasize the importanc
Slater sum, which is the focus of this work. The Slater sum is the diagonal element o
canonical density matrix defined in Eq.~1.2!. In turn, the canonical density matrix is determin
by the Laplace transform of the one-particle~or Dirac! density matrix. Thus the Slater sum
directly given by the Laplace transform of the~diagonal! density. The role and importance of th
Fermion density is well-known. Simple model systems have significance in that exact rel
derived for them can often be applied to more complicated systems, at least in an appro
fashion.

The outline of the present article is then as follows: In Sec. II, the partial differential equ
satisfied by the one-dimensional Slater sumS(x,b) is set out, as follows from the early study o
March and Murray,1 and particular solutions are generated for the potential~1.3!. Section III then
utilizes these results to obtain the kinetic energy densityt(x), which is indeed conveniently
presented in Legendre transform manner. Section IV constitutes a summary, with some pro
for future work. In an Appendix, but more formally now, a brief discussion is given of the ce
potential sech2(gr).

II. PARTIAL DIFFERENTIAL EQUATION SATISFIED BY THE SLATER SUM

As mentioned above, defining the Slater sumS(x,b) in one dimension asC(x,x0 ,b)ux05x ,
the Bloch equation

HxC52
]C

]b
~2.1!

was shown by March and Murray1 to be expandable around its diagonalx5x0 to yield a partial
differential equation forS(x,b) for a general one-dimensional potentialV(x) as

1

8

]3S~x,b!

]x3 2
]2S~x,b!

]x]b
2V~x!

]S~x,b!

]x
2

1

2

]V

]x
S~x,b!50. ~2.2!
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Below, for initial orientation which will lead into the solution of Eq.~2.2! for the sech2

potential~1.3!, we shall make use of the explicit continuum wave functions given in conven
form by Montroll3 in the very different problem of the quantum theory of periodic networks.
classifies the wave functions of the potentialV(x) in Eq. ~1.3! into symmetrical formscs(x) and
antisymmetrical formsca(x). One can now use his results to form explicitlycs

2(x)1ca
2(x),

which evidently appears in the Slater sum from the definition~1.2! of C(r ,r0 ,b) with r0 put equal
to r and motion restricted to thex-axis only. To obtaincs

2(x)1ca
2(x), we first note with Montroll3

that the general solution of the Schro¨dinger equation in the continuum is given by

c~x!5N @cos~kx1d!2~g/k!sin~kx1d!tanh~gx!#, ~2.3!

whereE5k2/2 is the energy of the state.
Choosingd50 in Eq. ~2.3! yields the symmetric wave functionscs(x) while d5p/2 gener-

ates the antisymmetric forms. One then finds after a short calculation thatcs
21ca

2 takes the form

cs
21ca

25a2~g,k!@11~g/k!2 tanh2~gx!#. ~2.4!

Inserting Eq.~2.4! into the definition of the Slater sumS(x,b) set out above, one finds

Sc~x,b!5 (
all k.0

a2~g,k!@11~g/k!2 tanh2~gx!#expS 2
bk2

2 D , ~2.5!

where the subscriptc on S(x,b) indicates that in the form~2.5! one is summing only over
continuum (c) states. This form~2.5! is important, in that it tells us thatSc(x,b) has the genera
‘‘shape’’

Sc~x,b!5F~g,b!1tanh2~gx! (
all k.0

a2~g,k!~g/k!2 expS 2
bk2

2 D
[F~g,b!1G~g,b!tanh2~gx!. ~2.6!

Our task below must therefore be to find the explicit forms of the two functionsF(g,b) and
G(g,b) in Eq. ~2.6!. But already, one sees here the appearance of the sech2 potential~1.3!, since

tanh2~gx!512sech2~gx! ~2.7!

and hence Eq.~2.6! can be rewritten as

Sc~x,b!5@F~g,b!1G~g,b!#1
G~g,b!

g2 V~x!. ~2.8!

Equation~2.8! shows similarity of shape with the bound-state result~1.5! for the particle density,
which corresponds to a bound-state contributionSb(x,b) to the Slater sum of

Sb~x,b!5c2~x!exp~2be0! ~2.9!

with e0 the bound-state energy2g2/2. Indeed, using Eq.~1.5! one finds

Sb~x,b!}exp~g2b/2!V~x!. ~2.10!

However one has to be wary, as in Eq.~2.8!, that the potential again enters, viag, in the ‘‘pro-
portionality constant’’ in Eq.~2.10!. Returning to Eq.~2.8!, sinceV(x)→0 asx→6`, we can see
on physical grounds in Eq.~2.8! thatSc(x,b) must tend to the well-known result for the partitio
function per unit length~in one dimension! for free electrons. This, in the units employed in E
~2.2! (\5m51), is
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lim
x→6`

Sc~x,b!5~2pb!21/2, ~2.11!

which shows from Eq.~2.8! that theg dependence appearing inF andG separately must cance
in the sumF1G5(2pb)21/2. This is an important simplification to be utilized below.

Before turning to the main task of the present study, namely, the solution of the p
differential equation~2.2! subject to the appropriate physical boundary conditions, one sh
stress that whileSb(x,b) in Eq. ~2.10! and Sc(x,b) in Eq. ~2.8! must separately be solutions
Sb(x,b) in Eq. ~2.10! is much the simpler to handle, as the solution is a product of a func
solely of x and one dependent only onb. Let us therefore take that as the starting point
discussing the solutions of Eq.~2.2!.

A. Solutions of Eq. „2.2… for S„x ,b… obtained by the method of separation of variables

In such a separable solution forS(x,b), let us write

S~x,b!5X~x!B~b!. ~2.12!

Inserting this form into Eq.~2.2!, but for the present retaining a general one-dimensional pote
energyV(x), we can write, after dividing the result obtained byX8(x)B(b) whereX85]X/]x,
etc.:

1

8

X-
X8

2
]

]b
ln B2V~x!2

1

2

V8X

X8
50. ~2.13!

This Eq. ~2.13! shows, as yet for generalV(x), that separable solutions can be obtained, w
separation constantk such thatX(x) andB(b) separately satisfy the ordinary differential equ
tions

1

8

X-
X8

2V~x!2
1

2

V8X

X8
5const5k ~2.14!

and

]

]b
ln B5k, ~2.15!

the difference of these two equations~2.14! and ~2.15! plainly satisfying Eq.~2.13!. Without
specifyingV(x), the general solution of the differential equation~2.15! is clearly

B~b!5A exp~kb!, ~2.16!

whereA is an arbitrary ‘‘constant.’’ To obtain the particular ‘‘bound state’’ Slater sum in Eq.~2.10!
one must choose, now for the sech2 potential~1.3!, the separation constantk5g2/2. Inserting this
value into Eq.~2.14! one must plainly have, from Eq.~2.10!, a particular solutionX5const
3V(x)}sech2(gx).

B. Particular solution for continuum Slater sum having the ‘‘shape’’ of Eq. „2.8…

Having established the ‘‘shape’’ of the continuum Slater sumSc(x,b), but now for the po-
tential ~1.3! alone as

Sc~x,b!5~2pb!21/21
G~g,b!

g2 V~x! ~2.17!
                                                                                                                



the

2415J. Math. Phys., Vol. 45, No. 6, June 2004 Slater sum for sech2 potential

                    
the question that remains is to findG(g,b), if that is possible, by direct substitution of Eq.~2.17!
into the general partial differential equation~2.2!. One then finds straightforwardly that

1

8

G

g2 V-~x!2
1

g2

]G

]b
V8~x!2

3

2

G

g2 V~x!V8~x!2
1

2
~2pb!21/2V8~x!50. ~2.18!

This, on rearrangement, reads

1

g2

]G

]b
2

G

g2 FV-/V8

8
2

3

2
VG1

1

2
~2pb!21/250. ~2.19!

Thus, the question posed above resolves into whether the square bracket in Eq.~2.19! is indepen-
dent of x. This does indeed prove to be the case whenV(x) is inserted from Eq.~1.3!. The
resulting first-order ordinary differential equation may be integrated to yield

G~g,b!52
g2

2
expS g2b

2 D F E
0

b 1

~2pb!1/2expS 2
g2b

2 Ddb1 f ~g!G
5F2

g

2
erfS g

2
A2b D2

g2f ~g!

2 GexpS g2b

2 D , ~2.20!

where f (g) is a constant of integration, and thus from~2.17!,

Sc~x,b!5~2pb!21/22F f ~g!

2
1

1

2g
erfS g

2
A2b D GexpS g2b

2 DV~x!. ~2.21!

In Appendix B, contact is made with a direct calculation of the local density of states in
continuum atx50, namely,]rc(0,E)/]E. Using the Laplace transform relation

Sc~x,b!5E
0

` ]rc~x,E!

]E
exp~2bE!dE ~2.22!

and inserting Eq.~B9! into the right-hand side yields the result~2.17! with G(g,b) given in Eq.
~2.20! and f (g)521/g, so that we can write

Sc~x,b!5~2pb!21/22
1

2g
erfcS g

2
A2b DexpS g2b

2 DV~x!. ~2.23!

The Slater sum is plotted in Fig. 1 for representative values ofb andg. We turn finally to discuss
how the kinetic energy densityt(x) may be obtained from the Slater sumSc(x,b).

III. DERIVATION OF KINETIC ENERGY DENSITY FROM UNIFORM FERMI GAS RESULT
IN ONE DIMENSION FOR THE sech 2 POTENTIAL

Returning to the Bloch equation~2.1!, and inserting the one-body Hamiltonian

Hx52
1

2

]2

]x2 1V~x!, ~3.1!

use of Eq.~1.2! in one dimension enables one to write almost immediately

2
]Sc

]b
52

1

2 (
k.0

ck~x!
]2ck* ~x!

]x2 expS bk2

2 D1V~x!Sc ~3.2!

or
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2
]Sc

]b
5tc~x,b!1V~x!Sc , ~3.3!

which serves to define a ‘‘kinetic energy density’’tc(x,b) which is related to the desiredt(x,E) by
a Laplace inversion paralleling Eq.~2.22!. But from Eqs.~3.3! and ~2.23! one has

tc~x,b!5
1

2b

1

~2pb!1/22V~x!F1

2

3

~2pb!1/22
g

4
erfcS g

2
A2b DexpS g2b

2 D G
1

1

2g
erfcS g

2
A2b DexpS g2b

2 DV2~x!. ~3.4!

In Fig. 2 we plot this kinetic energy density for theb and g of Fig. 1. Writing explicitly the
analogous equation to~2.22!, but now for the kinetic energy densities, one has

tc~x,b!5E
0

` ]tc~x,E!

]E
exp~2bE!dE ~3.5!

and one then obtains from Eq.~3.4! the kinetic energy changeDt from the one-dimensional Ferm
gas, the result being given in Eq.~B3! of Appendix B.

IV. SUMMARY AND PROPOSALS FOR FUTURE STUDY

The main achievements of the present investigation are as follows:~i! the explicit solution of
the partial differential equation~2.2! for the ~continuumc) Slater sumSc(x,b) given in Eqs.
~2.17! and ~2.23!; ~ii ! the analogous result~B9! for the continuum density of states and th
consequent result~B8! for the total densityr(0,E) in the continuum, both now at the originx
50; ~iii ! the kinetic energy densitytc(x,b) in the continuum, defined by Eqs.~3.3! and~3.2!, and
given in Eq.~3.4!; and ~iv! the corresponding result fortc(x,E) exhibited in Eq.~B3!.

In the future we believe it would be interesting to extend the calculations presented
explicitly to the three-dimensional sech2(gr) potential, the route to follow being indicated i

FIG. 1. Continuum Slater sum of Eq.~2.23! as a function ofx for selected values ofb and potential parameterg in Eq.
~1.3!.
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Appendix A. Furthermore, since separable solutions of Eq.~2.2! can be found for arbitraryV(x),
study of the ordinary differential equation~2.14! would seem worthwhile for a wider class o
potentials. The progress here on the kinetic energy densityt@V(r )# may lead to partial summation
to infinite order of the Stoddart–March perturbation series fort@V(r …# measured relative to the
Fermi gas valuet05ckr`

5/3, wherer` is the density of the unperturbed system, andck is known
from the homogeneous Fermi assembly.
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APPENDIX A: THE THREE-DIMENSIONAL sech 2 POTENTIAL

For the three-dimensional analog of the potentialV(x) above, we can also study the density
states in the continuum for the case of zero angular momentum,l 50. The three-dimensiona
March–Murray equation~~4.12! in Ref. 1! for the density of statesNs5]rs /]E is

1

8

]3~r 2Ns!

]r 3 2
r 2Ns

2

]V

]r
1~E2V!

]~r 2Ns!

]r
50. ~A1!

Taking the potential to beV(r )52g2 sech2(gr ), we find the solution for energiesE5k2/2 to be
of the form

Ns~r !5@C1 cos2~ I k,g~r !!1C2 sin~ I k,g~r !!cos~ I k,g~r !!1C3 sin2~ I k,g~r !!#

3~~g21k2!cosh~2gr !2g21k2!/r 2, ~A2!

where

FIG. 2. Statistical mechanical kinetic energy densitytc(x,b) of Eq. ~3.4!, for the same values ofb andg as in Fig. 1.
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I k,g~r !5
k

g
ln@cosh~gr !1Acosh2~gr !21#1

1

2
arctanF2gk

cosh~gr !Acosh2~gr !21

~k22g2!cosh2~gr !1g2 G ~A3!

andC1 , C2 , andC3 are constants.

APPENDIX B: KINETIC ENERGY DENSITY DEVIATION FROM UNIFORM ELECTRON
GAS RESULT

From Eq.~2.4! it can be seen that the total densityr(x) in the continuum will have the form
r(x)[B(g)1C(g)tanh2(gx). Note thatr(x→0)[r(0)5B and r(x→`)[r`5B1C, so that
we may also writer(x)5r(0)1(r`2r(0))tanh2(gx).

If we considert̄ 5(t1tG)/2, the average of the gradient (tG) and Laplacian (t) forms of the
kinetic energy density, then the one-dimensional form of the differential virial theorem is,
Dt5t2t0 : t05ckr`

3 ,

D t̄ 852
r

2

]V

]x
, ~B1!

so that for our potential,

D t̄ 52Ex r

2

]V

]x
dx5

g2

2 Fr`1
~r~0!2r`!

2
sech2~gx!Gsech2~gx!,

52
1

2
V~x!Fr`2

~r~0!2r`!

2g2 V~x!G ~B2!

the constant of integration being chosen so thatD t̄ (x→6`)→0. Expressing this in terms of th
Laplacianc¹2c form of the kinetic energy densityDt, we have

Dt5D t̄ 2
r9

8
5

g2

2
@~2r`2r~0!!12~r~0!2r`!sech2~gx!#sech2~gx!

5
g2

2~r~0!2r`!
~r2r`!~2r2r~0!!, ~B3!

so that the excess total kinetic energy due to the inhomogeneity,T5*2`
` Dt(x)dx, is

T5
g

3
~r~0!12r`!. ~B4!

BecauseDt is local in r, we can write the functional derivativedT/dr as simply]t/]r, so that

dT

dr
5

]t

]r
5

g2

2~r`2r~0!!
~24r~x!1r~0!12r`!. ~B5!

The one-dimensional counterpart of March and Murray’s1 Eq. ~4.12! for s-states gives

r-
8

2
r

2

]V

]x
2Vr81E

0

E

E
]2r

]x]E
dE50. ~B6!

Insertingr(x) and differentiating with respect toE, we find

~g212E!
]r~0!

]E
22E

]r`

]E
50. ~B7!
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Here]r(0)/]E and]r` /]E are the density of states at the origin and at infinity~i.e., in the region
of the uniform electron gas!, respectively. But we know that for a uniform electron gas in o
dimension,]r` /]E5c/AE, wherec is a constant; therefore

r~0,E!52cFAE2
g

&
arctanSA2E

g D G ~B8!

and

]r~0,E!

]E
5

2cAE

g212E
. ~B9!

If g→0, V(x)→0, and sor(x)→r(0) everywhere; then]r(0,E)/]E→c/AE as expected. The
behavior of]r(0)/]E is depicted in Fig. 3. Note also that if we subtract fromr(x) the spatially
uniform densityr` , we can integrate over all space to find the total numberDn of electrons in the
nonuniform contribution tor(x) asDn(E)52@r(0,E)2r`(E)#/g. It is known that the potentia
V(x) has a single bound state,4 with associated densityrb(x)5(g/2)@12tanh2(gx)# and energy
level Eb52g/2. Thus by considering the densityr(x)→(r(0)1g/2)1(r`2(r(0)
1g/2))tanh2(gx) we include both bound and continuum states; all of our arguments above
down through Eq.~B5!, with replacement ofr(0) by (r(0)1g/2). Equation~B6!, however, holds
only for the continuum states.

1N.H. March and A.M. Murray, Phys. Rev.120, 830 ~1960!.
2N.H. March and A.M. Murray, Proc. R. Soc. London, Ser. A261, 119 ~1961!.
3E.W. Montroll, J. Math. Phys.11, 635 ~1970!.
4L.D. Landau and E.M. Lifshitz,Quantum Mechanics: Nonrelativistic Theory, 2nd ed.~Pergamon, Oxford, 1965!.
5I.A. Howard and N.H. March, Int. J. Quantum Chem.91, 119 ~2003!.
6A. Nagy and N.H. March, Int. J. Quantum Chem.82, 138 ~2001!.
7J.C. Stoddart and N.H. March, Proc. R. Soc. London, Ser. A299, 270 ~1967!.
8E.H. Sondheimer and A.H. Wilson, Proc. R. Soc. London, Ser. A210, 173 ~1951!.

FIG. 3. Local density of states@]r(0)/]E#/c at the originx50, as given in Eq.~B9!, for selected values ofg.
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Calculation of correlation function of the director
fluctuations in cholesteric liquid crystals by WKB method
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Stary Peterhof, St. Petersburg 198504, Russia

A. Yu. Valkovc)
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The spatial correlation functions of the thermal fluctuations in systems with
smoothly varying structure are calculated by means of the WKB method. As a
particular physical problem we consider the behavior of director fluctuations in
cholesteric liquid crystals possessing one-dimensional spatial periodicity. The prob-
lem leads to the solution of set of two second order differential equations with
periodic coefficients. It is shown that in this physical system there exist regions
where the WKB approximation is not valid. The analysis of these regions is similar
to that of the turning points in quantum mechanics. Contrary to standard approach
in our problem the turning point has fourth-order singularity and only decaying
solutions have physical sense. We find WKB solutions for normal modes of director
fluctuations in cholesteric liquid crystals far from the turning point as well as in its
vicinity. We obtain that two fluctuating modes interact in the vicinity of the turning
point, but any of these modes does not produce another. The amplitudes of modes
change in such a way the product of amplitudes is constant. As a result we obtain
explicit expressions for spatial correlation function in cholesteric liquid crystals
with the large pitch which are valid in the entire domain. Finally we discuss the use
of the correlation function in light scattering experiments. ©2004 American In-
stitute of Physics.@DOI: 10.1063/1.1705717#

I. INTRODUCTION

In many physical situations such as those occurring in the vicinity of the second order
transitions, the threshold effects, the turbulence flow, etc. the influence of fluctuations is cruc
these systems fluctuations are not small and their interaction is essential. Various approach
developed for describing the behavior of such systems.1–3

However there are some obstacles in calculations of fluctuations even in the simplest Ga
approximation. Formally calculation of the fluctuation spatial correlation function in homogen
systems requires the matrix conversion. There exists no standard approach for this problem
case of inhomogeneous systems. Particularly this problem appears in physics of liquid cry
liquids in which ordering of orientation can be established.4 This ordering exists due to interactio
with surfaces of a cell or due to external electric or magnetic fields. Depending on typ
molecules and geometry of the cells the structure of liquid crystals can be both simple~spatially
homogeneous! and rather complex@spiral and cubic structures in cholesteric liquid crystals~CLC!
in the ordered and blue phases; twist-cells in nematic liquid crystals~NLC!; various structures in
spherical droplets of liquid crystals, etc#. As far as the energy of the orientation melting in liqu
crystals is small the thermal fluctuations in these systems are large, and the correlation le

a!Electronic mail: aksev@mail.ru
b!Electronic mail: v.romanov@pobox.spbu.ru
c!Electronic mail: alexvalk@mail.ru
24200022-2488/2004/45(6)/2420/27/$22.00 © 2004 American Institute of Physics
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the spatial correlation function is not small either. These fluctuations noticeably influence ph
properties of liquid crystals and first of all their optical properties. Since liquid crystals
complex spatial structure are intensively used in recent developments of various technical d
of information mapping, the problem of accurate account of thermal fluctuations and, first
spatial correlation functions become important.

The methods of calculation of correlation functions in infinite uniform systems is
developed.1–5 For restricted uniform systems with finite or infinite anchoring energy this prob
was investigated in detail with the aid of various approaches for obtaining of the corre
functions: an expansion over eigenfunctions,6,7 a method of the path integrals,6,8 a method of the
self-conjugate operators.9,10 Meanwhile for systems with regular spatial structure such deta
investigations so far have not been carried out. Typical object is the cholesteric liquid crystal
ordered phase, in this system the direction of primary orientation of molecules periodically
along some axis and the correlation length of orientation fluctuations is comparable wit
period of the structure. The problem of calculation of fluctuations in cholesterics was first
lyzed by Lubensky11 and later discussed in Refs. 12–14. The problem was solved with an ass
tion, that the correlation length is greater than the pitch, which allowed to reduce the probl
calculation of fluctuations in spatially homogeneous anisotropic media. In the medium
smoothly varying properties the problem of calculation of fluctuations was not yet considere
long as the regular structure of the fluctuating system varies smoothly we use here the We
Kramers–Brillouin ~WKB! approximation.15,16 We generalize this approximation to the vect
case. It is found that in our problem only damping solutions have the physical meaning. In
of the WKB method using the damping solutions only is the specific character of the consi
problem. Calculation of the fluctuating modes provided us to obtain the correlation matrix
analysis of the obtained solution showed that there exist the regions where the WKB appro
tion is inapplicable. There are turning points in these regions. The method of analysis
vicinity of these points is similar to that for the turning points in quantum mechanics.15,16 Similar
problems are known for the wave propagation theory, e.g., caustic17 or the modes transformation,18

and in the theory of elasticity, e.g., in the case of the Timoshenko beams.19

In particular, we find that two fluctuating modes interact in the vicinity of the turning po
but any of these modes does not produce another. The amplitudes of modes change in suc
the product of amplitudes is constant. It is shown that such unusual character of amp
behavior results from the exponential decreasing of the WKB solutions and it is consisten
general conservation law which takes place for solutions of second-order differential equa

The paper is organized as follows. In Sec. II the basic equations describing CLC fluctu
are presented. In Sec. III the description of the WKB approach for the problem to be cons
is given. In Sec. IV we calculate the correlation function of the director fluctuations far from
turning point. In Secs. V and VI the correlation function in the vicinity of the turning poin
considered. In Conclusions~Sec. VII! we discuss physical consequences of the obtained resul
particular, in the light scattering problems. We consider conservation laws for WKB solutio
relaxation systems in Appendix.

II. BASIC EQUATIONS

Let us consider the cholesteric liquid crystal with the pitch directed along thez axis. Equilib-
rium vector of the directorn0 in such system rotates in the~x,y! plane

n0~r !5n0~z!5~cosf,sinf,0!, ~2.1!

wheref5p0z1f0 , f0 is the initial phase. The free energy of CLC has the form

F5F01
1

2 E dr$K11~¹•n!21K22@n•~¹3n!1p0#21K33~n3~¹3n!!2%, ~2.2!
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whereF0 is the energy of a homogeneous system,Kll , l 51,2,3 are Frank modules, d52p/p0 is
the pitch,n is the vector of the director. The distribution Eq.~2.1! minimizes the free energy Eq
~2.2!.

We are interested in fluctuations of the director in CLC. Let us present the vector direc

n~r !5n0~r !1dn~r !, ~2.3!

wheredn is the fluctuation of the director. In the quadratic indn approximation the contribution o
the director fluctuations to the free energy has the form

dF5
1

2 E dr$K11~¹•dn!21K22~n0
•~¹3dn!!21K33@~dn•¹!n01~n0

•¹!dn#2%. ~2.4!

Here we take into account the relations:¹•n050; ¹3n052p0n0, which follow from Eq.~2.1!.
Since unu5un0u51, in the quadratic approximation the relationn0

•dn50 is valid. Vectordn
5(dnx ,dny ,dnz) can be parametrized in the form

dnx52u1 sinf, dny5u1 cosf, dnz5u2 . ~2.5!

The functionsu1 andu2 determine the director fluctuations in the plane~x,y! and along thez axis,
respectively. Substituting Eq.~2.5! to Eq. ~2.4! we get

dF5
1

2 E dr$K11~2sinf]xu11cosf]yu11]zu2!21K22@cosf~]yu22]z~u1 cosf!!

1sinf~]z~2u1 sinf!2]xu2!#21K33@~2u2p0 sinf1cosf]x~2u1 sinf!

1sinf]y~2u1 sinf!!21~u2p0 cosf1cosf]x~u1 cosf!1sinf]y~u1 cosf!!2

1~cosf]xu21sinf]yu2!2#%, ~2.6!

where] l[]/] l , l 5x,y,z.
We investigate the behavior of the correlation function

Gkl~r ,r1!5^uk~r !ul~r1!&, ~2.7!

wherek,l 51,2, the bracketŝ̄ & mean the statistical average. Due to CLC symmetry with res
to shifts in the~x,y! plane we have

Gkl~r ,r1!5Gkl~r'2r1' ;z,z1!, ~2.8!

wherer'5(x,y). The correlation function of the director fluctuations

gab~r1'2r2' ;z1 ,z2!5^dna~r1' ,z1!dnb~r2' ,z2!& ~2.9!

is connected with the correlation matrix of scalar valuesu1,2 by relationship

gab~r' ;z1 ,z2!5 (
k,l 51

2

Gkl~r' ;z1 ,z2!ha
~k!~z1!hb

~ l !~z2!, ~2.10!

where

h~1!~z!5~2sinf~z!,cosf~z!,0!, h~2!5~0,0,1!. ~2.11!

Since CLC in the plane orthogonal to thez axis is spatially homogeneous it is convenient
use the two-dimensional Fourier transformation
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ub~r !5
1

4p2 E d2q exp~ iq•r'!ub~q,z!,

ub~q,z!5E d2r' exp~2 iq•r'!ub~r !. ~2.12!

Then the distortion energy~2.6! has the form

dF5
1

4p2 E d2q dFq , ~2.13!

where

dFq5
1

2 E dz$K11u]zu21 i ~2sinfqx1cosfqy!u1u21K22u2]zu11 iu2~cosfqy2sinfqx!u2

1K33@ uu2p01 i ~cosfqx1sinfqy!u1u21uu2u2~cosfqx1sinfqy!2#%. ~2.14!

We present the functiondFq as a quadratic form

dFq5
1

2 E u* ~q,z!Â~q,z!u~q,z!dz, ~2.15!

where

u5S u1

u2
D

is the two-dimensional vector and superscript ‘‘* ’’ denotes the complex conjugation. TheÂ matrix
represents the differential operator of the second order.

For convenience we direct thex axis along theq vector, so thatqx5q andqy50. In this case
the Â matrix has the form

Â5K11S q2 sin2 f iq sinf]z

iq]z sinf 2]z
2 D 1K22S 2]z

2 2 iq]z sinf

2 iq sinf]z q2 sin2 f
D

1K33S q2 cos2 f 2 ip0q cosf

ip0q cosf q2 cos2 f1p0
2D , ~2.16!

where]z[]/]z. As the probability of fluctuationswq;exp@2dFq /kBT#, wherekB is the Boltz-
mann constant,T is the temperature, the calculation of the correlation function is reduced t
inversion of the matrixÂ. This procedure is equivalent to the solution of the equation

Â~q,z!Ĝ~q,z,z1!5kBTd~z2z1! Î , ~2.17!

whered(z2z1) is the delta function,Î is the unit matrix of the second rank.
Equation~2.17! should be supplemented by the boundary conditions. In boundless CLC

principle of correlation decay in the infinity limit,Ĝ(q,z,z1)→0 atz→6`, may be used as suc
a condition.

Sinceu1,2(r ) are real the correlation function in (q,z) representation satisfies the symme
relationship

Gkl~q,z,z1!5Glk* ~q,z1 ,z!. ~2.18!
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Taking into account Eq.~2.16! the problem is reduced to the solution of a set of two inh
mogeneous differential equations of the second order, Eq.~2.17!, with periodic coefficients. Gen
eral solution of this equation set satisfies the Floquet theorem. According to this theore
solution has the form of a product of two matrix functions depending onz andz1 . One of them is
periodical with a period of 2p/p0 and another one is exponential. The procedure of determi
the exponents and the Fourier harmonics of the periodical function is presented for instance
20. Director fluctuations in CLC were calculated by this method in Ref. 11. In this work la
scale fluctuations,q/p0!1, were considered when the Fourier-harmonic contribution decre
rapidly with the increasing of the harmonic number. Several lowest harmonics of the corre
function were calculated. From the physical point of view the limitq/p0!1 corresponds to the
smecticlike liquid crystal. This conclusion was supported by the result of Ref. 11 where t
dimensional Fourier component of the correlation function similarly to smectics has the
Ĝ(q,ki);(ki

21c0q4)21, wherec0 is a constant.
In this work we are concerned of the opposite case,p0 /q→0, when CLC is close to nemati

liquid crystal. Such situation corresponds to CLC with a large pitch. Complication of the pro
from the point of view of the usual approach11 is related to the fact that the wide spectrum
harmonics contributes to the correlation function. In this case the method based on the F
theorem21 is not effective and the WKB approximation with the large parameterV5q/p0@1
seems to be more promising.

III. APPLICATION OF THE WKB METHOD TO SOLUTION OF THE PROBLEM

Equation ~2.17! and the condition of correlation decay atz→6` determine the Green’s
function. Since forzÞz1 Eq. ~2.17! becomes homogeneous we start with solution of homogene
equations atz.z1 andz,z1 . Then, using the conditions of function continuity and a jump of
derivative we construct the Green’s function.

In what follows it is convenient to introduce the dimensionless variablej5p0z. Then the
system of homogeneous equations is presented as

F2S K22 0

0 K11
D d2

dj2 1 iV~K112K22!sinfS 0 1

1 0D d

dj

1S V2~K11sin2 f1K33cos2 f! 2 iV cosf~K221K33!

iV cosf~K111K33! V2~K22sin2 f1K33cos2 f!1K33
D Gu~j!50. ~3.1!

This system has four linearly independent solutions. Due to boundary conditions forĜ, we use
linearly independent solutions of Eq.~3.1! for construction of two matrices,û1(j) and û2(j), so
that û1(j)→0̂ at j→1` and û2(j)→0̂ at j→2`.

The Green’s function is sought in the form

Ĝ~j,j1!5H û1~j!v̂1~j1! at j.j1 ,

û2~j!v̂2~j1! at j,j1 ,
~3.2!

wherev̂1 and v̂2 are 232 matrices depending onj1 only. For determination of eight elements o
these matrices we use the conditions of the Green’s function continuity and of the first deri
jump at the pointj5j1 ,

Ĝ~j110,j1!5Ĝ~j120,j1!,
~3.3!

K̂FdĜ

dj
U

j5j120

2
dĜ

dj
U

j5j110
G5

kBT

p0
Î ,

where
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K̂5S K22 0

0 K11
D .

Substituting Eq.~3.2! into Eq.~3.3! we obtain the system of eight equations for the elements of
v̂1,2 matrices

û1~j1!v̂1~j1!2û2~j1!v̂2~j1!50,
~3.4!

û18~j1!v̂1~j1!2û28~j1!v̂2~j1!52kBTp0
21K̂21.

Solution of this system is

v̂ j5kBTp0
21û j

21~ û28û2
212û18û1

21!21K̂21, j 51,2. ~3.5!

Substituting Eq.~3.5! into Eq. ~3.2! we get the Green’s function in the form

Ĝ~j,j1!5
kBT

p0
3H û1~j!û1

21~j1!~ û28û2
212û18û1

21!21~j1!K̂21 at j>j1 ,

û2~j!û2
21~j1!~ û28û2

212û18û1
21!21~j1!K̂21 at j,j1 .

~3.6!

Note that the choice of theû1 and û2 matrices is ambiguous due to arbitrariness in the norm
ization of theû1 andû2 columns. But this ambiguity is not essential in Eq.~3.6!. Note also that the
calculation of the Green’s function using the solutions of the homogeneous equations do
require the large parameterV.

We construct the solutions of the homogeneous equation set~3.1! by the WKB method. For
this purpose it is convenient to reduce Eq.~3.1! to a system of four equations of the first orde
Introducing thev vector

v5
1

iV

d

dj
u, ~3.7!

we may present Eq.~3.1! in the form

d

dj
C5~ iVB̂1Ĉ!C. ~3.8!

Here we use the following notations:

C5S u
vD , B̂5S 0 0 1 0

0 0 0 1

b1 0 0 b3

0 b2 b4 0

D , Ĉ5S 0 0 0 0

0 0 0 0

0 c1 0 0

c2 c3 0 0

D , ~3.9!

where

b152~K11sin2 f1K33cos2 f!K22
21, b35~K112K22!sinfK22

21,

b252~K22sin2 f1K33cos2 f!K11
21, b45~K112K22!sinfK11

21,

c152~K221K33!cosfK22
21, c25~K111K33!cosfK11

21, c352 iK 33~K11V!21.

We accept as an initial condition the value ofC in j5j0 . Then the solution of Eq.~3.8! can
be presented in the form
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C~j!5M̂ ~j,j0!C~j0!, ~3.10!

whereM̂ (j,j0) is the matrix of evolution satisfying the initial conditionM̂ (j0 ,j0)5 Î . We cal-
culate this matrix taking into account terms of the first and the second order with respect toV
parameter. Substituting Eq.~3.10! into equation set~3.8!, we get the equation for the matrix o
evolutionM̂ (j,j0),

d

dj
M̂ ~j,j0!5~ iVB̂1Ĉ!M̂ ~j,j0!. ~3.11!

For solution of this set of equations it is convenient to introduce a new variable chosen in
a way that in principal order over theV parameter the equation set becomes diagonal. To do s
presentM̂ (j,j0) as

M̂ ~j,j0!5Û~j!Ĥ~j,j0!, ~3.12!

where Ĥ(j,j0) is a new variable,Ĥ(j0 ,j0)5Û21(j0). The choice of theÛ matrix will be
discussed later. Substituting Eq.~3.12! into Eq. ~3.11! we get

dĤ

dj
5S iVÛ21B̂Û1Û21ĈÛ2Û21

dÛ

dj
D Ĥ. ~3.13!

Let us selectÛ(j) so that the matrixÛ21B̂Û becomes diagonal

Û21B̂Û5L̂, ~3.14!

where the diagonal matrixL̂ is composed of eigenvalues of theB̂ matrix. The columns of theÛ
matrix are eigenvectors of theB̂ matrix. Then the equation~3.13! for the Ĥ matrix can be written
in the form

dĤ

dj
5 iVF L̂1

i

V
S Û21

dÛ

dj
2Û21ĈÛ D G Ĥ. ~3.15!

In zero approximation we omit the term of the 1/V order in the right-hand side of Eq.~3.15!. Then
Eq. ~3.15! is transformed to a set of independent equations

dĤ ~0!

dj
5 iVL̂Ĥ ~0! . ~3.16!

Its solution is

Ĥ ~0!~j,j0!5expF iVE
j0

j

L̂~j8!dj8GÛ21~j0!. ~3.17!

In order to solve Eq.~3.15! in the first approximation we presentĤ(j,j0) in the form

Ĥ~j,j0!5Û ~1!~j !Ĥ ~1!~j,j0!, ~3.18!

whereĤ (1)(j0 ,j0)5Û (1)
21(j0)Û21(j0), and obtain the equation forĤ (1)(j,j0),

dĤ ~1!

dj
5 iVH Û ~1!

21F L̂1
i

V
S Û21

dÛ

dj
2Û21ĈÛ D G Û ~1!1

i

V
Û ~1!

21 dÛ ~1!

dj J Ĥ ~1! . ~3.19!
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Let us choose theÛ (1)(j) matrix so that

Û ~1!
21F L̂1

i

V
S Û21

dÛ

dj
2Û21ĈÛ D G Û ~1!5L̂~1! , ~3.20!

whereL̂ (1) is a diagonal matrix composed of eigenvalues of the matrix in square brackets o
~3.20!. Then Eq.~3.19! can be written as

dĤ ~1!

dj
5S iVL̂~1!2Û ~1!

21 dÛ ~1!

dj
D Ĥ ~1! . ~3.21!

For V@1 the matrixL̂1 iV21(Û21Û82Û21ĈÛ) is close toL̂, so that matricesL̂ andL̂ (1) are
close to each other andÛ (1) matrix is close to the unit one, i.e.,

Û ~1!~j !' Î 1 iV21V̂~j!, Û ~1!
21~j!' Î 2 iV21V̂~j!. ~3.22!

These expressions allow to get the condition of the WKB method applicability,

uVlmu!V.

Substituting~3.22! into Eq. ~3.20!, for L̂ (1) and V̂ we get

~L̂~1!! l l ' im l1
i

V
S Û21

dÛ

dj
2Û21ĈÛ D

l l

, ~3.23!

Vlm'
1

i ~mm2m l !
S Û21

dÛ

dj
2Û21ĈÛ D

lm

, lÞm, ~3.24!

wherem l5L l l / i . It follows from Eqs.~3.23! and~3.24! that the second term in brackets~3.21! is
of the 1/V2 order, so that it may be omitted in the first approximation. So we get

Ĥ ~1!~j,j0!'expF iVE
j0

j

L̂~1!~j8!dj8GÛ ~1!
21~j0!Û21~j0!. ~3.25!

If we omit terms of the 1/V order in theÛ (1) andÛ (1)
21 matrices the evolution matrixM̂ (j,j0) in

the first approximation has the form

M̂ ~j,j0!'Û~j!diaĝH expF2E
j0

j

~Vm l~x!1~Û21~x!Û8~x!2Û21~x!Ĉ~x!Û~x!! l l !dxG J Û21~j0!.

~3.26!

This formula is a vector analogue of the classical WKB approximation.
According to Eq.~3.26! vectorC has the form

C~j!'Û~j!diaĝH expF2E
j0

j

~Vm l~x!1~Û21~x!Û8~x!2Û21~x!Ĉ~x!Û~x!! l l !dxG J
3Û21~j0!C~j0!, ~3.27!
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whereim l are eigenvalues of theB̂ matrix and the columns of theÛ matrix are eigenvectors of th
B̂ matrix. Note that this expression for theC vector is not valid, if the eigenvalues of theB̂ matrix
are becoming close to each other. Indeed, as it is seen from Eq.~3.24! in this caseVlm becomes
large and condition of the WKB method validity,uVlmu!V, is violated.

Equation ~3.27! allows to get the solution of Eq.~3.8! for any boundary conditions. The
solution of Eq.~3.8! in the form~3.27! can be considered as a linear combination of four linea
independent vectors representing the columns of the evolution matrixM̂ (j,j0), with four factors
representing the elements of theC(j0) vector. In what follows it is convenient to us
M̂ (j,j0)Û(j0) instead of theM̂ (j,j0) matrix andÛ21(j0)C(j0) instead of theC(j0) vector.

The solutionsu which represent the first and the second components of theC~j! vector are
necessary for construction of the Green’s function. The columns of theû1,2(j) matrices are vectors
constructed of first two elements of columns of theM̂ (j,j0)Û(j0) matrix or linear combinations
of these vectors.

IV. CALCULATION OF THE CORRELATION FUNCTION

In order to get the Green’s function, i.e., the correlation function, in an explicit form
calculate the matrix of evolution. For this purpose it is necessary to calculate the eigenvalu
eigenvectors of theB̂ matrix. The eigenvalues are determined from the relation

det~B̂2 im Î !50, ~4.1!

which represents the biquadratic equation. The solutions of this equation are

m l5Asin2 f1K33Kll
21 cos2 f, l 51,2,

~4.2!
m352m1 , m452m2 .

Eigenvectorscl satisfy the relationB̂cl5 im lcl . The matrixÛ5(c1 ,c2 ,c3 ,c4) composed of
these vectors has the form

Û5S 2 i sinfm1
21 1 i sinfm1

21 21

21 2 i sinfm2
21 21 2 i sinfm2

21

sinf im2 sinf im2

2 im1 sinf im1 2sinf

D . ~4.3!

There is an arbitrariness in the choice of thecl vectors due to normalizing factors. But it i
possible to show, that solution~3.27! does not depend on normalizing conditions of the eigenv
tors. Further we calculate the inverse matrixÛ21,

Û215
21

2K33cos2 f S iK 11m1 sinf K22m2
2 K22sinf 2 iK 11m1

2K11m1
2 iK 22m2 sinf iK 22m2 K11sinf

2 iK 11m1 sinf K22m2
2 K22sinf iK 11m1

K11m1
2 iK 22m2 sinf iK 22m2 2K11sinf

D . ~4.4!

In the Ĉ matrix we neglect the term of the 1/V order since it has order of smallness higher th
the approximation~3.27! for the matrix of evolution. Then we have

~Û21ĈÛ ! l l 5~21! l 11~K112K22!~2K33!
21 tanf, l 51,...,4. ~4.5!

It is convenient to present the diagonal elements ofÛ21(dÛ/dj) matrix in the form
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S Û21
dÛ

dj
D

l l

5
1

2

~cosf/m l !8

cosf/m l
1

1

2

~cosf!8

cosf
2

K112K22

2K33

~cosf!8

cosf
~21! l 11, l 51,...,4.

~4.6!

From Eqs.~4.5! and ~4.6! we get

E
j0

j S Û21ĈÛ2Û21
dÛ

dj8
D

l l

dj852
1

2
ln

m l~j0!ucosfu
m l~j!ucos~j01f0!u

2
1

2
ln

ucosfu
ucos~j01f0!u

. ~4.7!

Thus we found all expressions entering Eq.~3.27!. Using expression~4.7! it is possible to write the
evolution matrix in the form

M̂ ~j,j0!5Û~j!
ucos~j01f0!u

ucosfu
diaĝHA m l~j!

m l~j0!
expS 2E

j0

j

Vm l dj8D J Û21~j0!. ~4.8!

For determination of the correlation function it is necessary to construct the matricesû1(j)
and û2(j). Selecting the solutions for theC~j! vector, Eq.~3.10!, which displays the required
behavior at the infinity we obtain

û1~j!5S 2 i sinfm1
21 1

21 2 i sinfm2
21D exp~F̂2!,

û2~j!5S i sinfm1
21 21

21 2 i sinfm2
21D exp~F̂1!, ~4.9!

where

exp~F̂6!5
ucos~j01f0!u

ucosfu
diaĝHA m l~j!

m l~j0!
expS 6E

j0

j

Vm l dj8D J , l 51,2. ~4.10!

It is easy to check that under this choice of theû1,2(j) matrices the conditionsû1(j)→0̂ at j

→1` and û2(j)→0̂ at j→2` are valid. Substituting theû1,2(j) matrices, Eq.~4.9!, into
expression for the correlation function, Eq.~3.6!, and neglecting terms of the 1/V order in non-
exponential factors we get the correlation function in the form

Ĝ~j,j1!5
kBT

2qK33cosf~j1!cosf~j! S sign~j2j1!sinf~j! sign~j2j1!im2~j!

2 im1~j! sinf~j!
D

3S expS 2VU E j
j1m1 dj8U D

Am1~j!m1~j1!

0

0
expS 2VU E j

j1m2 dj8U D
Am2~j!m2~j1!

D
3S sign~j12j!sinf~j1! im1~j1!

sign~j12j!im2~j1! 2sinf~j1!
D . ~4.11!

This expression has a simple structure. It is composed of a diagonal matrix and two m
which turn the coordinate frame inj andj1 points.

It is convenient to split theĜ matrix into two parts, associated with two modesm1 andm2 .
We have
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Ĝ~q;z1 ,z2!5Ĝ~1!~q;z1 ,z2!1Ĝ~2!~q;z1 ,z2!, ~4.12!

where

Ĝ~ j !~q;z1 ,z2!5
kBT

2qK33cosf~z1!cosf~z2!
expS 2qU E

z1

z2
m j~z!dzU D Ŵ~ j !~q;z1 ,z2!, ~4.13!

Ŵ~1!~q,z1 ,z2!5S 2
sinf~z1!sinf~z2!

Am1~z1!m1~z2!
i sign~z12z2!sinf~z1!

Am1~z2!

Am1~z1!

i sign~z12z2!sinf~z2!
Am1~z1!

Am1~z2!
Am1~z1!m1~z2!

D ,

~4.14!

Ŵ~2!~q,z1 ,z2!52S 2Am2~z1!m2~z2! i sign~z12z2!sinf~z2!
Am2~z1!

Am2~z2!

i sign~z12z2!sinf~z1!
Am2~z2!

Am2~z1!

sinf~z1!sinf~z2!

Am2~z1!m2~z2!

D .

~4.15!

Here cosf5q"n0/q, sinf5Aq22(q"n0)2/q are presented in the form independent on the co
dinate frame choice.

Figure 1 shows the correlation matrix components,G11 and G12, in arbitrary units. These
functions are obtained from Eqs.~4.12!–~4.15!. HereG12 is imaginary. Both components decrea
exponentially with the distancej2j1 . For j5j1 the componentG11 has a peak and the value o
this peak increases with the growth ofj. When we approach the pointf5j1f05p/2 the
functionsG11 andG12 tend to infinity.

We analyze the behavior of the expression~4.12! for p0→0. In this limit Eq.~4.12! describes
the nematic liquid crystal. If we setp050, thenf(z)[f0 and Eq.~4.12! takes the form

Ĝ~q;z2z1!5
kBT exp~2qm1uz2z1u!

2qK33cos2 f0
S 2m1

21 sin2 f0 i sign~z2z1!sinf0

i sign~z2z1!sin2 f0 m1
D

1
kBT exp~2qm2uz2z1u!

2qK33cos2 f0
S m2 2 i sign~z2z1!sinf0

2 i sign~z2z1!sinf0 2m2
21 sin2 f0

D .

~4.16!

Note, that there is an indeterminacy in Eq.~4.16! at f0→p/2, which can be easily removed.
results in the finite expression forf05p/2. Therefore the correlation function has no singularit
in the vicinity of this point.

Performing Fourier transform over thez2z1 variable in Eq.~4.16! and using Eq.~2.10! we
obtain well-known De Gennes expression4 for the correlation function of the director fluctuation
in NLC,

gab~k!5kBT (
l 51,2

ela~k!elb~k!

K33~n0
•k!21Kll ~k22~n0

•k!2!
, ~4.17!

wherek5(q,qz), el'n0, uel u51, e1'e2 , e1ik2n0(n0
•k).

It is interesting to compare our result, Eq.~4.12! for the correlation functionĜ(q;z1 ,z2),
which is valid forq@p0 ~‘‘nematiclike’’ CLC!, to the results for the opposite caseq!p0 ~‘‘smec-
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ticlike’’ CLC !.11 For simplicity we consider the case, where all three elastic constants~the Frank
modules! are equalK115K225K335K. We are interested in behavior ofĜ(q;z1 ,z2) as a function
of the wave vector moduleq and thez1–z2 variable.

According to Eq.~4.12! all components of the correlation functionĜ for the caseq@p0

behave as

Gkl~q;z1 ,z2!;q21 exp~2quz12z2u!. ~4.18!

On the other hand, three-dimensional Fourier-components of the correlation function in th
q!p0 have the form12

G̃11~q,qz!5
2p0

2kBT

K~2p0
2qz

21q2qz
21q4!

,

~4.19!

G̃22~q,qz!5
kBT

K~p0
21q21qz

2!
, G̃125G̃2150.

Expressions~4.19! have been obtained by averaging over many pitches. Therefore the modu1

andu2 here do not correlate~nondiagonal elements of the correlation function are equal to ze!.
It differs from our approach which takes into account almost local fluctuations. However
average Eq.~4.12! over many pitches, the matricesŴ(1) andŴ(2) become diagonal and we obta
G125G2150 as well.

FIG. 1. TheG11(q,j,j1) ~a! and G12(q,j,j1) ~b! components of the correlation function as a function ofj and j1

expressed in the same arbitrary units. HereK1155.031026 dyne, K2253.031026 dyne, K3357.031026 dyne.
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Note, in this limit the director fluctuations in the plane normal to the pitch axis (G̃11) behaves
as the layer-displacement fluctuations in smectic-A liquid crystals.4 Fluctuations along the pitch
axis (G̃22) have the form similar to the director fluctuation in nematic, Eq.~4.17!, but they are
bounded by the cholesteric pitch@the termp0

2 in the denominator ofG̃22 in Eq. ~4.19!#.
In (q,z)-representation Eq.~4.19! has the form

G̃11~q;z12z2!}
2p0

2

q2A2p0
21q2

expS 2
q2uz12z2u

A2p0
21q2D ,

G̃22~q;z12z2!}
1

Ap0
21q2

exp~2Ap0
21q2uz12z0u!. ~4.20!

Let analyze the behavior of expressions~4.18! and ~4.20! in the intermediate rangeq.p0 .
Although both formulas are not valid in this range we consider extrapolation,

Gkk~p0 ;z1 ,z2!;
1

p0
exp~2p0uz12z2u!,

G̃11~p0 ;z1 ,z2!;
2

)p0

expS 2
p0

)
uz12z2u D , ~4.21!

G̃22~p0 ;z1 ,z2!;
1

&p0

exp~2&p0uz12z2u!.

It can be seen the mode amplitudes are of the similar order, but the exponents are differen
their asymptotic behaviors for the casesq@p0 andq!p0 do not match in the rangeq.p0 .

An extrapolation of the expressions~4.20! into the rangeq@p0 gives

G̃11~q;z12z2!;p0
2q23 exp~2quz12z2u!,

~4.22!
G̃22~q;z12z2!;q21 exp~2quz12z2u!.

It is curious that exponential factors in Eqs.~4.22! and ~4.18! coincide. But the nonexponentia
factors for theu1 mode corresponding to the fluctuations in the plane perpendicular to the
axis (G11 and G̃11) are different. The first mode is more sensitive to the pitch and its beha
significantly differs for the casesq!p0 andq@p0 . The factors for theu2 mode corresponding to
the fluctuations along the pitch axis (G22 andG̃22) coincide. It is conceivable that expression f
G̃22 is applicable in a wider domain over theq variable~just as forq!p0 , soq.p0 , q@p0).

Equation ~4.11! loses its sense if cosf50 in the point j or j1 or if the point j* with
cosf(j* )50 lies betweenj andj1 . It follows from the fact that eigenvalues of theB̂ matrix at
these conditions coincide. As it follows from Eq.~3.24! if the valuesm l andmm approach each
other the functionVlm increases and the condition of the WKB applicability,uVlmu!V, could be
violated.

According to Eq.~4.2! m15m251, m35m4521 at the pointf5p/2, and so in the vicinity
of f5p/2 the WKB method becomes invalid.

Let us now estimate the applicability region of the WKB method. For this purpose we i
duce a new variablez5p0z1f02p/25f2p/2 and expandm l in a series near thez50 point

m l'12Clz
2/2, l 51,2,

m352m1 , m452m2 , Cl512K33/Kll . ~4.23!
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Figure 2 shows schematically the behavior of them1 andm2 values in the neighborhood of th
turning point. Note that valuesm1(j) andm2(j) do not intersect but can only touch each othe

Matrix elementV12 near the turning point,z50, can be estimated as

V12;z23~11O~z2!!.

Then the condition of the WKB method applicability has the form

Vuzu3@1. ~4.24!

It means that Eq.~4.11! is valid whenVuzu3@1, Vuz1u3@1 and there are no points between poin
z andz1 wherem1 andm2 coincide.

The analysis of the correlation function behavior in the vicinity of the turning point repres
a rather complicated mathematics problem. In what follows two cases will be considered:

~i! one or both variablesj, j1 are near the point cosf50;
~ii ! j andj1 are in the region where the WKB method is valid but between them there is

point with cosf50.

In both cases it is necessary to obtain the solution of Eq.~3.8! in a neighborhood of the degen
eration point, cosf50.

V. VICINITY OF THE TURNING POINT AND CONNECTION FORMULAS FOR WKB
SOLUTIONS

The problem of turning points and of matching WKB solutions has been investigated
oughly. For scalar problems which have the formY92G(X)Y50 one of the two following
methods is usually applied. The first one is the complex plane method. The method solv
problem by contour integration in complex plane around a turning point. The method perm
match WKB solutions, but the contour of integration intersects the so-called Stokes lines
analytical extension of the WKB solutions is broken. The second and most common method
method of model equations. In the vicinity of the turning pointX0 , whereG(X0)50, the function
G(X) is expanded overX2X0 . The resulting model equation depends on theG(X) behavior in the
vicinity of the turning pointX0 . If the behavior is linear~simple turning point! we have the Airy
equation and the solution is a linear combination of the Airy functions.22 In the caseG(X);(X
2X0)m, m>2 ~multiple turning point of themth order! the solution of the model equation can b
expressed in terms of modified Bessel function of the second kindK1/(m12) . Then the solution of
the model equation is used for matching WKB solutions to the left and to the right of the tu
point.

FIG. 2. The behavior ofm1 ~curve 1! and m2 ~curve 2! in the vicinity of thez50 point. HereK1152.031026 dyne,
K2250.831026 dyne, K3352.931026 dyne.
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Our problem has some distinctions from usual situation. First, the WKB solutions are e
nentially increasing and exponentially decreasing. It involves additional difficulties for matc
as it requires to consider exponentially small variable in the presence of exponentially
variable. Second, the difference of eigenvaluesm1 andm2 is quadratic overX2X0 in the vicinity
of the turning point, which means that the turning point is of the fourth order. Third, our pro
is a set of two differential equations of the second order. This multimode character is the
difficulty. For contour integration method there are six Stokes lines and we have problems
analytical extension of WKB solutions. For the second method the problem is that the m
equation method gives equation of the fourth order in the vicinity of the turning point. M
equations of the fourth order and their solutions are investigated much less than the mode
tions of the second order.

In such a situation it is more convenient to analyze the set of four equations of the first
instead of the set of two equations of the second order. We have previously used this appr
construct the WKB solutions far from the turning point in Sec. IV@see Eq.~3.8!#. In this case
peculiar character of the turning point is manifested in the nondiagonal normal form of the a
434 matrix in this point, as in Eqs.~3.13! and~3.20!. Instead it contains Jordan blocks. Next w
expand the equations in the vicinity of the singular point and match the solutions of correspo
model equations to the WKB solutions. The 434 problem splits into several independent sets
the lower order separately for each Jordan block. Each of these sets produces a more
model equation. This approach for asymptotic solution of systems of linear differential equ
was developed and applied in Refs. 23–25. As we shall see later in our problem we have
32 Jordan blocks. Therefore we come to two model equations of the second order instead
model equation of the fourth order.

It is more convenient to seek the solution for theC vector, rather than for the matrix o
evolution,M̂ . For this purpose we expand Eq.~3.8! in a series near the pointz50,

F iB̂~0!1
i

2
B̂9~0!z21

i

24
B̂IV~0!z41

1

V
Ĉ8~0!z1¯GC~z!5

1

V

dC

dz
. ~5.1!

The direct iterative solution of Eq.~5.1! is difficult due to existence of two small parameters, 1V
andz. Therefore it is convenient to introduce a new ‘‘stretched’’ variablet5V1/3z. We have

F iB̂~0!1
i

2
V22/3t2B̂9~0!1V24/3S i

24
t4B̂IV~0!1tĈ8~0! D1¯ GC~t!5V22/3

dC

dt
. ~5.2!

The terms of this equation represent series over the small parameterV22/3, thought is not a small
parameter in contrast toz. Solution of this equation corresponding tom1 andm2 is sought in the
form

C1~t!5exp~2V2/3m1~0!t!~C1
~0!~t !1V22/3C1

~1!~t !1V24/3C1
~2!~t !1¯ !, ~5.3!

where m1(0)5m2(0)51. Substitution ofC1(t) ~5.3! into Eq. ~5.2! reduces the latter in zero
approximation to the equation for the eigenvector

B̂~0!C1
~0!5 im1~0!C1

~0! . ~5.4!

Solution of this equation has the form

C1
~0!5x1b~t!, ~5.5!

wherex1 is the eigenvector,

x15~1,2 i ,i ,1!T, ~5.6!
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andb~t! is an arbitrary function oft. Here the superscript ‘‘T’’ denotes transposition.
In the first approximation we have

~B̂~0!2 im1~0! Î !C1
~1!5~2 ib8~t! Î 2 1

2t
2b~t!B̂9~0!!x1[R~1!, ~5.7!

whereR(1) is the four-component vector. The determinant of the equation set~5.7! is equal to zero,
sinceim1 is the eigenvalue of theB̂ matrix. The solvability condition for such systems implies th
the right-hand side of Eq.~5.7! should be orthogonal to the adjoint vectorx2 , which determines
by the condition

~B̂~0!2 im1~0! Î !x25x1 . ~5.8!

As a solution of this equation it is possible to take

x25S 0,
K111K22

K112K22
,1,

2iK 22

K112K22
D T

. ~5.9!

Note, that at such choice ofx2 the orthogonality condition,x1•x250, is valid. It is easy to check
that the solvability condition of the equationR(1)

•x250 is fulfilled automatically and is no
reduce to any conditions for theb~t! function. Therefore for determination of theb~t! function it
is necessary to take into account the solvability condition for the second approximation.

As a first step it is necessary to find theC1
(1) vector. We shall seek it as a linear combinati

of two eigenvectors,x1 and x3 , and corresponding adjoint vectors,x2 and x4 . Here x3 is the
eigenvector corresponding to the eigenvalueim3(0)

x35~21,2 i ,i ,21!T, x45S 0,2
K111K22

K112K22
,21,

2iK 22

K112K22
D T

. ~5.10!

Vectors xl , l 51,...,4 can be considered as a basis. If we expandR(1) over this basis,R(1)

5(k51
4 dk(t)xk , the condition of solvability has the form (P̂21R(1))25d2(t)50, where

P̂5~x1 ,x2 ,x3 ,x4!. ~5.11!

We seekC1
(1) as a linear combination of vectorsxl , l 51,...,4

C1
~1!5 (

k51

4

ak~t!xk . ~5.12!

It is possible to assume thata150 sinceC1
(0) already contains thex1 vector and the coefficienta1

is related to the normalization condition of theC1 vector, which can be selected arbitrarily.
If we substituteC1

(1) in the form~5.12! to the first approximation~5.7! and multiply the right-
and left-hand sides of the obtained equation byP̂21 we obtain a system of four equations co
necting three factorsa2 , a3 , and a4 . The second of the obtained equations is the solvab
condition of the first approximation. Since this equation represents an identity, we conside

a252 ib81 ibt2A2 , 22ia31a45 ibt2A2 , 2 ia45bt2A3 , ~5.13!

where

A25A1

K111K22

K22
, A35A1

K112K22

K22
, A15

K111K2222K33

8K11
. ~5.14!

Solutions of these equations are
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a252 ib81 ibt2A2 , a352bt2A1 , a45 ibt2A3 . ~5.15!

The equation for the second approximation has the form

~B̂~0!2 im1~0! Î !C1
~2!52 i C1

~1!82 1
2t

2B̂9~0!C1
~1!1~ i tĈ8~0!2 1

24t
4B̂IV~0!!C1

~0!5R~2!.
~5.16!

The solvability condition for the second approximation has the same form as that for the
approximation, (P̂21R(2))250. Substituting to this condition the expressions forC1

(0) andC1
(1) ,

we obtain

2 ia282
1

2
t2S P̂21B̂9~0!(

k52

4

akxkD
2

1b~t!F P̂21S i tĈ8~0!2
1

24
t4B̂IV~0! Dx1G

2

50.

~5.17!

Let us calculate the coefficients of this equation and substitute the expressions~5.15! for the ak

coefficients into~5.17!. Then we have

b9~t!2b8~t!t2 1
2~C11C2!2b~t!t 1

2~C11C22 1
2C1C2t3!50. ~5.18!

In usual cases inequalitiesK22,K11,K33 take place, hence it follows according to Eq.~4.23!
C1,0, C2,0, andC1.C2 . These conditions do not impose any restrictions on the generali
the obtained results. Then solution of Eq.~5.18! can be written in the form

b~t!5At exp~C3t3!@F1K1/6~C4t3e23p i !1F2K1/6~C4t3!#, ~5.19!

whereF1,2 are constants,K1/6(a) is the modified Bessel function of the second kind,

C35~C11C2!/12, C45~C12C2!/12. ~5.20!

It is possible to present the solution of Eq.~5.18! as a linear combination of other Bess
functions. The choiceK1/6(a) hereinafter will be convenient for matching the solutions inside a
outside the turning point vicinity.

Note, that in the vicinity of the zero the solution~5.19! has no singularities such as a pol
Thus, in the zero approximation the solutionC1(t) has the form

C1~t!5At exp~2V2/3t1C3t3!@F1K1/6~C4t3e23p i !1F2K1/6~C4t3!#x1 . ~5.21!

Since the WKB approximation is valid foruzuV1/3@1, in the regionV21/3!uzu!1 ~or 1
!utu!V1/3) both the WKB approximation and the solution near the turning point are valid~Fig.
3!. Equating these solutions we can get the relation between constants entering these solu

Primarily we consider the WKB solution in the regions 1!utu!V1/3. From the solution
~3.10!, whereM̂ (j,j0) is described by Eq.~4.8!, we select two solutions corresponding tom1 and
m2 . For this purpose we put third and fourth components of theÛ21(j0)C(j0) vector equal to
zero and expand all functions depending onj in series in the vicinity of the pointf5p/2 (t
50). As a result the solution in the considered region has the form

FIG. 3. Regions where the WKB solution and the solution near the turning point are applicable for thet variable. The solid
line shows the regions where the WKB solution is valid. The dotted line shows the vicinity of the turning point. As
be seen at 1!utu!V1/3 both solutions are applicable~shaded regions!.
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C~t!5B1F1~t!1B2F2~t!, ~5.22!

where

F1~t!5F01~t!S 2 i S 11
C121

2V2/3 t2D ,21,12
t2

2V2/3,2 i S 12
C1t2

2V2/3D D T

,

F2~t!5F02~t!S 1,2 i S 11
C221

2V2/3 t2D ,i S 12
C2t2

2V2/3D ,12
t2

2V2/3D T

, ~5.23!

F0 j~t!5
AiV1/3

utu S 12
Cjt

2

4V2/3DexpS 2V2/3t1
1

6
Cjt

3D , j 51,2.

Note, that constant factorsB1 andB2 can differ in regionst.0 andt,0 since the regions of the
WKB method applicability,utu@1, do not intersect. In what follows we shall denote the coe
cientsB1 andB2 at t.0 andt,0 asBl

(1) andBl
(2) , respectively,l 51, 2.

Now we consider the solution~5.21!, which is valid near the turning point, atutu@1. For this
purpose we get its asymptotic behavior att→6` in the zero approximation. Actually the prob
lem consists in searching of the Bessel functionK1/6(a) asymptotics. Ata→` its asymptotics has
the form20

K1/6~a!;Ap/~2a!exp~2a!. ~5.24!

This formula is valid foruargau,3p/2. This condition is fulfilled for the second term in~5.21! at
t→1`. The same asymptotics can be used for the first term, but fort→2`, as in this caset
5utueip, and argument of the total expression appears to be equal to zero. Thus we have

K1/6~C4t3e23p i ! ;
t→2`

C5utu23/2exp~2C4utu3!,

K1/6~C4t3! ;
t→1`

C5t23/2exp~2C4t3!, ~5.25!

where

C55Ap/~2C4!. ~5.26!

For deriving the rest two asymptotic behaviors,K1/6(C4t3e23p i) at t→1` andK1/6(C4t3)
at t→2`, we use the relation20

Kn~aeimp!5e2 impnKn~a!2 ip
sin~mpn!

sin~pn!
I n~a!, ~5.27!

wherem is integer,I n(a) is the modified Bessel function of the first kind, which has an asym
totics I n(a) ;

a→1`
exp(a)/A2pa. Supposingm523 andm53, we get the asymptotic behavior o

the first and the second term, respectively. Thus we have

K1/6~C4t3e23p i ! ;
t→1`

2iC5t23/2exp~C4t3!,

K1/6~C4t3! ;
t→2`

22iC5utu23/2exp~C4utu3!. ~5.28!

Substituting asymptotics~5.25! and ~5.28! in the expression~5.21! for C1(t) we get
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C1~t!5C5utu21 exp~2V2/3t!~1,2 i ,i ,1!T3H 2iF 1 exp~C1t3/6!1F2 exp~C2t3/6! at t→1`,

iF 1 exp~C1t3/6!12F2 exp~C2t3/6! at t→2`.
~5.29!

Matching solutions~5.29! with the WKB solutions~5.22!, ~5.23!, we obtain two systems of two
equations, connecting the factorsBl

(6) , l 51,2 with the factorsF1 andF2

2V1/3i 1/2B1
~1 !52F1C5 , 2V1/3i 1/2B1

~2 !5F1C5 ,

V1/3i 1/2B2
~1 !5F2C5 , V1/3i 1/2B2

~2 !52F2C5 . ~5.30!

Equation~5.30! gives the relation between factorsBl
(6) , l 51,2 ~connection formulas!,

B1
~1 !52B1

~2 ! , B2
~1 !5B2

~2 !/2. ~5.31!

So, passing by the turning point the mode amplitudes vary. Thus the modes interact, but
these modes does not produced another.

Figure 4 illustrates the solution of Eq.~5.2!. The dependence of the first componentC11
(0) of

the vectorC1
(0)(t) is presented in the vicinity of the turning point. This dependence corresp

to behavior of the correlation functionG11(t,t1) for fixed t1,t. The curve 1 presents the WKB
solution diverging at the turning pointt50. Curve 2 was obtained by numerical solution of E
~5.2!. Curve 3 illustrates formula~5.31! connecting solution amplitudes before and after
turning point. This curve was obtained by doubling the WKB solution. One can see that to th
of the turning point the numerical solution coincides with the WKB solution and to the righ
this point—with the doubled WKB solution.

Note, that the modes do not interact in the zero approximation over theV22/3 parameter. If we
take into account the terms of the next order we can get the contributions determined by the
interaction.

Similarly it is possible to obtain the solutionC3(t) corresponding tom3 and m4 near the
turning point

C3~t!5At exp~V2/3t2C3t3!@F3K1/6~C4t3e23p i !1F4K1/6~C4t3!#~21,2 i ,i ,21!T.
~5.32!

FIG. 4. The first component of the vectorC1
(0)(t) ~curve 2! in the vicinity of the turning point. This curve is obtained b

the numerical solution of Eq.~5.2! for K1151026 dyne,K2250.531026 dyne,K3354.031026 dyne. Curves 1 and 3 are
the WKB solution and doubled WKB solution, respectively.
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We select two WKB solutions, corresponding tom3 andm4 for deriving the connection formula
similar to Eq.~5.31!. For this purpose it is enough to setÛ21(j0)C(j0)5(0,0,B3 ,B4)T. Acting
similarly in the case of valuesm1 andm2 we obtain the connection formulas

B3
~1 !5B3

~2 !/2, B4
~1 !52B4

~2 ! . ~5.33!

In the Appendix we demonstrate that the multiplicative conditionsB3
(1)B4

(1)5B3
(2)B4

(2) ,
B1

(1)B2
(1)5B1

(2)B2
(2) are corollaries from conservation law for relaxation system.

Note, that we considered the casef5p/2 only. Actually the developed approach allows
describe all turning pointsf5p/212pm, where m is integer. The turning pointsf52p/2
12pm should be considered separately. The reason is that the expansion of theB̂ matrix in the
vicinity of these turning points has another form. But it may be shown that the relation bet
amplitudes conserves. It is natural since the pointsf(z)5p/2 andf(z)52p/2 refer to opposite
directions of the director,n0 and2n0, which are equivalent for CLC.

VI. CORRELATION FUNCTION NEAR THE TURNING POINTS

First we consider the case, when both pointsj and j1 lie in the regions, where the WKB
method is valid, but between them there is one turning pointj* 5p/22f0 . Let us consider for
definitenessj.j* , andj1,j* , i.e.,j.j1 . In this case expression for the Green’s function~3.6!
still holds. Since Eq.~3.6! contains theû1 matrix in both pointsj andj1 , it is necessary to take
the expression for this matrix which is valid on each side of the turning point, i.e., it is nece
to take into account connection formulas, Eqs.~5.31!.

These formulas mean, that on passing through the turning point the amplitudes of the
tions corresponding tom1 and m2 increase and decrease twice, respectively. Therefore thû1

matrix for uj2j* u@V21/3 can be written in the form

û1~j!5H û̃1~j! at j,j* ,

û̃1~j!ŝ at j.j* ,
~6.1!

whereû̃1(j) is described by Eq.~4.9! and the matrix

ŝ5S 2 0

0 1/2D
describes the transformation of amplitudes on passing through the turning point. Then Eq.~3.6! is
written as

Ĝ~j,j1!5kBTp0
21û̃1~j!ŝû̃21~j1!~ û28û2

212 û̃18 û̃1
21!21~j1!K̂21. ~6.2!

This expression differs from Eq.~4.11! by an insertion of the diagonal matrixŝ

Ĝ~j,j1!5
kBT

2qK33cosf~j1!cosf~j! S sinf~j! im2~j!

2 im1~j! sinf~j!
D

3S 2 expS 2VE j1

j m1 dj8 D
Am1~j!m1~j1!

0

0
expS 2VE j1

j m2 dj8 D
2Am2~j!m2~j1!

D S 2sinf~j1! im1~j1!

2 im2~j1! 2sinf~j1!
D .

~6.3!
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The casej,j1 can be considered in a similar way. The new matrixû2(j) is constructed with the
aid of connection formulas~5.33!. However there is a simpler way to obtainĜ(j,j1) for j
,j1 . It is enough to apply the symmetry property Eq.~2.18!,

Ĝ~j,j1!5Ĝ* T~j1 ,j!.

If there are several turning points betweenj andj1 the Green’s function will contain a set o
ŝ matrices with the number in this set being equal to the number of the turning points.

Now we consider the case, when the pointj lies in the vicinity of the turning pointj* and the
point j1 is situated far from this turning point, i.e., in the region, where the WKB method is v
For definiteness we consider againj.j1 . In order to find the Green’s function, it is necessary
expand the expression~4.9! for the û1(j) matrix in the vicinity of the turning point. It can be
made, using solution~5.21! for theC1 function and the second set of equations in~5.30!. This set
describes the relation between constants which enter to the WKB solution and to the solutio
the turning point. From Eq.~5.21! for the û1 matrix in the vicinity of the turning point we get

û1~t!5At exp~2V2/3t1C3t3!S K1/6~C4t3e23p i ! K1/6~C4t3!

2 iK 1/6~C4t3e23p i ! 2 iK 1/6~C4t3!
D S F1 0

0 F2
D . ~6.4!

It is necessary to chooseF1 andF2 , so that Eq.~6.4! is consistent with the expression~4.9! for the
û1 matrix. For this purpose we chooseB1

(2) andB2
(2) as

Bl
~2 !5

ucos~j01f0!u

Aim l~j0!
expS 2VE

j0

j
* m l dj8D , l 51,2. ~6.5!

This choice on the one hand reduces to Eq.~4.9! for the û1(j) matrix and on the other hand it i
consistent with the solution~5.23! in the regions 1!utu!V1/3. From Eqs.~6.5! and ~5.30! we
obtainF1 andF2 in the form

Fl5
~21! l

l
V1/3

ucos~j01f0!u

C5Am l~j0!
expS 2VE

j0

j
* m l dj8D , l 51,2. ~6.6!

Substituting expression~6.4! for û1(j) and expressions~4.9! for û1(j1), û2(j1) into Eq.~3.6! we
obtain the correlation function in the form

Ĝ~j,j1!5
ikBTV1/6

2C5qK33cosf~j1!Aj2j*
exp$2V@j2j* 2C3~j2j* !3#%

3S 2K1/6~C4V~j2j* !3e23p i ! 0

0
1

2
K1/6~C4V~j2j* !3!D

3S expS 2VE
j1

j
* m1 dj8D

Am1~j1!

0

0
expS 2VE

j1

j
* m2 dj8D

Am2~j1!

D S 2sinf~j1! im1~j1!

2 im2~j1! 2sinf~j1!
D .

~6.7!
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Finally we consider the case when both pointsj andj1 are in the vicinity of the turning point.
On the one hand, this case is more complicate since for calculation ofû1 and û2 matrices it is
necessary to take into account the terms of the higher orders, otherwise these matrices are
erate. On the other hand, this case is more simple as soon as there is no need to match th
solutions and solutions in the vicinity of the turning point.

Let us construct theû1 matrix in the vicinity of the turning point taking into account th
correctionC1

(1) ~theû2 matrix can be constructed similarly!. Note, that two first components of th
C1 vector are used for theû1 construction. We denotew15((C1)1 ,(C1)2). Using expressions
~5.15! and ~5.19!, we get

w1~t!5b~t!S 1
2 i D1V22/3S A1b~t!t2

i @A5b~t!t22A4b8~t!# D , ~6.8!

whereA1 was defined in Eq.~5.14! and

A45~K111K22!/~K112K22!, A55A1~3K111K22!/~K112K22!. ~6.9!

The functionb~t! in Eq. ~5.19! contains two arbitrary constantsF1 andF2 . Let

û1~t!5~w1~t;F151,F250!,w1~t;F150,F251!!. ~6.10!

Such choice of the constantsF1 andF2 gives the linear independence of the columns of theû1(t)
matrix. The components of theû1(t) matrix have the form

~ û1!11~t!5Q~1 !~t !K1/6~C4t3e23p i !~11V22/3t2A1!,

~ û1!12~t!52 iQ~1 !~t !K1/6~C4t3e23p i !

3$11V22/3A4 ln@At exp~C3t3!K1/6~C4t3e23p i !#t82V22/3t2A5%,

~ û1!21~t!5Q~1 !~t !K1/6~t!K1/6~C4t3!~11V22/3t2A1!,

~ û1!22~t!52 iQ~1 !~t !K1/6~C4t3!

3$11V22/3A4 ln@At exp~C3t3!K1/6~C4t3!#t82V22/3t2A5%, ~6.11!

where

Q~1 !~t !5exp~2V2/3t!At exp~C3t3!. ~6.12!

For calculation of theû2(t) matrix it is necessary to construct the corrections of the next o
for obtaining C3(t), Eq. ~5.32!. This procedure is similar to procedure fulfilled forC1(t).
Therefore we present the result forû2(t) only

~ û2!11~t!52Q~2 !~t !K1/6~C4t3e23p i !~11V22/3t2A1!,

~ û2!12~t!52 iQ~2 !~t !K1/6~C4t3e23p i !

3$12V22/3A4 ln@At exp~2C3t3!K1/6~C4t3e23p i !#t82V22/3t2A5%,

~ û2!21~t!52Q~2 !~t !K1/6~C4t3!~11V22/3t2A1!,

~ û2!22~t!52 iQ~2 !~t !K1/6~C4t3!

3$12V22/3A4 ln@At exp~2C3t3!K1/6~C4t3!#t82V22/3t2A5%, ~6.13!

where
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Q~2 !~t !5exp~V2/3t!At exp~2C3t3!. ~6.14!

For calculation of the correlation functionĜ(j,j1) we can now use the expression~3.6! for j
.j1 .

VII. CONCLUSIONS

In the present paper we developed the scheme for calculation of the thermal fluctuations
system with smooth inhomogeneities. We take into account the nonlocal fluctuations in the e
form. The WKB approximation was applied for the first time to calculate the spatial correl
functions in systems with smooth inhomogeneities. We consider the system with one-dimen
periodicity. As an illustration the director fluctuations in cholesteric liquid crystal were consid

We construct the correlation function of the director fluctuations in (q,z)-representation. Now
we will illustrate the application of this function for solving the problem of light scattering
CLC. The light is scattered by the fluctuations of the permittivity tensord«̂(r ). These fluctuations
are connected with the director fluctuationsdn by the formula4

d«ab~r !5«a@nb
0~z!dna~r !1na

0~z!dnb~r !#, ~7.1!

where«a is the difference between permittivities along and across equilibrium director. From
~7.1! we obtain the connection for the correlation function of the permittivity fluctuationsĜ(r1'

2r2' ;z1 ,z2)5^d«̂(r1)d«̂* (r2)& and the correlation function of the director fluctuationsĝ(r1'

2r2' ;z1 ,z2), Eq. ~2.9!,

Gabgd~r' ;z,z1!5«a
2@na

0~z!ng
0~z1!gbd~r' ;z,z1!1na

0~z!nd
0~z1!gbg~r1 ;z,z1!

1nb
0~z!ng

0~z1!gad~r' ;z,z1!1nb
0~z!nd

0~z1!gag~r' ;z,z1!#. ~7.2!

Using Eq. ~7.2! and Eq.~2.10! it is not difficult to expressĜ via obtained correlation matrix
Ĝ(r1'2r2' ;z1 ,z2), Eq. ~2.7!.

For solving the problem of light scattering in addition to the correlation function of
permittivity fluctuations normal light waves in the mediumE~r ! and the field of a point source~the
Green’s function of the wave equation! T̂(r ,r1) are required. These problems are considered
Refs. 26–29. In these studies the vector WKB method corresponding to approximation o
metrical optics in anisotropic inhomogeneous medium is applied for electromagnetic field
cording to Refs. 26–29 the presence of large-scale inhomogeneities results in the amplitu
the phase of the field adiabatically following to the local medium characteristics. Moreove
Green’s function as well as the fluctuation correlation function depends not only on the diffe
of spatial coordinates but on their absolute values.

Below we shall describe the general procedure for calculation of the single light scat
intensity in the medium with one-dimensional inhomogeneities which characteristic scale
much larger than the wavelength of lightl, d@l. In such medium the single light scatterin
intensity in ther point is given by

I ~ i !
~s!}E

Vsc

T̂~r ,r1!T̂* ~r ,r2!^d«̂~r1!d«̂* ~r2!&E~ i !~r1!E~ i !* ~r2!dr1 dr2 , ~7.3!

whereVsc is a scattering volume.
We use the approximation of geometrical optics for incident and scattered fields. Let intr

local ~depending onz! wave vectors of incidentk( i )(z)5(k'
( i ) ,kz

( i )(z)) and scatteredk(s)(z)
5(k'

(s) ,kz
(s)(z)) light. The corresponding polarization vectors aree( i )(k'

( i ) ,z) and e(s)(k'
(s) ,z).

Here the components of the wave vectors transversal to thez axis k'
( i ,s) are constants since ou

system is uniform in planes normal to thez axis. Then for the incident field we obtain
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E~ i !~r !5E~ i !~k'
~ i ! ,z!e~ i !~k'

~ i ! ,z!expF i S k'
~ i !
•r'1E

z0

z

kz
~ i !~z8!dz8D G , ~7.4!

whereE( i ) is the amplitude of the incident wave. For the propagator of the scattered field in th
zoner @r 1 we get

Tab~r ,r1!5 (
s51,2

t ~s!~r ;z1 ,k'
~s!!ea

~s!~k'
~s! ,z!eb

~s!~k'
~s! ,z1!expF2 i S k'

~s!
•r1'1 i E

0

z1
kz

~s!~z8!dz8D G .
~7.5!

Heret (s)(r ;z1 ,k'
(s))}1/r as function of variabler , whereasE( i )(k'

( i ) ,z) andt (s)(r ;z,k'
(s)) have the

characteristic scale d over variablez. Equations~7.4! and ~7.5! are valid forkz
( i ,s)d@1.

Then by substituting Eqs.~7.4! and~7.5! in Eq. ~7.3! and performing integration overr1,2' we
obtain for the light scattering intensity

I ~ i !
~s!}

I ~ i !S'

r 2 E
0

L

dz1E
0

L

dz2 H~z1 ;k'
~ i ! ,k'

~s!!H* ~z2 ;k'
~ i ! ,k'

~s!!ea
~s!~z1!eg

~s!~z2!

3Gabgd~Qsc' ;z1 ,z2!eb
~ i !~z1!ed

~ i !~z2!expS i E
z1

z2
Qscz~z8!dz8D , ~7.6!

whereQsc'5k'
(s)2k'

( i ) , Qscz(z)5kz
(s)(z)2kz

( i )(z), I ( i ) is the intensity of the incident wave,S' is
the square of the sample cross section,H(zj ;k'

( i ) ,k'
(s))5E( i )(k'

( i ) ,zj )t
(s)(r ;zj ,k'

(s)). Here we have
assumed that the sample with the widthL occupies the layer 0<z<L and the transversal sizes o
the sample are sufficiently large in comparison to the wavelengthl, AS'@l.

The exponential factor in expression~7.6! is a rapidly oscillating function. TheĜ(Qsc' ;z1 ,z2)
function is associated with the functionĜ(Qsc' ;z1 ,z2). As we can see from Eqs.~4.12! and
~4.13! the function Ĝ(q;z1 ,z2) contains rapidly damping exponential factors e
(2qu*z1

z2mj(z)dzu). The factorsH(z1 ;k'
( i ) ,k'

(s)) and H* (z2 ;k'
( i ) ,k'

(s)) are slowly varying as com-

pared to the exponential factors. Let us use the differedz25z12z2 and summaryz15(z1

1z2)/2 variables instead ofz1 ,z2 (0<z1<L,uz2u<uL22uz12L/2i), and the saddle-point tech
nique for the variablez2 . The vicinity of the pointz250 gives the main contribution into th
integral. Then in all smooth factors~the factorsH, H* and all nonexponential factors inĜ) we can
set z15z25z1 and expand exponents in the vicinity of the linez250 up to the first nonzero
terms~the first order terms overz2). We have

I ~ i !
~s!}

I 0
~ i !S'

r 2 E dz1E dz2uH~z1 ;k'
~ i ! ,k'

~s!!u2ea
~s!~z1!eg

~s!~z1!Gabgd~Qsc' ;z2 ,z1!eb
~ i !~z1!

3ed
~ i !~z1!exp@ iQscz~z1!z2#

5
I 0

~ i !S'

r 2 E
0

L

uH~z;k'
~ i ! ,k'

~s!!u2ea
~s!~z!eg

~s!~z!Gabgd~Qsc' ;Qscz~z!,z!eb
~ i !~z!ed

~ i !~z!dz. ~7.7!

We are investigating the problem of light scattering in CLC with the pitch exceeding
wavelength of lightl significantly in detail in Ref. 30 with taking into account anisotropy of CL
and wave refraction effects. Here we restrict our consideration by general consequences
~7.7!. Substituting Eqs.~2.10! and ~2.11! into Eq. ~2.9! we obtain from Eq.~7.2! the single light
scattering intensity in the form

I ~ i !
~s!}

I 0
~ i !S'

r 2 (
k,l 51,2

E
0

L

Gkl~Qsc' ,Qscz~z!,z!Hkl~z;k'
~ i ! ,k'

~s!!dz, ~7.8!
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where Hkl(z;k'
( i ) ,k'

(s)) are the functions arising from angular and polarization factors. Th
functions have the characteristic scale overz of the order of the pitchd.

Figure 5 presents the dependenciesGkl(Qsc' ,Qscz(z),z) on thef52pz/d1f0 variable, 0
<f<p. In terms of thez variable it corresponds to one period of the helix. One can see tha
components contribute to the light scattering intensity. The figure shows that vicinity off5p/2
brings larger contribution than the other regions to the light scattering intensity. Evidently
effect is connected with the turning pointf5p/2. The components of the correlation function
Fig. 5 were calculated by Eq.~4.13!. As we have seen in Secs. V and IV there is a narrow reg
near the turning pointf5p/2 where we should use Eq.~6.7! instead of Eq.~4.13!.

Let us discuss the influence of this narrow region near the turning points on the light sc
ing. In integral Eq.~7.7! overz2 variable the main input to the scattering intensity comes from
rangeuz2u;l!d. Note, that foruz12z2u!d the equilibrium directorn0 variation in the space is
negligible,n0(z1)5n0(z2). It means that for this scale over variablez25z12z2 correlation func-
tion of CLC locally coincides with one of NLC. But the characteristic scale over variablez1

5(z11z2)/2 is equal tod and distinction between CLC and NLC correlation functions s
retains. As we have seen in Sec. IV the divergences inĜ(1) and Ĝ(2) @Eq. ~4.12!# for f→p/2
related by the presence of the turning point cancel each other for the case of NLC@Eq. ~4.16!#.
Therefore in all geometries of light scattering when at least one of the conditionsuQsc'ud@1 and
uQsczud@1 is correct Eq.~4.13! is valid. The first of these conditionsQsc'5q@p0 is the condi-
tion of validity for WKB method. Hence for entire region where our results for correla
function are valid we can use Eq.~4.13! for calculation of the light scattering intensity in Eq.~7.8!.

Our approach provides to consider nonlocal fluctuations in the inhomogeneous media
approach is universal for any physical systems with smoothly varying structure and propertie
example, this problem exists in calculations of the order parameter fluctuations in the vicin
the second order phase transition in inhomogeneous electric and magnetic fields and near
vapor critical point in presence of the gravitational effects. The occurrence of the turning po
not obligatory in such problems. If turning points exist, the considered scheme allows to take
into account in the framework of developed approach.

In the present work we investigate the correlation functions for boundless system. In thi
as a boundary condition we use the principle of correlation decay. For this reason expone

FIG. 5. TheGkl(Qsc' ,Qscz(z),z) components of the correlation function as functions off52pz/d1f0 (G11 , curve 1;
G22 , curve 2; andG12 , curve 3!. The components are calculated for the ordinary incident and extraordinary sca
waves. Angles between thez axis and the wave vectorsk( i ) and k(s) outside of the CLC are equal top/4 and p/8,
respectively. Angle betweenk'

( i ) and k'
(s) is equal top/16. Permittivities are«'52.0, «a50.5. The Frank modules are

K1153.031026 dyne, K2252.031026 dyne, K3355.031026 dyne.
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decreasing solutions contribute to the correlation function only. We suppose the calculat
correlation function of fluctuations in restricted CLC will be the next step in investigation
fluctuations in CLC and twist cells of NLC. In restricted systems an additional input appears
free energy associated with anchoring effects. In this case we should consider both decreas
increasing solutions in the correlation function. In restricted CLC our WKB method is perspe
for use with method of path integrals6,8 and method of self-conjugation operators.9,10
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APPENDIX: CONSERVATION LAW IN RELAXATION SYSTEMS

Now it is essential to clarify the sense of Eqs.~5.31! and~5.33! using the simplest relaxation
model described by equation

Y92G~X!Y50, ~A1!

whereG(X) is a positive function. Multiplying Eq.~A1! by Y* and the conjugate equation byY
we obtain

Y9Y* 2G~X!YY* 50, Y* 9Y2G~X!YY* 50.

Subtracting term by term we have

Y9Y* 2Y* 9Y5~Y8Y* 2Y* 8Y!850.

So we arrive at a conservation law for Eq.~A1!,

Im~Y8Y* !5const. ~A2!

The exact solution of Eq.~A1! can be written in the form

Y~X!5A1~X!W1~X!1A2~X!W2~X!, ~A3!

where

W1,2~X!5G~X!21/4expS 6E
X0

X
AG~X8!dX8D ~A4!

are WKB solutions, andA1,2(X) are amplitude functions. For eliminating the arbitrariness in
choice of theA1,2(X) functions we use the subsidiary condition

A18~X!W1~X!1A28~X!W2~X!50. ~A5!

We substitute solution~A3! into Eq. ~A2! and take into account identityW18W22W1W2852. As
long as theW1,2(X) functions are real we obtain from Eq.~A5! the resulting conservation law,

Im@A1* ~X!A2~X!#5const. ~A6!

Let us denote the limit amplitudes of the WKB solutions forX→2` asA1,2
(2) and forX→1` as

A1,2
(1) . Equation~A6! is fulfilled for A1

(2)5A1
(1) andA2

(2)5A2
(1) . This situation takes place in th
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absence of turning points. Note, that this equation is also fulfilled for the case when ReAj Im Aj

50 for both j 51,2. The very situation takes place due to passing by the turning point. If we
the analogy to our multimode problem and apply Eq.~5.30! we obtain

A1
~1 !52iF 1C5 , A2

~1 !5F2C5 , A1
~2 !5 iF 1C5 , A2

~2 !52F2C5 .

This yields the relation

A1
~2 !A2

~2 !5A1
~1 !A2

~1 ! .

Thus, in an equation of this type the amplitudes may vary with their product remains cons
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The two-qubit canonical decompositionSU(4)5@SU(2)^ SU(2)#D@SU(2)
^ SU(2)# writes any two-qubit unitary operator as a composition of a local unitary,
a relative phasing of Bell states, and a second local unitary. Using Lie theory, we
generalize this to ann-qubit decomposition, the concurrence canonical decompo-
sition ~CCD! SU(2n)5KAK. The groupK fixes a bilinear form related to the
concurrence, and in particular any unitary inK preserves the tangleu^fu
3(2 is1

y)¯(2 isn
y)uf&u2 for n even. Thus, the CCD shows that anyn-qubit uni-

tary is a composition of a unitary operator preserving thisn-tangle, a unitary op-
erator in A which applies relative phases to a set of GHZ states, and a second
unitary operator which preserves the tangle. As an application, we study the extent
to which a large, random unitary may change concurrence. The result states that for
a randomly chosenaPA,SU(22p), the probability thata carries a state of tangle
0 to a state of maximum tangle approaches 1 as the even number of qubits ap-
proaches infinity. Anyv5k1ak2 for such anaPA has the same property. Finally,
althoughu^fu(2 is1

y)¯(2 isn
y)uf&u2 vanishes identically when the number of qu-

bits is odd, we show that a more complicated CCD still exists in whichK is a
symplectic group. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1723701#

I. INTRODUCTION

Entanglement is a unique feature of quantum systems that plays a key role in qu
information proccessing. Much effort has gone into describing the entanglement present
state of a quantum system composed of two or more measurably distinct subsystems. B
different amounts of entanglement may be shared among the various partitions of the
factors of the Hilbert state space, there is no single measure of entanglement that captu
nonlocal correlations for many-particle systems. Rather, the number of partitions of the
factors grows exponentially with the number of factors themselves. Thus, it is reasonable to
that same is true for the number of useful entanglement measures. In fact, the situation is ye
complicated. Certain definitions create uncountably many entanglement types, which thus m
be associated to countable collections of partitions or monotones.

Nevertheless, it is interesting to consider how much entanglement is created by a
unitary evolutionU of an n-qubit state space. To achieve this in a limited context, we focus o
single multi-qubit entanglement measure, then-concurrence.25 Using Lie theory, we may decom
pose a unitary operator acting onn qubits into a form such that the entangling power of the unit
with respect to this measure is manifest.

a!Electronic mail: stephen.bullock@nist.gov
b!Electronic mail: gavin.brennen@nist.gov
24470022-2488/2004/45(6)/2447/21/$22.00 © 2004 American Institute of Physics
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The n-tangle and its square root, then-concurrence, are two of several proposed multiqu
entanglement measures. Others include polynomial invariants which involve moments
reduced state eigenvalues,1 the Schmidt measure6 which is related to the minimum number o
terms in the product state expansion of a state, theQ measure,16 which is related to the averag
purity each qubit’s reduced state, and distances between a state and its multipartite twirled i5

A further measure makes use of hyperdeterminants;17 this powerful technique makes computatio
difficult in more than six qubits. Theconcurrence Cn is originally introduced in the two-qubi
case.9 It is generalized to a measure on two systems of arbitrarily many dimensions in Ref. 1
extends ton-qubits.25

We now consider the quantitative expression for the concurrence. Suppose a quantu
space of data for a quantum computer. Specifically, fixn as the number of qubits,N52n.
Throughout, we useu j & not to denote the state of a qubit but rather as an abbreviated multi
state via binary form. For example, in three qubitsu5&5u101&5u1& ^ u0& ^ u1&. We write Hn

5spanC$u j &; 0< j <N21% for the n-qubit Hilbert state space. Then the concurrence is a m
Cn :Hn→@0,̀ ) given by Cn(uc&)5u^cu(2 is1

y)¯(2 isn
y)uc&u. Note that the expression insid

the complex norm is in general not real. A related entanglement measuretn5Cn
2 is known as the

n-tanglewhenn is even.27 For ^cuc&51, then-tangle of a stateuc& assumes real values in th
range 0<tn<1. It is moreover an entanglement monotone,23 as any good measure should be. Th
means in particular thattn :Hn→@0,̀ ) vanishes on full tensor products of local states, a
moreover thattn(v1^ v2^¯^ vnuc&)5tn(uc&) for any v1^ v2^¯^ vnP ^ 1

nSU(2). Weshow
in Appendix C that then-concurrence is also an entanglement monotone.

The n-concurrence only detects certain kinds of entanglement. Specifically, while it re
zero on all separable states, it may also return zero on certain nonseparable states. We illus
monotone’s behavior by example. First, then-partite Greenberger–Horne–Zeilinger~GHZ! state
uGHZn&5(1/&)(u01¯0n&1u11¯1n&) has maximaln-concurrence whileCn(uGHZn21& ^ u0&n)
50. As a second example, the generalizeduW& state given by uW&5(1/An)(u10̄ 0&
1u010̄ 0&1¯1u0¯01&) has zeron-concurrence despite being entangled. States with sub
bal entanglement can also assume maximaln-concurrence; Cn(uGHZn&)5Cn(uGHZn/2&
^ uGHZn/2&)51. Generally, then-concurrence seeks out superpositions between a state an
binary bit flip.

We extend these definitions by introducing a complex bilinear form, theconcurrence form
Cn :Hn3Hn→C. Here, complex bilinear means the function is linear when restricted to
variable. The antisymmetric concurrence formCn(2,2) is nonzero even in the casen is odd,
although of courseC2p21[0 sinceC2p21(uc&,uc&)52C2p21(uc&,uc&)50.

Definition I.1: The concurrence formCn :Hn3Hn→C is given byCn(uc&,uf&)5^cu(2 is1
y)

3(2 is2
y)¯(2 isn

y)uf&. Note the complex conjugation of the lead bra is required for comp
linearity ~rather than antilinearity! in the first variable. The concurrence quadratic form
Qn

C(uc&)5Cn(uc&,uc&), so thatCn(uc&)5uQn
C(uc&)u5Atn(uc&). Note thatQn

C is a complex qua-
dratic polynomial on the vector spaceHn .

The main technique of this paper is to build a new matrix decomposition of the Lie grou
global phase normed quantum computationsSU(N). It is optimized for the study of the concur
rence andn-tangle and generalizes the two-qubit canonical decomposition,4,10,13–15,26

SU~4!5@SU~2! ^ SU~2!#D@SU~2! ^ SU~2!#. ~1!

Here, the commutative groupD applies relative phases to a ‘‘magic basis’’2,4,9,10,14of phase-
shifted Bell states. This two-qubit canonical decomposition is used to the study of the ent
ment capacity of two-qubit operations,26 to build efficient~small! circuits in two qubits,4,20,24and
to classify which two-qubit unitary operators require fewer than average multiq
interactions.20,24

The canonical decomposition is itself an example of theG5KAK metadecomposition theo
rem of Lie theory~Ref. 8, Theorem 8.6, Sec. VII.8!. This theorem produces a decomposition of
input semisimple Lie groupG given two further inputs:
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~1! a Cartan involution~Ref. 8, Sec. X.6.3, p. 518! u:g→g for g5Lie(G). By definition, u
satisfies~i! u251 and ~ii ! u@X,Y#5@uX,uY# for all X,YPg. We write g5p% k for the de-
composition ofg into the11 and21 eigenspace ofu;

~2! a commutative subalgebraa,p which is maximal commutative inp.

Then writeK5expk, A5expa, where for linearG,GL(n,C) the exponential coincides with
the matrix power series on each of the Lie subalgebrask, a. The theorem asserts then thatG
5KAK5$k1ak2;k1 ,k2PK,aPA%.

For example, the canonical decomposition ofSU(4) arises as follows. Takeu:su(4)
→su(4) by u(X)5(2 is1

y)(2 is2
y)X̄(2 is1

y)(2 is2
y) and

a5spanR$ i u0&^0u2 i u1&^1u2 i u2&^2u1 i u3&^3u, i u0&^3u1 i u3&^0u, i u1&^2u1 i u2&^1u%. ~2!

We extend this particular construction ton-qubits.
Definition I.2: Let S5(2 is1

y)(2 is2
y)¯(2 isn

y). Define u:su(2n)→su(2n) by u(X)
5S21X̄S5(21)nSX̄S. Then k denotes the11-eigenspace ofu while p denotes the
21-eigenspace. Finally, in casen is even, we define

a5spanR ~$ i u j &^ j u1 i uN2 j 21&^N2 j 21u2 i u j 11&^ j 11u2 i uN2 j 22&^N2 j 22u;
0< j <2n2122%t$ i u j &^N2 j 21u1 i uN2 j 21&^ j u;0< j <2n2121%,),

in case n even, ~3!

with A5exp a. In casen odd, we drop the second set:

a5spanR ~$ i u j &^ j u1 i uN2 j 21&^N2 j 21u2 i u j 11&^ j 11u2 i uN2 j 22&^N2 j 22u;
0< j <2n2122%), in case n odd. ~4!

Modulo checks reserved for the body, theconcurrence canonical decomposition~CCD! in
n-qubits is the resulting matrix decompositionSU(2n)5KAK. Note thatn may be even or odd

In n-qubits, it is certainlynot the case thatK is the Lie group of local unitaries. Nonetheles
we prove momentarily by direct computation that the local unitary groupSU(2)^ SU(2)^¯

^ SU(2),K, with strict containment inn>3 qubits by a dimension count. Moreover, forn
52p an even number of qubits the concurrence canonical decomposition is computable
algorithm familiar from the two-qubit case4 ~see Appendix A!. The following theorem provides the
key to interpreting this extended canonical decomposition.

Theorem I.3: Let K5expk for k the 11-eigenspace of the Cartan involutionu(X)
5S21X̄S. Then K is the symmetry group of the concurrence formCn . Specifically, for u
PSU(N),

~uPK !⇔@Cn~uuf&,uuc&)5Cn~ uf&,uc&), for every uf&,uc&PHn]. ~5!

Moreover, for n even the concurrence form is symmetric. In the even case, it restricts to the
dot product on theR-span of a collection of n concurrence one states, and thisR subspace ofHn

is preserved by K. On the other hand, for n oddCn is antisymmetric, i.e. a two-form. Thus,

K>Sp~N/2!, if n is an odd number of qubits;

K>SO~N!, if n is an even number of qubits.

Remark I.4:Bremneret al. ~Ref. 3, Theorem 5! observe symplectic Lie algebras indepe
dently in a context related to the above. We explore this in more detail in a future manuscrL

This interpretation allows for an extension of prior work on the entangling capacity of
qubit unitaries.26 Here is the precise result.
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Definition I.5: The concurrence capacityof a givenn-qubit unitary operatorvPSU(N) is
defined byk(v)5max$Cn(vuc&); Cn(uc&)50,̂ cuc&51%.

Corollary I.6 (of I.3): Let u5k1ak2 be the n-qubit canonical decomposition of uPSU(N).
Thenk(u)5k(a).

Given the CCD, the functionk is properly viewed as a function on theA factor rather than on
the entire group of phase-normalized unitariesSU(N). Finally, a careful analysis ofk(a) for
randomly chosena in A produces the following, perhaps surprising, result.

Theorem I.7: Suppose the number of qubits is even, i.e., n52p. Then for large p almost all
aPA have maximal concurrence capacity. Specifically, suppose we choose aPA at random per
the probability density function given by the unit normalized Haar measure da. Then

lim
p→`

Probability@k~a!51#5 lim
p→`

da~$aPA;k~a!51%!51. ~6!

We rephrase this result colloquially. Suppose we think of those statesuc& in even qubits with
tn(uc&)51 as GHZ-like. Then as the even number of qubits grows large, almost every un
evolution will be able to produce such a maximally concurrent GHZ-like state from some
state of 0 concurrence.

Notation and contents: We provide some samples of our notation for the reader’s conven
Throughout,n is a number of qubits andN52n. For v5( j ,k50

N21 v j ,kuk&^ j u, we have the adjoint
v†5( j ,k50

N21 v̄k, j uk&^ j u. We also require the transpose operation, most easily visualized in m
form as (v j ,k)

T5(vk, j ). Equivalently,vT5( j ,k50
N21 v j ,ku j &^ku. Thus v†5 v̄T. Recall also the con-

vention of collapsing the binary for an integer inside the ket of a computational basis state. W
lower rather than upper case letters for most operators to avoid confusing them with Lie g
denoted by capital letters. The older termscholiumis used to refer to a corollary of the proof o
a theorem or proposition rather than its formal statement. Besides these conventions, we fol
notations of either Refs. 18 or 8.

The paper is structured as follows. In Sec. II, we verify that the conventions of Definitio
are appropriate for invoking theG5KAK theorem. Having verified that the matrix decompositi
exists, Sec. II further describesentanglersandfinaglers, loosely similarity matrices which rotate
the CCD onto more standardKAK decompositions ofSU(N). In Sec. III, we discuss the concu
rence capacity and prove the properties of this capacity asserted above. The three app
consecutively~i! provide an algorithm for computing the CCD given a matrixvPSU(N), exclu-
sively in the casen is even,~ii ! argue that any two normalized statesuf&, uc& with identical
concurrence must havekuf&5uc& for somek in the symmetry groupK, and~iii ! prove that the
concurrenceCn(2) is an entanglement monotone.

II. ENTANGLERS, FINAGLERS, AND CARTAN INVOLUTIONS OF su„N…

This section has two goals. First, we show ourKAK decomposition is well-defined, by notin
thatu is a Cartan involution, checking by direct computation thata is Abelian, and arguing thata
is maximal commutative. Second, we prove Theorem I.3. There are generally two approac
the theorem. We could recall standard Cartan involutions andKAK decompositions from the
literature. We will shortly construct similarity matricesE0 and F0 which rotate the standardG
5KAK decompositions ofSU(N) onto the CCD, and we could simply appeal to these matri
and the standard structures. Alternately,~many! intrinsic computations would suffice to check th
required properties forG5KAK. The present approach is a compromise. The argument tha
CCD SU(N)5KAK is well-defined is intrinsic, except for a single appeal to classification. On
other hand, the classification of theK groups uses similarity matrices. As such, it is ultimately
change of basis in then-qubit state spaceHn .
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A. Properties of the CCD SU„N…ÄKAK

The following proposition is not used in the sequel. However, we include a direct proof d
its importance in guiding the choice ofu. It simplifies an older argument and arose from cor
spondence with Zanardi.

Proposition II.1: Let K be as in Definition I.2. Then there is an inclusion SU(2)^ SU(2)
^¯^ SU(2),K.

Proof: Recallisx5 i u0&^1u1 i u1&^0u, isy5u0&^1u2u1&^0u, andisz5 i u0&^0u2 i u1&^1u forms
a basis ofsu(21). For the statement of the proposition, it suffices to check Lie@ ^ 1

nSU(2)#
5span$ is j

x ,is j
y ,is j

z; 1< j <n%,k. We further recall the last item of Lemma II.2, as well as t
fact that the complex conjugates of the Pauli matrices areisx52 isx, isy5 isy, and isz5
2 isz. Then we wish to show thatu fixes everys j

x , s j
y , ands j

z . For this,

~21!nS ~ is j
x!S5~21!nS~2 is j

x!S5~21!nS2~ is j
x!5~ is j

x!,

~21!nS~ is j
y!S5~21!nS~ is j

y!S5~21!nS2~ is j
y!5~ is j

y!,

~21!nS~ is j
z!S5~21!nS~2 is j

z!S5~21!nS2~ is j
z!5~ is j

z!.

Hence each such infinitesimal unitary is in the11 eigenspace ofu. This concludes the proof.h

We next note thatu is a Cartan involution. Indeed, direct computation shows thatu251.
Moreover,

@uX,uY#5~S21X̄S!~S21ȲS!2~S21ȲS!~S21X̄S!5S21~XY2YX!S5u@X,Y#. ~7!

Thus we need the following to complete the argument thatSU(N)5KAK of Definition I.2 is
well-defined:~i! a,p, ~ii ! a is commutative, and~iii ! no larger subalgebra ofp containinga is
commutative.

Lemma II.2: Let #j denote the number of 1’s in the binary expansion of j. Let S5(2 is1
y)

3(2 is2
y)¯(2 isn

y) be as in Definition I.2. Then (i) Su j &5(21)# j uN2 j 21&, (ii) ^ j uS5
(21)n2# j^N2 j 21u, and (iii) Ss j

x52s j
xS, Ss j

y5s j
yS, and Ss j

z52s j
zS. Note that (ii) refers to

a composition of linear maps.
Sketch:For ~i!, compute. For~ii !, consider̂ j uSuk& for uk& varying over all computational basi

states. Then apply~i! for ~ii !. For ~iii !, distinct Pauli matrices anticommute, whileS itself is a
tensor. h

Lemma II.3: Leta be as in Definition I.2. Thena,p.
Proof: There are two coordinate computations to complete in this case. For the first, mo

tarily extend the definition ofu to ũ acting onu(N) by the same formula. Then

ũ@ i u j &^ j u1 i uN2 j 21&^N2 j 21u#

5~21!nS~2 i u j &^ j u2 i uN2 j 21&^N2 j 21u!S

5~21!n11i @~21!nuN2 j 21&^N2 j 21u1~21!nu j &^ j u#

52 i u j &^ j u2 i uN2 j 21&^N2 j 21u.

Thusi u j &^ j u1 i uN2 j 21&^N2 j 21u is in the21-eigenspace ofũ, so that the elements of the firs
set of the definition ofa are contained inp. For the second basis set in casen even,
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u@ i u j &^N2 j 21u1 i uN2 j 21&^ j u#

5S@~2 i !u j &^N2 j 21u1~2 i !uN2 j 21&^ j u#S

5@~21!# j 1[n2(n2# j )]~2 i !uN2 j 21&^ j u1~21!n2# j 1(n2# j )~2 i !u j &^N2 j 21u#

5~2 i !uN2 j 21&^ j u1~2 i !u j &^N2 j 21u.

Thus i u j &^N2 j 21u1 i uN2 j 21&^ j uPp, in casen even. h

Proposition II.4: Recalla from Definition I.2. Thena is commutative.
Proof: Throughout, 0< j ,k<N/221, N52n. The following three computations of Lie brack

ets suffice:

@ i u j &^ j u1 i uN2 j 21&^N2 j 21u,i uk&^ku1 i uN2k21&^N2k21u#

52u j &^ j uk&^ku2uN2 j 21&^N2 j 21uN2k21&^N2k21u

1uk&^ku j &^ j u1uN2k21&^N2k21uN2 j 21&^N2 j 21u;

@~2 i !n11u j &^N2 j 21u1 i n21uN2 j 21&^ j u,~2 i !n11uk&^N2k21u1 i n21uN2k21&^ku#

52u j &^N2 j 21uN2k21&^ku2uN2 j 21&^ j uk&^ku

1uk&^N2k21uN2 j 21&^ j u1uN2k21&^ku j &^N2 j 21u;

@ i u j &^ j u1 i uN2 j 21&^N2 j 21u,~2 i !n11uk&^N2k21u1 i n21uN2k21&^ku#

5~2 i !nu j &^ j uk&^N2k21u1 i nuN2 j 21&^N2 j 21uN2k21&^ku

2~2 i !nuk&^N2k21uN2 j 21&^N2 j 21u2 i nuN2k21&^ku j &^ j u.

Each of the final expressions is zero in casej Þk and also zero in casej 5k. Thus,a is commu-
tative. h

The arguments above almost complete the proof that the CCDSU(N)5KAK is well-defined.
In the abstract, one also needs a fairly large coordinate computation which verifiesa is maximal
commutative. This would verify that for anyXPp with @X,H#50 for all HPa, one must in fact
haveXPa.

Rather than complete that task, we instead appeal to the Cartan classification~Ref. 8, p. 518,
Table V!. Ostensibly a classification of globally symmetric spaces, this classification also
scribes all possible Cartan involutions of any real semisimple groupG up to Lie isomorphism. For
G5SU(N), there are three overall possibilities grouped as typeAI , AII , andAIII . For each, the
rank refers to the dimension of any maximal commutative subalgebraa of p. This dimension may
not vary by subalgebra, since any two sucha1 , a2 must haveka1k215a2 for somekPK. We now
excerpt from the table the possibilities forG5SU(N):

Type Domaing of u:g→g Isomorphism representative ofK Rank

AI su(N) SO(N) N21
AII su(N) Sp(N/2) N/221
AIII su(N) S@U(p) % U(q)#,p1q5N min(p,q)

Suppose then for the moment that the number of qubitsn is even. No typeAIII Cartan
involution admits ana of dimensionN21. Indeed, ifp1q5N, then min(p,q)<N/2,N21. The
same is true of typeAII involutions, i.e.,N21.N/221. Hence we see thatA must be maximal,
and forn even the Cartan involutionu must have typeAI .
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What remains is to prove thata is maximal inp in casen odd. This follows by a dimension
count if the Cartan involution is typeAII . We thus postpone noting this point until after the pro
of Theorem I.3. See Remark II.19.

As an aside, typeAIII involutions do not appear in this work but have been used in quan
circuit design. Indeed, the CS-decomposition7,21 is an example of aKAK decomposition arising
from a typeAIII involution. Elements within the appropriateK group may be interpreted a
products of computations on the lastn21 lines with computations on these lines controlled on
first qubit.

B. Entanglers

In the two-qubit case, the following computationE has the following property:

E5~1/& !S 1 i 0 0

0 0 1 i

0 0 21 i

1 2 i 0 0

D satisfiesE†@SU~2! ^ SU~2!#E5SO~4!. ~8!

Using more Lie theory terminology, recall the adjoint representation ofG on g given by Ad(g)
3@X#5gXg21. Then we may restate$Ad(E†)%@SU(2)^ SU(2)#5SO(4). This provides a
physical interpretation for the low dimensional isomorphismsu(2)% su(2)>so(4). We would
like entanglers for the concurrence canonical decomposition.

Definition II.5: Let uAI :su(2n)→su(2n) denote the usual typeAI Cartan involutionuAI (X)
5X̄ associated toSO(N),SU(N). We sayEPSU(2n) is an entangler iff the following diagram
commutes:

~9!

In particular as both groups are connected, we must have Ad(E)@SO(N)#5K.
We next prove the surprising fact that there are no entanglers whenn is odd. For this, we need

to recall the central subgroupZ@SU(N)#5$vPSU(N);vuv†5ufor all uPSU(N)%. The center is
in fact the set of all phase computations corresponding to theNth roots of unity:

Z@SU~N!#5$j1;jN51% ~Ref. 8, pp. 310, 516!. ~10!

With this fact recalled from the literature, we have the following lemma.
Lemma II.6: Suppose that forvPSU(N), @Ad(v)#(X)5vXv†5X for every XPsu(N). Then

v5j1 for somejPC with jN51. ~Hencej5e2p ik/N,0<k<N21.)
Proof: Recall that exp:su(N)→SU(N) is onto. Thus eachuPSU(N) may be written as expX

for someX. Thus, consider the one-parameter-subgroup~Ref. 8 p. 104! g:R→SU(N) given by
t°v@exp(tX)#v†. This has derivative (dg/dt) u t505vXv†5X, and by uniqueness of one
parameter-subgroups~Ref. 8, p. 103, Corollary 1.5! v exp(tX)v†5exp(tX) for all t. Taking t51,
we seevuv†5u for a genericuPSU(N). h

Proposition II.7: If the number of qubits n is odd, then there does not exist an entang
PU(N).

Proof: Assume by way of contradiction that there does exist an entanglerE for n odd. Then
for all XPsu(N), we have the following equation:

~EET!X̄~EET!† 5EuAI @E†XE#E†5u~X!5SX̄S21. ~11!
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Since we may varyY5X̄ oversu(N) as well, this implies thatS21EET satisfies the hypothesis o
Lemma II.6. ThusS21EET5j1 for jN51 or EET5(j1)S. The contradiction forEET is always
a complex symmetric matrix while (j1)S is not a complex symmetric matrix whenn is odd. h

Scholium II.8: For an even number of qubits n, the matrix EPU(N) is an entangler iff
EET5(j1)S, wherejN51.

There are many possible entanglers. Indeed, even in two-qubits other choices hav
used.15,26 One possibility givenn even is to take then/2 fold tensor productE^ E^¯^ E.
However, we prefer the following choice as a standard instead, since it highlights the mapp
the computational basis to Greenberger–Horne–Zeilinger states.

Definition II.9: Supposen is even, and writeS5(2 is1
y)(2 is2

y)¯(2 isn
y)5( j 50

N/221« j (u j &
3^N2 j 21u1uN2 j 21&^ j u), with « j5(21)# j , where #j is the number of 1’s in the binary
expression forj . The standard entanglerE0 in n-qubits is then given by

E05
1

&
(
j 50

N/221

u j &^2 j u1 i u j &^2 j 11u1« j~ uN2 j 21&^2 j u2 i uN2 j 21&^2 j 11u!. ~12!

Proposition II.10: The standard entangler E0 is an entangler.
Proof: First, we omit due to reasons of space a set of row operations which verifies

det(E0)51. Then we may write out an expression forE0
T by reversing the indices in each bra-k

pair:

E0
T5

1

&
(
k50

N/221

u2k&^ku1 i u2k11&^ku1«k~ u2k&^N2k21u2 i u2k11&^N2k21u!. ~13!

Then Scholium II.8 shows that the following computation suffices to prove thatE is an entangler:

E0E0
T5

1

2 (
j 50

N/221

u j &^ j u1« j u j &^N2 j 21u1 i 2u j &^ j u1« j u j &^N2 j 21u1« j uN2 j 21&^ j u

1« j
2uN2 j 21&^N2 j 21u1« j~ uN2 j 21&^ j u1 i 2« j

2uN2 j 21&^N2 j 21u!

5 (
j 50

N/221

« j~ u j &^N2 j 21u1uN2 j 21&^ j u!

5~2 is1
y!~2 is2

y!¯~2 isn
y!. ~14!

This concludes the coordinate computation. h

In the next section, we will also make use of the following lemma. The computation is sim
Lemma II.11: E0

TE0 is diagonal and real. In fact, E0
TE05u0&^0u2u1&^1u1u2&^2u2u3&^3u

1¯ .
Proof: Computing the reversed product:

E0
TE05

1

2 (
j 50

N/221

u2 j &^2 j u1 i u2 j 11&^2 j u1 i u2 j &^2 j 11u2u2 j 11&^2 j 11u

1« j
2u2 j &^2 j u2 i« j

2u2 j &^2 j 11u2 i« j
2u2 j 11&^2 j u1 i 2« j

2u2 j 11&^2 j 11u

5 (
j 50

N/221

u2 j &^2 j u2u2 j 11&^2 j 11u. ~15!

This concludes the proof. h

Example II.12:Although this example is large, we explicitly describe the standard four-q
entangler:
                                                                                                                



E05~1/& !

¨

1 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 i 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 i 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 i 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 i 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 i 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 i 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 i

0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 i

0 0 0 0 0 0 0 0 0 0 0 0 1 2 i 0 0

0 0 0 0 0 0 0 0 0 0 1 2 i 0 0 0 0

0 0 0 0 0 0 0 0 21 i 0 0 0 0 0 0

0 0 0 0 0 0 1 2 i 0 0 0 0 0 0 0 0

0 0 0 0 21 i 0 0 0 0 0 0 0 0 0 0

0 0 21 i 0 0 0 0 0 0 0 0 0 0 0 0
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1 2 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0
~16!

Note that the antidiagonal pattern mirrorsS5(2 is1
y)(2 is2

y)¯(2 isn
y) and that each computa

tional basis state maps to a relative phase of a GHZ state. L

C. Finaglers

There do not exist entanglers when the number of qubitsn is odd, becausek>sp(N/2) rather
thanso(N). See the as yet unproven Theorem I.3. Yet the fairly abstract embeddingK of Sp(N/2)
into SU(N) might be made more standard. This is indeed possible, and we call the any m
which rotatesK to the standardSp(N/2) a finagler.

Definition II.13: Let uAII :su(N)→su(N) be the standard Cartan involution~Ref. 8, p. 445!
fixing sp(N/2), i.e., uAII (X)5(2 isy

^ 1N/2)X
T(2 isy

^ 1N/2)5(2 isy
^ 1N/2)

21X̄(2 isy
^ 1N/2).

Then a finaglerF is anyFPSU(2n) which causes the following diagram to commute:

~17!

If FPSU(N), then we sayF finagles iff F is a finagler.
Proposition II.14: F is a finagler iff F(2 isy

^ 1N/2)
TFT5(j1)(2 is1

y)(2 is2
y)¯(2 isn

y)
5(j1)S, jN51.

Proof: For convenience, label S52 isy
^ 1N/2 . (F finagles)⇔@FS21(F†XF)SF†

5S21X̄S ;XPsu(N)#⇔@FSTFT5(j1)S,jN51#. Note that the second equivalence uses Lem
II.6. h

Example II.15: In three qubits, we see the following computation is a finagler by di
computation:
                                                                                                                



F5~1/& !1
1 0 0 0 1 0 0 0

0 1 0 0 0 21 0 0

0 0 1 0 0 0 21 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 21

0 0 1 0 0 0 1 0 2 . ~18!
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0 1 0 0 0 1 0 0

1 0 0 0 21 0 0 0

Unlike entanglers, it is possible forF5F̄. The finagler maps computational basis states to G
states. L

Definition II.16: Fix n an odd number of qubits. LetS5(2 is1
y)(2 is2

y)¯(2 isn
y)

5( j 50
N/221i j (uN2 j 21&^ j u2u j &^N2 j 21u) with i j561. The standard finaglerF0 is defined to be

the following linear operator:

F05 (
j 50

N/221

u j &^ j u1uN2 j 21&^ j u1i j~ u j &^N/21 j u2uN2 j 21&^N/21 j u!. ~19!

Note that the standard finagler is real.
Proposition II.17: The standard finagler F0 finagles.
Proof: We again omit the column operations verifying det(F0)51, as this would take severa

pages. Thus, letS52 isy
^ 1N/2 be expanded asS5( j 50

N/221u j &^N/21 j u2uN/21 j &^ j u. We have
the following equation:

F0S5
1

&
(
j 50

N/221

u j &^N/21 j u1uN2 j 21&^N/21 j u2i j~ u j &^ j u2uN2 j 21&^ j u!. ~20!

Moreover,F0
T5(1/&) ( j 50

N/221u j &^ j u1u j &^N2 j 21u1i j (uN/21 j &^ j u2uN/21 j &^N2 j 21u). Thus
we see that

~F0S!F0
T5

1

2 (
j 50

N/221

i j~ u j &^ j u2u j &^N2 j 21u1uN2 j 21&^ j u2uN2 j 21&^N2 j 21u!

2i j~ u j &^ j u1u j &^N2 j 21u2uN2 j 21&^ j u2uN2 j 21&^N2 j 21u!

5 (
j 50

N/221

i j~ uN2 j 21&^ j u2u j &^N2 j 21u!. ~21!

This concludes the proof. h

We also briefly review howSp(N/2) embeds intoSU(N). By one standard definition of the
group ~Ref. 8, p. 446!,

sp~N/2!5H S X1 X2

X3 2X1
TD ;Xj5X̄j ,X2,3 symmetricJ . ~22!

Another standard definition~Ref. 11, pp. 34–36! uses a symmetry in matrices of quaternions. N
that the matrices of Eq.~22! are not elements ofsu(N). Rather, the11 eigenspace ofuAII (X)
5S21X̄S is
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sp~N/2!5H S V W

2W† V̄
D ;VPu~N/2!,W5WT is complex symmetricJ . ~23!

@For example,Sp(4),SU(8); this is 36 dimensional. ForW includes two real symmetric matri
ces with 10 dimensions each, whileu~4! is 16 dimensional.# One may verify that this is also a
copy of sp(N/2), so thatk is a copy ofsp(N/2) as well. Also, note that forkPK, in particular
kP ^ 1

nSU(2), weexpectFkF† to be in thecopy of Sp(N/2) aboverather than to be a real matri
in an orthogonal subgroup ofSU(N). Finally, note that exponentiating the Lie algebra above
not the best way to write out a closed form for elements of the global groupSp(N/2). Rather, we
have a block form:

Sp~N/2!5$VPSU~N!;VTSV5S%

5H S A B

C DD PSU~N!;
ATC is symmetric,BTD is symmetric
ATD2CTB51 J . ~24!

D. K is the symmetry group of the concurrence form

We are now in a position to provide the physical interpretation ofK. Namely, K is the
symmetry group of the concurrence bilinear form, as stated in Theorem I.3.

Proof of Theorem I.3:We first prove thatvPK iff Cn(vuf&,vuc&)5Cn(uf&,uc&) for all uf&,
uc&PHn . Let X5 log v. Since XPsu(N), X is anti-Hermitian, i.e.,X52X†52X̄T. Finally,
recall S5(2 is1

y)(2 is2
y)¯(2 isn

y). Thus in mathematical notation, we have forw,xPHn the
concurrence form given byCn(w,x)5wTSv. Hence

~X5S21X̄S!⇔~SX5X̄S!⇔~SX52XTS!⇔~XTS1SX50!⇔~vTSv5S!. ~25!

Now the first item is equivalent tovPK while the last is equivalent toC(vw,vx)
5(wTvT)S(vx)5wT(vTSv)x5wTSx5C(w,x) for all w,xPHn .

We next prove that forn odd,K>Sp(N/2). To do so, it suffices to shown odd impliesCn is
a nondegenerate two-form onHn . We first showCn(x,w)52Cn(w,x) for anyw,xPHn . Noting
that the transpose of a 131 matrix is again the same matrix, we realize thatCn is a two-form as
follows:

Cn~w,x!5wTSx5@wTSx#T5xTSTw52xTSw52Cn~x,w!. ~26!

Moreover, consider the tensor expression forS. We see that no eigenvalues ofS are zero, and
hence the form is nondegenerate. Thus, we must haveK>Sp(N/2).

Suppose now thatn is even. We finally proveK>SO(N). It suffices to construct a real vecto
spaceVR,Hn so that the following properties hold:

• K•VR#VR;

• The restriction ofCn to VR3VR is the usual dot product in the coordinates of a given ba

Consider thenVR5spanR$E0u j &; 0< j <N21%, for E0 the standard entangler of Definitio
II.9. SinceE0 is an entangler, certainlyK•VR,VR sinceK acts on this real vector space by~real!
orthogonal maps. Moreover, consider the concurrence onVR . For w,x in the R span of the
computational basis, we haveE0w, E0x generic vectors inVR . Then

Cn~E0w,E0x!5~E0w!TS~E0x!5wTE0
TSE0x5wTE0

TE0E0
TE0x5wT1x5w•x, ~27!
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with the fourth equality by Lemma II.11. Hence in an even number of qubits,K fixes a real inner
product on a real vector subspace ofHn . ThusK>SO(N). h

Scholium II.18: For n even, for E0 the standard entangler of Definition II.9, for anyuf&,
uc&PHn , we haveCn(E0uf&,E0uc&)5^fuc&.

Remark II.19:Note that independent of any discussion of the algebraa in n an odd number of
qubits, we have shown that the Cartan involutionu has typeAII . Hence any commutativeN/2
21 dimensional subalgebra ofp must be maximal, and the concurrence canonical decompos
SU(N)5KAK is well-defined forn odd. L

Remark II.20:Similar to Scholium II.18, note that the standard~real! finaglerF0 of Definition
II.16 translates between the concurrence and the more standard two-form (w,x)°wT@(2 isy)
^ 1N/2#x. Indeed,F0

215F0
T sinceF0 is orthogonal. Moreover, letw,x be in the real span of the

computational basis states$u j &; 0< j <N21%. Then we may view$F0u j &; 0< j <N21% as a
finagled basis, and the pullback of the concurrence from the finagled to the computational b
the model two-form. Indeed, labelingS5(2 isy) ^ 1N/2 , F0SF0

T5S and F0 real imply S
5F0

TSF0 . HenceCn(F0w,F0x)5(F0w)TS(F0x)5wTSx. L

E. Cartan involution in coordinates

We finally present the Cartan involution in coordinates and provide some sample calcula
Let XPsu(N), say withX5( j ,k50

N21 xj ,kuk&^ j u. We now compute explicitlyu(X) so as to arrive at
coefficient expressions forp, k.

u~X!5~21!n (
j ,k50

N21

x̄ j ,kSuk&^ j uS5~21!n1n2#k1# j (
j ,k50

N21

x̄ j ,kuN2k21&^N2 j 21u.

Consequently, we have the following characterizations:

• X5( j ,k50
N21 xj ,kuk&^ j uPp iff @„XPsu(N)… and„xN212k,N212 j5(21)# j 1#k11x̄k, j…];

• X5( j ,k50
N21 xj ,kuk&^ j uPk iff @„XPsu(N)… and„xN212k,N212 j5(21)# j 1#kx̄k, j…].

This moreover produces the following description ofk.

k5spanR$uk&^ j u2u j &^ku1~21!# j 1#kuN2k21&^N2 j 21u2~21!# j 1#kuN2 j 21&^N2k21u%

t$ i uk&^ j u1 i u j &^ku1~21!#k1# j 11i uN2 j 21&^N2k21u1~21!# j 1#k11i uN2k21&

3^N2 j 21u%t$ i u j &^ j u2 i uN2 j 21&^N2 j 21u%. ~28!

Remark II.21:We warn the reader that the above expression does not allow one to c
dimensions. Several repetitions occur from set to set, and moreover the expressions may v
casej 5N2k21. L

F. Example in the two-qubit case

Recall the subalgebra@1^ su(2)# % @su(2)^ 1# of infinitesimal transformations bySU(2)
^ SU(2)#SU(4). Weshow how the above equation~28! recovers this subalgebra in the case
n52 qubits.

We begin by pluggingk50, j 51. Expanding into binary~or writing out the matrix! makes
clear this is a tensor, and moreover a tensor by an identity matrix. Recall again that bo
required to be in the Lie algebra ofSU(2)^ SU(2):

u0&^1u2u1&^0u2u3&^2u1u2&^3u5u00&^01u2u01&^00u2u11&^10u1u10&^11u

5~ u0&^0u1u1&^1u! ^ ~ u0&^1u2u1&^0u!. ~29!

One may similarly analyze the following matrices:
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i u0&^1u1 i u1&^0u1 i u3&^2u1 i u2&^3u,

u0&^2u2u2&^0u2u3&^1u1u1&^3u,

i u0&^2u1 i u2&^0u1 i u3&^1u1 i u1&^3u. ~30!

Note that for the next four expressions, substitution returns a 0 matrix:

u0&^3u2u3&^0u1u3&^0u2u0&^3u,

i u0&^3u1 i u3&^0u2 i u3&^0u2 i u0&^3u,

u1&^2u2u2&^1u1u2&^1u2u1&^2u,

i u1&^2u1 i u2&^1u2 i u2&^1u2 i u1&^2u. ~31!

Further substitution yields the following:

u1&^3u2u3&^1u1u2&^0u2u0&^2u,

i u1&^3u1 i u3&^1u1 i u2&^0u1 i u0&^2u,

u2&^3u2u3&^2u2u1&^0u1u0&^1u,

i u2&^3u1 i u3&^2u1 i u1&^0u1 i u0&^1u. ~32!

Finally, we consider the diagonal matrices ink:

i u0&^0u2 i u3&^3u,

i u1&^1u2 i u2&^2u. ~33!

Note that theR span of these two matrices coincides withR( isz
1) % R( isz

2).
The Cartan involution formalism thus works, although in a cumbersome way. We next ex

the answer it returns in the three-qubit case.

G. Example in the three-qubit case, KÄSp „4…

We now describe explicitly the output of Eq.~28! in three qubits. The corresponding real L
algebra is thirty-six dimensional, which implies by the Cartan classification thatK is an abstract
copy of Sp(4). A copy of SO(8) would rather be 28 dimensional.

The simplest way to organize the three qubit computation is to appeal to separation. We
term uk&^ j u has separationuk2 j u and extend linearly. In Eq.~28!, each matrix described has
well-defined separation:

Separation 0i u0&^0u2 i u7&^7u

Total 4 i u1&^1u2 i u6&^6u,
i u2&^2u2 i u5&^5u,
i u3&^3u2 i u4&^4u, ~34!

Separation 1u0&^1u2u1&^0u2u7&^6u1u6&^7u

Total 8 i u0&^1u1 i u1&^0u1 i u7&^6u1 i u6&^7u,
u1&^2u2u2&^1u1u6&^5u2u5&^6u,
i u1&^2u1 i u2&^1u2 i u6&^5u2 i u5&^6u,
u2&^3u2u3&^2u2u5&^4u1u4&^5u,
i u2&^3u1 i u3&^2u1 i u5&^4u1 i u4&^5u,
u3&^4u2u4&^3u, i u3&^4u1 i u4&^3u, ~35!

Separation 2u0&^2u2u2&^0u2u7&^5u1u5&^7u

Total 6 u0&^2u1 i u2&^0u1 i u7&^5u1 i u5&^7u,

u1&^3u2u3&^1u2u6&^4u1u4&^6u,
i u1&^3u1 i u3&^1u1 i u6&^4u1 i u4&^6u,
u2&^4u2u4&^2u1u5&^3u2u3&^5u,
i u2&^4u1 i u4&^2u2 i u5&^3u2 i u3&^5u ~36!
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Separation 3u0&^3u2u3&^0u1u7&^4u2u4&^7u

Total 6 i u0&^3u1 i u3&^0u2 i u7&^4u2 i u4&^7u,
u1&^4u2u4&^1u1u6&^3u2u3&^6u,
i u1&^4u1 i u4&^1u2 i u6&^3u2 i u3&^6u,
u2&^5u2u5&^2u, i u2&^5u1 i u5&^2u, ~37!

Separation 4u0&^4u2u4&^0u2u7&^3u1u3&^7u

Total 4 i u0&^4u1 i u4&^0u1 i u7&^3u1 i u3&^7u,
u1&^5u2u5&^1u2u6&^2u1u2&^6u,
i u1&^5u1 i u5&^1u1 i u6&^2u1 i u2&^6u, ~38!

Separation 5u0&^5u2u5&^0u1u7&^2u2u2&^7u

Total 4 i u0&^5u1 i u5&^0u2 i u7&^2u2 i u2&^7u,
u1&^6u2u6&^1u,
i u1&^6u1 i u6&^1u, ~39!

Separation 6u0&^6u2u6&^0u1u7&^1u2u1&^7u

Total 2 i u0&^6u1 i u6&^0u2 i u7&^1u2 i u1&^7u, ~40!

Separation 7u0&^7u2u7&^0u

Total 2 i u0&^7u1 i u7&^0u. ~41!

Thus we see a total of 418161614141212536 real dimensions ink. Now by the Cartan
classification~Ref. 8, p. 518!, the Cartan involutionu must be either typeAI fixing an abstract
copy ofSO(28), typeAIII fixing someS@U(p) % U(q)# for p1q52n, or else typeAII fixing an
abstract copy ofSp(4). Since onlySp(4) is thirty-six dimensional, we seek>sp(4) and K
>Sp(4).

III. APPLICATIONS TO CONCURRENCE CAPACITY

In this section we focus on an application of the concurrence canonical decompo
SU(N)5KAK of Definition I.2 when the number of qubitsn is even. Namely, we study how
given computationvPSU(N) may change the concurrence of the quantum data state. Sinc
have the concurrenceCn(uc&)5u^cu(2 is1

y)(2 is2
y)¯(2 isn

y)uc&u with the n-tangletn5Cn
2 for

n even, there are immediate applications to then-tangle as well.
Let vPSU(N). Recall from Definition I.5 that the concurrence capacity is defined as

k~v !5max$Cn~vuc&!;Cn~ uc&)50,̂ cuc&51%. ~42!

Since we vary over allCn(uc&)50, we see that forkPK we havek(vk)5k(v) by symmetry.
Immediatelyk(kv)5k(v). Thus, forv5k1ak2 the C.C. decomposition of anyvPSU(N), we
havek(v)5k(k1ak2)5k(a).

We next describe the concurrence capacity of anyaPA. The formalism makes strong use o
entanglers to translate betweenCn and (w,x)°wTx.

Definition III.1: The concurrence spectrumlc(v) of vPSU(N) is the spectrum of
E0

†vE0(E0
†vE0)T, for E0 the standard entangler of Definition II.9. Note that the spectrum is the

of eigenvalues sinceHn is finite dimensional. Theconvex hullCH@lc(v)# of lc(v) is the set of
all line segments joining all points oflc(v), i.e.,

CH@lc~v !#5H (
zj Plc(v)

t jzj ;0<t j<1, (
j 50

#lc(v)

t j51J . ~43!
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These definitions allow us then to prove the following general results regarding concur
capacity. The techniques closely follow those in prior work.26

Lemma III.2: LetvPSU(N), with CCD v5k1ak2 for a5E0dE0
† for d diagonal in SU(N):

• lc(v)5lc(a)5$dj
2;d5( j 50

N21dj u j &^ j u%.

• k(v)5k(a)5max$u(j50
N21aj

2dj
2u;uc&5(j50

N21ajuj&,^cuc&51,̂ cuc&50}.

• (k(v)5k(a)51)⇔„0PCH@lc(v)#5CH@lc(a)#….

Proof: For the first item, recallv5k1ak2 . Thus the following expression results from expan
ing Definition III.1:

E0
†vE0~E0

†vE0!T5@~E0
†k1E0!~E0

†aE0!~E0
†k2E0!#@~E0

†k2E0!T~E0
†aE0!T~E0

†k1E0!T#. ~44!

Label the elements ofSO(N) by o15(E0
†k1E0), o25(E0

†k2E0), and putd5E0
†aE0 diagonal.

Then the above reduces too1do2o2
TdTo1

T5o1d2o1
21, with spectrum identical tod.

For the next item, compare the two-qubit case@Ref. 26, Eq.~41!# and recall Scholium II.18.
Suppose Cn(uw&)50. Then per Scholium II.18, for uc&5E0

†uw& we have 0
5Cn(E0E0

†uw&,E0E0
†uw&)5^cuc&. Now for k(a), takeuc&5E0

†uw&. We then maximize over ex
pressionsCn(auw&,auw&)5Cn(E0E0

†aE0uc&,E0E0
†aE0uc&)5Cn(E0duc&,E0duc&)5^cud2uc&.

The final item makes use of the Schwarz inequality. For the concurrence capacity
maximal, there is by compactness of the set of normalized kets some normalizeduc& with
Cn(uF&)51. For uc&5( j 50

N21aj u j &,

15U (
j 50

N21

aj
2dj

2U< (
j 50

N21

uaj
2dj

2u5 (
j 50

N21

uaj u251. ~45!

The Schwarzequality further requires somezPC, z 2z51, so thataj
2dj

25uaj u2z,; j . Now since
^cuc&50,

05 (
j 50

N21

aj
25 (

j 50

N21

uaj u2 d̄ j
2z. ~46!

Multiplying through byz̄ and taking the complex conjugate, we see 0PCH@lc(v)#. h

As already noted in the Introduction, the concurrence capacityk is properly thought of as a
function of A rather than a function ofSU(N). This is advantageous from a computation
standpoint, because in order to calculatek(v) one need minimize over a function involvingN
21 real parameters in A versusN221 parameters describing a generalvPSU(N). We next
consider typical values for a large number of qubits. To do so, we need to be able to ran
choose an element ofA.

Definition III.3: Consider the following coordinate map on the commutative groupA:

@0,2p#N21→A by ~ t0 ,t2 ,... ,tN22!°expE0S (
j 50

N22

i t j u j &^ j u2 i t j u j 11&^ j 11u DE0
† . ~47!

The Haar measure onda is the group multiplication invariant measureda
5(2p)2N11 dt0 dt2 ¯ dtN22 . This is the pushforward of the independent product of unifo
measuresdtj /(2p) on each@0,2p#.

Recall that forp52n, Theorem I.7 asserts that according toda, almost all aPA have
k(a)51 for p large. Specifically, we assert

lim
p→`

da~$aPA;k~a!51%!51. ~48!

We prove this assertion shortly, but we first need a lemma.
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Lemma III.4: Label as uniform distribution on the circle a distribution whose pullback
@0,2p# under t°e2p i t is uniform, and similarly say two random variables Z1 , Z2 on $z 2z51%
are independent iff their pullbacks to@0,2p#3@0,2p# are. Then suppose Z1 is any random vari-
able on the circle, and let Z2 be independent to Z1 and uniform. Then Z1Z2 is uniform.

Proof: Consider the random variableT52 i logZ12i logZ2 mod 2p on @0,2p#. Let f 1(t) be
the pullback probability density function of the nonuniform random variableZ1 to @0,2p#. We let
FT(t)5Prob(T<t) be the cumulative density function. Then

FT~ t !5
1

2p E
0

2p

Prob~2 i logZ2P@s,s1t# ! f 1~s!ds5
1

2p E
0

2p

t f 1~s!ds5t/~2p!. ~49!

SinceFT(t)5t/(2p), we see thatT is uniform. HenceZ1Z2 is uniform. h

Proof of Theorem I.7:First, let us check that$k(a)51% is da-measurable. To see this, no
that the concurrence spectrumlc(a) may be expressed in terms of the coordinatest j as follows:

d0
25e2i t 0,d15e2i t 122i t 0,d2

25e2i t 222i t 1,¯dj
25e2i t j 22i t j 21,... ,dN21

2 5e22i t N22. ~50!

Thus Lemma III.2 induces a measurable condition on thet j .
Continuing the proof, by direct calculationZ2 is a uniform random variable on the circl

$z 2z51% given thatZ is such. Thus note thatd0
2, d2

2, d4
2,... ,dN21

2 are p5N/2 independent,
uniform random variables by Lemma III.4. It suffices to show that,115p independent, random
variables on the circle have 0 in their convex hull as,°`. Relabeld0

25Z0 , d2
25Z1 ,...,dN21

2

5Z, .
Without loss of generality, sayZ051. Let C2 be the event that noZ1 ,Z2 ,... ,Z, is in the

second quadrant$z5x1 iy ;x,0,y.0%, with C3 similar for the third quadrant$x,0,y,0%. Let
D be the event that 0 is in the convex hull ofZ0 , Z1 ,... ,Z, . Then (NOTC2ùNOT C3),D.
Then Prob(NOTC2ùNOT C3)<Prob(D), and

12Prob~D !<12Prob~NOT C2 and NOT C3!5Prob~C2 or C3!5~1/2!,. ~51!

Hence as,→`, Prob(D) goes to 1. Hence the probability CH@lc(v)# contains 0 limits to 1.h

IV. CONCLUSIONS AND ONGOING WORK

We have shown that there exists a generalized canonical decomposition of unitary op
on n qubits which may be used to study changes in the concurrence entanglement monoton
decomposition closely resembles the older two-qubit decomposition whenn is even, and it may be
used to study the concurrence-entanglement capacity of generic unitary operators. The mai
is that such a generic unitary operator is almost always perfectly entangling with respect
concurrence monotone when the number of qubits is large and even.

Ongoing work would attempt to extend the dynamical viewpoint taken in this paper. Sp
cally, the unitary operator describes the dynamics of a quantum data state, and the prese
niques allow us to quantitatively study the dynamics of the concurrence entanglement me
Similarly, we would wish to study the dynamics of this concurrence capacity of quantum co
tations in naturally defined families or sequences of such computations. As a separate to
might also study the failure of the concurrence function itself by quantifying how entangled
respect to other measures a quantum state with zero concurrence may be.

APPENDIX A: COMPUTING THE CCD WHEN THE NUMBER OF QUBITS IS EVEN

This appendix recalls how to compute the canonical decomposition in an even numn
52p of qubits. Note that other arguments in the casen5210,14may be found in the literature, an
that the present treatment is a straightforward genearlization of a matrix-oriented treament
two-qubit case~Ref. 4, Appendix A!. It is included for completeness.

The overall structure of the algorithm contains two steps.
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~1! Produce an algorithm for computing the decompositionSU(N)5SO(N) D SO(N) for D
the diagonal subgroup ofSU(N). We will refer to this decomposition as theunitary SVD
decompositionhenceforth.

~2! RecallE0 , the standard entangler of Definition II.9. Given avPSU(N) for which we wish to
compute the CCD, compute first the unitary SVDE0

†vE05o1do2 . Then we have a CCD
given by

v5~E0o1E0
†!~E0dE0

†!~E0o2E0
†!5k1ak2 , ~A1!

sincek15E0o1E0
†PK, k25E0o2E0

†PK, anda5E0dE0
†PA.

Note that the unitary SVD decomposition exists due toKAK metadecomposition theorem, takin
as inputsG5SU(N), uAI (X)5X̄, anda the diagonal subalgebra ofsu(N).

Before continuing to Step 1, we first prove a lemma. It is useful in computing partic
instances of the unitary SVD.

Lemma A.1: For any pPSU(N) with p5pT, there is some oPSO(N) such that p5odoT

with d a diagonal, determinant one matrix.
Proof: We first show the following:
; a,b, symmetric realN3N matrices withab5ba; there is someoPSO(N) such thatoaoT

andoboT are diagonal.
It suffices to construct a basis which is simultaneously a basis of eigenvectors for botha and

b. Thus, sayVl is thel eigenspace ofb. ForxPVl , b(ax)5a(bx)5lax, i.e.,x°ax preserves
the eigenspace. Now find eigenvectors fora restricted toVl , which remains symmetric. Thus w
may find the desiredoPSO(N), making choices of orderings and signs on an eigenbasi
appropriate for a determinant one.

Given the above, writep5a1 ib. Now 15pp†5pp̄5(a1 ib)(a2 ib)5(a21b2)1 i (ba
2ab). Since the imaginary part of1 is 0, we conclude thatab5ba. Hence a singleo exists per
the last paragraph which diagonalizes the real and imaginary parts. h

Suppose then thatv5o1do2 is the unitary SVD of somevPSU(N). For convenience, we
also labelv5po3 the typeAI Cartan decomposition~Ref. 8, Theorem 1.1.iii, p. 252! ~Ref. 11,
Theorem 6.31.c!. This is a generalized polar decomposition in whichp5pT, kPSO(N). Note that
it is equivalent via Lemma A.1 to computev5pk, as the unitary SVD follows byv5(o1do1

T)k
5o1do2 . Continuing to the algorithm for Step 1:

• Computep2 as follows:p25ppT5po3o3
TpT5vvT.

• Apply Lemma A.1 top2. Thusp25o1d2o1
T for o1PSO(N).

• Choose square roots entrywise ind2 to form d. Be careful to ensure detd51.

• Computep5o1do1
T .

• Thuso35p†v, andv5p(o3)5o1do1
To35o1do2 .

This concludes the algorithm for computing the unitary SVD of Step 1.
Step 2 is almost follows given the inline description. The reader may produce algor

outputtingE0 .
Another question is computational efficiency. This is ongoing work, but we note immedi

that an implementation of the spectral theorem of Lemma A.1 is required. This will be diffi
with current technologies in 161 qubits. Moreover, in the range of 50 to 60 qubits an even spr
of the concurrence spectrumlc(v) of Definition III.1 would make certain elements indistinguis
able at 16-digit precision.

APPENDIX B: CONCURRENCE LEVEL SETS AND K ORBITS

Mathematically, related measures are often easier to use thanCn . For example, the concur
rence quadratic formQn

C(uc&)5Cn(uc&,uc&) with Cn(uc&)5uQn
C(uc&)u has smaller level sets tha
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Cn itself. Moreover, it turns out that the normalized states within these level sets@Qn
C#21($z%)

5$uc&;Qn
C(uc&)5z% are naturally orbits of the groupK, which must then be false forCn .

Suppose throughoutn52p is an even number of qubits. For a vectorvPCN, put QAI (v)
5vTv, noting thatQC(E0v)5QAI (v). Moreover, forOPSO(N), we have the following:

QAI ~O•v !5QC@E0OE0
†
•~E0v !#. ~B1!

Thus we may study level sets ofQAI underSO(N) rather than study level sets ofQC underK.
Now if v5v11 iv2 is a decomposition into real and imaginary parts of a complex vector, note
QAI (v11 iv2)5vTv5(uv1u22uv2u2)12i (v1•v2).

Lemma B.1: Label S2N215$uc&;^cuc&51%. We have the following orbit decompositions
the level sets QAI

21(a)ùS2N21 for any fixedaPC.
(1) Let t be real, and letvPQAI

21(t)ùS2N21. Then QAI
21(t)ùS2N215@SO(N)•v#.

(2) Let a be complex, and letvPQAI
21(a)ùS2N21. Then QAI

21(a)ùS2N215@SO(N)•v#.
Proof: For the first item, writev5v11 iv2 . Then v1•v2 is zero as a set of real vector

Consider the subset ofR2N given by uv1u22uv2u25t. Suppose now we have another pair
orthogonal vectorsw1 ,w2 with uw1u22uw2u25t and uw1u21uw2u251. Then uw1u25uv1u25(1
2t)/2, thusuv2u25uw2u2 so that there is someOPSO(N) with O•v15w1 , O•v25w2 .

For the second item, supposea5eift for sometPR. Now if vPQAI
21(a), then note that we

have QAI (e
2 if/2v)5e2 ifQAI (v)5e2 ifa5t. Conversely, if wPQAI

21(t) we have eif/2w
PQAI

21(a). Having established bijective phase maps between the two level sets, it must also
case that the level set ofa forms a singleSO(N) orbit. h

Corollary B.2: The restricted action of K to the normalized kets in any concurrence leve
is transitive. Specifically, supposeaPC, with uc& normalized with QC(uc&)5a. Then label
S2N215$^fuf&51% the set of normalized kets. Per Eq. (B1), we have K•uc&
5QC

21(a)ùS2N21.
We restate the result colloquially. Should any two normalized statesuf&, uc& have the same

concurrence, then there is some global phase eiu so thatuf&5eiukuc& for kPK5E0SO(N)E0
† .

APPENDIX C: CONCURRENCE IS AN ENTANGLEMENT MONOTONE

The n-tangle, defined to betn(uc&)5Cn(uc&)2 has been proposed25 as a measure of an
n-qubit entanglement forn even. Then-tangle of a stateuc&, like then-concurrence, assumes re
values in the range 0<tn<1 and has been shown to be an entanglement monotone, meanitn

is a convex function on density matrices and is nonincreasing under local operations and cl
communication~LOCC!. Most of our arguments focus on constructions more directly relate
the concurrenceCn rather than then-tangletn5(Cn)2. Therefore, for completeness, we show th
the n-concurrence is, in fact, a good measure of entanglement. The monotonicity propert
function is established by considering its action on mixtures of quantum states encoded
Hermitian density matricesr with tr r51. See, e.g., Ref. 18.

Definition C.:1The n-concurrence can be defined on mixed statesr using the convex roof
extension:

Cn~r!5minH(
k

lkCn(uck&); r5(
k

lkuck&^cku,uc&kPHn , ^ckuck&51J . ~C1!

This minimization is over all pure state ensemble decompositions of the stater5(klkuck&^cku.
This definition is quite intricate. We point out the following remarkable result, not used in

sequel.
Theorem C.2 ~Uhlmann22,25!: We may express Cn(r) in closed form as follows:

Cn~r!5max$0,l02l1¯2lN21%. ~C2!
                                                                                                                



t

lement
s:

nt

r
to

osi-
ration.

se
t

-
by

alize

irst,
rticular
map

le

2465J. Math. Phys., Vol. 45, No. 6, June 2004 Canonical decompositions of quantum computations

                    
Here, thelk are the square roots of the eigenvalues (in nonincreasing order) of the producrr̃
wherer̃5Sr̄S21.

The necessary and sufficient conditions for a function on quantum states to be a entang
monotone are delineated in Ref. 23. For then-concurrence, they can be summarized as follow

• Cn>0, andCn(r)50 if r is fully separable.

• Cn is a convex function, i.e.,Cn(pr11(12p)r2)<pCn(r1)1(12p)Cn(r2),;pP@0,1#
andr1 ,r2 Hermitian matrices of trace one.

• Cn is nonincreasing under LOCC. Specifically,Cn(r)>( j pjCn(r j ), wherer j5AjrAj
†/pj

are the states conditioned on the outcomej of a positive operator valued measureme
~POVM! which occurs with probabilitypj5Tr@Aj

†Ajr#.

Before proving this, we first establish the useful fact that then-concurrence is invariant unde
permutations of the qubits. DefiningPn to be the set of unitary operators corresponding
permutations onn qubits, we have the following.

Proposition C.3: For n even, Cn(Puc&)5Cn(uc&);PPPn .
Proof: Any permutationP on n elements can be written as a finite composition of transp

tions on pairs of elements. Hence it suffices to show invariance under a single swap ope
Writing the swap operator between qubitsj andk as

Sjk5
1j ^ 1k1s j

x
^ sk

x1s j
y

^ sk
y1s j

z
^ sk

z

2
, ~C3!

we have for any stateuc&,

Cn~Sjkuc&)5u^cuSjk
† SSjkuc&u5u^cuSjkSSjkuc&u5u^cuSSjk

2 uc&u5Cn~ uc&). ~C4!

Here we have used the fact thatSjk is real symmetric and unitary, and in the third equality we u
the fact that@s j

y
^ sk

y ,s j
l
^ sk

l #50 for s lP$sx,sy,sz%. This proposition necessarily implies tha
Pn

1�K, wherePn
1 is the set of unitary permutation matrices onn objects with11 determinant,

i.e., permutations composed of an even number of transpositions. h

Lemma C.4: Cn(r) is an entanglement monotone.
Sketch:For the first condition, one first checks that 0<Cn<1 using the eigenvalue decom

position of the matrixS5(2 is1
y)(2 is2

y)¯(2 isn
y). Then any separable state can be realized

stochastic local unitaries acting on the fiducial separable stateu0&n5u01¯0n&. Now, Cn(u0&n)
50 andCn is invariant under local unitaries per Proposition II.1 and Theorem I.3. To gener
from pure states to density matrices, recall Definition C.1.

The second condition is shown by writing the minimal ensemble decompositions forr1 and
r2 separately as

p min
$lk ,uck&%u(lkuck&^cku5r1

(
k

lkCn~ uck&)1~12p! min
$bk ,ufk&%u(bkufk&^fku5r2

(
k

bkCn~ ufk&). ~C5!

These are not necessarily the minimal decompositions for the composite stater5pp11(1
2p)p2 , therefore,Cn(pr11(12p)r2)<pCn(r1)1(12p)Cn(r2).

Finally, we show that then-concurrence is on average nonincreasing under LOCC. F
because of permutation symmetry of the concurrence we can consider operations on one pa
qubit of then qubit system, say the first. An arbitrary, trace perserving, completely positive
on a quantum system can written in the Krauss decompostion12 as S(r)5( jAjrAj

† where the
positive Krauss operators satisfy the sum rule( jAj

†Aj51. The map can be composed of multip
operations with two operators at a time so we consider only two operatorsA0 andA1 acting on the
first qubit. By the polar decomposition theorem, the operators can be written asAj5ujbj , where
bj5AAj

†Aj is positive anduj is defined to be1 on the kernelK of Aj and Aj uAj u21 on K'.
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Physically, the mapS(r) corresponds to a generalized measurement onr followed by a unitary
operation conditioned on the measurement. Because of the sum rule, which corresponds
preservation, we can writeA05wo cosgX andA15w1 singX for gPR andX a positive operator
with unit trace. These operators are expressed in simpler form by diagonalizingX, viz., A0

5uodov and A15u1d1v, whereuj ,vPSU(2) anddj are real diagonal matrices with elemen
(q,r ) and (A12q2,A12r 2). The average concurrence of a stater after the 2 outcome POVM is

p0Cn~r0!1p1Cn~r1!5p0 min
$lk ,uck&%u(lkuck&^cku5r

(
k

lkCn~A0uck&/Ap0)

1p1 min
$bk ,ufk&%u(bkufk&^fku5r

(
k

bkCn~A1ufk&/Ap1). ~C6!

States conditioned on the first outcome satisfy

Cn~A0uc&/Ap0)5u^cuvTd0
Tu0

TSu0d0vuc&u/p05qrCn~vuc&)/p05qrCn~ uc&)/p0 , ~C7!

where in the second equality we have usedu0
T(2 isy)u052 isy, and the third equality follows by

invariance of concurrence under local unitaries. Similarly,Cn(A1uf&/Ap1)
5A(12q2)(12r 2)Cn(uf&)/p1 . The result is

p0Cn~r0!1p1Cn~r1!5qr min
$lk ,uck&%u(lkuck&^cku5r

(
k

lkCn~ uck&)

1A~12q2!~12r 2! min
$bk ,ufk&%u(bkufk&^fku5r

(
k

bkCn~ ufk&)

5„qr1A~12q2!~12r 2!…Cn~r!<Cn~r!, ~C8!

with equality iff q5r . h
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Properties of continuous Fourier extension of the discrete
cosine transform and its multidimensional generalization
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A versatile method is described for the practical computation of the exact discrete
Fourier transforms~DFT!, both the direct and the inverse ones, of a continuous
function g given by its valuesgj at the points of a uniform gridFN generated by
conjugacy classes of elements of finite adjoint orderN in the fundamental regionF
of compact semisimple Lie groups. The present implementation of the method is
for the groups SU~2!, when F is reduced to a one-dimensional segment, and for
SU~2!3SU~2!3¯3SU~2! in multidimensional cases. This simplest case turns out
to be a version of the discrete cosine transform~DCT!. Implementations, abbrevi-
ated as DGT forDiscrete Group Transform, based on simple Lie groups of higher
ranks, are to be considered separately. DCT is often taken to be simply a specific
type of the standard DFT. Here we show that the DCT is very different from the
standard DFT when the properties of thecontinuous extensionsof the two inverse
discrete transforms are studied. The following properties of the continuous exten-
sion of DCT~called CEDCT! from the discretet jPFN to all tPF are proven and
exemplified. Like the standard DFT, the DCT also returns the exact values of$gj%
on theN11 points of the grid. However, unlike the continuous extension of the
standard DFT:

~a! The CEDCT functionf N(t) closely approximatesg(t) betweenthe points of
the grid as well;

~b! for increasingN, the derivative off N(t) converges to the derivative ofg(t);
~c! for CEDCT the principle of locality is valid.

In this article we also use the continuous extension of the two-dimensional~2D!
DCT, SU~2!3SU~2!, to illustrate its potential for interpolation as well as for the
data compression of 2D images. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1738187#

I. INTRODUCTION

The decomposition of functions integrable on a finite segment into Fourier series of trig
metric functions of one variable is a well known method~e.g., Refs. 1 and 2! whose theoretical
and practical aspects have been thoroughly investigated during the last two centuries in con
with its numerous applications in science and engineering. It is natural to question wheth
attempt to add something to it is not in fact a reinvention of what has been found before.

Our general goal, which goes beyond this paper, is to elaborate a new decomposition m
of functions ofn variables into Fourier series using orbit functions of compact semisimple
groups,3,4 with the idea of~i! making it accessible to users who are not specialists in Lie the
~ii ! underlining the versatility of its practical implementations, and~iii ! most importantly, demon-
strating the fertility of the underlying theme of this approach. One can find complete answ

a!Electronic mail: atoyan@crm.umontreal.ca
b!Electronic mail: jmp@indiana.edu
24680022-2488/2004/45(6)/2468/24/$22.00 © 2004 American Institute of Physics
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limited questions~like the values of a finite number of Fourier coefficients! replacing the Lie
group by a suitably chosen set of its discrete elements. The choice of the discrete elem
clearly crucial.

In the context of our goal, the SU~2! case results in the simplest example of the new meth
even though that is the case where the potential advantages of the method based on the sy
groups could be most limited. Remarkably, however, in this low dimensional space the di
Fourier transform on the SU~2! group results in one type of discrete cosine transforms discov
in 1974,5 or more exactly the DCT-1~see Refs. 6 and 7!. Its comparison with the standard metho
is both misleading and revealing. It is misleading because of its apparent similarity~see Ref. 13!
to the well known Discrete Fourier transform abbreviated as DFT~e.g., Refs. 8–10!. Nevertheless
it is revealing, since it can help to understand better the underlying reasons why for many pr
applications the DCT is proven significantly more efficient than the DFT. In this paper we con
the concept ofcontinuous extensionof the discrete transform, and show that the converge
properties of the continuous extension of the inverse DCT, abbreviated here as CEDCT,
very closely the properties of the canonical~continuous! Fourier transform~CFT! of smooth
functions. Meanwhile continuous extension of the inverse DFT~hereafter CEDFT! does not result
in any reasonable function. Note that for the sake of simplicity, if the ‘‘inverse’’ is not explic
used, we will henceforth adopt DFT and DCT~or DGT in a more general sense! abbreviations for
both direct and inverse Fourier transforms.

In Sec. II we present some pertinent information on the Fourier analysis on the SU~2! group,
which also demonstrates the general formalism used for the Fourier transforms on Lie grou
show that in practice the Fourier transform of a class function of SU~2! is reduced to the decom
position of a discrete function$gkuk50,1,...,N% defined on aN-interval grid of variablet
P@0,T0# onto the series of (N11) cosine functions~including cos 051! of harmonic ordern
5 j /2<N/2. The basis for the DCT series is thus composed of the firstN half-order harmonics of
cos(2pt/T0), i.e., cos(2pnt/T0)5cos(pjt/T0) with j 50,1,...,N. The harmonic order of these func
tions formally is either integer forj even,or half-integer for oddj . This approach is compared t
the standard method of DFT where the given$gk% is decomposed into the trigonometric polyn
mials of e( i 2p nt/T0) of the full harmonic ordern<N. In Sec. II we also define the continuou
extension of a discrete transform onto the segment@0,T0#. We then compare CEDCT and CEDF
and show that although both DCT and DFT formally belong to the group ofexact discrete
transforms, rather surprisingly, only the CEDCT converges with increasingN to the continuous
function g(tP@0,T0#) which originates the grid function$gk%. We explain this difference com
paring CEDCT and CEDFT from the point of view of Shannon sampling theorem.

In Sec. III we prove some important properties of CEDCT. These properties closely res
those of the canonical CFT polynomials, such as the principle oflocality of CEDCT. This property
can ensure, in particular, that numerical computation errors or uncertainties in one segmen
interval @0,T0# would not dramatically affect the transform results in a distant segment. Ano
important property proven in Sec. III is that, similar to the CFT polynomials, the term-by-
derivative series of the continuous extension of anN-interval DCT converges tog8(t) with the
increase ofN. Note that all these properties hold for any functiong(t) with bounded second
derivative. In particular, they are also valid wheng0ÞgN , which is not the case for standard DF

In Sec. IV we extend the formalism of one-dimensional DGT on SU~2!, or the DCT, for
decomposition of multidimensional functions. We bring examples of approximation of
dimensional discrete functions/images by two-dimensional CEDCTs.

Finally, let us also point out that additional examples of exploitation of our method are f
in the Proceedings of 3 recent meetings on the numerical methods.11,12,34–36

II. FOURIER ANALYSIS ON SU „2…

The Lie group SU~2! can be realized as a set of all 232 unitary matricesA, with detA51. A
complex valuedclass function fon SU~2! is any map of SU~2! onto the complex number spaceC
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which is invariant under conjugation, i.e.,f :SU(2)→C, and f (B21A B)5 f (A) for all A,B
PSU(2). Since the defining two-dimensional representation of SU~2! is faithful, we can use it in
order to describe the pertinent discrete elements of SU~2!.

Any unitary matrix can be diagonalized by a unitary transformation. Therefore, every ele
of SU~2! is conjugate to at least one diagonal matrix in the defining two-dimensional repres
tion. All the elements which can be simultaneously diagonalized form a maximal torusT of SU~2!.
Since all maximal tori are SU~2!-conjugate, we can write

T5H x~u!5S e2p iu 0

0 e22p iuD U 0<u<1J . ~1!

Furthermore, usingB5(21 0
0 1)PSU(2), wehaveBx(u)B215x(2u). Therefore, every element o

SU~2! is conjugate to just one element in the subsetF,T, where

F5H x~u!5S e2p iu 0

0 e22p iuD U 0<u<
1

2J . ~2!

Trace functions, otherwise calledcharacters, play an important role in SU~2!. For any element
x(u) of ~1! we have trx(u)52 cos(2pu). In general, trx(u) is a class function because for a
BPSU(2)⇒tr $B21x B%5tr x. Let R5R(SU(2)) denote a complex algebra generated by
character functions of SU~2!. It is well known thatR has a linear basis consisting of characters
all finite dimensional irreducible representations of SU~2!.

With each irreducible representation of a semisimple Lie group, in particular SU~2!, one
associates a set of weights~weight system! of the representation,3,4 which is a union of orbits of
weights under the action of the Weyl group,W. In physics the SU~2!-weights are known as
projections of the angular momenta which have integer and half-integer eigenvalues. In mat
ics one usually prefers to deal with the doubles of the angular momenta in order to avoid n
tegers.

The Weyl group of SU~2! is very simple. It is of order 2, its 2 elements being generated
reflectionr . It acts on any elementmPR of the one-dimensional spaceR of the ‘‘projections of
angular momenta’’ in the straightforward way:r (m)52m. The finite dimensional irreducible
representations of SU~2! and of its Lie algebra su~2! are well known. The ‘‘angular momentum
states,’’ the basis vectors of representation spaces, are eigenvectors of the ‘‘diagonal’’ gene
SU~2!. Unlike the common normalization of that generator in physics, we normalize it so th
eigenvalues are twice the usual projections of angular momenta. The set of the eigenvalueV( l )
is the weight system of the representationl . The weight system of an irreducible representat
consists ofl 11 weights,

V~ l !5$mvumP$2 l ,2 l 12, . . . ,l 22,l % % ,

wherel is the highest weight~‘‘twice the angular momentum’’! of the representation;31 l is used
to specify the representation. Note that all the elements ofV( l ) have the same parity.

A W-orbit of a weightm thus consists of one or two elements:

Wm5H $m,2m% for mÞ0

$0% for m50.

The characterx~u! is a function of conjugacy classes of the elements of SU~2!. Every class is
represented by one value ofu within 0<u< 1

2. The values of the character of an irreducib
representationl can be written as the sum of values of the orbit functionsFm(u),

x l~u!5(
m

l

Fm~u!5F l~u!1F l 22~u!1¯1H F1~u!, l odd

F0~u!, l even.
~3!
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Fm~u!5H e2p imu1e22p imu for m.0

1 for m50
, and 0<u<

1

2
. ~4!

Only for the one- and two-dimensional representations,l 5 0 and 1, respectively, the charact
consists of a single orbit function. Note thatFm(u) is symmetric~antisymmetric! with respect to
the midpoint of its range ofu for m even~odd!.

The decomposition of irreducible characters~3! into the sum of orbit functions is given by
triangular matrix. Hence it is invertible. Therefore, the orbit functions$Fm(u), m50,1,2,...% also
form a basis in the space of class functionsf (u) of SU~2!. Using ~4!, it implies that

f ~u!5 (
m50

`

am Fm~u! 5a012 (
m51

`

am cos~2pmu!, 0<u<
1

2
. ~5!

There are two properties of the expansion~5! which we want to underline:
~i! It can be reduced to the familiar case of the standard Fourier decomposition off (u) in the
interval uP@21/2,1/2#, if one makes an even extensionf (u)5 f (2u) for tP@21/2,0#.
~ii ! Although f (u) is being expanded into a series of functions which are periodic within the ra
0<u<1, the actual range ofu in ~5! makes periodic only the cosines with even values ofm, i.e.,
m52k. Their arguments vary over the range$0,2kp%, i.e., over an integer multiple of 2p.

A. Discrete Fourier transform on SU „2…

The discrete Fourier transform differs from~5! by the fact that the independent variableu
takes only finite number of values within its range of variation. Fixing a rational value ofu, one
fixes an element of finite order~EFO! belonging to the SU~2! torusT. Every conjugacy class o
EFO in SU~2! is represented by an element ofT with 0<u<1

2. In SU~2! one can be explicit, see
Refs. 14 or 15~Sec. IV! for all other compact simple Lie groups.

Let TN denote the set of all elements ofT whose adjoint order dividesN, whereN is a
positive integer. The adjoint order is the order of an element given by matrices of irredu
representations of SU~2! of odd dimensions~i.e., l even!. There are exactly (N11) SU~2!-
conjugacy classes of such elements. Taking the unique diagonal matrix as representative
conjugacy class, in representations of dimensions 2 and 3 we have the following set of ma

TN
(2)5H xN,k5S e2p ik/2N 0

0 e2 2p ik/2ND U k50,1,...,NJ ,

TN
(3)5H xN,k5S e2p ik/N 0 0

0 1 0

0 0 e2 2p ik/N
D U k50,1,...,NJ .

The trace functions of each of these matrices, of size (l 11)3( l 11), are the charactersx l(u)
of the representationl . The characters can be used for decomposition of the class function
SU~2!, and generally on compact simple Lie groups.

A more suitable basis for such a decomposition consists of orbit functions.3,4 It makes possible
~practical! decomposition of class functions on groups of high ranks, such asE8 .16–18In the case
of SU~2!, the orbit functions are also much closer to the familiar set of exponentials exp(2pimu)
used in the standard Fourier analysis.

Note that the elementsxN,k are equidistant in the fundamental regionF5$uP@0,1/2#% of the
Weyl groupW. The number of elements of theW-conjugacy classm5k/N is denoted byCN,k and
is given by

CN,k5H 1 if k50,N

2 otherwise.
~6!
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The following definition of a sesquilinear form̂f ,g&N in the spaceR of class functionsf and
g on SU~2! is a crucial step for our method:

^ f ,g&N5 (
k50

N

CN,kf ~xN,k! g~xN,k! , ~7!

where the overline stands for complex conjugation. It is known,3,15 and it can be verified by direc
computation, that the set of orbit functions$Fkuk50,...,N% is orthogonal on the discrete equidi
tant N-interval grid with respect to this form. More precisely, we have

^Fk ,Fm&N

^Fm ,Fm&N
5dkm, for 0<k,m<N.

For further convenience and for comparison of the results with the conventional Fo
series, let us instead of orbit functionsFm(u) defined by ~4! consider the functionscm(u)
5cos(2pmu) for all m>0. Then one can easily verify that for 0<k,m<N

^ck ,cm&N5(
j 50

N

CN, j cos
p jk

N
cos

p jm

N
5

2 N

CN,k
dkm. ~8!

The method proposed here for decomposition of the class functions into series of orbit fun
is based on the discrete orthogonality relation~8!.

Let f (u)PR be a class function that can be decomposed into afinite series of orbit functions:

f ~u!5 (
m50

N

am cm~u! ~0<u< 1
2! . ~9!

This can be compared with the general case of infinite series~5! and with the discrete Fourie
transform~2! in Ref. 19.

Our goal now is to find the expansion coefficients$am%. In order to use the orthogonalit
property~8!, we form a system of (N11) linear equations for$am%, restrictingu to the discrete
set of its values$uk5kDu uk50,...,N%, with Du5 1/2N:

f k[ f ~uk!5 (
m50

N

amcm~uk!5 (
m50

N

am cos
pmk

N
. ~10!

After multiplication of ~10! by CN,k c jk and summing overk, we arrive at(m50
N am^cm ,c j&N .

Then, given~8!, we find

aj5 (
k50

N

DN
jk f k for j 50,...,N, ~11!

where

DN
jk5

CN, j CN,k

2 N
cos

pk j

N
. ~12!

Here DN
jk are the elements of (N11)3(N11) matrix DN of the DGT on SU~2!. It is easily

reduced to the transform matrix of the discrete cosine transform of the type DCT-1 after r
malization by a factorA2CN, j CN,k /N. The matrixDN is independent of the values$ f k% of the
class function which is being decomposed. It is therefore possible to computeDN in advance for
any predefined value of the positive integerN, and use it repeatedly whenever it is needed.

Examples of the transform matricesDN for the lowest values ofN are the following:
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2 2
2

21
2

1

2
21 1 2

1

2

D45
1

4S 1

2
1 1 1

1

2

1 & 0 2& 21

1 0 22 0 1

1 2& 0 & 21

1

2
21 1 21

1

2

D . ~13!

Introducing single-column matricesAN5$aj% and FN5$ f N(tk)%, and a square matrixCN

5$cos(pjk/N)uj,k50,...,N%, Eqs.~10! and ~11! can be written in the matrix form,

FN5CNAN and AN5DNFN , where DN5CN
21 . ~14!

The matrixDN , being the inverse ofCN , formally solves the problem of discrete Fourier tran
form on SU~2!.

B. Continuous extension of the discrete Fourier transforms

Let a continuous functiong(t) be the origin for the discrete function$gk5g(tk)% defined at
the (N11) pointstk5kT0 /N, k50,1,...,N, of the interval@0,T0#. The DCT of$gk% with the use
of the transform matrix~12! results in the discrete function$aj% in the frequency space. This is a
exact~‘‘lossless’’! discrete transform, since it allows unambiguous recovery of allN11 values of
$gk% by applying the inverse DCT in the form of~10!. We recall that the standard discrete Four
transform, i.e., DFT, has the same property.

It seems then natural to ask if it is possible to recover the originating functiong(t) by a
Fourier series not only at the grid points$tk%, but also on the entire continuous segment@0,T0#. In
order to answer this question, let us consider the continuous extension of the discrete tra
between the grid points, which can be formulated as follows.

Proposition: Let g(t) be a complex valued function of tP@0,T0#, taking values gk5g(tk) on
an equidistant point grid$tk5kT0 /N uk50,1,...,N%. The function

f N~ t !5(
j 50

N

aj cos~p j t /T0!, tP@0,T0#, ~15!

with the discrete transform coefficients

aj5 (
k50

N
CN, jCN,k

2N
gk cos

p jk

N
, ~16!

is the continuous Fourier extension of the inverse DCT of$gk%. It is exact in the sense tha
f (tk)5gk at all N11 points of the grid.

The proof of this proposition is obvious if one recalls that~15! and~16! are reduced, respec

tively, to ~10! and ~11! after substitutiont52uT0 with uP@0,1
2#.
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Similar to DCT, one can also continuously extend to all points of the segment@0,T0# any other
types of discrete transforms, in particular the DFT, resulting in CEDFT.

Below we address two important questions. First, how well the CEDCT approximates
‘‘reasonably behaved’’~e.g., continuous! functiong(t) on the interval@0,T0# between the points o
the grid. The second question is how it compares with the CEDFT. At last, we will also b
address the question of the possible use of CEDCT in practical applications, in particula
purposes of smooth representation of compressed images.

In order to provide a partial answer to the first question, we consider two examples.
Example 1:Let us take a Gaussian function

g~ t !5exp@2 1
2 ~ t/s!2#, tP@0,1#, ~17!

with the dispersions51/3, and chooseN53. Thus we have chosen a rather coarse grid relativ
the dispersion: The width of its intervals 1/N is equal to the dispersion. The coefficients~11! are
readily calculated usingD3 from ~13!:

A35S a0

a1

a2

a3

D 5
1

3 S 0.51e20.51e2210.5e24.5

11e20.52e222e24.5

12e20.52e221e24.5

0.51e20.51e2210.5e24.5
D 5S 0.415 807

0.486 695
0.089 748
0.007 750

D . ~18!

The corresponding CEDCT function~15! reads

f 3~ t !5a01a1 cos~pt !1a2 cos~2pt !1a3 cos~3pt !, ~19!

where the coefficients are given by~18!.
Now we are in a position to compare~17! with ~19!. At the grid pointstk5k/3 the functions

coincide, f 3(tk)5g(tk) ~which is easily verified!. One may then expect large deviations off 3(t)
from g(t) around intermediate points of the grid, i.e.,t51/6, 1/2, and 5/6:

S f 3~1/6!

f 3~1/2!

f 3~5/6!
D 5S 0.882 171

0.326 059
0.039 191

D ↔ S g~5/6!

g~1/2!

g~1/6!
D 5S 0.882 497

0.324 652
0.043 937

D .

A good agreement betweenf 3(t) andg(t) is apparent even fort55/6 whereg(t) becomes very
small.

Example 2:DCT approximation for a more complicated function is found in Fig. 1, where
show f N(t), N510 and 14, for the functiong(t) composed of two Gaussians,

g~ t !5A1e2~~ t2t1!/s1!2/21A2e2~~ t2t2!/s2!2/2, ~20!

with amplitudesA152, A251.5, narrow dispersionss15s250.05, and centered att150.42,
t250.56.

For comparison, in Fig. 1 we show by dashed lines the approximations tog(t) provided by the
trigonometric CFT polynomials where the transform coefficients are calculated by exact in
tions. Recall that for a real functiong→R the CFT polynomials of the harmonic orderK are given
by the series32 ~see, e.g., Ref. 2!:

PK~ t !5 (
j 52K

K

cj ei2p j t /T05c012 Re(
j 51

K

cj ei2p j t /T0, ~21!

where
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cj5
1

T0
E

0

T0
g~ t ! e2 i2p j t /T0 dt. ~22!

In order to compare approximations tog(t) that can be provided by series~15! and ~21! of the
same order for the highest harmonics, for the seriesPK(t) in Fig. 1 we putK5N/2.

Figure 1 illustrates that the DCT is really an exact discrete Fourier transform, i.e.,
f N(t j )5g(t j ) for all 0< j <N11. Remarkably, its continuous extensionf N(tP@0,T0#) approxi-
matesg(t) practically as well as the accurate CFT trigonometric Fourier seriesPK(t) of the same
harmonic order, i.e.,K5N/2. In the case of Gaussian-type functions, CEDGT series approxim
the original functiong(t) reasonably well even in the case of narrow structures with dispersion
small ass'T0/1.5N.

C. Comparing with standard DFT

First, let us recall some properties of the standard exploitation of the discrete Fourier
form. Further details can be found in many books~e.g., see Refs. 8–10!.

The standard DFT is formally derived from an approximate calculation of the integral c
ficientscj for the trigonometric Fourier series, using a simple rule of rectangles for integratio
cj in ~22! when the functiong is given on theN-interval equidistant grid,g(t)→$gkuk
50,...,N%. This leads to DFT coefficients

FIG. 1. Approximation of an analytic function~20!, shown by the dotted lines, with the CEDCT functionf N(t) ~solid
lines! for the discrete interval numbersN510 and N514. The big dots show the values of the grid function$gk

[g(tk)% for $k50,...,N%. For comparison we also show by dashed lines the approximation ofg(t) by the exact CFT
polynomials of~21! with K5N/2. It gives polynomials of the same harmonic maximum order as the ones in the DCT
parameters in~20! areA152, A251.5, s15s250.05, t150.42, t250.56.
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uj5
1

N (
k50

N21

gke
2 i ~2p/N!k j , ~23!

where 1/N is the length of the sampling intervalDt ~assuming for simplicityT051).
A crucial feature of this definition of DFT consists in the fact that the system of Eqs.~23! for

the first N coefficients$uj u j 50,...,N21% can be inverted with respect to$gkuk50,...,N21%.
Such a possibility is based on the observation that the matrices with matrix elements

M jk5
1

N
e2 i ~2p/N!k j and ~M 21! jk5ei ~2p/N!k j,

are inverse to each other. Therefore, theinverseDFT is

gk5 (
j 50

N21

uje
i ~2p/N!k j. ~24!

Thus, the discrete sets$uj% and $gk% represent a pair of exact~lossless! direct and inverse trans
forms ~e.g., see Ref. 10! in the form of Fourier series, which is generally treated as the e
solution to the problem of Fourier transform of discrete functions given on the equidistant g

We argue below, however, that there are significant reasons to suggest that the real~and not
only formal! exact solution to the problem of discrete Fourier transform of a grid functio
provided by the DCT transform pair given by~16! and~10!. It retains all the ‘‘good’’ properties of
the DFT:

~i! it is easy and fast to compute;
~ii ! it is a lossless discrete transform, with the exact inverse DCT at all (N11) points of the

grid ~even if g0ÞgN , unlike for DFT!.
However, in addition to these properties, the continuous extension of DCT,f N(t) in ~15!,

converges to the originating continuous functiong(t) with increasingN, as illustrated in the
previous section, and as it is proved in the next Section. Only the continuous extension
DCT, and not the DFT, reveals properties characteristic to the canonical continuous Fourier
form series.

It is worth noting here that the very good convergence properties seem to be a co
feature for the discrete Lie group transforms, as we also demonstrate on the example of~3!
group in our recent paper, Ref. 34. The basic mathematics of DGT has been formulated15 for any
dimensionn,`. In fact there are as many different variants of the method one could use, as
are different semisimple compact Lie groups of rankn, and then within each variant the choice
the points of the grid is also far from unique, except for the lowest cases like SU~2!. It then
provides an opportunity to make a choice of appropriate DGT in situations where the cho
symmetry is dictated by the experimental data.

The absence of the convergence property for the continuous extension of the DFT giv
~24! is not easy to anticipate because CEDFT looks like a Fourier polynomial, or a cutoff
‘‘ordinary’’ Fourier expansion:

hN~ t !5 (
j 50

N21

uje
2ip j t . ~25!

Similar to CEDCT, it satisfies the equalityhN(tk)5gk on the grid pointstk5k/N for33 all k
<N21 . The fact that their continuous extensions CEDGT and CEDFT behave quite differen
illustrated in Example 3. It has rarely been emphasized thathN(t) does notapproximate the initial
function g(t) between the grid points, and it does not converge at all to any continuous fun
~except for a trivial case ofg(t)5const) with increasingN. It is worth citing in this regard Ref. 9
p. 87: ‘‘The DFT is a Fourier representation of finite length sequence which is itself a seq
rather than a continuous function.’’
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Example 3:Let hN(t) be the CEDFT of N-interval grid function arising from a sampling
the continuous function

g~ t !5Ae2~ t2t0!6/a6
, ~26!

with A52 and parametera50.15. Here we have chosen a large value, 6, for the power in
exponent in order to illustrate a case with gradients significantly larger than in the case of G
ian functions.

Solid lines in Fig. 2 correspond to continuous DFT extensionshN(t), and the dashed line
show the DCT extensionf N(t). AlthoughhN(t) passes through allgk at t5tk ~shown as full dots!,
similar to f N(t), its behavior in between shows profound oscillations due to the presence in~25!
of high-frequency Fourier components,n j5 j ~for T051), with values ofN/2< j <N21 compa-
rable toN. These oscillations in CEDFT do not decrease with increasingN. But they quickly
disappear in CEDCT series where the harmonic order of the maximum frequency mode do
exceedJNy[N/2. Note that this mode corresponds to the so called Nyquist frequencyN/2 which
plays a fundamental role in the digital signal processing theory.

D. Shannon sampling theorem and DCT and DFT

Nonconverging behavior of CEDFT appears puzzling especially in the light of Nyqu
Shannon sampling theorem20,21 for a continuous band-limited signal which states

FIG. 2. Behaviors of the Fourier serieshN(t) and f N(t), given by Eq.~25! and~15!. Solid lines represent the CEDFT, an
dashed lines show the CEDCT. Big dots show the values of the grid function$gkuk50,...,N% originated from an analytic
function g(t) which is given by Eq.~26!, and is shown by the dot–dashed line.
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Every continuous band-limited analog signal X(t) can be reconstructed fully from its discre
samples Xn5X(nDt), provided the sampling rate1/Dt exceeds twice the maximum frequen
nmax contained in X(t).

The sampling rate 1/Dt52nmax corresponds to the sampling at the rate of 2 points per pe
Tmin51/nmax, which is the Nyquist rate. Shannon formula21 provides exact interpolation betwee
the sampling points for unlimited time sequence:

X~ t !5 (
n52`

`

Xn

sin~ t2nDt !p/Dt

~ t2nDt !p/Dt
. ~27!

It should be emphasized here that Shannon interpolation isnot a Fourier-type interpolation, but is
based onsinc function sin(t)/t. In case of limited time intervaltP@0,1#, hence limited number of
points Xn→gn with n50, ...,N, the truncated versionXN(t) of the sequence~27! provides an
approximate interpolation to the originalg(t) converging in the limit ofN@JNy .

The reason for oscillatory behavior of CEDFT can be understood if we note that for any
N the harmonics exp(22ipjt) with frequenciesj .N/2 strongly vary and change the sign with
any single narrow intervalDt51/N. The use of rectangular integration rule in~22! cannot provide
any reasonable similarity between the canonical CFT coefficientscj in ~22! and their standard
DFT ‘‘approximations’’ uj in ~23!. Effectively, the ‘‘fine tuning’’ between the coefficients fo
high-order harmonics intrinsic to the continuous Fourier transform is lost. Moreover, the
coefficients~23! with harmonic order exceedingJNy are no more declining for higherj , which is
a normal general trend for both DCT and CFT coefficients. In fact, the well known proper
DFT coefficients atj .JNy is that they fully ‘‘recover’’ the low-order coefficients in comple
conjugate form as

uj5ūN2 j . ~28!

This notion allows us to understand different behaviors of continuous extensions of DF
DCT in the view of Nyquist–Shannon sampling theorem. Indeed, for anyN one can consider
CEDCT as a continuous band-limited function with maximum frequency formally equal to
quencyJNy /T0 . This function is formally sampled at the Nyquist rate. However, for large N
DCT coefficientsuaj u for large order harmonics rapidly drop~see Ref. 13!. It leaves the CEDCT
with an effective bandwith of order of the bandwidthng of the original functiong(t). Thus, we
can say that at largeN the set$gj u j 50,1,...,N% samples CEDCT with a rate much higher th
the Nyquist rate. Therefore, one could also say that ‘‘g(t) provides a good reconstruction t
CEDCT.’’

Meanwhile, because of the relation~28!, large frequency harmonics do not disappear fr
DFT at any largeN. The maximum bandwidth of CEDFT isnmax5(N21). Therefore the sampling
rate of $gj% is 2 times less than the Nyquist rate which is needed to have sufficient inform
about the CEDFT function. In a definite sense,g(t) represents an example of a ‘‘low-frequenc
alias’’ to CEDFT. In the next section we will see that elimination of high-order harmonics from
DFT sequence allows construction of a reasonable continuous interpolation forg(t) based on DFT
coefficients.

E. Comments on fast Fourier transform

There is a number of ways to make a more accurate approximation for the high-freq
Fourier transform coefficientscj than the rectangular integration can provide. Despite this,
standard version of DFT defined by~23! and~24! for the direct and inverse discrete transforms h
been widely used since the pioneering paper by Cooley and Tukey,22 where the first algorithms for
fast calculation of this DFT had been developed. Different algorithms for suchfast Fourier
transform~FFT! computations allow an increase of the speed of practical calculations of DFT
one or two orders of magnitude. A direct ‘‘head-on’’ algorithm for calculations of$uj u j 50,...,N
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21% would require aboutN2 multiplications and additions. Meanwhile, for special values ofN,
FFT algorithms significantly reduce the required number of elementary operations, e.g., do
;N log2 N in case ofN52n.

The discussion of various FFT algorithms, extensively developed by many authors~e.g., Refs.
23–26!, is outside the scope of this article. Here we only note that the FFT methods are f
mentally exploiting the property of the standard DFT coefficients~23! thatuj can be reduced to a
power-law series of a single complex elementWN5exp(2i2p/N) as uj5N21(gkWN

jk . This
would not be possible if more accurate integration methods for the high-order harmonics
used. It should be also noted, however, that the DCT does allow application of FFT methods
it can be formally reduced~with insignificant differences! to 2N-point DFT of an even function
g(2t)5g(t) ~see Ref. 13!. A number of efficient FFT-based algorithms have been developed
DCT ~e.g., Refs. 27–30! including algorithms competing with FFT but specific to DCT~see Ref.
13 for details!.

A simple modification could significantly improve behaviors of continuous extensions o
discrete transforms based on the use of standard DFT coefficients~23!, but not without a penalty.
Because the reason for strong oscillations of CEDFT is the use of frequencies exceedi
Nyquist frequencyJNy /T0 , one can try to eliminate first these terms from the discrete transf
construction~24!. Using ~28!, in the case of evenN52K, the sum in~24! is reduced to

gk5u01 (
j 51

K21

~uj ei2p j k/N1ūe2 i2p j k/N! 1 uN/2~21!k. ~29!

In the case of oddN52K11 the last term disappears. However, the attractiveness of
retains mostly to the cases of evenN (52p), for which very effective FFT algorithms are deve
oped. Meanwhile, it is impossible to ‘‘continuously extend’’ the modified DFT sequence~29! by
substitutingk/N →t/T0 , unless one neglects the last term with flipping argument (21)k. The
resulting function is similar to the series~21! truncated to harmonics of orderj <N/2, but it uses
the DFT coefficientsuj :

sK~ t !5u012 Re(
j 51

K

uj ei2p j t /T, ~30!

where the coefficientsuj are defined by~23!. Here we useK equal toJNy5N/2. But one also can
takeK,N/2, and stillsK(t) will be converging tog(t) for K→`.

In Fig. 3 we show that the functionsK(t) with K5N/2 ~dashed curves! can indeed approxi-
mateg(t) practically as well as the DCT extensionf N(t). But in this case the penalty is a loss
the ‘‘exactness’’ property for such modified DFT sequence. Because we had to drop the las
in ~29! out, sK(t) can be equal togk at the grid pointst5tk only within the accuracy of the term
uN/2 . Therefore,~30! cannot represent an exact solution to the problem of discrete Fourier t
form. Meanwhile, the seriesf N(t) both satisfies that condition, and rapidly converges tog(t) with
increasingN.

For comparison, we also show in Fig. 3~dot–dashed line! the functionsK(t) calculated for
K56,N/258. In this case the approximation errors@sK(t)2g(t)# are larger than the ones whe
K58, because the order of high frequency harmonics becomes important for the approxima
features with a dispersions<T/2K.

III. LOCALIZATION AND DIFFERENTIABILITY OF CEDCT

In this section we prove the propertieslocalizationanddifferentiability of the CEDCT which
are analogous to the properties of the canonical CFT polynomials~21! ~e.g., see Ref. 2!.

Derive first a useful formula for an N-interval CEDGT~15! of a grid function$gk%. Using
~16!, and assuming for simplicityT051, i.e., tP@0,1#, ~15! is reduced to
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f N~ t !5
1

2N (
j 50

N

(
k50

N

CN,kCN, j cos~p j t ! cos~p j t k! gk, ~31!

wheretk[k/N. Using 2 cosa cosb5cos(a1b)1cos(a2b), the terms containing indexj can be
re-written as a sum of two geometric series:

(
j 50

N

CN, j cos~p j t ! cos~p j t k!5~21!k cos~pNt!211ReS (
j 50

N21

eip(t1tk) j1 (
j 50

N21

eip(t2tk) j D .

Summing up the series, one gets a compact expression for CEDGT:

f N~ t !5 (
k50

N
~21!kCN,k

2N

sin~pNt!sin~pt !

cosptk2cospt
gk [(

k50

N

AN,k~ t ! gk , for tP@0,1#. ~32!

The values off N(t) for any t→tn5n/N are found by applying the Lipshitz rule for the ratio o
infinitesimals of a smooth function. For~32! it results in f N(tn)5gn for all n50,...,N, as ex-
pected.

Using ~32!, below we prove that thelocalization principle, known ~see Ref. 2! for the CFT
series~21! also holds for the CEDCT. The localization lemma can be formulated as follows

FIG. 3. Approximation of an analytic functiong(t) composed of two Gaussians,~20!, with the CEDCT functionf N(t) of
~15! with N516 ~solid lines! and the Fourier seriessK(t) of ~30! that uses only the firstK;N/2 coefficients$uj u j <K% of
the standard DFT~23!. The dashed line is forK5N/258, and the dot–dashed line corresponds toK56. The full dots in
the upper panel correspond to$gkuk50,...,N%. The lower panel shows the corresponding errors of the approximatio
g(t) by these 3 types of discrete Fourier transforms. The dispersions in~20! are assumed to bes150.07 ands250.2.
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Localization Lemma: Let the set of N-interval grid functions$gk%, with various N, be origi-
nated from a smooth function g(t) with a bounded derivative g8(t) on the interval [0,1]. Then at
any given tP@0,1# and for any smallD.0 ande.0 there exists Ne,D such that for all N.Ne,D the
behavior of the continuous extension of the discrete group transform fN(t) is defined within the
accuracye only by the values of g(t) in the D-neighborhood of t, i.e.:

for any e,D.0 'Ne,D such that for all N.Ne,D⇒

U f N~ t !2(
$k8%

AN,k8~ t !gk8U,e, with all k8 within t2D,
k8

N
,t1D.

Proof: From ~16!, using ~8!, it follows that the DGT coefficients of any constant functio
g1(t)5const are equal toak

(1)5dk03const, i.e., that all coefficients except fora0
(1)5const are

equal to 0. Thus the convergence properties of the CEDGT of any functiong(t) are the same as
the properties of the functiong(t)1const. So taking into account that the function is bounded
is sufficient to prove the Lemma, while generally assuming thatg(t) is positive on the interval
@0,1#.

Let us split the sum in~32! into 3 parts corresponding to

S25 (
k50

Kt2KD21

AN,k gk,

S15 (
k5Kt1KD11

N

AN,k gk, ~33!

SD5 (
k5Kt2KD

Kt1KD

AN,k gk,

whereKt5@Nt# and KD5@ND# are the integer parts of the respective products. If any of
points t6D is outside the interval@0,1#, then only 2 sub-series are left. In all cases, onlySD of
these sub-sums is defined byg(t) in the close neighborhood oft. The localization Lemma for~32!
then implies that thenon-localsums,S1 andS2 , are reduced with increasing N to absolute valu
below any smalle.

Indeed, on the basis of~32!, for any fixedD each of those non-local sums represents a se
of bound-value elements with alternating signs, which can be then combined into pairs of c
quetive elements of orderO(1/N2) each. Considering for example the sumS2 , and using the
Taylor series decomposition forgk11[g(tk11)5gk1g8(tk)/N1o(1/N) each pair of elements
AN,kgk1AN,k11gk11 starting with evenk>2 can be reduced to

sin~pNt!sin~pt !

N2 F g8~ tk!

cosptk2cospt
2

gk sinptk

~cosptk2cospt !2 1 o~1/N2!G .
The expression in the square brackets is bounded with some absolute value independentN as
far asg8 is bounded andutk2tu.D, therefore,AN,kgk1AN,k11gk11;O(1/N2). The number of
such pairs inS2 or S1 is increasing}N. Therefore taking also into account that in the sumsS2

andS1 each of the limited number of elements left out from such pairing process~e.g., in case of
CN,k51 for k50,N) is only of orderO(1/N), we conclude that both seriesS2 or S1 tend to zero
with the increase ofN. This proves the localization Lemma. j

A very important property of the CEDGT seriesf N(t) is the possibility of its term-by-term
differentiation such that the resulting series converges with increasingN to the derivativeg8(t).
Note that while being well-known for the CFT series~21!, this property is not trivial for finite
~N-!element discrete Fourier transforms. Recall that although in trigonometric polynomials
form of ~15! or ~30! each individual term, being}1/N, decreases to 0 at large N, their derivativ
over t corresponding to a high-order harmonics, sayj .N/2, become of orderj /N;1, and there-
fore, might not necessarily vanish with increasingN. Thus, a ‘‘fine tuning’’ of the entire discrete
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transform based series is needed in order to provide convergence of the series produce
term-by-term differentiation.

Theorem: Let g(t) be a smooth function with bounded second derivative on the interv
P@0,T0#, which originates the N-interval grid function$gkuk50,1,...,N%. Then the function fN8 (t)
produced by the term-by-term differentiation of the continuous extension of the discrete F
transform on SU(2), f N(t), converges with increasing N to g8(t) at any tP(0,T0).

Proof: As earlier, we putT051 for simplicity of the formulas below. Because the seriesf N(t)
given by ~31! contains a finite number of elements, it is obvious that its derivativef N8 can be
summed up to the series produced by the term-by-term differentiation of~32!.

Consider first the derivativef N8 (t) at anyrational t0 in the open interval~0,1!. In that case we
can chooseN such thatt05m/N, and it then makes sense to choose all further subdivisions o
interval @0,1# such thatt0 will be always kept as a knot of the grid, i.e.,t05m1 /N1 for all N1

.N, i.e., choosingN15aN with some integera.1. Using the Lipshitz rule, the derivative of~32!
at t05m/N is reduced to

f N8 ~ t0!5
p

2
sinpt0 (

k50

N (kÞm)

~21!k2m CN,k Uk~ t0! 1
p cospt0

2 sinpt0
gm, ~34!

Uk~ t0!5
gk

cosptk2cospt0
, where tk5k/N. ~35!

Let us choose some smallD, such that both (t06D)P(0,1), and then split the sum in~34! into
3 sub-seriesS18 , S28 andSD8 as in~33!, where the numberKt5m for t5t05m/N. It is convenient
for further analysis to chooseKD as the maximum integer which satisfies the conditionKD /N
<D and is of the same parity asm. Then the indices of both the last element in the seriesS28 and
the first element inS18 , m2KD21 andm1KD11, respectively, are odd.

Recall that for any smooth functionU(t) with a bounded second derivative on the equidist
grid we have

2Uk5Uk211Uk111Uk9 N221o~N22! , ~36!

which follows from the familiar Taylor series decompositiong(t1x)5g(t)1g8(t) x
10.5g9(t) x21o(x2) in the x561/N vicinity of t. Applying ~36! to U(t)5g(t)/@cospt
2cospt0# at all t5tk in ~34! and ~35! with k odd ~i.e., k52 j 21u1< j <(m2KD)/2 ), and given
~6!, the seriesS28 is reduced to

S28 5~21!m
p sinpt0

2 S 2Um2KD
1N22 (

j 51

(m2KD)/2

U2 j 219 D 1o~N21!. ~37!

The first term on the right-hand side is exactly one half of the first term in the localized sumSD ,
but with a negative sign. The second term is of orderO(N21). A more precise estimate of thi
term can be derived if we note that for largeN the sum

2

N (
j 51

(m2KD)/2

U2 j 21→E
0

t02D

U9~ t !dt5U8~ t02D!2U8~0! ~38!

is bounded for any givenD, as far asg9(t) is bounded. Note that the estimate of~38! implies only
that U9(t) is integrable. This suggests that in principle the conditions of the validity of
differentiation Theorem can be relaxed, requiring thatg9(t) be an integrable function on@0,1#, but
not necessarily bounded.

Applying the same approach toS18 , we find
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S28 1S18 5
p sinpt0

2
~21!m11~Um2KD

1Um1KD
!1O1, ~39!

with O1;O(N21). Note that in the case of an odd N, the residualO1 also includes the difference
between the last term,k5N, and onehalf of the k5(N21)-th term, which is of order
UN8 sin(pt0)/N. Here we take into account thatCN,N2152 CN,N from ~6!. Thus, for anye we can
chooseNe such that for allN.Ne the residual in~39! is O1,e/2. Then~34! is reduced with
accuracy,e/2 to a summation of elements localized around, and symmetric with respect to
point t05m/N:

f N8 ~ t0!5p sinpt0 (
j 51

KD21

~21! j~Um2 j1Um1 j !1
p sinpt0

2
~21!KD~Um2KD

1Um1KD
!

1
p cospt0

2 sinpt0
gm1O1~e/2!. ~40!

Here we take into account thatKD is chosen to be of the same parity withm. Introducing now
r j5 j /N which is <D for j <KD , we have

sinpt0~Um2 j1Um1 j !5gm

cospt0

sinpt0
2

2

p
gm8 1O2,j ,

where, keeping the largest order terms, the residualO2,j is reduced to

O2,j.S gm2
2

p
gm8 1

2 sin2 pt0

p2 gm9 D S pr j

2 sinpt0
D 2

. ~41!

Substituting these 2 relations into~40!, and recalling thatgm8 [g8(t05m/N), it is easily shown
that for both even and oddm andKD one has

f N8 ~ t0!5g8~ t0!1O1~e/2!1O2~D2!, ~42!

where the residualO2 represents the sum of residualsO2,j , i.e., O2($ j %O2,j . Because of the sign
alteration term (21) j in ~40!, this sum does not increase with increasingN beyond the absolute
value of O2,j at r j5D in ~41!. It follows then that for any smalle.0 we can first choose an
interval D proportional toAe sinpt0 ~depending also ong, g8, g9) such thatuO2u,e/2. Then we
can choose a numberNe such thatuO1u,e/2. HenceuO11O2u,e for all N.Ne . This proves the
differentiation Theorem. j

Note that in the derivation of~38! which has allowed principal clipping of both end-terms
the localized~40! exactly by one half, the symmetry properties of the SU~2! DGT series expresse
in the termCN,k have been fully exploited.

Another notice is that, along with the continuous DGT extension of$gk%, the localization
Lemma is also valid for its term-by-term derivative fN8 (t). This property is actually proven by th
localized structure of the sum in the construction~40!.

Example 4:In Fig. 4 we show interpolations which are provided by the CEDCT series~15!
~dashed curves! for the function

g~ t !5e23t1 1
2 e2(~ t20.5!/0.1)2 , ~43!

and its first derivativeg8(t) ~bottom panels!. For comparison, we also show approximatio
provided by the continuous extension of the truncated DFT series~30! with K5N/2 ~thin solid
curves!, and by the Shannon’s interpolation formula~27! ~heavy 3-dot–dashed curves!. Recall that
the use of the standard CEDFT series~25! for calculations of derivatives does not make any se
as far as CEDFT does not converge~see Fig. 2!. Although both the truncated DFT seriessN(t) and
the Shannon’s interpolation seriesX(t) do converge tog(t) with increasing N, as shown on th
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top right-side panel, their derivatives reveal profound oscillations at any large N. Meanw
f N8 (t) shown by solid lines on the two bottom panels of Fig. 4 already provides a rather
approximation tog8(t) at rather small values ofN.

At the end of this section we would like to note, albeit without any proof or demonstratio
this paper, that our numerical calculations show that the second derivative of CEDGT also a
to converge tog9(t) if the derivativesg8(0)5g8(T0)50 is satisfied.

IV. MULTIDIMENSIONAL FOURIER TRANSFORM

Being a transform with separable variables, the multidimensional DCT is easily reduced
product of one-dimensional DCTs, which is widely used, for example, for effective 2D-im
processing~e.g., see Refs. 7 and 13!. Although the multidimensional DCT is well known, in thi
section we will first formulate it in terms of discrete Fourier transform on the SU(2)3¯

3SU(2) group. Then we will briefly discuss the convergence properties of the continuous e
sion of 2D discrete cosine transforms.

The generalization of the transform formulas for decomposition of functions ofn variables,
G(x1 , . . . ,xn), into the Fourier series of orbit functions of@SU(2)#n group is straightforward. Let
us consider first the case ofn52, i.e., when a functionG→G(x,y) defined in the regionFn
5$0<x<1, 0<y<1% ~i.e., assuming normalized variablesx→x/X0 , y→y/Y0) is to be decom-
posed into the series of the orbit functionsFmn(x,y) of the symmetry group SU(2)3SU(2). In
this case Fmn(x,y)5Fm(x) Fn(y). Using for convenience again the functionscm(x)
5cos(pmx) instead ofFm(x), we can write

Cmn~x,y!5cm~x!cn~y!5cos~pmx!cos~pny! , ~44!

where (x,y)PF. For a uniform rectangular grid$xj ,yk% defined in the regionF such that

FIG. 4. The CEDCT seriesf N(t) ~dashed curves, top panels! and the derivativesf N8 (t) ~dashed curves, bottom panels! for
an analytic functiong(t) of Eq. ~43! and its derivativeg8(t) ~heavy solid curves! in the case ofN58 andN550. For
comparison, we also show the approximations provided by Shannon interpolation formula~27! with N11 points~3-dot–
dashed curves!, and by truncated DFT seriessK(t) of Eq. ~30! and its derivativesK8 (t) with K5N/2 ~thin solid curves!.
Note that bothsK(t) andXN(t) converge withN→` at all tP(0,1), but their derivatives do not.
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$xj5 j /M , yk5k/N u j 50,1,...,M ; k50,1,...,N%,

the functionsCmn are orthogonal in the following bilinear form

^Cmn ,Cpq&M ,N5(
j 50

M

(
k50

N

CM , jCN,kCm,n~xj ,yk!Cpq~xj ,yk!5
4MN

CM , j CN,k
dmp dnq, ~45!

which follows directly from~8!.
Let G(x,y)→R be a continuous function originating a two-dimensional grid functionGjk

5G(xj ,yk) on the grid$xj ,yk%. Then the decomposition ofG into the Fourier series on SU(2
3SU(2) group corresponds to solving the system of equations

Gjk5 (
m50

M

(
n50

N

Amn Cmn~xj ,yk![ (
m50

M

(
n50

N

Amn cos
pm j

M
cos

pnk

N
, ~46!

with $0< j <M , 0<k<N%, with respect to the coefficientsAmn . This can be easily achieve
using the orthogonality relation~45!, if we multiply ~46! by CM , jCN,kCpq(xj ,yk) and take the
sum over$ j ,k%. Thus we find the coefficientsAmn of the discrete Fourier transform~46!,

Amn5(
j 50

M

(
k50

N

DM
m jDN

nkGjk . ~47!

The matrixDN is defined as before by~12!,

DN
ab5

CN,aCN,b

2N
cos

pab

N
, N,a,bPZ ,

with the weightsCN,a , CN,b given by ~6!.
In this way the coefficientsAmn of the two-dimensional DGT are found for any grid functio

$Gjk% with bounded values at the grid points (xj ,yk)PF. Thus we can formulate the following
proposition:

Proposition: Let Gjk5G(xj ,yk) be values of a bounded function G(x,y) on the rectangular
grid points

xj5 jX0 /M , yk5kY0 /N ; j P$0,1,...,M % , kP$0,1,...,N% .

A trigonometric function given by finite Fourier series

FMN~x,y!5 (
m50

M

(
n50

N

Amn cos
pmx

X0
cos

pny

Y0
, ~48!

with

Amn5(
j 50

M

(
k50

N
CM ,mCM , jCN,nCN,k

4MN
Gjk cos

pm j

M
cos

pnk

N
, ~49!

continuously extends the discrete inverse Fourier transform of the grid function$Gjk% onto the
entire rectangular area(xP@0,X0#,yP@0,Y0#), and satisfies the equality

FMN~xj ,yk!5Gjk f or all j P$0,1,...,M % , kP$0,1,...,N% .

Furthermore, if G(x,y) is continuous, then FMN(x,y) converges to G(x,y) for M ,N→`.
Since for any fixedy0P@0,Y0# or x0P@0,X0# the seriesFMN(x,y0) or FMN(x0 ,y), respec-

tively, are reduced to one-dimensional CEDCT/CEDGT series along thex or y axes considered in
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the previous section, it is obvious that the continuous extensionFMN(x,y) of 2D DGT on the
SU(2)3SU(2) group~i.e., the two-dimensional DCT! not only converges with increasing (M ,N)
to G(x,y), but also that it has properties oflocality and differentiability similar to the one-
dimensional CEDGT on ordinary SU~2! group.

Example 5:The upper panels in Fig. 5 show the contour plots of a functionG(x,y) defined in
the square regionF5@0,1#3@0,1# and composed of two two-dimensional Gaussian functio
each of type

e2 (x82x0)2/2s i
2

2(y82y0)2/2s'
2
, ~50!

wheres i>s' , but with directions of the major axesx18 andx28 perpendicular to each other. Fo
both Gaussians we have taken the transverse dispersions to bes1,'5s2,'50.025, which is ex-
actly 2 times smaller than the grid’s cell sizeDx5Dy51/20 for the chosenM5N520. The
contour plots shown on the upper panels in Fig. 5 illustrate that even in the case of a grid wi
size this large compared withs' , the continuous extension of the two-dimensional DGT se
reconstructs Gaussian-fast smooth structures reasonably well.

This is also apparent on the bottom panels of Fig. 5 where we show the three-dimen
images for the same analytic functionG(x,y) ~left panel! and its approximation in the form o

FIG. 5. Contour plots~upper panels! and visual ‘‘3D’’ images~lower panels! of an analytic functionG(x,y) ~right side!
and its approximation by two-dimensional SU(2)3SU(2) CEDGT/DCT seriesFMN(x,y) ~left side! with M5N520.
G(x,y) is composed of a sum of 2 two-dimensional Gaussian ellipsoids, each in the form of~50!, and with dispersions
s',15s',250.02551/2N. The dashed lines on the left bottom panel show the contour levelFMN(x,y)520.001.
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two-dimensional continuous DGT extensionFMN(x,y) ~right panel!. Note that any waviness tha
can be seen in the approximated function would disappear from the images had we takenN, M
>1/s' for the same functions.

Example 6:The latter case is chosen in Fig. 6 where the upper panels show, in term
brightness distribution, the original grid function produced by 2 Gaussians withs1,'5s2,'

50.0551/N, for N5M520, and its reconstruction in the form of two-dimensional continuo
DGT extension~on the right!. The major axes of the ellipsoids are inclined at a small angle~20°!
to each other. For comparison, on the bottom left panel we show the contour plot of the exac~i.e.,
originating! function G(x,y), and the bottom right panel shows its approximation by tw
dimensional CEDGT. It is obvious that the reconstructed CEDGT image not only recover
directions of the ellipsoids and their maxima, but it practically coincides with the exact im
Note that the dashed contours on both Figs. 5 and 6 show a level slightly below zero,FMN

520.001.
Generalization of the proposition for an n-dimensional DGT of a functionG(x1 ,...,xn) on

@SU(2)#n group is straightforward:

FIG. 6. Upper panels: The images, in terms of brightness distributions, corresponding to the grid function$Gj ,k% given on
M5N520 square grid~on the left!, and its reconstruction by two-dimensional CEDCT seriesFM ,N(x,y) ~on the right!.
Lower panels: Contour plots of the analytic functionG(x,y) originating$Gj ,k% ~on the left!, and of its approximation by
FM ,N(x,y) ~on the right!. The original functionG(x,y) is composed of two-dimensional Gaussian distributions w
transverse dispersions for boths'51/N50.05, an angle between long axes of the ellipsoids equal to 20°, and a s
separation between their peak positions.
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Proposition: Let Gj 1¯ j n
5G(x1,j 1

,...,xn, j n
) be values of a bounded function G(x(1),...,x(n))

given on the rectangular(M1 ,...,Mn)-interval grid points

$x1,j 15 j 1X1 /M1 ,...,xn, j n5 j nXn /Mn , j k50,1,...,Mk : k50,1,...,n%.

A continuous function given by finite Fourier series

FM1¯Mn
~x1 ,...,xn!5 (

m150

M1

¯ (
mn50

Mn

Am1¯mn
cos

pm1x1

X1
• ¯ •cos

pmnxn

Xn
, ~51!

where

Am1¯mn
5 (

j 150

M1

¯ (
j n50

Mn CM1 ,m1
CM1 , j 1

• ¯ •CMn ,mn
CMn , j n

2n M1• ¯ •Mn
3Gj 1¯ j n

cos
pm1 j 1

M1
• ¯ •cos

pmnj n

Mn
,

~52!

satisfies the equality

FM1¯Mn
~xj 1

,...,xj n
!5Gj 1¯ j n

,for all j kP$0,1,...,Mk% and kP$0,1,...,n%.

Furthermore, if G(x1 ,...,xn) is continuous, then FM1¯Mn
(x1 ,...,xn) converges to G(x1 ,...,xn)

with M1 ,...,Mn→`.
The proof of this proposition is readily obtained by the method of induction on the S~2!

factors of the group.

A. An example of CEDCT application to real images

In order to demonstrate the potential of the above suggested approach ofcontinuous extension
of the inverse multidimensional discrete group transforms for purposes of natural interpolat
discrete images between the grid points, as well as for the possibility of data compressio
smooth representation of the compressed images, we have chosen a 563140 pixel fragment of the
well known image ‘‘Lena.’’ The original fragment shown on Fig. 7~a! is strongly enlarged
~‘‘zoomed’’! in order to make visible the granularity of the image at its resolution limits. T
grayscale color coding of the fragment contains all 256 intensity levels, fromg50 ~black! to g
5255 ~white!.

In Fig. 7~b! we show the continuous extension of the original image. It is constructe
subdividing each of the initial intervalsDx andDy into 3 subintervals. This procedure increas
the density of the grid points~pixels! by a factor 33359. Calculations are done dividing first th
initial 563140 pixel fragment into ten 28328 pixel subfragments, then calculating the CEDC
for each of these sub-fragments. It allows us to demonstrate, on the next two panels, the ef
CEDCT image reconstruction at the block edges after some image compression is done. B
the continuous extension of the inverse DCT can formally extend the values of the initial inte
distribution function to valuesFMN(x,y) beyond the limits@0,255# used for the intensity coding
we have linearly renormalized the values ofFNN→F̃NNP@0,255#. The positive impact of the
higher resolution achieved by the use of CEDCT in Fig. 7~b!, as compared with the original imag
in Fig. 7~a!, is apparent.

Note that the harmonic order of the cosine functions cos(pnx/X0) and cos(pmy/Y0) used in
CEDCT corresponds to the modes 0<m,n<50. In Fig. 7~c! we show the continuous extension
the image obtained after application of the simplest ‘‘low-pass compression’’ procedure~see, e.g.,
Ref. 13!, putting the DCT coefficientsAmn→0 for all high-order modes with eitherm or n
exceedingnmax519. This procedure generally removes the high-frequency ‘‘noise’’ from the
age, and compresses the image by a factor (29/20)2'2. No visual degradation of the CEDC
image is apparent. It is noteworthy that although the exactness property of the transform
7~c! is lost, the edges of the 10 individual blocks, or the sub-fragments, cannot be vis
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FIG. 7. „a… Zoomed 563140-pixel fragment of the original image ‘‘Lena’’;„b… CEDCT image calculated with the 333
higher resolution, i.e., corresponding to 1683420 pixels; For our calculations the image was first subdivided into 10 sq
blocks of 28328 size.„c… The picture in the same 1683420 pixel representation compressed by a factor of 2. T
compression is reached by retaining in~48! only the first 0<m,n<19 DCT coefficientsAmn , and discarding all higher-
order terms.„d… The picture compressed by a factor of 10; the compression is achieved by discarding all cosine term
uAmnu<0.05Amax ~see text!.
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distinguished. The block edges become noticeable only in Fig. 7~d!, where we have applied agai
the CEDCT approach for visualization of the image compressed now by a factor of 10
compression in Fig. 7~d! is effectively reached by keeping in CEDCT series only 10% of
cosine terms with the large-value coefficientsAmn , and discarding all terms with small-valu
Amn . For Fig. 7~b! it has corresponded to the assumptionAmn→0 if uAmnu<0.05Amax, where
Amax is the maximum absolute value of the coefficients$Amnu% ~excluding A00). Obviously, the
image in Fig. 7~d! still remains smooth and quite recognizable.

We would like to note here that it has not been our aim in this paper to reach the goal
best possible image compression. We believe, however, that through this paper our ex
demonstrate the high potential of the developed approach ofcontinuous extensionsof DCT, and of
the DGTs generally, as considered in the next Paper II for the SU~3! group ~in preparation!, for
purposes of practical applications, and in particular for image processing and compression

V. SUMMARY

We have shown that:
1. A discrete Fourier transform of a grid function$gkuk50,1,...,N% on the orbit functions of Lie
groups, abbreviated DGT, in the case of SU~2! is reduced to the well known discrete cosin
transform, namely, to DCT-I, which is a known type of exact discrete transforms, like the sta
DFT sequence.
2. The principal difference between these 2 types of discrete Fourier transforms consists in t
that DCT is based on the functions cos(kpt/T0) corresponding tok<N trigonometric harmonics of
both integer and half-integer orders,n5k/2<N/2, whereas the DFT utilizes trigonometric fun
tions of integern only, but extending to ordersn<N. This results in vital differences in the
subsequent properties of DFT and DCT~or DGT generally!.
3. If the functiong(t) originating$gk% is a continuous function oftP@0,T0#, then the continuous
extension of the~inverse! DCT sequence results in the functionf N(t) which converges to the
original g(t) with increasingN at all t. This property does not hold for the continuous extens
of the standard DFT sequence, which shows profound oscillations between the points of th
Note that potentially this feature implies significantly smaller vulnerability of DCT to
truncation/approximation errors in the process of filtering as compared with the standard
Therefore, it could be the reason for the superior general performance of the DCT compare
the DFT~see Ref. 5!.
4. Similar to canonicalcontinuousFourier transform polynomials with coefficients calculated
exact integrations, the CEDCT series satisfies the principle oflocality. This property insures, in
particular, that the computation errors connected, e.g., with noise or uncertainties in one se
of the data will not significantly affect the reconstructed CEDCT image on the distant segm
data. This property of DCT may become important especially in the process of lossy data
pression when the property of exactness of thediscretetransform is not necessarily preserved.
5. Similar to the canonical CFT, the CEDCT seriesf N(t) can be differentiated term by term, s
that for the~first! derivative series limN→` f N8 (t)→g8(t) for all tP(0,T0) provided that the second
derivative of g(t) is a continuous~or just an integrable! function on the interval@0,T0#. For
CEDCT this property is valid both wheng(0)5g(T0) andg(0)Þg(T0). It does not necessarily
hold for continuous extensions of other types of discrete transforms, which might be conve
like sk(t) in ~30! or Shannon interpolationXN(t), but which produce nonconverging derivativ
series, as demonstrated in Fig. 4.

The derivative seriesf N8 (t) satisfies the localization principle along withf N(t).
6. In the case of ann-dimensional function defined on the knots of a rectangularn-dimensional
grid, the DGT Fourier decomposition can be performed using the orbit functions of@SU(2)#n

group. Such Fourier series are effectively reduced to then-fold convolution of one-dimensiona
DGT on SU~2! alongsiden independent~rectangular! axes. Therefore they have nice properties
convergence, localization, anddifferentiability of their continuous DGT extensions similar to th
one-dimensional CEDCT.
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Primary superfields for a two-dimensional Euclidean superconformal field theory
are constructed as sections of a sheaf over a graded Riemann sphere. The transfor-
mation law is found to be the same as that of an O(N) extended primary field. The
construction is then applied to theN53 Neveu–Schwarz case. Various quantities
in theN53 theory are calculated, such as elements of the super-Mo¨bius group, and
the two-point function. Applications of the construction to calculate three-point
functions and fusion rules in a manifestly supersymmetric fashion are
discussed. ©2004 American Institute of Physics.@DOI: 10.1063/1.1739295#

I. INTRODUCTION

Two-dimensional conformal field theory has many applications in statistical mechanic
string theory. It also has a very rich algebraic nature, in a sense due to the symmetry algebr
infinite-dimensional. Exactly how this works in the bosonic case is extremely well understo13

The supersymmetrization of two-dimensional conformal field theory is something tha
been studied heavily from a string theory approach.16 The string is described by a two-dimension
conformal field theory, and the supersymmetrization of the conformal field theory essen
admits fermions onto the string. This has mostly been studied from a Lagrangian point of
where the Lagrangian exhibits the classical symmetries. Canonical quantization can then b
to then obtain the quantum algebra.

In bosonic conformal field theory there is a way, using the high degree of symmetry, to o
the quantum algebra by algebraic means, rather than from a Lagrangian. Extending this to a
with one or two Grassmann variables has been covered extensively in the literature. Adding
supersymmetry to the theory has been studied, e.g., Refs. 29, 8, 9, but in nowhere near a
depth as theN51,2 theories.

In two-dimensional conformal field theory, it is found that one can always find a confo
transformation that maps the two-dimensional theory to a two dimensional theory that is fl
the Euclidean case, the conformal transformations that map the plane to itself are precis
holomorphic and antiholomorphic transformations of the plane to itself. One can therefore
Euclidean two-dimensional conformal field theory on a complex plane.17 To get a more ‘‘global’’
picture of what is going on, the theory can then be conformally mapped to the Riemann s
Many of the properties of the conformal field theory can then be described by the properties
Riemann sphere. The question then becomes how to build a theory on a ‘‘super-Rie
sphere,’’14,15 and how the properties of this object can be related to the properties of a supe
formal field theory. In this note, the question is addressed, with particular attention payed
N53 case.

Superconformal algebras in the classical case look like derivations on a polynomial ri
$z,z21,u i%, where theu i are anticommuting ‘‘coordinates,’’ that preserve a differential form. T
can be combined with the theory of extended graded manifolds, with the manifold in que
being the Riemann sphere, to give a suitable setting for superconformal field theory~Secs. II–IV!.

a!Electronic mail: J.S.Nagi@damtp.cam.ac.uk
24920022-2488/2004/45(6)/2492/23/$22.00 © 2004 American Institute of Physics
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One can then use this setting to construct and calculate various quantities in the field theo
N53 Neveu–Schwarz case is studied in detail~Secs. V–X!.

II. THE GRADED RIEMANN SPHERE

In this section, a Riemann sphere is considered, and how one can generalize it to the
conformal case. It should be mentioned that there are strictly speaking two approaches, whi
rise to the same structure.28,5,4Here, the algebraic structure,23,24 known as a Graded Manifold~of
the extended type! will mostly be used. In some instances, it will become necessary to transf
the analytic point of view, namely Supermanifolds.26

First consider an ordinary Riemann sphere. Rather than consider it as a geometric obje
could consider it as a collection of open sets,Ui , and consider the functionsf :Ui→C that are
holomorphic in each open set, denotedf (Ui). Each f (Ui) is a ring under addition inC, and
pointwise multiplication. Given an open subsetV#U, one can construct a nonsingular ring h
momorphismrUV : f (U)→ f (V). These ring homomorphisms become the fundamental tool
work with. They give a way of comparingf (Ui)uUiùU j

and f (U j )uUiùU j
and allow one to con-

struct a sheaf of rings over the Riemann sphere, denotedA0 .23,18One can see that eachf (Ui) will
be a subring ofC@z,z21#. One can then consider derivations on eachf (Ui), denoted Der(Ui)
which areC-linear maps fromf (Ui) to f (Ui) that obey the Leibniz rule. Der(Ui) then forms a
rank one module overf (Ui). The maprUV induces a maprUV*

21 :Der(U)→Der(V). One can use
theserUV* to construct a sheaf of abelian groups, namely the tangent sheaf, denotedD 1A0 . It is,
locally, a rank oneA0-module. A section of it can be written locally asg(z) (]/]z). On eachUi ,
one can also consider theA0 linear maps of Der(Ui) into A0 , denotedV1(Ui). This is also a rank
one f (Ui)-module, and therUV* induce a maprUV* :V1(U)→V1(V). Once again, therUV* can be
used to construct a sheaf, denotedD1A0 . It is locally a rank oneA0-module. Locally, a section
can be written asdzg(z). One can define the conformal condition as demanding thatrUV :z8°z,
for z8,z local coordinates inU,V respectively, as having the propertyrUV* dz85dzk(z) for some
kPA0 . Given this construction, a basis of infinitesimal transformations can be written d
namely z85z1azn11 corresponding to a space of vector fields, which gives rise to the
algebra. Phrasing the structure of a Riemann sphere in this way gives the most natural ge
zation to a graded Riemann sphere.

Similarly, an extended graded manifold can be defined, where each ring associated t
open set is no longer a subring ofC@z,z21#, but a larger ring containing Grassmann generato
The ring is no longer overC, but over a complex, finitely generated unital Grassmann alge
BL8 . Each ring associated to each open set is now a subring of

BL8@z,z21,u1 ,...,uN#. ~1!

It is worth noting that this is a slightly more general requirement than that of a graded man
In the graded manifold case, the ring is often still taken to be overC, and so would look like

C@z,z21,u1 ,...,uN#, ~2!

which, as a ring, is contained in~1!. This can be seen by constructing a mapp:BL8°C by
projecting onto the unital element inBL8 . The map defines an important quantity, namely
‘‘body’’ of an element of a grassmann algebra. The approach of looking at an algebra oveBL8
rather thanC, as far as the author is aware, was first introduced in Ref. 28. The ring~1! is the
Neveu–Schwarz ring. This gives rise to a sheaf, denoted byAN for some positive integerN. The
only condition on the ring associated to each open set, is that it be ‘‘holomorphic inz. ’’ This is, in
fact, quite a subtle analytic condition, a discussion of which will be postponed for a few
graphs. Derivations are now replaced by the sheaf of graded derivations,D 1AN which is a leftAN

module. Accordingly, there is the sheaf of graded one-forms,D1AN , which areAN linear maps of
D 1AN into AN . D1AN is a rightAN module. For full details of this construction of derivation
and one-forms, see Ref. 23.
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There is now a question of a preserved one-form. The basis of differentials is now giv
(dz,du i). Rather than the one-form coming for free, it must now be defined. This one-form
define a generalized conformal structure.19 Define the one form9 v5dz2( idu iu i . A transforma-
tion (z,u i)°(z8,u i8) is superconformal iff it is invertible andv85vk(z,u i) for kPAN . All
homomorphisms between open sets with intersection are demanded to be superconform
alternative basis forD1AN is (v,du i), which gives a corresponding dual basis ofD 1AN , namely
(],Di). Here,]5 ]/]z, andDi5(]/]u i) 1u i(]/]z). This is a convenient basis to work with.
can be readily shown from the superconformal condition, that

Diz82(
j

u j8Diu j850, ~3!

k5]z81(
j

u j8]u j8 . ~4!

From here on summations are dropped, and summation convention should be assumed.
ticular, considering infinitesimal transformations, once thez8 transformation is known, all theu i8
transformations can almost be deduced. In theN51 case, there is aZ2 ambiguity. For higherN
this ambiguity becomes a continuous group, often interpreted as a gauge group in the p
literature.1,2 k can also be given by a slightly different expression. The relation@Di ,Dk#
52d ik], where the commutator is graded, and~3!, are useful in showing that det(Diuj8)

25(]z8
1ui8]ui8)

N5kN. This is an expression in a Grassmann ring overC, so it is not obvious that one ca
divide or takeNth roots. If the coordinate transformation on the intersection of two open ne
borhoods (z,u i)°(z8,u i8) involves a scale factork, the inverse transformation will induce a sca
factor k8, with kk85k8k51. Thus,k has a unique32 inverse, and bothk andk8 have a compo-
nent that is pure complex number, i.e., they have a nonzero ‘‘body.’’ Since an extended g
manifold framework is being used, this is not as trivial a fact as it might seem.Nth roots ofk can
now be defined, as the binomial expansion around the ‘‘body,’’e~k!. This expansion is finite due
to the nilpotency ofk2e(k). One finds thatv85v(det(Diuj8))

2/Nz2, wherez is an Nth root of
unity. Calculating the corresponding transformation on the basis ofD 1AN , one finds thatDi8
5(Di8u j )D j , and that (Diu j8)

215(Di8u j ).
There is a subtle point about the superconformal transformation. The map

z85z, u i852u i ~5!

is superconformal. If one restricts to transformationsz85z8(z) and uses the superconform
condition to deduce how theu i can transform, the choice of possible minus manifests itself
choice of spin structure. Considering the transformation~5!, one can ask what functions of~1! are
invariant under it. A basis can be chosen for this ring, namely$zn,znu i ,...,znu1u2 , . . . ,uN%, for
nPZ. Without the minus sign, all these basis elements are transformed to themselves. W
minus sign, one finds that those elements with an odd number ofu i obtain a minus sign. Thus
only a subring is invariant. One can enlarge the invariant subring by introducing square roo
choosing the minus sign in the square root whenever one has an odd number ofu i in a basis
element. Consider now a subring of

BL8@z1/2,z2 ~1/2!,u1 ,...,uN#, ~6!

which has as a basis$zn,zn1(1/2)u i ,znu iu j ,zn1(1/2)u iu juk ,...% nPZ and choose the negativ
square root under a superconformal transformation. Now all the basis elements are map
themselves under a superconformal transformation. This is the Ramond ring. It should be
that with the analytic definition of functions that are ‘‘holomorphic inz’’ that will be used here
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~see below!, the Ramond ring introduces a branch cut. It should also be noted that this constr
can easily be extended to the case when some of theu i have a minus sign in the transformatio
and some do not.

Already the need for a more analytic idea of what is going on is apparent. This wi
particularly important when the question of contour integration arises. Full details of this app
can be found in Refs. 28, 26. Many details are not mentioned here. Consider now a Gras
algebra generated byL generators,BL . This algebra can be given a Banach algebra structure,
the resulting topology being Hausdorff. This splits into an even and odd part,BL5BL0% BL1 as a
vector space overC. Now theu coordinates take values inBL1 andz in BL0 . In particular,z can
now have a nilpotent even parts(z) ~the soul!, but must have a proper complex number parte(z)
~the body!. Using the fact that a body exists, a ‘‘superdifferentiable’’26 function can be con-
structed. ForL85$the smallest integer not smaller thanL/2%, a continuation can be specified
namely a continuationZL8,L :C`(e(U),BL8)→G`(U,BL) for U open inBL . The algebraBL8 can
be associated to the algebraBL by the inclusion mapiL8,L :BL8→BL which is the algebra homo
morphism that maps the generatorsb i to L8 of the generators inBL , and the unit inBL8 to the unit
in BL . Note, f (z) may be even or odd,

ZL8,L~ f !~z!5(
i 50

L
1

i !
iL8,L~ f ( i )~e~z!!!3s~z! i , ~7!

where f ( i ) denotes thei th derivative. Now consider functions of the variables (z,u i) that can be
written as

F~z,u i !5ZL8,L~ f 0!~z!1(
i 51

N

ZL8,L~ f i !~z!u i1¯5 (
m50

2L21

ZL8,L~ f m!~z!um . ~8!

The statement thatF(z,u i) is holomorphic inz is the statement all thef m(w), are holomorphic in
the complex variablew. These are examples ofGH` functions. For a sheaf to beGH`, its
restriction maps,rUV , must also beGH`.

An interesting sheaf to look at is that formed by the one-formv. It shares similar properties
to the one-formdz on an ordinary Riemann sphere. Call the sections of this line bundle on
Riemann sphereO0(1). If the change of coordinates on an intersection from one open se
another isz° f (z), then the transition function for an element ofO0(1) is f 8(z). In conformal
field theory, a primary field of weighth can be thought of as a section ofO0(h)5O0(1)^ h, where
h is a positive integer. In the super case, this gives something similar. It should be pointed o
v will not give a line bundle. This would require the typical fiber to be a freeBL8 module of rank
one, rather than a line. As a result, it must be regarded as a sheaf. This gives rise to a s
sections,ON(1). On anintersection, the function (detDiuj8)

2/Nz2 is the sheaf’s homomorphism
This should be compared to the transition functions on a line bundle. ‘‘Uncharged’’ prim
superfields12 can then be thought of as sections ofON(h)5ON(1)^ h. It should be noted that now
tensor products are taken over a graded ring,AN , so care must be taken with signs in the tens
product. For example, consider a tensor product between two graded left-AN modules. Then

f 1^ p f25~21!p f1p f1^ f 2 ,

wherepPAN , and exponents of (21) give the parity of the associated element. Similar formu
should be used if one of the two modules, or both are right-AN modules, with the obvious
modifications in the exponent of (21).

There are other interesting sheaves also present. If one accepts the Berezin prescrip
integration, then the integration ‘‘measure’’ on the graded Riemann sphere isv ^ iDi , which has
a transformation rule (detDiuj8)

((2/N) 21)z2. As was first noticed in Ref. 29, there is also a O(N)
group present. This can be regarded as a sheaf in the following way. Since the$Di%, i 51,...,N,
transform amongst themselves, one can consider the sheaf of supercovariant derivatives. T
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transformation law on intersections of open sets isDi85(Di8u j )D j . Since the superderivative
transform into one another, one can consider the sheaf of supercovariant derivatives. C
sections of this sheafCN . The matricesDiu j8 enjoy the following property:

~Diu j8!~Dku j8!5d ik~]z81u j8]u j8!5d ikk5d ik~detDiu j8!2/Nz2. ~9!

The right-hand side can be though of as anN3N identity matrix multiplying the scale factor o
the superconformal transformation. Consider now a sheaf whose sections areO(2 1

2) ^ CN . Con-
structingO(2 1

2) requires taking a square root, and is very analogous to taking the square r
a line bundle. Hence, the choice of sign can be thought of as choosing a spin structure. The
homomorphisms on an intersection of open sets in this sheaf are given by

Mi j 5
~Diu j8!

Ak
~10!

and the sheaf itself is anAN-module of rankN. Recall that on intersections,k has an inversek8,
and sok2(1/2) is well defined on this intersection. There is still a question of a sign. Keepin
mind thatu j856u j is a superconformal transformation, it is really theu j that one would want to
account for different spin structures, rather thanO(2 1

2). Therefore, it seems reasonable to choo
a plus sign fork2(1/2). Regarding the new homomorphismMi j as a matrix acting on a free modu
of rank N, it can be thought of as an element of O(N), with the entries being even Grassma
elements. The new sheaf then gives rise to a fundamental representation of O(N), and theMi j the
coefficients of a matrix with basisEi j . Call this sheafGN . This can give rise to other sheave
which are also O(N) representations.

The manner in which this is done parallels what is often done for vector bundles, in part
frame bundles and spin bundles. The reason this treatment can be applied is thatGN almost looks
like a vector bundle, the only hinderance being that the ‘‘typical fiber’’ would be aBL8 module
rather than a vector space. Rather than an Abelian group of rankN being associated to each ope
set, one can instead associate a group element of O(N), just as is done with frame bundles wit
principal bundles, and retain the sameMi j . This gives rise to a sheafG̃N . Considering, now a
different representationr of O(N) gives rise to a sheaf homomorphism~albeit of non-Abelian
groups!

s:~P1 ,G̃N!→~P1 ,G̃N
r !, ~11!

where the group homomorphisms are now given byMi j r(Ei j ). Since the representationr has a
vector spaceV associated to it, one can consider the sheaf which has the group homomorp
given by Mi j r(Ei j ), and stalk V, and denote the sections of this sheaf byR(GN). An
O(N)-extended primary superfield, first introduced in Ref. 29, can then be defined as a sec
ON(h) ^ R(GN).

III. CONTOUR INTEGRATION

Since one wishes to do conformal field theory in the setting presented above, a se
question to ask is what closed contour integrals will look like, given the set of analytic func
~7!. All functions on a given open set look like

f ~z!5ZL8,L~ f 0!~z!5(
i 50

L
1

i !
iL8,L~ f 0

( i )~e~z!!!s~z! i , ~12!

wheref 0PC`(U,BL8). This should be compared to the usual notion of a Taylor expansion, ar
e(z). Note that ifL850, BL85C, andH` functions are retrieved. In the following, theiL8,L will
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be suppressed~for clarity!. It is a linear map, so one can see that the following workings
unaffected. The contour integralrCz

f (z)dz needs to be considered. By the definition above, ifz is
an ordinary complex number~i.e., has no soul!, one finds

f ~z!5(
i 50

L
1

i !
f 0

( i )~e~z!!s~z! i5 f 0~z!. ~13!

If the even coordinate,w, were to have soul as well as body, it would give an element of an e
Grassmann algebra over a complex field, when evaluated at a point. Hence one can conw
itself as being parametrized by a complex numberz. Now consider a parametrizationw5g(z)
5b(z)1u(z), wheree(w)5b(z), s(w)5u(z),

f ~w!5(
i 50

L
1

i !
f 0

( i )~e~w!!s~w! i5(
i 50

p
1

i !
~ f 0

( i )+b!~z!u~z! i5~ f +g!~z!, ~14!

where p,L is the integer such thatu(z)pÞ0, u(z)p1150. Using the definition of a contou
integral given in Ref. 27, withCw5g(Cz),

R
Cw

f ~w!dw5 R
Cz

~ f +g!~z!g8~z!dz

5 R
Cz
S (

i 50

p
1

i !
~ f 0

( i )+b!~z!u~z! i D S d

dz
b~z!1

d

dz
u~z! Ddz

5 R
Cz

S d

dz
b~z! D ~ f 0+b!~z!1(

i 51

p
1

i ! S d

dz
b~z! D ~ f ( i )+b!~z!u~z! i

1(
i 50

p
1

i !
~ f ( i )+b!~z!u~z! i S d

dz
u~z! Ddz. ~15!

All that has be done above is put all the definitions in and split up some summations. Note
first summation, the chain rule can be used on the functionb(z), and in the second summation, th
chain rule can be used onu(z), giving

R
Cw

f ~w!dw5 R
Cz

S d

dz
b~z! D ~ f 0+b!~z!1(

i 51

p
1

i ! S d

dz
~ f ( i 21)+b!~z! Du~z! i

1(
i 50

p
1

~ i 11!!
~ f ( i )+b!~z!

d

dz
~u~z! i 11! dz

5 R
Cz

S d

dz
b~z! D ~ f 0+b!~z!1(

i 51

p
1

i !

d

dz
~~ f ( i 21)+b!~z!•u~z! i !

1
1

~p11!!
~ f (p)+b!~z!

d

dz
~u~z!p11! dz. ~16!

The last term is in fact zero, due to the nilpotency ofu(z). The term under the summation is a tot
derivative. As such, integrated around a closed contour, it vanishes identically. All that rema
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R
Cw

f ~w!dw5 R
Cz

~ f 0+b!~z!b8~z!dz. ~17!

Thus, the contour integral can formally be treated as an integral in a normal complex num
should be noted that all that has been used in this calculation is the chain rule and produ
over C` functions.

IV. THE PRESERVED ONE-FORM AND RAMOND FIELDS

Whilst generalizing the bosonic setting in the previous sections, it was found that rathe
a preserved one-form coming for free, it had to be specified. One could ask, what happ
another one-form is specified. In Ref. 21, other one-forms were considered. It was found
one wanted aZ-graded algebra, a one-form of the formdz2du i f (z)u i had to havef (z)5zn. By
making a change of variables,21 then shows that one only need consider the casesn50,1.

Consider, now, a different preserved one-form, namelyv5dz2du izu i . The dual derivations
to (v,u i) are (],Di), where Di5(]/]u i) 1zu i (]/]z). Now one finds that@Di ,D j #52d i j z].
Requiring that under a transformation,v85vk(z,u i) yields

D jz82z8u i8D ju i850, ~18!

k5]z81z8u i8]u i85S z8

z D ~detDiu j8!2/Nz2, ~19!

Di85~Di8u j !D j , ~20!

~Diu j8!~Dku j8!5d ik~detDiu j8!2/Nz2. ~21!

One can ask what an element ofON(h) may transform like, and what is the algebra of infinite
mal transformations associated to it. Consider the caseN51. The field has a transformation rul
under (z,u)°g(z,u)5(z8,u8),

~Ug
21FUg!~z8,u8!5F8~z8,u8!5F~z,u!S S z8

z D ~Du8!2D 2h

. ~22!

The superconformal condition, namely preserving the new one-formw, imposes two types of
transformation, a bosonic and a fermionic one. On the coordinates, (z,u), the infinitesimal trans-
formations are given by

~z,u!°S z1azn11,u1a
n

2
znu D and

~23!
~z,u!°~z1euzr 11,u2ezr !,

where r ,nPZ. These provide a basis for all infinitesimal transformations. Each one induc
transformation on the field,~22!, with a(n)5azn11, e(r )5euzr 11,

da(n)F~z,u!52aS zn11]z1
n

2
znu]u1h~n11!znDF~z,u!,

~24!
de(r )F~z,u!52e~uzr 11]z2zr]u1h~2r 11!uzr !F~z,u!,

wheren,r PZ. These differential operators give rise to commutation relations
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@da1(m) ,da2(n)#5~m2n!da2a1(m1n) ,

@de1(r ) ,de2(s)#52de2e1(r 1s) , ~25!

@da(m) ,de(r )#5S m

2
2r D dea(m1r ) .

This gives a representation of the Ramond algebra. Note that no branch cut has been intro
Another thing to note is thatda(0) gives a l 0 operator, which says thatu scales like a field of
weight zero, rather than a field of weight half. As a result, the expansion ofF(z,u) is now taken
to be

F~z,u!5f0~z!1uf1~z!5 (
mPZ

f0mz2m2h1u (
mPZ

f1mz2m2h.

Using this expansion, and writing the transformation of a field as

~UgFUg
21!~z,u!5F~z8,u8!S S z8

z D ~Du8!2D h

Ug5exp~anLn1e rGr ! ~26!

one can find the action of the algebra on the modes ofF as33

@Ln ,f0m#5~~h21!n2m!f0m1n , @Ln ,f1m#5~~h2 1
2!n2m!f1m1n ,

@Gr ,f0m#5f1m1r , @Gr ,f1m#5~~2h21!r 2m!f0m1r .

These are precisely the commutation relations one obtains from theN51 Ramond OPEs from the
usual method of introducing a branch cut.25 Rewriting the commutation relations~25! in a more
familiar way, and inserting the unique central extension,21 the algebra can be written down

@Lm ,Ln#5~m2n!Lm1n1
C

6
m~m221!dm1n,0 ,

~27!

@Lm ,Gr #5S m

2
2r DGm1r , @Gr ,Gs#52Lr 1s1

2C

3 S r 22
1

4D d r 1s,0 .

Influenced by the form of the infinitesimal changes~24!, OPEs can be postulated that give t
above commutation relations, which read as

L~w!f0~z!;S ]

~w2z!
1

h

~w2z!2Df0~z!,

L~w!f1~z!;S ]

~w2z!
1

h1
1

2

~w2z!2 2
1

2z~w2z!
D f0~z!,

G~w!f0~z!;
1

z~w2z!
f1~z!,

G~w!f1~z!;S ]

~w2z!
1

2h

~w2z!2 2
h

z~w2z! Df0~z!, ~28!
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L~w!L~z!;
C

~w2z!4 1
2L~z!

~w2z!2 1
]L~z!

~w2z!
,

L~w!G~z!;
]G~z!

~w2z!
1

3G~z!

2~w2z!2 2
G~z!

2z~w2z!
,

G~w!G~z!;
2zL~z!

~w2z!
1

2C

3 S 2z

~w2z!3 1
1

~w2z!2 2
1

4z~w2z! D , ~29!

where L(z)5(nLnz2n22, G(z)5( rGrz
2r 21, z,r PZ. This final set of OPEs demonstrate th

drawbacks of the more abstract construction used in this paper of a Conformal Field T
~namely via a section of a sheaf over some manifold!, compared to the more usual approach o
free field realization. One can calculate the infinitesimal transformations of the field~the section
obtained!, and show the transformations close as a Lie algebra. One then has to ‘‘work
wards’’ and try and construct OPEs and central charge terms that agree with the transform
and lie algebras calculated. It would be interesting to see if the Ramond field~22! could be
realized via a free field realization where usually one finds central terms and OPEs are ex
calculable.

V. CLASSICAL NÄ3 ALGEBRA

Consider now that case of preserving the usual one-form,dz2du iu i , with three Grassmann
variables. The superconformal condition is then~3!. Using a notation ofZ5(z,u i), and writing a
superconformal transformation asZ°g(Z), a representation of the group can be constructed
A3 , namelyUgf (Z)5( f +g21)(Z). The infinitesimal transformations can be calculated, and a
superalgebra constructed. The infinitesimal transformations take the form of vector fields act
functions.

The most general infinitesimal transformation on thez coordinate is

z°z1a f~z,u1 ,u2 ,u3!1eh~z,u1 ,u2 ,u3!

for f (h) some even~odd! function, anda ~e! infinitesimal and of even~odd! parity. The functions
f have analogs for transformations in theu i coordinates. Breaking upf into superfield component
gives eight different types of transformation.

z°z1a~z!1a i~z!u i1
1
2 ai j ~z!u iu j1a123~z!u1u2u3 . ~30!

The possible transformations are forced into only these eight types, and not some mix be
them, by the superconformal condition.

An infinitesimal transformation most generally reads

z85z1dz, u j85u j1du j . ~31!

On substituting into~3!, one finds that the superconformal condition reads

Didz5du i1(
j 51

3

u jDidu j , ~32!

i.e., three equations, with three unknowns oncedz has been specified. A basis for the infinitesim
z transformations is easily found, which isdz5eu1u2u3zn1(1/2), dz5au iu j z

n11 for i , j , dz
5eu iz

n1(1/2), and dz5azn11. Given these eight types of transformation, precisely what
correspondingdu i are, modulo possibledu i if dz50, can be calculated explicitly. The case wh
dz50 is taken care of by thetn

i generators below. Using this procedure, the infinitesimal gen
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tors of theN53 algebra can be calculated. The results are quite hefty, but the actual transf
tions give an intuitive idea of what each element of the algebra actually does. Summation
vention is used in the following:

z°z1azn11,

u i°u i1a 1
2~n11!u iz

n, ~33!

⇒ l m52zmS z
]

]z
1

1

2
~m11!u i

]

]u i
D

gives a vector field corresponding to an infinitesimal transformation when onlya(z) is nonzero in
~30!. There are then the three singleu terms, which can be found by considering the case w
only onea i(z) is nonzero,

z°z2eu1zr 1 ~1/2!,

u1°u11ezr 1 ~1/2!,

u2°u22e~r 1 1
2!u1u2zr 2 ~1/2!,

u3°u32e~r 1 1
2!u1u3zr 2 ~1/2!

gives rise to the vector field

gr
15zr 2 ~1/2!S zu1

]

]z
2z

]

]u1
1S r 1

1

2D u1u2

]

]u2
1S r 1

1

2D u1u3

]

]u3
D .

Similarly

gr
i 5zr 2 ~1/2!S zu i

]

]z
2z

]

]u i
1S r 1

1

2D u iu j

]

]u j
D .

It is worth noting that if one were not working on an extended graded manifold, but on a g
manifold ~cf. ~1!, ~2!!, then one would not be able to obtain the above vector field. The s
statement holds forc r below.

There are three doubleu terms, e.g.,u1u2 gives tn
3,

z°z,

u1°u11au2zn11,

u2°u22au1zn11,

u3°u31a~n11!u1u2u3zn.

A similar calculation applies totn
1 and tn

2,

tm
i 5zm21S ze i jku j

]

]uk
2mu1u2u3

]

]u i
D .

These transformations leave thez component unaltered, and as such have sometimes been
preted in the physics literature2 as a gauge group. The final term is similarly calculated, and is
threeu transformation

c r52zr 2 ~1/2!S u1u2u3

]

]z
1

1

2
e i jku iu j

]

]uk
D .
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These vector fields, similarly calculated in Refs. 20, 7 then give rise to the commutation rel
for the N53 algebra without central extension,

@ tm
i ,tn

j #52e i jk tm1n
k , @ tm

i ,cs#50, @ tm
i ,gr

j #5d i j mc r 1m2e i jkgr 1m
k ,

@ l m ,cs#52S m

2
1sDcm1s , @ l m ,tn

i #52ntm1n
i , @gr

i ,cs#5t r 1s
i ,

@ l m ,gr
i #5S m

2
2r Dgr 1m

i , @gr
i ,gs

j #52d i j l r 1s1e i jk~r 2s!t r 1s
k ,

@ l m ,l n#5~m2n!l m1n , @cm ,cn#50. ~34!

Note in particular that thetn
i form an su~2! loop algebra, which will be enhanced by a cent

extension in the quantum case to give an affine su~2! algebra. One implication of this is that th
representation theory will have to be very different to that of theN52 case, where a u~1! loop
algebra appeared. The highest weight state must also be an su~2! highest weight state. Since U~1!
is Abelian, all its irreducible representations are one dimensional. The upshot of this is th
OPE can be easily adapted by including one more quantum number. Since SU~2! is non-Abelian,
it will be seen that su~2! generators will appear in the OPE.

VI. QUANTUM NÄ3 ALGEBRA

The quantumN53 algebra was calculated from a Lagrangian approach, and canon
quantized in Refs. 1 and 2. Whilst this section may look very technical, it should be stresse
essentially the same procedure is being used as in the well documented bosonic case, w
starting point is a section of a sheaf, namelyO0(h). One plays the same game, but now uses
sectionON(h) ^ R(GN). Since it is defined covariantly, one can then write down how it tra
forms. This then gives rise to infinitesimal transformationsdF, which close as a Lie algebra
These relations can be written in terms of an operatorT acting onF, giving an OPE. From thedF,
an ansatz for the OPE ofT with itself can be inferred. The action of the quantum algebras
primary fields is inherent in theTF OPE. The commutation relations of the quantum algebra
then inherent in theTT OPE as the modes. What must be checked from the first OPE, is tha
primary superfield does indeed yield a highest weight vector.

Recall that for a primary field in the bosonic case, one performs a diffeomorphism from
Riemann sphere to itself that obeys the conformal condition, and looks at how the primary
transforms. More precisely, one considers, a diffeomorphismf ,

f :P1→P1

~35!
z° f ~z!5z8

with the conformal condition

~ f * dz!5dzk~z!. ~36!

One then calculates howfPO(h) transforms under a pullback, wheref in local coordinates is
f(z)dz^ h,

~ f * f!~z!5kh~f+ f !~z!dz^ h5S dz8

dz D h

f~z8!dz^ h5..f8~z!dz^ h ~37!

yielding the transformation law
                                                                                                                



l

eld

tors
d
ommu-

mal

2503J. Math. Phys., Vol. 45, No. 6, June 2004 Superconformal primary fields

                    
~UgfUg
21!~z!5S dz8

dz D h

f~z8!5f8~z!. ~38!

For the graded case, one has to consider an invertible sheaf morphism

f :~P1 ,AN!→~P1 ,AN!,
~39!

Z5~z,u i !°Z85~z8,u i8!,

such thatf ~as well asf 21) has aGH` action on the functionsAN , and obeys the conforma
condition

~ f * v!5vk~Z!. ~40!

The transformation rule for the components ofFPON(h) ^ R(GN) under a pullback are then
given by

F8~Z!5kh
~Diu j8!

Ak
gi j ~F+ f !~Z!. ~41!

The gi j are, up to a discrete subgroup, a representation of the Lie group O(N). Thegi j explicitly
realize the map~11!. This formula matches that found in Ref. 29 for how a primary superfi
transforms. One now writes down the transformation law as

~UgFUg
21!~Z!5kh

~Diu j8!

Ak
gi j F~Z8! ~42!

and parametrize the group action infinitesimally by

Ug5exp~anLn1a r
i Gr

i 1bn
i Tn

i 1b rc r !,

Z85exp~anl n1a r
i gr

i 1bn
i tn

i 1b rc r !Z,

in a completely analogous way to~26!, to obtain the commutators of the super-Virasoro opera
on a primary field. For theN53 case this yields~45!. One must now work backward to try an
construct an OPE between a stress-energy tensor and primary superfield that yield these c
tators.

For the N53 case, the stress-energy tensor will be weight1
2, and have superfield

decomposition34

T~Z!5u1u2u3L~z!1 1
2 e i jku iu jG

k~z!1u iT
i~z!1c~z!. ~43!

An OPE forN53 is found in Ref. 8, that, on contour integration, gives rise to the infinitesi
transformations of a primary superfield.29 With Z15(w,x i), Z25(z,u i), this reads

T~Z1!F~Z2!;
hu12,1u12,2u12,3

Z12
2 F~Z2!1

u12,1u12,2u12,3

Z12
]wF~Z2!1

e i jku12,iu12,jD2,k

4Z12
F~Z2!

1
u12,iJi

Z12
F~Z2!, ~44!

where

D2,i5
]

]u i
1u i

]

]z
, Z125~w2z2x iu i !, u12,i5~x i2u i !,
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where theJi form an su~2! algebra.35 The field,F(Z), now also lives in an su~2! representation,
sayV. It is in fact an su~2! highest weight.T can then be thought of as being an endomorphism
V, e.g., explicitly with su~2! indicesT(Z1)a

bF(Z2)b. This OPE is effectively a non-abelian ve
sion of theq term appearing in theN52 case. In its place, another quantum number appe
which is theJ3 eigenvalue. On the representation space, the action ofT0

i on a highest weight state
is identified with that ofJi . The OPE can be split up intou components, according to~43!, and
modes be taken of each of the operators,L(z),Gi(z),Ti(z),c(z), giving the formulas~45!, as
required. Note in particular, how the classical algebra appears in the relations again. The
terms are theh terms, which will give theL0 eigenvalueh. The other extra terms, theJi , will give
an action of su~2! on the primary field, and hence on the highest weight, which we know mus
required from the classical analysis~34!, where an su~2! loop algebra appeared,

@Lm ,F~Z!#5zmS h~m11!1z]z1
1

2
~m11!u i]u i

1
1

2z
m~m11!e i jku iu j JkDF~Z!,

@Gs
i ,F~Z!#52z(s2 ~1/2!)S hS s1

1

2D u i1
1

2
u iz]z2

1

2
z]u i

1
1

2 S s1
1

2D u iu j]u j
1S s1

1

2D ~e i jku j Jk!

2
1

z S s22
1

4D u1u2u3Ji DF~Z!,

~45!

@Tm
i ,F~Z!#5z(m21)S mh

2
e i jku juk2e i jk

1

2
zu j]uk

1
1

2
mu1u2u3]u i

1zJi2m~u iukJk! DF~Z!,

@cs ,F~Z!#5z(s2 ~1/2!)S 2
h

z S s2
1

2D u1u2u31
1

2
u1u2u3]z1

1

4
e i jk~u iu j]uk

2u iJi ! DF~Z!.

Note that

@L21 ,F~Z!#5]zF~Z!, @G2 ~1/2!
i ,F~Z!#5 1

2 ~]u i
2u i]z!F~Z!. ~46!

In particular,L21 acts as a translation inz andG2(1/2)
i as a supertranslation in the respectiveu i

direction. This allows vertex operators to be used, and an operator-state mapping employed22,36,17

In the bosonic theory, vertex operators are characterized uniquely by their action on a vacuu0&,
which is annihilated by the raising operators,$Ln :n>21%. The vacuum cannot be invariant und
the whole symmetry algebra without implying vanishing of the central extension. This gener
to N53, so that nowu0& is annihilated by$Ln ,Gr

i ,Tm
i ,cs :n>21,r>2 1

2,m>0,s> 1
2%. To get the

state associated to any vertex operatorF(Z), one looks at limZ→0 F(Z)u0&. Given this, it can be
seen from the relations~45! that the action of the raising operators onuF& is zero, e.g., for
$Lm :m.0%

lim
Z→0

@Lm ,F~Z!#u0&50.

The action ofL0 is given by

@L0 ,F~Z!#5~h1z]z1
1
2 ~u1]u1

1u2]u2
1u3]u3

!!F~Z!⇒ lim
Z→0

@L0 ,F~Z!#u0&5huF&5L0uF&.

~47!

The action ofT0
i is given by
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@T0
1 ,F~Z!#5~ 1

2 u3]u2
2 1

2 u2]u3
1J1!F~Z!,

@T0
2 ,F~Z!#5~ 1

2 u1]u3
2 1

2 u3]u1
1J2!F~Z!,

~48!

@T0
3 ,F~Z!#5~ 1

2 u2]u1
2 1

2 u1]u2
1J3!F~Z!,

⇒ lim
Z→0

@T0
i ,F~Z!#u0&5 lim

Z→0
~JiF!~Z!u0&5Ji uF&5T0

i uF&,

where the vacuum isT0
i invariant.

Hence, on the highest weight state, theT0
i can be identified with theJi , so thatT0

3 gives rise
to the q eigenvalue, andJ15J0

11 iJ0
2 annihilatesuF&. As can be seen,F(Z) is associated to a

vector uF&, which is a highest weight of theN53 field.
Rather than work explicitly with~45!, one could simply consider what the infinitesimal tran

formations of the field are under an infinitesimal superconformal map

~z,u i !°~z1dz,u i1du i !. ~49!

This is useful to check closure as a Lie algebra. It is useful to introduce the quantityn(z)5dz
1u idu i . The transformation reads

dF~Z!5h~]zn~Z!!F~Z!1n~Z!]zF~Z!1
1

2 (
j 51

3

~D jn~Z!!~D jF~Z!!

1~~J3D1D21J1D2D31J2D3D1!~n~Z!!!F~Z!

5
2h

3
~D1du11D2du21D3du3!F~Z!1~dz!]zF~Z!1(

j 51

3

~du j !]u j
F~Z!

1~~D1du22D2du1!J31~D2du32D3du2!J11~D3du12D1du3!J2!F~Z!. ~50!

The infinitesimal transformations form a Lie algebra, which can be calculated explicitly
~50!,

@dn1
,dn2

#F~Z!5dn3
F~Z!,

~51!

n35n2~]zn1!2n1~]zn2!1
1

2 (
i 51

3

~Din2!~Din1!.

It is worth noting that the algebra closes if and only if theJi satisfy the commutation relation
@Ji ,Jj #52 1

2e i jkJk .
This can then be used to construct an ansatz for an OPE ofT(Z1)T(Z2) ~52!, and then the

modes calculated to give the commutators of the quantum theory~53!,

T~Z1!T~Z2!5
c

Z12
1

u12,1u12,2u12,3

2Z12
2 T~Z2!1

u12,1u12,2u12,3

Z12
]wT~Z2!1

e i jku12,iu12,jD2,k

4Z12
T~Z2!.

~52!

The first term gives rise to the central extension in the algebra, and arises in precisely the
way as the bosonic case. This OPE shows explicitly thatT(Z) is a weight 1

2 field, although not
primary. Since the central charge does not appear for the super-Mo¨bius subalgebra,T can be
thought of as a quasiprimary superfield, in the trivial representation of su~2!. The modes of this
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can then be calculated to give theN53 algebra. Note that when the classical algebra express
appear in~45!, there are extra factors of1

2 appearing in~45!. This corresponds to the extra facto
of 1

2 appearing in~53! when compared to the classical algebra,

@Tm
i ,Tn

j #52 1
2 e i jkTm1n

k 1mcd i j dm1n,0 , @Tm
i ,cs#50,

@Tm
i ,Gr

j #5 1
2 ~d i j mc r 1m2e i jkGr 1m

k !, @Lm ,cs#52S m

2
1sDcm1s ,

@Lm ,Tn
i #52nTm1n

i , @Gr
i ,cs#5 1

2 Tr 1s
i , @Lm ,Gr

i #5S m

2
2r DGr 1m

i , ~53!

@Gr
i ,Gs

j #5 1
2 d i j Lr 1s1

1
2 e i jk~r 2s!Tr 1s

k 2c~r 22 1
4!d r 1s,0d i j ,

@Lm ,Ln#5~m2n!Lm1n2cm~m221!dm1n,0 , @c r ,cs#5cd r 1s,0 ,

which agrees with Ref. 2.

VII. THE NEVEU–SCHWARZ ALGEBRA AND ITS VERMA MODULE

The N53 Neveu–Schwarz algebra is given by the above commutation relations whem
PZ, r PZ1 1

2. The basis can be changed so that the above relations are more useful for rep
tation theory. Consider a change of variables

Tm
152~ iTm

1 2Tm
2 !, Tm

252~ iTm
1 1Tm

2 !, Tm
H522iTm

3 ,
~54!

Gr
154~Gr

22 iGr
1!, Gr

254~Gr
21 iGr

1!, Gr
H58iGr

3, k524c.

Then, the commutation relations become, forxP$H,6%,37

@Tm
1 ,Tn

2#52Tm1n
H 12kmdm1n,0 , @Tm

H ,Tn
6#56Tm1n

6 , @Tm
6 ,Tn

6#50,

@Tm
H ,Tn

H#5kmdm1n,0 , @Tm
6 ,Gr

6#50, @Tm
7 ,Gr

6#52Gr 1m
H 68mc r 1m ,

@Tm
6 ,Gr

H#522Gm1r
6 , @Tm

H ,Gr
H#58mcm1r , @Tm

H ,Gr
6#56Gr 1m

6 ,

@cs ,Gr
6#57Tr 1s

6 , @cs ,Gr
H#522Tr 1s

H , @Gr
6 ,Gs

6#50, @Tm
x ,cs#50,

@Gr
H ,Gs

H#5232Lr 1s216k~r 22 1
4!d r 1s,0 , @Gr

6 ,Gs
H#58~r 2s!Tr 1s

6 , ~55!

@Gr
1 ,Gs

2#516Lr 1s18k~r 22 1
4!d r 1s,018~r 2s!Tr 1s

H ,

@Lm ,cs#52S m

2
1sDcm1s , @Lm ,Tn

x#52nTm1n
x , @c r ,cs#52

k

4
d r 1s,0 ,

@Lm ,Gr
x#5S m

2
2r DGr 1m

x ,

@Lm ,Ln#5~m2n!Lm1n1
k

4
m~m221!dm1n,0 .
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On the representations considered here, the algebra obeys hermiticity conditions38

~c r !
†52c2r , ~Tm

1!†5T2m
2 , ~Tm

2!†5T2m
1 , ~Tm

H!†5T2m
H ,

~56!

~Gr
H!†52G2r

H , ~Ln!†5L2n , ~Gr
1!†5G2r

2 , ~Gr
2!†5G2r

1 .

The highest weight conditions on a vectoruf& are then

Tm
x uf&50, Gr

xuf&50, Lmuf&50, c r uf&50, T0
1uf&50 ~57!

for m,r .0. The Cartan subalgebra is spanned by the elementsL0 ,T0
H , such thatL0uf&5huf&,

T0
Huf&5quf&. The algebra of raising operators, i.e., the algebra spanned by the elements

the highest weight conditions, is generated byT0
1 , G1/2

2 , c1/2. Thus, a vectorux& with the prop-
ertiesT0

1ux&50, G1/2
2 ux&50 andc1/2ux&50 will obey the highest weight conditions. Consider t

Verma moduleV(h,q) for a highest weightuf&, with L0uf&5huf&, T0
Huf&5quf&. A vector ux&

Þuf& in the module defines a singular vector. The module itself admits a decomposition

V~h,q!5 %

~m>0)

%

(n< m/2)
Vm,n , ~58!

wheremPZ and nP Z/2. This can be seen from the root structure~55!, and the highest weigh
conditions. An example of a singular vector occurs when (h,q,k)5(2 1

2,21,k). Under such
conditions, a singular vector exists inV1/2,0,

ux&5T0
2G2 ~1/2!

1 uf&. ~59!

VIII. THE SUPER MÖBIUS GROUP

One might ask how exactly does the theory of the Mo¨bius group generalize. In the boson
case, the lie algebra of the group can be obtained by finding the globally defined vector fie
the Riemann sphere. The Riemann sphere can be considered as a pair of complex plan

transition functionw5 1
z between them. In the graded Riemann sphere case, one can cho

homomorphism between rings of functions given by (w,x i)5(1/z ,u iA21/z). The South pole is
Zs5(z,u i)5(0,0,0,0), and the North pole given byZn5(1/z , u iA21/z)5(0,0,0,0). One can
then ask what are the globally defined graded vector fields. A basis of vector fields was calc
in Sec. V. It can be seen that many of them are divergent at the origin, or South pole. One
then check which vector fields are well behaved at both poles. As an example, consider the
field ~33!. This is clearly divergent form,21 at the south pole. To find out whatl n looks like at
the north pole, one uses the techniques of graded one-forms and vector fields23 to find

l m5w2m11
]

]w
2

1

2
~m21!w2mx j

]

]x j
, ~60!

which is divergent form.1 at the North pole. Thus, one can conclude that$ l 1 ,l 0 ,l 21% are
globally defined. Similarly, one finds that the only other globally defined vector fields
$g1/2

r ,g2(1/2)
r ,t0

i %. From the commutation relations,~34! it can be seen that the vector fields for
a closed subalgebra, namely osp~3,2!. One can then write down formal group elements by ex
nentiation.
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exp~l l 1!:~z,u i !°
1

12lz
~z,u i !,

exp~l l 0!:~z,u i !°~elz,el/2u i !,

exp~l l 21!:~z,u i !°~z1l,u i !,
~61!

exp~eg2 ~1/2!
j !:~z,u i !°~z2eu j ,u i ,u j1e!, iÞ j ,

exp~eg1/2
j !:~z,u i !°

1

11eu j
~z,u i ,u j1ez!, iÞ j ,

exp~l i t0
i !:~z,u i !°~z,Mi j ~l!u j !, Mi j ~l!PSO~3!.

In particular, theg2(1/2)
i give supersymmetry generators, theg1/2

i give special superconforma
transformations, and thet0

i give an R-symmetry. Writing these transformations asZ°Z8, the
corresponding transformations on the field become

elL0F~Z!e2lL05elhF~Z8!, elL21F~Z!e2lL215F~Z8!,

eeG2 1/2
i

F~Z!e2eG2 1/2
i

5F~Z8!,

erG1/2
i

F~Z!e2rG1/2
i

5
1

~11eu i !
h e22re i jku j JkF~Z8!, ~62!

elT0
i
F~Z!e2lT0

i
5elJiF~Z8!,

elL1F~Z!e2lL15
1

~12lz!h e(l/(12lz) e i jku iu j Jk)FS z

~12lz!
,

u i

~12lz! D .

Using these formal group elements, any two points,V5(v,b i) andU5(u,a i) say, can be mapped
to the North and South poles, respectively. In a conformal field theory formalism, usuall
South pole is where the ‘‘in vacuum’’ sits, and the North pole where the ‘‘out vacuum’’ sits.
formal group element corresponding to this map is given by

~z,u i !°~z8,u i8!5

S z2u,u i2a i1S a i2b i

v2u D ~z2u! D
S 11

~a2b!•u

v2u D2S 11
a•b

v2uD S z2u

v2uD , ~63!

wherea•b5( i 51
3 a ib i .

To obtain this transformation, one can useg2(1/2)
i to senda i to 0, l 21 to moveu to 0, g1/2 to

sendb i to 0 whenz5v, andl 1 to sendv to `. It is worth noting, that the only operators that ha
not been used are thet0

i andl 0 . This degree of freedom is essentially a~complex! scale factor, and
an SO~3! action on theus. Thus, the even ‘‘coordinate’’ of the third point can be sent anywh
one wishes, but one cannot quite do the same with the odd ‘‘coordinates’’ of the third po
should also be noted, that this construction should generalize to osp(N,2), i.e., with an arbitrary
number of odd coordinates.

The formal group element found~63! implies that a correlation function of the form

^0uF1~V!F2~Z!F3~U !0& ~64!
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can be superconformally mapped to a more typical presentation of the three-point funct
conformal field theory,

^0uF1~`!F2~Z8!F3~0!0&5^f1uF2~Z8!f3&. ~65!

IX. THE TWO-POINT FUNCTION

In conformal field theory it is known that global conformal invariance is sufficient to solve
the two point function. This is indeed also the case forN51,2.31 In this section, globalN53
invariance is used to solve for the two-point function. This becomes quite a bit more compl
than N<2, calculationally, due to the presence of non-AbelianR-symmetry, manifested by the
presence of su~2! generators in the theory. More precisely, the primary fields areAN^ EndH^ V
valued, whereV is an su~2! representation andH is the Hilbert space thatu0& belongs to. The
super-Virasoro operators are valued in EndH^ EndV.

The most convenient basis to work in is a ‘‘charged’’ basis, where elements can be cla
by their su~2! charge, namely theirT0

3 eigenvalue. The basis is given by

u152~ iu12u2!, J152~ iJ12J2!,

u252~ iu11u2!, J252~ iJ11J2!, ~66!

uH5 iu3 , JH522iJ3 .

The primary fieldF itself is the highest weight in an su~2! representation, i.e., carries an su~2!
representation index, so that

J1F~Z!5~J1!A
BFB~Z!50,

~67!
JHF~Z!5~JH!A

BFB~Z!5qFA~Z!.

In the following, F i(Z) has conformal weighthi and spinqi . The action of the twelve globally
defined generators onF(Z) can then be given in Lie algebra form. The infinitesimal transform
tions are

@L21 ,F#5]zF, @G2 ~1/2!
6 ,F#56~u6]z18]u7!F,

@G2 ~1/2!
H ,F#524~uH]z1]uH!F, @T0

H ,F#5~u2]u22u1]u11JH!F,

@L0 ,F#5~h1z]z1
1
2 ~u1]u11u2]u21uH]uH!!F,

@T0
6 ,F#5~7 1

2 u6]uH
64uH]u71J6!F, ~68!

@L1 ,F#5~2hz1z~z]z1u1]u11u2]u21uH]uH!1 1
8 u1u2JH1 1

4 u1uHJ22 1
4 u2uHJ1!F,

@G1/2
6 ,F#5~62hu66u6z]z68z]u76u6uH]uH1u1u2]u712uHJ61u6JH!F,

@G1/2
H ,F#5~28huH24uHz]z24z]uH24uHu2]u224uHu1]u11u2J12u1J2!F.

Note that under theT0
H operator,u1 and u2 are ‘‘charged,’’ i.e., they possess a nonzeroT0

H

eigenvalue. The two point function,^0uF1(Z1)F2(Z2)0&5^F1(Z1)F2(Z2)& is, as a function, a
function of Z15(z,u i) and Z25(w,x i). Since theF i are also highest weight vectors of su~2!
representations,Vi , the two point function is an element ofV1^ V2 . The L21 condition on the
two-point function reads

L21^F1~Z1!F2~Z2!&5~]z1]w!^F1~Z1!F2~Z2!&50 ~69!
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implying that ^F1(Z1)F2(Z2)& is a function of (z2w) andu i ,x i . Applying theG2(1/2)
x condi-

tions yields similar equations to~69!. These conditions show that^F1(Z1)F2(Z2)& is a function
of

~u22x2!, ~uH2xH!, ~u12x1!,
~70!

s5~z2w1 1
8 ~u2x11u1x2!1uHxH!.

The L0 condition gives a scaling condition, from which the most general form of the two p
function can be seen to be

^F1~Z1!F2~Z2!&5
a

sh11h2
1

e1~u12x1!

sh11h21 1/2 1~ two similar terms!1
b1H~u12x1!~uH2xH!

sh11h211

1~ two similar terms!1
h~u12x1!~u22x2!~uH2xH!

sh11h21 3/2 . ~71!

The T0
H condition includes su~2! elements. It is worth writing this condition out explicitly, t

illustrate the action of the elements. Putting in all the tensor products between su~2! representa-
tions explicitly, the condition reads

~~I^ I!~u2]u22u1]u11x2]x22x1]x1!1JH
^ I1I^ JH!^F1~Z1! ^ F2~Z2!&50, ~72!

where

~JH
^ I1I^ JH!^F1~Z1! ^ F2~Z2!&5^~JHF1!~Z1! ^ F2~Z2!&1^F1~Z1! ^ ~JHF2!~Z2!&

5~q11q2!^F1~Z1! ^ F2~Z2!&. ~73!

This condition gives three possible cases

q11q250⇒only ~a,eH ,b12 ,h! nonzero,

q11q251⇒only ~e1 ,b1H! nonzero, ~74!

q11q2521⇒only ~e2 ,b2H! nonzero.

ReplacingH with 1 in ~73!, it can be seen thatJ1
^ I1I^ J1 annihilates^F1(Z1) ^ F2(Z2)&.

The T0
1 condition then gives—ifq11q2521, thene2 ,b2H50—if q11q250, thene1 ,b1H

50—and gives no extra conditions ifq11q251. Thus, theq11q2521 case is irrelevant.J2 is
an operator that can cause calculational difficulties. TheT0

2 condition can be used to relat
^(J2F1)F2& and ^F1(J2F2)&.

Consider now theL1 condition. This contains a term like

u1uH^~J2F1!F2&1x1xH^F1~J2F2!&.

The T0
2 condition can be used to relate this to a term of the form

~u1uH2x1xH!^~J2F1!F2&.

Thus the condition implies that all those terms that cannot be factored by (u1uH2x1xH) are
zero. A similar condition arises for theG1/2

x conditions. After much tedious algebra, one finds th
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b1H~u12x1!~uH2xH!

sh11h211 if h15h2, q11q251, ~75!
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5 q1 ,q2Þ0

0 otherwise.

This has important applications to fusion. Considering the three-point function

F1235^F1~Z1!F2~Z2!F3~Z3!&,

whereF1(Z1) is a ‘‘probe field,’’ i.e., one can choose its (h,q) parameters, call them (h1 ,q1).
F2(Z2) andF3(Z3) will have an OPE, which schematically looks like~i.e., omitting pole struc-
ture and other factors!

F2~Z2!F3~Z3!;(
n

Cn~Z3! ~76!

that may be unknown, namely one may not know the (h,q) of the Cn . One can ask if the OPE
betweenF2(Z2) andF3(Z3) can be deduced if one knows the values ofF123, for all h1 andq1 .
From ~75!, one can see that for̂F1(Z1),Cn(Z3)& to be nonzero, a unique (h1 ,q1) must be
chosen. This choice determines the (h,q) of Cn(Z3). Thus one can make the statement th
knowing when the three point functionF123 vanishes is equivalent to knowing whatCn(Z3) are
in ~76!. These then give rise to the fusion rules.

One should note that global conformal invariance of the theory almost fixes three
coordinates, as can be seen from~63!. In the mapping from~64! to ~65! one can mapV andU to
the North and South poles. One can also mapz8 from Z85(z8,u i8) in ~65!, to wherever desired
usingL0 . There is not enough freedom to move theu i8 wherever desired. Thus, one would expe
that the three-point function could also be computed, up to an arbitrary function inu i8 . After
expanding this function into components, this can be seen as being computable up to
arbitrary constants.

X. OTHER APPLICATIONS

This section is strictly speaking a list of things that could be done, in theN53 theory. Since
most of these things are very calculationally intensive, the author has not checked the det

An interesting question is analyzing the constraints that singular vectors give on three
functions. If ux& is a singular vector in a module with highest weightuf1&, then what does the
requirement that

^f3uF~Z!x&

vanish imply about

^f3uF~Z!f1&.

Algebraically, this is in fact quite difficult, and the author has not managed to accomplish this
main complication is that the composition between primary fields in the correlator are a t
product between su~2! representationsV andV8 and an EndH composition. This means that th
only super-Virasoro operators that can be transferred across the tensor product are those t
EndV part proportional to the identity. The most obvious case where this applies is where a
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fields haveq50, i.e., they are all su~2! singlets. Following Refs. 11 and 30, the lowering operat
acting appearing inux& can be rewritten in terms of operators that have commutator with a prim
field in (z,u i) given by a polynomial in (z,u i), namely

Lm52Lm1
1

z
Lm111

1

16z
~u1Gm1 ~1/2!

2 2u2Gm1 ~1/2!
1 12uHGm1 ~1/2!

H !

1
m11

4z
~u2uHTm

12u1uHTm
22u1u2Tm

H!,

G r
652Gr

61
1

z
Gr 11

6 2
2uH

z
Tr 1 ~1/2!

6 2
u6

z
Tr 1 ~1/2!

H ,

G r
H52Gr

H1
1

z
Gr 11

H 2
u2

z
Tr 1 ~1/2!

1 1
u1

z
Tr 1 ~1/2!

2 ,

~77!

T m
652Tm

61
1

z
Tm11

6 2
u6

z
cm1 ~1/2! ,

T m
H52Tm

H1
1

z
Tm11

H 1
2uH

z
cm1 ~1/2! ,

Pr52c r1
1

z
c r 11 .

One then finds

@Lm ,F~Z!#5hzm, @G r
6 ,F~Z!#562hu6zr 2 ~1/2!,

@G r
H ,F~Z!#528huHzr 2 ~1/2!, @T m

6 ,F~Z!#56hu6uHzm21, ~78!

@T m
H ,F~Z!#52 1

4 hu1u2zm21, @Pr ,F~Z!#5 1
8 hu1u2uHzr 2 ~3/2!.

Now one can commute the operators fromux& pastF without introducing differential operators
The operatorsLm , etc., may now be re-expanded in terms ofLm , etc. Some of these operato
will annihilate ^f3u. Those that do not, and are not diagonal, must be processed using the d
equations onuF(Z)f1&.

6 This then yields a set of polynomial equations giving conditions on
weights of the primary fields.

From a differential equation point of view, the question of singular vectors may not be s
difficult problem. As in Ref. 6, the lowering operators can be written as contour integrals, e

L2k~z!5
1

2p i R dwL~z!~w2z!12k,

~79!

G2r~z!5
1

2p i R dwG~z!~w2z!~1/2! 2r , etc.

The condition of a singular vector,Nuf3&, whereN are some lowering operators, can be writt
as

^F1~Z1!F2~Z2!~NF3!~Z3!&50.

This then gives rise, via~79! and the OPE, to a differential equation on the three point funct
One would expect the three point function to look like a product of powers of differences, as
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case of the two point function, e.g.,s,(u12x1). As in the bosonic case, this should give rise
a polynomial in thehi ,qi of the fields concerned. The difference now, is that the presence oJ2

operators will give independent equations, e.g.,F123PV1^ V2^ V3 , hence (I^ I^ J2)F is linearly
independent of (I^ I^ I)F. Other than this, the calculations should proceed precisely as in
bosonic case.

XI. CONCLUSIONS

Starting from a graded Riemann sphere, a superconformal field theory was constructe
construction roughly parallels that of the bosonic case, namely defining sections of a line b
on a Riemann sphere, and rewriting the infinitesimal transformations of these sections as o
product expansions. Two ways were used to introduce a Ramond field, one by introdu
branch cut, the other by altering the preserved one-form. This suggests that looking at v
sheaves on a graded Riemann sphere may be a potentially useful way of realizing field
superconformal field theory.

The super OPEs, together with an understanding of how the symmetries act on the
Riemann sphere, were sufficient to compute theN53 two-point function, up to multiplicative
constants. In addition, it was illustrated how, in principle, theN53 three point function and
conditions given by singular vectors on the three point function could be calculated. It shou
pointed out that the method of calculation was entirely in superfield formalism, and hence
festly supersymmetric.

The only case that has really been studied here is theN53 case, based on a Riemann surfa
of genus zero. How this generalizes to higher genus is an interesting question. An even
interesting question, is theN54 case. Processing theN54 theory through this machinery, doe
not produce the full OPE of the theory. There is a log term missing from the OPE correspo
to a U~1! charge. A question then arises, how to extend the framework of a graded Riemann
to incorporate this log term. Many parts of theN54 theory will in fact look like theN53 theory,3

since theN54 currents arising fromR-symmetry are a pair of commuting su~2! currents.
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11Dörrzapf, M., ‘‘Singular vectors of theN52 superconformal algebra,’’ Int. J. Mod. Phys. A10, 2143–2180~1995!.
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Cyclic statistics in three dimensions
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The existence of anyons in two-dimensional systems is a well-known example of
nonpermutation group statistics. In higher dimensions, however, it is expected that
statistics is dictated solely by representations of the permutation group. Using basic
elements from representation theory we show that this expectation is false in three-
dimensions for a certain nongravitational system. Namely, we demonstrate the ex-
istence of ‘‘cyclic,’’ or Zn , nonpermutation groupstatistics for a system ofn.2
identical, unknotted rings embedded inR3. We make crucial use of a theorem due
to Goldsmith in conjunction with the Fuchs–Rabinovitch relations for the automor-
phisms of the free product group onn elements. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1738189#

I. INTRODUCTION

It is a well-established fact that the topology of the configuration space of a classical s
can have a nontrivial effect on its quantization. A simple illustration of this is found in
sum-over-histories quantization of a particle on a circle wherein the set of paths with fixed
and final positions fall into classes labeled by the winding numberm.1 The full partition function
is expressed as a sum of partitions over these different classes of paths, each multiplied
overall phaseeimu, whereuP@0,2p# labels the unitary irreducible representations of the fun
mental groupZ of the circle. Each choice ofu thus leads to an inequivalent quantization of t
system. In general, inequivalent quantizations of a classical system are labeled by the
irreducible representations of the fundamental group of the configuration space. Indeed,
phenomena of physical interest ranging from the quantum statistics of point particles, to a H
tonian interpretation of the QCD theta angle, to spinorial states in quantum gravity, can be
uted to such inequivalent quantizations.2–6

The particular phenomenon of interest to us in this paper is the emergence of qu
statistics in systems ofn identical objects. For spatial dimensionsd.2, the fundamental group o
the configuration space of such systems contains the permutation group onn elementsSn as a
subgroup. For typical systems, the unitary irreducible representations ofSn and its permutation
subgroups are sufficient to determine quantum statistics. Forn52, d.2, for example, the permu
tation groupS2 generated by the exchange operationE has two inequivalent unitary irreducibl
representations: The trivial one (E→1) corresponds to bose statistics and the nontrivial oneE
→21) corresponds to fermi statistics. Forn.2, d.2, Sn has nonabelian unitary irreducibl
representations which give rise to parastatistics. In dimensiond52, however, statistics is dictate
by a nonpermutation infinite discrete group called the braid groupBn , rather than the finite group
Sn . The resulting statistics is referred to as ‘‘anyonic’’ and plays a central role in the stud
two-dimensional systems.5,6

Since the permutation groupSn is always a subset of the fundamental group of the confi
ration space ford.2, it is generally believed that quantum statistics is dictated by a nonpe
tation group only in two-dimensions. However, ford.2 quantum statistics does not mere
depend on the existence of the permutation groupSn as a subgroup of the fundamental gro

a!Electronic mail: ssurya@rri.res.in
25150022-2488/2004/45(6)/2515/11/$22.00 © 2004 American Institute of Physics
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p1(Qn) of the configuration spaceQn , but more crucially on how it ‘‘sits’’ inp1(Qn).7 Typically,
for a system ofn identical objects,p1(Qn) has the semidirect product structureP›Sn , with ›

the semidirect product andP a normal subgroup. Standard representation theory7,8 then tells us
that quantum statistics is determined not by unitary irreducible representations ofSn , but rather
those of the little groups~or stability subgroups! R#Sn with respect to the action ofSn on the
space of representations ofP.

For most systems the little groups are themselves permutation subgroupsSm of Sn , with m
<n. This can be traced to the fact that the normal subgroupP is generated only by the ‘‘internal’
symmetry groupsK of each object and is simply the product ofn copies ofK. Representation
theory then tells us that the little groupR must be a permutation subgroup ofSn .7,8 For example,
consider a system of 3 identical extended solitons which are allowed to possess spin, i.ep
rotation of the soliton is nontrivial~see Ref. 9 for an example!. The permutation group on 3
elements,S3 is a subgroup ofp1(Q3)5P›S3 , where for concreteness,P can be identified with
the spin subgroupZ23Z23Z2 , eachZ2 factor representing the spin subgroup of a single solit
Even though the solitons are classically identical, one can construct the represen
$1/2,1/2,0% of P in which two of the solitons are spin half and the third one is spin zero,
rendering it quantum mechanically distinguishable from the others. As one might expect, th
groupR#S3 associated withP is S2 and notS3 , thus implying 2 rather than 3 particle quantu
statistics.

In this paper, we will explicitly construct a nongravitational example in which the nor
subgroupP does not have a simple product structure, and thus does indeed admit nonperm
little groupsR,Sn . Namely, we will construct quantum sectors for a system ofn closed, identical
unknotted rings embedded inR3, for which R is a cyclic group, so that the associated quant
statistics iscyclic. An analogy was made between this system and that ofn RP3 geons in 311
canonical quantum gravity by the authors of Ref. 10; drawing on earlier results of Ref. 2
demonstrated the existence of quantum sectors exhibiting indeterminate statistics whenn52. @A
reanalysis of these sectors for 2RP3 geons shows that this ambiguity is due to the lack o
canonical exchange operator~Ref. 7!. Such indeterminate statistics have also been found fo
system of two particles onRP3.] In Ref. 7 a rigorous analysis of the quantum sectors for a sys
of n topological geons in 311 canonical quantum gravity was carried out and the existenc
sectors obeying cyclic, orZn statistics was demonstrated for a system ofn RP3 geons. Here, we
will employ techniques developed in Ref. 7 to demonstrate the existence of cyclic statistic~an
analogue of cyclic statistics in five-dimensions has been constructed in Ref. 12! for the system of
n>3 closed rings embedded inR3. Rings can appear in a wide class of physical systems, ran
from closed string theory, to cosmic strings, to closed superconducting flux tubes, to name
Recently, the existence of ring-like solitons was shown for certain nonlinear sigma models.11 The
existence of kinematical sectors exhibiting novel statistics in such systems may therefore
nontrivial physical implications.

The inequivalent quantizations for this system of rings are determined by the unitary irr
ible representations of the so-calledmotion groupG which we present in Sec. II. Using a theore
due to Goldsmith,13 combined with the Fuchs–Rabinovitch relations for the automorphisms o
free product group onn elements,14 we show thatG has a nested semidirect product structure.
Sec. III, using Mackey’s theory of induced representations,8 we construct quantum sectors whic
exhibit cyclic statistics in a system ofn.2 rings. We end with some brief remarks in Sec. IV
the question of modeling cyclic statistics using string Lagrangians with topological terms.

Since the spin of the rings we consider is trivial, the sectors obeying cyclic statistics c
violate the spin-statistics connection. In Ref. 15 a spin-statistics correlation was shown to
when the configuration space is expanded to allow the creation and annihilation of rings
excluding nonpermutation group statistics. However, first quantized systems with ring-like
tures could very well occur in condensed matter systems; as suggested in Ref. 10, the rings
stabilized against creation and annihilation by carrying conserved charges. Whether sector
ing cyclic statistics are physically realized or not is, of course, ultimately a question for ex
ment to decide.
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II. THE MOTION GROUP FOR A SYSTEM OF n RINGS

We consider the system ofn identical, nonintersecting, infinitely thin, unknotted, unlinke
unoriented rings,C5C1øC2 ø•••øCn in R3, which cannot be destroyed or created. The c
figuration spaceQn for this system of rings is the space of embeddings ofC in R3 quotiented by
an appropriate group of symmetries called themotion groupG which we will define below. An
obvious example of a symmetry is the exchange of a pair of identical rings. The fundam
group ofQn for this system is isomorphic to the motion groupG. This group is nontrivial for all
n>1, and has been extensively studied by Dahm and Goldsmith.13

Since the configuration spaceQn is multiply connected, on quantization, the Hilbert spa
splits into inequivalent quantum sectors. A systematic study of such quantum sectors can be

in Ref. 4. The wave functionsc:Q̃n→C, whereQ̃n is the universal cover ofQn , so thatp1(Qn)
acts nontrivially onc. Since physically measurable quantities like inner products should onl
functions on the classical configuration spaceQn , the action ofp1(Qn) on c must be represente
as a ‘‘phase,’’ which can be nonabelian forn>2. Thus, at every pointqPQn , c is valued in the
carrier spaces of the unitary irreducible representations ofp1(Qn). The inequivalent unitary
irreducible representations ofp1(Qn) then correspond to inequivalent quantum sectors.

The motion groupG for this system of rings is defined as follows.13 Let H(R3) denote the
space of continuous maps or homeomorphisms ofR3 into itself andH(R3,C) the subspace o
homeomorphisms which leaveC invariant. LetH`(R3) and H`(R3,C) be subspaces ofH(R3)
and H(R3,C), respectively, consisting of homeomorphisms with compact support. Amotion is
then defined as a pathht in H`(R3) such thath0 is the identity map fromR3 to itself andh1

5H`(R3,C). The product of two motions can then be defined and the inverseg21 of the motion
g is the pathg(12t)+g1

21.13 Two motionsh,h8 are taken to be equivalent ifh821h is homotopic to
a path which lies entirely inH`(R3,C). The motion groupG is then the set of equivalence class
of motions of C in R3 with multiplication induced by ‘‘+’’ ~for brevity of expression we will
henceforth refer to an equivalence class of motions as a motion!.

We will use Hendricks’ definition of a rotation16 to describe the generators of the motio
group. A 3-ballB3,R3 will be said to be rotated by an anglea in the following sense: take a
collar neighborhoodS23@0,1# of ] B3'S2 and let theS2’s be differentially rotated from 0 toa
with S23$0%5] B3 rotated bya andS23$1% not rotated at all. The rotation by an anglea of a
solid torusU5B23S1 in the direction of its noncontractible circleS1 is similarly defined as a
differential rotation of a collar neighborhoodT23@0,1# of ]U'T2, with T23$0%5]U rotated by
a andT23$1% not rotated at all.

G is generated by three types of motions which are quite easily visualized.13 The first is the flip
motion f i which corresponds to ‘‘flipping’’ thei th ring ~in the case of oriented rings, this motio
yields a configuration distinct from the first and is not a symmetry!. This motion corresponds to
rotation byp of an open ball inR3 containingCi , about an axis lying in the plane ofCi . Since
the rings are embedded in three dimensions,f i

25e, so that each flip generates aZ2 subgroup. Next
is the exchange motionei which exchanges thei th ring with the (i 11)th ring. This can be though
of as ap rotation of a solid torus inR3 containing bothCi and Ci 11 ~but no others!. These
motions generate the permutation groupSn . Finally, one has the slide motionsi j which requires a
slightly more detailed description. A point in the configuration space~i.e., R32C modulo the
action of the motion group! is itself a multiply connected space withp1(R32C) isomorphic to the
free product group onn generatorsF(x1 ,x2 ...,xn)'Z* Z* •••* Z, each factor ofZ isomorphic to
the fundamental group of a single ring inR3. si j is then the motion ofCi along one of theseZ
factors, specifically, the generator ofZ,p1(R32C) passing throughCj . Again, one can define
the slide using a rotation: Consider a solid torus containingCi and ‘‘threading’’ Cj , without
intersecting it. A slide is then a 2p rotation of this solid torus. The existence of slide motions
key to the present analysis, and is what makes the analogy with the system of topological
explicit.

We denote the three subgroups generated by the flips, the exchanges and the slides aF, Sn

andS, respectively. We will also need to identify the subgroup G˜ generated by only the flips an
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the exchanges. The structure ofSn is known: It is simply the permutation group onn elements.
However, the structures ofF andS need to be deduced, as does information on how these gr
sit in G. While the generators ofG have been known for some years, its explicit structure in te
of these subgroups has not been obtained until now.

Definition: A group G is said to be a semidirect groupP›K if ~a! ;gPG, 'pPP and k
PK such thatg5pk ~b! P is normal inG and ~c! PùK5e. For every fixedkPK, p→kpk21

generates an automorphismak of P. G is said to have a nested semidirect product structur
further, eitherK or P or both, themselves are semidirect product groups.

We now show thatG has the nested semidirect product structure

G5S›~F›Sn!. ~1!

We also show thatS is the nonabelian group made up of the free product group onn(n21)
generators

~2!

subject to the conditions

si j skl5sklsi j , si j sk j5sk jsi j , siksjksi j 5si j siksjk . ~3!

F, on the other hand, can be shown to be the abelian group isomorphic to the direct produc
of the Z2 flips of each ring

~4!

For brevity of notation we define the exchange actionp i on the set ofn integers labeling the
n rings as follows: For 1< j <n, p i : j→p i( j ) wherep i( j )5 j for j Þ i ,i 11, p i( i )5 i 11 and
p i( i 11)5 i . Here wheni 5n, i 11 is identified with 1.

Lemma:G has the nested semidirect product structure~1!. Thus,S is normal inG andF is
normal in the subgroup G˜ , G generated by the flips and the permutations. The automorphism
S generated by G˜ and those ofF generated bySn are given by the Fuchs–Rabinovitch relation
induced by the Dahm isomorphismD:G→Ḡ#Aut(F(x1 ,...,xn)) whereAut(F(x1 ,...,xn)) is the
group of automorphisms ofF(x1 ,...,xn). Moreover,S is isomorphic to the group~2! subject to
the conditions~3!, andF is isomorphic to the group~4!.

Proof: The induced action of the motion group onp1(R32C) has been examined b
Goldsmith,13 and provides us with a crucial step in deducing the structure ofG. As noted earlier,
p1(R32C) is isomorphic to F(x1 ,...,xn), the free product group onn-generators,xi ,
i 51,...,n. In Ref. 13 the ‘‘Dahm’’ homomorphismD:G→Aut(F(x1 ,...,xn)) is defined where
Aut(F(x1 ,...,xn)) is the group of automorphisms ofF(x1 ,...,xn). For each motiongPG, D
induces an automorphism ofF(x1 ,...,xn). The following theorem then states:

Goldsmith’s Theorem:13 The group of motionsG of the trivial n-component linkC in R3 is
generated by the following types of motions:

~1! f i or flips. Turn thei th ring over. This induces the automorphismf i :xi→xi
21 , xk→xk , k

Þ i , of F(x1 ,...,xn).
~2! ei or exchange. Interchange thei th and the (i 11)th rings. The induced automorphism o

F(x1 ,...,xn) is e i :xi→xi 11 ,xi 11→xi andxk5xk for kÞ i ,i 11.
~3! si j or slides. Pull thei th ring through thej th ring. This induces the automorphisms i j :xi

→xjxixj
21 , xk→xk , kÞ i , of F(x1 ,...,xn).

Moreover, the Dahm homomorphism,D:G→Aut(F(x1 ,...,xn)) is an isomorphism onto the sub
group Ḡ of Aut(F(x1, ...,xn)) generated byf i ,e i ands i j , where 1< i , j <n,iÞ j .
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Let us denote the subgroups ofḠ generated by the automorphismss i j , f i ande i asS̄, F̄ and
S̄n , respectively. We may now employ the Fuchs–Rabinovitch relations forAut(F(x1 , . . . ,xn))
which provides a complete set of relations for the generators ofḠ.14 For p1(R32C)
5Z* Z* •••* Z, in particular, these relations are simple and imply thatḠ,Aut(F(x1 , . . . ,xn)) has
the nested semidirect product structure

Ḡ5S̄›~F̄›Sn!5S̄›GS , ~5!

where GS 5F̄›Sn . In particular, the generatorse i of Sn generate the following automorphisms
F̄:

e if je i
215fp i ( j ) , ~6!

and the generatorse i andf i of GS generate the following automorphisms ofS̄:

e is jke i
215sp i ( j )p i (k) ,

f is jkf i
215s jk ,;kÞ i , ~7!

f is j i f i
215s j i

21 .

Moreover, these relations imply thatS̄ is the free product group onn(n21) generators
Z* Z* •••* Z subject to the conditionss i j skl5skls i j , s i j sk j5sk js i j , ands iks jks i j 5s i j s iks jk

while F̄ is the abelian direct product group made up ofn factors ofZ2 , F̄5Z23Z23•••3Z2 .
SinceD is an isomorphism withD(S)#S̄, D(F)#F̄ andD(Sn)#S̄n , this means thatS'S̄, F
'F̄ and Sn'Sn. From ~5!, it is then obvious thatG itself has the nested semidirect produ
structure~1!. The automorphisms ofSn on F and of G̃on S, respectively, are given by~6! and~7!

and induced by the isomorphismD:G→Ḡ. Moreover,S is the free product group onn(n21)
generatorsZ* Z* •••* Z subject to the relations~3! andF is given by~4!. h

While the structure of the motion group can be completely deduced from the Dahm h
morphism and the Fuchs–Rabinovitch relations, it is instructive to examine this group w
recourse toAut(F(x1 , . . . ,xn)). Using just the definition of the motion group we now illustra
the following properties ofG: ~a! S is normal inG and satisfies the relations~3! and~b! thatF is
normal in G̃.

By definition, an element of the motion group is a homotopy equivalence class of paths
space of homeomorphisms with compact support. Two homeomorphismsh1 andh2 with compact
support on the regionsU1 and U2 commute ifU1ùU25f and hence so do the correspondi
motions. It is, therefore, useful to isolate the ‘‘minimal’’ neighborhoods in which homeom
phisms representing the generators of the motion group act so as to determine which two m
commute.

Let Ui denote an open ball neighborhood ofCi in R3 which contains no otherCj , j Þ i , and
let Ui j denote an open ball neighborhood ofCiøCj containing no otherCk , kÞ i , j , etc. We will
refer to theUi as ‘‘exclusive’’ neighborhoods and theUi j ,Ui jk ,..., etc. as ‘‘common’’ neighbor-
hoods. The flip motionf i is then defined by a homotopy equivalence class of paths inH`(R3)
which include a ‘‘model’’ path made up of homeomorphisms with support only onUi , i.e., a path
in H`(R3) along whichCi is flipped without disturbing any of the other rings. Next, the excha
motionei is defined by a homotopy equivalence class of paths including a model path made
homeomorphisms with support only onUi ( i 11) , i.e., thei th and the (i 11)th ring are exchanged
without disturbing the other rings. Finally, the slidessi j are defined by a homotopy equivalen
class of paths including a model path with support only onUi j , i.e., a path in which the other ring
are not disturbed.
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Now, the set of exclusive neighborhoods$Ui% remains invariant when acted upon by th
subgroup G˜ generated by the flips and by the exchanges. This is obvious forF, since each flipf i

acts within an exclusive neighborhood. ForSn , while the exchangeei has compact support o
Ui ( i 11) , its action can be considered as a pure exchange ofUi with Ui 11 . Thus, one can conside
as a model path for the exchange, a localizedp rotation in Ui ( i 11) which exchangesUi with
Ui 11 . This, however, is not the case with the slidessi j . While the set$Uk% for kÞ j remains
invariant under the slidesi j of Ci through Cj , the exclusive neighborhoodU j does not. The
nonlocal action of the slide takesU j into a setVj which ‘‘encloses’’Ci even though it does no
contain it, i.e., there exists aUi such thatUiùVj5f ~see Fig. 1!. Thus,Vj is not an exclusive
neighborhood ofCj . This feature leads to subtleties in what follows.

Since the exchanges and the flips leave the set$Ui% invariant, model paths are sufficient to se
thatF is normal in G̃, i.e., for all g̃PG̃, i<n, g̃ f i g̃

21PF. To show this, it is sufficient to takeg̃
to be an exchange. For the motionei f jei

21 with j Þ i ,i 11, the model paths forei and f j have
compact support onUi ( i 11) and U j , respectively, whereUi ( i 11)ùU j5f. Hence the motions
commute, so thatei f jei

215 f j . Now consider the motionei f iei
21 . The model paths forei

21

exchangeUi with Ui 11 . One can then use a model path for the motionf i which acts on some
Ui 118 ,Ui 11 so that the final exchangeei which exchangesUi 11 with Ui does not disturb the
action of f i on Ui 118 . Thus,ei f iei

215 f i 11 . Similarly, ei f i 11ei
215 f i .

However, model paths are insufficient when one wants to deal with the slides. Let us co
a motion whose model path involves homeomorphisms with support only on the compact
U. The homotopy class of paths defining this motion also includes the nonmodel, or ‘‘gregar
paths, which involve homeomorphisms with nontrivial compact support onR32U. In other
words, gregarious pathscan disturb the other rings; they can contain homeomorphisms w
nontrivial support on neighborhoods of rings left undisturbed by the model path. Conside
motion f i for simplicity. A model path forf i has support only onUi and corresponds to ap
rotation about an axis in the plane ofCi . A gregarious path on the other hand can be constru
piecewise as follows:~a! RotateCi by p/3, about an axisx̂ in its plane;~b! flip anotherCj , j
Þ i ; ~c! rotateCi by a furtherp/3 aboutx̂ in the same sense as before;~d! flip Cj again;~e! and
complete with a furtherp/3 rotation ofCi aboutx̂ in the same sense as before. Such a path cle
corresponds to the motionf i , but involves homeomorphisms ofR3 in H`(R3) which have non-
trivial support on the ringCj , j Þ i .

Both model and gregarious paths are necessary to demonstrate thatS is normal inG. S is a
normal subgroup ofG if ;gPG and ; i , j <n gsi j g

21PS. It is sufficient to takeg to be a
generator of Sn or F.

We begin with the exchanges. Let us examine the motioneksi j ek
21 by considering only mode

paths in the appropriate homotopy class. ForkÞ i , j eksi j ek
215si j , since the homeomorphism

that make up model paths forek and si j have compact supports onUk and Ui j with UkùUi j

5f. Model paths are, however, insufficient to show thateksi j ek
21 is also a slide fork5 i , i 21, j

or j 21. Consider the motionejsi j ej
21 with k5 j , iÞ j , j 11. ej

21 swapsU j with U j 11 by a p
rotation of a torus containing bothU j andU j 11 . Next, si j rotates by 2p a solid torus containing

FIG. 1. Under the slidesi j Ci ‘‘tunnels’’ through the neighborhoodU j of Cj and maps it onto the regionVj , shown by
dashed lines.Vj , therefore, ‘‘encloses’’Ci without containing it, i.e.,UiùVj5f.
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Ci and threadingCj 11 , thus mappingU j 11 into a nonexclusive neighborhoodVj 11 . A model
path for the final exchangeej would rotate byp a solid torus containing new exclusive neighbo
hood U j 118 of Cj 11 and Ui . Ui ( j 11) in which the slide acts, is not left invariant by this fin
exchange, making the resultant motion difficult to unravel. Instead, we use the following gr
ous path to perform the final exchange: consider a path inH`(R3) whereUi ( j 11) and U j are
swapped by performing an appropriatep rotation in the common neighborhoodUi j ( j 11) of Ci ,Cj

andCj 11 . The final exchange motion is then completed by merely movingCi back to its original
position.Ui ( j 11) is thus left undisturbed so that the full motion is the slidesi ( j 11) . A use of a
similar gregarious path for the final exchange shows thate( j 21)si j e( j 21)

21 5si ( j 21) , eisi j ei
21

5s( i 11) j ande( i 21)si j e( i 21)
21 5s( i 21) j .

Next, consider the flips. The motionf ksi j f k
21 can again be examined using only model pa

for kÞ j , and we can see that it issi j . This is because the model path forf k has compact suppor
only on Uk which is undisturbed by the slide even whenk5 i . However, the use of model path
is insufficient to examine the motionf jsi j f j

21 : not only doesU j not remain an exclusive neigh
borhood under the slidesi j , but thef j moves the points inU j relative to each other. Rather tha
consider just a single gregarious path, following Ref. 7, we use a particular set of hom
equivalent paths. Letk be the generator ofp1(R32C) throughCj about which the slidesi j takes
Ci . We define the pathsga as follows:~a! perform a ‘‘part’’ inverse flip corresponding to a (p
2a) rotation ofCj aboutx̂ ~b! slideCi throughCj alongk21 ~c! finish the inverse flipf j

21 of Cj

by a rotationa aboutx̂ and~d! finally, perform the flipf j of Cj aboutx̂. g0 then corresponds to
the model path for the motionf jsi j f j

21 while the pathgp corresponds to the slidesi j
21 . Sincea is

a continuous parameteraP@0,p#, thega provide a homotopy map fromg0 to gp , which implies
that f jsi j f j

215si j
21 ~it is perhaps a useful exercise for the reader to see why a similar argu

cannot be used to find a set of homotopic paths betweensi j f jsi j
21 and an element ofF!.

Thus, the slide subgroupS is a normal subgroup ofG.
We can also demonstrate that the relations~3! are satisfied byS, using just the definition of the

motion group. The first of these relations is clearly satisfied by the generators ofS, since the model
paths corresponding to the slidessi j andskl involve homeomorphisms with compact support on
on Ui j andUkl whereUi j ùUkl5f. It takes a little more work to show that the other two relatio
are also satisfied by the generators ofS.

Consider the motionsi j sk jsi j
21 . si j and sk j are slides of the two ringsCi and Ck through a

third ring Cj . These slides are obtained by 2p rotations of the solid toriVi j 'B23S1 and Vk j

'B23S1 which thread throughCj , with Vi j ùVk j5f. Define the pathsga as follows: ~a! A
rotation by2a of Vi j ; ~b! a 2p rotation ofVk j ; ~c! a 2(2p2a) rotation ofVi j and finally;~d!
a 2p rotation ofVi j . g0 then defines a model path for the motionsi j sk jsi j

21 , andg2p corresponds
to the slidesk j . Since a is a continuous parameter,g0 is homotopic tog2p and hence also
corresponds tosk j . Notice that by keepingVi j ùVk j5f we prevent a mixing of their rotations an
hence the deformations of the neighborhoodU j by si j and bysk j .

Next, consider the motionsi j siksjksi j
21 . Although this looks considerably more complicate

than the previous motion, the two elements ofS involved,siksjk andsi j , have compact support
on nonintersecting neighborhoods. Namely, the elementsiksjk corresponds to slidingCj through a
generatorr of p1 of Ck and then slidingCi through the same generator. Under this action,U j

→U j andUi→Ui , while Uk is now mapped to a regionVk which now ‘‘encloses’’ bothCi and
Cj . Thus, there exists a path inH`(R3) corresponding to the motionsiksjk made up of homeo-
morphisms which leave the common neighborhoodUi j undisturbed. Since there is a model pa
corresponding to the slidesi j which has compact support only onUi j , this means that the two
motionssiksjk andsi j indeed commute. Thus, the generators ofS satisfy all the relations~3!.

Remark:In Ref. 10 a set of relations for the generators in then52 case was given:f i
25E 2

5( f iE)45( f iEsjE)25e wherei 51,2 and the slidessi generateS, the flips f i generateF and the
exchangeE generatesS2 . These follow in a straightforward manner from the relations prese
above.
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III. CYCLIC STATISTICS

The inequivalent quantum sectors for our system ofn identical rings are labeled by the unitar
irreducible representations ofp1(Qn)'G. The groupG represents a ‘‘gauge’’ symmetry and th
action of the individual motionsgPG on R32C can be used to interpret the associated quan
phases.

Let us begin by considering the simplest case, namely a single ring for which the m
groupp1(Q) is simplyF5Z2 . Let c1 be a wave function onQ̃ with localized support along the
fibre $q̃1 ,q̃2% at qPQ, generated by the action of the flipf , i.e., q̃1→q̃25 f +q̃1 . Under the action
of f , c1→c2 , which is also localized on the fibre atq. Since wave functions take values in th
carrier spaces of the irreducible representations ofp1(Q), c25D( f )+c1 , whereD is a unitary
irreducible representation ofF5Z2 . D can be either the trivial representationD( f )51 or the
nontrivial one withD( f )521, the associated quantum sectors corresponding to either an ‘‘u
ented’’ quantum ring in whichc25c1 or an ‘‘oriented’’ quantum ring in whichc2

52c1 . ~Recall that classically, the rings are unoriented, since flips are a symmetry of the
sical configuration space.! When there are two rings, i.e.,n52, the motion group includes th
permutation groupS25Z2 which gives rise to nontrivial quantum statistics. Consider a w
function c which is localized along the fibre of a configuration where the two rings are w
separated and identical: Under an exchange operationc, therefore, picks up a phase of61
corresponding to bosonic/fermionic quantum statistics~see Refs. 2, 4, and 7 for a more detail
discussion of quantum phases and statistics for extended objects!. As we will presently demon-
strate, forn.2 the existence of the slide subgroup inp1(Qn) gives rise to an unexpected com
plexity in the structure of the phases acquired by the wave function under the action o
permutation group.

As mentioned in the introduction, the quantum statistics of a system is not solely deter
by Sn , but rather by the unitary irreducible representations of its stability subgroupR#SN asso-
ciated with its action on the unitary irreducible representations of the normal subgroupS›F of G.
This follows from Mackey’s theory of induced representations for semidirect product gr
P›K.8 In this construction, one begins with the space of unitary irreducible representationsP̂ of
the normal subgroupP. The subgroupK has the~not necessarily free! action onP̂

D~p!→D̃~p!5D~kpk21!, ~8!

where DP P̂, pPP and kPK. Starting with a particularD1P P̂ one obtains an orbitO
5$D1 ,D2 ,...,D r% of theK action onP̂, and the little groupR associated withO. The full unitary
irreducible representation ofP›K is then built up by taking the direct product of~a! @D1% D2

% ••• % D r # with ~b! a unitary irreducible representation ofR. For example, if one starts with th
trivial representation ofP, then the orbit consists of a single point andR5K. The unitary
irreducible representations ofP›K that can be constructed from this orbit are just the unit
irreducible representations ofK. On the other hand, one may find an orbit ofK in P̂ with R
5e. The full unitary irreducible representation is then simply the sum of the unitary irredu
representations in the orbit,% iD i . The action of the subgroupK is then reduced to a canonica
map which permutes the carrier spacesHi of D i

7 ~as discussed in Ref. 7 forn>4 the possibility
of projective statistics exists whenp1(Q) has a semidirect product structure!.

We now illustrate the importance of the little group in determining quantum statistics w
simple example. Because of the nested semidirect product structure of the motion group, w
begin by first representing the slides trivially. We thus need to find only the unitary irredu
representations of the subgroup G˜ 5F›Sn . SinceF'Z23Z23 •••3Z2 with n Z2 factors, it is
trivial to list its unitary irreducible representations, i.e.,D[(k1 ,k2 ,...,kn), with ki561. For
example, forn53, let us start with the unitary irreducible representationD15(2,2,1) of the
normal subgroupF of G̃. This choice corresponds to two of the rings being identical and orien
while the third is unoriented and hence distinguishable from the others. The action ofS3 on D1
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generates the orbit$D1 ,D2 ,D3%[$(2,2,1),(1,2,2),(2,1,2)% in F̂ whose associated little

group is S2 . The resulting unitary irreducible representation of G˜ is then $D1% D2% D3% ^ G,
whereG is a unitary irreducible representation ofS2 . Under a two particle exchangeG provides
either a bosonic~11! or a fermionic~21! phase. Since one of the three rings has been rend
quantum mechanically distinguishable from the other two, one obtains an appropriate tw
statistics. The action of the remaining elements ofS3 , namely the cyclic elements, is canonica
They merely permute the carrier spacesHi of theD i . This general structure continues to hold f
all n, and is illustrative for the case of primary interest here when the slides are nontri
represented.

Before proceeding to construct a quantum sector exhibiting cyclic statistics forn>3, let us
consider the simplest case with the slides nontrivially represented, namely whenn52. For n
52, the slide subgroup is generated by the two slidess1 ,s2 , the flip subgroupF by the two flips
f 1 , f 2 and the permutation groupS2 by the exchangeE. The following example demonstrates
peculiar feature which will reappear forn.2, whereby slides render a pair of ‘‘locally identica
rings distinguishable. Let us start with the abelian unitary irreducible representationS,
V1(s1)51,V1(s2)521. The action off j on V1 is V1(si)→Ṽ1(si)5V1( f jsi f j

21)5V1(si) and
is hence contained in the little groupR of G̃. Under the action ofE, V1(si)→Ṽ1(si)
5V1(EsiE 21)5V1(sj )ÞV1(si) where j Þ i , so thatS2#R. Thus, the two rings are quantum
mechanically distinguishable even ifF is trivially represented. This is very unusual, since ind
tinguishability of a collection of objects is often thought of as a local, intrinsic property of e
object. However, in this representation, it is the nonlocal action of slides which renders th
rings distinguishable: The rings slide through each other differently. Thus, there exists a
function c localized along the fibre of a configuration of two well-separated identical rings
that under the action ofs1 , c→c and under that ofs2 , c→2c. This quantum lifting of
indistinguishability by slides is key to the existence of nonpermutation group statistics forn.2.

We are now ready to demonstrate cyclic statistics for the case ofn53 rings. The slide
subgroupS is generated by the six generatorssi j , i , j 51,2,3, iÞ j , the flip subgroupF is gener-
ated by the 3 elementsf 1 , f 2 , f 3 , and the permutations form the nonabelian subgroupS3 . We start
with the following abelian unitary irreducible representationV1 of S:

V1~s12!5V1~s23!5V1~s31!521, V1~s21!5V1~s32!5V1~s13!51. ~9!

Consider the action of G˜ on V1 . The action of a flip f k on V1 for k5 i or j is: V1(si j )
→V1( f ksi j f k

21)5V1
21(si j )5V1(si j ), while the action off k , kÞ i , j is trivial. Thus,F lies in the

stability subgroup of G˜ . Single exchangesei however, do not leaveV1 invariant: For example,
V1(si ( i 11))→V1(eisi ( i 11)ei

21)5V1(s( i 11)i)52V1(si ( i 11)) ~where (i 11) is defined mod 3!.
However, a pair of exchanges does leaveV1 invariant! A pair of exchanges, sayz5e2e3 , gener-
ates the cyclic subgroupZ3 of S3 . Under the action ofe2e3 the slides $s12,s23,s31%
→$s23,s31,s12%, and$s21,s32,s13%→$s32,s13,s21%, thus leavingV1 invariant. Therefore, the sta
bility subgroup associated toV1 is F›Z3 . The remaining elements ofF›S3 , namelye1 ,e2 , and
e3 generate the two element orbitO[$V1 ,V2% in Ŝ the space of unitary irreducible represen
tions of S, where

V2~s12!5V2~s23!5V2~s31!51, V2~s21!5V2~s32!5V2~s13!521. ~10!

The associated unitary irreducible representation ofG is therefore nonabelian, and can be sy
bolically expressed as

~V1% V2! ^ T, ~11!

whereT is a unitary irreducible representation of the stability subgroupF›Z3 .
Let us for simplicity consider the case whenF is trivially represented inT, so thatT is a

unitary irreducible representation ofZ3 . Z3 has two nontrivial inequivalent unitary irreducibl
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representations~a! z→e2p i /3 and~b! z→e4p i /3. Thus, wave functionsca , cb on Q̃3 take values in
the ~two-dimensional! carrier spacesHa andHb of the corresponding quantum sectors. Ifca,b are
localized along the fibre of a configuration of well separated identical rings, under the action
cyclic permutations they pick up the respective phasesca→e2p i /3ca and cb→e4p i /3cb . Thus,
these sectors exhibit a cyclic, nonpermutation group, statistics: the rings are identicalonly when
permuted by a cyclic combination, andnot under pair-wise exchange! This is indeed a ve
curious behavior and is again linked to the nonlocality of slide motions: even though the flip
all trivially represented the slides render the rings pair-wise distinguishable but cyclically i
tinguishable. We say that the rings obeyZ3 cyclic statistics.

The case for arbitraryn.2 follows in a straightforward manner. Namely, we can alwa
isolate a pair of nontrivial subsets from the set of slide generators$sA% and $sB% which are
invariant underZn . There is a small difference in the construction in the evenn52m and odd
n52m11 cases. Forn52m, Z2m contains the subgroupZ2 ; if z is the generator ofZ2m with
z2m5e, thenzm generates aZ2 subgroup corresponding tom commuting exchanges. One can th
see that the two sets of generators$sA% and $sB% which are invariant underZ2m have cardinality
2m(m21) and 2m2, respectively. Forn52m11, Z2 is not a subgroup ofZ2m11 . Hence the two
sets of generators$sA% and$sB% each have cardinalitym(2m11). One can thus obtainZn cyclic
statistics for arbitraryn.2.

We end this section by commenting on the possibility that sectors with more compli
nonpermutation group statistics may exist. To construct the above cyclic statistics secto
started with very simple abelian unitary irreducible representations of the slide subgroup
conceivable that if one instead started with a nonabelian unitary irreducible representatioS
~with certain symmetries! that the stability subgroupF›K associated with it is such thatK is
nonabelian and a nonpermutation subgroup ofSn . Such a sector would then exhibit anonabelian,
nonpermutationgroup statistics. Our current work provides a framework in which to probe s
questions.

IV. REMARKS

Anyonic statistics in 211 dimensions can be modeled by adding a Chern Simon’s term to
n particle Lagrangian.17 In Ref. 10 a stringy generalization of this was developed to ob
nontrivial phases from the action of the motion group, namely aB`F topological term made up
of an abelian gauge field and an axion field was added to then string Lagrangian along with an
interaction term. Similar systems have subsequently been studied in Ref. 18. In Ref. 10
shown that even though the statistical phases are trivial~i.e., bosonic! the action of the slide
subgroup is nontrivial, giving rise to fractional quantum phases. Since slides involve the mot
one ring through a nontrivial generator of the fundamental group of another ring, these frac
phases correspond to Aharnov–Bohm phases rather than to fractional quantum statistics.
slides can occur between nonidentical particles as well and hence the interpretation of such
as statistics in Ref. 18 seems questionable. Since cyclic statistics occur in nonabelian sector
system, it would be interesting to construct appropriate nonabelian generalizations of R
which exhibit this behavior. We leave this problem to future investigations.
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We characterize all position and momentum observables onR and onR3. We study
some of their operational properties and discuss their covariant joint observables.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1739296#

I. INTRODUCTION

In the traditional presentation of quantum mechanics, observables are represented b
adjoint operators or, equivalently, by spectral measures. It is widely recognized that this con
too narrow. Indeed, spectral measures correspond to measurements with perfect accurac
found in real experiments. A less restrictive mathematical formulation of a quantum mech
observable is a normalized positive operator measure. This generalization allows one,
many other things, to describe measurements with limited accuracy.~For a review of positive
operator measures in quantum mechanics, see Refs. 4, 10, 15.!

In this paper we take covariance and invariance with respect to suitable symmetry gro
the defining properties of an observable. For example, a position observable onR is defined to be
an observable which is covariant under space translations and invariant under momentum
We characterize all position and momentum observables onR and onR3.

In Sec. II we study position and momentum observables onR. In Sec. II A the definitions are
given and in Sec. II B we characterize the structure of position and momentum observab
Sec. II C we investigate the ability of a position observable to discriminate states, that is, th
distinction power. Another relevant property, the limit of resolution, is studied in Sec. II D. In
II E we consider a covariant joint observable of position and momentum in phase space and
a lower bound for the product of their limits of resolution. Section III is devoted to stud
position and momentum observables inR3. The corresponding definitions are formulated in S
III A, and a complete classification of position and momentum observables inR3 is given in Sec.
III B.

Concluding this section we fix some notations. LetH be a complex separable Hilbert spa
andL~H! the set of bounded operators onH. A positive operatorTPL(H) of trace one is called
a stateand the set of all states is denoted byS~H!. A positive operatorA bounded from above by
the unit operatorI is called aneffectand the set of all effects is denoted byE~H!. We say that the
null operatorO and the unit operatorI are trivial effects. Let V be a nonempty set andA a
s-algebra of subsets ofV. A set functionE:A→L(H) is anoperator measure, if it is s-additive
with respect to the strong~or Ref. 12, p. 318, equivalently, weak! operator topology.

We call an operator valued measureE an observableif E(X)PE(H) for all XPA and

a!Electronic mail: carmeli@ge.infn.it
b!Electronic mail: teiko.heinonen@utu.fi
c!Electronic mail: toigo@ge.infn.it
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E(V)5I . If an observableE has projections as its values, that is,E(X)* 5E(X)5E(X)2 for all
XPA, it is called asharp observable. For an observableE:A→L(H) and a stateTPS(H), we
let pT

E denote the probability measure onV defined by

pT
E~X!5tr@TE~X!#, XPA.

The numberpT
E(X) is interpreted as the probability of having an outcome inX when the system is

in the stateT and the observableE is measured.
We denote byB(Rn) the Borels-algebra ofRn. The Fourier transform of anyf PL1(Rn) is

denoted by f̂ . We set alsof̂ 5F( f ) to denote the Fourier–Plancherel transform of anyf
PL2(Rn) and m̂5F(m) is the Fourier–Stieltjes transform of any complex Borel measurem on
Rn.

II. POSITION AND MOMENTUM OBSERVABLES ON R

A. Definitions

Let us consider a nonrelativistic particle living in the one-dimensional spaceR and fix H
5L2(R). Let U andV be the one-parameter unitary representations onH related to the groups o
space translations and momentum boosts. They act onwPH as

@U~q!w#~x!5w~x2q!,

@V~p!w#~x!5eipxw~x!.

Let P and Q be the self-adjoint operators generatingU and V, that is,U(q)5e2 iqP and V(p)
5eipQ for everyq,pPR. We denote byPP andPQ the spectral decompositions of the operato
P andQ, respectively. They have the form

@PQ~X!w#~x!5xX~x!w~x!,

PP~X!5F 21PQ~X!F.

The sharp observablePQ has the property that, for allq,pPR andXPB(R),

U~q!PQ~X!U~q!* 5PQ~X1q!, ~1!

V~p!PQ~X!V~p!* 5PQ~X!. ~2!

Equation~1! means thatPQ is covariant under translations, whereas~2! shows thatPQ is invariant
under momentum boosts. Hence, these relations suggest to callPQ a position observable. As th
kinematical meaning of the observablePQ is solely in the relations~1! and ~2!, we take these
symmetry properties as the definition of a general position observable. The observablePQ is
called thecanonical position observable.

Definition 1: An observableE:B(R)→L(H) is a position observable onR if, for all q,p
PR andXPB(R),

U~q!E~X!U~q!* 5E~X1q!, ~3!

V~p!E~X!V~p!* 5E~X!. ~4!

We will denote byPOSR the set of all position observables onR.
In an analogous way we define a momentum observable to be an observable which is

riant under momentum boosts and invariant under translations.
Definition 2:An observableF:B(R)→L(H) is a momentum observable onR if, for all q,p

PR andXPB(R),
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U~q!F~X!U~q!* 5F~X!, ~5!

V~p!F~X!V~p!* 5F~X1p!. ~6!

SinceFU(q)5V(2q)F andFV(p)5U(p)F, the sharp observablePP5F 21PQF satisfies
~5! and ~6!. It is called thecanonical momentum observable. Moreover, an observableE is a
position observable if and only ifF 21EF is a momentum observable. Therefore, in the followi
we will restrict ourselves to the study of position observables, the results of Secs. II B, II C
II D being easily converted to the case of momentum observables.

Remark 1:In some articles an observableE:B(R)→L(H) satisfying the covariance conditio
~1! ~and not necessarily the invariance condition~2!! is called a~generalized! position observable.
In this paper we say that such an observable is alocalization observable. These are characterize
in Refs. 7 and 16. In Sec. II B it is shown, especially, that every position observable is co
tative. However, there exist noncommutative localization observables. Hence, the setPOSR is a
proper subset of all localization observables.

B. The structure of position observables

Let r:B(R)→@0,1# be a probability measure. For anyXPB(R), the mapq°r(X2q) is
bounded and measurable, and hence the equation

Er~X!5E r~X2q! dPQ~q! ~7!

defines a bounded positive operator. The map

B~R!{X°Er~X!PL~H!

is an observable. It is straightforward to verify that the observableEr satisfies the covarianc
condition ~3! and the invariance condition~4!, hence it is a position observable onR. Denote by
d t the Dirac measure concentrated att. The observableEd0

is the canonical position observab
PQ . We may also write

PQ~X!5E d0~X2q! dPQ~q! ~8!

and comparing~7! to ~8! we note thatEr is obtained when the sharply concentrated Dirac meas
d0 is replaced by the probability measurer. The observableEr admits an interpretation as a
imprecise, or fuzzy, version of the canonical position observablePQ . ~See Refs. 1–3 for furthe
details.!

Proposition 1: Any position observable E onR is of the form E5Er for some probability
measurer:B(R)→@0,1#.

The proof of Proposition 1 is given in Appendix A.
Besides covariance~1! and invariance~2!, the canonical position observablePQ has still more

symmetry properties. Namely, letR1 be the set of positive real numbers regarded as a mult
cative group. It has a family of unitary representations$AtutPR% acting onH, and given by

@At~a! f #~x!5
1

Aa
f ~a21~x2t !1t !.

It is a direct calculation to verify that for allaPR1 ,XPB(R),

A0~a!PQ~X!A0~a!* 5PQ~aX!.

We adopt the following terminology.
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Definition 3:We say that an observableE:B(R)→L(H) is covariant under dilationsif there
exists a unitary representationA of R1 such that for allaPR1 andXPB(R),

A~a!E~X!A~a!* 5E~aX!. ~9!

The canonical position observablePQ is not the only position observable which is covaria
under dilations. An observableEd t

,tPR, is a translated version ofPQ , namely, for anyX

PB(R),

Ed t
~X!5PQ~X2t !5U~ t !* PQ~X!U~ t !.

SinceA2t(a)5U(t)* A0(a)U(t), the observableEd t
is covariant under dilations, with, for ex

ample,A5A2t .
Proposition 2: Let E be a position observable onR. The following conditions are equivalen

(a) E is covariant under dilations;
(b) iE(U)i51 for every nonempty open set U,R;
(c) E5Ed t

for some tPR;

(d) E is a sharp observable.

Proof: Let E be covariant under dilations. In a similar way as in Ref. 8, Lemma 3, it can
shown thatiE(U)i51 for all nonempty open setsU, and so,~a! implies~b!. Assume then that~b!
holds. For any nonempty open setU we get

15iE~U !i5ess supxPR r~x1U !. ~10!

It follows that supp~r! contains only one point. Indeed, assume on the contrary that sup~r!
contains two pointsx1Þx2 and denoteU5$xPRuuxu, 1

4ux12x2u%. Sincex11U and x21U are
neighborhoods ofx1 andx2 , respectively, we havemiªr(xi1U).0 for i 51,2. Then, for any
xPR, r(x1U)<12min(m1,m2). This is in contradiction with~10!. Hence,~b! implies ~c!. As
previously mentioned,~c! implies ~a!. Clearly,~c! also implies~d!. Since~d! implies ~b! the proof
is complete. h

The dilation covariance means that the observable in question has no scale depend
realistic position measurement apparatus has a limited accuracy and hence it cannot d
position observable which is covariant under dilations. Thus, sharp position observables a
suitable to describe nonideal situations.

Remark 2:If A is a unitary representation ofR1 satisfying Eq.~9! with E5Ed t
, then there

exists a measurable functionb:R→T (T5the complex numbers of modulus 1! such that

@A~a! f #~x!5
1

Aa
b~x1t !b~a21~x1t !! f ~a21~x1t !2t !.

In particular,A is equivalent toA2t . See Appendix B for more details.

C. State distinction power of a position observable

Definition 4:Let E1 andE2 be observables onR. Thestate distinction powerof E2 is greater
than or equal toE1 if for all T,T8PS(H),

pT
E25p

T8

E2 ⇒pT
E15p

T8

E1 .
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Example 1:An observableE:B(R)→L(H) is trivial if pT
E5pT8

E for all statesT,T8PS(H).
This implies that a trivial observableE is of the formE(X)5l(X)I ,XPB(R), for some prob-
ability measurel. The state distinction power of any observableE8 is greater than or equal to tha
of the trivial observableE. Clearly there is no trivial position observable onR.

Example 2:An observableE:B(R)→L(H) is called informationally completeif pT
EÞpT8

E

wheneverTÞT8. The state distinction power of an informationally complete observable is gre
than or equal to that of any other observableE1 on R. It is easy to see that there is no inform
tionally complete position observable. Namely, letc be a unit vector,pÞ0 a real number, and
denotec85V(p)c. Then the statesT5uc &^ cu and T85uc8 &^ c8u are different but for any
position observableEr , pT

Er5p
T8

Er sinceV(p) commutes with all the effectsEr(X),XPB(R).
We will next think of ; as a relation on the setPOSR . The relation; is clearly reflexive,

symmetric and transitive, and hence it is an equivalence relation. We denote the equivalenc
of a position observableE by @E# and the space of equivalence classes asPOSR /;. The relation
v induces a partial order in the setPOSR /; in a natural way.

Let Er be a position observable andT a state. The probability measurepT
Er is the convolution

of the probability measurespT
PQ andr,

pT
Er5pT

PQ* r. ~11!

It is clear from~11! that for all T,T8PS(H),

pT
PQ5p

T8

PQ ⇒pT
Er5p

T8

Er ,

and henceErvPQ . We conclude that@PQ# is the only maximal element of the partially ordere
setPOSR /;.

It is shown in Ref. 14, Proposition 5, that a position observableEr belongs to the maxima
equivalence class@PQ# if and only if supp(r̂)5R. The following proposition characterizes th
equivalence classes completely.

Proposition 3: Letr1 ,r2 be probability measures onR and Er1
,Er2

the corresponding posi-

tion observables. Then

Er1
vEr2

⇔supp~ r̂1!#supp~ r̂2!. ~12!

Proof: Taking the Fourier transform of Eq.~11!, we get

F~pT
Er!5F~pT

PQ!F~r!. ~13!

Since the Fourier transform is injective, it is clear from the above relation
supp(r̂1)#supp(r̂2) implies Er1

vEr2
.

Conversely, suppose supp(r̂1)£supp (r̂2). As r̂ i , i 51,2, are continuous functions an
r̂ i(j)5 r̂ i(2j), there exists a closed interval@2a,2b#, with 0<a,b, such that @2a,2b#
ø@22b,22a##supp ( r̂ 1 ) and (@2a,2b#ø@22b,22a#)ùsupp(r̂2)5B. Define the functions

h15
1

A2~b2a!
~x [a,b]2x [ 2b,2a] !,

h25
1

A2~b2a!
~x [a,b]1x [ 2b,2a] !,

and for i 51,2, denote
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hi* ~j!ªhi~2j!.

Define

f i5F 21~hi !,

and letTi be the one-dimensional projectionu f i&^ f i u. We then have

dpTi

PQ~x!5u f i~x!u2dx5u~F 21hi !~x!u2dx5F 21~hi* hi* !~x!dx,

and

F~pTi

PQ!5FF 21~hi* hi* !

5hi* hi*

5
1

2~b2a!
~2x@a,b#* x [ 2b,2a]1~21! ix@2b,2a#* x [ 2b,2a]1~21! ix@a,b#* x [a,b] !.

Since

supp~x@a,b#* x [ 2b,2a] !5@a2b,b2a#,

supp~x@a,b#* x [a,b] !5@2a,2b#,

supp~x@2b,2a#* x [ 2b,2a] !5@22b,22a#,

an application of~13! shows that

F~p
T1

Er1!ÞF~p
T2

Er1!,

F~p
T1

Er2!5F~p
T2

Er2!,

or in other words,Er1
v/ Er2

. h

D. Limit of resolution of a position observable

Let P:B(R)→L(H) be a sharp observable. For any nontrivial projectionP(X), there exist
statesT,T8PS(H) such thatpT

P(X)51 andpT8
P (X)50. We may say thatP(X) is a sharp prop-

erty and it is real in the stateT.
In general, an observableE has effects as its values which are not projections and, hence

sharp properties. An effectBPE(H) is called regular if its spectrum extends both above an
below 1

2. This means that there exist statesT,T8PS(H) such that tr@TB#. 1
2 and tr@T8B#, 1

2. In
this sense regular effects can be seen asapproximately realizable properties, see Ref. 4, Sec
II.2.1. The observableE is called regular if all the nontrivial effectsE(X) are regular.
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It is shown in Ref. 14, Proposition 4 that if a probability measurer is absolutely continuous
with respect to the Lebesgue measure, then the position observableEr is not regular. Here we
modify the notion of regularity to get a quantification of sharpness, or resolution, of pos
observables.

For anyxPR,r PR1 , we denote the interval@x2 (r /2) ,x1 (r /2)# by I x;r . We also denote
I r5I 0;r . Let E:B(R)→L(H) be an observable anda.0. We say thatE is a-regular if all the
nontrivial effectsE(I x;r), xPR, r>a, are regular.

Definition 5: Let E:B(R)→L(H) be an observable. We denote

gE5 inf$a.0uE is a-regular%

and say thatgE is the limit of resolution of E.
It follows directly from definitions that the limit of resolution of a regular observable is

Especially, the limit of resolution of canonical position observables is 0.
Example 3:Let E be a trivial observable~see Example 1!. For anyXPB(R), we have either

E(X)> 1
2I or E(X)< 1

2I . Hence,gE5`.
Proposition 4: A position observable Er is a-regular if and only if

ess supxPR r~ I x,a!. 1
2 . ~14!

Proof: An effect Er(X) is regular if and only ifiEr(X)i. 1
2 and iEr(R\X)i. 1

2. Since the
norm of the multiplicative operatorEr(X) is ess supxPR r(X2x), we conclude thatEr(X) is
regular if and only if

ess supxPR r~X2x!. 1
2 and ess infxPR r~X2x!, 1

2 .

Thus,Er is a-regular if and only if, for allr>a,

ess supxPR r~ I x;r !. 1
2 and ess infxPR r~ I x;r !, 1

2 .

The second condition is always satisfied and the first is equivalent to~14!. h

Corollary 1: A position observable Er has a finite limit of resolution and

gEr
5 inf$a.0uess supxPR r~ I x;a!. 1

2%. ~15!

Example 4:Let us consider the case in which the probability measure has Gaussian dis
tion, that is,

dr~x!5
1

sA2p
e2 @(x2 x̄)2/2s2#dx.

By Proposition 4 the position observableEr is a-regular if, for eachr>a,

1

2
,E

I x̄;r

1

sA2p
e2 @(x2 x̄)2/2s2#dx5

1

A2p
E

2 r /2s

r /2s

e2~x2/2!dx.

It follows that the limit of resolutiongEr
is proportional to the standard deviations and

gEr
'1.36s.

E. Covariant joint observables of position and momentum observables

Let E1 ,E2 :B(R)→L(H) be two observables. An observableG:B(R2)→L(H) is their joint
observableif for all X,YPB(R),

E1~X!5G~X3R!,
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E2~Y!5G~R3Y!.

In this caseE1 andE2 are themarginsof G.
For all (q,p)PR2, we denote

W~q,p!5e2 iqP1 ipQ5eiqp/2U~q!V~p!.

The mappingW:(q,p)°W(q,p) is an irreducible projective representation of the phase sp
translation groupR2 in H. An observableG:B(R2)→L(H) is called acovariant phase space
observableif for all ( q,p)PR2 andZPB(R2),

W~q,p!G~Z!W~q,p!* 5G~Z1~q,p!!.

It is proved in Ref. 6, Sec. III A that all covariant phase space observables are of the form

GT~Z!5
1

2p E
Z
W~q,p!TW~q,p!* dqdp ~16!

for someTPS(H).
The margins of a covariant phase space observableGT are position and momentum obser

ables. Indeed, let( il i uw i &^ w i u be the spectral decomposition ofT. A straightforward calculation
shows that

GT~X3R!5E r~X2q! dPQ~q!5Er~X!, ~17!

wheredr(q)5e(q)dq ande(q)5( il i uw i(2q)u2. Similarly,

GT~R3Y!5E n~Y2p! dPP~p!5Fn~Y!, ~18!

wheredn(p)5 f (p)dp and f (p)5( il i uŵ i(2p)u2.
The following proposition is a direct consequence of the previously mentioned results.
Proposition 5: A position observable Er [a momentum observable Fn] is a margin of a phase

space observable if and only if the probability measurer [prob. measuren] is absolutely continu-
ous with respect to the Lebesgue measure.

As noted in Example 4, the limit of resolution of a position observableEr with r having
Gaussian distribution is proportional to the standard deviations of r. This shows, in particular,
that there exists a position observable which is a margin of a phase space observable an
has an arbitrary small positive limit of resolution. However, we next show that if position
momentum observables have a covariant phase space observable as their joint observable,
product of limit of resolutions has a lower bound.

Proposition 6: Let Er be a position observable and Fn a momentum observable. If Er and Fn

have a covariant phase space observable as their joint observable, then

gEr
•gFn

>322&. ~19!

Proof: SinceEr andFn have a covariant phase space observable as a joint observable th
a vector valued functionuPL2(R,H) such thatdr(q)5iu(q)iH

2 dq anddn(p)5i û(p)iH
2 dp.

By Proposition 4 the observableEr is a-regular if and only if

ess supxPR r~ I x;a!.1/2.

Since the mapx°r(I x;a) is continuous, this is equivalent to
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supxPR r~ I x;a!5supxPRE
I x;a

iu~x!iH
2 dx.1/2.

By the same argument,Fn is b-regular if and only if

supjPR n~ I j;b!5supjPRE
I j;b

i û~j!iH
2 dj.1/2.

Using Ref. 11, Theorem 2 extended to the case of vector valued functions, we find

a•b>322&,

and hence~19! follows. h

III. POSITION AND MOMENTUM OBSERVABLES ON R3

A. Definitions

In this sectionH5L2(R3). Let Qi ,i 51,2,3, denote the multiplication operator onH given by
@Qi f #(x)5xi f (x), wherexi is the i th component ofx. By Pi we mean the operatorF 21QiF and
we denoteQ5(Q1 ,Q2 ,Q3), P5(P1 ,P2 ,P3). The space translation groupR3 has a unitary rep-
resentationU(q)5e2 iq"P and similarly, the momentum boost group has a representationV(p)
5eip"Q. It is an immediate observation that the sharp observablesPQ andPP on R3, associated
with the representationsV and U, respectively, satisfy the obvious covariance and invaria
conditions, analogous to~3!–~6!. Let D be the representation of the rotation group SO~3! in H
defined as

@D~R! f #~x!5 f ~R21x!.

It is straightforward to verify that the sharp observablesPQ andPP are covariant under rotations
that is, for allRPSO(3) andXPB(R3),

D~R!PQ~X!D~R!* 5PQ~RX!,

D~R!PP~X!D~R!* 5PP~RX!.

These observations motivate the following definitions:
Definition 6: An observableE:B(R3)→L(H) is a position observable onR3 if, for all q,p

PR3, RPSO(3) andXPB(R3),

U~q!E~X!U~q!* 5E~X1q!, ~20!

V~p!E~X!V~p!* 5E~X!, ~21!

D~R!E~X!D~R!* 5E~RX!. ~22!

We will denote byPOSR3 the set of all position observables onR3.
Definition 7: An observableF:B(R3)→L(H) is a momentum observable onR3 if, for all

q,pPR3, RPSO(3) andXPB(R3),

U~q!F~X!U~q!* 5F~X!,

V~p!F~X!V~p!* 5F~X1p!,

D~R!F~X!D~R!* 5F~RX!.
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B. Structure of position observables on R3

We say that a probability measurer on R3 is rotation invariant if for allXPB(R3) and R
PSO(3),

~R•r!~X!ªr~R21X![r~X!.

The set of rotation invariant probability measures onR3 is denoted byM (R3)1,inv
1 . Using the

isomorphismR3\$0%.R13S2 and the disintegration of measures, the restriction of any mea
rPM (R3)1,inv

1 to the subsetR3\$0% can be written in the form

druR3\$0%~r !5dr rad~r !drang~V!,

wherer rad is a finite measure onR1 with r rad(R1)512r($0%), andrang is the SO~3!-invariant
measure on the sphereS2 normalized to 1.

Given a rotation invariant probability measurer, the formula

Er~X!5E r~X2q! dPQ~q!, XPB~R3!, ~23!

defines a position observable onR3.
Proposition 7: Any position observable Eon R3 is of the form E5Er for some r

PM (R3)1,inv
1 .

Proof: It is shown in Appendix A that ifE satisfies Eqs.~20!, ~21!, thenE is given by Eq.~23!
for some probability measurer in R3. If wPCc(R

3), let

E~w!5E
R3

w~x!dE~x!.

For all f PL2(R3), define the measure

dm f~x!5u f ~x!u2dx.

We then have

^ f u E~w! f &5~m f* r!~w!.

From ~22! it then follows

~mD(R) f* r!~w!5~m f* r!~R21
•w!, ~24!

where (R21
•w)(x)5w(Rx) ;xPR3. Rewriting explicitly ~24!, we then find

E
R33R3

w~x1y!u f ~R21x!u2dxdr~y!5E
R33R3

~R21
•w!~x1y!u f ~x!u2dxdr~y!.

With some computations, settingc(x)5(R21
•w)(2x), this gives

E
R3

~c* u f u2!~2y!d~R21
•r!~y!5E

R3
~c* u f u2!~2y!dr~y!. ~25!

Letting c and f vary in Cc(R
3), the functionsc* u f u2 span a dense subset ofC0(R3). From Eq.

~25!, it then follows thatR21
•r5r. h

Proposition 8: Let E be a position observable onR3. The following facts are equivalent:
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(a) iE(U)i51 for every nonempty open set U,R;
(b) E is a sharp observable;
(c) E5PQ .

Proof: It is clear that (c)⇒(b)⇒(a). Hence, it is enough to show that~a! implies~c!. As in the
proof of Proposition 2, it follows from~a! that r5d t for sometPR3. However, the probability
measured t is rotation invariant if and only ift50. This means thatE5PQ . h
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APPENDIX A: TRANSLATION COVARIANT AND BOOST INVARIANT OBSERVABLES
IN DIMENSION n

Let N5Rn11 and H5Rn, with the usual structure of additive Abelian groups. Denote w
(p,t), pPRn, tPR, an element ofN. Let H act onN as

aq~p,t !5~p,t1q•p!, qPH,~p,t !PN.

The Heisenberg group is the semidirect productG5N3aH ~see Ref. 13!. We will denote an
elementnqPG, with n5(p,t)PN andqPH, as ((p,t),q).

Let W be the following irreducible unitary representation ofG acting inL2(Rn)

@W~~p,t !,q! f #~x!5e2 i (t2p•x) f ~x2q!.

Clearly, W((0,0),q)5U(q), W((p,0),0)5V(p), andW((0,t),0)5e2 i t . The groupsH andG/N
are naturally identified. With such an identification, the canonical projectionp:G→G/N is

p~~p,t !,q!5q,

and an element ((p,t),q)PG acts onq0PH as

~~p,t !,q!@q0#5p~~~p,t !,q!~~0,0!,q0!!5q1q0 .

An observableE based onRn and acting inL2(Rn) then satisfies the analogs of Eqs.~3!, ~4! in
dimensionn if, and only if, for all XPB(R) and ((p,t),q)PG,

W~~p,t !,q!E~X!W~~p,t !,q!* 5E~X1q!, ~A1!

i.e., if and only if E is a W-covariant observable based onG/N. By virtue of the Generalized
Imprimitivity Theorem~see Refs. 5 and 9!, E is W-covariant if and only if there exists a repre
sentations of N and an isometryL intertwiningW with the induced representation indN

G(s) such
that

E~X!5L* P~X!L

for all XPB(Rn), whereP is the canonical projection valued measure of the induced repres
tion. Since indN

G(s), indN
G(s8) ~as imprimitivity systems! if s,s8 ~as representations!, it is not

restrictive to assume that suchs has constant infinite multiplicity, so that there exists a posit
Borel measurems on N̂5Rn11 and an infinite dimensional Hilbert spaceH such thats is the
diagonal representation acting inL2(Rn11,ms ;H), i.e.,
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@s~p,t !f#~h,k!5eih•peiktf~h,k!.

Denote withgh,k , hPRn, kPR the following character ofN:

gh,k~p,t !5eih•peikt.

The action ofH on N̂ is given by

~q•gh,k!~p,t !5gh,k~a2q~p,t !!5ei (h2kq)•peikt,

or in other words

q•gh,k5gh2kq,k .

If kÞ0, the orbit passing throughgh,k is

Ogh,k
5Rn3$k%

and the corresponding stability subgroup is

Hgh,k
5$0%.

From the Mackey Machine it follows that the representations

rh,kª indN
G~gh,k!

are irreducible ifkÞ0, rh,k andrh8,k8 are inequivalent ifkÞk8 and, fixedkÞ0, rh,k andrh8,k are
equivalent.

The representationrª indN
G(s) acts onL2(Rn,dx;L2(Rn11,ms ;H)) according to

@r~~p,t !,q! f #~x!5s~p,t2p•x! f ~x2q!.

Using the fact that s acts diagonally in L2(Rn11,ms ;H) and the identification
L2(Rn,dx;L2(Rn11,ms ;H))>L2(Rn3Rn11,dx^ dms(x);H), we find that r acts on L2(Rn

3Rn11,dx^ dms(x);H) as

@r~~p,t !,q! f #~x,h,k!5eih•peik(t2p•x) f ~x2q,h,k!.

Write ms5ms1
1ms2

, wherems1
'ms2

and ms2
(Og0,21

)50, and lets5s1% s2 be the corre-
sponding decomposition ofs. We then have

indN
G~s!5 indN

G~s1! % indN
G~s2!,

where the two representations in the sum are disjoint and the sum is a direct sum of imprim
systems. SinceW. indN

G(g0,21), it is not restrictive to assumes5s1 , i.e., thatms is concentrated
in the orbit Og0,21

5Rn3$21%>Rn. Let T be the following unitary operator inL2(Rn3Rn,dx

^ dms(x);H):

@T f#~x,h!5 f ~x1h,h!.

If we define the representationr̂, given by

@ r̂~~p,t !,q! f #~x,h!5e2 i (t2p•x) f ~x2q,h!,

then T intertwines r̂ with r. Since r̂.W^ I L2(Rn,ms ;H) and W is irreducible, every isometry
intertwining W with r̂ has the form
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@ L̃ f #~x,h!5 f ~x!w~h! ; f PL2~Rn!

for somewPL2(Rn,ms ;H) with iwiL251. The most general isometryL intertwining W with r

has then the formL5TL̃ for some choice ofw, and the corresponding observable is given by

^ g u E~X! f &5^ g u L* P~X!L f &

5^ TL̃g u P~X!TL̃f &

5E
R2n

xX~x! f ~x1h!g~x1h!^w~h!,w~h!&dxdms~h!.

It follows that

@E~X! f #~x!5 f ~x!E
Rn

xX~x2h!iw~h!i2dms~h!5 f ~x!E
Rn

xX~x2h!dm~h!,

wheredm(h)5iw(h)i2dms(h) is a probability measure onRn.

APPENDIX B: SUPPLEMENT TO REMARK 2

Let A8(a)5U(t)A(a)U(t)* . Then, A8(a)PQ(X)A8(a)* 5PQ(aX). Denote withPQ
1 the

restriction of PQ to the Borel subsets ofR1 . Then, S05(A0 ,PQ
1 ,L2(0,1`)) and S

5(A8,PQ
1 ,L2(0,1`)) are transitive imprimitivity systems of the groupR1 based onR1 . Using

the Mackey Imprimitivity Theorem, there exists a Hilbert spaceK such thatS5 ind$1%
R1(I K), where

I K is the trivial representation of$1% acting inK. SinceS05 ind$1%
R1(1), wehave the isomorphism

of intertwining operatorsC(1,I K).C(S0 ,S), and hence there exists an isometryW1 :L2(0,1`)
→L2(0,1`) intertwining S0 with S. In particular,W1PQ

15PQ
1W1 , and hence there exists

measurable functionb1 :R1→T such that

@W1f #~x!5b1~x! f ~x! ; f PL2~0,1`!.

It follows thatW1 is unitary. Reasoning as above, one finds a unitary operatorW2 intertwining the
restrictions ofA0 andA8 to L2(2`,0), with

@W2f #~x!5b2~x! f ~x! ; f PL2~2`,0!,

for some measurable functionb2 :R2→T. Then,W̃5W1% W2 is unitary onL2(2`,1`), and
A(a)5U(t)* W̃A0(a)W̃* U(t) has the claimed form for allaPR1 .
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In the first part of this work we show that on the space of solutions of a certain class
of systems of three second-order PDE’s,uaa5Y(a,b,u,ua ,ub), ubb

5C(a,b,u,ua ,ub) and uab5V(a,b,u,ua ,ub), a three-dimensional definite or
indefinite metric, gab , can be constructed such that the three-dimensional
Hamilton–Jacobi equation,gabu,au,b51 holds. Furthermore, we remark that this
structure is invariant under a subset of contact transformations. In the second part,
we obtain analogous results for a certain class of third-order ordinary differential
equation~ODE’s!, u-5L(s,u,u8,u9). In both cases, we apply our general results
to the cental force problem. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1753667#

I. INTRODUCTION

In the early years of the 20th century, while studying the structure and transformation
erties of second- and third-order ODE’s, Lie, Tresse, Wu¨nschmann1–4 among others, discovere
that there was a rich differential geometry induced on the solution spaces of the differ
equations by the equations themselves. This work was greatly developed and generali
Cartan and Chern5–9 in the 1930–1940s. Robert Bryant,10 in more recent years, studied the g
ometry associated with fourth-order ODE’s. Paul Tod11 showed how third-order ODE’s could
generate three-dimensional Einstein–Weyl metrics.

With a totally different motivation and from a different point of view originating with Gene
Relativity, Frittelli, Kozameh and Newman, in a series of papers12–17 came to the same set o
issues and problems. Rather than starting with given differential equations, the point of vi
these authors began with three- and four-dimensional conformal Lorentzian manifolds, a
containing a metric. They then studied families of complete solutions to the eikonal equati
these manifolds. From these solutions, by the elimination of the space–time coordinate
differential equations of Cartan and Chern were reobtained. However, from this point of
unwittingly, the Cartan–Chern work was generalized from ODE’s to pairs of second-order P
whose solution spaces could be identified with any four-dimensional manifold with a confo
Lorentzian metric. In particular, they showed that the Einstein equations could be reformula
terms of pairs of second-order PDE’s.

Later, with Kamran and Nurowski,18–22this work was connected with the Cartan–Chern wo
for both the equivalence problem for differential equations under a variety of transformation
with the theory of Cartan normal conformal connections. With this consideration one saw ho
differential equations~both the third-order equation and the pair of second-order equations! had to
lie in a restricted class defined by the vanishing of the so-called Wu¨nschmann~or generalized
Wünschmann! equation.

An underlying unifying theme in many of the discussions was the existence of the ei

equation and families of complete solutions. These solutions could be obtained either via the given

25430022-2488/2004/45(7)/2543/17/$22.00 © 2004 American Institute of Physics
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third-order ODE or pair of second-order PDE’s or alternatively from the solutions to the eik
equation on the given conformal background space.

In a recent work,23 we turned to the geometry associated with a new class of second-
ODE’s. The connecting link with the earlier work is that now we used the time-indepen
two-dimensional Hamilton–Jacobi equation rather than the eikonal equation to obtain thi
class. We showed~via two different procedures! that, in the solution spaces of the ODE’s, eith
a two-dimensional Riemannian or Lorentzian metric can be constructed in a natural way an
the metric structure associated with each differential equation is preserved when the equa
transformed by a subset of contact transformations~namely canonical transformations!.

The aim of the present work is to generalize our previous result to the three-dimen
time-independent Hamilton–Jacobi equation. In Sec. II we begin with a three-dimensional
fold, M, with no further structure and then investigate arbitrary two-parameter families of
faces onM given byu5constant5Z(xa,a,b). ~Thexa are local coordinates onM anda andb
parametrize the families and take values onS 2, S 13R or onR 2.) More specifically, we then ask
when do such families of surfaces define a three-dimensional metric,gab(x

a), such that

gab¹aZ~xa,a,b!¹bZ~xa,a,b!51. ~1!

We will show that theu5Z(xa,a,b) must also satisfy a system of three second-order PDE’s

]aaZ5Y~u,v,w,a,b!,

]bbZ5C~u,v,w,a,b!, ~2!

]abZ5V~u,v,w,a,b!,

with

v[]aZ, and w[]bZ,

and whereY, C, andV are restricted to satisfy certain ‘‘Wu¨nschmann-type’’ conditions.
Here] denotes partial derivative. Observe that in the solutionsu5Z(xa,a,b), thexa are three

constants of integration for Eqs.~2! while the ‘‘a’’ and ‘‘ b’’ are two integration constants for Eq
~1!.

Before proceeding we make the following important remark:
Remark 1: The time-independent Hamilton–Jacobi equation for a particle, with mass m an

energy E, in a three-dimensional Riemannian space under the influence of a potential an
eikonal equation describing the evolution of the light rays in a three-dimensional isotropic op
medium characterized by its index of refraction, i.e., either of

g* ab¹aS~xa,a,b!¹bS~xa,a,b!5E2V~xa!,

g* ab¹aS~xa,a,b!¹bS~xa,a,b!5n~xa!,

can be rewritten in the form of Eq. (1) by dividing the equations by either E2V(xa) or by n(xa)
and simultaneously rescaling the metric by the same factors.

This action has the effect of changing certain properties of solutions to the Hamilton–J
~H-J! equation. Normally for the three-dimensional H-J equation a complete integral con
three constants of integration, where one of them isE. In our case, after the conformal rescalin
E is hidden as afixedconstant in the metricgab and the solution will depend now on only tw
parameters,a andb. With an abuse of language, we will refer tou5Z(xa,a,b) as a ‘‘restricted
complete’’ integral to the H-J equation. In Sec. II we also show that any two arbitrary restr
complete integrals of the same H-J equation are connected via a special contact transfor
This result allows one to establish that if two systems of three second-order PDE’s are con
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via that special contact transformation then in their spaces of solutions the same three-dime
metric can be constructed. Finally, our result is applied to the central force problem in sph
polar coordinates.

In Sec. III we present analogous results for a certain class of third-order ODE’s. That i
begin with a three-dimensional manifold,M, with no further structure and then investigate ar
trary one-parameter families of surfaces onM given byu5constant5Z(xa,s). ~Thexa are local
coordinates onM and s parametrizes the families and takes values onS 1 or on R 1.) More
specifically, we ask when do such families of surfaces define a three-dimensional metric,gab(x

a),
such that

gab¹aZ~xa,s!¹bZ~xa,s!51. ~3!

We will show that theu5Z(xa,s) must also satisfy a third-order ODE,

u-5L~s,u,u8,u9!, ~4!

whereL is restricted to satisfy a certain ‘‘Wu¨nschmann-type’’ condition.
Here the prime denotes ‘‘s’’ derivatives. Observe that in the solutionsu5Z(xa,s), which we

will refer to as a one-parameter family of solutions to the Hamilton–Jacobi equation, thexa, are
three constant of integration for Eq.~4! while the ‘‘s’’ is an integration constant for Eq.~3!. In this
section it is also remarked that the three-metric is invariant when the third-order ODE is
formed by a subclass of contact transformations. Finally, these results are also applied
central force problem in spherical polar coordinates.

II. THE SYSTEM OF PDE’s CASE

In this section we prove that in the space of solutions of a certain class of systems of
second-order PDE’s, a three-dimensional definite or indefinite metric,gab , can be constructed
such that the solutions satisfy the three-dimensional H-J equation. We start with a
dimensional manifoldM @with local coordinatesxa5(x0,x1,x2)] and assume we are given
two-parameter set of functionsu5Z(xa,a,b), the parametersa and b can take values onS 2,
S 13R or on R 2. We also assume that for fixed values of the parametersa and b the level
surfaces

u5constant5Z~xa,a,b!, ~5!

locally foliate the manifoldM and thatu5Z(xa,a,b) satisfies the H-J equation

gab~xa!¹aZ~xa,a,b!¹bZ~xa,a,b!51 ~6!

for some unknown metricgab(x
a).

Remark 2: If gab contains the E simply as a number or fixed parameter it will appear in
solution to the H-J equation. i.e., u5Z(xa,E,a,b).

The basic idea now is to solve Eq.~6! for the components of the metric in terms
¹aZ(xa,a,b). To do so, we will consider a number of parameter derivatives of the condition~6!,
and then by manipulation of these derivatives, obtain both the three-dimensional metric a
three partial differential equations defining the surfaces plus the conditions they must satis
will refer to them as the Wu¨nschmann-type conditions.

Remark 3: The notation is as follows: there will be two types of differentiation, one is
respect to the local coordinates, xa, of the manifoldM, denoted by¹a or ‘‘ comma a, ’’ the other
is with respect to the parametersa and b, denoted by]a and ]b .

From the assumed existence ofu5Z(xa,a,b), we define three parametrized scalarsu i in the
following way:
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u05u[Z~xa,a,b!,

u15v[]aZ~xa,a,b!, ~7!

u25w[]bZ~xa,a,b!.

Remark 4: For each value ofa and b Eqs. (7) can be thought of as a coordinate transfo
mation between the xa’ s and(u, v, w).

We also define the following three important scalars

Y* 5]aaZ~xa,a,b!,

C* 5]bbZ~xa,a,b!, ~8!

V* 5]abZ~xa,a,b!.

In what follows we will assume that Eqs.~7! can be solved for thexa’s; that is,

xa5Xa~u,v,w,a,b!,

so that Eqs.~8! can be rewritten as

]aaZ5Y~u,v,w,a,b!,

]bbZ5C~u,v,w,a,b!, ~9!

]abZ5V~u,v,w,a,b!.

This means that the two-parameter family of level surfaces, Eq.~5!, can be obtained as solution
to the system of three second-order PDE’s~9!. Note that~Y,C,V! satisfy the integrability condi-
tions,Y,b5V,a andV,b5C,a .

The solution space of Eqs.~9! is three-dimensional. This can be seen in the following w
The system of PDE’s~9! is equivalent to the vanishing of the three one-forms,v i ,

v05du2vda2wdb,

v15dv2Yda2Vdb, ~10!

v25dw2Vda2Cdb.

A simple calculation, using the integrability conditions on~Y,C,V!, leads todv i50 ~modulov i)
from which, via the Frobenius Theorem, the solution space of Eqs.~9! is three-dimensional.

From the three scalars,u i , we have their associated gradient basisu i
,a given by

u i
,a5¹au i5$Z,a ,]aZ,a ,]bZ,a%, ~11!

and its dual vector basisu i
a, so that

u i
au j

,a5d i
j , u i

au i
,b5db

a. ~12!

Definition 1: The totala and b derivatives of a function F5F(u,v,w,a,b) are defined by

DaF[Fa1Fuv1FvY1FwV,

DbF[Fb1Fuw1FvV1FwC, ~13!

respectively.
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It is easier to search for the components of the three-dimensional metric in the gradien
rather than in the original coordinate basis. Furthermore, it is preferable to use the contra
components rather than the covariant components of the metric; that is, we want to determ

gi j ~xa,s!5gab~xa!u i
,au ,b

j . ~14!

The metric components and the Wu¨nschmann-type conditions, for this case, are obtained
repeatedly operating with]a and]b on Eq.~6!, that is, by definition, on

g005gabZ,aZ,b51. ~15!

Applying ]a to Eq. ~15! yields ]ag0052gab]aZ,aZ,b50, i.e.,

g1050. ~16!

In the same way we obtain that]bg0052gab]bZ,aZ,b50 and thus,

g2050. ~17!

A direct computation shows that

]aa~g00/2!5gab]aaZ,aZ,b1gab]aZ,a]aZ,b5gabY,aZ,b1g1150. ~18!

Since, by the assumed linear independence of (Z,a ,]aZ,a ,]bZ,a),

Y,a5YuZ,a1Yv]aZ,a1Yw]bZ,a , ~19!

Eq. ~18!, using Eqs.~16!, ~17!, and~19!, is equivalent to

g1152Yu . ~20!

In exactly the same way we find that

]ab~g00/2!5Vu1g2150,

]bb~g00/2!5Cu1g2250. ~21!

Therefore, the final result is

~gi j !5S 1 0 0

0 2Yu 2Vu

0 2Vu 2Cu

D . ~22!

Remark 5: We require thatdet(gij)5D be different from zero, with

D[~YuCu2Vu
2!. ~23!

The metricity or Wu¨nschmann-type conditions are obtained from the conditions]aaag00

50, ]baag0050, ]bbag0050, and]bbbg0050. A direct computation shows that they are equiv
lent to

Yua1Yuuv1YuvY1YuwV52~YvYu1YwVu!,

Yub1Yuuw1YuvV1YuwC52~VvYu1VwVu!,
~24!

Vub1Vuuw1VuvV1VuwC5VvVu1VwCu1CvYu1CwVu ,
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Cub1Cuuw1CuvV1CuwC52~CvVu1CwCu!.

Summarizing:~a! If we start from a restricted complete integral,u5Z(xa,a,b) to the H-J equa-
tion, ~6!, then it satisfies the system of three second-order PDE’s~9!, with Y, C andV satisfying
the Wünschmann-type conditions~24!; in other words, in the solution space of Eqs.~9! there is the
naturally defined metric,

ds25Fu,au,b2
1

D
~Cuv ,av ,b2Vu~v ,aw,b1w,av ,b!1Yuw,aw,b!Gdxadxb, ~25!

whereD is defined by Eq.~23!. ~b! If we start with a system of three second-order PDE’s~9!,
whereY, C, andV satisfy Eqs.~24! and the integrability conditions, then in its solution spa
there exist a natural three-dimensional metric given by Eq.~25!. Though it might appear as if the
metric components depend on the parameters~a,b!, the Wünschmann-type conditions guarante
that they do not. Furthermore, the solutionsu5Z(xa,a,b) satisfy the H-J equation

gab¹aZ~xa,a,b!¹bZ~xa,a,b!51

with the just determined metric, Eq.~25!.
Remark 6: From the results presented above we conclude that solving the three-dimen

H-J equation is equivalent to solving a system of three second-order PDE’s.
In some of the earlier work on the eikonal equation in three and four dimensional Loren

spaces, it was proved that the conformal Lorentzian metrics associated with third-order ODE
pairs of second order PDE’s satisfying the Wu¨nschmann condition and generalized Wu¨nschmann
condition, is preserved when the differential equation is transformed by a contact transform
For our present case, there is an analogous result given by the following:

Theorem 1: Let Eqs. (9) be a system of three second-order PDE’s, withY, C, and V
satisfying the conditions~24! and let

]āāZ̄5Ȳ~ ū,v̄,w̄,ā,b̄ !,

]b̄b̄Z̄5C̄~ ū,v̄,w̄,ā,b̄ !, ~26!

]āb̄Z̄5V̄~ ū,v̄,w̄,ā,b̄ !,

be a system of three second-order PDE’s locally equivalent to Eqs. (9) under the subset of c
transformations generated by the generating function

H~a,b,u,ā,b̄,ū!5ū2u2G~a,b,ā,b̄ !. ~27!

Then under this subset of contact transformations the metric given by Eq. (25) is preserve.
The proof of this theorem is exactly as that presented in Ref. 18 for a system of two se

order PDE’s such that in its space of solutions is living a four-dimensional conformal Loren
metric,gab, such thatgabu,au,b50 holds. Here we only justify the form of the generating functi
~27!. We first review the definition of a general contact transformation.

Theorem 2: Every contact transformation which is not a prolonged point transformatio

determined in terms of a generating function H(a,b,u,ā,b̄,ū) by solving the following five

implicit equations forā, b̄, ū, v̄5]āū,w̄5]b̄ū:

H~a,b,u,ā,b̄,ū!50,

Ha1vHu50, H ā1 v̄Hū50, ~28!

Hb1wHu50, H b̄1w̄Hū50.
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The generating function H(a,b,u,ā,b̄,ū) is an arbitrary smooth function, subject only to th

solubility of Eqs. (28) forā, b̄, ū, v̄, w̄.
For a proof of this theorem see, for example, Olver.24

Without loss of generality one can take

H5ū2V̄~u,a,b,ā,b̄ !, ~29!

so that the contact transformation has the form

ū5V̄~u,a,b,A~a,b,u,v,w!,B~a,b,u,v,w!!,

ā5A~a,b,u,v,w!,

b̄5B~a,b,u,v,w!, ~30!

v̄5V̄ā~u,a,b,A~a,b,u,v,w!,B~a,b,u,v,w!!,

w̄5V̄b̄~u,a,b,A~a,b,u,v,w!,B~a,b,u,v,w!!,

whereA(a,b,u,v,w) andB(a,b,u,v,w) are obtained by solving

V̄a1vV̄u50,

V̄b1wV̄u50, ~31!

for ā and b̄ in terms ofa, b u, v, andw.
As was pointed out earlier, for each value ofa andb, the three-parameter family of solution

u5Z~xa,a,b!, ~32!

of ~9! is also a two-parameter family of solutions of Eq.~6!, i.e., are ‘‘restricted complete’
integrals of Eq.~6!. We now invoke the envelope construction to take one restricted com
integral of Eq.~6! into another such solution. Consider the functionū5Z̄(xa,ā,b̄) defined by

ū5V̄~u,a,b,ā,b̄ !, ~33!

whereu is defined by Eq.~32! anda andb are defined implicitly as functions ofxa, ā andb̄ by
the envelope condition18,25

V̄uv1V̄a50,

V̄uw1V̄b50. ~34!

Note that although Eqs.~34! have the same form as Eqs.~31!, they involve the variablesxa, a, and
b. Using both Eqs.~33! and ~34!, we have that

ū,a5V̄uu,a . ~35!

By direct substitution ofū,a into the H-J equation, Eq.~6!, we see that it is a new restricte
complete integral if and only ifV̄u

251. That is, ū5V̄(u,a,b,ā,b̄) has the form ū56u

1G(a,b,ā,b̄). For simplicity, taking the positive sign, we have that ifu(xa,a,b) is a restricted
complete integral of Eq.~6! then
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ū5u1G~a,b,ā,b̄ !, ~36!

wherea andb are defined implicitly as a function ofxa, ā, andb̄ by the envelope conditions

v1Ga50,

w1Gb50, ~37!

is a new restricted complete integral of Eq.~6!. Equations~36! and~37! define a particular subse
of the contact transformations given by contact transformations

ū5u1G~a,b,ā,b̄ !, ~38!

v52Ga , ~39!

w52Gb , ~40!

v̄5Gā , ~41!

w̄5Gb̄ . ~42!

The generating function for this set of contact transformations is given by

H~a,b,u,ā,b̄,ū!5ū2u2G~a,b,ā,b̄ !50, ~43!

thus justifying our choice of the generating function, Eq.~27!.
As an example we apply our results to the central force problem in spherical polar co

nates,xa5(r ,u,f). For this problem the time-independent Hamilton–Jacobi equation is give

S 1

2m~E2V! D S u,r
2 1

u,u
2

r 2 1
u,f

2

r 2 sin2 u D 51, ~44!

wherem is the mass,V(r ) the potential energy, andE is the total energy of the particle, respe
tively. By the method of separation of variables one finds that a complete solution to Eq.~44! can
be written in the following form

u5Z~xa,E,a,b!5EA2m~E2V!2
b2

r 2 dr1EAb22
a2

sin2 u
du1af, ~45!

wherea andb are two constants of separation. For this problem,a, is the magnitude of the tota
angular momentum andb is the value of the angular momentum about the polar axis. In this c
our restricted complete integral is obtained from Eq.~45! by fixing E. Now we obtain the system
of three second-order PDE’s associated with this restricted complete integral. A direct compu
shows that

v5]aZ5E 2adu

sin2 uAb22
a2

sin2 u

1f,

w5]bZ5E 2bdr

r 2A2m~E2V!2
b2

r 2

1E bdu

Ab22
a2

sin2 u

. ~46!
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By using Eqs.~45! and ~46!, one sees that the Jacobian of the coordinate transformatiou i

5u i(xa,a,b), for this case, is given by

J5
]~u,v,w!

]~r ,u,f!
5

22m~E2V!b

Ab22
a2

sin2 u
A2m~E2V!2

b2

r 2

. ~47!

Therefore,b cannot be zero.
Using Eqs.~46!, we see that for the central force problem in spherical polar coordinates

]aaZ52b2F~u,a,b!,

]bbZ52G~r ,b!2a2F~u,a,b!, ~48!

]abZ5abF~u,a,b!,

where

F~u,a,b!5E du

sin2 uS b22
a2

sin2 u D 3/2,

G~r ,b!5E 2m~E2V!dr

r 2S 2m~E2V!2
b2

r 2 D 3/2. ~49!

On the other hand, Eqs.~45! and ~46! imply that

r 5R~u,v,w,a,b!,

u5Q~u,v,w,a,b!. ~50!

Therefore, the system of three second-order PDE’s for the central force problem in sph
polar coordinates is given by

]aaZ5Y52b2F~Q~u,v,w,a,b!,a,b!,

]bbZ5C52G~R~u,v,w,a,b!,b!2a2F~Q~u,v,w,a,b!,a,b!, ~51!

]abZ5V5abF~Q~u,v,w,a,b!,a,b!.

Sinceu(xa,a,b) given by Eq.~45! with E fixed is a restricted complete integral to the H
equation~44!, then Y, C, and V given in Eqs.~51! satisfy Eqs.~24! and, therefore, a three
dimensional metric can be defined in the space of solutions of Eqs.~51!. By comparison of Eqs.
~6! and~44! it is clear what that metric should be. However, here we show the steps to exp
obtain this metric by the procedure developed in earlier. What is remarkable is that this metr
be obtained without the evaluation of the integrals that arose in this problem. As we can se
Eq. ~25!, to obtain the three-dimensional metric,gab , associated with this problem, we need
compute:u i

,a5(u,a ,v ,a ,w,a), Yu , Cu , Vu , andD. By using Eqs.~45! and ~46!, we have that
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u,a5SA2m~E2V!2
b2

r 2 , Ab22
a2

sin2 u
,a D ,

v ,a5S 0,
2a

sin2 uAb22
a2

sin2 u

, 1D , ~52!

w,a5S 2b

r 2A2m~E2V!2
b2

r 2

,
b

Ab22
a2

sin2 u

, 0D .

From Eq.~47! we have that these three vectors are linearly independent whenb is different from
zero.

Since, for example,

Cu5~]C/]r !~]r /]u!1~]C!/]u)~]u/]u!,

then to computeYu , Cu , Vu , andD we need to obtain (]u/]u) and (]r /]u). From Eqs.~45! and
~46!, via implicit derivations, we obtain that

]r

]u
5

A2m~E2V!2
b2

r 2

2m~E2V!
,

]u

]u
5

Ab22
a2

sin2 u

2mr2~E2V!
. ~53!

By using the definition ofD given by Eqs.~23!, ~51!, and~53!, a direct computation shows tha

Yu

D
522mr2~E2V!1b2,

Cu

D
522mr2~E2V!sin2 u1a2, ~54!

Vu

D
5

a@2mr2~E2V!2b2#

b
.

Finally, substituting Eqs.~52! and~54! into Eq.~25! we obtain the three-dimensional metric livin
in the solution space of the PDE’s~51!;

ds25gabdxadxb52m~E2V!~dr21r 2du21r 2 sin2 udf2!, ~55!

the desired result.
In the special case of the Kepler problem with energy equal to zero, i.e., forV52k/r and

E50, we have for the three PDE’s.
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]aaZ5
b cot~]bZ1arccose!

a22b2 ,

]bbZ5
a2 cot~]bZ1arccose!

b~a22b2!
1

4

Z2a]aZ2b]bZ
, ~56!

]abZ5
a cot~]bZ1arccose!

b22a2 ,

where

e5S 4b22~Z2a]aZ2b]bZ!2

4b21~Z2a]aZ2b]bZ!2D . ~57!

III. THE THIRD-ORDER ODE’s CASE

In this section we prove that in the solution space of a certain class of third-order OD
three-dimensional definite or indefinite metric,gab , can be constructed directly from the solutio
such that the three-dimensional time-independent H-J equation holds. We begin with a
dimensional manifoldM ~with local coordinatesxa5(x0,x1,x2)) and assume we are given
one-parameter set of functionsu5Z(xa,s); the parameters can take values onS 1 or on R. We
also assume that for a fixed value of the parameters, the level surfaces

u5constant5Z~xa,s!, ~58!

locally foliate the manifoldM and thatu5Z(xa,s) satisfies the H-J equation

gab¹aZ~xa,s!¹bZ~xa,s!51, ~59!

for some unknown metricgab(x
a). That is,u5Z(xa,s), is a one-parameter family of solutions t

the three-dimensional time-independent H-J equation.
The basic idea now is to solve Eq.~59! for the components of the metric in terms

¹aZ(xa,s). To do so, we will consider a number of parameter derivatives of the condition~59!,
and then by manipulation of these derivatives, obtain both the three-dimensional metric a
ODE defining the surfaces and the Wu¨nschmann-type condition it must satisfy.

Remark 7: The notation is as follows: as in the previous section, there will be two typ
differentiation, one is with respect to the local coordinates, xa, of the manifoldM, denoted by¹a

or ‘‘ comma a, ’’ the other is with respect to the parameter s, denoted by a prime or by]s .
We first note that the one-parameter family of ‘‘level’’ surfaces, Eq.~58!, can be obtained as

solutions to the third-order ODE

u-5L~u,u8,u9,s! ~60!

by first calculating

u-~xa,s![L* ~xa,s! ~61!

and then by inverting the relations

u5Z~xa,s!,

u85Z8~xa,s!,

u95Z9~xa,s!,
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obtaining

xa5Xa~u,u8,u9,s!. ~62!

The threexa can be eliminated inL* yielding Eq.~60!.
Remark 8: Eq. (62) can be thought of as an‘‘ s’’ dependent coordinate transformation betwe

xa and (u,u8,u9).
We define three parametrized scalars:

u i5$u0,u1,u2%[$u,u8,u9%5$Z~xa,s!,Z8~xa,s!,Z9~xa,s!%, ~63!

which for each value ofs form a coordinate system intrinsically adapted to the surfaces.
From the three scalars,u i , we have their associated gradient basisu i

,a given by

u i
,a5¹au i5$Z,a ,]Z,a ,]2Z,a%, ~64!

and its dual vector basisu i
a, so that

u i
au j

,a5d i
j , u i

au i
,b5db

a. ~65!

Definition 2: The total s derivative of a function F5F(s,u,u8,u9) is defined by

DF[Fs1Fuu81Fu8u91Fu9L. ~66!

As in the previous section, it is easier to search for the components of the three-dimen
metric in the gradient basis rather than in the original coordinate basis. Furthermore, it is p
able to use the contravariant components rather than the covariant components of the met
is, we are interested in

gi j ~xa,s!5gab~xa!u i
,au j

,b . ~67!

The metric components and the Wu¨nschmann-type condition, for this case, are obtained by
peatedly operating with]s on Eq.~59!, that is, on

g005gabZ,aZ,b51. ~68!

Applying ]s on Eq.~68! yields

]s~gabZ,aZ,b!52gabZ,a8 Z,b52g1050, ~69!

where we have used that]sg
ab50. Applying ]s on Eq.~69! we obtain

]s
2~g00/2!5gabZ,a9 Z,b1gabZ,a8 Z,b8 50, ~70!

which is equivalent tog1152g20. In the same manner we find that

]s
3~g00/2!5gabZ,a-Z,b12gabZ,a9 Z,b8 1gabZ,a8 Z,b9 5gabL ,aZ,b13gabZ,a9 Z,b8 50. ~71!

Since

L ,a5LuZ,a1Lu8Z,a8 1Lu9Z,a9 , ~72!

then Eq.~71! is equivalent to

g2152 1
3 @Lu1Lu9g

20#. ~73!

In the same way we find that
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]s
4~g00/2!5DLu2 1

3 LuLu91@DLu92
1
3 ~Lu9!

223Lu8#g
2013g2250, ~74!

]s
5~g00/2!52W(1)@L#2g20W(2)@L#50, ~75!

where

W(1)@L#[2D2Lu2 1
3 LuDLu91

7
3 Lu9DLu14LuLu82

4
9 Lu~Lu9!

2, ~76!

W(2)@L#[2 4
9 ~Lu9!

312Lu9DLu922Lu8Lu92D2Lu913DLu826Lu . ~77!

Remark 9: Observe that W(2)@L# is the standard Wu¨nschmann invariant for third-order
ODE’s, which is an invariant under a general contact transformation.

From Eq.~75! one sees that there are, at this point, four different possible cases to loo

~a! W(1)@L#Þ0, W(2)@L#Þ0; in this case the three-dimensional metric can be completely
constructed;

~b! W(1)@L#50, W(2)@L#Þ0; in this case we obtain a degenerate metric, which must be
cluded by the assumption of the H-J equation. See Remark 10 below, for the proof;

~c! W(1)@L#50, W(2)@L#50; in this case the metric is not completely determined. See
conjecture below;

~d! The case ofW(2)@L#50 with nothing said aboutW(1)@L# arises not with the H-J equatio
but with the time dependent three-dimensional eikonal equation. It leads to a conf
metric on the solution space.12–17As this case has been extensively studied, nothing fur
will be said here about it.

We thus consider only the first case which leads to the final result

gi j ~xa,s!5hi j ~xa,s!1gc
i j ~xa,s!, ~78!

where

~hi j !5S 1 0 0

0 0 2 1
3 Lu

0 2 1
3 Lu 2 1

3 DLu1 1
9 LuLu9

D , ~79!

~gc
i j !5g20S 0 0 1

0 21 2 1
3 Lu9

1 2 1
3 Lu9 2 1

3 DLu91
1
9 Lu9

2
1Lu8

D , ~80!

with

g2052S W(1)@L#

W(2)@L# D . ~81!

The Wünschmann-type condition, which is obtained from]s
6(g00/2)50, is

DS W(1)@L#

W(2)@L# D5S 2

3D S Lu9W
(1)@L#

W(2)@L#
2LuD . ~82!

Remark 10: When W(1)@L#50, using Eqs. (81) and (82), one sees from
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det~gi j !52
Lu

2

9
1

g20

3
@DLu2LuLu9#1

~g20!2

3 FDLu92
2

3
~Lu9!

223Lu8G1~g20!3 ~83!

that det(gij)50. This implies a degenerate metric thus excluding this case.
Summarizing, we conclude the following: IfL is such thatW(1)@L#Þ0, W(2)@L#Þ0 and

satisfies the Wu¨nschmann-type condition~82!, then in the solution space of the ODE,u-
5L(u,u8,u9,s), there is defined either a three-dimensional Riemannian or Lorentzian m
given by

ds25gabdxadxb5gi j u
i
,au j

,bdxadxb, ~84!

with (gi j ) given by Eqs.~78!–~81!. Furthermore the solution satisfies the H-J equation with
metric. One can think of the ODE and the H-J equation as dual to each other; each being s
by the same function but with respect to different variables.

In earlier work on the eikonal equation in three-dimensional Lorentzian spaces, it was p
that the conformal Lorentzian metric associated with a third-order ODE satisfying the W¨n-
schmann condition, is preserved when the differential equation is transformed by a contact
formation. For our present case, there is an analogous result given by the following:

Theorem 3: Let Eq. (60) be a third-order ODE, withL satisfying the condition~82! with
W(1)@L#Þ0, W(2)@L#Þ0 and let

ū-5L̄~ ū,ū8,ū9,s̄!, ~85!

be a third-order ODE locally equivalent to Eq. (60) under the subset of contact transforma
generated by the generating function

H~s,u,s̄,ū!5ū2u2G~s,s̄!. ~86!

Then under this subset of contact transformations the metric given by Eqs. (78)–(81) is preserved.
The proof of this theorem is exactly as that presented in Ref. 18 for the third-order ODE

such that a conformal Lorentzian metric,gab, lives on its space of solutions is living, such that t
eikonal equationgabuaub50 is satisfied. The justification of this choice of generating funct
~86! is the same as that given in the previous section.

We return to the example from the previous section of the central force problem but now
only one parameter,s, in the solution. We see that ODE’s can be constructed from the t
parameter solution, Eq.~45!, i.e., from

u5Z~xa,E,a,b!5EA2m~E2V!2
b2

r 2 dr1EAb22
a2

sin2 u
du1af, ~87!

by choosinga andb as functions ofs. To illustrate what can occur we take three different cas

~a! (a5s,b5b0)⇒W(1)@L#50 andW(2)@L#50;
~b! (a5a0 ,b5s)⇒W(1)@L#50 andW(2)@L#50;
~c! (a5as,b5s),⇒W(1)@L#50, the three vectorsu i

,a are not linearly independent;
~d! (a5s2,b5s),⇒W(1)@L#Þ0, W(2)@L#Þ0.

Conjecture: Whenever one has a third-order ODE, u-5L(u,u8,u9,s), so that W(1)@L#50
and W(2)@L#50 then the equation came from a solution where the one-parameter entere
solution as a Killing trajectory; i.e., the change in the solution as‘‘ s’’ evolves can be undone b
dragging the metric along the Killing trajectory.

For case~d! the metric can be found~after a lengthy calculation! from the solution
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u~xa,s!5EA2m~E2V~r !!2
s2

r 2 dr1E sA12s2csc2 u du1s2f ~88!

by the following steps:

u85E 2sdr

r 2A2m~E2V~r !!2
s2

r 2

1E ~122s2csc2 u!du

A12s2 csc2 u
12sf,

u95E 22m~E2V!dr

r 2F2m~E2V~r !!2
s2

r 2G3/21E s csc2 u~2s2 csc2 u23!du

~12s2 csc2 u!3/2 12f. ~89!

The ODE becomes

u-52@H~r ,s!1J~u,s!#, ~90!

where

H~r ,s!5E 6sm~E2V!dr

r 4F2m~E2V~r !!2
s2

r 2G5/2,

J~u,s!5E 3 csc2 udu

~12s2 csc2 u!5/2. ~91!

By inverting, we, in principle, find

r 5R~u,u8,u9,s!,

u5Q~u,u8,u9,s!,

f5F~u,u8,u9,s!, ~92!

from which

u-5L52@H~R~u,u8,u9,s!,s!1J~Q~u,u8,u9,s!,s!#. ~93!

This leads after much work to

W(1)@L#

W(2)@L#
5

22mr2~E2V!1s4 csc2 u

2mr2@2mr2~E2V!2s2#~E2V!~s2 csc2 u21!
~94!

and finally to

u,a5SA2mr2~E2V!2s2

r
,sA12s2 csc2 u,s2D ,

u,a8 5S 2s

rA2mr2~E2V!2s2
,
122s2 csc2 u

A12s2 csc2 u
,2sD , ~95!

u,a9 5S 22mr~E2V!

~2mr2~E2V!2s2!3/2,
s csc2 u~2s2 csc2 u23!

~12s2 csc2 u!3/2 ,2D ,
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and the metric~first in tetrad components!

g0051,

g205
2mr2~E2V!2s4 csc2 u

2mr2@2mr2~E2V!2s2#~E2V!~s2 csc2 u21!
,

~96!

g215
2s sin2 u

mr2~E2V!@2s21cos~2u!21#2 1
s

@2mr2~E2V!2s2#2 ,

g225
2mr2~E2V!

@2mr2~E2V!2s2#3 1
3s2 sin2 u24 sin4 u

2mr2~E2V!@s22sin2 u#3 ,

and then the final form,

ds25gabdxadxb52m~E2V!@dr21r 2du21r 2 sin2 udf2#. ~97!

IV. CONCLUSIONS

In this work, we have shown that the ideas and procedures developed in our recent pap23 on
the two-dimensional time-independent H-J equation can be generalized to the three-dime
time-independent H-J equation. The results presented in this work show that solving the
dimensional time-independent H-J equation is equivalent to solving a system of three secon
PDE’s or a third-order ODE.

We point out that, though we have used, in the present work, only the three-dimen
time-independent H-J equation, this can be generalized. In a future paper we will prese
results for the four-dimensional H-J equation.
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We use sums over Bessel functions of the first kind to derive a convenient form of
the Poisson summation identity relating sums over direct lattices in two dimensions
to sums over reciprocal lattices. After three simple examples of the use of the
identity, we consider sums over complex powers of the radial distance to lattice
points, and also sums incorporating factors exp(4imwp) depending on angles of
lattice points. We study the distribution of zeros of lattice sums, and show two
which seemingly obey the Riemann hypothesis, and a third which does not. We
provide a reflection formula for angular lattice sums, and a Macdonald function
sum for the lowest order angular lattice sum. ©2004 American Institute of Phys-
ics. @DOI: 10.1063/1.1755861#

I. INTRODUCTION

The study of lattice sums is an old problem in physics, dating back to investigations o
Madelung constant,1 and to the foundations of the Lorentz–Lorenz equation.2 Such sums may be
divided into various types, for example, according to dimensionality, governing equation
whether the summand is a function of distance only, or of distance and angles.

Here, we will investigate two-dimensional lattice sums, and will show the interest of com
ing knowledge of sums related to the Helmholtz equation with sums related to the La
equation. The former type of sum is naturally linked with the Bloch Theorem, and ph
modulated sums, and depends on both a wavenumber and wavevector. We will show tha
extra parameters enable one to deduce interesting connections between lattice sums
Laplace equation. These take the form of connections between sums over the direct and re
lattices, and are particularly interesting when the two coincide, for example for the square l
These connections have been remarked before, for example, by Hardy and Titchmars3 and
Kober,4 but these early investigations were hampered by lack of access to numerical and sy
algebra tools.

We commence by showing that a sum over Bessel functions of the first kind over a lat
equivalent to a sum of delta functions over the reciprocal lattice. This relation can be integ
over wavenumber to give a convenient form of the Poisson summation formula connecting
over the direct lattice with sums over the reciprocal lattice. After three simple examples o
formula, we move to the consideration of complex powers of distance in the plane. This is
topic, connected with, but not restricted to, the Epstein zeta function. Potter and Titchmarsh5 have
speculated that the complex zeros of certain Epstein functions obey the Riemann hypothesis
others do not. We provide an example of a lattice sum already studied by Kober,4 which may be
represented as the sum of two terms, with the original term and one of its components see
obeying the Riemann hypothesis, while the second component does not. We also provide a
tion formula for angular lattice sums, and a Macdonald function sum for the lowest order an
lattice sum.

a!Electronic address: ross@physics.usyd.edu.au
25600022-2488/2004/45(7)/2560/19/$22.00 © 2004 American Institute of Physics
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The main results of this paper are, firstly, a concise formula linking a general class of
over a direct lattice with related sums over its reciprocal lattice~Sec. III!. Second, we illustrate the
utility of considering lattice sums incorporating a phase modulation term characterized by a
factor in establishing links between unmodulated lattice sums~Secs. IV–VI!. Third, we identify
functions other than the zeta function which seem to obey the Riemann hypothesis~Secs. IV, VI,
and the Appendix!. In particular, we exhibit an example of two different functions which see
ingly obey the hypothesis, while their difference does not. We also give numerical evid
bearing on the Lindelo¨f hypothesis for these functions.

II. THE BASIC DISTRIBUTIVE SUM

Lattice sumsSl(k,k0) are defined by

Sl~k,k0!5 (
pÞ0

Hl
(1)~kRp!eil wpeik0•Rp

5 (
pÞ0

Jl~kRp!eil wpeik0•Rp1 i (
pÞ0

Yl~kRp!eil wpeik0•Rp

5
def

Sl
J~k,k0!1 iSl

Y~k,k0!. ~1!

Herek0 is the Bloch vector,k is a wavenumber andRp is a lattice vector, written in polar form
(Rp ,wp). Note thatk will be regarded as an extra parameter over which we can integrate to d
the formula in Sec. III linking sums over the direct lattice with sums over the reciprocal la
This will leave the Bloch vector as an essential tool in derivation of later results. In what foll
we assume the lattice to be square with lattice constantd, although our methods are applicable
other lattices.

We evaluate the sumsSl
J(k,k0) as follows. First we have the Poisson summation formula

(
p

e2 iRp•s5S 2p

d D 2

(
h

d~s2Kh!,

whereKh , hPZ2, are the reciprocal lattice vectors. Hence withs5k2k0 we have

11 (
pÞ0

e2 i (k2k0)•Rp5S 2p

d D 2

(
h

d~k2k02Kh!. ~2!

Next we substitute the Bessel function expansion

e2 iRp•k5 (
l 52`

`

~2 i ! lJl~kRp!eil (wp2u)

into Eq. ~2!, whereu5argk, to get

11 (
l 52`

`

~2 i ! le2 i l u (
pÞ0

Jl~kRp!eil wpeik0•Rp5S 2p

d D 2

(
h

d~k2k02Kh!

5S 2p

d D 2

(
h

d~k2Qh!d~u2uh!

k
, ~3!

where

Qh5uk01Khu, uh5argQh . ~4!
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Multiplying both sides of Eq.~3! by einu and integrating from 0 to 2p yields

dn,01~2 i ! lSl
J~k,k0!dn,l5

2p

kd2 (
h

d~k2Qh!einuh, ~5!

so that

Sl
J~k,k0!52d l ,01

2p i l

kd2 (
h

d~k2Qh!eil uh. ~6!

For theSl
Y(k,k0) terms, we use a Green’s functionG(r ,r 8;v,k0) which satisfies the inhomo

geneous equation

¹2G1k2G5(
p

d~r2r s2Rp!, ~7!

from which we can derive~following Chin, Nicorovici, and McPhedran6!

SlJl~kj!52H0
(1)~kj!d l ,02

4i l 11

d2 (
h

Jl~Qhj!

Qh
22k2 eil uh

52H0
(1)~kj!d l ,02

4i l 11

d2 (
h

Jl~Qhj!

2Qh
S 1

Qh1k
1

1

Qh2kDeil uh, ~8!

wherej5ur2r 8u. Using the Plemelj formula

1

x2 i0
5 ipd~x!1PS 1

xD , ~9!

we rewrite this equation as

SlJl~kj!52J0~kj!d l ,02 iY0~kj!d l ,0

2
4i l 11

d2 (
h

Jl~Qhj!

2Qh
S 1

Qh1k
1 ipd~k2Qh!1P 1

Qh2kDeil uh. ~10!

Comparing Eqs.~10! and ~6!, we find

Sl
YJl~kj!52Y0~kj!d l ,02

4i l

d2 (
h

Jl~Qhj!

2Qh
S 1

Qh1k
1P 1

Qh2kDeil uh. ~11!

The interpretation of Eqs.~6! and ~11! is that theSl
J are distributive lattice sums, with thei

distributive nature being concentrated around light lines, which are the trajectoriesQh5k in the
Brillouin zone. TheSl

Y are singular at light lines, exhibiting first order poles at each.
It is an elementary consequence of their definition~1! that theSl

J all integrate to zero acros
the Brillouin zone. Hence,

1

ABZ
E

BZ
(

h
d~k2Qh!eil uhd2k05

kd2

2p
d l ,0 . ~12!

The only nonzero value of the right-hand side occurs forl 50, and is the density of states in fre
space subject to a period cell which is a square with sided. Hence, we see thatS0

J is associated
with the free-space spectral density of states for the lattice.
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III. A GENERAL EXPRESSION FOR LATTICE SUMS

We start with Eq.~6!, which we multiply by a real or complex function of wavenumberf (k):

(
pÞ0

f ~k!Jl~kRp!eil wpeik0•Rp52 f ~k!d l ,01
2p i l

d2 (
h

f ~Qh!

Qh
d~k2Qh!eil uh. ~13!

Integrating this expression overk,

(
pÞ0

F E
0

`

f ~k!Jl~kRp!dkGeil wpeik0•Rp52F E
0

`

f ~k!dkGd l ,01
2p i l

d2 (
h

f ~Qh!

Qh
eil uh, ~14!

and changing the variable in the first integration, yields

(
pÞ0

F E
0

` 1

Rp
f S x

Rp
D Jl~x!dxGeil wpeik0•Rp52F E

0

`

f ~k!dkGd l ,01
2p i l

d2 (
h

f ~Qh!

Qh
eil uh. ~15!

The companion result to~12! is then

1

ABZ
E

BZ
(

h

f ~Qh!

Qh
eil uhd2k05

d2

2p
d l ,0F E

0

`

f ~k!dkG . ~16!

To apply Eqs.~14! or ~15!, we need choices of the functionf for which, ideally, the two
integrals are evaluable in closed form, and, certainly, for which they converge~in the normal
sense, or in the sense of generalized functions!. One convenient list of integrals is given in Cha
11 of Abramowitz and Stegun.7 As a first example, with

f ~k!5kl 11e2a2k2
, ~17!

from Eq. ~11.4.29!7 whereRe(a2).0, we obtain

(
pÞ0

Rp
l e2Rp

2/(4a2)eil wpeik0•Rp52d l ,01
2l 12a2p i l

d2 (
h

~a2Qh! le2a2Qh
2
eil uh. ~18!

This is analogous to the theta function transformation,8 but is more general. It contains the ext
distance and angle terms forlÞ0, and a phase modulation present through the Bloch fa
exp(ik0•Rp) on the left-hand side. The occurrence ofk0 on the right-hand side is implicit via the
definition of Qh in Eq. ~4!. The form of~18! for l 50 is

(
pÞ0

e2Rp
2/(4a2)eik0•Rp5211

4a2p

d2 (
h

e2a2Qh
2
eil uh. ~19!

Figure 1 shows the real and imaginary parts of the right-hand side of this relation for a part
value ofa. Note the sign reversal around the edge of the Brillouin zone, and the fourfold
metry of the function consequent on the choice of the square array for study. Note also tha
often the case with sums connected by the Poisson summation formula, the left-hand side
~18! converges rapidly whenRe(1/a2) is large and positive, whereas its right-hand side conver
rapidly whenRe(a2) is large and positive. Since both series have a common region of co
gence, we were able to test Eqs.~18! and ~19! numerically in particular cases.

As a second example, we use Eq.~11.4.44!,7 putting

f ~k!5
kl 11

~k21z2!m11 , ~20!
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whereRe(z).0, l ,2Re(m)13/2, and find

(
pÞ0

Rp
mzl 2m

2mG~m11!
Kl 2m~Rpz!eil wpeik0•Rp52

d l ,0

2mz2m 1
2p i l

d2 (
h

Qh
l eil uh

~Qh
21z2!m11 . ~21!

An example of the behavior of this sum is given in Fig. 2, for integerm. For nonintegerm ~real or
complex!, both sides of Eq.~21! exhibit branch-cut behavior. Note that the rapidity of the co
vergence of the left-hand side of Eq.~21! is governed by the magnitude ofRe(z), while that of the
right-hand side is governed byRe(2m)122 l . The nonzero value ofl is reflected in the angula
dependence in Fig. 2, which of course is different for real and imaginary parts.

As a third example, we choosef (k)5Jl 21(kd) which leads to the discontinuous integral@Eq.
~11.4.42!7#:

E
0

`

Jl 21~kd!Jl~kRp!dk5H dl 21

Rp
l if Rp.d,

1

2d
if Rp5d,

~22!

for l .0. Hence,

dl (
RpÞ0

eil wpeik0•Rp

Rp
l 5s l~k0!5

dl

2 (
Rp5d

eil wpeik0•Rp

Rp
l 1

2p i l

d (
h

Jl 21~Qhd!eil uh

Qh
. ~23!

FIG. 1. Real part~left! and imaginary part~right! of Eq. ~19! as a function ofk0xd andk0yd, for a50.510.3i .

FIG. 2. Real part~left! and imaginary part~right! of Eq. ~21! as a function ofk0xd and k0yd, for l 52, m55, z52.18
10.82i , d51.
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Here, the sumss l(k0) ~written here in nondimensional form! have been considered previously b
McPhedran and Nicorovici,9 who provide the following alternative expression for them:

s l~k0!5~2p i ! l H 1

~2l !!! F l

p
k l 222k l G1 (

m>1

`

Sl 24m,4m,l~k!e24imu0J eil u0. ~24!

Here,k5k0d/2p and

Sl ,4m,n~j!5
1

dn (
KhÞ0

Jl~Khj!

Kh
n ei4mch. ~25!

McPhedran and Nicorovici9 provide graphs ofs1 ,...,s6 across the first Brillouin zone. Note tha
from ~24!, s1 has a first-order singularity ask0→0.

IV. POWERS OF RADIAL DISTANCE

We now consider the applications of Eqs.~14! and ~16! to complex powerss of the radial
distance. The analysis is more difficult than in Sec. III, principally because of the occurrence
undefined integral which arises in a straightforward application of~14!. We will use raising and
lowering operators to remove this difficulty.

We rely on results obtained using the methods of the theory of distributions from Chap
Jones,10 and in particular

E
2`

`

r be2 i a•xdx52pE
0

`

r b11J0~ar !dr5
~ 1

2 b!!2b12p

~2 1
2 b21!!ab12

, ~26!

valid whenbÞ2m andbÞ2222m (m50,1,2,...). Hence, ifsÞ2m21 or 2122m,

E
0

`

r sJ0~ar !dr5
G~ 1

2 1 1
2 s!2s

G~ 1
2 2 1

2 s!a11s
. ~27!

By differentiation under the integral sign in~27!, and use of Bessel function recurrence relatio
we obtain Weber’s integral:

E
0

`

r sJl~ar !dr5

GS 11 l 1s

2 D2s

GS 11 l 2s

2 Da11s

, ~28!

provided 11 l 6s is not a negative even integer.
Hence, if we put

f ~k!5ks ~29!

in Eq. ~14!, we obtain for nonzerol ,

2sGS l 111s

2 D (
pÞ0

eik0•Rpeil wp

Rp
11s 5

2p i l

d2 GS l 112s

2 D S eil u0

k0
12s 1 (

hÞ0

eil uh

Qh
12sD . ~30!

For l 50, we can write the result formally:

2sGS 11s

2 D (
pÞ0

eik0•Rp

Rp
11s 5GS 12s

2 D E
0

`

ksdk1
2p

d2 GS 12s

2 D S 1

k0
12s 1 (

hÞ0

1

Qh
12sD , ~31!
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but the expression~31! is nugatory because of the presence of the first integral on the right-
side. Hence, we approach the casel 50 by a different argument.

A. Definition of phased lattice sums

Let us extend the definition of~23! to nonintegral powers of the distance

s11s
m ~k0!5d11s(

pÞ0

exp~ imwp!

Rp
11s eik0•Rp. ~32!

Here, the lattice sum subscript 11s is taken to be real or complex, while the superscriptm must
be integral, if the angular factor exp(imwp) is to be continuous atwp52p. Note that the Bloch
sumss11s

m (k0) are absolutely convergent ifRe(s).1, conditionally convergent ifRe(s)51, and
divergent otherwise. We seek their analytic continuations across the whole complex planes,
and knowledge of their poles and zeros. Further, note that in the region of absolute conver
s11s

m (k0) is zero for the square array unlessm is a multiple of four. Also, the sums for positiv
and negativem are equivalent. In what follows, we will use the compact notations11s

(m) for
s11s

m (0).
We expand the phase factor in~32! in terms of its Bessel function series, and obtain

s11s
m ~k0!5 i meimu0d11s(

n
(
pÞ0

Jm14n~k0Rp!e4inwp

Rp
11s . ~33!

We re-express~33! in terms of the dimensionless lattice sums studied by Nicoroviciet al.:11

s11s
m ~k0!5 i m~2p!11seimu0(

n
Sm14n,4n,11s~k!e4inu0, ~34!

wherek5k0d/(2p) and

Sm14n,4n,11s~k!5 (
hÞ0

Jm14n~kKhd!e4inch

~Khd!11s ~35!

is expressed as a reciprocal lattice sum.
The treatment of the sumsS in Ref. 11 separates the sums withn50 from those withn

Þ0. In the first case, the Weber–Schafheitlin integral7 is used in connection with the Poisso
summation formula to give

Sm,0,11s~k!5ks21
22(s11)G~~m2s11!/2!

pG~~m1s11!/2!
1 (

pÞ0

dm2s11kmG~~m2s11!/2!

2s11pRp
m2s11G~m11!G~~s112m!/2!

32F1S m2s11

2
,
m2s11

2
;m11;

k2d2

Rp
2 D . ~36!

Expanding the hypergeometric function, we obtain

Sm,0,11s~k!5ks21
22(s11)G~~m2s11!/2!

pG~~m1s11!/2!
1

km sinp~s112m!/2

p22s11

3(
l 50

`
@G~~m2s11!/21 l !#2

~m1 l !! l !
k2ls2l 1m112s

(0) . ~37!

The conditions required in the manipulations leading to~37! were Re(m2s21).0, Re(s)
.21/2 andk,1. As far as the last is concerned,k does not exceed 1/& in the Brillouin zone. As
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far as the first two are concerned, we shall see that the right-hand side of the expressio~37!
provides an analytic continuation of the left-hand side for all integral values ofm and complex
values ofs.

The sumss2l 1m112s
(0) were evaluated analytically by Hardy,12–14 in a form valid throughout

the complex plane

s11s
(0) 5d11s(

pÞ0

1

Rp
11s 54zS 11s

2 DbS 11s

2 D . ~38!

Here,z(s) is the Riemann zeta function@Eq. ~23.2.1! in Ref. 7#, while

b~s!5 (
n50

`

~21!n~2n11!2s522sF~21,s,1/2!5
1

4s S zS s,
1

4D2zS s,
3

4D D ~39!

is the Catalan beta function@Eq. ~23.2.21! in Ref. 7#, which may be defined in terms of the Lerc
phi function and the Hurwitz zeta function, respectively. We will need the following reflec
formula13

p2(11s)/2zS 11s

2 DbS 11s

2 DGS 11s

2 D5p2(12s)/2zS 12s

2 DbS 12s

2 DGS 12s

2 D . ~40!

We consider next the sumsS with nÞ0. The treatment from Ref. 11 again uses the Web
Schafheitlin integral, and gives~if sÞ l 21)

Sl ,4m,s11~k!5
1

2s11pG~12w14m!G~w24m! (
q50

`
G~w1q!G~w24m1q!

q! ~q1 l !!
s2q1 l 2s11

(4m) k2q1 l ,

~41!

wherew52m1( l 112s)/2.
We now return to~34!:

s11s
0 ~k0!5~2p!11sFS0,0,11s~k!12(

n51

`

S4n,4n,11s~k!cos~4nu0!G . ~42!

Using ~37! and ~41!, this gives

s11s
0 ~k0!5~2p!11sH ks21G~~12s!/2!

p2s11G~~11s!/2!
1

sinp~s11!/2

p22s11 (
l 50

` FG~~2l 112s!/2!

l ! G2

k2ls2l 112s
(0)

12(
n51

`
cos 4nu0

2s11pG~~12s!/2!G~~11s!/2!

3 (
q50

`
G~4n1q1~12s!/2!G~q1~12s!/2!

q! ~q14n!!
s2q14n2s11

(4n) k2q14nJ . ~43!

The term inks21 in fact cancels the second term on the right-hand side of~31!. This suggests the
identification
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2p

d2

GS 12s

2 D
2sGS 11s

2 D (
hÞ0

1

Qh
12s 5S 2p

d D 11sH sinp~s11!/2

p22s11 (
l 50

` FG~~2l 112s!/2!

l ! G2

k2ls2l 112s
(0)

12(
n51

`
cos 4nu0

2s11pG~~12s!/2!G~~11s!/2!

3 (
q50

`
G~4n1q1~12s!/2!G~q1~12s!/2!

q! ~q14n!!
s2q14n2s11

(4n) k2q14nJ .

~44!

Let us define a nondimensional lattice sum over the reciprocal lattice by analogy with~32!:

r12s
0 ~k0!5S 2p

d D 12s

(
hÞ0

1

Qh
12s . ~45!

Then, from~44!,

r12s
0 ~k0!5s12s

(0) 1(
l 51

` FG~~2l 112s!/2!

l !G~~12s!/2! G2

k2ls2l 112s
(0) 12(

n51

`
cos 4nu0

~G~~12s!/2!!2

3 (
q50

`
G~4n1q1~12s!/2!G~q1~12s!/2!

q! ~q14n!!
s2q14n2s11

(4n) k2q14n. ~46!

If we examine the various terms in~46!, we see that the part independent ofu0 is defined for all
complex values ofs, while in the part dependent onu0 convergence is limited by the terms52s

(4)

to the regionRe(s),3.
Note that Eq.~46! can be obtained directly from the definition~45!. The inverse power of the

distance is expanded via the expression~22.9.3! from Abramowitz and Stegun,7 while the ultras-
pherical functions occurring in the expansion are expressed using~22.3.12!.

B. Raising and lowering operators

We can transform the angular and radial variations in these sums using the following r
and lowering operators:

R5
2 i

d S ]

]k0x
1 i

]

]k0y
D5

2 i

2p
eiu0S ]

]k
1

i

k

]

]u0
D ~47!

and

L5
2 i

d S ]

]k0x
2 i

]

]k0y
D5

2 i

2p
e2 iu0S ]

]k
2

i

k

]

]u0
D . ~48!

Then, by direct differentiation, we find

Ls11s
m ~k0!5ss

m21~k0!, Rs11s
m ~k0!5ss

m11~k0!. ~49!

Again by direct differentiation,

Lr12s
m ~k0!5

~m2s21!

2p i
r22s

m21~k0!, Rr12s
m ~k0!5

2~m112s!

2p i
r22s

m11~k0!. ~50!
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Let us rewrite Eq.~30!:

2sG~~ l 111s!/2!s11s
l ~k0!5~2p!si lG~~ l 112s!/2!@eil u0ks211r12s

l ~k0!#. ~51!

Then, we can verify using~49! and ~50! that L transformsl in this equation tol 21 ands to s
21. If we applyL to ~51! with l 51, we obtain

G~~11s!/2!s11s
0 ~k0!5psG~~12s!/2!@ks211r12s

0 ~k0!#. ~52!

This is Eq.~31!, with the nugatory integral replaced by zero.
Hence, ifRe(s).1, we have in the limit ask→0 in ~52!:

G~~11s!/2!s11s
0 ~0!54G~~11s!/2!b~~11s!/2!z~~11s!/2!

5psG~~12s!/2!r12s
0 ~0!

54psG~~12s!/2!b~~12s!/2!z~~12s!/2!. ~53!

The equality of the left- and right-hand sides of~53! is guaranteed by the reflection formula~40!.
If Re(s),1, we know from~46! that r12s

0 (k0) continues to behave continuously at the center
the Brillouin zone, whiles11s

0 (k0) develops a singularity there.
We give an example of the behavior ofs11s

0 across the Brillouin zone in Fig. 3. The value
s chosen permits rapid direct evaluation of the sum using the definition~32!. We can also use~46!
and~52!, with the two methods agreeing to the accuracy of the determination of the lattice
s2q14n2s11

(4n) . For the latter, we need to use the Macdonald function series for the sums wn
51 derived in the Appendix. We note in Fig. 3 that the real and imaginary parts ofs11s

0 are
fourfold symmetric, and their normal derivatives are zero both at the edges of the Brillouin
and on the linesk0x50 andk0y50.

From the definition ofs11s
m (k0), we see that

E
BZ

s11s
m ~k0!d2k050. ~54!

Using the Laplacian operator with respect tok0 , we note that

¹2s11s
m ~k0!52d2ss21

m ~k0!. ~55!

Using this, we see that the property~54! is guaranteed if the normal derivative vanishes at the e
of the Brillouin zone:

FIG. 3. Real part~left! and imaginary part~right! of s11s
0 (k0x ,k0y), for s54.12815.073i .
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E
BZ

s11s
m ~k0!d2k05

1

d2 E
BZ

¹2s31s
m ~k0!d2k05

1

d2 E
BBZ

]s31s
m ~k0!

]n
dl, ~56!

with the last integral running over the boundary of the Brillouin zone, of whichdl denotes an
element of length, and the partial derivative is taken along the outward normal to the boun

We can deduce an interesting relation from~51!, if we assumeRe(s).1 and letk→0:

GS 4l 111s

2 Ds11s
4l ~0!5psGS 4l 112s

2 D r12s
4l ~0!. ~57!

This suggests the following reflection formula:

1

p (4l 111s)/2 GS 4l 111s

2 Ds11s
(4l ) 5

1

p (4l 112s)/2 GS 4l 112s

2 Ds12s
(4l ) , ~58!

so that, if we define the function

G4l S s

2D5
1

p (4l 111s)/2 GS 4l 111s

2 Ds11s
(4l ) , ~59!

thenG4l is even ins. In the Appendix we comment on verifications of this formula for the c
l 51.

V. LATTICE SUM IDENTITIES

We commence with~32!. We evaluate the partial derivative of this with respect tok0x , set
k0x5p/d, and putRp5(Xp ,Yp). The result is, for a sum of even order,

]s11s
2m

]k0x
U

k0x5p/d

5 id11s(
pÞ0

Xpe2imwp

Rp
11s ei (pXp /d1k0yYp). ~60!

We evaluate the contribution to this sum from four points in the lattice at equal distances fro
origin: (Xp ,Yp), (2Xp ,2Yp), (2Xp ,Yp) and (Xp ,2Yp). These collectively give

24Xp i d11s

Rp
11s eipXp /d sin~k0yYp!sin~2mwp!. ~61!

Hence, we arrive at two lattice sum identities:

]s11s
0

]k0x
U

k0x5p/d

50 ~62!

and

]

]k0x
@s11s

2m 1s11s
22m#U

k0x5p/d

50. ~63!

These identities hold for all values ofk0y ranging from2p/d to p/d.
We will concentrate here on~62!. We note that this guarantees that the integral ofs11s

0 over
the Brillouin zone is zero@see~55! and ~56!#. Using ~46! and ~52!, ~62! becomes
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~s21!

2
ks231(

l 51

`

l FG~~2l 112s!/2!

l !G~~12s!/2! G2

k2l 22s2l 112s
(0)

12(
n51

`

(
q50

`
G~~8n12q112s!/2!G~~2q112s!/2!q

q! ~q14n!! @G~~12s!/2!#2 s2q14n112s
(4n) k2q14n22 cos~4nu0!

18(
n51

`

(
q50

`
G~~8n12q112s!/2!G~~2q112s!/2!n

q! ~q14n!! @G~~12s!/2!#2 s2q14n112s
(4n) k2q14n21

3cos~~4n21!u0!50. ~64!

This identity is to be applied for

k25~ 1
4 1ky

2!, k cosu05 1
2 , kyP@2 1

2 , 1
2#. ~65!

The sums in~64! are of hypergeometric form and converge absolutely providedk,1, where
of course the largest value ofk encountered in the Brillouin zone is 1/&. However, the sums do
converge more slowly and become increasingly badly conditioned numerically asusu increases,
due to the gamma function ratios in them. If we putky50 in ~64!, we obtain

s12s
(0) 5

G~~212s!/2!

2s21G~~12s!/2!
2(

l 52

` S G~~2l 2s21!/2!

G~~12s!/2! D 2 s2l 212s
(0)

l ! ~ l 21!!22l 22

2 (
n51

`

(
q50

`
G~~8n12q212s!/2!G~~2q212s!/2!

~G~~12s!/2!!2q! ~q14n!!22q14n22 ~2q14n!s2q14n212s
(4n) . ~66!

This equation is also obtainable from the symmetry property thats11s
1 is zero forkx51/2 and

ky50.
The convergence of the series on the right-hand side of~66! may be accelerated somewhat b

re-expressing nearest neighbor terms in their original form. Let us define

s̃2q14n112s
(4n) 5s2q14n112s

(4n) 2d2q14n112s (
pPN

e4inwp

Rp
2q14n112s , ~67!

whereN denotes a set of nearest neighbors of the origin. For 2q14n large, the sumss̃2q14n112s
(4n)

can be evaluated by direct summation:

s̃2q14n112s
(4n) 5d2q14n112s (

pPN̄

e4inwp

Rp
2q14n112s , ~68!

whereN̄ denotes the complement ofN in the lattice. Then~66! can be rewritten

s̃12s
(0) 5

21

~s11!2s22 2(
l 52

`

l S G~~2l 2s21!/2!

l !G~~12s!/2! D 2 s̃2l 212s
(0)

22l 22

2 (
n51

`

(
q50

`
G~~8n12q212s!/2!G~~2q212s!/2!

~G~~12s!/2!!2q! ~q14n!!22q14n22 ~2q14n!s̃2q14n212s
(4n)

2
4

s11 (
hPNN

hx11/2

@~hx11/2!21hy
2# (12s)/2 . ~69!

Numerical studies has shown that~69! is numerically better-conditioned than~66!. However, both
become less and less useful asIm(s) increases in the region whereRe(s) is close to zero, with the
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summations generating larger and larger initial terms which have to be cancelled by later
Thus, it seems that the lattice sum identities described here have more analytic than n
interest.

VI. PROPERTIES OF THE SUM s „0…

We start with the expansion~A3! from the Appendix, which we consider for the square ar
(d15d2), and write in symmetric form:

G0~s!5 f 1~s!18 (
p1 ,p251

` S p2

p1
D s

Ks~2pp1p2!5
def

f 1~s!1 f 2~s!, ~70!

where

f 1~s!52z~2s11!
G~s11/2!

ps11/2 12z~2s!
G~s!

ps . ~71!

Equation~70! links three analytic functions, all of which are even functions ofs, are real on
Re(s)50 and also real onIm(s)50. Note thatG0(s) hass561/2 as its only poles, and thes
have residue61 respectively. The same property applies tof 1(s), while f 2(s) is regular in the
finite part of the plane. Our purpose here is to provide numerical and analytical data on the
of these three functions, and on the distribution of their zeros.

A. Lindelö f analysis

We start with the order ofz(s) andb(s). Writing the argument of each in the standard fo
s5s1 i t , we wish to know their behavior ast→`, as a function ofs. We write

z~s1 i t !5O~ tm(s)!, b~s1 i t !5O~ tn(s)!, ~72!

where we are interested in the smallest valuesm andn for which the order assignments are vali
As discussed by Titchmarsh,15 Lindelöf’s hypothesis is that

m~s!5H 1
2 2s for s< 1

2 ,

0 for s. 1
2 ,

~73!

wherem~s! is continuous, nonincreasing, convex downwards and never negative. Glasser13 has
provided order estimates forb(s).

Our procedure will be numerical, and so we are in a position to investigate somewhat st
statements than the order of each function—i.e., typically we will seek both powers and c
cients of the leading term. Our first investigation will be into the asymptotics of locally smoo
functions, to establish statements which we will denote

uz~s1 i t !u;̄Czt
m(s), ub~s1 i t !u;̄Cbtn(s), ~74!

using the bar over the asymptotic sign to denote a leading term on average.
To investigate numerically the order of the smoothed functionsz(s1 i t ) andb(s1 i t ), we

plot the logarithm of the absolute value of the function in question, as a function oft, divided by
tp, for a test powerp. To smooth the plot somewhat, we average the result over a signifi
number of neighboring points. The value ofp is chosen to deliver as flat a plot as possible, a
thenC is obtained using a growing average over all the points on the first graph. This proc
is illustrated in Fig. 4, fors50.3. The results are in keeping with Lindelo¨f’s hypothesis, and
furthermore indicate that the exponents forz andb are equal to computational accuracy.
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Table I shows the numerical estimates for the coefficientsC, for s<0.5. Above this limit, the
coefficients are unity to computational accuracy. The coefficients in fact bear a constan
~around 58.7!, to the accuracy of their determination. We thus have the augmented Lin¨f
hypothesis:

m~s!5n~s!5H 1
2 2s for s< 1

2 ,

0 for s. 1
2 .

~75!

Note that the truth of the Riemann hypothesis implies that of the Lindelo¨f hypothesis, but not the
contrary.15

AssumingCz51 andCb51 for s>1/2, we can use the reflection formulas for these fu
tions to arrive at

Cb5S 2

p D 1/22s

, Cz5S 1

p D 1/22s

, s<1/2. ~76!

This result is illustrated in Table I, where the difference between numerical results and th
mulas~76! evidently illustrates the accuracy of the former.

Our second numerical procedure is to find the minimum value of the modulus of a fun
such as log(uz(1/21d1 i t )u/tm), for t ranging overN equally spaced values betweenn21/2 and
n11/2. This minimum value is plotted as a function ofn, and the exponentm chosen to yield as
flat a graph as possible, for a range of values ofd. The exponent values resulting for bothz andb
are again found to be equal, and in accord with~75!.

If we considerG0(s), using~75! and ~76!, we have

FIG. 4. Averages of the sequenceS5$S(t) u t51,...,4800%, whereS(t)5 log(ub(0.31 i t )u)/t0.20. Left: the moving average
^S&n(t)5(S(t)1S(t11)1¯1S(t1n))/n, with n5800. Right: the averages of the sequencesSk5$S(t) u t51,...,k% for
k51,...,4000. Its values near the end of the sample give the value (20.090) reported in Table I.

TABLE I. The coefficients of the leading terms inz andb.

s log Cz ~76! log Cb ~76!

23.0 26.431 26.433 21.579 21.581
22.0 24.594 24.595 21.128 21.129
21.0 22.760 22.756 20.677 20.677

0.0 20.920 20.919 20.226 20.226
0.1 20.737 20.735 20.181 20.181
0.2 20.553 20.551 20.135 20.135
0.3 20.370 20.368 20.090 20.090
0.4 20.186 20.184 20.043 20.045
0.5 ,0.005 0 ,0.015 0
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uG0~s1 i t !u;̄4UG~1/21s1 i t !

p1/21s1 i t U;̄4&S t

p D s

e2pt/2, ~77!

for s.0 andt.0. SinceG0(s) is even,~77! holds for with usu replacings.

B. Distributions of zeros

We next consider the distributions of zeros ofG0 , f 1 , and f 2 . We have numerically deter
mined the zeros up to modulus of the argument around 60 using an algorithm based
argument principle.16 We have found that the zeros ofG0 and f 1 both lie on the lineRe(s)50,
while those off 2 are mixed, with some lying on the critical line and others not. The imagin
parts of the roots found are shown in Fig. 5, while the roots off 2 are shown in Fig. 6. Note tha
about half the roots off 2 shown lie onRe(s)50. The roots ofG0(s) are associated with those o
b(s11/2) andz(s11/2), with the former having around twice the density of roots of the latte
is to be noted that the zeros off 1(s) occur for points where the arguments of the two z
functions do not haveRe(s)51/2. At these points, if we write

f 1~s!5 f 1
1~s!1 f 1

2~s!, f 1
1~s!52z~112s!

G~1/21s!

p1/21s ,

f 1
2~s!52z~122s!

G~1/22s!

p1/22s , ~78!

then we find the roots exhibited have the property that

Re~ f 1
1!505Re~ f 1

2!, Im~ f 1
1!52Im~ f 1

2!. ~79!

Given that the functionf 2(s) has zeros off the critical line, it is interesting to compare
order of this function with that ofG0(s). Using the same method as described in the previ
sub-section, we have verified that the functionf 2(s1 i t )exp(pt/2) scales asts for large and
positive s. In Fig. 7 we compare the asymptotic order for the two functionsG0(s

FIG. 5. Imaginary parts of the roots ofG(s), f 1(s) and f 2(s). For the first two, all roots haveRe(s)50, while for the third
function, those with this property are indicated by dashed lines, and those off the line by solid lines. Note that the r
the critical line come in pairs, with equal imaginary parts and opposite real parts.
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1it)exp(pt/2)/ts or 4&/ps, from ~77!, and f 2(s1 i t )exp(pt/2)/ts. Note the change in the be
havior of f 2 at s51, in contrast with the smoothly varyingG0 . We can conclude thatf 2(s) does
not behave asymptotically in the same way asG0(s), and thus that the presence of zeros of t
former off the critical line is not in contradiction with the Lindelo¨f hypothesis.

VII. CONCLUSIONS

We have exhibited here some analytic properties of lattice sums in two dimensions, co
trating on results for the square lattice. The properties we have exhibited are interestin
indicate that there is much yet to be understood about these sums. Their link with the Rie
hypothesis is one topic which merits further exploration. We have seen that the Catala
function shares many of the properties of the Riemann zeta function, and is connected t
Hardy’s formula for radial lattice sums over the square lattice. This suggests the explorat

FIG. 6. Distribution of the lowest roots off 2(s) for Re(s)P@2p/2,p/2# ~the limits of this interval are shown by the
lateral vertical lines. The roots on the imaginary axis are marked by dots.

FIG. 7. Continuous line:uG0(s1 i t )u;4&/ps—see~77!. Line with points: the asymptotic estimate for the limit o
f 2(s1 i t )exp(pt/2)/ts for large t, as a function ofs.
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radial lattice sums for other arrays, and of angular lattice sums, in the light of the properti
have shown fors11s

(4) . This may result in the identification of other analytic functions shar
essential characteristics with the zeta function.

We might call such functions ‘‘complementary zeta functions.’’ Characteristics require
them would be the existence of a reflection formula, reduction to a form even about the c
line, and numerical evidence for the confinement of zeros to the critical line. Evidence we
presented for the square array shows thatG0(s) andG4(s) may well belong to this family, and we
conjecture that, for generalm, G4m(s) will also belong to it. Of course, it will be interesting t
investigate other two-dimensional lattices to see whether similar functions occur for them.
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APPENDIX: RECTANGULAR AND ANGULAR ARRAY SUMS

We now consider sums over inverse powers of the distance from the origin for the recta
array, with periodsd1 and d2 along thex and y axes, respectively. The result will be a rapid
convergent Macdonald function series of the type derived by Kober.4 Given the series, by succes
sive differentiation with respect to the periodsd1 and d2 , one can obtain Macdonald functio
series for angular lattice sums. We illustrate the procedure by deriving the series fors11s

(4) .
We consider the nondimensionalized sum:

s11s
(0) 5~d1d2!(11s)/2(

pÞ0

1

~p1
2d1

21p2
2d2

2!(11s)/2 . ~A1!

The procedure we follow is based on that of Glasser.17 We represent the inverse power of th
distance as a Mellin transform, apply Jacobi’s transformation from the theory of theta func
and separate out the terms from the axesp150 andp250, before using Hobson’s integral

E
0

`

ts21e2pte2q/tdt52S q

pD (s/2)

Ks~2Aqp!. ~A2!

The result is

s11s
(0) ~d1 ,d2!52z~11s!S d1

d2
D (11s)/2

12
G~s/2!

G~~s11!/2!
Apz~s!S d2

d1
D (s21)/2

1
8p (11s)/2

G~~11s!/2! S d1

d2
D 1/2

(
p151

`

(
p251

` S p2

p1
D s/2

Ks/2S 2pd1p1p2

d2
D . ~A3!

Note the apparent asymmetry betweend1 andd2 in this formula arises from the arbitrary choic
as to whether the Jacobi transform applies top1 or to p2 . An alternative and equivalent expressio
arises if d1 ,p1 and d2 ,p2 are interchanged. As a numerical example of~A2!, if we chooses
53.4314.68i , d151.0, d250.73, we can use direct summation of the left-hand side to ob
3.300 8511.380 22i , and either form of the right-hand side to obtain as a rapidly convergent s
the same value. Puttingd15d2 in ~A3!, we obtain Kober’s result.4

The next step is to take the partial derivative of~A3! with respect tod1 . Using the Macdonald
function recurrence relations, this gives
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d1
(11s)/2d2

(11s)/2(
pÞ0

p1
2

~p1
2d1

21p2
2d2

2!(11s)/2

52
G~s/2!

G~~s11!/2!
Apz~s22!S d2

d1
D (s21)/2

1
8p (11s)/2

G~~11s!/2! S d1

d2
D 1/2

(
p151

`

(
p251

` p2
s/2

p1
s/222 Ks/2S 2pd1p1p2

d2
D . ~A4!

For s55.4314.68i , d151.0, d250.73, both the left-hand and right-hand sides of~A4! give the
value 0.432 8820.761 512i . A second relation involvingp2

2 in the numerator rather thanp1
2 fol-

lows by interchangingp1 ,d1 andp2 ,d2 .
We now take the partial derivative of~A3! with respect tod2 . The result is

d1
(11s)/2d2

(11s)/2(
pÞ0

p1
2p2

2

~p1
2d1

21p2
2d2

2!(11s)/2

5
G~s/221!

G~~s11!/2!
Apz~s24!S d2

d1
D (s25)/2

1
4p (s21)/2

G~~11s!/2! S d1
3

d2
3D 1/2

(
p151

`

(
p251

` p2
s/221

p1
s/223

3Ks/221S 2pd1p1p2

d2
D2

8p (s11)/2

G~~11s!/2! S d1
5

d2
5D 1/2

3 (
p151

`

(
p251

` p2
s/2

p1
s/224 Ks/222S 2pd1p1p2

d2
D . ~A5!

For s57.4314.68i , d151.0, d250.73, both the left-hand and right-hand sides of~A4! give the
value20.053 880 120.146 562i .

The final step is to use these relations to evaluate

s11s
(4) 5~d1d2!(11s)/2(

pÞ0

e4iwp

Rp
11s 5~d1d2!(11s)/2(

pÞ0

1

Rp
11s 28~d1d2!(51s)/2(

pÞ0

p1
2p2

2

Rp
51s . ~A6!

For s57.4314.68i , d151.0, d250.73, both the left-hand and right-hand sides of~A6! give the
value 5.986 8714.832 69i . A second check on~A5! is to use it to evaluates4

(4) , for d15d2 . The
value obtained is 3.151 200 2, to be compared with the value obtained by hand~3.151 204! by
Lord Rayleigh,2 using hyperbolic series.

FIG. 8. Left: real part ofs11s
(4) for ~dotted curve! Im(s)50 and~solid curve! Im(s)55. Right: the corresponding imaginar

part for Im(s)55. Dashed lines correspond to the nearest neighbor expansion~A7!.
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Figure 8 shows the behavior ofs11s
(4) , with d15d2 , as a function of the real part of it

argument, for two constant values of the imaginary part. ForIm(s)50, this sum has zeros a
Re(s)525,27,29,..., corresponding to the poles of the factorG((51s)/2) present in the de-
nominator of the second term in~A5!, which coincide with the later poles of the factorG((1
1s)/2) in the first term. Note from Fig. 8 how the value of the sum tends towards the nea
neighbor contribution~4! asRe(s) increases. The first three terms in its nearest-neighbor ex
sion, useful whenRe(s) is sufficiently positive~say greater than 5!, are

s11s
(4) ~d1 ,d1!54S 12

1

2(11s)/21
1

211s 1¯ D . ~A7!

Figure 9 shows the behavior of the logarithm of the absolute value ofs11s
(4) along the critical

line Re(s)50. The first seven zeros of this function are evident. Note that the sum is not re
the critical line. However, numerical investigations have verified that the functionG4(s) of ~59! is
an even function ofs, in keeping with~58!, and is real onRe(s)50. It is also real onIm(s)
50, but has no zeros on this line.

This function plays the same role fors11s
(4) (d1 ,d1) as does the function

G0S s

2D5
s11s

(0) ~d1 ,d1!G~~11s!/2!

p (11s)/2 54
z~~11s!/2!b~~11s!/2!G~~11s!/2!

p (11s)/2 ~A8!

for the radial sums11s
(0) .
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Existence of the Bogoliubov S„g … operator for the „: f4: …2

quantum field theory
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We prove the existence of the BogoliubovS(g) operator for the (:f4:)2 quantum
field theory for coupling functionsg of compact support in space and time. The
construction is nonperturbative and relies on a theorem of Kisyn´ski. It implies
almost automatically the properties of unitarity and causality for disjoint supports
in the time variable. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1753666#

I. INTRODUCTION AND SUMMARY

Recent progress in perturbative quantum field theory for the Stu¨ckelberg–Bogoliubov–
Epstein–GlaserS(g) operator1,2 in non-Abelian gauge theories3 ~see also Ref. 4!, revived interest
in a long-standing problem: is it possible to constructS(g) nonperturbativelyin quantum field
theory? This question is of obvious relevance to theories where the~dimensionless! coupling
constant is large (*1), e.g., strong interactions, for which perturbation theory is not expecte
be asymptotic.

For certain super-renormalizable theories—the (:P(f):)2 theories—there exists, for wea
coupling, a construction of the true~LSZ–Haag–Ruelle! scattering operator, due to Osterwald
and Se´neor5 and Eckmann, Epstein, and Fro¨hlich,6 one of the crowning achievements of constru
tive quantum field theory which started with the pioneering work on the particle structu
weakly coupledP(f)2 model by Glimm, Jaffe, and Spencer.7 The method of proof was, howeve
perturbative: the perturbation series for the scattering operator was shown to be asymptot

In contrast to the true scattering operator,S(g) is, in perturbation theory, the generatin
functional for the time-ordered products of Wick polinomials. However, on the basis of Ref. 8
might expect that, in the present massive case, defining

g«~x![g~«x!, gPS~R2!

the ~adiabatic! limit

SC[ lim
«→0

S~g«!C ~1.1!

exists,; CPD, whereD is a Poincare´-invariant dense set in Fock spaceF. Thus we expect tha
the physicalS-matrix elements are obtainable as

~F,SC![ lim
«→0

~F,S~g«!C!, ~1.2!

a!Electronic mail: wreszins@fma.if.usp.br
b!Electronic mail: lmanzoni@fma.if.usp.br
c!Present address: Department of Mathematics, University of California, Davis, CA 95616-8633; electronic
oscar@math.ucdavis.edu
25790022-2488/2004/45(7)/2579/15/$22.00 © 2004 American Institute of Physics
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with FPF, CPD, whereg(0).0 should be identified with the coupling constant. In Ref. 4
algebraic construction of the adiabatic limit was performed for perturbative QED.

A natural nonperturbative approach to constructS(g) for the (:f4:)2 theory ~and hopefully
for any super-renormalizable QFT! consists in proving the existence of a~unique! solution of the
evolution ~propagator! equation (\51),

i
]U~ t,s!

]t
C5H̃~ t !U~ t,s!C, ~1.3!

with

H̃~ t ![Hg~ t !1M1, ~1.4!

whereM is a constant introduced in order to makeH̃(t) a positive operator~see Sec. II! and

Hg~ t ![H01Vg~ t !. ~1.5!

In ~1.3! U(t,s) is a two-parameter family of unitary operators on~symmetric! Fock spaceF. H0

is the free field Hamiltonian corresponding to a zero-time scalar fieldf(x,0) of massm,9,10 and,
formally, for

gPD~R2!, g>0, ~1.6!

let

Vg~ t !5E dx g~x,t !:f4~x,0!:. ~1.7!

Above, D denotes the Schwartz space of infinitely differentiable functions of compact sup
The operators in~1.3! are expected to satisfy the propagator conditions:

U~ t,s!U~s,r !5U~ t,r !, 2`,r<s<t,`,

U~ t,t !51, ; tPR. ~1.8!

The vectorC is supposed to belong to the domainD(H̃(s)) ~dense inF! such that

U~ t,s!D~H̃~s!!,D~H̃~ t !!. ~1.9!

Above and elsewhere in this paperD(A) denotes the domain of an operatorA.
Under assumptions~1.3! and~1.9!, defining the ‘‘Dirac~or interaction! picture propagator’’ by

UD~ t,s![ei (H01M )tU~ t,s!e2 i (H01M )s, ~1.10!

it follows that

i
]UD~ t,s!

]t
C5Hg

D~ t !UD~ t,s!C, ~1.11!

for CPei (H01M )sD(Hg(s)), which is a dense set inF for everys, where

Hg
D~ t ![eiH 0tVg~ t !e2 iH 0t. ~1.12!

One may then define
                                                                                                                



yn

ef.
con-

ents of

2581J. Math. Phys., Vol. 45, No. 7, July 2004 Existence of the Bogoliubov S(g) operator

                    
S~g![s2 lim
t→1`
s→2`

UD~ t,s!, ~1.13!

if the above limit exists;S(g) is expected to satisfy

(i) S(g)215S(g)* ~unitarity);
(ii) S(g11g2)5S(g1)S(g2) if

( i i .a) suppg1.suppg2 and/or
( i i .b) suppg1;suppg2 ~causality),
where ‘‘; ’’ means ‘‘spacelike to,’’ i.e., (x2y)25(t12t2)22(x12x2)2,0, ; (t1 ,x1)
Psupp g1 and; (t2 ,x2)Psupp g2 ;

(iii) there exists a unitary representationU(a,L) of the Poincare´ group onF—the scalar field
representation of massm—such that

U~a,L!S~g!U~a,L!215S~$a,L%g!,

where

~$a,L%g!~x!5g~L21~x2a!!

~Lorentz covariance!.
The main difficulty to proving~1.3!–~1.9! is that D(Hg(t)) is, for eachgPD(R2), time-

dependent. In Sec. II we state the basic existence theorem we employ, which is due to Kis´ski11

~see also Ref. 12!. In Sec. III we prove our central existence theorem forS(g), as well as
properties (i ) and (i i .a). In Sec. IV we provide a brief summary of the remarkable results of R
11, establishing a concrete link between them and our conditions in Sec. III. We leave the
clusion and open problems to Sec. V. The Appendix summarizes some of the basics elem
the construction of Refs. 11 and 13 for the convenience of the reader.

II. THE BASIC EXISTENCE THEOREM

The Hamiltonian of the (:f4:)2 theory14 is given by~1.5!, where

H05E v~k!a* ~k!a~k!dk, ~2.1!

with

v~k!5~k21m2!1/2, ~2.2!

is the free field Hamiltonian on symmetric Fock spaceF, with

@a~k!,a* ~k8!#5d~k2k8!. ~2.3!

The self-interactionVg is given by~1.7!, with the t50 scalar free field of massm:

f~x!5
1

~4p!1/2E e2 ikx@a* ~k!1a~2k!#v~k!2 1/2dk. ~2.4!

ThusVg may be written14

Vg~ t !5(
j 50

4 S 4
j D E a* ~k1!¯a* ~kj !a~2kj 11!¯a~2k4!g̃S (

i 51

4

ki ,t D)
i 51

4

v~ki !
2 1/2dki ,

~2.5!

where
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g̃~k,t ![E dx eikxg~x,t !. ~2.6!

The number operatorN is defined by

N5E dk a* ~k!a~k!. ~2.7!

By ~Ref. 14 Lemma 2.2!

i~N11!2 j /2 Vg~ t ! ~N11!2 ~42 j !/2i< const iWiL2, u j u<4, ~2.8!

where

W~k,t ![g̃S (
i 51

4

ki ,t D)
i 51

4

v~ki !
2 1/2. ~2.9!

The above-mentioned lemma just uses the Fock space definitions of the creation and anni
operators and the Schwartz inequality. We need two theorems due to Glimm and Jaffe, wh
state as adapted to our case:

Theorem II.1 ~Ref. 14!: ~a! H(t) is self-adjoint on the domain

D~H~ t !!5D~H0!ùD~Vg~ t !!, ~2.10!

where D(Vg(t)) is the domain of the unique self-adjoint closure of Vg(t) on the domain

D05 ù
n50

`

D~H0
n!. ~2.11!

~b! H(t) is essentially self-adjoint on D0 .
Theorem II.2 ~Ref. 10!: For each gPD(R2), there exists0,Mg,` such that

Hg~ t !>2Mg1 ~2.12!

as a bilinear form on D03D0 .
By Theorem II.2 and~b! of Theorem II.1,H(t) is a semi-bounded self-adjoint operator, a

thus defining

M5Mg1c, ~2.13!

for somec.0, then

H̃~ t !5Hg~ t !1M1>c1 ~2.14!

is a positive self-adjoint operator. LetF125D(H0) endowed with the Hilbert space structu
given by

f 12~x,y!5^~H011!x,~H011!y& ~2.15!

and denoteAf 12(x,x) by ixi12 . By the Riesz lemma we may associateF12 and the spaceF22

of continuous conjugate linear functions onF12 . While we considerF isomorphic to its conju-
gate dual spaceF* , the isomorphism being the identity, the isomorphism ofF12 with F22 is
given by the operator (H011)2, because

ivi225sup$u^w,v&u : iwi12<1%.
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Since f 12(x,y)5^x,(H011)2y&, we have

i~H011!2yi225sup$u^w,~H011!2y&u : iwi125A^w,~H011!2w&<1%5i~H011!yi5iyi12 ,

from which we also have, foryPF,

iyi225i~H011!21yi , ~2.16!

which explains the notationF22 . Clearly ixi<ixi12 for xPF12 , and by~2.16!, iyi22>iyi for
yPF. Thus, under the above conditions:

F12,F,F22 . ~2.17!

A bounded operatorB from F12 to F22 is thus such that, for some constantc,

iBci22<cici12 , cPF12 , ~2.18!

or, by ~2.15! and ~2.16!,

i~H011!21Bci<ci~H011!ci , cPF12 , ~2.19!

or

i~H011!21B~H011!21fi<cifi , fPF. ~2.20!

Now, by ~2.14!, we may defineH̃(t)1/2, and, by~2.8! for xPF12 , the closed sesquilinear form

S~x,y!5^H̃~ t !1/2x,H̃~ t !1/2y&, ~2.21!

which is, by the form representation theorem,15 the form of the operatorH̃(t). In Sec. III we show
the explicit connection of~2.21! to the basic theorem of Kisyn´ski,11 which we state in the form of
Theorems II.23 and II.24 of Ref. 12, with slight changes.

In the theorem stated below,F62 have been defined in~2.15!–~2.17!.
Theorem II.3: Let (2.17) hold and H˜ (t) (2T<t<S) be a one-parameter family of strictl

positive [i.e., satisfying (2.14)] self-adjoint operators onF. Suppose that H˜ (t):F12→F22 are
bounded and twice differentiable, with a continuous second derivative, in thei•i22,2-norm (2.18).
Then there exists a two-parameter family U(t,s) of unitary propagators satisfying (1.3), (1.8), an
(1.9).

III. THE CENTRAL EXISTENCE THEOREM

We now use Theorem II.3 in order to prove our main
Theorem III.1: The(:f4:)2 theory, as defined by (1.5), (1.6), (1.7), (2.1), and (2.2), satis

a stronger condition than the hypothesis of Theorem II.3: Hg(•) is infinitely differentiable as an
operator fromF12 to F22 .

In order to prove Theorem III.1 we first show a useful auxiliary result.
Lemma III.1: Let W be defined by (2.9). Then there exists r.1 such that

iW~•,t !i2<const ig~•,t !i r , ~3.1!

where

ig~•,t !i r5S E
2`

1`

dkug̃~k,t !ur D 1/r

. ~3.2!

Proof: We have
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iW~•,t !i2
25E

2`

1`

dk1v~k1!21
•E

2`

1`

dk2v~k2!21
•E

2`

1`

dk3v~k3!21

•E
2`

1`

dk 8ug̃~k 8,t !u2vS k 82(
i 51

3

ki D 21

~3.3!

by the change of variablek85( i 51
3 ki . Introducing further the variablesK1 ,K2 ,K3 such that

K15k11k21k3 ,

K25k11k2 ,

K35k1 ,

so thatk35K12K2 andk25K22K3 , we write ~3.3! as

iW~•,t !i2
25~v21* ~v21* ~v21* ~v21* ug̃u2!!!!~0!, ~3.4!

where the convolution is defined as usual by

~ f * g!~k!5E
2`

1`

dk1f ~k2k1!g~k1!.

Consider, now, the quantity associated to the right-hand side of~3.3!:

I ~q,t ![E
2`

1`

dk1 v~k12q!21
•E

2`

1`

dk2 v~k2!21
•E

2`

1`

dk3 v~k3!21

•E
2`

1`

dk 8 ug̃~k 8,t !u2vS k 82(
i 51

3

ki D 21

. ~3.5!

Since gPD(R) this function is differentiable, hence continuous, inq for any compact subse
containing the origin, which implies thatI (0,t)<i I (•,t)i` ~wherei•i`-norm is with respect to the
q-variable!.

We now apply Young’s inequality16

i f * gi r<Crpqi f ipigiq

with Crpq a constant and

1

p
1

1

q
511

1

r

to ~3.4!, starting withr 5`. Above,

i f ip5S E
2`

1`

dku f ~k!upD 1/p

.

We thus obtain

iW~•,t !i2
2<C2r 1r 2

iv21i r 1
i~v21* ~v21* ~v21* ug̃u2!!!i r 2

with r 1
211r 2

2151, and so on, up to~indicating all the constants resulting from the Young
inequality byC8)
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iW~•,t !i2
2<C8iv21i r 1

iv21i r 3
iv21i r 5

iv21i r 7
iug̃u2i r 8

~3.6!

with r 3
211r 4

21511r 2
21, r 5

211r 6
21511r 4

21, r 7
211r 8

21511r 6
21. We require r i.1, for i

51,3,5,7, so thativ21i r i
,`, the choicer 15r 252, r 35r 45 4

3, r 55r 65 8
7, r 75r 85 16

15 is, for
instance, possible. By~3.6!

iW~•,t !i2
2<Ciug̃u2i r ~3.7!

with

r .1. ~3.8!

Above

i ug̃u2 i r5S E
2`

1`

dkug̃~k,t !u2r D 1/r

. ~3.9!

obtaining finally,~3.7!. h

Proof of III.1: By ~2.8!,

i~N11!21Vg~ t !~N11!21i<constiWiL2 ~3.10!

and, by~2.2!, v(k)>m1; hence

i~H011!21~N11!i<d1 , i~N11!~H011!21i<d2 ,

for constantsd1 andd2 . Hence, by~3.10! and ~3.1!,

i~H011!21Vg~ t !~H011!21i<constig~•,t !i r ~3.11!

with r .1: a fortiori this holds forHg(•) by ~1.5!, hence

i~H011!21Hg~ t !~H011!21i<constig~•,t !i r . ~3.12!

By ~2.20! and Theorem II.3 we only need to prove that the left-hand side of~3.12! is three times
differentiable. We shall prove that

I ~H011!21S Hg~ t1h!2Hg~ t !

h
2Hg8~ t ! D ~H011!21I→0 as h→0, ~3.13!

where

Hg8~ t !5H01Vg8~ t ! ~3.14!

with

Vg8~ t !5E dx:f4~x,0!:g8~x,t ! ~3.15!

and

g8~x,t ![
]g~x,t !

]t
.

We now prove~3.13!. By ~3.12!
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J[ I ~H011!21S Hg~ t1h!2Hg~ t !

h
2Hg8~ t ! D ~H011!21I

<constF E
2`

`

dkU E dx e2 ikxS g~x,t1h!2g~x,t !

h
2g8~x,t ! D U r G1/r

. ~3.16!

We now write the integral on the right-hand side of~3.16! as

E
2`

`

dk$¯%5E
2`

1

dk$¯%1E
21

1

dk$¯%1E
1

`

dk$¯%

and estimate the last integral above

J1[E
1

`

dkU E dx e2 ikxS g~x,t1h!2g~x,t !

h
2g8~x,t ! D U r

<E
1

` dk

k2r U E dx e2 ikxS ]x
2g~x,t1h!2]x

2g~x,t !

h
2]x

2g8~x,t ! DU r

, ~3.17!

where we have used two partial integrations and]x[]/]x. Let now

V~x,t ![]x
2g~x,t !. ~3.18!

Now V is also an infinitely differentiable function of compact support and

V~x,t1h!5V~x,t !1hV8~x,t !1
h2

2!
V9~x,t1th* ~x!! ~3.19!

by Taylor’s formula with remainder, where 0,th* (x),h. Putting~3.19! into ~3.17! we get

J1<cr8h
r S E

2`

`

dxuV9~x,t1th* ~x!!u D r

<cr hr~sup
x,t

uV9~x,t !u!r ,

where cr8 and cr are constants depending onr . The estimate ofJ2[*2`
21 $¯% is similar. The

estimate ofJ1[*21
1 $¯% follows along the same lines, but in this case we should not introduce

partial integrations in order to avoid divergences atk50. Then, we obtain

J<consth@Ar~sup
x,t

ug9~x,t !u!r1Br~sup
x,t

uV9~x,t !u!r #1/r

with Ar andBr constants depending onr . Then we have~3.13!.
We now notice that the bounds~3.12! continue to holdfor Hg8(t) with ig(•,t)i r replaced by

ig8(•,t)i r on the right-hand side of~3.12!. Thus the same proof applies toHg8(t), Hg9(t), . . . and
in fact Hg(t) is infinitely differentiable as an operator fromF12 to F22 . h

Proposition III.1: The S(g) matrix for the(:f4)2 theory, as defined in (1.13), is unitary an
it satisfies the causality condition for disjoint supports [condition( i i .a)—Sec. I].

Proof: The unitarity follows directly from the existence theorems. For the proof of causal
is convenient to explicitly dispose of the dependence of the propagators on the functiong. Let
suppt g1.suppt g2 and suppose suppt g1,(r ,1`) and suppt g2,(2`,r ), where suppt stands for
the support in the time variable. Then, fort.r .s we have

U (g11g2)
D ~ t,s!5U (g11g2)

D ~ t,r !U (g11g2)
D ~r ,s! ~3.20!

but
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i
]

]t
U (g11g2)

D ~ t,r !C5H (g11g2)
D ~ t !U (g11g2)

D ~ t,r !C5Hg1

D ~ t !U (g11g2)
D ~ t,r !C

and, by the uniqueness of the solutions of the above equation, we haveU (g11g2)
D (t,r )

5Ug1

D (t,r ). Analogously, we haveU (g11g2)
D (r ,s)5Ug2

D (r ,s). This, together with~3.20! imply that

U (g11g2)
D ~ t,s!5Ug1

D ~ t,r !Ug2

D ~r ,s!

from this equation and the fact thatUg1

D (t,s)5Ug1

D (t,r ) andUg2

D (r ,s)5Ug2

D (t,s) due to the sup-

port properties ofg1 andg2 , we finally have

U (g11g2)
D ~ t,s!5Ug1

D ~ t,s!Ug2

D ~ t,s!. ~3.21!

Then, by~3.21! and the definition~1.13!, we obtain

S~g11g2!5S~g1!S~g2!.

h

IV. THE RELATION BETWEEN KISYŃ SKI’S THEORY AND THEOREM III.1

Let us now briefly summarize~without proof! some steps in Kisyn´ski’s proof of Theorem II.3.
First of all, we will state a crucial auxiliary theorem. LetX be a Banach space with the nor
i•i andA(t), tP@2T1 ,T2# (T1 ,T2.0), a family of linear operators inX. Consider the following
conditions:

~a! there exists a familyi•i t , tP@2T1 ,T2#, of norms inX equivalent toi•i such thatu iCi t

2iCis u<k iCis ut2su with k5const,2T1<s,t<T2 andCPX;
~b! for all tP@2T1 ,T2# the setD(A(t)) is dense inX;
~c! there exists a constantl0>0 such that R(l2eA(t))5X and i(l2eA(t))Ci t>(l

2l0)iCi t for e561, l.l0 , tP@2T1 ,T2# andCPD(A(t));
~d! there exists a familyR(t), tP@2T1 ,T2#, of invertible bounded linear operators inX, such

that R(t) is twice weakly continuously differentiable in@2T1 ,T2# and (R(t))21D(A(t))
5Y5const;tP@2T1 ,T2#;

~e! (R(t))21A(t)R(t) is weakly continuously differentiable.

Above R(A) stands for the range of the operatorA. Then we have:
Theorem IV.1 ~Ref. 11, Theorem 4.4!: Let the conditions(a) – (e) be satisfied. Then there

exists a two-parameter family of propagators U(t,s), 2T1<s,t<T2 , such that

C~ t ![U~ t,s!C~s!, C~s!PD~A~s!!,

is the unique solution of the problem

d

dt
C~ t !5A~ t !C~ t ! ~4.1!

with initial data C(s). The bounded propagators U(t,s) are strongly continuous on2T1<s,t
<T2 and satisfy

U~ t,t !51 , ; tP@2T1 ,T2#, ~4.2!

U~ t,s!U~s,r !5U~ t,r !, for2T1<r ,s,t<T2 , ~4.3!

U~ t,s!D~A~s!!5D~A~ t !!, for2T1<s,t<T2 , ~4.4!
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besides, ; sP@2T1 ,T2# and CPD(A(s)) the function U(t,s)C is continuously differentiable
(in the sense of the norm) in X, satisfying

d

dt
U~ t,s!C5A~ t !U~ t,s!C. ~4.5!

The method of proof of this theorem is to reduce the problem to the case where we ha
operator with constant domain by making use of the properties ofR(t) @for an outline of Kisyn´-
ski’s solution of the problem~4.1! with D(A(t))5const see the Appendix#.

Let us now consider Kisyn´ski’s approach to the abstract Schro¨dinger equation

d

dt
C~ t !52 iA~ t !C~ t !, 2T1<t<T2 , ~4.6!

whereCPH, with H a Hilbert space andA(t) an operator inH defined as follows. Consider th
condition:

~i! Let H be a Hilbert space,H1 a dense subset ofH and,; tP@2T1 ,T2#, let ^•,•& t
1 be a

scalar product defined onH1 which makes it a Hilbert spaceH1
t algebraically and topologically

contained in H. Assume that^•,•& t
1 is n times (n>1) continuously differentiable on

@2T1 ,T2#.
If condition ~i! is satisfied we have
Lemma IV.1 ~Ref. 11, Lemma 7.2!: The equality

^F,C& t
15^F,Q~ t !C&2T1

1 , F,CPH1, tP@2T1 ,T2# ~4.7!

defines a bounded n times weakly continuously differentiable operator Q(t) on H
1

2T1 . For all

fixed tP@2T1 ,T2#, Q(t) is Hermitian withinf Q(t).0 in H
1

2T1 .
Another consequence of condition (i ) is that we can define an operatorJ2T1

(t) by means of
the equality~Ref. 11, Lemma 7.4!

^F,C&5^F,J2T1
~ t !C& t

1 , FPH1 , CPH ~4.8!

with J2T1
(t) a positive Hermitian operator inL~H! such thatJ2T1

(t)H1 is a dense subset ofH1
t .

Then, defining

iCi t
2[iJ2T1

~ t !Ci t
1 , CPH, ~4.9!

it follows that the completionH 2
t 5H

2

2T1[H2 of H in the normi•i t
2 containsH algebraically

and topologically~Ref. 11, Lemma 7.5!.
Finally, we can define an operatorA(t) by means of the form̂ •,•& t

1 according to the
following lemma:

Lemma IV.2~Ref. 11, Lemma 7.7!: For all t P@2T1 ,T2#,

D~A~ t !!5 HCPH1 : sup
FPH1 , iFi<1

$u^F,C& t
1u%,1` J , ~4.10!

^F,A~ t !C&[^F,C& t
1 , CPD~A~ t !! ~4.11!

define an inversible self-adjoint positive operator A(t) in H, with

D~A~ t !!5~Q~ t !!21D~A~2T1!! ~4.12!

and
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A~ t !5~J2T1
~ t !!215A~2T1!Q~ t !. ~4.13!

Then the operatorA(t) is shown to satisfy the Schro¨dinger equation~4.6! and the propagators o
problem~4.6! satisfy the properties enumerated in Theorem II.3~Ref. 11, Theorem 8.1!. In order
to prove his Theorem 8.1 for the operatorA(t), as defined above, Kisyn´ski made use of Theorem
IV.1 identifying R(t)5(Q(t))21. Let us now show that the (:f4:)2 theory satisfies the necessa
conditions for Theorem II.3. In fact, all we need to show is that condition (i ) is satisfied. However
for the benefit of clarity we will explicitly display the main operators introduced in Kisyn´ski’s
proof and some of its properties.

The Hilbert spaceH in ( i ) should be identified with the symmetric Fock spaceF ~as defined
in Sec. II! andF125D(H0) is a dense subset ofF. Then, taking the closureF 12

t of F12 in the
norm induced by the scalar product^•,•& t

1 , which is related to the operatorH̃(t) @see Eq.~2.14!#
by means of the form~2.21!, i.e.,

^F,C& t
1[S~F,C!5^H̃~ t !1/2F,H̃~ t !1/2C&, ~4.14!

we can show the following:
Proposition IV.1:F 12

t is a Hilbert space such that

F 12
t ,F ~4.15!

algebraically and topologically.
Proof: ThatF 12

t is a Hilbert space follows immediately from the fact that the form defined
~4.14! is closed~see, e.g., Ref. 15!. The property thatF 12

t ,F algebraically is trivial. So, it
remains to show that~4.15! holds topologically. This is achieved by showing that for$ f n%n51

`

PF12 and f PF12 such that

i f n2 f i→0 ~4.16!

we have

i f n2 f i t
1→0.

To show this, set

~ i f n2 f i t
1!25^~ f n2 f !,~ f n2 f !& t

15^~ f n2 f !,H̃~ t !~ f n2 f !&

5^~H011!~ f n2 f !,~H011!21H̃~ t !~H011!21~H011!~ f n2 f !&.

The Schwarz inequality applied to the last term above yields

i f n2 f i t
1<i~H011!21H̃~ t !~H011!21i i~H011!~ f n2 f !i2.

The first term on the right-hand side is bounded due to~3.12!. The second term on the right-han
side converges sinceH011 is a self-adjoint operator~hence closed! and, by hypothesis,~4.16!
holds. Then the proof of the proposition is complete. h

In addition, it follows straightforwardly from~4.14! and Theorem III.1 that̂•,•& t
1 is n times

~infinitely, in fact! continuously differentiable. Then it is proved that condition (i ) is satisfied and
Theorem II.3 follows as proved in Ref. 11 and summarized above.

Now we turn to explicitly show the properties ofQ(t) in our case. From~4.14! and the
definition

^F,C& t
1[^F,Q~ t !C&2T1

1

we obtain thatQ(t) is the operator
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Q~ t !5~H̃~2T1!!21H̃~ t !. ~4.17!

Proposition IV.2: Q(t), as defined in (4.17), is a (strictly) positive Hermitian operator inF12

and it is infinitely weakly differentiable.
Proof: It follows directly from the properties of the scalar product^•,•& t

1 that Q(t) is infi-
nitely weakly differentiable.

For F, CPF12 , we have

~^F,Q~ t !C&2T1

1 !* 5^Q~ t !C,F&2T1

1 5^H̃~2T1!21H̃~ t !C,H̃~2T1!F&5^H̃~ t !C,F&,
~4.18!

where we have used~4.17!. We then have that

~^F,Q~ t !C&2T1

1 !* 5^C,H̃~2T1!~H̃~2T1!!21H̃~ t !F&

5^C,H̃~2T1!Q~ t !F&5^C,Q~ t !F&2T1

1 , ~4.19!

which proves thatQ(t) is Hermitian.
In order to prove thatQ(t) is strictly positive onF12 , we must remember that, sinc

F 12
t ,F12 ; t algebraically and topologically, it follows that the normsi•i2T1

1 and i•i t
1 are

equivalent, i.e., there existsat>1 such thatat
21i•i2T1

1 <i•i t
1<ati•i2T1

1 . Then, forCPF12 ,

^C,Q~ t !C&2T1

1 5~ iCi t
1!2>at

22~ iCi2T1

1 !2, ~4.20!

from which it follows that infQ(t).0 and the proof is complete. h

V. CONCLUSION: OPEN PROBLEMS

The problem of the nonperturbative construction ofS(g) for the (:f4:)2 quantum field theory
was addressed in Ref. 17 using Yosida’s approach, which requires that the domain ofHg(t) be
time-independent. For test functionsg(x,t)5h1(x)• f 1(t), i.e., of the product form, this condition
is satisfied, but already for a sum of two products, e.g.,g(x,t)5h1(x)• f 1(t)1h2(x)• f 2(t), with
f 1 and f 2 having disjoint supports, this is no longer true, and thus the results of Ref. 17
incomplete. The present approach does not suffer from this inconvenience, andg is allowed to be
an arbitrary infinitely differentiable function of compact support. Moreover, the use of a sca
spaces makes the theory very flexible, being applicable to more singular super-renorma
theories, as well as to four-dimensional theories with an ultraviolet cutoff. It is a very challen
problem to discover a possibility of ‘‘renormalization’’ of the exponentials of the type~A7! in the
latter, in analogy to the interesting approach of Barata18 and Gentile19 to the study of certain
two-level systems.

There are, however, open problems even to finish this program for the present (:f4:)2 theory:
proof of causality for space-like supports (i i .b) and proof of Lorentz covariance (i i i ). For this
purpose, the method outlined in Ref. 17 seems natural: the above properties would follow
proof of Faris’s product formula20 under the assumptions of Theorem IV 1. We shall return to
problem in the future.
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APPENDIX

Let us consider the problem~4.1! for the case in whichD(A(t))5const. The notation is as in
the first part of Sec. IV.

Consider the following conditions~in what followstP@2T1 ,T2#, unless otherwise specified!:

~i! there exists a familyi•i t , of norms inX such thata21iCi<iCi t<iCis<aiCi , a>1,
for 2T1<s<t<T2 andCPX;

~ii ! Y is a dense subset ofX with D(A(t))5Y;
~iii ! for all l.0 andCPY we haveR(l2A(t))5X and i(l2A(t))Ci t>liCi t ;
~iv! A(t) is weakly continuously differentiable.

Theorem A.1 ~Ref. 11, Theorem 3.0!: Let the conditions (i)–(iv) be satisfied. Then, ther
exists a unique solution of the problem (4.1) and the corresponding propagator U(t,s) is strongly
continuous in2T1<s<t<T2 and satisfies the properties (4.2), (4.3), (4.4), and (4.5).

Now we shall explain some aspects of Kisyn´ski’s proof of this theorem. Consider the famil
of equations

d

dt
F~ t !5An~ t !F~ t !, F~0!5F0, n51,2,..., ~A1!

with

An~ t !5nA~ t !~n2A~ t !!21. ~A2!

The setY supplied with the normiu•ui t5i((12A(t))•i is a Banach space algebraically an
topologically contained inX. Then, from~i! and ~iv!, it follows that A(t)PL(Y,X) is a weakly
continuously differentiable operator, which, by the Banach–Steinhaus theorem, impliesiA(t)Fi
<CiuFui0 for FPY and some constantC ~the equivalence of the normsiu•ui t was used!. So, by
using ~i! and ~iii !, it follows that

iF2n~n2A~ t !!21Fi5
1

n
i~12A~ t !/n!21~A~ t !F!i<

Ca2

n
iuFui0, ~A3!

which implies thatn(n2A(t))21 converges strongly and uniformly to 1. Therefore, the seque
of bounded operatorsAn(t) converges strongly toA(t). The operatorsAn(t) are weakly continu-
osly differentiable, therefore they satisfy a Lipschitz condition in the sense of the norm. Hen
follows thatAn(t) is continuous in the sense of the norm and Yosida’s method13 guarantees the
existence and the uniqueness of the evolution operatorsUn(t,s) of Eq. ~A1! satisfying the prop-
erties equivalent to~4.2!–~4.5!. Besides,Un(t,s) satisfy11

iUn~ t,s!i<M . ~A4!

Before proceeding we will consider Eq.~A1! perturbed by the bounded~in X) weakly con-
tinuous operator

B~ t !52
dA~ t !

dt
~12A~ t !!21,

that is,

d

dt
F~ t !5~An~ t !1B~ t !!F~ t !, F~0!5F0 . ~A5!

The evolution operator of~A5!, denotedHn(t,s), is given by
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Hn~ t,s!5~12A~ t !!Un~ t,s!~12A~s!!21.

Then, it follows thatHn(t,s)PL(X) is weakly continuously differentiable in2T1<s,t<T2 ,
satisfying

iHn~ t,s!i<D. ~A6!

Next we subdivide the segment@2T1 ,T2# into K equal intervals. Then, the conditions (T[T1

1T2)

UnK~ t,s!5expH ~ t2s!AnS 2T11
i 21

K
TD J , ~A7!

2T11 (( i 21)/K) T<s,t<2T11 ( i /K) T, i 51,...,K, and

UnK~ t,s!UnK~s,r !5UnK~ t,s!, 2T1<r ,s,t<T2, ~A8!

define a unique family of operatorsUnK(t,s)PL(X) continuous in the sense of the norm such th

iUnK~ t,s!i<a2. ~A9!

The operatorsUnK(t,s) satisfy

]

]s
UnK~ t,s!52UnK~ t,s!AnS 2T11

T

K FKs

T G D ,

where @(Ks)/T# stands for the integer part of (Ks)/T. Besides, for fixedK, UnK(t,s), n
51,2,..., is asequence uniformly strongly convergent in2T1<s<t<T2 .

Then, by integrating (]/]t) UnK(t,t)Un(t,s) we obtain

Un~ t,s!2UnK~ t,s!5E
s

t

UnK~ t,t!S An~t!2AnS 2T11
T

K FKt

T G D DUn~t,s!dt. ~A10!

We have11

IAn~t!F2AnS 2T11
T

K FKt

T G DF I<
const

K
iuFui0. ~A11!

Then, since

Un~ t,s!5~12A~ t !!21Hn~ t,s!~12A~s!!

and (12A(s))PL(Y,X) and (12A(t))21PL(X,Y) are weakly differentiable, we obtain, b
using ~A6!,

iuUn~ t,s!Fui0<constiuFui0, ~A12!

for FPY and2T1<s<t<T2 . Then, from~A9!, ~A10!, ~A11!, and~A12!, it follows that

iUn~ t,s!F2UnK~ t,s!Fi<
L

K
iuFui0, ~A13!

with L5const.
Now, for FPY we have
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iUn~ t,s!F2Um~ t,s!Fi<iUn~ t,s!F2UnK~ t,s!Fi1iUmK~ t,s!F2Um~ t,s!Fi

1iUnK~ t,s!F2UmK~ t,s!Fi

<2
L

K
iuFui01iUnK~ t,s!F2UmK~ t,s!Fi . ~A14!

The first term on the right-hand side may be made arbitrarily small for largeK. After this, one
choosesn and m so large that the second term becomes arbitrarily small for all2T1<s<t
<T2 , since the sequenceUnK(t,s) is uniformly strongly convergent. SinceY is dense inX, and
from ~A4!, ~A14! implies that the convergence is in all ofX, in the triangle2T1<s<t<T2 .
Then, it follows directly from the properties ofUn(t,s) that U(t,s)5s2 limn→`Un(t,s) is the
evolution operator of~4.1! for constant domain.11

Remark:The proof outlined above is valid for2T1<s<t<T2 . However, by substituting the
conditions~i! and ~iii ! above by the conditions~a! and ~c! in Theorem IV.1 the proof can be
extended for the square2T1<s,t<T2 .
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Considering the Killing vector fields on a Lorentzian manifold in terms of their
lapse and shift along a space-like hypersurface, we give a new definition of the
Killing Initial Data ~KID ! of Beig and Chrus´ciel @Class. Quantum Grav.14-1A,
A83 ~1996!#. We define, on these new KID’s, the bracket operation induced by the
usual Lie bracket of Killing vector fields on the Lorentzian manifold, and study the
conditions for our new KID’s to form a Lie algebra. The interesting fact is that
these conditions only depend on data along the hypersurface. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1755862#

I. INTRODUCTION AND NOTATIONS

The starting point of this work is the paper of Beig and Chrus´ciel, Killing Initial Data,1 where
they studied properties of Killing vector fields on a Lorentzian manifold (M̄ ,ḡ) of dimensionn
11. Let (M ,g,k) be a space-like hypersurface, with induced metricg and second fundamenta
form k. Then they raised the following issue: If we decompose any vector fieldX̄ in terms of a
lapse functionN and a shift vectorX, that is to say,X̄5X1N] t , where] t denotes the unit norma
to M , how can we deduce thatX̄ is Killing only thanks to information along (M ,g,k)?

For convenience, we are going to consider a tubular neighborhood ]2e,1e@3M of M ,
e.0, and writeḡ in Gaussian normal coordinates, that is to say,

ḡ52dt21gt ,

wheregt0
is the Riemannian metric on the slice of equation$t5t0% induced byḡ. Such coordi-

nates will be chosen so thatM5$t50%, and then the Killing equations forX̄5X1N] t are

LXg522Nk, ~1!

] tN50, ~2!

] tX5¹N, ~3!

whereL is the Lie derivative. Taking] t of ~1! we find

LXk1HessN5N~Ric1~ trk !k22~k+k!!2NRicuTM ^ TM , ~4!

where+ is the composition of 2-tensors:

~k+k! i j 5kipkr j g
rp.

In order to define ‘‘candidate Killing vector fields’’ they decided to call Killing Initial Da
~KID !, any couple (N,X)PC`(M )3G(TM) satisfying~1! and~4!. Then, noticing that the spac

a!Electronic mail: maerten@darboux.math.univ-montp2.fr
25940022-2488/2004/45(7)/2594/6/$22.00 © 2004 American Institute of Physics
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of Killing fields on M̄ was closed under the usual bracket onM̄ , they wondered whether the
could define a bracket$,% on the space of KID’s with the same stability property.

Still reasoning from the decomposition of Killing fields in terms of lapse and shift, they g
a natural bracket$,% on the space of KID’s, constructed from the usual bracket of Killing vec
fields onM̄ . The important fact is that the conditions, in order to make KID’s closed unde$,%,
involve a geometric quantity which is distinct from the constraints@part of Ricci curvature ofḡ
which is solely determined by the data (M ,g,k)].

As a matter of fact, from a Cauchy point of view, a slightly different definition of KID’s~that
we will call new KID’s! is more natural that the one used in Ref. 1. Both coincide in the vac
and cosmological cases but they are not identical in general. The present work singles
necessary and sufficient conditions under which the new KID’s form a Lie algebra. The
obtained here is much more satisfactory, as the resulting conditions for the Lie algebra str
only involve objects naturally defined by a initial data set: The energy density and the mome
density.

Let us denote byG the Einstein tensor, and let us focus on the vacuum (G50) or cosmo-
logical (G5Lḡ, L constant! cases for a moment. If we callL! the adjoint of the linearized
constraints map, then being a KID exactly means belonging to KerL!. More precisely, according
to Ref. 2, it is possible to give an explicite correspondence between KID’s and solutionsL!

50:

~N,X! KID⇔L!~N,X[!50,

where[ is the canonical isomorphism fromTM to T!M with respect tog. We will use the symbol
] to denote its inverse.

As a consequence, it leads us to adopt, in general, that is to say forany Einstein tensor G, the
following:

Definition: Our new ‘‘candidate Killing vector fields’’ are the(N,X)PC`(M )3G(TM) such
as

L!~N,X[!50.

Thus, using the same bracket as in Ref. 1, we study the conditions so that the space
‘‘new KID’s’’ is a Lie algebra.

We will adopt the following definitions and conventions.3,4 The Einstein tensorG of ḡ, is by
definition

G5Ric2 1
2Scalḡ, ~5!

whereRic andScal are the Ricci curvature and the scalar curvature ofḡ.
Let us define the constraint map as

F~g,k!5S Scal1~ trk !22uku2

22~dk1dtrk! D , ~g,k!PM3G~S2T!M !,

whereM denotes the space of Riemannian metrics onM , Scal is the scalar curvature ofg, norm
and trace have to be taken with respect tog, andd is the divergence operator acting on symmet
tensors, that is to say,

dS52(
i 51

n

Dei
S~ei ,., . . . ,.!,

whereD is the Levi-Civita connexion of (M ,g), (ei) i 51
n is any orthonormal basis at the point, an

S is any symmetric tensor. We also define the adjoint ofd denoted byd! which is

d!b~X,Y!5 1
2 ~DXb~Y!1DYb~X!!,
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for any 1-formb. For later use we define the Hessian and the Laplacian of a functionf as follows:

Hess~ f !5Dd f , D f 5dd f52tr gHess~ f !.

If we denote att50

2GuTM ^ TM5t, 2G~] t ,] t!5c, 2G~] t ,.!5v,

then the following equations, known as the constraints equations, are satisfied onM :

S Scal1~ trk !22uku2

22~dk1dtrk! D5S c
v D .

If one defines

E~ f ,a!5Hess~ f !2 f ~Ric12~ trk !k22~k+k!!1L a]k1~da!k,

then the expression ofL! is

S L1
!~ f ,a!

L2
!~ f ,a! D 5S E~ f ,a!2tr ~E~ f ,a!!g2~ 1

2^L2
!~ f ,a!,k&1 1

2^a,v&1 f c!g

22~d!a1 f k!12tr ~d!a12 f k!g
D ,

where (f ,a)PC`(M )3G(T!M ) are the dual infinitesimal deformations forF at the point (g,k)
and ^,& denotes the scalar product extended to all tensors.

Finally a direct computation leads us to

L!~ f ,a!50⇔H LXk1HessN5N~Ric1~ trk !k22~k+k!!1
1

2~12n!
~v~X!12Nc!g

LXg12Nk50,

if we denotef 5N, a5X[. These relations, and the equivalence above will be used impli
throughout the text, so that we can write elements of KerL! in terms of (N,X) or in terms of
( f ,a).

II. LIE ALGEBRA STRUCTURE OF Ker L !

The motivation for the definition of the bracket lies on the Lie structure of the Killing fie
on the Lorentzian manifoldM̄ . Let us take two Killing fieldsX̄i5Xi1Ni] t ( i 51,2), their bracket,
using ~2!–~4!, is

@X1,X2#5@X1 ,X2#1N1¹N22N2¹N11~LX1
N22LX2

N1!] t.

Definition: We define$,% on C`(M )3G(TM) as

$~N1 ,X1!,~N2 ,X2!%ª~LX1
N22LX2

N1 ,@X1 ,X2#1N1¹N22N2¹N1!.

Proposition: $,% satisfies the Jacobi identity onKerL2
!,C`(M )3G(TM).

Proof: It relies on computations which are the same as in Ref. 1.
From now on,( will denote the symmetric product of 1-forms, that is to say,

u1(u2~U,V!5 1
2 ~u1~U !u2~V!1u1~V!u2~U !!,

for any 1-formsu i , i 51,2. The main result of this note is then:
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Theorem: The R-vector spaceKerL!,C`(M ) 3 G(TM) with the bracket$,%, is a Lie
algebra if and only if the following conditions are satisfied:

~ i! N1v~X2!5N2v~X1!,

~ ii ! v(~N2dN12N1dN2!50,

~ iii ! dv~X1 ,X2!1dc~N2X12N1X2!50,

;(N1X1),(N2X2)PKerL!, along (M ,g,k,v,c).
Remark:We have to underline that the existence of nontrivial solutions ofL!50 prevents the

level-sets of the constraints map from being manifolds. So it could appear important to be a
give information about KerL! only depending on the constraints which caracterize the level-
This provides another interest for this new definition of KID’s.

Corollary: If c5constant andv50, then (KerL!,$,%) is a Lie algebra.
Applications of the Corollary:The first remark concerns the vacuum and cosmological ca

The corollary points out a result that was already known thanks to the KID’s. This is a c
quence of the simple fact that, in both cases, being a KID in the sense of Ref. 1, is equiva
be a solution of the equationL!50.

Second, we can hope, thanks to the following example, that this theorem could have
applications. Indeed let us consider the case of perfect fluid-pure matter for the stress-
tensor. Then

T5~r1p!j ^ j1pḡ,

wherev5j[ is the unitary and time-like speed vector of fluid particule. If we assume more
that j5dt, so that

T5rdt21pgt .

If we make the assumption thatr only depends ont, the conditions of our theorem are satisfie
whereas the conditions for the KID’s are not if we do not make any assumption on the functp.
This shows that the conditions of our theorem are adapted to the geometric constraints~c andv!,
whereas the conditions of Ref. 1 are less, because of the role oft in their expression.

III. PROOF OF THE THEOREM

~i! Let us take 2 couples (N1X1),(N2X2) satisfyingL!(Ni ,Xi
[)50 (i 51,2). Then one finds

L[X1 ,X2] 1N1¹N22N2¹N1
g12~LX1

N22LX2
N1!k

52N1~LX2
k1HessN2!22N2~LX1

k1HessN1!

5
1

~12n!
~N1v~X2!2N2v~X1!!,

and the first condition follows.
~ii ! Still in order to make KerL! closed under$,%, the following equation has to hold:

05LN1¹N22N2¹N1
k1@Hess,LX1

#N22@Hess,LX2
#N11~N2LX1

2N1LX2
!~Ric1~ trk !k

22~k+k!!1
1

~12n!
~N2LX1

2N1LX2
!~cg!1

1

2~12n!
~LX1

~v~X2!g!2LX2
~v~X1!g!!

2
1

2~12n!
v~@X1 ,X2#1N1¹N22N2¹N1!g5I1II1III 1IV1V1VI. ~6!
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From this point, we will assume that condition~i! holds. For convenience, we are going
compute this expression in several steps. We will use the notation$(N1 ,X1)↔(N2 ,X2)% which
means that we rewrite the beginning of the expression replacing (N1 ,X1) by (N2 ,X2).

I5DN1¹N2
k12dN1( i ¹N2

k1N1~k+HessN21HessN2+k!2$~N1 ,X1!↔~N2 ,X2!%,

II52N2d!~ i ¹N1
k!12dN2( i ¹N1

k2DN2¹N1
k2N2~HessN1+k1k+HessN1!

2$~N1 ,X1!↔~N2 ,X2!%.

Three terms are involved in III:
First of all:

~N2LX1
2N1LX2

!~Ric!52N2DN1k12N2D¹N1
k22N2d!~ i ¹N1

k!

2~N2trk !LX1
k2v(~N2dN1!2$~N1 ,X1!↔~N2 ,X2!%.

Second:

~N2LX1
2N1LX2

!~k+k!5N2~k+LX1
k1LX1

k+k!2$~N1 ,X1!↔~N2 ,X2!%.

And finally, taking the trace ofL1
!( f ,a)50, we find

LXi
~ trk !12^k,d!Xi

[&2DNi5Ni~Scal1~ trk !222uku2!1 @n/2~12n!# ~v~Xi !12Nic!,

but reminding that̂ k,d!Xi
[&5^k,d!a i&52 f i uku252Ni uku2, this equation is equivalent to

LXi
~ trk !5DNi1Ni S Scal1~ trk !21

n

~12n!
c D1

n

2~12n!
v~Xi !.

We use this information in order to compute the last term of III:

~N2LX1
2N1LX2

!~~ trk !k!5trk~N2LX1
2N1LX2

!k1~N2DN12N1DN2!k.

Thus it follows:

III 52N2~D¹N1
k2d!~ i ¹N1

k!2k+LX1
k2LX1

k+k2 1
2 v(dN1!2$~N1 ,X1!↔~N2 ,X2!%.

Finally, we have a look at the terms involvingc andv in the expression of~6!. After some
easy computations, the remainig terms are

~12n!IV5dc~N2X12N1X2!g1c~N2LX1
g2N1LX2

g!5dc~N2X12N1X2!g,

2~12n!V5~~DX1
v!~X2!2~DX2

v!~X1!1v~@X1 ,X2# !!g12~N2v~X1!2N1v~X2!!k

5~2dv~X1 ,X2!1v~@X1 ,X2# !!g.

Finally, when we add all terms of~6! together, still assuming that condition~i! holds, ~6!
becomes

052v(~N2dN12N1dN2!

1
1

~12n! S dv~X1 ,X2!1dc~N2X12N1X2!1
1

2
v~N2¹N12N1¹N2! Dg. ~7!

Now, taking the trace of~7!, it follows:
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v~N2¹N12N1¹N2!5
2n

~223n!
~dv~X1 ,X2!1dc~N2X12N1X2!!. ~8!

And finally we obtain

v(~N2dN12N1dN2!5
2

~223n!
~dv~X1 ,X2!1dc~N2X12N1X2!!g. ~9!

And the proof is complete: The fact that the rank of the left member of~9! is 2 whereas the
rank of the right one isn>3, entails that both vanish. The corollary is straightforward since
conditions of our theorem are clearly satisfied. h
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We consider the problem of correcting the errors incurred from sending quantum
information through a noisy quantum environment by using classical information
obtained from a measurement on the environment. For discrete time Markovian
evolutions, in the case of fixed measurement on the environment, we give criteria
for quantum information to be perfectly corrigible and characterize the related
feedback. Then we analyze the case when perfect correction is not possible and, in
the qubit case, we find optimal feedback maximizing the channel fidelity. ©2004
American Institute of Physics.@DOI: 10.1063/1.1758320#

I. INTRODUCTION

Error correction is a key problem in quantum information processing. Without it, decohe
would easily destroy all hopes for quantum computation and quantum cryptography.

Two important approaches have been devoloped to combat decoherence. The usual th
quantum error-correction1,2 redundantly encodes the original quantum information in a lar
quantum system by a unitary operation which maps the initial Hilbert space into the code
a subspace of the Hilbert space associated to this larger system. After encoding, the larger
is subjected to noise and then a measurement is performed on the system to diagnose the
error which occurred. Finally, on the basis of the outcome, a restoring operation is perform
return the system to the original state in the code space.

Another approach,3–7 based on feedback control, has been developed for systems whic
continuously monitored during their noisy evolution.8 It employs the result of this continuou
measurement to determine the errors occurred and, on this basis, perform corrections in re
to protect states which are known to lie initially within a certain code space. The contin
measurement can be performed introducing an additional interaction to the evolution of the s
or preferably by simply observing the environment after its interaction with the system. Up to
there is no general theory for quantum feedback control, but some correction schemes hav
considered and have dealt only with Hamiltonian feedback.

Taking from feedback control the idea of a correction scheme based on a measur
performed not on the system but on the environment, we have analyzed in an earlier public9

the different possible behaviors of a channel with respect to the existence of a measu
allowing perfect correction of information, quantum or classical. No code space is introduce
for every initial state, the aim is to find proper measurement and restoring operations, not
sarily unitary, to recover the initial information or at least optimally restore it.

Here we develop the analysis in Ref. 9 to evolutions composed of many time step
consider quantum information carried by a system undergoing a discrete time Markovian
tion ~multistep channelT5T(n)+¯+T(1)) and allow correction operations between any two s

a!Electronic mail: gregoratti@mate.polimi.it
b!Electronic mail: R.Werner@TU-BS.DE
26000022-2488/2004/45(7)/2600/13/$22.00 © 2004 American Institute of Physics
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sequent steps: every time we perform a measurement on the environment and a restoring o
on the system. We take the measurments on the environment as given and we look for t
restoring operations choosen on the basis of all the outcomes observed so far. First w
conditions for quantum information to be perfectly corrigible and characterize the related
back. It turns out that classical feedback is not useful because perfect correction of qu
information is possible only if a unique correction at the end would suffice. Then we analyz
case when perfect correction is not possible and, in the qubit case, we find optimal fee
maximizing the channel fidelity. Similarly to the case of perfect correction, but more surprisi
classical feedback is still useless if quantum information is carried by one qubit because a
unique restoring operation performed at the end of the evolution guarantees the same perfo
of correction. Anyway classical feedback is shown to be helpful when the quantum carrier
higher dimensional Hilbert space.

Every section of the paper considers first the case of quantum information sent thro
single-step channel, so that it is possible only one correction after this noisy evolution just
Ref. 9, and then the case of a multistep channel, so that classical feedback is possible du
noisy evolution. In Sec. II, we set up the framework and the basic correction scheme. In Se
for a given channel and given measurements on the environment, we prove the basic crite
the existence of a scheme perfectly correcting quantum information, and we characteri
related feedback. In Sec. IV we look for optimal correction scheme when it is not be possi
achieve a complete correction of errors. In Sec. V we briefly discuss the transposition o
approach to continuous time and the difficulties which arise in this case.

II. THE CORRECTION SCHEME

We consider quantum information carried by a quantum system with finite dimensiona
bert spaceH. We work in the Schro¨dinger picture, so the action of the noisychannel, which
corrupts the information transforming each input density operatorr on H to a different output
density operatorT(r) on H, is given by a completly positive, trace preserving, linear m
T:L(H)→L(H), whereL~H! denotes the space of all linear operators onH. A channelT is not
physically reversible, i.e., there is no channelR such thatR+T5 id, unlessT is a unitary channel
T(r)5u r u* , with uPU(H), the group of unitary operators onH.

A. Single-step channel

Every channel can be described as the result of a unitary coupling to an environment, fo
by the discard of the environment after the interaction. Nevertheless, the initial information c
by H is then shared with the environment and indeed, if we controlled perfectly the com
system, then we could recover the initial quantum information simply by reversing the g
evolution, so restoring perfectly the input stater. We do not hypothesize this, but we assume t
our control on the environment is good enough to have its initial state pure and to be a
perform any measurement on it after the interaction withH. The measurement of an observableX
on the environment decomposes the channelT into aninstrument, a family of completely positive
mapsTx giving the~non-normalized! output statesTx(r) of the subensembles of systems selec
according to the result ‘‘x’’ of this measurement: the probability of observingx is P(X5x)
5trTx(r), the normalized output state for the corresponding subensemble isTx(r)/trTx(r), and
the expectation in that subensemble of a self-adjointAPL(H) is tr(Tx(r)A)/trTx(r). Ignoring
the result of the measurement one recovers the original channel

T5(
x

Tx . ~1!

Of course, the resultx of the measurement gives classical information about the environment
the interaction, and hence also aboutH before the interaction. The idea for the correction sche
is to employ this information to select a proper restoring channel: we introduce a fami
channelsR(x):L(H)→L(H), whereR(x) can depend in an arbitrary way onx. After correction,
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the state of the subensemble for which the measurement has given the resultx, will be
R(x)(Tx(r)) up to the normalization factor tr(Tx(r)). The overall corrected channel is built from
these conditional operations by ignoring the intermediate informationx, and is the sum of these
contributions:

Tcorr5(
x

R(x)+Tx . ~2!

The goodness of the scheme in restoring quantum information depends on howTcorr can be
brought close to the ideal channel onH, i.e., id.

Whether or not we can find a good correction scheme in principle depends not only o
noisy channelT, but also on the set of decompositions~1! obtainable by a measurment on th
environment, which usually depends on the particular coupling which induces the noisy evo
T. Anyway the assumption of a pure environment overcomes this problem because it gua
that every decomposition ofT into c.p. summandsTx can be realized by a measurement on
environment. Moreover, in order to correct quantum information, the preferable docompos
are the finest ones, those for which no proper refinement is possible. Therefore we shall co
the non refinable decompositions given by the Kraus representations ofT:

T~r!5(
x

tx r tx* , where(
x

tx* tx51 . ~3!

In the following we shall assume that a decomposition~3! is given, that it is associated to th
measurement of an observableX, and for it we shall consider the problem of perfectly correcti
quantum information or, if this is not possible, optimally restoring it.

B. Multistep channel

We are especially interested in multistep channels, where the noisy evolutionT is given byn
Markovian steps:

T5T(n)+¯+T(1) , ~4!

whereT(k):L(H)→L(H) aren possibly different channels. In this case we assume to be ab
perform a measurement at each step, so that everyT(k) is decomposed into

T(k)~r!5(
xk

txk

(k) r txk

(k)* , where(
xk

txk

(k)* txk

(k)51 , ~5!

the channelT is decomposed into

T~r!5 (
x1 ,...,xn

txn

(n)
¯tx1

(1) r tx1

(1)*
¯txn

(n)* , ~6!

and the probability of observing (x1 ,...,xn) is P(X15x1 ,...,Xn5xn)5tr txn

(n)
¯tx1

(1) r tx1

(1)*

¯txn

(n)* .

We also assume to be able to interfere in the evolution of the system after each step by a
a restoring channel selected according to the whole information gathered so far. For ek
51,...,n, we introduce a family of channelsR(x1 ,...,xk):L(H)→L(H), whereR(x1 ,...,xk) can de-
pend in an arbitrary way on (x1 ,...,xk) and it is applied after the measurement ofXk so that the
overall corrected channel turns out to be

Tcorr~r!5 (
x1 ,...,xn

R(x1 ,...,xn)~ txn

(n)
¯R(x1)~ tx1

(1) r tx1

(1)* !¯txn

(n)* ! . ~7!
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So the classical information obtained by the measurement process on the environment is f
to modify the evolution of the systemH. Notice that this general scheme includes the special c
~compare Fig. 1!:

~b! R(x1 ,...,xk)5R(xk) for everyk51,...,n, i.e., every restoring channel is selected accord
only to the last observationxk ;

~c! R(x1 ,...,xk)5 id for everyk51,...,n21, i.e., the information given by the measurement
the environment is gathered during the evolution, but every correction is deferred after it.

In the following we shall assume that a decomposition~6! is fixed, that it is associated with
measurement process, and, given this, we shall consider the problem of perfect or optimal
tion of quantum information.

III. PERFECT CORRECTION OF QUANTUM INFORMATION

Given a channelT with a fixed decomposition~3! or ~6!, our scheme can perfectly corre
quantum information if one can find restoring channelsR such that

Tcorr5 id .

A. Single-step channel

Let us improve the criterion given in Ref. 9.
Propostion 1: Let T:L(H)→L(H) be a channel over a finite dimensional Hilbert spaceH.

Given a Kraus decomposition T(r)5(xtx r tx* , the following are equivalent:
(a) there exists a family of channels R(x):L(H)→L(H) perfectly restoring quantum informa

tion;
(b) tx* tx5px 1 for all x, with px>0, (xpx51;
(b8) tx5Apx ux for all x, with uxPU(H), px>0, (xpx51;
(b9) T(r)5(xpx ux r ux* is a convex combination of unitary channels;
(c) P(X5x)5trtx r tx* is independent of the input stater.

When these conditions hold, then the restoring channels in (a) have to be

R(x)~r!5ux* r ux , ~8!

and the probability law of the outcome is

FIG. 1. Different error correction schemes for multiple channels.~a! represents the most general case. In~b! only the
information from the immediately preceding step is used. In~c! only one correction is done at the end.
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P~X5x!5px . ~9!

Proof: (a)⇒(b). LetR(x) be channels such that(xR
(x)(tx r tx* )5r for every stater. Then for

every x, by the ‘‘No information without perturbation’’ Theorem,R(x)(tx r tx* )5px r, for some
px>0, (xpx51. Therefore trtx* tx r5trtx r tx* 5trR(x)(trtx r tx* )5px for all r, and sotx* tx5px 1.

(b)⇔(b8)⇔(b9). These conditions are clearly all equivalent because dimH,`.
(b8)⇒(c). P(X5x)5trtx r tx* 5trApx ux* r Apx ux5px for everyr, so (b8) implies ~c!, and

Eq. ~9!, too.
(c)⇒(a). trtx* tx r5tr tx r tx* 5P(X5x) which does not depend onr and so tx* tx

5P(X5x) 1. Then tx5AP(X5x) ux , whereux is unitary because dimH,`, and the channels
R(x)(r)5ux* r ux perfectly restore quantum information.

Now we have to show that conditions~a!, ~b!, and~c! imply ~8!. Consider a family of channels

R(x) restoring quantum information, withR(x)(r)5( j r j
(x) r r j

(x)* and( j r j
(x)* r j

(x)51. Then

(
x, j

r j
(x) tx r tx* r j

(x)* 5r , ; r ,

and using again the ‘‘No information without perturbation’’ Theorem we have

r j
(x) tx5Apx, j eiu(x, j ) 1 , ; x, j ,

for some probability lawpx, j and some real functionu. Using (b8), we get

r j
(x)5Apx, j

px
eiu(x, j ) ux* }ux* ; j ,

i.e., fixedR(x), all the Kraus opratorsr j
(x) have to be proportional to the same unitary operatorux* ,

and ~8! holds. h

Let us remark that condition~b! gives a simple criterion for the existence of channelsR
perfectly restoring quantum information based directly on the Kraus operators ofT. Moreover it
clarifies the structure of channels which allow perfect correction with our scheme: the me
ment on the environment has to decomposeT into a convex combination of unitary channels,
that the overall evolution can be seen as an average of reversible evolutionsr°ux r ux* , which
occur randomly with probabilitypx ; the measurement detects the transformation occurred
R(x)(r8)5ux* r8 ux restores the initial stater. This means also, by condition~c!, that the mea-
surement on the environment is completely uninformative about the systemH: the outputx can be
interpreted as classical information about ‘‘what happened’’ to the systemH, but it gives no
information about the input system because it is independent of its state. And the uninform
character of the observation, if associated to a Kraus decomposition ofT, is sufficient for perfect
correction. Moreover, if perfect correction is possible, the restoring channelsR have to be unitary.

Here every channelT with a decomposition satisfying condition~b! will be calledcorrigible.
Just to show how useful can be a suitable measurement on the environment, let us rem

our scheme can perfectly correct quantum information sent through a depolarizing channel,
is known to destroy all quantum information and for which no ordinary quantum error corre
code works~it has zero quantum and classical capacity!. Indeed, setN5dimH, the depolarizing
channelT(r)5 (1/N)1 admits the Kraus representation

T~r!5 (
x,y51

N

tx,y r tx,y* , tx,y5
1

N (
z51

N

e~2p i/N! zy uz1x&^zu5
1

N
ux,y ,

with unitary operatorsux,y , where$uz&%zPZN
denotes a basis labeled cyclically so that addition

uz1x& is moduloN.
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B. Multistep channel

Let us consider now perfect correction for multistep channels.
Propostion 2: Let T5T(n)+¯+T(1), with every T(k):L(H)→L(H), be a multistep channe

over a finite dimensional Hilbert spaceH. Given the Kraus decompositions T(k)(r)

5(xk
txk

(k) r txk

(k)* , T.F.A.E.

(a) there exists a family of channels R(x1),R(x1 ,x2),...,R(x1 ,...,xn) perfectly restoring quantum
information;

(b) every channel T(k)(r)5(xk
txk

(k) r txk

(k)* is corrigible, i.e., for all xk we have txk

(k)

5Apxk

(k) uxk

(k) , with uxk

(k)PU(H), pxk

(k)>0, (xk
pxk

(k)51;

(c) P(X15x1 ,...,Xn5xn)5tr txn

(n)
¯tx1

(1) r tx1

(1)*
¯txn

(n)* is independent of the input stater.

When these conditions hold, then for every k51,...,n the restoring channels in (a) have to be

R(x1 ,...,xk)~r!5v (x1 ,...,xk) r v (x1 ,...,xk)* , v (x1 ,...,xk)PU~H! , ~10!

with

v (x1 ,...,xn)5ux1

(1)* v (x1)*
¯v (x1 ,...,xn21)* uxn

(n)* , ~11!

and the probability law of the outcome process is always

tr R(x1 ,...,xn)~ txn

(n)
¯R(x1)~ tx1

(1) r tx1

(1)* !¯txn

(n)* !5)
k51

n

pxk

(k) . ~12!

Therefore, as long as we are interested in perfect correction of quantum informatio
multistep structure of the channel and the possibility of applying feedback during the evoluti
not help: perfect correction is possible if and only if every step is corrigible and, in this case
enough to make a unique correction at the end. Indeed only unitary corrections are al
otherwise the original information would be corrupted by the feedback itself, and then the
n21 unitariesv (x1 ,...,xk) can be chosen arbitrarly, alsov (x1 ,...,xk)51, provided that the whole
evolution is reversed by the last one~Eq. ~11!!. Again, the channel is corrigible if and only if th
measured process is uninformative; moreover its probabilistic law, which cannot be modifi
the unitary feedback, is that of a sequence of independent random variables.

The proof of Proposition 2 goes via a more general result about the composition ofn channels
when each channel is decomposed according to a measurement and, not only each chann
but also its decomposition, may depend on the previous observations. Therefore, denoted bxk the
outcomes of the measurement at thekth step, we want to consider the evolution of a quant
system sent through a sequence of channels onL~H!,

T(x1 ,...,xk21)~r!5(
xk

txk

(x1 ,...,xk21)
r txk

(x1 ,...,xk21)* , (
xk

txk

(x1 ,...,xk21)* txk

(x1 ,...,xk21)
51 , ~13!

where for the first step,k51, we denote by ‘‘0’’ the empty string of prior results, so we write

T(0)~r!5(
x1

tx1

(0) r tx1

(0)* , (
x1

tx1

(0)* tx1

(0)51 .

Then the total evolution is

T~r!5 (
x1 ,...,xn

txn

(x1 ,...,xn21)
¯tx1

(0) r tx1

(0)*
¯txn

(x1 ,...,xn21)* , ~14!
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and the next Proposition holds.
Propostion 3: Given a finite dimensional Hilbert spaceH, let T:L(H)→L(H) be a channel

(14) resulting from the application of n decomposed channels T(x1 ,...,xk21) ~13!. If T5 id, then

(a) every channel T(x1 ,...,xk21)(r)5(xk
txk

(x1 ,...,xk21)
r txk

(x1 ,...,xk21)* is corrigible;

(b) a channel T(x1 ,...,xk21) is unitary if later channels and their decomositions do not depe
on the value xk observed at the kth step.

Proof: If T5 id, then

txn

(x1 ,...,xn21)
¯tx1

(0)5Ap~x1 ,...,xn! eiu(x1 ,...,xn) 1 , ; x1 ,...,xn , ~15!

wherep is the joint probability law of the outcomes, independent ofr, andu is a real function.
~a! Using the normalization property of Kraus operators, we can immediately show thaT(0)

is corrigible:

tx1

(0)* tx1

(0)5 (
x2 ,...,xn

tx1

(0)* tx2

(x1)*
¯txn

(x1 ,...,xn21)* txn

(x1 ,...,xn21)
¯tx2

(x1) tx1

(0)

5 (
x2 ,...,xn

p~x1 ,...,xn! 15p~x1! 1 ,

wherep(x1) is the probability of observingx1 at the first step. Now, sincetx1

(0)5Ap(x1) ux1

(0) for

some unitaryux1

(0) , we can fixx1 and find thatT(x1) is corrigible:

tx2

(x1)* tx2

(x1)
5

1

p~x1!
ux1

(0) tx1

(0)* tx2

(x1)* tx2

(x1) tx1

(0) ux1

(0)*

5
1

p~x1!
ux1

(0) (
x3 ,...,xn

tx1

(0)* tx2

(x1)*
¯txn

(x1 ,...,xn21)* txn

(x1 ,...,xn21)
¯tx2

(x1) tx1

(0) ux1

(0)*

5
1

p~x1! (
x3 ,...,xn

p~x1 ,...,xn! 15p~x2ux1! 1 ,

wherep(x2ux1) is the probability of observingx2 at the second step conditioned upon the obs
vation of x1 at the first step. Again we havetx2

(x1)
5Ap(x2ux1) ux2

(x1) for some unitaryux2

(x1) and,

repeating the same argument, we find for everyk

txk

(x1 ,...,xk21)
5Ap~xkux1 ,...,xk21! uxk

(x1 ,...,xk21) , uxk

(x1 ,...,xk21)PU~H! , ~16!

wherep(xkux1 ,...,xk21) is the probability of observingxk at thekth step conditioned upon th
observation of (x1 ,...,xk21) during the previous steps. Equation~16! gives the polar decomposi
tion of txk

(x1 ,...,xk21) , which in this case is unique.

~b! Combining Eqs.~15! and ~16! we get

txk

(x1 ,...,xk21)
5Ap~xkux1 ,...,xk21! eiu(x1 ,...,xn) uxk11

(x1 ,...,xk)*
¯uxn

(x1 ,...,xn21)* ux1

(0)*
¯uxk21

(x1 ,...,xk22)* ,

where, because of the uniqueness of the polar decomposition oftxk

(x1 ,...,xk21) ,

eiu(x1 ,...,xn) uxk11

(x1 ,...,xk)*
¯uxn

(x1 ,...,xn21)* ux1

(0)*
¯uxk21

(x1 ,...,xk22)*
5uxk

(x1 ,...,xk21) ,

which therefore has to be independent ofxk11 ,...,xn . If moreover (x1 ,...,xk21) is such that for
all m.k the operatorstx

(x1 ,...,xm21) do not depend onxk , then the same is true for the unitar

m

                                                                                                                



oring
We

t

2607J. Math. Phys., Vol. 45, No. 7, July 2004 On quantum error-correction by classical feedback

                    
operatoruxk11

(x1 ,...,xk)*
¯uxn

(x1 ,...,xn21)* ux1

(0)*
¯uxk21

(x1 ,...,xk22)* and so the Kraus operatorstxk

(x1 ,...,xk21)

are all proportional to a same unitary operatoru(x1 ,...,xk21) and T(x1 ,...,xk21)(r)
5u(x1 ,...,xk21) r u(x1 ,...,xk21)* .

Proof of Proposition 2:

(a)⇒(b). Let R(x1 ,...,xk21)(r)5( j k
r j k

(x1 ,...,xk21)
r r j k

(x1 ,...,xk21)* , where

( j k
r j k

(x1 ,...,xk21)* r j k

(x1 ,...,xk21)
51.

If (
j 1 ,...,j n

x1 ,...,xnr j n

(x1 ,...,xn) txn

(n)
¯r j 1

(x1) tx1

(1) r tx1

(1)* r j 1

(x1)*
¯txn

(n)* r j n

(x1 ,...,xn)*
5r for everyr, then this de-

composition of the ideal channel is associated to a probability measurep(x1 , j 1 ,...,xn , j n) and
Proposition 3 directly implies txk

(k)5Ap(xkux1 , j 1 ,...,xk21 , j k21) uxk

(x1 , j 1 ,...,xk21 , j k21) , where

uxk

(x1 , j 1 ,...,xk21 , j k21) is unitary and wherep(xkux1 , j 1 ,...,xk21 , j k21)5pxk

(k) anduxk

(x1 , j 1 ,...,xk21 , j k21)

5uxk

(k) becausetxk

(k) does not depend on (x1 , j 1 ,...,xk21 , j k21).

(b)⇒(c). If txk

(k)5Apxk

(k) uxk

(k) , with uxk

(k)PU(H), pxk

(k)>0, (xk
pxk

(k)51, then for everyr

P~X15x1 ,...,Xn5xn!5tr txn

(n)
¯tx1

(1) r tx1

(1)*
¯txn

(n)* 5)
k51

n

pxk

(k) .

(c)⇒(a). According to ~c!, tr tx1

(1)*
¯txn

(n)* txn

(n)
¯tx1

(1) r5tr txn

(n)
¯tx1

(1) r tx1

(1)*
¯txn

(n)*

5P(X15x1 ,...,Xn5xn) does not depend onr and so one getstx1

(1)*
¯txn

(n)* txn

(n)
¯tx1

(1)

5P(X15x1 ,...,Xn5xn) 1. Then, with the same argument used in the proof of property~a! of
Proposition 3,

txk

(k)5AP~Xk5xkuX15x1 ,...,Xk215xk21! uxk

(x1 ,...,xk21) ,

where uxk

(x1 ,...,xk21) is unitary, and where actuallyP(Xk5xkuX15x1 ,...,Xk215xk21)

5P(Xk5xk) anduxk

(x1 ,...,xk21)
5uxk

(k) becausetxk

(k) is independent of (x1 ,...,xk21). Then the chan-

nelsR(x1 ,...,xk)(r)5uxk

(k)* r uxk

(k) perfectly restore quantum information.

When ~a!, ~b!, and~c! hold, all the restoring channelsR in ~a! satisfy ~10! by Proposition 3,
and of course for every choice ofv (x1 ,...,xk), k51,...,k21, the channelR(x1 ,...,xn) defined by~11!
can perfectly restore quantum information. Finally Eq.~12! directly follows from condition~b!
and Eq.~10!. h

IV. OPTIMAL RECOVERY OF QUANTUM INFORMATION

When perfect correction of quantum information is not possible, we would like the rest
channelsR which bring the corrected channelTcorr as close as possible to id, in some sense.
look for channelsR which maximize thechannel fidelityof the corrected channel,F(Tcorr). For a
channelT:L(H)→L(H), T(r)5(xtx r tx* , dimH5N, denoted byV a maximally entangled uni
vector inH^ H, the channel fidelity

F~T!5^V,T^ id~ uV&^Vu! V&5
1

N2 (
x

utr txu2

measures how wellT preserves quantum information, reaching 1 if and only ifT5 id.

A. Single-step channel

Let us recall what was found in Ref. 9 for the single-step case. GivenT, chosen a Kraus
decomposition~3! and the restoring channelsR(x),
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R(x)~r!5(
j

r j
(x) r r j

(x)* , (
j

r j
(x)* r j

(x)51 ,

we are interested in

F~Tcorr!5
1

N2 (
x, j

utr r j
(x) txu2 , ~17!

and we want to maximize it with respect to all possible families$R(x)%.
Propostion 4: Let T:L(H)→L(H) be a channel over a finite dimensional Hilbert spaceH.

Fixed a Kraus decomposition T(r)5(xtx r tx* , for every family of channels R(x):L(H)→L(H)
let Tcorr be the corresponding overall corrected channel (2). Then

F~Tcorr!<
1

N2 (
x

~ trutxu!2 . ~18!

Moreover equality holds if and only if

Tcorr~r!5(
x

utxu r utxu , ~19!

and it can always be attained choosing

R(x)~r!5ux* r ux , ~20!

where ux is a unitary operator in the polar decomposition tx5ux utxu.
Proof: Inequality ~18! follows from ~17! because the Cauchy–Schwarz inequality for

Hilbert–Schmidt inner product gives

(
j

utr r j
(x) txu25(

j
utr~r j

(x) uxutxu1/2utxu1/2!u2

<(
j

tr~ utxu1/2ux* r j
(x)* r j

(x)uxutxu1/2! trutxu5~ trutxu!2 . ~21!

Equality holds in~18! if and only if equality holds in~21! for everyx, which occurs if and
only if r j

(x) uxutxu1/25lx jutxu1/2, lx jPC, for everyx and j . Thenr j
(x) tx5lx jutxu and~19! holds. The

opposite implication is obvious.
Finally, if R(x) are chosen according to~20!, thenTcorr is given by~19! and equality holds in

~18!. h

The structure of the optimal restoring channels~20! obtained by maximizingF(Tcorr), is just
what one could expect. When a measurement on the environment has given the resultx, we deal
with a subensemble of systems undergone the state transformationr°tx r tx* 5uxutxu r utxuux* ,
which can be seen as a composition ofr°utxu r utxu followed by r°ux r ux* . Unless we are in
the trivial caseutxu}1, only the second transformation is physically reversible, and this is just w
the channel~20! does. ThereforeF(Tcorr) can be maximized considering only unitary feedba
even if sometimes non unitary feedback could work as well~for example, every time the pola
decomposition oftx is not unique!.

B. Multistep channel

Given a multistep channelT, decomposed according to~6!, we allow corrections also befor
the evolution stops and so we want to maximize the channel fidelity ofTcorr over all possible
families R(x1),R(x1 ,x2),...,R(x1 ,...,xn) in ~7!. We are interested in the optimal feedback, of cour
and we want to compare the maximum attainable fidelity with
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~1! the maximum fidelity obtainable only with a unique correction at the end, which is
Proposition 4,

F~Tcorr8 !5
1

N2 (
x1 ,...,xn

~ trutxn

(n)
¯tx1

(1)u!2 , ~22!

whereTcorr8 denotes the corrected channel

Tcorr8 ~r!5utxn

(n)
¯tx1

(1)u r utxn

(n)
¯tx1

(1)u ;

~2! the fidelity obtainable applying step by step the feedback suggested by Proposition 4, c
on the basis of the whole avaible information; the corrected evolution associated to th
servation of (x1 ,...,xn) would be

r°tx1

(1) r tx1

(1)*°utx1

(1)u r utx1

(1)u°tx2

(2) utx1

(1)u r utx1

(1)u tx2

(2)*°utx2

(2) utx1

(1)uu r utx2

(2) utx1

(1)uu°¯

°utxn

(n)
¯utx2

(2)utx1

(1)uuu r utxn

(n)
¯utx2

(2)utx1

(1)uuuªTcorr9 ~r! , ~23!

with f idelity

F~Tcorr9 !5
1

N2 (
x1 ,...,xn

~ trutxn

(n)
¯utx2

(2)utx1

(1)uuu!2 . ~24!

Quite surprisingly, these two strategies are equivalent, and optimal, in the qubit case (H
52), but in the general case (dimH>3) there is no relationship between them, and neithe
them gives the optimal correction.

1. Qubit multistep channels

Propostion 5: Let dimH52 and T5T(n)+¯+T(1) be a multistep channel, with ever

T(k):L(H)→L(H). Fixed the Kraus decompositions T(k)(r)5(xk
txk

(k) r txk

(k)* , for every family of

channels R(x1),R(x1 ,x2),...,R(x1 ,...,xn), let Tcorr be the corresponding overall corrected channel (.
Then

F~Tcorr!<
1

4 (
x1 ,...,xn

~ trutxn

(n)
¯tx1

(1)u!2 . ~25!

Moreover equality can always be attained choosing

R(x1 ,...,xk)~r!5v (x1 ,...,xk) r v (x1 ,...,xk)* , v (x1 ,...,xk)PU~H! , ; k51,...,n , ~26!

with v (x1 ,...,xn)5w(x1 ,...,xn)* , where w(x1 ,...,xn) is a unitary operator in the polar decompositio
txn

(n) v (x1 ,...,xn21)
¯v (x1) tx1

(1)5w(x1 ,...,xn) utxn

(n) v (x1 ,...,xn21)
¯v (x1) tx1

(1)u.
Proof: The key property in a two-dimensional Hilbert space is that for every operatorA

~ truAu!25tr~ uAu2!12 detuAu , where detuAu5udetAu< 1
2 tr~ uAu2! .

Then, for every family of channels R(x1 ,...,xk21)(r)5( j k
r j k

(x1 ,...,xk21)
r r j k

(x1 ,...,xk21)* ,

( j k
r j

(x1 ,...,xk21)* r j
(x1 ,...,xk21)

51,

k k
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F~Tcorr!5
1

4 (
x1 ,...,xn
j 1 ,...,j n

utr r j n

(x1 ,...,xn) txn

(n)
¯r j 1

(x1) tx1

(1)u2

<
1

4 (
x1 ,...,xn

j 1 ,...,j n21

~ trutxn

(n) r j n21

(x1 ,...,xn21)
¯r j 1

(x1) tx1

(1)u!2

5
1

2
1

1

2 (
x1 ,...,xn

j 1 ,...,j n21

udettxn

(n)
¯tx1

(1)u•udetr j n21

(x1 ,...,xn21)u•udetr j 1

(x1)u

<
1

2
1

1

2 (
x1 ,...,xn

udettxn

(n)
¯tx1

(1)u

5
1

4 (
x1 ,...,xn

~ trutxn

(n)
¯tx1

(1)u!2 .

Analogously for every family of unitary channelsR(x1 ,...,xk)(r)5v (x1 ,...,xk) r v (x1 ,...,xk)* , with

v (x1 ,...,xn)5w(x1 ,...,xn)* ,

F~Tcorr!5
1

4 (
x1 ,...,xn

~ trutxn

(n) v (x1 ,...,xn21)
¯v (x1) tx1

(1)u!2

5
1

2
1

1

2 (
x1 ,...,xn

udettxn

(n) v (x1 ,...,xn21)
¯v (x1) tx1

(1)u

5
1

2
1

1

2 (
x1 ,...,xn

udettxn

(n)
¯tx1

(1)u5
1

4 (
x1 ,...,xn

~ trutxn

(n)
¯tx1

(1)u!2 .

h

2. Higher dimensional two-step channels
When dimH>3 there is no general relationship between the two fidelities~22! and ~24!.

Consider onC3 the multistep channelsT5T(2)+T(1) andS5S(2)+S(1), where

T(1)~r!5T(2)~r!5 (
x51

2

tx r tx* , S(1)~r!5S(2)~r!5 (
x51

2

sx r sx* ,

ut1u25us1u25S 1/6 0 0

0 1/3 0

0 0 1/2
D , ut2u25us2u25S 5/6 0 0

0 2/3 0

0 0 1/2
D ,

t15u ut1u , t25ut2u , s15v us1u , s15u us1u ,

where

u5S 0 1 0

1 0 0

0 0 1
D , and v5

1

) S e2ip/3 e22ip/3 1

e22ip/3 e2ip/3 1

1 1 1
D .

Then since the absolute values of the Kraus operators coincide, the single-step corrected v
of T and S are the same. Moreover, since these absolute values commute, the iterated a
values factorize, i.e.,

utxn

(n)
¯utx2

(2) utx1

(1)uuu5utxn

(n)u¯utx2

(2)u•utx1

(1)u. ~27!
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Hence the greedy strategy of correcting for maximal fidelity at every step, using all ava
information, gives the same result for these channels as the product of the single-step co
channels. In particular,S andT are equivalent in this respect, andF(Tcorr9 )5F(Scorr9 ) ~see last line
in the table below!.

On the other hand, we can leave the system undisturbed, and only make an optimal cor
at the end, again using all available information. Finally, we may optimize fidelity over all
rection schemes. Numerically this achieved by an iteration, developed in Ref. 10, which effic
determines the maximum of a general positive linear functional on channels. In the case a
this is the overall channel fidelity as a function of the correcting channelsR. Since we can correc
the unitariesu andv immediately in every step, it is clear that the channelsS andT once again
give the same corrected fidelities. The results are summarized in the following:

Channel fidelities T S

Optimal correction 0.9584 0.9584
Final correction only 0.9556 0.9576

, .
Optimal correction at each step 0.9570 0.9570

Hence, in contrast to the case of perfect corrigibility, it may help to perform corrections o
way, rather than a single correction at the end~column T). Perhaps surprisingly, the optima
correction at the intermediate steps requires some foresight, and depends on what is to
otherwise the strategy of correcting for highest fidelity using all available information, whic
clearly optimal in the last step, would also have to be optimal in the intermediate steps~compare
first and last line!. Even leaving out the intermediate correction altogether may be better~column
S).

3. Higher dimensional many-step channels

We noted that in the previous example the correction scheme forTcorr9 is equivalent to multi-
plying the one-step corrected channels. That is, whether this correction step may use all av
information or just the information from the last step, leads to the same corrected chann
showed this by noting that the absolute values of all Kraus operators involved commute. Th
be true in any dimension if there are only two Kraus operators, as in the example. Here w
note that this equality is not a general fact. In fact using random channels one quickly
examples~3 Hilbert space dimensions, 3 Kraus operators, and 4 time steps!, in which using all
information or just information from the last step give different results. Surprisingly, once a
the comparison may be either way: sometimes using only one-step information isbetterthan using
all information. Of course, this is only possible because the greedy strategy is not optimal
first place.

V. OUTLOOK

We would like to spend some words about the quantum error-correction incontinuoustime.
Our aim would be to generalize this correction scheme for quantum information corrupted
noisy Markovian evolution assigned by a Quantum Dynamical Semigroup. The present an
for a multistep channelT5(T(1))n would provide the intervalwise treatment, but it is not easy
take the limit to continuous time. The well established theory of continuous measurements11 gives
the possible decompositions~unravelings! of the channel according to the observed trajectoies,
a continuous time formulation of general non-Hamiltonian feedback is missing. There is no
eral description of the evolution conditioned on the observed process if a feedback depend
the whole measurement record is added. And also if the feedback is supposed to depend
the present observation, the measured current, still there is no general description fo
Hamiltonian feedback. A theory exists only for Hamiltonian feedback simply proportional to
measured currents.12 Anyway a preliminary study of perfect correction in this framework leads
the same conclusions of Proposition 2: perfect correction is possible if and only if the mea
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process is uninformative and in this case a unique correction at the end suffices. It is also p
to characterize the Linblad generator of semigroups allowing such perfect correction a
pointed out by Luc Bouten, these semigroups are just the ones admitting an essentially c
tative dilation.13
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We consider the inverse scattering problem for the Schro¨dinger operator with op-
tical potential introduced in nuclear physics to study the scattering of nucleons by
nuclei. We show that the corresponding spin–orbit interaction and the complex
matrix potential can be uniquely reconstructed from the scattering amplitude at
fixed energy. ©2004 American Institute of Physics.@DOI: 10.1063/1.1753665#

I. INTRODUCTION

The optical model is an operator phenomenologically or empirically introduced in nu
physics to study the scattering of nucleons by nuclei. The model corresponds to the Schro¨dinger
operator with a complex potential and it was first effectively used by Feshbach, Porter
Weisskopf9 to reproduce with great success the experimental results on the scattering of ne
Since then this optical model has been improved and accepted as a fundamental tool in
physics. Usually the spin–orbit interaction is included and the following form of the Hamilto
is adopted:

H52D1V,

V5W~x!1a~x!s•~x3p!1Uc~x!, p52 i¹x ,
~1.1!

W~x!5c1F~r ;R1 ,a1!1 i H c2F~r ;R2 ,a2!2c3

d

dr
F~r ;R2 ,a2!J ,

a~x!5c4

1

r

d

dr
F~r ;R3 ,a3!,

whereF(r ;R,a) is the so-called Woods–Saxon potential having the following form:

F~r ;R,a!5S 11expS r 2R

a D D 21

,

andUc(x) is the Coulomb interaction. Heres•x5( i 51
3 s ixi ands5(s1 ,s2 ,s3) is the vector of

Pauli spin matrices, that is, they are the 232 Hermitian matrices satisfying the following com
mutation relations:

a!Electronic mail: isozakih@math.tsukuba.ac.jp
b!Electronic mail: nakazawa@pf.it-chiba.ac.jp
c!Electronic mail: gunther@math.washington.edu
26130022-2488/2004/45(7)/2613/20/$22.00 © 2004 American Institute of Physics
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s1s25 is3 , s2s35 is1 , s3s15 is2 . ~1.2!

A standard representation of the Pauli matrices is

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~1.3!

The original problem of scattering nucleons should be dealt with by theN body Schro¨dinger
operator, in which many scattering channels appear. Usually the elastic process is dominant
order to ignore the inelastic processes, physicists introduced the complex two-body poten
that these inelastic scattering processes are regarded to be absorbed into the background
the origin of the terminologyoptical in analogy to the scattering and absorption of light
materials. By suitably adjusting constantsci ~which are usually energy-dependent! andRi ,a i , the
cross section calculated by this model is known to reproduce very well the experimental dat~see,
e.g., Feshbach8 or Roy and Nigam18!.

Let us consider the operator~1.1! in (L2(R3))2, where

V5a~x!s•~x3p!1W~x!, ~1.4!

anda(x), W(x) satisfy the following assumptions:
(A.1) a(x) is a complex-valued C`-function onR3 such that for somed0.0,

u]x
a a~x!u<Cae2d0uxu ;a.

(A.2) W(x) is a 232-matrix valued function onR3 with complex entries such that for som
d0.0,

uW~x!u<Ce2d0uxu.

In Sec. II, we shall show that under these assumptions, there is a discrete setE0 in a neigh-
borhood of~0,̀ ! such that forEP(0,̀ )\E0 , there exists a solutionc(x,E,v), vPS2, of the
Schrödinger equation

~2D1V!c~x,E,v!5Ec~x,E,v!

having the following asymptotic expansion:

c~x,E,v!;eiAEv•x1
eiAEr

r
f ~E;u,v!, u5x/r , r 5uxu→`.

The 232-matrix valued functionf (E;u,v) of u,vPS2 is the scattering amplitude. The ma
theorem of this paper is the following one.

Theorem 1.1:For each fixed energy EP(0,̀ )\E0 , one can uniquely reconstruct the pertu
bations a(x),W(x) from the scattering amplitude f(E;u,v).

The Born approximation at high energies is not valid in the case considered in this pape
the perturbation is energy dependent so that it is natural to consider the fixed energy prob

There has been considerable works in recent years in studying inverse scattering prob
fixed energy for the case of the Schro¨dinger equation associated to a potential, that is the two-b
problem. To solve this problem one can use Faddeev’s Green function7 and the direction depen
dent Faddeev’s Green’s function~see Ref. 12 for a review and references! or the method of
constructing complex geometrical optics solutions initiated by Caldero´n3 and the connection to the
Dirichlet-to-Neumann map~see Ref. 22 for a review and references!. The problem considered her
is more closely related to the case of the Schro¨dinger equation in the presence of a magnetic fi
studied in Ref. 5 or 16. An important ingredient in those articles is the reduction to the cas
lower order perturbation of the Laplacian by exponentiating with a pseudodifferential operato
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use a similar method to deal with the main difficulty in the optical model, which is the re
struction of the spin–orbit interactiona(x)s•(x3p). Namely by making semi-classical analys
type arguments~Lemma 5.1! and using the commutation relations of the Pauli spin matrices
reconstructa(x) using the complex Born approximation of the scattering amplitude. We shall
use the gauge invariance of the scattering amplitude and introduce an auxiliary magnetic fi
reconstruct the complex potentialW(x).

For earlier results on the scattering theory for non-self-adjoint Schro¨dinger operators see, e.g
Refs. 15, 19, 14, and 4 from the mathematical side, and Refs. 2 and 21 from the physical

Some remarks on the notations. For two Banach spacesX andY, B(X;Y) denotes the set o
all bounded operators fromX to Y. For xPR3, ^x&5(11uxu2)1/2. C’s denote various constants

II. RESOLVENT ESTIMATES AND THE SCATTERING AMPLITUDE

We shall derive in this section the analytic continuation of the resolvent of2D1V and
introduce the scattering amplitude.

A. Resolvent estimates

Let H052D in (L2(R3))2. For aPR, we define

f PHa⇔i f iHa
5ieauxu f ~x!iL2(R3),`. ~2.1!

Then, by passing to the Fourier transformation and by shifting the path ofuju-integration, for any
d.0 R0(z)5(H02z)21 defined for Imz.0 has an analytic continuation across (0,`) into the
region

Vd5$z;Im z.0%ø$z;ReAz.0, 0>Im Az.2d% ~2.2!

as aB(Hd ;H2d)-valued function. We denote this operator byR0
(1)(z). This is actually the inte-

gral operator with kerneleiAzux2yu/(4pux2yu).
For a technical reason, which will be explained in Sec. VI, we include also a magnetic

b(x). Let H5H01V, where

V5V~2 i¹x!, ~2.3!

V~j!5~2b~x!•j2 i div b~x!1ub~x!u2!I 1a~x!s•~x3j!1W~x!, ~2.4!

I being the 232 identity matrix. We shall assume that
(A.1) a(x)PC`(R3;C),b(x)PC`(R3;R3) and for somed0.0

u]x
aa~x!u1u]x

ab~x!u<Cae2d0uxu, ;a.

(A.2) W(x) is a M2(C)-valued function such that for somed0.0,

uW~x!u<Ce2d0uxu.

These assumptions imply that for 0,d,d0/2, R0
(1)(z)V is a B(H2d ;H2d)-valued analytic

function onVd and is compact for eachz. We defineE0 to be the set

E05$zPVd ;21Pspecp~R0
(1)~z!V!%. ~2.5!

Here specp(A) denotes the point spectrum of the operatorA.
Lemma 2.1: (1) There exists C.0 such that

E0ù$ i t;t.C%5B.

(2) E0 is discrete inVd .
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Proof: Supposei tPE0 and letu be the associated eigenvector. SinceR0
(1)( i t)PB(L2;H2),

we haveuPH2. Since (2D1V2 i t)u50, we then have

iuiH1
2

5~~12D!u,u!<C~ iuiH1/2
2

1tiuiL2
2

!,

which impliesiuiH1<CAtiuiL2. Using the equationu52R0
(1)( i t)Vu, we then have

iuiL2<
C

t
iuiH1<

C

At
iuiL2.

Thereforeu50 for larget.0. This proves~1!. Assertion~2! follows from the analytic Fredholm
theorem~Ref. 17, p. 204!. h

We define

R~z!5~11R0
(1)~z!V!21R0

(1)~z!, zPVd\E0 . ~2.6!

The following theorem is easily proved.
Theorem 2.2: (1) R(z) is a B(Hd ;H2d)-valued analytic function onVd\E0 .
(2) R(z)5(H2z)21 for zP$z;Im z.0%ù(Vd\E0).
(3) For zPVd\E0 ,

R~z!5R0
(1)~z!2R0

(1)~z!VR~z!. ~2.7!

For sPR, L2,s is defined by

uPL2,s⇔iuis5i~11uxu!su~x!iL2(R3),`.

Since R0
(1)(E)5(2D2E2 i0)21PB(L2,s;L2,2s) for s.1/2 and E.0 ~see, e.g., Ref. 19!, it

follows from ~2.6! that

R~E!PB~L2,s;L2,2s!, s.1/2, EP~0,̀ !\E0 . ~2.8!

In fact, letA1 andA2 be R0
(1)(E)V acting onH2d andL2,2s, respectively. Then it is easy t

see that

21Pspecp~A1!⇔21Pspecp~A2!. ~2.9!

B. Scattering amplitudes

Theorem 2.3:For EP(0,̀ )\E0 and vPS2, there exists a unique solutionc of the equation

~2D1V2E!c50

such that u5c2eiAEv•x satisfies the radiation condition

S ]

]r
2 iAEDuPL2,2a, 0,a,1/2.

Suchc is represented as

c~x,E,v!5eiAEv•x2R~E!VeiAEv•x. ~2.10!

Proof: To show existence, we have only to putc as in~2.9!. To show the uniqueness, we no
that the difference of two such solutions satisfies
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~2D2E!u52Vu, S ]

]r
2 iAEDuPL2,2a.

Thenu52R0
(1)(E)Vu. Hence ifuÞ0, 21Pspecp(A1). h

Using the resolvent equation~2.7!, we have

c~x,E,v!;eiAEv•x1
eiAEr

r
f ~E;u,v!, u5x/r ~2.11!

as r 5uxu→`, where

f ~E;u,v!52
1

4p E
R3

e2 iAEu•xVeiAEv•xdx1
1

4p E
R3

e2 iAEu•xVR~E!VeiAEv•xdx. ~2.12!

We introduce the following notation for 232-matricesf (x),g(x):

^ f ,g&5E
R3

f ~x!* g~x!dx. ~2.13!

Then f (E;u,v) is written as

f ~E;u,v!52
1

4p E
R3

e2 iAE(u2v)•xV~AEv!dx1
1

4p
^V* ~AEu!eiAEu•x,R~E!V~AEv!eiAEv•x!&,

~2.14!

where

V* ~j!52b~x!•j1a~x!s•~x3j!2 is•~x3¹a~x!!1ub~x!u21W~x!* . ~2.15!

III. DIRECTION DEPENDENT GREEN OPERATORS

The aim of this section is to construct Green operators for2D1V depending on a direction
gPS2.

A. Unperturbed operator

For e.0, we let

De5$zPC;Im z.0,uRezu,e/2%. ~3.1!

We fix an arbitrary directiongPS2.
Theorem 3.1: (1) For anyd.0 and E.0, there exists ane.0 and aB(Hd ;H2d)-valued

analytic function Ug,0(E,z) defined on De such that

~2D22izg•¹1z22E!Ug,0~E,z!5I .

(2) When z→tP(2e/2,e/2), Ug,0(E,z) has a boundary value Ug,0(E,t). Moreover

Ug,0~E,t !PB~L2,s;L2,2s!, s.1/2.

(3) For t.0,

Ug,0~E,i t! f ~x!5~2p!23/2E
R3

eix•j f̂ ~j!

~j1 i tg!22E
dj,

f̂ being the Fourier transform of f. If f is rapidly decreasing, the integral is absolutely conve
gent.
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(4) For 0,s,1, Ug,0(E,i t)PB(L2,s;L2,s21), and

iUg,0~E,i t!iB(L2,s;L2,s21)<Cs /t, t.1.

Proof: For the proof see Ref. 13, Theorem 2.10. The last assertion~4! is proved in the same
way as in Sylvester–Uhlmann,20 Lemma 3.1. h

We next observe a relation between this direction dependent Green operator an
]̄-operator. ForzPC3,Im zÞ0, let

G̃~z! f ~x!5~2p!23/2E
R3

eix•j f̂ ~j!

j212z•j
dj. ~3.2!

For hPS2 such thath•g50, let p(t)5AE1t2h andz(t)5p(t)1 i tg. Then

e2 ip(t)•xUg,0~E,i t!eip(t)•x5G̃~z~t!!. ~3.3!

We also define

Mg~t!5tG̃~z~t!!, ~3.4!

Ng f 5~2p!23/2E
R3

eix•j f̂ ~j!

2j•~h1 ig!
dj. ~3.5!

Lemma 3.2: (1) For0,s,1 and t.0,

Mg~t!PB~L2,s;L2,s21!.

(2) For fPL2,s,0,s,1,

Mg~t! f→Ng f

in L2,s21 as t→`.
The proof is the same as the one in Ref. 20, Proposition 3.6 and Ref. 13, Theorem 4.6

B. Perturbed operator

Let p52 i¹x . For zPC3, we let

H0~z!5~p1z!2, ~3.6!

and

H~z!5~p1b~x!1z!21a~x!s•~x3~p1z!!1W~x!5H0~z!1V~p1z!, ~3.7!

whereV is defined by~2.4!.
Our aim is to construct a direction dependent Green operator forH(zg)2E. The main

difficulty comes from the term 2b(x)•(p1zg)1a(x)s•(x3(p1zg)), which we are going to
eliminate by introducing a suitable pseudodifferential operator~CDO!. Namely by using the
identity

~H~zg!2E!SUg,0~E,z!S21511~@H0~zg!,S#1V~p1zg!S!Ug,0~E,z!S21,

we seekS in such a way that the right-hand side is invertible.
Before entering into the technical details, we explain the idea in the background. L

suppose for the sake of simplicity thatb(x)50. If S is a CDO belonging toS 0 to be introduced
below, the natural choice is to assume that the symbolS(x,j) of S satisfies
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2~j1zg!•¹xS~x,j!1 ia~x!s•~x3~j1zg!!S~x,j!50.

In general when one considers inverse scattering problems at a fixed energy for systems o
differential equations, one often encounters the equationz•¹xS5B(x,z)S, wherez is a complex
vector satisfying some conditions andB(x,z) is a matrix coming from the lower part of th
equation. This sort of Cauchy-Riemann type equation is difficult to solve for systems~see Ref. 6
for a recent review!. It is trivial to solve for scalar equations like in the case of the Schro¨dinger
equation in the presence of a magnetic field. However, in our case it is sufficient to solv
equation

2~j1zg!•¹xc1 ia~x!50,

and putS5eC, C5c(x,Dx)s•(x3(Dx1zg)), Dx52 i¹x . This is due to the fact that at th
level of symbols,C solves

2i ~j1zg!•¹xC5a~x!s•~x3~j1zg!!5..B~x,j1zg!,

and the symbol ofC commutes withB(x,j1zg). ~See Lemma 3.3 below.! Now the above
equation forc is just the one we encounter in considering the inverse scattering problem fo
scalar Schro¨dinger operator in a magnetic field, and the solution plays a significant role only
the zeros of (j1zg)22E. With these remarks in mind, let us return to the construction of
perturbed direction dependent Green operator.

For a sufficiently smalle.0, letx0(t)PC`(R) be such thatx0(t)51 if utu,e/2, x0(t)50 if
utu.e and let

x~j1 i tg!5x0S u~j1 i tg!22Eu2

E1t21uju2 D . ~3.8!

Note that on the support ofx(j1 i tg),

uj212i tg•j2t22Eu<e~E1t21uju2!. ~3.9!

Let us put

w~x,j1 i tg!52~2p!23/2x~j1 i tg!E
R3

eix•k
b̂~k!•~j1 i tg!

k•~j1 i tg!
dk, ~3.10!

c~x,j1 i tg!52~2p!23/2x~j1 i tg!E
R3

eix•k
â~k!

2k•~j1 i tg!
dk. ~3.11!

For mPR, let S m be the class ofCDO’s with symbolp(x,j;t) satisfying

u]x
a]j

b p~x,j;t!u<Cab^x&21~t1uju!m2ubu ;a,b, t.1.

We use the same notationS m to denote the associated class of symbols.
Lemma 3.3: (1)w(x,j1 i tg)PS 0,c(x,j1 i tg)PS 21.
(2) We have

2i ~j1 i tg!•¹xw~x,j1 i tg!52x~j1 i tg!b~x!•~j1 i tg!,

2i ~j1 i tg!•¹x@c~x,j1 i tg!s•~x3~j1 i tg!!#5x~j1 i tg!a~x! s•~x3~j1 i tg!!.

The assertion~2! follows from a direct computation. The assertion~1! is proved in the Ap-
pendix.

Let w0(t),c0(t) be CDO’s with symbolw(x,j1 i tg),c(x,j1 i tg) and let
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A~t!5w0~t!1c0~t!s•~x3~p1 i tg!!, S~t!5eA(t). ~3.12!

Lemma 3.4: Let

K~t!5~@H0~ i tg!,S~t!#1V~p1 i tg!S~t!!Ug,0~E,i t!S~t!21. ~3.13!

Then for1/2,s,1 and larget.0,

iK~t!iB(L2,s;L2,s)<Cs /t.

Proof: For two operatorsP1(t) andP2(t) we write

P1~t!;P2~t!, ~3.14!

if they satisfy for larget.0,

iP1~t!2P2~t!iB(L2,s;L2,s)<Cs /t. ~3.15!

Let L.sup21/2,s,1,1,tiA(t)iB(L2,s;L2,s) . Then we have

eA(t)5
1

2p i Euzu5L
ez~z2A~t!!21dz. ~3.16!

Therefore we have

@H0~ i tg!,eA(t)#5
1

2p i Euzu5L
ez~z2A~t!!21@H0~ i tg!,A~t!#~z2A~t!!21dz. ~3.17!

SinceA(t)PS0 by Lemma 3.3~1!, by the symbolic calculus we have

@H0~ i tg!,A~t!#5P1~t!1P2~t!, ~3.18!

whereiP2(t)iB(L2,s21;L2,s)<Cs , andP1(t) is theCDO with symbol

22x~j1 i tg!b~x!•~j1 i tg!2x~j1 i tg!a~x!s•~x3~j1 i tg!!. ~3.19!

Let Q(t) be theCDO with symbolx(j1 i tg). By ~3.18! and ~3.19!, we have

@H0~ i tg!,A~t!#52Q~t!R~t!1P3~t!, ~3.20!

whereiP3(t)iB(L2,s21;L2,s)<Cs , and

R~t!52b~x!•~p1 i tg!1a~x!s•~x3~p1 i tg!!. ~3.21!

Let us note that

@Q~t!,A~t!#PS 21, ~3.22!

@R~t!,A~t!#PS 0, ~3.23!

i~12Q~t!!Ug,0~E,i t!iB(L2,s;L2,s)<Cs /t2. ~3.24!

The estimate~3.24! follows from Theorem 3.1~3!. Then in view of Theorem 3.1~4!, we have
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@H0~ i tg!,S~t!#Ug,0~E,i t!;2
1

2p i Euzu5L
ez~z2A~t!!21R~t!Q~t!~z2A~t!!21dzUg,0~E,i t!

;2R~t!
1

2p i Euzu5L
ez~z2A~t!!22dzUg,0~E,i t!

52R~t!eA(t)Ug,0~E,i t!.

It then follows that

K~t!;~2R~t!1V~p1 i tg!!S~t!Ug,0~E,i t!S~t!21;0. ~3.25!

This proves the lemma. h

With the aid of Lemma 3.4, we define the modified direction dependent Green operat
larget.0 by

Lg~t!5S~t!Ug,0~E,i t!S~t!21~11K~t!!21. ~3.26!

By definition it satisfies

~H~ i tg!2E!Lg~t!5I . ~3.27!

We defineEg(E) to be the set ofzPDe such that

21Pspecp~Ug,0~E,z!V~p1zg!!.

Lemma 3.5: (1)Eg(E)ù$z;Im z.0% is discrete.
(2) Eg(E)ùR is a closed set of measure zero.
(3) There exists a constant C.0 such that

i t¹Eg~E! if t.C.

Proof: We have only to show the last assertion. The assertions~1! and ~2! follow from the
analytic Fredholm theorem and the well-known Riesz’ theorem on boundary values of an
functions~see, e.g., Ref. 11, p. 52!. Let K1(t)5Ug,0(E,i t)V(p1 i tg). SinceK1(t) is compact,
we have only to show that Ran(11K1(t)) is dense inL2,2s,1/2,s,1 for large t.0. For f
PC0

`(R3), let u5Lg(t)(H0( i tg)2E) f . Then we have (H0( i tg)2E)(u2 f 1K1(t)u)50.
Sinceu2 f 1K1(t)uPL2,2s,1/2,s,1, we haveu2 f 1K1(t)u50 by virtue of Theorem 2.2 of
Agmon–Hörmander.1 h

Let us define forz¹Eg(E),

Ug~E,z!5~11Ug,0~E,z!V~p1zg!!21Ug,0~E,z!. ~3.28!

Theorem 3.6.(1) As aB(Hd ;H2d)-valued function, Ug(E,z) is meromorphic on De .
(2) When z→tP(2e/2,e/2)\Eg(E), Ug(E,z) converges to Ug(E,t) and

Ug~E,t !PB~L2,s;L2,2s! s.1/2.

(3) For large t.0,

Ug~E,i t!5Lg~t!.

Proof: We show the last assertion. We have only to show that the equation (H( i tg)2E)u
50,uPL2,2s, has only a trivial solution for larget.0. Since (H0( i tg)2E)u52V(p1 i tg)u
PL2,s, we have by the uniqueness theorem of Agmon–Ho¨rmander, u52Ug,0(E,i t)V(p
1 i tg)u. Thereforeu50 by using Lemma 3.5~3!. h
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IV. FADDEEV SCATTERING AMPLITUDE

The Faddeev theory, which we have rewritten in Ref. 12, is transferred without any ess
change to the non-self-adjoint case. ForE.0, let

F0~E! f ~v!5~2p!23/2~E/4!1/4E
R3

e2 iAEv•xf ~x!dx. ~4.1!

As is well knownF0(E)PB(L2,s;L2(S2)) if s.1/2. Then forE¹E0 , the scattering amplitude is
written as, up to a constant depending only onE,

A~E!5F0~E!~V2VR~E!V!F0~E!* . ~4.2!

The scattering amplitudef (E;u,v) from ~2.12! is the integral kernel ofA(E). Let for tP
(2e/2,e/2)\Eg(E),

Rg~E,t !5eitg•xUg~E,t !e2 i tg•x. ~4.3!

Then the Faddeev scattering amplitude is defined by

Ag~E,t !5F0~E!~V2VRg~E,t !V!F0~E!* . ~4.4!

The following two theorems are proved in the same way as in Theorems 7.1 and 7.3 of R
Theorem 4.1:Let Fg(E,t) be the operator of multiplication by the characteristic function

the set$vPS2;g•v>t/AE%. Then

Ag~E,t !5A~E!12p iA~E!Fg~E,t !Ag~E,t !.

Theorem 4.2:Let K52p iA(E)Fg(E,t). Then

tPEg~E!⇔1Pspecp~K !.

Let us give a brief sketch of the proof of the above theorems. Let

Tg52p iF0~E!* Fg~E,t !F0~E!. ~4.5!

Then we have~Ref. 12, Lemma 6.4!

Rg5R2~12RV!Tg~12VRg!, ~4.6!

whereRg5Rg(E,t),R5R(E). The eigenoperatorF(E) and the Faddeev eigenoperatorFg(E,t)
are defined by

F~E!5F0~E!~12V* R~E!* !, ~4.7!

Fg~E,t !5F0~E!~12V* Rg~E,t !* !. ~4.8!

Then by the resolvent equation~4.6! we have

Fg~E,t !* 5F~E!* 1~12RV!TgVFg~E,t !* .

Using ~4.5! we get

Fg~E,t !* 5F~E!* 12p iF~E!* Fg~E,t !Ag~E,t !.

Multiplying this by F0(E)V, we obtain Theorem 4.1.
To prove Theorem 4.2 we note the following operator equation:
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11Rg,0~E,t !V5~11R0~E1 i0!V!~12K̃ !, ~4.9!

K̃5~12R~E!V!TgV, ~4.10!

whereR0(z)5(2D2z)21,Rg,0(E,t)5eitg•xUg,0(E,t)e2 i tg•x. In fact, this follows from the for-
mula

Rg,0~E,t !5R0~E1 i0!2Tg

~Ref. 12, Lemma 6.3! and the resolvent equation.
SinceE¹E0 , 11R0(E1 i0)V is invertible. Therefore

tPEg~E!⇔1Pspecp~K̃ !. ~4.11!

Letting

S152p i ~12R~E!V!F0~E!* Fg~E,t !,

S25F0~E!V,

we have

K̃5S1S2 , K5S2S1 .

Therefore

1Pspecp~K̃ !⇔1Pspecp~K !. ~4.12!

This proves Theorem 4.2.
It follows from Theorems 4.1 and 4.2 that fortP(2e/2,e/2)\Eg(E),

Ag~E,t !5~12K !21A~E!. ~4.13!

We have thus constructed the Faddeev scattering amplitudeAg(E,t) from the scattering amplitude
A(E). The kernel ofAg(E,t) is written as, up to a constant depending only onE,

Ag~E,t;u8,u!5E
R3

e2 iAE(u82u)•xV~AEu!dx2^V* ~AEu8!eiAEu8•x,Rg~E,t !V~AEu!eiAEu•x&,

~4.14!

whereV* (j) is defined by~2.15!. We now put

AEu5AE2t2v1tg, AEu85AE2t2v81tg, ~4.15!

wherev,v8PS2,v•g5v8•g50. Then the above kernel is rewritten as

E
R3

e2 iAE2t2(v82v)•xV~AEu!dx2^V* ~AEu8!eiAE2t2v8•x,Ug~E,t !V~AEu!eiAE2t2v•x&,

~4.16!

which we denote byBg(v8,v;t). SinceUg(E,t) is a boundary value of a meromorphic functio
Bg(v8,v;t) is uniquely extended to a meromorphic function onDe .
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V. RECONSTRUCTION OF THE SPIN–ORBIT INTERACTION

In this section we reconstruct the spin–orbit term fromBg(v8,v;t) defined by~4.16!. Our
intention is to consider the case without magnetic fieldb(x). However, since we shall use a
auxiliary magnetic field in the next section, we includeb(x) until Lemma 5.5.

As has been noted above,Bg(v8,v;t) is meromorphically extended toDe . By Theorem 3.6
~3!, for larget.0, Bg(v8,v; i t) has the following expression:

Bg~v8,v; i t!5E e2 iAE1t2(v82v)•xV~AEu!dx

2^V* ~AEu8!eiAE1t2v8•x,Lg~t!V~AEu!eiAE1t2v•x&, ~5.1!

where

AEu5AE1t2v1 i tg, AEu85AE1t2v81 i tg.

For jPR3, we takeg,hPS2 such thatj•g5j•h5h•g50, and put

v5v~t!5S 12
uju2

4t2D 1/2

h2
j

2t
, v85v~t!85S 12

uju2

4t2D 1/2

h1
j

2t
,

p~t!5AE1t2v~t!, p~t!85AE1t2v~t!8,

z~t!5p~t!1 i tg, z~t!85p~t!81 i tg.

We split Bg(v(t)8,v(t); i t) into two parts:

Bg~v~t!8,v~t!; i t!5Bg
(1)~t!1Bg

(2)~t!, ~5.2!

Bg
(1)~t!5E e2 i (p(t)82p(t))•xV~z~t!!dx, ~5.3!

Bg
(2)~t!52^V* ~z~t!8!eip(t)8•x,Lg~t!V~z~t!!eip(t)•x&. ~5.4!

Noting that

p~t!82p~t!5j1O~t21!,

z~t!/t5h1 ig1O~t21!,

we have by~2.4!

lim
t→`

Bg
(1)~t!/t5E e2 ix•j$2b~x!•~h1 ig!1a~x!s•~x3~h1 ig!!%dx. ~5.5!

To computeBg
(2)(t), we rewrite it as follows:

Bg
(2)~t!52^V* ~z~t!8!ei (p(t)82p(t))•x,U~t!21Lg~t!U~t!V~z~t!!&, ~5.6!

where

U~t!5eip(t)•x. ~5.7!

By ~3.3! and ~3.26!, the termU(t)21Lg(t)U(t) is rewritten as
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U~t!21Lg~t!U~t!5U~t!21S~t!U~t!•G̃~z~t!!•U~t!21S~t!21~11K~t!!21U~t!.

Let A(t) be from ~3.12! and put

B~t!5U~t!21A~t!U~t!. ~5.8!

Then we have by virtue of~3.12!

U~t!21S~t!21U~t!5e2B(t). ~5.9!

Lemma 5.1: Let

C~x,j1z~t!!5w~x,j1z~t!!1c~x,j1z~t!!s•~x3~j1z~t!!!,

and let P(t) be theCDO with symbol e2C(x,j1z(t)). Then

e2B(t)2P~t!PS 21.

Proof: Modulo S 21, B(t) is a CDO with symbolC(x,j1z(t)). Therefore for largeuzu,
(z2B(t))21 is a CDO with symbol (z2C(x,j1z(t)))21 moduloS 21. Since for largeM ,

e2B(t)5
1

2p i Euzu5M
e2z~z2B~t!!21dz,

e2B(t) is a CDO with symbole2C(x,j1z(t)), moduloS 21. h

We put

h5e1 , g5e2 , h3g5e3 , ~5.10!

C`~x!5 f 1gs•~x3~e11 ie2!!, ~5.11!

f 52~2p!23/2E
R3

eix•k
b̂~k!•~e11 ie2!

k11 ik2
dk, ~5.12!

g52~2p!23/2E
R3

eix•k
â~k!

2~k11 ik2!
dk, ~5.13!

wherekj5k•ej ,xj5x•ej and ã(j1 ,j2 ,x3) is the partial Fourier transform with respect tox1 ,x2

of a(x). We also let

f 0~x!52b~x!•~e11 ie2!1a~x!s•~x3~e11 ie2!!. ~5.14!

Lemma 5.2:

lim
t→`

1

t
Bg

(2)~t!52E
R3

e2 ix•j f 0eC`Ng~e2C` f 0!dx.

Proof: First we note

U~t!21~11K~t!!21U~t!V~z~t!!/t→ f 0~x!. ~5.15!

Let

x1~j1 i tg!5x0S 2u~j1 i tg!22Eu
E1t21uju2 D , x2~j1 i tg!512x1~j1 i tg!,
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x0(t) being as in~3.8!, and letQj be theCDO with symbol x j (j1 i tg). On the support of
x2(j1 i tg), we have

u~j1 i tg!22Eu>
e

4
~E1t21uju2!.

So we have

iUg,0~E,i t!Q2iB(L2;L2)<C/t2.

Therefore as an operator inB(L2,s;L2,s21),0,s,1,

Ug,0~E,i t!5Ug,0~E,i t!Q11O~t22!. ~5.16!

On the other hand, by Lemma 5.1, we have

Q̃1U~t!21S~t!21U~t!5Q̃1e2B(t);Q̃1P~t!, ~5.17!

andQ̃1P(t) converges strongly toe2F`(x).
Similarly U(t)21S(t)U(t) converges strongly toeC`(x). Furthermore by Lemma 3.2,

tG̃~z~t!!→Ng .

These facts prove Lemma 5.2. h

Our next aim is to computeNg(e2C` f 0). Let us note that putting]̄5 1
2(e11 ie2)•¹x , we have

4i ]̄C`5 f 0 . ~5.18!

Since]̄C` andC` commute, we also have

]̄eC`5~ ]̄C`!eC`. ~5.19!

Lemma 5.3:

E
R3

e2 ix•j f 0eC`Nge2C` f 0dx54i E
R3

e2 ix•j~ ]̄eC`!~e2C`21!dx.

Proof: The left-hand side is equal to

E
R3

e2 ix•j4i ~ ]̄C`!eC`Nge2C`4i ~ ]̄C`!dx516E
R3

e2 ix•j~ ]̄eC`!Ng~ ]̄e2C`!dx.

Using

Ng]̄e2C`5
i

4
~e2C`21!,

which follows from Liouville’s theorem, we get the lemma. h

Lemma 5.4:

E
R3

e2 ix•j f 0eC`Nge2C` f 0dx50.

Proof: By integration by parts, we have
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E
x1

2
1x2

2
,r 2

e2 ix•j~ ]̄eC`!~e2C`21!dx1 dx2

5
1

2 Ex1
2
1x2

2
5r 2

e2 ix•j~x11 ix2!~12eC`!du2E
x1

2
1x2

2
,r 2

e2 ix•jeC`]̄e2C`dx1 dx2[~ I !2~ II !.

The second term is written as

~ II !52E
x1

2
1x2

2
,r 2

e2 ix•j]̄C`dx1 dx252
1

2 Ex1
2
1x2

2
5r 2

e2 ix•j~x11 ix2!C`du.

On the other hand,eC`511C`1O(uxu22). Therefore

~ I !;2
1

2 Ex1
2
1x2

2
5r 2

e2 ix•j~x11 ix2!C`du.

h

Using ~5.5! and Lemmas 5.2, 5.4, one can compute

E
R3

e2 ix•j$2b~x!•~h1 ig!1a~x!s•~x3~h1 ig!!%dx ~5.20!

form the scattering amplitude.
Here let us recall the following formulas for spin matrices, which are proved by using

commutation relations:

~s•j!~s•h!5j•h1 is•~j3h!, ~5.21!

@s•~x3~e11 ie2!!,s•e3#52ix3s•~e11 ie2!. ~5.22!

We now reconstructa(x). We takeb(x)[0. Then by~5.20! and ~5.22!, one can recover

E e2 ix•ja~x!x3dx.

Sincej5(0,0,j3), one can recover

E
R3

a~x1 ,x2 ,x3!dx1 dx2 .

Choosing the direction ofj arbitrarily, one can reconstructa(x) by the inversion formula of the
Radon transform~see, e.g., Ref. 10!.

VI. RECONSTRUCTION OF THE COMPLEX POTENTIAL

A. Gauge invariance

In the previous section we constructed the spin–orbit terma(x)s•(x3p) from the scattering
amplitude of the operator

2D1V~p!, V~p!5a~x!s•~x3p!1W~x!.

To reconstructW(x) we shall make use of the gauge invariance.
Let c(x) be the solution of

~2D1V~p!2E!c50 ~6.1!
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having the asymptotic expansion

c;eiAEv•x1
eiAEr

r
f ~E;u,v!, u5x/r , r 5uxu→`. ~6.2!

Let c(x)5exp(2uxu2) andcl(x)5eilc(x)c(x), l being a large parameter. Thencl satisfies

~~p2bl!21V~p2bl!2E!cl50 ~6.3!

with bl(x)5l¹c(x). Sincec(x) is exponentially decreasing,cl has the same asymptotic expa
sion as in~6.2!. This means that the family of operators$(p2bl)21V(p2bl);l.0% has the
same scattering amplitude. One should also note that due to the unitary equivalence, the
exceptional pointsE0 andEg(E) are independent ofl.0.

B. Reconstruction of the complex potential

We use the same notation as in Sec. V withb replaced bybl5l¹c(x). Let

V1~j!52bl•j1as•~x3j!,

V252 i div bl2ublu22as•~x3bl!1W.

Then

V~z~t!2bl!.tV1~h1 ig!2V1~j/2!1V2 ,

V* ~z~t!82bl!.tV1* ~h2 ig!1V1* ~j/2!1V2* .

Recall that we already knowa(x) andbl(x).
We first show that up to known terms

Bg
(1)~t!1Bg

(2)~t!.E
R3

e2 ix•jW~x!dx2^e2 ix•jV1* ~h2 ig!,eC`Nge2C`~2V1~j/2!1V2!&

2^e2 ix•j~V1* ~j/2!1V2!,eC`Nge2C`V1~h1 ig!&.

In fact,

Bg
(1)~t!.tE

R3
e2 ix•jV1~h1 ig!dx2E

R3
e2 ix•jV1~j/2!dx1E

R3
e2 ix•jV2dx.

Up to a known term, this is equal to*e2 ix•jW(x)dx.
Next we note that

Bg
(2)~t!;2t2^V1* ~h2 ig!eip(t)8x,Lg~t!V1~h1 ig!eip(t)x&2t^V1* ~h2 ig!eip(t)8x,Lg~t!

3~2V1~j/2!1V2!eip(t)x&2t^~V1* ~j/2!1V2* !eip(t)8x,Lg~t!V1~h1 ig!eip(t)x&.

Since

Lg~t!5S~t!Ug,0~E,i t!S~t!21~12K~t!!1O~t23!,

the first term is a known term. Applying

Lg~t!5S~t!Ug,0~E,i t!S~t!211O~t22!,

and arguing in the same way as in the proof of Lemma 5.2, we get
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Bg
(2)~t!.2^e2 ix•jV1* ~h2 ig!,eC`Nge2C`~2V1~j/ !1V2!&2^e2 ix•j~V1* ~j/2!

1V2* !,eC`Nge2C`V1~h1 ig!&.

The right-hand side is equal to

2E eix•j~ ]̄eC`!Nge2C`~2V1~j/2!1V2!dx1E eix•j~V1~j/2!1V2!eC`Ng~ ]̄e2C`!dx

5E eix•j~Ng]̄eC`!e2C`~2V1~j/2!1V2!dx1E eix•j~V1~j/2!1V2!eC`~Ng]̄e2C`!dx,

where we have used~7.6!. Since

Nge6 iC`5
i

4
~e6 iC`21!,

this is equal to

i

4 E eix•j~12eC2`!~2V1~j/2!1V2!dx1
i

4 E eix•j~V1~j/2!1V2!~12eC`!dx.

SinceC`52 ilc(x)1g, by the stationary phase method, the term containinge6 iC` vanishes as
l→`. Here one must note thatbl(0)50. What remains is

i

2 E eix•jV2dx.

Up to a known term this is equal toi /2*eix•jW dx. We have thus reconstructedŴ(j).
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APPENDIX

We summarize here basic properties of the]̄-operator used in this paper. Note that we defi
]̄5(]/]x11 i ]/]x2)/2.

Theorem 7.1: If u f (z)u<C(11uzu)212e for some C,e.0, the solution of the equation]̄u
5 f satisfying u(z)→0 as uzu→` is unique and is given by

u~z!5
1

2p i EC

f ~z!

z2z
dz∧dz̄5

1

p E
R2

f ~x12y1 ,x22y2!

y11 iy2
dy1dy2 .

Using the identity

1

z2z
52

1

z (
k50

n S z

zD
k

1
1

z2z S z

zD
n11

we have if (11uzu)nf (z)PL1(C),

u~z!52
1

2p i (k50

n

z2k21E
C
zkf ~z!dz∧dz̄1

1

2p i
z2n21E

C

zn11f ~z!

z2z
dz∧dz̄.

In particular we have
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Theorem 7.2.If u f (z)u<C(11uzu)232e, the above solution satisfies

~x11 ix2!u~z!5
1

p E
R2

f ~y1 ,y2!dy1dy21O~ uxu21!.

From this theorem it follows that

u~x!5~2p!21E
R2

eix•k f̂ ~k!

k11 ik2
dk ~A1!

satisfies

~x11 ix2!u~x!5
i

2p E
R2

f ~y!dy1O~ uxu21!, ~A2!

if u f (y)u<C(11uyu)232e.
For f PS(R3), let

N f~x!5~2p!23/2E
R3

eix•j f̂ ~j!

2~j11 i j2!
dj. ~A3!

Then we have

1

2 S ]

]x1
1 i

]

]x2
DN f5

i

4
f , ~A4!

N f~x!5
i

4p E
R2

f ~y1 ,y2 ,x3!

x12y11 i ~x22y2!
dy, ~A5!

E
R3

~N f~x!!g~x!dx52E
R3

f ~x!~Ng~x!!dx. ~A6!

Let us prove Lemma 3.3~1!. We first note thatuj212i tg•j2t22Eu<e(E1t21uju2) im-
plies there exists a constantC.0 such that

C21t<uju<Ct, ug•
j

uju
u<Ce, ~A7!

for larget.0. Therefore we have only to show the following lemma.
Lemma 7.3: Let mPR. Suppose f(x,j;t) satisfies

u]x
a]j

b f ~x,j;t!u<Cab^x&232uau~t1uju!m2ubu ;a,b

for j, t satisfying the condition (7.7). Then

g~x,j;t!5~2p!23/2E
R3

eix•k
f̂ ~k,j;t!

k•~j1 i tg!
dk

satisfies

u]x
a]j

bg~x,j;t!u<Cab^x&21~t1uju!m212ubu ;a,b,

for j, t satisfying the condition (7.7).
Proof: We make the linear change of variablesp5Ak, where
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p15
j

t
•k, p25g•k,p35S j

t
3g D •k.

Then lettingf A(x,j;t)5 f ( tAx,j;t), we have

g~ tAx,j;t!5
i

2pt ER2

f A~x12y1 ,x22y2 ,x3 ,j;t!

y11 iy2
dy,

whose derivative is estimated as follows:

u]x
a]j

bg~ tAx,j;t!u<Cab~t1uju!m212ubu E
R2

~11ux82yu1ux3u!23

uyu
dy,

wherex85(x1 ,x2). The integral over the region$uyu,ux8u/2% is estimated as

E
uyu,ux8u/2

~11ux82yu1ux3u!23

uyu
dy<C~11uxu!22.

The integral over the region$uyu.ux8u/2% is estimated as

E
uyu.ux8u/2

~11ux82yu1ux3u!23

uyu
dy<

C

ux8u ER2
~11uyu1ux3u!23dy<

C

ux8u~11ux3u!
.

If ux8u.1, this is dominated from above byC(11uxu)21. If ux8u<1, we estimate in the following
manner:

E
ux8u/2,uyu,1

~11ux82yu1ux3u!23

uyu
dy<C~11ux3u!23E

uyu,1

dy

uyu
<C~11ux3u!23<C~11uxu!23,

E
uyu.1

~11ux82yu1ux3u!23

uyu
dy<CE

uyu,1
~11ux82yu1ux3u!23dy

<C~11ux3u!21<C~11uxu!21.

We have thus proven

u]x
a]j

bg~ tAx,j;t!u<Cab^x&21~t1uju!m212ubu.

From this we can conclude the lemma. h
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In this paper we study a new hierarchy of equations derived from the system of
isentropic gas dynamics equations where the pressure is a nonlocal function of the
density. We show that the hierarchy of equations is integrable. We construct the two
compatible Hamiltonian structures and show that the first structure has three dis-
tinct Casimirs while the second has one. The existence of Casimirs allows us to
extend the flows to local ones. We construct an infinite series of commuting local
Hamiltonians as well as three infinite series~related to the three Casimirs! of
nonlocal charges. We discuss the zero curvature formulation of the system where
we obtain a simple expression for the nonlocal conserved charges, which also
clarifies the existence of the three series from a Lie algebraic point of view. We
point out that the nonlocal hierarchy of Hunter–Zheng equations can be obtained
from our nonlocal flows when the dynamical variables are properly
constrained. ©2004 American Institute of Physics.@DOI: 10.1063/1.1756699#

I. INTRODUCTION

The dynamics of a gas are described by the equations1

ut1uux1
1

r
Px50,

r t1~ru!x50, ~1!

st1usx50,

whereu,r,s denote, respectively, the velocity, density, and entropy whileP represents the pres
sure. Here the pressure, in general, can have a functional dependence of the form

P5P~r (n),s(n)!,

wherenPZ and

r (n)5~]nr!, s(n)5~]ns!.

For an isentropic gas (s constant!, the equations in~1! take the forms

ut1uux1
1

r
P50,

~2!
r t1~ru!x50,
26330022-2488/2004/45(7)/2633/13/$22.00 © 2004 American Institute of Physics
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and have been well studied in the literature for the cases where the pressure is a local mo
of the density, i.e., it has the simple formP5P(r (0)). For example, forP5rg, gÞ0,1, Eq.~1! is
known as the polytropic gas equations, and for the choiceP521/r, the system is called the
Chaplygin gas. This class of systems are known to be Hamiltonian systems of hydrodynami2

and are integrable. Various properties associated with such systems have been derived in
several years.3–5

In this paper, we will study a new class of Hamiltonian equations derived from the isent
gas dynamics system~2! where the pressure is a nonlocal function of the density. In particular

will choose for the pressureP(v (21))52 1
2 (]21v)2, wherev[r ~we make this identification to

be consistent with the conventional choice in the literature!, leading to the dynamical equations

ut52uux1~]21v !,
~3!

v t52~uv !x.

As we will show later, this system of equations is Hamiltonian~in fact, bi-Hamiltonian!. In fact,
let us note here that the simple first order action

S5E dt dxF ~]21u!v t2
1

2
u2v2

1

2
~]21v !2G , ~4!

generates the dynamical equations in~3! as Euler–Lagrange equations and leads to one of
Hamiltonian structures to be discussed in the next section. In this first order representatio
dynamical equations have a nonlocal form.

One can, of course, take the time derivative of the first equation in~3! to obtain a local
representation of the form

utt52~uux! t1uv,
~5!

v t52~uv !x.

This is a second order representation involving only the second time derivative ofu and cannot be
given a Hamiltonian description. In fact, even a Lagrangian description for this system i
easily obtained. One can, of course, make the system of equations completely second o
which case a Lagrangian formulation is possible. However, since the properties of integrabil
best discussed within the Hamiltonian formulation, we will not pursue a Lagrangian descri
Sometimes a redefinition of variables can also convert a nonlocal equation into a loca
Indeed, with the identificationz5(]21v), the set of equations~3! take the local form

ut52uux1z, zt52uzx , ~6!

and can be described by a simple first order action of the form

S5E dt dxFzut2
1

2
~u2zx1z2!G , ~7!

which shows that the system is Hamiltonian.~The Hamiltonian structure in these new variabl
can be easily seen to be the canonical one.! However, description of the system in these variab
makes the connection with the gas dynamics less transparent.

Although the system of equations in~3!, ~5!, and~6! are equivalent, since we are interested
the integrability properties within the Hamiltonian description, we will study the system in d
in the form described in~3! keeping in mind the mapping to the Hunter–Zheng equation that
will discuss later in the paper. We will show that the hierarchy of equations associated wit
system is integrable. The system~3! is bi-Hamiltonian6,7 ~possesses two compatible Hamiltonia
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structures! and the infinite set of~nonlocal! charges can be constructed recursively. The t
Hamiltonian structures of the system possess nontrivial Casimirs~distinguished functionals! lead-
ing to three distinct infinite series of nonlocal charges and allowing us to extend the flows to
ones.8,9 As a result, we can also construct recursively an infinite set of local conserved ch
associated with the system which are in involution. The zero curvature formulation for bot
local and the nonlocal equations of the hierarchy can be given in terms of the Lie algebra v
potentials belonging to SL(2)̂U(1) ~Ref. 10! and generate the nonlocal charges in a comp
form. However, we have not yet succeeded in finding a scalar Lax description for the
equations and, consequently, the relation between the local conserved charges and a Lax
remains an open question. Finally, we show that the hierarchy of equations associated w~3!
reduce to the nonlocal hierarchy of Hunter–Zheng equations11 when properly constrained
whereas the local equations become trivial~they do not go over to the hierarchy of Harry Dy
equations12!. We note that even though we do not yet know of a physical system correspond
Eqs.~3! or ~6!, the nice integrability properties that emerge make it worth studying it in its o
right. Furthermore, from its relation with the Hunter–Zheng equation, it is quite likely that su
system of equations would find application in a physical problem.

This paper is organized as follows. In Sec. II, we show that the system is bi-Hamiltonian
obtain the two Hamiltonian structures associated with the Hamiltonian description of Eq.~3!. We
prove Jacobi identity as well as the compatibility of the two structures using the metho
prolongation. We comment on the relation between these structures and the known Lie alg
The bi-Hamiltonian nature of the system is sufficient to guarantee the integrability of the sy
We construct the recursion operator and obtain the first few charges recursively. We show t
two Hamiltonian structures have nontrivial Casimirs which allows us to construct three di
series of nonlocal charges associated with the three different Casimirs of the first Hamil
structure. The Casimir of the second Hamiltonian structure, on the other hand, allows us to
the flows to local ones. In this case, the recursion operator can be inverted and allows
construct the infinite set of local charges associated with the system recursively. By constr
these charges are in involution. We also describe briefly the matrix Lax description for the sy
In Sec. III, we present the zero curvature description of both the local as well as the no
hierarchies of equations based on the Lie algebra SL(2)^ U(1). We obtain the nonlocal charge
associated with the system from the zero curvature which also clarifies from a different pe
tive why there are three distinct series of nonlocal charges. In Sec. IV, we summarize our
as well as present some open problems. In particular, we point out how the nonlocal hierar
equations associated with~3! reduce to the nonlocal hierarchy of Hunter–Zheng equations
spite of having a zero curvature formulation of the system, we have not succeeded in obta
scalar Lax description for the local equations which remains an interesting open problem.

II. BI-HAMILTONIAN STRUCTURE

In this section, we will show that Eq.~3! is a bi-Hamiltonian system with an infinite numbe
of conserved charges. From the structure of the equations, it is easy to construct the fir
conserved charges of the system which take the forms

H15E dx v,

H25E dx uv, ~8!

H35E dx F1

2
u2v1

1

2
~]21v !2G .

From the structure of the conserved charges in~8!, we see that Eq.~3! can be written in the
Hamiltonian forms as
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S u
v D

t

5D1S dH3 /du
dH3 /dv D5D2S dH2 /du

dH2 /dv D ,

where we have defined

D15S 0 2]

2] 0 D , D25S ]21 2ux

ux 2~v]1]v !
D . ~9!

The skew symmetry of these Hamiltonian structures is manifest. The proof of the Jacobi id
for these structures as well as their compatibility can be shown through the standard met
prolongation7 which we describe briefly. Introducing the matrix univector

uW 5S u1

u2
D ,

we can construct the two bivectors associated with the two structuresD1 andD2 as

QD1
5

1

2 E dx $uW T∧D1uW %52E dx u1∧u2x,

QD2
5

1

2 E dx $uW T∧D2uW %5
1

2 E dx @u1∧~]21u1!22v u2∧u2x22ux u1∧u2#.

Using the prolongation relations for any vector fieldvW,

pr vWD1uW ~u!52u2x,

pr vWD1uW ~v !52u1x,

~10!
pr vWD2uW ~u!5~]21u1!2ux u2,

pr vWD2uW ~v !5ux u12v u2x2~v u2!x,

it is straightforward to show that the prolongations of the bivectorsQD1
andQD2

vanish,

pr vWD2uW~QD1
!5pr vWD2uW~QD2

!50,

implying thatD1 andD2 satisfy Jacobi identity. Furthermore, using~10!, it also follows that

pr vWD1uW~QD2
!1pr vWD2uW~QD1

!50.

This shows thatD1 andD2 are compatible, namely, not only areD1 andD2 genuine Hamiltonian
structures, any arbitrary linear combination of them is as well. As a result, the dynamical equ
in ~3! correspond to a bi-Hamiltonian system and, consequently, are integrable.6,7

It is worth making a few remarks about these Hamiltonian structures. We note that th
Hamiltonian structure is the standard structure that arises in systems of hydrodynamic typ~for
example, in polytropic gas dynamics4,5!. It is the second Hamiltonian structure which normally h
some interesting connection with Lie algebras. The Lie algebra structure ofD2 is not quite
manifest in the form given in~9!. However, with a change of basis

ũ5ux , ṽ5v2 1
2 ux

25v2 1
2ũ

2,

it follows that the second structure can be written as
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D̃25S 2] 0

0 2~ ṽ]1] ṽ !
D .

We recognize this to be the Lie algebra of SL(2)^ U(1) without the central charge@for SL~2!#.
This is similar to the algebra in the case of the two boson hierarchy where there is a central
present in the SL~2! algebra.10 It is also clear from this analysis that we can naturally assign
scaling dimensions@ ṽ#5@v#52, @ ũ#5@u#1151, @x#521 ~with these assignments@ t#521 for
nonlocal equations and@ t#50 for local ones as will be clear later!, which will be useful later in
connection with the zero curvature formulation of the system. For completeness, we also no
in this new basis, the first Hamiltonian structure takes the form

D̃15S 0 2]2

]2 2~ ũx]1]ũx!
D .

We will, however, continue to use, for simplicity, the variablesu,v which are conventional in the
study of such systems.

For the bi-Hamiltonian system such as in~3!, we can naturally define an associated hierarc
of commuting flows through the relation

S u
v D

t

5D1S dHn11 /du
dHn11 /dv D5D2S dHn /du

dHn /dv D , n51,2, . . . .

The gradients of the successive Hamiltonians in the hierarchy can be related through the re
operator as

S dHn11 /du
dHn11 /dv D5R†S dHn /du

dHn /dv D , ~11!

where we have defined

R5D2D 1
215S ux]

21 2]22

2v1vx]
21 2ux]

21D . ~12!

It is interesting to note that, in this case, we can invert the recursion operator to write

R215S 2 1
2 ]z]21zux]

1
2 ]z]21z

2]22 1
2 ]2zux]

21uxz] 1
2 ]2uxz]21zD , ~13!

where we have defined

z5~v2 1
2 ux

2!21/2.

This will be useful later in the construction of the local flows associated with the system. U
Eqs.~11! and ~12!, we can write the relations for the gradients explicitly as

dHn11

du
52]21ux

dHn

du
1~2v2]21vx!

dHn

dv
,

dHn11

dv
52]22

dHn

du
1]21ux

dHn

dv
, n51,2, . . . . ~14!

These can be explicitly integrated to give the infinite set of~nonlocal! Hamiltonians
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H15E dx v,

H25E dx uv,

H35E dx F1

2
u2v1

1

2
~]21v !2G ,

H45E dx F1

6
u3v2uv ~]22v !2

1

2
u ~]21v !2G ,

H55E dx F 1

24
u4v1

1

2
u2 S 2v ~]22v !2

1

2
~]21v !2D2

1

2
~]21v !2~]22v !

1
1

2
~]21~ux~]21v !!!2G , ... . ~15!

The corresponding flows~the first few! have the forms

ut1
52ux, v t1

52vx ,

ut2
52uux1~]21v !, v t2

52~uv !x , ~16!

ut3
52 1

2 u2ux1u~]21v !1]21~uxx~]22v !!,

v t3
52uvux2 1

2 u2vx12v~]21v !1vx~]22v !,... .

We note that, with the dimensionalities of the variables described earlier, all the conserved c
in ~15! have the same canonical dimension of 1 and by construction they are all in involuti

To further understand the properties of this hierarchy, let us note that the first Hamilt
structure in~9! has three Casimirs

H15E dx v,

H1
(1)52E dx ux→0,

H1
(2)5E dx u,

such that

D1S dH1 /du
dH1 /dv D5D1S dH1

(1)/du

dH1
(1)/dv D 5D1S dH1

(2)/du

dH1
(2)/dv D 50. ~17!

We remark here that the CasimirH1
(1) is trivial much like in the case of the Hunter–Zhen

equation.11 The existence of Casimirs would normally imply that the series of recursive fl
cannot be extended to negative values ofn. However, in the present case, it is not very hard
check that the second Hamiltonian structureD2 also has a Casimir of the form
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H2152E dx S v2
1

2
ux

2D 1/2

,

such that

D2S dH21 /du
dH21 /dv D50. ~18!

As a consequence, the hierarchy of flows in~16! can be extended to negative values ofn.8 We
note that the Casimir in~18! is conserved under the flows of~16!.

For negative values ofn, the gradients of the Hamiltonians will satisfy a recursion relat
involving R21 given in ~13!, and take the explicit forms

dHn

dv
5

1

2 S v2
1

2
ux

2D 21/2

]21S v2
1

2
ux

2D 21/2S ]
dHn11

du
2ux ]2

dHn11

dv D ,

~19!
dHn

du
5

1

2
]uxS v2

1

2
ux

2D 21/2

]21S v2
1

2
ux

2D 21/2S ]
dHn11

du
2ux]

2
dHn11

dv D2]2
dHn11

dv

5] ux

dHn

dv
2]2

dHn11

dv
, n522,23, . . . .

The corresponding conserved charges can now be recursively constructed and have the f

H2152E dx S v2
1

2
ux

2D 1/2

,

H2252E dx uxx S v2
1

2
ux

2D 21/2

,

H2352
1

12E dx ~vxx12uxx
2 2uxuxxx! S v2

1

2
ux

2D 23/2

, ~20!

H2452
1

8 E dx ~vxxuxx2vxuxxx!S v2
1

2
ux

2D 25/2

,

H2552E dx F 5

64S uxx
2 1S v2

1

2
ux

2D
xx
D 2

2
1

24S S v2
1

2
ux

2D
xx
D 2

2
5

192
~vx2uxuxx!S v2

1

2
ux

2D
xxx

2
1

8
uxxuxxxxS v2

1

2
ux

2D G S v2
1

2
ux

2D 27/2

, ... .

The dynamical equations following from these~the first few! take the forms

ut21
52@~v2 1

2 ux
2!21/2#x, v t21

52@ux~v2 1
2 ux

2!21/2#xx,

~21!
ut22

52 1
2 @uxx~v2 1

2 ux
2!23/2#x, v t22

52 1
2 @vx~v2 1

2 ux
2!23/2#xx, ... .

We note that these flows and the Hamiltonians for negativen are completely local. The Hamilto
nians involve increasing number of derivatives of the variables, unlike the conserved char
the polytropic gas where they are pure polynomials of the dynamical variables. Similarly, the
dynamical equations become increasingly more nonlinearly dispersive asn becomes more nega
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tive. Thus, this hierarchy of equations is very different from the usual polytropic gas syste4,5

Nonetheless, all these local charges are in involution~having been constructed from compatib
Hamiltonian structures!. We note here that, with the dimensionalities for the variables descr
earlier, all the local charges in~20! have the scaling dimension 0.

The three Casimirs in~17! can be easily checked to be conserved under the flows~21!. In fact,
we can also construct nonlocal charges fromH1

(1) recursively and they take the forms

H1
(1)52E dx ux→0,

H2
(1)52E dx ~]21v !,

~22!

H3
(1)5E dx ]21~ux~]21v !!,

H4
(1)5E dx ]21F2

1

2
~]21v !22ux ]21~ux~]21v !!G , ... .

All these charges have the dimensionality 0 and are in involution.@Note that we can obtainH2
(1)

from the trivial CasimirH1
(1) using the recursion relation~14! with the prescription (]210)5

21, for more details see Ref. 8 and references therein.# Similarly, H1
(2) also leads to the following

series of nonlocal charges which are related recursively:

H1
(2)5E dx u,

H2
(2)52E dx F1

2
u21~]22v !G ,

~23!

H3
(2)5E dx F1

6
u31]22~ux~]21v !!1v ~]22u!G ,

H4
(2)5E dx F2

1

24
u42

1

2
(]22v)22

1

2
]22(]21v)22

1

2
v(]22u2)1 v ]21(ux(]

22u))

2]22(ux]
21(ux(]

21v))G ,
The scaling dimensions for this set of charges turn out to be21. They are all conserved under th
local flows of ~21! and are in involution. The meaning of the three series of nonlocal charg
quite clear from the point of view of the existence of three Casimirs. However, in the next se
we will see within the context of the zero curvature formulation that the three series are rela
the fact that the Lie algebra of SL~2! ~related to the second Hamiltonian structure of the syste!
has three generators. We remark here that nonlocal flows can also be derived from the
charges in~22! and ~23!, but we do not get into that.

To close this section, we note that a bi-Hamiltonian system of evolution equations,

S u
v D

t

5Kn@u,v#,

is known13,14 to have a natural Lax description of the form
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]M
]t

5@M,B#,

where, we can identify

M[R,

B[Kn8.

HereKn8 represents the matrix Fre´chet derivative ofKn , defined by

Kn8S w1

w2
D5

d

de
Kn@u1ew1 ,v1ew2#U

e50

.

In this way, we can obtain a matrix Lax description~M,B are matrix operators! for the nonlocal as
well as the local equations. However, such a Lax description is not very useful since it do
directly lead to conserved charges. Therefore, we do not give details of this and study th
curvature formulation for this system in the next section.

III. ZERO CURVATURE

To construct the zero curvature for the local as well as the nonlocal equations, let us
some of the features of our system of equations. We note that the second Hamiltonian st
corresponds to the Lie algebra of SL(2)^ U(1) so that the zero curvature condition can be ba
on this algebra. Furthermore, the canonical dimensions of the variables are given by@u#50,
@v#52, @x#521, @ t#50 ~for local flows!. Since the canonical dimension oft is zero, for a zero
curvature condition of the form

] tA12]xA02@A0 ,A1#50, ~24!

we note that multiplication with the matrixA0 must preserve the canonical dimensions of
elements of any matrix and, therefore, will have the unique form

A05S @ #50 @ #521

@ #51 @ #50 D , ~25!

where@ # represents the dimensionality of the matrix element. It follows from~24! that the matrix
A1 will have the form~since@]#51)

A15S @ #51 @ #50

@ #52 @ #51D . ~26!

Following the procedure in Ref. 10 which describes the general construction of zero cur
based on SL(2)̂ U(1), andrecalling the dimensionalities of our matrices in~25! and~26!, let us
choose

A05S 2lBx1
l2

2
~2~]21A!12uxB! 2B

l3

2
~2A1lBv ! 2

l2

2
~]21A!

D ,
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A15S lux 2
1

l

l3

2
v 0

D , ~27!

where l represents a dimensionless spectral parameter andA,B are arbitrary functions of the
dynamical variables as well as the spectral parameter. The zero curvature condition~24!, in this
case, leads to the dynamical equations

ut5l~2~]21A!1uxB!2Bx,

v t5l~2uxA1~v]1]v !B!2Ax. ~28!

Since the dynamical variables are independent of the spectral parameter, it is clear that th
tions A,B must depend onl for this equation to be meaningful. Let us make a Taylor expans
in l of the form ~recall that for the local flowsn is negative!

A5 (
j 521

2unu

l j 1unuAj , B5 (
j 521

2unu

l j 1unuBj , ~29!

with

A215~ux~v2 1
2 ux

2!21/2!x , B215~v2 1
2ux

2!21/2. ~30!

Substituting~29! and ~30! into ~28!, we obtain

D2S Aj

Bj
D5D1S Aj 11

Bj 11
D , j 521,22, . . . ,2unu11,

~31!

S ut

v t
D5D1S An11

Bn11
D .

It is clear now that if we identify

Aj5
dH j

du
, Bj5

dH j

dv
, ~32!

then~31! gives the dynamical equations of the hierarchy~for any n), the two Hamiltonian struc-
tures of the system as well as the recursion relations between the conserved charges given~19!.
The first local flow forn521, for example, takes the form

ut52@~v2 1
2 ux

2!21/2#x,

v t52@ux~v2 1
2 ux

2!21/2#xx,

which coincides with the first flow in~21!.
For the nonlocal equations (n positive! let us choose

A05S 2Bx1
1

2l
~2~]21A!12uxB! 2B

1

2l S 2A1
1

l
vBD 2

1

2l
~]21A!

D ,
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A15S 1

l
ux 21

1

2l2 v 0
D .

The zero curvature condition~24!, in this case, gives

ut5~2~]21A!1uxB!2lBx,

v t5~2uxA1~v]1]v !B!2lAx.

Using a Taylor expansion of the type in~29! ~heren is positive!, namely,

A5(
j 51

n

ln2 jAj , B5(
j 51

n

ln2 jBj ,

with

A150, B151,

we obtain

D1S Aj 11

Bj 11
D5D2S Aj

Bj
D , j 51,2,. . . ,n21,

S ut

v t
D5D2S An

Bn
D .

Once again, with the identification in~32!, it is easy to see that this leads to the dynami
nonlocal equations of the hierarchy. Forn51, for example, it gives the chiral boson equation
~16!.

As we have seen, the zero curvature formulation is quite nice in that it not only give
dynamical equations, but also leads to the two Hamiltonian structures of the system as well
recursion relation for the conserved charges. It can also give the nonlocal charges~if present! of
the system.15 For example, let us consider the matrixA1 in ~27!. Then, it is straightforward to
show that as a result of the zero curvature condition~24!,

Z5P~e2*2`
` dx A1!,

is conserved. Here ‘‘P’’ stands for path ordering of the exponential. This path ordered expone
can be expanded as

Z52E
2`

`

dx A11E
2`

`

dx A1~]21A1!2E
2`

`

dx A1„]
21~A1~]21A1!…1¯ ,

and each term of the expansion will be individually conserved.~Actually, the coefficient of each
independent power ofl would be conserved. However, as we will see below, each term in
expansion leads to different powers ofl for the matrix elements, as a result of which each term
the expansion is individually conserved.! We can work out explicitly the first few terms in th
expansion to see that
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E
2`

`

dx A15S lE
2`

`

dx ux 2
1

l E
2`

`

dx

l3

2 E
2`

`

dx v 0
D 5S 0 c

l3

2 E
2`

`

dx v 0D ,

E
2`

`

dx A1~]21A1!5S l2E
2`

`

dxS ux~]21ux!2
1

2 S ]21S v2
1

2
ux

2D D D 2E
2`

`

dx ux~]211!

l4

2 E
2`

`

dx v~]21ux! 2
l2

2 E
2`

`

dx v~]211!
D

5S 2
l2

2 E
2`

`

dx~]21v ! E
2`

`

dx u

l4

2 E
2`

`

dx uv
l2

2 E
2`

`

dx ~]21v !
D ,

E
2`

`

dx A1~]21~A1~]21A1!!!

52E
2`

`

dx ~]21A1!~A1~]21A1!!

52S 2
l3

2 E
2`

`

dx ]21~ux~]21v !! lE
2`

`

dxF1

2
u21~]22v !G

2
l5

2 E
2`

`

dxF1

2
u2v1

1

2
~]21v !2G l3

2 E
2`

`

dx ]21~ux~]21v !!
D .

These are indeed the three series of nonlocal charges for our system~up to multiplicative con-
stants!. The origin of the three infinite series of charges can be understood in this approach
following manner. We note that our zero curvature condition is based on the Lie algebra S
^ U(1) and that the potentialA1 belongs to this algebra. However, the Abelian~U~1!! part of the
potential is not subjected to path ordering and, consequently, does not contribute to no
charges. On the other hand, SL~2! has three generators and the charges projected along any o
generators must be conserved. Consequently, the system possesses three infinite series of
charges.

IV. CONCLUSION

In this paper, we have studied a new system of equations derived from a gas dynamic
the pressure given by a nonlocal function of the density and have shown that the hierar
equations is integrable. We have shown that the system possesses two compatible Ham
structures and have constructed an infinite number of~nonlocal! conserved charges recursivel
The second Hamiltonian structure of this system corresponds to the centerless SL(2)^ U(1)
algebra. We have shown that the first Hamiltonian structure of the system possesses thr
trivial Casimirs while the second Hamiltonian structure has one. This allows us to exten
nonlocal flows into local ones corresponding to negative flows of the hierarchy. We have
structed an infinite series of commuting local charges associated with the system recursive
local system of equations possesses three infinite series of nonlocal charges and we ha
structed them from the three Casimirs of the first Hamiltonian structure recursively. We have
the zero curvature formulation for the system of local as well as nonlocal equations based
Lie algebra SL(2)̂ U(1). This brings out naturally the two Hamiltonian structures of the sys
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as well as the recursion relations between the conserved charges. The zero curvature form
also leads to the three infinite series of conserved nonlocal charges of the system in a
manner and relates their existence to the fact that the Lie algebra of SL~2! has three generators

There are some other interesting features of this system that we would like to discuss b
We note that the nonlocal hierarchy of flows associated with the Hunter–Zheng equation c
obtained from~16! when the dynamical variables are constrained as

u5~]22w!, v5 1
2 ~]21w!25 1

2 ux
2. ~33!

Under this reduction, the three series of nonlocal charges go over to the ones associated w
Hunter–Zheng equation. However, under this reduction, the local flows of the hierarchy be
trivial and do not go over to the Harry Dym equation.

Another interesting issue that remains open is the construction of a scalar Lax represe
for the system of local equations.~We do not expect to find a scalar Lax representation for
nonlocal flows.! It is well known that given the zero curvature formulation of a system, one
easily go over to a scalar Lax description and vice versa.16,17 In this case, however, in spite of th
fact that we have a zero curvature formulation, we have not been able to find a scala
description for this system. We have discussed the standard matrix Lax description, but fin
scalar Lax operator remains an open question that deserves further study.

ACKNOWLEDGMENTS

One of the authors~A.D.! would like to thank the members of the Physics Departmen
UFSC ~Brazil!. This work was supported in part by CNPq~Brazil! and U.S. DOE Grant No.
DE-FG-02-91ER40685.

1G. B. Whitham,Linear and Nonlinear Waves~Wiley, New York, 1974!.
2B. A. Dubrovin and S. P. Novikov, Russ. Math. Surveys44, 35 ~1989!.
3J. Verosky, J. Math. Phys.25, 884 ~1984!; M. B. Sheftel, Funct. Anal. Appl.20, 227 ~1986!; J. Verosky, J. Math. Phys
27, 3061~1986!; Y. Nutku, ibid. 28, 2579~1987!.

4P. J. Olver and Y. Nutku, J. Math. Phys.29, 1610~1988!.
5J. C. Brunelli and A. Das, Phys. Lett. A235, 597 ~1997!.
6F. Magri, J. Math. Phys.19, 1156~1978!.
7P. J. Olver,Applications of Lie Groups to Differential Equations, 2nd ed.~Springer, Berlin, 1993!.
8J. C. Brunelli and G. A. T. F. da Costa, J. Math. Phys.43, 6116~2002!.
9J. C. Brunelli, A. Das, and Z. Popowicz, J. Math Phys.45, 2646~2004!.

10A. Das and S. Roy, Mod. Phys. Lett. A16, 1317~1996!.
11J. K. Hunter and Y. Zheng, Physica D79, 361 ~1994!.
12M. D. Kruskal,Lecture Notes in Physics, Vol. 38 ~Springer, Berlin, 1975!, p. 310; W. Hereman, P. P. Banerjee, and M

R. Chatterjee, J. Phys. A22, 241 ~1989!.
13S. Okubo and A. Das, Phys. Lett. B209, 311 ~1988!; A. Das and S. Okubo, Ann. Phys.~N.Y.! 190, 215 ~1989!.
14J. C. Brunelli and A. Das, Mod. Phys. Lett. A10, 931 ~1995!.
15T. Curtright, Phys. Lett. B88, 276 ~1979!.
16V. G. Drinfeld and V. V. Sokolov, J. Sov. Math.30, 1975~1985!; Sov. Math. Dokl.23, 457 ~1981!.
17H. Aratyn, A. Das, C. Rasinariu, and A. H. Zimerman, Lect. Notes Phys.502, 213 ~1998!.
                                                                                                                



e non-
,
esting

their

In
y

ameter
tem of
arious

gative
n–
s and

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 7 JULY 2004

                    
Deformed Harry Dym and Hunter–Zheng equations
J. C. Brunelli
Departamento de Fı´sica, CFM, Universidade Federal de Santa Catarina, Campus
Universitário, Trindade, C.P. 476, CEP 88040-900, Floriano´polis, SC, Brazil

Ashok Das
Department of Physics and Astronomy, University of Rochester,
Rochester, New York 14627-0171

Ziemowit Popowicz
Institute of Theoretical Physics, University of Wrocław,
pl. M. Borna 9, 50-205, Wrocław, Poland

~Received 28 July 2003; accepted 2 April 2004;
published online 1 June 2004!

We study the deformed Harry Dym and Hunter–Zheng equations with two arbitrary
deformation parameters. These reduce to various other known models in appropri-
ate limits. We show that both these systems are bi-Hamiltonian with the same
Hamiltonian structures. They are integrable and belong to the same hierarchy cor-
responding to positive and negative flows. We present the Lax pair description for
both the systems and construct the conserved charges of negative order from the
Lax operator. For the deformed Harry Dym equation, we construct the nonstandard
Lax representation for two special classes of values of the deformation parameters.
In general, we argue that a nonstandard description will involve a pseudodifferen-
tial operator of infinite order. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1756697#

I. INTRODUCTION

The search for exactly solvable equations has acquired enormous importance since th
linear Kortweg–de Vries equation was shown to be integrable.1,2 Exactly solvable equations
linear or nonlinear, constitute a very special class of dynamical systems with many inter
properties. The significance of determining new integrable systems, as well as studying
properties and solutions, can not be overestimated. The structure of integrable systems~or partial
differential equations! is highly restrictive and, in general does not allow for deformations.
particular, the presence of arbitrary constant parameters~which cannot be transformed away b
some symmetry! is quite rare. One notable exception is the two boson equation,3 which has an
arbitrary constant parameter present, is known to be integrable. Different values of this par
reduce the model to other known soluble models. In this paper, we propose a new sys
equations, with two arbitrary constant parameters, that is exactly soluble and reduces to v
other known physical models in different limits of these parameters.

Let us recall that the Harry Dym~HD! equation,4,5

ut5~uxx
21/2!x, ~1!

and the Hunter–Zheng~HZ! equation,6

~ut1uux!x5 1
2 ux

2, ~2!

are known to be integrable and, in fact, belong to the same hierarchy corresponding to ne
and positive order flows, respectively.7 The HD equation has interest in the study of the Saffma
Taylor problem which describes the motion of a two-dimensional interface between a viscou
26460022-2488/2004/45(7)/2646/10/$22.00 © 2004 American Institute of Physics
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a nonviscous fluid.8 The HZ equation, on the other hand, arises in the study of massive ne
liquid crystals and in the study of shallow water waves.6 In this paper we will show that the
following system of two equations,

ut5&S 12luxx

A2uxx2a2luxx
2 D

x

~3!

and

uxxt5aux22uxuxx2uuxxx1
l

6
~ux

3!xx, ~4!

are integrable for arbitrary values of the constant parametersa,l. Furthermore, they belong to th
same hierarchy corresponding to the negative and positive flows respectively, much like th
and the HZ equations. It is interesting to note from~4! that whenaÞ0, it can be scaled to unity
through the scalingx→x/a, u→u/a. Therefore, looking at~4! alone, it would appear that ther
are only two meaningful values fora, namely,a50,1. Similarly, under a scalingt→t/a3/2, x
→x/a, u→u/a, the parametera in the dHD equation~3! can be scaled to unity when it is no
zero. However, there is no scaling which will scalea to unity ~when it is nonzero! simultaneously
in both the equations and, consequently, if the two systems belong to the same hierarchy,a has to
be thought of as an arbitrary parameter.

We note that, fora5l50, Eqs.~3! and~4! reduce, respectively, to the HD equation~1! and
the HZ equation~2!. For lack of a better name, we will refer to~3! as the deformed Harry Dym
equation~dHD! and~4! as the deformed Hunter–Zheng equation~dHZ!. ~The name ‘‘generalized
Harry Dym’’ equation has already been used earlier in the context of a multicomponent
Dym equation.9! For aÞ0 andl50 equation~4! was studied by Alberet al.10 and its solutions
contain solitons of the type known as umbilic solitons. Equation~4! with a51 andlÞ0 has
appeared more recently in the literature11 as describing short capillary-gravity waves and
solutions are known to become multivalued in a finite amount of time. While a matrix Lax pa
this system was provided in Ref. 11 and solubility of the model was argued based on a map
sine-Gordon equation, interesting properties, such as the bi-Hamiltonian structure, the i
number of conserved charges were not discussed at all. Our results clarify these aspe
provide direct support for the integrability of this new system. The deformed equation~3! for
arbitrarya andlÞ0 is truly a new integrable system~which to the best of our knowledge has n
been studied in the literature! and leads to the above mentioned models in different limits. T
can, therefore, be considered as a very rich system, much like the two boson hierarchy.

Our paper is organized as follows: In Sec. II, we obtain the first Hamiltonian structure o
dHD and dHZ equations. In Sec. III, a second Hamiltonian structure, compatible with the firs
is obtained. We show that both the dHD and dHZ equations are bi-Hamiltonian and, ther
integrable and belong to the same hierarchy corresponding to negative and positive flows.
IV, we present a Lax pair description of both the system of equations and construct the con
charges of negative order from the Lax operator. We obtain a nonstandard Lax description
dHD equation for the special values of the deformation parametersl50,l523/a. We argue that,
for general values of the parameters, a nonstandard Lax description will involve a pseudo
ential operator of infinite order. In Sec. V we present our conclusions.

II. dHZ AND dHD AS HAMILTONIAN SYSTEMS

To describe the dHD and the dHZ equations in a compact manner, let us introduc
following notation. Let us define

F (a,l)
2 [2uxx2a2luxx

2 , A[
12luxx

F
. ~5!
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Then, it follows from the definitions in~5! that

k[~12al!5lF21~12luxx!
25~l1A2!F2,

Fx

F3 52
1

k
AAx, ~6!

uxxx

F3 52
1

k
Ax.

These and other relations following from these prove very useful in the analysis of the
systems.

Given the dHZ equation~4!, we obtain from the definition in~5! that

Ft52FFS u2
l

2
ux

2D G
x

. ~7!

Similarly, in terms of the new variables in~5!, the dHD equation~3! can be written as

ut5& Ax, ~8!

and it follows that, under the evolution of dHD,

Ft5& A Axxx,
~9!

At52& k
Axxx

F3 .

It is now straightforward to note from Eqs.~7! and ~9! that

H215&E dx F ~10!

is conserved under both the dHD and dHZ flows.
The dHZ equation can be obtained from a variational principle,d*dtdxL, with the Lagrang-

ian density

L5
1

2
uxut1

a

2
u21

1

2
uux

22
l

24
ux

4. ~11!

This is a first order Lagrangian density and, consequently, the Hamiltonian structure can be
read out, or we can use, for example, Dirac’s theory of constraints12 to obtain the Hamiltonian and
the Hamiltonian operator associated with~11!. The Lagrangian is degenerate and the prim
constraint is obtained to be

F5p2 1
2 ux, ~12!

wherep5]L/]ut is the canonical momentum. The total Hamiltonian can be written as

HT5E dx~put2L1bF!5E dxF2
a

2
u22

1

2
uux

21
l

24
ux

41bS p2
1

2
uxD G , ~13!

whereb is a Lagrange multiplier field. Using the canonical Poisson bracket relation

$u~x!,p~y!%5d~x2y!, ~14!
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with all others vanishing, it follows that the requirement of the primary constraint to be statio
under time evolution,

$F~x!,HT%50,

determines the Lagrange multiplier fieldb in ~13! and the system has no further constraints.
Using the canonical Poisson bracket relations~14!, we can now calculate

K~x,y![$F~x!,F~y!%5 1
2 ]yd~x2y!2 1

2 ]xd~x2y!. ~15!

This shows that the constraint~12! is second class and that the Dirac bracket between the b
variables has the form

$u~x!,u~y!%D5$u~x!,u~y!%2E dz dz8$u~x!,F~z!%J~z,z8!$F~z8!,u~y!%5J~x,y!,

whereJ is the inverse of the Poisson bracket of the constraint~15!,

E dz K~x,z!J~z,y!5d~x2y! .

This last relation determines

]xJ~x,y!5d~x2y!,

or

J~x,y!5D1d~x2y!,

where

D15]21, ~16!

and can be thought of as the alternating step function in the coordinate space. We can now
constraint~12! strongly to zero in~13! to obtain

H2[2HT5E dxS a

2
u21

1

2
uux

22
l

24
ux

4D . ~17!

Therefore, the dHZ equation can be written in the Hamiltonian form

ut5D1

dH2

du
,

with D1 andH2 given by ~16! and ~17!, respectively.
From the results in Ref. 7 we know that the HD and HZ equations belong to the

hierarchy of equations. Here, too, we will see that both the dHD and the dHZ equations bel
the same hierarchy. In particular, we note that

ut5D1

dH21

du
,

with H21 , given by ~10!, yields the deformed Harry Dym equation~8!. As a result, the dHD
equation also is Hamiltonian with the same Hamiltonian structure of the dHZ equation in~16! and,
consequently, has a Lagrangian description given by
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L5 1
2 uxut2& F.

The reader can easily check thatH2 is also conserved by both the dHD and dHZ equations, m
like H21 . Note that fora5l50, these two charges reduce to the corresponding ones in the
and HZ systems.

III. dHD AND dHZ AS BI-HAMILTONIAN SYSTEMS

It is well known that a system can be shown to be integrable if it is bi-Hamiltonian.13,14This
corresponds to the system having a Hamiltonian description with two distinct Hamiltonian s
tures that are compatible. Therefore, we try to see if the dHD and the dHZ equations c
described as bi-Hamiltonian systems. For this, we have to find a second Hamiltonian desc
for the two systems.

In order to determine a second Hamiltonian structure for the two systems, we recall7 that,
whena5l50, the correspondingH21 is a Casimir of the second Hamiltonian structure for t
HD and HZ systems, namely,

D 2
(a5l50)5]22uxx ]211]21uxx ]22 ~18!

satisfies

D 2
(a5l50)

dH21
(a5l50)

du
50.

Since we knowH21 for the deformed systems which is a generalization ofH21
(a5l50) , we look for

a Hamiltonian structure for which it is a Casimir. With some work, it can be determined thatH21

given in ~10! is a Casimir of

D2[D 2
(a,l)5 1

2 ~]22F2 ]211]21F2 ]22!1l ]22uxxx]21uxxx]
22. ~19!

Note that this structure reduces to~18! whena5l50. The skew symmetry of this Hamiltonia
structure is manifest. The proof of the Jacobi identity for this structure as well as its compat
with D1 in ~16! can be determined through the standard method of prolongation described in
14, which we discuss briefly.

Performing the change of variables

w5uxx,

the Hamiltonian structures~16! and ~19! assume the forms

D15]3,

D25 1
2 ~F2]1]F2!1lwx ]21wx.

We can construct the two bivectors associated with the two structures as

QD1
5

1

2 E dx $u∧D1u%5
1

2 E dx u∧uxxx,

QD2
5

1

2 E dx $u∧D2u%5
1

2 E dx $2a u∧ux12w u∧ux2l w2u∧ux1l wx u∧~]21wx u!%.

Using the prolongation relations,
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pr vD1u~w!5uxxx,

pr vD1u~w2!52w pr vD1u~w!,

pr vD1u~wx!5~ pr vD1u~w!!x,

~20!

pr vD2u~w!52a ux12w ux2l w2ux1wx u2l wwx u1lwx ~]21wx u!,

pr vD2u~w2!52w pr vD2u~w!,

pr vD2u~wx!5~ pr vD2u~w!!x,

it is straightforward to show that the prolongation of the bivectorQD2
vanishes,

pr vD2u~QD2
!50,

implying thatD2 satisfies Jacobi identity. Using~20!, it also follows that

pr vD1u~QD2
!1pr vD2u~QD1

!50,

showing thatD1 and D2 are compatible. Namely, not only areD1 ,D2 genuine Hamiltonian
structures, any arbitrary linear combination of them is as well. Any physical system that is H
tonian with respect to these two structures, therefore, defines a pencil system and is integr
is worth pointing out here that whena5l50, the second Hamiltonian structure~18! represents
the centerless Virasoro algebra15 ~with dimension zero operators!. The structure in~19! appears to
be a highly nonlocal generalization of this algebra, but we are not familiar with any study of
an algebra in the literature.

To show that the dHD and dHZ are bi-Hamiltonian systems, we note that the charges

H15E dx ux
2, ~21!

H225
1

2k E dx FAx
2 ~22!

are also conserved by both the dHZ and dHD equations. While the charge in~21! is the unmodi-
fied charge of the HD and HZ systems~this seems to be a simple coincidence!, the charge in~22!
is a true generalization of the corresponding charge of the HD and HZ systems. With
charges, it is easy to see that the dHZ equation can be written in a truly bi-Hamiltonian fo

ut5D1

dH2

du
5D2

dH1

du
.

Similarly, the dHD equation can also be written in the bi-Hamiltonian form

ut5D1

dH21

du
5D2

dH22

du
.

Thus, we see that both the dHD as well as dHZ systems are bi-Hamiltonian with the sam
compatible Hamiltonian structures and are, therefore, integrable.

IV. THE LAX REPRESENTATION

When a system is bi-Hamiltonian, we can naturally define a hierarchy of commuting
through the relation
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ut5Kn@u#5D1

dHn11

du
5D2

dHn

du
, n50,1,2, . . . . ~23!

In the present case, both the Hamiltonian structures have Casimirs. We have already seen tH21

is a Casimir ofD2 and it can be checked that the trivial Hamiltonian

H05E dx uxx ~24!

formally defines the Casimir ofD1 ~namely, if we write formallydH0 /du 5]2, it is annihilated
by D1). As a result, the system of flows can be extended to both positive and negative in
values forn. In this way, we see that much like in the HD and HZ systems,7 the dHD and dHZ
systems also belong to the same hierarchy corresponding to the negative and positive flow

Let us introduce the recursion operator following from the two Hamiltonian structures a

R5D2D 1
21.

Then, it follows from~23! that

Kn115R Kn,

and

dHn11

du
5R†

dHn

du
, ~25!

where

R†5]21uxx ]211~2a1uxx! ]222l uxx ]21uxx ]21 ~26!

is the adjoint ofR. The conserved charges for the hierarchy can, of course, be determin
principle recursively from~25!. However, in practice, integrating the recursion relation is hig
nontrivial. Therefore, we look for a Lax representation for the system of dHD and dHZ equa
which will allow us to construct the conserved charges directly.

It is well known16,17 that for a bi-Hamiltonian system of evolution equations,ut5Kn@u#, a
natural Lax description

]M

]t
5@M ,B#,

is easily obtained where, we can identify

M[R†,

B[Kn8.

HereKn8 represents the Fre´chet derivative ofKn , defined by

Kn8@u# v5
d

de
Kn@u1ev#U

e50

.

For the dHD and dHZ system of equations in~3! and ~4!, respectively, we have

B dHD[K225& k ]2F23],
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B dHZ[K15~2a1uxx! ]211]S u2
l

2
ux

2D .

The two systems have the sameM5R† given in ~26!. It can now be checked that

]M

]t
5@M ,B dHD#,

]M

]t
5@M ,B dHZ#, ~27!

do indeed generate the dHD and the dHZ equations and, thereby, provide a Lax pair f
system.

One of the advantages of a Lax representation is that they directly give the conserved c
of the system. From the structure of~27!, it follows that TrM (2n11)/2 are conserved, where ‘‘Tr’’
represents Adler’s trace.18 We note that

Tr M ~2n11!/250, n>1,

Tr M1/25E dx F,

Tr M 2 ~1/2!52
1

2k E dx FAx
2, ~28!

Tr M 2 ~3/2!5
3

k E dx S 4
Axx

2

F
1

1

k
FAx

4D ,

].

The first two nontrivial charges correspond respectively toH21 ,H22 given in Eqs.~10! and~22!,
constructed earlier by brute force. In fact, allH2n21 with positiven>0 can be constructed from
Tr M 2 @(2n21)/2# and by construction~namely, because of the nature of~27!!, they are conserved
under both the dHD and dHZ flows. Unfortunately, as is clear from~28!, this procedure does no
yield the chargesHn with positive integer values. These are, in general, nonlocal and even i
HD and HZ case, construction of these charges relies primarily on the recursion relation~25!. It
remains an interesting question to construct these charges in a more direct manner.

The Harry Dym equation has a Gelfand–Dikii representation for the Lax pair, while the
equation does not. We will now discuss the existence of such a Lax representation for the
equation. A spectral problem associated with the dHD equations can be obtained from the
sion relation~25! ~see Ref. 19, and references therein! as follows. Introducing a spectral paramet
m and defining

c2~x,t,m!5 (
n50

`

mn
dHn

du
,

we note that the recursion relation~25! can be written compactly as~recall thatH0 is a Casimir of
D1)

~D12mD2!c250,

or
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~12mR†! c250, ~29!

which defines an eigenvalue problem for the eigenfunctionc2 with eigenvalue 1/m. A linear
eigenvalue problem can be derived from this if we can factorize the operator (12mR†).

Let us note that the operatorR† in ~26! can be rewritten in the form

R†5 1
2 @]21~F (a,l)

2 1X!]211~F (a,l)
2 1X!]22#, ~30!

where

X5 (
n51

Xn]2n,

and the coefficientsXn can be determined recursively to be

X150,

X25
l

4
uxxx

2 ,

X352 1
2 X2,x,

].

Whenl50, it follows thatX50 and thatF (a,l50)
2 is a simple function. In this case, the eige

value problem~29! can be factorized as

~12R†! c252 ]21f22 ] f3S ]22
m

4
F (a,l50)

2 Df50,

where we have identified

f25~]22c2!.

This shows that if the linear equation

S ]22
m

4
F (a,l50)

2 Df50

is satisfied, then~29! will hold and this identifies the Lax operator for the system to be

L5
1

F (a,l50)
2 ]2.

In fact, it can be readily checked that whenl50, the hierarchy of dHD equations can be obtain
from the non-standard Lax equation

]L

]tn
54&@L,~L (2n21)/2!>2#.

The conserved quantities for this system can be obtained from TrL (2n21)/2, n50,1,2, . . . .
On the other hand, whenlÞ0, the coefficientsXn are nontrivial andX represents a pseudo

differential operator. The factorization, in such a case, is not so simple and, in principle w
involve an infinite series of terms. For arbitrary values ofk, the terms in the series can possibly
determined recursively. However, this is not very interesting. We simply note here that fo
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special valuek54, the infinite series of terms seems to have a simpler compact form and th
operator, in such a case, has the form

Lk545
1

F
]

1

F
]2

1

4
Ax]

21Ax],

and, in this case, the hierarchy of dHD equations can be obtained from the nonstanda
representation

]Lk54

]tn
54&@Lk54 ,~Lk54

(2n21)/2!>2#.

The conserved quantities, in this case, also follow from TrLk54
(2n21)/2 and up to multiplicative

factors, they have the forms given in~28! with k54. A simple Lax description for arbitraryl,
however, remains an open question.

V. CONCLUSION

In this paper, we have studied the general system of dHD and dHZ equations. We have
that both these systems are bi-Hamiltonian and, therefore, integrable and belong to the
hierarchy corresponding to negative and positive flows. The Lax pair for the two syste
equations have been derived and conserved charges corresponding to negative intege
follow from the Lax operator. A simple construction of the charges for positive integer va
remains an open question. Forl50, we have constructed a nonstandard Lax representation fo
dHD equation, which involves a purely differential Lax operator. For arbitrary values ofl, we
have argued that a nonstandard Lax representation will necessarily involve a Lax operator
is a pseudodifferential operator of infinite order. For the particular case ofk54, however, this
takes a simpler compact form.
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Expansion around half-integer values, binomial sums,
and inverse binomial sums
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Föhringer Ring 6, D-80805 Mu¨nchen, Germany

~Received 13 February 2004; accepted 1 April 2004;
published online 8 June 2004!

I consider the expansion of transcendental functions in a small parameter around
rational numbers. This includes in particular the expansion around half-integer
values. I present algorithms which are suitable for an implementation within a
symbolic computer algebra system. The method is an extension of the technique of
nested sums. The algorithms allow in addition the evaluation of binomial sums,
inverse binomial sums and generalizations thereof. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1758319#

I. INTRODUCTION

The expansion of higher transcendental functions1,2 occurs frequently in many areas of sc
ence. In particular, one encounters these functions in the calculation of higher order correct
scattering processes in particle physics. In a previous publication we considered the expan
transcendental functions in a small parameter around integer values.3,4 The restriction to integer
values is in general sufficient for the evaluation of loop integrals arising in massless quantum
theories. However, the inclusion of particle masses in loop integrals5–13 or the evaluation of phase
space integrals14–20can lead to half-integer values. It is therefore desirable to extend the algo
of Refs. 3, 4 to include at least half-integer values. Here I report on algorithms for the expa
of transcendental functions around rational numberp/q, wherep andq are integers. In particula
this includes the half-integer case.

Each term in the expansion is expressed through multiple polylogarithms.21,22 Compared to
the pure integer case, the extension to rational numbersp/q introduces naturally theqth roots of
unity in the arguments of the polylogarithms. All algorithms are based on manipulations
special form of nested sums. These nested sums are generalizations of Euler–Zagier sum23,24 or
harmonic sums.25–29The algorithms presented here can be implemented into a symbolic com
algebra system like Form27,30 or GiNaC.31

As a spin-off, the methods presented here allow the evaluation of binomial sums,5,6 inverse
binomial sums5,7–9,32,33and generalizations thereof. Inverse binomial sums are sometimes e
ated with the help of log-sine integrals.10,11In the Appendix, I compare the log-sine approach w
the one presented here.

This paper is organized as follows: Sec. II recalls the definition and main properties of n
sums and multiple polylogarithms. It is a brief summary of Ref. 3. Section III introduces roo
unity and gives the basic algorithms for the expansion around rational numbers. Section IV
binomial sums and generalizations thereof. Section V deals with inverse binomial sum
generalizations thereof. Section VI gives some simple applications to massive loop integra
phase space integrals. Finally, Section VII contains a summary and the conclusions. The Ap
compares this approach to log-sine integrals and collects some important relations for po
rithms of low weight.

a!Heisenberg fellow of the Deutsche Forschungsgemeinschaft.
26560022-2488/2004/45(7)/2656/18/$22.00 © 2004 American Institute of Physics
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II. A SUMMARY OF KNOWN PROPERTIES OF NESTED SUMS

In this section I shortly review properties of particular forms of nested sums, which are c
Z-sums andS-sums. Details can be found in Ref. 3.Z-sums are defined by

Z~n;m1 , . . . ,mk ;x1 , . . . ,xk!5 (
n> i 1. i 2.¯. i k.0

x1
i 1

i 1
m1

¯

xk
i k

i k
mk

~1!

and form a Hopf algebra. If the sums go to infinity (n5`) the Z-sums are identical to multiple
polylogarithms~note that we use here the reversed notation for multiple polylogs and multiple
values as compared to Refs. 3, 21!:21

Z~`;m1 , . . . ,mk ;x1 , . . . ,xk!5Lim1 , . . . ,mk
~x1 , . . . ,xk!. ~2!

For x15¯5xk51 the definition reduces to the Euler–Zagier sums:23,24

Z~n;m1 , . . . ,mk ;1, . . . ,1!5Zm1 , . . . ,mk
~n!. ~3!

For n5` andx15¯5xk51 the sum is a multiplez-value:22

Z~`;m1 , . . . ,mk ;1, . . . ,1!5zm1 , . . . ,mk
. ~4!

The multiple polylogarithms contain as the notation already suggests as subsets the c
polylogarithms Lin(x),34 as well as Nielsen’s generalized polylogarithms35

~5!

the harmonic polylogarithms36

~6!

and two-dimensional harmonic polylogarithms.37 The usefulness of theZ-sums lies in the fact,
that they interpolate between multiple polylogarithms and Euler–Zagier sums. In addition
interpolation is compatible with the algebra structure.

In addition toZ-sums, it is sometimes useful to introduce as wellS-sums.S-sums are defined
by

S~n;m1 , . . . ,mk ;x1 , . . . ,xk!5 (
n> i 1> i 2>¯> i k>1

x1
i 1

i 1
m1

¯

xk
i k

i k
mk

~7!

and form an algebra. TheS-sums reduce forx15¯5xk51 ~and positivemi) to harmonic sums:27

S~n;m1 , . . . ,mk ;1, . . . ,1!5Sm1 , . . . ,mk
~n!. ~8!

TheS-sums are closely related to theZ-sums, the difference being the upper summation bound
for the nested sums: (i 21) for Z-sums,i for S-sums. It is advantageous to introduce bothZ-sums
andS-sums, since some properties are more naturally expressed in terms ofZ-sums while others
are more naturally expressed in terms ofS-sums. One can easily convert from one notation to
other.

Basic manipulations involving nested sums are:
Conversion:

Z~n; . . . !→S~n; . . . !,
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S~n; . . . !→Z~n; . . . !. ~9!

Multiplication:

Z~n; . . . !Z~n; . . . !→Z~n; . . . !,
~10!

S~n; . . . !S~n; . . . !→S~n; . . . !.

Convolution:

(
i 51

n21
xi

i m Z~ i 21; . . . !
yn2 i

~n2 i !m8
Z~n2 i 21; . . . !→Z~n21; . . . !. ~11!

Conjugation:

2(
i 51

n S n
i D ~21! i

xi

i m S~ i ; . . . !→S~n; . . . !. ~12!

Conjugation and convolution:

2 (
i 51

n21 S n
i D ~21! i

xi

i m S~ i ; . . . !
yn2 i

~n2 i !m8
S~n2 i ; . . . !→S~n21; . . . !. ~13!

These algorithms are described in Ref. 3. It is worth to recall some technical steps to evalu
conjugation in Eq.~12!, since the same pattern of steps will be used in Sec. IV. To evaluate
conjugation it is convenient to introduce yet another type of sum as follows:

B~n;N;m1 , . . . ,mk ;x1 , . . . ,xk!5 (
i 15n11

N

(
i 25 i 111

N

¯ (
i k5 i k2111

N x1
i 1

i 1
m1

x2
i 2

i 2
m2

¯

xk
i k

i k
mk

. ~14!

TheseB-sums can be used to expressS-sums with upper summation limitn in terms ofS-sums
with upper summation limitN:

S~n;m1 , . . . ,mk ;x1 , . . . ,xk!5S~N;m1 , . . . ,mk ;x1 , . . . ,xk!

2S~N;m2 , . . . ,mk ;x2 , . . . ,xk!B~n;N;m1 ;x1!

1S~N;m3 , . . . ,mk ;x3 , . . . ,xk!B~n;N;m1 ,m2 ;x1 ,x2!

2¯1~21!kB~n;N;m1 , . . . ,mk ;x1 , . . . ,xk!. ~15!

Equation~15! also allows us to express aB-sum recursively in terms ofS-sumsS(N; . . . ) and
S(n; . . . ):

B~n;N;m1 , . . . ,mk ;x1 , . . . ,xk!5~21!kS~n;m1 , . . .mk ;x1 , . . . ,xk!

2~21!kS~N;m1 , . . .mk ;x1 , . . . ,xk!

1~21!kS~N;m2 , . . .mk ;x2 , . . . ,xk!B~n;N;m1 ;x1!2¯

1~21!kS~N;mk ;xk!B~n;N;m1 , . . . ,mk21 ;x1 , . . . ,xk21!.

~16!

Finally, it is convenient to introduce raising and lowering operators as follows:
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~x1!m
•15

1

m!
lnm~x!,

x1
• f ~x!5E

0

x dx8

x8
f ~x8!, ~17!

x2
• f ~x!5x

d

dx
f ~x!.

It is understood that in the second line only functions which are integrable atx50 are considered
With the help of raising operators aB-sumB(n;`; . . . ) may beexpressed as follows:

B~n;`;m1 , . . . ,mk ;x1 , . . . ,xk!

5~xk
1!mk~xk21

1!mk21
¯~x1

1!m1
xk

12xk

xk21xk

12xk21xk
¯

x1 . . . xk

12x1 . . . xk
~x1¯xk!

n. ~18!

Some important integrals related to the raising operators are

x1
1@12~12x1x2!n#5(

i 51

n
1

i
@12~12x1x2! i #,

x1
1

x1x2

12x1x2
@12~12x0x1x2!n#

52~12x0!n(
i 51

n
1

i S 1

12x0
D i

@12~12x0x1x2! i #

1~12~12x0!n!(
i 51

N
~x1x2! i

i
1x1

1
x1x2

12x1x2
~x1x2!N~12~12x0!n!. ~19!

To evaluate the conjugation in Eq.~12! one first converts theS-sum toB-sums and introduces the
the raising operators. This allows to perform all sums explicitly and one is left with the inte
corresponding to the raising operators. With the help of Eq.~19! one can systematically perform
these integrals and convert them back into nested sums.

The basic manipulations in Eqs.~9!–~13! are the building blocks to reduce the following tw
generic types of sums to singleZ-sums:
Type A:

(
i 51

n
xi

~ i 1c!m

G~ i 1a11b1«!

G~ i 1c11d1«!
¯

G~ i 1ak1bk«!

G~ i 1ck1dk«!
Z~ i 1o21,m1 , . . . ,ml ,x1 , . . . ,xl !; ~20!

Type B:

(
i 51

n21
xi

~ i 1c!m

G~ i 1a11b1«!

G~ i 1c11d1«!
¯

G~ i 1ak1bk«!

G~ i 1ck1dk«!
Z~ i 1o21,m1 , . . . ,ml ,x1 , . . . ,xl !

3
yn2 i

~n2 i 1c8!m8

G~n2 i 1a181b18«!

G~n2 i 1c181d18«!
¯

G~n2 i 1ak8
8 1bk8

8 «!

G~n2 i 1ck8
8 1dk8

8 «!

3Z~n2 i 1o821,m18 , . . . ,ml 8
8 ,x18 , . . . ,xl 8

8 !. ~21!
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Here, allaj , aj8 , cj , andcj8 are integers,c,c8, are non-negative integers, ando,o8 are integers.
For sums of type A the upper summation limitn may extend to Infinity. In the rest of the paper
relax the condition onaj , aj8 , cj andcj8 to allow for rational numbers. Reference 3 contains
addition two generic types~labeled type C and D in Ref. 3! involving a conjugation. These type
do not allow an extension to rational numbers along the lines of this paper. The conjuga
however related to two other important types of sums, which are generalizations of binomi
inverse binomial sums. They are treated in Secs. IV and V of this paper.

III. ALGORITHMS FOR THE EXPANSION AROUND RATIONAL NUMBERS

In this section I extend the algorithms for the expansion of transcendental functions to
the expansion around rational numbers. Sec. III A introduces roots of unity. Roots of unit
useful for the refinement algorithm in Sec. III B, which allows us to express anS-sumS(n; . . . )
as a combination ofS-sums, whose upper summation limit is an integer multiple ofn. Section
III C treats the expansion of Euler’s Gamma function around rational numbers. Finally, in
III D all pieces are assembled and the algorithms for the expansion of functions of type A a
around rational numbers are given. A restriction on these algorithms is given by the fac
rational numbers have to appear in the same place in the numerator and in the denominat
restriction is relaxed in Sec. IV~a rational number only in the numerator! and Sec. V~a rational
number only in the denominator!.

A. Roots of unity

We define a short-hand notation for the roots of unity:

r q
p5expS 2p ip

q D . ~22!

Here,q is a positive integer andp is a non-negative integer. We will need a few properties of
qth roots of unity. Powers of theqth roots of unity are periodic moduloq:

~r q
p! j 1q5~r q

p! j . ~23!

Sums of powers of theqth roots of unity yield

(
p50

q21

~r q
p!m5H q, m50 modq,

0, mÞ0 modq.
~24!

If m50 modq, the proof of the relation is trivial. In the casemÞ0 modq we may assume tha
0,m,q ~due to the periodicity!. Thenr q

mÞ1 and we have

(
p50

q21

~r q
p!m5 (

p50

q21

~r q
m!p5

12~r q
m!q

12r q
m 50. ~25!

From Eq.~24! we obtain immediately

1

q (
l 50

q21

~r q
l !m1p5H 1, for m5nq2p,

0, otherwise.
~26!

Since this sum occurs frequently, we introduce the notation

dp,q~m!5
1

q (
l 50

q21

~r q
l !m1p. ~27!
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Equation~26! will be useful to convert sums with upper summation limitn to sums with upper
summation limit (q•n). Note thatdp,q(m) is idempotent:

dp,q~m!•dp,q~m!5dp,q~m! for all integerm. ~28!

Some examples for the half-integer case are

d0,2~n!5 1
2 @11~21!n#,

~29!

d1,2~n!5 1
2 @12~21!n#.

B. Refinements of S-sums

An S-sumS(n;m1 , . . . ;x1 , . . . ) with upper summation limitn can be expressed as a com
bination ofS-sums with upper summation limit (q•n), whereq is a positive integer. The algo
rithm proceeds recursively in the depth of theS-sum. For the empty sum one has

S~n!5S~q•n!. ~30!

For aS-sum of the form

S~n;m1 ,m2 , . . . ;x1 ,x2 , . . . !5(
i 51

n x1
i

i m1
S~ i ;m2 , . . . ;x2 , . . . ! ~31!

the algorithm converts first the subsumS( i ;m2 , . . . ;x2 , . . . ) to a combination of subsums
S(q• i ; . . . ). Finally, the outermost sum is converted according to

(
i 51

n
xi

i m S~q• i ; . . . !5qm(
i 51

q•n

d0,q~ i !
1

i m ~x1/q! iS~ i ; . . . !

5qm21(
p50

q21

(
i 51

q•n
1

i m ~r q
px1/q! iS~ i ; . . . !. ~32!

This completes the algorithm for the conversion ofS-sumsS(n; . . . ) to S(q•n; . . . ). As an
example we have

S~n;1,1;x1 ,x2!5S~2n;1,1;Ax1,Ax2!1S~2n;1,1;Ax1,2Ax2!

1S~2n;1,1;2Ax1,Ax2!1S~2n;1,1;2Ax1,2Ax2!. ~33!

Note that as a consequence of the refinement algorithm one obtains relations like

Lim~x2!52m21@Lim~x!1Lim~2x!#. ~34!

C. Expansion of the gamma function

For the expansion of the gamma function around positive integer values one has the
known formula

G~n111«!

G~11«!
5G~n11!expS 2 (

k51

`

«k
~21!k

k
Sk~n!D . ~35!

For the expansion around rational numbers one finds
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GS n112
p

q
1« D

GS 12
p

q
1« D 5

GS n112
p

qD
GS 12

p

qD expS 2 (
k51

`

«k
~2q!k

k (
j 51

qn
dp,q~ j !

j k D

5

GS n112
p

qD
GS 12

p

qD expS 2
1

q (
l 50

q21

~r q
l !p(

k51

`

«k
~2q!k

k
S~q•n;k;r q

l !D . ~36!

Here,n andq are positive integers andp is an integer with 0<p,q and gcd(p,q)51. For the
casep50 andq51 this reduces to the formula Eq.~35!. Equation~36! is derived as follows: One
starts from the expansion of the logarithm of the Gamma function:

ln GS n112
p

q
1« D5 ln GS n112

p

qD1 (
k51

`
«k

k!
c (k21)S n112

p

qD . ~37!

Herec (k21)(x) is the polygamma function defined as

c (k21)~x!5
dk

dxk ln G~x!. ~38!

From the recurrence formula for the polygamma function

c (k21)~x11!2c (k21)~x!52G~k!S 2
1

xD k

~39!

one obtains

c (k21)S n112
p

qD5c (k21)S 12
p

qD2G~k!~21!k(
i 51

n S 1

i 2
p

q
D k

. ~40!

The sum in the last term of Eq.~40! is then rewritten in terms ofS-sums with upper summation
limit ( q•n) with the help of Eq.~26!.

D. Expansion around rational numbers

In this section we generalize the algorithms A and B, which expand the transcendenta
in Eqs.~20! and~21! around integers to algorithms for the expansion around rational numbe
the following we will always assume thatqj is a positive integer and thatpj is an integer with
0<pj,qj and gcd(pj ,qj )51. We restrict ourselves here to ratios of Gamma function of the fo

GS n1aj2
pj

qj
1bj« D

GS n1cj2
pj

qj
1dj« D , ~41!

wheren, aj , andbj are integers. Here the same fractionpj /qj occurs in the numerator and th
denominator. In products of these ratios, different fractions are allowed, like, for example,
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G~n1a12 1
2 1b1«!

G~n1c12 1
2 1d1«!

G~n1a22 2
3 1b2«!

G~n1c22 2
3 1d2«!

. ~42!

The restriction to ratios of the form~41! ensures that the prefactorsG(n112p/q) from the
expansion of the Gamma function in Eq.~36! cancel between the numerator and the denomina
The restriction in Eq.~41! will be relaxed in Secs. IV and V. We now consider sums of the typ
and B, where we allow the substitutions

aj→aj2
pj

qj
, cj→cj2

pj

qj
,

aj8→aj82
pj8

qj8
, cj8→cj82

pj8

qj8
,

c→c2
p0

q0
, c8→c82

p08

q08
, ~43!

in Eqs.~20! and ~21!. For example, a sum of type A involving rational numbers is of the form

(
i 51

n
xi

S i 1c2
p0

q0
D m

GS i 1a12
p1

q1
1b1« D

GS i 1c12
p1

q1
1d1« D ¯

GS i 1ak2
pk

qk
1bk« D

GS i 1ck2
pk

qk
1dk« D S~ i 1o,m1 , . . . ,x1 , . . . !,

~44!

where c0 is a non-negative integer,o and all aj , cj are integers. When dealing with ration
numbers it is more convenient to work withS-sums instead ofZ-sums and we replaced theZ-sum
in Eq. ~20! by a S-sum in Eq.~44!. Due to the conversion algorithm the two formulations a
equivalent.

The algorithms for the expansion in« of these sums starts by reducing the offsetso ando8 in
the subsumsS( i 1o;m1 , . . . ;x1 , . . . ) andS(n2 i 1o8;m18 , . . . ;x18 , . . . ) to zero. Then, using the
identity

G~x11!5xG~x! ~45!

for the gamma function, the ratios of the gamma functions are brought to the form

GS i 112
pj

qj
1bj« D

GS i 112
pj

qj
1dj« D or

GS n2 i 112
pj8

qj8
1bj8« D

GS n2 i 112
pj8

qj8
1dj8« D . ~46!

They are then expanded in«, using Eq.~36!. This yieldsS-sums with upper summation limi
(qj• i ) or (qj8•(n2 i )). Now, let q5 lcm(q0 ,q1 , . . . ,qk) be the least common multiple ofq0 ,
q1 , . . . ,qk and letq85 lcm(q08 ,q18 , . . . ,qk8) be the least common multiple ofq08 ,q18 , . . . ,qk8 Using
the refinement algorithm we can convert any occuringS-sum S(qj i ; . . . ) to S-sums with upper
summation limit (q• i ). Similar any S-sum S(qj8(n2 i ); . . . ) is converted toS-sums S(q8(n
2 i ); . . . ). Products ofS-sums are then converted into singleS-sums with the help of the multi-
plication algorithm. After partial fractioning one arrives at the following forms:
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Type A: (
i 51

n
xi

S i 1c2
p0

q0
D m S~qi; . . . !,

~47!

Type B: (
i 51

n21
xi

S i 1c2
p0

q0
D m S~qi; . . . !S~q8~n2 i !; . . . !,

whereq0 dividesq. For sums of type A one then reduces the offsetc to zero and one arrives a
sums of the form

(
i 51

n
xi

S i 2
p0

q0
D m S~qi, . . . !. ~48!

Using Eq.~26! this sum can be written as

(
i 51

n
xi

S i 2
p0

q0
D m S~qi, . . . !5qmxp/q(

i 51

qn

dp,q~ i !
~x1/q! i

i m S~ i 1p; . . . !

5qm21(
l 50

q21

~r q
l x1/q!p(

i 51

qn
~r q

l x1/q! i

i m S~ i 1p; . . . !, ~49!

where p5p0q/q0 is an integer with 0<p,q. Finally, reducing the offsetp of the subsum
S( i 1p; . . . ) to zero, one arrives atS-sums with upper summation limit (qn).

For sums of type B one first refines the subsumsS(qi; . . . ) and S(q8(n2 i ); . . . ) to
S(q̂i ; . . . ) andS(q̂(n2 i ); . . . ), respectively. Hereq̂5 lcm(q,q8) is the least common multiple o
q andq8. The next step consists in rewriting

(
i 51

n21
xi

S i 1c2
p0

q0
D m S~qi; . . . !S~q~n2 i !; . . . !

5qmxp/q (
i 51

qn2q

dp,q~ i !
~x1/q! i

~ i 1qc!m S~ i 1p; . . . !S~qn2 i 2p; . . . !, ~50!

which brings us back to the integer case.
This completes the necessary modifications for the extension towards the expansion

rational numbers for the algorithm A and B.

IV. BINOMIAL SUMS AND GENERALIZATIONS

Here we study sums of the form

1

GS 12
p

qD (
n51

` GS n112
p

qD
G~n11!

x0
n

nm0
S~n;m1 , . . . ,mk ;x1 , . . . ,xk!. ~51!

This relaxes the condition~41! and allows one unbalanced fraction
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GS n112
p

qD
G~n11!

. ~52!

A special case of the form in Eq.~51! are binomial sums

(
n51

` S 2n
n D zn

nm0
S~n;m1 , . . . ,mk ;x1 , . . . ,xk!, ~53!

which are obtained by settingp51, q52, x054z in Eq. ~51! and by noting the identity

S 2n
n D54n

G~n1 1
2!

G~ 1
2!G~n11!

. ~54!

Binomial sums have been studied in Refs. 5 and 6. The evaluation of the sums in Eq.~51! follows
the same pattern of steps as the evaluation of the conjugation in Eq.~12!, as given in Ref. 3. Due
to Eq. ~15! we may replace in Eq.~51! the S-sumS(n; . . . ) with S-sumsS(`; . . . ) andB-sums
B(n;`; . . . ) and it issufficient to study sums of the form

1

GS 12
p

qD (
n51

` GS n112
p

qD
G~n11!

x0
n

nm0
B~n;`;m1 , . . . ,mk ;x1 , . . . ,xk!

52~xk
1!mk~xk21

1!mk21
¯~x1

1!m1~x0
1!m0

xk

12xk

xk21xk

12xk21xk
¯

x1¯xk

12x1¯xk

3@12~12x0x1¯xk!
2(12 ~p/q) !#. ~55!

To derive the r.h.s. of Eq.~55! we first introduced the raising operatorsx1 , then performed
explicitly all geometric sums fromB(n;`;0, . . . ,0;x1 , . . . ,xk) and finally performed the remain
ing sum with the help of the hypergeometric summation formula

1

GS 12
p

qD (
n51

` GS n112
p

qD
G~n11!

xn52@12~12x!2(12 p/q)#. ~56!

We then perform succesivly the integrations corresponding to the raising operators. Due
appearance of rational numbers in the exponent, the set in Eq.~19! is no longer sufficient and ha
to be supplemented with additional equations. Nevertheless, the principle stays the same
integration preserves the structure, such that multiple integrations can be performed iterativ
reducem0 we have

x0
1@12~12x0x1!2(12 p/q)#5q(

n51

`
1

n
@d0,q~n!2dq2p,q~n!#@12~12x0x1!n/q#,
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x0
1dq2p,q~n!@12~12x0x1!n/q#

5qdq2p,q~n!(
i 51

`
1

i
@d0,q~ i !2dq2p,q~ i !#@12~12x0x1! i /q#

1qdq2p,q~n!(
i 51

n
1

i
dq2p,q~ i !@12~12x0x1! i /q#. ~57!

To reducem1 ,m2 , . . . ,mk we have in the general casex0Þ1:

x1
1

x1x2

12x1x2
@12~12x0x1x2!2(12 p/q)#

52q~12x0!2(12 ~p/q) !H (
n51

`
1

n
@d0,q~n!2dq2p,q~n!#S 1

12x0
D n/q

@12~12x0x1x2!n/q#J
1@12~12x0!2(12 ~p/q) !# (

n51

N
1

n
~x1x2!n

1x1
1

x1x2

12x1x2
~x1x2!N@12~12x0!2(12 ~p/q) !#, ~58!

x1
1dq2p,q~n!

x1x2

12x1x2
@12~12x0x1x2!n/q#

52q~12x0!n/qdq2p,q~n!H (
i 51

`
1

i
@d0,q~ i !2dq2p,q~ i !#S 1

12x0
D i /q

@12~12x0x1x2! i /q#

1(
i 51

n
1

i
dq2p,q~ i !S 1

12x0
D i /q

@12~12x0x1x2! i /q#J
1dq2p,q~n!@12~12x0!n/q#(

i 51

N
1

i
~x1x2! i1dq2p,q~n!x1

1
x1x2

12x1x2
~x1x2!N@12~12x0!n/q#.

In the special casex051 we have instead

x1
1

x1x2

12x1x2
@12~12x1x2!2(12~p/q!)#

5
1

12
p

q

@12~12x1x2!2(12~p/q) !#1 (
n51

N
1

n
~x1x2!n1x1

1
x1x2

12x1x2
~x1x2!N, ~59!

x1
1

x1x2

12x1x2
@12~12x1x2!n/q#52

q

n
@12~12x1x2!n/q#1(

i 51

N
1

i
~x1x2! i1x1

1
x1x2

12x1x2
~x1x2!N.

Equations~58! and~59! introduce an arbitrary integerN. It is worth noting that Eqs.~58! and~59!
hold for any integerN. We will take the limitN→` in the end. It is clear that in this limit term
of the form

~x1!m
x

12x
xN5 (

i 5N11

`
xi

i m ~60!
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can be neglected. Some examples are

1

G~ 1
2!

(
n51

` G~n1 1
2!

G~n11!

xn

n
52 ln 222 ln~11A12x!,

1

G~ 1
2!

(
n51

` G~n1 1
2!

G~n11!

xn

n2 52@ ln 2 ln~11A12x!1 ln 2 ln~12A12x!2Li11~2A12x,1!

2Li11~A12x,21!2Li2~21!2~ ln 2!2#,

1

G~ 1
2!

(
n51

`

(
j 51

n G~n1 1
2!

G~n11!

xn

n

yj

j

52 Li11SA12x,2A12xy

12x D 12 Li11S 2A12x,A12xy

12x D
22 Li11S A12x,2

1

A12x
D 22 Li11S 2A12x,

1

A12x
D

14 Li2~2A12xy!24 Li2~21!12 ln
11A12x

12A12x
ln

11A12xy

12x

11
1

A12x

. ~61!

V. INVERSE BINOMIAL SUMS AND GENERALIZATIONS

In this section I consider sums with one unbalanced rational number in the denomi
Examples of these type are sums of the form

GS 12
p

qD (
n151

`
G~n11a!

GS n11b2
p

qD x1
n1

3 (
n251

n121 x2
n2

~n12n2!m1
¯ (

nk2151

nk2221 xk21
nk21

~nk222nk21!mk22 (
nk51

nk2121 xk
nk

~nk212nk!
mk21nk

mk
. ~62!

Note the slightly different structure of (nl 112nl) in the denominators of the subsums. Only in t
innermost sum a factornk appears in the denominator. Changing the summation variables ac
ing to

n15 j 11 j 21¯1 j k , n25 j 21¯1 j k , . . . , nk5 j k , ~63!

this sum is equivalent to

GS 12
p

qD (
j 151

`

¯ (
j k51

`
G~ j 11¯1 j k1a!

GS j 11¯1 j k1b2
p

qD
x1

j 1

j 1
m1

~x1x2! j 2

j 2
m2

¯

~x1¯xk!
j k

j k
mk

. ~64!

A special case of this form are inverse binomial sums
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(
n51

`
1

S 2n
n D

zn

nm1
, ~65!

which are obtained by settingp51, q52, a5b51, k51 andx15z/4 in Eq. ~64!. Inverse bino-
mial sums have been studied in Refs. 5, 7–9, 32, and 33 and have been related in the liter
log-sine integrals.10,11 Here I follow a different path for the evaluation of inverse binomial sum
The method presented here is closely connected to the transformation

x85
2x

12x
, ~66!

whose inverse transformation is again given by

x5
2x8

12x8
. ~67!

To start with the evaluation of sums of type~64! one replaces all factors 1/j by

1

j
5 lim

l→0

G~ j 1l!

G~ j 111l!
. ~68!

The original sum is recovered as thel→0 limit of the regularized sum. The introduction of th
regularization inl allows us to extend the lower summation boundary of all sums from 1 t
This can be done recursively according to

(
j 51

`

f ~ j !52 f ~0!1(
j 50

`

f ~ j !. ~69!

f (0) corresponds to a sum of lower depth. We therefore deal with sums of the type

GS 12
p

qD (
j 150

`

¯ (
j k50

`
G~ j 11¯1 j k1a!

GS j 11¯1 j k1b2
p

qD x1
j 1~x1x2! j 2

¯~x1¯xk!
j k

3F G~ j 11l!

G~ j 1111l!G
m1

¯F G~ j k1l!

G~ j k111l!G
mk

. ~70!

For these sums we have the following integral representation:

GS 12
p

qD
GS b2a2

p

qD E0

1

duua21~12u!b2a2 ~p/q! 21E
0

1

dt1t1
l21

¯E
0

1

dti kt i k
l21~12ut1¯t i 1

x1!21

3~12uti 111¯t i 2
x1x2!21

¯~12uti k2111¯t i k
x1¯xk!

21, ~71!

where

i 15m1 , i 25m11m2 , . . . , i k5m11¯1mk . ~72!

For the integration variableu we now perform the substitution
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u→12u, ~73!

and we obtain for Eq.~71!,

GS 12
p

qDG~a!

GS b2a2
p

qD (
j 150

`

¯ (
j k50

` GS j 11¯1 j k1b2a2
p

qD
GS j 11¯1 j k1b2

p

qD E
0

1

dt1t1
l21

¯E
0

1

dti kt i k
l21

3~2t1¯t i 1
x1! j 1~12t1¯t i 1

x1!2 j 121
¯~2t i k2111¯t i k

x1¯xk!
j k

3~12t i k2111¯t i k
x1¯xk!

2 j k21

5

GS 12
p

qDG~a!

GS b2a2
p

qD (
n150

`

¯ (
nk50

nk21 GS n11b2a2
p

qD
GS n11b2

p

qD E
0

1

dt1t1
l21

¯E
0

1

dti kt i k
l21

3~2t1¯t i 1
x1!n12n2~12t1¯t i 1

x1!2n11n221
¯~2t i k2211¯t i k21

x1¯xk21!nk212nk

3~12t i k2211¯t i k21
x1¯xk21!2nk211nk21~2t i k2111¯t i k

x1¯xk!
nk

3~12t i k2111¯t i k
x1¯xk!

2nk21. ~74!

Note that the substitution Eq.~73! induces the transformationx→2x/(12x) as follows:

@12~12u!x#2c5~12x!2cF12S 2x

12xDuG2c

. ~75!

As a sideremark it is worth noting that as a special case one obtains by this procedu
transformation of the hypergeoemetric function

2F1~a,b;c;x!5~12x!2a
2F1S a,c2b;c;

2x

12xD5~12x!2b
2F1S c2a,b;c;

2x

12xD .

The purpose of the substitution in Eq.~73! is to change the ratio of gamma functions from

G~ j 11¯1 j k1a!

GS j 11¯1 j k1b2
p

qD to

GS j 11¯1 j k1b2a2
p

qD
GS j 11¯1 j k1b2

p

qD . ~76!

In the last form, the rational numberp/q appears both in the numerator and the denominator
can therefore be treated with the methods discussed in Sec. III. It remains to perform the in
tion over t1 , . . . ,t i k

. These integration are recursively done according to the formula

E
0

1

dt1t1
a21~2t0t1x!n~12t0t1x!2n2c5

G~n1a!

G~n1c! (
k5n

`
G~k1c!

G~k111a!
~2t0x!k~12t0x!2k2c.

As a net result we obtain a rooted tree with side-branches, which can be expanded inl and
converted to nested sums with the help of the algorithms discussed in Ref. 3 and in Sec. III.
final result all poles inl cancel and one can extract thel0-term, which yields the evaluation of th
inverse binomial sum Eq.~62!. Some examples are
                                                                                                                



ctions
space

mples

tegral

of the

is one
w that

in the

2670 J. Math. Phys., Vol. 45, No. 7, July 2004 S. Weinzierl

                    
GS 1

2D (
n51

`
G~n11!

G~n1 1
2!

xn

n
5x ln

12x

11x
,

GS 1

2D (
n51

`
G~n11!

G~n1 1
2!

xn

n2 52Li11~x,1!1Li11~x,21!2Li11~2x,1!1Li11~2x,21!,

GS 1

2D (
n51

`

(
j 51

n
G~n11!

G~n1 1
2!

xn

n

yj

j
52Li11~y,1!2Li11~2y,1!1Li11~y,21!1Li11~2y,21!

2xFLi11S x,
y

x D1Li11S x,2
y

x D2Li11S 2x,
y

x D
2Li11S 2x,2

y

x D G2x ln~12xy!ln
12x

11x
, ~77!

wherex5A2x/(12x) andy5A2xy/(12xy).

VI. APPLICATIONS

In this section I give some applications of the techniques described in the previous se
relevant to the calculation of Feynman loop integrals with massive particles or to phase
integrals. The first example concerns a one-loop triangle with a uniform internal massm15m2

5m35m and two vanishing external momentap1
25p2

250. The third external momentump3
2

5p2 is kept arbitrary. Such diagrams are for example relevant to Higgs physics. Specific exa
are Higgs production viagg→H or Higgs decay into two photonsH→gg. In both cases the
interaction proceeds via an internal top quark loop. It is well known that the corresponding in
in dimensional regularization is proportional to7,38

3F2S 1,1,11«;
3

2
,2;

p2

4mtop
2 D . ~78!

Here«5(42D)/2 denotes the deviation from four space–time dimensions. The expansion
hypergeometric function to sufficient high order in« is a nontrivial task.7,9 The expansion can be
accomplished systematically with the methods presented here. First one notices that there
unbalanced half-integer number in the denominator. With the results of Sec. V one can sho

3F2S 11a1«,11a2«,11a3«;
3

2
1b«,C1c«; zD

5~12z!212a1«
G~ 3

2 1b«!G~C1c«!

G~11a1«!G~11a3«!G~ 1
2 1~b2a2!«!G~C211~c2a3!«!

3 (
n50

`
G~n111a1«!

G~n1C1c«! S 2z

12zD
n

(
j 50

n

3
G~ j 111a3«!

G~ j 11!

G~ j 1 1
2 1~b2a2!«!

G~ j 1 3
2 1b«!

G~n2 j 1C211~c2a3!«!

G~n2 j 11!
. ~79!

This yields a nested sum where all half-integer numbers are balanced in the numerator and
denominator. This expression can now be expanded systematically in« with the algorithms de-
scribed in Sec. III. For the example mentioned above one finds
                                                                                                                



space
vables

heavy

2671J. Math. Phys., Vol. 45, No. 7, July 2004 Expansion around half-integer values

                    
3F2S 1,1,11«;
3

2
,2; zD52

1

2z
~12z!2«H Li11SA 2z

12z
,1D 1Li11S 2A 2z

12z
,1D

2Li11SA 2z

12z
,21D 2Li11S 2A 2z

12z
,21D

12«FLi111SA 2z

12z
,1,1D 1Li111S 2A 2z

12z
,1,1D

2Li111SA 2z

12z
,21,21D 2Li111S 2A 2z

12z
,21,21D G1O~«2!J .

~80!

As a second example I discuss briefly phase space integrals. Analytic results for phase
integrals are needed for example in the calculation of higher order corrections for jet obser
as integrals over approximation terms within the subtraction method.14,17,18,39An example is the
integral over a subtraction term, which approximates the emission of a soft gluon from a
quark pair. This integral is given by14

VQQ~r 0 ,«!5S r 0

2 D 22«E
0

1

drr 22«21~12r !2«~12r 0r !21E
21

1

ds~12s2!2«@~2~12r 0r !2~12r 0!!

3~12s0s!212~12r 0!~12s0s!22#, ~81!

where

s05Ar 0~12r !

12r 0r
. ~82!

This integral corresponds to the following triple sum:

VQQ~r 0 ,«!5
G~12«!

G~«! S r 0

2 D 22«

(
i 50

`

(
j 50

`

(
k50

`

~21! i

3~11~21! j !r 0
k1 j /2 G~ i 1 j 11!

G~ i 1 j 122«!

G~ i 1«!

G~ i 11!

G~k22«!G~ j /2112«!G~k1 j /2!

G~k11!G~ j /2!G~k1 j /21123«!

3F22~12r 0!~21 j !
j 12k

j G . ~83!

Using the methods of Sec. III this sum can be expanded systematically in«. The result is

VQQ~r 0 ,«!5
1

« S 12
1

2

11r 0

Ar 0

ln
11Ar 0

12Ar 0
D 22 ln r 02 ln2S 11Ar 0

12Ar 0
D 1

1

Ar 0

ln S 11Ar 0

12Ar 0
D

2
11r 0

2Ar 0
FLi2~Ar 0!2Li2~2Ar 0!12 Li2S 11Ar 0

2 D 22 Li2S 12Ar 0

2 D
1Li2S Ar 021

2Ar 0
D 2Li2S Ar 021

Ar 0
D 1Li2S 1

11Ar 0
D 2Li2S 12Ar 0

11Ar 0
D

22 ln r 0 lnS 11Ar 0

12Ar 0
D 1

1

2
ln2 21 ln 2 ln

Ar 0

11Ar 0

1 ln~12Ar 0!lnS 11Ar 0

Ar 0
D
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1
1

2
ln2~11Ar 0!2

1

2
ln 2~12Ar 0!G1O~«!. ~84!

VII. SUMMARY AND CONCLUSIONS

In this paper I reported on algorithms which allow the expansion of certain transcend
functions in a small parameter around rational values. These algorithms extend the ones
expansion around integer values and are based on the manipulation of specific forms of
sums. Of particular importance is the case of the expansion around half-integer values. Th
occurs frequently in the calculation of radiative corrections in quantum field theories with ma
particles. The methods presented in this paper allow a systematic approach for the calcula
these integrals.

APPENDIX A: LOG-SINE INTEGRALS

Inverse binomial sums are often expressed in terms of log-sine integrals. In this appe
briefly summarize the results from the literature. The following inverse binomial sum ca
evaluated with elementary functions as follows:

GS 1

2D (
n51

`
G~n11!

GS n1
1

2D
xn

n
5

2Ax arcsin~Ax!

A12x
. ~A1!

This result agrees with the one given in Eq.~77!. In the literature, evaluations of inverse binomi
sums of higher weights are given in terms of log-sine functions:5,7–11,32,33

GS 1

2D (
n51

`
G~n11!

GS n1
1

2D
zn

nm 52 (
j 50

m22
~22! j

j ! ~m222 j !!
~ ln 4z!m222 jLsj 12

(1) ~u!, ~A2!

whereu52 arcsinAz and the log-sine functions are defined by

Lsj
(k)~u!52E

0

u

du8~u8!k lnj 2k21U2 sin
u8

2 U. ~A3!

By analytic continuation the log-sine functions are then related to polylogarithms.9 A simple
example is given by

Ls2
(0)~u!5Cl2~u!, ~A4!

involving the Clausen function Cl2 . The Clausen functions Cln are given in terms of polyloga
rithms by

Cln~u!5H 1

2i
@Lin~eiu!2Lin~e2 iu!#, n even,

1

2
@Lin~eiu!1Lin~e2 iu!#, n odd.

~A5!

APPENDIX B: RELATIONS FOR POLYLOGARITHMS

Multiple polylogarithms of low weight can be expressed in terms of ordinary logarithms
polylogarithms. Relations relevant to the examples in this paper are
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Li1~x!52 ln~12x!,

Li 11~x,1!5 1
2 ln2~12x!,

Li 11~x,21!5
1

2
z22

1

2
ln2 22 ln~12x!ln~11x!1 ln 2 ln~11x!2Li2S 11x

2 D ,

Li 11~x,y!5 ln~12x!ln~12y!1Li2S 2y

12yD2Li2S 2y~12x!

12y D ,

Li 111~x,1,1!52 1
6 ln3~12x!,

Li 111~x,21,21!5 1
2 z2 ln 22 7

8 z32 1
6 ln3 22 1

2 ln~12x!ln2~11x!1 1
2 ln 2 ln2~11x!

2 ln~11x!Li2S 11x

2 D1Li3S 11x

2 D . ~B1!

More relations can be found in Refs. 37 and 40.
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The use of the so~2,1! algebra for the study of the two-electron atoms is suggested.
The radial part of the two-electron function is expanded into the products of the
one-electron functions. These one-electron functions form complete, entirely dis-
crete set and are identified as the eigenfunctions of one of the generators of the
so~2,1! algebra. By applying this algebra we are able to express all the matrix
elements in analytic and numericaly stable form. For matrix elements of the two-
electron interaction this is done in three steps, all of them completely novel from
the methodological point of view. First, repulsion integrals over four radial func-
tions are written as a linear combination of the integrals over two radial functions
and the coefficients of the linear combination are given in terms of hypergeometric
functions. Second, combining algebraic technique with the integration by parts we
derive recurrence relations for the repulsion integrals over two radial functions.
Third, the derived recurrence relations are solved analytically in terms of the hy-
pergeometric functions. Thus we succeed in expressing the repulsion integrals as
rational functions of the hypergeometric functions. In this way we resolve the
problem of the numerical stability of calculation of the repulsion integrals. Finally,
as an illustration, the configuration interaction calculation of the lowest lying states
of the He atom is discussed. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1760844#

I. INTRODUCTION

Two-electron atoms~like He, H2, Li1) are of great importance for their relative simplicit
There are primarily three interesting problems to be studied on the two-electron atoms. First
the nonrelativistic Schro¨dinger equation can be solved very accurately for the ground as we
low excited states,1–13 the relativistic and QED effects can be taken into account13–18 and com-
pared to the experiment.19–22This yields together with the study of the hydrogenlike atoms pre
test of QED as a fundamental theory of the interaction of the electrically charged particles23–25

The second interesting point is the study of resonances.26–28 This was stimulated by the exper
mental discovery of the strong correlation effects in the doubly excited states of helium29 and led
to new theoretical concepts, like approximate quantum numbers30–32 and others. For an excellen
review of these methods, see Ref. 33. Third, if the many-electron wave function is searched
the form of expansion of a properly symmetrized product of the one-electron functions a
necessary matrix elements can be reduced either to one- or two-electron matrix elements w
the number of the electrons involved. Therefore, if we find an effective method of calcul
these matrix elements for the two-electron atoms, this method can be directly applied toall atoms
and to the simplest molecules where it is physically reasonable to use orbitals localized
center.

For low lying states of the two-electron atoms with low nuclear charge, the best appro
the one based on the use of the explicitly correlated functions.1–11,13 This method consists o
considering the interelectronic distancer 12 as one of the coordinates. For example, for theS-states
26740022-2488/2004/45(7)/2674/20/$22.00 © 2004 American Institute of Physics
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of helium, the two electron wave function is considered as a function of three variablesr 1 , r 2 , and
r 12, c5c(r 1 ,r 2 ,r 12). However, the disadvantage of this method is that transition to the th
electron atoms is very difficult34 and increasing the number of the electrons further the met
quickly loses its attractivity. Therefore, the method is not generally considered as a suitab
for solving the many-electron problem.

The most accurate available method applicable for many electron problems is the con
tion interaction method~CI! ~see e.g., Refs. 35, 36!. This method has been applied on the tw
electron atoms either for finding some general trends of behavior of correlation energy li
angular dependence, optimization of the screening constant, and so on37–44or in combination with
the complex scaling method~see, e.g., Ref. 45! for a description of resonances.26–28,31,32

However, the problem is when one wants to perform very large scale CI calculation t
very accurate results. Then one encounters what is usually refered to as the effect of
dependence of the basis set. Due to numerical errors, for large basis sets the linear indep
of the basis functions is lost. Thus, from some point the inclusion of more basis functions do
improve the variational results. To avoid this, one should keep the basis functions ortho
However, this requirement causes the highly excited functions to have large number of nod
to change their sign frequently. That leads to the numerical instability of the calculation o
repulsion integrals.

This effect is quite general and appears also in the case of the explicitely correlated fun
However, here the convergence of the method is so fast that very accurate results are o
before the problem appears.

To ensure numerical stability for the large scale CI calculations nonanalytic types of the
functions like B-splines12 or piecewise polynomials41 or analytic types with many parameters28

were invoked.
The aim of this paper is to suggest an efficient analytic method for calculating the one

two-electron matrix elements applicable to all atoms and with numerical stability under con
In this paper, a great deal of attention is devoted to the calculation of the repulsion int

and the numerical stability of such a procedure. We expand the two-electron wave functio
the symmetrized product of the complete, entirely discrete one-electron basis set. This bas
in literature often refered to as a Sturmian one and its use goes back to the classical p
Hylleraas.46 However, in contrast to the usual treatment we identify these basis functions a
eigenfunction of one of the generators of the so~2,1! algebra.47–52 This algebra is used for the
calculation of the radial integrals appearing in the multipole expansion. We first introduc
analog to the Wigner–Eckart theorem for the so~2,1! algebra, i.e., we write the product of tw
radial functions as a linear combination of the radial functions. The coefficients of the l
combination can be expressed in terms of the hypergeometric functions. In this way we redu
two-dimensional integration over four radial functions to the two-dimensional integration ove
radial functions. Combining commutations relations of the so~2,1! algebra and analytic integratio
by parts we derive the reccurence relations for the integrals over two radial functions. In thi
we reduce all the integrals to the integrals over nodeless functions. These integrals are ca
analytically. Finally, the derived reccurence relations are solved analytically in terms of th
pergeometric functions. Thus, we are able to express all the repulsion integrals as rationa
tions of the hypergeometric functions. Succeeding in this, this paper represents the solution
problem of the numerical instability for the large scale CI calculations.

The problem considered in this paper was already tackled in Ref. 53. For the follo
reasons we believe that our solution is better suited for the computational purposes than tha
in Ref. 53. First, when writing the products of the Laguerre polynomials as a linear combin
of the Laguerre polynomials we succeded in expressing the coefficients of the linear combi
in terms of the hypergeometric functions. Second, our recurrence relations for the integra
much more simpler than that derived in Ref. 53. Third, we were able to solve them in terms
hypergeometric functions. In this way all possible numerical instabilities are localized into
calculation of the well-known hypergeometric functions. These functions were thoroughly i
tigated by mathematicians and are known for long time. Once the values of these functio
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calculated, the computation can be run in the double presicion arithmetics. In Ref. 53, the n
cally unstable parts of the calculation had to be performed in integer arithmetics. On the
hand, at the present stage, the method described in this paper is less general than that give
53. Possible generalizations of our method are indicated in the conclusions and will be des
in detail in the forthcoming paper.

The paper is organized as follows: First, the algebraic solution of the hydrogen atom by m
of the so~2,1! Lie algebra is described. Second, the problem of the helium atom is put into
form suitable for the use of so~2,1! algebra. Then we turn to the calculation of the repuls
integrals. Relying on the usual multipole expansion and integrating out the angular degr
freedom in the usual manner, we concentrate on the calculation of the radial integrals. Th
methods for calculation of the radial integrals are described. The first one consists of the exp
of the radial functions into the Slater-type orbitals, i.e., into the products of the expone
function and power ofr . It is shown that this method is numerically unstable and reason of
instability is clarified. The second, ‘‘quasialgebraic’’ method is that described above. Finally,
illustration, the CI calculation for the lowest lying states of helium atom is made and the op
zation of the screening constant is discussed.

We would like to stress that we are not going to compete with the techniques using exp
correlated functions. We apply the method for the states where CI is known to be convergin
slowly to see numerical stability of our computation of the integrals. It is reasonable to expec
for other states the performance of the method will be better.

II. ALGEBRAIC TREATMENT OF THE HYDROGEN ATOM

In this section we introduce the so~2,1! algebra and show its use for the solution of t
Schrödinger equation for hydrogen atom. For more detailed discussion see, e.g., Ref. 47. We
the same notation as that in Refs. 47 and 48.

Let us consider the Schro¨dinger equation for the hydrogen atom in atomic units

F2
¹2

2
2

1

r Gc5Ec. ~1!

The key idea for solving this equation algebraically is to transform this equation into the equ
for the eigenvaluesn of the operatorT3

T3u l ,n&5nu l ,n&, ~2!

where the operatorT3 equals

T35
1

2 S rpr
21

l ~ l 11!

r
1r D . ~3!

Herepr is the conjugated radial momentum

pr52 i S d

dr
1

1

r D , ~4!

l ( l 11) is the eigenvalue ofL2, the square of the angular momentum andn is the principal
quantum number~see below!.

Equation~1! can be transformed to Eq.~2! as follows. Using the expression for the Lapla
operator in the spherical coordinates

¹25pr
21

L2

r 2 , ~5!

multiplying Eq. ~1! by r and making the scaling transformationr→nr we get
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F1

2
r S pr

21
L2

r 2 D2n2ErGc5nc. ~6!

We separate the angular and radial degrees of freedom

^xuc&5^r u l ,n&^nu l ,m&, ~7!

wheren is a unit vector pointing in arbitrary direction and^nu l ,m& are spherical harmonics, th
eigenfunctions of the square and the third component of the angular momentum,L2 and L3 ,
respectively. Setting

E52
1

2n2 , ~8!

Eqs.~2! and ~6! are the same.
The advantage of this reformulation of the problem of the hydrogen atom is that first, a

show below, the problem of the eigenvalues of the operatorT3 can be solved purely algebraicall
second, the spectrum of the operatorT3 is purely discrete. Therefore, this operator is much m
advantageous for description of bound atomic states than the usual operator in Eq.~1!.

The eigenvalues of the operatorT3 can be obtained by observation thatT3 and the operators

T15
1

2 S rpr
21

l ~ l 11!

r
2r D ~9!

and

T25rpr ~10!

are closed under the commutation and form the so-called so~2,1! Lie algebra

@T1 ,T2#52 iT3 , ~11!

@T2 ,T3#5 iT1 , ~12!

and

@T3 ,T1#5 iT2 . ~13!

Proceeding in analogy with the usual treatment of the so~3! algebra of the components of th
angular momentum we introduce the ladder operators

T65T16 iT2 . ~14!

From the commutation relations~12! and ~13! we get

@T3 ,T6#56T6 . ~15!

Applying the last equation to the eigenvectorsu l ,n& we get after some manipulation

T3~T6u l ,n&)5~n61!~T6u l ,n&). ~16!

It is clear from the last equation that the vectorsT6u l ,n& are the eigenvectors of the operatorT3

with the eigenvalues corresponding ton61. Therefore, we can write

T6u l ,n&5a6~ l ,n!u l ,n61&, ~17!
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wherea6( l ,n) are numbers specified as follows. From Eqs.~14!, ~11!, ~9!, ~10!, and~3! we get
successively

T1T25T1
21T2

21 i @T2 ,T1#5T1
21T2

22T35T3
22 l ~ l 11!2T3 . ~18!

Applying the last equation to the eigenvectorsu l ,n& we get from Eqs.~2! and ~17!

a1~ l ,n21!a2~ l ,n!5n22n2 l ~ l 11!5~n1 l !~n2 l 21!. ~19!

Requiring that the spectrum of the operatorT3 is bounded from below, i.e., there exists somenmin

such that

T2u l ,nmin&50, ~20!

we get from Eq.~19! that a2( l ,nmin)50. This implies

nmin5 l 11. ~21!

Therefore, the eigenvalue spectrum of the operatorT3 starts atn5 l 11 and then increases by 1 u
to the infinity. Since the energyE is given by Eq.~8! we identify n with the usual principal
quantum number.

To determine the numbersa6( l ,n) uniquely we require that the eigenvectorsu l ,n& are nor-
malized (̂ l ,nu l ,n&51). It leads to the following solution of Eq.~19!:48

a1~ l ,n21!5a2~ l ,n!5A~n1 l !~n2 l 21!. ~22!

For further considerations, let us show how the matrix elements of the radial coordinater can
be obtained. The radial coordinater can be expressed as the difference of the operatorsT3 andT1

@see Eq.~3! and ~9!#. From Eqs.~14!, ~17!, and~22! we get that the operatorr acts on the states
u l ,n& as follows~see, e.g., Ref. 48!

r u l ,n&52 1
2A~n1 l !~n2 l 21!u l ,n21&1nu l ,n&2 1

2A~n1 l 11!~n2 l !u l ,n11&. ~23!

III. ALGEBRAIC TREATMENT OF THE HELIUM ATOM

In this section we first transform the Schro¨dinger equation into the form suitable for the use
the so~2,1! algebra. Next we turn our attention to the symmetry adaptation of the wave func
Relying on the multipole expansion, we separate angular and radial degrees of freedom
conventional manner. We note that one of the alternatives to such an approach was r
suggested in Ref. 57. Finally, we integrate out the angular part and derive the expression
radial integrals.

A. Schrö dinger equation

The Schro¨dinger equation for the two-electron atoms in atomic units takes the form

F2
¹ (1)

2

2
2

¹ (2)
2

2
2

Z

r 1
2

Z

r 2
1

1

r 12
Gc5Ec, ~24!

whereZ is the charge of the nucleus andr 12 denotes the interelectronic distance.
By scaling the coordinates of the electronsx( i )→hZ21x( i ), i 51,2, we get an equivalen

equation

F2
¹ (1)

2

2
2

¹ (2)
2

2
2

h

r 1
2

h

r 2
1

h

Z

1

r 12
Gc5

h2

Z2 Ec. ~25!
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Here,h is an arbitrary scaling parameter that can be subject to further optimization. Multip
Eq. ~25! by r 1r 2 , writing the energyE as

E52
Z2

h2 1DE ~26!

and using Eqs.~3! and ~5! we rewrite Eq.~25! into the form

F r 1~T3
(2)2h!1r 2~T3

(1)2h!1
h

Z
r 1r 2r 12

21Gc5
h2

Z2 DEr1r 2c. ~27!

Since the matrix elements of the one-electron operatorsr i and T3
( i ) can be calculated from Eqs

~23! and ~2!, respectively, the only remaining matrix elements to be calculated are the m
elements of the operatorr 1r 2r 12

21 , i.e., the repulsion integrals. Before doing so, we turn o
attention to the construction of the wave function.

B. Construction of the wave function

The two electron wave functionuc& has to be antisymmetric with respect to the interchange
the electrons. In this paper we restrict ourselves to the calculation of the ground state energy
the spin part of the ground state wave function of the helium atom is antisymmetric, the spac
has to be symmetric. Further, because of the spherical symmetry of the problem, the comp
and the square of the total angular momentumL5L (1)1L (2) commute with the Hamiltonian. It
means that the Hamiltonian has the block structure and the states with different eigenvalueL3

andL2 do not mutually interact. The ground state is the singlet state withL50, whereL(L11) is
the eigenvalue of the operatorL2. Therefore, the angular part of the wave function equals

u~ l ,l !0&5 (
m52 l

l

~ l ,m,l ,2mu0,0!u l ,m& (1)u l ,2m& (2). ~28!

Here, ~ u ! denotes the Clebsch–Gordan~CG! coefficients. It follows from the properties of CG
coefficients that Eq.~28! is the only nonzero combination of the products of one-electron ang
states yielding the state withL50. It means that to characterize the angular part of the total w
function we need just one quantum numberl . It also follows from the properties of CG coeffi
cients that the linear combination is symmetric with respect to the interchange of the elec
Therefore, we expand the exact wave function into the unperturbed wave functions as foll

uc&5(
i 50

`

f i u i &, ~29!

where

u i &522(11dni1 ,ni2
)/2~ u l i ,ni1&

(1)u l i ,ni2&
(2)1u l i ,ni2&

(1)u l i ,ni1&
(2))u~ l i ,l i !0&. ~30!

Here, the statesu l ,n& are the eigenstates of the operatorT3 given by Eq.~2!. The coefficientsf i

will be determined from the diagonalization of Eq.~27!.

C. Matrix elements

Now we describe how the matrix elements of the operatorr 1r 2r 12
21 among the functions~30!

are calculated.
Projecting the statesu l ,n& onto the coordinate basis we get the radial functionsRn,l(r )

5^r u l ,n&. Introducing the inner product
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^ l 1 ,n1u l 2 ,n2&5E
0

`

dr r Rn1 ,l 1
~r !Rn2 ,l 2

~r ! ~31!

the functionsRn,l(r ) are orthonormal forl 15 l 2 , ^ l 1 ,n1u l 1 ,n2&5dn1 ,n2
. We note that this inner

product differs from the usual one by the factorr 21 in the integrand~see, e.g., Refs. 47, 48!.
To separate the angular and radial degrees of freedom we expandr 12

21 in the multipole expan-
sion

r 12
215

1

r .
(
l 50

` S r ,

r .
D l

Pl~n1 "n2!, ~32!

where r ,5r 1 , r .5r 2 if r 1,r 2 and r ,5r 2 , r .5r 1 if r 1.r 2 . Here, thePl(x) denotes the
Legendre polynomials. With the definition of the inner product~31! and multipole expansion~32!
the matrix elements ofr 1r 2r 12

21 can be written as

^ i ur 1r 2r 12
21u j &522(dni1 ,ni2

1dnj 1 ,nj 2
)/2 (

l 5u l i2 l j u

l i1 l j

u l i ,l j ,l@Xni1 ,ni2 ,nj 1 ,nj 2

l i ,l j ,l
1Xni1 ,ni2 ,nj 2 ,nj 1

l i ,l j ,l
#, ~33!

wherel in the summation increases by 2.
Here, the angular partu l i ,l j ,l corresponds to the calculation of the matrix elements of

Legendre polynomials between the coupled states~28!

u l i ,l j ,l5^~ l i ,l i !0uPl~n1 "n2!u~ l j ,l j !0&5~21! l i1 l j
@~2l i11!~2l j11!#1/2

2l 11
~ l i ,0,l j ,0u l ,0!2.

~34!

This result is obtained with help of the algebraic angular-momentum methods~see e.g., Refs
54–56!. It follows from the properties of the CG coefficients thatu l i ,l j ,l is zero unlessu l i2 l j u
< l< l i1 l j andl i1 l j1 l is even. Therefore, the sum in Eq.~33! is not infinite and in fact contains
only a few terms.

The radial part of the integration reads

Xni1 ,ni2 ,nj 1 ,nj 2

l i ,l j ,l
5E

0

`

dr1E
0

`

dr2r 1
2r 2

2Rni1 ,l i
~r 1!Rni2 ,l i

~r 2!
r ,

l

r .
l 11 Rnj 1 ,l j

~r 1!Rnj 2 ,l j
~r 2!

5E
0

`

dr1Rni1 ,l i
~r 1!Rnj 1 ,l j

~r 1!r 1
l 12E

r 1

`

dr2Rni2 ,l i
~r 2!Rnj 2 ,l j

~r 2!r 2
2 l 11

1E
0

`

dr1Rni1 ,l i
~r 1!Rnj 1 ,l j

~r 1!r 1
2 l 11E

0

r 1
dr2Rni2 ,l i

~r 2!Rnj 2 ,l j
~r 2!r 2

l 12 . ~35!

The following section is devoted to the calculation of these integrals.

IV. CALCULATION OF THE RADIAL INTEGRALS

In this section that is the main part of the paper, two methods of the calculations of the
integrals ~35! are described. The first method is given in the Sec. IV A and is based on
reduction of the integrals to the integrals over the Slater-type orbitals. This method is esse
the same as that used in Ref. 37. This method is shown to be numerically unstable. The
method is described in the remaining three subsections. In the Sec. IV B the integrals ove
radial functions are transformed to the integrals over two radial functions with help of the a
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of Wigner–Eckart theorem for so~2,1! algebra. In Sec. IV C the recurrence relations for t
remaining integrals over two radial functions are derived. In Sec. IV D these recurrence rel
are solved analytically.

A. Expansion into the Slater-type orbitals

The expansion of the integrals into the Slater-type orbitals is based on the explicit form
radial functions

Rn,l~r !52A~n2 l 21!!

~n1 l !!
e2r ~2r ! l Ln2 l 21

2l 11 ~2r !, ~36!

whereLn2 l 21
2l 11 (2r ) are generalized Laguerre polynomials~see, e.g., Refs. 59–61!.

Using the explicit form of the Laguerre polynomials we can rewrite the radial funct
Rn,l(r ) as the linear combination of the Slater-type orbitals, i.e., as the products of the expon
function and power ofr

Rn,l~r !52 (
q50

n2 l 21

dn,l ,qe2r r q1 l , ~37!

where the coefficientsdn,l ,q equal

dn,l ,q5A~n2 l 21!!

~n1 l !!

~n1 l !!

~n2 l 212q!!q! ~2l 111q!!
~21!q2q1 l . ~38!

Inserting this expansion into the integrals~35! we obtain after some manipulation

Xni1 ,ni2 ,nj 1 ,nj 2

l i ,l j ,l
5 (

qi150

ni12 l i21

dni1 ,l i ,qi1 (
qi250

ni22 l i21

dni2 ,l i ,qi2 (
qj 150

nj 12 l j 21

dnj 1 ,l j ,qj 1 (
qj 250

nj 22 l j 21

dnj 2 ,l j ,qj 2

3@ I qi11qj 11 l i1 l j 11,qi21qj 21 l i1 l j 11
l 1I qi21qj 21 l i1 l j 11,qi11qj 11 l i1 l j 11

l #, ~39!

where

I a,b
l 524E

0

`

dr1e22r 1r 1
a2 lE

0

r 1
dr2e22r 2r 2

b1 l 11

524E
0

`

dr1e22r 1r 1
b1 l 11E

r 1

`

dr2e22r 2r 2
a2 l

5~a2 l !!22122b2 l 2a(
q50

a2 l
~b1 l 1q11!!

q!
22q. ~40!

This way of calculation of the integrals~35! suffers by numerical instability. For example
running the formula~39! between the states withni1521, ni2519, l i53 and nj 1517, nj 2

523, l j51 in the double precision arithmetics yields the totally meaningless result 1020 for both
l 52 and l 54. The reason for the instability is the changing sign of thedn,l ,q coefficients, Eq.
~38!, that causes cancellation errors~see also discussion in Ref. 53!. These changes are related
the orthogonality of the Laguerre polynomials. There is, of course, possibility to relax the req
ment of having the orthonormal system of the functions and to consider the radial wave fun
in the form R̃n,l(r )5Ũn,le

2r r n21. This system is complete as well as the system~36!. The
pertinent radial integrals~35! can then be calculated according to the formula~40! and the matrix
elements of the operators in Eq.~27! are calculated easily as well. The problem of doing this
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that the numerical instability is just moved from the calculation of the integrals~35! to the
generalized eigenvalue problem~27!. In the case of the nonorthogonal basis the matrixr 1r 2 on the
right-hand side of Eq.~27! is not just quasitridiagonal, but full.

Therefore, we will solve the problem of the numerical stability on the level of calculatio
the integrals~35!.

B. ‘‘Wigner–Eckart theorem’’ for so „2,1… algebra

Looking at Eq.~35! we observe that there are always the products of the wave functions o
same variable~like Rni1 ,l i

(r 1)Rnj 1 ,l j
(r 1)) that enter into the integration. Therefore, in the first s

we try to write the product of two radial functions as a linear combination of the radial funct
Here, we proceed analogously to the angular integration. This trick of writing the product o
spherical harmonics as a linear combination of the spherical harmonics is a special case o
more general theorem called Wigner–Eckart theorem~see e.g., Refs. 54–58!. We found its analog
for so~2,1! algebra to be

rRni ,l i
~r !Rnj ,l j

~r !5Ani ,nj

l i ,l j (
n521

ni1nj 2 l i2 l j 22

cni ,nj ,n
l i ,l j A~ni1nj2n211 l i1 l j !!

~ni1nj2n2 l i2 l j22!!
Rni1nj 2n21,l i1 l j

~2r !,

~41!

where the multiplicative factorAni ,nj

l i ,l j equals

Ani ,nj

l i ,l j 5
212ni2nj~ni1nj2 l i2 l j22!! ~ni1 l i1nj1 l j !!

~ni2 l i21!! ~nj2 l j21!!
A~ni2 l i21!!

~ni1 l i !!
A~nj2 l j21!!

~nj1 l j !!
.

~42!

The coefficientscni ,nj ,n
l i ,l j of the linear combination read

cni ,nj ,n
l i ,l j 5Cni ,nj ,n

l i ,l j 2~ni1nj2 l i2 l j222n!Cni ,nj ,n11
l i ,l j , ~43!

where the coefficientsCni ,nj ,n
l i ,l j are given as

Cni ,nj ,n
l i ,l j 5

F~2ni1 l i11,2n;2ni2nj1 l i1 l j12;2! F~2ni2 l i ,2n;2ni2nj2 l i2 l j ;2!

~ni1 l i1nj1 l j2n21!!n!
~44!

for n>0 and equal zero otherwise. Here,F(a,b;g;z) denotes the hypergeometric function~see
e.g., Refs. 59–61!.

The formula~41! was derived from the identities for the Laguerre polynomials found in R
59, namely Eq.~5! of Sec. 8.6.4 and Eq.~11! of Sec. 5.5.2.

It is evident from the orthonormality of the radial functions forl i5 l j that an expression like
~41! has to exist. What is new here is the explicit form of the coefficientscni ,nj ,n

l i ,l j .

Using Eq.~41! in the radial integrals~35! we rewrite them into the form

Xni1 ,ni2 ,nj 1 ,nj 2

l i ,l j ,l
5Ani1 ,nj 1

l i ,l j Ani2 ,nj 2

l i ,l j (
n1521

ni11nj 12 l i2 l j 22

cni1 ,nj 1 ,n1

l i ,l j (
n2521

ni21nj 22 l i2 l j 22

cni2 ,nj 2 ,n2

l i ,l j

3A~ni11nj 12n1211 l i1 l j !!

~ni11nj 12n12 l i2 l j22!!
A~ni21nj 22n2211 l i1 l j !!

~ni21nj 22n22 l i2 l j22!!

3Qni11nj 1212n1 ,ni21nj 2212n2

l i1 l j ,l , ~45!

whereQN1 ,N2

L,l denotes the integrals over two radial functions
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QN1 ,N2

L,l 5QN1 ,N2

1,L,l 1QN1 ,N2

2,L,l . ~46!

Here,

QN1 ,N2

1,L,l 5E
0

`

dr1RN1 ,L~2r 1!r 1
l 11E

r 1

`

dr2RN2 ,L~2r 2!r 2
2 l ~47!

and

QN1 ,N2

2,L,l 5E
0

`

dr1RN1 ,L~2r 1!r 1
2 lE

0

r 1
dr2RN2 ,L~2r 2!r 2

l 11 . ~48!

Before proceeding further let us point out that once the values of the hypergeometric fun
and factorials are calculated, Eq.~43! is numerically stable. Therefore, this step of the calculati
the reduction of the integrals over four radial functions to the integrals over two radial func
is numerically stable. The next step is to find the stable way of calculation of the inte
~46!–~48!.

C. Derivation of the reccurrence relations for the integrals

In this subsection, we derive the recurrence relations for the integrals~47! and ~48!.
To motivate our further considerations we note that when we expand the radial functio

the integrals~47! and~48! into the powers ofr , Eq. ~37!, the numerical instabilities appear agai
Obviously, to achieve numerical stabilization we have to treat the functionsRn,l(2r ) as one
indivisible object. The functionsRn,l(2r ) are treated in this way, when applying algebraic a
proach. The ladder operatorsT6 change the whole functionRn,l(2r ) into the other functions
Rn61,l(2r ). Therefore, in the following we try to apply these ladder operators to the radial f
tions. To do so, we have to combine this algebraic technique with the analytic integration by

1. Elementary example

For the sake of transparency, let us first consider the integral

E
0

r 1
dr2 RN2 ,L~2r 2!. ~49!

After we show the numerically stable way how to calculate this integral, we extend it to
integrals~47! and ~48!.

First, let us show that

E
0

r 1
dr2 r 2S d

dr2
1

1

r 2
D @RN2 ,L~2r 2!#5r 1RN2 ,L~2r 1!. ~50!

The proof is elementary. Expanding the brackets on the left hand side we get

E
0

r 1
dr2 r 2S d

dr2
1

1

r 2
D @RN2 ,L~2r 2!#5E

0

r 1
dr2 RN2 ,L~2r 2!1E

0

r 1
dr2 r 2

d

dr2
@RN2 ,L~2r 2!#.

~51!

Integrating the second term by parts

E
0

r 1
dr2 r 2

d

dr2
@RN2 ,L~2r 2!#5@r 2RN2 ,L~2r 2!#0

r 12E
0

r 1
dr2 RN2 ,L~2r 2! ~52!

and inserting this term into Eq.~51! we get Eq.~50!.
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Second, we observe that the operatorr ((d/dr) 1 (1/r )) is up to the imaginary unit equal to
the operatorT2 , Eq. ~10! and the operatorT2 can be expressed as the difference of the crea
and annihilation operatorsT1 andT2 , Eq. ~14!

r S d

dr
1

1

r D5 irp r5 iT25
1

2
~T12T2!. ~53!

Thus, from the algebraic side we see that the operator~53! acts on the radial functions as

r S d

dr
1

1

r D @RN2 ,L~2r !#5
1

2
A~N21L11!~N22L !RN211,L~2r !

2
1

2
A~N21L !~N22L21!RN221,L~2r !, ~54!

where Eq.~17! was used.
Finally, combining the analytic result~50! with the algebraic one~54! we get the recurrence

relation for the integrals~49!

1

2
A~N21L11!~N22L !E

0

r 1
dr2 RN211,L~2r 2!2

1

2
A~N21L !~N22L21!E

0

r 1
dr2 RN221,L~2r 2!

5r 1RN2 ,L~2r 1!. ~55!

With this reccurence relation we reduce the quantum numberN2 to L11. The integral over
nodeless functionRL11,L(2r 2) is calculated analytically according to Eq.~40!. The advantage of
the recurrence relation~55! is that calculating integral overRN211,L(2r 2) from the integral over
RN221,L(2r 2) contains the sum of positive numbers and not the difference of two num
Therefore, it is numerically stable.

2. Recurrence relations for Q N1 ,N2

À,L ,l connecting different values of N 2

Now, we extend the described procedure to the calculation of the integrals appearing
~48!

E
0

r 1
dr2 r 2

l 11RN2 ,L~2r 2!. ~56!

The analytic aspect is the same. By the same calculation as for Eq.~50! we get

E
0

r 1
dr2 r 2S d

dr2
1

1

r 2
D @RN2 ,L~2r 2!r 2

l 11#5r 1
l 12RN2 ,L~2r 1!. ~57!

From the algebraic side we can deal with the extra termr l 11 using the commutation relation47

@r k,irp r #52krk ~58!

that holds for every integerk.0. Applying this operator identity fork5 l 11 to the radial func-
tions RN2 ,L(2r ) we get
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E
0

r 1
dr2 ir 2pr 2

@RN2 ,L~2r 2!r 2
l 11#5E

0

r 1
dr2 r 2

l 11ir 2pr 2
@RN2 ,L~2r 2!#

1~ l 11!E
0

r 1
dr2 r 2

l 11RN2 ,L~2r 2!. ~59!

Combining again the analytical result~57! with the algebraic results~54! and ~59! we get

r 1
l 12RN2 ,L~2r 1!5

1

2
A~N21L11!~N22L !E

0

r 1
RN211,L~2r 2!r 2

l 11dr2

2
1

2
A~N21L !~N22L21!E

0

r 1
RN221,L~2r 2!r 2

l 11dr2

1~ l 11!E
0

r 1
RN2 ,L~2r 2!r 2

l 11 . ~60!

Finally, multiplying the last equation byr 1
2 lRN1 ,L(2r 1) and integrating from zero to infinity we

obtain

1
8^L,N1ur uL,N2&5 1

2A~N21L11!~N22L !QN1 ,N211
2,L,l

2 1
2A~N21L !~N22L21!QN1 ,N221

2,L,l 1~ l 11!QN1 ,N2

2,L,l , ~61!

where we used Eqs.~31! and ~48!. Matrix elements ofr are calculated from Eq.~23!.

3. Recurrence relations for Q N1 ,N2

À,L ,l connecting different values of N 1

To derive recurrence relations forQN1 ,N2

2,L,l connecting the different values ofN1 we will need

a slight modification of Eq.~57!

E
0

`

dr1 r 1S d

dr1
1

1

r 1
D @r 1

2 lRN1 ,L~2r 1!#E
0

r 1
dr2 RN2 ,L~2r 2!r 2

l 11

52E
0

`

dr1 r 1
2RN1 ,L~2r 1!RN2 ,L~2r 1!. ~62!

This equation can be derived as follows. We expand the bracket on the left-hand side

E
0

`

dr1 r 1S d

dr1
1

1

r 1
D @r 1

2 lRN1 ,L~2r 1!#E
0

r 1
dr2 RN2 ,L~2r 2!r 2

l 11

5E
0

`

dr1 r 1
2 lRN1 ,L~2r 1!E

0

r 1
dr2 RN2 ,L~2r 2!r 2

l 11

1E
0

`

dr1 r 1

d

dr1
@r 1

2 lRN1 ,L~2r 1!#E
0

r 1
dr2 RN2 ,L~2r 2!r 2

l 11 ~63!

and integrate the second term by parts
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E
0

`

dr1 r 1

d

dr1
@r 1

2 lRN1 ,L~2r 1!#E
0

r 1
dr2 RN2 ,L~2r 2!r 2

l 11

5F r 1
2 l 11RN1 ,L~2r 1!E

0

r 1
dr2 RN2 ,L~2r 2!r 2

l 11G
0

`

2E
0

`

dr1 r 1
2 lRN1 ,L~2r 1!E

0

r 1
dr2

3RN2 ,L~2r 2!r 2
l 112E

0

`

dr1 r 1
2RN1 ,L~2r 1!RN2 ,L~2r 1!, ~64!

where we used the Newton formula for differentiation of the integral with respect to the u
bound. Since the boundary term vanishes, by inserting Eq.~64! into Eq. ~63! we get Eq.~62!.

Also the algebraic side of the calculation requires only slight modification of the prev
case. Instead of the commutation relation~58! we use the commutation relation

@r 2k,irp r #52kr2k ~65!

that is obtained from Eq.~58! by multiplying both sides byr 2k. Applying this operator identity to
the radial functionsRN1 ,L(2r 1) for k5 l leads to

ir 1pr 1
@r 1

2 lRN1 ,L~2r 1!#5r 1
2 l i r 1pr 1

@RN1 ,L~2r 1!#2 lr 1
2 lRN1 ,L~2r 1!. ~66!

We use the last equation in the integrand on the left hand side of Eq.~62!, then apply Eq.~54!,
where we just replaceN2 by N1 . After some manipulation we get the sought reccurence rela

2 1
8^L,N1ur uL,N2&5 1

2A~N11L11!~N12L !QN111,N2

2,L,l

2 1
2A~N11L !~N12L21!QN121,N2

2,L,l 2 lQN1 ,N2

2,L,l . ~67!

4. Recurrence relations for the integrals Q N1 ,N2

¿,L ,l

No new ideas are required to derive the recurrence relations for the integralsQN1 ,N2

1,L,l . Pro-

ceeding in analogy with the previous cases we derive recurrence relations connecting the in
with different values ofN2 ,

2 1
8^L,N1ur uL,N2&5 1

2A~N21L11!~N22L !QN1 ,N211
1,L,l

2 1
2A~N21L !~N22L21!QN1 ,N221

1,L,l 2 lQN1 ,N2

1,L,l ~68!

and the recurrence relations connecting the integrals with different values ofN1 ,

1
8^L,N1ur uL,N2&5 1

2A~N11L11!~N12L !QN111,N2

1,L,l

2 1
2A~N11L !~N12L21!QN121,N2

1,L,l 1~ l 11!QN1 ,N2

1,L,l . ~69!

It is immediately seen from Eqs.~61!, ~67!, ~68!, and~69! that

QN1 ,N2

1,L,l 5QN2 ,N1

2,L,l . ~70!

Through the derived recurrence relations all the needed integrals are reduced to the calc
of the integralsQL11,L11

1,L,l . These integrals can be calculated from Eq.~40!,
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QL11,L11
1,L,l 5

22214L

~2L11!!
I L,L

l 5221~2L11!! F~1,2L1 l ;22L21;2!. ~71!

D. Solution of recurrence relations

To solve recurrence relations derived in the previous section it is advantageous to elim
the irrational factors by introducing the unnormalized integrals

Q̃N1 ,N2

6,L,l 54A ~N11L !!

~N12L21!!
A ~N21L !!

~N22L21!!
QN1 ,N2

6,L,l . ~72!

Then the recurrence relations take the form

2A ~N11L !!

~N12L21!!
A ~N21L !!

~N22L21!!
^L,N1ur uL,N2&

5~N22L !Q̃N1 ,N211
1,L,l 2~N21L !Q̃N1 ,N221

1,L,l 22lQ̃N1 ,N2

1,L,l ~73!

and

A ~N11L !!

~N12L21!!
A ~N21L !!

~N22L21!!
^L,N1ur uL,N2&

5~N12L !Q̃N111,N2

1,L,l 2~N11L !Q̃N121,N2

1,L,l 12~ l 11!Q̃N1 ,N2

1,L,l . ~74!

The recurrence relations forQ̃N1 ,N2

2,L,l are obtained using Eq.~70!.

1. Solution in the variable N 1

Because of Eq.~70! we can restrict our attention to the caseN1>N2 . We note that the matrix
elements^L,N1ur uL,N2& vanish wheneveruN22N1u.1, see Eq.~23!. That means that forN1

.N211 the recurrence relation~74! is homogenous. Since it is the three-term recursion rela
we need two initial values ofQ̃N1 ,N2

1,L,l , namelyQ̃N212,N2

1,L,l and Q̃N211,N2

1,L,l to determine the solution

uniquely.
General solution of homogenous Eq.~74! is

Q̃N1 ,N2

1,L,l 5g1~N2!F~N12L,2L1 l 11;22L;2!

1g2~N2!~21!N12L21F~N12L,2L2 l 21;22L;2!. ~75!

We found this solution by realizing that the recurrence relation~74! can be transformed to the on
of the relations between contigous hypergeometric functions~see, e.g., Ref. 61!. This solution
holds for allN1.N2 including the casesN15N212 andN15N211, that can be viewed as th
initial conditions. In principle we could determine the functionsg1(N2) andg2(N2) by consider-
ing Eq. ~75! for N15N211 andN15N212. However, it is more advantageous to proceed
different way; to insert directly solution~75! into Eq. ~73!. This is done in the following para
graph.

2. Solution in the variable N 2

If we consider Eq.~73! for N15N212 we obtain

~N22L !Q̃N212,N211
1,L,l 22lQ̃N212,N2

1,L,l 2~N21L !Q̃N212,N221
1,L,l 50. ~76!

Further, considering Eq.~73! for N15N213 we get
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~N22L !Q̃N213,N211
1,L,l 22lQ̃N213,N2

1,L,l 2~N21L !Q̃N213,N221
1,L,l 50, ~77!

and so on. It seen from these equations that the values ofQ̃N1 ,N2

1,L,l for N25N111 can be calculated

from Eq. ~76!, the values ofQ̃N1 ,N2

1,L,l for N25N112 can be calculated from Eq.~77!, and so on.

Therefore, all the values ofQ̃N1 ,N2

1,L,l for N1.N2 including the valuesN15N211 and N15N2

12 can be calculated fromhomogenousEq. ~73!.
By inserting solution~75! into the homogenous equation~73! we get

F~N12L,2L1 l 11;22L;2!@~N22L !g1~N211!2~N21L !g1~N221!22lg1~N2!#

1~21!N12L21F~N12L,2L2 l 21;22L;2!@~N22L !g2~N211!

2~N21L !g2~N221!22lg2~N2!#50. ~78!

Requiring that this equation is satisfied forN15N211 and N15N212 the expression in the
brackets have to vanish. It is the three-term recursion relation having the solution

gi~N2!5gi
(1)~21!N22L21F~N22L,2L1 l ;22L;2!

1gi
(2)F~N22L,2L2 l ;22L;2!, i 51,2. ~79!

Thus, Eqs.~75! and ~79! represent a general solution forQ̃N1 ,N2

1,L,l for all N1.N2 . Four constants

gi
( j ) , i , j 51,2 are determined from four valuesQ̃L1 i 1 j ,L1 j

1,L,l , i , j 51,2.
The solution forQ̃N1 ,N2

2,L,l is obtained by reversing the role ofN1 andN2 in Eqs.~75! and~79!.

The constantsgi
( j ) , i , j 51,2 are determined as in the previous case.

3. Final result

Proceeding in the way described above we arrive to the explicit solution for the inte
Q̃N1 ,N2

6,L,l ,

Q̃N1 ,N2

1,L,l 5K~L,l !F~N12L,2L1 l 11;22L;2!@~21!N2112L

3F~N22L,2L1 l ;22L;2!1F~N22L,2L2 l ;22L;2!# ~80!

and

Q̃N1 ,N2

2,L,l 5K~L,l !~21!N12L21F~N12L,2L1 l ;22L;2!3@~21!N2112LF~N22L,2L2 l 21;

22L;2!1F~N22L,2L1 l 11;22L;2!#. ~81!

The constantK(L,l ) is in both cases the same and equals

K~L,l !5
~2L11!!

F~2,2L1 l 11;22L;2!

L112~ l 11!F~1,2L1 l ;22L21;2!

F~1,2L1 l ;22L;2!1F~1,2L2 l ;22L;2!
. ~82!

These solutions hold for allN1.N2 and for allL. l . The solution forL5 l has very simple form

Q̃N1 ,N2

1,L,L 50 ~83!

and

Q̃N1 ,N2

2,L,L 5~21!N22N1
~N21L !!

~N22L21!!
. ~84!
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The solutions forN15N2 for N1.L11 are obtained by considering Eq.~73! for N25N121.
The explicit solution of reccurence relations given in this subsection finishes our way t

stable calculation of the radial integrals. The final solution of numerical stable calculation o
radial integrals is the use of Eq.~45!, where the integralsQN1 ,N2

L,l are calculated from Eqs.~46!,

~72!, ~80!, ~81!, ~83!, and ~84!. Running these equations in the double precision arithmetics
ni1521, ni2519, nj 1517, andnj 2523 for different values ofl i , l j , and l yields the relative
error in the worst cases of the order 10214.

Finally, we would like to emphasize that all the hypergeometric functions appearing in
~44!, ~80!, ~81!, and ~82! are in fact polynomials, so the question of convergence of the co
sponding series in their computation does not arise.

V. CONFIGURATION INTERACTION

As an illustration, we solve Eq.~27! variationally for the helium atom, i.e., forZ52. It is
well-known that the ground state of helium is one of the most difficult cases of calculation o
electron–electron correlation~see below!, so we give this example to see the performance of
method under unfavorable circumstances. We label the basis vectorsu i & in the way indicated in
Table I. The states are ordered in such a way that the unperturbed energies increase, i.e., a
to the sum of the hydrogen principal quantum numbersni11ni2 . The truncated basis sets a
characterized by the numbern12 that denotes the maximum of the sumsni11ni2 of the states
included in the truncated basis sets. For example, the basis set characterized byn1252 includes all
the states with 2>ni11ni2 . This basis set is one-dimensional$u0,1& (1)u0,1& (2)u(0,0)0&%. The basis
set characterized byn1253 is two-dimensional:$u0,1& (1)u0,1& (2)u(0,0)0&,221/2(u0,1& (1)u0,2& (2)

1u0,2& (1)u0,1& (2))u(0,0)0&%. Similarly, the basis set characterized byn1254 is five-dimensional,
by n1255 eight-dimensional, and so on.

We note that our variational calculation corresponds to what is usually called the full CI
the successivelly increasing basis set.

The parameterh in Eq. ~27! was optimized numerically by calculating the values of t
energy for some discrete values ofh and looking for the minimum of these discrete value
Results are shown in Table II.

We found that the parameterh with increasing basis set decreases, see Table II. This ca
intuitively understood as follows. We have to build the atomic orbitals in such a way to des
the motion of the electrons properly, i.e., to obtain high probability of their appearence i
places where they ‘‘really’’ are. As we enlarge the basis sets the maximum of this probabi
moving to the places more distant from the nucleus. Therefore, to get it to the proper place
to the nucleus, the screening constanth has to decrease. Numerical analysis shows that the opt
screening constanth goes to zero roughly liken12

21 . However, this analysis is not very reliab
since the optimal screening constanth is determined with lower accuracy than the variation

TABLE I. Labeling of the basis sets. States are ordered in accordance with
the increasing unperturbed energies, i.e., in accordance with the sum of
principal quantum numbersn12( i )5ni11ni2 .

i ni1 ni2 l i n12

1 1 1 0 2
2 1 2 0 3
3 1 3 0 4
4 2 2 0 4
5 2 2 1 4
6 1 4 0 5
7 2 3 0 5
8 2 3 1 5
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energyE(h). The reason is that with the increasing basis set the second derivative of the fu
E(h) in minimum goes to zero, see Ref. 37. Therefore small variations ofh around the minimum
yield energies that differ negligibly.

It is seen from Table II that convergence of the variational energy levels towards the exa
is rapid at the beginning but rather slow afterwards. It is quite remarkable that we ca
‘‘chemical accuracy’’22.903, i.e., error about 1 kcal/mol just with 55 basis functions conside
the simplicity of the wave function used. However, it is seen from Table II that to go beyond
‘‘chemical accuracy’’ it is very difficult. This slow convergence can be partially removed
extrapolating the results for finite basis sets to the infinite one by using the Thiele–´
extrapolation.50,62 The result forn12540 is E(40)522.903 708 8 compared to the exact res
obtained with the explicitely correlated functions22.903 724 377.8 Extrapolating the values given
in the Table II from n12 equal to 30 ton12 equal to 40 with respect ton12

23 we obtained
22.903 724 0. Extrapolating from the intervaln12528 ton12538 we obtained22.903 723 98, so
reliable part of the extrapolated result isEextr522.903 724. The dependence ofE(n12) on n12

23

was guessed by analyzing the values fromn12520 to n12540. It is seen that the extrapolatio
improves the variational result by two orders.

The slow convergence of the CI method for the ground state of helium is well known and
analyzed in detail in several papers.38,39,41,42This slow convergence is related to slow convergen
of the multipole expansion for the ground state energy because of the cusp of the wave fu
for r 15r 2 . For this reason the multipole expansion ofr 12

21 has been abandoned in the accur
calculations of two electron atoms and the explicitely correlated functions were introduced.
ertheless, even for the two-electron atoms the standard CI is more advantegeous than the u
explicitely correlated functions in the cases when the electron–electron correlation is n
strong. This appears first for the highly ionized two-electron atoms when the interaction be
the electrons is supressed by the factor 1/Z. For such systems, the relativistic and QED effe
become very important and it is much easier to calculate the pertinent matrix elements

TABLE II. The variational energy levelsE(h) of the ground state of helium obtained by diagonalization of the general
eigenvalue problem~27! with the optimized choices of the parameterh. order denotes the order of the truncated matri
The relative error is calculated with respect to the value22.903724377 given in Ref. 8.̀ denotes the extrapolated value
the extrapolation was made with respect ton12

23 , see text for details.

n12 Order h E(h) Error E(h) @%#

2 1 1.18518 22.847656250000 1.930
3 2 1.18518 22.847656250000 1.930
4 5 0.97196 22.895444678791 0.285
5 8 0.94051 22.897109123114 0.227
6 14 0.79681 22.900714155920 0.103
7 20 0.76085 22.901452790421 0.0782
8 30 0.68217 22.902341254761 0.0476
9 40 0.64803 22.902654772148 0.0368
10 55 0.59598 22.902975741200 0.0257
28 1015 0.28285 22.903681963068 0.00146
29 1120 0.27532 22.903685852234 0.00132
30 1240 0.26782 22.903689437387 0.00120
31 1360 0.26104 22.903692451003 0.00109
32 1496 0.25431 22.903695236574 0.00100
33 1632 0.24821 22.903697608901 0.000928
34 1785 0.24206 22.903699807464 0.000846
35 1938 0.23660 22.903701701251 0.000780
36 2109 0.23126 22.903703460890 0.000720
37 2280 0.22601 22.903704991252 0.000667
38 2470 0.22129 22.903706417162 0.000618
39 2660 0.21684 22.903707667974 0.000575
40 2870 0.21223 22.903708835966 0.000535
` ` 22.903724034618 0.0000117
                                                                                                                



of the
h total
the dif-
on is
rons,

first
n with
urther

d we

on
all the

ng the
, all of

radial
recur-
ecur-
omet-
e
make

e of
very

e
ophis-
in the

that

e

2691J. Math. Phys., Vol. 45, No. 7, July 2004 The use of so(2,1) algebra

                    
relativistic and QED operators in the basis considered in this paper than in the basis
explicitely correlated functions. Second, for the excited states, especially for the states wit
angular momenta larger than zero, the electron–electron correlation is decreased due to
ferent angular distribution of the electron orbitals. Intuitively, the electron-electron correlati
the strongest in the case of theS-states and especially for the ground state where the elect
roughly speaking, occupy the same orbital. From Table III it is seen that already for the
excitedS-state the performance of the method is better. It is expected than in the combinatio
the complex scaling method the performance of the method for higher excited states will f
improve.27

Finally, let us point out that to judge overall performance of the technique describe
should have in mind the last sentences from the Introduction.

VI. CONCLUSIONS

In this paper the use of so~2,1! Lie algebra for calculation of the spectra of the two-electr
atoms was suggested. It was shown that by applying this algebra we were able to express
necessary matrix elements in the analytic form. Particularly, we succeeded in expressi
repulsion integrals in terms of the hypergeometric functions. This was done in three steps
them are completely novel from the methodological point of view.

First, we formulated analog of the Wigner–Eckart theorem for so~2,1! algebra. In this way we
reduced the repulsion integrals over four radial functions to the repulsion integrals over two
functions. Second, combining algebraic technique with the integration by parts we derived
rence relations for the repulsion integrals over two radial functions. Third, we solved the r
rence relations, in form of the difference equations in two variables, in terms of the hyperge
ric functions. Theseanalytic and numerical stableformulas for the repulsion integrals are th
main result of this paper. It solves the problem of the numerical stability and enables us to
the large scale CI calculation with analytic basis functions.

As an illustration, the full CI calculation with increasing basis set for the ground stat
helium was made. It is well-known that the electron–electron correlation is in this case
strong. Nevertheless, we showed that by means of the Thiele–Pade´ extrapolation more accurat
results can be obtained. This extrapolation technique is rather straightforward. With more s
ticated technique of extrapolation we can expect even better results. This will be published
forthcoming paper in which also the methodical problems of extrapolation~including ab initio
estimate of the error! will be discussed. Our calculation cannot, of course, compete with

TABLE III. The variational energy levelsE(h) of the first excitedS-state of helium obtained by diagonalization of th
generalized eigenvalue problem~27! with the optimized choices of the parameterh. Order denotes the order of the
truncated matrix. The relative error is calculated with respect to the value22.1459740292 given in Ref. 64.̀ denotes the
extrapolated value, the extrapolation was made with respect ton12

23 .

n12 Order h E(h) Error E(h) @%#

28 1015 0.75446 22.145962069450 0.000557
29 1120 0.73376 22.145963231801 0.000503
30 1240 0.71477 22.145964245885 0.000455
31 1360 0.69624 22.145965134389 0.000414
32 1496 0.67907 22.145965916881 0.000378
33 1632 0.66286 22.145966608567 0.000345
34 1785 0.64685 22.145967222783 0.000317
35 1938 0.63233 22.145967769878 0.000291
36 2109 0.61763 22.145968259173 0.000268
37 2280 0.60442 22.145968697983 0.000248
38 2470 0.59219 22.145969092719 0.000230
39 2660 0.57911 22.145969449151 0.000213
40 2870 0.56765 22.145969771531 0.000198
` ` 22.145974038455 0.41931026
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obtained by means of the explicitely correlated functions. However, since the numerical di
ties are encountered also within that approach, some of the ideas introduced in this paper c
usefull also in those calculations.

Also, one may expect that the ideas introduced in this paper can be applied to Ga
functions used in most of quantum chemical calculations.

In this paper we restricted our attention to the calculation of the states with the total squ
the angular momentum equal to zero and to the singlet spin states and we used just one sc
constant to optimize the energy. However, only slight modifications are necessary to deal als
the states of different symmetry and with more screening constants. These modifications
discussed in the forthcoming paper.

The method described in this paper can also be used for calculation of 1/Z expansion~see,
e.g., Refs. 9, 63!, the variational and perturbational calculation of atoms with more than
electrons, the inclusion of the relativistic and QED corrections for the two-electron atoms
large Z and the calculation of the dynamical problems on helium like one- and two-ph
transitions.64,65
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Eigenfunctions and eigenvalues of the free magnetic Schro¨dinger operator, describ-
ing a spinless particle confined to an infinite layer of fixed width, are discussed in
detail. The eigenfunctions are realized as an orthonormal basis of a suitable Hilbert
space. Four different classes of temporally stable coherent states associated with the
operator are presented. The first two classes are derived as coherent states with one
degree of freedom and the last two classes are derived with two degrees of free-
dom. The dynamical algebra of each class is found. Statistical quantities associated
to each class of coherent states are calculated explicitly. ©2004 American Insti-
tute of Physics.@DOI: 10.1063/1.1760846#

I. INTRODUCTION

By generalizing the definition of canonical coherent states~CS!, Gazeau and Klauder9 pro-
posed a method to construct temporally stable CS for a quantum system with one deg
freedom. Since then, the method has been successfully applied to different quantum system2,8As
an extension of Ref. 9, a method was presented to build CS for systems with several deg
freedom.11,16Motivated from the recent interest on temporally stable coherent states, we pres
this article four different classes of CS using the spectrum of the free magnetic Schro¨dinger
operator

H05
1

2M S P2
e

c
AD 2

, ~1.1!

whereA is the magnetic vector potential,e is the charge of the particle,c is the speed of light, and
P52 i\¹ with \ being the Planck’s constant divided by 2p. By constructing the CS for the
operatorH0 we also demonstrate the method proposed in Ref. 16 and analyze the tem
stability and action identity conditions for the multidimensional case. These features wer
cluded from the discussion of Ref. 16.

The article is organized as follows: In Sec. II, we introduce the detailed description of the
magnetic Schro¨dinger operator~1.1!, exploring its spectrum and the eigenvectors. In Sec. III
realize the eigenfunctions of Sec. II as an orthonormal basis of a Hilbert space. For the s
completeness in Sec. IV we discuss the definition of the Gazeau–Klauder CS. In Sec. V, ass
with the spectrum of~1.1!, two classes of CS with one degree of freedom are constructed. In

a!Electronic mail: santhar@vax2.concordia.ca
b!Electronic mail: nsaad@upei.ca
26940022-2488/2004/45(7)/2694/24/$22.00 © 2004 American Institute of Physics
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VI, two classes of CS with two degrees of freedom are constructed. In Sec. VII, a de
classification of the dynamical algebra is provided. In Sec. VIII we explicitly calculate the q
tum statistical quantities associated with the CS.

II. THE FREE MAGNETIC SCHRÖDINGER OPERATOR

Consider an infinite layer of fixed widthd, that is,S5R23@0,d#. Suppose the layer is place
into a perpendicular homogeneous magnetic field of intensityB5(0,0,B), whereB is a constant.
The Hamiltonian of this system can be written using~1.1! as

H05
1

2M S P22
e

c
P"A2

e

c
A"P1

e2

c2 A2D . ~2.1!

When the circular gaugeA52 1
2r3B5 1

2uBu(2y,x,0) is chosen, we have for a state vectorc

P"Ac52 i\~¹•A!c2 i\A•¹c5A"Pc.

Consequently, a spinless quantum particle confined to the layer is described by the free m
Schrödinger operator

H05
1

2M S P22
2e

c
A"P1

e2

c2 A2D ~2.2!

acting inL2(S) with Dirichlet boundary conditions

c~x,0!5c~x,d!50, x5~x,y!PR2.

In the absence of an additional interaction, the operatorH0 can be written as

H052
\2

2M
¹21

ie\uBu
2Mc S x

]

]y
2y

]

]xD1
e2uBu2

8Mc2 ~x21y2!. ~2.3!

The presence of the potentialx21y2 suggests the use of the cylindrical coordinates for
separation of the variables. Thus we have

H052
\2

2M
¹21

e2uBu2

8Mc2 r 21
ie\uBu
2Mc

]

]u
, ~2.4!

where

¹25
]2

]r 2 1
1

r

]

]r
1

1

r 2

]2

]u2 1
]2

]z2 .

If we define the cyclotron frequencyvc52 (euBu/Mc), then

H052
\2

2M
¹21

Mvc
2

8
r 21

vc

2
Lz , ~2.5!

where

Lz52 i\
]

]u
.

Let

C~r ,u,z!5c~r ,u!x~z!,
                                                                                                                



s

gnetic

l

ential

l

l
gen-

by

2696 J. Math. Phys., Vol. 45, No. 7, July 2004 Thirulogasanthar, Saad, and von Keviczky

                    
we can easily find that the differential equation satisfied byx(z) and obeying boundary condition
x(0)5x(d)50 yields

xn~z![A2

d
sinS pnz

d D , n51,2, . . , ~2.6!

which form an orthonormal basis inL2@0,d#. Note that the case ofn50 correspondence to
x0(z)50 is physically insignificant. The corresponding eigenvalues are

en5
\2

2M S p~n11!

d D 2

, n50,1,2, . . . . ~2.7!

This solution is usually ignored in most of the research on such problems8,10,16on account of the
interest being confined to the motion of the particle in the plane at right angles to the ma
field.

On the other hand, the differential equation satisfied byc(r ,u) describes a two-dimensiona
particle in the perpendicular homogeneous field in the circular gauge. Settingc(r ,u)5f(r )eil u

with l an integer, one can easily show after some algebraic calculations, that the differ
equation satisfied by

f~r !5S euBu
2\c D u l u/2

r u l ue2~euBu/4\c! r 2
GSAeuBu

2\c
r D ~2.8!

is

d2G

dj2 1S u l u11

j
21D dG

dj
1

l2222u l u
4j

G50,

wherej5 (euBu/2\c) r 2 andl5 (4Mc/euBu\) eml22l . This is known as Kummer’s differentia
equation, which has a solution

G~j!51F1S 2l1212u l u
4

;u l u11;j D
with the eigenvalue condition (2l1212u l u)/452m, where m50,1,2, . . . are the principa
quantum numbers andl 50,61,62, . . . are the angular momentum quantum numbers. The ei
value condition yields the Landau levels

eml5
euBu\
2Mc

~2m1 l 1u l u11!,

and the eigenfunctions become

cm,l~r ,u!5Nmlr
u l ue2 ~euBu/4\c! r 2

1F1S 2m;u l u11;
euBu
2\c

r 2Deil u, ~2.9!

whereNml is a normalization constant and1F1 is the confluent hypergeometric function defined

1F1~2m;g;z!5 (
k50

m
~2m!k

~g!k k!
zk.

The Pochhammer symbol (a)k is defined by (a)051 and (a)k5a(a11)(a12)¯(a1k21) for
k51,2,3,. . . , and may beexpressed in terms of the gamma function by (a)k5G(a1k)/G(a),
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whena is not a negative integer2m. In the exceptional cases, (2m)k50 if k.m and otherwise
(2m)k5(21)km!/(m2k)!. The normalization constantNml follows out of the inner product
relation

^cmlucm8 l 8&5E
0

2pE
0

`

cml~r ,u!cm8 l 8~r ,u!rdrdu5dmm8d l l 8 . ~2.10!

This yields

Nml
225S 2\c

euBu D
u l u11 pG~ u l u11!

~ u l u11!m
m!,

and by means of the identities

E
0

`

r 2g21e2sr2
1F1~2n;g;sr2!1F1~2m;g;sr2!dr5

1

2

n!G~g!

sg~g!n
dmn ~2.11!

and

E
0

2p

ei ( l 2 l 8)udu50 or 2p according aslÞ l 8 or l 5 l 8

we readily conclude that$cml(r ,u)% is indeed an orthonormal set with respect to the meas
rdrdu, where 0<u,2p. Finally, the spectrum of the free HamiltonianH0 is

E~m,l ,n!5
euBu\
2Mc

~2m1 l 1u l u11!1
\2

2M S p~n11!

d D 2

, n50,1,2, . . . . ~2.12!

We immediately observe that the energy levelseml for positive l , yield

E~m,l ,n!5
euBu\
2Mc

~2m12l 11!1
\2

2M S p~n11!

d D 2

, n50,1,2, . . . . ~2.13!

For l negative or zero, we haveu l u1 l 50 which cause the infinite degeneracy of Landau lev
eml . Thereby the spectrum~2.12! becomes

E~m,n!5
euBu\
2Mc

~2m11!1
\2

2M S p~n11!

d D 2

, n50,1,2, . . . . ~2.14!

This particular expression of the spectrum13 was the starting point of the interesting study of Exn
and Nemcova6 concerning the spectral properties of a Hamiltonian describing the motion
spinless quantum particle confined to an infinite planar layer with hard walls and interacting
a periodic lattice of point perturbations as well as in a homogeneous magnetic field perpen
to the layer. They remark therein that the spectrum~2.14! is nondegenerate if the ratio of th
coefficientsuBu andp2/d2 is irrational.7 We shall claim this in the next section.

For simplicity we may assume hereafter thate5\52M5c51, and hence we summarize th
situation as follows. For eachn50,1,2, . . . there is an orthonormal set of wave functio
Cmln(r ,u,z)[cml(r ,u)xn(z), eigensolutions for the HamiltonianH0 , given by

Cmln~r ,u,z!5AS uBu
2 D u l u11 2~ u l u11!m

p d m!G~ u l u11!
r 2u l ue2 ~ uBu/4! r 2

31F1S 2m;u l u11;
uBur 2

2 Deil u sinS ~n11!pz

d D ~2.15!
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in the state Hilbert spaceL2(S), which actually is the direct productL2@0,̀ ) ^ L2@0,2p)
^ L2@0,d#).

III. DENSITY ARGUMENT

Making use of the tensor product concept immediately preceding, we lump the tensor p
L2@0,̀ ) ^ L2@0,2p) of the first two Hilbert spaces into the Hilbert spaceL2(@0,̀ )3@0,2p)),
which consists of all complex-valued Lebesgue measurable functionsh on @0,̀ )3@0,2p) with

E
0

`E
0

2p

uh~r ,u!u2rdudr,`.

Let L2(S8)[L2(@0,̀ )3@0,2p)) ^ L2@0,d#, where

H Cml~r ,u!5AS uBu
2 D u l u11 ~ u l u11!m

p m!G~ u l u11!
r 2u l ue2~ uBu/4! r 2

1F1S 2m;u l u11;
uBur 2

2 Deil uJ
with m50,1,2, . . . and l 50,61,62, . . . is an orthonormal system of the Hilbert spa
L2(@0,̀ )3@0,2p)) and

HA2

d
sinS p~n11!z

d D :n50,1,2, . . .J
is an orthonormal basis of the Hilbert spaceL2@0,d#. If we can show that$Cml :m50,1,2,. . . ,l
50,61,62, . . .% is an orthonormal basis of the Hilbert spaceL2(@0,̀ )3@0,2p)), then
$Cmln :m50,1,2,. . . ,l 50,61,62, . . . ,n50,1,2, . . .% becomes an orthonormal basis~Ref. 22, p.
52, Theorem 3.12! of the Hilbert spaceL2(S8).

Theorem 3.1:The set$Cml :m50,1,2,. . . ,l 50,61,62, . . .% is an orthonormal basis of the
Hilbert spaceL2(@0,̀ )3@0,2p)).

Proof: Let us assume that it is not. Thus there exist a nontrivialCPL2(@0,̀ )3@0,2p))
satisfying

E
0

`E
0

2p

Cml~r ,u!C~r ,u!rdrdu50 for all m50,1,2, . . . andl 50,61,62, . . . .

Since the linear hull18

~L.H.!S 1F1S 2k;u l u11;
uBur 2

2 D ~0<k<m! D5~L.H.!~r 2k~0<k<m!!,

it follows after taking suitable linear combination of the orthonormal set$Ckl :0<k<n% with l
fixed, that

E
0

`E
0

2p

r 2u l u12me2 ~ uBur 2/4!eil uC~r ,u!rdrdu5E
0

`

r 2u l u12m11e2 ~ uBur 2/4!E
0

2p

eil uC~r ,u!dudr50

for all m50,1,2, . . . andl 50,61,62, . . . . By a further linear combination involving the com
plex parameters, namely,

em~sr2!5 (
k50

m
~sr2!k

k!
, ~3.1!

we obtain, by means of Lebesgue dominated convergence theorem20 applied in terms of the
following inequality:
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ur 2u l u11em~2sr2!e2 ~ uBur 2/4!eil uu<r 2u l u11e(usu2~ uBu/4!)r 2
uC~r ,u!uPL1~@0,̀ !3@0,2p!!

for all m50,1,2, . . . and after taking limitm→`, that the holomorphic function of variables,

E
0

`E
0

2p

r 2u l u11e2(s1 ~ uBu/4!)r 2
eil uC~r ,u!dr5E

0

`

r 2u l u11e2(s1 ~ uBu/4!)r 2E
0

2p

eil uC~r ,u!dudr50

for all s in the half-planeR(s).2 (uBu/4). We arrive at this conclusion by means of analy
continuation of the fact that the immediately preceding holomorphic function takes on the va
if usu,uBu/4. We make the substitutionr 5At, and thus achieve

E
0

`

t u l ue2(s1 ~ uBu/4!)tE
0

2p

eil uC~At,u!dudt50 for all l 50,61,62, . . . .

Utilizing the uniqueness of Laplace transform,3 we conclude that

E
0

2p

eil uC~r ,u!du50 a.e. in r on @0,̀ ! for l 50,61,62, . . . .

In consequence hereof, there exist Lebesgue measurable subsetsEl of @0,̀ !, such that their
complements in@0,̀ ! have one-dimensional Lebesgue measure zero, i.e.,m1((0,̀ )\El)50 for all
l 50,61,62, . . . . We defineE5ù l 52`

` El and note

E
0

2p

eil uC~r ,u!du50 ;r PE and m1~~0,̀ !\E!50,

which follows directly from

~0,̀ !\S ù
l 52`

`

El D 5 ø
l 52`

`

~~0,̀ !\El ! with m1~~0,̀ !\E!< (
l 52`

`

m1~~0,̀ !\El !50.

Thus it becomes clear that

E
0

2p

eil uC~r ,u!du50 ; r PE and ; l 50,61,62, . . . .

SinceC(r ,u)PL2(@0,̀ )3@0,2p)), namely,

E
0

`E
0

2p

uC~r ,u!u2rdudr5E
0

2pE
0

`

uC~r ,u!u2rdrdu5 E E
[0,`)3[0,2p)

uC~r ,u!u2dm~r ,u!,`

with dm(r ,u)5rdrdu, which follows from the Tonelli–Hobson theorem,21 we may conclude
without loss of generality that

E
0

2p

eil uC~r ,u!du50 ; l 50,61,62, . . . and r PE with C~r ,• !PL2@0,̀ !.

We consequently have forr PE with C(r ,•)PL2@0,̀ ) that

E
0

2p

uC~r ,u!u2du50 for all r satisfying E
0

2p

uC~r ,u!u2du,`.
                                                                                                                



f

the

f
f

2700 J. Math. Phys., Vol. 45, No. 7, July 2004 Thirulogasanthar, Saad, and von Keviczky

                    
Because this holds for almost allr P@0,̀ ), it follows that

E
0

`E
0

2p

uC~r ,u!u2rdudr50,

which in turn impliesC is a trivial L2(@0,̀ )3@0,2p))-function. Hence$Cml :m50,1,2,. . . ,l
50,61,62, . . .% is an orthonormal basis ofL2(@0,̀ )3@0,2p)). h

Thus $Cmln :m50,1,2,. . . ,l 50,61,62, . . . ,n50,1,2, . . .% is an orthonormal basis o
L2(S8)5L2(@0,̀ )3@0,2p)) ^ L2@0,d#.

We shall also consider the case whereu l u1 l 50, where in this case the spectrum takes
form

E~m,n!5uBu~2m11!1S p~n11!

d D 2

. ~3.2!

We fix l 50 for the wave functioncmnl of ~2.15!. In this casecmnlªcmn can be written as
cmn5fm^ xn where

fm~r !5AuBue2 ~ uBu/4! r 2

1F1S 2m;1;
uBur 2

2 D and xn~z!5A2

d
sinS p~n11!z

d D .

From ~2.11! we have

E
0

`

e2 ~ uBu/2! r 2

1F1S 2n;1;
uBur 2

2 D 1F1S 2m;1;
uBur 2

2 D rdr 5
1

uBu
dmn .

Thus$fm :m50,1,2, . . .% is an orthonormal system in the Hilbert spaceL2@0,̀ ).
Corollary 3.1: WhenuBu and p2/d2 are irrationally related, the spectrum E(m,n) of (3.2) is

nondegenerate and the set of vectors

$cmn5fm^ xn :m50,1,2,. . . ;n50,1,2, . . .%

forms an orthonormal basis of the Hilbert spaceL2@0,̀ ) ^ L2@0,d#.
Proof: If we have two pairs (m,n) and (m8,n8) such thatE(m,n)5E(m8,n8), then

p2

uBud2 5
2~m82m!

~n11!22~n811!2

is a rational number. To proveB15$cmn :m50,1,2,. . . ;n50,1,2, . . .% is an orthonormal basis o
L2@0,̀ ) ^ L2@0,d# it is enough to show thatB25$fm : m50,1,2, . . .% is an orthonormal basis o
L2@0,̀ ). SupposeB2 is not an orthonormal basis ofL2@0,̀ ), then there exists a nontrivialf
PL2@0,̀ ) such that

E
0

`

fm~r !f~r !rdr 50

for all m50,1,2, . . . . Since

~L.H.!S 1F1S 2k;1;
uBur 2

2 D ~0<k<m! D5~L.H.!~r 2k ~0<k<m!!,

we have after taking suitable linear combination of the orthonormal set$fk :0<k<m% that

E
0

`

r 2m11e2 ~ uBur 2/2!f~r !dr50 for all m50,1,2, . . . .
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By a further linear combination of~3.1! and by means of the Lebesgue dominated converge
theorem applied to

uem~2sr2!e2 ~ uBur 2/4!u<eusu2~ uBur 2/4!uf~r !uPL1@0,̀ !; m50,1,2, . . .

we obtain

E
0

`

e2(s1 ~ uBu/4!)r 2
f~r !rdr 50

for all s such thatRe(s).2 (uBu/4). By letting r 5At we have

E
0

`

e2ste2 ~ uBut/4!f~At !dt50

for all s such thatRe(s).2 (uBu/4). Uniqueness of the Laplace transform yields

e2 ~ uBut/4!f~At !50 a.e. int on @0,̀ ! or f~r !50 a.e. inr on @0,̀ !

and consequently

E
0

`

uf~r !u2rdr 50.

Herebyf is trivial in L2(@0,̀ )), which contradict the assumption. Thus$fm :m50,1,2, . . .% is an
orthonormal basis ofL2@0,̀ ). h

Remark 3.2:Since

%

l 52`

`

L2@0,̀ ! ^ $eil u% ^ L2@0,d#5L2@0,̀ ! ^ L2@0,2p! ^ L2@0,d#,

one can prove for each fixedl ,0 that the spectrumE(m,n) is nondegenerate and the set
vectors$cmnl :m50,1,2,. . . ; n50,1,2,. . . ; l fixed and,0% is an orthonormal basis of the sub
spaceL2@0,̀ ) ^ $eil u% ^ L2@0,d#.

IV. GAZEAU–KLAUDER COHERENT STATES

In this section, we introduce the general features of Gazeau–Klauder CS. LetH be a Hamil-
tonian with a bounded below discrete spectrum$em%m50

` and it has been adjusted so thatH>0.
Further assume that the eigenvaluesem are nondegenerate and arranged in increasing ordee0

,e1,e2,¯ . For such a Hamiltonian, a class of CS was suggested by Gazeau and Klaude9 the
so-calledGazeau–Klauder coherent states~GKCS!, as

uJ,a&5N~J!21 (
m50

`
Jm/2e2 iema

Ar~m!
hm , ~4.1!

where J>0, 2`,a,`, $hm%m50
` is the set of eigenfunctions of the Hamiltonian andr(m)

5e1e2¯em5em!. In order to be GKCS the states~4.1! need to satisfy the following:

~a! For eachJ,a the state is normalized, i.e., 15^J,auJ,a&5N(J)22(m50
` Jm/r(m) ;

~b! the set of states$uJ,a&:JP@0,̀ ),aP(2`,`)% satisfies a resolution of the identity

lim
d→`

1

2d E2d

d
daE

0

`

l~J!dJuJ,a&^J,au5I , ~4.2!

wherel(J) is an appropriate weight function;
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~c! the states are temporally stable, i.e.,e2 iHt uJ,a&5uJ,a1t&;
~d! the states satisfy the action identity, i.e.,^J,auHuJ,a&5J.

Condition~d! requirese050. In the case where only conditions~a!–~c! are satisfied we phrase th
resulting CS as ‘‘temporally stable CS.’’ In the case wheree0Þ0 one can shift the spectrum
backward bye0 and work with the shifted spectrum.

The dynamical algebra of the system can be defined as follows: The generalized annih
creation, and number operators defined on the state Hilbert spaceH with respect to the basis
$hm%m50

` can be given by~see Refs. 1, 12, 17!

ahm5Aemhm21 , with ah050,

a†hm5Aem11hm11 , ~4.3!

nhm5emhm ~n5a†a!,

and the commutators take the form

@a,a†#hm5~em112em!hm ,

@n,a†#hm5~em112em!a†hm , ~4.4!

@n,a#hm5~em212em!ahm .

The algebra generated by the operators$a,a†,n% and its deformations~up to isomorphisms! serve
as a dynamical algebra of the Hamiltonian.

In Ref. 16 the definition~4.1! was generalized to multidimensions as

uJ,b&5N~J!21 (
$n1 , . . . ,nr %

Jn/2

Ar~n!
e2 ibe(n)un&, ~4.5!

where the sum runs over all possible values of the variablesnj , N is a normalization factor, and
r~n! is an arbitrary positive function of all the indices. Further,Jn/25) j 51

r Jj
nj /2 , b•e(n)

5a1e1(n)1¯1a rer(n) and un&5un1& ^¯^ unr&, where$unj&% forms an orthonormal basis fo
an appropriate Hilbert spaceHj . Using ~4.5! GKCS for ther th degree of freedom is defined a

un1 , . . . ,nr 21 ,Jr ,a r&5Nr~Jr !
21(

nr

Jr
nr /2

Ar r

e2 iarer (n)un&, ~4.6!

where the normalization factorNr and the functionr r may depend on the other indices.
addition to the normalization condition, whenn1 , . . . ,nr 21 are fixed, the states~4.6! should
satisfy a resolution of the identity on the subspace obtained by fixingn1 ,n2 ,...,nr 21 :

E un1 , . . . ,nr 21 ,Jr ,a r&^n1 , . . . ,nr 21 ,Jr ,a r udm~Jr ,a r !5I n1 ,n2 ,...,nr 21
. ~4.7!

For the multidimensional case, if one takesr j (n)5r j (n1 ,n2 , . . . ,nj ) and ej (n)
5ej (n1 ,n2 , . . . ,nj ),

uJ,b&5N 1
21(

n1

J1
n1/2

Ar1

eia1e1N 2
21(

n2

J2
n2/2

Ar2

eia2e2
¯N r

21(
nr

Jr
nr /2

Ar r

eiarerun&, ~4.8!
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whereNj5Nj (Jj , . . . ,Jr ;n1 , . . . ,nj 21). If r j andej are independent ofnk , k, j then the states
~4.8! may give us simple tensor product of states. For the states~4.8! a resolution of the identity
takes the following form:

lim
d→`

1

2d E2d

d
da1E

0

`

l1~J1! lim
d→`

1

2d E2d

d
da2E

0

`

l1~J1 ,J2 ,n1!¯ lim
d→`

1

2d E2d

d
da r

3E
0

`

l r~J1 , . . . ,Jr ,n1 , . . . ,nr 21!un1 , . . . ,nr ,J,b&^n1 , . . . ,nr ,J,budJ1¯dJr

5I H1
^¯^ I Hr

,

wherel j , j 51,2,. . . ,r are positive weight functions. For the multidimensional case, the tem
ral stability and the action identity can also be added. We will discuss these issues throu
problem of this paper in Sec. VI.

In the following sections, whenl 50 we derive temporally stable CS for the HamiltonianH0

with the spectrumE(m,n) on the subspaceL2@0,̀ ) ^ 1/A2p ^ L2@0,d#, which is indeed a sub-
space ofL2(S). However,L2@0,̀ ) ^ 1/A2p ^ L2@0,d# is isomorphic~in the Hilbert space sense!
to 1/A2p ^ L2@0,̀ ) ^ L2@0,d# as subspaces ofL2@0,̀ ) ^ L2@0,2p# ^ L2@0,d# and L2@0,2p#
^ L2@0,̀ ) ^ L2@0,d#, respectively. Nevertheless, the subspace 1/A2p ^ L2@0,̀ ) ^ L2@0,d# is ~Hil-
bert space! isomorphic toL2@0,̀ ) ^ L2@0,d# and hence, we may consider the Hilbert spa
L2@0,̀ ) ^ L2@0,d# instead of the subspaceL2@0,̀ ) ^ 1/A2p ^ L2@0,d# to which it is isomorphic.
Therefore, the action of the HamiltonianH0 on L2@0,̀ ) ^ 1/A2p ^ L2@0,d# carries to the Hilbert
spaceL2@0,̀ ) ^ L2@0,d#. Hereafter we refer the Hilbert spaceL2@0,̀ ) ^ L2@0,d# as the state
Hilbert space of the HamiltonianH0 for l 50.

The GKCS studied in Ref. 8 for the Landau levels may be regarded as a set of G
constructed in the absence ofn and l from the spectrumE(m,l ,n) of ~2.12!. The GK-like CS~in
the terminology of Ref. 16! studied in Ref. 16 can be taken as a class of CS for the spec
E(m,l ,n) in the absence ofn.

V. CS WITH ONE DEGREE OF FREEDOM

We introduce two classes of temporally stable CS with the form~4.6! for the spectrum~3.2!,
by first fixing n followed by another class wherem is fixed. In both cases the orthonormal ba
is denoted by the same symbolcm,n . However, it should be clear that in each case the other in
is fixed and the vectorscm,n belong to the corresponding subspace of the state Hilbert s
L2@0,̀ ) ^ L2@0,d#. For sake of simplicityuBuªB.

A. When n is fixed

Here we discuss a class of temporally stable CS for the first degree of freedom~the freedom
throughm). Since the energy spectrum of the Landau problem isEm5B(2m11), the following
set of CS can also be considered as a set of CS with a forward shift of the Landau levels. F
the construction also serves as a preparatory step of the formation of CS for two degr
freedom. Let

r~m!5E~1,n!E~2,n!¯E~m,n!,

whereE(m,n) is given by~3.2!. We have

r~m!5)
k51

m S B~2k11!1S p~n11!

d D 2D5~2B!m~g!m ,

where
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g511
Bd21p2~n11!2

2Bd2 .

Let us study the following class of vectors:

uJ,a,n&5N~J,n!21 (
m50

`
Jm/2e2 iE(m,n)a

Ar~m!
cm,n . ~5.1!

The normalization condition̂J,a,nuJ,a,n&51 yields

N~J,n!25 (
m50

`
Jm

2mBm~g!m
51F1S 1;g;

J

2BD.0, ~5.2!

which converges for allJ.0. For a resolution of the identity, let2`,a,` and set a measure

dm~J,a!5dn~J!da5
1

2gBgG~g! 1F1S 1;g;
J

2BDe2 ~J/2B!Jg21dJda.

The knowledge of Eqs.~4.2! and ~4.7! leads to

E
0

`E uJ,a,n&^J,a,nudm~J,a!5 (
m50

`

(
l 50

` ucm,n&^c l ,nu

Ar~m!r~ l !
E

0

`E Jm/21 l /2

N~J,n!2 ei (E(m,n)2E( l ,n))adn~J!da

5 (
m50

` ucm,n&^cm,nu
2m1gBm1g~g!mG~g!

E
0

`

Jm1g21e2 ~J/2B!dJ

5 (
m50

`

ucm,n&^cm,nu5I n ,

where we employed the identity5

E
0

`

e2axxs21dx5a2sG~s! ~5.3!

with s5m1g anda5 1/2B. For the temporal stability, since for fixedn

H0cm,n5E~m,n!cm,n , m50,1,2, . . .

and

e2 iE(m,n)ae2 iH 0tcm,n5e2 iE(m,n)ae2 iE(m,n)tcm,n5e2 iE(m,n)(a1t)cm,n

we have

e2 iH 0tuJ,a,n&5uJ,a1t,n&. ~5.4!

Thus the statesuJ,a,n& form a set of temporally stable CS. SinceE(0,n)Þ0 the action identity
cannot be obtained. The overlap of two states takes the form

^J,a,nuJ8,a8,n&5
e2 i (a2a8)(B1 ~p2(n11)2/d2!)

A1F1S 1;g;
J

2B
D 1F1S 1;g;

J8

2B
D 1F1S 1;g;

JJ8e22iB(a2a8)

2B
D .
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If a5a8 we get

^J,a,nuJ8,a,n&5

1F1S 1;g;
AJJ8

2B
D

A1F1S 1;g;
J

2B
D 1F1S 1;g;

J8

2B
D

.

Remark 5.1: ~a! In ~5.1! instead of takingr(m)5E(1,n)¯E(m,n) if we take r(m)
5e(1,m)¯e(m,n) with e(m,n)5E(m,n)2E(0,n), then we can have 05e(0,n),e(1,n), •••
and thereby we can have a set of GKCS. In this case,r(m)52mBmm!, N(J)25eJ/(2B) and a
resolution of the identity is obtained with the measuredm(J,a)5 (1/2BN 2(J)) e2J/(2B)dadJ.
The temporal stability and the action identity follow straightforwardly.

~b! The spectrum of the isotonic oscillator

H52
d2

dx2 1x21
A

x2 ~A>0!

is em52(2m1g), whereg511 1
2A114A. Since this spectrum is nondegenerate and the eig

functions form an orthonormal basis of the Hilbert spaceL2@0,̀ ),19 when B52 and cmn is
replaced by the wave functions ofH, the set of CS given in~5.1! can also be considered as a s
of temporally stable CS forH with a forward shift of the spectrum.

B. When m is fixed

We discuss a class of temporally stable CS for the second degree of freedom obtained t
n by fixing m. That is, the following class of CS can be considered as a class of CS constr
with the effective part of the spectrum due to the infinite layer. The other aim of this subsect
to facilitate the calculations of the following sections. For fixedm let

r~n!5E~m,1!E~m,2!¯E~m,n!.

Thereby

r~n!5)
k51

n S B~2m11!1S p~k11!

d D 2D5S p

d D 2n

~b!n~ b̄ !n ,

where

b521
id

p
AB~2m11!

and b̄ is the complex conjugate ofb. Note that, the product (b)n(b̄)n is a real positive number
Consider the set of vectors

uJ,a,m&5N~J,m!21(
n50

`
Jn/2

Ar~n!
e2 iE(m,n)acm,n . ~5.5!

The normalization factorN(J,m) is obtained, by demandinĝJ,a,muJ,a,m&51, in the following
form:
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N~J,m!25 (
n50

`
Jn

r~n!
5 (

n50

` S d2J

p2 D n

~b!n~ b̄ !n

51F2S 1;b̄,b;
d2J

p2 D , ~5.6!

which is a real positive function and defined for allJ>0. ForJ.0 and2`,a,` set

dm~J,a!5N~J,m!2l~J!dJda.

For a resolution of the identity, we have

E
0

`E uJ,a,m&^J,a,mudm~J,a!5 (
n50

` ucm,n&^cm,nu
r~n!

E
0

`

Jnl~J!dJ5 (
n50

`

ucm,n&^cm,nu5I m

if there is a densityl(J) to satisfy

E
0

`

Jnl~J!dJ5r~n!5S p

d D 2n

~b!n~ b̄ !n . ~5.7!

Since

E
0

`

2K2h~2Ax!xs21dx5G~s2h!G~s1h! ~5.8!

the density

l~J!5
2d2

p2G~b!G~b̄!
Kb2b̄S 2d

p
AJD ~5.9!

satisfies~5.7!, whereK is the modified Bessel function of the third kind of imaginary order4 and
may be regarded as the kernel of the Kontorovich–Lebedev transform15 in the light of ~5.8!. The
temporal stability follows similar to the previous case. Thus we have a set of temporally stab
without the action identity. As in the previous case, whena5a8 the overlap of two states take
the form

^J,a,muJ8,a,m&5

1F2S 1;b̄,b;
d2AJJ8

p2 D
A1F2S 1;b̄,b;

d2J

p2 D 1F2S 1;b̄,b;
d2J8

p2 D
.

Remark 5.2: ~a! Let En5E(m,n)2E(m,0). In ~5.5! if we replace the r(n)
5E(m,1)¯E(m,n) by r(n)5E1¯En5n!(n12)!/2 we can have the action identity and
thereby a class of GKCS. In this case the normalization factor takes the formN(J)2

5J/@2I 2(2AJ)# and a resolution of the identity can be obtained with the measuredm(J,a)
5N(J)2l(J)dadJ, where

l~J!5
1

2
G0,2

2,0S J u
2

2,0D ,

which is given in terms of the MeijerG-function~see Ref. 14, p. 303, formula~37!!.
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~b! A class of GKCS for the infinite well potential with the spectrumen5n(n12) is given in
Ref. 2. Whend5p the above class of CS can be considered as a class of temporally stable
the infinite well with a forward shift of the spectrum. In this case the state Hilbert space has
replaced by the Hilbert space of the infinite well.

VI. CS WITH TWO DEGREES OF FREEDOM

In this section we present two different classes of CS with two degrees of freedom in the
~4.8!. In the first case, we present a class of CS as a tensor product of two classes of st
settingr1 ,r2 ,e1 , ande2 independent. In the second case, within the multiple sum, by letting
sum depends on the other throughr1 ,r2 ,e1 , ande2 , we present a class of CS where the result
CS cannot be considered as a tensor product of two states. Further, both classes are cons
temporally stable CS for the HamiltonianH0 with the spectrumE(m,n).

A. When summations are independent

Let em5B(2m11), en5@p(n11)/d#2, r1(m)5e1e2¯em5em!, and r2(n)5e1e2¯en

5en!. Thus

r1~m!5)
k51

m

@B~2k11!#52mBmS 3

2D
m

,

r2~n!5)
j 51

n S p~ j 11!

d D 2

5S p

d D 2n

~2!n~2!n .

The set of vectors under consideration is as follows:

uJ1 ,J2 ,a1 ,a2&5N1~J1!21N2~J2!21F (
m50

` J1
m/2

Ar1~m!
e2 iema1(

n50

` J2
n/2

Ar2~n!
e2 i ena2fm^ xnG .

~6.1!

Since

^J1 ,J2 ,a1 ,a2uJ1 ,J2 ,a1 ,a2&5N1~J1!22 (
m50

` J1
m

r1~m!
N2~J2!22(

n50

` J2
n

r2~n!
,

the normalization requirement^J1 ,J2 ,a1 ,a2uJ1 ,J2 ,a1 ,a2&51 yields

N2~J2!25 (
n50

` J2
n

r2~n!
5 (

n50

`
1

~2!n ~2!n
S d2J2

p2 D n

51F2S 1;2,2;
d2J2

p2 D
and

N1~J1!25 (
m50

` J1
m

2mBmS 3

2D
m

51F1S 1;
3

2
;

J1

2BD .

For J1 ,J2P(0,̀ ) and2`,a1 ,a2,`, let us assume that the measure

dm~J1 ,J2 ,a1 ,a2!5N1~J1!2N2~J2!2l1~J1!l2~J2!dJ1dJ2da1da2 . ~6.2!

The weight functionsl1(J1) andl2(J2) will be chosen to satisfy a resolution of the identity.
this case, we have
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E
0

`E
0

`E E uJ1 ,J2 ,a1 ,a2&^J1 ,J2 ,a1 ,a2udm~J1 ,J2 ,a1 ,a2!

5 (
m50

` ufm&^fmu
r1~m!

E
0

`

J1
ml1~J1!dJ1^ (

n50

` uxn&^xnu
r2~n!

E
0

`

J2
nl2~J2!dJ2

5 (
m50

`

ufm&^fmu ^ (
n50

`

uxn&^xnu5I L2[0,`) ^ I L2[0,d]

under the assumption that the densitiesl1(J1) andl2(J2) are such that

E
0

`

J1
ml1~J1!dJ15r1~m!52mBmS 3

2D
m

~6.3!

and

E
0

`

J2
nl2~J2!dJ25r2~n!5S p

d D 2n

~2!n~2!n . ~6.4!

The density

l1~J1!5A J

2pB3 e2 ~J/2B!

satisfies~6.3! and the density

l2~J2!5
2d4

p4J2
K0S 2dAJ2

p D ,

whereK0 is the modified Bessel function of order 0, will prove~6.4!. Sincecm,n5fm^ xn and
H0cm,n5E(m,n)cm,n we have

H0~fm^ xn!5~em1en!fm^ xn .

Therefore, we have

e2 iH 0tfm^ xn5e2 i (em1en)tfm^ xn

and thereby

e2 iH 0tuJ1 ,J2 ,a1 ,a2&5uJ1 ,J2 ,a11t,a21t&.

Thus the statesuJ1 ,J2 ,a1 ,a2& are temporally stable.
Remark 6.1:~a! Since H0fm^ xn5(em1en)fm^ xn , even under the assumptione05e0

50 ~i.e., even if we shift the spectrum backward!, we cannot have the action identity. Therefor
we only have a set of temporally stable CS.

~b! If we shift em and en backward bye0 and e0 we get ẽm5em2e052Bm and ẽn5en

2e05p2n(n12)/d2 and therebyr̃1(m)5ẽ1¯ẽm52mBmm! and r̃2(n)5 ẽn¯ ẽn5p2nn!(n
12)!/(2d2n). In ~6.1! when we replacer1(m),r2(n),em anden by r̃1(m),r̃2(n),ẽm and ẽn we
get

Ñ2~J2!250F1S 2;3;
J2d2

p2 D5
2p2

J2d2 I 2S 2dAJ2

p D
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and

Ñ1~J1!25eJ1/2B.

In this case, a resolution of the identity is obtained with the measure

dm~J1 ,J2 ,a1 ,a2!5Ñ1~J1!2Ñ2~J2!2l̃1~J1!l̃2~J2!dJ1dJ2da1da2 ,

where

l̃1~J1!5
1

2B
e2J1 /(2B)

and

l̃2~J2!5
p2

2d2 G0,2
2,0S J2p2

d2 u
2

2,0D .

The temporal stability follows easily.

B. When summations depend one on the other

For fixedm let

r1~m,n!5E~m,1!E~m,2!¯E~m,n!.

From Sec. V B we have

r1~m,n!5S p

d D 2n

~b!n~ b̄ !n ,

whereb and b̄ are as in Sec. V B. Let

r2~m!5e1¯em52mBmS 3

2D
m

.

Consider the following set of vectors:

uJ1 ,J2 ,a1 ,a2&5N1~J1 ,J2!21 (
m50

` J1
m/2

Ar2~m!
e2 iema1N2~J2 ,m!21

3 (
n50

` J2
n/2

Ar1~m,n!
e2 i ena2fm^ xn . ~6.5!

In order to obtain the normalization factor let us compute the norm of the vectoruJ1 ,J2 ,a1 ,a2&,

^J1 ,J2 ,a1 ,a2uJ1 ,J2 ,a1 ,a2&5N1~J1 ,J2!22 (
m50

` J1
m

r2~m!
N2~J2 ,m!22(

n50

` J2
n

r1~m,n!
51

if

N2~J2 ,m!25 (
n50

` J2
n

r1~m,n!
~6.6!
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and

N1~J1 ,J2!25 (
m50

` J1
m

r2~m!N2~J2 ,m!2 . ~6.7!

By ~5.6! we have

N2~J2 ,m!251F2S 1;b,b̄;
d2J2

p2 D>1 ; J2P~0,̀ !.

Thus, we have

N1~J1 ,J2!25 (
m50

` J1
m

r2~m!1F2S 1;b̄,b;
d2J2

p2 D < (
m50

` J1
m

r2~m!
5 (

m50

` S J1

2B
D m

S 3

2
D

m

51F1S 1;
3

2
;

J1

2B
D ,

which converges for allJ1>0. ForJ1 ,J2P@0,̀ ) and2`,a1 ,a2,` we have

E
0

`E
0

`E E uJ1 ,J2 ,a1 ,a2&^J1 ,J2 ,a1 ,a2ul1~J1!l2~J2 ,m!dJ1dJ2da1da2

5 (
m50

`

(
n50

` ufm&^fmu ^ uxn&^xnu
r2~m!r1~m,n!

E
0

` J1
m

N1~J1 ,J2!2 l1~J1!dJ1E
0

` J2
n

N2~J2 ,m!2 l2~J2 ,m!dJ2

5 (
m50

`

(
n50

`

ufm^fmu ^ uxn&^xnu5I L2[0,`) ^ I L2[0,d]

if there are densitiesl1(J1) andl2(J2 ,m) such that

E
0

` J1
m

N1~J1 ,J2!2 l1~J1!dJ1E
0

` J2
n

N2~J2 ,m!2 l2~J2 ,m!dJ25r2~m!r1~m,n!. ~6.8!

Let

l2~J2!5N2~J2 ,m!2L2~J2 ,m! and l1~J1!5N1~J1 ,J2!2L1~J1!.

Then ~6.8! reduces to

E
0

`

J1
mL1~J1!dJ1E

0

`

J2
nL2~J2 ,m!dJ25r2~m!r1~m,n!. ~6.9!

If we combine~6.3! and~6.4! we can have~6.9!. Thus we have a resolution of the identity. By th
same argument of Sec. VI A we have

e2 iH 0tuJ1 ,J2 ,a1 ,a2&5uJ1 ,J2 ,a11t,a21t&.

Thus the statesuJ1 ,J2 ,a1 ,a2& are temporally stable.
Remark 6.2:~a! Instead of defining the states as in~6.5!, if we define them as~notice that the

change will not affect the calculations preceding this remark; thereby the following clas
vectors also forms a set of CS!
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uJ1 ,J2 ,a1 ,a2&5N1~J1 ,J2!21 (
m50

` J1
m/2

Ar2~m!
e2 iema1N2~J2 ,m!21

3 (
n50

` J2
n/2

Ar1~m,n!
e2 iE(m,n)a2fm^ xn , ~6.10!

we can have

eiH 0tuJ1 ,J2 ,a1 ,a2&5uJ1 ,J2 ,a1 ,a21t&.

Still we have the temporal stability, but only the second part of the states evolve with time. I
case, if we shift the spectrum so thatE(m,0)50 we can have an action identity in the followin
sense:

^J1 ,J2 ,a1 ,a2uH0uJ1 ,J2 ,a1 ,a2&5N1~J1 ,J2!22 (
m50

` J1
m

r2~m!
N2~J2 ,m!22(

n51

` J2
mE~m,n!

r1~m,n!
5J2 .

~b! If we shift em andE(m,n) backward bye0 andE(m,0) we getẽm5em2e052Bm and
Ẽ(m,n)5E(m,n)2E(m,0)5p2n(n12)/d2, which is the same case considered in Remark 6

VII. DYNAMICAL ALGEBRA

In this section we discuss the dynamical algebra associated to each set of temporally
states of the previous sections. Here we follow the operator structure developed in Sec. IV. T
we follow the annihilation, creation and the number operators of~4.3!.

A. For the states of Sec. V A

Whenn is fixed the spectrumE(m,n)5B(2m11)1(p(n11)/d)2 can be written as

Ē~m!5b1m1c1 ,

whereb152B and c15B1(p(n11)/d)2 are constants. The corresponding generators take
form ~4.3! with xm5Ē(m). From ~4.4! the commutators take the form

@a,a†#5b1I , @n,a#5b1a
†, @n,a#52b1a.

Thus the dynamical algebra is isomorphic to the Weyl–Heisenberg algebra,gW–H. To get the exact
commutation relations of the Weyl–Heisenberg algebra one can define a new set of opera
follows:

ā5
1

Ab1

a, ā†5
1

Ab1

a†, n̄5
1

Ab1

n.

In terms of these new operators one gets

@ ā ,ā†#5I , @ n̄ ,ā†#5 ā†, @ n̄ ,ā#52 ā .

B. For the states of Sec. V B

Whenm is fixed the spectrum

E~m,n!5B~2m11!1~p~n11!/d!2

can be written as
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Ẽ~n!5b2~n11!21c2 ,

whereb25p2/d2 and c25B(m11) are constants. The corresponding generators take the
~4.3! with en5Ẽ(n). Let us see the commutation relations. It can be easily seen that

@a,a†#cm,n5b2~2n13!cm,n .

As it was done in Ref. 2, let us define a new set of operators

ā5
1

Ab2

a, ā†5
1

Ab2

a†, n̄cm,n5S n1
3

2Dcm,n . ~7.1!

With these new operators we obtain

@ ā ,ā†#52n̄ , @ n̄ ,ā#52 ā , @ n̄ ,ā†#5 ā†. ~7.2!

The above commutation relations are the ones satisfied by the generators of the algebrasu~1,1! of
the classical group SU~1,1!. Thus in this case the dynamical algebra is isomorphic tosu~1,1!.

C. For the states of Sec. VI A

Sincer1(m)5em!, r2(n)5en!, em5B(2m11) anden5p2(n11)2/d2, let us define two
sets of operators as follows:

a1fm5Aemfm21 , a1
†fm5Aem11fm11 , n1fm5emfm , ~7.3!

a2xn5Aenxn21 , a2
†xn5Aen11xn11 , n2xn5enxn . ~7.4!

For the operatorsa1 ,a1
† ,n1 , the commutators take the form,

@a1 ,a1
†#52BI, @n1 ,a1

†#52Ba1
† , @n1 ,a1#522Ba1 .

Thus the dynamical algebra is isomorphic togW–H. To get the exact commutation relations
gW–H one can define a new set of operators as follows:

ā15
1

A2B
a1 , ā1

†5
1

A2B
a1

† , n̄15
1

A2B
n1 .

In terms of these new operators one gets

@ ā1 ,ā1
†#5I , @ n̄1 ,ā1

†#5 ā1
† , @ n̄1 ,ā1#52 ā1 .

For the operatorsa2 ,a2
† we get

@a2 ,a2
†#xn5

2p2

d2 S n1
3

2Dxn .

By defining a new set of operators

ā25
d

p
a2 , ā2

†5
d

p
a2

† , n̄2xn5S n1
3

2Dxn , ~7.5!

it can readily be seen that the commutators take the following form:

@ ā2 ,ā2
†#52n̄2 , @ n̄2 ,ā2#52 ā2 , @ n̄2 ,ā2

†#5 ā2
† , ~7.6!
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which are the commutation relations satisfied by the generators of the algebrasu~1,1!. Now for the
set of CS we define the following set of operators:

a5a1^ a2 , a†5a1
†

^ a2
† , n5n1^ n̄2 . ~7.7!

Thus the algebra associated to the CS is isomorphic to the tensor product of the two alg
gW–H andsu~1,1!, that is,gW–H^ su(1,1). If we take the operators as

ā5 ā1^ ā2 , ā†5 ā1
†

^ ā2
† , n̄5 n̄1^ n̄2 , ~7.8!

we get the exact commutation relations ofgW–H^ su(1,1). One can also define another set
operators as follows:

afm^ xn5Aemenfm21^ xn21 , af0^ x050,

a†fm^ xn5Aem11en11fm11^ xn11 ,

nfm^ xn5emenfm^ xn . ~7.9!

Observe that here also the CS become the eigenstates ofa. But it may be difficult to identify this
algebra to a known type.

D. For the states of Sec. VI B

Sincer1(m)5em!, r2(n)5E(m,n)!, let us define two sets of operators as follows:

a1fm5Aemfm21 , a1
†fm5Aem11fm11 , n1fm5emfm ,

a2xn5AE~m,n!xn21 , a2
†xn5AE~m,n11!xn11 , a2xn5E~m,n!xn .

Again an analog of Sec. VII A can be worked out for the operatorsa1 ,a1
† ,n1 . Thus the operators

generate the algebragW–H. Since within the second sum of the CSm is considered as a consta
we are in the exact situation of Sec. VII B. Thus the algebra generated bya2 ,a2

† ,n2 is isomorphic
to the algebrasu~1,1!. The rest of the details follows from Sec. VII C.

VIII. STATISTICAL QUANTITIES

Quantum revivals are associated with wave functions. A revival of a wave function o
when a wave function evolves in time to a state closely reproducing its initial form. Furthe
weighting distribution is crucial for understanding the temporal behavior of the wave functio
the case of the states~4.1!, the probability of finding the statehm in the stateuJ,a& is given by

P~m,J!5u^hmuJ,a&u2.

A quantitative estimate is given by the so-called Mandel parameter,

Q5
^J,aun2uJ,a&2^J,aunuJ,a&22^J,aunuJ,a&

^J,aunuJ,a&
,

where nhm5emhm . If the photon distribution is Poissonian, thenQ50. If Q,0 it is called
sub-Poissonian and ifQ.0 it is called super-Poissonian.2 In this section we explicitly calculate
the weighting distribution and the Mandel parameter for each of the CS discussed in the
sections.
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A. For the states of Eq. „5.1…

For this class of states we obtain

P~m,J!5
uJum

N~J,n!2r~m!
5

~J/2B!m

1F1S 1;g;
J

2BD ~g!m

.

Sincenucm,n&5E(m,n)ucm,n& andE(0,n)Þ0 we have

nuJ,a,n&5N~J,n!21 (
m50

`
Jm/2E~m,n!

Ar~m!
e2 iE(m,n)aucm,n&

and

n2uJ,a,n&5N~J,n!21 (
m50

`
Jm/2E~m,n!2

Ar~m!
e2 iE(m,n)aucm,n&.

Thus

^J,a,nunuJ,a,n&5
J

g

1F1S 2;11g;
J

2BD
1F1S 1;g;

J

2BD 1v,

wherev5B1(p(n11)/d)2 and therebyE(m,n)52Bm1v. Further

^J,a,nun2uJ,a,n&5
1

1F1S 1;g;
J

2BD F2J~B1v!

g 1F1S 2;g11;
J

2BD1
2J2

g~g11! 1F1S 3;g12;
J

2BD G
1v2.

Therefore

Q5

2J~B1v!~g11!1F1S 2;g11;
J

2BD12J2
1F1S 3;g12;

J

2BD1g~g11!v2
1F1S 1;g;

J

2BD
~g11!FJ 1F1S 2;g11;

J

2BD1gv1F1S 1;g;
J

2BD G

2

J 1F1S 2;g11;
J

2BD
g 1F1S 1;g;

J

2BD 2v21.

For particular values ofB,d, andn the sign ofQ can be determined.
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B. For the states of Eq. „5.5…

We have

P~n,J!5
d2nJn

p2n~b!n~ b̄ !n1F2S 1;b,b̄;
d2J

p2 D .

For fixedm, E(m,n)5p1q(n11)2, wherep5B(2m11) andq5p2/d2. SinceE(m,0)Þ0 and
nucmn&5E(m,n)ucmn& we have

^J,a,munuJ,a,m&5p1
q

N~J,m!2 (
n50

`
Jn~n11!2

r~n!
5p1qQ1 ,

where

Q15
1

1F2S 1;b̄,b;
d2J

p2 D F 1F2S 2;b̄,b;
d2J

p2 D 1
2Jd2

ubu2p2 1F2S 3;b̄11,b11;
d2J

p2 D G
and

^J,a,mun2uJ,a,m&5N~J,m!22(
n50

`
Jnd2n~p1q~n11!2!2

p2n~b!n~ b̄ !n

5p212pqQ11q2Q2 ,

where

Q25
1

1F2S 1;b̄,b;
d2J

p2 D F 2Jd21p2

p2 1F2S 2;b̄,b;
d2J

p2 D 2
2Jd2~p2ubu22Jd227p2!

ubu2p4

31F2S 3;b̄11,b11;
d2J

p2 D 2
6J2d4~b1b̄25!

ubu2p4~b11!~ b̄11!
1F2S 4;b̄12,b12;

d2J

p2 D G .

Thus

Q5
p212pqQ11q2Q2

p1qQ1
2p2qQ121.

Here again for specific values ofB, d, andm the sign ofQ can be determined.

C. For the states of Eq. „6.1…

The probability of finding the statefm^ xn in the stateuJ1 ,J2 ,a1 ,a2& is given by

P~m,n,J1 ,J2!5
J1

mJ2
n

1F1S 1;
3

2
;

J1

2BD 0F1S 2;1;
J2d2

p2 D2mBmS p

d D 2n

~2!n~2!nS 3

2D
m

.

Sincen1fm5emfm , n2xn5enxn , n5n1^ n2 , ande0Þ0,e0Þ0 we have
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^J1 ,J2 ,a1 ,a2unuJ1 ,J2 ,a1 ,a2&5
Bp2Q4

d2 @2Q311#,

where

Q35
1

N1~J1!2 (
m50

` J1
mm

2mBmS 3

2D
m

5
J

3BN1~J1!2 1F1S 2;
5

2
;

J

2BD
and

Q45
1

N2~J2!2 (
m50

` d2mJ2
m~m11!2

p2m~2!m~2!m
.

Further

^J1 ,J2 ,a1 ,a2un2uJ1 ,J2 ,a1 ,a2&5^J1 ,J2 ,a1 ,a2un1
2

^ n2
2uJ1 ,J2 ,a1 ,a2&

5N1~J1!22 (
m50

` J1
mem

2

em!
N2~J2!22(

n50

` J2
nen

2

en!

5
B2p4Q6

d4 @4Q514Q311#,

where

Q55
1

N1~J1!2 (
m50

` J1
mm2

2mBmS 3

2D
m

and Q6 can be obtained fromQ2 by substitutingJ5J2 ,b5b̄52 andN(J,m)5N1(J1) in the
expression ofQ2 . Q4 can be obtained fromQ1 by the same substitution. Thereby we have

Q5
Bp2Q6~4Q514Q311!

d2Q4~2Q311!
2

Bp2Q4~2Q311!

d2 21.

For specific values ofB andd the sign ofQ can be determined.

D. For the states of Eq. „6.5…

The probability of finding the statefm^ xn in the stateuJ1 ,J2 ,a1 ,a2& is given by

P~m,n,J1 ,J2!5
J1

mJ2
n

1F2S 1;b,b̄;
d2J2

p2 DN1~J1 ,J2!22mBmS 3

2
D

n

S p

d
D 2n

~b!n~ b̄ !n

.

Further, by takingn1fm5emfm , n2xn5E(m,n)xn and n5n1^ n2 one can findQ as in the
previous section. Since we do not have a closed form forN1(J1 ,J2) we avoid calculating it.

IX. CONCLUSION

Eigenfunctions and eigenvalues of the free magnetic Schro¨dinger operatorH05(1/2M ) (P
2 e/c A)2 were discussed. The eigenfunctions were realized as an orthonormal basis of a
space. Four classes of temporally stable CS associated to the eigenfunctions and eigenvalu
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operatorH0 were demonstrated. The first two classes were constructed with one degree of fr
and the last two with two degrees of freedom. To each class of CS the corresponding dyn
algebra was specified. The dynamical algebras were identified to the Weyl–Heisenberg a
su~1,1! algebra and their tensor products. For each class of CS, quantum statistical quantitie
calculated explicitly.
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On limits to convective heat transport at infinite Prandtl
number with or without rotation
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We prove rigorous upper bounds for the bulk heat transport in infinite Prandtl
number Rayleigh–Be´nard convection with or without rotation. For the rotation free
case, our estimate shows that the Nusselt number is bounded by Rayleigh number
according to Nu<c Ra4/11 with constantc,2. In the presence of rotation, we prove

Nu<c Ra4/11( 1
2ATa11)4/11 with constantc,2. Moreover, for weak rotating con-

straint (Ta<O(Ra1/2)), the Nusselt number is uniformly bounded above by Nu
<c Ra4/11. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1763246#

I. INTRODUCTION

We derive upper bound for the bulk heat transport in infinite Prandtl number Rayleigh–B´nard
convection with or without rotation. Rayleigh–Be´nard convection describes motion of a fluid lay
which is heated from below. Typically, the motion is modeled by Boussinesq equations. The
a system of equations consisting of the heat advection–diffusion equation for the local tempe
coupled with the incompressible Navier–Stokes equation via a bouyancy force proportional
local temperature.

One of the fundamental quantities of interest for Boussinesq equations is the total heat
port across the layer, which is expressed in terms of Nusselt number in standard nondime
formulation. A major goal is to identify a functional relation in the form Nu~Ra,Ta!, where Nu is
the Nusselt number, Ra denotes the Rayleigh number, and Ta represents the Taylor num
high Rayleigh number flows, this relation is expected to take the scaling form Nu;Raa, and much
effort has been put into determining the value ofa ~e.g., Refs. 6, 13, 15, 23, and 29!. There is no
unambigious experimental value ofa though. Many experiments show thata varies between 2/7
and 1/3~see, e.g., Refs. 1–4, 6, 7, 19–21, 26–31!. On the other hand, the best known rigoro
bounds uniform in Prandtl number is Nu<c Ra1/2.8,17

In this paper, we focus our attention on the infinite Prandtl number limit of the Boussi
equations. In this case, the vector field is linearly slaved to the temperature field, and on
prove global existence and uniqueness of smooth solutions.14 In particular, in absence of rotation
the scaling law is expected to be Nu;Ra1/3, based on arguments of marginally stable bound
layer analysis18,22 or on the basis of sophisticated asymptotic approximations of an upper b
analysis utilizing mild statistical assumptions.3 A 1/3 exponent with logarithmic corrections in th
form Nu<c Ra1/3(log Ra)2/3 was proved by Constantin and Doering,9 the value ofc is not explic-
itly evaluated though. An estimate in the form Nu<c Ra2/5 with explicit prefactorc,1 was
obtained in Ref. 10.

Less results are known for the rotating convective heat transport. To date, the only k
rigorous estimates are a uniform bound10

Nu<c Ra2/5

with constantc,1 independent of rotation rate, and the rotation dependent bound12

a!Electronic mail: xiayan@math.msu.edu
27180022-2488/2004/45(7)/2718/26/$22.00 © 2004 American Institute of Physics
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Nu<11c Ra2/ATa

with c independent of Ra, Ta. Moreover, when the rotation rate is fast enough, the purely
ductive solution is the globally and nonlinearly attractive fixed point.

Our main results are rigorous upper bounds of the form Nu<c Ra4/11 in absence of rotation

and Nu<c Ra4/11( 1
2ATa11)4/11 when TaÞ0. Both are for infinite Prandtl number system a

prefactorc is calculated explicitly. Observe our estimate in the rotating case is particularly i
esting for weakly rotating infinite Prandtl system. Moreover, we show that for weakly rota
constraint Ta<O(Ra1/2), the Nusselt number is uniformly controlled byO(Ra4/11). This is in the
same spirit as Ref. 11, where it is shown that for moderate rotation Ta<Ra1/3(log Ra)5/3, the
Nusselt number is controlled byO(Ra1/3(log Ra)5/3).

Our proof relies on a modified background field method. This method, based on an id
Hopf in study of Navier–Stokes equations,16 was revived and successful in handling rigoro
bounds for bulk-flow quantities in several fundamental fluid flows. When applied to Rayle
Bénard convection with fixed temperature boundary conditions, the method has been succe
deriving many best known to date rigorous bounds. For example, a uniform bound for all P
number 0,Pr<` in the form Nu<c Ra1/2;8 a 1/3 bound with logarithm corrections N
<c Ra1/3(log Ra)2/3 for infinite Prandtl number convection without rotation;9 a uniform 2/5 bound
independent of rotaion rate Nu<c Ra2/5 for infinite number convection with or without rotation.10

Most recently, numerical techniques based on background method have been developed~see, e.g.,
Refs. 24 and 25!. In particular, using an enlarged set of test functions, Plasting25 derived numerical
results in the form Nu<0.139 Ra1/3 as Ra→`.

The starting point of this variational method is to decompose the temperature field
background and fluctuating components. The background profile is time independent and ca
boundary conditions of the temperature field. For each background, there is a quadratic
naturally associated. The main task is to estimate the quadratic form. Usually, there ar
approaches to bound the heat flux. The first one is to adjust the background so that the qu
form is positive semidefinite and the Nusselt number is bounded above by a quadratic form
derivative of the background. The second is to esimtate the quadratic form in terms of the
ground, the upper bound on the Nusselt number is then estimated through minimizing a
intergral of the background. Both approaches depend on estimates for higher derivatives
vertical velocity. The only difference is the following: in the first approach, the quadratic for
decomposed into its Fourier modes in horizontal direction, and analysis depends on estima
Fourier modes of the vertical velocity; while in the second approach, vertical velocity is estim
directly through the associated PDE. In this paper, we shall follow the same decomposition
temperature field, while major modifications come at the point of estimating the quadratic
We estimate the quadratic form in terms of the background, by estimating its Fourier mode
main technical interest of this paper is some new estimates on higher derivatives for F
modes of the vertical velocity. Based on these estimates, we can estimate each Fourier mod
quadratic form from below, which turns out to be sufficient for our purpose when summing

The rest of the paper is organized as follows. In Sec. II we recall the basic equations to
with some necessary notations. Section III is devoted to the major estimates on the v
velocity. The upper bound on the total heat flux for rotation free system is presented in Sec.
the bounds for rotating system are derived in the last two sections.

II. FORMULATION OF THE PROBLEM

Consider an incompressible Newtonian fluid confined to horizontal rigid isothermal p
separated by vertical distanceh. The top plate is held at constant temperatureT2 and the bottom
plate is held at constant temperatureT1 . In the standard nondimensional units the fluid veloc
field u(x,t)5(u,v,w) and temperature fieldT(x,t), pressure fieldp(x,t) are governed by Bouss
inesq equations5
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ut1u•¹u1PrATak3u1Pr¹p5PrDu1Pr RakT,

¹•u50,

Tt1u•¹T5DT,

with boundary conditions

uuz50,150, Tuz5150, Tuz5051,
]w

]zU
z50,1

50.

Herek is thez direction, Pr5 n/k is the Prandtl number~a ratio of the material parameters,n is
the kinematic viscosity, andk is the thermal diffusivity!, Rayleigh number Ra5ga(T1

2T2)h3/nk is a ratio of the overall buoyancy force to the damping coefficients@g is the accel-
eration of gravity,a is the thermal expansion coefficient, (T12T2) is the temperature drop acros
the gap,h is the gap width# and Taylor number Ta5(2Vh2/n)2 measures the rotation~V is the
rotation rate!. Lengths are measured in units ofh andu, T, p are periodic inx andy directions
with periodsLx /h andLy /h, respectively.

In this paper, we are concerned with the infinite Prandtl number model where the equati
the velocity field is reduced to

ATak3u1“p5Du1RakT.

Eliminating the pressure term from the equation above, we immediately obtain

D2w2ATa
]z

]z
52RaDHT ~2.1!

and

2Dz2ATa
]w

]z
50. ~2.2!

Here z5vx2uy is the vertical vorticity andDH5]x
21]y

2 denotes the horizontal Laplacian
The boundary conditions for~2.1!, ~2.2! are

wuz50,150, zuz50,150,
]w

]zU
z50,1

50.

The ultimate goal is to find a functional relation of the form Nu~Ra,Ta!. At current stage, only
upper bounds on Nu have been obtained. Here Nu is the Nusselt number which is defined
ratio of the total vertical heat flux to the conductive heat flux. Standard derivations give a v
of expressions for the Nusselt number in terms of solutions of~2.1! and ~2.2!,

Nu511
1

A K E
V
wT dVL 5

1

A ^i¹Ti2&5
1

Ra

1

A ^i¹ui2&.

Here and throughout the paper, we use the following notations:

E
V
dV5E

0

Lx /hE
0

Ly /hE
0

1

dz dy dx

for the volume integration,
                                                                                                                



intro-
ture

di-
dard

per

h

ere
rowth

s
rier
e

2721J. Math. Phys., Vol. 45, No. 7, July 2004 Infinite Prandtl number with or without rotation

                    
A5
LxLy

h2

for the nondimensional area of the layer,

i f i5S E
V
u f u2 dVD 1/2

for the L2 norm on the domain, and

^ f &5 lim sup
t→`

1

t E0

t

f ~s!ds

for the long time average off .
We also need the following notations for functions defined on@0,1#:

igi25S E
0

1

g2~z!dzD 1/2

denotes theL2 norm on@0,1# and

igi`5 sup
0<z<1

g~z!

represents theL` norm on@0,1#.
A useful variational principle was introduced by Constantin and Doering8–10 to prove rigorous

upper bounds on Nu, building upon a method of analysis for the Navier–Stokes equations
duced by Hopf.16 The starting point of this variational principle is to decompose the tempera
field into a steady background profile and a time-dependent fluctuation field,

T~x,t !5t~z!1u~x,t !,

wheret(z) inherits the boundary conditions ofT andu satisfies homogeneous boundary con
tions in thez direction and periodic in horizontal directions. Under this decomposition, stan
manipulation yields the following fundamental relation:

Nu5E
0

1

t8~z!2 dz2
1

A K E
V
~ u¹uu212t8~z!wu!dVL 5E

0

1

t8~z!2 dz2
1

A ^Q~u!&,

whereQ(u)5*V(u¹uu212t8(z)wu)dV is a quadratic form. There are two ways to estimate up
bound of Nu based on this relation. The first approach is to choose background profilet to ensure
Q(u)>0, then the Nusselt number is bounded above by*0

1t8(z)2 dz; the second approac
amounts to estimate the indefinite term inQ(u) in terms of Ra and the functional form oft,
followed by an appropriate choice oft to balance this estimate with*0

1t8(z)2 dz. In both ap-
proaches,t(z) is chosen so that the support oft8(z) is concentrated near the boundaries wh
w,u vanish. With such choice of background profile, both approaches rely on detailed g
estimates foru and w in the boundary layer nearz50 and z51. More precisely, in the first
approach, one decomposesQ(u) into Fourier modesQm(um) in horizontal direction, then adjust
t to ensureQm(um)>0 for eachm. The argument relies on growth estimates for each Fou
modewm of the vertical velocity; in the second approach,w is estimated directly through th
associated PDE.

Motivated by these two approaches, we estimateQ by estimating its Fourier modesQm(um).
Recall for each horizontal wave numberm5@(2ph/Lx) mx ,(2ph/Ly) my# @ umu5m, (mx ,my)
PZ2],
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Qm~um!5E
0

1Udum

dz U2

1m2uumu21t8~wm* um1wmum* !dz.

Hereum(z), wm(z) are the Fourier coefficients foru andw, respectively. We choose the followin
profile of t:

t~z!55
12

z

2d
, 0<z<d,

1

2
, d<z<12d,

12z

2d
, 12d<z<1.

~2.3!

We obtain some new estimates on higher derivatives ofwm . Based on this, we can boundQm(um)
in terms of Ra, Ta,d and iumi2 , and the Nusselt number is bounded above by

E
0

1

t8~z!2 dz2(
m

Qm~um!.

It turns out that the second term can be bounded above in terms of Ra, Ta, and the fun
form of t. The estimates on Nu then follows. Our main results are the following Theorems.

Theorem 2.1:For infinite Prandtl number convection without rotation, we have the follow
estimates on the Nusselt number:

Nu<1.26 Ra4/11.

Theorem 2.2:For rotating system, we have

Nu<1.3 Ra4/11Ta1/610.13 Ra4/11Ta2 5/310.18 Ra2/11Ta1/6

and

Nu<1.26 Ra4/11SATa

2
11D 4/11

.

We also have the following theorem for weakly rotating system.
Theorem 2.3: There exist constants B1,B2.0 independent of Ra,Ta, such that when Ta

<B1 Ra1/2,

Nu<B2 Ra4/11.

III. ESTIMATES ON VERTICAL VELOCITY

In this section, we derive estimates for higher derivatives ofwm for Fourier modesumu>1.
Our main estimate is

Proposition 3.1: Forumu5m>1, if wm satisfies

S 2
d2

dz2 1m2D 2

wm5 f m ,

wm~0!5wm~1!5
dwm

dz
~0!5

dwm

dz
~1!50,

then
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I d2wm

dz2 I
`

<C1m2 3/2i f mi2 .

Here

C15F11
e211

e221
•

4 cosh 112 sinh 1

sinh 121 G'64.8734.

We prove Proposition 3.1 in several steps. First we recall some basic facts. Form.0, the
solution to

S d2

dz2 2m2Du5 f

with zero Dirichlet boundary conditions,

u~0!5u~1!50

is given using the Green’s functionG(m)(z,z) by

u~z!5G(m)~ f !~z!5E
0

1

G(m)~z,z! f ~z!dz.

Recall that the Green’s function is calculated from two independent solutions to the homoge
ODE with one point boundary conditions,

G(m)~z,z!5
1

Um
H y1~z!y2~z!, z,z,

y1~z!y2~z!, z>z.

HereUm5y1(z)y28(z)2y18(z)y2(z) is the Wronskian.
We will take

y1~z!5
emz2e2mz

2m
, y2~z!5y1~z21!,

and therefore the WronskianUm5y1y282y18y2 satisfies

Um~z!5y1~1!5
em2e2m

2m
.

In particular, we can write the Green’s function explicitly as

G(m)~z,z!5
1

2m2Um
@cosh~m~z1z21!!2cosh~m~12uz2zu!!#. ~3.1!

To prove Proposition 3.1, we decompose

wm5um1hm

with
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um~z!5E
0

1

G(m)~z,z!gm~z!dz,

~3.2!

gm~z!5E
0

1

G(m)~z,z8! f m~z8!dz8,

hm~z!5Am~12z!y1~z!1Bmzy2~z! ~3.3!

with

Am5
1

Um
2 21

~um8 ~0!1Umum8 ~1!!,

Bm5
1

Um
2 21

~Umum8 ~0!1um8 ~1!!.

One can check directly thatum ,hm satisfies

S d2

dz2 2m2D 2

um5 f m ,

S d2

dz2 2m2D 2

hm50,

with um50, hm50, andhm8 52um8 on the boundaries.
We claim the following estimates:

I d2um

dz2 I
`

<
c1

m3/2i f mi2 , I d2hm

dz2 I
`

<
c2

m3/2i f mi2 . ~3.4!

Hereci are constants independent ofm.
First we prove the following lemma.
Lemma 3.2: If

g~z!5E
0

1

G(m)~z,z! f ~z!dz,

then

igi`<
1

m2 i f i` , Idg

dzI
`

<2
e211

e221

1

m
i f i` ,

igi`<
1

2

i f i2

m3/2, Idg

dzI
`

<
1

&
Ae211

e221

i f i2

Am
.

Proof: From explicit formula ofG(m)(z,z), we can write
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g~z!5E
0

1 1

2m2Um
@cosh~m~z1z21!!2cosh~m~12uz2zu!!# f ~z!dz

5E
0

1 1

2m2Um
cosh~m~z1z21!! f ~z!dz2E

0

z 1

2m2Um
cosh~m~12z1z!! f ~z!dz

2E
z

1 1

2m2Um
cosh~m~12z1z!! f ~z!dz

5E
0

z coshm~z1z21!2coshm~12z1z!

2m sinhm
f ~z!dz

1E
z

1 coshm~z1z21!2coshm~12z1z!

2m sinhm
f ~z!dz. ~3.5!

Observe for 0<z, z<1,

uz1z21u<12z1z

and

uz1z21u<12z1z.

Therefore the following inequality always holds when 0<z, z<1:

coshm~z1z21!2coshm~12z1z!<0,

coshm~z1z21!2coshm~12z1z!<0,
~3.6!

sinhm~z1z21!1sinhm~12z1z!>0,

sinhm~z1z21!2sinhm~12z1z!<0.

In particular,~3.6! implies

igi`<
i f i`

2m sinhm S E
0

z

~coshm~12z1z!2coshm~z1z21!!dz D
1

i f i`

2m sinhm S E
z

1

~coshm~12z1z!2coshm~z1z21!! D
5

i f i`

2m sinhm S sinhm~12z1z!2sinhm~z1z21!

m U
0

zD
1

i f i`

2m sinhm S 2sinhm~12z1z!2sinhm~z1z21!

m U
z

1D
5

i f i`

m2 sinhm
~sinhm2sinh~mz!2sinh~m~12z!!!<

i f i`

m2 . ~3.7!

Apply Cauchy–Shwartz inequality twice, we can estimateigi` in terms ofL2 norm of f as
follows:
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igi`<
1

2m sinhm S E
0

z

@coshm~z1z21!2coshm~12z1z!#2 dz D 1/2S E
0

z

f 2D 1/2

1
1

2m sinhm S E
z

1

@coshm~z1z21!2coshm~12z1z!#2dz D 1/2S E
z

1

f 2D 1/2

<
i f i2

2m sinhm S E
0

z

@coshm~z1z21!2coshm~12z1z!#21E
z

1

@coshm~z1z21!

2coshm~12z1z!#2D 1/2

<
i f i2

2m sinhm S E
0

z

@cosh2 m~12z1z!2cosh2 m~z1z21!#dz

1E
z

1

@cosh2 m~12z1z!2cosh2 m~z1z21!# D 1/2

<
i f i2

2m sinhm S E
0

z cosh 2m~12z1z!2cosh 2m~z1z21!

2

1E
z

1 cosh 2m~12z1z!2cosh 2m~z1z21!

2 D 1/2

<
i f i2

2m sinhm S sinh 2m2sinh~2mz!2sinh~2m~12z!!

2m D 1/2

<
i f i2

2m sinhm S sinh 2m22 sinhm

2m D 1/2

5
i f i2

&m3/2

sinh
m

2

Asinhm
5

i f i2

2m3/2Aem21

em11
<

1

2

i f i2

m3/2. ~3.8!

Here we used the fact that when 0<z<1,

sinh 2m2sinh~2mz!2sinh~2m~12z!!<sinh 2m22 sinhm,

and whenm>1,

em21

em11
<1.

To estimatei dg/dz i` , we differentiate the explicit expressiong(z), we get

dg

dz
5E

0

z sinhm~z1z21!1sinhm~12z1z!

2 sinhm
f ~z!dz

1E
z

1 sinhm~z1z21!2sinhm~12z1z!

2 sinhm
f ~z!dz. ~3.9!

Observe that for 0<z, z<1,

sinhm~z1z21!1sinhm~12z1z!>0,

sinhm~z1z21!2sinhm~12z1z!<0.

Apply this to ~3.9!, we get
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Idg

dzI
`

<
i f i`

2 sinhm E
0

z

@sinhm~z1z21!1sinhm~12z1z!#dz

1
i f i`

2 sinhm E
z

1

@sinhm~12z1z!2sinhm~z1z21!#dz

5
i f i`

2 sinhm S coshm~z1z21!1coshm~12z1z!

m U
0

z

1
2coshm~12z1z!2coshm~z1z21!

m U
z

1D
5

i f i`

m sinhm
~coshm2coshm~12z!2coshmz1coshm~2z21!!

<
2i f i` coshm

m sinhm
<

2~e211!

m~e221!
i f i` . ~3.10!

Here we used the fact that when 0<z<1,

coshmz>0, coshm~2z21!<coshm,

and whenm>1

coshm

sinhm
<

e211

e221
.

We can also estimatei dg/dz i` in terms ofi f i2 as follows:

Idg

dzI
`

<
1

2 sinhm F E
0

z

~sinhm~z1z21!1sinhm~12z1z!!2G1/2S E
0

z

f 2D 1/2

1
1

2 sinhm F E
z

1

~sinhm~12z1z!2sinhm~z1z21!!2G1/2S E
z

1

f 2D 1/2

<
i f i2

2 sinhm S E
0

z

@sinhm~z1z21!1sinhm~12z1z!#2 dz

1E
z

1

@sinhm~12z1z!2sinhm~z1z21!#2 dz D 1/2

<
i f i2

2 sinhm S 2E
0

z

@sinh2 m~z1z21!1sinh2 m~12z1z!#dz

12E
z

1

@sinh2 m~12z1z!1sinh2 m~z1z21!#dz D 1/2

<
i f i2

2 sinhm S E
0

z

@cosh 2m~z1z21!1cosh 2m~12z1z!#dz

1E
z

1

@cosh 2m~12z1z!1cosh 2m~z1z21!#dz D 1/2
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5
i f i2

2 sinhm S sinh 2m~z1z21!1sinh 2m~12z1z!

2m U
0

z

1
2sinh 2m~12z1z!1sinh 2m~z1z21!

2m U
z

1D 1/2

5
i f i2

2 sinhm

~2 sinh 2m!1/2

A2m
5

i f i2

A2m
S e2m11

e2m21D 1/2

<
i f i2

A2m
S e211

e221D 1/2

. ~3.11!

h

For

um~z!5E
0

1

G(m)~z,z!gm~z!dz

and

gm~z!5E
0

1

G(m)~z,z! f m~z!dz,

Lemma 3.2 immediately implies the following estimates:

iumi`<
1

m2 igmi` , iumi`<
1

2

igmi2

m3/2 ,

I dum

dz I
`

<2
e211

e221

igmi`

m
, I dum

dz I
`

<
1

&
Ae211

e221

igmi2

m1/2 ,

~3.12!

igmi`<
1

2

1

m3/2i f mi2 ,

I dgm

dz I
`

<
1

&
Ae211

e221

1

Am
i f mi2 .

In particular, estimates in~3.12! are useful in the following lemma.
Lemma 3.3: Let

um~z!5E
0

1

G(m)~z,z!gm~z!dz, gm~z!5E
0

1

G(m)~z,z8! f m~z8!dz8,

then

I d2um

dz2 I
`

<
1

m3/2i f mi2 .

Proof: From explicit expression ofG(m)(z,z), we have

um~z!5E
0

1 coshm~z1z21!

2m sinhm
gm~z!dz2E

0

z coshm~12z1z!

2m sinhm
gm~z!dz

2E
z

1 coshm~12z1z!

2m sinhm
gm~z!dz.
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Differentiate twice, we get

d2um

dz2 5E
0

1 m coshm~z1z21!

2 sinhm
gm~z!dz1gm~z!2E

0

z m coshm~12z1z!

2 sinhm
gm~z!dz

2E
z

1 m coshm~12z1z!

2 sinhm
gm~z!dz

5E
0

z m@coshm~z1z21!2coshm~12z1z!#

2 sinhm
gm~z!dz1gm~z!

1E
z

1 m@coshm~z1z21!2coshm~12z1z!#

2 sinhm
gm~z!dz.

Recall for 0<z, z<1,

coshm~z1z21!2coshm~12z1z!<0,

coshm~z1z21!2coshm~12z1z!<0,
~3.13!

sinhm~z1z21!1sinhm~12z1z!>0,

sinhm~z1z21!2sinhm~12z1z!<0.

Equation~3.13! implies the following estimates:

I d2um

dz2 I
`

<igmi`1
migmi`

2 sinhm S E
0

z

@coshm~12z1z!2coshm~z1z21!#dz

1E
z

1

@coshm~12z1z!2coshm~z1z21!#dz D
5igmi`1

migmi`

2 sinhm S sinhm~12z1z!2sinhm~z1z21!

m U
0

z

2
sinhm~12z1z!1sinhm~z1z21!

m U
z

1D
5igmi`1

sinhm2sinhmz2sinhm~12z!

sinhm
igmi`

<2igmi`<2
1

2

1

m3/2i f mi25
1

m3/2i f mi2 . ~3.14!

Next we shall prove estimates on derivatives ofhm , first we state two simple lemmas.
Lemma 3.4: Let a>0, m>1, u(z)5m(12z)sinhm(z1a), 0<z<1, then

max
0<z<1

u~z!<sinhm~11a!.

Proof: Differentiateu, we have
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u8~z!5m2~12z!coshm~z1a!2m sinhm~z1a!

5
m

2
@em(z1a)~m~12z!21!1e2m(z1a)~m~12z!11!#.

In particular,

u8~z!.0 when m~12z!21>0.

On the other hand,u8(1),0, therefore max0<z<1 u(z) is achieved at some 0,z0,1 with

m~12z0!<1.

Therefore

max
0<z<1

u~z!5u~z0!5m~12z0!sinhm~z01a!<sinhm~11a!.

h

Remark 3.5:Considerv(z)5mzsinhm(a2z), a>1, 0<z<1, then a direct corollary of the
previous lemma is max0<z<1 v(z)<sinhma.

Lemma 3.6: When m>1, we have

~a!
coshm

sinhm2m
<

cosh 1

sinh 121
,

~b!
sinhm

sinhm2m
<

sinh 1

sinh 121
,

~c!
m

sinhm2m
<

1

sinh 121
.

Proof: Since

sinhm

sinhm2m
511

m

sinhm2m
,

we only need to prove~a! and ~c!.
Let

f 1~x!5
coshx

sinhx2x
, f 2~x!5

x

sinhx2x
.

Then

f 18~x!5
1

~sinhx2x!2 @sinhx~sinhx2x!2coshx~coshx21!#

5
1

2~sinhx2x!2 ~222xex1xe2x1ex1e2x!.

Observe that whenx>1, (x11)e2x<2, we have

f 18~x!<0 for x>1.
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Thus maxm>1 f1(m)<f1(1).
Similarly

f 28~x!5
1

~sinhx2x!2 ~sinhx2xcoshx!<0 when x>1,

therefore maxm>1 f2(m)<f2(1).
Now we estimate derivatives ofhm for umu5m>1.
Lemma 3.7: hm5Am(12z)y1(z)1Bmzy2(z),

Am5
um8 ~0!1Umum8 ~1!

Um
2 21

, Bm5
um8 ~0!Um1um8 ~1!

Um
2 21

, y1~z!5
emz2e2mz

2m
, y2~z!5y1~z21!.

Then there exists c1.0 independent of m such that

I d2hm

dz2 I
`

<c1

1

m3/2i f mi2 .

Proof: Differentiatehm directly, we have

d2hm

dz2 522Amy18~z!1Amy19~z!~12z!12Bmy28~z!1Bmy29~z!z.

Recall

y18~z!5
emz1e2mz

2
, y28~z!5

em(z21)1e2m(z21)

2
,

~3.15!

y19~z!5
m~emz2e2mz!

2
, y29~z!5

m~em(z21)2e2m(z21)!

2
,

and

uAmu<
Um11

Um
2 21

ium8 i`5
m

sinhm2m
ium8 i` ,

~3.16!

uBmu<
Um11

Um
2 21

ium8 i`5
m

sinhm2m
ium8 i` .

Equations~3.15! and ~3.16! and Lemma 3.4, Lemma 3.6 imply

ihm9 i`<2uAmucoshm12uBmucoshm1uAmu max
0<z<1

~m~12z!sinhmz!

1uBmu max
0<z<1

~mzsinhm~12z!!

<
4m coshm

sinhm2m
ium8 i`1

2m sinhm

sinhm2m
ium8 i`<

4 coshm12 sinhm

sinhm2m
m

1

m
2

e211

e221
igmi`

<2
e211

e221

4 coshm12 sinhm

sinhm2m

1

2m3/2i f mi2<
e211

e221

4 coshm12 sinhm

sinhm2m

1

m3/2i f mi2

<
e211

e221

4 cosh 112 sinh 1

sinh 121

1

m3/2i f mi2 .
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Summarize the estimates on the higher derivatives ofum , hm , we have proved

iwm9 i`<C1

1

m3/2i f mi2

with

C15F11
e211

e221
•

4 cosh 112 sinh 1

sinh 121 G'64.8734.

IV. HEAT FLUX COVECTION WITHOUT ROTATION

In this section, we prove upper bound on heat flux convection in absence of rotation. W
quote the following Lemma from Ref. 10.

Lemma 4.1~Ref. 10!: If wm(z) satisfies

S 2
d2

dz2 1m2D 2

wm5Ram2um ,

wm~0!5wm~1!5
dwm

dz
~0!5

dwm

dz
~1!50,

then there is a constant C2 independent of m such thati d2wm /dz2 i`<C2 Ramiumi2 . In par-
ticular, one can choose C2

252/(72A41).
Lemma 4.1 and Proposition 3.1 implies the growth ofwm near boundaries. By Propositio

3.1, whenumu>1, the growth ofwm near the boundary atz50 is controlled by

uwm~z!u5U E
0

zE
0

z d2wm

dz2 ~z8!dz8 dzU< 1

2
z2I d2wm

dz2 I
`

<
1

2
z2C1 RaAmiumi2 . ~4.1!

For umu<1, Lemma 4.1 implies the growth ofwm nearz50 is limited by

uwm~z!u5U E
0

zE
0

z d2wm

dz2 ~z8!dz8 dzU< 1

2
z2Id2wm

dz2 I
`

<
1

2
z2C2 Ramiumi2<

1

2
z2C2 Raiumi2 .

~4.2!

An analogous pointwise bound holds nearz51 whenumu>1 andumu<1.
On the other hand, the growth ofum near the boundary is estimated by

uum~z!u5U E
0

z dum

dz
~z!dzU<AzAE

0

1/2Udum

dz U2

~4.3!

for 0<z< 1
2, a similar estimate holds for the growth ofum nearz51.

When umu>1, the indefinite term inQm now can be bounded according to~4.1! and~4.3! as

U E
0

1

t8~z!~wm* um1um* wm!dzU< 1

d E0

d
uwm~z!uuum~z!udz1

1

d E12d

1

uwm~z!uuum~z!udz

<
1

d E0

d 1

2
z2C1 RaAmiumi2AzAE

0

1/2Udum

dz U2

dz

1
1

d E12d

1 1

2
~12z!2C1 RaAmiumi2A12zAE

1/2

1 Udum

dz U2

dz
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<
1

7
d5/2C1 RaAmiumi2SAE

0

1/2Udum

dz U2

1AE
1/2

1 Udum

dz U2D
<
&

7
d5/2C1 RaAmiumi2I dum

dz I
2

. ~4.4!

When umu<1, the indefinite term inQm is estimated via~4.2! and ~4.3!,

U E
0

1

t8~z!~wm* um1um* wm!dzU< 1

d E0

d
uwm~z!uuum~z!udz1

1

d E12d

1

uwm~z!uuum~z!udz

<
1

d E0

d 1

2
z2C2 Ramiumi2AzAE

0

1/2Udum

dz U2

dz

1
1

d E12d

1 1

2
~12z!2C2 Raiumi2A12zAE

1/2

1 Udum

dz U2

dz

<
1

7
C2d5/2Raiumi2SAE

0

1/2Udum

dz U2

1AE
1/2

1 Udum

dz U2D
<
&

7
C2d5/2Raiumi2I dum

dz I
2

. ~4.5!

For umu>1, ~4.4! implies

U E
0

1

t8~z!~wm* um1um* wm!dzU< ~& !4

64374 C1
4d10Ra4iumi2

21m2iumi2
21 I dum

dz I
2

2

. ~4.6!

In particular, this implies whenumu>1, Qm is bounded below by

Qm~um!>2
C1

4

16374 d10Ra4iumi2
2 . ~4.7!

On the other hand, forumu<1, ~4.5! gives

U E
0

1

t8~z!~wm* um1um* wm!dzU< C2&

7
d5/2Raiumi2I dum

dz I
2

<
C2

2

98
d5 Ra2iumi2

21 I dum

dz I
2

2

.

~4.8!

Hence forumu<1, Qm is bounded below by

Qm~um!>2
C2

2

98
d5 Ra2iumi2

2 . ~4.9!

Therefore the convective heat flux
                                                                                                                



ollow

2734 J. Math. Phys., Vol. 45, No. 7, July 2004 X. Yan

                    
Nu<
1

2d
2

1

A K E
0

Lx /hE
0

Ly /h

(
m

Qm~um!dx dyL
<

1

2d
1

C2
2

98
d5 Ra2 (

umu<1
iumi2

21
C1

4

16374 d10Ra4 (
umu>1

iumi2
2

<
1

2d
1maxS C2

2

98
d5 Ra2,

C1
4

16374 d10Ra4D .

The last inequality used the fact thatuu(x,t)u<1 and

(
m

iumi2
2<

1

A E
V
u2 dV<1.

In fact, apply Maximum principle toT, we have 0<T(x,t)<1. Choice oft implies 0<t(z)
<1, therefore

uu~x,t !u5uT~x,t !2t~z!u<1.

Choosed5@(8374/10C1
4) Ra24#1/11, we get

Nu<c Ra4/11

with

c5S 1

2d
1

C1
4

16374 d10Ra4DRa2 4/11'1.26.

h

V. UPPER BOUND FOR ROTATIONAL SYSTEM

In this section, we discuss the bound on Nusselt number for rotational system. We f
similar ideas as in Sec. IV. We first prove the following estimates.

Lemma 5.1: Forumu>1,

Id2wm

dz2 I
`

<c1 RaAmiumi21
c1

2
RaATaiumi2

with c1'64.87.
Lemma 5.2: Forumu<1,

Id2wm

dz2 I
`

<c2 RaS Ta

4
11D 1/4

iumi2 ~5.1!

with c2561/4.
To prove Lemma 5.1 and Lemma 5.2. We need the following Lemma.
Lemma 5.3:

I dzm

dz I
2

<
1

2
Raiumi2 , I d2wm

dz2 I
2

<
1

2
Raiumi2 ,

I d4wm

dz4 I
2

2

<6S TaI dzm

dz I
2

2

1Ra2 m4iumi2
2D .
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Proof: Recallwm ,zm satisfies

S 2
d2

dz2 1m2D zm5ATa
dwm

dz
, ~5.2!

S 2
d2

dz2 1m2D 2

wm2ATa
dzm

dz
5Ram2um ~5.3!

subject to boundary conditions

zm~0!5zm~1!50,

wm~0!5wm~1!5
dwm

dz
~0!5

dwm

dz
~1!50.

Equation~5.2! multiplied by zm1(5.3) multiplied bywm , integrate by parts using bounda
constraints, we obtain

E
0

1S U dzm

dz U2

1m2zm
2 1U d2wm

dz2 U2

12m2U dwm

dz U2

1m4wm
2 Ddz

5E
0

1

Ram2umwm<E
0

1 Ra2 um
2 ~z!

4
dz1E

0

1

m4wm
2 .

In particular, we have

I dzm

dz I
2

<
1

2
Raiumi2 , I d2wm

dz2 I
2

<
1

2
Raiumi2 . ~5.4!

On the other hand, moveATa dzm /dz to the right, squaring~5.3!, integrate by parts, we ge

I d4wm

dz4 I
2

2

22m2E
0

1Fd4wm*

dz4

d2wm

dz2 1
d2wm*

dz2

d4wm

dz4 Gdz16m4I d2wm

dz2 I
2

2

14m6I dwm

dz I
2

2

1m8iwmi2
2

<2 TaI dzm

dz I
2

2

12 Ra2 m4iumi2
2 .

The indefinite term above can be estimated by its neighboring terms. Fore.0,

U2m2E
0

1 d4wm*

dz4

d2wm

dz2 1
d2wm*

dz2

d4wm

dz4 U<e Id4wm

dz4 I
2

2

1
4m4

e Id2wm

dz2 I
2

2

.

Choosee5 2
3, we have

Id4wm

dz4 I
2

2

<6S TaIdzm

dz I
2

2

1Ra2 m4iumi2
2D .

h

Proof of Lemma 5.1:Since

S 2
d2

dz2 1m2D 2

wm5ATa
dzm

dz
1Ram2um .
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By Lemma 5.3,i dzm /dz i2< 1
2Raiumi2 , therefore forumu>1, by Proposition 3.1,

I d2wm

dz2 I
`

<c1m2 3/2SATa
1

2
Raiumi21Ram2iumi2D<

c1

2
RaATaiumi21c1 RaAmiumi2 .

To prove Lemma 5.2, we need the following lemma from Ref. 10.
Lemma 5.4~Ref. 10!: Let f(z) be a smooth real valued function satisfying both homogene

Dirichlet and Neumann boundary conditions on [0,1]. Then

Id2f

dz2I
`

<A2Id4f

dz4I
2
Id2f

dz2I
2

.

An immediate corollary of Lemma 5.4 is
Lemma 5.5: Let w(z) be a smooth complex valued function satisfying both homogen

Dirichlet and Neumann boundary conditions on [0,1]. Then

Id2w

dz2 I
`

<A2Id4w

dz4 I
2
Id2w

dz2 I
2

.

Proof: Write w(z)5u(z)1 i v(z), thenu(z),v(z) are real valued smooth functions satisfyin
both homogeneous Dirichlet and Neumann boundary conditions on@0,1#. Therefore

U d2w

dz2 ~z!U
2

2

5U d2u

dz2 ~z!U
2

2

1U d2v
dz2 ~z!U

2

2

<2I d2u

dz2 I
2
I d4u

dz4 I
2

12I d2v
dz2 I

2
I d4v

dz4 I
2

<
1

e I d2u

dz2 I
2

2

1e I d4u

dz4 I
2

2

1
1

e I d2v
dz2 I

2

2

1e I d4v
dz4 I

2

2

5
1

e I d2w

dz2 I
2

2

1e I d4w

dz4 I
2

2

for any e.0. Minimize the right-hand side ine, we obtain

Ud2w

dz2 ~z!U
2

2

<2Id2w

dz2 I
2
Id4w

dz4 I
2

.

h

Proof of Lemma 5.2:By Lemma 5.3, we havei d2wm /dz2 i2< 1
2Raiumi2 and

I d4wm

dz4 I
2

2

<6S TaI dzm

dz I
2

2

1Ra2 m4iumi2
2D

<6S 1

4
Ta Ra2iumi2

21Ra2iumi2
2D56 Ra2iumi2

2S 1

4
Ta11D .

It then follows from Lemma 5.5 that

I d2wm

dz2 I
`

<Raiumi261/4S 1

4
Ta11D 1/4

<Raiumi261/4SATa

2
11D .

In the last inequality, we used the fact that

S 1

4
Ta11D 1/4

<SATa

2
11D .
                                                                                                                



In

2737J. Math. Phys., Vol. 45, No. 7, July 2004 Infinite Prandtl number with or without rotation

                    
Proof of Theorem 2.2:Theorem 2.2 now follows from the same line of proof as in Sec. IV.
fact, estimates in Lemma 5.1 imply forumu>1, the growth ofwm near z50 is controlled by
~similar estimates nearz51)

uwm~z!u< 1
2 z2iwm9 i`< 1

2 z2c1Am Raiumi21 1
4 z2c1 RaATaiumi2 ,

this together with growth estimate onum,

uum~z!u<AzS E
0

1/2Udum

dz U2D 1/2

imply the following estimates for the indefinite term inQm(um):

U E
0

1

t8~wm* um1wmum* !U< 1

d S E
0

d 1

2
z5/2iwm9 i`S E

0

1/2Udum

dz U2D 1/2

1E
12d

1 1

2
z5/2iwm9 i`S E

1/2

1 Udum

dz U2D 1/2D
<

c1

7
d5/2Am Raiumi2F S E

0

1/2Udum

dz U2D 1/2

1S E
1/2

1 Udum

dz U2D 1/2G
1

c1

14
d5/2RaATaiumi2F S E

0

1/2Udum

dz U2D 1/2

1S E
1/2

1 Udum

dz U2D 1/2G
<
&c1

7
d5/2Am Raiumi2Idum

dz I
2

1
&c1

14
d5/2RaATaiumi2Idum

dz I
2

<
~& !4c1

4

16374 d10Ra4iumi2
21m2iumi2

21
1

2 Idum

dz I
2

2

1
c1

2

4349
d5 Ra2 Taiumi2

2

1
1

2 I dum

dz I
2

2

. ~5.5!

Therefore whenumu>1, Qm(um) is bounded below by

Qm~um!>2
~& !4c1

4

16374 d10Ra4iumi2
22

c1
2

4349
d5 Ra2 Taiumi2

2 .

On the other hand, forumu<1, Lemma 3.3 gives

U E
0

1

t8~wm* um1wmum* !U< 1

d E0

d
uwmuuumudz1

1

d E12d

1

uwmuuumudz

<
&c2

7
d5/2RaSATa

2
11D iumi2I dum

dz I
2

<
c2

2

98
d5 Ra2SATa

2
11D 2

iumi2
21 I dum

dz I
2

2

.

Therefore whenumu<1, Qm(um) is bounded from below by
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Qm~um!>2
c2

2

98
d5 Ra2SATa

2
11D 2

iumi2
2 ~5.6!

and

Nu<E
0

1

t8~z!2 dz2
1

A E
0

Lx /hE
0

Ly /h

(
m

Qm~um!dx dy

<
1

2d
1

c2
2

98
d5 Ra2SATa

2
11D 2

(
umu<1

iumi2
21

c1
4

4374 d10Ra4 (
umu>1

iumi2
2

1
c1

2

4349
d5 Ra2 Ta (

umu>1
iumi2

2

<
1

2d
1maxS c2

2

98
d5 Ra2SATa

2
11D 2

,
c1

4

4374 d10Ra41
c1

2

4349
d5 Ra2 TaD

5
1

2d
1

c1
4

4374 d10Ra41
c1

2

4349
d5 Ra2 Ta.

The last inequality uses the fact thatuu(x,t)u<1 and

(
umu<1

iumi2
2<

1

A E
V
u2 dV<1.

Choosed5(2374/10•c1
4)1/11Ra24/11Ta21/6, we get

Nu<
1

2 S 10c1
4

2374D 1/11

Ra4/11Ta1/61
c1

4

4374 S 2374

10•c1
4D 10/11

Ra4/11Ta2 5/3

1
c1

2

4349S 2374

10•c1
4D 5/11

Ra2/11Ta1/6

51.3 Ra4/11Ta1/610.13 Ra4/11Ta2 5/310.18 Ra2/11Ta1/6.

To prove the second bound, we observe that

uwm~z!u< 1
2 z2iwm9 i`< 1

2 z2c1Am Raiumi21 1
4 z2c1 RaATaiumi2< 1

2 z2c1 Ra~ 1
2ATa11!Amiumi2 ,

~5.7!

therefore whenumu>1,

Qm~um!>2
c1

4

16374 FRaS 1

2
ATa11D G4

d10iumi2
2

and

Nu<
1

2d
1

c2
2

98
d5 Ra2SATa

2
11D 2

(
umu<1

iumi2
21

c1
4

16374 FRaS 1

2
ATa11D G4

d10 (
umu>1

iumi2
2

<
1

2d
1

c1
4

16374 FRaS 1

2
ATa11D G4

d10.

Choosed5(8374/10c1
4)1/11@Ra(1

2ATa11)#24/11, we get
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Nu<c@Ra~ 1
2ATa11!#4/11,

c5S 1

2d
1

c1
4

16374 d10Ra4SATa

2
11D 4DRa2 4/11SATa

2
11D 2 4/11

'1.26.

h

VI. UNIFORM BOUND FOR WEAKLY ROTATING SYSTEM

In this section, we prove Theorem 2.3. We shall need the following expression for Nu in
of the velocity field

Nu5
1

A
1

Ra
^i¹ui2&.

In particular, foru5(u,v,w), this relation implies

(
m

iwm8 i2
2<

1

A ^i¹wi2&<Ra Nu.

Herewm(z) is the Fourier modes ofw.
We start with the background field decomposition. As in Sec. V, we work with Fourier m

to estimate the quadratic form. We shall use slightly different versions of estimates on h
derivatives ofwm . Corresponding versions of Lemma 5.1 and Lemma 5.2 are the following

Lemma 6.1: Forumu>1,

iwm9 i`<
C1

m2 ATaiwm8 i21c1 RaAmiumi2 .

Herec1 is the same constant as in Lemma 5.1,C1 is a constant independent ofm, Ra, Ta.
Lemma 6.2. For umu<1,

iwm9 i`<61/4ARaiumi2~Taiwm8 i21Raiumi2!.

To prove Lemma 6.1 and 6.2, we first prove the following Lemma.
Lemma 6.3: If gm satisfies

S d2

dz2 2m2Dgm5hm ,

then

Idgm

dz I
2

<ihmi2 ,

and whenumu>1

Idgm

dz I
2

<
c0

Am
ihmi2

with c051/A2A(e211)(e221)'0.810 258.
Proof: From explicit expression of the Green’s function, we have
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gm~z!5E
0

1 coshm~z1z21!

2m sinhm
hm~z!dz2E

0

1 coshm~12uz2zu!
2m sinhm

hm~z!dz.

Differentiate, we get

dgm

dz
~z!5E

0

1 sinhm~z1z21!

2 sinhm
hm~z!dz2E

0

z sinhm~12z1z!

2 sinhm
hm~z!dz

2E
z

1 sinhm~11z2z!

2 sinhm
hm~z!dz.

In particular,

U dgm

dz
~z!U<E

0

1U sinhm~z1z21!

2 sinhm
hm~z!Udz1E

0

zU sinhm~12z1z!

2 sinhm
hm~z!Udz

1E
z

1U sinhm~11z2z!

2 sinhm
hm~z!Udz<E

0

1

uhmudz<ihmi2 .

Here we use the fact that when 0<z, z<1,

usinhm~z1z21!u<sinhm,

usinhm~12uz2zu!u<sinhm.

On the other hand, from Lemma 3.2, we have whenumu>1,

Idgm

dz I
`

<
1

&Am
Ae211

e221
ihmi2 .

The conclusion of the Lemma follows directly. h

A direct corollary of Lemma 6.3 is

Idzm

dz I
2

<
c0

Am
ATaiwm8 i2 for umu>1 ~6.1!

and

Idzm

dz I
2

<ATaiwm8 i2 for umu<1. ~6.2!

Proof of Lemma 6.1:When umu>1, Proposition 3.1 and~6.1! derives

iwm9 i`<
c1

m3/2S ATaI dzm

dz I
2

1Ram2iumi2D<
c1

m3/2Ram2iumi21
c1

m3/2ATa
c0

Am
ATaiwm8 i2

5c1 RaAmiumi21
C1

m2 Taiwm8 i2 ,

with C15c1c0 .
Proof of Lemma 6.2:By Lemma 5.3 and~6.2!,
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I d4wm

dz4 I
2

2

<6S TaI dzm

dz I
2

2

1Ra2iumi2
2D<6~Ta2iwm8 i2

21Ra2iumi2
2!

and

Id2wm

dz2 I
2

<
1

2
Raiumi2 ,

conclusion follows from Lemma 5.5.
We are now ready to estimateQm(um). The indefinite term inQm(um) can be estimated a

follows. For umu>1,

U E
0

1

t8~wmum* 1wm* um!dzU< 1

d E0

d 1

2
z2S c1 RaAmiumi2uum~z!u1

C1

m2 ATaiwm8 i2uum~z!u Ddz

1
1

d E12d

1 1

2
~12z!2S c1 RaAmiumi2uum~z!u

1
C1

m2 ATaiwm8 i2uum~z!u Ddz

<
1

d E0

d 1

2
z5/2c1 RaAmiumi2S E

0

1/2Udum

dz U2D 1/2

dz

1
1

d E12d

1 1

2
~12z!5/2c1 RaAmiumi2S E

1/2

1 Udum

dz U2D 1/2

dz

1
1

d E0

d 1

2
z5/2

C1

m2 ATaiwm8 i2S E
0

1/2Udum

dz U2D 1/2

dz

1
1

d E12d

1 1

2
~12z!5/2

C1

m2 ATaiwm8 i2S E
1/2

1 Udum

dz U2D 1/2

dz

<
&

7
c1d1

5/2RaAmiumi2Idum

dz I
2

1
&

7
d5/2

C1

m2 ATaiwm8 i2Idum

dz I
2

<
c1

4

4374 d10Ra4iumi2
21m2iumi2

21
1

2 Idum

dz I
2

2

1
C1

2

49
d5

Ta

m4 iwm8 i2
2

1
1

2 I dum

dz I
2

2

. ~6.3!

Therefore forumu>1, Qm(um) is bounded from below by

Qm~um!>2
c1

4

4374 d10Ra4iumi2
22

C1
2

49
d5

Ta

m4 iwm8 i2
2 .

On the other hand, forumu<1,
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U E
0

1

t8~wmum* 1wm* um!dzU< 61/4&

7
d5/2ARaiumi2~Taiwm8 i21Raiumi2!I dum

dz I
2

<
A6

98
d5@Raiumi2~Taiwm8 i1Raiumi2!#1 I dum

dz I
2

2

,

therefore

Qm~um!>2
A6

98
d5@Raiumi2~Taiwm8 i1Raiumi2!# for umu<1.

Hence

Nu<
1

2d
2

1

A E
0

Lx /hE
0

Ly /h

(
m

Qm~um!dx dy

<
1

2d
1 (

umu<1

A6

98
d5@Raiumi2~Taiwm8 i1Raiumi2!#1 (

1<umu

c1
4

4374 d10Ra4iumi2
2

1 (
umu>1

C1
2

49
d5 Ta

1

m4 iwm8 i2
2

<
1

2d
1 (

umu<1

A6

98
d5 Ra2iumi2

21 (
umu>1

c1
4

4374 d10Ra4iumi2
2

1
A6

98
d5 Ra TaS (

umu<1
iwm8 i2

2D 1/2S (
umu<1

iumi2
2D 1/2

1
C1

2

49
d5 Ta (

umu>1

1

m4 iwm8 i2
2

<
1

2d
1maxSA6

98
d5 Ra2,

c1
4

4374 d10Ra4D 1
A6

98
d5 Ra TaARa Nu1

C1
2

49
d5 Ta Ra Nu.

Choose

d5S 2374

10•c1
4 Ra24D 1/11

,

we have

Nu<S 1

2 S 10•c1
4

2374D 1/11

1
c1

4

4374 S 2374

10•c1
4D 10/11DRa4/111

A6

98 S 10•c1
4

2374D 2 5/11

Ra2 7/22TaANu

1
C1

2

49 S 10•c1
4

2374D 2 5/11

Ra2 9/11Ta Nu

'1.43 Ra4/1110.0002 Ra2 7/22TaANu10.47 Ra2 9/11Ta Nu,

without loss of generality, we assume Ra>1 and chooseB151/0.94, it follows that there exis
constantsB2.0 such that when Ta<B1 Ra1/2, Nu<B2 Ra4/11. h
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A diffusion process in curved space–time
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We construct a curved space–time generalization of the special relativistic
Ornstein–Uhlenbeck Process. This is done by deriving a manifestly covariant Kol-
mogorov equation that describes diffusion in curved space–times. The simple case
of diffusion in a spatially flat Friedmann–Robertson–Walker universe is then con-
sidered. It is proven that, at least in these space–times, Kolmogorov equation
admits as possible solution a natural generalization of the flat space–time Ju¨ttner
equilibrium solution. The first correction to Ju¨ttner’s distribution in a slowly ex-
panding universe is also obtained explicitly. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1755860#

I. INTRODUCTION

Relativistic irreversible phenomena are notoriously difficult to model.1–3 In 1997, Debbasch
Mallick, and Rivet4 introduced a new diffusion process, the Relativistic Ornstein–Uhlenb
Process~ROUP!. This process is not only the simplest possible model of relativistic diffusion,
also the simplest toy–model of relativistic irreversible phenomena. Up to now, the ROUP ha
been studied in the special relativistic realm; this has notably shed new light on the resp
status of special relativistic hydrodynamics and special relativistic kinetic theory.5 The aim of the
present article is to lay down the basis for the study of the ROUP in curved space–time.

The matter is organized as follows. A first section reviews the principal results pertaini
the special relativistic case. An important point made in that section is that the ROUP c
defined in flat space–time by two different but completely equivalent approaches. The firs
consists in specifying the stochastic equations of motion for the particle whose diffusion is
elled by the process. The other approach consists in writing down the transport or Kolmo
equation verified by the phase-space density associated to the diffusing particle. Both route
naturally been explored in the special relativistic case. It turns out that, to extend the definit
the ROUP to the general relativistic case, it is easier to write directly the transport equ
associated to the process in curved space–time. This equation is obtained in Sec. II of this
as a direct generalization of the manifestly covariant Kolmogorov equation associated
ROUP in flat space–time. Section III is devoted to a simple but enlightening application o
formalism just developed. The spatially flat homogeneous and isotropic Friedmann–Robe
Walker universes are surely among the simplest solutions to Einstein’s equations and are
particular physical relevance; it is, therefore, quite natural to investigate the properties
ROUP in these space–times. In the study of Galilean and relativistic flat space–time dif
processes, an important role is played by the invariant measure~s! of the process, i.e., the equilib
rium solution~s! to the transport equation. In the absence of any force-field, the invariant me
of the special relativistic process is space and time independent in the rest-frame of the fl
which the particle diffuses. In this frame, it is also isotropic in momentum space. In the ca
diffusion occurring in a spatially flat Friedmann model, one should not expect to find a
independent solution to the transport equation. The question is, therefore: Does Kolmo
equation then admit a generalized equilibrium solution, i.e., a solution which is, in the so-c
comoving coordinates, independent of spatial position and isotropic in momentum space

a!Electronic mail: fabrice.debbasch@wanadoo.fr
27440022-2488/2004/45(7)/2744/17/$22.00 © 2004 American Institute of Physics
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proven in Sec. III that such a solution can be obtained perturbatively as a series expansion
the small parameter is the ratio of the characteristic ‘‘microscopic’’ relaxation time of the diffu
process~in flat space–time! to the characteristic evolution-time of the expansion factor of
universe. Unicity of the expansion is also proven and the first correction to the special relat
Jütnner equilibrium solution is explicitly derived. As a conclusion, Sec. IV reviews all the
results of the article and puts them into perspective by comparing them with similar results a
obtained on the general relativistic Boltzmann equation. Finally, Sec. IV also mentions some
many possible extensions to this work.

II. THE SPECIAL RELATIVISTIC ORNSTEIN–UHLENBECK PROCESS

A. Basics

To present the special relativistic Ornstein–Uhlenbeck process most succinctly, it is b
use the image of a Brownian special relativistic particle diffusing in a surrounding~special rela-
tivistic! fluid. The diffusion process has originally been defined4 by a couple of covariant stochas
tic equations which determine, in an arbitrary Lorentz frame, the time-evolution of both
position and momentum of the diffusing particle.

Let us suppose now that the fluid which surrounds the particle is in a state of global eq
rium. Then, there exists a Lorentz frameR where this fluid is at rest; this frame is usually calle
the global rest-frame of the fluid; it constitutes a naturally preferred Lorentz frame for the d
sion process.6 In this reference frame, the equations of motion for the diffusing particle take
simple form

H d

dt
x5

p

mg
,

d

dt
p52a

p

g
1A2D

dW

dt
,

~1!

wheredW/dt indicates that the stochastic partFs of the force which acts on the diffusing partic
is, up to the multiplicative constantA2D, the derivative of the Wiener process, i.e., a Gauss
white noise. The positive constanta enters the definition of the deterministic partFd of the force
acting on the particle and plays the role of a friction coefficient. And the Lorentz factorg~p! is
defined by

g~p!5S 11
p2

m2c2D 1/2

. ~2!

Let now P(t,x,p) be the phase-space distribution function of the diffusing particle inR.
More precisely, letP(t,r ,p)d3xd3p be the probability to find inR the diffusing particle at timet
in the volumed3xd3p centered on~x,p!. It is possible to derive from~1! a transport equation
verified byP. One obtains from~1! ~see Ref. 4!

] tP1¹x . S p

mg
P D1¹p . S 2a

p

g
P D5D DpP. ~3!

As just presented,~3! is merely a consequence of~1!. A stronger result actually applies. Quit
generally speaking, the correspondence between a sufficiently regular Itoˆ process and its forward
Kolmogorov equation is one-to-one.7 Consequently, the transport equation~3! can also be consid
ered as implying the stochastic equations of motion~1!.

Equations~1! or ~3! fully define the process inR. By Lorentz transforming all quantities
involved in these equations, it is then possible to obtain the stochastic equations which
motion of the particle in another arbitrary Lorentz frame; and one can also be led to the tra
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equation associated to the process in this same Lorentz frame.6 Either of these new equation
entirely defines the process in this other Lorentz frame. Therefore, Eqs.~1! or ~3! entirely define
the process, in all Lorentz frames.

This formulation of the special relativistic Ornstein–Uhlenbeck process is perfectly cova
but it is not manifestly covariant. It is impossible to obtain a simple manifestly covariant for
the stochastic equations of motion. One can, however, write down a manifestly covariant Ko
orov equation for the process. This equation will be presented in the next section. It will se
a starting point for the extension of the process to the general relativistic realm.

B. Manifestly covariant special relativistic Kolmogorov equation

The idea behind the manifestly covariant formulation8 is to introduce a new, unphysica
distribution functionf , defined over the extended phase-spaceR85$(xm,pm)%, and whose restric-
tion to the mass-shell gives back, in any Lorentz-frame, the physical distribution functionP:

P~ t,x,p!5E
pPP

f ~ t,x,p0,p! d~p02mcg~p!! dp0. ~4!

Naturally, given a distributionP, it is always possible to find at least onef which verifies~4!, but
the solution is generallynot unique. The domainP contains the mass-shell and is defined by

P5$pPR4;p.U.0%, ~5!

whereU stands for the 4-velocity of the fluid in which the particle diffuses. This is the lar
domain in which all coefficients of the manifestly covariant Kolmogorov equation are defined
regular.8 One can choose the functionf to be a Lorentz scalar and Kolmogorov equation~3! can
be rewritten as

E
pPP

1

p0 L~ f ! d~p02mcg~p!! dp050, ~6!

where the differential operatorL is defined by8

L~ f !5]xm~pm f !1]pm~mc Fd
m f !1DKmrbn]prS pmpb

p.U
]pn f D . ~7!

The manifestly covariant expression of the deterministic 4-forceFd
m is

Fd
m52ln

mpn
p2

m2c2 1lb
a papb

m2c2 pm, ~8!

with

ln
m5

a~mc!2

~p.U !2 Dn
m , ~9!

Dmn5hmn2UmUn . ~10!

D is evidently the projector unto the subspace of momentum 4-space orthogonal toU. The tensor
K is itself defined by

Kmrbn5 UmUbDrn2UmUnDrb1UrUnDmb2UrUbDmn. ~11!
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The manifestly covariant special relativistic Kolmogorov equation isL ( f ) 5 0. It can serve
as a manifestly covariant definition of the special relativistic Ornstein–Uhlenbeck process be
its restriction to the mass-shell is, inR, identical to Eq.~3!, which itself fully defines the proces
in all Lorentz frames.

III. THE GENERAL RELATIVISTIC ORNSTEIN–UHLENBECK PROCESS

The general relativistic Ornstein–Uhlenbeck process will be defined by a general relati
manifestly covariant extension of the special relativistic transport equationL( f )50.

A. Choice of the extended phase-space

There are two natural candidates for the general relativistic extended phase-space.
momentarily leaves aside the constraintp.U, the first candidate is the bundle tangent to t
space–time manifold; its elements are most naturally represented, within a chart~coordinate
system!, by the four space–times coordinatesxm and four contravariant momentum componen
pm. The second candidate is the bundlecotangent to space–time, whose elements can be re
sented by the four space–time coordinatesxm and the four covariant momentum componentspm .

The distinction between these two possibilities is rather academic in special relativity sin
flat space–time, the contravariant and covariant components ofp differ at the most by a sign. This
is generally not so in curved space–time and, although both possibilities naturally give ba
same physics, experience in relativistic kinetic theory teaches that choosing the cotangent
as phase-space is usually the most technically convenient solution.9 Remember also that momen
in Hamiltonian formalism naturally appear through their covariant components, i.e., as cov
and not as~tangent! vectors.10

To avoid any possible confusion and to simplify some notations in the next section, we
adopt the following nonstandard convention.p will always stand for a vector tangent to space
time and only its so-called contravariant componentspm will appear in the text. Elements of th
cotangent space will be denoted byq and only their covariant componentsqm will appear below.

The extended phase-space is thus chosen to be$(xm,qm)PR8;q.U5qmUm.0%. Note that, in
curved space–time, the componentsUm generally depend onx ~sinceU is normed to unity!. Thus,
generally speaking, the conditionq.U.0 also involvesx.

B. Choice of measures on the extended phase-space

The curved space–time equivalent to the completely antisymmetric symbolemnra is11

Emnra5A2detg emnra ; ~12!

its purely contravariant components read

Emnra5
1

A2detg
emnra. ~13!

The natural four-dimensional volume measure in space–time is, therefore, s
(1/4!) Emnradxm∧dxn∧dxr∧dxa5A2detg d4x and the natural 4d-volume measure in mome
tum space is(1/4!) Emnradqm∧dqn∧dqr∧dqa5(A2detg)21d4q.

However, four-dimensional volume integrals in space–time or in momentum space d
appear in physics; indeed, only integrals over three-dimensional space-like submanifo
space–time are needed and, as far as momentum space is concerned, only integrals
three-dimensional mass-shell have physical relevance. Let us now recall what measures a
used in both cases.9

The measure

dSm5
1

3!
Emnradxn∧dxr∧dxa ~14!
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will be used on space-like three-dimensional submanifolds of space–time. This measure b
like a pseudo-cotangent vector to space–time. In particular, it can be integrated against t
vector fields to yield pseudo-scalars.

As far as momentum space is concerned, it is customary to proceed differently; one u
does not introduce directly a measure defined on the mass-shell but one works rather
measure which is defined over the whole momentum space but which enforces itself the
shell restriction. The simplest procedure is to define this measuredS to be9

dS5u~q0!d~gmn~x!qmqn2m2c2!
1

4!
Emnradqm∧dqn∧dqr∧dqa

5u~q0!d~gmn~x!qmqn2m2c2! ~A2detg!21d4q. ~15!

This measure is clearly a pseudo-scalar.
Given an arbitrary coordinate system, one can choose the three independent ‘‘spatial’

ponents (q1 ,q2 ,q3)5q as coordinates on the mass-shell. On the mass-shell, the componentq0 can
then be considered to be a positive function of bothx andq, implicitly defined bygmn(x)qmqn

5m2c2. This function will be denoted bymcg(x,q). The zerothcontravariantcomponent ofq,
g0m(x)qm , is then also a function ofx and q, which will be denoted bymcg̃(x,q). It is then
straightforward to prove that, for any fieldf ~not necessarily scalar! defined over the extende
phase-space, one has, for allt andx,

E
q.U.0

f~ t,x,q0 ,q! dS5E
R3

f~ t,x,mcg~ t,x,q!,q!
1

A2detg

d3q

mcg̃~ t,x,q!
. ~16!

Similarly, the restrictions ofdSm to the three-dimensional submanifolds of space–time defi
by an equation of the formt5a, wherea is an arbitrary real number, read

dSm5~A2detg d3x,0,0,0!. ~17!

It follows from ~16! and ~17! that, for an arbitrary fieldf,

E
q.U.0

f~ t,x,q0 ,q! dSmdS5E
R6

f~ t,x,mcg~ t,x,q!,q!d3x@d3q/mcg̃~ t,x,q!# . ~18!

Equations~16! and ~18! will be used in the next sections to transcribe manifestly covari
off-shell relations into nonmanifestly covariant, on-shell results.

C. Manifestly covariant general relativistic Kolmogorov equation

The operatorL, as defined by~7!, is manifestly invariant under Lorentz transformation, b
not under arbitrary coordinate changes. Let us then examine each contribution to~7! separately
and find a reasonable generalization of~7! to curved space–times. Let us start with the projec
D. Its proper general relativistic expression is

Dmn5gmn2UmUn . ~19!

Definition ~11! of the tensorK is then perfectly valid, as is expression~9! for the tensorl, taking
care of replacingp by q:

lmn5
a~mc!2

~qmUm!2 Dmn. ~20!

The same goes also for the definition~8! of the deterministic 4-force; thus, the gener
relativistic deterministic 4-force is defined as a function ofq by
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Fdm52lm
n qn

gmnqmqn

m2c2 1lab
qaqb

m2c2 qm . ~21!

Let us now examine if the various partial derivatives appearing in~7! should be modified for
the general relativistic realm.

Let f be an arbitrary field defined over phase-space. To simplify the discussion, let us su
f behaves like a scalar under arbitrary coordinate changes in space–time. Let us conside
change of coordinates. Then, with obvious notations,

f8~xm8,qn8!5f~xm,qn!. ~22!

Since

qn5
]xn8

]xn qn8 , ~23!

one has

]

]xm8
f85

]xm

]xm8

]f

]xm 1
]2xn8

]xm]xn

]xm

]xm8
qn8

]f

]qn
~24!

and

]

]qn8
f85

]xn8

]xn

]f

]qn
. ~25!

Equation~25! proves that the operator]/]qn transforms scalar fields into vector fields tangent
space–time. This can easily be generalized to fields of arbitrary tensor type. The notion of
differentiation with respect to impulse components is thus a perfectly generally covariant n
and the operator]/]qn transforms arbitrary tensor fields of type (a,b) into tensor fields of type
(a11,b). This can be easily understood without any calculation if one remembers that, a
point in space–time, momentum space is aflat four-dimensional manifold. The concept of parti
differentiation with respect to one of the coordinates used on that manifold is therefore a pe
covariant and natural geometrical concept.

On the other hand, Eq.~24! proves that, even for scalar fields, partial differentiation w
respect to one of the space–time coordinates isnot a covariant notion. This again is quite simp
to understand.

In passing fromx to x1dx, the usual partial differentiation maintains thecomponentsof q
constant. In flat space–time, this amounts to maintaining the vectorq itself constant. But in curved
space–time, the basis covectors inq space are themselvesx dependent. Maintaining the compo
nents ofq constant is therefore not equivalent to maintaining the covectorq itself constant. Of
these two notions, the second~maintaining the covector itself constant! is an invariant one, while
the other is not. The correct general relativistic concept is, therefore: Derivative with respect
space–time degrees of freedom, maintaining the covectorq constant, and not its components
the local coordinate basis.

Let now q be defined atx and letqn be its components in the local coordinate basis. T
covector ‘‘equal’’ toq at pointx1dx is obtained by parallel transportingq from x to x1dx; let
this covector at pointx1dx have componentsqn1dqn in the coordinate basis~at pointx1dx).
By definition one has11,12

dqn51Gnm
a qadxm, ~26!

where theG’s are the Christoffel symbols.
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One, therefore, defines9 a new operatorDm , acting on arbitrary fields defined over the eigh
dimensional phase-space, by

Dm5¹m1Gmn
a qa

]

]qn
, ~27!

where¹ stands for the usual covariant derivative operator with respect to space–time degr
freedom. Thus defined,Dm is generally covariant and transforms arbitrary tensor fields of t
(a,b) into tensor fields of type (a,b11).

Using Dm , one can write the following relativistic generalization of definition~7!:

L~ f !5Dm~gmn~x!qn f !1
]

]qm
~mcFdm f !1DKm

r
b

n ]qrS qmqb

qmUm ]qn
f D , ~28!

with Fd andK given by Eqs.~19!–~21!.
The general relativistic Ornstein–Uhlenbeck process is then defined by the manifestly

riant tranport equationL( f )50, where f represents the scalar probability distribution of t
diffusing particle in its extended eight-dimensional phase-space.

Note that~28! is not the only possible generalization of~7! to curved space–time. It is merel
the simplest and, therefore, the most natural one. No other generalization will be envisaged
article.

Let me finally stress that the general relativistic Kolmogorov equation involves the
surrounding the diffusing particle~throughU) as well as the Einstein gravitational field~through
the metricg). SinceU and g can be prescribed independently~the only constraint beingU2

51), one can consider that the general relativistic Ornstein–Uhlenbeck process describ
stochastic motion of a diffusing particle interacting with both a surrounding fluid in arbit
motion and an arbitrary gravitationnal field.

D. Transition to an on-shell formulation

It is useful, in view of practical applications, to elaborate briefly about how this manife
covariant ‘‘off-shell’’ formulation can be transcribed, in an arbitrary coordinate system, in
more standard, covariant but not manifestly covariant on-shell treatment, which involves a ‘‘p
cal’’ distribution function defined on the mass-shell only.

Let f be an arbitrary field defined over the extended phase-space. Its mean-valuef̄(x) at
point x is, by definition,

f̄~x!5E
q.U.0

f~x,q! f ~x,q!dS. ~29!

The fieldf̄ represents a spatial density. For example, iff(x,q)5gmn(x)qm , f̄ is simply the
usual particle 4-currentj m. As any spatial density,f̄ is ultimately to be integrated againstdSm on
an arbitrary space-like three-dimensional submanifoldS of space–time. Let us choose a coord
nate system in which this submanifold is a constant-time submanifold and let us consid
quantitiesf̄ dSm in greater detail. Because of equation~17!, only f̄ dS0 does not vanish. Using
~16! and ~18!, one can write it under the form

f̄~x!dS05d3xE
R3

f~ t,x,mcg~ t,x,q!,q! f ~ t,x,mcg~ t,x,q!,q!
d3q

mcg̃~ t,x,q!
. ~30!

This in turn can be rewritten as
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f̄dS05d3xE
R3

f~ t,x,mcg~ t,x,q!,q!

mcg̃~ t,x,q!
P~ t,x,q! d3q, ~31!

with P defined by

P~ t,x,q!5E
R

f ~ t,x,q0 ,q!d~q02mcg~ t,x,q!!dq0 . ~32!

To understand the physical meaning ofP, let us elaborate further on the case whe
f(x,q)5gmn(x)qn ; as mentioned earlier,f̄ then coincides with the 4-currentj m and the only
non-vanishing components off̄dSn5 j mdSn are j mdS0 . The quantityj 0dS0 represents the prob
ability dn of finding the diffusing particle at timet in the volumed3x centered onx. Equation~31!
gives

j 0~ t,x!dS05dn5d3xE
R3

P~ t,x,q!d3q, ~33!

which proves thatP plays, in the considered coordinate system, the role of a standard proba
distribution. Inspecting the other componentsj kdS0 trivially confirms this interpretation ofP.

Now, to the dynamics ofP. In each coordinate system, the manifestly covariant Kolmogo
equation can be transcribed into a transport equation forP; this transport equation fully charac
terizes the general relativistic Ornstein–Uhlenbeck process in the chosen coordinate syste
transport equation is however not manifestly covariant and its general expression is neither
nor particularly tractable. It was, therefore, not deemed useful to reproduce this expression h
any practical application, the best is to obtain this equation directly from the covariant Kol
orov equation, which is easier to write down. This will be done in the next section on a
simple space–time background.

IV. DIFFUSION IN A SPATIALLY FLAT FRIEDMANN–ROBERTSON–WALKER UNIVERSE

A. Kolmogorov equation for f in comoving coordinates

In comoving coordinates, the space–time metric of a spatially flat Friedmann–Rober
Walker universe takes the well-known form12

ds25c2dt22a2~ t ! ~dx1
21dx2

21dx3
2!

5c2dt22a2~ t ! dx2, ~34!

wherea(t) is the so-called expansion factor of the universe. Its evolution is fixed via Einst
equation by the equation of state of the matter present in the universe and by suitable
conditions. Quite naturally, the fluid in which the particle diffuses will be taken to be the matt
the universe. This matter follows the expansion and is at rest in the comoving frame. C
quently, in the comoving coordinates,

~Um!5~1,0,0,0!. ~35!

And the components of the projectorD are

Dmn5S 0 0 0 0

0 2a2~ t ! 0 0

0 0 2a2~ t ! 0

0 0 0 2a2~ t !

D . ~36!

The only nonvanishing Christoffel symbols are12
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G11
0 5G22

0 5G33
0 5aȧ ~37!

and

G01
1 5G02

2 5G03
3 5

ȧ

a
. ~38!

Evaluating directly the various contributions to~28!, one first obtains

H g0nqn5q0,

ginqn52
1

a2~ t !
qi

~39!

and

D05
]

]t
1

ȧ

a (
i 51

3

qi

]

]qi
, ~40!

Di5
]

]xi 1
ȧ

a
qi

]

]q0
1 ȧa q0

]

]qi
1

ȧ

a
q0 , ~41!

wherei 51,2,3.
As for Fdm , one finds that, in comoving coordinates,

Fdm5
a

q0
~grn~x!qrqnUm2q0qm!, ~42!

so that

Fd052
a

a2~ t !

1

q0
(
i 51

3

qi qi ~43!

and

Fdi52a qi ~44!

for i 51,2,3.
It is then easy to check that, in comoving coordinates,

Dm~gmn~x!qn f !5q0

] f

]t
2

1

a2 (
i 51

3

qi

] f

]xi 2
ȧ

a3 (
i 51

3

qi qi

] f

]q0
~45!

and

]

]qm
~mc Fdm f !52amcF(

i 51

3
]

]qi
~qi f !1

]

]q0
S 1

a2

1

q0
(
i 51

3

qi qi f D G . ~46!

Finally, a direct evaluation of the components ofK in comoving coordinates delivers
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Km
r

b
n ]qrS qmqb

qmUm ]qn
f D52

]

]q0
F(

i 51

3

qi

] f

]qi
1

1

a2

1

q0
(
i 51

3

qi qi

] f

]q0
G

2
a2

q0
(
i 51

3
]

]qi
F ] f

]qi
1

1

a2

1

q0
qi

] f

]q0
G . ~47!

Combining the last three equations leads to the Kolmogorov equation verified byf .

B. Kolmogorov equation for the physical distribution P

Using ~35!, one easily finds that

g~ t,x,q!5S 11
q2

a2~ t ! m2c2D 1/2

, ~48!

where the notation( i 51
3 qi qi5q2 has been used. Since in this caseg does not depend onx, we

will adopt the shorter notationg(t,q) for the remainder of this section.
Let us now define, for an arbitary fieldh(t,x,q0 ,q), the fieldh̃(t,x,q) by

h̃~ t,x,q!5E
R
h~ t,x,q0 ,q!d~q02mcg~ t,q!!dq0 . ~49!

In particular,P5 f̃ .
Taking into account expression~48! for g, the standard properties ofd lead to

]

]t
h̃~ t,x,q!5E

R
F ]

]t
h~ t,x,q0 ,q!2

ȧ

a3

1

q0
q2

] f

]q0
G d~q02mcg~ t,q!! dq0 , ~50!

]

]x
h̃~ t,x,q!5E

R

]

]x
h~ t,x,q0 ,q! d~q02mcg~ t,q!! dq0 ~51!

and

]

]q
h̃~ t,x,q!5E

R
F ]

]q
h~ t,x,q0 ,q!1

1

a2

1

q0
q

] f

]q0
G d~q02mcg~ t,q!! dq0 . ~52!

Using these three relations, it is possible to deduce from the transport equationL( f )50 a trans-
port equation for the physical distributionP(t,x,q). More precisely, the equation

E
R

1

q0
L~ f !d~q02mcg~ t,q!!dq050 ~53!

is equivalent to

]

]t
P2

1

a2~ t !

]

]x
.S q

mg~ t,q!
P D1

]

]q
. S 2a

q

g~ t,q!
P D2D a2~ t !

]2

]q2 P50. ~54!

The stochastic equations of motion which correspond to this transport equation are
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H d

dt
x52

1

a2~ t !

q

mg~ t,q!
,

d

dt
q52a

q

g~ t,q!
1A2D a~ t !

dW

dt
.

~55!

These equations clearly show that the process is time-inhomogeneous.

C. Proof of the existence and unicity of a perturbative expression for the generalized
equilibrium solution

One of the first questions to ask about a time-homogeneous diffusion process is whethe
the process admits an invariant measure.7 The Galilean and the special relativistic Ornstein
Uhlenbeck process both admit invariant measures;4,13 their densitiesP are both time and spac
independent and coincide, respectively, with the Maxwell and Maxwell–Ju¨ttner equilibrium dis-
tributions at temperatureT5D/kBa.

Considering the process~55! is not time-homogeneous, it surely makes no sense to searc
standard, time- and space-independent equilibrium solutions to~55!. But, since the process de
scribes diffusion in a universe which is spatially homogeneous and isotropic, it seems reas
to search for solutions to~55! which depend only on the time and momentum variables, and w
coincide with the Maxwell–Ju¨ttner distribution at temperatureT when the expansion factora(t) is
set constant, equal to unity. These solutions will be said to describe generalized equilibriu

They verify

]

]t
P5

]

]q
. S a

q

g~ t,q!
P1D a2~ t !

]

]q
P D . ~56!

Unfortunately, it does not seem possible to obtain exact solutions to~56! valid for an arbitrary
a(t). It is, however, possible to solve~56! perturbatively in situations wherea(t) varies slowly
with respect to the natural ‘‘microscopic’’ time scalet51/a.

The best-known method for finding slowly varying solutions to transport equations has
introduced by Chapman and Enskog; it was originally developed in Galilean physics to
approximately the Boltzmann equation in near-equilibrium situations.14,15 The method has then
been extended to the relativistic Boltzmann equation;9 it has also been used to exhibit nea
equilibrium solutions to other Galilean transport equations~including Kolmogorov equations!,13,16

and the Kolmogorov equation associated to the special relativistic Ornstein–Uhlenbeck p
has been recently solved by a Chapman–Enskog expansion.5

As far as the general relativistic Ornstein–Uhlenbeck process is concerned, Chapman
Enskog’s method can be used for two different purposes. As in the special relativistic case,
naturally be implemented to find solutions to Kolmogorov equation which are close to the g
alized equilibrium solution. But it can also be used to find a perturbative expression fo
generalized equilibrium solution itself, valid when the coefficients of~56! are, through the expan
sion factora(t), ‘‘slowly varying’’ functions of the time coordinate.

Let us make the discussion precise by introducinga05a(t50) and the ‘‘slow’’ dimensionless
time-variablet̄ , defined by

t̄ 5e a t, ~57!

wheree is an arbitrary infinitesimal. We propose to solve the transport equation perturbative
e for cases where the expansion-factora(t) can be written

a~ t !5a0 ā~ t̄ ! ~58!

with
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]ā

] t̄
5O~1!. ~59!

A convenient length-scale is

l5a0

1

ma
AD

a
, ~60!

which corresponds to the momentum-scalez:

z5mla. ~61!

We therefore define the dimensionless quantities

x̄5
x

l
, ~62!

q̄5
q

z
~63!

and

P̄~ t̄ ,x̄,q̄!5z3P~ t,x,q!. ~64!

Solving Eq.~56! is equivalent to solving

e
]

] t̄
P̄5

]

]q̄
. S q̄

ḡ~ t̄ ,q̄!
P̄1ā2~ t̄ !

]

]q̄
P̄ D ~65!

with

ḡ~ t̄ ,q̄!5S 11
Q2

ā2~ t̄ !
q̄2D 1/2

, ~66!

Q25
D

am2c2 . ~67!

We also impose the normalization condition

E
R3

P̄~ t̄ ,q̄!d3q̄5E
R3

P~ t,q!d3q51, ~68!

which is the direct equivalent of the normalization usually chosen for equilibrium distribution
flat space–time.4

As indicated earlier, we search a solution to~65! in the form of a perturbation series ine:

P̄~ t̄ ,q̄!5 (
k50

`

ekP̄k~ t̄ ,q̄!, ~69!

where all the partial derivatives of the functionsP̄k are supposed to beO(1). Wealso assume, as

is usually done in similar calculations, that allP̄k decrease at infinity more rapidly than any pow
of q̄.
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The normalization condition~68! does not suffice to determine theP̄k unambiguously. Fol-
lowing the Chapman–Enskog method, we impose the subsidiary condition

E
R3

P̄k~ t̄ ,q̄!d3q̄5dk0 ~70!

for all k>0.
Inserting~69! into ~65! leads, for allk>0, to

]

]q̄
. S q̄

ḡ~ t̄ ,q̄!
P̄k1ā2~ t̄ !

]

]q̄
P̄kD 5

]

] t̄
P̄k21, ~71!

with the convention thatP̄2150.
It is quite easy to find a solution to~70! and ~71! at orderk50. It reads

P̄0~ t̄ ,q̄!5
1

4p

1

ā3~ t̄ !

1

Q2 K2~1/Q2!
expS 2

ḡ~ t̄ ,q̄!

Q2 D . ~72!

This is indeed the only~normalized! solution to~71! which decreases at infinity more rapidly tha

any power ofq̄.4 P̄0 thus turns out to be identical with the Ju¨ttner distribution at timet.9,17 This
distribution would describe an actual, standard equilibrium if the expansion factor were
independent.

Let nowP̄k21 be a function verifying~70!. Let us prove that one can then find a functionP̄k

which satisfies both~70! and ~71!.

The solvability condition for~71!, conceived as an equation forP̄k , is simply that the integral
of its right-hand side with respect tod3q̄ vanishes~see Refs. 15 and 18 for extensive discussio

of the role of solvability conditions in the Chapman–Enskog method!. The fact thatP̄k21 verifies

~70!, therefore, ensures that~71! admits solutions. LetP̄k* be one of these solutions and let

I * 5E
R3

P̄k* ~ t̄ ,q̄!d3q̄. ~73!

It is then obvious that the functionP̄k defined by

P̄k5P̄k* 2I * P̄0 ~74!

verifies both~70! and ~71!; this proves the statement.

Since we could exhibit a functionP̄0 which verifies both~70! and ~71! at order 0, we

conclude that a functionP̄k verifying these two equations exists at all order. This proves that
~65! admits a perturbative solution of the form~69! verifying ~70!.

Unicity can be proven by the following argument. We have already mentioned thatP̄0 given
by ~72! is the only solution to~70! and ~71! at order 0 which decreases sufficiently rapidly

infinity. Suppose thatP̄k21 is known and unique, and letP̄k
1 andP̄k

2 be two solutions to~70! and

~71! at orderk. Their differenceDP̄k then verifies

]

]q̄
. S q̄

ḡ~ t̄ ,q̄!
DP̄k1ā2~ t̄ !

]

]q̄
DP̄kD 50, ~75!
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which is identical to the equation verified byP̄0 . Moreover,DP̄k decreases at least as rapidly

P̄k
1 andP̄k

2 at infinity. It therefore follows thatDP̄k is proportional toP̄0 . By ~70!, the integral of

DP̄k over momentum space vanishes. The proportionality constant betweenDP̄k and P̄0 there-

fore vanishes too, and so doesDP̄k . This proves that~70! ensures the existence and unicity of
perturbative solution to~65!.

A final remark concerning this solution. Equation~71! makes obvious thatP̄k is even inq̄ if

P̄k21 is. SinceP̄0 is an even function ofq̄, so are all theP̄k’s and, consequently, so isP̄ too. It
is therefore isotropic, as expected. Let me mention two interesting consequences. By par

first moments ofP̄ vanish. This means that the particle current density 3-vector associated
generalized equilibrium solution vanishes in the comoving frame, as it should. On the con

some second moments ofP̄ do not vanish. This means in particular that the energykBT, which
can be interpreted as the mean-value of the energy of the diffusing particle when the distri
function coincides withP0 ,19 is actuallynot the mean-value of the particle-energy for the re
generalized equilibrium distribution. This point will be further elaborated upon in forthcom
publications fully dedicated to specific examples of physical interest.

D. Explicit expression for the first correction to Ju ¨ tnner’s distribution

It is perhaps useful to evaluate explicitly the functionP̄1 , which represents the first correctio
to the special relativistic equilibrium solution.

Equation~72! leads to

]

] t̄
P̄05

aG

ā
S 231

1

ā2

q̄2

ḡ
D . ~76!

It is best to introduceA1 defined by

P̄1~ t̄ ,q̄!5A1~ t̄ ,q̄!P̄0~ t̄ ,q̄! ~77!

and Eq.~71! for P̄1 is equivalent to

ā2S ]2

]q̄2 A12
1

ā2

q̄

ḡ
•

]

]q̄
A1D5

aG

ā S 231
1

ā2

q̄2

ḡ D . ~78!

The general solution to this equation is

A1~ t̄ ,q̄!5a12

q̄2

2
1a10 ~79!

with

a1252
aG

ā

1

ā2 , ~80!

a10 being an arbitrary real integration constant.

This constant is fixed by the normalization condition~70!. SinceP̄0 is normed to unity, one
has

a1052a12E
R3

q̄2

2
P̄0d3q̄. ~81!

Because of~72!,
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E
R3

q̄2P̄0 d3q̄5
1

ā3~ t̄ !

1

Q2 K2~1/Q2!
E

R
q̄4 expS 2

ḡ

Q2D dq̄. ~82!

Introducingu5Qq̄/ā, one can write

E
R
q̄4 expS 2

ḡ

Q2D dq̄5
ā5

Q5 E
R
chu sh4u expS 2

1

Q2 chu D du. ~83!

A simple integration by part shows that

E
R
chu sh4u expS 2

1

Q2 chu D du5
1

5Q2 E
R
sh6u expS 2

1

Q2 chu Ddu, ~84!

which leads to~see Ref. 20!

E
R
chu sh4u expS 2

1

Q2 chu D du5
1

5Q2 G~7/2!
1

Ap
~2Q2!3 K3~1/Q2!. ~85!

Using the fact that20 G( 7
2)515Ap/8, one finds

E
R
q̄4 expS 2

ḡ

Q2D dq̄5
3ā5

Q
K3S 1

Q2D ~86!

and

a1052
1

2

ā2

Q3

K3~1/Q2!

K2~1/Q2!
a12. ~87!

The functionP̄1 is, therefore, given by

P̄1~ t̄ ,q̄!52
aG

ā

1

2ā2 S q̄22
ā2

Q3

K3~1/Q2!

K2~1/Q2! D P̄0~ t̄ ,q̄!. ~88!

V. CONCLUSION

In this article, the construction of the relativistic Ornstein–Uhlenbeck process has bee
tended from flat to curved space–time. The general relativistic Ornstein–Uhlenbeck proce
been defined through a manifestly covariant Kolmogorov equation. This transport equation
the space–time evolution of the scalar one-particle distribution function defined over the re
istic eight-dimensional extended phase-space. Given an arbitrary coordinate system in spac
the manifestly covariant Kolmogorov equation can be transcribed into a more conventional
port equation which fixes the time-evolution of the usual one particle distribution function, de
at any instant over the standard six-dimensional phase-space.

As a simple application, both transport equations have been explicitly written down
spatially flat Friedmann–Robertson–Walker universe and the corresponding stochastic eq
of motion have also been derived. At least for a spatially flat Friedmann–Robertson–W
model, there is a unique natural generalization of the flat space–time equilibrium Ju¨ttner distribu-
tion. In comoving coordinates, this generalized equilibrium solution is independent of the
coordinates and isotropic in 3-momentum space. It has been proven that this solution
obtained perturbatively as a series expansion where the small parameter is the ratio of th
acteristic ‘‘microscopic’’ relaxation-time of the diffusion process~in flat space–time! to the char-
acteristic evolution-time of the expansion factor of the universe. The first order correction
Jüttner distribution has also been obtained explicitly.
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Let me now put these results into perspective by comparing them with what is known
the solutions to the other transport equation which has been studied extensively in curved
time, i.e., the general relativistic Boltzmann equation.

Quite expectedly, this equation has also been studied in spatially flat Friedmann–Robe
Walker space–times.19 There is naturally no time-independent equilibrium solution and, theref
only generalized equilibriums similar to those discussed in the present article may exist. No
calculation of such solutions is possible, just as no exact expression can be obtained
solutions to~56!.

As has been done in this article, approximate expressions for generalized equilibrium
tions~to Boltzmann equation! have been searched for in situations where the expansion factora(t)
is a slowly varying function of time, i.e., when the expansion factor varies only on time s
much larger than the characteristic time associated to the collisions between particles.

But, for Boltzmann equation, only the first correction to Ju¨ttner’s distribution seems to hav
been considered and evaluated.19 In particular, no general expansion like~69! has ever been
proven to exist, nor has the unicity of the solution ever been examined, let alone been pro

I would like now to end this article by mentioning some of its many possible extensions
the technical side, the proof of the existence of a generalized equilibrium distribution fo
general relativistic Ornstein–Uhlenbeck process should be extended to the other Fried
Robertson–Walker metrics and, possibly, to more general curved space–times. For exam
there generalized equilibrium distributions for particles diffusing in a fluid orbiting a black-h

At least in cases where a generalized equilibrium solution exists, one should be a
construct a conditional entropy 4-current for the process~the entropy 4-current for the process
flat space–time has already been obtained in Ref. 8!. The exact physical interpretation of
conditional entropy~as opposed to the Boltzmann–Gibbes entropy! is still a matter of debate, eve
for Galilean stochastic processes~a good introductory dicussion can be found in Ref. 21!; deter-
mining a reasonable interpretation of a conditional entropy 4-current in curved space–tim
certainly not be straightforward either and may involve addressing the possibility of applyin
very concept of entropy to the space–time itself~see Refs. 12 and 22 for a discussion of this iss
in the context of nonquantum gravitation and Ref. 23 for a pedagogical presentation o
superstrings approach to black-holes thermodynamics!.

In another direction, the Chapman–Enskog procedure will also permit the large-scale st
the diffusion process in situations close to the generalized equilibrium configurations and
contribute to a better understanding of the relationship between hydrodynamics and sta
physics~kinetic theory! in the presence of a gravitational field.

Finally, it has already been mentioned that the curved space–time diffusion process pre
in this article is only one of the possible extensions of the special relativistic Ornstein–Uhlen
process. It is certainly the simplest and most natural one, but this does not make other exte
uninteresting. In particular, one can wonder how a curvature-dependent form of the friction
ficient or of the amplitude of the noise would change the properties of the process. This wi
be investigated in forthcoming articles.
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Spherical harmonics and basic coupling coefficients
for the group SO „5… in an SO „3… basis
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An easily programmable algorithm is given for the computation of SO~5! spherical
harmonics needed to complement the radial~beta! wave functions to form an or-
thonormal basis of wave functions for the five-dimensional harmonic oscillator. It is
shown how these functions can be used to compute the~Clebsch–Gordan a.k.a.
Wigner! coupling coefficients for combining pairs of irreps in this space to other
irreps. This is of particular value for the construction of the matrices of Hamilto-
nians and transition operators that arise in applications of nuclear collective models.
Tables of the most useful coupling coefficients are given in the Appendix. ©2004
American Institute of Physics.@DOI: 10.1063/1.1763004#

I. INTRODUCTION

The group SO~5! is used as a dynamical group in several contexts in nuclear physics
elsewhere. For example, in an SO~3! basis, it plays a central role in the classification of states
the nuclear collective model1–3 and the Interacting Boson Model;4 in an SO(4)>SU(2)
3SU(2) basis, it is also used in a neutron–proton pairing model5 and in a model of high tem-
perature superconductivity.6,7 In application of such models, there is a need for SO~5! spherical
harmonics as basis wave functions and SO~5! Clebsch–Gordan~CG! coefficients for the calcula-
tion of matrix elements of the various tensor operators that appear. Many SO~5! coupling coeffi-
cients have been given in an SO~4! basis8 and in a U~2! basis.9 In this paper, we construct them i
an SO~3! ~angular momentum! basis.

It will be recalled that standard SO~3! spherical harmonics are eigenfunctions of the Laplac
on a two-dimensional sphereS2 . The geometry ofS2 is inferred by regarding it as an SO~3! orbit
in the real three-dimensional Euclidean spaceR3 generated by rotating a point in this spa
through all possible angles. Because a point on such a sphere is invariant under SO~2! rotations
about the radial line through that point, it follows that a sphere is isomorphic to the factor
SO~3!/SO~2!. SO~3! spherical harmonics are also an orthonormal basis of functions for the Hi
spaceL 2(S2).L 2(SO(3)/SO(2)) ofsquare integrable functions onS2 relative to the SO~3!-
invariant measure; the invariant measure assigns avolumeto an element onS2 equal to its area on
a sphere of unit radius. It is known from the Peter–Weyl theorem that a complete orthon
basis of functions on the group SO~3!, relative to its invariant measure, is given to within nor
factors by Wigner functions$D mn

l %, i.e., matrix coefficient functions on SO~3! defined in terms of
basis states$u lm&,m52 l , . . . ,l % for an SO~3! irrep R̂l of highest weightl by

D mn
l ~V!5^ lmuR̂l~V!u ln& , VPSO~3! . ~1!

It follows that an~unnormalized! basis of functions forL 2(SO(3)/SO(2)) isgiven by reducing
the set of functions$D mn

l % to the subset$D m0
l % of well-defined functions on the SO~3!/SO~2! coset

space. Standard spherical harmonics are normalized and conventionally defined as the c
conjugates of these functions
27610022-2488/2004/45(7)/2761/24/$22.00 © 2004 American Institute of Physics
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Ylm~u,w!5A2l 11

4p
~D m0

l ~V~u,w!!!* 5A2l 11

4p
D 0m

l ~V21~u,w!! , ~2!

whereV(u,w) denotes a group element, defined to within an SO~3!/SO~2! coset, by a pair of
spherical coordinates~u,w! for the sphere. This identity shows that there is a set of sphe
harmonics$Ylm ,m52 l , . . . ,l % associated with every SO~3! irrep and that they are given by th
matrix coefficient~Wigner! functions for these irreps.

SO~5! spherical harmonics are similarly defined. They are eigenfunctions of the Laplacia
the four-sphere and an orthonormal basis of functions for the Hilbert spaceL 2(S4) relative to the
SO~5!-invariant measure. A four-sphere is isomorophic to the surface generated by rotating a
about the origin in a real five-dimensional Euclidean spaceR5 with all elements of the SO~5!
rotation group. Since any point inR5 remains unchanged under the subgroup SO(4),SO(5) of
rotations about the radial line through the point, such a four-sphere is isomorphic to the
space SO~5!/SO~4!. Moreover, the SO~5!-invariant measure on such a four-sphere is given by
area of elements on a four-sphere of unit radius as defined by the Euclidean measure of v
in R5.

The above observations imply that SO~5! spherical harmonics can be defined, in a gener
zation of Eq.~1! to SO~5!, in terms of a subset of Wigner functions. However, there are
differences. First, only a subset of SO~5! irreps are needed to define SO~5! spherical harmonics
namely those carried by subspaces of the Hilbert spaceL 2(R5) of the five-dimensional harmonic
oscillator. Second, the Wigner functions for these SO~5! irreps are not known in analytical form
Thus, we construct SO~5! spherical harmonics by a simple algorithm that could also be used
standard spherical harmonics if one did not already have analytical expressions for the~3!
rotation matrices. The algorithm is based on the observation that the spherical harmonics
fundamental five-dimensional irrep of SO~5! are simple and known. We then observe that a
product of bounded functions inL 2(S4) is another function inL 2(S4). Thus they are readily use
to generate a basis forL 2(S4). Given the inner product, it is then straightforward to Gram
Schmidt orthonormalize this basis to obtain the spherical harmonics.

Spherical harmonics for SO~5! were computed by Be`s,10 for values of the angular momentum
L50, . . . ,6, by solving the Schro¨dinger equation

L̂CvaLM5v~v13!CvaLM ~3!

for L̂, the SO~5! Casimir operator, as a system of coupled differential equations, wherev labels a
so-called one-row irrep of type@v,0# of SO~5!, L andM are angular momentum quantum numbe
and a is a multiplicity label; v is referred to as aseniority quantum number~a terminology
introduced by Racah in atomic physics!. Unfortunately, this approach becomes prohibitively co
plicated forL.6 because of the number of coupled equations.10

An algorithm for constructing a basis for the five-dimensional harmonic oscillator as pro
of radial ~beta! wave functions and SO~5! spherical harmonics, was given by Chac´on, Moshinsky,
and Sharp11 and used in many nuclear collective model calculations.12 The construction of SO~5!
spherical harmonics presented herein has substantial overlap with the CMS approach. Ho
by restricting the calculations toL 2(S4), as opposed to the five-dimensional harmonic oscilla
Hilbert space, much of the complexity of the CMS approach is avoided. As a result, the con
tion becomes simple and more versatile. The methods used here were initiated in some
collective model calculations.3 As shown in the following, they provide an efficient algorithm f
computing the CG coefficients needed for SO~5! tensor coupling in the space of the five
dimensional harmonic oscillator.

II. THE FOUR-SPHERE AS A SUBMANIFOLD OF R5

The five-dimensional vector spaceR5 can be given many physical interpretations. For pres
purposes, it is convenient to think of an elementQPR5 as the quadrupole tensor of a distributio
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of particles inR3. Q is then realized as a real 333 traceless symmetric matrix. The independe
entries$Qi j % of Q can be considered its components relative to nonorthogonal axes and its
iQi conveniently defined by

iQi25Tr~Q2!5(
i j

Qi j
2 . ~4!

Thus, the four-sphereS4 is identified with the set of 333 real symmetric matrices that satisfy th
constraints

Tr~Q!50 , Tr~Q2!51 . ~5!

Convenient coordinates forS4 are constructed by use of various SO~5! subgroup actions. The
group SO~5! is itself the subgroup of SL(5,R) transformations ofR5 that leave the lengths o
vectors, i.e., Tr(Q2), invariant. The group SO~3! also has a natural action onR5 in which an
elementVPSO(3) transforms a matrixQ into the matrixVQV21. This SO~3! action is observed
to leave both Tr(Q2) and Tr(Q3) invariant. Thus, SO~3! is identified with the subgroup of SO~5!
that leaves Tr(Q3) invariant. It is realized as a subset of SO~5! matrices by theL52 irrepD 2 @cf.
Eq. ~8!#. Note that this particular SO~3! subgroup is distinct from the SO(3),SO(4),SO(5)
subgroup.

Any matrix QPR5 can be brought to diagonal form by some SO~3! transformation. Con-
versely, anyQPR5 can be expressed in the form

Q5V21Q̄V ~6!

for some diagonal matrixQ̄ and some elementVPSO(3).Thus, a set of coordinates for a poin
QPS4 is given by a triple of coordinates~e.g., Euler angles! for the SO~3! rotationV and another
coordinateg that defines the diagonal matrixQ̄ @subject to the two constraints of Eq.~5!#.

A coordinate system forS4 extends immediately to a system of spherical polar coordinates
R5 by the addition of the radial coordinateb5iQi[ATr(Q2). Such coordinates are related to th
standard spherical components for a quadrupole tensorQ given in terms of the matrix entrie
$Qi j % by

q05
1

A6
~2Q332Q112Q22! ,

q6157~Q316 iQ32! ,

q625 1
2 ~Q112Q2262iQ12! . ~7!

These spherical functions ofq transform under SO~3! in the same way asL52 spherical harmon-
ics, i.e.,

R̂~V!qn5(
m

qmD mn
2 ~V! . ~8!

Now, the spherical components of a diagonal matrixQ̄ are given by

q̄05
1

A6
~2Q̄332Q̄112Q̄22! , q̄6150 , q̄625

1

2
~Q̄112Q̄22! , ~9!

with Tr(Q)5Q̄111Q̄221Q̄3350. Thus, if iqi5iQi5b, then
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iqi25(
n

~21!nqnq2n[Tr~Q2!5q̄0
212q̄2

25b2 . ~10!

This means thatq̄n can be expressed

q̄n5dn,0b cosg1dn,62

1

&
b sing . ~11!

The functions$qn% are then given in terms of~b,g,V! by

qn~b,g,V!5R̂~V!q̄n5b cosg D 0n
2 ~V!1

1

&
b sing ~D 2n

2 ~V!1D 22n
2 ~V!! . ~12!

This is a standard expression for the spherical components of a quadrupole tensor in the
collective model.1

For present purposes, the restriction of these functions toS4 , i.e., fixingb51, gives the set of
functions

Qn~g,V!5cosg D 0n
2 ~V!1

1

&
sing ~D 2n

2 ~V!1D 22n
2 ~V!! , ~13!

which are both a basis for the fundamental five-dimensionalv51 irrep of SO~5! and of the
five-dimensionalL52 irrep of its SO~3! subgroup. Thus, to within a normalization factor, they a
the fundamental SO~5! spherical harmonics in an SO~3! basis.

The Laplacian onR5 has a well-known expression1 in terms of the above spherical pola
coordinates

¹25
1

b4

]

]b
b4

]

]b
2

1

b2 L̂ , ~14!

where

L̂52
1

sin 3g

]

]g
sin 3g

]

]g
1 (

k51

3 L̄k
2

4 sin2~g22pk/3!
~15!

is a realization of the~second order! SO~5! Casimir for the irreps carried byL 2(S4) and

$L̄1 ,L̄2 ,L̄3% are three components of SO~3! angular momentum in the so-calledintrinsic frame,
i.e., the frame in which the quadrupole components have values

Q̄n5cosg dn01
1

&
sing ~dn21dn,22! . ~16!

The volume element forR5 is given by

dv~b,g,V!5b4 db dv~g,V! ~17!

~Refs. 1, 2!, where

dv~g,V!5sin 3g dg dV ~18!

is the SO~5!-invariant measure onS4 and dV is the SO~3!-invariant measure. Note, however, th
the range ofg is restricted to 0<g<p/3 because of the equivalence of the coordinates
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6g , 6g12p/3 , 6g22p/3 , ~19!

as shown in Ref. 2~p. 678!.

III. THE HILBERT SPACE L2
„S4…

Observation:The Hilbert spaceL 2(S4) is the carrier space for a direct sum of SO~5! irreps of
highest weight@v,0# with v running over the non-negative integers.

This observation is inferrred by a ‘‘separation of variables’’ technique, decomposingR5 into
radial and spherical components.

The harmonic oscillator Hamiltonian spectrum comprises sets of energy levels of energyn\v
with n taking all non-negative integer values. The states of each energy level span a U~5! irrep of
highest weight$n%[$n,0,0,0,0% each of which restricts to a direct sum of SO(5),U(5) irreps
given by the branching rule

$n%↓@n,0# % @n22,0# % @n24,0# %¯% @1,0# or @0,0# , ~20!

where@v1 ,v2# labels an SO~5! irrep by its highest weight. The decomposition of the Hilbert spa
L 2(R5) into energy eigenspaces of the five-dimensional harmonic oscillator is illustrated
matically in Fig. 1. It is seen that only the so-called one-row SO~5! irreps of type@v,0# occur in
L 2(R5). However, each@v,0# irrep occurs repeatedly at 2\v intervals to form a column of such
irreps. Because the volume element~17! is a product of a volume elementb4 db for R1 and a
volume element dv(g,V) for S4 , it follows that L 2(R5).L 2(R13S4) is the tensor produc
spaceL 2(R1) ^ L 2(S4). It also follows that the Hilbert spaceL 2(R5) is a direct sum of irreduc-
ible SU(1,1)3SO(5) subspaces. In fact, it is known from invariant theory13,14 that the decompo-
sition of L 2(R5) into SU(1,1)3SO(5) irreducible subspaces is multiplicity free. Complete set
irreducible SO~5! subspaces are given by the eigenspaces of the energy levels shown in
They are shown with all states belonging to equivalent SO~5! irreps in the same column. Thus, th
states of each column of SO~5! irreps span an irrep of the direct product group SU(1

FIG. 1. The energy-level spectrum of the five-dimensional harmonic oscillator with levels labeled by (n,v), wheren is the
radial~beta! quantum number andv labels an SO~5! irrep of highest weight@v,0#. Each level shown represents a multipl
of states that span an SO~5! irrep. Each SO~5! @v,0# irrep is reproduced an infinite number of times at energy intervals
2\v. The states of a column of SO~5! irreps span an infinite-dimensional SU(1,1)3SO(5) irrep.
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3SO(5). It isseen that every SO~5! irrep @v,0# with v taking a non-negative integer value give
rise to a column. It follows thatL 2(S4) contains each SO~5! irrep @v,0# just once, as claimed in
the observation.

The decomposition ofL 2(S4) into SO~3! subspaces is inferred from the SO(5)↓SO(3)
branching rules, given for the one-row irreps by Kemmeret al.15 who show that an irrep@v,0# of
SO~5! restricts to a direct sum of SO~3! irreps of angular momentumL given by

L52k, 2k22, 2k23, 2k24, ..., k

k5v, v23, v26, . . . , kmin , ~21!

wherekmin50, 1, or 2.
The angular momentum states contained in thev50 ,. . . ,6irreps are shown in Fig. 2. It is see

that they fall into sequences of bands that can be characterized by the valueK of the lowest
angular momentum of each band. The band structure follows a recognizable pattern. A sequ
K50,2,4,6, . . . bands appear with lowest states at intervals ofv52 with each band comprising
sequence of angular momentum states

L50,2,4,6, . . . forK50 ,

L5K,K11,K12,K13, . . . for K.0 . ~22!

This sequence is then repeated at intervals ofv53. SuchK bands are familiar in the context o
rotor models. However, in the present context,K should simply be regarded as a convenient la
for a set of basis wave functions.

FIG. 2. The spectrum of SO~3! ~angular momentum! irreps forL 2(S4) put into sequences ofK bands. The SO~3! irreps
are labeled by their angular momentaL. Angular momentum irreps belonging to a common SO~5! irrep are put into a
common shaded area.
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We proceed to the construction of basis wave functions forL 2(S4). First recall that the five
quadrupole moments$Qn% of Eq. ~13!, regarded as functions onS4 , provide a basis for a real
ization of the fundamentalv51 irrep of SO~5!. From the observation that products of bound
square-integrable functions onS4 are also square integrable functions onS4 it follows thatL 2(S4)
is spanned by polynomials in the$Qn% coordinates with the understanding thatiQi2

5(n(21)nQnQ2n51.
It can be seen, by inspection of Fig. 2, that the subspace of highest-weight SO~3! states in

L 2(S4); i.e., the space spanned byM5L polynomials, is spanned by the polynomials

F tKL5F~n![@F002#
n1@F022#

n2@F100#
n3@F023#

n4, ~23!

wheren5@n1 ,n2 ,n3 ,n4# is a quartet of non-negative integers,

F002}Q2 , ~24!

F022}@Q^ Q#22 , ~25!

F100}@Q^ Q^ Q#0 , ~26!

F023}@Q^ Q^ Q#33 , ~27!

and

t5n3 , K52n212n4 , L52n112n213n4 , n450 or 1 . ~28!

The square brackets in these equations indicate standard SO~3! angular-momentum coupling; i.e

@Q^ Q#LM5(
mn

~2,n,2,muLM !QmQn , ~29!

where (2,n,2,muLM ) is an SO~3! CG coefficient.
The polynomials$F tKL% can be put into one-to-one correspondence with the SO~3! irreps

depicted in Fig. 2. Note that each SO~3! irrep of angular momentumL corresponds to a single
state in the subspace of highest-weightM5L states. A moment’s reflection on this corresponden
and the shifts induced by each of the generator functions indicates what the indicesni and the
labelst andK mean. The lowest SO~3! irrep corresponds to the (t5K5L50) unit function for
which n15n25n35n450; at this point, we are not concerned with normalizations or e
orthogonality of wave functions—merely with the construction of a basis. The functionF002 is the
basis function identified with the lowestK50, L52 irrep of Fig. 2. Thus, the set$@F002#

n1%
corresponds to the sequence of$L52n1% angular momenta irreps of theK50 band and, in
general,F002 is aDK50, DL52 shift operator on theF basis functions. Similarly, it is seen tha
F022 is aDK52, DL52 shift operator andF023 is aDK52, DL53 shift operator. Finally,F100

is aDt51, DK5DL50 shift operator. A basis functionF tKL is assigned an indext5 i 21 when
it appears in thei th occurrence of theK band~e.g.,t50 for irreps of the lowestK50 band and
t51 for irreps of the first excitedK50 band!. Thus,t is the number ofF100 zero-coupled triplets
in parallel with a corresponding index in Ref. 11. It is stressed, however, that neithert nor K is a
good quantum number because theF tKL basis functions do not form an orthogonal set.

The generator functions and, hence, the complete set of basis functions$F tKL% are conve-
niently expressed in the form

F tKL~g,V!5 (
k>0

even

Fk
n~g!A 2L11

16p2~11dk0!
@D kL

L ~V!1~21!LD 2kL
L ~V!#. ~30!

For the generator functions, the$Fk
n% functions are
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F0
[1000]~g!5cosg , F2

[1000]~g!5sing , ~31!

F0
[0100]~g!5cos 2g , F2

[0100]~g!52sin 2g , ~32!

F0
[0010]~g!5cos 3g , ~33!

F0
[0001]~g!50 , F2

[0001]~g!5sin 3g . ~34!

From the observation that

D k2L2

L2 ~V!D k1L1

L1 ~V!5(
k

~L1k1 ,L2k2uLk! D kL
L ~V! , ~35!

with L5L11L2 , it is now easy to build up the complete$F tKL% basis, for theM5L subspace,
defined byFk

n functions in the form

Fk
n~g!5(

i 50

n1

(
j 50

n2

f i j k
n ~cosg!n12 i ~sing! i ~cos 2g!n22 j ~sin 2g! j ~cos 3g!n3 ~sin 3g!n4 . ~36!

The overlaps and norms of basis wave functions, expressed in the form~30!, are given by

^F tKLuF t8K8L8&5dLL8 (
k>0

even E
0

p/3

Fk
n~g!Fk

n8~g! sin 3g dg . ~37!

These integrals can be carried out analytically, in the monomial basis given by Eq.~36!, with the
help of a computer to keep track of the coefficients. Thus, the overlaps of the basis wave fun
can be computed in exact arithmetic using one of the several algebraic computer program
able; the present calculations were done withMAPLE.

IV. COMPUTATION OF SO„5… SPHERICAL HARMONICS

Having determined the overlaps of the above-defined basis functions$F(n)%, it is is now a
routine procedure to transform them to an orthonormal basis of SO~5! spherical harmonics.

The important observations are~i! that a polynomialF(n) is a linear combination of spherica
harmonics of seniorityv<N, whereN5n112n213n313n4 and ~ii ! that q-parity is invariant
under SO~5! transformations, where a polynomial is said to have even or oddq-parity if the
polynomial is, respectively, of even or odd degree in$qn%. As a consequence of these observ
tions, the $F(n)% basis has a natural ordering and is readily transformed to an orthono
~spherical harmonic! basis $CvaL% by a sequential Gram–Schmidt orthonormalization;a is a
multiplicity index.

The first step is to identify which among the first of a specified number of states of a g
angular momentumL have evenq-parity ~P! and which odd. It is determined, for example, th
for the first 12 states ofL57

P~Li !5H even fori 52,4,6,8,10,12

odd for i 51,3,5,7,9,11.
~38!

The next step is to identify then5@n1 ,n2 ,n3 ,n4# indices and the basis wave functions associa
with these states. It is determined, for example, thatn5@2,0,0,1# for the state 71 ~the firstL57
state! and n5@0,2,0,1# for the next 73 odd-parity state and that the corresponding basis w
functions are given, in terms of their@F0

n ,F2
n , . . . # functions, by
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F~@2,0,0,1# !;F0, 6A 3

1001
sin 3g cos2 g1

1

2
A 3

1001
sin2 g sin 3g,

3A 2

91
cosg sing sin 3g,

1

2
A3

7
sin2 g sin 3gG , ~39!

F~@0,2,0,1# !;F0, 6A 3

1001
sin 3g cos2 2g1

1

2
A 3

1001
sin2 2g sin 3g,

23A 2

91
cos 2g sin 2g sin 3g,

1

2
A3

7
sin2 2g sin 3gG .

The overlap matrix for these wave functions is next determined and from it the Gr
Schmidt transformation to an orthonormal basis of spherical harmonics. For the aboveL
57 states one obtains the Gram–Schmidt transformation in the form

F F 48

1001
,

304

6825G , F 1 0

2
4

15
1G G , ~40!

where the first vector gives the squared norms of the orthogonalized vectors, and the mat
follows is the transformation from theF functions to an orthogonal set. Thus the first twoL57
spherical harmonics,CvaL , which, from Fig. 2, are seen to have seniorityv55 and 7, respec-
tively, are given by

C5,1,75A1001

48
F~@2,0,0,1# !, C7,1,75A6825

304 S F~@0,2,0,1# !2
4

15
F~@2,0,0,1# ! D . ~41!

Note that the multiplicity indexa is restricted to 1 forL57 because all states ofL57 are
multiplicity free.

V. SO„5… CLEBSCH–GORDAN COEFFICIENTS

Given SO~5! spherical harmonics$CvaL% in an SO~3! basis, the Clebsch–Gordan coefficien
of type (v1a1L1 ,v2a2L2iv3a3L3) are obtained by simply evaluating the overlap integrals

E Cv3a3L3M3
* ~g,V! @Cv2a2L2

~g,V! ^ Cv1a1L1
~g,V!#L3M3

sin 3g dg dV

5^v3iuĈv2
uiv1& ~v1a1L1 ,v2a2L2iv3a3L3! , ~42!

whereĈv2
is interpreted as a tensor operator whose components act on other wave functi

simple multiplication, i.e.,

@Ĉv2a2L2M2
Cv1a1L1M1

#~g,V!5Cv2a2L2M2
~g,V!Cv1a1L1M1

~g,V! . ~43!

Thus,^v3iuĈv2
uiv1& is an SO~5!-reduced matrix element of this operator. The norms and ph

of the CG coefficients are here defined by choosing the^v3iuĈv2
uiv1& factors to be positive and

normalizing the coefficients such that

(
a1L1a2L2

~v1a1L1 ,v2a2L2iv3a3L3!251 . ~44!
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Thus, tables of SO~5! CG coefficients are computed by evaluating the integrals of Eq.~42! and
multiplying by normalization factors such that Eq.~44! is satisfied. An example of a table of CG
coefficients obtained in this way is shown in Table I.

Tables of CG coefficients forv1<9 andv251 are given in the Appendix. Other coefficien
can be obtained from them by use of the following symmetry relations.

VI. PHASES AND SYMMETRY RELATIONS

It follows from the definition given in the first paragraph of Sec. V, that the CG coeffici
satisfy the symmetry relation

~v2a2L2 ,v1a1L1iv3a3L3!5~21!L11L22L3 ~v1a1L1 ,v2a2L2iv3a3L3! . ~45!

They also satisfy the symmetry relation

~v3a3L3 ,v2a2L2iv1a1L1!5~21!L11L22L3Adim~v1!

dim~v3!

~2L311!

~2L111!
~v1a1L1 ,v2a2L2iv3a3L3! ,

~46!

where dim(v) is the dimension of the SO~5! irrep of seniorityv.
The latter relationship is derived by first using the identity

Cv3a3L3M3
* 5~21!L31M3Cv3a3L3 ,2M3

5A2L311 ~L3M3 ,L3 ,2M3u00! Cv3a3L3 ,2M3
~47!

to rewrite Eq.~42! in the coupled form

1

A2L311
E @Cv3a3L3

~g,V! ^ Cv2a2L2
~g,V! ^ Cv1a1L1

~g,V!#0 sin 3g dg dV

5^v3iuĈv2
uiv1& ~v1a1L1 ,v2a2L2iv3a3L3! . ~48!

The integrand on the left of this equation can then be reordered to give

^v3iuĈv2
uiv1& ~v1a1L1 ,v2a2L2iv3a3L3!

5~21!L11L22L3A2L111

2L311
^v1iuĈv2

uiv3& ~v3a3L3 ,v2a2L2iv1a1L1! . ~49!

Next observe that, if$uvn&% is any complete orthonormal basis for an SO~5! irrep of seniorityv,
then the unitarity of the CG coefficients implies that

TABLE I. The (v1a1L1 ,v2a2L2iv3a3L3) CG coefficients forv15v252. Note, that thev52 and v54 irreps are
multiplicity free so thata15a25a351 in all cases. Cf. the Appendix for an explanation of the notations.

3
v1•L1 v2•L2 4.2 4.4 4.5 4.6 4.8

2.2 2.2 2
2

21
A66

1

63
A2145 0 0 0

2.4 2.2
1

42
A330

2

63
A78

1

2
&

1

14
A70 0

2.2 2.4
1

42
A330

2

63
A78 2

1

2
&

1

14
A70 0

2.4 2.4
2

21
)

20

63
) 0 2

1

7
A14 1

4
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(
n1n2n3

~v1n1 ,v2n2uv3n3!25dim~v3! , ~50!

and, hence, that

(
a1L1 ,a2L2 ,a3L3

~2L311!~v1a1L1 ,v2a2L2iv3a3L3!25dim~v3! . ~51!

Squaring both sides of Eq.~49!, and applying this identity, then gives

^v1iuĈv2
uiv3&

^v3iuĈv2
uiv1&

5Adim~v3!

dim~v1!
~52!

and the desired result~46!.

VII. CONCLUDING REMARKS

Basis wave functions for the irreps of SO~5! can be defined and constructed in many ways
one is concerned with a particular irrep, then vector coherent state~VCS! methods provide a
construction both of an orthonormal basis and the matrix elements of the SO~5! Lie algebra; e.g.,
Rowe and Hecht21 gave an algorithm for deriving the so-called one-row irreps and, recent
construction for the generic SO~5! irreps has been developed by Turner, Rowe, Repka,
Bahri.22 However, if one needs basis wave functions for many one-row irreps@i.e., SO~5! spherical
harmonics#, e.g., for nuclear collective model calculations, the more direct method pres
above is simpler. This method simplifies that of Chac´on et al.11 by restricting the active space t
L 2(S4) rather than the Hilbert space

L 2~R1! ^ L 2~S4!.L 2~R5! , ~53!

whereL 2(R1) is the Hilbert space of radial~beta! wave functions; many complications and sub
concepts~like traceless bosons! are thereby avoided.

Clebsch–Gordan coefficients can also be computed in many ways. For complex situ
sophisticated algebraic methods have been developed~cf. Refs. 9, 17–19, and references therei!.
However, it is possible to compute the coefficients relating one-row irreps of many groups di
from their spherical harmonics in parallel with Wigner’s method20 for SU~2!; this is demonstrated
above for SO~5!. It is generally most useful to generate CG coefficients as they are needed
program rather than a set of tables. A simpleMAPLE code based on the above algorithm has be
developed and was used to give the results reported in this paper. A faster routine~using floating
point arithmetic! is being prepared16 and will be made generally available in the near future. So
of the most useful coefficients, from which many others can be derived, are given~in exact
arithmetical form! in the Appendix.

Given such CG coefficients, and knowledge of a complete basis of beta wave function~cf.
Ref. 3!, it is possible to do many model calculations, e.g., in the Hilbert spaceL 2(R5) of the
five-dimensional harmonic oscillator or in the space of a U~5! or U~6! irrep spanned by wave
functions classified by SO~5! quantum numbers. For example, the matrix elements of the in
tesimal generators of SO~5! are easily computed by expressing them as coupled products

Lk52A10 ~d†
^ d!1k , On52A10 ~d†

^ d!3n , ~54!

of the raising and lowering operators$dn
† ,dn% of the five-dimensional harmonic oscillator. Fo

example, the reduced matrix elements of the octupole tensorO are given by
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^v jL 3iOiv iL 1&52A70 v(
kL2

~21!L12L2A~2L111!~2L311! W~L12L32;L23!

3~v21,kL2 ,12iv jL 3! ~v21,kL2 ,12iv iL 1! . ~55!

We have ascertained that this expression gives precisely the same matrix elements, albeit to
a unitary transformation between subsets of states of an irrep having the same angular mom
as those quoted by Rowe and Hecht.21 Matrix elements of other bilinear combinations of th
d-boson operators within the space of the five-dimensional harmonic oscillator are also
computed. Morever, because the matrix elements ofL50 s-boson operators are well-known, th
SO~5! CG coefficients are all that are needed to compute the matrix elements of any bi
combination of boson operators in the space of the six-dimensional harmonic oscillator.

APPENDIX: TABLES OF BASIC SO „5… CLEBSCH–GORDAN COEFFICIENTS

The following tables give the CG coefficients (v1 ,a1 ,L1 ;1,1,2iv3 ,a3 ,L13). The tables are
shown in the form in which they are computed. The first two columns give the values ofv1•L1

and v2•L251•2. The subsequent columns are headed by the value ofv3•L3 . The multiplicity
indices are not given explicitly. Instead, if a given value ofv•L has a multiplicity, it is simply
repeated as, for example, forv•L56.6.

Fv1•L1 v2•L2 2.2 2.4

1.2 1.2 21 1 G

F v1•L1 v2•L2 3.0 3.3 3.4 3.6

2.2 1.2 1 2
A35

7

A231

21
0

2.4 1.2 0 2
A14

7
2

A210

21
1
G

3
v1•L1 v2•L2 4.2 4.4 4.5 4.6 4.8

3.0 1.2
A330

30
0 0 0 0

3.3 1.2 2
A66

12
2

A4290

90

A210

20
0 0

3.4 1.2
A70

20
2

A2002

66
2

A462

44

A330

22
0

3.6 1.2 0 2
4A165

495
2

A715

55
2

A154

22
1

4

                                                                                                                



3
v1•L1 v2•L2 5.2 5.4 5.5 5.6 5.7 5.8 5.10

4.2 1.2 2
A910

35

A3003

77
0 0 0 0 0

4.4 1.2
3A35

35

24A21

385
2

3A231

55

3A23205

715
0 0 0

4.5 1.2 0 2
A1001

55
2

A6

5
2

2A6545

385

2A210

35
0 0

4.6 1.2 0
7A5

55
2

2A55

55
2

6A34

55
2
)

5

A19

5
0 4
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4.8 1.2 0 0 0 2
16A1001

5005
2

A238

35
2

A6

5
1

l

v1•L1 v2•L2 6.0 6.3 6.4 6.6 6.6

5.2 1.2 1 2
A105

14

A221

26
0 0

5.4 1.2 0 2
A385

35
2

A663

39

A2510

65
0

5.5 1.2 0
A15

10
2

A663

78
2

28A2510

16315
2

5A14755286

22841

5.6 1.2 0 0
A195

39

4A55471

3263
2

11A166915

8785

5.7 1.2 0 0 0 2
135A2510

13052
2

A14755286

22841

5.8 1.2 0 0 0
7A162146

13052
2

A228410

8785

m

3
v1•L1 v2•L2 6.7 6.8 6.9 6.10 6.12

5.5 1.2
A3094

91
0 0 0 0

5.6 1.2 2
A385

35

A692835

1105
0 0 0

5.7 1.2 2
11A546

546
2

A494

78

A110

12
0 0

5.8 1.2 2
A3990

210
2

11A17290

2470
2

A418

76

A2622

57
0

5.10 1.2 0 2
8A20995

12597
2

2A133

57
2

A627

57
1

4

                                                                                                                



l

v1•L1 v2•L2 7.2 7.4 7.5 7.6 7.7 7.8

6.0 1.2
A357

35
0 0 0 0 0

6.3 1.2 2
A595

35
2

A4522

105

A1122

55
0 0 0

6.4 1.2
A273

35
2

A570570

1155
2

A30030

385

2A114114

1001
0 0

6.6 1.2 0 2
4A81154073

289905
2

26A4271267

96635
2

A62426210

13805
0

A50592815

8785

6.6 1.2 0
9A13805

2761
2

8A262295

19327

52A71786

96635
2

A8283

105

164A35915339

66159835

6.7 1.2 0 0
A429

77
2

A570

70
2

A692835

1785
2

8A37655

15505

6.8 1.2 0 0 0
11A546

910
2

A3003

315

8A5759

2215

6.9 1.2 0 0 0 0 2
4A1785

5355
2

A55089265

15505

m
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6.10 1.2 0 0 0 0 0
7A866065

37655

l

v1•L1 v2•L2 7.8 7.9 7.10 7.11 7.12 7.14

6.6 1.2
A913005723

52717
0 0 0 0 0

6.7 1.2 2
5A345559935

158151

A5610

102
0 0 0 0

6.8 1.2 2
13A52850343

176757
2

A114114

798

A937365

1197
0 0 0

6.9 1.2 2
4A28580145

112965
2

13A3570

1785
2

2A5313

693

2A30030

385
0 0

6.10 1.2 2
256A15024345

15024345
2

2A91770

1995
2

52A9177

9177
2

A31395

805

3A2415

161
0

6.12 1.2 0 0 2
16A759

5313
2

5A17710

1771
2

A4186

161
1

m

                                                                                                                



l

v1•L1 v2•L2 8.2 8.4 8.5 8.6 8.7 8.8 8.8

7.2 1.2 2
A133

14

A22610

238
0 0 0 0 0

7.4 1.2
3A7

14

24A6545

6545
2

3A770

110

3A782782

4862
0 0 0

7.5 1.2 0 2
A11305

170
2

A3705

130
2

A1352078

3094

A4849845

3094
0 0

7.6 1.2 0
A17017

2
A2002

2
3A1956955

2
A102102 A12133030

4760
0

7.7 2
38A3079923

1586627
2

175A5213203

453322

7.8
53

2
A1506162345

75310
0

7.8
29 270A1535783537785

1907805637
2

5A18516937065

1519962

7.9 2
189A10266410

1813288
2

8A156396090

679983

7.10
55A1345926351

8613118
2

4A4306559

253327

m

2775
J.

M
ath.

P
hys.,

V
ol.

45,
N

o.
7,

July
2004

S
phericalharm

onics
&

basic
coupling

coefficients

   
374 154 6545 952

1.2 0 0
3A455

182
2

3A782782

12376

6A455

1547

1.2 0 0 0 2
8A2994852770

3426605
2

A110178

6202

1.2 0 0 0
135A2937090

783224
2

2A57160

22593

1.2 0 0 0 0
13A42

408

1.2 0 0 0 0 0

                                                                                                                                 



l

v1•L1 v2•L2 8.9 8.10 8.10 8.11 8.12 8.13 8.14 8.16

7.7 1.2
5A79534

2584
0 0 0 0 0 0 0

7.8 1.2 0
65A37655

15062
0 0 0 0 0 0

7.8 1.2 2
A613851810

38760

28A345559935

27902355

3A648109

3458
0 0 0 0 0

7.9
5015

54
0 0 0 0

7.10
3289

506

9A16214770

43010
0 0 0

7.11
A154

154
2

3A70499

4862

5A91

52
0 0

7.12
2530

506
2

5A56695

2346
2

A5

12

A31

6
0

7.14 0 2
2A15470

3315
2

A754

78
2

A5

6
1

m

2776
J.

M
ath.

P
hys.,

V
ol.

45,
N

o.
7,

July
2004

R
ow

e,
Turner,

and
R

epka

          
1.2 2
A31395

357
2

8A3570

4641
2

15A3542

2002

A1

1

1.2 2
5A92378

7106

60A323

4199
2

243A72105

124982
2

3A

1.2 2
8A373065

124355
2

19A533715

30940
2

6A1001

1001
2

5

1.2 0
3A1785

884
2

38A1771

23023
2

3A

1.2 0 0 0

                                                                                                                          



l

v1•L1 v2•L2 9.0 9.3 9.4 9.6 9.6 9.7 9.8

8.2 1.2 1 2
A210

21

A874

57
0 0 0 0

8.4 1.2 0 2
A3570

105
2

A163438

627

A4649205

3135
0 0 0

8.5 1.2 0
A5

5
2

A437

57
2

136A14370270

5494515
2

50A39395895

404859

A45885

399
0

8.6 1.2 0 0
2A17765

627

224A278022459

12087933
2

55A13765206

404859
2

A176358

798

5A7106

646

8.7
3

2
A33649

399
2

5A22287

2907

8.8
1319

2
A9013627987

279993
2

55A70838229

759981

8.8 2
40A108677283

2279943

136A226661

759981

8.9
A8778

342
2

5A8398

1938

8.10 0 2
40A12903

37791

8.10 0
27A5

247

m

2777
J.

M
ath.

P
hys.,

V
ol.

45,
N

o.
7,

July
2004

S
phericalharm

onics
&

basic
coupling

coefficients
1.2 0 0 0 2
315A1859682

732602
2

20A1217691

404859

1.2 0 0 0
A2254103646

169062
2

20A178590259

415229619

1.2 0 0 0 0
A19772839

13333

1.2 0 0 0 0 0

1.2 0 0 0 0 0

1.2 0 0 0 0 0

                                                                                                                                    



l

v1•L1 v2•L2 9.9 9.9 9.10 9.10 9.11

8.7 1.2
A68430

342
0 0 0 0

8.8 1.2 2
A170614534530

1519962
0

2A85609993030

759981
0 0

8.8 1.2 2
172A48964242530

1733516661
2

A37559527655

216695

848A14616975766470

445544181117

A93316753489505

18564805
0

8.9
8A64791805 17A159670 352A724027395

2
2A10597572370

307087

30A572033

33649

8.10 0 0

8.10 2
884A50592276163

402591057

13A312455

14421

8.11
0

2
16

1535435
A311693305 2

17

7315
A43890

8.12 2
160A1680994238

148323021
2

2A462120945

187473

8.13 0 2
8A198835

85215

m

2778
J.

M
ath.

P
hys.,

V
ol.

45,
N

o.
7,

July
2004

R
ow

e,
Turner,

and
R

epka

   
1.2
650085

2
15967

2
167083245

1.2 2
2A8143170

11115
0 2

A3070870

3705

1.2 2
432A8079302

6197477
2

26A6197477

476729

3672A65493282

158596477

1.2
13A37511045

476729
2

4A33371030

878185
2

23A2461693143

11138883

1.2 0 0
55A96585254493

85398103

1.2 0 0 0

                                                                                                                                 



l

v1•L1 v2•L2 9.12 9.12 9.13 9.14 9.15 9.16 9.18

8.10 1.2
A10111515

3705
0 0 0 0 0 0

8.10 1.2
216A10032209

34320715

13A215980259495

7920165
0 0 0 0 0

8.11
184A13085490 A11268535278 A26390

0 0 0 0

8.12
5A124571733

64467
0 0 0

8.13
0

2
2A2947945

25935

4A595

105
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The constraint distribution in nonholonomic mechanics has a double role. On the
one hand, it is a kinematic constraint, that is, it is a restriction on the motion itself.
On the other hand, it is also a restriction on the allowed variations when using
D’Alembert’s principle to derive the equations of motion. We will show that many
systems of physical interest where D’Alembert’s principle does not apply can be
conveniently modeled within the general idea of the principle of virtual work by the
introduction of both kinematic constraints and variational constraints as being in-
dependent entities. This includes, for example, elastic rolling bodies and pneumatic
tires. Also, D’Alembert’s principle and Chetaev’s principle fall into this scheme.
We emphasize the geometric point of view, avoiding the use of local coordinates,
which is the appropriate setting for dealing with questions of global nature, like
reduction. © 2004 American Institute of Physics.@DOI: 10.1063/1.1763245#

I. INTRODUCTION

Nonholonomic mechanics: The universal formalism created by Lagrange is not appropriat
derive the equations of motion for systems with rolling constraints, that is, this motion is
described by classical variational principles. Several systems with rolling constraints, lik
idealized rigid ball rolling on a plane with only one point of contact and many others,
successfully described geometrically by distributions on configuration space and the corre
ing equations of motion are derived by D’Alembert’s principle, which has been the purpo
extensive research3,5,14,17,18,22,30for more than a century~see also, for instance, Refs. 24, 2, 7, a
8 for a list of references and historical remarks!. However, as we will see in the examples studi
in the present work the dynamics of elastic rolling bodies is not generally describe
D’Alembert’s principle, even in those cases where the restriction on the motion is given by
constraints. On the other hand,second order constraints, that is, subsets of the second ord
tangent bundle rather than the tangent bundle of the configuration space, naturally app
several examples. The purpose of the present work is to establish the basic geometric defi
and procedures within the general idea of the principle of virtual work, generalizing D’Alemb
principle to deal with nonlinear and higher order constraints. One of our main examples w
elastic rolling bodies, like pneumatic tires, where some second order constraints appear na

In D’Alembert’s principle the constraint distribution has a double role. On one hand, it
kinematic constraint, that is, it is a restriction on the motion itself. On the other hand, it isin

a!Electronic mail: uscendra@criba.edu.ar
b!Electronic mail: albertoi@math.uc3m.es
c!Electronic mail: mdeleon@imaff. cfmac. csic.es
d!Electronic mail: d.martin@imaff.cfmac.csic.es
27850022-2488/2004/45(7)/2785/17/$22.00 © 2004 American Institute of Physics
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addition, avariational constraint. This perspective was already adopted in Ref. 13 where a gen
approach to nonholonomic constrained systems considered as implicit differential equation
considered. There it was discussed that the kinematical constraints defining a submanifold
tangent space of the configuration space of the system and the reaction or control forces de
by a subbundle of the cotangent bundle of the configuration space, where independent enti
a condition for the compatibility of both ingredients was obtained. In this paper we will p
forward this point of view by considering nonlinear higher order nonholonomic constraints
only constraints on the velocities but on higher order derivatives.

We will show that many systems of physical interest where D’Alembert’s principle does
apply, can be conveniently modeled by a principle based in the introduction of both higher
kinematic constraintsand higher ordervariational constraintsas being independent entities. Th
includes, for example, elastic rolling bodies and pneumatic tires. Also, D’Alembert’s principle
Chetaev’s principle fall into this scheme.

Our point of view is geometric, avoiding the use of local coordinates, which is appropriat
dealing global problems, like reduction. We also write equations of motion for systems with h
order constraints in an intrinsic fashion, using the natural structures of the tangent bund
higher order bundles.

Basic notation: As usual we will consider that the configuration space of a Lagrangian sy
is a smooth manifoldQ of dimensionn with local coordinatesqi . We shall introduce higher orde
tangent bundles in order to deal with higher order constraints. Thus, by definition, two
curves inQ, say,q1(t) andq2(t), tP(2a,a), have a contact of orderk at q05q1(0)5q2(0) if
there is a local chart (w,U) such thatqi(0)PU, for i 51,2, andDt

s(w+q1)(0)5Dt
s(w+q2)(0), for

s50, . . . ,k. This is a well-defined equivalence relation, and the equivalence class of a given
q(t) is denoted@q# (k). For eachq0PQ, let Tq0

(k)Q be the set of all@q# (k) such thatq(0)5q0 , and

let T(k)Q be the collection of allTq0

(k)Q, for q0PQ. It is well known ~see, for instance, Refs. 1

and 9 and references therein! thattk:T(k)Q→Q, wheretk(@q# (k))5q(0), is afiber bundle, called
the tangent bundle of orderk of Q. There are natural mapst ( l ,k):T(k)Q→T( l )Q, for k,l
51,2,. . . , given byt ( l ,k)(@q# (k))5@q# ( l ). It is easy to see thatT(1)Q[TQ. Also, we can identify
T(0)Q[Q, via @q# (0)[q(0).

In local coordinates, we haveq5(q1, . . . ,qn), and, for s51,2, . . . , we denote q(s)

5(q1,(s), . . . ,qn,(s)), where

qi ,(s)5
dsqi

dts ~0!,

wherei 51, . . . ,n. Then we have,@q# (k)5(q(0), . . . ,q(k)).
Denote by j k :T(k)Q→T(T(k21)Q) the canonical immersion defined byj k(@q# (k))

5@q(k21)# (1) where q(k21) is the lift to T(k21)Q of the curveq, that is, the curveq(k21):
(2a,a)→T(k21)Q is defined asq(k21)(t)5@qt#

(k21) whereqt(s)5q(t1s).
In this paper, it will be useful to introduce, geometrically, the concept of implicit differen

equations. This concept has often received less attention than the notion of an explicit diffe
equation in the differential geometry literature~see Refs. 21, 23, and 13!. Geometrically, a system
of implicit kth-order differential equations is a submanifoldM of T(k)Q and a curveg:I→Q is a
solution to the differential equationM , if its k-lift g (k)(s)PM for all sPI . The implicit differ-
ential equation will be said to be integrable at a point if there exists a solutiong such that itsk-lift
passes through it. The integrable part ofM is the subset of all integrable points ofM . The system
is said to be integrable if its integrable part coincides withM . A notorious algorithm has bee
developed to extract the integrable part of an arbitrary implicit differential equation,23 but it will
not be the objective of this paper to discuss this issue for systems with higher order nonholo
constraints and we will restrict ourselves to the description of the corresponding implicit d
ential equation, leaving the questions of the existence and uniqueness of its solutions for
discussion.
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In Sec. II we describe a first example of the elastic rolling ball, where some of the featu
the general procedure already appear. In Secs. III and IV we show how to study Rocard’s
and also Greidanus’s theory of a pneumatic tire~see Refs. 11, 26, and 27 and also Ref. 24! as a
nonholonomic system with higher order constraints and, motivated by the previous examp
Sec. IV we establish a general principle for dealing with systems involving higher order
straints. The distinction between kinematic constraints and variational constraints as being
pendent entities is a key point to this discussion. In Sec. V intrinsic equations of motio
systems with higher order constraints are derived. In Sec. VI further examples are provide
some basic results about reduction and the equations for Lagrangian systems with symmetr
higher-order nonholonomic constraints are discussed.

II. A SIMPLE EXAMPLE: THE ELASTIC HOMOGENEOUS ROLLING BALL

The main purpose of this section is to show an example that can be treated
D’Alembert’s principle and also using some other procedures involving different types of
straints, including second order nonlinear constraints. All those procedures are equivalent
sense that they give equivalent systems of equations.

Let us consider an elastic ball subjected to gravity and rolling on a plane. Without
of generality we will assume that the radius of the ball is 1, for simplicity. For a static bal
contact between the ball and the plane is a circle, whose diameter was calculated by Hert12 see
also Ref. 16, p. 27. The effect of internal viscosity, adhesion and other dissipative forc
important in some cases,4 however, in the present section we shall assume that heat dissipat
small, in other words, we will consider only the idealized model of a perfect elastic ball. Also
shall consider only the important case where the circle of contact is small and the mot
quasistatic, which, in particular, implies that the zone of contact is approximately a circle o
same size as the contact circle in the static case~see Ref. 16!. This also implies that the size an
inertia of the flattened part of the sphere is negligible. Now we shall define thenonsliding condi-
tion. It is given by the condition that the points of the sphere belonging to the circle of co
cannot slide against the plane. It is clear that this has to be understood in an approximate
since the exact solution of elasticity equations is not known in general, not even unde
quasistatic assumption. More precisely, we accept the following approximate model. We a
that for all kinematic and dynamical purposes the ball is rigid, it has only one point of conta
with the plane, representing the center of the circle of contact, which does not slides, a
spatial angular velocity and the translation velocity combine in such a way that the veloc
points z of the surface of the ball neara have a velocity which is of orderua2zu2. This is a
rigorous way of defining the constraint given by the nonsliding condition, in the case where
is a circle rather than a point of contact. It is easy to prove that, in fact, the nonsliding con
is satisfied if and only if the vertical component of the spatial angular velocity is 0, that isv3

50. We emphasize that this model is realistic only for slow motion and small deformatio
agreement with all these physical assumptions we have the following geometric model.

Kinematics of the elastic rolling ball. The manifoldQ5SO(3)3R2 is the configuration space
for the model. A position of the system is given by a point (A,a)PQ, wherea is the point of
contact of the sphere with the plane representing in the approximation described above the
of the circle of contact. LetV5ȧ be the translation velocity of the ball and letv5ȦA21 be the
spatial angular velocityv5(v1 ,v2 ,v3), after the identification ofso~3! with R3. We haveV̇

5ä andv̇5ÄA212ȦA21ȦA21. The following two equations describe the nonsliding constra

V5~v2 ,2v1!, ~1!

v350. ~2!

The first equation represents the usual nonsliding condition for a rigid rolling ball while the se
expresses the fact that there is really a circle of contact rather than a point, and that the po
that circle belonging to the sphere have zero velocity with respect to the plane, at least
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order approximation. The previous equations define a distribution, which is thekinematic con-
straint for the system of the elastic rolling ball. We will show that, provided that we accept hi
order constraints, there are other equivalent ways of choosing the constraints all of them
equivalent equations of motion. For instance, let the curvea(t) in the plane have curvature radiu
r (t). Then we define the constraint

r 2v3
25v1

21v2
2 , ~3!

whose physical meaning is that the instantaneous motion of the sphere is a superpositio
rotation about some vertical axis, with angular velocityv3 , and the motion of rolling on the plan
with speed

uVu5Av1
21v2

2, ~4!

and the point of contact is located at a distancer from the vertical axis. This is an example of
second order constraint, it is a kinematic constraintin the terminology introduced in Sec. IV an
it is equivalent to the constraint~2!, in the sense that it gives equivalent equations of motion, as
will explain later. However, as we have said before the nonsliding condition is satisfied o
r 5`, which of course impliesv350. Equation~1! has the following consequence:

V̇5~v̇2 ,2v̇1!.

Let t andn be the tangent and normal vectors to the curvea(t). We have

uVun56~v1 ,v2!,

and also

V̇5
duVu
dt

t1
uVu2

r
n.

Then we can deduce

^uVun,V̇&56~v1v̇22v2v̇1! ~5!

5
uVu3

r
, ~6!

from which we obtain the constraint~3! in the form

v1v̇22v2v̇15v3~v1
21v2

2!, ~7!

where the choice of the sign6 is the only one consistent with the standard choice for the direc
of the normaln and the sign ofv3 for the given physical description. We have a subsetC#T(2)Q,
given by ~1! and ~7!, rewritten in terms ofȧ, A, Ȧ, and Ä. This is asecond order kinematic
constraint. Observe that, in this example, the projectiontQ

(1,2) :T(2)Q→TQ defines a distribution
D#TQ, by D5tQ

(1,2)(C), which is given by~1!, and that rewritten in terms ofA, Ȧ, a, andȧ,
gives an expression linear inȦ and ȧ.

Dynamics of the elastic rolling ball: The Lagrangian is given by the kinetic energy

L~A,a,Ȧ,ȧ!5 1
2 I ~ȦA21!21 1

2 M ~ ȧ!2,

whereI is the moment of inertia of the ball with respect to any of its symmetry axis, andM is the
mass of the ball. The dynamics of the elastic rolling ball is given by the following variati
description, as we will see later,
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dE
t0

t1S 1

2
I ~ȦA21!21

1

2
M ~ ȧ!2Ddt50, ~8!

~dA~ t i !,da~ t i !!50 for i 50,1, ~9!

~dA~ t !,da~ t !!PD (A(t),a(t)) for all t, ~10!

~Ȧ~ t !,ȧ~ t !!PD (A(t),a(t)) for all t, ~11!

v350. ~12!

We will show that we can replace the last equation by Eq.~7! and we will obtain an equivalen
system. We note that in this formulation theconstraints on the variationsare the same as in th
case of the rigid rolling ball~see, for instance, Refs. 24 and 2!. However, thekinematic constraints
are not, in other words, the motion is effectively constrained by our choice of the last equ
namely, either Eq.~2! or Eq. ~7!. For any of those choices, we derive from the previous princ
a differential-algebraic systemof equations and we will have existence and uniqueness of solu
for those initial conditions compatible with the constraints.

By applying the usual integration by parts argument, we obtain the equations of m
However, as it already happens in the case of the rigid body, this is not completely trivial u
one is willing to use reduction arguments,~see, for instance, Refs. 6 and 7!. We will postpone the
details of the computation until Sec. VI. We obtain,

~ I 1M !v̇150, ~13!

~ I 1M !v̇250, ~14!

~ I 1M !v̇350, ~15!

~v2 ,2v1!5V, ~16!

v350. ~17!

Of course this system is over determined, but it is correct. The fifth equation, which coincide
Eq. ~2!, may be replaced by Eq.~7! and we obtain a system which is clearly equivalent. The fi
four equations are exactly the equations for the rigid rolling ball and they imply thatv̇50 and
also that the translation velocityV is constant. We can show that there is solution provided that
initial condition (v0 ,V0) satisfies the constraints given by the last two equations and that
solution is unique.

We must remark at this point that the only guiding idea to establish the previous proced
the principle of virtual work, and one should check that the final equations are consistent w
basic laws of mechanics, essentially Newton’s law, so the force should be equal to the r
change of linear momentum and the torque should be equal to the rate of change of a
momentum. In the case of the elastic rolling ball the forces of the constraint must satis
following conditions: the resultant force exerted by the plane on the ball has a positive comp
in the vertical upwards direction while the torque has a zero horizontal component. All th
obviously compatible with the previous system of equations. Moreover, the same equations
derived by an elementary exercise in rational mechanics. We observe that preservation of
is satisfied in this example. As a final remark to this example we observe that even if the
straints~1!, ~2! are linear, we have not applied D’Alembert’s principle. However, it will beco
clear at the end in Sec. VI that D’Alembert’s principle gives correct equations of motion in
example, and it is perhaps the best procedure in this case since it produces a nonoverdet
system. Showing that it is not always the case that D’Alembert’s principle can be applied i
of the purpose of the present work. It is also clear from what we have explained so far that
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given system, there is in principle the possibility of introducing several classes of higher
constraints which are equivalent in the sense that they lead to equivalent equations of mo

The case of the nonhomogeneous elastic ball and also the case of the nonhomog
viscoelastic ball could be interesting, for instance because of possible applications to sp
robots, and can be treated with the methods of the present work. In particular, the non
condition ~2! will be part of the kinematic constraints. The case of the symmetric elasti
viscoelastic rolling ball, in which two of the three moments of inertia of the ball are eq
presents an extra symmetry and we can expect that some kind of reduction by this symme
help to understand the behavior of the reduced variables such as the angular momentum. T
of the rigid symmetric rolling ball has been studied in Ref. 6.

III. AN EXAMPLE OF NONLINEAR HIGHER ORDER NONHOLONOMIC CONSTRAINTS

In the example of the elastic rolling ball described in the preceding section the second
constraint gives rise to a distributionD defined by~1! which provides a restriction for the varia
tions to obtain some of the equations of motion. The rest of the equations of motion are th
given by the same distribution, plus an extra equation provided by the nonlinear second
constraint~7! or, equivalently, by the linear constraint~2!. This gives a procedure whose correc
ness in the example under consideration is established by the fundamental principles of mec

Rocard’s theory of a pneumatic tire: Before we try to establish any general procedure we w
describe another example where the restrictions, both kinematic restrictions and restrictions
variations, are of an entirely different nature. This is the simplified model of a pneumatic
rolling on a plane according to Rocard’s theory, as described, for instance, in Refs. 27, 26, 2
simplicity we shall study the case of a single elastic pneumatic tire whose plane is constrai
remain vertical while it rolls without sliding. The zone of contact of the pneumatic tire with
plane is a small surface with a central point of contactx5(x1 ,x2), which for simplicity we will
assume that it coincides with the projection of the center of the wheel on the plane. The non
condition means that the velocity of the points of the tire belonging to the zone of contact
respect to the plane is zero. In an approximate sense this nonsliding condition implies th
vertical component of the angular velocity of the small piece of surface of the pneuma
contact with the floor is zero. However, contrary to what we have assumed for the homoge
elastic rolling ball, the fact that the vertical component of the angular velocity of the zon
contact is zero does not mean that the vertical component of the angular velocity of the pl
the tire is zero. This is because according to Rocard’s theory the elasticity of the material
for a small anglee between the axis of the zone of contact~an oblong-like symmetric zone!, which
is assumed to have the direction ofẋ, and the plane of the wheel. We will callK the corresponding
constant of elasticity. It turns out that the nonsliding condition for the small zone of contact i
the relevant constraint. Instead, there will appear another second order constraint of a d
nature. Finally, we must remark that the previous description of Rocard’s theory gives on
approximation, and for more accurate results one must have into account some other ob
effects. For instance, the projectionx of the center of the wheel onto the plane is not exactly
center of the zone of contact, which produce a small torque not taken into account in the sim
model described above. Part, but only part, of this problem is taken into account in the sim
version of Greidanu’s theory described later in the present work.

Taking into account all the physical considerations explained above we will describe Ro
theory by the following geometric model. For all kinematic and dynamical purposes the wh
simply an undeformable disk kept vertical and rolling on a plane, where the point of cont
x5(x1 ,x2). We choose once for all a normal vectorN5(2sinu,cosu) rigidly fixed to the wheel.
Then the angle between the plane of the wheel and thex1 axis isu. The angle between the velocit
vectorẋ and the plane of the wheel is callede, with the physical meaning that we have explain
before. Therefore, the angle between the axisx1 and ẋ is u2e, and the vectorn, normal to the
trajectory of the pointx and pointing in the direction of the concavity of the curve, isn
5(2sin(u2e),cos(u2e)). The angle of rotation of the wheel about its own axis is calledc. In
order to obtain precise formulas one should be careful about the sign conventions. Positive
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in thex1x2 plane satisfy the usual convention. Thus the angle between thex1 axis and thex2 axis
is, by definition,~1/2!p while the angle between thex2 axis and thex1 axis is2(1/2)p. The sign
for the anglec is established by the convention that the vector angular velocity is of the formċN.
The configuration space of the system isQ5T33R2, and a generic point isq
5(q1 ,q2 ,q3 ,q4 ,q5)[(c,u,e,x1 ,x2). The Lagrangian is given by

L~q,q̇!5 1
2 I ċ21 1

2 Ju̇21 1
2 Mẋ22 1

2 Ke2,

whereI is the moment of inertia of the wheel with respect to its axis,J is the moment of inertia
of the wheel with respect to any one of its diameters,M is the mass of the wheel, andK is the
constant of elasticity introduced before, which by definition satisfiesT52Ke, whereT is the
vertical torque. The kinetic energy due to the velocity of rotationė of the small flattened piece o
material about the zone of contact is small and we will assume that it is 0 for simplicity, whi
also in agreement with general standard assumptions for this kind of approximate models.24

Next we shall describe the kinematic constraints and the variational constraints. The kine
constraintCK , is given by the equations

ẋ15ċ cos~u2e!, ~18!

ẋ25ċ sin~u2e!, ~19!

2c̈ tge1ċ~ u̇2 ė !5~signċ !
a

M
tge. ~20!

The first two equations represent the nonsliding condition for the center of the zone of conta
they are the same as the ones that appear in the case of a rigid rolling disk, or wheel, exc
the small anglee. We should emphasize that here we are working to first order approximation
which means that powers ofe greater than 1 may be neglected. The last equation comes
Rocard’s condition,

uFu5a sinueu,

wherea is a positive physical constant andF is the force normal to the wheel exerted by the flo
while the wheel is rolling with nonzero velocity. More precisely,F is the N component of the
centripetal force, that is we haveF5^Mẍ, N&. The sign conventions are encoded in the followi
more precise version of Rocard’s formula

F5~signċ !asine,

wheree must be interpreted as being the angle between the normaln to the curve andN if F
.0 while it must be interpreted as being the angle betweenn and 2N if F,0. Recall that
Rocards’s formula is valid fore close to 0 only. A couple of remarks are in order for future u
First, as we have said before, Rocard’s theory is valid modulo infinitesimals of order (sie)2.
Second, with the previous sign conventions and according to Rocard’s formula it is not diffic
show thate( u̇2 ė)>0. It also follows from the expression of Rocard’s formula given by~20! that
for e50 the curvex(t) must have a point of inflection, that isu̇2 ė50.

It is clear that~20! involves the first and second derivatives of some of the variables
respect to time, moreover, the dependence on the first derivatives is nonlinear, therefore i
from the typical constraints of D’Alembert type. To obtain equation~20! we may assume, withou
loss of generality, thatċ.0. We simply differentiate~18! and ~19! with respect to time, and
replace in the equation (signċ)a sine5^Mẍ,N&. Now let us consider the following variationa
constraintsCV , to be imposed on variationsdq:
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dc cosu2dx150, ~21!

dc sinu2dx250, ~22!

du2de50. ~23!

Consider the curvesq(t) satisfying

dE
t0

t1
L~q,q̇!dt50,

for variationsdq satisfyingdq(t i)50, for i 51,2, and also the variational constraintsCV . Those
curves are the ones satisfying the followingdynamic equations:

I c̈1Mẍ1 cosu1Mẍ2sinu50, ~24!

Jü1Ke50, ~25!

obtained by the usual integration by parts arguments. These dynamic equations give b
between forces of the constraint and rate of change of momentum. The resultant of the
exerted by the plane of contact on the wheel has positive upwards vertical component w
compensated by gravity, while the horizontal component, which is given byMẍ, is decomposed in
the directions (cosu,sinu) and (2sinu,cosu). The first one is compensated by the rate of cha
of the angular momentumI c̈ and the second is compensated by the nonsliding constraint f
The vertical component of the torque of the forces exerted by the plane on the wheel isKe which
is compensated byJü. The other components of the torque are automatically compensate
cause we are assuming that the wheel is forced to remain vertical. The system of dy
equations together with the kinematic constraints equationsCK completely describe the motion o
the wheel.

In the previous example, we should emphasize, again, the distinction betweenkinematic
constraintsand variational constraints. They are conceptually different, and this difference
implicit in the usual statement of the principle of virtual work. However, in the literature
distinction is usually not emphasized, and for good reason, since in those cases
D’Alembert’s principle can be applied the variational constraints and the kinematic const
coincide. Nonholonomic systems that cannot be treated using D’Alembert method have
considered for instance by Chetaev10 where a procedure to deal with general first order nonlin
constraints is devised~see also Refs. 1 and 25!. In Marle22 it is clearly stated that constraint force
cannot be derived in general from the kinematic constraints and have to be added as par
physical description of the system. Furthermore in Ref. 13 it was explicitly stated a formul
for first order Lagrangian and Poisson nonholonomic systems where kinematic constrain
constraint forces are given as independent entities.

In the case of the elastic rolling ball the forces of the constraint are normal to the directi
the motion of the ball and there is no dissipation of energy. However, for a viscoelastic rolling
there is certainly dissipation of energy and the component of the force of the constraint
direction of the motion can be calculated using results from Ref. 4. This kind of system can
be approached using the kind of generalization of D’Alembert’s principle described in Se
The rate of dissipation of energy for a pneumatic tire rolling according to Rocard’s theory c
easily calculated. Since the energy is given byE5(1/2)I ċ21(1/2)Ju̇21(1/2)Mẋ21(1/2)Ke2,
using the kinematic constraints~18!, ~19! and the dynamic equations derived before we can sh
after some easy calculations thatĖ52(M ċ21K)e( u̇2 ė), modulo infinitesimals of ordere2.
Sincee( u̇2 ė)>0 as we have explained before we haveĖ%0, which means that in general the
is dissipation of energy. The limit casee50 givesĖ50, which reveals that Rocard’s theory do
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not take into account the relatively small dissipation of energy that occurs when the tire roll
straight line. To prove the previous formula we proceed as follows. We can easily see tĖ

5I ċc̈1Ju̇ ü1Mẋ• ẍ1Keė. By differentiating~18! and~19! we can easily see thatẋ• ẍ5ċc̈ and
from this and the dynamic equation~25! we obtain (I 1M )ċc̈2Ke( u̇2 ė)50. Using~18!, ~19!,
and ~24! we obtain, modulo higher order infinitesimals, that (I 1M )c̈52M ċe( u̇2 ė) therefore
(I 1M )c̈ċ52M ċ2e( u̇2 ė), from which we finally obtainĖ52(M ċ21K)e( u̇2 ė). From a
general point of view we may say that the distinction between variational and kinematic
straints implies that the infinitesimal work of the constraint forces in general does not vanis
some admissible infinitesimal displacements, which is the reason why the forces of the con
may produce work.

In the next section we define a class of nonholonomic systems with higher order non
constraints based on the introduction of both kinematic and variational constraints. We wil
show that procedures like D’Alembert’s principle or Chetaev’s procedure fall into this schem
propose that questions of a general nature on nonholonomic systems, like reduction by th
metry, Legendre transformation, and many others should be approached for the general
higher order constraints using the scheme based on the introduction of both kinematic and
tional constraints.

IV. A PRINCIPLE OF VIRTUAL WORK FOR LAGRANGIAN SYSTEMS WITH NONLINEAR
HIGHER ORDER NONHOLONOMIC CONSTRAINTS

Let Q be a configuration space of dimensionn and letL:TQ→R be a given Lagrangian. The
we have the Euler–Lagrange operatorEL:T(2)Q→T* Q which is given in coordinates by

ELi~@q# (2)!dqi5S d

dt

]L

]q̇i ~@q# (2)!2
]L

]q
~@q# (2)! D dqi .

A kinematic constraint of order kis, by definition, a subsetCK#T(k)Q, for some k
50,1,2, . . . . The subsetCK is often defined by equationsRK(@q# (k))50, where RK :T(k)Q
→Rr , for somer 51,2, . . . . For example, ifk50 andRK is a submersion thenCK is a nonsin-
gular holonomic constraint. Ifk51 and RK(q,q̇)5RKi(q)q̇i defines a distribution of constan
rank, we have the typical situation of D’Alembert’s principle. IfRK(q,q̇) is a general function we
have the situation considered by Chetaev.10 In the case of the elastic rolling ball we have, if w
choose the constraint given by Eq.~2! as we have explained before,n55, k51, r 53, and

RK~A,a,Ȧ,ȧ!5~v22ȧ1 ,2v12ȧ2 ,v3!.

Alternatively, as we have explained before, if we choose the constraint given by Eq.~7!, we have,
n55, k52, r 53,

RK~A,a,Ȧ,ȧ,Ä,ä!5~v22ȧ1 ,2v12ȧ2 ,v1v̇22v2v̇12v3~v1
21v2

2!!. ~26!

In the case of the Rocard’s theory of a pneumatic tire, we haven55, k52, r 53, and

RK~c,u,e,x1 ,x2 ,ċ,u̇,ė,ẋ1 ,ẋ2!5S ẋ12ċ cos~u2e!,ẋ22ċ sin~u2e!,2c̈ tge1ċ~ u̇2 ė !

2~signċ !
a

M
tge D . ~27!

A constraint on the variations of order lis a subsetCV#T( l )Q3QTQ defined by equations
RV(@q# ( l ),dq)50 where RV is linear in the variabledq, so we shall write as usua
RV(@q# ( l ),dq)5RV(@q# ( l ))dq or, in coordinates,RV(@q# ( l ),dq)5RVi(@q# ( l ))dqi . For each@q# ( l )

PT( l )Q, we letCV(@q# ( l ))5$dqPTQ:(@q# ( l ),dq)PCV%.
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Statement of the principle: The main object defined in this paper is the class of Lagrang
nonholonomic systems defined by data (L,CK ,CV) whosedynamical equationsare derived by
using the variational principle

dE
t0

t1
L~q,q̇!dt50,

where variationsdq are restricted bydqPCV(@q# ( l )), or, equivalently,RV(@q# ( l ))•dq50. Then
the equations of motionare given by thedynamical equations

ELi~@q# (2)!PRV~@q# ( l )!o

and thekinematic constraintequations@q# ( l )PCK or, equivalently,

RK~@q# (k)!50.

Equations of motion will be derived in the next section.
The previous principle, which is contained in the general idea of the principle of virtual w

imposes, through the dynamical equations, restrictions on the forces of the constraints. Bu
trary to what happens with D’Alembert’s principle, the forces of the constraints derived from
principle stated above will in general produce work.

The class of higher order nonholonomic systems just defined contains several imp
classes of nonholonomic systems. For example, for the class of nonholonomic systems t
tractable using D’Alembert’s principle we have, by definition,k51, l 50 andCK is the distribu-
tion where for eachqPQ the space of the distribution isCV(q)#TQ. Thus, the kinematic
constraint and the constraint on the variations essentially coincide in this case. In the c
nonlinear kinematic constraints considered by Chetaev given byRK(q,q̇)50 we havel 51 and
the variational constraints are defined, according to Chetaev, by

RV~q,q̇!•dq5
]RK~q,q̇!

]q̇
•dq.

Remark 4.1: In the mathematical literature one finds some examples of higher order
straints in nonholonomic problems~for instance, see Refs. 28, 25, 15, and 29!. In the previous
references an extension of the Chetaev principle for kinematic second order constraints is a
namely,

~RK! i~q, q̇, q̈!50, 1< i< m

and variational constraintsRV are derived from the kinematic constraints by

RV~q,q̇,q̈!•dq5
]RK

]q̈
•dq50.

In the case of the elastic rolling ball the variational constraints are given by~10!. In the case
of the pneumatic tire according to Rocard’s theory the kinematic constraints are given by~18!,
~19!, ~20! and the variational constraints are given by~21!, ~22!, ~23!.

We emphasize once again that the notions of kinematic constraints and variational cons
are independent and one should not attempt, for instance, to derive variational constraint
kinematic constraints by a universal procedure. In order to illustrate further the necessity o
a point of view we will describe next the example of Greidanus’s theory of a pneumatic tire, w
the kinematic constraint defines a distribution like in D’Alembert’s principle but the variatio
constraints are not given by the same distribution, therefore they are not the ones prescri
D’Alembert’s principle.
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Pneumatic tires according to Greidanus: Several approaches to the dynamics of a pneum
tire like those of Rocard, Greidanus, Keldys, and others can be found in Refs. 11, 27, 26,
describe Greidanu’s approach we shall consider the simpler setting of Rocard’s approach de
before, but this time we allow, in addition, for a lateral deformationj. The absolute value of the
quantityj is the distance between the projection of the center of the wheel on the plane (x1 ,x2)
and the center of the zone of contact. In the Rocard’s approach described above the valuej is
0. We must remark that we are considering in this paper only the case of Greidanus’s the
which the wheel is kept vertical. The physical reason for the appearance of the displacemej is
of course the lateral deformation due to the centrifugal force given the elasticity of the ma

The kinematic constraints are

ẋ15ċ cos~u2e!, ~28!

ẋ25ċ sin~u2e!, ~29!

u̇2 ė5ċ~aj1be!. ~30!

The first two equations are the same as in Rocard’s approach. The last one expresses the
the curvature of the trajectory of the center of the contact zone is, for a given speed of rota
the wheel, proportional to a linear combination of the deformation parametersj ande, wherea
.0 andb.0. This replaces Rocard’s constraint. We see that the kinematic constraints de
distribution. The variational constraints are

dx15dc cosu, ~31!

dx25dc sinu, ~32!

du2de50. ~33!

These variational constraints are different from the kinematic constraints, therefore we a
using here D’Alembert’s principle. The projection of the center of the wheel on the plane i
point (y1 ,y2) given by

y15x11j sinu, ~34!

y25x22j cosu. ~35!

It is more convenient to calculate the kinematic constraints and the variational constraints in
of y1 andy2 instead ofx1 andx2 . The kinematic constraints are

ẏ15ċ cos~u2e!1 j̇ sinu1j~cosu!u̇, ~36!

ẏ25ċ sin~u2e!2 j̇ cosu1j~sinu!u̇, ~37!

u̇2 ė5ċ~aj1be!. ~38!

The variational constraints are

dy15dc cosu1dj sinu1j~cosu!du, ~39!

dy25dc sinu2dj cosu1j~sinu!du, ~40!

du2de50. ~41!

The Lagrangian is
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L~c,u,e,y1 ,y2 ,j,ċ,u̇,ė,ẏ1 ,ẏ2 ,j̇ !5 1
2 I ċ21 1

2 Ju̇21 1
2 M ~~ ẏ1!21~ ẏ2!2!2 1

2 aj22 1
2 be2.

Then, equations of motion are given by kinematic constraints~36!, ~37!, ~38! and dynamic equa-
tions

I c̈1Mÿ1 cosu1Mÿ2 sinu50, ~42!

Jü1Mj ÿ1 cosu1Mj ÿ2 sinu1be50, ~43!

2Mÿ1 sinu1Mÿ2 cosu2aj50. ~44!

We can easily check that the previous equations represent the balance between rate of ch
momentum and forces of the constraints.

For high values ofa the deformationj remains small. Moreover, fora→` we havej→0 and
the dynamic equations~42!, ~43! of Greidanu’s theory become the equations~24!, ~25! of Rocard’s
theory, provided thatK5b. Using this and the fact that the two first kinematic constraints~18!,
~19! of Rocard’s theory coincide with the first two kinematic constraints~28!, ~29! of Greidanu’s
theory and also the fact that fora→` the mechanical energyE for both theories tend to the sam
value, one can prove, proceeding as in the case of Rocard’s theory, that at least for high va
a a pneumatic tire moving according to Greidanus theory is a dissipative system. This show
D’Alembert’s principle does not provides a good model for this kind of system, even thoug
kinematic constraints are linear.

V. EQUATIONS OF MOTION

Let us recall some basic facts of the geometry of the tangent bundle. Thevertical endomor-
phism Sis defined in local natural coordinates (qA,q̇A) on TQ by

S5
]

]q̇A ^ dqA .

The Liouville vector fieldD on TQ is locally defined by

D5q̇A
]

]q̇A .

A second order differential equation is a vector fieldG on TQ such thatS(G)5D. We have the
following local expression forG:

G5q̇A
]

]qA 1FA~q,q̇!
]

]q̇A .

An integral curve ofG is always the tangent prolongation of its projectionq(t) on Q, called a
solutionof G. It satisfies the following explicit system of second order differential equations

d2qA

dt2 5FA~q,q̇! .

We also note that the kernel and image ofS consist of vertical vector fields. Moreover,S acts by
duality on forms and the kernel and image ofS* consists of horizontal one-forms.

Given a Lagrangian functionL:TQ→R, we construct the two-formvL52d(S* (dL)) on
TQ, and the energy functionEL5DL2L ~see Ref. 20!. A remarkable property ofS andvL is the
following i SvL50, or, in other words,

S* +v̂L52v̂L+S, ~45!
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wherev̂L denotes the mapT(TQ)→T* (TQ) defined by contraction withvL .
Observe that ifL is regular, thenvL is a symplectic form, and there is a unique vector fieldGL

satisfying

i GL
vL5dEL ,

or, in other words,GL is the Hamiltonian vector field with Hamiltonian energyEL . It is well
known thatGL is a second order differential equation onTQ, namely, the Euler–Lagrange equ
tions for L.

Without the regularity condition, the Euler–Lagrange equations form a system of second
differential equations inQ, in implicit form, that is, a submanifoldD2 of T(2)Q, determined by

D25$wPT(2)Q u i j 2(w)vL~t (1,2)~w!!5dEL~t (1,2)~w!!% ~46!

or, in other words,

D25$wPT(2)Q u EL~w!50% .

The class of higher order nonholonomic systems studied in this paper, are determined b
(L,CK ,CV). Next we will show that the equations of motion of this kind of systems is a sys
of implicit kth-order differential equations. In what follows, and without loss of generality, we
always suppose thatk> l andk>2.

In our case the constraint on the variations are determined by a subsetCV#T( l )Q3QTQ.
Therefore for each point@q# ( l ) we obtain the annihilatorCV

0(@q# ( l ))#Tq* Q of CV(@q# ( l )). Denote
by FV(@q# ( l )) the subspace ofT* (TQ) determined byFV(@q# ( l ))5(tQ)* (CV

0(@q# ( l ))). Now, we
shall define the subset ofT(k)Q:

MV5$@q# (k)PTkQ u i j 2([q] (2))vL~@q# (1)!2dEL~@q# (1)!PFV~@q# ( l )!% .

Therefore, the nonholonomic system associated to (L,CK ,CV), determines akth-order implicit
system given by the submanifoldMKV5CKùMV . The solutions of the problem (L,CK ,CV) are
the curvesg : I→Q such thatg (k),MKV .

VI. FURTHER RESULTS AND EXAMPLES

The scheme generalizing D’Alembert principle, for the case of higher order constraint
scribed in Sec. IV is not of course the most general case. It is not the purpose of the presen
to expose the most general possible formalism, but on the contrary, to provide a scheme w
useful in a variety of problems in mechanics. This scheme is also useful to deal with imp
questions of a general character in mechanics, like reduction, Legendre transformation and
Some of these questions will be the purpose of future work and in this section we will con
some partial results only.

Reduction of invariant systems with higher order constraints on a group: In this paragraph we
explain how to reduce invariant Lagrangian systems with higher order nonholonomic cons
on a group. The more general case of systems on a principal bundle will be the purpose of a
work. However, in the present section we will show how to proceed in an example wher
bundle is trivial, which illustrates some of the features of the general theory. Assume th
configuration space is a groupG and that the LagrangianL, the kinematic constraintCK and the
constraint on the variationsCV are left invariant. For right invariant systems we can proceed
similar way. For eachr 51,2, . . . we have an identification

a r :T(r )G/G→rg,
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whererg5g%¯% g, is the direct sum ofr copies ofg. This identification is uniquely defined b
the map@g# (r )→@v# (r ), wherev5g21ġ, and@v# (r )5(v (0),v (1), . . . ,v (r 21)), where, by definition,
we have

v ( i )5
di

dt i v,

for r 50,1,. . . ,r 21. Under the identificationak , the quotient of the kinematic constraintCK /G,
becomes a subset, calledreduced kinematic constraint, CK#kg. Similarly, for eachr 51,2, . . . we
have an identification

b r :~T(r )G3GTG!/G→rg% g.

This identification is uniquely defined by the map (@g# (r ),dg)→(@v# (r ),h) with @v# (r )

5(v (0),v (1), . . . ,v (r 21)), as before, andh5g21dg. Under the identificationb l , the quotient of
the constraint on the variationsCV /G, becomes a subset, calledreduced variational constraints,
CD# lg% g. Since the equationsRK(@g# (k))50 andRV(@g# ( l ),dg)50 are invariant, we have re
duced equationsRK(@v# (k))50 and RV(@v# ( l ),h)50. SinceRV(@g# ( l ),dg)5RV(@g# ( l ))•dg is
linear in dg, we have thatRV(@g# ( l ))•h is also linear inh. The LagrangianL gives rise to a
reduced Lagrangianl :g→R. We have the following theorem.

Theorem 6.1:The following conditions are equivalent:

~i! The curve g(t) satisfies

dE
t0

t1
L~g,ġ!dt50,

for all dg such that dg(t)PCV(@g# ( l )(t)), for all t P@ t0 ,t1# @equivalently
RV(@g# ( l )(t),dg(t))50 for all t P@ t0 ,t1#] and dg(t i)50 for i 50,1; @g# (k)(t)PCK

@equivalently RK(@g# (k)(t))50 for all t P@ t0 ,t1#].
~ii ! The curve g(t) satisfies the equation

S]L

]g
2

d

dt

]L

]ġD ~@g# (2)~ t !!•dg50,

for all dg such that dg(t)PCV(@g# ( l )(t)), for all t P@ t0 ,t1# @equivalently
RV(@g# ( l )(t),dg(t))50 for all t P@ t0 ,t1#] and dg(t i)50 for i 50,1; @g# (k)(t)PCK

@equivalently RK(@g# (k)(t))50 for all t P@ t0 ,t1#].
~iii ! The curvev(t)5g21(t)ġ(t) satisfies

dE
t0

t1
l~v!dt50

for all dv5ḣ1@v,h# where h(t)PCV(@v# ( l )(t)) for all t P@ t0 ,t1# @equivalently
RV(@v# ( l )(t),h(t))50 for all t P@ t0 ,t1#] andh(t i)50, for i 50,1; @v# (k)(t)PCK @equiva-
lently RK(@v# (k)(t))50 for all t P@ t0 ,t1#].

~iv! The curvev(t)5g21(t)ġ(t) satisfies the equation

S2 d

dt

] l

]v
1ad*

] l

]v D ~@v# (2)~ t !!•h

for all h such that h(t)PCV(@v# ( l )(t)) for all t P@ t0 ,t1# @equivalently
RV(@v# ( l )(t),h(t))50 for all t P@ t0 ,t1#] andh(t i)50, for i 50,1; @v# (k)(t)PCK @equiva-
lently RK(@v# (k)(t))50 for all t P@ t0 ,t1#].

The proof of this theorem can be performed proceeding as in Ref. 7. The idea of the pr
simple. Given a curveg(t) such that@g# (k)(t)PCK for all tP@ t0 ,t1# we take variationsdg(t)
5g(t)h(t) for all tP@ t0 ,t1# such thatdg(t)PCV(@g# ( l )(t)) for all tP@ t0 ,t1#. Since v(t)
5g21(t)ġ(t) we can easily check thatdv(t)5h(t)1@v(t),h(t)#. The rest of the proof follows
by keeping track of the reduction of both the kinematic constraints and the variational const
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Symmetry of the elastic rolling ball: An interesting case occurs when, for each@g# ( l ),
CV(@g# ( l )) depends only ong giving rise to a distributionD on G. This happens in the case of th
rolling ball studied in Sec. II. Let us see how the previous theorem applies to this case. Firs
we observe that the configuration space is the direct product group SO(3)3R2. Since we are
assuming an homogeneous ball the kinetic energy Lagrangian is not only left invariant bu
right invariant. This is important because the constraints are also right invariant. We can
reduce by the right action of the group on itself. Forh5(a,w) and taking into account that th
Lie bracket inso(3) is minusthe standard one because we are reducing byright actions, we have

dE
t0

t1S 1

2
Iv21

1

2
MV2Ddt50, ~47!

dv5ȧ2@v,a#, ~48!

a~ t i !50 for i 50,1, ~49!

dV5ẇ, ~50!

w~ t i !50 for i 50,1, ~51!

w5~a2 ,2a1!, ~52!

V5~v2 ,2v1!, ~53!

v350. ~54!

Equations~48!, ~50!, ~51! represent the reduced variational constraints while Eqs.~52!, ~53!, ~54!
represent the reduced kinematic constraints@as we have explained before, Eq.~54! can be replaced
by v2v̇12v1v̇25v3(v1

21v2
2)]. We obtain the equations of motions written in Sec. II, that

Eqs.~13!, ~14!, ~15!, ~16!, ~17!. The reduced version of D’Alembert’s principle consists of all t
previous conditions plus the conditiona350, which of course corresponds to the kinema
constraintv350. The D’Alembert equations are~13!, ~14!, ~16!, ~17!.

Rigid ball rolling on a moving plane: For dealing with examples where the configurati
space is a principal bundle rather than a group and the constraints and also the Lagrang
invariant we need to generalize the previous theory, which we plan to do as part of future w
However, some simple examples can be worked out directly as we will see next. Let us co
a rigid ball rolling on a plane while this plane is being continuously deformed according to th
w t :R2→R2. The Eulerian velocity isv t(x)5ẇ t+w t

21(x) and we will assume thatv t(x)5v(x) is
independent oft. For a rigid ball rolling on a fixed plane, that is whenv(x)50, the system is
governed by the D’Alembert principle which in this case is like the principle of virtual w
described in Sec. II for an elastic ball except that one should eliminate the kinematic con
v350. Whenv(x)Þ0 there is an extra force since the pointa of the ball which is in contact with
the plane, is moving with velocityv(a), that is, the kinematic constraint becomes (v2 ,2v1)
5ȧ2v(a). By differentiating with respect tot we obtain (v̇2 ,2v̇1)5ä2Dv(a)ȧ. Using this it
can be easily seen that the force exerted by the floor on the ball isM ((v̇2 ,2v̇1)1Dv(a)
•(v2 ,2v1)1Dv(a)•v(a)). Equations of motion can be easily derived by direct application
the basic rules of mechanics and we obtain

~ I 1M !~v̇2 ,2v̇1!52MDv~a!•@~v2 ,2v1!1v~a!#, ~55!

v̇350. ~56!

Now we want to obtain the same equations using the formalism of the principle stated in Se
As in the case of the elastic rolling ball this is not straightforward, which emphasizes the a
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tages of having a way of reducing by the symmetry as we will show next. The example
consideration is invariant with respect to the right action of SO~3! only because in this case th
kinematic constraint is not necessarily invariant under translations. As we have said before
simple example a general theory of reduction for systems on a principal bundle is not ne
Moreover, it is not difficult to prove directly that the following reduced principle of virtual wo
gives the correct equations of motion,

dE
t0

t1S 1

2
Iv21

1

2
Mȧ2Ddt50, ~57!

dv5ȧ2@v,a#, ~58!

a~ t i !50 for i 50,1, ~59!

da5~a2 ,2a1!, ~60!

~v2 ,2v1!5ȧ2v~a!. ~61!

Equations~58!, ~59!, and~60! represent the variational constraints while Eq.~61! is the kinematic
constraint.
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15Krupková, O., ‘‘Higher-order mechanical systems with constraints,’’ J. Math. Phys.41, 5304–5324~2000!.
16Landau, L. D. and Lifshitz, E. M.,Theory of Elasticity~Butterworth-Heinemann, Oxford, 1986!.
17de León, M. and Martı´n de Diego, D., ‘‘Solving non-holonomic Lagrangian dynamics in terms of almost prod

structures,’’ Extracta Mathematicae11, 325–347~1996!.
                                                                                                                



.

plicit

ys.

l.

’

ekh.

. Wiss.

Phys.

2801J. Math. Phys., Vol. 45, No. 7, July 2004 A class of higher order nonholonomic constraints

                    
18de León, M. and Martı´n de Diego, D., ‘‘On the geometry of non-holonomic Lagrangian systems,’’ J. Math. Phys37,
3389–3414~1996!.

19de León, M. and Rodrigues, P. R.,Generalized Classical Mechanics and Field Theory~North-Holland, Amsterdam,
1985!.

20de León, M. and Rodrigues, P. R.,Methods of Differential Geometry in Analytical Mechanics~North-Holland, Amster-
dam, 1989!.

21Marmo, G., Mendella, G., and Tulczyjew, W. M., ‘‘Symmetries and constants of the motion for dynamics in im
form,’’ Ann. I.H.P. Phys. Theor.57, 147–166~1992!.

22Marle, C.-M., ‘‘Various approaches to conservative and nonconservative non-holonomic systems,’’ Rep. Math. Ph42,
211–229~1998!.

23Mendella, G., Marmo, G., and Tulczyjew, W., ‘‘Integrability of implicit differential equations,’’ J. Phys. A28, 149–163
~1995!.

24Neimark, J. I. and Fufaev, N. A.,Dynamics of Non-holonomic systems, Translations of Mathematical Monographs, Vo
33 ~AMS, Providence, RI, 1972!.

25Pironneau, Y., ‘‘Sur les liaisons non holonomes non line´aires de´placement virtuels a` travail nul, conditions de Chetaev,’
in Proceedings of the IUTAM–ISIMMM Symposium on ‘‘Modern Developments in Analytical Mechanics,’’ edited by S.
Benenti, M. Francaviglia, and A. Lichnerowicz~Acta Academiae Scientiarum Taurinensis, Torino, 1982, 1983!, pp.
671–686.

26Rocard, Y.,Dynamique Ge´nérale des Vibrations~Masson et Cie E´ diteurs, Paris, 1949!, Chap. XV, p. 246.
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We study the separability of the state space of loop quantum gravity. In the standard
construction, the kinematical Hilbert space of the diffeomorphism-invariant states
is nonseparable. This is a consequence of the fact that the knot space of the equiva-
lence classes of graphs under diffeomorphisms is noncountable. However, the con-
tinuous moduli labeling these classes do not appear to affect the physics of the
theory. We investigate the possibility that these moduli could be only the conse-
quence of a poor choice in the fine-tuning of the mathematical setting. We show
that by simply choosing a minor extension of the functional class of the classical
fields and coordinates, the moduli disappear, the knot classes become countable,
and the kinematical Hilbert space of loop quantum gravity becomes
separable. ©2004 American Institute of Physics.@DOI: 10.1063/1.1763247#

I. INTRODUCTION

Loop quantum gravity~LQG! is a background-independent quantization of classical gen
relativity which yields a discrete, combinatorial picture of Planck-scale quantum geometry.~For an
introduction and references, see, for instance, Ref. 9.! Quantum space turns out to be described
terms of a basis of abstract spin-network states, ors-knot states, labeled by discrete quantu
numbers. However, the picture is not truly entirely discrete. If the nodes of thes-knots have
sufficiently high valence~that is, when a sufficiently high number of links meet!, s-knots are
labeled also by certaincontinuousmoduli parameters. The existence of these moduli was poi
out in Ref. 11 and their structure studied in Ref. 6. Below we give an example of one of
moduli explicitly. These moduli are puzzling. They are virtually undetectable by the operator
represent physical measurements, as well as by the hamiltonian operator that governs the
ics, and therefore they do not appear to play any significant role in the theory. Still, they spo
discreetness of the picture and they change the structure of the space of the diffeomor
invariant states,Hdiff , rather drastically, making it nonseparable.~The spaceHdiff is denotedKdiff

in Ref. 9.!
Nonseparability~absence of a countable basis! is generally regarded as pathological in qua

tum field theory~QFT!. A classic discussion on this issue is in Ref. 13. As pointed out in Ref.
the nonseparability ofHdiff is not necessarily unacceptable, becauseHdiff is a kinematical space
that must still be reduced by the hamiltonian constraint equation. But it is nevertheless distu
Do we have to interpret it as an indication of a difficulty of the background-independent
quantization?

In this paper, motivated by the fact that the moduli do not appear to have any ph
significance, we consider the possibility that they are indeed spurious. We study the possibil
they are the consequence of a poor choice in setting up the details of the mathematical fram
of the theory. It is not unusual that a naive way of setting up a QFT produces a nonsep

a!Electronic mail: fairbairn@cpt.univ-mrs.fr
b!Electronic mail: rovelli@cpt.univ-mrs.fr
28020022-2488/2004/45(7)/2802/13/$22.00 © 2004 American Institute of Physics
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Hilbert space, which is later cured, making it separable. Indeed, recall that Fock space itse
prototypical QFT state space, was born precisely to cure nonseparability. A free scalar field
decomposed into an infinite set of oscillatorsw i , i 51,... ,̀ . If we quantize each degree of free
domw i as a standard quantum harmonic oscillator, we are immediately led to a state space
is the tensor product of an infinite number of separable Hilbert spaces

H5 ^

i 51,... ,̀
Hi . ~1!

A basis inH is given by an infinite sequence of nonnegative integersun1 ,n2 ,...,ni ,...&, and such
infinite sequences are noncountable~for instance, the states withni,10 are put into one-to-one
correspondence with the real numbers 0<x,1 by the decimal representation ofx); henceH is
nonseparable. Fock found a way to circumvent the problem by simply selecting the subspacF of
H spanned by basis vectors where an arbitrary but finite number ofni differ from zero. It isF,
called today Fock space, which is the appropriate state space for free QFT. UnlikelyH, the Fock
spaceF provides anirreducible representation of the field algebra of the creation and annihila
operators. Thus, a straightforward and simple minded quantization strategy leading to a no
rable state space has been later corrected to get rid of the nonseparability. Can we do the
quantum gravity? Are there physical reasons for doing the same in quantum gravity?

In classical field theory, the choice of the functional class of fields and coordinates is to a
extent just a matter of convenience. We can work with solutions of the field equations th
smooth (C`), or just twice differentiable (C2), sometimes distributional, or piecewise constant
in the lattice approximation, or else, according to what is more convenient. The relation be
the formal apparatus of field theory and reality is only via the smearing of fields on finite re
of space, and therefore we never empirically test the functional class of a physical fie
quantum gravity, the smooth category is generally chosen, because it appears to be a nat
convenient setting. In the background-independent loop construction, the gauge invaria
general relativity washes away virtually any remnant of the functional class we started
because the entire short-scale structure is canceled by the gauge transformations. Virtually,
entirely. Indeed, as we show below, the nodes of sufficiently high valence have a surp
‘‘rigidity’’ under smooth transformation, and this rigidity turns out to be the one responsible fo
moduli. Therefore the nonseparability ofHdiff is a bizarre remnant of the initial choice of th
smooth category. It is therefore natural to explore the possibility of using a slightly diffe
functional class of fields to start with.

Here we explore a minimal extension of this kind, where fields are allowed isolated poin
nondifferentiability. The gauge invariance group of the theory becomes then a ‘‘small’’ exte
of the diffeomorphism group, which we callextended diffeomorphismand denoteDi f f * . As far as
we can see, none of the physical results, physical predictions or physical consequences o
studied so far, are affected. However, the knot classes, now formed by graphs underDi f f * , turn
out to be countable. The continuous moduli disappear andHdiff becomes separable. The theo
describes a quantum structure of space–time that is genuinely combinatorial at the Planck

These results can be taken as evidence that the moduli associated to high-valence no
indeed spurious. If we build LQG using the setting described here, or a variant of the sam
moduli are not anymore present, and the kinematical Hilbert space of the diffeomorphism i
ant states of LQG is separable.

In Sec. II we review the basic mathematical setting of LQG and the origin of the nonse
bility. This paper is mathematically self-contained but for physical motivations and details se
9. In Sec. III we introduce our main tool,Di f f * , and show that the equivalence classes of gra
underDi f f * are countable and the resulting spaceHdiff is separable. In Sec. IV, we show that th
modification introduced has no effect on the geometrical operators of LQG. We discuss i
ticular the area operator. In Sec. V we summarize and conclude.
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II. NONSEPARABILITY

A. Hdiff , the space of the quantum states of physical space

We begin by briefly reviewing the basic mathematical setting of the kinematics of L
Classical general relativity can be defined on a four-dimensional differentiable manifoldM with
topology S3R, whereS is a three-dimensional differentiable manifold with a fixed arbitra
topology. The gravitational field can be taken to be a smooth~that is, infinitely differentiable!
pseudo-Riemannian metric tensorg on M , satisfying the Einstein equations. CallE the space of
such fields. The corresponding Hamiltonian theory can be defined onS. The configuration variable
of general relativity can be defined as a smooth local connection one-formA on a SU~2!-principal
bundleP over S. Call A the space of such connections.

We shall use extensively the notion of graph, whose relevance for quantum gravity wa
realized by Lewandowski. Here a graphG is a finite collection ofL(G) smooth oriented one
dimensional submanifolds ofS, called links and notedl , overlapping~if they do! only at end-
points, called nodes and denotedn. We say that the linkl ends at the noden if n is a boundary
point of l . The valence of a noden is the number of links ending atn. We callG the space of such
graphs.

Quantum states are limit of sequences of cylindrical functions, converging in the norm de
below. A cylindrical functionCG, f :A→C is defined as follows. Let Ul(A)PSU(2) be the ho-
lonomy of the connectionA along l

Ul~A![P expE
l
A, ~2!

P denotes path ordering. A graphG defines a mappG :A→@SU(2)#3L(G); A→(Ul(A)). By com-
posing this map with a complex valued functionf on @SU(2)#3L(G), we obtain the cylindrical
function CG, f5 f +pG , given by

CG, f~A![ f ~Ul 1
~A!, . . . ,Ul L(G)

~A!!. ~3!

Since it is always possible to write any two cylindrical functions in terms of the same grap~a
cylindrical function on a graphG can be re-expressed on another graphG8 that containsG!, we can
define a scalar product on the space of states using the Haar measure on SU~2!

^C (G, f )uC (G, f 8)&[E dU1 ¯ dUL(G) f ~U1, . . . ,UL(G)! f 8~U1, . . . ,UL(G)!. ~4!

The kinematical Hilbert spaceK of LQG is defined as the completion in the Hilbert norm~4! of
the space of the cylindrical functions.

Local SU~2! gauge transformations act naturally on this space and the invariant states f
proper subspaceK0 . An orthonormal basis inK0 can be obtained using the spin-network states11,3

Consider a graphG and color each linkl with a unitary irreducible representationsj l of SU~2!. At
each noden, fix a basis in the space of the invariant elements~the ‘‘intertwiners’’! in the tensor
product of the representation spaces associated to the links that end atn, and color the node with
an intertwineri n of this basis~see Ref. 9 for details!. The triple S5(G, j l ,i n) is called a spin
network. Let the functionf S be defined by the representation matrices for each linkl in the
representationj l , contracted with the invariant tensors at each node. The stateCS@A#
[CG, f S

@A#[^AuS& is a spin network state. Varying the graphG in G, the irreducible representa
tions j l and the intertwinersi n in the chosen bases, we obtain an orthonormal basis inK0 .

Finite linear combinations of spin-network states form a dense subspaceS in K0 . Sequences
of states that converge weakly onS, form the dualS8. The Gelfand triple (S,K0,S8) describes
the space of the SU~2! invariant states of the theory. Now,K0 carries a natural unitary represe
tation C@A#→UfC@A#5C@f21A# of the groupDi f f S of the diffeomorphisms ofS
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f:S→S, ~5!

which extends naturally toS8 by duality ~we have indicated withf also the pull back action
generated by the diffeomorphismf on forms!. The diffeomorphism invariant states form a line
subspaceHdiff of S8. This space describes the diff-invariant quantum states of the gravitat
field; that is, the quantum states of physical space.

A map Pdiff :S→S8 is naturally defined by

~PdiffC!~C8!5 (
C95UfC

^C9,C8&, ~6!

where the sum is over all distinct statesC9 that are equal to UfC for somefPDi f f . This sum
converges and is well defined. The statePdiffCPS8 is diff-invariant because clearly states relat
by diffeomorphisms are projected byPdiff on the same element ofHdiff ,

PdiffCS5Pdiff~UfCS!. ~7!

Furthermore, the states of this form spanHdiff . The linear spaceHdiff is naturally equipped with a
Hilbert space structure by the scalar product

^PdiffCS ,PdiffCS8&Hdiff
[~PdiffCS!~CS8!. ~8!

Equivalently, the Hilbert spaceHdiff can be defined by the bilinear form

^C,C8&Hdiff
[^CuPdiffuC8&[ (

C95UfC

^C9,C8&. ~9!

We can unravel the structure ofHdiff by studying the action of a diffeomorphism on a spi
network state. Since the holonomy transforms as

Ul~f21A!5Uf+ l~A!, ~10!

shifting A with fPDi f f (S) is equivalent to shifting the curvel . Consequently, the~representa-
tion of the! spatial diffeomorphism group acts directly on the spin network of a spin-network s

UfuS&5uf+S&. ~11!

Sinceuf+S& may be formed by invariant tensors that are not in the intertwiner basis chosen
nodes,uf+S& may fail to be a basis state even ifuS& is; but as the spaces of intertwiners are fin
dimensional, it will be a finite linear combination of basis states, all having the same grapG8
5f+G. In particular, given a spin-network state, there is a finite group of transformationsgk , k
51,...,K, in the ~tensor over the nodes of the! spaces of the intertwiners, that can be obtained
a diffeomorphism mapping the graph into itself. We can therefore write

^SuPdiffuS8&5H 0 if G8Þf+G,

(
k

^SugkuS8& if G85f+G.
~12!

From the first line, we see that two spin networksS andS8 define orthogonal states inHdiff if the
corresponding graphsG and G8 belong to different equivalence classes under diffeomorph
transformations. We call these equivalence classes ‘‘diff-knot classes’’ and indicate them aKd ,
where ‘‘d’’ is for diffeomorphism. The basis states inHdiff are therefore firstly labeled by
diff-knot classKd . Call HKd

the subspace ofHdiff spanned by the basis states labeled by the k
classKd . The states inHKd

are then only distinguished by the coloring of links and nodes. He
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HKd
is separable. These colorings are however not necessarily orthogonal because of the no

action of the discrete group. A diagonalization of the matrix of the bilinear form in the second
of expression~12! yields statesus&5uKd ,c&, where the discrete labelc depends only on colorings
The statesus&5uKd ,c& are calleds-knot states.

If us&5PdiffuS&, the stateus& represents the diffeomorphism equivalence class to which
spin networkS belongs. In going from the spin-network stateuS& to the s-knot stateus&, we
preserve the information inuS& except for it’s location inS. This is the quantum analog to the fa
that physically distinguishable solutions of the classical Einstein equations are not field
equivalence classes of fields under diffeomorphisms. It reflects the core of the conceptual
tion of general relativity: spatial localization concerns only therelative location of the dynamical
fields, and not their location in a background space. Accordingly, thes-knot states are not quantum
excitationsin space, they are quantum excitationof space. Ans-knot does not reside ‘‘some
where’’: thes-knot itself defines the ‘‘where.’’

However, a remnant of the background structure oddly remains, when a node has suffi
high valence, as we show in the next section.

B. Moduli space structure

We have seen above that quantum states of the gravitational field are labeled by di
classes. Following Ref. 6, we now study the structure of these classes and the way this affe
structure ofHdiff . The key point that we underline below is the fact that diff-knots are
countable, henceHdiff is nonseparable.

To begin with, consider usual knots, namely ones without intersections. These can be d
in two equivalent manners. LetL be the space of loops without intersections, namely the spac
smooth embeddings ofS1 into S. We denote loops inL as a,b,... . Considertwo equivalence
relations on this space. First~see, for instance, Ref. 5! we say thata andb are iso-equivalent, and
write a; ib, if there is acontinuousambient isotopy relating the two; that is, a one parame
family of homeomorphisms ht :S→S, tP@0,1#, such thath0 is the identity map onS while h1

maps a to b. We call the equivalence classes of loops inL under this equivalence relatio
‘‘iso-knots.’’ Next, ~see, for instance, Ref. 2! we say thata andb are diff-equivalent, and write
a;db if there exists adiffeomorphismf of S in the connected component of the identity, su
that a5f+b ~or, equivalently, if there exists asmoothambient isotopy relating the two!. We
denote the corresponding equivalence classes inL as ‘‘diff-knots.’’ A classic result of knot theory
states that two loops are diff-equivalent if and only if they are iso-equivalent. Hence diffeo
phism equivalence is the same as isotopy, as far as loops without intersections are concern
a diff-knot is also an iso-knot.~This is also equivalent to the existence of asmooth homotopy
betweena andb, that is, a smooth one-parameter family of embeddingsa t , tP@0,1#, such that
a05a and a15b. However, this isnot equivalent to the existence of acontinuous homotopy
betweena andb, since, perhaps surprisingly, any two knots can be related by continuous h
topy. See, for instance, Ref. 8, p. 14 or Ref. 5, exercise 3.5.4, p. 53.!

However, this result does not extend to the case in which intersections, or nodes, are p
something peculiar happens at the intersection points. LetG be the space of the graphs defined
the preceding section, of whichL is a subset. Define isotopy equivalence and diff-equivale
between graphs precisely as we did for loops. Let us indicate iso-knots byKi and the space of the
iso-knots asKi . Similarly, let us indicate diff-knots byKd and the space of the diff-knots asKd .
Thus

Ki5
G

; i
, Kd5

G
;d

. ~13!

It is still easy to see that diff-equivalence implies iso-equivalence, because a diffeomorph
the connected component of the identity is indeed connected to the identity by a smoo
parameter family of diffeomorphisms which generates the isotopy. But now the converse
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true: there are iso-equivalent graphs that are not diff-equivalent. Furthermore, while iso-kno
countable, diff-knots are not: they are distinguished by moduli.~In general, a ‘‘modulus’’ is a
continuous parameter labeling equivalence classes.!

The roots of this fact, which at first might seem surprising, can be illustrated using a s
example presented by Arnold in his book on catastrophe theory.1 Let Ln be the set of alln-tuples
of lines in the plane, passing through the origin. Say that twon-tuples are equivalent if they ca
be mapped into each other by a linear transformation of the plane, and letTn be the space of the
equivalence classes ofn-tuples under this equivalence relation. The spacesT1 , T2 , andT3 are
discrete, butT4 is a one-dimensional space. Indeed the group of linear transformation of the p
GL~2!, is four dimensional, but it does not act effectively onTn because the dilatations do no
affect lines through the origin, hence we can consider just its SL~2! subgroup, which is three
dimensional. ButL4 is four dimensional, and the dimension ofT45L4 /SL(2) is 42351. More
explicitly, if f1 ,...,f4 are the angles formed by the lines with a given axis, then it is easy to
that

l~f1 ,...,f4!5
sin~f12f3!sin~f22f4!

sin~f12f4!sin~f22f3!
~14!

is invariant under linear transformations. Indeed, letvW 1 ,...,vW 4 be four vectors of arbitrary length
parallel to the four lines. The ratio

l~vW 1 ,...,vW 4!5
~vW 13vW 3! ~vW 23vW 4!

~vW 13vW 4! ~vW 23vW 3!
, ~15!

wherevW 13vW 25det(vW1,vW2) is the two-dimensional~2D! vector product, is invariant under linea
transformations because the vector product transforms with the determinant of the linear tr
mation. On the other hand, the ratio does not depend on the length of the vectors, and is e
~14!. Thereforel is a continuous modulus that distinguishes GL~2! equivalence classes inL4 , and
T4 is a continuous space.

The same happens in three dimensions. Here GL~3! has nine dimensions, of which only eigh
affect then-tuplets of lines through the origin; five lines through the origin are determined b
angles; hence in three-dimensions~3D! Tn5Ln /GL(3) is only discrete forn,5. If vW 1 ,...,vW 5 are
five vectors of arbitrary length parallel to the five lines, the ratio

l~vW 1 ,...,vW 5!5
vW 1•~vW 23vW 3! vW 1•~vW 43vW 5!

vW 1•~vW 23vW 5! vW 1•~vW 43vW 3!
, ~16!

wherevW 1•(vW 23vW 3)5det(vW1,vW2,vW3) is the triple product, is invariant under linear transformation
classifies quintuplets of straight lines into equivalence classes. The invariant~15! is well known in
projective geometry since the 19th century, as thecross ratio. It distinguishes orbits of quadruplet
of points generated by the action of the projective group on the real projective line. The gen
zation of the cross-ratio projective invariant to higher dimensions has been studied by Hilb

Let us return to nodes. Consider for simplicity a graphG with a single noden. Say that the
node is five valent. LetG8 be a node iso-equivalent toG. The graphG8 will have a single
five-valent noden8 as well. Say, for simplicity, thatn8 is located at the same pointp asn. Can we
always find a diffeomorphismf that sendsG8 into G? A condition onf is that f(p)5p. The
tangent mapf* :Tp→Tp defines a linear action on the tangent spaceTp of S at p. The tangents
to the five links ofG at p determine a quintuplet of straight lines inTp . Similarly, the tangents to
the links ofG8 determine another quintuplet of straight lines inTp . A condition onf is then that
the linear transformationf* maps the first quintuplet of lines into the second. As observed ab
in general such a linear transformation does not exist. Equivalence classes under linear tr
mations of quintuplets of lines are distinguished by continuous moduli. IfvW i(G,n), i 51,...,5 are
the tangents to the five links ofG at the noden, in an arbitrary parametrization and an arbitra
coordinate system, the quantity
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l~G,n!5l~vW 1~G,n!,...,vW 5~G,n!!, ~17!

where the function on the right-hand side is defined in~16!, does not depend either on th
parametrization or on the coordinates chosen, and is invariant under diffeomorphisms. He
l(G,n)Þl(G8,n8), the two iso-equivalent graphsG andG8 are not diff-equivalent. The function
~17! is an example of the continuous moduli that distinguish diff-knots.

In general, a single iso-knotKi is therefore formed by a continuous set of diff-knotsKd ;
diff-knots are labeled by moduli at the intersections. These moduli have a structure far riche
Hilbert’s projective invariants. Indeed, it is not only the tangent structure that may disting
iso-equivalent nodes, but also, for sufficiently high valence, the higher derivatives of the lin
the intersection. For instance, assume that the tangents of the links at the node of two gra
the same, but their curvatures differ. Under a diffeomorphismf, the transformation of these
curvatures is determined by the second derivatives off at the node, but these are finite in numb
as well~they are 18! and therefore for a sufficiently high valence they are not sufficient, in gen
to map all curvatures of one graph into the curvatures of the second. We refer to Ref. 6
detailed analysis of the structure of the moduli.

We have seen in the preceding section that the diff-knotsKd label a basis inHdiff . Since they
are not countable, the kinematical state spaceHdiff space admits a continuous basis and theref
is nonseparable. Thus the root of the nonseparability of the state space of LQG is the ‘‘rigidi
the diffeomorphisms at isolated points: the differential structure of the underlying manifold is
in the sense that it produces the linear structure of the tangent spacesTp , which leaves quantities
such as the cross-ratio~14! invariant.

C. Discussion

The nonseparability of the kinematical Hilbert spaceHdiff is disturbing for several reasons.
First, the background independence of general relativity implies that the localization o

dynamical fields on the coordinate manifold has no physical meaning: only relative localizat
dynamical objects with respect to one another is physically significant. In the classical th
background independence is implemented by the fact that diffeomorphisms turn out to be g
When implementing gauge invariance in the quantum theory, the localization of the spin ne
in the manifold is washed away by the gauge transformation, and only the discrete combin
relations remain—but not completely so. The moduli distinguishing diff-knots are a remnant
localization of the spin network in the coordinate manifold. It is difficult to reconcile the pres
of this remnant with the physical principle, underlying general relativity, that wants the loca
tion on the coordinate manifold to be physically irrelevant.

Second, recall that loop states and spin-network states form a good basis in lattice Yang
theory, but in continuous Yang–Mills theory they are ‘‘too singular’’ and ‘‘too many,’’ becaus
their continuous dependence on position. In gravity, the continuous dependence of posi
gauged away by diffeomorphism invariance, dramatically reducing the size of the resulting
space.10,12 This is the reason for which the loop basis becomes viable thanks to backg
independence, and therefore the rationale underlying the background-independent loop qu
tion. It is quite puzzling that this dramatic reduction of the state space fails to be complete be
of the moduli.

Third, if we accept the formalization of generally covariant quantum theory described in
9, the Hilbert spaceHdiff describes distinguishable quantum states. A realistic space of disting
able quantum states should be described by a separable Hilbert space.13

Now, if the continuous moduli had a physical meaning, they should affect measuremen
affect the dynamics. Two states that differ only by different values of their moduli shou
principle be distinguishable by means of physical measurements. However, as mentioned
introduction, this does not appear to be the case. The only effect of the moduli appears to
vastly enlarging the kinematical Hilbert space, with no visible effect on the physics of the th
One is therefore naturally led to the idea that these moduli may be spurious.
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Above we have observed that the moduli are a consequence of the incapacity of diffe
phisms to act at vertices in a way sufficiently general to map iso-equivalent graphs into each
Diffeomorphisms are ‘‘rigid’’ at vertices. If gauge transformations included mapsf:S→S less
rigid at nodes~homeomorphisms, for instance!, the continuous moduli would disappear: sta
distinguished by different moduli would become gauge equivalent. So, it is natural to ask: w
it that forces gauge transformationsf:S→S implementing background independence, to be d
feomorphisms? Namely to be smooth?

To a large extent, the answer is just the conventional way we set up the theory. It is simp
convenient to use smooth fields on a smooth manifold, and stay in the smooth categor
moduli are a consequence of this choice, which might have little to do with physics. It is ther
natural to investigate the possibility of a different mathematical starting point, that would
affect classical physics, but would free the quantum theory from the moduli.

A very natural setting one may consider is the piecewise smooth category. Another poss
investigated by Zapata15 is to start from a piecewise linear manifold. With these choices,
moduli disappear andHdiff becomes separable. In this paper we investigate a minimal choice
consider fields that areeverywhere continuous and smooth everywhere except possibly at a
number of points. We call these fields ‘‘almost smooth.’’ This minor enlargement of the spac
the fields has practically no effect on the classical theory, nor on the physical results of LQG
it gets rid of moduli and nonseparability.

III. EXTENDED DIFFEOMORPHISM GROUP

We now define a modified theory, where the gauge group is an extension of the diffe
phism group. We show that the knot classes defined by the equivalence relation determined
extended gauge group are countable, and lead to a separableHdiff .

A. Almost smooth physical fields

Consider a four-dimensional differentiable manifoldM with topologyS3R, as before. How-
ever, we now allow the gravitational fieldg to be almost smooth, as defined in the preced
section, that is,g is a continuous field which is smooth everywhere except possibly at a fi
number of points, which we call the singular points ofg. Any suchg can be seen as a~pointwise!
limit of a sequence of smooth fields. We say thatg is a solution of the Einstein equations if it i
the limit of a sequence of smooth solutions of the Einstein equations. CallE* the space of such
fields.

Let now f be an invertible map fromM to M such thatf andf21 are continuous and ar
infinitely differentiable everywhere except possibly at a finite number of points. The space of
maps form a group under composition, because the composition of two homeomorphisms t
smooth except at a finite number of singular points is clearly an homeomorphisms wh
smooth except at a finite number of singular points. We call this group theextended diffeomor-
phism groupand we denote it asDif f M* . It is clear that ifgPE* then (fg)PE* for any f
PDif f M* . HenceDif f M* is a gauge group for the theory.

In the Hamiltonian theory, we can now take almost smooth connectionsA on S. Notice that
the holonomy of an almost smooth connection on a linkl is well defined, because it is the produ
of the holonomies on the portions in whichl is partitioned by the eventual singular points ofA.
We can thus define cylindrical functions,K andK0 as before. However, the gauge groupDiff is
now replaced by the gauge groupDif f* , formed by the homeomorphisms ofS that are almost
smooth ~with their inverse!. The groupDiff considered above is a dense subgroup ofDif f* .
(Dif f* can be given a topological group structure as a subgroup of the homeomorphism gr
S. The question of whether it can be given a Lie group structure is more difficult.! Notice that
Dif f* has a well-defined action on the space of the graphsG. Unlike Diff, Dif f* does not preserve
the number of nodes of a graph, because a singular point off may break a link into two links and
create a bivalent node.
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The constructionHdiff is the same as before, with the only difference thatf in ~12! is now in
Di f f * . HenceHdiff is now spanned by a basis of statesus&5uKd* ,c& where c is a discrete
quantum number as before, butKd* is an element ofKd* , namely an equivalence class of grap
underextendeddiffeomorphisms

Kd* 5
G

;d*
, ~18!

whereG;d* G8 if there is afPDi f f * such thatG85f+G. We denote the elementsKd* of Kd*
as diff* -knots.

B. Diff * -knots are countable

We now prove that diff* -knots are countable. Two diff-equivalent graphs are a
diff * -equivalent, becauseDiff is a subgroup ofDi f f * . Therefore diff* -knots are equivalence
classes of diff-knots. To prove that diff* -knots are countable it is sufficient to prove that any tw
diff-knots distinguished by a continuous parameter are diff* -equivalent. For this, it is sufficient to
consider two iso-equivalent but diff-inequivalent graphsG andG8. Our strategy will be to explic-
itly build an extended diffeomorphism mappingG into G8 ~see Fig. 1!. Since iso-knots are count
able, this will be sufficient to show thatKd* is countable.

Choose an arbitrary smooth metricg on S. Consider a noden of G, say with valencev.
Consider the open ballBn of fixed radiuse(n) aboutn. Let Sr be the spheres of radiusr (n), 0
,r (n),e(n), centered at the same pointn. Introduce~nonmetrical! angular coordinates (u,f) r

on each sphereSr of radiusr , smooth inr . By choosinge sufficiently small, each linkl ending at
n will intersect each sphere only once, say in the point with coordinates (u l ,f l) r . ~No fold-backs,
see Fig. 2.! Now, we can always choose the coordinates (u,f) r in such a way that the coordinate
(u l ,f l) r of the link l are independent fromr , and are equal tov arbitrarily chosen values (u l ,f l).
This construction can be repeated for the noden8 of G8 which is isotopically associated to th

FIG. 1. Two graphs living in the same iso-knot but not in the same diff-knot.

FIG. 2. A link presenting fold-backs.
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noden. For the coordinates on the ballBn8 around the noden8 we use the notation (r 8,u8,f8)
and we choose (u l 8

8 5u l ,f l 8
8 5f l), namely equal angular coordinates for corresponding links.

call Gn the restriction ofG to Bn andGn8 the restriction ofG8 to Bn8 .
Consider now the spaceS\Bn obtained by removing all ballsBn , for all nodesn, from S, and

the spaceS\Bn8 obtained removing all ballsBn8 . Let G̃ be the restriction ofG to S\Bn andG̃8 be
the restriction ofG8 to S\Bn8 . Under the hypothesis we made thatG andG8 are iso-equivalent, a
smooth invertible map

f̃:S\Bn→S\Bn8 ,

G̃°G̃8 ~19!

exists, because we are here in the simpler case of loops without intersections~on a space with
boundaries!, where standard knot-theory results apply. The failure of iso-equivalence to
diffeo-equivalence regardsonly the neighborhoods of the nodes.

To prove thatG andG8 are diff* -equivalent, we have therefore just to construct maps

fn :Bn→Bn8 ,

Gn°Gn8 ~20!

such thatf̃ andfn , taken together, give an almost smooth mapf:S→S. Let fn be given simply
by

fn :Bn→Bn8 ,
~21!

~r ,u,f!°~r 85r ,u85u,f85f!.

f̃ can be chosen so that at the boundaries of the ballsf is smooth. Hencef is smooth for allr
.0. The mapfn can immediately be continued tor 50, yielding by continuityfn(n)5n8. But
there is no reason for this continuation to be smooth, and in fact, in general it will not be. H
f is not in Diff. But it is in Dif f* , because it is continuous, invertible, and smooth everywh
except at the nodes, which are finite in number. Therefore iso-equivalent graphsG and G8 are
diff * -equivalent. Therefore we have the following.

Proposition 1: The space of the di f f* -knotsKd* is countable.
It follows immediately that we have Proposition 2.
Proposition 2: IffPDif f* , the spaceHdiff defined by the bilinear form (12) is separable.
Therefore we have shown that a minor extension of the functional space of the fields c

ered eliminates the continuous moduli and the nonseparability of the kinematical state sp
LQG.

IV. OPERATORS

In this section we discuss some consequences of the extension ofDiff to Dif f* and clarify
some apparent difficulties that this extension raises.

A. Conical singularities and area operator

If the gauge group isDi f f * , a smooth two-dimensional surface is gauge equivalent
‘‘singular’’ surface, that is a surface with conical singularities. The area operatorA(S) of LQG has
been defined for smooth surfacesS. Is it well defined also for a singular surfaceS? Naively, one
may think thatA(S) is ill defined for a singularS, for the following reason. Consider a two
dimensional surfaceS embedded inS. Let x5(xa), a51,2,3 be coordinates onS and u
5(um), m51,2 coordinates onS; the embedding is given by the functionsxa(u). Let gab(x) be
the 3D metric, namely the gravitational field. The classical expression for the area ofS is
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A~S!5E
S
d2u Adetgmn~u!, ~22!

where

gmn~u!5
]xa~u!

]um

]xb~u!

]un gab~x~u!! ~23!

is the two-dimensional metric induced on the surface. The area operator is constructed by e
ing the area in terms of the variable canonically conjugated toA, which is the inverse densitize
triad Ei

a(x),i 51,2,3, related to the metric by detq qab5E i
a(x)Ej

b(x)d ij . This gives

A~S!5E
A
d2u Ana nb Ei

a Ej
b d i j , ~24!

where

na~u!5eabc

]xb~u!

]u1

]xc~u!

]u2 ~25!

is the one-form normal to the surfaceS. If S is singular at a pointp, the normalna(u) is not
defined atp. This has no effect on the expression of the classical area~24! because the singula
point is a set of measure zero. Obviously, indeed, the area of a cone is defined in the same
as the area of a smooth surface. However, what happens at single points becomes importan
LQG quantum operatorA(S) that corresponds to the classical quantity~24!. A spin-network state
determined by a spin-networkS that crosses the surface at a single pointp contributes to the area
of the surface. In the derivation of this contribution, the tangent to the link ofS at p gets
contracted with the normalna(p). If this is ill defined, we might expect a problem.

The proper way of addressing this issue is in the context of a quantization of the area op
based on a well-defined regularization. Several equivalent regularization schemes to defin
operator are discussed in the literature. Not all of these schemes can be immediately adap
surface with conical singularities, but the regularization discussed in Ref. 4, which uses a sm
transversal to the surface, remains well defined for singular surfaces. This regularization is
on a continuous family of surfacesSl , with lP@2d/2,d/2#, whered is a positive real number
such thatS05S. To extend the technique to singular surfaces, we demand thatSl is a smooth
surface forlÞ0 and thatS05S is singular. The area ofS is then written as the limit

A~S!5 lim
d→0

1

d E
2d/2

d/2

dl A~Sl!5 lim
d→0

1

d E
D

d3sAnanbEa jEj
b, ~26!

whereD5S3@2d/2,d/2#. The nonvanishing contribution of the last integral comes now from
entire one-dimensional intersection between the spin network and the three-dimensional regD.
In this, the contribution of the singular points of thel50 surface have measure zero. The fact t
S has singular points is therefore irrelevant, and the operatorA(S) is well defined also for singula
surfaces.

Recall that the LQG operatorA(S) is Diff-covariant in the sense that

A~f~S!!5UfA~S!Uf21 ~27!

for all fPDi f f . The above construction implies immediately that~27! remains true also iff
PDi f f * , because the differentiable structure at the intersection point plays no role in the d
tion of A(S). The action of the area operator of a singular surfaceS is therefore immediately
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obtained by~27! by choosingf such thatf~S! is smooth. We see that what matters is not t
linear structure at the intersection point, but just the topological relation between the surfac
the spin networks defining the quantum states.~See Fig. 3.!

From this, it follows immediately that we have Proposition 3.
Proposition 3: The spectrum of the operator A(S) whereS is singular (has a finite number o

conical singularities) is the same as the spectrum of the operator A(S) whereS is smooth.
In conclusion, extended diffeomorphisms are indistinguishable from ordinary diffeo

phisms as far as the area operator is concerned. An extended diffeomorphism may g
singular points in the surface or in the spin network, but does not affect the topological re
between a surface and the spin network, and the area depends only on this relation.

B. Volume and Hamiltonian

Call V(R) the volume of a 3D regionR in S. There exist two versions of the volume operat
V(R) in LQG.7 The first@let us call itV1(R) here#, used for instance in Ref. 9, depends only
the intertwiners of the nodes insideR. The second@let us call itV2(R) here#, used for instance in
Ref. 14, depends also on whether or not the links at the nodes are linearly dependent. The o
V1(R) is Dif f* -covariant, that is

V1~f~R!!5UfV1~R!Uf21 ~28!

for all fPDif f* . The operatorV2(R), on the other hand, does not transform well underf
PDif f* , because an extended diffeomorphism can modify the linear dependence of the li
the node. Therefore the formulation of LQG considered here requires the use of the versionV1(R)
of the volume operator.

Finally, the Hamiltonian can be defined entirely in terms of the volume operator and
lonomy operators, and is not affected by the modification of the theory considered here.

V. CONCLUSION

We have studied the problem of the separability of the background-independent space
quantum states of the gravitational field,Hdiff , in loop quantum gravity. We have shown that
small extension of the functional class of the classical fields leads to an enlargement of the
group of the theory. In particularDiff is enlarged toDif f* , the group of homeomorphisms that a
smooth~with their inverse! except possibly at a finite number of points. The space of the k
classes become countable and the kinematical Hilbert spaceHdiff is separable. The area, volum
and Hamiltonian operator are naturally covariant under this extended gauge invariance, pr
that the appropriate regularization and the appropriate version of the volume operator are c
The spectra of area and volume, in particular, are unaffected. We expect that analogous
could be obtained also using other mathematical settings, in particular the piecewise s
category.

We take these results as indications that the continuous moduli that madeHdiff nonseparable
might be physically spurious. Using the setting described in this paper, the theory appear
cleaner and to realize more completely its purely combinatorial character as well as backg

FIG. 3. An extended diffeomorphism may generate a conical singularity but does not change the topological
between a surfaceS and the link of a spin network.
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independence. If we adopt this point of view, background independent quantum microphy
entirely discrete and smoothness can be seen,a posteriori, just as a property arising from ave
aging over regions much larger than the Planck scale.

Note added: After the posting of this work in the Archives, J. Lewandowski has informed
that related ideas have been developed by him and A. Ashtekar in work which is still unpubl
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The loss of stability of surface superconductivity
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The Ginzburg–Landau equations in a half-plane are considered in the largek limit.
We look at the reduced set of equations obtained in that limit. It is proved that the
one-dimensional solution presented by Pan@Commun. Math. Phys.228, 327
~2002!# undergoes a bifurcation for an infinite number of applied magnetic field
values which are lower thanHC2

. We also prove that each bifurcating mode is
energetically preferable to the one-dimensional surface superconductivity solution,
and thus, prove that the surface superconductivity becomes unstable for applied
fields which are lower thanHC2

© 2004 American Institute of Physics.

@DOI: 10.1063/1.1755859#

I. INTRODUCTION

Consider a planar superconducting body which is placed at a sufficiently low tempe
~below the critical one! under the action of an applied magnetic field. Its energy is given by
Ginzburg–Landau energy functional which can be represented in the following dimensio
form:1

E5E
V
S 2uCu21

uCu4

2
1uh2hexu21U i

k
¹C1ACU2Ddx1dx2 , ~1.1!

in which C is the ~complex! superconducting order parameter, such thatuCu varies fromuCu50
~when the material is at a normal state! to uCu51 ~for the purely superconducting state!. The
magnetic vector potential is denoted byA ~the magnetic field is, then, given byh5¹3A), hex is
the constant applied magnetic field, andk is the Ginzburg–Landau parameter which is a mate
property. Superconductors for whichk,1/& are called type I superconductors, and those
which k.1/& are called type II.V is a connected domain of superconductor, whose Gibbs
energy is given byE. Note thatE is invariant to the gauge transformation

C→eikhC; A→A1¹h, ~1.2!

whereh is any smooth function.
For sufficiently large magnetic fields it is well known, both from experimental observati2

and both from theoretical predictions,3 that superconductivity is destroyed and the material m
be in the normal state. If the applied magnetic field is then decreased there is a critical field
the material enters the superconducting phase once again. This field is called ‘‘the onset fie
is denoted byHC3

.
It is well-known that at the bifurcation from the normal state, superconductivity rem

concentrated near the boundary. Alternatively we can say thatC decays exponentially fast awa
from the boundaries as eitherk or the size ofV tend to infinity, which is the reason why th
phenomenon has been termed surface superconductivity. This result has first been obtain
half-plane,4 then also for disks,5 and for general smooth domains inR2.6–9 It was extended later
to weakly nonlinear cases in the largek limit.10

a!Electronic mail: almog@math.technion.ac.il
28150022-2488/2004/45(7)/2815/18/$22.00 © 2004 American Institute of Physics
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In the absence of boundaries the critical field at which superconductivity nucleates is de
by HC2

and is smaller thanHC3
(HC3

'1.7k whereasHC2
5k). Furthermore, the bifurcating

modes are periodic lattices, named after Abrikosov11–13 which have been observe
experimentally.14 It has been conjectured, therefore, by Rubinstein15 that superconductivity re-
mains concentrated near the boundary forHC2

,hex,HC3
. Whenhex'HC2

~either fork large or
for large domains! a bifurcation of Abrikosov’s lattices far away from the wall was conjectured15

Recently, it has been proved both in the largek limit,16,17 and in the large domain limit18 that
as long asHC2

,hex,HC3
superconductivity remains concentrated near the boundaries. Fr

different direction, Sandier and Serfaty19 showed for the global minimizer of~1.1! that ashex

→HC2
from below andk→`, superconductivity vanishes in the domain’s interior, away from

boundaries.
Despite the above-mentioned progress the transition from the surface superconductivit

tion to the mixed state, where Abrikosov’s lattices appear in the bulk of the material, has no
clarified yet. In particular, if the applied magnetic field is decreased belowHC2

it has not been
proved yet that:

~1! The surface superconductivity solution becomes unstable, i.e., it is not a local minimizeE
for hex,HC2

.
~2! The bifurcating mode is indeed the global minimizer and has to be periodic.

In the present contribution we prove, in the largek limit, for a domain wall, that the surface
superconductivity solution in a half-plane is not a local minimizer ofE for hex,HC2

, and hence
cannot be stable. To this end we assume, just like Pan16 did, that the global minimizer is essentiall
one-dimensional in the boundary layer. In addition to the instability proof, we find the bifurca
modes and show, by an heuristic argument, that when properly superposed, Abrikosov’s
can be formed. However, since linear superposition of modes is impossible, in view of the
tion’s nonlinearity, further research is necessary in that direction.

The Euler–Lagrange equations associated with~1.1!, known as the steady state Ginzburg
Landau equations, are given in the form

S i

k
¹1AD 2

C5C~12uCu2!, ~1.3a!

2¹3¹3A5
i

2k
~C* ¹C2C¹C* !1uCu2A, ~1.3b!

and the natural boundary conditions by

S i

k
¹1ADC•n̂50, ~1.4a!

h5hex. ~1.4b!

In Refs. 16 and 17 it is proved that ask→`, hex2k@1/k we have, near the boundary

C~x01j/k! ——→
k→`

c~j! pointwise,

wherex0P]V, jPR1
2 ,

R1
2 5$~x1 ,x2!; x1.0%

andc must satisfy
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~ i¹1x1 î 2!2c5lc~12ucu2! in R1
2 , ~1.5a!

]c

]x1
50 on ]R1

2 , ~1.5b!

where

l5
k

hex
.

Let

H5$uPH1~z,`!uxuPL2~z,`!%, ~1.6!

wherez is a real number, and let

b~z!5 inf
fPH

E
z

`

uf8u21x2ufu2

E
z

`

ufu2
. ~1.7!

The dependence ofb on z has been studied in Refs. 20 and 21 afterward. In particular, it has
proved that there existz1(l) and z2(l) such thatl.b(z) if and only if z1,z,z2 , and that
z2(1)50 andz1(1)52`. It is also proved in Ref. 7 that

b05 inf
zPR

b~z!5 lim
k→`

k

HC3

'0.59.

The same result was also proved in Ref. 8.
Pan16 conjectured that any bounded solution of~1.5a! for b0,l<1 must be in the form

c5ei (v0x21c) f ~x1!, ~1.8!

wherev0 is a real number andf (x1 ,l) satisfies inR1

2 f 91~x2v0!2f 5l f ~12 f 2!; f 8~0!50. ~1.9!

In Ref. 16 it is proved that ifb(2v0),l<1 and

2z2,v0,2z1

then there exists a solution for~1.9!. Furthermore, it is proved in Ref. 16 the

f ~x!;x2 12l/2e2 1/2x2
as x→`. ~1.10!

The discussion in Ref. 16 was limited to the casel<1, since this is the regime where the surfa
superconductivity solution is expected to be the global minimizer ofE. Nevertheless, it is no
difficult to show that the above existence result and~1.10! still hold whenl.1 for anyv0>0. We
bring the proof in Appendix A.

Weaker conjectures can be made instead of assuming that~1.8! is the unique class of bounde
solutions of~1.5a!. Consider the energy functional

E~c!5E
R1

2
u~ i¹1x1 î 2!cu21l~ 1

2 ucu42ucu2!, ~1.11!

where î 2 is a unit vector in thex2 direction, and let
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Hmag
1 ~V!5$fPL2~V!u]x1

fPL2, ]x2
f1 ix1fPL2%. ~1.12!

It is well known16 that whenl.b0 we have

inf
fPHmag

1 (R
1
2 )

E~f!52`.

We therefore modify the definition ofHmag
1 so it would guarantee the existence of a glob

minimizer toE in the modified space. We thus apply the transformation

x1→x12v0; c→e2 iv0x2c

to obtain

E~c!5E
2v0

`

dx1E
R
dx2H u~ i¹1x1 î 2!cu21lS 1

2
ucu42ucu2D J , ~1.13!

and define the space

P L
v05$fPHmag

1 ~@2v0 ,`!3R!uf~x1 ,x21L !5f~x1 ,x2!%. ~1.14!

We can now conjecture, just like Pan16 did, that

c5 f ~x1 ,l!

is the global minimizer ofE in P L
v0 , for everyL.0 andv0>0.

We note that Pan16 studied the same problem forl.1 and found that the global minimizer o
~1.11! in P L

v0 decays exponentially fast away from the wall. Moreover, it is proved in Ref. 16
the global minimizer of~1.1! in a smooth bounded domain must tend, ask→`, to a periodic
solution whose period is ofO(k).

Periodic solutions have already been studied in the absence of boundaries.11–13 Periodicity
was imposed in those works in both thex1 and thex2 directions. In this work we add the effect o
a planar wall: We impose periodicity only in the direction which is parallel to the wall, whe
away from the wall we expect the solution to decay. This problem, which is still much sim
than the determination of the global minimizer of~1.1!, is much closer to real situations than th
problem inR2.11–13

The present contribution can be summarized by the following theorem.
Theorem 1.1:There exists n0PN, which may depend onv52p/L and v0 , and a sequence

$ln%n5n0

` , such that

(1) There exists a solution to (1.5a) inP L
v0 which bifurcates fromc5 f (x1 ,l), in some right

semi-neighborhood ofln for every n>n0 .
(2) For every n>n0

11C1 expH2~nv1v0!
2

2 J,ln,11C2 expH2~nv1v0!
2

2 J, ~1.15!

where C1 and C2 are positive and independent of n.
(3) Denote the bifurcating solution inP L

v0 by cn(x1 ,l). Then

E~cn ,l!,E~ f ,l!

in some right semi-neighborhood ofln for every n>n0 .

In the next section we discuss the linearized equation and prove~1.15!. Statements 1 and 3 ar
proved in Sec. III. Finally, in Sec. IV we briefly summarized the results obtained in Secs. II an
and list some related open problems.
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II. LINEAR ANALYSIS

Consider the problem

~ i¹1x1 î 2!2c5lc~12ucu2! ~x1 ,x2!P~2v0 ,`!3R, ~2.1a!

cx1
~2v0 ,x2!50; c~x1 ,x21L !5c~x1 ,x2!. ~2.1b!

Let

u5c~x1 ,x2!2 f ~x1 ,l!, ~2.2!

wherein f satisfies~1.9!. Denote byX the space

X5$uPC2$@2v0 ,`!3R%ùP L
v0uux1

~2v0 ,x2!50%

with the C2 norm. LetF:R13X→C$@2v0 ,`)3R% be the operator

F~l,u!5~ i¹1x1 î 2!2u2l@u2 f 2~2u1ū!2 f ~2uuu21u2!2uuu2u#. ~2.3!

Clearly, if uPX satisfiesF(u,l)50 for somel.b0 , then c5u1 f is a solution of ~2.1!.
Furthermore, sinceF(l,0)[0 for all l.b0 we can consider the linear bifurcation of nontrivi
solutions ofF(u,l)50 from u[0. LetFu denote the Fre´chet derivative ofF. Then, the linearized
form of F(u,l)50 nearu[0 is

Fu~0,l!f50

or

~ i¹1x1 î 2!2f2l@f2 f 2~2f1f̄ !#50. ~2.4!

Our first result proves the existence of nontrivial solutions inX for ~2.4! and gives the correspond
ing critical values ofl.

Theorem 2.1: There exists n0(v0 ,v)PN and a sequence$ln%n5n0

` , such that whenl5ln

non trivial solutions of (2.4) exist. Furthermore, for all n>n0 ln satisfies (1.15).
Proof: Since we look for periodic solutions we multiply~2.4! by e2 invx2 wherenPN and inte-
grate with respect tox2 over @2p/v,p/v# to obtain

2f̂n91@~x2nv!22l#f̂n1l f 2~2f̂n1f̂2n!50, ~2.5a!

2f̂2n9 1@~x1nv!22l#f̂2n1l f 2~2f̂2n1f̂n!50, ~2.5b!

f̂n8~2v0!5f̂2n8 ~2v0!50, ~2.5c!

where

f̂n~x1!5E
2p/v

p/v

f~x1 ,x2!e2 invx2dx2 . ~2.6!

To prove the lower bound in~1.15! we need the following perturbation lemma.

Lemma 2.2: LetH~j! be defined by (1.6), and let

a~j,g!5 inf
fPH

ifiL2(2j,`)51

E
2j

`

uf8u21~x21g~x1j!!ufu2dx,
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where g:@0,̀ )→R is continuous and decays as x→`. Then,

a511E
2j

`

gv21d~j!. ~2.7a!

In which v is the quasi-mode

v5cjx~x1j!e2x2/2 ~2.7b!

whose L2(2j,`) norm is unity, x is a C` cutoff function satisfying

x5H 0, 0<x, 1
2

1, 1,x
~2.7c!

and, for sufficiently largej,

d~j!<2E
2j

`

g2v21Ce2j2
, ~2.7d!

where C is independent ofj.
Proof: Denote byP the operator

P5..2
d2

dx2 1x21g,

and let

n511E
2j

`

gv2.

Then,

~P2n!v5cj@2x912xx81gx#e2x2/22~n21!v,

and hence,

U E
2j

`

v~P2n!vU<E
2j

` U2 x9

x
12x

x8

x Uv2<Ce2j2
. ~2.8!

Let $m j% j 50
` denote the eigenvalues and$uj% j 50

` the corresponding eigenmodes, whoseL2

norm is unity, of the following problem:

Puj5m juj , x.j,

uj8~2j!50.

It is well known,22 that m j↑` and that$uj% j 50
` are square integrable and orthogonal. Let

ṽ5v2a0u0 , ~2.9a!

where

a05E
2j

`

vu0. ~2.9b!
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Substituting~2.9! in ~2.8! we obtain~note thatm05a)

a0
2ua2nu<E

2j

`

uṽ~P2n!ṽu1Ce2j2
. ~2.10!

To estimate the first term on the right-hand side of~2.10! we make use of the following
inequality:

E
2j

`

u~P2n!ṽu2<E
2j

`

u~P2n!vu25E
2j

` U2 x9

x
12x

x8

x
1g2~n21!U2

v2<E
2j

`

g2v21Ce2j2
.

~2.11!

Since the distance ofn from the spectrum ofP in H\Span(u0) is um12nu we have

~m12n!2E
2j

`

uṽu2<E
2j

`

u~P2n!ṽu2<E
2j

`

u~P2n!vu2. ~2.12!

It is not difficult to show, using standard arguments from semi-classical analysis~cf. for instance
theorem 3.4.1 in Ref. 23!, that

m1 ——→
j→`

3. ~2.13!

Hence, for sufficiently largej,

E
2j

`

uṽ~P2n!ṽu<F E
2j

`

uṽu2E
2j

`

u~P2n!ṽu2G1/2

<E
2j

`

u~P2n!vu2.

Substituting~2.10! in the above inequality yields

a0
2ua2nu<E

2j

`

g2v21Ce2j2
. ~2.14!

By ~2.12! and ~2.13! we have

a0
2512E

2j

`

uṽu2>12E
2j

`

g2v22Ce2j2

from which ~2.7! can be easily obtained. h

We now continue the proof of Theorem 2.1. Let

an~l!5..a~2nv2v0 ,l f 2!. ~2.15!

Since, by~1.10!

E
2nv2v0

`

f 2~x1nv1v0!e2x2
>C~nv1v0!l21 exp$2 1

2 ~nv1v0!2%,

we have, by~2.7!,

an>11C~nv1v0!l21 exp$2 1
2 ~nv1v0!2%. ~2.16!

We now define the functional
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J~xn ,x2n!5..E
2v0

`

uxn8u
21~x2nv!2uxnu21ux2n8 u21~x1nv!2ux2nu22l@ uxnu21ux2nu2

2 f 2~ uxnu21uxn1x̄2nu21ux2nu2!#. ~2.17!

Let (fn ,f2n)PH3H satisfy ~2.5a! and ~2.5b! and

E
2v0

`

~ ufnu21uf2nu2!51.

Multiplying ~2.5a! by f̄n and the complex conjugate of~2.5b! by f2n and integrating their sum
over @2v0 ,`) we obtain

J~fn ,f2n!50.

However, from the definition ofan it follows that

E
2v0

`

ufn8u
21~x2nv!2ufnu22l~12 f 2!ufnu2>~an2l!E

2v0

`

ufnu2.

Furthermore, for sufficiently largen, we have (x1nv)2.(x2nv)2 for everyxP@2v0 ,`), and
hence

J~fn ,f2n!>~an2l!. ~2.18!

Consequently, the value ofl for which the minimal value ofJ vanishes, must be greater thanan .
Therefore, by~2.16! the lower bound in~1.15! is proved.

To prove the upper bound we need, once again, to prove an auxiliary result:
Lemma 2.3: Let

gn~l!5 inf
(xn ,x2n)PH3H

ixni
L2
2

1ix2ni
L2
2

51

J~xn ,x2n!.

Then,

(1) For everyl>1, there exists a minimizer inH3H.
(2) gn is a continuous function ofl.

Proof: Since the proof is rather standard, we bring here only the main details and very b
Let $fn

m ,f2n
m %m51

` denote a minimizing sequence satisfyingifn
mi21if2n

m i251 for all m. Obvi-
ously,

E
a

`

ufn
mu21uf2n

m u2<
C

a2 ,

otherwise lim supm→`J(fn
m ,f2n

m )5`. It is easy to show that the minimizing sequence
bounded in H13H1, and hence, there exists a subsequence which converges weak
(fn ,f2n). Clearly,

1>E
2v0

a

ufnu21uf2nu2>12
C

a2 ,

and henceifni21if2ni251. To complete the proof of existence we need yet to show thatE is
weakly lower semicontinuous. This, however, is a very simple task. For instance,
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E
2v0

`

~fn
m!8fn8→E

2v0

`

ufn8u
2

in view of the weak convergence. Applying the Cauchy–Schwarz inequality we obtain

lim inf
m→`

i~fn
m!8i>ifn8i .

Similar treatment can be given to the rest of the terms in~2.17!.
The proof thatgn(l) is continuous is completely straightforward. h

We now calculateJ(wn,0) wherewn5exp$2(x2nv)2/2%. It is not difficult to show that

J~wn,0!<~12l!Ap1E
2v0

`

f 2wn
21Ce2(v01nv)2

<~12l!Ap1Ce2(v01nv)2/2.

Hence, there existsC.0 such that when

l.11Ce2(v01nv)2/2,

we haveJ(wn,0),0, and therefore,gn(l),0. Since, in view of~2.18!, for sufficiently largen,
gn(l).0 wheneverl,an , and sincegn(l) must be continuous, there existsln satisfying~1.15!
andgn(ln)50. By lemma 2.3 there exists a minimizer which must satisfy~2.5!, which completes
the proof of the theorem. h

We note that the above theorem proves, only for sufficiently largen, that bifurcating modes
can exist and thatln.1. Nevertheless, it seems plausible to conjecture that the bifurcation
take place only forl.1. Furthermore, it appears reasonable to believe thatln is monotone
decreasing, from which the previous conjecture readily follows.

It still remains necessary to find the dimension of the space of solutions of~2.4! for l
5ln . Consider then,~2.5!, once again. Letfn

r 5Rfn , andfn
i 5Ifn . Then, the real part satisfie

2~fn
r !91@~x2nv!22l#fn

r 1l f 2~2fn
r 1f2n

r !50, ~2.19a!

2~f2n
r !91@~x1nv!22l#f2n

r 1l f 2~2f2n
r 1fn

r !50, ~2.19b!

~fn
r !8~2v0!5~f2n

r !8~2v0!50, ~2.19c!

whereas the imaginary part satisfies

2~fn
i !91@~x2nv!22l#fn

i 1l f 2~2fn
i 2f2n

i !50, ~2.20a!

2~f2n
i !91@~x1nv!22l#f2n

i 1l f 2~2f2n
i 2fn

i !50, ~2.20b!

~fn
i !8~2v0!5~f2n

i !8~2v0!50. ~2.20c!

Consequently, if (fn
r ,f2n

r ) is a solution of~2.19!, then (fn
r ,2f2n

r ) is a solution of~2.20!. By
~2.6! we have

f5fneinvx21f2ne2 invx2.

Substituting in the above a linear combination of the two independent modes (fn
r ,f2n

r ) and
( ifn

r ,2 if2n
r ) we obtain

f5Cfn
r einvx21C̄f2n

r e2 invx2,
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whereCPC is an arbitrary constant. We can now representf, upon substitutingC5uCue2 ix2
0
, in

the following form:

f5uCu@fn
r einv(x22x2

0)1f2n
r e2 inv(x22x2

0)#.

Consequently, the additional mode stands for translations in thex2 direction and is, therefore, o
very limited interest. Furthermore, sinceln must be of even multiplicity inX, it is not possible to
apply the Crandall–Rabinowitz theorem.24 Thus, it is desirable to confine the discussion to
appropriatereal subspace ofX. We thus define

X* 5$uPXuū~x1 ,x2!5u~x1 ,L2x2!%.

In this space, we havefn5fn
r for all n, and hence we need only to show that the solution sp

of ~2.19! is one-dimensional.
Lemma 2.4:ln is a simple eigenvalue of (2.19).

Proof: Let (fn ,f2n) and (f̃n ,f̃2n) be two different solutions of~2.19!. We show that they
must be linearly dependent. To this end we first multiply~2.19a! by f̃n to obtain

E
2v0

`

f 2~fnf̃2n2f̃nf2n!50.

Hence,

'x0P~2v0 ,`! @fnf̃2n2f̃nf2n#x5x0
50.

Consequently,

'CPR such that F xn

x2n
G5F fn

f2n
G1CF f̃n

f̃2n
G ~2.21!

vanishes atx5x0 . Since (xn ,x2n) is a solution of~2.19! we must haveJ(xn ,x2n)50. Let then,

x̃n5H xn x0<x

2xn 2v0<x,x0 .

Clearly, J(x̃n ,x̃2n)50, and hence, (x̃n ,x̃2n) is a minimizer, which must have a continuou
derivative atx0 . Consequently,xn8(x0)5x2n8 (x0)50 from which we conclude thatxn[x2n

[0. h

III. WEAKLY NONLINEAR ANALYSIS

In the previous section, we showed that the linearized equation~2.4! has nontrivial solutions
for a sequence of eigenvalues satisfying~1.15!. However, our goal is to prove that each of the
eigenvalues is a bifurcation point for the nonlinear equation

F~l,u!50, ~3.1!

whereF is defined in~2.3!.
In this section we prove the existence of a bifurcating branch at (0,ln), for sufficiently large

n. Furthermore, we prove that the bifurcation is supercritical and prove that the bifurcating b
is energetically lower thanu[0, representing the one-dimensional solution~1.8!.
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A. Existence of the bifurcation

Theorem 3.1:Equation (3.1) has a bifurcation point at(0,ln) in W
*

.
Proof: We use Theorem 1.7 in Ref. 24 to prove the existence of bifurcation. In view o

results of the previous section it remains to show that

Fluf¹R~Fu~0,ln!!,

wheref spans the solution space of~2.4! in X* at l5ln . Alternatively, we can write

RH E
2v0

`

f̄FlufJ Þ0. ~3.2!

The above condition may be applied also by applying to~3.1! the Taylor expansion

u5eu(0)1e2ũ, ~3.3a!

l5l (0)1el̃. ~3.3b!

In the abovel (0)5ln satisfies~1.15!, andu(0) is a solution of~2.4!. Theorem 1.18 in Ref. 24
guarantees that

ũ5u(1)1eu(2)1O~e2!, ~3.4a!

l̃5l (1)1el (2)1O~e2!. ~3.4b!

This Taylor expansion, in powers ofe, would be useful while investigating whether the bifurcati
is subcritical or supercritical and while estimating the energy of the bifurcating branch nea
bifurcation point.

The O(e2) equation is given by

~ i¹1x1 î 2!2u(1)2l (0)@u(1)2~ f ~x,l (0)!!2~2u(1)1ū(1)!#

5l (1)gl1l (0)f ~x,l (0)!@2uu(0)u21~u(0)!2#, ~3.5a!

where

gl5
]

]l
$l@u(0)2~ f ~x,l!!2~2u(0)1ū(0)!#%ul5l(0) , ~3.5b!

which is exactly equation 1.20 in Ref. 24 applied to our particular case. Multiplying~3.5a! by ū(0)

we obtain after some manipulation that

l (1)I l5l (0)RH E f uu(0)u2~u(0)12ū(0)!J , ~3.6a!

where

I l5
]

]l H lE uu(0)u22
1

2
f 2~x,l (0)!uu(0)1ū(0)u22 f 2uu(0)u2J U

l5l(0)

. ~3.6b!

Condition ~3.2! is a solvability condition of~3.5!. By ~3.6! it can be expressed in the form
I lÞ0.

In the previous section we showed that whenl (0)5ln we have
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u(0)5fneivnx21f2ne2 ivnx2, ~3.7!

where (fn ,f2n) is a solution of~3.6!. Hence,

I l5
2p

v E
2v0

`

ufn8u
21~x2nv!2ufnu21uf2n8 u21~x1nv!2uf2nu2

22ln
2f

] f

]l
~ ufnu21ufn1f̄2nu21uf2nu2!. ~3.8!

In the following, we prove thatI l.0. To this end we need first the following lemma.
Lemma 3.2:Let

b̃n5 inf
fPH

E
2v0

`

uf8u21~x2nv!2ufu222ln
2f

] f

]l
ufu2

E
2v0

`

ufu2

. ~3.9!

Then, lim b̃n51.
Proof: We first prove that

I ] f

]l I
`

<C.

The equation satisfied by] f /]l5 f l is

2 f l91@x22l13l f 2# f l5 f ~12 f 2!; f l8~0!50.

Clearly, there existsx0 such that

x.x0⇒x22l13l f 2.1.

Suppose now, for a contradiction, that at somex1.x0 , for somel5l0 we havef l(x1 ,l0).1
and f l8(x1 ,l0).0. Then, since forx.x0 f l cannot have a maximum greater than 1 we must h
f l(x,l0).1 for all x.x1 . Since bothf l and f l8 are continuous inl there must be a neighborhoo
(l02e,l01e) where f l(x1 ,l).1 and f l8(x1 ,l).0. Consequently,

x>x1; lP~l02e,l01e!⇒ f l~x,l!.1,

and hence,

f ~x,l01e!2 f ~x,l02e!>2e

for all x>x1 , contradicting~1.10!. Thus, forx.x0 we have

f l~x,l!.1⇒ f l8~x,l!<0

from which we can conclude that, forx.x0 ,

f l~x,l!<max~ f l~x0 ,l!,1!<C~l!,

whereC is independent ofx. In a similar manner we can obtain a lower bound forf l , and hence,

U f ] f U<Cx(l21)/2exp$2x2/2%. ~3.10!

]l
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The lemma now follows from~2.7! with g522ln
2f ] f /]l andj52nv2v0 . h

We now return to the proof of Theorem 3.1. From~3.8! it easily follows that

I l>
4p

v
b̃n ,

and hence, for sufficiently largen, I l must be positive, which proves our theorem.

B. Nature of the bifurcation

In the following we show that in some neighborhood of (0,ln) in X* 3R we must havel
.ln along the bifurcating branch. Alternatively, we can state that the bifurcation is supercr
From a physical point of view we can say that if we decrease the applied magnetic field~and
consequently increasel! below the critical field which corresponds toln then the bifurcating
branch continues to develop, i.e.,iui increases.

Consider then, once again,~3.6!. Using ~3.7! it is not difficult to show thatl (1)50, which is
a natural result in as much as we do not expect the sign ofl2l (0) to depend on the sign ofe.
Hence,

~ i¹1x1 î 2!2u(1)2l (0)@u(1)2 f 2~2u(1)1ū(1)!#5l (0)f @2uu(0)u21~u(0)!2#. ~3.11!

The next order equation is given by

~ i¹1x1 î 2!2u(2)2l (0)@u(2)2 f 2~2u(2)1u(2)!#

5l (2)gl2l (0)$uu(0)u2u(0)12 f @u(0)u(1)1u(1)u(0)1u(1)u(0)#%. ~3.12!

The above equation no longer follows directly from Theorem 1.18 in Ref. 24. Nevertheless,
be easily obtained, using the implicit function Theorem, in the same way it is used in the pro
equation 1.20 in Ref. 24.

Multiplying ~3.12! by u(0) and integrating by parts we obtain

l (2)I l5l (0)E uu(0)u412 f uu(0)u2~u(1)1u(1)!12 f u(0))2u(1). ~3.13!

We now multiply ~3.11! by u(1) to obtain

E u~ i¹1x1 î 2!u(1)u22l (0)@ uu(1)!u222 f 2uu(1))u22 1
2 f 2~u(1)21~u(1)!2!]

5l (0)E 2 f uu(0)u2~u(1)1u(1)!1 1
2 f @u(0)2u(1)1u(1)~u(0)!2#. ~3.14!

Hence,

l (2)I l5l (0)E uu(0)u412E u~ i¹1x1 î 2!u(1)u22l (0)@ uu(1)u22 f 2uu(1)!u22 1
2 f 2uu(1)1u(1)u2].

~3.15!

By ~2.17! and~3.7! we obtain, that if we substituteu(0) instead ofu(1) in the second integra
on the right hand side of~3.15! it must vanish identically. Furthermore, except for a finite num
of n values,~3.7! must span the solution space of~2.4! in X* whenl (0)5ln . Hence,u(0) must
serve as the nontrivial global minimizer of the second integral on the right hand side of~3.15!.
Consequently,
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E u~ i¹1x1 î 2!u(1)u22l (0)@ uu(1)u22 f 2uu(1)!u22 1
2 f 2uu(1)1u(1)u2]>0 ~3.16!

and hence,

l (2)>
l (0)

I l
E uu(0)u4.0. ~3.17!

This proves our assertion, namely, thatl.l (0) along the bifurcating branch, or, that the bifurc
tion is supercritical.

C. Energy

In this subsection we prove that~1.8! is not a local minimizer of~1.13! for l.1. To this end
we show that for everyn>n0 , there exist a right neighborhood ofln in R such thatE( f 1u,l)
,E( f ,l). Let

E0~l!5E~ f ,l!5
2p

v E
2v0

`

u f 8u1x2f 21lF1

2
f 42 f 2G .

Let further

DE~u,l!5E~ f 1u!2E0~l!

52RH E ~ i¹1x1 î 2! f •~2 i¹1x1 î 2!ūJ 1E u~ i¹1x1 î 2!uu212lRH E u f u2@ f ū1uuu2#

1 1
2 f 2ū21uuu2@ f ū1 1

4 uuu2#2 f ū2 1
2 uuu2J .

Using ~1.9! and integration by parts yields

DE~u,l!5E u~ i¹1x1 î 2!uu21lE 2u f u2uuu212uuu2R~ f ū!1lE 1

2
uuu42uuu21 1

2 u f ū1c̄0uu2.

~3.18!

We now multiply the~3.1! by ū and integrate to obtain

E u~ i¹1x1 î 2!uu252lE 2u f u2uuu21uuu2~2 f ū1uc̄0!1 f 2ū21uuu42uuu2.

Combining the above with~3.18! we obtain

DE~u,l!52
1

2
lE @ u f 1uu22u f u2#uuu2. ~3.19!

We now expandDE in powers ofe. By ~3.4! we have

DE5e3DE (0)1e4DE (1)1O~e5!.

Substituting~3.4! into ~3.19! yields

DE (0)52l (0)E uu(0)u2R~ f u(0)!50.

Once again, this result corresponds to the natural expectation that the sign ofDE does not depend
on the sign ofe. The next order term is expressible in the form
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DE (1)52l (0)E 1

2
uu(0)u41uu(0)u2R~ f u(1)!12R~ f u(0)!R~u(0)u(1)!. ~3.20!

Using ~3.14! we obtain

DE (1)52l (0)E 1

2
uu(0)u42H E u~ i¹1x1 î 2!u(1)u22l (0)@ uu(1)u22 f 2uu(1)!u22

1

2
f 2uu(1)1u(1)u2G

and by~3.16! we have

DE (1)<2
1

2
l (0)E uu(0)u4,0,

which proves our assertion, and hence completes the proof of theorem 1.1.

IV. CONCLUDING REMARKS

In Sec. II we proved the existence of a set of critical values$ln%n5n0

` for which nontrivial

solutions of~2.4! exist. We also show thatln↓1 exponentially fast according to~1.15!. However,
there might exist, finitely many, additional values ofl for which nontrivial solutions of~2.4! can
exist. It would be reasonable to conjecture that$ln%n51

` is monotone decreasing, yet, this hypot
esis is proved only for largen. In fact, it is not proved yet thatln.1 for all n.

One can formulate the above conjecture in the following alternative manner: Letv51 and

g~l,a!5 inf
(fa ,f2a)PH3H

ifai
L2
2

1if2ai
L2
2

51

J~fa ,f2a!,

whereJ is defined in~2.17!. We look for values ofl anda for which g50. For sufficiently large
a it is proved in Sec. II that there existsa0.0 and a functionl(a):@a0 ,`)→R such that
g(l(a),a)50, and such thatl(a)↓1 asa→`. If one can show thatl~a! can be continued into
R1 such thatl~a! is monotone decreasing, the the above conjecture is proved.

In Sec. III we proved:

~1! Existence of the bifurcation points;
~2! super-criticality of the bifurcation;
~3! that the bifurcating solution is energetically preferable to the one-dimensional surface

conductivity solution.

Statements 1 and 2 were proved only for sufficiently largen. For n which is not large, the
existence of nontrivial solutions of~2.4! does not guaranteeI l.0, and hence the bifurcation
points do not necessarily exist. In fact, even if the bifurcation from (ln,0) exists, it is not clear tha
it must be supercritical~if I l,0 then a subcritical bifurcation exists!.

In contrast, statement 3 is correct whenever a bifurcating solution exists. It is correct ev
n which is not necessarily large, and even in the unlikely situation that the bifurcation takes
at l,1. The surface superconductivity one-dimensional solution becomes therefore local
stable at each bifurcation point.

Finally, we note that if it was possible to linearly superpose the bifurcating modes the
resulting combination would have the form

c5 f 1 (
n52`

`

Cnfneivnx2,

and since
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fn;e2 1/2(x12nv)2

asn→` for x1;O(n) we have

c;eivPx2 (
n52`

`

Cn1Peivnx2e2 1/2[x12(n1P)v] 2
~4.1!

for P@1 andx;O(P). The above formula thus approximatesc far away from the wall atx1

50. If

'N: Cn1N5Cn ;n.

Then the right-hand-side of~4.1! is periodic, or an Abrikosov lattice.11–13

Clearly, it is impossible to linearly superpose modes since the equations are nonline
since the bifurcations take place at different values ofl. Nevertheless, if 0,l21!1 then 0
,l2ln,l21 for almost everyn. Hence, one might expect that the effect of nonlinearity te
to 0 asl→1, and thus, that the solution far away from the wall can be approximated b
Abrikosov lattice.
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APPENDIX A: THE ONE-DIMENSIONAL SOLUTION

Theorem A.1: Let H and b(z) be, respectively, defined by (1.6) and (1.7). Letl.b(z).
Then, there exists a positive solution inH to the equation

2 f 91x2f 5l f ~12 f 2!; f 8~z!50. ~A1!

Moreover,

f ~x!;x2 12l/2e2 1/2x2
as x→`. ~A2!

Proof: Let

ez~f!5E
z

`

~f8!21x2f22lFf22
1

2
f4Gdx.

We first prove the existence of a minimizerH. Clearly, there existsx0.z such that forx>x0 we
havex2>l11. Then, since

f22 1
2 f4< 1

2

we have for allfPH

ez~f!>2
l

2
~x02z!.

Sinceez is semibounded there is a minimizing sequence$fn%n51
` in H. As

1

x02z S E
z

x0
fn

2D 2

<E
z

x0
fn

4<2E
z

x0
fn

21C,
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whereC is independent ofn, we obtain thatifniL2[z,x0]<C. Recalling thatx22l>1 in @x0 ,`)
yields ifniL2(z,`)<C and henceifniH1(z,`)<C. Thus, there is a subsequence which conver
weakly inH1(z,`) to a limit, which we denote byf . We skip the proof of lower semicontinuity–
some of the details can be found in the proof of lemma 2.4.

Since f is a minimizer ofez in H it must satisfy~A1!. Suppose for a contradiction that
changes sign atx5x1 . Then let

g5H f ~x! x<x1

2 f ~x! x.x1
.

Clearly,ez( f )5ez(g), and thus,g must be a minimizer and, therefore, a solution of~A1!. Thus,
either f [0, or f does not change its sign~both f and2 f are minimizers!.

We now prove thatf is nontrivial. Letuz be the minimizer of the fraction on the right-han
side of ~1.7! such thatiuzi251. Then

ez~cuz!52c2@l2b~z!#1c4E
z

`

uuzu4.

Therefore, for sufficiently smallc the minimizer must be nontrivial.
It remains necessary, yet, to prove~A2!. We first prove thatf→0 asx→`. Suppose first, for

a contradiction, that for somex2.x0 we havef 8(x2).0. Then, sincef cannot have a maximum
for x.x0 , f must be greater thanf (x2), contradictingf PH. Thus, f 8<0 for all x.x0 from
which we easily conclude thatf→0 at infinity.

Let w(x,t), wheret.x0 , denote the decaying solution of

2w91@x22l#w50; x.t w~ t,t !51.

By the maximum principle we must have thatf , f (t)w for all x.x0 . Let
f (x)5 f (t)v(x,t)w(x,t). Substituting in~A1! we obtain

v852
l

f ~ t !w2 E
x

`

f 3~s!w~s,t !ds>2l f 2~ t !E
x

`

w2~s,t !ds.

The properties ofw have been obtain in Ref. 21 but can be also found in chapter 19 of Ref
From both references we find that ast→`, x→`

w;S x

t D
l21/2

e2 1/2(x22t2) ;x>t

and hence, for allx.t

22l f 2~ t !
xl22

tl21 et22x2
<v8,0.

Sincev is decreasing it must converge to a limit asx→`. Integrating the above inequality b
parts we obtain

v`~ t !5 lim
x→`

v~x,t !>12l
f 2~ t !

t
.

For sufficiently larget we, therefore, havev`(t).0, proving~A2!.
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We prove the existence of a transmutation operator between two weighted Sturm–
Liouville operators. We also provide an explicit formula for the transmutation op-
erator and a construction algorithm. An example and an application to an inverse
spectral problem are also considered. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1758321#

I. INTRODUCTION

Let L1 andL2 , where

H L1~w!ª2
1

w~x!
w9~x,l!1q~x!w~x,l!5lw~x,l! x>0

w~0,l!50,

~1.1!

H L2~y!ª2
1

w~x!
y9~x,l!5ly~x,l! x>0

y~0,l!50,

~1.2!

and w(x)>0, qw,wPL loc@0,̀ ), be singular differential operators acting in the Hilbert spa
Lw

2 (0,̀ )ª$ f measurable:*0
`u f (x)u2w(x)dx,`%. The operatorL1 can be viewed as a perturba

tion of the more simple operatorL2 , in which w is known as the density of the string and
allowed to vanish inside@0,̀ !. The string is well known to have numerous applications in p
diction theory, Gaussian processes, function theory, moment problems and inverse proble
Refs. 5–9.

Recall that the operatorL2 is in the limit-point case at infinity when*0
`x2w(x)dx5` and

~1.2! then defines a self-adjoint operator acting inLw
2 (0,̀ ). In case*0

`x2w(x)dx,`, thenL2 is
in the limit circle atx5` and we need to add a boundary condition atx5`. Thus without loss of
generality, in all that follows, we can assume that both operatorsL1 and L2 are self-adjoint
operators, adding a boundary condition atx5`, in the limit circle case. Denote, respectively, b
s1 ands2 their spectra and byw(x,l) and y(x,l) their eigensolutions which we normalize b
w8(0,l)5y8(0,l)51. It is known that the spectra are simple and the pair of transforms assoc
with L1 is given by

F1~ f !~l!5E
0

`

f ~x!w~x,l!w~x!dx for f PLw
2 ~0,̀ !,

~1.3!

f ~x!5E
s1

F1~ f !~l!w~x,l!dG1~l! for F1~ f !PLG1

2 ~s1!.

Similarly for L2 we have

a!Electronic mail: boumenir@westga.edu
b!Electronic mail: vu@westga.edu
28330022-2488/2004/45(7)/2833/11/$22.00 © 2004 American Institute of Physics
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F2~ f !~l!5E
0

`

f ~x!y~x,l!w~x!dx for f PLw
2 ~0,̀ !,

~1.4!

f ~x!5E
s2

F2~ f !~l!y~x,l!dG2~l! for F2~ f !PLG2

2 ~s2!.

We recall thatl belongs to the discrete spectrum, only in the case when the solutiony(x,l)
PLw

2 (0,̀ ). Thus if l is in the continuous spectrum, then the eigensolutions are outsideLw
2 (0,̀ ),

i.e., *0
`uy(x,l)u2w(x)dx5`. An operator which transforms solutionsw(x,l) into y(x,l), i.e.,

y(x,l)5Vw(x,l) for all valueslPC, is called a transmutation operator and plays a crucial r
in the inverse spectral problem. For example ifV exists then it is easy to see that

L2Vw5L2y5ly5lVw5VL1w.

Since the set of eigenfunctionalsw is complete inLw
2 (0,̀ ), see Ref. 1, thenL2V5VL1 and if we

also assume thatV21 exists then

L15V21L2V,

which means that we can reconstructL1 from the knowledge ofV andL2 . In other words given
w and V we can reconstruct the potentialq. More details about the theory of transmutatio
operators and their applications can be found in Refs. 2–4 and 11.

The existence and construction of the operatorV is at the heart of the theory of invers
problems. Note that the only well understood case of the transmutation operator is whenw(x)
51. In this caseV is a Volterra-type integral operator of the second kind, whose kernel satisfi
second order hyperbolic differential equation, see Ref. 10. In this paper we are concerned w
existence and construction of the transmutation operatorV betweenL1 and L2 for a general
nonnegativew. We will show thatV is again a Volterra type integral operator of the second ki
Its construction, under some extra smoothness conditions onw andq, does not require any partia
differential equation. Since a Volterra integral operator of the second kind has an inverse, the
of this paper can be used in the inverse problem of reconstructing the potentialq.

II. EXISTENCE OF THE TRANSMUTATION OPERATOR

Our starting point is to use the variation of parameters to solve

w9~x,l!1lw~x!w~x,l!5q~x!w~x!w~x,l!,

which leads to the obvious relation betweenw andy,

w~x,l!5y~x,l!1E
0

x

G~x,t,l!q~ t !w~ t,l!w~ t !dt, ~2.1!

that can be rewritten in the form

y~x,l!5w~x,l!2E
0

x

G~x,t,l!q~ t !w~ t,l!w~ t !dt, ~2.2!

where

G~x,t,l!5y1~x,l!y2~ t,l!2y2~x,l!y1~ t,l!, ~2.3!

andy1 andy2 are the fundamental solutions of the equation
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y9~x,l!1lw~x!y~x,l!50

satisfying the initial conditions

y1~0,l!51, y18~0,l!50, y2~0,l!50, y28~0,l!51.

At this point observe that although~2.2! is a mapping betweeny and w, it does not define an
operator, because the kernelG(x,t,l) depends onl.

Since the solutionsy1 andy2 are entire functions ofl, it follows that

G~x,t,l!5 (
n>0

jn~x,t !ln

and ~2.2! reduces to

y~x,l!5w~x,l!2E
0

x

(
n>0

jn~x,t !q~ t !lnw~ t,l!w~ t !dt

5w~x,l!2E
0

x

(
n>0

jn~x,t !q~ t !L1
nw~ t,l!w~ t !dt.

Having replacedln by operatorL1
n we arrive at the operator

V f~x!5 f ~x!2E
0

x

(
n>0

jn~x,t !q~ t !L1
nf ~ t !w~ t !dt, ~2.4!

that is defined at least over the set$w(t,l)%lPR . To find the domain of definition ofV, observe
first that

Proposition 1: For any x.0, there exists a sequenceln ↗` such that$w(t,ln)%n>0 is an
orthogonal basis in Lw

2 (0,x).
Proof: First consider the regular self-adjoint differential operator on the interval@0,x# with a

Dirichlet boundary condition at the right end point

H Lx~wx!52
1

w~ t !
wx9~ t,l!1q~ t !wx~ t,l!5lwx~ t,l!, 0<t<x

wx~0,l!50, wx~x,l!50.

~2.5!

This new regular self-adjoint problem on@0,x# has a discrete spectrum,sxª$ln%,R and obvi-
ously its eigenfunctions$wx(t,ln)%n>0 are orthogonal and form a basis inLw

2 (0,x). But the
solutionswx(t,ln) andw(t,ln) differ by a constant multiplier only, so the set$w(t,ln)%n>0 is also
an orthogonal basis inLw

2 (0,x). Thus the functionalV( f )(x) is defined on an orthogonal basis
Lw

2 (0,x).
Proposition 2: For any x.0 andl.0 we havesup0<t<xuG(x,t,l)u<ux2tu.
Proof: From Lemma 1 of Sec. III it is not difficult to see that the sequencejn(x,t) changes

signs, and thereforeG(x,t,l)5Sn>0jn(x,t)ln is an alternating series. The remainder theorem
alternating series yields

uG~x,t,l!u<j0~x,t !5~x2t ! when 0<t<x and l.0.

G(x,t,l) is uniformly bounded onl.0, and since there is possibly only a finite number
nonpositive eigenvalues,G(x,t,l) is then bounded over the whole setsx of eigenvalues. From
~2.1! it follows
                                                                                                                



re

-

a

utation

e

2836 J. Math. Phys., Vol. 45, No. 7, July 2004 A. Boumenir and V. K. Tuan

                    
uVw~x,ln!2w~x,ln!u<AE
0

x

uG~x,t,ln!q~ t !u2w~ t !dt iw~ t,ln!i<C~x!iw~ t,ln!i .

SinceV21 is a bounded functional on the orthogonal basis$w(t,l)%lP[0,1] it can be extended
uniquely to a linear bounded functional onLw

2 (0,x). By the Riesz representation theorem, the
existsH(x,.)PLw

2 (0,x) such that

V f~x!2 f ~x!5E
0

x

H~x,t ! f ~ t !w~ t !dt

for all f PLw
2 (0,x). In particular

Vw~x,l!2w~x,l!5E
0

x

H~x,t !w~ t,l!w~ t !dt

which leads to
Proposition 3: Assume that w,qwPL loc@0,̀ ) and L1 is self-adjoint then there exists a trans

mutation operator V such that

y~x,l!5Vw~x,l!5w~x,l!1E
0

x

H~x,t !w~ t,l!w~ t !dt, ~2.6!

where H(x,.)PLw
2 (0,x).

Remark:The completeness ofw(x,l) is a result of the self-adjointness ofL1 . We could have
used the operatorL2 , whose classification is simpler, instead ofL1 to obtain a similar result.
Recall that end-point classification forL2 depends on the convergence of*0

`x2w(x)dx only.
Proposition 4: Assume that w, qwPL loc@0,̀ ) and L2 is self-adjoint then there exists

transmutation operator V21 such that

w~x,l!5V21y~x,l!5y~x,l!1E
0

x

K~x,t !y~ t,l!w~ t !dt,

where K(x,.)PLw
2 (0,x).

III. CONSTRUCTION OF THE TRANSMUTATION OPERATOR

Although the Riesz representation theorem guarantees the existence of the transm
operatorV, see Proposition 3, it does not help us construct its kernelH(x,t). In this section we
show how Green’s functionG(x,t,l) can be used to construct the transmutation operator.

We would like now to remove thel appearing in the integral term in~3.7!. From the uniform
convergence of theG(x,t,l)5(n>0jn(x,t)ln over tP(0,x), lP(0,1) we deduce that

E
0

x

G~x, t, l!q~ t !w~ t,l! w~ t ! dt5 (
n>0

E
0

x

q~ t !jn~x,t ! L1
nw~ t,l! w~ t ! dt.

SinceG(x,x,l)50, thenjn(x,x)50 for anyn. To simplify the integration by part, we assum
qPC0

`(0,̀ ) andwPC`(0,̀ ), thusq(n)(0)50 for all n>0 and
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E
0

x

q~ t !jn~x,t ! L1w~ t,l! w~ t ! dt

52E
0

x

q~ t !jn~x,t ! w9~ t,l!dt1E
0

x

q2~ t !jn~x,t ! w~ t,l! w~ t ! dt

5@2q~ t !jn~x,t ! w8~ t,l!1] t@q~ t !jn~x,t !# w~ t,l!#u t50
t5x

1E
0

x

L1@q~ t !jn~x,t !# w~ t,l! w~ t ! dt

5q~x!@] tjn~x,t !# t5x w~x,l!1E
0

x

L1@q~ t !jn~x,t !# w~ t,l! w~ t ! dt.

We will show that the term outside the integral vanishes. For that purpose we now prov
Lemmas that are also needed in the sequel.

Lemma 1: For each fixed x, L2jn(x,.)5jn21(x,.) and L2j0(x,.)50
Proof: From the fact thatL2G(x,t,l)5lG(x,t,l), whereL2 acts on thet variable and the

uniform convergence we have

(
n>0

L2jn~x,t !ln5 (
n>1

jn21~x,t !ln

and so the Lemma follows.
Lemma 2: For each fixed x, we have

L1
n11jn~x,t !5 (

k50

n

L1
k~q~ t !jk~x,t !!.

Proof: From

L1
k11jk~x,t !5L1

k~L21q~ t !! jk~x,t !5L1
kL2 jk~x,t !1L1

k~q~ t ! jk~x,t !!,

L1
k11jk~x,t !5L1

k jk21~x,t !1L1
k~q~ t !jk~x,t !!,

it follows that

L1 j0~x,t !5L2 j0~x,t !1q~ t ! j0~x,t !5q~ t ! j0~x,t !

and

(
k51

n

L1
k11jk~x,t !5 (

k51

n

L1
kjk21~x,t !1 (

k51

n

L1
k~q~ t ! jk~x,t !!,

L1
n11jn~x,t !5L1j0~x,t !1 (

k51

n

L1
k~q~ t !jk~x,t !!5 (

k50

n

L1
k~q~ t !jk~x,t !!.

Lemma 3:jn(x,t)5(k>2nank(x) (x2t)k/k!.
Proof: From ~2.3! we have

]2

]t2 G~x,t,l!52lw~ t !G~x,t,l!

and Leibnitz’s formula then yields
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]k

]tk G~x,t,l!52l
]k22

]tk22 @w~ t !G~x,t,l!#52l(
j 50

k22 S k22
j D ~w~ t !!(k222 j )

] j

]t j G~x,t,l!.

~3.1!

For each fixedx we can also write

G~x,t,l!5 (
k>0

f k~x,l!
~ t2x!k

k!
, ~3.2!

wheref k(x,l)5 (]k/]tk) G(x,t,l) ut5x . Thus it follows from~3.1! that the sequencef k satisfies a
recurrence relation

f k~x,l!52l(
j 50

k22 S k22
j D ~w~x!!(k222 j ) f j~x,l!. ~3.3!

The first two terms are~3.2!

f 0~x,l!50, f 1~x,l!5W~y1 ,y2!51.

From ~3.3! it follows that f k is a polynomial inl of degree at most@k/2#

f k~x,l!5 (
j 51

[k/2]

ajk~x!l j ,

which leads to

G~x,t,l!5 (
k>1

f k~x,l!
~ t2x!k

k!
5 (

k>1
(
j 51

[k/2]

ajk~x!l j
~ t2x!k

k!
5(

j >1
S (

[k/2]> j
ajk~x!

~ t2x!k

k! D l j

and so

jn~x,t !5 (
[k/2]>n

ank~x!
~ t2x!k

k!
5 (

k>2n
ank~x!

~ t2x!k

k!
.

Thus using the above Lemma we have proven that
Proposition 5: If n>1, then]kjn(x,t)/]tk

ut5x50 for k50, . . . ,2n21.
Using the above result we have

E
0

x

q~ t !jn~x,t ! L1w~ t,l! w~ t ! dt

5q~x!@] tjn~x,t !# t5x w~x,l!1E
0

x

L1@q~ t !jn~x,t !# w~ t,l! w~ t ! dt

5E
0

x

L1@q~ t !jn~x,t !# w~ t,l! w~ t ! dt

and in general fork,n,
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E
0

x

L1
k@q~ t !jn~x,t !# L1w~ t,l! w~ t ! dt

52L1
k@q~ t !jn~x,t !# ut5xw8~x,l!1] tL1

k@q~ t !jn~x,t !# ut5x w~x,l!

1E
0

x

L1
k11@q~ t !jn~x,t !# w~ t,l! w~ t ! dt.

Consider the first boundary term. We have

L1
k@q~ t !jn~x,t !# ut5x5(

j 50

2k

Aj~ t !
] jjn~x,t !

]t j ut5x ~3.4!

which vanishes as long ask,n ~3.4!. Similarly (]/]t) L1
k@q(t)jn(x,t)# ut5x50 and thus all bound-

ary terms vanish ifk,n.
Thus we have proven
Proposition 6: Assume that w>0, and w, qPC`(0,̀ ). Then for any n>0, we have

E
0

x

q~ t !jn~x,t ! L1
nw~ t,l! w~ t ! dt5E

0

x

L1
n@q~ t !jn~x,t !# w~ t,l! w~ t ! dt.

The next step is to start from~2.6! and ~2.2! to deduce that

2E
0

x

H~x,t !w~ t,l! w~ t ! dt5 lim
m→`

(
n50

m E
0

x

q~ t !jn~x,t ! lnw~ t,l! w~ t ! dt

5 lim
m→`

(
n50

m E
0

x

q~ t !jn~x,t !L1
nw~ t,l! w~ t ! dt

5 lim
m→`

(
n50

m E
0

x

L1
n~q~ t !jn~x,t !! w~ t,l! w~ t ! dt

5 lim
m→`

E
0

x

(
n50

m

L1
n~q~ t !jn~x,t !! w~ t,l! w~ t ! dt

5 lim
m→`

E
0

x

(
n50

m

L1
n~q~ t !jn~x,t !! w~ t,l! w~ t ! dt

5 lim
m→`

E
0

x

L1
m11jm~x,t ! w~ t,l! w~ t ! dt. ~3.5!

Since $w(t,l)%0,l,1 is dense inLw
2 (0,x), the sequenceL1

m11jm(x,.) converges weakly to
2H(x,.) in Lw

2 (0,x). We now show thatL1
m11jm(x,.) is a bounded sequence inLw

2 (0,x). As done
previously, from~3.5! we have

E
0

x

L1
m11jm~x,t ! w~ t,l! w~ t ! dt5E

0

x

Gm~x,t,l!w~ t,l! w~ t ! dt,

where

Gm~x,t,l!5 (
n50

m

jn~x,t ! ln
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is the partial sum of the MacLaurin series of the Green functionG(x,t,l). SinceGm(x,t,l)
converges uniformly toG(x,t,l) for tP(0,x) andlP(0,1), andG(x,t,l) is bounded there, then
Gm(x,t,l) is uniformly bounded fortP(0,x) andlP(0,1). Now

U E
0

x

L1
m11jm~x,t ! w~ t,l! w~ t ! dtU5U E

0

x

Gm~x,t,l!w~ t,l! w~ t ! dtU
<AE

0

x

uGm~x,t,l!u2w~ t ! dt iw~ .,l!i ,

which means

iL1
m11jm~x,.!i< sup

m>0
sup

lP~0,1!
AE

0

x

uGm~x,t,l!u2w~ t ! dt5C,`.

Thus the sequenceL1
m11jm(x,.) is bounded inLw

2 (0, x). But a bounded and weakly converge
sequence in a Hilbert space converges strongly to the same limit. Hence we have proven

Proposition 7: For each fixed x.0, L1
m11jm(x,t)→2H(x,t), strongly in Lw

2 (0, x) as m
→`.

This proposition allows us to construct the kernelH(x,t) of the transmutation operatorV from
the Green functionG(x,t,l). To illustrate the above theory, we now present a very sim
example which corresponds to the casew(x)5xa wherea.21. ClearlyL2 is in the limit point
at x5`. Consider the Bessel operators defined by

S1H L1~w!ª2
1

xa

d2

dx2 w~x,l!1q~x!w~x,l!5lw~x,l!, x>0

w~0,l!50, w8~0,l!51,

S2H L2~y!ª2
1

xa

d2

dx2 y~x,l!5ly~x,l!, x>0

y~0,l!50 y8~0,l!51.

HereqPLxa
loc

@0,̀ ).
Denote the normalized eigensolutions of the operatorL2

y9~x,l!1lxay~x,l!50 ~3.6!

by

J1~x,l!5a~l!AxJ1/~a12!S 2Al

a12
x~a12!/2D ,

where a~l!5GS a13

a12D ~a12!1/~a12!l2 $1/@2(a12)#%,

J2~x,l!5b~l!AxJ21/~a12!S 2Al

a12
xa12/2D ,

where b~l!5GS a11

a12D ~a12!2 @1/~a12!#l1/@2(a12)#.

HereJn(x) is the Bessel function. It is readily seen fromJn(x)' @1/G(11n)# (x/2)n asx→0 that
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J1~0,l!50 J 18~0,l!51 and J2~0,l!51 J 28~0,l!50,
~3.7!

w~x,l!5J1~x,l!1E
0

x

G~x, t, l!q~ t !w~ t,l!tadt,

where Green’s function is

G~x, t, l!5J1~x,l!J2~ t,l!2J2~x,l!J1~ t,l!

5GS a13

a12DGS a11

a12DAxt

3FJ1/~a12!S 2Al

a12
x~a12!/2D J2 @1/~a12!#S 2Al

a12
t ~a12!/2D 2J1/~a12!

3S 2Al

a12
t ~a12!/2D J2 @1/~a12!#S 2Al

a12
x~a12!/2D G .

A direct calculation withn5 1/(a12) , reduces

Jn~2Alnx1/2n!J2n~2Alnt1/2n!5 (
n,k>0

~21!n~2Alnx1/2n!n12n

n!G~n1n11!

~21!k~2Alnt1/2n!2n12k

k!G~2n1k11!

5Ax

t (
n,k>0

~21!n1k

n!k!G~n1n11!G~2n1k11!
~2n!2n12k

3xn/ntk/nln1k,

Jn~2Alnt1/2n!J2n~2Alnx1/2n!

5A t

x (
n,k>0

~21!n1k

n!k!G~n1k11!G~2n1n11!
~2n!2n12ktk/nxn/nln1k.

Therefore we arrive at an explicit formula forG(x,t,l),

G~x, t, l!5G~11n!G~12n! (
n,k>0

~24n2!n1k~x2t !xn/ntk/n

n!k!G~n1n11!G~2n1k11!
ln1k

5 (
n,k>0

gnk~x,t !ln1k

5(
j >0

j j~x,t !l j ,

where

j j~x, t !5~x2t !(
k50

j
1

~11n! j 2k

1

~12n!k
~24n2! j

x~ j 2k!/n

~ j 2k!!

tk/n

k!
~3.8!

and (a)n5a(a11)¯ (a1n21). We arrive at
Proposition 8: If w(x)5xa wherea.21 and qPC0

`(0,̀ ), then
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H~x,t !52 lim
m→`

~2t2aD21q~ t !!m11jm~x, t !

in Lw
2 (0,x), with jm(x, t) being given by (3.8).

IV. APPLICATIONS

We now briefly outline an interesting application of the transmutation operatorV21511K.
Using the above notation the Gelfand–Levitan theory would read as follows: Recover the po
q from the given spectral functionG1 . To do so, we assume that we knowy(x,l), G2 andw such
that the following function:

F~x,t !5E y~x,l!y~ t,l!ds~l!,

where s(l)5G1(l)2G2(l), is at leastC2 in x,t. Then we would form the linear integra
equation

K~x,t !1F~x,t !1E
0

x

K~x,s!F~s,t !w~s!ds50 for 0,t,x,

which we solve forK(x,t). Then define the functionw from the relation

w~x,l!5y~x,l!1E
0

x

K~x,t !y~ t,l!w~ t !dt.

It is then easy to show that there exists a functionq such that

q~x!5
1

w~x!

d

dx
@K~x,x!w~x!#1

d

dx
K~x,x!

and the newly constructedw is a solution of Eq.~1.1!.
The above analysis of constructing transmutation operators can be extended to the

general Sturm–Liouville operators

L3~y!~x!ª2
1

w~x!
~p~x!y8~x!!81q~x!y~x!,

where 1/p,w,qwPL loc@0,̀ ) and p.0,w>0. To get the transmutation operator betweenL2 and
L3 we can relateL3 to L1 in a very simple way. Denote by

f~ t~x!!5y~x!,

wheret(x)5*0
x @1/p(t)# dt. Then it follows thatf(t) satisfiesf8(t(x))5p(x)y8(x) and from

2
1

w~x!p~x!
p~x!~p~x!y8~x,l!!81q~x!y~x,l!5ly~x,l!

we deduce that

2
1

W~ t !
f9~ t,l!1Q~ t !f~ t,l!5lf~ t,l!,

which is similar toL1 with W(t(x))5w(x)p(x) andQ(t(x))5q(x).
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The covariant Poisson equation for Lie algebra-valued mappings defined onR3 is
studied using functional analytic methods. Weighted covariant Sobolev spaces are
defined and used to derive sufficient conditions for the existence and smoothness of
solutions to the covariant Poisson equation. These conditions require, apart from
suitable continuity, appropriate localLp integrability of the gauge potential and
global weightedLp integrability of the curvature form and the source. The possi-
bility of nontrivial asymptotic behavior of a solution is also considered. As a by-
product, weighted covariant generalizations of Sobolev embeddings are
established. ©2004 American Institute of Physics.@DOI: 10.1063/1.1763001#

I. INTRODUCTION

Let us consider two mappingsZ and F taking values in some compact Lie algebraG. The
covariant generalization of Poisson’s equation onR3 is then

D~A!Z5F, ~1!

where

D~A!5 (
k51

3

¹k
2 ,

¹k5]k1@Ak , • #,

andAk stands for aG-valued gauge potential. This equation arises frequently in gauge theorie
it is mostly connected with Gauss’s law. In the Lagrangian formulation of Yang–Mills theory
connection is explicit, since Gauss’s law reads

D~A!A05 (
k51

3

¹kȦk2J0 , Ȧk5
]Ak

]t
,

J0 denoting the matter density. In the Hamiltonian formalism the Gauss law becomes a dive
equation

(
k51

3

¹kEk5J0 ,

but if we split the color-electric fieldEk into longitudinal and transverse components by

Ek5Ek
L1Ek

T ,

a!Electronic mail: Antti.Salmela@Helsinki.Fi
28440022-2488/2004/45(7)/2844/20/$22.00 © 2004 American Institute of Physics
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(
k51

3

¹kEk
L5J0 , (

k51

3

¹kEk
T50,

then a solution for the longitudinal component is given by

Ek
L5¹kF,

whereF satisfies the covariant Poisson equation

D~A!F5J0 .

In addition to these cases the Poisson equation also arises if one tries to transform an a
gauge potentialAm into an equivalent potential

Am5v21Amv1v21]mv,

whereAm satisfies the generalized Coulomb gauge condition

(
k51

3

¹kȦk50,

which was proposed by Cronstro¨m in Ref. 1. It turns out that the gauge transformation matrixv
takes the form of a time-ordered exponential

v~x0,x!5FT expS 2E
0

x0

Z~t,x! dt D Gv~0,x!,

whereZ satisfies the Poisson equation

D~A!Z5 (
k51

3

¹k~A!Ȧk .

These are the most important physical reasons for studying this equation. From a purely
ematical point of view the covariant Poisson equation is also interesting, because it is a s
case of an elliptic system of partial differential equations which probably has not been cons
before in the literature. Research has been done regarding solutions of the whole set of c
Yang–Mills equations,2–5 but these approaches lead to hyperbolic evolution equations w
Gauss’s law becomes a constraint which must hold at all times. The Cauchy data of the p
is assumed to satisfy the constraint and the evolution equations are used to show that the co
then persists. The starting point of this paper is quite different, because time evolution
present in the covariant Poisson equation. Time serves only as a parameter of the mapp
question, but no specific evolution equations are required to hold.

The line of thought and the most important results of this paper are included in the next
sections. Section II deals with the existence of a distributional solution to the covariant Po
equation. Conditions for making this solution smoother are derived in Sec. III, and the poss
of constructing a solution formula is touched upon in Sec. IV. Proofs are gathered in th
section, but the preceding sections are meant to be comprehensible even without referenc
proofs. The notations and conventions used in this paper are summarized below. Gauge po
are written as

Ak~x!5Ak
a~x!Ta ,

where the Lie algebra generatorsTa satisfy
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@Ta ,Tb#5 f ab
cTc .

Summation over repeated indices is implied. The componentsAk
a and the structure constantsf ab

c

are real, because all compact Lie algebras are real. The curvature form of the gauge pote
defined as

Gkl5] lAk2]kAl2@Ak ,Al #,

and the covariant divergence ofGkl is

~¹•G!k5(
j 51

3

¹jGjk .

The definition of a compact Lie algebra implies that there exists a positive definite inner pr

~X,Y!5habX
aYb,

which is invariant under the adjoint action of the gauge group. The infinitesimal form of
property states that

~X,@Y,Z# !52~@Y,X#,Z! for all X,Y,ZPG. ~2!

If G is semisimple, this inner product can be chosen to be the negative of the Killing form~i.e.,
hab52 f ac

df bd
c). The norm induced by this inner product will be denoted byu•u. More generally,

for G-valued tensorsXi 1¯ i r
the norm withnth covariant derivatives reads

u¹nXu5S (
k1

¯(
kn

(
i 1

¯(
i r

u¹k1
¯¹kn

Xi 1¯ i r
u2D 1/2

,

and the normu]nXu with ordinary derivatives is defined analogously. Within the context ofLp

norms it is always understood that the notationiXip stands fori uXu ip . We will also need
multi-index notations for the covariant derivatives. Due to the noncommuting nature of
derivatives it is appropriate to deviate here from the usual definition and instead let a multi-
a denote ann-tuple of ordered coordinate indices

a5~k1 , . . . ,kn!

with the notation for covariant derivatives

¹aX5¹k1
¯¹kn

X.

The partial derivatives]a are defined similarly. The order of a multi-index is simplyuau5n, and
the symbol¹n stands for the collection of all covariant derivatives¹a of ordern. At this point the
reader should take care so as not to confuse the collection of second order covariant derivat¹2

with the covariant LaplacianD(A), and the same warning also applies to the normsu¹2Xu and
uD(A)Xu, which have different meanings. Throughout the paper positive constants will be de
by C, but the values of the constants may change from line to line as they are inessential
proofs.

II. EXISTENCE OF A WEAK SOLUTION

A weak solution of the covariant Poisson equation~1! satisfies

2E (
k51

3

~¹kF̃,¹kZ! d3x5E ~F̃,F ! d3x for all F̃PCc
`~R3,G!,
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when the weak covariant derivatives¹kZ and their commutators withAk are locally integrable.
The subscriptc above refers to compact support. In order to control the asymptotic behaviorZ
in subsequent calculations, introduce weights by writing

F̃~x!5
1

w~x!12s F~x!, w~x!5~11uxu2!1/2, 0,s<1.

This leads to an equivalent definition

E (
k51

3
1

w12s ~¹kF,¹kZ! d3x 2 ~12s!E (
k51

3
xk

w32s ~F,¹kZ! d3x

52E 1

w12s ~F,F ! d3x for all FPCc
`~R3,G!. ~3!

The proof that there exists a solution to this equation is based on the well-known theorem b
and Milgram.6,7 In order to apply this theorem we identify the left-hand side of the definition~3!
as a bilinear mappingB(F,Z) and the right-hand side as a linear functionalf (F). A suitably
defined Sobolev space will play the role of a Hilbert space. We start by defining an inner pr
on the spaceCc

1(R3,G) by

^F,C&15E 1

w12s (
k51

3

~¹kF,¹kC! d3x, ~4!

where it is assumed thatAkPL loc
2 (R3,G). The norm associated with this inner product will b

denoted byi•i1,2. In order to check that this formula really defines an inner product we need
following two results:

Lemma 1: LetG be a compact Lie algebra. Then there exists a constant C.0 such that

u @X,Y# u<CuXu uYu

for all elements X,YPG.
Proof: See Sec. V A.
Proposition 1: Let AkPL loc

2 (R3,G). Then the inequality

S E 1

w32s uFu2 d3xD 1/2

<CS E 1

w12s (
k51

3

u¹kFu2 d3xD 1/2

~5!

holds for all mappingsFPCc
1(R3,G). The constant C does not depend onF.

Proof: See Sec. V B.
Lemma 1 together with Ho¨lder’s inequality ensures that the expression~4! is defined, and

Proposition 1 guarantees that the normiFi1,2 vanishes only whenF[0. The first order Sobolev
space is now defined as the completion ofCc

1(R3,G) in the normi•i1,2, i.e.,

H1~R3,G!5Cc
1~R3,G!.

It goes without saying that this Sobolev space depends ons, which is kept fixed in forthcoming
calculations. Considering Cauchy sequences inH1(R3,G) with elements of classCc

1(R3,G) we can
extend the inner product~4! and Proposition 1 toH1(R3,G). As a result, we see that the nor
i•i1,2 can be extended toH1(R3,G) as it only vanishes for mappings equivalent to zero. Let
now apply the Lax–Milgram theorem to the bilinear mappingB of Eq. ~3!. Employing Schwarz’s
inequality and Proposition 1 yields

uB~Y,Z!u<@11C~12s!#iYi1,2iZi1,2 for all Y,ZPH1~R3,G!,
                                                                                                                



nishes

’s

Eq.

sts

stage.
of
l
Thus
nity.

at

d

2848 J. Math. Phys., Vol. 45, No. 7, July 2004 A. Salmela

                    
which establishes the boundedness ofB. Coercivity is proved by examining the second term ofB
with mappings of classCc

1(R3,G) first. Equation~2! shows that almost everywhere

~F,¹kF!5~F,]kF!5 1
2 ]kuFu2,

and this leads to the identity

2~12s!E (
k51

3
xk

w32s ~F,¹kF! d3x52
1

2
~12s!E (

k51

3

]kS xk

w32s uFu2D d3x

1
1

2
~12s!E 31suxu2

w52s uFu2 d3x.

The first integral on the right-hand side can be converted into a surface integral which va
due to the compact support ofF. The second integral is non-negative and hence

2~12s!E (
k51

3
xk

w32s ~F,¹kF! d3x>0.

Taking a Cauchy sequence (Fm) of mappings belonging toCc
1(R3,G) and converging to an

arbitrary elementZ in H1(R3,G) we see that the inequality above holds forZ also. Indeed, the
integrals withFm converge to the integral withZ by virtue of Proposition 1 and Schwarz
inequality. As a result,

B~Z,Z!>iZi1,2
2 for all ZPH1~R3,G!

and the coercivity condition is satisfied. Now the Lax–Milgram theorem yields a solution to
~3! whenever the right-hand side defines a bounded linear functional onH1(R3,G). By Schwarz’s
inequality the condition

iw~1/2!(11s)Fi2,` ~6!

suffices for that purpose. We can summarize the result as follows:
Theorem 1: Suppose that AkPL loc

2 (R3,G) and the condition (6) is satisfied. Then there exi
in H1(R3,G) a weak solution of the covariant Poisson equation (1).

Some words about the asymptotic behavior of the solution are appropriate at this
Roughly speaking, the mappings ofH1(R3,G) tend to zero at infinity like some negative power
the radiusuxu. In fact, there is a more general theorem by Cronstro¨m8 stating that two classica
solutions of the covariant Poisson equation are equal if their difference vanishes at infinity.
in order to obtain more solutions we must consider mappings with nontrivial behavior at infi
Let us assume that a mappingZ0 solves the Poisson equation asymptotically in the sense th

iw~1/2!(11s)~F2D~A!Z0!i2,`. ~7!

Then by Theorem 1 there exists a solutionYPH1(R3,G) to the equation

D~A!Y5F2D~A!Z0

and accordingly, a mapping defined by

Z5Y1Z0 ~8!

solves the original equation~1!. Since the mappingY tends to zero at infinity in a generalize
sense, the asymptotic behavior ofZ is now determined byZ0 . Solutions with nontrivial behavior
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can thus be obtained by constructing such a mappingZ0 that the condition~7! is in force. To a
great extent the details of the construction depend on the asymptotic behavior of the sourF.

III. SMOOTHNESS OF SOLUTIONS

Now that we have proved the existence of a distributional solution to the Poisson equat
is time to consider the smoothness properties of this solution. The standard technique is to
higher order Sobolev spaces and then apply the fact that these spaces are continuously em
in the spaces of mappings with continuous and bounded derivatives. Then it remains to d
suitablea priori estimate which enables us to conclude that a solution under certain assum
belongs to a higher order Sobolev space. Let us begin with the definitions ofnth order Sobolev
spaces. Throughout this section the following local assumptions are supposed to hold:

Assumption: If n52, we assume that

AkPC~R3,G!, ]1AkPL loc
3 ~R3,G!, ]2AkPL loc

1 ~R3,G!, GklPC~R3,G!, ~9a!

while in the case n>3 these assumptions are replaced by

AkPCn23~R3,G!, ]n22AkPL loc
q ~R3,G! for some q.3, ]n21AkPL loc

2 ~R3,G!,

GklPCn23~R3,G!. ~9b!

These conditions enable us to define a higher order inner product on the spaceCc
n(R3,G) by

^F,C&n5 (
p51

n E w(2p23)(12s) (
k151

3

¯ (
kp51

3

~¹k1
¯¹kp

F,¹k1
¯¹kp

C! d3x.

The corresponding norm will be denoted byi•in,2 . Now thenth order Sobolev space is defined

Hn~R3,G!5Cc
n~R3,G!,

where the closure is taken in the normi•in,2 . These spaces are going to be embedded in
spacesCB

n22(R3,G) consisting ofCn22(R3,G) mappings for which the norm

iFin22,̀ 5 max
0 <p <n22

sup
xPR3

$w~x!p(12s)u¹pF~x!u%

is finite. Note thatAkPCn23(R3,G) at this stage and the covariant derivatives in this definit
thus yield continuous mappings. We can now formulate the embedding property exactly:

Theorem 2 „Sobolev embeddings…: Suppose that the assumptions (9) hold. Then the sp
Hn(R3,G) are continuously embedded in the spaces CB

n22(R3,G), i.e.,

Hn~R3,G!,CB
n22~R3,G!. ~10!

Proof: See Sec. V C.
The following a priori estimate establishes the inductive chain that allows us to include

distributional solution into higher order Sobolev spaces:
Proposition 2: Suppose that the conditions (9) are in force. Then the inequality

iFin,2<C~ iFin21,21iw(n23/2)(12s)¹n22D~A!Fi2! ~11!

holds for allFPCc
n11(R3,G). The constant C is independent ofF, but it depends on weighted Lp

norms of the curvature form as follows:

C5C~ iw2(12s)Gi` ,iw2(12s)~¹•G!i3!,
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when n52, whereas

C5C~ iw(p12)(12s)¹pGi` ,iw(p12)(12s)¹p~¹•G!i3!, p50, . . . ,n23,

when n>3. The constant is finite when the norms in question are finite.
Proof: See Sec. V D.
It should be mentioned that the form of this estimate is not unique as there is some fre

in choosing the curvature norms which are to be bounded. The guideline here has been to k
asymptotic requirements on the curvature as mild as possible and to make the transition
unweighted cases51 easy. It is possible to relax the local assumptions, but that might happ
the cost of asymptotic conditions. The reason for worrying about the asymptotic behavior
curvature form is a paper by Coleman9 in which he shows that the only nonsingular soluti
satisfying the source-free Yang–Mills equations is the vacuum solution provided that the con

lim
uxu→`

uxu3/21eGmn
a ~x,t !50, 0,e, 1

2

holds uniformly in time in the regiont.0. It is easy to check that the norms of Proposition
escape this condition sinces51 in the source-free case. When sources are present, the so
will always be nontrivial. Now in order to extend Proposition 2 to mappings inHn(R3,G) we
employ the following density result:

Lemma 2: Suppose that the conditions (9) are in force. If

ZPHn21~R3,G! and w(n23/2)(12s)¹n22D~A!ZPL2~R3,G!, ~12!

then there exists a sequence(Fm) of mappings belonging to Cc
`(R3,G) such thatFm→Z in

Hn21(R3,G) and also

iw(n23/2)(12s)¹n22D~A!~Z2Fm!i2→0.

Proof: See Sec. V E.
Taking a Cauchy sequence (Fm) of Cc

`(R3,G) mappings converging toZ in both norms of
Lemma 2 and inserting it into the estimate~11! shows that the sequence also converges
Hn(R3,G) towardsZ. As a result,

ZPHn~R3,G!,CB
n22~R3,G!.

If the derivatives ofZ satisfy the Poisson equation~1! in a distributional sense, the covaria
Laplacian norms ofZ can then be replaced by the corresponding norms ofF. In short:

Theorem 3: Suppose that the assumptions (9) hold and the curvature norms of Proposi
are finite. If in addition

iw(p11/2)(12s)¹pFi2,`, p50, . . . ,n22, ~13!

then the solution of the covariant Poisson equation given by Theorem 1 belongs to CB
n22(R3,G).

When solutions with nontrivial asymptotic behavior are constructed by writingZ in the form
~8!, this theorem can be used to deduce the smoothess properties ofY, replacing onlyF with
F2D(A)Z0 in the condition~13!. The ultimate smoothness ofZ then depends on the properties
Z0 .

IV. CONCLUSIONS

Theorems 1 and 3 are the main results regarding solutions of the covariant Poisson eq
All the assumptions of these theorems are only sufficient, and it remains an open ques
determine the necessary conditions. However, it is likely that some bounds should be impo
the curvature form. In fact, similar studies by Aubin,10 Cantor,11 and Eichhorn12 on Riemannian
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manifolds and vector bundles indicate that bounds are also needed for the curvature tensor
derivatives in these approaches. As regards the smoothness assumptions~9!, the fact that they are
all local is consistent with the principles of fibre bundle theory in the sense that gauge pote
are considered as local objects. Global integrability conditions can be imposed on the cur
form without problems because the Lie algebra normsu¹pGu andu¹p(¹•G)u are gauge invariant

A slight shortcoming of the Lax–Milgram theorem is the fact that it does not give an exp
formula for the solution whose existence it proves. A formal procedure exists for separable H
spaces, though. Following the proof of separability for ordinary Sobolev spaces~see, e.g., Ref. 7
Sec. 6.3! it is straightforward to check that the weighted covariant Sobolev spaceH1(R3,G) is
indeed separable. Then it is possible, at least in principle, to construct a countable ortho
basis$Cn% for H1(R3,G). ExpressingZ andF in Eq. ~3! as generalized Fourier series,

Z5 (
n51

`

anCn , F5 (
n51

`

bnCn ,

we see that the coefficientsan are to be determined from the equation

an2 (
m51

`

am~12s!E (
k51

3
xk

w32s ~Cn ,¹kCm! d3x52E 1

w12s ~F,Cn! d3x.

The superficial simplicity of this solution formula hides the practical difficulties in constructin
orthonormal basis forH1(R3,G). Also in traditional approaches to the covariant Poisson equa
the solution formulas tend to be too complicated. Employing suitable asymptotic condition
inverting the ordinary Laplacian it is possible to convert the equation into an integral equatio
matter whether one iterates the resulting equation or applies Fredholm’s formulas, the soluti
always be rather complicated. Maybe we should not even expect the covariant Poisson equ
have simple and elegant solutions.

V. PROOFS

A. Lemma 1

This result is almost self-evident because the structure constants are bounded. Anyway
be explicit and consider the norm of the commutator

u @X,Y# u25XaMaeX
e,

Mae5hcdf ab
cf e f

dYbYf .

Using Cauchy’s inequality

XaXe< 1
2 @~Xa!21~Xe!2#

we can derive the bound

u @X,Y# u2<C~Y! (
a51

d

~Xa!2, ~14!

where

C~Y!5 max
1<a<d

H (
e51

d

uMaeuJ
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andd denotes the dimension of the algebra. Applying similar techniques to the matrixMae we can
also bound its elements by

uMaeu<C̃ae(
b51

d

~Yb!2,

where the matrixC̃ae is independent ofY. Hence we obtain an identical bound for the const
C(Y) above. The proof is completed by noting that the metric tensorhab has strictly positive
eigenvalues and the normu•u is thus equivalent with thed-dimensional Euclidean norm appearin
in inequality ~14!. h

B. Proposition 1

Let us begin with a more general theorem due to Gurka and Opic13 regarding real functions on
R3.

Theorem 4 „Gurka –Opic…: Let 1<p,` and let v̄0 , v̄1 be real, measurable, almost ever
where positive and finite functions of one real variable. Suppose further that they are bo
below and above by positive constants on every compact interval of the positive real axis an
there exists a constant k.0 and a number t0P]0,`@ such that

v̄0~ t !>k v̄1~ t !t2p f or all t>t0 .

Finally, if

sup
0,t,`

S E
0

t

v̄0~ t !t2 dtD 1/pS E
t

`

@ v̄1~ t !t2#21/(p21)dtD 121/p

,`, ~15!

then there exists a constant C.0 such that

S E uu~x!up v̄0~ uxu! d3xD 1/p

<CS (
i 51

3 E u] iu~x!up v̄1~ uxu! d3xD 1/p

~16!

for all integrable functions u such that the norms of the inequality are finite. The constant
independent of u.

Proof: This is a special case of Theorem 14.5. in Ref. 13. In their remarks Gurka and
state without proof that the conditions~15! and ~16! are actually equivalent. h

We can now make use of this theorem and choose

p52, v̄0~ t !5~11t2!2 @~32s!/2#, v̄1~ t !5~11t2!2 @~12s!/2#, 0,s<1.

This leads to the inequality

S E 1

w32s uuu2 d3xD 1/2

<CS E 1

w12s (
k51

3

u]kuu2 d3xD 1/2

, ~17!

which holds in particular for alluPCc
1(R3). Condition ~15! fails for s50, indicating that the

inequality ~17! cannot be improved by settings to zero. In order to derive the inequality~5! we
make use of a trick employed by Ginibre and Velo in Ref. 3. Namely, for a map
FPCc

1(R3,G) we define a family of functions

ud~x!5~ uF~x!u21d2!1/22d, d.0. ~18!

Clearly udPCc
1(R3) and

]kud5~ uFu21d2!21/2~]kF,F!. ~19!
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As before, we note that

~]kF,F!5~¹kF,F! ~20!

wheneverAk is finite. SinceAkPL loc
2 (R3,G), it follows that ¹kFPL2(R3,G) and Eq.~20! holds

almost everywhere. Combining Eqs.~19! and ~20! we see that

u]kudu<u¹kFu ~21!

almost everywhere. Inequalities~17! and ~21! finally yield inequality~5! in the limit d→0. h

C. Sobolev embeddings „10…

These embeddings constitute an obvious generalization of well-known results for real
tions. Sobolev embeddings for Riemannian vector bundles have previously been deriv
Cantor11 and Eichhorn,12 but the results are not directly applicable here, because they deal
unweighted inequalities only. For this reason it may be appropriate to present a derivation
embeddings~10! here. The most essential part of the proof consists of deriving weighted g
alizations of the ordinary embeddings, and the rest follows by employing the trick~18!. Although
there are very general weighted inequalities in Refs. 13 and 14 already, they are of little us
because inequalities involvingL` norms are not included in them. For that reason we are goin
proceed using a method presented in Chap. VI.6 of Ref. 15. Yet there is a small improvem
the calculations below compared with those of Ref. 15. Namely, it proved to be possible to
the Sobolev space weight factors of thenth partial derivatives fromwn2 @(32s)/2# to w(n23/2)(12s),
which in turn leads to milder asymptotic conditions in Theorem 3. Let us begin with the fam
interpolation inequalities for real functions:16

Theorem 5 „Gagliardo–Nirenberg–Sobolev…: Let 1<q<`, 1<r<`, 1<p<`,
0<a<1 and assume that the following relation holds true:

1

p
5

12a

r
1aS 1

q
2

1

3D .

In the case p5` assume further that r,` and a,1. Now if r,` or q>3, then there exists a
constant C, depending only on p, q, and r, such that the inequality

ivip<C ivi r
12a i]viq

a ~22!

holds for all functionsvPLr whose derivatives lie in Lq. In the case r5`, q,3 the inequality
holds for functions which in addition tend to zero at infinity or which lie in Lr 0 for some finite
r 0.0.

The next step is to perform a change of variables by

yk5
xk

w~x!12s , 0,s<1.

This mapping is one-to-one and smooth in the range ofs and we can define a new functionu by

u~y!5v~x~y!!.

It is easily seen that

E uu~y!ur d3y5E uv~x!ur~detM ! w~x!23(12s) d3x,

where
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Mkl5dkl2~12s!
xkxl

11uxu2
, detM5

11suxu2

11uxu2
, s<detM<1.

As a result, we obtain the inequalities

s1/r iw2 ~3/r !(12s)vi r<iui r<iw2~3/r !(12s)vi r . ~23!

This is also valid ifr 5`, because the norms ofu andv are equal then. For the derivative nor
we need to know in addition that

u]uu25 (
k, l 51

3
]v
]xk

@M 21~M 21!T#kl

]v
]xl

w~x!2(12s),

uju2< (
k, l 51

3

jk@M 21~M 21!T#klj l<
1

s2 uju2 for all jPR3.

These properties together with the previous ones enable us to establish the inequality

s1/qiw(12 ~3/q!)(12s)]viq<i]uiq<
1

s
iw(12 ~3/q!)(12s)]viq . ~24!

Combining the inequalities~22!–~24! we are finally led to

iw2 ~3/p!(12s)vip<Cs2a21/p iw2~3/r !(12s)vi r
12a iw(12 ~3/q!)(12s)]viq

a .

It is still possible to go a step further by defining a new functionu through

v~x!5w~x!bu~x!, bPR,

and a fairly straightforward application of Minkowski’s inequality then yields

iwb2 ~3/p!(12s)uip<C iwb2~3/r !(12s)ui r
12a~ iwb1(12 ~3/q!)(12s)]uiq

1ubu iwb211(12 ~3/q!)(12s)uiq!a.

Now the trick ~18! allows us to pass over to Lie algebra-valued mappings and to replaceuuu by
uFu andu]uu by u¹Fu in the inequality above. In addition to that, it is only required that the w
derivatives ofud are given by the formula

]kud5~ uFu21d2!21/2~¹kF,F!.

Following the proof by Ginibre and Velo3 it suffices to assume that there exists a sequence (F)m

of continuously differentiable mappings satisfying

Fm→F in L loc
1 ~R3,G! and almost everywhere,

¹kFm→¹kF in L loc
1 ~R3,G!

in order to guarantee the validity of the derivative formula. In particular,F does not have to be
continuous—local integrability ofF and its covariant derivatives suffices. Using standard smo
ing techniques~see Sec. V E! it is possible to prove that a sequence (F)m with the desired
properties can be constructed ifAk is continuous. Thus

iwb2 ~3/p!(12s)Fip<C iwb2~3/r !(12s)Fi r
12a~ iwb1(12 ~3/q!)(12s)¹Fiq

1 ubu iwb2 ~3/q!(12s)Fiq!a,
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where we have also made use of the fact thatw21<w2(12s). More generally, we can now appl
the above inequality tomth covariant derivatives ofF provided that the norms on the right-han
side are finite and the assumptions of Theorem 5 are in force. For the Sobolev embeddin
need the following three applications of this inequality:
~1!

iw(n22)(12s)¹n22Fi`<C iw(n25/2)(12s)¹n22Fi6
12a~ iw(n2123/q)(12s)¹n21Fiq

1~n22! iw(n2223/q)(12s)¹n22Fiq!a, ~25a!

q.3, a5
q

3~q22!
,

(2)

iw(n25/2)(12s)¹n22Fi6<C ~ iw(n25/2)(12s)¹n21Fi21~n22! iw(n27/2)(12s)¹n22Fi2!,
~25b!

(3)

iw(n2123/q)(12s)¹n21Fiq<C iw(n25/2)(12s)¹n21Fi2
12b~ iw(n23/2)(12s)¹nFi2

1~n21! iw(n25/2)(12s)¹n21Fi2!b, ~25c!

q<6, b53S 1

2
2

1

qD .

Here it is assumed thatFPCc
n(R3,G) and the conditions~9! are satisfied. Combining thes

inequalities and recalling the definitions of the normsi•in,2 and i•in22,̀ we get

iw(n22)(12s)¹n22Fi`<C iFin,2 ,

and hence

iFin22,̀ <C iFin,2 for all FPCc
n~R3,G!.

Taking a Cauchy sequence (F)mPCc
n(R3,G) converging to an elementZPHn(R3,G) proves the

embedding~10! in the limit m→`. h

D. Proposition 2

The proof is elementary in principle but tedious in practice. It consists of two parts, the
being straightforward calculus with smooth enough gauge potentials, while in the second p
smoothness assumptions are relaxed by examining the convergence properties of the cu
norms. We begin by assuming thatAkPCn(R3,G) and then consider a mappingCPCc

3(R3,G).
Making use of the fact that

@¹k ,¹l #opC52@Gkl ,C#,

where @•,•#op stands for the operator commutator of two covariant derivatives, we deduc
identity

wbu¹k¹lCu25] l@wb~¹kC,¹k¹lC!#2]k@wb~¹kC,¹l¹lC!#2]k@wb~@Gkl ,C#,¹lC!#

2]k@~] lw
b!~¹kC,¹lC!#1~]k] l wb!~¹kC,¹lC!1~] lw

b!~¹k¹kC,¹lC!

1~]kw
b!~¹l¹lC,¹kC!1~]kw

b!~@Gkl ,C#,¹lC!1wb~@¹kGkl ,C#,¹lC!

22wb~¹kC,@Gkl ,¹lC#!1wb~¹k¹kC,¹l¹lC!.
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Integrating this equation with the help of the Gauss–Green theorem, the surface terms van
to the compact support ofC. Let us denote this support byK. Using now Lemma 1 and the
inequality

u]kwbu<Cwb2k

together with Ho¨lder’s inequality we find the estimate

iwb/2¹2Ci2
2<C~ iwb/221¹Ci2

21iwb/2D~A!Ci2 iwb/221¹Ci2

1iw2(12s)Gi`,K iwb/22(22s)Ci2 iwb/22(12s)¹Ci2

1iw2(12s)~¹•G!i3,K iwb/22(12s)Ci6 iwb/22(12s)¹Ci2

1iw2(12s)Gi`,K iwb/22(12s)¹Ci2
21iwb/2D~A!Ci2

2!.

Let us apply this inequality by choosing

C5¹l 1
¯¹l n22

F, b5~2n23!~12s!.

If n52, we employ Proposition 1, inequality~25b!, the propertyw21<w2(12s) and finally
Cauchy’s inequality to get

iw~12s!/2¹2Fi2
2<C$iw~12s!/2D~A!Fi2

21~11iw2(12s)Gi`,K

1iw2(12s)~¹•G!i3,K! iw2 @~12s!/2#¹Fi2
2%. ~26!

This establishes a prestage of inequality~11!, where the curvature norms are local, i.e., they
taken over the support ofF. The constantC depends onF only through these curvature norm
For higher order derivatives withn>3 we use inequality~25b! to bound the derivative norms u
to the (n21)th order. The highest order term with the covariant Laplacian is handled by wr

¹k¹k¹l 1
¯¹l n22

F5¹l 1
¯¹l n22

¹k¹kF1@¹k¹k ,¹l 1
¯¹l n22

#opF

and employing the decomposition

@¹k¹k ,¹l 1
¯¹l n22

#opF52 (
p50

n23

(
s150

1

¯ (
sp50

1

~@¹ l 1

s1
¯¹ l p

sp¹kGklp11
,¹ l 1

12s1
¯¹ l p

12sp¹l p12
¯¹l n22

F#

12 @¹ l 1

s1
¯¹ l p

spGklp11
,¹ l 1

12s1
¯¹ l p

12sp¹k¹l p12
¯¹l n22

F#!,

which can be proved by induction. Ifp50 or p5n23 this formula requires some interpretatio
suppressing those sums and derivatives that become ill-defined. The important thing is to
that the terms of this decomposition, when summed overk, are bounded in the Lie algebra nor
by the norms

u¹p~¹•G!u u¹n232pFu, u¹pGu u¹n222pFu, 0<p<n23.

Therefore, upon using Ho¨lder’s and Cauchy’s inequalities together with the estimate~25b!, we
deduce the bound
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iw(n23/2)(12s)¹nFi2
2<CH iw(n23/2)(12s)¹n22D~A!Fi2

2

1 (
p50

n23

~ iw(p12)(12s)¹p~¹•G!i3,K
2 iFin222p,2

2

1iw(p12)(12s)¹pGi`,K
2 iFin222p,2

2 !

1~11iw2(12s)Gi`,K1iw2(12s)~¹•G!i3,K! iFin21,2
2 J , ~27!

which in turn leads to an inequality like~11! with local curvature norms.
We are now done with the first part of the proof. The requirementAkPCn(R3,G) was dictated

by the Gauss–Green theorem, but we can relax this condition by a few orders of smoothn
fact, the assumptions~9! will prove to be sufficient for Proposition 2 to hold. The technique is
apply the estimates~26! and ~27! to mollified gauge potentials. If the norms appearing in th
inequalities converge to the original norms in the limit when the mollification is removed, we
succeeded in proving the inequalities with relaxed smoothness assumptions. Mollification
fined by the usual formula

Ak
(d)~x!5~hd* Ak!~x!5E hd~x2y!Ak~y! d3y

with

hd~x!5
1

d3 hS x

d D , h~x!5H C expS 2
1

12uxu2D , uxu,1

0, uxu>1,
E h~x! d3x51.

It is also assumed that all derivatives of the gauge potentialAk up to the highest order implied b
the curvature norms are at least locally integrable. This assumption ensures that the o
differentiation and mollification can be reversed. The covariant derivative related to the mo
potential will be denoted by

¹k
(d)5]k1@Ak

(d) , • #,

and the corresponding curvature form is

Ĝkl
(d)5] lAk

(d)2]kAl
(d)2@Ak

(d) ,Al
(d)#.

Also define a mollified normu¹pGu(d) by

u¹pGu(d)5S (
k1

¯(
kp

(
l

(
m

U E hd~x2y!¹k1
¯¹kp

Glm~y! d3yU2D 1/2

.

It is well-known that in the limitd→0

iw(p12)(12s)u¹pGu(d)i`,K→iw(p12)(12s)u¹pGu i`,K , ~28!

when¹pGlmPC(R3,G). However, we eventually need the result

iw(p12)(12s)u~¹ (d)!pĜ(d)u i`,K→iw(p12)(12s)u¹pGu i`,K , ~29!

and this can be proved using the limit~28! combined with the estimate
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i w(p12)(12s)~ u¹pGu(d)2u~¹ (d)!pĜ(d)u!i `,K

<(
k1

¯(
kp

(
l

(
m

i w(p12)(12s)u hd* ~¹k1
¯¹kp

Glm!2¹k1

(d)
¯¹kp

(d)Ĝlm
(d)u i `,K .

~30!

Using the decomposition

¹k1
¯¹kp

Glm5(
j 50

p

(
i 151

i 221

¯(
i j 5 j

p

]k1
¯]ki 121

~adAki 1
!]ki 111

¯]ki j 21
~adAki j

!]ki j 11
¯]kp

Glm

~31!

with the notation adAk5@Ak , • # and recalling the definition of the curvature form we see t
each term of this decomposition takes the form

ad~]a i 1Aki 1
!¯ad~]a i jAki j

!]a i j 11Akp12
, ~32a!

where the multi-indicesa i j
satisfy

(
s51

j 11

ua i s
u5p112 j , 0< j <p11. ~32b!

Since there are a finite number of terms in the formulas~30! and ~31! altogether, it suffices to
consider each term separately. In inequality~30! the contribution from each term of the form~32a!
is

i w(p12)(12s)u hd* ~ad~]a i 1Aki 1
!¯ad~]a i jAki j

!]a i j 11Akp12
!

2ad~]a i 1Aki 1

(d)!¯ad~]a i jAki j

(d)!]a i j 11Akp12

(d) u i `,K

<ess sup
xPK

C U E d3y1¯d3yj 11hd~x2y1!¯hd~x2yj 11!

3$ad~]a i 1Aki 1
~yj 11!!¯ad~]a i jAki j

~yj 11!!]a i j 11Akp12
~yj 11!

2ad~]a i 1Aki 1
~y1!!¯ad~]a i jAki j

~yj !!]a i j 11Akp12
~yj 11!%U ~33a!

<C(
s51

j

ess sup
xPK

U E d3y1¯d3yj 11 hd~x2y1!¯hd~x2yj 11!

3ad~]a i 1Aki 1
~yj 11!!¯ad~]a i sAki s

~yj 11!2]a i sAki s
~ys!!

3ad~]a i s11Aki s11
~ys11!!¯]a i j 11Akp12

~yj 11!U , j >1, ~33b!

and in the casej 50 expression~33a! vanishes. The constantC corresponds to the upper bound
the weight factor onK, and in deriving the last inequality the formula

adB1¯adBm2adC1¯adCm5(
s51

m

adB1¯ad~Bs2Cs!adCs11¯adCm

was used. Applying now Ho¨lder’s inequality and Lemma 1 to the expression~33b! we see that
each term in the sum is bounded by
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ess sup
ys ,yj 11PKd

uys2yj 11u< 2d

U ]a i sAki s
~yj 11!2]a i sAki s

~ys!U )
r 51
rÞs

j 11

ess sup
yPKd

U ]a i rAki r
~y!U ,

Kd5$xPR3 u dist~x,K !<d%.

Since now

ua i s
u<p<pmax5H 0, n52,

n23, n>3,

the bound above tends to zero in the limitd→0 for gauge potentials of classCpmax(R3,G). As a
result,

i w(p12)(12s)~ u¹pGu(d)2u~¹ (d)!pĜ(d)u!i `,K→ 0,

and together with the limit~28! this establishes the desired convergence property~29!. The L3

curvature norm is treated similarly. We define a mollified norm

u¹p~¹•G!u(d)5S (
k1

¯(
kp

(
m

U E hd~x2y!¹k1
¯¹kp(l

¹lGlm~y! d3yU2D 1/2

,

which satisfies

iw(p12)(12s)u¹p~¹•G!u(d)i3,K ——→
d→0

iw(p12)(12s)u¹p~¹•G!u i3,K ~34!

when u¹p(¹•G)uPL loc
3 . An estimate for the norm

i w(p12)(12s)~ u¹p~¹•G!u(d)2u~¹ (d)!p~¹ (d)
•Ĝ(d)!u!i 3,K ~35!

is obtained by decomposing the expression

¹k1
¯¹kp(l

¹lGlm

into terms of the form~32! with p replaced byp11 as there is one additional derivative now. A
before, only terms withj >1 contribute to the norm~35!, these contributions being bounded by t
integrals

E
K
d3x U E d3y1¯d3yj 11 hd~y1!¯hd~yj 11!ad~]a i 1Aki 1

~x2yj 11!!¯

3ad~]a i sAki s
~x2yj 11!2]a i sAki s

~x2ys!!ad~]a i s11Aki s11
~x2ys11!!¯]a i j 11Akp13

~x2yj 11!U 3

<C ess sup
uy1u< d

¯ ess sup
uyj 11u< d

E
K
d3x ~ u ]a i 1Aki 1

~x2yj 11!u¯u ]a i sAki s
~x2yj 11!2]a i sAki s

~x2ys!u

3u ]a i s11Aki s11
~x2ys11!u¯u ]a i j 11Akp13

~x2yj 11!u!3. ~36!
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The last inequality was derived by employing Lemma 1 and Ho¨lder’s inequality repeatedly. Now
if j >2, we haveua i s

u<pmax and the integrand of the estimate~36! is continuous, meaning that th
whole expression vanishes in the limitd→0. In the casej 51 there are two multi-indices satis
fying

ua i 1
u1ua i 2

u<pmax11.

If one of them takes the maximal value, the other vanishes and accordingly, we can make
the fact that]pmax11AkPLloc

3 (R3,G) and employ Ho¨lder’s inequality to get such a bound for th
integral~36! that it vanishes whend is sent to zero. As a result, the norm~35! also has a vanishing
limit, and combined with the limit~34! we get

iw(p12)(12s)u~¹ (d)!p~¹ (d)
•Ĝ(d)!u i3,K→iw(p12)(12s)u¹p~¹•G!u i3,K . ~37!

It still remains to consider the convergence of the Sobolev norms. Let us denote byiFin,2
(d) the

norm evaluated with the mollified gauge potential. From the estimate

u iFin,22iFin,2
(d) u< (

p51

n

(
k1

¯(
kp

iw(p23/2)(12s)u¹k1
¯¹kp

F2¹k1

(d)
¯¹kp

(d)Fu i2 ~38!

and the decomposition of the derivatives¹k1
¯¹kp

F into terms of the form

ad~]a i 1Aki 1
!¯ad~]a i jAki j

!]a i j 11F,

(
s51

j 11

ua i s
u5p2 j , 0< j <p

it is evident that each term in inequality~38! is bounded by integrals of the form

E
K
d3x U E d3y1¯d3yj hd~y1!¯hd~yj !ad~]a i 1Aki 1

~x!!¯ad~]a i sAki s
~x!2]a i sAki s

~x2ys!!

3ad~]a i s11Aki s11
~x2ys11!!¯]a i j 11F~x!U 2

<C ess sup
uy1u< d

¯ess sup
uyj u< d

E
K
d3x ~ u ]a i 1Aki 1

~x!u¯u ]a i sAki s
~x!2]a i sAki s

~x2ys!u

3u ]a i s11Aki s11
~x2ys11!u¯u ]a i j 11F~x!u!2 ~39!

with j >1. Inspection of all possible values of the multi-indicesua i s
u indicates that the previou

smoothness assumptions, complemented by]n21AkPL loc
2 (R3,G), are sufficient to make the boun

~39! vanish in the limitd→0. What this means is that

iFin,2
(d)→iFin,2 ,

and together with the limits~29! and ~37! this completes the proof of inequalities~26! and ~27!
under the relaxed assumptions~9!. Replacing the local curvature norms by global ones we fina
find ourselves at the end of this long proof. h

E. Lemma 2

Intuitively this lemma is rather obvious, but strictly speaking we do not yet know th
smooth enough sequence converging inHn21(R3,G) also converges in the norm involving th
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covariant Laplacian. The proof follows the usual steps, beginning with approximations with
cated mappings and ending with density results for mollified mappings. A sequence of trun
mappings is defined by

Zm~x!5tm~x!Z~x!

with

tm~x!5tS x

mD , t~x!5H 1, 0<uxu<1,

0, uxu>2.

When 1<uxu<2, it is assumed thatt is infinitely smooth and 0<t(x)<1. In order to approximate
the Sobolev norm we notice that

iZm2Zin21,2< (
p51

n21

(
k1

¯(
kp

iw(p23/2)(12s)¹k1
¯¹kp

~Zm2Z!i2 ~40!

and then estimate each term in the sum separately. The covariant derivatives are decomp

¹k1
¯¹kp

~Zm2Z!5~tm21!¹k1
¯¹kp

Z1 ( 8
uau<p21

~]actm! ¹aZ, ~41!

where the prime indicates that the indices ofa are assumed to be in ascending order,

a5~ki 1
, . . . ,ki q

!, 1< i 1,¯, i q<p,

and whereac stands for the complement ofa, i.e.,

ac5~k1 , . . . ,kp!\a.

The norm of the first term in the decomposition~41! can be made small by using the result th

E
uxu> m

w(2p23)(12s)u¹pZu2 d3x ——→
m→`

0, ~42!

whenZPHn21(R3,G). For the remaining terms withuau>1 we deduce the bound

E w(2p23)(12s)u]actmu2 u¹aZu2 d3x< S sup
1< uxu/m <2

w2(p2uau)(12s)u]actmu2D
3E

1< uxu/m <2
w(2uau23)(12s)u¹aZu2 d3x. ~43!

The factor on the right-hand side is bounded, because

sup
1< uxu/m < 2

w~x!2(p2uau)(12s)u]actm~x!u2<m22(p2uau)s sup
1<j< 2

w~j!2(p2uau)(12s)u]act~j!u2,

j5
x

m
,

and the integral in the formula~43! tends to zero by virtue of the limit~42!. Similarly, the term
with uau50, ac5(k1 , . . . ,kp) is seen to converge to zero by the estimates
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E w(2p23)(12s)u]actmu2 uZu2 d3x< S sup
1< uxu/m <2

w2p22(p21)su]actmu2D
3E

1< uxu/m <2
w2(32s)uZu2 d3x

and

sup
1< uxu/m < 2

w~x!2p22(p21)su]actm~x!u2<m22(p21)s sup
1<j< 2

w~j!2p22(p21)su]act~j!u2.

The norm with the covariant Laplacian is handled similarly, employing the decomposition

¹k1
¯¹kn22

D~A!~Zm2Z!5~tm21!¹k1
¯¹kn22

D~A!Z1(
l

( 8
uau<n21

~]âctm! ¹aZ

with

âc5~k1 , . . . ,kn22 ,l ,l !\a.

The first term yields a norm tending to zero due to the assumption~12!, and the other terms ar
made small by the limit~42!. Since there are a finite number of terms in both decompositions
see that it is possible to choose a truncated mappingZm arbitrarily close toZ in both norms.

The mappingZm above vanishes~modulo sets of measure zero! outside some compact setK.
Therefore we can define a mapping of classCc

`(R3,G) by

F (d)~x!5E hd~y!Zm~x2y! d3y.

Let us now estimate the distance of this mapping fromZm in the two norms in question. Making
use of formula~40! with Z replaced byF (d) we are led to consider weightedL2 norms of the
derivativesu¹p(F (d)2Zm)u. For this purpose we write

¹k
(x)Zm~x2y!5~¹k

(x2y)1adAk~x,y!!Zm~x2y!,

Ak~x,y!5Ak~x!2Ak~x2y!,

and derive a decomposition similar to Eq.~31!,

¹k1

(x)
¯¹kp

(x)Zm~x2y!5(
j 50

p

(
i 151

i 221

¯(
i j 5 j

p

¹k1

(x2y)
¯¹ki 121

(x2y)

3~adAki 1
!¹ki 111

(x2y)
¯¹ki j 21

(x2y)~adAki j
!¹ki j 11

(x2y)
¯¹kp

(x2y)Zm~x2y!

5¹k1

(x2y)
¯¹kp

(x2y)Zm~x2y!1 ¯ , ~44!

where the remaining terms take the form

ad~¹
(x2y)

a i 1 Aki 1
!¯ad~¹

(x2y)

a i j Aki j
!¹

(x2y)

a i j 11 Zm~x2y! ~45a!

with

(
s51

j 11

ua i s
u5p2 j , 1< j <p . ~45b!
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The first term of the decomposition~44! is combined with thepth covariant derivative ofZm(x)
to get a bound

E
Kd

d3x w~x!(2p23)(12s)U E d3y hd~y!~¹k1

(x2y)
¯¹kp

(x2y)Zm~x2y!2¹k1

(x)
¯¹kp

(x)Zm~x!!U 2

<C ess sup
uyu< d

E
Kd

d3x u ¹k1

(x2y)
¯¹kp

(x2y)Zm~x2y!2¹k1

(x)
¯¹kp

(x)Zm~x!u 2,

which tends to zero in the limitd→0, because now¹pZmPL loc
2 (R3,G). For terms of the form~45!

we get bounds of the form

ess sup
uyu< d

E
Kd

d3x ~ u¹
(x2y)

a i 1 Aki 1
u¯u¹

(x2y)

a i j Aki j
u u¹

(x2y)

a i j 11 Zm~x2y!u!2.

Making use of Ho¨lder’s inequality and the fact thatZm is continuous forn>3 we can check tha
conditions~9! are sufficient to make this integral converge to zero asd→0. The Laplacian norm
is treated identically, writing

¹k1

(x)
¯¹kn22

(x) D (x)~A!Zm~x2y!5¹k1

(x2y)
¯¹kn22

(x2y)D (x2y)~A!Zm~x2y!1 ¯ ,

where the remaining terms take the form~45! with p replaced byn. For the first term we use the
property that¹n22D(A)ZmPL loc

2 (R3,G) and for the others the properties

ZmPL loc
6 ~R3,G!, n>2,

ZmPC~R3,G!, ¹1ZmPL loc
6 ~R3,G!, n>3.

There being only a finite number of terms, we can thus always find a mappingF (d) arbitrarily
close toZm in both norms. Accordingly, we can construct a sequence (Fm) converging toZ in
these norms. h
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A bi-Hamiltonian system is a system of differential equations which can be written
in Hamiltonian form in two distinct ways. The applications of Gelfand–
Zakharevich bi-Hamiltonian structure, which is an extension of a Poisson–
Nijenhuis structure on phase space, has been extensively explored by Falqui, Ma-
gri, and Pedroni in the context of separation of variables. It is well known that the
integrable Hamiltonian systems defined by the Adler–Kostant–Symes~AKS!
scheme contains bi-Hamiltonian structure. In this paper we unveil the connection
between Adler–Kostant–Symes formalism applied to loop algebra and the
Gelfand–Zakharevich bi-Hamiltonian structure by superposition the results of
Fordy and Kulish in the AKS scheme. We also study the commuting flows of the
AKS hierachy and its connection to the Zakharov–Shabat hierarchy. ©2004
American Institute of Physics.@DOI: 10.1063/1.1756698#

I. INTRODUCTION

One of the many important aspects of soliton theory is the interpretation of soliton equa
as completely integrable Hamiltonian systems.13 A particularly important notion to have arisen i
this theory is that of bi-Hamiltonian systems~cf. Ref. 5!, i.e., they are Hamiltonian with respect t
two different compatible Hamiltonian operators.

In 1978 Magri29 proved a remarkable theorem that, subject to some technical hypothesi
such bi-Hamiltonian system is completely integrable in the sense that it possesses an
number of conservation laws in involution. Bi-Hamiltonian systems appear to be very sp
situation, yet, they occur in numerous situations as model equations for more complicated p
systems. Examples include the Korteweg–de Vries~KdV! equation, the Boussinesq equation, a
most of the other soliton equations. Later Magri’s result has been further refined by Gelfan
Dorfman,17,18 and Fuchssteiner and Fokas.16

From the Poisson geometry’s point of view, a bi-Hamiltonian manifold is a Poisson man
endowed with a pair of compatible Poisson brackets.10,11A direct consequence of compatibility i
the existence of an infinite@in the case of partial differential equations~PDEs!# sequence of
Hamiltonians which commute with respect to all the compatible Poisson brackets.

In the late 1970s, Adler3 proposed a scheme for deriving such Hamiltonian operators sta
from a given Lax operator. Gelfand and Dikii19 proved that Adler’s scheme indeed produc
Hamiltonian operators. Adler’s approach was based on Lie algebraic structure on the sp
pseudodifferential operators. This paper represents a beautiful extension of work of Kostant27 The
crucial observation is that in both cases the corresponding symplectic structure is the orbi
plectic structure of Kostant and Kirillov.

Later, Symes38,39 has ellucided the extension of the classical Toda system results to H
tonian systems on so-called Toda orbits, a wider class than the Jacobi sets of split semisim
algebras considered by Kostant.27

Following the above scheme, we are now able to construct in a systematic way comp
integrable systems. This scheme is popularly called Adler–Kostant–Symes~AKS! scheme. The
AKS scheme applying to some Lie algebrag equipped with an ad-invariant nondegenerate bil
28640022-2488/2004/45(7)/2864/21/$22.00 © 2004 American Institute of Physics

                                                                                                                

http://dx.doi.org/10.1063/1.1756698


Hamil-
wn by
uc-

ted by

ebras
r

Adler
d,
ms. To
nal
ky, and

s
djoint

he

ilto-
ge of
Natu-
to the

of a
rable

all
by
nstruct
rious 1

ajan.

h a
tween
of

itten

2865J. Math. Phys., Vol. 45, No. 7, July 2004 AKS hierarchy and bi-Hamiltonian geometry

                    
ear form yields various integrable systems. In other words, this construction associates
tonian systems that are in many cases integrable with certain Lie algebraic data. It was sho
Reyman and Semenov-Tian-Shansky33–36 that these systems may be viewed as symmetry red
tions of corresponding Hamiltonian systems on cotangent bundles of Lie groups genera
Hamiltonians invariant under left and right translations.

We assume the Lie algebrag be a vector space, presented as the linear sum of two subalg
g5k1 l . The bilinear form^.,.& induces an isomorphismg.g* . Hence, with the help of bilinea
form we can identifyk* . l' and l * .k' where

^k',k&5^ l',l &50.

Sok' acquires a Poisson structure from that ofl * . The co-adjoint action ofL on k'. l * is given
by

g+p5pk'~gpg21!

for gPL andpPk'. Then the infinitesimal action ish(p)5pk
'@h,p# for hP l .

The symplectic manifold here is some co-adjointL-orbit M,k'. l * . We associate to it a
Hamiltonian equation of suitable ad-invariant functionf :g* →R for all f uM .

We know many important equations can be derived from this approach, for example,
and van Moerbeke4 obtained Euler–Arnold–Poincare´ equation as a geodesic flow on ellipsoi
Ratiu32 obtained the Neumann equation, and so on. These are all finite-dimensional syste
apply this formalism to partial differential equation we must work with the infinite-dimensio
Lie algebras. This was demonstrated on loop algebras by Reyman, Semenov-Tian-Shans
Frenkel.33–36

Using a pencil ofR-matrices on the Lie algebra, Burrough6 proved that the KdV hierarchie
have an Adler–Kostant–Symes construction on the underlying current algebra. The co-a
orbits are reduced by Hamiltonian symmetries~cf. Ref. 30!. The reduction process reproduces t
gauge group and the bi-Hamiltonian structure.

Thus, this entices one to apply AKS method to construct hierarchy of commuting Ham
nians of various integrable systems related to infinite-dimensional Lie algebras. At this sta
integrable systems, all of us are looking for a unified theory of various integrable systems.
rally, AKS scheme is considered to be very appealing. Recently, people turn their attention
self-dual Yang–Mills~SDYM! equations. The SDYM equations are an important example
multidimensional integrable system, with all the properties one would expect from an integ
system. An additional property is that this system contains many lower-dimensional systems~such
as the KdV and NLS equations! via a process of dimensional reduction. Naturally, almost
integrable equations on (111) can be derived from the four-dimensional SDYM equation
reductions. Thus, various reductions of the SDYM equation become a primary source to co
large classes of integrable systems. We have seen that the AKS scheme also yields va
11 dimensional integrable equations.

This idea has been generalized to hierarchy level by Ablowitz, Chakravarty, and Takht1

They developed the notion of a self-dual Yang–Mills hierarchy~with first member the original
self-dual Yang–Mills equations! by introducing an infinite number of higher-order times in suc
way that all the flows commute, together with a recursion operator which takes one be
adjacent members of the hierarchy. In our earlier work23,24we have shown that the PDE version
the AKS hierarchy is the reduction of 111 dimensional SDYM hierarchy.

We have already said that a differential equation is called bi-Hamiltonian if it can be wr
in Hamiltonian form in two distinct ways with respect to two different Poisson structures$.,.%0

and$.,.%1 :

ḟ 5$ f ,H0%05$ f ,H1%1

for some functionsH0 ,H1PC`(M ).
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Suppose one of the Poisson structures is nondegenerate, then this allows us to d
recursion operatorR5P1P0

21, where P0 and P1 are the Poisson tensors associated with
brackets$.,.%0 and$.,.%1 , respectively. This recursion operatorR can be used to construct a fami
of functions which are first integrals to the Hamiltonian system and these functions turn out
in involution with respect to both Poisson brackets. This suffices to show the integrability i
sense Liouville of the Hamiltonian system.2

Thus an important class of bi-Hamiltonian manifold occurs when one element of the Po
pencil is everywhere invertible. As a remarkable consequence of the compatibility ofP0 andP1

the Nijenhuis torsion ofN ~or recursion operator!, defined by its action on a pair of vector field
X andY as

T~N!~X,Y!5@NX.NY#2N~@NX,Y#1@X,NY#2N@X,Y# !,

vanishes identically.
The recursion operator is interpreted as Nijenhuis operators, and possessses the N

property, for finite-dimensional systems was introduced in 1951, and for infinite-dimens
systems by Fuchssteiner.15 In the infinite-dimensional case Nijenhuis operators are nonlocal,
this problem has been overcomed by Gelfand and Dorfman18 in by working with Nijenhuis
relations instead of Nijenhuis operators. The connection between bi-Hamiltonian structure
AKS scheme and the Lie pencil ofR-matrices has been studied in Refs. 25, 31, and 34.

Recently, the famous Italian School of integrable systems9–12 has considered a more gener
case of a Poisson manifold together with a pencil of Poisson tensors. The assumption of p
mial Casimirs allows one to use the theory of Gelfand–Zakharevich~GZ! manifolds.20–22 The
Gelfand–Zakharevich bi-Hamiltonian structure is an extension of a Poisson–Nije
structure28,41 on phase space. The polynomial Casimirs are computed in the spirit of the
scheme. Under some technical assumptions the resulting system is separable in Da
Nijenhuis coordinates. Thus, they found a new test of separability for a special class of H
tonian integrable systems defined on bi-Hamiltonian manifolds. This defines the notion of St¨ckel-
separable systems,26 criteria for separability and outline the construction of these separa
coordinates. An interesting fact is that the eigenvalues of the Nijenhuis tensor account for on
of the separating variables. Actually, this is the main issue studied by both the classical Eise
Benenti theory of separability of natural systems defined on cotangent bundles to Riem
manifolds, as well as the present theory of separation of variables for systems admitting
representation~see Ref. 37, and references therein!.

In fact, Italian school unveiled the deep links connecting the classical theory of separat
variables ~of the Hamilton–Jacobi equations! and the geometry of Gelfand–Zakharevich b
Hamiltonian manifolds.

In this paper we address the Gelfand–Zakharevich geometry from the point of view th
Adler–Kostant–Symes scheme superposed with the Fordy–Kulish decomposition.14 We show
how the integrable systems appearing in the AKS program yield the Gelfand–Zakharevi
Hamiltonian structure. We also study the commuting flows of nonextended AKS hierarchy~hier-
archy of AKS equation without cocycle! and its connection to the Zakharov–Shabat hierarch

This paper is organized as follows: In Sec. II we discuss the Kostant–Kirillov structur
co-adjoint orbits and the Adler–Kostant–Symes scheme. A self-contained review of this sub
given. We apply this scheme in Sec. III to obtain several standard integrable systems, s
nonlinear Schro¨dinger, coupled KdV, Chen–Liu–Lee40 or derivative nonlinear Schro¨dinger equa-
tions, related to Hermitian symmetric spaces. This type of construction has an important geo
cal significance from the point of harmonic maps. In an important paper Burstallet al. showed
how to construct a large class of harmonic and pluriharmonic maps called ‘‘~pluri!harmonic maps
of finite type’’ from tori to symmetric spacesG/H, whereG is a compact Lie group. Section IV
is devoted to the AKS hierarchy and Zakharov–Shabat hierarchy~or the hierarchy of ‘‘zero
curvature’’ equation!. We formulate the Zakharov–Shabat hierarchy from the AKS hierarchy
Sec. V we establish how the Gelfand–Zakharevich bi-Hamiltonian geometry can be carrie
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from the Adler–Kostant–Symes formalism. Here the polynomial Casimirs will be interprete
ad-invariant functions. We conclude this paper with some modest remarks.

II. ADLER–KOSTANT–SYMES SCHEME

Let G be a connected compact semisimple Lie group with the Lie algebrag, endowed with a
nondegenerate ad-invariant and symmetric inner product^.,.&:g3g→g, that is,

^X,@Y,Z#&5^@X,Y#,Z& ;X,Y,ZPg.

Its dual spaceg* has a natural Poisson structure

$g1 ,g2%~a!5 K a,Fdg1

dm
,
dg2

dm G L ,

of two smooth functionsg1 andg2 on g* . The functional derivative ofg ~or gradient ofg) at m
is the unique elementd f /dm of g defined by

lime→0

1

e
@ f ~m1edm!2 f ~m!#5 K dm,

d f

dm L .

Here the gradient ofgi are interpreted as elements ofg due to the identification ofg.g** .
Let us introduce an additional structure from which, in addition to the ordinary brack

modified bracket can be defined as follows.
Let

R:g→g

be anR-matrix, and this defines another Lie bracket ong,

@X,Y#R5 1
2 ~@RX,Y#1@X,RY# !, ~1!

such a pair (g,R) is called a double Lie algebra. It is known that (g,R) is a double Lie algebra if
and only if the following bilinear map:

BR :~g,R!3~g,R!→~g,R!

is given by

BR~X,Y!5@RX,RY#2R~@X,Y#R! ~2!

is ad-invariant, that is, the equation

@X,BR~Y,Z!#1@Y,BR~Z,X!#1@Z,BR~X,Y!#50 ~3!

holds for allX,Y,ZPg.
It is clear that the trivial solutionBR(X,Y)50 yields the Yang–Baxter equation. The seco

solution satisfies the so-called modified Yang–Baxter equation

BR~X,Y!52@X,Y#. ~4!

The best known class ofR-matrices arise when the Lie algebrag split into a direct sum of two
subalgebrasg5g1 % g2 . Since there is a vector space decomposition ofg into a direct sum of two
Lie subalgebras, hence, we set

R5P12P2 , ~5!
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whereP6 be the corresponding projection ontog6 . Under this identification, the bracket is

@X,Y#R5@X1 ,Y1#2@X2 ,Y2#,

whereX65P6X.
By g* andgR* we denote the dual ofg endowed with the Lie–Poisson structures arising fro

@.,.# and@ .,.#R* , respectively. The Poisson bi-vectors arising from the Lie brackets@.,.# and@ ,.,#R

are related byPR5R* P1PR, whereR is considered to be a pointwise lift of the mapR on g to
the vector fields overg andR* is the transpose of this map.

The R-matrix construction ong allows us to define an additional Lie–Poisson bracket of
following form:

$ f ,g%~m!5^m,@R~¹ f !,~¹g!#1@¹ f ,R~¹g!#&, f ,gPC`~g* !. ~6!

We wish to take a look at the special case of anR-structure~6! given by a splitting into two
subalgebras. Withg5g2 % g1 , R5P12P2 , mPg* one computes the Lie–Poisson bracket ar
ing from @ .,.#R ,

$ f ,g%~m!52^m,@~¹ f !1 ,~¹g!1#&22^m,@~¹ f !2 ,~¹g!2#&. ~7!

Definition 1: We say a smooth functionH:g* →R is Ad* invariant if

H~Adg* a!5H~a!

for all aPg* andgPG.
Theorem 2 ~AKS!: Let g be Lie algebra with R-matrix R:g→g, then the ad* invariant

functions ong* are in involution with respect to

$ f ,g%~m!5^m,@R~¹ f !,~¹g!#1@¹ f ,R~¹g!#&.

Then the Hamiltonian flow on the co-adjoint orbits in L,Pg* is

d

dt
L5adR~¹H !

* L1R* ad¹H* L, ~8!

where R* is the transpose of R.

A. Loop algebra and AKS scheme

In this section we apply the AKS construction on loop algebra.
Let Vg5gl(n,C) ^ C@l,l21# be a loop algebra of semi-infinite formal Laurent series inl

with coefficients in gl(n,C). An elementX(l)PVg can be expressed as a formal series of
form

X~l!5 (
i 5`

m

xil
i for all xiPgl~n,C!,

the Lie bracket withY(l)5( j 52`
l y jl

j is given by

@X~l!,Y~l!#5 (
k52`

m1 l

(
i 1 j 5k

@xi ,yj #l
k.

We will now consider the extended loop algebraVg̃, the one-dimensional central extension
Vg defined by two cocycle
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v~X,Y!ª^]X~l!,Y~l!&[E
S1

X8~l!Y~l!dx,

where]:g→g* .
We define extended loop groupVG to be

0→R→VG̃→VG→1.

The corresponding loop algebraV g̃5Vg% R. The Lie bracket of the extended loop algeb
V g̃ satisfies

@~X~l!,a!,~Y~l!,b!#5S @X,Y#,E
S1

tr~XY8! D ,

whereXPVg andaPR.
We define a nondegenerate ad-invariant bilinear form onVg,

^X~l!,Y~l!&5resl50 tr~l21X~l!Y~l!!5tr~X~l!Y~l!!0 ,

and this bilinear form can be extended to define the bilinear form onV g̃ by

^~X,a!,~Y,b!&5ab1E
S1

tr~XY!.

We assume that the algebraV g̃ as a vector space, and it is presented as the linear sum o
subalgebras

V g̃5V g̃1
% V g̃2,

whereV g̃1 denote the subalgebra ofV g̃ given by the polynomial inl andV g̃2 is the subalgebra
of strictly negative series.

By means of ad-invariant bilinear form̂,& we identify

~V g̃1!* .~V g̃2!' and ~V g̃2!* .~V g̃2!'.

This induces another decompositionV g̃5Vg1'
% Vg2'.

Definition 3:Let (Vg,R) be a double Lie algebra on which we define a modified Lie algeb
structure and supposev be a two cocycle onVg. Then

vR~X,Y!5v~RX,Y!1v~X,RY!

is a two cocycle onVgR .
We want to find the co-adjoint representation ofVĝR on the dual spaceVĝR* . We use the

following identity:

^adR* ~X,a!~U,c!,~Y,b!&1^~U,c!,adR~X,a!~Y,b!&50.

Proposition 4: The co-adjoint representation of the loop algebra gˆ
R on its dual is given by the

following expresion:

adR* ~X,a!~a,c!5~~ad* RX!~a!2cRX8,0!1R* ~ad* X~a!2cX8,0!.

Note that the symbolsad* andadR* stand, respectively, for the co-adjoint representations
the algebrasVg andVgR . The proof of this proposition is fairly easy, so we omit it.
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The dual spaceVg̃' stratifies into Poisson submanifolds corresponding to different value
the parameter; each of them is endowed with a Poisson bracket. Let us fixc51, so we confine us
to a hyperplane inVg̃* . By abuse of notation we shall continue to call itVg̃* .

Let f̂ 1 and f̂ 2 be the ad-invariant function and when they are restricted toVg2* ;Vg1'

these satisfy$ f̂ 1 , f̂ 2%Vg2* 50.
Lemma 5: Suppose H is Ad* invariant function on g* then

adR* ~dH~a!,a!~a,1!5~~ad* R~dH~a!!~a!1R~dH !8,0!.

It should be again be noted that the gradient of a function is the vector field¹H : g* →g,
such that̂ ¹H(m),X(m)&5dH(X(m)) for all mPg* .

The co-adjoint representation leaves invariant the hyperplanese5constant. Thus we con
clude: ~1! The center of theĝ acts trivially onĝ* , the space ofĝ* is a naturalG-module.

~2! Ĝ acts onĝ* by gauge transformation.
The Poisson bracket is

$ f ,g%~m1cI !5^m̂,@R̂~¹ f̂ !,¹ĝ#1@¹ f ,R̂~¹ĝ!#&

5^m̂,@R̂~¹ f !,¹g#1v~R~¹ f !,¹g!I 1@¹ f ,R~¹g!#1v~¹ f ,R~¹g!!I &

5^m̂,@R̂~¹ f !,¹g#1@¹ f ,R~¹g!#1c^R]~¹ f !,¹g&1c^]¹ f ,R~¹g!&,

whereR̂ is theR-matrix on ĝ, it satisfies

R̂:V g̃→V g̃, R̂~k1aI !:5R~k!.

Proposition 6: The Poisson bracket in the space ofV g̃* for the two smooth functions has th
form

$ f 1 , f 2%~Y!5^@R̂~¹ f 1!,¹ f 2#,Y&1@¹ f ,R~¹g!#1E
S1

R¹ f 1

d¹ f 2

dx
1E

S1
¹ f 1R

d¹ f 2

dx
,

where YPVg.
In presence of cocycle, that is, when an ad-invariant function satisfies

@X,¹H#5
]¹H

]x
,

¹H is obtained recursively,

¹H5l2h21lh11h01l21h211¯ .

Theorem 7: Let Vg̃15V g̃1
% V g̃2 and M,V g̃1 a co-adjoint orbit equipped with a natura

weak orbit symplectic structurev. Let Hi :V g̃→R be the set ad-invariant functions in I(g* )
restricted to(V g̃1)' is an involutive system on the co-adjoint orbit. The Hamiltonian equation

motion onV g̃* generated by the Hamiltonian (ad-invariant function) have the form

]L

]t
5adR~¹H !

* L1
]

]x
~R~¹H !!. ~9!

So this defines a flat connectionL dx1P dt on a cylinderS13R associated with the abov
zero curvature equation. In order to apply the Adler–Kostant–Symes scheme we requ
knowledge of the ad-invariant function.
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When we deal with the AKS scheme for the group without cocycles we obtain a dyna
equation instead of a partial differential equation.

Corollary 8: Let H be the ad-invariant function onVg* . The associated Hamiltonian vecto
fields have orbits L in the symplectic leaves ofVg* , foliated by co-adjoint action. Then th
Hamiltonian flow corresponding to the function HPC`(g* ) is

dL

dt
5@R¹H,L#. ~10!

Using R5P12P2 in ~10! we obtain

dL

dt
52@P1¹H,L#.

B. Bi-Hamiltonian chain

In this section we construct the bi-Hamiltonian chain from the AKS method.
Let us consider again

@L,¹F#1]x~¹F !50,

where

L5l2A1lQ1Woff1WA,

whereA5(0
1

21
0 ) andQ5( r

0
0
q).

Let us make an ansatz,

¹F5F01l21F11l22F21¯ ,

where

Fi5Fi
off1 f iA5S f 0 F0

1

F0
2 2 f 0

D .

HereFi
off is the off-diagonal elements, that is,Fi

offPm, andAPk. Equating all the powers o
l we obtain

@A,Fn#5@Q,Fn21#1@Woff,Fn22#1W@A,Fn22#1F (n22)x

5@Q,Fn21
off #1@Woff,Fn22#1W@A,Fn22

off #1F (n22)x
off 1 f (n22)xA

1@Q, f n21A#1@Woff, f n22A#,

where we tacitly assume

F05A, F15Q1 f 1A.

So we have two recursive relations

Fn
off52 f n21Q2 f n22Woff1WFn22

off 1adA
21F (n22)x

off , ~11!

@Q,Fn21
off #1@Woff,Fn22

off #1 f (n22)x50. ~12!

Let us study the chain. SupposeF0
off50 and f 051. We also assumeF1

off5Q. Thus F2
off is

given by ~11! and f 1 by ~12!.
Thus we obtain
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~1! F2
off is given by f 1 , f 0 , F0

off ,
~2! F3

off is given by f 2 , f 1 , F1
off ,

~3! F4
off is given by f 3 , f 2 , F2

off ,
~4! f 1x is given byF1

off , F0
off ,

~5! f 2x is given byF3
off , F1

off ,

etc. Hence the chain is completed.

III. AKS HIERARCHY AND ZAKHAROV–SHABAT HIERARCHY

In this section we focus on the construction and properties of AKS hierachy. We consid
Adler–Kostant–Symes equation without cocycle. Since it is always possible to construct th
curvature form of the AKS equation from this version.

A. AKS hierarchy

Let g be a Lie algebra with standard splitting. Let the Hamiltonians be

Hi~G!5 1
2 tr0 l2(n2 i )L2, 0< i<n.

Thus we obtain

^¹Hi ,X&5dHi~X!5tr0~l2(n2 i )LX!,

and from the degeneracy of tr0 this implies

¹Hi5l2(n2 i )L.

Let us consider an invariant submanifold to be

L5H L~l! L~l!5(
i 50

n

Qn2 il
i , Qn2 iPgJ .

Let L:Rn11→L be a function oft0 ,...,tn taking values inL, that is

L~ t0 ,...,tn ,l!5(
i 50

n

Qn2 il
iPL,g2* .

Thus the Hamiltonian equations of motion forHi is given by

d

dt i
L5@~l2(n2 i )L !1 ,L#. ~13!

Proposition 9: All the equations of the AKS hierarchy commute each other.
Proof: Let us rewrite (¹Hi) asBi and]/]t i as] i . Let i . j and

Bi5l i 2 jBj1Qi1Qi 21l1¯1Qj 11l i 2 j 21.

Hence,

] iBj5] i~l2(n2 j )L !15~l2(n2 j )] iL !15~l2(n2 j )@Bi ,L# !15@Bi ,l2(n2 j )L#1 .

Thus we obtain
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] iBj2] jBi5@Bi ,l2(n2 j )L#12@Bj ,l2(n2 i )L#1

5@Bi2l i 2 jBj ,l2(n2 j )L#1

5@Bi2l i 2 jBj ,~l2(n2 j )L !1#11@Bi2l i 2 jBj ,l2(n2 j )L !2] 1

5@Bi ,Bj #1@Bi2l i 2 jBj ,l2(n2 j )L !2] 1 .

The last expression can be further reduced to

@Bi2l i 2 jBj ,~l2(n2 j )L !2#1

5@Qi1Qi 21l1¯1Qj 11l i 2 j 21,Qnl2(n2 j )Q!1¯1Qj 11l2( i 1 j 11)] 1

5@Qi1¯1Qj 11l i 2 j 21,Qnl2(n2 j )1¯1Qi 21l2( i 2 j 21)#1 50,

since the greatest degree inl in the expression above isi 2 j 211(2( i 2 j 11))522. h

B. Higher flows

In this section we will consider the higher flows of the Hamiltonians of the form

Hi , jª
1

j 11
tr0~l2( jn2 i )L j 11!,

where 1< j , l<m5rankg, 0< i< jn, and 0<k< ln.
The gradient ofHi , j is

¹Hi , j5l ( jn2 i )L j2tr~l2( jn2 i )L j !I .

Thus we obtain

Bi , jª~¹Hi , j !15~l2( jn2 i )L j !12tr~l2( jn2 i )L j !1I .

Theorem 10: Let the Hamiltonians be H5¹ i , j5l ( jn2 i )L j2tr(l2( jn2 i )L j )I for all 0< i
< jn. Let us assume the invariant submanifold to beg5$L(l):L(l)5(0

nQn2 il
i%. Let L:Rn11

→g be a function of t0 ,...,tn taking values ing, given by

L~ t0 ,...tn ,l!5(
i 50

n

Qn2 il
iPg,g2* 5g1'.

This generates a Hamiltonian flow for Hi , j ,

] i , jL5@Bi , j ,L# with ] i , j5
]

]t i , j
. ~14!

Lemma 11: Let0< i< jn and 0<k< ln. Then

] i , jL
q5@Bi , j ,Lq#. ~15!

Proof: It is to show

] i , jL
n5( L¯] i , jL¯L5( L¯@Bi , j ,L#¯L5@Bi , j ,Lq#.

h

Lemma 12:
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] i , jBk,l2]k,lBi , j5@Bi , j ,Bk,l #. ~16!

Proof: It is given by

] i , jBk,l2]k,lBi , j

5] i , j~l2( ln2k)Ll !12] i , j tr~l2( ln2k)Ll !1I 2]k,l~l2( jn2 i )L j !11]k,l tr~l2( jn2 i )L j !1I

5@Bi , j ,l2( ln2k)Ll #12@Bk,l ,l2( jn2 i )L j #1

5@Bi , j ,Bk,l #1@Bi , j ,~l2( ln2k)Ll !2#12@Bk,l ,l2( jn2 i )L j #1

5@Bi , j ,Bk,l #1@l2( jn2 i )L j ,~l2( ln2k)Ll !2#)11@l2( jn2 i )L j ,~l2( ln2k)L !1#1

5@Bi , j ,Bk,l #1@l2( jn2 i )L j ,l2( ln2k)Ll #

5@Bi , j ,Bk,l #.

h

Theorem 13: All operators] i j commute.
Proof: We obtain

]k,l] i , jL
q5@]k,lBi , j ,Lq#1@Bi , j ,]k,lL

q#

5@] i , jBk,l2@Bi , j ,Bk,l #,L
q#1@Bi , j ,@Bk,l ,Lq##

5@] i , jBk,l ,Lq#1@Bk,l ,@Bi , j ,Lq#

5] i , j]k,lL
q,

where we have used Eq.~16! and the Jacobi identity. h

Thus, we have given an alternative proof of Dickey’s result.8

Remark:We get an equivalent form of the zero curvature equations of the hierarchy

] i j w5Bi j w. ~17!

The expressionw is called a formal Baker function. The same equation can also be express

w] i j w
215] i j 2Bi j .

Thus,w acts like a dressing operator. It can be shown that the operators] i j commute. This fact and
the commutativity of operator~17! imply the zero curvature equation.

IV. HERMITIAN SYMMETRIC SPACES AND INTEGRABLE SYSTEMS

Let G be a semisimple Lie group andg be the corresponding Lie algebra. LetM be a
homogeneous space ofG, so,M is a differentiable manifold on whichG acts transitively. There is
a homeomorphism of the coset spaceG/K onto M for some isotropy subgroupK of G at a point
of M . Let k be the Lie algebra ofK andg satisfies

g5k% m and @k,k#,k,

wherem is the vector space complement ofk. The Lie algebrag splits in such a way thatM is
equipped with two kinds of extra structure, these are

~1! left translation ofm aroundG gives rise to a canonical connection on the principleK bundle:
G→G/K.

~2! WhenxPM , the mapg→TxM given by
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h°
d

dt U
t50

exp~ th.x!,

restricts to give an isomorphism@m#x→TxM .
The inverse map

vx :TxM→@m#x

defines ag-valued one form onM , known as Maurer Cartan form.
If k andm satisfy

@k,m#,m

then G/K is called reductive homogeneous space. We can associate to these spaces a c
connection with curvature and torsion. Curvature and torsion at a fixed pointp are given purely in
terms of the Lie bracket operation,

~R~X,Y!Z!p52@@X,Y#k ,Z#, X,Y,ZPm,

T~X,Y!p52@X,Y#m , X,YPm.

If k andm satisfy above two conditions and also satisfy

@m,m#,k,

thenG/K is a symmetric space. Here the curvature satisfies

~R~X,Y!Z!p52@@X,Y#,Z#, X,Y,ZPm.

Here @X,Y#Pk happens automatically due to@m,m#Pk.
Let h be the Cartan subalgebra ofg which is the maximal Abelian subalgebra of diagonal

able elements ofg. In terms of the Weyl basis

@Hi ,H j #50, @Hi ,Xa#5a~Hi !Xa ,

@Xa ,Xb#5Na,bXa1b~a1bPD!5(
i 51

mh

Ca,iHi~a1b50!,

for anyHiPh andXaPg h, andNa,b andCa,i are structure constants andD is a set of all roots.
The componentsRjkl

i andTjk
i of the curvature and torsion with respect to a basisXi of TpM

are defined by

R~Xk ,Xl !Xj5Rjkl
i Xi , T~Xj ,Xk!5Tjk

i Xi ,

and the component of the metricg(X,Y)5tr(ad(X)ad(Y)) is gi j 5g(Xi ,Xj ).
Let % be an element ofh we select the isotropy groupK such that its Lie algebra isk. This

is given by the centralizer

Cg~% !5$XPgu@X,%#50%.

If % is regular, i.e., the eigenvaluesa~%! of ad % are mutually distinct thenCg(%)5h and here
@h,m#,m.

In this case sincek5h hence the corresponding coset spaceG/K decomposition is essentiall
Cartan decomposition.
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Whenk5Cg(%).h, then the eigenvaluesa~%! coalesce, and thusCg(%) becomes larger than
h. Hence in this case the homogeneous spaceG/K becomes smaller.

In the case of Hermitian symmetric spacesa~%! have eigenvalues$0,6a%. Thusg splits up
into

g5k% m1
% m2.

If we setX0Pk, X6Pm6 for any XPg,

@%,X0#50, @%,X6#56aX6,

here eigenvaluesa~%! take the same eigenvalue for allX6Pm6. From the second commutatio
relation we can assert that Hermitian symmetric space has almost complex structure.

A. Computation of ad-invariant functions through example

Let us compute thead* invariant functions.
SupposeL be an arbitrary element of the orbit, then the gradient of the ad-invariant fun

F, in presence of the cocycle must satisfy

@L,¹H#1
]¹H

]x
50.

In the absence of any central extension,H would have satisfiedad¹H* L50 whose immediate
solution isH5tr(Lp), wherepPZ1 .

Let us discuss the method of obtaining ad-invariant function in presence of cocycle throu
example. We expand¹H in the powers ofl and set

¹H5l4h41l3h31l2h21lh11h01l21h211l22h221¯

in the above equation for

L5l2A1lQ1W,

where

A5S 2 i 0

0 i D ,

Q5S 0 q

r 0D ,

W5S 0 0

0
i

2
rqD .

Thus equating various powers ofl we obtain the following recursive relations:

l6: @A,h4#50,

l5: @A,h3#1@Q,h4#50,

l4: @A,h2#1@Q,h3#1@W,h4#5
]h4

]x
,
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l3: @W,h3#1@Q,h2#1@A,h1#5
]h3

]x
,

l2: @A,h0#1@Q,h1#1@W,h2#5
]h2

]x
,

l1: @Q,h0#1@W,h1#5
]h1

]x
,

l0: @W,h0#5
]h0

]x
.

It is easy to see thath4 andh3 follows from the first two expressions:

h452A, h352Q.

h2 follows from thel4 term. Let us choose

h252W12w, s.t.@A,w#50,

where

w5S 2
i

2
rq 0

0 0
D .

Thus we writeh252 iqrs3 .
Equating thel3 term we obtain

@A,h1#5h3x22@Q,w#,

or

h15
i

2
h3x

1 2
i

2
h3x

2 2 i @Q,w#11 i @Q,w#2.

Thus

h15S 0 iqx1 1
2 q2r

2 ir x1 1
2 qr2 0

D .

It is easy to see that thel2 term,

@A,h0#1@Q,h1#5
]h2

]x
, since @W,h2#50,

boils down to@A,h0#50. Hence, we sayh0 is a diagonal matrix. This should be evaluated fro
the l1 relation. Thus equating thel1 term we obtain

h05S 0 0

0
1

2
~r xq2qxr !1

i

4
r 2q2D .
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Equatingl0 we obtain a set of stationary equations,

qxx2 iqqxr 50, r xx1 irr xq50. ~18!

Thus, we obtain the¹H function.
Lemma 14:

¹H5l4S 22i 0

0 2i D 1l3S 0 2q

2r 0 D 1l2S 2 iqr 0

0 iqr D
1lS 0 iqx1

1

2
q2r

2 ir x1
1

2
qr2 0 D 1S 0 0

0
1

2
~r xq2qxr !1

i

4
r 2q2D .

Thus plucking it into the extended Adler–Kostant–Symes~AKS! equation we obtain the
Chen–Lee–Liu type derivative Schro¨dinger equation,

iqt5qxx2 iqrqx ,

ir t52r xx2 ir xqr.

B. Nonlinear Schro ¨ dinger equation

In this case we assume

L5lA1Q, ~19!

and our ansatz is

¹H5h2l21h1l1h0 .

Thus equatingl3 andl2 terms we obtainh25A andh15Q. Then equatingl1 we obtain

@A,h0#5Qx .

This gives rise to

h05
i

2
Qx

12
i

2
Qx

22
i

2
@Q2,Q1#.

The l0 term gives rise to the stationary nonlinear Schro¨dinger equation.
Lemma 15:

¹H5Al21Ql1
i

2
Qx

12
i

2
Qx

22
i

2
@Q2,Q1#.

Thus substituting the value of¹H in the extended AKS equation we obtain the nonline
Schrödinger equation for

Q5S 0 q

q* 0D .
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C. Lie–Poisson structure on orbit and the Falqui–Magri–Pedroni construction

Let us consider a manifoldM5g* equipped with two Poisson tensorsP0 andP1 , such that
the Poisson pencil ong* ,

$ f ,g%l5 K Q1lA,F d f

dQ
,

dg

dQG L , ~20!

whereA is any fixed element ing* and f andg are defined on the dual space ofg* .
Let us study a dynamical flow off PC* (g). The following equation

df

dt
5 K d f

dQ
,Q̇L

defines a flow passing through the pointQ.
Let G denote a semisimple Lie group andg its Lie algebra. Then any smooth functionf ong*

gives rise to a Hamiltonian flow onTe* G, the cotangent space ofG at the identity, by extending
f to a HamiltonianH which is left invariant. The Lie–Poisson equations are the Hamilton
equations on the dual of a Lie algebra and represent an abstraction of the Euler equation
rigid dynamics and ideal incompressible fluid.

The Lie–Poisson equation is

Q̇52addH/dQ* Q,

whereadj :g→g is the adjoint map andadj* :g* →g* is its dual.
Thus the Euler–Poincare´ flow

Q̇5FlA1Q,
d f

dQG ~21!

coincides with the Adler–Kostant–Symes equation.
FMP Construction:The polynomial extension of the above scheme was given by the Ita

school. Consider two copies of the algebrag. Let us denote (Q0 ,Q1) be a point ing* 3g*
PM . Let us consider the flow

df

dt
5 K d f

dQ0
,Q̇0L 1 K d f

dQ1
,Q̇1L .

The copies of the algebras are intertwined by the Poisson brackets. Magriet al. have chosen
the following Poisson brackets:

$ f ,g%05 K A,F d f

dQ0
,

dg

dQ1
G1F d f

dQ1
,

dg

dQ0
G L ,

$ f ,g%15 K A,F d f

dQ1
,

dg

dQ1
G1F d f

dQ0
,

dg

dQ0
G L .

Definition 16:Let us define two sets of equations

Q̇05FA,
d f

dQ1
G1FQ1 ,

d f

dQ0
G , Q̇15FA,

d f

dQ0
G

and
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Q̇052FQ0 ,
d f

dQ0
G , Q̇15FA,

d f

dQ1
G .

It must be noted that the definitions ofQ0 andQ1 are compatible with the Poisson structure
Combining these two sets,

Q̇052FQ01lQ1 ,
d f

dQ0
G2FlA,

d f

dQ1
G , ~22!

Q̇152FlA,
d f

dQ0
G1FA,

d f

dQ1
G . ~23!

Hence we obtain

~l2A1lQ11Q0! t52Fl2A1lQ11Q0 ,
d f

dQ0
G . ~24!

Thus we assert the following.
Claim 17: The AKS equation (without cocycle) superposed with the Fordy–Kulish decompo-

sition yields the Falqui–Magri–Pedroni scheme.
Generalization of FMP construction:The FMP construction can be easily extended to m

general frame work. In this case one can identify the FMP scheme with the extended
equation or AKS equation with cocycle.

Definition 18:Let us define two sets of equations

Q̇05FA,
d f

dQ1
G1FQ1 ,

d f

dQ0
G2S d f

dQ1
D

x

, Q̇15FA,
d f

dQ0
G

and

Q̇052FQ0 ,
d f

dQ0
G1S d f

dQ0
D

x

, Q̇15FA,
d f

dQ1
G1S d f

dQ1
D

x

,

all these extra derivative terms are generated from the cocycle terms.
Combining these two sets,

Q̇052FQ01lQ1 ,
d f

dQ0
G2FlA,

d f

dQ1
G1S d f

dQ0
D

x

2lS d f

dQ1
D

x

, ~25!

Q̇152FlA,
d f

dQ0
G1FA,

d f

dQ1
G1S d f

dQ1
D

x

. ~26!

Again combining these two expressions we obtain

~l2A1lQ11Q0! t52Fl2A1lQ11Q0 ,
d f

dQ0
G1S d f

dQ0
D

x

. ~27!

Thus we obtain the extended AKS equation from the FMP construction.

V. CONNECTION TO GELFAND–ZAKHAREVICH CONSTRUCTION

SupposeL be an arbitrary element of the orbit, then the gradient of the ad-invariant fun
F, in presence of the cocycle must satisfy
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@L,¹F#1
]¹F

]x
50.

The gradient ofF is obtained from the power series expansion of gl,

¹F5l2h21lh11h01l21h211l22h221¯ .

Actually the dual space of loop algebra is endowed with two Poisson tensorsP0 and P1 ,
given by

P05@A,•#, P15
d

dx
1@Q,•#. ~28!

Hence the Poisson pencil isPl5P01lP1 . The associated Poisson bracket is given by

$ f ,g%l5^df ,Pl dg&, ~29!

and it is well known that$ f ,g%l satisfies the Jacobi identity.
Let $,%1 and$,%2 be two compatible Poisson brackets onM . Then every vector field which is

Hamiltonian with respect to both brackets is called bi-Hamiltonian vector field and a sequen
functions$ f i u i PZ% is called bi-Hamiltonian hierarchy if

$•, f i%25$•, f i 11%1 .

It is known that all functionsf i of a bi-Hamiltonian hierachy$ f i u i PZ% are in involution with
respect to both Poisson brackets. This follows straight from the Lenard scheme:

$ f i , f j%15$ f i , f j 21%25$ f i 11 , f j 21%15¯5$ f j , f i%1 ,

so $ f i , f j%150 by skew symmetry.
The parameterl plays an interesting role in this construction. It is known that this param

l influences all the major geometrical objects on the Poisson manifold. This is cited in the
of Gelfand and Zakharevich.

The same thing can be repeated from the Poisson bi-vectors point of view, and this view
is closer to the Gelfand–Zakharevich formalism.

Proposition 19: Let f and g be two functions on a bi-Hamiltonian manifold M which sa
P0df 5P1dg. Then the Poisson brackets$ f ,g% i , i 50,1 vanish.

Proof: It follows straight from

$ f ,g%05^df , P0 dg&52^dg, P0 df &5^dg, P1 dg&50.

Similarly for $ f ,g%1 . h

A Hamiltonian vector field is called bi-Hamiltonian vector field if it satisfies

XH5P0
] dH5P1

] dH, ~30!

wherePi
] :T* M→TM is the bundle homomorphism associated toPi-Poisson bi-vectors.

The Gelfand–Zakharevich construction relies on Weinstein’s work of local Poi
structure.42 It states that under a suitable assumptions on the regularity of the Poisson bracke
Poisson bi-vectorP on an open dense set ofM is rank 2n. M is foliated there in regular Poisso
submanifolds, called generic symplectic leaves, generically these are common level setk
functionsC1 ,...,Ck called Casimir functions ofP. The key property of the Casimirs ofP is that
their differentials lie in the kernel ofP. The dimension ofM is related with the integersn andk
by dimM5 2n1k.

Now we state the theorem of Gelfand and Zakharevich.20,21
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Theorem 20:On a (2n11)-dimensional bi-Hamiltonian manifold, whose Poisson pencil h
maximal rank, the leaves of the suppost are generically Lagrangian submanifolds of dimen
contained on each symplectic leaf of dimension2n.

This theorem is difficult to digest. To better understand the essence of the Gelf
Zakharevich theorem, we tacitly assume the approach of the Falqui, Magri, and Pedroni
point. There first amplification is to reformulate the Lenard scheme in terms

~P11lP0!dC~l!50. ~31!

One must note that the Casimirs of a single Poisson bracket are uninteresting fun
Casimirs of pencil of Poisson bracket compactly encode nontrivial dynamics and consta
motion.

The main concent of the Gelfand–Zakharevich theorem is that there exists a Casimir fu
depending polynomially on the parameterl, and that the degree of the polynomial is exactlyn if
dim 5 2n11. Thus we can write the Casimir function in the form

C~l!5C0ln1C1ln211¯1Cn . ~32!

Thus the Poisson pencil selectsn11 distinguished functions (C0 ,C1 ,C2 ,...,Cn). Their com-
mon level sets are the leaves of the support of the pencil.

This can be expressed as

Pl dCl50.

This yields a chain

P0 dC050,

P0 dC15X15P1 dC0 ,

... ,

P0 dCn5Xn5P1 dCn21 ,

05P1 dCn ,

whereX1 ,...,Xn are bi-Hamiltonian vector fields.
A bi-Hamiltonian manifold endowed with a Poisson pencil with at least one of the elemen

the Poisson pencil is invertible then such a manifold is calledregular bi-Hamiltonian manifolds.
On a regular bi-Hamiltonian manifold we can define a class of canonical coordinates, calle
Darboux–Nijenhuis coordinates. It is known thatone-halfof the Darboux–Nijenhuis coordinate
are algebraically provided by the Nijenhuis tensor itself, and the remainingone-halfcan always be
found by quadratures. This would take us to separation of variables.

VI. CONCLUSION AND OUTLOOK

In this paper we have studied a special class of bi-Hamiltonian geometry—the torsio
Gelfand–Zakharevich bi-Hamiltonian hierarchy and its connection to the Adler–Kostant–S
hierarchy. This AKS hierarchy is the reduction of 111 dimensional SDYM hierarchy. We hav
extracted many interesting properties of the Gelfand–Zakharevich geometry from the AKS
struction. We present a dictionary below.
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AKS scheme GZ–FMP scheme

AKS construction applied to loop algebra
superposed with Fordy–Kulish decomposition FMP equation

Ad-invariant functions Casimirs of pencil of Poisson operators

Poisson structures related to
dressed and undressed orbits Pencil of compatible Poisson structures

This fact once again suggests that the classical separation of variables admitting a Lax
sentation can be studied via AKS construction, which is of course known to mathematician

Recently in an interesting paper Burstallet al.7 have shown how to reformulate the~pluri!har-
monic map equations for maps of a surface into a Lie groupG as zero-curvature equations so th
the ~pluri!harmonic maps correspond to loops of flat connections. It would be rather fascinat
one tried to unevil the connection between the~pluri!harmonic maps of a surface into a Lie grou
G in light of Gelfand–Zakharevich bi-Hamiltonian geometry. Certainly the proximity between
two subjects will entice harmonic maps specialists to study bi-Hamiltonian geometry.

The method we have discussed in this paper can be seen as a kind of bridge betw
Hamiltonian and the Lie algebraic nature of integrable system. The author believes that this
would further support the program of Italian school.
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A systematic approach to the C*-Weyl algebraW(E,s) over a possibly degenerate
pre-symplectic forms on a real vector spaceE of possibly infinite dimension is
elaborated in an almost self-contained manner. The construction is based on the
theory of Kolmogorov decompositions fors-positive-definite functions on involu-
tive semigroups and their associated projective unitary group representations. The
s-positive-definite functions provide also the C*-norm ofW(E,s), the latter being
shown to be*-isomorphic to the twisted group C*-algebra of the discrete vector
groupE. The connections to related constructions are indicated. The treatment of
the fundamental symmetries is outlined for arbitrary pre-symplectics. The con-
struction method is especially applied to the trivial symplectic forms50, leading
to the commutative Weyl algebra overE, which is shown to be isomorphic to the
C*-algebra of the almost periodic continuous function on the topological dualEt8 of
E with respect to an arbitrary locally convex Hausdorff topologyt on E. It is
demonstrated that the almost periodic compactificationaEt8 of Et8 is independent of
the chosen locally convext on E, and thataEt8 is continuously group isomorphic to
the character groupÊ of E. Applications of the results to the procedures of strict
and continuous deformation quantizations are mentioned in the outlook. ©2004
American Institute of Physics.@DOI: 10.1063/1.1757036#

I. INTRODUCTION

In the present investigation we analyze mathematically the canonical commutation rel
~CCR! in Weyl form1,2 for a general type of physical system, in which the degrees of freedom
to be described partially in classical and partially in quantum mechanical terms. For the qua
degrees of freedom the incompatibility of position and momentum is significant, for the cla
degrees of freedom it is not, resp., may be neglected. In a coordinate-independent man
express the existing degrees of freedom for the considered system in terms of a pre-sym
space (E,s) of arbitrary dimension. By definition,E is a real vector space, which is equipped w
a possibly degenerate pre-symplectic forms, a real-bilinear, antisymmetric mappings:E3E
→R. @The more general set up, in which (E,s) is replaced by a pre-symplectic manifold, is n
treated under the headline ‘‘Weyl algebra’’ in the literature.#

A combination of the ansatz of Weyl with the abstract set up of Dirac3 leads to the notion of
algebraicWeyl relations, resp., of an algebraic Weyl system, connected with the pre-symp
space (E,s). In Ref. 4 Dirac developed formal strategies to define functions, which

a!Electronic mail: alfred.rieckers@uni-tuebingen.de
28850022-2488/2004/45(7)/2885/23/$22.00 © 2004 American Institute of Physics
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q-numbers ontoq-numbers, and generalize the operations of differentiation and integration.
a formalism would then allow for functions of theq-number Weyl elements and their derivative
The mathematically much more refined Hilbert space formalism of von Neumann5,6 has pushed
aside Dirac’sq-number analysis. In algebraic quantum theory~cf. Refs. 7–9 and reference
therein! one seeks, however, for a synthesis of the abstract and the Hilbert space approac
starts with a rather universal* -algebraic formalism, but restricts oneself to bounded elements
a finite norm. The ultimate model calculations are then performed by means of a representa
the algebraic structure in terms of Hilbert space operators. There, the limits to unbounded~self-
adjoint! operators may also be carried through.~An early discussion, which relates Hilbert spa
Weyl systems with C*-algebras, may be found, in the case of nondegenerate, infinite dimens
symplectic forms, in Ref. 10.!

In the spirit of algebraic quantum theory we assume now for a general physical system
the degrees of freedom (E,s), that there exists a family$W( f )u f PE% of elements in a complex
*-algebra, which are linearly independent and which satisfy the Weyl relations~we set, henceforth
\ equal to unity!,

W~ f !W~g!5expH 2
i

2
s~ f ,g!J W~ f 1g!,

W~ f !* 5W~2 f !,
; f ,gPE. ~1.1!

We call the family of allW( f ), f PE, which satisfies the preceding requirements, anabstract Weyl
systemand refer toE as itstest function space.

A Weyl system is considered as a concise minimal structure, which is necessary to cha
ize the set of observables. It is, of course, natural to form its linear hull, which is a sub-* -algebra
~cf. Sec. III B!, but the properties of the latter are already implied by those of the Weyl sys
Because of the assumed linear independence of the abstract Weyl elements, all abstra
systems are algebraically* -isomorphic and we speak oftheabstract Weyl system associated wi
a given pre-symplectic space (E,s).

If E has the finite dimension 2n ands is a nondegenerate symplectic form, then we are b
with the original Weyl relations, considered by Weyl and von Neumann, but now in abs
q-number form. There exists an ordered symplectic basis, which, written as a 2n-tupel, has the
structure (e,he)5(e1 ,...,en ,he1 ,...,hen) such thats(ei ,hej )5d i , j and s(ei ,ej )50 for all 1
< i , j <n. Hereh is an imaginary unit in the real vector spaceE.11 It holds by definition:h21

52h, s(h f ,hg)5s( f ,g), and s( f ,h f )>0 for all f, gPE. Each f PE has the expansionf
5r "e1s•he5( i 51

n @r iei1sihei #, wherer , sPRn. By means of the symplectic basis, we obtains
in normal form and find for the Weyl multiplication law,

W~ f !W~ f 8!5expH 2
i

2
~r "s82s"r 8!J W~ f 1 f 8!. ~1.2!

A realizationof an abstract Weyl system in a complex Hilbert spaceHR is a family of possibly
not linearly independent, but unitary operatorsWR( f ), f PE, in HR , which satisfy Eq.~1.1!.
Especially, for an infinite dimensional test function spaceE there are essentially different realiza
tions of an abstract Weyl system over a given (E,s). The physical meaning of a Weyl syste
depends on its realization. A realization of an abstract Weyl system is calledregular, if the
function R{t°WR(t f )PU~HR) is continuous in the weak, resp. strong, operator topol
@U~HR) denotes the group of unitaries acting onHR]. Stone’s theorem implies, in a regula
realization, the exponential form of the Weyl operators, that is

WR~ f !5exp$ iFR~ f !%, ~1.3!

where the so-called field operatorsFR( f ), f PE, are self-adjoint, depending real-linearly onf.
They satisfy on a common dense domain inHR the commutation relations
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@FR~ f !,FR~g!#5 is~ f ,g!, f ,gPE. ~1.4!

For finitely many degrees of freedom and nondegenerates this reduces to the original CCR~Refs.
12, 13, 3!,

piqj2qj pi5
..@pi ,qj #52 id i , j1,

@qi ,qj #505@pi ,pj #,
1< i , j <n, ~1.5!

if one employs a symplectic basis~e,h e! and writes

FR~ f !5r "qR1s"pR, again denoting f 5r "e1s•he, ~1.6!

whereqR5(qj
R)ª„FR(ej )… andpR5(pj

R)ª„FR(hej )… for 1< j <n.
In the finite dimensional case withnondegenerates there holds the well-known von

Neumann–Stone uniqueness theorem:2,14,15–17Each regular, unitary realization of an abstract We
system is unitarily equivalent to a direct sum of Schro¨dinger representations.@In the Schro¨dinger
representationR[S, we haveHS5L2(Rn), andqj

S5xj andpj
S52 i (]/]xj ) for 1< j <n.]

A direct sum of Schro¨dinger representations is employed, if one deals with different syst
in an alternative manner, e.g., with a microscopic particle, which is either an electron or a po
The operators which commute with the represented Weyl elements—and typically arise in
sum representations—define so-called superselection rules as, e.g., the electric charge~cf., e.g.,
Refs. 18–21!. They express, thus, also physically important quantities, which are compatible
all other observables. Let us denote them by the more general termclassical observables,
since—as is indicated below—in many body physics also dynamical effects may lead to c
observables. The~bounded! classical observables may be incorporated into the abstract W
system, if one extends the orginally nondegenerate symplectic form to a degenerate one, d
again bys, which then displays a nontrivial null space,

kersª$hPEus~h, f !50,; f PE%. ~1.7!

Clearly, for hPkers the associated Weyl elementW(h) commutes with all other Weyl element
and signifies a classical observable—if we call the non-Hermitian functions of Weyl element
observables—in the sense of abstractq-numbers.

For infinitely many degrees of freedom the algebraic approach is especially useful.~For an
account of the early papers on this topic, cf., e.g., Refs. 22, 23, 8.! In the physical applications the
infinite dimensional test function spaceE is often a complex-linear dense subspace of a one-Bo
Hilbert space, and the nondegenerate symplectic form is the imaginary part of the pertinent
product. The degrees of freedom of the quantized field are, so to speak, tested by me
~smooth! functions taken from the one-Boson Hilbert space. This smearing of the quantized
in terms of test functions had been already requested by physical arguments.24,25

It is well known, that for a nondegenerate symplectic forms there exists, up to
* -isomorphisms, a unique C*-algebraW(E,s), which is the norm-closure of the linear span of t
abstract Weyl system~cf. Refs. 26–30!. For nondegenerates the simple C*-algebraW(E,s) is in
quantum field theory and in many body physics used as the primary observable algebra of a
system.31,32 It contains the universal observables the system always displays, irrespective
external influences it may experience. All of these primary observables are present in eac
trivial Hilbert space representation.

A field theoretic example, where the primary observable algebra is a Weyl algebra w
degenerate symplectic form, exhibiting genuine superselection rules, is elaborated in R
Another example, which we shall investigate more closely in future work, is the nonrelativ
photon algebra, where only the transversal components of the canonical fields give rise to
nishing values ofs. In these cases one encounters nontrivial Hilbert space realizations of the
relations, in which the classical observables are not faithfully represented. As is emphasi
Ref. 34, apparently the first systematic investigation of the C*-Weyl algebra over a pre-symplecti
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test function space, this feature reflects the nonuniqueness of the corresponding abstract C*-Weyl
algebra: The CCR~in Weyl form! alone do not determine the primary observable algebra.

Let us recall that the choice of a special Hilbert space representation, where the Weyl ele
are given by unitary operators inL~HP), the bounded operators in the representation Hilbert sp
HP , is usually induced by the selection of a distinguished state, as, e.g., a coherent stat
ground, resp. equilibrium, state. In the GNS-representationP:W(E,s)→L~HP) over a regular
state with a special ordered structure~e.g., optical coherence, or thermodynamic phase order
cf. Ref. 9, Section 3.3! the field operatorsFP( f )5(d/dt)P„W(t f )…u t50 may exhibit a classica
part in addition to the quantum mechanical part. This peculiar feature is a manifestation
underlying ordered structure the system attains under a special influence~e.g., optical pumping,
resp. low temperature! and clearly transcends the purely algebraic regime of the theory. This
interesting effect leads in a natural manner to a continuous extension of (E,s) to a larger pre-
symplectic space and to its associated Weyl algebra~cf. Refs. 35–38!. These extended Wey
algebras deserve special attention, also in the context of modern quantization and dequan
strategies. They add to the motivation to study Weyl algebras with a pre-symplectic test fu
space.

Before outlining our method and describing its implications, let us mention various m
ematical approaches, which bear a certain technical relationship to our construction. Comm
almost all of these ansatzes is that the test function spaceE is considered merely as a topologica
Abelian group. The physical terminology of a Weyl system realized in a Hilbert space is th
projective representation of this group in the mathematical language. The theory of proj
group representations begins already with Schur~cf. Ref. 39! and has especially been advocat
by Mackey.40 Further investigations are contained in Refs. 41 and 42. The connection to r
sentations of generalized~nowadays called ‘‘twisted’’! L1-algebras has been developed in Ref.
and further pursued in Refs. 44–48.

In Ref. 34 the Weyl algebraW(E,s) over the pre-symplectic space (E,s) is defined as the
twisted group C*-algebra corresponding to the multiplier

E3E{~ f ,g!°expH 2
i

2
s~ f ,g!J . ~1.8!

Hereby the test function spaceE is taken as a real vector group~and not only as a group! and is
equipped with the discrete topology.~See Sec. III E for special implications of a vector group!

In Ref. 49 Kolmogorov decompositions are used in the form of algebraic inducing, and
there is a certain similarity to our method.

The ‘‘Weyl algebra’’ over compact manifolds, especially over the torus group,50 provides
prominent examples for a noncommutative geometry~cf. Refs. 51–53, and references therein!.

The problem of nonregular states and discontinuous quasi-free dynamical systems is
already in Refs. 54 and 55, and more recently in Ref. 56. In our context, related develop
were undertaken in Refs. 37 and 38.

Let us also mention the work58 of Weaver, in which for~infinite dimensional! Hilbert spaces
E, with the imaginary part of the scalar product taken as the symplectic forms, deformed von
Neumann and C*-algebras are constructed in special realizations.

In our present exposition we do not rely on earlier results but we start anew from an arb
pre-symplectic test function space (E,s) ~where the inifinite dimensional case is, of couse,
interesting one!. We give a straight-forward and almost self-contained construction method
natural C*-Weyl algebraW(E,s), associated with (E,s), which does not use a special realizatio
or Hilbert space representation. That means that we work directly with the linear hullD(E,s) of
the abstract Weyl elements and with the states on this abstract* -algebra, where the latter are give
in terms of thes-positive definite functionsC(E,s) on E. These data are shown to determine
distinguished C*-norm onD(E,s), and the subsequent norm-completion ofD(E,s) leads already
to W(E,s). The clear-cut strategy appears useful for quantum field theoretic applications.
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More specifically, we collect in Sec. II the basic notions and prove some necessary r
concerning projective representations ofJ-involutive groups, in the case that an antisymmet
bicharacterS is given, employing Kolmogorov decompositions.57 These techniques are then a
plied to the GNS-representations of so-called U*-algebras~where a ‘‘representation’’ is here
always realized in terms ofboundedoperators!. We prove especially an original extension theore
for S-positive definite functions~Prop. 2-2!. In this manner we adapt the even more general res
of Ref. 29 to our requirements and refine some of their arguments.

In Sec. III the formalism is specialized to Weyl systems connected with the pre-symp
space (E,s), now considered aJ-involutive group. According to the previously derived resul
eachs-positive definite function inC(E,s) defines a Hilbert space representation of the abst
Weyl system, resp., ofD(E,s) ~whereas, in general, GNS-constructions for* -algebras would lead
to unbounded operators.!

As indicated above, the C*-norm is introduced onD(E,s) by means ofC(E,s) without
considering, at first, the Hilbert space realizations. In contradistinction to Ref. 34 and to R
our approach is completely algebraic and emphasizes the uniqueness ofW(E,s), if all of the
s-positive definite functionsC(E,s) are taken into account for defining the C*-norm.

Of course, it is valuable to acquire information on the connection between the abstract
algebraW(E,s) and the represented Weyl systems. In Prop. 3-4 it is demonstrated tha
abstract C*-norm is also obtainable as the supremum of all operator norms of the represent
In Theorem 3-7 it is shown thatW(E,s) is the unique C*-algebra, whose representions give
Weyl systems in Hilbert spaces.

The homeorphism betweenC(E,s) and the total state space ofW(E,s), which we found in
the literature only fornondegenerates as a map of thecontinuousfunctions inC(E,s) onto the
regular states onW(E,s), is proven in Theorem 3-5. A fundamental role in the analysis
W(E,s) plays the tracial state, which we show to be faithful in Corollary 3-6~a fact already
stated, but not completely proven, in Ref. 34 and also mentioned within a more special con
Ref. 58!.

In Sec. III D the gauge transformations of the second kind and the symplectic transforma
that are the fundamental structural symmetries, are introduced in a more general manner
the previous literature.

The norm estimates in Sec. III E, concerning beside the C*-norm two other Banach norms
refine and supplement essentially the considerations regarding this topic in Ref. 34. It is d
strated, besides other things, that the chosen C*-norm is the only C*-norm, which majorizes the
i•i2-norm.

In Sec. IV we treat, as a special case of the general formalism, the commutative Weyl a
W(E,0) with the totally degenerate pre-symplectic form—the zero forms50—on an arbitrary
real vector spaceE. We derive several* -isomorphic C*-algebras of functions, which illuminate
the structure of this commutative C*-algebra. More precisely, it follows that

W~E,0!>AP~Et8!5C~aEt8!>C~Ê!. ~1.9!

Observe that in group theoretical language the commutative Weyl algebra is just the
C*-algebra of the discrete vector groupE ~with a trivial multiplier!. Here AP(Et8) is the commu-
tative C*-algebra of the continuous almost periodic functions on the topological dualEt8 of E,
whereE is equipped with a locally convex Hausdorff topologyt. The symbols C(aEt8), resp.
C(Ê), denote the C*-algebras of the continuous,C-valued functions over the indicated compa
spaces. The first compact space is the almost periodic compactificationaEt8 of the dualEt8

59 ~cf.
also Ref. 60 for connecting almost periodic functions and compactifications!. The second is the
topological character groupÊ of E, the latter being regarded as a discrete additive group.@As the
classical pendent of Weyl algebras, AP(Et8) appears already in Ref. 58, but only in the special c
of Et8 being a Hilbert space.#

The*-isomorphismW(E,0)>C(Ê) is identified as the Gelfand representation of the comm
tative C*-Weyl algebraW(E,0). As a consequence the state space ofW(E,0) is affine homeo-
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morphic to the Bauer simplex of probability measures on the compact character groupÊ; cf. Ref.
61.

By use of the*-isomorphism C(aEt8)>C(Ê) in Eq. ~1.9!, we deduce that the embeddin
F°exp$iF(•)% of Et8 into the character groupÊ extends continuously to a continuous gro
isomorphism between the topological compact groupsaEt8 and Ê. As a consequence of this, th
almost periodic compactificationaEt8 of the topological dualEt8 is independent from the chose
locally convex Hausdorff topologyt on E, that is,

aEt1
8 >aEt2

8 >Ê,

for two given locally convex topologiest1 , resp.,t2 on E.
These apparently still unpublished results on the classical Weyl algebra enable the free

of a topology in the field theoretic phase spaceEt8 without losing the uniqueness of the observab
algebra.

In order to emphasize again that our mathematical developments are motivated by ph
intentions, namely to clarify the structure of systems which exhibit quantum and classical fe
simultaneously and to relate also the extreme cases with each other in terms of the defor
concepts, we draw some conclusions in Sec. V and give an outlook on related works
preparation.

II. POSITIVE-DEFINITENESS AND KOLMOGOROV DECOMPOSITION

A. Projective representations of J-involutive groups

Let first X be an arbitrary~nonempty! set. A mappingK:X3X→C, (x,y)°K(x,y) is called
a kernelon X, whereas a mappingC:X→C, x°C(x) is named afunction.

A kernelK on X is calledpositive-definite, if for every numbernPN and allz1 ,...,znPC and
all x1 ,...,xnPX we have( i , j 51

n zizjK(xi ,xj )>0. Every positive-definite kernelK on X admits a
Kolmogorov decomposition,57,29 that is a mappingv:X→Hv from X into a complex Hilbert space
Hv , which satisfies

K~x,y!5„v~x!uv~y!…, ;x,yPX, ~2.1!

where ~•u•! is the right-linear complex scalar product onHv . Conversely, a kernel is positive
definite, if it possesses a Kolmogorov decomposition. The Kolmogorov decompositionv:X°Hv
of K is called minimal, if the set$v(x)uxPX% is total in Hv . If the Kolmogorov decomposition
v:X→Hv is not minimal, then one constructs a minimal Kolmogorov decomposition by restric
Hv to the closure of the linear hull of$v(x)uxPX%. It is immediately checked that the minima
Kolmogorov decomposition is unique up to unitary equivalence.29

We assume from now on thatX is a semigroup, i.e.,X is equipped with an associativ
~possibly noncommutative! operation+:X3X→X and a neutral elementePX, which is defined to
satisfy e+x5x+e5x for all xPX. There may exist some elements inX which are invertible,
possessing an elementx21PX such thatx21+x5x+x215e. At least the neutral elemente is
invertible withe215e. The inversex21 is unique and invertible with (x21)215x. If x, yPX are
invertible, thenx+y is invertible with (x+y)215y21+x21.

In addition, suppose to be given an involutionJ on the semigroupX, that is a mappingJ:X
→X satisfyingJ2(x)5x and J(x+y)5J(y)+J(x) for all x, yPX, defining the involutive semi-
group (X,J). It follows that

XJª$xPXuJ~x!+x5x+J~x!5e% ~2.2!

is a group with the group operation+, called theJ-involutive group corresponding to(X,J). Its
neutral element just ise, and the inversion is given byJ(x)5x21, xPXJ . It holds J(XJ)5XJ .
Examples are found below.
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A kernel S on the semigroupX is called anantisymmetric bicharacter, if, for all x, y, z
PX, one has

uS~x,y!u51, S~x,x!51, S~x,y+z!5S~x,y!S~x,z!, S~x+y,z!5S~x,z!S~y,z!.

It follows that S(x,y)5S(y,x) and S(x,e)51 for all x, yPX. Furthermore, it isS(x,y21)
5S(x,y) for everyxPX and each invertible elementyPX. The antisymmetric bicharacterS is
called nondegenerate, if S(x,y)5S(x,z) ;xPX implies y5z. Note that a nondegenerateS
yields the semigroupX to be commutative, sinceS(x,y+z)5S(x,y)S(x,z)5S(x,z)S(x,y)
5S(x,z+y). We consider here, however, possibly degenerateSs.

The triplet (X,J,S) of the quantities just described is denoted aprojective involutive semi-
group.

A function C:X→C on (X,J,S) is calledS-positive-definite, if the associated kernelKC is
positive definite, where

KC :X3X→C, ~x,y!°KC~x,y!ªS~x,y!C„J~x!+y…. ~2.3!

Explicitly, C is S-positive-definite, if

(
i , j 51

n

zizjS~xi ,xj !C„J~xi !+xj…>0,

for every numbernPN, all z1 ,...,znPC, and allx1 ,...,xnPX. A Kolmogorov decomposition of
C is defined as a Kolmogorov decomposition for the kernelKC .

A unitary S-representation(U,HU) of the groupXJ is a mappingU:XJ{x°U(x) from XJ

into the unitary operators acting on the complex Hilbert spaceHU such that the relations@cf. also
Eq. ~1.1!#,

U~x!U~y!5S~x,y!U~x+y!, U~x!* 5U~x!215U~x21!, ;x,yPXJ , ~2.4!

are fulfilled. In other words, (U,HU) is a projective group representation with respect to
multiplier S.

Theorem 2-1 ~S-representation!: Let C be aS-positive-definite function on the projectiv
involutive semigroup(X,J,S), and letv:X→Hv be the minimal Kolmogorov decomposition of
Then there exists a unique mapping V:XJ{x°V(x) from the group XJ into the unitary operators
on the Hilbert spaceHv , such that

V~x!v~y!5S~x,y!v~x+y!, ;yPX, ;xPXJ .

Furthermore, the mapping V is a unitaryS-representation of the J-involutive group XJ .
Proof: For a fixed xPXJ let us consider the mappingvx:X→Hv defined by vx(z)

ªS(x,z)v(x+z) for all zPX. With J(x+y)5J(y)+J(x)5J(y)+x21, the properties ofS, and Eq.
~2.3! we conclude that„vx(y)uvx(z)…5KC(y,z) for all y, zPX. Thus the mapvx:X→Hv is a
Kolmogorov decomposition ofC, too, which is minimal sincex is invertible. But two minimal
Kolmogorov decompositions are unitarily equivalent. Consequently, there exists a unique u
V(x) on Hv , such thatvx(z)5V(x)v(z) for all zPX. It is straightforward to verify that in
application to the total elements$v(z)uzPX% the mapping V:XJ{x°V(x) is a unitary
S-representation. j

B. Extension of S-positive-definite functions

In this subsection letX be a group with the group operation+. We define the involutionJ by
J(x)ªx21 for all xPX, and thus we haveX5XJ .
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We haveC(e)>0 for everyS-positive-definite functionC on the projective group (X,S) by
Eq. ~2.1!. So let us defineC(X,S) to be the convex set of all normalized,S-positive-definite
functions C:X→C, where normalization meansC(e)51. The restriction of the antisymmetri
bicharacterS from X to a subgroupG#X is also denoted byS.

Proposition 2-2: Let G be a subgroup of X. If CGPC(G,S) is extended trivially to X by
putting C(x)ªCG(x) for xPG and C(x)ª0 elsewhere, then CPC(X,S). Moreover, the restric-
tion C°CuG from X to G is a surjective affine map fromC(X,S) onto C(G,S).

Proof: Let u:G→H be a Kolmogorov decomposition ofCG . There exists a subsetI ,X such
that X decomposes into the disjoint unionX5øwPIw+G. For eachwPI let Hw be a copy ofH,
and perform the direct sumKª% wPIHw ; kw be the component ofkPK in Hw . For zPI put
uz:G→K with „uz(y)…w5u(y)PHw for z5w but „uz(y)…w50 for zÞw. Define the mapv:X
→K by v(x)ªS(x,z)uz(z21+x) for xPz+G. With the properties ofS and Eq.~2.3! we derive
that„v(x)uv(y)…5KC(x,y) for all x, yPX. Thusv is a Kolmogorov decomposition ofC implying
CPC(X,S). j

Let us present a simple example. Consider the trivial subgroupGª$e%. Then C($e%,S)
consists of a single element, which extends trivially toCtrPC(X,S) satisfying Ctr(e)51 and
Ctr(x)50 for eÞxPX. In Subsection 3.2 we construct from the functionCtr a tracial statev tr on
the twisted group C*-algebra, which explains the index ‘‘tr.’’

C. The GNS representation of U * -algebras

Let A be a complex*-algebra. A linear functionalv on A is calledpositive, if ^v;A* A&
>0 for all APA, where^•;•& means the algebraic duality relation. A representation (P,HP) of
the *-algebraA is a * -homomorphismP from A into the C*-algebraL~HP) of all bounded
operators on the complex Hilbert spaceHP ; it is called nondegenerate, ifP(A)HP is dense in
HP @equivalently,P(1)51P , wheneverA contains an identity1#. Because of the absence of
norm, there exist* -algebras, which do not admit any nontrivial representation. Especially, ce
*-algebras of unbounded operators as, e.g., the*-algebra of the polynomials of the position an
momentum operators,Q5x, resp.,P52 i (d/dx) in L2(R), do not possess any nontrivial repr
sentation~by bounded operators!.

A Gelfand-Naimark-Segal construction (Pv ,Hv ,Vv) of a positive linear functionalv on the
*-algebraA is defined as for C*-algebras: (Pv ,Hv) is a representation ofA and VvPHv a
cyclic vector@i.e., Pv(A)Vv is dense inHv], such that̂ v;A&5(VvuPv(A)Vv);APA. Two
different GNS representations of a positive linear functionalv are unitarily equivalent.

In the operator algebraic textbooks, e.g. Refs. 62–64; also Ref. 65, the existence of th
construction is derived in a way, which requires the norm-completeness of the*-algebraA ~as is
the case for Banach*—resp. C*—algebras! to demonstrate the boundedness of the represen
operators. Our derivation is based on Ref. 29. It demandsA to be a U*-algebra instead of
requiring the mentioned norm-completeness. A U*-algebraA is a* -algebra with identity1, such
that every element ofA is a ~finite! linear combination of unitary elements fromA (UPA is
called unitary, ifUU* 5U* U51). Especially every Banach*—resp. C*—algebra with an iden-
tity is a U*-algebra, and so is the pre-Weyl algebra in Eq.~3.2! below.

Let our * -algebraA possess an identity1. We obtain an involutive semigroup (A,J) by
defining the operation+ as the algebraic product—implying1 to be the neutral element—and b
introducing the involutionJ as the algebraic* -operationJ(A)ªA* , ;APA. So theJ-involutive
group AJ consists of all unitary elements ofA. Put Sª1. Then each positive linear functiona
v:A{A°^v;A& is a 1-positive-definite function with associated positive-definite ker
Kv(A,B)5^v;A* B& for A, BPA. Whereas the minimal Kolmogorov decomposition exists
every positive linear functionalv on an arbitrary* -algebra~also on those without an identity!, a
GNS representation ofv may not exist.

Theorem 2-3: The GNS representation exists for every positive linear functional o
U* -algebraA.

Proof: v being a linear form implies the minimal Kolmogorov decompositionvv :A→Hv of
v, resp. of the kernelKv , to be linear, too. By Theorem 2-1 there exists a unitary representa
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Pv of the unitary groupAJ , which we extend linearly to a representation of the whole U*-algebra
A. v being linear yieldsPv(A)vv(B)5vv(AB) for all A, BPA, which implies the independenc
of Pv(A) from the linear decomposition ofA into unitaries. Finally, setVvªvv(1). j

The extension from the unitaries to the whole U*-algebra in the above proof fits well to th
construction of the Weyl algebra in the next section; see especially Observation 3-2.

III. THE C* -WEYL ALGEBRA

Throughout the present section let (E,s) be a fixedpre-symplectic space, namely a real vector
space equipped with anR-bilinear mappings:E3E→R, ( f ,g)°s( f ,g), which is antisymmet-
ric, i.e., s( f , f )50, ; f PE or equivalently,s( f ,g)52s(g, f ), ; f , gPE.

In order to conform with Sec. II A we considerE as a commutative group with the additio
+ª1 as the group operation. The involutionJ is defined as forming the additive inversesJ( f )
ª2 f , and thus we haveEJ5E for the J-involutive group. The antisymmetric bicharacterS is
chosen as in Eq.~1.8!, i.e., asS( f ,g)ªexp$2(i/2)s( f ,g)%. Instead ofC(E,S) we write C(E,s)
for the set of normalized,s-positive-definite functionsC:E→C. The nondegeneracy ofS is
equivalent to the nondegeneracy ofs, i.e., „s( f ,g)50; f PE…⇒g50. In our investigation, how-
ever, s may be degenerate, and in Sec. IV we even treat the trivial case of a vanishing
symplectic form.

In the Introduction we associated with a pre-symplectic space (E,s) an abstract Weyl system
which consists of linearly independent Weyl elementsW( f ), f PE, in a *-algebra, fulfilling the
Weyl relations

W~ f !W~g!5expH 2
i

2
s~ f ,g!J W~ f 1g!, W~ f !* 5W~2 f !, ; f ,gPE8, ~3.1!

cf. Eq. ~1.1!. In the present section we search for an appropriate C*-Weyl algebra, which be
naturally given, resp. generated, by the abstract Weyl system.

A. Weyl systems as projective group representations

In the Introduction we discriminated conceptually between the abstract Weyl system a
Hilbert space realizations (WR ,HR) in terms of unitary operators, the latter simply calledWeyl
systems. Up to now, we did not deal with the existence either of the abstract or of the~Hilbert
space! Weyl systems.

In mathematical investigations Weyl systems over (E,s) are viewed as unitary
s-representationsWR :E{ f °WR( f ) of the additive groupE on the complex Hilbert spaceHR .
That means that the operator product of the unitary Weyl operatorsWR( f )PL~HR), f PE, rep-
resents, by satisfying the Weyl relations~3.1!, the addition ofE homomorphically up to a phas
factor, given by the bicharacterS( f ,g).

There is the following connection between Weyl systems ands-positive-definite functions on
(E,s).

Theorem 3-1: The following assertions are valid.

~a! Let CPC(E,s) be as-positive-definite function. Then there exists a Weyl system(WC ,HC)
over (E,s) and a normalized vectorVCPHC , such that$WC( f )VCu f PE% is total in HC

and the function C is given by the expectations C( f )5„VCuWC( f )VC… for all f PE.
~b! Let (WR ,HR) be a Weyl system over(E,s). Then for every density operatorr on HR (a

positive trace class operator withtr@r#51) the mapping E{ f °Cr( f )ªtr@rWR( f )# is an
element ofC(E,s).

Proof: Part ~a! is an application of Theorem 2-1 to the present case withEJ5E, whereVC

ªvC(0) for the minimal Kolmogorov decompositionvC :E→HC of C. Part ~b!: The relation
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Cr(0)51 is immediate, sinceWR(0)51R is the identity onHR . If A5( j 51
n zjWR( f j ) is an

arbitrary linear combination of Weyl operators with differentf j ’s, then we obtain by the positivity
of r and by the Weyl relations that

0<tr@rA* A#5 (
i , j 51

n

zizj expH i

2
s~ f i , f j !J tr@rWR~ f j2 f i !#

5 (
i , j 51

n

zizj expH i

2
s~ f i , f j !J Cr~ f j2 f i !,

which is thes-positive-definiteness ofCr . HenceCrPC(E,s). j

Observe, that for a givenCPC(E,s) the elements ofWC(E), need not be linearly indepen
dent.

B. Construction of the Weyl algebra

In order to construct the desired*-algebra for the Weyl relations, we have a need fo
mappingW from E into a subset of linearly independent elements of a vector spaceF. The latter
means, of course, that the imageW(E),F consists of linearly independent elementsW( f )PF,
f PE.

As a main example one may chooseF as the linear space of allC-valued functions onE and
define for everyf PE the elementW( f ) as the Kronecker delta functionW( f ):E→C satisfying
W( f )@g#51 for g5 f andW( f )@g#50 for gÞ f . The set of theseW( f ) is clearly linearly inde-
pendent.

For any linearly independent familyW(E),F we denote byD(E,s) the vector space of al
~finite! complex linear combinations of theW( f ), f PE,

D~E,s!ªLH$W~ f !u f PE%. ~3.2!

Here LH means the complex linear hull, so an arbitrary element ofD(E,s) is given by A
5( j 51

n zjW( f j ) with somenPN andzjPC and f jPE. In the above exampleA5( j 51
n zjW( f j ) is

a C-valued function onE with A@g#50 for gP$ f 1 ,...,f n% andA@g#5zjPC for g5 f j , whenever
the f j ’s are mutually different.

Defining the product and the*-operation as in the Weyl relations in Eq.~3.1! every polyno-
mial of the W( f ), now rightly calledWeyl elements, reduces to a linear combination, whic
implies thatD(E,s) becomes a*-algebra. Obviously, all of theD(E,s) are* -isomorphic to each
other and we speak ofthe * -algebraD(E,s) associated with (E,s). It contains the abstract Wey
system as a sub-family.~Our main example proves now the existence of the abstract Weyl sys!

Moreover,D(E,s) is a U*-algebra, where its identity is given by1ªW(0) ~and not by the
unit function in the main example!, and every Weyl elementW( f ) is unitary.

Observation 3-2: Since the Weyl elements W( f )PD(E,s), f PE, are linearly independent we
may identify each fPE with the associated Weyl element W( f ). Thus every functionG:E→V from
E into a vector spaceV extends uniquely to a linear mappingGext :D(E,s)→V by setting

GextS (
j 51

n

zjW~ f j !Dª(
j 51

n

zjG~ f j !, ~3.3!

where nPN and zjPC and the different fjPE are arbitrary. (Note that this extension coincide
with the extension from the unitariesAJ onto the whole U* -algebraA given in the proof of the
GNS representation in Theorem 2-3.!

We use the Observation to extend normalizeds-positive-definite functions and Weyl system
from E to states and representations of the*-algebraD(E,s).

Lemma 3-3: The following assertions are valid.
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~a! For each CPC(E,s) let vC be the linear functional onD(E,s), which is obtained by the
linear extension of the prescription̂vC ;W( f )&ªC( f ) to all of D(E,s) in terms of Eq.
(3.3). Then the mapping C°vC constitutes an affine bijection fromC(E,s) onto the convex
set of all states on the* -algebraD(E,s). (A statev is a positive linear functional satisfying
the normalization condition̂v;1&51.)

~b! Let (WR ,HR) be a Weyl system over(E,s). Then there exists a unique representati
(PR ,HR) of the* -algebraD(E,s) such thatPR„W( f )…5WR( f ) for all f PE. Conversely,
every nondegenerate representation(P,HP) of D(E,s) induces a Weyl system(WP ,HP)
via WP( f )ªP„W( f )… for all f PE.

~c! Let CPC(E,s) with associated Weyl system(WC ,HC) over (E,s) and normalized vector
VCPHC according to Theorem 3-1(a). Furthermore, letvC and the representation
(PC ,HC) of D(E,s) be determined as described in the parts (a) and (b). T
(PC ,HC ,VC) is the GNS representation of the statevC on D(E,s). @Note thatD(E,s) is
a U* -algebra, and thus every state admits a GNS representation by Theorem 2-3.#

Proof: ~a! The positivity of the so defined linear formvC follows from the s-positive-
definiteness ofCPC(E,s) and the Weyl relations with

^vC ;A* A&5 (
i , j 51

n

zizj expH i

2
s~ f i , f j !J C~ f j2 f i !>0, Aª(

j 51

n

zjW~ f j !. ~3.4!

And the normalization is given bŷvC ;1&5^vC ;W(0)&5C(0)51. Conversely, ifv is a state on
D(E,s), then as in~3.4! the s-positive-definiteness ofE{ f °^v;W( f )& is derived.

With the extension~3.3! the parts~b! and ~c! are immediate. j

A simple exampleCtrPC(E,s) is given byCtr(0)ª1 andCtr( f )ª0 for 0Þ f PE, defined at
the end of Sec. II B. It is immediately checked that the minimal Kolmogorov decomposition oCtr

is determined to bev tr :E→12(E) with v tr( f )@g#51 for f 5g andv tr( f )@g#50 for f Þg. Here
12(E) is the Hilbert space of square summable sequences overE, i.e., its elements are function
f:E→C, g°f@g# satisfyingifi2

25(gPEuf@g#u2,`. According to Theorem 2-1 the associate
Weyl systemWtr acts on 12(E) as the projective shifts,

„Wtr~ f !f…@g#5expH 2
i

2
s~ f ,g!J f@g2 f #, ;gPE, fP12~E!.

The statev tr associated toCtr satisfies

^v tr ;AB&5^v tr ;BA&, ;A,BPD~E,s!, ~3.5!

hence it is a tracial state onD(E,s). Note, in case of a nondegenerates it follows from the Weyl
relations thatv tr is the only tracial state. IfAª( j 51

n zjW( f j ) is an arbitrary element ofD(E,s)
with different f j ’s, then

^v tr ;A* A&5(
j 51

n

uzj u2. ~3.6!

The tracial statev tr is the only state which is invariant under all gauge transformationsgx defined
in Sec. III D below. By the proof of Theorem 3-1~a! its GNS representation„P tr,1

2(E),V tr… has
the cyclic vectorV tr5v tr(0), whereP tr(W( f ))5Wtr( f ), ; f PE.

For an arbitrary representation (P,HP) of D(E,s) define the representation (P̃,H̃P) by

~P̃„W~ f !…c!@g#5WP~ f !c@g2 f #, ;gPE, cPH̃P , ~3.7!
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on the Hilbert spaceH̃Pª12(E,HP)5HP ^ 12(E). Here the representationP tr is interesting in
so far as the fact that the representationP̃ is quasi-equivalent toP tr . Exactly, by direct compu-
tation one immediately verifies that

UPP̃~A!UP* 51P ^ P tr~A!, ;APD~E,s!,

with the unitaryUP on HP̃ defined by (UPc)@g#5WP(2g)c@g#;gPE. Consequently,

iP~A!i<iP̃~A!i5iP tr~A!i , ;APD~E,s!, ~3.8!

where the inequality sign is a direct consequence of the definition ofP̃ in ~3.7!.
A ~vector space! norm i•i is called a*-algebra norm, if the product and the*-operation are

norm-continuous, i.e.,iABi<iAiiBi and iA* i5iAi . If in addition the*-algebra normi•i sat-
isfies the C*-norm propertyiA* Ai5iAi2 for all APD(E,s), then it is called aC* -norm.

We now introduce a C*-norm onD(E,s). Two further norms onD(E,s) are given in Sec.
III E.

Proposition 3-4~C*-norm!: The mapping,

D~E,s!{A°iAiªsup$A^vC ;A* A&uCPC~E,s!%, ~3.9!

defines a C* -norm on the* -algebraD(E,s). It may also be expressed as

iAi5sup$iPR~A!iu all Weyl systems~WR ,HR! over ~E,s!%, ;APD~E,s!.
~3.10!

Moreover, i•i is the unique C* -norm onD(E,s), such that every representationP of D(E,s) is
i•i-continuous, i.e., iP(A)i<iAi , ;APD(E,s).

Proof: Let (WR ,HR) be a Weyl system over (E,s). Theorem 3-1~b! yields that for every
normalizedcPHR the mappingE{ f °(cuWR( f )c)5..CR

c( f ) is an element ofC(E,s). Hence,

iPR~A!i5sup$iPR~A!ciucPHR ,ici51%

5sup$A~cuPR~A* A!c!ucPHR ,ici51%5sup$A^vC
R
c;A* A&ucPHR ,ici51%.

Consequently, Eq.~3.10! follows from Theorem 3-1~a!, ensuring thatA°iAi is a semi-norm.
SinceiAi2>^v tr ;A* A& it follows from Eq. ~3.6! that iAi50, if and only if A50, i.e., the strict
positivity of i•i. So,i•i being indeed a C*-norm is a consequence of the C*-norm property of the
norms on the bounded operators on Hilbert spaces. It follows from Eq.~3.10! and Lemma 3-3~b!
that every representationP of D(E,s) satisfiesiP(A)i<iAi for all APD(E,s).

Suppose a further C*-norm i•i8 on D(E,s) exists, such that every representationP of
D(E,s) is i•i8-continuous.P extends continuously to thei•i8-completion, and thusiP(A)i
<iAi8 by a standard result, e.g., Ref. 62, Lemma 2.3.1. LetP be a faithful representation of th
i•i8-completion~the existence of faithful representations of a C*-algebra is also a standard resu
e.g., Ref. 62, Theorem 2.1.10!, theniP(A)i5iAi8 for all APD(E,s). By our above construction
we in have in additioniP(A)i<iAi . HenceiAi8<iAi for all APD(E,s). Interchanging the
roles of i•i and i•i8 yields i•i5i•i8. j

A further uniqueness characterization of the C*-norm onD(E,s) is given in Corollary 3-11
below.

By the above result every representation of the*-algebraD(E,s) extends continuously to its
i•i-completion,

W~E,s!ªD~E,s! ~3.11!

~the overbar indicates thei•i-completion!. The C*-algebraW(E,s) is called theWeyl algebra
over the pre-symplectic space (E,s). In the literature also the notion of CCR algebra is found
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By a i•i-continuous extension, especially of the GNS representations and thus of the sta
obtain immediately the following characterization of the state space of the Weyl algebra.

Theorem 3-5„state space…: The map C°vC is an affine homeomorphism fromC(E,s) onto
the state spaceS„W(E,s)… of W(E,s), where onC(E,s) it is considered the topology of point
wise convergence and onS„W(E,s)… the weak* -topology.

If E0 is a subspace ofE—the restriction ofs from E to E0 is also denoted bys—then the
question arises as to how the associated Weyl algebrasW(E0 ,s) andW(E,s) are related to each
other. We may do the same construction forD(E0 ,s) as above.D(E0 ,s) may be regarded as
sub-* -algebra ofD(E,s), when identifying the Weyl elementsW( f )PD(E0 ,s) with the associ-
ated Weyl elementsW( f )PD(E,s) for each f PE0 @in our main example, where the Weyl ele
ments are Kronecker functions, everyAPD(E0 ,s) is aC-valued function onE0 , which extends
trivially to a function onE by putting A@g#50 for gPE\E0]. Because of Proposition 2-2 th
definition ~3.9! leads to the same C*-norm on the*-algebraD(E0 ,s) as the C*-norm arising by
a restriction of the C*-norm onD(E,s),

iAi5sup$A^vC8 ;A* A&uC8PC~E0 ,s!%5sup$A^vC ;A* A&uCPC~E,s!%, APD~E0 ,s!.

Consequently,W(E0 ,s)5D(E0 ,s) is a sub-C*-algebra ofD(E,s)5W(E,s). If the inclusion
E0,E is proper, then Eq.~3.6! yields thatiA2W( f )i>1 for all APW(E0 ,s) and f PE\E0 .
Thus,W(E0 ,s)5W(E,s), if and only if E05E.

Corollary 3-6: The tracial statev trPS(W(E,s)) is faithful, i.e., ^v tr ;A* A&Þ0 for all A
PW(E,s)\$0%.

Proof: Because of~3.5! we have that$Au^v tr ;A* A&50% is a closed*-ideal ofW(E,s) ~e.g.,
Ref. 63, Lemma I.9.6#!, which is easily identified to coincide with the kernel of the GNS rep
sentationP tr . But Eq.~3.8! yields thatiP(A)i<iP tr(A)i;APW(E,s) for every representation
P. HenceP tr is a faithful representation ofW(E,s), or equivalently, ker(P tr)5$0%. j

C. Uniqueness of the Weyl algebra

The previous construction demonstrates the existence of the C*-Weyl algebraW(E,s). The
next result characterizes its uniqueness in the desired sense, namely, that every Weyl syste
from one of its representations. Observe that in the assumptions the linear independence
Weyl elements is replaced by the weaker condition that the elementsW( f ) all be nonzero.

Theorem 3-7~uniqueness!: W(E,s) is the unique C* -algebra (up to* -isomorphy) generated
by nonzero elements W( f ), f PE, satisfying the following two assumptions:

(U1) The elements W( f ), f PE, fulfill the Weyl relations, Eq. (3.1).
(U2) Every Weyl system(WR ,HR) over (E,s) arises from a representation(PR ,HR) of

W(E,s) with WR( f )5PR(W( f )) for all f PE (a relation which characterizes the representati
PR uniquely).

Proof: The fact the Weyl algebraW(E,s) from Eq.~3.11! satisfies the relations~U1! and~U2!
has already been established. So let us demonstrate its uniqueness.

Suppose there exists a further C*-algebraW8(E,s) with norm i•i8 generated by nonzero
elementsW8( f ), f PE, satisfying the assumptions~U1! and ~U2!. We show the linear indepen
dence of theW8( f ), f PE. Consider the Weyl system (Wtr ,Htr) with normalized vectorV tr

PHtr , such thatCtr( f )5„V truWtr( f )V tr…, ; f PE, which corresponds to the tracialCtrPC(E,s)
according to Theorem 3-1~a!. Then by assumption~U2! there exists a representation (P tr ,Htr) of
W8(E,s) with Wtr( f )5P tr„W8( f )…. But we then have forBª( j 51

n zjW8( f j ) with different f j ’s
that

iBi82>iP tr~B!i2>~V truP tr~B* B!V tr!5 (
i , j 51

n

zizj expH i

2
s~ f i , f j !J Ctr~ f j2 f i !5(

j 51

n

uzj u2.

HenceB50, if and only if zj50 for all j 51,...,n, expressing the linear independence.
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The linear independence of theW8( f ), f PE, implies the linear extensibility of the mappin
W( f )°W8( f ), ; f PE to a*-isomorphism fromD(E,s) onto the*-algebra LH$W8( f )u f PE%, so
we may incorporate the normi•i8 also intoD(E,s) by settingi( j zjW( f j )i8ªi( j zjW8( f j )i8.
The i•i-completion ofD(E,s) givesW(E,s), and itsi•i8-completion givesW8(E,s) up to an
*-isomorphism. By assumption~U2! we now have two norms onD(E,s), such that for both of
which every Weyl system arises from acontinuousrepresentation of the*-algebraD(E,s). The
one-to-one correspondence between Weyl systems and nondegenerate representatio
Lemma 3-3~b! implies that every representation ofD(E,s) is continuous with respect to both o
the norms. By Proposition 3-4 the two norms must then coincide. j

Let us communicate some additional results from the literature.

~a! The Weyl algebraW(E,s) is simple, if and only ifs is nondegenerate.~It is shown in Ref.
28, resp., in the proof of Ref. 23, Theorem 5.2.8 that one has equality in Eq.~3.8!, i.e.,
iP(A)i5iP̃(A)i5iP tr(A)i , ;APD(E,s) for every representationP of D(E,s), if and
only if s is nondegenerate. The essential point is that the charactersf °exp$is(g,f)%, g
PE, are dense in the character groupÊ of E for nondegenerates, only, by Lemma 4-2@then
the locally convex topology onE arising from the semi-normsf °us(g, f )u, gPE, is Haus-
dorff#.! Consequently, in case of a nondegenerates for the uniqueness ofW(E,s) in Theo-
rem 3-7 it suffices that assumption~U1! is valid, and so the second uniqueness condit
~U2! is necessary for the degenerate case, only.

~b! The C*-Weyl algebraW(E,s) is not separable forEÞ$0%.
~c! A detailed analysis of the closed*-ideals ofW(E,s) ~the kernels of representations!, resp.,

of C*-norms onD(E,s) is given in Ref. 34.

We finally present an easy example, which illustrates that for degenerates the Weyl algebra
W(E,s) cannot be simple. The degeneracy ofs is equivalent to a nontrivial null space kers , the
latter being defined in Eq.~1.7!. Then the symplectic forms̃ on the quotientẼªE/kers defined
by s̃( f̃ ,g̃)ªs( f ,g) is nondegenerate (f̃ denotes the equivalence class containingf!. Since
W(Ẽ,s̃) is simple, every nondegenerate representation (P̃,HP) is faithful. But WP( f )
ªP̃„W̃( f̃ )…, f PE, defines a Weyl system (WP ,HP) over the original degenerate pre-symplec
space (E,s) @the Weyl elements ofW(Ẽ,s̃) are denoted byW̃( f̃ )]. Hence by the above Theorem
there exists a unique representation (P,HP) of W(E,s) with WP( f )5P„W( f )… for each f
PE. It follows that

P„W~ f !…5P„W~g!…, but iW~ f !2W~g!i52, for 0Þ f 2gPkers

~the latter follows from Proposition 3-10 below!. It holdsP„W(kers,0)…5C1P for the commuta-
tive ~s vanishes on kers) sub-C*-Weyl algebraW(kers,0) of W(E,s). Whereas the abstract Wey
elementsW( f ), f PE, are linearly independent, the represented Weyl operatorsP„W( f )…
5WP( f ), f PE, become linearly dependent.

D. Gauge and Bogoliubov * -automorphisms

For states and representations the continuous extension fromD(E,s) to its completion
W(E,s) has been already discussed. Here we consider* -isomorphisms, resp
*-anti-isomorphisms, in terms of such an extension.

Proposition 3-8: Let(Ẽ,s̃) be a further pre-symplectic space, and supposeb to be an
* -(anti-)-isomorphism fromD(E,s) onto D(Ẽ,s̃). Thenb is an isometry and extends continu
ously to a unique* -(anti-)isomorphism fromW(E,s) onto W(Ẽ,s̃).

Proof: Let P be a faithful representation of the C*-Weyl algebraW(Ẽ,s̃). Then P+b is a
representation ofD(E,s), and thus we haveib(A)i5i(P+b)(A)i<iAi , ;APD(E,s). The
same argumentation forb21 yields ib21(B)i<iBi , ;BPD(Ẽ,s̃). Thus ib(A)i5iAi , ;A
PD(E,s). The extension may now be performed, since the algebraic operations are
continuous. j
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We specialize the above result to the case (Ẽ,s̃)5(E,s), that is, to* -automorphisms on
D(E,s). The most basic* -automorphisms are the gauge transformations of the second kind
the Bogoliubov transformations, which are going to be treated according to the scheme de
above.

RegardingE as an additive group, we denote byÊ the commutative group of all characters o
E. For xPÊ the associated gauge transformation of the second kind is the*-automorphismgx on
the *-algebraD(E,s) satisfying

gx„W~ f !…5x~ f !W~ f !, ; f PE, ~3.12!

which extends continuously toW(E,s) by Proposition 3-8. It follows that the mapping

Ê{x°gxP* -aut„W~E,s!… ~3.13!

is a representation of the commutative groupÊ in terms of the group*-aut„W(E,s)… of all
* -automorphisms on the Weyl algebraW(E,s).

A symplectic transformationT on (E,s) is a bijectiveR-linear mappingT:E→E which
respects the pre-symplectic forms, that is,

s~ f ,g!5s~T f ,Tg!, ; f ,gPE. ~3.14!

The set symp(E,s) of all symplectic transformations on (E,s) consitutes a group, where th
group operation is given by the usual multiplication for operators. If dimR(E).1, then the group
symp(E,s) is noncommutative. The Bogoliubov transformation corresponding toT
Psymp(E,s) is the unique*-automorphismaT on D(E,s), resp. onW(E,s), satisfying

aT„W~ f !…5W~T f !, ; f PE. ~3.15!

We get the following representation of the group symp(E,s) by * -automorphisms onW(E,s),

symp~E,s!{T°aTP* -aut„W~E,s!…. ~3.16!

E. Norm estimates

In addition to the C*-norm i•i from Proposition 3-4 we introduce two further normsi•i1 and
i•i2 on the*-algebraD(E,s).

Proposition 3-9~additional norms!: Let us define two additional norms onD(E,s) by

iAi1ª(
j 51

n

uzj u, iAi2ªA^v tr ;A* A&5A(
j 51

n

uzj u2,

for arbitrary elements Aª( j 51
n zjW( f j ) of D(E,s) with different fj ’s [cf. Eq. ~3.6!#. Then there

hold the inequalities

iAi2<iAi<iAi1 , ;APD~E,s!. ~3.17!

i•i1 is an * -algebra norm on the* -algebraD(E,s), whereas the product is noti•i2-continuous.
Proof: The first inequality sign in~3.17! follows from iAi2>^v tr ;A* A& by the construction

in Eq. ~3.9!. The second inequality sign in Eq.~3.17! follows from iW( f )i51. The rest is
immediate. j

Generally the normsi•i1 , i•i2 , and the C*-norm i•i are different, which we are going to
show. Especially, inequality~3.17! implies for u, vPC and f Þg that

Auuu21uvu25iuW~ f !1vW~g!i2<iuW~ f !1vW~g!i<iuW~ f !1vW~g!i15uuu1uvu.
                                                                                                                



s
from

cker

-

sions
t the

egard
. The
es
y

2900 J. Math. Phys., Vol. 45, No. 7, July 2004 Binz, Honegger, and Rieckers

                    
In the literature it is well known thatiW( f )2W(g)i52, where for its demonstration it suffice
that E is an Abelian group. The following Proposition strengthens these results, making use
E being really a vector group.

Proposition 3-10: We haveiuW( f )1vW(g)i5iuW( f )1vW(g)i15uuu1uvu for all u, v
PC and fÞg. Further on, for Bª11W( f )2W(2 f ) with fÞ0 it holds that

iBi2
253,iBi25iB* Bi5iB* Bi155,iBi1

259.

Proof: Let 0Þ f PE and put E0ªRf . Observe thatsuRf50 acts trivially on the one-
dimensional subspaceRf of E. Let zPC. We haveW( f )1z1PD(Rf ,0). For everyxPR the
continuous characterCx(t f )ªexp$itx%, ;tPR is an element ofC(Rf ,0). For allxPR we get

iW~ f !1z1i2>^vCx
;„W~ f !1z1…* „W~ f !1z1…&

511uzu212 Re„zCx~2 f !…511uzu212 Re~z exp$2 ix%!.

Now choosexPR such thatz exp$2ix%5uzu. Then we obtainiW( f )1z1i>11uzu. Consequently
the estimation~3.17! implies iW( f )1z1i511uzu. For f Þg the Weyl relations now imply

iW~ f !1zW~g!i5iW~2g!„W~ f !1zW~g!…i5 IW~ f 2g!1z expH 2
i

2
s~g, f !J 1I511uzu.

Moreover, by Corollary 4-4 below we actually haveiAi5supxPRu^vCx
;A&u

5supxPRA^vCx
;A* A& for all APD(Rf ,0), which finally impliesi11W( f )2W(2 f )i255. j

For j 51,2 the completionD(E,s) j of D(E,s) with respect to the normi•i j coincides with
the sequence spaceD(E,s) j>1 j (E), where here the Weyl elements are considered as Krone
delta functions onE. Because the tracial statev tr is faithful by Corollary 3-6, it follows from Eq.
~3.17! that i•i2 extendsi•i1-, resp.i•i-continuously, to a norm on the completionsD(E,s)1 and
W(E,s)5D(E,s), respectively~and not only to a semi-norm!. Consequently we get the inclu
sions

D~E,s!#D~E,s!1#W~E,s!#D~E,s!2, ~3.18!

which, by the above reasoning, are realized in terms of injective, continuous,* -algebraic homo-
morphisms, with the exception of the last one, which is not product homomorphic. The inclu
are proper for nontrivialE, since the occurring three norms are not equivalent. Observe tha
inner product (•u•)2 on the Hilbert spaceD(E,s)2 satisfies (AuB)25^v tr ;A* B& for all A, B
PW(E,s).

Corollary 3-11: If there exists a further C* -norm i•i8 on D(E,s) with iAi2<iAi8 for all A
PD(E,s), then i•i85i•i.

Proof: Take a faithful representationP of D(E,s) with respect to the normi•i8. ThenP is
i•i-continuous by Proposition 3-4, i.e.,iAi2<iAi85iP(A)i<iAi . Especially,P extendsi•i-
continuously to all ofW(E,s). So iAi2<iP(A)i , ;APW(E,s) yieldsP(A)50, if and only if
A50. This is the faithfulness ofP, which is equivalent toiP(A)i5iAi . j

D(E,s)1 together with the product and*-operation as in the Weyl relations~3.1! constitutes
a Banach-* -algebra, however, its normi•i1 does not satisfy the C*-norm property in virtue of
Proposition 3-10.

F. Connection to the twisted group C * -algebra

In order to establish the connection to harmonic analysis of locally compact groups, we r
E as an Abelian group with respect to the addition equipped with the discrete topology
corresponding Borel sets are all subsets ofE. The set of all regular complex Borel measur
equipped with a twisted convolution product is a standard Banach-* -algebra, which we denote b
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M (E,s) in our case. More precisely, every elementB of M (E,s) is of the formB5(kzkd f k
with

the point measuresd f k
and somezkPC. The normiBi15(kuzku,` is the total variation norm.

ThusM (E,s) coincides with 11(E), which may also be viewed as the spaceL1(E) with respect
to the Haar measure, i.e., the counting measure. We introduce inM (E,s) the*-operationB°B* ,
given byB* (L)5B(2L) for all BPM (E,s) and for all subsetsL#E, and define an associativ
product: ForB, CPM (E,s) the twisted convolution is given as

BC~L!ªE
E
dB~ f !E

E
dC~g!expH 2

i

2
s~ f ,g!J L~ f 1g!, ;L#E, ~3.19!

whereE{ f °L( f ) means the characteristic function of the setL, @i.e., L( f )51 for f PL and
L( f )50 elsewhere#. The Banach-* -algebraM (E,s), which possesses the identityd0 is called the
twisted algebraof the discrete additive groupE with respect to the multiplier from Eq.~1.8!.64 For
the point measures one obtains a projective realization of the Abelian groupE ~Weyl relations!,

d fdg5expH 2
i

2
s~ f ,g!J d f 1g , d f* 5d2 f , ; f ,gPE. ~3.20!

The twisted group C*-algebra is defined as the enveloping C*-algebra of the twisted group
Banach-* -algebraM (E,s), that is the completion ofM (E,s) with respect to the C*-norm,

iBiªsup$iP~B!iuP representation ofM ~E,s!%, BPM ~E,s!, ~3.21!

which resembles the construction in Eq.~3.10!. That this definition provides indeed a nor
follows from the fact that there exists a faithful representation. Hence the representatio
M (E,s) and those of its enveloping C*-algebra are in one-to-one correspondence given by c
tinuous extension, resp., restriction~see, e.g., Ref. 63, Sect. I.9; Ref. 66, Sect. 7.1!.

Collecting our notions we get the following connection with the previous subsections.
Corollary 3-12: The mapping W( f )↔d f , ; f PE defines a unique isometric* -isomorphism

between the Banach-* -algebras D(E,s)1 and M(E,s), which extends continuously to a
* -isomorphism between the C* -Weyl algebra W(E,s) and the enveloping C* -algebra of
M (E,s).

IV. THE COMMUTATIVE WEYL ALGEBRA AND ALMOST PERIODIC
COMPACTIFICATIONS

Throughout the present section supposeE to be a fixed, arbitrary, real vector space.

A. Spectrum of the commutative C * -Weyl algebra

Let us specialize the construction of the C*-Weyl algebra from Sect. III to the case of th
trivial pre-symplectic forms50 on E. Then we obtain the commutative C*-Weyl algebra
W(E,0), which is uniquely~in the sense of Theorem 3-7! generated by nonzero Weyl elemen
W( f ), f PE, satisfying the commutative Weyl relations@cf. Eq. ~3.1!#

W~ f !W~g!5W~ f 1g!, W~ f !* 5W~2 f !, ; f ,gPE. ~4.1!

Note, thatC(E,0) is just the convex set of all normalized, positive-definite functionsC:E→C ~e.g.,
Ref. 67, Eq. 32.1!, andW(E,0) is the group C*-algebra of the discrete vector groupE.

For later purposes we determine the spectrumS„W(E,0)… of the commutative C*-Weyl al-
gebraW(E,0), which consists of the pure states onW(E,0) ~Ref. 62, Proposition 2.3.27!. Since
W(E,0) contains an identity, the spectrumS„W(E,0)… is a compact subset of the compact sta
spaceS„W(E,0)… ~Ref. 63, Sect. 1.3!. Since the groupÊ of all characters onE is a subset of
C(E,0), it follows from Theorem 3-5 that for each characterxPÊ there exists a unique statevx

on W(E,0).
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Proposition 4-1: It holds thatS„W(E,0)…5$vxuxPÊ%.
Proof: SinceS„W(E,0)…,S„W(E,0)… every element of the spectrumS„W(E,0)… is of the

typevC with someCPC(E,0) by Theorem 3-5. By definition of the spectrum~Ref. 62, Definition
2.3.25! we have^vC ;AB&5^vC ;A&^vC ;B& for all A, BPW(E,0). Especially, with the Weyl
relations~4.1! we conclude that

C~ f 1g!5^vC ;W~ f 1g!&5^vC ;W~ f !W~g!&5^vC ;W~ f !&^vC ;W~g!&5C~ f !C~g!,

for all f, gPE, which implies thatC is a character onE. Conversely, ifxPÊ#C(E,0) is a
character onE, then the corresponding statevx satisfies

^vx ;W~ f !W~g!&5^vx ;W~ f 1g!&5x~ f 1g!5x~ f !x~g!5^vx ;W~ f !&^vx ;W~g!&,

for all f, gPE. Taking linear combinations of the Weyl elements we arrive at^vx ;AB&
5^vx ;A&^vx ;B& for all A, BPD(E,0), which by continuity extends to allA, BPW(E,0). Hence
vxPS„W(E,0)…. j

B. Commutative C * -algebra of almost periodic functions

The subsequent commutative*-resp. C*-algebras are algebras ofC-valued functions on cer-
tain setsL ~specified below!, where the*-algebraic operations are defined pointwise in the us
way:

~c1zf!@l#ªc@l#1zf@l#, ~cf!@l#ªc@l#f@l#, c* @l#ªc@l#, ~4.2!

for all pointslPL. The identity1 is the constant function1@l#51, ;lPL, and the C*-norm is the
sup-norm,

iciªsup$uc@l#uulPL%. ~4.3!

Let be given a locally convex Hausdorff vector space topologyt on E. On the topological dual
of E with respect tot, denoted byEt8 , we define for eachf PE the periodic functionj( f ) as the
boundeds(Et8 ,E)-continuous mapping,

j~ f !:Et8→C, F°exp$ iF ~ f !%5..j~ f !@F#, FPEt8 . ~4.4!

The j( f ), f PE, are linearly independent~by Hahn-Banach arguments, cf., e.g., Ref. 65, S
IV.3!. The linear hull LH$j( f )u f PE% is actually a commutative*-algebra, where the product an
the *-operation from Eq.~4.2! give a realization of the commutative Weyl relations~4.1!,

j~ f !j~g!5j~ f 1g!, j~ f !* 5j~2 f !, ; f ,gPE.

Its completion with respect to the sup-norm~4.3! coincides with the commutative C*-algebra
AP(Et8) of the almost periodic,s(Et8 ,E)-continuous,C-valued functions onEt8 , ~Ref. 67, Eqs.
18.2 and 33.26!.

In Ref. 59 the Gelfand representation of AP(Et8) is constructed in terms of the so-calle
almost periodic compactificationaEt8 of Et8 : For everyFPEt8 the translationTF is a bounded
operator acting on the Banach space AP(Et8) by (TFc)@G#ªc@G2F#, ;GPEt8 for eachc
PAP(Et8). ~For the Gelfand representation, cf., e.g., Ref. 62, Sect. 2.3.5; Ref. 63, Sect. I.3! The
mappingF°TF constitutes a group representation of the additive groupE. The closure of the
group $TFuFPEt8% with respect to the strong operator topology leads to a compact commut
group, which is called the almost periodic compactificationaEt8 , and into which the additive
groupEt8 is injectively, densely, and continuously embedded viaF°TF . In this sense we conside
Et8 as a dense subgroup ofaEt8 .
                                                                                                                



t

te

e-

ology

for

-

orff

n-

2903J. Math. Phys., Vol. 45, No. 7, July 2004 Construction and uniqueness of the C* -Weyl algebra

                    
EachcPAP(Et8) extends uniquely to a continuous function onaEt8 , in which sense AP(Et8)
is * -isomorphic to the C*-algebra C(aEt8) of the continuous,C-valued functions on the compac
groupaEt8 . In the following we identify these two C*-algebras. Note that for finite dimensionalE
the almost periodic compactification ofEt8 coincides with its Bohr compactification.

C. Continuous functions algebra on the character group

The character groupÊ is compact in the so-calledD-resp. P-topology arising from the discre
topology onE, cf., e.g., Ref. 67, Eqs. 23.13 and 23.15. This topology onÊ coincides with the
topology of pointwise convergence.

Similarly to ~4.4! we define for eachf PE the bounded continuous evaluation map,

h~ f !:Ê→C, x°x~ f !5..h~ f !@x#. ~4.5!

It suffices to evaluate theh( f ), f PE, on thet-continuous characters to prove their linear ind
pendence similarly to that of thej( f ), f PE, @cf. also Lemma 4-2~a!#. Also here the linear hull is
actually a commutative*-algebra, where the product and the*-operation from Eq.~4.2! provide
the following realization of the commutative Weyl relations~4.1!,

h~ f !h~g!5h~ f 1g!, h~ f !* 5h~2 f !, ; f ,gPE.

The Stone-Weierstrass theorem implies that the completion of the*-algebra LH$h( f )u f PE% with
respect to the sup-norm~4.3! coincides with the commutative C*-algebra C(Ê) of all continuous,
C-valued functions on the compact setÊ.

D. * -Isomorphic commutative algebras

Let us first point out connections between the topological dualEt8 and the character groupÊ.
Lemma 4-2: Let our real vector space E be equipped with a locally convex Hausdorff top

t. The following two assertions are valid:
(a) The mapping F°exp$iF(•)% is a bijection from Et8 onto the group Eˆ t of all t-continuous

characters on the additive group E.
(b) Êt is dense in Eˆ with respect to the topology of pointwise convergence.
Proof: Part~a! is well known, e.g., Ref. 68, Sec. IV-1.2, resp., Ref. 67, Eq. 23.32~a!. Part~b!.

Êt is a subgroup ofÊ with the annihilator

A~Êt!5$ f PEux~ f !51,;xPÊt%5$ f PEuexp$ iF ~ f !%51,;FPEt8%.

But by the assumptions ont andE the Hahn-Banach theorem is valid, and thus there exists
every 0ÞgPE a GPEt8 with G(g)51 ~cf., e.g., Ref. 65, Corollary IV.3.15!. Consequently,
A(Êt)5$0%. A vanishing annihilator impliesÊt to be dense inÊ with respect to theD-topology
on Ê, Ref. 67, Eq. 23.24. j

In Theorem 4-5 below the bijectionEt8{F°exp$iF(•)%PÊt from part~a! of the above lemma
is shown to extend continuously to a group isomorphism between the compact groupsaEt8 andÊ.
For the proof of this result we need, however, the*-isomophic structure of the considered com
mutative algebras, which is of interest for its own.

Theorem 4-3: Let the real vector space E be equipped with a locally convex Hausd
topologyt. There exist unique* -isomorphisms,

W~E,0!>AP~Et8!>C~Ê!,

which satisfy W( f )↔j( f )↔h( f ) for all f PE.
Consequently, the C* -algebraAP(Et8)5C(aEt8) is independent from the chosen locally co

vex Hausdorff topologyt on E.
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Proof: The elementsj( f ) are linearly independent, as well as theh( f ), and as the Weyl
elementsW( f ), f PE. Hence the linear extensions of the bijectionsW( f )↔j( f )↔h( f ); f PE
lead to * -isomorphisms between the commutative*-algebrasD(E,0), LH$j( f )u f PE%, and
LH$h( f )u f PE% ~using the fact that every polynomial of the generating elements reduces
linear combination!.

Let us first prove the*-isomorphism AP(Et8)>C(Ê)! Since Êt>Et8 is dense inÊ by the
above lemma, we have for arbitrary linear combinations,

I(
j 51

n

zjh~ f j !I5 sup
xPÊ

U(
j 51

n

zjx~ f j !U5 sup
FPEt8

U(
j 51

n

zj exp$ iF ~ f j !%U5I(
j 51

n

zjj~ f j !I ,

which leads to the*-isomorphism C(Ê)>AP(Et8).
We turn to the*-isomorphismW(E,0)>C(Ê)! Denote byb the*-isomorphism fromD(E,0)

onto LH$h( f )u f PE%, given byb„( j 51
n zjW( f j )…5( j 51

n zjh( f j ) for arbitrary zjPC, f jPE, and
nPN. If P is a faithful representation of C(Ê), thenP+b is a representation ofD(E,0). From the
last assertion in Proposition 3-4 it follows thatib(A)i5i(P+b)(A)i<iAi for all APD(E,0).

We now show the converse relationib(A)i>iAi . Ê being compact, the states on the com
mutative C*-algebra C(Ê) are the probability measuresM p(Ê) on Ê, i.e., for the statem
PM p(Ê) we have the expectations^m;B&5* ÊBdm for all BPC(Ê) ~see, e.g., Ref. 69, Theorem
7.3.5; Ref. 65, Proposition IV.4.1!. With Bochner’s theorem~Ref. 67, Eq. 33.3! it follows that the
Fourier transformationCm( f )ª* Êh( f )dm5^m;h( f )&, ; f PE is an affine bijection fromM p(Ê)
onto C(E,0). Thus with the construction of the states onD(E,0) from the elements ofC(E,0)
given in Lemma 3-3~a! we conclude that̂vCm

;A&5^m;b(A)& for everyAPD(E,0). Finally with
Eq. ~3.9! it follows that

iAi25sup$^vCm
;A* A&umPM p~Ê!%5sup$^m;b~A* A!&umPM p~Ê!%<ib~A!i2,

for all APD(E,0), where we have usedimi51 in the estimation̂m;B* B&<iB* Bi5iBi2. Hence
iAi5ib(A)i for all APD(E,0).

The existence of the*-isomorphismW(E,0)>C(Ê) may also be proved without the use
Bochner’s theorem, as we are going to show. Restricting the affine homeomorphismC(E,0)
{C°vCPS„W(E,0)… in Theorem 3-5 to the subsetÊ#C(E,0), it follows with Proposition 4.1
that the mappingx°vx is a homeomorphism fromÊ onto the spectrumS„W(E,0)… @on Ê we
consider the topology of pointwise convergence and onS(W(E,0)# the weak*-topology inherited
from the dualW(E,0)* , resp. from the state spaceS„W(E,0)…. Thus we may identify the com
mutative C*-algebras C(S„W(E,0)… and C(Ê). Consequently the*-isomorphismb from W(E,0)
onto C(Ê) with b„W( f )…5h( f ) for all f PE is nothing other than the Gelfand representation
the commutative C*-algebraW(E,0). It fulfills b(A)(x)5^vx ;A& for all APW(E,0) and each
xPÊ. j

The above Theorem simplifies the construction of the norm onD(E,0) given in Eq.~3.9!.
Corollary 4-4: For the C* -norm i•i on D(E,0) from Eq. ~3.9! we have for all APW(E,0)

that

iAi5sup$u^vx ;A&uuxPÊt>Et8%5sup$A^vx ;A* A&uxPÊt>Et8%. ~4.6!

E. Universality of almost periodic compactifications

Let L be a compact set and C~L! the commutative C*-algebra of the continuous,C-valued
functions onL. It is well known ~e.g., Ref. 63, Proposition 1.4.5!, that the mappingL{l°dl

defined by the point evaluation̂dl ;B&ªB@l#, ;BPC(L) @dlPM p(L) is the point measure a
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lPL# is a homeomorphism fromL onto the spectrumS„C~L!… ~pure states! of the C*-algebra
C~L!, where onS„C~L!… we consider the weak*-topology. Hence the*-isomorphism AP(Et8)
5C(aEt8)>C(Ê) from Theorem 4-3 leads to the following conclusion.

Theorem 4-5: Let our real vector space E be equipped with a locally convex Hausd
topologyt. The embedding Et8{F°exp$iF(•)%PÊ extends continuously to a continuous gro
isomorphism between the compact groups aEt8 and Ê.

Consequently, the almost periodic compactification aEt8 of the dual Et8 is independent from
the chosen locally convex Hausdorff topologyt on E.

Proof: Denote by g the *-isomorphism from AP(Et8)5C(aEt8) onto C(Ê) satisfying
g„j( f )…5h( f ) for all f PE from Theorem 4-3. The~restriction of the! dual mappingg* is a
homeomorphism fromS„C(Ê)… onto S„C(aEt8)…. Using the homeomorphismsS„C(Ê)…>Ê and
S„C(aEt8)…>aEt8 , we conclude that the mappingg* gives rise to a homeomorphismg̃ from Ê
onto aEt8 .

Now we specifyg̃. From Eqs.~4.4! and ~4.5! it follows that we havej( f )@F#5exp$iF(f)%
5h(f)@exp$iF(•)%# for all FPEt8 , which implies

^dF ;B&5B@F#5g~B!@exp$ iF ~• !%#5^dexp$ iF ~• !% ;g~B!&5^g* ~dexp$ iF ~• !%!;B&, ;FPEt8 ,

for everyBPAP(Et8)5C(aEt8). Equivalently we havedF5g* (dexp$iF(•)%) for all FPEt8 . Conse-
quently,g̃(exp$iF(•)%)5F for all FPEt8 . Now observe thatÊt is dense inÊ by Lemma 4-2, and
that Et8 is dense inaEt8 . j

V. CONCLUSIONS AND OUTLOOK

The preceding treatment of a distinguished C*-Weyl algebra over a general pre-symplec
space (E,s) decisively takes advantage of the Kolmogorov decomposition forS-positive-
definite functions on projective involutive semigroups~cf. Sect. II A!. In our case, the projective
involutive semigroup is the additive groupE with the antisymmetric bicharacterS( f ,g)
5exp$2i/2\s( f ,g)%, f, gPE, where we now make explicit Planck’s constant\, for discussing
some physical conclusions.

EachS-positive-definite functionCPC(E,\s), including the nonregular ones, determines
Weyl system (WC ,HC) in the Hilbert spaceHC , as well as a norm for each elementA in the
U*-algebraD(E,\s), given by the linear hull of the abstract Weyl system. The supremum
these norms is the natural C*-norm in D(E,\s). The C*-norm-completion ofD(E,\s) leads to
the C*-Weyl algebraW(E,\s), with Weyl elementsW\( f ), f PE.

The fundamental symmetries may be treated in complete analogy to Bogoliubov and
automorphisms in the case of a nondegenerate symplectic form; cf. Sec. III D. Fors50 our
treatment produces a smeared classical field theory over the flat Poisson manifoldEt8 , which in
general decomposes into several symplectic leaves. It has a surprising analogy to the proce
second quantization, especially for the symmetry generators, as will be shown in the forthc
work.

In W(E,\s) there are also natural generalizations ofL1- and L2-norms, which we have
analyzed in more detail than in the mentioned literature. CompletingD(E,\s) with respect to the
L1-norm leads to a Banach-* -algebra, which is* -isomorphic to the twisted convolution algebra
the discrete finite measures on (E,s). Let us stress in view of future applications that the p
sented method, based on Kolmogorov decompositions, is quite generally applicable to d
Abelian groups with only the exception of Proposition 3-10.

As will be substantiated by subsequent work, it is a powerful technical instrument to h
unique C*-Weyl algebra over (E,\s), for every pre-symplectic spaceE and for every\PR. For
the classical case\50, discussed in Sec. IV, the C*-algebraic set up leads in many respects t
fresh point of view. In Ref. 70 we treat the commutative Weyl algebra as the C*-algebra of
observables for a classical Hamiltonian field theory, which—similarly to the more familiar q
tum case—is formulated in terms of the smeared field formalism. This provides not only a sm
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transition between the quantized and the classical theory but offers also new mathematic
calculational possibilities for dealing with classical fields. This applies especially to Hamilto
electrodynamics in suitable flat gauges. The Poisson bracket$•,•% of the classical field theory is
commonly formulated as

$A,B%@F#ª2s~dFA,dFB!, ;FPEt8 , A,BPP,

where the constant Poisson tensor field on the flat phase spaceEt8 arises from a nontrivial pre-
symplectic forms on the test function spaceE ~cf. also Refs. 71, 72!. The Poisson algebraP
consists of suitable differentiable functionsA:Et8→C on phase space, which constitute a dense
in AP (Et8).

In this context let us emphasize that the introduction of the quantized observable algeb
a given pre-symplectic space (E,s) does not, for itself, constitute a quantization of the class
theory. A family of canonical quantizations may be introduced within the frame of the C*-Weyl
algebras, however, by associating with the classical algebraic Weyl elementsW0( f )PW(E,0),
f PE, certain elementsQ\„W

0( f )…PW(E,\s). It is a natural—but by no means the only—
choice to setQ\„W

0( f )…ªW\( f ), that is, to relate the Weyl elements inW(E,\s) with the
classical Weyl elements, and to extend this mapping in a linear and*-preserving manner. In Ref
73 this quantization is elaborated in the case of degenerates, so that one employs the gener
C*-Weyl algebrasW(E,\s), \PR, described in the main text. This form of a Weyl quantizati
is identified in Ref. 73 as astrict deformation quantizationin the sense of Refs. 74 and 75 o
certain Poisson algebras~P,$•,•%!, which are sub-* -algebras of the commutative Weyl algeb
W(E,0)>AP(Et8). These constructions, conforming with the strategy of algebraic quantum
theory, generalize then the set up of Weaver,76 who erects over an infinite-dimensional Hilbe
space as test function spaceE, with the nondegenerates~•,•!5Im~•u•!, a strict deformation quan
tization by using a special von Neumann algebra.

Considering the set of all Planck parametersR{\ simultaneously, one obtains in Ref. 73
family of the general C*-Weyl algebras„W(E,\s)…\PR , which can be turned into a certai
continuous field of C* -algebrasin the sense of Ref. 77. In this manner one arrives at a continu
quantization,75 which exhibits especially strong continuity properties for the classical limit\→0.
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Almost all presentations of Dirac theory in first or second quantization in physics
~and mathematics! textbooks make use of covariant Dirac spinor fields. An excep-
tion is the presentation of that theory~first quantization! offered originally by
Hestenes and now used by many authors. There, a new concept of spinor field~as
a sum of nonhomogeneous even multivectors fields! is used. However, a careful
analysis~detailed below! shows that the original Hestenes definition cannot be
correct since it conflicts with the meaning of the Fierz identities. In this paper we
start a program dedicated to the examination of the mathematical and physical basis
for a comprehensive definition of the objects used by Hestenes. In order to do that
we give a preliminary definition of algebraic spinor fields~ASF! and Dirac–
Hestenes spinor fields~DHSF! on Minkowski space–time as some equivalence
classes of pairs (Ju ,cJu

), where Ju is a spinorial frame field andcJu
is an

appropriate sum of multivectors fields~to be specified below!. The necessity of our
definitions are shown by a careful analysis of possible formulations of Dirac theory
and the meaning of the set of Fierz identities associated with the bilinear covariants
~on Minkowski space–time! made with ASF or DHSF. We believe that the present
paper clarifies some misunderstandings~past and recent! appearing on the literature
of the subject. It will be followed by a sequel paper where definitive definitions of
ASF and DHSF are given as appropriate sections of a vector bundle called theleft
spin-Clifford bundle. The bundle formulation is essential in order to be possible to
produce a coherent theory for the covariant derivatives of these fields on arbitrary
Riemann–Cartan space–times. The present paper contains also Appendixes A–E
which exhibits a truly useful collection of results concerning the theory of Clifford
algebras~including many tricks of the trade! necessary for the intelligibility of the
text. © 2004 American Institute of Physics.@DOI: 10.1063/1.1757037#

I. INTRODUCTION

Physicists usually make first contact with Dirac spinors and Dirac spinor fields when
study relativistic quantum theory. At that stage they are supposed to have had contact with
introduction to relativity theory and know the importance of the Lorentz and Poincare´ groups. So,
they are told that Dirac spinors are elements of a complex four-dimensional spaceC4, which are
the carrier space of a particular representation of the Lorentz group. They are told that whe
do Lorentz transformations Dirac spinors behave in a certain way, which is different from the
vectors and tensors behave under the same transformation. Dirac matrices are introduced a
matrices onC~4! satisfying certain anticommutation rules and it is said that they close a parti
Clifford algebra, known as Dirac algebra. The next step is to introduce Dirac wave func
These are mappings,C:M→C4, from Minkowski space–timeM ~at that stage often introduce
as an affine space! to the spaceC4, which must have the structure of a Hilbert space. After th
Dirac equation, which is a first order partial differential equation is introduced forC(x). Physics
come into play by interpretingC(x) as the quantum wave function of the electron. Problems w

a!Electronic mail: walrod@mpc.com.br or walrod@ime.unicamp.br
29080022-2488/2004/45(7)/2908/37/$22.00 © 2004 American Institute of Physics
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this theory are discussed and it is pointed out that the difficulties can only be solved in relat
quantum theory, where the Dirac spinor field, gains a new status. It is no more simply a ma
C:M→C4, but a more complicated object@it becomes an operator valued distribution in a giv
Hilbert space~see, e.g., Ref. 162 for a correct characterization of these objects!# whose expecta-
tion values on certain one particle states can be represented by objects likeC. From a pragmatic
point of view, only this knowledge is more than satisfactory. However, that approach, we be
is not a satisfactory one to any scientist with an enquiring mind, in particular to one that is wo
with the foundations of quantum theory. For such person the first questions which certainly
are what is the geometrical meaning of the Dirac spinor wave function? From where di
concept come from?

Pure mathematicians, who study the theory of Clifford algebras, e.g., using Chevalley’s
sical books,38,39 learn that spinors are elements of certain minimalideals~do not worry if you did
not know the meaning of this concept, it is not a difficult one and is introduced in Appendix! in
Clifford algebras. In particular Dirac spinors are the elements of a minimal ideal in a parti
Clifford algebra, the Dirac algebra. Of course, the relation of that approach~algebraic spinors!,
with the one learned by physicists~covariant spinors! is known ~see, e.g., Refs. 14, 67, and 68!,
but is not well known by the great majority of physicists, even for many which specializ
general relativity and more advanced theories, like string andM -theory.

Now, the fact is that the algebraic spinor concept~algebraic spinor fields on Minkowsk
space–time will be studied in details in what follows, and in Ref. 126 where the conce
introduced using fiber bundle theory on general Lorentzian manifolds! ~as it is the case of the
covariant spinor concept! fail to reveal the true geometrical meaning of spinor in general
Dirac spinors in particular.

In 1966, Hestenes81 introduced a new definition of spinor field, that he called lateroperator
spinor field. Objects in this class which in this paper, will be called Dirac–Hestenes spinor fi
have been introduced by Hestenes as mappingsc:M→R1,3

0 , whereR1,3
0 is the even subalgebra o

R1,3, a particular Clifford algebra, technically known as thespace–time algebra.@R1,3 is not the
original Dirac algebra, which is the Clifford algebraR4,1, but is closely related to it, indeedR1,3 is
the even subalgebra of the Dirac algebra~see the Appendix B for details!.# Hestenes in a series o
remarkable papers80,82–85,75applied his new concept of spinor to the study of Dirac theory.
introduced an equation, now known as the Dirac–Hestenes equation, which doesnot contain
~explicitly! imaginary numbers and obtained a very clever interpretation of that theory throug
study of the geometrical meaning of the so-called bilinear covariants, which are the observa
the theory. He further developed an interpretation of quantum theory from his formalism,88,89 that
he called theZitterbewegunginterpretation. Also, he showed how his approach suggests a
metrical link between electromagnetism and the weak interactions, different from the origina
of the standard model.87

Hestenes papers and his book with Sobczyk86 have been the inspiration for a series of inte
national conferences on ‘‘Clifford Algebras and their Applications in Mathematical Physic’’
which in 2002 has had its sixth edition. A consultation of the table of contents of the las
conferences1,145,2 certainly will show that Clifford algebras and their applications generate
wider interest among many physicists, mathematicians, and even in engineering and co
sciences.~In what follows we quote some of the principal papers that we have had opportun
study. We apologize to any author who thinks that his work is a worthy one concerning the s
and is not quoted in the present paper.! Physicists used Clifford algebras concepts and Heste
methods, in many different applications. As some examples, we quote some developme
relativistic quantum theory as, e.g., Refs. 36, 37, 45, 46, 48–52, 56, 58, 74, and 70. The pa
De Leo and collaborators exhibit a close relationship between Hestenes methods and quate
quantum mechanics, as developed, e.g., by Adler,4 a subject that is finding a renewed intere
Also, Clifford algebra methods have been used102,135,149,151,152,165–168to give an intuitive and
geometrical clear picture of the dynamics of superparticles.3,11,12,140,143,153,160,163Also, that papers
clarify the meaning of Grassmann variables and their calculus.17 The relation with theZitter-
bewegungmodel of Barut and collaborators8–10 appears in a novel and less speculative way. E
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more, in Ref. 151 it is shown that the concept of Dirac–Hestenes spinor field is closely rela
the concepts of superfields as introduced by Witten.169 Clifford algebras methods have also be
used in disclosing a surprising connection between the Dirac and Maxwell and Seiberg–Wi159

equations, as studied, e.g., in Refs. 155, 164, and 168, which suggest several physical d
ments. Applications of Clifford algebras methods in general relativity appeared also, e.g., in
35, 90, 54, 55, 57, 58, 62, 103–105, 119, 134, and 154, and suggest new ways for looking
gravitational field. Clifford algebras methods, have been applied successfully also in quantum
theory, as, e.g., in Refs. 60 and 138 and more recently in string andp-brane theories, with
noticeable results25–34,136,137which are worth being more carefully investigated.

Of course, Clifford algebras and Dirac operators are standard topics of research in Math
ics ~see, e.g., Ref. 20!, but we must say that Hestenes ideas have been an inspiring ide
mathematicians also. In particular, the concept of Clifford valued functions with domain
manifold ~the operator spinor fields are particular functions of this type! developed in a new,
beautiful and powerful branch of mathematics.47 Hestenes ideas, as we said, have found also t
use in engineering and computer sciences, as in the study of neural circuits91,92 and robotics and
perception action systems.18,19,99,100,42,59,101,125,161

Having made all this propaganda, which we hope have awakened the reader’s inte
studying Clifford algebras, we must remark, that~as often happens for every pioneer work! the
concept of Dirac–Hestenes spinor field, as originally introduced by Hestenes, and used by
other researchers, is not a concept free of criticisms and objections from the mathematical p
view.

However, it is an important concept and one of the objectives of this paper and also o
126 is to give a presentation of the subject free of all previous criticisms, which are discus
the next sections. The reader may ask if the enterprising for learning the theory presented
is worth the time. We think that the answer is yes, whether it be a physicist or mathematicia
encourage physicists, which may eventually become interested in the subject after read
above propaganda, we say that the mathematical tools used, even if they may look complex
sight, are indeed nothing more than easy additions to the contents of a linear algebra cour
main reward to someone that studies what follows is that they will start seeing some subjec
they thought were well known, under a new and~we believe! illuminating point of view. This
hopefully may help anyone who is searching for new physical theories. For mathematician
say that the point of view developed here is somewhat new in relation to the original Cheva
one and we believe, it is more satisfactory. In particular, the present paper serves as a prel
step towards a rigorous theory of algebraic and Dirac–Hestenes spinor fields as sections o
well-defined fiber bundles, and the theory of the covariant derivatives of these fields. Havin
all that, what is the present paper about?

We give definitions of algebraic spinor fields~ASF! and Dirac–Hestenes spinor fields~DHSF!
living on Minkowski space–time and show how Dirac theory can be formulated in terms of
objects.@Minkowski space–time is parallelizable and as such admits a spin structure. In ge
a spin structure does not exist for an arbitrary manifold equipped with a metric of signature (p,q).
The conditions for existence of a spin structure in a general manifold are discussed in Re
131, and 133. For the case of Lorentzian manifolds, see Ref. 72.# We start our presentation in Se
II by studying a not-well-known subject, namely, the geometrical equivalence of represen
modules of simple Clifford algebrasC,(V,g). This concept, together with the concept ofspinorial
framesplay a crucial role in our definition of algebraic spinors~AS! and of ASF. Once we grasp
the definition of AS and particularly of Dirac AS we define Dirac–Hestenes spinors~DHS! in Sec.
IV. Whereas AS may be associated to any real vector space of arbitrary dimensionn5p1q
equipped with a nondegenerated metric of arbitrary signature (p,q), this is not the case for DHS
„ASF can be defined on more general manifolds called spin manifolds. This will be studied in
126. There, we show that the concept of Dirac–Hestenes spinor fields which exists for
dimensional Lorentzian spin manifolds modeling a relativistic space–time, can be generaliz
the case of generalspin manifold of dimensionn5p1q @equipped with a metric of signatur
(p,q), only if the spinor bundle structurePSpin

p,q
e M is trivial#.… However, these objects exist for
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four-dimensional vector spaceV equipped with a metric of Lorentzian signature and this f
makes them very much important mathematical objects for physical theories. Indeed, as w
show in Sec. V it is possible to express Dirac equation in a consistent way using DHSF livi
Minkowski space–time. Such equation is called the Dirac–Hestenes equation~DHE!. In Sec. VII
we express the Dirac equation using ASF. In Sec. IV we define Clifford fields and then ASF
DHSF. We observe here that our definitions of ASF and DHSF as some equivalence clas
pairs (Ju ,cJu

), whereJu is a spinorial coframefield andcJu
is an appropriated Clifford field,

i.e., a sum of multivector~or multiform! fields are not the usual ones that can be found in
literature. @Take notice that in this paper the term spinorial~co!frame field ~defined below! is
related, but distinct from the concept of a spin~co!frame, which is a section of a particula
principal bundle called the spin~co!frame bundle~see Sec. IV and Ref. 126 for more details!.#
These definitions that, of course, come after the definitions of AS and DHS are essentially
ent from the definition of spinors given originally by Chevalley.38,39 There, spinors are simply
defined as elements of a minimal ideal carrying a modular representation of the Clifford al
C,(V,g) associated to a structure (V,g), whereV is a real vector space of dimensionn5p1q and
g is a metric of signature (p,q). And, of course, in that book there is no definition of DH
Concerning DHS we mention that our definition of these objects is different also from the
nally given in Refs. 79–81.@The definitions of AS, DHS, ASF, and DHSF given below are
improvement over preliminary tentative definitions of these objects given in Ref. 150. Unf
nately, that paper contains some equivocated results and errors~besides many misprints!, which
we correct here and in Ref. 126. We take the opportunity to apologize for any incovenienc
misunderstandings that Ref. 150 may have caused. Some other papers where related~but not
equivalent! material to the one presented in the present paper and in Ref. 126 can be found in
14–41, 44–69, 73–78, 93–109, 121–133, 144, and 146.# In view of these statements a justifica
tion for our definitions must be given and part of Sec. V and Sec. VI are devoted to su
enterprise. There it is shown that our definitions are the only ones compatible with the DH
the meaning of the Fierz identities.43,66We discuss in Sec. VIII some misunderstandings resul
from the presentations of the standard Dirac equation when written with covariant Dirac sp
and also some misunderstandings concerning the DHE. It is important to emphasize here
definitions of ASF, DHSF on Minkowski space–time and of the spin–Dirac operator given in
V although correct are to be considered only as preliminaries. Indeed, these objects can be
in a truly satisfactory way on a general Riemann–Cartan space–time only after the introduc
the concepts of the Clifford and the left~and right! spin–Clifford bundles. Moreover, a compre
hensive formulation of Dirac equation on these manifolds requires a theory of connections
on sections of these bundles. This nontrivial subject is studied in a forthcoming paper.126 Section
IX presents our conclusions. Finally we recall that our notations and some necessary results
intelligibility of the paper are presented in Appendixes A–E. Although the appendixes co
known results, we decided to write them for the benefit of the reader, since the material can
found in a single reference. In particular Appendix A contains some of the ‘‘tricks of the tra
necessary to perform quickly calculations with Clifford algebras. If the reader needs more d
concerning the theory of Clifford algebras and their applications than the ones provided b
Appendixes, the Refs. 14, 63, 64, 78, 86, 109, 141, 142 will certainly help. A final rema
necessary before we start our enterprise: the theory of the Dirac–Hestenes spinor fields
~and the sequel paper126! does not contradict the standard theory of covariant Dirac spinor fi
that is used by physicists and indeed it will be shown that the standard theory is no more
matrix representation of theory described below.

Some acronyms are used in the present paper~to avoid long sentences! and they are summa
rized below for the reader’s convenience:

AS, Algebraic spinor;

ASF, Algebraic spinor field;
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CDS, Covariant Dirac spinor;

DHE, Dirac–Hestenes equation;

DHSF, Dirac–Hestenes spinor field.

II. ALGEBRAIC SPINORS

This section introduces the algebraic ideas that motivated the theory of ASF~which will be
developed with full rigor in Ref. 126!, i.e., we give a precise definition of AS. The algebraic s
of the theory of DHSF, namely the concept of DHS is given in Sec. III. The justification for
definition will become clear in Secs. V and VI.

A. Geometrical equivalence of representation modules of simple Clifford algebras
Cø„V,g…

We start with the introduction of some notations and clarification of some subtleties.
~i! In what followsV is an-dimensional vector space over the real fieldR. The dual space of

V is denotedV* . Let

g:V3V→R ~1!

be a metric of signature (p,q).
~ii ! Let SO(V,g) be the group of endomorphisms ofV that preservesg and the space orien

tation. This group is isomorphic to SOp,q ~see Appendix C!, but there is no natural isomorphism
We write SO(V,g).SOp,q . Also, the connected component to the identity is denoted
SOe(V,g) and SOe(V,g).SOp,q

e . In the casep51, q53, SOe(V,g) preserves besides orientatio
also the time orientation. In this paper we are mainly interested in SOe(V,g).

~iii ! We denote byC,(V,g) the Clifford algebra ofV associated to (V,g) and by Spine(V,g)
(.Spinp,q

e ) the connected component of the spin group Spin(V,g).Spinp,q ~see Appendix C for
the definitions!. @We reserve the notationRp,q for the Clifford algebra of the vector spaceRn

equipped with a metric of signature (p,q), p1q5n. C,(V,g) andRp,q are isomorphic, but there
is no canonical isomorphism. Indeed, an isomorphism can be exhibited only after we
orthonormal basis ofV.] Let L denote 2:1 homomorphismL :Spine(V,g)→SOe(V,g), u°L (u)
[Lu . Spine(V,g) acts onV identified as the space of 1-vectors ofC,(V,g).Rp,q through its
adjoint representation in the Clifford algebraC,(V,g) which is related with the vector represe
tation of SOe(V,g) as follows@Aut(C,(V,g)) denotes the~inner! automorphisms ofC,(V,g)]:

Spine~V,g!{u°AduPAut~C,~V,g!!

AduuV :V→V,v°uvu215Lu"v. ~2!

In Eq. ~2! Lu"v denotes the standard actionLu on v @see Eq.~5!# and where identified~without
much ado! LuPSOe(V,g) with LuPV^ V* , g(Lu"v,Lu"v)5g(v,v).

~iv! We denote byC,(V,g) the Clifford algebra ofV associated to (V,g) and by Spine(V,g)
(.Spinp,q

e ) the connected component of the spin group Spin(V,g).Spinp,q ~see Appendix C for
the definitions!.

~v! Let B be the set of all oriented and time oriented orthonormal basis@we will call the
elements ofB ~in what follows! simply by orthonormal basis# of V. Choose among the elemen
of B a basisb05$E1 , . . . ,Ep,Ep11, . . . ,Ep1q%, hereafter called the fiducial frame ofV. With this
choice, we define a 1–1 mapping

S:SOe~V,g!→B, ~3!

given by
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Lu°S~Lu![SLu
5Lub0 , ~4!

whereSLu
5Lub0 is a short for$e1 , . . . ,ep,ep11, . . . ,ep1q%PB, such that denoting the action o

Lu on EiPb0 by Lu"Ei we have

ei5Lu"Ei[Li
jEj , i , j 51,2,. . . ,n. ~5!

In this way, we can identify a given vector basisb of V with the isometryLu that takes the fiducia
basisb0 to b. The fiducial basisb0 will be also denoted bySL0

, whereL05e, is the identity
element of SOe(V,g).

Since the group SOe(V,g) is not simple connected their elements cannot distinguish betw
frames whose spatial axes are rotated in relation to the fiducial vector frameSL0

by multiples of
2p or by multiples of 4p. For what follows it is crucial to make such a distinction. This is do
by introduction of the concept of spinorial frames.

Definition 1: Let b0PB be a fiducial frame and choose an arbitrary u0PSpine(V,g). Fix once
and for all the pair(u0 ,b0) with u051 and call it the fiducial spinorial frame.

Definition 2: The spaceSpine(V,g)3B5$(u,b),ubu215u0b0u0
21% will be called the space

of spinorial frames and denoted byQ.
Remark 3: It is crucial for what follows to observe here that the definition 2 implies th

given bPB determines two and only two spinorial frames, namely(u,b) and (2u,b), since
6ub(6u21)5u0b0u0

21.
~vi! We now parallel the construction in~v! but replacing SOe(V,g) by its universal covering

group Spine(V,g) andB by Q. Thus, we define the 1–1 mapping

J:Spine~V,g!→Q,

u°J~u![Ju5~u,b!, ~6!

whereubu215b0 .
The fiducial spinorial frame will be denoted in what follows byJ0 . It is obvious from Eq.~6!

that J(2u)5J (2u)5(2u,b)ÞJu .
Definition 4: The natural right action of aPSpine(V,g) denoted by" on Q is given by

a"Ju5a"~u,b!5~ua,Ada21b!5~ua,a21ba!. ~7!

Observe that ifJu85(u8,b8)5u8"J0 andJu5(u,b)5u"J0 then,

Ju85~u21u8!"Ju5~u8,u21ubu21u8!.

Note that there is a natural 2–1 mapping

s:Q→B, J6u°b5~6u21!b0~6u!, ~8!

such that

s~~u21u8!"Ju!)5Ad(u21u8)21~s~Ju!!. ~9!

Indeed, s((u21u8)"Ju))5s((u21u8)"(u,b))5u821ub(u821u)215b85Ad(u21u8)21b
5Ad(u21u8)21(s(Ju)). This means that the natural right actions of Spine(V,g), respectively, onQ
andB, commute. In particular, this implies that the spinorial framesJu ,J2uPQ, which are, of
course distinct, determine the same vector frameSLu

5s(Ju)5s(J2u)5SL2u
. We have

SLu
5SL2u

5Lu21u0
SLu0

, Lu21u0
PSOp,q

e . ~10!

Also, from Eq.~9!, we can write explicitly
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u0SLu0
u0

215uSLu
u21, u0SLu0

u0
215~2u!SL2u

~2u!21, uPSpine~V,g!, ~11!

where the meaning of Eq.~11! of course, is that ifSLu
5SL2u

5b5$e1 , . . . ,ep,ep11, . . . ,eq%PB
andSLu0

5b0PB is the fiducial frame, then

u0Eju0
215~6u!ej~6u21!. ~12!

In resume we can say that the spaceQ of spinorial frames can be thought of as an extens
of the spaceB of vector frames, where even if two vector frames have the same ordered ve
they are considered distinct if the spatial axes of one vector frame is rotated by a odd num
2p rotations relative to the other vector frame and are considered the same if the spatial a
one vector frame is rotated by an even number of 2p rotations relative to the other frame. Even
this construction seems to be impossible at first sight, Aharonov and Susskind6 warrants that it can
be implemented physically.

~vii ! Before we proceed an important digression on our notation used below is necessa
recalled in Appendix B how to construct a minimum left~or right! ideal for a given real Clifford
algebra once a vector basisbPB for V�C,(V,g) is given. That construction suggests to labe
given primitive idempotent and its corresponding ideal with the subindexb. However, taking into
account the above discussion of vector and spinorial frames and their relationship we find
for what follows @especially in view of the definition 5 and the definitions of algebraic a
Dirac–Hestenes spinors~see definitions 6 and 8 below!# to label a given primitive idempotent an
its corresponding ideal with the subindexJu . Recall after all, that a given idempotent is accor
ing to definition 6 representative of a particular spinor in a given spinorial frameJu .

~viii ! Next we recall Theorem 49 of Appendix B which says that a minimal left idea
C,(V,g) is of the type

I Ju
5C,~V,g!eJu

, ~13!

whereeJu
is a primitive idempotent ofC,(V,g).

It is easy to see that all idealsI Ju
5C,(V,g)eJu

and I Ju8
5C,(V,g)eJu8

such that

eJu8
5~u821u!eJu

~u821u!21, ~14!

u,u8PSpine(V,g) are isomorphic. We have the following.
Definition 5: Any two ideals IJu

5C,(V,g)eJu
and IJu8

5C,(V,g)eJu8
such that their gen-

erator idempotents are related by Eq. (14) are said geometrically equivalent.
But take care, noequivalence relationhas been defined until now. We observe moreover t

we can write

I Ju8
5I Ju

~u821u!21, ~15!

a equation that will play a key role in what follows.

B. Algebraic spinors of type IJu

Let $I Ju
% be the set of all ideals geometrically equivalent to a given minimalI Ju0

as defined

by Eq. ~15!. Let

T5$~Ju ,CJu
!uuPSpine~V,g!,JuPQ,CJu

PI Ju
%. ~16!

Let Ju ,JuPQ, CJu
PI Ju

, CJu8
PI Ju8

. We define an equivalence relationR on T by setting

~Ju ,CJu
!;~Ju8 ,CJu8

! ~17!
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if and only if us(Ju)u215u8s(Ju8)u821 and

CJu8
u8215CJu

u21. ~18!

Definition 6: An equivalence class

CJu
5@~Ju ,CJu

!#PT/R ~19!

is called an algebraic spinor of typeI Ju
for C,(V,g). cJu

PI Ju
is said to be a representative of th

algebraic spinorCJu
in the spinorial frameJu .

We observe that the pairs (Ju ,CJu
) and (J2u ,2CJ2u

) are equivalent, but the pair
(Ju ,CJu

) and (J2u ,2CJ2u
) are not. This distinction isessentialin order to give a structure o

linear space~over the real field! to the setT. Indeed, a natural linear structure onT is given by

a@~Ju ,CJu
!#1b@~Ju ,CJu

8 !#5@~Ju ,aCJu
!#1@~Ju8 ,bCJu

8 !#,

~a1b!@~Ju ,CJu
!#5a@~Ju ,CJu

!#1b@~Ju ,CJu
!#. ~20!

The definition that we just gave is not a standard one in the literature.38,39 However, the fact
is that the standard definition~licit as it is from the mathematical point of view! is not adequate for
a comprehensive formulation of the Dirac equation using algebraic spinor fields or D
Hestenes spinor fields as we show in a preliminary way in Sec. V and in a rigorous and defi
way in a sequel paper.126

As observed on Appendix D a given Clifford algebraRp,q may have minimal ideals that ar
not geometrically equivalent since they may be generated by primitive idempotents that are
by elements of the groupRp,q

! which are not elements of Spine(V,g) ~see Appendix C where
different, nongeometrically equivalent primitive ideals forR1,3 are shown!. These ideals may be
said to be of different types. However, from the point of view of the representation theory o
real Clifford algebras~Appendix B! all these primitive ideals carry equivalent~i.e., isomorphic!
modular representations of the Clifford algebra and no preference may be given to any one~The
fact that there are ideals that are algebraically, but not geometrically equivalent seems to c
the seed for new physics, see Refs. 123, and 124.! In what follows, when no confusion arises an
the idealI Ju

is clear from the context, we use the wording algebraic spinor for any one o
possible types of ideals.

Remark 7: We observe here that the idea of definition of algebraic spinor fields as equi
classes has it seed in a paper by Riez.147 However, Riez used in his definition simply orthonorm
frames instead of the spinorial frames of our approach. As such, Riez defintion generates c
dictions, as it is obvious from our discussion above.

C. Algebraic Dirac spinors

These are the algebraic spinors associated with the Clifford algebraC,(M).R1,3 ~the space–
time algebra! of Minkowski space–timeM5(V,h), whereV is a four-dimensional vector spac
over R andh is a metric of signature~1,3!.

Some special features of this important case are as follows.
~a! The group Spine(M) is the universal covering ofL1

↑ , the special and orthochronou
Lorentz group that is isomorphic to the group SOe(M) which preserves space–time orientati
and also the time orientation120 ~see also Appendix B!.

~b! Spine(M),C,0(M), where C,0(M).R1,3 is the even subalgebra ofC,(M) and is
called the Pauli algebra~see Appendix C!.

The most important property is a coincidence given by Eq.~21! below. It permits us to define
a new kind of spinors.
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III. DIRAC–HESTENES SPINORS „DHS…

Let JuPQ be a spinorial frame forM such thats(Ju)5$e0 ,e1 ,e2 ,e3%PB. Then, it follows
from Eq. ~D18! of Appendix D that

I Ju
5C,~M!eJu

5C,0~M!eJu
, ~21!

if

eJu
5 1

2 ~11e0!. ~22!

Then, eachCJu
PI Ju

can be written as

CJu
5cJu

eJu
, cJu

PC,0~M!. ~23!

From Eq.~18! we get

cJu8
u821ueJu

5cJu
eJu

, cJu
,cJu8

PC,0~M!. ~24!

A possible solution for Eq.~24! is

cJu8
u8215cJu

u21. ~25!

Let Q3C,(M) and consider an equivalence relationE such that

~Ju ,fJu
!;~Ju8 ,fJu8

! ~mod E! ~26!

if and only if cJu8
andcJu

are related by

fJu8
u8215fJu

u21. ~27!

This suggests the following.
Definition 8: The equivalence classes@(Ju ,fJu

)#P(Q3C,(M))/E are the Hestenes

spinors. Among the Hestenes spinors, an important subset is the one consisted of Dirac–Hestenes
spinors where@(Ju ,cJu

)#P(Q3C,0(M))/E. We say thatfJu
(cJu

) is a representative of a

Hestenes (Dirac–Hestenes) spinor in the spinorial frameJu .
How to justify the above definitions of algebraic and Dirac–Hestenes spinors? The ques

answered in the next section.

IV. CLIFFORD FIELDS, ASF AND DHSF

The objective of this section is to introduce the concepts of Dirac–Hestenes spinor
~DHSF! and algebraic spinor fields~ASF! living on Minkowski space–time. A definitive theory o
these objects that can be applied for arbitrary Riemann–Cartan space–times can be giv
after the introduction of the Clifford and left~and right! spin–Clifford bundles and the theory o
connections acting on these bundles. This theory will be presented in Ref. 126 and the prese
given below~which can be followed by readers that have only a rudimentary knowledge o
theory of fiber bundles! must be considered as a preliminary one.

Let (M ,h,t,↑,¹) be Minkowski space–time, whereM is diffeomorphic toR4, h is a constant
metric field,¹ is the Levi–Civita connection ofh. M is oriented bytPsecL4M and is also time
oriented by↑ ~Refs. 156–158!.

Let (PSO
1,3
e M is the orthonormal frame bundle, secPSO

1,3
e M means a section of the fram

bundle! $ea%PsecPSO
1,3
e M be an orthonormal~moving! frame, not necessarily a coordinate fram
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and letgaPsecT*M (a50,1,2,3) be such that the set$ga% is dual to the set$ea%, i.e., ga(eb)
5db

a . ~Orthonormal moving frames are not to be confused with the concept of reference fr
The concepts are related, but distinct.156–158!

The set$ga% will be called also a~moving! frame. Letga5habg
b, a,b50,1,2,3. The set$ga%

will be called the reciprocal frame to the frame$ga%. Recall that@ȟ is the metric of the contangen
space andȟ(ga,gb)5hab5hab5diag(1,21,21,21)] (Tx* M ,ȟ).M. We will denote (Tx* M ,ȟ)
by M* . Now, due to the affine structure of Minkowski space–time we can identify all
cotangent spaces as usual. Consider then the Clifford algebraC,(M * ) generated by the cofram
$ga%, where now we can takega:x°L1(M* ),C,(M* ). We have

ga~x!gb~x!1gb~x!ga~x!52hab, ;xPM . ~28!

Definition 9 (preliminary): A Clifford field is a mapping

C:M{x°C~x!PC,~M* !. ~29!

In a coframe$ga% the expression of a Clifford field is

C5S1Aaga1
1

2!
Babg

agb1
1

3!
Tabcg

agbgc1Pg5, ~30!

whereS,Aa ,Bab ,Tabc ,P are scalar functions~the ones with two or more indices antisymmetric
that indices! andg55g0g1g2g3 is the volume element. Saying with other words, a Clifford fie
is a sum of nonhomogeneous differential forms.@This result follows once we recall that as a vect
space the Clifford algebraC,(M* ) is isomorphic to the the Grassmann algebraL(V* )
5(p50

4 Lp(V* ), where Lp(V* ) is the space ofp-forms. This is clear from the definition o
Clifford algebra given in the Appendix A. Recall thatM* 5(V* .T* M ,ȟ).]

Here is the point where a minimum knowledge of the theory of fiber bundles is requ
Minkowski space–time is parallelizable and admits a spin structure. See, e.g., Refs. 72, 13
and 126. This means that Minkowski space–time has a spin strucutre, i.e., there exists a p
bundle called the spin frame bundle and denoted byPSpin

1,3
e M that is the double covering o

PSO
1,3
e M , i.e., there is a 2:1 mappingr:PSpin

1,3
e M→PSO

1,3
e M . The elements ofPSpin

1,3
e M are called

the spin frame fields~when there is no possibility of confusion we abreviate spin frame fi
simply as spin frame!, and ifFuPPSpin

1,3
e M thenr(Fu)5$ea%PPSO

1,3
e M ~once we fix a spin frame

and associate it to an arbitrary but fixed element ofuPPSpin
1,3
e M ). This means, that as in Sec. I, w

distinguish frames that differ from a 2p rotation. BesidesPSO
1,3
e M , we introduce alsoPSO

1,3
e8 M , the

coframe orthonormal bundle, such that for$ga%PPSO
1,3
e8 M there exists$ea%PPSO

1,3
e M , such that

ga(eb)5db
a . Note that $ga%PPSO

1,3
e8 M , but, as already observed, keep in mind that ea

ga:x°L1(M* ),C,(M* ). To proceed choose a fiducial coframe$Ga%PPSO
1,3
e8 M , dual to a

fiducial framer(Fu0
)[$Ea%PsecPSO

1,3
e M .

Now, let

u:x°u~x!PSpine~M* !,C,0~M* !. ~31!

In complete analogy with Sec. I letQM8 5Spine(M* )3PSO
1,3
e8 M be the space of spinorial cofram

fields. We define also the 1–1 mapping

J:Spine~M* !→QM8 ,
~32!

u°J~u![Ju5~u,$u21Gau%!.
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Note that there is a 2–1 natural mapping

s8:QM8 {Ju°$ga%PPSO
1,3
e8 M ,

~33!
ga5u21Gau.

Also, denoting the action ofa(x)PSpine(M* ) on QM8 by a"Ju5(ua,$ga%) we have

Ju85~u21u8!"Ju , ~34!

s8~~u21u8!"Ju!)5Ad(u21u8)21~s8~Ju!!. ~35!

As in the preceding section we have associated 1PSpine(M* ) to the fiducial spinorial coframe
field, but of course we could associate any other elementu0 ;x°u0(x)PSpine(M* ) to the fidu-
cial spinorial coframe. In this general case, writingJu0

for the fiducial spinorial coframe, we hav
s8(Ju0

)5$Ga%.
Note that s8(Ju)5s8(J (2u)) and that any other coframe fields8(Ju) is then related to

s8(Ju0
) by

u0s8~Ju0
!u0

2156us8~Ju!~6u21!56us8~J (2u)!~6u21!, ~36!

where the meaning of this equation is analogous to the one given to Eq.~11!, through Eq.~12!.
Taking into account the results of the preceding sections and of the Appendixes A and

are lead to the following definitions.
Let $I Ju

% be the set of all ideals geometrically equivalent to a given minimalI Ju0
as defined

by Eq. ~15! where nowu, u8 are Clifford fields defined by mappings like the one defined in
~31!.

Let

TM5$~x,~Ju ,CJu
!!uxPM ,u~x!PSpine~M* !,JuPQM8 ,

~37!
CJu

:x°CJu
~x!PI Ju

,CJu8
:x°PCJu

~x!PI Ju8
%.

Consider an equivalence relationRM on TM such that

~x,~Ju ,CJu
!!;~y,~Ju8 ,CJu8

!! ~38!

if and only if x5y,

u~x!s8~Ju(x)!u
21~x!5u8~x!s8~Ju8(x)!u821~x! ~39!

and

CJu8
u8215CJu

u21. ~40!

Definition 10 (preliminary): An algebraic spinor field (ASF) of type IJu
for M* is an equiva-

lence classCJu
5@(x,(Ju ,CJu

))#PTM /RM . We say thatCJu
PI Ju

is a representative of the

ASFCJu
in the spinorial coframe fieldJu.

Consider an equivalence relationEM on the setM3JM3C,(M* ) such that @given
cJu

:x°cJu
(x)PC,(M* ), cJu8

:x°PcJu
(x)PC,(M* )] ((x,(Ju ,cJu

))) and
((y,(Ju8 ,cJu8

))) are equivalent if and only ifx5y,

u~x!s8~Ju(x)!u
21~x!5u8~x!s8~Ju8(x)!u821~x! ~41!
                                                                                                                



a

in the
at

s the

Such
ld need
ot be
s, to
variant

s

t the

ative
nor

jects of
to
t paper.

d
nate

elds,

2919J. Math. Phys., Vol. 45, No. 7, July 2004 Algebraic and Dirac–Hestenes spinors

                    
and

cJu8
u8215cJu

u21. ~42!

Definition 11 (preliminary): An equivalence classc5@(x,(Ju ,cJu
))#PM3JM

3C,(M * )/EM is called a Hestenes spinor field forM* . cJu
PC,(M* ) is said to be a repre-

sentative of the Hestenes spinor fieldfJu
in the spinorial coframe fieldJu . When

cJu
:x°cJu

(x)PC,0(M* ), cJu8
:x°PcJu

(x)PC,0(M* ) we call the equivalence class

Dirac–Hestenes spinor field (DHSF).

V. THE DIRAC–HESTENES EQUATION „DHE…

In our preliminary presentation of the Dirac equation~on Minkowski space–time! that follows
we shall restrict our exposition to the case where any spinorial coframe field appearing
equations that follows, e.g.,s8„Ju)5$ga% is teleparallel and constant. By this we mean th
;x,yPM anda50,1,2,3,

ga~x![ga~y!, ~43!

¹ea
gb50. ~44!

Equation~43! has meaning due to the affine structure of Minkowski space–time which permit
usual identification of all tangent spaces~and of all cotangent spaces! of the manifold and Eq.~44!,
is the definition of a teleparallel frame. Of course, the unique solution for Eq.~44! is gm5dxm,
where$xm% are the coordinate functions of a global Lorentz chart of Minkowski space–time.
a restriction is a necessary one in our elementary presentation, because otherwise we wou
first to study the theory of the covariant derivative of spinor fields, a subject that simply cann
appropriately introduced with the present formalism, thus clearly showing its limitation. Thu
continue our elementary presentation we need some results of the general theory of the co
derivatives of spinor fields studied in details in Ref. 126.

Using the results of the preceding sections and of the Appendixes we can show80,148 that the
usual Dirac equation5,53 ~which, as well known is written in terms of covariant Dirac spinor field!
for a representative of a DHSF in interaction with an electromagnetic potentialA:x°A(x)
PL1(M* ),C,(M* ) is

DscJu
g2g12mcJu

g01qAcJu
50. ~45!

@Covariant Dirac spinor fields are defined in an obvious way once we take into accoun
definition of covariant Dirac spinors given by Eq.~E6! and Eq.~E7! of the Appendix E. See also
Refs. 41, 131–133.#

Remark 12: It is important for what follows to have in mind that although each represent
cJu

:x°cJu
(x)PC,0(M* ) of a DHSF is a sum of nonhomogeneous differential forms, spi

fields are not a sum of nonhomogeneous differential forms. Thus, they are mathematical ob
a nature different from that of Clifford fields. ~Not taking this difference into account can lead
misconceptions, as, e.g., some appearing in Ref. 71. See our comments in Ref. 155 on tha!
The crucial difference between a Clifford field, e.g., an electromagnetic potential A and aDHSF
is that A is frame independent whereas aDHSF is frame dependent.

In the DHE the spinor covariant derivativeDs is a first order differential operator, often calle
the spin–Dirac operator.@If we use more general frames, that are not Lorentzian coordi
frames, e.g.,Ju5$ga% thenDscJu

(x)5ga¹ea

s cJu
(x)5ga(ea1 1

2va)cJu
(x), whereva is a two

form field associated with the spinorial connection, which is zero only for teleparallel frame fi
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if they exist. Details in Ref. 126.# Let ¹ f a

s be the spinor covariant derivative. We have t

following representation forDs in an arbitrary orthonormal frame$ta% dual of the frame$ f a%
PPSO

1,3
e ,

Ds5ta¹ f a

s . ~46!

In a teleparallel spin~co!frames8(Ju)5$gm% the above equation reduces to

Ds5dxm
]

]xm . ~47!

The spin–Dirac operator in an arbitrary orthonormal frame acts on a product (CcJu
) whereC

is a Clifford field andcJu
a representative of a DHSF~or a Hestenes field! as a modular

derivation,20,126 i.e.,

Ds~CcJu
!5ta¹ f a

s ~CcJu
!5ta@~¹f a

C!cJu
1C~¹ f a

s cJu
!#.

Also in Eq. ~45! m and q are real parameters~mass and charge! identifying the elementary
fermion described by that equation.~Note that we used natural unities in which the value of
velocity of light is c51 and the value of Planck’s constant is\51.)

Now, from Eq.~42! we have

cJu8
5cJu

s21, Ju85s"Ju , ~48!

A°A, ~49!

wheres:x°s(x)PSpine(M* ),C,0(M* ) is to be considered a Clifford field. Consider the ca
wheres(x)5s(y)5s, ;x,yPM . Such equation has a precise meaning due to our restrictio
teleparallel frames. We see that the DHE is trivially covariant under this kind of transforma
which can be called a right gauge transformation.

Returning to the DHE we see also that the equation is covariant under active Lorentz
transformations, or left gauge transformations. Indeed, under an active left Lorentz gauge
formation ~without changing the spinorial coframe field!, we have

cJu
°cJu

8 5scJu
, A°sAs21,

~50!
DscJu

°D8scJu
8 5sDscJu

.

The justification for the active left Lorentz gauge transformation lawDscJu
°D8scJu

8

5sDscJu
is the following. ~A study of active local left Lorentz gauge transformations will

presented elsewhere, for it needs the concept of gauge covariant derivatives.! The Dirac operator
is a 1-form valued derivative operatorDs5dxm (]/]xm). Then, under an active Lorentz gaug
transformation s it must transform like a vector, i.e.,Ds°D8s5s dxm s21 (]/]xm).

Note thatcJu
8 is a representative~in the spinorial coframe fieldJu) of a new spinor. Then, it

follows, of course, that the representative of the new spinor in the spinorial coframe fieldJu8 is

cJu8
8 5scJu

s21. ~51!

We also recall that the DHE is invariant under simultaneous left and right~constants! gauge
Lorentz transformations. In this case the relevant transformations are
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cJu
°cJu

8 5scJu
s21,

~52!
A°sAs21, D8scJu8

8 5sDscJu
s21.

VI. JUSTIFICATION OF THE TRANSFORMATION LAWS OF DHSF BASED
ON THE FIERSZ IDENTITIES

We now give another justification for the definition of Dirac spinors and DHSF presente
the preceding sections. We start by recalling that a usual covariant Dirac spinor field determ
set ofp-form fields, called bilinear covariants, which describe the physical contents of a part
solution of the Dirac equation described by that field. The same is true also for a DHSF.

In order to present the bilinear covariants using that fields, we introduce first the notion
Hodge dual operator of a Clifford fieldC:M]x°C(x)PC,(M* ). We have the following.

Definition 13: The Hodge dual operator is the mapping

!:C→!C5 C̃g5 , ~53!

whereC̃ is the reverse of C [Eq. (A5), Appendix A].
Then, in terms of a representative of a DHSF in the spinorial frame fieldJu the bilinear

covariants of Dirac theory reads~with J5Jmgm, S5 1
2Smngmgn, K5Kmgm)

cJu
c̃Ju

5s1!v, cJu
g0c̃Ju

5J,

cJu
g1g2c̃Ju

5S, cJu
g0g3c̃Ju

5!S, ~54!

cJu
g3c̃Ju

5K, cJu
g0g1g2c̃Ju

5!K.

The so-calledFierz identitiesare

J25s21v2, J•K50, J252K2, J∧K52~v1!K !S, ~55!

SzJ5vK, SzK5vJ,

~!S!zJ52sK, ~!S!zK52sJ, ~56!

S•S5v22s2, ~!S!•S522sv,

JS52~v1!s!K,

SJ52~v2!s!K,

KS52~v1!s!J,
~57!

SK52~v2!s!J,

S25v22s222s~!v!,

S2152S~s2!v!2/J25KSK/J4.

The proof of these identities using the DHSF is almost a triviality and can be done in a
lines. This is not the case if you use covariant Dirac spinor fields~columns matrix fields!. In this
case you will need to perform several pages of matrix algebra calculations.
                                                                                                                



m the
ne

ation
ener-
in

jects
erator

2922 J. Math. Phys., Vol. 45, No. 7, July 2004 W. A. Rodrigues, Jr.

                    
The importance of the bilinear covariants is due to the fact that we can recover from the
associate covariant Dirac spinor field~and thus the DHSF! except for a phase. This can be do
with an algorithm due to Crawford43 and presented in a very pedagogical way in Ref. 109.

Let us consider, e.g., the equationcJu
g0c̃Ju

5J in ~54!. Now, J(x)PL1(M* ),C,(M* ) is
an intrinsic object on Minkowski space–time and according to the accepted first quantiz
interpretation theory of the Dirac equation it is proportional to the electromagnetic current g
ated by an elementary fermion. The expression ofJ in terms of the representative of a DHSF
the spinorial coframeJu8 is ~of course!

cJu8
g08c̃Ju8

5J. ~58!

Now, since

g085~u821u!g0~u821u!21, ~59!

we see that we must have

cJu8
5cJu

~u821u!21, ~60!

which justifies the definition of DHSF given above@see Eq.~40!#.
We observe also that ifcJu

c̃Ju
5s1!vÞ0, then we can write

cJu
5r1/2e1/2bg5

R, ~61!

where;xPM ,

r~x!PL0~M* !,C,~M* !,

b~x!PL0~M* !,C,~M* !, ~62!

RPSpin1,3
e ~M* !,C,~M* !.

With this result the currentJ can be written

J5rv ~63!

with v5Rg0R21. Equation~63! discloses the secret geometrical meaning of DHSF. These ob
rotate and dilate vector fields, this being the reason why they are sometimes called op
spinors.80–86,109

VII. DIRAC EQUATION IN TERMS OF ASF

We recall from Eq.~D2! of Appendix D that

eJu
8 5 1

2 ~11g3g0! ~64!

is also a primitive idempotent field~here understood as a Hestenes spinor field! that is algebra-
ically, but not geometrically equivalent to the idempotent fieldeJu

5 1
2(11g0). Let I Ju

8

5C,(M* )eJu
8 be a minimal left ideal generated byeJu

8 . Now, multiply the DHE@Eq. ~45!# on

the left, first by the primitive idempotenteJu
and then by the primitive idempotenteJu

8 . We get

after some algebra

DsFJu
2mFJu

~!1!1qAFJu
50, ~65!
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where!15g5 is the oriented volume element of Minkowski space–time and

FJu
5cJu

eJu
eJu
8 PI Ju

8 5C,~M* !eJu
8 . ~66!

Equation~65! is one of the many faces of the original equation found by Dirac in term
ASF and using teleparallel orthonormal frames.

Of course, Eq.~65!, as it is the case of the DHE@Eq. ~45!# is compatible with the transfor
mation law of ASF that follows directly from the transformation law of AS given in Sec. II.
contrast to the DHE, in Eq.~65! there seems to be no explicit reference to elements of a spin
coframe field~except for the indicesJu) since!1, the volume element is invariant under~Lor-
entz! gauge transformations. We emphasize also that the transformation law for ASF is comp
with the presentation of Fierz identities using these objects, as the interested reader can
without difficulty.

VIII. MISUNDERSTANDINGS CONCERNING COORDINATE REPRESENTATIONS
OF THE DIRAC AND DIRAC–HESTENES EQUATIONS

We investigate now some subtleties of the Dirac and Dirac–Hestenes equations. We s
pointing out and clarifying some misunderstandings that often appears in the literature
subject of the DHE when that equation is presented in terms of a representative of a DHS
global coordinate chart (M ,w) of the maximal atlas ofM with Lorentz coordinate functionŝxm&
associated to it~see, e.g., Ref. 156!. In that case,s8(Ju)5$gm5dxm%. After that we study the
~usual! matrix representation of Dirac equation and show how it hides many features that ar
visible in the DHE.

Let $em5]/]xm % and$em8 5]/]x8m %. The spinorial coframe fieldsJu andJu8 ~as defined in
the preceding section! are associated to the coordinate bases~dual basis! s8(Ju)5$gm5dxm% and
s8(Ju8)5$g8m5dx8m%, corresponding to the global Lorentz charts (M ,w) and (M ,w8). The
DHE is written in the chartŝxm& and ^x8m& as

gmS ]

]xm CJu
1qAmCJu

g1g2Dg2g12mCJu
g050,

~67!

g8mS ]

]x8m CJu8
8 1qAm8 CJu8

g18g28Dg28g182mCJu8
g0850,

whereDs5gm (]/]xm) 5g8m (]/]x8m) and where (CJu
,Am) and (CJu8

,Am8 ) are the coordinate
representations of (cJu

,A) and (cJu8
,A), i.e., for anyxPM , we have

A5Am8 ~x8m!dx8m5Am~xm!dxm,

Am8 ~x80,x81,x82,x83!5Lm
n An~x0,x1,x2,x3!, ~68!

~CJu8
U821!u(x80(x),x81(x),x82(x),x83(x))5~CJu

U21!u(x0(x),x1(x),x2(x),x3(x)) ,

with U andU8 the coordinate representations ofu andu8 @see Eq.~42!# andLm
n is an appropriate

Lorentz transformation.
Now, taking into account that the complexification of the algebraC,(M* ), i.e., C

^ C,(M* ) is isomorphic to the Dirac algebraR4.1 ~Appendix C!, we can think of all the objects
appearing in Eqs.~67! as having values also inC^ C,(M* ). Multiply then, both sides of each on
of the Eqs. ~67! by the following primitive idempotents fields@considered as complexifie
Hestenes spinor fields~see Definition 8!# of C^ C,(M* ) @see Eq.~D14! of Appendix D#
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f Ju
5 1

2 ~11g0! 1
2 ~11 ig1g2!,

~69!
f Ju8

5 1
2 ~11g80! 1

2 ~11 ig81g82!.

Next, look for a matrix representation inC~4! of the resulting equations. We get~using the
notation of Appendix D!

ḡmS i
]

]xmD 1qAm~xm!C~xm!2mC~xm!50, ~70!

gI
mS i

]

]x8mD 1qAm8 ~x8m!C8~x8m!2mC8~x8m!50, ~71!

whereC(xm),C8(x8m) are the matrix representations@Eq. ~D15!, Appendix D# of CJu
andCJu8

.
The matrix representations of the spinors are related by an equation analogous to Eq.~E2! of
Appendix E, except that now, these equations refer to fields. The$gI

m%, m50,1,2,3 is the set of
Dirac matrices given by Eq.~D13! of Appendix D. Of course, we arrived at the usual form of t
Dirac equation, except for the irrelevant fact that in general the Dirac spinor is usually repres
by a column spinor field, and here we end with a 434 matrix field, which however has non-nu
elements only in the first column.@The reader can verify without great difficulty that Eq.~65! also
has a matrix representation analogous to Eq.~71! but with a set of gamma matrices differing from
the set$gI

m% by a similarity transformation.#

Equation~70!, that is the usual presentation of Dirac equation in Physics textbooks, h
several important facts. First, it hides the basic dependence of the spinor fields on the sp
frame field, since the spinorial framesJu , Ju8 are such thats8(Ju)5$gm% and s8(Ju8)
5$g8m% are mapped on the same set of matrices, namely$gI

m%. Second, it hides an obviou
geometrical meaning of the theory, as first disclosed by Hestenes.80,81 Third, taking into account
the discussion in a preceding section, we see that the usual presentation of the Dirac equati
not leave clear at all if we are talking about passive or active Lorentz gauge transforma
Finally, since diffeomorphisms on the world manifold are in general erroneous associated
coordinate transformations in many Physics textbooks, Eq.~70! suggests that spinors must chan
under diffeomorphisms in a way different from the true one, for indeed Dirac spinor fields~and
also, DHSF! are scalars under diffeomorphisms, an issue that we will discuss in another pu
tion.

IX. CONCLUSIONS

In this paper we investigated how to define algebraic and Dirac–Hestenes spinor fie
Minkowskispace–time. We showed first, that in general, algebraic spinors can be defined f
real vector space of any dimension and equipped with a nondegenerated metric of ar
signature, but that is not the case forDirac–Hestenes spinors. These objects exist for a four
dimensional real vector space equipped with a metric of Lorentzian signature. It is this fac
makes them very important objects~and gave us the desire to present a rigorous mathema
theory for them!, since as shown in Secs. V and VII the Dirac equation can be written in term
Dirac–Hestenes spinor fieldsor algebraic spinor fields. We observe that our definitions of alge
braic and Dirac–Hestenes spinor fields as some equivalence classes in appropriate sets ar
standard ones and the core of the paper was to give genuine motivations for them. We o
moreover that the definitions of Dirac–Hestenes spinor fields and of the spin–Dirac operator
in Sec. V although correct are to be considered only as preliminaries. The reason is th
rigorous presentation of the theory of the spin–Dirac operator~an in particular, on a genera
Riemann–Cartan space–time! can only be given after the introduction of the concepts of Cliffo
and spin–Clifford bundles over these space–times. This is studied in a sequel paper.126 In Ref. 155
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we show some nontrivial applications of the concept of Dirac–Hestenes spinor fields by pr
~mathematical! Maxwell–Dirac equivalences of the first and second kinds and showing how t
equivalences can eventually put some light on a possible physical interpretation of the fa
Seiberg–Witten equations for Minkowski space–time.

Noted added:After we finished the writing of the present paper and of Ref. 126, we lea
about the very interesting papers by Marchuck.110–118There, a different point of view concernin
the writing of the Dirac equation using tensor fields is developed.~Reference 110, indeed, uses
particular case of objects that we called extensors in a recent series of papers.63–65,127–130! We will
discuss Marchuck papers elsewhere.
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APPENDIX A: SOME FEATURES ABOUT REAL AND COMPLEX CLIFFORD ALGEBRAS

In this appendix we fix the notations that we used and introduce the main ideas concern
theory of Clifford algebras necessary for the intelligibility of the paper.

1. Definition of the Clifford algebra Cø„V,b…

In this paper we are interested only in Clifford algebras of a vector space~we reserve the
notationV for real vector spaces! V of finite dimensionn over a fieldF5R or C. Let q:V→F be
a nondegenerate quadratic form overV with values inF andb:V3V→F the associated bilinea
form ~which we call a metric in the caseF5R). We use the notation

x•y5b~x,y!5 1
2 ~q~x1y!2q~x!2q~y!. ~A1!

Let LVÄ( i 50
n L iV be the exterior algebra ofV whereL iV is the (i

n) dimensional space of the
i -vectors.L0V is identified withF andL1V is identified withV. The dimension ofLV is 2n. A
general elementXPLV is called a multivector and can be written as

X5(
i 50

n

^X& i , ^X& iPL iV, ~A2!

where

^ & i :LV→L iV ~A3!

is the projector inL iV, also called thei -part of X.
Definition 14: The main involution or grade involution is an automorphism

ˆ :LV{X°X̂PLV ~A4!

such that

X̂5 (
k50

n

~21!k^X&k . ~A5!
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X̂ is called the grade involution of X or simply the involuted of X.
Definition 15: The reversion operator is the anti-automorphism

˜ :LV{X°X̃PLV ~A6!

such that

X̃5 (
k50

n

~21!1/2k(k21)^X&k , ~A7!

X̃ is called the reverse of X.
The composition of the grade evolution with the reversion operator, denote by2 is called by

some authors~e.g., Refs. 109, 141, 142! the conjugation and,X̄ is called the conjugate ofX. We
haveX̄5(X̃)5(X̂).

Since the grade and reversion operators are involutions on the vector space of multiv
we have thatX9 5X and X! 5X. both involutions commute with thek-part operator, i.e.,̂ X& k̂

5^X̂&k and ^X& k̃5^X̃&k , for eachk50,1,. . . ,n.
Definition 16: The exterior product of multivectors X and Y is defined by

^X∧Y&k5(
j 50

k

^X& j∧^Y&k2 j , ~A8!

for each k50,1,. . . ,n. Note that on the right-hand side there appears the exterior produc
j -vectors and(k2 j )-vectors with0< j <n. ~We assume that the reader is familiar with t
exterior algebra. We only caution that there are some different definitions of the exterior pr
in terms of the tensor product differing by numerical factors. This may lead to some confu
if care is not taken. Details can be found in Refs. 63 and 64.!

This exterior product is an internal composition law onLV. It is associative and satisfies th
distributives laws~on the left and on the right!.

Definition 17: The vector spaceLV endowed with this exterior productL is an associative
algebra called the exterior algebra of multivectors.

We recall now some of the most important properties of the exterior algebra of multive
For anya,bPF, XPLV,

a∧b5b∧a5ab ~product of F numbers!,
~A9!

a∧X5X∧a5aX ~multiplication by scalars!.

For anyXjPL jV andYkPLkV

Xj∧Yk5~21! jkYk∧Xj . ~A10!

For anyX,YPLV

X∧Ŷ5X̂∧Ŷ,
~A11!

X∧Ỹ5X̃∧Ỹ.
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2. Scalar product of multivectors

Definition 18: A scalar product between the multivectors X,YPLV is given by

X•Y5(
i 50

n

^X& i•^Y& i , ~A12!

where ^X&0•^Y&05^X&0^Y&0 is the multiplication in the fieldF and ^X& i•^Y& i is given by Eq.
(A2), and writing

^X&k5
1

k!
Xi 1i 2 ••• i kbi 1

∧bi 2
••• bi k

,

~A13!

^Y&k5
1

k!
Yi 1i 2 ••• i kbi 1

∧bi 2
••• bi k

where$bk%,k51,2,. . . ,n is an arbitrary basis ofV we have

^X&k•^Y&k5
1

~k! !2 Xi 1i 2 ••• i kYj 1 j 2 ••• j k~bi 1
∧bi 2

••• bi k
!•~bj 1

∧bj 2
••• bj k

!, ~A14!

with

~bi 1
∧bi 2

••• bi k
!•~bj 1

∧bj 2
••• bj k

!5Ubi 1
•bj 1 ••• ••• bi 1

•bj k

••• ••• ••• •••

••• ••• ••• •••

bi k
•bj 1 ••• ••• bi k

•bj k

U . ~A15!

It is easy to see that for anyX,YPLV,

X̂•Y5X•Ŷ,
~A16!

X̃•Y5X•Ỹ.

Remark 19: Observe that the definition of the scalar product given in this paper by Eq.
differs by a signal from the scalar product of multivectors defined, e.g., in Ref. 79. Our definition
is a natural one if we start the theory with the euclidean Clifford algebra of multivectors of a
vector spaceV. The euclidean Clifford algebra is fundamental for the construction of the the
of extensors and extensor fields.63–65,127–130

3. Interior algebras

Definition 20: We define two differentcontracted productsfor arbitrary multivectors X,Y
PLV by

~X4Y!•Z5Y~X̃∧Z!,
~A17!

~XzY!5X•~Z∧Ỹ!,

whereZPLV. The internal composition rules4 andz will be called, respectively, the left and th
right contracted product.

These contracted products4 andz are internal laws onLV. Both contract products satisfy th
distributive laws~on the left and on the right! but they arenot associative.
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Definition 21: The vector spaceLV endowed with each one of these contracted produ
(either4 or z) is a nonassociative algebra. They are called the interior algebras of multivec.

We present now some of the most important properties of the interior products:

~a! For anya,bPF, andXPLV,
a4b5azb5ab ~product in F!,

a4X5Xza5aX ~multiplication by scalars!. ~A18!

~b! For anyXjPL jV andYkPLkV with j <k,
Xj4Yk5~21!j(k2j)YkzXj . ~A19!

~c! For anyXjPL jV andYkPLkV,
Xj4Yk50, if j .k,

~A20!XjzYk50, if j ,k.
~d! For anyXk ,YkPLkV

Xj4Yk5XjzYk5X̃k•Yk5Xk•Ỹk . ~A21!

~e! For anyvPV andX,YPLV

v4~X∧Y!5~v4X!∧Y1X̂∧~v4Y!. ~A22!

4. Clifford algebra Cø„V,b…

Definition 22: The Clifford product of multivectors X and Y~denoted by juxtaposition) is
given by the following axiomatic:

~i! For all aPF andXPLV:aX5Xa equals multiplication of multivectorX by scalara.
~ii ! For all vPV andXPLV:vX5v4X1v∧X andXv5Xzv1X∧v.
~iii ! For all X,Y,ZPLV:X(YZ)5(XY)Z.

The Clifford product is an internal law onLV. It is associative@by the axiom~iii !# and
satisfies the distributives laws~on the left and on the right!. The distributive laws follow from the
corresponding distributive laws of the contracted and exterior products.

Definition 23: The vector space of multivectors overV endowed with the Clifford product is
an associative algebra with unity calledC,~V,b!.

5. Relation between the exterior and the Clifford algebras and the tensor algebra

Modern algebra books give the
Definition 24: The exterior algebra ofV is the quotient algebraLV5T(V)/I , where T(V) is

the tensor algebra ofV and I,T(V) is the bilateral ideal generated by the elements of the fo
x^ x, xPV.

Definition 25: The Clifford algebra of~V,b! is the quotient algebraC,(V,b)5T(V)/I b ,
where Ib is the bilateral ideal generated by the elements of the formx^ x22b(x,x), xPV.

We can show that this definition is equivalent to the one given above.@When the exterior
algebra is defined asLV5T(V)/I and the Clifford algebra asC,(V,b)5T(V)/I b , the ~associa-
tive! exterior product of the multivectors in the terms of the tensor product of these multive
is fixed once and for all. We have, e.g., that forx,yPV, x∧y5 1

2(x^ y2y^ x). However, keep in
mind that it is possible to define an~associative! exterior product inLV differing from the above
one by numerical factors, and indeed in Refs. 63–65, 127–130 we used another choice
reading a text on the subject it is a good idea to have in mind the definition used by the auth
otherwise confusion may result.# The spaceV is naturallyembeddedon C,~V,b!, i.e.,

V�

i

T~V!→
j

T~V!/I b5C,~V,b!,

and V[ j + i ~V!,C,~V,b!. ~A23!
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Let C,0(V,b) andC,1(V,b) be, respectively, thej -images of% i 50
` T2i(V) and % i 50

` T2i 11(V) in
C,~V,b!. The elements ofC,0(V,b) form a subalgebra ofC,(V,b) called the even subalgebra o
C,~V,b!. Also, there is a canonical vector isomorphismLV\C,(V,b), which permits to speak o
the embeddingsLpV,C,(V,b), 0<p<n, wheren is the dimension ofV ~Ref. 20!. @The iso-
morphism is compatible with the filtrations of the filtered algebraLV, i.e.,
(L rV)∧(LsV)#L r 1sV.]

6. Some useful properties of the real Clifford algebras Cø„V,g…

We now collect some useful formulas which hold for a real Clifford algebraC,(V,g) and
which has been used in calculations in the text and Appendixes.~As the reader can verify, man
of these properties are also valid for the complex Clifford algebras.!

For anyvPV andXPLV,

v4X5 1
2 ~vX2X̄v ! and X4v5 1

2 ~Xv2vX̄!,

~A24!
v∧X5 1

2 ~vX1X̄v ! and X∧v5 1
2 ~Xv1vX̄!.

For anyX,YPV,

X•Y5^X̃Y&05^XỸ&0 . ~A25!

For anyX,Y,ZPV,

~XY!•Z5Y•~X̃Z!5X•~ZỸ!,
~A26!

X•~YZ!5~ỸX!•Z5~XZ̃!•Y.

For anyX,YPV,

XY5X̄Ȳ,

XỸ5ỸX̃. ~A27!

Let I PLnV then for anyvPV andXPLV,

I ~v∧X!5~21!n21v4~ IX !. ~A28!

Equation~A22! is sometimes called the duality identity and plays an important role in
applications involving the Hodge dual operator@see Eq.~53!#.

For anyX,Y,ZPV,

X4~Y∧Z!5~X∧Y!4Z,
~A29!

~XzY!zZ5Xz~Y∧Z!.

For anyX,YPV,

X•Y5^X̃Y&0 . ~A30!

For XrPL rV, YsPLsV we have

XrYs5^XrYs& ur 2su1^XrYs& ur 2su121 ¯ 1^XrYs& r 1s . ~A31!
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~We observe also that whenK5R and the quadratic form is Euclidean thenX•Y is positive
definite.!

APPENDIX B: REPRESENTATION THEORY OF THE REAL CLIFFORD ALGEBRAS Rp ,q

The real Clifford algebrasRp,q are associative algebras and they are simple or semisim
algebras. For the intelligibility of the present paper, it is then necessary to have in mind
results concerning the presentation theory of associative algebras, which we collect in wh
lows, without presenting proofs.

1. Some results from the representation theory of associative algebras

Let V be a set andK a division ring. Give to the setV a structure of finite-dimensional linea
space overK. Suppose that dimKV5n, wherenPZ. We are interested in what follows in the cas
whereK5R, C or H. WhenK5R, C or H, we call V a vector space overK. WhenK5H it is
necessary to distinguish between right or leftH-linear spaces and in this caseV will be called a
right or left H-module. Recall thatH is a division ring~sometimes called a noncommutative fie
or a skew field! and sinceH has a natural vector space structure over the real field, thenH is also
a division algebra.

Let dimR V52m5n. In this case it is possible to give the following.
Definition 26: A linear mapping

J:V→V, ~B1!

such that

J252IdV , ~B2!

is called a complex structure mapping.
Definition 27: The pair (V,J) will be called a complex vector space structure and denote

VC if the following product holds. LetC{z5a1 ib and letvPV. Then

zv5~a1 ib !v5av1bJv. ~B3!

It is obvious that dimC5m/2.
Definition 28: LetV be a vector space overR. A complexificationof V is a complex structure

associated with the real vector spaceV % V. The resulting complex vector space is denoted byVC.
Let v,wPV. Elements ofVC are usually denoted byc5v1 iw, and if C{z5a1 ib we have

zc5av2bw1 i ~aw1bv!. ~B4!

Of course, we have that dimC VC5dimR V.
Definition 29: AH-module is a real vector spaceV carrying three linear transformation, I , J,

and K each one of them satisfying

I25J252IdS,
~B5!

IJ52JI5K , JK52KJ5I , KI 52IK 5J.

Definition 30: Any subset I#A such that

acPI ,;aPA,;cPI ,
~B6!

c1fPI ,;c,fPI

is called a left ideal ofA.
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Remark 31: An analogous definition holds for right ideals where Eq. (B6) readscaPI ,;a
PA, ;cPI , for bilateral ideals where in this case Eq. (B6) reads acbPI ,;a,bPA, ;cPI .

Definition 32: An associativeA algebra on thefield F ~R or C! is simple if the only bilateral
ideals are the zero ideal andA itself.

We give without proofs the following theorems.
Theorem 33:All minimal left (respectively, right) ideals ofA are of the form J5Ae ~respec-

tively, eA), where e is a primitive idempotent ofA.
Theorem 34:Two minimal left ideals ofA, J5Ae and J5Ae8 are isomorphicif and only if

there exist a non-null X8PJ8 such that J85JX8.
We recall that ePA is an idempotentelement if e25e. An idempotent is said to beprimitive

if it cannot be written as the sum of two nonzero annihilating (or orthogonal) idempotent, i.e.,
eÞe11e2 , with e1e25e2e150 and e1

25e1 , e2
25e2 .

Not all algebras are simple and in particular semisimple algebras are important for ou
siderations. A definition of semisimple algebras requires the introduction of the concepts o
potent ideals and radicals. To define these concepts adequately would lead us to a long in
on the theory of associative algebras, so we avoid to do that here. We only quote that sem
algebras are the direct sum of simple algebras. Then, the study of semisimple algebras is r
to the study of simple algebras.

Now, let A be an associative and simple algebra on the fieldF ~R or C!, and letS be a
finite-dimensional linear space over a division ringK#F.

Definition 35: A representationof A in S is a K algebra homomorphism@we recall that a
K-algebra homomorphism is aK-linear mapr such that;X,YPA, r(XY)5r(X)r(Y)] r:A
→E5EndKS (E5EndKS5HomK(S,S) is the endomorphism algebra ofS! which maps the unit
element ofA to IdE . The dimensionK of S is called thedegreeof the representation.

The addition inS together with the mappingA3S→S, (a,x)°r(a)x turns S in a left
A-module, called the leftrepresentation module. @We recall that there are left and right module
so we can also define right modular representations ofA by defining the mappingS3A→S,
(x,a)°xr(a). This turnsS in a right A-module, called the rightrepresentation module.#

Remark 36: It is important to recall that whenK5H the usual recipe forHomH(S,S) to be a
linear space overH fails and in generalHomH(S,S) is considered as a linear space overR, which
is the center ofH.

Remark 37: We also have that ifA is an algebra overF and S is an A-module, thenS can
always be considered as a vector space overF and if ePA, the mappingx:a→xa with xa(s)
5as, sPS, is a homomorphismA→E5EndFS, and so it is a representation ofA in S. The study
of A modules is then equivalent to the study of theF representations ofA.

Definition 38: A representationr is faithful if its kernel is zero, i.e., r(a)x50,;xPS⇒a
50. The kernel ofr is also known as theannihilatorof its module.

Definition 39:r is said to besimpleor irreducible if the only invariant subspaces ofr(a),
;aPA, are S and $0%.

Then, the representation module is also simple. That means that it has no proper subm
Definition 40:r is said to be semisimple, if it is the direct sum of simple modules, and in

caseS is the direct sum of subspaces which are globally invariant underr(a), ;aPA.
When no confusion arisesr(a)x may be denoted bya"x, a* x or ax.
Definition 41: TwoA-modulesS and S8 (with the exterior multiplication being denoted

respectively, by" and * ) are isomorphicif there exists a bijectionw:S→S8 such that

w~x1y!5w~x!1w~y!, ;x,yPS,

w~a"x!5a* w~x!, ;aPA,

and we say that representationr and r8 of A are equivalent if their modules are isomorphic.
This implies the existence of aK-linear isomorphismw:S→S8 such thatw+r(a)5r8(a)

+w, ;aPA or r8(a)5w+r(a)+w21. If dim S5n, then dimS85n.
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Definition 42: A complex representationof A is simply a real representationr:A
→HomR(S,S) for which

r~X!+J5J+r~X!, ;XPA. ~B7!

This means that the image ofr commutes with the subalgebra generated by$IdS%;C.
Definition 43: A quaternionic representation ofA is a representationr:A→HomR(S,S) such

that

r~X!+I5I +r~X!, r~X!+J5J+r~X!, r~X!+K5K +r~X!, ;XPA. ~B8!

This means that the representationr has a commuting subalgebra isomorphic to the quatern
ring.

The following theorem61,109 is crucial.
Theorem 44 ~Wedderburn!: If A is simple algebra overF then A is isomorphic toD(m),

whereD(m) is a matrix algebra with entries inD ~a division algebra), and m andD are unique
(modulo isomorphisms).

Now, it is time to specialize our results to the Clifford algebras over the fieldF5R or C. We
are particularly interested in the case of real Clifford algebras. In what follows we take (V,b)
5(Rn,g). We denote byRp,q a real vector space of dimensionn5p1q endowed with a nonde
generate metricg:Rn3Rn→R. Let $Ei%, (i 51,2,. . . ,n) be an orthonormal basis ofRp,q,

g~Ei ,Ej !5gi j 5gji 5H 11, i 5 j 51,2,. . . ,p

21, i 5 j 5p11, . . . ,p1q5n

0, iÞ j .

~B9!

Definition 45: The Clifford algebraRp,q5C,(Rp,q) is the Clifford algebra overR, generated
by 1 and the$Ei% ( i 51,2,. . . ,n), such that Ei

25q(Ei)5g(Ei ,Ei), EiEj52EjEi ( iÞ j ), and
E1E2 . . . EnÞ61.

Rp,q is obviously of dimension 2n and as a vector space it is the direct sum of vector spa
LkRn of dimensions (k

n),0<k<n. The canonical basis ofLkRn is given by the elementseA

5Ea1
¯ Eak

, 1<a1, ¯ ,ak<n. The elementeJ5E1¯ EnPLkRn,Rp,q commutes (n odd!
or anticommutes (n even! with all vectorsE1¯ EnPL1Rn[Rn. The centerC,p,q is L0Rn[R if
n is even and it is the direct sumL0Rn

% L0Rn if n is odd.
All Clifford algebras are semisimple. Ifp1q5n is even,Rp,q is simple and ifp1q5n is odd

we have the following possibilities.
~a! Rp,q is simple↔cJ

2521↔p2qÞ1 (mod 4)↔center ofRp,q is isomorphic toC;
~b! Rp,q is not simple~but is a direct sum of two simple algebras)↔cJ

2511↔p2q51
(mod 4)↔center ofRp,q is isomorphic toR% R.

Now, for Rp,q the division algebrasD are the division ringsR, C or H. The explicit isomor-
phism can be discovered with some hard but not difficult work. It is possible to give a ge
classification off all real~and also the complex! Clifford algebras and a classification table can
found, e.g., in Refs. 141 and 142. Table I is reproduced and@n/2# means the integer part ofn/2.

Now, to complete the classification we need the following theorem.141

Theorem 46 ~Periodicity!:

TABLE I. Representation of the Clifford algebrasRp,q as matrix algebras.

p2q
mod 8 0 1 2 3 4 5 6 7

R(2[n/2]) H(2[n/2]21)
Rp,q R(2[n/2]) % R(2[n/2]) C(2[n/2]) H(2[n/2]21) % H(2[n/2]21) C(2[n/2])

R(2[n/2]) H(2[n/2]21)
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Rn185Rn,0^ R8,0, R0,n185R0,n^ R0,8,
~B10!

Rp18,q5Rp,q^ R8,0, Rp,q185Rp,q^ R0,8.

Remark 47: We emphasize here that since the general results concerning the represen
of simple algebras over a fieldF applies to the Clifford algebrasRp,q we can talk about real,
complex or quaternionic representation of a given Clifford algebra, even if the natural m
identification is not a matrix algebra over one of these fields. A case that we shall need i
R1,3.H(2). But it is clear thatR1,3 has a complex representation, for any quaternionic repres
tation ofRp,q is automaticallycomplex,once we restrictC,H and of course, the complex dimen
sion of anyH-module must be even. Also, any complex representation ofRp,q extends automati-
cally to a representation ofC^ Rp,q .

Remark 48: Now, C^ Rp,q is an abbreviation for thecomplexClifford algebra C,p1q5C
^ Rp,q , i.e., it is the tensor product of the algebrasC and Rp,q , which are subalgebras of the
finite-dimensional algebraC,p1q over C.

For the purposes of the present paper we must keep in mind that

R0,1.C,

R0,2.H,

R3,0.C~2!,
~B11!

R1,3.H~2!,

R3,1.R~4!,

R4,1.C~4!.

R3,0 is called the Pauli algebra,R1,3 is called thespace–timealgebra,R3,1 is calledMajorana
algebra andR4,1 is called theDirac algebra. Also the following particular results have been u
in the text and below:

R1,3
0 .R3,1

0 5R3,0, R4,1
0 .R1,3,

~B12!
R4,1.C^ R3,1, R4,1.C^ R3,1,

which means that the Dirac algebra is the complexification of both the space–time or the Ma
algebras.

Equation ~B11! show moreover, in view of Remark 7 that the space–time algebra h
complexification matrix representation inC~4!. Obtaining such a representation is fundamental
the present work and it is given in Appendix D.

2. Minimal lateral ideals of Rp ,q

It is important for the objectives of this paper to know some results concerning the min
lateral ideals ofRp,q . The identification table of these algebras as matrix algebras helps
Indeed, we have61 the following theorem.

Theorem 49: The maximum number of pairwise orthogonal idempotents inK(m) (whereK
5R, C or H) is m.

The decomposition ofRp,q into minimal ideals is then characterized by a spectral set$epq, j%
of idempotents elements ofRp,q such that

~a! ( i 51
n epq,i51,

~b! epq, jepq,k5d jkepq, j ,
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~c! the rank ofepq, j is minimal and nonzero, i.e., is primitive.

By rank ofepq, j we mean the rank of theLRp,q morphism,epq, j :f°fepq, j . Conversely, any
fPI pq, j can be characterized by an idempotentepq, j of minimal rankÞ0, with f5fepq, j .

We now need to know the following theorem.109

Theorem 50: A minimal left ideal ofRp,q is of the type

I pq5Rp,qepq ,

where

epq5 1
2 ~11ea1

! ¯ 1
2 ~11eak

! ~B13!

is a primitive idempotent ofRp,q and were ea1
, ¯ ,eak

are commuting elements in the canonic

basis of Rp,q generated in the standard way through the elements of the basis( such that
(ea i

)251, (i 51,2,. . . ,k) generate a group of order2k, k5q2r q2p and ri are the Radon–
Hurwitz numbers, defined by the recurrence formula ri 185r i14 and

i 0 1 2 3 4 5 6 7

r i 0 1 2 2 3 3 3 3

~B14!

Recall thatRp,q is a ring and the minimal lateral ideals are modules over the ringRp,q . They
are representation modulesof Rp,q , and indeed we have~recall the table above! the following
theorem.141

Theorem 51: If p1q is even or odd with p2qÞ1 (mod 4), then

Rp,q5HomK~ I pq!.K~m!, ~B15!

where (as we already know)K5R, C or H. Also,

dimK~ I pq!5m ~B16!

and

K.eK~m!e, ~B17!

where e is the representation ofepq in K(m).
If p1q5n is odd, with p2q51 (mod 4), then

Rp,q5HomK~ I pq!.K~m! % K~m!, ~B18!

with

dimK~ I pq!5m ~B19!

and

eK~m!e.R% R

or ~B20!

eK~m!e.H% H.
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With the above isomorphisms we can immediately identify the minimal left ideals ofRp,q with the
column matrices ofK(m).

Algorithm for finding primitive idempotents ofRp,q : With the ideas introduced above it is no
a simple exercise to find primitive idempotents ofRp,q . First we look at Table I and find the
matrix algebra to which our particular Clifford algebraRp,q is isomorphic. SupposeRp,q is simple.
~Once we know the algorithm for a simple Clifford algebra it is straightfoward to devise
algorithm for the semisimple Clifford algebras.! Let Rp,q.K(m) for a particularK andm. Next
we take an elementea1

P$eA% from the canonical basis$eA% of Rp,q such that

ea1

2 51, ~B21!

then construct the idempotentepq5(11ea1
)/2 and the idealI pq5Rp,qepq and calculate

dimK(I pq). If dimK(I pq)5m, thenepq is primitive. If dimK(I pq)Þm, we chooseea2P$eA% such
that ea2 commutes withea1

andea2

2 51 @see Theorem 39 and construct the idempotentepq8 5(1

1ea1
)(11ea1

)/4]. If dimK(I pq8 )5m, thenepq8 is primitive. Otherwise we repeat the procedu
According to the Theorem 39 the procedure is finite.

These results will be used in Appendix D in order to obtain necessary results for our pr
tation of the theory of algebraic and Dirac–Hestenes spinors~and spinors fields!.

APPENDIX C: Rp ,q
! , CLIFFORD, PINOR AND SPINOR GROUPS

The set of the invertible elements ofRp,q constitutes a non-Abelian group which we denote
Rp,q

! . It acts naturally onRp,q as an algebra homomorphism through its adjoint representatio

Ad:Rp,q
! →Aut~Rp,q!;u°Adu , with Adu~x!5uxu21. ~C1!

Definition 52: TheClifford–Lipschitz group is the set

Gp,q5$uPRp,q
! u;xPRp,q,uxu21PRp,q%. ~C2!

Definition 53: The setGp,q
1 5Gp,qùRp,q is calledspecialClifford–Lipshitz group.

Definition 54: ThePinor group Pinp.q is the subgroup ofGp,q such that

Pinp,q5$uPGp,quN~u!561%,
~C3!

N:Rp,q→Rp,q ,N~x!5^x̄x&0 .

Definition 55: TheSpin group Spinp,q is the set

Spinp,q5$uPGp,quN~u!561%. ~C4!

It is easy to see that Spinp,q is not connected.
Definition 56: The groupSpinp,q

e is the set

Spinp,q
e 5$uPGp,quN~u!511%. ~C5!

The superscripte, means that Spinp,q
e is the connected component to the identity. We c

prove that Spinp,q
e is connected for all pairs (p,q) with the exception of Spine(1,0)

.Spine(0,1).
We recall now some classical results120 associated with the pseudo-orthogonal groups Op,q of

a vector spaceRp,q (n5p1q) and its subgroups.
Let G be a diagonaln3n matrix whose elements are

Gi j 5diag~1,1,. . . ,21,21, . . .21!, ~C6!
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with p positive andq negative numbers.
Definition 57: Op,q is the set of n3n real matricesL such that

LGL T5G, detL251. ~C7!

Equation~C7! shows that Op,q is not connected.
Definition 58: SOp,q , the special (proper) pseudo-orthogonal group is the set of n3n real

matricesL such that

LGL T5G, detL51. ~C8!

When p50 (q50) SOp,q is connected. However, SOp,q is not connected and has two co
nected components forp,q>1. The group SOp,q

e , the connected component to the identity
SOp,q will be called the specialorthocronouspseudo-orthogonal group.@This nomenclature come
from the fact that SOe(1,3)5L1

↑ is the special~proper! orthochronous Lorentz group. In this cas
the set is easily defined by the conditionL0

0>11. For the general case see Ref. 120.#
Theorem 59:AduPinp,q

:Pinp,q→Op,q is onto with kernelZ2 . AduSpinp,q
:Spinp,q→SOp,q is onto

with kernelZ2 . AduSpin
p,q
e :Spinp,q

e →SOp,q
e is onto with kernelZ2 . We have

Op,q5
Pinp,q

Z2
, SOp,q5

Spinp,q

Z2
, SOp,q

e 5
Spinp,q

e

Z2
. ~C9!

The group homomorphism between Spinp,q
e and SOe(p,q) will be denoted by

L: Spinp,q
e →SOp,q

e . ~C10!

The following theorem that first appears in Porteous book141 is very important.„In particular,
when Theorem 49 is taken into account together with some of the coincidence betwee
complexifications of some low dimensions Clifford algebras it becomes clear that the constr
of Dirac–Hestenes spinors@and its representation as in Eq.~D20!# for Minkowski vector space has
no generalization for vector spaces of arbitrary dimensions and signatures.109

…

Theorem 60 ~Porteous!: For p1q<5, Spine(p,q)5$uPRp,quuũ51%.
Lie algebra ofSpin1,3

e : It can be shown109 that for eachuPSpin1,3
e it holds u56eF, F

PL2R1,3,R1,3 andF can be chosen in such a way to have a positive sign in Eq.~C8!, except in
the particular caseF250 when u52eF. From Eq. ~C8! it follows immediately that the Lie
algebra of Spin1,3

e is generated by the bivectorsFPL2R1,3,R1,3 through the commutator produc
More details on the relations of Clifford algebras and the rotation groups may be found, e
Refs. 7 and 170.

APPENDIX D: SPINOR REPRESENTATIONS OF R4,1 , R4,1
¿ , AND R1,3

Let b05$E0 ,E1 ,E2 ,E3% be an orthogonal basis ofR1,3,R1,3, such thatEmEy1EyEm

52hmn , with hym5diag(11,21,21,21). Now, with the results of Appendix B we can verif
without difficulties that the elementse, e8, e9PR1,3,

e5 1
2 ~11E0!, ~D1!

e85 1
2 ~11E3E0!, ~D2!

e95 1
2 ~11E1E2E3!, ~D3!
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are primitive idempotents ofR1,3 The minimal left ideals,I 5R1,3e, I 85R1,3e8, I 95R1,3e9 are
right two dimension linear spaces over the quaternion field~e.g.,He5eH5eR1,3e). According to
a definition given originally in Ref. 150 these ideals are algebraically equivalent. For exa
e85ueu21, with u5(11E3)¹G1,3.

Definition 61: The elementsFPR1,3
1
2(11E0) are calledmotherspinors.

The above denomination has been given~with justice! by Lounesto.109 It can be shown67,68

that eachF can be written

F5c1e1c2E3E1e1c3E3E0e1c4E1E0e5(
i

c isi , ~D4!

s15e, s25E3E1e, s35E3E0e, s45E1E0e ~D5!

and where thec i areformally complex numbers, i.e., eachc i5(ai1biE2E1) with ai , biPR and
the set$si ,i 51,2,3,4% is a basis in the mother spinors space.

We recall from the general result of Appendix C that Pin1,3/Z2 .O1,3, Spin1,3/Z2 .SO1,3,
Spin1,3

e /Z2 .SO1,3
e , and Spin1,3

e .Sl(2,C) is the universal covering group ofL1
↑ [SO1,3

e , the spe-
cial ~proper! orthocronousLorentz group.

In order to determine the relation betweenR4,1 and R3,1 we proceed as follows: le
$F0 ,F1 ,F2 ,F3 ,F4% be an orthonormal basis ofR4,1 with

2F0
25F1

25F2
25F3

25F4
251,FAFB52FBFA~AÞB;A,B50,1,2,3,4!.

Define the pseudoscalar

i5F0F1F2F3F4 , i2521, iFA5FAi, A50,1,2,3,4. ~D6!

Define

Em5FmF4 . ~D7!

We can immediately verify thatEmEy1EyEm52hmy . Taking into account thatR1,3.R4,1
0 we can

explicitly exhibit here this isomorphism by considering the mapj:R1,3→R4,1 generated by the
linear extension of the mapj#:R1,3→R4,1, j#(Fm)5Em5FmF4 , where Em (m50,1,2,3) is an
orthogonal basis ofR1,3. Also j(1R1,3

)51R
4,1
1 , where 1R1,3

and 1R
4,1
1 are the identity elements inR1,3

andR4,1
1 . Now consider the primitive idempotent ofR1,3.R4,1

0 ,

e415 j~e!5 1
2 ~11E0! ~D8!

and the minimal left idealI 4,15R4,1e41.
In what follows we use~when convenient! for minimal idempotents and the minimal idea

generated by them, the labels involving the notion of spinorial frames discussed in Sec.
then,J0 be a fiducial spinorial frame. The elements@in what follows we use~when convenient!
for minimal idempotents and the minimal ideals generated by them, the labels involving the n

of spin frames discussed in Sec. II# ZJ0
PI 4,1 can be written analogously toFPR1,3

1
2(11E0) as

ZJ0
5( zi s̄i , ~D9!

where

s̄15e41, s̄25E1E3e41, s̄35E3E0e41, s̄45E1E0e41 ~D10!

and where
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zi5ai1E2E1bi

are formally complex numbers,ai , biPR.
Consider now the elementf J0

PR4,1,

f J0
5e41

1
2 ~11 iE1E2!5 1

2 ~11E0! 1
2 ~11 iE1E2!, ~D11!

with i defined as in Eq.~D6!.
Since f J0

R4,1f J0
5Cf J0

5 f J0
C it follows that f J0

is a primitive idempotent ofR4,1. We can
easily show that eachFJ0

PI J0
5R4,1f J0

can be written

CJ0
5(

i
c i f i , c iPC,

~D12!
f 15 f J0

, f 252E1E3f J0
, f 35E3E0f J0

, f 45E1E0f J0

with the methods described in Refs. 67 and 68 we find the following representation inC~4! for the
generatorsEm of R4,1.R1,3:

E0°gI 05S 12 0

0 212
D↔Ei°gI i5S 0 2s i

s i 0 D , ~D13!

where12 is the unit 232 matrix ands i ( i 51,2,3) are the standard Pauli matrices. We imme
ately recognize thegI -matrices in Eq.~D13! as the standard ones appearing, e.g., in Ref. 13.

The matrix representation ofCJ0
PI J0

will be denoted by the same letter without the inde
i.e., CJ0

°CPC(4) f , where

f 5 1
2 ~11 igI 1gI 2! i 5A21. ~D14!

We have

C5S c1 0 0 0

c2 0 0 0

c3 0 0 0

c4 0 0 0

D , c iPC. ~D15!

Equations~D13!, ~D14!, and ~D15! are sufficient to prove that there are bijections between

elements of the idealsR1,3
1
2(11E0), R4,1

1
2(11E0), andR4,1

1
2(11E0) 1

2(11 iE1E2).
We can easily find that the following relation exist betweenCJ0

PR4,1f J0
and ZJ0

PR4,1
1
2(11E0), J05(u0 ,S0) being a spinorial frame~see Sec. I!

CJ0
5ZJ0

1
2 ~11 iE1E2!. ~D16!

DecomposingZJ0
into even and odd parts relative to theZ2-graduation ofR4,1

0 .R1,3, ZJ0

5ZJ0

0 1ZJ0

1 we obtainZJ0

0 5ZJ0

1 E0 which clearly shows that all information ofZJ0
is contained

in ZJ0

0 . Then,

CJ0
5ZJ0

0 1
2 ~11E0! 1

2 ~11 iE1E2!. ~D17!
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Now, if we take into account150 that R4,1
0 1

2(11E0)5R4,1
00 1

2(11E0) where the symbolR4,1
00

meansR4,1
00.R1,3

0 .R3,0 we see that eachZJ0
PR4,1

1
2(11E0) can be written

ZJ0
5cJ0

1
2 ~11E0!, cJ0

PR4,1
00.R1,3

0 . ~D18!

Then settingZJ0

0 5cJ0
/2, Eq. ~D18! can be written

CJ0
5cJ0

1
2 ~11E0! 1

2 ~11 iE1E2!5ZJ0

0 1
2 ~11 iE1E2!. ~D19!

The matrix representation ofZJ0
and cJ0

in C~4! ~denoted by the same letter in boldfac
without index! in the spin basis given by Eq.~D12! are

C5S c1 2c2* c3 c4*

c2 c1* c4 2c3*

c3 c4* c1 2c2*

c4 2c3* c2 c1*
D , Z5S c1 2c2* 0 0

c2 c1* 0 0

c3 c4* 0 0

c4 2c3* 0 0

D . ~D20!

APPENDIX E: WHAT IS A COVARIANT DIRAC SPINOR „CDS…

As we already knowf J0
5 1

2(11E0) 1
2(11 iE1E2) @Eq. ~D12!# is a primitive idempotent of

R4,1.C(4). If uPSpin(1,3),Spin(4,1) then all idealsI Ju
5I J0

u21 are geometrically equivalen

to I J0
. Now, let s(Ju)5$E0 ,E1 ,E2 ,E3% and s(Ju8)5$E08 ,E18 ,E28 ,E38% with s(Ju)

5u21s(J0)u, s(Ju8)5u821s(J0)u8 be two arbitrary basis forR1,3,R4,1. From Eq.~D13! we
can write

I Ju
{CJu

5( c i f i , and I J
u8
{CJu8

5( c i8 f i8 , ~E1!

where

f 15 f Ju
, f 252E1E3f Ju

, f 35E3E0f Ju
, f 45E1E0f Ju

and

f 185 f Ju8
, f 2852E 18E 38 f Ju8

, f 385E 38E 08 f Ju8
, f 45E 18E 08 f Ju8

.

SinceCJu8
5CJu

(u821u)21, we get

CJu8
5(

i
c i~u821u!21f i85(

i ,k
Sik@~u21u8!#c i f k5(

k
ck8 f k .

Then

ck85(
i

Sik~u21u8!c i , ~E2!

whereSik(u21u8) are the matrix components of the representation inC~4! of (u21u8)PSpin1,3
e .

As proved in Refs. 67 and 68 the matricesS(u) correspond to the representationD (1/2,0)

% D (0,1/2) of SL(2,C).Spin1,3
e .
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We remark that all the elements of the set$I Ju
% of the ideals geometrically equivalent toI J0

under the action ofuPSpin1,3
e ,Spin4,1

e have the same imageI 5C(4) f where f is given by Eq.
~D11!, i.e.,

f 5 1
2 ~11gI 0!~11 igI 1gI 2!, i 5A21, ~E3!

wheregI m , m50,1,2,3 are the Dirac matrices given by Eq.~D14!.
Then, if

g:R4,1→C~4![End~C~4! f !,
~E4!

x°g~x!:C~4! f→C~4! f

it follows that

g~Em!5g~Em8 !, g~ f m!5g~ f m8 ! ~E5!

for all $Em%, $Em8 % such thatEm8 5(u821u)Em(u821u)21. Observe thatall informationconcerning
the geometrical images of the spinorial framesJu , Ju8 , . . . , unders disappear in the matrix
representation of the idealsI Ju

, I Ju8
, . . . , in C~4! since all these ideals are mapped in the sa

ideal I 5C(4) f .
With the above remark and taking into account the definition of algebraic spinors given in

II C and Eq.~E2! we are lead to the following.
Definition 62: A covariant Dirac spinor (CDS) forR1,3 is an equivalence class of pair

(Ju
m ,C), whereJu

m is a matrix spinorial frame associated to the spinorial frameJu through the
S(u21)PD (1/2,0)

% D (0,1/2) representation ofSpin1,3
e , uPSpin1,3

e . We say thatC,C8PC(4) f are
equivalent and write

~Ju
m ,C!;~Ju8

m ,C8! ~E6!

if and only if

C85S~u821u!C, usJuu215u8s~Ju8!u821. ~E7!

Remark 63: The definition of CDS just given agrees with that given in Ref. 40 except f
irrelevant fact that there, as well as in the majority of Physics textbook’s, authors use as the
of representatives of a CDS a complex four-dimensional spaceC4 instead of I5C(4) f .
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Our main objective in this paper is to clarify theontologyof Dirac–Hestenes spinor
fields ~DHSF! and its relationship with even multivector fields, on a Riemann–
Cartan spacetime~RCST! M5(M ,g,“,tg ,↑) admitting a spin structure, and to
give a mathematically rigorous derivation of the so-called Dirac–Hestenes equation
~DHE! in the case whereM is a Lorentzian spacetime~the general case whenM is
a RCST will be discussed in another publication!. To this aim we introduce the
Clifford bundle of multivector fields„C,(M ,g)… and theleft „C,Spin

1,3
e

l
(M )… and

right „C,Spin
1,3
e

r
(M )… spin-Clifford bundles on the spin manifold (M ,g). The relation

betweenleft ideal algebraic spinor fields~LIASF! and Dirac–Hestenesspinor
fields „both fields are sections ofC,Spin

1,3
e

l
(M )… is clarified. We study in detail the

theory of covariant derivatives of Clifford fields as well as that of left and right
spin-Clifford fields. A consistent Dirac equation for a DHSFCPsecC,Spin

1,3
e

l
(M )

~denoted DEC, l) on a Lorentzian spacetime is found. We also obtain arepresen-
tation of the DEC, l in the Clifford bundleC,(M ,g). It is such equation that we call
the DHE and it is satisfied by Clifford fieldscJPsecC,(M ,g). This means that to
each DHSFCPsecC,Spin

1,3
e

l
(M ) and spin frameJPsecPSpin

1,3
e (M ), there is a

well-defined sum of even multivector fieldscJPsecC,(M ,g) ~EMFS! associated
with C. Such an EMFS is called arepresentativeof the DHSF on the given spin
frame. And, of course, such a EMFS~the representative of the DHSF! is not a
spinor field. With this crucial distinction between a DHSF and itsrepresentatives
on the Clifford bundle, we provide a consistent theory for the covariant derivatives
of Clifford and spinor fields of all kinds. We emphasize that the DEC, l and the
DHE, although related, are equations of different mathematical natures. We study
also the local Lorentz invariance and the electromagnetic gauge invariance and
show that only for the DHE such transformations are of the same mathematical
nature, thus suggesting a possible link between them. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1757038#

I. INTRODUCTION

The main objective of this paper is to clarify theontologyof Dirac–Hestenes spinor field
~DHSF! ~for the genesis of these objects we quote Ref. 19! on general Riemann–Cartan spac
times ~RCST! and to give a mathematically justified account of the Dirac–Hestenes equ

a!Electronic mail: mosna@ifi.unicamp.br
b!Electronic mail: walrod@mpc.com.br or walrod@ime.unicamp.br
29450022-2488/2004/45(7)/2945/22/$22.00 © 2004 American Institute of Physics
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~DHE! on Lorentzian spacetimes, subjects that have been a matter of many misunderstandi
controversies~as discussed in Ref. 34!. Recall that the flat spacetime DHE represents the stat
an electron by a mapC with values in the even part of the Clifford algebraR1,3. However, a
covariant formulation of the DHE on a~possibly curved! Lorentzian spacetime cannot promoteC,
in a canonical way, to a section of the Clifford bundleC,(M ,g) ~whose objects transform a
tensors and therefore cannot describe spin-1/2 particles!. In Ref. 34, DHSF on a Minkowski
spacetime were defined as equivalence classes of Clifford fields. Here we follow a dif
approach, and define DHSF as even sections of an appropriate spinorial Clifford bundle
objects satisfying the Dirac–Hestenes equation are then even multivector fields which arerepre-
sentativesof DHSF on the tensorial Clifford bundle. Moreover, such a representative is manif
spin-frame dependent, so that no contradiction arises in representing spinors by Clifford fi

To achieve our goals, we introduce in Sec. II the Clifford bundle of multivector fie
„C,(M ,g)…, and theleft „C,Spin

1,3
e

l
(M )… and right „C,Spin

1,3
e

r
(M )… spin-Clifford bundles on the spin

manifold (M ,g), and study in detail how these bundles are related.@Of course, all the results o
the present paper could also be obtained in the case whereC,(M ,g) is a Clifford bundle of
nonhomogeneous differential forms.# Left algebraic spinor fields and Dirac–Hestenes spinor fie
@both fields are sections ofC,Spin

1,3
e

l
(M )] are defined and the relation between them is establis

In Sec. IV, a consistent Dirac equation for a DHSFCPsecC,Spin
1,3
e

l
(M ) ~denoted DEC, l) on a

Lorentzian manifold is found. In Sec. V, we obtain arepresentationof the DEC, l in the Clifford
bundle, an equation we call the Dirac–Hestenes equation~DHE!, which is satisfied by Clifford
fields cJPsecC,(M ,g). This means that to each DHSFCPsecC,Spin

1,3
e

l
(M ) and to eachspin

frame JPsecPSpin
1,3
e (M ) there is a well-defined sum of even multivector fieldscJ

PsecC,(M ,g) ~EMFS! associated withC. Such an EMFS is called arepresentativeof the DHSF
on the given spin frame. And, of course, such an EMFS~the representative of the DHSF! is not a
spinor field. With this crucial distinction between a DHSF and their EMFS representative
present in Sec. V aneffectivespinorial connection for the representatives of a DHSF onC,(M ,g),
thus providing a consistent theory for the covariant derivatives of Clifford and spinor fields
kinds.

We emphasize that the DEC, l and the DHE, although related, are of different mathemat
natures. This issue has been particularly scrutinized in Secs. IV and V. We study also the
Lorentz invariance and the electromagnetic gauge invariance and show that only for the DH
transformations are of the same mathematical nature, thus suggesting a possible link b
them. In a sequel paper we are going to investigate this issue and also~a! the formulation of the
DEC, and DHE in an arbitrary Riemann–Cartan spacetime through the use of a varia
principle ~we shall use in our approach to the subject the techniques of the multivecto
extensor calculus developed in Refs. 12–14, 25–28!; ~b! the theory of the Lie derivative of the
LIASF and DHSF; and~c! the claim in Ref. 17 that the existence of spinor fields in a Lorentz
manifold requires a minimum amount of curvature. This problem is important in view of
proposed teleparallel theories of the gravitational field.

Finally, in the Appendix we derive some formulas employed in the main text for the cova
derivative of Clifford and spinor fields, using the general theory of covariant derivative
associated vector bundles. In general, our notation corresponds to that in Ref. 34.

A few acronyms are used in the present paper~to avoid long sentences! and they are summa
rized below for the reader’s convenience:

DHE—Dirac–Hestenes Equation
DHSF—Dirac–Hestenes Spinor Field
DEC, l—Dirac equation for a DHSFCPsecC,Spin

1,3
e

l
(M )

EMFS—Even Multivector Fields
LIASF—Left Ideal Algebraic Spinor Field
PFB—Principal Fiber Bundle
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RIASF—Right Ideal Algebraic Spinor Field
RCST—Riemann–Cartan Spacetime

II. THE CLIFFORD BUNDLE OF SPACETIME AND THEIR IRREDUCIBLE MODULE
REPRESENTATIONS

A. The Clifford bundle of spacetime

Let M be a four dimensional, real, connected, paracompact and noncompact manifol
TM @T* M # be the tangent@cotangent# bundle ofM .

Definition 1: A Lorentzian manifold is a pair(M ,g), where gPsecT2,0M is a Lorentzian
metric of signature~1,3!, i.e., for all xPM , TxM.Tx* M.R1,3, where R1,3 is the vector
Minkowski space.

Definition 2: A spacetimeM is a pentuple(M ,g,“,tg ,↑) where(M ,g,tg ,↑) is an oriented
Lorentzian manifold (oriented bytg) and time oriented by an appropriated equivalence relati
(denoted↑) for the timelike vectors at the tangent space TxM , ;xPM . (See Ref. 35 for details.
“ is a linear connection for M such that“g50.

Definition 3: Let T and R be respectively, the torsion and curvature tensors of“. If in
addition to the requirements of the previous definitions,T(“)50, thenM is said to be a Lorent-
zian spacetime. The particular Lorentzian spacetime where M.R4 and such thatR(“)50 is
called Minkowski spacetime and will be denoted byM. WhenT(“) is possibly nonzero,M is
said to be a Riemann–Cartan spacetime (RCST). A particular RCST such thatR(“)50 is called
a teleparallel spacetime.

In what follows PSO
1,3
e (M ) denotes the principal bundle of orientedLorentz tetrads. @We

assume that the reader is acquainted with the structure ofPSO
1,3
e (M ), whose sections are the tim

oriented and oriented orthonormal frames, each one associated by a local trivialization to aunique
element ofSO1,3

e (M ). See, e.g., Refs. 16, 22, 29, 30.#
It is well known32 that the natural operations on metric vector spaces, such as direct

tensor product, exterior power, etc., carry over canonically to vector bundles with metrics
have the following definition.

Definition 4: The Clifford bundle of the Lorentzian manifold(M ,g) is the bundle of algebras,

C,~M ,g!5 ø
xPM

C,~TxM ,gx!, ~1!

whereC,(TxM ,gx) is the Clifford algebra associated with(TxM ,gx) (see, e.g. Ref. 34).
As is well known,4,5,10 C,(M ,g) is a quotient~or factor! bundle, namely

C,~M ,g!5
tM

J~M ,g!
, ~2!

wheretM5 % r 50
` T0,rM andT(0,r )M is the space ofr -contravariant tensor fields, andJ(M ,g) is

the bundle of ideals whose fibers are the two-sided ideals intM generated by the elements of th
form a^ b1b^ a22g(a,b), with a,bPTM. In what follows, we denote the real Clifford algeb
associated toRp,q by Rp,q . The even subalgebra ofRp,q will be denoted byRp,q

0 ~see, e.g., Ref.
34!.

Let pc :C,(M ,g)→M be the canonical projection ofC,(M ,g) and let $Ua% be an open
covering of M . There are trivialization mappingsc i :pc

21(Ui)→Ui3R1,3 of the form c i(p)
5„pc(p),c i ,x(p)…5„x,c i ,x(p)…. If xPUiùU j andpPpc

21(x), then

c i ,x~p!5hi j ~x!c j ,x~p!, ~3!

for hi j (x)PAut(R1,3), wherehi j :UiùU j→Aut(R1,3) are the transition mappings ofC,(M ,g).
We know that every automorphism ofR1,3 is inner and it follows that
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hi j ~x!c j ,x~p!5gi j ~x!c i ,x~p!gi j ~x!21, ~4!

for somegi j (x)PR1,3
! , the group of invertible elements ofR1,3.

Now, the group SO1,3
e has as it is well known~see, e.g., Refs. 2, 3, 5, 21, 34! a natural

extension in the Clifford algebraR1,3. Indeed we know thatR1,3
! acts naturally onR1,3 as an

algebra automorphism through its adjoint representation. A set oflifts of the transition functions of
C,(M ,g) is a set ofR1,3

! -valued functions$gi j % such that if

Ad:g°Adg ,
~5!

Adg~a!5gag21,;aPR1,3,

then Adgi j
5hi j in all intersections.

Also s5AduSpin
1,3
e defines a group homeomorphisms:Spin1,3

e →SO1,3
e which is onto with

kernelZ2 . @Recall that Spin1,3
e 5$aPR1,3

0 :aã51%.SL(2,C) is the universal covering group of th
restricted Lorentz group SO1,3

e . See, e.g., Ref. 34.# We have that Ad215 identity, and so
Ad:Spin1,3

e →Aut(R1,3) descends to a representation of SO1,3
e . Let us call Ad8 this representation

i.e., Ad8:SO1,3
e →Aut(R1,3). Then we can write Ads(g)8 a5Adg a5gag21.

From this it is clear that the structure group of the Clifford bundleC,(M ,g) is reducible from
Aut(R1,3) to SO1,3

e . This follows immediately from the Lorentzian structure of (M ,g) and the fact
thatC,(M ,g) is the exterior bundle where the fibers are equipped with the Clifford product. T
the transition maps of the principal bundle of oriented Lorentz tetradsPSO

1,3
e (M ) can be~through

Ad8) taken as transition maps for the Clifford bundle. We then have5

C,~M ,g!5PSO
1,3
e ~M !3Ad8R1,3, ~6!

i.e., the Clifford bundle is an associated vector bundle to the principal bundlePSO
1,3
e (M ) of

orthonormal Lorentz frames.
Definition 5: Sections ofC,(M ,g) are called Clifford fields. (We note that the term Clifford

fields was used in Ref. 34 for mappings from Minkowski spacetime to the Clifford algebraR1,3.)

B. Spinor bundles

Definition 6: A spin structure on M consists of a principal fiber bundleps :PSpin
1,3
e (M )→M

(called the Spin Frame Bundle) with groupSpin1,3
e and a map

s:PSpin
1,3
e ~M !→PSO

1,3
e ~M !, ~7!

satisfying the following conditions.

~i! p„s(p)…5ps(p);pPPSpin
1,3
e (M ); p is the projection map of the bundlePSO

1,3
e (M ).

~ii ! s(pu)5s(p)Adu , ;pPPSpin
1,3
e (M ) and Ad:Spin1,3

e →Aut(R1,3), Adu :R1,3{x°uxu21

PR1,3.

Recall that minimal left~right! ideals ofRp,q are left ~right! modules forRp,q .34 In Ref. 34,
covariant, algebraic and Dirac–Hestenes spinors@when (p,q)5(1,3)] were defined as certai
equivalence classes in appropriate sets, and apreliminary definition for fields of these object
living on Minkowski spacetime was given. We are now interested in defining algebraic D
spinor fields and also Dirac–Hestenes spinor fields, on a general Riemann–Cartan spa
~Definition 3!, as sections of appropriate vector bundles~spinor bundles! associated toPSpin

1,3
e (M ).

The compatibility betweenPSpin
1,3
e (M ) andPSO

1,3
e (M ), as captured in Definition 6, is essential f

that matter.
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It is therefore natural to ask the following: When does a spin strucute exist on an ori
manifold M? The answer, which is a classical result~Refs. 1, 4, 5, 10, 15, 22, 29–31, 33, 32! is
that the necessary and sufficient conditions for the existence of a spin structure onM is that the
second Stiefel–Whitney classw2(M ) of M is trivial. Moreover, when a spin structure exists, o
can show that it is unique~modulo isomorfisms! if and only if H1(M ,Z2) is trivial.

Remark 7: For a spacetimeM (Definition 2), a spin structure exists if and only if PSO
1,3
e (M )

is a trivial bundle. This was originally shown by Geroch.16

Definition 8: We call global sectionsjPsecPSO
1,3
e (M ) Lorentz framesand global sections

JPsecPSpin
1,3
e (M ) spin frames.

Remark 9: Recall that a principal bundle is trivial if and only if it admits a global secti
Therefore, Geroch’s result says that a (noncompact) spacetime admits a spin structure if an
if it admits a (globally defined) Lorentz frame. In fact, it is possible to replace PSO

1,3
e (M ) by

PSpin
1,3
e (M ) in Remark 7 (see Ref. 16, Footnote 25). In this way, when a (noncompact) spac

admits a spin structure, the bundle PSpin
1,3
e (M ) is trivial and, therefore, every bundle associated

it is also trivial.
Definition 10: An oriented manifold endowed with a spin structure will be called a s

manifold.
We now present the most usual definitions of spinor bundles appearing in the literatur

next we find appropriate vector bundles such that particular sections are LIASF or DHSF@We
recall that there are some other~equivalent! definitions of spinor bundles that we are not going
introduce in this paper as, e.g., the one given in Ref. 6 in terms of mappings fromPSpin

1,3
e to some

appropriate vector space.#
Definition 11: A real spinor bundle for M is a vector bundle,

S~M !5PSpin
1,3
e ~M !Ãm l

M , ~8!

whereM is a left module forR1,3 and m l is a representation ofSpin1,3
e on End(M ) given by left

multiplication by elements ofSpin1,3
e .

Definition 12: The dual bundle S!(M ) is a real spinor bundle,

S!~M !5PSpin
1,3
e ~M !Ãmr

M!, ~9!

whereM! is a right module forR1,3 and m r is a representationof Spin1,3
e in End(M ) given by

right multiplication by (inverse) elements ofSpin1,3
e . [More precisely, this means that given

PSpin1,3
e , aPM* , m r(u)a5au21, so that m r(uu8)a5a(uu8)215au821u21

5m r(u)m r(u8)a.]
Definition 13: A complex spinor bundle for M is a vector bundle,

Sc~M !5PSpin
1,3
e ~M !Ãmc

M c , ~10!

whereM c is a complex left module forC^ R1,3.R4,1.C(4), and wheremc is a representation of
Spin1,3

e in End(M c) given by left multiplication by elements ofSpin1,3
e .

Definition 14: The dual complex spinor bundle for M is a vector bundle,

Sc
!~M !5PSpin

1,3
e ~M !Ãmc

M c
!, ~11!

whereM c
! is a complex right module forC^ R1,3.R4,1.C(4), and wheremc is a representation

of Spin1,3
e in End(M c) given by right multiplication by (inverse) elements ofSpin1,3

e . [More
precisely, this means that given uPSpin1,3

e , aPM* , m r(u)a5au21.]
Taking, e.g.,M c5C4 and mc the D (1/2,0)

% D (0,1/2) representation of Spin1,3
e >SL(2,C) in

End(C4), we immediately recognize the usual definition of the covariant spinor bundle ofM as
given, e.g., in~Refs. 7, 8, 9, 15, 29, 30!.
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C. Left spin-Clifford bundle

As shown in Ref. 34, besides the idealI 5R1,3
1
2(11E0), other ideals exist inR1,3 that are only

algebraically equivalent to this one.~This fact gives rise to a large class of multivector Dir
equations in flat spacetime, generalizing the Dirac–Hestenes equation.23,24! In order to capture all
possibilities we recall thatR1,3 can be considered as a module over itself by left~or right!
multiplication. We are thus led to the following definition.

Definition 15: The left real spin-Clifford bundle of M is the vector bundle,

C,Spin
1,3
e

l
~M !5PSpin

1,3
e ~M !3 lR1,3, ~12!

where l is the representation ofSpin1,3
e on R1,3 given by l(a)x5ax. Sections ofC,Spin

1,3
e

l
(M ) are

called left spin-Clifford fields.
Remark 16:C,Spin

1,3
e

l
(M ) is a ‘‘principal R1,3-bundle,’’ i.e., it admits a free action ofR1,3 on the

right,5 which is denoted by Rg , gPR1,3. This will be considered in Sec. V.
Remark 17: There is anaturalembedding PSpin

1,3
e (M )�C,Spin

1,3
e

l
(M ) which comes from the

embeddingSpin1,3
e
�R1,3

0 . (The symbol A�B means that A is embedded in B and A#B.) Hence
(as we shall see in more details below), every real left spinor bundle (see Definition 15) for M
be captured fromC,Spin

1,3
e

l
(M ), which is a vector bundle very different fromC,(M ,g). Their

relation is presented below, but before that we give the following definition.
Definition 18: Let I(M ) be a subbundle ofC,Spin

1,3
e

l
(M ) such that there exists a primitiv

idempotente of R1,3 (see, e.g., Ref. 34) with

ReC5Ce5C, ~13!

for all CPsecI(M),secC,Spin
1,3
e

l
(M ). Then, I (M ) is called a subbundle of left ideal algebrai

spinor fields. AnyCPsecI(M),secC,Spin
1,3
e

l
(M ) is called a left ideal algebraic spinor field

(LIASF). I (M ) can be thought of as a real spinor bundle for M such thatM in Eq. (8) is a
minimal left ideal ofR1,3.

Definition 19: Two subbundles I(M ) and I8(M ) of LIASF are said to be geometrically equiva
lent if the idempotents e, e8PR1,3 (appearing in the previous definition) are related by an elem
uPSpin1,3

e , i.e., e85ueu21.
Definition 20: Theright real spin-Clifford bundle of M is the vector bundle

C,Spin
1,3
e

r
~M !5PSpin

1,3
e ~M !3 rR1,3. ~14!

Sections ofC,Spin
1,3
e

r
(M ) are called right spin-Clifford fields.

In Eq. ~14! r refers to the representation of Spin1,3
e on R1,3given by r (a)x5xa21. As in the

case for the left real spin-Clifford bundle, there is a natural embeddingPSpin
1,3
e (M )�C,Spin

1,3
e

r
(M )

which comes from the embedding Spin1,3
e
�R1,3

0 . There exists also a natural left actionLa of a
PR1,3 on C,Spin

1,3
e

r
(M ). This will be proved in Sec. V.

Definition 21: Let I!(M ) be a subbundle ofC,Spin
1,3
e

r
(M ) such that there exists a primitiv

idempotent elemente of R1,3 with

LeC5eC5C, ~15!
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for anyCPsecI!(M),secC,Spin
1,3
e

r
(M ). Then, I !(M ) is called a subundle of right ideal algebrai

spinor fields. AnyCPsecI!(M),secC,Spin
1,3
e

r
(M ) is called a right ideal algebraic spinor field

(RIASF). I !(M ) can be thought of as a real spinor bundle for M such thatM! in Eq. (9) is a
minimal right ideal ofR1,3.

Definition 22: Two subbundles I* (M ) and I* 8(M ) of RIASF are said to be geometricall
equivalent if the idempotents e, e8PR1,3 (appearing in the previous definition) are related by a
element uPSpin1,3

e , i.e., e85ueu21.
Proposition 23: In a spin manifold, we have

C,~M ,g!5PSpin
1,3
e ~M !3AdR1,3.

Proof: Remember once again that the representation,

Ad:Spin1,3
e →Aut~R1,3!, Adua5uau21, uPSpin1,3

e ,

is such that Ad215 identity and so Ad descends to a representation Ad8 of SO1,3
e which we

considered above. It follows that whenPSpin
1,3
e (M ) existsC,(M ,g)5PSpin

1,3
e (M )3AdR1,3. j

D. Bundle of modules over a bundle of algebras

Proposition 24: S(M ) @or C,Spin
1,3
e

l
(M )] is a bundle of (left)modulesover the bundle of

algebrasC,(M ,g). In particular, the sections of the spinor bundle S(M) [orC,Spin
1,3
e

l
(M)] consti-

tute a module over the sections of the Clifford bundle.
For the proof, see Ref. 5, p. 97.
Corollary 25: LetF, CPsecC,Spin

1,3
e

l
(M ) andCÞ0. Then there existscPsecC,(M ,g) such

that

C5cF. ~16!

Proof: It is an immediate consequence of Proposition 24. j

So, the corollary allows us to identify acorrespondencebetween some sections ofC,(M ,g)
and some sections ofI (M ) or C,Spin

1,3
e

l
(M ) once we fix a section onC,Spin

1,3
e

l
(M ). This and other

correspondences will be essential for the theory of Sec. V. Once we clarified the meanin
bundle of modulesS(M ) over a bundle of algebrasC,(M ,g), we can give the following.

Definition 26: Two real left spinor bundles (see Definition 15) are equivalent if and only if
are equivalent as bundles ofC,(M ,g) modules.

Remark 27: Of course, geometrically equivalenty real left spinor bundles are equivalen.
Remark 28: In what follows we denote the complexified left spin Clifford bundle

C,Spin
1,3
e

l
(M )5PSpin

1,3
e (M )3 lC^R1,3[PSpin

1,3
e (M )3 rR4,1 and the complexified right spin Clifford

bundle byC,Spin
1,3
e

r
(M )5PSpin

1,3
e (M )3 rC^R1,3[PSpin

1,3
e (M )3 rR4,1.

III. DIRAC–HESTENES SPINOR FIELDS

Let Em, m50,1,2,3 be the canonical basis ofR1,3
�R1,3 which generates the algebraR1,3.

They satisfy the basic relationEmEn1EnEm52hmn. As shown, e.g., in Ref. 34,

e5
1

2
~11E0!PR1,3, ~17!

is a primitive idempotent ofR1,3 and
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f5
1

2
~11E0!

1

2
~11 iE2E1!PC^ R1,3 ~18!

is a primitive idempotent ofC^ R1,3. Now, let I5R1,3e and IC5C^ R1,3f be, respectively, the
minimal left ideals ofR1,3 and C^ R1,3 generated bye and f. Let f5fePI and C5CfPIC .
Then, anyfPI can be written as

f5ce, ~19!

with cPR1,3
0 . Analogously, anyCPIC can be written as

C5ce
1

2
~11 iE2E1!, ~20!

with cPR1,3
0 .

Now, C^ R1,3.R4,1.C(4), whereC(4) is the algebra of the 434 complex matrices. We can
verify that

S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

D ~21!

is a primitive idempotent ofC(4) which is a matrix representation off. In this way we can prove
~as shown, e.g., in Ref. 34! that there is a bijection between column spinors, i.e., elements oC4

~the complex 4-dimensional vector space! and the elements ofIC . All that, plus the definitions of
the left real and complex spin bundles and the subbundleI (M ), suggests the following.

Definition 29: LetFPsecI(M),secC,Spin
1,3
e

l
(M ) be as in Definition 18, i.e.,

ReF5Fe5F, e25e5
1

2
~11E0!PR1,3. ~22!

A Dirac–Hestenes Spinor field (DHSF) associated withF is an even sectionc of C,Spin
1,3
e

l
(M )

such that

F5ce. ~23!

@Note that it is meaningful to speak about even~or odd! elements inC,Spin
1,3
e

l
(M ) since

Spin1,3
e #R1,3

0 .]
Remark 30: An equivalent definition of a DHSF is the following. LetCPsecC,Spin

1,3
e

l
(M ) be

such that

RfC5Cf5C, f25f5
1

2
~11E0!

1

2
~11 iE2E1!PC^ R1,3. ~24!

Then, a DHSF associated toC is an even sectionc of C,Spin
1,3
e

l
(M ),C,Spin

1,3
e

l
(M ) such that

C5cf. ~25!

Remark 31: In what follows, when we refer to a Dirac–Hestenes spinor fieldc we omit for
simplicity the wording associated withF ~or C!. It is very important to observe that DHSF are n
sums of even multivector (tensor) fields although, under a local trivialization, c
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PsecC,Spin
1,3
e

l
(M ) is mapped on an even element ofR1,3. We emphasize that DHSF are particula

sections of a spinor bundle, not of the Clifford bundle. However, we show in Sec. V how
objects have representatives in the Clifford bundle.

IV. THE MANY FACES OF THE DIRAC EQUATION

A. Dirac equation for covariant Dirac fields

As is well known,8 a covariant Dirac spinor field is a sectionCPsecSc(M)5PSpin
1,3
e (M )

3m l
C4. Let (U5M ,F),F(C)5„x,uC(x)&… be a global trivialization corresponding to a sp

frameJ ~Definition 8!, such that

s~J!5$ea%PPSO
1,3
e ~M !, eaPsecC,~M ,g!,

~26!
eaeb1ebea52hab,a,b50,1,2,3

~see Definition 6!. The usual Dirac equation in a Lorentzian spacetime for the spinor fieldC—in
interaction with an electromagnetic fieldAPsecL1(M),secC,(M ,g)—is then11

iga~“ea

s 1 iqAa!uC~x!&2muC~x!&50, ~27!

wheregaPC(4), a50,1,2,3 is a set ofconstantDirac matricessatisfying

gagb1gbga52hab. ~28!

@We denote the space of sections ofp-vectors by secLp(M).]

B. Dirac equation in CøSpin 1,3
e

l
„M,g …

Due to the one-to-one correspondence betweenideal sections ofC,Spin
1,3
e

l
(M ), C,Spin

1,3
e

l
(M )

and ofSc(M ) as explained in Sec. III, we cantranslatethe Dirac equation~27! for a covariant
spinor field into an equation for a spinor field, which is a section ofC,Spin

1,3
e

l
(M ), and finally write

an equivalent equation for a DHSFcPsecC,Spin
1,3
e

l
(M ). In order to do that we introduce th

spin-Dirac operator.
Definition 32: The (spin) Dirac operator acting on sections of C,Spin

1,3
e

l
(M ) is the first order

differential operator,5

Ds5ea
“ea

s , ~29!

where$ea% is as in Eq. (26) and¹s is the spinor covariant derivative (see the Appendix).
Now we give the details of the inverse translation. We start with the following equation w

we call Dirac equation inC,Spin
1,3
e

l
(M ), denoted DEC, l :

DscE212mcE02qAc50, ~30!

wherecPsecC,Spin
1,3
e

l
(M ) is a DHSF and theEaPR1,3 are such thatEaEb1EbEa52hab. Mul-

tiplying Eq. ~30! on the right by the idempotentf5 1
2(11E0) 1

2(11 iE2E1)PC^ R1,3 we get after
some simple algebraic manipulations the following equation for the~complex! left ideal spin-
Clifford field C5cfPsecC,Spin

1,3
e

l
(M ):

iD sC2mC2qAC50. ~31!
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Now we can easily show, using the methods of Ref. 34, that given any global trivializa
(U5M ,Q) and (U5M ,F), of C,(M ,g) andC,Spin

1,3
e

l
(M ), there exists matrix representations

the $ea% that are equal to the Dirac matricesga @appearing in Eq.~27!#. In that way the corre-
spondence between Eqs.~27!, ~30! and ~31! is proved.

Remark 33: We emphasize at this point that we call Eq. (30) theDEC, l . It looks similar to the
Dirac–Hestenes equation (on Minkowski spacetime) discussed in Ref. 34, but it is indee
different regarding its mathematical nature. It is an intrinsic equation satisfied by a legitim
spinor field, namely a DHSFcPsecC,Spin

1,3
e

l
(M ). The question naturally arises: May we write a

equation with the same mathematical information of Eq. (30) but satisfied by objects living o
Clifford bundleC,(M ,g) of an arbitrary Lorentzian spacetime, admitting a spin structure? In
next section we show that the answer to that question is yes.

C. Electromagnetic gauge invariance of the DE Cø l

Proposition 34: TheDEC, l is invariant under electromagnetic gauge transformations,

c°c85ceqE21x, ~32!

A°A1]x, ~33!

vea
°vea

, ~34!

c,c8PsecC,Spin
1,3
e

l
~M !, ~35!

APsecL1~M !,secC,~M ,g!, ~36!

with c,c8 distinct DHSF, and wherex:M→R,R1,3 is a gauge function.
Proof: The proof is obtained by direct verification. j

Remark 35: We note that, for the DEC, l , local rotations and electromagnetic gauge transfo
mations are very different mathematical transformations, without any obvious geometrica
between them, differently of what seems to be the case for the Dirac–Hestenes equation, which i
studied in the next section.

V. THE DIRAC–HESTENES EQUATION „DHE…

We obtained above a Dirac equation, which we called DEC, l , describing the motion of spino
fields represented by sectionsC of C,Spin

1,3
e

l
(M ,g) in interaction with an electromagnetic fiel

APsecC,(M,g),

DsCE212qAC5mCE0, ~37!

whereDs5ea
“ea

s , $ea% is given by Eq.~26!, “ea

s is the natural spinor covariant derivative actin

on secC,Spin
1,3
e

l
(M ,g) ~see the Appendix!, and $Ea%PR1,3#R1,3 is such that EaEb1EbEa

52hab. As we already mentioned, although Eq.~37! is written in a kind of Clifford bundle@i.e.
C,Spin

1,3
e

l
(M ,g)], it does not suffer from the inconsistency of representing spinors as pure d

ential forms and, in fact, the objectC behaves as it should under Lorentz transformations.
As a matter of fact, Eq.~37! can be thought of as a mererewriting of the usual Dirac equation

where the role of the constant gamma matrices is undertaken by the constant elements$Ea% in R1,3

and by the set$ea%. In this way, Eq.~37! is not a kind of Dirac–Hestenes equation as discuss
e.g., in Ref. 34. It suffices to say that~i! the state of the electron, represented byC, is not a
Clifford field and ~ii ! the Ea’s are justconstantelements ofR1,3 and not sections of vectors i
C,(M ,g). Nevertheless, as we show in the following, Eq.~37! does lead to a multivector Dira
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equation once we carefully employ the theory of right and left actions on the various Cli
bundles introduced earlier. It is the multivector equation to be derived below that we call the
~of course, we can write an equivalent multiform equation!. We shall need several preliminar
results that we collect in the next two subsections.

A. The various natural actions on the vector bundles associated to PSpin 1,3
e „M…

Recall that, whenM is a spin manifold the following occurs.

~i! The elements ofC,(M ,g)5PSpin
1,3
e (M )3AdR1,3 are equivalence classes@(p,a)# of pairs

(p,a), wherepPPSpin
1,3
e (M ), aPR1,3 and (p,a);(p8,a8)⇔p85pu21, a85uau21, for

someuPSpin1,3
e .

~ii ! The elements ofC,Spin
1,3
e

l
(M ) are equivalence classes of pairs (p,a), where p

PPSpin
1,3
e (M ), aPR1,3 and (p,a);(p8,a8)⇔p85pu21, a85ua, for someuPSpin1,3

e .

~iii ! The elements ofC,Spin
1,3
e

r
(M ) are equivalence classes of pairs (p,a), where p

PPSpin
1,3
e (M ), aPR1,3 and (p,a);(p8,a8)⇔p85pu21, a85au21, for some u

PSpin1,3
e .

In this way, it is possible to define the following natural actions on these associated bu
Proposition 36: There is a natural right action ofR1,3 onC,Spin

1,3
e

l
(M ) and a natural left action

of R1,3 on C,Spin
1,3
e

r
(M ,g).

Proof: Given bPR1,3 andaPC,Spin
1,3
e

l
(M ,g), select a representative (p,a) for a and define

abª@(p,ab)#. If another representative (pu21,ua) is chosen fora, we have (pu21,uab)
;(p,ab) and thusab is a well-defined element ofC,Spin

1,3
e

l
(M ). j

Let us denote the space ofR1,3-valued smooth functions onM by F(M ,R1,3). Then, the above
proposition immediately yields the following.

Corollary 37: There is a natural right action ofF(M ,R1,3) on secC,Spin
1,3
e

l
(M ) and a natural

left action ofF(M ,R1,3) on secC,Spin
1,3
e

r
(M ,g).

Proposition 38: There is a natural left action ofsecC,(M ,g) on secC,Spin
1,3
e

l
(M ) and a

natural right action ofsecC,(M ,g) on secC,Spin
1,3
e

r
(M ).

Proof: Given aPsecC,(M ,g) and bPsecC,Spin
1,3
e

l
(M ,g), select representatives (p,a) for

a(x) and (p,b) for b(x) @with pPp21(x)] and define (ab)(x)ª@(p,ab)#PC,Spin
1,3
e

l
(M ,g). If

alternative representatives (pu21,uau21) and (pu21,ub) are chosen fora(x) andb(x), we have

~pu21,uau21ub!5~pu21,uab!;~p,ab!,

and thus (ab)(x) is a well-defined element ofC,Spin
1,3
e

l
(M ,g). j

Proposition 39: There is a natural pairing,

secC,Spin
1,3
e

l
~M !3secC,Spin

1,3
e

r
~M !→secC,~M ,g!.

Proof: Given aPsecC,Spin
1,3
e

l
(M ) and bPsecC,Spin

1,3
e

r
(M ), select representatives (p,a) for

a(x) and (p,b) for b(x) @with pPp21(x)] and define (ab)(x)ª@(p,ab)#PC,(M ,g). If alter-
native representatives (pu21,ua) and (pu21,bu21) are chosen fora(x) and b(x), we have
(pu21,uabu21);(p,ab) and thus (ab)(x) is a well-defined element ofC,(M ,g). j

Proposition 40: There is a natural pairing,
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secC,Spin
1,3
e

r
~M !3secC,Spin

1,3
e

l
~M !→F~M ,R1,3!.

Proof: Given aPsecC,Spin
1,3
e

r
(M ) and bPsecC,Spin

1,3
e

l
(M ), select representatives (p,a) for

a(x) and (p,b) for b(x) @with pPp21(x)] and define (ab)(x)ªabPR1,3. If alternative rep-
resentatives (pu21,au21) and (pu21,ub) are chosen fora(x) and b(x), we haveau21ub
5ab and thus (ab)(x) is a well-defined element ofR1,3. j

B. Fiducial sections associated with a spin frame

We start by exploring the possibility of defining ‘‘unit sections’’ on the various vector bun
associated with the principal bundlePSpin

1,3
e (M ). It immediately follows from the definition given

by Eq. ~1! that the unit section1PsecC,(M ,g), given byx°1PC,(TxM ,gx), is certainly well
defined. For future reference, let us consider how this can also be seen from the associated
structure ofPSpin

1,3
e (M )3adR1,3.

Let

F i :p21~Ui !→Ui3Spin1,3
e , F j :p21~U j !→U j3Spin1,3

e

be two local trivializations forPSpin
1,3
e (M ), with

F i~u!5„p~u!5x,f i ,x~u!…, F j~u!5„p~u!5x,f j ,x~u!….

Recall that the transition function ongi j :UiùU j→Spin1,3
e is then given by

gi j ~x!5f i ,x~u!+f j ,x~u!21,

which does not depend onu.
Proposition 41:C,(M ,g) has a naturally defined global unit section.
Proof: For the associated bundleC,(M ,g)5PSpin

1,3
e (M )3AdR1,3, the transition functions cor-

responding to local trivializations,

C i :pc
21~Ui !→Ui3R1,3, C j :pc

21~U j !→U j3R1,3, ~38!

are given byhi j (x)5Adgi j (x) . Define the local sections

1i~x!5C i
21~x,1!, 1j~x!5C j

21~x,1!, ~39!

where 1 is the unit element ofR1,3. Sincehi j (x)•15Adgi j (x)(1)5gi j (x)1gi j (x)2151, we see
that the expressions above uniquely define a global section1PC,(M ,g) with 1uUi

51i . j

It is clear that such a result can be immediately generalized for the Clifford bu
C,p,q(M ,g), of any n-dimensional manifold endowed with a metric of arbitrary signature (p,q)
~wheren5p1q). Now, we observe also that the left~and also the right! spin-Clifford bundle can
be generalized in an obvious way for any spin manifold of arbitrary finite dimensionn5p1q,
with a metric of arbitrary signature (p,q). However, another important difference betwe
C,(M ,g) andC,Spin

p,q
e

l
(M ) or C,Spin

1,3
e

r
(M ,g) is that these latter bundles only admit a global u

section if they aretrivial .
Proposition 42: There exists an unit section onC,Spin

p,q
e

r
(M ) [and also onC,Spin

p,q
e

l
(M )] if and

only if PSpin
p,q
e (M ) is trivial.

Proof: We show the necessity for the case ofC,Spin
p,q
e

r
(M ), the sufficiency is trivial.@The

proof for the case ofC,Spin
p,q
e

l
(M ) is analogous.# For C,Spin

p,q
e

r
(M ), the transition functions corre

sponding to local trivializations,
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V i :psc
21~Ui !→Ui3Rp,q , V j :psc

21~U j !→U j3Rp,q , ~40!

are given byki j (x)5Rgi j (x) , with Ra : Rp,q→Rp,q ,x°xa21. Let 1 be the unit element ofR1,3. A

unit section inC,Spin
p,q
e

r
(M )—if it exists—is written in terms of these two local trivializations a

1i
r~x!5V i

21~x,1!, 1j
r~x!5V j

21~x,1!, ~41!

and we must have1i
r(x)51j

r(x), ;xPUiùU j . As V i„1i
r(x)…5(x,1)5V j„1j

r(x)…, we have
1i

r(x)51j
r(x)⇔15ki j (x)•1⇔151gi j (x)21⇔gi j (x)51. This proves the proposition. j

Remark 43: For general spin manifolds, the bundle PSpin
p,q
e (M ) is not necessarily trivial for

arbitrary (p,q), but Geroch’s theorem (Remark 9) warrants that, for the special case(p,q)
5(1,3) with M noncompact, PSpin

1,3
e (M ) is trivial. By the above proposition, we then see th

C,Spin
1,3
e

r
(M ) and alsoC,Spin

1,3
e

l
(M ) have global ‘‘unit sections.’’ It is most important to note

however, that each different choice of a (global) trivializationV i on C,Spin
1,3
e

r
(M ) @respectively,

C,Spin
p,q
e

l
(M )] induces a different global unit section1i

r ~respectively, 1i
l). Therefore, even in this

case there is no canonical unit section onC,Spin
1,3
e

r
(M ,g) @respectively, onC,Spin

1,3
e

l
(M ,g)].

By Remark 9, when the~noncompact! spacetimeM is a spin manifold, the bundlePSpin
1,3
e (M )

admits global sections. With this in mind, let us fix a spin frameJ for M . This induces a globa
trivialization for PSpin

1,3
e (M ), which we denote by FJ :PSpin

1,3
e (M )→M3Spin1,3

e , with

FJ
21(x,1)5J(x). As we show in the following, the spin frameJ can also be used to induc

certain fiducial global sections on the various vector bundles associated withPSpin
1,3
e (M ).

~i! C,(M ,g) Let $Ea% be a fixed orthonormal basis ofR1,3#R1,3 ~which can be thought of as
thecanonicalbasis ofR1,3). We define basis sections inC,(M ,g)5PSpin

1,3
e (M )3AdR1,3 by

ea(x)5@(J(x),Ea)#. Of course, this induces a multivector basis$eI(x)% for eachxPM .
Note that a more precise notation forea would be, for instance,ea

(J) .
~ii ! C,Spin

1,3
e

l
(M ) Let 1J

l PsecC,Spin
1,3
e

l
(M ) be defined by1J

l (x)5@(J(x),1)#. Then the natural

right action ofR1,3 onC,Spin
1,3
e

l
(M ) leads to1J

l (x)a5@(J(x),a)# for all aPR1,3. It follows

from Corollary 37 that an arbitrary sectionaPsecC,Spin
1,3
e

l
(M ) can be written asa

51J
l f , with f PF(M ,R1,3).

~iii ! C,Spin
1,3
e

r
(M ,g) Let 1J

r PsecC,Spin
1,3
e

r
(M ,g) be defined by1J

r (x)5@(J(x),1)#. Then the

natural left action ofR1,3 on C,Spin
1,3
e

r
(M ) leads toa1J

r (x)5@(J(x),a)# for all aPR1,3. It

follows from Corollary 37 that an arbitrary sectionaPsecC,Spin
1,3
e

r
(M ) can be written as

a5 f 1J
r , with f PF(M ,R1,3).

Now recall ~Definition 6! that a spin structure onM is a 2-1 bundle maps:PSpin
1,3
e (M )

→PSO
1,3
e (M ) such that s(pu)5s(p)Adu , ;pPPSpin

1,3
e (M ), uPSpin1,3

e , where Ad:Spin1,3
e

→SO1,3
e , Adu :x°uxu21. We see that the specification of the global section in the case~i! above

is compatible with the Lorentz frame$ea%5s(J) assigned bys. More precisely, for eachx
PM , the elements„J(x)…PPSO

1,3
e (M ) is to be regarded as a proper isometrys„J(x)…:R1,3

→TxM , so thatea(x)ªs(p)•Ea yields a Lorentz frame$ea% on M , which we denoted bys(J).
On the other hand,C,(M ,g) is isomorphic toPSpin

1,3
e (M )3AdR1,3, and we can always arrang

things so thatea(x) is represented in this bundle asea(x)5@(J(x),Ea)#. In fact, all we have to
do is to verify that this identification is covariant under a change of frames. To see that, lJ8
Psec„PSpin

1,3
e (M )… be another spin frame onM . From the principal bundle structure o

PSpin
1,3
e (M ), we know that, for eachxPM , there exists~a unique! u(x)PSpin1,3

e such that
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J8(x)5J(x)u(x). If we define, as above,ea8(x)5s„J8(x)…•Ea , thenea8(x)5s„J(x)u(x)…•Ea

5s„J(x)…Adu(x)•Ea5@(J(x),Adu(x)•Ea)#5@(J(x)u(x),Ea)#5@(J8(x),Ea)#, which proves
our claim.

Proposition 44:

~ i ! Ea51J
r ~x!ea~x!1J

l ~x!, ;xPM ,

~ i i ! 1J
l 1J

r 51PC,~M ,g!,

~ i i i ! 1J
r 1J

l 51PR1,3.

Proof: This follows from the form of the various actions defined in Propositions 36–40.
example, for eachxPM , we have1J

r (x)ea(x)5@(J(x),1Ea)#5@(J(x),Ea)#PsecC,Spin
1,3
e

r
(M )

~from Proposition 38!. Then, it follows from Proposition 40 that1J
r (x)ea(x)1J

l (x)5Ea15Ea ,
;xPM . j

Let us now consider how the various global sections defined above transform when th
frame J is changed. LetJ8PsecPSpin

1,3
e (M ) be another spin frame withJ8(x)5J(x)u(x),

where u(x)PSpin1,3
e . Let ea , 1J

r , 1J
l and ea8 , 1J8

r , 1J8
l be the global sections, respectivel

defined byJ andJ8 ~as above!. We then have the following.
Proposition 45: LetJ,J8 be two spin frames related byJ85Ju, where u:M→Spin1,3

e .
Then

~ i ! ea85UeaU21,

~ i i ! 1J8
l

51J
l u5U1J

l , ~42!

~ i i i ! 1J8
r

5u211J
r 51J

r U21,

where UPsecC,(M ,g) is the Clifford field associated to u by U(x)5@„J(x),u(x)…#. Also, in
( i i ) and ( i i i ), u and u21, respectively, act on1J

l PsecC,Spin
1,3
e

l
(M ) and 1J

r PsecC,Spin
1,3
e

r
(M )

according to Proposition 37.
Proof: ~i! We have

ea8~x!5@~J8~x!,Ea!#5@„J~x!u~x!,Ea…#5@„J~x!,u~x!Eau~x!21
…#5@„J~x!,u~x!…#

3@~J~x!,Ea!#@„J~x!,u~x!21
…#5U~x!ea~x!U~x!21. ~43!

~iii ! It follows from Proposition 38 that

1J8
r

~x!5@„J8~x!,1…#5@~J~x!u~x!,1!#5@„J~x!,1u~x!21
…#5@„J~x!,u~x!21

…#5u~x!211J
r ~x!,

~44!

where in the last step we used Proposition 37 and the fact that1J
r (x)5@„J(x),1…#. To demonstrate

the second part, note that

u21~x!1J
r ~x!5@„J~x!,u~x!21

…#5@„J~x!,1u~x!21
…#5@„J~x!,1…#@„J~x!,u~x!21

…#

51J
r ~x!U21~x!, ~45!

for all xPM . It is important to note that in the last step we have a product between an elem
C,Spin

1,3
e

r
(M ) @i.e., @(J(x),1)#] and an element ofC,(M ,g) @i.e., @„J(x),u(x)21

…#]. j

We emphasize that the right unit sections associated with spin frames arenot constant in any
covariant way. In fact, we have the following.
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Proposition 46: Let1J
r PsecC,Spin

1,3
e

r
(M ) be the right unit section associated to the spin fram

J. Then

“ea

s 1J
r 52

1

2
1J

r vea
, ~46!

wherevea
is the connection 1-form (Proposition 54) written in the basis$ea%.

Proof: It follows from Eq. ~A9! of the Appendix. j

C. Representatives of DHSF on the Clifford bundle

Let $Ea% be, as before, a fixed orthonormal basis ofR1,3#R1,3. Remember that these objec
are fundamental to the Dirac equation~37! in terms of sectionsC of C,Spin

1,3
e

l
(M ,g):

DsCE212qAC5mCE0.

Let JPsecPSpin
1,3
e (M ) be a spin frame onM and define the sections1J

l , 1J
r andea , respectively,

onC,Spin
1,3
e

l
(M ), C,Spin

1,3
e

r
(M ) andC,(M ,g), as above. Now we can use Proposition 44 to write

above equation in terms of sections ofC,(M ,g):

~DsC!1J
r e211J

l 2qAC5mC1J
r e01J

l . ~47!

Right-multiplying by1J
r yields, using Proposition 44,

ea~“ea

s C!1J
r e212qAC1J

r 5mC1J
r e0. ~48!

It follows from Proposition 59 that

~“ea

s C!1J
r 5“ea

~C1J
r !2C“ea

s ~1J
r !5“ea

~C1J
r !1

1

2
C1J

r va , ~49!

where Proposition 46 was employed in the last step. Therefore

eaF“ea
~C1J

r !1
1

2
C1J

r vaGe212qA~C1J
r !5m~C1J

r !e0. ~50!

Thus it is natural to define, for each spin frameJ, the Clifford field cJPsecC,(M,g) ~see
Proposition 39! by

cJªC1J
r . ~51!

We then have

eaF“ea
cJ1

1

2
cJvaGe212qAcJ5mcJe0. ~52!

A comment about the nature of spinors is in order. As we repeatedly said in the pre
sections, spinor fields should not be ultimately regarded as fields of multivectors~or multiforms!,
for their behavior under Lorentz transformations is not tensorial~they are able to distinguish
between 2p and 4p rotations!. So, how can the identification above be correct? The answer is
the definition in Eq.~51! is intrinsically spin-frame dependent. Clearly, this is the price one ou
to pay if one wants to make sense of the procedure of representing spinors by differential
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Note also that the covariant derivative acting oncJ in Eq. ~52! is the tensorial covarian
derivative“V on C,(M ,g), as it should be. However, we see from the expression above tha“V

always acts oncJ together with the term1
2cJva . Therefore, it is natural to define an ‘‘effectiv

covariant derivative’’“V
(s) acting oncJ by

“ea

(s)cJª“acJ1
1

2
cJva . ~53!

Then, Proposition 54 yields

“ea

(s)cJ5]ea
~cJ!1

1

2
vacJ , ~54!

which emulates the spinorial covariant derivative, as it should. We observe moreover thaU
PsecC,(M,g) and if cJPsecC,(M,g) is a representative of a Dirac-Hestenes spinor field th

“ea

(s)~UcJ!5~“ea
U !cJ1U“ea

(s)cJ . ~55!

~This is the derivative used in Ref. 34, there introduced in anad hocway.!
With this notation, we finally have the Dirac–Hestenes equation for therepresentativeClifford

field cJPsecC,(M,g), on a Lorentzian spacetime:

ea
“ea

(s)cJe212qAcJ5mcJe0, ~56!

wherecJ is the representative of a DHSFC of C,Spin
1,3
e

l
(M ,g), relative to the spin frameJ. ~The

DHE on a Riemann–Cartan spacetime will be discussed in another publication.!
Let us finally show that this formulation recovers the usual transformation properties ch

teristic of the Hestenes’s formalism as described, e.g., in Ref. 34. For that matter, consid
spin framesJ,J8PsecPSpin

1,3
e (M ), with J8(x)5J(x)u(x), where u(x)PSpin1,3

e . It follows

from Proposition 45 thatcJ85C1J8
r

5Cu211J
r 5C1J

r U215cJU21. Therefore, the various
spin frame dependent Clifford fields from Eq.~56! transform as

ea85UeaU21,
~57!

cJ85cJU21.

These are exactly the transformation rules one expects from fields satisfying the Dirac–He
equation~see, e.g., Ref. 34!.

D. Bilinear covariants

1. Bilinear covariants associated to a DHSF

We are now in position to give a precise definition of the bilinear covariants of the D
theory, associated with a given DHSF.

Definition 47: Recalling thatLp(M )�C,(M ,g), p50,1,2,3,4,and recalling Propositions 39

and 40, the bilinear covariants associated to a DHSFCPsecC,Spin
1,3
e

l
(M ) [and C̃

PsecC,Spin
1,3
e

r
(M )] are the following sections ofC,(M ,g):

S5CC̃5s1e5 vPsec„L0~M !1L4~M !…,

J5CE0C̃PsecL1~M !, K5CE3C̃PsecL1~M !, ~58!
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M5CE12C̃PsecL2~M !,

whereC5C 1
2(11E0), and e55e0e1e2e3 .

Remark 48: Of course, since all bilinear covariants in Eq. (58) are sections ofC,(M ,g), they
have the right transformation properties under arbitrary local Lorentz transformations, as
quired. As shown, e.g., in Ref. 21 these bilinear covariants and their Hodge duals satisfy a
identities, called the Fierz identities (see, e.g., Ref. 34) that are crucial for the physical inte
tation of the Dirac equation (in first and second quantizations).

Remark 49: Crumeyrolle10 gives the name ofamorphousspinor fields to ideal sections of th
Clifford bundleC,(M ,g). Thus an amorphous spinor fieldf is a section ofC,(M ,g) such that
fP5f, where P5P2 is an idempotent section ofC,(M ,g). However, these fields and also th
so-called Dirac–Kähler (Refs. 18, 20) fields, which are also sections ofC,(M ,g), cannot be used
in a physical theory of fermion fields since they do not have the correct transformation law u
a Lorentz rotation of the local spin frame.

2. Bilinear covariants associated to a representative of a DHSF

We note that the bilinear covariants, when written in terms ofcJªC1J
r , read~from Propo-

sition 44! as

S5cJc̃J5s1e5 vPsec„L0~M !1L4~M !…,

J5cJe0c̃JPsecL1~M !, K5cJe3c̃JPsecL1~M !,

M5cJe1e2c̃JPsecL2~M !,

wheree55e0e1e2e3 . These are all intrinsic quantities, as they should be.

E. Electromagnetic gauge invariance of the DHE

Proposition 50: The DHE is invariant under electromagnetic gauge transformations,

cJ°cJ8 5cJeqe21x, ~59!

A°A1]x, ~60!

vea
°vea

, ~61!

where cJ ,cJ8 PsecC,0(M,g), APsecL1(M),secC,(M,g) and where x
PsecL0(M),secC,(M,g) is a gauge function.

Proof: It is a direct calculation. j

But, what are the meanings of these transformations? Equation~59! looks similar to Eq.~57!
defining the change of a representative of a DHSF once we change the spin frame, but h
have an active transformation, since we didnot change the spin frame. On the other hand, Eq.~60!
does not correspond either to a passive~no transformation at all! or active local Lorentz transfor
mation forA. Nevertheless, writingx5u/2 yields

e2qe21u/2e0eqe21u/25e805e0,

e2qe21u/2e1eqe21u/25e815cosqu e11sinqu e2,
~62!

e2qe21u/2e2eqe21u/25e8252sinqu e11cosqu e2,

e2qe21u/2e3eqe21u/25e835e3.
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We see that Eqs.~62! define a spin frameJ8 to which corresponds, as we already know, a ba
$e80,e81,e82,e83% for L1(M )�C,(M ,g). We can then think of the electromagnetic gauge tra
formation as a rotation in the spin planee21 by identifying cJ8 in Eq. ~59! with cJ8 , the repre-
sentative of the DHSF in the spin frameJ8 and by supposing that instead of transforming the s
connectionvea

as in Eq.~A7! it is taken as fixed and instead of maintaining the electromagn
potential A fixed it is transformed as in Eq.~60!. We observe that, since in the theory of th
gravitational fieldvea

is associated with some aspects of that field, our interpretation for
electromagnetic gauge transformation suggests a possible nontrivial coupling between elect
netism and gravitation,if the Dirac–Hestenes equation is taken as a fundamental representat
fermionic matter. We will explore this possibility in another publication.

VI. CONCLUSIONS

In this paper, we hope to have clarified the ontology of Dirac–Hestenes spinor fields@on a
general spacetimeM5(M ,g,“,tg ,↑) of the Riemann–Cartan type admitting a spin structu#
and its relationship with sums of even multivector fields~or differential forms!. This has been
achieved through the introduction of the Clifford bundle of multivector fields„C,(M ,g)… and the
left „C,Spin

1,3
e

l
(M )… and right „C,Spin

1,3
e

r
(M )… spin-Clifford bundles on a spin manifold (M ,g), as

well as a study of the relations among these bundles. Left algebraic spinor fields and D
Hestenes spinor fields@both fields are sections ofC,Spin

1,3
e

l
(M )] have been defined and the relatio

between them has been established. Moreover, a consistent Dirac equation for a DHC

PsecC,Spin
1,3
e

l
(M ) ~denoted DEC, l) on a Lorentzian spacetime was found. We succeeded als

obtaining in a consistent way arepresentationof the DEC, l in the Clifford bundle. It is such
equation satisfied by Clifford fieldscJPsecC,(M ,g) that we called the Dirac–Hestenes equati
~DHE!. This means that to each DHSFCPsecC,Spin

1,3
e

l
(M ) and JPsecPSpin

1,3
e (M ) there is a

well-defined even nonhomogeneous multivector fieldcJPsecC,(M ,g) ~EMFS! associated with
C. Such a EMFS is called arepresentativeof the DHSF on the given spin frame. And, of cours
such a EMFS~the representative of the DHSF! is not a spinor field. With this crucial distinction
between a DHSF and their EMFS representatives we presented a consistent theory for Cliffo
spinor fields of all kinds.

We emphasize that the DEC, l and the DHE, although related, are of different mathemat
natures. This issue has been particularly scrutinized in Secs. IV and V. We studied also th
Lorentz invariance and the electromagnetic gauge invariance and showed that only for the
such transformations are of the same mathematical nature, something that suggests by
possible link between them.
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APPENDIX: COVARIANT DERIVATIVES OF CLIFFORD AND SPINOR FIELDS

1. Covariant derivative of Clifford fields

In this appendix, (M ,g,“,tg ,↑) denotes a generalRiemann–Cartan spacetime~see Defini-
tion 3!. SinceC,(M ,g)5tM /J(M ,g), it is clear that any metric compatible (“g50) connection
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defined intM passes to the quotienttM /J(M ,g), and thus define an algebra bundle connection10

In this way, the covariant derivative of a Clifford fieldAPsecC,(M ,g) is completely determined
We will find formulas for the covariant derivative of Clifford fields and of DHSF using

general theory of connections in principal bundles and covariant derivatives in associate
bundles, as described in many excellent textbooks, e.g., Refs. 8, 15, 29, 30.

Let (E,M ,p1 ,G,F) denoted by E5P3rF be a vector bundle associated to a PF
(P,M ,p,G) by the linear representationr of G in F5V.

Definition 51: Lets:R.I→M , t°s(t) be a curve in M with x05s(0)PM , and let p0

Pp21(x0). The parallel transport of p0 along s is given by the curveŝ:R.I→P,t°ŝ(t)
defined by

d

dt
ŝ~ t !5GpS d

dt
s~ t ! D , ~A1!

with p05ŝ(0) and p„ŝ(t)…5s(t). We also denote pi t5ŝ(t).
In Eq. ~A1!, Gp :TxM→TpP is a connection on (P,M ,p,G) ~see, e.g., definition~a! on p. 358

of Ref. 8!.
Consider the trivializations ofP,

F i :p21~Ui !→Ui3G, F i~p!5„p~p!,f i ,x~p!…,

andE,

J i :p1
21~Ui !→Ui3F, J i~q!5„p1~q!,x i~q!…5„x,x i~q!….

Then, we have the following.
Definition 52: Theparallel transportof C0PE, p1(C0)5x0 , along the curves:R.I→M ,

t°s(t) from x05s(0)PM to x5s(t) is the elementC i tPE such that the following occurs:

~i! p1(C i t)5x,
~ii ! x i(C i t)5r(f i(pi t)+f i(p0)21)x i(C0).
~iii ! pi tPP is the parallel transport ofp0PP alongs from x0 to x.

Definition 53: Letv be a vector at x0 tangent to the curves (as defined above). The covarian
derivative ofCPsecE alongv is denoted(Dv

EC)x0
PsecE and

~Dv
EC!~x0![~Dv

EC!x0
5 lim

t→0

1

t
~C i t

0 2C0!, ~A2!

where C i t
0 is the parallel transport of the vectorC t[C„s(t)… of the given sectionCPsecE

along s from s(t) to x0 . The only requirements ons are thats(0)5x0 and

d

dt
s~ t !U

t50

5v. ~A3!

Proposition 54: Let VPsecTM. The covariant derivative of a Clifford field A
PsecC,(M ,g) is given by

“VA5V~A!1
1

2
@vV ,A#, ~A4!

where V(A)ªV(AI)eI andvV is the connection 1-form V°vV52 1
2V

aGabce
b∧ec, written in the

basis$ea%, with Gabc given by“ea
eb5Gab

cec5Gabce
c .
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Proof: Writing A(t)5A„s(t)… in terms of the multivector basis$eI% of sections associated t
a given spin frame, as in Sec. V B, we haveA(t)5AI(t)eI(t)5AI(t)@„J(t),EI…#
5@„J(t),AI(t)EI…#5@„J(t),a(t)…#, with a(t)ªAI(t)EIPR1,3. If follows from item ~ii ! of Defi-
nition 52 that

Ai t
0 5@„J~0!,g~ t !a~ t !g~ t !21

…#, ~A5!

for someg(t)PSpin1,3
e , with g(0)51. Thus

lim
t→0

1

t
„g~ t !a~ t !g~ t !212a~0!…5Fdg

dt
ag211g

da

dt
g211ga

dg21

dt G
t50

5ȧ~0!1ġ~0!a~0!2a~0!ġ~0!5V~AI !EI1@ ġ~0!,a~0!#,

whereġ(0)PLie(Spin1,3
e )5L2(R1,3). Therefore

“VA5V~AI !eI1
1

2
@vV ,A#,

for somevVPsecL2(M). In particular, calculating the covariant derivative of the basis 1-ve
fields eb yields VaGab

cec5“Veb5 1
2@vV ,eb#, so thatvV52 1

2V
aGabce

b∧ec. j

Remark 55: Equation (A4) shows that the covariant derivative preserves the degree
homogeneous Clifford field, as can be easily verified.

The general formula Eq.~A4! and the associative law in the Clifford algebra immediat
yields the following.

Corollary 56: The covariant derivative“V on C,(M ,g) acts as a derivation on the algebra o
sections, i.e., for A,BPsecC,(M ,g) and VPsecTM, it holds that

“V~AB!5~“VA!B1A~“VB!. ~A6!

Under a change of gauge~local Lorentz transformation! ea°e8a5UeaU21, with U

PsecC,(M ,g),UŨ5ŨU51, the corresponding transformation law forvV is as follows.
Corollary 57: Under a change of gauge (local Lorentz transformation), vV transforms as

1

2
vV°U

1

2
vVU211~“VU !U21. ~A7!

Proof: It is a simple calculation using Eq.~A4!. j

2. Covariant derivatives of spinor fields

The spinor bundles introduced in Sec. II, likeI (M )5PSpin
1,3
e (M )3,I , I 5R1,3

1
2(11E0), and

C,Spin
1,3
e

l
(M ), C,Spin

1,3
e

r
(M ) ~and subbundles! are examples of vector bundles. Thus, the gene

theory of covariant derivative operators on associate vector bundles can be used~as in the previous
section! to obtain formulas for the covariant derivatives of sections of these bundles. GiveC

PsecC,Spin
1,3
e

l
(M ) andFPsecC,Spin

1,3
e

r
(M ), we denote the corresponding covariant derivatives

“V
s C and“V

s F. @Recall thatI l(M )�C,Spin
1,3
e

l
(M ) and I r(M )�C,Spin

1,3
e

r
(M ).]

Proposition 58: GivenCPsecC,Spin
1,3
e

l
(M ) and FPsecC,Spin

1,3
e

r
(M ),

“V
s C5V~C!1

1

2
vVC, ~A8!
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“V
s F5V~C!2

1

2
CvV . ~A9!

Proof: It is analogous to that of Proposition 54, with the difference that Eq.~A5! should be
substituted byC i t

0 5@„J(0),g(t)a(t)…# andF i t
0 5@„J(0),a(t)g(t)21

…#. j

Proposition 59: Let“ be the connection onC,(M ,g) to which“s is related. Then, for any
VPsecTM, APsecC,(M ,g), CPsecC,Spin

1,3
e

l
(M )) and FPsecC,Spin

1,3
e

r
(M ),

“V
s ~AC!5A“V

s C1~“VA!C, ~A10!

“V
s ~FA!5F“VA1~“V

s F!A. ~A11!

Proof: Recalling thatC,Spin
1,3
e

l
(M ) @C,Spin

1,3
e

r
(M )# is a module overC,(M ,g), the result fol-

lows from a simple computation. j

Finally, let CPsecC,Spin
1,3
e

l
(M ) be such thatCe5C wheree25ePR1,3 is a primitive idem-

potent. Then, sinceCe5C,

“V
s C5“V

s ~Ce!5V~Ce!1
1

2
vVCe5FV~C!1

1

2
vVCGe5~“V

s C!e, ~A12!

from where we verify that the covariant derivative of a LIASF is indeed a LIASF.
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Bounds are derived for the space–time averaged temperature^T& of a fluid layer in
the Boussinesq approximation between fixed-temperature horizontal boundaries
subject to uniform heatingH throughout the volume. The analysis is carried out for
both finite and infinite Prandtl number fluids. While the average temperature^T&
;H in the purely conductive state, convection enhances the heat transport beyond
static conduction reducing the temperature. Lower bounds to the average tempera-
ture of the layer scale with the magnitude of the imposed heat flux, with one scaling
exponent for the arbitrary Prandtl number case and another for the infinite Prandtl
number model. Specifically, it is proven here that at large heating rates where
convection is important,̂ T&>c1H2/3 for finite Prandtl number fluids and̂T&
>c2H5/7 for infinite Prandtl number fluids. Explicit prefactorsc1 and c2 for the
scaling bounds are computed as well. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1760845#

I. INTRODUCTION

Turbulent transport of mass, momentum, and heat remains one of the most important
lems for modern theoretical physics and applied mathematics. For incompressible fluid
fundamental models such as the Navier–Stokes and related equations are believed to q
tively describe these phenomena. However the complexity of the dynamics in these syst
nonlinear partial differential equations prohibits exact solutions, and the wide range of lengt
time scales in turbulent solutions makes direct numerical simulation extremely challengin
expensive. One mathematical approach to the analysis of these systems is to derive r
bounds on physically relevant quantities.12,3,8 This approach is of more than just mathematic
interest because it turns out that in some cases the bounds tend to capture aspects of the
scaling of the quantities with respect to the control parameters~e.g., the Reynolds or Rayleig
number!. In the case of Rayleigh–Be´nard convection, for example, where a fluid layer betwe
horizontal plates is heated from below, the enhancement of the heat flux due to convection,
measured by a Nusselt number, can be bounded from above in terms of the temperatu
across the layer11,1,9,6,10,14expressed in terms of the Rayleigh number.

In this paper we consider the problem of convective heat transport in a fluid layer bet
fixed-temperature horizontal boundaries with uniform heating throughout the volume. This
lem is motivated by geophysical applications;7,17 the Earth’s plate tectonics is a result of conve
tion in the mantle which is predominantly driven by uniform heating due to radioactive dec
elements distributed throughout the mantle. Mantle dynamics is generally modeled as the fl
a high ~infinite! Prandtl number fluid with strongly temperature dependent viscosity. The mo
we focus on here are simpler, with constant material parameters. The boundary conditio
mantle convection are complicated—especially on ‘‘top’’—but we restrict the investigation he
rigid no-slip isothermal boundaries in order to make progress. In principle, if all the rele
29670022-2488/2004/45(7)/2967/20/$22.00 © 2004 American Institute of Physics
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materical and boundary effects could be included, the kinds of bounds derived here could b
to put limits on the thermal history of the Earth. A distinct engineering application of this kin
analysis is to the problem of nuclear reactor meltdown.4

The rest of this paper is organized as follows: in the next section we present the details
models we will analyze. In a brief Sec. III we apply the ‘‘background’’ method9 to the arbitrary
Prandtl number problem to derive a scaling lower bound on the space–time averaged temp
of the layer along with an explicit prefactor. In the following Sec. IV we apply a multi
boundary layer asymptotic theory1 to sharpen the estimate, increasing the prefactor in the lo
bound by a factor of 4. Section V is concerned with the infinite Prandtl number problem, an
background method utilizing a recently derived inequality10 results in a scaling lower bound wit
a smaller exponent. In the concluding Sec. VI we summarize our results in the context of
numerical simulations, and discuss some possible areas for further development of this ap

II. GOVERNING EQUATIONS

The fluid layer is confined between two parallel plates of horizontal extentLx andLy sepa-
rated by vertical (z) distanced. The no-slip upper and lower plates are held at fixed temperat
T0 andT1 , respectively; the temperature differenceDT5T02T1 which will eventually be taken
to be zero for the work presented here. A uniform volumetric heat fluxH ~with units power/
volume! is pumped into the layer. The governing equations for the velocity fieldu, the pressurep
and the temperatureT in the standard Boussinesq approximation are

]u

]t
1u•¹u52¹p1n¹2u1 k̂gaT, ~1a!

]T

]t
1u•¹T5k¹2T1g, ~1b!

¹•u50, ~1c!

with the boundary conditions

uuz50,d50, Tuz505T0 , Tuz5d5T1 , ~1d!

wheren is the viscosity,g is the acceleration of gravity along thez axis ~in the 2 k̂ direction!, a
is the thermal expansion coefficient,k is the thermal diffusion coefficient andg5 H/rc, wherer
is the density andc is the specific heat capacity of the fluid. We impose periodic bound
conditions in the horizontal directions with periodsLx andLy .

Usingd2/k as the unit of time,d as the unit of length, andgd2/k as the unit of temperature
the governing equations are put into the nondimensional form

Pr21S ]u

]t
1u•¹uD1¹p5¹2u1RTk̂, ~2a!

]T

]t
1u•¹T5¹2T11, ~2b!

where Pr5 n/k is the Prandtl number andR5 gad5g/k2n is the heat Rayleigh number.16 We
considerR, proportional to the internal heating rate, to be the control parameter. The bou
conditions in nondimensional form are

uuz50,150, Tuz505T̃, Tuz5150, ~2c!
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whereT̃5 (k/gd2) DT; this shows thatRT̃ is the usual Rayleigh number Ra5 gaDTd3/nk for
bottom heating.

In the following discussion, we only consider the special case where both boundaries ar
at the same temperature, i.e.,DT50 or T̃50. With this boundary condition, the static conductio
solution has a quadratic profile:

T5 1
2 z~12z!, ~3!

which becomes unstable for sufficiently largeR.19 Once convection sets in, the flow tends to low
the average temperature of the fluid, so the estimate of interest is the minimum possibl
average temperature for a given valueR. We define the space–time average of a functionf (x,t)
as

^ f &5 lim
t→`

1

t E0

t

ds
d2

LxLy
E dxdydz f~x,s!. ~4!

In the following discussion, we apply the background and multiple boundary layer metho
derive lower bounds for the bulk average~nondimensional! temperature with respect toR in the
form ^T&>cRa asR→`.

III. BACKGROUND METHOD FOR FINITE Pr

To apply the background method, first we decompose the temperature fieldT(x,y,z,t) into a
time-independent background profilet(z) and a fluctuating partu(x,y,z,t):

T~x,y,z,t !5t~z!1u~x,y,z,t !. ~5!

The boundary conditions ofT(x,y,z,t) are contained int(z):

t~0!5t~1!50 ~6!

and the fluctuating partu(x,y,z,t) satisfies homogeneous boundary conditions

u~x,y,0,t !5u~x,y,1,t !50. ~7!

The velocity fieldu is divergence-free with no-slip boundary conditions:

¹•u50, uuz50,150. ~8!

With this decomposition the governing Eqs.~2! become

Pr21S ]u

]t
1u•¹uD1¹p5¹2u1t k̂1Ru k̂, ~9a!

]u

]t
1u•¹u5¹2u1t9112wt8. ~9b!

Then taking the space–time average ofu•(9a) yields

^u¹uu2&5R^wu&, ~10!

and averagingu•(9b) andt•(9b) yield, respectively,

^wut8&52^u¹uu2&2^uzt8&1^u&, ~11!

2^wut8&52^uzt8&1^t&2^t82&. ~12!
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The difference of the above two identities is

~^u&2^t&!5^u¹uu2&12^wut8&2^t82&. ~13!

Since^T&5^t&1^u&, we have

^T&5^u¹uu2&12^wut8&12^t&2^t82&. ~14!

The identity~10! can also be written as

05
a

R
^u¹uu2&2a^wu&, ~15!

wherea is a positive number~a ‘‘balance parameter’’! to be adjusted to yield the best prefactor13

Adding Eq.~15! to Eq. ~14! enables us to express the average temperature as follows:

^T&52^t&2^t82&1H, ~16!

where

H5^u¹uu2&1^~2t82a!wu&1
a

R
^u¹uu2&. ~17!

If the functionalH is positive semidefinite among the fieldsu andu satisfying

¹•u50, uuz50,150, uuz50,150,

then we have a lower bound for^T&:

^T&>2^t&2^t82&. ~18!

So the goal is to choose a background profilet satisfying the boundary conditions~6! guaranteeing
that H is positive semidefinite while making the lower bound in~18! as large as possible.

If we could take a linear background profile with the slopea/2.0, then 2t82a would vanish
and thus the functionalH would clearly be non-negative, but this choice can not allow botht~0!
and t~1! to vanish simultaneously. However, the indefinite term inH is proportional towu that
vanishes at the boundaries. This suggests that we can take 2t85a in the middle while introducing
two boundary layers to enforcet’s boundary conditions. These considerations lead us to focu
the family of piecewise linear background profiles

t~z!55
S a

2
1

b

d1
D z, 0<z,d1 ,

a

2
z1b, 12d1<z<12d2 ,

2Fa

2 S a

d2
21D1

b

d2
G~z21!, 12d2<z<1,

~19!

whered1 (d2) is the thickness of the boundary layer atz50 (z51) introduced to satisfy the
boundary conditions~see Fig. 1!. Then

^T&>2^t&2^t82&5
a

2
~12d2!1b~12d12d2!2H a2

4 S 1

d2
21D1b2S 1

d1
1

1

d2
D1

ab

d2
J , ~20!

provided the quadratic functionalH in ~17! is positive definite. Before estimating the size ofH,
we can maximize 2̂t&2^t82& over a andb, and this procedure yields
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^T&> 1
4 ~12d1!~12d2!~d11d2! ~21!

with

H a5d22d1

b5
d1

2
~12d2!.

~22!

Then using the inequality9

U E
0

1

wu U<S c

4
iui2

21
1

c
iui2

2D ~23!

for any c.0, the term^(2t82a)wu& can be estimated by

u^~2t82a!wu&u<
bd1

2 Fc1

4
^u¹uu2&1

1

c1
^u¹uu2&G1

~a12b!d2

4 Fc2

4
^u¹uu2&1

1

c2
^u¹uu2&G

5
d1

2~12d2!

4 Fc1

4
^u¹uu2&1

1

c1
^u¹uu2&G1

d2
2~12d1!

4 Fc2

4
^u¹uu2&1

1

c2
^u¹uu2&G .

Then

H>F12
d1

2~12d2!

4c1
2

d2
2~12d1!

4c2
G^u¹uu2&1F a

R
2

d1
2~12d2!c1

16
2

d2
2~12d1!c2

16 G^u¹uu2&.

ThusH is positive semidefinite if

12
d1

2~12d2!

4c1
2

d2
2~12d1!

4c2
>0 ~24!

and

a

R
2

d1
2~12d2!c1

16
2

d2
2~12d1!c2

16
>0. ~25!

We can choosec15c25c and then it is sufficient to require

FIG. 1. The background profile for finite Prandtl number.
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@d1
2~12d2!1d2

2~12d1!#25
64~d22d1!

R
, ~26!

and

c5
a

4
. ~27!

Now the lower bound of̂T& in ~21! can be maximized overd1 andd2 subject to condition
~26!. But before fully optimizing the bound in~21! we consider the special case where there
only one boundary layer in the background field atz51, i.e., the choiced150. Although this will
not give us the optimal bound, it is still a rigorous lower bound which is easier to compute
which can be compared with the optimal bound later.

For d150 we should setb50 in the general background profile~19!. Thus~21! becomes

^T&> 1
4 ~12d2!d2 , ~28!

and the constraint~26! is simplified to be

d2
35

64

R
. ~29!

We can now write down the estimate

^T&>R21/3~124R21/3!. ~30!

So asR→`, ^T&>R21/3 with prefactor 1.
To fully optimize the bound, we need to maximize the right-hand side of the inequality~21!

subject to the constraint~26!:

^T&>max
d1 ,d2

H 1

4
~12d1!~12d2!~d11d2!J , ~31!

with d1 andd2 satisfying

@d1
2~12d2!1d2

2~12d1!#25
64~d22d1!

R
. ~32!

This is easily done numerically and the result is shown in Fig. 2. It is seen from the grap
this better bound follows the same scaling as in~30!, i.e.,;R21/3 asR→`. The prefactor can be
measured from the graph, showing that the asymptotic prefactor is improved slightly:

^T&>1.09R21/3 as R→`. ~33!

IV. MULTIPLE BOUNDARY LAYER METHOD FOR FINITE Pr

In this section, we will derive the lower bound of the bulk average temperature usin
homogeneous ratio approach introduced by Howard11 and the multiple boundary layer method du
to Busse.1 First we decompose the temperature and velocity fields into their horizontal averag
fluctuating parts:

T5T̄1u, with ū50 and ū50, ~34!
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where overline denotes the horizontal average. We will assume that the flow is statistical
tionary so that the horizontal average is time-independent and the fluctuating part has van
horizontal mean. This is most easily justified in the limit of a horizontally infinite layer, so we

f̄ ~z!5 lim
Lx ,Ly→`

1

LxLy
E f ~x,y,z,t ! dxdy. ~35!

The horizontal average of the temperature Eq.~2b! is

dwu

dz
5

d2T̄

d2z
11. ~36!

Integrate once to obtain

wu5
dT̄

dz
1z1c. ~37!

The integration constantc here is determined by integrating above equation over@0,1#, yielding

dT̄

dz
5wu2^wu&2S z2

1

2D . ~38!

Using the decomposition~34! along with ~36!, Eq. ~2b! can be written

]u

]t
1w

dT̄

dz
1u•¹u5¹2u1

d2T̄

d2z
115¹2u1

dwu

dz
. ~39!

Multiplying both sides byu and integrate over the bulk, we deduce

K wu
dT̄

dzL 52^u¹uu2&. ~40!

Together with Eq.~38!, we find the ‘‘power integral’’

FIG. 2. The solid line is the fully optimized lower bound of the bulk average temperature compared to the estima~30!
~the dotted line!.
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K S z2
1

2Dwu L 5^u¹uu2&1^~wu2^wu&!2&. ~41!

Another power integral is derived by multiplying Eq.~2a! by u and integrating over the bulk:

^u¹uu2&5R^wu&. ~42!

Finally, we derive an expression for the average temperature by multiplying Eq.~38! by z and
integrating over@0,1#:

^T&52 K S z2
1

2Dwu L 1
1

12
. ~43!

In summary we have the following balances:

^u¹uu2&5R^wu&, ~44!

^~z2 1
2!wu&5^u¹uu2&1^~wu2^wu&!2&, ~45!

^T&52^~z2 1
2!wu&1 1

12. ~46!

Now rewrite ~45! as

15
^u¹uu2&1^~wu2^wu&!2&

K S z2
1

2Dwu L ~47!

and multiply the 1
12 in ~46! so disguised to find

^T&5

^u¹uu2&1^~wu2^wu&!2&212K S z2
1

2Dwu L 2

12K S z2
1

2Dwu L . ~48!

Let

h~z!5A12~z2 1
12!. ~49!

Notice that

^h&50, ^h2&51. ~50!

Then

^~wu2h^hwu&2^wu&!2&5^wu2&2^wu&22^hwu&2. ~51!

Thus together with~44!, the average temperature can be expressed as

^A12RT&5R
^u¹uu2&1^~wu2^wu&!2&2^hwu&2

^hwu&

5
^u¹uu2&^u¹uu2&

^wu&^hwu&
1R

^~wu2h^hwu&2^wu&!2&

^hwu&
. ~52!
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The variational problem can be formulated as follows:
Givenm5R^hwu&, find the minimum of the functional

F5
^u¹uu2&^u¹uu2&

^hwu&^wu&
1m

^~wu2h^hwu&2^wu&!2&

^hwu&2 ~53!

among theu, u fields with

¹•u50, uuz50,150, uuz50,150, ~54!

where

w5u"k̂, h~z!5A12~z2 1
2!. ~55!

Since the functionalF is homogeneous in bothw and u, we can impose two normalizatio
conditions

^hwu&51, ^w2&5^u2&. ~56!

We are seeking the minimum of the functionalF as m→`. This implies thatwu5h
1^wu& @here and in the following discussion the normalization conditions~56! have been as-
sumed# throughout most of the interval 0,z,1, which makes the second term in the function
vanish in this interval. Only near the boundaryz50,1 the boundary conditions prevent a clo
appoach ofwu to h1^wu&. And the contribution to the functional is thus from possible bound
layers atz50,1. ~Note: the boundary layers are distinct in this problem, as is the case for a si
analysis of circular Couette flow where the inner and outer cylinders must be handled seper2!
Sinceh(1)1^wu&5)1^u¹uu2&.0 @from Eq.~44! and definition~49!# there must be a boundar
layer atz51. At z50, h(0)1^wu&52)1^wu& is indefinite. Thus the existence of a bounda
layer atz50 depends on whetherh(0)1^wu& is zero. Without loss of generality we assume the
are two boundary layers atz50,1 respectively, and make the ansatz

w5( wnfn1wn* fn* , u5( unfn1un* fn* , ~57!

wherefn andfn* satisfy

D2fn52an
2fn , D2fn* 52an*

2fn* . ~58!

We introduce the following boundary layer variables:

w5H m2pnŵ~zn! for 12z5O~m2r n!,

m2snw̃~zn21! for 12z5O~m2r n21!,
~59!

u5H mpnû~zn! for 12z5O~m2r n!,

msnũ~zn21! for 12z5O~m2r n21!,
~60!

w* 5H m2pnŵ* ~zn* ! for z5O~m2r n!,

m2snw̃* ~zn21* ! for z5O~m2r n21!,
~61!

u* 5H mpnû* ~zn* ! for z5O~m2r n!,

msnũ* ~zn21* ! for z5O~m2r n21!,
~62!
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where

zn5~12z!m r n, zn* 5zm r n. ~63!

The boundary layer structure is such that in the interior

w̃1ũ11w̃1* ũ1* 'h1^wu&, ~64!

and in the boundary layers

w̃nũn1ŵn21ûn21'h11^wu&, w̃n* ũn* 1ŵn21* ûn21* 'h01^wu& ~65!

for n51, . . . ,N21, where

h05h~0!52), h15h~1!5).

With the boundary layer approximations, the functional becomes

F̂N5
1

^wu& H(1

N

m2pn1r nS E
0

`

ûn8
2dzn1E

0

`

ûn* 82dzn* D 1(
2

N

mqn2r n12snS bn
2E

0

`

ũn
2dzn21

1bn*
2E

0

`

ũn*
2dzn21* D 1mq1~b1

2^ũ1
2&1b1*

2^ũ1*
2&!J H(

1

N

m3r n22pn2qnS 1

bn
2 E

0

`

ŵn9
2dzn

1
1

bn*
2 E

0

`

ŵn* 92dzn* D 1(
2

N

mqn2r n2122snS bn
2E

0

`

w̃n
2dzn211bn*

2E
0

`

w̃n*
2dzn21* Dmq1~b1

2^w̃1
2&

1b1*
2^w̃1*

2&!J 1H m12r NS E
0

`

~ŵNûN2h12^wu&!2dzN1E
0

`

~ŵN* ûN* 2h02^wu&!2dzN* D J .

~66!

Balancing the exponents in the above expression yields

r n5
1242n

3242n , qn5
2242n

3242n , sn50, 2pn5
42n

3242n . ~67!

Then we have

F̂N5m2/3242N
FN , ~68!

where

FN5
1

^wu& H(1

N S E
0

`

ûn8
2dzn1E

0

`

ûn* 82dzn* D(
2

N S bn
2E

0

`

ũn
2dzn211bn*

2E
0

`

ũn*
2dzn21* D 1~b1

2^ũ1
2&

1b1*
2^ũ1*

2&!J H(
1

N S 1

bn
2 E

0

`

ŵn9
2dzn1

1

bn*
2 E

0

`

ŵn* 92dzn* D(
2

N S bn
2E

0

`

w̃n
2dzn21

1bn*
2E

0

`

w̃n*
2dzn21* D 1~b1

2^w̃1
2&1b1*

2^w̃1*
2&!J 1H E

0

`

~ŵNûN2h12^wu&!2dzN

1E
0

`

~ŵN* ûN* 2h02^wu&!2dzN* J . ~69!
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Now the Euler–Lagrange equations for the functionalFN can be written down:

1

^wu&

Du

bn
2 ŵn

(4)2m r N2r nûn~h11^wu&2ŵnûn2w̃n11ũn11!50, ~70!

1

^wu&
Dwûn91m r N2r nŵn~h11^wu&2ŵnûn2w̃n11ũn11!50, ~71!

n51, . . . ,N, ~72!

bn11
2

^wu&
Duw̃n112m r N2r nũn11~h11^wu&2ŵnûn2w̃n11ũn11!50, ~73!

bn11
2

^wu&
Dwũn112m r N2r nw̃n11~h11^wu&2ŵnûn2w̃n11ũn11!50, ~74!

n51, . . . ,N21. ~75!

And for w̃1 , ũ1 ,

Du

^wu&
b1

2w̃12 ũ1H DuDw

2^wu&2 ~h^wu&11!1m r N~h1^wu&2w̃1ũ12w̃1* ũ1* !1hS E
0

`

~ŵNûN2h1

2^wu&!2dzN1E
0

`

~ŵN* ûN* 2h02^wu&!2dzN* D J 50, ~76!

and

Dw

^wu&
b1

2ũ12w̃1H DuDw

2^wu&2 ~h^wu&11!1m r N~h1^wu&2w̃1ũ12w̃1* ũ1* !1hS E
0

`

~ŵNûN2h1

2^wu&!2dzN1E
0

`

~ŵN* ûN* 2h02^wu&!2dzN* D J 50. ~77!

The same set of equations are also satisfied by the starred quantitiesw̃n* ,ũn* ,ŵn* ,ûn* .
From Eqs.~76! and ~77!, we have

Duw̃1
25Dwũ1

2 , ~78!

Duw̃1*
25Dwũ1*

2 . ~79!

Adding these two identities yields

Du^w̃1
21w̃1*

2&5Dw^ũ1
21 ũ1*

2&. ~80!

Hence the normalization condition̂w2&5^u2& implies

Du5Dw5D. ~81!

This identity together with Eqs.~76! and ~77! yields

w̃1
25 ũ1

2 , b15b1* . ~82!
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Equation~73! together with Eq.~75! gives

Duw̃n11
2 5Dwũn11

2 .

The same identity holds forw̃n11* and ũn11* . Therefore

w̃n11
2 5 ũn11

2 , w̃n11* 2 5 ũn11* 2 for n51, . . . ,N21. ~83!

Substituting the above identity back into Eq.~73!, we have

h11^wu&2ŵnûn2w̃n11ũn115m r n2r Nbn11
2 D

^wu&
, ~84!

h01^wu&2ŵn* ûn* 2w̃n11* ũn11* 5m r n2r Nbn11* 2 D

^wu&
~85!

for n51, . . . ,N21. Then Eqs.~70! and ~72! become

1

bn
2 ŵn

(4)2bn11
2 ûn50, ~86!

ûn91bn11
2 ŵn50, n51, . . . ,N21. ~87!

The above equations hold in the region whereŵnûnÞh11^wu&. When the equality holds, the
from Eq. ~70! and Eq.~72! we can derive

ŵn
(4)

bn
2 52

ûnûn9

wn
5~h11^wu&!2

ŵn9ŵn22ŵn8
2

ŵn
5 . ~88!

With the following change of variables,

H z5bn
1/3bn11

2/3 zn ,

V̂5bn
21/3bn11

1/3 ~h11^hwu&!21/2ŵn ,

Q̂5bn
1/3bn11

21/3~h11^hwu&!21/2ûn ,

~89!

Eqs.~86!, ~87!, and~88! become

5
V̂ (4)2Q̂50,

Q̂91V̂50,

V̂ (4)5
V̂9V̂22V̂82

V̂5
.

~90!

Starred quantities satisfy the same equations withh1 replaced byh0 . This set of differential
equations has been studied in Ref. 1, where the constantb is defined

3b5E
0

`

V̂92dz1E
0

`

~12V̂Q̂!dz51.847 ~91!

and the following integrals are evaluated:
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E
0

` wn9
2

bn
2 dzn1E

0

`

bn11
2 w̃n11

2 dzn53b~h11^wu&!bn
21/3bn11

4/3 , n51, . . . ,N21. ~92!

Whenn5N, the differential equations forŵN and ûN are

D

^wu&bN
2 ŵN

(4)2~h11^wu&2ŵNûN!ûN50, ~93!

D

^wu&bN
2 ûN9 1~h11^wu&2ŵNûN!ŵN50. ~94!

Then with the following change of variables,

5
z5bN

1/3~h11^wu&!1/3S D

^wu& D
21/3

zN ,

V5bN
21/3~h11^hwu&!21/3S D

^wu& D
21/6

ŵN ,

Q5bN
1/3~h11^hwu&!22/3S D

^wu& D
1/6

ûN ,

~95!

Eqs.~93! and ~94! become

V (4)2~12VQ!Q50, ~96!

Q91~12VQ!V50. ~97!

In Howard’s paper11 the following result is given:

s5E
0

`

V92dz5E
0

`

Q82dz5 1
4E

0

`

~12VQ!2dz50.337. ~98!

Thus the following integrals can be expressed ins:

E
0

` ~ŵ(4)!2

bN
2 dzN5s~h11^wu&!5/3S D

^wu& D
22/3

bN
21/3, ~99!

E
0

`

ûN8
2dzN5s~h11^wu&!5/3S D

^wu& D
22/3

bN
21/3, ~100!

E
0

`

~h11^hwu&2ŵNûN!2dzN54s~h11^wu&!5/3S D

^wu& D
1/3

bN
21/3. ~101!

Putting the above integrals together, the functionalFN can then be expressed as

FN5
D2

^wu&
~102!

14s~h11^wu&!5/3S D

^wu& D
1/3

bN
21/314s~h01^wu&!5/3S D

^wu& D
1/3

bN*
21/3, ~103!

and
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D5 (
n51

N21

3bH Fbn11
4

bn
G1/3

~h11^wu&!1Fbn11* 4

bn*
G1/3

~h01^wu&!J 1sS D

^wu& D
22/3

$~h11^wu&!5/3bN
21/3

1~h01^wu&!5/3bN*
21/3%1b1

2^wu&. ~104!

Minimizing FN with respect tobn andbn* yields

]D

]b1
50⇒2b1^wu&5bF ~h11^wu&!S b2

b1
D 4/3

1~h01^wu&!S b2*

b1
D 4/3G , ~105!

]D

]bn
50⇒Fbn11

bn
G4/3

54F bn

bn21
G1/3

, ~106!

]D

]bn*
50⇒Fbn11*

bn*
G4/3

54F bn*

bn21* G1/3

, ~107!

]FN

]bN
50⇒FbN11

bN
G4/3

54F bN

bN21
G1/3

, ~108!

]D

]bN*
50⇒FbN11*

bN*
G4/3

54F bN*

bN21* G1/3

, ~109!

where

bN115S s

b D 4/3S ~h11^wu&!^wu&
D D 1/2

, ~110!

bN11* 5S s

b D 4/3S ~h01^wu&!^wu&
D D 1/2

. ~111!

From the above relations, thebn can be determined:

bn1154n21F S bN11

4N21D 1242n

•~4b1!42n242NG1/1242N

. ~112!

And bn11* has a similar form:

bn11* 54n21F S bN11*

4N21D 1242n

•~4b1!42n242NG1/1242N

. ~113!

It is clear from the above expressions thatbnÞbn* for nÞ1 sincebN @Eq. ~110!# is different from
bN* @Eq. ~111!#. Finally, b1 can be solved from~106! and the recursion relation

b15H b

25/3^wu& S s

b D 3/4(1242N)

@~h11^wu&!4/~1242N)/3242N

1~h01^wu&!4/(1242N)/3242N
#J 1242N/3242N

. ~114!

Putting all these together, the prefactorFN is a function of^wu& only:
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FN5
D2

^wu&

3242N

1242N

5~3242N!(1242N)224N42N/3242N
•S 25/3b3S s

b D 3/4(1242N)D 4(1242N)/3242N

3F ~h11^wu&!322•42N/2(1242N)1~h01^wu&!322•42N/2(1242N)

^wu&123•42N/4(1242N) G 4(1242N)/3242N

. ~115!

Now the value of̂ wu& can be determined by settingdFN /d^wu& to zero. The resulting equatio
for ^wu& is

~a21!x~322c!/2(12c)2ax2ax1/~12c!1~a21!50, ~116a!

where

x5
)1^wu&

)2^wu&
, a5

322c

123c
, c542N. ~116b!

For general values ofN, the above equation has to be solved numerically:

N51, ^wu&50.4831,

N52, ^wu&50.9259,

N53, ^wu&51.0120,

]

WhenN→`, the above equation can be solved exactly:

^wu&`5
3)

5
51.039. ~117!

This shows that there indeed is a boundary layer atz50 since all^wu& ’s are less thanh05).
Now we can write down the scaling of^T& asN→`:

^T&5
1

A12R
F`m2/3510.285m2/3R21. ~118!

Recalling the identity~46!:

^T&52^~z2 1
2!wu&1 1

12 ,

we know that asm→`

m;
1

A12
R. ~119!

This leads to the scaling bound on^T& with respect toR:

^T&>4.421R21/3. ~120!
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The profiles ofw̃1 and ũ1 can be determined from the fact that in the interior of the inter
0,z,1,

w̃1ũ1'h1^wu&, and w̃15 ũ1 . ~121!

In the caseN→`, h52)z2 (2)/5). And then

w̃15AU2)z2
2)

5 U, ũ156AU2)z2
2)

5 U. ~122!

However, whetheru changes sign in 0,z,1 can not be inferred from the variational proble
since only the product ofw andu appears in the functionalF. Thus the possibility ofw changing
its sign cannot be excluded.

V. BACKGROUND METHOD FOR INFINITE Pr

As can be seen from the momentum equation~2a!, the velocity field is instantaneously slave
to the temperature field in the limit Pr→`. Then it is straightforward to extract the equatio
satisfied by the vertical velocityw for a given fluctuation fieldu:

D2w52RDHu. ~123!

The incompressibility condition on the velocity field combined with the no-slip boundary co
tions atz50 andz51 imply that bothw and]w/]z vanish at the rigid boundaries. To impleme
the background analysis we decompose the temperature field as we did for the finite Pr ca
notice that identies~10! and ~14! still hold. This observation leads to the bound~18!:

^T&>2^t&2^t82&, ~124!

provided the functional~17!

H5^u¹uu2&1^~2t82a!wu&1
a

R
^u¹uu2& ~125!

is positive semidefinite among divergence free velocity fields satisfying Eq.~123! and no-slip
boundary conditions atz50,1, and temperature fieldsu(x,y,z,t) vanishing atz50,1. The con-
straint on the background fieldt(z) is the same:t(0)5t(1)50.

It is convenient to find the sufficient conditions for the non-negativity ofH in its Fourier series
representationH5(kHk , where

Hk$uk%5E
0

1F uDuku21k2uuku21S t82
a

2D ~wk* uk1wkuk* !1
a

R S 1

k2 uD2wku212uDwku2

1k2uwku2D Gdz, ~126!

wherewk(z) anduk(z) are the Fourier components ofw andu corresponding to wave numberk,
satisfying

~2D21k2!2wk5Rk2uk . ~127!

ThenH>0 iff eachHk is positive semidefinite for complex valued functionsuk of a single~real!
variable z where wk solves the fourth-order linear boundary value problem above with b
homogeneous Dirichlet and Neumann boundary conditions on@0,1#.
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We need to choose the background fieldt(z) before we can estimate the magnitude ofHk .
Since the expressions for the lower bound~18! and the functionalH ~17! have the same forms a
in the finite Pr case, we can choose the same background profile~19!. And consequently, afte
maximizing the bound overa andb, we arrive at the same expression~21!:

^T&> 1
4 ~12d1!~12d2!~d11d2!. ~128!

This expression is invariant if we exchanged1 andd2 , and the estimate~132! is pointwise. This
suggests that the maximum of the right-hand side of~21! occurs whend15d25d. And then

H a50 ,

b5
d~12d!

2

~129!

by Eq. ~22!. The background profile becomes

t~z!55
12d

2
z , 0<z,d,

d~12d!

2
, 12d<z<12d,

12d

2
~12z! , 12d<z<1,

~130!

and the bound is

^T&>
d~12d!2

2
~131!

as long asd is chosen to ensureH is semipositive definite~see Fig. 3!.
In the following we will use the inequality, proved in Ref. 10, for solutions of~127!:

FIG. 3. The background profile for infinite Prandtl number.
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uwku<
1

2
z2

R

AC
kiuki ~132!

for zP@0,1
2#, whereC5 1

2(72A41). ~A similar estimate holds on the other end of the unit int
val.! Applying this estimate, we have

U E
0

1S t82
a

2D ~wk* uk1wkuk* !dzU
5U E

0

1

t8~wk* uk1wkuk* !dzU
<2

12d

2 E
0

d
uwkuuukudz12

12d

2 E
12d

1

uwkuuukudz

<~12d!E
0

d 1

2
z2S R

AC
kiuki DAzE

0

1/2

uDuk~z8!u2dz8dz1~12d!E
12d

1 1

2
~12z!2

3S R

AC
kiuki D 3A~12z!E

1/2

1

uDuk~z8!u2dz8dz

<~12d!
R

AC
kiuki

1

7
d1

7/2AE
0

1/2

uDuk~z8!u2dz8

1~12d!
R

AC
kiuki

1

7
d1

7/2AE
1/2

1

uDuk~z8!u2dz8

<~12d!
R

AC

d7/2

7

k

2 S kiuki2

&
1
&

k E
0

1/2

uDuk~z8!u2dz8D
1~12d!

R

AC

d7/2

7

k

2 S kiuki2

&
1
&

k E
0

1/2

uDuk~z8!u2dz8D
5~12d!

R

AC

1

7
d7/2

1

&
~k2iuki21iDuki2!. ~133!

Then

H>k2S 12
~12d!d7/2

7&

R

AC
D ~k2iuki21iDuki2!. ~134!

Choosingd such that

~12d!d7/2

14

R

AC
51, ~135!

the non-negativity ofH is ensured. Then asR→`, d;(7A2C/R)2/7 and thus

^T&>
1

2
d5

1

2 S 7A2C

R D 2/7

. ~136!
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VI. SUMMARY AND DISCUSSION

The preceeding sections we have proven that for the finite~or arbitrary! Prandtl number case
in nondimensional units,

^T&>c1R21/3, ~137!

and for the infinite Prandtl number model,

^T&>c2R22/7. ~138!

In dimensional units of temperature and heat flux these results are

^T&> c̃1H2/3 ~139!

for arbitrary Pr~see Ref. 4 for a similar estimate in that case of an internally heated self-gravit
sphere!, and

^T&> c̃2H5/7 ~140!

for the infinite Pr.
Recent numerical experiments18 on thermal convection with internal heating in a fluid lay

with infinite Prandtl number suggest that

^T&}R20.234. ~141!

The observed exponent 0.234 is smaller than the rigorous estimate derived here, 2/7'0.286, but
consistent with the bound. In the case of Rayleigh–Be´nard convection, the methods employe
here produce scaling~upper! bounds on the heat transport1,9,10 that are also consistent—but not
total agreement—with observed high Rayleigh number scalings.

It is worthwhile to note that the ‘‘optimal’’ background profile that the analysis suggests~Fig.
1! is suggestive of the mean temperature profile one expects for the internal heating problem
is, the buoyancy force driving the convection will concentrate the warmer fluid near the top
layer. Interestingly, this is not the case for the infinite Pr problem where the ‘‘optimal’’ tempera
background maintains the symmetry of the conduction solution. It remains an open probl
apply the multiple boundary layer analysis to the case of infinite Pr, as it has previously
applied for the case of Rayleigh–Be´nard convection.5 A full ~numerical! solution of the optimal
background variational problem, as has recently been accomplished for Rayleigh–Be´nard convec-
tion with finite Prandtl number,15 could improve the estimates further.
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In the above paper, formulas~22! and~23!, while correct for theS-wave,,50, are not correct
for higher waves. The correct formulas are as follows. In order to secure a bound state, w
match continuously the interior wave function forr ,R0 , formula ~21!, to the exterior solution
which vanishes at infinity, namely,ar2,.1 It follows that, in the right-hand side of our formul
~22!, j ,,18 , the first maximum of the radial Bessel function, must be replaced by the first sol
x of

J,1 1/28 ~x!

J,1 1/2~x!
52

,1
1

2

x
. ~1!

As a consequence, the same modification must be made in the right-hand side of~23!. As ex-
plained in Ref. 1, the solutionx of formula ~1! above is larger thanj ,,18 , and is located between
this value and the first zero,j ,,1 , of J,1 1/2(x). We would like to thank Dr. Fabian Brau, wh
brought the mistake to our attention.

1K. Chadan, A. Martin, and J. Stubbe, J. Math. Phys.36, 1616~1995!. See the lower half of p. 1619.
29870022-2488/2004/45(7)/2987/1/$22.00 © 2004 American Institute of Physics
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Erratum: Three-quark exchange operators, crossing
matrices and Fierz transformations in SU „2… and SU „3…
†J. Math. Phys. 42, 991 „2001…‡

V. Dmitrašinović
Vinča Institute of Nuclear Sciences, (lab 010), P.O. Box 522, 11001 Belgrad, Serbia

~Received 23 March 2004; published online 14 June 2004!

@DOI: 10.1063/1.1763248#

Errors have propagated into several related/equivalent formulas in Ref. 1 as a consequ
one fundamental minus sign error:

~1! The right-hand sides of Eqs.~15a! and ~15b! have been erroneously shown as copies
Eqs.~14a! and ~14b!. The correct form is

P123(
i , j

3

li•lj5
16

9
1

2

3 (
i , j

3

li•lj2
1

2
dabcl1

al2
bl3

c2
i

2
f abcl1

al2
bl3

c ,

P132(
i , j

3

li•lj5
16

9
1

2

3 (
i , j

3

li•lj2
1

2
dabcl1

al2
bl3

c1
1

2
i f abcl1

al2
bl3

c .

~2! The second row, fourth column entries in the SU~3! crossing matricesC, Eq. ~17! andC2,
Eq. ~18! should switch signs, i.e.,61/2→71/2, or explicitly

C5S 1

9

1

6

1

4

1

4

16

9

2

3
2

1

2
2

1

2

80

81
2

5

27

13

18
2

5

18

2
16

9

1

3

1

2
2

1

2

D ,

C25S 1

9

1

6

1

4
2

1

4

16

9

2

3
2

1

2

1

2

80

81
2

5

27

13

18

5

18

16

9
2

1

3
2

1

2
2

1

2

D .

~3! Moreover, Eqs.~20a!, ~20b! need to have the signs in their last terms changed, as follo
29880022-2488/2004/45(7)/2988/2/$22.00 © 2004 American Institute of Physics
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dadlgr•lsb1dgrlad•lsb1dsblgr•lad

5
2

3
~dablgd•lsr1dgdlab•lsr1dsrlgd•lab!1

16

9
dabdgddsr

2
1

2
dabclab

a lgd
b lsr

c 2
1

2
i f abclab

a lgd
b lsr

c ,

darlgb•lsd1dgblar•lsd1dsblgr•lad

5
2

3
~dablgd•lsr1dgdlab•lsr1dsrlgd•lab!1

16

9
dabdgddsr

2
1

2
dabclab

a lgd
b lsr

c 1
1

2
i f abclab

a lgd
b lsr

c .

All other results, as well as the conclusions of the paper remain unchanged.

1V. Dmitrašinović, J. Math. Phys.42, 991 ~2001!.
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Symmetry operators for Riemann’s method
Peter J. Zeitsch
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~Received 26 January 2004; accepted 13 April 2004;
published online 25 June 2004!

Riemann’s method is one of the definitive ways of solving Cauchy’s problem for a
second order linear hyperbolic partial differential equation in 2 variables. Chaun-
dy’s equation, with 4 parameters, is the most general self-adjoint equation for
which the Riemann function is known. Here we show that Chaundy’s equation
possesses a two-dimensional vector space of second-order symmetry operators.
Hence a new equivalence class of Riemann functions, admitting no first-order
symmetries and obtainable only via a higher order symmetry, is found. A new 5
parameter Riemann function is then subsequently derived. ©2004 American In-
stitute of Physics.@DOI: 10.1063/1.1763003#

I. INTRODUCTION

The most general self-adjoint partial differential equation~PDE! for which the Riemann
function is known is that derived by Chaundy,1

Urs1Fm1~12m1!

~r 1s!2 2
m2~12m2!

~r 2s!2 1
m3~12m3!

~12rs!2 2
m4~12m4!

~11rs!2 GU50, ~1!

wherem1 ,...,m4 are real valued constants. For this equation the Riemann function,R(r ,s,r 0 ,s0),
is given by

R~r ,s,r 0 ,s0!5FB~m1 ,m2 ,m3 ,m4,12m1,12m2,12m3,12m4,1,z1 ,z2 ,z3 ,z4!, ~2!

where

z152
~r 2r 0!~s2s0!

~r 1s!~r 01s0!
, z25

~r 2r 0!~s2s0!

~r 2s!~r 02s0!
, ~3!

z352
~r 2r 0!~s2s0!

~12rs!~12r 0s0!
, z45

~r 2r 0!~s2s0!

~11rs!~11r 0s0!
, ~4!

and FB is a Lauricella hypergeometric function of four variables.2 Recall that for a self-adjoint
equation such as~1!, the Riemann function must satisfy3

L@R#50,

]R

]r
50 on s5s0 ,

~5!
]R

]s
50 on r 5r 0 ,

R~r 0 ,s0 ,r 0 ,s0!51.
29930022-2488/2004/45(8)/2993/8/$22.00 © 2004 American Institute of Physics
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When m1(12m1)5m3(12m3)5m4(12m4)50, Chaundy’s PDE simplifies to the Euler
Poisson–Darboux~EPD! equation which is the original problem solved by Riemann. For the E
equation, the Riemann functionFB reduces to the standard hypergeometric function

R~r ,s,r 0 ,s0!52F1~m2,12m2,1,z2!. ~6!

It is well known4,5 that the EPD equation possesses a three-dimensional Lie algebra of first
symmetry operators isomorphic to sl~2,R!. From standard results in Lie theory,5 the group SL(2,R)
acts locally on the solution space of the EPD equation by

U~r ,s!→US ar 1b

gr 1d
,
as1b

gs1d D , S a b

g d D PSL~2,R!. ~7!

Using ~7!, it is straightforward to show that the Riemann function for the EPD equation ca
represented in terms of the hypergeoemtric function~6!. This was first shown by Bluman.7 Sub-
sequently Daggit8 and Ibragimov9 extended this concept to more general problems. They con
ered a generic PDE, to which they could impose restrictions on the coefficients, so that a
metry algebra isomorphic to sl~2,R! was obtained for the reduced equations. This led to invert
mappings from the candidate equations to the EPD equation, likewise for the solutions. In th
an extensive equivalence class of Riemann functions was derived. Apart from confluent co
tions such as the Telegrapher’s equation,10 the EPD equation is the only PDE for which th
approach has been shown to work.

A few calculations reveal that~1! possesses no nontrivial first-order symmetry opera
whatsoever. Hence the theory developed for sl~2,R! is not applicable to Chaundy’s equatio
However in this paper we show that if the symmetry operators are extended to second-orde6 then
Chaundy’s full PDE in fact admits a two-dimensional vector space that leads to 4 inequiv
orbits. For each of these orbits there exists a separable coordinate system for~1!. They constitute
a new equivalence class of Riemann functions, admitting no first-order symmetries and obta
only via higher order symmetries. Two of the separable forms of~1! are completely new while the
other two generalize several Riemann functions already found in the literature.

In Sec. II, the symmetries for~1! are calculated. In Sec. III the corresponding separa
coordinate systems and separable forms of Chaundy’s equation are found. In Sec. IV a
parameter Riemann function is derived by combining two of the separable forms of Chau
equation in an addition formula due to Olevski�.11 The five parameter Riemann function is impo
tant as it incorporates one more essential parameter than Chaundy’s equation.

II. SYMMETRY CALCULATIONS

Standard techniques6 exist in the literature for seeking separable forms of~1!. Following Ref.
6 we define the second-order operator

S5 f 1] rr 1 f 2]ss1 f 3] r1 f 4]s1 f 5 . ~8!

We say that~8! is a symmetry operator for~1! provided

@S,L#5QL, ~9!

where

L5] rs1Fm1~12m1!

~r 1s!2 2
m2~12m2!

~r 2s!2 1
m3~12m3!

~12rs!2 2
m4~12m4!

~11rs!2 G ~10!

and

Q5h1] r1h2]s1h3 ~11!
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is a first-order differential operator~here Q may vary with S! and f 1 ,...,h3 are arbitrary functions
of r and s. Evaluating ~9! produces 10 equations for the unknown functionsf 1 ,...,h3 . The
solution of these equations is long and involved.

Whenm1(12m1),...,m4(12m4) are all nonzero, solving~9! yields a two-dimensional vecto
space of operators. The symmetries,S1 andS2 , form a basis and have differential part

S15~r 411!] rr 1~s411!]ss12r 3] r12s3]s , ~12!

S25r 2] rr 1s2]ss1r ] r1s]s . ~13!

Importantly, there are no first-order symmetries, which means that Chaundy’s equation is C
in the sense of Miller.6

The dimension of the vector space now varies depending on the pivots for the con
m1 ,...,m4 . However the only new case is that stated above, wherem1(12m1),...,m4(12m4) are
all nonzero. All other cases reduce to equations for which the symmetries are well docum
The pivots found during the calculation of~9! fall into two types

mi~12mi !50, i 51,...,4

and

mi~12mi !5mj~12mj !, i , j 51,...,4; iÞ j

or a combination of both. Letting any one ofm1(12m1),...,m4(12m4) equal to zero does no
increase the dimension of the vector space from two. The next possibility is when any tw
m1(12m1),...,m4(12m4) equal zero. This leads to 6 possible equations. However as Cha
pointed out,1 if we apply the discrete group

~r ,s!5~2R,S!,

~r ,s!5S 1

R
,SD , ~14!

~r ,s!5S 12R

11R
,
12S

11SD ,

to ~1!, then the suffixes,~1,2,3,4! on the constantsm, become~2,1,4,3!, ~4,3,2,1! or ~3,2,1,4!,
respectively. Hence the 6 PDEs can all be mapped to the harmonic equation

Urs1Fm1~12m1!

~r 1s!2 2
m2~12m2!

~r 2s!2 GU50. ~15!

The Riemann function for~15! has been documented by Henrici.12 More recently Iwasaki10 solved
~15! in terms of a system ofF4 functions.2 The symmetries for~15! have been studied by Kalnin
and Miller.13 In effect the vector space is four-dimensional with 3 second order symmetries
first order symmetry. For more detail, see Ref. 13.

The next pivot occurs when we letm1(12m1)5m2(12m2) and m3(12m3)5m4(12m4)
~or any combination of two constants! in ~1! to obtain

Urs24rsFm1~12m1!

~r 22s2!2 2
m3~12m3!

~12r 2s2!2 GU50.

As Chaundy pointed out, now make the change of variablesr 5R1/2, s5S1/2 which gives
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URS2Fm1~12m1!

~R2S!2 2
m3~12m3!

~12RS!2 GU50.

Then applying the discrete group~14!, we arrive at the Harmonic equation~15!. Setting three
constants equal to zero leads to the EPD equation in all cases under the action of the discre
~14!. As shown in Ref. 4 this leads to an eight-dimensional vector space, and nine inequi
separable coordinate systems.

Hence we continue by focusing our attention on the new case when all constants are ar
the two-dimensional vector space with symmetry operators~12! and ~13!.

III. THE SEPARABLE COORDINATE SYSTEMS

Taking a linear combination of the operators~12! and ~13!, there are then four inequivalen
orbits namely,

• S112qS2 , q.1,

• S112S2 ,

• S122S2 ,

• S112qS2 , q,21,

whereq is a real valued constant. Alternatively considerS2 by itself. In this case the discret
symmetry~14! mapsS2 to

S285
~R221!2

4
]RR1

~S221!2

4
]SS1

R~R221!

2
]R1

S~S221!

2
]S,

which is equivalent toS122S2 . Also this discrete symmetry maps the case when21,q,1 to
the case whenq.1 above. Hence we may ignore these possibilities and conclude that, in
there are 4 inequivalent orbits for the two symmetriesS1 and S2 . We are now in a position to
calculate the separable coordinate systems and to analyze their effect on~1!.

System 1: S112qS2 , whereq.1.
The separable coordinates are

r 5b
sn@a~j1h!#

cn@a~j1h!#
, s5b

sn@a~j2h!#

cn@a~j2h!#
, ~16!

where 2q5(11b4)/b2, k2512b4, 0,b,1 and k is the modulus of the Jacobian ellipti
functions.14

When ~16! is substituted into~1! the following separable equation is found:

Ujj2Uhh1H a2Fm1~12m1!S dn2 aj

sn2 ajcn2 aj
2k4

sn2 ahcn2 ah

dn2 ah D
2m2~12m2!S dn2 ah

sn2 ahcn2 ah
2k4

sn2 ajcn2 aj

dn2 aj D G
14a2b2Fm3~12m3!S dn2 aj

~cn2 aj2b2sn2 aj!2 1
dn2~ah!

~cn2 ah1b2sn2 ah!2 21D
2m4~12m4!S dn2 aj

~cn2 aj1b2sn2 aj!2 1
dn2 ah

~cn2 ah2b2sn2 ah!2 21D G J U50. ~17!

The Riemann function for~17! is obtained by substituting~16! into ~3!, ~4! and ~2!. Hence
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R~j,h,j0 ,h0!5FB~m1 ,m2 ,m3 ,m4,12m1,12m2,12m3,12m4,1,z11,z12,z13,z14!, ~18!

where

z55
~snahcnah0dnaj02snah0cnahdnaj!22~snajcnaj0dnah02snaj0cnajdnah!2

4snaj snaj0 cnaj cnaj0 dnah dnah0
,

z65
~snajcnaj0dnah02snaj0cnajdnah!22~snahcnah0dnaj02snah0cnahdnaj!2

4snah snah0 cnah cnah0 dnaj dnaj0
,

z75b2
~snahcnah0dnaj02snah0cnahdnaj!22~snajcnaj0dnah02snaj0cnajdnah!2

~cn2aj2b2sn2aj!~cn2 ah1b2sn2 ah!~cn2aj02b2sn2aj0!~cn2 ah01b2sn2 ah0!
,

z85b2
~snajcnaj0dnah02snaj0cnajdnah!22~snahcnah0dnaj02snah0cnahdnaj!2

~cn2aj1b2sn2aj!~cn2 ah2b2sn2 ah!~cn2aj01b2sn2aj0!~cn2 ah02b2sn2 ah0!
.

To the best of the author’s knowledge, Chaundy’s equation written as~17! and the associated
Riemann function~18! have not previously been published, including subcases. They are
pletely new.

System 2: For the symmetryS112S2 we find the separable coordinate system

r 5tanFa
~j1h!

2 G , s5tanFa
~j2h!

2 G . ~19!

Substituting~19! into ~1! yields

Ujj2Uhh1a2Fm1~12m1!

sin2 aj
2

m2~12m2!

sin2 ah
1

m3~12m3!

cos2 aj
2

m4~12m4!

cos2 ah GU50. ~20!

The Riemann function for~20! is then

R~j,h,j0 ,h0!5FB~m1 ,m2 ,m3 ,m4,12m1,12m2,12m3,12m4,1,z9 ,z10,z11,z12!, ~21!

where

z95
cosa~j2j0!2cosa~h2h0!

2 sinaj sinaj0
, z105

cosa~h2h0!2cosa~j2j0!

2 sinah sinah0
, ~22!

z115
cosa~j2j0!2cosa~h2h0!

2 cosaj cosaj0
, z125

cosa~h2h0!2cosa~j2j0!

2 cosah cosah0
. ~23!

System 3: For the symmetryS122S2 we find the separable coordinate system

r 5tanhFa
~j1h!

2 G , s5tanhFa
~j2h!

2 G . ~24!

Substituting~24! into ~1! yields

Ujj2Uhh1a2Fm1~12m1!

sinh2 aj
2

m2~12m2!

sinh2 ah
1

m3~12m3!

cosh2 ah
2

m4~12m4!

cosh2 aj GU50. ~25!

The Riemann function for~25! is now

R~j,h,j0 ,h0!5FB~m1 ,m2 ,m3 ,m4,12m1,12m2,12m3,12m4,1,z13,z14,z15,z16!, ~26!
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where

z135
cosha~h2h0!2cosha~j2j0!

2 sinhajsinhaj0
, z145

cosha~j2j0!2cosha~h2h0!

2 sinhah sinhah0
, ~27!

z155
cosha~h2h0!2cosha~j2j0!

2 coshah coshah0
, z165

cosha~j2j0!2cosha~h2h0!

2 coshaj coshaj0
. ~28!

For ~25! the Riemann function whenm2(12m2)5m3(12m3)5m4(12m4)50 was first pub-
lished by Cohn15 but no connection to Chaundy or the EPD equation was made. The two pa
eter equation that results whenm3(12m3)5m4(12m4)50 was derived by Kalnins13 although
the focus was not on Riemann functions but rather separation of variables. The full equatio~25!
was first derived by Papadakis and Wood16 but no connection to symmetry operators was ma

System 4: For the symmetryS5S112qS2 , whereq,21 we find the separable coordina
system

r 5b sn a~j1h!, s5b sn a~j2h!, ~29!

where k5b2, 2q52(11b4)/b2, and 0,b,1. As in system 1,a is arbitrary andk is the
modulus of the elliptic functions. Substituting~29! into ~1! yields

Ujj2Uhh1H a2Fm1~12m1!S cn2 aj dn2 aj

sn2 aj
2~12k2!2

sn2 ah

cn2 ah dn2 ah D2m2~12m2!

3S cn2 ah dn2 ah

sn2 ah
2~12k2!2

sn2 aj

cn2 ajdn2 aj D G14a2b2Fm3~12m3!S cn2 aj dn2 aj

~12b2sn2 aj!2

1
cn2 ah dn2 ah

~11b2sn2 ah!2 21D2m4~12m4!S cn2 aj dn2 aj

~11b2sn2 aj!2 1
cn2 ah dn2 ah

~12b2sn2 ah!2 21D G J U50.

~30!

The Riemann function for~30! is then

R~j,h,j0 ,h0!5FB~m1 ,m2 ,m3 ,m4,12m1,12m2,12m3,12m4,1,z17,z18,z19,z20!, ~31!

where

z175
~snah cnaj dnaj02snah0 cnaj0 dnaj!22~snaj cnah dnah02snaj0 cnah0 dnah!2

4snaj snaj0 cnah cnah0 dnah dnah0
,

z185
~snaj cnah dnah02snaj0 cnah0 dnah!22~snah cnaj dnaj02snah0 cnaj0 dnaj!2

4snah snah0 cnaj cnaj0 dnaj dnaj0
,

z195b2
~snah cnaj dnaj02snah0 cnaj0 dnaj!22~snaj cnah dnah02snaj0 cnah0 dnah!2

~12b2sn2 aj!~11b2sn2 ah!~12b2sn2 aj0!~11b2sn2 ah0!
,

z205b2
~snaj cnah dnah02snaj0 cnah0 dnah!22~snah cnaj dnaj02snah0 cnaj0 dnaj!2

~11b2sn2 aj!~12b2sn2 ah!~11b2sn2 aj0!~12b2sn2 ah0!
.
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As for system 1, Chaundy’s equation written as~30! is completely new. We have now establish
all possible separable coordinate systems for Chaundy’s full equation.

IV. A FIVE PARAMETER RIEMANN FUNCTION

In Ref. 11 Olevski� showed that the Riemann functionRr12r2
, for the equation

Uyy2Uxx1~r1~y!2r2~x!!U50, ~32!

can be given by

Rr12r2
~x,y,x0 ,y0!5Rr1

~x,y,x0 ,y0!1E
x2x0

y2y0
Rr1

~ t,y,0,y0!
]

]t
Rr2

~x,t,x0,0!dt, ~33!

whereRr1
andRr2

are the Riemann functions for

Uyy2Uxx1r1~y!U50

and

Uyy2Uxx2r2~x!U50.

Looking through the results from the previous section,~20! and~25! can both be applied to~33!.
First let m1(12m1)5m3(12m3)50 anda→l1 in ~20! to obtain

Ujj2Uhh2l1
2Fm2~12m2!

sin2 l1h
1

m4~12m4!

cos2 l1h GU50, ~34!

which has the Riemann function

R4~j,h,j0 ,h0!5F3~m2 ,m4,12m2,12m4,1,z10,z12!, ~35!

wherez10 andz12 are defined in~22! and ~23!. Analogously we can obtain

Ujj2Uhh1l2
2Fm1~12m1!

sinh2 l2j
2

m3~12m3!

cosh2 l2j GU50 ~36!

from the PDE~25!. The Riemann function for~36! is

R5~j,h,j0 ,h0!5F3~m1 ,m3,12m1,12m3,1,z13,z16!, ~37!

wherez13 andz16 were defined in~27! and ~28!.
Combining~34! and ~36! in ~33! we find that the Riemann function for the equation

Ujj2Uhh1Fl2
2S m1~12m1!

sinh2 l2j
2

m3~12m3!

cosh2 l2j D2l1
2S m2~12m2!

sin2 l1h
1

m4~12m4!

cos2 l1h D GU50 ~38!

is given by

R~j,h,j0 ,h0!5F3~m2 ,m4,12m2,12m4,1,z33,z34!

1E
j2j0

h2h0
F3~m2 ,m4,12m2,12m4,1,u1~ t !,u2~ t !!

3
]

]t
F3~m1 ,m3,12m1,12m3,1,v1~ t !,v2~ t !!dt, ~39!
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where

u1~ t !5
cosl1~h2h0!2cosl1t

2 sinl1h sinl1h0
, u2~ t !5

cosl1~h2h0!2cosl1t

2 cosl1 h cosl1h0

v1~ t !5
coshl2t2coshl2~j2j0!

2 sinhl2j sinhl2j0
, v2~ t !5

coshl2~j2j0!2coshl2t

2 coshl2j coshl2j0
.

The ratiol1 /l2 is essential in~38!. It is possible to transform away eitherl1 or l2 via a change
of variables, but not both. It is useful to write the equation as~38! though, which at first glance
incorporates six parameters, as the equation is then symmetric. Effectively a five paramet
mann function has been obtained. Equation~38! contains one more essential parameter th
Chaundy’s equation~1!. There is strong evidence to suggest that~38! is not isomorphic to Chaun
dy’s equation~1!. There are several reasons for this. First~38! possesses no nontrivial first-orde
symmetries and repeating the calculations of Sec. II shows that it has no second-order sym
operators either. So combining~34! and ~36! in the addition formula destroys the symmetri
found in Sec. II. Of course this does not rule out the possibility of a contact, or other typ
transformation, between~1! and~38! but the author believes that this is unlikely. Secondly, dur
the course of analyzing Chaundy’s equation the unusual fact that the independent va
z1 ,...,z4 of ~1! are linearly dependent was discovered. In fact a few calculations will show

1

z1
1

1

z2
1

1

z3
1

1

z4
52,

wherez1 ,...,z4 are given by~3! and ~4!. If a parallel calculation is performed with the indepe
dent variables of~38!, then this linear relationship is lost. Effectively

1

z9
1

1

z11
1

1

z13
1

1

z16
Þ2.

The loss of such a property adds further weight to the conjecture that the two equations a
isomorphic.
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Historically Lie algebras of first-order symmetry operators have proven to be a
useful method for finding equivalence classes of Riemann functions. Here this idea
is extended to higher order symmetries. The approach is to seek self-adjoint linear
hyperbolic partial differential equations that separate variables in more than one
coordinate system under the action of the groupE(1,1). The equations derived
admit no nontrivial first-order operators and can only be obtained from second-
order symmetry operators. Using this symmetry structure, a new equivalence class
of Riemann functions can then be found. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1763002#

I. INTRODUCTION

The idea of applying first-order symmetry operators to Riemann’s method has been
investigated.1–6 The hyperbolic partial differential equation in two variables~PDE!,

L@U#5Uyy2Uxx1a~x,y!Uy2b~x,y!Ux1c~x,y!U50, ~1!

will admit a four-dimensional Lie algebra of first order symmetries if and only if the invaria

p5
k

h
, q5

lnuhuyy2xx

h
, ~2!

are constants~if h50 then swapk andh). Whenp or q ~or both of them! is not constant then the
symmetry algebra is two-dimensional or less. Hereh andk are Laplace invariants of~1!,

h5S ]

]y
1

]

]xD ~a1b!1
1

2
~a22b2!2c, k5S ]

]y
2

]

]xD ~a2b!1
1

2
~a22b2!2c.

When p and q are constant withqÞ0, removing the trivial symmetry of scaling solutions by
constant yields a symmetry algebra isomorphic to sl~2,R!. Using this fact, it is straightforward to
show that an invertible transformation exists between~1! and the Euler–Poisson–Darboux equ
tion ~EPD!,

Uyy2Uxx2
m~12m!

x2 U50. ~3!

This is Riemann’s original example.7 Bluman1 was the first to show how to explicitly calculate th
Riemann function from the symmetry operators as

R~x,y,x0 ,y0!52F1~m,12m;1;z0!, ~4!

where

z05
~y2y0!22~x2x0!2

4xx0
, ~5!
30010022-2488/2004/45(8)/3001/18/$22.00 © 2004 American Institute of Physics
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and 2F1 is the hypergeometric function. The case whenq50 corresponds to confluent forms o
the EPD equation. Recall that the Riemann function must satisfy~1! and

Rx1Ry5 1
2 ~a1b!R on y2y05x2x0 , ~6!

Rx2Ry52 1
2 ~a2b!R on y2y052~x2x0!, ~7!

R~x0 ,y0 ,x0 ,y0!51. ~8!

In this paper we consider the self-adjoint form of~1!,

Uyy2Uxx1V~x,y!U50. ~9!

In direct analogy to the results for Lie algebras of first-order operators isomorphic to sl~2,R!, the
aim here is to derive Riemann functions for~9! by applying second-order linear symmetry ope
tors. Effectively we shall seek restrictions on the coefficientV(x,y) in ~9! so that the Riemann
function can be determined. In Ref. 8 a link between second-order symmetry operators
Riemann’s method was established where it was shown that Chaundy’s equation9 admitted a
two-dimensional vector space of second-order operators that lead to 4 inequivalent orbits. C
dy’s PDE is the most general self-adjoint equation for which the Riemann function is known.
orbit corresponded to a separable coordinate system. In this way a new equivalence c
Riemann functions was found. So by carefully choosing the form ofV(x,y) in ~9! a rich symmetry
structure can be built. The goal is then to connect these resulting PDEs to their Riemann fun
by using the properties of the symmetries.

Here we shall derive the separable forms of~9! under the action of the groupE(1,1). The
groupE(1,1) is chosen as it is the symmetry group for the Laplace equation (V(x,y)[const in
~9!!.10 By seeking those equations that separate variables in more than one coordinate s
suitable restrictions onV(x,y) can be determined so that vector spaces of second-order symm
operators are obtained. Equation~9! will not admit E(1,1) as a symmetry group but the pu
differential parts of the second-order symmetry operators belong to the enveloping algebra
Lie algebrae(1,1) of first-order differential operators that commute withL85]yy2]xx . The PDEs
found are then candidate equations for which the Riemann function is sought. The trick
identify the Riemann function in one of the candidate equations. In many cases this is poss
linking the proposed PDE to the separable forms of Chaundy’s equation found in Ref. 8 a
other known results. In fact one case will prove to be a new confluent form of Chau
equation.9

Unlike earlier symmetry studies, the equations derived here admit no nontrivial first-
symmetry operators. They are obtainable only via second-order symmetries. In this way, w
construct a new equivalence class of Riemann functions. The study is then a natural exten
the results already derived for first-order operators.

In Sec. II, the separable forms of~9! are found. Section III details the calculation of tho
equations that separate variables in more than 1 coordinate system. In Sec. IV the Ri
functions are found where possible. Section V summarizes the results.

II. DERIVATION OF THE SEPARABLE POTENTIALS

For the groupE(1,1), the inequivalent second-order symmetric operators and the asso
separable coordinate systems were established by Kalnins.10 Define P15]y , P25]x , and M
5x]y1y]x , then the second-order symmetry operators have differential part
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M2, P1P2 , $M ,P1%, $M ,P2%, $M ,P11P2%1~P12P2!2,

P2
2 , M22P1P2 , M26~P11P2!2, M26P2

2 ,

~P11P2!2, $M ,P12P2%,

where$a,b%5ab1ba. Standard techniques exist in the literature for calculating the sepa
forms of ~9!. Taking the first operator and following Winternitz11 and Miller,12 define

L5]yy2]xx1V~x,y!, ~10!

S5M21 f ~x,y!, ~11!

where f (x,y) is an arbitrary function.S is a symmetry operator of~9! provided that

@L,S#50. ~12!

In Ref. 11 the functionV(x,y) is called the potential function. So for historical reasons, we s
also use this nomenclature. The search for multiseparable potentials has been an active
investigation now for nearly 40 years. Multiseparable systems, such as the ones sought h
called superintegrable in the literature.11,13–17

For the symmetryM2, solving ~12! yields three equations

xy
]V

]y
1y2

]V

]x
2

] f

]x
50, ~13!

xy
]V

]x
1x2

]V

]y
1

] f

]y
50, ~14!

x2
]2V

]y2 12xy
]2V

]x]y
1y2

]2V

]x2 1x
]V

]x
1y

]V

]y
1

]2f

]y2 2
]2f

]x2 50. ~15!

Eliminating f from ~13! and ~14! produces a special case of the well-known Bertrand–Darb
equation

xyS ]2V

]y2 1
]2V

]x2 D1~y21x2!
]2V

]y]x
13y

]V

]x
13x

]V

]x
50. ~16!

Now make the change of variables

x5ej coshh,

y5ej sinhh

in ~16! which is in fact the separable coordinate system for the Laplace equation correspond
the symmetryM2.10 Thus we obtain

Vjh12Vh50

which has the solution

V5
V1~j!1V2~h!

e2j

and
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S5M22V2~h!.

This is then the form of the separable potential for the symmetryM2. The other cases ar
analogous and the results are summarized in Table I.

III. POTENTIALS WITH TWO OR MORE INVARIANTS

In order to obtain a separable potential with a corresponding known Riemann functio
seek separability in more than one coordinate system. The idea is then to identify the Ri
function for the equation in one of its different coordinate systems. First we shall consider
cases which separate variables in Cartesian and one other coordinate system. Hence start
systems A and B.

A. Invariants A and B

We must find a potential which can be written in the form

V~x,y!5V1~x!1V2~y!5 f ~j!1
g~h!

e2j , ~17!

wherex5ej coshh, y5ej sinhh. From ~17! it follows that

TABLE I. Separable potentials.

Symmetry Separable coordinates Potential

~A! P1P2 , P2
2, (P11P2)2 x y V1(x)1V2(y)

~B! M2 x5ej coshh
y5ej sinhh

V1~j!1V2~h!

e2j

~C! $M ,P1%, $M ,P2% x5
1
2(j21h2)

y5jh
V1~j!1V2~h!

h22j2

~D! $M ,P11P2%1(P12P2)2
x5

1
2(j2h)22(j1h)

y5
1
2(j2h)21(j1h)

V1~j!1V2~h!

h2j

~E! M22P1P2
x5

1

2
coshSj2h

2 D1 1

2
sinhSj1h

2 D V1~j!1V2~h!

sinhj2sinhh

y5
1

2
coshSj2h

2 D2 1

2
sinhSj1h

2 D
~F! M22(P11P2)2 x5cosh(j2h)2ej1h

y5cosh(j2h)1ej1h
V1~j!1V2~h!

e2j2e2h

~G! M21(P11P2)2 x5sinh(j2h)2ej1h

y5sinh(j2h)1ej1h
V1~j!1V2~h!

e2j1e2h

~H! M21P2
2 x5sinhj coshh

y5coshj sinhh
V1~j!1V2~h!

sinh2 j1cosh2 h

~I! M22P2
2 x5sinj sinh

y5cosj cosh
V1~j!1V2~h!

cos2 h2cos2 j

x5sinhj sinhh
y5coshj coshh

V1~j!1V2~h!

cosh2 j2cosh2 h

~J! $M ,P12P2% No separable
coordinates

No separable
potential
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]2

]j]h
e2j@V1~ej coshh!1V2~ej sinhh!#50,

which can be solved by separation of variables to obtain

V~x,y!5a~y22x2!1
b1

y2 1
b2

x2 , ~18!

wherea is the separation constant andb1 andb2 are constants of integration. This leads to t
following pair of equations:

Uyy2Uxx1Fa~y22x2!1
b1

y2 1
b2

x2 GU5lU, ~19!

Ujj2Uhh1Fae4j2le2j1
b1

sinh2 h
1

b2

cosh2 h GU50. ~20!

Note that an extra constantl has been introduced. This is because the groupE(1,1) guarantees
Liouville-type potentials.11

The potential~18! also arises for other invariants as a similar calculation on systems A a
as well as A and I produces the same potential~18!. Hence using the corresponding coordina
systems for each of these invariants, we find the following separable equations:

Ujj2Uhh1Fa~cos4 h2cos4 j2cos2 h1cos2 j!1l~cos2 j2cos2 h!

1b1S 1

cos2 j
2

1

cos2 h D1b2S 1

sin2 h
2

1

sin2 j D GU50, ~21!

Ujj2Uhh1Fa~cosh4 h2cosh4 j2cosh2 h1cosh2 j!7l~cosh2 h6cosh2 j!

1b1S 1

cosh2 j
6

1

cosh2 h D1b2S 1

sinh2 h
6

1

sinh2 j D GU50. ~22!

B. Invariants A and E

For the invariants A and E, we find the potential

V~x,y!5a~y22x2!1b.

Subsequent searches also produce this potential for the invariants A and F as well as G
results in the equations

Uyy2Uxx1a~y22x2!U5lU, ~23!

Ujj2Uhh1@a~e4j2e4h!2l~e2j6e2h!#U50, ~24!

Ujj2Uhh1@a~sinh2 j2sinh2 h!2l~sinhj2sinhh!#U50. ~25!

Equation~23! is clearly a subcase of~19!. Thus any results obtained for the Riemann function
~19! will consequently encompass~23!–~25!.
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C. Invariants A and C

Here take

x5 1
2 ~j21h2!,

y5jh.

In this case a few calculations show that

V~x,y!5a~4x22y2!1bx1
g

y2 . ~26!

So one obtains the two equations

Uyy2Uxx1Fa~4x22y2!1bx1
g

y2GU5lU, ~27!

Ujj2Uhh1Fa~h62j6!1
b

2
~h42j4!1l~h22j2!1gS 1

j2 2
1

h2D GU50. ~28!

D. Invariants A and D

Here we try

x5 1
2 ~j2h!22~j1h!,

y5 1
2 ~j2h!21~j1h!.

This choice of coordinates results in the potential

V~x,y!5a~y2x!1b.

Hence we obtain the two equations

Uyy2Uxx1a~y2x!U5lU, ~29!

Ujj2Uhh1@8a~j22h2!24l~j2h!#U50, ~30!

where the constantl incorporatesb.

E. Other combinations of invariants

The study of those potentials which separate variables in Cartesian and one other coo
system is now complete. However direct calculation shows that other combinations of inva
do not yield new nontrivial potentials. To qualify this, consider the invariants B and C. They

V~x,y![
1

j22h2 S a1
b1

j2 1
b2

h2D ,

or in other words, the two equations

Uff2Urr 1Fa2 er1
1

4 S b1

cosh2~f/2!
1

b2

sinh2~f/2! D GU5le2rU,
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Ujj2Uhh1S a1l~h22j2!1
b1

j2 1
b2

h2DU50.

Both of these equations have already been seen in this paper. This then exhausts the pos
for the groupE(1,1).

IV. THE CORRESPONDING RIEMANN FUNCTIONS

In order to make the reference potentials of Sec. III useful, we must find the accompa
Riemann functions for each case. The key is that the nine coordinate systems of Table
contained within the set of transformations,T, consisting of

x5f~j1h!1c~j2h!,

y5f~j1h!2c~j2h!,

wheref,cPC2 are arbitrary functions, andf8,c8 do not vanish. This is the general solution
the vibrating string equations

]j

]y
5

]h

]x
,

]j

]x
5

]h

]y
.

Importantly the Riemann functionR(x,y,x0 ,y0) is conformally invariant underT.18 This means
that the conditions~6!–~8!, which essentially define Riemann’s method, remain consistent
respect to functional structures if the variablesx,y are replaced byj, h. Hence if the Riemann
function can be found for one of the equations corresponding to a given set of invariants, th
Riemann function for the remaining equations can simply be obtained by a transformati
variables.

All the equations found in Sec. III are of the form

Uyy2Uxx1@r1~y!2r2~x!#U50. ~31!

Olevski�19 showed that the Riemann function,Rr12r2
of ~31! can be given by

Rr12r2
~x,y,x0 ,y0!5Rr1

~x,y,x0 ,y0!1E
y2y0

x2x0
Rr1

~x,t;x0,0!
]

]t
Rr2

~ t,y,0,y0!dt, ~32!

where for instanceRr1
is the Riemann function for~31! with r250. This addition formula greatly

simplifies the task of finding the Riemann solution. Among the families of equations that we
generated it is simply a question of picking the right equation for which the Riemann functio
most easily be identified in the literature.

A. Riemann function for the invariants A, B, H, and I

Of the equations~19!–~22! found in Sec. III A, the keys to finding the Riemann function a
~19! and ~20!. Unfortunately though, the author must impose the restriction that eithera50 or
l50 in order to satisfy Riemann’s method. To illustrate why this is the case take~20!. For this
equation, Olevski�’s addition formula means that instead of treating the whole equation it is
necessary to find the Riemann functions for

Ujj2Uhh1~ae4j2le2j!U50 ~33!

and

Ujj2Uhh1F b1

sinh2 h
1

b2

cosh2 h GU50. ~34!
                                                                                                                



’s

ation
as
e
rmore

ann

3008 J. Math. Phys., Vol. 45, No. 8, August 2004 P. J. Zeitsch

                    
The Riemann function for~34! is straightforward. In Ref. 8 the hyperbolic form of Chaundy
equation

Ujj2Uhh1Fm1~12m1!

sinh2 j
2

m2~12m2!

sinh2 h
1

m3~12m3!

cosh2 h
2

m4~12m4!

cosh2 j G50, ~35!

has the Riemann function

R~j,h,j0 ,h0!5FB~m1 ,m2 ,m3 ,m4 ;12m1,12m2,12m3,12m4 ;1;z1 ,z2 ,z3 ,z4!,

where

z15
cosh~h2h0!2cosh~j2j0!

2 sinhj sinhj0
, z25

cosh~j2j0!2cosh~h2h0!

2 sinhh sinhh0
, ~36!

z35
cosh~h2h0!2cosh~j2j0!

2 coshh coshh0
, z45

cosh~j2j0!2cosh~h2h0!

2 coshj coshj0
. ~37!

Settingm15m450 andb152m2(12m2), b25m3(12m3) reduces the solution to

R~j,h,j0 ,h0!5F3~m2 ,m3 ;12m2,12m3 ;1,z2 ,z3!,

which satisfies~34!. Equation~33! is harder to deal with. Cohn2 has shown how to find the
Riemann function for~33! when eithera50 or l50. However if botha andl are nonzero the
problem is much more difficult. The differing coefficients in the exponentials prevent the equ
from being a confluent form of~35!. Olevski�’s addition formula could be applicable here
Zhdanov, Revenko and Fushchych20 have shown that~33! itself is separable. Unfortunately th
other separable forms of the equation do not eliminate the differing coefficients. Furthe
Zhdanovet al. list ~33! as one of the inequivalent separable forms of the equationUyy2Uxx

1V(x)U50. Hence it is not easily transformable to any other PDE for which the Riem
solution is known. So in order to satisfy Riemann’s method one must choose eithera or l to be
zero.

If a50 the Riemann function for the whole equation~19! is then21

R~x,y,x0 ,y0!5FB~m1,12m1 ,m2,12m2,1,z5 ,z6 ,z7!,

whereb15m1(12m1), b252m2(12m2) with

z55
~x2x0!22~y2y0!2

4yy0
, z65

~y2y0!22~x2x0!2

4xx0
, ~38!

and

z75
l

4
@~x2x0!22~y2y0!2#. ~39!

To further our analysis, consider the new option of takingl50. From Cohn,2 the Riemann
function for ~33! with l50 is

R~j,h,j0 ,h0!5J0~z8!,

where

z85 1
2Aa~e2(j1h)2e2(j01h0)!~e2(j2h)2e2(j02h0)!.

Putting this all together, and using~32!, the Riemann function for
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Ujj2Uhh1Fae4j2
m1~12m1!

sinh2 h
1

m2~12m2!

cosh2 h GU50 ~40!

is given by

R~j,h,j0 ,h0!5J0~z8!1E
h2h0

j2j0
J0@u1~ t !#dF3@m1 ,m2,12m1,12m2,1,v1~ t !,v2~ t !#, ~41!

where

v1~ t !5
cosh~ t !2cosh~h2h0!

2 sinhh sinhh0
, v2~ t !5

cosh~h2h0!2cosh~ t !

2 coshh coshh0
, ~42!

u1~ t !5 1
2Aa~e2(j1t)2e2(j0)!~e2(j2t)2e2(j0)!. ~43!

Rewriting the PDE~9! as

Ujj2Uhh1@V~j!2V~h!#U50

we gain the following new potentials for which the Riemann function is now known:

V~j!5c1j21
c2~12c2!

j2 ,

V~j!5c1~cos4 j2cos2 j!1
c2~12c2!

cos2 j
2

c3~12c3!

sin2 j
,

V~j!5c1~cosh4 j2cosh2 j!1
c2~12c2!

cosh2 j
2

c3~12c3!

sinh2 j
.

A link to Chaundy’s equation: A closer inspection of~40! shows that it is in fact a confluen
form of Chaundy’s equation9

Urs1Fm1~12m1!

~r 1s!2 2
m2~12m2!

~r 2s!2 1
m3~12m3!

~12rs!2 2
m4~12m4!

~11rs!2 GU50. ~44!

The Riemann function for this equation is

R~r ,s,r 0 ,s0!5FB~m1 ,m2 ,m3 ,m4 ;12m1,12m2,12m3,12m4 ;1;z9 ,z10,z11,z12!, ~45!

where

z952
~r 2r 0!~s2s0!

~r 1s!~r 01s0!
, z105

~r 2r 0!~s2s0!

~r 2s!~r 02s0!
, ~46!

z1152
~r 2r 0!~s2s0!

~12rs!~12r 0s0!
, z125

~r 2r 0!~s2s0!

~11rs!~11r 0s0!
. ~47!

In Ref. 8 it was shown that there exists a second-order symmetry operator that maps~44! to ~35!,
and likewise the Riemann solutions via the separable coordinate systemr 5exp(j1h), s5exp(j
2h). So now choose the hyperbolic form~35! of Chaundy’s equation and letm1(12m1)
5m4(12m4)5a/2 which may then be rewritten as
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Ujj2Uhh1F a

sinh2 2j
2

m2~12m2!

sinh2 h
1

m3~12m3!

cosh2 h G50. ~48!

Translate the origin by setting

j°j2n, j0°j02n, a°
a

4
e4n ~49!

and take the limit asn→`. This reduces~48! to ~40!.
In Ref. 8, Chaundy’s equation was shown to possess a two-dimensional vector sp

second-order symmetry operators. Hence the increased dimension of the vector space adm
the confluent form~40! of Chaundy’s equation is new.

B. Comments on the Riemann function for the invariants A, E, F, and G

As previously mentioned, the Riemann function~40! derived in Sec. IV A also includes th
equations of Sec. III D. Unfortunately though, the restrictions placed on the coefficientsa andl
imply that ~23!–~25! are reduced to readily obtainable confluent forms of Chaundy’s equa
~44!. To see this take~24!, with a50, say. This produces the reference potential

V~j!5e4j.

But the transformation~49! applied to bothj andh in ~35! yields ~24! with eithera or l equal to
zero depending on the scaling used. This potential has therefore already been discussed.

Similarly for ~25!, if l50, then no new potential is found. Lettinga50 results in the
potential

V~j!5sinhj,

which is not among the potentials from Sec. IV A. However such an option is easily obtained
the Klein–Gordon or Telegrapher’s equation, which is itself a confluent form of Chaun
equation.21 So the results for these invariants are included only for completeness. In ord
obtain significant results from Sec. III D the Riemann function for the full equation~24! would
need to be found. Unfortunately this remains an open problem.

C. Riemann function for the invariants A and C

For the two equations found in Sec. III C, the problem of finding the Riemann function w
a, b, g, andl are all nonzero is quite difficult. The author has not had any success in this re
However if we leta50, then the Riemann function can easily be obtained. So consider~27! with
a50,

Uyy2Uxx1Fbx1
g

y2GU5lU. ~50!

There are then two ways to separate variables in~50! as the constantl may be grouped with eithe
of the independent variables. Of the two options, take the equations

Uyy2Uxx1Fg~12g!

y2 2l GU50 ~51!

and

Uyy2Uxx1bxU50. ~52!

Note thatg has been rescaled. From Ref. 21 the Riemann function for~51! is
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R1~x,y,x0 ,y0!5J2~g,12g,1,z5 ,z7!, ~53!

wherez5 is given by~38! andz7 by ~39!.
On the other hand, in order to solve~52!, the results of Wahlberg22 are required who found

that the Riemann function for

Uyy2Uxx1~11dx!U50 ~54!

can be represented by the contour integral

R~x,y,x0 ,y0!5
1

2p i EG
expH F11

d

2
~x1x0!Gz2

~y2y0!22~x2x0!2

4z
2

d2

12
z3J dz

z
,

whereG is defined byuzu5r, encircling the origin in the positive direction~since the integrand is
analytic everywhere except atz50, G can be taken to be any closed contour encircling the or
in the positive direction!.

Alternatively, as Wahlberg showed, expanding exp(2d2z3/12) of the integrand as a powe
series then applying the formula

Jn~a!5
1

2p i EG
z2n21 expF1

2
aS z2

1

zD Gdz

for the Bessel function of ordern, gives

R~x,y,x0 ,y0!5 (
n50

`
Vn

n!
J3n~D!, ~55!

where

V5
d2

96S ~y2y0!22~x2x0!2

11
d

2
~x1x0! D 3/2

, ~56!

D5H F11
d

2
~x1x0!G@~y2y0!22~x2x0!2#J 1/2

. ~57!

By inspection,~52! is just ~54! up to translation inx. Specifically if we let

x°x2
1

d
, x0°x02

1

d
, d°b,

then ~54! yields ~52! as required. For the Riemann function, applying this same change of
ables to~55! gives

R2~x,y,x0 ,y0!5 (
n50

`
V2

n

n!
J3n~D2!, ~58!

where now

V25
b2

96F ~y2y0!22~x2x0!2

b

2
~x1x0! G 3/2

, ~59!
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D25H b

2
~x1x0!@~y2y0!22~x2x0!2#J 1/2

. ~60!

Applying Olevski�’s addition formula~32!, the Riemann function for~50! is

R~x,y,x0 ,y0!5R2~x,y,x0 ,y0!1E
y2y0

x2x0
R2~x,t;x0,0!

]

]t
R1~ t,y,0,y0!dt, ~61!

whereR1 andR2 are defined by~53!–~60!. From ~28! another new reference potential for~9! is
then

V~j!5
c1

2
j41c2j21

c3~12c3!

j2 .

A quick calculation shows that~50! has a trivial first-order symmetry algebra. Hence~50! and~28!
with a50 are not isomorphic to any other equations via a point transformation. Furthermo
second-order symmetries used here are inequivalent as are the equations they generate so
also state that~50! and ~28! are not transformable to any other equation via a second-o
operator. Hence precluding the possibility of contact transformations we may conclude th
Riemann functions for these two equations are new.

D. Riemann function for the invariants A and D

For the two equations found in Sec. III D, the Riemann function is most easily found for~29!.
Applying Olevski�’s addition formula to~29! requires the Riemann functions for

Uyy2Uxx1axU50 ~62!

and

Uyy2Uxx1~ay2l!U50. ~63!

Equation~62! is just ~52! with a5b. Hence the Riemann function for~62! is ~58!–~60! with a
5b. Similarly interchanging the roles ofx andy and translating the origin by

y°y2
1

d
1

l

d
, y0°y02

1

d
1

l

d
, d°2a

transforms~54! into ~63!. Hence the Riemann function for this equation is

R3~x,y,x0 ,y0!5 (
n50

`
V3

n

n!
J3n~D3!, ~64!

where

V35
a2

96F ~y2y0!22~x2x0!2

l1
a

2
~y1y0! G 3/2

, ~65!

D35H Fa2 ~y1y0!1l G@~y2y0!22~x2x0!2#J 1/2

. ~66!

Now applying Olevski�’s addition formula~32!, the Riemann function for~29! is
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R~x,y,x0 ,y0!5R2~x,y,x0 ,y0!1E
y2y0

x2x0
R2~x,t;x0,0!

]

]t
R3~ t,y,0,y0!dt, ~67!

whereR2 andR3 are given, respectively, by~58!–~60! with b5a and ~64!–~66!.
From ~30! we obtain the potential

V~j!5c1j21c2j.

Applying similar arguments to the previous section, both~29! and ~30! also represent new equa
tions for which the Riemann function is now known.

V. SUMMARY

The aim of this paper was to develop a methodology for deriving equivalence class
Riemann functions from second-order symmetry operators in an analogous way to the
already in place for first-order symmetries. So let us collect together the results. For the P

Ujj2Uhh1@V~j!2V~h!#U50

the following is a list of all potentials,V(j), for which the Riemann function was found under t
action of the groupE(1,1).

Case 1: V(j)5c1j4/21c2j21c3(12c3)/j2.

R~j,h,j0 ,h0!5R2~j,h,j0 ,h0!1E
Ll

Lu
R2F1

2
~j21h2!,t,

1

2
~j0

21h0
2!,0G ]

]t
R1~ t,jh,0,j0h0!dt,

such thatLl5jh2j0h0 , Lu5 1
2(j

22j0
21h22h0

2) and

R1~ t,jh,0,j0h0!5J2~c3,12c3,1,u1~ t !,u2~ t !!,

where

u1~ t !5
~ t22jh2j0h0!2

4jj0hh0
, u2~ t !5

c2

4
@ t22~jh2j0h0!2#,

and

R2~j,h,j0 ,h0!5 (
n50

`
V2

n

n!
J3n~D2!,

where

V25
b2

96 H @~h1h0!22~j1j0!2#@~j2j0!22~h2h0!2#

b~j21h21j0
21h0

2! J 3/2

,

D25H b

8
~j21h21j0

21h0
2!@~h1h0!22~j1j0!2#@~j2j0!22~h2h0!2#J 1/2

,

with

R2F1

2
~j21h2!,t,

1

2
~j0

21h0
2!,0G5 (

n50

`
V28

n~ t !

n!
J3n~D28~ t !!,

where
                                                                                                                



3014 J. Math. Phys., Vol. 45, No. 8, August 2004 P. J. Zeitsch

                    
V285
b2

96H 4t22@~j22j0
2!1~h22h0

2!#2

b~j21j0
21h21h0

2! J 3/2

,

D285H b

16
~j21j0

21h21h0
2!@4t22@~j22j0

2!1~h22h0
2!#2#J 1/2

.

Case 2: V(j)5c1j21c2j.

R~j,h,j0 ,h0!5R2~j,h,j0 ,h0!1E
Ll

Lu
R2F1

2
~j2h!22~j1h!,t,

1

2
~j02h0!22~j01h0!,0G

3
]

]t
R3F t,

1

2
~j2h!21~j1h!,0,

1

2
~j02h0!21~j01h0!Gdt

such that Ll5
1
2@(j2h)22(j02h0)2#1(j2j0)1(h2h0), Lu5 1

2@(j2h)22(j02h0)2#2(j
2j0)2(h2h0) and

R2~j,h,j0 ,h0!5 (
n50

`
V2

n

n!
J3n~D2!,

where

V25
b2

96 H 4@~j1j0!2~h1h0!#@~j2j0!22~h2h0!2#

b@@~j2h!21~j02h0!2#22~j1j01h1h0!# J
3/2

,

D25H b

4
@~j2h!21~j02h0!222~j1j01h1h0!#

3@@~j1j0!2~h1h0!#@~j2j0!22~h2h0!2##J 1/2

,

as well as

R2F1

2
~j2h!22~j1h!,t,

1

2
~j02h0!22~j01h0!,0G5 (

n50

`
V28

n

n!
J3n~D28!,

where

V285
b2

96 H 4t22@~j2h!22~j02h0!222~j2j01h2h0!#2

b@~j2h!21~j02h0!222~j1j01h1h0!# J 3/2

,

D285H b

16
@~j2h!21~j02h0!222~j1j01h1h0!#

3@4t22@~j2h!22~j02h0!222~j2j01h2h0!#2#J 1/2

,

and

R3F t,
1

2
~j2h!21~j1h!,0,

1

2
~j02h0!21~j01h0!G5 (

n50

`
V38

n

n!
J3n~D38!,

where
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V385
a2

96 H @~j2h!22~j02h0!212~j2j01h2h0!#224t2

4l1a@~j2h!21~j02h0!212~j1j01h1h0!# J
3/2

,

D385
1

16
$@a@~j2h!21~j02h0!212~j1j01h1h0!#14l#

3@@~j2h!22~j02h0!222~j2j01h2h0!#224t2#%1/2.

Case 3: V(j)52c1 cos2 j1c2(12c2)/cos2 j2c3(12c3)/sin2 j.

R~j,h,j0 ,h0!5FB~c2 ,c3,12c2,12c3 ;1;z13,z14,z15!,

where

z135
@cos~h1h0!2cos~j1j0!#@cos~j2j0!2cos~h2h0!#

4 cosj coshcosj0 cosh0
,

z145
@cos~h1h0!2cos~j1j0!#@cos~h2h0!2cos~j2j0!#

4 sinj sinh sinj0 sinh0
,

z155
c1

4
@cos~h1h0!2cos~j1j0!#@cos~j2j0!2cos~h2h0!#.

Case 4: V(j)52c1 cosh2 j1c2(12c2)/cosh2 j2c3(12c3)/sinh2 j.

R~j,h,j0 ,h0!5FB~c2 ,c3,12c2,12c3 ;1;z16,z17,z18!,

where

z165
@cosh~h1h0!2cosh~j1j0!#@cosh~j2j0!2cosh~h2h0!#

4 coshj coshh coshj0 coshh0
,

z175
@cosh~h1h0!2cosh~j1j0!#@cosh~h2h0!2cosh~j2j0!#

4 sinhj sinhh sinhj0 sinhh0
,

z185
c1

4
@cosh~h1h0!2cosh~j1j0!#@cosh~j2j0!2cosh~h2h0!#.

Case 5: V(j)5c1(cos4 j2cos2 j)1c2(12c2)/sin2 j2c3(12c3)/cos2 j.

R~j,h,j0 ,h0!5R4~j,h,j0 ,h0!1E
Ll

Lu
R4F1

2
ln~sin2 h2cos2 j!,t,

1

2
ln~sin2 h02cos2 j0!,0G

3
]

]t
R5F t,

1

2
lnS tanh tanj11

tanh tanj21D ,0,
1

2
lnS tanh0 tanj011

tanh0 tanj021D Gdt

with

Ll5
1

2
lnF ~ tanh tanj11!~ tanh0 tanj021!

~ tanh tanj21!~ tanh0 tanj011!G ,
Lu5

1

2
lnS sin2 h2cos2 j

sin2 h02cos2 j0
D
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and

R4~j,h,j0 ,h0!5J0~z19!,

R4F1

2
ln~sin2 h2cos2 j!,t,

1

2
ln~sin2 h02cos2 j0!,0G5J0~u3~ t !!,

R5F t,
1

2
lnS tanh tanj11

tanh tanj21D ,0,
1

2
lnS tanh0 tanj011

tanh0 tanj021D G5F3~c2 ,c3,12c2,12c3,1,v3~ t !,v4~ t !!,

where

z195
1

2
Ac1F ~sin2 h2cos2 j!S tanh tanj11

tanh tanj21D2~sin2 h02cos2 j0!S tanh0 tanj011

tanh0 tanj021D G
3AF ~sin2 h2cos2 j!S tanh tanj21

tanh tanj11D2~sin2 h02cos2 j0!S tanh0 tanj021

tanh0 tanj011 D G ,
u3~ t !5 1

2Ac1@e2t~sin2 h2cos2 j!2~sin2 h02cos2 j0!#

3A@e22t~sin2 h2cos2 j!2~sin2 h02cos2 j0!#,

v3~ t !5 ~A~sin2 j2cos2 h!~sin2 j02cos2 h0! cosht2sinj sinj0 sinh sinh0

1cosj cosj0 cosh cosh0!/2 cosj cosj0 cosh cosh0 ,

v4~ t !5 ~sinj sinj0 sinh sinh01cosj cosj0 cosh cosh0

2A~sin2 j2cos2 h!~sin2 j02cos2 h0! cosht !/2 sinj sinj0 sinh sinh0 .

Case 6: V(j)5c1(cosh4 j2cosh2 j)1c2(12c2)/sinh2 j2c3(12c3)/cosh2 j.

R~j,h,j0 ,h0!5R6~j,h,j0 ,h0!1E
Ll

Lu
R6F1

2
ln~cosh2 j2cosh2 h!,t,

1

2
ln~cosh2 j02cosh2 h0!,0G

3
]

]t
R7F t,

1

2
lnS tanhj1tanhh

tanhj2tanhh D ,0,
1

2
lnS tanhj01tanhh0

tanhj02tanhh0
D Gdt

with

Ll5
1

2
lnF ~ tanhj1tanhh!~ tanhj02tanhh0!

~ tanhj2tanhh!~ tanhj01tanhh0!G ,
Lu5

1

2
lnS cosh2 j2cosh2 h

cosh2 j02cosh2 h0
D

and
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R6~j,h,j0 ,h0!5J0~z20!,

R6F1

2
ln~cosh2 j2cosh2 h!,t,

1

2
ln~cosh2 j02cosh2 h0!,0G5J0~u4~ t !!,

R7F t,
1

2
lnS tanhj1tanhh

tanhj2tanhh D ,0,
1

2
lnS tanhj01tanhh0

tanhj02tanhh0
D G5F3~c2 ,c3,12c2,12c3,1,v5~ t !,v6~ t !!,

where

z205
1

2
Ac1F ~cosh2 j2cosh2 h!S tanhj1tanhh

tanhj2tanhh D2~cosh2 j02cosh2 h0!S tanhj01tanhh0

tanhj02tanhh0
D G

3AF ~cosh2 j2cosh2 h!S tanhj2tanhh

tanhj1tanhh D2~cosh2 j02cosh2 h0!S tanhj02tanhh0

tanhj01tanhh0
D G ,

u4~ t !5 1
2Ac1@e2t~cosh2 j2cosh2 h!2~cosh2 j02cosh2 h0!#

3A@e22t~cosh2 j2cosh2 h!2~cosh2 j02cosh2 h0!#

v5~ t !5 ~A~cosh2 j2cosh2 h!~cosh2 j02cosh2 h0!cosht2sinhj sinhj0 coshh coshh0

1coshjcoshj0 sinhh sinhh0!/2 coshj coshj0 sinhh sinhh0 ,

v6~ t !5 ~sinhj sinhj0 coshh coshh02coshj coshj0 sinhh sinhh0

2A~cosh2 j2cosh2 h!~cosh2 j02cosh2 h0!cosht !/2sinhj sinhj0 coshh coshh0 .

Case 7: V(j)5(c1 sinhj)/2,

R~j,h,j0 ,h0!5J0~z21!,

where

z2152Ac1Fcosh
~j2j0!

2
2cosh

~h2h0!

2 GFcosh
~j1j0!

2
2cosh

~h1h0!

2 G .
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In a previous article, an ‘‘invariant method’’ to calculate monomial integrals over
the U(n) group was introduced. In this paper, we study the more traditional group-
theoretical method, and compare its strengths and weaknesses with those of the
invariant method. As a result, we are able to introduce a ‘‘hybrid method’’ which
combines the respective strengths of the other two methods. There are many ex-
amples in the paper illustrating how each of these methods works. ©2004 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1765214#

I. INTRODUCTION

This article deals with the calculation of integrals of the form

E ~dU! Ui 1 j 1
* ¯Ui pj p

* Uk1l 1
¯Ukql q

~1!

over the U(n) group, where (dU) is the invariant Haar measure normalized to*(dU)51, andUi j

is a U(n) matrix element, withUi j* being its complex conjugate.
These integrals and their generating functions are useful in many areas of physics, inc

two-dimensional quantum gravity,1 QCD, matrix models, and statistical and condensed-ma
problems of various sorts.2 They are also needed in the parton saturation problem at s
Feynman-x.3

The integral ~1! depends on the indicesI 5$ i 1¯ i p%,J5$ j 1¯ j p%,K5$k1¯kq%, and L
5$ l 1¯ l q%, so it will be denoted aŝIJuKL&:

^IJuKL&5E ~dU! UIJ* UKL , ~2!

where UIJ* 5)a51
p Ui aj a

* , and similarly for UKL . Since the matrix elements commute,UIJ*

5UI PJP
* , whereI P5$ i P(1)¯ i P(p)% is obtained fromI by a permutationPPSp of its p indices.

Hence

^IJuKL&5^I PJPuKTLT& ~3!

for any PPSp andTPSq .
The integral is nonzero only whenp5q, a number which will be referred to as thedegreeof

the integral. Without loss of generality, it turns out that we may assumeK5I and L to be a
permutation ofJ, namely,L5JQ for someQPSp . The value of the integral depends on what t
index setsI ,J, and what the elementQ are, so even for a givenp, there are many distinct case
The best way to distinguish them is to represent each integral by a diagram in a way
explained in the next section.

a!Electronic mail: samuel.aubert@elf.mcgill.ca
b!Electronic mail: lam@physics.mcgill.ca
30190022-2488/2004/45(8)/3019/21/$22.00 © 2004 American Institute of Physics
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Integral~1! has been computed using a graphical technique.4 It can also be obtained using th
Itzykson–Zuber formula5 as a generating function, or directly from group theory6 using the Frobe-
nius formula.7 We shall refer to this last method as thegroup-theoretical method~GTM!. In the
GTM, a general formula is available to compute~1!. It involves a triple sum over an expressio
containing characters of the symmetric groupSp , as well as the dimensions of irreducible repr
sentations ofSp and of the unitary group U(n). One of the sums is taken over all the releva
irreducible representations, and the others are taken over the symmetry groups of the indeI
andJ. These sums could be long and tedious for a largep, and for most symmetry groups.

A different way to calculate~1! was introduced in a recent paper.8 This method relies only on
the unitary nature of the matrix elements, and the invariance of the Haar measure. In particu
knowledge of group theory is necessary. The invariance of the Haar measure, as well
off-diagonal unitarity relation, are used to derive relations between integrals of the same d
The diagonal unitarity relation connects integrals of degreep with ones of degreep21. Through
a chain of these relations, the desired integral is finally related to the basic integral of deg
which is*dU51. The desired integral is then solved from this chain of relations. We have c
this method theinvariant method~IM !.

The purpose of this paper is to compare the pros and cons of the GTM with the IM. In
to do so we must first study and understand better the nature of the GTM. Armed with
comparison, we will be able to design a newhybrid methodwhich combines the strengths of the
two other methods.

The IM is reviewed in Sec. II. It is used to derive a new ‘‘double-fan’’ relation needed in
example for the hybrid method.

The GTM is reviewed and studied in Sec. III. It can be used to derive simple relations, b
relations derived in this way are nowhere as powerful as those derived with the IM. The g
theoretical formula can be used to calculate any integral, but generally that is tedious and ha
done integral by integral. However, for integrals whose two symmetry groups are disjoint, o
is contained in the other, systematics emerge to make the calculation simpler. Several o
‘‘orderly’’ integrals are studied in Sec. III.

A comparison of the strengths and weaknesses of the two methods is to be found in S
Armed with an understanding of their relative merits, we design a ‘‘hybrid method’’ in Sec.
take advantage of their respective strengths. This method is illustrated by the calculation of
of ‘‘double-fan’’ integrals. There are also four Appendixes showing details of various calculat

II. THE INVARIANT METHOD „IM…

A. A brief review

The invariant method presented in a previous paper8 can be used to calculate the integral~1!.
The method exploits the unitarity of the U(n) group elements,

(
j 51

n

Ui j* Ul j 5(
j 51

n

U ji* U jl 5d i l , ~4!

and the invariance of the Haar measure, in the form

E ~dU! f ~U,U* !5E ~dU! f ~U* ,U !5E ~dU! f ~UT,U* T!5E ~dU! f ~VU,V* U* !

5E ~dU! f ~UV,U* V* !, ~5!

for any functionf and anyVPU(n).
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The unitarity relation~4! relates integrals of the same degree ifiÞ l , and it relates integrals o
degreep to integrals of degreep21 if i 5 l . Other relations between integrals of the same deg
can be obtained from~5!, by suitable choices ofV. Here are some of them discussed in t
previous paper.8

~1! Using Vi j 5eifd i j , it follows that p must be equal toq in order to avoid the vanishing o
integral ~2!. The numberp will be called thedegreeof the integral.

~2! Using Vi j 5eif id i j , it follows that ~2! is nonzero only whenK5I M and L5JR for some
M ,RPSp . Using ~3!, and denotingRM21 by Q, only integrals of the type

^IJuIJQ&5E~dU! UIJ* UIJQ
~6!

are nonzero, so from now on we need to consider only integrals of this type.
An integral withJQ5J will be called adirect integral. For such integrals we may alway

chooseQ5e, the identity permutation. Otherwise, the integral is anexchange integral.
Integrals are represented diagrammatically as follows. Each distinct value in the ind

I is represented by a dot on the left~L-dot!, and each distinct value of the index setJ or JQ

is represented by a dot on the right~R-dot!. The factorUi j* is shown as a thin solid line
between the L-doti and the R-dotj , and the factorUi j is shown as a dotted line between the
two dots. The factorUi j* Ui j is represented by a thick line, or more generally, the fac
U* i j

mUi j
n is represented by a thick line with a pair of numbers (m,n) written beside it. Ifm

5n, then only a single numberm is written. The numbers (m,n) or m will be known as the
multiplicities of the line. See Fig. 1 for an illustration.

~3! With V chosen to be a permutation matrix ofn objects, it follows that

^IJuKL&5^I8JuK8L&5^IJ8uKL8&,
whereI 8 is obtained fromI by a reassignment of the values of its indices, e.g., ifI 5(334),
then I 8 may be~558!. K8 is obtained fromK by thesamereassignment, and similarly forJ8
andL8. As a result, there is no need to know the values of the indices of the L-dots, no
R-dots. This is why the dots in Fig. 1 are not labeled.

~4! As a consequence of the first two equalities in~5!, an integral remains the same under t
interchange of the solid lines with the dotted lines, or the L-dots with the R-dots.

~5! Using V5R(ab), the rotation matrix in the (a,b) plane, a ‘‘spin-off relation’’ is obtained.
Consider an R-dot imbedded in an arbitrary integralM05^IJuIJQ&, with d pairs of solid-
dotted lines attached to the dot. Now spin offe pairs of these lines to create a new R-dot a
a new integral. There are many ways to choose thee pair of lines, each possibly correspond
to a different integral. LetMe be the sum of all these integrals. Then the quantitiesM0 andMe

are related by the spin-off relation

Me5M0 SdeD, ~7!

where (d
e) is the binomial coefficient. The relation is local in that it is independent of

structure of the rest of the diagram. The same relation can also be used to spin off an

FIG. 1. Examples of U(n) integral diagrams.~a! The unique exchange integral forp52; ~b! a Z-integral with arbitrary
multiplicities m1 , m2 , andm3 .
                                                                                                                



f

n
d
closed
city
,

dots and

3022 J. Math. Phys., Vol. 45, No. 8, August 2004 S. Aubert and C. S. Lam

                    
In what follows, we summarize two general results obtained in the previous paper8 using the
IM.

1. The fan relation

The fan relation

E ~dU! A uUac1
u2m1

¯uUact
u2mt 5

S )
j 51

t

mj ! D
S (

j 51

t

mj D !

E ~dU! A uUacu2m ~8!

relates integrals of the samem5( j 51
t mj , whereA is an arbitrary product of matrix elements o

U andU* whose column indices are different fromc1 ,c2 ,...,ct . The column indexc on the right
could be taken to be one of theci ’s.

Diagrammatically, the integral on the right of~8! is shown in Fig. 2~a!, and the integral on the
left is shown in Fig. 2~b!. The additional lines and dots corresponding to the factorA are not
shown, because they do not affect the spin-off relation. We shall refer to Fig. 2~a! as aclosed fan,
and Fig. 2~b! as apartially opened fan. If everymi51, then it will be said to be afully opened fan,
or simply anopened fan.

In particular, a closed fan integral ism! times an opened fan integral. In fact, this relatio
between the two types of fans immediately gives rise to the relation~8! between a closed fan an
a partially opened fan. To see it, note that each branch of a partially opened fan is itself a
fan. By opening up all of them, we get the fully opened fan integral, multiplied by a multipli
factor ) jmj ! from all the branches. Thus a closed fan ism!/ ) jmj ! times a partially opened fan
as given by~8!.

2. The Z-integral and the fan integral

In Ref. 8, we also obtained a general formula for integrals of the type shown in Fig. 1~b!, for
arbitrary non-negative integersm1 , m2 , and m3 . We call that the ‘‘Z-formula’’ because of the
shape of the graph. It is

Z~m1 ,m2 ,m3![E ~dU! uUi j u2m1uUil u2m2uUklu2m3

5
m1! m2! m3! ~n22!! ~n21!! ~n1m11m322!!

~n1m122!! ~n1m322!! ~n1m11m21m321!!
. ~9!

In the special case wherem25m350, this becomes

FIG. 2. The fan diagrams shown here can be a part of a larger diagram. In that case, there may be many more
many more lines in the complete diagram, provided none of the additional lines land on the R-dots shown.~a! A closed fan;
~b! a partially opened fan. If allmi51, then it is said to be a fully opened fan, or just an opened fan.
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F~m![Z~m,0,0!5
m! ~n21!!

~n1m21!!
, ~10!

which is the integral for Fig. 2~a! when there are no additional dots or lines around.

B. Double-fan relation

The fan relation can be generalized to a double-fan relation, connecting the closed ‘‘do
fan’’ diagram of Fig. 3~a! with a ~fully ! opened double-fan diagram such as Fig. 3~b!. As in Fig.
2, there may be additional dots and lines in the integral, but none of them may end up o
R-dots shown. From that relation, we can also deduce relations between a closed double-
a partially opened double-fan, as done in the single-fan case.

The double-fan relation is considerably more complicated than the single-fan relatio~8!,
because there are many more double-fan graphs. Each R-dot of a~fully ! opened~double-fan!
graph such as Fig. 3~b! falls into one of fourbasic patterns: @Aa#,@Ab#,@Ba#, and@Bb#, shown in
Fig. 4. If the solid and dotted lines end up on the same L-dot, the pattern is a@B#; otherwise it is
an @A#. The subscriptsa andb tell us which L-dot thesolid line emerges from.

Suppose there area i number of@Ai # and b i number of@Bi # patterns in a~fully ! opened
~double-fan! graph. Then there arema solid andna dotted lines emerging from the L-dota, and
mb solid andnb dotted lines emerging from the L-dotb, where

ma5aa1ba , na 5 ab1ba ,
~11!

mb5ab1bb , nb 5 aa1bb .

The total number of R-dots in the opened graph isN5ma1mb5na1nb .
When theseN R-dots are merged together, we get the closed~double-fan! graph depicted in

Fig. 3~a!, which will be denoted by@(mana)(mbnb)#. If N51, this is just one of the four basi
patterns discussed before. IfN.1, we will call it a compound pattern.

From ~11!, we see that if we replacea i and b i by a i85a i1j and b i85b i2j, with any
integralj which keepsa i8 andb i8 non-negative, then we get the same closed graph by collap

FIG. 3. Double-fan diagrams.~a! A closed diagram;~b! a fully opened diagram.

FIG. 4. The four basic patterns for the R-dots of a fully opened double-fan graph.
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this new opened graph. Conversely, it will be shown in Appendix A that the closed g
@(mana)(mbnb)# can be spinned off into a sum of several opened graphs, one for each (a i8 ,b i8).
The double-fan relation expressing that quantitatively is

@~mana!~mbnb!#5( v~aa8ab8ba8bb8! @Aa#aa8@Ab#ab8@Ba#ba8@Bb#bb8

[( @aa8Aa1ab8Ab1ba8Ba1bb8Bb#, ~12!

where

v~aa8ab8ba8bb8!5
ma! na! mb! nb!

aa8! ab8! ba8! bb8!
, ~13!

and the sum is over all solutions (aa8 ,ab8 ,ba8 ,bb8) of ~11!.
The double fan becomes a single fan if the L-dotb is not connected, namely, ifmb5nb50

andma5na[m. In that case~12! becomes

@m Ba#5m! @Ba#m,

which is just~8! ~when allmi51) in another notation.

III. GROUP-THEORETICAL METHOD „GTM…

A. A brief review

Using group theory, the integral~6! can be turned into a multiple sum.5,6 In the notation used
in Appendix A of Ref. 8, the formula is

^IJuIJQ&5 (
RPGI

(
SPGJ

(
f

df
2

~p! !2 d̃f

x f~SQR!, ~14!

wherep is the degree of the integral. The symbolsGI andGJ represent the symmetry groups of th
row and column index sets. More precisely,GX5$PPSpuP(X)5X%, with X being eitherI or J.
The irreducible representations of the symmetric and unitary groups are both labeled by
quencef 5( f 1 , f 2 ,...,f p), with f 1> f 2>¯> f p>0. x f(P) is the character ofPPSp in the irre-
ducible representation with signaturef . The dimension of the irreducible representationf is given
by df5x f(e) for Sp , and byd̃f for U(n). A formula for d̃f is

d̃~ f 1 ,...,f n!5
D~ f 11~n21!, f 21~n22!,...,f n!

D~n21,n22,...,0!
, ~15!

whereD(x1 ,...,xn) is the Vandermonde determinant given by) i ,k(xi2xk).
Sincex f(g) depends only on the classcg that g belongs to, we may write it asx f(cg). With

this notation, Eq.~14! can be rewritten as

^IJuIJQ&5(
c

N@c# j@c#, ~16!

where the sum is taken over all classesc of Sp ,

N@c#5 (
RPGI

(
SPGJ

d~SQRPc! ~17!
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is the number of elements of the typeSQR in the classc, and

j@c#5(
f

df
2

~p! !2 d̃f

x f~c!. ~18!

It is not difficult to see thatQ is not unique, becauseQ85SQ5QT for any SPGJ and any
TPGJQ

is another possibleQ. It does not matter whichQ we pick in ~17!. That equation can also
be written as

N@c#5 (
RPGI

(
TPGJQ

d~QTRPc!. ~19!

It is straightforward but generally very tedious to computeN@c#, because we need to calcula
the productQTR for everyTPGJQ

, everyRPGI , and determine what classc the product belongs
to. Then we have to count up all the products that are in a given classc to getN@c#. However, the
task becomes considerably more manageable if eitherGI and GJQ

are disjoint, or if one is con-
tained in the other. We shall refer to integrals with those properties asorderly. Further simplifi-
cation occurs for direct integrals, because in that caseQ can always be chosen to be the ident
e, so the triple product is reduced to a double productTR.

The calculation ofj@c# in ~18! is simpler than the calculation ofN@c#, but still we know of
no closed form of it valid for every classc and every symmetric groupSp . The best we can do is
to compute them case by case. Results are given in Sec. III C. Eachj@c# is actually an orderly
integral withGI5GJ5e, to be referred to as aprimitive integral.

Other integrals can be computed in terms of the primitive integrals, ifN@c# is known. We
shall discuss two orderly integrals for whichN@c# can easily be obtained. In Sec. III D, we discu
the stack integrals, which are direct integrals withGI5GJ . In Sec. III E, we discuss the fully
opened double-fan integrals of the type@Aa#a@Ab#a.

Relations between orderly integrals may be obtained without knowing the explicit valu
j@c#, if their N@c# ’s are related in a simple way. This is the case for the single-fan relation,
the double-fan relation withna5mb50 andma5nb5m. They will be discussed in Sec. III B
However, general double-fan integrals are not orderly, so we cannot obtain the general dou
relation by the group-theoretical method, at least not in the present way. We will also show th
closed~single-!fan integral can also be computed without explicitly knowing whatj@c# are. This
is one of the very few cases where integrals can be obtained group-theoretically without exp
knowing j@c#.

That leaves the nonorderly integrals, for which each term of the summand in~19! has to be
calculated separately to getN@c#. The first nonorderly integral occurs in degreep53. In Sec. III F,
we shall show how to calculate some of thep53 andp54 nonorderly integrals.

B. Single-fan and simple double-fan relations

The single-fan integrals are orderly. The index sets for the closed fan Fig. 2~a! are

S label
I
J

JQ

D 5S 1 ¯ m ¯

a ¯ a ¯

c ¯ c

c ¯ c

D . ~20!

The first row gives the index labels, and the next three rows give the values of the indices
setsI ,J, andJQ , respectively. Different letters are understood to correspond to different va
Additional dots and lines may be present in the graph, as long as none of the lines end up
R-dots shown. These additional lines and dots are not drawn because they do not affect
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relation in any way. Similarly, they are not shown in the index sets in~20! other than the ellipses
in the first two rows, which remind us that there may be more lines connected to the L-dots
ellipses are absent in the last two rows because no additional lines are allowed to be conne
the R-dots shown.

Similarly, the index sets for the fully opened fan, Fig. 2~b! with all mi51, are

S label
I
J

JQ

D 5S 1 ¯ m ¯

a ¯ a ¯

c1 ¯ cm

c1 ¯ cm

D . ~21!

Using Sm to denote the symmetric group for the permutation of the firstm labels, the sym-
metric groups for Fig. 2~a! can be read off from~20! to beGI.Sm andGJ5GJQ

5Sm . Similarly,
the symmetric groups for Fig. 2~b! can be read off from~21! to beGI.Sm andGJ5GJQ

5e. We
may chooseQ5e in both cases. Then for Fig. 2~a!, TGI5GI for every TPGJQ

, henceN@c#

5m! (RPGI
d(RPc). But the last sum is simply theN@c# for Fig. 2~b! and~21!. Hence it follows

from ~16! that the fan relation~with all mi51) is true.
Next, let us derive the double-fan relation~12! and ~13! for the casena5mb50 and ma

5nb . The solution of~11! is now unique. It givesaa5ma5nb[m, andab5ba5bb50. The
double-fan relation~12! then becomes

@m Aa#5m! @Aa#m. ~22!

The closed double-fan is shown in Fig. 5~a!. Its index sets are

S label
I
J

JQ

D 5S 1 ¯ m ¯ n . . . n1m ¯

a ¯ a ¯ b ¯ b ¯

c ¯ c

c ¯ c

D . ~23!

The opened double-fan is shown in Fig. 5~b!. Its index sets are

S label
I
J

JQ

D 5S 1 ¯ m ¯ n . . . n1m ¯

a ¯ a ¯ b ¯ b ¯

c1 ¯ cm

c1 ¯ cm

D . ~24!

FIG. 5. Double-fan diagrams withna5mb50, andma5nb5m. ~a! A closed fan;~b! a fully opened fan.
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We may chooseQ5(1,n)(2,n11)¯(m,n1m) in both cases. For~23!, GI.Sm^ Sm8 ,GJ5Sm ,
andGJQ

5Sm8 , whereSm is the permutation group of the firstm labels, andSm8 is the permutation

group for the labels (n,n11,...,n1m). For ~24!, GI.Sm^ Sm8 , but GJ5GJQ
5e.

For Fig. 5~a!, TGI5GI for everyTPGJQ
. HenceN@c#5m! (TPGI

d(QRPc). But the last sum
is simply theN@c# of Fig. 5~b!. In this way~22! is proven by the GTM.

The fan integral ~10! can also be obtained from the GTM. It is given by Fig. 2~a! without
extra dots and lines, or~20! without the ellipses at the end. ThenGI5Sm , and N@c#
5m! (Rd(RPc). From ~16! and ~18!, we get

^IJuIJQ&[F~m!5m! (
R P GI

(
f

df
2

~m! !2 d̃f

x f~R! ~25!

5
1

m!
(

f

df
2

d̃f

(
R P Sm

x f~R! x~m!
* ~R!5

d(m)
2

d̃(m)

~26!

5
m! ~n21!!

~m1n21!!
. ~27!

In getting from~25! to ~26!, the characterx (m)* (R)51 of the totally symmetric representation (m)
of the permutation group has been inserted, and the orthogonality relation of the characte
been used. To get to~27!, d(m)5x (m)(e)51 as well asd̃(m)5(m1n21)!/(n21)!m! ~see~15!!
have been used.

The result in~27! agrees with the result~10!. It is one of the very few cases where the val
of the integrals can be obtained group-theoretically without knowing the values of the indiv
j@c# ’s.

C. Primitive integrals

Integrals in which both symmetry groupsGI andGJ consist only of the identitye will be called
primitive. This happens when all the indicesi a in the setI assume distinct values, and all th
indices j b in the setJ are also different. The corresponding diagrams havep dots each on both
columns, and precisely one solid and one dotted lines connecting to each of the dots. The pr
diagrams forp<3 are shown in Fig. 6, and the ones forp54,5 are contained in Appendix C.

SinceGI5GJ5e, it follows from ~17! that N@c#5d(QPc), whereQ can be any element o
Sp . The primitive integrals~16! are simplyj@c#, one for each classc of Sp . We may therefore
use an element of each cycle structure to label the primitive integrals, as is done in F
Diagrammatically, the cycle structure is translated into the loop structure of its diagram, as c
seen in Fig. 6. Using~18! along with~15! and the character tables found in Appendix B~note that
df5x f(e)), the primitive integrals forp<3 can be easily computed, and the results are displa
in Table I. The results forp54,5 can also be found in Table IV of Appendix C.

D. Stack integrals

The stack diagrams~see Fig. 7! are direct integrals made up of disconnected lines of arbitr
multiplicities. As such,Q5e, andJ differs from I only by relabeling. Using item 3 of Sec. II B
we may assumeJ5I . Hence stack integrals are integrals of the form^II uII &.

Let p1 ,p2 ,...,pt be the multiplicities of the disconnected lines in a stack diagram. TheGI

5GJ[G5Sp1
^ Sp2

^¯^ Spt
, andN@c# is nonzero only when the classc is a direct product of the

classesci of the groupsSpi
. In that case,

N@c#5)
i 51

t

pi ! ni~ci !, ~28!
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whereni(ci) is the number of elements ofSpi
in the classci . In other words,

ni~ci !5
pi !

)
j 51

pi

j a ja j !

, ~29!

where the classci consists ofa j cycles of lengthj . Denoting the stack integral̂II uII & by
J(p1 ,p2 ,...,pt), we get

J~p1 ,p2 ,...,pt!5 (
c1 ,c2 ,...

S )
i 51

t

pi ! ni~ci !D j~c1^ c2^¯^ ct!. ~30!

All stack diagrams can be obtained by making the assignmentf i→pi from each representa
tion. In this way, we expect a same number of stack digrams as of primitive diagrams, or cl
Using thej expressions obtained in the preceding subsection, the stack integrals forp<3 can be
computed to yield the expressions in Table II.

E. Special double-fan integrals

The index sets for the fully opened double-fan integrals@Aa#a@Ab#a ~Fig. 3~b! with N
52a) are

TABLE I. Algebraic expressions for the primitive diagrams ofp51,2,3.

j@c#
c p51 p52 p53

e
1

n

1

n221

n222

n~n221!~n224!

~12!
21

n~n221!

21

~n221!~n224!

~123!
2

n~n221!~n224!

FIG. 6. Primitive diagrams for~a! p51, ~b! p52, and~c! p53. The identity element is everywhere denoted bye.
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S label
I
J

JQ

D 5S 1 ¯ a a11 . . . 2a

b ¯ b a ¯ a

c1 ¯ ca ca11 ¯ c2a

ca11 ¯ c2a c1 ¯ ca

D . ~31!

Hence bothGJ andGJQ
consist only of the identitye. As for GI , it is given bySa ^ Sa , where the

permutation groupsSa act respectively on theb anda indices inI . The elementQ mapsJQ to J,
i.e., Q5(1,a11)(2,a12)¯(a,2a).

The fully opened integral can be computed using~16!, with N@c# given by~17! or ~19!. Thus,

N@c#5 (
RPGI

(
TPGJQ

d~QTRPc!5 (
RPGI

d~QRPc! 5 (
Q8

d~Q8Pc!, ~32!

where the last sum is overeverypermutationQ8 that sendsall b indices in~31! to the positions
labeled froma11 to 2a, and similarlyall a indices to the positions labeled from 1 toa. As a
consequence, the allowed cycles ofQ8 must be of even length, and they can be specified b
sequence of non-negative integers (k)[(k1k2¯ka), ki being the number of cycles of length 2i .
The number ofQ8 with the class structure (k) that is related toc is given by

N@c#5
~a! !2

)
i 51

a

i ki
•ki !

. ~33!

In order to see how this is arrived at, consider an example wherek152, k252, and all otherki

values are zero. ThenQ8 is of the form (ba)(ba)(baba)(baba), where theb and a letters
should take the distinct index labels in~1,...,a! and (a11,...,2a), respectively. AnotherQ8 with
the same cycle structure can thus be obtained by permuting individually all thea and b labels.
This accounts for the numerator in~33!. However, such permutations do not necessarily g
distinctQ8 elements. The cyclic nature of a cycle tells us that each cycle of length 2i will appear
i times; this accouts for thei ki factor in the denominator. Moreover, no newQ8 is obtained if we
permute cycles of the same length; that accounts for the other factorki ! in the denominator.

FIG. 7. Arbitrary stack diagram,J(p1 ,p2 ,...,pt), of degreep5( i 51
t pi .

TABLE II. Algebraic expressions for the stack diagrams ofp51, 2, and 3.

J(p1 ,...,pp)

J~1!5
1

n
J~3!5

3!

n~n11!~n12!

J~2!5
2

n~n11!
J~2,1!5

2

~n21!n~n12!

J~1,1!5
1

n221
J~1,1,1!5

n222

n~n221!~n224!
                                                                                                                



3030 J. Math. Phys., Vol. 45, No. 8, August 2004 S. Aubert and C. S. Lam

                    
We may now return to~16! to calculate the integral@Aa#a@Ab#a in terms of the primitive
integralsj@c#. The results for the first fewa values are listed in Table III.

F. Nonorderly integrals

All integrals with degreep,3 are orderly. The nonorderly integrals ofp53 are shown in Fig.
8, and those related to them by the fan relation~8!. The calculation ofN@c# and the integral for
each of them is discussed below. The integrals will be labeled by their figure, e.g., integralI (8a).

The index sets for Fig. 8~a! are

S label
I
J

JQ

D 5S 1 2 3

b b a

d c c

d c c

D . ~34!

They give rise to the symmetry groupsGI5$e,(12)% and GJ5GJQ
5$e,(23)%. Moreover, the

elementQ can be taken to be the identity element. In order to obtain the coefficientsN@c# of Eq.
~16!, we need to computeQTR for all TPGJQ

and RPGI . That triple product isQGJQ
GI

5$e,(12),(23),(132)%. As a result,

I ~8a!5Z~1,1,1!5j@e#12j@~12!~3!#1j@~123!#5
1

~n221!~n12!
. ~35!

In the same way, the index sets of Fig. 8~b! are

S label
I
J

JQ

D 5S 1 2 3

b a a

e d c

d e c

D , ~36!

TABLE III. Values of the monomial integrals@Aa#a@Ab#a for a51,2,3.

a @Aa#a@Ab#a

1
21

n~n221!

2
2

~n221!n2~n12!~n13!

3
26

~n21!n2~n11!2~n12!~n13!~n14!~n15!

FIG. 8. Nonorderly integrals ofp53.
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and hence the symmetry groups areGJQ
5$e% andGI5$e,(23)%, and the exchange element isQ

5(12). We thus obtainQGJQ
GI5$(12),(123)%, from which

I ~8b!5j@~12!~3!#1j@~123!#5
21

~n221!n~n12!
~37!

follows.
Finally, for Fig. 8~c!, the index sets are

S label
I
J

JQ

D 5S 1 2 3

b a a

d c c

c d c

D . ~38!

The relevant symmetry groups areGJQ
5$e,(13)% and GI5$e,(23)%. With Q5(12), the set

QGJQ
GI is $~12!, ~13!, ~123!, ~132!%, and formula~16! gives

I ~8c!52~j@~12!~3!#1j@~123!# !5
22

~n221!n~n12!
. ~39!

The calculation ofQGJQ
GI is not that cumbersome forp53, but it gets worse pretty quickly

asp increases. For example, let us look at some examples ofp54.
Let us first calculateZ(2,1,1) of Fig. 1~b!, whose index sets are

S label
I
J

JQ

D 5S 1 2 3 4

b b b a

d d c c

d d c c

D . ~40!

Then Q5e, GJQ
5$e,(12),(34),(12)(34)% and GI5$e,(12),(13),(23),(123),(132)%. Thus

QGJQ
GI5$e,(12),(13), (23), (123), (132), (12),e,(132), (123), (23), (13), (34), (12)(34), (143)

(243),(1243),(1432),(12)(34),(34),(1432),(1243),(243),(143)%, hence

Z~2,1,1!52j@e#18j@~12!~3!~4!#18j@~123!~4!#12j@~12!~34!#14j@~1234!#

5
2

~n21!n~n12!~n13!
. ~41!

Our last example is theS-integral, shown in Fig. 9. Its index sets are

FIG. 9. Sigma integral with all lines being of multiplicity one.
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S label
I
J

JQ

D 5S 1 2 3 4

b b a a

e d d c

e d d c

D . ~42!

HenceQ5e, GJQ
5$e,(23)% andGI5$e,(12),(34),(12)(34)%. Multiplying such elements accord

ingly, the set$e,(12),(34),(12)(34),(23),(132),(234),(1342)% is obtained forQGJQ
GI . Hence

S5j@e#13j@~12!~3!~4!#12j@~123!~4!#1j@~12!~34!#1j@~1234!#

5
n11

~n21!n2~n12!~n13!
. ~43!

IV. COMPARISON OF THE IM AND THE GTM

We have discussed the computation of U(n) integrals~2! in two ways: the IM in Sec. II, and
the GTM in Sec. III. Each of these two methods has its own merits, and drawbacks, and in
they complement each other. The purpose of this section is to compare their relative sto
weak points.

The IM is based solely on the unitarity condition~4! and the invariance of the Haar Measu
~5!. The method is simple because there is no need to know group theory. The conditions
integrals of the same degree, and also integrals of degreep to integrals of degreep21. Through
these relations, specific integrals such as the fan integrals~10! and theZ-integrals~9! can be
obtained, and the general relation such as the single-fan relation~8! and the double-fan relation
~12! can be worked out.

The GTM has the advantage of being general, in the sense that all integrals can be co
using the formula~14! or ~16!. The price to pay is that we have to know the characters of
irreducible representations of the appropriate symmetric group, and a triple sum has to be
out, which can prove to be very tedious for integrals of high degrees. Furthermore, unlike th
relations between integrals are hard to come by, so one must calculate the integrals one
There are however certain classes of integrals, the orderly integrals, for which relations c
developed, and the quantityN@c# in ~16! can be relatively easily computed. Then we merely ha
to know the primitive integralsj@c# in ~16! to get the value of the orderly integral on hand. T
stack integrals~30! and the special opened double-fan integrals~33! are examples of this kind. The
primitive integralsj@c# themselves must be calculated using~18!.

To summarize, the IM gives a huge number of relations but it is not easy to obtain the
of any specific integral. The GTM allows us to calculate any specific integral, albeit rather te
at times, but it is difficult to obtain relations between integrals. In the next section, we shall di
a hybrid methodwhich makes use of the advantages of both methods. We shall use the g
GTM formula to calculate a specific set of integrals, and then use the IM relations to obtain a
other integrals.

In the rest of this section, we shall enlarge these general remarks about the IM and GT
using specific examples presented in the last two sections as concrete illustrations.

The single-fan relation~8! can be obtained by both the IM and the GTM. However
double-fan relation~12! in its general form can be obtained only by the IM, because most of
integrals involved are not orderly, making it hard to derive relations using the GTM. Neverth
in special cases involving only orderly integrals,~22!, the GTM can also be used to derive th
relation.

The Z-formula ~9! is obtained using the IM, by a series of relations connecting it down
*dU51. Since theZ-integrals are not orderly, it is hard to compute them using the GTM ex
at low degrees. The calculation of those by the GTM is shown in Eqs.~35! and ~41!.

However, since the values of the integrals in the IM are obtained only through relatio
may be relatively complicated to calculate just one specific integral. This is where the GT
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superior, because of the general formula~14! valid for any one integral. For example, it is easy
obtain theS integral~43!, assuming of course thej@c# ’s to be already known. We can also obta
it using the IM, as we shall show below, but that involves a few steps because we must get
relations. To see how that is done, look at Fig. 10, which is the unitarity relation applied to th
of the first diagram indicated by an arrow. The first and third diagrams can be related toZ(2,0,2)
by using the fan relation~8!, and similarly the diagram on the right can be related toZ(2,0,1).
Using theZ-formula ~9!, we then obtain

S5
1

4 FZ~2,0,1!2S n23

2
11DZ~2,0,2!G5

n11

~n21!n2~n12!~n13!
, ~44!

the same as the result~43! obtained by the GTM.

V. HYBRID METHOD

Having understood the relative merits of the GTM and the IM, it is possible to combine
strengths into a more efficient hybrid calculational scheme.

The strategy is to start with one or more integrals that can be computed by the GTM
relative ease. Generally speaking, such integrals are ordered. Once they are obtained, th
relations of the IM can be used to calculate other integrals from them.

To illustrate this strategy, we will consider how the hybrid method can be used to calcula
double-fan integrals.

By a double-fan integral, we mean any integral with two L-dots and any number of R-
Figure 3~a! shows a closed~double-fan! integral ~with the understanding that there are no ex
dots or lines than those shown!, and Fig. 3~b! shows a fully opened~double-fan! integral. We may
also have partially opened~double-fan! integrals, in which every branch, namely, every R-dot w
its connecting lines, can be regarded as a closed integral. See Fig. 11 for an example of a p
opened integral.

As in Sec. II B, a fully opened integral is denoted by@Aa#aa@Ab#ab@Ba#ba@Bb#bb, and its
corresponding closed integral is denoted by@aaAa1abAb1baBa1bbBb#. For a partially opened
integral, we will denote it as a product of the closed integrals of each branch. See Fig.
examples.

Using ~12! and ~13!, all double-fan integrals can be expressed as sums of fully ope
integrals. Integrals of the form@Aa#a@Ab#a are given by~33! and Table III, but we still have to

FIG. 10. Unitarity sum relation involving theS diagram~second from the left!. The sum is performed on the inde

indicated by an arrow. Using the fan relation~8!, the unitary sum can be written as (@(n23)/4# 1
1
2)Z(2,0,2)12S

5
1
2Z(2,0,1).

FIG. 11. Partially opened double-fan integrals.~a! There are two equivalent forms for this graph:@Aa12Ab#@Aa# and
@Ab1Ba1Bb#@Aa#. ~b! There are four equivalent forms for this graph:@Aa1Ab1Ba#@Aa1Ab#, @2Ba1Bb#@Aa1Ab#,
@Aa1Ab1Ba#@Ba1Bb#, @2Ba1Bb#@Ba1Bb#.
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know how to calculate a fully opened integral whenb iÞ0. As shown in Appendix D, the IM
allows us to relate them to those withb i50, by using the following formula:

@Aa#a@Ab#a@Ba#ba@Bb#bb5 (
e50

min(ba ,bb) H ~21!ee! S ba

e D S bb

e D ~n12a2112e!

•

~n12a221e!! ~n12a2112e!!

~n12a1ba211e!! ~n12a1bb211e!!
@Aa#a1e@Ab#a1eJ .

~45!

We close this section by showing how to use~12! and~13! to calculate the integrals in Fig. 11

A. Figure 11 „a…

There are two equivalent forms for this diagram. One is

@Aa12Ab#@Aa#5~2@Aa#@Ab#2!@Aa#52@Aa#2@Ab#2 ~46!

and the other is

@Ab1Ba1Bb#@Aa#54~@Ab#@Ba#@Bb# !@Aa#54@Aa#@Ab#@Ba#@Bb#, ~47!

where Eqs.~12! and~13! have been used. The integralI (11a) is obtained by adding up~46! and
~47!.

Using ~45!, we can express all fully opened integrals in the form@Aa#a@Ab#a. Applying this
to the present case, we get

@Aa#@Ab#@Ba#@Bb#5
1

~n12!2 @Aa#@Ab#2
1

~n12!
@Aa#2@Ab#2. ~48!

Using Table III, we finally obtain

I ~11a!52@Aa#2@Ab#214@Aa#@Ab#@Ba#@Bb#5
2n

~n12!
@Aa#2@Ab#21

4

~n12!2 @Aa#@Ab#

5
24

~n221!n~n12!~n13!
.

B. Figure 11 „b…

As shown in Fig. 11~b!, I (11b) has four equivalent forms. For one branch, the factors ar

@Aa1Ab1Ba#54 @Aa#@Ab#@Ba#,

@2Ba1Bb#52 @Ba#2@Bb#, ~49!

and for the other branch, they are

@Aa1Ab#5@Aa#@Ab#,

@Ba1Bb#5@Ba#@Bb#. ~50!

Hence

I ~11b!54 @Aa#2@Ab#2@Ba#16 @Aa#@Ab#@Ba#2@Bb#12 @Ba#3@Bb#2. ~51!
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We will now express each of the three monomial integrals in~51! in terms of@Aa#a@Ab#a.
First, with respect to~45!, @Aa#2@Ab#2@Ba# is characterized bya52, ba51, andbb50. The
vanishing ofbb causes~45! to consist of the single term

@Aa#2@Ab#2@Ba#5
1

~n14!
@Aa#2@Ab#2. ~52!

Second,@Aa#@Ab#@Ba#2@Bb# hasa51, ba52, bb51, and the sum in~45! gives

@Aa#@Ab#@Ba#2@Bb#5
1

~n12!2~n13!
@Aa#@Ab#2

2

~n12!~n14!
@Aa#2@Ab#2. ~53!

Finally, @Ba#3@Bb#2, havinga50, ba53, bb52, can be expressed as

@Ba#3@Bb#25
1

n2~n11!2~n12!
2

6

n~n12!2~n13!
@Aa#@Ab#1

6

~n11!~n12!~n14!
@Aa#2@Ab#2

~54!

from Eq. ~45!. Using the fan relation, notice that@Ba#3@Bb#2 can also be reduced to (1/3!
3(1/2!) Z(3,0,2).

The expressions of@Aa#@Ab# and@Aa#2@Ab#2 in terms ofn have already been determined
Example 1. The final answer is obtained by inserting~52!–~54! into ~51!. The result is

@Aa1Ab1Ba#@Aa1Ab#5
2

n2~n11!2~n12!
1

6~n22!

n~n12!2~n13!
@Aa#@Ab#

1
4~n212!

~n11!~n12!~n14!
@Aa#2@Ab#2

5
2~n212n14!

~n221!n2~n12!~n13!~n14!
,

which can be verified using the plain group theoretical formula~14!.

VI. CONCLUSION

In this article, we have pursued the goal of finding an efficient method to calculate
monomial integral~1! or ~2!. We find that the IM discussed in Sec. II is superior for derivi
relations between integrals, but the GTM is able to give a formula to calculate any integra
GTM formula involves a triple sum whose computation is often tedious and prone to mist
The sums simplify for orderly integrals, in which the invariant groupsGI and GJQ

are either
disjoint, or one is contained in the other. For nonorderly integrals, the hybrid method is pro
the most efficient. It uses the IM to relate them to some orderly integrals that can be calcula
the GTM with relative ease.
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APPENDIX A: DERIVATION OF EQUATIONS „12… AND „13…

To prove~12! and~13!, we use the rotation technique discussed in item 5 of Sec. II A, and
~7!, to spin off from the R-dot of Fig. 3~a! a new R-dot attached to a pair of solid-dotted line
Depending on whether the basic pattern of this new R-dot is@Aa#, @Ab#, @Ba#, or @Bb#, we get the
graphs shown in Figs. 12~a!, 12~b!, 12~c!, and 12~d!, respectively.
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Repeating this spin-off operation over and over again on the R-dot still containing a
pound pattern, eventually we come to a graph where every R-dot is given by a basic patter
resulting integrals are given in~12!, corresponding to the decompositions of the compound pat
into a sum of all possible fully opened integrals obtained by spinning off.

The coefficientv(aa8ab8ba8bb8) of these basic integrals is derived from a combination of th
factors:

~1! Each time that we spin off a basic pattern from a compound pattern withd pairs of solid-
dotted lines, there is a factor 1/d arising from Eq.~7!, by takinge51. Since we start from a
compound pattern withN pairs of lines, by the time we come to a fully-opened pattern
have accumulated a factor 1/N!.

~2! The N R-dots in the final pattern that is fully opened can be spinned off in a diffe
sequential order. According to~7!, they must be summed over. This gives rise to a fac
N!/aa8!ab8!ba8!bb8!.

~3! At any time when we spin off a basic pattern, we can choose its single pair of solid-d
lines in all possible ways. Equation~7! says that we must sum over all these possibilities. T
mulitipliciy factor is given by the number of permutations of these lines that lead back t
same basic integral. It is a factor ofma! mb! na! nb!.

Assembling these three factors, we get

v~aa8ab8ba8bb8!5
ma! mb! na! nb!

aa8!ab8!ba8!bb8!
, ~A1!

which is identical to~13!.

APPENDIX B: CHARACTER TABLES

The character tables forp52,3 are given here in the form used by Hamermesh in Ref. 9.
rows are labeled by the partitions that define the representations, and the columns are lab
the cycle structures that define the classes. The number of elements in each class,n(c), is written
above the classes. The table forp51 is trivial, and it consists of the sole value 1.

FIG. 12. Diagrams that result from rotating away the pairs of lines~a! @Aa#, ~b! @Ab#, ~c! @Ba#, and~d! @Bb#, from the
compound pattern of Fig. 3.
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1. pÄ2

1 1
Part.\Class (12) ~2!

~2! 1 1
(12) 1 21

2. pÄ3

1 3 2
Part.\Class (13) ~1,2! ~3!

~3! 1 1 1
~2,1! 2 0 21
(13) 1 21 1

APPENDIX C: PRIMITIVE DIAGRAMS FOR pÄ4 AND pÄ5

Using ~14! and the character tables forS4 andS5 ,9 the algebraic expressions for the primitiv
diagrams of Fig. 13 and Fig. 14 can be obtained, and they are given in Table IV.

APPENDIX D: DERIVATION OF EQUATION „45…

We would like to express the general fully-opened integral@Aa#a@Ab#a@Ba#ba@Bb#bb in terms
of the special ones of the form@Aa#a8@Ab#a8. The idea is to apply a unitarity sum on the@Ba# or
@Bb# basic patterns to get rid of them. To get the final result we also need to apply the fan re
~8! or the double-fan relations~12! and ~13!. Our approach is to first determine how ca

FIG. 13. Thep54 primitive diagrams.

FIG. 14. Thep55 primitive diagrams.
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@Aa#a@Ab#a@Ba#ba be reduced to fully opened integrals involving only the@Aa# and@Ab# patterns.
With such an information at hand, we will then try to reduce the more gen
@Aa#a@Ab#a@Ba#ba@Bb#bb integrals into the@Aa#a@Ab#a@Ba#ba integrals.

Let us apply a unitarity sum on one of the@Ba# patterns in@Aa#a@Ab#a@Ba#ba:

~n2~2a1ba21!! @Aa#a@Ab#a@Ba#ba1~ba21! @Aa#a@Ab#a@Ba#ba22@2Ba#

1 a~ @Aa#a@Ab#a21@Ab1Ba#@Ba#ba211@Aa#a21@Aa1Ba#@Ab#a@Ba#ba21 !

5@Aa#a@Ab#a@Ba#ba21. ~D1!

Using ~8!, @2Ba#, in the second term above, can be rewritten as 2@Ba#2. Furthermore, Eq.~13!
tells us that@Ab1Ba# and @Aa1Ba# can, respectively, be rewritten as 2@Ab#@Ba# and 2@Aa#
3@Ba#, and the term in parentheses above simplifies to 4@Aa#a@Ab#a@Ba#ba. As a result, relation
~D1! reduces to

@Aa#a@Ab#a@Ba#ba5
1

n12a1ba21
@Aa#a@Ab#a@Ba#ba21. ~D2!

Using the relation~D2! recursively on its right-side, until no@Ba# remains, we obtain

@Aa#a@Ab#a@Ba#ba5
1

~n12a1ba21!

1

~n12a1ba22!
¯

1

~n12a!
@Aa#a@Ab#a

5
~n12a21!!

~n12a1ba21!!
@Aa#a@Ab#a, ~D3!

and the first step of the work is completed.
Assuming that bb<ba , let us perform a unitarity sum on a@Bb# pattern in

@Aa#a@Ab#a@Ba#ba@Bb#bb:

TABLE IV. Algebraic expressions for the primitive diagrams of fourth and fifth degrees. In thep55 case, the elements
from row two to row five should be written with the additional~5! one-cycle.

j(cQ)
Q p54 p55

e n428n216

n2~n221!~n224!~n229!

n4220n2178

n~n221!~n224!~n229!~n2216!
~12!~3!~4! 21

n~n221!~n229!

2~n222!~n2212!

n2~n221!~n224!~n229!~n2216!
~123!~4! 2n223

n2~n221!~n224!~n229!

2

n~n221!~n224!~n2216!
~12!~34! n216

n2~n221!~n224!~n229!

n222

n~n221!~n224!~n229!~n2216!
~1234! 25

n~n221!~n224!~n229!

25n2124

n2~n221!~n224!~n229!~n2216!
~123!~45! 22~n2112!

n2~n221!~n224!~n229!~n2216!
~12345! 14

n~n221!~n224!~n229!~n2216!
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~n2~2a1ba1bb21!! @Aa#a@Ab#a@Ba#ba@Bb#bb1~bb21! @Aa#a@Ab#a@Ba#ba@Bb#bb22@2Bb#

1ba @Aa#a@Ab#a@Ba#ba21@Ba1Bb#@Bb#bb211a~ @Aa#a@Ab#a21@Ab1Bb#@Ba#ba@Bb#bb21

1 @Aa#a21@Aa1Bb#@Ab#a@Ba#ba@Bb#bb21 !5@Aa#a@Ab#a@Ba#ba@Bb#bb21. ~D4!

Relation ~8!, or formula ~13!, again permits us to make some simplifications, i.e.,@2Bb#
52@Bb#2, @Ba1Bb#5@Aa#@Ab#1@Ba#@Bb#, @Ab1Bb#52@Ab#@Bb#, @Aa1Bb#52@Aa#@Bb#. By
making the proper substitutions in~D4!, the recursion equation,

@Aa#a@Ab#a@Ba#ba@Bb#bb5
1

~n12a1bb21!
$@Aa#a@Ab#a@Ba#ba@Bb#bb21

2 ba @Aa#a11@Ab#a11@Ba#ba21@Bb#bb21%,

results. The above can be solved to give

@Aa#a@Ab#a@Ba#ba@Bb#bb5 (
e50

bb H ~21!ee! S ba

e D S bb

e D ~n12a2112e!

•

~n12a221e!!

~n12a1bb211e!!
@Aa#a1e@Ab#a1e@Ba#ba2eJ ,

which upon substitution of~D3! yields the desired Eq.~45!.
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SLE-type growth processes and the Yang–Lee singularity
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The recently introduced SLE growth processes are based on conformal maps from
an open and simply connected subset of the upper half-plane to the half-plane itself.
We generalize this by considering a hierarchy of stochastic evolutions mapping
open and simply connected subsets of smaller and smaller fractions of the upper
half-plane to these fractions themselves. The evolutions are all driven by one-
dimensional Brownian motion. Ordinary chordal SLE appears at grade one in the
hierarchy. At grade two we find a direct correspondence to conformal field theory
through the explicit construction of a level-four null vector in a highest-weight
module of the Virasoro algebra. This conformal field theory has central chargec
5222/5 and is associated with the Yang–Lee singularity. Our construction may
thus offer a novel description of this statistical model. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1765747#

I. INTRODUCTION

A new approach to the description of conformal field theories~CFTs! in two dimensions has
recently appeared where instead of discussing objects in terms of local fields and their fusio
is rather interested in a description based on spatially extended quantities defined through
etry. The differential equations of the stochastic Lo¨wner evolution~SLE! have emerged as
mathematically precise way of describing certain CFTs directly in the continuum, without r
ence to an underlying lattice.

The chordal SLE processes are constructed through conformal maps from a subset
upper half-plane onto the half-plane itself. The processes are driven by the random
dimensional Brownian motion. Properties thereby described have an intrinsic geometrical n

The study of these stochastic evolutions or growth processes was initiated by Schramm1 and
has been pursued further in Refs. 2–10, for example. A review for physicists may be found i
11, while Ref. 12 contains a mathematical introduction.

An explicit relationship between SLE and CFT has been elucidated recently13,14 by consider-
ing random walks on the Virasoro group. The link is found through a singular vector at leve
in highest-weight modules. The kernel of the vector corresponds to conserved quantities un
random process.

Although the correspondence exists, the number of CFTs having geometrical properti
scribed by SLE is still very limited. Furthermore, there is no apparent pattern assisting
identification of these new descriptions of field theories.

The aim of the present work is to show that there might be conformal systems describ
generalizations of SLE. The approach of Bauer and Bernard13,14may be extended to more gener
walks than the one generating SLE. A particular class of extensions corresponds to a hiera
stochastic evolutions in which SLE appears at grade one. These growth processes are asso
conformal maps of open and simply connected subsets of smaller and smaller fractions
upper half-plane onto the fractions themselves, and are all driven by one-dimensional Bro
motion. Using two-sided Brownian motion the stochastic processes may be extended t

a!Electronic mail: lesage@crm.umontreal.ca
b!Electronic mail: rasmusse@crm.umontreal.ca
30400022-2488/2004/45(8)/3040/9/$22.00 © 2004 American Institute of Physics
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describing flows from fractions of the upper half-plane to subsets thereof. At grade two i
hierarchy we find a link to the Yang–Lee singularity through the construction of a level-four
vector. This in turn potentially offers a new geometrical description of that statistical mode

II. STOCHASTIC EVOLUTIONS

A. Stochastic Lo ¨ wner evolution

Let Yt be a real-valued continuous function,t>0. For each element in the upper half-plan
zPH, we consider the solutiongt(z) to Löwner’s differential equation

] tgt~z!5
2

gt~z!2Yt
, g0~z!5z. ~1!

The factor 2 is conventional but could be changed by renormalization. Lett5t(z) denote the time
such that the solutiongt(z) exists for all tP@0,t#, while for increasing time limt→t gt(z)5Yt .
Following Refs. 1, 8, and 12, one may define the evolving hullKt as the closure of$zPH:t(z)
<t%. In time, it is an increasing sequence of compact sets. As a conformal map from the s
connected domainH\Kt onto the open half-planeH, gt is uniquely determined by the so-calle
hydrodynamic normalization at infinity:

lim
z→`

~gt~z!2z!50. ~2!

Stochastic Lo¨wner evolutions are growth processes defined by choosing standard
dimensional~and one-sided! Brownian motion,Bt , as the driving function:Yt5AkBt , with B0

50. The parameterk characterizes the process which is denoted SLEk . For t,s>0, the expecta-
tion value is normalized asE@(AkBt)(AkBs)#5k min(t,s).

One defines the function

f t~z!ªgt~z!2Yt . ~3!

It follows that it satisfies the differential equation

] t f t~z!5
2

f t~z!
2] tYt , f 0~z!5z. ~4!

When Yt denotes Brownian motion its time derivative is thought of as white noise:dBt /dt
;Wt . The inverse of the functionf t is related to the inverse of the SLE map:f t

21(z)5gt
21(z

1Yt). The traceg of SLE is then defined by

g~ t !ª lim
z→0

f t
21~z!. ~5!

By construction,z is an element ofH, so the limit is taken from the upper half-plane only. T
nature of the trace is known to depend radically onk ~Ref. 8!: for 0<k<4 it is a simple curve,
for 4,k,8 a self-intersecting curve, whereas for 8,k it is space filling. The Hausdorff dimen
sion of the SLEk trace is discussed in Refs. 8, 15, 16.

B. Hierarchy of stochastic evolutions

For positive integern, we define the open subset ofH,

Hn5$zPH:z5reiu; r PR. ; 0,u,p/n%. ~6!
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Note thatH1 is the upper half-plane itself. We now introduce a hierarchy of Lo¨wner-type differ-
ential equations whose solutions have properties similar to the SLE maps. For positive intn
we define the differential equation

] tgt~z!5
2

gt
n21~z!~gt

n~z!2Yt!
, g0~z!5z ~7!

with Y050. For eachzPHn the solution is well-defined up to a timetn(z). Similarly to the
ordinary SLE case, the differential equation~7! describes the evolution of the hullKt

(n) defined as
the closure of$zPHn :tn(z)<t%.

The solution to~7! is a conformal map fromHn\Kt
(n) ontoHn . To see this, one may generaliz

the proof of Proposition 2.2 in Ref. 12. One first verifies that]zgt(z) is well-defined by analyzing
] t]zgt(z). From the evaluation of] t(gt(z)2gt(z8)) ~which is shown to have (gt(z)2gt(z8)) as
a factor!, one deduces thatgt(z)Þgt(z8) whenzÞz8. It has thereby been established thatgt is a
conformal transformation ofHn\Kt

(n) . To show thatgt(Hn\Kt
(n))5Hn , one studies the invers

flow ht(w), wPHn , which is a solution to

] tht~w!52
2

ht
n21~w!~ht

n~w!2Yt02t!
, h0~w!5w ~8!

for some t0>0. The solutionht(w) is well-defined for 0<t<t0 since ] t Im(ht
n(w)).0 and

uht
n21u>min$uht

n(w)u,1%. This ensures that the solution cannot hit the singularities. Withz
5ht0

(w), gt(z)5ht02t(w) is seen to be a solution to~7! ~implying that ht(w) is indeed the

inverse flow!, andgt0
(z)5w showing thatwPgt0

(Hn\Kt
(n)).

The solution to~7! is determined uniquely by the hydrodynamic normalization at infinity~2!.
It has the power series expansion

gt~z!5z1
2t

z2n21 1O~1/uzu(2n)!, z→`. ~9!

We refer to the process as being of graden.
When n51 ~and Yt5AkBt) we recover the ordinary SLE equation~1!. In a subsequen

section we shall focus on graden52 as it is in this case we find a new relation to CFT and
Yang–Lee singularity.

Two important properties of ordinary SLE are scale invariance and a sort of stationarity.
apply to solutions to~7! as well. In the spirit of Proposition 2.1 in Ref. 8~see also Ref. 3!, we have
that the growth process defined by~7! is scale invariant in the following sense. Fora.0 the
process t°a21/(2n)Kat

(n) has the same law as t°Kt
(n) , while the process

(z,t)°a21/(2n)gat(a
1/(2n)z) has the same law as (z,t)°gt(z). Also, the mapg̃(z)ª(gt1

+gt0
21)

3(z1Yt0
)2Yt0

has the same law asgt12t0
when t1.t0.0. Moreover,g̃ is independent ofgt0

.
These assertions can be proved by a simple adaptation of the proof for ordinary SLE.

We definef t through

f t
n~z!5gt

n~z!2Yt . ~10!

It follows that f t(z) satisfies the differential equation

] t f t~z!5
2

f t
2n21~z!

2
1/n

f t
n21~z!

] tYt , f 0~z!5z ~11!

with a canonical choice of boundary condition. The solution respects the hydrodynamic no
ization at infinity~2!, and it corresponds to choosing the ‘‘principal root’’ in the relation~10!. As
in ordinary SLE, we usef t to define an SLE-type trace for the hierarchy of evolutions:
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gn~ t !ª lim
z→0

f t
21~z!. ~12!

To illustrate our construction, we now consider the situation where the driving function
ishes for allt: Yt[0 ~corresponding tok[0). The differential equation becomes

] tgt~z!5
2

gt
2n21~z!

, g0~z!5z ~13!

with solution

gt~z!5~z2n14nt!1/(2n). ~14!

The trace reads

gn~ t !5u~4nt!1/(2n)ueip/(2n) ~15!

while the hull is

Kt
(n)5$reip/(2n):r P@0,u~4nt!1/(2n)u#%. ~16!

Following Ref. 8 on ordinary SLE, we may takeB to be two-sided Brownian motion~or more
generally,Y to be defined for negativet as well!. Equation~7! can then also be solved for negativ
t, in which casegt is a conformal map fromHn into a subset ofHn . Indeed, Lemma 3.1 in Ref
8 extends to our case. In the extended version it states that the mapz°g2t(z) has the same
distribution as the mapping ofz into the principalnth root of ((gt

21((zn1Yt)
1/n))n2Yt). To see

this we first observe that forzPHn the principalnth root of (zn1x) for x real also lies inHn . For
t1PR we then define the functionĝt

(t1) as the principal root in the functional relation

~ ĝt
(t1)

~z!!n5~gt11t+gt1
21~~zn1Yt1

!1/n!!n2Yt1
. ~17!

It follows that ĝt
(t1)(z) is a solution to

] tĝt
(t1)

~z!5
2

~ ĝt
(t1)

~z!!n21~~ ĝt
(t1)

~z!!n2~Yt11t2Yt1
!!

, ĝ0
(t1)

~z!5z. ~18!

We note thatŶt
(t1)

ªYt11t2Yt1
has the same law asYt as maps fromR to R, and since

~ ĝ
2t1

(t1)
~z!!n5~gt1

21~~zn1Yt1
!1/n!!n2Yt1

, ~19!

the assertion of the extended lemma follows.
With two-sided Brownian motion at hand, we may define alternatively to~10!

f t
n~z!5g2t

n ~z!2Y2t ~20!

satisfying

] t f t~z!5
22

f t
2n21~z!

2
1/n

f t
n21~z!

] tY2t , f 0~z!5z. ~21!

Choosing the driving function asYt5AkB2t we have

d ft~z!5
22

f t
2n21~z!

dt2
Ak/n

f t
n21~z!

dBt , f 0~z!5z. ~22!
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This will appear in the link to the Yang–Lee singularity addressed below.
It is remarked that our construction may be interpreted as chordal SLE inHn . To appreciate

this, we introducefn(z)5zn and letGt
(n)(z) denote the map in~7! whenYt5AkBt . Gt

(1)(z) thus
corresponds to chordal SLE in the upper half-planeH15H. We then have that

Ĝt
(n)~z!5fn

21+Gnt
(1)+fn~z! ~23!

~wherefn
21 singles out the principal root! satisfies~7! albeit with k̂5nk. As a consequence,Kt

(n)

is seen to correspond tofn
21(Knt

(1)).

III. RELATION TO CONFORMAL FIELD THEORY

A. Ordinary SLE

Bauer and Bernard13,14 have recently discussed a direct relationship between SLEk and CFT.
Their construction starts from a random walk on the~somewhat formal! Virasoro group:

Gt
21dGt522L22dt1AkL21+dBt , G051, ~24!

here written in the Stratonovich interpretation. We shall rather discuss it in the Ito form wh
reads

Gt
21dGt5S 22L221

k

2
L21

2 Ddt1AkL21dBt , G051. ~25!

Gt is an element of Vir2 obtained by exponentiating the negative modes,Ln , n,0, of the
Virasoro algebra. We write a generic elementGPVir2 as

G5¯ex2L22ex1L21 ~26!

and recall the definition of the Virasoro algebra:

@Ln ,Lm#5~n2m!Ln1m1
c

12
n~n221!dn1m,0 . ~27!

The central chargec plays a prominent role in CFT. As we shall discuss, it is through
construction of singular vectors in highest-weight modules of the Virasoro algebra that the
nection to SLEk is established.13,14

The conformal transformation generated by~25! acts on a primary field of weightD as

Gt
21fD~z!Gt5~]zf t~z!!DfD~ f t~z!! ~28!

for some conformal mapf t to be determined.~For simplicity, we do not distinguish explicitly
between boundary and bulk primary fields, nor do we write the antiholomorphic part.! Using that
the Virasoro generators act as

@Ln ,fD~z!#5~zn11]z1D~n11!zn!fD~z!, ~29!

one finds that the conformal map associated to the random process~25! must be a solution to the
stochastic differential equation

d ft~z!5
2

f t~z!
dt2AkdBt , f 0~z!5z ~30!

corresponding to~4!. This follows from computing the Ito differential of~28! and is discussed in
more details in Refs. 13, 14.
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Observables of the random process~25! are thought of as functions on the Virasoro grou
F(Gt), and a goal is to find the evolution for the expectation values of these observables. W
left-invariant vector fields,¹, , defined by

¹,F~Gt!5
d

du
F~Gte

uL,!uu50 ~31!

one has13 that the expectation valueE@F(Gt)# satisfies

] tE@F~Gt!#5EF S 22¹221
k

2
¹21

2 DF~Gt!G . ~32!

We shall be interested in observables of the formFD(Gt)5GtuD& whereuD& is the highest-weight
vector of weightD in the Verma moduleVD5Vir2uD& ~see Refs. 13, 14 and below!. In this case
the expectation value reads

] tE@GtuD&] 5EFGtS 22L221
k

2
L21

2 D uD&G . ~33!

For some values ofk ~in relation to the central chargec), the linear combination22L22

1( k/2 )L21
2 will produce a singular vector when acting on the highest-weight vector in a high

weight module. This is an important point as it enables one, through the representation the
the algebra, to find quantities conserved in mean under the random process.

The Verma moduleVD contains the singular vector at level two

uD;2&5S L222
k

4
L21

2 D uD& ~34!

providedL1uD;2&5L2uD;2&50. It is straightforward to show that this implies the parametri
tions

ck512
3~42k!2

2k
, Dk5

62k

2k
. ~35!

The expectation value of the observableFD(Gt)5GtuD& thus vanishes~33!:

] tE@GtuD&] 50. ~36!

We see that this direct relationship between SLEk evolutions and CFT is through the existence
a level-two singular vector in a highest-weight module. As discussed in Ref. 14, this relatio
provides links between conformal correlation functions and probabilities in SLEk .

B. Extended SLE

Since Brownian motion played a significant role in the derivation of~32! and~33!, and hence
in the correspondence between SLE and CFT, it remains unclear how to treat more general
processes than~25!. An extension invites itself, though. Namely, consider the random walk

Gt
21dGt5v2nL22ndt1Aku2nL2n+dBt , G051 ~37!

or in the Ito interpretation

Gt
21dGt5S v2nL22n1

ku2n
2

2
L2n

2 Ddt1Aku2nL2ndBt , G051. ~38!
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In this case we have

] tE@F~Gt!#5EF S v2n¹22n1
ku2n

2

2
¹2n

2 DF~Gt!G ~39!

and in particular

] tE@GtuD&] 5EFGtS v2nL22n1
ku2n

2

2
L2n

2 D uD&G . ~40!

To relate this to the SLE-type differential equations discussed above, we write~11! and ~22!
uniformly as

d ft~z!5
2~21!s11

~ f t~z!!2n21 dt2
Ak/n

~ f t~z!!n21 dBt , ~41!

wheres51 or s52 depending on the choice of relation~10! or ~20!, respectively. Taking the Ito
differential of the right-hand side of~28! results in

d$~]zf t~z!!DfD~ f t~z!!%5F S 2~21!s111
k~n21!

2n2 DL22ndt2
Ak

n
L2ndBt ,~]zf t~z!!DfD~ f t~z!!G

1
k

2n2 @L2n ,@L2n ,~]zf t~z!!DfD~ f t~z!!##dt ~42!

while the Ito differential of the left-hand side of~28! generated by the random walk~38! reads

d$Gt
21fD~ f t~z!!Gt%5@2v2nL22ndt2Aku2nL2ndBt ,Gt

21fD~ f t~z!!Gt#

1
ku2n

2

2
@L2n ,@L2n ,Gt

21fD~ f t~z!!Gt##dt. ~43!

A comparison of the two Ito differentials suggests considering the walk

Gt
21dGt5S S 2~21!s2

k~n21!

2n2 DL22n1
k

2n2 L2n
2 Ddt1

Ak

n
L2ndBt . ~44!

According to this, we should be looking for singular vectors of the form

uD;2n&5S S 2~21!s2
k~n21!

2n2 DL22n1
k

2n2 L2n
2 D uD&. ~45!

The upset, however, is that forn.1

L1uD;2n&5S S ~2n11!S 2~21!s2
k~n21!

2n2 D1
~n11!k

2n2 DL2(2n21)1
~n11!k

n2 L2nL2(n21)D uD&

Þ0 ~46!

for all k. This means that~45! can be a singular vector only whenn51, and is then given by~34!
~whens51). One should not be completely discouraged by this. The pivotal property of the
(L222 k/4L21

2 )uD& appearing in~33! and applications thereof,14 is that it vanishes in the quotien
space ofVD where all singular vectors have been factored out. In other words, it is a null ve
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This means that we do not have to insist that the vector~45! is a ~primitive! singular vector itself,
but only require that it is a linear combination of descendants of~primitive! singular vectors. An
example is provided below.

IV. YANG–LEE SINGULARITY

Generically, the Verma moduleVD is irreducible. Minimal models17,18 are examples of CFTs
for which it is reducible. They are labeled by a pair of positive and co-prime integersp.p8, and
are denotedM(p,p8). The central charge is

c5126
~p2p8!2

pp8
~47!

while the spectrum of primary fields or highest-weight representations have conformal wei

D r ,s5
~rp2sp8!22~p2p8!2

4pp8
, 1<r ,p8, 1<s,p, ~48!

with Dp82r ,p2s5D r ,s . There are two singular vectors not being descendants of singular ve
themselves, and they appear at levelsrs and (p82r )(p2s).

For p852, there is only one primary field admitting a singular vector at level two, in wh
case (r ,s)5(1,2). Forp8.2, on the other hand, there are two such fields, labeled by~1,2! and
~2,1!, respectively. It is easily verified that

D1,25Dk54p/p8 , D2,15Dk54p8/p . ~49!

It follows that SLEk and SLE16/k , with k54p/p8, may be linked to the same minimal mode
albeit via two different primary fields in the model.

The simplest example of a null vector of the form~45! for n.1 that we have found is a
level-four vector in the minimal modelM(5,2) withc5222/5, cf.~47!. This model offers a CFT
description of the statistical Yang–Lee singularity. Unlike ordinary SLE~except SLEk56 which is
known to correspond to percolation, and has central chargec50), the null vector appears in th
identity modulehaving singular vectors

u0&15L21u0&,

u0&45S L241
5

27
L23L212

5

3
L22

2 1
125

27
L22L21

2 2
125

108
L21

4 D u0&. ~50!

The null vector of our interest reads

u0;4&5u0&41S 2
5

27
L232

125

27
L22L211

125

108
L21

3 D u0&15S L242
5

3
L22

2 D u0&. ~51!

Comparing this to~45!, we find that the Yang–Lee singularity is related to a grade-two SLE-t
evolution with

k540 ~52!

ands52. There is no non-negative solution fork whens51. In summary, this SLE-type evolutio
reads

] tgt~z!5
2

gt~z!~gt
2~z!2A40Bt!

, g0~z!5z ~53!
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or in terms off t(z), cf. ~22! and ~41!:

d ft~z!5
22

f t
3~z!

dt2
A10

f t~z!
dBt , f 0~z!5z. ~54!

This provides a novel approach to the Yang–Lee model, and may eventually lead to an e
geometric realization.

V. CONCLUSION

As observed by Bauer and Bernard,13,14 SLE may be linked to CFT through the constructio
of a singular vector in a Virasoro highest-weight module. We have extended their approac
found that the Yang–Lee singularity may be described by a generalization of the SLE differ
equation. This new stochastic evolution appears at grade two in a hierarchy of SLE-type g
processes in which ordinary SLE appears at grade one. Their approach has recently been e
also to stochastic evolutions in superspace and superconformal field theory.19 Another extension
will appear elsewhere where it is discussed how SLE-type growth processes may be linked
via ~nonprimary! descendant fields. A possible classification of these links will also be addre
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Group classification of „1¿1…-dimensional Schro ¨ dinger
equations with potentials and power nonlinearities

Roman O. Popovycha) and Nataliya M. Ivanovab)
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01601 Kyiv-4, Ukraine

Homayoon Eshraghic)

Institute for Studies in Theoretical Physics and Mathematics, P.O. Box
19395-5531, Tehran, Iran
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We perform the complete group classification in the class of nonlinear Schro¨dinger
equations of the formic t1cxx1ucugc1V(t,x)c50, where V is an arbitrary
complex-valued potential depending ont andx, g is a real nonzero constant. We
construct all the possible inequivalent potentials for which these equations have
nontrivial Lie symmetries using a combination of algebraic and compatibility meth-
ods. The proposed approach can be applied to solving group classification problems
for a number of important classes of differential equations arising in mathematical
physics. © 2004 American Institute of Physics.@DOI: 10.1063/1.1765748#

I. INTRODUCTION

Nonlinear Schro¨dinger equations~NSchEs! are important objects for investigation in differe
fields of physics and mathematics. They are used in geometric optics,6 nonlinear quantum
mechanics,4 and the theory of Bose–Einstein condensation. NSchEs also have a number of
cations in wave propagation in inhomogeneous medium and arise as a model of plasma p
ena. The cubic Schro¨dinger equation is one of the most known integrable models of mathema
physics. At the same time the physical interpretation of some known types of nonlinear S¨-
dinger equations is not completely clear and is an interesting problem to solve.

Schrödinger equations have been investigated by means of symmetry methods by a num
authors.~See, e.g., Refs. 7–13,15,17,18, and references therein for classical Lie symmetri! In
fact, group classification for Schro¨dinger equations was first performed by Lie. More precisely,
classification14 of all the linear equations with two independent complex variables contains,
implicit form, solving the classification problem for the linear (111)-dimensional Schro¨dinger
equations with an arbitrary potential. And it is follows from Lie’s proof that the equations for
harmonic and repulsive oscillators and free fall are locally equivalent to the free Schro¨dinger
equation.

To the best of our knowledge, actual investigations of Lie symmetries for Schro¨dinger equa-
tions were started in 1970s with the linear case.15,17,18 The next considered class covered
1n)-dimensional NSchEs with nonlinearities of the formf (ucu)c, which are notable for their
symmetry properties because any such equation is invariant with respect to the Galilean gr
turned out that extensions of this invariance group are possible only for the logarithm and
functions, and there exists the power valueg54/n which is special with respect to the symmet

a!Electronic mail: rop@imath.kiev.ua
b!Electronic mail: ivanova@imath.kiev.ua
c!Electronic mail: eshraghi@theory.ipm.ac.ir
30490022-2488/2004/45(8)/3049/9/$22.00 © 2004 American Institute of Physics
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point of view.7 Namely, the free Schro¨dinger equation and the NSchE with the nonlinearityucu4/nc
are distinctive ones from a lot of similar equations, since they admit the complete Galilei g
extended with both the scale and conformal transformations.~Here n is the number of spatia
variables, and forn51 andn52 they are the quintic and cubic equations, respectively, that s
out against the other NSchEs.! This NSchE has also other special properties, and the valug
54/n is called now the critical power.

The results mentioned above formed a basis for symmetry studying more extended cla
NSchEs. So, finishing the series of papers8–12 on group analysis and exact solutions of NSchE
Gagnon and Winternitz12 investigated a general class of (111)-dimensional variable coefficien
cubic SchEs. It is the symmetry approach that was applied by Doebner and Goldin to obta
equations which generalize the Schro¨dinger equation and can be used in nonlinear quan
mechanics.4 These equations were investigated in more detail with the symmetry point of vie
a number of authors.5,16,26The complete group classification of constant coefficient NSchEs
nonlinearities of the general formF5F(c,c* ) was performed by Nikitin and Popovych.19

Group classification is one of symmetry methods used to choose physically relevant m
from parametric classes of systems of~partial or ordinary! differential equations. The paramete
can be constants or functions of independent variables, unknown functions and their deriv
Exhaustive consideration of the problem of group classification for a parametric classL of sys-
tems of differential equations includes the following steps:

~1! Finding the groupGker ~the kernel of maximal invariance groups! of local transformations tha
are symmetries for all systems fromL.

~2! Construction of the groupGequiv ~the equivalence group! of local transformations which trans
form L into itself.

~3! Description of all possibleGequiv-inequivalent values of parameters that admit maximal
variance groups wider thanGker.

Following Lie, one usually considers infinitesimal transformations instead of finite ones.
approach essentially simplifies the problem of group classification, reducing it to problems f
algebras of vector fields. See Refs. 1,2,19,21,22,24–26 for precise formulation of group c
cation problems and more details on the used methods.

In this paper we study a class of NSchEs of the form

ic t1cxx1ucugc1Vc50, ~1!

where the potentialV5V(t,x) is an arbitrary complex-valued smooth function of the variablet
andx, g is a real nonzero constant.~Here and below subscripts of functions denote differentiat
with respect to the respective variables.! To find a complete set of inequivalent cases ofV admit-
ting extensions of the maximal Lie invariance algebra, we combine the classical Lie app
studying the algebra generated by all the possible Lie symmetry operators for equations from
~1! ~the adjoint representation, the inequivalent one-dimensional subalgebras, etc.! and investiga-
tion of compatibility of classifying equations. The subclass of~1! whereg52 ~the cubic SchEs
with potentials! has been investigated in Ref. 23 in a similar way.

In fact, here we solve three classification problems for different classes of equations h
the form~1!: with the potentials depending only ont ~Sec. III!, with the stationary potentials~Sec.
IV ! and the general case with arbitrary potentials~Sec. II!. Moreover, it is proved in Sec. II the
constantg can be assumed asfixedunder our consideration. And there exists a special constaĝ
depending on the powerg (ĝ5g21(42g)), which arises at the beginning of the classificati
procedure when classification condition~3! is constructed and explicitly appears in the final resu
of classification. The valueg54 ~quintic nonlinearity, it is the same thatĝ50) is special with
respect to group classification in class~1!.

The classification approach used in this paper allows us to formulate a necessary and su
condition of mutual equivalence for the cases of extensions of maximal invariance algeb
algebraic terms~Corollary 2!. The classical stationary potentials~free particle, the harmonic an
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repulsive oscillators, free fall, radial free particle, the radial harmonic and repulsive oscillat15!
naturally arise under the group classification with respect to the~smaller! equivalence group in the
class of stationary potentials. Using Corollary 2 and the complete equivalence group of cla~1!
we easily construct transformations of thesex-dependent potentials tox-free ones in explicit form
~see Remark 8!.

II. GENERAL CASE VÄV„t ,x …

Consider an operatorQ5j t] t1jx]x1h]c1h* ]c* from the maximal Lie invariance algebr
Amax(g,V) of Eq. ~1! with a powerg and a potentialV. Herej t, jx, andh are smooth functions o
t, x, c, andc* . The infinitesimal invariance condition21,20 of Eq. ~1! with respect to the operato
Q implies the linear overdetermined system on the coefficients ofQ:

jc
t 5jc*

t
5jx

t 50, jc
x 5jc*

x
50, j t

t52jx
x , hc* 5hcc50, chc5h,

2hcx5 i j t
x , g~hc1hc* !522j t

t , ihct1hcxx1j tVt1jxVx1j t
tV50.

Therefore, the following theorem holds:
Theorem 1: Any operator Q from Amax(g,V) of Eq. (1) with arbitrary potential V lies in the

linear span of operators of the form

D~j!5j] t1
1

2
j tx]x1

1

8
j ttx

2M2
1

g
j tI , G~x!5x]x1

1

2
x txM, lM . ~2!

Here x5x(t), j5j(t) and l5l(t) are arbitrary smooth functions of t, M5 i (c]c2c* ]c* ),
I 5c]c1c* ]c* . Moreover, the coefficients of Q5D(j)1G(x)1lMPAmax(g,V) should satisfy
the classifying condition

jVt1S 1

2
j tx1x DVx1j tV5

1

8
j tttx

21
1

2
x ttx1l t1 i

ĝ

4
j tt . ~3!

Here and belowĝ5g21(42g).
Theorem 2:The Lie algebra of the kernel of maximal Lie invariance groups of equations

class~1! is Aker5^M &.
Remark 1:Sometimes~e.g., for reduction and construction of solutions! it is convenient to use

the amplituder and the phasew instead of the wave functionc5reiw. Then Eq.~1! is replaced
by the system for two real-valued functionsr andw:

r t12rxwx1rwxx1r Im V50, 2rw t2r~wx!
21rxx1rg111r ReV50.

Operators~2! have the same form withM5]w , I 5r]r .
To study equivalence transformations for class~1!, both the infinitesimal and direct method

are used. In the framework of the infinitesimal method we consider a first-order differe
operator of the most general form in the space of the variablest, x, c, c* , V, V* , andg, i.e.,

Q5j t] t1jx]x1h]c1h* ]c* 1u]V1u* ]V* 1G]g ,

wherej t, jx, h, u, andG may depend on all the variables, and assume it being an infinites
symmetry operator for the system

ic t1cxx1ucugc1Vc50, g t5gx5gc5gc* 50, Vc5Vc* 50. ~4!

~Under the prolongation procedure for equivalence transformations we supposec is a function of
t andx as well asV andg are functions oft, x, c, andc* .!
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Theorem 3: The Lie algebra Aequiv of the equivalence group Gequiv of class (1) is generated
by the operators

D8~j!5D~j!1
1

8
j tttx

2~]V1]V* !1
i

g
j tt~]V2]V* !2j t~V]V1V* ]V* !,

G8~x!5G~x!1 1
2 x ttx~]V1]V* !, M 8~l!5lM1l t~]V1]V* !.

In the framework of the direct method we look for all local transformations in the space o
variablest, x, c, c* , V, V* , andg, which preserve system~4!.

Theorem 4: The equivalence group Gequiv of the class (1) is generated by the family
continuous transformations

t̃ 5T, x̃5xATt1X, c̃5c
1

~Tt!
1/g

expS i

8

Ttt

Tt
x21

i

2

Xt

ATt

x1 iC D , g̃5g,

Ṽ5
1

Tt
S V1

1

8 S Ttt

Tt
D

t

x21
1

2 S Xt

ATt
D

t

x1 i
ĝ

4

Ttt

Tt
2S 1

4

Ttt

Tt
x1

1

2

Xt

ATt
D 2

1C tD ~5!

and two discrete transformations: the space reflection Ix ( t̃ 5t, x̃52x, c̃5c, g̃5g, Ṽ5V) and

the Wigner time reflection It ( t̃ 52t, x̃5x, c̃5c* , g̃5g, Ṽ5V* ). Here T, X, and C are
arbitrary smooth functions of t, Tt.0.

We also prove the stronger statement than Theorem 4.
Theorem 5: If two equations from class (1) with the parameter values(g,V) and (g̃,Ṽ) are

transformed each to other by local transformations, theng̃5g. Moreover, sincegÞ0 any trans-
formation of such type belongs to Gequiv.

Remark 2:It follows from Theorems 4 and 5 that there exist no equivalence and, more
local transformations changingg. Therefore, we can assume thatg is fixed in our consideration
below and omit it from notations of the maximal Lie invariance algebras of an equation of
~1!, etc.

Remark 3:The linear span of operators of the form~2! ~g is fixed!! is an~infinite-dimensional!
Lie algebraAø under the usual Lie bracket of vector fields. Since for anyQPAø, where
(j t,jx)Þ(0,0) we can findV satisfying condition~3!, thenAø5^øVAmax(V)&. The nonzero com-
mutation relations between the basis elements ofAø are the following ones:

@D~j1!,D~j2!#5D~j1j t
22j2j t

1!, @D~j!,G~x!#5G~jx t2
1
2 j tx!, @D~j!,lM #5jl tM ,

@G~x1!,G~x2!#5 1
2 ~x1x t

22x2x t
1!M .

We use the notation Aut(Aø) for the automorphism group acting onAø, which is generated by al
the one-parameter groups corresponding to the adjoint representations of operators ofAø into Aø

and two discrete transformations AdI x and AdI t included additionally. The actions of AdI x and
Ad I t on the basis elements ofAø are defined by the formulas AdI x G(x)5G(2x) ~the other
basis operators do not change! and AdI t D(j)5D( j̃), Ad I t G(x)5G(x̃), Ad I t lM5l̃M ,
wherej̃(t)52j(2t), x̃(t)5x(2t), andl̃(t)52l(2t).

Corollary 1: Aequiv.Aø, Gequiv.Aut(Aø), and the isomorphism is determined by means
prolongation of operators from Aø to the space(V,V* ).

Corollary 2: Let A1 and A2 be the maximal Lie invariance algebras of equations from cl
(1) for some potentials, andV i5$VuAmax(V)5Ai%, i 51,2. Then V 1;V 2modGequiv iff A1

;A2 mod Aut(Aø).
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Lemma 1: A complete list ofAut Aø-inequivalent one-dimensional subalgebras of Aø is
exhausted by the algebras^] t&, ^]x&, ^tM &, ^M &.

Proof: Consider any operatorQPAø, i.e.,Q5D(j)1G(x)1lM . Depending on the value
of j, x and l it is equivalent under Aut(Aø) and multiplication by a number to one from th
following operators:D(1) if jÞ0; G(1) if j50 andxÞ0; tM if j5x50, l tÞ0; M if j5x
5l t50.

Corollary 3: If Amax(V)ÞAker, then VtVx50 modGequiv.
Proof: Under the corollary assumption there exists an operatorQ5D(j)1G(x)1lM

PAmax(V) which do not belong tôM &. Condition~3! implies (j,x)Þ(0,0). Therefore, in force of
Lemma 1 ^Q&;^] t& or ^]x&mod AutAø, i.e., VtVx50 modGequiv.

Theorem 6:A complete set of inequivalent cases of V admitting extensions of the maxim
invariance algebra of Eq. (1) is exhausted by the potentials given in Table I.

For convenience we use below the double numeration T. N. of classification cases whe
a table number and N is a row number.

Remark 4:We mean that the invariance algebras for Cases 1.0, 1.1, 1.6 and analogou
from Tables II and III are maximal if these cases are inequivalent under the corresponding e
lence group to the other, more specialized, cases from the same table.

Remark 5:There exists a discrete equivalence transformationt for the set of potentialsint21,
nPR, which has form~5! with T52t21, X50, C50. It transformsn in the following way:n
→ĝ/22n. For the cases under consideration to be completely inequivalent, we have to a
additionally thatn>ĝ/4 ~or n<ĝ/4) in Case 1.3. SinceI tPGequiv we can assume analogous

TABLE I. Results of classification. HereW(t),n,a,bPR, (a,b)Þ(0,0).

N V Basis ofAmax

0 V(t,x) M

1 iW(t) M , ]x , G(t)

2
i

2

ĝ t1n

t211
M , ]x , G(t), D(t211)

3 int21, nÞ0,
ĝ

2
M , ]x , G(t), D(t)

4 i M , ]x , G(t), ] t

5 0, gÞ4 M , ]x , G(t), ] t , D(t)
g54 M , ]x , G(t), ] t , D(t), D(t2)

6 V(x) M , ] t

7 (a1 ib)x22, gÞ4 M , ] t , D(t)
g54 M , ] t , D(t), D(t2)

TABLE II. Classification of the subclassV5V(x) if gÞ4. Heren,a,bPR, (a,b)Þ(0,0).

N N1 V Basis ofAmax

0 6 V(x) M , ] t

1 7 (a1 ib)x22 M , ] t , D(t)
2 7 x21 i ĝ1(a1 ib)x22 M , ] t , D(e4t)
3 4 i M , ] t , ]x , G(t)
4 4 x1 in, nÞ0 M , ] t , ]x1tM , G(2t)1t2M
5 2 2x21 in M , ] t , G(sin 2t), G(cos 2t)
6 3 x21 in, nÞ6ĝ M , ] t , G(e2t), G(e22t)
7 5 0 M , ] t , ]x , G(t), D(t)
8 5 x M, ] t , ]x1tM , G(2t)1t2M , D(2t)1G(3t2)1t3M
9 5 x21 i ĝ M , ] t , G(e2t), G(e22t), D(e4t)
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n>0 in Case 1.2 andb>0 in Case 1.7. Moreover,t is a discrete symmetry transformation fo
Case 1.3 (n5ĝ/4) and, as a limit of the continuous transformations generated by the ope
D(t211), for Case 1.2.

If we use Corollary 3 then to prove Theorem 6 it is sufficient to study two cases:Vx50 and
Vt50. In fact, below we obtain the complete results of group classifications for both special
and then unite them for the general case under consideration.

III. CASE VÄV„t …

Consider the equations from class~1! with potentials satisfying the additional assumpti
Vx50, i.e., V5V(t). The following chain of lemmas gives complete solving of classificat
problem in this subclass.

Lemma 2: AVx50
ker 5^M ,G(1),G(t)&.

Lemma 3: AVx50
equiv 5^M 8(l) ;l5l(t),G8(1),G8(t),D8(1),D8(t),D8(t2)&. GVx50

equiv is gener-

ated by It , I x and the transformations of form~5!, where T5(a1t1a0)/(b1t1b0), X5c1t
1c0 , C is an arbitrary smooth function of t. ai , bi and ci are arbitrary constants such tha
a1b02b1a0.0.

Lemma 4: For any V5V(t): V; iW modGVx50
equiv , where W5Im V, i.e., W5W(t)PR.

Lemma 5: A$ iW%
ker 5AVx50

ker . Amax(iW),A$iW%
ø 5A$iW%

ker
œS, where S5^D(1),D(t),D(t2)&. A$ iW%

ø

5øWAmax(iW).
A$ iW%

equiv5^M ,G8(1),G8(t),D8(1),D8(t),D8(t2)&. G$ iW%
equiv5GVx50

equiv uC5const. A$ iW%
ø .A$ iW%

equiv

5pr(V,V* )A$ iW%
ø .

Lemma 6: S.sl(2,R). The complete list of A$ iW%
ø -inequivalent proper subalgebras of S

exhausted by the algebras^D(1)&, ^D(t)&, ^D(t211)&, ^D(1),D(t)&.
Lemma 7: Let A1 and A2 be the maximal Lie invariance algebras of equations from class

for some potentials from$ iW(t)%, and W i5$ W(t) u Amax(iW)5Ai%, i 51,2. Then W 1

;W 2 modG$ iW%
equiv iff A1ùS;A2ùSmod Aut(S).

Lemma 8: If A$ iW%
max ÞAVx50

ker the potential iW(t) is G$ iW%
equiv-equivalent to one from Cases1.2–1.5.

Remark 6:If gÞ4 or WÞconstAmax(iW)ÖS ~otherwise, condition~3! would imply an in-
compatible system forW). If W5constWP$0,1%modG$ iW%

equiv ~Cases 1.5 and 1.4 correspondingly!.
Cases 1.2n and 1.2ñ ~1.3n and 1.3ñ where n,ñ>g/4) are Gequiv-inequivalent if nÞñ. Since
D(t211) cannot be contained in any two-dimensional subalgebra ofS it is not possible to extend
Amax in Case 1.2. There are two possibilities for extension ofAmax(int21), namely with eitherD(1)
~for n50, Case 1.5! or D(t2) ~for n5(42g)/(2g) that is equivalent to Case 1.5 with respect
G$ iW%

equiv). That is why forn50, g54 dimension ofAmax is greatest.

TABLE III. Classification of the subclassV5V(x) if g54. Heren,a,bPR, nÞ0, (a,b)Þ(0,0).

N N1 V Basis ofAmax

0 6 V(x) M , ] t

1 7 (a1 ib)x22 M , ] t , D(t), D(t2)
2 7 x21(a1 ib)x22 M , ] t , D(e4t), D(e24t)
3 7 2x21(a1 ib)x22 M , ] t , D(cos 4t), D(sin 4t)
4 4 i M , ] t , ]x , G(t)
5 4 x1 in M , ] t , ]x1tM , G(2t)1t2M
6 2 2x21 in M , ] t , G(sin 2t), G(cos 2t)
7 3 x21 in M , ] t , G(e2t), G(e22t)
8 5 0 M , ] t , ]x , G(t), D(t), D(t2)
9 5 x M, ] t , ]x1tM , G(2t)1t2M ,

D(2t)1G(3t2)1t3M , D(4t2)1G(4t3)1t4M
10 5 x2 M , ] t , G(e2t), G(e22t), D(e4t), D(e24t)
11 5 2x2 M , ] t , G(cos 2t), G(sin 2t), D(cos 4t), D(sin 4t)
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IV. CASE VÄV„x …

Consider class~1! with the additional assumptionVt50, i.e.,V5V(x).
Lemma 9: AVt50

ker 5^M ,D(1)&.
Lemma 10: AVt50

equiv5^M 8(1),M 8(t),G8(1),D8(1),D8(t)&. GVt50
equiv is generated by It , I x and

the transformations of form~5!, where Ttt5Xt5C tt50.
Lemma 11: If Amax(V)ÞAVt50

ker the potential V(x) is GVt50
equiv-equivalent to one from cases o

either Table II ifgÞ4 or Table III if g54. ~Since ItPGequiv we can assumen>0 in Cases 2.5,
2.6, 3.5–3.7, n.0 in Case 2.4 andb>0 in Cases 2.1, 3.1–3.3.!

Proof: Let V5V(x) and Amax(V)ÞAVt50
ker . Consider an arbitrary operatorQ5D(j)1G(x)

1lMPAmax(V). Under Lemma’s assumption, condition~3! implies a set of equations onV of the
general form

~ax1b!Vx12aV5c2x21c1x1 c̃01 ic0 , where a,b,c2 ,c1 ,c̃0 ,c05constPR.

The exact numberk of such equations with the linear independent sets of coefficients can be
to either 1 or 2.~The valuek50 corresponds to the general caseVt50 without any extensions o
Amax.)

For k51 (a,b)Þ(0,0) and there exist two possibilitiesa50 andaÞ0. If a50 without loss
of generality we can putb51. Then condition~3! results in j t50, c25c050, i.e., Vx5c1x
1 c̃0 , and thenk52 that it is impossible.

Therefore,aÞ0 and we can puta51. c̃0 ,b50modGVt50
equiv . Condition ~3! results inx50

~thenc150), l t50, ĝj tt52c0j t , and ĝc25c0
2 . For g54, c050, andc2P$24,0,4%modGVt50

equiv

and these possibilities in the value ofc2 give Cases 3.1–3.3. IfgÞ4 we obtain Cases 2.1 (c0

50) and 2.2 (c0Þ0).
The conditionk52 results inV5d2x21d1x1d̃01 id0 . d̃050 modGVt50

equiv . Considering dif-

ferent possibilities for values of the constantsd2 , d1 , andd0 and taking into account the value o
g ~eithergÞ4 or g54), we obtain all the other classification cases:

d25d15d050 → 2.7,3.8; d25d150, d0Þ0 → 2.3,3.4;

d25d050, d1Þ0 → 2.8,3.9; d250, d0 ,d1Þ0 → 2.4,3.5;

d2,0, ~d0 ,ĝ !Þ~0,0! → 2.5,3.6; d2,0, d05ĝ50 → 3.11;

d2.0, ĝ2d2Þd0
2 → 2.6,3.7; d2.0, ĝ2d25d0

2 → 2.9,3.10.

Remark 7:To prove Theorem 6, it is sufficient to consider only the casek51, aÞ0 in Lemma
11 since other cases of extensions ofAmax(V) with V5V(x) admit operators of the formG(x)
1lM (xÞ0) and, therefore~by Corollary 2!, are equivalent to Cases 1.1–1.5.

Remark 8:The numberN1 for each line of Tables II and III is equal to the number of the sa
or equivalent case in Table I. The corresponding equivalence transformations have the fo~5!
where the functionsT, X, andC are as follows:

2.2, 3.2→1.7, 2.6, 3.7→1.3S ñ5
ĝ2n

4 D , 2.9, 3.10→1.5: T52e24t, X5C50;

3.3→1.7, 2.5, 3.6→1.2~ ñ5n!, 3.11→1.5: T5tan 2t, X5C50;

2.4, 3.5→1.4: T5unut, X52Aunu t2, C5
t3

3
;
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2.8, 3.9→1.5: T5t, X52t2, C5
t3

3
.

Remark 8 completes the proof of Theorem 6.

V. CONCLUSION

The results of group classification obtained in this paper can be extended to a more g
class of (11n)-dimensional NSchEs with potentials

ic t1Dc1F~c,c* !1V~ t,xW !c50, ~6!

whereF5F(c,c* ) is an arbitrary complex-valued smooth function of the variablesc andc* .
We have already described all possible inequivalent forms of the parameter-functionF ~without
any restriction on the dimensionn) for which an equation of the form~6! with a some potentialV
has an extension of the maximal Lie invariance algebra. We believe that the classification m
suggested in this paper can be effectively applied to complete the group classification in~6! for the
small values ofn. This method can be also a tool to investigate symmetries of other class
PDEs, and we will attempt to prove general statements on its applicability.

Another direction for us to develop the above results is construction of both invarian
partially invariant exact solutions of equations having the form~1! by means of using found Lie
symmetries, and knowledge of explicit forms for equivalence transformations~see Theorem 4 and
Remark 8! allows us to reduced consideration of known stationary potentials to simplerx-free
ones. We also plan to study conditional and generalized symmetries of~1! to find non-Lie exact
solutions.

As it was shown by Carles,3 the equivalence transformations~5! also give an easy and
effective way to produce new results on existence, uniqueness, estimations, etc., of soluti
some equations~1! by means of using known results on other potentials.
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14Lie, S., ‘‘Über die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichung,’’
Math. 6, 328–368~1881!. ~Translation by N. H. Ibragimov and S. Lie, ‘‘On integration of a Class of Linear Par
Differential Equations by Means of Definite Integrals,’’CRC Handbook of Lie Group Analysis of Differential Equatio
~1994!, Vol. 2, pp. 473–508.!

15Miller, W., Symmetry and Separation of Variables~Addison-Wesley, Reading, 1977!.
16Nattermann, P. and Doebner, H.-D., ‘‘Gauge classification, Lie symmetries, and integrability of a family of non

Schrödinger equations,’’ J. Nonlinear Math. Phys.3, 302–310~1996!.
17Niederer, U., ‘‘The maximal kinematical invariance group of the free Schro¨dinger equation,’’ Helv. Phys. Acta45,

802–810~1972!.
18Niederer, U., ‘‘The maximal kinematical invariance group of the harmonic oscillator,’’ Helv. Phys. Acta46, 191–200

~1973!.
19Nikitin, A. G. and Popovych, R. O., ‘‘Group classification of nonlinear Schro¨dinger equations,’’ Ukr. Mat. Zh.53,

1255–1265~2001!.
20Olver, P.,Applications of Lie Groups to Differential Equations~Springer-Verlag, New York, 1989!.
21Ovsiannikov, L. V.,Group Analysis of Differential Equations~Academic, New York, 1982!.
22Popovych, R. O. and Ivanova, N. M., ‘‘New results on group classification of nonlinear diffusion-convection equat

math-ph/0306035, 19 p.
23Popovych, R. O. and Ivanova, N. M., and Eshraghi, H., ‘‘Lie symmetries of (111)-dimensional cubic Schro¨dinger

equation with potential,’’ math-ph/0312055, 6 p.
24Popovych, R. O. Yehorchenko, I. A., ‘‘Group classification of generalized eikonal equations,’’ Ukr. Mat. Zh.53, 1841–

1850 ~2001! ~see math-ph/0112055 for the extended version!.
25Zhdanov, R. Z. and Lahno, V. I., ‘‘Group classification of heat conductivity equations with a nonlinear source,’’ J.

A 32, 7405–7418~1999!.
26Zhdanov, R. and Roman, O., ‘‘On preliminary symmetry classification of nonlinear Schro¨dinger equation with some

applications of Doebner–Goldin models,’’ Rep. Math. Phys.45, 273–291~2000!.
                                                                                                                



lassic
e of
l
repre-

-
the sto-
pertur-
ling of
d with
opor-
yson’s

al

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 8 AUGUST 2004

                    
Symmetry of matrix-valued stochastic processes and
noncolliding diffusion particle systems

Makoto Katoria)

Department of Physics, Faculty of Science and Engineering, Chuo University, Kasuga,
Bunkyo-ku, Tokyo 112-8551, Japan

Hideki Tanemurab)

Department of Mathematics and Informatics, Faculty of Science, Chiba University,
1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

~Received 28 February 2004; accepted 21 April 2004;
published online 2 July 2004!

As an extension of the theory of Dyson’s Brownian motion models for the standard
Gaussian random-matrix ensembles, we report a systematic study of Hermitian
matrix-valued processes and their eigenvalue processes associated with the chiral
and nonstandard random-matrix ensembles. In addition to the noncolliding Brown-
ian motions, we introduce a one-parameter family of temporally homogeneous
noncolliding systems of the Bessel processes and a two-parameter family of tem-
porally inhomogeneous noncolliding systems of Yor’s generalized meanders and
show that all of the ten classes of eigenvalue statistics in the Altland–Zirnbauer
classification are realized as particle distributions in the special cases of these
diffusion particle systems. As a corollary of each equivalence in distribution of a
temporally inhomogeneous eigenvalue process and a noncolliding diffusion pro-
cess, a stochastic-calculus proof of a version of the Harish–Chandra~Itzykson–
Zuber! formula of integral over unitary group is established. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1765215#

I. INTRODUCTION

It is interesting to consider today mathematical-physical sequences of the two c
papers10,11by Dyson of random matrix theory, which appeared sequentially in the same volum
the journal in 1962. In one of them,11 following the early work of Wigner, he gave a logica
foundation for his classification scheme of random-matrix ensembles based on the group
sentation theory of Weyl and established the standard~Wigner–Dyson! random matrix theory for
the three ensembles called the Gaussian unitary, orthogonal, and symplectic ensembles~GUE,
GOE, and GSE!. He introduced in the other paper10 the Hermitian matrix-valued Brownian mo
tions, which are associated with these Gaussian random-matrix ensembles, and studied
chastic processes of eigenvalues of the matrix-valued processes. Combining the standard
bation theory of the quantum mechanics and a simple but essential consideration of the sca
Brownian motions, he generally proved that the obtained eigenvalue processes are identifie
the one-dimensional systems of Brownian particles with the repulsive two-body forces pr
tional to the inverse of distances between particles. These processes are now called D
Brownian motion modelsY(t)5(Y1(t),Y2(t),...,YN(t)) described by the stochastic differenti
equations

dYi~ t !5dBi~ t !1
b

2 (
1< j <N, j Þ i

1

Yi~ t !2Yj~ t !
dt, tP@0,̀ !,1< i<N, ~1!

a!Electronic mail: katori@phys.chuo-u.ac.jp
b!Electronic mail: tanemura@math.s.chiba-u.ac.jp
30580022-2488/2004/45(8)/3058/28/$22.00 © 2004 American Institute of Physics
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with b51,2,4 for GOE, GUE, and GSE, respectively, whereBi(t),1< i<N are independen
one-dimensional standard Brownian motions. Dyson’s classification scheme has been exten
addition to the standard three random-matrix ensembles, theirchiral versions~chGUE, chGOE,
and chGSE! were studied in the particle physics of QCD associated with consideration o
gauge groups and quantum numbers called flavors.54,53,27,51After that extension, Altland and
Zirnbauer introduced more four ensembles called the classes C, CI, D, and DIII for the solid
physics of mesoscopic systems considering the particle-hole symmetry, which plays an imp
role in the Bogoliubov–de Gennes framework of the BCS mean-field theory
superconductivity.1,2 These totally ten Gaussian ensembles are systematically argue
Zirnbauer56 based on Cartan’s classification scheme of symmetric spaces23 and Efetov’s super-
symmetry theory.13

One consequence of a combination of the two papers by Dyson may be to give a syst
study of matrix-valued diffusion processes~i.e., diffusion processes in groups or algebraic spac!
and perform the classification of eigenvalue processes as generalization of Dyson’s Bro
motion models. This line has been taken by Bru,6,7 Grabiner,21 König and O’Connell,36 and others,
and one purpose of the present paper is to clarify the relationship between statistics of~nonstand-
ard! random matrix theory and stochastic processes of interacting diffusion particles in the ty
Dyson’s Brownian motion models studied in the probability theory. We will claim in Sec. II
the matrix-valued processes called the Wishart process by Bru7 and the Laguerre process by Ko¨nig
and O’Connell36 are the stochastic versions of chGOE and chGUE, respectively, in the sen
Dyson,10 and derive in Sec. III the diffusion processes describing the eigenvalue statistics
classes C and D of Altland and Zirnbauer, following Bru’s matrix-version of the stochastic c
lus based on the Ito rule for differentials.

Due to the strong repulsive forces in the processes of the types of Dyson’s Brownian m
models, particle collisions are suppressed. Impossibility of collision may be generally prov
the same argument as Bru, who showed that the collision time between two eigenvalues
Wishart process is infinite (t51` a.s.!.6 For theb52 ~GUE! case of Dyson’s Brownian motion
model ~1!, if Y(0)PWN

A , thenY(t)PWN
A for all t.0 with probability 1, whereWN

A denotes the
Weyl chamber of type AN21 ; WN

A5$xPRN;x1,x2,¯,xN%. Using the Karlin–McGregor
formula28,29the transition density of the absorbing Brownian motion inWN

A from the statex at time
s to the statey at time t(.s) is given by the determinant

f A~ t2s,yux!5 det
1< i , j <N

@GA~ t2s,yj uxi !#, x,yPWN
A , ~2!

where each element is the Gaussian heat-kernelGA(t,yux)5e2(x2y)2/2t/A2pt. Grabiner21 pointed
out that the transition probability density of process~1! with b52 is given by

pA~s,x;t,y!5
1

hA~x!
f A~ t2s,yux!hA~y!,

wherehA(x)5)1< i , j <N(xj2xi). SincehA(x) is a strictly positive harmonic function inWN
A , this

is regarded as theh-transform in the sense of Doob,9 and it implies that the eigenvalue process
GUE is realized as the noncolliding Brownian motions~i.e., the h-transform of an absorbing
Brownian motion in the Weyl chamber of type AN21). König and O’Connell also showed that th
eigenvalue process of the Laguerre process, which corresponds to chGUE, is realized
noncolliding system of the squared Bessel processes.36 In Sec. IV, we show that the eigenvalu
processes of random matrices in the symmetry classes C and D of Altland and Zirnbau
realized as the noncolliding system of theBrownian motions with an absorbing wall at the origin35

~i.e., theh-transform of an absorbing Brownian motion in the Weyl chamber of type CN) and as
the noncolliding system of thereflecting Brownian motions~i.e., theh-transform of an absorbing
Brownian motion in the Weyl chamber of type DN), respectively. These three kinds of systems
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discussed as special cases of a family of noncolliding systems of diffusion particles with
parametern.21, in which each particle is following thed52(n11)-dimensional Bessel proces
defined by the transition probability density5,48

G(n)~ t,yux!5
yn11

xn

1

t
e2(x21y2)/2tI nS xy

t D for x.0,y>0,

G(n)~ t,yu0!5
y2n11

2nG~n11!tn11 e2y2/2t for y>0, ~3!

where G denotes the Gamma function andI n is the modified Bessel function;I n(z)
5(n50

` (z/2)2n1n/$G(n11)G(n1n11)%.
How can we realize other six eigenvalue processes in Altland–Zirnbauer’s ten class

random-matrix ensembles as well by noncolliding systems of diffusion processes? In our pr
papers31,32 we considered the situation that the noncolliding condition is imposed not foreve
for a finite time-interval (0,T# to define the temporally inhomogeneous noncolliding Brown
motionsX(t)5(X1(t),X2(t),...,XN(t)). Of course, we can see thatX(t)→Y(t) in distribution as
T→`. We observed for the finite time-intervaltP@0,T# that, if we setX(0)5Y(0)50 with 0
5(0,0,...,0)PRN, then

P~X~• !Pdw!5
C@A#Tc[A]

C@A8#hA~w~T!!
P~Y~• !Pdw!, ~4!

where C@A#5(2p)N/2) i 51
N G( i ), C@A8#52N/2) i 51

N G( i /2), andc@A#5N(N21)/4. This is re-
garded as a multivariate version of the Imhof relation in the probability theory,25 since it implies
the absolute continuity in distribution of the temporally homogeneous processY(t) and the inho-
mogeneous processX(t) in @0,T#, but from the viewpoint of random matrix theory the importa
consequence of this equality is the fact that the processX(t) exhibits a transition in distribution
from the eigenvalue statistics of GUE to that of GOE and thus the GOE distribution is realiz
the final time t5T. In Sec. V, we develop this argument by replacing the Brownian mot
Xi(t),1< i<N by the generalized meanderswith two parameters (n,k),n.21,kP@0,2(n
11)), introduced as the temporally inhomogeneous diffusions associated with the Bessel p
by Yor,55 whose transition probability density is given by

GT
(n,k)~s,x;t,y!5

1

hT
(n,k)~s,x!

G(n)~ t2s,yux!hT
(n,k)~ t,y! ~5!

for 0<s,t<T,x,y>0 with hT
(n,k)(t,x)5*0

`dz G(n)(T2t,zux)z2k. By choosing the two param
eters~n,k! appropriately, this family of noncolliding systems of generalized meanders prov
such diffusion processes that exhibit the transitions from chGUE to chGOE and from clas
class CI. We will also consider the processes, in which the noncolliding condition collapses
final time t5T in the ways that all particles collide simultaneously or only pairwise collisi
occur. In the special cases in the latter situation, we have the processes showing the tra
from GUE to GSE, from chGUE to chGSE, and from class D to class DIII.

The present study of the temporally inhomogeneous noncolliding diffusion processes
two kinds of by-products.~i! Topology of path-configurations of our processes on the spa
temporal planeR3@0,T# is determined by the conditions att50 and t5T. We will be able to
discuss the topology of random directed polymer networks8,14 using the random matrix theory
Such correspondence between the topology of path-configurations and random-matrix ens
is recently used by Sasamoto and Imamura to analyze one-dimensional polynuclear
models.49 ~ii ! A variety of versions of Harish–Chandra~Itzykson–Zuber! formulas of integrals
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over unitary groups22,26 are derived as corollaries of the equivalence in distribution of the eig
value processes of matrix-valued processes and noncolliding diffusion processes. Other r
are given in Sec. VI.

II. BRU’S THEOREM

A. Hermitian matrix-valued stochastic processes

We denote the space ofN3N Hermitian matrices byH(N), the group ofN3N unitary
matrices by U(N), and the group ofN3N real orthogonal matrices by O(N). We also use the
notationsS(N) andA(N) for the spaces ofN3N real symmetric and real antisymmetric matrice
respectively. We consider complex-valued processesj i j (t)PC,1< i , j <N,tP@0,̀ ), with the con-
dition j j i (t)* 5j i j (t), and define the matrix-valued processes byJ(t)5(j i j (t))1< i , j <NPH(N).
We denote byU(t)5(ui j (t))1< i , j <N the family of unitary matrices which diagonalizeJ(t) so
that

U~ t !†J~ t !U~ t !5L~ t !5diag$l1~ t !,l2~ t !,...,lN~ t !%,

where$l i(t)% i 51
N are eigenvalues ofJ(t) and we assume their increasing order

l1~ t !<l2~ t !<¯<lN~ t !. ~6!

Define G i j (t),1< i , j <N, by G i j (t)dt5(U(t)†dJ(t)U(t)) i j (U(t)†dJ(t)U(t)) j i , wheredJ(t)
5(dj i j )1< i , j <N . We denote by1~v! the indicator function:1(v)51 if the conditionv is satisfied,
and1(v)50 otherwise. The following theorem is proved for the stochastic process of eigenv
l(t)5(l1(t),l2(t),...,lN(t)).

Theorem 1: Assume thatj i j (t),1< i , j <N are continuous semimartingales. The proce
l(t)5(l1(t),l2(t),...,lN(t)) satisfies the stochastic differential equations

dl i~ t !5dMi~ t !1dJi~ t !, 1< i<N,

where Mi(t) is the martingale with quadratic variation̂M i& t5*0
t G i i (s)ds and Ji(t) is the pro-

cess with finite variation given by

dJi~ t !5(
j 51

N
1

l i~ t !2l j~ t !
1~l i~ t !Þl j~ t !!G i j ~ t !dt1dY i~ t !,

where dY i(t) is the finite-variation part of(U(t)†dJ(t)U(t)) i i .
Since this theorem is obtained by simple generalization of Theorem 1 in Bru,6 we call it Bru’s

theorem here. A key point to derive the theorem is applying the Ito rule for differentiating
product of matrix-valued semimartingales: IfX and Y are N3N matrices with semimartingale
elements, then

d~X†Y!5~dX!†Y1X†~dY!1~dX!†~dY!.

B. Four basic examples

Let N5$0,1,2,..% and assumenPN. Let Bi j (t), B̃i j (t), 1< i<N1n, 1< j <N be independent
one-dimensional standard Brownian motions. For 1< i , j <N we set
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si j ~ t !55
1

&
Bi j ~ t !, if i , j ,

Bii ~ t !, if i 5 j ,

1

&
Bji ~ t !, if i . j ,

and ai j ~ t !55
1

&
B̃i j ~ t !, if i , j ,

0, if i 5 j ,

2
1

&
B̃j i ~ t !, if i . j .

Here we show four basic examples of Hermitian matrix-valued processes and applicatio
Theorem 1.

~i! The first example of the Hermitian matrix-valued process is defined by

J~t!5~jij~t!!1<i,j<N5~sij~t!1A21ai j ~ t !!1< i , j <N , tP@0,̀ !.

By definitiondj i j (t)djk,(t)5d i ,d jkdt, 1< i , j ,k,,<N, and thusG i j (t)51. Thereforel(t)
solves the equations of Dyson’s Brownian motion model~1! with b52.

~ii ! The second example is given by

J~t!5~sij~t!!1<i,j<NPS~N!, tP@0,̀ !.

In this casedj i j (t)djk,(t)5(d i ,d jk1d ikd j ,)dt/2, 1< i , j ,k,,<N, and thusG i j (t)dt5(1
1d i j )dt/2, 1< i , j <N. Thenl(t) solves~1! with b51.

~iii ! We consider an (N1n)3N matrix-valued process by M (t)5(Bi j (t)
1A21B̃i j )1< i<N1n,1< j <N and define theN3N Hermitian matrix-valued process by

J~t!5M~t!†M~t!, tP@0,̀ !. ~7!

Since the matrixJ(t) is positive definite, the eigenvalues are non-negative. By defini
we see that the finite-variation part ofdj i j (t) is 2(N1n)d i j dt and dj i j (t)djk,(t)
52(j i ,(t)d jk1jk j(t)d i ,)dt, 1< i , j ,k,,<N, which imply that dY i(t)52(N1n)dt and
G i j (t)52(l i(t)1l j (t)), 1< i , j <N. Since^Mi& t5*0

t 4l i(s)ds, the stochastic differentia
equations forl(t) are given by

dli~t!52Al i~ t !dBi~ t !1bH ~N1n!1 (
1< j <N: j Þ i

l i~ t !1l j~ t !

l i~ t !2l j~ t ! J dt, 1< i<N, ~8!

with b52.
~iv! SetB(t)5(Bi j (t))1< i<N1n,1< j <N and define

J~t!5B~t!TB~t!PS~N!, tP@0,̀ !. ~9!

We see that the finite-variation part ofdj i j (t) is (N1n)d i j dt and dj i j (t)djk,(t)
5(j ik(t)d j ,1j i ,(t)d jk1j jk(t)d i ,1j j ,(t)d ik)dt, 1< i , j ,k,,<N. Then dY i(t)5(N
1n)dt andG i j (t)5(l i(t)1l j (t))(11d i j ), 1< i , j <N. The equations forl(t) are given
by ~8! with b51.

The process~9! was called the Wishart process and studied as matrix generalization of sq
Bessel process by Bru.7 König and O’Connell36 called the process~7! the Laguerre process an
studied its eigenvalue process~8! with b52.

C. Relation with the standard and chiral random matrix theories

Here we assume thatBi j (0)5B̃i j (0)50 for all 1< i<N1n,1< j <N, and thus the initial
distribution ofJ(t) is the pointmass on anN3N zero matrixO; m(JP•;0)5dO . In this case
the distributions ofJ(t)’s are related with those studies in the standard~Wigner–Dyson! random
matrix theory40 and the chiral random matrix theory.54,53,27,51
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~i! Example (i) and GUE:For GUE with variances25t of random matrices in the spac
H(N)>Rd[A] with d@A#5N2, the probability density of eigenvaluesl in the condition~6!
is given as40

qGUE~l;t !5
t2d[A]/2

C@A#
expH2 ulu2

2t J hA~l!2,

whereulu25( i 51
N l i

2 . For ~1! with b52, pA(0,0;t,l)5qGUE(l;t), t.0.
~ii ! Example (ii) and GOE:The probability density of eigenvaluesl with the condition~6! is

given as40

qGOE~l;t !5
t2d[A8]/2

C@A8#
expH2 ulu2

2t J hA~l!

for GOE with variances25t in S(N)>Rd[A8] , d@A8#5N(N11)/2. If we denote by

pA8(s,l;t,l8) the transition probability density of the process~1! with b51 from l at time

s to l8 at time t(.s), thenpA8(0,0;t,l)5qGOE(l;t), t.0.
~iii ! Example (iii) and chiral GUE:We denote byM(N1n,N;C) and M(N1n,N;R) the

spaces of (N1n)3N complex and real matrices, respectively. We see thatM(N
1n,N;C)>R2N(N1n) and write its volume element asV(dM),MPM(N1n,N;C). The
chiral Gaussian unitary ensemble~chGUE! with variancet is the ensemble of matrice
MPM(N1n,N;C) with the probability density

mn
chGUE~M ;t !5

t2N(N1n)/2

~2p!N(N1n) expH2 1

2t
Tr M†M J ~10!

with respect toV(dM). It is known24 that any matrixMPM(N1n,N;C) has a family of
pairs (U,V),UPU(N1n),VPU(N), which transform M as M5U†KV, where K
PM(N1n,N;R) is in the form

K5SK̂OD with K̂5diag$k1,k2,...,kN%, ki>0,1< i<N,

and then3N zero matrixO. We assume thatU andV are chosen so that

0<k1<k2<¯<kN . ~11!

The matrices (U,K,V) can be regarded as ‘‘polar coordinates’’ in the spaceM(N
1n,N;C). We haveM†M5V†LV, where L5diag$l1,l2,...,lN% with the relationsl i

5k i
2 , 1< i<N. Thenk5(k1 ,k2 ,...,kN) is a set of nonnegative square roots of the eig

values ofM†M . Let dm(U,V) be the Haar measure of the space U(N1n)3U(N) nor-
malized as*U(N1n)3U(N)dm(U,V)51 anddk5) i 51

N dk i . Then we can show that

V~dM!5
~2p!N(N1n)

Cn
h((2n11)/2)~k!2dkdm~U,V!, ~12!

whereCn52N(N1n21)) i 51
N $G( i )G( i 1n)% and

h(a)~k!5 )
1< i , j <N

~k j
22k i

2!)
k51

N

kk
a .

For any pair of unitary matricesUPU(N1n) and VPU(N), the probability
mn

chGUE(M ;t)V(dM) is invariant under the automorphismM→U†MV. By integrating over
dm(U,V), we obtain the probability density ofk with the condition~11! as54,53,27,51
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qn
chGUE~k;t !5

t2N(N1n)

Cn
expH2 uku2

2t J h((2n11)/2)~k!2.

König and O’Connell36 studied the process~8! with b52 as a multivariate version o
squared Bessel process. Here we consider the multivariate version of Bessel proc
extracting the square roots of eigenvaluesl i(t)>0 of J(t)5M (t)†M (t). Settingk i(t)
5Al i(t)>0,1< i<N in ~8! with b52 and applying the Ito rule for differentials, we fin
that k(t) solves the stochastic differential equations

dZi~t!5dBi~t!1
b

2 F g

Zi~t!
1 (

j:jÞi
H 1

Zi~t!2Zj~t!
1

1

Zi~t!1Zj~t!
JGdt, 1<i<N, ~13!

with (b,g)5(2,(2n11)/2). If we denote the transition probability density of this proce
by p(n)(s, • ;t, • ) for 0<s,t,`, then

p(n)~0,0;t,k!5qn
chGUE~k;t !, t.0. ~14!

~iv! Example (iv) and chiral GOE:We can seeM(N1n,N;R)>RN(N1n). The chiral Gaussian
orthogonal ensemble~chGOE! with variance t is the ensemble of matricesBPM(N
1n,N;R),M(N1n,N;C) with the probability density

mn
chGOE~B;t !5

t2N(N1n)/2

~2p!N(N1n)/2 expH2 1

2t
Tr BTBJ ~15!

with respect to the volume elementV8(dB) of M(N1n,N;R). We can show that

V8~dB!5
~2p!N(N1n)/2

Cn,n11
h(n)~k!dkdm~U,V!, ~16!

wheredm(U,V) is the normalized Haar measure of the space O(N1n)3O(N) and we
have used the notationCn,k52N(N12n2k21)/2p2N/2) i 51

N $G( i /2)G(( i 12n112k)/2)% and
thus Cn,n1152N(N1n22)/2p2N/2) i 51

N $G( i /2)G(( i 1n)/2)%. The probability density ofk
with ~11! is given as54,53,27,51

qn
chGOE~k;t !5

t2N(N1n)/2

Cn,n11
expH 2

uku2

2t J h(n)~k!.

By setting k i(t)5Al i(t),1< i<N in ~8! with b51, we can show that k(t)
5(k1(t),k2(t),...,kN(t)) solves~13! with (b,g)5(1,n). If we denote the transition probability
density of this processk(t) by p(n)8(s, • ;t, • ) for 0<s,t,`, then p(n)8(0,0;t,k)
5qn

chGOE(k;t), t.0.

III. HERMITIAN MATRIX-VALUED PROCESSES WITH ADDITIONAL SYMMETRIES

A. Subspaces of unitary and Hermitian matrices

The Pauli spin matrices are defined as

s15S 0 1

1 0D , s25S 0 2A21

A21 0
D , s35S 1 0

0 21D ,

which satisfy the algebrasm
2 5I 2 , m51,2,3, andsmsr5A21(v51

3 «mrvsv for 1<mÞr<3,
whereI N denotes theN3N unit matrix and«mrv the totally antisymmetric unit tensor. They giv
the infinitesimal generators$Xm% of SU~2! by Xm5A21sm/2. For N>2, define the 2N32N
matricesSm5I N^ sm , m51,2,3. The matrices$Sm% satisfy the same algebra as$sm%. We will
uses0 to representI 2 .
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We introduce six spaces of matrices as subspaces ofH~2N!,

Hm6~2N!5$HPH~2N!:HTSm56SmH%, m51,2,3.

It is easy to see thatH31(2N)5S(2N) and H32(2N)5A21A(2N). Since we have already
studied the matrix-valued process inS(N) as the example~ii ! in Sec. II B, we will consider here
the five subspaces ofH(2N); A21A(2N) and $Hms(2N)% with m51,2,s56. We also intro-
duce the three subspaces of U(2N):

U0~2N!5$UPU~2N!:UTU5S1%,

Um~2N!5$UPU~2N!:UTSmU5Sm
T%, m51,2.

The conditions imply that these subspaces,Hms(2N) and Um(2N), have additional symmetrie
compared toH(2N) and U(2N). Concerning the eigenvalues and eigenvectors of the Herm
matrices, the following lemma may be easily proved.

Lemma 2: Assume thatV denotes a diagonal matrix in the formdiag$v1 ,v2 ,...,vN% with
v1<v2<¯<vN .

~i! Any HPA21A(2N) can be diagonalized by UPU0(2N) as U†HU5V ^ s3 .
~ii ! For m51,2 any HPHm1(2N) can be diagonalized by UPUm(2N) asU†HU5V ^ s0 .
~iii ! For m51,2 any HPHm2(2N) can be diagonalized by UPUm(2N) asU†HU5V ^ s3 .

Remark:

~a! Observing the pairing of eigenvalues in a way, (v i ,2v i),1< i<N, for A21A(2N) stated
in Lemma 2~i!, the Gaussian random-matrix ensemble of antisymmetric Hermitian mat
was discussed by Mehta in Sec. 3.4 of Ref. 40.

~b! The condition for U2(2N) addition to the unitarity is equivalent withJ5UJUT, where

J5IN^S 0 1

21 0D.
Then U2(2N) forms the N-dimensional symplectic group. That is, U2(2N)
5Sp(N,C)ùU(2N). ~It is called the unitary-symplectic group USp(2N) in Ref. 19.! The
matricesHPH21(2N) are said to beself-dual Hermitian matricesin the random matrix
theory.40 The pairwise degeneracy stated in Lemma 2~ii ! for H21(2N) is known as the
Kramers doubletin the quantum mechanics.

~c! The condition forH22(2N) addition to Hermiticity is rewritten asHTJ1JH50, which
means thatHPH22(2N) satisfies the symplectic Lie algebra~see, for example, Ref. 18!,
that is, H22(2N)5sp(2N,C)ùH(2N). Similarly, we can see H12(2N)
5so(2N,C)ùH(2N), whereso(2N,C) denotes the orthogonal Lie algebra. We can also
that U1(2N)5SO(2N,C)ùU(2N), where SO(2N,C) denotes the orthogonal Lie group.

~d! We can see thatHm2(2N)>Ĥm2(2N), m51,2, where

Ĥ12~2N!5H H5S H1 A2

A2
† 2H1

TD :H1PH~N!,A2PA~N;C!J ,

Ĥ22~2N!5H H5S H1 A2

A2
† 2H1

TD :H1PH~N!,A2PS~N;C!J ,

whereS(N;C) andA(N;C) denote the spaces of theN3N complex symmetric and comple
antisymmetric matrices, respectively. Altland and Zirnbauer studiedĤ22(2N) and
Ĥ12(2N) as the sets of the Hamiltonians in the Bogoliubov–de Gennes formalism fo
BCS mean-field theory of superconductivity, where the pairing of positive and neg
eigenvalues (v i ,2v i), 1< i<N, stated in Lemma 2~iii ! for m51 and 2 represents th
particle-hole symmetry in the Bogoliubov–de Gennes theory. They calledĤ22(2N) and
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Ĥ12(2N) the sets of Hermitian matrices in the symmetry classes C and D,56,1,2 since
sp(2N,C)5CN andso(2N,C)5DN in Cartan’s notations~see Ref. 23!.

B. Representation using Pauli matrices and application of Bru’s theorem

Let Bi j
r (t), B̃i j

r (t), 0<r<3, 1< i< j <N be independent one-dimensional standard Brown
motions starting from the origin. Put

si j
r ~ t !5H 1

&
Bi j

r ~ t !, if i , j ,

Bii
r ~ t !, if i 5 j ,

and ai j
r ~ t !5H 1

&
B̃i j

r ~ t !, if i , j ,

0, if i 5 j ,

~17!

with si j
r (t)5sji

r (t) and ai j
r (t)52aji

r (t) for i . j and definesr(t)5(si j
r (t))1< i , j <NPS(N), t

P@0,̀ ) andar(t)5(ai j
r (t))1< i , j <NPA(N),tP@0,̀ ), for 0<r<3.

We can see that the Hermitian matrix-valued process given as the first example~i! in Sec. II B
can be represented, if we double the size of matrix to 2N, as J(t)5(r50

3 $(sr(t) ^ sr)
1A21(ar(t) ^ sr)%. By choosing four terms in the eight terms, we define the following f
different types of 2N32N Hermitian matrix-valued processes:

Jms~ t !5 (
r50

3

~jms
r ~ t ! ^ sr!PHms~2N! for m51,2, s56,

where

jm1
r ~ t !5H sr~ t ! if m51, rÞ3 or m52, r50,

A21ar~ t ! if m51, r53 or m52, rÞ0,

jm2
r ~ t !5HA21ar~ t ! if m51, rÞ3 or m52, r50,

sr~ t ! if m51, r53 or m52, rÞ0.

We apply Theorem 1 to the five processes,A21A(2N) and $Jms(t)% with m51,2,s56.
The results are listed below.

~a! A21A(2N): Since G i j (t)5$12((S1) i j )
2%/2, 1< i , j <2N, the equations of non-negativ

eigenvalues are

dvi~t!5
1

&
dBi~t!1

1

2 (
j:1<j<N,jÞi

H 1

vi~t!2vj~t!
1

1

vi~t!1vj~t!
Jdt, 1<i<N.

By changing the time unit ast→2t, this equation can be identified with~13! with (b,g)
5(2,0).

~b! H11(2N): SinceG i j (t)5$11((S1) i j )
2%, 1< i , j <2N, the distinct eigenvalues solve Dys

on’s Brownian motion model~1! with b54.
~c! H12(2N): We seeG i j (t)5$12((S1) i j )

2%, 1< i , j <2N. Then the non-negative eigenvalue
solve Eq.~13! with (b,g)5(2,0).

~d! H21(2N): Since G i j (t)5$11((S2) i j )
2%, 1< i , j <2N, the distinct eigenvalues solve th

Eq. ~1! with b54.
~e! H22(2N): We can seeG i j (t)5$12((S2) i j )

2%, 1< i , j <2N. Then the non-negative eigen
values solve Eq.~13! with (b,g)5(2,1).
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C. Relation with standard and nonstandard random matrix theories

~i! The eigenvalues of any matrix in the spaceH21(2N)>Rd[A9] with d@A9#5N(2N21) are
pairwise degenerated~the Kramers doublets! as l5(v1 ,v1 ,v2 ,v2 ,...,vN ,vN). We as-
sume that theN distinct eigenvalues are always arranged in the increasing ordev1

<v2¯<vN . For GSE with variancet, the probability density of theN distinct eigenval-
ues in this ordering is given by40

qGSE~v;t !5
t2d[A9]/2

C@A9#
expH2 uvu2

2t J hA~v!4,

whereC@A9#5(2p)N/2) i 51
N G(2i ). If we denote the transition probability density of th

process ~1! with b54 by pA9(s, • ;t, • ) for 0<s,t,`, then pA9(0,0;t,v)
5qGSE(v;t), t.0.

~ii ! We can see thatH22(2N)>Rd[C] and H12(2N)>Rd[D] with d@C#5N(2N11) and
d@D#5N(2N21). The probability densities of the processesJ22(t) and J12(t) with
respect to the volume elementsV(dH) of H22(2N) andV8(dH) of H12(2N) are given by

mC~H;t !5
t2d[C]/2

c@C#
expH2 1

4t
Tr H2J , mD~H;t !5

t2d[D]/2

c@D#
expH2 1

4t
Tr H2J ,

wherec@C#523N/2pN(2N11)/2 andc@D#52N/2pN(2N21)/2, respectively. As stated in Lemm
2 ~iii !, the eigenvalues are in the forml(t)5(v1(t),2v1(t),v2(t),2v2(t),...,vN(t),
2vN(t)). We will assume that

0<v1<v2<¯<vN . ~18!

Then we have the expressions for volume elements

V~dH!5
c@C#

C@C#
hC~v!2dvdU, V8~dH!5

c@D#

C@D#
hD~v!2dvdU8, ~19!

wheredU anddU8 denote the Haar measures of U2(2N) and U1(2N), respectively, normalized
as *U2(2N)dU51 and*U1(2N)dU851. HereC@C#5C1/25(p/2)N/2) i 51

N G(2i ) and C@D#5C21/2

5(p/2)N/2) i 51
N G(2i 21), andhC(v)[h(1)(v),hD(v)[h(0)(v). At each timet.0, for anyU

PU2(2N), the probabilitymC(H;t)V(dH) is invariant under the automorphismH→U†HU for
HPH22(2N), and for anyU8PU1(2N), mD(H;t)V8(dH) is invariant under the automorphism
H→U8†HU8 for HPH12(2N). Altland and Zirnbauer named these two Gaussian random-m
ensembles the classes C and D, respectively~see Remark~d! in Sec. III A!.1,2,56 The probability
densities of theN non-negative eigenvalues with condition~18! are then obtained as

q]~v;t !5
t2d[]]/2

C@]#
expH 2

uvu2

2t J h]~v!2 for ]5C, D.

If we denote the transition probability densities of the processes~13! with (b,g)5(2,1) and with
(b,g)5(2,0) by pC(s, • ;t, • ) andpD(s, • ;t, • ) for 0<s,t,`, respectively, then

p]~0,0;t,v!5q]~v;t !, t.0 for ]5C, D. ~20!

D. Real symmetric matrix-valued processes

Here after, we denote the Hermitian matrix-valued processesJ22(t) andJ12(t) by JC(t)
andJD(t), respectively. They are given by

JC~ t !5A21a0~ t ! ^ s01s1~ t ! ^ s11s2~ t ! ^ s21s3~ t ! ^ s3 ,
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JD~ t !5A21a0~ t ! ^ s01A21a1~ t ! ^ s11A21a2~ t ! ^ s21s3~ t ! ^ s3 . ~21!

Sincesr ,r50,1,3, are real matrices ands2 is a pure imaginary matrix, if we define the process
as

JC8~ t !5s1~ t ! ^ s11s3~ t ! ^ s3 , JD8~ t !5A21a2~ t ! ^ s21s3~ t ! ^ s3 , ~22!

then JC8(t)PS22(2N) and JD8(t)PS12(2N), where S22(2N)[$SPS(2N):STS252S2S%
>Rd[C8] and S12(2N)[$SPS(2N):STS152S1S%>Rd[D8] with d@C8#5N(N11) andd@D8#

5N2. The probability densities ofJC8(t) andJD8(t) are given by

mC8~S;t !5
t2d[C8]/2

c@C8#
expH 2

1

4t
Tr S2J , mD8~S;t !5

t2d[D8]/2

c@D8#
expH 2

1

4t
Tr S2J

with c@C8#52NpN(N11)/2 and c@D8#52N/2pN2/2, respectively. Set O2(2N)
5O(2N)ùSp(2N;R) and O1(2N)5O(2N)ùSO(2N;R) and denote their normalized Haar me
sures by dV and dV8, respectively The eigenvalues are in the forml(t)5(v1(t),
2v1(t),v2(t),2v2(t),...,vN(t),2vN(t)). Under condition~18!, we have the expressions fo
volume elements

V~dS!5
c@C8#

C@C8#
hC~v!dvdV, V8~dS!5

c@D8#

C@D8#
hD~v!dvdV8, ~23!

whereC@C8#5C1/2,15) i 51
N G( i ) andC@D8#5C21/2,052(N22)/2G(N/2)) i 51

N21G( i ). The probabil-
ity densities of theN nonnegative eigenvalues with~18! are given as

q]8~v;t !5
t2d[]8]/2

C@]8#
expH 2

uvu2

2t J h]~v! for ]5C, D.

It is remarked that the random-matrix ensemble with the distributionsmC8(S;t), whose non-
negative eigenvalue-distribution is given byqC8(v;t), is the random-matrix ensemble in th
symmetry class CI studied by Altland and Zirnbauer.1,2,56

By applying Theorem 1, we can show that the non-negative eigenvalues ofJC8(t) solve Eq.
~13! with (b,g)5(1,1) and those ofJD8(t), Eq. ~13! with (b,g)5(1,0). If we denote the
transition probability densities of these processes bypC8(s, • ;t, • ) and pD8(s, • ;t, • ) for 0<s

,t,`, respectively, thenp]8(0,0;t,v)5q]8(v;t), t.0 for ]5C, D.

IV. TEMPORALLY HOMOGENEOUS PROCESSES

Assume thatn.21, and we consider the processY(n)(t)5(Y1
(n)(t),Y2

(n)(t),...,YN
(n)(t)),

tP@0,̀ ), which solves the stochastic differential Eq.~13! with (b,g)5(2,(2n11)/2), that is,

dYi
(n)~ t !5dBi~ t !1F 2n11

2Yi
(n)~ t !

1 (
j : j Þ i

H 1

Yi
(n)~ t !2Yj

(n)~ t !
1

1

Yi
(n)~ t !1Yj

(n)~ t !J Gdt, ~24!

1< i<N. Remark that ifn51/2 and21/2, the equation is reduced to~13! with (b,g)5(2,1) and
(b,g)5(2,0), respectively. The Kolmogorov backward equation~the Fokker–Planck equation!
for ~24! is

]

]t
p(n)~s,x;t,y!5

1

2
Dxp

(n)~s,x;t,y!1b~x!•¹xp
(n)~s,x;t,y!,
                                                                                                                



n

rigin,
t
ide

ther.

t
e
e the

3069J. Math. Phys., Vol. 45, No. 8, August 2004 Symmetry and noncolliding diffusion particles

                    
where b(x)5(b1(x),...,bN(x)) with bi(x)5(]/]xi)ln h((2n11)/2)(x). By simple calculation, we
can confirm the following:

Lemma 3: Set

f (n)~ t,yux!5 det
1< i , j <N

@G(n)~ t,yj uxi !#. ~25!

Then the transition probability density p(n)(s,x;t,y) from the statex at time s to the statey at time
t(.s) of the process (24) is given by

p(n)~s,x;t,y!5
1

h(0)~x!
f (n)~ t2s,yux!h(0)~y!, x,yPW N

C . ~26!

SinceI 1/2(x)5(ex2e2x)/A2px, I 21/2(x)5(ex1e2x)/A2px, if we set

GC~ t,yux!5
e2(y2x)2/2t2e2(y1x)2/2t

A2pt
, GD~ t,yux!5

e2(y2x)2/2t1e2(y1x)2/2t

A2pt
, ~27!

and f ](t,yux)5det1<i,j<N@G](t,yjuxi)#, ]5C, D, then

p(1/2)~s,x;t,y!5
f C~ t2s,yux!hC~y!

hC~x!
, p(21/2)~s,x;t,y!5

f D~ t2s,yux!hD~y!

hD~x!
. ~28!

The above implies the following. LetW N
C5$xPRN:0,x1,x2,¯,xN% andW N

D5$xPRN:ux1u
,x2,¯,xN%. The former is the Weyl chamber of type CN and the latter of type DN .18 SincehC

andhD vanish at the boundaries of the Weyl chambersW N
C andW N

D , respectively,~28! implies that
the processesY(1/2)(t) andY(21/2)(t) can be regarded as theN-dimensional absorbing Brownia
motions inW N

C and in W N
D , respectively. That is, ifY(1/2)(0)PW N

C and Y(21/2)(0)PW N
D , then

Y(1/2)(t)PW N
C andY(21/2)(t)PW N

D for all t.0 with probability 1. Moreover, we notice that~27!
are the heat-kernels of the one-dimensional Brownian motion with an absorbing wall at the o
and of the one-dimensional reflecting Brownian motion, respectively.48 Then, we can also interpre
the processY(1/2)(t) as theN-particle system of Brownian motions conditioned never to coll
with each other nor with the wall at the origin in one-dimension,35 and the processY(21/2)(t) as
theN-particle system of reflecting Brownian motions conditioned never to collide with each o
For ]5C and D, define

N ]~ t,x!5E
WN

]
dy f ]~ t,yux!, xPWN

] . ~29!

N C(t,x) is the probability thatN Brownian motions starting fromxPW N
C does not collide with

each other nor with the wall at the origin up to timet, andN D(t,x) is equal to the probability tha
N reflecting Brownian motions starting fromxPW N

D does not collide with each other up to tim
t, respectively. We will show their long-time asymptotics in the next section. We can prov
following, which are consistent with~14! and ~20!.

Lemma 4: Forn.21 with fixed tP(0,̀ ), assumeyPW N
C . Then

lim
uxu→0

p(n)~0,x;t,y!5
t2N(N1n)

Cn
expH 2

uyu2

2t J h((2n11)/2)~y!2. ~30!

In particular, if nPN,

lim
uxu→0

p(n)~0,x;t,y!5qn
chGUE~y;t !, ~31!
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and

lim
uxu→0

p(1/2)~0,x;t,y!5qC~y;t !, lim
uxu→0

p(21/2)~0,x;t,y!5qD~y;t !. ~32!

Proof: By definition ~25! with ~3!, if xi.0, 1<; i<N, f (n)(t,yux)5(1/tN))k51
N (yk

n11/xk
n)

3e2(uxu21uyu2)/2tdet1<i,j<N@In(xiyj /t)#. We can use~A2! in Appendix A by changing the variable
xi→xi

2/2t and yj→yj
2/2t to evaluate det1<i,j<N@In(xiyj /t)# and obtain the asymptotic form o

f (n)(t,yux),

f (n)~ t,yux!5
t2N(N12n11)/2

Cn
)

1< i , j <N
H S xj

At
D 2

2S xi

At
D 2J )

1<k,,<N
~y,

22yk
2! )

m51

N

ym
2n11

3expH 2
uyu2

2t J 3S 11OS uxu

At
D D ~33!

in uxu/At→0. Using this form in~26!, the limit ~30! is proved. j

V. TEMPORALLY INHOMOGENEOUS PROCESSES

A. Star topology

Using~2! the probability that the Brownian motion started atxPWN
A does not hit the boundary

of WN
A up to time t.0 is given byN A(t,x)5*W

N
Ady f A(t,yux). In the previous papers,31,32 we

gave the asymptotic form

f A~ t,yux!5
t2N(N11)/4

C@A#
hAS x

At
D hA~y!expH 2

uyu2

2t J 3S 11OS uxu

At
D D ~34!

in uxu/At→0 and showed thatN A(t,x)5(C@A8#/C@A#)hA(x/At)3(11O(uxu/At)) as uxu/At
→0. This estimate gives that forxPWN

A the noncolliding probability decays in the power-law
t→`;15,21,37N A(t,x);t2c[A] with the exponentc@A#5N(N21)/4. ~Note that~34! is derived
readily by using~A1! in Appendix A.! For a givenT.0, we defined

gT
A~s,x;t,y!5

f A~ t2s,yux!N A~T2t,y!

N A~T2s,x!

for 0<s,t<T, x,yPWN
A . Using ~34! we showed that asuxu→0 it converges togT

A(0,0;t,y)
5(Tc[A] t2d[A]/2/C@A8#)e2uyu2/2thA(y)N A(T2t,y). This functiongT

A(s,x;t,y) can be regarded a
the transition probability density from the statexPWN

A at time s to the stateyPWN
A at time

t(.s) conditioned to stay insideWN
A up to time T and defines a temporally inhomogeneo

diffusion process, which we denoted byX(t)5(X1(t),X2(t), . . . ,XN(t)), tP@0,T# in Sec. I. This
represents theN-particle system of Brownian motions conditioned not to collide with each o
in a finite time-interval (0,T#. The processX(t),tP@0,T#, starting fromX(0)50 is illustrated by
Fig. 1, whose spatio-temporal path-configuration is said to be instar topologyin the theory of
directed polymer networks.14 As mentioned in Sec. I, this process exhibits a transition of
eigenvalue statistics from GUE to GOE.31,32

In the present section, we consider the temporally inhomogeneous diffusion process
ated withY(n)(t) studied in the previous section. We consider theN-particle system of generalize
meanders~5! conditioned that they never collide with each other for a time interval@0,T#. The
transition probability density is given by

gT
(n,k)~s,x;t,y!5

f T
(n,k)~s,x;t,y!N T

(n,k)~ t,y!

N T
(n,k)~s,x!

~35!
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for 0<s,t<T,x,yPW N
C , where f T

(n,k)(s,x;t,y)5det1<i,j<N @GT
(n,k)(s,xi ;t,yj)# with ~5! and

N T
(n,k)(t,x)5*W

N
Cdyf T

(n,k)(t,x;T,y). Note that f T
(n,k)(s,x;t,y)5 f (n)(t2s,yux)hT

(n,k)(t,y)/

hT
(n,k)(s,x), where hT

(n,k)(t,x)5) i 51
N hT

(n,k)(t,xi). Since limt→0 G(n)(t,zuw)5d(z2w)1(z>0),
hT

(n,k)(T,x)5) j 51
N xj

2k for xPW N
C , and then~35! can be written as

gT
(n,k)~s,x;t,y!5

1

Ñ (n,k)~T2s,x!
f (n)~ t2s,yux!Ñ (n,k)~T2t,y! ~36!

with

Ñ (n,k)~ t,x!5E
W N

C
dyf (n)~ t,yux!)

i 51

N

yi
2k . ~37!

Lemma 5: Assume thatn.21 and kP@0,2(n11)). Let x,yPW N
C .

~i! For 0<s,t<T, limT→` gT
(n,k)(s,x;t,y)5p(n)(s,x;t,y).

~ii ! For 0,t,T,

gT
(n,k)~0,0;t,y![ lim

uxu→0
gT

(n,k)~0,x;t,y!

5
TN(N1k21)/2t2N(N1n)

Cn,k
expH2 uyu2

2t J h(2n11)~y!Ñ (n,k)~T2t,y!. ~38!

~iii ! For T.0, limt↗T gT
(n,k)(0,0;t,y)5 T2N(N12n112k)/2/Cn,k exp$2 uyu2/2T %h(2n112k)(y).

Proof: Using ~33! for ~37!, we have the estimate ofÑ (n,k)(t,x) in uxu/At→0 as

Ñ ~n,k!~ t,x!5
t2N(N12n11)/2

Cn
)

1< i , j <N
H S xj

At
D 2

2S xi

At
D 2J

3E
W N

C
dy )

1<k<,<N
~y,

22yk
2! )

m51

N

ym
2n112k expH 2

uyu2

2t J 3S 11OS uxu

At
D D

5
t2Nk/2Cn,k

Cn
)

1< i , j <N
H S xj

At
D 2

2S xi

At
D 2J 3S 11OS uxu

At
D D , ~39!

where we have used a version of Selberg’s integral formula50,38

FIG. 1. ProcessX(t),tP@0,T#, with X(0)50 showing star topology.
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E
RN

du )
1< i , j <N

uuj
22ui

2u2g)
k51

N

uuku2a21e2uuu2/252aN1gN(N21))
i 51

N
G~11 ig!G~a1g~ i 21!!

G~11g!

by settinga5n112k/2 andg51/2 ~see Eq.~17.6.6! in Ref. 40!. By ~33! and ~39!, ~i! and ~ii !
are obtained. Since limt→0 G(n)(t,yux)5d(y2x)1(y>0), we have limt→0 f (n)(t,yux)
5) i 51

N d(yi2xi) for x,yPW N
C . Then limt→0 Ñ (n,k)(t,x)5) i 51

N xi
2k1(xPW N

C) and ~iii ! is ob-
tained. j

Now we define the processX(n,k)(t)5(X1
(n,k)(t),X2

(n,k)(t),...,XN
(n,k)(t)),tP@0,T#, as the tem-

porally inhomogeneous diffusion process, whose transition probability density is given by~35! for
0<s,t<T,x,yPWN

C and~38! for 0,t<T,yPWN
C . This process solves the stochastic different

equations

dXi
(n,k)~ t !5dBi~ t !1F 2n11

2Xi
(n,k)~ t !

1bi
(n,k)~T2t,X(n,k)~ t !!Gdt, tP@0,T#,1< i<N,

wherebi
(n,k)(t,x)5(]/]xi)ln Ñ (n,k)(t,x), 1< i<N.

Here we consider the special cases (n,k)5(1/2,1) and (n,k)5(21/2,0). By the definitions
~29! and~37!, Ñ (1/2,1)(t,x)5N C(t,x)/) i 51

N xi andÑ (21/2,0)(t,x)5N D(t,x), and then~36! gives

gT
(1/2,1)~s,x;t,y!5

1

N C~T2s,x!
f C~ t2s,yux!N C~T2t,y!,

gT
(21/2,0)~s,x;t,y!5

1

N D~T2s,x!
f D~ t2s,yux!N D~T2t,y!,

for 0<s,t<T,x,yPW N
C . That is, we can interpret the processX(1/2,1)(t) as theN-particle system

of Brownian motions conditioned never to collide with each other nor with the wall at the o
in one-dimension during the time-interval@0,T#, and the processX(21/2,0)(t) as theN-particle
system of reflecting Brownian motions conditioned never to collide with each other durin
time-interval @0,T#, respectively. The asymptotic formsN ](t,x)5(C@]8#/C@]#)h](x/At)3(1
1O(uxu/At)) in uxu/At→0 for ]5C and D are obtained by~39!, and thus we can see th
power-laws of the noncolliding probabilities,N ](t,x);t2c[]] as t→` for xPWN

] ,]5C and D
with the exponentsc@C#5N2/2,c@D#5N(N21)/2. As a corollary of Lemma 5, we have th
following:

Corollary 6:

~i! For 0,t,T, if xPW N
C ,

gT
(1/2,1)~0,0;t,x!5

Tc[C] t2d[C]/2

C@C8#
expH2 uxu2

2t J hC~x!N C~T2t,x!,

gT
(21/2,0)~0,0;t,x!5

Tc[D] t2d[D]/2

C@D8#
expH2 uxu2

2t J hD~x!N D~T2t,x!.

~ii ! For T.0, if xPW N
C ,

lim
t↗T

gT
(1/2,1)~0,0;t,x!5qC8~x;T!, lim

t↗T
gT

(21/2,0)~0,0;t,x!5qD8~x;T!.

Figure 2 illustrates the processesX(1/2,1)(t) and X(21/2,0)(t) both starting from0. The path-
configurations are in star topology. In the former any particle can not collide with the wall a
origin, while in the latter the leftmost particle is reflected at the wall. Another corollary of Lem
5 is the following:

Corollary 7: If nPN,xPW N
C , limt↗T gT

(n,n11)(0,0;t,x)5qn
chGOE(x;T).

The combination of Lemma 5~i! with ~31! and~32! of Lemma 4, Corollaries 6 and 7 implie
that X(1/2,1)(t), X(21/2,0)(t) andX(n,n11)(t) with nPN, all starting from0, exhibit the transitions
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from the eigenvalue statistics of the class C to the class CI, from the class D to the class ass
with qD8 studied in Sec. III D, and from chGUE to chGOE, respectively, as timet goes on from 0
to T. ~See Theorem 9 below.!

At the end of this subsection, we discuss the relation between the temporally homoge
diffusion processY(n)(t) and the temporally inhomogeneous diffusion processX(n,k)(t) for t
P@0,T#. For a time sequencet0[0,t1,¯,t,21,t,[T,` with ,P$1,2,...%, we consider the
multitime probabilities with the initial stateY(n)(0)5X(n,k)(0)5x(0)

Px(0)~Y(n)~ t1!Pdx(1),...,Y(n)~ t,!Pdx(,)!5)
i 51

,

p(n)~ t i 21 ,x( i 21);t i ,x( i )!dx( i ),

and

Px(0)~X(n,k)~ t1!Pdx(1),...,X(n,k)~ t,!Pdx(,)!5)
i 51

,

gT
(n,k)~ t i 21 ,x( i 21);t i ,x( i )!dx( i ),

where we have used the Markov property of the processes. Assume thatx(0)50 and x( i )PWN
C ,

1< i<,. We use formulas~26! and ~36! and apply Lemmas 4 and 5. Then we have the equa

)
i 51

,

gT
(n,k)~ t i 21 ,x( i 21);t i ,x( i )!5TN(N1k21)/2

Cn

Cn,k
)
i 51

,

p(n)~ t i 21 ,x( i 21);t i ,x( i )!
1

h(k)~x(,)!
.

Since this equality holds for arbitrary time sequencet050,t1,¯,t,21,t,5T,` with ,
P$1,2,...%, we can conclude the following:

Proposition 8: Assume thatn.21,kP@0,2(n11)). If X(n,k)(0)5Y(n)(0)50, then the dis-
tribution of the processX(n,k)(t) is absolutely continuous with that of the processY(n)(t) for t
P@0,T# and the Radon–Nikodým density is given by

P~X(n,k)~• !Pdw!

P~Y(n)~• !Pdw!
5

CnTN(N1k21)/2

Cn,kh(k)~w~T!!
.

When N51 and (n,k)5(1/2,1), this proposition gives the Imhof relation between
Brownian meander and the three-dimensional Bessel process.25 The relation stated by~4!,31,32and
the above proposition are regarded as the multivariate generalizations of the Imhof relatio

B. Brownian bridges and temporally inhomogeneous matrix-valued processes

Assume thatnPN,0,T,`. Let Bi j
r (t),B̃i j

r (t),1< i<N1n,1< j <N,0<r<3 be independen
one-dimensional standard Brownian motions. For a given matrixm5(mi j

FIG. 2. ~a! ProcessX(1/2,1)(t),tP@0,T# with the initial state0 showing star topology.~b! ProcessX(21/2,0)(t),tP@0,T# with
the initial state0 showing star topology.
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1A21m̃i j )1< i<N1n,1< j <N with mi j ,m̃i j PR, let (bT
r) i j (t:mi j ),(b̃T

r) i j (t:m̃i j ),1< i<N1n,1< j
<N,0<r<3 be the diffusion processes, which are the solutions of the following stoch
differential equations:

~bT
r ! i j ~ t:mi j !5Bi j

r ~ t !2E
0

t ~bT
r ! i j ~s:mi j !2mi j

T2s
ds,

~ b̃T
r ! i j ~ t:m̃i j !5B̃i j

r ~ t !2E
0

t ~ b̃T
r ! i j ~s:m̃i j !2m̃i j

T2s
ds, tP@0,T#. ~40!

The processes (bT
r) i j (t:mi j ) and (b̃T

r) i j (t:m̃i j ) are one-dimensional Brownian bridges of durati
T both starting from 0 and ending atmi j and m̃i j , respectively.55 Next for zr5(zi j

r )1< i , j <N

PS(N) and z̃ r5( z̃ i j
r )1< i , j <NPA(N), 0<r<3, we set

~sT
r ! i j ~ t:zi j

r !5H 1

&
~bT

r ! i j ~ t:&zi j
r !, if i , j ,

~bT
r ! i i ~ t:zii

r !, if i 5 j ,

and

~aT
r ! i j ~ t: z̃ i j

r !5H 1

&
~ b̃T

r ! i j ~ t:& z̃ i j
r !, if i , j ,

0, if i 5 j ,

~41!

with (sT
r) i j (t:zi j

r )5(sT
r) j i (t:zji

r ) and (aT
r) i j (t: z̃ i j

r )52(aT
r) j i (t: z̃ j i

r ) for i . j , where 1< i , j <N,
0<r<3 and tP@0,T#. We define the matrix-valued processessT

r(t:zr)5((sT
r) i j (t:zi j

r ))1< i , j <N

PS(N) andaT
r(t: z̃ r)5((aT

r) i j (t: z̃ i j
r ))1< i , j <NPA(N).

In an earlier paper,33 we considered theN3N Hermitian matrix-valued processJT(t)
5s0(t)1A21aT

0(t:O),tP@0,T#, whereO denotes theN3N zero matrix ands0(t) was defined
below ~17!. This process is the temporally inhomogeneous matrix-valued process realized
interpolation in durationT of the first and second processes given in Sec. II B. Using the inv
ance in distribution of the processJT(t) under unitary transformations and our generalized v
sion of the Imhof relation~4!, we proved the equivalence in distribution of its eigenvalue proc
and X(t) with X(0)50. As a corollary of this equivalence, we derived the formula for anys
PR,

E
U(N)

dU expH 2
1

2s2 Tr~Lx2U†LyU !2J 5
C@A#sd[A]

hA~x!hA~y!
det

1< i , j <N
@GA~ t,yj uxi !#, ~42!

wheredU denotes the Haar measure of U(N) normalized as*U(N)dU51, Lx5diag$x1,...,xN% and
Ly5diag$y1,...,yN% with x,yPWN

A . This is a stochastic-calculus derivation of the Harish–Chan
~Itzykson–Zuber! integral formula.22,26 In this subsection, we give extensions of this argumen

As an interpolation of the Laguerre process~7! and the Wishart process~9!, we define the
matrix-valued process

JT
LW~ t !5MT~ t !†MT~ t !, tP@0,T#,

where MT(t)5(Bi j
0 (t)1A21(b̃T

0) i j (t:O))1< i<N1n,1< j <NPM(N1n,N;C),tP@0,T#, where O
denotes the (N1n)3N zero matrix. Similarly, the interpolations between the processes~21! and
~22! are defined by
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JT
C~ t !5A21aT

0~ t:O! ^ s01s1~ t ! ^ s11sT
2~ t:O! ^ s21s3~ t ! ^ s3 ,

JT
D~ t !5A21aT

0~ t:O! ^ s01A21aT
1~ t:O! ^ s11A21a2~ t ! ^ s21s3~ t ! ^ s3 ,

in which O denotes theN3N zero matrix. Letk LW(t)5(k1
LW(t),...,kN

LW(t)),tP@0,T# be the
square roots of the eigenvalues ofJT

LW(t) with 0<k1
LW(t)<¯<kN

LW(t) and l](t)
5(l1

](t),l2
](t),...,lN

](t)) be the non-negative eigenvalues ofJT
](t) with 0<l1

](t)<¯

<lN
](t) for ]5C and D. We prove the following equivalence in distribution among the tem

rally inhomogeneous diffusion processes:
Theorem 9:

~i! If nPN and X(n,n11)(0)50, thenk LW(t)5X(n,n11)(t), tP@0,T# in distribution.
~ii ! If X(1/2,1)(0)5X(21/2,0)(0)50, thenlC(t)5X(1/2,1)(t) andlD(t)5X(21/2,0)(t), tP@0,T# in

distribution.

Proof: ~i! For a given matrixm5(mi j 1A21m̃i j )1< i<N1n,1< j <N , mi j ,m̃i j PR, we consider
M(N1n,N;C)-valued processMT(t:m)5((bT

0) i j (t:mi j )1A21(b̃T
0) i j (t:m̃i j ))1< i<N1n,1< j <N ,

tP@0,T#. From Eqs.~40!, we have the equation

MT~ t:m!5M ~ t !2E
0

t MT~s:m!2m

T2s
ds, tP@0,T#, ~43!

where M (t)5(Bi j
0 (t)1A21B̃i j

0 (t))1< i<N1n,1< j <N . Let mU and mO be random matrices with
distribution mn

chGUE( • ;T) and mn
chGOE( • ;T), respectively. Since (bT

0) i j (t:z) and (b̃T
0) i j (t:z),

tP@0,T# are Brownian motions whenz is a Gaussian random variable with varianceT indepen-
dent ofBi j

0 (t) and B̃i j
0 (t), if mU andmO are independent ofM (t),tP@0,T#,

MT~ t:mU!5M ~ t !, MT~ t:mO!5MT~ t !, tP@0,T# ~44!

in distribution. Moreover, since the distribution of the processM (t) is invariant under any trans
formation M (t)→U†M (t)V, UPU(N1n), VPU(N), the following lemma is obtained by Eq
~43!.

Lemma 10: For any UPU(N1n), VPU(N), U†MT(t:m)V5MT(t:U†mV), tP@0,T# in dis-
tribution.

By this lemma, ifm andm8 in M(N1n,N;C) have the same radial coordinates, the proces
of radial coordinates ofMT(t:m) and MT(t:m8),tP@0,T#, are identical in distribution. Let
JT

LW(t:m)5MT
†(t:m)MT(t:m). Then the above gives the identification in distribution of t

processes of square roots of eigenvalues ofJT
LW(t:m) andJT

LW(t:m8),tP@0,T#. Now we denote
by PT

k(•) the probability distribution of the process of square roots of eigenvalues ofJT
LW(t:m)

conditioned that the square roots of eigenvalues ofm is k5(k1 ,...,kN) with condition ~11!. We
also denote byP(•) andPT(•) the distributions of the processes of square roots of eigenvalue
J(t)5M (t)†M (t) andJT(t)5MT

†(t)MT(t),tP@0,T#, respectively. The equalities~44! give

P~• !5E
W N

C
dk PT

k~• !qn
chGUE~k ;T!, PT~• !5E

W N
C
dk PT

k~• !qn
chGOE~k ;T!.

Then PT(•) and P(•) satisfy the same relation as the generalized Imhof relation betw
X(n,n11)(t) and Y(n)(t) obtained from Proposition 8 by settingnPN, k5n11. SinceP(•) is
equal to the distribution of the temporally homogeneous diffusion processY(n)(t) ~see~31! of
Lemma 4!, we can conclude thatPT(•) is identical to the distribution of the processX(n,n11)(t).
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The second part can be proved by the same argument as the first part. For givenyr,zr

PS(N),ỹr,z̃ rPA(N),0<r<3, put Y5A21ỹ0
^ s01y1

^ s11y2
^ s21y3

^ s3PH22(2N)
and Z5A21z̃0

^ s01A21z̃1
^ s11A21z̃2

^ s21z3
^ s3PH12(2N). For theseY and Z, we

introduce the temporally inhomogeneous matrix-valued processes

JT
C~ t:Y!5A21aT

0~ t: ỹ 0! ^ s01sT
1~ t:y1! ^ s11sT

2~ t:y2! ^ s21sT
3~ t:y3! ^ s3 ,

JT
D~ t:Z!5A21aT

0~ t: z̃ 0! ^ s01A21aT
1~ t: z̃1! ^ s11A21aT

2~ t: z̃2! ^ s21sT
3~ t:z3! ^ s3 .

The key lemma 10 of the proof is replaced by the following:
Lemma 11: For any UPU2(2N),VPU1(2N), U†JT

C(t:Y)U5JT
C(t:U†YU), and

V†JT
D(t:Z)V5JT

D(t:V†ZV), tP@0,T# in distribution.
For ]5C and D we denote byPT

],v(•) the probability distributions of the processes
nonnegative eigenvalues ofJT

](t:Z) conditioned that the nonnegative eigenvalues ofZ is v
5(v1 ,...,vN) with ~18!. We also denote byP](•) andPT

](•) the distributions of the processes
nonnegative eigenvalues ofJ](t) and JT

](t),tP@0,T#, respectively. Then we have the expre
sions

P]~• !5E
W N

C
dv PT

],v~• !q]~v;T!, PT
]~• !5E

W N
C
dv PT

],v~• !q]8~v;T! for ]5C, D.

Comparing them with the (n,k)5(1/2,1) and (n,k)5(21/2,0) cases of the generalized Imh
relations obtained from Proposition 8, we have the theorem. j

As a corollary of Theorem 9, the following integral formulas are derived as proved in Ap
dix B.

Corollary 12:

~i! AssumenPN and x,yPW N
C . For any sPR,

E
U(N1n)3U(N)

dm~U,V!expH2 1

2s2 Tr~Kx2U†KyV!†~Kx2U†KyV!J
5

CnsN(N1n22)

h(n)~x!h(n)~y!
det

1<i,j<N
Fe2(xi

2
1yj

2)/2s2
I nS xiyj

s2 D G ,
where

Kx5S K̂x

O D , Ky5S K̂y

O D ,

with K̂x5diag$x1,x2,...,xN%,K̂y5diag$y1,y2,...,yN% and n3N zero matrix O.
~ii ! Let ]5C, D. For x,yPW N

C , sPR,

E
Ũ(2N)

dU expH2 1

4s 2 Tr~Lx2U†LyU !2J 5
C@]#sd[]]

h]~x!h]~y!
det

1<i,j<N
@G]~s2,yjuxi!#,

where Lx5diag$x1,x2, . . . ,xN%^s3, Ly5diag$y1,y2, . . . ,yN%^s3, Ũ(2N)5U2(2N) for

]5C and Ũ(2N)5U1(2N) for ]5D.

They are extensions of the Harish–Chandra~Itzykson–Zuber! formula~42!. The formula~i! is
found in Ref. 27.

C. Watermelon topology

Consider theN-particle system of Brownian motions starting fromxPWN
A at time t50 and

arriving at zPW N
A at time T.0, which do not collide with each other during the time interv

@0,T#. We denote bygA, w(0,x;t,y;T,z) the probability density of the statey at time tP@0,T#. It
is given by
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gA, w~0,x;t,y;T,z!5
f A~ t,yux! f A~T2t,zuy!

f A~T,zux!
, yPWN

A ,tP@0,T#. ~45!

By using ~34!, we can obtain the limitgA, w(0,0;t,y;T,0)5 limuxu→0,uzu→0 gA, w(0,x;t,y;T,z). Let
sT (t)5At(12t/T).

Proposition 13: ForyPWN
A , gA, w(0,0;t,y;T,0)5qGUE(y;sT(t)2),tP@0,T#.

We denote byXA, w(t),tP@0,T#, the temporally inhomogeneous diffusion process, wh
probability density is given by the above. Its path-configuration on the spatio-temporal pla
illustrated by Fig 3. Such a pattern is calledwatermelon topologyin the polymer network theory.14

For n.21, similar to~45! we put

g(n),w~0,x;t,y;T,z!5
f (n)~ t,yux! f (n)~T2t,zuy!

f (n)~T,zux!

for x,y,zPW N
C ,tP@0,T#. By ~33! we have the followingx→0 limit:

Proposition 14: Forn.21,xPW N
C ,tP@0,T#,

g(n),w~0,0;t,x;T,0!5
sT~ t !22N(N1n)

Cn
h(~2n11)/2!~x!2expH 2

uxu2

2sT~ t !2 J .

In particular, if nPN, g(n),w(0,0;t,x;T,0)5qn
chGUE(x,sT(t)2), g(1/2),w(0,0;t,x;T,0)

5qC(x,sT(t)2), and g(21/2),w(0,0;t,x;T,0)5qD(x,sT(t)2).
We note that this expression may be formally obtained by takingk→2(n11) limit of ~38!.

D. Banana topology

For «.0, we consider a subspace ofW2N
A , B2N

A («)5$x5(x1 ,x2 ,...,x2N)PW2N
A :x2i5x2i 21

1«,1< i<N%. For xPW2N
A , we will use the notationxodd5(x1 ,x3 ,...,x2N21) and define

N A, b(t,x;«)5*B
2N
A («)dyodd f A(t,yux). We consider the process, whose transition probability d

sity is given by

gT
A, b~s,x;t,y;«!5

f A~ t2s,yux!N A, b~T2t,y;«!

N A, b~T2s,x;«!
, x,yPW2N

A ,0<s,t<T.

This is the 2N-particle system of noncolliding Brownian motions in@0,T# conditioned that the
final state at timet5T is in B2N

A («). Using ~34!, we have

gT
A, b~0,0;t,y;«![ lim

uxu→0
gT

A, b~0,x;t,y;«!5S t

TD 22N2
hA~y!e2uyu2/2tN A, b~T2t,y;«!

*B
2N
A («)dzoddhA~z!e2uzu2/2T

FIG. 3. ProcessXA,w(t),tP@0,T#, showing watermelon topology.
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for yPW2N
A ,tP(0,T#. Since limt→0 f A(0,yux)5) i 51

N d(xi2yi), limt→0 N A, b(t,x;«)51(x
PB2N

A («)), and then foryPW2N
A ,

lim
t↗T

gT
A, b~0,0;t,y;«!5

hA~y!e2uyu2/2T

*B
2N
A («)dzoddhA~z!e2uzu2/2T

1~yPB2N
A ~«!!.

As implied in Ref. 41 we can take the limit,gT
A, b(s,x;t,y)5 lim«→0 gT

A, b(s,x;t,y;«), in the above
formulas to have

gT
A, b~s,x;t,y!5

f A~ t2s,yux!N A, b~T2t,y!

N A, b~T2s,x!
, ~46!

gT
A, b~0,0;t,y!5S T

2D N(2N11)/2S t

2D 22N2
hA~y!

C@A9#
e2uyu2/2tN A, b~T2t,y!, ~47!

gT
A, b~0,0;T,y!5qGSES yodd;

T

2D1~yPB2N
A !, ~48!

for x,yPW2N
A ,0<s,t,T, whereN A, b(t,x)5*W

N
Ady f A, b(t,yux) with

f A, b~ t,yux!5 det
1< i<2N,1< j <N

FGA~ t,yj uxi !
xi

t
GA~ t,yj uxi !G

for xPW2N
A andyPWN

A , andB2N
A 5$x5(x1 ,x2 ,...,x2N):xoddPWN

A ,x2i5x2i 21 ,1< i<N%. We de-
fine the temporally inhomogeneous processXA, b(t),tP@0,T# starting from0 or the state inW2N

A

and ending at the state inB2N as the diffusion process, whose transition probability density
given by~46!–~48!. The path-configuration ofN particles in this version of noncolliding Brownia
motions on the spatio-temporal plane is illustrated by Fig. 4, which we would like to call ‘‘ban
topology.’’ An important point is that at the final timet5T the particle positions are pairwis
degenerated and distinct positions are identical in distribution with the Kramers doublets
genvalues of random matrices in GSE as claimed by~48!.

Now we consider a 2N32N Hermitian matrix-valued temporally inhomogeneous proc
defined by

JT
b~ t !5$s0~ t !1A21aT

0~ t:O!% ^ s01$sT
1~ t:O!1A21a1~ t !% ^ s1

1$sT
2~ t:O!1A21a2~ t !% ^ s21$sT

3~ t:O!1A21a3~ t !% ^ s3 , ~49!

FIG. 4. ProcessXA,b(t),tP@0,T#, showing banana topology.
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where the elements of theN3N matrices$sT
r(t:zr),(aT

r : z̃r)%r51
3 are given by~41!. By definition,

JT
b(T) distributes with the probability density of GSE. Then the same argument as Theor

may prove the following:
Theorem 15: Let l(t)5(l1(t),l2(t),...,l2N(t)) be the eigenvalues of the process (49) w

l1(t)<l2(t)<¯<l2N(t). If XA, b(0)50, thenl(t)5XA, b(t), tP@0,T# in distribution
As a corollary of this theorem, we will have the following version of Harish–Chandra

mula, which is found as Eq.~3.46! in Ref. 41.
Corollary 16: Letx5(x1 ,x2 ,...,x2N)PW2N

A , y5(y1 ,y2 ,...,yN)PWN
A . For any sPR

E
U(2N)

dU expH 2
1

2s2 Tr~Lx2U†LyU !2J 5
C2N@A#s (2N)2

hA~x!hA~y!4 f A, b~s2,yux!,

whereLx5diag$x1,x2,...,x2N%, Ly5diag$y1,y2,...,yN%^s0, and C2N@A#5(2p)N) i 51
2N G( i ).

It is easy to see by the same argument that the transition probability density given
defines the temporally inhomogeneous diffusion processX(n,k),b(t),tP@0,T#,n.21,kP@0,2(n
11)), associated withX(n,k), which shows the banana topology: Let

f (n),b~ t,yux!5 det
1< i<2N,1< j <N

@G(n)~ t,yj uxi ! Gy
(n)~ t,yj uxi !#

for xPW 2N
C ,yPW N

C , where Gy
(n)(t,yux)5(]/]y)G(n)(t,yux), and let Ñ (n,k),b(t,x)

5*W
N
Cdy f (n),b(t,yux)) i 51

N yi
2k for xPW 2N

C . Then

gT
(n,k),b~s,x;t,y!5

f (n)~ t2s,yux!Ñ (n,k),b~T2t,y!

Ñ (n,k),b~T2s,x!
,

gT
(n,k),b~0,0;t,y!5

2N(4N14n21)T2N2
t22N(2N1n)

Ĉn

h(2n11)~y!e2uyu2/2tÑ (n,k),b~T2t,y!,

gT
(n,k),b~0,0;T,y!5

1

Ĉn

S 2

T
D 2N(N1n)

h((4n22k13)/4)~yodd!4e2uyoddu2/T1~yPB2N
C !, ~50!

for x,yPW 2N
C ,0<s,t,T, where Ĉn52N(2N12n21)) i 51

N $G(2i )G(2(i 1n))% and B2N
C 5$x

5(x1 ,x2 ,...,x2N):xoddPW N
C ,x2i5x2i 21 ,1< i<N%. We should notice that~50! includes the fol-

lowing special cases:

gT
(n,0),b~0,0;T,y!5qn

chGSES yodd;
T

2D1~yPB2N
C ! for nPN,

gT
(21/2,0),b~0,0;T,y!5qDIII S yodd;

T

2D1~yPB2N
C !.

Here

qn
chGSE~k;t !5

t22N(N1n)

Ĉn

expH 2
uku2

2t
J )

1< i , j <N
~k j

22k i
2!4)

k51

N

kk
4n13

is the probability density of theN distinct square rootsk5(k1 ,k2 ,...,kN) with ~11! of the
eigenvalues ofM†M conditioned thatM is a 2N32N random matrix in the chiral Gaussia
symplectic ensemble~chGSE! with variancet,54,53,27,51and
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qDIII ~v;t !5
t2d[D9]/2

C@D9#
expH 2

uvu2

2t J )
1< i , j <N

~v j
22v i

2!4)
k51

N

vk

with d@D9#52N(2N21),C@D9#5Ĉ21/2522N(N21)) i 51
N G(2i )G(2i 21) is the probability den-

sity of the non-negative and distinct eigenvaluesv5(v1 ,v2 ,...,vN) with ~18! of 4N34N ma-
trices in the ensemble in the symmetry class DIII studied by Altland and Zirnbauer.56,1,2 ~Strictly
speaking, it is the DIII-even case. The DIII-odd case is obtained by settingn51/2, k50 in ~50!.!
The above implies thatX(n,0),b(t) with nPN andX(21/2,0),b(t), both starting from0, exhibit the
transitions from the eigenvalue statistics of chGUE to chGSE and from the class D to the
DIII, respectively, as timet goes on from 0 toT.

A lengthy but explicit expression for the 4N34N Hermitian matrix-valued process corre
sponding toX(21/2,0),b(t) is given as

JT
D, b~ t !5 (

r50

2

$A21aT
0r~ t:O! ^ ~s0^ sr!1A21a1r~ t ! ^ ~s1^ sr!1sT

2r~ t:O! ^ ~s2^ sr!

1A21a3r~ t ! ^ ~s3^ sr!%1$s03~ t ! ^ ~s0^ s3!1s13~ t ! ^ ~s1^ s3!

1A21aT
23~ t:O! ^ ~s2^ s3!1sT

33~ t:O! ^ ~s3^ s3!%,

tP@0,T#, wheresmr(t), sT
mr(t:O)PS(N) and amr(t), aT

mr(t:O)PA(N), tP@0,T#, are defined
similarly to ~17! and ~41!. Identification of its eigenvalue process withX(21/2,0),b(t) gives the
following version of the Harish–Chandra integral,

E
U1(4N)

dU expH 2
1

4s2 Tr~Lx2U†LyU !2J
5

C2N@D#s2N(4N11)

hD~x!h(1/4)~y!4 det
1< i<2N,1< j <N

FGD~s2,yj uxi !
xi

s2 GC~s2,yj uxi !G

for any sPR, x5(x1 ,x2 ,...,x2N)PW 2N
C ,y5(y1 ,y2 ,...,yN)PW N

C , where Lx
5diag$x1,x2,...,x2N%^s3, Ly5diag$y1,y2,...,yN%^(s3^s0), andC2N@D#5(p/2)N ) i 51

2N G(2i 21).

VI. CONCLUDING REMARKS

In the present paper we showed that the eigenvalue processes of GUE, chGUE, the c
and the class D are realized by the temporally homogeneous noncolliding diffusion process
then the temporally inhomogeneous noncolliding diffusion processes were introduced, whi
hibit the transitions in distribution from the eigenvalue statistics of GUE to GOE, GUE to G
chGUE to chGOE, chGUE to chGSE, the class C to the class CI, and the class D to the clas
They are obtained as the special cases of the noncolliding systems of the Brownian motio
those of Yor’s generalized meanders. These inhomogeneous processes are identified w
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eigenvalue processes of the inhomogeneous matrix-valued processes, some of which are r
as the stochastic versions of two-matrix models studied by Pandey and Mehta47,41as demonstrated
in Refs. 31, 35. We would like to put emphasis on the fact that in order to prove the identific
we have not used any results by Pandey and Mehta, but used the generalized versions o
relations ~~4! and Proposition 8!. Therefore we can give the proof for the Harish–Chan
~Itzykson–Zuber!-type integration formulas as corollaries. The present study suggests se
open problems. Here we list some of them.

~i! It does not seem to be possible to realize the eigenvalue processes of the random
ensembles different from GUE, chGUE, the class C and the class D by any temp
homogeneous noncolliding systems of diffusion particles. Is it possible to realize the
the temporally homogeneous diffusion processes with some conditions additional
simple noncolliding condition?

~ii ! Norris, Rogers, and Williams46 studied other matrix-valued process called Dynkin’s Brow
ian motionJ̃(t)5G(t)TG(t) with ]G(t)5(]B(t))G(t), where] denotes the Stratonovic
differential;x]y5xdy1dxdy/2 for continuous semimartingalesx,y. They showed that the
eigenvalues ofJ̃(t) are also noncolliding systems and derived the stochastic differe
equations similar to~1! for the logarithms of the eigenvalues. As mentioned by Bru~see
Remark 2 in Ref. 7!, G(t) is a matrix-version ofmultiplicative Brownian motionin a sense,
while B(t) is the ordinary additional Brownian motion. Can we discuss~the logarithms of!
the eigenvalue processes using the random matrix theory and noncolliding diffusion
cesses as well?

~iii ! In the non-Hermitian random matrix ensembles, eigenvalues are distributed on the co
plane.20,12 Is it meaningful to consider the stochastic version of non-Hermitian rand
matrix theory in the sense of Dyson?10

For the temporally inhomogeneous noncolliding Brownian motionsX(t),tP@0,T# with
X(0)50, the determinantal expressions for the multitime correlation functions were determ
by Nagao and the present authors using the self-dual quaternion matrices44,16,42and the scaling
limits of the infinite particlesN→` and the infinite time-intervalT→` were investigated.45,30

Recently Nagao reported the similar calculation on the process, which corresponds to the p
X(1/2,1) in the present paper.43 Calculation of the multitime correlations for the general proc
X(n,k)(t) is now in progress and the study of the infinite particle systems will be repo
elsewhere.34
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APPENDIX A: SCHUR FUNCTION EXPANSIONS OF DETERMINANTS

Any sequencem5(m1 ,m2 ,...,mN ,...) of non-negative integers in decreasing orderm1>m2

>¯>mN>¯ is called a partition. The nonzerom i in m are called the parts ofm and the number
of parts is the length ofm denoted by,(m). For each partitionm with ,(m)<N, the Schur
function defined bysm(x)5det1<i,j<N(x i

mj1N2j)/det1<i,j<N(x i
N2j) gives a symmetric polynomial o

orderumu5( i 51
N m i in N variablesx1 ,x2 ,...,xNPC. Note that the denominator is the Vandermon

determinant and det1<i,j<N(x i
N2j)5(21)N(N21)/2hA(x).39,17,52 We can prove the following expan

sion formulas of the determinants with the bases of the Schur functions:3,4,36
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det
1< i , j <N

@exiyj #

hA~x!hA~y!
5 (

m:,(m)<N
amsm~x!sm~y!,

det
1< i , j <N

@ I n~2Axiyj !#

$) i 51
N xi

n/2yi
n/2%hA~x!hA~y!

5 (
m:,(m)<N

bm
(n)sm~x!sm~y!,

where am51/) i 51
N G(m i1N2 i 11) and bm

(n)51/$) i 51
N G(m i1N2 i 11)G(n1m i1N2 i 11)%.

Sincesm(0)51(m50) with 05(0,0,...,0)PNN, from the above formulas, we have the followin
asymptotics of the determinants. Asuxu→0,

det
1< i , j <N

@exiyj #5
hA~x!hA~y!

) i 51
N G~ i !

3~11O~ uxu!!, ~A1!

det
1< i , j <N

@ I n~2Axiyj !#5H)
i 51

N

xi
n/2yi

n/2J hA~x!hA~y!

) j 51
N G~ j !G~n1 j !

3~11O~ uxu!!. ~A2!

APPENDIX B: PROOF OF COROLLARY 12

By ~38! of Lemma 5~ii !,

gT
(n,k)~0,0;t,y!5

TN(N1k21)/2t2N(N1n)

Cn,k
expH 2

uyu2

2t J h(2n11)~y!

3E
W N

C
dz det

1< i , j <N
Fzj

n11

yi
n

1

T2t
expH 2

yi
21zj

2

2~T2t ! J I nS yizj

T2t D G)k51

N

zk
2k

5
TN(N1k21)/2t2N(N1n)

~T2t !NCn,k
S T

t D
N(n112k)

h(n11)~y!E
W N

C
dzexpH 2

T

2t2 S t

TD 2

uzu2J
3 det

1< i , j <N
FexpH 2

T

2t~T2t ! S yi
21

t2

T2 zj
2D J I nS T

t~T2t !
yi3

t

T
zj D G

3 )
,51

N S t

T
z,D n112k

.

Setting (t/T)zi5ai , 1< i<N, t(12t/T)5s2 andT/t25a, we have

gT
(n,k)~0,0;t,y!5

s22NaN(N12n2k11)/2

Cn,k
h(n11)~y!

3E
WN

C
dae2auau2/2 det

1< i , j <N
Fe2(yi

2
1aj

2)/2s2
I nS yiaj

s2 D G )
,51

N

a,
n112k . ~B1!

Proof of (i): We write the transition probability density of the processMT(t) by
QT(s,m1 ;t,m2), 0<s,t<T, for m1 ,m2PM(N1n,N;C). Then by Theorem 9~i! and the fact
~12!,

gT
(n,n11)~0,0;t,y!5

~2p!N(N1n)

Cn
h((2n11)/2)~y!2E

U(N1n)3U(N)
dm~U,V! QT~0,O;t,U†KyV!.

~B2!
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We introduce theM(N1n,N;C)-valued processM (1)(t)5(mi j
(1)(t))1< i<N1n,1< j <N and the

M(N1n,N;R)-valued processM (2)(t)5(mi j
(2)(t))1< i<N1n,1< j <N , whose elements are define

by

mi j
(1)~ t !5Bi j

0 ~ t !2
t

T
Bi j

0 ~T!1A21~ b̃T
0! i j ~ t ! and mi j

(2)~ t !5
t

T
Bi j

0 ~T!.

ThenMT(t)5M (1)(t)1M (2)(t). Note that$Bi j
0 (t)2(t/T)Bi j

0 (T)% are Brownian bridges of dura
tion T starting at 0 and ending at 0, which are independent of (t/T)Bi j

0 (T). HenceM (1)(t) is in the
chiral GUE distribution andM (2)(t) in the chiral GOE distribution, whereM (1)(t) andM (2)(t) are
independent from each other. SinceE@mii

(1)(t)2#5s2 and E@mii
(2)(t)2#51/a, QT(0,O;t,M ) for

MPM(N1n,N;C) can be written as

QT~0,O;t,M !5E
M(N1n,N;R)

V~dB!mn
chGOE~B;1/a!mn

chGUE~M2B;s2!

5
aN(N1n)/2s2N(N1n)

Cn,n11~2p!N(N1n) E
W N

C
dah(n)~a!e2auau2/22Tr(M2Ka)†(M2Ka)/2s2

, ~B3!

where we have used the fact~16! and the formulas~10! and ~15!. Combining~B1! with k5n
11, ~B2! and ~B3!, we have

Cns N(N1n22)

h(n)~y!
E

W N
C
dae2auau2/2 det

1< i , j <N
FexpH 2

yi
21aj

2

2s2 J I nS yiaj

s2 D G
5E

W N
C
dah(n)~a!e2auau2/2E

U(N1n)3U(N)
dm~U,V! e2Tr(U†KyV2Ka)†(U†KyV2Ka)/2s2

.

Since, for eachsPR, this equality holds for anya.0, we have the formula~i!.
Proof of (ii): By setting (n,k)5(1/2,1) and (n,k)5(21/2,0) in ~B1! we have the expres

sions forx,yPW N
C ,

gT
(1/2,1)~0,0;t,x!5

aN(N11)/2

C@C8#
hC~x!E

W N
C
dae2auau2/2 det

1< i , j <N
@GC~s2,aj uxi !#,

gT
(21/2,0)~0,0;t,y!5

aN2/2

C@D8#
hD~y!E

W N
D
dae2auau2/2 det

1< i , j <N
@GD~s2,aj uyi !#.

Following the same argument with the proof of~i! and using the equalities~19! and~23!, formulas
~ii ! are proved. j

1Altland, A. and Zirnbauer, M. R., ‘‘Random matrix theory of a chaotic Andreev quantum dot,’’ Phys. Rev. Lett76,
3420–3423~1996!.

2Altland, A. and Zirnbauer, M. R., ‘‘Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid
ture,’’ Phys. Rev. B55, 1142–1161~1997!.

3Balantekin, A. B., ‘‘Character expansions, Itzykson–Zuber integrals, and the QCD partition function,’’ Phys. Rev.62,
085017~2000!.

4Balantekin, A. B., ‘‘Character expansions for the orthogonal and symplectic groups,’’ J. Math. Phys.43, 604–620~2002!.
5Borodin, A. N. and Salminen, P.,Handbook of Brownian Motion: Facts and Formulas, 2nd ed.~Birkhäuser, Basel, 2002!.
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56Zirnbauer, M. R., ‘‘Riemannian symmetric superspaces and their origin in random-matrix theory,’’ J. Math. Phy37,

4986–5018~1996!.
                                                                                                                



-

energy
sion to
present
at the
metry

r
ng

o the

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 8 AUGUST 2004

                    
Relativistic N-boson systems bound by pair potentials
V„r ij …Äg „r ij

2
…

Richard L. Halla)

Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve
Boulevard West, Montre´al, Québec, Canada H3G 1M8
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We study the lowest energyE of a relativistic system ofN identical bosons bound
by pair potentials of the formV(r i j )5g(r i j

2 ) in three spatial dimensions. In natural
units \5c51 the system has the semirelativistic ‘‘spinless-Salpeter’’ Hamiltonian
H5( i 51

N Am21pi
21( j . i 51

N g(ur i2r j u2), whereg is monotone increasing and has
convexityg9>0. We use ‘‘envelope theory’’ to derive formulas for general lower
energy bounds and we use a variational method to find complementary upper
bounds valid for allN>2. In particular, we determine the energy of theN-body
oscillator g(r 2)5cr2 with error less than 0.15% for allm>0, N>2, andc.0.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1767298#

I. INTRODUCTION

We consider a system ofN identical bosons interacting by attractive pair potentialsV(r i j ) and
obeying the semirelativistic spinless Salpeter equation.1,2 The Hamiltonian governing the dynam
ics of theN-particle problem is given by

H5(
i 51

N

Am21pi
21 (

j . i 51

N

V~ ur i2r j u! ~1.1!

and represents a model system having a relativistically correct expression for the kinetic
and a static pair potential. One of the reasons for considering such a model is that the exten
the many-particle case poses no fundamental technical problems beyond what are already
in the one-body problem, namely the square root in the kinetic energy and the nonlocality th
definition3 of the Hamiltonian entails. Our lower bounds use the necessary permutation sym
of the N-boson problem to effect a ‘‘reduction’’ to an almost equivalent 2-body problem.4,5 The
purpose of the present paper is first to use envelope theory6–10 to extend our specific energy lowe
bounds for the harmonic oscillator11 to apply to smooth transformations of the oscillator havi
the general formV(r )5g(r 2), whereg is monotone increasing and of positive convexity (g9
>0). Secondly, we show that the earlier upper energy bounds~via a Gaussian trial function! for
the oscillatorV(r )5cr2 can be considerably sharpened; this improvement is carried over t
larger class of pair potentials. We have already shown this12 for the ultrarelativistic casem50 of

a!Electronic mail: rhall@mathstat.concordia.ca
b!Electronic mail: wolfgang.lucha@oeaw.ac.at
c!Electronic mail: franz.schoeberl@univie.ac.at
30860022-2488/2004/45(8)/3086/9/$22.00 © 2004 American Institute of Physics
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the pure oscillator. In this paper we shall generalize these oscillator results toV(r )5g(r 2) and
m>0. For the oscillatorV(r )5cr2 itself, the new bounds are separated by less than 0.15% fo
m>0, c.0, andN>2.

In Sec. II we recall some fundamental formulas concerning the one-body harmonic osc
with HamiltonianAm21p21r 2 and lowest energye(m). This problem does not have an exa
analytical solution but can be easily solved numerically to yielde(m) to arbitrary accuracy; this
result is necessary for ourN-body lower bounds. As distinct from our earlier work,11 in this paper
we eschew theP-representation and its concomitant scaling subtleties, and base all our
bounds on the functione(m) itself.

In Sec. III we turn to the principal topic of this paper, namely potentials which are sm
transformationsV(r )5g(r 2) of the oscillator potential. Ifg is convex (g9>0), the graph ofV(r )
lies above ‘‘tangential potentials’’V(t)(r ) with the general formV(t)(r )5a(t)1b(t)r 2, wheret
5 r̂ 2 is the point of contact with the potentialV(r ) itself. As t.0 varies,$V(t)(r )% represents a
family of shifted oscillators. Envelope theory allows one to construct energy lower bounds
on this fundamental geometrical idea. In Sec. IV we construct variational upper bounds by
a translation-invariant Gaussian trial function. In Sec. V we look at the ultrarelativistic cam
→0, and in Sec. VI we apply our general results to some examples from the familyV(r )5crq,
q>2.

II. THE ONE-BODY OSCILLATOR PROBLEM

We consider the one-body problem with Hamiltonian

H15Am21p21r 2→e~m!, ~2.1!

where, for couplingc51, e(m) is the lowest eigenvalue as a function of the massm. In the
momentum-space representation, we have an equivalent problem with Hamiltonian

H̃152D1Am21r 2→e~m!. ~2.2!

Since this Schro¨dinger problem is easy to solve numerically to arbitrary accuracy, we shall
the position thate(m) is ‘‘known’’ and at our disposal. We note that in the large-m ~nonrelativistic
or Schrödinger! limit, we have

e~m!.eNR~m!5m1
3

A2m
. ~2.3!

The graph ofe(m)2m is shown in Fig. 1:e(m) is monotone increasing withm; e(m)2m,
however, is monotonedecreasing, in agreement, for largem, with the Feynman–Hellmann theo
rem for the corresponding nonrelativistic case.

It remains now to use scaling to generalize these results. This is necessary for ou
application to theN-body problem. For the energy of a more general one-body problem in w
the kinetic-energy term is multiplied by the positive factorb, the couplingg.0 is included, and a
further parameterl.0 is allowed for, we have, by scaling arguments,

H15bAm21lp21gr 2→e~m,b,gl!5~b2gl!1/3eS mS b

gl D 1/3D . ~2.4!

III. ENERGY LOWER BOUND FOR V„r …Äg „r 2
… BY ENVELOPE THEORY

Our hypothesis is thatV(r )5g(r 2), where the smooth transformation functiong is monotone
increasing and its convexity is positive or zero. That is to say, we shall assumeg9>0. These
assumptions imply a relation betweenV(r ) and a ‘‘tangential potential’’V(t)(r ) given explicitly by

V~r !>V~ t !~r !5g~ t !2tg8~ t !1g8~ t !r 25a~ t !1b~ t !r 2, ~3.1!
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where t5 r̂ 2 is the point of contact between the tangential potential and the potential. For
fixed t, the tangential potential has the forma1br2 of a shifted oscillator. This potential inequalit
induces, in turn, a spectral inequality as an immediate consequence of the min–max chara
tion of the spectrum of the Hamiltonian. It is the task of envelope theory6–10 to generate expres
sions for this spectral inequality.

The kinetic-energy term in the HamiltonianH does not have the kinetic energy of the cent
of-mass removed. Thus the wave function we use must satisfy two fundamental symm
translation invariance and boson permutation symmetry~in the individual-particle coordinates!.
Jacobi relative coordinates may be defined with the aid of an orthogonal matrixB relating the
column vectors of the new@ri # and old@r i # coordinates given by@ri #5B@r i #. The first row ofB
defines a center-of-mass variabler1 with every entry 1/AN, the second row defines a pair distan
r25(r 12r 2)/A2, and thekth row,k>2, has the firstk21 entriesBki51/Ak(k21), thekth entry
Bkk52A(k21)/k, and the remaining entries zero. We define the corresponding momentum
ables by@pi #5(B21) t@pi #5B@pi #. Let us suppose that the~unknown! exact normalized boson
ground-state wave function for theN-body harmonic-oscillator problem withV(r )5cr2 is C
5C(r2 ,r3 ,...,rN) corresponding to energyE. Boson symmetry is a powerful constraint th
greatly reduces the complexity of this problem. We immediately obtain@Ref. 11, Eq.~2.3!# the
‘‘reduction’’

E5~C,HC!5S C,FNAm21pN
2 1

N~N21!

2
cur12r2u2GC D . ~3.2!

Sinceur 12r 2u252r2
2, in terms of the Jacobi relative coordinates this becomes

E5S C,FNAm21S p1

AN
2AN21

N
pND 2

1N~N21!cr2
2GC D . ~3.3!

FIG. 1. The energy functione(m)2m of the one-body problem defined by~2.1!.
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The lemma proved in Ref. 11 allows us to remove the term in the center-of-mass mom
operatorp1 from inside the square root. Boson permutation symmetry furthermore implies@Ref.
11, Eq.~2.5!#

~C,r2
2C!5~C,rN

2 C!, ~3.4!

even though the wave functionC may not be symmetric in the relative coordinates. These res
lead to the final reduction

E5S C,FNAm21
N21

N
pN

2 1N~N21!crN
2 GC D . ~3.5!

If we now write r 5rN and p5pN , we see that the exact energyE can be written in the form
E5(C,HC), in which H is the Hamiltonian for a one-body problem given by

H5bAm21lp21gcr2, ~3.6!

with

b5N, l5
N21

N
, and g5N~N21!.

It follows that the exact energyE of the oscillator system is bounded below byE, the bottom of the
spectrum of the one-body HamiltonianH.

Thus, for the harmonic oscillator itself, we have from~3.5! and ~2.4!:
Theorem 1: A lower bound to the ground-state energy eigenvalue E of the semirelativ

N-body Hamiltonian

H5(
i 51

N

Am21pi
21 (

j . i 51

N

cur i2r j u2, c.0, ~3.7!

is provided by the formula

E>~b2gcl!1/3eS mS b

gcl D 1/3D , ~3.8!

where

b5N, l5
N21

N
, g5N~N21!.

This lower bound yields the exact energy in the Schro¨dinger limit m→`. If we consider the
potentialV(r )5g(r 2) and use the potential lower bound~3.1!, we can maximize the resulting
lower bound provided by Theorem 1 to obtain:

Theorem 2: A lower bound to the ground-state energy eigenvalue E of the semirelativ
N-body Hamiltonian

H5(
i 51

N

Am21pi
21 (

j . i 51

N

g~ ur i2r j u2!, g8.0, g9>0, ~3.9!

is provided by the formula

E>max
t.0

Fmb
e~n!

n
1

g

2
~g~ t !2tg8~ t !!G , ~3.10!
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where

b5N, l5
N21

N
, g5N~N21!, n5mS b

glg8~ t ! D
1/3

.

If we consider the family of pure-power potentials of the formV(r )5crq, then for the
harmonic oscillatorq52, we use Theorem 1; for more general potentials, withq.2, we have
V(r )5g(r 2)5g(t)5ctq/2. Consequently, we must in this case make the explicit substitution

a~ t !5g~ t !2tg8~ t !52cS q

2
21D tq/2 and b~ t !5g8~ t !5

cq

2
t ~q22!/2. ~3.11!

IV. VARIATIONAL UPPER BOUNDS

Improvement over the previous upper energy bounds11 for the oscillator will be obtained in
this paper by avoiding the loosening incurred by use of Jensen’s inequality.3,13 This goal has
already been achieved12 for the ultrarelativistic special casem50 of the N-body harmonic-
oscillator problem. We shall now extend this to more general problems with attractive pot
V(r ) andm>0.

We use a Gaussian wave function of the form

F~r2 ,r3 ,...,rN!5C expS 2
a

2 (
i 52

N

r i
2D , a.0, ~4.1!

whereC is a normalization constant. The factoring property of this function, the boson-symm
reduction leading to~3.5!, and the additional fact thatF is also symmetric under exchange of th
relative coordinates allows us to writer 5r2 , andp5pN→p2 , and finally

E<b~f,Am21lp2f!1
g

2
~f,V~A2r !f!, ~4.2!

where

b5N, l5
N21

N
, g5N~N21!,

and the functionf(r ) is given by

f~r !5S a

p D 3/4

expS 2
ar 2

2 D . ~4.3!

The kinetic-energy integral may be written in terms of modified Bessel functions of
second kind,14,15 which we now discuss. The calculation is best carried out in momentum s
with the aid of the three-dimensional Fourier transformF. We have

f~r !→
F

f̃~k!5S 1

ap D 3/4

expS 2
k2

2a D . ~4.4!

Thus the expectation of the kinetic energy becomes

^K&5b~f̃,Am21lk2f̃ !5
4pb

~ap!3/2E0

`

expS 2
k2

a DAm21lk2k2dk. ~4.5!

We may write this integral in the form
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^K&5
bmm

A2p
expS m2

4 DK1S m2

4 D , m5mS 2N

~N21!a D 1/2

, ~4.6!

whereKn(z) is a modified Bessel function of the second kind.14,15

The potential-energy integral will depend on the choice ofV(r ). For the family V(r )
5c sgn(q)r q, which we shall study in Sec. V, the integrals may be expressed in terms o
gamma function. Explicitly we have

^V&5S f,S c sgn~q!g

2
~rA2!qDf D5

c sgn~q!g

Ap
GS 31q

2 D S mAl

m D q

. ~4.7!

With the results in this form we can use the parameterm as a variational parameter. We hav
therefore established:

Theorem 3: For fixed m.0, q.21, c.0, N>2, b5N, g5N(N21), and l5(N21)/N,
the lowest energy E of the N-boson problem for the pair potential V(r )5c sgn(q)rq is given by the
inequality

E<min
m.0

Fbmm

A2p
expS m2

4 DK1S m2

4 D1
c sgn~q!g

Ap
GS 31q

2 D S mAl

m D qG . ~4.8!

We have allowedq.21 here since the upper bound easily accommodates this family of po
tials in three spatial dimensions. Forq,21, there is no discrete spectrum. In the gravitatio
caseq521 the minimum upper bound exists provided the coupling is not too large: specifi
we require

cg

4b
A2

l
5

c

2
AN~N21!

2
,1. ~4.9!

This situation is of course well known from the two-particle attractive Coulomb problem.16,17At
present we only have close complementary lower bounds forq>2.

V. THE ULTRARELATIVISTIC LIMIT

The ultrarelativistic casem→0 may be obtained from Theorems 2 and 3 as a special case
Hamiltonian for this problem is given explicitly by

H5(
i 51

N

Api
21 (

j . i 51

N

cur i2r j uq, c.0, q>2. ~5.1!

For the lower bound we useg(t)5ctq/2. The upper bound may either be treated separately
taken from~4.8! by means of the limit limz→0 zK1(z)51. The bounds we obtain are given by

CFz0

3 G3q/@2~11q!#

<E<
C

Ap
F2GS 31q

2 D G1/~11q!

, ~5.2!

wherez0'2.338 107 41 is the first zero of the Airy function Ai(z), satisfying Ai(z0)50, and the
common factorC is given by

C5S cq

2 D 1/~11q!S 11
1

qD ~N~N21!!~21q!/@2~11q!#23q/@2~11q!#.

As m increases from zero, the power-law bounds become closer monotonically withm; thus the
m50 case provides an upper bound to the error for allm. Since we have explicit formulas for th
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bounds in terms ofN, we are able to make definite statements concerning the percentage s
tions of the bounds for allN. If we take the energy estimateĒ to be the average of the bounds, th
exact energyE is determined byĒ to within 0.15% for the harmonic oscillatorq52, and to 3.6%
for the cubic ‘‘oscillator’’q53. In the nonrelativistic limitm→` the harmonic-oscillator bound
q52 coalesce to the exact solution of the Schro¨dingerN-body problem.11

VI. EXAMPLES

The examples we consider are from the familyV(r )5crq. In order to have a lower bound, w
restrict the power toq>2. We revisit the oscillator problem because we have considerably
proved the upper bound since Ref. 11. Graphs of the lower bounds alone are shown in Fig.
percentage separations are bounded above by the separations atm50, which are there less tha
0.15%. With the notationEN(m) we have explicitly, for the oscillatorq52, that the lower and
upper estimates have numerical valuesE8

L(1)535.863 83 andE8
U(1)535.899 53, respectively

Thus the average of these values determinesE8(1) in this case with error less than 0.05%. As w
leave the oscillator and increaseq beyondq52, the bounds become less sharp. Forq5 5

2 we show
the corresponding bounds in Fig. 3: here the bounds are separated for allm by less than 1.43%
The corresponding graphs for the cubic ‘‘oscillator’’q53 are shown in Fig. 4; in this case th
maximum percentage separation~again for allN>2 andm>0) is 3.6%.

VII. CONCLUSION

The necessary permutation symmetry of the states of a system of identical particle
powerful constraint. The approximate ‘‘reduction’’ of theN-body problem to a scaled two-bod
problem is most striking for systems of bosons, or for systems which are compatible wit
assumption of permutation symmetry in the spatial variables alone.4 For systems of fermions, the
reduction is to a sum over two-body energies.5 For the Schro¨dinger harmonic-oscillator problem
the boson reduction is complete in the sense that theN-body energy is given exactly by the energ

FIG. 2. The ground-state energyE(m) of the relativistic N-boson harmonic-oscillator problemV(r )5r 2 for N
52,3,...,8. The figure shows the lower bounds given by Eq.~3.8!: the upper bounds are everywhere less than 0.15% ab
these curves and are indistinguishable on the graph. In the Schro¨dinger limit m→` the upper and lower bounds coales
to the exact energies.
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of a two-body problem. A lower bound by this type of reduction is possible provided eithe
kinetic-energy term or the potential-energy term has a quadratic form: this allows us to repla
example, the ‘‘mixed’’ pair$pN ,r2% by $pN ,rN% in the reduced two-body HamiltonianH. For the
Salpeter problem discussed in this paper, a quadratic form is present in the potential term

FIG. 3. Upper and lower energy bounds for the ground-state energyE(m) of the relativisticN-boson problem correspond
ing to V(r )5r 5/2 for N52,3,...,8. The percentage errors are maximum form50 where they determine the energies~for all
N! with error less than 1.43%.

FIG. 4. Upper and lower energy bounds for the ground-state energyE(m) of the relativisticN-boson problem correspond
ing to V(r )5r 3 for N52,3,...,8. The percentage errors are maximum form50 where they determine the energies~for all
N! with error less than 3.6%.
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oscillator, and the lower bound obtained for this base problem is then applicable to other pro
whose potentialsV(r ) have the form of smooth convex transformationsg(r 2) of the oscillator.
The extension beyond the oscillator is effected by the use of ‘‘envelope theory.’’ A reducti
also used for our upper bound, but this reduction is allowed for general potentials and
different reason. The trial function must be a translation-invariant boson function; but we
chosen a Gaussian trial function which has an additional symmetry, namely, it is also symme
the relative coordinates. It is this latter symmetry which completes the reduction in the case
upper bound. Because of all these symmetries, what starts out as a complex many-body p
appears in the end, for the purpose of finding energy bounds, as a one-body problem.
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Langer–Cherry derivation of the multi-instanton
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The multi-instanton expansion for the eigenvalues of the symmetric double well is
derived using a Langer–Cherry uniform asymptotic expansion of the solution of the
corresponding Schro¨dinger equation. The Langer–Cherry expansion is anchored to
either one of the minima of the potential, and by construction has the correct
asymptotic behavior at large distance, while the quantization condition amounts to
imposing the even or odd parity of the wave function. This method leads to an
efficient algorithm for the calculation to virtually any desired order of all the ex-
ponentially small series of the multi-instanton expansion, and with trivial modifi-
cations can also be used for nonsymmetric double wells. ©2004 American Insti-
tute of Physics.@DOI: 10.1063/1.1767988#

I. INTRODUCTION

One of the early and most typical applications of semiclassical methods in quantum me
ics is the calculation of the exponentially small energy splitting between quasidegenerate le
a double well, a splitting which is not captured by the usual Rayleigh–Schro¨dinger perturbation
series for the eigenvalues around either one of the minima.1 Almost every general-use variety o
semiclassical approximation has been applied to this problem,2–4 and many specific methods ar
still under active development.5–14

But in fact, working in the context of the large-order behavior of the coefficients of
perturbation series and partially inspired by the work of Bender and Wu,15 already in 1981
Zinn-Justin16,17 conjectured the form of the complete Borel-summable asymptotic expansio
the energy levels of the double well. This expansion consists of the Rayleigh–Schro¨dinger per-
turbation series plus an infinite sequence of subseries, where thekth subseries~the kth instanton
contribution! is thekth power of an exponentially small factor times a sum of power series
logarithmic terms up to the powerk21. To be precise, the multi-instanton expansion canno
directly summed for physical values of the coupling constant, which lie on a Stokes line o
Borel-summable asymptotic expansions, but has to be summed for, say, complex value
followed by continuity to the positive real axis.18–20 The multi-instanton expansion was initiall
derived by Wentzel–Kramers–Brillouin~WKB! methods as the solution of a modified Boh
Sommerfeld quantization formula; a very clear and updated presentation of this quanti
formula and its relation to the path integral method can be found in Ref. 21.

From a mathematical standpoint, the status of Zinn-Justin’s modified quantization formu
of the ensuing multi-instanton expansion were of conjectures until the work of Delab
Dillinger, and Pham22 and Delabaere and Pham.23,24These authors, building on previous work b
Balian and Bloch,25 Voros26 and Écalle,27,28 gave a rigorous set of rules whereby ‘‘well norma
ized’’ WKB expansions, considered as exact encodings of the true wave functions, can b
lytically continued with respect to the coupling constant with a consistent and unique deter
tion of the exponentially small terms. Although in Ref. 22 the authors deliberately emphasiz
results which can be obtained without explicit computation of the WKB expansions, the d
turning point connection problem pertaining to the double well is solved in terms of a ‘‘red
elementary connection operator’’~which in turn can be computed by the ‘‘exact matching metho
explained in Ref. 24 and ultimately based on a form of the solution studied by Pham29 and
30950022-2488/2004/45(8)/3095/14/$22.00 © 2004 American Institute of Physics
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Jidoumou30! and, besides the general proof of Zinn-Justin’s conjecture, they give explicit resu
the leading terms of the subseries up to the second instanton contribution for the doubl
V(x)5x42x2.

The purpose of the present paper is threefold. First, to give a complete and self-con
derivation of the multi-instanton expansion for the symmetric double well based on the Lan
Cherry method to obtain Borel-summable uniform asymptotic expansions for the solutio
differential equations with turning points.31–33In particular we will see that the results of Cherry33

avoid the problem of integration constants typical of WKB derivations, which is usually dealt
by regularization procedures essentially equivalent to repeated partial integrations before c
ing the integration path to the real axis.2,34,35Second, by using the inverse series of those use
the method of Refs. 22 and 24 we will find an explicit and efficient algorithm for the calcula
of the multi-instanton expansion to any order. And third, we will show that an empirical obs
tion made by Hoeet al.36 in the context of the Stark effect can be carried over to the double w
yielding a yet more efficient algorithm which permits the calculation of virtually as many term
desired of any instanton contribution of the quartic symmetric double well.

Furthermore, with the trivial modifications explained in the last section, the Langer–C
method of this paper can be used for any symmetric or nonsymmetric double well.

II. THE SYMMETRIC DOUBLE WELL

Let us briefly recall how the symmetric double well can be obtained by analytic continu
from the standard quartic anharmonic oscillator,37 whose Schro¨dinger equation is

2 1
2 C9~x!1~ 1

2 x21Gx42L!C~x!50. ~1!

For real and positive values of the coupling constantG we have a well-defined self-adjoin
eigenvalue problem on the real line. The spectrum consists of simple positive eigenvalues, a
Rayleigh–Schro¨dinger perturbation series in the coupling constantG is Borel summable to the
exact eigenvalues.38 To perform the analytic continuation to complex values ofG we integrate the
Schrödinger equation~1! along a straight line in the complexx plane such that at both ends the
exists an exponentially decreasing solution,39 e.g.,x5te2 i arg(G)/6 (tPR). The symmetric double
well is reached for argG523p/2. To make contact with the usual notation in which the coupl
constantg of the double well is real and positive, let

G5ge2 i3p/2, L52 iE, x5yeip/4, C~x!5F~y!.

The resulting equation is

2 1
2 F9~y!1~gy42 1

2 y22E!F~y!50, ~2!

integrated alongy5te2 i arg(g)/6 (tPR), i.e., the integration path is the realy axis. In this form we
immediately recognize the double-well potential

V~y!5gy42 1
2 y2,

with the symmetric degenerate minima at

y656
1

2g1/2,

and expansions of the potential around the minima given by

V~y!52
1

16g
1~y2y6!262g1/2~y2y6!31g~y2y6!4.
                                                                                                                



e from

that

order
r-
itly

ell.

he
asic
he
d
raced

to ob-
ative
tail to

ptotic
burg

l for
expan-

3097J. Math. Phys., Vol. 45, No. 8, August 2004 Langer–Cherry derivation of double-well instantons

                    
These expansions permit a straightforward calculation of the Rayleigh–Schro¨dinger perturbation
series around either one of the minima. To fix ideas, in the equation

2
1

2
F9~y!1F ~y2y1!212g1/2~y2y1!31g~y2y1!42

1

16g
2EGF~y!50 ~3!

we take as unperturbed Hamiltonian the harmonic oscillator with force constantk52 and unper-
turbed eigenvalues

En
(0)5&~n11/2!, ~4!

and we take as perturbation the cubic and quartic terms. A parity argument shows that, asid
the trivial term21/(16g), the resulting series is a power series ing ~without odd powers ofg1/2),
which we write as

En52
1

16g
1 (

k50

`

gkEn
(k) . ~5!

From the usual equations of perturbation theory in the intermediate normalization it follows
theEn

(k) are alternatively odd and even polynomials of degreek11 in En
(0) . With just a few lines

of code~which take advantage of the fact that knowledge of the perturbed wave function to
k permits the calculation of the perturbed energy to order 2k11) we can calculate these pertu
bation coefficientsEn

(k) to high order. To show the pattern and for later reference we list explic
the lowest four polynomials,

En
(1)52 1

4 2 3
2 ~En

(0)!2, ~6!

En
(2)52 19

8 En
(0)2 17

4 ~En
(0)!3, ~7!

En
(3)52 131

64 2 459
16 ~En

(0)!22 375
16 ~En

(0)!4, ~8!

En
(4)52

22 709

256
En

(0)2
23 405

64
~En

(0)!32
10 689

64
~En

(0)!5. ~9!

Finally, note the well-known facts that all the coefficients are negative@which precludes Borel
summability of the perturbation series~5! on the real positiveg axis#, and that the perturbation
series, being intrinsically local, does not take into account the presence of the symmetric w

III. LANGER–CHERRY UNIFORM ASYMPTOTIC EXPANSION

In this section we discuss the calculation of a uniform~in the sense of being smooth across t
classical turning points!, Borel-summable asymptotic expansion for the double well. The b
strategy is the method of comparison equations2,3 supplemented with the rigorous results on t
analytic behavior of the coefficients by Langer31,32 and Cherry,33 and generalized by Lynn an
Keller.40 Gradual implementation of this general strategy for quantum oscillators can be t
back to the early work on the Stark effect by Silverstoneet al.41,42 In fact, the idea of matching
two Borel-summable asymptotic expansions derived from Langer–Cherry wave functions
tain discontinuity formulas for the eigenvalues of the quartic anharmonic oscillator with neg
coupling constant is essentially contained in Ref. 42, and streamlined and carried out in de
second order in Ref. 43. Likewise, application of similar methods to the calculation of asym
expansions for exponentially small splittings can be traced back at least to the work of Dam
and Propin,44 where a symmetric double well is considered as a one-dimensional mode
exchange forces in quantum chemistry, and especially to the calculation of the asymptotic
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sion for large distances of the energy levels of the hydrogen molecular ion by Cˇ ı́žek et al.45 where
the role of the Borel summability in the unambiguous calculation of the exponentially s
subseries is carefully discussed.

As a first step we scale the independent variable to fix the position of the zeroth order d
turning points, and to setg in the role, usually played by\, of coefficient of the second-orde
derivative. The suitable scaling is

y5g21/2~z11/2!, F~y!5c~z!, ~10!

which leads to the transformed equation

2
g2

2
c9~z!1Fz2~11z!22gE2

1

16Gc~z!50. ~11!

We build the uniform asymptotic expansion around the minimum atz50 where, aside from a
constant term, the bracketed term in Eq.~11! behaves asz2. Therefore we use as a compariso
equation the Weber differential equation,46 whose exponentially decreasing solution at large po
tive values of the argument@cf. Eq. ~15! in the next section# is the parabolic cylinder function
Dn(z). Therefore we set

c~z!5@u8~z!#21/2Dn/&21/2@g21/223/4u~z!#, ~12!

which substituted into Eq.~11! leads to the equation foru(z),

u~z!2u8~z!25z2~11z!21gFnu8~z!22E~n!2
1

16gG1
g2

4
$u,z%, ~13!

where, as usual,$u,z% stands for the Schwarzian derivative,

$u,z%5
u-~z!

u8~z!
2

3

2 S u9~z!

u8~z! D
2

.

At this point we call the reader’s attention to the as yet unspecified parametern. In the next section
we will see that the condition for the existence of eigenvalues~the modified quantization condition
of Zinn-Justin! is precisely an equation forn.

Following Langer and Cherry, we solve Eq.~13! by expanding both the functionu(z) and the
eigenvalueE(n) in asymptotic power series:

u~z!5 (
k50

`

uk~z!gk,

E~n!52
1

16g
1 (

k50

`

E(k)~n!gk. ~14!

Substituting these asymptotic expansions into Eq.~13! and equating powers ofg we arrive at a
system of differential equations which can be solved recursively for theuk(z) in terms of elemen-
tary functions. We list here the first three equations, the last of which shows the general p
because it already includes a contribution from the Schwarzian derivative,

d

dz
@u0~z!2#52z~11z!,
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d

dz
@u0~z!u1~z!#5

E(0)~n!

2u0~z!u08~z!
1

nu08~z!

2u0~z!
,

d

dz
@u0~z!u2~z!#5

E(1)~n!

2u0~z!u08~z!
1

nu18~z!

u0~z!
2

u08~z!2u1~z!21u0~z!2u18~z!2

2u0~z!u08~z!
2

$u0 ,z%

8u0~z!u08~z!

22u1~z!u18~z!.

Again, we draw on the results of Cherry,33 which show that theuk(z) have to be chosen regular a
z50. The integration of the equation foru0(z) is immediate, yielding

u0~z!5zS 11
2z

3 D 1/2

.

Next, we note that fork>1, if uk(z) is a solution of the corresponding differential equation, so
uk(z)1a/u0(z) for any constanta. The integration of these equations fork>1 is a two-step
process: first, we fix the coefficientE(k)(n) to avoid the logarithmic singularity atz50; second,
we add a suitable multiple of 1/u0(z) to avoid a simple pole atz50 ~this procedure is algorith-
mically easier to implement than the equivalent ‘‘integrate from 0 toz’’ prescription of Cherry33!.
Thus, to avoid a logarithmic singularity ofu1(z) at z50 we must set

E(0)~n!5n,

and we get

2u0~z!u1~z!5n ln@u0~z!~11z!/z#.

Similarly, to avoid a logarithmic singularity inu2(z) we must set

E(1)~n!52 1
4 2 3

2 n2,

and the corresponding regular functionu2(z) is given by

u1~z!212u0~z!u2~z!5
nu1~z!

u0~z!
1F19

48
2

3

16~11z!2 2
1

8~11z!
2

1

4~312z!G
1n2F17

8
2

2

3z
2

1

8~11z!2 2
3

4~11z!
2

1

6~312z!G .
Although the explicit expressions of theuk(z) quickly become too unwieldy to be calculated b
hand, the whole procedure can be easily programmed in a computer and carried out to high
We list here the next three coefficients of the general asymptotic expansion for the energyE(n),

E(2)~n!52 19
8 n2 17

4 n3,

E(3)~n!52 131
64 2 459

16 n22 375
16 n4,

E(4)~n!52
22 709

256
n2

23 405

64
n32

10 689

64
n5,

which are readily identified with the coefficients of the Rayleigh–Schro¨dinger perturbation series
except that theE(k)(n) are polynomials in the as yet unspecifiedE0(n)5n.
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IV. GENERALIZED QUANTIZATION CONDITION

As we mentioned in the Introduction, there are several methods to derive the gener
quantization condition, sometimes called the secular equation,47 and there is even an ongoin
discussion on whether the more general approaches are fully rigorous or contain unprov
sumptions~see, for example, the discussions in Refs. 47 and 48 or the remarks after theorem
in Ref. 24; for yet an independent approach for polynomial potentials see Refs. 49–51!.

Since our calculations are rather explicit, we will proceed in a straightforward manner.
that, by construction, the Langer–Cherry solution~12! has the correct exponentially decreasi
asymptotic behavior asz ~and thereforey) tends to1`. Since the double-well potentialV(y) is
even iny, we will impose the quantization condition by requiring that the solution~12! be even or
odd in y or, on account of Eq.~10!, that c(21/2)Þ0, c8(21/2)50 for the even solutions, and
that c(21/2)50, c8(21/2)Þ0 for the odd solutions. To this end, we recall first the Bor
summable asymptotic expansions of the parabolic cylinder functions, and subsequently
separate sections to the even and odd solutions. A final section deals with the solution
generalized quantization condition.

A. Borel-summable asymptotic expansions of the parabolic cylinder functions

The sectors of Borel summability of the asymptotic expansions of the parabolic cyl
functions are ultimately determined by the branch point atz51 of Gauss’ hypergeometric func
tion, and can be easily derived, for example, using the relation between the parabolic cy
functions and the confluent hypergeometric functions.52 The full expansions can be convenient
written in terms of the formal power series

2F0~a,b;;z!5 (
k50

`

~a!k~b!k

zk

k!
,

where (a)k is the Pochhammer symbol

~a!051, ~a!k5a~a11!¯~a1k21!.

It turns out that the complex plane is divided into three nonoverlapping sectors separa
Stokes lines, and that within each of these sectors there is a uniquely defined Borel-sum
asymptotic expansion asz→`,

Dn~z!;zne2z2/4
2F0S 2

n

2
,
1

2
2

n

2
;;2

2

z2D , 2
p

2
,argz,

p

2
, ~15!

Dn~z!;zne2z2/4
2F0S 2

n

2
,
1

2
2

n

2
;;2

2

z2D
1

~2p!1/2e6 ip(n11)

G~2n!
z2n21ez2/4

2F0S 1

2
1

n

2
,11

n

2
;;

2

z2D ,
p

2
,6argz,p. ~16!

It is worth noting that the expansions are not summable on the Stokes lines, which mu
reached by continuity from either side. The validity of the subsequent formal operations
Borel-summable asymptotic expansions is established in Ref. 53.

B. Odd states

The quantization condition for odd states reads

Dn/&21/2@23/4g21/2u~21/2!#50. ~17!
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We have repeatedly noted that the negative real axis is a Stokes line for the Borel-sum
asymptotic expansions of the parabolic cylinder function, and therefore we have to appro
from either side. For concreteness we give the coupling constantg a small positive argument an
take

argg5e.0, argz5p.

The argument of the argument of the parabolic cylinder function is

arg@23/4g21/2u~z!#52 1
2 argg1arg@u~z!#;2 1

2 argg1arg@u0~z!#;2 1
2 argg1argz52 1

2 e1p,

and we have to use the plus sign in the asymptotic expansion~16!. To simplify the notation, we
introduce symbols for the following three formal power series ing whose coefficients are poly
nomials inn:

u[uS 2
1

2D52
1

A6
1 (

k51

`

ck~n!gk,

S1[2F0S 1

4
2

n

2&
,
3

4
2

n

2&
;;2

g

u2&
D ,

S2[2F0S 1

4
1

n

2&
,
1

4
1

n

2&
;;

g

u2&
D ,

where we have separated explicitly the constant term inu; the constant terms inS1 andS2 are
obviously 1. Imposing the quantization condition~17! is now straightforward: we substitute th
preceding series into the the right-hand side~with the plus sign! of Eq. ~16! and find that the
parametern must be a solution of the equation

~23/4g21/2u!&n expF2
21/2u2

g G S1

S2
52

i ~2p!1/2eip n/&

GS 1

2
2

n

&
D .

To rewrite this quantization condition in a more convenient form we use the following ga
function reflection formula:

GS 1

2
1zDGS 1

2
2zD5

p

cos~pz!
,

and define a function

f ~n!5
i ~2p!1/2

GS 1

2
1

n

&
D S 2

23/4u

g1/2 D&n

expF2
21/2u2

g
1 ln

S1

S2
G . ~18!

Then, the quantization condition reads

f ~n!511e2 ip&n.

By separating the leading behavior ofu in the definition off (n) we can show explicitly its
dependence as a function of the coupling constantg,
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f ~n!5
i ~2p!1/223n/2&

GS n

&
1

1

2D
expF2

1

3&
S 1

g
13n ln g1 (

k51

`

F (k)~n!gkD G , ~19!

where theF (k)(n) turn out to be polynomials inn which can be calculated explicitly in principl
to any desired order. We list here the first three, which again will be enough to show the p

F (1)~n!5 19
8 1 51

4 n2,

F (2)~n!5 459
16 n1 375

8 n3,

F (3)~n!5
22 709

768
1

23 405

64
n21

17 815

64
n4.

A comparison of these coefficients with the coefficientsE(k)(n) shows immediately that the
former can be easily written in terms of the latter,

F (k)~n!52
1

k

]E(k11)~n!

]n
. ~20!

If we accept this conjecture, which we have checked explicitly up tok510 but of which we do not
have a formal proof, the expression forf (n) can be written even more concisely in terms of t
general asymptotic series for the eigenvaluesE(n) defined in Eq.~14!:

f ~n!5
i ~2p!1/223n/2&

GS n

&
1

1

2D
expF 1

3&
E ]E~n!

]n

dg

g2G .

From the theoretical point of view the validity of this equation would show that all the informa
required to calculate the complete asymptotic expansion for the energy levels in the double
essentially contained in the coefficients of the Rayleigh–Schro¨dinger perturbation series whe
expanded as polynomials in the quantum number. Likewise, from a practical, algorithmic po
view, this relation gives an extremely simple and efficient method to calculate theF (k)(n) to very
high order, avoiding the integration of the differential equation foru(z); these high-order calcu
lations have been recently of some interest for the numerical study of the Borel summation~with
subsequent continuation to the real axis! of the multi-instanton series.20 Finally, we remark that an
observation equivalent to Eq.~20! was made by Hoeet al.36 who, in the context of the Stark effec
in hydrogenic ions, noticed that the ionization rates could be expressed in terms of the ener
a similar formula.~In fact, the Stark effect Hamiltonian, after separation in parabolic coordina
is equivalent to a two-dimensional isotropic quartic oscillator.!

C. Even states

Although a parity argument could be invoked at this point, as a consistency check o
Langer–Cherry method we have also calculated the quantization condition for the even
directly asc8(21/2)50, which in terms of the parabolic cylinder andu(z) functions reads

g1/2

27/4

u9~21/2!

u8~21/2!2 5
Dn/&21/28 @23/4g21/2u~21/2!#

Dn/&21/2@23/4g21/2u~21/2!#
,

which using a recurrence relation46 to eliminate the derivative of the parabolic cylinder functio
can be rewritten as
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u~21/2!

21/4g1/2 2
g1/2

27/4

u9~21/2!

u8~21/2!2 5
Dn/&11/2@23/4g21/2u~21/2!#

Dn/&21/2@23/4g21/2u~21/2!#
. ~21!

We use the same notation of the odd case, denoting byu8 and u9 the power series for
u8(21/2) andu9(21/2), respectively, bys the power series for the left-hand side of Eq.~21!,
i.e.,

s5
u

21/4g1/22
g1/2

27/4

u9

~u8!2 ,

and byS3 andS4 the generalized hypergeometric series corresponding to the parabolic cy
function in the numerator of the right-hand side of Eq.~21!,

S3[2F0S 2
1

4
2

n

2&
,
1

4
2

n

2&
;;2

g

u2&
D ,

S4[2F0S 3

4
1

n

2&
,
5

4
1

n

2&
;;

g

u2&
D .

Proceeding as in the odd case we arrive at the even quantization condition, whose only diff
with the odd quantization condition is that in Eq.~18! we must make the replacement,

ln
S1

S2
→ ln

sS11S 23/2u2

g DS3

sS21S 1

2
1

n

&
D S4

,

and by substitution of the preceding power series we have checked that

ln

sS11S 23/2u2

g DS3

sS21S 1

2
1

n

&
D S4

5 ln
S1

S2
2 ip.

Therefore, the generalized quantization conditions can be written in the form

6 f ~n!511e2 ip&n,

where the plus sign corresponds to odd states and the minus sign to even states. To avoid
this double sign, hereafter we will write explicitly the equations for the odd states. The c
sponding equations for even states can be recovered immediately by reversing the sign off and its
derivatives.

D. Solution of the generalized quantization condition

In the absence of the second well, the~standard! quantization condition would simply be tha
the exponentially increasing term in the compound asymptotic expansion for the parabolic
der function Dn/&21/2(2

3/4g21/2u) be missing, i.e., thatn be a pole of the gamma functio
G(1/22n/&). Then we would haven5&(n11/2)5En

(0) (n50,1,2,...), and wewould recover
the Rayleigh–Schro¨dinger perturbation theory series.

Equation~19! shows that, although different from zero,f (n) is an exponentially small func
tion of g for Reg.0, and therefore we seek solutions of the generalized matching condition i
form
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nn5&~n1 1
2 1Dn! ~n50,1,2,...!,

where the correctionDn will be expanded in series of successively exponentially smaller te
To keep track easily of the exponentially small order we introduce a parameterl ~that ultimately
will be set to one! multiplying the matching functionf (n) and as the ordering parameter in th
series forDn. That is to say, we write the generalized quantization condition in the form

Dn5
i

2p
lnF12l f S&S n1

1

2
1DnD D G ,

where

Dn5lDn11l2Dn21l3Dn31¯ .

By Taylor expansion of the right-hand side of this equation we can find immediately as
correctionsDnk as desired. Again, we list sufficiently many terms to illustrate the general pa
of the multi-instanton expansion calculated in the next section,

Dn152
i

2p
f n ,

Dn252
i

4p
f n

22
1

2&p2
f nf n8 ,

Dn352
i

6p
f n

32
3

4&p2
f n

2f n81
i

4p3 f n~ f n8!21
i

8p3 f n
2f n9 ,

where the primes denote derivatives with respect ton, and a subindexn denotes the value of the
function f (n) and its derivatives with respect ton evaluated atn5&(n11/2).

V. THE MULTI-INSTANTON EXPANSION

The asymptotic expansion for the eigenvalues of the symmetric double well, i.e., the m
instanton expansion, is obtained by substitution of the valuesnn into the general asymptotic
expansionE(n) of Eq. ~14!. This procedure involves a composition of two Taylor expansions,
the final results are slightly simpler if the derivatives with respect ton are replaced by derivative
with respect ton with the rule]/]n5221/2]/]n. So, the expansion for the eigenvalues up to th
exponentially small order is obtained from

E;En1
&Dn

1!
En81

~&Dn!2

2!
En91

~&Dn!3

3!
En-1¯ ,

which in terms of derivatives ofEn with respect ton can be rewritten as

E;En1
Dn

1!

]En

]n
1

~Dn!2

2!

]2En

]n2 1
~Dn!3

3!

]3En

]n3 1¯ .

Substituting in this expansion the expression for theDnk and collecting powers ofl, we write the
multi-instanton expansion in the form

E;En1DE11DE21DE31¯ ,

where we have already setl51, the subindex labels the exponentially small order, and the exp
expressions for the first three instanton contributions~in terms of derivatives with respect ton) are
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DE152
i

2p S f n

]En

]n D ,

DE25F2
i

4p
2

1

8p2

]

]nG S f n
2 ]En

]n D ,

DE35F2
i

6p
2

1

8p2

]

]n
1

i

48p3

]2

]n2G S f n
3 ]En

]n D .

To proceed with the evaluation of theDEk , note that

f n5 i
~2p!1/2

G~n11! S 2&

g D n11/2

e2 1/3&gS (
k50

`

gkg
kD ,

where the formal power series in the right-hand side of the last equation is defined by

(
k50

`

gkg
k[expF2

1

3&
(
k51

`

Fn
(k)gkG5expF1

6 (
k51

`
1

k

]En
(k11)

]n
gkG .

Therefore, it is convenient to define the exponentially small coefficient,

j~n!5
~2p!1/2

G~n11! S 2&

g D n11/2

e2 ~1/3&g!, ~22!

and the family of power series ing ~whose coefficients are again polynomials inn11/2),

bp~n![expF2
p

3&
(
k51

`

Fn
(k)gkG S ]En

]n D5expFp

6 (
k51

`
1

k

]En
(k11)

]n
gkG S ]En

]n D , ~23!

so that the function in which the differential operator acts in the expression ofDEk is

f n
k ]En

]n
5 i kj~n!kbk~n! ~k51,2,...!.

Furthermore, we denote

,5 lnS g

2&
D ,

so that the derivative with respect ton of the exponentially small coefficientj(n) can be written
as

j8~n!52@c~n11!1,#j~n!,

wherec denotes the logarithmic derivative of the gamma function.@Incidentally, the coefficients
of the second instanton contribution are usually20,22 given in terms of Euler’s constantg; the
relation between the two expressions is46 c(n11)52g1(k51

n k21.]
With this notation, the explicit expressions for the one-, two-, and three-instanton con

tions read as

DE15
j~n!

2p
b1~n!, ~24!
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DE25
j~n!2

8p2 @b28~n!22b2~n!~c~n11!1, !12p ib2~n!#, ~25!

DE35
j~n!3

48p3 @b39~n!26b38~n!~c~n11!1, !2b3~n!@3c8~n11!29~,1c~n11!!218p2#

16p i @b38~n!23b3~n!~,1c~n11!!##. ~26!

This procedure can be applied without any difficulty to calculate explicitly higher exponen
small corrections. Note that, in general, the solution forDnk is a sum of homogeneous terms
degreek in f n and its derivatives up tof n

(k21) . Since the logarithmic terms come from the
derivatives, the expression forDEk will contain ,5 ln(g/2&) up to the powerk21, which is
precisely the structure of the multi-instanton expansion as a function ofg. Note also that fork
>3 the expression forDEk includes polygamma functions evaluated at integers or, equivale
Riemann zeta functions.

If we rearrange the preceding expressions forDEk by grouping powers of,, and display
explicitly all the dependence on the coupling constantg, we find expansions of the form

DEk5S 2&

g D (n11/2)k

e2 k/3&g (
m50

k21 F lnS g

2&
D Gm

(
l 50

`

cknmlg
l ,

which can be easily compared with Eq.~7! of Ref. 20 in which the quantum number~heren) is
denoted byN, the order of the instanton contribution~here k) is denoted byn, g(here)

5&g(Ref. 20) and E(here)5&E(Ref. 20), where the latter two relations follow because we ha
proceeded by analytic continuation of the standard quartic anharmonic oscillator Hamilt
@compare the Hamiltonian~1! in Ref. 20 and the Schro¨dinger equation~11! of the present paper#.
To give some examples using only results given explicitly in this paper, from Eqs.~22! and ~23!
for p51 and~24! as well as the explicit formulas~4!–~9! for the Rayleigh–Schro¨dinger coeffi-
cients as polynomials in (n11/2) we find

DE15
1

2p

~2p!1/2

G~n11! S 2&

g D n11/2

e2 ~1/3&g! expF1

6 (
k51

`
1

k

]En
(k11)

]n
gkG S ]En

]n D
5

1

n!p1/2S 2&

g D n11/2

e2 ~1/3&g!F12F19

24
16S n1

1

2D1
17

2 S n1
1

2D 2G S g

&
D 2F5111

1152

1
115

8 S n1
1

2D1
2125

48 S n1
1

2D 2

1
23

2 S n1
1

2D 3

2
289

8 S n1
1

2D 4G S g

&
D 2

1¯G ,

which particularized forn50 reproduces~with due account of the& factors in the definitions of
g and E and recalling that our expressions pertain to the odd states! the corresponding value
reported in Eqs.~8! and ~9! of Ref. 20. Or, stated directly in terms ofb1(n),

b1~0!

&
512

71

12S g

&
D 2

6299

288 S g

&
D 2

2¯ .

Likewise, the explicit expressions for the first three terms ofb2(n) and b3(n) can be readily
calculated from the definition~23! and the coefficients~4!–~9!:
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b2~n!5&F12F19

12
16S n1

1

2D117S n1
1

2D 2G S g

&
D 2F1007

288
1

115

4 S n1
1

2D1
289

12 S n1
1

2D 2

123S n1
1

2D 3

2
289

2 S n1
1

2D 4G S g

&
D 2

1¯G , ~27!

b3~n!5&F12F19

8
16S n1

1

2D1
51

2 S n1
1

2D 2G S g

&
D 2F247

128
1

345

8 S n1
1

2D2
153

16 S n1
1

2D 2

1
69

2 S n1
1

2D 3

2
2601

8 S n1
1

2D 4G S g

&
D 2

1¯G . ~28!

And using Eqs.~25! and ~27! particularized forn50 and the relationc(1)52g we can easily
reproduce the rest of the coefficients in Eq.~8! of Ref. 20,

b2~0!

&
512

53

6 S g

&
D 2

1277

72 S g

&
D 2

2¯ ,

b28~0!22c~1!b2~0!

2&
5g1S 2

23

2
2

53

6
g D S g

&
D 1S 13

12
2

1277

72
g D S g

&
D 2

1¯ .

Note that Jentschura and Zinn-Justin state their results in terms of theirl(g)5 ln(22/g)
52 ln(g/2)1 ip, thus grouping formally real and formally complex terms. In our form~24!–~26!
of the expressions for the instanton contributionsDEk we have kept explicitly separated th
formally real and the formally purely imaginary parts of the expansions, among which ther
sequence of cancellations whereby the implicit imaginary parts which arise from the~continuation
to the positive real axis of the! Borel sum of the formally real series are canceled by the hig
order explicitly imaginary parts. These cancellations where noted by Damburg and Propin54 in the
context of the Stark effect for the hydrogen atom, who in addition conjectured their equivalen
a sequence of dispersion relations. In turn, this sequence, considered from the point of view
Laplace transformation of ramified functions, is the hallmark of resurgent functions.48

The symmetric double well studied in this paper is special in that, provided the conjectur~20!
is true, the complete multi-instanton expansion can be generated from the knowledge
Rayleigh–Schro¨dinger perturbation theory coefficients expressed as polynomials in the qua
number. As pointed out by Zinn-Justin,21 in general both the perturbative and one-instanton c
tributions ~equivalently, theEn

(k) and Fn
(k) coefficients! are needed to determine the comple

multi-instanton expansion. We stress that the Langer–Cherry method presented in this p
independent of this conjecture, and that it can be applied in the general case. Finally, we als
out that the same method with an obvious modification can be applied for nonsymmetric d
wells: since the parity of the eigenstates is lost, the generalized quantization condition is ob
by matching under the barrier the asymptotic expansions of two Langer–Cherry wave fun
anchored in the left and right well, respectively. Each one would be calculated exactly b
method of Sec. III@with its own Rayleigh–Schro¨dinger series andu(z) function#, and the match-
ing can be implemented most easily by equating the ratio of the dominant to the subdominan
of the respective asymptotic expansions on each well.
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To treat the front-form Hamiltonian approach to quantum field theory, called light
cone quantum field theory, in a mathematically rigorous way, the existence of a
well-defined restriction of the corresponding free fields to the hypersurface$x0

1x350% in Minkowski space is of an essential necessity. However, even in the
situation of a real scalar free field such a restriction does canonically not exist; this
is called the restriction problem. Furthermore, since the beginning of light cone
quantum field theory there is the problem of nonexistence of a well-defined Fock
space expansion of a free quantum field in terms of light cone momenta which is
called the zero-mode problem. In this paper we present solutions to these long
outstanding problems where the study of the zero-mode problem~of the corre-
sponding classical field! will lead us to a solution of the restriction problem. We
introduce a new function space of ‘‘squeezed’’ smooth functions which can canoni-
cally be embedded into the Schwartz spaceS(R3). The restriction of the free field
to $x01x350% is canonically definable on this function space and we show that the
covariant field is uniquely determined by this ‘‘tame’’ restriction. ©2004 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1765746#

I. INTRODUCTION

In studying the strong coupling regime of nonperturbative QCD, quantization of a field th
on the light cone~light cone quantization! is a promising technique to overcome hard problems
classical QCD. There is vast literature on this subject and we refer the interested reader to
and the references therein.

The fundamental idea goes back to Dirac.7 Let M denote four-dimensional Minkowski spac
with coordinatesx5(x0,x1,x2,x3)5(x0,x). Usually, the dynamics of a physical observable
described by an initial value problem. For example, iff(x0,x) is the amplitude of a classica
Klein–Gordon field, then the dynamics off is determined by (h1m2)f50 and by the values o
f and ]0f on the ~hyper!plane $x5(x0,x)PM:x050% ~initial data!. As usual,h5]m]m5]0

2

2( i 51
3 ] i

2 denotes the d’Alembert operator. This form of dynamics is called theinstant form. In
Ref. 7, Dirac suggested another form of dynamics, called thefront form, where the initial data
instead are given on the null planeS5$xPM:x01x350% and the propagation off is param-
etrized by different values ofx01x35const. The starting point of the light cone~or light front!
quantization is just the use of this front form to describe the dynamics of a quantum field.
that S is a so-called characteristic surface of the Klein–Gordon equation, and it is well kno11

that uniqueness of a solution cannot be guaranteed any more~we treat this problem in Ref. 21 in
more detail!. Introducing light cone coordinates~LC-coordinates! x̃5(x1,x1,x2,x2)5k(x),
wherex65(1/&) (x06x3) ~we use the Kogut–Soper convention4! we can describe the front form
dynamics off in this new coordinate system as follows:

Let f̃5f̃( x̃)5f+k21 be the transformation off to LC-coordinates. Then the front form

dynamics off is given by (h̃1m2)f̃50 and by the values off̃ ~we will see that derivatives o

a!Electronic mail: ullrichp@in.tum.de
31090022-2488/2004/45(8)/3109/37/$22.00 © 2004 American Institute of Physics
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f̃ are unnecessary! on the hyperplane$x̃5(x1,x1,x2,x2)PR4:x150%. Here, h̃5]m̃]m̃

52]1]22( i 51
2 ] i

2 denotes the transformed d’Alembert operator to LC-coordinates. Thus, in

following, we are interested in the restriction off̃ to $x150%.
In this paper we will treat quantum fields in a mathematically rigorous way as operator-v

~tempered! distributions in the sense of Wightman.20,3 Roughly spoken, a quantum field is
continuous functionf °f( f ) ~Ref. 22! on the test function spaceS(R4) of rapidly decreasing,
smooth, complex-valued functions where, for fixedf PS(R4), f( f ) is a linear operator defined o
a common dense subspace of a Hilbert spaceH. In addition, it is given a unitary representation
the proper Poincare´ group ~or the spinor Poincare´ group!, and all these have to fulfill the Wight
man axioms. But, in this context, what should be the restriction off to $xPM:x050% or to S
5$xPM:x01x350%? The Wightman axioms do not require the existence of the restriction
quantum field to a hypersurface.

In Ref. 16, Reed and Simon describe the restriction of a scalar free fieldf of mass.0 to the
hyperplane$xPM:x050%. The restriction is defined as an operator-valued distribution onS(R3).
If one wants to define the restriction off to the null planeS5$xPM:x01x350% in an analogous
way, one is faced with a divergent integral of the form*x1.0 (d3x/2x1) ug(x)u (gPS(R3)) ~Ref.
13!—notice that the functionQ(x1)/x1 is not locally integrable. Hence the restrictionfuS of the
field f to S cannot be defined canonically on the test function spaceS(R3). However, if one
remains in an appropriate proper subspace ofS(R3), then the restriction off to S can be defined
in the same way as in the Minkowski case. This was done in Ref. 13, where Leutwyleret al.
pointed out some features of fields on the null planeS. Among them they showed that th
restrictions of two free scalar fields of different masses (.0) to S are unitary equivalent. This is
however, in contrast to the Minkowski case where it is well known that two free scalar fiel
different masses give rise to inequivalent restrictions to$x050% ~cf., e.g., Ref. 16!. The reason for
this difference lies in the fact that the fields on the null plane are independent of mass and
this also holds true for the two-point function of a free scalar field on the null plane. Schliede
Seiler18 interpreted this feature as a hint that the test function space—a proper subsp
S(R3)—on which the fields on the null plane are defined is too restricted. Hence the ge
question arises whether one throws away physical information by using the restricted test fu
space in the definition of the null plane fields. Since the fields on the null plane are independ
mass it is clear that the information about the~rest! mass gets lost. In this paper we will show th
this is all one loses, i.e., given the mass and the restricted field on the null plane one can
the covariant field~cf. Theorem VI.7 and Sec. VII!. The keystone to prove this is the introductio
of a new test function spaceS]2

(Rn) which is in our opinion the canonical choice to define t

restrictions on the null plane. Since also in the covariant theory the mass is yet a parameter
to be knowna priori, the loss of the mass on the null plane is not really a disadvantage o
theory—the mass enters the theory through the Hamiltonian.

A systematic study of fields on the null plane was also done by Driessler.8,9 Driessler puts his
investigations on an axiomatic basement. The fields on the null plane should be defin
operator-valued distributions on the test function spaceS (1)(Rn) ~see also Ref. 18!, where for
technical reasons Driessler introduced the family of test functionsS (n)(Rn)5$ f PS(Rn): f
5]x2

n F, FPS(Rn)% and T0,n5T0(R) ^ D(Rn21), T0(R)5ùnS (n)(R). It turns out that our test
function space is related to Driessler’s test function spaces byS]2

(Rn)5ùnS (n)(Rn). However,

Driessler uses mostly the test function spacesS (1)(Rn) and S (2)(Rn) in his assertions. In the
question of using a ‘‘minimal’’ test function space, as e.g.,T0,n , to obtain analogous result
Driessler pointed out that unfortunately this lies outside the scope of his methods,9 Sec. III 3.
Nevertheless the results of Driessler are interesting, especially Driessler’s no go theorem
gives sufficient conditions for a field to be a free field. However, there is still a gap betw
Driessler’s no go theorem and an analog of Haag’s theorem for fields on the null plane. The
Driessler suggests in Ref. 9, Sec. IV 2, to investigate the:P(f)2 :-theories on the null plane which
might be possible by using the results of this paper.

In contrast to the former literature, e.g. Refs. 8, 9, 13, 18, where the test function spac
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given byad hocdefinitions to guarantee convergence of the integral*x1.0 (d3x/2x1) ug(x)u (g
PS(R3)) our test function spaceS]2

(Rn) arises in a very natural way by adapting the constr
tion of the time zero field as in Ref. 16 to the LC-case~see the commutative diagram~20!!—hence
S]2

(Rn) should be the canonical choice to define the restriction of quantum fields to the
plane.

There are early attempts to formulate light-cone field theory in close relationship with c
riant field theory, e.g. Ref. 6. However, even in the conventional formalism of quantum fields
treating fields not as operator-valued distributions, technical problems appeared. The most
tant one is the so-called zero-mode~or infrared! problem which states that a real scalar free fie
does not admit a well-defined Fock space expansion in terms of light cone momentap̃. To be more
precise, the proposed expansion

f̃~ x̃!5
1

~2p!3 E
p1.0

d3p̃

2p1 ~ ã~ p̃! e2 i (x1ṽ(p̃)1x2p12x'•p')1ã1~ p̃! ei (x1ṽ(p̃)1x2p12x'•p')! ~1!

of the Klein–Gordon LC-fieldf̃, which is the transformationf̃5f+k21 of the Klein–Gordon
field f, was seen to be ill-defined since the nonlocally integrable functionQ(p1)/p1 appears in
the integral. This technical insufficiency has led to pessimism in the development of light
quantum field theory. However, on the level of Feynman graphs this problem could be avoid
was shown by Ligterink and Bakker.15 From the point of view of conventional QFT, the restrictio
of f̃ to $x150% would not cause any problem if the expansion~1! has been successfully we
defined; one just has to putx150 in ~1!. Notice thatf, as a solution of the Klein–Gordon
equation, has the plane wave expansion

f~x!5
1

~2p!3 E d3p

2v~p!
~a~p! e2 i (x0v(p)2x•p)1a1~p! ei (x0v(p)2x•p)!, ~2!

wherev(p)5Ap21m2 is locally integrable.
Since the investigation of the zero-mode problem~of the classical Klein–Gordon field! leads

us in a very natural way to a solution of the restriction problem and since, afterwards, the so
of the restriction problem gives us a way to produce a well-defined Fock space expansion
real scalar free field, i.e., a solution of the zero-mode problem of the quantized Klein–G
field, we treat both problems in this paper. From a general point of view these two problem
really the same. This becomes obvious if one has in view that both problems arise fro
appearance of the nonlocally integrable functionQ(x1)/x1 which causes the divergences.

The paper is organized as follows. After introducing notations from light cone physics in
II, we investigate the zero-mode problem of the classical Klein–Gordon field in Sec. III. The
result of this section states that the zero-mode problem of the classical Klein–Gordon field
not really exist. We obtain a mapping, denotedn, cf. ~15!, which tells us, how we have to
transform the amplitudesa(p) and a1(p), starting from~2!, to obtain an expansion~1!. This
transformation is one to one and hence we may also obtain~2! starting from~1!. Moreover, the
mappingn elucidates the zero-mode problem off̃ as follows: Any occurrence of an infrare
divergence in~1! is caused by an ultraviolet divergence in~2!, and vice versa. Already at this poin
we run into a new class of functions. If the amplitudesa(p), a1(p) of f in ~2! run through the
Schwartz spaceS(R3), then the transformed amplitudesã(p̃), ã1(p̃) of f̃5f+k21 in ~1! run
throughn* S(R3)5$ f +n u f PS(R3)%, and vice versa. The functions ofn* S(R3), however, live
on the open subset$(p1,p1,p2) u p1.0% of R3, and it is possible to embed canonicallyn* S(R3)
into S(R3). Hence, we see, that a proper subspace ofS(R3) appears in a very natural way and i
moreover, fully equivalent toS(R3). This subspace is the cornerstone in our solution of
restriction problem. In Sec. IV we recall the well known construction of the~covariant! free scalar
massive fieldf, which obeys the Wightman axioms, and construct in the same way the~covariant!
free scalar massive LC-fieldf̃. The LC-field fulfills the Wightman axioms only if we replace i
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the axioms the Minkowski bilinear form by the LC-bilinear form. We call these modified axi
the LC-Wightman axioms. This is a rather trivial fact, but nevertheless we decided to write
these axioms, since especially the spectral property~LC-W2! takes on a form, which postulate
two positive operators,P1 andP2 , in contrast to the Minkowski case, where only one opera
P0 , has to be positive. This is seen to be one of the major advantages of light cone field t
Sincef is really a quadruple (H,U,f,D), and f̃ a quadruple (H̃,Ũ,f̃,D̃) we define generally
what we mean if we writef̃5k* f5f+k21. We callk* f the pushforward off by k. In Sec. V
we consider the problem of restricting the LC-fieldf̃ to $x150%. Starting from the important
commutative diagram~20!, we again come across the function spacen* S(R3) which, for some
reasons, is denotedS p1(R.03R2). The elements of this function space are called ‘‘squeez
rapidly decreasing~smooth! functions and the elements of its dual space are called ‘‘squee
distributions. We show that the function spaceS p1(R.03R2) is isomorphic toS(R3) and can
canonically be embedded intoS(R3). In Sec. VI we use the preliminary work of Sec. V to defi
the restriction of the LC-fieldf̃ to $x150%. Furthermore, we compute the equal-time commuta
relation. As a highlight we obtain a transformation law between the restriction off̃ to $x150%
and the restrictions off and ]0f to $x050%. Moreover, we show that the restrictions to$x1

50% of two LC-fields of different masses.0 are unitary equivalent. Hence this is a spec
property of light cone field theory and not an artifact of a too restricted test function spa
thought in Ref. 18. Quite the reverse, if one weakens slightly the definition of unitary equival
then it is easy to show that, even in the classical situation, the restrictions to$x050% become
‘‘weakly unitary equivalent.’’ Finally, in Sec. VII we give a rigorous Fock space expansion of̃
and the time-zero LC-fieldw̃ treating the fields as bilinear forms. The field operators are obta
by smearing the bilinear forms with test functions. This is the same approach as in the cla
case~cf. Ref. 16!. Hence, we present finally a solution of the zero-mode problem of the quan
Klein–Gordon field.

II. NOTATION AND CONVENTIONS

A. LC-coordinates and LC-space

We denoten-dimensional Minkowski space byM5Mn, i.e., Mn is Rn together with the
symmetric bilinear form̂ x,y&M5xmgmnyn, whereG5(gmn) is the usual Minkowski metric ten
sor. We introduce LC-coordinatesx̃ using the Kogut–Soper convention byk:Rn→Rn, x° x̃

5(x0̃, . . . ,xn21̃)5k(x), where

x0̃5
1

&
~x01xn21!, xj̃ 5xj ~ j 51,...,n22!, xn21̃5

1

&
~x02xn21!.

Here, we use the so-called index-marked notation where the index carries the mark. Espec
light-cone physics, one usually writes

x1
ªx0̃, x'ª~x1̃, ...,xn22̃!, x2

ªxn21̃

and choosesx1 as the LC-time variable. Because of the Kogut–Soper convention we hak
5k21. Next we transform the Minkowski metric tensorG to LC-coordinates by

G̃5~gm̃ñ!ªkGk,

then
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G̃5S 0 0 0 ¯ 1

0 21 0 ¯ 0

0 0 � 0

] ] 21 ]

1 0 ¯ 0 0

D .

We define the associated bilinear form by^x̃,ỹ&Lªxm̃gm̃ñyñ. Note that, using the classical LC
notation, we havêx̃,ỹ&L5x1y21x2y12x'•y' . In analogy to Minkowski spaceM we define
LC-spaceL5Ln as the bilinear space (Rn,^2,2&L). It is obvious thatk preserves the bilinea
forms, i.e.,k is an isomorphism~of bilinear spaces! from M onto L.

Given x̃PL, we also definecovariant LC-coordinates byxm̃5gm̃ñxñ, and setx̃2
ªxm̃xm̃ . A

massive relativistic particle with 4-momentump obeys the energy-momentum relationp22m2

5pmpm2m250. In LC-coordinates this relation readsp̃22m25pm̃pm̃2m252p1p22p'
2 2m2

50. Note that the transformation to LC-coordinates preserves the bilinear forms.
The relativistic energy-momentum relationp22m250 is covariant under the full Lorentz

group L, where the transformed relationp̃22m250, theLC-energy-momentum relation, is not.
However, the latter is covariant under the transformed Lorentz group orLC-Lorentz groupL̃
ªkLk. Thus in relativistic LC-physics we have to replace the Lorentz group by the LC-Lor
group and, as a consequence, the Poincare´ groupP5$(a,L):aPM, LPL% by the LC-Poincare´

group P̃5$(ã,L̃):ãPL, L̃PL̃%. We also transform the connected componentL 1
↑ 5$LPL:L0

0

.0, det(L)511% of L to LC-coordinates by

L̃1
↑
ªkL 1

↑ k.

The coordinate transformationk induces an isomorphism of Lie groupsL→̃L̃, L°kLk. Under
this isomorphism the stability group ofS5$x01x350%, i.e., the subgroup of allLPL such that
L(S),S, is mapped onto the stability group of$x150%. It is well known14 that the stability
group of$x050% is not isomorphic to the stability group ofS. Hence, the two forms of dynamic
are inequivalent.

For the rest of this article we fix some notations.23 Let

Gm5$pPMn11:p25m2%, G̃m5$ p̃PLn11: p̃25m2%,

Gm
65$pPMn11:p25m2, 6p0.0%, G̃m

65$ p̃PLn11: p̃25m2, 6p2.0%,

V65$pPMn11:p2.0,6p0.0%, Ṽ65$ p̃PLn11: p̃2.0,6p2.0%.

It is easy to see thatG̃m
65k(Gm

6) andṼ65k(V6). In addition we will use the following~smooth!
parametrizations of the~smooth! submanifoldsGm

6 , G̃m
6 of Rn11 ~see Fig. 1!:

V6 :Rn→
;

Gm
6,Rn11, p°V6~p!ª~6v~p!,p!

with v~p!ªAp21m2, p5~p1,p2,...,pn!, p25(
i 51

n

~pi !2,

Ṽ6 :Rn\$7p1>0%→
;

G̃m
6,Rn11, p̃°Ṽ6~ p̃!ªṼ~ p̃!ª~ p̃,ṽ~ p̃!!

with ṽ~ p̃!ª
p'

2 1m2

2p1 , p'ª~p1̃,p2̃, ...,pn21̃!, p'
2 5 (

i 51

n21

~pĩ !2,
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p̃ª~p1,p'!.

Note thatṼ:Rn\$p150%→
;

G̃m , p̃°(p̃,ṽ(p̃)) is a parametrization ofG̃m.

B. M- and L-Fourier transformation

In relativistic physics the Fourier transform is defined by using the Minkowski bilinear f
instead of the standard Euclidean scalar product. Going over to LC-coordinates the Mink
bilinear form transforms to LC-bilinear form̂2,2&L . To fix notations we introduce in this sho
subsection the so-calledL-Fourier transform and notice some properties which follow easily fr
the definition. LetSn5S(Rn) denote the Schwartz space of rapidly decreasing, smooth, com
valued functions. Forf PSn define theX-Fourier transformFX( f )5 f ∧X by

FXfªE f ~x! ei ^x,2&Xdx,

whereX stands forM or L. ThenFM andFL are mappings fromSn to Sn . To emphasize which
bilinear form we are just using we also writeS~M!, respectively,S~L! instead ofSn . Thus, we
have mappingsFM :S(M)→S(M) andFL :S(L)→S(L). Our M-Fourier transform is just the Fou
rier transform used in relativistic physics. The LC-coordinate transformationk:M→L induces
canonically a pullback/pushforward mappingk* :S(L)→S(M) (k* :S(M)→S(L)) which canoni-
cally extends to a pullback/pushforward mappingk* :S8(L)→S8(M) (k* :S8(M)→S8(L)),
where, as usual,Sn85S8(Rn)5S8(M)5S8(L) denotes the space of tempered distributions. Fr
the definition immediately follows

~k* ũ!∧M5k* ~ ũ∧L! and ~k* u!∧L5k* ~u∧M! ~3!

for all ũPS8(L), uPS8(M). Note thatudet(Dk)u51 where Dk is the Jacobi matrix ofk. Recall
that, in a canonical way,S is a dense linear subspace ofS8. However,S carries not the subspac
topology ofS8, the topology onS is stronger.

Proposition II.1: The mappingFL :S(L)→S(L) is a C-linear homeomorphism with invers
given by

f ~ x̃!5
1

~2p!n E
Rn

f ∧L~ p̃! e2 i ^ p̃,x̃&L dnp̃.

This mapping extends uniquely to aC-linear homeomorphismFL :S8(L)→S8(L) u°u∧L by the
usual formula u∧L( f )ªu( f ∧L).

FIG. 1. Parametrizations ofGm
6 and G̃m

6 .
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III. THE KLEIN–GORDON EQUATION AND THE ZERO-MODE PROBLEM

In the canonical quantization procedure of a free scalar field of mass.0 one uses the fact tha
the classical fieldf, as a solution of the Klein–Gordon equation, has a plane wave expansi
the form

f~x!5
1

~2p!3 E d3p

2v~p!
~a~p! e2 i (v(p)x02p•x)1a1~p! ei (v(p)x02p•x)!, ~4!

wherev(p)5Ap21m2.
Since the beginning of light cone QFT it was thought that there is no well-defined analo

plane wave expansion in terms of LC-momenta.5,10 This problem is called thezero-mode problem
~or infrared problem! which we like to explain now in more detail.

In physical literature the expansion off is obtained by transforming the Klein–Gordo
equation~KG-equation! (h1m2)f50 via Fourier transformation into the algebraic equati
(p22m2)f∧M50. This equation is solved by 2px(p)d(p22m2), wherex(p) is some complex-
valued function onGm . Using inverse Fourier transformation one obtainsf formally

f~x!5
1

~2p!3 E d4p x~p! d~p22m2! e2 i ^p,x&M.

To evaluate the integration over the variablep0, one viewsp22m25 f (p0) as a function ofp0 and
uses the identity

d~ f ~ t !!5(
j

1

u f 8~j!u
d~ t2j!, ~5!

where the sum runs over all simple roots off . Applying this formula, yields

d~p22m2!5
1

2v~p!
~d~p02v~p!!1d~p01v~p!!!,

wherep has to be viewed as a fixed parameter inR3. Now, one can evaluate the integration ov
p0 by canceling the integration and substitutingp0 by v~p! ~resp. by2v(p)), so we obtain

f~x!5
1

~2p!3 E d3p

2v~p!
~x~V1~p!! e2 i ^V1(p),x&M1x~V2~p!! e2 i ^V2(p),x&M!

and this is the desired expansion, if we seta(p)5x(V1(p)) and a1(p)5x(V2(2p)). Recall
that V6(p)5(6v(p),p).

Now consider the transformed fieldf̃5f+k21 which we call the free scalarLC-field. The
LC-field obeys the transformed Klein–Gordon equation~LCKG-equation! (h̃1m2)f̃50—recall
that h̃5]m̃]m̃52]1]22]'

2 . Using the same strategy as in the Minkowski case, we applyL-FT
and obtain the algebraic equation (p̃22m2)f̃∧L50. Again, we solve this by 2px̃( p̃)d( p̃2

2m2), where x̃( p̃) is some complex-valued function onG̃m . To use formula~5! we have to
considerf̃ (p2)5 p̃22m2 as a function inp2PR. This gives

d~ p̃22m2!5
1

u2p1u
dS p22

p'
2 1m2

2p1 D , ~6!

where we have to excludep150. Note thatp̃5(p1,p') in Eq. ~6! has to be considered as a fixe
parameterPR3\$p150%. Canceling the integration overp2 and substitutingp2 by (p'

2

1m2)/2p1 yields
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f̃~ x̃!5
1

~2p!3 E d3p̃

u2p1u
x̃~Ṽ~ p̃!! e2 i ^Ṽ(p̃),x̃&L,

where Ṽ(p̃)5(p̃,ṽ(p̃)) and ṽ(p̃)5 (p'
2 1m2)/2p1. If we set ã(p̃)ªx̃(Ṽ(p̃)) and ã1(p̃)

ªx̃(Ṽ(2p̃)), we get the expansion

f̃~ x̃!5
1

~2p!3 E
p1.0

d3p̃

2p1 ~ ã~ p̃! e2 i ^Ṽ(p̃),x̃&L1ã1~ p̃! ei ^Ṽ(p̃),x̃&L!. ~7!

Since the nonlocally integrable functionQ(p1)/2p1 appears in~7!, it was thought5,10 that the
expansion in~7! is not well-defined~asp1→0), and that this divergence is a special property
LC-QFT. In this section we will show that this is not the case. The denominator 2v~p! in ~4! has
not the problem to become zero anywhere, however, in classical QFT one usually uses amp
x such that~4! becomes ultraviolet divergent, i.e., asupu→`. Our analysis will show that the
ultraviolet behavior of~4! determines the infrared behavior of~7!, and vice versa. Or more precis
the singular behavior of~4! asp3→2` ~resp.p3→`) is the same as the singular behavior of~7!
asp1→0 ~resp.p1→`).

The keystone to solve this problem is to consider the transformation law betweenxd(p2

2m2) and x̃d( p̃22m2). Since,a priori, it is not clear whetherx̃d( p̃22m2) can be viewed as a
distribution depending onp̃ as a parameter, we want to avoid formula~5! in the derivation of~4!
and ~7!. Instead we will use the exact definitions ofxd(p22m2) and x̃d( p̃22m2) as tempered
distributions onR4 to derive the expansions~4! and ~7!.

To give a precise definition ofx(p)d(p22m2) andx̃( p̃)d( p̃22m2) we first mention that the
tempered distributionsd(p22m2) and d( p̃22m2) are well-defined as pullbacks ofdPS8(R)
under the mappingQ(p)5p22m2:R4→R, respectively,Q̃( p̃)5 p̃22m2:R4→R ~cf. Ref. 11, p.
136!. Then, for all f PS(R4), we have

~d~p22m2!, f ~p!!5E
Gm

f

u¹Qu
dS ~8!

and

~d~ p̃22m2!, f ~ p̃!!5E
G̃m

f

u¹Q̃u
dS̃, ~9!

wheredS ~resp. dS̃) is the canonical surface measure onGm ~resp. G̃m). Hence, as usual, we
identify d(p22m2) with the ~positive Borel-! measuredmmªdS/u¹Qu on Gm , andd( p̃22m2)
with the measuredm̃mªdS̃/u¹Q̃u on G̃m . Because of the functoriality of the pullback operation11

we haved( p̃22m2)5d(p22m2)+k21. This implies that the measurem̃m is the image measure o
mm under the mappingk:M→L. If we definemm

6 ~resp.m̃m
6) as the restriction ofmm to Gm

6 ~resp.
G̃m

6) then, because ofG̃m
65k(Gm

6), m̃m
6 is the image measure ofmm

6 underk. The following lemma
is an easy consequence of the transformation law between a measure and its image meas~cf.,
e.g., Ref. 2, 19.3!.

Lemma III.1: Let r be a complex-valued, measurable function onGm
6 . Then r is

mm
6-integrable iffr+k21 is m̃m

6-integrable, and

E
G̃m

6

r+k21

u¹Q̃u
dS̃5E

Gm
6

r

u¹Qu
dS.
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We denote byd6(p22m2) ~resp.d6( p̃22m2)) the tempered distribution induced bymm
6 ~resp.

m̃m
6), and we sometimes identify the measure with its induced distribution. Note that~as tempered

distributions!

d6~ p̃22m2!5d6~p22m2!+k21

andd(p22m2)5d1(p22m2)1d2(p22m2) andd( p̃22m2)5d1( p̃22m2)1d2( p̃22m2).
When we explained the derivation of the plane wave expansion used in physical literatu

solved the associated division problem byxd(p22m2) where we have not specified the amplitu
x(p) to get a solution of the KG-equation. In the following we want to specifyx in such a way
that xd(p22m2) is a well-defined tempered distribution. However, if we allow only compl
valued functionsx on Gm as amplitudes, we do not get all solutions of the KG-equation inS8(R4)
because it is well known, e.g. Ref. 3, p. 60, that the general solutionuPS8(R4) of (p22m2)u
50 is of the form

u5u1~p!d1~p22m2!1u2~p!d2~p22m2! ~10!

with tempered distributionsu6(p)PS8(R3), whereu6(p)d6(p22m2)PS8(R4) is defined by

~u6~p!d6~p22m2!, f ~p!!5S u6~p!,
f ~6v~p!,p!

2v~p! D5E d3p

2v~p!
u6~p! f ~6v~p!,p!.

Note that the mappingS(R4)→S(R3), f (p)° f (6v(p),p)/2v(p) is C-linear and continuous. If

we evaluate the surface integral~8! overGm
6 using the parametrizationV6 :R3→

;
Gm

6,R4, we get

~d6~p22m2!, f ~p!!5E
Gm

6

f

u¹Qu
dS5E d3p

2v~p!
f ~6v~p!,p!.

Hence,d6(p22m2) defined by the measuremm
6 on Gm

6 is equal tou6(p)d(p22m2) in ~10! with
u6(p)51(p), where 1(p)51 is the constant function. For this reason we make the follow
definition:

Definition: ~a! A function x:Gm
6→C is a multiplicator of d6(p22m2) if x(V6(p)) is a

tempered distributionPS8(R3), whereV6 is the introduced parametrization ofGm
6 . For each

suchx we define the tempered distributionx(p)d6(p22m2)PS8(R4) by

~x~p!d6~p22m2!, f ~p!!ªE d3p

2v~p!
x~V6~p!! f ~V6~p!!5E

Gm
6

x f

u¹Qu
dS ~ f PS~R4!!.

By M6 we denote the set of all multiplicators ofd6(p22m2).
~b! A function x:Gm→C is called a multiplicator of d(p22m2) if the restrictionsx6

ªxuG
m
6 are in M6 . For each suchx we define the tempered distributionx(p)d(p22m2)

PS8(R4) by

x~p!d~p22m2!ªx1~p!d~p22m2!1x2~p!d~p22m2!,

thus

~x~p!d~p22m2!, f ~p!!5E
Gm

x f

u¹Qu
dS, ~ f PS~R4!!.

By M we denote the set of all multiplicators ofd(p22m2).
Notice that, because the mappingS(R4)→S(R3), f (p)° f (V6(p))/2v(p) is C-linear and

continuous, the distributionsx(p)d6(p22m2) and x(p)d(p22m2) are well-defined and tem
pered.
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As mentioned before, if we consider distributions of the formu5x(p)d(p22m2) (x
PM), we do not get all solutions of (p22m2)u50 in S8(R4), and thus also not all solutions o
(p22m2)ũ50 in S8(R4) ~becausek induces a 1–1 correspondence between these soluti!.
However, we are mainly interested in the interrelation between the solutions of (p22m2)u50 and
( p̃22m2)ũ50, and in studying this interrelation we will see that it is important that the defini
of x(p)d6(p22m2) does not depend on the chosen parametrizations~or charts! of Gm

6 –only the
setsM6 depend on it. It is not known to the author how to define in generalu6(p)d6(p2

2m2), whereu6(p)PS8(R3), without fixing any parametrization ofGm
6 .

Using the fact17 that every functionx:Rn→C such that

E u~11uxu2!2Nx~x!up dnx,`

for someNPN andpPR, p.0, is a tempered distribution, it is easy to show that every func
in L p(Gm

6 ,dmm) is a multiplicator ofd6(p22m2). If x6 runs throughL 2(Gm
6 ,dmm) the solu-

tions f65F M
21(x6(p)d6(p22m2)) of the KG-equation run through all physical positiv

negative energy states of a relativistic neutral particle of massm.0.19 Hence, our analysis in-
cludes all physically relevant solutions of the KG-equation. It is even possible to leave
restriction and to show that the general solutionũ in S8(R4) of ( p̃22m2)ũ50 is of the form

ũ5ũ1~ p̃!d1~ p̃22m2!1ũ2~ p̃!d2~ p̃22m2!,

whereũ6(p̃) are so-called squeezed distributions, andũ6(p̃)d6( p̃22m2) are defined in an analo
gous way asu6(p)d6(p22m2) in ~10! ~cf. Ref. 21!.

Now we like to definex̃( p̃)d6( p̃22m2) and x̃( p̃)d( p̃22m2).
Definition: ~a! Let M̃6ª$x+k21:xPM6%. We call every function inM̃6 a multiplicator of

d6( p̃22m2). For every suchx̃6PM̃6 we definex̃6( p̃)d6( p̃22m2)PS8(R4) by

~ x̃~ p̃!d6~ p̃22m2!, f ~ p̃!!ªE
G̃m

6

x̃ f

u¹Q̃u
dS̃ ~ f PS~R4!!.

~b! A function x̃:G̃m→C is called amultiplicator of d( p̃22m2) if the restrictionsx̃6ªx̃u G̃
m
6

are inM̃6 . For each suchx̃ we definex̃( p̃)d( p̃22m2)PS8(R4) by

x̃~ p̃!d~ p̃22m2!5x̃1~ p̃!d1~ p̃22m2!1x̃2~ p̃!d2~ p̃22m2!,

hence

~ x̃~ p̃!d~ p̃22m2!, f ~ p̃!!5E
G̃m

x̃ f

u¹Q̃u
dS̃ ~ f PS~R4!!.

By M̃ (5$x+k21:xPM%) we denote the set of all multiplicators ofd( p̃22m2).
The next proposition shows thatx̃6( p̃)d( p̃22m2) andx̃( p̃)d( p̃22m2) are well-defined tem-

pered distributions and, in addition, we obtain an easy, but important transformation law be
the distributions with and without tilde.

Proposition III.2: For every x̃6PM̃6 , x̃PM̃ the just definedx̃6( p̃)d6( p̃22m2) and
x̃( p̃)d( p̃22m2) are tempered distributions onR4, and we have

~i! x̃6( p̃)d6( p̃22m2)5x6(p)d6(p22m2)+k21,
~ii ! x̃( p̃)d( p̃22m2)5x(p)d(p22m2)+k21,

as distributions (and as complex measures), wherex6ªx̃6+k and xªx̃+k.
Proof: Clearly ~ii ! follows from ~i!, and~i! is just applying Lemma III.1 torªx6 f . h
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Using the parametrizationV6 of G6 ~resp.Ṽ6 of G̃6) we can evaluate the correspondin
surface integral which yields~with f PS(R4))

~x6~p!d6~p22m2!, f ~p!!5E d3p

2v~p!
x6~V6~p!! f ~V6~p!!, ~11!

~ x̃6~ p̃!d6~ p̃22m2!, f ~ p̃!!5E
6p1.0

d3p̃

2up1u
x̃6~Ṽ6~ p̃!! f ~Ṽ6~ p̃!!. ~12!

Remark III.3: As we have viewedd6(p22m2) ~resp. d6( p̃22m2)) as positive~Borel-!
measuresmm

6 ~resp. m̃m
6) on Gm

6 ~resp. G̃m
6) we do the same withx6(p)d6(p22m2) ~resp.

x̃( p̃)d6( p̃22m2)), but these are now complex measures. From measure theory it follows th
function x6(p) ~resp.x̃6( p̃)) is determined by the complex measurex6(p)d6(p22m2) ~resp.
x̃6( p̃)d6( p̃22m2)) mm

6-a.e.~resp.m̃m
6-a.e.).

We introduce the following sets of solutions of the KG-equation~resp. LCKG-equation!:

L6ª$F M
21~2px6~p!d6~p22m2!!:x6PM6%,

L̃6ª$F L
21~2px̃6~ p̃!d6~ p̃22m2!!:x̃6PM̃6%,

and also define mappings

a6 :M6→L6 , x6°F M
21~2px6~p!d6~p22m2!!,

ã6 :M̃6→L̃6 , x̃6°F L
21~2px̃6~ p̃!d6~ p̃22m2!!.

The reason why there is no zero-mode problem in light cone QFT is caused by the follo
corollary:

Corollary III.4: Let f65F M
21(2px6(p)d6(p22m2))PL6 be a solution of the KG-

equation, withx6PM6 . Then, if f̃65f6+k21 is the transformed solution, we havef̃6

5F L
21(2px̃6( p̃)d6( p̃22m2)) with x̃65x6+k21, i.e., the following diagram commutes

wherek* ( f )5 f +k21.
Notice thatk* maps the complex vector spaceL p(Gm

6 ,dmm),M6 ~isometrically! isomor-
phically onto the complex vector spaceL p(G̃m

6 ,dm̃m),M̃6 .
Proof: Let u652px6(p)d6(p22m2) and ũ652px̃6( p̃)d6( p̃22m2). Then from Proposi-

tion III.2 we know ũ65u6+k21. Now because of~3!, we get f̃65f6+k215F M
21(u6)+k21

5F L
21(u6+k21)5F L

21(ũ6). h

In Corollary III.4 we have considered only the positive/negative frequency partf6

5F M
21(2px6(p)d6(p22m2)) of the field

f5F M
21~2px~p!d~p22m2!!, ~13!

with xPM, xuG
m
65x6 . But it is clear that for the transformed fieldf̃5f+k21 we also have
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f̃5F L
21~2px̃~ p̃!d~ p̃22m2!! ~14!

with x̃5x+k21. We call ~13! ~resp. ~14!! the abstract plane wave expansionof f ~resp. f̃).
Because the amplitudesx andx̃ differ only by a linear transformation, nothing gets worse if we
from the abstract plane wave expansion off to that of f̃.

To get a closer connection to the forms~4! and~7! we discuss now at the end of this sectio
the special case, where the integrals in~4! and~7! are absolutely convergent~Lebesgue-! integrals
emphasizing again the nonexistence of the zero-mode problem in light cone QFT.

Definition: A solution f ~resp.f̃) of the KG-equation~resp. LCKG-equation! in S8(R4) has
a convergent plane wave expansionif f ~resp.f̃) is a regular distribution and has an integr
representation of the form~4! ~resp.~7!! where the integral is absolutely convergent~in the sense
of Lebesgue!.

If f has a convergent plane wave expansion as in~4!, we can write the integral as a surfac
integral

f~x!5
1

~2p!3 E
Gm

x~p! ei ^p,x&M

u¹Q~p!u
dS~p!

if we definex(p) on Gm
1 by x(V1(p))ªa(p), and onGm

2 by x(V2(p))ªa1(2p), (pPR3). To
check this, just evaluate the surface integral usingV6 . Hence it followsxPL 1(Gm ,dmm) and
f5F M

21(2px(p)d(p22m2)). Analogously, if f̃ has a convergent plane wave expansion as
~7!, we can write the integral as a surface integral

f̃~ x̃!5
1

~2p!3 EG̃m

x̃~ p̃! ei ^ p̃,x̃&L

u¹Q̃~ p̃!u
dS̃~ p̃!

if we define x̃( p̃) on G̃m
1 by x̃(Ṽ(p̃))ªã(p̃), and onG̃m

2 by x̃(Ṽ(2p̃))ªã1(p̃) (p̃PR3,p1

.0). As before, it followsx̃PL 1(G̃m ,dm̃m) andf̃5F L
21(2px̃( p̃)d( p̃22m2)). Conversely, iff

~resp.f̃) has an abstract plane wave expansion of the formf5F M
21(2px(p)d(p22m2)) ~resp.

f̃5F L
21(2px̃( p̃)d( p̃22m2))) with xPL 1(Gm ,dmm) ~resp. x̃PL 1(G̃m ,dm̃m)), it is easy to

see—by evaluating the corresponding surface integrals usingV6 ~resp.Ṽ6)—that f ~resp.f̃)
has a convergent plane wave expansion. Here we have used only standard facts from inte
theory. Notice that, if x(p)PL 1(Gm ,dmm) and f (x)PS(R4), then x(p) f (x)PL 1(Gm

3R4,dmm(p) ^ d4x) and we can use Fubini’s theorem. The same holds forx̃( p̃) ~in the tilde
situation!. Hence we have proven the following lemma.

Lemma III.5: LetfPS8(R4) ~resp. f̃PS8(R4)) be a solution of the KG-equation (resp
LCKG-equation) which is regular (as a distribution). Then

~i! f has a convergent plane wave expansion as in~4! iff f has an abstract plane wav
expansion f5F M

21(2px(p)d(p22m2)) with xPL 1(Gm ,dmm). In this case a(p)
5x(V1(p)) and a1(p)5x(V2(2p)) (pPR3).

~ii ! f̃ has a convergent plane wave expansion as in~7! iff f̃ has an abstract plane wav

expansion f̃5F L
21(2px̃( p̃)d( p̃22m2)) with x̃PL 1(G̃m ,dm̃m). In this case a˜ (p̃)

5x̃(Ṽ(p̃)) and ã1(p̃)5x̃(Ṽ(2p)) (p̃PR3,p1.0).

Using this lemma we can prove the following proposition:
Proposition III.6: LetfPS8(R4) be a solution of the KG-equation which is a regular dist

bution. Letf̃5f+k21 be the transformed solution. Then, f has a convergent plane wave expa

sion as in ~4! iff f̃ has a convergent plane wave expansion as in~7!. In this case a˜ (p̃)
5a(n(p̃)) and ã1(p̃)5a1(n(p̃)) for all p̃PR3, p1.0, wheren(p̃)ªV1

21(k21(Ṽ(p̃))).
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Proof: From Proposition III.2 we know thatf5F M
21(2px(p)d(p22m2)) if and only if f̃

5F L
21(2px̃( p̃)d( p̃22m2)) wherex̃5x+k21. Now use Lemma III.5 to get the first assertion. T

obtain the second assertion write, due to Lemma III.5,ã(p̃)5x̃(Ṽ(p̃)) and ã1(p̃)5x̃(Ṽ3
(2p̃)). Now usex̃5x+k21, V2(2p)52V1(p) and the second assertion of Lemma III.5~i!.h

As we have seen in Lemma III.5, the integral sign in~4! ~resp.~7!! only makes sense if we
take the amplitudex(p) ~resp. x̃( p̃)) from the proper subsetL 1(Gm ,dmm) of M ~resp.
L 1(G̃m ,dm̃m) of M̃). In all other cases the integral sign has to be viewed only symbolically~as
usual in distribution theory!. If we consider in generalx(p)PM and x̃( p̃)PM̃, thena(p) and
a1(p) in ~4! are tempered distributions onR3, however,ã(p̃) and ã1(p̃) are not. Later we will
see that these are squeezed distributions, and therefore we have to use squeezed dist
instead of tempered distributions to define the restriction off̃ to $x150%.

The mappingn is extremely useful because it shows us how to define squeezed distribu
and, in addition, it gives us the right connection between canonical QFT and light cone QF
Fig. 2 we have illustrated the mappingn:R3\$p1<0%→R3 to get a better feeling of what happen
the arrays indicate the way of how the valuen(p̃) of p̃ is determined. The explicit formula ofn is

n~ p̃!5S p' ,
1

&
S p12

p'
2 1m2

2p1 D D , ~15!

wherep̃5(p1,p')5(p1,p1,p2)PR3\$p1<0%.

IV. THE REAL SCALAR FREE LC-FIELD, PUSHFORWARD OF QUANTUM FIELDS

As mentioned in the Introduction, the transformed fieldf̃5f+k21 of a given quantum field
f does not fit in the classical Wightman formalism because the transformationk to LC-coordinates
is not a Lorentz transformation. In this section we will define the quantum fieldf̃m5fm+k21, if
fm is a free scalar field of massm.0, as a quadruple (H̃m ,Ũm ,f̃m ,D̃) in analogy to the classica
free field (Hm ,Um ,fm ,D). We will show thatf̃m satisfies a slightly modified version of th
classical Wightman axioms, which we will call the LC-Wightman axioms.

Before starting the construction off̃m , we have to select an appropriate one-particle sp
H̃m . The one-particle spaceHm of a relativistic, spinless, neutral particle~resp. antiparticle! of
massm.0 living in Minkowski space isL 2(Gm

1 ,dmm) ~resp.L 2(Gm
2 ,dmm)). That is because the

distributions of the formf65F M
21(2px6(p)d6(p22m2)), with x6PL 2(Gm

6 ,dmm), represent
all physically relevant positive/negative frequency solutions of the KG-equation.19 From Corollary

FIG. 2. The mappingn:R3\$p1<0%→R3, p̃→n(p̃).
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III.4 it follows that these solutions are in one-to-one correspondence—viak—with the solutions
f̃65F L

21(2px̃6( p̃)d6( p̃22m2)), with x̃6PL 2(G̃m
6 ,dm̃m), of the LCKG-equation. Hence we

define:
Definition: The one-particle space of a relativistic, spinless, neutral particle~resp. antiparticle!

in LC-space of massm.0 is H̃mªL 2(G̃m
1 ,dm̃m) ~resp.L 2(G̃m

2 ,dm̃m)).
Remark IV.1:The coordinate transformationk:M→L induces a canonical isomorphism o

complex Hilbert spacesk* :Hm→̃H̃m between the one-particle spaces.
We define the real scalar free LC-fieldf̃m of massm.0 in the same way as the real scal

free fieldfm was defined in Ref. 16 using the Segal field operatorfS .
Let H be a complex Hilbert space and letF∨(H)5 % n50

` H∨n be the bosonic Fock space~over
H!. By F0 we denote the dense linear subspace of all finite vectorsc of F∨(H), i.e., c
5(c (n))nPN such thatc (n)50 for all but finitely manynPN. For eachf PH the Segal field
operatorfS( f ) is defined as a linear operator on the finite vectorsF0 by

fS~ f !ª
1

&
~a~ f !1a* ~ f !!,

wherea( f ) ~resp.a* ( f )) is the annihilation~resp. creation! operator defined onF0 . Recall that
on H∨n ~cf. Ref. 3!

a* ~ f !~c1∨¯∨cn!5An11 f ∨c1∨¯∨cn

and

a~ f !~c1∨¯∨cn!5
1

An
(
j 51

n

^ f ,c j&c1∨¯∨c ĵ∨¯∨cn ,

wherec ĵ means omittingc j . On the finite vectorsa( f ) is the adjoint operator ofa1( f ). It can
be shown~Ref. 16, Theorem X.41! that fS( f ) is essentially self-adjoint. In the following, w
denote the closure offS( f ) also byfS( f ). The mappingf °fS( f ) from H to the set of all
self-adjoint operators onF∨(H) is called the Segal quantization overH.

Note thatF∨ is a ~covariant! functor on the category of complex Hilbert spaces. Hence,
linear operatoru onH induces a linear operatorF∨(u)—the second quantization ofu—onF∨(H).
If u is unitary, then the same holds forF∨(u).

To define the real scalar free fieldfm of massm.0, one choosesHmªL 2(Gm
1 ,dmm) as the

one-particle space. Now, letfS be the Segal quantization overHm . Then onHm
∨n the creation and

annihilation operator are explicitly given by

~a* ~ f !c!~p1 ,...,pn11!5
1

An11
(
j 51

n11

f ~pj !c~p1 ,...,pĵ ,...,pn11!,

~a~ f !c!~p1 ,...,pn21!5AnE
Gm

1
f̄ ~p!c~p,p1 ,...,pn21!dmm~p!,

wherec(p1 ,...,pn)PHm
∨n . We denote by res:S(M)→Hm the restriction mappingf ° f uG

m
1. If f

PS(M) is real-valued, one defines

fm~ f !5fS~a•res~ f ∧M!!,

whereaªA2/(2p)3 is a normalizing constant, and for generalf PS(M)

fm~ f !5fm~Ref !1 ifm~ Im f !.
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To complete the construction of the real scalar fieldfm , one has to define a strongly continuo
unitary representation of the restricted Poincare´ groupP 1

↑ . This is done by

Um :P 1
↑ →B~F∨~Hm!!, ~a,L!°F∨~um~a,L!!,

whereum(a,L)PB(Hm) is defined by

~um~a,L!c!~p!ªei ^a,p&Mc~L21p!.

Again we denote byF0 the dense subspace of all finite vectors ofHmªF∨(Hm). The following
theorem is proven in Ref. 16, Theorem X.42.

Theorem IV.2: The quadruple(Hm ,Um ,fm ,F0) satisfies the Wightman axioms. Moreove,

~h1m2!fm50,

i.e., fm((h1m2) f )50 for each fPS(M).
If we replace in the preceding construction offm all quantities by the corresponding tild

quantities, we obtain the real scalar free LC-fieldf̃m . More precisely, letf̃S be the Segal quan
tization overH̃m5L 2(G̃m

1 ,dm̃m). The creation and annihilation operators are now given explic
by

~ ã* ~ f !c̃ !~ p̃1 ,...,p̃n11!5
1

An11
(
j 51

n11

f ~ p̃ j !c̃~ p̃1 ,...,p̃ ĵ ,...,p̃n11!,

~ ã~ f !c̃ !~ p̃1 ,...,p̃n21!5AnE
G̃m

1
f̄ ~p!c̃~ p̃,p̃1 ,...,p̃n21!dm̃m~ p̃!,

where c̃( p̃1 ,...,p̃n)PH̃m
∨n . We denote by res˜:S(L)→H̃m the restriction mappingf ° f u G̃

m
1. If f

PS(L) is real-valued, we define

f̃m~ f !5f̃S~a•res̃~ f ∧L!!,

and for generalf PS(L)

f̃m~ f !5f̃m~Ref !1 i f̃m~ Im f !.

We still have to define a strongly continuous unitary representation, now, of the restricted
Poincare´ group P̃1

↑ 5kP 1
↑ k5$(ka,kLk):(a,L)PP 1

↑ )%. Let

Ũm :P̃1
↑ →B~F∨~H̃m!!, ~ ã,L̃ !°F∨~ ũm~ ã,L̃ !!,

whereũm(ã,L̃)PB(H̃m) is defined by

~ ũm~ ã,L̃ !c̃ !~ p̃!ªei ^ã,p̃&Lc̃~L̃21p̃!.

Finally, let F̃0 be the dense subspace of finite vectors ofH̃mªF∨(H̃m). Immediately from the
definitions we obtain the following commutative diagrams:
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~16!

with f̃ 5k* ( f ), (ã,L̃)5(ka,kLk), where f PS(M), (a,L)PP 1
↑ , andD5F0, D̃5F̃0.

Using these commutative diagrams and Theorem IV.2, it is easy to see that the qua
(H̃m ,Ũm ,f̃m ,F̃0) satisfies the following axioms, calledLC-Wightman axiomsof a real scalar
LC-quantum field (H̃,Ũ,f̃,D̃):

LC-W1 (Relativistic invariance of the state space):H̃ is a separable complex Hilbert spac
and Ũ is a strongly continuous unitary representation onH̃ of the restricted LC-Poincare´ group
P̃1

↑ .
LC-W2 (Spectral property):The spectrum of the LC-energy-momentum operatorP̃5(Pm̃)

5(P1 ,P1 ,P2 ,P2) given by Ũ(ã, id)5eiam̃Pm̃ lies in the closed upper LC-light cone cl(Ṽ1)
5$ p̃PL: p̃2>0, p2>0%.

LC-W3 (Existence and uniqueness of the vacuum):There exists inH̃ a unique~up to a phase
factor! unit vectorc̃0 ~also denoted byu0̃& and called the vacuum!, which is invariant with respec
to the translationsŨ(ã, id), (ãPL).

LC-W4 (Domain of definition and continuity of the field):

~i! For eachf PS(L), f̃( f ) is a linear operator onH̃ with D̃,D(f̃( f )), D̃,D(f̃( f )* ),
whereD̃ is a dense linear subspace ofH̃.

~ii ! f̃( f )D̃,D̃, f̃( f )* D̃,D̃, Ũ(ã,L̃)D̃,D̃, for eachf PS(L) and (ã,L̃)P P̃1
↑ .

~iii ! The vacuumu0̃& is contained inD̃.
~iv! The mappingS(L)→H̃, f °f̃( f )c is linear and continuous for eachcPH̃.
~v! ~Hermiticity! f̃( f )* uD̃5f̃( f̄ )uD̃ for eachf PS(L).

LC-W5 (Poincare´ invariance of the field):

Ũ~ ã,L̃ !f̃~ f !Ũ~ ã,L̃ !215f̃~$ã,L̃%. f !

on D̃ for eachf PS(L) and (ã,L̃)P P̃1
↑ , where$ã,L̃%. f ( x̃)5 f (L̃21( x̃2ã)).

LC-W6 (Locality, or microcausality):If the supports off and g in S(L) are LC-spacelike
separated, i.e., if̂x̃2 ỹ,x̃2 ỹ&L,0 for eachx̃Psupp(f ), ỹPsupp(g), then onD̃

@f̃~ f !,f̃~g!#50.

LC-W7 (Cyclicity of the vacuum):The set of finite linear combinations of vectors of the for
f̃( f 1)¯f̃( f n)u0̃& is dense inH̃.

Corollary IV.3: The quadruple(H̃m ,Ũm ,f̃m ,F̃0) satisfies the LC-Wightman axioms. Mor
over,

~h̃1m2!f̃m50,

i.e., f̃m((h̃1m2) f )50 for each fPS(L).
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Definition: The quadruple (H̃m ,Ũm ,f̃m ,F̃0) from Corollary IV.3 is called the real scalar fre
LC-field of massm.0.

Remark IV.4:In LC-W1–LC-W7 we have listened the LC-Wightman axioms of a real sc
LC-quantum field. Thereby we have only modified the assertions of the classical Wigh
axioms which concern the Minkowski metric and replaced these by using the LC-metric.

Remark IV.5:In relativistic physics it is important to admit also two-valued representation
the restricted Poincare´ group P 1

↑ ; for example to describe particles of half-integral spin, i.
spinor fields. Hence, one requires in the Wightman axioms20,3 a unitary representation of th
universal covering group ofP 1

↑ –the Poincare´ spinor groupr0ª$(a,L
;

):aPM, L
;

PSL(2,C)%
SinceP 1

↑ →̃P̃1
↑ (a,L)°(ã,L̃)ª(ka,kLk21) is an isomorphism of complex Lie groups, th

Poincare´ spinor group is also the universal covering group ofP̃1
↑ and we have the following

commutative diagram

wherev and ṽ are the corresponding covering mappings andP 1
↑ →̃P̃1

↑ is the above given iso-
morphism. Hence it is natural to generalize axiom LC-W1 by requiring thatŨ is a strongly
continuous unitary representation of the Poincare´ spinor group r0 . Note that v(a,L

;
)

5(a,L(L
;

)) where SL(2,C)→L 1
↑ , L

;
°L(L

;
) is the universal covering ofL 1

↑ . Hence we have

ṽ(a,L)5(a,L̃(L
;

)), where SL(2,C)→L̃1
↑ , L

;
°L̃(L

;
)5kL(L

;
)k21 is the universal covering

mapping of the proper LC-Lorentz groupL̃1
↑ .

Remark IV.6:The spectral condition LC-W2 implies~or is equivalent! that the operatorsP1 ,
P2 and P̃252P1P22P1

22P2
2 are positive. Note, that in the Minkowski case we have only

two positive operatorsP0 andP2. The presents of an extra positive momentum operatorP1 is one
of the advantages of light cone quantum field theory.

Remark IV.7:For simplicity we have written down the LC-Wightman axioms only for a sca
LC-quantum field. But, it is trivial to generalize these axioms to multi-component LC-quan
fields f̃5(f̃ l), and even to a finite or infinite collection$f̃ (t)% of such fields. As in the
Minkowski case~cf. Refs. 3 and 20! one has to generalize the transformation law in LC-W5

Ũ~ ã,L
;

!f̃k
(t)~ f !Ũ~ ã,L

;
!215(

l
Vkl

(t)~L
;

21!f̃ l
(t)~$ã,L̃~L

;
!%. f !,

whereVkl
(t) is a complex or real finite-dimensional matrix representation of SL(2,C) and Ũ is a

strongly continuous unitary representation of the Poincare´ spinor group onH̃. As in Ref. 3, p. 325,
we suppose thatV(t)(21)5$61%. If V(t)(21)51, then (f̃ l) is a LC-field with integral spin
~tensor LC-field!, if V(t)(21)521, then (f̃ l) is a LC-field with half-integral spin~spinor LC-
field!.

Moreover, one has to replace the commutator in LC-W6 by

@f̃k
(t)~ f !,f̃ l

(t8)~g!#50

and, if one wants to define a fermionic LC-field, one has to replace the commutator b
anticommutator.

In LC-W7 we have to require that the set of finite linear combinations of vectors of the
f̃ l 1

(t1)( f 1)¯f̃ l n

(tn)( f n)u0̃& is dense inH̃. Hence, it should be clear how to modify the gene

Wightman axioms,3 p. 324, to obtain the LC-Wightman axioms of a LC-quantum field theory
general.
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The construction of the real scalar free LC-field, especially the commutative diagrams~16!,
suggests the following definition.

Definition: Let f5(H,U,(f l
(t)),D) be a quantum field obeying the~classical! Wightman

axioms. A pushforward off underk:M→L ~or pullback off underk21:L→M) is a LC-quantum
field f̃5(H̃,Ũ,(f̃ l

(t)),D̃) obeying the LC-Wightman axioms~and transforming according to th
same finite-dimensional representationVkl

(t) asf (t)) together with a unitary linear operatorT:H
→H̃ such thatT(D)5D̃ and such that for eachf PS(M), (a,L

;
)Pr0 the following diagrams

commute

~17!

with ãªka, f̃ 5k* f and L̃ªkLk21. For short, we writef̃5k* (f)5(k21)* (f).
We summarize the preceding by the following:
Proposition IV.8: The real scalar free LC-fieldf̃m5(H̃m ,Ũm ,f̃m ,F̃0) of mass m.0 together

with the unitary operatorF∨(k* ):Hm→H̃m is a pushforward of the real scalar free fieldf under

k:M→L, i.e., f̃m5k* (fm).
Remark IV.9:Let f be a quantum field andf̃5k* f, with T:H→H̃, a pushforward off. If

u0& is the vacuum off thenTu0& is the vacuum off̃ becauseTu0& is invariant underŨ(ã,L
;

) for
each (ã,L

;
)Pr0 .

Remark IV.10:Given a~general! quantum fieldf5(H,U,(f l
(t)),D), it is trivial to define a

pushforward off under k. Let H̃ªH and D̃ªD. Define f̃ l
(t)( f̃ ) and Ũ(ã,L

;
) by f̃ l

(t)( f̃ )
ªf l

(t)( f̃ +k) and Ũ(ã,L
;

)ªU(k21ã,L
;

). It is easy to check thatf̃5(H̃,Ũ,(f̃ l
(t)),D̃) together

with T5 id:H→H̃ is a pushforward off.
Remark IV.11:The definition of the pushforwardk* (f) of a quantum fieldf can also be done

for any general linear invertible mappingk:M→R4. It is not restricted to the transformation from
Minkowski- to LC-coordinates.

The next proposition concerning the~anti-!commutator of a LC-quantum field follows easi
from the definition of a pushforward.

Proposition IV.12: Letf5(H,U,(f l
(t)),D) be a quantum field andf̃5k* (f), with T:H

→H̃, a pushforward off. Then for each f,gPS(M)

@f̃ l
(t)~k* f !,f̃m

(t8)~k* g!#75T@f l
(t)~ f !,fm

(t8)~g!#7T21,

where@ – ,– #7 denotes commutator/anticommutator.
In relativistic physics the so-called Pauli–Jordan commutation function

Dm~x!5
1

i ~2p!3 FM~e~p0!d~p22m2!!5
1

i ~2p!3 E d4p e~p0!d~p22m2! ei ^p,x&M

plays an essential role. One usually splitsDm(x) into its positive and negative frequency parts
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Dm
(6)~x!5

61

i ~2p!3 FM~d6~p22m2!!5
61

i ~2p!3 E d4p d6~p22m2! ei ^p,x&M

5
61

2i ~2p!3 E d3p

v~p!
ei (6v(p)x02p"x),

thenDm(x)5Dm
(1)(x)1Dm

(2)(x).
Now, let D̃m( x̃)5k* Dm( x̃)5(Dm+k21)( x̃) be the transformation ofDm to LC-coordinatesx̃.

We also transform the positive and negative parts ofDm and obtainD̃m
(6)( x̃)5k* Dm

(6)( x̃)
5(Dm

(6)+k21)( x̃). From ~3! we know that M- and L-Fourier transformation commute withk*
and, sinced6( p̃22m2)5k* d6(p22m2), we obtain

D̃m~ x̃!5
1

i ~2p!3 FL~e~p2!d~ p̃22m2!!5
1

i ~2p!3 E d4p̃ e~p2!d~ p̃22m2! ei ^ p̃,x̃&L

and

D̃m
(6)~ x̃!5

61

i ~2p!3 FL~d6~ p̃22m2!!5
61

i ~2p!3 E d4p̃ d6~ p̃22m2! ei ^ p̃,x̃&L

5
61

2i ~2p!3 E
6p1.0

d3p̃

up1u
ei (ṽ(p̃)x11p1x22p'•x').

Hence, we also haveD̃m( x̃)5D̃m
(1)( x̃)1D̃m

(2)( x̃).
Corollary IV.13: Let f̃m( x̃) be the real scalar free LC-field of mass m.0, i.e., the pushfor-

ward of the real scalar free fieldfm(x). Then

@f̃m~ x̃!,f̃m~ ỹ!#5
1

i
D̃m~ x̃2 ỹ!,

where D̃m( x̃)5k* Dm( x̃)5(Dm+k21)( x̃).
Proposition IV.14: Letf5(H,U,(f l

(t)),D) be a quantum field andf̃5k* (f) a pushforward
of f. We denote by

wl 1 ,...,l n

(t1¯tn)
~x1 ,...,xn!5^0uf l 1

(t1)
~x1!¯f l n

(tn)
~xn!u0&

the Wightman functions off and by

w̃l 1 ,...,l n

(t1¯tn)
~ x̃1 ,...,x̃n!5^0̃uf̃ l 1

(t1)
~ x̃1!¯f̃ l n

(tn)
~ x̃n!u0̃&

the Wightman functions off̃. Then

w̃l 1 ,...,l n

(t1¯tn)
5wl 1 ,...,l n

(t1¯tn)
+ %

nk21.

Proof: Follows immediately from the left commutative diagram of~17!. h

Corollary IV.15: Letf̃m be the real scalar free LC-field of mass m.0. Then

^0̃uf̃m~ x̃!f̃m~ ỹ!u0̃&5
1

i
D̃m

(2)~ x̃2 ỹ!.

Proof: Since^0ufm(x)fm(y)u0&5 (1/i ) Dm
(2)(x2y), the assertion follows from Propositio

IV.14. h
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It should be clear that one can translate any covariant statement about Wightman qu
fields to the LC-case. All that we have to do is to rephrase a given statement by using t
bilinear form^–,–&L instead of the Minkowski bilinear form̂–,–&M . In this way we obtain, for
example, an analogous reconstruction theorem for LC-quantum fields. We do not want to lis
these transformed statements which can be proven trivially by using the definition of the pu
ward of a quantum field. Going over from a quantum fieldf to the corresponding LC-quantum
field f̃5k* f in the context of the covariant four-dimensional Wightman formalism gives, h
ever, no additional insight into the theory. But, as mentioned in the Introduction, we are m
interested in the use of the front form dynamics to describe the dynamics of a quantum fie
we have to study the question whether it is possible to use in a mathematically rigorous w
nonrelativistic Hamiltonian formalism in the LC-case.

V. THE RESTRICTION PROBLEM AND SQUEEZED DISTRIBUTIONS

In this section we restrict ourselves to a real scalar free fieldfm of massm.0. Let f̃m be the
corresponding real scalar free LC-field. Recall thatfm5(Hm ,Um ,fm ,D), f̃m

5(H̃m ,Ũm ,f̃m ,D̃), where Hm5F∨(Hm), H̃m5F∨(H̃m) with Hm5L 2(Gm
1 ,dmm), H̃m

5L 2(G̃m
1 ,dm̃m), and thatf̃m5k* fm is a pushforward offm underk where the unitary operato

T5F∨(k* ):Hm→H̃m is induced by the canonical unitary operatork* :Hm→H̃m , f ° f +k21.

A. Outline of the restriction problem

The standard way to construct the time-zero fieldwm and its canonical conjugatepm goes as
follows ~cf. Ref. 16, p. 215!:

Let gPS35S(R3) be real valued. Since the restriction of (d(x0) ^ g(x))∧M51^ ĝ to Gm
1 (ĝ

is the usual 3-dim. Fourier transform ofg) is in Hm5L 2(Gm
1 ,dmm)—this is equivalent toĝ

PL 2(R3,d3p/2v(p))—it is possible to define

wm~g!ªfm~d~x0! ^ g~x!!5fS~a•resG
m
1~1^ ĝ!!.

Then one extends linearly the definition ofwm to generalgPS3 by

wm~g!ªwm~Reg!1 iwm~ Im g!.

The canonical conjugate momentumpm is defined by

pm~g!5
]

]x0 fm~d~x0! ^ g~x!!5fS~a•resG
m
1~2 ip0ĝ~p!!!

for each real valuedgPS3 and one extends the definition to generalgPS3 again by linearity. Here
fS denotes the Segal quantization overHm . Note thatpm is well-defined becausep0ĝ(p) is in
Hm .

Now, if one tries to define the time-zero LC-fieldw̃m ~and its canonical conjugatep̃m) in an
analogous way by

w̃m~g!5f̃m~d~x1! ^ g~ x̃!!,

one gets into trouble because, for generalg( x̃)PS3 , the function (d(x1) ^ g( x̃))∧L is not in H̃m

5L 2(G̃1,dm̃m). This is easily seen by

i~d~x1! ^ g~ x̃!!∧Li
H̃m

2
5E

p1.0

d3p̃

2p1 ugu~ p̃!u2, ~18!

where we have denoted bygu(p̃) the partialL-Fourier transformFL
x̃→p̃(g) of g( x̃) defined by
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gu~ p̃!ª~FL
x̃→p̃g!~ p̃!ªE

R3
d3x̃g~ x̃! ei (p1x22p'•x'). ~19!

To solve this restriction problem we have to drop the assumption that the restriction
quantum field has to be defined onS(R3). We will see in a few moments that a complete
different function space which is, however, isomorphic toS(R3) is the canonical candidate for
test function space to define the restriction of a LC-quantum field. Consider the following
mutative diagram:

~20!

Recall thatk* , V1* , Ṽ1* , n* are isomorphisms~resp. unitary mappings! and n5V1
21+k21

+Ṽ1 ~cf. ~15!!. We write briefly res(f ) ~resp. res˜( f )) instead of resG
m
1( f ) ~resp. resG̃

m
1( f )).

It is well known that the image ofS~M! under the restriction mapping is dense
L 2(Gm

1 ,dmm). Essential for the definition of the time-zero fieldwm on S35S(R3) is the fact that
res~S~M!! equals (V1* )21(S3)5$res(1(p0) ^ g(p)):g(p)PS3% ~to see this, notice that res(f )
5res(1(p0) ^ f (V1(p))) and that, given g(p)PS3 , f (p)ªe2(p02v(p))2

g(p)PS4 and
f (V1(p))5g(p)).

Now, let us look at the lower row of~20!. Since this diagram commutes, the image ofS~L!

under the restriction mapping is dense inL 2(G̃m
1 ,dm̃), too. Again, we can describe this imag

res̃(S(L)), as the preimage of some subspace ofL 2(R.03R2,d3p̃/2p1) underṼ1 , especially we
have

res̃~S~L!!5~Ṽ1* !21~n* ~S3!!5$res̃~ g̃~ p̃! ^ 1~p2!!:g̃~ p̃!Pn* ~S3!%.

Hence we see that the function space

S p1~R.03R2!ªn* ~S3!5$g+n:gPS3%

takes on the role ofS3 , if we switch from three-dimensionalp-space to three-dimensiona
p̃-space. We endowS p1(R.03R2) with the final topology w.r.t.n* :S3→S p1(R.03R2). Then
n* becomes an isomorphism of~complex! topological vector spaces.

Before we start to define the restriction of the free LC-fieldf̃m to $x150%, we show some
interesting properties ofS p1(R.03R2). To get a first impression of what kind of functions appe
in S p1(R.03R2) and how the mappingn* :S3→S p1(R.03R2) deforms ~squeezes! the
functions of S3 we have drawn in Fig. 3, as an example, the graphs of the functionsf (p)

FIG. 3. Graphs off (p2)5exp(2p2) andn* f (p1)5exp(2
1
2(p

12 (1/2p1))2).
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5exp(2p2)PS1 and (n* f )(p1), wheren(p1)5 (1/&) (p12 1/2p1). In Fig. 3 one can see tha
n* transforms the rapidly decreasing behavior off (p) as p goes to2` to a rapidly decreasing
behavior ofn* f (p1) asp1 goes to zero~from the right!.

B. Squeezed distributions

Let us start to study the function spaceS p1(R.03R2). We wish to do this in any dimension
n, thus first we have to~re!defineS p1(R.03Rn) for any n>0. Also we want to consider the
reflected situation and thus introduceS p1(R,03Rn). Let Mn11 ~resp. Ln11) be
(n11)-dimensional Minkowski space~resp. LC-space! and letk:Mn11→Ln11 be the transfor-
mation to LC-coordinates as introduced in Sec. II. We have introduced in Sec. II the para

zationsV6 :Rn→
;

Gm
6,Rn11 and Ṽ6 :R:03Rn21→

;
G̃m

6,Rn11 of the smooth submanifoldsGm
6

and G̃m
6 . The (positive/negative) squeezing mappingn:0 :R:03Rn21→Rn is defined by

n:0ªV6
21+k21+Ṽ6 .

Note that the previousn equals nown.0 and thatn,0(2p̃)52n.0(p̃) for all p̃PR.03Rn21.
Furthermoren:0 is a diffeomorphism fromR:03Rn21 onto Rn. If we define

nÞ0 :R33Rn21→Rn, p̃5~p1,p'!°S p' ,
1

&
S p12

p'
2 1m2

2p1 D D ,

where (R35R\0), then nÞ0 is a double covering ofRn and the restriction ofnÞ0 to R:0

3Rn21 is n:0 . The inverse mapping ofn:0 is denoted bym:0 , and is explicitly given by

m:0 :Rn→R:03Rn21, p5~p1,...,pn!°S pn6v~p!

&
,p1,...,pn21D ,

wherev(p)5Ap21m2.
Definition: The ~complex! topological vector space

S p1~R:03Rn21!ªn:0* S~Rn!5$ f +n:0 : f PS~Rn!%

is called thepositive/negative squeezed Schwartz space~of positive/negative squeezed rapid
decreasing functions!, where we have endowedS p1(R:03Rn21) with the final topology w.r.t.
n:0* :S(Rn)→S p1(R:03Rn21).

The next proposition deals with fundamental properties ofS p1(R:03Rn21) which are es-
sential for the sequel. Recall~e.g. Ref. 1! that C@X1 ,...,Xn#Xi

denotes the localization of th

polynomial ring C@X1 ,...,Xn# by the multiplicative set$Xi
k :Z{k>0%, i.e., C@X1 ,...,Xn#Xi

5$ S/Xi
k :SPC@X1 ,...,Xn#, k>0%. In the following we considerC@X1 ,...,Xn#Xi

always as a ring
of functions on$XiÞ0%.

Lemma V.1:
~i! Let cPR, c.0, and let kPN, k.1. Then for all t>max(1,3/c)

tk1111<tkAt21c.

~ii ! Assume QPC@p1,p'#p1 and a is a multi-index, letm.0 as above. Then there is a polyno
mial RPR@p# such that

u]a~Q+m.0!~p!u<R~p! for all pPRn.
~iii ! The functionsv+n:0 are (restrictions of functions) inC@p1,p'#p1, where n:0 is the

positive/negative squeezing mapping andv(p)5Ap21m2.

Proof:
~i! Let t>max(1,3/c) and k.1. Then 2tk1111<ct2k. Adding t2k12 to both sides of this
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inequality yields (tk1111)2<t2k(t21c).
~ii ! Clearly ]a(Q+m.0) is a polynomial in 1/(v(p)1pn) , v~p!, 1/v(p), andp. It is enough to

consider only the cases when]a(Q+m.0) equals one of these functions. Thereby, the o
non-trivial case is if it equals 1/(v(p)1pn) ~note that limpn→2` v(p)1pn50). Let c(p8)
ª( i 51

n21(pi)21m2, wherep85(p1,...,pn21)PRn21. Fix anyk.1, kPN. By ~i! we have
~pn!k1111<~pn!kv~p!

for all pPRn such that pn>max(1,3/c(p8)). Since c(p8) is bounded from below,
max(1,3/c(p8)) is bounded from above by someC>1. Thus, for allpPRn such thatpn

>C, we obtain
1

v~p!2pn <~pn!k.

If t is the supremum of (1/(v(p)2pn) on $pPRn:pn<C% then R(p)ª(pn)k1t is the
desired polynomial.

~iii ! Sincem.0+n.0 is the identity onR.03Rn21, we have

p15
1

&
S v~n.0~ p̃!!1

1

&
S p12

p'
2 1m2

2p1 D D
from which the assertion follows. h

In the following we denote byf ∨ the function defined byf ∨(p)ª f (2p).
Proposition V.2:

~i! S p1(R.03Rn21)∨5S p1(R,03Rn21).
~ii ! Assumea is a multi-index, QPC@p1,p'#p1 and fPS p1(R:03Rn21). Then Q]a f

PS p1(R:03Rn21).
~iii ! S p1(R:03Rn21) consists of all fPC`(R:03Rn21) such that

sup
p̃PR:03Rn21

uQ~ p̃!]a f ~ p̃!u,` ~21!

for all multi-indices a and QPC@p1,p'#p1. Furthermore, the topology ofS p1(R:0

3Rn21) is induced by the semi-norms in the left-hand side of~21!.
Proof:
~i! is trivial and ~ii ! follows immediately from~iii !.
~iii ! It is enough to show~iii ! only for S p1(R.03Rn21). We write nªn.0 , mªn21, and

sup8uQ]a f u for the seminorms in~21!. We have defined the topology onS p1(R.03Rn21) as the
final topology w.r.t. the bijectionn* :S(Rn)→S p1(R.03Rn21). Thus the topology is induced b
the family of seminorms

sup
pPRn

uR~p!]a~ f +m!~p!u, a multi-index,R polynomial. ~22!

A smooth functionf is in S p1(R.03Rn21) iff f +m is in S(Rn) which means that supuR]a( f
+m)u,` for all multi-indicesa and polynomialsR. Assumef PC`(R.03Rn21). By the chain
rule R]a( f +m) is a finite sum of terms of the formSm* (]b f ) whereb is a multi-index andS is
a polynomial in 1/v(p) , v~p!, and p. Since 1/v(p) is a bounded function, we can boun
uSm* (]b f )u by someuRm* (]b f )u whereR is a polynomial inv~p! andp. By Lemma V.1~iii !
QªR+n is in C@p1,p'# and thusuSm* (]b f )u is bounded byum* (Q]b f )u with QPC@p1,p'#.
Because supum* (Q]b f )u5sup8uQ]b f u, we have shown that the seminorms in~22! are continuous
w.r.t. the seminorms in~21! and thatf PS p1(R.03Rn21) whenever sup8uQ]a f u,` for all Q
PC@p1,p'#p1 and multi-indicesa.

Conversely, consider sup8uQ]a f u, where QPC@p1,p'#p1 and f PC`(R.03Rn21). Let g
ª f +mPC`(Rn). Then Q]a(n* g) is a finite sum of terms of the formSn* (]bg) with S
PC@p1,p'#p1, b multi-index. Because sup8uSn* (]bg)u5supu(m* S)]bgu and, by Lemma V.1
~ii !, um* Su is bounded by some polynomialR, we obtain supu(m* S)]bgu<supuR]b( f +m)u. Es-
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pecially, sup8uQ]a f u,` for all QPC@p1,p'#p1 and a whenever f +mPS(Rn), i.e., f
PS p1(R.03Rn21). h

To study further the test function spaceS p1(R:03Rn21) we introduce a new space, denote
S p1(Rn).

Definition: By S p1(Rn) we denote the set of allf PC`(Rn) such that

sup
(p1,p')PRn\$p150%

u~p1!kp'
b]a f ~p1,p'!u,` ~23!

for all kPZ and all multi-indicesa andb, endowed with the locally convex topology defined
the seminorms in the left-hand side of~23!. The function spaceS p1(Rn) is called squeezed
Schwartz space~of squeezed rapidly decreasing functions!. The dualS p18 (Rn) is calledspace of
squeezed distributions (or squeezed generalized functions).

Note that the seminorms in the left-hand side of~23! differ only in the range of the exponen
of p1—which now can also be negative—from the seminorms that define the Schwartz
S(Rn).

Theorem V.3:
~i! S p1(Rn),S(Rn), and the topology ofS p1(Rn) coincide with the subspace topology in

duced byS(Rn). Moreover, S p1(Rn) is a closed subspace ofS(Rn).
~ii ! If j ( f ) denotes extension by zero of fPS p1(R:03Rn21) then we have a mapping

j :S p1(R:03Rn21)→S p1(Rn) which induces an isomorphism (of topological vect
spaces) onto their image, denotedS p1:0(Rn).

~iii ! S p1(Rn)5S p1(R,03Rn21) % S p1(R.03Rn21).
~iv! Consider the following filtration ofS(Rn)

S~Rn!.p1S~Rn!.~p1!2S~Rn!.¯.~p1!kS~Rn!.¯ .
ThenS p1(Rn)5ùk>0(p1)kS(Rn), or, if we use categorical language,

S p1~Rn!5 lim←
k>0

~p1!kS~Rn!

(in the category of topological vector spaces).
~v! If QPC@p1,p'#p1, gPS p1(Rn), and a is a multi-index, then the mappings

f°Qf, f°gf, f°]af
are continuous linear mappings fromS p1(Rn) into S p1(Rn).

Proof:
~i! ThatS p1(Rn) is a subspace ofS(Rn) follows immediately from the definition ofS p1(Rn).

To show that the topology ofS p1(Rn) is just the subspace topology induced byS(Rn) we
have to show that the seminorms supu(p1)kp'

b]a f (p1,p')u with k,0 do not strengthen the
topology, i.e., are continuous w.r.t. the seminorms withk>0. This is easily seen by applyin
inductively the mean-value theorem of calculus to get supu(p1)kgu<supu]1

k gu for eachg
PS p1(Rn) andk,0. The last assertion follows from~iii ! becauseS p1(R:03Rn21) as a
homeomorphic image ofS(Rn) is itself a Fréchet space and henceS p1(Rn) is a Fréchet
space, too.

~ii ! Assumef PS p1(R.03Rn21). We have to prove thatj ( f ) is in S p1(Rn). First we have to
show that j ( f ) is a C`-function on Rn. This is the case if we have shown, th
limp1→0 ]a f (p̃)50. However, this follows immediately from sup8u (1/p1) ]a f (p̃)u,`
which holds for each multi-indexa. Since sup8u(p1)kp'

b]a f u5supu(p1)kp'
b]a j ( f )u, we

seej ( f )PS p1(Rn).
Furthermore,j mapsS p1(R.03Rn21) homeomorphically onto its image because the fa
ily of seminorms in~23! is equivalent to the family of semi-norms supp1Þ0uQ]a f u, Q
PC@p1,p'#p1, a multi-index.

~iii ! Each f PS p1(Rn) can uniquely be written asf 5x$p1,0% f 1x$p1.0% f where xp1:0f
PS p1(R:03Rn21). ~By xA we denote the characteristic function of a setA.)

~iv! SinceS(Rn) is closed under multiplication by polynomials, the existence of the filtratio
obvious. If f PS p1(Rn), then (1/(p1)k) f PS p1(Rn),S(Rn) for eachk>0 by ~v! or by
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Proposition V.2~ii !. Conversely, assumef Pùk>0(p1)kS(Rn). It is enough to show tha
supu (1/(p1)k) p'

b]a f u,` for all k.0 and multi-indicesa, b. If l is sufficiently large, then
by using the Leibniz formula we obtain (1/(p1)k) ]a((p1) lg)5( i Pi(p1)]b ig with multi-
indicesb i and polynomialsPi for all gPS(Rn). Notice thatl does not depend ong. Fix
such an l and choosegPS(Rn) such that f 5(p1) lg. Since gPS(Rn) we have
supu (1/(p1)k) p'

b]a((p1) lg)u,`.
~v! Follows easily from the closed graph theorem.

Remark V.4:From now on we often identifyS p1(R:03Rn21) with S p1:0(Rn), i.e., we
considern:0* ( f ) ( f PS(Rn)) as functions onRn. Hence we have isomorphisms of Fre´chet spaces

n:0* :S~Rn!→
;

S p1:0~Rn! ~24!

with inverse mappings (n:0* )215m:0* .
Definition: The elements of the dual spaceSp1:0

8 (Rn) are calledpositive/negative squeeze
distributions.

We identify Sp1:0
8 (Rn) with the subspaces$u:uup1"050% of S p18 (Rn).

Each element ofgPS p1(Rn) can be considered in a canonical way as a~regular! squeezed
distribution f °*g f , also denotedg. Hence we obtain canonical inclusion mappin
S p1(Rn)�S p18 (Rn) andS p1:0(Rn)�Sp1:0

8 (Rn).
Theorem V.5:

~i! S p18 (Rn)5Sp1,0
8 (Rn) % Sp1.0

8 (Rn).
~ii ! For each uPSp1:0

8 (Rn) there is a sequence(ui) i PN , uiPS p1:0(Rn), converging to u in
Sp1:0
8 (Rn). The same holds, if we replaceS p1:0(Rn) (resp. Sp1:0

8 (Rn)) by S p1(Rn)
(resp.S p18 (Rn)).

~iii ! The inclusion mappingsS p1:0(Rn) �
i:0

S p1(Rn)�
i

S(Rn) induce canonical linear continu-

ous mappingsS8(Rn)→
i8 S p18 (Rn)→

i:08

Sp1:0
8 (Rn).

~iv! The isomorphismsn:0* :S(Rn)→S p1:0(Rn) extend (uniquely) to linear, sequentially co
tinuous, bijective mappingsn:0* :S8(Rn)→Sp1:0

8 (Rn) by the formula (n:0* u)( f )
ªu(udetDn:0u21(f+n:0

21)).
~v! The inverse mapping ofn:0* :S8(Rn)→Sp1:0

8 (Rn) is the (unique) linear, sequentially con
tinuous extension ofm:0* :S p1:0(Rn)→S(Rn), also denotedm:0* , and is explicitly given
by (m:0* u)( f )5u(udetDm:0u21(f + m:0

21)).
Proof:
~i! Follows immediately from Theorem V.3.
~ii ! By ~iv! and ~v! there is a commutative diagram

where the vertical arrows are inclusion mappings and the horizontal arrows are l
sequentially continuous, bijective mappings whose inverses are also sequentially co
ous. Since to anyuPS8(Rn) there is a sequence inS(Rn) converging tou,11 the first part of
~ii ! follows from the above commutative diagram and the second part is then an
consequence of~i! and Theorem V.3.

~iii ! Is trivial.
                                                                                                                



om

t

d

ducts

the

al

-

3134 J. Math. Phys., Vol. 45, No. 8, August 2004 P. Ullrich

                    
~iv! Let nªn.0 andmªn21. Then udetDnu215(pn/v(p)) 11 which can be written asQ +m
with some QPC@p1,p'#p1 by Lemma V.1~iii !. The mapping S p1.0(Rn)→S(Rn),
f °udetDnu21(f + n21)5m* (Qf ) is well-defined and continuous by Theorem V.3~v! and
remark V.4, and obviously linear. Hence the extension ofn* to S8(Rn) is well-defined. The
linearity and sequential continuity are obvious.

~v! Let n, m as in~iii !. By computingudetDmu21 one sees thatQªudetDmu21PC@p1,p'#p1. As
in ~iii !, it is enough to show that the mappingS(Rn)→S p1:0(Rn), f °udetDmu21(f + n)
5Qn* (f ) is well-defined, linear and continuous. But again this follows immediately fr
Theorem V.3~v! and remark V.4. h

We finish this section with some density results which we will use in the sequel. ByD(U) we
denote the function space of all smooth functions onRn with support in an open subsetU,Rn,
endowed with the usual topology,17,11 i.e., D(U)5 lim→K DK , whereK runs through all compac
subsets ofU, andDK is the space of all smooth functions with support inK endowed with the
locally convex topology induced by the seminorms supuau< l supxPKu]a f (x)u.

Proposition V.6:
~i! S p1:0(Rn) is a dense subspace ofL 2(Rn,Q(6p1)dnp̃/2up1u), and S p1(Rn) is dense in

L 2(Rn,dnp̃/2up1u).
~ii ! D(R:03Rn21) is dense inS p1:0(Rn), andD(R33Rn21) is dense inS p1(Rn). Moreover,

the corresponding inclusion mappings are continuous.
~iii ! The linear subspace generated by the products f(p1)g(p') where f(p1)PS p1:0(R) and

g(p')PS(Rn21) is dense inS p1:0(Rn).
~iv! The same holds in (iii) if we replaceS p1:0(Rn) by S p1(Rn).

Proof:
~i! The mappingn:0* induces an isometric isomorphism fromL 2(Rn,dnp/2v(p)) onto

L 2(R:03Rn21,dnp̃/2up1u) which maps the dense subspaceS(Rn) of L 2(Rn,dnp/2v(p))
onto S p1(R:03Rn21). Thus S p1(R:03Rn21) is a dense subspace ofL 2(R:0

3Rn21,dnp̃/2up1u). Now apply the isometryj , i.e., trivial extension by zero. The secon
assertion follows then from Theorem V.3.

~ii ! Because of Theorem V.3, the second assertion follows from the first. To show thatD(R:0

3Rn21) is dense inS p1:0(Rn) recall thatD(Rn) is dense inS(Rn).17,11 Hence, the image
n* D(Rn)5D(R:03Rn21) of D(Rn) under the linear homeomorphismn* :S(Rn)
→̃S p1:0(Rn), (nªn:0 , see remark V.4! is a dense subspace ofS p1:0(Rn). The conti-
nuity of the inclusion mappings is obvious sinceS p1:0(Rn) andS p1(Rn) carry the sub-
space topology induced byS(Rn).

~iii ! It is well known, e.g. Ref. 11, that the linear subspace generated by the pro
f (p1)g(p') with f (p1)PD(R:0) and g(p')PD(Rn21) is dense inD(R:03Rn21).
Hence, by~ii !, it is also dense inS p1:0(Rn).

~iv! This follows from ~iii ! by Theorem V.3. h

VI. TIME-ZERO LC-FIELDS

A. Construction of the fields

After our preliminary work on squeezed distributions, it is now straightforward to define
time-zero LC-fields, i.e., the restriction of the real scalar massive LC-fieldf̃m to $x150% and the
corresponding canonical conjugate momentum.

By the commutative diagram~20! we have seen that the function spacen* (S3) (n5n.0) is
the adequate substitute for the spaceS35S(R3) if one wants to define the restriction of a re
scalar free LC-fieldf̃m to the hyperplane$x150%. Both spaces,S3 andn* S3 , appear completely
symmetrically: S3 is determined by resG

m
1(S4)5(V1* )21(S3) and n* S3 by resG̃

m
1(S4)

5(Ṽ1* )21(n* S3) where V1 :R3→Gm
1 and Ṽ1 :R.03R2→G̃m

1 are the canonical parametriza
tions.
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In the Minkowski case the time-zero fieldwm is defined by the formulawm(g)ªfm(d(x0)
^ g(x))5fS(a•resG

m
1(1(p0) ^ ĝ(p))) if gPS(R3) is real-valued, whereĝ denotes the usual Fou

rier transform ofg. We would like to define the time-zero LC-fieldw̃m in the same way:w̃m(g)
ªf̃m(d(x1) ^ g( x̃))5f̃S(a•resG̃

m
1(gu(p̃) ^ 1(p2))) if g is real valued, wheregu denotes the

partial L-Fourier transform ofg. In order that this definition makes sense, we first have
determine allg such that resG̃

m
1(gu(p̃) ^ 1(p2))PresG̃

m
1(S4) which is equivalent to resp1.0(gu)

Pn* S3 since resG̃
m
1(gu(p̃) ^ 1(p2))5(Ṽ1* )21(resp1.0(gu)) and resG̃

m
1(S4)5(Ṽ1* )21(n* S3).

Unlike the classical Fourier transformation, which is a linear homeomorphism fromS3 onto S3 ,
the partialL-Fourier transformation does not leave the spaceS p1(R3) invariant.

Proposition VI.1:
~i! The partialL-Fourier transformationFL

x̃→p̃ defined by

~FL
x̃→p̃g!~ p̃!5gu~ p̃!5E

Rn
dnx̃ g~ x̃!ei (p1x22p'•x') ~gPS~Rn!!

is a linear homeomorphism fromS(Rn) onto S(Rn) which maps the subspace

S]x2~Rn!ª ù
m>0

]x2
m S~Rn!5$g:;m>0 'hPS~Rn! g5]x2

m h%

onto the subspaceS p1(Rn). We also writeS]2
(Rn) instead ofS]x2(Rn).

~ii ! Let
S]2 ,r~R

n!ª$gPS]2
~Rn!:g real valued%.

ThenFL
x̃→p̃ mapsS]2 ,r(R

n) onto $hPS p1(Rn):h̄5h∨%.
Proof:

~i! The partialL-Fourier transformation differs from the classical Fourier transformation o
by a permutation and some sign changes of the coordinates, hence the first assertion
immediately from the classical result.17 To see the second assertion note thatS p1(R3)
5ùm>0(p1)mS(R3) by Theorem V.3, and thatFL

x̃→p̃ maps]x2
m S(Rn) onto (p1)mS(Rn) for

eachm>0.
~ii ! Let gPS]2

(Rn), thengu5ḡu∨. Hencegu5gu∨ iff g5ḡ. h

We endowS]2
(Rn) with the subspace topology inherit fromS(Rn). Hence we have a linea

homeomorphism

FL
x̃→p̃ :S]2

~Rn!→
;

S p1~Rn!, g°gu.

Furthermore,

res̃~S~R4!!5$res̃~gu~ p̃! ^ 1~p2!!:gPS]2
~R3!% ~res̃5resG̃

m
1!, ~25!

which guarantees, among other things, that the operatorsw̃m(g), p̃m(g) will be well-defined for
eachgPS]2

(R3). Thus,S]2
(R3) is the appropriate~smearing! test function space to define th

time-zero LC-fields.
Definition: The time-zero LC-field~or the restriction off̃m to $x150%) g°w̃m(g) and its

canonical conjugate momentumg°p̃m(g) are defined by

w̃m~g!ªf̃m~0,g!ªf̃m~d~x1! ^ Reg~ x̃!!1 i f̃m~d~x1! ^ Im g~ x̃!!,

p̃m~g!ª~]x2f̃m!~0,g!5~]x2w̃m!~g!5w̃m~2]x2g!,

wheregPS]2
(R3).

Remark VI.2:Note that]x2f̃m is a spatial derivative in contrast to the Minkowski case wh
the canonical momentum is defined by a time derivative. The difference results from the fa
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the LagrangianL̃5(]m̃f̃m)(]m̃f̃m)2m2f̃ of the LC-Klein–Gordon field depends only linearly o
]x1f̃m , especiallydL̃/@d(]1f̃m)# 52]2f̃m , where]65]x6. Recall that in LC-physics the time
variable isx1.

The following theorem summarizes fundamental properties of the fieldw̃m which follow
easily from corresponding properties of the Segal quantizationf̃S , cf. Ref. 16, Theorem X.41.

Theorem VI.3:
~i! For each real-valued gPS]2

(R3), the operatorw̃m(g) is essentially self-adjoint on F˜
0

(F̃05dense subspace of finite vectors ofF∨(H̃m), H̃m5L 2(G̃m
1 ,dm̃m)).

~ii ! The vacuum stateu0̃& is a cyclic vector for the family$w̃m(g):gPS]2
(R3), g real-valued%.

~iii ! If gn→g in S]2
(R3), then

w̃m~gn!c→w̃m~g!c, for all cPF̃0

and

eiw̃m(gn)c→eiw̃m(g)c, for all cPF∨~H̃m!.

~iv! If g,hPS]2
(R3) are real-valued andcPF̃0 , then

w̃m~g!w̃m~h!c2w̃m~h!w̃m~g!c5
1

~2p!3 ~^g,h&S]2
(R3)2^h,g&S]2

(R3)!c

and

ei w̃m(g)ei w̃m(h)5e(2p)23(^g,h&S]2
(R3)2^h,g&S]2

(R3))ei w̃m(h)ei w̃m(g),

where^g,h&S]2
(R3)ª*d3p̃(Q(p1)/2p1)guhu (g,hPS]2

(R3)) and the bar‘‘—’’ means com-

plex conjugation.
Proof: ~i!–~iv! follow immediately from Ref. 16, Theorem X.41. Notice that, ifgPS]2

(R3) is

real-valued thenw̃m(g)5f̃S(a•res̃(gu(p̃) ^ 1(p2))) and that, by~25!, $res̃(gu(p̃) ^ 1(p2)):g
PS]2

(R3)% is a dense subspace ofH̃m5L 2(G̃m
1 ,dm̃m). h

B. Commutator relation

In order to see that we have really defined the proper time-zero LC-field, we comput
commutator of this field. At this it turns out that our result coincides with the commutator rel
determined by a completely different method, namely quantization of constrained systems6

Lemma VI.4: The linear subspace generated by the products g(x')h(x2), where g(x')
PS(Rn21) and h(x2)PS]2

(R) is dense inS]2
(Rn).

Proof: Recall that the partialL-Fourier transformationFL
x̃→p̃ is a linear homeomorphism from

S]2
(Rn) onto S p1(Rn). Moreover,FL

x̃→p̃ maps the set of productsg(x')h(x2) where g(x')
PS(Rn21), h(x2)PS]x2(R) onto the set of productsh(p1)g(p') where h(p1)PS p1(R),
g(p')PS(Rn21). The assertion follows now from Proposition V.6. h

Proposition VI.5: The time-zero LC-fieldw̃m fulfills the following commutator relation on th

dense subspace F˜
0 :

@w̃m~g!,w̃m~h!#5
1

4i
~d~x'2y'! ^ e~x22y2!,g~ x̃! ^ h~ ỹ!!,

with real-valued g,hPS]2
(R3).

Proof: By Theorem VI.3~iv! we have to show that
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1

~2p!3 E d3p̃
Q~p1!

2p1 ~guhu2guhu!5
1

4i
~d~x'2y'! ^ e~x22y2!,g^ h!

for all real-valuedg,hPS]2
(R3). We know thatd(x'2y') ^ e(x22y2)5s* (d(z') ^ e(z2)) is

a tempered distribution onR33R3 which is defined as the pullback ofd(z') ^ e(z2) by the
mappings:R33R3→R3, (x̃,ỹ)° z̃ª x̃2 ỹ. As a first step we prove

1

4i
~d~z'! ^ e~z2!, f ~ z̃!!5

1

~2p!3 E d3p̃
Q~p1!

2p1 ~ f u~2p1,p'!2 f u~p1,p'!!

5
1

~2p!3 E d3p̃
Q~p1!

2p1 ~ f u~2p̃!2 f u~ p̃!! ~26!

for all f ( z̃)PS]2
(R3). By Lemma VI.4 it is enough to show~26! if f ( z̃) is of the form f ( z̃)

5 f 2(z2) f'(z') with f 2(z2)PS]2
(R) and f'(z')PS(R2). Then

f u~2p1,p'!2 f u~p1,p'!5 f'̂~p'!~ f 2̂~p1!2 f 2̂~2p1!!,

where the ‘‘∧’’ means classical Fourier transformation. Hence, the right-hand side of~26! equals,
except for the factor 1/2(2p)3, the product

S E d2p' f'̂~p'! D •S E dp1
Q~p1!

p1 ~ f 2̂~p1!2 f 2̂~2p1!! D . ~27!

Obviously, the first factor of~27! equals (2p)2(d(x'), f'(x')). To determine the second facto
note that for allh(p1)PS p1(R)

S PV
1

p1 ,h~p1! D5E dp1
Q~p1!

p1 ~h~p1!2h~2p1!!

since (1/p1) h(p1)PL 1(R,dp1). Hence, the second factor of~27! equals (PV(1/p1) , f 2̂(p1)).
Finally, (PV(1/p1))∧5(p/ i ) e(x2) which follows, for example, by the
Sokhotsky–Plemelj-formulas,3 p. 55. Thus we have shown~26!. Using the explicit formula of the
pullback

~d~x'2y'! ^ e~x22y2!,g~ x̃! ^ h~ ỹ!!5~d~z'! ^ e~z2!,~g* h∨!~ z̃!!,

where g* h∨ denotes the convolution ofg and h∨ ~recall h∨( ỹ)5h(2 ỹ)), we yield the right
formula, if we additionally take into account that (g* h∨)u5guh∨u and h∨u5hu5(hu)∨ for
real-valuedg,h. h

C. Connection between time-zero field and time-zero LC-field

In this short subsection we will prove a transformation law between the time-zero fieldwm and
the time-zero LC-fieldw̃m . By this transformation lawwm is completely determined byw̃m . This
shows that the time-zero LC-field, defined on the test function spaceS]2

(R3), carries—besides
the mass—as much information as the time-zero field, defined onS(R3), althoughS]2

(R3) is a
proper subspace ofS(R3). Furthermore, it is possible to recover the covariant field from
time-zero LC-field.

Let S]2 ,r(R
n) denote the real topological~closed! subspace of all real-valuedgPS]2

(Rn).
We need the following auxiliary lemma.

Lemma VI.6: There exists anR-linear homeomorphism H:S(Rn)→̃S]2 ,r(R
n) such that the

following diagram commutes:
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Proof: Since the classical Fourier transformation ‘‘∧’’ and the mappingn.0* are linear homeo-
morphism, we have to show that the composition resp1.0 + u is bijective. Then, by the open
mapping theorem, the inverse is continuous, too. By Proposition VI.1~ii ! FL

x̃→p̃ mapsS]2 ,r(R
n)

onto $gPS p1(Rn):ḡ5g∨%. However, resp1.0 is one-to-one on this subspace. An inverse m
ping is explicitly given byg° j (g)∨1 j (g) (gPn.0* S(Rn)), where j denotes extension by zero

h

Recall thatk* :Hm→H̃m is a unitary operator between the relativistic one-particle spa
Hm5L 2(Gm

1 ,dmm), H̃m5L 2(G̃m
1 ,dm̃m), and induces a unitary operatorF∨(k* ):F∨(Hm)

→F∨(H̃m) between the corresponding bosonic Fock spaces. The following theorem gives
surprising transformation law between the time-zero field and the time-zero LC-field.

Theorem VI.7: For each real-valued gPS(R3), the following transformation laws hold:

wm~g!5F∨~k* !21w̃m~Hg!F∨~k* !, pm~g!5F∨~k* !21w̃m~HF 21~v~p!ĝ!!F∨~k* !,

where H:S(R3)→̃S]2 ,r(R
3) is theR-linear homeomorphism from Lemma VI.6 andF 21 denotes

the classical inverse Fourier transformation.
Proof: Since g is real-valued,wm(g)5fS(a•res(1̂ ĝ)). On the other hand,w̃m(Hg)

5f̃S(a•res̃((Hg)u
^ 1)) sinceHg is real-valued, too. By inspecting the construction of the Se

quantization, we obtain the following transformation law betweenfS and f̃S :

fS~ f !5F∨~k* !21f̃S~k* f !F∨~k* ! ~ f PHm!.

Hence, it is enough to show thatk* res(1̂ ĝ)5res̃((Hg)u
^ 1). But this follows easily from the

definition of H, i.e., fromn* ĝ5(Hg)u, if one takes into account that res(1^ ĝ)5(V1* )21(ĝ),
res̃((Hg)u

^ 1)5(Ṽ1* )21((Hg)uup1.0) and k* + (V1* )215(Ṽ1* )21 + n* . Analogously, one
proves the transformation law for the canonical conjugate momentumpm(g). h

Remark VI.8:Let Tª$Hg:gPS(R3), real-valued%. ThenT is a properR-linear subspace o
S]2 ,r(R

3) by Lemma VI.6. Hence,T1 iT is a properC-linear subspace ofS]2
(R3). By Theorem

VI.7 $w̃m(h):hPT1 iT% is a commuting family, i.e., the commutator@w̃m(g),w̃m(h)# vanishes on
F̃0 for all g,hPT1 iT. We do not have, however, any physical explanation for this, yet.

Remark VI.9:Since in Theorem VI.7 even the canonical conjugate momentumpm can be
recovered from the time-zero LC-fieldw̃m we see again that the canonical conjugate momentum
w̃m is superfluous in LC-physics.

D. Unitary equivalence

In Ref. 13, Leutwyleret al.discovered the remarkable fact that the restrictions of free field
different masses to the plane$x15t% are unitary equivalent. We prove in this subsection an e
stronger statement, namely that under a specified unitary transformation the field opera
different masses become identical.

In Sec. II we have introduced the smooth mappingṼ1 :R.03R2→G̃m
1 . To emphasize the

mass-dependence we writeṼ1,m in the following. This mapping induces a unitary mappi
Ṽ1,m* :H̃m→L 2(R.03R2,d3p̃/2p1), where H̃m5L 2(G̃m

1 ,dm̃m) is the relativistic one-particle
LC-space introduced in Sec. IV. We callL 2(R.03R2,d3p̃/2p1)5..H̃nr the nonrelativistic one-
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particle LC-space. Notice thatH̃nr does not depend on the massm which is a special property o
LC-physics and which has the following proposition as a consequence. Recall that furthe
Ṽ1,m* induces a unitary mappingF∨(Ṽ1,m* ):H̃m→H̃nr between the corresponding~bosonic! Fock-
spacesH̃m5F∨(H̃m) andH̃nr5F∨(H̃nr).

Proposition VI.10: Letw̃m1
and w̃m2

be time-zero LC-fields with m1 ,m2.0 and let Ui

5F∨(Ṽ1,mi
* ):H̃mi

→H̃nr ( i 51,2) be the above unitary mappings from the relativistic to the n

relativistic Fock space. Then

U1w̃m1
~h!U1

215U2w̃m2
~h!U2

21

for all hPS]2
(R3).

Proof: It is enough to prove the assertion for all real-valuedhPS]2
(R3). Let m.0 and letf̃S

be the Segal quantization overH̃m . Then w̃m(h)5f̃S(a•res̃(hu
^ 1)). By definition f̃S( f )

5 (1/&) (ã* ( f )1ã( f )) where f PH̃m . Let UªF∨(Ṽ1,m* ):H̃m→H̃nr . Because res˜(g^ 1)
5(Ṽ1,m* )21(gup1.0), we obtain

Uã* ~res̃~g^ 1!!U21~c1∨¯∨cn!5An11 ~gup1.0∨c1∨¯∨cn!,

Uã~res̃g^ 1!)U21~c1∨¯∨cn!5
1

An
(
j 51

n

^g,c j&H̃nr
~c1∨¯∨c ĵ∨¯∨cn!

for all c1∨¯∨cnPH̃nr
∨n and gPS p1(R3). Since^g,c j&H̃nr

5*p1.0 (d3p̃/2p1)ḡc j does not de-
pend on the massm.0, the same holds forUw̃m(h)U21, wherehPS]2 ,r(R

3). h

Remark VI.11:It is well known~cf., e.g., Ref. 16! that unitary equivalence fails, if we conside
the restrictions of free fields of different massesm1Þm2 to the plane$x050%, i.e., time-zero fields
wm1

, wm2
. The difference to the LC-case lies in the fact that the unitary mappingV1,m* induced by

V1,m :R3→̃Gm
1 maps the relativistic one-particle spaceL 2(Gm

1 ,dmm) onto the mass-dependen
spaceL 2(R3,d3p/2vm(p)); note thatvm(p)5Ap21m2. It is indeed possible to obtain a mas
independent Hilbert space by the unitary mappingL 2(R3,d3p/2vm(p))→L 2(R3,d3p),
g(p)° g(p)/Avm(p), however, this does not solve the problem. IfUm

5F∨((1/Avm) V1,m* ):F∨(L 2(G̃m
1 ,dmm))→F∨(L 2(R3,d3p)) then only

Um1
wm1

~Fm1
g!Um1

215Um2
wm2

~Fm2
g!Um2

21

holds for everygPS(R3), whereFm :S(R3)→̃S(R3) is the linear homeomorphism defined b
(Fmg)∧5(1/Avm)ĝ. Notice thatg°Avmg is a linear homeomorphism fromS(R3) ontoS(R3).
Hence, the fieldswm1

andwm2
are ‘‘unitary equivalent modulo a linear homeomorphism’’ fromS3

onto S3 which we callweakly unitary equivalence. So in both, the LC-case and the Minkowsk
case, we have weakly unitary equivalence, whereas only in the LC-case weakly unitary e
lence equals unitary equivalence.

E. Completeness

Irreducibility of the time-zero LC-field was already obtained by Leutwyleret al. in Ref. 13.
Since our function spaceS]2

(R3) is even a proper subspace of the function space in Ref. 13
have to reprove the irreducibility statement.

Proposition VI.12: The family of operators$ei w̃m(h):hPS]2 ,r(R
3)% is irreducible.

Proof: Let f̃S be the Segal quantization overH̃m5L 2(G̃m
1 ,dm̃m). By Ref. 16, Lemma 1, p.

232, the family $ei f̃S( f ): f PH̃m% is irreducible. For each real-valuedhPS]2
(R3), we have
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w̃m(h)5f̃S(a•res̃(hu
^ 1)). By ~25!, $res̃(gu

^ 1):gPS]2
(R3)% is dense inH̃m . Now, for each

gPS]2
(R3), there exists, by Lemma VI.6, a real-valuedhPS]2

(R3) such that huup1.0

5guup1.0 . Hence$res̃(hu
^ 1):hPS]2 ,r(R

3)% is dense inH̃m , too. h

VII. ANNIHILATION AND CREATION OPERATORS, BILINEAR FORMS

In this final section we produce a closer connection to the standard terminology of
quantum field theory. Especially, we want to give expressions like~7! an exact meaning in the
operator context. This is well known in Minkowski-case, e.g., Ref. 16, and we will use the
approach in the LC-case. First of all we have to transform our fields to fields acting o
nonrelativistic LC-Fock spaceH̃nr5F∨(H̃nr), whereH̃nr5L 2(R.03R2,d3p̃/2p1).

Let UªF∨(Ṽ1,m* ):H̃m→H̃nr be the canonical, unitary mapping from the relativistic LC-Fo
spaceH̃mªF∨(L 2(G̃m

1 ,dm̃m)) to the nonrelativistic LC-Fock spaceH̃nr . We transform the fields
f̃m and w̃m by the formulas

f̃mªUf̃mU21, w̃mªUw̃mU21.

Because of Proposition VI.10,w̃m does not depend on the massm.0. Hence, we cancel the inde
m in the notation and write in the followingw̃ instead ofw̃m . We also transform the annihilatio
and creation operators by

ã~g!ªUã~res̃~g~ p̃! ^ 1~p2!!!U21, ã1~g!ªUã1~res̃~g~ p̃! ^ 1~p2!!!U21

for everyg(p̃)PS p1(R3). The explicit action onH̃nr
∨n is given by

~ ã1~g!c!~ p̃1 ,...,p̃n11!5
1

An11
(
j 51

n11

g~ p̃j !c~ p̃1 ,...,p̃ ĵ ,...,p̃n11!,

~ ã~g!c!~ p̃1 ,...,p̃n21!5AnE
p1.0

d3p̃

2p1 ḡ~ p̃!c~ p̃,p̃1 ,...,p̃n21!,

wherec(p̃1 ,...,p̃n)PH̃nr
∨n andgPS p1(R3). Notice thatã1(g) is the adjoint ofã(g). The fields

f̃m and w̃ can be written in terms ofã1 and ã as

f̃m~ f !5
a

&
~ ã1~Ṽ1* ~ f ∧L!!1ã~Ṽ1* ~ f ∧L!!! ~ f PS~R4!, real-valued!,

w̃~g!5
a

&
~ ã1~gu!1ã~gu!! ~gPS]2

~R3!, real-valued!.

Notice that, for eachf PS(R4), ~the trivial extension by zero of! Ṽ1* ( f ) is in S p1.0(R3).
Recall that we often do not distinguish between functions onR.03Rn21 and there trivial

extensions by zero toRn. In according this, recall thatn.0* Sn5S p1.0(Rn) is dense inL 2(R.0

3Rn21,dnp̃/2p1)5L 2(Rn,(Q(p1)/2p1) dnp̃) by Proposition V.6. As in the relativistic case, w
defineF̃0 as the dense subspace of all finite vectors ofH̃nr5F∨(H̃nr). Let

D̃0ª$c5~cn!n>0PF̃0 :cnPS p1.0~R3n!%,

which is a dense subspace ofH̃nr . For eachp̃PR3, we define an operatorã(p̃):D̃0→D̃0 by

~ ã~ p̃!c!n~ p̃1 ,...,p̃n!ªAn11 cn11~ p̃,p̃1 ,...,p̃n! ~n>0!, ~28!
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wherec5(cn)n>0PD̃0 . Notice thatã(p̃)50 wheneverp1<0. As in the Minkowski-case, the
adjoint of ã(p̃) is not densely defined, however, the adjointã1(p̃) exists as bilinear form onD̃0

3D̃0 , and is defined by

^x,ã1~ p̃!c&ª^ã~ p̃!x,c& ~x,cPD̃0!. ~29!

Again, ã1(p̃)50 wheneverp1<0. Notice that the brackets on the right-hand side of~29! denote
the scalar product of the Fock spaceH̃nr , whereas those on the left-hand side have to be seen
symbolically. One can easily check that

ã~g!5E
p1.0

d3p̃

2p1 ã~ p̃!ḡ~ p̃! and ã1~g!5E
p1.0

d3p̃

2p1 ã1~ p̃!g~ p̃!

for everygPS p1(R3) in the sense of integration24 of bilinear forms. By construction, for everyx,
cPH̃nr , the functions

R3
¹C, p̃°^x,ã~ p̃!c&, p̃°^x,ã1~ p̃!c&

are in S p1.0(R3). Hence, it is possible to define bilinear formsf̃m( x̃) and w̃( x̃) ( x̃PR4, x̃
PR3) on D̃03D̃0 in the following way:

f̃m~ x̃!ª
1

~2p!3/2E
p1.0

d3p̃

2p1 ~ ã1~ p̃! ei ^Ṽ1(p̃),x̃&L1ã~ p̃! e2 i ^Ṽ1(p̃),x̃&L!,

w̃~ x̃!ª
1

~2p!3/2E
p1.0

d3p̃

2p1 ~ ã1~ p̃! ei (p1x22p'•x')1ã~ p̃! e2 i (p1x22p'•x')!.

Again one easily checks that in the sense of integration of bilinear forms

f̃m~ f !5E d4x̃ f̃m~ x̃! f ~ x̃!, w̃~h!5E d3x̃ w̃~ x̃!h~ x̃!

for every f PS(R4), hPS]2
(R3).

By the same approach, however, withUªF∨(V1* ):Hm→Hnr instead ofF∨(Ṽ1* ), where
Hnr5F∨(L 2(R3,d3p/2v(p))), one gets analogous formulas for the transformed free fieldfm

5UfmU21 and the transformed time-zero fieldswm5UwmU21, pm5UpmU21:

fm~x!ª
1

~2p!3/2E
R3

d3p

2v~p!
~a1~p! ei ^V1(p),x&M1a~p! e2 i ^V1(p),x&M!,

wm~x!ª
1

~2p!3/2E
R3

d3p

2v~p!
~a1~p! e2 ip"x1a~p! eip"x!,

pm~x!ª
i

~2p!3/2E
R3

d3p~a1~p! e2 ip•x2a~p! eip"x!.

There,a~p! anda1(p) are defined onD0ª$c5(cn)n>0PF0 :cnPS(R3n)% as in ~28! and ~29!.
The interrelation betweena~p!, a1(p) and ã(p̃), ã1(p̃) is given as follows:

Proposition VII.1: Let VªF∨(n.0* ):Hnr→H̃nr be the unitary mapping induced byn.0 . Then,
in the sense of bilinear forms,

ã~ p̃!5Va~n.0~ p̃!!V21, ã1~ p̃!5Va1~n.0~ p̃!!V21
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for everyp̃PR3, p1.0.
Proof: This follows immediately from the fact thatV5F∨(n.0* ) is a unitary mapping and tha

a~p! ~resp.a1(p)) andã(p̃) ~resp.ã1(p̃)) are both defined by the same kind of formula~28! ~resp.
~29!!. h

Remark VII.2:The reader can easily verify thatw̃( x̃)5f̃m(0,x̃), i.e.,w̃ is the restriction off̃m

to $x150%. Since, for anyx, cPD̃0 , the functionsp̃°^x,ã(p̃)& and p̃°^x,ã1(p̃)& are in
S p1(R3), the functionx̃°^x,w̃( x̃)c& is in S]2

(R3) by the above Fock-space expansion ofw̃( x̃).
Hence, it is possible to expressã(p̃) and ã1(p̃) in terms of w̃( x̃) by applying the partial LC-
Fourier transformation which can be seen as follows: Define a bilinear formb̃(p̃) on D̃03D̃0 by

b̃~ p̃!ªH ã~ p̃!, if p1.0

ã1~2p̃!, if p1,0.

Then, the above Fock-space expansion ofw̃( x̃) can be rewritten as

w̃~ x̃!5
1

~2p!3/2E
R3

d3p̃

2up1u
b̃~ p̃! e2 i (p1x22p'•x').

Applying the partial LC-Fourier transformation, we obtain

b̃~ p̃!5
2

~2p!3/2E
R3

d3x̃ up1uw̃~ x̃! ei (p1x22p'•x'),

and hence

ã~ p̃!5
2

~2p!3/2E
R3

d3x̃ up1uw̃~ x̃! ei (p1x22p'•x'),

ã1~ p̃!5
2

~2p!3/2E
R3

d3x̃ up1uw̃~ x̃! e2 i (p1x22p'•x').

This shows thatf̃m(x1,x̃) is uniquely determined by the initial dataw̃( x̃)5f̃m(0,x̃) on the
hypersurface$x150%. Since, moreover,fm( x̃), i.e., x̃°^x,fm( x̃)c&, is a solution of the LC-
Klein–Gordon equation, we establish thatf̃m( x̃) is the unique solution of the Cauchy problem
the LC-Klein–Gordon equation (h̃1m2)ũ50 with initial dataũux150 given on$x150%. Since
the surface$x150% is characteristic, uniqueness of the solution cannot be guaranteed any
generally.12 However, ambiguity is not necessary. It is even possible to show uniqueness~and
existence! of the solutions in a very general situation.21

Notice that in the Minkowski case, the Cauchy problem of the Klein–Gordon equation
initial data given on$x05const% is always uniquely solvable~cf., e.g., Ref. 3!. One needs
wm(x)5fm(0,x) and the first time-derivativepm(x)5]0fm(0,x) as initial data on$x050% to
determinefm(x) uniquely. This can be seen by the fact, that one also needswm(x) andpm(x) to
expressa(p) anda1(p) in terms of initial data on$x050%, e.g.,

a~p!5
1

~2p!3/2E
R3

d3xS v~p!wm~x!1
i

2
pm~x! D e2 ip•x.

The difference between Minkowski- and LC-case is not surprising sinceh1m2 contains]0 with
exponent two, whereas inh̃1m2 the derivative]1 appears only linearly. In momentum space th
situation is reflected by the fact, thatGm→R3, (p0,p)°p is a ~smooth! double covering, wherea
G̃m→R3\$p150%, (p̃,p2)°p̃ is a diffeomorphism.
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As a final topic we consider products ofã1( k̃) and ã(p̃) ( k̃,p̃PR3) and discuss the questio
when these products are induced by an operator. This is essential in constructing interactin
obeying the LC-Wightman axioms. Givenk̃1 ,...,k̃rPR3 andp̃1 ,...,p̃sPR3, r ,s>0 we define the
bilinear form ã1( k̃1)¯ã1( k̃r)ã(p̃1)¯ã(p̃s) on D̃03D̃0 by

^x,ã1~ k̃1!¯ã1~ k̃r !ã~ p̃1!¯ã~ p̃s!c&5^ã~ k̃r !¯ã~ k̃1!x,ã~ p̃1!¯ã~ p̃s!c&

for all x,cPD̃0 .
Remark VII.3:In Minkowski case,a1(k1)¯a1(kr)a(p1)¯a(ps) is defined by the same kind

of formula asã1( k̃1)¯ã1( k̃r)ã(p̃1)¯ã(p̃s).
16 Hence, it is obvious that the transformation law

Proposition VII.1 extends canonically to

ã1~ k̃1!¯ã1~ k̃r !ã~ p̃1!¯ã~ p̃s!5Ua1~n.0~ k̃1!!¯a1~n.0~ k̃r !!a~n.0~ p̃1!!¯a~n.0~ p̃s!!U21,

whereU:Hnr→H̃nr is as in Proposition VII.1.
Now, we can easily transfer Theorem X.44 of Ref. 16 to the LC-case. To shorten the no

we introduce the following abbreviations:

p̃1¯r5~ p̃1 ,...,p̃r !PR3r , p1¯r
1 5)

i 51

r

pi
1 ,

v~p1¯r !5)
i 51

r

v~pi !5)
i 51

r

Api
21m2,

#~ p̃1¯r !5)
i 51

r

#~ p̃i !, where # representsa,a1,a8,a81,ã or ã1.

Recall thatH̃nr5L 2(R.03R2,d3p̃/2p1).
Theorem VII.4: Suppose W˜ ( k̃1¯n1

,p̃1¯n2
)PH̃nr

^ (n11n2) , where n1 ,n2>0. Then there is a

unique operator T˜ W̃ on H̃nr5F~(H̃nr) with the following properties:

~i! D̃0,D(T̃W̃) is a core for T̃W̃ .
~ii ! T̃W̃5 *k

1
1 . 0¯k

n1

1 . 0*p
1
1 . 0¯p

n2

1 . 0(d3n1k̃1¯n1
/ k1¯n1

1 )(d3n2p̃1¯n2
/p1¯n2

1 )W̃( k̃1¯n1
,p̃1¯n2

)

3ã1( k̃1¯n1
)ã(p̃1¯n2

) as bilinear forms on D˜ 03D̃0 .

~iii ! If m1 ,m2 are non-negative integers such that m11m25n11n2 , then (11N)2m1/2T̃W̃(1
1N)2m2/2 is a bounded operator with

i~11N!2m1/2T̃W̃~11N!2m2/2i<Cm1 ,m2
iW̃i H̃

nr

^ (n11n2) ,

where N is the number operator and Cm1 ,m2
a constant (cf. Ref. 16, p. 208, 222); especia

Cm1 ,m2
51, if m15n1 and m25n2 .

~iv! T̃
W̃
* 5*k

1
1 . 0¯k

n1

1 . 0*p
1
1 . 0¯p

n2

1 . 0(d3n1k̃1¯n1
/k1¯n1

1 )(d3n2p̃1¯n2
/ p1¯n2

1 )W̃ ( k̃1¯n1
,p̃1¯n2

)

3ã1( k̃1¯n1
)ã(p̃1¯n2

) as bilinear forms on D˜ 03D̃0 .

~v! If (W̃n)nPN converges to W˜ in H̃nr
^ (n11n2) , then(T̃W̃n

)nPN converges to T˜
W̃ strongly on D̃0 .

~vi! D̃0 is contained in D(T̃W̃)ùD(T̃
W̃
* ), and T̃W̃ ,T̃

W̃
* are given on D˜ 0 by the explicit formulas

(,>0):

~T̃W̃c!,2n21n1
~k̃1¯,2n21n1

!5K,,n1 ,n2
SE

p1
1

.0¯pn2

1
.0

d3n2p̃1¯n2

p1¯n2

1 W̃~ k̃1¯n1
,p̃1¯n2

!
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c l~ p̃1¯n2
,k̃n111¯n11,2n2

!,

~ T̃W̃c!n50, i f n,n12n2 ,

~ T̃
W̃
* c!,2n11n2

~ p̃1¯,2n11n2
!5K,,n2 ,n1

SE
k1

1
.0¯kn1

1
.0

d3n1k̃1¯n1

k1¯n1

1 W̃~ k̃1¯n1
,p̃1¯n2

!

3c l~ k̃1¯n1
,p̃n211¯n21,2n1

!,

~ T̃W̃c!n50, i f n,n22n1 ,

where S denotes the symmetrization operator and K,,n1 ,n2
is a constant (cf. Ref. 16, p. 207.

Proof: Let n5n.0 denote the squeezing mapping andUªF~(n* ):Hnr→H̃nr the induced
unitary operator. The annihilation and creation operators in Ref. 16 are defined by the
formulas as in~28!, ~29!, however, on the Fock spaceHnr8 5F~(L 2(R3,d3p)), which is also
frequently used as the nonrelativistic one-particle space. Let us temporarily denote the c
and annihilation operators acting onHnr8 , as in Ref. 16, bya8(p) and a81(p). Let V
5F~(v):Hnr8 →Hnr be the unitary operator induced byv:L 2(R3,d3p)→L 2(R3,d3p/2v(p)),
g°A2v(p)g. It is easy to see that

Va8~p!V215
a~p!

A2v~p!
and Va81~p!V215

a1~p!

A2v~p!

in the sense of bilinear forms for everypPR3. SupposeW̃PH̃nr
^ (n11n2) . Then we define

Wª~2v21n* ! ^ (n11n2)W̃PL 2~R3,dp! ^ (n11n2).

Let TW be the operator from Theorem X.44.16 We define the operatorT̃W̃ by

T̃W̃ªUVTW~UV!21.

Then by Theorem X.44,16 we obtain in the sense of bilinear forms

T̃W̃5UVS E d3n1k1¯n1
E d3n2p1¯n2

W~k1¯n1
,p1¯n2

!a81~k1¯n1
!a8~p1¯n2

!DV21U21

5US E d3n1k1¯n1

2n1v~k1¯n1
!
E d3n2p1¯n2

2n2v~p1¯n2
!

~v ^ (n11n2)W!~k1¯n1
,p1¯n2

!a1~k1¯n1
!a~p1¯n2

!D U21

5E
k1

1
.0¯kn1

1
.0

d3n1k̃1¯n1

k1¯n1

1 E
p1

1
.0¯pn1

1
.0

d3n2p̃1¯n2

p1¯n2

1
W̃~ k̃1¯n1

,p̃1¯n2
!ã1~ k̃1¯n1

!ã~ p̃1¯n2
!

sinceW̃5(221n* v) ^ (n11n2)W which proves~ii !. In the same way, using the definition ofT̃W̃ , we
easily obtain from Ref. 16, Theorem X.44 the remaining assertions. h

VIII. CONCLUSIONS

In this paper we have shown that with the aid of squeezed distributions the technical pr
of constructing a proper restriction of the free scalar massive field to the lightlike surfac$x0

1x350% can been solved. Such restriction problems also arise naturally in the theory of
butions and are closely related to the problem that products of distributions are not alwa
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nonically defined; the so-called wave front set plays an essential role there.11 Hence, squeezed
distributions might be helpful in constructing noncanonical restrictions and products of~tempered!
distributions which occur in LC-quantum field theories.

We hope that our paper will revive the~axiomatic! development of light-cone~or light-front!
quantum field theory by having eliminated some old, technical problems, see also Ref. 21.
over, building upon the results of this paper it might now be possible to take advantage
front-form Hamiltonian approach in constructing explicit models of interacting~LC-!quantum
fields obeying the~LC-!Wightman axioms. At least it should now be possible to investig
:P(f)2 :-theories on the light cone in a mathematically rigorous way—also to find possibl
answer to the question whether there is an analog of Haag’s theorem for fields on null pla
suggested by Driessler.9
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The Drinfeld realization of the elliptic quantum group
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We construct a realization of theL-operator satisfying theRLL-relation of the
face-type elliptic quantum groupBq,l(A2

(2)). The construction is based on the el-
liptic analog of the Drinfeld currents ofUq(A2

(2)), which forms the elliptic algebra
Uq,p(A2

(2)). We give a realization of the elliptic currentsE(z), F(z), andK(z) as
a tensor product of the Drinfeld currents ofUq(A2

(2)) and a Heisenberg algebra. In
the level-one representation, we also give a free field realization of the elliptic
currents. Applying these results, we derive a free field realization of the
Uq,p(A2

(2))-analog of theBq,l(A2
(2))-intertwining operators. The resultant operators

coincide with those of the vertex operators in the diluteAL model, which is known
to be a RSOS restriction of theA2

(2) face model. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1767296#

I. INTRODUCTION

An elliptic quantum group is a quasitriangular quasi-Hopf algebra obtained as a quasi
deformation of the affine quantum groupUq(g) by the twistor satisfying the shifted cocycl
condition.1–3 It is conjectured in Refs. 4 and 3 that the representation theory of the el
quantum groups of both the vertex typeAq,p(sl̂N) and the face typeBq,l(g), g being an affine Lie
algebra, enables us to perform an algebraic analysis of the corresponding two dimensiona
able lattice models in the sense of Jimbo and Miwa.5 In order to perform the analysis, we need
construct explicit representations of both finite and infinite dimensional. For this purpose
Drinfeld realization of the quantum groups is known to provide a relevant framework. In
previous papers,6–8 we constructed the Drinfeld realization of the face-type elliptic quantum gr
Bq,l(sl̂N) based on the elliptic algebraUq,p(sl̂N). The Drinfeld generators have both finite an
infinite dimensional representations suitable for the calculation of the correlation functions.

In this paper, we investigate the same problem forBq,l(A2
(2)), the face-type elliptic quantum

group associated with the twisted affine Lie algebraA2
(2) . We first construct the elliptic algebr

Uq,p(A2
(2)) as the algebra of the elliptic analog of the Drinfeld currents ofUq(A2

(2)). Basically, the
idea given in Appendix A of Ref. 7 can be applied to the twisted case. Namely, dressin
Drinfeld currents ofUq(A2

(2)) by the bosonsam (mPZÞ0) in Uq(A2
(2)) and taking a tensor produc

with a certain Heisenberg algebraC$H% generated byP,Q, which commutes withUq(A2
(2)), we

obtain the elliptic Drinfeld currents. However, we formulate the elliptic algebraUq,p(A2
(2)) in an

extended form by introducing the new currentsK(u), which enables theRLL-formulation of
Uq,p(A2

(2)). Then we discuss a connection betweenUq,p(A2
(2)) and Bq,l(A2

(2)). We derive the
dynamicalRLL-relation ofBq,l(A2

(2)) from theRLL-relation ofUq,p(A2
(2)) by removing a half of

the generatorQ of the Heisenberg algebra and identifyingP with the dynamical parameter in

a!Electronic mail: kojima@math.cst.nihon-u.ac.jp
b!Electronic mail: konno@mis.hiroshima-u.ac.jp
31460022-2488/2004/45(8)/3146/34/$22.00 © 2004 American Institute of Physics
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Bq,l(A2
(2)). We hence find a structure ofUq,p(A2

(2)) roughly given by ‘‘Bq,l(A2
(2)) ^ C$H%, ’’ and in

this sense, we regardUq,p(A2
(2)) as the Drinfeld realization ofBq,l(A2

(2)).
Although the above tensor structure does not preserve the coalgebra structure ofBq,l(A2

(2)),
the same tensor structure enables us to convert the algebraic objects ofBq,l(A2

(2)), such as the
intertwining operators, to theUq,p(A2

(2)) counterparts. Moreover, in the known cases, it is true t
theUq,p(g) counterparts of theBq,l(g) intertwining operators play the role of vertex operators
the restricted solid on solid~RSOS! model associated withg. We call such ‘‘intertwining’’ operator
of Uq,p(g) the vertex operator ofUq,p(g). The elliptic Drinfeld currents inUq,p(A2

(2)) admits a
free field realization, which is an elliptic extension of those ofUq(A2

(2)) obtained in Refs. 9, 10
and 11. By using such realization and applying the tensoring procedure, we derive a fre
realization of the vertex operators ofUq,p(A2

(2)).
The face model associated with the twisted affine Lie algebraA2

(2) was formulated in Ref. 12
Its RSOS restriction is known to be the diluteAL model.13,14 The free field formulation of the
dilute AL model was carried out in Ref. 15. There, however, the construction of the v
operators was done by brute force based on the commutation relations among the vertex op
We here derive the same vertex operators by using the representation theory ofBq,l(A2

(2)) and the
Drinfeld realization given byUq,p(A2

(2)).
This paper is organized as follows: In the next section, we give a summary of the basic

on the face type elliptic quantum groupBq,l(A2
(2)). In Sec. III, we present a definition and

realization of the elliptic algebraUq,p(A2
(2)). New currentsK(u) are introduced there. In Sec. IV

we introduce a set of half currents defined from the elliptic currents inUq,p(A2
(2)) and derive their

commutation relations. Section V is devoted to a construction of aL-operator and the
RLL-formulation ofUq,p(A2

(2)). We then derive the dynamicalRLL-relation ofBq,l(A2
(2)) from

Uq,p(A2
(2)). According to this result, in Sec. VI, we discuss a free field realization of the two ty

of vertex operators of the level oneUq,p(A2
(2))-modules. The final section is devoted to discu

sions on some remaining problems. In addition, we have three appendixes. In Appendix
give a summary of the three-dimensional evaluation representation ofUq,p(A2

(2)). In Appendix B,
we discuss the difference equation for the twistor and give partial results on the solutions. F
in Appendix C, we give a proof of some formulas of commutation relations of the half curr

II. THE ELLIPTIC QUANTUM GROUP Bq ,l„A 2
„2…

…

In this section, we summarize some basic facts on the face-type elliptic quantum
Bq,l(A2

(2)) based on the results in Ref. 3.

A. Notations

Through this article, we fix a complex numberqÞ0,0,q,1 andp given by

p5q2r , p* 5pq22c5q2r* ~r * 5r 2c; r ,r * PR.0!.

We parametrizep as follows:

p5e22p i /t, p* 5e22p i /t* ~r t5r * t* !,

z5q2u5e22p iu/r t.

We often use the following Jacobi theta functions,

@u#5q~u2/r ! 2uQp~q2u!5e2 ~p i /4!t1/2q2 ~r /4! q1S u

r Ut D ,

@u#15q~u2/r ! 2uQp~2q2u!5e2 ~p i /4!t1/2q2 ~r /4! q0S u Ut D ,

r
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@u#* 5@u#ur→r* ,t→t* and @u#1* 5@u#1ur→r* ,t→t* . Here

Qp~z!5~z,p!`~pz21;p!`~p;p!` ,

~z;t1 ,...,tk!`5 )
n1 ,¯ ,nk>0

~12zt1
n1
¯tk

nk!.

The theta functions satisfy@2u#52@u#,@2u#15@u#1 and the quasiperiodicity property

@u1r #52@u#, @u1r t#52e2p i t2 ~2p iu/r !@u#, ~2.1!

@u1r #15@u#1 , @u1r t#15e2p i t2 ~2p iu/r !@u#1 , ~2.2!

Fu1
r t

2 G5 ie2p i (u/r 1t/4)@u#1 . ~2.3!

We use the following normalization for the contour integration:

R
C0

dz

2p iz

1

@2u#
51, R

C0

dz

2p iz

1

@2u#*
5

@u#

@u#* U
u→0

, ~2.4!

whereC0 is a simple closed curve in theu-plane encirclingu50 anticlockwise.

B. Definition of the elliptic quantum group Bq ,l„A 2
„2…

…

Let Uq(A2
(2)) be the standard affine quantum group, associated with the Cartan matrix

A5S 2 21

24 2 D . ~2.5!

The labels ofA area051,a152 and colabels area0
∨52,a1

∨51. Let B5(bi j ) be the symmetrized
Cartan matrixbi j 5(ai

∨/ai) ai j . We identifyh5Ca0
∨

% Ca1
∨

% Cd andh* 5Ca0% Ca1% CL0 via the
standard invariant bilinear form~ , ! given onh andh* as follows:

~a i
∨ ,a j

∨!5ai j

aj

aj
∨ ~0< i , j <1!,

~a i
∨ ,d!5d i ,0 ~d,d!50,

~a i ,a j !5
ai

∨

ai
ai j ~0< i , j <1!,

~a i ,L0!5d i ,0 ~L0 ,L0!50.

The central element is given byc52a0
∨1a1

∨ . Let us setd5a012a1 . Then the following
relations hold:

~d,d!51, ~d,d!50, ~c,d!52, ~c,c!50.

The identification betweenh and h* is given explicitly by a i
∨52a i /(a i ,a i) , c5d, and d

52L0 . Under this, we use$ĥl% l 51,2,35$d,c,a1
∨% as a basis ofh and$ĥl% l 51,2,35$c/2,d/2,a1

∨/2% as
its dual basis. Our conventions of coalgebra structure ofUq(A2

(2)) follows.3 The coproduct, counit,
antipode are denoted byD, «, andS, respectively.
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The face-type elliptic quantum groupBq,l(A2
(2)) is a quasitriangular quasi-Hopf algebra o

tained fromUq(A2
(2)) by the deformation via the face-type twistorF(l) (lPh). The twistorF(l)

is an invertible element inUq(A2
(2)) ^ Uq(A2

(2)) satisfying

~ id^ «!F~l!515F~l!~« ^ id!, ~2.6!

F (12)~l!~D ^ id!F~l!5F (23)~l1h(1)!~ id^ D!F~l!, ~2.7!

wherel5( ll l ĥ
l (l lPC), l1h(1)5( l(l l1ĥl

(1))ĥl andĥl
(1)5ĥl ^ 1^ 1. An explicit construction

of the twistor F(l) is given in Ref. 3. As an associative algebra,Bq,l(A2
(2)) is isomorphic to

Uq(A2
(2)), but the coalgebra structure is deformed in the following way:

Dl~x!5F~l!D~x!F~l!21 ;xPUq~A2
(2)!. ~2.8!

Dl satisfies a weaker coassociativity

~ id^ Dl!Dl~x!5F~l!~Dl ^ id!Dl~x!F~l!21 ; xPUq~A2
(2)!, ~2.9!

F~l!5F (23)~l!F (23)~l1h(1)!21. ~2.10!

Let R be the universalR matrix of Uq(A2
(2)). The universalR matrix of Bq,l(A2

(2)) is given by

R~l!5F (21)~l!RF (12)~l!21. ~2.11!

Definition 2.1 (Elliptic quantum groupBq,l(A2
(2))!: The face-type elliptic quantum grou

Bq,l(A2
(2)) is a quasitriangular quasi-Hopf algebra(Bq,l(A2

(2)), Dl ,«, S, F(l), a, b, R(l)),
wherea, b are defined by

a5(
i

S~ki !l i , b5(
i

miS~ni !. ~2.12!

Here we set( iki ^ l i5F(l)21, ( imi ^ ni5F(l).
The universalR matrix R(l) satisfies the dynamical Yang–Baxter equation,

R (12)~l1h(3)!R (13)~l!R (23)~l1h(1)!5R (23)~l!R (13)~l1h(2)!R (12)~l!. ~2.13!

Let (pV,z ,Vz), Vz5V^ C@z,z21# be a~finite dimensional! evaluation representation ofUq . Tak-
ing images ofR, we define aR-matrix RVW

1 (z,l) and aL-operatorLV
1(z,l) as follows:

RVW
1 ~z1 /z2 ,l!5~pV,z1

^ pW,z2
!qc^ d1d^ cR~l!, ~2.14!

LV
1~z,l!5~pV,z^ id!qc^ d1d^ cR~l!. ~2.15!

Then from~2.13!, we have the following dynamicalRLL-relation:

RVW
1 ~z1 /z2 ,l1h!LV

1~z1 ,l!LW
1~z2 ,l1h(1)!5LW

1~z2 ,l!LV
1~z1 ,l1h(2)!RVW

1 ~z1 /z2 ,l!.
~2.16!

Note that inBq,l(A2
(2)), LV

1(z,l) andLV
2(z,l)5(pV,z^ id)R (21)(l)21q2c^ d2d^ c are not inde-

pendent operators~Proposition 4.3 in Ref. 3!. Hence one dynamicalRLL-relation ~2.16! charac-
terizes the algebra Bq,l(A2

(2)) completely in the sense of Reshetikhin a
Semenov-Tian-Shansky.16

Through this paper, we parametrize the dynamical variablel as
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l5~r * 13!d1s8c1
1

2 S s1
r t

2 Da1
∨ ~r * [r 2c!. ~2.17!

Under this, we setF(r * ,s)[F(l) and R(r * ,s)[R(l). Sincec is central, nos8 dependence
should appear. The dynamical shiftl→l1h with h5cd1(a1

∨)2/2, changes the universa
R-matrix R(r * ,s) to R(r ,s1a1

∨). Let us take (pV,z ,Vz) to be the evaluation representatio
associated with the vector representationV>C3 of Uq(A2

(2)) ~see Appendix A!. We set

R1~u,s1a1
∨!5~pV,z1

^ pV,z2
!qc^ d1d^ cR~r ,s1a1

∨!,

L1~u,s!5~pV,z^ id!qc^ d1d^ cR~r * ,s!,

wherez1 /z25q2u, u5u12u2 . From ~2.11!, we can obtain an explicit expression ofR1(u,s), if
we know the finite dimensional representation of the twistor (pV,z1

^ pV,z2
)F(r ,s). In principle,

one can obtain such representation by solving theq-difference equation for the twistor,3 which is
similar to the q-KZ equation for correspondingUq(g). In the present case, theq-difference
equation splits into the three parts; two 232 matrix parts and one 333 matrix part~see Appendix
B!. Each 232 matrix parts turns out to be the same as the one of the twistor forBq,l(A1

(1)) in the
vector representation after adjusting someq-shift and sign factor, whereas we have no kno
solutions for the 333 matrix part. Writing down the solutions of the 232 matrix parts under the
parametrization ofl ~2.17!, we obtain from~2.11! the corresponding matrix elements ofR1(u,s)
which coincide with the corresponding matrix elements of the Boltzmann weight for theA2

(2) face
model.12 For the remaining 333 matrix part, we conjecture that the same coincidence sh
occur. We hence assume that theR-matrix R1(u,s) is given by the following formula:

R1~u,s!5r1~u!R̄~u,s!, ~2.18!

where

R̄~u,s!51
1 0 0 0 0 0 0 0 0

0 R10
10 0 R10

01 0 0 0 0 0

0 0 R12
12 0 R12

00 0 R12
21 0 0

0 R01
10 0 R01

01 0 0 0 0 0

0 0 R00
12 0 R00

00 0 R00
21 0 0

0 0 0 0 0 R02
02 0 R02

20 0

0 0 R21
12 0 R21

00 0 R21
21 0 0

0 0 0 0 0 R20
02 0 R20

20 0

0 0 0 0 0 0 0 0 1

2 , ~2.19!

R10
10~u,s!52

@s13/2#1@s21/2#1

@s11/2#1
2

@u#

@u11#
,

R10
01~u,s!5

@s11/21u#1@1#

@s11/2#1@11u#
,

R01
10~u,s!5

@2s21/21u#1@1#

@2s21/2#1@11u#
,
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R01
01~u,s!5R20

20~u,s!52
@u#

@11u#
,

R02
02~u,s!52

@s11/2#1@s23/2#1

@s21/2#1
2

@u#

@u11#
,

R02
20~u,s!5

@s21/21u#1@1#

@s21/2#1@11u#
,

R20
02~u,s!5

@2s11/21u#1@1#

@2s11/2#1@11u#
,

R12
12~u,s!5Gs

1Gs
2

@1/21u#@u#

@3/21u#@11u#
,

R12
00 ~u,s!52Gs

2
@s11/2#1@2s212u#1@1#@u#

@2s11/2#1
2 @11u#@u13/2#

,

R12
21~u,s!5

@22s112u#@1#

@22s11#@11u#
2Gs

2
@22s21/22u#@u#@1#

@22s11#@3/21u#@11u#
,

R00
21~u,s!52

@2s212u#1@1#@u#

@s11/2#1@11u#@u13/2#
,

R21
21~u,s!5

@1/21u#@u#

@3/21u#@11u#
,

R21
00 ~u,s!52

@s212u#1@1#@u#

@2s11/2#1@11u#@u13/2#
,

R21
12~u,s!5

@2s112u#@1#

@2s11#@11u#
2Gs

1
@2s21/22u#@u#@1#

@2s11#@3/21u#@11u#
,

R00
12~u,s!52Gs

1
@2s11/2#1@s212u#1@1#@u#

@s11/2#1
2 @11u#@u13/2#

,

R00
00~u,s!5

@31u#@1#@3/22u#

@3#@11u#@3/21u#
1Hs

@1#@u#

@3#@11u#
.

Here we have set

Gs
652

@2s62#@s#1

@2s#@s61#1
, Hs5Gs

1
@s25/2#1

@s11/2#1
1Gs

2
@s15/2#1

@s21/2#1
. ~2.20!

The functionr1(u) is given by

r1~u!52qz1/r $pq2z%$pq3z%$pq3z%$pq4z%$1/z%$q/z%$q5/z%$q6/z%

$pz%$pqz%$pq5z%$pq6z%$q2/z%$q3/z%$q3/z%$q4/z%
, ~2.21!

wherez5q2u and

$z%5~z;p,q6!` . ~2.22!
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The R-matrix R1* (u,s)5(pV,z1
^ pV,z2

)R(r * ,s) is obtained fromR1(u,s) by the replacements
r→r * . Hence, under the parametrization~2.17!, the dynamicalRLL-relation takes the form

R1(12)~u,s1a1
∨!L1(1)~u1 ,s!L1(2)~u2 ,s1a1

∨(1)!5L1(2)~u2 ,s!L1(1)~u1 ,s1a1
∨(2)!R1* (12)~u,s!.

~2.23!

C. Intertwining operators

Let F,F8 be the highest weightUq-modules. We denote the type-I and type II intertwinin
operators ofUq-modules byF(z) andC* (z), respectively,

F~z!: F→F8^ Wz , C* ~z!: Wz^ F→F8. ~2.24!

Twisting these operators byF(r * ,s), we obtain the corresponding intertwining operatorsF(v,s)
andC* (u,s) of Bq,l-modules,

FW~u,s!5~ id^ pW,z!F~r * ,s!F~z!, ~2.25!

CW* ~u,s!5C* ~z!~pW,z^ id!F~r * ,s!21. ~2.26!

From the intertwining relation satisfied byF(z) and C* (z), one can derive the following dy
namical intertwining relation for the new intertwiners:3

FW
(3)S u21

c

2
,sDLV

1(1)~u1 ,s!5RVW
1(13)~u,s1a1

∨!LV
1(1)~u1 ,s!FW

(3)S u21
c

2
,s1a1

∨(1)D ,

~2.27!

LV
1(1)~u1 ,s!CW*

(2)~z2 ,s1a1
∨(1)!5CW*

(2)~z2 ,s!LV
1(1)~u1 ,s1a1

∨(2)!RVW
1* (12)~u12u2 ,s!.

~2.28!

Note that~2.27! and ~2.28! are the relations for the operatorsVz1
^ F→Vz1

^ F^ Wz2
and Vz1

^ Wz2
^ F→Vz1

^ F, respectively.

III. ELLIPTIC ALGEBRA Uq,p„A 2
„2…

…

In this section, we give a definition of the elliptic algebraUq,p(A2
(2)). We follows the idea

given in Refs. 7 and 8, where the elliptic algebrasUq,p(g) with nontwisted affine Lie algebrag are
discussed. We first introduce the currentse(z,p), f (z,p) and c6(z,p) of the quantum group
Uq(A2

(2)), by modifying the Drinfeld currents ofUq(A2
(2)). We then introduce the new curren

k(z) in Uq(A2
(2)) which is a more basic object than the currentsc6(z,p). Finally modifying them

by taking a tensor product with Heisenberg algebra, we introduce the elliptic currentsE(u),F(u),
H6(u), andK(u) forming the elliptic algebraUq,p(A2

(2)). The currentK(u) plays an essentia
role in theRLL-formulation ofUq,p(A2

(2)). Hereafter we seth5a1
∨ .

A. Drinfeld currents of Uq„A 2
„2…

…

Let us recall the Drinfeld currents ofUq(A2
(2)). Let 0,q,1. We use the standard symbol o

q-integer

@n#q5
qn2q2n

q2q21 . ~3.1!

Definition 3.1 (Drinfeld currents): Let xm
6 (mPZ), am(mPZÞ0) qc,qh,qd denote the genera

tors of Uq(A2
(2)). In terms of the generating functions

x6~z!5 (
mPZ

xm
6z2m, ~3.2!
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c~qc/2z!5qh/2 expS ~q2q21! (
m.0

amz2mD , ~3.3!

w~q2c/2z!5q2h/2 expS 2~q2q21! (
m.0

a2mzmD , ~3.4!

the defining relations of Uq(A2
(2)) are given by

qc:central, qdamq2d5qmam , qdqm
6q2d5qmxm

6 , ~3.5!

qhx6~z!q2h5q62x6~z!, qdqh5qhqd, ~3.6!

@am ,an#5dm1n,0

1

m
~@2m#q2@m#q!q2cumu@cm#q , ~3.7!

@am ,x1~z!#5
1

m
~@2m#q2@m#q!q2cumuzmx1~z!, ~3.8!

@am ,x2~z!#52
1

m
~@2m#q2@m#q!zmx2~z!, ~3.9!

~z12q62z2!~z12q71z2!x6~z1!x6~z2!52~q62z12z2!~q71z12z2!x6~z2!x6~z1!,
~3.10!

@x1~z1!,x2~z2!#5
1

q2q21 ~c~qc/2z2!d~q2cz1 /z2!2w~q2c/2z2!d~qcz1 /z2!!, ~3.11!

(
sPS3

~q63/2zs(1)2~q1/21q21/2!zs(2)1q63/2zs(3)!x
6~zs(1)!x

6~zs(2)!x
6~zs(3)!50. ~3.12!

Here d(z) denotes the delta functiond(z)5(mPZz
m. We call the generators h,am ,xm

6 ,c,d the
Drinfeld generators of Uq(A2

(2)) and the generating functions x6(z), c(z), andw(z) the Drinfeld
currents.

B. Elliptic currents of Uq„A 2
„2…

…

We next consider an elliptic modification of the Drinfeld currentsx6(z), c(z), andw(z). Let
us introduce the two auxiliary currentsu6(z,p) by

u1~z,p!5expS (
m.0

a2m

@r * m#q
qrmzmD , ~3.13!

u2~z,p!5expS 2 (
m.0

am

@rm#q
qrmz2mD . ~3.14!

Proposition 3.1: The following commutation relations hold:
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u1~z1 ,p!u2~z2 ,p!

5u2~z2 ,p!u1~z1 ,p!

3
~pq2c22z1 /z2 ;p!`~p* qc12z1 /z2 ;p* !`~pq2c11z1 /z2 ;p!`~p* qc21z1 /z2 ;p* !`

~pq2c12z1 /z2 ;p!`~p* qc22z1 /z2 ;p* !`~pq2c21z1 /z2 ;p!`~p* qc11z1 /z2 ;p* !`
,

~3.15!

u1~z1 ,p!x1~z2!5
~p* q2z1 /z2 ;p* !`~p* q21z1 /z2 ;p* !`

~p* q22z1 /z2 ;p* !`~p* qz1 /z2 ;p* !`
x1~z2!u1~z1 ,p!, ~3.16!

u1~z1 ,p!x2~z2!5
~p* qc22z1 /z2 ;p* !`~p* qc11z1 /z2 ;p* !`

~p* qc12z1 /z2 ;p* !`~p* qc21z1 /z2 ;p* !`
x2~z2!u1~z1 ,p!, ~3.17!

u2~z1 ,p!x1~z2!5
~pq2c22z2 /z1 ;p!`~pq2c11z2 /z1 ;p!`

~pq2c12z2 /z1 ;p!`~pq2c21z2 /z1 ;p!`
x1~z2!u2~z1 ,p!, ~3.18!

u2~z1 ,p!x2~z2!5
~pq2z2 /z1 ;p!`~pq21z2 /z1 ;p!`

~pq22z2 /z1 ;p!`~pqz2 /z1 ;p!`
x2~z2!u2~z1 ,p!, ~3.19!

c~z1 ,p!u1~z2 ,p!

5u1~z2 ,p!c~z1 ,p!

3
~qr* 12z2 /z1 ;p!`~qr* 21z2 /z1 ;p!`~qr* 22z2 /z1 ;p* !`~qr* 11z2 /z1 ;p* !`

~qr* 22z2 /z1 ;p!`~qr* 11z2 /z1 ;p!`~qr* 12z2 /z1 ;p* !`~qr* 21z2 /z1 ;p* !`

,

~3.20!

c~z1 ,p!u2~z2 ,p!

5u2~z2 ,p!c~z1 ,p!
~qr 22z1 /z2 ;p!`~qr 11z1 /z2 ;p!`~qr 12z1 /z2 ;p* !`~qr 21z1 /z2 ;p* !`

~qr 12z1 /z2 ;p!`~qr 21z1 /z2 ;p!`~qr 22z1 /z2 ;p* !`~qr 11z1 /z2 ;p* !`
,

c~z1 ,p!x1~z2!

5x1~z2!c~z1 ,p!
~qr* 22z2 /z1 ;p!`~qr* 11z2 /z1 ;p!`~qr* 12z1 /z2 ;p* !`~qr* 21z1 /z2 ;p* !`

~qr* 12z2 /z1 ;p!`~qr* 21z2 /z1 ;p!`~qr* 22z1 /z2 ;p* !`~qr* 11z1 /z2 ;p* !`

,

~3.21!

c~z1 ,p!x2~z2!

5x2~z2!c~z1 ,p!
~qr 12z2 /z1 ;p!`~qr 21z2 /z1 ;p!`~qr 22z1 /z2 ;p* !`~qr 11z1 /z2 ;p* !`

~qr 22z2 /z1 ;p!`~qr 11z2 /z1 ;p!`~qr 12z1 /z2 ;p* !`~qr 21z1 /z2 ;p* !`
.

~3.22!

Definition 3.2: We define ‘‘dressed’’ currents e(z,p), f (z,p), and c6(z,p) by

e~z,p!5u1~z,p!x1~z!, ~3.23!

f ~z,p!5x2~z!u2~z,p!, ~3.24!

c1~z,p!5u1~qc/2z,p!c~z!u2~q2c/2z,p!, ~3.25!
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c2~z,p!5u1~q2c/2z,p!w~z!u2~qc/2z,p!. ~3.26!

If we introduce the auxiliary currentc(z,p) by

c~z,p!5expS (
m.0

xcm

@r * m#q
a2mzmD expS 2 (

m.0

1

@rm#q
amz2mD , ~3.27!

we have

c6~q7(r 2c/2)z!5q6h/2c~z,p!. ~3.28!

Proposition 3.2: The currents e(z,p), f (z,p), and c(z,p) satisfy the following commutation
relations:

c~z1 ,p!c~z2 ,p!5
Qp~q22z1 /z2!Qp~qz1 /z2!

Qp~q2z1 /z2!Qp~q21z1 /z2!

Qp* ~q2z1 /z2!Qp* ~q21z1 /z2!

Qp* ~q22z1 /z2!Qp* ~qz1 /z2!
c~z2 ,p!c~z1 ,p!,

~3.29!

c~z1 ,p!e~z2 ,p!5
Qp* ~qr* 12z1 /z2!Qp* ~qr* 21z1 /z2!

Qp* ~qr* 22z1 /z2!Qp* ~qr* 11z1 /z2!
e~z2 ,p!c~z1 ,p!, ~3.30!

c~z1 ,p! f ~z2 ,p!5
Qp~qr 22z1 /z2!Qp~qr 11z1 /z2!

Qp~qr 12z1 /z2!Qp~qr 21z1 /z2!
f ~z2 ,p!c~z1 ,p!, ~3.31!

e~z1 ,p!e~z2 ,p!5~21!
Qp* ~q22z2 /z1!Qp* ~q21z1 /z2!

Qp* ~q22z1 /z2!Qp* ~q21z2 /z1!
e~z2 ,p!e~z1 ,p!, ~3.32!

f ~z1 ,p! f ~z2 ,p!5~21!
Qp~q2z2 /z1!Qp~qz1 /z2!

Qp~q2z1 /z2!Qp~qz2 /z1!
f ~z2 ,p! f ~z1 ,p!, ~3.33!

@e~z1 ,p!, f ~z2 ,p!#5
1

q2q21 ~c1~qc/2z2!d~q2cz1 /z2!2c2~q2c/2z2!d~qcz1 /z2!!, ~3.34!

(
sPS3

~p* q2zs(3) /zs(1) ;p* !`~p* q21zs(3) /zs(1) ;p* !`~p* q21zs(3) /zs(2) ;p* !`~p* q21zs(2) /zs(1) ;p* !`

~p* q22zs(3) /zs(1) ;p* !`~p* qzs(3) /zs(1) ;p* !`~p* qzs(3) /zs(2) ;p* !`~p* qzs(2) /zs(1) ;p* !`

3S zs(1)

~q2zs(2) /zs(1) ;p* !`~p* q2zs(3) /zs(2) ;p* !`

~p* q22zs(2) /zs(1) ;p* !`~p* q22zs(3) /zs(2) ;p* !`
2qzs(2)

3
~p* q2zs(2) /zs(1) ;p* !`~p* q2zs(3) /zs(2) ;p* !`

~p* q22zs(2) /zs(1) ;p* !`~p* q22zs(3) /zs(2) ;p* !`
De~zs(1) ,p!e~zs(2) ,p!e~zs(3) ,p!50,

~3.35!

(
sPS3

~pqzs(2) /zs(1) ;p!`~pq22zs(3) /zs(1) ;p!`~pqzs(3) /zs(2) ;p!`~pqzs(3) /zs(2) ;p!`

~pq21zs(2) /zs(1) ;p!`~pq2zs(3) /zs(1) ;p!`~pq21zs(3) /zs(1) ;p!`~pq21zs(3) /zs(2) ;p!`

3S zs(1)

~q22zs(2) /zs(1) ;p!`~pq22zs(3) /zs(2) ;p!`

~pq2zs(2) /zs(1) ;p!`~pq2zs(3) /zs(2) ;p!`

2q21zs(2)

~pq22zs(2) /zs(1) ;p!`~q22zs(3) /zs(2) ;p!`

~pq2zs(2) /zs(1) ;p!`~pq2zs(3) /zs(2) ;p!`
D f ~zs(1) ,p! f ~zs(2) ,p! f ~zs(3) ,p!50.

~3.36!
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C. Basic current k „z…

The currentc(z,p) ~3.27! can be expressed by a more basic currentk(z). Let us modifyam

and defineam andbm by

am5H am , m.0,

@rm#q

@r * m#q
qcumuam , m,0,

bm5am

@r * m#q

@rm#q
. ~3.37!

They satisfy the following commutation relations:

@am ,an#5dm1n,0

@2m#q2@m#q

m

@cm#q@rm#q

@r * m#q
, ~3.38!

@bm ,bn#5dm1n,0

@2m#q2@m#q

m

@cm#q@r * m#q

@rm#q
. ~3.39!

Then the currentc(z,p) is expressed by

c~z,p!5..expS 2 (
mÞ0

am

@rm#q
z2mDª:expS 2 (

mÞ0

bm

@r * m#q
z2mD :. ~3.40!

The colons : : denote the standard normal ordering.
Definition 3.3 (Basic Current): We define the current k(z) by

k~z,p!5..expS 2 (
mÞ0

@m#q

@rm#q~@2m#q2@m#q!
amz2mD :. ~3.41!

The currentc(z,p) is then expressed byk(z) as follows:

c~z,p!5..k~q21z,p!k~z,p!21k~qz,p!:. ~3.42!

By a straightforward calculation, we have the following commutation relations:
Proposition 3.3:

k~z1 ,p!u1~z2 ,p!5
~qr* 11z2 /z1 ;p!`~qr* 21z2 /z1 ;p* !`

~qr* 21z2 /z1 ;p!`~qr* 11z2 /z1 ;p* !`

u1~z2 ,p!k~z1 ,p!, ~3.43!

k~z1 ,p!u2~z2 ,p!5
~qr 21z1 /z2 ;p!`~qr 11z1 /z2 ;p* !`

~qr 11z1 /z2 ;p!`~qr 21z1 /z2 ;p* !`
u2~z2 ,p!k~z1 ,p!, ~3.44!

k~z1 ,p!x1~z2!5
~qr* 11z1 /z2 ;p* !`~qr* 21z2 /z1 ;p!`

~qr* 21z1 /z2 ;p* !`~qr* 11z2 /z1 ;p!`

x1~z2!k~z1 ,p!, ~3.45!

k~z1 ,p!x2~z2!5
~qr 21z1 /z2 ;p* !`~qr 11z2 /z1 ;p!`

~qr 11z1 /z2 ;p* !`~qr 21z2 /z1 ;p!`
x2~z2!k~z1 ,p!. ~3.46!

Proposition 3.4: The currents e(z,p), f (z,p), and k(z,p) satisfy the following commutation
relations:

k~z1 ,p!k~z2 ,p!5z21/r* 11/rr~z1 /z2!k~z2 ,p!k~z1 ,p!, ~3.47!
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k~z1 ,p!e~z2 ,p!5
Qp* ~qr* 11z1 /z2!

Qp* ~qr* 21z1 /z2!
e~z2 ,p!k~z1!, ~3.48!

k~z1 ,p! f ~z2 ,p!5
Qp~qr 21z1 /z2!

Qp~qr 11z1 /z2!
f ~z2 ,p!k~z1 ,p!. ~3.49!

Here we have set

r~z!5
r1* ~z!

r1~z!
, ~3.50!

wherer1(z) is given in (2.21) andr1* (z)5r1(z)ur→r* .

D. Elliptic algebra Uq,p„A 2
„2…

…

Now we give a definition of the elliptic algebraUq,p(A2
(2)). For this purpose, we introduce

Heisenberg algebraC$H% generated byP, Q, andā,

@P,Q#51, @Q,ā#5p i , @P,ā#50, ~3.51!

@P,P#5@Q,Q#5@ā,ā#50. ~3.52!

Definition 3.4 (Elliptic Currents): We define the elliptic (total) currents E(z), F(z), and K(z)
by

E~z!5e~z!eāe2Qz2P/r* , ~3.53!

F~z!5 f ~z!e2āzP/r 1h/2r , ~3.54!

K~z!5k~z!e2Qz(1/r 21/r* )P1h/2r . ~3.55!

Let us introduce the auxiliary currentsH6(z) by

H6~z!5H~q6(r 2c/2)z!, ~3.56!

H~z!5c~z!e2Qz(1/r 21/r* )P1h/2r5kK~qz!K~z!21K~q21z!, ~3.57!

where

k5
$pq8%$pq5%$pq3%$pq4%2$p%$p* q7%* $p* q%* $p* q2%* 2$p* q6%* 2

$pq7%$pq%$pq2%2$pq6%2$p* %* $p* q8%* $p* q5%* $p* q3%* $p* q4%* 2 . ~3.58!

From the commutation relations of the currentse(z,p), f (z,p) and k(z,p), we can verify the
following relations.

Theorem 3.5:The elliptic currents E(z), F(z), and K(z) satisfy the following commutation
relations:

K~z1!K~z2!5r~z1 /z2!K~z2!K~z1!, ~3.59!

K~z1!E~z2!52

Fu12u21
r * 11

2 G*
Fu12u21

r * 21

2 G* E~z2!K~z1!, ~3.60!
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K~z1!F~z2!52

Fu12u21
r 21

2 G
Fu12u21

r 11

2 G F~z2!K~z1!, ~3.61!

E~z1!E~z2!52
@u12u211#* @u12u22 1

2#*

@u12u221#* @u12u21 1
2#*

E~z2!E~z1!, ~3.62!

F~z1!F~z2!52
@u12u221#@u12u21 1

2#

@u12u211#@u12u22 1
2#

F~z2!F~z1!, ~3.63!

@E~z1!,F~z2!#5
1

q2q21 ~H1~qc/2z2!d~q2cz1 /z2!2H2~q2c/2z2!d~qcz1 /z2!!. ~3.64!

Here r(z) is given in (3.50). The elliptic currents E(z) and F(z) satisfy the following Serre
relations:

(
sPS3

~p*q2zs(3) /zs(1) ;p* !`~p*q21zs(3) /zs(1) ;p* !`~p*q21zs(3) /zs(2) ;p* !`~p*q21zs(2) /zs(1) ;p* !`
~p*q22zs(3) /zs(1) ;p* !`~p*qzs(3) /zs(1) ;p* !`~p*qzs(3) /zs(2) ;p* !`~p*qzs(2) /zs(1) ;p* !`

3zs(1)
2 1/2r* zs(2)

2 1/r* S zs(1)

~q2zs(2) /zs(1) ;p* !`~p* q2zs(3) /zs(2) ;p* !`

~p* q22zs(2) /zs(1) ;p* !`~p* q22zs(3) /zs(2) ;p* !`
2qzs(2)

3
~p* q2zs(2) /zs(1) ;p* !`~p* q2zs(3) /zs(2) ;p* !`

~p* q22zs(2) /zs(1) ;p* !`~p* q22zs(3) /zs(2) ;p* !`
DE~zs(1)!E~zs(2)!E~zs(3)!50,

~3.65!

and

(
sPS3

~pqzs(2) /zs(1) ;p!`~pq22zs(3) /zs(1) ;p!`~pqzs(3) /zs(2) ;p!`~pqzs(3) /zs(2) ;p!`

~pq21zs(2) /zs(1) ;p!`~pq2zs(3) /zs(1) ;p!`~pq21zs(3) /zs(1) ;p!`~pq21zs(3) /zs(2) ;p!`

3zs(1)
2/r zs(2)

1/r S zs(1)

~q22zs(2) /zs(1) ;p!`~pq22zs(3) /zs(2) ;p!`

~pq2zs(2) /zs(1) ;p!`~pq2zs(3) /zs(2) ;p!`

2q21zs(2)

~pq22zs(2) /zs(1) ;p!`~q22zs(3) /zs(2) ;p!`

~pq2zs(2) /zs(1) ;p!`~pq2zs(3) /zs(2) ;p!`
DF~zs(1)!F~zs(2)!F~zs(3)!50.

~3.66!

Definition 3.5 (Elliptic Algebra Uq,p(A2
(2))): We define the elliptic algebra Uq,p(A2

(2)) to be
the associative algebra generated by the currents E(z), F(z), and K(z) satisfying the relations
(3.56)–(3.66).

Corollary 3.6: The construction of E(z), F(z), and K(z) given in (3.53)–(3.55) is a realiza-
tion of the elliptic algebra Uq,p(A2

(2)) in terms of the Drinfeld generator of the quantum gro
Uq(A2

(2)) and the Heisenberg algebraC$H%.
For later convenience, let us introduce auxiliary currentsKe(z),(e50,6) by

K1~z!5K~qr 22z!5k~qr 22z!e2Q~qr 22z!(1/r 21/r* )P1h/2r , ~3.67!

K0~z!5K~qrz!21K~qr 21z!5k~qrz!21k~qr 21z!q(1/r* 21/r )P2h/2r , ~3.68!

K2~z!5K~qr 11z!215k~qr 11z!21~qr 11z!(1/r* 21/r )P2h/2reQ. ~3.69!
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Then one can verify the following relations:
Proposition 3.7:

K1~z1!E~z2!52

Fu12u21
c21

2 G*
Fu12u21

c23

2 G* E~z2!K1~z1!, ~3.70!

K0~z1!E~z2!5

Fu12u21
c

2G* Fu12u21
c21

2 G*
Fu12u21

c

2
21G* Fu12u21

c11

2 G* E~z2!K0~z1!, ~3.71!

K2~z1!E~z2!52

Fu12u21
c

2G*
Fu12u21

c

2
11G* E~z2!K2~z1!, ~3.72!

K1~z1!F~z2!52
@u12u22 3

2#

@u12u22 1
2#

F~z2!K1~z1!, ~3.73!

K0~z1!F~z2!5
@u12u221#@u12u21 1

2#

@u12u2#@u12u22 1
2#

F~z2!K0~z1!, ~3.74!

K2~z1!F~z2!52
@u12u211#

@u12u2#
F~z2!K2~z1!, ~3.75!

H6~q6c/2z!5H~q6rz!5kK2~z!21K0~z!5k8K1~qz!K0~qz!21. ~3.76!

Here m is given in (3.58) andk8 is given by

k85
$pq10%$pq7%$pq5%$pq6%2$pq2%$p* q9%* $p* q3%* $p* q5%* 2$p* q8%* 2

$pq9%$pq3%$pq5%2$pq8%2$p* q2%* $p* q10%* $p* q7%* $p* q5%* $p* q6%* 2 . ~3.77!

IV. HALF-CURRENTS

As a preparation for theRLL-formulation of the elliptic algebraUp,q(A2
(2)) in the next sec-

tion, we here introduce the half currents, and investigate their commutation relations.
Let us first summarize the commutation relations between the Heisenberg algebraC$H% and

the elliptic currents. From~3.53!–~3.55!, we have the following relations:
Proposition 4.1:

@E~z!,P#5E~z!, FF~z!,P1
h

2G5F~z!, ~4.1!

FE~z!,P1
h

2G50, @F~z!,P#50, ~4.2!

@K1~z!,P#5K1~z!5FK1~z!,P1
h

2G , ~4.3!
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@K0~z!,P#505FK0~z!,P1
h

2G , ~4.4!

@K2~z!,P#52K2~z!5FK2~z!,P1
h

2G . ~4.5!

Now we define the half currentsE2,0
1 (u), E0,1

1 (u), E2,1
1 (u), F0,2

1 (u), F1,0
1 (u), F1,2

1 (u),
andKe

1(u),(e50,6), by the following formulas.
Definition 4.1 (Half Currents):

Ke
1~u!5Ke~z!, ~e50,6 !, ~4.6!

E2,0
1 ~u!5a20* R

C20*

dz8

2p iz8
E~z8!

Fu2u82P1
c11

2 G
1

*
@1#*

Fu2u81
c

2G* FP2
1

2G
1

*
, ~4.7!

E0,1
1 ~u!5a01* R

C01
*

dz8

2p iz8
E~z8!

Fu2u82P1
c

2G
1

*
@1#*

Fu2u81
c21

2 G* FP2
1

2G
1

*
, ~4.8!

E2,1
1 ~u!5a21* R R

C21
*

dz8

z8

dz9

z9
E~z8!E~z9!

@1#* 2

FP2
1

2G
1

*
@2P22#*

3

Fu2u822P121
c

2G* @u82u92P#1*

Fu2u81
c

2G* Fu82u92
1

2G* , ~4.9!

F0,2
1 ~u!5a02 R

C02

dz8

2p iz8
F~z8!

Fu2u81P1
h21

2 G
1

@1#

@u2u8#FP1
h21

2 G
1

, ~4.10!

F1,0
1 ~z!5a10 R

C10

dz8

2p iz8
F~z8!

Fu2u81P1
h

2
21G

1

@1#

Fu2u82
1

2GFP1
h21

2 G
1

, ~4.11!
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F1,2
1 ~u!5a12 R R

C12

dz8

2p iz8

dz9

2p iz9
F~z8!F~z9!

FP1
h

2
21G

1

@1#2

FP1
h23

2 G
1

FP1
h

2
22G

1

@2P1h22#

3

@u2u812P1h23#@u2u911#Fu82u91P1
h

2
21G

1

@u2u8#@u2u9#Fu82u91
1

2G . ~4.12!

Here C20* is a simple closed contour that encircles pqcz but not qcz. We abbreviate it as
C20* :up* qczu,uz8u,uqczu. Similarly the others are given by

C20* : up* qczu,uz8u,uqczu, ~4.13!

C01* : up* qc21zu,uz8u,uqc21zu, ~4.14!

C21* : up* qcu,uz8u,uqczu, up* qczu,uz9u,uqczu, up* qz8u,uz9u,uqz8u, ~4.15!

C02 : upzu,uz8u,uzu, ~4.16!

C01* : upq21zu,uz8u,uq21zu, ~4.17!

C12 : upzu,uz8u,uzu, upzu,uz9u,uzu, upqz8u,uz9u,uqz8u. ~4.18!

The constants a20* ,a01* ,a21* , a02 ,a10 ,a12 are chosen to satisfy

ma02a20* @1#*

q2q21 5215
m8a10a01* @1#*

q2q21 , a125a02a02 , a21* 5a20* a20* . ~4.19!

We then verify the following commutation relations.
Theorem 4.5:The half-currents satisfy the following relations:

K6
1~u1!K6

1~u2!5r~u!K6
1~u2!K6

1~u1!, ~4.20!

K0
1~u1!K0

1~u2!5
r~u!r~u!

r~u1 1
2!r~u2 1

2!
K0

1~u2!K0
1~u1!, ~4.21!

K2
1~u1!K1

1~u2!5K1
1~u2!K2

1~u1!r~u!
@u12u211#@u12u21 3

2#@u12u2#* @u12u21 1
2#*

@u12u2#@u12u21 1
2#@u12u211#* @u12u21 3

2#*
,

~4.22!

K2
1~u1!K0

1~u2!5r~u!
@u12u2#* @u12u211#

@u12u211#* @u12u2#
K0

1~u2!K2
1~u1!, ~4.23!

K0
1~u1!K1

1~u2!5r~u!
@u12u2#* @u12u211#

@u12u211#* @u12u2#
K1

1~u2!K0
1~u1!, ~4.24!

K2
1~u1!21E2,0

1 ~u2!K2
1~u1!52E2,0

1 ~u2!
@u11#*

@u#*
1E2,0

1 ~u1!
@P1 1

2 1u#1* @1#*

@P11/2#1* @u#*
, ~4.25!
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K1
1~u2!21E0,1

1 ~u1!K1
1~u2!52

@u11#*

@u#*
E0,1

1 ~u1!1
@2P1 1

2 1u#1* @1#*

@2P1 1
2#

1* @u#* E0,1
1 ~u2!,

~4.26!

K2
1~u1!21E2,1

1 ~u2!K2
1~u1!

5E2,1
1 ~u2!

@u1 3
2#* @u11#*

@u1 1
2#* @u#*

1K2
1~u1!21E2,0

1 ~u2!K2
1~u1!E2,0

1 ~u1!
@2P212u#1* @1#*

@P1 1
2#1* @u1 1

2#*

2E2,1~u1!S @22P112u#* @u1 3
2#* @1#*

@22P11#* @u1 1
2#* @u#*

1
@2P22#* @P#1* @22P2 1

2 2u#* @1#*

@2P#* @P21#1* @22P11#* @u1 1
2#*

D ,

~4.27!

K2
1~u1!F0,2

1 ~u2!K2~u1!2152
@u11#

@u#
F0,2

1 ~u2!1

F2P1
2h11

2
1uG

1

@1#

F2P1
2h11

2 G
1

@u#

F0,2
1 ~u2!,

~4.28!

K1
1~u2!F1,0

1 ~u1!K1
1~u2!2152F1,0

1 ~u1!
@u11#

@u#
1F1,0

1 ~u2!

FP1
h11

2
1uG

1

@1#

FP1
h11

2 G
1

@u#

, ~4.29!

K2
1~u1!F1,2

1 ~u2!K2
1~u1!21

5

Fu1
3

2G@u11#

Fu1
1

2G@u#

F1,2
1 ~u2!2

FP1
h

2
212uG

1

@1#

F2P1
2h11

2 GFu1
1

2G F0,2
1 ~u1!K2

1~u1!F0,2
1 ~u2!K2

1~u1!21

2S Fu1
3

2G@2P1h112u#@1#

Fu1
1

2G@u#@2P1h11#

1

F2P1h2
1

2
2uG@1#@2P1h12#FP1

h

2G
1

@2P1h11#@2P1h#FP1
h

2
11G

1

Fu1
1

2G D F1,2
1 ~u1!,

~4.30!
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@E2,0
1 ~u1!,F0,2

1 ~u2!#

52K0
1~u2!

F2P2
1

2
1uG

1

*
@1#*

F2P2
1

2G
1

*
@u#*

K2
1~u2!211K2

1~u1!21

F2P1
2h11

2
1uG

1

@1#

F2P1
2h11

2 G
1

@u#

K0
1~u1!,

~4.31!

@E0,1
1 ~u1!,F1,0

1 ~u2!#

52K0
1~u2!21

FP1
h11

2
1uG

1

@1#

FP1
h11

2 G
1

@u11#

K1
1~u2!1K1

1~u1!

FP2
1

2
1uG

1

*
@1#*

FP2
1

2G
1

*
@u11#*

K0
1~u1!21,

~4.32!

where u5u12u2 .
Proof: The relations~4.20!–~4.24! are direct consequences of the commutation relation of

elliptic currentK(z). Let us consider the relations~4.25!–~4.32!. These relations can be proved b
reducing them to identities of the theta functions. We show the relation~4.25!. The relations
~4.26!, ~4.28!, and~4.29! can be proved in the same way. From the definition of the half cur
~4.7! and the commutation relation of~3.72!, the LHS of~4.25! yields

K2
1~u1!E2,0

1 ~u2!K2
1~u1!21

52a2,0* R
C20*

dz8

2p iz8
E~z8!

Fu12u81
c

2
11G* Fu22u82P1

c21

2 G
1

*
@1#*

Fu12u81
c

2G* Fu22u81
c

2G* FP1
1

2G
1

*
.

~4.33!

Then the equality is verified by the following identity of the theta functions:

2

Fu12u81
c

2
11G* Fu22u82P1

c21

2 G
1

*

Fu12u81
c

2G* Fu22u81
c

2G* FP1
1

2G
1

*
52

Fu22u82P1
c11

2 G
1

*
@u12u211#*

Fu22u81
c

2G* @u12u2#* FP2
1

2G
1

*

1

Fu12u82P1
c11

2 G
1

* Fu12u21P1
1

2G
1

*
@1#*

Fu12u81
c

2G* @u12u2#* FP2
1

2G
1

* FP1
1

2G
1

*
.
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Next, we show the relation~4.31!. The relation~4.32! can be proved in the same wa
Integrating the delta function appearing in~3.64! and using~3.76!, we have

~ma02a20* !21~q2q21!@E2,0
1 ~u1!,F0,2

1 ~u2!#

5 R
C1

dz8

2p iz8
K2

1~u8!21K0
1~u8!

Fu12u82P1
1

2G
1

*
@1#* Fu22u81P1

h21

2 G
1

@1#

@u12u8#* FP2
1

2G
1

*
@u22u8#FP1

h21

2 G
1

2 R
C2

dz8

2p iz8
K2

1~u82r !21K0
1~u82r !

3

Fu12u82P1c1
1

2G
1

*
@1#* Fu22u81P1

h21

2 G
1

@1#

@u12u81c#* FP2
1

2G
1

*
@u22u8#FP1

h21

2 G
1

. ~4.34!

Here the contoursC6 are now

C1: up* z1u,upz2u,uz8u,uz1u,uz2u, ~4.35!

C2: upz1u,upz2u,uz8u,uq2cz1u,uz2u. ~4.36!

When we change the integration variablez8→pz8 in the second term, the integrand becomes
same as the first term, but the contourC2 is changed toC̃2 given by

C̃2: uz1u,uz2u,uz8u,up21q2cz1u,up21z2u. ~4.37!

Taking the residues atz85z1 ,z2 , we get~4.31!.
We give a proof of~4.27! in Appendix C. One can prove~4.30! in a similar way.

Q.E.D.

V. THE L-OPERATOR OF Uq,p„A 2
„2…

… AND RELATION TO Bq ,l„A 2
„2…

…

In this section, we clarify the relation between two elliptic algebrasUq,p(A2
(2)) and

Bq,l(A2
(2)). For this purpose, we first construct aL-operator which gives theRLL-formulation of

Uq,p(A2
(2)). Then modifyingL-operator by removing the Heisenberg generatorsQ,ā, we derive

the dynamicalRLL-relation ~5.8! characterizing the elliptic quantum groupBq,l(A2
(2)).

A. L -operator of Uq,p„A 2
„2…

…

Definition 5.1: By using the half-currents, we define the L-operator L̂1(u)PEnd(C3)
^ Uq,p(A2

(2)) as follows:

L̂1~u!5S 1 F10
1 ~u! F12

1 ~u!

0 1 F02
1 ~u!

0 0 1
D S K1

1~u! 0 0

0 K0
1~u! 0

0 0 K2
1~u!

D S 1 0 0

E01
1 ~u! 1 0

E21
1 ~u! E20

1 ~u! 1
D .

~5.1!

Here matrix elements are the half-currents given in the previous section.
By a direct comparison with the relations of the half-currents appeared in Theorem 4.2, w

the following commutation relations of theL-operator:
Theorem 5.1:The L-operator L̂1(u) satisfies the following RLL5LLR* relation:
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R1(12)~u12u2 ,P1h/2!L̂1(1)~u1!L̂1(2)~u2!

5L̂1(2)~u2!L̂1(1)~u1!R1* (12)~u12u2 ,P2~h(1)1h(2)!/2!. ~5.2!

The above equation should be understood as equation of the operators acting on the sC3

^ C3
^ Uq,p(A2

(2)). The operatorh in LHS acts onUq,p(A2
(2)), whereas the operatorh(1)1h(2) in

RHS acts onC3
^ C3 as

S 2 0 0
0 0 0

0 0 22
D ^ 111^ S 2 0 0

0 0 0
0 0 22

D .

B. Uq,p„A 2
„2…

… and Bq ,l„A 2
„2…

…

Based on the above theorem, we give a relation betweenUq,p(A2
(2)) andBq,l(A2

(2)). We argue
that theRLL relation~5.2! is equivalent to the dynamicalRLL relation ofBq,l(A2

(2)). Hence we
can regard the elliptic currents inUq,p(A2

(2)) as an elliptic analog of the Drinfeld currents
Uq(A2

(2)) providing a new realization of the elliptic quantum groupBq,l(A2
(2)). In order to show

this, we consider the realization ofUq,p(A2
(2)) given in ~3.53!–~3.55! and modify the half-currents

in such a way that they have noQ,ā dependence,

k1~u,P!5K1~u!eQ, k0~u,P!5K0~u! k2~u,P!5K2~u!e2Q, ~5.3!

f 1,0~u,P!5eāF1,2~u!, f 0,2~u,P!5eāF0,2~u!, f 1,2~u,P!5eāF1,2~u!eā, ~5.4!

e0,1~u,P!5E0,1~u!eQe2ā, e2,0~u,P!5eQe2āE2,0~u!,

e2,1~u,P!5eQe2āE2,1~u!eQe2ā. ~5.5!

We regard them as the currents inUq(A2
(2)) with parametersP andr . Then we define a dynamica

L-operatorL̂1(u,P) by

L̂1~u,P!5S 1 f 10
1 ~u,P! f 12

1 ~u,P!

0 1 f 02
1 ~u,P!

0 0 1
D S k1

1~u,P! 0 0

0 k0
1~u,P! 0

0 0 k2
1~u,P!

D
3S 1 0 0

e01
1 ~u,P! 1 0

e21
1 ~u,P! e20

1 ~u,P! 1
D . ~5.6!

The twoL-operatorsL̂1(u) and L̂1(u,P) are related by

L̂1~u,P!5L̂1~u!S eQ

1

e2Q
D 5L̂1~u!eQh(1)/2. ~5.7!

Here

h(1)5S 2 0 0
0 0 0

0 0 22
D ^ 1.
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Substituting this into~5.2! and moving the factore2Qh( j )/2 ( j 51,2) to the right end in the both
sides, we get the following statement:

Corollary 5.2: The dynamical L-operator L1(u,P) satisfies the dynamical RLL relation,

R1(12)~u12u2 ,P1h/2!L1(1)~u1 ,P!L1(2)~u2 ,P1h(1)/2!

5L1(2)~u2 ,P!L1(1)~u1 ,P1h(2)/2!R1* (12)~u12u2 ,P!. ~5.8!

Comparing this with~2.23!, we identify ourL1(u,P) with L1(u,s) in ~2.23! ands with P.
We hence regard the elliptic currentsE(z), F(z), andK(z) in Uq,p(A2

(2)) as the Drinfeld currents
of the elliptic quantum groupBq,l(A2

(2)), althoughUq,p(A2
(2)) and Bq,l(A2

(2)) are different by
tensoring the Heisenberg algebraC$H%. More precisely,Uq,p(A2

(2)) is an extension of the algebr
Bq,l(A2

(2)) by tensoring the Heisenberg algebraC$H%; first tensoring the generatorseQ,eā, then
regardings5P and imposing the commutation relations~3.51! and ~3.52!. Naively we regard
Uq,p(A2

(2)) asBq,l(A2
(2)) ^ C$P%C$H%.

VI. VERTEX OPERATORS

Tensoring the Heisenberg algebra breaks down the coalgebra structure ofBq,l(A2
(2)). But we

can define theUq,p(A2
(2)) counterparts of the intertwining operators ofBq,l(A2

(2)). We call such
operators the vertex operators ofUq,p(A2

(2)). In this section, we study such vertex operators a
compare them with those of the diluteAL model obtained in Ref. 15.

A. Intertwining relations

We here derive theUq,p(A2
(2)) counterparts of the dynamical intertwining relations~2.27!–

~2.28!. In the next subsection, we use such relations to derive a free field realization of the
operators.

Let us first define an extension of theUq modules by

F̂5 %
mPZ

F^ emQ.

Let FW(u,P) andCW* (u,P) be the type I and type II intertwining operators ofBq,l(A2
(2)) ~2.27!–

~2.28!. We define type I and type II vertex operatorsF̂W(u),ĈW* (u) of Uq,p(A2
(2)) as the following

extensions of the corresponding intertwining operators ofBq,l(A2
(2)):

F̂W~u!5FW~u1c/2,P! :F̂→F̂8^ Wz , ~6.1!

ĈW* ~u!5CW* ~u,P!eh(1)Q/2 :Wz^ F̂→F̂8. ~6.2!

From the commutation relation ofP and Q, the new operatorsF̂W(u) and ĈW* (u) satisfy the
following ‘‘intertwining relations’’:

F̂W
(3)~u2!L̂V

1(1)~u1!5RVW
1(1,3)~u12u2 ,P1h/2!L̂V

1(1)~u1!F̂W
(3)~u2!, ~6.3!

L̂V
1(1)~u1!ĈW*

(2)~u2!5ĈW*
(2)~u2!L̂V

1(1)~u1!RVW
1* (1,2)~u12u2 ,P2~h(1)1h(2)!/2!. ~6.4!

Now let us restrict ourselves to the vector representationW5V>Cv1 % Cv0% Cv2 . In this case,
theR-matrix RVV

1 (u,P) is given byR1(u,P) in ~2.18!, and theL-operatorL̂V
1(u,P) by L̂1(u,P)

in ~5.6!. Let us set the components of the vertex operatorsF j (u),C j* (u),( j 56,0) by

F̂S u2
1

2D5 (
j 56,0

F j~u! ^ v j , ~6.5!
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Ĉ* S u2
c11

2 D ~v j ^ • !5C j* ~u!, ~6.6!

and the matrix elements of theL-operatorL̂1(u) by

L̂1~u!v j5 (
m50,6

vmLm, j
1 ~u!. ~6.7!

Let us investigate the relations~6.3! and ~6.4! in detail. From the component
@(2,2),( j )#, j 56,0 of ~6.3!, we have

F2~u21 1
2!L2, j

1 ~u1!5r1~u12u2!L2, j
1 ~u1!F2~u21 1

2!. ~6.8!

Putting the definitionL2, j
1 (u)5K2

1(u)E2, j
1 (u) into the above, we have

F2~u21 1
2!K2

1~u1!5r1~u12u2!K2
1~u1!F2~u21 1

2!, ~6.9!

@F2~u1!,E2,0
1 ~u2!#50, ~6.10!

@F2~u1!,E2,1
1 ~u2!#50. ~6.11!

We have the sufficient condition of~6.10! and ~6.11!,

F2~u1!E~u2!5E~u2!F2~u1!, @F2~z1!,P#50. ~6.12!

From the component@(0,2),(2)# of ~6.3!, we have

F2~u21 1
2!F0,2

1 ~u1!K2
1~u1!5r1~u!R̄02

02~u,P1h/2!F0,2
1 ~u1!K2

1~u1!F2~u21 1
2!

1r1~u!R̄02
20~u,P1h/2!K2

1~u1!F0~u21 1
2!. ~6.13!

Let us assume the operator productK2
1(u1)F2(u21 1

2) has no pole atu12u25212r . Later we
will check that, forc51, this assumption is satisfied in a free field realization. Then from~6.9!, we
conclude the operator productF2(u21 1

2)K2
1(u1) has zero atu12u25212r . Therefore setting

u12u25212r in ~6.13!, we have

05
@P1h/211/2#1

@P1h/221/2#1
F0,2

1 ~u1!K2
1~u1!F2S u21

1

2D1K2
1~u1!F0S u21

1

2D . ~6.14!

Then we have

F0~u!5F0,2
1 ~u2r 2 1

2!F2~u!. ~6.15!

Substituting~6.8! and ~6.15! into ~6.13!, we get

F2~u1!F~u2!52
@u12u211/2#

@u12u221/2#
F~u2!F2~u1!. ~6.16!

Similarly, in order to investigate the structure of the componentF1(u), we have, from the
components of@(1,2),(2)# of ~6.3!,
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F2~u21 1
2!F1,2

1 ~u1!K2
1~u1!5r1~u!R̄12

12~u,P1h/2!F1,2
1 ~u1!K2

1~u1!F2~u21 1
2!

1r1~u!R̄12
00 ~u,P1h/2!F0,2

1 ~u1!K2
1~u1!F0~u21 1

2!

1r1~u!R̄12
21~u,P1h/2!K2

1~u1!F1~u21 1
2!. ~6.17!

On the other hand, from the component@(1,2),(2,2)# of RLL relation ~5.2!, we have

K2
1~u2!F1,2

1 ~u1!K2
1~u2!215R12

12~u!F1,2
1 ~u1!1R12

00 ~u!F0,2
1 ~u1!K2

1~u1!F0,2
1 ~u2!K2

1~u1!21

1R12
21~u!K2

1~u1!F1,2
1 ~u2!K2

1~u1!21. ~6.18!

Putting the above into~6.17!, we get

F2~u21 1
2!F1,2

1 ~u1!K2
1~u1!5r1~u!R̄12

21~uuP1h/2!K2~u1!F1~u21 1
2!

1r1~u!K2
1~u22r !F1,2

1 ~u1!K2
1~u22r !21K2

1~u1!F2~u21 1
2!

1r1~u!R̄12
21~uuP1h/2!K2

1~u1!F1,2
1 ~u22r !F2~u21 1

2!.

~6.19!

Note that at the pointu12u25212r , r1(u) has a zero, butr1(u)R̄12
21(uuP1h/2) have

no zeros. In addition, under the same assumption given just below~6.13!, the product
F2(u21 1

2)K2
1(u1) vanishes atu12u25212r . Settingu12u25212r in ~6.19!, we thus have

the following formula forF1(z):

F1~u!52F1,2
1 ~u2r 2 1

2!F2~u!. ~6.20!

In the next section, we construct a free field realization of the type-I vertex operators usin
relations~6.9!, ~6.12!, ~6.15!, ~6.16!, and~6.20! for c51. We can check that the resultant vert
operators satisfy the intertwining relation~6.3!.

Similarly, the sufficient conditions for the type-II vertex operators are extracted from~6.4! as
follows:

C2* S u21
11c

2 DK2~u1!r1* ~u!5K2
1~u1!C2* S u21

11c

2 D , ~6.21!

C2* ~u1!F~u2!5F~u2!C2* ~u1!, @C2* ~u!,P1h/2#50, ~6.22!

C2* ~u1!E~u2!52

Fu12u22
1

2G*
Fu12u21

1

2G* E~u2!C2* ~u1!, ~6.23!

C1* ~u!52C2* ~u!E2,1S u2
11c

2
2r * D , ~6.24!

C0* ~u!5C2* ~u!E2,0S u2
11c

2
2r * D . ~6.25!
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B. Free field realizations

Now we construct a free field realization of the vertex operators fixing the representation
c51. For this purpose, we introduce the simple root operatora, defined by

@h,a#52, @am ,a#50, @P,a#50, @Q,a#50, @a,ā#50. ~6.26!

If we introduceâ by

â5a1ā, ~6.27!

we have

@h,â#52, @am ,â#50, @P,â#50, @Q,â#5p i . ~6.28!

Then the following statement holds:
Proposition 6.1: For c51, we have the free field realization of the currents E(z) and F(z).

E~z!5e~q!:expS 2 (
mÞ0

1

@m#q
amz2mD :eâzh/211/2e2Qz2P/r* , ~6.29!

F~z!5e~q!:expS (
mÞ0

1

@m#q
bmz2mD :e2âz2h/211/2zP/r 1h/2r . ~6.30!

Here we have set

e~q!5~q1/21q21/2!21/2. ~6.31!

Together with free field realizations ofK(z) ~3.55!, we get a free field realization of the level on
elliptic algebraUq,p(A2

(2)).
Now substituting the free field realization ofE(z), F(z), K(z) into ~3.53!–~3.55!, we obtain

a realization of the half-currents and theL-operatorL̂1(u) satisfying theRLL-relation ~5.2! for
c51. Using thisL-operator in the ‘‘intertwining relations,’’~6.9!, ~6.12!, ~6.15!, ~6.16!, ~6.20!, for
type I and~6.21!–~6.25! for the type II, one can solve them for the vertex operators. The res
are stated as follows:

Theorem 6.2:The highest components of the type-I and type-II vertex operatorsF2(u) and
C2* (u) are realized in terms of the free field by

F2~z!5..expS 2 (
mÞ0

1

@2m#q2@m#q
bmz2mD :eâzh/211/2z2P/r 2h/2r 21/r , ~6.32!

C2* ~z!5..expS (
mÞ0

@rm#q

@2m#q2@m#q
amz2mD :e2âz2h/211/2eQzP/r* 11/r* . ~6.33!

For the other components of type-I vertex operatorF j (u)( j 56,0), we get the following, by
using ~6.15! and ~6.20!,
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F0~u!5a0,2 R
C0

dz8

2p iz8
F2~u!F~z8!

Fu2u81P1
h

2G
1

Fu2u81
1

2GFP1
h

2
1

1

2G
1

52a0,2 R
C0

dz8

2p iz8
F~z8!F2~u!

Fu2u81P1
h

2G
1

Fu2u82
1

2GFP1
h

2
1

1

2G
1

. ~6.34!

Here the contourC0 is specified by the condition.

C0 : uq21zu,uz8u,up21q21zu.

The componentF1(u) is given by

F1~u!52a1,2 R R
C1

dz8

2p iz8

dz9

2p iz9
F2~u!F~z8!F~z9!

FP1
h

2G
1

FP1
h

2
2

1

2G
1

FP1
h

2
21G

1

@2P1h#

3

Fu2u812P1h2
3

2GFu82u91P1
h

2G
1

Fu2u81
1

2GFu82u91
1

2G

52a1,2 R R
C1

dz8

2p iz8

dz9

2p iz9
F~z8!F~z9!F2~u!

FP1
h

2G
1

FP1
h

2
2

1

2G
1

FP1
h

2
21G

1

@2P1h#

3

Fu2u812P1h2
3

2GFu82u91P1
h

2G
1

Fu2u91
1

2G
Fu2u82

1

2GFu2u92
1

2GFu82u91
1

2G . ~6.35!

The contourC1 is specified by

C1 : uq21zu,uz8u,up21q21zu, uq21zu,uz9u,up21q21zu, upqz8u,uz9u,uqz8u.

Similarly, for type-II vertex operators, the componentC0* (u) is given by

C0* ~u!5a2,0* R
C0*

dz8

2p iz8
C2* ~u!E~z8!

@u2u82P#1*

Fu2u82
1

2G* FP2
1

2G
1

*

52a2,0* R
C0*

dz8

2p iz8
E~z8!C2* ~u!

@u2u82P#1*

Fu2u81
1

2G* FP2
1

2G
1

*
. ~6.36!
                                                                                                                



r

e

zation

-

3171J. Math. Phys., Vol. 45, No. 8, August 2004 Drinfeld realization of elliptic quantum group

                    
The contourC0* satisfies

C0* : uq21zu,uz8u,uqzu.

The componentC0* (u) is given by

C1* ~u!52a2,1* R R
C1

*

dz8

2p iz8

dz9

2p iz9
C2* ~u!E~z8!E~z9!

1

FP2
1

2G
1

*
@2P22#*

3

Fu2u822P1
3

2G* @u82u92P#1*

Fu2u82
1

2G* Fu82u92
1

2G*
52a2,1* R R

C1
*

dz8

2p iz8

dz9

2p iz9
E~z8!E~z9!C2* ~u!

1

FP2
1

2G
1

*
@2P22#*

3

Fu2u822P1
3

2G* @u82u92P#1* Fu2u92
1

2G*
Fu2u81

1

2G* Fu2u91
1

2G* Fu82u92
1

2G* . ~6.37!

Here the contourC1* is specified by the condition

C1* : uq21zu,uz8u,uqzu, uq21zu,uz9u,uqzu, uq21z8u,uz9u,uqz8u.

In C0* andC1* , the inequality such asuq21zu,uz8u,uqzu means that the integration contou
encloses the poleq21z but notqz.

Remark:The free field realizations of the vertex operators~6.32!–~6.37! are the same as thos
of the diluteAL model obtained in Ref. 15, up to a gauge transformation.

In addition we can verify the following commutation relation:
Proposition 6.3: The highest componentsF2(u) and C2* (u) satisfy

F2~u1!C2* ~u2!5x~u12u2!C2* ~u2!F2~u1!. ~6.38!

Here we have set

x~u!52z21
Qq6~qz!Qq6~q2z!

Qq6~q/z!Qq6~q2/z!
. ~6.39!

C. Commutation relations of the vertex operators

We next study the commutation relations of the vertex operators and show that our reali
satisfies the full intertwining relations forc51.

Theorem 6.4: The free field realizations of the type-I vertex operatorFm(u) ~6.32!, ~6.34!,
~6.35!, and the type-II vertex operatorCm* (u) ~6.33!, ~6.36!, ~6.37!, satisfy the following commu
tation relations:

F j 2
~u2!F j 1

~u1!5 (
j 18 , j 2856,0

R
j 1 j 2

j 18 j 28~u12u2 ,P1h! F j
18
~u1!F j

28
~u2!, ~6.40!
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C j 1
* ~u1!C j 2

* ~u2!5 (
j 18 , j 2856,0

C j
28

* ~u2!C j
18

* ~u1! R
j
18 j

28

* j 1 j 2~u12u2 ,P!, ~6.41!

F j~u1!Ck* ~u2!5x~u12u2! Ck* ~u2!F j~u1!. ~6.42!

Here we set

R~u,P1h!5m~u!R̄~v,P1h!, R* ~u,P!5m* ~u!R̄* ~u,P!, ~6.43!

with

m~u!5z~1/r ! 21 $pq4z%$pq3z%$q3z%$q2z%$pq/z%$p/z%$q6/z%$q5/z%

$pq4/z%$pq3/z%$q3/z%$q2/z%$pqz%$pz%$q6z%$q5z%
~6.44!

and m* (u)5m(u)ur→r* . Here x(u) is given by (6.39).
The proof is similar to those of Theorem 4.2.
Now let us investigate the intertwining relation for levelc51. For this purpose, we construc

a L-operator as a composition of type-I and type-II vertex operators.17

Theorem 6.5: For c51, the components of the L-operator L̂1(u) (5.1) is given by the
following product of the type-I and type-II vertex operators:

L j ,k
1 ~u!5g21Ck* ~u1r !F j~u1r 11/2! ~ j ,k56,0!. ~6.45!

Here we set

g52
~pq6;q6!`~pq5;q6!`

~pq3;q6!`~pq2;q6!`
S $q2p%$q3p%$q3p%$q4p%

$p%$qp%$q5p%$q6p%
3~p↔p* !21D . ~6.46!

The proof is similar to the one of Theorem 6.5 in Ref. 8.
Remark:By using the commutation relations of the vertex operators~6.40!–~6.42! and the

formula

r1~u!

r1* ~u!
5

m~u!x~ 1
2 2u!

m* ~u!x~ 1
2 1u!

, ~6.47!

one can prove theRLL5LLR* relation ~5.2! for c51 directly.
In the same way, one can verify the ‘‘intertwining relations’’~6.3! and ~6.4! of vertex opera-

tors.
Corollary 6.6: For c51, the type-I and the type-II vertex operatorsF̂V(u), ĈV* (u) satisfy the

full intertwining relations (6.3) and (6.4) with V5W>C3.

VII. DISCUSSION

Extending the construction of the elliptic algebra to the twisted affine Lie algebra cas
have derived the elliptic algebraUq,p(A2

(2)), p5q2r and shown that it provides the Drinfel
realization of the elliptic quantum groupBq,l(A2

(2)). Based on this, we have derived the type-I a
type-II vertex operators ofUq,p(A2

(2)) and identified them with the vertex operators in the dilu
AL model withr 52(L11)/(L12). Our result thus gives a representation theoretical founda
to the work.15

There are some open problems.
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~i! We here studied the simplest twisted elliptic quantum groupBq,l(A2
(2)) and associated

elliptic algebraUq,p(A2
(2)). To generalize our consideration to the higher rank cases a

ciated with A2n
(2) and A2n11

(2) , or moreover to other types of affine Lie algebras, is
interesting problem.

~ii ! Our realization of the elliptic algebraUq,p(A2
(2)) based on the Drinfeld currents o

Uq(A2
(2)) and the Heisenberg algebraC$H% is valid for a generic levelc. In order to

perform an algebraic analysis of the solvable lattice models, a free field realizati
useful. For example, to consider a fusion of the diluteAL model, i.e., a higher spin exten
sion, we need a free field realization~Wakimoto construction! of the elliptic algebra
Uq,p(A2

(2)) in a higher level.
~iii ! The Wakimoto realization of the affine quantum groupUq(A2

(2)) itself is interesting. It
should be used to solve theq-KZ equation as well as theq-difference equation for the
twistor F(r ,s), which we have solved partly~see Appendix B!. The same thing is true fo
the other types of affine Lie algebra and should lead us to a proof of the conjecture o
connection matrix of theq-KZ equation given by Frenkel and Reshetikhin.18

~iv! It is known in some cases that the generating functions of theq-deformed Virasoro or
W-algebras can be obtained from a fusion of the vertex operators of corresponding e
algebraUq,p(g).19,20,15,21It is interesting to examine the same procedure in variousUq,p(g)
and derive correspondingq-W algebras. The results should be compared with those in
22.

~v! It is also an interesting problem to investigate the scaling limit of the half-currents an
L-operators ofUq,p(A2

(2)) and derive the vertex operators.19,23The result should be applie
to the Izergin–Korepin model24 in the massless regime where a generic form of the co
lation functions was studied in Ref. 25. The type-II vertex operators should provide
Zamolodchikov–Faddeev algebra for theA2

(2) Toda field theory with imaginary coupling
constant, and enable us to derive the solitonS-matrix.

We hope to report on some of the issues listed here in the near future.
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APPENDIX A: FINITE DIMENSIONAL REPRESENTATION

The evaluation module (pw ,Vw) in terms of the Drinfeld generators, is defined by the f
lowing formulas:

pw~h!52~E112E22!, pw~c!50, ~A1!

pw~am!5
@m#q

m
~w/q!m~q2mE111~12qm!E002q2mE22!, ~A2!

pw~xk
1!5~w/q!k~aE101qkbE02!, ~A3!

pw~xk
2!5~w/q!k~qkb21E201a21E01!. ~A4!

Here we have used
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E115S 1 0 0

0 0 0

0 0 0
D ,

E005S 0 0 0

0 1 0

0 0 0
D ,

and

E225S 0 0 0

0 0 0

0 0 1
D ,

etc. In what follows we seta5b51. We have

pw~x1~z!!5E10d~w/qz!1E02d~w/z!, ~A5!

pw~x2~z!!5E20d~w/z!1E01d~w/qz!, ~A6!

pw~u1~z,p!!5
~pq3z/w;p!`

~pqz/w;p!`
E111

~pq2z/w;p!`~pq21z/w;p!`

~pqz/w;p!`~pz/w;p!`
E001

~pq22z/w;p!`

~pz/w;p!`
E22 ,

~A7!

pw~u2~z,p!!5
~pq23w/z;p!`

~pq21w/z;p!`
E111

~pqw/z;p!`~pq22w/z;p!`

~pw/z;p!`~pq21w/z;p!`
E001

~pq2w/z;p!`

~pw/z;p!`
E22 .

~A8!

Let us calculate finite dimensional representation of the elliptic current,

pw~e~z,p!!5
~pq3z/w;p!`

~pqz/w;p!`
E10d~w/qz!1

~pq2z/w;p!`~pq21z/w;p!`

~pqz/w;p!`~pz/w;p!`
E02d~w/z!, ~A9!

pw~ f ~z,p!!5
~pqw/z;p!`~pq22w/z;p!`

~pw/z;p!`~pq21w/z;p!`
E20d~w/z!1

~pq23w/z;p!`

~pq21w/z;p!`
E01d~w/qz!,

~A10!

pw~k~z,p!!5r1~q2r 12z/w!S E111
Qp~qrz/w!

Qp~qr 12z/w!
E001

Qp~qrz/w!Qp~qr 21z/w!

Qp~qr 12z/w!Qp~qr 11z/w!
E22D ,

~A11!

pw~c~z,p!!5
Qp~qr 13z/w!

Qp~qr 11z/w!
E111

Qp~qr 12z/w!Qp~qr 21z/w!

Qp~qr 11z/w!Qp~qrz/w!
E001

Qp~qr 22z/w!

Qp~qrz/w!
E22 .

~A12!

APPENDIX B: TWISTOR

We here consider the difference equations of the twistorF(l) for Bq,l(A2
(2)). The general

framework was given in Ref. 3. Let us consider the case of the affine algebraA2
(2) . Taking a basis

$c,d,a1
∨% of the Cartan subalgebrah of A2

(2) . We parametrize the dynamical variablel as
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l2r5r * d1s8c1
1

2 S s1
r t

2 Da1
∨ , S r * 5r 2c, t52

2p i

logq2r D , ~B1!

wherer53d1 1
4a1

∨ is the Weyl vector. Let us set

R~z!5Ad~zd
^ 1!~R!, ~B2!

F~z,p,w!5Ad~zd
^ 1!~F~l!!, ~B3!

R~z;p,w!5Ad~zd
^ 1!~R~l!!5s~F~z21;p,w!!R~z!F~z;p,w!21, ~B4!

wherew5q2(s1r t/2). In particular, forz50, qc^ d1d^ cR(0) reduces to the universalR matrix of
Uq(A1). From Ref. 3, we have the difference equation for the twistor,

F~pq2c(1)
z;p,w!5~ w̄w

21
^ id !~F~z;p,w!!qTR~pq2c(1)

z!, ~B5!

F~0;p,w!5FA1
~w!, ~B6!

wherew̄w5Ad(qa1
∨2/4wa1

∨/2) andT5 1
2c^ d1 1

2d^ c1 1
4a1

∨
^ a1

∨ .
We are interested in the vector representation (pz ,V), V5C3 given in Appendix A. We set

FVV~z;p,w!5~p1^ p1!F~z;p,w!5~pz1
^ pz2

!~F~l!!, ~B7!

RVV~z;p,w!5~p1^ p1!R~z;p,w!5~pz1
^ pz2

!~R~l!!, ~B8!

RVV~z!5~p1^ p1!R~z!5~pz1
^ pz2

!R, ~B9!

wherez5z1 /z2 . The trigonometricR-matrix RVV(z) is given as follows:

RVV~z!5rVV~z!R̄VV~z!, ~B10!

R̄VV~z!51
1 0 0 0 0 0 0 0 0

0 b~z! 0 c~z! 0 0 0 0 0

0 0 d~z! 0 e~z! 0 f ~z! 0 0

0 z c~z! 0 b~z! 0 0 0 0 0

0 0 2q2z e~z! 0 j ~z! 0 e~z! 0 0

0 0 0 0 0 b~z! 0 c~z! 0

0 0 z n~z! 0 2q2z e~z! 0 d~z! 0 0

0 0 0 0 0 z c~z! 0 b~z! 0

0 0 0 0 0 0 0 0 1

2 ,

b~z!52
q~12z!

12q2z
, c~z!5

12q2

12q2z
, d~z!5

~12z!q2~12qz!

~12q2z!~12q3z!
,

e~z!5
i ~12q2!q1/2~12z!

~12q2z!~12q3z!
, f ~z!5

~12q2!~11q2q3z2qz!

~12q2z!~12q3z!
,

j ~z!52
q~12z!

12q2z
1

~12q2!~12q3!z

~12q2z!~12q3z!
, n~z!5

~12q2!~11q22q3z2q2z!

~12q2z!~12q3z!
.
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The functionrVV(z) is given by

rVV~z!5q21
~1/z;q6!`~q/z;q6!`~q5/z;q6!`~q6/z;q6!`

~q2/z;q6!`~q3/z;q6!`
2 ~q4/z;q6!`

. ~B11!

Noting p1(c)50, we have the difference equation

FVV~pz;p,w! t5RVV~pz! tK~Dw^ 1!21FVV~z;p,w! t~Dw^ 1!, ~B12!

whereXt means the transpose ofX, and we have set

K5Diag~q,1,q21,1,1,1,q21,1,q!, ~B13!

Dw5Diag~q21w21,1,q21w!. ~B14!

From the from ofRVV(z), one can set

F~z;p,w!5 f ~z!1
1 0 0 0 0 0 0 0 0

0 X11
(1)~z! 0 X12

(1)~z! 0 0 0 0 0

0 0 Y11~z! 0 Y12~z! 0 Y13~z! 0 0

0 X21
(1)~z! 0 X22

(1)~z! 0 0 0 0 0

0 0 Y21~z! 0 Y22~z! 0 Y23~z! 0 0

0 0 0 0 0 X11
(2)~z! 0 X12

(2)~z! 0

0 0 Y31~z! 0 Y32~z! 0 Y33~z! 0 0

0 0 0 0 0 X21
(2)~z! 0 X22

(2)~z! 0

0 0 0 0 0 0 0 0 1

2 .

Then theq-difference Eq.~B12! is equivalent to the following equations:

f ~pz!5qrVV~pz! f ~z!, ~B15!

S X11
(6)~pz! X12

(6)~pz!

X21
(6)~pz! X22

(6)~pz!
D 5q21S X11

(6)~z! q61wX12
(6)~z!

q71w21X21
(6)~z! X22

(6)~pz!
D S b~pz! c~pz!

pz c~pz! b~pz!
D ,

~B16!

S Y11~pz! Y12~pz! Y13~pz!

Y21~pz! Y22~pz! Y23~pz!

Y31~pz! Y32~pz! Y33~pz!
D 5q22S Y11~z! wY12~z! w2Y13~pz!

qw21Y21~z! qY22~z! qwY23~z!

w22Y31~z! w21Y32~z! Y33~z!
D

3S d~pz! e~pz! f ~pz!

2q2pz e~pz! j ~pz! e~pz!

pz n~pz! 2q2pz e~pz! d~pz!
D . ~B17!

The two 232 matrix equations forXi j
(6)(z) are the same as the one appeared in thesl̂2 case,3 if we

changeb(z) to 2b(z) and make the following identification:

q61w5wsl2

21, i.e., 2ssl2
5s1

r t

2
6

1

2
,

wherewsl2
andssl2

denotew ands in Ref. 3, respectively. Hence from the ellipticR matrix for
Bq,l(sl̂2) ~~4.18! in Ref. 3!, we determine the following parts of our ellipticR-matrix:
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S R10
10 R10

01

R01
10 R01

01D 5S 2
@s13/2#1@s21/2#1

@s11/2#1
2

@u#

@u11#
ep iu/r

@1#@s11/22u#1

@s11/2#1@u11#

e2 ~p iu/r !
@1#@s11/21u#1

@s11/2#1@u11#
2

@u#

@u11#

D , ~B18!

S R02
02 R02

20

R20
02 R20

20D 5S 2
@s23/2#1@s11/2#1

@s21/2#1
2

@u#

@u11#
ep iu/r

@1#@s21/22u#1

@s21/2#1@u11#

e2 ~p iu/r !
@1#@s21/21u#1

@s21/2#1@u11#
2

@u#

@u11#

D . ~B19!

By a gauge transformation, these yields the corresponding matrix elements in~2.19!.
As for the 333 part, we have no known solutions. The Wakimoto realization ofUq(A2

(2))
should be useful to solve theq-KZ equation for the intertwining operators~vertex operators! of
Uq(A2

(2)) as well as~B17!.

APPENDIX C: PROOF OF THE RELATION „4.27…

Let us set

h~v !52
@v11#* @v21/2#*

@v21#* @v11/2#*
. ~C1!

In the integrand of the half-currentE2,1
1 (u) ~4.9!, we callE(z8)E(z9) the operator part, and th

ratio of the product of the theta functions the coefficient part. We keep coefficient parts in the
of operator parts. According to the relation~3.62!, we have the equality

R dz8

2p iz8

dz9

2p iz9
E~z8!E~z9!A~u,u9!5 R dz8

2p iz8

dz9

2p iz9
E~z8!E~z9!h~u92u8!A~u9,u8!,

when the integration contours forz8 and z9 are the same. Here we setz85q2u8, z95q2u9. We
define ‘‘weak equality’’ in the following sense. The two coefficient functionsA(u8,u9) and
B(u8,u9) coupled toE(z8)E(z9) in integrals are equal in weak sense if

A~u8,u9!1h~u92u8!A~u9,u8!5B~u8,u9!1h~u92u8!B~u9,u8!.

We write the weak equality as

A~u8,u9!;B~u8,u9!.

To prove the equality~4.27!, it is enough to show the equalities of coefficient parts in weak se
Settingzi5q2ui ( i 51,2) andu5u12u2 , let us consider RHS-LHS of~4.27! given as fol-

lows:

R dz8

2p iz8
R dz9

2p iz9
E~z8!E~z9!F~u1 ,u2 ,u8,u9,L !,

where
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F~u1,u2,u8,u9,L!

5
@u22u822P121c/2#* @u82u92P#1* @11u#* @u13/2#* @1#* 2

@u22u81c/2#* @u82u921/2#* @u#* @2P22#* @P21/2#1* @u11/2#*

1
@u22u82P1~c11!/2#1* @u12u8111c/2#* @u12u92P1~c11!/2#1* @u1P11#1* @1#*

@u22u81c/2#* @u12u81c/2#* @u12u91c/2#* @P21/2#1*
2@P11/2#1* @u11/2#*

2
@u12u822P121c/2#* @u82u92P#1* @1#* 2

@u12u81c/2#* @u82u921/2#* @P21/2#1* @u11/2#*

3S @u12P21#* @1#* @u13/2#*

@u#* @2P21#* @2P22#*
1

@P#1* @u12P11/2#* @1#*

@2P#* @2P21#* @P21#1*
D

2
@u22u822P1c/2#* @u82u92P21#1* @u12u8111c/2#* @u12u9111c/2#* @1#* 2

@u22u81c/2#* @u82u921/2#* @u12u81c/2#* @u12u91c/2#* @P11/2#1* @2P#*
.

We will show thatF(u1 ,u2 ,u8,u9,L);0. For this purpose, we consider the function ofu8 defined
by

F~u8!5F~u1 ,u2 ,u8,u9,L !1h~u92u8!F~u1 ,u2 ,u9,u8,L !.

Then it is not so hard to see thatF(u8) is a quasiperiodic function having zeros at least atu8
5u9 andu85u911. The quasiperiodicity is given by

F~u81t* r * !52e2 ~2p i /r !(P23/2)F~u8!,

F~u81r * !5F~u8!.

Therefore if we set

G~u8!5F~u8!
@u82u92P13/2#*

@u82u9#*
,

G(u8) is a doubly periodic function ofu8 andG(u911)50. It is then enough to show thatG(u8)
is an entire function.

In G(u8), some terms have the first order poles atu85u11c/2, u21c/2,u911/2,u921. We
checked that all the residues of the functionG(u8) at these poles vanish. For example, atu8
5u21c/2 the residue is given by

Resu85u21c/2 G~u8!
dz8

2p iz8
52

@u11#* @u22u92P1c/2#1* @u13/2#* @1#* 2

@u#* @u22u921/21c/2#* @P21/2#1* @u11/2#*

1
@u11#* @u12u92P1~c11!/2#1* @u1P11#1* @1#* 3

@u#* @u12u91c/2#* @P11/2#1* @P21/2#1* @u11/2#*

1
@u11#* @u12u9111c/2#* @u22u92P211c/2#1* @1#* 2

@u#* @u12u91c/2#* @u22u921/21c/2#* @P11/2#1*
.

One can apply the following theta function identity to combine the first and the third terms

@u1x#* @u2x#* @v1y#1* @v2y#1* 2@u1y#* @u2y#* @v1x#1* @v2x#1*

52@x2y#* @x1y#* @u1v#1* @u2v#1* .

We thus get
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first1third52
@u11#* @u12u92P1~c11!/2#1* @u1P11#1* @1#* 3

@u#* @u12u91c/2#* @P11/2#1* @P21/2#1* @u11/2#*
.

Therefore Resu85u21c/2 G(u8) (dz8/2p iz8) 50. The other cases can be treated in the similar w
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Shouldn’t there be an antithesis to quantization?
Eric A. Galapona)

Theoretical Physics Group, National Institute of Physics, University of the Philippines,
Diliman Quezon City, 1101 Philippines

~Received 26 January 2004; accepted 3 May 2004;
published online 8 July 2004!

We raise the possibility of developing a theory of constructing quantum dynamical
observables independent from quantization and deriving classical dynamical ob-
servables from pure quantum mechanical consideration. We do so by giving a
detailed quantum mechanical derivation of the classical time of arrival at arbitrary
arrival points for a particle in one dimension. ©2004 American Institute of Phys-
ics. @DOI: 10.1063/1.1767297#

I. INTRODUCTION

Recently we raised the problem of deriving classical dynamical observables from pure
tum mechanical consideration, and thus the problem of constructing quantum observable
classical counterparts without quantization.1 Our motivations have been to break the circularity
quantization when invoking the correspondence principle,2–4 and to sidestep the well-known ex
istence of obstruction to quantization in important spaces like the Euclidean space.5–12The former
motivation arises from the need for quantum mechanics to be internally coherent and auton
from classical mechanics if quantum mechanics were the preponderant of the two mech
theories. On the other hand, the later motivation arises from the need for observables to
certain commutation relations in keeping with, say, the required evolution properties of th
servables. Thus in Ref. 1 we have introduced the idea ofsupraquantization—the derivation of the
quantum observable corresponding to a given classical observable without quantization, a
subsequent derivation of the classical observable from its quantum counterpart, as oppo
quantization which is the derivation of the quantum observable corresponding to a given cla
observable by means of an associative mapping of the scalar-valued observable to an o
valued observable.

And to illustrate our point of supraquantization and to demonstrate the general insufficien
prescriptive quantization—particularly the Weyl quantization13—to satisfy required commutato
values, we outlined in Ref. 1 without proof a formal quantum mechanical derivation of the
form of the classical time of arrival in the neighborhood of the origin. In this paper, we attem
place our earlier results on a firm foundation. We do so by~1! developing the quantum mechanic
framework suitable to the idea of supraquantization, and by~2! proving explicitly our earlier
assertions made within the proposed framework. It is then the aim of this paper to give a qu
mechanical derivation of the classical observable

Tx~q,p!52sgn~p!Am

2 E
x

q dq8

AH~q,p!2V~q8!
, ~1!

whereTx(q,p) is the time of arrival of a particle at some pointx, whose Hamiltonian isH(q,p).
We will do so within the rigged Hilbert space formulation of quantum mechanics.14–20

This paper is organized as follows: In Sec. II we outline the quantum mechanical frame
in rigged Hilbert space suitable for our purposes. In Sec. III we give a brief review of quantiz
and Weyl quantization in particular, and discuss the idea of supraquantization, and deal w

a!Electronic mail: eric.galapon@up.edu.ph
31800022-2488/2004/45(8)/3180/36/$22.00 © 2004 American Institute of Physics
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transition to the classical regime. In Sec. IV we summarize the classical solution to the cla
time of arrival and introduce the concept of global and local time of arrivals. In Sec. V
formulate our quantum mechanical approach to deriving the classical time of arrival at the
from pure quantum mechanical consideration. In Sec. VI, we explicitly supraquantize the cla
time of arrivals of the harmonic oscillator and the quartic oscillator. In Sec. VII we prove, w
the limits stated therein, the general result for arbitrary entire analytic potentials that the ti
arrival can be derived from the supraquantization developed in Sec. V. In Sec. VIII we giv
extension of our derivation for arbitrary arrival points. And in Sec. IX, we devote some discu
on the relationship between quantization and supraquantization.

In this paper, though we are concerned with the derivation of the corresponding quantum
of arrival operator, we will not delve into the important question whether one can extract qua
time of arrival distributions from the constructed operator,21–30 nor its relevance in the quantum
time problem.31,32 We leave these issues open in the meantime.

II. THE QUANTUM MECHANICAL FRAMEWORK

A. Single Hilbert space quantum mechanics

In the generalized single Hilbert space formulation of quantum mechanics, to every qu
mechanical system is assigned a generally infinite dimensional Hilbert spaceH over the complex
field; and to every pure state corresponds to a ray inH; and to every observable corresponds to
generally maximally symmetric densely defined operator inH.33,34

If the system is closed or it does not react back to its environment, its evolution is gov
by a one parameter unitary group,Ut5e2( i /\)Ht, whereH is the system Hamiltonian. In Heisen
berg representation where states are stationary, observables evolve according to

At5eiHtAe2 iHt, ~2!

i\Ȧt5@At ,H#, ~3!

where~3! is the infinitesimal form of~2!. If either H or A are unbounded, then Eqs.~2! and ~3!
should be properly defined to give meaning to them. In particular, Eq.~2! holds for all timest if
the domain ofA is invariant undere2 iHt for all t. It is possible that the evolution equation and
infinitesimal form hold only in some countable subset of the time coordinate.

While the Hilbert space formulation is successful in describing much of the quantum me
ics we know, it is not sufficient in the sense that it does not accommodate the eigenfuncti
observables with pure continuous spectrum. It is in this context that extension of quantum
chanics in a rigged Hilbert space has been proposed. Moreover, it is within the rigging ofH that
will allow us to further generalize observables to include operators that are not necessarily
tors in the system Hilbert space.

B. Rigged Hilbert space extension

Let H be the system Hilbert space. A rigged Hilbert space~RHS! for H is a triplet, called a
Gel’fand triplet,F3.H.F, whereF is a dense subspace ofH, and is a locally convex topo
logical space and is complete with respect to its own topology; on the other hand,F3 is the space
of all continuous linear functionals onF: An elementF of F3 assigns to everyf in F a complex
number denoted bŷFuw& with the propertieŝ Fuaf11bf2&5a^Fuf1&1b^Fuf2&, for every
pair f1 andf2 in F, and for every pair of complex numbersa andb; and limn→`^Fufn&50, for
every sequencefn converging to zero inf.

In extending quantum mechanics in a rigged Hilbert space, one has to specify a par
rigging. But how do we determine the necessary rigging? Our answer to this question is lim
what is relevant and useful to our present purposes. A natural choice is the one provided
Hamiltonian of the system under consideration. LetH be the Hamiltonian and let its domain b
D~H!. We chooseF in such a way thatF is a dense subset ofD~H!, and thatF is invariant under
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the Hamiltonian, i.e.,H:F#F. Our motivation in choosing this particular rigging is for us to
able to extend the quantum evolution of observables in the rigged Hilbert space, as we will
below. OnceF is specified, its functional spaceF3 is automatically determined.

Given the particular rigging ofH relative toF, let O be the set of all observables whos
domains containF. Let A be in O. We define two associated operators toA: its rigged Hilbert
spaceextensionA3, and its rigged Hilbert spacereductionA3 .

Definition 1 (Rigged Hilbert space extension):A3 is the extension ofA in the entireF3, i.e.,
the operatorA3: F3°F3, such that̂ A3fuw&5^fuA†w& for all f in F3 andw in F, whereA†

is the adjoint ofA in H.
Definition 2 (Rigged Hilbert space reduction):A3 is the reduction ofA in F, i.e., the operator

A3w5Aw for all w in F, such that there exists a uniquely associated functional FA in F3, for
which A3w5^FAuw&5Aw for all w in F. (See Appendix A for an example and to establish
notation.)

The rigged Hilbert space extension ofA exists ifA† is in O andF is invariant underA†, i.e.,
A†: F#F. We emphasize that the definition of the rigged Hilbert space reduction ofA requires the
existence of the functionalFA in F3 satisfying the stated condition. Of courseA will always have
a reduction inF by restricting its domain toF, but it is not necessary that there is always
associated functionalFA in F3. All throughout we will callFA as the functional kernel ofA3 .

Now eigenfunctions corresponding to the continuous part of the spectrum of an observa
not belong to the Hilbert space: they are not square integrable and the usual probabilistic
pretation of quantum mechanics fails to hold on them. But these acquire rigorous meaning
the context of a rigged Hilbert space as generalized eigenfunctions residing in the functiona
F3. If one can give physical significance to elements ofF3, it may also be possible to give
physical significance to operators takingF into F3, e.g., Hamiltonians with singular potentials
the configuration space,V(q)}d(q2q0). This motivates us to introduce the concept of gene
ized observable.

Definition 3 (Generalized observable): Let F be inF3. If for all w in F, F(w)5^Fuw& is in
F3 and^F(w)uw& is real valued, we call F to be the functional kernel of a generalized observ
A. The mappinĝ Fu•&: F°F3 defines the generalized observableA: F°F3.

The real valuedness of^F(w)uw& is the generalized analogue of the symmetry condition
ordinary Hilbert space quantum mechanics, the numerical value of which is the expectation
of the generalized observable. Since we have the inclusion relationF3.H.F, the rigged Hil-
bert space reduction of ordinary quantum mechanical observables is a special class of gen
observables. We say thatA has a Hilbert space projection if there exists a dense subspaceD of F
such that̂ Fuw& is in H. Its Hilbert space projection is the closure of the operatorF defined by
^Fuw&5Fw for all w in D. We emphasize that the properties of generalized observable
dictated byF. For this reason we denoteOF to be the set of all generalized observables defin
for a givenF.

Now we give the appropriate generalization of the evolution law for quantum observable
H be the system Hamiltonian, whose domainD~H! containsF. Let F3.H.F be a particular
rigging of H, whereF is invariant underH. Given H, let H3 be its RHS-extension. LetA be a
generalized observable inOF . If F is invariant underUt5e2 iHt for all t, we then takeA to
evolve according to

At5U2t
3 AUt

3 , ~4!

whereUt
3 is the RHS-extension ofUt in the entireF3. Under the same assumption, the infin

tesimal form of~4! is given by

dAt

dt
5

1

i\
@At ,H3#. ~5!
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Equation~4! requires thatA evolves into a generalized observable. These equations reduce
standard quantum evolution law when restricted to the Hilbert space. While Eqs.~4! and~5! hold
for all t under the assumption thatF is invariant underUt , they may still hold for some times
possibly countably infinite, even whenF is not invariant underUt for all t.

C. Quantum mechanics in configuration space

For a spin less particle in the real line, the corresponding system Hilbert space is the sp
Lebesgue square integrable functions over the real line,H5L2(R,dq). We assume that the
particle is under the influence of an everywhere infinitely differentiable~real valued! potential, i.e.,
of type C`(R). The formal Hamiltonian

H52
\2

2m

d2

dq2
1V~q! ~6!

can be assigned a dense domainD~H! in which it is essentially self-adjoint. The given Hami
tonian allows several possible riggings of the Hilbert space. We choose the riggingF3.H.F,
whereF is the space of infinitely differentiable complex valued functions with compact suppo
the real line, andF3 its corresponding functional space. SinceV(q) is C`(R), F is invariant
underH. We note thatF is tight enough to allow a largerF3.

The convergence to zero of a sequence inF is defined as follows. A sequencewn in F
converges to zero inF if all these functions vanish outside a certain fixed bounded region,
same for all of them, and converge uniformly to zero in the usual sense together with
derivatives of any order.19,20

With our chosen rigging, the rigged Hilbert space reductionA3 of an operatorA in H with
domain containingF assumes the familiar form

~A3w!~q!5^FA~q!uw&5E
R

^quA3uq8&w~q8!dq8, ~7!

where the functional kernelFA is the complex conjugate of the well-known configuration mat
elements of the operators. Generalized observables, which includes the RHS-reductions o
tors in H, assume the similar form

~Aw!~q!5E
R

^quAuq8&w~q8!dq8, ~8!

where the integrations in Eqs.~7! and ~8! are understood to be in the distributional sense,
particular symbolic when the integrand is singular, e.g., the Dirac delta function. We note th
functional kernel̂ quAuq8& must be symmetric, i.e.,^quAuq8&5^q8uAuq&* , in order to ensure the
real valuedness of the expectation value ofA in F.

III. QUANTIZATION, SUPRAQUANTIZATION, AND THE TRANSITION TO THE
CLASSICAL REGIME

A. Quantization and Weyl-quantization

Let f be a classical observable, a real valued functionf (q,p) in the phase space. The proble
of quantization is to derive the quantum counterpart off by some associative mappingQ of the
real-valued functionf (q,p) to a maximally symmetric operatorF in the system Hilbert spaceH,
i.e.,Q( f )°F. A paramount requirement, aside from other requirements, of quantization is th
Poisson bracket of two~classical! observables quantizes into the commutator of the separa
quantized observables, in particularQ($ f ,g%)5( i\)21@Q( f ),Q(g)# ~for a complete discussion o
the requirements of quantization, see Refs. 7, 10!.
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One of the earliest prescription, which has become the starting point of other quanti
schemes, is the Weyl quantizationQW . In the language of the framework outlined above, We
quantization is the bijective mapping off into some functional of a particular riggingF3.H.F
of the system Hilbert space, i.e.,QW : f °FPF3 such thatF(•) is a generalized observable wit
a nontrivial Hilbert space projection. The rigging ofH which we have required above is appr
priate for Weyl’s quantization. NowQW is defined by the mapping

QW : f °F3{F* 5^quF3uq8&5
1

2p\ E
2`

`

f S q1q8

2
,pDexpF i

\
~q2q8!pGdp, ~9!

where the integration is done in the distributional sense. In the standard formulation, it is ass
though it isnot guaranteed, thatF(•) has a Hilbert space projection, so thatF(•) is the rigged
Hilbert reductionF3 of a uniquely associated operatorF in H. The operatorF is the closure ofF3

in H.
Now suppose thatF is the Hilbert operator corresponding to the classical operatorf derived by

quantization. The classical observable is recovered by mere inversion of the process. In th
one has to determine the rigged Hilbert space reductionF3 of the operatorF and consequently
determine the functional kernel corresponding toF3 . Given the functional kernel, the classic
observable is recovered by means of the inverse Fourier transform

f ~q,p!52pE
2`

` K q1
v
2

uF3uq2
v
2L expS 2 i

vp

\ Ddv. ~10!

In this expression, taking the limit as\ approaches zero is not required, it being just the invers
the prescribed Weyl-quantization.

Quantization, however, is circular when invoking the correspondence principle; and t
already evident for the Weyl quantization. Moreover, there is a well known obstruction to q
tization in Euclidean space~and other spaces! which says that no quantization exists that satisfi
the poission-bracket-commutator correspondence requirement for all observables.5–12 This is un-
satisfactory because the said correspondence is necessary, for example, in ensuring that
evolution properties of a certain class of observables are satisfied. This handicap of quan
will be explicitly demonstrated for the Weyl quantization.

If we wish to break the inherent circularity of quantization and to sidestep the obstructi
quantization, we must then find an alternative platform upon which we can construct qua
observables without quantization, which can further allow us to derive the corresponding cla
observable. It is here that the idea of supraquantization comes in.

B. Supraquantization

The idea behind supraquantization—the construction of quantum observables without q
zation and the subsequent quantum mechanical derivation of its classical counterpart—
entirely new.

It has its origin in Mackey’s earlier effort of restoring the autonomy of quantum mecha
from classical mechanics.3,4 We recall that the quantization of free particle in one dimension
accomplished by promoting its position and momentum into operators and their Poission b
into commutator, and the energy into the Hamiltonian operator. Mackey’s work obviates
quantization prescriptions by starting not from the classical description but from the axiom
quantum mechanics and the property of free space. Starting from the basic axiom that the
sition for the location of the particle in different volume elements are compatible and the fu
mental homogeneity of free space, one derives the position and the momentum operators t
with the canonical commutation relation they satisfy. On the other hand, requiring Galilea
variance in the lattice of propositions, one derives the free quantum Hamiltonian~see also Ref.
35!. Mackey’s work provides an excellent example of the existence of more than one solut
the derivation of the quantum image of a given set of classical observables. By definition M
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ey’s construction of the position and momentum operators, together with their algebra, is
praquantization of the classical position and momentum, and their Poisson algebra.

It may be that quantization and supraquantization yield the same results, like the positio
momentum for the free particle, but they are unmistakably distinct. Quantization presup
classical mechanics, while supraquantization upholds the autonomy of quantum mechan
former introduces circularity when invoking the correspondence principle, while the latter
tions the correspondence principle as a legitimate consequence of the acknowledged pre
ance of quantum mechanics over classical mechanics. In both methods of obtaining qu
observables, the classical observable plays two different roles. In quantization, it is the s
point; in supraquantization, it is a boundary condition. The correspondence principle require
if a quantum observable corresponds to a classical observable, then the former should re
the latter in the limit of vanishing\. Then if supraquantization gives the correct quantum obs
able, then that observable should approach its classical limit. As a consequence of the role
classical observable as a boundary condition, supraquantization breaks the vicious circle in
in the quantization procedure.

But how do we construct quantum observables corresponding to a given classical obse
without quantization? The observable may be constructed by appealing to thepostulated proper-
ties of the observable under consideration, or to thepostulated physical properties of the univers,
or to theaxioms of quantum mechanics, or to any combination of these. Mackey’s construction of
the quantum position and momentum observables without quantization proceeds from the
geneity of free space~assumed property of free space! and the commutativity of propositions fo
the location of a free particle~axiom of quantum mechanics!.

For a specific class of classical observables, the required supraquantization may be
plished, in addition to the aforementioned method, by referring to one of the members of the
and employing a transfer principle to the rest. The transfer principle can be expressed as f

Transfer Principle: Each element of a class of observables shares a common set of prop
with the rest of its class such that when a particular property is identified for a specific elem
the class that property can be transferred to the rest of the class without discrimination.

It is the central problem of supraquantization to determine this set of properties shared
class of observables under consideration, together with the appropriate axioms of mecha
impose. Obviously supraquantization treats each class of observables on a case to case
contrast to quantization which gives a single rule of association between classical and qu
observables.

But how do we approach the classical limit? We can treat quantization as a first orde
proximation, especially in those cases where obstruction to quantization occurs, e.g., in Eu
space, and treat its classical limit as the starting point. This is reasonable because quantiza
been successful in cases where consistency is preserved. So for observables defineH
5L2@R,dq# or for generalized observables in a particular rigging ofH, the transition to the
classical regime is still given by Eq.~10! only that one now has to specifically project th
observable into the\50 or \5d regime. This is so as some orders of\ now generally appear in
Eq. ~10!. The appearance of terms in some orders of\ indicates the failure of quantization t
consistently satisfy the required commutator values, at least in Weyl’s quantization. Thus
generalized observablesA definable relative toF with functional kernel̂ quA3uq8&* , the classi-
cal limit of A is given by

f ~q,p!5 lim
\→0

2pE
2`

` K q1
v
2

uFuq2
v
2L expS 2 i

vp

\ Ddv ~11!

whenever the limit exists@Eq. ~11! has already been in used, see Refs. 36, 37#. The vanishing of
\ in the above expression is the statement that classical mechanics is the projection of qu
mechanics. Because classical mechanics is a projection, there is no bijection from class
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quantum mechanics, except in those cases where the results of quantization and supraqua
agree. This will be made clear when we consider the supraquantization of the classical t
arrival.

IV. THE OBSERVABLE ON CASE: THE CLASSICAL TIME OF ARRIVAL

Consider a particle with massm in one dimension whose Hamiltonian isH(q,p). If at t50
the particle is at the point (q,p) in the phase space, the timet5Tx that the particle will arrive at
the pointq(t5Tx)5x is given by

Tx~q,p!52sgn~p!Am

2 E
x

q dq8

AH~q,p!2V~q8!
, ~12!

derived by inverting the~classical! equations of motion. For a given energy the regionV5Vq

3Vp in the phase space in which Eq.~12! is finite and real valued is the classically accessi
region to the particle for a given arrival pointx. An important property ofTx(q,p) is that it
evolves according to

dTx~q,p!

dt
521. ~13!

This property will be important to us in the supraquantization of the time of arrival.
It is the goal of this paper to show that the time of arrival~12! for entire analytic potentials can

be derived within the quantum mechanical framework we have just outlined above. This w
accomplish by constructing the generalized quantum observable corresponding toTx(q,p) by
supraquantization to be developed below. Before we can proceed, we must recognize thatTx(q,p)
is only an observable in the region of the phase space accessible to the particle. Supraquan
of Tx(q,p) then must be restricted to these accessible regions. We then proceed by develo
local form of Tx(q,p), i.e., an equivalent expression forTx(q,p) in some neighborhood ofVq ,
which can be assured to be finite and real valued, thus an observable. It is this local form,
we shall refer to as the local time of arrival, that we will supraquantize and show to be deri
quantum mechanically. The time of arrivals for the rest of the accessible regions are then d
by simple analytic continuation of the local time of arrival. In the following section we deve
the local expression for the time of arrival for arbitrary arrivalx.

The local time of arrival: Given the HamiltonianH5(1/2m)p21V(q,p), let us consider all
real valued functions,T(q,p), in the phase space which is canonically conjugate with the Ha
tonian, i.e.,

$H~q,p!,T~q,p!%51, ~14!

where $,% is the Poisson bracket. The time of arrival at some specified point is one such
space function. Out of all thoseT(q,p)’s conjugate withH(q,p), let us consider those that can b
parametrized byx8 andh, wherex8 is in the configuration axis andh is a fixed function ofp alone.

We denote these byTh
x8(q,p). The parametersx8 and h are defined as follows. LetK

5(1/2m)p2 be the kinetic energy, andLK be the kinetic energy Liovillian operator defined b
LK•g5$K,g%52m21p]qg. The pair of parametersx8 and h fixes the inverse ofLK , LK

21, as
follows:

LK
21

• f ~q,p!52
m

p E
x8

q

f ~q8,p!dq81h~p!. ~15!

In other words,x8 andh define the domain ofLK such that the inverseLK
21 can be unambiguously

defined.
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Now given x8 and h we constructTh
x8 by the following prescription. Since$H,Th

x8%5LH

•Tg(q,p)51, we expressTh
21 in the following form:

Th
x8~q,p!5LH

21
•15

1

LK1LV
•1, ~16!

whereK andV are the kinetic and potential energy parts of the Hamiltonian, respectively.
metric expansion of Eq.~16! yields

Tg
x8~q,p!5LK

21
•12LK

21
•LV•LK

21
•11LK

21
•LV•LK

21
•LV•LK

21
•1¯, ~17!

whereLK
21 is defined by Eq.~15!. Assuming that there is a neighborhood in the phase space

that the right-hand side of~17! converges, Eq.~17! can be written in series form

Tg
x8~q,p!5 (

k50

`

~21!kTk~q,p,x8!, ~18!

where theTk(q,p,x8)’s satisfy the recurrence relation

T0~q,p,x8!5LK
21

•1, Tk~q,p,x8!5LK
21

•LV•Tk21~q,p!. ~19!

The system of recurrence relation~19! is equivalent to the recurrence relation$K,Tk%
5$V,Tk21%, subject to the boundary condition$K,T0%51. For a givenx8 andh, Eqs.~19! assume
the explicit forms,

T0~q,p,x8!52
m

p
~q2x8!1h~p!, ~20!

Tk~q,p,x8!52
m

p E
x8

q S ]V

]q8

]Tk21

]p
2

]V

]p

]Tk21

]q8 Ddq81h~p!. ~21!

For autonomous Hamiltonian systems, i.e.,V5V(q), Eq. ~21! reduces to

Tk~q,p,x8!52
m

p E
x8

q ]V

]q8

]Tk21

]p
dq81h~p!. ~22!

Of course Eq.~18! need not converge. However for some conditions to be stated below it
verges to the time of arrival in some neighborhood.

Now let h50, pÞ0 andV(q) be continuous atq whereq is an interior point ofVq . Then
there exists a neighborhood ofq, vq#Vq , determined by the neighborhooduV(q)2V(q8)u
,Ke<p2/2m such that for everyxPvq , T0

x converges absolutely and uniformly to the classi
time of arrival tx .

We prove this assertion as follows. Withh50, Eqs.~20! and ~22! reduce to

T0~q,p;x!52m
~q2x!

p
, ~23!

Tk~q,p,x8!52
m

p E
x

q ]V

]q8

]Tk21

]p
dq8. ~24!

Using Eq.~24! with x85x, and using~23! as the initial value, the first few terms in Eq.~17! can
be evaluated to aid us to infer that thekth iterate,Tk , in Eq. ~18! is given by
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Tk~q,p;x!52
~2k21!!!

k!

mk11

p2k11 Ex

q

~V~q!2V~q8!!kdq8. ~25!

We prove Eq.~25! by induction. Shifting indexk→(k21) in ~25! to get Tk21 and substituting
Tk21 back into Eq.~22!, we have

Tk~q,p;x!52
m

p E
x

q ]V

]q8

]Tk21

]p
dq852

~2k23!!!

~k21!!
~2k21!

mk11

p2k11 Ex

q ]V

]q8
E

x

q8
~V~q8!

2V~q9!!k21dq9. ~26!

Successive integration by parts evaluates the double integration into

E
x

q ]V

]q8
E

x

q8
~V~q8!2V~q9!!k21dq95V~q!E

x

q

~V~q!2V~q8!!k21dq8

2
~k21!

2 E
x

q dV2

dq8
E

x

q8
~V~q8!2V~q9!!k22dq9dq8

5E
x

q

(
j 50

k21

~21! j
~k21!!

~k212 j !! ~ j 11!!
Vj 11~q!~V~q!

2V~q8!!k212 j1
~21!k

k E
x

q

Vk~q8!dq8

5
1

k Ex

q

~V~q!2V~q8!!kdq8. ~27!

Substituting Eq.~27! back into Eq.~26!, we get

Tk~q,p;x!52
~2k23!!!

~k21!!

~2k21!

k E
x

q

~V~q!2V~q8!!kdq8, ~28!

which reproduces and validates Eq.~25!. Equation~18! then reduces to the form

T0
x52 (

k50

`

~21!k
~2k21!!!

k!

mk

p2k11 Ex

q

~V~q!2V~q8!!kdq8. ~29!

Of course Eq.~29! does not necessarily converge. We next tackle this convergence issue.
Let us consider the neighborhood ofV(q) given by uV(q)2V(q8)u,Ke for some Ke

<p2(2m)21. By the continuity ofV at q, there exists a neighborhood ofq, vq , completely
determined by the neighborhooduV(q)2V(q8)u,Ke . Now letx be invq and consider the close
intervalD5@q,x# which is contained invq . BecauseV is continuous in the neighborhoodvq , it
is likewise continuous inD. This implies that, for a fixedq, uV(q)2V(q8)u as function ofq8 in the
interval D possesses an absolute maximumMq . Thus we have the inequality,

U(
k50

`

~21!k
~2k21!!!

k!

mk

p2k Eq

x

~V~q!2V~q8!!kdq8U<(
k50

`
~2k21!!!

k!

mk

p2k
Mq

k~x2q!. ~30!

The right-hand side of inequality~30! converges absolutely if and only ifmp22Mq, 1
2. Because

Mq,Kep
2(2m)21, the right-hand side of inequality~30! absolutely converges. This implies th
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Eq. ~18! converges absolutely for everyx in vq . The absolute convergence of the right-hand s
of inequality ~30! also implies the uniform converge of Eq.~18! because we can always repla
(x2q) by l in ~30! wherel is the length of any interval containingD.

To show thatTg
x converges absolutely and uniformly toTx , we must show that the indicate

integration in each term of the series can be factored out. This happens when the
(k50

` (21)k(2k21)!!(k!) 21mkp22k(V(q)2V(q8))k converges uniformly for a fixedq and for
everyq8 in D. This, in fact, is ensured by the absolute convergence of~30!. Pulling the integral out
in Eq. ~29!, we arrive at

T0
x~q,p!52E

x

qS (
k50

`

~21!k
~2k21!!!

k!

mk11

p2k11
~V~q!2V~q8!!kD dq8

52
m

p E
x

qSA11
2m~V~q!2V~q8!!

p2 D 2~1/2!

dq8. ~31!

Writing p5sgn(p)Aupu2 in Eq. ~31! finally yields

Tg
x~q,p!52sgn~p!Am

2 E
x

q dq8

AH~q,p!2V~q8!
, ~32!

which is just the time of arrival atx. ThusTg
x(q,p)5tx(q,p) in v,V.

BecauseTx(q,p) holds in the entireV by definition andT0
x(q,p) holds only in some local

neighborhoodvq of Vq , we have the inclusionT0
x(q,p),Tx(q,p); that is,Tx(q,p) is the analytic

continuation ofT0
x(q,p) in V\v. For this reason we refer toT0

x(q,p) as thelocal time of arrival
at x, andTx(q,p) as the global time of arrival. As we have mentioned above it is the local f
or the local time of arrival that we will derive quantum mechanically, so that the global tim
arrival is only derived by extension.

V. SUPRAQUANTIZATION OF THE CLASSICAL TIME OF ARRIVAL

A. The problem

Let H be the system Hilbert space andH5(1/2m)p21V(q) be its Hamiltonian whereV(q) is
C`(R). Following Sec. II C, the rigging ofH is F3.H.F, whereF is the fundamental spac
of infinitely differentiable complex valued functions with compact support inR, and whereF3 is
the corresponding functional space forF.

The rigged Hilbert space extension of the HamiltonianH is then explicitly given by

H3f52
\2

2m

d2f

dq2
1V~q!f for all fPF3. ~33!

In this paper we assume that the potentialV(q) is at most entire analytic inq, i.e., represented by
an everywhere convergent power series inq. The entire analycity ofV(q) is consistent with our
requirement thatF is invariant under the action of the Hamiltonian.

Given the HamiltonianH, our problem is to construct the corresponding generalized tim
arrival operatorT consistent with the correspondence principle:T reducing to the local time of
arrival in the classical limit. The operatorT is by hypothesis a generalized observable relative
the rigging provided byF, i.e., the operatorT: F°F3. This operator is then uniquely associat
with a functional kernelFT defined byT:F5^FTu•&:F. Explicitly

~Tw!~q!5E
2`

`

^quT uq8&w~q8!dq8, ~34!
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where^quT uq8&* is the functional kernelFT . As a generalized observable, the functional ker
must be symmetric, i.e.,^quT uq8&5^q8uT uq&* . Moreover, sinceT is the quantum counterpart o
the local time of arrival, it has to be that the classical local time of arrival operator is recover
means of Eq.~11!, specifically

t0~q,p!5 lim
\→0

2pE
2`

` K q1
v
2UT Uq2

v
2L expS 2 i

vp

\ Ddv. ~35!

The problem of constructingT then reduces to the problem of determining its functional ker
^quT uq8&. It is now the problem of supraquantization to determine^quT uq8& without appealing to
quantization.~We leave the problem whetherT has Hilbert space projection or none open,
problem relevant to the question whether time of arrival distributions can be extracted fromT.!

B. The construction of solution

But how do we determine the kernel^quT uq8& without resorting to quantization? We accom
plish this in two steps. First is by identifying the property ofT and implementing this property
through the appropriate axiom of quantum mechanics. Being a time of arrival operator, it m
least evolve according to

dT
dt

52I ~36!

in which I is the identity inF. We note that it is not necessary that the above evolution law h
for all t. Fortunately, it is sufficient for us to require the conditionṪ ~0!52I, or T evolves
according to Eq.~36! in the neighborhood oft50. This is always satisfied becauseF is assumed
to be invariant under the action ofH. Imposing this on Eq.~5!, we arrive at the canonica
commutation relation

^w̃u@H3,T#w&5 i\^w̃uw& ~37!

satisfied by the Hamiltonian and the time of arrival operator, for allw̃, wPF. Equation~37! is the
basic condition satisfied byT but it is not sufficient to completely determineT.

The second step is by employing a kind of transfer principle we mentioned earlier
hypothesize that each element of a class of time of arrival observables shares a common
properties with the rest of its class such that when a particular property is identified for a sp
element of the class that property can be transferred to the rest of the class without discrimi

We exploit this in determining the kernel^quT uq8& by solving the simplest in the class of tim
of arrival observables, the free particle. We start by recalling that the free particle is Ga
invariant, a consequence of the homogeneity of free space. It will not matter then where we
the origin. This implies that the commutation relation~37! holds independent of the choice o
origin. Because of this and because the free Hamiltonian is Galilean invariant, we require th
time kernel for the free particle must itself be Galilean invariant. Specifically ifta is translation by
a, i.e., ta(q)5q1a and if ^quT uq8& is the free particle kernel, then the translated free time
arrival operatorTa5* dq^ta(q)uT uta(q8)& must still satisfy Eq.~37!. In addition to translational
invariance,^quT uq8& must be symmetric, and it must be chosen such that Eq.~37! is satisfied
given the free HamiltonianHw̃52\2(2m)21w̃9, and it must reproduce the free time of arrival
the origin via Eq.~35!. A solution satisfying all these requirements is given by

^quT uq8&5
m

i4\
~q1q8!sgn~q2q8!. ~38!

We note though that~38! is not unique. The kernel\21mua2a8u is dimensionally consistent with
~38! and it is Galilean invariant and it commutes with the free Hamiltonian in the entireF.
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Moreover it vanishes in the classical limit. Then real factors of it can be added to~38! without
sacrificing any of the required properties of the free particle kernel. However,\21mua2a8u arises
only because of Galilean invariance which is an exclusive property of the free particle. Sin
are aiming at exploiting the assumed transfer principle, we cannot carry it over to the rest
class.

Having solved the free particle kernel, we proceed in implementing the transfer principle
hypothesize that all time kernels assume the same form. Thus, from Eq.~38!, we assume that the
time kernel is given by

^quT uq8&5
m

i\
T~q,q8!sgn~q2q8!, ~39!

whereT(q,q8) depends on the given Hamiltonian. Inferring from the free particle time kernel
require thatT(q,q8) be real valued, symmetric,T(q,q8)5T(q8,q), and analytic. We determine
T(q,q8) by imposing condition~37! on T. Substituting Eq.~39! back into the left-hand side of Eq
~37! and performing two successive integration by parts, we arrive at

^w̃u@H3,T #w&5 i\E
S
w̃* ~q!S dT~q,q!

dq
1

]T~q8,q8!

]q
1

]T~q,q!

]q8 Dw~q!dq

2 i
m

\ E
S
w̃* ~q!F S 2

\2

2m

]2

]q2
1V~q!D T~q,q8!

2S 2
\2

2m

]2

]q82
1V~q8!D T~q,q8!Gsgn~q2q8!w~q8!dq8dq, ~40!

whereS is the common support ofw(q) and w̃(q). We point out that our ability to arrive at th
above expression has been made possible by extending the formulation in a rigged Hilbert

If H3 andT are to be canonically conjugate in the distributional sense, then the second
must identically vanish for allw(q), w̃(q)PF(R), while the first term must identically reduce t
i\^w̃uw&. Becausew and w̃ are arbitrary and sgn(q2q) is not identically zero, the former is
satisfied if and only ifT(q,q8) satisfies the partial differential equation

2
\2

2m

]2T~q,q8!

]q2
1

\2

2m

]2T~q,q8!

]q82
1~V~q!2V~q8!!T~q,q8!50. ~41!

On the other hand, the later condition is satisfied if and only ifT(q,q8) satisfies the boundary
condition

dT~q,q!

dq
1

]T~q,q8!

]q U
q5q8

1
]T~q,q8!

]q8
U

q85q

51 ~42!

for all q,q8PR. The boundary condition~42! defines a family of operators canonically conjuga
to the extended Hamiltonian in the sense required by Eq.~37!. This is a reflection of the fact tha
there are numerous operators that are canonically conjugate to a given Hamiltonian.

The immediate problem now is how to fix the boundary condition onT(q,q8) such that~41!
yields a solution satisfying the quantum-classical-correspondence boundary condition~35!, and at
the same time satisfying the boundary condition~42!. Moreover, it is appropriate to require tha
the solution to~41! is unique. Again we appeal to our transfer principle. We find the se
boundary conditions satisfied by the free particle kernel that ensures that the correspondin
tion to the time kernel equation is unique for the free particle. For this case the time k
equation reduces to
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2
\2

2m

]2T~q,q8!

]q2
1

\2

2m

]2T~q,q8!

]q82
50. ~43!

The general solution to this equation is

T~q,q8!5 f ~q1q8!1g~q2q8!. ~44!

For the free particle, we already haveT(q,q8)5 1
4(q1q8). Now we have to identify the set o

boundary conditions that isolates this known solution from the general solution.
By inspectionT(q,q8) satisfies both~41! and ~42!, and it satisfies the conditions

T~q,q!5
q

2
, T~q,2q!50. ~45!

We now show that these two conditions, when imposed on~44! uniquely identifies the free particle
solution. Note that these conditions impose thatT(q,q8) is analytic in the neighborhood of th
origin. Imposing the second condition of~45! on ~44! gives T(q,2q)5 f (0)1g(2q)50; since
this must hold for allqPR, it must be thatg(2q)5constant52 f (0). On theother hand, impos-
ing the first of~45! givesT(q,q)5 f (2q)2 f (0)5 1

4(2q). SinceT(q,q8) satisfies Eq.~43!, f is at
least twice continuously differentiable. We can then writef (2q)5 f (0)1 f 8(0)(2q)1R2 , where
R2 is the remainder in the expansion. ThusT(q,q)5 f 8(0)(2q)1R25 1

4(2q), which implies that
f 8(0)5 1

4 and R250. This finally implies thatT(q,q8)5 1
4(q1q8), reproducing the solution we

know for the free particle.
By our assumed transfer principle, we impose the same boundary conditions~45! on the

solution to the time kernel equation~41!. That the boundary conditions~45! guarantee that bound
ary condition~42! is satisfied and that they impose symmetry onT(q,q8) under the interchange o
its arguments will be shown below for entire analytic potentials.

We claim that Eqs.~41! and ~45! constitute the supraquantization of the local time of arri
consistent with the correspondence principle. We will explicitly demonstrate this claim in Se
for the harmonic and anharmonic oscillators, and separately demonstrate in Sec. VII for
analytic potentials.

C. Canonical form of the time kernel equation

In what follows, we will find it convenient to prove our above assertion by solving the t
kernel Eq.~41! in canonical form. This is accomplished by performing a change in variable f
(q,q8) to (u5q1q8, v5q2q8). The differential Eq.~41! and its accompanying boundary co
dition ~45! then assume the form

22
\2

m

]2T

]u]v
1S VS u1v

2 D2VS u2v
2 D DT~u,v !50, ~46!

T~u,0!5
u

4
, T~0,v !50. ~47!

The boundary conditions~47! impose that the solution to Eq.~46! is analytic inu andv. In solving
for Eq. ~46!, we will then seek an analytic solution in powers ofu andv,

T~u,v !5 (
m,n>0

am,numvn, ~48!

where theam,n’s are constants determined by Eqs.~46! and ~47! for a given potential.
Assuming a solution of the form~48!, translates the boundary conditions~47! to the boundary

condition on the expansion coefficientsam,n :
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am,05
1
4dm,1 a0,n50 ~49!

for all m and n. We arrive at them as follows. The first boundary condition givesT(u,0)
5(mam0um5 1

4u, which implies the first of Eqs.~49!. And the second boundary condition give
T(0,v)5(na0nvn50, which implies the second of Eqs.~49!. However, in our proof below, we
will find it convenient to extend the summation in~48! to negative values ofm andn; the analycity
of the solution is then imposed by adjoining to~49! the condition thatam,n50 when eitherm or
n is negative or when both are negative.

To show the uniqueness of the solution to~46! for a given potential, we will assume th
existence of two distinct solutions, say,T1(u,v) and T2(u,v). Then the functionS(u,v)
5T1(u,v)2T2(u,v) satisfies the time kernel equation.S(u,v) then satisfies the boundary cond
tionsS(u,0)50 andS(0,v)50. SinceT1(u,v) andT2(u,v) are both analytic,S(u,v) must itself
be analytic. ThenS(u,v) can be expanded inu and v in the same way thatT1 and T2 can be
expanded,

S~u,v !5 (
m,n>0

hm,numvn. ~50!

Now the boundary condition satisfied by the expansion coefficients arehm,050 andh0,n50 for all
m and n. The solution is unique if all the expansion coefficients are identically zero orS(u,v)
identically vanishes. We will show below that the solutions for entire analytic potentials
unique.

Now we can address the concern raised earlier whether the assumed properties ofT(q,q8) are
sufficient to ensure that the original boundary condition~42! is satisfied. With the assumed form o
the solution~48!, the solution in the original coordinates will be in the form

T~q,q8!5 (
m>1,n>0

amn~q1q8!m~q2q8!n. ~51!

Evaluating this atq5q8, we haveT(q,q)52a1,0q, and arrive atT8(q,q)5 1
2, because of the

boundary conditiona1,05
1
4. On the other hand, we arrive at the following:

]T~q,q8!

]q U
q5q8

5a1,01 (
m>1

am,12q8,

]T~q,q8!

]q8
U

q85q

5a1,02 (
m>1

am,12q.

However,T(q,q8) is symmetric, i.e.,T(q,q8)5T(q8,q), so thatam,n50 for oddn. The second
terms of the above equations then vanish and they only take contribution from the first terms
a1,05

1
4 the boundary condition~42! is then satisfied. We note that we have appealed to

assumed symmetry ofT(q,q8), but this is not totally necessary, because, as what will be sh
below, the boundary conditions~45! are sufficient to impose the symmetry ofT(q,q8).

VI. EXPLICIT EXAMPLES

Before we prove our above assertion, we will explicitly demonstrate in this section our c
for two specific systems: the harmonic and the anharmonic oscillators. We will first solve fo
local time of arrival in the neighborhood of the origin using

t0~q,p!5 (
k50

`

~21!kTk~q,p!, ~52!
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where the iteratesTk’s are generated through the following recurrence relation:

T0~q,p!52m
q

p
, ~53!

Tk~q,p!52
m

p E
0

q ]V

]q8

]Tk21

]p
dq8, ~54!

obtained from the general expressions~23! and ~24! by settingx50.
We will then compare the local time of arrival with the Wigner–Weyl transform of the t

kernel,

T\~q,p!52pE
2`

` K q1
v
2UT Uq2

v
2L expS 2 i

vp

\ Ddv. ~55!

(T\(q,p) is real valued and odd with respect top.! For the harmonic oscillator we will find that th
local time of arrival andT\ coincide; and for the anharmonic oscillator it is only in the limit
vanishing or infinitesimal\ that T\ reproduces the local time of arrival at the origin.

A. The harmonic oscillator

1. Global and local time of arrivals

The potential for the harmonic oscillator isV(q)5 1
2mv2q2. Substituting the potential bac

into the general expression for the global time of arrival~12! yields

T0~q,p!52
1

v
tan21S mvq

p D . ~56!

We will show below that this can be derived via the local time of arrival.
Substituting the potential in Eq.~54!, we generate the first two iterates of the local time

arrival,

T152
1

3
m3v2

q3

p3
, T252

1

5
m5v4

q5

p5
.

From these iterates, we infer that for everyk, thekth iterate is given by

Tk52akm
2k11v2k

q2k11

p2k11
, ~57!

where theak’s are constants to be determined. These constants are determined as follows. W
indexk→(k21) in Tk to get the expression forak21 . We then substituteTk21 and the potential
back in the right-hand side of Eq.~54! to yield

2
m

p E
0

q ]V

]q8

]Tk21

]p
dq852ak21

~2k21!

~2k11!
m2k11v2k

q2k11

p2k11
. ~58!

If expression~57! holds for allk, then the right-hand sides of Eqs.~57! and~58! must be equal for
all k. Strict equality is then satisfied if and only if theak’s satisfy the following recurrence relatio
among themselves:

ak5
~2k21!

~2k11!
ak21 , ~59!
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subject to the initial valuea051. This can in turn be solved to giveak5(2k11)21. The local
time of arrival is then given by

t0~q,p!52 (
k50

`
~21!k

2k11
m2k11v2k

q2k11

p2k11
. ~60!

t0(q,p) can be summed within its region of convergence in the phase space, and the
coincides with the global one in the same region.

In the following we will show thatT\(q,p)5t0(q,p), and this is just a special case of o
general result on the equality ofT\(q,p) and t0(q,p) for linear systems, i.e., systems with line
classical equations of motion.

2. Supraquantization of the local time of arrival

Substituting the potential in Eq.~46! gives the corresponding time kernel equation to solve
the harmonic oscillator,

22
\2

m

]2T

]u]v
~u,v !1

mv2

2
uvT~u,v !50, ~61!

subject to the boundary conditions~45!. We assume a solution of the form

T~u,v !5(
m,n

am,numvn,

where thea’s are constants to be determined, subject to the boundary conditionsam,05
1
4dm,1 ,

a0,m50 for all m, andam,n50 for m,n,0. Substituting the assumed solution back into Eq.~61!,
we arrive at

22
\2

m (
m,n

am,nmnum21vn211
mv2

2 (
m,n

am,num11vn1150.

Shifting indices in the second term,m→(m21) andn→(n21), and collecting like terms, we ge

(
m,n

S 22
\2

m
mnam,n1

mv2

2
am22,n22Dum21vn2150.

Sinceu and v are arbitrary, the quantity in the bracket must vanish for all values ofu and v,
dictating the coefficients to satisfy the recurrence relation

am,n5S m2v2

4\2 D 1

m•n
am22,n22 . ~62!

Solving the time kernel then reduces to solving this recurrence relation among the coefficie
the assumed solution.

First for oddn. Sinceam,n50 for negativen, let us start fromn51. For n51 we get the
proportionality am,2}am21,21 ; but the coefficients vanish for negativen for all m; thus the
right-hand side of the proportionality vanishes and consequentlyam,150 for all m. Now if for
some fixed oddn8, am,n850 for all m, then for the next oddn812, am,n812}am21,n850 for all
m. Since we have already shown thatam,150 for all m, it follows thatam,n50 for all oddn, for
all m. The odd powers ofv then do not contribute.

We remark that the vanishing of the contributions for oddn is significant. We recall that the
solution T(q,q8) to the time kernel equation in the original form must satisfy the bound
condition ~42!. And we have noted earlier in Sec. V C that ifT(q,q8)5T(q8,q) or T(u,v)
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5T(u,2v), the condition~42! is automatically satisfied as long as the boundary conditions~45! are
satisfied as well. But the conditionT(u,v)5T(u,2v) is equivalent to the vanishing of the od
powers ofv. ConsequentlyT(q,q8) will automatically satisfy~42!. T(q,q8) will then satisfy the
original boundary condition~42!. This will be shown to be true for the rest of the potentia
considered, particularly for entire analytic potentials.

Now for evenn. Sinceam,n50 for negativen andam,0 is specified, we start withn52. For
n52 we get the proportionalityam,2}am22,0; butam8,0}dm8,1 , thus onlym53 contribute ora3,2

is the only nonvanishing coefficient forn52. Forn54 we getam,4}am22,2, which dictates that
only m55 contributes ora5,4 is the only nonvanishing coefficient forn54. We see thatn andm
are not independent from each other, i.e., they can be index by the same letter, sayk. From the first
two coefficients we infer thatm52k11 andn52k, k51, k52,... . We can prove this by induc
tion. Let for some fixedk thatam52k11,n52k is the only nonvanishing coefficient forn52k. Then
for k11, we haveam,2(k11)}am22,2k ; but the only nonvanishing contributions come fromm
2252k11 or m52k13. Thus forn52(k11), only a2k13,2(k11) is nonzero. Thus indeed onl
the coefficientsa2k11,2k are nonvanishing for allk51,2,... . Then the double index recurren
relation ~62! reduces to the single index recurrence relation,

ak5S m2v2

4\2 D 1

~2k11!2k
ak21 , ~63!

subject to the initial valuea05a1,05
1
4. The solution to Eq.~63! is

ak5
1

4 S mv

2\ D 2 1

~2k11!!
. ~64!

Substituting the nonvanishing coefficients back in the assumed solution yields the solu
time kernel equation for the harmonic oscillator,

T~u,v !5
\

2mv (
k50

`
1

~2k11!! S mv

2\ D 2k11

u2k11v2k. ~65!

Evidently T(u,v) converges everywhere in theuv-plane. Moreover, the solution~65! is unique.
This follows from the fact thatS(u,v) @see Eq.~50!# satisfies the time kernel equation, and
satisfies the boundary conditionsh0,n50, hm,050 for all m, n on its coefficients. The recurrenc
relation on the coefficientshm,n will be the same as those of theam,n’s. Since the nonvanishing
contributions inT(u,v) come only from the boundary conditionam,05

1
4dm,1 , S(u,v) will be

identically zero becausehm,050 for all m. The analytic solutionT(u,v) is then unique. This
observation holds for the rest of the potentials considered here.

Transforming back to (q,q8) and substitutingT(q,q8) back into Eq.~39! yields the time
kernel for the harmonic oscillator,

^quT uq8&5
1

2iv
sgn~q2q8!(

k50

`
1

~2k11!! S mv

2\ D 2k11

~q1q8!2k11~q2q8!2k. ~66!

This likewise converges everywhere in theqq8-plane. BecauseT(q,q8) is everywhere absolutely
convergent,T is a generalized observable inF ~see Appendix!. Now we can finally show that the
generalized time of arrival operator reduces to the local time of arrival in the classical lim
prescribed by Eq.~35!. Using the identity20

E
2`

`

sm21 sgn~s!exp~2 ixs!ds5
~m21!!

i mp
x2m, ~67!

we can perform the indicated transformation to give
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T\~q,p!52pE
2`

` K q1
v
2 UT Uq2

v
2L expS 2 i

vp

\ Ddv

52p
1

2iv (
k50

`
1

~2k11!! S mv

2\ D 2k11

~2q!2k11E
2`

`

v2k sgn~v !expS 2 i
vp

\ Ddv

52
1

v (
k50

`
~21!k

2k11 S mvq

p D .

We find thatT\ coincides exactly with the local time of arrival in the neighborhood of the ori
for the harmonic oscillator given by Eq.~60!.

B. The anharmonic oscillator

1. Global and local time of arrivals

In the previous section the Weyl–Wigner transform of the time kernel exactly reproduce
local time of arrival at the origin. But for nonlinear systems, systems with nonlinear equatio
motions, we demonstrate that only in the limit of vanishing or infinitesimal\ that the local time of
arrival ~at the origin! is recovered. Let us consider the anharmonic oscillator with the pote
V5lq4. The global time of arrival is symbolically given by

T0~q,p!52sgn~p!Am

2 E
0

q dq8

AH~q,p!2lq84
. ~68!

The above expression can be integrated explicitly, but its exact closed integral is not impor
our present purposes.

What is important to us is the local time of arrival in the neighborhood of the origin. Foll
ing the same procedure we have employed above in determining for the iterates of the ha
oscillator, we find that thekth iterate of the local time of arrival is given by

Tk5
1

4

2kApGS 2k2
1

4D
GS 3

4DGS 2k1
1

2D akm
k11lk

q4k11

p2k11
. ~69!

One can prove this by induction using Eq.~54!. SubstitutingTk back in Eq.~18! yields the local
time of arrival at the origin,

t0~q,p!5
1

4

Ap

GS 3

4D (
k50

` ~22!kGS 2k2
1

4D
GS 1

2
2kD mk11lk

q4k11

p2k11
. ~70!

In the following we will show thatT\(q,p)5t0(q,p)1O(\2). And this is just a special cas
of our general result on the equality ofT\(q,p) and t0(q,p) only in the limit of vanishing or
infinitesimal\ for nonlinear systems, i.e., systems with nonlinear classical equations of mo

2. Supraquantization of the local time of arrival

Substituting the potential equation in Eq.~46! gives the corresponding time kernel equati
for the anharmonic oscillator,
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22
\2

m

]2T

]v]u
1

l

2
~u3v1uv3!T~u,v !50, ~71!

subject to the same boundary conditions. Again we assume the most general form of the s
to the time kernel Eq.~71!,

T~u,v !5(
m,n

am,numvn,

where theam,n’s satisfy the boundary conditionsam,05
1
4dm,1 and a0,n50 for all m and n, and

am,n50 for negativem andn to identify the particular solution we seek.
Substituting the assumed solution back to Eq.~71! gives the following recurrence relation fo

the coefficients:

am,n5S ml

4\2D 1

mn
~am24,n221am22,n24!. ~72!

First let us consider the coefficients for odd powers ofv or for oddn. Since the coefficients vanis
for negativem and n, we start fromn51. For n51 we get the proportionalityam,1}(am24,21

1am22,23). But am,n50 for n,0 for all m, so thatam,150 for all m. For n53 we get the
proportionalityam,3}(am24,11am22,21). Sinceam,150 for all m and am,n50 for n,0, am,3

50 for all m as well. Now if for some oddn, am,n50 for all m, it follows from ~72! that for the
next odd numbern12, am,n1250 for all m. Thus odd powers ofv vanish. This assures us tha
T(q,q8) satisfies the boundary condition~42!.

Let us now consider the even powers ofv. For n52 we get the proportionalityam,2

}(am24,01am22,22). Only m55 contributes becauseam,n50 for negativen andam,05
1
4dm,1 ;

thus for n52 only a5,2 contributes. Forn54 we get the proportionalityam,4}(am24,2

1am22,0). There are only two contributions:m53, corresponding toa1,0, andm59, correspond-
ing toa5,2; thus forn54 onlya3,2 anda9,2 contribute. Continuing in this manner, we arrive at t
following first few sequences of nonvanishing contributions:

n50: a1,0,

n52: a5,2,

n54: a9,4, a3,4,

n56: a13,6, a7,6,

n58: a17,8, a11,8, a5,8,

n510: a21,10, a15,10, a9,10.

By inspection the nonvanishing coefficients can be grouped in two groups. Letn52 j for j
50,1,2,... . The contributing coefficients can then be written in the formam( j ),2j , where for

j 5odd, m~ j !5~ j 14!, ~ j 14!16, ~ j 14!112,...,2j 11,

j 5even, m~ j !5~ j 11!, ~ j 11!16, ~ j 11!112,...,2j 11.

Evidently for a givenj there are$j% contributingm’s, in which $ j %5 1
2( j 21)11 for j 5odd, and

$ j %5( 1
2 j 21)11 for j 5even. This can be proved by induction.

With the arrangement above for the coefficients, we can sum along the vertical. The
results suggest that the solution can be written in the following form:
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T~u,v !5
1

4 (
k50

`

(
j 52k

`

bk, ju
4 j 1126kv2 j , ~73!

wherebk, j ’s are proportional to the nonvanishing coefficients, i.e.,bk, j54a4 j 1126k,2j , b0,051,
for k>0 and j >2k. Substituting Eq.~73! back into Eq.~71!, we get the following recurrence
relation for thebk, j ’s:

bk, j5S ml

4\2D 1

~4 j 1126k!•2 j
~bk, j 211bk21,j 22!. ~74!

This recurrence relation~74! holds for all values ofk and j restricted in the assumed solution
long as we agree to setbk, j50 when both or either ofk and j is negative, or whenj ,2k.

First let us solve forb0,j for all j >1 givenb0,051. Settingk50 in Eq. ~74! we arrive at the
recurrence relation

b0,j5S ml

4\2D 1

~4 j 11!•2 j
b0,j 21 , ~75!

the bk, j ’s being zero fork,0. Let us define

l r
~ j ,k!5)

l 50

r
1

~4~ j 2 l !1126k!
, ~76!

where the valuer 521 is allowed. Equation~75! can be solved recursively to give

b0,j5
1

j ! S ml

8\2D j
1

~24! j 11

GS 2 j 2
1

4D
GS 3

4D ~77!

valid for all j >0. Givenb0,j we can proceed in determining of the coefficients.
To solve forbk, j for arbitraryk andj, we assume that we know the solution for (j 21) for all

j in Eq. ~74!. This reduces the problem of solving the recurrence relation for some fixj. We shift
index k→(k21) in Eq. ~74! and substitute it back to Eq.~74!. We do this repeatedly until we
arrive at the following result:

bk, j5 (
r 50

j 22k S ml

4\2D r 11
bk21,j 222r

2r 11

~ j 212r !!

j !
l r

~ j ,k! . ~78!

This can be proven by induction. So fork51, Eq. ~78! yields

b1,j5
1

j ! S ml

8\2D j 21

(
r 50

j 22

~ j 2r 21!l j 2r 23
~ j 222r ,0!l r

~ j ,1!5
1

j ! S ml

8\2D j 21F 1

2

GS 3

4D ~21! jA2GS 2 j 1
5

4D
4 jp

1
1

192

~4 j 25!~2 j 11!~21! j 22GS 2 j 1
7

4DGS 2 j 1
5

4D
4 j 22GS 3

4DGS 9

4
2 j D G . ~79!
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The rest of the contributing coefficients for otherk’s can be determined similarly.
However, the explicit forms forb0,j andb1,j suggest a simplification forbk, j . These coeffi-

cients can be explicitly written in the form

bk, j5
1

j ! S ml

8\2D j 2k

rk, j ~80!

for some constantsrk, j . These constants are found by substituting~80! back in both sides of Eq
~78!, with the appropriate shifting of indices in the right-hand side. Doing so leads to the follo
recurrence relation:

rk, j5 (
r 50

j 22k

~ j 2r 21!l r
~ j ,k!rk21,j 222r ~81!

for all k>1 and j >2k. The initial value that determines all the constantsrk, j is defined by~77!.
Comparing Eq.~77! and Eq.~80! for k50 gives

r0,j5
1

~24! j 11

GS 2 j 2
1

4D
GS 3

4D , ~82!

valid for all j >0. Equation~81! can be solved explicitly given the initial value. We do not need
write its explicit solution.

Substitutingbk, j back in Eq.~73!, the solution to the time kernel equation for the anharmo
oscillator assumes the form

T~u,v !5
1

4 (
k50

`

(
j 52k

`
rk, j

j ! S ml

8\2D j 2k

u4 j 1126kv2 j . ~83!

In arriving at this solution we have assumed above that the solution absolutely converges
neighborhood of the origin in theuv-plane, so that the contributing terms can be rearrange
will. However, we can only assert at this moment absolute convergence in the entireuv-plane of
the first two leading terms in the solution. Equation~83! can be written in the form

T~u,v !5T0~u,v !1T1~u,v !1¯, ~84!

where the subscripts denote the corresponding term for a givenk. Fork50 andk51, we have the
following explicit closed forms:

T0~u,v !5
1

4
u 0F1S 5

4
;

ml

32\2
u4v2D , ~85!

T1~u,v !52
1

96S ml

8\2D u3v4
1F2S 1;3,

7

4
;

ml

32\2
u4v2D 1

5

96S ml

8\2D u3v4
1F2S 1;3,

5

4
;

ml

32\2
u4v2D

1
1

720S ml

8\2D 2

u7v6
1F2S 2;4,

9

4
;

ml

32\2
u4v2D , ~86!

wherepFq is the generalized hypergeometric function.pFq converges everywhere ifp<q. The
first two leading terms then converge everywhere in theuv-plane.

Transforming back to (q,q8), the time kernel for the anharmonic oscillator assumes the f
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^quT uq8&5
m

4i\
sgn~q2q8!(

k50

`

(
j 52m

`
rk, j

j ! S ml

8\2D j 2k

~q1q8!4 j 1126k~q2q8!2 j . ~87!

The first two groups of terms, corresponding tok50 and k51, converge everywhere in th
qq8-plane so that they are functionals in theF3 and define a generalized operator inF. We have
not been able to make a conclusion on the convergence of the rest of the group of terms. W
though that, sincêquT uq8& must be a functional inF3, it is not necessary that the sum converg
in the usual sense; it is sufficient that it converges in the distributional sense inF3 ~see Gel’fand
and Shilov~1964!, p. 368 for a discussion on the convergence of functionals inF!. Performing the
indicated transformation, we have

T\~q,p!52pE
2`

` K q1
v
2UT Uq2

v
2L expS 2 i

vp

\ Ddv

52
m

2 (
k50

`

\2k (
j 52k

`

~21! j
rk, j

j !
~2 j !! S ml

8 D j 2k ~2q!4 j 1126k

p2 j 11

5
1

4

Ap

GS 3

4D (
j 50

` ~22! jGS 2
1

4
2 j D

GS 1

2
2 j D m j 11l j

q4 j 11

p2 j 11
1O~\2!5t0~q,p!1O~\2!,

where t0 is the local time of arrival of the anharmonic oscillator as given by Eq.~70!. Thus
T\(q,p) reduces tot0(q,p) in the limit of vanishing\ or infinitesimal\.

VII. ENTIRE ANALYTIC POTENTIALS

In this section we prove that the local time of arrival is completely derivable from
generalized time of arrival operator for systems subject to entire analytic potentials, e.g., pot
in polynomials ofq. We divide our proof for the linear~systems with linear classical equations
motions! and nonlinear~systems with nonlinear classical equations of motions! cases. In particular
we will show that

Linear Systems: T\~q,p!5t0~q,p!, ~88!

Nonlinear Systems: T\~q,p!5t0~q,p!1O~\2!. ~89!

Our method of proof will not follow the line used in the previous section. It will be suffici
to show that the leading term inT\(q,p), T k

0(q,p), the term of orderO(\0), can be written in the
form

T \
0~q,p!5 (

k50

`

~21!kTk~q,p!, ~90!

where theTk’s satisfy the initial value and the recurrence relation

T0~q,p!52m
q

p
, ~91!

Tk~q,p!52
m

p E
0

q ]V

]q8

]Tk21

]p
dq8, ~92!
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for all k. If they do, then, according to our result in Sec. IV,T \
0(q,p) converges to the local time

of arrival in the neighborhood of the origin.

A. Linear systems

Now we consider the most general case for linear systems. The most general potential i
by

V~q!5aq1 1
2bq2, ~93!

for some constantsa andb. A constant can be added toV(q), but it does not change the resu
Here we prove that for systems subject to the potential~93! the local time of arrival in the
neighborhood of the origin is given by Eq.~88!.

We first solve for the time kernel of the generalized time of arrival operator. Substitutin
potential in the time kernel equations lead to solve the following partial differential equatio

2
2\2

m

]2T

]u]v
1S av1

1

2
buv DT~u,v !50, ~94!

subject to the boundary conditionsT(u,0)5 1
4u and T(0,v)50. We assume the most gener

solution of the form

T~u,v !5(
m,n

am,numvn, ~95!

where the coefficients now satisfy the conditionsam,n50 when both or eitherm and n are
negative, andam,05

1
4dm,1 , a0,n50 for all n. Substituting the assumed solution back into Eq.~94!

yields the recurrence relation among the coefficients

am,n5S m

2\2D 1

mn S aam21,n221
1

2
bam22,n22D . ~96!

First let us show that odd powers ofv do not contribute in the solution, i.e.,am,n50 for all
odd n for all m. For n51 we have the proportionalityam,1}(aam21,211 1

2bam22,21). But
am,n50 for all negativen, thusam,150 for all m. Now let us assume that for some fixed oddn,
am,n50 for all m. Then for the next oddn85n12, am,n12}(aam21,n1 1

2bam22,n). But am,n

50 for all m, thus am,n1250 for all m. Since we have shown thatam,150 for all m, it then
follows thatam,n50 for all m for all odd n. The vanishing of the odd powers ofv is significant
because it assures us that the boundary condition~42!, necessary to impose canonicality, is sat
fied.

Now let us determine the coefficients for evenn. For n52 we have the proportionality
am,2}(aam21,01

1
2bam22,0). Sinceam,05

1
4dm,1 , only m52 contributes in the first term, andm

53 for the second term. Forn54, am,4}(aam21,21
1
2bam22,2). Only m53, 4 contribute for the

first term; whilem54, 5 for the second term. Continuing the process, we arrive at the follow
first few nonvanishing coefficients,

n50: a1,0,

n52: a2,2, a3,2,

n54: a3,4, a4,4, a5,4.

We find that for everyn52 j , for integerj, there arej 11 nonvanishing contributions. In particu
lar, for a givenj, we can writeam,n in the formam( j ),2j , wherem( j ) takes on one of the following
values:
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m~ j !5~ j 11!,~ j 12!,...,~2 j 11!.

This can be proven by induction.
The solution to the time kernel equation~94! can then be written in the following form:

T~u,v !5(
j 50

`

(
k50

j

a2 j 112k,2ju
2 j 112kv2 j5

1

4 (
k50

`

(
j 50

k

hk, ju
2 j 112kv2 j , ~97!

where thehk, j ’s are constants proportional to the nonvanishingam,n’s, with h0,051. Substituting
back the second form of the solution to the time kernel equation yields the recurrence rela

hk, j5S m

2\2D S ahk21,j 211
1

2
bhk21,j D

2k~2k112 j !
, ~98!

valid for all k and j as long as we seth j ,k50 for all 0. j .k. Solving this recursively yields the
following form:

hk, j5S m

2\2D k
1

2kk!
sk, jb

k2 jaj , ~99!

for some constantssk, j . Substituting Eq.~99! back into~98! gives the recurrence relation for th
constantssk, j ,

sk, j5
1

~2k112 j ! S sk21,j 211
1

2
sk21,j D . ~100!

This can be solved recursively to give

sk, j5 (
r 51

k2 j 11
sk2r , j 21

2r 21 )
s50

r 21
1

~2~k2s!112 j !
~101!

with s0,051. We don’t need to evaluate this explicitly. We will just need this recurrence rela
in proving Eq.~88!. The solution to the time kernel equation can now be written in the form

T~u,v !5
1

4 (
k50

`

(
j 50

k S m

2\2D k
1

2kk!
sk, jb

k2 jaju2k112 jv2k. ~102!

It can be shown thatT(u,v) is everywhere defined in theuv-plane. From the expression fo
T(u,v), we have

T~q,q8!5
1

4 (
k50

` S m

2\2D k
1

2kk!
~q2q8!2k(

j 50

k

sk, jb
k2 jaj~q1q8!2k112 j ~103!

in the original coordinate.
Equation~103! allows us to finally write the functional of the generalized time of arriv

operator in the neighborhood of the origin,

^quT uq8&5
m

4i\
sgn~q2q8!(

k50

`

(
j 50

k S m

2\2D k
1

2kk!
sk, jb

k2 jaj~q1q8!2k112 j~q2q8!2k.

~104!
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This is a functional for fixedq in F. Performing the indicated transformation to go back in
classical regime, we get

T\~q,p!52pE
2`

` K q1
v
2

uT uq2
v
2L expS 2 i

vp

\ Ddv

5 (
k50

`

(
j 50

k

~21!k11mk11
~2k!!

k!

sk, j

2 j
bk2 jaj

q2k112 j

p2k11
. ~105!

We note thatT\ is to the orderO(\0). Now to complete our proof, we write

T\~q,p!5 (
k50

`

~21!kTk , ~106!

where

Tk52
~2k!!

k!
mk11(

j 50

k
sk, j

2 j
bk2 jaj

q2k112 j

p2k11
. ~107!

To prove our assertion thatt0(q,p)5T\(q,p), we need only to show thatTk satisfies the
initial value conditiont0(q,p) and the recurrence relation is satisfied by the iterates of the l
time of arrival at the origin. It is straightforward to show thatT0(q,p)5t0(q,p) by settingk
50 in Eq.~107!. It only remains to show that theTk’s satisfy the recurrence relation~92!. Shifting
indexk→k21 in ~107! and substituting it back, together with the potential, in right-hand side
Eq. ~92! yields

2
m

p E
0

q ]V

]q

]Tk21

]p
dq52

~2~k21!!! ~2k21!

~k21!!
mk11

3(
j 50

k
1

2 j

~2sk21,j 211sk21,j !

~2k112 j !
bk2 jaj

q2k112 j

p2k11
, ~108!

wheresk, j50 for 0. j .k. Equation~105! converges to the local time of arrival at the origin
and only if Eq.~108! is equal to~107! for all k>1. EquatingTk with Eq. ~108!, we find thatsk, j

must the satisfy the following recurrence relation if strict equality is required:

sk, j5
1

~2k112 j ! S sk21,j 211
1

2
sk21,j D . ~109!

But this recurrence relation is already satisfied by thesk, j ’s, as shown by Eq.~100!. Thus Eq.
~105! converges to the local time of arrival at the origin for the potential given.

We have thus proved what we have sought to prove that for linear systems,T\(q,p)
5t0(q,p).

B. Nonlinear systems

In this section we show that for entire analytic potentials of the form

V~q!5(
s51

`

asq
s, ~110!
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with at leasta3 is nonvanishing, the proposed supraquantization of the time of arrival at the o
reduces only to the classical local time of arrival in the limit of vanishing or infinitesima\.
Substituting the potential back into the time kernel equation and after some simplificatio
arrive at the partial differential equation to solve

22
\2

m

]2T

]u]v
1(

s51

`
as

2s21 (
k50

@s# S 2
2k11Dus22k21v2k11T~u,v !50, ~111!

where @s#5(s21)/2 for s5odd and@s#5(s/2)21 for s5even, subject to the same bounda
conditions.

Now let us assume an analytic solution of the form

T~u,v !5(
m,n

am,numvn, ~112!

subject to the boundary conditionsam,n50 for m,n,0, am,05
1
4dm,1 , and a0,n50 for all n.

Substituting the assumed solution back into~111! and collecting terms of equal powers ofu andv
yield the following recurrence relation among the coefficients:

am,n5
m

2\2

1

mn(
s51

`
as

2s21 (
k50

@s# S s
2k11Dam2s12k,n22k22 . ~113!

Imposing the boundary condition, we have the following conditions imposed upon the c
cients:a1,05

1
4, am,n50 for all n,0 andm<1, am,050 for all m>2, andam,150 for all m.

1. Odd powers of v

The boundary conditions impose that theam,n’s vanish for oddn for all m. The coefficients
already vanish for negativen, so we start withn51. Forn51 Eq. ~113! gives

am,15
m

2\2

1

m•1 (
s51

`
as

2s21 (
k50

@s# S s
2k11Dam2s12k,22k21 .

Sinceam,n vanish for all negativen, am,150 for all m. For n53 we have

am,35
m

2\2

1

m•3 (
s51

`
as

2s21 (
k50

@s# S s
2k11Dam2s12k,122k .

Sinceam,150 for all m andam,n50 for all negativen, it follows thatam,350 for all m as well.
Now let n52 j 11, for j 50,1,2,..., and letam,2j 1150 for all m for all j <J. Then forn52(J
11)11,

am,2~J11!115
m

2\2

1

m~2~J11!11! (
s51

`
as

2s21 (
k50

@s# S s
2k11Dam2s12k,2J1122k .

The k50 term in the inner sum contains the factorsam2s12k,2J11 , which are all vanishing
becauseam,2J1150 for all m; thek50 term then does not contribute. Thek51 term contains the
factorsam2s12k,2(J21)11 , which are all also vanishing becauseam,2j 1150 for all m for all j
<J; the k51 term then does not contribute.

Now for all k<J, the coefficientsam2s12k,2J1122k5am2s12k,2(J2k)11 vanish, again, be-
causeam,2j 1150 for all m for all j <J; and no contribution comes from them. On the other ha
for all k.J, the coefficientsam2s12k,2(J2k)11 must vanish because of the condition thatam,n

50 for all negativen. Thusam,2(J11)1150 for all m as well. We have already shown thatam,1
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50 andam,350 for all m, and it follows thatam,550 for all m from what we have already shown
and so on. Thus it must be thatam,n50 for all m for every oddn. Odd powers ofv then do not
contribute in the solution to the time kernel equation.

2. Even powers of v

Now we proceed in determining the nonvanishing coefficients corresponding to even p
of v or to evenn. First, for n52, the recurrence relation~113! reduces to

am,25S m

2\2D 1

m•2 (
s51

`
as

2221 (
k50

@s# S s
2k11Dam2212k,22k . ~114!

Since theam,n’s vanish for all negativen, only thek50 term contributes in~114!. Thus

am,25S m

2\2D 1

m•2 (
s51

`
as

2s21 S s
1Dam2s,0 .

But am8,05
1
4dm8,1 , so that only thes5m21 term contributes in the preceding relation. Since

power of u is at least to the first order ands>1, only those coefficients withm>2 contribute
above. Thus

am,25S m

2\2D 1

m•2

am21

2m22 S m21
1 D 1

4
. ~115!

The nonvanishing contributions from those withm>2.
For n54 the recurrence relation reduces to

am,45S m

2\2D 1

m•4 (
s51

`
as

2s21 (
k50

@s# S 2
2k11Dam2s12k,222k . ~116!

For all s only thek50, 1 contribute toam,4 . All of the s>1 terms contribute to thek50 term.
However, only those fors>3 contribute to thek51 term. Thus

am,45S m

2\2D 1

m•4 (
s51

`
as

2s21 S s
1Dam2s,21S m

2\2D 1

m•4 (
s53

`
as

2s21 S s
3Dam2s12,0.

Sinceam8,2 is nonvanishing only form8>2, it has to be that (m2s)>2 in the first term; thus only
those 1<s<(m22) contribute in the sum. Sinces>1 only those withm>3 contribute. On the
other hand, onlys5m11 contributes in the second term. Thus, upon substitutingam8,2 andam8,0 ,

am,45S m

2\2D 2
1

m•4 (
s51

m22
asam2s21

2m22 S s
1D S m2s21

1 D 1

4
1S m

2\2D 1

m•4

am11

2m S m11
3 D 1

4
,

with the first term having contribution only form>3 and the second term for allm>2.
We would like now to generalize our results for arbitraryj. The explicit forms ofam,0 , am,2

andam,4 suggest that, for some fixedj, we have

am,2j5(
s50

j 21

am, j
~s! S m

2\2D j 2s

, ~117!
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for some constantsam, j
(0) independent of\ andm. We prove~117! by induction and consequentl

determine the recurrence relation satisfied by these constants that determines them unique
for n52 j for somej >1, the recurrence relation~113! can be written in the form

am,2j5
m

2\2

1

m•2 j (s51

`
as

2s21 (
k50

j 21 S s
2k11Dam2s12k,2~ j 2k21! . ~118!

We have replaced@s# with j 21 in the inner summation limit because whatever extra terms
introduced they are taken care of by the binomial factor. The order of summation can be reo
to yield

am,2j5
m

2\2

1

m•2 j (
k50

j 21

(
s52k11

`
as

2s21 S s
2k11Dam2s12k,2~ j 2k21!

5
m

2\2

1

m•2 j (
k50

j 21

(
s52k11

m12k21
as

2s21 S s
2k11Dam2s12k,2~ j 2k21! . ~119!

The second line follows from the fact thatam2s12k,2(j 2k21) is nonvanishing only whenm2s
12k>1 or m12k21>s.

Now we substitute Eq.~117! back into the right-hand side of Eq.~119!. This yields

am,2j5
1

m•2 j (
k50

j 21

(
r 50

j 2k21 S (
s52k11

m12k21
as

2s21 S s
2k11Dam2s12k, j 2k21

~r ! D S m

2\2D j 2k2r

. ~120!

We can rearrange Eq.~120! to obtain the following simplification:

am,2j5
1

m•2 j (s50

j 21 S (
r 50

s

(
l 52r 11

m12r 21
al

2l 21 S l
2r 11Dam2 l 12r , j 2r 21

~s2r ! D S m

2\2D j 2s

. ~121!

Expression~117! holds if and only if it equals the right-hand side of~121! for all j. Strict equality
holds if and only if the constantsam, j

(s) satisfy the recurrence relation

am, j
~s! 5

1

m•2 j (r 50

s

(
l 52r 11

m12r 21
al

2l 21 S l
2r 11Dam2 l 12r , j 2r 21

~s2r ! , ~122!

for all 0<s<( j 21), subject to the initial valueam,0
(0) 5 1

4dm,1 . Equations~120! and ~122! now
define the nonvanishing coefficients for even powers ofv. They can be solved explicitly. In the
following we are only interested in the classical limit.

C. The classical coefficients

We now identify the contributing coefficients and determine the leading order of\ correction
in the classical limit. For a fixed evenn52 j , j 50,1,2,..., we have seen above that the contribut
coefficientsam,2j ’s are of the form

am,2j5(
s50

j 21 S m

2 D j 2s am, j
~s!

\2~ j 2s!
.

The contribution of each term isam,2jv
2 j ~the um factor is left out because it is not relevant

determining the\-order of contribution in the classical limit!. The classical contribution of this
term is proportional to
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1

\
am,nE

2`

`

sgn~v !v2 j expS 2 i
vp

\ Ddv}(
s50

j 21 S m

2 D j 2s

am, j
~s! \2s, ~123!

where we have arrived at the left-hand side of the first line by using the prescribed cla
transition and with the right-hand side using identity~67!. We see immediately that the onl
contributing term in the classical limit corresponds tos50. Moreover, we can already see that t
leading\ correction in the classical limit isO(\2); this corresponds tos51 in Eq. ~123!.

Thus the coefficients contributing only in the classical limit corresponds to those fors50 for
a givenj. And these coefficients satisfy the recurrence relation,

am,2j
~0! 5

1

m•2 j (s51

`
sas

2s21
am2s, j 21

~0! . ~124!

With am,05
1
4dm,1 , we can generate the following first few coefficients

am,0
~0! 5 1

4dm,1 ,

am,1
~0! 5

1

2m (
s51

`
sas

2s21
am2s,0

~0! 5
1

1•m

~m21!am21

2m11
for all m>2,

am,2
~0! 5

1

2m (
s51

`
sas

2s21
am2s,15

1

1•2m2m11 (
s51

m22
sas

~m2s!
~m2s21!am2s21 for all m>3.

From these few iterations, we infer that the coefficients are given by

am, j
~0! 5

Cm, j

j ! •2m11m
, ~125!

where theCm, j ’s are constants, for allm>( j 11). Substituting this expression back into th
recurrence relation~124!, yields the recurrence relation satisfied by theCm, j ’s,

Cm, j5 (
s51

m2 j
sas

~m2s!
Cm2s, j 21 . ~126!

This is uniquely solved by specifying the initial value. Settingj 50 in Eq.~125! and comparing it
with the known value ofam,0

(0) yields the initial valueCm,05dm,1 . The recurrence relation can b
solved explicitly, but we do not need to write it down.

D. The solution

The coefficientsam, j
(0) give the group of contributions with the orderO(\0) in the classical

limit. For every j >0, there is a contributionTj (u,v)’s in the solutionT(u,v), which is given by

Tj~u,v !5S m

2\2D j

(
m5 j 11

`

am,2j
~0! umv2 j5S m

2\2D j
1

j ! (
m5 j 11

`
C@m, j #

m•2m11
umv2 j .

The solution to~46! can then be written in the form

T~u,v !5(
j 50

`

Tj~u,v !1S~u,v !, ~127!
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where the second term is responsible for orderO(\2) in the classical limit. The solution to the
time kernel equation in the (q,q8) coordinate then assumes the form

T~q,q8!5(
j 50

`

Tj~q,q8!1S~q,q8!, ~128!

in which Tj (q,q8) derives fromTj (u,v) with the substitutionsu5(q1q8) andv5(q2q8).
The functional kernel of the generalized time of arrival operator then splits in two parts

^quT uq8&5(
j 50

`

^quTj uq8&1^quDT uq8&,

where^quTj uq8&5(m/ i\)Tj (q,q8)sgn(q2q8). Each of this^quTj uq8& contributes in the classica
limit,

Tj~q,p!52pE
2`

` K q1
v
2UTjUq2

v
2L e~2~ ipv/\!!dv52~2 j 21!!! ~21! j

m j 11

p2 j 11 (
m5 j 11

`
Cm, j

m
qm,

where a simplification has been made in the second line.
To prove that( j 50

` Tj (q,p) converges to the local time of arrival, we write the term w
leading orderO(\0) in the form

T\
0~q,p!5 (

k50

`

~21!kTk~q,p!, ~129!

Tk52~2k21!!!
mk11

p2k11 (
m5k11

`
Cm,k

m
qm. ~130!

T \
0 converges to the local time of arrival in the origin if theT0 reproduces the initial value and th

remaining terms satisfy the recurrence relation for the local time of arrival. SinceCm,05dm,1 , for
k50, we have

T0~q,p!52m
q

p
, ~131!

as required.
It remains to show that the rest of the terms satisfy the recurrence relation~92!. Shifting index

k→(k21) in Tk , we have

]V

]q

]Tk21

]p
5~2k21!!!

mk

p2k (
s51

`

sasq
s21

• (
m5k

`
Cm,k21

m
qm5~2k21!!! (

k11

`

(
r 51

s2r
rarCs2r ,k21

~s2r !
qs21,

~132!

where we have used the identity

(
s51

`

asx
s
• (

k5m

`

bkx
k5 (

l 5m11

`

(
n51

l 2m

anbl 2nxl

to arrive at the second line. Now we have

2
m

p E
0

q

dq
]V

]q

]Tk21

]p
5~2k21!!! (

k11

`

(
r 51

s2r
rarCs2r ,k21

~s2r !

qs

s
. ~133!
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T\ converges to the local time of arrival at the origin if and only if Eqs.~130! and~133! are strictly
equal for allk. Equating them, we find that strict equality for allk holds if and only if theCm,k’s
satisfy the recurrence relation

Cm,k5 (
r 51

m2k
rar

~m2r !
Cm2r ,k21 . ~134!

But this is just the recurrence relation we have arrived at above. Thus theTk’s satisfy the initial
value condition and the required recurrence relation. The leading termT \

0 then converges to the
local time of arrival at the origin, as what we have sought to prove.

E. Integral form of the classical term

In the above discussion, we did not bother to consider the convergence of the group of
contributing in the classical limit, the terms withO(\0) when Weyl–Wigner transformed; w
denote this group of terms bŷquT0uq8&, and call it the classical term. Here we show th
^quT0uq8& converges everywhere in theqq8-plane. We do this by showing that it has an integ
representation which is defined everywhere.

It will be sufficient for us to derive the integral form of the time kernel for the linear ca
because the nonlinear case can be derived similarly. Our goal is to rewrite Eq.~103! such that it is
explicitly everywhere convergent in theqq8-plane. We do this as follows. In Eq.~107!, we have
the following expression forT k :

Tk52
~2k!!

k!

mk11

p2k11 (
j 50

k
sk, j

2 j
bk2 jajq2k112 j . ~135!

We compare this with Eq.~25! for x50,

Tk52
~2k21!!!

k!

mk11

p2k11 E0

q

~V~q!2V~q8!!kdq8. ~136!

Since we already know that Eq.~106! converges absolutely to the local time of arrival at t
origin, it must be that Eqs.~135! and ~136! are equal for allk. Equating them and changin
variablesq→ 1

2(q1q8) in the resulting equality gives us the following identity:

(
j 50

k

sk, jb
k2 jaj~q1q8!2k112 j522k11

~2k21!!

~2k!! E
0

s

~V~s!2V~q9!!kdq9us51/2~q1q8! , ~137!

which is the simplification we need in Eq.~103!. Substituting Eq.~137! into Eq. ~103! yields

T~q,q8!5
1

2 (
k50

` S m

\2D k
~2k21!!!

~2k!!k!
~q2q8!2kE

0

s

~V~s!2V~q9!!kdq9us51/2~q1q8!

5
1

2 E0

s

dq9 0F1S 1;S m

2\2D ~q2q8!2~V~s!2V~q9!!D us51/2~q1q8! , ~138!

wherepFq is the generalized hypergeometric function. The integration can be pulled out o
summation because of the continuity of the potential and the absolute everywhere converg
the hypergeometric function forp,q. T(q,q8) is consequently defined everywhere. Finally t
time kernel is explicitly given by
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^quT0uq8&5
sgn~q2q8!

2i\ E
0

1/2~a1q8!
dq9 0F1S 1;

m

2\2
~q2q8!2H VS 1

2
~q1q8! D2V~q9!J D .

~139!

We have arrived at Eq.~139! for linear systems, but similar working on the classical term of
solution for the nonlinear case yields the same expression~139!, in which V(q) is now the
appropriate potential for nonlinear systems.

Since the time kernel and the classical term coincide for linear systems, the time ker
defined everywhere, and thus a functional inF3, and it defines a generalized observable relat
to the rigging provided byF ~see Appendix!. For nonlinear systems, the leading term is likew
defined everywhere, and it defines a generalized observable relative toF. We have not been able
to investigate the functional structure of the remaining terms for nonlinear systems. Genera
time kernels for entire analytic potentials can then be written in the form

Linear Systems: ^quT uq8&5^quT0uq8&, ~140!

Nonlinear Systems: ^quT uq8&5^quT0uq8&1^quDT uq8&. ~141!

Comparison of̂ quT0uq8& with the Weyl quantization of the local time of arrival in the orig
shows that they are equal. One can check this for himself by applying Weyl’s quantization
scription ~9! to the local time of arrival. Weyl quantization then agrees only with the resul
supraquantization for linear systems and it fails to satisfy the required commutator valu
nonlinear systems. By our results for the nonlinear system the second term in Eq.~141! is to the
O(\2) in the classical limit.

VIII. SUPRAQUANTIZATION FOR ARBITRARY POINTS OF ARRIVAL x

Having solved the time of arrival supraquantization problem at the origin, now we show
our results above can be imported to solve the supraquantization at an arbitrary pointx. Generally
the classical time of arrival at a pointx is given by Eq.~12!. Changing variables in Eq.~12! to
(q̃5q2x, p̃5p), the expression for the time of arrival reduces to

Tx~ q̃,p̃!52sgn~ p̃!Am

2 E
0

q̃ dq̃8

AH~ q̃1x,p̃!2V~ q̃81x!
. ~142!

Comparing Eq.~142! with the classical time of arrival at the origin, we find that the expressio
equivalent to the time of arrival at the origin under the potentialṼ(q̃)5V(q̃1x).

The surpraquantization for arbitrary arrival pointsx then can be solved by solving the tim
kernel equation at the origin subject to the potentialV́(q́)5V(q́1x). For this case the time kerne
equation assumes the form

2
\2

2m

]2Tx~ q̃,q̃8!

]q2
1

\2

2m

]2Tx~ q̃,q̃8!

]q̃82
1~V~ q̃1x!2V~ q̃81x!!Tx~ q̃,q̃8!50

and the solution is still subject to the same boundary conditions

Tx~ q̃,q̃!5
q̃

2
, Tx~ q̃,2q̃!50. ~143!

After solving forTx(q̄,q̄8), we can transform back to the original coordinate to get the kerne
the original problem. And that completes the supraquantization of the classical time of arriv
arbitraryx. Note that our earlier result in the neighborhood of the origin is subsumed in the a
solution by simply settingx50.
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IX. DISCUSSION AND CONCLUSION

In this paper we have demonstrated that the classical time of arrival can be derived qu
mechanically without solving for and inverting the classical equations of motion. Our res
albeit still needing more clarifications~especially in the nonlinear case!, undoubtedly forces us to
reconsider our ideas on quantization, and consider supraquantization in places where quan
fails. Generally it is known that obstruction to quantization exists, so that no quantizati
possible to consistently satisfy the required commutation relations. For example, Weyl qua
tion cannot consistently quantize all classical observables as we have demonstrated for the
time of arrival observables. What is generally done is to choose an elite class of the cla
observable that can be consistently quantized and derive the rest of the quantum observa
expressing them in terms of this elite class. In Euclidean space, the choice is usually the H
berg class, the position and momentum operators, together with the identity operator. The
the quantum observables are then derived by expressing them in terms of this class of op
This, however, is not wholly satisfactory because the resulting operators do not necessarily
the required algebra.

Now if we strongly require consistency with the required algebra of observables in s
where obstruction to quantization exists, then we must leave quantization and find an alte
platform. It is here that the idea of supraquantization may come in. However, its implemen
may not be straightforward. As what we have discussed earlier, supraquantization may nece
require some classification of observables, as opposed to quantization which does not c
observables. The classification is necessary, at least for the class of time of arrival observa
identifying the characteristic properties of the class that can be used in implementing the tr
principle. The natural questions are: ‘‘How do we get the appropriate classification and how do
identify the characteristic properties of the class?’’ These may not be easily answered, but th
will eventually require us to go back to the basic definition of the elements of the class an
appropriate axioms of quantum mechanics to impose on them.

Assuming that we have settled the first question, we may use quantization itself as a
addressing the second question. What we can do is the following: Given a classC of classical
observables, divideC in two partsCN andCO . The subclassCN , which we may call the nonob
structed class, consists of those observables that can be consistently quantized; and the
CO , which we may call the obstructed class, consists of those observables that cannot be
tently quantized. We can work on theCN using quantization and determine the properties that
be extended to the rest of the class. Once the common property of all those inCN has been
determined, one can use the transfer principle in treating the obstructed classCO . For the class of
~classical! time of arrival observables, we find that the nonobstructed class with respect to
quantization consists of all linear systems, while the obstructed class consists of all non
systems. Following the above suggestion, we could have arrived at the same solution by w
directly with the linear system and extending the result to nonlinear systems via the appro
transfer principle. The example of the classical time of arrival demonstrates how obstruct
quantization can be formally circumvented with the idea of supraquantization.
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APPENDIX A

To establish and to avoid possible confusion with our notation for the RHS-extension
RHS-reductions, in particular the use of the notationA3w5^FAuw&5Aw, we give an example.

Consider the momentum operatorP in the Hilbert spaceH5L2(R,dq). The domain ofP,
D~P!, consists of all vectors inH that are almost differentiable everywhere in the real line, a
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whose first derivatives are Lesbegue square integrable. For every vectorw(q) in D~P!, the mo-
mentom operator acts as (Pw)(q)52 i\w8(q). By definition P is self-adjoint so thatP5P†.
Now we choose the riggingF3.H.F, whereF is the space of infinitely differentiable comple
valued functions with compact support in the real line, andF3 its corresponding functional space
SinceF is contained inD~P!, we can define its rigged Hilbert space extension and reduction.
every vectorw in F and functionalf in F3, we can writê fuw&5*Rf* (q)w(q)dq, where the
integration is understood in the distributional sense when singularf is involved, say, the Dirac
delta.

Now the RHS-extension ofP is found as follows: For everyw in F andf in F3, we have

^fuP†w&5E
R

f* ~q!~2 i\w8~q!!dq5E
R

i\f8* ~q!w~q!dq

5E
R

~2 i\f8~q!!* w~q!dq5E
R

~P3f!~q!w~q!dq,

where the second line follows from the definition of the derivatives of functionals. The R
extension ofP is then given by the operatorP3 which acts everywhere inF3 as P3f
52 i\f8.

On the other hand, the RHS-reduction ofP is found as follows: First, we have to indicate th
reduction ofP in F. Its reduction is simply the operatorPF , which acts only on vectorsw in F
according to (PFw)(q)52 i\w8(q). Second, we have to find the functionalFP(q) in F3 for
every q in the real line, such that̂FP(q)uw&52 i\w8(q), for all w in F. By inspection, this
functional is given byFP(q)52 i\d8(q2q8). It is so because

^FP~q!uw&5E
R

FP~q!* w~q8!dq85E
R

i\d8~q2q8!w~q8!dq8

5E
R

d~q2q8!~2 i\w8~q8!!dq852 i\w8~q!5~PF!~q!.

Thus, by our definition, the uniquely associated functional toP is the functional2 i\d8(q
2q8). The RHS-reduction ofP is now symbolically given by

P35^FPu•&5E
R

dq8i\d8~q2q8!,

with FP* 5 i\d(q2q8) as the functional kernel ofP3 .
Note that possible confusion may arise when the above notation is used, for examp

expressions likêF(w)uw&5^^Fuw&uw&, such as in the definition of generalized observables.
confusion may creep in when one interprets^Fuw& as a constant scalar number. While^Fuw& is
indeed a scalar number, it may be understood to range in the complex plane, such as^FP(q)uw&
in the above example, so that^Fuw& can be understood as a vector inF or F3, whichever the case
maybe.

APPENDIX B

Let us consider the function

F~q,q8!5sgn~q2q8!(
k50

`

Tk~q,q8!, ~B1!

where the summation is everywhere absolutely convergent or entire analytic in theqq8-plane.
Now for a fixedq, is F(q,q8) a functional belonging toF3?
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First it has to be that for allw in F, u^Fuw&u,`. Let us denote the sum in Eq.~B1! by
S(q,q8). Then for allw in F

U E
S
F~q,q8!w~q8!dq8U<supSuS~q,q8!uU E

S
w~q!dqU, ~B2!

whereS is the support ofw(q). The right-hand side of the above inequality is finite beca
S(q,q8) is bounded in any finite region of theqq8-plane. Second, it has to be that for eve
sequencewn in F converging to zero inF, ^Fuwn& converges to 0. This follows immediatel
becauseF(q,q8) is locally integrable. ThuŝquT uq8& is a functional belonging toF3 for a fixed
q.

Now for arbitraryw in F, is G(q)5* F(q,q8)w(q8)dq8 a functional belonging toF3? For
all f(q)PF,

U E
S8
E

S
F~q,q8!f~q!* w~q8!dq8dqU<supS3S8uS~q,q8!uU E

S3S8
f* ~q!w~q8!dqdq8U.

~B3!

The right-hand side of the inequality is finite becauseS(q,q8) is bounded in every bounded regio
of theqq8-plane. Now it is sufficient to show that for every sequencefn converging to zero inF,
^Gufn&→0. This follows immediately by substitutingfn in inequality ~B3! for f.

ThusF(q,q8) is the functional kernel of an operatorF: F°F3 and thuŝ Fuw& is itself a
functional inF3.
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Minimization under entropy conditions, with applications
in lower bound problems

Joachim Tofta)

Department of Mathematics and Systems Engineering, Va¨xjö University, Växjö, Sweden
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We minimize the functionalf °* a f dm under the entropy conditionE( f )
52* f log fdm>E, * f dm51 and f >0, whereEPR is fixed. We prove that the
minimum is attained forf 5e2sa/* e2sadm, where sPR is chosen such that
E( f )5E. We apply the result on minimizing problems in pseudodifferential calcu-
lus, where we minimize the harmonic oscillator. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1767623#

I. INTRODUCTION

The aim of the article is to establish and prove basic results for a technique of minimiz
under entropy conditions which was used by von Neumann already in Ref. 9. We also
applications on minimizing pseudodifferential operators and Toeplitz operators. The entrop
curs frequently in mathematic-related topics. In statistic mechanics and quantum theory, t
tropy appears as a functional acting on squares of wave functions. In statistics, such functio
interpreted as probability density functions~PDFs!, and then the entropy is defined in a simil
way as in quantum physics and statistic mechanics.

Roughly speaking, the entropy measures the concentration for a PDF, in the sense t
entropy is large when the PDF is not concentrated. The entropy therefore has a somewhat
role as the variance. However, in contrast to the variance, the entropy is completely indep
of the expected value and of any norm structure on the sample space.

The applications on pseudodifferential and Toeplitz operators, mentioned above, are ba
the fact that Toeplitz operators may be considered as functionals acting on Wigner distributio~or
coherent state transformed functions!, which satisfy certain entropy conditions. The minimizati
result therefore applies immediately on Toeplitz operators, which in turn leads to lower b
results for pseudodifferential operators which may be approximated by Toeplitz operators.

In order to describe our results in more details, we recall the definition of the entropy.
positive measurem and an appropriate non-negative functionf PL1(dm), the entropyEm( f ) is
defined by

Em~ f !52E f log f dm1i f iL1~dm! logi f iL1~dm! . ~1.1!

~Cf. Ref. 7 or 8.! Here and in what follows, we let 0 log 050. ~We use the usual notation fo
function and distribution spaces, e.g., Ref. 5!. It follows easily thatEm( f ) becomes large whenf is
not concentrated.

For an appropriate functiona and real numberE, we are then going to minimize the function
f °* a f dm, when 0< f PL1(dm) satisfies

i f iL1~dm!51, Em~ f !>E, ~1.2!

and we prove that the minimum is attained whenf 5 f s5e2sa/ie2saiL1(dm) , wheres is chosen
such thatEm( f s)5E.

a!Electronic mail: joachim.toft@msi.vxu.se
32160022-2488/2004/45(8)/3216/12/$22.00 © 2004 American Institute of Physics
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It is not difficult to obtain an intuitive~but imperfect! proof of the result above. In fact, th
Frechét derivatives of the left-hand sides of~1.2! are given by

h°E hdm and h°2E h~ log f 11!dm.

The Freche´t derivative of the functionalf °* a f dm is given byh°* ahdm, and it is intuitively
clear that iff minimize * a f dm under the conditions in~1.2! ~with equality in the last condition!,
then the Freche´t derivatives above should be linearly dependent, i.e.,

E ahdm5C1E hdm1C2E h log f dm

for every appropriate functionh. This means thata5C11C2 log f, and we obtain thatf
5ce2sa, for some constantsc ands, which are determined by~1.2!.

Since the minimization result appears by such elementary computations, the method
has been used before. In fact, von Neumann used the technique already in Sec. 5.3 in Re
order to solve certain problems in quantum mechanics. The arguments were thereafter u
example in thermodynamics. However, a strict proof that the minimum really exists and attai
f 5 f s seems to the author not to be well-known, hence, these missing links are presented

In order to describe our applications to Weyl operators and Toeplitz operators, we reca
definitions of such operators. Assume thatgPS(Rn) is a unit vector with respect toL2 and that
aPS(R2n). Then, the Weyl and Toeplitz operators fora, av(x,D) and Tp(a)5Tpg(a) respec-
tively, are the continuous operators onS(Rn), given by the formulas

av~x,D ! f ~x!5~2p!2nE E a~~x1y!/2,j! f ~y!ei ^x2y,j&dydj,

~1.3!

~Tpg~a! f 1 , f 2!5E a~22X!~Vgf 1!~X!~Vgf 2!~X!dX.

Here,f, f 1 , f 2PS(Rn) andVg :S(Rn)→S(R2n) is the coherent state transform or the short tim
Fourier transform with respect tog which is defined as

~Vgf !~X!5~2p!2n/2E f ~y/22x!g~y/21x!ei ^y,j&dy, X5~x,j!PR2n,

and ~•,•! denotes the usual scalar product onL2(Rn) ~Ref. 1, 4, 8, 10, or 11!. The definitions of
av(x,D) and Tp(a) extend to anyaPS8(R2n), in which linear continuous operators fromS(Rn)
to S8(Rn) are obtained~Ref. 5, 11, or 12!.

The relation which we use when approximating Weyl operators with Toeplitz operators

Tpg~a!5~a* ug!v~x,D !, ~1.4!

whereug5(2p)2n/2Vgǧ andǧ(x)5g(2x) ~see Refs. 11 and 12!. When discussing minimization
for av(x,D), we first use~1.4! in order to approximateav(x,D) by Tp(a). Then, we apply the
minimization properties under the entropy condition above on Tp(a) in ~1.3! with f 5 f 15 f 2 ,
using thatn5Vgf satisfies the entropy condition

iniL25i f iL2, and E~ unu2!>n~11 log~p/2!!i f iL2
2 ~1.5!

~cf. Refs. 8 and 11!. Here and in what follows, we use the notationE instead ofEm whenm is the
Lebesgue measure.
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II. L 2-ESTIMATES FOR THE COHERENT STATE TRANSFORM

In this section, we give a review of some basic properties for the coherent state transforVg ,
and sum up the results in the form of entropy inequalities. This material is included in ord
make the presentation more self-contained, but all the results given here can be found in Re
example.

We start to consider the mapVg in ~1.1!. We note that the map (f ,g)°Vgf is continuous from
S(Rn)3S(Rn) to S(R2n) which extends to a continuous map fromS8(Rn)3S8(Rn) to S8(R2n)
~cf. Ref. 4 or 12!. In particular, the following definition makes sense.

Definition 2.1~see Ref. 8!: Assume thatgPL2(Rn)\0. Then,Vg :S8(Rn)→S8(R2n) is called
the coherent state transformassociated withg.

In order to establish entropy conditions on functions of the typeVgf , we recall the following
result by Lieb, which is based on sharp versions of Hausdorff–Young’s inequality and Yo
inequality ~Ref. 2 or 3!

Theorem 2.2~seeRef. 8!: Assume that gPL2(Rn), and that qP@2,̀ #. Then Vg is continuous
from L2(Rn) to Lq(R2n), and

iVgiL2→Lq<~21/2q21/qp1/q21/2!n. ~2.1!

Corollary 2.3: If n5Vgf where f, gPL2(Rn) such thatigiL251, then the entropy E(unu2) is
positively homogeneous inn of degree 2 and~1.5! holds.

A proof of Corollary 2.3 was essentially presented in Ref. 8. Since our choices of con
are different, here we recall the arguments.

Proof: The homogenous assertions are obvious. Sincen is bounded, by Theorem 2.2,
follows thatE(unu2) is defined, possibly equal to1`. Sincee logunu<unue21 whene.0, it follows
from ~2.1! that

E un~x!u2 logun~x!udx<e21E ~ un~x!u21e2un~x!u2!dx<e21~~p/2!2n~11e/2!~p/~21e!!n21!.

The result follows now if we lete→0.

III. MINIMIZATION UNDER ENTROPY CONDITIONS

In this section, we sum up some elementary properties of the entropy functional~see also Ref.
6!, and then we discuss some minimization problems for linear functionals under entropy c
tions.

Let 0Þm be a positives-finite measure on the measure spaceM. Then the entropyEm from

Lm,1
1 5L1

1 ~M,m!5 H0< f PL1~M,m!;E f log1 f dm,`J
to ~2`,`# is defined by~1.1!. Here, log1(t)5max(logt,0). ~Recall that 0 log 050.! Let imi be the
total mass ofm and denote byI m,(2`,`# the smallest interval which contains

$ log~m~V!!;V is m-measurable andm~V!.0%.

Proposition 3.1: Lm,1
1 is a convex cone and Em is positively homogeneous of degree1 on that

set. It is concave in the sense that

Em~ f 1g!>Em~ f !1Em~g!, f ,gPLm,1
1 . ~3.1!

The image under Em of $ f PLm,1
1 ;i f i51% equals Im .

Here and in what follows, we leti f i5i f iL1(dm) .
Proof: First, we observe thatEm(t f )5tEm( f ) when t>0 and f PLm,1

1 . Since t log1 t is a
convex function onR1 , it is easily seen thatLm,1

1 is a convex cone.
Let f, gPLm,1

1 with i f i.0, igi.0. Jensen’s inequality gives
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E log~11g/ f ! f dm/i f i< logS E ~ f 1g!dm/i f i D .

Hence,

E f log~ f 1g!dm2i f i logi f 1gi<E f log f dm2i f i logi f i .

A similar inequality holds with the roles off andg interchanged, and summing these inequalit
and using thati f 1gi5i f i1igi , we get~3.1!.

Next, we examine the values ofEm( f ) when i f i51. Since, by Jensen’s inequality,

expS E f log~1/f !dm D<E 1dm5imi ,

when i f i51, it follows for suchf that Em( f )< logimi. If m has a finite mass, then equality
obtained whenf is constant. Ifm has an infinite mass, then we may writeM as a disjoint union of
m-measurable setsV j , j >1, of massm j.1. Let 0<t j be a sequence with( t j51 and definef
PLm

1 by f 5t j /m j on V j . Then i f iL
m
1 51 and f PLm,1

1 , since f <1. In order to prove that the

entropy can take the value1` we chooset j such that( t j log(mj /tj)51`. Since( t j logmj is
positive this equality is fulfilled if, for example,t j5C/( j (log(j11))2), whereC is chosen such tha
( t j51.

We now have proven that the right endpoint ofI m is the maximal value of the entrop
restricted to the set wherei f i51. When considering lower bounds for the entropy, we first assu
thatM contains sets with arbitrarily small and positivem-measures, such that infI m52`. Then,
by choosingf equal to the characteristic function for setsV with 0,m~V! approaching 0, one finds
that inf$Em( f )/i f i% is also equal to2`.

If t5 inf I m.2`, then there is a family$v j% of measurable sets inM such that

~1! M5øv j ;
~2! 0,m(v j ),` for every j; and
~3! if v j5v j

1øv j
2, where v j

1 and v j
2 are m-measurable sets, thenm(v j

1)5m(v j ) or m(v j
2)

5m(v j ).

In fact, if V is a set with finitem-mass andV j , j 51,...,N, is any sequence of disjoin
m-measurable subsets ofV with m(V j ).0, thenm(V)>(m(V j )>etN, and the assertion fol-
lows.

Set m j5m(v j ) and let t j be a sequence of nonnegative numbers with( t j51. If f PLm,1
1

equalst j /m j at xj , then i f i51 and Em( f )5( t j log(mj /tj)>t. If we choosef such that it is
supported at a single setv j with m-measure arbitrarily close toet, we find that inf$Em( f )/i f i%
5t. It is also clear thatEm( f )5t for somef with i f i51 if and only if there is some point with
m-measure equal toet.

In order to complete the proof, we observe that

Lm,0
1 5$ f PLm,1

1 ;Em~ f !,`%

is also a convex cone. This is obvious from the inequality

~ f 1g!log~1/~ f 1g!!< f log~1/f !1g log~1/g!.

Since $ f PLm,0
1 ;i f i51% is convex andEm is concave on that set, it follows that$Em( f );

i f i51%ùR is connected, and the proof is complete.
In order to establish further properties for the entropy, it is convenient to use the notat

Wa5$xPM;a~x!5ess infm~a!%, ~3.2!
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where ess infm(a) is the essential infimum ofa with respect to the measurem.
Definition 3.2:Am is the set of all real-valued andm-measurable functionsa such thate2sa

PLm
1 (M) for everys.0, and we set

F~s;a,m!5Em~e2sa!/ie2saiL
m
1 , s.0. ~3.3!

Note thatF in Definition 3.2 makes sense sincee2saPLm,1
1 when aPAm and s.0. It is

easily seen that this function is smooth ins. It also follows from Proposition 2.1 that

F~s;a,m!< log~ imi !. ~3.4!

Lemma 3.3: Let aPAm and set F(s)5F(s;a,m). If m(Wa)5imi , then F(s)[ log(imi). If
m(Wa),imi then F(s) strictly decreases onR1 and

F~s!→ log~ imi ! when s→0, ~3.5!

F~s!→ logm~Wa! when s→1`. ~3.6!

Proof: We may assume thatm(Wa),imi since the assertion is trivial in the first case. S
I (s)5* e2sadm andq(s)5 log(I(s)) whens.0. Theng is smooth, convex, and

F~s!5 log~ I ~s!!1E sae2sadm/I ~s!5q~s!2sq8~s!. ~3.7!

HenceF8(s)52sq9(s)<0. Suppose thatF(s) is not strictly decreasing, then there are 0,s1

,s2 such thatF850 on @s1 ,s2#. Hence,g is affine on this interval, and this implies that there
a constantb such that

E e2s~a2b!dm is constant whens1,s,s2 .

Since the second derivative of the left-hand side equals*(a2b)2e2s(a2b)dm, it follows that a
5b a.e. with respect tom, which contradicts the hypothesis. Hence,F(s) is strictly decreasing.

Applying Lebesgue’s theorem to the integral ofe2sa over the set wherea,0 and the theorem
of Beppo–Levi to the integral over the complement of that set, we find thatI (s)→imi as s
→0. Since, by~3.7!, F(s)> log(I(s))2*a,0e

22sadm/I(s) this gives~3.5! whenimi51`. If instead
imi,`, then* sae2sadm→0 ass→0, and this proves~3.5! again.

When proving~3.6! we setr5ess infm(a) and assume first thatr.2`. Since F(s;a,m)
5F(s;a1C,m) for every constantC, we may assume thatr50. If m(Wa).0, theng(s) must be
a bounded convex function on~1,̀ !, which implies thatF(s)2q(s)52sq8(s)→0 ass→`.
Since* e2sadm→m(Wa) whens→1`, we obtain~3.6!.

If instead r5m(Wa)50, then it follows from Lebesgue’s theorem thatI (s)→0, hence
q(s)→2`, when s→`. Since m($x;a(x),e%).0 for every e.0 it follows that there are
constantsCe such thatq(s)>2es2Ce . This shows thatq(s)/s→0 as s→`. Let r be an
arbitrary positive number. Then (r 1q(s))/s→0 when s→` and (r 1q(s))/s is negative for
large s. The derivative (sq8(s)2q(s)2r )/s2 must therefore be positive for arbitrarily larg
values ofs, and therefore for all larges sincesq82q increases. Sincer was arbitrary this proves
that sq8(s)2q(s)→1` ass→1`. HenceF(s)→2` ass→1`.

It remains to consider the case when ess infm(a)52`. Then m(Wa)50, and we have to
prove thatF(s)→2` ass→1`. Assume that this is not true. Then there is a positive cons
C such thatq(s)2sq8(s)>2C, or, equivalently, (q/s)8<C/s2. Hence, there is a positive con
stantr such thatq(s)<rs, s>1.

On the other hand, for every positive integerN we may find a constantCN such that
* e2sadm>eNs/CN . Hence,
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Ns2 log~CN!<g~s!<rs, s>1.

This gives a contradiction for largeN, and the proof is complete.
Lemma 3.4: Assume that aPAm and that fPLm,1

1 . Then it is true thatmax(2af,0)PLm
1

(which implies that* a f dm is a well-defined element ofRø$1`%!, and

E a f dm>
1

s S Em~ f !1S 12E e2sadm D E f dm D , s.0.

Proof: We may assume that* f dm51 for reasons of homogeneity. Ifs.0, then

a f>
1

s
~ f 2 f log f 2e2as!. ~3.8!

In fact, if b52as this inequality may be writteneb2 f b> f 2 f log f. The left-hand side is a
convex function ofb. Whenf 5 f (x).0, it is stationary and equal tof 2 f log f whenb5 log f. The
first assertion follows now sincef, f log1f, e2asPLm

1 , and the second statement follows b
integrating~3.8!.

Definition 3.5:Assume thatEPR andaPAm . Then, we let

H~E;m![ H f PLm,1
1 ;E f dm51,Em~ f !>EJ , ~3.9!

m~E!5m~E;a,m![ inf
f PH~E;m!

E a f dm. ~3.10!

We are now ready to state the main result.
Theorem 3.6:Let m be a positive measure onM and aPAm . Let m(E)5m(E;a,m) be as

in ~3.10! when EPR and set Wa5$x;a(x)5ess infm(a)%. Then, the following is true:

~i! if E< log(m(Wa)) then m(E)5ess infm(a);
~ii ! if log(m(Wa)),E,log(imi), then

m~E!5Eafsdm,

wherefs5e2sa/* e2sadm and sPR1 is the unique solution to the equation Em(fs)5E
(cf. Lemma 3.3);

~iii ! if imi,` and E5 log(imi) then

m~E!5Eadm/imi,

and m(E)51` when E. log(imi); and
~iv! if imi51`, then m(E) increases to1` as E→1`.

The following lemmas are important for the proof of Theorem 3.6.
Lemma 3.7: If E. log(imi), then H(E;m)5Ø, and when E< log(imi) then H(E;m) is a

nonempty convex set in Lm,1
1 .

Proof: This is an immediate consequence of Proposition 3.1.
Lemma 3.8: Let aPAm , sPR1 and fs be the same as in Theorem 3.7. Assume that E

real number such that Em(fs),E. Then,

E afsdm<E a f dm ; f PH~E;m!. ~3.11!

We first prove Theorem 3.6, assuming that Lemma 3.8 holds, and postpone the pr
Lemma 3.8.
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Proof of Theorem 3.6: ~i! The condition implies thatm(Wa).0. Since this number must b
less than infinity, it follows thatf PH(E;m) if f is equal to the characteristic function ofWa

divided bym(Wa). Hencem(E)<* f dm5ess infm(a). Since the opposite inequality is also fu
filled, this proves our assertion.

~ii ! It follows from Lemma 3.3 that there is a uniques such thatEm(fs)5E. If t.s then
Em(f t),E in view of that lemma, and it follows from Lemma 3.8 that

E af tdm<E a f dm when f PH~E;m!.

SincefsPH(E;m) we have proven that

E af tdm<m~E!<E afsdm,

and whent↘s it follows that m(E)5* afsdm.
~iii ! It follows from Lemma 3.3 thatEm(f t)↗ log(imi) when t↘0. Hence, by Lemma 3.8

E af tdm<E a f dm

when f PH(E;m). If f 51/imi then f PH(E;m) and the right-hand side equals* adm/imi ,
which is the limit of the left-hand side ast→0. Hence,m(E)5* adm/imi . The second part of
~iii ! follows sinceH(E;m) is empty whenE. log(imi) in view of Proposition 3.1.

~iv! The assertion is an immediate consequence of Lemma 3.4 withs51, which shows that
there is a constantC5Ca,m such thatm(E)>E2C.

Proof of Lemma 3.8: Let Wa be as in~3.2!. If m(Wa)5imi then imi,`, a is constant and
~3.11! holds. It therefore follows from Lemma 3.3 that we may assume thatF(s)5Em(fs) is
strictly decreasing. By replacingE by a smaller number if necessary, we may assume thatE is an
interior point of I m . After a change of notation we may also assume thats51 and for simplicity
we denotef1 by f.

We first consider the case whenM5ø1
Nv j , where N,`, m j[m(v j ),` for every j

51,...,N, anda andf should be constant on eachv j . For notational convenience, we will consid
the numbersm j as the positive point masses of a measurem on the set$1,...,N%, and we treata and
f as functions on$1,...,N%. Since the assertion of the lemma is invariant under renumbering
addition of a constant toa, we may assume that 05a(1)<a(2)<¯<a(N).

Assume that~3.11! is not fulfilled. Then, we have for some value onE and somef >0 that

E a f dm,E afdm, E f dm51, Em~f!,E<Em~ f !. ~3.12!

We want to prove that~3.12! leads to a contradiction. By perturbing thea( j ) andm slightly we
may assume thata( j ),a(k), when j ,k. We may also assume that* a f dm is minimal among all
integrals of functions satisfying~3.12!.

We shall first prove that

f ~ j !.0 when 1< j <N. ~3.13!

Assume that this is not true so that the setJ of j with f ( j )50 is not empty. We claim that there i
a functionk with

E kdm50, k~ j !.0 if j PJ and E akdm,0. ~3.14!

Assume that such a function does not exist. Then,
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( t j50, t j.0 when j PJ ⇒ ( a~ j !t j>0.

Hence, there is a real numbera and e j>0 with e j50 when j ¹J such thata( j )5a1e j . The
condition that 05a(1),a(2)¯,a(N) implies a50, e j5a( j ), and J5$2,...,N%. Hence f ( j )
50 when j .1 and it follows from~3.12! that f (1)51/m1 . If b5* e2adm then

E f~a1 logb!dm5Em~f!,E<Em~ f !5 logm1 .

Since the left-hand side is greater than or equal to logb* fdm5logb>logm1 we arrive at a
contradiction. This proves that~3.14! has a solution.

Let k be any solution to~3.14!, e be a small positive number and set

f e~ j !5 f ~ j !1ek~ j !.

Then,* f edm51 and f e.0 whene is small. We have* a fedm5* a f dm1e* akdm,* a f dm,
which by our assumption that* a f dm is minimal implies that

Em~ f e!,E<Em~ f !. ~3.15!

On the other hand, a simple computation allows us to conclude that there are positive consC
andC8 such that

Em~ f e!2Em~ f !>2(
j PJ

ek j log~ek j !m j2Ce>S (
j PJ

k jm j D e log~1/e!2C8e.

Since the right-hand side is positive whene is sufficiently small, we again obtain a contradictio
and may assume from now on that~3.13! holds.

Let h be an arbitrary function satisfying* hdm50 and setf e5 f 1eh when ueu is sufficiently
small. Then,* f edm51. The assumptions onf allow us to conclude that

d

de
Em~ f e!.0 when e50⇒ d

de E a fedm>0 when e50.

Computing derivatives and settingg( j )511 log f(j), we may write this as

( h~ j !m j50, ( g~ j !h~ j !m j,0 ⇒ ( a~ j !h~ j !m j>0.

This implies that there are constantsl andr with l<0 such thata( j )5lg( j )1r. Since thea( j )
do not form a constant sequence it follows thatl521/s for some positives. This allows us to
conclude thatf 5fs , wherefs5e2sa/I (s) and I (s)5* e2sadm.

It is now easy to complete the proof in this case. LetF(t)5Em(f t). It follows from ~3.12!
that

I 8~1!/I ~1!,I 8~s!/I ~s!, F~1!,F~s! .

SinceI 8(t)/I (t) increases witht in view of the convexity of log(I(t)) the first inequality implies
that 1,s. This contradicts the second inequality sinceF(t) decreases in view of Lemma 3.3. Th
proves the lemma in this case.

When proving the lemma in the general case, we shall reduce the proof to the discrete
considered above. Assume that~3.11! is not fulfilled. Then, we may finde.0 and f PH(E;m)
such that
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Em~f!,E2e, E a f dm<E afdm2e. ~3.16!

In a first step, we want to reduce the proof to the case whenm is a bounded measure andf is
a bounded function. To that end, we letV j , j 51,2,..., be an increasing family ofm-measurable
sets with characteristic functionsx j such that m(V j ),`, and * f x jdm→* f dm and
sup* e2saux j21udm→0 as j→`, where the supremum is taken over all 1/2<s<3/2. Set~for j
large!

m j5x jm, gj5
f

11 f / j
, f j5

gj

E gjdm j

, f j5
e2a

E e2adm j

.

Then,* f jdm j51 and f j→ f point wise asj→`. We claim that

lim inf
j→`

Em j
~ f j !>E, lim sup

j→`
E a f jdm j<E a f dm, ~3.17!

lim sup
j→`

Em j
~f j !<Em~f!, lim inf

j→`
E af jdm j>E afdm. ~3.18!

Assume that these assertions are proven. Then,f jPH(E2e/2;m j ) when j is large. The inequali-
ties in ~3.16! hold then withf, m, f replaced byf j , m j , f j , aftere andE have been replaced b
some smaller numbers. Thus, when proving that~3.16! leads to a contradiction, we may assum
from the beginning thatf is bounded and that* dm,`.

When proving the first inequality in~3.17!, we consider* gj (loggj)xjdm. Let V5$x
PM; f (x).1%. Then, gj (loggj)xj increases inV with j to f log f. Hence, by Beppo–Levi’s
theorem,

E
V

gj loggjdm j→E
V

f log f dm5E f log1 f dm.

In Vc, one has for largej

gj loggj5
f

11 f / j
log f 1O~1/j ! f ,

which implies that*Vcgj loggjdmj→*Vcf log fdm. Sincef j5gj /cj , wherecj→1, the first inequal-
ity in ~3.17! follows.

When proving the second inequality in~3.17!, we may replacef j by gj , and then it suffices
to prove

E
a>0

agjdm j→E
a>0

a f dm, E
a,0

agjdm j→E
a,0

a f dm. ~3.19!

In the set wherea>0, it is true thatagjx j increases toa f as j→`. The first limit in ~3.19! is
therefore a consequence of Beppo–Levi’s theorem. Ifx is the characteristic function for the se
wherea,0, thenxa fPLm

1 by Lemma 3.4. Sinceuxagjx j u<uxa f u, the second limit in~3.19! is a
consequence of Lebesgue’s theorem. This proves~3.17!.

The assertion~3.18! follows from Lebesgue’s theorem sincef logf andaf arem-integrable.
Now we go back to~3.16!, assuming as we may that* dm,` and thatf is bounded. Let

aj5a whenuau, j andaj50 if uau> j . Setf j5e2aj /* e2ajdm. Some elementary applications o
the theorems of Lebesgue and Beppo–Levi together with Lemma 3.4 show that
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Em~f j !→Em~f! when j→`

and that* aj f dm<* ajf
jdm2e/2 for j large. After replacinge by a smaller number, we ma

therefore assume in~3.16! thata is bounded. By another argument of approximation, we may a
assume thatf and a are simple functions. Then, we may also replacem in ~3.16! by a measure
supported in a finite set. The first part of the proof now gives us a contradiction. Hence,~3.11!
must hold, and the proof is complete.

IV. SOME APPLICATIONS OF ENTROPY ESTIMATES

In this section, we shall use the results from the previous sections and give examp
entropy estimates. We show for example that the lowest eigenvalue of the harmonic oscillato
be computed by considering entropy estimates.

As a preparation, we minimize the functional

L1
1 ~Rm!5L1

1 ~Rm,dx!{ f °E uxupf ~x!dx, p.0,

under the condition~1.2!, with Em( f )5E( f ). Here, we recall thatE( f ) is the entropy with respec
to the Lebesgue measure. By Theorem 3.6, the minimum is attained when

f ~x!5fs~x!5e2suxup/ie2su•upiL1,

ands is chosen such thatE(fs)5E. We notice thatI (s)5* e2suxupdx is homogeneous of degre
2m/p in s whens.0. Therefore,

E uxupfs~x!dx52I 8~s!/I ~s!52q8~s!5m/sp, ~4.1!

where q(s)5 log(I(s)). The condition thatE(fs)5E means thatq(s)2sq8(s)5E. Since
q8(s)5I 8(s)/I (s)52m/sp this is equivalent to* e2suxupdx5eE2m/p. We may solve the las
equation ins, and by straightforward computations it follows that

s215~vmp21G~m/p!!2m/peEp/m21,

wherevm is the area of the sphereSm21. By inserting this into~4.1!, Theorem 3.6 gives

inf
E~ f !>E

E uxupf ~x!dx5E uxupfs~x!dx5m/sp5~vmp21G~m/p!!2p/mmp21eEp/m21. ~4.2!

We shall now apply this result to the Toeplitz operator Tp(a) when a(X)5uXu2p and X
5(x,j)PR2n. We recall from the introduction that Tp(a)5Tpg(a) makes sense as a continuo
operator fromS(Rn) to S8(Rn) for any aPS8(R2n) andgPS(Rn)\0.

Lemma 4.1: Assume that f, gPS(Rn) such thati f iL25igiL251, and set a(X)5uXu2p, where
p.0, and XPR2n. Then,

~Tpg~a! f , f !>4pp2p~n/p!pp/n$G~n!/G~n/p!%p/neE~ uVgf u2!p/n21

>2ppp/n21$G~n!/G~n/p!%p/nep21n. ~4.3!

Proof: We apply ~4.2! when m52n and p is replaced by 2p, observing thata(22X)
522puXu2p. Sincev2n52pn/(n21)!, thefirst inequality in~4.3! follows immediately from~1.3!,
~1.5!, and~4.2!. The second inequality follows from Corollary 2.3.

Next, we shall apply Lemma 4.1 in order to minimize the harmonic oscillatorH5( j 51
n (xj

2

1D j
2). We note that the Weyl symbol forH is the functionh(x,j)5( j 51

n (xj
21j j

2).
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Proposition 4.2: Let u5Vgg, where gPS(Rn) is even or odd and satisfiesigiL251. Then,

~H f , f !>4np21eE~ uVgf u2!/n211421~p/2!n/2~Du!~0!>2n1421~p/2!n/2~Du!~0!,

for every unit vector fPS(Rn). Here, D5D (x,j)5((]xj

2 1]j j

2 ) is the Laplace operator in the

(x,j)-coordinates.
In the proof of Proposition 4.2, we shall use some properties for Fourier transformatio

what follows, we letf̂ be the Fourier transform forf PS(Rn), given by

f̂ ~j!5~Ff !~j!5~2p!2n/2E f ~x!e2 i ^x,j&dx.

Proof: Let n5(2p)2n/2Vgǧ, and letX5(x,j)PR2n. Sinceg is even or odd, it follows easily
that u andn are even. This implies thath* n5c1h1c2 , where

c15E n~X!dX and c25E n~X!uXu2dX.

In order to evaluatec1 , we recall the definition ofVg . Then, an application of Fourier’s inversio
formula gives

c15~2p!2nE E E g~x2y/2!g~x1y/2!ei ^y,j&dydxdj5igiL2
2

51 .

In order to evaluatec2 , we note thatu(x,j)5(8p)n/2n̂(22j,2x). It follows now by another
application of Fourier’s inversion formula thatc252421(p/2)n/2(Du)(0). Hence h* n5h
2421(p/2)n/2(Du)(0), and weobtain the result if we combine this equality with Lemma 4.1 a
~1.4!. The proof is complete.

If we let u(x,j)5(2/p)n/2e2(uxu21uju2) in Proposition 4.2, then it follows thatDu(0)
524n(2/p)n/2, which gives us the inequality (H f , f )>ni f i2

2, as it should.
We shall finish this section by giving a bound from below for the sum of the entropies

function and its Fourier transform.
Proposition 4.3: Assume that fPS(Rn). Then

E~ u f u2!1E~ u f̂ u2!>n~11 logp!i f i2
2. ~4.4!

Remark 4.4:The entropyE(g) is not invariant under changes of coordinates. In fact, i
<gPS(Rn), igi151 andgT(x)5det(T)g(Tx), whereT is an invertible linear transformation o
Rn, then

E ugT~x!u log~ ugT~x!u!dx5E ug~x!u log~ ug~x!u!dx1 log~ udetTu!. ~4.5!

Since the Fourier transform off T is given by f̂ T̂ , where T̂ is the adjoint ofT21, it follows
however that the left-hand side of~4.4! is invariant under changes of coordinates.

Proof of Proposition 4.3:We may assume thati f i251. SetDp5(2p)1/p21/2p21/2pp81/2p8 ,
where 2,p and 1/p11/p851. Then the sharp Hausdorff–Young’s inequality gives

E u f̂ updj<Dp
npS E u f up8dxD p/p8

~4.6!

~Ref. 2 or 3!. Taylor expansions give
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Dp512~11 logp!~p22!/41O~~p22!2!,

E u f̂ updj512~p22!~E~ u f̂ u2!/21O~~p22!2!,

E u f up8dx511~p22!~E~ u f u2!/21O~~p22!2!.

The proposition follows if these expansions are inserted into~4.6!.
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5Hörmander, L.,The Analysis of Linear Partial Differential Operators~Springer, Berlin, 1985!, Vols. I and III.
6Lieb, E. H., ‘‘Some convexity and subadditivity properties of entropy,’’ Bull. Am. Math. Soc.81, 1–13~1975!.
7Lieb, E. H., ‘‘Proof of an entropy conjecture of Wehrl,’’ Commun. Math. Phys.62, 35–41~1978!.
8Lieb, E. H., ‘‘Integral bounds for radar ambiguity functions and Wigner distributions,’’ J. Math. Phys.31, 594–599
~1990!.

9von Neumann, J.,Mathematische Grundlagen der Quantenmechanik~Springer, Berlin, 1932!.
10Perelomov, A.,Generalized Coherent States and Their Applications, Texts and Monographs in Physics~Springer, Berlin,

1986!.
11Toft, J., ‘‘Continuity and Positivity Problems in Pseudo-Differential Calculus,’’ Ph.D. thesis, Department of Mathem

University of Lund, 1996.
12Toft, J., ‘‘Continuity properties in non-commutative convolution algebras, with applications in pseudo-differentia

culus,’’ Bull. Sci. Math.126, 115 ~2002!.
                                                                                                                



ear
e pure
ucted
what
uch

pled
of the
some
ion of
roken.

n
d
stent

of the
ower-
ncies
he full

the
tanton
t. In
entz-
imal
ns are
ection

the
the

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 8 AUGUST 2004

                    
Yang–Mills instantons with Lorentz violation
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An analysis is performed of instanton configurations in pure Euclidean Yang–Mills
theory containing small Lorentz-violating perturbations that maintain gauge invari-
ance. Conventional topological arguments are used to show that the general clas-
sification of instanton solutions involving the topological charge is the same as in
the standard case. Explicit solutions are constructed for general gauge invariant
corrections to the action that are quadratic in the curvature. The value of the action
is found to be unperturbed to lowest order in the Lorentz-violating
parameters. ©2004 American Institute of Physics.@DOI: 10.1063/1.1767624#

I. INTRODUCTION

As is well known, solving pure Yang–Mills theory involves a complicated set of nonlin
partial differential equations. Using a series of clever arguments, some exact solutions to th
Yang–Mills field equations formulated in four-dimensional Euclidean space were first constr
in the mid 1970s.1 The complete set of finite action solutions was eventually classified using
is now known as the ADHM construction.2 Subsequently, instanton physics has stimulated m
research in both physics and mathematics.3

In pure four-dimensional Yang–Mills theory, Lorentz symmetry and renormalizability cou
with gauge invariance implies that the Lagrange density naturally takes the form of the trace
square of the curvature tensor. If pure Yang–Mills theory arises as the low-energy limit of
more fundamental theory, it is possible that real physical fields obey a slightly modified vers
the conventional equations in which some of the underlying symmetries are spontaneously b
Specifically, Lorentz andCPT invariance, as well as gauge invariance can be affected.4

The original motivation for this possibility arose in string theory,5 and more recently has bee
analyzed within the context of noncommutative geometry.6 A framework called the standar
model extension~SME! incorporates general fundamental symmetry violations that are consi
with coordinate reparametrization invariance7 within the context of quantum field theory.8 Usually,
it is convenient to restrict the full range of possible violations to maintain certain subgroups
original symmetry group. For instance, translational invariance, gauge invariance, and p
counting renormalizability are typically assumed to avoid many of the potential inconsiste
that may arise without these assumptions. This restriction produces a minimal version of t
SME.

The aim of this article is to analyze the instanton solutions for a Yang–Mills action in
presence of Lorentz violation. The main result is that the general classification of the ins
solutions involving the topological charge still applies when Lorentz violation is presen
addition, the value of the Euclidean action is found to be invariant to lowest order in the Lor
violating perturbations. Specific calculations are performed within the framework of the min
SME, but some of the results are in fact more general. In Sec. II, the notation and conventio
described. The existence of static solutions in arbitrary dimensions is examined in Sec. III. S
IV contains the general theory of instantons with Lorentz violation, while Sec. V restricts to
specific example of SU~2! instantons with unit winding number. Section VI summarizes

a!Electronic mail: colladay@ncf.edu
b!Electronic mail: ptm@virtu.sar.usf.edu
32280022-2488/2004/45(8)/3228/11/$22.00 © 2004 American Institute of Physics
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results. The Appendix contains an exact solution for the perturbed instantons in the presen
spatially isotropic Lorentz-violating background tensor.

II. NOTATION AND CONVENTIONS

The conventions used for the Yang–Mills gauge theory are presented in this section. LeG be
a compact Lie group with Lie algebraL(G). The base manifold is taken to beM5R4 and the
gauge potential components for the principleG-bundleP→M are denoted

Am~x![Am
a ~x!La , ~1!

where theLa are hermitian generators of a Lie algebra defined by

@La ,Lb#5 iCabcLc , ~2!

with structure constantsCabc antisymmetric in all indices. The normalization of the generator
fixed by imposing

Tr~LaLb!5 1
2 dab . ~3!

The associated unitary Lie group elements that generate gauge transformations are denot

U~x!5e2 iva(x)La. ~4!

These act on the gauge fields via the transformation rule

Am~x!→U~x!Am~x!U21~x!2
i

g
U~x!]mU21~x!. ~5!

The field strength tensor is defined as

Fmn52
i

g
@Dm,Dn#, ~6!

where the covariant derivative is taken asDm5]m1 igAm. The field strength transforms unde
gauge transformations as

Fmn→U~x!FmnU21~x!. ~7!

The dual ofF is defined as

F̃mn[ 1
2 emnabFab, ~8!

where the Levi–Civita tensor is defined such thate0123511.
In four-dimensional Minkowski space, with metricg5diag(1,21,21,21), the most genera

gauge invariant9 and power counting renormalizable action is8

SM~A!52
1

2 E d4xTrFFmnFmn1~kF!mnabFmnFab1~kAF!keklmnS AlFmn2
2

3
igAlAmAnD G ,

~9!

where thekF and kAF terms are small constant background parameters. Gauge invariance
these parameters to be singlets under the action of the gauge group. ThekAF terms present
theoretical difficulties associated with negative contributions to the energy10 even in the Abelian
case, and are therefore not considered further in this work. On the other hand, thekF terms do not
cause similar problems provided a concordant frame,11 in which the parameters are small enoug
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is used. The parameterskF satisfy the symmetries of the Riemann curvature tensor12 with vanish-
ing total trace. This means that there are 19 independent coefficients that parameterize th
tion.

III. STATIC SOLUTIONS

In the conventional case, finite-action static solutions are ruled out in all but four sp
dimensions by considering various integrals of the field strength products motivated by the fo
the energy momentum tensor.13 This result also holds in the Lorentz-violating case due to
analogous argument that will now be presented.

The partially symmetrized energy momentum tensor arising from the action in Eq.~9! gener-
alized ton spatial dimensions is given by the expression

Qmn52Tr@2F g
n ~Fmg1kF

mgabFab!1 1
4 hmnFab~Fab1kF

ablkFlk!#, ~10!

and explicitly satisfies]mQmn50. Choosing the static gauge in whichAk is independent of time,
the following constraints on finite energy solutions can be derived using the field equations

E dxnTrF0k~F0k1kF
0kabFab!50, ~11!

and

~n24!E dxnTrFi j ~Fi j 1kF
i j abFab!50. ~12!

Methods analogous to the ones presented in Ref. 13. have been applied to obtain the above
These relations imply that no static solutions with nonvanishing action14 exist whennÞ4. This
result is the same as the conventional situation.

IV. INSTANTON SOLUTIONS

To study the instanton solutions, the action is analytically continued to Euclidean space
imaginary time, and a new Euclidean actionSE[2 iSM is defined. The conventions used in th
article are obtained using the replacementsx0→2 ixE

0 , xk→xE
k , while the gauge field component

are altered toA0→ iAE
0 , andAk→AE

k . Each time component ofkF also gets multiplied by a facto
of i to define its Euclidean counterpart. The Euclidean action becomes~dropping allE subscripts!

S~A!51
1

2 E d4xTr@~FmnFmn!1~kF!mnabFmnFab#, ~13!

with metric dmn. The Euler–Lagrange equations of motion~for this Euclidean action! are

@Dm,Fmn1kF
mnabFab#50, ~14!

while the Bianchi identity

@Dm,F̃mn#50, ~15!

follows from the definition ofF in terms of the gauge potential.
The topological chargeq is defined as in the usual case

q5
g2

16p2 E d4xTrF̃mnFmn, ~16!
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and conventional arguments indicate thatq remains an integer, even in the presence of Lore
violation. Specifically, the identity

1
4 TrF̃mnFmn5]mXm, ~17!

where

Xm[
1

4
emnlkTr~AnFlk2 2

3 igAnAlAk!, ~18!

ensures that the topological charge depends only on the pure-gauge boundary conditions s
by the potential far away from the nonvanishing curvature of the instantons. The quantityq is
therefore the first Pontryagin number that corresponds to the winding number of the map fro
gauge group to the three sphere at largeuxu. The specific form of the action does not matt
provided that it is in fact gauge invariant, and that finiteness of the action restricts the cur
from contributing to the topological charge at the boundary. This means that the properties
topological charge should be preserved, even in the more general case of the SME that in
nonrenormalizable, but gauge invariant corrections to the pure Yang–Mills sector. In parti
since any physical theory of noncommutative gauge fields is argued to be equivalent to a st
gauge theory in the context of the SME,6 the topological charge should remain integral in realis
noncommutative Yang–Mills theories.

To make further progress, only lowest-order terms inkF are retained. This approximation ha
the advantage of retaining terms that are likely to be relevant for future experiments whi
glecting the theoretical complications of the nonlinearities introduced by higher-orderkF contri-
butions. An approach that allows explicit calculation to all orders inkF would be interesting
because there is the potential of discovering novel nonperturbative features, but this is beyo
scope of the current article.

For calculational purposes, it is convenient to introduce the quantity15

F8mn5Fmn1 1
2 kF

mnabFab. ~19!

The action then takes the conventional form in terms ofF8 to lowest order inkF . Consider the
inequality

1

2 E d4xTr~F87F̃8!2>0. ~20!

This implies that

S>6
1

2 E d4xTrFFmnF̃mn1
1

2
~kF

mnab1 k̃F
mnab!FmnF̃abG , ~21!

where k̃F
mnab[ 1

4e
mnlkkF

lkrsersab is defined as the dual tokF . The upper sign is chosen forq
.0 and the lower sign forq,0.

The first term is proportional to the topological charge while the second term genera
correction to the lower bound onS. ProvidedkF is small, the correction term will be much smalle
than the topological charge term and the perturbed instantons will be close to the conve
ones. This implies that the general classification of the instanton solutions in terms of the w
number will remain unaltered.

It is evident from the form of the correction to the lower bound that splitting the coeffici
kF according to their duality properties will be useful. This decomposition is analogous to
separation of the Riemann tensor of general relativity into a Ricci tensor and a trace-free
conformal tensor. The anti-self-dualkF components correspond to the Ricci tensor compone
while the self-dualkF terms correspond to the Weyl conformal tensor. For the casekF52 k̃F , the
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lower bound on the action is independent of continuous perturbations ofF that do not change the
topological charge by an integer, and the minimum is attained for the modified duality con

F8.6F̃8, ~22!

where the symbol. is used to denote an equality to lowest order inkF . To construct the perturbed
solutions, the potential can be expanded about the conventional (kF50) self-dual and anti-self-
dual potentials, denoted byASD andAASD. The corresponding field tensors are written similarly
FSD and FASD. It remains to show that solutions to the modified duality condition that
consistent with the Bianchi identity exist. The anti-self-duality condition onkF implies that it must
be of the form

kF
mnab5Lk

[m[adn]b] , ~23!

whereLk
mn5 1

2kF
aman is a traceless symmetric matrix that depends on the trace components okF .

In fact, the explicit solution can be guessed since the form of the correction to the action is r
to the conventional action as described in the skewed coordinate systemx̃m[xm1Lk

mnxn. These
terms are exactly the ones that may be transferred to other sectors using an appropria
redefinition,16 so it is not surprising that they yield a conventional version of pure Yang–M
theory when described in skewed coordinates. Note that this does not imply the abse
physical effects arising from an anti-self-dualkF term in the action. Redefining coordinates effe
all fields, not just the Yang–Mills gauge potential, so if the instantons are expressed in ter
new coordinates, the Lorentz violation will show up in the Lagrangian for other particle sp
that are coupled to the instantons.

The explicit form for the perturbed self-dual instanton gauge potentials are given by

A1
m ~x!.ASD

m ~ x̃!1Lk
mnASD

n ~x!, ~24!

yielding a perturbed field tensor

F1
mn.FSD

mn~ x̃!2Lk
[madn]bFSD

ab~x!.FSD
mn~ x̃!2 1

2 kf
mnabFSD

ab~x!, ~25!

that satisfies the modified duality condition~22!. Note that the approximation is in fact no
necessary in this case, but the notation becomes rather cumbersome for generalkF . The exact
solution for the O~3! rotationally invariant component ofkF ~which is in fact anti-self-dual! is
presented in the Appendix.

Next, the casekF5 k̃F is considered. This condition implies thatkF has the symmetries of th
Weyl conformal tensor with vanishing single traces. In this case, the simple argument given
for anti-self-dualkF fails because the lower bound on the action in Eq.~21! is not a topological
invariant, and is therefore sensitive to small perturbations in the field strengths. In this case
is no obvious duality condition and the equations of motion must be solved directly fo
perturbed instanton solutions. A solution to lowest order inkF always exists, since the equation
reduce to a set of linear second-order elliptic partial differential equations for the gauge field
propagators for spin-1 particles in instanton background fields have been previously constr19

and are exactly what is needed to formally solve the equations. An explicit example is pre
in the next section.

For generalkF , the perturbed field strength may be written as a small perturbation of e
theFSD or theFASD solutions. Remarkably, the approximate value of the action is the same a
conventional case. For example, an instanton that is close to self-dual yields an action of

S.
1

2 E d4xTr~F21kF
mnabFSD

mnFSD
ab!. ~26!
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The first term is the conventional action and is invariant to lowest order in any perturbation
fields due to the fact that the action is at an extremum for the self dual solutions. The~4!
symmetry of the conventional self-dual solutions imply that the second term must vanish,
only observer Lorentz-invariant components ofkF can contribute after the trace is performe
These terms are zero due to the Lorentz-violating nature ofkF . The same arguments apply to th
instantons that are close to the anti-self-dual solutions. The numerical value of the action to
order inkF is therefore given by the conventional formula

S.~8p2/g2!uqu, ~27!

for the general case involving arbitrarykF values. This argument can also be generalized
nonrenormalizable corrections to the pure Yang–Mills sector involving powers of the curv
tensor. This works because any higher-order Lorentz-violating corrections must vanish wh
O~4! symmetric solutions are substituted into the action. As mentioned previously, any re
theory of noncommutative gauge fields is argued to be equivalent to a subset of the6

therefore it can be inferred that any realistic theory of noncommutative Yang–Mills fields sh
not affect the value of the Euclidean action for the instantons to lowest order in the nonco
tative Lorentz-violatingumn parameters.

V. INSTANTONS IN SU„2…

To analyze instanton structure, an explicit map is constructed from the asymptotic
sphereS3 of Euclidean space into the Yang–Mills gauge groupG. The winding number of this
map determines the topological charge and therefore the general instanton structure acco
the lower bound of the action in Eq.~21!. For any simple Lie groupG, a theorem by Bott17 proves
that any mapping ofS3 into G can be continuously deformed into a mapping into an SU~2!
subgroup ofG. It is therefore sufficient to fix SU~2! as the gauge group to construct explic
solutions that will exhibit the generic effect of Lorentz violation on the instanton structure.

Here, we work with the explicit solutions forq51, or unit topological charge. The conven
tional solutions are denoted using the self-dual, antisymmetric tensortmn, where t0i[s i and
t i j [e i jksk, in terms of the conventional Pauli matricess i . This definition provides an explici
embedding of SU(2)→SU(2)3SU(2) which is isomorphic to O~4!. The commutation relations

@tmn,tab#52i ~dmatnb2dmbtna2dnatmb1dnbtma!, ~28!

and trace relations

Tr~tmntab!52~dmadnb2dmbdna1emnab!, ~29!

follow from the above definition. These quantities may also be expressed using the relatiotmn

5 i (tntm†2dmn), where tm[( i ,s). The self-dual gauge field corresponding toq51 can be
expressed as

ASD
m 52

tmnxn

g~r21x2!
, ~30!

and the associated field strength is

FSD
mn5

2r2

g~r21x2!2 tmn. ~31!

The parameterr determines the instanton size, while the center of the instanton is taken to
the origin for simplicity. The anti-self-dual solutions are the parity transform of the above fi
These can be expressed usingx̃5(x0,2x) as AASD

0 (x)5ASD
0 ( x̃), AASD

i (x)52ASD
i ( x̃), FASD

0i (x)
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52FSD
0i ( x̃), andFASD

i j (x)5FSD
i j ( x̃). This transformation may also be implemented by the tra

formation tmn→ t̄mn defined byt0i→ t̄0i52t0i , andt i j → t̄ i j 5t i j . A useful expression for this
quantity ist̄mn5 i (tn†tm2dmn).

For the casekF52 k̃F , the modified solutions have already been expressed using Eq.~24! and
do not require more explicit computation. For the casekF5 k̃F , the field equations~14! and~15!
must be solved directly since no obvious duality condition can be determined from Eq.~21! due to
the noninvariant lower bound. To accomplish this, the vector potential is expanded as a pe
tion of the self-dual18 solutionA5ASD1Ak and the linear terms inAk are retained in the equatio
of motion. The Bianchi identity~15! is automatically satisfied and the equations of motion~14!
become~in the Lorentz gauge]mAm50)

@DSD
n ,@DSD

n ,Ak
m##12ig@FSD

mn ,Ak
n#2 ig@DSD

m ,@ASD
n ,Ak

n##5 j k
m , ~32!

where

j k
m[kF

mnab@DSD
n ,FSD

ab#, ~33!

and DSD
m []m1 igASD

m is the covariant derivative in the conventional self-dual instanton ba
ground.

This equation can be solved by performing a convolution ofj k with the corresponding propa
gator for spin-1 particles in an external instanton field. This propagator has been for
constructed,19 but the explicit form is rather unwieldy and cannot be easily expressed analyti
An alternative approach is adopted here that uses a combination of the propagator approac
direct substitution technique. First, the solution is studied to lowest order inr2/x2, corresponding
to the asymptotic region far from the self-dual instanton curvature density. This provide
general tensorial structure of the instanton correction that serves as an ansatz for general v
x2, generating a simple form for the solution to the problem.

It is convenient to perform a gauge transformation to the singular gauge usingU(x)52 ix
•t†/x so that the potential is better behaved for largex. The transformed potential becomes

ĀSD
m 52

r2t̄mnxn

gx2~r21x2!
, ~34!

with associated field strength

F̄SD
mn5

4r2

g~r21x2!2 t̄ [ma~1/4dn]a2 xn]xa/x2!. ~35!

In this gauge, the transformedj̄ k is

j̄ k
m5

48r2

gx2~r21x2!3 kF
mnabt̄agI gnb~x!, ~36!

where

I gnb[xgxnxb2 1
6 x2~dngxb1dgbxn1dbnxg!, ~37!

is a totally symmetric tensor.
The advantage of working in the singular gauge is that the above expressions are all qu

in r. This means that to lowest order inr2/x2, the propagator may be approximated by the f
field Green’s function

G0~x,y!5
1

4p2~x2y!2 , ~38!
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satisfying]m]mG052d (4)(x2y). The perturbed potential to lowest order inr2/x2 ~in the singu-
lar gauge! is then given by

Āk
m.2E d4yG0~x,y! j̄ k

m~y!. ~39!

This integral can be performed using standard field theoretic integration techniques. The re
the computation is

Āk
m.2

4r2

gx6 kF
mnabt̄agI gnb~x!. ~40!

It can be seen that the tensorial structure ofj̄ k has been preserved by the convolution withG0 .
Some complications arise due to divergent logarithms that cancel out in the computation, bu
do not cause theoretical difficulties because the validity of the solution can be verified by
substitution into the equation of motion. It remains to check that the Lorentz gauge condit
satisfied by this solution. Direct calculation shows that this is the case providedkF is self-dual, the
current case of interest. This indicates that this solution method works for the terms that can
removed using a reparametrization of the coordinates.

For general values ofx2, an unknown scalar function is included in the expression~40! to
produce an ansatz of the form

Āk
m52

4r2

g
f ~x2!kF

mnabt̄agI gnb~x!. ~41!

Remarkably, upon substitution into the equation of motion~32!, the tensorial structure factors ou
and the following second-order linear differential equation is found forf

x4~r21x2! f 915x2~r21x2! f 813r2f 52
3

~r21x2!2 . ~42!

This equation has a regular singular point atx50, causing the homogeneous solutions to be ba
behaved at the origin. Moreover, any contribution to the homogeneous equation of motion
correspond to a solution to the conventional equations of motion in an instanton backgroun
is therefore not of interest in the present context. On the other hand, the particular solution
behaved at the origin as can be verified using the following series expansion forf aboutx50

f ~x2!5
1

r6 (
n50

`

anS x2

r2D n

, ~43!

and expanding the right-hand side of Eq.~42! as

2
3

~r21x2!2 52
3

r4 (
n50

`

~21!n~n11!S x2

r2D n

, ~44!

valid for x2/r2,1. The resulting recursion relation for thean coefficients is

an115
3~21!n

n14
2

n

n12
an , ~45!

with a0521. The first few terms give
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f ~x2!'1/r6S 211
3

4 S x2

r2D2
17

20S x2

r2D 2

1
37

40S x2

r2D 3

2¯ D , ~46!

demonstrating the finite behavior near the origin. For largex2, a similar expansion inr2/x2 shows
that the function approachesf (x2)→1/x6 as expected.

Transforming the perturbed potential back to the regular gauge yields

Ak
m.

2r2x2

3g
f ~x2!kF

mnabtag~dgnxb1dbgxn2dnbxg!], ~47!

verifying thatAk is zero at the origin in the regular gauge as is required by continuity of the g
field. The perturbation term behaves asymptotically as;1/x3, and therefore explicitly does no
contribute to the topological charge as expected. The resulting correction to the curvature
computed; however, the specific form is not particularly illuminating. Specifically, there seem
be no obvious generalized duality condition satisfied byF analogous to the situation forkF

52 k̃F .

VI. SUMMARY

Instantons have long been studied for systems obeying strict Lorentz invariance. I
article, the structure of Yang–Mills instantons in the presence of small Lorentz-violating b
ground fields that maintain gauge invariance is studied for the first time. No new nonzero
static solutions are present innÞ4 spatial dimensions as is apparent from Eq.~12!. The gauge
invariance ensures that the conventional pure-gauge asymptotic behavior maintains the sa
eral structure as in the conventional case. This means that conventional arguments can be
to deduce the quantization of the topological charge. The generality of the SME can th
exploited to infer similar results regarding realistic noncommutative gauge theories.

Specific perturbed instanton solutions for the action considered in this article are split int
categories that depend on the duality properties of the Lorentz-violating background tenso
the anti-self-dualkF case, a reparametrization of the coordinates can be used to constru
formed instantons that satisfy a modified duality condition. The perturbed theory is isomorp
the conventional Yang–Mills theory in this case so the instanton structure is also isomorphi
O~3! rotationally invariant term of this class is worked out exactly in the Appendix.

WhenkF is self-dual, the conventional lower bound argument involving the action fails
the equations of motion must be solved directly. To lowest order inkF , the resulting equations ar
linear in the correction to the vector potential and can be formally solved using the Eucl
propagator for a spin-1 particle in an instanton background. For explicit calculation, it turns o
be more practical to first deduce the general tensorial structure in the asymptotic region
generalize the solution to arbitrary position. General arguments imply that the action is una
to lowest order inkF , but it can be seen from the exact solution given in the Appendix
higher-order corrections are, in general, nonzero.

APPENDIX: EXACT SOLUTION FOR O „3… SYMMETRIC CASE

In this appendix, an exact solution~all orders in kF) for the case of spatial rotationall
invariantkF is presented. In this case, the tensorkF can be expressed in terms of one independ
parameterk̃ as

kF
0i0 j52kF

i00j52kF
0i j 05kF

i0 j 052
k̃

2
d i j , ~A1!

and

kF
i jkl 5k̃~d ikd j l 2d i l d jk!. ~A2!
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It is convenient to introduce the notationk̃5sin 2u and the action takes the form

S5
1

2 E d4xTr@FmnFmn1sin 2u~Fi j Fi j 22F0iF0i !#. ~A3!

To construct the analog of the conventional self-dual solution, consider the following inequ

1

2 E d4xTr$2@cosuF2
0i2sinuF1

0i #21@cosuF2
i j 1sinuF1

i j #2%>0, ~A4!

with F6
mn[Fmn6F̃mn. This can be rearranged to give the relation

S>
8p2

g2 q cos 2u. ~A5!

The inequality is saturated when

F̃0i5
12tanu

11tanu
F0i , ~A6!

and

F̃ i j 5
11tanu

12tanu
Fi j . ~A7!

A solution to these equations withq51 is provided by the gauge potential

A05~11tanu!ASD
0 ~ x̃!, Ai5~12tanu!ASD

i ~ x̃!, ~A8!

wherex̃m[((11tanu)x0,(12tanu)xi). The resulting field strength is

F0i5~12tan2 u!FSD
0i ~ x̃!, Fi j 5~12tanu!2FSD

i j ~ x̃!. ~A9!

The value of the resulting action can be computed directly from the curvature, yielding
expected value

S5
8p2

g2 q cos 2u. ~A10!

In fact, this construction applies to any conventional instanton solution, since the spatially
tional invariantkF term corresponds to a shift in the speed of light for the gauge fields.
therefore possible to construct the above solutions by rescaling the time and spatial coor
appropriately. Note that this does not mean that observable effects are absent, since inte
between the instantons and other particles with conventional Lorentz properties may le
physical effects. The action is reduced relative to the conventional case by a factor of cosu which
is, in fact, second order in thekF coefficients. This result is in agreement with general argume
stating that the numerical value of the action is stable to a lowest-order perturbation inkF .
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~2002!.
17R. Bott, Bull. Soc. Math. France84, 251 ~1956!.
18Only the solution that is close to self-dual is presented here for notational simplicity, the close to anti-self-dual s

may be constructed using an analogous procedure.
19L. S. Brown, R. Carlitz, D. Creamer, and C. Lee, Phys. Rev. D17, 1583~1978!; H. Levine and L. Yaffe,ibid. 19, 1225

~1979!.
                                                                                                                



f a
ed

lativ-
the
rt by

rious

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 8 AUGUST 2004

                    
Partially invariant solutions of models obtained from the
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The concept of partially invariant solutions is discussed in the framework of the
group analysis of models derived from the Nambu–Goto action. In particular, we
consider the nonrelativistic Chaplygin gas and the relativistic Born–Infeld theory
for a scalar field. Using a general systematic approach based on subgroup classifi-
cation methods, nontrivial partially invariant solutions with defect structured51
are constructed. For this purpose, a classification of the subgroups of the Lie point
symmetry group, which have generic orbits of dimension 2, has been performed.
These subgroups allow us to introduce the corresponding symmetry variables and
next to reduce the initial equations to different nonequivalent classes of partial
differential equations and ordinary differential equations. The latter can be trans-
formed to standard form and, in some cases, solved in terms of elementary and
Jacobi elliptic functions. This results in a large number of new partially invariant
solutions, which are determined to be either reducible or irreducible with respect to
the symmetry group. Some physical interpretation of the results in the area of fluid
dynamics and field theory are discussed. The solutions represent traveling and
centered waves, algebraic solitons, kinks, bumps, cnoidal and snoidal waves.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1767625#

I. INTRODUCTION: MODELS DERIVED FROM THE NAMBU–GOTO ACTION

A few years ago, Jackiw1 thoroughly analyzed and reviewed the subject of the motion o
d-brane in (d11) spatial dimensions moving in (d11,1)-dimensional space–time, and show
that it is described by the Nambu–Goto action. This has generated quite a lot of interest~see, e.g.,
Refs. 2–4, and has led to the investigation of symmetry properties of relativistic and nonre
istic models in field theory.5 Exploiting this connection, we will extend the analysis in Ref. 5 to
case when these models admit partially invariant solutions. According to Ref. 1, we sta
introducing the variables of the target space-timeXm5(X0,X1,...,Xd,Xd11) in which thed-brane
moves, and the world-volume variablesfa5(f0,f1,...,fd) which parametrize the
d-dimensional extended object evolving inf0. Then the motion of thed-brane is governed by the
Nambu–Goto action

I NG5E df0 df1
¯dfdA~21!d detS ]Xm

]fa

]Xm

]fbD . ~1!

The action~1! is parametrization invariant, and different choices of parametrization lead to va

a!Electronic mail: grundlan@crm.umontreal.ca
b!Electronic mail: hariton@dms.umontreal.ca
32390022-2488/2004/45(8)/3239/27/$22.00 © 2004 American Institute of Physics
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field theory models. Recently, this concept has been applied to the theory of string
superstrings.6,7 In particular, it has been established that for strings moving in flat space–time
Nambu–Goto action~1! reduces to the Polyakov action

SP52
T

2 E d2jA2det~g!gab]aXm]bXnhmn , ~2!

wheregab is the world-sheet metricgab5]aX]bX. Varying the action with respect to the metr
leads to the stress tensor

Tab5]aX]bX2 1
2 gabggd]gX]dX. ~3!

Classically, both actions are equivalent.
In particular, we are interested in the two specific cases represented by the light-cone

etrization, which leads to a nonrelativistic fluid dynamical system~Chaplygin gas!, and the Car-
tesian parametrization, which leads to a relativistic Born–Infeld model. In both cases, we c
(X1,X2,...,Xd) to coincide with (f1,f2,...,fd) and rename them for physical interpretation
the spatial position vectorr in d dimensions. The remaining variablesX0, Xd11, and f0 are
treated separately for each of the two parametrizations.

A. Chaplygin gas

For the light-cone parametrization, we define

X15
1

&
~X01Xd11!5t, X25

1

&
~X02Xd11!5u~r ,t !, ~4!

and then identifyt with A2l f0, wherel.0 is a constant. The Nambu–Goto action~1! then
reduces to the action1

I l522Al E dt dr Au t1
1
2 ~¹u!2, ~5!

which in turn leads to an Euler–Lagrange equation of the form

]

]t S 1

Au t1
1
2 ~¹u!2D 1¹ • S ¹u

Au t1
1
2 ~¹u!2D 50. ~6!

Equation~6! is equivalent to the system of differential equations governing the Chaplygin g8

r t1~¹r!•~¹u!1r ~¹2u!50, ~7a!

u t1
1

2
~¹u!25

l

r2 , ~7b!

wherel.0 is a constant. Here,r(r ,t) is the density andu(r ,t) the velocity potential of an idea
nonrelativistic fluid of zero vorticity in which the pressureP is related to the density by th
polytropic relation1

P5
22l

r
. ~8!

The vanishing vorticity allows us to write the velocityv of the fluids as the gradient of th
potential:v5¹u. Here, Eqs.~7a! and~7b! correspond, respectively, to the equation of continu
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and Euler’s force equation, where the current is given byj 5r¹u. In the case wherelÞ0, it is
possible to eliminate the variabler by using Eq.~7b! to express it in terms ofu. In this way,
system~7! reduces to Eq.~6!.

Equations~7a! and ~7b! can also be considered in the case wherel50. In this case, the
variabler becomes completely independent, and the Eqs.~7a! and~7b! are decoupled. The force
equation~7b! can be solved foru, and then the continuity equation~7a! solved forr. A detailed
discussion of the symmetry group in one spatial dimension can be found in Ref. 9. This case
derived from the Nambu–Gotod-brane. Subsequently, in this article, we will consider only t
interactive case (lÞ0).

B. Born–Infeld model

For the Cartesian parametrization, the variableX0 is renamedct, wherec is the speed of light,
and is also identified withcf0. The remaining target space variableXd11 is renamedu(r ,t)/c,
which is a function ofr and t. The Nambu–Goto action~1! then reduces to the action1

I a52a E dt dr Ac22~]mu!2, ~9!

and the corresponding Euler-Lagrange equation is found to be

]nS 1

Ac22~]mu!2
]nu D 50. ~10!

Equation~10! corresponds to the equations

r t1¹ • S ¹uA r2c21a2

c21~¹u!2D 50, ~11a!

u t1rc2Ac21~¹u!2

r2c21a2 50. ~11b!

This is the Born–Infeld theory for a scalar fieldu discussed in Ref. 1. This theory is related
the nonlinear electrodynamics approach of Born and Infeld,10,11 where the equations of motio
were derived from the Lagrangian

LBI5b2@12A12~E22B2!/b22~E"B!2/b4#. ~12!

Here,E and B are the spatial components of the electric and magnetic fields, respectively
connection between Lagrangians~9! and ~12!, in the case whereb252a, is described by the
following relation:

E22B2

b2 1
~E"B!2

b4 52~c22~]mu!2! 6 2Ac22~]mu!2. ~13!

It should be noted that at the limit wherec → ` the relativistic Born–Infeld Lagrangian an
equations reduce to the nonrelativistic Chaplygin Lagrangian and equations discussed pre
wherel is identified witha2/2. A solutionuNR(r ,t) of the Chaplygin equation~6! is thus related
to its relativistic counterpartuR(r ,t) for the Born–Infeld equation~10!. This will be discussed in
further detail in Sec. IV E.

The majority of known solutions in the literature for the Chaplygin and Born–Infeld equat
are simple Riemann waves and their superpositions.12 In those cases, the equations were gener
solved only in the hyperbolic region
                                                                                                                



ssarily

and

from
t

etry
equa-

etry
sym-
f
ubal-
d the
es of
of the
ional
ion

y

en the

3242 J. Math. Phys., Vol. 45, No. 8, August 2004 A. M. Grundland and A. J. Hariton

                    
c21~ux!
22

~u t!
2

c2 .0. ~14!

Solutions of these equations obtained from the symmetry reduction method are not nece
required to obey differential inequality~14!, as can be seen in Ref. 5.

C. Objectives and organization

Our objective in this article is to study the partially invariant solutions of the Chaplygin
Born–Infeld systems of equations based on the Lie algebraL of the group of symmetriesG of the
Chaplygin system. We look for new classes of solutions which are not necessarilyG-invariant.
Partially invariant solutions are of interest for the following reasons. They can be constructed
a simple algorithm similar to the one employed for theG-invariant case. Also, partially invarian
solutions may be used to solve larger classes of initial value problems than theG-invariant
solutions. Finally, once a partially invariant solution is found under a subgroupG0 , it is possible
to verify whether or not it is invariant under some subgroup of the full groupG. Such invariant
solutions would be considerably more difficult to obtain directly from the standard symm
reduction method, since in some cases it requires us to solve nonlinear partial differential
tions ~PDEs! instead of ordinary differential equations~ODEs!.

This article is organized as follows. Section II is devoted to a description of the symm
group structure of the Chalygin and Born–Infeld systems. The properties of the Chaplygin
metry Lie algebraL are discussed, and we perform a classification ofL into conjugate classes o
subalgebras, having generic orbits of dimension 2. A complete list of the two-dimensional s
gebras ofL is given. In Sec. III, we give a brief theoretical background needed to understan
theory of partially invariant solutions, which includes an algorithm for constructing such class
solutions. In Sec. IV, we describe and discuss certain classes of partially invariant solutions
Chaplygin and Born–Infeld equations. All obtained solutions are computed from two-dimens
subalgebras, and have defect structured51. Finally, Sec. V contains observations and a discuss
of further applications of our results.

II. STRUCTURE OF THE SYMMETRY LIE ALGEBRA

A. Symmetry properties of the Chaplygin and Born–Infeld equations

The Lie algebraL of Chaplygin gas Eqs.~7a! and~7b! in one spatial dimension is spanned b
the six independent vector fields:5,9

P15]x , P05] t , B5t]x1x]u , Z5]u ,
~15!

D15x]x12t] t1r]r , D25x]x12u]u2r]r .

Here, P0 and P1 represent translations in the independent variablest and x, respectively,B
consists of a Galilean boost,Z corresponds to a shift in the potentialu, and D1 and D2 are
dilations in the dependent and independent variables. The commutation relations betwe
generators of the Lie algebraL are summarized in Table I.

TABLE I. Commutation table for the Lie algebraL spanned by the vector fields~15!.

X\Y D1 D2 B Z P1 P0

D1 0 0 B 0 2P1 22P0

D2 0 0 2B 22Z 2P1 0
B 2B B 0 0 2Z 2P1

Z 0 2Z 0 0 0 0
P1 P1 P1 Z 0 0 0
P0 2P0 0 P1 0 0 0
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Using the transformations of the Nambu–Goto parametrizations, we may transform the
erators of the Chaplygin Lie algebraL into infinitesimal symmetries of the Born–Infeld Eqs.~11a!
and~11b!. We first transform the variablesx, t, andu of the Chaplygin gas equations back into t
Nambu–Goto target space variablesX0, X1, X2:

X05
1

&
~ t1u!, X15x, X25

1

&
~ t2u!. ~16!

Thus, the derivatives may be transformed to

] t5
1

&
~]X01]X2!, ]x5]X1, ]u5

1

&
~]X02]X2!. ~17!

Note that under this transformation,r → `, so that in order to keep the transformations finite
is necessary to set]r50. We therefore obtain the generators

P15]X1 , P05
1

&
~]X01]X2!, B5

1

&
~X01X2!]X11

X1

&
~]X02]X2!,

Z5
1

&
~]X02]X2!, D15X1]X11~X01X2!~]X01]X2!, ~18!

D25X1]X11~X02X2!~]X02]X2!,

and the commutation relations for the transformed generators~18! are identical to those given in
Table I. Thus, it is possible to pass from one system of generators to another through the
formations~16!. We then proceed to transform the Nambu–Goto target space variables in
equivalent Born–Infeld variables

t5
1

c
X0, x5X1, u5cX2, ~19!

which leads to the generators

P1̂5]x , P0̂5
1

&
S 1

c
] t1c]uD , B̂5

1

&
S ct1

1

c
u D ]x1

x

&
S 1

c
] t2c]uD ,

Ẑ5
1

&
S 1

c
] t2c]uD , D 1̂5x]x1S ct1

1

c
u D S 1

c
] t1c]uD , ~20!

D 2̂5x]x1S ct2
1

c
u D S 1

c
] t2c]uD .

As in the previous case, the commutation relations between the generators~20! are identical to
those relations given in Table I.

Finally, we note that, for the Chaplygin equations, there exists an infinite number of pres
quantities1

I n
65E dxrS ux6

A2l

r D n

. ~21!
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Consequently, we can use the transformations~16! and~19! to derive the corresponding quantitie
of the Born–Infeld equations

Jn
65A2lE dx~~ux!

22u t!
21/2S 2ux6

1

&
~~ux!

22u t!
1/2D n

. ~22!

This suggests that both models are completely integrable.

B. Classification of the two-dimensional subalgebras

Here, we summarize the results obtained from the classification of the two-dimensiona
algebras ofL, the Lie algebra of the Chaplygin Eqs.~7a! and~7b!. This result can be extended t
include the Born–Infeld equations through the reparametrizations~16! and~19!. We focus exclu-
sively on two-dimensional subalgebras because its symmetry reduction leads us mainly to
ODEs. In order to classify the subalgebras, we can decompose the structure ofL into the following
solvable semidirect sum

L5$$D1 ,D2%œ$B%% œ $Z,P1 ,P0%. ~23!

We perform the classification in three steps, using the procedures described in Ref. 13. T
details are presented in Ref. 14.

~i! Consider first the abelian algebraA5$D1 ,D2%. Its subspaces are
A15$0%, A25$D1%, A35$D2%, A45$D11aD2,aÞ0%,

~24!A55$D1,D2%.
SinceA is an abelian algebra, all of its subspaces are subalgebras, and each of t
conjugate only to itself under action by the group

GA5e$D1 ,D2%5$g5elY : YP$D1 ,D2%%, ~25!

generated byA. For each subalgebraAi of A, its normalizer inGA

Nor~Ai ,GA!5$gPGA : gXg21PAi ,;XPAi%, ~26!

is simply GA .
~ii ! As a next step, let us now consider the algebra

F5$D1,D2,B%5$$D1,D2%œ$B%%5AœB. ~27!

The splitting subalgebras ofF are
F15$0%, F25$B%, F35$D1%, F45$D1,B%,

F55$D2%, F65$D2,B%, F75$D11aD2,aÞ0%, ~28!

F85$D11aD2,B%aÞ0, F95$D1,D2%, F105$D1 ,D2 ,B%5F.
In addition, by considering the case ofF7 wherea51, we obtain the following nonsplitting
subalgebra ofF

F115$D11D21«B,«561%. ~29!

The normalizers of these subalgebras in the groupGF5e$D1 ,D2 ,B% are presented in Table II
~iii ! Finally, the complete Lie algebraL can be decomposed as a semidirect sum of the pr

ouly considered algebraF and the abelian algebraN:
L5$D1,D2,B,Z,P1,P0%5FœN, ~30!

whereF5$D1 ,D2 ,B%, andN5$Z,P1 ,P0% is abelian. The two-dimensional splitting an
nonsplitting subalgebras ofL are summarized in Tables III and IV, respectively.

The usefulness of the classification is demonstrated in the fact that it allows us to fin
corresponding reductions of the Chaplygin equations under the classified nonequivalen
dimensional subalgebras of the symmetry algebraL. For each conjugacy class given in Tables
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and IV, we evaluate the invariants of the corresponding Lie subgroup, and also the corresp
reduced differential equations. We summarize the results in Tables V, and VI. Solutions of
equations will be analyzed in detail in Sec. IV.

III. PARTIALLY INVARIANT SOLUTIONS OF A SYSTEM OF PDEs

The concept of partially invariant solutions originates from the work of Ovsiannikov15 and
since then has been extensively developed by many authors~see, e.g., Refs. 16–22!. These types
of solutions can be understood as an extension of the group invariant solutions. In the c

TABLE II. Classes of subalgebras ofF5$D1 ,D2 ,B%.

SubalgebraFi#F Nor (Fi ,GF)

F15$0% GF

F25$B% GF

F35$D1% e$D1 ,D2%

F45$D1 ,B% GF

F55$D2% e$D1 ,D2%

F65$D2 ,B% GF

F75$D11aD2 ,aÞ0% H GF if a51,

e$D1 ,D2% if aÞ1
F85$D11aD2 ,B%aÞ0 GF

F95$D1 ,D2% e$D1 ,D2%

F105$D1 ,D2 ,B% GF

F115$D11D21«B,«561% e$D11D2 ,B%

TABLE III. Classes of two-dimensional splitting algebras ofL.

Splitting algebraLi ,a Nor (Li ,a ,G)

L1,65$Z,P1% G
L1,75$Z,P0% e$D1 ,D2 ,Z,P1 ,P0%

L1,85$P1 ,P0% e$D1 ,D2 ,Z,P1 ,P0%

L1,95$P1 ,P01«Z%«561 e$D11D2 ,Z,P1 ,P0%

L2,25$B,Z% e$D1 ,D2 ,B,Z,P1%

L3,25$D1 ,Z% e$D1 ,D2 ,Z%

L3,35$D1 ,P1% e$D1 ,D2 ,Z,P1%

L3,45$D1 ,P0% e$D1 ,D2 ,Z,P0%

L4,15$D1 ,B% e$D1 ,D2 ,B,Z%

L5,25$D2 ,Z% e$D1 ,D2 ,Z,P0%

L5,35$D2 ,P1% e$D1 ,D2 ,P1 ,P0%

L5,45$D2 ,P0% e$D1 ,D2 ,P0%

L6,15$D2 ,B% e$D1 ,D2 ,B%

L7,2(a51)5$D11D2 ,Z% e$D1 ,D2 ,B,Z%

L7,3(a51)5$D11D2 ,P1% e$D1 ,D2 ,P1%

L7,4(a51)5$D11D2 ,P0% e$D1 ,D2 ,P0%

L7,5(a51)5$D11D2 ,P01«Z%«561 e$D11D2 ,P01«Z%

L7,2(aÞ1)5$D11aD2 ,Z%aÞ0,1 He$D1 ,D2 ,Z,P1% if a521,

e$D1 ,D2 ,Z% if aÞ21
L7,3(aÞ1)5$D11aD2 ,P1%aÞ0,1 e$D1 ,D2 ,P1%

L7,4(aÞ1)5$D11aD2 ,P0%aÞ0,1 He$D1 ,D2 ,P1 ,P0% if a521,

e$D1 ,D2 ,P0% if aÞ21
L8,15$D11aD2 ,B%aÞ0 e$D1 ,D2 ,B%

L9,15$D1 ,D2% e$D1 ,D2%

L11,25$D11D21«B,Z%«561 e$D11D2 ,B,Z%
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partially invariant solutions, the graph of the solutionG f is no longer aG-invariant set~i.e.,
G(G f)ÞG f) but the difference between the dimensions of the manifoldsG(G f) and G f has to
satisfy the condition

0,d5dimG~G f !2dimG f,min~s,q!, ~31!

whered is called the defect structure of a solution with respect to the groupG. Here, we assume
that the transformed graphG f under the action ofG has a submanifold structure. We denote bys
the dimension of the orbit ofG and byq the number of dependent variables appearing in
considered system ofm PDEs inp independent variables

D l~x,u(k)!50, l 51,...,m. ~32!

For the computational purpose of constructing partially invariant solutions, it is convenie
evaluate the defect structured of a solution of system~32! based on theq3s characteristic matrix

Qk
a~x,u(1)!5S fk

a~x,u!2jk
i ~x,u!

]ua

]xi D , a51,...,q, k51,...,s, ~33!

of the infinitesimal symmetry generators

vk5jk
i ~x,u!]xi1fk

a~x,u!]ua, k51,...,s, ~34!

of s-dimensional subgroupG0 . We will assume throughout the rest of this article that ea
subgroupG0 acts regularly and transversally on the space of independent and dependent va
M5X3U. That is, the rank condition

rank$ja
i ~x,u!%5rank$ja

i ~x,u!,fa
a~x,u!%5s, ~35!

is satisfied.19 According to Ref. 20, the functionu5 f (x) is a partially invariant solution of system
~32! with defectd if and only if

rankQ~x,u(1)!5d. ~36!

Now, we present the algorithm for constructing partially invariant solutions with defect s
ture d. The procedure involves the following steps:

~1! Construct a complete set of functionally independent invariants for a subgroupGi of G. If the
set $v1 ,...,v r% is a basis of fiber preserving infinitesimal generators of the Lie algebrLi

5exp(Gi), where

vb5jb
i ~x!]xi1fb

a~x,u!]ua, b51,...,r , ~37!

then I is an invariant ofGi if and only if vb(I )50 for all b51,...,r . We obtain a set of

TABLE IV. Classes of two-dimensional nonsplitting algebras ofL.

Splitting algebraLi ,a Nor (Li ,a ,G)

L2,25$B1«P0 ,Z%«561 e$D113D2 ,B1«P0 ,Z,P1%

L3,35$D11«Z,P1%«561 e$D1 ,Z,P1%

L3,45$D11«Z,P0%«561 e$D1 ,Z,P0%

L4,15$D11«Z,B%«561 e$D1 ,B,Z%

L5,25$D21«P0 ,Z%«561 e$D2 ,Z,P0%

L5,35$D21«P0 ,P1%«561 e$D2 ,P1 ,P0%

L7,2(aÞ1)5$D12D21«P1 ,Z%aÞ0,1 «561 e$D12D2 ,Z,P1%

L7,4(aÞ1)5$D12D21«P1 ,P0%aÞ0,1 «561 e$D12D2 ,P1 ,P0%

L8,15$D113D2 ,B1«P0%aÞ0 «561 e$D113D2 ,B1«P0%
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TABLE V. Invariants of the two-dimensional subalgebras ofL.

Subalgebra Invariants Relations and change of variable

L1,6 t, r r5r(t)
L1,7 x, r r5r(x)
L1,8 u, r u5F(r)
L1,9 r, u2«t u5F(r)1«t
L2,2 t, r r5r(t)

L3,2
x2

t
,
r

x
r5AjhF(j), u5u(j,h), j5

x2

t
,h5t

L3,3 u
r

At
u5FS r

At
D

L3,4 u,
r

x
u5FSrxD

L4,1
r

At
,u2

x2

2t
u5FS r

At
D 1

x2

2t

L5,2 t,xr r5
1
x

F(t)

L5,3 t,r2u u5
F~t!

r2

L5,4
u

x2 ,xr u5x2F(xr)

L6,1 t,r2Su2
x2

2tD u5
F~t!

r2 1
x2

2t

L7,2(a51)
x

t
,r r5r(j), u5u(j,h), j5

x

t
,h5t

L7,3(a51) r,
u

t
u5tF(r)

L7,4(a51) r,
u

x
u5xF(r)

L7,5(a51) r,
1
x

(u2«t) u5xF(r)1«t

L7,2(aÞ1)
t11a

x2
,
t12a

r2
r5t12a/2F~j!,u5u~j,h!, j5

t11a

x2
,h5t

L7,3(aÞ1) t (a21)/2r, t2au u5taF(t (a21)/2r)

L7,4(a521) x,ur u5
F~x!

r
L7,4(aÞ1,21) x(a21)/(a11)r,x22a/(a11)u u5x2a/(a11)F(x(a21)/(a11)r)

L8,1 t~a21!/2r,t2aS u2
x2

2t D u5taF~ t ~a21!/2r!1
x2

2t

L9,1
ut

x2 ,
rx

t
u5

x2

t
FSxt rD

L11,2
2x

t
2« ln t, r r5r(j), u5u(j,h), j5

2x

t
2« ln t,h5t

L2,2 «x2
1
2 t2, r r5r(j), u5u(j,h), j5«x2

1
2 t2,h5t

L3,3
r2

t
,u2

1
2

« ln t u5FSr2

t D1 1

2
« ln t

L3,4
r

x
,u2« ln x u5FSrxD1« ln x

L4,1
r

At
,u2

x2

2t
2

1
2

« ln t u5FS r

At
D 1

x2

2t
1

1

2
« ln t

L5,2 xe2«t,xr r5
h
j

F(j),u5u(j,h), j5xe2«t, h5e2«t

L5,3 e22«tu,e«tr u5e2«tF(e«tr)

L7,2(aÞ1) x2
1
2 « ln t,

r
t r5hF(j), u5u(j,h), j5x2

1
2 « ln t,h5t

L7,4(aÞ1) e2«xu,e22«xr u5e22«xF(e22«xr)

L8,1 r(«x2
1
2 t2)1/2,(u2«xt1

1
3 t3)(«x2

1
2 t2)23/2 u5(«x2

1
2 t2)3/2F((«x2

1
2 t2)1/2r)1«xt2

1
3 t3
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TABLE VI. Reduced equations obtained from the two-dimensional subalgebras ofL. Splitting subalgebras are denoted b
Li ,a and nonsplitting subalgebras byLi ,a .

Subalgebra Reduced equation~s!

L1,6 2u tt2uxuxt12u tuxx1(ux)
2uxx50, uxt1uxuxx50, r(t)5Al(u t1

1
2 (ux)

2)21/2

L1,7 2u tuxx2uxuxt50, u tt1uxuxt50, r(x)5Al(u t1
1
2 (ux)

2)21/2

L1,8
rxx1S 1

2r
1

F9

F8D~rx!
21

l

r3~F8!2 50

L1,9
rxx1S 1

2r
1

F9

F8D~rx!
21S l

r3~F8!2 2
«

r~F8!2D50

L2,2 2u tt2uxuxt12u tuxx1(ux)
2uxx50, uxt1uxuxx50, r(t)5Al(u t1

1
2 (ux)

2)21/2

L3,2 8jhuhujj14hujuh14j(uj)
222juj2j2ujj1huh24jhujujh1jhujh50,

4jujujh2jujh1uh1huhh50,

F(j)5Al(2j2(uj)
22j2uj1jhuh)21/2

L3,3

rxx1S 1

2r
1

1

At

F9

F8D ~rx!
21S lt

r3~F8!2 1
1

2AtF8
D 50

L3,4
rxx1S 1

2r
1

1

x

F9

F8D~rx!
22S2x 1

2

x2 r
F9

F8D~rx!1S lx2

r3~F8!2 1
3

2x2 r1
1

x3 r2
F9

F8D50

L4,1

rxx1S 1

2r
1

1

At

F9

F8D ~rx!
21S lt

r3~F8!2 1
3

2AtF8
D 50

L5,2 xu tt1xuxuxt22xu tuxx2x(ux)
2uxx12uxu t1(ux)

350,

22ut1xuxt2~ux!
21

1
2 xuxuxx50,F~ t !5AlS 1

x2 u t1
1

2x2 ~ux!
2D 21/2

L5,3
rxx2

5

2r
~rx!

22
1

4
r3

F8

F2 1
lr3

4F2 50

L5,4
rxx1S 1

2r
1x

F9

F8D~rx!
21S6x 1

2rF9

F8 D~rx!1S l

x6r3~F8!2 1
7

2x2 r1
1

x
r2

F9

F8
2

2

x4

F2

~F8!2

1

rD50

L6,1
rxx2

5

2r
~rx!

22
1

2tF
r32

F8

4F2 r31
lr3

4F2 50

L7,2(a51) (2h2uh2jhuj)ujj1(jh 2h2)ujujh1(uj)
2ujj2(uj)

2ujh1h(uj)
22j2h2ujj

1jh3ujh2jh2uj50,

jhuj2jh2ujh1h3uhh2(uj)
21hujujh50,

r~j!5AlS 2
j

h
uj1uh1

1

2h2 ~uj!
2D 21/2

L7,3(a51)
rxx1S 1

2r
1

F9

F8D~rx!
21S l

t2r3~F8!2 2
F

t2~F8!2rD50

L7,4(a51)
rxx1S 1

2r
1

F9

F8D~rx!
21

2

x
rx1S l

x2r3~F8!2 2
F2

2x2~F8!2rD50

L7,5(a51)
rxx1S 1

2r
1

F9

F8D~rx!
21

2

x
rx1S2l2r2F222«r2

2x2~F8!2r3 D50

L7,2(aÞ1) 2j3h2 (1/2)(115a)(uj)
22a(a11)jh2 (1/2)(113a)uj14j3h (1/2)(125a)uhujj16j2h (1/2)(125a)ujuh

1
1
2 (12a)h (1/2)(123a)uh22j3h (1/2)(125a)ujujh2

1
2 (a11)2j2h2 (1/2)(113a)ujj

2
1
2 (a11)jh (1/2)(123a)ujh50,

(12a)h2auh2a(a11)jh2(a11)uj1(a11)jh2aujh1h (12a)uhh

24aj3h2(2a11)(uj)
214j3h22aujujh50,

F(j)5Al((a11)jh2auj1h (12a)uh12j3h22a(uj)
2)21/2

L7,3(aÞ1)
rxx1S 1

2r
1t~a21!/2

F9

F8D ~rx!
21S lt (123a)

r3~F8!2 2
at22aF

~F8!2r
1

~12a!

2

t2~1/2!(113a)

F8
D 50

L7,4(a521)
rxx2

3

2r
~rx!

21
2F8

F
rx1Slr

F2 2
~F8!2r

2F2 2
F9

F
rD50
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TABLE VI. ~Continued.!

Subalgebra Reduced equation~s!

L7,4(aÞ1,21)
rxx1S 1

2r
1x~a21!/~a11!

F9

F8D ~rx!
21S ~6a22!

~a11!
x211

~2a22!

~a11!
x2 2/~a11!

F9

F8
r D ~rx!

1S lx~226a!/~a11!

r3~F8!2 2
~2a!2

2~a11!2 x2 4a/~a11!
F2

~F8!2r

1
~a21!2

~a11!2 x2 (a13)/(a11)
F9

F8
r21

~7a23!~a21!

2~a11!2 x22r50

L8,1
rxx1S 1

2r
1t~a21!/2

F9

F8D ~rx!
21S lt (123a)

r3~F8!2 2
~a23!

2
t2 (3a11)/2

1

F8
2at22a

F

~F8!2r D50

L9,1
rxx1S 1

2r
1

x

t

F9

F8D~rx!
21S6x 1

2

t

F9

F8
rD~rx!

1S lt4

x6~F8!2r3 1
t2~F22F2!

x4~F8!2r
1

t

x3F8
1

1

xt

F9

F8
r21

7

2x2 rD50

L11,2
4uhujj22ujujh1

2

h
~uj!

21
1

2
~j1«1« ln h!~hujh2uj!2

1

2
~j1«1« ln h!2ujj50,

uhh1~j1«1« ln h!S 1

h2 uj2
1

h
ujhD2 «

h2 uj2
4

h3 ~uj!
21

4

h2 ujujh50,

r~j!5AlS uh2
1

h
~j1«1« ln h!uj1

2

h2 ~uj!
2D21/2

L2,2 2uhujj1hujh2h2ujj2ujujh50,
uhh2uj2hujh1ujujh50,

r~j!5AlS uh2huj1
1

2
~uj!

2D 21/2

L3,3
rxx1S 3

2r
1

2r

t

F9

F8D~rx!
21S lt2

4r5~F8!2 1
1

4rF8
2

«t

8r3~F8!2D50

L3,4
rxx1S 1

2r
1

1

x

F9

F8D~rx!
22S2x 1

2r

x2

F9

F8D~rx!1S lx2

r3~F8!2 1
3r

2x2 1
r2

x3

F9

F8
2

1

2r~F8!2D50

L4,1

rxx1S 1

2r
1

1

At

F9

F8D ~rx!
21S lt

r3~F8!2 1
3

2AtF8
2

«

2r~F8!2D 50

L5,2 2«h3uhujj2«h3ujujh2juj1j2ujj22huh1jhujh50,
2juj1jhujh13huh1h2uhh22«h2(uj)

22«h3ujujh50,

F~j!5AlS 2
«h2

j
uj2

«h3

j2 uh1
1

2

h4

j2 ~uj!
2D 21/2

L5,3
rxx1S 1

2r
1e«t

F9

F8D ~rx!
21S l

e6«tr3~F8!2 2
«

e3«tF8
2

2«F

e4«tr~F8!2D50

L7,2(aÞ1) 24«huj18h2uh14h2(uj)
218h3uhujj2hujj12«h2ujh24h3ujujh50,

2«uj2«hujh14huh12h2uhh12h(uj)
212h2ujujh50,

F~j!5AlS 2
«h

2
uj1h2uh1

1

2
h2~uj!

2D 21/2

L7,4(aÞ1)
rxx1S 1

2r
1e22«x

F9

F8D ~rx!
22~8«14«e22«x F9/F8 r!~rx!

1S le8«x

r3~F8!2 110r14e22«x
F9

F8
r22

2e4«xF2

r~F8!2 D50

L8,1
rxx1S 1

2r
1S«x2

1

2
t2D1/2F9

F8D ~rx!
21S 4«S «x2

1

2
t2D 21

1«S «x2
1

2
t2D 21/2F9

F8
r D ~rx!

1S l

S «x2
1

2
t2D 4

r3~F8!2

1
9

8 S «x2
1

2
t2D 22

r1
1

4 S «x2
1

2
t2D 23/2F9

F8
r2D

2S S «x2
1

2
t2D 23 1

~F8!2r
1

9

8 S «x2
1

2
t2D 23 F2

~F8!2r D50
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functionally independent invariants of the form

$hk~x!, I j~x,u!%, ~38!

wherek51,...,p1d2s and j 51,...,q2d. Then the rank of the Jacobian matrixJ is given by

rank~J!5rankS ]~ I 1~x,u!,...,I q2d~x,u!!

]~u1,...,uq! D5q2d. ~39!

~2! Express the (p1d)-dimensional manifoldGiG f in terms of the invariants~38!. Note thatGiG f

is the smallest invariant manifold containingG f , with respect to the action of the groupGi .
This manifold is determined by equations of the form

I j~x,u!5f j~h1~x!,...,hp1d2s~x!!, j51,...,q2d. ~40!

where f j are arbitrary functions of their arguments.
~3! From Eq. ~39! and by applying the implicit function theorem to Eq.~40!, we can express

(q2d) dependent variablesua as functions ofl<p independent variablesxi , of (q2d)
arbitrary functionsca and ofd remaining dependent variablesuj

ua5ca~f j~h1~x!,...,hp1d2s~x!!,xl,ui!, a51,...,q2d. ~41!

~4! Substitute these (q2d) dependent variablesua into the original system of equations~32! and
reduce the problem to a differential system of equations~so called systemD8) for d dependent
variables.

~5! Find leading derivatives among thed dependent variables and next compute all poss
compatibility conditions~modulo these leading derivatives!. These conditions imply some
constraints on arbitrary functionsca ~appearing in~41!! which form differential equations~so
called systemD/Gi) involving (q2d) dependent variablesua and p1d2r independent
variables.

~6! Solve the systemD/Gi .
~7! From each solution ofD/Gi integrate the initial systemD. This procedure generates differe

classes of partially invariant solutions with given defectd to the basic systemD.

There is no longer a one-to-one correspondence between partially invariant solutions
initial systemD and solutions of the systemD/Gi . For any solution of the systemD/Gi we obtain,
using the above procedure, a family of solutions of the original systemD.

Note that once these computations are completed, we could check whether the ob
solutions are invariant with respect to some subgroups of the symmetry groupG. A partially
invariant solutionu5 f (x), with respect to a subgroupGi is called reducible with respect to th
full group G if

~i! There exists a subgroupGa , G for which u5 f (x) is Ga-invariant, and
~ii ! The dimension of the orbit of the graphG f under action byGa satisfies the inequality

s15dim~GaG f !>s2d. ~42!

We are interested in the case of reducible partially invariant solutions, since reducible sol
can be computed from reduced systems involvingp2s1 independent variables, wherep2s1

<p1d2s. Therefore, these reduced systems are easier to solve than the systemsD/Gi andD8
which we have to solve to obtain partially invariant solutions.

In order to check whether a partially invariant solution is reducible under any subalgeb
the full symmetry algebraL, one can examine the kernalK of the characteristic matrixQ of L. If
a nonzero subspace ofK can be generated by constant vectors, then the solution will be inva
with respect to the subalgebra identified by these vectors. In the case of the Chaplygin Eq~7a!
and ~7b!, the characteristic matrixQ is

Q5S 2ux 2u t 1 ~x2tux! ~2xux22tu t! ~2u2xux!

2rx 2r t 0 ~2trx! ~r2xrx22tr t! ~2r2xrx!
D . ~43!
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Here, each constant vectora5(a1 ,...,a6) in the kernalK corresponds to reducibility by the
subalgebra

S5$a1P11a2P01a3Z1a4B1a5D11a6D2%. ~44!

In the nonreducible case, the only constant vector in the kernalK is the zero vectora50.

IV. PARTIALLY INVARIANT SOLUTIONS OF THE CHAPLYGIN AND BORN–INFELD
EQUATIONS

In this section, we discuss the reduced PDEs and ODEs obtained in Table VI, prov
partially invariant solutions of the Chaplygin Eqs.~7a! and ~7b! and Born–Infeld Eqs.~11a! and
~11b! where it is possible. All of these solutions have the defectd51 and are computed from
two-dimensional symmetry subalgebras of the algebraL. Here, we operate under the hypothe
that the subgroupsGi, G are acting regularly and transversally with two-dimensional orbits.
identify the following five types of solutions.

A. Static solutions

Let us discuss some classes of static~time-independent! solutions of the Chaplygin Eqs.~7a!
and~7b! which can be obtained directly from PDEs and ODEs associated to the subalgebras
in Table VI. We discuss the results obtained individually for each subalgebra.

For the subalgebraL1,8, the differential equation to be solved is

rxx1S 1

2r
1

F9

F8D ~rx!
21

l

r3~F8!2 50, ~45!

whereF is some function ofr. We may solve this equation as an ordinary differential equation
r in terms ofx, provided that we remember to set all constants of integration to be functionst.
We compare Eq.~45! to equation C 6.54 in Ref. 23

y91 f ~y!y821g~y!y81h~y!50. ~46!

Here, we identify the following functions:f (y)5 1/2y 1 F9/F8 , g(y)50, and h(y)
5l/y3(F8)2. We introduce the quantityp(y)5y8(x), so that Eq.~46! becomes

pp81S 1

2y
1

F9

F8D p21
l

y3~F8!2 50. ~47!

Settingq5p2, we transform the equation again to

1

2
q81S 1

2y
1

F9

F8Dq1
l

y3~F8!2 50. ~48!

The general solution of Eq.~48! is given by the following quadrature:

q~y!5
1

y
e22* F9/F8 dyFK022lE 1

y2~F8!2 e2* F9/F8 dydyG . ~49!

Thus, sincey85q(y)1/2, the solutiony5y(x) is found implicitly through the following relation

E dy

q~y!1/25x1c0 , ~50!

so thatr(x,t) is found by setting the constants ofy(x) to be functions oft, andu is found by
settingu5F(r). This method can be used in general for all differential equations of the for
                                                                                                                



f

e

d

e

is

3252 J. Math. Phys., Vol. 45, No. 8, August 2004 A. M. Grundland and A. J. Hariton

                    
rxx1 f ~r!~rx!
21g~r!50, ~51!

which include the reduced equations corresponding to the splitting subalgebrasL1,9, L3,3, L4,1,
L5,3, L6,1, L7,3 ~for all values ofa), L8,1, and the nonsplitting subalgebrasL3,3, L4,1, L5,3.

To find a particular solution of Eq.~45!, we set the condition 1/2r 1F9F850, so thatF(r)
52K0r1/21K1 . Having fixed the functionF(r), Eq. ~45! reduces to

rxx1
l

K0
2r2 50, ~52!

which yields the explicit solution

u~x,t !52K0S 3

2
A2l

K0
2 x1K2D 1/3

1K1 ,

~53!

r~x,t !5S 3

2
A2l

K0
2 x1K2D 2/3

.

This is a static algebraic solution, with no singularities, and is unbounded at large values ox. It
admits the gradient catastrophe since the velocity is unbounded atx522/3AK0

2/2lK2 .
Another class of solutions is provided from the subalgebraL3,2. In this case, we have to solv

a set of two partial differential equations foru, in variablesj andh, which are listed in Table VI:

8jhuhujj14hujuh14j~uj!
222juj2j2ujj1huh24jhujujh1jhujh50, ~54!

4jujujh2jujh1uh1huhh50. ~55!

The second Eq.~55! corresponds to the fact thatFh50 sinceF(j) is a function ofj only. The
function F is related tou through the formula

F~j!5Al~2j2~uj!
22j2uj1jhuh!21/2. ~56!

A number of solutionsu~j,h! can be found to the system of Eqs.~54! and~55! by setting certain
conditions on the derivatives ofu. By settingujj5 f (h), we obtain the solution of the reduce
equations

u5
jh

2h1C0
1C1 . ~57!

This solution however leads to an infinite value for the functionF ~and therefore an infinite
densityr!. On the other hand, if we make the assumption thatujh50, that isu5 f (j)1g(h), then
one possible solution of the reduced equations is

u5K0 ln~jh!1K1 . ~58!

The formula~56! gives the finite valueF5l/(2K0
2) and so we obtain the static solution

u~x,t !5K0 ln~x2!1K1 , r~x,t !5
l

2K0
2 x. ~59!

This solution is a singular solution which admits a branch point atx50. Consequently, the
velocity v of the fluid is singular there. Since the densityr vanishes at that point, the entire lin
x50 must be physically excluded from the domain of the fluid.

Consider the subalgebraL3,4. In this case, the reduced differential equation to be solved
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rxx1S 1

2r
1

1

x

F9

F8D ~rx!
22S 2

x
1

2

x2 r
F9

F8D ~rx!1S lx2

r3~F8!2 1
3

2x2 r1
1

x3 r2
F9

F8D50, ~60!

whereF is a function ofr/x. This equation is different from the one considered previously forL1,8

in the sense that there exists a nonzero coefficient ofrx , in bothx andr. Thus, Eq.~46! can no
longer be used. However, in the case whenF(j)5K0j1/21K1 , Eq. ~60! is a special case o
equation C 6.70 discussed in Ref. 23:

y95xa22f S y

xa ,
xy8

xa D , ~61!

wherea51 and

f S y

x
,y8D5y82

y

x
2

4l

K0
2 S y

xD 22

. ~62!

Making the substitutiony(x)5xh(j), wherej5 ln x, we obtain the equation

h91
4l

K0
2h2 50, ~63!

which leads to the first integral

dh

dj
5A 8l

K0
2h

1K3. ~64!

For the special case whereK350, we obtain

y~x!5xS 3

K0
A2l lnuxu1K4D 2/3

, ~65!

which leads to the static solution

u5K0S 3

K0
A2l lnuxu1K4D 1/3

1K1 , r5xS 3

K0
A2l lnuxu1K4D 2/3

. ~66!

This solution is singular with a branch point atx50. Therefore, we have a situation similar to th
of solution ~59! above, since the entire linex50 must be excluded from the domain of th
solution.

For the subalgebraL5,3, the differential equation to be solved is

rxx2
5

2r
~rx!

22
1

4
r3

F8

F2 1
lr3

4F2 50, ~67!

whereF is an arbitrary function oft. In the case whererxx5(2/r) (rx)
2 andF5K0 is chosen to

be a constant, Eq.~67! is satisfied by the static solution

u5K0S K22A l

2K0
2 xD 2

, r5
1

K22A l

2K0
2 x

. ~68!

This solution has a simple pole atx5K2A2K0
2/l. Asymptotically, it is unbounded whenx

→6`. In general, Eq.~67! can be solved by the quadrature
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x5E dr

r2~ ln r!S l2F8

2F2 2C0r D 1/2, ~69!

leading to a singular solution.
A class of solutions of~7! corresponding to the subalgebraL7,2, aÞ1, can be constructed b

solving the set of two partial differential equations foru, in the two independent variables ofj and
h, as listed in Table VI. The functionF is related tou through the relation

F~j!5Al~~a11!jh2auj1h (12a)uh12j3h22a~uj!
2!21/2. ~70!

For the casea52 1/2, the assumptionujj50 yields the solution of the reduced equations

u5K0h21/2j1K1 , F5A l

2K0
2 j23/2, ~71!

which leads to the algebraic solution

u5
K0

x2 1K1 , r5A l

2K0
2 x3. ~72!

This solution admits a double pole atx50. Asymptotically, the velocity of the fluid flow is
bounded, but the density is not.

In the case of the nonsplitting subalgebraL5,2, the functionF is related tou through the
relation

F~j!5AlS 2
«h2

j
uj2

«h3

j2 uh1
1

2

h4

j2 ~uj!
2D 21/2

. ~73!

By settingujj5 f (h), we obtain the solution of the reduced equations

u5
K0j2

2h2 1K1 , ~74!

from where we obtain the algebraic solution of the initial equations

u5
1

2
K0x21K1 , r5

A2l

K0x
, ~75!

admitting a simple pole atx50. This solution is unbounded, but the velocity does not admit
gradient catastrophe. Note that we also obtain this solution for the subalgebraL5,4, in the case
where the functionF is a constant. All of the static solutions given above are expressed in t
of elementary functions and are reducible with respect to the one-dimensional subalgebra$P0%.
The structure of the singularities consists of poles and branch points only.

B. Explicit nonstatic solutions

Let us now discuss certain classes of nonstatic solutions of the Chaplygin Eqs.~7a! and~7b!
which can be obtained directly by applying the procedure presented in Sec. III to the re
equations listed in Table VI. Here, we present only the results.

For the subalgebraL1,6, we obtain the algebraic solution
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u~x,t !5
1

2~ t2t0!
x21

K1

t2t0
x1

l

3K2
2 ~ t2t0!31

K1
2

2~ t2t0!
1K3 ,

~76!

r~x,t !5
K2

t2t0
,

which admits a simple pole att5t0 . Evaluating the characteristic matrix~43! for solution~76!, we
find that the only constant vectors in the kernal are multiples of the vector

a5~ t0,0,21,21,0,0!. ~77!

Therefore, this solution is reducible with respect to the full groupG by the one-dimensiona
subalgebraS1,65$t0P12K1Z2B%.

Similarly, for the subalgebraL2,2, we obtain the solution

u~x,t !5
a1x2

2~a1t1a0!
1

a2x

~a1t1a0!
1

1

3
la1

2t31la1a0t21la0
2t1

a2
2

2a1~a1t1a0!
1a3 ,

~78!

r~x,t !5
1

a1t1a0
.

We note that solution~78! is identical to the solution~76! found in the previous case for suba
gebraL1,6. Here, the simple pole is att5a0 /a1 . We note that both solutions~76! and ~78!
represent centered wave-type solutions.

A similar situation to that ofL1,6 andL2,2 occurs for the two subalgebrasL1,7 andL5,2. In the
case ofL1,7, we obtain the exponential-type solution

u~x,t !52
1

2
A2lK1~x2x0!2S 11e2A2lK1(t2t0)

12e2A2lK1(t2t0)D 1K2 ,

~79!

v~x,t !52A2lK1~x2x0!S 11e2A2lK1(t2t0)

12e2A2lK1(t2t0)D , r~x,t !52
1

K1~x2x0!
.

This solution has simple poles atx5x0 and t5t0 , and is reducible by the one-dimension
subalgebraS1,75$D22x0P1%.

In the case of subalgebraL5,2, the solution is given by

u~x,t !5
A2l

2C0
x2S e2A2l/C0(t2t0)11

e2A2l/C0(t2t0)21
D ,

~80!

v~x,t !5
A2l

C0
xS e2A2l/C0(t2t0)11

e2A2l/C0(t2t0)21
D , r~x,t !5

C0

x
.

Indeed, up to a translational shift inx andt, solution~80! is identical to solution~79!. The pole in
x is now atx50. Both solutions~79! and ~80! have a singularity at linet5t0 , as well as at line
x5x0 ~for ~79!! or x50 ~for ~80!!. When K1.0, the asymptotic behavior is as follows. Ast
→`, the quantityu approaches the functionf 1(x)5a(x2x0)2, and ast→2`, it approaches the
function f 2(x)52a(x2x0)2. The density has a simple pole atx5x0 , and is constant in time
Both solutions correspond to kinks, and since the current for solution~79!
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j 5r
]u

]x
5A2lS 11e2A2lK1(t2t0)

12e2A2lK1(t2t0)D , ~81!

is preserved inx, this suggests the complete integrability of system~7!.
For the nonsplitting subalgebraL2,2, the densityr is related tou through the relation

r~j!5Al~uh2huj1 1
2 ~uj!

2!21/2. ~82!

The assumptionujj50 yields the polynomial solution of the reduced equations

u5jh1 1
6 h31K1h1K0 , ~83!

which leads to the partially invariant solution

u5«xt2 1
3 t31K1t1K0 , v~x,t !5«t, r5Al~«x2 1

2 t21K1!21/2. ~84!

This solution is reducible by the two-dimensional subalgebraS2,25$«P01«K1Z1B,4«K1P1

26K0Z1D1%. Consequently, solution~84! can be obtained either as a partially invariant solut
with d51 with respect to the subalgebraL2,2, or as aG-invariant solution (d50) with respect to
the subalgebraS2,2.

For the subalgebraL7,2, a51, we have a set of two partial differential equations foru listed
in Table VI. The densityr is linked tou through the relation

r~j!5AlS 2
j

h
uj1uh1

1

2h2 ~uj!
2D 21/2

. ~85!

We obtain two different solutions to the reduced system. First, we have

u5 1
2 hj21C0 , ~86!

which leads to an infinite density. Also, we have

u5K0h1K1 , ~87!

from where we obtain the trivial constant-density solution

u5K0t1K1 , r5A l

K0
. ~88!

Solution~88!, nevertheless, has a characteristic matrix of rank 1, and is therefore partially in
ant. In this case, the solution is reducible by the subalgebraS7,25$P1 ,P01K0Z,22K1Z1D1

1D2%.
For the subalgebraL11,2, the densityr is related tou through the relation

r~j!5AlS uh2
1

h
~j1«1« ln h!uj1

2

h2 ~uj!
2D 21/2

. ~89!

The assumptionujh5K0 yields the solution of the reduced equations

u5K0jh1K0«h ln h1~K12K0«!h1K2 , K0 ,K1 ,K2PR, ~90!

which leads to the constant-density solution
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u~x,t !52K0x1~K12K0«!t1K2 ,
~91!

r5Al~K112K0
22K0«!21/2.

This solution is reducible by the subalgebraS11,25$P112K0Z,P01(K12K0«)Z,D11D2

22K2Z%, and represents a traveling wave.
Finally, it is interesting to note that the subalgebraL7,4, wherea521, leads to a bump-type

solution. The reduced equation of the subalgebra has the form

rxx2
3

2r
~rx!

21
2F8

F
rx1S lr

F2 2
~F8!2r

2F2 2
F9

F
r D50, ~92!

whereF is a function ofx. For the special case whereF5K0 , the equation becomes

rxx2
3

2r
~rx!

21
l

F2 r50. ~93!

We can integrate Eq.~93! twice and obtain the explicit form of the bump solution

r~x,t !52
l~ t2t0!

cosh2~ 1
2 A2l~x1C!!

,

~94!

u~x,t !52
cosh2~ 1

2 A2l~x1C!!

l~ t2t0!
,

which is reducible by the subalgebraS7,45$D12D222t0P0%. The velocity potentialu admits a
simple pole att5t0 . For large values ofx, the densityr is bounded and tends to zero, but th
velocity potential is unbounded. It should be noted thatu decreases with time provided that w
exclude the region around the pole att0 . Also, since the current

j 5A2l tanh~ 1
2 A2l~x1C!!, ~95!

is preserved in timet, and since there exists an infinite number of preserved quantities
complete integrability of the Chaplygin Eqs.~7a! and ~7b! is established.

C. Implicit solutions expressed in terms of elementary functions

A localized solution of~7a! and ~7b! can be obtained from the subalgebraL6,1. The reduced
differential equation from Table VI takes the form

rxx2
5

2r
~rx!

22
1

2tF
r32

F8

4F2 r31
lr3

4F2 50, ~96!

whereF is a function oft. In the case whereF(t)51 we can integrate Eq.~96!, and this results
in the solution given in implicit form

2
1

2K0r
AK1r12K01«

K1

~2«K0!3/2 tanh21SAK1r12K0

2«K0
D 5x1C0 , ~97!

whereK0(t)5 l/42 1/(2t), and«5uK0(t)u/K0(t). This solution represents a kink in the regio
where the derivatives ofr andu are finite and the gradient catastrophe does not occur. An ana
of the characteristic matrix~43! indicates that the only constant vector in the kernal is the z
vector. Therefore, solution~97! is irreducible with respect to the full groupG.
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D. Solutions in terms of Jacobi elliptic functions

We now discuss solutions which can be expressed in terms of Jacobi elliptic functions. F
subalgebraL1,9, the basic Chaplygin system~7a! and~7b! is reduced to the following differentia
equation

rxx1S 1

2r
1

F9

F8D ~rx!
21S l

r3~F8!2 2
«

r~F8!2D50. ~98!

Equation~98! has the Painleve´ property~no movable singularities other than poles! if and only if

F~r!52K0r1/21K1 , ~99!

whereK0 andK1 are functions oft. So, Eq.~98! becomes

rxx1
l

K0
2r2 2

«

K0
2 50, ~100!

the solution of which can be expressed by quadrature

E rdr

A2«

K0
2 r31K2r21

2l

K0
2 r

5x1K3 . ~101!

Equation~101! can be solved in terms of elliptic functions24 or degenerate cases thereof~i.e.,
elementary functions!. We can integrate ODE~100! once and write the obtained first-order equ
tion

S dr

dxD
2

5
1

r2 ~r2r1!~r2r2!~r2r3!, ~102!

where the constantsr1 , r2 , r3 satisfy the relations

r11r21r352 1
2 «K2K0

2,

r1r21r2r31r1r35«l, ~103!

r1r2r350.

When all three rootsr i of the polynomial in Eq.~102! are different, then the solution can b
expressed in terms of Jacobi elliptic functions. The results for different ordering of the roor1

,r2,r3 are summarized in Table VII.
The modulik of the Jacobi elliptic functions can be chosen in such a way that 0,k2,1. This

ensures that the elliptic solutions possess one real and one purely imaginary period and
real argumentsx we have

21<sn~x,k!<1, 21<cn~x,k!<1, A12k2<dn~x,k!<1. ~104!

Note that nonsingular periodic solutions can be physically interpreted as kinks, bumps, c
and snoidal waves, depending on the asymptotic behavior of the modulusk. Singular solutions
represent static structures which develop from a point or a line into a growing sphere or cy

Elementary solutions take place when two of the roots are identical,r15r25
2 (1/4)«K2K0

2 andr350. Then we obtainl5 (1/16)«K2
2K0

4, and Eq.~102! becomes
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TABLE VII. Jacobi elliptic solutions corresponding to the subalgebraL1,9 ~splitting! of the Chaplygin equation. Reductio
to the ODE«y91ay221b, «561, wherea5lK0

22, b52«K0
22. The functionU(r) is such thatU(r)5x1c0 . Here,

the constantsm, n, p6 , and q6 are defined to bem5
1
4 K2K0

21(
1

16 K2
2K0

41l)1/2, n52l(
1
4 K2K0

21(
1

16 K2
2K0

4

1l)1/2)21, p652
1
4 K2K0

26(
1

16 K2
2K0

42l)1/2, andq65l(2
1
4 K2K0

26(
1

16 K2
2K0

42l)1/2)21.

No. Order of roots FunctionU(r) Modulusk and parameters

1 r<c,0,a SK0
2

2 D1/2S 2

~a2c!1/2D 21,k5S a

a2cD 1/2

,1

«521 @c u11(a2c)E(u1)1(a2c)dn(u1)cs(u1)# sn~u1!5Sa2c

a2rD
1/2

a5m
c5n

2 r,c,0,a SK0
2

2 D1/2S 2c

~a2c!1/2k82D 21,k5S a

a2cD 1/2

,1

«521 @k82u12E(u1)1dn(u1)tn(u1)# sn~u1!5Sr2c

r D1/2

a5m k85(12k2)1/2

c5n

3 c,r<b,0 SK0
2

2 D1/2S 2

~2c!1/2D 21,k5S b2c

2c D 1/2

,1

«51 Fc u12
~c2b!

k2 ~u12E~u1!!G sn~u1!5Sr2c

b2cD
1/2

b5p6

c5q6

4 c<r,b,0 SK0
2

2 D1/2S 2b

~2c!1/2k82D 21,k5S b2c

2c D 1/2

,1

«51 @E(u1)2k2sn(u1)cd(u1)# sn~u1!5S b2r

~c2b!rD
1/2

b5p6 k85(12k2)1/2

c5q6

5 c,0,r<a SK0
2

2 D1/2S 22c

~a2c!1/2k82D 21,k5S a

a2cD 1/2

,1

«521 @E(u1)2k82u12k2 sn(u1)cd(u1)# sn~u1!5S~a2c!r

a~r2c!D
1/2

a5m k85(12k2)1/2

c5n

6 c,0<r,a SK0
2

2 D1/2S 2a

~a2c!1/2k2D @E~u1!2k82u1# 21,k5S a

a2cD 1/2

,1

«521 sn~u1!5Sa2r

a D1/2

a5m k85(12k2)1/2

c5n

7 c,b,0,r SK0
2

2 D1/2 22b

k82~2c!1/2 @dn~u1!tn~u1!2E~u1!# 21,k5S c2b

c D 1/2

,1

«51 sn~u1!5S r

r2bD
1/2

b5p6

c5q6
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S dr

dxD
2

5
1

r S r1
1

4
«K2K0

2D 2

. ~105!

The general integral is given in implicit form

2r1/22S 2
1

4
«K2K0

2D 1/2

lnS S 2
1

4
«K2K0

2D 1/2

1~r!1/2

S 2
1

4
«K2K0

2D 1/2

2~r!1/2
D 56x1C0 , ~106!

which is a singular solution admitting a branch point atr52 (1/4)«K2K0
2.

By means of the nonsplitting subalgebraL3,4, the reduced equation from Table VI obtaine
when we setF(j)5K0j1/21K1 , as in the previous cases, is

TABLE VII. ~Continued.!

No. Order of roots FunctionU(r) Modulusk and parameters

8 c,b,0<r,` SK0
2

2 D1/2 2c

~2c!1/2 @E~u1!1dn~u1!cs~u1!# 21,k5S c2b

c D 1/2

,1

«51 sn~u1!5S c

c2rD
1/2

b5p6

c5q6

9 0,r,
andb,cPC l1/4S K0

2

2 D 1/2F2F~f,k!

12S u12E~u1!1
sn~u1!dn~u1!

11cn~u1! D G
21,k5S l1/22

1

4
K0

2K2

2l1/2
D 1/2

,1

«51 cn~u1!5
l1/22r

l1/21r

b52
K0

2K2

4
6

i S l2
K0

4K2
2

16 D 1/2 f5cos21Sl1/22r

l1/21r D
c5b̄

10 0,r,`,
andb,cPC l1/4S K0

2

2 D 1/2

Fu122E~u1!22
sn~u1!dn~u1!

12cn~u1! G 21,k5S l1/22
1

16
K0

2K2

2l1/2
D 1/2

,1

«51 cn~u1!5
r2l1/2

r1l1/2

b52
K0

2K2

4
6

i S l2
K0

4K2
2

16 D 1/2 f5cos21S r2l1/2

r1l1/2D
c5b̄
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rxx2
1

x
rx1

1

x2 r1
4lx

K0
2r2 2

2

K0
2x

50. ~107!

This is once again a special case of Eq.~61!, except that the coefficient function is now given b

f S y

x
,y8D5y82

y

x
2

4l

K0
2 S y

xD 22

1
2

K0
2 , ~108!

wherea51. Making the change of variabler(x)5xh(j) wherej5 ln x into ~107!, we obtain the
first integral

S dh

dj D5
8l

K0
2h

1
4h

K0
2 1K3 . ~109!

This leads to the quadrature

E dh

A 8l

K0
2h

1
4h

K0
2 1K3

5j1c0 , ~110!

which can be solved in terms of elliptic functions.24 The solutionsh5h(j) are found in exactly
the same manner as for the previous case (r5r(x)) for subalgebraL1,9, except that the coeffi-
cients are now different. The right-hand sides of Eq.~103! in terms ofh become2 (1/4)K3K0

2, 2l
and 0, respectively. The coefficient« which previously appeared for the subalgebraL1,9 is always
set to 1, which means that only those root orderings previously corresponding to the po
branch of « are included. All implicit partially invariant solutions obtained in Sec. IV D a
irreducible with respect to the full groupG. This is due to the fact that the kernal of the chara
teristic matrix~43!, built from the derivatives ofr andu, does not contain any nonzero consta
vectors.

It should be noted that Chaplygin solutions have been found for the two-dimensional s
gebras which have not been discussed above. In order to be concise, we have omitted the
this article, and limit ourselves to a few general comments. The full details can be found in
14. In the cases of subalgebrasL3,3, L3,3, L4,1, L4,1, L5,3, L7,3(a51), L7,3(aÞ1) and L8,1,
solutions of the reduced equations in Table VI were found implicitly by quadrature. As an
ample, we present the solution for subalgebraL3,3:

E S 2lAt

K0
2r

2
2r3/2

3t3/4K0
1K2D 21/2

dr5x1C0 . ~111!

For the subalgebrasL7,4,(a51), L7,5,(a51), L7,4,(aÞ1), L9,1, L7,4,(aÞ1) and L8,1,
G-invariant solutions have been constructed. Finally, for subalgebraL7,2(aÞ1), a Chaplygin
solution has been determined which has infinite density. However, its equivalent Born–
solution has a finite density, as will be shown in the next subsection.

E. Solutions of the Born–Infeld equations

Each solution of the nonrelativistic Chaplygin Eqs.~7a! and~7b! can where possible be use
to obtain a corresponding solution of the relativistic Born–Infeld Eqs.~11a! and ~11b! in one
spatial dimension. Since the Chaplygin and Born–Infeld models involve two distinct param
zations of the Nambu–Goto target space variablesX0 andXd11, we equate these variables to bo
their relativistic and nonrelativistic representations:
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X05ctR5
1

&
~ tNR1uNR~ tNR,r !!,

~112!

Xd115
1

c
u~ tR ,r !5

1

&
~ tNR2uNR~ tNR,r !!.

Renaming the time variablesT5 (1/c) tNR andt5tR , we obtain the following method of solution
transformation described by Jackiw.1 If uNR(r ,t) is a solution of the Chaplygin Eq.~6!, then a
solutionuR(r ,t) of the Born–Infeld equation can be determined as follows. First, we determ
the functionT(r ,t) from the equation

T1
1

c2 uNR~r ,T!5&t, ~113!

then, we obtain the relativistic Born–Infeld solution

uR~r ,T!5
1

&
c2T2

1

&
uNR~r ,T!5c2~&T2t !, ~114!

which is associated to the Chaplygin solutionuNR. Since Eq.~113! cannot always be solved
explicitly for T(r ,t) it follows that explicit Born–Infeld solutions cannot always be found in t
manner. However, the following classes of solutions of the Born–Infeld Eq.~10! can be con-
structed. We summarize the results as follows.

For each static solutionuNR(x) given in Sec. IV A, we can find the equivalent Born–Infe
solution

uR~x,t !5c2t2&uNR~x!, rR~x!5
a

&S d

dx
uNR~x! D , ~115!

where a is related tol through the relationl5a2/2. Thus, for example, we obtain for th
subalgebraL1,8 the solution of the Born–Infeld Eq.~11! of the form

u~x,t !5c2t22&K0S 3

2
A2l

K0
2 x1K2D 1/3

2&K1 ,

~116!

r~x,t !5
1

&
S 3

2
A2l

K0
2 x1K2D 2/3

.

For the other static solutions, the full details are given in Ref. 14. Since the coordinate tra
mation~112! is nonsingular, solution~116! is reducible by the subalgebra$P0̂% given in ~20!. It is
to be noted that the static Chaplygin solutions are transformed to nonstationary solutions
Born–Infeld equations.

For the subalgebrasL1,6 andL2,2, Eq. ~113! takes the following polynomial form:

lT424lt0T31~2c2K2
222&c2K2

216lt0
2!T21~2&c2K2

2t022c2K2
2t012K3K2

224lt0
3!T

1~lt0
41K1

2K2
21K2

2x212K1K2
2x22K3K2

2t0!

50. ~117!
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This is a quartic equation which can be solved explicitly through the method of Ferrari, by so
the resolvent cubic equation.25 The quantityT can be expressed as a function ofx andt. Since the
solution has a complicated form, we will not present it here.

In the case of subalgebrasL1,7 andL5,2, Eq. ~113! has the transcendental form forT

T2
1

2c2 A2lK1~x2x0!2S 11e2A2lK1(T2t0)

12e2A2lK1(T2t0)D 1
K2

c2 5&t, ~118!

which cannot be solved explicitly as a function ofx and t.
The associated Eq.~113! for the subalgebraL2,2 reduces to the cubic form

T323~c21«x1K1!T23~K02&c2t !50. ~119!

The solution of this equation is given by Cardan’s formula for the roots of a cubic

T~x,t !5~ 3
2 ~K02&c2t !1~ 9

4 ~K02&c2t !21~c21«x1K1!3!1/2!1/3

1~ 3
2 ~K02&c2t !2~ 9

4 ~K02&c2t !21~c21«x1K1!3!1/2!1/3, ~120!

and the solution can be expressed simply asuR(x,t)5c2(&T2t).
For the subalgebraL7,2,(a51), solution~88! leads to a rather trivial solution, namely,

u~x,t !5
c2~~c21K0!t2&K1!

c22K0
, r~x,t !5

a~c21K0!

c2A24K0

. ~121!

The associated Born–Infeld solution for the subalgebraL11,2 takes the form

u~x,t !5
c2

c22K11K0«
~~c21K12K0«!t22&K0x2&K2!,

r~x,t !5
a~c21K12K0«!

Ac2~c42~K12K0«!2!18c4K0
2

. ~122!

Finally, for the Chaplygin bump solution~94! corresponding to the subalgebraL7,4(a521), the
associated Born–Infeld solution is given by

u~x,t !5
c2t0

&
6&c2S ~ t02&t !2

4
1

cosh2~ 1
2 A2l~x1C!!

c2l
D 1/2

, ~123!

which is nonsingular and asymptotically unbounded. Since they correspond, respectively,
reducible Chaplygin solutions~88!, ~91!, and ~94!, the Born–Infeld solutions~121!, ~122!, and
~123! are reducible by the transformed subalgebras corresponding toS7,2, S11,2, andS7,4 respec-
tively.

We note that the Jacobi elliptic solutions described in Sec. IV D can be transformed to h
elliptic solutions of the Born–Infeld equations. Due to the complexity of the expressions invo
we will not include them here.

In addition to the solutions discussed above, it should be noted that certain solutions
reduced equations in Table VI lead to Chaplygin solutions with infinite density which were
discussed previously due to physical considerations. However, these ‘‘solutions’’ can be u
determine finite-density Born–Infeld solutions. As an example, we consider the subal
L7,2(aÞ1). A solution to the reduced equations in Table VI is
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uNR5K0j1
«K0

2
ln h2

K0
2

2
h1K1 ~124!

5K0x2
K0

2

2
t1K1 . ~125!

Since the functionF is related tou by the relation

F~j!5AlS 2
«h

2
uj1h2uh1

1

2
h2~uj!

2D 21/2

, ~126!

the nonrelativistic densityrNR becomes infinite. However, if we transform the nonrelativis
u-function ~125! into its relativistic~Born–Infeld! equivalent

u~x,t !5
c2

c22
K0

2

2

S S c21
K0

2

2 D t2&K0
2x2&K1D , ~127!

then, we obtain a finite~though constant! density

r~x,t !5«S a2c4S c21
K0

2

2 D 2

2K0
2c8~K0

221!
D 1/2

, «561, ~128!

which represents a traveling wave similar to that of solution~122!. The negative branch («
521) could be interpreted as an antiparticle density.

V. SUMMARY AND CONCLUDING REMARKS

The main purpose of this article has been to provide a great variety of exact analytic sol
through the systematic use of the subgroup structure of the Chaplygin and Born–Infeld equ
in (111) dimensions. We concentrate exclusively on partially invariant solutions. Unde
hypothesis that the subgroupsGi, G are acting regularly with two-dimensional orbits and th
the transformed graphsGi(G f) are submanifolds, we construct and investigate partially invar
solutions with defect structured51. We can summarize the results which were obtained using
proposed algorithm in Sec. III, with the following cases.

~1! Elementary solutions, that is, algebraic with one or two simple poles, trigonometric, h
bolic and logarithmic,

~2! Implicit solutions in terms of elementary functions, and
~3! Doubly periodic solutions which can be expressed in terms of Jacobi elliptic functionssn, cn,

anddn.

The explicit partially invariant solutions were found to be reducible, in most cases, by
dimensional subalgebras ofL. It should be noted that these types of solutions are difficul
obtain using the standard symmetry reduction method. All implicit solutions are irreducible
respect to the full groupG.

The analysis described in this article could be extended in several directions. Firstly, it s
be remembered that the elimination ofr in the equations of motion~7a!, ~7b!, ~11a! and~11b! was
only made possible when the constantsl and a, respectively, do not vanish. These quantit
correspond to ad-brane ‘‘tension’’ which must not vanish if the Nambu–Goto action~1! is to
generate dynamics.1 Consequently, it is reasonable to suppose that an action for a ‘‘tension
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d-brane could lead to the noninteractive~free! Chaplygin and Born–Infeld theories, wherel50
and a50, respectively. More generally, it may be interesting to investigate partially inva
solutions of the more general form of the Nambu–Goto action.

Second, the question also arises as to whether our approach can be extended to a su
metric version of the Chaplygin model. Recently, such a generalization has been achiev
Jackiw and Polychronakos26 where, in particular, the explicit representation has been derived f
a supermembrane. A group analysis of this supersymmetric planar model can, through the
Grassmann variables and the Legendre transformation, provide us with new classes of gen
solutions of this model. This work is currently undertaken.27

Finally, using group theoretical techniques, the authors plan to generate, in a systemat
invariant, and partially invariant solutions of the Born–Infeld equations in (311) dimensions.
The concept of weak transversality for these types of solutions could also be investigated
task will be undertaken in a future work.
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26R. Jackiw and A. P. Polychronakos, Phys. Rev. D62, 085019~2000!.
27A. J. Hariton and V. Hussin~unpublished!.
                                                                                                                



are
s and

ation.
s. So,
e aim
their

of a
n of

uchi.
eneral
o weak

e the
to the

ich are

tions

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 8 AUGUST 2004
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The concept of biperfect~noncocommutative! weak Hopf algebras is introduced
and their properties are discussed. A new type of quasi-bicrossed products is con-
structed by means of weak Hopf skew-pairs of the weak Hopf algebras which are
generalizations of the Hopf pairs introduced by Takeuchi. As a special case, the
quantum double of a finite dimensional biperfect~noncocommutative! weak Hopf
algebra is built. Examples of quantum doubles from a Clifford monoid as well as a
noncommutative and noncocommutative weak Hopf algebra are given, generalizing
quantum doubles from a group and a noncommutative and noncocommutative
Hopf algebra, respectively. Moreover, some characterizations of quantum doubles
of finite dimensional biperfect weak Hopf algebras are obtained. ©2004 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1767989#

I. INTRODUCTION

In a recent work,1 quantum doubles of finite dimensional Hopf algebras and finite groups
generalized by one of the authors to those of certain finite dimensional weak Hopf algebra
finite Clifford monoids so as to obtain singular solutions of the quantum Yang–Baxter equ
However, the procedure in Ref. 1 is not suitable for noncocommutative weak Hopf algebra
it is interesting to construct quantum doubles of noncocommutative weak Hopf algebras. Th
of this paper is to give one class of noncocommutative weak Hopf algebras from which
quantum doubles can be obtained.

As is known,2 bicrossed product is a fundamental tool to construct the quantum double
Hopf algebra. Quasi-bicrossed product plays a similar role in Ref. 1 for the constructio
quantum doubles of certain weak Hopf algebras~in particular, finite Clifford monoids!. In Ref. 3,
the concept of weak Hopf pairs was introduced as a generalization of the Hopf pairs of Take4

Using the weak Hopf skew pairs, one type of quasi-bicrossed products, which lie between g
quasi-bicrossed products and quantum quasidoubles, were constructed when one of the tw
Hopf algebras in the product is cocommutative. In Sec. III of this paper, we will generaliz
results and construct quasi-bicrossed products of the weak Hopf skew pairs corresponding
case where both weak Hopf algebras in the product are noncocommutative~see Theorem III.6
below!.

A bialgebraH over a fieldk is called aweak Hopf algebra1 if there existsTPHomk(H,H)
such that id* T* id5 id and T* id* T5T where* is the covolution product in Homk(H,H); T is
called aweak antipodeof H. Weak Hopf algebras lie between left~respectively, right! Hopf
algebras and bialgebras. So far, two types of such weak Hopf algebras have been found, wh
the monoid algebrakS of a regular monoidS ~Ref. 1! and the almost quantum algebrawslq(2)
~Ref. 5! ~see also Ref. 6 for weak Hopf algebras corresponding toUq@sln#).

An application of weak Hopf algebras was found in the construction of noninvertible solu

a!Electronic mail: fangli@zju.edu.cn
b!Electronic mail: yzz@maths.uq.edu.au
32660022-2488/2004/45(8)/3266/16/$22.00 © 2004 American Institute of Physics
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of the~quantum! Yang–Baxter equation in Refs. 1 and 5. It was found that for a finite dimensi
cocommutative perfect weak Hopf algebraH with an invertible weak antipodeT, the quasi-
bicrossed productHop* `H @which is called thequantum doubleof H, denoted byD(H)], is a
quasibraided almost bialgebra equipped with the quasi-R-matrixR5( i 51

n (1`ei) ^ (ei`1)
PD(H) ^ D(H) where$ei% i 51

n is a basis ofH as a vector space and$ei% i 51
n is its dual basis in

Hop* . Then,R is a solution of the quantum Yang–Baxter equation. In Ref. 7, it was shown
this solutionR is von Neumann regular but not invertible in general. An example of this solu
was constructed from the cocommutative perfect weak Hopf algebraH5kS for any finite Clifford
monoidS.

Although the quantum double of a finite Clifford monoid is indeed a generalization of
quantum double of a finite group, the quantum doubles in Ref. 1 cannot usually be regar
generalizations of quantum doubles of Hopf algebras due to the cocommutativity of the
Hopf algebras considered in Ref. 1. The goal of this paper is to overcome this so as to co
quantum doubles of noncocommutative weak Hopf algebras. We will give one class of n
commutative weak Hopf algebras from which their quantum doubles can be obtained. Fir
introduce the concept of biperfect weak Hopf algebras and discuss their properties. Th
construct a new type of quasi-bicrossed products by means of the weak Hopf skew pairs
weak Hopf algebras which are generalizations of the Hopf pairs introduced by Takeuchi.3 As a
special case, the quantum double of a finite dimensional biperfect~noncocommutative! weak Hopf
algebra is built. Examples of quantum doubles from a Clifford monoid and a noncommutativ
noncocommutative weak Hopf algebra are given as generalizations of those from a group
noncommutative and noncocommutative Hopf algebra, respectively. Moreover, we discuss
characterizations of quantum doubles of finite dimensional biperfect weak Hopf algebras.

II. PRELIMINARIES

Throughout the paper,k stands for a field. Some notations and definitions unexplained
can be found in Refs. 8, 2, 1, and 9. The word ‘‘quantum quasidouble’’ of a weak Hopf algeb
Ref. 1 will always be replaced with ‘‘quantum double.’’

We recall1 that a linear spaceH is a k-almost bialgebraif ( H,m,h) is a k-algebra and
(H,D,«) is a k-coalgebra withD(xy)5D(x)D(y) for x, yPH. If K is a subalgebra and also
subcoalgebra ofH, thenK itself is an almost bialgebra, called as analmost sub-bialgebraof H.

Combining formally with the definition of the weak Hopf algebras, we say in Ref. 7 tha
almost bialgebraH is an almost weak Hopf algebraif there existsTPHomk(H,H) such that
id* T* id5 id andT* id* T5T, whereT is called analmost weak antipodeof H.

Let H be an almost bialgebra. If there exists anRPH ^ H such that for allxPH, Dop(x)R
5RD(x), thenR is called auniversal quasi-R-matrix; if simultaneously, (D ^ id)(R)5R13R23 and
(id^ D)(R)5R13R12 are satisfied, then we callH a quasibraided almost bialgebrawith a quasi-
R-matrix R ~see Ref. 1!. Moreover, if H is a bialgebra andR is invertible, thenH is called a
braided bialgebra.

Let H be a bialgebra andC a coalgebra. IfC is a left H-module andD(hc)5D(h)D(c) for
every hPH and cPC, then we call the coalgebraC a left quasi-module-coalgebraover H.
Moreover, if «(hc)5«(h)«(c), thenC is called aleft module-coalgebraover H. Right quasi-
module-coalgebra and right module-coalgebra can be defined similarly.

A pair (X,A) of bialgebras over a fieldk is calledquasimatched~respectively,matched! if
there exist linear mapsa:A^ X→X and b:A^ X→A which turn X into a left
A-quasi-module-coalgebra~respectively, a left A-module-coalgebra! and A into a right
X-quasi-module-coalgebra~respectively, a rightX-module-coalgebra!, such that if one setsa(a
^ x)5axx, b(a^ x)5avx then the following conditions are satisfied:

ax~xy!5 (
(a)(x)

~a8xx8!~~a9vx9!xy!, ~2.1!
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ax15«~a!1, ~2.2!

~ab!vx5 (
(b)(x)

~av~b8xx8!!~b9vx9!, ~2.3!

1vx5«~x!1, ~2.4!

(
(a)(x)

~a8vx8! ^ ~a9xx9!5 (
(a)(x)

~a9vx9! ^ ~a8xx8!, ~2.5!

for all a, bPA andx, yPX, where 1 is the identity ofX and ofA, respectively, in~2.2! and~2.4!.
For a quasimatched~respectively, matched! pair of bialgebras (X,A), we know from Refs. 1

and 2 that there exists an almost bialgebra~respectively, a bialgebra! structure on the vector spac
X^ A with identity equal to 1̂ 1 such that its product is given by

~x^ a!~y^ b!5 (
(a)(y)

x~a8xy8! ^ ~a9vy9!b, ~2.6!

its coproduct by

D~x^ a!5 (
(a)(x)

~x8^ a8! ^ ~x9^ a9!, ~2.7!

and its counit by

«~x^ a!5«X~x!«A~a! ~2.8!

for all x, yPX, a, bPA. Equipped with this almost bialgebra~respectively, bialgebra! structure,
X^ A is called thequasi-bicrossed product~respectively,bicrossed product! of X and A, and
denoted asX`A. Furthermore, the injective mapsi X(x)5x^ 1 andi A(a)51^ a from X andA,
respectively, intoX`A are bialgebra morphisms. Also,x`a5(x`1)(1`a) for aPA andxPX.

III. BIPERFECT WEAK HOPF ALGEBRAS AND QUASI-BICROSSED PRODUCTS

Definition III.1: A weak Hopf algebra H is called~i! a perfect weak Hopf algebra7 if its weak
antipode T is an anti-bialgebra morphism satisfying(id* T)(H)#C(H) ~the center of H); ~ii ! a
coperfect weak Hopf algebraif its weak antipode T is an anti-bialgebra morphism satisfyi
( (x)x8T(x9) ^ x-5( (x)x9T(x-) ^ x8 for any xPH; ~iii ! a biperfect weak Hopf algebraif it is
perfect and also coperfect.

From Proposition 1.2 in Ref. 1, we know that if the weak antipodeT of a weak Hopf algebra
H5(H,m,u,D,«,T) is an invertible antialgebra morphism, thenHop5(H,mop,u,D,«) and
Hcop5(H,m,u,Dop,«) are both weak Hopf algebras with weak antipodeT21.

Lemma III.1: Suppose that H5(H,m,u,D,«,T) is a weak Hopf algebra with T invertible
then H is perfect (respectively, coperfect) if and only if Hop ~respectively, Hcop) is also perfect
(respectively, coperfect).

Proof: WhenH is coperfect, then( (x)x8T(x9) ^ x-5( (x)x9T(x-) ^ x8 for any xPH. Thus,

~T^ 1!(
(x)

~x9T21~x8! ^ x-!5~T^ 1!(
(x)

~x-T21~x9! ^ x8!.

It follows that( (x)(x9T21(x8) ^ x-)5( (x)(x-T21(x9) ^ x8) sinceT is invertible. This means tha
Hcop is coperfect on the weak antipodeT21. It is similar to prove the result in the case thatH is
perfect.
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For a finite dimensional weak Hopf algebraH5(H,m,u,D,«,T), we know1 that H*
5(H* ,D* ,«* ,m* ,u* ,T* ) is a weak Hopf algebra with weak antipodeT* .

Lemma III.2: A finite dimensional weak Hopf algebra H is perfect (respectively, coperfe
and only if its duality H* is coperfect (respectively, perfect).

Proof: ‘‘only if’’: When H is perfect, we need to prove that forf PH* ,

(
( f )

f 8T* ~ f 9! ^ f-5(
( f )

f 9T* ~ f-! ^ f 8.

In fact, for a, bPH,

S (
( f )

f 8T* ~ f 9! ^ f-D ~a^ b!5(
( f )

~ f 8T* ~ f 9!!~a! f-~b!

5 (
( f )(a)

f 8~a8!T* ~ f 9!~a9! f-~b!

5 (
( f )(a)

f 8~a8! f 9~T~a9!! f-~b!5(
(a)

f ~a8T~a9!b!

5(
(a)

f ~ba8T~a9!!5 (
( f )(a)

f 8~b! f 9~a8! f-~T~a9!!

5 (
( f )(a)

f 8~b! f 9~a8!T* ~ f-!~a9!5(
( f )

f 8~b!~ f 9T* ~ f-!!~a!

5(
( f )

~ f 9T* ~ f-! ^ f 8!~a^ b!.

WhenH is coperfect, we need to prove that (idH* * T* )(H* )#C(H* ).
In fact, for f , gPH* , xPH,

~g~ idH* * T* !~ f !!~x!5(
(x)

~g~x8!~ idH* * T* !~ f !!~x9!

5(
(x)

g~x8!D* ~ idH* ^ T* !m* ~ f !~x9!

5(
(x)

g~x8!~ idH* ^ T* !m* ~ f !~x9^ x-!5(
(x)

g~x8!m* ~ f !~x9^ T~x-!!

5(
(x)

g~x8! f ~x9T~x-!!5(
(x)

f ~x8T~x9!!g~x-!5~~ idH* * T* !~ f !g!~x!.

It is easy to see thatT* is an anti-bialgebra morphism from the same fact ofT.
‘‘if’’: It follows from H>H** .
Corollary III.3: A finite dimensional weak Hopf algebra H is biperfect if and only if its dua

H* is biperfect.
Lemma III.4: Suppose that H5(H,m,u,D,«,T) is a finite dimensional weak Hopf algebr

and its weak antipode T is an invertible anti-bialgebra morphism. Then (i) H is perfect if and
if (T* id)(H)#C(H); (ii) H is coperfect if and only if( (x)T(x8)x9^ x-5( (x)T(x9)x-^ x8 for
any xPH.

Proof: ~i! follows from Lemma 1.1 in Ref. 1.
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~ii ! Similar to the proof of Lemma III.2, we can prove thatH satisfies (T* id)(H)#C(H) if
and only if H* satisfies( ( f )T* ( f 8) f 9^ f-5( ( f )T* ( f 9) f-^ f 8 for f PH* .

ThenH is coperfect if and only ifH* is perfect, if and only if (T* * id)(H* )#C(H* ). But
H>(H* )* . So, if and only if( (x)T(x8)x9^ x-5( (x)T(x9)x-^ x8 for xPH.

The concept of a Hopf pair of Hopf algebras was introduced by Takeuchi in Ref. 4, w
plays a valid role in the study of the theory of quantum groups. Now, we generalize this
introduce some similar concepts corresponding to the weak Hopf algebras.

Definition III.2: (i) Suppose that A and X are weak Hopf algebras with weak antipodes SA and
SX , respectively. We call(X,A) a weak Hopf pair, if there exists a nonsingular bilinear form^,&
from X^ A to k satisfying

^x,ab&5(
(x)

^x8,a&^x9,b&, ~3.1!

^x,1A&5«~x!, ~3.2!

^xy,a&5(
(a)

^x,a8&^y,a9&, ~3.3!

^1X ,a&5«~a!, ~3.4!

^SX~x!,a&5^x,SA~a!&, ~3.5!

where x, yPX, a, bPA.
(ii) In (i), moreover, if SA is invertible and (3.1) and (3.5) are replaced with the following (3

and (3.7):

^x,ab&5(
(x)

^x9,a&^x8,b&, ~3.6!

^SX~x!,a&5^x,SA
21~a!&, ~3.7!

respectively, we call(X,A) a weak Hopf skew-pair.
From Ref. 1,Aop5(A,mop,h,D,«,SA

21) is a weak Hopf algebra whenSA is invertible. There-
fore (X,A) is a weak Hopf skew-pair if and only if (X,Aop) is a weak Hopf pair in the case wher
SA is invertible.

We know from Ref. 3 that for two perfect weak Hopf algebrasA andX with weak antipodes
SA andSX , respectively, suppose thatA is cocommutative,SA is invertible and (X,A) is a weak
Hopf skew-pair, then (X,A) is a quasimatched pair of bialgebra. We want to generalize this re
to the case thatA is noncocommutative. In fact, we have the following lemma:

Lemma III.5: For two perfect weak Hopf algebras A and X with weak antipodes SA and SX ,
respectively, suppose that SA is invertible and(X,A) is a weak Hopf skew-pair. Then A and X a
both biperfect.

Proof: For xPX, a, bPA, sinceA is perfect, we have

(
(x)

^x8SX~x9!,a&^x-,b&5 (
(x)(a)

^x8,a8&^S~x9!,a9&^x-,b&

5 (
(x)(a)

^x8,a8&^x9,SA
21~a9!&^x-,b&5(

(a)
^x,bSA

21~a9!a8&

5(
(a)

^x,SA
21~a9!a8b&5 (

(x)(a)
^x8,b&^x9,a8&^x-,SA

21~a9!&

5 (
(x)(a)

^x8,b&^x9,a8&^SX~x-!,a9&5(
(x)

^x9SX~x-!,a&^x8,b&,
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and hence( (x)(x8SX(x9) ^ x-)5( (x)(x9SX(x-) ^ x8). It means thatX is coperfect.
Similarly, for x, yPX, aPA, sinceX is perfect, we can prove

(
(a)

^x,a9SA
21~a8!&^y,a-&5(

(a)
^x,a-SA

21~a9!&^y,a8&.

Hence ( (a)(a9SA
21(a8) ^ a-)5( (a)(a-SA

21(a9) ^ a8). Thus ( (a)(a8SA(a9) ^ a-)5( (a)

3(a9SA(a-) ^ a8). It follows thatA is coperfect.
Theorem III.6: For two perfect weak Hopf algebras A and X with weak antipodes SA and SX ,

respectively, suppose that SA is invertible and(X,A) is a weak Hopf skew-pair. Then(X,A) is a
quasimatched pair of bialgebras with

axx5(
(x)

^x8SX~x-!, a&x9,

avx5(
(a)

^x, SA
21~a-!a8&a9

so as to get a quasi-bicrossed product X`A, denoted as D(X,A).
Proof: First, we can verify easily the following:

^axx,b&5(
(a)

^x,SA
21~a9!ba8&, ~3.8!

^y,avx&5(
(x)

^x8ySX~x9!,a& ~3.9!

for a, bPA, x, yPX.
Now we prove thatA andX are a rightX-quasi-module coalgebra and a leftA-quasi-module

coalgebra with the actionv andx, respectively. In fact, for anyaPA, x, y, zPX, we have

^z,av~xy!&5(
(xy)

^~xy!9zSX~~xy!8!,a&5 (
(x)(y)

^x9y9zSX~y8!SX~x8!,a&5^z,~avx!vy&,

then av(xy)5(avx)vy; ^z,av1&5^1zSX(1),a&5^z,a&, then av15a. Thus A is a right
X-module. On the other hand,

K y^ z, (
(a)(x)

~a8vx8! ^ ~a9vx9!L 5 (
(a)(x)

^y,a8vx8&^z,a9vx9&

5 (
(a)(x)

^x8ySX~x9!,a8&^x-zSX~x(4)!,a9&

5(
(x)

^x8ySX~x9!x-zSX~x(4)!,a&

5(
(x)

^x8yzSX~x9!,a&5^yz,avx&5^y^ z,D~avx!&,

thenD(avx)5( (a)(x)(a8vx8) ^ (a9vx9). It means thatA is a rightX-quasi-module-coalgebra
Similarly, we get thatX is a left A-quasi-module-coalgebra.

Moreover, we can see that~2.2! and ~2.4! are trivial according to~3.4! and ~3.2! and the
definition of x andv. And, using Lemma III.5, we have
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K (
(a)(x)

~a8xx8!~~a9vx9!xy!,bL 5K (
(a)(x)

~a8xx8!~^x9,SA
21~a(4)!a9&a-xy!,bL

5 (
(a)(b)(x)

^x9,SA
21~a(4)!a9&^~a8xx8!,b8&^~a-xy!,b9&

5 (
(a)(b)(x)

^x9,SA
21~a(5)!a-&^x8,SA

21~a9!b8a8&^~a(4)xy!,b9&

5 (
(a)(b)

^x,SA
21~a(5)!a-SA

21~a9!b8a8&^~a(4)xy!,b9&

5 (
(a)(b)

^x,S(A)
21~a-!b8a8&^~a9xy!,b9&

5 (
(a)(b)

^x,SA
21~a(4)!b8a8&^y,SA

21~a-!b9a9&

5(
(a)

^xy,SA
21~a9!ba8&5^ax~xy!,b&,

then ax(xy)5( (a)(x)(a8xx8)((a9vx9)xy), i.e., Eq. ~2.1! holds. Similarly, we get that
(ab)vx5( (b)(x)(av(b8xx8))(b9vx9), i.e., Eq.~2.3! holds. Moreover,

(
(a)(x)

~a8vx8! ^ ~a9xx9!5 (
(a)(x)

^x8,SA
21~a-!a8&a9^ ^x9SX~x(4)!,a(4)&x-

5 (
(a)(x)

^x8,SA
21~a-!a8&^x9,a(4)&^SX~x(4)!,a(5)&a9^ x-

5 (
(a)(x)

^x8,a(4)SA
21~a-!a8&^SX~x-!,a(5)&a9^ x9

5 (
(a)(x)

^x8,a-SA
21~a9!a8&^SX~x-!,a(5)&a(4)

^ x9

5 (
(a)(x)

^x8,a8&^SX~x-!,a-&a9^ x9

5 (
(a)(x)

^x8,a8&^x-,SA
21~a-!&a9^ x9

5 (
(a)(x)

^x8,a8&^x-,SA
21~a(5)!a(4)SA

21~a-!&a9^ x9

5 (
(a)(x)

^x8,a8&^x-,SA
21~a(5)!a-SA

21~a9!&a(4)
^ x9

5 (
(a)(x)

^x8,a8&^x-,SA
21~a9!&^x(4),SA

21~a(5)!a-&a(4)
^ x9

5 (
(a)(x)

^x8,a8&^SX~x-!,a9&^x(4),SA
21~a(5)!a-&a(4)

^ x9
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5 (
(a)(x)

^x8SX~x-!,a8&^x(4),SA
21~a(4)!a9&a-^ x9

5 (
(a)(x)

~a9vx9! ^ ~a8xx8!,

then Eq.~2.5! holds. In a word, (X,A) is a quasimatched pair of bialgebras. Hence we ge
quasi-bicrossed productX`A, denoted also asD(X,A).

Note that in this theorem,A is not required to be cocommutative. So, this theorem is a
improvement on the result obtained in Ref. 3.

IV. QUANTUM DOUBLES OF BIPERFECT WEAK HOPF ALGEBRAS

In Theorem III.6, whenA5H is a finite dimensional biperfect weak Hopf algebra w
invertible weak antipodeT, we setX5H* cop and suppose that^,& is the bilinear form ofH and its
dual H* as linear spaces. It was known in Ref. 1 thatH* cop

5(H* ,D* ,«* ,(m* )op,u* ,(T* 21)). It is easy to see that (H* cop,H) is a weak Hopf skew-pair.
Then (H* cop,H) is a quasimatched pair of bialgebras withax f 5( ( f )^ f 8T* 21( f-),a& f 9 and
av f 5( (a)^ f ,T21(a-)a8&a9 for aPH and f PH* cop so as to get a quasi-bicrossed produ
D(H* cop,H)5H* cop`H, denoted briefly asD(H) and called thequantum doubleof H.

Proposition IV.1: Let H5(H,m,u,D,«,T) be a finite dimensional biperfect weak Hopf alg
bra with invertible T. Then the multiplication in D(H)5H* cop`H is given by

~ f `a!~g`b!5(
(a)

f g~T21~a-!?a8!`a9b

for f , gPH* cop, a, bPH.
Proof:

~ f `a!~g`b!5 (
(a)(g)

f ~a8xg8!`~a9vg9!b

5 (
(a)(g)

f g8~T21~a9!?a8!`g9~T21~a(5)!a-!a(4)b

5(
(a)

f g~T21~a(5)!a-T21~a9!?a8!`a(4)b

5(
(a)

f g~T21~a(5)!?a-T21~a9!a8!`a(4)b5(
(a)

f g~T21~a-!?a8!`a9b.

Now we have the following main result.
Theorem IV.2: Let H5(H,m,u,D,«,T) be a finite dimensional biperfect weak Hopf algeb

with invertible T. Then the quantum double D(H) of H is quasibraided equipped with a quas-
R-matrix R5( i PI(1`ei) ^ (ei`1)PD(H) ^ D(H) where$ei% i PI is a basis of the k-vector space
H together with its dual basis$ei% i PI in H* cop. Hence R is a solution of the quantum Yang–
Baxter equation.

Proof: For f PH* cop, aPH,
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Dop~ f `a!R5(
i PI

(
( f )(a)

~ f 9`a9!~1`ei ! ^ ~ f 8`a8!~ei`1!

5(
i PI

(
( f )(a)

~ f 9«~T21~a(6)!?a(4)!`a(5)ei ! ^ ~ f 8ei~T21~a-!?a8!`a9!

5(
i PI

(
( f )(a)

~ f 9«~T21~a(6)!!«~a(4)!«`a(5)ei ! ^ ~ f 8ei~T21~a-!?a8!`a9!

5(
i PI

(
( f )(a)

~ f 9`a(4)ei ! ^ ~ f 8ei~T21~a-!?a8!`a9!,

RD~ f `a!5(
i PI

(
( f )(a)

~«`ei !~ f 8`a8! ^ ~ei`1!~ f 9`a9!

5(
i PI

(
( f )(a)(ei )

~« f 8~T21~ei-!?ei8!`ei9a8! ^ ~ei f 9~T21~1!?1!`1a9!

5(
i PI

(
( f )(a)(ei )

~ f 8~T21~ei-!?ei8!`ei9a8! ^ ~ei f 9`a9!.

For everyb, cPH, u, vPHop* , let j5b^ u^ c^ v. Then

^Dop~ f `a!R,j&5(
i PI

(
( f )(a)

f 9~b!u~a(4)ei !~ f 8ei~T21~a-!?a8!!~c!v~a9!

5(
i PI

(
( f )(a)(c)

f 9~b!u~a(4)ei ! f 8~c8!ei~T21~a-!c9a8!v~a9!

5(
i PI

(
( f )(a)(c)

f 9~b!u~a(4)ei~T21~a-!c9a8!ei ! f 8~c8!v~a9!

5 (
(a)(c)

f ~bc8!u~a(4)T21~a-!c9a8!v~a9!

5 (
(a)(c)

f ~bc8!u~c9a(4)T21~a-!a8!v~a9!

5 (
(a)(c)

f ~bc8!u~c9a-T21~a9!a8!v~a(4)!5 (
(a)(c)

f ~bc8!u~c9a8!v~a9!,

^RD~ f `a!,j&5(
i PI

(
( f )(a)(ei )

f 8~T21~ei-!bei8!u~ei9a8!~ei f 9!~c!v~a9!

5(
i PI

(
( f )(a)(ei )(c)

f 8~T21~ei-!bei8!u~ei9a8!ei~c8! f 9~c9!v~a9!

5(
i PI

(
(a)(ei )(c)

f ~c9T21~ei-!bei8!u~ei9a8!ei~c8!v~a9!

5 (
(a)(c)

f ~c(4)T21~c-!bc8!u~c9a8!v~a9!
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S since (
i PI

(
(ei )

ei~c!ei8^ ei9^ ei-5(
(c)

c8^ c9^ c-D
5 (

(a)(c)
f ~c-T21~c9!bc8!u~c(4)a8!v~a9!5 (

(a)(c)
f ~bc-T21~c9!c8!u~c(4)a8!v~a9!

5 (
(a)(c)

f ~bc8!u~c9a8!v~a9!5^Dop~ f `a!R,j&.

ThereforeDop( f `a)R5RD( f `a). ThenH* cop`H is an almost quasi-cocommutative almo
bialgebra with a universal quasi-R-matrixR.

We can prove in a way similar to the proof of Theorem 2.11 in Ref. 1 that

~D ^ idH!~R!5R13R23;~ idH ^ D!~R!5R13R12.

It means thatHop* `H is quasibraided. Thus, by Proposition 2.8 in Ref. 1,R is a quasi-R-
matrix.

Note that since a cocommutative weak Hopf algebra must be coperfect, it means that Th
IV.2 is a generalization of the one in Ref. 1 on the quantum double of a finite dimens
cocommutative perfect weak Hopf algebra.

It is easy to see that for a finite Clifford monoidS5$s1 , . . . ,sn% ~see Refs. 8 and 1!, kS is a
finite dimensional biperfect weak Hopf algebra with invertible weak antipodeTS satisfying
TS(s)5s21 for sPS. Then by Theorem IV.2, the quantum doubleD(kS) is quasibraided
equipped with a quasi-R-matrixR5( i 51

n (1`si) ^ (si* `1)PD(kS) ^ D(kS) wheresi* is the du-
ality of si in (kS)* cop. Thus,R is a solution of the quantum Yang–Baxter equation. But, this
also an example of a quantum quasidouble in Theorem 2.11 of Ref. 1 constructed from a
dimensional cocommutative perfect weak Hopf algebra. So, it is very necessary to find an ex
of the quantum double from a finite dimensional biperfect weak Hopf algebra with invertible w
antipode which is not cocommutative.

For two biperfect weak Hopf algebrasH and K, it is easy to prove that the tensor produ
H ^ K is also a biperfect weak Hopf algebra with the comultiplicationD5(I ^ T^ I )(DH ^ DK),
the multiplicationm5(mH ^ mK)(I ^ T^ I ), the unit 151H ^ 1K , the counit«5«H ^ «K and the
weak antipodeT5TH ^ TK . H ^ K is commutative~respectively, cocommutative! if and only if H
andK are so.

For a finite noncommutative Clifford monoidS, let H5kS with the weak antipodeTS , then
K5(kS)* is also a finite dimensional biperfect weak Hopf algebra with invertible weak antip
TS* . Thus, we get a finite dimensional biperfect weak Hopf algebraA5kS^ (kS)* with invertible
weak antipodeT5TS^ TS* , which is indeed not a Hopf algebra unlessS is a group. SincekS is
noncommutative, (kS)* is noncocommutative. HenceA is noncommutative and noncocommut
tive. By Theorem IV.2, the quantum doubleD(A) of A is quasibraided equipped with a quasi-R
matrix as a solution of the quantum Yang–Baxter equation. This construction is different from
of Theorem 2.11 in Ref. 1. It implies that in Theorem IV.2, the quantum double of a fi
dimensional biperfect weak Hopf algebra is indeed a generalization of that of a finite dimen
Hopf algebra.

We know in Ref. 2 that the R-matrix of quantum double of a finite dimensional Hopf alg
is invertible. But, for the quasi-R-matrix in Theorem IV.2, we can only get the regularity
follows.

Proposition IV.3: For a finite dimensional biperfect weak Hopf algebra H with invertible w
antipode T, the quasi-R-matrix R5( i 51

n («`ei) ^ (ei* `1) of its quantum quasidouble D(H) is a

von Neumann regular element in D(H) ^ D(H) with its inverse R̄5( i 51
n («`ei) ^ (ei* T`1)

where$e1 , . . . ,en% is a basis of H and$e1* , . . . ,en* % is the dual basis in H* .
Proof: For anyj5b^ u^ c^ vPH ^ H* ^ H ^ H* , we have
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^RR̄R,j&5(
i , j ,l

«~b!u~eiejel !~ei* ~ej* T!el* !~c!v~1!

5«~b!v~1!(
(c)

uS (
i 51

n

eiei* ~c8!(
j 51

n

ejej* ~T~c9!!(
l 51

n

elel* ~c-!D
5«~b!v~1!uS (

(c)
c8T~c9!c-D 5«~b!v~1!u~c!5«~b!v~1!(

i 51

n

u~ei !ei* ~c!5^R,j&,

thenRR̄R5R. Similarly, ^R̄RR̄,j&5^R̄,j&, thenR̄RR̄5R̄.
For a leftD(H)-moduleV, defineCV,V

R satisfyingCV,V
R (v ^ w)5t(R(v ^ w)) for v, wPV,

thenCV,V
R is a solution of the classical Yang–Baxter equation~see Ref. 7! wheret is the flip map

defined ast(v1^ v2)5v2^ v1 . From Propositon IV.3, it is easy to prove the following.
Corollary IV.4: For a finite dimensional biperfect weak Hopf algebra H with invertible we

antipode T, let V be a left D(H)-module. Then CV,V
R is regular in the endomorphism monoid o

V^ V, with its inverse CV,V
R̄ satisfying CV,V

R̄ (v ^ w)5t(R̄(v ^ w)) for v, wPV.
Now we discuss the representation-theoretic interpretation ofD(H).
Definition IV.1 (see Ref. 2): For a bialgebra H over k, a crossedH-bimoduleV is a vector

space together with linear mapsmV :H ^ V→V andDV :V→V^ H such that

~i! the mapmV and DV turn V into a left H-module and a right H-comodule, respectively,
~ii ! ( (a)(b)a8bV^ a9bH5( (a)(a9b)(a9b)V^ (a9b)Ha8 for all aPH and bPV where we set

mV(a^ b)5ab and DV(b)5( (b)bV^ bH .

Theorem IV.5: Suppose H is a finite dimensional biperfect weak Hopf algebra with inver
weak antipode T. Then for a k-linear space V, the following statements are equivalent:

~i! V is a left D(H)-module;
~ii ! V is a crossed H-bimodule V and satisfies

(
(a)(b)

T21~a-!a9bH^a8bV5(
(b)

bH^abV ~4.1!

for all aPH and bPV.
Proof: ‘‘( i) ⇒(ii) ’’: Let V be a leftD(H)-module. SinceH* cop>H* cop`1 andH>«`H are

subalgebras ofD(H), V is a left H-module and also a leftH* -module withab5(1`a)b and
xb5(x`1)b for aPH, xPH* , bPV. Then, (ax)(b)5a(xb). But, by Proposition IV.1, we ge

ax5~1`a!~x`1!5 (
(a)(x)

^x,T21~a-!?a8&`a95 (
(a)(x)

~^x,T21~a-!?a8&`1!~1`a9!.

Hence,a(xb)5( (a)(x)^x,T21(a-)?a8&(a9b).
One must show thatV can be endowed with a crossedH-bimodule structure. FormV , we

definemV(a^ b)5ab.
Given a basis$e1 , . . . ,en% of H and the dual basis$e1* , . . . ,en* % of H* , note thatx

5( i 51
n x(ei)ei* anda5( i 51

n ei* (a)ei for xPH* , aPH.
DefineDV :V→V^ H satisfyingDV(b)5( iei* b ^ ei for any bPV. Consider the dualDV* of

DV , we have that for anyaPV* , bPV, xPH* ,

^DV* ~a ^ x!,b&5^a ^ x,DV~b!&5(
i 51

n

^a,ei* b&^x,ei&5K a,S (
i 51

n

^x,ei&ei* DbL 5^a,xb&;

in particular, forx5« ~the identity ofH* ) and anybPV,
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^DV* ~a ^ «!,b&5^a,b&.

ThenDV* (a ^ «)5a. It follows that, for anyyPH* ,

^DV* ~DV* ~a ^ x! ^ y!,b&5^DV* ~a ^ x!,yb&5^a,x~yb!&5^DV* ~a ^ xy!,b&,

then DV* (DV* (a ^ x) ^ y)5DV* (a ^ xy). HenceV* is a right H* -module under the actionDV* .
Therefore, dually,V becomes a rightH-comodule under the coactionDV .

For aPH, bPV, xPH* cop, we have

~ id^ x!S (
(a)(b)

a8bV^ a9bHD 5(
(a)

(
i 51

n

a8~ei* b!x~a9ei !5 (
(a)(x)

(
i 51

n

a8~ei* b!x8~ei !x9~a9!

5 (
(a)(x)

a8~x8b!x9~a9!5 (
(a)(x)

x9~a(4)!x8~T21~a-!?a8!~a9b!

5(
(a)

x~a(4)T21~a-!?a8!~a9b!5(
(a)

x~?a-T21~a9!a8!~a(4)b!

5(
(a)

x~?a8!~a9b!5 (
(a)(x)

x8~a8!x9~a9b!

5 (
(a)(x)

(
i 51

n

x8~a8!x9~ei !ei* ~a9b!

5(
(a)

(
i 51

n

x~eia8!ei* ~a9b!5~ id^ x!S (
(a)

(
i 51

n

ei* ~a9b! ^ eia8D
5~ id^ x!S (

(a9b)(a)
~a9b!V^ ~a9b!Ha8D .

It follows that

(
(a)(b)

a8bV^ a9bH5 (
(a9b)(a)

~a9b!V^ ~a9b!Ha8. ~4.2!

Hence by Definition IV.1,V is a crossedH-bimodule.
Now, we prove the formula~4.1!. With themV andDV as defined above, we have proved th

for any aPV* , bPV, xPH* , ^DV* (a ^ x),b&5^a,xb&. But,

^DV* ~a ^ x!,b&5^a ^ x,bV^ bH&5^a,bV&^x,bH&5^a,^x,bH&bV&.

So, it follows

xb5^x,bH&bV . ~4.3!

And, sinceV is a D(H)-module, we havea(xb)5(ax)b. However, by the formula~4.3!,
a(xb)5( (b)^x,bH&abV ; and by the formulas~4.3! and ~4.2!,
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~ax!b5S (
(a)

^x,T21~a-!?a8&`a9Db5S (
(a)

^x,T21~a-!?a8&a9Db

5(
(a)

^x,T21~a-!?a8&~a9b!5 (
(a)(x)

^x-,T21~a-!&^x8,a8&x9~a9b!

5 (
(a)(x)(a9b)

^x-,T21~a-!&^x9,~a9b!H&^x8,a8&~a9b!V

5 (
(a)(a9b)

^x,T21~a-!~a9b!Ha8&~a9b!V5 (
(a)(b)

^x,T21~a-!a9bH&a8bV .

Hence, for anyxPH* cop, ( (b)^x,bH&abV5( (a)(b)^x,T21(a-)a9bH&a8bV . Then the formula
~4.1! follows.

‘‘( ii) ⇒(i) ’’: Say that V is a crossedH-bimodule aboutmV and DV . Then, V is a left
H-module aboutmV and a rightH-comodule aboutDV . Write mV(a^ b)5ab for aPH, b
PV. For xPH* , bPV, let xb5( (b)^x,bH&bV , whereDV(b)5( (b)bV^ bH . SinceDV is a
right coaction, it is easy to show that (xy)b5x(yb) for yPH* . Then it follows thatV is a left
H* cop-module.

Set (xa)b5x(ab) for xPH* cop, aPH, bPV. Then, by~4.1!,

a~xb!5(
(b)

^x,bH&abV5 (
(a)(b)

^x,T21~a-!a9bH&a8bV5~ax!b,

where the first equality follows from~4.3!, the second from~4.1! and the third from~4.3! and~4.2!
as proved in ‘‘( i)⇒(ii). ’’

Therefore,V becomes a leftD(H)-module sinceH andH* cop are subalgebras ofD(H) and
the multiplication ofD(H) is determined by the interaction ofH andH* cop.

V. EXAMPLES FROM MATRIX GROUPS

Now, we give some examples from a concrete Clifford monoid. The definition of a Clif
semigroup/monoid can be found in Refs. 8 and 1.

Let Y5$a,b,g,r,s,d% be the semilattice with multiplication ‘‘•’’ given by the following
table:

• a b g r s d

a a a a a a a
b a b b a b b
g a b g a b g
r a a a r r r
s a b b r s s
d a b g r s d

The partial order in the semilatticeY can be presented as the diagram below:

Obviously,d is the identity ofY.
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For a ringR with identity, R232 denotes the 232 full matrix ring overR, U(R) the group
consisting of all units inR. Let Z be the integer number ring. For a prime numberp, Zp is a field
andU(Zp

232) is just the 232 general linear groupGL2(Zp) overZp . Assume thatGa5$ea% and
Gd5$ed% are the trivial groups,Gb5GL2(Z2), Gg5U(Z4

232), Gr5GL2(Z3), Gs5U(Z6
232).

ThenGuùGv5B for anyu,vPY, uÞv. SetS5øuPYGu . We will define a multiplication onS
such thatS5øuPYGu becomes a Clifford monoid related to the semilatticeY.

First, we mention the fact that over a commutative ringR with identity, anm3m matrix X is
invertible if and only if detX is a unit inR.

Then, forn52,3,4,6,X5@a b
x y#PU(Zn

232) if and only if detX5xb2ayPU(Zn). It is easy to see
U(Z6)5$1̄,5̄%, U(Z4)5$1̄,3̄%, U(Z3)5$1̄,2̄%, U(Z2)5$1̄%.

A ring homomorphismps,r :Z6→Z3 can be defined which satisfiesps,r(0̄)50̄, ps,r(1̄)
51̄, ps,r(2̄)52̄, ps,r(3̄)50̄, ps,r(4̄)51̄, andps,r(5̄)52̄.

For X5@a b
x y#PU(Z6

232)5Gs , we have detX5xb2ay51̄, or 5̄, then

ps,r~x!ps,r~b!2ps,r~a!ps,r~y!51̄, or 2̄.

It follows

F ps,r~x! ps,r~y!

ps,r~a! ps,r~b!
GPGL2~Z3!5Gr .

Thus, we can expandps,r to make it a group homomorphism fromGs to Gr . For this, it is
enough to defineps,r :Gs→Gr satisfying

ps,rF x y

a bG5F ps,r~x! ps,r~y!

ps,r~a! ps,r~b!
G

since

ps,rS F x1 y1

a1 b1
GF x2 y2

a2 b2
G D 5ps,rF x1 y1

a1 b1
Gps,rF x2 y2

a2 b2
G

can be shown easily using the fact thatps,r is a ring homomorphism fromZ6 to Z3 .
Note thatps,r(5̄)52̄PU(Z3), sops,r is an epimorphism fromGs to Gr .
Similarly, the ring homomorphismsps,b :Z6→Z2 andpg,b :Z4→Z2 can be defined respec

tively satisfyingps,b(0̄)50̄, ps,b(1̄)51̄, ps,b(2̄)50̄, ps,b(3̄)51̄, ps,b(4̄)50̄, ps,b(5̄)51̄
and pg,b(0̄)50̄, pg,b(1̄)51̄, pg,b(2̄)50̄, pg,b(3̄)51̄. Moreover, the group homomorphism
ps,b :Gs→Gb andpg,b :Gg→Gb can be constructed in a similar way.

Finally, we definepb,a :Gb→Ga , pr,a :Gr→Ga , pd,s :Gd→Gs , pd,g :Gd→Gg as the
trivial group homomorphisms. Then one has the following diagram:

Now, we introduce the multiplication ‘‘•’’ in S by XW5pu,uv(X)pv,uv(W) if XPGu and
WPGv for u,vPY. Then, with this multiplication,S5øuPYGu becomes a Clifford monoid
related to the semilatticeY, and the only elemented of Gd is the identity ofS.
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Obviously,S is a finite and noncommutative Clifford monoid. Then for the cocommuta
weak Hopf algebrakSwe may obtain the quantum doubleD(S) and its quasi-R-matrixR by using
the result in Ref. 1. We have the decomposition of linear spaces as follows:

D~S!5~kS!op* `~kS!5~ % uPYkGu!op* `~ % uPYkGu!5 % u,vPY~~kGu!op* `~kGv!!,

where (kGu)op* `(kGv) means a direct summand ofD(S) and ` is the same inD(S) since
(kS)op* 5 % uPY(kGu)op* and kS5 % uPYkGu such that for eachuPY, (kGu)op* is embedded
into (kS)op* andkGu is embedded intokS.

Any wP(kGu)op* can be expanded tow̄P(kS)op* satisfyingw̄(U1V)5w(U) for any ele-
mentU1V of kS5 % vPYkGv whereUPkGu andVP % vÞukGv .

Let u1 , u2 , v1 , v2PY, XPGv1
, WPGv2

, APGu1
, BPGu2

. Then their dual elementsfA

andfB of A andB are in (kGu1
)op* and (kGu2

)op* , respectively, where

fA~C!5H 0 if CPGu1
, CÞA

1 if C5A

andfB is given similarly.
The multiplication ofD(S) can be presented by

~fA`X!~fB`W!5~fA`X!~fB`W!5fA fB~X21?X!`XW,

where

fA fB~X21?X!5H 0 if X21AXÞB,

fA5fA if X21AX5B.

By Ref. 1, the quasi-R-matrix ofD(S) is

R5(
sPS

~1`s! ^ k~fs`1!5 (
uPY

(
guPGu

~1`gu! ^ k~fgu
`1!PD~S! ^ D~S!.

From U(Z6)5$1̄,5̄%, U(Z4)5$1̄,3̄%, U(Z3)5$1̄,2̄%, U(Z2)5$1̄% and the fact thatX
5@a b

x y#PU(Zn
232) if and only if detX5xb2ayPU(Zn), it is easy to computeuGuu for eachu

PY. We haveuGdu51,uGau51,uGbu56,uGgu596,uGru548,uGsu5288. It follows that the num-
ber of monomials ofR of D(S) is uSu5uGdu1uGau1uGbu1uGgu1uGru1uGsu5440. Therefore,
from the Clifford monoidS5øuPYGu we have constructed an example of the quantum double
cocommutative weak Hopf algebras in Ref. 1.

In the following we give an example of the quantum doubles of perfect~noncocommutative!
weak Hopf algebras.

For the Clifford monoidS above,H5kS^ (kS)* is a finite dimensional noncommutative an
noncocommutative biperfect weak Hopf algebra with invertible weak antipodeT5TS^ TS* satis-
fying TS(X)5X21 andTS* ( f )(X)5 f (TS(X)) for any matrixXPS and f P(kS)* . The dimension
of H is dimH5dim(kS^ (kS)* )5uSu25193 600. The quantum double is given by

D~H !5Hop* `H5~kS^ ~kS!* !op* `~kS^ ~kS!* !5~~kS!op* ^ ~kS!cop!`~kS^ ~kS!* !

5~~kS!op* ^ kS!`~kS^ ~kS!* !5 (
u,v,p,qPY

~~kGu!op* ^ kGv!`~kGp^ ~kGq!* !,

wherekGp^ (kGq)* and (kGu)op* ^ kGv are as subspaces ofkS^ (kS)* and (kS)op* ^ kS. The
multiplication of D(S) obeys the formula in Proposition IV.1.

The quasi-R-matrix ofD(H) is
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R5 (
p,qPY

(
gpPGp ,gqPGq

~~1^ 1!`~gp^ fgq
!! ^ ~~fgp

^ gq!`~1^ 1!!,

whose number of monomials isuSu25193 600.
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Analyticity of the SRB measure of a lattice of coupled
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We consider the ‘‘thermodynamic limit’’ of ad-dimensional lattice of hyperbolic
dynamical systems on the 2-torus, interacting via weak and nearest neighbor cou-
pling. We prove that the SRB measure is analytic in the strength of the coupling.
The proof is based on symbolic dynamics techniques that allow us to map the SRB
measure into a Gibbs measure for a spin system on a (d11)-dimensional lattice.
This Gibbs measure can be studied by an extension~decimation! of the usual
‘‘cluster expansion’’ techniques. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1768620#

I. INTRODUCTION AND MAIN RESULTS

In recent years a lot of attention has been devoted to the relation between nonequil
statistical mechanics and dynamical systems theory. According to the point of view of R
Cohen, and Gallavotti,21,11 a mechanical system evolving in a steady state can be described
hyperbolic dynamical system and its properties can be deduced from the ‘‘natural’’ or SRB
tribution ~see below for a precise definition! associated with this dynamical system. This line
investigation has already produced several interesting results both analytical, like the ‘‘Fluct
Theorem’’~see Ref. 11!, or numerical, like the works of Evans and Morris~see Ref. 8! and Moran
and Hoover~see Ref. 18!. Nonetheless, most of the work has been devoted to low dimens
dynamical system, due to their accessibility both to analytical and to numerical study. In this
we want to study the properties of the SRB distribution for a class of simple systems in very
dimension. For more references on this kind of systems see Ref. 17. The precise model w
here is taken from Ref. 2.

We start considering a linear hyperbolic automorphism of the two-torusT2. To be definite, we
will always consider the so calledArnold cat map s0 : T2→T2 defined by the action modulus 2p
of the matrix

A5S 1 1

1 2D . ~1.1!

Note that the matrixA admits two orthogonal eigenvectorsv6 whose respective eigenvaluesl6

are such thatl1.1.l2 and l1l251. For this reason the dynamical systems0 is uniformly
hyperbolic and the stable and unstable manifolds at any pointfPT2 are given byWf

6(t)5f
1v6t mod2p.

a!Electronic mail: bonetto@math.gatech.edu
b!Author to whom correspondence should be addressed. Electronic mail: pierluigi.falco@roma1.infn.it
c!Electronic mail: alessandro.giuliani@roma1.infn.it
32820022-2488/2004/45(8)/3282/28/$22.00 © 2004 American Institute of Physics
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From s0 we can construct theuncoupledlattice dynamics by considering as phase space
Cartesian productT5(T2)Zd

~namely any pointcPT has Cartesian components$cj%jPZd),
equipped with the metricd(c,c8)5(j2

2ujud̂(cj ,cj8) whered̂(cj ,cj8) is the usual metric onT2

and uju5( i 51
d uj i u for jPZd. On T the mapS0 acts simply as

S0
j~c!5~S0~c!!j5s0~cj!. ~1.2!

Note that the stable and unstable manifold ofS0 at a pointc are the Cartesian product of the stab
and unstable manifold ofs0 for the pointscjPT2, i.e., W0,c

6 (z)5c1(jw0,6
(j) zj mod 2p, where

w0,6
(j) is the tangent vector toT that has null component on the tangent space to everyTh

2 but for
Tj

2 where it coincides withv6 . The action ofS0 on W6(c) is naturally given by a diagonal linea
transformation.

We observe that the special choice of the matrixA plays no role in the following. Indeed we
will show in Appendix A that our results stay true if we replaces0 with any uniformly hyperbolic
analytic automorphism ofT2, not necessarily linear.

To add a coupling to this system we consider an analytic functiong: T→T2 and define

Se
j~c! 5

de f

s0~cj!1eg~rjc! 5
de f

s0~cj!1e f j~c!, ~1.3!

where (rjc)h5ch1j , i.e., r is the group of the translations onZd. This means that the function
f: T→T, whosej component isf j5g+rj, is translation invariant. We wantf to be short ranged: le
the nearest neighbor sites of the sitej benn(j)5$h:uj2hu<1%; we will assume thatg depended
only on cnn(0) , where we have used the notationcV5$cjujPV% for V,Zd. This implies that
Se

j(c) depends only oncnn(j) . More generally we could have assumed thatg depends only oncV

whereV is any finite subset ofZd containing 0 but this would not have changed the substanc
the following arguments. Moreover, we will takeg analytic in all its arguments.

The dynamical systemSe admits many invariant measures. Among them is the ‘‘natural’
SRB measure defined as the weak limit of the volume measure onT under the evolution defined
by Se , when such a limit exists and is ergodic. Being thatT is infinite dimensional, to properly
define this concept we will consider finite dimensional approximations. LetTN5(T2)VN whereVN

is the cube of side 2N11 in Zd centered at the origin. To define the restriction ofSe to TN we have
to fix the boundary conditions: we choose periodic ones. To this extent note thatTN can be
naturally identified with the submanifold ofT formed by the points periodic of period 2N11.

MoreoverSe leaves such a manifold invariant so that we can defineSe,N 5
de f

SeuTN
. If no confusion

can arise, we will suppress the indexN.
We can now define the SRB measure forSe,N asmN

SRB5 limT→`(1/T)( t50
T21(Se,N* ) tmN

0 where
the limit must be understood as a weak limit andmN

0 5PjPVN
dcj /(2p)2 is the Lebesgue measur

on TN . The existence of such a measure follows from rather general theorem on hype
dynamical systems, ife is sufficiently small~see, for example, Ref. 10 and references the!.
Moreover, mN

SRB is ergodic, always for small e, and we have that mN
SRB(O)

5 limT→`(1/T)( t50
T21O(Se

t (c)) for mN
0 almost everyc, whereO is anobservable, i.e., a Holde¨r

continuous function fromTN to R. This means thatmN
SRB is thestatisticof Se . It is well known that

the SRB measure is still well defined in the limitN→`, for e small enough. This was first prove
by Bunimovich and Sinai in Ref. 6. Starting from this work, the model Eq.~1.3! ~or similar models
of coupled expanding automorphisms of the circle! has been widely studied in the literature~see
for instance Refs. 19, 3–5, 16, 17, 1, and 15!. Many properties of such systems are well know
mainly uniqueness of the SRB state in the thermodynamic limit and exponential decay of
lations ~see Refs. 3–5 for a proof of these properties!.
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We further investigate the regularity properties of the limiting measure. We show thatmN
SRB

depends analytically one. This means that if we consider an analytic observableO, i.e., an
analytic function fromTN to R, we have thatmN

SRB(O) is an analytic function in a domain tha
depends on the analyticity properties ofO.

The main point of this work is to show that such a property remains true whenN→`, i.e., we
want to show that the domain of analyticity ofmN

SRB does not shrink to 0 whenN→`. More
precisely we say thatO: T→R is a local observableif it depends only oncV for some finite
V,Zd. We can summarize our main results as follows

Theorem: Given Se as above and a local observableO we have
(1) mSRB(O)5 limN→` mN

SRB(O) exists uniformly ine for e,e0 independent onO, and
(2) if O is local and analytic, thenmSRB(O) is analytic ine for e,e0(O).
The proof is mainly based on the possibility of mapping the SRB distribution into the G

state of a suitable spin system onZd11 and on the extension of classical techniques used to s
such Gibbs states~i.e., cluster expansion! to the particular ones that occur in our system. The k
point in order to get analyticity of the measure is proving that the SRB potentials~i.e., the
potentials of the Gibbs state the SRB measure is mapped into! are rapidly decaying. Once thi
decay is proved, analyticity follows via standard techniques. Analyticity of the measure
convergence of cluster expansion imply in particular uniqueness of the Gibbs measure and
nential decay in space and time of the correlations of Ho¨lder continuous observables~see for
instance Ref. 10!. Our proof can also be adapted to the case of coupled analytic expanding
map: in fact, also, these models can be mapped into spin systems, and proceeding as be
can prove that the SRB potentials satisfy the same decaying properties.

The rest of the paper is organized as follows. In Sec. II we give a brief review of the
properties of smooth uniformly hyperbolic systems and we briefly describe the constructio
allows the above quoted mapping. The detailed proofs of this properties are postponed to
III–V. Finally, in Sec. VI, we complete the proof of the main theorem. Appendix A contain a d
extension of our results to the case in which the uncoupled dynamics is not linear. Appen
deals with an application. In the contest of the physical application of dynamical systems~see the
beginning of this Introduction! a special status has been given to a particular observable, thephase
space contraction ratedefined ash1(c)5 logudet(DSe(c))u whereDSe is the differential ofSe .
Being that our system is infinite, it is more interesting to study thelocal phase space contractio
rate hV(c) defined by taking the determinant of a~large! minor of DSe . We show, for a large
class of couplingsf, that hV has a positive average and that it obeys a large deviation princ
i.e., its large deviations are asymptotically described by a free energy functional.

II. ANOSOV SYSTEMS

A. Geometric properties

A dynamical system on a smooth compact manifold, whose dynamics is given by a unif
hyperbolic invertible map, is called anAnosov system. From the general theory we know tha
Anosov systems are structurally stable, namely, given two Anosov diffeomorphismsS, S8 on a
manifoldV that are sufficiently close in theC2 topology, there exist aconjugation H:V↔V such
that S+H5H+S8.

In our situation this implies the existence of a maphe : TN↔TN such that

Se+he5he+S0 , ~2.1!

at least ife is small enough~a priori not uniformly in N!. The first step of our proof consists i
showing thathe is analytic ine uniformly in N. More precisely, we will constructhe directly for
N5`. Its finite N version can be obtained by restricting it toTN . We note thathe is, in general,
only Holdër continuous in the variablec. By this we mean that there exist constantc andb such
thatd(he(c),he(c8))<cd(c,c8)b. For this reason we cannot say that the SRB measure ofSe is
just the image under the maphe of the SRB measure forS0 , i.e., of the Lebesgue measure onT2.
Notwithstanding,he will play a crucial role in the construction onmN

SRB.
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As we saw in the Introduction the tangent space TcT to T on a pointc can be split in two
subspacesEc

1 andEc
2 such that TcT5Ec

1
% Ec

2 . Moreover, the distributionsE6 are continuous
and invariant underS0 , i.e., (DS0Ec

6)5ES0c
1 and we have

iDS0
nwi<Cl2

n iwi for wPEc
2 ,

~2.2!
iDS0

2nwi<Cl1
2niwi for wPEc

1 .

Ec
1 andEc

2 are called thestableandunstablesubspaces, respectively. In the case ofS0 all these
properties are trivially true. In particular we can consider onEc

6 the basis formed by the vector
$w0,6

(j) %jPZd.
We will show in Sec. IV that such a splitting can be constructed also forSe , again uniformly

in N, i.e., we will prove the existence of the stable and unstable subspacesEe,c
6 for Se . Moreover,

we will show thatEe,he(c)
6 is an analytic function ofe, although it is only Holde¨r continuous inc.

This will turn out to be the right regularity to study the SRB measure. To do this we will dire
construct the vectors of the basis$we,6

(j) (c)%jPZd that coincide with$w0,6
(j) %jPZd for e50.

B. Symbolic dynamics

The main property that allows us to study analytically the SRB measure for an Anosov mS
acting on a manifoldM is the existence of Markov partitions. We call a collectionQi , i
51,...,n, of closed subsets ofM a partition if ø iQi5M and QiùQj5]Qiù]Qj for every i
Þ j . For every sequences5$s t% tPZP$1,...,n%Z we can define the setX(s)5ù t52`

` St(Qs t
). Due

to the hyperbolicity properties ofS, if Qi are small enough,X~s! contains at most one point. Thi
allows us to construct asymbolic dynamics, i.e., a map from a subsetS of $1,...,n%Z to M. In
general, the structure of the subsetS is very complex but for Anosov systems it is possible
construct particular partitions for which the setS can be described easily. Given a partitionQ we
call then3n matrix C given byCi j 51 if int(SQi)ù int(Qj )Þ0 and 0 otherwise the compatibilit
matrix. We say thatQ is a Markov partition if the setS is formed by the sequencess such that
Cs i ,s i 11

51 for everyi PZ. This means that the sequences that satisfy the above nearest ne

condition code all the points ofM. In such a case we will denoteS5$1,...,n%C
Z .

We now show how to construct a Markov partition for our model. We start withs0 . A Markov
partition Q5$Qi ,i 51,...,n% for s0 acting onT2 can be easily constructed starting from its sta
and unstable manifolds. Such a construction is standard and can be found, e.g., in Ref. 10C
be its compatibility matrix andĉ0 the associated symbolic dynamics.

It is important to note thatĉ0 is Holdër continuous in the sense that there exist constantsc and
b such that, for any two sequencess, s8P$1,...,n%C

Z , d( ĉ0(s),ĉ0(s8))<cd̃(s,s8)b, with
d̃(s,s8)5e2#(s,s8) where #~s,s8! the biggest integer such thats j5s j8 , ;u j u<#(s,s8). In this
case we can takeb5 ln(l1). Another key property is thatC is a mixing matrix; this means tha
there exists adecorrelation time aPN such thatCa has all entries strictly positive. This means th
we can connect any two elements of the Markov partition ina time steps.

For every point s5$sj%jPZdP$1,...,n%Zd
we can consider the Cartesian productQs

53jPZdQsj
,TN . It is clear that the collection ofQs with sP$1,...,n%Zd

forms a Markov partition

for S0 . Note that it is natural to index the element of this partition with the element of$1,...,n%Zd

so that we can associate to this partition the symbolic dynamicsc0 : Zd3Z5Zd11→TN naturally

defined fromĉ0 . We can still callC the compatibility matrix and$1,...,n%C
Zd11

the set of possible

sequences~namelys5$sj,i%jPZd,i PZ is in $1,...,n%C
Zd11

if and only if Csj,isj,i 11
51 for everyj

PZd and i PZ). Given any point (j,i )PZd11 we will call j its space componentand i its time
component.

The key observation is that now the setshe(Qs) form a Markov partition forSe . This implies
that the space of symbolic sequences forSe is the same as that forS0 and that the symbolic
dynamicsce for Se is given byce(s)5he(c0(s)). Clearly ce is still Hölder continuous. This
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completes the construction of the Markov partition forSe . We thus obtained that the manifoldT
can be mapped to$1,...,n%C

Zd11
whered directions of the latticeZd11 represent thed directions of

T5(T2)Zd
and the last represents the time evolution. Indeed the mapSe on the space$1,...,n%C

Zd11

becomes the shift on the time direction, to be calledt.

C. SRB measure

Let now consider the SRB measuremN
SRB as defined in Sec. I. In this case we need to keeN

finite because it is not easy to give a meaning or construct directly the SRB measure forN5`.
Let mN

SRB be the measure on$1,...,n%C
VN3Z defined asmN

SRB(A)5mN
SRB(ce

21(A)), i.e., mN
SRB is

the image ofmN
SRB via symbolic dynamicsce . The measuremN

SRB can be described efficiently
through its restrictions to finite subsets ofVN3Z.

Given L,VN3Z, mN
SRB(sLusLc) will denote the probability of the event$s8usL8 5sL%

conditional to the event$s8usLc8 5sLc% w.r.t. the probability measuremN
SRB, where Lc5(VN

3Z)\L andsL is the collection of thesj,i for (j,i )PL.
From the theory of SRB measures~see Refs. 22 and 10!, it follows that mN

SRB is a Gibbs
measure and its conditional probabilities satisfy

mN
SRB~sL8 usLc!

mN
SRB~sL9 usLc!

5 lim
K→`

FDe
u~2K !~ce~t2Ks8!!

De
u~2K !~ce~t2Ks9!!

G21

, ~2.3!

wheres8 ~resp.s9! is the configuration coinciding withsL8 ~resp.sL9 ) on L and withsLc on Lc;
t is the image ofSe throughce ~i.e., it is the one step shift in time direction!; De

u(n)(c) measures
the expansion of the volume on the unstable manifold at the pointc. To be more precise le
$we,1

(j) (c)%jPVN
be a basis onEe,c

1 . We will construct one such a basis in Sec. IV. Then we h

De
u~n!~c! 5

de fAdetjh@~DSe
nwe,1

~j! !•~DSe
nwe,1

~h! !#

detjh@we,1
~j!

•we,1
~h! #

~c!, ~2.4!

whereu•v represent the usual scalar product inRVN and detjh is the determinant of the expressio
in square brackets thought as a matrix indexed byj andh.

Using the invariance ofEe
1 under Se and introducing theunstable Lyapunov matrixL~c!

satisfying the equation

DSe~c!we,1
~j! ~c!5(

h
we,1

~h! ~Se~c!!Lhj~c!,

we can rewrite the above expression as

De
u~2K !~Se

2K~c!!5
Adetjh~we,1

~j!
•we,1

~h! !~Se
K~c!!

Adetjh~we,1
~j!

•we,1
~h! !~Se

2K~c!!
)

j 52K

K21

udetjh@Ljh~Se
j c!#u. ~2.5!

Now the first ratio in Eq.~2.5!, when inserted in Eq.~2.4!, is vanishing; indeed the uniform Ho¨lder
continuity ofwe,1

(j) (he(c)) and the fact thats8 ands9 are asymptotically identical in the past an
in the future imply that

lim
K→6`

~ lnAdetjh~we,1
~j!

•we,1
~h! !!~ce~tKs8!!2~ lnAdetjh~we,1

~j!
•we,1

~h! !!~ce~tKs9!!50; ~2.6!
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thus the choice of the basis inE1 does not change the result, namely the SRB measure doe
depend on the choice of the metric as is to be expected from its definition. CallingLj(c)

5
de f

(ln L(he(c)))jj, we finally get

mN
SRB~sL8 usLc!

mN
SRB~sL9 usLc!

5expH 2 (
j 52`

1`

(
jPVN

@Lj~c0~t js8!!2Lj~c0~t js9!!#J . ~2.7!

Here we used the fact thatce5he+c0 . Furthermore, the Ho¨lder continuity ofLj(c0(s8)) implies
absolute convergence of the sum in Eq.~2.7! because only points asymptotically equal both in t
past and in the future are compared.

The crucial point of this construction is that the matrixL(c) 5
de f

L(he(c)) is analytic ine due
to the fact that it depends only onwe,1

(j) (he(c)). As we already notedwe,1
(j) (he(c)) are analytic in

e. We will prove this fact in Sec. IV.
In Sec. VI we will apply to Eq.~2.7! the standard methods developed in the study of Gi

measure in statistical mechanics. To do this we will need to decompose the ‘‘interac

Lj(c0(s)) as the sum of potentials depending only onsX 5
de f

$s j% j PX whereX is a finite subset of
Zd11. More precisely, we will decompose

(
~j,i !PVN3Z

Lj~c0~t is!!5 (
X,VN3Z

fX~sX!. ~2.8!

~These two series are not convergent: they represent the formal expression for the ‘‘Hamilto
of a Gibbs measure. See Sec. V B for a more precise statement.! We shall show that we can choos
fX analytic ine, translationally invariant in space and time directions and decaying exponen
in the tree distanceof the setX, namely the length of the shortest tree connecting all the lat
points inX. In this way~2.7! can be written as

mN
SRB~sL8 usLc!

mN
SRB~sL9 usLc!

5expH 2 (
XùLÞ0

@fX~sX8 !2fX~sX9 !#J , ~2.9!

so that one can finally write

mN
SRB~sLusLc!5

expH 2 (
XùLÞ0”

fX~sX!J
(
sL

expH 2 (
XùL0”

fX~sX!J . ~2.10!

This will allow us to show our analyticity claim uniformly inN.

III. PERTURBATIVE CONSTRUCTION OF THE SRB MEASURE

In this section we construct the conjugationhe and prove that it is analytic ine. The technique
we use consists in expandinghe as a power series ine and writing a recursive relation linking th
nth order coefficient to the coefficients of orderi with i ,n. This naturally leads to a tree expan
sion of the usual form in perturbation theory for quantum field theory, i.e., the trees we
introduce are the ‘‘Feynmann graphs’’ of our theory. See also Ref. 10 and reference there
similar application to KAM theory.
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A. The conjugation

From now on we will identify functions fromTN to TN with their lifts as functions fromR2VN

to R2VN. Using the definition~2.1! and looking forhe of the formhe(c)5c1dhe(c), we find

dhe+S02S0+dhe5e f +~ Id1dhe!, ~3.1!

where Id is the identity map.

Settingl 5
de f

l25l1
21 and writing f (c) 5

de f

(j,a f ja(c)w0,a
(j) and similarly fordhe

j6
, we get

dhe
j1

~S0c!2l21dhe
j1

~c!5e f j1
~c1dhe~c!!,

~3.2!

dhe
j2

~S0c!2ldhe
j2

~c!5e f j2
~c1dhe~c!!.

Both equations can be implicitly solved by iteration:

dhe
ja

~c!52ae (
p>0

lp1ra f ja
~S0

a~p112ra!c1dhe~S0
a~p112ra!c!!, ~3.3!

wherera5(11a)/2.
It is easy to see that the series in Eq.~3.3! is absolutely convergent, sincel,1 and f is

bounded. Expandingf ja
(c1dhe(c)) in power of its argument we find

f x~c1dhe~c!!5 f x~c!1 (
k>1

ek(
s51

k

(
k1 ,...,ks

kj>1

k11•••1ks5k S f x,x1 ,...,xs

s!
dh

~k1!

x1
¯dh

~ks!

xs D ~c!, ~3.4!

where we have introduced the indexx5~j,a!, with a56, andf x,x1 ,...,xs5]x1
¯]xs

f x with ] (ja) the

partial derivative in the direction ofw0,a
(j) . Moreover, we use the convention of summing on tw

repeated indexes. The first order coefficient of the expansion of the conjugation is then

dh~1!
x ~c!5~2a! (

p>0
lp1ra f x~S0

a~p112ra!c!, ~3.5!

while thekth, k.1, coefficient turns out to be

dh~k!
x ~c!5(

s51

k

(
k1 ,...,ks

kj>1

k11¯1ks5k21

~2a! (
p>0

lp1raS f x,x1 ,...,xs

s!
dh

~k1!

x1
¯dh

~ks!

xs D ~S0
a~p112ra!c!.

~3.6!

FIG. 1. Graphical interpretation of~3.6!.
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From Eq.~3.5! we see thatdhe is in general nondifferentiable with respect toc. Indeed already

differentiatingdh(1)
j1

(c) with respect toc we find a nonconverging series. On the contrary, it
clear that Eq.~3.5! is Hölder continuous inc for every exponentb,1.

We can interpret Eq.~3.6! graphically as shown in Fig. 1.
The l.h.s. of the graphical equation in Fig. 1 representsdh(k)

x (c) while the r.h.s., representin
the sum in Eq.~3.6!, is a ‘‘simple tree’’ consisting of a ‘‘root’’r, a ‘‘root branch’’ lv[(r ,v)
coming from the ‘‘node’’ ~or ‘‘vertex’’ ! v, and sv branches ‘‘enteringv,’’ to be called lv i

[(v,v i), i 51,...,sv .
Even if the drawing in the figure does not carry them explicitly, we imagine that some la

are affixed to the nodev: more preciselyx(v)5(j(v),a(v))PVN3$6% and pvPZ1 . Further-
more, a labelxl5(jl ,al)PVN3$6% is associated to each branchl. In the figure abovexlv

[x andxlv i
[xi , i 51,...,s.

The nodev symbolizes the tensor with entries

Nv;x,x1 ,...,xs
5
de f

~2a~v !!lpv1ra~v !
f x,x1 ,...,xsv

sv!
~S0

p~v !c!, ~3.7!

wherep(v)5a(v)(pv112ra(v)). Observe that, in order for Eqs.~3.7! and~3.6! to be nonzero,
we must haveujlv i

2j(v)u<1, due to our definition of the couplingf.

The linelv exiting vertexv symbolizes thepropagator, that is simplydxlv
,x(v) .

The line with labelx exiting from the bullet of the l.h.s. with label~k! representsdh(k)
x (c); the

branches with labelsxi exiting from the bullets of the r.h.s. with label (ki) represent
dh(ki )

xi (S0
p(v)c).

Even if it is not explicitly written in the figure above, a summation over the free indicesx(v),
xlv i

has to be performed@note that the summation overx(v) simply fixesx(v)5x, because of the

presence of the propagatordx(v),x].
Since Eq.~3.6! is multilinear indhki

xi , we can just replace each of the branches exiting from

bullet with the same graphical expression in the r.h.s. of the above figure, and so on, un
labels (ki) on the bullets~top nodes! become equal to 1. In this case the end-points repre
dh(1) , that is a known expression, see Eq.~3.5!, and we will draw these known end-points
small dots.

Thus we have represented ourdh(k)
x as a ‘‘sum over trees’’ withk branches andk nodes~we

shall not regard the root as a node! of suitabletree values. In Fig. 2 we draw a typical treeu we

FIG. 2. A treeu of order k510 appearing in the expansion fordhe . Labelsj(v i), a(v i) and pv i
are associated to al

verticesv i .
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get via such a procedure.
Note that a tree induces a partial ordering among its nodes: a nodew precedesv ~and it will

be writtenw,v) if there is a path of branches connectingw andv with the arrows pointing from
w to v.

Let us now summarize the discussion above. LetT̂k(x) be the set of rooted trees withk
branches andk nodes, with labelsx(v), pv attached to their vertices andx(v0)[x, wherev0 is the
last vertex preceding the root. GivenuPT̂k(x), let the value ofu be defined as

Val̂~u,c!5 )
vPu

~2a~v !!lpv1ra~v !
f x~v !,x~v1!,...,x~vsv

!

sv!
~S0

p~v !c!, ~3.8!

wherev1 ,...,vsv
are the nodes immediately precedingv and p(v)5(w>va(v)(pv112ra(v)).

With these definitionsdh(k)
x (c) can be calculated asdh(k)

x (c)5(uPT̂k(x)Val̂(u,c).

B. Convergence and regularity of the perturbative expansion of the conjugation

By definition g(c) depends only oncnn(0) so that it is analytic inD5
de f

$cj
i PCuuIm cj

i u<r0,i
51,2,jPnn(0)% for somer 0.0. CallingG the maximum ofg on D, from Cauchy’s formula we
get

u f x,x1 ,...,xs~c!u<G
m1!¯mD!

r 0
s

<G
s!

r 0
s

, ~3.9!

wherem1 ,...,mD are the multiplicities of the partial derivatives with respect to theD 5
de f

2(2d
11)52unn(0)u possible variables~thusm11¯1mD5s).

In the same way, ifc andc8 are identical on each site butj8Pnn(j) and if 0,b<1, we get

u f x,x1 ,...,xs~S0
pc!2 f x,x1 ,...,xs~S0

pc8!u<G
~s11!!

r 0
s11 ~2p2!~12b!/2l2bpucj82cj8

8 ub, ~3.10!

where we have used the periodicity off. Next we bound the value of a treeuPT̂k(x). Using Eq.
~3.9!, for uPT̂k(x), we find

iVal̂~u,• !i`< )
vPu

lpv
G

r 0
sv

5
Gk

r 0
k21 )

vPu
lpv, ~3.11!

where we used that, ifuPT̂k(x), (vPusv5k21.
The sum over the trees can be interpreted as a sum over the topological trees and a su

the labels attached to the trees. IfUk is the set of topological trees of orderk, we get

idh~k!
x i`< (

uPUk
(

x~v !,a~v !
vPu

Gk

r 0
k21 (

pv
vPu

)
vPu

lpv5 (
uPUk

(
j~v !,a~v !

vPu

Gk

r 0
k21 S 1

12l D k

< (
uPUk

2k~2d11!k
Gk

r 0
k21 S 1

12l D k

<22k2k~2d11!k
Gk

r 0
k21 S 1

12l D k

, ~3.12!

where we used that:

~1! 2k is the number of terms in the sum over thea(v) indices;
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~2! (2d11)k is a bound on the number of terms in the sum over the values of thej(v) indices not
making Val̂(u,c) vanish@observe that, given a treeu, its value Val̂~u,c! is vanishing unless
uj(v8)2j(v)u<1, wherev8 is the node immediately precedingv]; and

~3! 22k is a bound on the number of unlabeled rooted trees withk nodes.

In the same way we find that, ifc andc8 are identical on each site butj8 and if 0,b,1,

udh~k!
x ~c!2dh~k!

x ~c8!u

ucj82cj8
8 ub

< (
uPU

S 1

12l12bD k

~2p2!~12b!/2
Gk

r 0
k

2k~2d11!k(
vPu

~sv11!

<22kS 1

12l12bD k

~2p2!~12b!/2
Gk

r 0
k

2k~2d11!k~2k21!. ~3.13!

So the maphe : TN→TN exists; it is Hölder continuous w.r.t.c and analytic w.r.t.e in the complex
disc ueu<eb , with

eb5F 1

12l12b
23

G

r 0
~2d11!G21

. ~3.14!

In order to prove thathe(c) is anhomeomorphism, we have to show that it is invertible. The proo
is easy and standard. Regarding injectivity, note that twodistinct pointsc1 , c2 , are necessarily
far order one in the ‘‘future’’ or in the ‘‘past,’’ namely there exists an integernPZ such that
uS0

nc12S0
nc2u5O(1). Then Se

n(he(c1))2Se
n(he(c2))5S0

n(c12c2)1dhe(S0
nc1)2dhe(S0

nc2)
cannot vanish as the first term is order one, the other two of ordere; thus it cannot be but
he(c1)Þhe(c2). Regarding surjectivity, sincef is a continuous injective mapping on a torus,f is
necessarily surjective~the proof is trivial onT1 and it can be easily extended by induction toTN).

IV. THE UNSTABLE DIRECTION

In order to explicitly compute the SRB measure, we have to construct a basis for the un
subspaceEc

1 , and the expansion coefficientDe
(n) associated to it, as explained in Sec. II B abo

Note that we cannot usehe to find a basis forEc
1 because it is only Ho¨lder continuous.

To find the unstable base$we,1
(j) (c)%jPV and theLyapunov matrixL~c! we have to solve the

following equation:

~DSewe,1
~h! !~c!5we,1

~j! ~Se~c!!Ljh~c!. ~4.1!

In general this equation cannot have solutions analytic ine. In fact, from the general theory w
know that the unstable vectors$we,1

(j) (c)%jPV are not differentiable with respect toc. But, as we
previously pointed out, to compute the SRB measure we need only to know the expansion

ficient at the pointhe(c), i.e., De
(n)(he(c)). Let us definewe,1

(j) (he(c)) 5
de f

ve
(j)(c) for jPV and

note thatve
(j)(c) satisfies the equation

~DSe!~he~c!!ve
~h!~c!5ve

~j!~S0c!Ljh~c!, L~c!5L~he~c!!. ~4.2!

We will show that this equation admits a solution analytic ine. Moreover, the determinant ofL(c)
is all what we need to compute the SRB measure.

At this point, it is convenient to write Eq.~4.2! in components. Denoting byy the double

index hb ~again x5
de f

ja), defining ve
(j)(c) 5

de f

(hVe,y
(j)(c)w0,b

(h) and (DSew0,b
(h))(c)

5
de f

(xSe
x,y(c)w0,a

(j) , we get
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Se
x,y~he~c!!Ve,y

~r!~c!5Ve,x
~z!~S0c!Lzr~c!. ~4.3!

Now, defining the correctionsdL anddV as follows,

Ljh~c! 5
de f

l21djh1dLjh~c!, Ve,x
~j!~c! 5

de f

V0,x
~j!1dVx

~j!~c! with V0,h1
~j!

5dj,h , V0,h2
~j!

50,
~4.4!

we find that~4.3! is equivalent to

dLjr~c!5l21@dVj1
~r!

~c!2dVj1
~r!

~S0c!#1e f j1,r1
~he~c!!1e f j1,y~he~c!!dVy

~r!~c!

2dVj1
~z!

~S0c!dLzr~c!,

~4.5!

ldVj2
~r!

~c!2l21dVj2
~r!

~S0c!52e f j2,r1
~he~c!!2e f j2,y~he~c!!dVy

~r!~c!

1dVj2
~z!

~S0c!dLzr~c!.

Of course the above equations cannot determine completely the basis and its associated
indeed, given a solution$Vy

(r)(c)%, $Lzr(c)% of Eq. ~4.2! and a generic invertible Ho¨lder con-
tinuous matrixRgr(c), also$Vy

(g)(c)Rgr(c)%, $R21,zd(S0c)Ldg(c)Rgr(c)% solve~4.2!. Thus it
is possible to add a constraint todVy

(r)(c): a possible choice, which greatly simplifies the expre
sions above, consists in takingdVr1

(j)(c)50, so that~4.5! becomes

dLjr~c!5e f j1,r1
~he~c!!1e f j1,h2

~he~c!!dVh2
~r!

~c!,

~4.6!

ldVj2
~r!

~c!2l21dVj2
~r!

~S0c!52e f j2,r1
~he~c!!2e f j2,h2

~he~c!!dVh2
~r!

~c!

1dVj2
~z!

~S0c!dLzr~c!.

An implicit solution of ~4.6! ~to be inverted iteratively by a new tree expansion, see below! is

dLjr~c!5e f j1,r1
~he~c!!1e f j1,h2

~he~c!!dVh2
~r!

~c!,

~4.7!

dVj2
~r!

~c!5(
j >0

l2 j 11@e f j2,r1
~he~S0

2 jc!!1e f j2,h2
~he~S0

2 jc!!dVh2
~r!

~S0
2 jc!

2dVj2
~z!

~S0
2 j 11c!dLzr~S0

2 jc!#.

As for the construction of the conjugation, we can expand in power series ofe both sides of Eq.
~4.7! and equate the coefficients of the same order, thus finding an iterative solution ofdL (k) and
dV(k) . The first order coefficients are given by

dL ~1!
jr ~c!5 f j1,r1

~c!,

~4.8!

dVj2~1!
~r!

~c!5(
j >0

l2 j 11f j2,r1
~S0

2 jc!,

while, for k11>2,
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dL ~k11!
jr ~c!5 (

s>1,ki>1

k11¯1ks5k S f j1,r1x1 ,...,xs

s!
dh

~k1!

x1
¯dh

~ks!

xs D ~c!

1 (
s>1,ki>1

k11¯1ks5k S f j1,h2x2 ,...,xs

~s21!!
dVh2~k1!

~r! dh
~k2!

x2
¯dh

~ks!

xs D ~c! ~4.9!

and

dVj2~k11!
~r!

~c!5 (
s>1,ki>1

k11¯1ks5k

(
j >0

l2 j 11S f j2,r1x1,...,xs

s!
dh

~k1!

x1
¯dh

~ks!

xs D ~S0
2 jc!

1 (
s>1, ki>1

k11¯1ks5k

(
j >0

l2 j 11S f j2,h2x2,...,xs

~s21!!
dVh2~k1!

~r! dh
~k2!

x2
¯dh

~ks!

xs D ~S0
2 jc!

2 (
s>1,ki>1

k11¯1ks5k

(
j >0

l2 j 11S f z1,r1x2 ,...,xs

~s21!!
~dVj2~k1!

~z!
+S0!dh

~k2!

x2
¯dh

~ks!

xs D ~S0
2 jc!

2 (
s>2,ki>1

k11¯1ks5k

(
j >0

l2 j 11S f z1,h2x3 ,...,xs

~s22!!
~dVj2~k1!

~z!
+S0!dVh2~k2!

~r! dh
~k3!

x3
¯dh

~ks!

xs D
3~S0

2 jc!. ~4.10!

These two relations, together with~3.6!, allow a recursive construction ofdL anddV. Obviously,
repeating the discussion of Sec. III A, one finds thatdL anddV can be expressed as sums ov
trees, obtained by suitably modifying the construction of previous section. It can be easily re
that the estimates for the tree values are qualitatively the same as before@see Eqs.~3.11!–~3.13!#.
We point out the differences appearing in the tree expansion fordV:

~1! The nodes can be of four different types@corresponding to the four lines in Eq.~4.10!#, so that
the number of possible labels for a tree of orderk is larger than a factor 4k.

~2! The numberDv of derivatives acting on a node function can be eithersv or sv11 @see Eqs.
~4.9! and~4.10!#, so thatDv! differs from the combinatorial factorsv! by at mostsv11. Then
the final estimate contains a factor that can be bounded by (1/r 0)Pv(sv11)<ek/r 0 .

A similar discussion can be made for the tree expansion ofdL.
The result is thatL andV are analytic ine and Hölder continuous inc with exponent 0,b,1

in a discueu<eb8 , with eb8 smaller than the convergence radiuseb of he @see Eq.~3.14!#. Note that
also in this caseeb8 is independent ofN.

As already explained~see Sec. II B and in particular Eq.~2.7!#, in order to compute the SRB

measure we needLj5(logL)jj5
def

2logl1dLj, where

dLj~c!5@ log~ I 1ldL !#jj5(
s>1

~21!s11

s
lsdLjh1~c!¯dLhs21j~c! ~4.11!

~no summation onj is intended!. Expanding Eq.~4.11! in series ofe, we get

dL~k!
j ~c!5 (

s>1,ki>1

k11•••1ks5k
~21!s11

s
lsdL

~k1!

jh1~c!¯dL
~ks!

hs21j
~c!. ~4.12!
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Again, the last equation, together with~4.10! and ~3.6!, allows a recursive construction of th
coefficientsdL (k)

j and the result is thatLj is a sum over~suitably modified! trees. The bounds ar
still qualitatively the same, so thatLj is analytic w.r.t.e in a suitably small complex disc~inde-
pendent ofN! and Hölder continuous w.r.t.c.

V. SRB POTENTIALS

The next step towards the construction of the SRB measure and the proof of its anal
consists in the expansion ofLj in potentialsfX . From the analysis of previous sections it follow
that Lj, as well ashe

x , Vj2
(r) andLjh, can be expanded in convergent sums over tree values

will discuss here how to expandh in potentials, since the analogous expansion forV, L andL is
conceptually similar, just more involved due to the more complex structure of the trees.

We will proceed as follows. We first write the values of the trees in terms of the symb
variabless. We then decompose each of these values as a sum of terms only depending ons’s
on finite but arbitrary large sets. Finally, we define the associated potentials by collecting to
the contributions which depend on the sames’s. Our goal is to obtain potentials defined over s
with rather arbitrary shape but decaying exponentially with thetree distance@see after Eq.~2.8!
for a precise definition# of their support.

To begin with we expand the derivatives of the perturbation functionf via a telescopic sum
Given the digits s and s8P$1,...,n% we can always find a sequence of digitsS(s,s8)
5s1s2¯sa21 such that the sequencesS(s,s8)s8 is compatible, i.e., such thatCsi ,si 11

51 for i

50,...,a21, wheres05s andsa5s8. Choosing a sequenceŝP$1,...,n%C
Z once and for all, given

sP$1,...,n%C
Z we can define its restriction to timej, s j as follows: sj,t

j 5sj,t if utu< j , sj,t
j

5ŝj,t if utu. j 1a and the gap is filled with the sequence constructed above fors5sj,6 j and
s85ŝj,6( j 1a) . We can now define

f x,x1,...,xs~c0~s!!5 f x,x1,...,xs~c0~s0!!1(
j >1

@ f x,x1,...,xs~c0~s j !!2 f x,x1,...,xs~c0~s j 21!!#

5
de f

(
j >0

f
~ j !
x,x1,...,xs~snn~ j !~j!!, ~5.1!

wherej is the spatial coordinate associated tox andnn( j )(j)5nn(j)3I j , I j5@2 j , j #ùZ. Since
uc0(s j )2c0(s j 21)u<cl j for somec.0, f ( j )

x,x1,...,xs is bounded by

i f
~ j !
x,x1 ,...,xsi`<G

~s11!!

r 0
s11

cl j . ~5.2!

A. Decay of the potentials for the conjugation

Inserting expansion~5.1! in the definition of the value of a tree Eq.~3.8!, we find

Val̂~u,c0~s!!5 )
vPu

(
j v>0

~2a~v !!lpv1ra~v !

f
~ j v!

x~v !,x~v1!,...,x~vsv
!

sv!
~tp~v !snn~ j v!~j~v !!!, ~5.3!

where we recall thatra(v)5(11a(v))/2, p(v)5(w>va(v)(pv112ra(v)) and nn( j )(j)
5nn(j)3I j , I j5@2 j , j #ùZ. The above expression can be seen as a sum over the value
new kind of trees, identical to the ones described in Sec. III A, but with a new labelj vPN attached
to each node. LetTk(x) be the set of these new trees of orderk contributing todh(k)

x , i.e., u
PTk(x) is a tree withk branches andk nodes~the root is not a node! with the following labels
attached to the nodesvPu: j(v)PV, pvPN, j vPN anda(v)P$21,11%.

Given uPTk(x), its value is given by
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Val u~s!5 )
vPu

~2a~v !!lpv1ra~v !

f
~ j v!

x~v !,x~v1!,...,x~vsv
!

sv!
~tp~v !snn~ j v!~j~v !!!, ~5.4!

so that we have

dh~k!
x ~c0~s!!5 (

uPTk~x!
Val u~s! with iVal ui`<S ceG

lr 0
2 D k

)
vPu

l j v1pv11, ~5.5!

where we have used Eq.~5.2!. We can now define the supportX(u),V3Z of a treeuPTk(x), as
the support of the spin variables on which Valu depends in a nontrivial way, plus acenter~j,0!.
More precisely,

X~u! 5
de f

$~j,0!%ø ø
vP0

C~j~v !,p~v !, j v!,

where

C~j~v !,p~v !, j v! 5
de f

ø
hPnn~j~v !!

ø
u i u< j v

~h,p~v !1 i !. ~5.6!

namelyC(j,p, j ) is a cylinder centered in (j,p), with the spatial base equal to the set of near
neighbors ofj and with height equal to 2j . ThenX(u) is the union of~j,0! and of cylinders of this
kind, one for each nodev of the tree. The point~j,0! has the role of center ofX(u) and is added
to X(u) for later convenience@note in fact that Valu~s! could not depend ons (j,0)].

Given a setX,Zd11 we can partition it in a natural way as a union of timelike segme
More precisely, givenjPZd, let Tj5$(j,i )PZd11u i PZ%. The intersection betweenTj andX can
be uniquely partitioned as a union ofnj maximal connected segments. The collection of all th
segments forms a partition ofX in nX timelike segments$Ri(X)% i 51,...,nX

. Let nowr i be the center
of Ri(X). If Y is a subset ofZd11, we call tree distance ofY, dt(Y), the length of the minimal tree
connection of all the points ofY. Finally, let dc(X) be the tree distance of the set$r i% i 51,...,nX

.
From the previous bound on the value of a treeuPTk(x), Eq. ~5.5! can be interpreted as th

tree distance decay of the contribution of orderk to dh. Indeed,

ueukiVal ui`<S ceGueu1/2

lr 0
2 D kFldc~X~u!!ueunX~u!/2 )

i 51

nX~u!

l uRi ~X~u!!uG1/~2d11!

, ~5.7!

where we have the following.

~1! The factor ldc(X(u)) comes fromPvPul11pv; in fact pv is the displacement in the tim
direction of the cylinder associated to the nodev w.r.t. the one associated to the nodev8
immediately followingv, and 1 is their maximum displacement in spatial direction, so
(v(11pv)>dc(X(u)).

~2! We used thatnX<(2d11)k in order to boundueuk/2 with ueunX/2(2d11).
~3! The factorP i 51

nX(u)l uRi (X(u))u comes fromPvPul j v.
~4! The global power 1/(2d11) in ~5.7! comes from the size of the base of each cylinder, nam

we used the fact that the numbernX of segments is less than 2d11 times the number of
cylinders inX(u).

Collecting together all the treesu which have supportX(u)5X for a givenX, we get
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dhe
x~c0~s!!5 (

X{~j,0!
dhX

x ~sX! with dhX
x ~sX! 5

de f

(
k>1

ek (
uPTk~x!

X~u![X

Val u~s!. ~5.8!

So, using the bound~5.7! for ueu small enough,g051/2(2d11), k0522g0 logl, n05ueug0 and
a suitablec.0, we get

idhX
x i`<ce2k0dc~X!n0

nX)
i 51

nX

e2k0uRi ~X!u, ~5.9!

namelydhX
x decays exponentially with the tree distance ofX.

B. SRB potentials and their decay

Proceeding as above for the functionLj(c0(s)) we obtain that we can write it as

Lj~c0~s!! 5
de f

(
X,~VN3Z!

fX
~j,0!~sX!,

where by constructionfX
(j,0) is different from 0 only if (j,0)PX. The functionfX

(j,0) is again
given by a tree expansion analogous to that in Eq.~5.8!. Moreover, we will set

fX
~j, j !~sX! 5

de f

ft2 jX
~j,0!

~sX!.

We can define

fX~sX! 5
de f

(
~j, j !PX

fX
~j, j !~sX!,

so that we formally obtain Eq.~2.8!, namely, givenI T5@2T/2,T/2#ùZ ~T even! and callingL
5VN3I T ,

(
~j,i !PL

Lj~c0~t is!!2 (
XùLÞ0”

fX~sX!5O~]L!,

where]L is the boundary ofL and the correction can be exactly computed from the definiti
above.

Note the potentialfX(sX) is invariant under time and space translations~respectively for the
definition of fX

(j,i ) and for the periodic boundary conditions!, namely,

fX~sX!5frjt jX~sX! for any ~j, j !PVN3Z. ~5.10!

Moreover, it can be bounded by

ifXi`<ce2k1dc~X!n1
nX)

i 51

nX

e2k1uRi ~X!u, ~5.11!

for suitablec, g1 , k1.0 andn15ueug1.

VI. ANALYTICITY OF SRB MEASURE

In the previous sections, we wrote the SRB measure as a Gibbs measure with transla
invariant potentialsfX , decaying as in~5.11!, and with hard core interaction in time directio
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Moreover, the potentialfX is analytic ine in a small disc inC around the origin~independent of
N!. A well known technique to show analyticity of the Gibbs measure w.r.t.e is the so called
cluster expansion.

If L5VN3I T , with I T 5
de f

@2T/2,T/2#ùZ for some evenTPN, we call La5VN3I T12a .

Given aboundary conditions̄P$1,...,n%C
Zd11

, we define thepressure PL as

PL 5
de f

uLu21 log(
s

e2(XùLÞ0”fX~sX!, ~6.1!

where the sum is over all thes that coincide with sL on L, to s̄ on La
c and with

S(sj,T/2 ,s̄j,T/21a) in the space remaining. It is well known that the pressurePL can be consid-
ered as the generating functional for the Gibbs states. From its analyticity our main theore
follow easily, as we will see in Sec. VI D.

A. Decimation

In the presence of hard cores we cannot proceed in the standard way~Mayer’s expansion!,
since the standard proof~see Ref. 13! requires weakness of the original interactions. We c
overcome this obstacle by adecimation~see Ref. 7!, namely considering the statistical system
scales larger than the length of decorrelation of the hard core.

1. Decimated lattice LD

For eachjPVN , we divide the time intervalI T
j 5

de f

$j%3I T into an alternating sequence o
blocks, called ‘‘B-type’’ and ‘‘H-type,’’ Bj

(0) , Hj
(0) , Bj

(1) , Hj
(1) ,...,Bj

(,21) , Hj
(,21) , Bj

(,) , con-
taining a number of spins respectively equal tob51 andh5h0a21, with h0PN to be chosen
later. For this reason we choose the number of points inI T

j to be uI T
j u5,h0a11, namelyT

5,h0a.
Remark:The choiceb51 is special for the present case, in which the unperturbed potent

vanishing. In general one could treat with the same technique the case in which the unpe
potential is order one, with a sufficiently fast decay of the tails, and in that caseb should be chosen
suitably large~see Ref. 7!. Such a case arises, for instance, when the unperturbed system
product of nonlinear Anosov maps onT2, namely in the case treated in Appendix A. The pres
discussion could be easily adapted to cover that case.

Let bj
( i ) 5

de f

s (j,2T/21 ih0a) , jPVN , i 50,...,,, be the spin in the blockBj
( i ) and hj

( i )

5
de f

$s (j,p)%(j,p)PH
j
( i ), jPVN , i 50,...,,21, be the collection of spins belonging to the blockHj

( i ) ;

it will be regarded as a sequence ofh b spins:hj
( i )5(b1(hj

( i )),...,bh(hj
( i ))). The lattice obtained

considering theH andB blocks as points:

LD 5
de f

$Bj
~p! ,Hj

~q!%jPVN ,p50,...,,
q50,...,,21 ~6.2!

will be called thedecimated lattice; on LD the distances will be computed by thinking of it a
having its sites spaced by 1 also in the time direction.

If X,L, Y(X) will denote the corresponding subset inLD , namely the smaller subse
Y,LD such that the union of theB- and H-blocks in Y contains the setX. Defining

FY(bY ,hY) 5
de f

(X:Y(X)5YfX(sx) Eq. ~6.1! can be rewritten as
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PL5
1

uLu
log(

bL
(
hL

e2(Y,LD
FY~bY ,hY! )

jPV
)
i 50

,21

Z~bj
~ i ! ,hj

~ i ! ,bj
~ i 11!!,

where

Z~b,h,b8!5Cbb1~h!Cb1~h!b2~h!¯Cbh21~h!bh~h!Cbh~h!b8 . ~6.3!

Observe that, from Eq.~5.11!, if Y does not coincide with a singleH-block, FY satisfies a
qualitatively equivalent bound:

iFYi`<ce2k̃dc~Y!ñnY)
i 51

nY

e2k̃uRi ~Y!u, YÞHj
~ i ! , ~6.4!

for somec, k̃, g̃.0 andñ5ueu g̃. Whereas ifY5Hj
( i ) for somejPV and somei 50,...,,21, we

haveiFYi`<hñ.

2. Averaging over many degrees of freedom: The Perron –Frobenius theorem

Decimation is arenormalization grouptechnique, consisting in summing first on theH-type
spins, thus getting an effective statistical system for theB-blocks: the idea is that if theB-blocks
are sufficiently far apart, after the averaging of theh’s, theb’s should bealmost independent, as
if there were only small interactions among them. The technical tool we shall use to
rigorously that the effective interactions between theb’s are small is the Perron–Frobenius the
rem.

Let Z(b,b8) be defined, with a little abuse of notation, as

Z~b,b8! 5
de f

(
h

Z~b,h,b8!5C
bb8

ah0 . ~6.5!

Observe that 1<Css8
a <qa. Since Ca has strictly positive entries, we can apply the Perro

Frobenius theorem and obtain thatCa and its transposeCa,T admit a nondegenerate eigenval
l .0 with eigenvectorsp and p* , respectively, such thatps , ps* .0 for any s51,...,q, and
(sps* ps51. The eigenvaluel is maximal in the spectrum ofCa; namely, if we defineP as the
projection matrixPss85dss82psps8

* , we have

i~ l 21Ca!kPvi`<cae2akivi` , ~6.6!

for any vPRq and with

a 5
de f

2 log~12@min~Css9
a /Css8

a
!#2!>q22a. ~6.7!

As a consequence,

Z~b,b8!5C
bb8

ah0 5(
s

Cbs
ah0~pspb8

* 1Psb8!5 l h0pbpb8
* F11

~ l 2h0Cah0P!bb8

pbpb8
* G

5
de f

l h0pbpb8
* e2I ~b,b8!, ~6.8!

with I (b,b8)5O(e2h0q22a
). It is now clear that takingh0 big enough we can make the two bod

potentialI (b,b8) as small as needed.
Using Eq.~6.8!, introducing a new effective potentialW including the contributions fromF

and I, defining
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)
i 50

,

e2U~ i !~bj
~ i !

! 5
de f

)
i 50

,21

pb
j
~ i !pb

j
~ i 11!* ~6.9!

and using limL→`uLu21 logPj,i(b
j
(i)e2U(i)(bj

(i))50 ~as it follows from the normalization condition

(sps* ps51), we can rewritePL as

PL5
1

a
log l 1

1

uLu
log(

bL
(
hL

m~bL ,hL! )
Y,L̄

e2WY~bY ,hY!

with

m~bL ,hL! 5
de f

)
jPV

)
i 50

,
e2U~ i !~bj

~ i !
!

(bj
e2U~ i !~bj! )i 50

,21 Z~bj
~ i ! ,hj

~ i ! ,bj
~ i 11!!

Z~bj
~ i ! ,bj

~ i 11!!
, ~6.10!

wherem(bL ,hL) is a probability density. Observe that, if one choosesh0.2 log ñ @so that both
hñ and I (b,b8) are small#, the new interactionW satisfies a bound similar to the one ofF:

iWYi`<ce2k̄dc~Y!n̄nY)
i 51

nY

e2k̄uRi ~Y!u, ;Y,LD , ~6.11!

for somec, k̄, ḡ.0, n̄5ueu ḡ.

B. Mayer’s expansion and polymer lattice gas

We shall now expand the small potential appearing in the expression forPL , via a Mayer’s
expansion, obtaining the pressure fore50 plus a correction.

It will be convenient to collect together the contributions of the potentials whose sup
have the sameclosure, in the following sense: for a set formed by a unique pointHj

( i )PLD we

define itsclosureas (Hj
( i )) 5

de f

(Bj
( i ) ,Hj

( i ) ,Bj
( i 11)) while for a set formed by a unique pointBj

( i )

PLD we define(Bj
( i )) 5

de f

(Bj
( i )); finally for Y,LD we define its closure asȲ5

de f

øGPY(G).
We say that a collectionC5$Ym%m51

n of setsYi,Zd11 ~think of them asmolecules! is con-
nectedif, given a couple (Yin ,Yfin)PC3C, it is possible to find$Ymj

% j 51
p , such thatȲinùȲm1

Þ0”, Ȳmi
ùȲmi 11

Þ0” and Ȳmp
ùȲfinÞ0”.

Writing e2WY(bY ,hY) as the value fore50 plus the correction, namely 11(e2WY(bY ,hY)

21), expanding the product overY,LD and collecting together the connected components,
can rewrite Eq.~6.10! as

PL2
1

a
log l 5

1

uLu
log(

bL
(
hL

m~bL ,hL! (
G,LD

Y~G! )
gPG

r~gubg ,hg!, ~6.12!

where

~1! g is a subset ofLD , to be called in the followingpolymer~they are, indeed, the union of
connected collection of molecules!;

~2! G is a collection of polymers:G5(g1 ,...,gn), n>1 andG,LD means thatg,LD , ;gPG;
~3! Y~G! is the function equal to 1 ifgùg850” for everyg, g8PX with gÞg8 and 0 otherwise;
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~4! r(gubg ,hg), g,LD is defined as

r~gubg ,hg!5
def

(
q>1

1

q! (
Y1,...,Yq

øiȲi5g

*
)
i51

q

~e2WYi
~bYi

,hYi
!21!, ~6.13!

where the* on the sum means thatY1 ...,Yq is a connected collection of subsets ofLD ;
~5! the term corresponding toG50” must be interpreted as equal to 1.

The key observation is that, thanks to the above definition of closure, in~6.12! we can sum
overh spins before summing over theb spins. After doing this the measurem(bL ,hL) factorizes,
i.e.,

PL2
1

a
log l 5

1

uLu
log (

G,LD

Y~G! )
gPG

F(
bg

(
hg

m~bg ,hg!r~gubg ,hg!G
5
de f 1

uLu
log (

G,LD

Y~G! )
gPG

r~g!. ~6.14!

Namely, we have rewrittenPL as the pressure fore50 plus a correction having the form of th
pressure of a ‘‘polymer lattice gas,’’ with activitiesr~g! and hard core potentialsY~G!.

C. Cluster expansion and its convergence

A standard argument, exposed for instance in Ref. 13, 20, or 10, leads to

PL2
1

a
log l 5

1

uLu
log (

G,LD

Y~G!r~G!5
1

uLu (
G,LD

YT~G!r~G!, ~6.15!

whereYT is the Mayer function, defined as

YT~g1 ,...,gn! 5
de fH (

gPG~n!
)

~ i , j !Pg
f ~g i ,g j ! if n.1,

1 if n51,

~6.16!

whereG(n) is the set of connected graphs which can be drawn onn vertices labeled 1,...,n by
connecting with links couples of distinct vertices; the functionf (g i ,g j ) is equal to 1 ifg iùg j

Þ0” and 0 otherwise. By construction,YT(G) is different from zero only ifG is a connected
collection of polymers. Observe thatG could contain many copies of the sameg. More precisely,
hereG represents a function from the subsets ofLD to N @and we can thinkG~g! as representing
the number of copies ofg# such that(g,LD

G(g)<`.
A bound forr~g! can be obtained as follows:

ur~g!u<ir~gu•,• !i`< (
p>1

1

p! (
Yi ,ø i Ȳi5g

*
)
i 51

p

iWYi
i`eiWYi

i`. ~6.17!

Using the bound~6.11! ~and that, ifø i 51
p Ȳi5g, one has( i 51

p iWYi
i<cn̄ugu), we find

ur~g!u<ecn̄ugu (
p>1

1

p! (
Yi ,ø i Ȳi5g

*
)
i 51

p

ce2k̄dc~Yi !n̄nYi)
j 51

nYi

e2k̄uRj ~Yi !u. ~6.18!
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We can now use the connectedness constraint on the sum in order to extract a factor expon
small in the size ofg. Indeed, if ø i 51

p Ȳi5g, one has both( i 51
p dc(Yi)>dc(Yi) and ( i 51

p nYi

>ng . After extracting such a factor we can relax the constraints on the sum, so that

ur~g!u<cecn̄uguFe2~ k̄/2!dc~g!n̄ng/2)
i 51

ng

e2~ k̄/2!uRi ~g!uG
3 (

p>1

1

p! S (
Ȳ,g

e2~ k̄/2!dc~Y!n̄nY/2)
j 51

nY

e2~ k̄/2!uR~Y!u D p

. ~6.19!

It is easy to see that the last sum is bounded bycugun̄1/4, so that

ur~g!u<cecn̄uguFe2~ k̄/2!dc~g!n̄ng/2)
i 51

ng

e2~ k̄/2!uRi ~g!uG (
p>1

1

p!
~cugun̄1/4!p

<ce2k8dc~g!~n8!ng)
i 51

ng

e2k8uRi ~g!u, ~6.20!

for somec, k8, g8.0 andn85ueug8. Using the preceding bound we can easily prove that

sup
xPZd11

(
d~g!>r

g{x

ur~g!u<c~n8!1/2e2~k8/2!r , ~6.21!

whered~g! is the diameter of the polymerg. A standard theorem, proved for instance in Refs.
and 10, states that, ifr~g! satisfies~6.21!, then

sup
xPLD

(
d~G!>r

G{x

YT~G!ur~G!u<c~n8!1/4e2~k8/4!r . ~6.22!

This implies that, varyingL, PL is a uniformly convergent sequence of analytic functions in
domain independent fromL. The limit, still analytic in the same domain~thanks to Vitali’s
convergence theorem!, is independent of the way the thermodynamic limit is performed~i.e., one
can send the time side ofL to ` either before the spatial side is sent to` or together with it!,
thanks to the exponentially fast convergence of the sequence, implied by~6.22!. For the same
reason, the limit is also independent of the choice of boundary conditions and, because o
lational invariance, it is equal to

P5
de f

lim
uLu→`

PL5
1

a
log l 1

2

h0a (
G,Zd11

G{~0,0!
YT~G!r~G!

uGu
, ~6.23!

whereuGu 5
de f

uøgPGgu and 2/(h0a)5 limuLu→`uLDu/uLu.

D. Analyticity of the mean values

The analyticity for the mean value of an analytic local observableO(cV) ~depending on the
variables in the finite setV,Zd) is an easy corollary of the previous result.

We first observe thatmSRB(O)5 limN,T→`(1/uVNuuI Tu)( (j,i )P(VN3I T)m
SRB(O+rj+Se

i ). This is
true thanks to the time and space translation invariance ofmSRB. Moreover, it is possible to
decomposeO as
                                                                                                                



.

to the
s and

mic is
e

3302 J. Math. Phys., Vol. 45, No. 8, August 2004 Bonetto, Falco, and Giuliani

                    
O~he~c0~s!!V!5 (
Xù~V3$0%!50”

OX
~0,0!~sX!.

This can be done expandingO(he) in power ofc, using the representation ofhe given in Secs. III
and V and collecting the terms with the same support. Moreover, we will set

OX
~j, j !~sX! 5

de f

Or2jt2 jX
~0,0!

~sX!

and

OX~sX! 5
de f

(
~j, j !

rjV3$ j %ùXÞ0”

OX
~j, j !~sX!.

It is easy to realize thatOX is invariant under space and time translations, and satisfies

iOXi`<cVnnXe2kdc~X!)
i 51

nX

e2kuRi ~X!u, ~6.24!

for somek, g.0, n5ueug and some constantcV.0 which depends on the size ofV. SettingL
5VN3I T , the thermodynamic limit of the mean value ofO(cV) can be written as

mSRB~O!5 lim
L→`

1

uLu
]z log

(sL
e2(XùLÞ0” @fX~sX!2zOX~sX!#

(sL
e2(XùLÞ0”fX~sX! U

z50

5
de f

]zPO~z!. ~6.25!

Via a new cluster expansion we find

mSRB~O!5 lim
L→`

1

uLu
]z (

GùLDÞ0”
YT~G!~rz~G!2r~G!!uz50 , ~6.26!

whererz(g) are the activities corresponding to the potentialfX2zOX . For uzu small enough, the
potentialfX2zOX satisfies the same bounds offX so that(GùLDÞ0”Y

T(G)(rz(G)2r(G)) is a
uniformly convergent sequence of functions, analytic ine andz in the product of two small discs
This implies thatmSRB(O) is analytic ine and given by

mSRB~O!5
2

h0a (
G,Zd11

G{~0,0!
YT~G!

uGu
]z~rz~G!2r~G!!uz50 . ~6.27!
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APPENDIX A: UNPERTURBED NONLINEAR DYNAMICS

The result about analyticity can be extended to the case in which the unperturbed dyna
made up of independentnonlinearanalytic Anosov systemss0 : T2→T2. We suppose that ther
exist v6(c) andl6(c) such that

~Ds0v1!~f!5l1~f!v1~s0~f!!, ~Ds0v2!~f!5l2~f!v2~s0~f!!, ~A1!
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with fPT2, v6(f) andl6(f) are Hölder continuous andul1(f)u21, ul2(f)u<l,1. Then we
consider again a perturbationf (c) on TN analytic in c. Observe, however, that in this case t

most naive example of perturbation,f (c) 5
de f

f 1(c)v1(c), with f 1(c) analytic, isno longeran
analytic perturbation.

1. Conjugation

The constitutive equation fordhe , lifted on R2VN, is

S0~he~c!!1e f ~he~c!!5S0~c!1dhe~S0~c!!. ~A2!

In order to exploit the hyperbolicity, it is convenient to arrange the terms as follows:

~DS0dhe!~c!2dhe~S0~c!!52e f ~c1dhe~c!!2@S0~he~c!!2S0~c!2~DS0dhe!~c!#.
~A3!

Define

f ,x1,...,xs~c! 5
de f ]s

]z1 ,...,]zs
f ~c1z1w0,a1

~j1!
~c!1¯1zsw0,as

~js!
~c!!uz15¯5zs50 ,

whereas

f x1,...,xs~c! 5
de f

(
x

f x,x1,...,xs~c!w0,a
~j! ~S0~c!! and S0

x1,...,xs~c! 5
de f

(
x

S0
x,x1,...,xs~c!w0,a

~j! ~S0~c!!.

Writing dhe(c) 5
de f

(xdhe
x(c)w0,a

(j) (c), and (DS0w0,a
(j) )(c) 5

de f

(yS0
y,x(c)w0,b

(h)(S0(c)), with S0
y,x(c)

5la(cj)dx,y , we get

ladhe
x~c!2dhe

x~S0~c!!52e(
s>0

S f x,x1,...,xs

s!
dhe

x1
¯dhe

xsD ~c!2(
s>2

S S0
x,x1,...,xs

s!
dhe

x1
¯dhe

xsD ~c!.

~A4!

Finally, the recursive equation for the Taylor coefficients ofdhe
j1

(c) is

dh~k11!
j1

~c!52 (
p>0

S )
m50

p

l1
21~s0

m~cj!!D (
s>0

(
k11¯1ks5k

ki>1

S f j1,x1,...,xs

s!
dh

~k1!

x1
¯dh

~ks!

xs D ~S0
p~c!!

1 (
p>0

S )
m50

p

l1
21~s0

m~cj!!D (
s>2

(
k11¯1ks5k11

ki>1

S S0
j1,x1,...,xs

s!
dh

~k1!

x1
¯dh

~ks!

xs D
3~S0

p~c!!. ~A5!

A similar equation holds forx5j2.
From now on, the construction of the conjugation function goes on as in the linear case

similar considerations. We have only to take in account the fact that a tree of orderk ~w.r.t. e! does
not necessarily havek branches, because of the term on the last line of~1.5! ~to be called a vertex
of type 0!. Since the number of lines entering a vertex of type 0 is>2, one can easily prove tha
the numberbk of branches of a tree of orderk is bounded byk<bk<2k21, so that nothing
qualitatively changes in the bounds and the proof of analyticity ofdhe proceed as in Secs. III an
VI.
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2. Unstable direction

The perturbed unstable direction in the pointhe(c) is given by the equation

~DSewe,1
~j! !~he~c!!5we,1

~h! ~he~S0~c!!!Lhj~c!. ~A6!

Setting we,1
(j) (he(c)) 5

de f

ve
(j)(c), it is convenient to rearrange the terms of the equation in

following way:

~DS0ve
~j!!~c!2l1~cj!ve

~j!~S0~c!!5dLhj~c!ve
~h!~S0~c!!2e~D f !~he~c!!ve

~j!~c!

2@DS0~he~c!!2DS0~c!#ve
~j!~c!. ~A7!

Defining ve
(h)(c)5(xVe,x

(h)(c)w0,a
(j) (c), and using again the considerations of Sec. IV, we fina

get

la~cr!Ve,x
~r!~c!2l1~cr!Ve,x

~r!~S0~c!!51dLzr~c!Ve,x
~z!~S0~c!!

2e(
s>0

S f x,yx1,...,xs

s!
Ve,y

~r!dhe
x1
¯dhe

xsD ~c!

2(
s>1

S S0
xy,x1 ,...,xs

s!
Ve,y

~r!dhe
x1
¯dhe

xsD ~c!

@with (DS0
x1 ...xswa

(j))(c) 5
de f

S0
xy,x1 ,...,xs(c)wb

(h)(S0c)]. Again, because of the third term on the r.h
of Eq. ~A7!, the number of branches of a tree appearing in the construction ofdV and dL is
greater~in general! than the order of the tree itself. This is not a problem, since one can e
realize that, again, the numberbk of branches of a tree of orderk is such thatk<bk<2k.

3. SRB interactions

Following the proof in Sec. IV and, proceeding as in Secs. V and VI, one proves analy
of the SRB distribution. In fact, the only~slight! difference in the construction of SRB potentia
is in the telescopic cutting necessary to representh, L, V andL as sums of local functions of spi
variables. Notice that now each tree node is associated to the product of a node functionf v(c)
@e.g., in the case of a tree contributing todh, f v can be a derivative off or a derivative ofS0 , see
~A5!# times a product of local Lyapunov exponents, like the factorPm50

p l1
21(s0

m(cj))

5
de f

U1(p,s0
p(v)(cj)) in ~A5!; the analogous expression appearing in a vertex witha(v)52 will

be denoted byU2(p,s0
p(v)cj). So the total node function associated to a vertexv will now be of

the form

Fv~p~v !,S0
p~v !~c!! 5

de f

Ua~v !~p~v !,s0
p~v !~cjv

!! f v~S0
p~v !~c!!, ~A8!

wherev8 is the vertex immediately followingv. The telescopic expansion~5.1! has to be done
separatelyfor each of the factors in the above equation@l~c! is Hölder continuous#, getting in the
end potentials with the same kind of decay rate. The bounds are not qualitatively changed a
subsequent analysis of Sec. V follows so that, by suitably modifying the decimation proce
analyticity of SRB measure can be proved. We point out that a main difference in the pro
convergence of the cluster expansion is that now the unperturbed potentials are not vanish
have support only on timelike segmentsI ,Z, and are exponentially decaying with the diameter
I. For this reason one cannot proceed exactly as in Sec. VI. The standard way to treat this p
~see Ref. 7!, is to choose a lengthr such that the unperturbed interactions on setsI, diam(I )
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.r , are small enough for the cluster expansion. Then one fixes the size of theB-blocksb5r , and
the size of theH-blocks, h, such that the Perron–Frobenius theorem is true for thereduced
partition function Zr(bj

(p) ,hj
(p) ,bj

(p11)), in which only the interaction on set
I ,(Bj

(p)øHj
(p)øBj

(p11)), diam(I )<r , are taken in account.

APPENDIX B: GREEN–KUBO FORMULA AND LARGE DEVIATION

In this section we deal with an application. We introduce thelocal phase space contractio
rate9 on a volumeV0,VN averaged on a timeT0 , given by

hL0
~c! 5

de f 1

uL0u (
j PI T0

logudet~DSe!V0
~Se

j ~c!!u, ~B1!

with L05V03I 0 and I 0 5
de f

@2T0/2,T0/2#ùZ. We prove a Green–Kubo formula forhL0
, from

which it will come out that generically its mean valueh1 is strictly negative. Furthermore, we ca
show the large fluctuations ofhL0

aroundh1 satisfy a large deviation principle, namely they a
asymptotically described by a strictly convexfree energy functional F(h): it can be obtained as
the Legendre transform of the generating functionalP(z)5PhL0

(z) @see Eq.~6.25!#.

For the rest of the Appendix the SRB interaction will be called$fX
1%X,Zd11, to remind that

they are derived from the unstable restriction ofDSe .
Theorem B1: Given Se such thath1,0,

(1) P(z) is analytic and strictly convex inz, for ueu,e0 , uzu<1, with e0 small enough; and
(2) the Green–Kubo formula is valid:

]e
2P8~0!ue5052 1

2]e
2P9~0!ue50 . ~B2!

Theorem B2: Given Se such thath1,0,

(1) the free energy F(h) is analytic inh, for ueu,e0 , and hP@P8(21),P8(1)#;
(2) if @a,b#,@P8(21),P8(1)#, then

lim
uL0u→`

1

uL0u
logmSRB~hL0

P@a,b# !5 max
hP@a,b#

2DF~h,h1!, ~B3!

with DF(h,h1) 5
de f

F(h)2F(h1).

1. Local phase space contraction rate

Repeating the construction of SRB potentials leading to~B8!, we set

hL0
~he~c0~s!!! 5

de f 1

uL0u (
X,Zd11

XùL0Þ0

fX~sX!, ~B4!

for a suitable potentialfX , satisfying

ifXi`<ce2kdc~X!nnX)
i 51

nX

e2kuRi ~X!u, ~B5!

for somec, k, g.0 andn5ueug. From the invariance under time translations of the SRB meas
we have
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h1 5
de f

lim
uV0u→`

1

uV0u
mSRB~ logudet~DSe!V0

u!5 lim
uL0u→`

mSRB~hL0
!5 lim

uL0u→`

1

uL0u (
XùL0Þ0

mSRB~fX!

5 lim
uL0u→`

lim
uLu→`

1

uL0u
]z log

(sL
e2(XùLÞ0”fX

1
~sX!1z(XùL0Þ0”fX~sX!

(sL
e2(XùLÞ0”fX

1
~sX! U

z50

. ~B6!

It is easy to show the last expression is equal to the one with the summations overXùLÞ0” and
XùL0Þ0” replaced byX,L0 and without the limit inL ~since the correction is only a borde
effect; or simply using again the cluster expansion developed in Sec. VI D!. In this way, defining
the generating function P(z) as

P~z! 5
de f

lim
uLu→`

1

uLu
log

(sL
e2(X,L~fX

1
2zfX!~sX!

(sL
e2(X,LfX

1
~sX!

, ~B7!

we finally get

h15P8~0!. ~B8!

Analyticity is achieved by cluster expansion@we do not needz small, but we can take, say,uzu<1,
since$fX%X areO(e)].

2. Green–Kubo formula

Consider the case in whichs0 is the Arnold’s cat map defined by~A1!.
Using the definition of pressure~B7! and the fast convergence properties of the cluster

pansion ofP(z), we find

P~z!5 lim
uLu→`

1

uLu
log

mN,0
SRB~e2( j PI T

logudetL+S0
j u1z( j PI T

logudetDSe+he+S0
j u!

mN,0
SRB~e2( j PI T

logudetL+S0
j u!

, ~B9!

where
~1! the matrixL5L+he was introduced in Sec. II B above;
~2! mN,0

SRB is the unperturbed SRB measure: ifO~c! is a local Hölder continuous observable,
is defined as

mN,0
SRB~O!5 lim

uLu→`

(sL
O~c0~sLuŝLc!!

(sL
1

, ~B10!

and, independently of the boundary conditions, it is equal to the Lebesgue measure.
Defining Uz as

Uz5 logudetLu2z logudetS0
21+DSe+heu, ~B11!

and using thatmN,0
SRB is the Lebesgue measure onTN , we find

P~z!5 lim
uLu→`

1

uLu
log

* dce2( j PI T
Uz~S0

j c!

* dce2( j PI T
U0~S0

j c!
, ~B12!

so thatP8(0) is equal to
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P8~0!5 lim
uLu→`

1

uLu (
j PI T

E dc logudetS0
21DSe~he~S0

j c!!ue2( j PI T
U0~S0

j c!

E dce2( j PI T
U0~S0

j c!

. ~B13!

SinceP8(0)ue50 is trivially50, we can try to see if]eP8(0)ue50 is different from zero@if it were,
P8(0) would be different from zero foreÞ0 small enough#. Recalling thatf (c) is the perturbing
function andf j(c) is its projection on thejth site, we get

]eP8~0!ue505 lim
uLu→`

1

uLu (
j PI T

E dc

~2p!2uVNu
Tr@S0

21D f ~S0
j c!#

5 lim
uLu→`

1

uLu (
j PI T

(
a56
jPVN

E dc

~2p!2uVNu
la f ja,ja

~S0
j c!. ~B14!

Sincef is periodic we have]eP8(0)ue5050.
A straightforward calculation shows that

1

2
]e

2P8~0!ue505 lim
uLu→`

1

uLu (
j PI T

E dc

~2p!2uVNu H Tr@S0
21D2f ~S0

j c!dh~1!~S0
j c!#

2
1

2
Tr@~S0

21D f ~S0
j c!!2#2 (

j 8PI T

Tr~S0
21D f ~S0

j c!!Tr~u!~S0
21D f ~S0

j 8c!!J ,

~B15!

where Tr(u) is the trace restricted to the~unperturbed! unstable manifold. The preceding expressi
can be rewritten in a more convenient way. Using the explicit expression ofdh(1) , Eq. ~3.5!, and
definingA05øjPnn(0)nn(j), we find that the first term in Eq.~2.15! is equal to

(
a i56

uju<1

(
p>0

E dcA0

~2p!2uA0u
la1f 0a1,0a1ja2~c!~2a2!lp1ra2f ja2~S

0

a2~p112ra2
!
c!

5 (
a i56

uju<1

(
p>0

E dcA0

~2p!2uA0u
la1f 0a1,0a1~c!a2la2f ja2,ja2~S

0

a2~p112ra2
!
c!. ~B16!

Integrating by parts, we see that the sum of the second and third terms in Eq.~2.15! is equal to

2
1

2 (
a i56

uju<1

E dcA0

~2p!2uA0u
la1f 0a1,0a1~c!Fla2f ja2,ja2~c!1l (

pPZ
f j1,j1

~S0
pc!G . ~B17!

Combining the three contributions, we finally find
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]e
2P8~0!ue5052 (

a i56

uju<1

(
pPZ

E dcA0

~2p!2uA0u
la1f 0a1,0a1~c!la2f ja2,ja2~S0

pc!

52 lim
uLu→`

1

uLu E dc

~2p!2uVNu S (
j PI T

Tr@S0
21D f ~S0

j c!# D 2

52
1

2
]e

2P9~0!ue50 ,

~B18!

that is the expected Green–Kubo relation~see Ref. 14!.
From Eqs.~2.18! and~2.8!, we see that, fore small enough,h1 is negative and, generically

strictly negative@the condition forf to begenericis just that the first line in Eq.~2.18! is different
from 0#.

Let us now compute Eq.~2.18! in a special case, essentially the simplest possible. Let

f j1
~c!5 (

hPnn~j!
sin~cj

12ch
1 !, f j2

~c!50. ~B19!

Substituting such choice in Eq.~2.18!, we find

]e
2P8~0!ue50522 (

uju51
E dc0

~2p!2

dcj

~2p!2
l2 cos2~c0

12cj
1!~v1•ê1!252

2d

11l22
, ~B20!

whereê15(1,0) and we used thatv15(1/A11l2,2l/A11l2).
So, choosingePR small enough and different from zero,h15P8(0)52@d/(11l22)#e2

1O(e3),0. Furthermore, ifzPR has modulus smaller than 1,P(z) is strictly convex@since
1/2P9(0)52P8(0).0 andP(z) is analytic foruzu<1 ande small enough#.

3. Large deviations

In the present section we shall prove a large deviations property forhL0
. We will follow the

classical strategy set up in Refs. 22 and 12~in particular we will refer to the formulas in Sec. 5 o
the latter!. The proof below will hold in the caseh1,0, namely in the generic case or, to b
definite, in the case the perturbation is chosen as in Eq.~B19!.

Thanks to the convexity ofP(z), given hP@P8(21),P8(1)#, there exists a unique poin
Z(h)P@21,1# such thatP8(Z(h))[h; considering such a pointh and its neighbor of radiusd,
I d(h), such thatI d(h),@P8(21),P8(1)#, from the ‘‘large deviation property III’’, Sec. 5 of Ref
12, we get

mSRB~h1PI d~h!!5O~1!eO~duL0u!eO~ u]L0u! exp$@P~Z~h!!2P~0!2Z~h!h#uL0u%. ~B21!

In our caseP(0)50. Still for hP@P8(21),P8(1)#, we define the free energyF(h) as the
Laplace transform of the generating functionP(z):

F~h! 5
de f

max
z

$zh2P~z!%5Z~h!h2P~Z~h!!; ~B22!

therefore, forI d(h),@P8(21),P8(1)#,

mSRB~h1PI d~h!!5O~1!eO~duL0u!eO~ u]L0u! exp$2uL0uDF~h,h1!%; ~B23!

whereDF(h,h1) 5
de f

F(h)2F(h1) @indeedF(h1)52P(0)50].
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Finally, if @a,b#,@P8(21),P8(1)#, it is suitable to takedL0
5uL0u2b, 0,b,1, and divide

the interval @a,b# in ub2auuL0ub identical disjoint subintervals centered inhn 5
de f

a1(n
21/2)dL0

. We find

mSRB~hL0
P@a,b# !5 (

n51

ub2auuL0ub

mSRB~h1PI dL0
~hn!!

5O~1!uL0ubeO~ uL0u12b!eO~ u]L0u! exp{uL0u max
hP@a,b#

@2DF~h,h1!#},

~B24!

namely the result in the second theorem.
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We study a~quenched! random-field quantum model of an anharmonic crystal for
displacive structural phase transitions in spherical approximation: the random-field
quantum spherical~ferroelectric! model. For stationary ergodic random fields its
behavior depends on the quantum parameter of the model and on the expectation
and covariance of the field. If quantum fluctuations are small enough not to destroy
the phase transition, then it can be suppressed when the field fluctuations are large.
For the field of independent identically distributed random variables and the short-
range interaction we obtain that thelower critical dimensionalitydl54 (dl52 for
the zero-field! and that it decreases for long-range interactions. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1769103#

I. INTRODUCTION

References 19 and 20 started a rigorous study of quantum critical fluctuations in the qu
spherical ferroelectric model, known also as the quantum anharmonic crystal model in sp
approximation, see, e.g., Ref. 6. Further examination of the displacive structural~or the ferroelec-
tric! phase transition and the critical behavior of this model shows that the quantum fluctu
are dependent not only on details of the interaction but also on small perturbations~such as an
external field! breaking the symmetry of the model.21,9

The aim of the present note is to consider the quantum spherical ferroelectric mod
quenched external random fields conjugate to particles displacements from equilibria. Sin
paper of Ref. 11, it is known that the presence of randomness leads to some new feature
phase transition in the classical spherical model.

In this paper we show that the simultaneous presence of quantum and external rando
fluctuations makes the critical behavior of the random field quantum spherical ferroelectric m
rather nontrivial.

In Sec. II we formulate our model and the main Theorem 2.1. There we also discus
properties of the displacive phase transition as a function of the model parameters. We sho
the randomness acts in the same direction as quantum fluctuations, i.e., it has a tend
suppress the order parameter and the phase transition. For example, in the simplest cas
random field of independent identically distributed variables and of a short-range harmonic
action the lower critical dimensionality isd54, instead ofd53 for the model without the random
field. The proof of the main Theorem 2.1 is given in Sec. III. Some concluding remarks
collected in Sec. IV.

II. MODEL AND MAIN THEOREM

Let Zd be a d-dimensional hypercubic lattice. With each lattice sitel PZd occupied by a
particle of massm, we associate a position and momentum operatorsQlPR1 and Pl5(\/ i )

a!Electronic mail: Christin.Gruber@epfl.ch
b!Electronic mail: Valentin.Zagrebnov@cpt.univ-mrs.fr
33100022-2488/2004/45(8)/3310/12/$22.00 © 2004 American Institute of Physics
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3(]/]Ql) corresponding~for simplicity! to one-dimensional particle displacements at this site. T
case ofQlPRn,n>1, involves more symmetry, but essentially it is very similar ton51, see, e.g.,
Refs. 4, 5, or 6.

Let L,Zd be a finite rectangular subset wrapped according to the periodic boundary c
tions:

Lª$ l PZd:2Na/2, l a<Na/2 , a51,2,...,d%, ~2.1!

where we suppose$Na%a51
d to be even. ThenVªuLu5N1N2¯Nd , andL* be the lattice dual to

L:

L*ª$kPRd:ka52pna /Na ,a51,2,...,d, and$na%a51
d PL%. ~2.2!

The local Hamiltonian of the quantum spherical model in the external random field that we
in this paper is given by the operator

HL~hv!5 (
l PL

Pl
2

2m
1

1

4 (
l ,l 8PL

f l ,l 8
L

~Ql2Ql 8!
21

a

2 (
l PL

Ql
21VWS 1

V (
l PL

Ql
2D 2 (

l PL
hl

vQl ,

~2.3!

with domain in the Hilbert spaceL2(RL). The first term in~2.3! corresponds to the kinetic-energ
operator of displacements. The second term represents a harmonic interaction between p
which are in turn confined by the local harmonic potential witha>0 described by the third term

We suppose that the harmonic interaction matrix$f l ,l 85f l 2 l 8% l ,l 8PZd is positive-definite and
translation-invariant. Then for anyL the matrix$f l ,l 8

L % l ,l 8PLª$f l 2 l 8
per % l ,l 8PL is a restriction toL of

periodically extended@according to the boundary conditions~2.1!# matrix $f l 2 l 8% l ,l 8PZd, which
we denoted by$f l 2 l 8

per % l ,l 8PZd. Therefore, by construction the matrix$f l ,l 8
L % l ,l 8PL is positive-

definite and translation-invariant.
The first two terms of the Hamiltonian~2.3! correspond to the one-component Deb

phonons, whereas the third term creates a gap in the phonon spectrum, ifa.0. The fourth term in
~2.3! represents a one-site lattice nonpolynomial anharmonic potential in the~mean! spherical
approximation,18,19 known also as the choquard self-consistent phonons approximation.2,6–8 One
can model this anharmonicity byW:R1

1 →R1
1 , monotonous decreasing to a zero function with

bounded positive second derivativeW9.0, see Refs. 18–20. The last term in~2.3! describes the
interaction between particles in positions$Ql% l PZd and the external random field$hl

v% l PZdPRZd
,

wherevPV, and~V,F,P! is a corresponding probability space.
We denote by

f L@HL~hv!#ª2~bV!21 ln TrL2(RL) exp$2bHL~hv!%, ~2.4!

the free-energy density associated with the Hamiltonian~2.3!, whereb5(kBT)21 and T is the
temperature. The main result of the present paper is the following statement:

Theorem 2.1:Let W:R1
1 →R1

1 , be a monotonous decreasing to zero function with a boun

positive second derivative W9.0. If the stationary random field hvª$hl
v% l PZdPRZd

on the prob-
ability space~V,F,P! is metrically transitive (ergodic), then the thermodynamic limit (herelimL

stays forL↑Zd):

f ~b,hv!ª lim
L

f L@HL~hv!# ~2.5!

of the free-energy (2.4) exists forP-almost allvPV and it has the following properties:

~a! The limit f(b,hv)5..f (b,h) is P-almost surely~a.s.! nonrandom;
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~b! It coincides with the limiting free-energy density for the approximating Hamiltonian:

HL~c,hv!ª(
lPL

Pl
2

2m
1

1

4 (
l,l8PL

fl,l8~Ql2Ql8!
21

a

2 (
lPL

Ql
21W8~c!(

lPL
Ql

22(
lPL

hl
vQl

1V@W~c!2cW8~c!#, ~2.6!
in the sense that

f~b,hv!5a.s.2 sup
c>c*

lim
L

E~ f L@HL~c,hv!#!. ~2.7!

Here E~•! is the expectation with respect to the probabilityP and c* is defined by

c*ª inf
c>0

$c:a12W8~c!>0%. ~2.8!

Remark 2.2: Since the approximating Hamiltonian (2.6) is harmonic, the corresponding
energy density is known explicitly for anyL and c>c* :

f L@HL~c,hv!#5
1

bV (
qPL*

lnF2 sinh
blVq~c!

2 G2
1

2V (
qPL*

uhL
v~q!u2

Vq
2~c!

1@W~c!2cW8~c!#.

~2.9!

Here

Vq~c!5~D~c!1vq
2!1/2, qPL* ~2.10!

is the q-mode frequency of the harmonic (self-consistent) phonons of Hamiltonian (2.6), wit
non-negative gap:

D~c!ªa12W8~c!>0, ~2.11!

for c>c* . The Debye phonons frequencies are defined by

vq
25f̃~0!2f̃~q!, qPL* , ~2.12!

where

f̃~q!5 (
l PZd

f l ,0 exp~2 iql !, ~2.13!

and similarly

hL
v~q!ª

1

V1/2 (
l PL

hl
v exp~2 iql !. ~2.14!

The quantum parameter of the modell is

l5
\

Am
. ~2.15!

The Proof of Theorem 2.1 is given in the next section. We conclude this section by some
tional remarks concerning the properties of our model~2.3!.

Remark 2.3: The simplest stationary ergodic random field$hl
v% l PZdPRZd

corresponds to
independent identically distributed random variables (i.i.d.r.v.) on the latticeZd. Since this ran-
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dom field enters in Hamiltonians (2.3), (2.6) as an additive term, the standard self-aver
arguments (see, e.g., Refs. 10–12) for the thermodynamic limit of the free-energy density give

a.s.2 lim
L

f L@HL~hv!#5 lim
L

Ef L@HL~hv!# ~2.16!

and similarly

a.s.2 lim
L

f L@HL~c,hv!#5 lim
L

Ef L@HL~c,hv!#. ~2.17!

Corollary 2.4: Let $hl
v% l PZd be i.i.d.r.v. with expectationE(hl

v)5h and with variance
var(hl

v)5s2. Then the covariancecov(hl
v ,hl 8

v )ªE((hl
v2h)(hl 8

v
2h))5s2d l ,l 8 and for any k

PL* one gets

E~ uhL
v~k!u2!5

1

V (
l ,l 8PL

E~hl
vhl 8

v
!e2 ikleikl 85s21Vh2dk,0 . ~2.18!

Then by Theorem 2.1 and by the explicit expressions (2.9), (2.18) we obtain

f ~b,h!5 sup
c>c*

f ~b,h,s2;c!, ~2.19!

where

f ~b,h,s2;c!ª
1

~2p!db E
Bd

ddq lnF2 sinh
blVq~c!

2 G2
h2

2D~c!
2

1

~2p!d EBd

ddq
s2

2Vq~c!2

1@W~c!2cW8~c!#, ~2.20!

and Bdª(2p,p#d denotes the first Brillouin zone.
Therefore, ifhÞ0, then by virtue of~2.7! and~2.19!, ~2.20! the value of the trial parameterc

is given by the equation

c5
h2

D~c!2 1
1

~2p!d EBd

ddq
s2

Vq~c!4 1I d~c,b,l!, ~2.21!

where

I d~c,b,l!ª
l

~2p!d EBd

ddq
1

2Vq~c!
coth

blVq~c!

2
. ~2.22!

Corollary 2.5: Our conditions on the monotone convex function W(c)>0 ~see Theorem 2.1
imply that derivative W8(c)<0 is a monotone increasing function bounded by zero. If (a prio
phonon spectrum has a gap a.0 [see (2.3), (2.6), (2.8)], we distinguish two cases:
~A! D(c50)>0, i.e., c* 50;
~B! D(c50),0, i.e., c* .0.
In the case~A! for any values of the parametersb, h, s, l the right-hand side of Eq. (2.21) i
strictly positive and decreasing in cP(0,1`). Hence, this equation always has a unique posit
solution ĉ(b,h,s,l).0, which is a smooth function of those parameters. Therefore, therm
namic properties of the system are regular, and there are no phase transitions.

In the case~B! we may have a displacive phase transition. Denote by c*ªc* (a) a unique
root of equation a12W8(c)50, cf. (2.8). By monotonicity of W8(c) it exists and we have: c*
.0 with a12W8(c)>0 for c>c* . Notice that for hÞ0 the solution of Eq. (2.21): ĉ(b,h
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Þ0,s,l).c* , and it is still a smooth function of the rest of parameters. This rules out ph
transitions if the external field has a nonzero expectation. Thus, we may have a phase trans
the case~B! only when h50.

Notice that in the case~B! with h50 one has to distinguish two possibilities:s50 ands
Þ0. The first one means that the external field is simply absent, whereas the second one
sponds to a random field with nondegenerate distribution.
~B1! Let h50 and s50. Sincec* .0, there exists a critical valuelcªlc(c* ), of the quantum
parameter, defined by Eq.~2.21! at zero temperature:

c* 5 lim
b→`

I d~c* ,b,lc!, ~2.23!

see Fig. 1. By monotonicity ofI d(c* ,b,l) in b and l one gets thatI d(c* ,b,l)>c* for all b
<` andl>lc . SinceI d(c,b,l) is monotonous decreasing function ofc>c* , Eq. ~2.21! for h
50, s50:

c5I d~c,b,l!, ~2.24!

has a unique solutionĉ(b,h50,s50,l).c* for anyl>lc , Figs. 1~a!, 1~a8! and 1~b!, 1~b8!. The
solution is a smooth function ofb and l, including the zero temperature. This phenomenon
well-known as the suppression of the displacive phase transition by large quantum fluctu
see e.g., Refs. 13, 14, 18, 19, or the recent book~Ref. 6!.

If l,lc , then by monotonicity of the integralI d(c* ,b,l) in b, there isbc(l), such that

c* 5I d~c* ,bc~l!,l!. ~2.25!

Then for b<bc(l) Eq. ~2.24! has again only a unique smooth solutionĉ(b,h50,s50,l)
.c* . Whereas forb.bc(l) one getsc* .I d(c* ,b,l.lc), i.e., formally Eq.~2.24! has no
solution, see Figs. 1~c!, 1~c8!. The valuebc(l)21 is the critical temperature of the model.
corresponds to the phase transition breaking the symmetry$Ql→2Ql% l PZd. To find the corre-
sponding order parameter one has to return to Eq.~2.24! before taking the thermodynamic limit
i.e., before the corresponding finite-volume Darboux–Riemann sums give us in the lim
integralI d(c,b,l). Another possibility is to add to the Hamiltonian a constant-field term brea
the symmetry, i.e., to puthÞ0, see Refs. 18, 19, 21, 9, and Fig. 2. Using the latter trick
obtains for the displacive order parameterM (b):

6M ~b!ª lim
h→60

lim
L↑Zd

^Ql&HL(h)~b,h,s50!56Ac* 2I d~c* ,b,l,lc!, ~2.26!

FIG. 1. ~a! l.lc , b5`; (a8) l.lc , b,` . ~b! l5lc , b5`; (b8) l5lc , b,` . ~c! l,lc , b5`; (c8) l
,lc , b,` .
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when b.bc(l), and M (b)50 for b<bc(l), Fig. 3. Here^•&HL(h) is the Gibbs state with

Hamiltonian~2.3!, for constant external fieldhl
v5h.

Remark 2.6: Notice that the definition of the critical temperature given by Eq. (2.25) dem
the convergence of the integral Id(c* ,b,l,lc). For the short-range harmonic interaction, i.e
for

f l 2 l 8<Ai l 2 l 8i2(d1a), i l 2 l 8i→` , ~2.27!

with a>2, we have

f̃~q!5f̃~0!1s2iqi21o~ iqi2!, iqi→0 , ~2.28!

for some s.0. Therefore, the integral in (2.25) converges only for d.2.
If we suppose that0,a,2 in (2.27) (long-range harmonic interaction), then

f̃~q!5f̃~0!1saiqia1o~ iqia!, iqi→0. ~2.29!

Hence, the integral in (2.25) converges for d.a.
~B2! Let h50 and sÞ0. Then Eq.~2.21! takes the form

c5
1

~2p!d EBd

ddq
s2

Vq~c!4 1I d~c,b,l!. ~2.30!

Now besides~2.25! we need the convergence of the integral

Jd~c* ,s!ª
1

~2p!d EBd

ddq
s2

Vq~c* !4 . ~2.31!

FIG. 2. ~a! l.lc , b5` , hÞ0 . ~c! l,lc , b5` , hÞ0 .

FIG. 3. Phase diagram fors50 (h50).
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Indeed, if limc↓c* Jd(c,s)51`, then Eq.~2.30! has a unique smooth solutionĉ(b,h50,s,l)
.c* . Notice that even if the integral~2.31! converges, but

Jd~c* ,s!1I d~c* ,b5`,l!.c* , ~2.32!

we arrive to the same conclusion, since

l

~2p!d EBd

ddq
1

2Vq~c* !
5I d~c* ,b5`,l!<I d~c* ,b,l!<I d~c* ,b50,l!, ~2.33!

see Fig. 4. Therefore, the stationary random field with zero expectation,E(hl
v)50, rules out the

phase transition if its variance verifies the following estimate from below:

s2.H c* 2
l

~2p!d EBd

ddq
1

2Vq~c* !J H 1

~2p!d EBd

ddq
1

Vq~c* !4J 21

5..sc
2~l!. ~2.34!

Here we supposed thatl,lc(c* ), i.e.,

c* .
l

~2p!d EBd

ddq
1

2Vq~c* !
, ~2.35!

to avoid the suppression of the phase transition by the quantum fluctuations, see~B1!.
If the quantum fluctuations are small enough, see~2.35!, ands2,sc

2(l), then by Eq.~2.30!
we find a nontrivial critical temperature 0,bc(l,s),` verifying the equation:

c* 5Jd~c* ,s!1I d~c* ,bc~l,s!,l!, ~2.36!

for the symmetry breaking phase transition. Following the same method as in~2.26! we obtain for
the displacive order parameter:

6M ~b!ª lim
h→60

lim
L↑Zd

^Ql&HL(hv1h)~b,h,s!56Ac* 2Jd~c* ,s!2I d~c* ,b,l!, ~2.37!

when b.bc(l,s) and M (b)50 for b<bc(l,s), see Fig. 5. HereHL(hv1h) is the Hamil-
tonian ~2.3! with shifted external field:$hl

v1h% l PZd, i.e., with E(hl
v1h)5h.

Remark 2.7: Notice that for the short-range harmonic interaction (2.27) the integral (2
converges only for d.4. This means that the external field fluctuations of i.i.d.r.v. withE(hl

v)

FIG. 4. ~a! l,lc , b5` , s50 . ~b! l,lc , b5` , s.0 . ~c! l,lc , b5` , s5sc(l) . ~d! l,lc , b5` , s
.sc(l) .
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50, suppress the phase transition for all lower dimensions d<4. On the other hand, the estimate
(2.32), (2.33) show that for d.4 there is a competition between external field fluctuations a
quantum fluctuations to rule out the phase transition.

For the long-range harmonic interaction (2.29) the integral (2.31) converges if d.2a. By
virtue of Remark 2.6 and (2.33) the integral (2.25) also converges. Now, to ensure phase tra
for d53 one has to choosea,3/2 and the quantum parameterl verifying (2.35), together with
i.i.d.r. external field variances2,sc

2(l).

III. PROOFS

The next statement generalizes one of the results from Ref. 19 to the case of random e
fields.

Lemma 3.1: Let W verify conditions of the Theorem 2.1 with bªsupc>0 W9(c). Suppose that
$hl

v5h% l PZd is a nonrandom (constant) field. Then

f ~b,h!5 lim
L

f L@HL~h!#5 sup
c>c*

lim
L

f L@HL~c,h!#. ~3.1!

Proof: By virtue of the Bogoliubov convexity inequality~see e.g., Ref. 16 or 17! one gets

1

V
^dHL~c,h!&HL(h)< f L@HL~h!#2 f L@HL~c,h!#<

1

V
^dHL~c,h!&HL(c,h) , ~3.2!

where dHL(c,h)ªHL(h)2HL(c,h), and c.c* , hPR1. By ~2.3!, ~2.6! and the conditionb
ªsupc>0 W9(c).0 we have fordHL(c,h) the following operator inequalities:

0<HL~h!2HL~c,h!<V
b

2 S 1

V (
l PL

Ql
22cD 2

. ~3.3!

Together with~3.2! these inequalities imply the estimate

0< f L@HL~h!#2 f L@HL~c,h!#<
b

2 K S 1

V (
l PL

Ql
22cD 2L

HL(c,h)

. ~3.4!

Since we still have a freedom to choose the parameterc.c* , we fix it in the right-hand side of
~3.3! by the equation:

c5K 1

V (
l PL

Ql
2L

HL(c,h)

. ~3.5!

Then the following estimate is true:

FIG. 5. Phase diagram forsÞ0 (h50).
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0< f L@HL~h!#2 sup
c.c*

f L@HL~c,h!#<
b

2 K S 1

V (
l PL

Ql
22K 1

V (
l PL

Ql
2L

HL( ĉL ,h)
D 2L

HL( ĉL ,h)

,

~3.6!

where ĉLª ĉL(b,h) is the solution of Eq.~3.5!. Notice that the approximating Hamiltonia
HL(c,h) is harmonic. Therefore, we can calculate the expectation in the right-hand side of~3.6!
explicitly:

K S 1

V (
l PL

Ql
22K 1

V (
l PL

Ql
2L

HL(c,h)
D 2L

HL(c,h)

5
2

V2 (
qPL*

H l

2Vq~c!
cothS 1

2
blVq~c! D J 2

1
2

V S h

D~c! D
4

. ~3.7!

Similarly one gets for the self-consistency equation~3.5!,

c5
h2

D~c!2 1
1

V (
qPL*

l

2Vq~c!
cothS 1

2
blVq~c! D . ~3.8!

Due to the first term in the right-hand side of~3.8! we obtain that solution of this equation fo
hÞ0 is strictly greater thanc* : ĉL(b,h).c* , or D( ĉL(b,h)).0. Since the value of the fluc
tuation~3.7! in the estimate~3.6! should be calculated forc5 ĉL(b,h), the right-hand side of~3.6!
tends to zero, whenV→`, i.e., we get

lim
L

f L@HL~hÞ0!#5 lim
L

sup
c.c*

f L@HL~c,hÞ0!#5 sup
c.c*

lim
L

f L@HL~c,hÞ0!#. ~3.9!

Here the last equality is due to concavity of the trial free-energy densityf L@HL(c,hÞ0)# in c.
Finely, the pointwise convergence~3.9! for hÞ0 implies the convergence ath50 by convexity of
supc.c* f L@HL(c,h)# in h. h

Corollary 3.2: Using the explicit form of the trial free-energy density fL@HL(c,hÞ0)# (see
(2.9) for hL

v(q)5AVhdq,0), we obtain that solution of the variational problem
supc.c* f L@HL(c,h)# coincides with solution cˆ L(b,h) of the self-consistency equation (3.8).

Corollary 3.3: Let $hl
v% l PZd be a stationary ergodic random field with expectationE(hl

v)
5h. Then similar to (3.6) and (3.7) we get the estimate

0< f L@HL~hv!#2 sup
c.c*

f L@HL~c,hv!#<
b

2
DL~ ĉL

v ,b,hv!. ~3.10!

Here fluctuations (3.7) for the case of random field have the form

DL~c,b,hv!ªK S 1

V (
l PL

Ql
22K 1

V (
l PL

Ql
2L

HL(c,hv)
D 2L

HL(c,hv)

5
2

V2 (
qPL*

H l

2Vq~c!
cothS 1

2
blVq~c! D J 2

1
2

V S h2

D~c!2D 2

1
2

V2 (
qPL* \$0%

S uh̃L
v~q!u2

Vq~c!4 D 2

, ~3.11!

and ĉL
v
ª ĉL

v(b,hv) is a solution of the self-consistency equation:
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c5
h2

D~c!2 1
1

V (
qPL* \$0%

uh̃L
v~q!u2

Vq~c!4 1
1

V (
qPL*

l

2Vq~c!
cothS 1

2
blVq~c! D , ~3.12!

where h̃L
v(q) is the lattice Fourier transformation (2.14) of the shifted random field$h̃l

v5hl
v

2h% l PZd.
Proof (of Theorem 2.1):If hÞ0, then ~3.12! implies that for any configurationvPV and

uniformly in L the solutionĉL
v>c* 1e(h), wheree(h).0 and limh→0 e(h)50. Since in this

case limL DL(c,b,hv)50 uniformly in c>c* 1e(h), the thermodynamic limit of~3.11! gives
limL DL( ĉL

v ,b,hv)50, i.e.,

lim
L

f L@HL~hv!#5 lim
L

sup
c.c*

f L@HL~c,hv!#5 sup
c.c*

lim
L

f L@HL~c,hv!#. ~3.13!

Since $Vq
2(c)%qPL* are eigenvalues of the matrix$f l ,l 8/21D(c)d l ,l 8% l ,l 8PL with eigenvectors

$c l(q)ªexp(2iql)%qPL* , we can construct a nondecreasing~random! function of the real variable
E:

mL
v~E!ª

1

V (
qPL* :Vq

2(c)<E
U(

l PL
c l~q!hl

vU2

. ~3.14!

If the random field$hl
v% l PZd is stationary and ergodic, then there exists a nonrandom nondec

ing spectral functionm(E) such that

m~E!5a.s.2 lim
L

mL
v~E! ~3.15!

at all their points of continuity, see e.g., Refs. 12 or 10. This means that the measuremL
v(dE)

converges weakly withP-probability 1 to the measurem(dE), or

a.s.2 lim
L

1

V (
qPL*

uhL
v~q!u2

Vq~c!4 5a.s.2 lim
L
E

D(c* 1e(h))

1` mL
v~dE!

E2 5E
D(c* 1e(h))

1` m~dE!

E2 , ~3.16!

since by virtue ofhÞ0 the integration in~3.16! runs over strictly positiveE’s. Therefore,~3.16!
implies the self-averaging of the free-energy limit:

a.s.2 lim
L

f L@HL~c,hv!#5 lim
L

E~ f L@HL~c,hv!#!. ~3.17!

This, together with~3.13!, proves Theorem 2.1 for the random field whenhÞ0.
Now let h50. Then one can use the convexity arguments for the free-energy density~as a

function ofh) to reach the same conclusion as in~3.17! whenh→0, which by continuity coincides
with the caseh50. h

IV. CONCLUDING REMARKS

We presented here a quenched random quantum model to study the impact of different
fluctuations~thermal, quantum and random-field! on the second-order phase transition. Here
compare this for quantum and random-field fluctuations. Our main conclusion is that the ra
field fluctuations may lift the lower critical dimensionality up todl54 to screen the impact o
quantum fluctuations for which the lower critical dimensionality isdl52, and evendl51 in the
pure quantum limitT50, see~2.35!.

Notice that our results about suppression of the quantum phase transition by the ra
external fields with zero mean in some aspects are similar to those for the classical sp
model. For example, we obtain for the critical value of the variance~2.34! of the i.i.d.r. field:
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sc
2~l!5H c* 2

l

~2p!d EBd

ddq
1

2Vq~c* !J sc,class
2 , ~4.1!

where

sc,class
2 5H 1

~2p!d EBd

ddq
1

Vq~c* !4J 21

~4.2!

is the corresponding threshold for the classical spherical model.10,11 The supplementary factor in
front of sc,class

2 , see~4.1!, is due to quantum fluctuations,lÞ0, and due to a specific choice of th
potential functionW. We recover the classical result~4.2!, if we put \50 andc* 51 in ~2.34!.
The relation~2.34! implies that the lower critical dimensionalitydl54 is identical for classical
and quantum random spherical models. Notice that the random field classicaln-vector model also
has the same lower critical dimensionalitydl54, see Ref. 1. This similarity is not accidental, sin
the classical spherical random model can be obtained as then→` limit from the corresponding
randomn-vector model.10 Notice that in Refs. 4 and 5 it is shown that then→` limit of a
quantumn-vector crystal model with a one-site anharmonic potential, gives for the free-en
density the same result as the corresponding spherical~or Hartree–Fock! approximation, but it
gives different results for fluctuations. Since the critical properties of this quantumn-vector
anharmonic crystal in random fields are unknown, we have no quantum analog o
statements.1,10

Another open problem concerns the impact of the random field on the displacive~ferroelec-
tric! phase transition in the anharmonic quantum crystal without spherical approximation
known that for a rather general class of double-well one-site anharmonic potentials the
quantum fluctuations~large parameterl! suppress the displacive phase transition in this mode22

and even make the Gibbs state unique.3,15 Our conjecture is that the presence of random field w
produce the same scenario as we obtained in the spherical approximation.
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We consider the Lie-algebra of the group of diffeomorphisms of ad-dimensional
torus which is also known to be the algebra of derivations on a Laurent polynomial
ring A in d commuting variables denoted by DerA. The universal central extension
of DerA for d51 is the so-called Virasoro algebra. The connection between Vira-
soro algebra and physics is well known. See, for example, the book on Conformal
Field Theory by Di Francesco, Mathieu, and Senechal. In this paper we classify (A,
DerA) modules which are irreducible and have finite dimensional weight spaces.
Earlier Larsson constructed a large class of modules, the so-called tensor fields,
based ong,d modules which are alsoA modules. We prove that they exhaust all
(A, DerA) irreducible modules. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1769104#

I. INTRODUCTION

It is well known that the group of diffeomorphisms on a manifold is very important and sh
up directly in many branches of physics~see, for example, Ref. 22!. We are particularly interested
in d-dimensional torus. The cased51 is well studied by both mathematicians and physicists. T
one-dimensional central extension of the Lie-algebra of diffeomorphisms of the circle is a
known object called Virasoro algebra. The representation theory of Virasoro algebra is stud
great detail. See Ref. 14.

The Virasoro algebra acts on any~except when the level is negative of dual Coxeter numb!
highest weight module of the affine Lie algebra through the use of the famous Sugawara ope
It is well known that affine Lie algebras admit representation on the Fock space~see Ref. 13! and
hence admits a representation of the Virasoro algebra. This classical theory is what we ori
want to generalize tod-dimensional torus.

The relation to physics is well established in the book on Conformal Field Theory b
Francesco, Mathieu, and Senechal, Ref. 5. In particular, Chaps. 13–18 explain the con
between physics and the representation theory of Virasoro and affine Kac–Moody Lie-alg
Several important papers on these aspects have been put in one volume by Goddard and
Ref. 11. The most fundamental paper in this direction is due to Belavin, Polyakov, and Zam
chikov in Ref. 1.

The generalization of affine Lie algebra is the so-called toroidal Lie-algebra. For the first
a large class of representations are constructed in Refs. 9 and 21 through the use of
operators generalizing the Fock space construction to the toroidal Lie-algebras. One sign
difference for the toroidal Lie-algebra is that the universal center is infinite dimensional unli
the affine case where it is one dimensional.

So the next natural issue is to generalize Virasoro algebra and see whether the algebra
the Fock space. For that we first denote the Lie algebra of diffeomorphisms ofd-dimensional torus
by DerA ~it is known that DerA is isomorphic to the derivations of Laurent polynomial ringA in
d-variables!. Here one should mention that several attempts have been made by physicists

a!Electronic mail: senapati@math.tifr.res.in
33220022-2488/2004/45(8)/3322/12/$22.00 © 2004 American Institute of Physics
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a Fock space representation to DerA or to its extension~see Ref. 10!. They all failed to produce
any interesting results due to lack of proper definition of ‘‘normal ordering’’ among other thi
At this juncture an interesting result has come out from Ref. 23 which says that DerA has no
nontrivial central extension ford>2.

Let us go back to the vertex construction of toroidal Lie-algebra of Ref. 9. Here operato
constructed for DerA generalizing the Sugawara construction. But the corresponding extensio
DerA is very wild ~certainly noncentral! and not tractable~see Ref. 7!. In the process an interes
ing Abelian extension for DerA has been created in Ref. 9 and the Abelian part is exactly
center of the toroidal Lie algebra. So the semi-direct sum of the toroidal Lie algebra andA
with common extension has emerged as an interesting object which we will now define.

We will first define toroidal Lie algebra. LetG be simple finite dimensional Lie algebra and l
^ , & be a nondegenerate symmetric bilinear form onG. Fix a positive integerd and let A
5C@ t1

61 ,...,td
61# be a Laurent polynomial ring ind-commuting variables.

Let VA be the module of differentials which can be defined as vector space spann
t rKi , i 51,...,d andr PZn. Let dA be the subspace spanned bySr i t

rKi and consider the toroida
Lie algebraG^ A% VA /dA with Lie-bracket.

@X^ t r ,Y^ ts#5@X,Y# ^ t r 1s1^X,Y&Sr i t
r 1sKi

VA /dA is central.
Let DerA be the derivation on A. ForuPCd and r PZd let D(u,r )5Suit

r t i (d/dt i) where
u5(u1 ,...,ud) and r 5(r 1 ,...,r d),t r5t1

r 1t2
r 2
¯td

r dPA. Let K(u,r )5Sui t
rKi . Consider the Lie-

algebra

t5G^ A% VA /dA% DerA,

@D~u,r !,D~v,s!#5D~w,r 1s!2~u,s!~v,r !K~r ,r 1s!,

wherew5(u,s)v2(v,r )u and ~,! is the standard inner product inCd,

@D~u,r !,K~v,s!#5~u,s!K~v,r 1s!1~u,v !K~r ,r 1s!,

@K~u,r !,K~v,s!#50.

The first issue is that can we construct a representation fort from known methods. Severa
attempts have been made~Refs. 2, 3, and 9!. Eventually in a remarkable paper, Billig~Ref. 4!
succeeded in constructing a class of modules fort through the use of Vertex operator algebr
~VOA!. In the process Billig has used the DerA modules constructed in Ref. 17 and studied
Ref. 6. One natural question is, do more modules exist for DerA so that we get a much larger clas
of models oft.

In an interesting paper by Jiang and Meng~Ref. 12! it is proved that classification of irreduc
ible integrable modules oft can be reduced to the classification of irreducible (A, DerA) modules
which the current paper settles. See also Ref. 8 for more precise results.

Let me explain the results of this paper in more detail. In Ref. 17, Larsson constructed a
class of DerA modules and some of them with finite dimensional weight spaces. In fac
constructed a functor fromgld-modules to DerA-modules. In Ref. 6 the author proves that t
image of an irreducible finite dimensional module is most often irreducible.

Further Larsson’s DerA modules areA modules too and they are always irreducible as (A,
DerA)-modules. Thus the purpose of the paper is to prove the converse. So we prove in Th
2.9 that any (A, DerA) module which is irreducible and has finite dimensional weight spaces
to come from Larsson’s construction.

It will certainly be interesting to classify all irreducible DerA modules with finite dimensiona
weight spaces. Now some kind of highest weight modules are constructed in Refs. 2 and 3~they
are not A modules!. We will also note thatGL(d,Z) acts as automorphisms on DerA and so we
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can twist a DerA module byGL(d,Z). @Larsson’s modules are closed underGL(d,Z) action.# So
it will be interesting to prove that any irreducible DerA module with finite dimensional weigh
spaces is either a highest weight module or a Larsson’s module up to a twist ofGL(d,Z) action.
The problem is completely solved ford51 by Mathieu in Ref. 20.

Our results in Ref. 9 have been reinterpreted in the language of physics by Larsson in R
and 19. Larsson is also the first to talk about noncentral extensions in Refs. 15 and 16. DeA has
also been studied in Ref. 24.

II. CONSTRUCTION OF DerA MODULES

~2.1! Throughout this paper we fix a positive integerd>2 and a Laurent polynomial ringA
5C@ t1

61 ,...,td
61# in d commuting variables. LetCd be d copies of complex fieldC. Let e1 ,...,ed

be the standard basis ofCd, and let~,! be the standard form onCd such that (ei ,ej )5d i j .
~2.2! Let G5Ze1%¯% Zed . Throughout this paper we usem,n,r , ands to denote elements

of G. For r 5(r ieiPG let t r5t1
r 1t2

r 2
¯td

r dPA and letDi(r )5t r t i (d/dt i) be a derivation onA. Let
DerA be the Lie-algebra of derivations ofA. It is easy to verify thatDi(r ),1< i<d,r PG is a
basis of DerA. For u5(uieiPCd let D(u,r )5(uiD

i(r ). Then DerA has the following Lie
structure:

~2.3!

@D~u,r !,D~v,s!#5D~w,r 1s!,

wherew5(u,s)v2(v,r )u, r ,sPG andu,vPCd. Let h be the subspace spanned byDi(0),1< i
<d, which is a maximal Abelian subalgebra of DerA.

~2.4! Note thatD(u,r )ts5(u,s)t r 1s. ThusA% DerA is a Lie-algebra by extending the Li
structure in the following way:

@ t r ,ts#50,

@D~u,r !,tm#5~u,m!t r 1m.

Let h̃5C% h, which is an Abelian subalgebra ofA% DerA.
The purpose of this paper is to studyA% DerA modules which are weight modules forh̃ with

finite dimensional weight spaces and to classify such modules with some natural condition
We first recall DerA modules which are constructed and studied in Refs. 17 and 6.
~2.5! Let g,d be the Lie-algebra ofd3d matrices with entries inC. Let Ei j be the elementary

matrix with (i , j )th entry 1 and zero elsewhere. Then it is well known thatg,d is spanned by
Ei j ,1< i , j <d with the following Lie-bracket:

@Ei j ,Ek,#5d jkei ,2d i ,Ek j .

Let g,d5s,d% CI where s,d is a Lie-subalgebra of trace zero matrices andI is the identity
matrix. Let V(c) be the irreducible finite dimensional module fors,d wherec is a dominant
integral weight. LetI act by scalarb on V(c) and denote the resultantg,d module byV(c,b).
Let aPCd and we will makeFa(c,b)ªV(c,b) ^ A a DerA module. First denotev ^ tm by v(m)
for v in V(c,b) andm in G.

~2.6! Definition ~Ref. 17!:

D~u,r !•v~m!5~u,m1a!v~m1r !1S (
i , j

ui r jEji v D ~m1r !,

wherem,r PG,uPCd,vPV(c,b). We will now recall the following:
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~2.7! Theorem~Theorem~1.9! and Proposition~5.1! of Ref. 6!:
~1! Fa(c,b) is irreducible as DerA module if (c,b)Þ(dk ,k),(0,b),1<k<d21 wheredk is the
kth fundamental weight ofs,d .
~2! Fa(0,b) is irreducible as DerA module unlessaPG andbP$0,d%.

In all other casesFa(c,b) is reducible and the submodule structure has been worked o
Proposition~5.1! and Theorem~5.5! of Ref. 6.

Recall thatA is associative algebra with unit andFa(c,b) is anA module by defining

tm
•v~r !5v~m1r !

for m,r PG andvPV(c,b). Further it is easy to see thatFa(c,b) is a A% DerA module.
~2.8! Proposition: Fa(c,b) is irreducible asA% DerA module.
Proof: First note thatFa(c,b) is a weight module with respect toh̃ and the weight spaces ar

V(c) ^ tm. SupposeW is a nonzeroA% DerA submodule ofFa(c,b). As submodule of a weigh
module is a weight module,W is a weight module. From the action ofA it is clear thatv(m)
PW implies v(s)PW for all sPG. Thus W5W1^ A for someW1#V(c,b). Now chooseu
5ei ,r 5ej and consider

D~u,r !v~m!5~u,m1a!v~m1r !1~Eji v !~m1r !.

It now follows from the above-presented remarks thatW1 is g,d-invariant. SinceV(c) is irre-
ducible andW1 is nonzero, it follows thatW15V(c) and henceW5Fa(c,b).

The purpose of this paper is to prove the converse of the above proposition. In other wo
classifyA% DerA modules with certain natural properties.

~2.9! Theorem:Let V be irreducible module forA% DerA which is also a weight module fo
h̃ with finite dimensional weight spaces. We further assume the following:

~1! V is an A-module as associative algebra and the Lie-module structure ofA comes from
associative algebra.

~2! 1.v5v,;v in V.

ThenV>Fa(c,b) ~for somea,c, b) asA% DerA-module.
We need to develop several lemmas to prove the theorem which will be done in Sec. II

final proof will be given in Sec. IV.

III. FILTERATION OF CO-FINITE IDEALS

First we need to change some notation. We treatA as group algebra overG. For that letk(r )
be a symbol forr PG. Let A be the linear span ofk(r ),r PG with multiplication defined as
k(r )•k(s)5k(r 1s).

Let U be the universal enveloping algebra ofA% DerA. Let L be the two sided ideal ofU
generated byk(r )k(s)2k(r 1s) andk(0)21.

Throughout this section the moduleV is as in Theorem~2.9!. SinceV is anA module,L acts
trivially and henceV is a U/L-module. LetV5 % r PGVr be the weight space decomposition a
Vr5$vPVuD(u,0)v5(u,r 1a)v,;u in Cd%. Such a uniforma in Cd exists asV is irreducible. In
fact take any weight space whereh acts as linear function which can be taken asu°(u,a) for
someaPCd. Because of irreducibility the action ofh on the rest of the spaces is easily comput
Further eachVr is an h̃-module as 1 inA acts as one on the entire module.

~3.1! Let U15U/L and letT(u,r )5k(2r )D(u,r )2D(u,0) as an element ofU1 for uPCd

and r PG. Let T be the subspace spanned byT(u,r ) for all u and r .
~3.2! Proposition:

~1! @T(v,s),T(u,r )#5(u,s)T(v,s)2(v,r )T(u,r )1T(w,r 1s) where w5(v,r )u2(u,s)v and
henceT is a Lie-subalgebra.

~2! @D(v,0),T(u,r )#50.
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~3! Let V5 % Vr be weight space decomposition. Then eachVr is T-invariant.
~4! EachVr is T-irreducible.
~5! Vr>Vs asT-module.

Proof: ~2!

@D~v,0!,k~2r !D~u,r !2D~u,0!#

5@D~v,0!,k~2r !D~u,r !#5@D~v,0!,k~2r !#D~u,r !1k~2r !@D~v,0!,D~u,r !#

52~v,r !k~2r !D~u,r !1~v,r !k~2r !D~u,r !50.

~1! From ~2! it follows that

@T~v,s!,T~u,r !#5@k~2s!D~v,s!,k~2r !D~u,r !#

5@k~2s!,k~2r !D~u,r !#D~v,s!1k~2s!@D~v,s!,k~2r !D~u,r !#

5@k~2s!,k~2r !#D~u,r !D~v,s!1k~2r !@k~2s!,D~u,r !#D~v,s!

1k~2s!@D~v,s!,k~2r !#D~u,r !1k~2s!k~2r !@D~v,s!,D~u,r !#

5~u,s!k~2s!D~v,s!2~v,r !k~2r !D~u,r !

1k~2s2r !D~w,r 1s! where w5~v,r !u2~u,s!v

5~u,s!T~v,s!2~v,r !T~u,r !1T~w,r 1s! where w5~v,r !u2~u,s!v.

~3! From ~2! it follows that T commutes withh and henceVr is a T-module.
~4! Let U5 % r PGUr where Ur5$vPUu@D(u,0),v#5(u,r )v for uPCd%. Since V is A

% DerA irreducible forv,w in Vr there existsX in U0 such thatXv5w. This is due to weight
reasons. NowX5(aiXi where eachXi is of the formk(2r )D(u0 ,r 1)¯D(uk ,r k) where (r i

5r . We are using the fact thatL acts trivially on V. Now using the fact thatk(2s)D(u,r )
5D(u,r )k(s)2(u,s)D(u,r ) and the fact thatk(r )k(s)5k(r 1s) we see that eachXi is linear
combination of elements of the form

k~2r 1!D~u1 ,r 1!k~2r 2!D~u2 ,r 2!¯k~2r k!D~uk ,r k!.

This provesXPU(T), the universal enveloping algebra ofT. HenceVr is T irreducible.
~5! First note thatk(s2r )Vr#Vs . Repeating the same we see that

Vr5k~r 2s!k~s2r !Vr#k~r 2s!Vs#Vr .

ThusVr5k(r 2s)Vs . Define f :Vr→Vs by f (v)5k(s2r )v which is clearly injective and surjec
tive. Now

f ~T~u,k!v !5k~s2r !T~u,k!v5T~u,k!k~s2r !v5T~u,k! f ~v !.

Thus f is a T-homomorphism. This proves~5!.
~3.3! Notation: For any integerk.0,r ,m1 ,...,mkPG define
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Tk~u,r ,m1 ,...,mk!5T~u,r !2(
i

T~u,r 1mi !1(
i , j

T~u,r 1mi1mj !¯~21! j

1 (
1< i 1, i 2,¯, i j<k

T~u,r 1mi 1
1¯1mi j

!¯~21!kT~u,r 1m11m2

1¯1mk!.

Let I k be the linear span ofTk(u,r ,m1,...,mk),uPCd for all r ,m1 ,m2,...,mkPG.
~3.4! Lemma: ~1! Tk(u,r ,m1 ,...,mk)5Tk(u,r ,ms(1) ,...,ms(k)) for any permutations on

k-letters.
~2! Tk(u,r ,m1 ,...,mk)5Tk21(u,r ,m1 ,...,mk21)2Tk21(u,r 1mk ,m1 ,...,mk21)
~3! I k is an ideal ofT.
~4! I k#I k21 for k>2.
~5! @ I k ,I ,##I k1,21 for k,,>1.

Proof: ~1! Follows from definition.
~2! Collect all terms wheremk does not occur in the sum ofTk and that can be seen to b

equal to Tk21(u,r ,m1 ,...,mk21). Sum of the rest of the terms can be seen to be equa
2Tk21(u,r 1mk ,m1 ,...,mk21). This is because every term containsmk

~3! @T~v,s!,Tk~u,r ,m1 ,...,mk!#5~u,s! (
,50

k S k
, D ~21!,k~2s!D~v,s!2~v,r !Tk~u,r ,m1 ,...,mk!

1( ~v,mi !Tk21~u,r 1mi ,m1 ,...,mî ,...,mk!1~v,r !Tk~u,r

1s,m1 ,....,mk!2( ~v,mi !Tk21~u,r 1s

1mi ,m1 ,...,mî ,...,mk!2~u,s!Tk~v,r 1s,m1 ,...,mk!.

By applying Proposition 3.2~1! write @T(v,s),Tk(u,r ,m1 ,...,mk)#5A11A21A3 . It is easy to
see thatA1 is the first term of the above-given formula. Now inA2 look for the terms where
(v,mi) occurs and that can be seen as a component of the third term of the above-given fo
Now in A2 the terms where nomi occurs is equal to the second term of the above-given form
The rest of the formula can be seen in a similar way. This proves the claim. Now note that th
term in the claim is zero. Clearly the second, fourth, and sixth terms are inI k . Now the third and
fifth terms are equal to

( ~v,mi !Tk21~u,r 1mi ,m1 ,...,mî ,...,mk!2( ~v,mi !Tk21~u,r 1mi1s,m1 ...,mî ,...,mk!

5( ~v,mi !Tk~u,r 1mi ,m1 ,...,mî ...,mk ,s!

~by Lemma 3.4~2!!.
~4! Follows from ~2!.
~5!

@T,~v,s,n1 ,...,n,!,Tk~u,r ,m1 ,...,mk!#5(
t50

,

(
i 1, i 2,¯, i t

~u,s1ni 1
1¯1ni t

!.

(
b50

k S k
bD ~21!bT~v,s1ni 1

1¯1ni t
!2(

t50

k

(
j 1,¯, j t

~v,r 1mj 1
1¯1mj t

!.
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(
b50

, S ,
bD ~21!bT~u,r 1mi 1

1¯1mi t
!1~v,r !Tk1,~u,r 1s,m1 ,...,mk ,n1 ,...,n,!

2~u,s!Tk1,~v,r 1s,m1 ,...,mk ,n1 ,...,n,!2( ~v,mi !Tk1,21~u,r 1s

1mi ,m1 ,...,mî ,...,mk ,n1 ,...,n,!1( ~u,nj !Tk1,21~v,r 1s1nj ,m1 ,...,mk ,n1 ,...,nĵ ,...,n,!.

The above-presented formula can be deduced as in~3! from Proposition 2.2~1!. Now note that the
first two terms are zero as

(
b50

k S k
bD ~21!b505 (

b50

, S ,
bD ~21!b.

The rest of the four terms are inI k1,21 and this proves~5!.
~3.5! Lemma:For uPCd, 0ÞmiPG, sPG.

~1! Tk(u,s,m1 ,...,mk)¹I k11 for k>1.
~2! Tk(u,s,m1 ,...,mk)1Tk(u,s,n,m2 ,...,mk)5Tk(u,s,m11n,m2 ,...,mk)1I k11 .
~3! Tk(u,s,2m1 ,m2 ,...,mk)52Tk(u,s2m1 ,m1 ,m2 ,...,mk)

Proof: To prove the Lemma, we first interpretTk’s as certain polynomials inA
5C@ t1

61 ,...,td
61#. We fix a nonzerou in Cd. Let k be a positive integer and letm1 ,m2 ,...,mk

PG. Let Pk(m1 ,...,mk)5)1< i<k(12tmi). Recall tmi5t1
(mi )1

¯td
(mi )d . Let Jk be the ideal inA

generated byPk(m1 ,...,mk) for all nonzeromi ’s PG. Then clearlyJk11#Jk . It is easy to see
thatTk(u,r ,m1 ,...,mk) can be identified with polynomialt r Pk(m1 ,...,mk). Recall thatu is fixed.

Thus it is sufficient to prove that
Claim 1: Pk(m1 ,...,mk)¹Jk11 . Suppose

~* ! Pk~m1 ,...,mk!5( f ,Pk11~n,1
,n,2

,...,n,k11
!

where f ,PA. Let Dti5t i (d/dt i). Now considerDti 1
¯Dti k

Pk11(n1 ,...,nk11) and evaluate at

(t1 ,...,td)5(1,...,1). This can be seen to be zero as after differentiatingPk11 ,k times, each
component has at least one factor (tni21). We will now prove that there existsi 1 ,...,i k such that

Claim 2: Dti 1
¯Dti k

Pk(m1 ,...,mk)u t5(1, . . . ,1) is nonzero. Thus* cannot hold. This proves

claim 1. Now choose,,1<,<d such thatS5$ i u(mi),Þ0% is nonempty. Let #S5p and let
i 1 ,...,i pPS. Consider

~Dt,
!pPk~m1 ,...,mk!5m)

i PS
~mi !,)

j ¹S
~12tmj !tmi 1

1mi 2
1¯1mi p1Jk2s11 ,

which is not too difficult to see—wherem is a non-negative integer. Repeating the process fini
many times ~choosing different index,1Þ,). We see that there existsi 1 ,...,i k such that
Dti 1

Dti 2
¯Dti k

. Pk(m1 ,¯ ,mk)5ltm11¯1mk1J1 wherel is nonzero integer. Now evaluating a

t5(1,...,1) we see that claim 2 is true.
To see~2! first note that

~12tm!~12tn!1~12tm1n!5~12tm!1~12tn!.

Thus
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ts)
i 52

k

~12tmi !~12tm1!1ts)
i 52

k

~12tmi !~12tn!5ts)
i 52

k

~12tmi !~12tn!~12tm1!1ts)
i 52

k

~12tmi !

3~12tm11n!.

This proves~2!.
~3! is easy to check.
~3.6! Lemma:

~1! Dim~ I k /I k11!<dk11,k>1.

~2! T5I 1 .

In particularI k is a co-finite ideal inT.
Proof: First note that from Lemma 3.4~2! we have

Tk~u,r ,m1 ,...,mk!5Tk~u,s,m1,...,mk! modI k11

for all r ,sPG. Further

2Tk~u,0,m1 ,...,mk!5Tk~u,0,2m1 ,m2,...,mk! modI k11 ,

which follows from above and Lemma 3.5~3!. Now from additive property of Lemma 3.5~2! it
follows that I k /I k11 is spanned byTk(u,0,ei 1

,...,ei k
) wheree1 ,...,ed is the standard basis. Thu

~1! follows. ~2! follows from definitions. Now it is easy to conclude thatI k is a co-finite ideal for
eachk.

IV. PROOF OF THE CLASSIFICATION THEOREM

We will explain the plan of the proof of Theorem~2.9!. First we will prove thatT/I 2

>g,d(C). Then we will prove that ifI k ,k>2 is zero on a finite dimensional irreducible modu
V of T then I 2 is zero onV. ThusV is a module forT/I 2>g,d(C). Further we prove that any
co-finite idealJ of T containsI k for largek. Thus any irreducible finite dimensional moduleV of
T is actually a module forT/I 2 . From this it will be easy to conclude Theorem 2.9 which will
explained at the end of the section.

~4.1! Proposition: T/I 2>g,d(C).
Proof: First recall thatFa(c,b) is anA% DerA-module and each weight spaceV(c) ^ tm is a

T-module. It is easy to verify thatI 2 acts trivially onV(c) ^ tm. Now note thatT(ei ,ej )v(m)
5Eji v(m)Þ0 for somec. From this we conclude thatT(ei ,ej ) is nonzero inT/I 2 . Now it is easy
to see thatT(u,s)1T(u,r )5T(u,r 1s) modI 2 and henceT(ei ,ej ) spansT/I 2 . Definep:T/I 2

→g,d(C),

p~T~ei ,ej !!5Eji .

Consider

X5@T~ei ,ej !,T~ek ,e,!#5@k~2ej !D~ei ,ej !,k~2e,!D~ek ,e,!#

52d i ,k~2e,!D~ek ,e,!1dk jk~2ej !D~ei ,ej !

2dk jk~2e,2ej !D~ei ,e,1ej !

1d i ,k~2e,2ej !D~ek ,e,1ej !.

Follows from Proposition~3.2!. Note that the following is true inT/I 2 :

k~2e,2ej !D~es ,e,1ej !5k~2e,!D~es ,e,!1k~2ej !D~es ,ej !2D~es,0!

for s5 i ,k. ThusX52dk j(k(2e,)D(ei ,e,)2D(ei ,0))
                                                                                                                



t

r

3330 J. Math. Phys., Vol. 45, No. 8, August 2004 S. Eswara Rao

                    
1d i ,~k~2ej !D~ek ,ej !2D~ek ,0!!52dk jT~ei ,e,!1d i ,T~ek ,ej !.

Thusp defines a surjective homomorphism. AsT(u,0) is zero it follows thatT(ei ,ej ) spanT/I 2

which proves dim (T/I 2)<d2. Thusp defines an isomorphism.
~4.2! Lemma (Billig):SupposeG is a Lie-algebra overC andJ is an ideal with spanning se

Ja ,aPB. Suppose there exists an elementI in G such that@ I ,Ja#5lJa , lÞ0 for all aPB. then
J acts trivially on any irreducible finite dimensional moduleV of G.

Proof: Since the base field is complex numbers andV is finite dimensional,I has eigen
vectors. Letl1 ,...,lk be all the eigenvalues ofI on V. Choosel i such thatl1l i is not an
eigenvalue. Letv be eigenvector with eigenvaluel i for I . ConsiderIJav5JaIv1@ I ,Ja#v5(l i

1l)Jav. This provesJav50 ;aPB. Let W5$wPVuJaw50 ;aPB%. SinceJ is an ideal, it is
easy to see thatW is aG-module. ButWÞ0. SinceV is irreducibleW5V which proves thatJ acts
trivially on V.

~4.3! Proposition: SupposeV is irreducible finite dimensional module forT such thatI k11

acts trivially onV. ThenI 2 acts trivially onV.
Proof: From the proof of Lemma 3.4~3! we have

@T~v,s!,Tk~u,r ,m1 ,...,mk!#52~v,r !Tk11~u,r ,m1 ,...,mk ,s!2~u,s!Tk~v,r 1s,m1 ,...,mk!

1( ~v,mi !Tk~u,r 1mi ,m1 ,...,mî ,...,mk ,s!.

Let I 5(T(ei ,ei) and note thatI is actually identity element inT/I 2>g,d(C). ThusI is nonzero
on T/I k11 for k>1.

Claim:

@ I ,Tk~u,r ,m1 ,...,mk!5~k21!Tk~u,r ,m1 ,...,mk!.

Consider

F(
j

T~ej ,ej !,Tk~u,r ,m1 ,...,mk!G52( ujTk~ej ,r 1ej ,m1 ,...,mk!1(
i , j

~mi ! jTk~u,r

1mi ,m1 ,...,mî ,...,mk ,ej !.

Now we use Lemma 3.5~2! and the following facts.

~1! Tk is linear inu
~2! Tk(u,r 1m,m1 ,...,mk)5Tk(u,r ,m1 ,...,mk) mod I k11 ~by Lemma 3.4~2!!.
~3! I k11 is zero onV.

From that we conclude that

@ I ,Tk~u,r ,m1 ,...,mk!#52Tk~u,r ,m1 ,...,mk!1kTk~u,r ,m1 ,...,mk!,

which proves the claim. Now we can use Lemma~4.2! for the idealI k . Thus I k is zero onV.
Repeating this argument we conclude thatI 2 acts trivially onV. This argument breaks down fo
k51 as we cannot apply the Lemma 3.2.

~4.4! Proposition:Any co-finite idealJ of T containsI k for largek.
Proof: Claim JùI k is co-finite inT for all k. For that considerw:T°T/J% T/I k ,

v°~v,v !.

Clearly kerw5JùI k and T/JùI k is a subalgebra of finite dimensional Lie-algebraT/J% T/I k .
This proves the claim.
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ConsiderI k /JùI k�

w1

I k21 /JùI k�

w2

I k21 /JùI k21 wherew1 is injective andw2 is surjective.
Let rk5w2+w1 . Thus rk :I k /I kùJ→I k21 /JùI k21 . Clearly rk is injective. Let tn

5dim I n /I nùJ and note thattn11<tn . Thus$tn%nPZ1 is a decreasing sequence of non-negat
integers. Thereforetk5s for somes and for largek.N.

First we note the following two statements for a fixedi .

~1! For ,Þ i ,
@T~e, ,2e,!,Tk~ei ,0,ej 1

,...,ej k
!#52k,Tk~ei ,0,ej 1

,...,ej k
!

wherek, is the number ofe, that occur inTk(ei ,0,ej 1
,...,ej k

).
~2! Suppose the idealJ contains(am,ITm(ei ,0,ej 1

,...,ej m
) where the number ofei ’s that occur in

Tm(ei ,0,ej 1
,...,ej m

) is the same for all m where I 5$ j 1 ,...,j k%. Then J contains
Tm(ei ,0,ej 1

,...,ej m
) for m{am,IÞ0.

~1! Follows from the proof of Lemma 3.4~3!. ~2! follows from ~1!. We will prove the Propo-
sition assumingd>3 to avoid some computations. For a fixedi , consider the following set

S5$Tk~ei ,0,ej 1
,...,ej k

!u j ,Þ i for all ,%.

Now choosek{#S.s and k.N. Thus S is linearly dependent modI kùJ. Thus there exist
nonzero scalarsaI(I 5$ j 1 ,...j k%) such that

X5( aITk~ei ,0,ej 1
,...,ej k

!PJ.

Now using~2! we conclude that

Tk~ei ,0,ej 1
,...,ej k

!PJ for some I .

For m,nÞ i consider

@T~em ,en!,Tk~ei ,0,ej 1
,...,ej k

!#5,d j im
Tk~ei ,em ,ej 1

,...,êj i
,...,ej k

,en!PJ.

Now

Tk~ei ,em ,ej 1
,...,êj i

,...,ej k
,en!5Tk~ei ,0,ej 1

,...,êj i
,...,ej k

,en!2Tk11~ei ,0,ej 1
,...,ej i

,...,ej k
,en!.

Now by ~2! it follows that

Tk~ei ,0,ej 1
,...,êj i

,...,ej k
,en!PJ.

Now repeating this process we see that

~* ! Tk~ei ,0,ej 1
,...,ej k

!PJ

for all possible indicesj 1 ,...,j k which are all different fromi . Applying T(ei ,ei) to the above
vector to conclude

Tk~ei ,ei ,ej 1
,...,ej k

!PJ,

~** ! Tk~ei ,0,ej 1
,...,ej k

!2Tk~ei ,ei ,ej 1
,...,ej k

!52Tk11~ei ,0,ej 1
,...,ej k

,ei !PJ.

Fix j Þ i . Replacingk by k11, consider the following vector which is inJ by (* ).
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@T~ej ,ei !,Tk11~ei ,0,ej 1
,...,ej k11

!#5Pd j j ,
Tk11~ei ,ej ,ej 1

,...,êj ,
,...,ej k11

,ei !

2Tk11~ej ,ei ,ej 1
,...,ej k11

!.

Now

Tk11~ei ,ej ,ej 1
,...,êj ,

,...,ej k11
,ei !5Tk11~ei ,0,ej 1

,...,êj ,
,...,ej k11

,ei !

2Tk12~ei ,0,ej 1
,...,ej ,...,ej k11

,ei !.

Now by (** ) both vectors are inJ. Thus we conclude that

Tk11~ej ,ei ,ej 1
,...,ej k11

!PJ.

Now by ~2! we see that

Tk11~ej ,0,ej 1
,...,ej k11

!PJ.

This is true for all possible indicesj 1 ,...,j k11 which are all different fromi .
Now applyingT(ej ,

,ei) for j ,Þ j we see that

Tk11~ej ,ej ,
,ej 1

,...,êj ,
,...,ej k11

,ei !PJ.

Now by ~2! we see that

Tk11~ej ,0,ej 1
,...,êj ,

,...,ej k11
,ei !PJ.

Repeating this process we see thatTk11(ej ,0,e,1
,...,e,k11

)PJ for all possible,1 ,...,,k11 .
Now using the technique in the proof of Lemma 3.5 we see that

Tk11~ej ,0,m1 ,...,mk11!PJ for all miPG.

Now replacingk11 by k12 we see that

Tk12~ej ,0,m1 ,...,mk12!5Tk11~ej ,0,m1 ,...,mk11!2Tk11~ej ,mk12 ,m1 ,...,mk11!PJ.

Then it follows that

Tk11~ej ,mk12 ,m1 ,...,mk11!PJ.

Strictly speaking we have it for non-negative coefficients. But the other cases can be h
similarly. This provesI k11#J and the Proposition. Furthers50.

Proof of Theorem (2.9):Let V be a module as in Theorem. LetV5 % r PGVr be the weight
space decomposition where

Vr5$vPVuD~u,0!v5~u,r 1a!v, ;uPCd%.

We know thatVr>Vs asT-modules from Proposition 3.2~5!. This with Proposition~4.3!, Propo-
sition ~4.4! combined with the fact that some co-finite ideal ofT acts trivially onVr tells us that
all Vr8s are isomorphic to someV(c,b) asg,d-modules. Note that the isomorphism betweenVr8’s
is given byk(r ) ~from proof of proposition 3.2~5!!. Thus if we letVr5V(c,b) ^ t r we see that
k(r )v(s)5v(s1r ) for v in V(c,b).

Now considerT(u,r ) in T/I 2 and note that it is linear in both variables.
Thus
                                                                                                                



tum

l Lie-

ebras’’

e

a

th.

ebras

Math.

ic.

,’’ Lett.

ns,’’

3333J. Math. Phys., Vol. 45, No. 8, August 2004 Partial classification of modules for Lie-algebra

                    
T~u,r !v~s!5(
i , j

ui r jT~ei ,ej !v~s!5(
i , j

ui r jEji v~s!

Therefore

k~2r !D~u,r !v~s!5D~u,0!v~s!1~(uiv jEji v !~s!5~u,s1a!v~s!1S ( uir jEji v D ~s!.

Multiply both sides byk(r ) we get

D~u,r !v~s!5~u,s1a!v~s1r !1S (
i j

ui r jEji v D ~s1r !.

This completes the proof of the theorem.
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By means of complex representation and companion vector, this paper studies the
problems of eigenvalues and eigenvectors of quaternion matrices, and gives a tech-
nique of computing the eigenvalues and eigenvectors of the quaternion matrices in
quaternionic quantum mechanics. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1769106#

I. INTRODUCTION

In quaternionic quantum mechanics~Adler and co-workers, 1995, 1996, 199
Finkelsteinet al., 1962!, one of the most important tasks is to solve the Schro¨dinger equation

]

]t
u f &52Ĥu f &, ~1.1!

with Ĥ an anti-self-adjoint real quaternion matrix, andu f & an eigenstate toĤ. The quaternionic
Schrödinger Eq.~1.1! plays an important role in quaternionic quantum mechanics, it is known
the study of the quaternionic Schro¨dinger Eq. ~1.1! is reduced to the study of quaternion
eigenequation

Ĥa5al, ~1.2!

with Ĥ an anti-self-adjoint real quaternion matrix~time-independent!. But because of the noncom
mutation of quaternions, the studies of the equations are more difficult. In order to solve Eqs~1.1!
and ~1.2!, the author~Adler, 1995! changed the quaternionic Schro¨dinger equations into a two
component complex Schro¨dinger equations, and turned the problem of quaternionic Schro¨dinger
equation into that of complex Schro¨dinger equation. In this paper, by means of complex rep
sentation and companion vector, we study the problems of eigenvalues and eigenvectors of
quaternion matrices, and give a technique of computing eigenvalues and eigenvectors
quaternion matrices in quaternionic quantum mechanics.

Let R denote the real number field,C5$a1bA21ua,bPR% the complex number field,Q the
quaternion number field. For any quaternion

x5x01x1i 1x2 j 1x3k, ~1.3!

i 25 j 25k2521, i j 52 j i 5k, ~1.4!

in which xiPR, the conjugate of quaternionx is x̄5x02x1i 2x2 j 2x3k. It is clear thatx can be
uniquely expressed asx5y1z j, in which y, zPC, andx5y1z j if and only if x̄5 ȳ2z j. Let
Fm3n denote the set ofm3n matrices on the fieldF. For anyA5(ai j )PQn3n, AT5(aji ) and
AH5(ā j i ) denote the transpose and the conjugate transpose of the quaternion matrixA, respec-
tively, andA is an anti-self-adjoint quaternion matrix ifAH52A. Two quaternionsx and y are

a!Electronic mail: tsjemail@163.com
33340022-2488/2004/45(8)/3334/5/$22.00 © 2004 American Institute of Physics
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said to be similar if there exists a nonzero quaternionp such thatp21xp5y, and this is written as
x;y. It is routine to check that; is an equivalence relation on the quaternions. We denote by@x#
the equivalence class containingx.

II. COMPLEX REPRESENTATION AND COMPANION VECTOR

For any quaternionx5x01x1i 1x2 j 1x3k5y1z jPQ, and quaternion matrixA5(ai j )
PQm3n, the complex representation of quaternionx andA are, respectively, defined to be

xf5S x01x1A21 x21x3A21

2x21x3A21 x02x1A21
D 5S y z

2 z̄ ȳD PC232, ~2.1!

and

Af5~~ai j !
f !5S S yi j zi j

2 z̄i j ȳi j
D D PC2m32n. ~2.2!

It is easy to verify the following Eqs.~2.3! and ~2.4! by the definition of complex represen
tation of quaternion matrices. That is ifA, BPQm3n, r PR, then

~A1B! f5Af1Bf , ~rA ! f5rA f , ~2.3!

and if APQm3n, BPQn3s, then

~AB! f5AfBf , ~2.4!

andA is nonsingular if and only ifAf is nonsingular ifAPQn3n, and (Af)215(A21) f .
Next we introduce the concept of companion vector.
If a5(x1 ,x2 ,...,x2n)TPC2n31, then the companion vectorac of vectora is defined to be

ac5~2 x̄2 ,x̄1 ,2 x̄4 ,x̄3 ,...,2 x̄2n ,x̄2n21!TPC2n31.

Let a, bPC2n31, lPC, APQn3n. Then we can easily get the following Eqs.~2.5! and~2.6!
by the definition of companion vector and complex representation,

~a6b!c5ac6bc, ~ac!c52a, ~2.5!

~Afa!c5Afac, ~al!c5acl̄, ~2.6!

and if aÞ0, thena andac are linearly independent.
From ~2.6! we have following result:
Proposition 2.1:Let APQn3n. Then the real eigenvalues of complex representationAf appear

in pairs, and the complex eigenvalues of complex representationAf appear in conjugate pairs.

III. EIGENVALUES AND EIGENVECTORS OF A QUATERNION MATRIX

In this section, by means of complex representation and companion vector, we stud
eigenvalues and eigenvectors of quaternion matrices, and give a technique of computi
eigenvalues and eigenvectors of the quaternion matrices in quaternionic quantum mechan

Since right and left scalar multiplications of quaternions are different, we need to define
and left eigenvalues for a quaternion matrix. LetAPQn3n, a quaternionl is said to be a right
~left! eigenvalue provided thatAa5al(Aa5la), anda is said to be an eigenvector to corr
sponding eigenvaluel. In this paper we mainly focus on the right eigenvalues and eigenvecto
quaternion matrices.

Lemma 3.1~Fuzhen, 1997!: Let x5x01x1i 1x2 j 1x3k be a real quaternion. Then there exis
a quaternionp such that
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p21lp5x01hi, h5Ax1
21x2

21x3
2>0, ~3.1!

namely, xP@x01Ax1
21x2

21x3
2i #. The complex number

a
x5x01hi in ~3.1! is called principal

number of the class@x#.
SinceAa5al if and only if A(ap)5(ap)(p21lp) for any nonzero quaternionp, sol is an

eigenvalue of quaternion matrixA if and only if p21lp is an eigenvalue of quaternion matrixA,
anda is an eigenvector to the eigenvaluel if and only if ap is an eigenvector to the eigenvalu
p21lp for any nonzero quaternionp.

If APQn3n, l is an eigenvalue of quaternion matrixA and letl
a

5p21lp be the principal
number of@l# for quaternionp, then

Aa5al⇔A~ap!5~ap!~p21lp!⇔Ab5bl
a

, ~3.2!

whereb5ap andl
a

5p21lp is the principal eigenvalue. By~2.4! we know that~3.2! is equiva-
lent to

Afa f5a fl f⇔Afb f5b fl
a

f , ~3.3!

and if we letb f5(g,gc), then

Afb f5b f l
a f

⇔Af~g,gc!5~g,gc!S l
a

0

0
l
āD , ~3.4!

i.e., Afg5gl
a

andAfgc5gcl
ā

.
From the statement above we obtain the following result:
Theorem 3.2:Let APQn3n. Then

~1! A quaternionl is an eigenvalue of quaternion matrixA if and only if p21lp ~for any nonzero
quaternionp! is an eigenvalue of quaternion matrixA; a quaternion vectora is an eigenvector
corresponding to the eigenvaluel if and only if ap is an eigenvector corresponding to th
eigenvaluep21lp for any nonzero quaternionp;

~2! A quaternionl is an eigenvalue of quaternion matrixA if and only if l
a

is an eigenvalue of
complex representationAf ; anda is an eigenvector corresponding to the eigenvaluel ~i.e.,

Aa5al) if and only if g is an eigenvector corresponding to the principal eigenvaluel
a

~i.e.,

Afg5gl
a

) with (ap) f5(g,gc), l
a

5p21lp.

Remark:Theorem 3.2 gives a relationship between the eigenvalues and eigenvector
quaternion matrix and that of corresponding complex representation matrix by means of co
representation and companion vector, and turns the eigenvalues and eigenvectors of a qu
matrix into that of a complex matrix.

IV. ALGORITHM

Now we list an algorithm for computing eigenvalues and eigenvectors of a quaternion m
by means of complex representation and companion vector.
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Algorithm: Let APQn3n.
Step 1:Find the complex representation matrixAf and all complex eigenvalues and eige

vectors of the complex matrixAf .
By Proposition 2.1 and~2.6!, we may let the eigenvalues and corresponding eigenvecto

the complex matrixAf be

l1 ,l̄1 ,l2 ,l̄2 ,...,ln ,l̄n ,

g1 ,g1
c ,g2 ,g2

c ,...,gn ,gn
c ,

with Afg i5g il i andAfg i
c5g i

cl̄i , and Imli>0, i 51,2,...,n;
Step 2:Find all principal eigenvalues and corresponding eigenvectors of theA.
By step 1, we know thatl1 , l2 ,...,ln are all the principal eigenvalues of the quaterni

matrix A, let a i
f5(g i ,g i

c), since

Af~g i ,g i
c!5~g i ,g i

c!S l i 0

0 l̄i
D⇔Afa i

f5a i
fl i

f⇔Aa i5a il i ,

so vectora i5(g i ,g i
c) f 21

is an eigenvector of theA corresponding to the principal eigenvaluel i ;
Step 3:Find all eigenvalues and corresponding eigenvectors of theA.
For any nonzero quaternionp, by Theorem 3.2 we know thatp21l i p are all eigenvalues o

the A, anda i p are all eigenvectors of theA corresponding to eigenvaluep21l i p, i 51,2,...,n.
Example:Let

A5S i 11 j

211 j 2k D .

Find all eigenvalues and corresponding eigenvectors of the quaternion matrixA ~an anti-self-
adjoint matrix!.

It is easy to find theAf by the definition of complex representation of theA, and

Af5S i 0 1 1

0 2 i 21 1

21 1 0 2 i

21 21 2 i 0

D ,

and ulI 2n2Af u5(l213)2. Therefore eigenvalues of the complex representation matrixAf are
l15A3i , l252A3i 5l̄1 , and

g1
T5~2i ,0,12A3,12A3!, g2

T5~0,22i ,212A3,11A3!

are two eigenvectors ofAf corresponding to eigenvaluesl1 , namely, Afg15g1l1 , Afg2

5g2l1 , and by~2.6! we also haveAfg1
c5g1

cl̄1 andAfg2
c5g2

cl̄1 . Let a1
T5(g1 ,g1

c) f 21
5(2i ,(1

2A3)(12 j ))T, a2
T5(g1 ,g1

c) f 21
5(22k,2(11A3)(11 j ))T. Then Aa15a1l1 , Aa25a2l1 ,

and all eigenvalues of the quaternion matrixA arep21l1p, anda i p, i 51,2, are the correspondin
eigenvectors top21l1p, wherep is an arbitrary quaternion.
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Time fractional Schro ¨ dinger equation
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The Schro¨dinger equation is considered with the first order time derivative changed
to a Caputo fractional derivative, the time fractional Schro¨dinger equation. The
resulting Hamiltonian is found to be non-Hermitian and nonlocal in time. The
resulting wave functions are thus not invariant under time reversal. The time frac-
tional Schro¨dinger equation is solved for a free particle and for a potential well.
Probability and the resulting energy levels are found to increase over time to a
limiting value depending on the order of the time derivative. New identities for the
Mittag–Leffler function are also found and presented in an Appendix. ©2004
American Institute of Physics.@DOI: 10.1063/1.1769611#

I. INTRODUCTION

A Gaussian distribution for random walk problems, in the continuum limit, can be use
generate the ordinary diffusion equation~ignoring boundary conditions and sources!1

]

]t
U5c

]2

]x2
U, ~1!

U represents the concentration of the diffusing material.c is the diffusion coefficient which is
positive and whose magnitude helps determine the speed at which the diffusion takes plac
t and x are the temporal and spatial coordinates. The diffusion coefficient may depend o
coordinates and/or the concentration. When non-Gaussian distributions are used fractiona
sion equations are produced. Diffusion that is generated by non-Gaussian distributions is ty
referred to as anomalous diffusion. There is a growing body of examples of phenomena t
outside of what is predicted by the ordinary diffusion equation~see, for example, Refs. 2–7!.

Three types of fractional diffusion equations can be produced when considering non-Ga
distributions. The first is the space fractional diffusion equation

]

]t
U5c

]b

]xb
U. ~2!

Here 0,b<2 ~in this paper Caputo fractional derivatives will be used, the reader is directe
Appendix A for definitions and notation conventions!. In this case, the diffusion is still Markovian
but only exhibits Brownian motion forb52.

The second type is the time fractional diffusion equation

]a

]ta
U5c

]2

]x2
U. ~3!

a!Electronic mail: mnaber@monroeccc.edu
33390022-2488/2004/45(8)/3339/14/$22.00 © 2004 American Institute of Physics
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In this case the diffusion is non-Markovian and can further be divided into sub-~0,a,1! and
super-~1,a,2! diffusive behavior. Additionally, the mixed case can be considered with b
space and time fractional derivatives

]a

]ta
U5c

]b

]xb
U. ~4!

The Schro¨dinger equation has the mathematical appearance of a diffusion equation and
derived by considering probability distributions. Feynman and Hibbs used a Gaussian prob
distribution in the space of all possible paths, for a quantum mechanical particle, to deriv
Schrödinger equation.8 Therefore, it is reasonable to consider the different types of Schro¨dinger
equations that are obtainable for non-Gaussian distributions. In an earlier sequence of pap~see
Refs. 9–11! Laskin constructed space fractional quantum mechanics. This was done using
man’s path integral approach, the difference being the use of Levy distributions instead of G
ian distributions for the set of possible paths. The Schro¨dinger equation that was obtained ha
space fractional derivatives. This is the same result that one obtains when studying dif
processes based on Levy distributions instead of Gaussian distributions. Similarly, a time
tional Schro¨dinger equation would be obtained if one considered non-Markovian evolution. La
was able to show that the fractional Hamiltonian was Hermitian and that parity is conse
Energy levels were also computed for the hydrogen atom and the harmonic oscillator.

In this paper, properties of the time fractional Schro¨dinger equation are examined. The tim
fractional Schro¨dinger equation will be constructed by rewriting the Schro¨dinger equation so tha
all derivative operators appear as dimensionless objects, the time derivative is then fraction
and the imaginary unit is raised to the order of the fractional time derivative. This last st
important because it ensures the same physical character of the time fractional Schro¨dinger equa-
tion no matter what the order.

For the time fractional Schro¨dinger equation there are two cases: One for the order of the
derivative being between zero and one, and another case for the order being between one a
For the later case the resulting equation has the same draw backs as the Klein–Gordon e
in that the initial value of the first derivative and the wave function itself must be specified.

In the following section the time fractional Schro¨dinger equation is constructed. Section
will show that the time fractional Schro¨dinger equation is equivalent to the usual Schro¨dinger
equation but with a time dependent Hamiltonian. The solutions will not be invariant under
reversal nor will probability be conserved. In Sec. IV solutions are obtained for a free partic
Sec. V a solution for a potential well is found. In both cases it will be shown that probab
increases over time to a limiting value that depends on the order of the time derivative. Sect
presents some properties for the case of the order of the time derivative being between o
two. Concluding remarks are given in Sec. VII. There are also two Appendixes. The firs
primer on Caputo fractional calculus and a rationale of why it should be used to study ph
systems instead of Riemann–Liouville fractional calculus. A second appendix presents som
erties of the Mittag–Leffler function along with a new identity.

II. TIME FRACTIONAL SCHRÖ DINGER EQUATION

To fractionalize the time derivative of the Schro¨dinger equation care must be taken to prese
the units of the wave function. To begin with, note the definitions and the relationships o
Plank units given below~Plank length, time, mass, and energy!:12

Lp5AG\

c3
, Tp5AG\

c5
, M p5A\c

G
, Ep5M pc2. ~5!

The standard form of the Schro¨dinger equation in one space and one time dimension is13
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i\] tc52
\2

2m
]x

2c1Vc. ~6!

This can be expressed in Plank units as follows:

iTp] tc52
Lp

2M p

2m
]x

2c1
V

Ep
c. ~7!

Define two dimensionless parameters;Nm5m/M p the number of Plank masses inm and NV

5V/Ep the number of Plank energies inV

iTp] tc52
Lp

2

2Nm
]x

2c1NVc. ~8!

When the time derivative is fractionalized there are two options,

~ iTp!nDt
nc52

Lp
2

2Nm
]x

2c1NVc, ~9!

i ~Tp!nDt
nc52

Lp
2

2Nm
]x

2c1NVc. ~10!

In this paper, Dt
n shall denote the Caputo fractional derivative of ordern. Tp must be raised to the

same order as the fractional derivative to preserve the units ofc.
The question of whether or not to raisei to the order of the time derivative needs mo

investigation. There are two reasons to choose Eq.~9! over Eq. ~10!, one superficial and one
physical. When performing a Wick rotation the imaginary unit is raised to the same power a
time coordinate. The second reason involves the temporal behavior of the solution. When s
for the time component of Eq.~9! or Eq. ~10! the Laplace transform is the preferred method. F
Eq. ~9!, changing the order of the derivative moves the pole~from the inverse Laplace transform!
up or down the negative imaginary axis. Hence, the temporal behavior of the solution wi
change. For Eq.~10!, changing the order of the derivative moves the pole to almost any de
location in the complex plane. Physically, this would mean that a small change in the order
time derivative, in Eq.~10!, could change the temporal behavior from sinusoidal to growth o
decay. Due to the simpler physical behavior of Eq.~9! and the role of ‘‘i’’ in a Wick rotation, Eq.
~9! is the best candidate for a time fractional Schro¨dinger equation.

III. TIME DEPENDENT HAMILTONIAN AND PROBABILITY CURRENT

The order of the time derivative on the left hand side Eq.~9! is not one, therefore, the operato
on the right hand side is not a Hermitian Hamiltonian. Equation~5! can be rearranged to expos
a time dependent Hamiltonian. To do so, the order of the time derivative on the left hand s
Eq. ~9! must be raised to order one. First note an identity for Caputo derivatives for 0,n,1,

Dt
12nDt

ny~ t !5
d

dt
y~ t !2

@Dt
ny~ t !# t50

t12nG~n!
. ~11!

Now define two parameters:

a5
NV

Tp
n

, ~12!
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b5
~Lp!2

2Nm~Tp!n
, ~13!

then Eq.~9! can be written as

Dt
nc52

b

i n
]x

2c1
a

i n
c. ~14!

Using the identity for Caputo derivatives, Eq.~11!, the time dependent Hamiltonian appears

] tc52
b

i n
]x

2~Dt
12nc!1

a

i n
~Dt

12nc!1
@Dnc~ t !# t50

t12nG~n!
. ~15!

Since the Hamiltonian is time dependent we should not expect probability to be conserved
also that the Hamiltonian is nonlocal in time, due to the integral in the formulation of the fract
derivative ~see the Appendix!. This nonlocal character tells us that the solutions will not
invariant under time reversal. The third term in the Hamiltonian goes to zero as time go
infinity ~recall that the order of the original fractional time derivative is less than one!.

Consider the nonlocal object in Eq.~15!

Dt
12nc~ t,x!5

1

G~12n!
E

0

tS d

dt
c~t,x! D dt

~ t2t!n
. ~16!

For a possible interpretation of this object recall the interpretation of the first order time deriv
in standard quantum mechanics,13

]

]t
5

E

i\
, ~17!

where E is viewed as the energy operator~Hamiltonian!. Then the inner product~* denotes
complex conjugation!,

E
2`

`

c~ t,x!* Dt
12nc~ t,x!dx, ~18!

can be interpreted as being proportional to the weighted time average of the energy of the
function, the weighting factor being (t2t)2n. For the remainder of the paper denotec̃
5Dt

12nc.
The probability current equation~for a free particle! can be constructed just as for the no

fractional Schro¨dinger equation.

probabil ity density5P5cc* , ~19!

] tP5] tcc* 1c] tc* , ~20!

] tP5S 2
b

i n
]x

2c̃1
@Dt

nc~ t,x!# t50

t12nG~n!
D c* 1cS 2

b

~2 i !n
]x

2c̃* 1
@Dt

nc~ t,x!* # t50

t12nG~n!
D . ~21!

This can be rearranged
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] tP1b]xS ]xc̃c*

i n
1

]xc̃* c

~2 i !n D 5bS ]xc̃]xc*

i n
1

]xc̃* ]xc

~2 i !n D
1

c* @Dt
nc~ t,x!# t501c@Dt

nc~ t,x!* # t50

t12nG~n!
. ~22!

If the Hamiltonian were not time dependent~i.e., if n→1! then the right hand side of Eq.~22!
would be zero. The probability current can be identified as

J5
b

i n
~]xc̃ !c* 1

b

~2 i !n
c~]xc̃* !. ~23!

The right hand side of Eq.~22! can be viewed as a source in the probability current equation.
nonzero source term in Eq.~22! confirms that probability will not be preserved for solutions of t
time fractional Schro¨dinger equation.

S~x,t !5
b

i n
]xc̃]xc* 1

b

~2 i !n
]xc̃* ]xc1

c* @Dt
nc~ t,x!# t501c@Dnc~ t,x!* # t50

t12nG~n!
, ~24!

] tP1]xJ5S. ~25!

Integrating Eq.~25! over all space and requiring the wave function and its first derivative g
zero at spatial infinity gives

] tE
2`

`

Pdx5E
2`

`

Sdx. ~26!

IV. FREE PARTICLE SOLUTION

The time fractional Schro¨dinger equation for a free particle is given by

~ iTp!nDt
nc52

Lp
2

2Nm
]x

2c. ~27!

To solve this equation, apply a Fourier transform on the spatial coordinate,F(c(x,t))5C(l,t)

~ iTp!nDt
nC5

~Lpl!2

2Nm
C. ~28!

The resulting equation can be rearranged and the results of Appendix B can be used. Nam
identity for the Mittag–Leffler function with a complex argument

Dt
nC5

~Lpl!2

2NmTp
n i n

C, ~29!

C5C0En~v~2 i t !n!, ~30!

or

C5
C0

n
$e2 iv1/nt2nFn~v~2 i !n,t !%, ~31!
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wherev5(Lpl)2/2NmTp
n . In Eq. ~31! the first term is oscillatory, and the second is decay in

time variable. The function,Fn , is defined in Appendix B. Inverse Fourier transforming gives
final solution

c~x,t !5F21C~l,t !5
1

2p E
2`

`

eilx
C0

n
$e2 iv1/nt2nFn~v~2 i !n,t !%dl. ~32!

This can be broken into two parts, a Schro¨dinger like piece divided byn, and a decay term tha
goes to zero as time goes to infinity

cS~x,t !5
1

2pn E2`

`

eilxC0e2 iv1/ntdl, ~33!

cD~x,t !5
21

2p E
2`

`

eilxC0Fn~v~2 i !n,t !dl, ~34!

c~x,t !5cS~x,t !1cD~x,t !. ~35!

Note that asn goes to one the decay term goes to zero and the Schro¨dinger like term becomes th
nonfractional Schro¨dinger term.

C0 may be chosen so that the initial probability is one

E
2`

`

c~x,0!c* ~x,0!dx51. ~36!

Due to the decay term in the solution one may ask what happens to the total probability a
goes to infinity. Consider the following limit

lim
t→`

E
2`

`

c~x,t !c* ~x,t !dx ~37!

5 lim
t→`

E
2`

`

F21S C0

n
$e2 iv1/nt2nFn~v~2 i !n,t !% DF21S C0

n
$e2 iv1/nt2nFn~v~2 i !n,t !% D *

dx.

~38!

Now use Parseval’s identity

5
2p

n2
lim
t→`

E
2`

`

C0$e
2 iv1/nt2nFn~v~2 i !n,t !%~C0$e

2 iv1/nt2nFn~v~2 i !n,t !%!* dl. ~39!

In the limit that time goes to infinityFn goes to zero, this leaves

5
2p

n2
lim
t→`

E
2`

`

C0e2 iv1/ntC0* eiv1/ntdl, ~40!

5
2p

n2
lim
t→`

E
2`

`

C0C0* dl. ~41!

Now use Parseval’s identity again
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5
1

n2
lim
t→`

E
2`

`

c0c0* dx. ~42!

The remaining integral is unity. Hence,

lim
t→`

E
2`

`

c~x,t !c̄~x,t !dx5
1

n2
. ~43!

Sincen is less than one, the total probability increases over time to the limiting value of Eq.~43!.

V. POTENTIAL WELL SOLUTION

Now consider a particle in a potential well

V~x!5H 0, 0,x,a

` elsewhere,
~44!

~ iTp!nDt
nc52

Lp
2

2Nm
]x

2c, ~45!

c~0,t !50,
~46!

c~a,t !50.

This can be solved by separation of variables,c5A(t)B(x)

~ iTp!n
Dt

nA

A
52

Lp
2

2Nm

]x
2B

B
5l. ~47!

Solve the spatial component first

B91l
2Nm

Lp
2

B50. ~48!

The boundary conditions give

Bn5cn sinS np

a
xD , ~49!

ln5S npLp

a D 2 1

2Nm
. ~50!

The time equation is

Dt
nA5

ln

~ iTp!n
A. ~51!

This can be solved in terms of the Mittag–Leffler function~see Appendix B!. Let A(t50)51 so
that we can specify an initial wave function.

A5En~vn~2 i t !n!, ~52!
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A5
1

n
$e2 iv1/nt2nFn~~2 iv!n,t !%, ~53!

where,vn5ln /Tp
n .

Note also that

lim
t→`

uA~ t !u5
1

n
. ~54!

The normalized spatial eigenfunctions are

cn~x,0!5A2

a
sin~npx/a!, ~55!

E
0

a

cn~x,0!•cn~x,0!dx51. ~56!

The solutions for all times can be written as

cn~x,t !5A2

a
sin~npx/a!

1

n
$e2 iv1/nt2nFn~~2 iv!n,t !%. ~57!

As in the free particle case it is interesting to compute the limit of the total probability as time
to infinity

lim
t→`

E
0

a

cn~x,t !•c̄n~x,t !dx5
1

n2
. ~58!

This is the same result as for the free particle. Asn is less than one, the total probability is great
than one as time goes to infinity. In fact as long ast1,t2 we have

E
0

a

c~x,t1!•c̄~x,t1!dx,E
0

a

c~x,t2!•c̄~x,t2!dx. ~59!

Probability is created as time progresses. This can also be viewed as particles are crea~ex-
tracted from the potential! as time progresses.

The energy levels for the potential well can be computed. Since the Hamiltonian is
dependent the energy levels will also be time dependent.

En~ t !5E
0

a

c* i\] tcdx, ~60!

En~ t !5
2i\

an2
$eiv1/nt2nFn~~ iv!n,t !%] t$e

2 iv1/nt2nFn~~2 iv!n,t !%E
0

a

sin2S npx

a Ddx, ~61!

En~ t !5
i\

n2
$eiv1/nt2nFn~~ iv!n,t !%] t$e

2 iv1/nt2nFn~~2 iv!n,t !%. ~62!

The interesting result is when time goes to infinity
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En~`!5
\~ln!1/n

n2Tp

5
\~npLp!2/n

n2Tp~2a2Nm!1/n
. ~63!

This is the same energy spectrum that is obtained for the nonfractional Schro¨dinger equation
except for the factor of 1/n2 and the exponent of 1/n. The difference between two energy leve
saym andn, is given by

Em~`!2En~`!5
\~pLp!2/n

n2Tp~2a2Nm!1/n
~m2/n2n2/n!. ~64!

Since n is less than one the spacing between energy levels is greater than that given
nonfractional Schro¨dinger equation. In fact the smaller the value ofn the greater the difference
between energy levels. Note also that att50 the spacing between the energy levels is that sa
as that of the nonfractional Schro¨dinger equation. As time progresses the spacing between
energy levels increases to the limiting value given by Eq.~64!. Hence, radiation that is emitted
say from staten to statem, at an early time will have a longer wavelength than radiation emi
at a later time.

VI. SOME PROPERTIES FOR 1ËnÏ2

In this section the case of 1,n<2 is briefly considered. Notice that at the upper limit we ha
a special case of the Klein–Gordon equation. Like the Klein–Gordon equation, the initial va
the first derivative must also be specified to obtain a solution. Just as in the previous case, E~14!
can be recast to expose a time dependent Hamiltonian. First note an identity for Caputo fra
derivatives and integrals for 1,n<2

I t
n21Dt

n f ~ t !5Dt
1f ~ t !2Dt

1f ~ t !u t50 . ~65!

Applying I t
n21 to Eq. ~14! yields

] tc52
b

i n
]x

2~ I t
12nc!1

a

i n
~ I t

12nc!1] tc~ t !u t50 . ~66!

This is very similar to Eq.~15! except that the fractional derivatives are replaced with fractio
integrals and the initial value term is for the first derivative.

The solution can also be written down for a free particle just like the previous case

~ iTp!nDt
nc52

Lp
2

2Nm
]x

2c,

c~x,0!5c0 , ~67!

d

dt
c~x,t !U

t50

5c1 .

Denote the Fourier transform~on the spatial coordinate! of the wave function and the initia
conditions as

C~l,t !5F~c~x,t !!,

C05F~c0!, ~68!

C15F~c1!.
                                                                                                                



ility to

be
and
t
time

und to

of the
chro
between

r such
ld also
e
ntial

seful
ng an

ns of
e

ween
rder

r

3348 J. Math. Phys., Vol. 45, No. 8, August 2004 M. Naber

                    
The solution, in Fourier space, can then be expressed as

C5C0S eiv1/nt

n
1Fn~v~2 i !n,t ! D 1C1S eiv1/nt

v1/nn
2Fn21~v~2 i !n,t !D , ~69!

where,v5(Lpl)2/2NmTp
n . This solution behaves just like the case of 0,n<1 in that there is an

oscillatory term and a decay term. The presence of a decay term will again cause probab
increase over time.

VII. CONCLUSION

In this paper the time fractional Schro¨dinger equation was constructed. It was found to
equivalent to the usual Schro¨dinger equation but with a Hamiltonian that was time dependent
nonlocal in time. In contrast to the space fractional Schro¨dinger equation, probability was no
conserved but found to increase over time to a limiting value depending on the order of the
derivative. Consequently, the energy of the eigenstates for the potential well were also fo
increase over time to a limiting value~for 0,n,1!. In the limit that t→` the energy of the
eigenstates was found to be similar to that given by the usual Schro¨dinger equation but divided by
the order of the time derivative squared and having an exponent depending on the order
time derivative. Initially the energy of the eigenstates is the same as for the nonfractional S¨-
dinger equation. As time progresses the energy of each level increases as does the spacing
the energy levels. Hence, if the spectrum of emitted radiation was monitored over time, fo
a fractional well, it would be seen to blue shift and, the space between the spectral lines wou
increase. In finding a solution to the time fractional Schro¨dinger equation a new identity for th
Mittag–Leffler function was found. This identity generalizes the Euler identity for the expone
function with complex arguments.
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APPENDIX A: CAPUTO FRACTIONAL CALCULUS

The bulk of this appendix is taken from Ref. 14. The two most commonly used definitio
fractional derivatives are the Riemann–Liouville and Caputo~there are many definitions, th
reader is encouraged to consult Ref. 15 for a more complete discussion!. Each definition uses
Riemann–Liouville fractional integration and derivatives of whole order. The difference bet
the two definitions is in the order of evaluation. Riemann–Liouville fractional integration of o
m is defined as

Im~ f ~ t !!5
1

G~m!
E

0

t f ~t!dt

~ t2t!12m
. ~A1!

The next two equations define Riemann–Liouville~RL! and Caputo fractional derivatives of orde
n, respectively,

RLDt
n f ~ t !5

dk

dtk
~ Ik2n f ~ t !!, ~A2!

CDt
n f ~ t !5Ik2nS dk

dtk
f ~ t !D , ~A3!
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wherek21<n,k. For now, the Caputo fractional derivative will be denoted byCDt
n to maintain

a clear distinction with the Riemann–Liouville fractional derivative. The Caputo fractional de
tive first computes an ordinary derivative followed by a fractional integral to achieve the de
order of fractional derivative. The Riemann–Liouville fractional derivative is computed in
reverse order.

The desire to formulate initial value problems for physical systems leads to the use of C
fractional derivatives rather than Riemann–Liouville fractional derivatives. Consider the La
transform of the Riemann–Liouville fractional derivative,

Lt$
RLDt

n f ~ t !%5snF~s!2 (
k50

n21

sk~RLDt
n2k21f ~ t !!u t50 . ~A4!

The initial conditions, (RLDt
n2k21f (t))u t50 for k50,...,n21, are fractional order derivatives~see

Ref. 15 for a detailed discussion of these objects!. When studying a physical system, initia
conditions are typically conditions that can be measured or imposed on the system. As yet t
no physical interpretation for (RLDt

n2k21f (t))u t50 ~see Refs. 16 and 17 for a fractal interpretati
of the fractional order integral!. Some authors using equations with Riemann–Liouville fractio
derivatives to model physical systems have added terms to the diffusion equation to elim
these unphysical terms~see, e.g., Ref. 18!.

The Laplace transform of the Caputo fractional derivative is

Lt$
CDt

n f ~ t !%5snF~s!2 (
k50

n21

sn2k21~Dt
kf ~ t !!u t50 . ~A5!

In this case the initial conditions are well understood from a physical point of view. For exa
if f (t) represents position then (Dt

0f (t))u t50 is the initial position, (Dt
1f (t))u t50 is the initial

velocity, etc.~see Podlubny Ref. 15, Sec. 2.4 for a more detailed discussion of this point!.

APPENDIX B: THE MITTAG–LEFFLER FUNCTION

The Mittag–Leffler function,En(t), is a generalization of the exponential function~see Refs.
15 and 19 for additional properties and a history!

et5 (
n50

`
tn

n!
5 (

n50

`
tn

G~n11!
, ~B1!

En~ t !5 (
n50

`
tn

G~nn11!
. ~B2!

One very useful formula concerning the exponential function is with a complex argumen
Euler identity

eit5cos~ t !1 i sin~ t !. ~B3!

A similar identity occurs for the Mittag–Leffler function. The derivation is given below. Cons
the initial value fractional differential equation

0Dt
nA5sA,

~B4!
A~ t50!5A0 .

The solution of this can be found by Laplace transform in two different ways

snÃ2sn21A05sÃ, ~B5!
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Ã5
sn21A0

sn2s
. ~B6!

Equation~B6! can be expressed as a power series

Ã5A0(
n50

`
sn

s11nn
. ~B7!

Inverting this series yields a series representation for the Mittag–Leffler function

A5A0(
n50

`
sntnn

G~nn11!
5A0En~stn!. ~B8!

The solution to

0Dt
nA5s i nA,

~B9!
A~ t50!5A0 ,

is then given by

A5A0En~s i ntn!. ~B10!

To see how this breaks up into an oscillatory piece and a decay piece consider the L
transform of Eq.~B9!

Ã5
sn21A0

sn2s i n
. ~B11!

The inverse Laplace transform is given by

A~ t !5
1

2p i Eg2 i`

g1 i` estsn21A0

sn2s i n
ds. ~B12!

The inverse Laplace transform can be evaluated using residues. This integral has a branch
s50 due tosn21 in the numerator andsm in the denominator, and a pole ats05s1/ni . Due to the
branch point at the origin the usual Bromwich contour cannot be used. A branch cut alon
negative Real(s) axis must be made. That is, a cut from2` into and then around the origin in
clockwise sense and then back out to2`. The usual Bromwich contour is continued after the c
This is referred to as a Hankel contour. The solution will then be given by the residue minu
contribution along the partial path

A~ t !5Residue2
A0

2p i EHankel
. ~B13!

The residue is given by

Residue

A0
5 lim

s→s0

~s2s0!estsn21

sn2s0
n

5
eis1/nt

n
. ~B14!

The integral along the Hankel contour only makes contributions along the branch cut. This
tribution is given by
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2
A0s i n

p E
0

` sin~np!e2rt r n21dr

r 2n22s i n cos~np!r n1~s i n!2
. ~B15!

Combining the path and residue contributions, and doing some algebra gives

A

A0
5

eis1/nt

n
2

s i n sin~np!

p E
0

` e2rt r n21dr

r 2n22s i n cos~np!r n1~s i n!2
. ~B16!

The first term is oscillatory, and the second decays monotonically in the time variable. Henc
Mittage–Leffler function, with a complex argument, can be expressed as

En~s i ntn!5
eis1/nt

n
2

s i n sin~np!

p E
0

` e2rt r n21dr

r 2n22s i n cos~np!r n1~s i n!2
. ~B17!

Note that asn→1 the above equation becomes the Euler identity.
To make this result appear more compact define a new function

Fn~r,t !5
r sin~np!

p E
0

` e2rt r n21dr

r 2n22r cos~np!r n1r2
. ~B18!

This function decays monotonically in time. The following results are special cases:

Fn~0,t !50, ~B19!

F1~r,t !50, ~B20!

Fn~r,0!5
12n

n
, ~B21!

0<Fn~r,t !<
12n

n
. ~B22!

Hence, a solution to0Dt
nA5s i nA, A(t50)5A0 can be written as

A

A0
5

eis1/nt

n
2Fn~s i n,t !. ~B23!

Additionally, the solution to0Dt
nA5s(2 i )nA, A(t50)5A0 is given by

A

A0
5

e2 is1/nt

n
2FnS s

i n
,t D . ~B24!

To recap, the ‘‘Euler identity’’ for the Mittag–Leffler function is

En~s i ntn!5
eis1/nt

n
2Fn~s i n,t !. ~B25!

In a similar fashion, a solution can be worked out for 1,n,2

0Dt
nA5s i nA,

A~ t50!5A0 , ~B26!
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0Dt
1A~ t50!5A1 ,

A5A0S eis1/nt

n
1Fn~s i n,t ! D 1A1S eis1/nt

s1/nn
2Fn21~s i n,t !D . ~B27!
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The Lerch function and the thermodynamical functions
of the ideal quantum gases

Salvino Ciccarielloa)

Dipartimento di Fisica ‘‘G. Galilei’’ e unitàINFM, via F. Marzolo 8, I-35131 Padova,
Italy

~Received 10 January 2004; accepted 17 May 2004;
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The unified description of the main thermodynamical functions of the Bose and
Fermi ideal gases, obtained by Lee@J. Math. Phys.36, 1217~1995!# in terms of the
polylogarithmic functions, can also be obtained by analytic continuation in the
chemical potential owing to the analytic properties of the Lerch function that is
simply related to the polylogarithmic ones. By this procedure we also show that the
Fourier coefficients of the thermal Green function of the ideal Bose gas convert into
those of the Fermi one. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1771481#

I. INTRODUCTION

The ideal quantum gases of Fermi and Bose1 are two basic issues of modern physics. Th
yield a first rough description of the behavior of condensed matter as well as the hin
understanding superfluidity and superconductivity phenomena, the knowledge of which is a
progressing.2,3 Even though the subject of ideal quantum gases is very old, some new inter
results were obtained in the past decade. These results point to a sort of unified description
two systems. In fact, Lee4 showed that the particle number density~PND! r5N/V, the pressureP,
the internal energyU and the entropySof the two ideal quantum gases can be expressed in te
of the so-called polylogarithm function5 Li s(z) @for its definition, see Eq.~17!#, as follows:

~lD!r

g
5sign~z!LiD/2~z!, ~1!

bP/r5LiD/211~z!/LiD/2~z!, ~2!

bU/N5~D/2!LiD/211~z!/LiD/2~z!, ~3!

S/NkB5~D/211!LiD/211~z!/LiD/2~z!2 lnuzu. ~4!

Here D denotes the space dimensions,l5(2pb/m)1/2 ~with \51! is the thermal wave-length
b[1/kBT andg5(2s11), while kB , T, m ands denote the Boltzman constant, the temperatu
the mass and the spin of the particles, respectively. Finally,z is equal toz or to 2z depending on
whether the system is respectively made up of bosons or of fermions, the fugacityz being related
to the chemical potentialm of the two systems asz[ebm. The noticeable property of Eqs.~1!–~4!
is that the thermodynamical quantities, scaled as reported on the left hand side~lhs! of ~1!–~4!,
only depend on the fugacity of the system and, more importantly, that their values are given
same analytic functions, respectively evaluated in the ranges2`,z<0 and 0<z,1 in the cases of
the Fermi and Bose gas. A further interesting consequence of~1!–~4!, valid in only the two-
dimensional case, is the property that the entropy and, consequently, the specific heat at c

a!Electronic mail: ciccariello@pd.infn.it
33530022-2488/2004/45(8)/3353/9/$22.00 © 2004 American Institute of Physics
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volume of the Bose gas, when expressed in terms ofr andT, coincide with those of the fermion
gas.6–9 As recently shown by Anghel,10 these properties generalize to 2-D systems obeying f
tional exclusion statistics11 related to the bosonization technique.12

The aim of this note is to present an alternative derivation of results~1!–~4! based on the
mathematical trick of considering the chemical potential as a complex variable. The plan
paper is as follows. In Sec. II we show that the product of grand-partition functions of the
and Fermi gases, respectively evaluated at2z and z, is equal to one and that the analytic co
tinuation of the grand-potentialVB of the Bose gas, with respect to the chemical potential, yie
the grand-potentialVF of the Fermi gas with the reversed sign. This conclusion is made pos
by the fact that the grand-potentials are expressed in terms of the Lerch function13 that simply
reduces to the polylogarithmic function for the samples under analysis. In Sec. III, we show
the same analytic continuation converts the Fourier coefficients of the thermal Green funct
the Bose gas into those of the Fermi gas. By this result we show that the same property of a
continuation, found for the grand-potentials, applies to the internal energy and the mean p
number. Finally, in Sec. IV we report our conclusive remarks.

II. ANALYTIC CONTINUATION OF THE GRAND-POTENTIAL

Throughout the paper we shall adopt the mathematical notation of Ref. 1. The g
Hamiltonian of a quantum system of noninteracting particles of massm and spins is

K̂5Ĥ2mN̂, ~5!

with

Ĥ5(
k,s

ekak,s
† ak,s , N̂5(

k,s
ak,s

† ak,s

and the operator algebras

@ak,s ,ak8,s8#650, @ak,s ,ak8,s8
†

#65dk,k8ds,s8, ~6!

whereek5k2/2m and s denotes the spin index ranging from2s to s. The case of fermions o
bosons corresponds to taking the anticommutator or the commutator in~6!. In contrast to standard
definition, we assume now thatm can also take complex values in which the physical~or observ-
able! chemical potential is recovered whenm is real. By so doing,K̂ is no longer Hermitian, but
we can still define the complex valued grand-canonical partition functionZB and the complex
valued grand-potentialVB of the ideal Bose gas by the relations

ZB~V,T,m![e2bVB~V,T,m![Tr@e2bK̂# ~7!

that coincide with the physical ones whenm is real. The explicit evaluation of the trace yields

ZB~V,T,m!5)
j 50

`

(
n50

`

e2nb~e j 2m!,

where j labels the couple of indices~k,s!. The series can be explicitly summed up under
condition that

Rm,min~e0 ,...,e`!5e050. ~8!

In this way, one gets
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ZB~V,T,m!5Z̃B~V,T,z![)
j 50

`
1

12ze2be j
. ~9!

Equation~9! makes it evident thatZB(V,T,m) depends onm through the fugacity. It will become
clear later thatZ̃B(V,T,z) is analytic throughout the complexz plane cut along the real half-axi
from z51 to z5` @see~14!#. In the fermion case one finds that

ZF~V,T,m![e2bVF~V,T,m!5Tr@e2bK̂#5Z̃F~V,T,z![)
j 50

`

@11ze2be j # ~10!

with m obeying the constraints2`,Rm,`. Taking nowm5m81 ip/b in Eq. ~9! @with m8,0
as required by~8!# and settingz85ebm8, one gets

ZB~V,T,m81 ip/b!5Z̃B~V,T,2z8!5)
j 50

`
1

11eb~m82e j !
5

1

ZF~V,T,m8!
5

1

Z̃F~V,T,z8!
.

From this relation it follows that

Z̃B~V,T,2z8!Z̃F~T,V,z8!51 if 0<z8,1, ~11!

a relation already reported in Ref. 14@see their Eq.~27!# and Ref. 15@see their Eq.~23!, where a
minus sign is missed in the argument of one of the two functions#. Equation~11! shows that the
grand-partition function of the Bose gas is functionally dependent on that of the Fermi ga
vice versa. Taking the logarithm of Eq.~9! and performing the sum over the spin states one fi

2bVB~V,T,m!52g(
k

ln~12ze2bek!,

whereg52s11. In the continuum limit one uses the property

(
k

→ V

~2p!D E kD21dkdvD,

whereV5LD is the box volume,dvD is the infinitesimal ‘‘surface’’ element of the unit radiu
hypersphere ofRD and k is the modulus ofk. The resulting integrand only depends on t
modulus ofk and the angular integration yields the area of the unit hypersphere, equa16

2pD/2/G(D/2). After converting to the new integration variablex5bk2/2m one gets

lDbVB~V,T,m!

gV
5

1

G~D/2!
E

0

`

xD/221 ln~12ze2x!dx. ~12!

We recall now the definition of the Lerch functionF(z,s,v):13

F~z,s,v ![ (
n50

`
zn

~v1n!s
5

1

G~s!
E

0

` xs21e2vx

12ze2x
dx, uzu,1, v50,21,..., ~13!

where the integral expression applies ifRv.0 and eitheruzu<1, zÞ1, Rs.0 or with z51,
Rs.1. By this integral expression, Eq.~12! can be written as

lDbVB~V,T,m!

gV
52

1

G~D/2!
E

0

`

dxE
0

z xD/221e2x

12te2x
dt52E

0

z

F~ t,D/2,1!dt.
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Assuming thatuzu,1, we can use the reported power expansion of the Lerch function to eva
the last integral. We find that

lDbṼB~V,T,z!

gV
52zF~z,D/211,1!,

whereṼB(V,T,z)[VB(V,T,m). In the continuum limit the evaluation of the grand-potential
the fermion gas can be performed by the same procedure applied to Eq.~10!. One finds that

2
lDbVF~V,T,m!

gV
5

1

G~D/2!
E

0

`

xD/221 ln~11ze2x!dx5
1

G~D/2!
E

0

`

dxE
0

z xD/221e2x

11te2x
dt

5E
0

z

F~2t,D/2,1!dt

5zF~2z,D/211,1!.

Collecting the last results we obtain

VB~V,T,m!5ṼB~V,T,z!52F gV

lDb
GzF~z,D/211,1!, ~14!

VF~V,T,m!5ṼF~V,T,z!52F gV

lDb
GzF~2z,D/211,1!. ~15!

These relations deserve some comments. They show that the grand-potentials of the Bo
Fermi ideal gases depend on the chemical potential via the fugacityz and that their dependence o
z is determined by a single function, i.e., the Lerch functionF(z,s,v) with v51 ands5(D/2
11). The further dependence onV, m and the spins ~not to be confused with parameters present
in the Lerch and in the polylogarithmic functions! is fully specified by the factor within squar
brackets, while the dependence onT is partly determined by the aforesaid factor and par
contained in the fugacity definition. It is recalled now that the Lerch function is analytic thro
out the z-plane cut along the real half-axis fromz51 to z5` as it appears evident from th
integral expression reported in~13! ~see, also, Sec. 1.11 of Ref. 13!. This property implies that
VB(V,T,m) is an analytic function ofm5m81 im9 within the strip delimited bym9501 and
m952p/b. Thus, settingm5m81 ip/b with 2`,m8,` in ~14! so as to have 0,arg(12z)
,2p, we find that

VB~V,T,m81 ip/b!5ṼB~V,T,2z8!5F gV

lDb
Gz8F~2z8,D/211,1!

52ṼF~V,T,z8!52VF~V,T,m8!. ~16!

The knowledge of the quantity on the lhs of this relation is made possible by the analytic
tinuation, ensured by~14!, of VB(V,T,m) with respect tom. At the same time,~16! shows that this
analytic continuation yields the grand-potential~with the reversed sign! of the corresponding
Fermi gas with chemical potentialm8. Thus, VB(V,T,m) and 2VF(V,T,m) are the boundary
values of the functionV(V,T,w)5@gV/lDb#ebwF(ebw,D/211,1), analytic in the complex vari
ablew, asw→m1 i0 with m,0 and asw→m1 ip/b with 2`,m,`, respectively. It should be
noted that this property holds only true for2VF(V,T,m) and that it does not apply to
VF(V,T,m). This property reflects the fact that the Bose and the Fermi ideal gases are phy
different so that the grand-potential of the second cannot be obtained by a simple ana
continuation of the first,17 but we must also add, so to say ‘‘by hand,’’ a further change of s
Before proceeding to evaluate further thermodynamical functions we add now two remarks
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it is simple to verify that results~14! and~15! make~11! fulfilled. Second, Eqs.~14! and~15! can
be written in terms of the polylogarithm functions. These being defined as5

Li s~z![ (
n50

`
zn11

~n11!s
, uzu,1, ~17!

it is evident that

Li s~z!5F~z,s![zF~z,s,1!, ~18!

whereF(z,s) is the notation adopted by Erdeley13 ~Sec. 1.11!. Thus, Eqs.~14! and~15! also read

lDbṼB~V,T,z!

gV
52LiD/211~z!, ~19!

lDbṼF~V,T,z!

gV
5LiD/211~2z!. ~20!

The entropiesSB(V,T,m) andSF(V,T,m) of the two gases can easily be calculated by the th
modynamical relationS52]V(V,T,m)/]T, applied to~14! and ~15!. By the relation

]F~z,s,v !

]z
5

1

z
@F~z,s21,v !2vF~z,s,v !#,

one finds

SB~V,T,m!5
gVkB

lD
@~D/211!zF~z,D/211,1!2mbzF~z,D/2,1!# ~21!

for m,0 and

SF~V,T,m!5
gVkB

lD
@~D/211!zF~2z,D/211,1!2mbzF~2z,D/2,1!# ~22!

for 2`,m,`. The mean numbers of bosons and fermionsNB(V,T,m) andNF(V,T,m) and the
relevant internal energies could be evaluated by the thermodynamical relationsN52]V/]m and
U5V1TS1mN. It looks, however, more interesting to determine these quantities by the the
Green functionGa,b(x,x8).

III. ANALYTIC CONTINUATION OF THE THERMAL GREEN FUNCTION

Even in the presence of a complex chemical potential, it is formally possible to defin

statistical operator as in Ref. 1, i.e.,r̂G5eb(V2K̂). In terms of the Schro¨dinger field operators
ĉa(x,0) andĉa

†(x,0) the modified Heisenberg operators assume the form

ĉa~xt!5eK̂tĉa~x,0!e2K̂t,

ĉa
†~xt!5eK̂tĉa

†~x,0!e2K̂t.

They clearly depend onm ~though this dependence is not explicitly reported! becauseK̂ depends
on m @see Eq.~5!#. After denoting the set of variables~x,t! by x, the thermal Green function is
defined as
                                                                                                                



s of
single

t,
pe-
ported

Green
ted

ined
nergy

3358 J. Math. Phys., Vol. 45, No. 8, August 2004 Salvino Ciccariello

                    
Ga,b~x,x8!52Tr$r̂GTt~ ĉa~x!ĉb
†~x8!!%, ~23!

where the meaning ofTt is reported in Sec. 23 of Ref. 1. One of the most important propertie
the thermal Green function is the fact that its knowledge determines the mean value of any
particle operatorĴ5*ca

†(x)Ja,b(x)cb(x)dDx through the relation

^Ĵ&5Tr~ r̂GĴ!56E lim
x8→x

lim
t8→t1

~Jb,a~x!Ga,b~xt,x8t8!!dDx,

where the1 sign applies to fermions and the2 sign to bosons. It is straightforward to verify tha
even in presence of a complexm, the thermal Green function obeys the periodicity or the anti
riodicity condition for bosons and fermions, respectively. Therefore, by the same analysis re
in Ref. 1, one finds that the Fourier coefficients of the thermal Green function are

G B,a,b
0 ~k,vn ,m!5H da,b

ivn2~e k
0 2m!

with even n

0 with odd n,

~24!

for the ideal Bose gas and

G F,a,b
0 ~k,vn ,m!5H da,b

ivn2~e k
0 2m!

with odd n

0 with even n,

~25!

for the fermion one. In both equations, we havevn5np/b. Setting nowm5m81 ip/b in the
denominator of~24!, we find that

ivn2~e k
0 2m82 ip/b!5 i ~vn1p/b!2~e k

0 2m8!5 ivn112~e k
0 2m8!.

Thus, we find the interesting property that the Fourier coefficients of the bosonic thermal
function, evaluated atm5m81 ip/b, convert into those of the fermionic Green function evalua
at m5m8, namely

G B,a,b
0 ~k,vn ,m81 ip/b!5G F,a,b

0 ~k,vn11 ,m8! ;nPZ. ~26!

We can now use Eqs.~26.6! and~26.7! of Ref. 1, adapted to the case of the free gases conta
in a D-dimensional box, in order to evaluate the mean number of particle and the internal e
of the two ideal quantum gases. In the boson case, we find

NB~V,T,m!52
Vg

b~2p!D E dDk (
n even

eivnh

ivn2~e k
0 2m!

,

which, by the identity~25.38! of Ref. 1, becomes

NB~V,T,m!5
Vg

~2p!D E 1

eb~e k
0

2m!21
dDk. ~27!

Settingm5m81 ip/b in ~27! and using~26! we obtain

NB~V,T,m81 ip/b!52
Vg

b~2p!D E dDk (
n odd

eivnh

ivn2~e k
0 2m8!
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that, by identity~25.38! of Ref. 1, yields

NB~V,T,m81 ip/b!52
Vg

~2p!D E 1

eb~e k
0

2m8!11
dDk52NF~V,T,m8!. ~28!

In a similar way, we find that the internal energy of the Bose gas is@see Eq.~26.7! of Ref. 1#

UB~V,T,m!52
Vg

b~2p!D E dDk (
n even

eivnh

2 F11
2e k

0

ivn2~e k
0 2m!

G
5

Vg

~2p!D E e k
0

eb~e k
0

2m!21
dDk, ~29!

and that

UB~V,T,m81 ip/b!52
Vg

b~2p!D E dDk (
n odd

eivnh

2 F11
2e k

0

ivn2~e k
0 2m8!

G
52

Vg

~2p!D E e k
0

eb~e k
0

2m8!11
dDk52UF~V,T,m8!. ~30!

The integrals appearing in Eqs.~27!–~30! can be expressed in terms of the appropriate Le
functions by the procedure reported in the previous section. In particular, from~27! it follows that

lDNB~V,T,m!

gV
5

lDrB~T,m!

g
5zF~z,D/2,1!, ~31!

and from~28! that

lDrB~T,m81 ip/b!

g
52z8F~2z8,D/2,1!52

lDrF~T,m8!

g
. ~32!

Finally, Eqs.~29! and ~30! convert into

blDUB~V,T,m!

gV
5~D/2!zF~z,D/211,1! ~33!

and

blDUB~V,T,m81 ip/b!

gV
52~D/2!z8F~2z8,D/211,1!52

blDUF~V,T,m8!

gV
. ~34!

The comparison of these relations with Eqs.~14! and~15! shows that, as in the case of the classi
ideal gas, the grand-potential and the internal energy of the ideal quantum gases are
related,17 i.e.,

VB~V,T,m!52
2UB~V,T,m!

D
and VF~V,T,m!52

2UF~V,T,m!

D
, ~35!

which for both gases imply that

~11D/2!PV5TS1mN. ~36!
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@In passing, it is also noted that in the two-dimensional case Eqs.~35! and ~36! were shown10 to
hold true for any fractional exclusion statistics.# Similarly to Eq.~16!, from Eqs.~31! and~32! one
concludes thatlDrB(T,m)/g and2lDrF(T,m)/g are the boundary values of the analytic functi
zF(z,D/2,1)5ebwF(ebw,D/2,1) asw→m1 i0 with m,0 andw→m1 ip/b with 2`,m,`.
The same property applies toblDUB(V,T,m)/gV and to2blDUF(V,T,m)/gV owing to ~33!
and~34!. @The property is also proven by recalling that it is true for the grand-potentials and
using~35!.# We now note that Eq.~1! immediately follows from~31! and~32! using~17! and~18!.
In a similar way, Eq.~2! is obtained by combining the two expressions obtained by dividing
left hand sides of~19! and ~20! by lDrB /g and lDrF /g, respectively. By the same procedur
starting from~33!, ~34!, ~21! and ~22! one respectively recovers Eqs.~3! and ~4!. Since the right
hand sides of~2! and~3! are analytic in the complexz-plane cut fromz51 to z5` along the real
axis, it follows thatbP/r for the Bose and the Fermi gases are the boundary values of the
analytic function LiD/211(ebw)/LiD/2(e

bw)5F(ebw,D/211,1)/F(ebw,D/2,1) as w→m81 i0
with 2`,m8,0 andw→(m81 ip/b) with 2`,m8,`. In other words,bP/r of the ideal Bose
gas by analytic continuation in the chemical potential converts intobP/r of the ideal Fermi gas.
On the contrary, this property is neither true for the particle density~because the analytic continu
ation yields the opposite value of the density! nor for the entropy due to presence of the nona
lytic contribution loguzu. For the entropy, it should also be stressed that~21! and ~22! only apply
with real values ofm. In fact, the analytic continuation of~21! would yield SB(V,T,m1 ip/b)
52SF(V,T,m)1 ip(@gVkB /lD#ebmF(2ebm,D/2,1) that does not coincide with the entrop
~with the reversed sign! of the fermion system for the presence of the imaginary term. On
contrary, starting from ~14! with 2`,m,`, one rightly finds that 2(]VB(V,T,m
1 ip/b))/(]T)52SF(V,T,m) because the temperature derivative also acts on the imaginary
of the chemical potential.

A further advantage of having related the thermodynamical functions of the ideal qua
gases to the Lerch function is the possibility of determining analytically their behaviorsm
approaches the limiting points2` and 02 for the Bose gas and2` and` for the Fermi gas. This
analysis can be found in Refs. 4 and 17 where the particle number fluctuations are also dis

IV. CONCLUSIONS

We have shown that the results obtained by Lee4 can also be recast in the following way: th
particle number densityr(T,m), the internal energyU(V,T,m) or the grand-potentialV(V,T,m)
of the Bose and Fermi ideal gases confined to aD-dimensional box, aside from the trivial factor
reported in Eqs.~31!–~34!, ~14! and ~15!, are the boundary values of the analytic functio
F(ebw,D/2)5ebwF(ebw,D/2,1) andF(ebw,D/211)5ebwF(ebw,D/211,1), asw→m1 i0 with
m,0 and w→m1 ip/b with 2`,m,`. Since the mentioned trivial factors depend on t
bosonic or fermionic nature of the particle, the PND of the Fermi gas cannot be considered
analytic continuation in the chemical potential of the PND of the Bose gas. The same happe
UB andUF . On the contrary, the analytic continuation inm of UB /N andPB /rB respectively yield
UF /N andPF /rF but these two functions do not fully determine the thermodynamics of the
systems since they are not expressed in terms of their natural variables. An interesting
which to our knowledge does not seem to have been noted before, is the fact that the a
continuation fromm to m1 ip/b of the Fourier coefficients of the bosonic thermal Green funct
exactly reproduces the Fourier coefficients of the fermionic function. If we recall that the ge
expression of the Fourier coefficients, in presence of a spin-independent interaction, is

Ga,b~k,vn ,m!5
da,b

ivn2~e k
0 2m!2S* ~k,vn ,m!

,

whereS* (k,vn ,m) is the proper self-energy contribution, we realize that the aforesaid ana
continuation does not convert the boson proper self-energy into the fermion one. In fact
though the Feynman graphs are the same and the substitutionm→m1 ip/b converts the free
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boson propagator into the fermion one, this substitution does not reproduce the factor (21)F

related to possible fermion loops. Hence, the results illustrated in the paper are only valid
noninteracting case. They look, however, interesting both for extracting the asymptotic beh
of the thermodynamical functions and for the resulting unified picture of the boson and fer
free gases.
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Balian–Low phenomenon for subspace Gabor frames
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In this work, the Balian–Low theorem is extended to Gabor~also called Weyl–
Heisenberg! frames for subspaces and, more particularly, its relationship with the
unique Gabor dual property for subspace Gabor frames is pointed out. To achieve
this goal, the subspace Gabor frames which have a unique Gabor dual of type I
~resp. type II! are defined and characterized in terms of the Zak transform for the
rational parameter case. This characterization is then used to prove the Balian–Low
theorem for subspace Gabor frames. Along the same line, the same characterization
is used to prove a duality theorem for the unique Gabor dual property which is an
analogue of the Ron and Shen duality theorem. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1768621#

I. INTRODUCTION

A Gabor system is a collection of functions generated by a window functiongPL2(R) and by
translations and modulations:

G~a,b,g!ª$e2p imag~x2nb!:m,nPZ%,

wherea andb are two positive parameters. Gabor systems were first proposed by Gabor~1946!
for the purpose of applications in signal processing. To ensure stable reconstruction of sign
Gabor system needs to be a frame, a concept introduced by Duffin and Schaeffer~1952! as a
generalization of Riesz bases. It is well known that the conditionab<1 is both necessary an
sufficient for the existence of a window functiongPL2(R) such that the Gabor systemG(a,b,g)
forms a frame forL2(R) ~cf. Daubechies, 1990 and Rieffel, 1981!. Moreover, if ab51, then
every Gabor frameG(a,b,g) for L2(R) is Riesz basis whileG(a,b,g) cannot be a Riesz basi
for L2(R) when ab,1. The following is one of the fundamental results for Gabor system
shows that if the systemG(a,b,g) forms a frame forL2(R), the generating functiong cannot be
at the same time well localized in time and frequency.

Theorem 1.1 „Balian–Low Theorem…: Assume thatab51 and suppose that gPL2(R) is
such thatG(a,b,g) is a frame for L2(R). Then,

S E
R
uxg~x!u2dxD S E

R
uvĝ~v!u2dv D 5`. ~1.1!

Note that the Fourier transform defined by

ĝ~v!5E
R
g~x!e22p ixvdx, gPL1~R!ùL2~R! ~1.2!

a!Electronic mail: gabardo@mcmaster.ca
b!Electronic mail: dhan@pegasus.cc.ucf.edu
33620022-2488/2004/45(8)/3362/17/$22.00 © 2004 American Institute of Physics
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can be extended to all ofL2(R) by using the isometry of the transform. The Balian–Low theor
~abbr. BLT! was first proved by Balian~1981! and Low~1985! for orthonormal bases with a ga
in their proofs. The gap was later corrected and this result was generalized to Riesz bas~cf.
Battle, 1988 and Daubechies, 1990!. There have been, since then, some interest in generalizin
BLT to more general frameworks. For some recent progress related to different generalizat
the BLT, we refer to Benedettoet al. ~2003a!; Benedettoet al. ~2003b!; Benedetto and Powel
~2004!; Gröcheniget al. ~2002!, etc. In this paper we are interested in studying the BLT in
context of Gabor frames for subspaces ofL2(R). Subspace Gabor frames have some interes
properties and, also, certain advantages. For example, the restrictionab<1 is no longer needed
when working in the setting of subspace Gabor frames. To simplify the notations, we will d
by M(a,b,g) the closed linear subspace generated by the Gabor systemG(a,b,g). We refer to
Casazza and Christensen~2001!; Gabardo and Han~2003a, 2001, 2003b, 2004! for some recent
work on this topic. One of our goals in this paper is to prove the following generalization o
BLT:

Theorem 1.2:Let G(a,b,g) be a frame forM(a,b,g). Then
~i! If ab51, then ~1.1! always holds.
~ii ! If ab is an integer larger than 1, then~1.1! holds wheneverG(a,b,g) is not a Riesz

sequence.
~iii ! If 1/ab is an integer larger than 1, then~1.1! holds whenever the subspaceM(a,b,g)

ÞL2(R).
We remark that the condition thatG(a,b,g) is not a Riesz sequence in~ii ! and the condition

that M(a,b,g)ÞL2(R) in ~iii ! cannot be dropped. In fact, letg(x)5e2x2
. ThenG(a,b,g) is a

Riesz sequence whenab is an integer larger than one andM(a,b,g)5L2(R) if 1/~ab! is an
integer larger than 1~see Example 4.8 for details!. However, it is clear that

S E
R
uxg~x!u2dxD S E

R
uvĝ~v!u2dv D ,`. ~1.3!

For Theorem 1.2, we will, in fact, obtain a more general result which shows that the Ba
Low phenomenon for subspace Gabor frames is, somewhat surprisingly, related to the
Gabor dual property, a topic that has been investigated in Gabardo and Han~2004!. One of our
goals, in this paper, is to further investigate the unique Gabor dual property for subspace
frames. In particular, we will give a concrete characterization for those subspace Gabor f
which have the unique Gabor dual property and we will use this result to prove Theorem 1.2
paper is organized as follows: In Sec. II, we introduce the unique Gabor dual property and d
the main results. Since the techniques to deal with unique Gabor dual property for the ration~i.e.,
the case whereab is a rational number! and the irrational cases are quite different, we will fi
treat the rational case in Sec. III and use the Zak-transform in that case to characterize
functionsgPL2(R) such thatG(a,b,g) has unique Gabor dual of type I or type II. In Sec. IV, w
prove our main results including Theorem 1.1, the duality theorem, and the characteri
theorem for the unique Gabor dual property in the case of arbitrary parametersa andb.

II. THE UNIQUE GABOR DUAL PROPERTY AND THE MAIN RESULTS

Let us first introduce some terminology and notation that will be used throughout this p
A family of vectors$xk%kPN is called aframefor a Hilbert spaceH if there exist two positive

constantsA andB such that

Aixi2< (
kPN

u^x,xk&u2<Bixi2 ~2.1!

holds for all xPH. The two optimal constants in~2.1! are called theframe bounds. When A
5B51, the frame is called anormalized tightframe. A family $xk% is calledBesselwhen the
second inequality in~2.1! hold. A Bessel sequence$yn% is called adual for a frame$xn% if
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x5 (
nPN

^x,yn&xn ~2.2!

holds for all xPH, where the convergence of the series in~2.2! is unconditional in the Hilbert
space norm.

For a frame$xk%, we define the associatedanalysis operator Tby

Tx5 (
kPN

^x,xk&ek , xPH,

where $ek% is the standard orthonormal basis for,2(N). Since$xk% is a frame, Range(T) is a
closed linear subspace of,2(N). The associatedframe operator Sis defined to beT* T. It is a
bounded, positive and invertible operator fromH onto itself. By the definition ofS, it is clear that
$S21xn% is a dual of$xn%. It is also called thestandard dualof the frame$xn%.

Given two positive parametera andb, we define the collection of unitary operators onL2(R),
Ua,b , by

Ua,b5$EmaTnb :m,nPZ%,

where the two unitary operatorsEma andTnb are defined by

~Ema f !~x!5e2p imaxf ~x! and ~Tnb f !~x!5 f ~x2nb!, f PL2~R!.

For convenience, we also writegma,nb5EmaTnbg , whengPL2(R).
If G(a,b,g) is a frame forM(a,b,g), then we say thatG(a,b,g) is a subspace Gabor

frame. We also useTg to denote the analysis operator associated withG(a,b,g). Let S5Tg* Tg be
the frame operator associated with a subspace Gabor frameG(a,b,g). Then S21g
PM(a,b,g), and (S21g)ma,nb5S21(gma,nb). Therefore,G(a,b,S21g) is the standard dual o
G(a,b,g). Since we are dealing with Gabor frames for subspaces, we can have several w
choosing a dual frame which also has the ‘‘Gabor form.’’ In particular, we will now introduce
different type of duals, which we call type I and type II duals.

Definition 2.1: LetG(a,b,g) be a subspace Gabor frame forM(a,b,g).

~i! If G(a,b,h) is a Bessel sequence such that hPM(a,b,g) and

f5(
m,n

^f,hma,nb&gma,nb , fPM~a,b,g!,

thenG(a,b,h) is called a Gabor dual of type I forG(a,b,g)
~ii ! If hPL2(R) ~not necessarily inM(a,b,g)) is such thatG(a,b,h) is a Bessel sequence,

Range(Th) is contained inRange(Tg) and

f5(
m,n

^f,hma,nb&gma,nb

holds for every fPM(a,b,g), then G(a,b,h) is called a Gabor dual of type II for
G(a,b,g).

Roughly speaking, for Gabor duals of type I, we are interested in the existence of a
window function which belongs to the subspace generated by the original frame, while for G
dual of type II, the dual window function is not required to be in that subspace, but we requi
coefficient sequence$^ f ,hma,nb&% to be in the ‘‘analyzing space’’ Range(Tg) of the frame
G(a,b,g). It is obvious that there is only one Gabor dual of type I ifG(a,b,g) is a Riesz
sequence. However, this is not the only case where there could be a unique Gabor dual of
A similar situation occurs for the Gabor dual of type II whose uniqueness is guaranteed b
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density inL2(R) of the subspace generated by the original frame, even though that condition
always necessary. In this paper, we are interested in finding conditions ong under which there is
only one window function generating a Gabor dual of type I~resp. type II! for the frame
G(a,b,g).

For type I Gabor duals, we obtained the following characterization theorem in Gabard
Han ~2004; see also Gabardo, 2003!:

Theorem 2.2: Let G(a,b,g) be a normalized Gabor tight frame forM(a,b,g). Then, the
following are equivalent:

~i! G(a,b,g) has a unique Gabor dual of type I.
~ii ! ^g,UVg&5^g,VUg& holds for all U,VPUa,b .
~iii ! e2p i (nk2m,)ab^g,gma,nb&5^g,gma,nb& for all m, n, k, ,PZ.
To prove Theorem 1.2, we need the following more concrete characterization for the u

Gabor dual property. Note that the assumption thatG(a,b,g) be a normalized tight frame is no
needed here.

Theorem 2.3:Let G(a,b,g) be a subspace Gabor frame forM(a,b,g).
A. If ab is irrational, then
(A1) G(a,b,g) has a unique Gabor dual of type I if and only ifG(a,b,g) is a Riesz

sequence.
(A2) G(a,b,g) has a unique Gabor dual of type II if and only ifG(a,b,g) is a frame for the

whole space L2(R).
B. Suppose thatab is rational. Let ab5p/q where p, q are positive integers with

gcd(p,q)51, and letG be the corresponding Zak-matrix associated with g~as in ~3.1!!. Then,
(B1) G(a,b,g) has a unique Gabor dual of type I if and only ifrank(G)P$0,q%.
(B2) G(a,b,g) has a unique Gabor dual of type II if and only ifrank(G)P$0,p%.
The well-known Ron–Shen duality principle~Ron and Shen, 1997! tells us thatG(a,b,g) is

a Riesz sequence~hence, G(a,b,g) has a unique Gabor dual of type I! if and only if
G(1/b,1/a,g) is a frame forL2(R) ~hence,G(1/b,1/a,g) has a unique Gabor dual of type II!.
Theorem 2.3 allows us to get the followingduality theoremwhich is consistent with the Ron–
Shen principle:

Theorem 2.4„Duality Theorem…: Let $gma,nb% be a subspace Gabor frame. Then, $gma,nb%
has a unique Gabor dual of type I if and only if$gm/b,n/a% has a unique Gabor dual of type II.

As a consequence of Theorem 2.3, we have:

Corollary 2.5: Let$gma,nb% be a subspace Gabor frame.

~i! If ab is an integer, then$gma,nb% has a unique Gabor dual of type I.
~ii ! If ab51/q for some integer q, then$gma,nb% has a unique Gabor dual of type II.
~iii ! If ab51, then$gma,nb% has a unique Gabor dual of both type I and type II.

Proof: Statement~i! follows from (B1) of Theorem 2.3 sinceG is a 13p matrix function and
thus its rank can only be 0 or 1. Statement~ii ! follows from (B2) of Theorem 2.3 in a similar way
and statement~iii ! is deduced immediately from~i! and~ii !. Note that~i! can also be obtained from
Theorem 2.2, since the unitary operators inUa,b commute whenab is an integer, and that~ii !
follows from ~i! and Theorem 2.4. h

It is known that$gma,nb% can be a Riesz basis for all ofL2(R) only whenab51. In this case,
$gma,nb% has unique Gabor dual of both types. Therefore, it is natural to ask whether the u
Gabor dual property is related to the Balian–Low phenomenon. We shall prove the followi

Theorem 2.6: Let $gma,nb% be a subspace Gabor frame which has a unique Gabor dua
type I. Then, one of the following must holds:

~i! $gma,nb% is a Riesz sequence.
~ii ! (*Ruxg(x)u2dx)(*Ruvĝ(v)u2dv)5`.

Combining this result together with Theorem 2.4, we get
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Corollary 2.7: Let$gma,nb% be a subspace Gabor frame which has a unique Gabor dua
type II. Then, one of the following must hold:

~i! $gma,nb% is a frame for the whole space L2(R).
~ii ! (*Ruxg(x)u2dx)(*Ruvĝ(v)u2dv)5`.

III. THE ZAK-TRANSFORM CHARACTERIZATION

As we mentioned in the Introduction, in order to prove our main results, different techn
are needed depending on whetherab is rational or irrational. In this section, we first deal with th
rational case.

Supposeab5p/q, where p,q are positive integers with gcd(p,q)51. We will denote by
Mm,n the set ofm3n matrices with complex entries. IfgPL2(R), we denote byZag the Zak
transform ofg defined by

Zag~ t,n!5a21/2(
kPZ

gS t2k

a De2p ikn,

and associate withg the matrix functionG(t,n), taking value inMq,p , defined by

Gr ,s~ t,n!5ZagS t2r
p

q
,n1

s

pD , 0<r<q21, 0<s<p21, ~3.1!

for a. e. (t,n) in @0,1)3@0,1/p).
The following result will be needed. It was proved in Gabardo and Han, 2003 in the caa

51, although the general case can be handled in a very similar way.
Proposition 3.1: Let g anda, b as above. Then, the following are equivalent.

~a! G(a,b,g) is a subspace Gabor frame forM(a,b,g).
~b! There exist two constants C1 , C2.0 such that

C1GG* <~GG* !2<C2GG* ,
a. e. on@0,1)3@0,1/p).

~c! There exist two constants C1 , C2.0 such that
C1G* G<~G* G!2<C2G* G,

a. e. on@0,1)3@0,1/p).

Lemma 3.2: Let g anda, b as above and let fPL2(R) have a Zak transform denoted b
Za f 5F. Then, for each m, nPZ and each r50,...,q21, we have

^ f ,gma,~nq1r !b&5E
0

1E
0

1/p

e22p imte2p inpn (
l 50

p21

Gr ,l~ t,n!F~ t,n1 l /p!dndt.

Proof: First note that

~Zagma,~nq1r !b!~ t,n!5a21/2(
kPZ

e2p ima~ t2k/a!gS t2k

a
2~nq1r !b De2p ikn

5a21/2(
kPZ

e2p imtgS t2k2~nq1r !
p

q

a
D e2p ikn

5a21/2e2p imt(
kPZ

gS t2k2np2r
p

q

a
D e2p ikn
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5a21/2e2p imt(
kPZ

gS q

a
D e2p i ~k2np!n

5e2p imte22p inpnZagS t2r
p

q
,n D .

Using the unitarity of the Zak transform as a mapping fromL2(R) to L2(I 3I ), where I
5@0,1), we have, for 0<r<q21 and form,nPZ,

^ f ,gma,~nq1r !b&5E
R

f ~x!gma,~nq1r !b~x!dx5E
I
E

I
F~ t,n!e22p imte2p inpnZagS t2r

p

q
,n Ddndt

5E
0

1E
0

1/p

e22p imte2p inpn (
l 50

p21

ZagS t2r
p

q
,n1 l /pDF~ t,n1 l /p!dndt

5E
0

1E
0

1/p

e22p imte2p inpn (
l 50

p21

Gr ,l~ t,n!F~ t,n1 l /p!dndt,

which proves the lemma. h

The following result is known~Zibulski and Zeevi, 1997! and will be needed later.
Proposition 3.3: Let g anda, b as above. Then, the following are equivalent.

~a! G(a,b,g) is a Bessel system in L2(R).
~b! There exists C.0 such that

iG~ t,n!i<C, a. e. on @0,1!3F0,
1

pD ,

wherei.i denotes the matrix-norm of a matrix inMq,p .
~c! Zag belongs to L`(@0,1)3@0,1)).

We will make use of the following fact which is intuitively clear.
Lemma 3.4: IfV is a measure space andG:V→Mm,n , where m and n are positive integer

is measurable, then the functionrank(G):V→R is also measurable.
Proof: The measurability of rank(G) can easily be deduced from the fact that the rank o

matrix AÞ1 is the unique integern>0 such that any submatrix ofA of sizen113n11 has zero
determinant and such that there exists a least one submatrix ofA of size n3n with a nonzero
determinant. h

The following result is well known and provides a proof of the incompleteness ofM(a,b,g)
in L2(R) whenab.1, in the rational case~Daubechies, 1990 and Zibulski and Zeevi, 1997!. We
provide a proof here for the reader’s comvenience.

Proposition 3.5: Let g be in L2(R) and let ab5p/q as above. Then, the identit
M(a,b,g)5L2(R) holds if and only if

rank~G!5p a. e. on @0,1!3F0,
1

pD .

Proof: Let f be a function inL2(R) with Zak transformZa f 5FPL2(I 3I ). Using Lemma
3.2, we can write, for 0<r<q21 and form, nPZ, that

^ f ,gma,~nq1r !b&5E
0

1E
0

1/p

e22p imte2p inpn (
l 50

p21

Gr ,l~ t,n!F~ t,n1 l /p!dndt.
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Since the function defined by the sum inside this last integral belongs toL1(I 3I ), a function f
PL2(R) is orthogonal toM(a,b,g) if and only if

(
l 50

p21

Gr ,l~ t,n!F~ t,n1 l /p!50, for a. e. ~ t,n!P@0,1!3@0,1/p!, ~3.2!

for eachr 50,...,q21. Now, if rank(G)5p for a. e. (t,n)P@0,1)3@0,1/p), it follows that F(t,n
1 l /p)50 for a. e. (t,n)P@0,1)3@0,1/p) and thus thatF50 as a function inL2(I 3I ). Hence
f 50 andM(a,b,g)5L2(R). On the other hand, if rank(G),p on a subset of@0,1)3@0,1/p)
with positive measure, then it is easy to construct a nonzero functionFPL2(I 3I ) satisfying~3.2!.
The functionfªZa

21F is thus a nonzero function inL2(R) orthogonal toM(a,b,g) which, then,
must be a proper subspace ofL2(R). h

Definition 3.6: Let gPL2(R) and let a and b be positive numbers. Then we say that t
systemG(a,b,g) has theRiesz Propertyif, whenever

(
m,mPZ

cm,ngma,nb50,

where the series converges unconditionally inL2(R) and $cm,n%P,2(Z2), we must have that
cm,n50, for all (m,n)PZ2.

Remark 3.7:Clearly, if the systemG(a,b,g) is a Riesz basis for its span, then it must ha
the Riesz property.

The following result is essentially known Balanet al. ~2000!. We state it in a slightly more
general form that does not require the system to form a frame for its closed linear span.

Proposition 3.8: Let g be in L2(R) and letab5p/q as above. Then, the systemG(a,b,g)
has the Riesz property if and only if

rank~G!5q a. e. on @0,1!3F0,
1

pD .

Proof: Suppose that

(
m,nPZ

0<r<q21

cm,nq1rgm,nq1r50,

where the series converges unconditionally inL2(R) and$cm,n%P,2(Z2). Then, if f PL2(R) and
Za f 5F, we have

05 (
m,nPZ

0<r<q21

cm,nq1rE
R

f ~x!gm,nq1r~x!dx

5 (
m,nPZ

0<r<q21

cm,nq1rE
0

1E
0

1

F~ t,n!e22p imte2p inpnZagS t2r
p

q
,n Ddndt

5E
0

1E
0

1/p

(
m,nPZ

0<r<q21

cm,nq1re
22p imte2p inpn (

l 50

p21

Gr ,l~ t,n!F~ t,n1 l /p!dndt.

For r 50,...,q21, let Hr be the functions inL2(@0,1)3@0,1/p)) defined by the series

Hr~ t,n!5 (
m,nPZ

cm,nq1re
22p imte2p inpn, for r 50,...,q21,
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and, for 0< l<p21, define the functionsFl(t,n)5F(t,n1 l /p), for (t,n)P@0,1)3@0,1/p). We
have thus

E
0

1E
0

1/p

(
0<r<q21

Hr~ t,n! (
l 50

p21

Gr ,l~ t,n!Fl~ t,n!dndt50,

and, since the functionsFl can be arbitrary functions inL2(@0,1)3@0,1/p)), it follows that, for
eachl 50,...,p21,

(
0<r<q21

Hr~ t,n!Gr ,l~ t,n!50 a. e. on @0,1!3@0,1/p!. ~3.3!

Therefore, the systemG(a,b,g) has the Riesz property if, whenever the functionsHr

PL2(@0,1)3@0,1/p)), for r 50,...q21, and ~3.3! holds for eachl 50,...,p21, thenHr50, for
eachr 50,...,q21. This is clearly equivalent to rank(G)5q for a. e. (t,n)P@0,1)3@0,1/p). h

Our next goal is to provides a characterization through the Zak transform for systems a
ting a unique dual of type I. We note that the standard dual,S21g, whereS is the frame operator
is always a dual of type I. Before stating the result, we need the following intermediary ste

Lemma 3.9: Let g,hPL2(R), let ab5p/q as above and consider the associated measura
functionsG andH with values inMq,p defined as in (3.1). Then, the function hPL2(R) belongs
to M(a,b,g) if and only if there exists a measurable functionA with values inMq,q such that

H~ t,n!5A~ t,n!G~ t,n!, for a. e. ~ t,n!P@0,1!3F0,
1

pD .

Proof: First note that, ifhPM(a,b,g), thenhma,nbPM(a,b,g) for eachm,nPZ. Thus,
hPM(a,b,g) if and only if, for anyf PL2(R), the fact thatf is orthogonal toM(a,b,g) implies
that f is also orthogonal toM(a,b,h). Denoting byF the Zak transform of the functionf
PL2(R), we have, as before, that

^ f ,gma,~nq1r !b&5E
0

1E
0

1/p

e22p imte2p inpn (
l 50

p21

Gr ,l~ t,n!F~ t,n1 l /p!dndt,

for m,nPZ and 0<r<q21. Thus, letting forl 50,...,p21, Fl(t,n)5F(t,n1 l /p), where (t,n)
P@0,1)3@0,1/p), we see that the fact thatf is orthogonal toM(a,b,g) is equivalent to

(
l 50

p21

Gr ,l~ t,n!Fl~ t,n!50, for a. e. ~ t,n!P@0,1!3F0,
1

pD . ~3.4!

Similarly, f is orthogonal toM(a,b,h) if and only if

(
l 50

p21

Hr ,l~ t,n!Fl~ t,n!50, for a. e. ~ t,n!P@0,1!3F0,
1

pD . ~3.5!

Clearly, the implication (3.4)⇒(3.5) holds if and only if, for a. e. (t,n)P@0,1)3@0,1/p), the rows
of the matrixH(t,n) can be expressed as linear combination of those of the matrixG(t,n). This
is equivalent to the existence, for a. e. such (t,n) of a matrixA(t,n) in Mq,q such thatH(t,n)
5A(t,n)G(t,n). SinceA must clearly be measurable, this proves the lemma. h

Lemma 3.10: Let G belong toMq,p . Then, G has the property that, whenever A belongs
Mq,q , the identity G* AG50 implies that AG50 if and only if rank(G)P$0,q%.

Proof: It is clear that the propertyG* AG50 implies thatAG50 holds if rank(G)50, i.e.,
if G50 and if rank(G)5q, i.e., if the range ofG is all of Cq, where we viewG has a linear
mapping fromCp to Cq. Conversely, if rank(G)¹$0,q%, consider the subspaceN of Cq defined by
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N5G(Cp). Then, by assumptionNÞ$0% andNÞCq. Hence, there exists a nonzero linear ma
ping from N to N'. We can extend this mapping to a linear mappingA from Cq to itself by
definingA to be 0 onN'. Let u.v denote the standard inner product between two vectorsu andv
in Cp. If x andy belong toCp, we have

G* AGx.y5AGx.Gy50,

so G* AG50, but AGxÞ0, for somexPCp by construction, which shows that the proper
mentioned above cannot hold. h

Remark:The lemma above also holds for measurable matrix-valued functionsG andA of the
corresponding size if the equalities in the lemma are replaced by a. e. equalities, since, as
easily shown, all the operations involved in the construction ofA, in the case where
rank(G)¹$0,q%, can be made to be measurable. The same remark holds, with the ob
changes, for the analoguous Lemma 3.13.

Now we are ready to prove (B1) of Theorem 2.3:
Theorem 3.11:Let ab5p/q as above and suppose that the systemG(a,b,g) is a frame for

M(a,b,g). Then, the systemG(a,b,g) admits a unique dual of type I (which is thus given by t
standard dual) if and only if

rank ~G!P$0,q% a. e. on @0,1!3F0,
1

pD .

Proof: The existence of two different duals of type I for the systemG(a,b,g) is easily seen
to be equivalent to the existence of a nonzero functionhPM such that the systemG(a,b,g) is
Bessel and which satisfies

(
m,nPZ

^ f ,gma,nb&hma,nb50, ; f PL2~R!,

or, equivalently,

(
m,nPZ

^ f 1 ,gma,nb&^ f 2 ,hma,nb&50, ; f 1 , f 2PL2~R!. ~3.6!

Let F1 and F2 denote the Zak transform off 1 and f 2 , respectively, and letG and H be the
functions with valued inMq,p associated withg andh, respectively, defined as in~3.1!. We have

(
m,nPZ

^ f 1 ,gma,nb&^ f 2 ,hma,nb&5 (
m,nPZ

0<r<q21

E
0

1E
0

1

F1~ t,n!e22p imte2p inpnZagS t2r
p

q
,n Ddndt

3E
0

1E
0

1

F2~ t,n!e2p imte22p inpnZahS t2r
p

q
,n Ddndt

5 (
m,nPZ

0<r<q21

E
0

1E
0

1/p

e22p imte2p inpn (
l 50

p21

Gr ,l~ t,n!F1~ t,n1 l /p!dndt

3E
0

1E
0

1/p

e2p imte22p inpn (
l 50

p21

Hr ,l~ t,n!F2~ t,n1 l /p!dndt.

Letting Fl
1(t,n)5F1(t,n1 l /p) and Fl

2(t,n)5F2(t,n1 l /p) for (t,n)P@0,1)3@0,1/p), we can
write this last expression, using Parseval’s identity as
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(
r 50

q21 E
0

1E
0

1/p

(
l ,m50

p21

Fl
1~ t,n!Gl ,r* ~ t,n!Hr ,m~ t,n!Fm

2 ~ t,n!dndt

5E
0

1E
0

1/p

(
l ,m50

p21

~G* H! l ,m~ t,n!Fl
1~ t,n!Fm

2 ~ t,n!dndt

Since the functionsFl
1,Fm

2 ,l ,m50,...,p21, can be arbitrary inL2(@0,1)3@0,1/p)), the identity
~3.6! is equivalent toG* H50 a.e. on@0,1)3@0,1/p). SincehPM , Lemma 3.9 shows the exis
tence of a measurable functionA defined on@0,1)3@0,1/p) and with values inMq,q such that
H5AG. Hence, it follows thatG* AG50 a.e. on@0,1)3@0,1/p). If rank(G)P$0,q%, Lemma 3.10
shows thatAG5H50 a.e. on@0,1)3@0,1/p) and thus thath50, so the dual of type I must be
unique in this case. On the other hand, if rank(G)¹$0,q% on a subset of@0,1)3@0,1/p) having
positive measure, we can easily construct aMq,p-valued matrix functionA such thatG* AG50
andAGÞ0 on a set of positive measure. The functionhPL2(R) corresponding toH5AG is then
a nonzero function inM satisfying~3.6!, and adding a nonzero multiple of that function to a
dual of type I produces a dual of type I different than the original one. h

Our next goal is to prove (B2) of Theorem 2.3. We need the following two lemmas.
Lemma 3.12: Letab5p/q as above and assume that the Gabor systemsG(a,b,g) and

G(a,b,h) are both Bessel. Consider the associated measurable functionsG andH with values in
Mq,p defined as in (3.1). Let Tg :L2(R)→,2(Z2) and Th :L2(R)→,2(Z2) be the analyzing op-
erators associated with the systemsG(a,b,g) and G(a,b,h), respectively. Then, Range(Th) is
contained inRange(Tg) if and only if there exists a measurableMq,p-valued functionB such
that

H~ t,n!5G~ t,n!B~ t,n! f or a. e. ~ t,n!P@0,1!nF0,
1

pD .

Proof: First note that, using Proposition 3.1, the entries of bothG and H belong to
L`(@0,1)3@0,1/p)) since the systemsG(a,b,g) andG(a,b,h) are both assumed to be Bess
We will first give a description through the Zak transform of the sequences which are ortho
to Range(Tg). A sequence$am,n% is orthogonal toRange(Tg) if and only if

(
m,nPZ

0<r<q21

am,nq1r^ f ,gma,~nq1r !b&50, ; f PL2~R!.

Letting F5Za f and definingFl(t,n)5Za f (t,n1 l /p), where (t,n)P@0,1)3@0,1/p), for eachl
50,...,p21, this identity can also be written, using Lemma 3.2, as

E
0

1E
0

1/p

(
0<r<q21

(
m,nPZ

am,nq1re
22p imte2p inpn (

l 50

p21

Gr ,l~ t,n!Fl~ t,n!dndt50,

for each function F0 ,...,Fl 21PL2(@0,1)3@0,1/p). If we denote by Kr the functions in
L2(@0,1)3@0,1/p) defined by the series

Kr~ t,n!5 (
m,nPZ

am,nq1re
22p imte2p inpn,

for 0<r<q21, we can simply express the previous identity as

(
0<r<q21

Kr~ t,n!Gr ,l~ t,n!50 a. e. on @0,1!3F0,
1

pD , ~3.7!
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for eachl 50,...,p21. Similarly, the fact that the sequence$am,n% is orthogonal toRange(Th) is
equivalent to

(
0<r<q21

Kr~ t,n!Hr ,l~ t,n!50 a. e. on @0,1!3F0,
1

pD , ~3.8!

for eachl 50,...,p21. Thus the inclusionRange(Th),Range(Tg) can be rephrased by stating tha
whenever functionsK0 ,...,Kq21PL2(@0,1)3@0,1/p)) exist such that~3.7! holds, then so does
~3.8!. This last statement is equivalent to the fact that, for a. e. (t,n), the rows ofH(t,n) are linear
combinations of those ofG(t,n), i.e., to the existence of a measurableMp,p-valued functionB
defined on@0,1)3@0,1/p) such thatH5GB almost everywhere. h

Lemma 3.13: Let G belong toMq,p . Then, G has the property that, whenever B belongs
Mp,p , the identity GBG* 50 implies that GB50 if and only if rank(G)P$0,p%.

Proof: Viewing G as a linear mapping fromCp to Cq andG* as a linear mapping fromCq to
Cp and using the fact that rank(G)5rank(G* ), it is clear that, if rank(G)5p, then G* (Cq)
5Cp, and thusGBG* 50 implies GB50. The same implication obviously holds if rank(G)
50, i.e., if G50. Conversely, if 0,rank(G),p, thenN5G* (Cq) is a subspace ofCp different
than$0% andCp. There exists thus a nonzero linear mapping fromN to N'. Extending this linear
mapping to all ofCp by defining it to be 0 onN', we obtain in this way a linear mappin
B:Cp→Cp such thatGBG* 50 but GBÞ0. This proves the lemma. h

We can now state state our Zak transform characterization for the unique dual of ty
which complete the proof of (B2) of Theorem 2.3.

Theorem 3.14: Let gPL2(R), let ab5p/q as above and suppose that the systemG(a,b,g)
is a frame forM(a,b,g). Then, the systemG(a,b,g) admits a unique dual of type II (which i
thus given by the standard dual) if and only if

rank ~G!P$0,p% a. e. on @0,1!3F0,
1

pD .

Proof: The existence of two different duals of type II for the systemG(a,b,g) is easily seen
to be equivalent to the existence of a nonzero functionhPL2(R) such that the systemG(a,b,h)
is Bessel, which satisfiesRange(Th),Range(Tg) and

(
m,nPZ

^ f ,hma,nb&gma,nb50, ; f PM ,

or, equivalently,

(
m,nPZ

^ f 1 ,gma,nb&^ f 2 ,hma,nb&50, ; f 1PL2~R!, ; f 2PM . ~3.9!

As in the proof of Theorem 3.11, we can write the left side of the equality~3.9! as

E
0

1E
0

1/p

(
i , j 50

p21

~G* H! i , j~ t,n!Fi
1~ t,n!F j

2~ t,n!dndt,

whereFi
1(t,n)5Za f 1(t,n1 i /p), F j

2(t,n)5Za f 2(t,n1 j /p) for (t,n)P@0,1)3@0,1/p). Further-
more, lettingf 25gm,nq1rPM , wherem, nPZ, and, using the fact that

Zagm,nq1r~ t,n!5e2p imte22p inpnZagS t2r
p

q
,n D ,

we deduce from~3.9! that
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E
0

1E
0

1/p

(
i , j 50

p21

~G* H! i , j~ t,n!Fi
1~ t,n!e22p imte2p inpnGr , j~ t,n!dndt50,

for everyF0
1,...,Fp21

1 PL2(@0,1)3@0,1/p), for everym, nPZ and for every integerr from 0 to
q21, which is equivalent toG* HG* 50 a. e. on@0,1)3@0,1/p). SinceRange(Th),Range(Tg),
Lemma 3.12 shows the existence of aMq,p-valued measurable functionB defined on@0,1)
3@0,1/p) such thatH5GB. Hence, it follows thatG* GBG* 50 a.e. on@0,1)3@0,1/p) which is
equivalent toGBG* 50 a.e. on@0,1)3@0,1/p). If rank(G)P$0,p%, Lemma 13 shows thatGB
5H50 a. e. on@0,1)3@0,1/p) and thus thath50, so the dual of type II must be unique in th
case. On the other hand, if rank(G)¹$0,p% on a subset of@0,1)3@0,1/p) having positive measure
we can easily construct aMp,p-valued functionB such thatGBG* 50 andGBÞ0 on a set of
positive measure. The functionhPL2(R) corresponding toH5GB is then a nonzero function in
M satisfying~3.9!, and adding a nonzero multiple of that function to any dual of type II produ
a dual of type II different than the original one. h

IV. PROOFS OF THE MAIN RESULTS

Proof of Theorem 2.3

PartB of Theorem 2.3 is proved in Theorems 3.11 and 3.14. Therefore, all that is left to p
is partA.

We can assume thatG(a,b,g) is a normalized tight Gabor frame forM(a,b,g), since the
systemG(a,b,g1), ~whereg15S21/2g andS is the associated frame operator!, is a normalized
tight frame forM(a,b,g) and it is easy to check that this system admits a unique dual of ty
~resp. type II! if and only if the original one does.

~i! Sinceab is irrational, it follows that identity~iii ! of Theorem 2.2 holds for allm, n, k, ,PZ
if and only if $gma,nb% is orthogonal. Hence, (A1) holds.

To prove (A2), we first assume thatG(a,b,g) is a frame for the whole spaceL2(R). Let
G(a,b,h) be a dual of type II for G(a,b,g). We need to show thatg5h. Since
Range(Th),Range(Tg), there exists a functionf PL2(R) such thatTh(g)5Tg( f ) which implies
that ^g,hma,nb&5^ f ,gma,nb& holds for allm, nPZ. Also note that

g5 (
m,nPZ

^g,hma,nb&gma,nb

and

f 5 (
m,nPZ

^ f ,gma,nb&gma,nb .

Thus f 5g, which implies that

^g,hma,nb&5^g,gma,nb&, m,nPZ,

and so,

^g2ma,2nb ,h&5^g2ma,2nb ,g&, m,nPZ.

Thereforeh5g sinceG(a,b,g) is a frame for the whole spaceL2(R).
Now assume thatG(a,b,g) has a unique Gabor dual of type II. Let us show th

M(a,b,g)5L2(R). Suppose, to the contrary, thatM(a,b,g)ÞL2(R). Let P be the orthogonal
projection ontoM. ThenPPAa,b8 . SinceAa,b8 is a factor von Neumann algebra, and 0ÞPÞI , by
a standard result about in von Neumann algebra theory~cf. Takesaki, 1979!, there exists a nonzero
partial isometryVPAa,b8 with initial space contained inM and final space contained inM'. Let
h5g1Vg. ThenhÞg sinceVgÞ0 ~In fact, if Vg50, thenVgma,nb50 for all m, nPZ, which
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implies V50). We claim thatG(a,b,h) is a type II Gabor dual ofG(a,b,g) which will yield a
contradiction. Indeed, clearlyG(a,b,h) is Bessel sinceVPAa,b8 . Secondly, for anyf PL2(R),
we have

Th~ f !5$^ f ,hma,nb&%5$^ f ,gma,nb1~Vg!ma,nb&%5$^ f ,~ I 1V!gma,nb&%5Tg~~ I 1V* ! f !.

Thus, Range(Th),Range(Tg). Finally, note thatM is orthogonal to Range(V). So

(
m,n

^ f ,hma,nb&gma,nb5(
m,n

^ f ,gma,nb1Vgma,nb&gma,nb5(
m,n

^ f ,gma,nb&gma,nb5 f

holds for everyf PM . Therefore,G(a,b,h) is a type II Gabor dual ofG(a,b,g) as claimed.h
In order to prove our duality theorem~Theorem 2.4!, we need a few more lemmas. The fir

lemma follows from the identity

F~gma,nb!5e2p imnab~Fg!2nb,ma , m,nPZ

~whereF(h) denotes the Fourier transform ofh! and the definition of type I and II Gabor dua
property. The second one is elementary and well-known.

Lemma 4.1: LetG(a,b,g) be a subspace Gabor frame forM(a,b,g). ThenG(a,b,g) has
unique Gabor dual of type I (resp. type II) if and only ifG(b,a,ĝ) has unique Gabor dual of type
I (resp. type II).

Lemma 4.2: Let p and q be relatively prime positive integer. For kP$0,...,q21%, defines(k)
to be the unique integer in$0,...,q21% such that

kp5s~k!1r ~k!q,

where r(k) in an integer. Thens:$0,...,q21%→$0,...,q21% is a bijection.
Lemma 4.3: Let A5(Ak,l)q3p , where0<k<q21 and0< l<p21 be a q3p matrix and let

ak , 0<k<q21, andb l , 0< l<p21, be nonzero complex numbers. Then the rank of the ma
B5Bk,l defined by

Bk,l5Ak,lakb l , k50,...,q21, l 50,...p21,

is the same as that of A.
Proof: This follows easily from the fact that ifL is a subset of$0,...,p21% andcl , l PL, are

complex numbers, then the implication

(
l PL

Ak,lcl50, k50,...q21⇒cl50, l PL

is equivalent to

(
l PL

Bk,lcl50, k50,...q21⇒cl50, l PL

h

Lemma 4.4: Let A5(Ak,l)q3p , where0<k<q21 and 0< l<p21 be a q3p matrix, lets
be a permutation of the set$0,...,q21% and lett be a permutation of the set$0,...,p21%. Then the
rank of the matrix C5Ck,l defined by

Ck,l5As~k!,t~ l ! k50,...,q21, l 50,...p21,

is the same as that of A.
Proof: This, again, follows easily from the fact that, ifm is a positive integer, the implication
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(
l PL

Ak,lcl50, k50,...⇒cl50, l PL,

for any subsetL of $0,...,p21% of cardinalitym is equivalent to

(
l PL

Bk,lcl50, k50,...⇒cl50, l PL,

for any subsetL of $0,...,p21% of cardinalitym. h

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4

Case 1: ab is irrational

From Theorem 2.3,G(a,b,g) has a unique Gabor dual of type I if and only ifG(a,b,g) is
a Riesz sequence. Thus, using the Ron and Shen duality theorem,G(a,b,g) has a unique Gabo
dual of type I is in turn equivalent toG(1/b,1/a,g) is a Gabor frame for the whole spaceL2(R).
Therefore, again by Theorem 2.3, this is equivalent to the condition thatG(a,b,g) has a unique
Gabor dual of type II.

Case 2: abÄp Õq with gcd „p ,q …Ä1 is rational

In the computations above, we use the fact that

Zag~ t1m,n!5e2p imnZag~ t,n!, Zag~ t,n1m!5Zag~ t,n!,

and

Zaĝ~ t,n!5e2p i tnZ1/ag~2n,t ! ~4.1!

for any gPL2(R) and an integerm.
By Lemma 4.1 and Theorem 2.3~B! we have thatG(1/b,1/a,g) has a unique dual of type I

if and onlyG(1/a,1/b,ĝ) has a unique dual of type II, which is in turn equivalent to the condit
that G̃5(G̃k,l)p3q has a rank in$0,q% ~a.e.!, where G̃k,l5Z1/aĝ(t2kq/p,n1 l /q) has a rank in
$0,q% (0<k<p21 and 0< l<q21)

From ~4.1!, we have thatG̃k,l5e2p i (t2kq/p)(n1 l /q)Zag(2n2 l /q,t2kq/p).
Now let s be the permutation of$0,...,q21% defined by

l 5s~ l !p1r ~ l !q, l 50,....,q21,

wheres( l )P$0,...,q21% and r ( l )PZ ~Lemma 4.2!. Therefore, we have

G̃k,l5e2p i ~ t2kq/p!~n1 l /q!ZagS 2n2
l

q
,t2k

q

pD
5e2p i ~ t2kq/p!~n1s~ l !p/q1r ~ l !!ZagS 2n2s~ l !

p

q
2r ~ l !,t2k

q

pD
5e2p i ~ t2kq/k!~n1s~ l !p/q1r ~ l !!e2p i ~ t2kq/p!~2r ~ l !!ZagS 2n2s~ l !

p

q
,t2k

q

pD
5e2p i ~ t2kq/p!~n1s~ l !p/q!ZagS 2n2s~ l !

p

q
,t2k

q

pD
5e2p i tne2p i t ~s~ l !p/q!e2p i ~2kq/p!nZagS 2n2s~ l !

p

q
,t2k

q

pD .
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Now, letting t be the permutation of$0,...,p21% defined by

2kq5t~k!1s~k!p, k50,...,p21,

wheret(k)P$0,...,p21% ands(k)PZ ~Lemma 4.2!, we can rewrite the matrix entry above as

e2p i tne2p i t ~s~ l !p/q!e2p i ~t~k!/p1s~k!!nZagS 2n2s~ l !
p

q
,t1

t~k!

p
1s~k! D ,

which is equal to

e2p i tne2p i t ~s~ l !p/q!e2p i ~t~k!/p1s~k!!nZagS 2n2s~ l !
p

q
,t1

t~k!

p D .

Using Lemmas 4.3 and 4.4, the rank of that last matrix is the same as that of the matrix w~k,
l! entries:

ZagS 2n2 l
p

q
,t1

k

pD
Finally, by (B1) of Theorem 2.3, this matrix has a rank in$0,q% if and only if G(a,b,g) has a
unique dual of type I, which proves the result. h

Our next goal is to prove Theorem 2.6 and Corollary 2.7 which state that ifg is a nonzero
smooth and well localized window function such that the systemG(a,b,g) is a frame for its
closed linear span, then this system admits a unique dual of type I if and only if it is a Riesz
for its closed linear span and the systemG(a,b,g) admits a unique dual of type II if and only i
its closed linear span isL2(R). We first need the following lemma.

Lemma 4.5: Let gPL2(R) satisfy

E
R
x2ug~x!u2dx,` and E

R
j2uĝ~j!u2dj,`.

Then, for a. e. tP@0,1), Zag(t,.) is a continuous function of the second variable and for a..
nP@0,1), Zag(.,n) is a continuous function of the first variable.

Proof: To show that, for a. e.tP@0,1), Zag(t,n) is a continuous function ofn, it is enough to
show, that, as a function ofn, the series defining the Zak transform ofg is an absolutely conver
gent Fourier series for a. e.tP@0,1). This last fact follows easily from Cauchy–Schwartz inequ
ity since,

E
@0,1!

(
kÞ0,1

UgS t2k

a D U5aE
uuu>1

ug~u!udu<aF E
uuu>1

u2ug~u!u2duG1/2F E
uuu>1

1

u2 duG1/2

,`.

To prove the second part of our assertion, we use the first part and the fact that

Zaĝ~ t,n!5e2p i tnZ1/ag~2n,t !,

for any gPL2(R). h

Remark 4.6: The previous lemma can also be proved by using well known propertie
Sobolev spaces, since our assumptions ong are equivalent to the fact thatZag, (]/]t)Zag and
(]/]n)Zag are inL loc

2 (R2) ~see Daubechies, 1992!.
We complete the proofs of Theorem 2.6 and Corollary 2.7 by proving the following res
Theorem 4.7: Let ab5p/q and let gPL2(R) with gÞ0. Suppose, furthermore, that th

systemG(a,b,g) is a frame forM(a,b,g) and that
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E
R
uxg~x!u2dx,` and E

R
uvĝ~v!u2dv,`.

Then,

~a! The systemG(a,b,g) admits a unique dual of type I if and only if it forms a Riesz basis
M(a,b,g).

~b! The systemG(a,b,g) admits a unique dual of type II if and only if the identi
M(a,b,g)5L2(R) holds.

Proof: It is clear that if the systemG(a,b,g) forms a Riesz basis for M, then the standa
dual is the unique dual of type I~see the statements of Proposition 3.8 and Theorem 3.11!, and
that, if M(a,b,g)5L2(R), then the standard dual is the unique dual of type II~see the statement
of Proposition 3.5 and Theorem 3.14!. Conversely, ifg satisfies the conditions of the theorem a
the systemG(a,b,g) admits a unique dual of type I, letG be the measurableMq,p-valued
function defined by~3.1! on the set@0,1)3@0,1/p). Since the systemG(a,b,g) is a frame for
M(a,b,g), the equivalence of~a! and~b! in Proposition 3.1 shows the existence of two positi
constantsC1 andC2 such that

C1GG* <~GG* !2<C2GG* , ~4.2!

a. e. on@0,1)3@0,1/p). By Theorem 3.11, the systemG(a,b,g) admits a unique dual of type I i
and only if rank(G)50 or q a. e. on@0,1)3@0,1/p). Since the rank ofGG* is the same as that o
G, it follows that, for a.e. (t,n)P@0,1)3@0,1/p), theq3q matrix (GG* )(t,n) is either identically
zero or invertible. On the set where (GG* )(t,n) is invertible,~4.1! reduces to the inequalities

C1I<GG* <C2I , ~4.3!

where I denote theq3q identity matrix. Leth(t,n) denote the first entry of (GG* )(t,n), i.e.,
(GG* )0,0(t,n). Then,GG* is the zeroq3q matrix on the set whereh50 andGG* is invertible on
the set whereh>C1 . By Lemma 4.5,h(t,.) is continuous for a. e.tP@0,1). Hence, for a. e.t
P@0,1), the functionn°h(t,n) is either identically zero or larger thanC1 for all nP@0,1/p).
Therefore, ifE is the subset of@0,1)3@0,1/p) whereGG* is invertible, thenE must thus be a
Cartesian product of the formE5E13@0,1/p), whereE1 is a measurable subset of@0, 1!, modulo
a set of zero measure. Similarly, since, by Lemma 4.5, the functiont°h(t,n) is continuous for a.
e. nP@0,1/p), E must also have the formE5@0,1)3E2 , whereE2 is a measurable subset o
@0,1/p), modulo a set of zero measure. SincegÞ0, E must have positive measure and thusE
5@0,1)3@0,1/p), modulo a set of zero measure, i.e., the rank ofGG* is equal toq a. e. on
@0,1)3@0,1/p). Proposition 3.5 shows then that the systemG(a,b,g) is a Riesz basis for
M(a,b,g). To prove that, under the conditions of the theorem, if the systemG(a,b,g) admits a
unique dual of type II, thenM(a,b,g)5L2(R), we use similar arguments and, in particular, t
equivalence of~a! and ~c! in Proposition~3.1! as well as Proposition 3.8. h

Proof of Theorem 1.2
By Theorem 2.3, the subspace Gabor frameG(a,b,g) has a unique Gabor dual of type

wheneverab is an integer. Therefore, we can apply Theorem 2.6.
First assume thatab51. If M(a,b,g)5L2(R), then it is well-known thatG(a,b,g) is a

Riesz basis forL2(R). Thus~1.1! holds by the Balian–Low theorem~Theorem 1.1!. Otherwise, it
is known thatG(a,b,g) cannot be a Riesz sequence~cf. Gabardo, 20xx!. Therefore, we also have
~1.1! by Theorem 2.5. Similarly,~ii ! follows immediately from Theorem 2.6 and~iii ! from Cor-
ollary 2.7 h

Finally we give an example showing that the condition in Theorem 1.2 cannot be drop
Example 4.8:Let g(x)5e2x2

. Then
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S E
R
uxg~x!u2dxD S E

R
uvĝ~v!u2dv D ,`

andG(a,b,g) is a Riesz sequence whenab is an integer larger than 1. We only need to check t
G(a,b,g) is a Riesz sequence. We can assume thata51 andb5n.1. Sinceg is Gaussian, the
Zak-transform ofg has a single zero on the unit square@0,1#3@0,1# ~Janssen, 1981; see als
Janssen, 2003!. Also, the associated Zak-transform matrix forG(a,b,g) is the row matrix:

G~ t,n!5@Zg~ t,m!,Zg~ t,n11/n!,... ,Zg~ t,n1~n21!/n!#.

Hence, GG* (t,n)5( j 50
n21uZg(t,n1 j /n)u2 is a continuous function with no zeros on@0,1#

3@0,1/n# ~becausen.1) and is, therefore, bounded from below. It is also true thatGG* (t,n) is
bounded. Thus, by Propositions 3.1 and 3.8,G(a,b,g) is a Riesz sequence. Similar argumen
using Propositions 3.1 and 3.5 show that, when 1/~ab! is an integer larger than 1, the
M(a,b,g)5L2(R).
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Bounds on the dragging rate of slowly and differentially
rotating relativistic stars

M. J. Pareja
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For relativistic stars rotating slowly and differentially with a positive angular ve-
locity, some properties in relation to the positiveness of the rate of rotational drag-
ging and of the angular momentum density are derived. Moreover, the proof for the
bounds on the rotational mass-energy, which we have generalized~outside the slow
rotation limit! in a previous paper, is briefly exposed. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1767987#

I. INTRODUCTION

In a previously published paper1 we have given general bounds on the dragging rate~angular
velocity of locally nonrotating observers, or angular velocity of cumulative dragging! of a differ-
entially rotating relativistic stellar configuration; however, the validity of these bounds dep
heavily on the underlyingrotation law, which must be compatible with the field equations.

In the prescription for calculating aslowly and differentially rotating relativistic stellar con
figuration the field equations are expanded in powers of afluid angular velocity parameter, and the
perturbations~around a nonrotating configuration! are calculated by retaining only first and seco
order terms. Hartle2 has derived these equations of structure in the rigidly rotating case.
remarkable that at first order the only effect of the rotation is to drag the inertial frames; at s
order it also deforms the star. An expansion of the dragging rate potential in powers of the a
velocity parameter only contains odd powers. Hence, if one is interested in calculating all e
up to second order, it is then sufficient to include only the linear~first order! corrections in the
dragging rate. And it turns out that up to first order there are no restrictions on the rotation p
by the field equations, more exactly, by the Euler equation, through a rotation law. Henc
result on bounds on the dragging rate in the general~differentially! rotating case, mentioned abov
~Proposition 3 in Ref. 1!, does not apply any more in the slow rotation limit. In the present pa
the bounds on the dragging rate~including positivity of the angular momentum density! are refined
for the slowly and differentially rotating case.

The first order equations of structure reduce to the time-angle field equation compone~to
first order!, which is a partial differential equation, linear in the dragging rate potential. T
linearity in the dragging rate persuades us to rewrite that equation in appropriate coordinat
order to avoid the coordinate singularity occurring on the axis of rotation in spherical
coordinates, generally used in the slow rotation approximation—so that in the new coordina
equation writes in a ‘‘regular’’ form as an elliptic equation with measurable and bounded c
cients. This allows us to apply a minimum principle for generalized supersolutions in the w
domain~interior and exterior of the star!. Making use of the asymptotic flatness condition, this w
lead us directly to the positivity of the dragging rate, provided that the distribution of ang
velocity of the fluid is non-negative everywhere~and nontrivial! and that we start from a reason
able unperturbed~nonrotating! stellar model satisfying the weak energy condition. In this case,
linearity ~in the rotation! of the considered equation will guarantee a positive angular momen
density, provided that the amplitude of the rotation profile is bounded in a certain way.

The rotational mass-energy, derived by Hartle in Ref. 3, although accurate to second orde
the angular velocity, involves only quantities which can be calculated from the first order stru
equation~time-angle component of the Einstein field equations! as well. A proof of the positivity
33790022-2488/2004/45(8)/3379/20/$22.00 © 2004 American Institute of Physics
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and an upper bound on this rotational energy was given in the same paper,3 however using an
expansion in eigenfunctions~and leaving open the nontrivial mathematical problems which m
arise on the existence of these eigenfunctions!. We found a much simpler proof of that resu
avoiding expansions in eigenfunctions~in the present paper briefly exposed! which, remarkably,
was possible to generalize to the general differentially rotating case, i.e., outside the slow ro
limit ~cf. Sec. V of Ref. 1!.

The paper is organized as follows. After a description of the relativistic rotating stellar m
in Sec. II, and a brief revision of the concepts of angular momentum density and rate of rota
dragging in Sec. III, in Sec. IV we concentrate on the slow rotation approximation, particular
the first order perturbations of the metric~linear correction of the dragging rate, with descriptio
of the unperturbed, i.e., zero order, configuration!, and explicit expressions for the expansions
the angular momentum density and of the rotational mass-energy are derived. In the same
the null contribution~at first order in the angular velocity! of the integrability condition of the
Euler equation is discussed, and the time-angle component of the Einstein equations~to first order!
is written in appropriate coordinates, as a background allowing to apply a minimum principl
obtain the first of the properties mentioned above and proved in Sec. V, and consequences
one. Apart from this, we sketch here the alternative proof of the bounds on the rotational e
Finally, in Sec. VI, concluding remarks are briefly stated.

II. THE RELATIVISTIC ROTATING STELLAR MODEL

The space–time of a rotating relativistic star is represented by a Lorentzian 4-manifold~M, g!
which satisfies the following.

A. Assumptions

~i! The space–time is stationary in time and axially symmetric, which means thatg admits two
global Killing vector fields, a timelike future-directed one,j, and a spacelike one, with
closed trajectories,h, except on a timelike 2-surface~defining the axis of rotation! whereh
vanishes;

~ii ! the space–time is asymptotically flat; in particular,g(j,j)→21, g(h,h)→1`, and
g(j,h)→0 at spatial infinity@the signature of the metricg being ~2111!#;

~iii ! the matter—confined in a compact region in the space~interior!, with vacuum on the
outside, so that~ii ! holds—is perfect fluid, and therefore the energy-momentum te
~source of the Einstein equations! is written as

T5~«1p!u[
^ u[1p g ,

where« andp denote the energy density and the pressure of the fluid, respectively; au[

denotes the 1-form equivalent to the 4-velocity of the fluidu ~in the exteriorT[0; hence,
«1p5p50 there!;

~iv! the fluid velocity is azimuthal~nonconvective! ~circularity condition!, i.e.,

u[∧j[∧h[50 ;

~v! ~M, g! satisfies Einstein’s field equationsG58pT for the energy-momentum tensorT of
a perfect fluid~iii !, whereG[Ric21/2R g denotes the Einstein tensor—equations wh
can also be written in the form

Ric58p~T2 1
2tr ~T! g! ; ~1!

~vi! « andp satisfy a barotropic~one-parameter! equation of state,«5«(p);
~vii ! «1p>0 ~weak energy conditionfor perfect fluid, assuming«>0);4

~viii ! the metric functions are essentially bounded.
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B. Form of the metric

Assumptions~i! and ~ii ! imply that the two Killing fields commute,@j,h#50,5 which is
equivalent to the existence of coordinatesx0[t andx1[f such thatj[] t andh[]f ; moreover,
by the circularity condition~iv!, the space–timeg admits 2-surfaces orthogonal to the group orb
of the Killing fields ~orthogonal transitivity!.6 We may then choose the two remaining coordina
(x2,x3) in one of these 2-surfaces and carry them to the whole space–time along the in
curves ofj andh; accordingly, the metric can be written in the form

ds2[gab dxa dxb5gtt dt212gtf dt df1gff df21g22~dx2!212g23dx2 dx31g33~dx3!2 ,

where the metric coefficients are independent of the timex0[t and azimuthalx1[f coordinates
corresponding to the two Killing fields; that is,gab5gab(x2,x3).

When solving Einstein’s field equations it is convenient to specify the coordinatesx2 andx3

in such a way as to simplify the task; a particular choice, usually made when studying s
rotating configurations,2 is the one which makesg2350 andg335gff sin22 x3. Hencex2 andx3

are chosen so that at large spatial distances the asymptotically flat metric is expressed in t
spherical polar coordinates in the usual way. In the resulting coordinate system, with the no
x2[r , x3[u, and with new symbols for the metric functions, the line element reads

ds252H2 dt21Q2 dr 21r 2K2@du21sin2 u ~df2A dt !2# , ~2!

whereH, Q, K, andA are functions ofr andu alone. In these coordinates (r>0, 0<u<p) the
spatial infinity is given byr→`, and the axis of rotation (]f[h50) is described byu→0 or p
(r>0).

Notice that the functionA appears in the metric~2! as the nonvanishing of the (tf) metric
component of a rotating configuration.A is actually thedragging ratepotential~cf. Sec. III!.

C. Differential rotation

According to assumption~iv! of Sec. II A—circularity condition—the fluid 4-velocityu has
the form

u5ut] t1uf]f5ut~] t1V]f!, where V[
uf

ut 5
df

dt

is the angular velocity of the fluid measured in units oft, i.e., as seen by an inertial observer
infinity whose proper time is the same as the coordinatet ~observer] t), andut is the normalization
factor, such thatg(u,u)521, i.e., (ut)2252(gtt12Vgtf1V2gff). The star’s matter rotate
then in the azimuthal directionf.

We consider a star rotating differentially, with a prescribed distribution of angular veloc

V[V~x2,x3![V~r ,u! ,

an essentially bounded function. However, with the assumptions made~Sec. II A!, the rotation
profile of the fluid cannot be freely chosen, this shows up in the following. We conside
equation of hydrostatic equilibrium,T ;b

ab 50 ~integrability conditions of the field equations!,
particularly, its part orthogonal to the fluid 4-velocityu, i.e., the Euler equation,

dp52~«1p! a , ~3!

wherea is the 4-acceleration of the fluid,a]5¹uu, specifically,

a52d lnut1utuf dV . ~4!
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And the integrability condition of Eq.~3!, taking into account~vi! of Sec. II A, «5«(p), is da
50; following, from ~4!, d(utuf)∧dV50; in other words, the fluid angular velocity,V, is
functionally related to the specific angular momentum timesut,

utuf5F~V! . ~5!

Nevertheless, as will be seen in Sec. IV B, in the slow rotation approximation, at first order
angular velocity, Eq.~5! is no restriction on the rotation profileV(r ,u).

III. ANGULAR MOMENTUM DENSITY AND DRAGGING RATE

The total angular momentum of a rotating relativistic star can be defined7 from the variational
principle for general relativity—for an isolated system which is not radiating gravitatio
waves—but this is shown7 to coincide with thegeometricaldefinition—from the asymptotic form
of the metric at large spacelike distances from the rotating fluid—~analog to the ADM mass!,
which for stationary and axisymmetric~asymptotically flat! space–times is given by the Koma
integral for the angular momentum,8 a surface integral, which, when reformulated using the Ga
theorem and the Einstein equations, converts into the volume integral over the interior

J5E
I
Ta

bhanb dv ~6!

5E
I
Tf

tnt dv 5E
I
Tf

t~2g!1/2d3x , ~7!

whereT is the energy-momentum tensor of perfect fluid,h is the Killing field corresponding to
the axial symmetry,n] is the unit timelike and future pointing normal to the hypersurface
constantt, i.e., n5nt dt, with nt.0, and dv is the proper volume element of the surfacet
5const, i.e.,*Idv5Vol, the volume of the body of the star,I[ interior of the star (t5const).
Hereg[det(g). The invariantly defined integrand of this volume integral~6!, Ta

bhanb , is what
one would naturally define asangular momentum density—coinciding with the standard form in
special relativity—and can be calculated as

Ta
bha nb 5 nt Tf

t5 nt ~«1p!utuf @uf5ut~gtf1Vgff!#5 nt ~«1p!~ut!2~gtf1Vgff!

5 nt ~«1p!~ut!2gff~V2A!, with nt5H5S 2gttgff1gtf
2

gff
D 1/2

, ~8!

whereA is the metric function@cf. ~2!# such that

gtf52A gff . ~9!

It is remarkable that, sincent.0, gff>0, and we are assuming the energy condition«1p>0
@~vii ! in Sec. II A#, the sign of the angular momentum density~8! is determined by the sign of th
differenceV2A.

The metric functionA is indeed the angular velocity of a particle which is dragged along
the gravitational field of the star, as seen from a nonrotating observer at spatial infinity (] t), so that
it has zero angular momentum relative to the axis,pf50,

df

dt
5

pf

pt 5
gtfpt

gttpt
5

gtf

gtt 5
2gtf

gff
, gtf1S df

dt Dgff50,
df

dt
5A .

A is calledangular velocity of cumulative dragging~shortly calleddragging rate!.9,10 One of the
purposes of this work is precisely to find appropriate bounds on the uniformly non-neg
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distribution of angular velocity,V[V(x2,x3)>0, of a slowly differentially rotating star, so tha
V2A>0 holds; from where the positivity of the angular momentum density~8! follows @property
~c! in Sec. V#.

Observe, in the special relativistic limit@gtf→0, using coordinates (x2,x3) which go at spatial
infinity to the usual flat coordinates, cf. Sec. II B#, if the fluid rotates uniformly with angular
velocity V positive~negative!, then the angular momentum density, Eq.~8!, is uniformly positive
~negative!.

IV. SLOWLY DIFFERENTIALLY ROTATING STARS: FIRST ORDER PERTURBATIONS

By slow rotation we mean that the absolute value of the angular velocity is much smalle
the critical valueVcrit[(M /R3)1/2 ~taking unitsc5G51), whereM is the total mass of the
unperturbed~nonrotating! configuration, andR, its radius;uV(x2,x3)u/Vcrit!1. Thus, stars which
rotate slowly can be studied by expanding the Einstein field equations for a fully relativ
differentially rotating star in powers of the dimensionless ratio

uVmaxu
Vcrit

5..m , ~10!

whereuVmaxu is the maximum value ofuV(x2,x3)u ~at the interior of the star!.

A. The metric and the energy density and pressure of the fluid

We assume that the star is slowly rotating, with angular velocity

V~r ,u![V~x2,x3!5O~m! ,

parameterm given, e.g., by~10!. Because the star~stationary in time and axially symmetric!
rotates in thef direction @~iv! of Sec. II A#, a time reversal (t→2t) would change the sense o
rotation, as well as an inversion in thef direction (f→2f) would do. As a result, the metric
coefficientsH, Q, andK @in ~2!# and the energy density will not change sign underone ofthese
inversions, whereasA will do. Therefore, an expansion ofH, Q, andK, as well as of the energy
density,«, and, hence, of the pressure,p, in powers of the angular velocity parameterm will
contain only even powers, while an expansion of the dragging rate,A, will have only odd ones.
Hence, considering effects up to second order only the linear corrections in the draggin
count. Indeed, the only first orderO(m) perturbation brought about by the rotation is the dragg
of the inertial frames; the star is still spherical, because the ‘‘potential functions’’ which deform
shape of the star areO(m2). We shall keep here only the effects linear in the angular velocity
first order,O(m), the metric coefficients, and fluid energy density and pressure, are

H 5 H01O~m2!,

Q 5 Q01O~m2!,

K 5 K01O~m2!,
~11!

« 5 «01O~m2!,

p 5 p01O~m2!,

but A 5 v1O~m3!,

whereH0 , Q0 , andK0 are the coefficients of the unperturbed~nonrotating! configuration, andv
denotes the linear~first order! correction inm of the dragging rateA, so that, from Eq.~9!,

gtf52v ~gff!01O~m3! . ~12!
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The (unperturbed) nonrotating configuration: The starting nonrotating equilibrium configura
tion is described by the spherically symmetric metric in the Schwarzschild form

ds252en(r ) dt21el(r ) dr 21r 2~du21sin2 u df2!

[2H0
2 dt21Q0

2 dr 21r 2K0
2 ~du21sin2 u df2! ~A050! , ~13!

with l(r ), or equivalently, the massm(r ) interior to a given radial coordinater , given by

12
2m~r !

r
5e2l(r ) , ~14!

andn(r ), together with the pressurep0(r ), and the energy density«0(r ), solutions of the system
of equations of general relativistic hydrostatics, which for a nonrotating configuration ar
equation of hydrostatic equilibrium~Tolman–Oppenheimer–Volkoff equation!,

dp0

dr
~r !52

@«0~r !1p0~r !#@m~r !14pr 3p0~r !#

r 2@122m~r !/r #
, ~15!

the mass equation,

dm

dr
~r !54pr 2«0~r ! , ~16!

and the source equation forn,

dn

dr
~r !52

2

«0~r !1p0~r !

dp0

dr
~r ! , ~17!

with the initial boundary conditions

0,p0~0!5p0c,` ~central pressure!,

m~0!50 , and

n~0!5nc ~constant fixed by the asymptotic condition at infinity!,

this being the prescription for the interior of the star, that is, inside the fluid,r<R, R[radius of
the surface of the star, determined byp0(R)50. Furthermore, we assumep0 and «0 related to
each other by a barotropic equation of state,

«05«0~p0! , ~18!

p0°«0(p0) a bounded function on any closed interval, and satisfying the weak energy con

«01p0>0 . ~19!

Observe, from Eqs.~15! and~19!, p0 is a decreasing function from the center,r 50, to the star’s
surface,r 5R; in particular,p0>0 and attains its maximum valuep0c at the center.

In the exterior~vacuum! the geometry is described by the same line element~13!, but with the
metric functionn specified and related tol by

en(r )5e2l(r )512
2M

r
, ;r .R , ~20!

whereM[m(R) is the star’s total mass.
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Notice that this standard form of the nonrotating metric,~13!, is the limit of zero rotation of
the general rotating metric in spherical polar coordinates~2!,

H→H0[en/2, Q→Q0[el/2, K→K0[1, A→A0[0 ,

from where the effect of the rotation can be seen as given by the term df2A dt in the place of df.
Note, since at first order in the angular velocity there is still no effect on the pressure a

the energy density@cf. ~11!#, conditions~18! and ~19! for the starting nonrotating configuratio
guarantee~vi! and ~vii ! of Sec. II A at first order.

B. Euler equation

It will be important to note that at first order theV-profile is not restricted by the field
equations~through the Euler equation!. That shows up in the following. Consider the first integ
of the Euler equation~3!, namely,

E
0

p(r ,u) dp̄

«~ p̄!1 p̄
1

1

2
ln@~ut!22#U

(r ,u)

1E
V0

V(r ,u)

F~V! dV5const , ~21!

where Eqs.~4! and ~5! have been used, andV0 is a given constant~changing the value ofV0

simply modifies the value of the constant on the right-hand side!. The first term in Eq.~21! is a
function of the pressure, which is, to this approximation, a function ofr , i.e., O(1) with respect
to the angular velocity; on the other hand,

~ut!2252~gtt12Vgtf1V2gff!5H22K2r 2 sin2 u ~V2A!25O~12~V2A!2! ,

so the second term isO((V2A)2) and, hence,O(m2); also, since

utuf5~ut!2gff~V2A!5
K2r 2 sin2 u ~V2A!

H22K2r 2 sin2 u ~V2A!2 5O~V2A! ,

F(V)5utuf5O(V2A), thus, the third term isO((V2A)2) as well, and, hence,O(m2). Con-
sequently, toO(m), the Euler equation reduces to its static~nonrotating! case, and indeed we hav
presumably already used it to get the starting unperturbed solution. Therefore, at this order
angular velocity, Eq.~5! is no restriction onV(r ,u).

C. The angular momentum density

Using the definition ofv, linear correction of the dragging rate, via the expansion of
metric coefficientgtf , Eq. ~12!, and the metric coefficients of the nonrotating configuration@cf.
~13!#, we obtain the expansion for the angular momentum density~8!,

Ta
bhanb5ntTf

t 5 nt ~«1p!~ut!2~gtf1Vgff!

5~nt!0 ~«01p0!@~2gtt!0#21@2v ~gff!01V ~gff!0#1O~m3!

5en/2 ~«01p0!e2n r 2 sin2 u~V2v!1O~m3!

5~«01p0! e2n/2 r 2 sin2 u ~V2v!1O~m3! . ~22!

Thus showing also for the first order rotational perturbation that, since we are assuming the
condition«01p0>0, the sign of the angular momentum density~22! to O(m) is determined by
the sign ofV2v.
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D. The rotational mass-energy

In Ref. 3 Hartle has derived the difference in total mass-energy,M rot , between a slowly and
differentially rotating relativistic star and a nonrotating star with the same number of baryon
the same distribution of entropy, namely,

M rot5
1

2 EI
V dJ1O~m4! ,

where dJ is the angular momentum of a fluid element in the star~to first order in the angular
velocity!, i.e., from ~7!,

dJ5Tf
t~2g!1/2d3xuO(m) ;

taking into account~22! and ~13!, we obtain an explicit expression for the expansion ofM rot in
powers of the angular velocity parameterm,

M rot5
1

2 E0

R

dr E
0

p

du 2p~«01p0! r 4 e(l2n)/2 sin3 u V~V2v!1O~m4! . ~23!

E. The time-angle component of the Einstein equation

The (tf) field equation component retaining only first order terms in the angular velo
~second order terms vanish!, i.e., from Eq.~1!,

Rf
t58pTf

t1O~m3! ,

takes the form

] r@r 4 j ~r ! ] rv#1
r 2 k~r !

sin3 u
]u@sin3 u ]uv#216p r 4k~r !@«0~r !1p0~r !# @v2V#50 , ~24!

where we have introduced the abbreviations

j ~r ![e2[l(r )1n(r )]/2 and k~r ![e[l(r )2n(r )]/2 . ~25!

As outlined in Ref. 2, using the 0-order field equations,~14!–~17!, it follows

4p r @«0~r !1p0~r !# k~r !52 j 8~r ! ~26!

~where8[ d/dr ), which, substituted into Eq.~24!, yields

] r@r 4 j ~r ! ] rv#1
r 2 k~r !

sin3 u
]u@sin3 u ]uv#14 r 3 j 8~r ! v54 r 3 j 8~r ! V~r ,u! . ~27!

We write this differential equation for the dragging rate in the abbreviated form

L̄v52C2V , ~28!

with the linear second order partial differential operatorL̄[L̄02C2, where

L̄0vª

1

r 4 j ~r !
] r@r 4 j ~r ! ] rv#1

k~r !

r 2 j ~r !sin3 u
]u@sin3 u ]uv# ~29!

and
                                                                                                                



t
y

ue
ing

in

duce

th

e
nction

3387J. Math. Phys., Vol. 45, No. 8, August 2004 Bounds on the dragging rate

                    
C2~r !ª2
4

r

j 8~r !

j ~r !
516p@«0~r !1p0~r !#

k~r !

j ~r !
>0 ;r>0 . ~30!

Equation~26! has been used in~30!, and the sign follows from the assumed energy condition~19!,
the functions j and k @cf. ~25!# are always positive. Notice,C2[0 in the exterior (;r
P@R,`@ ), where vacuum@«05p050, cf. ~iii ! in Sec. II A# is considered.

Specifically, we are only interested in solutionsv[v(r ,u) of Eq. ~28! in @0,̀ @3@0,p#,
which satisfy theboundary conditions

v asymptotically flat S lim
r→`

v50D , ~31!

v C1 regular on the axis of rotation, ~32!

and amatching condition, namely, to be at least a classC1 function on the surface of the star—
which is spherical at first order rotational perturbations—

v~ .,u!class C1 across r 5R . ~33!

Notice,~31! follows from our star model@condition~ii ! in Sec. II A#, and it can be easily seen tha
~33! follows from the equation itself, provided thatv~.,u! and V~.,u! are at least essentiall
bounded (PL`)—as has been assumed—i.e., even if they have a jump discontinuity.

At the star’s surface,r 5R, higher regularity ofv~.,u! is not guaranteed by the equation, d
to a jump discontinuity of the functionC2 at this point. For this reason, we shall be consider
~in the following section! generalized(PW1,2) solutionsv of Eq. ~28! in the whole domain
~interior and exterior!.

‘‘ Coordinate change’’: In order to avoid the coordinate singularity occurring on the axis
polar coordinates (r ,u), and wishing instead to have in the differential operator~29! a Lapacian in
some higher dimension, we consider the following ‘‘change of coordinates.’’ First, we intro
isotropic cylindrical coordinates in the meridian plane,

~r ,u!°~ rªh~r !sinu, zªh~r !cosu ! PR0
13R , ~34!

with the functionh satisfying the following ordinary differential equation of first order wi
separated coefficients:

h8~r !

h~r !
5

el(r )/2

r
~35!

@which makes the coefficient of the crossed derivatives in the operator~29! after the change~34!
to vanish#, and theboundary condition

lim
r→`

h~r !

r
51 , ~36!

i.e., so that theisotropic radiush(r )[ r̄ approachesr at spatial infinity, because far away from th
source we assume to have Euclidean geometry. This leads us to the definition of the fu
@havingv(r ,u)]

w~r,z!ªv~h21~Ar21z2 ! , arctan~r/z!! , ~37!

or inversely,w such that

v~r ,u!5w~ h~r !sinu , h~r !cosu ! .
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Second~in the spirit of Ref. 11!, we define@with w(r,z)] the 5-lift of w:R0
13R→R in flat R5,

axisymmetric around thex5 axis, by

w°ṽ such that ṽ~x![ṽ~x1 ,x2 ,x3 ,x4 ,x5!ªwS r5S (
i 51

4

xi
2D 1/2

, z5x5 D , ~38!

and, for every functionṽ:R5→R, themeridional cut (in direction x1) of ṽ,

ṽ°w such thatw~r,z!ªṽ~r,0,0,0,z! .

For axisymmetric functions these are isometric operations inverse to each other.11 After consider-
ing the change of variable~34! with ~37! in the differential operatorL̄0 ~29!, we get@remember
~25!, el5k/ j ]

L̄0 w5
el(r )h~r !2

r 2 H ]rrw1]zzw1
3

r
]rw1H~r !

r ]rw1z ]zw

h~r ! J , ~39!

where

H~r !ª
2e@2l(r )/2# @2616 e@l(r )/2#1r n8~r !#

2 h~r !
. ~40!

But, through the 5-lift~38!, the flat Laplacian in five dimensions of the ‘‘lifted’’ functionṽ gives
exactly

Dṽ [ (
i 51

5

] i i ṽ 5 ]rrw1]zzw1
3

r
]rw , ~41!

the first three terms in the curly brackets of~39!. Furthermore, as outlined in Ref. 11,n-lift and
meridional cut~of axisymmetric functions! leave the regularity properties and the norm invaria
and axisymmetricoperations, like multiplication,] r̄ @ r̄[h(r )5(r21z2)1/25(( i 51

5 xi
2)1/2 #, and

scalar product, commute withn-lift and meridional cut. In particular, in the fourth term in th
curly brackets of~39! the factor

r ]rw1z ]zw 5 ] r̄ṽ 5 (
i 51

5

xi ] iṽ . ~42!

Therefore, substituting~41! and~42! into ~39!, Eq. ~28! in the formL̄0ṽ52C2(Ṽ2ṽ) ~with Ṽ
defined fromV as it wasṽ from v, andC25el16p@«01p0#) now writes

L̄0 ṽ[
el(r )h~r !2

r 2 H Dṽ1H~r !
( i 51

5 xi ] iṽ

h~r ! J 5el(r )$216p@«0~r !1p0~r !#@Ṽ2ṽ#% ,

or, equivalently,12

Dṽ1H~r !
( i 51

5 xi ] iṽ

h~r !
5216p

r 2

h~r !2 @«0~r !1p0~r !#@Ṽ2ṽ# . ~43!

V. PROPERTIES

With the assumptions made in Sec. II A for this slowly rotating configuration@starting from a
nonrotating one as described in Sec. IV A; particularly, satisfying the energy condition«01p0

>0], and considering only solutions of Eq.~28! satisfying the boundary and matching conditio
~31!, ~32!, and~33!, the following results hold.
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Property (a) (positiveness of the dragging rate): If the distribution of angular velocity of
fluid is non-negative (and nontrivial), then thedragging rate(to first order in the fluid angular
velocity) is positive everywhere,

V>0, VÓ0⇒ v.0 .

Proof: We have seen in the former section that, using the coordinate change~34! and the 5-lift
~38!, Eq. ~28! for v is equivalent to Eq.~43! for ṽ, which reads

LṽªDṽ1(
i 51

5

H~r !
xi

h~r !
] iṽ216p@«01p0#

r 2

h~r !2 ṽ5216p@«01p0#
r 2

h~r !2 Ṽ . ~44!

This equation may be obviously writtenin divergence form

Lṽ[] i@ai j ~x!] j ṽ1ai~x! ṽ#1bi~x! ] iṽ1c~x! ṽ 5 g~x!

~where repeated indices denote summation over the index!, with the coefficients

ai j ~x![d i j ~51 if i 5 j , and 50 otherwise! ,

ai~x![0 ,
~45!

bi~x!5H~r !
xi

h~r !
~; i , j P$1,...,5%!,

c~x!5216p@«0~r !1p0~r !#
r 2

h~r !2 ~<0! ,

and

g~x!5c~x! Ṽ~x! . ~46!

The isotropic radiusr̄[h(r ) is Gaussian coordinate with respect to the star’s surface,r̄ 5h(R),
and, thus,ṽ is at least classC1 across this surface; therefore,ṽPC1(R5). Thus, considering the
domain G defined by a ball inR5 centered at the origin of coordinatesx50 ( r̄ 50) and of
arbitrary large radiuss,

GªBs~0! ,R5 , ~47!

the function ṽ and its ~first! derivatives ~continuous inR5) are 2-integrable inG, i.e., ṽ
PW1,2(G)ùC1(G), and Eq.~43! is satisfied inG in a generalized sense~cf. Appendix B!.

Notice, wheneverṼ>0, we have, by~46!, g<0 ~becausec<0), and, hence,Lṽ<0, specifi-
cally ṽ is a generalized supersolution relative to the operatorL, in ~44!, and the domainG ~47!.
We look at the requirements for a minimum principle to be applied~Appendix B!. The Laplacian
operator is obviously strictly elliptic, and the coefficients~45! are measurable and bounded fun
tions onG, this shows up in the following: the mappingr ° r /h(r ) is bounded from above an
below everywhere in@0,̀ @ ~Appendix A!; «01p0 is also bounded, sincep0 is bounded and
p0°«0(p0) is bounded in any closed interval~Sec. IV A!; consequently, the coefficientc is
bounded~from above and below!; the coefficients of the first derivatives,bi , are also bounded
~from above and below!, because the functionH is bounded everywhere~Appendix A! and since
(; i 51,...,5) xi

2<( j 51
5 xj

25h(r )2, we have@xi /h(r )#2<1. Thus, all conditions of a minimum
principle for generalized supersolutions relative to the differential operatorL and the domainG
hold, and, as a result of theweakminimum principle~Theorem 1 in Appendix B!, we have
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inf
G

ṽ> inf
]G

ṽ2 @ṽ2[min~ṽ,0! # . ~48!

But, since the radius of the ballG is arbitrary, we can make it sufficiently large (s→`) so that,
by asymptotic flatness@ limh(r )→` ṽ50, from condition~31! and limr→` @h(r )/r # 51], ṽ is ar-
bitrary small at]G, following, from ~48!, ṽ>0. Actually, the positivity is strict, because
ṽ(x0)50 for somex0PG ~interior point!, thenṽ(x0)5min ṽ ~sinceṽ>0), and, by thestrong
minimum principle ~Theorem 2 in Appendix B!, ṽ would be constant inG; in this case,ṽ
[const50 in G ~i.e., everywhere!; but ṽ[0 yields, by Eq.~44!, Ṽ[0, or, equivalently,V[0,
and we are assuming thatV is nontrivial. We conclude thenv.0 everywhere. h

Property (b): Suppose we perturb the nonrotating configuration (in particular, with a g
equation of state) with two (small) different distributions of angular velocity, V1 and V2 , and
integrate Eq. (28) to obtain their respective solutions for the dragging rate, v1 and v2 , then

V1>V2 , V1ÓV2⇒ v1.v2 .

Proof: This follows from the linearity of Eq.~28! and Property~a!. h

We are already in position to get a result about the positiveness of the differenceV2v, and,
hence, of theangular momentum density~22!. However, in order to first do this more specific an
concrete, we shall make use of a property for the particular case of rigid rotation~RR!, which can
be found in Ref. 2, Sec. IV.

Property RR: For the slowly rotating configuration, ifV(r ,u)[const[V̂.0 (in @0,R#
3@0,p# ) then

v~r ,u!5v~r !,

0,v~r !,V̂ in @0,R#

v.0 in @0,̀ @ , v8,0 in #0,̀ @ , v8~0!50 .

Property (c) (positiveness of the angular momentum density): For the slowly rota
configuration, with a given equation of state, its dragging ratev will satisfy

v~r ,u!,V~r ,u!

if V[V(r ,u) (>0) is bounded in the form

VI ~V̄ ![VI < V~r ,u! < V̄

(in @0,R#3@0,p#), whereV̄ is an arbitrary positive constant0,V̄ (!Vcrit) (Sec. IV), andVI

5v̄(0), v̄ solution of Eq. (28) withV̄(r ,u)5const5V̄, and with the same0-order coefficients
(same starting nonrotating configuration) as the ones considered for our slowly rotating con
ration, in particular with the same equation of state; or, more generally, if (with that notatio

v̄~r ! < V~r ,u! < V̄ .

Notice, v,V means that theangular momentum densityto first order in the fluid angular
velocity, (22), of this configuration [with the energy condition (19)] is>0, vanishing on the axis.

@Remarkably, the upper bound required onV is not restrictive, because forV continuous,V is
essentially bounded (PL`) there, andV/iVi` <1.]

Proof: We give a practical method of construction in two steps.
First step: ConsiderV̄(r ,u)ªV̄5const.0, and solve the corresponding Eq.~28! for v̄.

Then, by Property RR, the solution satisfies

v̄~r ,u!5v̄~r ! , ~49!
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0,v̄~r !,V̄ in @0,R# , ~50!

and v̄.0 in @0,̀ @ ,v̄8,0 in #0,̀ @ ,v̄8~0!50 . ~51!

Second step:Consider a slowly rotating configuration starting from the same nonrota
configuration~as in the first step! with a fluid angular velocity distributionV(r ,u) such that

v̄~0!5..VI < V~r ,u! < V̄ . ~52!

Observe, we are always allowed to do this because of~50!. Or, more generally, such thatv̄(r )
<V(r ,u)<V̄; notice, from ~51!, v̄ is a ~positive! decreasing function; in particular,v̄(0)
>v̄(r ).0, ;r P@0,̀ @ .

From the second inequality in~52!, i.e., from V(r ,u)<V̄, and, since we have the sam
starting unperturbed configuration~same 0-order coefficients! for these both slowly rotating con
figurations, it follows, by Property~b!, that their corresponding solutions@of Eq. ~28!# satisfy

v~r ,u!,v̄~r ! , ~53!

where we have used~49!. On the other hand, the first inequality in~52!, and~51! yield

v̄~r !<v̄~0!ªVI < V~r ,u! , ~54!

and consequently, from~53! and ~54!,

v~r ,u! , V~r ,u! .

h

Remark:Notice, the same argument also assures that, given a slowly rotating configu
with V̄(r ,u) such that the corresponding dragging ratev̄(r ,u),V̄(r ,u), we shall have the sam
positivity result@property~c!# for any slowly rotating configuration, starting from the same u
perturbed configuration~in particular, with the same equation of state!, with an angular velocity
distributionV(r ,u) such that

VI ~r ,u!ªv̄~r ,u! < V~r ,u! < V̄~r ,u! ,

because we obtain, from the last inequality and property~b!, v(r ,u),v̄(r ,u), and hence,
v(r ,u),V(r ,u).

Series expansion: Mrot . Before we prove the next property, we first stress that, sinceV andv
transform like vectors under rotation, Eq.~27! may be separated by expanding them as

V~r ,u![V~r ,x!;(
l 51

`

V l~r ! yl~x! ~55!

and

v~r ,u![v~r ,x!;(
l 51

`

v l~r ! yl~x! , ~56!

with the change of variableu°xªcosu, and

yl~x!ª
dPl

dx
;xP@21,1#~uP@0,p#!, Pl[Legendre polynomial of degreel . ~57!

Then the equation forv l takes the form
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d

dr
@r 4 j ~r ! v l8#1@4 r 3 j 8~r !2r 2 k~r ! l l # v l54 r 3 j 8~r ! V l~r ! , ~58!

with l lª l ( l 11)22, l PN, lÞ0, and j andk defined in~25!.
From conditions~31! and ~32! on v, we have the respective boundary conditions onv l ,

lim
r→`

v l~r !50 , ~59!

v l C1 regular at the origin, ~60!

and, from~33!, the matching condition

v l class C1 across r 5R . ~61!

In Sec. IV D an explicit expression for the expansion of the rotational mass-energyM rot in
powers or the angular velocity parameter was obtained~23!, or, using Eq.~26!,

M rot52
1

4 E0

R

dr r 3 j 8E
0

p

du sin3 u V~V2v!1O~m4! . ~62!

Using the series expansions ofV and v, ~55! and ~56!, and the fact that the system$yl% l 51
` is

orthogonal in the Hilbert spaceLr
2(@21,1#), with respect to the weight functionr(x)ª1

2x2, xP@21,1#, and have normiyl ir
252l ( l 11)/(2l 11), the integral overu in ~62! may be

expressed as the sum

E
0

p

du sin3 u V~r ,u!@V~r ,u!2v~r ,u!#5(
l 51

`
2l ~ l 11!

2l 11
V l~r !@V l~r !2v l~r !# , ~63!

and, consequently, the rotational mass-energy~62! can be expressed as a sum of integrals~over r )

M rot5(
l 51

`
l ~ l 11!

2~2l 11!
Ml 1 O~m4! , ~64!

with

MlªE
0

R

f 2~r ! V l~r !@V l~r !2v l~r !# dr , f 2~r !ª2r 3 j 8~r ! >0 . ~65!

Property (d) (positivity and upper bound on the rotational energy Mrot): We consider Eq.~58!,
which can be written

d

dr
~r 4 j v l8!2r 2 k l l v l524 f 2 ~V l2v l ! . ~66!

The main observation is that, multiplying both sides of Eq.~66! by v l , integrating fromr 50 to
r 5`, and taking into account thatf 252r 3 j 854p r 4 («01p0) k[0;r .R,

E
0

`F d

dr
~r 4 j v l8! v l2r 2 k l l v l

2Gdr 524E
0

R

f 2 v l ~V l2v l ! dr

@note, the integral on the left-hand side converges, because an asymptotically flat~59! solution of
Eq. ~58! must behave, forr→`, asv l5O(r 2 l 22), andv l85O(r 2 l 23), l>1]; and, after inte-
grating once by parts the first term on the left-hand side,
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r 4 j v l8 v l u0
`2E

0

`

@r 4 j ~v l8!21r 2 k l l v l
2#dr 524E

0

R

f 2 v l ~V l2v l ! dr .

The first term vanishes becausev l falls off rapidly enough atr→`, and the second term~minus
the integral on the left-hand side! is nonpositive~since j andk are always positive!, therefore

E
0

R

f 2 v l ~V l2v l ! dr >0 . ~67!

Using a few simple linear algebra calculations@including the Cauchy-Schwarz inequality for th
bilinear form ^u,v& fª*0

Rf 2(r ) u(r ) v(r ) dru,vPC0(@0,R#)], the former inequality~67! yields
~see Ref. 1, Sec. V! 0<Ml<*0

Rf 2 V l
2 dr , which gives respective bounds onM rot @cf. ~64!#,

0<M rot<(
l 51

`
l ~ l 11!

2~2l 11!
E

0

R

f 2~r ! V l
2~r ! dr 1 O~m4! ,

or, writing the sum as integral overu @as in ~63!#,

0<M rot<
1

4 E0

R

dr f 2~r !E
0

p

du sin3 u @V~r ,u!#2 1 O~m4! , ~68!

where f 2
ª2r 3 j 854p r 4 («01p0)e(l2n)/2. Additionally, *0

Rf 2 v l
2 dr<*0

Rf 2 V l
2 dr also follows

from ~67!, yielding the ‘‘mean values’’ inequality~in full general!

E
0

R

dr f 2~r !E
0

p

du sin3 u @v~r ,u!#2 <E
0

R

dr f 2~r !E
0

p

du sin3 u @V~r ,u!#2 1 O~m4! . ~69!

h

VI. CONCLUDING REMARKS

Summing up, it has been seen that relativistic stars rotating slowly and differentially, w
non-negative~and nontrivial! angular velocity distribution,V(x2 ,x3)>0 (Ó0), and satisfying the
energy condition«1p>0, have positiverate of rotational draggingv.0 @property~a! in Sec.
V#; and a restriction on the amplitude of theV-profile assures also the positivity of the differen
V2v and, hence, of theangular momentum density, this later vanishes on the axis@property~c!#.
We also observe that therotational mass-energy, @from property~d!# non-negative and~as ex-
pected! ‘‘increased’’ by a~slow! angular velocity of the fluid,V, is ‘‘decreased’’ by the dragging
effect ~over what it would be if this effect were neglected!, i.e., is decreasing with respect t
dragging rate,v, despite of@as shown in property~b!# v being an ‘‘increasing function’’ ofV.
Property~b! and, hence, also property~c! are based on the linearity of the time-angle field equat
component to first order in the fluid angular velocity. In the general differentially rotating c
i.e., outside the slow rotation limit, the rotation profileV cannot be freely chosen, but is restrict
by the integrability condition of the Euler equation, i.e., by Eq.~5!. This makes unlikely a gener
alization of Property~c! outside the slow rotation limit, other than in the form given in Ref. 1, S
IV B.
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APPENDIX A: BOUNDEDNESS OF SOME FUNCTIONS IN †0,`† ¬r

1. The ratio radius-isotropic radius x„r …ªr Õh „r …

We have

h8~r !

h~r !
5

el(r )/2

r
, ~A1!

with

e2l(r )512
2 m~r !

r
, ~A2!

where

m~r !ª5 4pE
0

r

«0~s!s2 ds : r P@0,R#,

M[4pE
0

R

«0~s!s2 ds : r P]R,`@ ,

~A3!

if we denote the stellar radius of the static model byR.0. As we start with a~physically! regular
~i.e., noncollapsed! static solution, we assume that 2m(r ),r ~for all r P]0,R@), and 2M,R.

Integrating Eq.~A1! and using Eq.~A2! we get

h~r !5h~R! expS E
R

r ds

As~s22m~s!!
D . ~A4!

@Note, the constanth(R) is determined by the asymptotic condition

lim
r→`

h~r !

r
51 ;

see below.# Let

g~r !ªE
R

r ds

As~s22m~s!!
;r .0 . ~A5!

With this definition, the solution~A4! now writes

h~r !5h~R! exp~g~r !! . ~A6!

Due to the assumptions made form, g is obviously a continuous function in the open interv
]0,`@ ; consequently, by~A6!, h is also a continuous function there, and, in particular,h(r ) cannot
be zero in ]0,̀ @ @unlessh(R)50, however this would contradict asymptotic flatness#; therefore
x:r °x(r )ªr /h(r ) is continuous in ]0,̀ @ as well. Choose aneP]0,R@ and ane8P]R,`@ , then
x is bounded below and above in the interval@e,e8# ~where the upper and lower bound depend
the selectede ande8, of course!. Let us now consider the intervals@0,e# and @e8,`@ separately.

On @e8,`@ : We have

0<m~r ![M .

Then
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1

s
<

1

As~s22m~s!!
[

1

As~s22M !
;r P@e8,`# .

As in this intervalr>R, we find, with Eq.~A5!,

lnS r

RD5E
R

r ds

s
<g~r ![E

R

r ds

As~s22M !
52 lnS Ar 1Ar 22M

AR1AR22M
D .

Inserting it into Eq.~A6!, yields ~since exp is a monotonically increasing function!

h~R!

R
r<h~r ![h~R!S Ar 1Ar 22M

AR1AR22M
D 2

<
4h~R!

~AR1AR22M !2
r . ~A7!

Note especially that

lim
r→`

h~r !

r
5

4h~R!

~AR1AR22M !2
,

but, by asymptotic flatness, limr→` @h(r )/r # 51; thereforeh(R)5 1
4(AR1AR22M )2.0. Thus,

h(R).0, and, from Eq.~A7!,

0,
~AR1AR22M !2

4h~R!
<x~r !<

R

h~R!
,` ;r P@e8,`@ . ~A8!

On @0,e#: We have

0<m~r !54pE
0

r

«0~s!s2 ds<
4p

3
«̂0r 35..

c0

2
r 3 ,

where «̂0ªsupr P[0,R]«0(r ).0. Next choosee.0, such that 12c0r 2.0 on @0,e# @e.g., e
ª(2Ac0)21]. Then

1

s
<

1

As~s22m~s!!
<

1

sA12c0s2
;r P@0,e# ,

and, since in this intervalr<R, we find, with Eq.~A5!,

lnS R

r D5E
r

R ds

s
<2g~r !<E

r

R ds

sA12c0s2
5 lnS R

r D1 lnS 11A12c0r 2

11A12c0R2D .

Again, inserting it into Eq.~A6!, yields

h~R!

R
r>h~r !>

h~R!

R

11A12c0R2

11A12c0r 2
r>

h~R!~11A12c0R2!

2R
r ,

and, hence,

0,
R

h~R!
<x~r !<

2R

h~R!~11A12c0R2!
,` ;r P@0,e# . ~A9!
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We can therefore conclude that, sinceR0
15@0,e#ø@e,e8#ø@e8,`@ andx is bounded~from above

and below! in each of these subintervals,x is bounded~from above and below! in R0
1 . h

2. The function H

We have

H~r !ª
2e@2l(r )/2# @2616 e@l(r )/2#1r n8~r !#

2 h~r !
,

and

e2l(r )/25A12
2m~r !

r
,

rn8~r !5
2m~r !18pr 3p0~r !

r 22m~r !
5

2m~r !

r
18pr 2p0~r !

12
2m~r !

r

.

Thus,

H~r !5
1

2h~r ! H 6FA12
2m~r !

r
21G2F2m~r !

r
18pr 2p0~r !G S A12

2m~r !

r D 21J .

~A10!

Using the Cauchy–Schwarz inequality in~A10!, and the following estimates inr P@0,e#, for some
eP]0,R@ small ~see former section in Appendix A!

0<m~r !<
c0

2
r 3, ~A11!

0<A12x<12
x

2
;xP@0,1#, ~A12!

0<c1r<h~r !<c2r , ~A13!

0<p0~r !< p̂0ª sup
r P@0,R#

p0~r ! ;r>0 , ~A14!

where the constantsci ( i 50,...,2) are all strictly positive~and finite!, we get

uH~r !u<
1

2h~r ! H 6UA12
2m~r !

r
21U1U 2m~r !

r
18pr 2p0~r !US A12

2m~r !

r D 21 J
<

1

2c1r H 6Fc0

2
r 2G1@c0r 218p p̂0r 2#~A12c0e2!21J 5..

c3r 2

c1r
5..c4r , ~A15!

with 0,c3 , c4,`. ThereforeH is bounded in@0,e#. @Especially, due to Eq.~A15!, H(0)50.]
And, since, by Eq.~A10!, H is also continuous in the open interval ]0,`@ and limr→` H(r )50
~because limr→` @h(r )/r # 51), H is bounded everywhere in@0,̀ @ . h
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APPENDIX B: THE MINIMUM PRINCIPLE FOR GENERALIZED SUPERSOLUTIONS

Consider in a domain~open and connected set! G,Rn (n>2) the differential operator with
principal part of divergence form, defined by

Lu5] i@ai j ~x!] ju1ai~x! u#1bi~x! ] iu1c~x! u ,

with ai j 5aji . Notice, an operatorL of the general formLu5ãi j (x)] i j u1b̃i(x)] iu1 c̃(x)u may
be written in divergence form provided its principal coefficientsãi j are differentiable. If further-
more theãi j are constants, then even with coinciding coefficients (ai j 5ãi j , bi5b̃i , c5 c̃) and
ai[0. Let us assume that

~1! L is strictly elliptic in G, i.e.,' a constantl.0 such thatl<the minimum eigenvalue of the
principal coefficient matrix@ai j (x)#,

l uyu2<aij~x! yiyj ;yPRn, ;xPG ; ~B1!

~2! ai j , ai , bi , andc are measurable and bounded functions inG,

uaij u,`, uaiu,`, ubiu,`, ucu,` in G ~ i , j P$1,...,n%! . ~B2!

By definition, for a functionu which is only assumed to beweakly differentiableand such that
the functionsai j ] ju1aiu and bi] iu1cu, i 51,...,n are locally integrable@in particular, foru
belonging to the Sobolev spaceW1,2(G) ], u is said to satisfyLu5g in G in a generalized (or
weak) sense(g also a locally integrable function inG) if it satisfies

L~u,w;G!ªE
G
$~ai j ] ju1aiu!] iw2~bi] iu1cu!w%dx52E

G
g w dx, ;w>0, wPCc

1~G!

@whereCc
1(G) is the set of functions inC1(G) with compact support inG].

Notice,u is generalized supersolutionrelative to a differential operatorL and the domainG
~i.e., satisfiesLu<0 in G in a generalized sense! if it satisfies L(u,w;G)>0, ;w>0, w
PCc

1(G).
Theorem 1 ~weak minimum principle!: Let uPW1,2(G), G a bounded domain, satisfy L

<0 in G in a generalized sense with

E
G

~cw2ai] iw! dx<0, ;w>0, wPCc
1~G! ~B3!

and conditions~B1! and ~B2! above, then

min
Ḡ

u>min
]G

u2 @ u2[min~u,0! # .

~A proof of this theorem can be found in Ref. 13, Theorem 8.1.!
Theorem 2 ~strong minimum principle!: Let uPW1,2(G)ùC0(G) satisfy Lu<0 in G in a

generalized sense, with the operator L satisfying conditions~B1!, ~B2!, and ~B3!, then u cannot
achieve a nonpositive minimum in the interior of G, unless u[const.

~A proof of this theorem can be found in Ref. 13, Theorem 8.19.! Note that the weak mini-
mum principle, Theorem 1, forC0(G) supersolutions is a direct consequence.

1M. J. Pareja, J. Math. Phys.45, 677 ~2004!.
2J. B. Hartle, Astrophys. J.150, 1005~1967!.
3J. B. Hartle, Astrophys. J.161, 111 ~1970!.
4R. M. Wald,General Relativity~University of Chicago Press, Chicago, IL, 1984!, pp. 219 and 220.
5B. Carter, Commun. Math. Phys.17, 233 ~1970!.
6W. Kundt and M. Tru¨mper, Z. Phys.192, 419 ~1966!.
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9J. M. Bardeen, inBlack Holes, Les Houches 1972, edited by C. DeWitt and B. S. DeWitt~Gordon and Breach, New York
1973!, pp. 241–289.

10K. S. Thorne, inGeneral Relativity and Cosmology, edited by R. K. Sachs~Academic, New York, 1971!, pp. 237–283.
11U. M. Schaudt, Commun. Math. Phys.190, 509 ~1998!.
12Indeed, the first order terms~in the fluid angular velocity! of the general metric, as given in Ref. 1, yield~omitting here

the tilde symbol for all 5-lifted functions! H(r )5(3] r̄B24] r̄U)uh(r ) , wherer̄ 5h(r ), given by Eq.~35!. @This can be

seen by a straightforward calculation, usinge2U(h(r ))5en(r ), h(r )2e2@B(h(r ))2U(h(r ))#5r 2, and their differentiations with

respect tor .] And since @from h(r )5(( i 51
5 xi

2)1/2] ] ih(r )5xih(r )21, we haveH(r )xih(r )215(3] iB24] iU)uO(V) ,

and, hence,̂ 3¹B24¹U,¹v&uO(V) as the second term in Eq.~43!. Also, since to first order~spherical;K5B)

e2KN215e2(B2U)5r 2h22, the coefficient of the right-hand side of Eq.~43! is actually 2C(r )2e2l(r )r 2h(r )22

52c2uO(V) , in the notation of Ref. 1.
13D. Gilbarg and N. S. Trudinger,Elliptic Partial Differential Equations of Second Order~Springer, Berlin, 1977!.
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Dirac theory within the Standard-Model Extension
Ralf Lehnerta)

CENTRA, Departamento de Fı´sica, Universidade do Algarve, 8000-117 Faro, Portugal

~Received 12 January 2004; accepted 14 May 2004; published online 12 July 2004!

The modified Dirac equation in the Lorentz-violating Standard-Model Extension
~SME! is considered. Within this framework, the construction of a Hermitian
Hamiltonian to all orders in the Lorentz-breaking parameters is investigated, dis-
crete symmetries and the first-order roots of the dispersion relation are determined,
and various properties of the eigenspinors are discussed. ©2004 American Insti-
tute of Physics.@DOI: 10.1063/1.1769105#

I. INTRODUCTION

Perhaps the most intriguing open question in present-day fundamental physics conc
quantum theory of all fundamental interactions including gravitation. Experimental research
field is challenging because quantum-gravitational effects are expected to be suppressed
Planck scaleMPl.1019 GeV. However, Lorentz violation is a promising candidate signature
fundamental physics that lies within the sensitivity range of experiments with current or
future technology.1

At presently attainable energy scales, the effects of Lorentz violation can be described
an effective-field-theory framework called the Standard-Model Extension~SME!.2–4 At the clas-
sical level, the action of the SME incorporates, e.g., all leading-order contributions to the Lag
ian that are formed by combining Standard-Model and gravitational fields with Lorentz-bre
parameters such that coordinate independence is maintained. Nonzero parameters for
violation can arise in a variety of approaches to underlying physics including strings,5 various
nonstring models of quantum gravity,6 noncommutative field theories,7 varying couplings,8,9 ran-
dom dynamics,10 multiverses,11 and brane-world scenarios.12 The flat-space–time limit of the
SME has provided the basis for numerous investigations of Lorentz violation invol
mesons,13–15 baryons,16–19 electrons,20–23 photons,24–27 muons,28 and neutrinos.2,29,30

The extraction of the physical content of the SME requires an initial investigation of
quadratic sectors of its Lagrangian paralleling the conventional case. More specifically, the s
free equations of motion, the associated Hamiltonians, the dispersion relations, and, in the f
case, the eigenspinors form a cornerstone on which further theoretical studies and comp
with experiment rest. For example, the majority of the aforementioned analyses of Lorentz
involve the theory of free massive fermions of the SME. Some basics of this theory have
made plausible or have been derived in certain limits as needed, but a comprehensive tre
has been lacking. The present work is intended to fill this gap.31 More specifically, we give a more
rigorous and detailed study of the general free Dirac equation and its solutions in the context
SME. These results provide important tools for further studies of the physical implication
Lorentz violation.

The paper is organized as follows. Section II sets up the notation, reviews the basics
modified Dirac equation, and comments on its structure. The construction of a Hermitian H
tonian to arbitrary order in the Lorentz-violating parameters is discussed in Sec. III. In Sec. I
perform a systematic analysis of discrete dispersion-relation symmetries. Explicit leading
approximations of the fermion eigenenergies are obtained in Sec. V. Sections VI and VII co
an investigation of the eigenspinors including a discussion of their symmetries and a deriva

a!Electronic mail: rlehnert@ualg.pt
33990022-2488/2004/45(8)/3399/14/$22.00 © 2004 American Institute of Physics
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the generalized spinor projectors. A brief summary is presented in Sec. VIII.

II. BASICS

The general Lorentz-violating Lagrangian for a single spin-1/2 fermion2 can be cast into a
variety of forms. One such form reminiscent of the ordinary Dirac Lagrangian and empha
the derivative structure is17

L5
1

2
i c̄Gn ]Jnc2c̄Mc , ~1!

where

Gn[gn1cmngm1dmng5gm1en1 i f ng51
1

2
glmnslm ,

~2!

M[m1amgm1bmg5gm1
1

2
Hmnsmn .

The gamma matrices$I ,g5 ,gm,g5gm,smn% have conventional properties, and the signature of
Minkowski metric hmn is 22. The Lorentz-violating parametersam , bm , cmn , dmn , em , f m ,
gmnl , andHmn are taken as real withcmn anddmn traceless,gmnl antisymmetric in its first two
indices, andHmn antisymmetric. Note thatam , bm , em , f m , andgmnl break CPT symmetry as
well. For definiteness, we assumem.0. However, many of our results also hold in the massl
case. On phenomenological grounds, all Lorentz-violating coefficients must be minute in a c
class of inertial frames calledconcordant frames, in which the Earth moves nonrelativistically
Then, paralleling the usual Dirac case, a Hermitian Hamiltonian with two positive and two n
tive eigenvalues exists.3

For future reference, we provide an equivalent form of Lagrangian~1! emphasizing its
gamma-matrix structure:3

L5c̄~S1 iPg51Vmgm1Amg5gm1Tmnsmn!c . ~3!

Here, we have defined

S@ i ]#[emi ]m2m , P@ i ]#[ f mi ]m , Vm@ i ]#[ i ]m1cmni ]n2am , Am@ i ]#[dmni ]n2bm ,

Tmn@ i ]#[
1

2
~gmnri ]r2Hmn! , ~4!

where the dependence of the introduced quantities on the quantum-mechanical four-mom
operator has been displayed for clarity. The Lagrangians~1! and ~3! differ only by a total diver-
gence, so that they are physically equivalent. Note that the replacementi ]→ 1/2i ]J in Def. ~4!
renders both Lagrangians identical.

The associated modified Dirac equation is given by

~ iGm]m2M !c~x!50 . ~5!

A Klein–Gordon-type equation can be obtained employing the following squaring proce
Consider the modified Dirac operator (iGm]m2M ) and change the signs of the parametersbm,
dmn, gmnr, andHmn. Application of the resulting operator to Eq.~5! yields the desired second
order equation

~S̆1 P̆g51V̆mgm!c~x!50 , ~6!
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where we have defined

S̆[S22P21V21A222T2 , P̆[2~ iPS2V•A2 iTT̃! ,

V̆m[2~SVm1 iPAm22iTmnVn12T̃mnAn! . ~7!

In the above expressions, the dependence of the various quantities oni ] is understood. The tenso
T̃mn51/2emnabTab denotes the dual andemnab is the totally antisymmetric symbol withe01235
11, as usual. The unconventional off-diagonal pieces in Eq.~6! can be eliminated with a secon
squaring procedure involving the application of (S̆2 P̆g52V̆mgm) to the Klein–Gordon-type
equation~6!. As expected, the resulting fourth-order operator can be expressed as the deter
of the modified Dirac operator, paralleling the conventional case:

det~ iGm]m2M !c~x!50 . ~8!

Thus, each individual component of a spinor solving the modified Dirac equation~5! satisfies Eq.
~8!.

A plane-wave ansatzc(x)5exp(2ilmxm)W(lW) for solutions to the modified Dirac equation~5!
yields

~Gmlm2M !W~lW !50 ~9!

determining the four-component spinorW(lW ), where the four-momentumlm must solve the
dispersion relation

det~Gmlm2M !50 . ~10!

With our earlier assumption, dispersion relation~10! has two positive-valued rootsl1(1,2)
0 (lW ) and

two negative-valued onesl2(1,2)
0 (lW ). The corresponding four-momenta and eigenspinors

l6(a)
m andW6

(a)(lW ), respectively. Throughout this work, indices in parentheses can take the v
1 and 2. After the usual reinterpretation of the negative-energy solutions, the four-momen
denoted by

pu
(a)[l1(a) , pv

(a)[2l2(a) , ~11!

where we have omitted the Minkowski indices for brevity. The notation for the reinterpr
eigenspinors is

U (a)~pW ![W1
(a)~lW ! , V(a)~pW ![W2

(a)~2lW ! . ~12!

The spinors and the dispersion relation are discussed in more detail in subsequent section
For a four-momentumlm that fails to satisfy dispersion relation~10!, the cofactor matrix of

the modified Dirac operator (Gmlm2M ) in l-momentum space is given by

cof~Gmlm2M !5det~Gmlm2M !~Gmlm2M !21 . ~13!

This matrix appears in many applications of our model~1!, such as the anticommutator function3

A more explicit expression is therefore desirable. As a corollary of the above discussion
equations of motion, we obtain

cof~Gmlm2M !5~S̆2 P̆g52V̆mgm!~S1 iPg51Vmgm2Amg5gm2Tmnsmn! . ~14!
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As we are now working in momentum space, the according change fromi ] to l in Defs. ~4! and
~7! is implied. Replacingl→ i ] everywhere in~14!, yields the associated relation in positio
space, as usual.

III. HAMILTONIAN

In concordant frames,G0 is invertible,3 so that the modified Dirac equation~5! can be cast into
Schrödinger form:

i ]0c~x!5~G0!21~ iGW "¹W 1M !c~x! . ~15!

Although the operatorH̃@ i¹W #[(G0)21( iGW "¹W 1M ) appearing above is reminiscent of a Ham
tonian, it fails to be Hermitian in general. This results in such undesirable features like a no
tary time evolution. This issue can be resolved by a spinor redefinitionAx[c chosen to eliminate
the unconventional time-derivative couplings.21 Here,A is a nonsingular space–time-independe
434 matrix, which exists in concordant frames.3 This field redefinition leaves the physics una
fected because it is a canonical transformation. It amounts to a change of basis in spinor

The existence ofA is equivalent3 to the positive definiteness ofg0G0. One can then define32

the ‘‘square root’’ ofg0G0 as the unique, positive-definite, invertible matrix (g0G0)1/2 that obeys
(g0G0)1/2(g0G0)1/25g0G0. The matrixA can now be expressed as

A5~g0G0!21/2 . ~16!

Note that the hermiticity ofg0G0 yields A5A†. It can now be verified that the HamiltonianH
given by

H@ i¹W #5~g0G0!21/2g0~ iGW "¹W 1M !~g0G0!21/2 , ~17!

which governs the time evolution of the redefined fieldx, is Hermitian, as desired. We also poi
out thatH and H̃ are related by the similarity transformation

H5~g0G0!1/2H̃~g0G0!21/2 . ~18!

The determination of the explicit form of the matrixA is challenging in general. In practice
however, it usually suffices to determineA up to a given order in the Lorentz-violating coeffi
cients. Notice thatg0G0 can be split into the 434 identity I plus a Lorentz-breaking correction
g0G05I 1g0(G02g0). This suggests the following expansion:

A5I 1 (
n51

`
~2n21!!!

~2n!!!
~ I 2g0G0!n . ~19!

In a basis in whichg0G0 is diagonal, it is straightforward to verify that the expansion~19! indeed
converges and is consistent with the ‘‘square root’’ definition. It can therefore be used to dete
A to arbitrary order.

IV. SYMMETRIES OF THE DISPERSION RELATION

An explicit expression for the single-particle dispersion relation~10! can be found by expand
ing the determinant:3

det~Gmlm2M !54~V[mAn]2VmVn1AmAn1PTmn2ST̃mn1TmaT n
a 1T̃maT̃ n

a !2

1~V22A22S22P2!224~V22A2!216~emnabAaVb!2 . ~20!
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Here, S, P, Vm, Am, and Tmn are given inl-momentum space, andV[mAn]5VmAn2AmVn

denotes the antisymmetric part. Relation~20! also follows directly from Eqs.~13! and ~14!. The
position-space version of Eq.~20! can be used to cast Eq.~8! into a more explicit form.

Further insight about the structure of dispersion relation~10! can be gained by analyzing it
properties under charge conjugation C, parity inversion P, and time reversal T. For example
absence of explicit expressions for the eigenenergies, these investigations can be used t
information about their degeneracy. One such transformation, charge conjugation C, ha
considered previously.3 It was shown that the two sets of roots

$l2(a)
0 ~lW ,m,am,bm,cmn,dmn,em, f m,gmnr,Hmn!%5$2l1(b)

0 ~2lW ,m,2am,bm,cmn,2dmn,2em,

2 f m,gmnr,2Hmn!% ~21!

are identical. In this section, we employ the same methodology to find additional symmetr
the dispersion relation~10! and point out some subtleties regarding the labeling of the roots.

The idea is as follows. Multiplication of the modified Dirac operator (Gmlm2M ) with a
nonsingular,l-independent matrix contributes only a nonzero multiplicative factor to the de
minant in Eq.~10! leaving this equation, and thus its roots, unchanged. The determinant re
also invariant under transposition or complex conjugation of the modified Dirac operator
latter is true because det(Gmlm2M) is real, which follows from Eq.~20! and Def.~4!.

We first consider

~Gmlm2M !→g0~Gmlm2M !g0 , ~22!

which corresponds to parity inversion P in spinor space. We remark in passing that detGmlm

2M) remains unchanged, since the overall factor induced is det(g0g0)51. It follows that the
dispersion relation~10! is invariant under

$lm,m,am,bm,cmn,dmn,em, f m,gmnr,Hmn%→$lm ,m,am ,2bm ,cmn ,2dmn ,em ,2 f m ,gmnr ,Hmn% .
~23!

Hence, the two sets

$l1(a)
0 ~lW ,m,am,bm,cmn,dmn,em, f m,gmnr,Hmn!%5$l1(b)

0 ~2lW ,m,am ,2bm ,cmn ,2dmn ,em ,

2 f m ,gmnr ,Hmn!% , ~24!

each containing the two positive-valued solutions of Eq.~10!, must be identical. The result for th
remaining sets of the two negative-valued roots is obtained by replacing the subscript1 by 2 in
Eq. ~24!.

Next, we investigate spinor-space time reversal given by

~Gmlm2M !→ ig5C~Gmlm2M !* iCg5 , ~25!

where * denotes complex conjugation andC is the usual charge-conjugation matrix. Agai
det(Gmlm2M) is left unchanged. The resulting symmetry between the positive-valued roots o
dispersion relation~10! takes the form

$l1(a)
0 ~lW ,m,am,bm,cmn,dmn,em, f m,gmnr,Hmn!%5$l1(b)

0 ~2lW ,m,am ,bm ,cmn ,dmn ,em ,2 f m ,

2gmnr ,2Hmn!% . ~26!

For the corresponding expression involving the negative-valued solutions, the subscript1 must be
changed to2.
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Note that the above arguments, which generated~21!, ~24!, and~26!, provide only equalities
betweensetsof roots. In order to find relations between the individual roots, additional cons
ations are needed. Charge conjugation, on one hand, and parity inversion and time reversa
other hand, have to be treated separately.

We begin by discussing charge conjugation. Equality~21! relates positive- and negative
valued eigenenergies. It therefore follows already at this point that in principle relation~21! and
the knowledge of one root suffices to construct another solution. The remaining less imp
question is how the subscript~a! behaves under C. If an additional conserved quantity commu
with H is known~such as a spin component or helicity in the conventional case!, the subscript~a!
may be used to label its eigenvalues. A definite correspondence can then be determined b
tigating the behavior of this conserved quantity under C. In the present case without knowle
such an additional conserved quantity, the label~a! becomes essentially arbitrary and can theref
be chosen freely.33 Our conventions agree with the conventional ones in the following sense:34 the
labels of eigenvalues and eigenspinors match and change under charge conjugation. This p
after reinterpretation

Ev
(1,2)~pW ,m,am,bm,cmn,dmn,em, f m,gmnr,Hmn!5Eu

(2,1)~pW ,m,2am,bm,cmn,2dmn,2em,2 f m,

gmnr,2Hmn! , ~27!

whereEu,v
(1,2) denotes the zero-components ofpu,v

(1,2) defined by~11!. We remark that this labeling
agrees with our previous choice.3

We now turn to parity inversion and time reversal. The equalities~24! and ~26! provide a
correspondence between roots of the same sign. As opposed to the previous case for
therefore uncleara priori whether P and T individually can be used to construct additional eig
values from a known one. However, the combined transformation PT should give a differen
it connects different eigenspinors,35 and according to our above conventions, this fact should
reflected in the labels of the eigenenergies. The invariance of the dispersion relation~10! under the
transformation PT yields with this choice of labeling after reinterpretation

Eu,v
(1,2)~pW ,m,am,bm,cmn,dmn,em, f m,gmnr,Hmn!5Eu,v

(2,1)~pW ,m,am,2bm,cmn,2dmn,em, f m,

2gmnr,2Hmn! . ~28!

To determine equalities between the individual roots in~24! and ~26!, a definite labeling scheme
is needed. Without knowledge of an additional conserved operator this becomes a matter of
constrained only by Eq.~28!. Contrary to the charge-conjugation case, there is more freedom
at the conventional level: the two customary labels, spin projection onto a fixed directio
helicity, behave differently under both P and T. For definiteness, we choose the label~a! to change
under P, but not under T. This agrees with the behavior of the conventional helicity labelin

We mention that from any other combination of C, P, and T additional correspondences
constructed straightforwardly. However, if one eigenenergy~with functional dependence agreein
with our choice of labeling! is known explicitly, the symmetries~27! and~28! suffice to determine
the remaining three. As an illustrative example, consider the following case: all Lorentz-viol
parameters exceptam andb0 are zero. The eigenenergies are then given by2

Eu
(a)5Am21~ upW 2aW u1~21!ab0!21a0 , Ev

(a)5Am21~ upW 1aW u2~21!ab0!22a0 . ~29!

Suppose only one of the above energies, sayEu
(1)5@m21(upW 2aW u2b0)2#1/21a0 , is known. Ac-

cording to Eq.~28!, the eigenvalueEu
(2) for the other positive-energy solution can then be obtain

by keeping the sign ofam the same, but reversing the sign ofb0 in complete agreement with Eq
~29!. Similarly, the symmetry~27! permits the determination of the antiparticle energyEv

(2) by
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keeping all signs unchanged except for the one ofam , which has to be reversed. Again, the res
is identical to the one given by~29!. The remaining antiparticle energyEv

(1) can be found in the
same way asEv

(2) , but starting fromEu
(2) instead ofEu

(1) .
The above method for the construction of additional eigenvalues from a known root has

taken with a grain of salt. It is required that the functional dependence of the given eigenene
the Lorentz-violating parameters is consistent with our above choice of labeling. The follo
example illustrates this issue. Consider a model in which Lorentz breaking can be describedam

and bW only. The following expressions for the reinterpreted eigenenergies satisfy its dispe
relation:2

Eu
65@m21~pW 2aW !262Am2bW 21~bW •~pW 2aW !!21bW 2#1/21a0 ,

~30!

Ev
65@m21~pW 1aW !262Am2bW 21~bW •~pW 1aW !!21bW 2#1/22a0 .

Suppose again that only one of these eigenenergies, sayEu
1 , were known. Employing symmetry

~28!, i.e., reversing the sign ofbW , does not yield any of the other eigenenergies. This can be tr
to the fact that the functional dependence in Eq.~30! does not agree with our convention that t
labels should change under PT. In Eq.~30!, the labels reflect the sign of a square root in t
expression rather than being related to the PT transformation. We remark that a suitable la
can be obtained by multiplying the inner square roots in Eq.~30! by a quantityD that can take the
values11 and 21 and changes sign whenbW is reversed~i.e., a possible choice would beD
5bW "BW /ubW "BW u, whereBW is arbitrary but fixed and satisfiesbW "BW Þ0).

The symmetries~27! and ~28! can also be used to find parameter combinations yield
degenerate roots. It follows from Eq.~28! that for

bm5dmn5gmnr5Hmn50 , ~31!

roots of the same sign are equal. Thus, Eq.~31! provides a sufficient condition for energy equali
of two ~distinct! particle states of a given three-momentum. The same holds true for the an
ticles. Suppose the Lorentz-violating parameters obey

am5dmn5em5 f m5Hmn50 , ~32!

or

am5bm5em5 f m5gmnr50 . ~33!

Either one of the conditions~32! and~33! is sufficient for an energy degeneracy such that for e
particle there exists an antiparticle of equal four-momentum. This can be verified by usin
symmetries~27! and~28!. As a corollary of the above discussion we remark that ifcmn is the only
nonvanishing Lorentz-violating parameter, then all four eigenenergies become degenera
reinterpretation.

V. FIRST-ORDER APPROXIMATION OF THE EIGENENERGIES

In principle, the dispersion relation~20! and Eq.~4! allow the determination of the exac
eigenenergies at a given three-momentum in the presence of Lorentz violation. In many c
stances, however, only leading-order corrections to the conventional eigenenergies are of i
They can be obtained with the method described below.

With the aid of generalized Foldy–Wouthuysen techniques one can find a~momentum-
dependent! unitary matrixU transforming the Hamiltonian~17! into the following block-diagonal
form:17
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U†HU5S hrel 0

0 h̄rel
D , ~34!

where the two 232 matriceshrel andh̄rel are the respective Hamiltonians for the fermion and
antifermion. From the procedure it is obvious that the eigenvalues of the matriceshrel andh̄rel are
the respective particle and antiparticle energies. To make further progress, consider the ex

hrel5h01(
j 51

3

hjs j ~35!

of hrel with respect to the basis$I ,s j%. Here, I is the 232 identity ands j are the usual Paul
matrices. The componentsh0 ,...,h3 depend on the three-momentum, the mass, and the param
for Lorentz breaking as determined by the Foldy–Wouthuysen transformation. They yiel
fermion eigenenergies by means of

Eu
(a)5h06A(

j 51

3

hjhj . ~36!

Note that the correspondence between the energy superscript~a!, aP$1,2% and the sign of the
square root in~36! is only constrained by the symmetry~28!.

This method is suitable for extracting the leading-order approximation of the eigenen
because the componentsh0 ,...,h3 are known to first order in the Lorentz-violating parameters17

h05gm1S a02
mc00

g
2me0D1@aj2gm~c0 j1cj 0!2mej #

pj

gm
2~cjk2h jkc00!

pj pk

gm
,

~37!

hj52
1

g
bj1mdj 01

1

2
«kl

jHkl2
1

2g
m«kl

jgkl01Fh jkb01m~djk2h jkd00!1« l
k jH0l

2gm« lm
j S 1

2
glmk2hkmgl00D G pk

gm
1F ~g21!m

pW 2 S bk1mdk01
1

2
«mn

kHmn1
1

2
m«mn

kgmn0Dh j l

2~d0k1dk0!h j l 1«m
l j ~gm0k1gmk0!G pkpl

gm
1

~g21!

pW 2 F2~dkl2hkld00!2
1

2
«nq

lgnqkG
3h jm

pkplpm

g
,

whereg[A11pW 2/m2 is the usual relativistic gamma factor, and the totally antisymmetric rota
tensor« jkl satisfies«123511 and« jkl52« jkl . Note that the parameterf m does not contribute to
the eigenenergies at leading order. We remark that the symmetries~27! and ~28! permit the
construction of the antifermion energies.

As an illustration, consider the previously considered (am ,b0) model with the eigenenergie
~29!. For this model, we haveh05gm1a02pW "aW /gm andhj5b0pj /gm. For this case, Eq.~36!
yields

Eu
(1,2)5Am21pW 21a02

pW "aW 6b0upW u

Am21pW 2
. ~38!

One can verify that Eqs.~29! and~38! agree to leading order in the Lorentz-violating coefficien
provided the upper and lower signs in Eq.~38! are identified with the labelsa51 anda52,
respectively. The corresponding antiparticle energies to first order can now be obtained w
aid of symmetry~27!, as discussed previously.
                                                                                                                



tation.

r
m-

tive-

ur
ce. Our

t

spinors,
result

n
her set

tive-
l

ripts

3407J. Math. Phys., Vol. 45, No. 8, August 2004 Dirac theory within the Standard-Model Extension

                    
VI. SYMMETRIES OF THE EIGENSPINORS

It is necessary to begin this section by introducing our conventions and some more no
The four eigenspinorsw6

(a)(lW ) of H(lW ) are determined by

~H~lW !2l6(a)
0 !w6

(a)~lW !50 . ~39!

We have used that the dispersion relation~10!, and thus its rootsl6(a)
0 , remain unchanged unde

the field redefinition. The eigenspinorsw6
(a)(lW ) are related to the observer-covariant momentu

space spinorsW6
(a)(lW ) obeying Eq.~9! by

W6
(a)~lW !5Aw6

(a)~lW ! , ~40!

whereA is the field-redefinition matrix discussed earlier. After reinterpretation of the nega
energy solutions we denote the eigenspinors ofH by u(a)(pW ) andv (a)(pW ) in complete analogy to
Def. ~12!. Thus, the transformation~40! remains valid even after the reinterpretation. The fo
eigenspinors for a given momentum, which can be taken as orthogonal, span spinor spa
choice of normalization is

u(a)†~pW !u(a8)~pW !5daa8
Eu

(a)

m
, v (a)†~pW !v (a8)~pW !5daa8

Ev
(a)

m
, u(a)†~pW !v (a8)~2pW !50 .

~41!

Note that the physical spinorsw6
(a) , and thusu(a) andv (a), fail to be observer Lorentz covarian

due to the frame dependence ofA.
The discrete transformations C, P, and T determine correspondences between sets of

paralleling the eigenenergy case. For the charge-conjugation transformation our previous3

$W2
(a)~lW ,m,am,bm,cmn,dmn,em, f m,gmnr,Hmn!%}$W1

(b)c~2lW ,m,2am,bm,cmn,2dmn,2em,

2 f m,gmnr,2Hmn!% ~42!

holds, which we provide here for completeness. The charge-conjugated spinorWc[CW̄T is de-
fined with the conventional charge-conjugation matrixC. A } sign, such as the one in relatio
~42!, is to be understood as follows. For each spinor in one set there exists a spinor in the ot
such that the two spinors are linearly dependent.

The parity transformation~22! induces the following relation:

$W1
(a)~lW ,m,am,bm,cmn,dmn,em, f m,gmnr,Hmn!%}$W1

(b)p~2lW ,m,am ,2bm ,cmn ,2dmn ,em ,

2 f m ,gmnr ,Hmn!% , ~43!

where Wp[g0W denotes the parity-inverted spinor as usual. The relation for the nega
eigenvalue spinors is obtained by replacing the subscripts1 with 2. The result for time reversa
~25! is given by

$W1
(a)~lW ,m,am,bm,cmn,dmn,em, f m,gmnr,Hmn!%}$W1

(b)t~2lW ,m,am ,bm ,cmn ,dmn ,em ,2 f m ,

2gmnr ,2Hmn!% . ~44!

Here, Wt[2 ig5CW* is the conventional time-reversed spinor. Again, changing the subsc
from 1 to 2 yields the corresponding relation for the remaining eigenspinors.
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To find correspondences between individual eigenspinors, a definite labeling scheme
spinors must be selected. The associated subtleties are analogous to the eigenenergy cas
not require additional discussion. Our previous convention that the labeling of the root
eigenspinors matches leads after reinterpretation to the symmetries

V(1,2)~pW ,m,am,bm,cmn,dmn,em, f m,gmnr,Hmn!5zU (2,1)c~pW ,m,2am,bm,cmn,2dmn,2em,

2 f m,gmnr,2Hmn! ~45!

and

U (1)~pW ,m,am,bm,cmn,dmn,em, f m,gmnr,Hmn!5hU (2)pt~pW ,m,am,2bm,cmn,2dmn,em, f m,

2gmnr,2Hmn! ~46!

resulting from C and PT, respectively. Here,z andh are ~possibly spinor-dependent! proportion-
ality factors, and the superscriptpt stands for the combined spinor transformations P and T defi
above. The relation arising from PT, but involving the spinorsV(1,2) can be obtained by replacin
U with V in Eq. ~46!. If one eigenspinor is known explicitly~with functional dependence agreein
with our choice of labeling!, the symmetries~45! and~46! can in principle be used to construct th
remaining three.

As an illustration, we again consider the (am ,b0) model. Its eigenspinors in Pauli–Dira
representation are2

U (a)~pW ,m,am,b0!5S Eu
(a)~Eu

(a)2a01m!

2m~Eu
(a)2a0!

D 1/2S f (a)~pW 2aW !

2~21!aupW 2aW u2b0

Eu
(a)2a01m

f (a)~pW 2aW !D ,

~47!

V(a)~pW ,m,am,b0!5S Ev
(a)~Ev

(a)1a01m!

2m~Ev
(a)1a0!

D 1/2S 2~21!aupW 1aW u1b0

Ev
(a)1a01m

f (a)~pW 1aW !

f (a)~pW 1aW !
D ,

where the two-component spinorsf (a)(kW ) are given by

f (1)~kW !5S cos~u/2!

eiw sin~u/2! D , f (2)~kW !5S 2e2 iw sin~u/2!

cos~u/2! D . ~48!

Here,u andw are the spherical-polar angles subtended bykW . Suppose that only one of the spino
in Eq. ~47!, say U (1)(pW ,m,am,b0), is known. With the symmetry~46! one can now construc
U (2)(pW ,m,am,b0) up to a constant: inU (1)(pW ,m,am,b0), the sign ofb0 has to be reversed. Not
that this entails changingEu

(1) to Eu
(2) by virtue of Eq.~28!. Complex conjugation resulting from

time reversal affects onlyf (1)(pW 2aW ) because all other quantities in the expression are real for

specific model. The final step is multiplication with the matrix2 ig3g1g05( 0 s2
2s2 0 ), wheres2

denotes the usual Pauli matrix associated with the two-direction. This is somewhat simplifi
observing thats2f (1)* (kW )5 if (2)(kW ). Comparison with Eq.~47! shows that the resulting spinor i
indeedU (2)(pW ,m,am,b0) up to a factor of2 i . The symmetry~45! determines~up to constants! the
remaining two spinorsV(1)(pW ,m,am,b0) and V(2)(pW ,m,am,b0) from U (2)(pW ,m,am,b0) and
U (1)(pW ,m,am,b0), respectively: reverse the sign ofam, complex conjugate and multiply byig2.
This procedure yieldsV(2)(pW ,m,am,b0) exactly andV(1)(pW ,m,am,b0) up to a relative minus sign

With an explicit labeling scheme like that selected for the eigenenergies, additional rel
between the spinors can be determined using other combinations of Eqs.~42!, ~43!, and~44!. The
corresponding symmetries for the physical spinors defined earlier can be obtained by rep
U (1,2) and V(1,2) in Eqs. ~45! and ~46! by u(1,2) and v (1,2), respectively. Note that the field
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redefinition matrixA depends on the Lorentz-violating parameters. For example, to cons
u(a)(pW ,m,2am,bm,cmn,2dmn,2em,2 f m,gmnr,2Hmn) from U (a)(pW ,m,am,bm,cmn,dmn,em, f m,
gmnr,Hmn) and A(cm0,dm0,e0, f 0,gmn0), the appropriate sign changes have to be implemen
both in U (a) and inA.

VII. GENERALIZATION OF THE CONVENTIONAL SPINOR PROJECTORS

In the ordinary Dirac case, the spinor matrices that project on the positive- and neg
energy eigenspaces

6 (
a51

2

w6
(a)

^ w̄6
(a)5

l” 6 1m

2m
~49!

are an indispensable tool in numerous calculations. To obtain the Lorentz-violating analog,
an arbitrary three-momentumlW and express the left-hand side of Eq.~13! in terms of the Hamil-
tonian ~17!:

cof~Gmlm2M !5det~G0!)
[ j ]

~l02l [ j ]
0 !~g0G0!21/2~l02H !21~g0G0!21/2g0 . ~50!

Here and in what follows, the dependence of the eigenvalues, the eigenspinors, and the
tonian on the fixedlW is omitted for brevity. The two positive and two negative eigenvaluesl1(1,2)

0

and l2(1,2)
0 of H are denoted collectively byl [ j ]

0 , where@ j #P$2(2),2(1),1(1),1(2)%. The
product in Eq.~50! runs over all four of these eigenvalues. Since the Hamiltonian~17! is Hermit-
ian, there exists a spinor basis in whichH is diagonal. In this basis, we have explicitly

cof~Gmlm2M !5det~G0!~g0G0!21/2Pl0~g0G0!21/2g0 , ~51!

where the diagonal matrixPl0 is given by

Pl0

[S ~l02l1(2)
0 !~l02l2(1)

0 !~l02l2(2)
0 ! ¯ 0

~l02l1(1)
0 !~l02l2(1)

0 !~l02l2(2)
0 ! ]

] ~l02l1(1)
0 !~l02l1(2)

0 !~l02l2(2)
0 !

0 ¯ ~l02l1(1)
0 !~l02l1(2)

0 !~l02l2(1)
0 !

D .

~52!

For l0→l1(1)
0 , the nondegenerate casel1(1)

0 Þl1(2)
0 and the degenerate casel1(1)

0 5l1(2)
0 have

to be distinguished.
In the nondegenerate case, the matrixPl0 simplifies to

Pl
1(1)
0 5S ~l1(1)

0 2l1(2)
0 !~l1(1)

0 2l2(1)
0 !~l1(1)

0 2l2(2)
0 ! 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

D , ~53!

which can be writtenPl
1(1)
0 5(H2l1(2)

0 )(H2l2(1)
0 )(H2l2(2)

0 ). Thus,Pl
1(1)
0 is proportional to

the projector on thel1(1)
0 eigenspace. The above argument applied to an arbitrary nondegen

eigenvaluel [ r ]
0 yields
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cof~Gml [ r ]
m 2M !5det~G0!~g0G0!21/2 )

[ j ]Þ[ r ]
~H2l [ j ]

0 !~g0G0!21/2g0 . ~54!

The Pl
[ r ]
0 can be expressed in terms of the eigenspinors in the usual way. Our normalizatio~41!

gives explicitly

)
[ j ]Þ[ r ]

~H2l [ j ]
0 !5

m

ul [ r ]
0 u

w[ r ] ^ w[ r ]
† )

[ j ]Þ[ r ]
~l [ r ]

0 2l [ j ]
0 ! , ~55!

wherew[ r ]P$w2
(2) ,w2

(1) ,w1
(1) ,w1

(2)% is a shorthand notation for thel [ r ]
0 eigenspinor. One can now

determine the desired projectors for the observer-invariant eigenspinors. We obtain for non
erate eigenvaluesl [ r ]

0 :

m

ul [ r ]
0 u

W[ r ] ^ W̄[ r ]5
cof~Gml [ r ]

m 2M !

det~G0! )
[ j ]Þ[ r ]

~l [ r ]
0 2l [ j ]

0 !

. ~56!

For degenerate eigenvaluesl [q]
0 5l [ r ]

0 , (@q#Þ@r #), the matrixPl
[ r ]
0 vanishes. However, Eq

~51! can be modified to

cof̂~Gmlm2M !5det~G0!~g0G0!21/2P̂l0~g0G0!21/2g0 , ~57!

where a caret denotes division by the appropriate (l02l [ r ]
0 ) factor. The existence ofP̂l0 in the

limit l0→l [ r ]
0 is immediate from Def.~52!. Note that the resulting matrixP̂l

[ r ]
0 is again, up to

normalization, the projector on thel [ r ]
0 eigenspace. By virtue of Eq.~57!, cof̂(Gmlm2M ) is also

well defined for alll0. Considerations similar to the ones for a nondegenerate eigenvalue yie
following intermediate expression involving the eigenspinors ofH:

)
[ j ]Þ[q],[ r ]

~H2l [ j ]
0 !5

m

ul [ r ]
0 u (

[k] 5[q],[ r ]
w[k] ^ w[k]

† )
[ j ]Þ[q],[ r ]

~l [ r ]
0 2l [ j ]

0 ! . ~58!

The final result for the case of two degenerate eigenvaluesl [q]
0 5l [ r ]

0 , (@q#Þ@r #) is given by

m

ul [ r ]
0 u (

[k] 5[q],[ r ]
W[k] ^ W̄[k]5

cof̂~Gml [ r ]
m 2M !

det~G0! )
[ j ]Þ[q], @r #

~l [ r ]
0 2l [ j ]

0 !

. ~59!

For any square matrixB, the relationU†cof(B)U5cof(U†BU) holds, whereU is unitary.
Thus expressions~56! and~59! for the generalized projectors are independent of the spinor-s
basis. We also remark that the projectors~49! for the ordinary Dirac case can be recovered fro
these results, as expected. In this case, the eigenenergies are degenerate so that Eq.~59! must be
employed. Moreover, no field redefinition is necessary, so that the covariant and physical s
are identical. The matrix of cofactors is given by (l22m2)(l”1m), which can be verified directly
or can be obtained from Eq.~14!. Assembling everything yields Eq.~49!.

As an immediate application, the generalized projector~56! permits the construction of a mor
explicit form of the eigenspinor in the case when there is a nondegenerate eigenvaluel [ r ]

0 :

W[ r ]~lW !5N[ r ]~lW !cof~Gml [ r ]
m 2M !W[ r ]

0 ~lW ! , ~60!

where N[ r ] (lW ) is a normalization factor andW[ r ]
0 (lW ) any spinor only constrained b

W[ r ]
0 (lW )¹Ker@cof(Gml [ r ]

m 2M )#. The remaining spinors can be determined, e.g., with the s
metries discussed earlier. If both the negative- and the positive-valued roots are degenerate
additional conserved quantity commuting with the Hamiltonian is unknown, no orthono
                                                                                                                



rate

dard-
ions

f the
e given
al

rator,

/

. Pullin,

.

d

.

3411J. Math. Phys., Vol. 45, No. 8, August 2004 Dirac theory within the Standard-Model Extension

                    
spinor basis spanning the eigenspaces is preferred. One can then replace cof→cof̂ in Eq. ~60! and
in the associated requirement onW[ r ]

0 (lW ). It is now possible to proceed as in the nondegene
case.

VIII. SUMMARY

This work has discussed the theory of the Lorentz-violating Dirac equation in the Stan
Model Extension~SME!. The main results include various symmetry properties of the solut
and generalizations of conventional relations. In particular, Eq.~19! permits the construction of a
Hermitian Hamiltonian to arbitrary order in the Lorentz-violating parameters. Symmetries o
eigenenergies and the eigenspinors arising from the discrete C, P, and T transformations ar
by Eqs.~27! and ~28!, and by Eqs.~45! and ~46!, respectively. The analog of the convention
spinor projectors is provided by Eq.~56! in the nondegenerate case or Eq.~59! in the degenerate
case. These latter two equations involve the matrix of cofactors of the modified Dirac ope
which is given explicitly by Eq.~14!.
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p-mechanics is a consistent physical theory which describes both classical and
quantum mechanics simultaneously through the representation theory of the
Heisenberg group. In this paper we describe how nonlinear canonical transforma-
tions affectp-mechanical observables and states. Using this we show how canoni-
cal transformations change a quantum mechanical system. We seek an operator on
the set ofp-mechanical observables which corresponds to the classical canonical
transformation. In order to do this we derive a set of integral equations which when
solved will give us the coherent state expansion of this operator. The motivation for
these integral equations comes from the work of Moshinsky and a variety of col-
laborators. We consider a number of examples and discuss the use of these equa-
tions for non-bijective transformations. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1771482#

I. INTRODUCTION

Canonical transformations are at the center of classical mechanics.5,14,18A canonical transfor-
mation in classical mechanics is a mapA defined on phase space~throughout this paper we tak
phase space to beR2n) which preserves the Poisson bracket. That isA: R2n→R2n such that for any
two classical mechanical observablesf, g

$ f +A,g+A%5$ f ,g%+A. ~1!

It is important to note that the mapA may well be non-bijective and nonlinear. A condition whic
is equivalent to~1! is that the mapA must also preserve the symplectic form onR2n,

v~A~q,p!,A~q8,p8!!5v~~q,p!,~q8,p8!!, ~2!

wherev is defined asv((q,p),(q8,p8))5qp82q8p. The most advanced applications of cano
cal transformations in classical mechanics are the Hamilton–Jacobi theory~Ref. 14, Chap. 10, and
Ref. 5, Chap. 9! and action angle variables~Ref. 18, Sec. 6.2, and Ref. 5, Chap. 9!.

The passage of canonical transformations from classical mechanics to quantum mechan
been a long journey which is still incomplete. The first person to give a clear formulatio
quantum canonical transformations was Dirac; this is presented in his book.9 Mario Moshinsky
along with a variety of collaborators has published a great number of enlightening papers
subject.27,29,30,13,10In these papers the aim is to find an operator,U, defined on a Hilbert space
which corresponds to the canonical transformation. Moshinsky and his collaborators devel
system of differential equations which when solved gave the matrix elements—with respect
eigenfunctions of the position or momentum operator—ofU. More recently Arlen Anderson2,3 has
published some results on modeling canonical transformations in quantum mechanics usin
unitary operators.

In this paper we usep-mechanics to exhibit relations between classical and quantum cano
transformations.p-mechanics8 describes both classical and quantum mechanics using the He

a!Electronic mail: abrodlie@maths.leeds.ac.uk
34130022-2488/2004/45(8)/3413/19/$22.00 © 2004 American Institute of Physics
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berg group~denotedHn). The theory contains both observables and states which can bo
realized as functions/distributions onHn. p-mechanical observables can be transformed into b
quantum and classical observables using different representations ofHn.

We derive a system of integral equations usingp-mechanics which when solved give th
coherent state expansion of an operator on the set ofp-mechanical observables corresponding
the canonical transformation. Under representations ofHn this will give us the representation o
canonical transformations in both classical and quantum mechanics. Our approach, unlike M
sky’s, does not need observables to be members of the algebra generated by the posit
momentum operators.

In Sec. II we give an outline ofp-mechanics and extend it to fit the needs of this paper. In S
III we derive systems of integral equations for canonical transformations which when solve
give the corresponding operator onp-mechanical states in terms of coherent state expansions
Hilbert space states this is presented in Sec. III A while for states realized as integration k
these equations are derived in Sec. III B. We consider applications of these equations t
bijective transformations in Sec. III D. Finally, we summarize the paper and suggest some
esting extensions in Sec. IV.

II. p-MECHANICS

The theory ofp-mechanics has been presented in a number of papers7,24,23—a recent review
article is Ref. 8. In this section we extend these concepts to fit the purposes of our pap
particular we give a new definition ofp-mechanical observables and show how the kernel st
can be expanded out using coherent states.

At the heart ofp-mechanics is the Heisenberg group.12,34The Heisenberg group~denotedHn)
is the set of all triples inR3Rn3Rn under the law of multiplication

~s,x,y!•~s8,x8,y8!5~s1s81 1
2~x•y82x8•y!,x1x8,y1y8!. ~3!

The noncommutative convolution of two functionsB1 , B2PL1(Hn) is

~B1* B2!~g!5E
Hn

B1~h!B2~h21g!dh5E
Hn

B1~gh21!B2~h!dh, ~4!

wheredh is Haar measure onHn which is Lebesgue measureds dx dyonR2n11. In this paper the
convolution algebraL1(Hn) is too restrictive so we extend convolution to spaces of distributio
Spaces of interest in this paper are

~i! E8(Hn) of distributions with compact support~Ref. 35, Thm. 24.2! on Hn;
~ii ! S8(Hn) of tempered distributions~also known as the Schwartz space! ~Ref. 35, Defn. 25.2!

on Hn; and
~iii ! D8(Hn) of all distributions~Ref. 35, and Chap. 21! on Hn.

The convolution of two distributions is defined in a natural way~Ref. 34, Chap. 0!. The spaces
E8(Hn) andD8(Hn) are closed under convolution.

The Lie algebra ofHn is denoted byhn and can be realized by the left invariant vector fiel

S5
]

]s
, Xj5

]

]xj
2

yj

2

]

]s
, Yj5

]

]yj
1

xj

2

]

]s
,

with the Heisenberg commutator relations

@Xi ,Yj #5d i j S.

The most common representation of the Heisenberg group is the Schro¨dinger representation
~Ref. 12, Sec. 1.3, and Ref. 34, Eq. 2.23! on L2(Rn):
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~rh
S~s,x,y!c!~j!5e22p ihs22p ixj2p ihxyc~j1hy!. ~5!

Throughout this paper we do not use~5!; instead we show how a representation unitarily equi
lent to this can at times be advantageous. We now introduce this representation and the s
which it is defined.

Definition 2.1: We define the space F2(Oh) as

F2~Oh!5$ f h~q,p!PL2~R2n!:Dh
j f h50, for 1< j <n%, ~6!

where the operator Dh
j on L2(R2n) is defined as(h/2)(]/]pj1 i ]/]qj )12p(pj1 iq j ).

The inner product onF2(Oh) is given by

^v1 ,v2&F2~Oh!5S 4

hD nE
R2n

v1~q,p!v2~q,p!dqdp. ~7!

F2(Oh) is a Hilbert space with this inner product~Ref. 21, Sec. 4.1!. The motivation for using this
space inp-mechanics originates from Kirillov’s method of orbits19,20—this relation is discussed in
Refs. 8 and 24.F2(Oh) is similar to the Fock–Segal–Bargmann@Refs. 6, 12~Sec. 1.6!, and 34
~Chap. 1!# space of analytic functions onCn which are square integrable with respect to t
measuree22uzu2/hdz. It is shown in Ref. 24, Prop. 2.6, thatf h(q,p) is in F2(Oh) if and only if
f h(z)euzu2/h is in the Fock–Segal–Bargmann space withz5p1 iq. The integral kernel

KI~q,p,x!5e2p iqx2p ipqe2p~x2p!2

provides an isometryW: L2(Rn)→F2(Oh) by

c~x!° f ~q,p!5E
Rn

c~x!KI~q,p,x!dx. ~8!

This is proved in Ref. 21, Sec. 4.2. It is also shown in Ref. 21, Sec. 4.2, thatF2(Oh) is a
reproducing kernel Hilbert space with reproducing kernel

KR~q,p,q8,p8!5expS 2
2p

h
~q21p21q821p8222qq822pp822iq8p12iqp8! D .

The representationrh ~Refs. 24 and 8! of Hn on F2(Oh) is defined by

rh~s,x,y!: f h~q,p!°e22p i ~hs1qx1py! f hS q2
h

2
y,p1

h

2
xD , ~9a!

which is unitary with respect to the inner product defined in~7!. This representation is intertwine
with the Schro¨dinger representation by the unitary map~8!21 and so is unitarily equivalent to th
Schrödinger representation.

The crucial theorem which motivates the whole ofp-mechanics is the following.
Theorem 2.1(The Stone–von Neumann Theorem): All unitary irreducible representations

the Heisenberg group, Hn, up to unitary equivalence, are either

~i! of the formrh on F2(Oh) from Eq. (9) or
~ii ! for (q,p)PR2n the commutative one-dimensional representations onC5L2(O(q,p))

r~q,p!~s,x,y!u5e22p i ~q•x1p•y!u. ~9b!

Proof: In Ref. 12 or 34 it is shown that this holds for the Schro¨dinger representation. Ou
result follows sincerh is intertwined with the Schro¨dinger representation by the isometryW given
in ~8!. h
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We can extend bothrh andr (q,p) to the representation of an infinitely differentiable compac
supported function,BPC0

`(Hn), on Hn by

r~B!5E
Hn

B~g!r~g!dg.

The representation of distributions is done in the natural way~Ref. 34, Chap 0, Eq 3.4!.
The basic idea ofp-mechanics is to choose particular functions or distributions onHn which

under the infinite dimensional representation will give quantum mechanical observables,
under the one dimensional representation will give classical mechanical observables. In doi
it is shown that both mechanics are derived from the same source.p-mechanical observables ca
be realized as operators~some of which are unbounded! on a subset ofL2(Hn) generated by
convolutions of the chosen functions or distributions. To definep-mechanical observables proper
we need to introduce a map from the set of classical observables to the set ofp-mechanical
observables. In Refs. 8 and 24 a map ofp-mechanization,P, from the set of classical observable
to the set ofp-mechanical observables is defined as

~Pf !~s,x,y!5d~s! f̆ ~x,y!, ~10!

where f is any classical observable andf̆ is the inverse Fourier transform off @that is, f̆ (x,y)
5*R2nf (q,p)e2p i (qx1py)dqdp].

Definition 2.2~p-Mechanical Observables!: The set of p-mechanical observables is the ima
of the set of classical observables under the mapP from Eq. (10).

Clearly this definition depends on how the set of classical observables is defined. Any
cally reasonable classical mechanical observable can be realized as an element ofS8(R2n). Since
the Fourier transform mapsS8(R2n) into itself, S8(Hn) is a natural choice for the set o
p-mechanical observables. It includes the image of all classical observables which are polyn
or exponentials of the variablesq andp.

If we take therh representation~9! of many of the distributions described above, we wou
get unbounded operators. For example, the distributiond(s)d (1)(x)d(y) under therh representa-
tion will generate the unbounded operator (h/2)(]/]p)22p iqI . This operator is clearly no
defined on the whole ofF2(Oh). This technical problem can be solved by the usual method
rigged Hilbert spaces~also known as Gelfand triples!36,32,33which uses the theory of distributions
Another approach to dealing with unbounded operators is given by using the Ga˚rding space as
explained in Ref. 34, Chap. 0.

The dynamics of ap-mechanical system is described in Refs. 8, 23, and 24 using the univ
brackets. The universal brackets~also known asp-mechanical brackets! are

$@B1 ,B2#%5A~B1* B22B2* B1!, ~11!

whereA is the right inverse to the vector fieldS5]/]s. It is shown in Ref. 23, Prop. 3.5, tha
under the one and infinite dimensional representations the universal brackets become the
brackets and the quantum commutator, respectively. Hence, for a system with HamiltonianBH ~the
p-mechanization of the classical HamiltonianH! solving thep-dynamic equation,

dB

dt
5$@B,BH#% ~12!

will give the quantum and classical dynamics under the infinite and one dimensional repre
tions, respectively.

In Refs. 7 and 8, states inp-mechanics were introduced. They were defined as functional
the set ofp-mechanical observables and came in two forms—elements of a Hilbert spac
integration kernels.

Definition 2.3: The Hilbert spaceHh , hPR\$0%, is defined as the set of functions onHn,
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Hh5$e22p ihsf ~x,y!:Eh
j f 50 1< j <n and fPL2~R2n!%, ~13!

where the operator Eh
j 5ph(y2 ix)1 i ]/]x2]/]y [this is the Fourier transform of Dh

j from (6)].
The inner product onHh is defined as

^v1 ,v2&Hh
5S 4

hD nE
R2n

v1~s,x,y!v̄2~s,x,y!dxdy. ~14!

The set ofp-mechanical observables acts onHh by convolution. For many observables this w
give rise to unbounded operators which are not defined on the whole ofHh . This problem is
solved as before by the use of rigged Hilbert spaces. It is shown in Ref. 7, Eq. 3.4, tha
elementvPHh is of the form v(s,x,y)5e22p ihsf̂ (x,y) for some f PF2(Oh) ( f̂ denotes the
Fourier transform off!.

The state corresponding tovPHh can be realized by an integration kernel

l ~s,x,y!5S 4

hD nE
R2n

v~~s,x,y!21~s8,x8,y8!!v~~s8,x8,y8!!dx8dy8. ~15!

For anyp-mechanical observableB the following relation is proved in Ref. 7, Thm. 3.1 and Thm
3.2:

^rh~B! f , f &5^B* v,v&5E
Hn

B~g!l ~g!dg, ~16!

where f is the element ofF2(Oh) such thatv(s,x,y)5e22p ihsf̂ (x,y) and l is the kernel corre-
sponding tov through relation~15!. Equation~16! gives the expectation value of the observableB
in the state corresponding tof, v and l.

In Ref. 7 an overcomplete system of coherent states inHh is derived using representations
the Heisenberg group:

v ~h,q,p!~s,x,y!5S h

2D n

expS 22p ihs1p i ~xq1yp!2
ph

2 S S x1
p

hD 2

1S y2
q

hD 2D D . ~17!

The corresponding kernel coherent states are

l ~h,q,p!5expS 22p i ~qx1py!12p ihs2
ph

2
~x21y2! D . ~18!

It is shown in Ref. 7 that if we chooseB5P( f ), then

lim
h→0

^B* v ~h,q,p! ,v ~h,q,p!&5E
Hn

Bl ~h,q,p!dg5 f ~q,p!.

By the usual theory of coherent states~that is, wavelets!,1 in a Hilbert space any elementv
PHh can be written as

v5E
R2n

^v,v ~h,q,p!&v ~h,q,p!dqdp. ~19!

If we define an inner product on the set of kernels as

^ l 1 ,l 2&5E
R2n

l 1~s,x,y!l 2~s,x,y!dxdy, ~20!
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this inner product will be well defined for any two kernel coherent states from~18! since the
integral on the right hand side of~20! will be finite. Then we can define our space of kernels,Lh ,
as the completion of the set of linear combinations of the coherent states~18!. Clearly Lh is a
Hilbert space so we can expand any kernel inLh by the formula

l ~s,x,y!5E
R2n

E
R2n

l ~s,x8,y8!l ~h,q,p!~s,x8,y8!dx8dy8l ~h,q,p!~s,x,y!dqdp.

We now show that theHh coherent states are eigenfunctions of the creation and annihila
operators. The creation and annihilation distributions are defined as

a15
1

2p i
~d~s!d~1!~x!d~y!2 id~s!d~x!d~1!~y!!, ~21!

a25
1

2p i
~d~s!d~1!~x!d~y!1 id~s!d~x!d~1!~y!!. ~22!

The creation and annihilation operators are convolution by the above distributions. It shou
noted thata1 and a2 are thep-mechanization of the classical observablesq2 ip and q1 ip,
respectively. By a direct calculation it can be shown that

a2* v ~h,q,p!5~q1 ip !v ~h,q,p! ,

sov (h,q,p) is an eigenfunction fora2 with eigenvalue (q1 ip). By another direct calculation usin
~24! we have

^v ~h,q,p! ,v ~h,q8,p8!&Hh
5expS 2

p

2h
~~p2p8!21~q2q8!212i ~qp82q8p!! D . ~23!

Finally, by another direct calculation we have thata2 anda1 are adjoints of each other.
A well known equation which will be used throughout this paper is

E
R

exp~2ax212bx!dx5S p

a D 1/2

expS b2

a D , ~24!

wherea.0. A similar equation~Ref. 15, p. 337! which we repeatedly use is

E
R
xn exp~2ax212bx!dx5

1

2n21a
S p

a D 1/2 dn21

dbn21 S b expS b2

a D D , ~25!

providinga.0 andn is an integer greater than or equal to 1. This equation for the particular v
of n51 is well known:

E
R
x exp~2ax212bx!dx5S p

a D 1/2S b

aDexpS b2

a D . ~26!

III. NONLINEAR CANONICAL TRANSFORMATIONS

In Refs. 7 and 8 thep-dynamic equation~12! for the forced and harmonic oscillators a
solved inp-mechanics. In doing so it was made evident that the quantum and classical pictu
the problems were generated from the same source. To solve thep-dynamic equation for more
complicated problems, such as the Kepler problem, technical problems are encountered.
sical mechanics, when these problems arise the solution often lies in finding a canonical tra
mation to a set of coordinates in which Hamilton’s equations have a more manageable for
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example, the transformation to action-angle variables completely solves the Kepler problem~Ref.
14, Sec. 10.8!. By studying canonical transformations inp-mechanics we have a tool which wi
transform thep-dynamic equation~12! into a more desirable form.

In studyingp-mechanical canonical transformations we show how canonical transforma
can be represented in the mathematical framework of both quantum and classical mechani
stated in Ref. 3 that canonical transformations have three important roles in both quantu
classical mechanics:

~i! time evolution
~ii ! physical equivalence of two theories, and
~iii ! solving a system.

Taking the one and infinite dimensional representation of thep-mechanical system will show how
these properties are exhibited in classical and quantum mechanics respectively.

There are further benefits of considering canonical transformations inp-mechanics. Canonica
transformations can represent the symmetries of a classical mechanical system. In looking
image of canonical transformations in quantum mechanics we can see how these symmet
represented in quantum mechanics. In Ref. 2 Anderson shows how quantum integrability
defined in terms of canonical transformations. In Ref. 4 it is shown that quantum cano
transformations can also help in the study of partial differential equations.

In this section we consider nonlinear canonical transformations. The role of linear can
transformations inp-mechanics is straightforward and is described in Refs. 8, 24, and 22. U
tunately, some of the most fundamental canonical transformations are nonlinear—for examp
passage to action angle variables for the harmonic and the repulsive oscillator.

For nonlinear transformations we follow an approach which is an enhancement of a m
pioneered by Mario Moshinsky and a variety of collaborators.27,29,30,13,10In this paper we are
looking at generalp-mechanical observables as opposed to just quantum mechanical observ
We also make use of thep-mechanical coherent states~17! and ~18!.

A. Equations for nonlinear transformations involving Hh states

This method starts with the observation that a canonical transformation in classical mec
described by 2n independent relations

qi→Qi~q,p!, ~27!

pi→Pi~q,p!, ~28!

i 51,...,n, where$Qi ,Pj%q,p5d i j can be realized by 2n functional relations

f i~q,p!5Fi~Q,P!, ~29!

gi~q,p!5Gi~Q,P!, ~30!

for i 51,...,n where $ f i ,gi%q,p5$Fi ,Gi%Q,P . The advantage of this approach is that t
p-mechanization~10! of the functions in~29! and~30! may be easier to derive than the functio
on the right hand side of Eqs.~27! and ~28!. We assume throughout the paper that the ab
functions ofq andp areC` with isolated singularities and when integrated next to an elemen
S(R2n) will be finite. This means they can always be realized as elements ofS8(R2n). The isolated
singularity condition means the equality in system~29! and ~30! holds everywhere except at
finite number of isolated points.

We now derive an equation which will give us a clear form of an operatorU on Hh corre-
sponding to a canonical transformation. This equation will supply us with the matrix elemen
the operatorU with respect to the overcomplete set of coherent states, that is, it will giv
^Uv (h,q,p) ,v (h,q8,p8)& for all q, p, q8, p8PRn.
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In Dirac’s original treatment of quantum canonical transformations~Ref. 9, Chap. 27! he
proposed that the canonical transformation from Eqs.~27! and ~28! should be represented i
quantum mechanics by a unitary operatorU on a Hilbert space such that

Q̃i5Uq̃iU
21 and P̃i5Up̃iU

21,

i 51,...,n. Here Q̃i , P̃i , q̃i , p̃i are the quantum mechanical observables corresponding to
classical mechanical observablesQi , Pi , qi , pi , respectively.

In Ref. 27 Mello and Moshinsky suggested that in some circumstances it is easier to defi
operatorU by the equations

F̃U5U f̃ and G̃U5Ug̃,

whereF̃, G̃, f̃ , g̃ are the quantum mechanical observables~that is operators on a Hilbert spac!
corresponding to the classical observablesF, G, f, g from Eqs.~29! and ~30!.

We proceed to transfer this approach intop-mechnaics. We want to understand the operatoU
which is defined by the equations

P~ f i~q,p!!* Uv5UP~Fi~Q,P!!* v, ~31!

P~gi~q,p!!* Uv5UP~Gi~Q,P!!* v, ~32!

whereP is the map ofp-mechanization~10! andv is any element ofHh .
We will now divert from deriving the general equation by giving an example to illumin

these ideas.~The example we give is a linear transformation, but it must be stressed that this
holds for nonlinear transformations, too.!

Example 3.1: Consider the linear canonical transformation

q→2P, p→Q.

This can be realized by the two equations

q1 ip52P1 iQ, ~33!

q2 ip52P2 iQ, ~34!

the p-mechanizations of which are

a25 iA2, ~35!

a15 iA1, ~36!

where a2 and a1 are defined in Eqs. (21) and (22).
We now continue to derive the equation which will help us understand the operatorU. For the

rest of this section we just write the equations out usingf i andFi , but all these will still hold if
they are replaced bygi andGi . We begin by taking the matrix elements of Eq.~31! with respect
to the coherent states defined in Eq.~17!; we get

^P~ f i !* Uv ~h,q,p! ,v ~h,q8,p8!&5^UP~Fi !* v ~h,q,p! ,v ~h,q8,p8!&. ~37!

We can expandUv (h,q,p) using our system of coherent states

Uv ~h,q,p!5E
R2n

^Uv ~h,q,p! ,v ~h,q9,p9!&v ~h,q9,p9!dq9dp9.

The left hand side of Eq.~37! now becomes
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E
R2n

^Uv ~h,q,p! ,v ~h,q9,p9!&^P~ f i !* v ~h,q9,p9! ,v ~h,q8,p8!&dq9dp9.

Similarly, we expand outP(Fi)* v (h,q,p) out as

P~Fi !* v ~h,q,p!5E
R2n

^P~Fi !* v ~h,q,p! ,v ~h,q9,p9!&v ~h,q9,p9!dq9dp9,

so the right hand side of~37! becomes

E
R2n

^Uv ~h,q9,p9! ,v ~h,q8,p8!&^P~Fi !* v ~h,q,p! ,v ~h,q9,p9!&dq9dp9.

Hence, if we setm(a,b,c,d)5^Uv (h,a,b) ,v (h,c,d)&, Eq. ~37! becomes

E
R2n

m~q,p,q9,p9!^P~ f i !* v ~h,q9,p9! ,v ~h,q8,p8!&dq9dp9

5E
R2n

m~q9,p9,q8,p8!^P~Fi !* v ~h,q,p! ,v ~h,q9,p9!&dq9dp9. ~38!

Note that to get the full system of equations we need a furthern equations which we get by
replacing f i and Fi with gi and Gi . If we can solve this integral equation form, then we can
understand the effect ofU on any elementv of Hh through coherent state expansions. Even if
cannot solve the integral equation~38!, we can still gain some useful insights into the nature of
canonical transformation in question.

By ~19! the unitarity ofU is equivalent to the following two equations holding:

E
R2n

^v ~h,q8,p8! ,Uv ~h,q-,p-!&^U
Tv ~h,q9,p9! ,v ~h,q-,p-!&dq-dp-5^v ~h,q8,p8! ,v ~h,q9,p9!&,

E
R2n

^v ~h,q8,p8! ,UTv ~h,q-,p-!&^Uv ~h,q9,p9! ,v ~h,q-,p-!&dq-dp-5^v ~h,q8,p8! ,v ~h,q9,p9!&,

whereUT stands for Hermitian conjugate. Since for many functionsf, ^P( f )* v (h,q,p) ,v (h,q8,p8)& is
a manageable function ofq, p, q8, p8, Eq. ~38! will take a simple form for a variety of examples
For example, consider the distributions involved in Eqs.~35! and~36!. Sincev (h,q,p) is an eigen-
function of the annihilation operatora2 with eigenvalue (q1 ip) we have

^a2* v ~h,q,p! ,v ~h,q8,p8!&5~q1 ip !^v ~h,q,p! ,v ~h,q8,p8!&,

and hence

^P~q1 ip !* v ~h,q,p! ,v ~h,q8,p8!&5~q1 ip !^v ~h,q,p! ,v ~h,q8,p8!&

5~q1 ip !expS 2
p

2h
~~p2p8!21~q2q8!212i ~qp82q8p!! D .

~39!

Here we have used~23!. Furthermore, sincea2 is the adjoint ofa1 we have

^a1* v ~h,q,p! ,v ~h,q8,p8!&5^v ~h,q,p! ,a2* v ~h,q8,p8!&5~q82 ip8!^v ~h,q,p! ,v ~h,q8,p8!&,

hence
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^P~q2 ip !* v ~h,q,p! ,v ~h,q8,p8!&5~q82 ip8!^v ~h,q,p! ,v ~h,q8,p8!&

5~q82 ip8!expS 2
p

2h
~~p2p8!21~q2q8!212i ~qp82q8p!! D .

~40!

We are now in a position to present Eqs.~38! for the canonical transformation

q→2P, p→Q.

Using Eqs.~33!, ~34!, ~39! and ~40! we can see that Eqs.~38! must take the form

E
R2n

m~q,p,q9,p9!~q91 ip9!expS 2
p

2h
@~p92p8!21~q92q8!212i ~q9p82q8p9!# Ddq9dp9

5E
R2n

m~q9,p9,q8,p8!i ~q1 ip !expS 2
p

2h
@~p2p9!21~q2q9!212i ~qp92q9p!# Ddq9dp9

and

E
R2n

m~q,p,q9,p9!~q82 ip8!expS 2
p

2h
@~p92p8!21~q92q8!212i ~q9p82q8p9!# Ddq9dp9

5E
R2n

m~q9,p9,q8,p8!~2 i ~q92 ip9!!expS 2
p

2h
@~p2p9!21~q2q9!2

12i ~qp92q9p!# Ddq9dp9

for this canonical transformation. The function

m~q,p,q8,p8!5expS 2
p

2h
~q21p21q821p8222iqp22iqq812iqp8! D

can be shown to satisfy these equations through the repeated use of formulas~26! and~24!. Even
though we have only looked at this equation for a linear example, it must be stressed that i
for nonlinear examples also. We do not give any examples of this here as in the next sect
derive some more manageable equations using the kernel states.

B. Equations for nonlinear transformations for states realized as kernels

In Ref. 7 we showed thatp-mechanical states could be realized as integration kernels. In
section we derive an equation similar to~38! for the kernel states. It is shown that this equation
many circumstances is easier to solve than~38!.

Let U denote the operator on the algebra ofp-mechanical observables corresponding to
canonical transformation

UB5U21BU.

The adjoint operatorU* action on a kernell is defined by

^UB,l &5^B,U* l &. ~41!

Note here that this is not an inner product, instead a functional on the right acting
p-observable which is on the left. In Sec. II we showed that any kernell can be expanded using th
coherent state kernels, that is,
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l ~s,x,y!5E
R2n

E
R2n

l ~s,x8,y8!l ~h,q,p!~s,x8,y8!dx8dy8l ~h,q,p!~s,x,y!dqdp.

We now derive an integral equation which when solved will give us^U* l (h,q,p) ,l (h,q8,p8)&. Initially
we present a lemma which will give an exact formula for thep-mechanization of a classica
observable evaluated by a kernel coherent state.

Lemma 3.1: If f is a classical observable andP is the map of p-mechanization as defined
Eq. (10), then

^P~ f !,l ~h,q,p!&5S 2

hD n

expS 2
2p

h
~q21p2! D

3E
R2n

f ~a,b!expS 2
2p

h
~a21b2!1

4p

h
~aq1bp! Ddadb.

Proof: By a direct calculation

^P~ f !,l ~h,q,p!&5E
R2n11

d~s!E
R2n

f ~a,b!exp~2p i ~ax1by!!dadb

3expS 2p ihs22p i ~qx1py!2
ph

2
~x21y2! Ddsdxdy,

which implies that

^P~ f !,l ~h,q,p!&5E
R
d~s!exp~2p ihs!dsE

R4n
f ~a,b!exp~x~2p i ~a2q!!!exp~y~2p i ~b2p!!!

3expS 2
ph

2
~x21y2! Ddadbdxdy.

Using ~24! the right hand side of the above equation becomes

S 2

hD nE
R2n

f ~a,b!expS ~p i ~a2q!!2

ph/2 DexpS ~p i ~b2p!!2

ph/2 Ddadb

5S 2

hD nE
R2n

f ~a,b!expS 2
2p

h
@~a2q!21~b2p!2# Ddadb.

The result follows from a trivial rearrangement of the above equation. h

So now if we have 2n relations as in~29! and~30! we can define the operatorU by the relation

UP~Fi !5P~ f i !.

Applying the kernell (h,q,p) to both sides of this equation we get

^UP~Fi !,l ~h,q,p!&5^P~ f i !,l ~h,q,p!&.

This is equivalent to

^P~Fi !,U* l ~h,q,p!&5^P~ f i !,l ~h,q,p!&. ~42!

However,

U* l ~h,q,p!5E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!& l ~h,q8,p8!dq8dp8, ~43!
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where thê ,& for two kernels is just̂ l ,l 8&5*R2nl l̄ 8dxdy. ~However, if they contain an observab
and a kernel, it is still the evaluation of the observable by the functional.! Substituting~43! into
~42! gives us

KP~Fi !,E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!& l ~h,q8,p8!dq8dp8L 5^P~ f i !,l ~h,q,p!&,

which is equivalent to

E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!&^P~Fi !,l ~h,q8,p8!&dq8dp85^P~ f i !,l ~h,q,p!&.

Using Lemma 3.1 this equation becomes

E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!&S 2

hD n

expS 2
2p

h
~q821p82! D E

R2n
Fi~a,b!expS 2

2p

h
~a21b2!

1
4p

h
~aq81bp8! Ddadbdq8dp8

5S 2

hD n

expS 2
2p

h
~q21p2! D E

R2n
f i~a,b!expS 2

2p

h
~a21b2!1

4p

h
~aq1bp! Ddadb,

which can be simplified to

E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!&expS 2
2p

h
~q821p82! D E

R2n
Fi~a,b!

3expS 2
2p

h
~a21b2!1

4p

h
~aq81bp8! Ddadbdq8dp8

5expS 2
2p

h
~q21p2! D E

R2n
f i~a,b!expS 2

2p

h
~a21b2!1

4p

h
~aq1bp! Ddadb.

~44!

We will now go on to show that for a number of canonical transformations this integral equ
takes a clear form which is easy to solve.

C. The Hamilton transformation from the forced oscillator

We now demonstrate how Eqs.~44! can deal with a nonlinear transformation. We do th
through applying it to the Hamilton transformation for the forced oscillator. This is the cano
transformation which is generated by the time evolution of phase space due to the forced o
tor. The p-mechanical forced oscillator is discussed in Ref. 7, for simplicity we consider
oscillator to be of unit mass and unit frequency, but forced by an arbitary functionz(t). The
classical canonical transformation~this is for the time evolution from time 0 to timet! is defined
by

Q5q cos~ t !1p sin~ t !1E
0

t

z~t!sin~t!dt,

P52q sin~ t !1p cos~ t !1E
0

t

z~t!cos~t!dt.

Using Eqs.~26! and ~24! we get the relations
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expS 2
2p

h
~q21p2! D E

R2n
a expS 2

2p

h
~a21b2!1

4p

h
~aq1bp! Ddadb5

h

2
q,

expS 2
2p

h
~q21p2! D E

R2n
b expS 2

2p

h
~a21b2!1

4p

h
~aq1bp! Ddadb5

h

2
p,

expS 2
2p

h
~q21p2! D E

R2n
expS 2

2p

h
~a21b2!1

4p

h
~aq1bp! Ddadb5

h

2
.

These relations imply that Eqs.~44! for this transformation take the form

E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!&q8dq8dp85q cos~ t !1p sin~ t !1E
0

t

z~t!sin~t!dt, ~45!

E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!&q8dq8dp852q sin~ t !1p cos~ t !1E
0

t

z~t!cos~t!dt. ~46!

By observing Eqs.~26! and ~24!, a potential solution of Eqs.~45! and ~46! is

^U* l ~h,q,p! ,l ~h,q8,p8!&5
1

h
expS 2

p

h F S q cos~ t !1p sin~ t !1E
0

t

z~t!sin~t!dt2q8D 2

1S E
0

t

z~t!cos~t!dt2q sin~ t !1p cos~ t !2p8D 2G D . ~47!

We now show that this satisfies~45!:

E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!&q8dq8dp8

5E
R2n

1

h
expS 2

p

h F S q cos~ t !1p sin~ t !1E
0

t

z~t!sin~t!dt2q8D 2

1S E
0

t

z~t!cos~t!dt2q sin~ t !1p cos~ t !2p8D 2G D q8dq8dp8

5
1

h
expS 2

p

h F S q cos~ t !1p sin~ t !1E
0

t

z~t!sin~t!dt D 2

1S E
0

t

z~t!cos~t!dt2q sin~ t !1p cos~ t ! D 2G D E
R2n

expS 2p

h Fq8S q cos~ t !1p sin~ t !

1E
0

t

z~t!sin~t!dt D 1p8S E
0

t

z~t!cos~t!dt2q sin~ t !1p cos~ t ! D G D
3expS 2

p

h
~q821p82! Dq8dq8dp8. ~48!

Using ~26! and ~24! this becomes
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E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!&q8dq8dp8

5
1

h
expS 2

p

h F S q cos~ t !1p sin~ t !1E
0

t

z~t!sin~t!dt D 2

1S E
0

t

z~t!cos~t!dt2q sin~ t !1p cos~ t ! D 2G D
3hS q cos~ t !1p sin~ t !1E

0

t

z~t!sin~t!dt D expS p

h F S q cos~ t !1p sin~ t !

1E
0

t

z~t!sin~t!dt D 2

1S E
0

t

z~t!cos~t!dt2q sin~ t !1p cos~ t ! D 2G D
5q cos~ t !1p sin~ t !1E

0

t

z~t!sin~t!dt.

By a similar calculation we can show that~47! satisfies~45!.

D. A note on non-bijective transformations

In Ref. 29 the problem of representing non-bijective canonical transformations in qua
mechanics is considered. The majority of canonical transformations in classical mechan
non-bijective—one example is the action angle variables for the Kepler problem. If we
represent non-bijective canonical transformations inp-mechanics, we can use the infinite dime
sional representations to get their representation in quantum mechanics. The physical imp
of non-bijective canonical transformations in quantum mechanics is discussed in Ref. 29, S
It is claimed that some nonlinear canonical transformations can be used to show that som
ments of quantum mechanics are already contained in classical mechanics.

We now outline a method of how to deal with non-bijective canonical transformation
p-mechanics. Our method is best illustrated through an example—we look at the transform
into the action angle coordinates for the repulsive oscillator. This is a nonlinear, non-bije
transformation which is discussed in great detail in Ref. 29. The canonical transformation

Q5 lnup1qu, ~49!

P5 1
2~p22q2!. ~50!

The non-bijectiveness of this transformation is manifested by the points (q,p) and (2q,2p) in
the original phase space being mapped into the same point. Also the entire lineq1p50 is
mapped to the single pointQ52`, P50. To derive an equation for the states realized as ker
we put Eqs.~49! and ~50! into the form

exp~2Q!5~p1q!2,

P5 1
2~p22q2!.

To derive Eqs.~44! for this example we need the following lemma.
Lemma 3.2: We have the following relations:
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expS 2
2p

h
~q21p2! D E

R2n
exp~2a!expS 2

2p

h
~a21b2!1

4p

h
~aq1bp! Ddadb

5S h

2DexpS 2q1
h

2p D , ~51!

expS 2
2p

h
~q21p2! D E

R2n
a2 expS 2

2p

h
~a21b2!1

4p

h
~aq1bp! Ddadb5

h

2 S h

4p
1q2D .

~52!

Clearly analogous relations to these hold if we replace a by b on the left hand side and q by
the right hand side. Furthermore, we have that

expS 2
2p

h
~q21p2! D E

R2n
ab expS 2

2p

h
~a21b2!1

4p

h
~aq1bp! Ddadb5

h

2
qp. ~53!

Proof: Equation~51! follows from a direct calculation using~24!:

expS 2
2p

h
~q21p2! D E

R2n
exp~2a!expS 2

2p

h
~a21b2!1

4p

h
~aq1bp! Ddadb

5expS 2
2p

h
~q21p2! D S h

2DexpS 2pp2

h DexpS ~~2p/h!q11!2

2p/h D5S h

2DexpS 2q1
h

2p D .

Similarly ~52! can be verified by a direct calculation using~25! with n52. Likewise~53! can be
verified by using~26! twice. h

Using Lemma 3.2, Eqs.~44! for this example take the form

E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!&expS 2q81
h

2p Ddq8dp85~p1q!21
h

2p
, ~54!

E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!&p8dq8dp85~p22q2!. ~55!

The non-bijectiveness is apparent in Eqs.~54! and ~55! since they are invariant under the tran
lation (q,p)°(2q,2p). Any solution of~54! and ~55! will be such that

^U* l ~h,q,p! ,l ~h,q8,p8!&5^U* l ~h,2q,2p! ,l ~h,q8,p8!&. ~56!

Since

U* l ~h,q,p!5E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!& l ~h,q8,p8!dq8dp8

it is clear thatU* l (h,q,p)5U* l (h,2q,2p) . Now we show that this mapU* : Lh→Lh is not a bijec-
tion. We have the formula for any kernell

U* l 5E
R2n

E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!&^ l ,l ~h,q,p!& l ~h,q8,p8!dqdpdq8dp8.

So U* l 5U* l 8 if and only if

E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!&^ l ,l ~h,q,p!&dqdp5E
R2n

^U* l ~h,q,p! ,l ~h,q8,p8!&^ l 8,l ~h,q,p!&dqdp
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holds for almost allq8, p8. ~Almost every and almost everywhere are measure theoretic terms
Refs. 31 and 25.! By ~56! this is equivalent to

E
q1p.0

~^ l ,l ~h,q,p!&1^ l ,l ~h,2q,2p!& !^U* l ~h,q,p! ,l ~h,q8,p8!&dqdp

5E
q1p.0

~^ l 8,l ~h,q,p!&1^ l 8,l ~h,2q,2p!& !^U* l ~h,q,p! ,l ~h,q8,p8!&dqdp.

This holds if and only if

^ l ,l ~h,q,p!&1^ l ,l ~h,2q,2p!&5^ l 8,l ~h,q,p!&1^ l 8,l ~h,2q,2p!& ~57!

holds for almost everyq, p such thatq1p.0. So one way of restoring bijectiveness would be
reduce the size of the original set of kernels by factoring out by the equivalence relation,l; l 8, if
and only if ~57! holds. In the obvious way we would have a bijection fromLh /; to Lh .

Instead of taking this approach we take the simpler approach of increasing the size of
of kernels to which we map. In doing so we derive a bijection fromLh to Lh3Lh . We do this
through introducing two new operatorsU* 1, U* 2: Lh→Lh which are defined as

U* 1l ~h,q,p!5HU* l ~h,q,p! , if q1p.0

0, if q1p,0;

and

U* 2l ~h,q,p!5H 0, if q1p.0

U* l ~h,q,p! , if q1p,0.

These operators can be extended to the entire space by coherent state~i.e., wavelet! expansions.
Furthermore, we define the mapping:Ũ* : Lh→Lh3Lh by

Ũ* l 5@U* 1l ,U* 2l #.

So for any kernell,

Ũ* l 5E
R2n

^ l ,l ~h,q,p!&Ũ* l ~h,q,p!dqdp

5E
R2n

^ l ,l ~h,q,p!&@U* 1l ~h,q,p! ,U* 2l ~h,q,p!#dqdp

5F E
q1p.0

^ l ,l ~h,q,p!&U* l ~h,q,p!dqdp,E
q1p,0

^ l ,l ~h,q,p!&U* l ~h,q,p!dqdpG .
HenceŨ* l 5Ũ* l 8 if and only if

E
q1p.0

^ l ,l ~h,q,p!&U* l ~h,q,p!dqdp5E
q1p.0

^ l 8,l ~h,q,p!&U* l ~h,q,p!dqdp

and

E
q1p,0

^ l ,l ~h,q,p!&U* l ~h,q,p!dqdp5E
q1p,0

^ l 8,l ~h,q,p!&U* l ~h,q,p!dqdp.

These two equations hold if and only if
                                                                                                                



tive
m

have

rough

We
nt

egal–
ents of

the
entum

algebra
t first
simple
gration

ples,
tension
s

-
do-
ce
7.
t
nd
ns.

3429J. Math. Phys., Vol. 45, No. 8, August 2004 Nonlinear canonical transformations

                    
^ l ,l ~h,q,p!&5^ l 8,l ~h,q,p!&

holds for almost everyq, p such thatq1p.0 and almost everyq, p such thatq1p,0. This is
equivalent tol and l 8 being equal. Hence we have restored bijectiveness.

The implications to quantum mechanics of this are as follows. We now have a mapŨ ~the
adjoint of U* ! which transformsp-mechanical observables corresponding to this non-bijec
canonical transformation. If we take therh representation of this, we get a map for quantu
observables.

This work also has classical implications. Initially looking at nonstatistical mechanics we
if the canonical transformation changes a classical observablef (q,p) into f̃ (q,p) and the
p-mechanization off is B(s,x,y), then

f̃ ~q,p!5^B,U* l ~0,q,p!&5^B,U* l ~0,2q,2p!&5 f̃ ~2q,2p!.

Hence we have a demonstration of the classical non-bijectiveness directly fromp-mechanics. If we
let A denote the set of classical observables, we have shown that the mapping from A→A by f ° f̃
is non-bijective. However, we can restore bijectiveness in the classical mapping th

p-mechanics. If we introduce the operatorU class̃: A→A3A by

U class̃f ~q,p!5^B,U *̃ l ~0,q,p!&,

whereB is thep-mechanization off, then

U class̃f ~q,p!5^B,Ũ* l ~0,q,p!&5@^B,U* 1l ~0,q,p!&,^B,U* 2l ~0,q,p!&#5H @ f̃ ~q,p!,0# if q1p.0

@0,f̃ ~q,p!# if q1p,0.

Now we have a map A→A3A representing this canonical transformation which is bijective.
can extend all of this to statistical mechanics16 by using linear combinations of these cohere
states.

IV. SUMMARY AND POSSIBLE EXTENSIONS

One of the main features of this work is demonstrating how using coherent states in a S
Bargmann–Fock-type space can sometimes be advantageous over using the matrix elem
position and momentum inL2(Rn). Another feature of our equations is that they do not rely on
property that observables are elements of the algebra generated by the position and mom
operators. In Refs. 29 and 27 all the quantum mechanical operators are derived using this
condition—in this paper we use an integral transform instead. This integral transform a
makes our equations look less desirable, but it is shown that for many examples they take a
form. This work has also demonstrated the advantages of representing states as inte
kernels—this complements the work in Ref. 7.

The most immediate extension of this work would be to look at more complex exam
especially some more nonlinear, non-bijective examples. One possible and interesting ex
would be to extend these ideas to phase spaces other thanR2n. This would be to extend these idea
to a phase space which is a general symplectic manifold~Ref. 26, Chap. 5!, for exampleT* M for
some general manifoldM ~Ref. 5, Chaps. 7–10, and Ref. 18, Chap. 5!. Another interesting
extension would be to look at the role of Egorov’s theorem22 in infinitesimal canonical transfor
mations forp-mechanics. Egorov’s theorem11 has always been posed in the language of pseu
differential and Fourier integral operators onL2(Rn); this idea could be extended to our spa
F2(Oh) with pseudodifferential operators being replaced by Toeplitz operators as in Ref. 1

All these equations could be defined outside the world ofp-mechanics. If the usual coheren
states inL2(Rn) ~Ref. 28, Sec. 10.7! were used instead of the eigenfunctions of position a
momentum, Moshinsky’s equations would be immediately transformed into integral equatio
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nd Robertson intelligent states
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Robertson intelligent states which minimize the Schrödinger–Robertson uncertainty
relation are constructed as eigenstates of a linear combination of Weyl generators o
the sus3d algebra. The construction is based on the analytic representations of sus3d
coherent states. New classes of coherent and squeezed states are explicitl
derived. ©2004 American Institute of Physics.[DOI: 10.1063/1.1777794]

. INTRODUCTION

The coherent states introduced as displacement of the ground state of harmonic osci
chrödinger,1 have found revived interest when it was realized that they are eigenfunctions
nnihilation operator and minimize the Heisenberg uncertainty relation. The generalization
sual coherent states from the Weyl–Heisenberg to the other Lie algebras and from h
scillator to other potentials, followed these three approaches, namely,(i) eigenstates of lowerin
roup generator for Lie algebras or annihilation operator of exactly solvable system,(ii ) as orbits
f the extremal weight state, or(iii ) as states minimizing the uncertainty relation. These diffe
pproaches lead to distinct sets of coherent states and coincide only in the special cas
armonic oscillator(see Refs. 2–4 for review). Concerning the optimization of the uncertai
rinciple, it was observed that a relation more accurate than the Heisenberg one may be
onstruct generalized coherent states and squeezed states. Indeed this relation k
chrödinger–Robertson uncertainty inequality5 can be minimized and gives rise to new set
oherent and squeezed states(see the pioneering works6–8). The states resulting from this min
ization have different names in the literature such as correlated states6–8 or Robertson intelligen

tates.9

More recently, there has been much interest in such states for Lie algebras9–13 as well as fo
uantum systems evolving in various potentials.14–17 Robertson intelligent states for the quad

ure components of Weyl generators of the algebras sus1,1d and sus2d were constructed.9–13 They
ere also defined for exactly solvable quantum systems as the eigenstates of complex com
f creation and annihilation operators.14–17

The purpose of this paper is to further extend the classes of Robertson intelligent st
igher symmetries. In this sense, the main idea of this note is to construct the intelligent st

he quadrature components of Weyl operators of the algebra sus3d. For this end, it may be usef
o start by giving the explicit computation of the associated coherent states and their a
epresentations. Hence, one can introduce the differential realizations for the sus3d generators. A
e will see, the analytic realization enables us to convert the eigenvalue equations arising
inimization of Schrödinger–Robertson inequality into quasilinear differential equations
rovide the Robertson intelligent states.

The paper is organized as follows. In Sec. II we review the derivation of sus3d coherent state
e compute explicitly the action of unitary displacement operator on the highest weight ve

he finite dimension representation space of the algebra sus3d. We give the analytic representatio
f the sus3d coherent states. We construct also the differential operators corresponding
ctions of the generators of sus3d on the Fock–Bargmann space. In Sec. III, we show how

)
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3435022-2488/2004/45(9)/3435/9/$20.00 © 2004 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.1777794
http://dx.doi.org/10.1063/1.1777794


a e eigen-
v and to
o in
S

I

A

with a
q evi-
o ive
a rator on
t the
a senta-
t

w
a ion basis.
S se, is
t creation
a

w en-
s

I

T nerated
b
o ber of
q
g l
v state
a

3436 J. Math. Phys., Vol. 45, No. 9, September 2004 M. Daoud

                        
nalytic representation based on the coherent states provides us with the tool to solve th
alue equations resulting from the minimization of the Schrödinger–Robertson relation
btain intelligent states for the quadrature components of sus3d Weyl generators. We conclude
ec. IV after pointing out a number of interesting open problems.

I. ANALYTIC REPRESENTATIONS OF su „3…-COHERENT STATES

. Reconstructing su „3…-coherent states

We shall begin by re-examining the construction of the coherent states associated
uantum system of dynamical symmetry sus3d. Although this subject has been considered pr
usly in Refs. 18 and 19(see also Refs. 20 and 21), we thought that it is always interesting to g
nother method based on the explicit computation of the action of the displacement ope

he highest weight state(fudicial vector) of the finite dimensional representation space of
lgebra sus3d. The explicit forms of such states are needed to perform their analytic repre

ions and to give the realization of the generators of the algebra under consideration.
The algebra sus3d is defined by the generatorsei, f i, hi si =1,2d and the relations

fei, f ig = di jhj , s1d

fhi,ejg = aijej, fhi, f jg = − aij f j , s2d

fei,ejg = 0 for ui − j u . 1, s3d

ei
2ei±1 − 2eiei±1ei + ei±1ei

2 = 0, s4d

f i
2f i±1 − 2f i f i±1f i + f i±1f i

2 = 0, s5d

heresaijdi,j=1,2 is the Cartan matrix of sus3d, i.e.,aii =2, ai,i±1=−1 andaij =0 for ui − j u.1. Many
spects of Lie algebras are best considered after choosing a special type of representat
ince one would write down the sus3d coherent states, the most convenient choice, in this ca

he bosonic realization. Indeed, an adapted basis is given in term of three bosonic pairs of
nd annihilation operators; they satisfy the commutation relations

fak
−,al

+g = dkl, s6d

herek, l =1,2,3. Theoperator numbers areNk=ak
+ak

−. The Fock space is generated by the eig
tatesun1,n2,n3l of a number of operators, namely,

un1,n2,n3l =
sa1

+dn1

În1!

sa2
+dn2

În2!

sa3
+dn3

În3!
u0,0,0l. s7d

n this bosonic representation, we define the generators of sus3d as

ei = ai
+ai+1

− , f i = ai
−ai+1

+ , hi = Ni − Ni+1. s8d

he generatorsei, f i are called step, ladder or Weyl operators. The Cartan subalgebra is ge
y the elementshi. They act on the representation space of dimension1

2s j1+1ds j1+2d that is
btained from the Fock space of three harmonic oscillators by restricting the total num
uantas toj1=n1+n2+n3. In the present representation the state of highest weight isu j1,0 ,0l. The
enerators of sus3d having a nontrivial action(nonvanishing and nondiagonal) on the fudicia
ector u j1,0 ,0l are f1=a1

−a2
+ and f3=ff2, f1g=a1

−a3
+. At this stage, one can define the coherent
s
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uz1,z2l = Dsz1,z2du j1,0,0l = expsz1f1 + z2f3 − z̄1e1 − z̄2e3du j1,0,0l, s9d

heree3=fe1,e2g=a1
+a3

−. Expanding the displacement operatorDsz1,z2d and using the action
reation and annihilation operators on the restricted Fock space,

F = hun1,n2,n3l;n1 + n2 + n3 = j1j,

ne obtains

uz1,z2l = o
j2=0

j1

o
j3=0

j2

z1
j2z2

j3I j2

j1suz1udI j3

j2suz2udu j1 − j2, j2 − j3, j3l, s10d

here

I js+1

js suzsud = o
k=0

` s− dksuzsu2dk

s js+1 + 2kd!
Ps js+1 + 1,kd, s11d

or s=1,2. ThequantitiesP occuring in(11) are given by

Ps js+1 + 1,kd = Ps js+1 + 1,0d o
l1=1

js+1+1

Essl1do
l2=1

l1+1

Essl2d ¯ o
lk=1

lk−1+1

Esslkd s12d

ith Ps js+1+1,0d= js! js+1! / s js− js−1d! and Essld=s js− l +1dl. They satisfy the following recursio
elation:

Ps js+1 + 1,kd = ÎEss js+1dPs js+1,kd + ÎEss js+1 + 1dPs js+1 + 2,k − 1d. s13d

etting

Jjs+1

js suzsud = uzsu jsPs js+1 + 1,0dI js+1

js suzsud, s14d

e get the first order differential equation

dJjs+1

js suzsud

duzsu
= Jjs+1−1

js suzsud − sEss js+1 + 1dd2Jjs+1+1
js suzsud. s15d

he solution of this equation takes the simple form

Jjs+1

js suzsud =
1

js+1!
scossuzsudd js+1−1stgsuzsudd js+1, s16d

nd the sus3d coherent states rewrite as

uz1,z2l = s1 + uz1u2 + uz1u2uz2u2d−s j1/2d o
j2=0

j1 Î j1!

j2 ! s j1 − j2d!
z1

j2

3 o
j3=0

j2 Î j2!

j3 ! s j2 − j3d!
z2

j3u j1 − j2, j2 − j3, j3l, s17d

herezs=szs/ uzsudtgsuzsudcossuzs+1ud2−s for s=1,2. They have the property of strong continuity
he label space and overcompletion in the sense that there exists a positive measure such

olve the resolution to identity. The appropriate form of this resolution is
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E dmsz1,z̄1,z2,z̄2duz1,z2lkz1,z2u = o
j2=0

j1

o
j3=0

j2

u j1 − j2, j2 − j3, j3lk j1 − j2, j2 − j3, j3u. s18d

ssuming the isotropy of the measure dmsz , z̄d, we set

dmsz1,z̄1,z2,z̄2d = p2s1 + uz1u2 + uz1u2uz2u2d j1/2hsuz1u2dhsuz2u2duz1uduz1uuz2uduz2udu1du2 s19d

ith zs= uzsueius. Substituting(19) in Eq.(18), we obtain the following sum:

E
0

`

xs
js+1hsxsddxs =

j s+1 ! s js − j s+1d!
js!

, s20d

hich should be satisfied by the functionhsxs= uzsu2d. One obtains

hsxsd =
js + 1

s1 + xs
2d js+2 . s21d

his result can be obtained by using the definition of Meijer’sG-function and the Mellin inversio
heorem.22 The resolution to identity is necessary to build up the Fock–Bargmann space ba
he set of sus3d coherent states.

. Differential realization of the su „3… generators

It is well established that the use of the Fock–Bargmann representation is a powerful
or obtaining closed analytic expressions for various properties of coherent states. Calcula
ome quantum exception values and solutions for some eigenvalue equations are simlp
xploiting the theory of analytical entire functions. Here, we give the Fock–Bargmann rep

ation of a sus3d quantum mechanical system. We define the Fock–Bargmann space as a s
unctions which are holomorphic. The scalar product is written with an integral of the form

kf ugl =E f̄sz1,z2dgsz1,z2ddmsz1,z̄1,z2,z̄2d, s22d

here the measure is defined above[see Eq.(19)]. Due to overcompletion of the coherent sta
t is induced by the scalar product inF. Let

ucl = o
n1,n2,n3

an1,n2,n3
un1,n2,n3l s23d

e an arbitrary quantum state ofF, it can be represented as a function of the complex vari

1,z2 as

csz1,z2d = s1 + uz1u2 + uz1u2uz2u2d j1/2kz̄1,z̄2ucl. s24d

n particular, the analytic functions associated to elements of the basis ofF are defined as

c j1,j2,j3
sz1,z2d = s1 + uz1u2 + uz1u2uz2u2d j1/2kz̄1,z̄2u j1 − j2, j2 − j3, j3l. s25d

We now investigate the form of the action of the operatorsei, f i, andhi on Fock–Bargman
pace. Indeed, any operatorO of the algebra sus3d is represented in the space of the en
nalytical functions by some differential operatorO, defined by

kz̄1,z̄2uOucl = Ocsz1,z2d s26d

or any stateucl of F.

According to this definition, we obtain

                                                                                                            



T

(

(

(

(

lo-
m lements
( ed
w ity pro-
v

I

drature
c s for a
q s of
a bles
Î

J. Math. Phys., Vol. 45, No. 9, September 2004 Analytic representations 3439

                        
e1 =
]

] z1
, e3 =

]

] z2
, s27d

f1 = j1z1 − z1
2 ]

] z1
− z1z2

]

] z2
, s28d

f3 = j1z2 − z2
2 ]

] z2
− z1z2

]

] z1
, s29d

e2 = z1
]

] z2
, f2 = z2

]

] z1
, s30d

h1 = j1 − 2z1
]

] z1
− z2

]

] z2
, s31d

h2 = z1
]

] z1
− z2

]

] z2
. s32d

o obtain the above differential realization:

i) we remark that the coherent states(17) can be also written as

uz1,z2l = s1 + uz1u2 + uz1u2uz2u2d−j1/2Dsz1,z2du j1,0,0l, s33d

whereDsz1,z2d=expsz1f1+z2f3d;
ii ) we observe that

]

] z1
Dsz1,z2d = f1Dsz1,z2d,

]

] z2
Dsz1,z2d = f3Dsz1,z2d; s34d

iii ) we use the Hausdorff formula

e−BAeB = o
nù0

1

n!
s− adBdnA, s35d

wheresadBdA=fB,Ag;
iv) we use also the actions of the elements of sus3d on the basis of Fock spaceF, in particular

the fudicial vectoru j1,0 ,0l, and the structure relations(1)–(5) of the algebra sus3d.

From the previous considerations, it follows that the sus3d generators act as first-order ho
orphic differential operators on the space of the analytic functions generated by the e

25). One can verify that the commutation relations(1)–(5) are preserved. This result combin
ith eigenvalue equations ensuring the minimization of Schrödinger–Robertson inequal
ides the intelligent states as will be explained in the next section.

II. su „3… ROBERTSON STATES

As we have already mentioned, in this section, we will study the fluctuations of the qua
omponents of the Weyl generators which represent creation and annihilation of state
uantum mechanical system of sus3d symmetry. In this order, to construct the intelligent state
ny pair of ladder operatorsei, f i si =1,2,3d, it is natural to introduce the quantum observa

Î 2
2pi =ei + f i and i 2qi =ei − f i wherei =−1. These observables obey
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fpi,qig = ihi . s36d

e known thatpi andqi satisfy, in a given state, the Robertson–Shrödinger uncertainty rel

sDpid2sDqid2 ù
1
4skhil2 + kcil2d, s37d

hereDpi andDqi are the dispersions and the Hermitian operatorci =hpi −kpil ,qi −kqilj gives the
ovariance(correlation) of the observablespi and qi. The symbolh,j stands for the standa
efinition of the anticommutator. A stateuFl providing the equality in(37) is the so-called Rob
rtson intelligent state. It was proven that such state satisfies the following eigenvalue eq

ss1 + adei + s1 − adf iduFl = luFl, s38d

here aÞ0 and l=s1+adkeil+s1−adkf il are complex parameters. Furthermore, the varia
nd covariance, in the intelligent stateuFl, are related by

sDpid2 = uauDi, sDqid2 =
1

uau
Di , s39d

hereDi =
1
2
Îkhil2+kcil2. Remark that they can be also expressed as

sDpid2 =
uau2

u
khil, sDqid2 =

1

u
khil, kcil =

v
u

khil, s40d

here the real parametersu and v are such thatu2+v2=4uau2. (As example, one can takeu
2 Rea andv=2 Im a.) It is clear that the dispersions and the correlation can be obtained

he mean value of the observablehi. The stateuFl satisfying(38) with uau=1 are coherent becau
hey satisfysDpid2=sDqid2=Di. The fluctuations are equal and minimized in the sense o
chrödinger–Robertson uncertainty relation. The state satisfying(38) with uauÞ1 are squeeze
ecause ifuau,1, we havesDpid2,Di , sDqid2 and if uau.1, we havesDqid2,Di , sDpid2.

To solve the eigenvalues equation(38), we will use the analytic representations of cohe
tates as well as the differential realizations of the generatorsei and f i given by Eqs.(27)–(30). So,
et us start by deriving the eigenfunctions of Eq.(38) for the first paire1, f1. By introducing the
nalytic function

F1 ; F1sz1,z2,a,l, j1d = s1 + uz1u2 + uz1u2uz2u2d j1/2kz̄1,z̄2uF1l, s41d

t can be easily checked that the eigenvalue equation(38) can be converted in the following fir
rder differential equation:

s j1h1 − l8dF1 + s1 − h1
2d

] F1

] h1
− h1h2

] F1

] h2
= 0, s42d

here h1=Îs1−ad / s1+adz1, h2=z2 and l8=l /Î1−a2 for aÞ ±1. The function

1sz1,z2,a ,l , j1d can be expanded as

F1 = o
j2=0

j1

o
j3=0

j2

aj1,j2,j3
h1

j2h2
j3. s43d

ubstitution of(43) in (42) yields the recursion formula

s j1 − j2 − j3 + 1daj1,j2−1,j3
− l8aj1,j2,j3

+ s j2 + 1daj1,j2+1,j3
= 0, s44d
hich can be solved by the Laplace method. Indeed, we set
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aj1,j2,j3
=E

−1

+1

xj2fsxddx s45d

hat we introduce in(44) to obtain, after partial integration, the simple first order differe
quation satisfied by the functionfsxd,

sx − x3d
df

dx
+ s j1 − j3 + 1 −l8x − x2d = 0. s46d

he last equation is easily solvable. Replacing in(45), one obtains

aj1,j2,j3
=E

−1

+1

xj2−j1+j3−1s1 − xds−l8+j1−j3d/2s1 + xdsl8+j1−j3d/2dx, s47d

r

aj1,j2,j3
= s− d j2

GSl8 + j1 − j3
2

+ 1DGS− l8 + j1 − j3
2

+ 1D
Gs j1 − j3 + 2d

32F1S j1 − j3 − j2 + 1,
l8 + j1 − j3

2
+ 1,j1 − j3 + 2,2D s48d

sing the integral representation for the hypergeometric function2F1.
20 Comparing the expansio

43) with the general formula(41), we have the decomposition of Robertson intelligent states
he basis of Fock spaceF,

uF1l = o
j2=0

j1

o
j3=0

j2

aj1,j2,j3S1 − a

1 + a
D j2/2Îs j1 − j2d ! j3 ! s j2 − j3d!

j1!
u j1 − j2, j2 − j3, j3l, s49d

here the coefficientsaj1,j2,j3
are given by Eq.(48).

Now we consider the construction of intelligent states for the second paire2,f2. The eigen
alues equation(38) gives, in this case, the following quasilinear differential equation:

j1
] F2

] j2
+ j2

] F2

] j1
− l8F2 = 0, s50d

herej1=Îs1+ad / s1−adz1, j2=z2, andl8=l /Î1−a2. Here also, we expand the eigenfunc

2;F2sj1,j2,a ,l , j1d as

F2 = o
j2=0

j1

o
j3=0

j2

bj1,j2,j3
j1

j2j2
j3 s51d

hat we insert in Eq.(50) to obtain the recursion relation linking the coefficientsb’s,

s j3 + 1dbj1,j2−1,j3+1 − l8bj1,j2,j3
+ s j2 + 1dbj1,j2+1,j3−1 = 0. s52d

ettingbj1,j2,j3
;bj1,j2−j ,j where 2j = j2+ j3, the previous relation can be transformed to

s j2 + 1dbj1,j2−j+1,j − l8bj1,j2−j ,j + s j3 + 1dbj1,j2−j−1,j = 0, s53d

olvable in a similar manner as that given by the solution of the recursion formula(44), and one

as
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bj1,j2,j3
= s− d j2

GSl8 + j2 + j3
2

+ 1DGS− l8 + j2 + j3
2

+ 1D
Gs j2 + j3 + 2d

32F1S j3 + 1,
l8 + j2 + j3

2
+ 1,j2 + j3 + 2,2D . s54d

inally, one obtains

uF2l = o
j2=0

j1

o
j3=0

j2

bj1,j2,j3S1 + a

1 − a
D j2/2Îs j1 − j2d ! j3 ! s j2 − j3d!

j1!
u j1 − j2, j2 − j3, j3l. s55d

t remains to determine thee3, f3 intelligent states. In this case, the Robertson states should s
he following equation:

s j1q2 − l8dF3 + s1 − q2
2d

] F3

] q2
− q1q2

] F3

] q1
= 0, s56d

hereq1=z1, q2=Îs1−ad / s1+adz2 andl8 is defined above. In a similar way as that prese
bove, one obtains the intelligent states

F3 = o
j2=0

j1

o
j3=0

j2

cj1,j2,j3
q1

j2q2
j3, s57d

hereF3;F3sz1,z2,a ,l , j1d and the constantsc’s are given by

cj1,j2,j3
= s− d j3

GSl8 + j1 − j2
2

+ 1DGS− l8 + j1 − j2
2

+ 1D
Gs j1 − j2 + 2d

32F1S j1 − j2 − j3 + 1,
l8 + j1 − j2

2
+ 1,j1 − j2 + 2,2D . s58d

nalogously to the above cases, the intelligent statesF3 can be converted as follows:

uF3l = o
j2=0

j1

o
j3=0

j2

cj1,j2,j3S1 + a

1 − a
D j3/2Îs j1 − j2d ! j3 ! s j2 − j3d!

j1!
u j1 − j2, j2 − j3, j3l. s59d

o close this section, let us note that it is clear that the Fock–Bargmann representation
oherent states provide a simplification and a “minimization” in the problem of finding intel
tates of sus3d Weyl generators. It is evident that the procedure described here can be rele
he derivation of intelligent states for other quadrature components of type, for instance,ei, ej and
f i, f j si Þ jd.

V. DISCUSSION AND OUTLOOK

In conclusion, we have developed a method for finding the Robertson intelligent sta
inear combination of the Weyl operatorsei and f i for i =1,2,3,corresponding to the Lie algeb
us3d. The use of the analytic representation enables us to write the eigenvalue equations,
y states minimizing the Schrödinger–Robertson uncertainty relation, as quasilinear firs
ifferential equation. Interestingly, new types of coherent states for sus3d emerge foruau=1. Also
henuauÞ1, the solutions give squeezed states. As it is noted in the end of the preceding
he approach used through this work can be applied to derive Robertson intelligent states associ-
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ted to the other quadratures of the sus3d generators. In a unified scheme, they can be obtain
onsidering the eigenvalue problem for an operator which is a complex linear combinatio
lements of sus3d,

o
i=1,2

sai
+ei + ai

−f i + ai
0hiduFl = luFl. s60d

he solutions of such a general problem give the so-called algebra eigenstates or algebra
nt states(Ref. 13 and references therein). Taking specific constraints on the complex parame
ccurring in this general eigenvalue equation, one can get various kinds of coherent and s
tates, in particular ones that are not discussed in this paper. This constitutes the first
rolongation of our results. Also, as a continuation, it would be interesting to apply the ap
resented here to other Lie algebras like susnd or susp,qd.
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Solutions for a fractional nonlinear diffusion
equation: Spatial time dependent diffusion coefficient
and external forces

E. K. Lenzi,a) R. S. Mendes, and Kwok Sau Fa
Departamento de Fı´sica, Universidade Estadual de Maringa´, Av. Colombo 5790,
87020-900 Maringa´-PR, Brazil

L. R. da Silva and L. S. Lucena
International Center for Complex Systems and Departamento de Fı´sica,
Universidade Federal do Rio Grande do Norte, 59078-970 Natal-RN, Brazil

~Received 6 October 2003; accepted 5 May 2004; published online 28 July 2004!

We analyze a generalized diffusion equation which extends some known equations
such as the fractional diffusion equation and the porous medium equation. We start
our investigation by considering the linear case and the nonlinear case afterward.
The linear case is discussed taking fractional time and spatial derivatives into
account in a unified approach. We also discuss the modifications that emerge by
employing simple drifts and the diffusion coefficient given byD(x,t)
5D(t)uxu2u. For the nonlinear case, we study scaling behavior of the time in
connection with the asymptotic behavior for the solution of the nonlinear fractional
diffusion equation. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1768619#

I. INTRODUCTION

Nowadays, fractional diffusion equations~e.g.,] t
gr5D]x

2r) and nonlinear diffusion equation
~e.g.,] tr5D]x

2rn) play important roles in describing anomalous diffusion due to their broad
of the physical applications. In fact, they have been applied to several physical situations s
percolation of gases through porous media,1 thin saturated regions in porous media,2 diffusion of
dissolved solutes into immobile water zones of various sizes, a standard solid-on-solid mo
surface growth, thin liquid films spreading under gravity,3 modeling of non-Markovian dynamica
processes in protein folding,4 relaxation to equilibrium in a system~such as polymer chains an
membranes! with long temporal memory,5 and anomalous transport in disordered systems.6 Some
properties concerning the nonlinear fractional diffusion have also been investigated in Ref
this scenario, a high order diffusion-like equation such as the thin film equation,8 which contains
a fourth order derivative, has been used to describe the lubrication models for thin viscous
spreading droplets and Hele-Shaw cells.9 Note that the physical situations mentioned above
sentially concern anomalous diffusion of the correlated type~both sub- and superdiffusion; se
Ref. 10 and references therein! or of the Lévy type ~superdiffusion; see Ref. 11 and referenc
therein!. The anomalous correlated diffusion usually has a finite second moment^x2&}ts (s
.1, s51 and 0,s,1 correspond to superdiffusion, normal diffusion and subdiffusion, res
tively; s50 corresponds basically to localization!. The second type is essentially characterized
Lévy distributions and, consequently, it has no finite second moment, i.e.,^x2& diverges.

Now, let us accomplish the above situations in a unified approach based on the gene
diffusion equation

]g

]tg r~x,t !5E
0

t

dt8
]

]uxu HD~x,t2t8!
]m21

]uxum21 @r~x,t8!#nJ 2
]

]x
$F~x!r~x,t !% , ~1!

a!Electronic mail: eklenzi@dfi.uem.br
34440022-2488/2004/45(9)/3444/9/$22.00 © 2004 American Institute of Physics
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where n,g,mPR, D(x,t)5D(t)uxu2u is a diffusion coefficient, andF(x)[2dV(x)/dx is an
external force~drift! associated with the potentialV(x). We use the Caputo12 operator for the time
derivative. For the spatial fractional derivative we consider the Riesz–Weyl operator.13–15 Also,
we employ, in general, the initial conditionr(x,0)5d(x) or r(x,0)5 r̃(x) and the boundary
conditionr(x→6`,t)→0 or r(x→0,t)5r(x→`,t)→0 depend on the situation analyzed. F
Eq. ~1!, one can prove that*2`

` dx r(x,t) is time independent~hence, ifr is normalized att
50, it will remain so forever!. Indeed, if we write Eq.~1! as ] t

gr52]xJ and, for simplicity,
assume the boundary conditionsJ(6`,t)→0, it can be shown that*2`

` dx r(x,t) is a constant
of motion. Note that Eq.~1! recovers, for (m,g,n)5(2,1,1), the standard Fokker–Planck equati
in the presence of a drift taking memory effects into account. The particular caseF(x)50 ~no
drift! andD(x,t)5Dd(t) with (m,g,u)5(2,1,0) has been considered by Spohn,16 and the case
(m,g)5(2,1) has been investigated in Refs. 17 and 18. Our present investigation involves
sions of these cases by considering a wide variety of situations: Employing fractional deriva
nonlinearity and the mixing of them. Note that Eq.~1! has also a kernel which takes a memo
effect into account. In this way, we expect to bring new aspects of physical phenomena
explored, for example, when a mixing between the fractional diffusion equations and the non
diffusion equations are present. In addition, by using Eq.~1!, a well-known limitation of the
description of diffusion processes with the diffusion equation, i.e., the infinite velocity of in
mation propagation inherent to a parabolic equation caused by the model assumption t
collision frequency is infinite, can be avoided.

From the previous discussion, we verify that the diffusion equations investigated in the m
script may be useful to model several physical situations. On the other hand, exact solution
an important role in analyzing physical situations, since they contain, in principle, precise
mation about the system. In particular, they can be used as a useful guide to control the ac
of numerical solutions. For these reasons, we dedicated this work to investigate some solut
these equations in order to give support to possible investigations of physical systems mode
the diffusion equations studied here. The reminder of this paper goes as follows. In Sec.
investigate several situations for Eq.~1! by considering the linear case (n51). In Sec. III, we
discuss the nonlinear (nÞ1) fractional diffusion equation and connect the asymptotic beha
with the distributions which emerge from the nonextensive statistics.19,20 In Sec. IV, we present
our conclusions.

II. LINEAR CASE

We start our discussion by considering the linear case, i.e.,n51, with D(x,t)5D(t) andm
52 without external force. Thus, Eq.~1! reads

]g

]tg r~x,t !5E
0

t

dt8 HD~ t2t8!
]2

]x2 r~x,t8!J . ~2!

Notice that forg51 Eq.~2! reduces to the one obtained from a dichotomous random process21 In
fact, by identifying the diffusion coefficient with the normalized correlation function

Fj~ t !5
^jj~ t !&

^j2&
, ~3!

we formally recover the evolution equation for the density probability present in Refs. 14 an
It is also interesting to note that we can also use Eq.~2! by considering an appropriateD(t) as a
model for the diffusion that takes a finite collision time into account. Indeed, the usual diffu
equation is an approximation only valid on time scales which are large compared to the time
at which the diffusion-causing collisions take place. One of the most striking unphysical prop
of the diffusion equation is an infinite velocity of information propagation. However, the inclu
of the finite collision frequency in the system may create additional difficulties to treat the p
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lem; an approximation which makes the problem more tractable is discussed by Bourret,22 and it
leads to an integral equation with a correlation function in the kernel-like equation Eq.~2!.

Before analyzing the solutions of Eq.~2!, we obtain formal results for the time behavior of th
moments, in particular, of the second moment. In this direction, by simple calculation, we o
a dynamic equation for thenth moment:

dg

dtg
^x2n&~ t !52n~2n21!E

0

t

dt8 D~ t2t8!^x2n22&~ t8! , ~4!

for n51,2,. . . . To find thenth moment related to this equation, a coupled system of equa
needs to be solved. For simplicity, we consider 0,g,1. Thus, we start by evaluating the seco
moment and then we use this result to obtain thenth moment. By choosingn51 in Eq. ~4! we
have an equation for the second moment whose solution is

^x2&5
2

G~g11!
E

0

t

dt8 ~ t2t8!gD~ t8! . ~5!

Using the above result we can show that thenth moment is given by

^x2n&5
~2n!!

G~ng11!
E

0

t

dt(1)~ t2t (1)!ngE
0

t(1)

dt(2)D~ t (1)2t (2)!¯E
0

t(n21)

dt(n)

3D~ t (n21)2t (n)!D~ t (n)! . ~6!

Now, let us investigate the solutions for Eq.~2!. By employing the Laplace transform in Eq
~2!, we obtain that

sgr̂~x,s!2sg21r~x,0!5D~s!
d2

dx2 r̂~x,s!, ~7!

( r̂(x,s)5L$r(x,t)% whereL$¯%5*0
`dte2st

¯), whose solution, forr(x,0)5d(x), is given by

r̂~x,s!5
1

2s S sg

D~s! D
1/2

expF2S sg

D~s! D
1/2

uxuG . ~8!

Note that, if we take a general diffusion coefficient into account in the above equation
inversion of the Laplace transform becomes a hard task. However, for some cases it is pos
calculate the inverse of Laplace transform. For instance,D(s)5constant(D(t)5Dd(t)), which
recovers the result presented in Ref. 14, Cattaneo’s case,23 i.e., D(s)5D/(11tcs) (D(t)
5D/tce

2t/tc), andD(s)5Ds2a (D(t)5Dta21/G(a)) which lead us to

r~x,t !5
1

A4Dtg1a
H1 1

1 0F uxu

ADtg1a U
(0,1)

(12 ~g1a!/2 , ~g1a!/2)G , ~9!

where Hp q
m n@xu(b1 ,B1),... ,(bq ,Bq)

(a1 ,A1),... ,(ap ,Ap)
# is the FOX function.24 In Fig. 1, we show the behavior of th

above equation by considering typical values ofg1a with 0,g,1. It is interesting to note tha
for g1a,1 we have a unimodal distribution, similar result is reported in Ref. 14, and fo
,g1a,2 we have a bimodal distribution, in according to the results present in Ref. 21.
asymptotic behavior of Eq.~9! is

r~x,t !;
1

A4pDtg1a S uxu

ADtg1aD ~2 12g2a!/~22g2a!

expF2Cg,aS uxu

ADtg1aD 2/~22g2a!G , ~10!
                                                                                                                



n

3447J. Math. Phys., Vol. 45, No. 9, September 2004 Solutions for a fractional nonlinear diffusion eqn

                    
where Cg,a5@(22g2a)/2#@(g1a)/2# (g1a)/(22g2a). Similar asymptotic behavior is found in
homogeneous and isotropic random walk models.25,26 Notice that Eq.~9! recovers the Gaussia
distribution forg1a51. In particular, for a general initial condition, i.e.,r(x,0)5 r̃(x), we have
that

r~x,t !5
1

A4Dtg1a E2`

`

dx8r̃~x8! H1 1
1 0F ux2x8u

ADtg1a U
(0,1)

(12 ~g1a!/2 ,~g1a!/2)G . ~11!

In order to extend the above results, we incorporate a linear drift force, i.e.,F(x)52Kx. In
this case, by employing the Fourier and Laplace transforms we can show that

r~k,s!5sg21E
0

`

du e2usg
e2 D(s)/2K uku2(12e22uK) . ~12!

The second moment obtained from the above equation is given by

^x2&52E
0

t

dt8D~ t2t8!t8 gEg,g11~22Kt8 g! , ~13!

where Ea,b(x) is the generalized Mittag–Leffler function

FIG. 1. In this figure, we illustrate the behavior of Eq.~9! by plotting (4Dtg1a)1/2r(x,t) vs uxu/(Dtg1a)1/2, for typical
values of forg1a with 0,g,1.
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Ea,b~x!5 (
n50

`
xn

G~na1b!
. ~14!

We notice that forK50 in Eq. ~12! we recover Eq.~8!. For simplicity, by choosingD(s)5D in
~12! we can reduce it to

r~x,t !5A K
2pD E

0

`

du
W~12g,2g;2u!

~12e22utgK!1/2
expF2

Kx2

2D~12e22utgK!
G , ~15!

whereW(b,a;x) is the Wright function27

W~b,a;u!5
1

2p i EHa
dtt2bet1ut2a

, ~16!

and Ha denotes the Hankel contour and 0,g,1. In particular,W(12g,2g;2u)5M(g,u),
whereM(g,u) is the Mainardi function~for detail, see Ref. 28!. In Fig. 2, we show the time
behavior of Eq.~15! by consideringg51/3. We verify that the time behavior is unimodal. Furth
for small times Eq.~15! has a similar behavior like the one present in Fig. 1 for the caseg1a
,1 (0,g,1), and for long times the solution recovers the usual stationary solution.
behavior obtained for Eq.~15! is in accordance to the results reported in Ref. 14. Note that
solution~15! is valid for 0,g,1 ~subdiffusive case!. If we had considered the range 1,g,2, it
would be convenient to use an extension of Eq.~15! such as presented in Ref. 14. Thus, for
,g,2, we verify for small times a bimodal behavior, similar to the casea1g.1 (0,g,1)
obtained in Fig. 1. Further, the bimodal behavior present for small times evolves to a unim

FIG. 2. In this figure, we illustrate the behavior of Eq.~15!, by consideringr(x,t) vs uxu for several times, withg
51/3, K51, andD51. Note that for long times we have the Gaussian behavior for the stationary solution.
                                                                                                                



d. In

spatial

tals,

we

atial

3449J. Math. Phys., Vol. 45, No. 9, September 2004 Solutions for a fractional nonlinear diffusion eqn

                    
distribution in such way that for long times the unimodal Gaussian distribution is recovere
particular, Eq.~15! always recovers the usual stationary solutionr(x);e2 (K/2D) x2

for long times.
For the casemÞ1 with a generic initial condition, Eq.~15! is modified to

r~x,t !5E
0

`

duW~12g,2g;2u!E
2`

`

dx8r̃~x2x8!G~x8,u;t ! ,

G~x,u;t !5
1

muxu
H2 2

1 1F S mK
D D 1/m uxu

~12e2mutgK!1/m U
(1,1) , (1,1/2)

(1,1/m) , (1,1/2)G . ~17!

Note that the above equation, in contrast with Eq.~15!, has a Le´vy distribution as a stationary
solution for long times.

Interesting features can be incorporated in the above scenario when we consider a
dependence on the diffusion coefficient, i.e.,D(x,t)5D(t)uxu2u. In particular, this kind of diffu-
sion coefficient may be related to several physical situations, for example, diffusion on frac29

turbulence30 and fast electrons in a hot plasma in the presence of a dc electric field.31 In this
direction, the mean first passage time has also been analyzed in Ref. 32. Thus, Eq.~1! is given by

]g

]tg r~x,t !5E
0

t

dt8
]

]uxu HD~ t2t8!uxu2u
]

]uxu
r~x,t8!J , ~18!

in the absence of external force form52. To investigate solutions for the above equation
consider, for simplicity,x nonnegative, the boundary conditionsr(0,t)5r(`,t)50 and use the
following integral transform:

r~k,t !5E
0

`

dx x1/2(11u)J~11u!/~21u!S 2kx1/2(21u)

21u D r~x,t !,

r~x,t !5
2

21u E0

`

dk kx1/2(11u)J~11u!/~21u!S 2kx1/2(21u)

21u D r~k,t ! , ~19!

obtained from the Sturm–Liouville problem related to the differential equation for the sp
variable of Eq.~1! with (n,m)5(1,2) andD(x,t)5Duxu2u. By using Eq.~19!, we can simplify
Eq. ~18! and obtain

dg

dtg
r~k,t !52k2E

0

t

dt8 D~ t2t8!r~k,t8! , ~20!

whose Laplace transform is given by

r~k,s!5
sg21

sg1D~s!k2 r~k,0! . ~21!

By substituting the above equation in Eq.~19!, we obtain that

r~x,s!5
2x1/2(11u)

21u E
0

`

dk
sg21k

sg1D~s!k2 J~11u!/~21u!S 2kx1/2(21u)

21u D r~k,0! . ~22!

In order to invert the Laplace transform, for simplicity, we employD(s)5Dsa (a,g) and the
conditionr(x,0)5 r̃(x). Then, after some calculations, we can show that
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r~x,t !5
2x1/2(11u)

21u E
0

`

duW~11a2g,a2g;2u!E
0

`

dx8 x81/2(11u)r̃~x8!

3E
0

`

dk k J~11u!/~21u!S 2kx1/2(21u)

21u D J~11u!/~21u!S 2kx81/2(21u)

21u De2utg2aDk2
. ~23!

By using the identity

E
0

`

dk k Jn~ak!Jn~bk!e2a2k2
5

1

2a2 e2 b21a2/4a2
InS ab

2a2D , ~24!

present in Ref. 33, we may simplify Eq.~23! and obtain

r~x,t !5
x1/2(11u)

~21u!Dtg2a E
0

` du

u
W~11a2g,a2g;2u!E

0

`

dx8 x81/2(11u)r̃~x8!

3I~11u!/~21u!S 2x1/2(21u)x81/2(21u)

~21u!2Dutg2a DexpF2
x21u1x821u

~21u!2Dutg2aG , ~25!

where In(x) is a modified Bessel function.

III. NONLINEAR CASE

The scaling relation is remarkable in physics due to the broadness that may arise in d
situations, for instance, the systems of the water transport in soil are related to the depend
the concentration on distance and time,34 and the asymptotic form of the propagator on fractals
Sierpinski gasket.14 In this sense, it is interesting to analyze the time scaling behavior and
asymptotic solutions for nonlinear diffusion equations taking time fractional derivative into
count. Thus, we focus our attention on the following equation:

]g

]tg r~x,t !5E
0

t

dt8
]

]uxu HD~x,t2t8!
]

]uxu @r~x,t8!#nJ , ~26!

whereD(x,t)5Duxu2uta. In order to investigate the scaling behavior of the above equation
assume that the solution can be written as follows:

r~x,t !5
1

F~ t !
r̄S x

F~ t ! D . ~27!

Note that this kind of solution has been considered in several situations to analyze the no
diffusion equation.7 With these considerations we proceed to obtain the time evolution equ
for the second moment related to Eq.~26! and it is given by

dg

dtg
^x2&52~12u!DE

0

t

dt8 ~ t2t8!aE
2`

`

dxuxu2u@r~x,t8!#n . ~28!

By substituting Eq.~27! into Eq.~28!, we can obtain a nonlinear fractional differential equation
F(t),

dg

dtg
@F~ t !#252~12u!D I1

I E
0

t

dt8 ~ t2t8!a@F~ t8!#12n2u , ~29!

with I5*2`
` dx̄ x̄2r̄( x̄) and I15*2`

` dx̄ ux̄u2u@ r̄( x̄)#n. In addition, we supposedI and I1 are
defined. Note that our investigation about the time scaling behavior is based on the s
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moment which is finite when we consider a fractional time derivative applied to the diffu
equation, in contrast to the fractional spatial derivatives. For this reason, we only cons
fractional time derivative. The solution is given by

F~ t !5Ct ~11g1a!/~11n1u! , ~30!

where

C5F ~12u!aDI1G~a!

āI G~2ā !

G~112ā2g!G~11ā~12n2u!!

G~21a1ā~12n2u!! G1/~11n1u!

, ~31!

with

ā5
11g1a

11n1u
. ~32!

From Eq. ~30!, we have ^x2&}t2((11g1a)/(11n1u)), so, for (11g1a)/(11n1u),1/2, (g
1a)/(11n1u)51/2 or (11g1a)/(11n1u).1/2, which characterizes the sub, normal
superdiffusive behavior. In order to investigate the asymptotic behavior of Eq.~26!, we consider

r~x,t !;
1

F~ t ! S uxu
F~ t ! D

2h

. ~33!

Note that Eq.~33! is Eq.~27! with r̄(x);uxu 2h. By substituting the above equation into~26!, we
find that h5(21u)/(12n). It is possible to establish a connection between the asymp
solution obtained here and the one obtained from the nonextensive statistics. In this sen
compare Eq.~33! with the expression 1/uxu2/(q21) that appears in Ref. 20 for the entropic proble
in this asymptotic behavior. Thus, we have that

q5
422n1u

21u
. ~34!

Note that foru50 the above result recovers the usual relationq522n employed in Ref. 18.

IV. SUMMARY AND CONCLUSION

In summary, we have worked on a one-dimensional generalized diffusion equation@Eq. ~1!# in
several situations by considering the space and time fractional derivatives in the abse
presence of an external drift. We have also employed a time and spatial dependent di
coefficient. In this context, we have obtained a general expression fornth moment. Further, for
some cases ofD(x,t), we have obtained the exact solution for the probability density. So
peculiar aspects related to fractional approach have been shown along the text. It is intere
note that the fractional derivative can deal with a bimodal distribution~see Fig. 1! which is absent
in the ordinary case. For the nonlinear case we have analyzed the scaling behavior of the ti
employed the scaling argument, on the space and time, to obtain an asymptotic solution
probability density. In particular, we have related our asymptotic solution to the one obtained
nonextensive statistics. Finally, we hope that the results present in this work may be app
physical systems exhibiting nontrivial forms of anomalous diffusion.

ACKNOWLEDGMENTS

We thank CNPq and CNPq/CTPETRO~Brazilian agencies! for partial financial support.

1M. Muskat,The Flow of Homogeneous Fluid Through Porous Media~McGraw-Hill, New York, 1937!.
2P. Y. Polubarinova-Kochina,Theory of Ground Water Movement~Princeton University Press, Princeton, 1962!.
3J. Buckmaster, J. Fluid Mech.81, 735 ~1983!.
                                                                                                                



hiessel

E

.

.

ics,

.

3452 J. Math. Phys., Vol. 45, No. 9, September 2004 Lenzi et al.

                    
4S. S. Plotkin and P. G. Wolynes, Phys. Rev. Lett.80, 5015~1998!.
5J. F. Douglas, in Ref. 14, pp. 241–331; H. Schiessel, C. Friedrich, and A. Blumen, in Ref. 14, pp. 331–376; H. Sc
and A. Blumen, Fractals3, 483 ~1995!.

6R. Metzler, E. Barkai, and J. Klafter, Physica A266, 343 ~1999!.
7M. Bologna, C. Tsallis, and P. Grigolini, Phys. Rev. E62, 2213~2000!; C. Tsallis and E. K. Lenzi, Chem. Phys.284, 341
~2002!; 287, 295 ~2002!; E. K. Lenzi, R. S. Mendes, L. C. Malacarne, and I. T. Pedron, Physica A319, 245 ~2003!; E.
K. Lenzi, G. A. Mendes, R. S. Mendes, L. R. da Silva, and L. S. Lucena, Phys. Rev. E67, 051109~2003!.

8J. R. King, Math. Comput. Modell.34, 737 ~2001!.
9F. Bernis, J. Hulshof, and J. R. King, Nonlinearity13, 413 ~2000!.

10L. Borland, Phys. Rev. E57, 6634~1998!.
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We consider the three-dimensional Schrödinger operatorsH0 and H where H0

=si ¹ +Ad2−b, A is a magnetic potential generating a constant magnetic field of
strengthb.0, andH=H0+V whereV[L1sR3;Rd satisfies certain regularity con-
ditions. Then the spectral shift functionjsE;H ,H0d for the pair of operatorsH, H0

is well-defined for energiesEÞ2qb, q[Z+. We study the asymptotic behavior
of jsE;H ,H0d as E→`, E[Or, r [ s0,bd, whereOrªhE[s0,`dudistsE,2bZ+d
. rj. We obtain a Weyl-type formula limE→`,E[Or

E−1/2jsE;H ,H0d
=s1/4p2deR3Vsxddx. © 2004 American Institute of Physics.
[DOI: 10.1063/1.1776643]

. INTRODUCTION

In this note we study the high energy asymptotics of the spectral shift function(SSF) for the
hree-dimensional Schrödinger operator with constant magnetic field, perturbed by an
otential which decays fast enough at infinity. The note could be regarded as a suppleme
rticles in Ref. 5 where the asymptotic behavior of the SSF in the strong magnetic field
as considered, and Ref. 6 where the singularities of the SSF at the Landau levels were
ated.

Let H0ª si ¹ +Ad2−b be the unperturbed three-dimensional magnetic Schrödinger op
ssentially self-adjoint onC0

`sR3d. Here the magnetic potentialA=s−bx2/2 ,bx1/2 ,0d generates th
onstant magnetic fieldB=curl A=s0,0,bd, b.0. It is well-known thatssH0d=sacsH0d=f0,`d
see Ref. 1), where ssH0d denotes the spectrum ofH0, and sacsH0d its absolutely continuou
pectrum. Moreover, the so-called Landau levels 2bq, q[Z+:=h0,1, . . .j, play the role of thresh
lds in ssH0d.

For x=sx1,x2,x3d[R3 we denote byX'=sx1,x2d the variables on the plane perpendicula
he magnetic field. We assume thatV satisfies

V ò 0, V [ CsR3d, uVsxdu ø C0kX'l−m'kx3l−m3, x = sX',x3d [ R3, s1.1d

ith C0.0, m'.2, m3.1, and kxlª s1+uxu2d1/2, x[Rd, dù1. By (1.1) and the diamagnet
nequality (see, e.g., Ref. 1), for eachE0,0 we have

uVu1/2sH0 − E0d−1 [ S2, s1.2d

)Electronic mail: vincent.bruneau@math.u-bordeaux1.fr
)
Author to whom correspondence should be addressed. Electronic mail: graykov@uchile.cl
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uVu1/2sH0 − E0d−1/2 [ S̀ , s1.3d

hereS2 denotes the Hilbert–Schmidt class, whileS̀ denotes the class of linear compact op
ors. The resolvent identity combined with(1.2) implies that for eachE0, inf ssHdø inf ssH0d we
ave

sH − E0d−1 − sH0 − E0d−1 [ S1, s1.4d

here S1 denotes the trace class. Then there exists a unique functionjs. ;H ,H0d[L1sR ; s1
E2d−1dEd which vanishes identically ons−` , inf ssHdd, and satisfies the Lifshits–Krein tra

ormula

TrsfsHd − fsH0dd =E
R

jsE;H,H0df8sEddE, f [ C0
`sRd

see Ref. 14, Theorem 8.9.1). The functionjs. ;H ,H0d is called the SSF for the pair of t
peratorsH and H0. For almost everyE.0 the SSFjsE;H ,H0d is related to the scatterin
eterminant detSsE;H ,H0d for the pairH ,H0 by the Birman–Krein formula

detSsE;H,H0d = e−2pijsE;H,H0d

see Ref. 3, 4, or 14, Sec. 8.4).
A priori, the SSFjsE;H ,H0d is defined only for almost everyE[R. In Sec. III C below we

ntroduce a representative of the equivalence class determined byjs. ;H ,H0d, defined onR \2bZ+,
hich is bounded on each compact subset of the complement of the Landau levels, and

inuous onR \ h2bZ+øspsHdj wherespsHd denotes the set of the eigenvalues of the operatorH. In
his note we will identify the SSF with this particular representative of its equivalence clas

The main goal of the paper is the study of the asymptotics ofjsE;H ,H0d asE→`, E[Or,
here

Or ª hE [ s0,`dudist sE,2bZ+d . rj, r [ s0,bd. s1.5d

he paper is organized as follows. In Sec. II we formulate our main result. In Sec. III we
ome preliminary estimates, while the proof of our main result can be found in Sec. IV.

I. FORMULATION OF THE MAIN RESULT

Theorem 2.1:Assume that V satisfies (1.1). Then we have

lim
E→`,E[Or

E−1/2jsE;H,H0d =
1

4p2E
R3

Vsxddx, r [ s0,bd. s2.1d

Remarks:(i) It is essential to avoid the Landau levels in(2.1), i.e., to suppose thatE[Or ,
[ s0,bd, asE→`, since the SSF has singularities at the Landau levels, at least in the case
has a fixed sign(see Ref. 6).

(ii ) For E[R set

jclsEd ª E
T*R3

susE − up + Asxdu2d − usE − up + Asxdu2 − Vsxddddxdp

=
4p

3
E

R3
sE+

3/2 − sE − Vsxdd+
3/2ddx
here
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ustd ª H0 if t ø 0,

1 if t . 0
J

s the Heaviside function. Note thatjclsEd is independent of the magnetic fieldbù0. Evidently
nder the assumptions of Theorem 2.1 we have

lim
E→`

E−1/2jclsEd = 2pE
R3

Vsxddx.

ence, in the caseeR3VsxddxÞ0, relation(2.1) is equivalent to

jsE;H,H0d = s2pd−3jclsEds1 + os1dd, E → `, E [ Or , r [ s0,bd. s2.2d

symptotic relations of the type(2.2) are known in the case of decaying magnetic potentiaA
see, e.g., Ref. 13). However, in the last case the magnetic partiA . ¹ + i div A+ uAu2 of the operato

0 is a relatively compact perturbation of the Laplacian −D, so that the resemblance with the c
f a constant magnetic field, and, hence, of a linear magnetic potential, considered in the
ote, is only formal. In particular, the methods of Ref. 13 are not directly applicable.

(iii ) As far as the authors are informed, the high energy asymptotics of the SSF for
imensional Schrödinger operators with constant magnetic fields is investigated for the fi

n the present note. However, we would like to mention a result contained in Ref. 9 wh
xisymmetricV=VsuX'u ,x3d is considered. It is well-known(see, e.g., Ref. 1) that in this case th
peratorsH and H0 are unitarily equivalent to the orthogonal sumsom[Z % Hsmd and om[Z

% H0
smd, respectively, where the operators

H0
smd

ª −
1

%

]

]%
%

]

]%
−

]2

]x3
2 + Sb%

2
+

m

%
D2

, Hsmd
ª H0

smd + Vs%,x3d, m[ Z,

re self-adjoint inL2sR+3R ;%d%dx3d. For an arbitrary fixedm[Z the authors of Ref. 9 studie
he asymptotics asE→`, E[Or, of the SSFjsE;Hsmd ,H0

smdd. Note that(2.1) cannot be deduce
rom the results of Ref. 9 even in the case of axial symmetry ofV.

II. AUXILIARY RESULTS

. Classes of compact operators

In this subsection we introduce some basic notations used throughout the paper. As ab
enote byS̀ the class of linear compact operators acting in a fixed Hilbert space.T
T* [ S̀ . Denote byPIsTd the spectral projection ofT associated with the intervalI ,R. For
.0 set

n±ss;Td ª rankPss,`ds±Td.

or an arbitrary(not necessarily self-adjoint) operatorT[ S̀ put

n*ss;Td ª n+ss2;T * Td, s. 0. s3.1d

f T=T*, then evidently

n*ss;Td = n+ss,Td + n−ss;Td, s. 0. s3.2d

urther, we denote bySp, p[ f1,`d, the Schatten–von Neumann class of compact operato
hich the normiTipª spe0

`sp−1n*ss;Tddsd1/p is finite. In particular, as already indicated,S1 stands
or the trace class, andS2 for the Hilbert–Schmidt class. IfT[Sp, p[ f1,`d, then the following

lementary inequality,

                                                                                                            



h

F

B

gonal
p operties
r in Ref.
2

I

P

A
b

P

or such
t t
f

f-adjoint
o
t

w

3456 J. Math. Phys., Vol. 45, No. 9, September 2004 V. Bruneau and G. Raikov

                        
n*ss;Td ø s−piTip
p, s3.3d

olds for everys.0. If T=T* PSp, pP f1,`d, then(3.2) and (3.3) imply

n±ss;Td ø s−piTip
p, s. 0. s3.4d

inally, we define the self-adjoint operators ReT: = 1
2sT+T* d and ImT: = 1

2i sT−T* d.

. Index for a pair of projections

In this subsection we introduce the concepts of index of a Fredholm pair of ortho
rojections, and index for a pair of self-adjoint operators, and describe some basic pr
elated to these concepts which will be often used in the sequel. More details can be found
.

A pair of orthogonal projectionsP, Q is said to be Fredholm if

h− 1,1j ù sesssP − Qd = x .

n particular, if P−QP S̀ , then the pairP, Q is Fredholm.
Assume that the pair of orthogonal projectionsP, Q is Fredholm. Set

indexsP,Qd ª dim Ker sP − Q − Id − dim KersP − Q + Id.

Let M̃, M, be bounded self-adjoint operators. If the spectral projectionsPs−`,0dsM̃d and

s−`,0dsMd form a Fredholm pair, we shall use the short-hand notation

indsM̃,Md ª indexsPs−`,0dsM̃d,Ps−`,0dsMdd.

sufficient condition that the pairPs−`,0dsM̃d, Ps−`,0dsMd be Fredholm isM̃ =M +A, whereM is a
ounded self-adjoint operator such that 0¹sesssMd, andA=A* P S̀ .

Lemma 3.1 (see Ref. 12, Lemma 5.2): Let M=M*, 0 ¹ssMd, 0øA=A* P S̀ . Then for t
s0,`d we have

indsM + tA,Md = − lim
«↓0

n−s1 − «;tA1/2M−1A1/2d, s3.5d

indsM − tA,Md = n+s1;tA1/2M−1A1/2d. s3.6d

Lemma 3.2 [see Ref. 5, Sec. 3.2, Property (g)]: Let M be a bounded self-adjoint operat
hat 0¹ssMd. Let A and B be compact self-adjoint operators. Then for sP s0,`d such tha
−s,sgùssMd=x we have

indsM + s+ B,M + sd − n+ss;Ad ø indsM + A + B,Mdø indsM − s+ B,M − sd + n−ss;Ad.

s3.7d

Lemma 3.3 (see Ref. 11, Lemma 2.1, or Ref. 5, Sec. 3.3): Let M be a bounded sel
perator such that0¹ssMd. Let T1=T1

* P S̀ and T2=T2
* PS1. Then for each s1.0, s2.0 such

hat f−s,sgùssMd=x with s=s1+s2 we have

E
R

uindsM + T1 + t T2,Mdudmstd ø n*ss1;T1d +
1

ps2
iT2i1, s3.8d

2
here dmstd:=s1/pdfdt/ s1+t dg.

                                                                                                            



C

e
o rs, ob-
t

-
n

e

I

w

n
R

nce
o
o ach
L o
2 lues of
t
F

E
P

i the
v ny
c
E

D

i -
t
q

J. Math. Phys., Vol. 45, No. 9, September 2004 High energy asymptotics 3457

                        
. Representation of the SSF

In this subsection we describe a representation of the SSFjsE;H ,H0d which is a special cas
f the general representation of the SSF for a pair of lower-bounded self-adjoint operato

ained by Gesztesy, Makarov, and Pushnitski(see Refs. 11, 8, and 12).
For zPC, Im z.0, setTszd : = uVu1/2sH0−zd−1uVu1/2.
Lemma 3.4 (see Ref. 5, Lemma 3.1): Let (1.1) hold. Then for every EPR \2bZ+, the operator

orm limit

TsEd ª n − lim
d↓0

TsE + idd s3.9d

xists, and by (1.3) we have TsEdP S̀ . Moreover, Im TsEdPS1.
Lemma 3.4 follows easily from Propositions 3.2 and 3.3 below(see Corollary 3.2).
Denote byJ the multiplier by the function

signVsxd = H1 if Vsxd ù 0,

− 1 if Vsxd , 0.
J

ntroduce the function

j̃sE;H,H0d =E
R

indsJ + ReTsEd + t Im TsEd,Jddmstd, E [ R \ 2bZ+, s3.10d

hich is well-defined by Lemmas 3.3 and 3.4.

Proposition 3.1 (see Ref. 5, Proposition 2.5): The functionj̃sE;H ,H0d is continuous o
\ h2bZ+øspsHdj, and is bounded on every compact subset ofR \2bZ+.

Remark:Note that, in contrast to the caseb=0, we cannot rule out the possibility of existe
f embedded eigenvalues, by imposing short-range assumptions of the type of(1.1): Theorem 5.1
f Ref. 1 shows that there are axisymmetric potentialsV of compact support such that below e
andau level 2bq, qPZ+, there exists an infinite sequence of eigenvalues ofH which converges t
bq. On the other hand, generically, the only possible accumulation points of the eigenva
he operatorsH are the Landau levels[see Ref. 1, Theorem 4.7, and Ref. 7, Theorem 3.5.3(iii )].
urther information of the location of these eigenvalues can be found in Ref. 5.

Theorem 3.1 (see Refs. 11, 8, 12, or 5, Sec. 3.3):Let (1.1) hold. Then for almost every
R we have

jsE;H,H0d = j̃sE;H,H0d. s3.11d

Remark:As explained in the Introduction, we identifyjsE;H ,H0d with j̃sE;H ,H0d. The

dentification on the setR \ h2bZ+øspsHdj wherej̃ is continuous, is natural. On the other hand,
alues prescribed to the SSF at the eigenvaluesEPspsHd may seem somewhat arbitrary; in a
ase, as Theorem 2.1 shows, these values are consistent with the asymptotics ofjsE;H ,H0d as
→`, EPOr , r P s0,bd, and E¹spsHd.

. Preliminary estimates

Introduce the Landau Hamiltonian

hsbd ª Si
]

]x1
−

bx2

2
D2

+ Si
]

]x2
+

bx1

2
D2

− b, s3.12d

.e., the two-dimensional Schrödinger operator with constant scalar magnetic fieldb.0, essen
ially self-adjoint onC0

`sR2d. It is well-known thatsshsbdd=øq=0
` h2bqj, and each eigenvalue 2bq,
PZ+, has infinite multiplicity(see, e.g., Ref. 1).
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For x ,x8PR2 denote byPq,bsx ,x8d the integral kernel of the orthogonal projectionpqsbd onto
he subspace Kershsbd−2bqd, qPZ+. It is well-known that

Pq,bsx,x8d =
b

2p
LqSbux − x8u2

2
DexpS−

b

4
sux − x8u2 + 2isx1x28 − x18x2ddD s3.13d

see Ref. 10) whereLqstd:=ok=0
q s q

kds−tdk/k!, tPR, qPZ+, are the Laguerre polynomials. Note t

Pq,bsx,xd =
b

2p
s3.14d

or eachqPZ+ andxPR2. Introduce the orthogonal projectionsPq:L2sR3d→L2sR3d, qPZ+, by
Pq:=pq ^ I where I denotes the identity operator inL2sRx3

d. For zPC with Im z.0, define the
peratorRszd:=s−d2/dx3

2−zd−1 bounded inL2sRd, as well as the operators

Tqszd ª uVu1/2PqsH0 − zd−1uVu1/2, q [ Z+,

ounded in L2sR3d. The operatorRszd admits the integral kernelRzsx3−x38d where Rzsxd
ieiÎzuxu / s2Îzd, xPR, the branch ofÎz being chosen so that ImÎz.0. Moreover, Tqszd
uVu1/2spqsbd ^ Rsz−2bqdduVu1/2.

For lPR, lÞ0, defineRsld as the operator with integral kernelRlsx3−x38d where

Rlsxd ª lim
d↓0

Rl+idsxd =5
e−Î−luxu

2Î− l
if l , 0,

ieiÎluxu

2Îl
if l . 0,6 x [ R. s3.15d

vidently, if wPL2sRd andlÞ0, thenwRsldw̄PS2. For EPR, EÞ2bq, qPZ+, set

TqsEd: = uVu1/2spqsbd ^ RsE − 2bqdduVu1/2.

Proposition 3.2 (Ref. 6, Proposition 4.1 and Corollaries 4.1, 4.2):Let EPR, qPZ+, E
2bq. Assume that (1.1) holds.

i) We have TqsEdPS2, and limd↓0iTqsE+ idd−TqsEdi2=0.
ii ) We haveIm TqsEdù0, and if E,2bq, then Im TqsEd=0. Moreover, Im TqsEdPS1.

Proposition 3.3 (see Ref. 6, Proposition 4.2): Let b.0, E¹2bZ+. Assume that V satisfi
1.1). Then the operator series T+sE+ idd : =ol=fE/2bg+1

` TlsE+ idd, d.0, and T+sEd
=ol=fE/2bg+1

` TlsEd, wherefxg denotes the integer part of the real number x, are convergent in S2.
oreover,

iT+sEdi2
2 ø

C0b

8p
o

l=fE/2bg+1

`

s2bl − Ed−3/2E
R3

uVsxdudx. s3.16d

inally, limd↓0iT+sE+ idd−T+sEdi2=0.
Corollary 3.1: Let rP s0,bd. Then we have

iReT+sEdi2
2 = Os1d, E → `, E [ Or . s3.17d
Proof: Estimate(3.17) follows immediately from(3.16) since we have
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o
l=fE/2bg+1

`

s2bl − Ed−3/2 ø o
p=1

`

s2bpd−3/2 + r−3/2.

or sufficiently largeEPOr with r P s0,bd, setT−sEd : =ol=0
fE/2bg TlsEd. Propositions(3.2) and(3.3)

mply the following.
Corollary 3.2: For EPOr with rP s0,bd the operator-norm limit(3.9) exists, and TsEd

T−sEd+T+sEd. Moreover, ReTsEd=ReT−sEd+T+sEd, and Im TsEd=Im T−sEdPS1.
For n=0,1 andEPOr , r P s0,bd, setwnsEd : =oq=0

fE/2bgsE−2bqd−1+n/2.
Lemma 3.5: Let r.0. Then the asymptotic relations

w0sEd = Osln Ed, s3.18d

w1sEd = E1/21

b
s1 + os1dd, s3.19d

old as E→`, EPOr.
Proof: Evidently, forE.0 large enough,

wnsEd = E−1+n/2 o
q=0

fE/2bg−1 S1 −
2bq

E
D−1+n/2

+ sE − 2bfE/2bgd−1+n/2, n = 0,1. s3.20d

ince the functionss0,E/2bd{x° s1−2bx/Ed−1+n/2, n=0,1, areincreasing, andEPOr , we have

o
q=0

fE/2bg−1 S1 −
2bq

E
D−1+n/2

ø E
0

fE/2bg S1 −
2bx

E
D−1+n/2

dxø E
0

sE−rd/s2bd S1 −
2bx

E
D−1+n/2

dx

=
E

2b
E

0

1−r/E

s1 − td−1+n/2dt, n = 0,1. s3.21d

urther,

E
0

1−r/E

s1 − td−1+n/2dt = HlnsE/rd if n = 0,

2s1 − sr/Ed1/2d if n = 1.
J s3.22d

inally, we estimate the second term on the r.h.s. of(3.20):

sE − 2bfE/2bgd−1+n/2 ø r−1+n/2, n = 0,1. s3.23d

utting together(3.20)–(3.23), we obtain(3.18), as well as lim supE→`,EPOr
E−1/2w1 sEdø1/b. In

rder to prove(3.19), it remains to show that lim infE→`,EPOr
E−1/2w1sEdù1/b, which follows

mmediately from

w1sEd ù E−1/2E
−1

fE/2bg S1 −
2bx

E
D−1/2

dxù E−1/2E
0

E/2b−1 S1 −
2bx

E
D−1/2

dx=
E1/2

2b
E

0

1−2b/E

s1 − td−1/2dt

=
E1/2

b
S1 −S2b

E
D1/2D .

Corollary 3.3: Let rP s0,bd. Then the asymptotic estimate

iT−sEdi2
2 = Osln Ed s3.24d

olds as E→`, EPOr.

Proof: We have
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iT−sEdi2
2 = IuVu1/2 o

q=0

fE/2bg

spq ^ RsE − 2bqdduVu1/2I
2

2

ø C0
2I o

q=0

fE/2bg

spqkX'l−m'/2d ^ skx3l−m3/2RsE − 2bqdkx3l−m3/2dI
2

2

= C0
2 o

q=0

fE/2bg

ipqkX'l−m'/2i2
2ikx3l−m3/2RsE − 2bqdkx3l−m3/2i2

2

= C0
2 b

8p
E

R2
kX'l−m'dX'SE

R
kx3l−m3dx3D2

w0sEd s3.25d

see(3.13) for the definition of the integral kernel ofpq, (3.14) for its value on the diagonal, a
3.15) for the definition of the integral kernel ofRsE−2bqd]. Bearing in mind(3.18), we find tha
3.25) implies (3.24). h

Proposition 3.4: Let rP s0,bd. Then we have

iIm TsEdi = Os1d, E → `, E [ Or . s3.26d

Proof: Estimate(3.26) follows immediately from Ref. 5, Lemma 4.2, according to which
aveiTsEdiø r−1/2sC0/2deRkx3l−m3dx3. h

V. PROOF OF THE MAIN RESULT

Fix an arbitrary«[ s0,1d. Applying (3.5)–(3.7), and arguing as in the proof of Ref. 5, Lem
.1, we easily get

1

p
Tr arctanssIm TsEdd1/2sJ + «d−1sIm TsEdd1/2d − n+s«;ReTsEdd

ø E
R

indsJ + ReTsEd + t Im TsEd;Jddmstd

ø
1

p
Tr arctanssIm TsEdd1/2sJ − «d−1sIm TsEdd1/2d + n−s«;ReTsEdd. s4.1d

et

Gs = GssEd: = sIm TsEdd1/2sJ + sd−1sIm TsEdd1/2, s[ s− 1,1d.

vidently, for eachs[ s−1,1d we have

uTr arctanGssEd − Tr GssEdu ø
1
3iGssEdi3

3 ø
1
3iGssEdi2

2iGssEdi ø
1
3isJ + sd−1i3iIm TsEdi2

2iIm TsEdi

ø
1
3s1 − usud−3iIm TsEdi2

2iIm TsEdi. s4.2d

he operatorsJ+sd−1 ImTsEd admits an explicit kernel

1

2 o
q=0

fE/2bg

sE − 2bqd−1/2PqsX',X'8 dcossÎE − 2bqsx3 − x38dd

3 ssignsVsX',x3dd + sd−1uVsX',x3du1/2uVsX'8 ,x38du
1/2, sX',x3d [ R3, sX'8 ,x38d [ R3
see(3.13) for the definition ofPq]. Therefore,
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TrGssEd = TrssJ + sd−1Im TsEdd =
b

4p
o
q=0

fE/2bg

sE − 2bqd−1/2E
R3

ssignsVsxdd + sd−1uVsxdudx

=
b

4p
w1sEdE

R3
ssignsVsxdd + sd−1uVsxdudx s4.3d

see(3.14)]. Finally, we estimate the second terms in the first and third lines in(4.1):

n±s«;ReTsEdd ø «−2iReTsEdi2
2 ø 2«−2siReT−sEdi2

2 + iReT+sEdi2
2d, s4.4d

sing(3.4) with p=2. Combining(4.1)–(4.4) with (3.10), making use of(3.19), (3.24), (3.17), and

3.26), and applying our convention to identifyj̃sE;H ,H0d with jsE;H ,H0d we find that for eac
[ s0,1d we have

lim sup
E→`,E[Or

E−1/2jsE;H,H0d ø
1

4p2E
R3

ssignsVsxdd − «d−1uVsxdudx,

lim inf
E→`,E[Or

E−1/2jsE;H,H0d ù
1

4p2E
R3

ssignsVsxdd + «d−1uVsxdudx.

etting «↓0, we obtain(2.1).
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lobal periodic attractor for strongly damped wave
quations with time-periodic driving force
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In this paper, we consider the existence of a global periodic attractor for a strongly
damped nonlinear wave equation with time-periodic driving force under homoge-
neous Dirichlet boundary condition. It is proved that in certain parameter region,
for arbitrary time-periodic driving force, the system has a unique periodic solution
attracting any bounded set exponentially. This implies that the system behaves
exactly as a one-dimensional system. We mention, in particular, that the obtained
result can be used to prove the existence of global periodic attractor of the usual
damped and driven wave equations. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1775873]

. INTRODUCTION

In this paper, we study the following strongly damped nonlinear wave equation:

]2u

] t2
− aD

] u

] t
− Du + hS ] u

] t
D + fsud = gsx,td, sx,td P V 3 R+, s1d

ith the homogeneous Dirichlet boundary condition,

usx,tdxP]V = 0, t . 0, s2d

nd the initial value conditions,

usx,0d = u0sxd,
] u

] t
sx,0d = u1sxd, x P V, s3d

here u=usx,td is a real-valued function onV3 f0, +`d, V is an open bounded set ofRnsn
Nd with a smooth boundary]V, a.0, h, f PC1sR,Rd, u0sxdPH0

1sVd, u1sxdPL2sVd, Ds−Dd
H0

1sVdùH2sVd, gs· ,td is a continuousT-periodic function int, that is,

gs·,t + Td = gs·,td, t P R, s4d

whereT is a positive constant.
Wave equations, describing a great variety of wave phenomena, occur in the extensiv

cations of mathematical physics. Equation(1) can be regarded as a perturbed equation of con
ous Josephson junctionffsud=sin ug.1

Strongly damped nonlinear wave equations have been studied widely in a different con
arious methods. A large part of literature is devoted to the study of the asymptotic beha
olutions(see Refs. 2–6). For the autonomous damped and driven sine-Gordon equation(f andg
re independent oft), wherea=0, hsutd=gut, fsud=b sin u, Zhao and Li proved that in Ref. 8

)
Author to whom correspondence should be addressed. Electronic mail: sfzhou@mail.shu.edu.cn
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ubu , l1
1/2 minSg

4
,
l1

2g
,Îl1

2
D ,

herel1 is the first positive eigenvalue of operator −D, whengsx,td=gsxd, the global attractor
xactly an equilibrium point, which suggests thatubu decreases as the dampingg grows and

img→`ubu=0. This implies that the system behaves as a linear one as the dampingg tends to
nfinity. It is difficult to comprehend from physical intuition. For the non autonomous equa
hou and Fan6 considered the existence of kernel sections and obtained an upper boun
ausdorff dimension. The existence of global periodic attractor, under a certain parameter
as derived by Zhu and Zhou in Ref. 7 for the damped sine-Gordon equation with time-p

orce. In this paper, our goal is to find a parameter region under which there exists a con
eriodic solution attracting exponentially any bounded sets for the equation(1), hence, the prob

em behaves as a one-dimensional system. According to our result, in the particular case
red by Zhao and Li,8 it reads that the nonlinear termb sin u is not necessary to become zero
→`, which conforms to the physical intuition.

We arrange this paper as follows. First we present the existence and uniqueness of s
hen following the idea of Ref. 6, by introducing a new norm in the phase spaceE which is
quivalent to the usual norm inE, we obtain a parameter region under which system(1)–(3)
ossesses a global periodic attractor. Finally, for the special casea=0, we discuss the existence
global periodic attractor.

I. PRELIMINARIES

It is known that the linear operatorA=−D :DsAd=H0
1sVdùH2sVd→L2sVd is self-adjoin

ositive and linear, and eigenvalueshlijiPN of A satisfy

0 , l1 ø l2 ø ¯ ø lm ø ¯ , lm → + `sm→ + `d.

etE=H0
1sVd3L2sVd, and let

su,vd =E
V

uv dx, uuu = su,ud1/2, ∀ u,v P L2sVd,

ssu,vdd =E
V

¹ u · ¹ v dx, iui = ssu,vdd1/2, ∀ u,v P H0
1sVd,

nd

sY1,Y2dH0
13L2 = ssu1,u2dd + sv1,v2d, uYuH0

13L2 = sY,YdH0
13L2

1/2 ,

∀Yi = sui,vidT, Y = su,vdT P H0
1sVd 3 L2sVd, i = 1,2,

enote the usual inner products and norms inL2sVd ,H0
1sVd, andE, respectively.

In what follows, we consider the system(1)–(3) and present the existence and uniquene
ts solutions. It is convenient to reduce system(1)–(3) to an evolution equation of the first order
ime. Let ut=v, then (1)–(3) are equivalent to the following initial value problem in the Hilb
paceE:

Ẏ = CY+ FsY,td, x P V,t . 0,

s5d
Ys0d = Y0 = su0,v0dT P E,

T T
hereY=su,vd , FsY,td=s0,−hsvd− fsud+gsx,tdd , and
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C = S 0 I

− A − aA
D . s6d

assatt in Ref. 2 proved thatC in (6) is a sectorial operator and generates an analytic semi
Ct on E for t.0.

Let f ,hPC1sR,Rd, we make the following assumptions:

i) There exists a non-negative constantc0ù0 such that

fs0d = 0, ufsu1d − fsu2du ø c0uu1 − u2u, ∀ u1,u2 P R, s7d

whereu ·u denotes the absolute value of number inR.
ii ) There exist two constantsb1,b2 such that

hs0d = 0, −al1 , b1 ø h8ssd ø b2 , + `, ∀ sP R, s8d

wherel1 is the first eigenvalue of the operatorA on V under the boundary conditions2d.

By the assumptions(7) and(8), it is easy to check that the functionFsY,td :E→E is continu-
us differentiable and globally Lipschitz continuous with respect toY. By the classical theor
oncerning the existence and uniqueness of the solutions of evolution differential equatio9 we
ave the following lemma(see Ref. 6 for the proof detail).

Lemma 1: If (7) and (8) hold, then, for any Y0PE, there exists a unique continuous funct
s·d=Ys· ,Y0dPCsR+;Ed such that Ys0,Y0d=Y0 and Ystd satisfies the integral equation

Yst,Y0d = eCtY0 +E
0

t

eCst−sdFsYssd,sdds.

std is called a (mild) solution of (5), and Yst ,Y0d is jointly continuous in t and Y0.
Therefore, foru0PH0

1sVd , u1PL2sVd, there exists unique functionustd such that

su,utd P CsR+;H0
1sVdd 3 fCsR+;L2sVdd ù L2s0,Tp;H0

1sVddg, ∀ Tp . 0, s9d

atisfies(1)–(3). From (9), we can define a map

Sstd:Y0 = su0,u1d → su,utd = Yst,Y0d, E → E, ∀ t ù 0,

hereYst ,Y0d is the (mild) solution of (5), thenhSstd ,tù0j is a continuous process onE. Again
incegsx,td is aT-periodic function with respect totPR, hSsnTdunPNj is a discrete semidynam

cal system inE.

II. MAIN RESULT

In this section, we will study the existence of a global periodic attractor for system(5) in E.
or this purpose, we define a new weighted inner product and norm inE=H0

1sVd3L2sVd as

sw,cdE = rssu1,u2dd + sv1,v2d,uwuE = sw,wdE
1/2, s10d

or any w=su1,v1dT, c=su2,v2dTPE, wherer is chosen as

r =
4 + sal1 + b1da + b2

2/l1

4 + 2sal1 + b1da + b2
2/l1

P S1

2
,1D . s11d

bviously, the normu ·uE in (10) is equivalent to the usual normu ·uH0
13L2 in E.

T
Let w=su,vd , v=ut+«u, where« is chosen as
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« =
al1 + b1

4 + 2sal1 + b1da + b2
2/l1

, s12d

nd then the system(1)–(3) can be written as

wt + Hswd = F1sw,td, ws0d = su0,u1 + «u0dT, t ù 0, s13d

here

F1sw,td = S 0

− fsud + gsx,td
D ,

s14d

Hswd = S «u − v

Au− «saA − «du + saA − «dv
D + S 0

hsv − «ud
D .

ur main result in this paper is as follows.
Theorem 1: If (4), (7), and (8) andb2ù ub1u+minh1/a ,sal1+b1d /2j hold and c0 in (7)

atisfies

0 ø c0 ø Îl1rsss + al1 + b1d, s15d

here

s =
l1a + b1

g1 + Îg1g2

, g1 = 4 + sal1 + b1da +
b2

2

l1
, g2 = sal1 + b1da +

b2
2

l1
. s16d

hen system (5)[or (1)–(3)] has a unique T-periodic solution which attracts any bounded
xponentially.

Proof: Let w1std ,w2std be two solutions of(5) with the initial valuesw01,w02PE and wstd
w1std−w2std. We obtain from(13) that

] wstd
] t

+ Hsw1stdd − Hsw2stdd = F1sw1std,td − F1sw2std,td. s17d

aking the scalar product of two sides of(17) with wstd=su,vdT in E, we find

1

2

d

dt
uwuE

2 + sHsw1stdd − Hsw2stdd,wdE = sF1sw1std,td − F1sw2std,td,wdE. s18d

or the second term on the left-hand side of(18), according to(8), b2ù ub1u+minh1/a ,sal1

b1d /2j and r =1−«a, we have

sHsw1stdd − Hsw2stdd,wdE − suwuE
2 −

al1 + b1

2
uvu2ùs« − sdriui2 + Sal1 + b1

2
− « − sDuvu2

−
«b2

Îl1r
·Îriui · uvu. s19d

y (12) and (16), simple computation shows

4s« − sdSal1 + b1

2
− « − sD ù

«2b2
2

rl1
.

y (19),
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sHsw1stdd − Hsw2stdd,wdE ù suwuE
2 +

al1 + b1

2
uvu2, s20d

heres is as in(16). From (7), (18), and(20), we have

d

dt
uwuE

2 ø − 2suwuE
2 − al1uvu2 − b1uvu2 + 2ufsu1d − fsu2du · uvu

ø− suwuE
2 − sriui2 − ss + al1 + b1duvu2 +

2c0

Îl1r
Îriui · uvu

ø− suwuE
2 − S2Îsss + al1 + b1d −

2c0

Îl1r
DÎriui · uvu ø − suwuE

2 ,

hich implies

uwstduE ø e−ss/2dtuws0duE, ∀ t ù 0. s21d

Now consideringT-mappingSsTd :E→E, SsTdw0=wsT,w0d, wherewst ,w0d is the solution o
5), ws0,w0d=w0. From (21), ∀w1,w2PE, we obtain

uSsTdw1 − SsTdw2uE ø e−ss/2dTuw1 − w2uE.

husSsTd is a contraction mapping. By Banach’s fixed point theorem, there exists a uniqu
oint wp for SsTd in E such thatSsTdwp=wp. At the same time, sincehSsnTdunPNj is a discret
emidynamical system inE, we can deduce

SsnTdwp = SsTdnwp, ∀ n P N

nd

wpst + Td = SstdwpsTd = Sstdwp = wpstd,

herewpstd is the solution passingwpPE. Thuswpstd=wst ,wpd is aT-periodic solution of syste
1)–(3). By (21), wpstd attracts any bounded set exponentially. The proof is completed.

Remark: If gsx,td=gsxd is independent of t, then the T-periodic solution in Theorem 1 is
quilibrium point.

V. SPECIAL CASE a=0

When a=0, Eq. (1) reduces to the following damped and driven wave equation with
eriodic driving force:

]2u

] t2
+ hS ] u

] t
D − Du + fsud = gsx,td, sx,td P V 3 R+, s22d

ndowed with the homogeneous Dirichlet boundary condition(2) and the initial value conditio
3), whereV is an open bounded domain ofRnsnPNd with a smooth boundary]V. We assum
hat the functionsgs· ,td andh, f PC1sR,Rd satisfy(4), (7), and(8). From Theorem 1, we have t
ollowing result.

Theorem 2: Suppose0øc0øÎsl1ss+b1d, where

s =
b1l1

Îb2
2 + 4l1sb2 + Îb2

2 + 4l1d
.

hen system (22) with conditions (2) and (3) possesses a global T-periodic attractor

ttracts any bounded set exponentially.
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In particular, whenhsutd=gut, fsud=b sin u, g.0, b.0, Eq.(22) reduces to the damped a
riven sine-Gordon equation modeling the Josephson junction in superconduction,

]2u

] t2
+ g

] u

] t
− Du + b sin u = gsx,td, usx,td P R, x P R, s23d

which was studied by many authors(see Refs. 7, 8, and 10). Whengsx,td= Isxd+ fsxdsin vt, Zhu
nd Zhou7 proved the existence of global periodic solution in a certain parameter region
orollary of Theorem 2, we have

Corollary: Assume thatubuøÎsl1ss+gd, wheres= gl1/Îg2+4l1sg+Îg2+4l1d , then sys
em (23) with conditions (2) and (3) has a global T-periodic attractor which attracts any bound
et exponentially.

Remark: The main point of the present paper is to show the existence of a global p
ttractor of the system (1)–(3). Our method here is different from that in Ref. 7. Zhao and L
roved that in Ref. 8 ifubu,l1

1/2minsg /4 ,l1/2g ,Îl1/2d, when gsx,td=gsxd, the global attracto
or system (23) with conditions (2) and (3) is exactly an equilibrium point, which suggests tubu
ecreases as the dampingg grows andlimg→`ubu=0. It implies that the system behaves as a lin
ne as the dampingg tends to infinity. However, from our result, ifubuøÎsl1ss+gd, then system
23), (2), and (3) possesses a T-periodic solution for tPR, which attracts any bounded s
xponentially. In particular, we point out thatÎsl1ss+gd increases as the dampingg grows, and

img→+`Îsl1ss+gd=l1/Î2, thus the nonlinear termb sin u is not necessary to become zero
→`, which conforms to the physical intuition.
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nergy momentum, wave velocities and characteristic
hocks in Euler’s variational equations with application
o the Born–Infeld theory
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We consider the Euler’s variational equations deriving from a general Lagrangian
Ls]aqr ,qsd. Under the assumption of convexity of energy, we write down some
inequalities for the energy-momentum tensor including Hawking–Ellis energy con-
ditions. We show that there exists the same number of positive and negative wave
velocities and no velocity can change sign. Finally, we study the structure of the
characteristic shocks with particular attention to the generalized Born–Infeld La-
grangian describing the electron with spin. ©2004 American Institute of
Physics.[DOI: 10.1063/1.1780611]

. INTRODUCTION

It is well known that a system of balance laws with a convex extension can be symm
n the sense of Friedrichs.1 In Physics this additional equation corresponds to an entropy or e
aw. The convexity requirement is satisfied in many physical situations and, for instance
ponds in thermomechanics to restrictions on the constitutive functions and on the field s
tability holds: the pressure of a fluid increases with the material density, the specific
onstant volume must be positive together with the density and the temperature. This
rinciple was used in the construction of the Extended Thermodynamics for non-equi
uids.2,3 As we shall see in nonlinear electrodynamics it imposes an upper bound for the
eld.

In a privileged set of field variables(main field) the original system is symmetric hyperbo
nd is generated by a potential four-vector4–6 (see also Ref. 7) ensuring, in particular, the loc
ell-posedness of the Cauchy problem.8,9

More specifically in various physical situations there exists a variational principle. Inst
four-vector, asingle function, the Lagrangian, suffices to determine the corresponding E

ystem which admitsfour (instead of one) supplementary laws representing the conservatio
he energy-momentum tensor.10

Nonlinear electrodynamics, regarded with a new interest and connected to string the11,12

as introduced by Born and Infeld in their 1934 celebrated paper13 with the Lagrangian

L = Î− R2 + ks2Q + kd, s1d

hereQ andR are the electromagnetic invariants and the constantÎk (absolute field) is an uppe
imit for the electric field thus eliminating the Maxwell singularity at the point charge throug
Ion (to quote Gibbons14) solution

)Alternate address: Department of Applied Mathematics, University of Clermont, France. Electronic
boillat@ciram.unibo.it; URL: http://www.ciram.unibo.it/;boillat
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E =
Îk

Î1 + sr/r0d4
, s2d

herer0 is the radius of the electron.(See also Ref. 15.)
More generally considering a LagrangianLsQ,Rd depending onQ andR, several interestin

roperties of nonlinear wave propagation appear. In particular by requiring that the two fam
iscontinuity waves never evolve into shocks(exceptionality conditions) the Lagrangian assum

he form stated in Sec. VII(exceptional Lagrangian) which includes spin and reduces to(1) in the
ase of a null Planck constant.16 However, if the shock does exist at some initial time it propag
n characteristic surfaces.7,17

From the convexity of the energy density of a general Lagrangian some results concer
nergy-momentum tensor and the characteristic velocities are derived. In particular in Sec
how that the assumptionT0i =Ti0 implies the complete symmetry of the energy momentum te
ab and we obtain several inequalities for its components including Hawking–Ellis e
ondition.18–20,11,21In Sec. IV we can verify that there always exists the same number of po
nd negative wave velocities and no velocity can change sign. As a consequence it is imm
een, for instance, that the equations of fluid dynamics cannot derive from a variational p
or this very last reason.

In Sec. V we give the structure of the characteristic shocks and in particular we discu
oundedness. Then we apply the results to the Born–Infeld model and its generalization. W

hat the characteristic shocks of the proper Born–Infeld model are unbounded while for th
ralized Lagrangian several possibilities can occur.

I. EULER’S VARIATIONAL EQUATIONS

Let qrsxad, r =1, . . . ,M be functions of the space-time coordinatesxasa=0,i ; i =1,2,3; x0

td, qa
r 7]aqr be the derivative ofqr with respect toxa and Lsqa

r ,qrd a general Lagrangia
unction. Let us agree that summation occurs only for repeated indices in up and down po
hen a classical solution of Euler’s equations

]aS ]L

]qa
s D =

]L

]qs s3d

lso satisfies the four additional conservation laws

]aTb
a = 0,

hereTb
a is defined by

Tb
a = qb

r ]L

]qa
r − Ldb

a. s4d

ith the field

ŭ ; S ]L

]q0
s ,qi

s,qsD s5d

the breve denotes the transpose) (3) can be written as a first order partial differential system
M balance laws,

]tu + ]if
isud = fsud,

.e.,

]tS ]L

]qsD + ]iS ]L

]qsD=
]L

]qs ,

0 i
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]tqi
s − ]iq0

s = 0, s= 1, . . . ,M ,

]tq
s = q0

s. s6d

nstead, if we introduce the main field4,5

ŭ8 =
]T0

0

]u
; Sq0

s,−
]L

]qi
s,−

]L

]qsD ,

6) appears as a Friedrichs–Lax–Godunov symmetric hyperbolic system

H8su8d]tu8 + A8i]iu8 = B8u8, s7d

here the constant symmetric matricesA8i, satisfy a Duffin–Kemmer–Petiau relation

A8iA8kA8 j + A8 jA8kA8i = dikA8 j + d jkA8i s8d

hile B8 is skew-symmetric and the Hessian matrixH87]u /]u8 is positive definite provided th
he energy densityT0

0 is a convex function of the field variablesu,7 which means that

dŭ8 · du = dq0
sdS ]L

]q0
sD − dqi

sdS ]L

]qi
sD − dqsdS ]L

]qsD . 0. s9d

This property(which is supposed to hold in the following) also insures a global one to o
orrespondence betweenu andu8. If, as usual, the Lagrangian does not depend explicitly onqs the

ast equation in(6) and the last component of the main field can be dropped and(7) becomes
ystem of 4M conservation laws without second member. It is interesting to observe that th
ystem is a principal subsystem of the former one following the definitions and the pro
tated in Ref. 22. Similarly the Euler–Lagrange equations of analytical mechanics are
rincipal subsystem of(6).

II. THE SYMMETRIC ENERGY-MOMENTUM TENSOR

In terms of theu andu8 fields the components ofTb
a take the form10

T0
i = 1

2ŭ8A8iu8, Ti
0 = − 1

2ŭA8iu, Tj
i = T0

0d j
i − ŭA8 jA8iu8.

hile Physics usually requiresT to be a symmetric tensor in generalT is not a tensor and is n
ymmetric. Suppose nevertheless that we raise the lower indices with the Minkowski
ab=diags1,−1,−1,−1d,

Tab = hbgTg
a.

hen the mere condition T0i ;Ti0 implies that Tij ;Tji , i.e., complete symmetry.
To see this we differentiate

ŭ8A8iu8 = ŭA8iu

ith respect tou8 to get

ŭ8A8i = ŭA8iH8 s10d

o that

Tij ; Tji = ŭA8iH8A8 ju − T00di j . s11d

W
ow for any unit vectorn since
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Ti0 = 1
2ŭA8iH8u8

nd thanks to Schwarz inequality

sTi0nid2 ø
1
2ŭ8H8u8STijninj + T00

2
D ,

sTijd2 ø sTii + T00dsTjj + T00d, i Þ j .

rom (11),

T00 + Tijninj ù 0, nW2 = 1 ⇒ Tii + T00 ù 0.

rovided that the absolute values of the wave velocities, i.e., the eigenvalues ofAn8 /H8
An87A8ini, see below), do not exceed 1, the matricesH8±An8 are semidefinite positive. Thus

− Ti0ni = 1
2ŭ8sH8 − An8du8 − 1

2ŭ8H8u8 ⇒ Ti0ni ø
1
2ŭ8H8u8. s12d

ith the same subluminal restriction a(weak) energy condition holds true.18–20,11,21Let la be a

ull vector sl0
2= lW2d). From the Duffin–Kemmer–Petiau relation(8) we first obtain

A8iAn8A8 j l il j = l0l iA8i , nk = lk/l0

rom which follows

Tablalb = l il jŭA8isH8 + An8dA8 ju ù 0.

ow assumeT is a (symmetric) tensor.Hawking–Ellis “dominant energy condition,”

Tmntmsn ù 0 s13d

or all pairs of future-directed timelike vectors follows with the additional restriction

T00 ù
1
2ŭ8H8u8.

The invariant inequality(13) is verified in the rest frames0=1, si =0,

T00t0 + T0iti = t0hT00 − 1
2ŭ8H8u8 + 1

2ŭ8sH8 + A8iti/t0du8j ù 0,

nd so in any frame. AlternativelyTlnsl is not a spacelike vector

Tmns
mTlnsl ù 0

or

T0mT0m = sT00d2 − o sT0id2 ù 0

y (12).
All these conditions are easily checked for the linear Maxwell equations whereŭ8= ŭ

sEW ,BW d, i.e., H8= I . As an illustration with many interesting features consider the scalar fie7,23

he Lagrangian depends on the derivativesqa of a single functionqsxad and the condition fo
ymmetry reads

T0i = Ti0 ⇒ q0
]L

]qi
+ qi

]L

]q0
= 0
hat implies
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q0SdL −
]L

]q0
dq0D +

]L

]q0
dS1

2
qW2D = 0

rom which follows

L = LsQd, Q = 1
2sq0

2 − qW2d = 1
2habqaqb, Tab = L8sQdqaqb − Lhab.

s for convexity(9) gives

dŭ8du = sL8 + q0
2L9ddq0

2 + L8dqW2 − L9sqW . dqWd2 . 0,

hich requires

L8 . 0, L8 + q0
2L9 . 0, L8 − qW2L9 . 0 ⇒ sQL8d8 . 0.

V. CHARACTERISTIC VELOCITIES

Across a wave frontwsxad=0 the second order derivatives of the functionsqr may suffe
iscontinuities so that by Hadamard conditionf]bqa

r g=]aw]bwd2qr and (3) yields

]2L

]qa
r ]qb

s ]aw]bwd2qr = 0 s14d

iving the characteristic equation of the wave front

detS ]2L

]qa
r ]qb

s ]aw]bwD = 0. s15d

f we define the normal(to the wave surface) velocity lsu ,nWdnW by l=−]tw / u¹wu, ni =]iw / u¹wu
nd substitute in(14) we have

Hl2 ]2L

]q0
r ]q0

s − lS ]2L

]qi
r]q0

s +
]2L

]q0
r ]qi

sDni +
]2L

]qi
r]qj

sninjJd2qr = 0. s16d

The inequality(9) shows that the first matrix, coefficient ofl2, is positive definite, and the la
M 3Md matrix is negative definite.Therefore M wave velocities are positive and M are nega
nd no one can change sign[l=0 is not solution of(16)] (for instance D’Alembert equation h

elocities ±c). As a consequence translational waves of the forml=LW sud ·nW, i.e., with a ray

elocity LW independent ofnW cannot be found becausel would change sign when the norm
aries. It is important to remark that if such a wave exists the system cannot derive
ariational principle(in the sense of this paper). This occurs, for example, in the classical Eul
uid dynamics where a ray velocity coincides with the fluid velocity(known as contact discon
uity or entropy wave).

Consider now the interesting case of a second order polynomial solution of(15),

Gabsud]aw]bw = 0

ith G00.0. The convexity ofT0
0 implies that

Gijninj , 0 s17d

ince both rootsl must be real and different from zero for everynW.

. RIEMANN INVARIANTS. EXCEPTIONAL WAVES AND CHARACTERISTIC SHOCKS

In the reduction(7) the first order derivatives of the field may be discontinuous acros

ave front. Making the substitution
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]t → − ld, ]i → nid

hows thatdu8 is an eigenvector and the normal velocitiesl are eigenvalues ofAn8 /H8. Associated
ith them a complete set of eigenvectors forms a basis in the field space. However zero
alues(with no physical meaning) appear with a 3M multiplicity in the first order reduction; th
ssociated disturbances are canceled by the differential constraints

]iqj
r − ] jqi

r = 0, ]iq
r = qi

r .

aking account of a possible multiplicityma of la,

sAn8 − laH8ddA8 = 0, la Þ 0, A = 1,2,3, . . . ,ma,

s18d
An8dv8 = 0, l = 0, v = 1,2,3, . . . ,3M .

function wasu8 ,nWd is a Riemann invariant corresponding to a(possibly multiple) la if its
radient with respect to the fieldu8 is orthogonal to all corresponding eigenvectors,

dwa = 0 ⇔ =8wadA8 ; 0, A = 1,2,3, . . . ,ma.

n particular if this is true forla itself,

dla = 0, s19d

he wave is said to beexceptionalor linearly degenerateda concept due to Lax.24 If all the waves
re exceptionalthe field is completely exceptional.17 A number of fields in Physics share t
roperty (including, of course, the linear fields) but also in Mathematics: the Monge–Amp
quation,25,7 the Cayley–Darboux equation.26

A shock is a discontinuityfug;u1−u0 in the field itself,u0 is the field ahead of the shock a

1 the field behind the shock. It satisfies the Rankine–Hugoniot relations

ff igni − sfug = 0.

n general the shock speeds differs from the wave velocities. However when a wave is ex
ional a shock may exist that moves with this velocity: it is called acharacteristic shock. Across
uch a shock a Riemann invariantsdw=0d is continuousfwg=0 so thats=lasu0d=lasu1d.

If we define the vectorga by

gasAn8 − laH8d = − =8la, gaH8dA8 = 0, A = 1,2, . . . ,ma s20d

e can write the jump of the main field in the explicit form

fu8g = uAdA8su08,nWd + wsuA,u08,nWdğasu08,nWd,

here theuA’s are ma parameters corresponding to the multiplicity ofla and w is a nonlinea
unction of theuA. More precisely for Euler’s equations

a0w
2 − 2w + uuu2 = 0,

hereuuu2=osuAd2 if the eigenvectors are normalized withH8 anda0 is the value of

a = gaAn8ğ
a/la s21d

or u8=u08. Here the jumps ofu andu8 are linearly related. From(7) follows

fug = An8fu8g/l0
a = uAH8su08ddA8su08,nWd + wAn8ğ

asu08,nWd/l0
a

nd the product of the nonlinear parts(in uA) of fug andfu8g is justa0w
2. The jump is bounded
0.0.
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If there are only two velocitiesl+.0, l−,0 of multiplicity M and therefore two shocks ea
unction of M parametersg can be expanded on the basis of the eigenvectors by(20)

ğ+ = d8− + d80,

hered8−, d80 are eigenvectors for the eigenvaluesl− and 0, respectively. As a result(21)

a+ = g+An8ğ
+/l+ = sl−/l+dd̆8−H8d8− , 0.

he aim of Sec. VII is to evaluate the explicit expression of the characteristic shock
articular to find the sign ofa in nonlinear electrodynamics.

I. NONLINEAR ELECTRODYNAMICS. BORN–INFELD LAGRANGIAN

After the scalar field we consider the(four-dimensional) vector field where

qr → fb, qa
r → fb,a, L = Lsfb,ad.

he field equations thus obtained

]aLab = 0, Lab = ]L/]fb,a

ave no tensorial character unlessL only depends on the curl

Fab 7 fb,a − fa,b

hrough its invariants

Q = 1
4FabFab, R= 1

4FabF*ab,

hereFab=]afb−]bfa is the electromagnetic tensor andF*ab=hmnabFmn /2 its dual. This is th
tarting point of nonlinear electrodynamics a natural generalization of Maxwell theory[where
sQ,Rd is a linear function ofQ andR]. Because of the electromagnetic tensor skew symmet
eld equations

]aLab ; ]asLQFab + LRF*abd = 0, ]aF*ab = 0

orresponding tob=0 do not contain the time derivative and are calledinvolutive constraintsin
he sense that they are true at any instant if they are satisfied at some time. It is also wel
hat the divergence free quantity

fb,gLag

s added to transform −Tb
a as defined by(4) into the conserved symmetric tensor

Tb
a = Ldb

a − LagFbg.

he two families of wave surfaces associated with the field equations are given by11,16

Gab]aw]bw = 0, Gab = tab + sz + Qdgab,

heretab=Qgab−FarFb
r is the usual Maxwell tensor andzsQ,Rd takes on two positive valu

s1d ,zs2d.
From (17) one sees that in terms of the electromagnetic field vectors

G00 = z + B2 . 0, Gijninj = E2 − z − En
2 − Bn

2 , 0,

hich means that

E2 , minsz ,z d s22d
s1d s2d
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s a necessary condition(which turns out to be sufficient) for theconvexity of energy.27 The wave
ront issuing from the origin is no longer a sphere as in Maxwell theory but an ellipsoid d
long its smallest axis in the direction of the Poynting vector.16,28 This limitation of the electri
eld also expresses the fact that the origin stays inside the ellipsoid. Further it ensures th
inal character of the wave and shock velocities. See Fig. 1 which also shows the limitin

independent of the nonlinear Lagrangian) corresponding to the ellipsoid

x2 + y2 + 2sz− 1
2d2 = 1

2 .

Only in the case of the Born–Infeld Lagrangian13 do both values ofz coincide with a positiv
onstantk called theabsolute field, which by (22) is an upper limit to the electric field as in(2),

E2 , k.

hus the Born–Infeld Lagrangian appears as the fundamental one. We consider it as the
ation of a null Planck constant as we shall see in the next section. The wave velocitie
ouble areexceptionaland botha’s arenegativeaccording to the preceding section.

II. EXCEPTIONAL LAGRANGIAN WITH SPIN

Here the covariant formulation of(19) that both wave fronts must satisfy is simply16

]aw]bwdGab = 0 ⇔ dz = 0,

hich is obviously true in the case of Born–Infeld since bothz’s are equal to the same constank.
ll the Lagrangians yielding field equations that arecompletely exceptionalhave been determine
he most general one(nonconstantz’s) has the form

L = Fszdf + RGszd + Hszd, f = Î− R2 + zs2Q + zd

ith zsQ,Rd implicitly determined by

]L/]z = O ⇒ F8f2 + sRG8 + H8df + sQ + zdF = 0. s23d

his function which turns out to be a direct generalization of the Born–Infeld Lagrangia(al-

IG. 1. Sections of the wave surface by the coordinate planes. The ellipsoids corresponding to different valueszs1d, zs2d of
he absolute field are drifted along thez axis, are tangent to each other and to the light sphere in two points(upper left).
elow, the limit casesE2=z , Q=R=0d of a drift velocity equals to 1/2. See also Gibbons and Herdeiro(Ref. 11).
hough it is obtained in a completely different way) must be independent on the choice ofzs1d or
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s2d to replacez. This condition allows for the determination of the three functionsF, G, H. With
say) zs1d=z they read16

F2 =
1

ss1 + g2dz2hg2sk2 − h2d + 2Kgz − z2j, s24d

Gz = − gH, H2 =
1

ss1 + g2d
hh2 − sz − kd2j, s25d

here

2K = kSs+ 1

g
+ gss− 1dD .

our constants appear:h may be proportional to the Planck constant sincez→k whenh→0 as can
e seen from the expression ofH thus giving the Born–Infeld field equations;g is set equal t

ansu /2d and in the study of the electron fields appears to be equal to 1/2 and may be assoc
ith the spin.29 Having solved these equations forzs1d=zsQ,R;k,h,s,ud the other valuezs2d (and

he functionsFs2d, Gs2d, Hs2d of this variable) immediately follow by the simple change of consta
→−s, u→u+p. For instancezs2d=zsQ,R;k,h,−s,u+pd, Gs2dzs2d=Hs2d /g.

III. JUMP OF THE ELECTROMAGNETIC TENSOR

Now let us study the characteristic shocks. Several quantities(Riemann invariants) are con
inuous across the shock and have already been determined: the scalarz and a set of four vecto

Vsgd
a :ua,

ea

Îz
,

sRea + zbad
fÎz

,
Sa

f
, VsmdaVsnd

a = hmn

ontaining the electric, magnetic fields, and the Poynting vector

ea = Fraur, ba = Fra
* ur, Sa = habgdebbgud

n the frame of the ray velocityua~ htab+sz+Qdgabj]bw.16 In terms of these vectors we can w

Fab = Îzaab −
fbab

*

Îz
+

Raab
*

Îz
, Fab

* = Îzaab
* +

fbab

Îz
−

Raab

Îz
,

here

aab = Vs0d
a Vs1d

b − Vs0d
b Vs1d

a , bab = Vs0d
a Vs2d

b − Vs0d
b Vs2d

a ,

a*ab = Vs2d
a Vs3d

b − Vs2d
b Vs3d

a , b*ab = Vs3d
a Vs1d

b − Vs3d
b Vs1d

a ,

ab
** =−aab, etc.

The jump follows easily

ÎzfFabg = fRgaab
* − ffgbab

* . s26d

t can be observed that a jump of the electromagnetic field is generated by a first order d
uity of the potential vector so that

fFabg = Fb]aw − Fa]bw,
16
hich is just the structure of the preceding expression since]aw~Sa~Vs3da.
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Since each shock velocity is single the jump must depend on a single parameter. To
ink betweenfRg and ffg we eliminateQ+z between

2zsQ + zd = f2 + R2 + z2

nd (23) obtaining

SFz

f
+ H8D2

+ SFR

f
+ G8zD2

= r2szd

ith

r2szd = z2G82 + H82 − FsF + 2zF8d.

rom (24) and (25) we get

zsG2 + F2d = −
z

s
+ k

1 + s

s

nd substituting

szF2d8 = −
1

s
− szG2d8

n the preceding equation we obtain

r2 =
1

s
+ szGd82 + H82 =

1

s
+ s1 + g2dH82 =

h2

s2s1 + g2dH2 .

We introduce the shock parameterv through

Fz

f
+ H8 = r sinv,

FR

f
+ G8z = r cosv.

ut z is continuous across the shocksz1=z0d and therefore the values off andR behind the shoc
ront

f1 =
F0z0

r0 sinv − H08
, R1 = z0

r0 cosv − G08z0

r0 sinv − H08
,

etermine by(26) the jump fFabg of the electromagnetic field which is certainly bounde
H08 /r0u.1. To each value ofz correspond two shocks with different ray velocities. From(25) we
ave

SHs1d8

rs1d
D2

=
szs1d − kd2

h2s1 + g2d
, 1

or z=zs1d which shows that the jump of the field can reach large values. For the other fam
hocks, i.e., forzs2d the different functionsF, G, H are obtained with the mentioned substitu
→−s, g→−1/g which gives

SHs2d8

rs2d
D2

=
szs2d − kd2g2

h2s1 + g2d
,

29
quantity that may or may not be smaller than 1. In fact for the spherically symmetric solution
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zs2d = k + h
f + s

Îs2 + f2 + 2sf cosu
, f =

r4

r0
4 + r4 ,

UHs2d8

rs2d
U =

sin
u

2

Î1 −
4sf

sf + sd2 sin2 u

2

,

heres=1/2. Whenr varies from 0 to infinity this quantity has a minimum, sinsu /2d, for r =0 and
maximum, tansu /2d, for r =ro. Hence it is less than 1 for allr only if u,p /2.
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for a shallow water equation
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In this paper, we obtain the existence and uniqueness of the local strong solutions
to the initial boundary problem for a one-dimensional shallow-water equation
~Camassa–Holm equation! on the half-space$x.0% with initial data uo

PH2(R1)ùH0
1(R1). The solution is obtained as a limit of the solutions for a class

of approximation problems. We also establish the global result of the corresponding
solution, provided that the initial datau0 satisfies certain positivity
condition. © 2004 American Institute of Physics.@DOI: 10.1063/1.1765216#

I. INTRODUCTION

In this paper we consider the existence and uniqueness of strong solutions to the
boundary value problem for the following one-dimensional shallow-water equation on the
space$x.0%:

H ] tu1u]xu1]xp50, t.0,x.0,

p~ t,x!5E
0

`

h~x,y!S u21
1

2
~]xu!2D ~ t,y!dy, t.0,x.0,

~1.1!

where

h~x,y!5H e2xshy, y<x,

e2yshx, y.x,

with the initial data

u~0,x!5u0~x!, x.0, ~1.2!

and boundary value

u~ t,0!50, t.0, ~1.3!

which is formally equivalent to the initial boundary value problem for the Camassa–H
equation1 ~simply denoted by C–H equation!,

] tu2] t]xxu13u]xu52]xu]xxu1u]xxxu. ~1.18!

Hereu denotes the fluid velocity at timet in the x direction ~or, equivalently, the height of the
water’s free surface above a flat bottom!.

a!Electronic mail: wanghg@scnu.edu.cn
b!Electronic mail: dingsj@scnu.edu.cn
34790022-2488/2004/45(9)/3479/19/$22.00 © 2004 American Institute of Physics
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Equation~1.1! is derived physically by Camassa and Holm who used an asymptotic expa
directly in the Hamiltonian for Euler’s equations in the shallow-water regime.2 Equation~1.1! also
proved to be formally integrable by Fuchssteiner and Fokas as a bi-Hamiltonian generaliza
KDV.3

Many special features make~1.1! an important equation in the shallow-water regime. Besi
the bi-Hamiltonian structure and the formal integrability, Camassa and Holm discovered th
solitary waves have a discontinuity in the first derivative at their peak and that soliton intera
occur for~1.1!. In fact, physical water waves often break down, which cannot be predicted b
solutions for the KDV equation.4 So Eq.~1.1! is the first model that is completely integrable a
yet exhibits the remarkable finite-time breakdown phenomena as commented upon by Con
and Escher.5 Equation ~1.1! possesses an infinite number of conservation laws due to its
Hamiltonian structure, but, unlike KDV, the global existence of regular solutions is guarantee
only a special class of initial data, and theHk(R) norm is preserved for smooth solutions to~1.1!
only for k51. Indeed, it has been observed that finite-time breakdown of smooth solutions a
occurs for a large class of initial data.2,5,10

Recently, after Camassa and Holm established that Eq.~1.1! also has physical meaning
numerous papers were devoted to its study. For example, Hongjun Gaoet al. proved the local
existence and property of blow-up to the initial boundary value problem of~1.18! with initial data
u0PB5$uPH4(0,1):u(0)5uxx(0)5u(1)5uxx(1)50%;17 Constantinet al. made sequential re
searches on the C–H equation, such as the well posedness, spectral problem, and inverse
problem, etc.~Refs. 5–9 and 11–14!; Blanco established the well posedness to the Cauchy p
lem associated with~1.18! with the initial datau0PHs(R),s. 3

2;
22 and Zhouping Xinet al. ob-

tained the existence and uniqueness of the weak solution to the Cauchy problem of~1.18! with
initial u0PH1(R).15,16 But, it is worthwhile to note that despite an abundance of literature on
C–H equation, the initial boundary value problem on the half-space$x.0% hardly seems to have
been treated except for Yang Ling’e and Guo Boling who proved the well-posedness of cla
solutions to~1.1!–~1.3! with the intial datau0PH3(R1)ùH0

1(R1).23 Natural questions arise: Ca
a strong solution to the initial boundary value problem on the half-space$x.0% exist? Is it local
or global in time if it does? Is it unique? How about a weak solution? The aim of this paper
prove the existence and uniqueness of the local solutions for~1.1!–~1.3! with initial data u0

PH2(R1)ùH0
1(R1), and to analyze the global existence and blow-up phenomena.

Before giving the precise statements of the main results, we first introduce the definitio
strong solution to the initial boundary value problem~1.1!–~1.3!.

Definition: A function u5u(t,x) is said to be a strong solution to the initial boundary valu
problem (1.1)–(1.3) if uPL`(0,T;H2(R1)ùH0

1(R1)), ] tuPL`(0,T;H0
1(R1)), and

] tu1u]xu1]xp50 a.e.@0,T!3R1, u~0,x!5u0~x! a.e.R1.

If T is an arbitrarily given positive constant, u is said to exist globally in time.
The main results of this paper can be stated as follows:

~1! Local existence and uniqueness: Givenu0PH2(R1)ùH0
1(R1), there exists aT* .0 depend-

ing only on iu0iH2(R1) and a unique strong solution to problems~1.1!–~1.3!

u5u~t,x!PC~@0,T* #;H2~R1!ùH0
1~R1!!ùC1~@0,T* #;H0

1~R1!!.

~2! Global existence and uniqueness: Suppose thatu0PH2(R1)ùH0
1(R1), with V05(1

2]xx)u0>0. Then the unique strong solutionu(t,x) to problems~1.1!–~1.3! exist globally in
time.

~3! Blow-up: Let u0PH2(R1)ùH0
1(R1), with ]xu( x̄)<2&iu0iH1(R1) for somex̄PR1. Then

the strong solution to problems~1.1!–~1.3! blows-up in finite time.

Remark 1:The major difficulty of this work is that the domain of the problem we conside
is $(t,x):xPR1% and the regularity of the initial data is not good enough so that we ca
directly apply Kato’s Theorem to prove the existence of the strong solution to problems~1.1!–
~1.3! as in Refs. 22, 23. We prove the main results by an approximation method. We expe
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the strong solution to problems~1.1!–~1.3! can be obtained as a strong limit i
C(@0,T* #;H2(R1)ùH0

1(R1)) of the approximations,un5un(t,x), which solves the following
approximation problem:

5
] tu

n1un]xu
n1]xp

n50, t.0,x.0,

pn~ t,x!5E
0

`

h~x,y!S ~un!21
1

2
~]xu

n!2D ~ t,y!dy, t.0,x.0,

un~0,x!5u0
n~x!, x.0,

un~ t,0!50, t.0,

~1.4!

whereu0
nPB5$uPH4(R1)uu(0)5]xxu(0)50% is an approximation ofu0 , i.e.,

u0
n→u0 , as n→` in H2~R1!ùH0

1~R1!.

II. THE LOCAL SOLUTION FOR AN APPROXIMATION PROBLEM

In this section, we construct the approximate solution sequenceun5un(t,x) as solutions to
the problem~1.4!. The existence and uniqueness on this approximate solution sequence are
in the following theorem. For convenience we will omit the supscriptn in un(t,x) in this section.

Theorem 1: Given u0PB, there exists a maximal T.0 depending only oniu0iH4(R1) and a
unique strong solution to (1.4) such that

u5u~ t,x!PC~@0,T!;B!ùC1~@0,T!;H2~R1!ùH0
1~R1!!.

We reformulate~1.4! as the following initial boundary value problem:

H m5~12]xx!u, x.0,t.0,

] tm1u]xm522m]xu, t.0,x.0,

m~0,x!5m0~x!5~12]xx!u0 , x.0,

~2.1!

whereu0PB, andm0PH2(R1)ùH0
1(R1).

The new form is suitable to be analyzed with Kato’s method for abstract quasilinear evo
equations of the hyperbolic type. For complement we state here Kato’s Theorem18 in the form
appropriate for our purposes.

Consider the Cauchy problem for the abstract quasilinear evolution equation

H dv
dt

1A~v !v5 f ~v !, t.0,

v~0!5v0 .

~Q!

Assume that:
~X! X,Y are reflexive Banach spaces, whereY�X continuously and densely, and there is

isomorphismS from Y onto X such thatifiY5iSfiX , for all fPY. Let W,Y be an open ball
centered at 0 and with radiusr .

~i! For eachyPW, the linear operatorA(y) belongs toG(X,1,b) whereb is a real number,
i.e., 2A(y) generates aC0 semigroup such that

ie2tA(y)i<ebt, t>0.
~ii ! Y,D(A(y)) for eachyPW ~so thatA(y)uYPB(Y,X)) satisfies the following Lipschitz

condition:
iA~y!2A~z!iB(Y,X)<m1iy2ziX ,

for all y,zPY.
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~iii ! For eachyPW, one has
SA~y!S215A~y!1B~y!,

B~y!PB~X!, iB~y!iX<l1 .
~iv! The functionf :W→Y is bounded, i.e., there is a constantl2.0 such that

if~y!iY<l2,
for all yPW. The functionyPX→ f (y) is Lipschitz-continuous inX, i.e.,

if~y!2f~z!iX<m2iy2ziX ,
for all y,zPX.

Here l1 ,l2 depend only onr ; and, m1 and m2 depend only on max$iyiY ,iziY% and
max$iyiX ,iziX%, respectively.

Kato’s Theorem: Assume that(X) and ( i ) – (iv) hold. Givenv0PY, there exists a maxima
T.0 depending only oniv0iY and a unique solution to(Q) such that

v5v~ t,x!PC~@0,T!;Y!ùC1~@0,T!;X!.

We apply Kato’s Theorem to prove the following lemma.
Lemma 1: For m0PH2(R1)ùH0

1(R1), there exists a maximal T.0 depending only on
im0iH2(R1) and a unique solution to (2.1) such that

m5m~ t,x!PC~@0,T!;H2~R1!ùH0
1~R1!!ùC1~@0,T!,L2~R1!!.

Proof: Let X5L2(R1),Y5H2(R1)ùH0
1(R1),W5$yPY:iyiY<r % andS512]xx . Clearly

the embeddingY�X is continuous and dense. Moreover,S:Y→X is an isometric isomorphism. In
fact, ; f PL2(R1), the well-known existence theorem of weak solution and regularity for bou
ary problem of elliptic equation implies that the boundary value problem

H v2]xxv5 f ,
v~0!5v~1`!50,

has a unique solution

v~ t,x!5E
0

1`

h~x,y! f ~ t,y!dy

in H2(R1)ùH0
1(R1), whereh(x,y)5$e2yshx, y.x.

e2xshy, y<x,

Rewrite problem~2.1! into an abstract form

H dm

dt
1A~m!m5 f ~m!, t.0

m~0!5m0 ,

whereA(m)5(S21m)]x , f (m)522m]x(S
21m).

To prove Lemma 1, it suffices to verify conditions~i!–~iv! of Kato’s Theorem.
Step 1: Letv5S21mPH2(R1)ùH0

1(R1), Ā5v]x5A(m), and A05Ā1 1
2]xvI . We show

that the operatoriA0 is self-adjoint, i.e.,A0* 52A0 . In fact,

D~A~m!!5$uPX:~S21m!]xuPX%,

D~A0!5D~Ā!5$uPX:v]xuPX%,
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D~A0* !5$wPX:A0* wPX%

5$wPX:there exists aMw.0,

such that u~w,A0u!Xu<MwiuiX , for all uPD~A0!%.

Fix wPD(A0* ) ;fPD(R1), we deduce thatv]xwPX:

~f,A0* w!X5~A0f,w!X5E
0

`

~v]xf1 1
2 f]xv !wdx

52E
0

`

~f]x~vw!2 1
2 fw]xv !dx

52E
0

`

f~v]xw1 1
2 w]xv !dx

52~f,v]xw1 1
2 w]xv !X .

SinceD(R1) is dense inD(Ao), the above formula holds for allfPD(A0). Hence2(v]xw
1 1

2w]xv)5A0* wPX. This impliesv]xwPX. Thus wPD(A0) and A0w52A0* w. This proves
that A0* ,2A0 .

Conversely, fixuPD(A0) and let un5rn* u, where rn is the usual mollifiers onR1. It
follows from the proof of~2.3! in Ref. 6 that

lim
n→`

Ā~un!5Ā~u! in L2~R1!.

Then

~A0z,u!X5 lim
n→`

~A0z,un!X5 lim
n→`

E
0

`

~v]xz1 1
2 z]xv !un52 lim

n→`
E

0

`

~z]x~vun!2 1
2 unz]xv !

52E
0

`

z~v]xu1 1
2 u]xv !

52~z,A0u!.

ThusuPD(A0* ) andA0* u52A0u. This proves that2A0,A0* .
HenceA0* 52A0 , that is, iA0 is self-adjoint inX. Stone theorem19 implies thatA0 is the

infinitesimal generator of aC0 group unitary operators onX, and so2A0 is the infinitesimal
generator of a C0 semigroup of contraction onX. In addition, i(A02A(m))wiX

5i 1
2w]x(S

21m)iX< 1
2supxPR1u]x(S

21m)uiwiX5viwiX . If v,`, it follows from the theorem
3.1.1 in Ref. 19 that2A(m)5(A02A(m))1(2A0) is the infinitesimal generator of aC0 semi-
group andie2tA(m)i<evt.

Next, we need to estimate supxPR1u]x(S
21m)u. Sincev5S21mPH2(R1)ùH0

1(R1) solves
the equationv2vxxv5m, we have

E
0

`

~v222v]xxv1~]xxv !2!dx5E
0

`

m2~x!dx,

2E
0

`

v]xxvdx52E
0

`

~]xv !2dx.

Hence
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E
0

`

~v212~]xv !21~]xxv !2!dx5E
0

`

m2~x!dx,

and so

iviH2(R1)
2

1i]xviL2(R1)
2

5imiL2(R1)
2 ,

that is,

iS21miH2(R1)
2

1i]x~S21m!iL2(R1)
2

5imiL2(R1)
2 , ~2.2!

it follows that

~]x~S21m!!2~x!2~]x~S21m!~0!!252E
0

x

]x~S21m!]xx~S21m!dx<iS21miH2(R1)
2 <imiL2(R1)

2 ,

u]x~S21m!~0!u5U E
0

`

e2ym~y!dyU<imiL2(R1)ie2yiL2(R1)5
1

&
imiL2(R1) ,

and so;xPR1, (]x(S
21m))2(x)< 3

2 imiL2(R1)
2 ,

sup
xPR1

u]x~S21mu<A3/2imiL2~R1! . ~2.3!

Consequently,

v5
1

2
sup

xPR1

u]x~S21m!u<imiL2(R1)<imiY<r .

So the condition~i! of Kato’s Theorem is verified with constantb5r .
Step 2: To check condition~ii ! of Kato’s Theorem.
;m1 ,m2 ,wPY,

i~A~m1!2A~m2!!wiX5i~S21m12S21m2!]xwiX<iS21~m12m2!iL`(R1)i]xwiX

<im12m2iXiwiY , ~2.4!

due to the fact that

~S21m!2~x!52E
0

x

S21m]x~S21m!dy<iS21miH1(R1)
2 <iS21miH2(R1)

2 <imiL2(R1)
2 .

So iA(m1)2A(m2)iB(Y,X)<im12m2iX .
;mPW,Y, let m15m,m250 in ~2.4!, we have

iA~m!wiX<imiXiwiY<r iwiY .

ThusA(m)uYPB(Y,X).
Step 3: Now we check condition~iii ! of Kato’s Theorem.
;mPW,wPY, by direct computation we obtain
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SA~m!S21w5S~S21m]x~S21w!!

5S21m]x~S21w!2]xx~S21m]x~S21w!!

5S21m]x~S21w!2@]xx~S21m!]x~S21w!

12]x~S21m!]xx~S21w!1S21m]xxx~S21w!#

5S21m]x~S21w!2@~S21m2m!]x~S21w!

12]x~S21m!~S21w2w!1S21m~]x~S21w!2]xw!#

5m]x~S21w!22]x~S21m!~S21w2w!2S21m]x~S21w!1~S21m!]xw

5~m2S21m!]x~S21w!12]x~S21m!~w2S21w!1A~m!w.

Hence

SA~m!S215~m2S21m!]xS
2112]x~S21m!~12S21!1A~m!.

Let B(m)5(m2S21m)]xS
2112]x(S

21m)(12S21), so that

SA~m!S215A~m!1B~m!,

andB(m) can be extended to an operator inX. Next we show thatB(m)PB(X).
;wPX,

iB~m!wiX5i~m2S21m!]x~S21w!12]x~S21m!~w2S21w!iX

<im2S21miXi]x~S21w!iL`(R1)12i]x~S21m!iL`(R1)iw2S21wiX

<A3/2imiXiwiX12A3/2imiXiwiX

<6imiXiwiX

<6imiYiwiX

<l1iwiX ,

due to ~2.2!–~2.3! and the fact thatm2S21m52]xx(S
21m), wherel156r . So B(m)PB(X)

and iB(m)iB(X)<l1 .
Step 4: Finally we check condition~iv! of Kato’s Theorem.
;mPW, it follows from ~2.3! that

i f ~m!iY52im]x~S21m!iY<2i]x~S21m!iL`(R1)imiY

<2A3/2imiXimiY<4imiY
2<l2 ,

wherel254r 2,
;m1 ,m2PX,

i f ~m1!2 f ~m2!iX52im1]x~S21m1!2m2]x~S21m2!iX

<2i]x~S21m1!iL`(R1)im12m2iX12im2iXi]x~S21~m12m2!!iL`~R1!

<2A3/2im1iXim12m2iX12A3/2im2iXim12m2iX

<4~ im1iX1im2iX!im12m2iX

<m2im12m2iX ,

wherem258 max$im1iX ,im2iX%.
                                                                                                                



blems

s

3486 J. Math. Phys., Vol. 45, No. 9, September 2004 S. Ma and S. Ding

                    
By Kato’s Theorem, the proof of Lemma 1 is completed.
The proof of Theorem 1:SinceS:B→Y is bijective, ;m(t,•)PY5H2(R1)ùH0

1(R1), we
can solveuPB from Su5m uniquely

u~ t,x!5E
0

`

h~x,y!m~ t,y!dy

5e2x/2E
0

x

eym~ t,y!dy1ex/2E
x

`

e2ym~ t,y!dy2e2x/2E
0

`

e2ym~ t,y!dy.

Consequently the result follows from this and Lemma 1.

III. THE EXISTENCE AND UNIQUENESS OF LOCAL SOLUTIONS TO PROBLEMS
„1.1…–„1.3…

In this section, we consider the existence and uniqueness of the local solution to pro
~1.1!–~1.3!, i.e.,

5
] tu1u]xu1]xp50, t.0,x.0,

p~ t,x!5E
0

`

h~x,y!S u21
1

2
~]xu! D 2

~ t,y!dy, t.0,x.0,

u~0,x!5u0~x!, x.0,

u~ t,0!50, t.0,

~3.1!

where

h~x,y!5H e2xshy, y<x,

e2yshx, y.x,

with u0PH2(R1)ùH0
1(R1). First we introduce some lemmas as follows.

Lemma 2 (Ref. 20, Lemma 4(ii)): Let X,E,Y be Banach spaces, the imbedding X�E being
compact. Then the following imbedding is compact:

L`~0,T;X!ùH f:
]f

]t
PLr~0,T;Y!J�C~@0,T#;E!,1,r<`.

Lemma 3 (Ref. 21, Lemma 1.4): Let X and Y be two Banach spaces such that X�Y with a
continuous injection. If a functionf belongs to L`(0,T;X) and is weakly continuous with value
in Y, thenf is weakly continuous with values in X.

Lemma 4 (Ref. 20, Lemma 6): Let gPW1,1(0,T) and kPL1(0,T) satisfy

dg

dt
<F~g!1k, ;tP~0,T!,

g~0!<g0 ,

where F is bounded on bounded sets from R into R, that is

;a.0,'A.0 such that uxu<a⇒uF~x!u<A.

Then for everye.0, there exists Te.0 independent of g such that

g~ t !<g01e, ;t<Te .
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Theorem 2: Given u0PH2(R1)ùH0
1(R1), there exists a T* .0 depending only on

iu0iH2(R1) and a unique solution to (3.1)

u5u~ t,x!PC~@0,T* #;H2~R1!ùH0
1~R1!!ùC1~@0,T* #;H0

1~R1!!.

Proof: We begin with the proof of existence.
SinceB5$uPH4(R1)uu(0)5]xxu(0)50% is dense inH2(R1)ùH0

1(R1), there exists a se
quence$u0

n%,B such that

u0
n→u0 in H2~R1!ùH0

1~R1! and iu0
niH2(R1)<iu0iH2(R1) . ~3.2!

It follows from Theorem 1 that there exists a unique solutionun(t,x)
PC(@0,Tn);B)ùC1(@0,Tn);H2(R1)ùH0

1(R1)) to problem~1.4!, i.e.,

5
] tu

n1un]xu
n1]xp

n50, t.0,x.0, ~3.3!

pn~ t,x!5E
0

`

h~x,y!S ~un!21
1

2
~]xu

n!2D ~ t,y!dy, t.0,x.0, ~3.4!

un~0,x!5u0
n~x!, x.0, ~3.5!

un~ t,0!50, t.0, ~3.6!

whereTn is the life span of the solutionun(t,x) in C(@0,Tn);B), then

lim
t→Tn

iun~ t,• !iH4(R1)51`.

It follows from the proof of~2.4! in Ref. 15 that this holds if and only if

lim
t→Tn

~ iun~ t,• !iL`(R1)1i]xu
n~ t,• !iL`(R1)!51`.

Suppose that there exists a timeT* .0 and a constantC.0 independent ofn such that
sup

[0,T* )

iun(t,•)iH2(R1)<C. This implies thatTn>T* . Indeed, if this is not true one has

sup
@0,T* !

iun~ t,• !iH2(R1)> sup
[0,Tn)

iun~ t,• !uH2(R1)> sup
@0,Tn!

~ iun~ t,• !iL`(R1)1i]xu
n~ t,• !iL`(R1)!51`,

which is a contradiction.
Next, we prove thatT* andC do exist.
Indeed, sinceun(t,x)PC(@0,Tn);B) and satisfies Eq.~3.3!:

] tu
n1un]xu

n1]xp
n50,

then

] t]xu
n52~]xu

n!22un]xxu
n2]xxp

n52 1
2 ~]xu

n!22un]xxu
n1~un!22pn, ~3.7!

] t]xxu
n52]x~un]xxu

n!2]xp
n12un]xu

n2]xu
n]xxu

n, ~3.8!

it follows that

1

2

d

dt
iun~ t,• !iL2(R1)

2
5E

R1
~pn2~un!2!]xu

ndx, ~3.9!
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1

2

d

dt
i]xu

n~ t,• !iL2(R1)
2

52
1

2 ER1
~]xu

n!3dx2E
R1

un]xxu
n]xu

ndx1E
R1

~~un!22pn!]xu
ndx

5E
R1

~~un!22pn!]xu
ndx, ~3.10!

1

2

d

dt
i]xxu

n~ t,• !iL2(R1)
2

5E
R1

un]xxu
n]xxxu

ndx2E
R1

]xp
n]xxu

ndx

12E
R1

un]xu
n]xxu

ndx2E
R1

]xu
n~]xxu

n!2dx

52
3

2 ER1
]xu

n~]xxu
n!2dx2E

R1
]xp

n]xxu
ndx12E

R1
un]xu

n]xxu
ndx.

~3.11!

Due to ~3.9! and ~3.10!, we obtain

1

2

d

dt
iun~ t,• !iH1(R1)

2
50, ~3.12!

then,

iun~ t,• !iH1(R1)5iu0
niH1(R1)<iu0

niH2(R1)<iu0iH2(R1) . ~3.13!

Due to ~3.11! and ~3.12!, we obtain

1

2

d

dt
iun~ t,• !iH2(R1)

2
52

3

2 ER1
]xu

n~]xxu
n!2dx2E

R1
]xp

n]xxu
ndx12E

R1
un]xu

n]xxu
ndx

<
3

2
i]xu

n~ t,• !iL`(R1)i]xxu
n~ t,• !iL2(R1)

2

1i]xp
n~ t,• !iL2(R1)i]xxu

n~ t,• !iL2(R1)

1iun~ t,• !iL`(R1)i]xu
n~ t,• !iH1(R1)

2

<Ciun~ t,• !iH2(R1)
3 , ~3.14!

whereC is a constant depending on nothing, and, the imbeddingH2(R1)�W1,̀ (R1) and the
following facts are used:

ipn~ t,• !iL2(R1)
2 <E

0

` H E
0

`

h~x,y!u~~un!21 1
2 ~]xu

n!2!~ t,y!u2dyE
0

`

h~x,y!dyJ dx

<E
0

`E
0

`

h~x,y!u~~un!21 1
2 ~]xu

n!2!~ t,y!u2dydx

5E
0

`

u~~un!21 1
2 ~]xu

n!2!~ t,y!u2S E
0

`

h~x,y!dxD dy

<E
0

`

u~un!21 1
2 ~]xu

n!2~ t,y!u2dy<2iun~ t,• !iL4(R1)
4

12i]xu
n~ t,• !iL4(R1)

4

<2iun~ t,• !iL`(R1)
2 iun~ t,• !iL2(R1)

2
12i]xu

n~ t,• !iL`(R1)
2 i]xu

n~ t,• !iL2(R1)
2

<4iun~ t,• !iH2(R1)
4 , ~3.15!
                                                                                                                



3489J. Math. Phys., Vol. 45, No. 9, September 2004 On the initial boundary value problem

                    
and

i]xp
n~ t,• !iL2(R1)

2
5E

0

`

u]xp
nu2dx

52E
0

`

pn]xxp
ndx

5E
0

`

pnS ~un!21
1

2
~]xu

n!22pnDdx

<ipn~ t,• !iL2(R1)~ iun~ t,• !iL4(R1)
2

1i]xu
n~ t,• !iL4(R1)

2
1ipn~ t,• !iL2(R1)!

<Ciun~ t,• !iH2(R1)
4 , ~3.16!

whereC is a constant depending on nothing.
It follows from ~3.14! and Lemma 4 that there exists a timeT* .0 and a constantC1.0

depending only oniu0iH2(R1) such that

iun~ t,• !iH2(R1)<C1 , ~3.17!

and soTn>T* ,;n.
On the other hand,

i] tu
niL`(0,T* ;L2(R1))<iun]xu

niL`(0,T* ;L2(R1))1i]xp
niL`(0,T* ;L2(R1))

< sup
0,t,T*

iun~ t,• !iL`(R1))i]xu
n~ t,• !iL2(R1)1 sup

0,t,T*

ACiun~ t,• !iH2(R1)
2

<~11AC!C1
2,C2 , ~3.18!

due to~3.3! and ~3.16!–~3.17!, whereC2 is constant depending only oniu0iH2(R1) .
It follows from ~3.17!–~3.18! and Lemma 2 that there exist a subsequence of$un%, still

denoted by $un%, and some function uPL`(0,T* ;H2(R1)ùH0
1(R1))

ùC(@0,T* #;Cloc
1 (R1)),] tuPL`(0,T* ;L2(R1)) such that

un⇀* u, as n→` in L`~0,T* ;H2~R1!ùH0
1~R1!!, ~3.19!

] tu
n⇀* ] tu, as n→` in L`~0,T* ;L2~R1!, ~3.20!

un→u, as n→` in C~@0,T* #;Cloc
1 ~R1!!, uniformly on each compact subset of@0,T* #

3R1. ~3.21!

It follows from Lemma 3 thatuPC(@0,T* #;H2(R1)ùH0
1(R1)).

Now, $pn% is uniformly bounded inL`(0,T* ;H2(R1)ùH0
1(R1)) due to~3.15!–~3.17! and the

fact ]xxp
n5pn2(un)22 1

2 (]xu
n)2. On the other hand,

~12]xx!
]

]t
pn5] t~~un!2!1

1

2
] t~~]xu

n!2!,

] t((u
n)2)52un] tu

n is uniformly bounded inL`(0,T* ;L2(R1)), and
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1
2 ] t~~]xu

n!2!5]xu
n]xtu

n52 1
2 ~]xu

n!32un]xu
n]xxu

n1~~un!22pn!]xu
n,

which is uniformly bounded inL`(0,T* ;L2(R1)), consequently$] tp
n% is uniformly bounded in

L`(0,T* ;L2(R1)). It follows from Lemma 2 that there exists a subsequence of$pn%, still denoted
by $pn%, and some functionpPL`(0,T* ;H2(R1)ùH0

1(R1))ùC(@0,T* #;Cloc
1 (R1)) such that

pn⇀* p, as n→` in L`~0,T* ;H2~R1!ùH0
1~R1!!, ~3.22!

pn→p, as n→` in C~@0,T* #;Cloc
1 ~R1!!, ~3.23!

thenpPC(@0,T* #;H2(R1)ùH0
1(R1)) and

]xxp
n5pn2~un!22 1

2 ~]xu
n!2→p2u22 1

2 ~]xu!2 as n→` in C~@0,T* #,Cloc~R1!!.

Consequently,

H ~12]xx!p5u21 1
2 ~]xu!2,

p~ t,0!5p~ t,`!50,

and sop(t,x)5*0
`h(x,y)(u21 1

2(]xu)2)(t,y)dy.
For anyvPL2(0,T* ;D(R1)), by multiplying v to both sides of~3.3! and integrating over

@0,T* #3R1, we find

E
0

T* E
0

`

~] tu
n1un]xu

n1]xp
n!vdxdt50,

passing to the limit, due to~3.19! and ~3.20! and ~3.22!, we obtain

E
0

T* E
0

`

~] tu1u]xu1]xp!vdxdt50,

that is, ] tu1u]xu1]xp50 in the weak sense. Note thatuPC(@0,T* #;H2(R1)ùH0
1(R1)),

which implies

] tu52u]xu2]xpPC~@0,T* #;H0
1~R1!!,

and so

uPC~@0,T* #;H2~R1!ùH0
1~R1!!ùC1~@0,T* #;H0

1~R1!!,

consequently] tu1u]xu1]xp50 a. e.@0,T* #3R1.
It follows from un(0,x)5u0

n(x), ~3.2! and ~3.20!, we obtain

u~0,x!5u0~x!.

The proof of existence is completed.
Before proving the uniqueness, we introduce the following Lemma.
Lemma 5: Let u0PH2(R1)ùH0

1(R1), and uPC(@0,T#;H2(R1)ùH0
1(R1))

ùC1(@0,T#;H0
1(R1)) be a solution to (3.1). Then the following problem:
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H dFx~ t !

dt
5u~ t,Fx~ t !!, t.0,

Fx~0!5x, x>0,

has a unique solutionFx(t)PC1(@0,T#) and xPR1→Fx(t)PR1 is an isomorphism.
Proof: Let ũ(t,x)5$2u(t,2x), x,0.

u(t,x), x>0,

We consider the ordinary differential equation

H dFx~ t !

dt
5ũ~ t,Fx~ t !!, t.0,

Fx~0!5x, x>0.

~3.24!

Note thatu(t,x)PC(@0,T#;H2(R1)ùH0
1(R1)). It follows from the definition ofũ and Sobolev

Embedding Theorem thatũ(t,q) is Lipschitz continuous with respect toq. Then for anyx>0,
there exists a unique solutionFx(t)PC1(@0,T#) to ~3.24!. Let q(t,x)5Fx(t), thenq(t,x) solves
the following problem:

H qt5ũ~ t,q!, t.0,

q~0,x!5x, x>0.
~3.25!

Applying ]x to ~3.25!, we have

H qxt5ũq~ t,q!qx , t.0,

qx~0,x!51, x>0,
~3.26!

and soqx(t,x)5e*0
t ũq(t,q(t,x))qx(t,x)dt.0. From the facts thatq(t,x) is continuous with respect to

x and that

uq~ t,x!2xu<E
0

t

uũ~t,q~t,x!!udt<2iu0iH2t,

we know
~1! q(t,x).q(t,0)50,tP@0,T#,
~2! lim

x→1`
q(t,x)51`,tP@0,T#,

~3! q(t,x) is a homeomorphism.
ConsequentlyxPR1→Fx(t)PR1 is an isomorphism. The proof of Lemma 5 is complete
Now, we turn to the proof of the uniqueness. Letu1(t,x) andu2(t,x) be any two solutions of

~3.1!. SetW5u12u2 . ThenW solves

H ] tW1u1]xW52]x~p12p2!2W]xu2 ,
W~0,x!50,
W~ t,0!50.

~3.27!

Thus by~3.27!, Lemma 5, and the characteristic method, we get

W~ t,x!52E
0

t

~]x~p12p2!1W]xu2!~s,x!ds,

and so

iW~ t,• !iL`(R1)<E
0

t

i~]x~p12p2!1W]xu2!~s,• !iL`(R1)ds,;tP@0,T#. ~3.28!
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On the other hand, by the definition ofPi ( i 51,2), we have

]x~p12p2!5]x~12]xx!
21$~u1

22u2
2!1 1

2 @~]xu1!22~]xu2!2#%

5]x~12]xx!
21$~u11u2!W1 1

2 ]xW]x~u11u2!%. ~3.29!

The second term on the right-hand side of~3.29! can be rewritten as

]x~12]xx!
21~]xW]x~u11u2!!5]xx~12]xx!

21~W]x~u11u2!!2]x~12]xx!
21~W]xx~u11u2!!

52W]x~u11u2!1~12]xx!
21~W]x~u11u2!!

2]x~12]xx!
21~W]xx~u11u2!!.

Hence

]x~p12p2!5 1
2 ]x~12]xx!

21$~u11u2!W1~v11v2!W%1 1
2 ~12]xx!

21~W]x~u11u2!!

2 1
2 W]x~u11u2!,

wherev i5(12]xx)ui , i 51,2.
And so

]x~p12p2!1W]xu25 1
2]x~12]xx!

21$~u11u2!W1~v11v2!W%

1 1
2 ~12]xx!

21~W]x~u11u2!!2 1
2 W]xW. ~3.30!

Using the definition of (12]xx)
21, we have

i]x~12]xx!
21~~u11u2!W!~ t,• !iL`(R1)

5 sup
xPR1

U E
0

x

e2xshy~~u11u2!W!~ t,y!dy1E
x

`

e2ychx~~u11u2!W!~ t,y!dyU
< sup

xPR1
S S E

0

x

ue2xshyu2dyD 1/2

1S E
x

`

ue2ychxu2dyD 1/2D
3i~u11u2!~ t,• !iL2(R1)iW~ t,• !iL`(R1)

<
3&

4
i~u11u2!~ t,• !iL2(R1)iW~ t,• !iL`(R1)

<
3&

4
~ iu1~ t,• !iL2(R1)1iu2~ t,• !iL2(R1)!iW~ t,• !iL`(R1) , ~3.31!

i]x~12]xx!
21~~v11v2!W!~ t,• !iL`(R1)

<
3&

4
i~v11v2!~ t,• !iL2(R1)iW~ t,• !iL`(R1)

<
3&

4
i~u11u2!~ t,• !iH2(R1)iW~ t,• !iL`(R1)

<
3&

4
~ iu1~ t,• !iH2(R1)1iu2~ t,• !iH2(R1)!iW~ t,• !iL`(R1) , ~3.32!
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i~12]xx!
21~W]x~u11u2!!~ t,• !iL`(R1)

< sup
xPR1

S E
0

`

uh~x,y!u2dyD 1/2

i]x~u11u2!~ t,• !iL2(R1)iW~ t,• !iL`(R1)

<S&4 1
1

2D ~ iu1~ t,• !iH2(R1)1iu2~ t,• !iH2(R1)!iW~ t,• !iL`(R1) , ~3.33!

i~W]xW!~ t,• !iL`(R1)<iW~ t,• !iL`(R1)i~]xW!~ t,• !iL`(R1)

<iW~ t,• !iL`(R1)iW~ t,• !iH2(R1)<iW~ t,• !iL`(R1)~ iu1~ t,• !iH2(R1)1iu2~ t,• !iH2(R1)!.

~3.34!

Putting all the estimates~3.28! and~3.30!–~3.34! together, we can find some constantC which
depends only oniui iL`(0,T;H2(R1)) ( i 51,2), such that

iW~ t,• !iL`(R1)<CE
0

t

iW~s,• !iL`(R1)ds,;tP@0,T#.

This yields, by Gronwall’s inequality, that

iW~ t,• !iL`(R1)50,;tP@0,T#,

and soW50, which completes the proof of the uniqueness.
Remark 2:The proof of uniqueness implies that for anyT.0, if there exists a solution to~3.1!

in C(@0,T#;H2(R1)ùH0
1(R1))ùC1(@0,T#;H0

1(R1)), then the solution must be unique.

IV. THE EXISTENCE AND UNIQUENESS OF THE GLOBAL SOLUTION TO PROBLEMS
„1.1…–„1.3…

In this section we will show that the solution to~1.1!–~1.3! is global in-time providedu0

satisfies a certain positivity condition.
Theorem 3: Suppose that u0PH2(R1)ùH0

1(R1) and V05(12]xx)u0>0. Then the unique
strong solution to (1.1)–(1.3) exists globally in time.

Proof: We proceed in four steps.
Step 1:First we mollify the initial datau0 .
Let r(x)PC0

`(R1):r(x)>0,*R1r(x)dx51, andrn(x)5nr(nx) be the usual mollifiers on
R1,u0

n5rn* u0 , where* denote the convolution. Then

u0
n→u0 in H2~R1!ùH0

1~R1! and iu0
niH2(R1)<iu0iH2(R1) . ~4.1!

Note thatu0PH0
1(R1). We getu0

nPB and

V0
n5~12]xx!u0

n5rn* ~12]xx!u0>0.

For thisu0
nPB, it follows from Theorem 1 that there exists a unique solution to~1.4! such that

un~ t,x!PC~@0,Tn!;B!ùC1~@0,Tn!;H2~R1!ùH0
1~R1!!.

Let Vn(t,x)5(12]xx)u
n(t,x), then

un~ t,x!5~12]xx!
21Vn~ t,x!5E

0

`

h~x,y!Vn~ t,y!dy.

Step 2:To prove thatVn(t,x)>0.
SinceVn(t,x)5(12]xx)u

n(t,x), Eq. ~3.3! can be rewritten as
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] tV
n1un]xV

n522Vn]xu
n. ~4.2!

It follows from Lemma 5 that the following problem:

H dFx~ t !

dt
5un~ t,Fx~ t !!, t.0,

Fx~0!5x, x>0,

has a unique solutionFx(t)PC1(0,Tn) and xPR1→Fx(t)PR1 is an isomorphism. SetS(t)
5Vn(t,Fx(t)). ThenS(0)5Vn(0,x)5V0

n(x) and

dS

dt
5] tV

n~ t,Fx~ t !!1]xV
n~ t,Fx~ t !!

dFx~ t !

dt
5] tV

n~ t,Fx~ t !!1un~ t,Fx~ t !!]xV
n~ t,Fx~ t !!

522Vn~ t,Fx~ t !!]xu
n~ t,Fx~ t !!

522S]xu
n~ t,Fx~ t !!,

due to~4.2!. From this and~3.26!, we get

] t$S~ t !@]xF
x~ t !#2%50,

and so

S~ t !@]xF
x~ t !#25S~0!@]xF

x~0!#25S~0!, ~4.3!

consequentlyS(t)>0. SincexPR1→Fx(t)PR1 is an isomorphism, we get that

Vn~ t,x!>0.

Step 3:To get somea priori estimates.
Since

un~ t,x!5E
0

`

h~x,y!Vn~ t,y!dy

5e2x/2E
0

x

eyVn~ t,y!dy1ex/2E
x

`

e2yVn~ t,y!dy2e2x/2E
0

`

e2yVn~ t,y!dy,

]xu
n~ t,x!52e2x/2E

0

x

eyVn~ t,y!dy1ex/2E
x

`

e2yVn~ t,y!dy1e2x/2E
0

`

e2yVn~ t,y!dy,

we get

un~ t,x!1]xu
n~ t,x!5exE

x

`

e2yVn~ t,y!dy>0,

and so

2]xu
n~ t,x!<un~ t,x!<iun~ t,x!iL`<iun~ t,x!iH1(R1)

5iu0
niH1(R1)<iu0

niH2(R1)<iu0iH2(R1) .

Then by multiplying 2Vn to ~4.2!, integrating the resulting identity overR1 associated withx and
performing integration by parts, we obtain
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d

dt
iVn~ t,• !iL2(R1)

2
523E

R1
~Vn~ t,x!!2]xu

n~ t,x!dx<3iu0iH2(R1)iVn~ t,• !iL2(R1)
2 .

It follows from Gronwall’s inequality that

iVn~ t,• !iL2(R1)<iV0
niL2(R1)e

3/2iu0iH2(R1)t<iu0
niH2(R1)e

3/2iu0iH2(R1)t<iu0iH2(R1)e
3/2iu0iH2(R1)t,

and so

iun~ t,• !iH2(R1)<iVn~ t,• !iL2(R1)<iu0iH2(R1)e
3/2iu0iH2(R1)t.

Consequently,;T.0,$un% is uniformly bounded inL`(0,T;H2(R1)ùH0
1(R1)).

On the other hand,

i] tu
niL`(0,T;L2(R1))<iun]xu

niL`(0,T;L2(R1))1i]xp
niL`(0,T;L2(R1))

<2 sup
0,t,T

iun~ t,• !iH2(R1)
2

<2iu0iH2(R1)
2 e3iu0iH2(R1)T,

that is,$] tu
n% is uniformly bounded inL`(0,T;L2(R1)).

Step 4:Passing to the limit.
Since ;T.0, $un% and $] tu

n% are uniformly bounded inL`(0,T;H2(R1)ùH0
1(R1)) and

L`(0,T;L2(R1)), respectively, there exists a subsequence of$un%, still denoted by$un%, and
some functionuPL`(R1;H2(R1)ùH0

1(R1))ùC(R1;Cloc
1 (R1)), ] tuPL`(R1,L2(R1)) by the

diagonal process of choice to$un%, such that

un⇀* u, as n→` in L`~0,T;H2~R1!ùH0
1~R1!!, ~4.4!

] tu
n⇀* ] tu, as n→` in L`~0,T;L2~R1!!, ~4.5!

un→u, as n→` in C~@0,T#;Cloc
1 ~R1!!, ~4.6!

for anyT.0. Then by the same method of passing to the limit in the proof of the existence o
local solution, we obtainuPC(@0,T#;H2(R1)ùH0

1(R1))ùC1(@0,T#;H0
1(R1)), and

] tu1u]xu1]xp50, a. e. @0,T#3R1.

SinceT is arbitrary, we get thatuPC(@0,̀ );H2(R1)ùH0
1(R1))ùC1(@0,̀ );H0

1(R1)), and

] tu1u]xu1]xp50, a. e. @0,̀ !3R1,

which proves that the solution exists globally in time. Finally the solution must be unique d
Remark 2.

We complete the proof of Theorem 3.
Remark 3:The relation~4.3! is not accidental. It actually represents something fundament

the periodic case, when the Camassa–Holm equation is a re-expression of geodesic flow
diffeomorphism group of the circle endowed with theH1-right-invariant metric; this geometric
interpretation was first described by Misioek.24 Within the geometric framework it turns out tha
this relation represents conservation of momentum and is a consequence of Noether’s the25
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V. BLOW-UP

Theorem 4: Let u0PH2(R1)ùH0
1(R1) with ]xu0( x̄)<2&iu0iH2(R1) for some x̄PR1.

Then the strong solution to (1.1)–(1.3) blows-up in finite time.
Proof: Let S(t)5]xu(t,x(t)) with x(0)5 x̄. It follows from Lemma 5 that

dx~ t !

dt
5u~ t,x~ t !!,

then

dS

dt
5]xtu1]xxu

dx~ t !

dt
5]xtu1u]xxu.

On the other hand, applying]x to ~1.1! we have

]xtu52~]xu!22u]xu2]xxp52 1
2 ~]xu!22u]xxu2p1u2.

Thus

dS

dt
52

1

2
S21u22p. ~5.1!

Observing thatp>0, expression~5.1! can be transformed in

dS

dt
1

1

2
S2<u2<iu~ t,• !iL`(R1)

2 <iu0iH2(R1)
2 ,

that is

dS

dt
<iu0iH2(R1)

2
2S2/2.

Solving this inequality, we obtain

S01k

S02k
ekt21<

2k

S2k
,

wherek5&iu0iH2(R1) andS05S(0)5]xu(0,x(0))5]xu0( x̄), and so

S<
2k

S01k

S02k
ekt21

1k.

Taking T051/k ln (S02k)/(S01k).0, we get

lim
t→T0

2

S~ t !< lim
t→T0

2

2k

S01k

S02k
ekt21

1k52`,

which implies

lim
t→T0

2

iu~ t,• !iH2(R1)5`,
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sinceu]xu(t,x)u<i]xu(t,•)iL`(R1)<iu(t,•)iH2(R1) .
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We give a detailed study of the asymptotic behavior of field commutators for
linearly polarized, cylindrically symmetric gravitational waves in different physi-
cally relevant regimes. We also discuss the necessary mathematical tools to carry
out our analysis. Field commutators are used here to analyze microcausality, in
particular the smearing of light cones owing to quantum effects. We discuss in
detail several issues related to the semiclassical limit of quantum gravity, in the
simplified setting of the cylindrical symmetry reduction considered here. We show,
for example, that the smallG behavior is not uniform in the sense that its functional
form depends on the causal relationship between space–time points. We consider
several physical issues relevant for this type of models such as the emergence of
large gravitational effects. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1769612#

I. INTRODUCTION

Among the many symmetry reductions of general relativity that have been considered
past, linearly polarized cylindrical waves~also known as Einstein–Rosen waves1,2! have been the
focus of intensive study. They provide a model with an infinite number of degrees of freedom
can be exactly solved in spite of the fact that it is nonlinear. This is not only true classicall
also quantum mechanically, and hence this system is a valuable tool to explore the physi
may be found if a successful quantization of full general relativity is ever achieved.3–6

One of the main reasons behind this success is the fact that the physical Hamiltonia
function of the free Hamiltonian of a 211 dimensional, axially symmetric, massless scalar fi
evolving in an auxiliary Minkowskian background.4,5,7 In a previous paper6 we took advantage o
this fact to study the quantum corrections to the space–time structure by considering the c
tator of this scalar field at different space–time points. As is well known, microcausalit
quantum field theories can be discussed by looking at the commutator of quantum fiel~or
anticommutator in the case of fermions!. In the standard examples the microcausality requirem
means that this~anti!commutator must vanish for spatially separated space–time points. A si
argument can be made for vector fields, though issues of gauge invariance change some
conclusions; in particular if one computes the commutator of the four-vector potentialAm at two
spatially separated points, it may be different from zero in some gauges, even though it is a
true that the commutator of gauge invariant objects is zero for such points.

The issue of gauge invariance in the context of cylindrical gravitational waves has
discussed at length by Bicˇák and collaborators.8 These authors show that is is legitimate to use
Ashtekar–Pierri gauge fixed action3 written in terms of the scalar field that encodes the phys

a!Electronic mail: jfbarbero@imaff.cfmac.csic.es
b!Electronic mail: mena@iem.cfmac.csic.es
c!Electronic mail: eduardo@imaff.cfmac.csic.es
34980022-2488/2004/45(9)/3498/35/$22.00 © 2004 American Institute of Physics
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information in this model to obtain gauge invariant structures such as Dirac observables o
matrix. This justifies the computation of the type of objects—field commutators—that we w
considering here to extract conclusions about the quantum structure of space–time.

The particular problem that we will be concerned with in this paper is the detailed study o
field commutator~given as a certain integral! and, in particular, its limiting behavior when the tim
and length separations are much larger than the natural length scale of the problem—the
length. In order to do this the procedure of expanding the integrand of the field commutato
power series in the gravitational constant and other asymptotic parameters is not useful. In
will be necessary to adapt some methods developed for the asymptotic analysis of integr
get a consistent procedure to expand the relevant objects as asymptotic series. It is pos
understand thisa posteriorias a consequence of the fact that some limiting behaviors~i.e., in G)
of the field commutator change in a nontrivial way as the space–time intervals go from spa
to timelike or when one of the space–time points lies in the symmetry axis. Also the func
dependence in some of these parameters is highly nonpolynomial. This is not what one
expect to obtain in the familiar perturbative treatment of quantum field theories~QFT’s!.

The paper is divided in two main sections: A physical discussion of the behavior of the
commutator followed by a detailed description of the asymptotic methods necessary to stu
different physically relevant regimes. Specifically, after this introduction we will give the diffe
asymptotic expansions for all the relevant parameters~involving the G→0 limit and also the
limits in which the difference in the time coordinates or the radial coordinates go to infin!.
Using them we will discuss the main physical consequences of the quantization of this mo
far as microcausality is concerned. In this respect it is particulary interesting to point ou
existence of a certain type of large quantum mechanical effects~in a sense that will be mad
precise later! when one of the space–time points in the field commutator lies in the symmetry

A technical issue that should be considered is the role of regulators in the final ph
results. As is well known regulators are necessary to give sense to otherwise ill-defined o
They must be introduced, for example, to obtain a finite norm vector by acting with the
operator on the vacuum state. Cutoffs are a simple way to regulate amplitudes. It is conce
that physical regulators exist that restrict, for example, the integration intervals for some ph
objects~such as the field commutators considered here! to finite real intervals. However, it is als
possible that they are just a convenient way to render some physical objects finite in such
that no footprint is left in the final results. This is the philosophy that one has in mind in the
renormalization scheme where cutoffs are taken to infinity and disappear from physical qua

The point of view of this paper is that the un-regulated objects~integrals!, when defined, are
a good approximation to the regulated ones. The asymptotic analysis of regulated comm
and their relation with the un-regulated ones will be discussed elsewhere.

In the usual perturbative QFT computations Green functions, matrix elements, and s
objects are expanded as power series in the coupling constants of the model with coefficie
are usually written as regulated integrals. This is a necessary step because it is usually not p
to write them in closed form. Here the situation is different because it is possible to write
expressions for the objects of interest~field commutators in the present example! that depend on
the coupling constants in a nontrivial way. This has the advantage of allowing us to use ap
mation techniques specially adapted to their specific form and much better suited to its st
also permits to consider some problems that may be difficult to tackle for the usual QFT’
example, one can try to figure out if the asymptotic behavior of some regulated object coin
with its asymptotic behavior after the regulator is removed.

A detailed technical discussion of the techniques needed to explore the relevant asym
regimes is presented in Sec. III. These techniques will be useful tools in order to analyze
types of physical objects~such as S-matrix elements! so they provide the necessary backgrou
for a perturbative framework properly adapted to this model; this is why we invest some tim
study them here. We end the paper with a summary of the main results, comments, persp
for future work, and several appendices. Numerical and algebraic computations have be
formed with the aid ofMATHEMATICA ®.
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II. THE FIELD COMMUTATOR

We start with a brief description of the model and introduce our conventions and notatio
is well known1,2,9Einstein–Rosen waves correspond to topologically trivial space–times with
linearly independent, commuting, spacelike, and hypersurface orthogonal Killing vector fi
The metric in this case can be writen as

ds25eg2c~2dT21dR2!1e2cR2du21ecdZ2, ~1!

where we are using coordinates (T,R,u,Z), TPR, RP@0,̀ ), uP@0,2p), ZPR, andc andg are
functions only ofR andT. The Einstein field equations for this metric are very simple: The sc
field c must satisfy the wave equation for a massless, axially symmetric scalar field in
dimensions

]T
2c2]R

2c2
1

R
]Rc50,

and the functiong can be expressed in terms of this field on the classical solutions3,5 as

g~R!5
1

2 E0

R

dR̄R̄ @~]Tc!21~] R̄c!2#.

Throughout the paper we will use a system of units such thatc5\51 and defineG[\G3 , where
G3 denotes the gravitational constant per unit length in the direction of the symmetry axis.16 The
metric functiong(R) admits a simple physical interpretation: Apart from a factor of 8G it is the
energy of the scalar field in a ball of radiusR, andg`[ limR→` g(R) the energy of the whole
two-dimensional flat space. Furthermore,g`/(8G) coincides with the HamiltonianH0 of the
system obtained by linearizing the metric~1!.3,6

In order to arrive at a unit asymptotic timelike Killing vector that allows us to introduc
physical notion of energy~per unit length! it is convenient to use coordinates (t,R,u,Z) defined by
T5e2g`/2t. In these coordinates the metric takes the form2,9

ds25eg2c~2e2g`dt21dR2!1e2cR2du21ecdZ2.

By choosing a metric functionc with a sufficiently fast fall-off asR→`, this metric describes
asymptotically flat space–times with a certain~nonzero! deficit angle and such that] t is a unit
timelike Killing vector in the asymptotic region.

The Einstein field equations can be obtained from a Hamiltonian action principle9–11 where
the HamiltonianH is a function of that corresponding to the free scalar field,H0 :

H5E~H0!5
1

4G
~12e24GH0!.

In the following we will refer tot as the physical time and toH as the physical Hamiltonian.
In terms of theT-time and imposing thatc be regular atR50,3 the classical solutions for the

field c can be written as

c~R,T!5A4GE
0

`

dk J0~Rk!@A~k!e2 ikT1A†~k!eikT#,

whereA(k) @and its complex conjugateA†(k)] are determined by the initial conditions.17 The free
HamiltonianH0 can be written now as

g`5H05E
0

`

dk kA†~k!A~k!.
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Using this expression, we can obtain thet-evolution of the field

cE~R,t !5A4GE
0

`

dk J0~Rk!@A~k!e2 ikte2g`/2
1A†~k!eikte2g`/2

#.

The quantization can be carried out by following the usual steps. We introduce a Fock
in which ĉ(R,0), the quantum counterpart ofc(R,0), is an operator-valued distribution.12 Its
action is determined by those ofÂ(k) and Â†(k), the annihilation and creation operators wi
nonvanishing commutators given by

@Â~k1!,Â†~k2!#5d~k1 ,k2!.

Explicitly,

ĉ~R,0!5ĉE~R,0!5A4GE
0

`

dk J0~Rk!@Â~k!1Â†~k!#.

Evolution in T is given by the unitary operatorÛ0(T)5exp(2iTĤ0) where

Ĥ05E
0

`

dk k Â†~k!Â~k!

is the quantum Hamiltonian operator of a three-dimensional, axially symmetric scalar field
quantum scalar field in the Heisenberg picture is hence given by

ĉ~R,T!5Û0
†~T!ĉ~R,0!Û0~T!5A4GE

0

`

dk J0~Rk!@Â~k!e2 ikT1Â†~k!eikT#.

If we choose the physical timet to define the evolution in our model, the quantum Hamiltonian

Ĥ5E(Ĥ0)5 (12e24GĤ0)/(4G) and unitary evolution is given byÛ(t)5exp(2itĤ). With this
time evolution the annihilation and creation operators in the Heisenberg picture are

ÂE~k,t ![Û†~ t !Â~k!Û~ t !5exp@2 i tE~k!e24GĤ0#Â~k!,

ÂE
†~k,t !5Â†~k! exp@ i tE~k!e24GĤ0#,

whereE(k)5 (12e24Gk)/(4G), and the field operator evolved with the physical Hamiltoni
@that we denote asĉE(R,t)] is given by

ĉE~R,t !5A4GE
0

`

dk J0~Rk!@ÂE~k,t !1ÂE
†~k,t !#.

The field commutator@ĉE(R1 ,t1),ĉE(R2 ,t2)# can be computed from these expressions.6 One of
its interesting features is the fact that it is not proportional to the identity as in the case o
theories~or if we consider the quantum evolution defined by the HamiltonianH0 of the linearized
model! but is a nondiagonal operator in the chosen basis. We are hence led to consider its
elements. We will concentrate here on the most relevant of these elements~at least from the
perspective of the microcausality of the classical background of the model!, namely the vacuum
expectation value, which is explicitly given by

1

8iG
^0u @ĉE~R1 ,t1!,ĉE~R2 ,t2!# u0&5E

0

`

dk J0~R1k!J0~R2k!sinF t22t1

4G
~12e24Gk!G . ~2!
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As we can see it depends on the time coordinates through their differencet22t1 ~which we will
assume to be, e.g., positive! and depends symmetrically onR1 andR2 . The functional dependenc
in G is less trivial, a fact that will require special attention when studying the limit in which
relevant lengths and time differences are much larger than the Planck length. For comp
purposes we remember that

1

8iG
^0u @ĉ~R1 ,T1!,ĉ~R2 ,T2!# u0&5E

0

`

dk J0~R1k!J0~R2k!sin@k~T22T1!#. ~3!

In the following it will be convenient to refer the dimensional parameters of the integr
another length scale that we choose asR1 . We hence defineR25rR1 , t22t15tR1 , l
5R1/(4G) and rewrite~2! as

1

8iG
^0u @ĉE~R1 ,t1!,ĉE~R2 ,t2!# u0&5

l

R1
IH E

0

`

dqJ0~lq!J0~rlq!ei tl(12e2q)J , ~4!

after introducing the new variablek5q/(4G). HereI denotes the imaginary part.

A. Asymptotic behavior in r: Smearing of light cones

The integral~4! can be written as a standardh-transform,14 with asymptotic parameterr, by
the change of variablest5ql,

1

R1
IH E

0

`

dt J0~rt !J0~ t !ei tl(12e2t/l)J . ~5!

In this case a straightforward Mellin transform analysis14 ~discussed in Sec. III! gives the follow-
ing asymptotic behavior in ther→` limit

1

R1
IH 1

r
1

1

r3 S 1

4
1

t2

2
1

i t

2l D1
9

r5 S 1

64
2

i t

24l3 1
i t

8l
1

t2

8
1

i t2

4l
2

7t2

24l2 1
t4

24D1OF 1

r7G J
5

1

R1
H t

2lr3 1
1

r5 S 9t

8l
2

3t

8l3 1
9t2

4l D1OF 1

r7G J . ~6!

The asymptotic behavior in ther→` limit gives a precise and quantitative description of t
smearing of~cylindrically symmetric! light cones because it shows, for example, that for fix
values ofR1 and t22t1 the expectation value of the commutator~over 8iG) falls off for large
values ofR2 as

2G~ t22t1!

R2
3 1OF 1

R2
5G .

This means that even for large spatial separations the scalar field that encodes the gravi
field does not commute with itself.

In the r→01 limit, on the other hand, we get

1

R1
IH E

0

`

dtJ0~ t !ei tl(12e2t/l)J 1O~r!. ~7!

This shows that the commutator is a continuous function ofr in r50, a fact that will be important
in the analysis of the semiclassical limit.
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B. Asymptotic behavior in t : Large quantum gravity effects

The integral in~5! has the convenient form of ah-transform if the asymptotic parameter
chosen to ber; however, this is no longer true if the asymptotic parameter ist ~which corresponds
to considering large separations in the time coordinates!. This introduces some mathematic
difficulties in the asymptotic analysis that will be discussed later.

In this case one has to perform separate analyses forr50 andrÞ0. In r50 one finds that the
asymptotic behavior whent→` is given by

1

R1
F l

2p logtG1/2

I$ei [p/4 1tl2l log(tl)]e~p/2! lG~ il!1e2 i [p/4 2tl2l log(tl)]e2 ~p/2! lG~2 il!%

1OF 1

~ logt!3/2G , ~8!

whereas forrÞ0 we find

1

2pR1Ar logt
I$ei [p/2 1tl2l(11r)log(tl)]e~p/2! l(11r)G@ il~11r!#

1e2 i [p/2 2tl2l(11r)log(tl)]e2 ~p/2! l(11r)G@2 il~11r!#

1ei [ tl2l(12r)log(tl)]e~p/2! l(12r)G@ il~12r!#

1ei [ tl2l(r21)log(tl)]e~p/2! l(r21)G@ il~r21!#%1OF 1

~ logt!2G . ~9!

The most striking feature of these expressions is the unusual dependence on the asy
parametert ; in fact the dependence on inverse powers of logarithms~especially on the inverse
square root of logt) cannot be obtained by direct application of the usual asymptotic expres
derived by Mellin transform techniques. It is also remarkable how slowly the commutator d
in t—in particular in the axisr50—a fact that is suggestive of the large quantum gravity effe
discussed by Ashtekar in Ref. 4. Outside the axis the decay is quicker but still rather sl
consequence of the different asymptotic behaviors int for r50 andrÞ0 is the impossibility to
recover~8! as the limit whenr→0 of ~9!. It is interesting to point out that the frequency of th
oscillations of the commutator in thet parameter is controlled by the value ofl ~proportional to
the inverse ofG) in such a way that although the amplitude of the oscillations decays very sl
they will average to the value of the free commutator on scales much larger than the Planck

The t→0 limit is simpler to analyze. Actually we find that the series obtained by expan
ei tl(12e2t/l) as a power series ine2t/l, exchanging integration and infinite sum, and comput
the resulting integrals gives an expansion that converges to the value of the commutator.

C. Asymptotic behavior in l: The semiclassical limit

The possibility of studying the asymptotic behaviors inr andt by using the powerful math-
ematical tools provided by the theory of Mellin transforms relies on the fact that these inte
can be written ash-transforms of the type mentioned above. However, this is no longer pos
if one wants to study the limitl→` ~corresponding to the situation whenR1 is much larger than
the Planck length! because of the particular dependence of these integrals onl. There is, however,
a way out of this if one is willing to abandon Mellin transforms: writing the integral in~4! as
a multiple integral by introducing the integral representation of the Bessel functionJn

(n50, 1, ...),

Jn~z!5
1

2p i R
g

dt

tn11 e~z/2! (t2 1/t),
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whereg is a closed, positively oriented, simple path in the complex plane surrounding the o
By doing this the right hand side~r.h.s.! of ~4! can be rewritten in the following form:

2
1

R1
IH lei tl

4p2 E
0

`

dq R
g1

dt1 R
g2

dt2
1

t1t2
el[ ~q/2! (t12 1/t1)1~rq/2! (t22 1/t2)2 i te2q]J . ~10!

Although the contoursg1 andg2 may be different in principle we will take them equal in practic
Besides, we will see in the next section that it is convenient to choose them in a specific w

As in thet case one has to perform separate asymptotic analyses forr50 andrÞ0. In order
to proceed it is necessary to divide the~r, t! plane into the same regions that appear in
discussion of the ‘‘free’’ commutator6 ~3! which corresponds to the evolution dictated by t
HamiltonianH0 ~see Fig. 1!.

In r50 one finds that the asymptotic behavior whenl→` is given by

1

R1
IH i

At221
1

eil[ t2 log t21]

Alogt
J 1OF1

lG t . 1, ~11!

1

R1

t~112t2!

2l~12t2!5/21OF 1

l2G t ,1. ~12!

If rÞ0 the asymptotic behavior in the different regions shown in Fig. 1 is the following:
Regions IA and IB

t

2pR1l H 2@11r412t223t412r2~t221!#A~11r!22t2

~11r2t!2~12r1t!2~211r1t!2~11r1t!2 ESA 4r

~11r!22t2D
2

2t2

@r41~t221!222~11t2!r2#A~11r!22t2
KSA 4r

~11r!22t2D J 1OF 1

l2G . ~13!

FIG. 1. Regions in the~r, t! plane used in the discussion of thel asymptotics. Region I corresponds to 0,t,ur21u,
region II to ur21u,t,r11, and region III tor11,t.
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Region II

1

pR1Ar
KSAt22~r21!2

4r D 1
1

R1
IH e2 i p/4eil[ t1ur21u(11 log t/ur21u)]

A2plru12ru log
t

u12ru
J 1OF 1

l3/2G . ~14!

Region III

2

pR1

1

At22~12r!2
KSA 4r

t22~12r!2D 1
1

R1
IH e2 i p/4eil[ t2ur21u(11 log t/ur21u)]

A2plru12ru log
t

u12ru

1
eip/4eil[ t1(r11)(log ~11r/t! 21)]

A2plr~11r! log
t

11r
J 1OF 1

l3/2G . ~15!

Here K(k) and E(k) denote the complete elliptic integrals of the first and second kind, res
tively, defined by

K~k![E
0

p/2 du

A12k2 sin2 u
, E~k![E

0

p/2

duA12k2 sin2 u.

Some comments are in order now. The first is that thel independent terms in the above expre
sions correspond to the commutator obtained from the free HamiltonianH0 both in the axis and
outside the axis. The remaining terms~except whenr50 andt.1) are corrections to this free
commutator that fall off to zero asl→`, and have an additional, non-polynomial dependenc
1/l. Since the free commutator defines a characteristic light cone structure these terms are
sible for the smearing of the light cones in this model. It is worthwhile pointing out that
asymptotic behavior inl is different in regions I, II, III, and in the axis—this is the reason th
explains the appearance of singularities in the borders between adjacent regions18—and it has a
nonpolynomial dependence on 1/l. This kind of behavior cannot possibly appear in an ordin
perturbative QFT where the relevant objects~propagators, Green’s functions, and so on! are
expanded as power series in the coupling constants. One of the novel features of the appro
we follow in this paper is that by using more sophisticated approximation techniques, and
advantage of the fact that we have closed explicit expressions for the objects of interest,
able to extract such nontrivial behaviors. In the axis we notice that fort.1 there is a
l-independent contribution that corresponds to the free commutator and an oscillating contri
with a frequency that depends onl ~this term is similar to the one obtained in the asympto
analysis fort!. For large values ofl this term oscillates very fast and averages to zero.
t,1 we get a correction to the free commutator~which is zero in region I! that goes to zero as
1/l. Outside the axis we see that the corrections to the free commutator fall-off as 1/l in region
I—outside the light cone—but only as 1/Al ~with the additional non-polynomial terms! in regions
II and III. The presence of two oscillating terms in region III produces some interference e
that manifest themselves as a checkered pattern in plots of the commutator—especially c
the axis—which suggests a division of space–time into cells of a size governed by the value
gravitational constant~throughl). These are shown in Fig. 2 where we plot the free commut
over 8iG plus the first asymptotic correction, given by the above expressions in each o
regions. For comparison we also display a plot constructed with the power series represe
obtained in Ref. 6:
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1

pR1Ar
H sin~lt! (

n50

`
~21!n~lt!2n

~2n!!
Q2 1/2@s2n~r!#

2cos~lt! (
n50

`
~21!n~lt!2n11

~2n11!!
Q21/2@s2n11~r!#J , ~16!

where

sn~r!5
n21l2~11r2!

2rl2 ,

and Q21/2(x)5pF(3/4,1/4;1; 1/x2)/A2x @for x.1] is the associated Legendre function of t
second kind.13 As can be seen, the result of the asymptotic approximation matches that ob
with the power series expansion~16!.19 In Figs. 3 and 4 we also plot the commutator as a funct
of t for r50 and a value ofr different from zero. It is interesting to point out that, ast grows, a
distinctive beating pattern appears due to the interference of terms in the asymptotic expre
for region III mentioned above.

Comparison with the results of numerical integration confirm the accuracy of the appro
tion provided by the asymptotic expressions, as long as one is far enough from the bou
between regions. This is shown in Figs. 3 and 4, where we compare the asymptotic approxi
with the result obtained by numerically computing the field commutator atr50 andr51.5.

The limit l→0 is directly obtained by truncating~16! to the desired number of terms.

III. ASYMPTOTIC ANALYSIS: MATHEMATICAL DETAILS

We discuss in detail here the techniques used to obtain the asymptotic expansions discu
the previous section. Even though we will be mostly employing standard techniques it is
theless necessary to adapt them to the different parameters that appear in the problem,~r, t, l!.

FIG. 2. Density plot of the asymptotic approximation inl for the field commutator~over 8iG) as a function of~r, t! for
G50.01 andG50.02. Notice the singular behavior of the approximation in the boundaries between the regions I,
III, and on the axis. For comparison we show part of the plot forG50.02 obtained with the series expansion~16!. Sections
of these plots forr50 andr51.5 with G50.02 are shown in Figs. 3 and 4.
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Before studying the asymptotic expansions we present some results on Mellin transform
explain the basics of their use to obtain the asymptotic behavior of integrals.

Whenever possible it will prove useful to write the integrals under consideration
h-transforms, i.e., objects of the type

FIG. 3. Asymptotic approximation inl for the field commutator~over 8iG) as a function oft for r50 andG50.02. We
plot, for comparison, the commutator corresponding to the free Hamiltonian discussed in Ref. 6. The solid line corre
to a numerical computation of~4!. As can be seen the asymptotic approximation is very good for most of the valuest.

FIG. 4. Asymptotic approximation inl for the field commutator~over 8iG) as a function oft for r51.5 and
G50.02. We plot, as before, the contribution corresponding to the free Hamiltonian and a numerical computation
commutator.
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H@ f ;z#ªE
0

`

h~zt ! f ~ t !dt,

wherez is the asymptotic parameter~that in practice approaches either 0 or`! and f andh are
locally integrable functions in~0,̀ ! @functions that are integrable in every closed interval
~0,̀ !#. This will allow us, in many cases, to employ standard asymptotic techniques~see, e.g. Ref.
14! based on Mellin transforms20 that can be summarized in the following.

Theorem: Let h:(0,̀ )°C and f:(0,̀ )°C be locally integrable functions. Let us assum
that they, respectively, have the following asymptotic expansions when t→` and t→01:

h~ t !;e2dtn (
m50

`

(
n50

N(m)

cmnt
2r m~ log t !n ~17!

@R(d)>0, n.0, R(r m) grows monotonically tò , and N(m).0 is a finite integer for each value
of m] and

f ~ t !;e2qtm (
m50

`

(
n50

N̄(m)

pmnt
am~ log t !n ~18!

@R(q)>0, m.0, R(am) grows monotonically tò and N̄(m).0 is a finite integer for each value
of m].

Let M@h;z# and M@ f ;z# be the Mellin transforms of h and f~in the generalized sense, se
Ref. 14 for details!, holomorphic in the stripsa,R(z),b and g,R(z),d that we assume
overlapping. Let us suppose also that the Parseval identity holds:21

H@ f ;z#5
1

2p i Er 2 i`

r 1 i`

dzz2zM @h;z#M @ f ;12z#[
1

2p i Er 2 i`

r 1 i`

dzz2zG~z!, ~19!

with r in the intersection of the holomorphicity strips. Iflimuyu→` G(x1 iy)50 for each
xP@r ,R#, (RPR) and *2`

` dyuG(R1 iy)u is finite then

H@ f ;z#;2 (
r ,R(z),R

res~z2zM @h;z#M @ f ;12z# !,

is a finite asymptotic expansion of H@ f ;z# as z→` with respect to the asymptotic sequen
F j ,m(z)5$z2a j(logz)nj2m%, m50, 1,...,n, j 50, 1,... with error O(z2R). If the previous hypoth-
eses hold for arbitrary values of R we get an asymptotic expansion with an infinite numb
terms.

In the following we will only need to consider the case whendÞ0 andq50. The result of the
previous theorem can be written as

H@ f ;z#; (
m50

`

z212am (
n50

N̄(m)

pmn(
j 50

n S n
j D ~2 logz! jM (n2 j )@h;z#uz511am

, ~20!

with M (k)@h;z# denoting thekth derivative of the Mellin transform with respect to toz.

A. Asymptotic behavior in r

We write the integral that gives the field commutator in the form~5! and chooser as the
asymptotic parameter. In order to apply the previous theorem we need the asymptotic expan
f (t)5J0(t)ei tl(12e2t/l) ast→01 and the Mellin transform ofh(t)5J0(t). From the first we get
ak5k (k50, 1,...), p0051,p105 i t, etc. The Mellin transform ofh is given by
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M @h;z#5
2z21G~z/2!

G~12z/2!
.

SinceM @h;k#50 for even values ofk, we get the asymptotic expansion in odd powers ofr
given in ~6!.

In order to obtain the asymptotic expansion of the commutator whenr→01 we change
variables in~5! according tos5rt,

1

rR1
IH E

0

`

ds J0~s!J0S s

r Dei tl(12e2 s/rl)J ,

take 1/r as the asymptotic parameter, and switch the roles14 of f and h @ f (s)5J0(s), h(s)
5J0(s)ei tl(12e2s/l)] . The Mellin transform ofh is given now by

M @h;z#5E
0

`

dt tz21J0~ t !ei tl(12e2t/l),

which converges in the strip 0,R(z),3/2. We do not know any closed expression for th
integral but it suffices to obtain the first term of the asymptotic expansion of the commutator
r→01. The asymptotic expansion off gives nowak52k (k50, 1,...), p0051,p10521/4, etc.
and using the theorem we obtain the expansion~7!. Under mild restrictions14 it can be shown that
M @h;z# admits an analytic continuation forR(z)→` which is meromorphic, at worst, in th
complex plane, and that can be used to get further terms of the analytic expansion asr→01.
Notice, however, that beyond the first term we cannot use the integral representation of the
transform ofh given above because the integral becomes divergent forz52k; k>1. This prevents
us from getting further terms in the asymptotic expansion asr→01 by using this method.

B. Asymptotic behavior in t

The integral in~4! is not anh-transform whent is chosen as the asymptotic parameter but
be written as such by using the change of variablesu5le2t/l. This gives

l

R1
IH ei tlE

0

l

du
e2 i tu

u
J0S l log

u

l D J0S rl log
u

l D J . ~21!

Even though this integral has now the appropriate form withf (u)
5 (1/u) x [0,l] (u)J0@l log (u/l)#J0@rl log (u/l)# andh(u)5e2 iu, the asymptotic behavior off (u)
asu→01 is not of the type considered in the theorem. This has some unpleasant consequ
the Mellin transform off cannot be analytically continued as a meromorphic function onC, and
we cannot use the expressions given in the theorem for the asymptotic behavior ofh-transforms.
This forces us to follow a more complicated approach. We will consider the casesr50 andr
Þ0 separately.

1. rÄ0

We have to study the integral

l

R1
IH ei tlE

0

l

du
e2 i tu

u
J0S l log

u

l D J , ~22!

when t→`. Let us seth(u)5e2 i tu and f (u)5x [0,l] (u) (1/u) J0@l log (u/l)# @remember that
h-transforms are defined as integrals over~0,̀ !#. The Mellin transforms of these functions are

M @h;z#5t2zG~z!e2 ipz/2,
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convergent in the strip 0,R(z),1, and

M @ f ;z#5
lz21

Al21~z21!2
,

which converges in 1,R(z). Several comments are in order. First we see that the Mellin tr
form of f cannot be analytically continued as a meromorphic function over the complex p
because of the cuts coming from the square root. If we choose the branch22 given by log(z)
5loguzu1i arg(z) with arg(z)P(2p,p# the cuts are those parts of the imaginary axis withuzu>l.
Another comment is that the regions where the Mellin transforms converge do not overlap
fact precludes us from directly employing the Mellin–Parseval formula~19!. The reason can be
traced back to the behavior ofh(t) as t→01; fortunately this problem can be fixed in a straigh
forward way. First we rewrite~22! as

l

R1
IH ei tlE

0

l

du
~e2 i tu21!

u
J0S l log

u

l D J 1
il

R1
IH ei tlE

0

l

du
1

u
J0S l log

u

l D J
5

1

R1
IH ei tlF11lE

0

l

du
~e2 i tu21!

u
J0S l log

u

l D G J .

In order to study the last integral, we choosef (u) as above andh(u)5x [0,l] (u)@e2 i tu21#. The
Mellin transform ofh can be written in terms of confluent hypergeometric functions but one
work with a simpler expression by realizing that, sincef (u) is zero if u.l, one can replaceh
with a new functionh̃ that differs from it only foru.l:

h̃:R1→R:s°H e2 i ts21 sP~0,l!

e2 i ts sP@l,`!.

The result is easily seen to be independent of this extension ofh. The integral giving the Mellin
transform ofh̃ converges in the strip21,R(z),1 with M @ h̃;z#5t2zG(z)e2 ipz/22 lz/z. Since
we now have overlapping convergence strips we can use the Mellin–Parseval formula and
a Mellin–Barnes representation of our integral as

1

R1
IH ei tlF11

l

2p i Ec2 i`

c1 i`

dz
t2zl2zG~z!e2 ipz/221/z

Al21z2 G J
5

1

R1
IH ei tlF11

l

2p i Ec2 i`

c1 i`

dz
t2zl2zG~z!e2 ipz/2

Al21z2 G J , ~23!

with R(c)P(21,0). We have employed the fact that

E
c2 i`

c1 i`

dz
dz

zAl21z2
50.

The analytic continuation of the integrand in the r.h.s. of~23! is immediate. It has algebrai
singularities atz56 il ~see Fig. 5! with cuts in those points of the imaginary axis whe
uzu.l, and simple poles on2zPNø$0%.

In order to study the limitt→01 we can displace the integration contour in~23! leftwards
parallel to the imaginary axis.23 A simple analysis using the asymptotics ofG(z) for large values
of I(z) shows that the series given by the residues of the integrand at the poles2zPN, namely
                                                                                                                



g the
. This

ence of

o
as.
as

cut

ds, for

f

3511J. Math. Phys., Vol. 45, No. 9, September 2004 Asymptotic analysis of field commutators

                    
l

R1
IH ei tl(

k50

`
~2 ilt!k

k!Al21k2 J ,

converges to the value of the integral. This is precisely what one would get by expandin
exponential in~22!, exchanging sum and integration, and computing the integrals that appear
was the procedure used in Ref. 6.

It is not possible to directly get the asymptotic behavior in thet→` limit by displacing the
integration contour rightwards because of the presence of the cut and, even worse, the abs
poles withR(z)>0. One could consider choosing a value forc and write~23! as a real integral in
the variableyPR after the changez5c1 iy . In fact, by doing that one obtains the sum of tw
h-transforms with asymptotic parameter logt that can be studied with the standard formul
Unfortunately, proceeding in this way one gets a trivialzeroasymptotic expansion. The reason,
we will find out later on, is that logt is almost, but not quite, the right asymptotic parameter.24

The solution to our problem is displacing the integration contour all the way to the
~choosingc→02) as shown in Fig. 6.

The contribution of the arcsG2 and G4 to the integral in the r.h.s. of~23! goes to zero as
2c5e→01. The remaining three contributions to the integral~without prefactors! are

G1 2E
l

`

dy
e2 iy log(lt)epy/2G~ iy !

Ay22l2
,

G3 2
p i

l
1 iP.V.E

2l

l

dy
e2 iy log(lt)epy/2G~ iy !

Al22y2
,

G5 E
2`

2l

dy
e2 iy log(lt)epy/2G~ iy !

Ay22l2
.

The asymptotic expansions of these integrals can be obtained by a variety of metho
example by steepest descents. Nonetheless, it is now possible to employ formula~20! and obtain,
in principle, the asymptotics to any order.

The integral overG1 can be written as the following standardh-transform by the change o
variablesy5l(11s) with sP@0,̀ ):

FIG. 5. Real and imaginary parts of 1/Al21z2 on the curvez52011 is ~corresponding tor50). In the vicinity of the
singularities at is56 il the real and imaginary parts of this function behave as 1/A2l(l7s) (usu,l) and
61/A2l(6s2l) (usu.l).
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2e2 il log(lt)epl/2E
0

`

ds e2 ils log t
e2 ils log lepls/2G@ il~11s!#

As~s12!
.

Takingh(z)5e2 ilz, f (z)5 e2 ilz log leplz/2G@ il(11z)#/Az(z12), and the asymptotic paramete
logt we can use formulas~19! and ~20!. Since the asymptotic behavior off whenz→01 is

f ~z!;
G~ il!

A2z
1O~z1/2!,

andM @h;z#5l2ze2 p iz/2G(z), we get for the integral overG1 an asymptotic expansion in powe
of 1/Alogt with a t oscillating factore2 il log(lt), namely

2e2 il log(lt)1 pl/2 2 p i /4G~ il!HA p

2l logt
1OF 1

~ logt!3/2G J .

A similar argument can be used to calculate the asymptotic expansion of the integral overG5 ,

eil log(lt)2 pl/2 1 p i /4G~2 il!HA p

2l logt
1OF 1

~ logt!3/2G J .

Finally, to get the asymptotics of the integral overG3 we express it in the form

2
p i

l
1 i E

0

l

dy cos@y logt#
e2 iy log lepy/2G~ iy !1eiy log le2py/2G~2 iy !

Al22y2

2 i E
0

l

dy sin@y logt#
eiy log le2py/2G~2 iy !2e2 iy log lepy/2G~ iy !

Al22y2
.

By introducing neutralizers, as in Ref. 14, it is possible to show that the critical points fo
previous two integrals are 0 andl. The contributions to the asymptotic expansion from both po

FIG. 6. Cuts and singularities of the integrand and integration contours in the complex plane for the Mellin–B
representation used in the asymptotic analysis fort→` in the casesr50 andrÞ0.
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can be obtained in a straightforward way using formula~20!. The contribution from zero is
2 p i /l whereas the one froml coincides precisely with the sum of the contributions obtain
before forG1 andG5 . Summing all the terms and substituting the result in~23! we finally get the
behavior int presented in Sec. II.

It is worth remarking that the asymptotic expansions discussed can be written as an osc
factor that depends on logt multiplying an expansion in terms of inverse powers ofAlogt.
Moreover, note that the frequency of these oscillations isexactlythat of the oscillating factor tha
we have already obtained.

2. rÅ0

Consider now the integral ~21!. We set h(u)5e2 i tu and f (u)
5x [0,l] (u) (1/u) J0@l log(u/l)#J0@rl log(u/l)#. The Mellin transform off is

M @ f ;z#5
lz22

pAr
Q2 1/2Fl2~11r2!1~z21!2

2rl2 G .
Proceeding as in ther50 case we get the following Mellin–Barnes representation:

1

pR1Ar
IH ei tlFQ21/2S 11r2

2r D1
1

2p i Ec2 i`

c1 i`

dzS t2zl2zG~z!e2 ipz/22
1

zD
3Q2 1/2S l2~11r2!1z2

2rl2 D G J 5
1

pR1Ar
IH ei tlFQ21/2S 11r2

2r D
1

1

2p i Ec2 i`

c1 i`

dz t2zl2ze2 ipz/2G~z!Q2 1/2S l2~11r2!1z2

2rl2 D G J . ~24!

The main difference with the previous case is the appearance of the associated Legendre f
Q21/2. This function has cuts on the imaginary axis foruI(z)u>lur21u. On the left of the cut the
real and imaginary parts behave as shown in Fig. 7. They become singular in the neighborh
the four pointsz56 ilur21u and z56 il(r11). The real functions that describe each of t
continuous pieces are shown in the plots. Some of them are given byQ21/2(x) evaluated on
x.1. Quite surprisingly, the others can be written in terms of the associated Legendre fu
P21/2 @P21/2(x)5F(1/2,1/2;1; (12x)/2)# with argumentx.21. The fundamental consequenc
of this is a change in the singularity structure of the integrand of~24!.

The limit t→01 can be obtained as we did forr50. The result is given by~16!.

FIG. 7. Real and imaginary parts ofQ21/2@(l2(11r2)1z2)/(2rl2)# on the curvez52011 is for rÞ0.
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By displacing the integration contour rightwards to the cut as in ther50 case~see Fig. 6! we
can split the last integral in~24! into seven different contributions corresponding to the integra
curvesg1 ,...,g7 . It is straightforward to show that the contributions fromg3 andg5 go to zero as
the contour gets closer to the imaginary axis. We are then left with

g1 2E
l(r11)

`

dye2 iy log(lt)epy/2G~ iy !Q2 1/2S y22l2~11r2!

2rl2 D ,

g2

p

2
i E

lur21u

l(r11)

dye2 iy log(lt)epy/2G~ iy !FP2 1/2S y22l2~11r2!

2rl2 D1 iP2 1/2S l2~11r2!2y2

2rl2 D G ,
g4 2 ipQ2 1/2S 11r2

2r D1 iP.V.E
2lur21u

lur21u
dye2 iy log(lt)epy/2G~ iy !Q2 1/2S l2~11r2!2y2

2rl2 D ,

g6

p

2
i E

2l(r11)

2lur21u
dye2 iy log(lt)epy/2G~ iy !FP2 1/2S y22l2~11r2!

2rl2 D
2 iP2 1/2S l2~11r2!2y2

2rl2 D G ,
g7 E

2`

2l(r11)

dye2 iy log(lt)epy/2G~ iy !Q2 1/2S y22l2~11r2!

2rl2 D .

All these integrals can be written as Fourier transforms whose only critical points are the in
tion limits. These can be isolated by using the appropriate neutralizers14 and the integrals so
obtained can be written ash-transforms by straightforward changes of variables. An interes
feature of some of the integrals that arise is the fact that the asymptotic expansion of the
spondingf functions involve logarithms precisely in the form assumed in~18!. This means that in
addition to thepm0 coefficients that appeared in ther50 case we will have also contribution
coming from thepmn’s with nÞ0.

In order to get the asymptotic behavior of the differentf functions close to their singularitie
it is useful to remember the asymptotic expansions ofP21/2(x) and Q21/2(x) at x5211 and
x511, respectively:

P2 1/2~x!;
5

p
log 22

1

p
log~x11!1¯ ,

Q2 1/2~x!;
5

2
log 22

1

2
log~x21!1¯ .

With the previous guidelines, and following the same steps as in ther50 case, it is easy
~albeit lengthy! to deduce~9!. It is possible to arrive at the same result by different methods
are somewhat simpler~i.e., steepest descents! but they only allow to compute the first contributio
to the asymptotic behavior of the field commutator. The advantage of the method employe
is that one can calculate as many terms as desired for the asymptotic expansion just by
more terms in the asymptotic series of the functionf .

C. Asymptotic behavior in l

We will consider now integrals of the form

E
B

A

dq R
g1

dt1 R
g2

dt2 f (0)~q;t1 ,t2!elF(q;t1 ,t2), ~25!
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(0<B,A) whereq is a real variable,t1 and t2 are complex variables andg1,2 are closed paths
~possibly different! in the complex plane. The functionsf (0) andF are supposed to be holomo
phic in the two complex arguments andCn in q ~with n possibly infinite! in an open neighborhood
of the integration region. In the following we will use the notation] i[] t i

, i 51, 2,
¹[(]q ,]1 ,]2), and i¹Fi2[hq(]qF)21h t1

(]1F)21h t2
(]2F)2, wherehq , h t1

, and h t2
are

some functions ofq, t1 , andt2 that will be chosen later in the discussion. This freedom will pro
to be useful when we parametrize the curvesg1,2 because it will allow us to have denominators
the integrand that are real positive functions, facilitating the analysis of theA→` limit. If i¹Fi2

differs from zero for allqP@B,A#, t1Pg1 , andt2Pg2 , it is possible to devise an ‘‘integration b
parts’’ procedure for this type of integrals by writing them as

1

l E
B

A

dq R
g1

dt1 R
g2

dt2F f (0)hq]qF]qelF

i¹Fi2 1
f (0)h t1

]1F]1elF

i¹Fi2 1
f (0)h t2

]2F]2elF

i¹Fi2 G .

The contribution of the first term can be written, after integrating by parts inq, as

1

l R
g1

dt1 R
g2

dt2
f (0)hq]qFelF

i¹Fi2 U
B

A

2
1

l R
g1

dt1 R
g2

dt2E
B

A

dqelF]q

f (0)hq]qF

i¹Fi2

~notice that the integration region is compact and the function integrable so that we can
Fubini’s theorem and freely exchange orders of integration!. Integration by parts int1 gives

1

l E
B

A

dq R
g2

dt2 R
g1

dt1]1

f (0)h t1
]1FelF

i¹Fi2 2
1

l E
B

A

dq R
g2

dt2 R
g1

dt1elF]1

f (0)h t1
]1F

i¹Fi2 .

If ( f (0)h t1
]1FelF)i¹Fi22 is a holomorphic function oft1 in an open set containing theclosed

curve g1 ~for all qP@B,A# and t2Pg2) the first integral is zero and we are left only with th
second term. The same argument applies to the integration int2 . We finally get that~25! can be
written as

1

l R
g1

dt1 R
g2

dt2
f (0)hq]qFelF

i¹Fi2 U
B

A

2
1

l E
B

A

dq R
g1

dt1 R
g2

dt2 f (1)~q;t1 ,t2!elF(q;t1 ,t2), ~26!

here we have introduced the notation

f (k11)[]q

f (k)hq]qF

i¹Fi2 1]1

f (k)h t1
]1F

i¹Fi2 1]2

f (k)h t2
]2F

i¹Fi2 , k50, 1,... .

The second integral in~26! has the same structure as the original integral, so the same proc
can be applied as long as the appropriate regularity conditions are satisfied for expressions
ing the successivef (k) , k51,... The strategy to obtain asymptotic expansions for the orig
integral consists in getting expansions for the lower dimensional boundary integrals that a
this way, provided that the remaining nonboundary integral behaves nicely in thel→` limit.
Particularizing this argument to the case of a single complex variablet is straightforward.

In our case@see Eq.~10!# we actually want to obtain an asymptotic expansion of an impro
integral. So we will also have to study the asymptotics of the limitA→`,

2
1

l R
g1

dt1 R
g2

dt2
f (0)hq]qFelF

i¹Fi2 U
B

1 lim
A→`

H 1

l R
g1

dt1 R
g2

dt2
f (0)hq]qFelF

i¹Fi2 U
A

2
1

l EA

dq R dt1 R dt2 f (1)~q;t1 ,t2!elF(q;t1 ,t2)J . ~27!

B g1 g2
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In order to derive useful asymptotic expansions from the previous formulas it is desirabl
elF(q;t1 ,t2) be bounded by al-independent function.25 This happens, for example, i
R@F(q;t1 ,t2)#<0 in the integration region@B,A#3g13g2 . In fact, we will take advantage o
the freedom in the choice of the integration contoursg1,2 to impose this condition.

If there are points in the integration region~referred to in the following as singular points!
wherei¹Fi250 the argument presented above to derive~26! is no longer true. In such a situatio
the way to proceed14,15is to isolate them by introducing neutralizers.26 This allows us to divide the
integration region into several pieces and study the resulting integrals by choosing the
suitable techniques. This is facilitated by the fact that neutralizers force most of the bou
integrals to be zero. In the process of obtaining asymptotic expansions from~27! it may be useful
to further divide the integration region of the last integral in several pieces, by introducing
tional neutralizers, in order to localize the singular points in a region that does not conta
boundaryq5A; this simplifies the analysis of theA→` limit.

The freedom to choose the integration contours in~25! may be useful for other purposes. On
can, for example, avoid singularities of the boundary integrals over$B%3g13g2 and $A%3g1

3g2 ; it may be possible to write the integrals involving the singular points as~multidimensional!
Laplace or Fourier transforms for which the analysis of singular points can be carried o
standard procedures~see Ref. 14! or to improve the behavior for large values ofq if one intends
to study the asymptotics of the improper integral whenA→`.27 Finally in some cases this
freedom may allow us to simplify the analysis of the contribution of some of the singular po

As in the study of thet asymptotics, we will consider the casesr50 andrÞ0 separately.

1. rÄ0

We study the integral~10! for r50:

2
1

R1
lim

A→`

IH ilei tl

2p E
0

A

dq R
g
dt

1

t
el[ ~q/2! (t2 1/t)2 i te2q]J . ~28!

Let us discuss first the possible choices of integration contourg. As commented above it is
convenient to impose that the real part of the exponent in the integrand be less or equal t
i.e., R(t21/t)<0. It is straightforward to show that this happens whenu(u21v221)>0
(t5u1 iv). This complex region~see Fig. 8! is given by the points inside the unit circle center
at the origin with positive real part, those outside this circle with negative real part, an
boundary of these two regions~i.e., the imaginary axis and the unit circumference centered a
origin!. The integration contour can be any closed, positively oriented, simple curve contain
this region that surrounds the origin. Notice that all these contours contain the pointst56 i .

If we choosehq521 andh t5t2 we have

i¹Fi25
1

4 Fq2 S t1
1

t D
2

2S t2
1

t
12i te2qD 2G .

At the left boundary (q50) this is zero whent52 i t6A12t2. Depending on the value oft
these points may be on the unit circumference; it is, hence, convenient to choose integ
contours in the allowed part ofC that avoid them~see Fig. 8!. This will always be possible excep
for t51. WhenqÞ0 the conditioni¹Fi250 gives, generically, four possible solutions~depend-
ing on q andt! that may or may not be in the integration region. Ift.1, there is one of these
(t52 i , q5 logt) that will be in the integration region for every possible choice of the integra
contourg. The remaining ones will or will not belong to the integration region depending ong. In
principle one would proceed by picking a certain contour, determine the values ofq corresponding
to these points, introduce suitable neutralizers, and study the neutralized integrals one at
There is, however, a simple argument that shows that it is not necessary to discuss them i
~we assumeqÞ0 in the following discussion unless otherwise specified!.
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The idea is to write the integral in~28! as the sum of three integralsI j , j 51, 2, 3 and choose
different28 contours for each of them. These integrals are

I j[2
1

R1
IH ilei tl

2p E
0

A

dq R
g
dt n j~q!

1

t
el[ ~q/2! (t2 1/t)2 i te2q]J ,

where we have introduced three neutralizer functionsn j (q), j51,2,3 satisfyingn11n21n351 in
@0, A# and

n1~q!51 if qP@0,a1#,

n1~q!50 if qP@a2 ,A#,

n2~q!50 if qP@0,a1#ø@b2 ,A#,

n2~q!51 if qP@a2 ,b1#,

n3~q!50 if qP@0,b1#,

n3~q!51 if qP@b2 ,A#,

with 0,a1,a2,b1,b2,A ~the specific choices for these parameters will be explained la!.
By doing this the effective integration regions inq are @0,a2#, @a1 ,b2#, and @b1 ,A#, respec-
tively; notice that the boundaryq50 appears only in the first.

FIG. 8. The regionR(t21/t)<0 consists of the shadowed area and its boundary. A possible choice of the integ
contourg is also shown.
                                                                                                                



-

also

se
l

to

en as

3518 J. Math. Phys., Vol. 45, No. 9, September 2004 Barbero G., Mena Marugán, and Villaseñor

                    
Let us consider firstI 1 . In this case it is convenient to choose an integration contourg that
avoids the unit circumference~except att56 i ) because, ift,1, the integration by parts proce
dure introduced above could, otherwise, give a boundary contribution atq50 involving a singular
function. We pick the contour depicted in Fig. 8. In order to use integration by parts it is
necessary to show that it is possible to finda2 such thati¹Fi2Þ0 in the integration region. The
solutions toi¹Fi250 are those satisfying the following quadratic equations

~11q!t212i te2qt211q50,

~12q!t212i te2qt212q50.

It can easily be shown~by using the implicit function theorem or the explicit solution of the
equations int) that the solutions are continuous atq50 ~if tÞ1), i.e., the solutions for smal
enoughq are close tot52 i t6A12t2. If tÞ1 it is then possible to choosea2 andg in such a
way thati¹Fi2Þ0 in the integration regiong3@0,a2#.

We can use formula~27! to get an asymptotic expansion forI 1 . We first note that the term
corresponding to the second integral in~26! is O(1/l) because our choice of contour allows us
bound the absolute value of the integrand by a regular function independent ofl. The integralI 1

is then given at leading order by the contribution of the boundary terms which can be writt

FIG. 9. Sign ofR@AQ1(s)Q2(s)/( is22 i )# for every choice ofr andt. Each inset shows this sign fors5x1 iyPC. The
hyperbolas that separate some of the regions in these insets have the equationx22y25(11r22t2)/@12(r1t)2#.
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I 15
1

pR1
IH i R

g

dt

t212i tt21J
@the functionn1(q) kills the contribution coming from theq5a2 boundary#. If t,1 the poles of
the integrandt52 i t6A12t2 are on the unit circumference but only that with the negative r
part is insideg. The value of the residue of the integrand at this point is2 1/(2A12t2) and hence

I 15
1

R1
IH 1

A12t2J 50.

If t.1 the poles of the integrand are on the imaginary axist52 i t6 iAt221; now only that with
the positive sign in the square root is insideg. The residue is1/(2iAt221) and hence

I 15
1

R1
IH i

At221
J 5

1

R1At221
. ~29!

Consider nextI 2 . In this case it is convenient to choose the unit circumference forg because,
parametrizing it by an angle (t(u)5eiu, uP(2p,p#), the exponentlF(q;t) becomes a purely
imaginary function of the two real variablesq andu,

ilf~q;u![lF@q;t~u!#5 il~q sinu2te2q!,

and the integral becomes a Fourier transform on a rectangular region determined by the sup
the neutralizer. As is well known the critical points for Fourier transforms are given by
boundaries of the integration region and those interior points where the gradient of thereal
function f is zero. In our case theq5a1 and q5b2 boundaries give no contribution for thi
integral owing to the presence of the neutralizer. Let us then find the interior critical points.
i¹Fi2@q;t(u)# is a sum of squares of real numbers29 these points are precisely those where o
procedure of integration by parts fails. We have to solve the following equations:

q cosu50,

sinu1te2q50.

The solution isq50, u52arcsint if t,1 ~these are outside the effective integration region
I 2) andq5 logt, u52 p/2 if t.1. The choices ofa1,2 can be made in such a way that the critic
point with q.0 ~present only whent.1) always corresponds toI 2 ~we also chooseb1 such that
logt,b1 to avoid having critical points inI 3). The asymptotic expansion ofI 2 can be now
obtained by using the standard formulas14 for the contribution of critical points. In our case this
simply

1

R1
IH eil(t2 log t21)

Alogt
J 1OF1

lG , ~30!

for t.1 and 0 if t,1. We do not need to discuss the limitA→` of I 1 and I 2 because the
integrand has compact support independent ofA; we have only assumed that logt,A. However
this is no longer true forI 3 .

Let us analyze, finally, limA→` I 3 . We choose again the unit circumference forg ~with the
same parametrization! and write
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lim
A→`

I 35IH lei tl

2pR1
lim

A→`
E

b1

A

dqE
2p

p

du n3~q!eilf(q;u)J .

Using formula~27! with hq521, h t5t2, and taking into account thatn3(b1)50, this expression
becomes

IH lei tl

2pR1
lim

A→`
F2 i

l E
2p

p

du
~te2A1sinu!eilf(A;u)

A2 cos2 u1~te2A1sinu!2

1
i

l E
b1

A

dqE
2p

p

du n3~q!eilf(q;u)g1~q;u!G J . ~31!

Here30

g1~q;u![ ieiu f (1)@q;t~u!#

5
~te2q1sinu!2~te2q2q sinu!1q cos2 u@~q224!sinu2t~q14!e2q#

@q2 cos2 u1~te2q1sinu!2#2 .

We have disregarded in Eq.~31! a term containing derivatives ofn3(q) because it can be show
to beO(1/lR) for everyR.0. We want to show that~31! does not contribute to the asymptot
expansion at the order inl considered. Note that it is difficult to prove that the limit of the la
integral is zero whenl→` by using an argument inspired in the Riemann–Lebesgue lem
because changing variables to write it as a Fourier transform introduces singularities in th
grand that are not easy to deal with. To study the asymptotics of~31! we will follow instead
several steps:

~i! Use integration by parts to further decompose the second integral in~31! as a surface term
and a double integral inq andu;

~ii ! split each of the integrands obtained in this way in two pieces; one with a simpler den
nator and another whose limitA→` vanishes. After this step we will be left with two
integrals inq and a double integral;

~iii ! split in two the double integral by writing the exponential term as

eilf(q;u)5eil[q sin u2te2q]5eilq sin u~e2ilte2q
21!1eilq sin u,

~iv! show that the contribution coming fromeilq sin u(e2ilte2q
21) vanishes sufficiently fas

whenl→` by using the Ho¨lder inequality;
~v! finally, show that the remaining terms have a simple asymptotic behavior.

Step~i!: After an additional integration by parts~31! becomes

IH lei tl

2pR1
lim

A→`
F2

ie2 ilte2A

l E
2p

p

du
~te2A1sinu!eilA sin u

A2 cos2 u1~te2A1sinu!2

1
e2 ilte2A

l2 E
2p

p

du
~sinu2te2A!eilA sin u

A2 cos2 u1~te2A1sinu!2 g1~A;u!

2
1

l2 E
b1

A

dqE
2p

p

dun3~q!eilf(q;u)g2~q;u!G J .

Step~ii !: All the integrands that appear in the first step have factors of the type
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1

@q2 cos2 u1~te2q1sinu!2#N N51, 2,...

that can be written as

1

@q2 cos2 u1sin2 u#N 1
( j 51

2N t je2 jqPj~q,sinu,cosu!

@q2 cos2 u1~te2q1sinu!2#N@q2 cos2 u1sin2 u#N N51, 2,...

with Pj (q,sinu,cosu) a polynomial of degrees 2(N21), 2(N21), and 2N21 in q, cosu, and
sinu respectively. For fixed values ofq larger than a certainQ. logt the maximum of the
function y(u)5@q2 cos2 u1(te2q1sinu)2#21 is (12te2q)22, so we have,31 for N51,2,...,

U ( j 51
2N t je2 jqPj~q,sinu,cosu!

@q2 cos2 u1~te2q1sinu!2#N@q2 cos2 u1sin2 u#NU< ( j 51
2N t je2 jqP̃j~q!

~12te2q!2N~q2 cos2 u1sin2 u!N ,

whereP̃j (q) is the polynomial inq obtained fromPj (q,sinu,cosu) by taking the absolute value
of the coefficients and substituting sinu51, cosu51. This formula, and the fact that

E
2p

p

du
1

@A2 cos2 u1sin2 u#N ;2
Ap

A

G~N21/2!

G~N!
as A→`,

allows us to show that the first two integrals obtained in step~i! can be substituted by

2
i

l E
2p

p

du
sinu

A2 cos2 u1sin2 u
eilA sin u1

1

l2 E
2p

p

du
A~A224!sin2 u cos2 u2A sin4 u

@A2 cos2 u1sin2 u#3 eilA sin u.

Let us consider now the double integral appearing in step~i!. The functiong2(q;u) can be written
as the sum of two piecesh2(q;u) andG2(q;u). The first one is

h2~q;u!5
q4~q224!cos6 u1q2~40223q213q4!cos4 u sin2 u2~4223q218q4!cos2 u sin4 u1~q221!sin6 u

~q2 cos2 u1sin2 u!4 ,

andG2(q;u) is a sum of factors (te2q)N (N51, 2, ...) times quotients of polynomials inq, sinu,
and cosu divided by products of powers of@q2 cos2 u1sin2 u# and @q2 cos2 u1(te2q sinu)2# ~no-
tice that these functions never vanish in the integration region!. The integral becomes

2
1

l2 E
b1

A

dqE
2p

p

du n3~q!eilf(q;u)@h2~q;u!1G2~q;u!#.

The absolute value of the integrand involvingG2(q;u) is an integrable function owing to th
decreasing exponential factors and the fact that they multiply terms that grow polynomia
worst in q. Hence its contribution to the total integral isO(1/l2) even after taking the limit
A→`. We thus conclude that~31! behaves asymptotically as
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IH lei tl

2pR1
lim

A→`
F2

i

l E
2p

p

du
sinu

A2 cos2 u1sin2 u
eilA sin u

1
1

l2 E
2p

p

du
A~A224!sin2 u cos2 u2A sin4 u

@A2 cos2 u1sin2 u#3 eilA sin u

2
1

l2 E
b1

A

dqE
2p

p

dueilf(q;u)n3~q!h2~q;u!G J 1OF1

lG . ~32!

Step~iii !: Note that we have already managed to substitute the exponential factoreilf(A;u) by
eil sin u within the integrals overu. However, it is not possible to remove the functionf(q,u) from
the double integral. We instead proceed to rewrite it as

2
1

l2 E
b1

A

dqE
2p

p

dueilq sin u@e2 ilte2q
21#n3~q!h2~q;u!

2
1

l2 E
b1

A

dqE
2p

p

dueilq sin un3~q!h2~q;u!.

Step~iv!: Consider the first of these integrals in the limitA→`,

2
1

l2 E
b1

`

dqE
2p

p

dueilq sin u@e2 ilte2q
21#n3~q!h2~q;u!. ~33!

This integral converges because (e2 ilte2q
21) falls off exponentially asq→`. Let us define now

the functionsf (q,u)5qs(e2 ilte2q
21) andg(q,u)5q2seilq sin un3(q)h2(q;u) with s chosen so

that f ,gPL2(@b1 ,`)3@2p,p)). For example, we sets53. The Hölder inequality gives

U 1

l2 E
b1

`

dqE
2p

p

dueilq sin u@e2 ilte2q
21#n3~q!h2~q;u!U

<
1

l2 E
b1

`

dqE
2p

p

duu f ~q,u!g~q,u!u

<
1

l2 H E
b1

`

dqE
2p

p

duu f ~q,u!u2J 1/2H E
b1

`

dqE
2p

p

duug~q,u!u2J 1/2

.

The integral involvingug(q,u)u2 is convergent and independent ofl and the one involving
u f (q,u)u2 satisfies

H E
b1

`

dqE
2p

p

duU f ~q,u!U2J 1/2

<2A2pH E
0

`

dqq6 sin2S tl

2
e2qD J 1/2

52A2pH E
0

1

dt
1

t
~ log t !6 sin2~Lt !J 1/2

,

after changing variables (t5e2q) and definingL5tl/2. As we show in Appendix A this las
integral isO(log7 l) and, hence, the term~33! is O(log7/2l/l2). So in expression~32! we obtain
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IH lei tl

2pR1
lim

A→`
F2

i

l E
2p

p

du
sinu

A2 cos2 u1sin2 u
eilA sin u

1
1

l2 E
2p

p

du
A~A224!sin2 u cos2 u2A sin4 u

@A2 cos2 u1sin2 u#3 eilA sin u

2
1

l2 E
b1

A

dqE
2p

p

dueilq sin un3~q!h2~q;u!G J 1OF1

lG1OF log7/2l

l G . ~34!

The reason why we had to integrate by parts in the first step is to get an additional factol
dividing the powers of logl.

Step~v!: Using integration by parts twice one can check that the terms in the square bra
in ~34! can be written whenA→` as

2p lim
A→`

E
b1

A

dq n3~q!J0~lq!5 lim
A→`

E
b1

A

dqE
2p

p

du n3~q!eilq sin u, ~35!

plus an extra contribution coming from derivatives ofn3(q) that does not contribute at thi
asymptotic order. In Appendix B we show that~35! is O(1/lR) for all R.0. We, therefore,
conclude that~31! is O(log7/2l/l). In our proof we have used integration by parts twice to arr
at ~34!. Actually by using it repeatedly and applying the five-steps procedure explained abov
possible to argue that limA→` I 3 is, in fact,O(1/lR) for all R.0.

We hence conclude that the first terms in the asymptotic expansion of~28! are given by the
contributions~29! and ~30!, and therefore, by~11! when t.1. In order to get the first nonzer
term in the asymptotics fort,1 it is necessary to perform integration by parts twice and foll
the steps detailed above. This leads to the contribution fort,1 shown in~12!,

2
1

2pR1
IH i

l R
g
dt

8i tt2

~ t212i tt21!3J 5
1

R1

t~112t2!

2l~12t2!5/2.

The l→01 limit, on the other hand, can be obtained by using Taylor’s theorem to write

e2 i tle2t/l
5 (

k50

N
~2 i tl!k

k!
e2 kt/l1

~2 i tl!(N11)

~N11!!
e2 i j(t)e2~N11/l! t,

with 0,j(t),tle2t/l. Substituting this in~5! ~with r50) we get

1

R1
IH ei tlE

0

`

dtJ0~ t !F (
k50

N
~2 i tl!k

k!
e2 kt/l1

~2 i tl!(N11)

~N11!!
e2 i j(t)e2~N11/l! tG J .

The contribution of the last term can be easily bounded

Uei tl~2 i tl!N11

~N11!! E
0

`

dt J0~ t !e2 i j(t)e2~N11/l! tU< ~tl!N11

~N11!! E0

`

dt e2~N11/l! t5
tN11lN12

~N11!~N11!!

5O~lN12!.

So we find that the asymptotics of~5! in this limit is given by

l

R1
IH ei tl(

k50

N
~2 i tl!k

k!Ak21l2J 1O~lN12!.
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2. rÅ0

We study now the integral~10! for rÞ0. We will basically follow the same steps of th
r50 case so we will skip some details. We choosehq521, h t1

5t1
2, andh t2

5t2
2, obtaining

i¹Fi25
1

4 H q2F S t11
1

t2
D 2

1r2S t21
1

t2
D 2G2F t12

1

t1
1rS t22

1

t2
D12i te2qG2J .

As we did above we introduce neutralizersn j , j 51, 2, 3 and write~10! as a sum of the tree
integrals

I j[2
1

R1
IH lei tl

4p2 E
0

`

dq R
g1

dt1 R
g2

dt2
n j~q!

t1t2
el[ ~q/2! (t12 1/t1)1~rq/2! (t22 1/t2)2 i te2q]J .

Starting withI 1 we fix g1,2 as in Fig. 8. Integrating by parts we find that only the boundary te
contributes at leading order. This contribution can be written as

1

R1
IH 1

2p2 R
g1

dt1 R
g2

dt2
1

rt1~ t2
221!1t2~ t1

212i tt121!J . ~36!

This integral can be computed exactly~see Appendix C! and, in fact, it is equal to the free
commutator given in Ref. 6; in particular it is zero in the regions IA and IB of Fig. 1. This me
that we will have to use integration by parts again, as in ther50 case, to get the first significan
asymptotic term whenl→` for these regions. After doing this we get the double integral

2
1

R1
IH 2i t

p2l R
g1

dt1 R
g2

dt2
t1
2t2

2

@rt1~ t2
221!1t2~ t1

212i tt121!#3J . ~37!

It can be easily checked that this reproduces the result obtained above forr50. This integral, in
the considered regions outside the light cone, can be written in terms of complete elliptic int
of the first and second kind, as shown in Appendix D. The result is just the 1/l contribution
appearing in Eq.~13!.

Though it is also possible to compute the integralI 1 in the remaining regions, we will not do
so because their contributions are subdominant with respect to those coming from the
points of I 2 .

Consider thenI 2 and take as before the unit circumference as the integration pathg1,2. We
parametrize this curve according tot1(u1)5eiu1, t2(u2)5eiu2, u1,2P(2p,p#. Now we have

ilf~q;u1 ,u2![lF@q;t1~u1!,t2~u2!#5 il@q~sinu11r sinu2!2te2q#,

so that the critical points are given by the solutions to the equations

sinu11r sinu21te2q50,

q cosu150,

qr cosu250.

Since we are computingI 2 we are only interested in solutions withqÞ0. Therefore, we must hav
cosu150 and cosu250, i.e.u156p/2 andu256p/2. Foru15u25p/2, the remaining equation
implies 11r1te2q50, which has no solutions forqPR. If u152u25p/2 we get 12r
1te2q50; this equation has solutionsq5 logt/(r21) in the integration regionq.0 only if t
.r21.0. If u152u252 p/2, we must have211r1te2q50, and there exists a critical poin
q5 logt/(12r) in the integration region only ift.12r.0. Finally if u15u252 p/2 we obtain
212r1te2q50, which is solved byq5 logt/(11r); in this caseq.0 only whent.11r. As
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we see when~t, r! are in the regions IA and IB of Fig. 1 there are no critical points forI 2 , if
~t, r! is in region II there is only one critical point, and if~t, r! is in region III there are two
critical points. The contribution of these critical points to the asymptotics ofI 2 , that can be
obtained with the standard formulas,14 are the following in regions II and III, respectively:

1

R1
IH e2 i p/4eil[ t1ur21u(11 log t/ur21u)]

A2plru12ru log
t

u12ru
J 1OF 1

l3/2G ,

1

R1
IH e2 i p/4eil[ t2ur21u(11 log t/ur21u)]

A2plru12ru log
t

u12ru

1
eip/4eil[ t1(r11)(log ~11r/t!21)]

A2plr~11r! log
t

11r
J 1OF 1

l3/2G .
These, together with the contribution of the boundary term, provide~14! and ~15!.

Finally it is possible to prove that limA→` I 3 gives no contribution by essentially following th
same steps as whenr50.

It is interesting to comment on the singularities that appear in the borders between the
ent regions I–III, and the axisr50. Their presence is a manifestation of the fact that
asymptotic behavior inl changes abruptly between adjacent regions. Notice, nonetheless, th
behavior is continuous in the border between the portion of the axis witht,1 and region IA,
where the leading terms of the asymptotic expansion inl are bothO(1/l).

To conclude let us point out that the limitl→01 can be obtained as in ther50 case. The
result is

1

pR1Ar
IH ei tl(

k50

N
~2 i tl!k

k!
Q2 1/2Fl2~11r2!1k2

2rl2 G J 1O~lN12!.

IV. CONCLUSIONS AND COMMENTS

We have analyzed in detail the issue of microcausality for linearly polarized cylindrical w
by looking at the commutator of the axially symmetric scalar field that encodes the phy
degrees of freedom of the system. We have been able to show several interesting effe
appear in the model. The first is a smearing of the cylindrical light cones. This is espe
obvious if one studies the behavior of the commutator~divided by 8iG) at two points with
coordinates (t1 ,R1) and (t2 ,R2) whenl ~the quotient ofR1 and the Planck length! is large. IfR2

is not too close to the axis one gets, in this limit, the discontinuous, cylindrical light cone stru
defined by the free commutator. In particular, outside the region defined by this light con
commutator is zero and, hence, observables would commute as in ordinary perturbative Q
instead, one looks at the behavior whenR250 one finds a peculiar behavior asl→`; now
superimposed to the free contribution, the commutator shows a characteristic oscillating be
when the variablet5(t22t1)/(4G) grows. The frequency of this oscillation is controlled by t
value ofl but the amplitude isindependentof it, and turns out to decrease very slowly witht in
such a way that one recovers the value given by the free commutator only for very large val
t. Nonetheless, there is a sense in which the free propagator is recovered if one averages o
intervals sufficiently larger than 4G.

In our study we have had to find the most efficient methods to obtain the relevant asym
behaviors. Though this has not required the introduction of completely novel techniques
been necessary to extend to our situation the usual Mellin transform methods and those em
for the analysis of multiple integrals. We have needed also to take into account that the in
that define the commutator are, actually, improper.

Several issues are worth discussing in more detail. One is the problem of introducing r
tors in the field operators and compare the results with those derived here. Though it is cle
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the approximation provided by the improper integrals considered in this work must be go
certain regimes, at some point the existence of a physical cutoff might manifest itself i
behavior of the field commutator, especially in the asymptotic regimes that we have exp
Another task that can be confronted with the techniques that we have developed here
computation of other matrix elements for the commutator. It would also be interesting to con
other Green functions and some related objects, such as S matrix elements. We plan to do
the future.
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APPENDIX A: ASYMPTOTICS OF THE INTEGRAL IN STEP „iv …

We want to investigate the asymptotic behavior of*0
1 dt @(log t)m/t#sin2 Lt, mPN, when

L→`. This can be found by a straightforward use of the Mellin–Parseval formula~19! in order
to get a Mellin–Barnes representation for the integral. Definingh(t)5sin2 t and f (t)5 (log t)m/t
we get the Mellin transforms

M @h;z#52

G~z!cos
pz

2

211z , 22,R~z!,0,

M @ f ;12z#52
G~m11!

zm11 , 1,R~z!,

so that

E
0

1

dt
~ log t !m

t
sin2 Lt5

m!

2p i Ec2 i`

c1 i`

dzL2z

G~z!cos
pz

2

211zzm11 , cP~22,0!.

The integrand in this last expression can be analytically extended as a meromorphic functioC
with poles inz522n, n50, 1,... . By displacing the integration contour to the right of the p
at z50, we get

E
0

1

dt
~ log t !m

t
sin2 Lt52resFL2z

m!G~z!cos
pz

2

211zzm11 ,z50G1
m!

2p i Ex02 i`

x01 i`

dzL2z

G~z!cos
pz

2

211zzm11

~A1!

(x0.0) whenever the integral converges and provided we can neglect the contributions fro
segments needed to close the integration contour at large values ofI(z). Writing z5x01 iy we
have

U m!

2p i Ex02 i`

x01 i`

dzL2z

G~z!cos
pz

2

211zzm11
U<

m!

4p~2L!x0 E
2`

`

dyUG~x01 iy !cos
p

2
~x01 iy !

~x01 iy !m11
U ,

and using limuyu→` (1/A2p) uG(x1 iy)uepuyu/2uyu2x11/251 we find that
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UG~x01 iy !cos
p

2
~x01 iy !

~x01 iy !m11
U;Ap

2
uyux02m23/2.

Hence, the integral in~38! is absolutely convergent ifx0,m11/2 and its contribution is
O@1/Lx0#. It is straightforward to show that the residue at the polez50 is an m11 degree
polynomial in logL with the higher degree term given by@(21)m11/(2m12)# (logL)m11. This
proves that, formPN,

E
0

1

dt
~ log t !m

t
sin2 Lt5O@~ logL!(m11)#.

APPENDIX B: ASYMPTOTICS OF THE INTEGRAL IN STEP „v…

Let us analyze the asymptotic behavior of 2p*b1

` dq n3(q)J0(lq) whenl→`. After chang-

ing variables according tok5lq this integral becomes

2p

l E
lb1

`

dk n3S k

l D J0~k!.

Taking into account thatJ0(k)5@2 (1/k)(d /dk) 2 d2/dk2#J0(k), this can be written as

2p

l E
lb1

`

dk n3S k

l D F2
1

k

d

dk
2

d2

dk2GN

J0~k!,

with NPN. It is straightforward to prove by induction that

F2
1

k

d

dk
2

d2

dk2GN

5(
j 51

2N
aj

k2N2 j

dj

dkj ,

for certain coefficientsajPZ. Since all the derivatives of (1/k2N2 j ) n3(k/l) at k5lb1 cancel, by
integrating by partsj times and changing variables according tok5ql we obtain for our integral
the following expression:

2p

l (
j 51

2N

~21! jajE
lb1

`

dk
dj

dkj F 1

k2N2 j n3S k

l D GJ0~k!5
2p

l2N (
j 51

2N

~21! jajE
b1

`

dq
dj

dqj F n3~q!

q2N2 j GJ0~lq!.

Using thatJ0(x)<1 for all xPR, we hence get

U2p

l E
lb1

`

dk n3S k

l D J0~k!U< 2p

l2N (
j 51

2N

uaj u E
b1

`

dqU dj

dqj F n3~q!

q2N2 j GU,
with all the integrals in the last sum being convergent. We conclude that, for allNPN,

2p

l E
lb1

`

dk n3S k

l D J0~k!5OF 1

l2NG .
APPENDIX C: COMPUTATION OF „36…

It is possible to show that choosingg1,2 as in Fig. 8 its denominator is always different fro
zero except for those exceptional values ofr andt corresponding to the borders between regio
I and II, and II and III. We can use Fubini’s theorem and exchange orders of integratio
integrate int1 we fix a value oft2 on g. The poles of the integrand are
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t1
65

1

2t2
@r2rt2

222i tt26A4t2
21~2r1rt2

212i tt2!2#.

One of them is always insideg and the other outside. For a fixed value oft2 we find thatt1
2 is

insideg when

RF 1

t2
A4t2

21~2r1rt2
212i tt2!2G.0,

or in certain exceptional cases whenR(t1
2)50. Analogouslyt1

1 is insideg when

RF 1

t2
A4t2

21~2r1rt2
212i tt2!2G,0,

or, again, in certain exceptional occasions withR(t1
1)50 ~in this last caset1

2 is outsideg!. The
residues at these poles are

t1
1→ 1

A4t2
21~2r1rt2

212i tt2!2
,

t1
2→ 21

A4t2
21~2r1rt2

212i tt2!2
,

and integrating int1 , ~36! becomes

IH 2
i

pR1
R

g
dt

sgnR@A4t21~2r1rt212i tt !2/t#

A4t21~2r1rt212i tt !2 J . ~C1!

Let us defineA5211r2t, B511r1t, C511r2t, andD5211r1t. It is not difficult to
check that

4t21~2r1rt212i tt !25 1
4 @A~ t2 i !21B~ t1 i !2#@C~ t2 i !21D~ t1 i !2#,

and, hence, the integral~C1! is

IH 2
2i

pR1
R

g
dt

sgnR@A@A~ t2 i !21B~ t1 i !2#@C~ t2 i !21D~ t1 i !2#/t#

A@A~ t2 i !21B~ t1 i !2#@C~ t2 i !21D~ t1 i !2#
J . ~C2!

In the following we restrictg to be a positively oriented circumference going through6 i and
parametrize it asz(u)52a1A11a2eiu, with uP@0,2p) and a.0 a constant. Changing vari
ables according to the Mo¨bius transformations(t)5 (t1 i )/(t2 i ) and denotingQ1(s)5A
1Bs2, Q2(s)5C1Ds2 we can write~C2! in the form
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IH 2
1

pR1
E

s(g)
ds

sgnRF s21

i ~s11!
AQ1~s!Q2~s!

~s21!4 G
~s21!2AQ1~s!Q2~s!

~s21!4

J
5IH 2

1

pR1
E

s(g)
ds

sgnRFAQ1~s!Q2~s!

i ~s221!
G

AQ1~s!Q2~s!
J [I~ I !, ~C3!

wheres(g) –the image of the circumferenceg–is a straight line through the origin with slop
2 1/a,0. The sign in the numerator in the last integral, for eachsPC, is shown in Fig. 9 in the
different regions in the~r, t! parameter space.

We now proceed to compute the integralI appearing in~C3! for the regions IA, IB, IIA, IIB,
and III, and for the hyperbolat25r211.

Region IA: HereA,0, B.0, C.0, D,0, and the sign in the integrand is positive. W
choosea→0 and parametrizes(g) ass5s( i 2e) @sPR,e→01#. We have

I 52
i

pR1
E

R

ds

A~A2Bs2!~C2Ds2!2 i«
,

with «→01. Recalling our choice of branch for the square root, changing variables accordi
u5A2 (B/A)s, and noticing that 0,AD/(BC),1, this integral can be written as

I 5
1

pR1

1

ABC
E

R

du

A~11u2!S 11
AD

BC
u2D 5

2

pR1

1

A~11r!22t2
KSA 4r

~11r!22t2D .

~C4!

Region IB: HereA.0, B.0, C.0, D.0, and the sign in the integrand is positive. W
choosea→` and parametrizes(g) ass5s(211 i e) @sPR,e→01#. Then

I 5
i

pR1
E

R

ds

A~A1Bs2!~C1Ds2!2 i«
,

with «→01. After the change of variablesu5A(B/A)s ~and since 0,AD/(BC),1) this inte-
gral becomes exactly~C4!.

Region IIA: HereA,0, B.0, C.0, D.0, and the sign in the integrand is negative. Letti
a→0 and parametrizings(g) ass5s( i 2e) @sPR,e→01# we obtain~with «→01)

I 5
i

pR1
E

R

ds

A~A2Bs2!~C2Ds2!1 i«
.

This last integral can be split in two pieces:

I 5
2

pR1
E

0

AC/D ds

A~2A1Bs2!~C2Ds2!
1

2i

pR1
E

AC/D

` ds

A~A2Bs2!~C2Ds2!
.

We find then@see formulas~3.152-3! and ~3.152-6! of Ref. 13#

I 5
1

pR1Ar
KSA~11r!22t2

4r D 1
i

pR1Ar
KSAt22~r21!2

4r D . ~C5!
                                                                                                                



he

ng

e
x

3530 J. Math. Phys., Vol. 45, No. 9, September 2004 Barbero G., Mena Marugán, and Villaseñor

                    
Region IIB: HereA,0, B.0, C.0, D.0, and the sign in the integrand is positive. With t
choicea→` and the parametrizations5s(211 i e) @sPR# for s(g) we arrive at

I 5
1

pR1
E

R

ds

A~A1Bs2!~C1Ds2!2 i«
,

with «→01. This can be written as

I 5
2i

pR1
E

0

A2 A/B ds

A2~A1Bs2!~C1Ds2!
1

2

pR1
E

A2A/B

` ds

A~A1Bs2!~C1Ds2!
,

which gives again~C5!.
Boundary between regions IIA and IIB: This is the hyperbolat2511r2. Parametrizings(g)

ass5s( i 2e) @sPR,e→01# we get

I 5
i

pR1
E

R

ds

A~A2Bs2!~C2Ds2!1 i«

~with «→01) which reduces to the previous two cases. Substitutingt2511r2 we thus obtain

I 5
11 i

pR1Ar
KS 1

&
D 5

11 i

4pR1Apr
FGS 1

4D G2

.

Region III: HereA,0, B.0, C,0, D.0, and the sign in the integrand is negative. Letti
a→0 and parametrizings(g) ass5s( i 2e) @sPR,e→01# we obtain~with «→01)

I 5
i

pR1
E

R

ds

A~A2Bs2!~C2Ds2!2 i«
.

With the change of variablesu5A2 (D/C)s and noticing that 0,BC/(AD),1, this becomes

I 5
i

pR1

1

A2AD
E

R

du

A~11u2!S 11
BC

AD
u2D

5
2i

pR1

1

At22~12r!2
KSA 4r

t22~12r!2D .

APPENDIX D: COMPUTATIONS OF THE DOUBLE INTEGRAL „37…

In order to do this we first integrate int1 . Fixing t2 we find that the poles coincide with thos
of ~36!. The arguments showing whether they are inside or outsideg are the same as in Appendi
C. The residues are now

t1
1→

t2
2@r2~ t2

221!214irtt2~ t2
221!22~112t2!t2

2#

@4t2
21~2r1rt2

212i tt2!2#A4t2
21~2r1rt2

212i tt2!2
,

t1
2→2

t2
2@r2~ t2

221!214irtt2~ t2
221!22~112t2!t2

2#

@4t2
21~2r1rt2

212i tt2!2#A4t2
21~2r1rt2

212i tt2!2
.

Integrating int1 , ~37! becomes then
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IH 2
4t

pR1l

3 R
g
dt

sgnRF1

t
A4t21~2r1rt212i tt !2G@r2~ t221!214irtt~ t221!22~112t2!t2#t2

@4t21~2r1rt212i tt !2#2A4t21~2r1rt212i tt !2
J .

~D1!

The same Mo¨bius transformation used above allows us to write~D1! as

IH 2
i t

2pR1l E
s(g)

dssgnRFAQ1~s!Q2~s!

i ~s221!
G

3
~s221!2@2r2~11s2!214rt~s421!1~112t2!~s221!2#

Q1
2~s!Q2

2~s!AQ1~s!Q2~s!
J .

We compute it only in regions IA and IB, remembering that the sign in the integrand is that s
in Fig. 9.

Region IA: HereA,0, B.0, C.0, D,0, and the sign is positive. We choosea→0 and
parametrizes(g) ass5s( i 2e) @sPR,e→01# getting

IH i t

2pR1l E
R
ds

~11s2!2@2r2~12s2!214rt~s421!1~112t2!~s211!2#

~A2Bs2!2~C2Ds2!2A2~A2Bs2!~C2Ds2!
J .

The integrand consists of a rational function ofs divided by the square root of a fourth degre
polynomial and the integration extends over the real axis; hence, it can be written in ter
complete elliptic integrals. The way to proceed now is to perform a partial fraction decompo
of the rational part and write it as a sum of integrals of the four following types

E
R

dx

A~a21x2!~b21x2!3
, E

R

dx

A~a21x2!3~b21x2!
,

E
R

dx

A~a21x2!~b21x2!5
, E

R

dx

A~a21x2!5~b21x2!
.

These integrals can be found in Ref. 13@see Eqs.~3.158-2!, ~3.158-4!, ~3.162-4!, and~3.162-2! in
that reference#. The result is the 1/l contribution appearing in Eq.~13!.

Region IB: HereA.0, B.0, C.0, D.0, and the sign in the integrand is positive. With t
choicea→0 and the parametrizations5s(211 i e) @sPR,e→01# we obtain

IH i t

2pR1l E
R
ds

~s221!2@2r2~11s2!214rt~s421!1~112t2!~s221!2#

~A1Bs2!2~C1Ds2!2A~A1Bs2!~C1Ds2!
J .

It can be shown that this integral gives again the result found in region IA.
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integral int.
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29This is no longer true for other choices ofg for which i¹Fi2 is, in general, complex. In these casesi¹Fi2 may be zero

even though the partial derivatives ofF are different from zero.
30In the following we will denotegk(q;u)[ ieiu f (k)@q;t(u)#, the ieiu factor comes from the measure in the integral.
31We chooseb1.Q. log t in the neutralizers introduced before.
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The Schro¨dinger equation, in hyperspherical coordinates, is solved in closed form
for a system of three particles on a line, interacting via pair delta functions. This is
for the case of equal masses and potential strengths. The interactions are replaced
by appropriate boundary conditions. This leads then to requiring the solution of a
free-particle Schro¨dinger equation subject to these boundary conditions. A general-
ized Kontorovich–Lebedev transformation is used to write this solution as an inte-
gral involving a product of Bessel functions and pseudo-Sturmian functions. The
coefficient of the product is obtained from a three-term recurrence relation, derived
from the boundary condition. The contours of the Kontorovich–Lebedev represen-
tation are fixed by the asymptotic conditions. The scattering matrix is then derived
from the exact solution of the recurrence relation. The wavefunctions that are
obtained are shown to be equivalent to those derived by McGuire. The method can
clearly be applied to a larger number of particles and hopefully might be useful for
unequal masses and potentials. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1769613#

I. INTRODUCTION

Three-body systems and processes are of fundamental interest in physics.1 One of these, with
which a number of us have been concerned, is the recombination of three-particles to a dim
a free particle, in a many body system forming a Bose–Einstein condensate.2 The condensate is
not the lowest state of the system, but a metastable state. The three-body recombination
dominant mechanism for cooling and lowering the overall energy of the system.

Experimental and theoretical studies have shown that this recombination rate depends
on the two-body scattering lengtha,2–6 as the collision energy is low and the interaction
weak—owing to large interparticle distances, and on the bound state energies.

This would suggest that zero-range potentials~ZRP!, defined in terms of the scattering lengt7

lim
r→0

F 1

rc

]~rc!

]r G521/a. ~1!
35330022-2488/2004/45(9)/3533/13/$22.00 © 2004 American Institute of Physics
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can be applied to model the interaction between the particles of the condensate. It has been
by Nielsen and Macek using the hidden crossing technique that the ZRP describes prope
recombination transition in a system of three4He atoms.2 Also, Gasaneo and Macek showed th
the ZRP gives a quite good representation for the adiabatic potential of the same system.8 A closed
form solution for a system of three-particles interacting via a ZRP has been recently presen
Gasaneoet al.9 The fragmentation process4He214He→4He14He14He was studied and rela
tively good agreement was found when compared with the hidden crossing calculations.
nuclear physics area we just want to mention the study of the 112 elastic scattering ofnnp and
Lnp systems,10 in which, besides the scattering length, it is included the effective range an
shape parameter in the boundary conditions. Recently, there has been several application
ZRP model in one dimension. The study of ion–atom collision have been done by Burgdo¨rfer11

and the photo-double ionization processes has been studied by Le Rouzo.12 The use of one
dimensional model to bosons has been considered by Muda and Snider using periodic bo
conditions and to the dynamics of fermions systems by McGuire.13

In this paper, we seek to apply our techniques to a famous model: Three particles i
dimension, subject to pair delta–function interactions. For this model, introduced by McGu14

one can obtain exact solutions for the wave functions, the scattering matrix and the b
energies, in the case of particles of identical masses and equally weighted interactions. As
has been extended to a larger number of particles,15 using Bethe’s Ansatz,16 and also found to be
exceedingly useful when used as a test-bed for the development of a number of different m
~pertubative, Faddeev, hyperspherical adiabatic, etc.!.17

Here, we note that using ZRP and~1!, in three-dimensions, leads to the Thomas effect and
collapse of the three-body ground state.18 However, in one dimension, an equation similar
~1!—with a not the scattering length—provides boundary conditions which correctly characte
the wave functions and replace the use of thed-function interactions, and should, therefore, ag
give us exact results. One of these, though, is that the recombination rate, for this model, is
zero.

In Sec. II we propose a solution, written in integral form, for the free particle Schro¨dinger
equation, written in hyperspherical coordinates. A linear combination of free particle solution
then be found to satisfy the boundary condition that we alluded to earlier, and thus provide u
the solution of the problem with interaction. The requirement that the wave function satisf
boundary conditions leads us to one of the important results of this paper, namely that the
of the free particle solutions, in the integral form, satisfies a recurrence relation similar to
obtained in Refs. 19 and 9.

In Sec. III the method is applied to a particular case in which two of the particles are bo
It is shown that the recurrence relation, defining the coefficient of the free-particle expansio
be solved in closed form and, thus, the scattering matrix is also obtained in a closed form
allows us to have a detailed test of our method. In this section it is also shown that the
function obtained is equivalent to the McGuire plane wave solution, and that our expressi
the S matrix is the matrix obtained by McGuire, in the particular case discussed in this pap
Sec. IV the relation between the hyperspherical adiabatic approach and the present one
cussed.

In Appendix A, the pseudo-Sturmian functions are derived. In Appendix B, the wave fun
is written as the symmetric wave plane in cartesian coordinates.

II. EXACT INTEGRAL REPRESENTATION

To begin the study of the three identical–particle system~therefore, with equal masses!,
consider the center of mass and Jacobi coordinates

r 5 1
3 ~x11x21x3!,

h5A 1
2~x12x2!, ~2!
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j5A2

3S x11x2

2
2x3D ,

the xi give us the locations of the 3 particles along the line, see Fig. 1. Using polar coordin
the 2 Jacobi variables allow us to define, in turn, a hyper radiusR and an angleu as

h5R cosu, j5R sinu, ~3!

where2p,u<p and 0<R,`. In terms of these coordinates the Schro¨dinger equation for the
‘‘relative’’ system can be written as

HC~R,u!5S 2m

\2 D EC~R,u!, ~4!

where

H52S 1

R

]

]R
R

]

]R
1

1

R2

]2

]u2D1
1

R
C~u!. ~5!

The functionC(u) is defined by

C~u!5
p

3
c(

j 50

5

d~u2u j !, ~6!

where the coefficientc equals (3/p&)(2m/\2)g, g being the strength of the interactions. Thisc
is negative for attractive interactions and positive for repulsive ones. The anglesu j equal (2j
11)p/6. The linesu5u j divide the~r,u! plane in six regions. In each region the order of partic
is fixed, so that betweenu4 and u5 , x1,x2,x3 , etc. A different permutation of particles i
associated to each region. From now on, we will choose the units such that 2m51 and\51. In
each sector, we now seek a free particle solution that satisfies the boundary condition th
replace the effect of the potential, i.e.,

lim
u2→u j

F 1

RC~R,u!

]C~R,u!

]u G52
1

a
, ~7!

where u25u,u j , j 50,1,. . . ,5. In Eq.~7! a5(6/pc) does not depend onj because all the
strengths of the interactions and all the masses are equal. Writing a solution for the free p
system as the productc free(R,u)5Q(n,u)R1/2Rn(KR), where K25E, leads to the set of free
particle equations

R2

R21/2Zn~KR! F ]2

]R2 1K2GR21/2Zn~KR!5
21

Q~n,u! S ]2

]u2 1
1

4DQ~n,u!5n22
1

4
, ~8!

whereZn(KR)5R1/2Rn(KR) is a Bessel function andn a separation constant. If for theQ~n, u!
functions we choose the pseudo-Sturmian functionsS(n,u), defined, for fixedn, as the solutions
of

FIG. 1. One of three sets of Jacobi coordinates for the three particles.
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2F ]2

]u2 1
1

4
2r~n!C~u!GS~n,u!5S n22

1

4DS~n,u!, ~9!

then the functionsc free(u,R)5S(n,u)Zn(KR) are solutions of the Schro¨dinger equation Eq.~4!
for values ofr(n)5R. Note that Eq.~9! may be replaced by the relation

F ]2

]u2 1n2GS~n,u!50, ~10!

subject to the boundary conditions

lim
u2→u j

F 1

r~n!

1

S~n,u!

]S

]u
~n,u!G52

1

a
, j 50,1,. . . ,5. ~11!

In the last equation, we assumed thatS(n,u) is symmetric about each lineu5u j .
We now propose to write the general wave function of the system as a Kontorovich–Le

transform, in terms of the base functions just discussed, that is, as

C~R,u!5E
§
dnA~n!S~n,u!Zn~KR!, ~12!

provided that its derivative satisfies the boundary conditions, i.e., Eq.~7!. The contour of integra-
tion must be chosen so that the wave function has the correct asymptotic behavior.

Following the reasoning of Gasaneoet al.,8 we will now show that the boundary condition
Eq. ~7!, can be transformed into a recurrence relation forA(n). First, we substitute Eq.~12! into
Eq. ~7!, and then interchange the order in which the integral and the derivative are taken, to
for eachj

lim
u2→u j

E
§
dnA~n!F 1

R
Zn~KR!

]S~n,u!

]u
1

1

a
S~n,u!Zn~KR!G50. ~13!

Second, we use Eq.~11! and the identity (2n/z)Zn(z)5Zn11(z)2Zn21(z) to transform the equa
tion to

lim
u2→u j

H E
§
dnA~n!

1

n
@2r~n!/a#S~n,u!3@Zn11~KR!2Zn21~KR!#

1
2

Ka E§
dnA~n!S~n,u!Zn~KR!J 50. ~14!

We assumed in the previous equation that K5 iK andK>0, because we are mainly interested
negative energies. By selecting the appropriate contours we can now transform the last equ

lim
u2→u j

E
§
dnFA~n21!

1

n21
r~n21!S~n21,u!2A~n11!

1

n11
r~n11!S~n11,u!

2
2

K
A~n!S~n,u!GZn~KR!50. ~15!

Since the set of Bessel functions forms a complete set of basis functions, the function
the square brackets should be zero at the limit. We arrive, finally, at the recurrence relation t
are looking for
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B~n21!r~n21!S~n21,u j !2B~n11!r~n11!S~n11,u j !5
2n

K
B~n!S~n,u j !, ~16!

whereB(n)5A(n)/n. In the following section, we will apply this approach to a particular case
this three body system and show that we can obtain the wave function and theS-matrix.

III. 2¿1 SYSTEM

Consider now the case where two of the particles are bound. The wave functionc(R,u) can
still be written in terms of the Kontorovich–Lebedev representation, Eq.~12!. The unnormalized
angle pseudo-Sturmian functionS(n,u), a six-fold symmetric function, is defined by the Eqs.~10!
and ~11!. As can be seen in Appendix A, the functionS(n,u) may be written as

S~n,u!5cosF S u2 j
p

3 D nG , Uu2 j
p

3U,p

6
, ~17!

with j 50,1,. . . ,5,wherer~n! satisfies the relation

n tanS n
p

6 D5
1

~6/pc!
r~n!. ~18!

From the previous section, we can immediately conclude thatA(n) satisfies the recurrenc
relation

A~n11!sinF ~n11!
p

6 G2A~n21!sinF ~n21!
p

6 G52
pc

3K
A~n!cosFn p

6 G . ~19!

A. Solution of the recurrence relation

The recurrence relation, displayed in Eq.~19!, can be written as

ei (p/6)nFA~n11!ei (p/6)2A~n21!e2 i (p/6)1
ipc

3K
A~n!G1e2 i (p/6)nF2A~n11!e2 i (p/6)

1A~n21!ei (p/6)1
ipc

3K
A~n!G50. ~20!

An inspection, of the solution of the recurrence relation—Eq.~25! in Ref. 8, leads us to propos
a coefficient in the form of the series

A~n!5e2bn@e2 i (p/3)n1Sei (p/3)n1S 1e2 i (p/6)n1S 2ei (p/6)n1S3#. ~21!

Substituting this expression in Eq.~20!, and equating to zero the coefficients of exponentials, w
different arguments that depend onn, we obtain the following values for the parameters:

S5tanS p

6
2 ib D cotS p

6
1 ib D ,

S352cot
p

6
cotS p

6
1 ib D , ~22!

cos~ ib!52
pc

6K
,
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sin~ ib!5 i
k

K
. ~23!

Consequently, the solution for the coefficient can be written as

A~n!5e2bn~e(2 ip/3)n1S e( ip/3)n1S3 !, ~24!

or

A~n!52 e2bnFcosS p

3
n1d D1aG , ~25!

where

S5e2id ~26!

and

a52
1

2
cot

p

6
AcotS p

6
2 ib D cotS p

6
1 ib D . ~27!

In the next section, we demonstrate thatS represents the scattering matrix and, accordinglyd
the phase shift. We should stress the remarkable fact that theS-matrix appears explicitly in the
solution of the recurrence relation. In the next subsection it is shown that the expression ob
for S in this work is equivalent to the formula for the exact symmetricS-matrix for the 211
process, given in Ref. 21.

B. Asymptotic wave function

To be specific we will restrict the following discussion to the case of total negative ene
and will write K5A(pc)2/362k2>0, in which2(pc)2/36 is the two-body bound energy andk2

is the effective energy. Next, we will show that the imaginary axis is the appropriate conto
obtain the correct asymptotic behavior of the wave function. Substituting the coefficientsA(n)
defined in Eqs.~22! and ~24!, the pseudo-Sturmian functions given in Eq.~17! and the modified
Bessel functionsKn(KR), into Eq.~12!, as well as choosing the imaginary axis as the contou
integration, we find

C5E
§
dn~cosh@~ ip/31b!n#2sinh@~ ip/31b!n#!3cosF S u2 j

p

3 D nGKn~KR!

1SE
§
dn~cosh@~ ip/32b!n#1sinh@~ ip/32b!n#!cosF S u2 j

p

3 D nGKn~KR!

1S3E
§
dn~cosh@bn#2sinh@bn#!cosF S u2 j

p

3 D nGKn~KR!. ~28!

Note that in the above expression the exponentials in the coefficients have been written in te
hyperbolic functions. The integral over the odd terms vanishes, leaving only the even terms
integrand. After a trigonometric identity, this leads to
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C5
1

2 H E
§
dn coshS Fb1 i S u2@ j 21#

p

3 D Gn DKn~KR!1E
§
dn coshS F2b

1 i S u2@ j 11#
p

3 D Gn DKn~KR!1SF E
§
dn coshS F2b1 i S u2@ j 21#

p

3 D Gn DKn~KR!

1 E
§
dn coshS Fb1 i S u2@ j 11#

p

3 D Gn DKn~KR!G1S3F E
§
dn coshS F2b1 i S u2 j

p

3 D Gn D
3Kn~KR!1E

§
dn coshS Fb1 i S u2 j

p

3 D Gn DKn~KR!G . ~29!

Using the Kontorovich–Lebedev Transforms,20 we obtain

C5
ip

2 S expH 2KR coshS b1 i Fu2~ j 21!
p

3 G D J 1expH 2KR coshS 2b1 i Fu2~ j 11!
p

3 G D J
1S FexpH 2KR coshS b1 i Fu2~ j 11!

p

3 G D J 1expH 2KR coshS 2b1 i Fu2~ j 21!
p

3 G D J G
1S3FexpH 2KR coshS 2b1 i Fu2 j

p

3 G D J 1expH 2KR coshS b1 i Fu2 j
p

3 G D J G . ~30!

Introducingb from Eq. ~23! into this expression, yields

C5
ip

2 S expH pc

6
R cosFu2~ j 21!

p

3 G2 ikR sinFu2~ j 21!
p

3 G J
1expH pc

6
R cosFu2~ j 11!

p

3 G1 ikR sinFu2~ j 11!
p

3 G J 1S FexpH pc

6
R cosFu2~ j 11!

p

3 G
2 ikR sinFu2~ j 11!

p

3 G J 1expH pc

6
R cosFu2~ j 21!

p

3 G1 ikR sinFu2~ j 21!
p

3 G J G
1S3FexpH pc

6
R cosFu2 j

p

3 G1 ikR sinFu2 j
p

3 G J 1expH pc

6
R cosFu2 j

p

3 G
2 ikR sinFu2 j

p

3 G J G D , j 50,1,. . . ,5. ~31!

From Eq.~17! it is easily seen that this wave function is fully symmetric under the intercha
of particles. The function is invariant under the addition ofp/3 to u, together with the addition of
one unit toj , which is what should be done to move from one region in the~r,u! plane to its next
counterclockwise neighbor. Remember that for each region there is a specific order of th
ticles.

We can also see that the real part of each of the exponential arguments is negative,
whenu2( j 71)p/356p/2, that is on the linesu5u j , where its value is zero. Thus, whenR is
large, the wave function is negligible except near the linesu5u j . Note that only the first four
terms give a significant contribution in the asymptotic region. We can conclude that the fo
the wave function is that of products of bound state functions, associated with two particles
oscillatory functions, which describe the location of the third particle with respect to the 2 b
ones. Evaluating, then, the wave function for large values ofR, its asymptotic form can be written
as
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C~R,u8!;e$ pc/6 R cosu8%~e$2 ikR sin u8%1S e$ ikR sin u8%! ~32!

where p/6,u85u2( j 21) p/3,p/2, j 50,1,. . . ,5. This asymptotic expression consists of
wave representing a two particles bound state multiplied by an incoming wave, together w
outgoing wave multiplied byS.

From the expression in Eq.~22! the matrixS can be written as

S5

sinS p

6
1 ib D cosS p

6
2 ib D

cosS p

6
1 ib D sinS p

6
2 ib D 5

sin
p

3
2sin~22ib!

sin
p

3
1sin~22ib!

5

sin
p

3
12 sin~ ib!cos~ ib!

sin
p

3
22 sin~ ib!cos~ ib!

. ~33!

In terms ofK

cos~ ib!sin~ ib!52
pc

6K

ik

K
5

2 ipck

6~p2c2/362k2!
. ~34!

Therefore

S5
1236~k/pc!22 i ~24/) !~k/pc!

1236~k/pc!21 i ~24/) !~k/pc!
. ~35!

This is, precisely, the scattering matrix

S5
@212 i ~6)/pc!k#@31 i ~6)/pc!k#

@31 i ~6)/pc!k#@211 i ~6)/pc!k#
, ~36!

given as Eq.~61! in Ref. 21. It corresponds to the symmetricS matrix calculated for the specific
process 211.

The matrixS3 , see again~22!, has the following form as a function ofk

S35
31 i ~6)/pc!k

211 i ~6)/pc!k
. ~37!

S3 multiplies the shorter ranged part of the exact wave function, that goes to zero whR
goes to`.

Additional insight can be gained, by following the reasoning of McGuire.14 The scattering of
3 asymptotically free particles, to 3 also asymptotically free particles, requires 3~successive!
collisions, and yields the part of the wave function associated with the calculation of theS-matrix.
Intermediate stages, associated with fewer collisions, give rise to the shorter ranged part
wave functions. A similar reasoning holds for the 211 processes.

In conclusion, we have shown that this integration contour, and the choice of Bessel func
have imparted the correct asymptotic behavior. Furthermore, we can deduce from the asym
expression that the coefficientS represents theS-matrix.

IV. RELATION TO ADIABATIC THEORY

The eigenfunctions of the following eigenvalue equation21 form a complete set of orthogona
hyperspherical adiabatic basis functions. Changing, a bit, the usual notation:

F 1

R82 S ]2

]u2 1
1

4D2
1

R8
C~u!1Lk~R8!GBk~u;R8!50, ~38!
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where R8, a real parameter in this equation, is held fixed;k50,6,12, . . . andLk(R8)→(k2

21/4)/R82 as the interaction is turned off. The unnormalized eigenfunctions

Bk~u;R8!5cosFqkS u2
j p

3 D G , ~39!

where j is an integer such thatuu2 j (p/3) u,p/6 andqk satisfies

qk tanS p

6
qkD5

pR8c

6
. ~40!

In the adiabatic approach the parameterR8 is identified with the hyper radiusR. For E,0 there
is only one open channel, labeled byk50. For largeR, the channel function is concentrated alo
the lines defined byu5u j . Accordingly it can represent the two-body bound state. ForE.0, there
is an infinite number of open channels, labeled by the successive numbersk, equal and greate
than zero. They describe, asymptotically, three free particles or a two-body bound state, to
with a free particle.

Note that the functionr~n!, Eq. ~18!, is a real function if, and only if,n takes on values along
the imaginary or the real axis, see Fig. 2. It can be seen that the pseudo-Sturmian function
in Eq. ~9! coincides, apart from normalization constants, with the lowest adiabatic fun
B0(u;R8) whenn5q0 is an imaginary number andr(n)5R8(q0). Also, if n5qk are in the real
intervals (31@k26#,91@k26#) with k56,12,. . . , then r(n)5R8(qk) and the pseudo-
Sturmian functions become equal, except for the normalization constants, to the adiabatic
functionsBk(u;R8).

FIG. 2. Plot of the pseudo-Sturmian eigenvaluer~n!. In ~a! we plotr~n! as a function ofn2. In ~b! the plot of~a! is rotated

and flipped to given2 as a function ofr. For r positive,n25L(r)r21
1
4.
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Thus, in the case of the example considered in this paper, that isE,0 and the 211 system,
the integral Eq.~12!, along the imaginary axis in the complexn plane, can be written in terms o
the lowest adiabatic function as

C~R,u!5E
§
dnA~n!B0~u;R8~n!!Zn~KR!, ~41!

wheren runs from2 i` to i`. The most important contribution of the adiabatic functions to
integral, at largeR, comes from the linesu5u j , where two of the particles are joined. When the
adiabatic functions are multiplied by the appropriate Bessels functions, their linear combin
@Eq. ~41!# should have the correct asymptotic behavior, and will represent a two-body b
system in the colliding with a third particle.

V. CONCLUSIONS AND OUTLOOK

We have shown that the integral representation approach within the hyperspherical c
when applied to McGuire’s model, offers a reliable tool to study the collisional dynamics o
three-body system. We have obtained several interesting results, namely:

~i! an exact solution to the corresponding Schro¨dinger equation;
~ii ! a closed form for the angular basis for this system, the pseudo-Sturmian functions;
~iii ! a recurrence relation for the coefficients, in the expansion of the wave function in ter

the free-particle basis;
~iv! the S-matrix, obtained directly from the solution of the recurrence relation;
~v! the relation of the present approach to the traditional adiabatic approach;
~vi! the relation of the present solution to the known plane wave exact solution.

The simplicity of the approach as compared with the adiabatic one, promises to be very
in extending it to more complicated situations, like the system with different masses and sy
with more particles, currently under research, or systems in three dimensions modeled b
potentials. In the last case, the method can be applied to a wide kind of systems to
asymptotic solutions which can be matched to solutions obtained with methods like theR-matrix
one, simplifying substantially the calculations.
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APPENDIX A: PSEUDO-STURMIAN FUNCTIONS

Fixing n, the general solution for the eigenvalue equation

F ]2

]u2 1n2Gw~u!5Fr~n!
pc

3 (
j 50

5

d~u2u j !Gw~u!, ~A1!

with u j5(2 j 11)p/6, can be written as the free angular wave solutionw(u)5Dn cos@n(u
2gj)#, j50,1,. . . ,5, provided that it be continuous through the boundary linesu5u j , that is,

cos@n~u j2g j 11!#5cos@n~u j2g j !#, ~A2!
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and satisfies the boundary conditions

lim
z→0

E
u j 2z

u j 1zH duF ]2

]u2 1n2Gw~u!2Fr~n!
pc

3 (
l 50

5

d~u2u l !Gw~u!J 50, ~A3!

with j 50,1,. . . ,5. Dn , which does not depend onj for the symmetric solution, determined b
normalizing the wave function.22 The requirement of continuity leads to the conditionsg j

1g j 1152u j5( j 1@ j 11#)p/3 or tog j 215g j . The second condition does not satisfy~A3! so we
shall use the first one, which can be written asg j5 j p/3. Now to focus on Eq.~A3!. Continuity
implies that the integral of the second term gives zero. For eachj , the first and the third terms give

lim
z→0

S ]

]u
~cosn@u2g j 11# !u5u j 1§2

]

]u
~cosn@u2g j # !u5u j 2§D2r~n!

pc

3
cosn@u j2g j #50.

~A4!

If we select a symmetric solution, then

2
]

]u
cos~n@u j1§2g j 11# !5

]

]u
cos~n@u j2§2g j # !, ~A5!

and taking the limit in Eq.~A4!, we obtain the desired form of the boundary condition

lim
u2→u j

1

r~n!cos~n@u2g j # !

]

]u
cos~n@u2g j # !52

pc

6
, ~A6!

where j 50,1,. . . ,5.Calculating the derivative and the limit in Eq.~A6! yields

6

pc
v tannp/65r~n!. ~A7!

We conclude that cos@n(u2jp/3)#, j 50,1,. . . ,5,satisfies Eq.~A1!, provided thatr~n! satis-
fies Eq.~A7!.

APPENDIX B: DERIVATION OF THE PLANE WAVE REPRESENTATION IN TERMS OF
CARTESIAN COORDINATES

For the 211 system, and aside from an ultimate normalization, the incoming wave fun
from Eq. ~31! can be written in terms of Cartesian coordinates, as

c i5expH pc

6 S x12x2

&
cosF ~ j 21!

p

3 G1
x11x222x3

A6
sinF ~ j 21!

p

3 G D
2 ikS x11x222x3

A6
cosF ~ j 21!

p

3 G2
x12x2

&
sinF ~ j 21!

p

3 G D J
1expH pc

6 S x12x2

&
cosF ~ j 11!

p

3 G1
x11x222x3

A6
sinF ~ j 11!

p

3 G D
1 ikS x11x222x3

A6
cosF ~ j 11!

p

3 G2
x12x2

&
sinF ~ j 11!

p

3 G D J . ~B1!

Evaluating the trigonometric functions forj 50 in the above expression, the argument of the fi
exponential function takes the form
                                                                                                                



in

s
per-
be

3544 J. Math. Phys., Vol. 45, No. 9, September 2004 Amaya-Tapia et al.

                    
i F2
2

A6
kx11S i

pc

6&
1

k

A6
D x21S 2 i

pc

6&
1

k

A6
D x3G . ~B2!

By labeling the particle wave numbers as in Ref. 21,

k15 i
pc

6&
2

1

A6
k,

k252 i
pc

6&
2

1

A6
k, ~B3!

k35A2

3
k,

the incoming wave takes the form

c i5exp$2 i ~k3x11k2x21k1x3!% j 501exp$ i ~k2x11k3x21k1x3!% j 50 .

The outgoing wave forj 50 can be obtained from the incoming one by substitutingk by 2k,
which in turns means interchangingk1↔k2 and inverting the sign of the whole argument with
all exponentials, that is,

S@exp$2 i ~k1x11k3x21k2x3!% j 501exp$ i ~k3x11k1x21k2x3!% j 50#.

The wave associated to the factorS3 can be written as

exp$2 i ~k1x11k2x21k3x3!% j 501exp$ i ~k2x11k1x21k3x3!% j 50].

The above results correspond to the sectorj 50 in the~r,u! plane, in which the order of particle
is given byx2,x3,x1 . The waves in different sectors can be obtained by the appropriate
mutation of the set of coordinates$x1 ,x2 ,x3%. The completely symmetric wave plane may then
written as

c5Sp@$exp@2 i ~k3x11k2x21k1x3!# j 5 j p
1exp@ i ~k2x11k3x21k1x3!# j 5 j p

%

1S~p!$exp@2 i ~k1x11k3x21k2x3!# j 5 j p
1exp@ i ~k3x11k1x21k2x3!# j 5 j p

%

1S3~p!$exp@2 i ~k1x11k2x21k3x3!# j 5 j p
1exp@ i ~k2x11k1x21k3x3!# j 5 j p

%#, ~B4!

where the sum runs over all permutations of the set$x1 ,x2 ,x3%.
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A complete study of the structure of Ricci collineations for type B warped space–
times is carried out. This study can be used as a method to obtain these symmetrie
in such space–times. Special cases as 2+2 reducible space–times, and plane an
spherical symmetric space–times are considered specifically. ©2004 American In-
stitute of Physics.[DOI: 10.1063/1.1775875]

. INTRODUCTION

In the last years, symmetries in general relativity have been studied in depth because
nterest from both a mathematical and a physical viewpoint. In fact, symmetries are import
nly because of their classical physical significance, but also because they simplify E
quations and provide a classification of the space–times according to the structure of th
ponding Lie algebra. They are described by vector fieldsX on the space–time which satisfy
elation of the form

£XF = L,

hereF is any of the quantitiesgab, Rab, Rbcd
a , etc,L is a tensor with the same index symmet

sF, and £ represents the Lie derivative. Depending onF andL, there are different classes
ymmetries(the relation between them was studied in Ref. 9). For example, ifF=gab and L
cgab, with c a function, thenX is a Killing vector field if c=0, a homothetic vector field

,a=0, a special conformal vector field ifc;ab=0, and a conformal vector field ifc is arbitrary. A
ymmetry will be called proper if it does not belong to any of its subtypes, otherwise it will b

mproper.
In this paper we will concentrate on Ricci collineations, that is, the case whenF=Rab and

=0. These symmetries are interesting because, among other things, they provide info
bout the energy-momentum tensor via the Einstein equations(although Ricci collineations are n
sually matter collineations). In order to ensure that Ricci collineations form a Lie algebra with
sual bracket operation, we shall assume that they are smooth vector fields. Recall that thi
aturally contains all the special conformal vector fields(and thus, all the homothetic and Killin
ector fields). Regarding the Ricci tensor, we shall consider(up to Sec. V) that it is nondegenerat

)Electronic mail: floresj@math.sunysb.edu
)Electronic mail: jparra@ula.ve
)
Electronic mail: upercoco@ula.ve
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.e., rank 4; in particular, this ensures that the corresponding Lie algebra is finite dimension
aximal dimension being 10. Further information on dimensionality and degenerate Ricci

an be found, for example, in Refs. 5 and 8.
In Ref. 3 the general form and classification of Ricci collineations of Robertson–W

pace–times is provided in detail. Afterwards, in Ref. 2 the authors compute Ricci collineat
etricsgab which are conformal to 1+sn−1d decomposable metrics by using an interesting t
ique. Roughly speaking, they construct the generic metricGab defined from the symmetry gro
f gab. Then, proper Ricci collineations are the Killing vector fields ofGab which are not Killing
ector fields ofgab. This method provides the Ricci collineations of Robertson–Walker sp
imes without any further calculations.

A few years ago, the problem of determining all Ricci collineations of type B warped s
imes was considered in Ref. 6. This class of space–times is important because its stru
atisfied by multiple examples of interest in Physics as Schwarzschild, Robertson–Walk
nfortunately, the conclusion obtained there cannot be considered the solution of the p
ecause it does not giveall Ricci collineations of such space–times. In fact, two simple cou
xamples to the main result in Ref. 6 were given in Ref. 1. On the other hand, the tec

ntroduced in Ref. 2 does not seem to be applicable directly to these space–times. In con
his problem remains still open.

Our aim in this paper is to describe in a general context the structure of all Ricci colline
f type B warped space–times. In fact, after a study of the equations which define these

ries in such space–times, we classify them according to their structure. This classification
onsidered a method to obtain all Ricci collineations. In particular, the counterexamples g
ef. 1 are clearly contained in our results, Remark 4.3(1). This paper is organized as follows

After some preliminaries on type B warped space–times, in Sec. II we obtain two conc
Propositions 2.1 and 2.3) on the structure of Killing vector fields and Ricci collineations of s
pace–times. In Sec. III, these results are applied systematically. Ricci collineations are c
ccording to having or not having mixed variables and, in each case, according to their
omponent. As consequence, an exhaustive description of the structure of these symm
btained. In Sec. IV, 2+2 reducible space–times(Sec. IV A) and plane and spherical symme
pace–times(Sec. IV B) are studied specifically. Finally, the case when Ricci tensor is dege
s briefly considered in Sec. V.

I. PRELIMINARIES

Let sM1,g1d andsM2,g2d be semi-Riemannian manifolds, andf.0 a smooth function onM1.
warped product with basesM1,g1d, fiber sM2,g2d, and warping functionf.0 is the produc
anifold M =M13M2 endowed with the metric tensor:

gf = p1
pg1 + sf + p1d2p2

pg2 ; g1 + f2g2,

herep1 andp2 are the natural projections ofM13M2 onto M1 andM2, respectively. If, add
ionally, sM ,gfd is a connected time-oriented four-dimensional Lorentzian manifold, then w
hat sM ,gfd is a warped space–time. In this case, a classification can be made accordin
espective dimensions ofM1 andM2 (see Ref. 4 and references therein for a general discus).

In this paper we will concentrate on the study of type B warped space–times, that is, t
hen M1 and M2 are both of dimension 2. In this case, and whenever we work locally, w
ssume

gf = gABsxCddxAdxB + f2sxCdgabsxgddxadxb,
A,B,C = 0,1,

a,b,g = 2,3,

here gAB and gab are the components ofg1 and g2 in certain chartssU1#M1,x0,x1d,
U2#M2,x2,x3d, respectively.

Let X be a vector field onM and consider its horizontal and vertical componentsX1, X2; that

s,
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X1sxA,xad = dp1sXdsxA,xad, X2sxA,xad = dp2sXdsxA,xad.

hen, the Lie derivative ofgf with respect toX is

s£XgfdAB = s£X1
g1dAB, s2.1d

s£XgfdAa = gACX1,a
C + f2gabX2,A

b , s2.2d

s£Xgfdab = f2s£X2
g2dab + f,C

2 X1
Cgab. s2.3d

n order to find the Killing vector fields ofsM ,gfd, (2.1)–(2.3) must be set equal to zero. Con
ion (2.1) equal to zero is equivalent to the following: for everyp2PM2 the restriction ofX1 to
M13p2 is a Killing vector field(perhaps zero) of sM13p2,g1d. On the other hand,(2.3) equal to
ero is equivalent to the following: for everyp1PM1 the restriction ofX2 to p13M2 is a confor
al vector field(perhaps zero) of sp13M2,g2d with conformal factor

c = −
1

2

f,C
2 X1

C

f2 .

hese simple facts are summarized in the following way.
Proposition 2.1: LetsM ,gfd be a type B warped space–time with basesM1,g1d, fiber sM2,g2d

nd warping functionf.0. A vector field Xò0 on M is Killing of sM ,gfd if and only if the
ollowing statements hold:

i) for every p1PM1, X2 is a conformal vector field(perhaps zero) of sp13M2,g2d with
conformal factorc,

ii ) for every p2PM2, X1 is a Killing vector field(perhaps zero) of sM13p2,g1d, which satis
fies

f,C
2 X1

C = − 2cf2, s2.4d

iii ) components (2.2) are equal to zero.

A direct computation provides the following componentsRab of the Ricci tensorR of a type
warped space–time:

RAB = 1
2R1gAB −

2

f
fA;B,

RAa = 0,

Rab = 1
2sR2 − sf2d;A

A dgab ; Fgab, s2.5d

here, obviously,F : = 1
2sR2−sf2d;A

A d, R1 andR2 are the scalar curvatures ofg1 andg2, respectively
nd the semicolon indicates the covariant derivative with respect togf.

Remark 2.2:Although the termsfA;B and sf2d;A
A in (2.5) include covariant derivatives wi

espect to all the metricgf, a direct computation shows that they are independent of the var
g
 of M2. In fact,
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fA;B = f,AB −
gCD

2
sgDB,A + gDA,B − gAB,Ddf,C,

sf2d;A
A = gABf,AB

2 −
gABgCD

2
sgDB,A + gDA,B − gAB,Ddf,C

2 .

he Lie derivative ofR with respect toX is

s£XRdAB = RAB,CX1
C + RACX1,B

C + RCBX1,A
C , s2.6d

s£XRdAa = RACX1,a
C + RabX2,A

b , s2.7d

s£XRdab = Fs£X2
g2dab + F,CX1

Cgab + F,gX2
ggab. s2.8d

n the following, our aim will be to find the Ricci collineations ofsM ,gfd; that is, the vector field
ò0 on M such that(2.6)–(2.8) are equal to zero.

As commented in the Introduction, we will assume thatR is nondegenerate. ThereforeF
0 everywhere. Moreover, from(2.5) and Remark 2.2,RAB can be seen as the components
etric tensorgR defined onM1. Then, reasoning as in Proposition 2.1, condition(2.6) equal to

ero is equivalent to the following: for everyp2PM2 the restriction ofX1 to M13p2 is a Killing
ector field(perhaps zero) of sM13p2,gRd. On the other hand,(2.8) equal to zero is equivalent
he following: for everyp1PM1 the restriction ofX2 to p13M2 is a conformal vector fiel
perhaps zero) of sp13M2,g2d with conformal factor

c = −
1

2

F,CX1
C + F,gX2

g

F
. s2.9d

quation(2.9) can be simplified by using the classical expression of the Lie derivative of the

h of a semi-Riemannian manifoldsN,hd with respect to a conformal vector fieldY of conforma
actor j (see Ref. 7); that is,

s£YRhdab = − sn − 2djuab − sDhjdhab, s2.10d

heren=dim N and Dhj=jucdh
cd is the Laplacian ofj with respect toh (obviously, the strok

enotes the covariant derivative with respect toh). In fact, assume thatX2 is a conformal vecto
eld of sp13M2,g2d with conformal factorc. Then, from(2.10) we obtain

s£X2
Rg2

dab = − sDg2
cdgab.

ut, obviously,

£X2
sRg2

dab = £X2
s 1

2R2g2dab = 1
2sR2,gX2

g + 2cR2dgab;

hus

R2,gX2
g + 2cR2 = − 2Dg2

c. s2.11d

n the other hand, by replacing in(2.9) the expression ofF we have

2csR2 − sf2d;A
A d = sf2d;A,C

A X1
C − R2,gX2

g. s2.12d

herefore, from(2.11) and (2.12) we obtain

sf2d;A,C
A X1

C = − 2csf2d;A
A − 2Dg2

c. s2.13d
hese facts are summarized in the following result.
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Proposition 2.3: LetsM ,gfd be a type B warped space–time with basesM1,g1d, fiber sM2,g2d
nd warping functionf.0. A vector field Xò0 on M is a Ricci collineation ofsM ,gfd if and
nly if the following statements hold:

i) for every p1PM1, X2 is a conformal vector field (perhaps zero) ofsp13M2,g2d with
conformal factorc,

ii ) for every p2PM2, X1 is a Killing vector field (perhaps zero) ofsM13p2,gRd, which satis
fies (2.13), and

iii ) components (2.7) are equal to zero.

In the next section, Propositions 2.1 and 2.3 will be exploited in order to describe the g
tructure of Ricci collineations ofsM ,gfd.

II. RICCI COLLINEATIONS OF TYPE B WARPED SPACE–TIMES

For simplicity, first we will classify these symmetries in two families. In the first family
ill include Ricci collineations whose variables are not mixed, that is, when the corresp
ector fieldX can be written as

XsxA,xad = X1sxAd + X2sxad.

ur study is completed by including in a second family Ricci collineations such that
X1/]xaÞ0 or ]X2/]xAÞ0.

Family 1: Ricci collineations with nonmixed variables.
Notice that, in this case, statements(iii ) in Propositions 2.1 and 2.3 always hold. On the o

and, from Proposition 2.3, we can distinguish four types in this family attending to the v
omponentX2 of X.

Type 1.1: X2 is a Killing vector field(perhaps zero) of sM2,g2d.
From Proposition 2.3(ii ), Xò0 will be a Ricci collineation if, additionally,X1 is a Killing

ector field(perhaps zero) of sM1,gRd with sf2d;A,C
A X1

C=0. Therefore, Ricci collineationsXò0 of
ype 1.1 are

X = X1 + X2 = o
i=1

kR

ai
1X1

i + o
j=1

k2

aj
2X2

j ,

here

i) hX1
i ji=1

kR is the algebra of Killing vector fields ofsM1,gRd,
ii ) hX2

j j j=1
k2 is the algebra of Killing vector fields ofsM2,g2d, and

iii ) coefficientshai
1ji=1

kR satisfy

o
i=1

kR

ai
1sf2d;A,C

A X1
i C = 0. s3.1d

Additionally, from Proposition 2.1X is not a Killing vector field ofsM ,gfd if,
iv) eitherf,C

2 X1
CÞ0 or X1 is not a Killing vector field ofsM1,g1d (in particular,X1ò0).

Remark 3.1:As dim Mi =2, i =1,2, necessarilykR,k2=0,1,3.But, from (iv), sM ,gfd admits
roper Ricci collineations of type 1.1 only ifkR=1,3.Therefore, in this case, if the curvature
M1,gRd is not constant, necessarilykR=1, and thus, Eq.(3.1) reduces tosf2d;A,C

A X1
1 C=0.

Type 1.2: X2 is a proper homothetic vector field ofsM2,g2d.
Obviously, this type of collineations only exists if the curvature ofsM2,g2d is not a constan

ifferent from zero. In this case,X will be a Ricci collineation if, additionally,X1 is a Killing

ector field(perhaps zero) of sM1,gRd with
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sf2d;A,C
A X1

C = − 2lsf2d;A
A , s3.2d

here lÞ0 is the homothetic factor ofX2. From (3.2), recall that if X1=0 then, necessari
f2d;A

A =0.
In conclusion, Ricci collineationsXò0 of type 1.2 are

X = X1 + X2 = o
i=1

kR

ai
1X1

i + o
j=1

k2

aj
2X2

j + lY,

here

i) as before,hX1
i ji=1

kR , hX2
j j j=1

k2 are the algebras of Killing vector fields ofsM1,gRd, sM2,g2d,
respectively,

ii ) Y is the homothetic vector field ofsM2,g2d with homothetic factor 1, and
iii ) coefficientshai

1ji=1
kR andlÞ0 satisfy

o
i=1

kR

ai
1sf2d;A,C

A X1
i C = − 2lsf2d;A

A .

Additionally, X is not a Killing vector field ofsM ,gfd if,
iv) eitherf,C

2 X1
CÞ−2lf2 or X1 is not a Killing vector field ofsM1,g1d.

Type 1.3: X2 is a proper special conformal vector field ofsM2,g2d.
This type of collineations only exists ifsf2d;A

A =0. In fact, now the conformal factorc asso
iated toX2 is a nonconstant function ofxa with Dg2

c=0. Therefore, if we assume that(2.13)
olds, and derive it with respect toxg, we deduce thatsf2d;A

A =0.
Under this restriction, all Ricci collineationsXò0 of type 1.3 are given by

X = X1 + X2 = o
i=1

kR

ai
1X1

i + o
j=1

s2

aj
2X2

j ,

here

i) hX1
i ji=1

kR is the algebra of Killing vector fields ofsM1,gRd,
ii ) hX2

j j j=1
s2 is the algebra of special conformal vector fields ofsM2,g2d and,

iii ) some of the coefficientshaj
2j j=h2+1

s2 are different from zero, beingh2 the dimension of th
algebra of homothetic vector fields ofsM2,g2d.

Moreover, these collineations are not Killing vector fields ofsM ,gfd because they do n
atisfy (2.4).

Remark 3.2:Notice that conditionsf2d;A
A =0 implies that proper homothetic and special c

ormal vector fields ofsM2,g2d are also Ricci collineations ofsM ,gfd of types 1.2 and 1.3
espectively. Moreover, they are not Killing vector fields ofsM ,gfd [since they do not satis
2.4)].

Type 1.4: X2 is a proper conformal vector field ofsM2,g2d.
This type of collineations only exists ifsf2d;A

A remains constant whereverc is not constant. I
act, if we assume that(2.13) holds, and derive it with respect toxg, we deduce that

Dg2
c = − sf2d;A

A · c = − const ·c s3.3d

n such a domain.

In conclusion, Ricci collineationsXò0 of type 1.4 satisfy the expression
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X = X1 + X2 = o
i=1

kR

ai
1X1

i + o
j=1

c2

aj
2X2

j ,

here

i) hX1
i ji=1

kR is the algebra of Killing vector fields ofsM1,gRd,
ii ) hX2

j j j=1
c2 is the conformal algebra ofsM2,g2d and,

iii ) coefficientshaj
2j j=k2+1

c2 are such that the conformal factor ofX2,

c = o
j=k2+1

c2

aj
2c2

j ,

satisfiess2.13d fin particular, satisfiess3.3d whereverc is not constantg, wherehc2
j j j=k2+1

c2

are the corresponding conformal factors ofhX2
j j j=k2+1

c2 , and some of the coefficientshaj
2j j=s2+1

c2

must be different from zero.

Again, these collineations are not Killing vector fields ofsM ,gfd because they do not satis
2.4).

Family 2: Ricci collineations with mixed variables.
In this family, the dependence ofX1 and X2 is not restricted toxA and xa, respectively

herefore,(iii ) in Propositions 2.1 and 2.3 must be also taken into account in order to find
ymmetries. Summarizing, Ricci collineationsXò0 are given now by

X = X1 + X2 = o
i=1

kR

ai
1sxadX1

i + o
j=1

c2

aj
2sxAdX2

j ,

here

i) hX1
i ji=1

kR is the algebra of Killing vector fields ofsM1,gRd,
ii ) hX2

j j j=1
c2 is the conformal algebra ofsM2,g2d, and

iii ) functionshai
1sxadji=1

kR , haj
2sxAdj j=1

c2 satisfy

o
i=1

kR

ai
1sxadsf2d;A,C

A X1
i C = − 2S o

j=k2+1

c2

aj
2sxAdc2

jDsf2d;A
A − 2 o

j=s2+1

c2

aj
2sxAdDg2

c2
j , s3.4d

o
i=1

kR dai
1sxgd
dxa RACX1

iC + o
j=1

c2 daj
2sxCd
dxA RabX2

jb = 0, A = 0,1, a = 2,3 s3.5d

sthe indexesk2, s2 are again the dimensions of the homothetic and special conf
algebrasd. Additionally, X is not a Killing vector field ofsM ,gfd if

iv) any of the statements of Proposition 2.1 do not hold.

Analogously to Family 1, we classify these collineations in four types.
Type 2.1:For everyp1PM1, X2 is a Killing vector field(perhaps zero) of sp13M2,g2d.
In this case the only functions which can be different from zero arehai

1sxadji=1
kR , haj

2sxAdj j=1
k2 . As

consequence, Eq.(3.4) reduces to

o
i=1

kR

ai
1sxadsf2d;A,C

A X1
i C = 0.

Type 2.2:For everyp1PM1, X2 is a homothetic vector field(perhaps zero) of sp13M2,g2d
hich is not always Killing.

This type of collineations only exists if the curvature ofsM2,g2d is not a constant differe
rom zero. In this case, only the functionshai

1sxadji=1
kR , haj

2sxAdj j=1
k2 , ak2+1

2 sxAd;lsxAd can be differen

rom zero, and they must satisfy

                                                                                                            



k

w

3
n-

s

w llinea-
t

arped
s mation
a

I

ped
s es.

A

T ly
o s
X g
D in the
f

–
t
c

e
s

w s
h

J. Math. Phys., Vol. 45, No. 9, September 2004 On the general structure of warped space–times 3553

                        
o
i=1

R

ai
1sxadsf2d;A,C

A X1
i C = − 2lsxAdsf2d;A

A ,

here we have assumed the homothetic factorc2
k2+1 normalized to 1.

Type 2.3:For everyp1PM1, X2 is a special conformal vector field(perhaps zero) of sp1

M2,g2d which is not always homothetic.
In this case, only the functionshai

1sxadji=1
kR , haj

2sxAdj j=1
s2 can be different from zero. As a co

equence, Eq.(3.4) reduces now to

o
i=1

kR

ai
1sxadsf2d;A,C

A X1
i C = − 2S o

j=k2+1

s2

aj
2sxAdc2

jDsf2d;A
A .

Type 2.4:For everyp1PM1, X2 is a conformal vector field(perhaps zero) of sp13M2,g2d
hich is not always special. In general, we cannot simplify the structure of these Ricci co

ions.
In the following section a brief application of our study to some examples of type B w

pace–times is carried out. Without any further calculations, we obtain interesting infor
bout the particular structure of their symmetries.

V. EXAMPLES

In this section we will apply our point of view to the following families of type B war
pace–times: 2+2 reducible space–times, and plane and spherical symmetric space–tim

. 2+2 reducible space–times

In this case the product manifoldM =M13M2 is endowed with the metric tensor

g = p1
pg1 + p2

pg2 ; g1 + g2.

herefore, these space–times are type B warped space–times withf2=1 and, thus, we can app
ur previous study. First, take into account that nowgR=1/2R1g1=Rg1

. Thus, Killing vector field

1 of sM1,gRd are just the conformal vector fields ofsM1,g1d with conformal factors satisfyin

g1
c1=0 [recall(2.10)]. Therefore, if we apply Proposition 2.3 to these space–times, we obta

ollowing consequences.
Corollary 4.1: Ricci collineations Xò0, with nonmixed variables, of a2+2 reducible space

imesM ,gd are the vector fields X=X1+X2 such that, Xl are conformal vector fields ofsMl ,gld with
onformal factorscl satisfying

Dgl
cl = 0, l = 1,2.

Corollary 4.2: Ricci collineations Xò0, with mixed variables, of a2+2 reducible space–tim
M ,gd are the vector fields

X = X1 + X2 = o
i=1

c1

ai
1sxadX1

i + o
j=1

c2

aj
2sxAdX2

j ,

herehX1
i ji=1

c1 , hX2
j j j=1

c2 are the conformal algebras ofsM1,g1d, sM2,g2d, respectively, and function
1 a c1 2 A c2
ai sx dji=1, haj sx dj j=1 satisfy
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o
i=s1+1

c1

ai
1sxadDg1

c1
i = o

j=s2+1

c2

aj
2sxAdDg2

c2
j = 0,

o
i=1

c1 dai
1sxgd
dxa RACX1

iC + o
j=1

c2 daj
2sxCd
dxA RabX2

jb = 0, A = 0,1, a = 2,3,

eing hc1
i ji=1

c1 , hc2
j j j=1

c2 the corresponding conformal factors.
Remark 4.3:(1) Counterexamples given in Ref. 1 are clearly contained in these results. I

M =R23R2 endowed with

g = et2/2s− dt2 + dx2d + e−y2/2sdy2 + dz2d

s a 2+2 reducible space–time and, both,X=]t+]y, Y=z]t+]y+ t]z are Ricci collineations whic
atisfy hypotheses of corollaries 4.1 and 4.2, respectively.

(2) From Eqs.(2.5), it is clear that both corollaries also hold for space–times not neces
+2 reducible, but satisfyingfA;B=sf2d;A

A ;0.

. Plane and spherical symmetric space–times

Consider now the family of space–timesM =R23M2 endowed with the metric tensor

gf = − e2vdt2 + e2wdx2 + f2g2,

herev ,w, andf are each functions oft andx, and

sM2,g2d = HR2

S2

ndowed with their corresponding usual metrics(if we also include the hyperbolic space,gf can
e characterized by admitting a groupG3 acting multiply-transitively on spacelike orbitsV2, see
ef. 10). To avoid the vanishing ofF, and thus, the degeneracy of Ricci tensorR [recall(2.5)], we
ill also assume

sf2d;A
A Þ R2 for all st,xd P R2. s4.1d

From Sec. III, the componentX1 of a Ricci collineationXò0 of these space–times is differ
rom zero only ifsM1,gRd admits some Killing vector fields. In this case, the dimensionkR of the
orresponding algebra must be 3 or 1, depending on ifv, w, andf makessR2,gRd being maxi
ally symmetric or not. To study the structure ofX2, we must consider the two cases separa

. Plane symmetry

The conformal algebra of the planesR2,dy2+dz2d is the(infinite-dimensional) Virasoro alge
ra, which has the following special conformal vector fields:

X2
1 = ]y, c2

1 = 0,

X2
2 = ]z, c2

2 = 0,

X2
3 = z]y − y]z, c2

3 = 0,

X2
4 = y]y + z]z, c2

4 = 1,

X2
5 = sy2 − z2d]y + 2yz]z, c2

5 = 2y,

X2
6 = 2yz]y + sz2 − y2d]z, c2

6 = 2z.
herefore,k2=3, h2=4, s2=6 (andc2=`). In this case, we can establish the following:
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i) The vertical componentX2 of a Ricci collineationXò0 of type 1.1 is a linear combinatio
of thek2=3 Killing vector fields of the plane. On the other hand, the horizontal comp
X1 satisfies the equation inkR variables(3.1).

ii ) The componentX2 of a Ricci collineation of type 1.2 is a linear combination of theh2
=4 homothetic vector fields of the plane. On the other hand, the horizontal componX1
satisfies Eq.(3.2). If kR=0, there are not Ricci collineations of this type since, in this c
(3.2) reduces tosf2d;A

A =0, which contradicts(4.1).
iii ) There are not Ricci collineations of type 1.3. Moreover, there are collineations of ty

only if sf2d;A
A =constÞ0.

iv) Ricci collineations in Family 2 must satisfy Eqs.(3.4) and (3.5), which are in genera
complicated. IfkR=0 and we consider collineations of type 2.3, these equations red

a4
2 + 2y a5

2 + 2z a6
2 = 0

and

a1,t
2 + z a3,t

2 + y a4,t
2 + sy2 − z2da5,t

2 + 2yz a6,t
2 = 0,

a2,t
2 − y a3,t

2 + z a4,t
2 + 2yz a5,t

2 + sz2 − y2da6,t
2 = 0,

a1,x
2 + z a3,x

2 + y a4,x
2 + sy2 − z2da5,x

2 + 2yz a6,x
2 = 0,

a2,x
2 − y a3,x

2 + z a4,x
2 + 2yz a5,x

2 + sz2 − y2da6,x
2 = 0.

. Spherical symmetry

In this case, the second spacesM2,g2d is the unitary bidimensional sphereS2. The local
onformal algebra ofS2, like that of the plane, is the Virasoro algebra. In order to single o
nite-dimensional subalgebra from it, we will impose that conformal vectors must beglobally
efined onS2. Then, a well-known computation shows that the onlyglobal conformal vector field
f S2 expressed in spherical coordinates are

X2
1 = cosw]u − sin w cot u]w, c2

1 = 0,

X2
2 = sin w]u + cosw cot u]w, c2

2 = 0,

X2
3 = ]w, c2

3 = 0,

X2
4 = sin u]u, c2

4 = cosu,

X2
5 = cosu cosw]u −

sin w

sin u
]w, c2

5 = − sin u cosw,

X2
6 = cosu sin w]u −

cosw

sin u
]w, c2

6 = − sin u sin w.

Nevertheless, recall that other conformal vectors—necessarilylocally defined—can appear
ertical components of a Ricci collineation of a spherically symmetric space–time.)
In conclusion,k2=h2=s2=3 andc2=6. Therefore, we obtain the following:
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i) The vertical componentX2 of a Ricci collineationXò0 of type 1.1 is a linear combinatio
of the k2=3 Killing vector fields ofS2. On the other hand, the horizontal componenX1
satisfies the equation inkR variables(3.1).

ii ) As the curvature ofS2 is a constant different from zero, there are not Ricci collineation
types 1.2, 2.2. Even more, ass2−h2=0, there are not Ricci collineations of types 1.3,
either.

iii ) A simple computation shows thatDg2
c2

j =−2c2
j , j =4,5,6. Butthen, (3.3) implies sf2d;A

A

=R2=2, which contradicts(4.1). Therefore, there are not Ricci collineations of type 1
iv) Ricci collineations in Family 2 must satisfy Eqs.(3.4) and (3.5), which are in genera

complicated. IfkR=0, there are not Ricci collineations in this family. In fact, in this c
(3.4); [or, equivalently,(2.13)] implies againsf2d;A

A =R2=2, in contradiction with(4.1).

. THE DEGENERATE CASE

For completeness, we briefly analyse here the cases when Ricci tensor is degenera
2.5), the Ricci tensor of a type B warped space–time is degenerate ifF;0 or fA;B

sf /4dR1gAB (if both identities hold, the Ricci tensor is zero and any vector field is a
ollineation).

Consider the caseF;0 [or, equivalently,sf2d;A
A ;R2=0]. Then, Eqs.(2.6)–(2.8) show that a

ector fieldX=X1+X2ò0 is a Ricci collineation of the space–time if and only ifX1 is a Killing
ector field(perhaps zero) of sM13p2,gRd satisfyingRACX1,a

C =0 for everyp2PM2. In particular
ny Killing vector field ofsM1,gRd is always a Ricci collineation of the space–time. Moreover
roup of Ricci collineations becomes infinity, since every vector fieldXò0 with horizontal com
onentX1;0 generates a Ricci collineation. That is, the vertical component(which is just the
omponent where Ricci tensor degenerates) of these Ricci collineations is largely arbitrary(see
ef. 3 Sec. II, for a similar property in Robertson–Walker space–times).

The situation is more complicated when the source of degeneracy is the identitfA;B

sf /4dR1gAB. In this case, Proposition 2.3 shows that a vector fieldX=X1+X2ò0 is a Ricc
ollineation of the space–time if and only ifX2 is a conformal vector field(perhaps zero) of sp1

M2,g2d satisfyingRabX2,A
b =0 for everyp1PM1 and, additionally,X1 satisfies(2.13) for every

p2PM2. So, in this case we have restrictions on both, the vertical and horizontal compon
. This is due to the dependence ofF on both components, and breaks the similarities with res

o the Robertson–Walker case.

I. CONCLUSION

By analyzing the equations which characterize Ricci collineations of type B warped s
imes, we have determined the structure of these symmetries. They have been classified
ypes according to having or not mixed variables, and according to their vertical compone
onsequence, several examples of interest have been considered, and new information a
ollineations has been provided. This study must be understood as an initial point to
ystematic computation of Ricci collineations for a wide family of space–times of this clas

As a final remark we would like to point out that it would be very useful to use com
lgebra packages to automate the search of symmetries. Nevertheless, as far as we k
vailable algorithms can only check if a given vector field is a symmetry or not(at least this is th
ase of GRTensor with which we have some familiarity).
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According to a theorem by Treves[Duke Math. J.108, 251(2001)], the conserved
functionals of the KdV equation vanish on each formal Laurent series 1/x2+u0

+ok=2
+` ukx

k. We propose a new, very simple geometrical proof for this statement.
© 2004 American Institute of Physics.[DOI: 10.1063/1.1777795]

. INTRODUCTION

In 2001, Treves obtained a new characterization for the conserved quantities
orteweg–de Vries(KdV) equation. Roughly speaking, his result concerns functionals whic

ntegrals of differential polynomials, and their evaluation on formal Laurent series with co
oefficients in one variablex (defining the integral as the residue inx). For each functionalh of
his kind on the Laurent series, Treves1 proved the equivalence between(a) and (b):

(a) h is a conserved functional for the KdV equation;
(b) hsud=0 for each Laurent series of the form u=1/x2+u0+ok=2

+` ukx
k su0,u2,u3, . . .PCd.

Subsequently, Treves obtained a similar result for the modified KdV equation and deriv
nalogue ofsad⇒ sbd for the conserved functionals of the nonlinear Schrödinger equation.2

In all cases analyzed by Treves, the proof of eithersad⇒ sbd or sbd⇒ sad is very long. A
imple, alternative derivation ofsad⇒ sbd for the KdV case was given by Dickey,3 using the
ressing method for the Lax operator; this author also derived an analogue of this implica

he Boussinesq theory.
We became aware of the above results very recently, due to a talk given in Mila

rofessor Treves,4 and we soon developed an interest in a further simplification of the proof
nvestigated in particular the implicationsad⇒ sbd, concentrating for brevity on the KdV case a
rying to isolate asingle geometrical propertyof the conserved functionals, sufficient to derive
hesis. The conclusion of our analysis is described in this paper: here we propose a p
ad⇒ sbd for the KdV, different from the ones of Treves and Dickey and possessing in our o
he previously asked feature; the same approach could be probably used for other in
ystems.

Our argument can be described in very few lines, in the following way.

(I) The conserved KdV functionals are known to be invariant under the Bäcklund
formation(often called auto-Bäcklund) M +R+M−1, whereM andR are the Miura an
reflection transformations, respectively. This is the geometrical property from
everything follows.

(II ) Any Laurent seriesu=1/x2+u0+ok=2
+` ukx

k is the Bäcklund transform of a seriesw
=w0+ok=2

` wkx
k.

)Electronic mail: carmor@mate.polimi.it
)
Electronic mail: livio.pizzocchero@mat.unimi.it
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(III ) If h is a conserved KdV functional andu, w are as before, we havehsud=hswd; on the
other hand,hswd=0 for a trivial reason: in fact, this is the integral of a series with
negative powers ofx and thus with zero residue. The conclusion ishsud=0.

The rest of the paper is simply a rigorous formulation of items(I)–(III ). In Sec. II, to fix the
anguage we give some background on differential polynomials, functionals, KdV theory an
recisely the Treves theorem; in Sec. III, we review the Bäcklund transformation and for
tatement(I) in the framework of the Laurent series. Expert readers can skip most of the p
aries in these two sections, and concentrate on Eqs.(2.14) and (2.15) describing the space
aurent series; Eqs.(3.3)–(3.6) on the Bäcklund transformation and the invariance of KdV fu
ionals. In Sec. IV, we prove(II ) and showsad⇒ sbd along the lines of(III ).

Let us point out how the idea(I)–(III ) could be employed in relation to other integra
quations. First of all, one needs a Bäcklund transformation leaving invariant the con

unctionals. Trivially, all functionals of the theory vanish on the subspace of formal series w
egative powers ofx. One should start from this subspace or a subset of it, and characte

mage under the Bäcklund transformation; the latter is made of nontrivial Laurent series, on
he conserved functionals are again zero. In the KdV case, the starting set and its Bäcklun
onsist, respectively, of the seriesw, u mentioned in(II ).

Some terminology:All vector spaces considered in this paper are overC. By a differentia
algebra, we mean an associative andcommutativealgebra equipped with a derivation, i.e., wit
linear map of the algebra into itself having the Leibnitz property with respect to the prod
morphism of differential algebras is an algebraic morphism respecting the derivations.

I. FORMAL VARIATIONAL CALCULUS, KdV AND THE TREVES THEOREM

In all concrete manipulations, the KdV equationsd/dtdq=qxxx−12qqx is understood as
ector field on some “space”Q, whose elementsq are “functions of one variablex.” The analysis
f this vector field is greatly simplified if one assumesQ to be closed under pointwise sums
roducts, and under the operationq°qx of derivation with respect tox; in this case,Q is a
ifferential algebra.

Investigations in this area soon made clear that the striking features of KdV are
ndependent of the choice of the differential algebraQ; the same can be said for other integra
DEs, discovered shortly after it. To take this fact into account, Gelfand and Dickey(see Ref. 5
nd the bibliography therein) invented aformal variational calculus, allowing to describe the Kd
nd similar systems within a very pure algebraic setting. Hereafter we illustrate some fact

his calculus, in a fashion convenient for our purposes(and partly inspired by the setting of R
).

Formal variational calculus for KdV theory can be based on the commutative algebra

F: = Cfj,jx,jxx, . . . g0, s2.1d

ade of complex polynomials in infinitely many indeterminatesj ,jx,jxx, . . . without a constan
erm.F becomes a differential algebra, when equipped with the unique derivation such that6

j = jx, jx = jxx, . . . . s2.2d

e write F ,G, etc. for the elements ofF, andFG for their product as polynomials. Thecompo
ition productF +GPF is the polynomial obtained from the expression ofF replacingj ,jx, . . .
ith G, G, . . ..7 For each fixedG, the mappingF °F +G is the unique automorphism of t
ifferential algebraF sendingj into G. The operation+ is associative, sosF ,+d is a monoid with
nit j.

Let us consider any differential algebrasQ , ·xd (of elementsq,p, . . ., with a derivationq
Q°qxPQ; this notation for the derivation is purely conventional). Then, we can represent t

lements ofF as transformations ofQ into itself. More precisely, ifF PF and qPQ, let us

enote withFsqdPQ the element obtained from the expression ofF substituting the symbols
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,jx, . . . with q, qx, etc. In this way,F induces a map of polynomial type8

F:Q → Q, q ° Fsqd. s2.3d

e point out the remotion of bold typeface to distinguish this map fromF; in particular, the
ransformationj :Q→Q induced byj is just the identity mapq°q. As F ranges over the who
, we get a correspondence

F → PolsQ,Qd, F ° F. s2.4d

ow, the set PolsQ ,Qd of polynomial mapsQ→Q is itself a commutative algebra, with all t
perations defined pointwisely: forK ,L :Q→Q and lPC, K+L, lK, KL :Q→Q are the map
°Ksqd+Lsqd, q°lKsqd, q°KsqdLsqd. Furthermore, PolsQ ,Qd becomes a differential algeb

with the derivation] :K°]K such thats]Kdsqd : =Ksqdx for all qPQ. One easily recognizes th
2.4) is a morphism of differential algebras: for allF ,GPF and lPC, the transformation
orresponding toF +G, lF, FG, F areF+G, lF, FG, ]F.

PolsQ ,Qd is also a monoid with the usual composition of mapsF +G:q°FsGsqdd and the
dentity map as unit; it turns out that(2.4) is a monoid morphism betweensF ,+d and
PolsQ ,Qd , + d.

Due to the previous facts, it is helpful for intuitionto think the elements ofF as transforma
ions, even when no differential algebrasQ , ·xd is specified.

The next step in formal variational calculus is the introduction offunctionals, which are
integrals” of transformations. The only property needed for the integral is to vanish on a d
ive; for this reason Gelfand and Dickey defined this operation as the quotient map

E :F → F/Im  , s2.5d

nd called functionals the elements ofF / Im ; each of them has the form

f =E F sF P Fd. s2.6d

or any “transformation”GPF, the functional

f + G: =E sF + Gd P F/Im  s2.7d

s well defined(i.e., independent on the choice ofF within the equivalence classf); we call this
he compositionbetweenf and G. One easily checks the linearity of the mapf ° f +G, and the
ssociative propertysf +Gd +G8= f + sG+G8d for f ,G as before andG8PF.

To get concrete counterparts of functionals, consider any differential algebrasQ , ·xd, and
efine anintegration for it to be any linear map

E :Q → C such that E qx = 0 ∀ q P Q; s2.8d

he triple sQ , ·x,ed will then be called anintegral-differential algebra. If f =eF PF / Im , define

f:Q → C, q ° fsqd: =E Fsqd; s2.9d
his definition is well posed, and gives a linear correspondence
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F/Im  → PolsQ,Cd, f ° f; s2.10d

or all f as above andGPF, the mapQ→C induced by f +G is the usual compositionf
G:q° fsGsqdd.

One can then go on at the level ofF, defining notions such asvector fields(identifiable with
lements ofF), and the(Lie) derivativeof a functionalh along a vector fieldX; if the latter
anishes, we say thath is conserved byX (see Ref. 5 and the bibliography therein).

All this machinery is designed to discuss topics such as theKdV vector fieldand its conserve
unctionals, i.e.,

XKdV: = jxxx− 12jjx, s2.11d

ZKdV: = hh P F/Imuh is a conserved byXKdVj. s2.12d

n outstanding feature of KdV theory is thatZKdV is infinite dimensional(as a vector space ov
). A basis for it is well known and consists of countably many functionalsshkdk=1,2,. . ., for which
everal equivalent constructions are available: for example, one can use the Magri–Lena
ion scheme,9 or the method of fractional powers.5 The first elements are

h1: = − 1
4E j, h2: = 1

2E j2, h3: = −E s2j3 + 1
2jx

2d, h4: =E s10j4 + 10jjx
2 + 1

2jxx
2 d.

s2.13d

e finally come to the Treves theorem, concerning the KdV conserved functionals an
epresentation on a particular integral-differential algebrasQ, ·x,ed. By definition, this is made o
ormal Laurent series in one indeterminatex and complex coefficients, i.e.,

Q: = Hq = Uo
k

qkx
kUk P Z,qk P C ∀ k,qk = 0 for k ø k* = k*sqdJ; s2.14d

is a commutative algebra with the usual Cauchy product; it carries the derivation and i
ion

·x:Q → Q, q ° qx: = o
k

kqkx
k−1; E :Q → C, q °E q: = q−1. s2.15d

learly, eq=0 iff q=px for some pPQ; of course, the definition ofeq as the “residue”q−1

uggests to interpret it as a loop integral about zero.
With the previous notations, the Treves theorem reads as follows.
Proposition 2.1 (see Ref. 1): For anyhPF / Im , statements (a) and (b) are equivalent:

(a) hPZKdV;
(b) hsud=0 for each uPQ of the form u=1/x2+u0+ok=2

+` ukx
k.

As anticipated, the rest of the paper is a new geometrical proof of the implicationsad⇒ sbd.

II. A REVIEW OF THE MIURA AND BÄCKLUND TRANSFORMATIONS

The basic facts on these transformations can be stated in the language of formal va
alculus; so, we consider the algebraF of the preceding section, and state the following.

Definition 3.1: The Miura and reflection transformations are

M: = jx + 2j2; R: = − j. s3.1d

oth M ,R are elements ofF, so they can be composed as explained previously; of courM
2
R=−jx+2j . We can as well compose functionalsPF / Im with these transformations; for
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xample, composing the first KdV conserved functionals(2.13) with the Miura transformation w
btain

h1 + M = − 1
2E j2, h2 + M =E s2j4 + 1

2jx
2d, h3 + M = −E s16j6 + 20j2jx

2 + 1
2jxx

2 d,

h4 + M =E s160j8 + 560j4jx
2 + 18jx

4 + 96jjx
2jxx + 28j2jxx

2 + 1
2jxxx

2 d. s3.2d

he following facts are known from the very beginning of KdV history.
Proposition 3.2: For eachhPZKdV:

(i) h +M is a conserved functional for the modified KdV vector fieldXmKdV: =jxxx
−24j2jx.

(ii ) h +M is invariant under reflection: sh +Md +R=h +M.

References for the proof: For (i), see the original papers by Miuraet al.10 (ii ) is proved
ecursively for all elementsshkdk=1,2,. . . in the basis ofZKdV, using the Magri–Lenard recursi
elations9 connectinghk+M to hk+1+M: these relations are reflection invariant. N

For our purposes,(ii ) is the essential feature ofM andR; now we represent this result on a
ntegral-differential algebrasQ , ·x,ed. Let us consider the maps ofQ into itself induced byM ,R
ccording to the framework of the preceding section; these are

M:Q → Q, p ° Mspd = px + 2p2; R:Q → Q, p ° Rspd = − p s3.3d

the letterp for elements ofQ is used here for future convenience). The above maps will be calle
he Miura and reflexion transformationson Q. Let us also recall that any functionalf PF / Im
nduces a mapf :Q→C; in particular, considering the KdV conserved functionals we infer
roposition 3.2(ii ) that

sh + Md + R= h + M for eachh P ZKdV, s3.4d

ith + the usual composition of maps.
We go on and introduce the Bäcklund transformation onQ; essentially, this is the compositi

f mapsM +R+M−1, leaving invariant any conserved KdV functional due to Eq.(3.4). However,M
s typically noninvertible on the full spaceQ: to overcome this difficulty, we use the followin

Definition 3.3: Consider the set2Q of the parts ofQ (i.e., the collection of all subsets ofQ).
he Bäcklund transformation onQ is the set-valued map

B:Q → 2Q, q ° Bsqd: = hsM + Rdspdup P Q,Mspd = qj. s3.5d

ith this definition, Eq.(3.4) implies the following.
Proposition 3.4: LethPZKdV; then the map h:Q→R is Bäcklund invariant, in the followin

ense: for all q,r PQ,

r P Bsqd ⇒ hsrd = hsqd. s3.6d

V. THE IMPLICATION „a…× „b… IN PROPOSITION 2.1: A NEW PROOF

The simple geometrical proof we propose is based on the scheme(I)–(III ) of the Introduction
tem (I) has been treated in the preceding section; here we formalize(II ) and(III ). From now on
Q, ·x,ed is the integral-differential algebra(2.14) and (2.15) of the formal Laurent series.
Definition 4.1: We set
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W: =Hw P QUw = w0 + o
k=2

+`

wkx
kJ ; V: =Hv P QUv =

1

2x
+ v1x + o

k=3

+`

vkx
kJ;

U: =Hu P QUu =
1

x2 + u0 + o
k=2

+`

ukx
kJ . s4.1d

Lemma 4.2: Consider the Miura and reflections transformations M,R of Eq. (3.3). Then

(i) M is one to one betweenV and W;
(ii ) M +R is one to one betweenV and U.

Proof: (i) For all vPV, an elementary computation gives

Msvd = vx + 2v2 = 3v1 + s5v3 + 2v1
2dx2 + 6v4x

3 + s7v5 + 4v1v3dx4 + s8v6 + 4v1v4dx5

+ o
k=6

` Ssk + 3dvk+1 + 4v1vk−1 + 2o
j=3

k−3

v jvk−jDxk; s4.2d

rom here, we see thatMsvdPW. Now, let us consider anywPW and show that the equati
Msvd=w has a unique solutionvPV. In fact, Msvd=w is equivalent to 3v1=w0, 5v3+2v1

2=w2,
tc., giving

v1 = 1
3w0, v3 = − 2

5v1
2 + 1

5w2 = − 2
45w0

2 + 1
5w2, v4 = 1

6w3,

v5 = 8
945w0

3 − 4
105w0w2 + 1

7w4, v6 = − 1
36w0w3 + 1

8w5,

vk+1 = −
2

k + 3
S2v1vk−1 + o

j=3

k−3

v jvk−jD +
wk

k + 3
for all k ù 6; s4.3d

he equation in the last line is a recursion formula, determining uniquelyvk for all kù7.
(ii ) For all vPV, we find

sM + Rdsvd = − vx + 2v2 =
1

x2 + v1 + s− v3 + 2v1
2dx2 − 2v4x

3 + s− 3v5 + 4v1v3dx4 + s− 4v6 + 4v1v4dx5

+ o
k=6

` Ss1 − kdvk+1 + 4v1vk−1 + 2o
j=3

k−3

v jvk−jDxk; s4.4d

his shows thatsM +RdsvdPU. For all uPU, the equationsM +Rdsvd=u has a unique solutionv
V, given by

v1 = u0, v3 = 2u0
2 − u2, v4 = − 1

2u3,

v5 = 8
3u0

3 − 4
3u0u2 − 1

3u4, v6 = − 1
2u0u3 − 1

4u5,

vk+1 =
2

k − 1
S2v1vk−1 + o

j=3

k−3

v jvk−jD −
uk

k − 1
for all k ù 6. s4.5d

j

f course, the previous Lemma implies the following.

Corollary 4.3: Define a restricted Bäcklund transformation
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B0:W → U, B0: = ssM + Rd�Vd + sM�Vd−1; s4.6d

hen, B0 is one to one betweenW and U.
The final step in our argument is trivial.
Lemma 4.4: Consider any functionalf PF / Im ; then f vanishes on the “holomorphic su

pace,”

Z: =HzP QUz= o
k=0

`

zkx
kJ . s4.7d

Proof: Z is a differential subalgebra ofQ, ande clearly vanishes onZ. Consider any func
ional f =eF. For all zPZ we haveFszdPZ and fszd=eFszd=0. N

We are finally ready to prove the following.
Proof of the implicationsad⇒ sbd in the Treves theorem: Consider a functionalhPZKdV, and

ny Laurent seriesuPU. By the previous Corollary, there is a uniquewPW such thatu
B0swd; of course this impliesuPBswd, with B the (set-valued) Bäcklund transformation(3.5).
hese facts give

hsud = hswd = 0. s4.8d

he first equality above is ensured by the Bäcklund invariance ofh (Proposition 3.4); the secon
ne follows from Lemma(4.4) and the evident inclusionW,Z. N
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We study the problem of Bose–Einstein condensation in the perfect Bose gas in the
canonical ensemble, in anisotropically dilated rectangular parallelepipeds(Casimir
boxes). We prove that in the canonical ensemble for these anisotropic boxes there is
the same type of generalized Bose–Einstein condensation as in the grand-canonica
ensemble for the equivalent geometry. However the amount of condensate in the
individual states is different in some cases and so are the fluctuations. ©2004
American Institute of Physics.[DOI: 10.1063/1.1777402]

. INTRODUCTION

Many calculations in the grand-canonical ensemble(GCE) show a dependence of Bos
instein condensation(BEC) on the way the infinite volume limit is taken. For example, in R
4 and 16 the authors study the perfect boson gas(PBG) in the GCE in rectangular parallelepipe
hose edges go to infinity at different rates(Casimir boxes, see Ref. 4). They showed that th
nisotropic dilationcan modify the standard ground-state BEC, converting it into ageneralized
EC of type II or III. For a short history of the notion ofgeneralizedBEC we refer the reader
efs. 14 and 16.

On the other hand, due to the lack of(strong) equivalence of ensembles, the PBG in
anonical ensemble(CE) and in the GCE gives different expectations and fluctuations for m
bservables. For example, it was shown in Ref. 3 that for theisotropic dilationof the canonica
BG the distribution of ground-state occupation number isdifferentfrom the one in the GCE. Th
ame is true for the fluctuations of the occupation numbers, which are shape dependent an
ormal or Gaussian. Therefore this lack of equivalence of ensembles does not allow us to

he same shape dependence for BEC in the CE as for its grand-canonical counterpart and
uestion of whether it is true in the CE has not been considered except in a special case2

Our aim in the present paper is to fill this gap. We study the problem of BEC in the P
he CE, in anisotropically dilated rectangular boxes. We shall prove that in the CE for
nisotropic boxes there is the same type of generalized BEC as in the GCE for the eq
eometry. However the amount of condensate in the individual states is different in som
nd so are the fluctuations.

We would like to note that there is a renewed interest ingeneralizedBEC both from the
heoretical9,11,18and experimental5,13points of view. This due to recent experiments which prod
fragmentation” of BEC(see, e.g., Refs. 6 and 10), that is, the single state condensation ca
smeared out” over two or more quantum states. We return to this point in Sec. IV.

The structure of the present paper is as follows. In the rest of this section we gi
athematical setting. In Sec. II we collect together the results about PBG in the GCE that w
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Joe.Pule@ucd.ie
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eed. In Sec. III we study the PBG in the CE for the system of anisotropic parallelepipe
tart by giving some results which are common to the three cases corresponding to th
haracteristic ways of taking the thermodynamic limit. These are determined by how f

ongest edge grows:(a) faster than the square root of the volume,(b) like the square root of th
olume and(c) slower than the square root of the volume. In the three subsections of Sec.
tudy these cases separately. In Sec. IV we discuss the results.

We finish this section by establishing the general setting and notation.
Let LV be a rectangular parallelepiped of volumeV:

LV ª hx P R3:0 ø xj ø Va j, j = 1,2,3j, s1.1d

here

a1 ù a2 ù a3 . 0, and a1 + a2 + a3 = 1. s1.2d

he space of one-particle wave-functions isHV=L2sLVd and the one-particle HamiltoniantV is the
elf-adjoint extension of the operator −D /2 determined by the Dirichlet boundary conditions
LV. We denote byhEksVdjk=1

` the ordered eigenvalues oftV:

0 , E1sVd , E2sVd ø E3sVd ø ¯ .

We also introduce the boson Fock space onHV defined byFsHVdª%n=0
` HV,symm

n , where

V,symm
n

ª s^ j=1
n HVdsymm stands for the space ofn-particle symmetric functions. ThenTV

snd denote
he n-particle free Hamiltonian determined bytV;TV

s1d on HV,symm
n , and TV the correspondin

amiltonian in the Fock space.
Now the expectations for the PBG in the canonical ensemble at temperatureb−1 and densit

=n/V are defined by the Gibbs state,

k− lV
Csrd ª „ZVsnd…−1TrHV,symm

n s− de−bTV
snd

, s1.3d

here

ZVsnd ª TrHV,symm
n e−bTV

snd
s1.4d

s then-particle canonical partition function. As usual we putZVs0d=1. The grand-canonical Gib
tate is defined by

k− lV
GCsmd ª „JVsmd…−1TrFsHVds− de−bsTV−mNVd, s1.5d

herem is the corresponding chemical potential. HereNV is the particle number operator, that

VªSkù1Nk whereNk denotes the operator for the number of particles in thek-th one-particle
tate. The grand-canonical partition function at chemical potentialm,E1sVd is

JVsmd ª TrFsHVde
−bsTV−mNVd. s1.6d

ecause of their commutative nature it is useful to think ofNV and hNkjkù1 as random variable
ather than operators.

Notice that the one-particle Hamiltonian spectrumsstVd=hEksVdjk=1
` coincides with the set

Hen,V =
p2

2 o
j=1

3
nj

2

V2a j
:nj = 1,2,3, . . . , j = 1,2,3J , s1.7d

escribed by the multi-indexn=sn1,n2,n3d. Then and the ground-state eigenvalueE1sVd
es1,1,1d,V.
Let hhksVdªEksVd−E1sVdjkù1. For a givenV we defineFV:R→R+ by
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FVshd ª
1

V
# hk:hksVd ø hj. s1.8d

ote thatFV is a nondecreasing function onR with FVshd=0 for h,0. FV(h−E1sVd) is the
istribution of the eigenvalues(integrated density of states) of the one-particle HamiltoniantV.
ne can prove in many ways, for example, by using Lemma 3.1 or by taking the L

ransform, that

Fshd ª lim
V→`

FVshd = sÎ2/3p2dh3/2, h ù 0. s1.9d

e shall show(see Lemma 3.1) that FVshdø sÎ2/3p2dh3/2 if h.C/V2a3 for someC.0. This
ound and(1.9) imply that thecritical density of the PBG,

rc ª lim
«↓0

lim
V→`

E
s«,`d

1

ebh − 1
FVsdhd =E

0

` 1

ebh − 1
Fsdhd , `, s1.10d

s finite for any nonzero temperature.
By (1.5) the mean occupation number of the PBG in the grand-canonical ensemble in th

is given by

kNklV
GCsmd =

1

ebsEksVd−md − 1
. s1.11d

et mVsrd,E1sVd be the unique root of the equation

r =
1

V
kNVlV

GCsmd, s1.12d

or a givenV. Then a standard result16 shows that the boundedness of the critical density(1.10)
mplies the existence ofgeneralizedBEC with condensate density,r0, given by

r0 ª lim
«↓0

lim
V→`

1

V o
hk:EksVd,«j

kNklV
GC
„mVsrd… = r − rc, for r . rc. s1.13d

Following the van den Berg–Lewis–Pulé classification, Refs. 14 and 16, it is useful to id
hree categories of generalized BEC.

I) The condensation is of type I when afinite number of single-particle states are ma
scopically occupied.

II ) It is of type II when aninfinite number of states are macroscopically occupied.
III ) It is of type III whennoneof the states is macroscopically occupied.

For a specific geometry we have more detailed information at our disposal. In the next
e collect the results from Ref. 14 that we shall need later about the GCE in the case
nisotropically dilated parallelepipeds(1.1).

Remark 1.1:Though we have chosen here to work with Dirichlet boundary conditions
roofs in this paper can be adapted without difficulty to periodic or Neumann boundary

ions.
Remark 1.2:Note that according to the classification presented above the condensate

entation” is nothing but a generalized BEC of type I or II.

I. GENERALIZED BOSE–EINSTEIN CONDENSATION OF THE PERFECT BOSE GAS
N THE GRAND-CANONICAL ENSEMBLE

Proposition 2.1(Ref. 14, Theorem 1): Let m̄Vsrd=mVsrd−E1sVd. Then the behavior ofm̄Vsrd

s as follows.
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1) For rørc, limV→`m̄Vsrd=m̄srd wherem̄srd,0 is the unique rootm̄srd,0 of the equation

r = lim
V→`

1

V
kNVlV

GCsmd =E
0

` 1

ebsh−md − 1
Fsdhd. s2.1d

2) For r.rc, limV→`m̄Vsrd=0 and for V→`,

m̄Vsrd = − hbVsr − rcdj−1 + Os1/Vd, if a1 , 1/2; s2.2d

m̄Vsrd = − hbVAsrdj−1 + Os1/Vd, if a1 = 1/2; s2.3d

m̄Vsrd = − h2bV2s1−a1dsr − rcd2j−1 + Os1/Vd, if a1 . 1/2, s2.4d

where Asrd is the unique root of the equation

sr − rcd = o
j=1

` Fp2

2
s j2 − 1d + A−1G−1

. s2.5d

The next statement by the same authors shows that there are differenttypesof generalize
EC corresponding to different asymptotics(2.2)–(2.4).

Proposition 2.2(Ref. 14): For rørc there is no generalized BEC and therefore no BEC
ny type.

For r.rc there is generalized BEC and all three types of BEC occur.

1) For a1,1/2 only the ground-state is macroscopically occupied (BEC of type I):

lim
V→`

1

V
kNnlV

GC
„mVsrd… = Hr − rc, for n = s1,1,1d,

0, for n Þ s1,1,1d.
J s2.6d

2) For a1=1/2 there is macroscopic occupation of an infinite number of low-lying levels
of type II):

lim
V→`

1

V
kNnlV

GCsmVsrdd = Hhsn1
2 − 1dp2/2 + A−1j−1, for n = sn1,1,1d,

0, for n Þ sn1,1,1d.
J s2.7d

3) Finally, for a1.1/2 no single-particle state is macroscopically occupied (BEC of type

lim
V→`

V−1kNnlV
GC
„mVsrd… = 0, s2.8d

lim
V→`

V2sa1−1dkNnlV
GC
„mVsrd… = H2sr − rcd2, for n = sn1,1,1d,

0, for n Þ sn1,1,1d.
J s2.9d

We shall need an easy generalization of the foregoing proposition to obtain the distribu
he random variablesNk through their Laplace transform.

Theorem 2.1:Let r.rc. Then we have the following.

1) For a1,1/2,

lim
V→`

KexpS− l
Nn

V
DL

V

GC

„mVsrd… = 5 1

1 + lsr − rcd
, for n = s1,1,1d,

0, for n Þ s1,1,1d.
6 s2.10d
2) For a1=1/2,
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lim
V→`

KexpS− l
Nn

V
DL

V

GC

„mVsrd… = 5 sn1
2 − 1dp2/2 + A−1

sn1
2 − 1dp2/2 + A−1 + l

, for n = sn1,1,1d,

0, for n Þ sn1,1,1d.
6

s2.11d

3) For a1.1/2,

lim
V→`

KexpS− l
Nn

V
DL

V

GC

„mVsrd… = 1, s2.12d

lim
V→`

KexpS− l
Nn

V2s1−a1dDL
V

GC

„mVsrd… = 5 1

1 + 2lsr − rcd2 , for n = sn1,1,1d,

0, for n Þ sn1,1,1d.
6 s2.13d

Proof: This follows easily from Proposition 2.1 and the identity

kexps− lNkdlV
GC
„mVsrd… =

1 − e−b„hksVd−m̄Vsrd…

1 − e−b„hksVd−m̄Vsrd+l/b… . s2.14d

h

We shall require some properties of theKac distributionKLsm ;drd, see, e.g., Refs. 7, 14, 1
nd 19. The Kac distribution relates the canonical(1.3) and grand-canonical(1.5) expectations i
finite volume:

k− lV
GCsmd =E

f0,̀ d
k− lV

CsxdKVsm;dxd. s2.15d

he limiting Kac distribution gives the decomposition of the limiting grand-canonical
−lGCsmd into limiting canonical statesk−lCsrd. In the particular case of the PBG it is mo
onvenient to define the Kac distribution in terms of the mean particle density, rather th
hemical potential. Therefore we define

K̃Vsr;dxd ª KV„mVsrd;dx…, s2.16d

o that

k− lV
GC
„mVsrd… =E

f0,̀ d
k− lV

CsxdK̃Vsr;dxd. s2.17d

he next proposition proved in Ref. 14 gives the limiting Kac density for anisotropically d
arallelepipeds.

Proposition 2.3: Let

K̃sr;dxd ª lim
V→`

K̃Vsr;dxd. s2.18d

f rørc, then the PBG limiting Kac distribution has the one-point support:

K̃sr;dxd = drsdxd. s2.19d

f r.rc, then we have the following.

(1) For a1,1/2,
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K̃sr;dxd = 50, for x , rc,

1

r − rc
expS−

x − rc

r − rc
Ddx, for x . rc.6 s2.20d

(2) For a1=1/2,

K̃sr;dxd

= 50, for x , rc,

p2 sinhs2/A − pd1/2

s2/A − pd1/2 o
n=1

`

s− 1dn−1n2 expX− sx − rcd
p2

2
Sn2 +

2

Ap2 − 1DCdx, for x . rc.6
s2.21d

(3) For a1.1/2,

K̃sr;dxd = drsdxd. s2.22d

II. GENERALIZED BOSE–EINSTEIN CONDENSATION AND FLUCTUATIONS
F THE PERFECT BOSE GAS IN THE CANONICAL ENSEMBLE

In this section we prove results for the CE analogous to those for the GCE. We are fo
se different methods for the three regimes, so we treat them in separate subsections. Bu
ive some results which will be useful in all three cases. The basic identity for the can
xpectations at densityr=n/V of the occupation numbers is[see Ref. 3, Eq.(10)]:

kexps− lNkdlV
Csrd = el − sel − 1dZVsnd−1o

m=0

n

e−sbEk+ldsn−mdZVsmd. s3.1d

he canonical expectations are notoriously difficult to calculate and are only accessible
he grand-canonical expectations. In the two casesa1,1 anda1=1 we shall exploit the fact th
he sum on the right-hand side of Eq.(3.1) is very similar to the grand-canonical partition fu
ion.

The next theorem shows that the canonical expectations are monotonic increasing
ensity. Note that this theorem holds for the PBG with any one-particle spectrum.

Theorem 3.1: For fixed kù1 and fixed, V, the canonical expectations for the PB,
exps−lNkdlV

Csrd, are monotonic decreasing functions of the densityr for l.0 while the momen
Nk

rlV
Csrd, r ù1 are monotonic increasing functions of the density.
Proof: From (3.1) we get

kexps− lNkdlV
C
„sn + 1d/V… − kexps− lNkdlV

Csn/Vd = − sel − 1dHe−sbEk+ldsn+1dZVsn + 1d−1

+ o
m=0

n

e−sbEk+ldsn−mdSZVsm+ 1d
ZVsn + 1d

−
ZVsmd
ZVsnd DJ .

s3.2d

ince

SZVsm+ 1d
ZVsn + 1d

−
ZVsmd
ZVsnd D =

ZVsmd
ZVsn + 1d

SZVsm+ 1d
ZVsmd

−
ZVsn + 1d

ZVsNd
D ,
y the inequalities(see Ref. 7)
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ZVsm+ 1d
ZVsmd

ù
ZVsm+ 2d
ZVsm+ 1d

ù ¯ ù
ZVsn + 1d

ZVsnd
,

nd by(3.2) we get the monotonicity

kexps− lNkdlV
C
„sn + 1d/V… − kexps− lNkdlV

Csn/Vd ø 0. s3.3d

y differentiating(3.2) r times with respect tol at l=0,

kNk
rlV

C
„sn + 1d/V… − ksNk

rdlV
Csn/Vd = hnr − sn − 1drje−bEksn+1dZVsn + 1d−1

+ o
m=0

n

hsn − mdr − sn − m− 1drje−bEksn−mdSZVsm+ 1d
ZVsn + 1d

−
ZVsmd
ZVsnd D ,

s3.4d

hich is positive by the same argument. h

Remark:In this paper whenever we take the limit

lim
V→`

k− lV
Csrd; s3.5d

e shall mean that we take the system withn particles in a container of volumeVn=nr and then
et n→`, that is,

lim
n→`

k− lnp
C srd. s3.6d

he next theorem is valid for containers of any geometry and not just for rectangular box
Theorem 3.2: For rùrc the generalized condensate in the CE at densityr is equal tor

rc, that is

lim
«↓0

lim
V→`

o
hk,«

kNk/VlV
Csrd = r − rc. s3.7d

Proof: The statement is true for the imperfect(mean-field) Bose gas in the GCE; see Ref.
ince the mean-field term in the CE is irrelevant, the theorem follows from monotonicity a

act that the Kac density for the imperfect Bose gas has one-point support. h

In the next theorem we shall make certain assumptions that are clearly satisfied
arallelepipeds we are considering. We believe that in fact they hold much more general

Theorem 3.3:Suppose thatlimV→`kNk/VlV
GC(mLsr8d) and K̃(r8 ; fr ,`d) are continuous inr8

t r and that K̃(r ; fr ,`d)Þ0. Then limV→`kNk/VlV
GC(mVsrd)=0 implies that limV→`kNk/VlV

Csrd
0.

Proof: Using the decomposition(2.17) and monotonicity we get for any«.0:

lim
V→`

kNk/VlV
GC
„mLsr + «d… = lim

V→`
E

f0,̀ d
kNk/VlV

CsxdK̃Vsr + «;dxd

ù lim
V→`

E
fr,`d

kNk/VlV
CsxdK̃V„r + «;dxd

ù lim sup
V→`

hkNk/VlV
CsrdK̃Vsr + «;fr,`d…j

= lim sup
V→`

kNk/VlV
CsrdK̃„r + «;fr,`d….

ince limV→`kNk/VlV
GC(mLsr8d) andK̃(r8 ; fr ,`d) are continuous inr8, letting « tend to zero, w
et
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lim
V→`

kNk/VlV
GC
„mLsr…d ù lim sup

V→`
kNk/VlV

CsrdK̃„r;fr,`d…,

nd becauseK̃(r ; fr ,`d) does not vanish the result follows. h

Remark:Note that this lemma implies that forrørc, there is never BEC in the CE.
Before looking at the three casesa1,1/2, a1=1/2 anda1.1/2 we first obtain lower an

pper bounds on the density of states.
Lemma 3.1:

Î2

3p2sh1/2 − CV−a3d3 , FVshd ,
Î2

3p2„h + E1sVd…3/2, s3.8d

or some C.
Proof:

VFV„h − E1sVd… = #Hnun [ N3,
p2

2 o
j=1

d=3
nj

2

V2a j
, hJ , s3.9d

hat is,VFV(h−E1sVd) is the number of points ofN3 inside the ellipsoid,

x2

2V2a1h/p2 +
y2

2V2a2h/p2 +
z2

2V2a3h/p2 = 1. s3.10d

f we associate the pointn with the volume of the unit cube centered atn− s 1
2 , 1

2 , 1
2

d we see that th
umber is less the volume of the ellipsoid in the first octant which is equa
s2V2a1h /p2d1/2s2V2a2h /p2d1/2s2V2a3h /p2d1/2/6=Î2h3/2V/3p2. Thus

VFV„h − E1sVd… ,
Î2

3p2h3/2V, s3.11d

nd so

FVshd ,
Î2

3p2„h + E1sVd…3/2. s3.12d

et a.b.c.0, let l=1−3/c anda8=la, b8=lb, andc8=lc. If the point in the first quadra
x,y,zd satisfiesx2/a82+y2/b82+z2/c82ø1, then it satisfiessx+1d2/a2+sy+1d2/b2+sz+1d2/c2

1. That is, each point inside the first quadrant of the ellipsoidx2/a82+y2/b82+z2/c82=1 lies in
unit cube with the cornernPN3 (with n1.x, n2.y and n3.y) inside the ellipsoidx2/a2

y2/b2+z2/c2=1. Therefore

VFV„h − E1sVd… .
Î2

3p2VSh1/2 −
3p

Î2Va3
D3

, s3.13d

ielding

FVshd .
Î2

3p2S„h + E1sVd…1/2 −
3p

Î2Va3
D3

.
Î2

3p2VSh1/2 −
3p

Î2Va3
D3

. s3.14d

h

. Case a1>1/2

We study this case first because it is the simplest since the limiting Kac distribution is

easure concentrated atr and we have strong equivalence of ensembles(see Proposition 2.3). We
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hall use this fact together with the monotonicity properties of Theorem 3.1 to show that
ase the limiting canonical and grand-canonical expectations are identical.

Lemma 3.2: Fora1.1/2 and l.0 the following inequalities hold:

lim inf
«↓0

lim
V→`

KexpS− l
Nk

V2s1−a1dDL
V

GC

„mVsr − «d… ù lim sup
V→`

KexpS− l
Nk

V2s1−a1dDL
V

C
srd

ù lim inf
V→`

KexpS− l
Nk

V2s1−a1dDL
V

C
srd

ù lim sup
e↓0

lim
V→`

KexpS− l
Nk

V2s1−a1dDL
V

GC

„mLsr + «d….

s3.15d

Proof: We start with the first inequality. Using the decomposition(2.17) we get for any«.0:

lim
V→`

KexpS− l
Nk

V2s1−a1dDL
V

GC

„mVsr − «d… = lim
V→`

E
f0,̀ d

KexpS− l
Nk

V2s1−a1dDL
V

C
sxdK̃Vsr − «;dxd

ù lim
V→`

E
f0,rd

KexpS− l
Nk

V2s1−a1dDL
V

C
sxdK̃Vsr − «;dxd

ù lim sup
V→`

HKexpS− l
Nk

V2s1−a1dDL
V

C
srdK̃V„r − «;f0,rd…J

= lim sup
V→`

KexpS− l
Nk

V2s1−a1dDL
V

C
srd. s3.16d

n the penultimate inequality we have used the monotonicity established in Theorem 3.1 an
ast one we have used(2.19) and (2.22). The last inequality in(3.15) is proved similarly:

KexpS− l
Nk

V2s1−a1dDL
V

GC

„mVsr + «d… =E
f0,̀ d

KexpS− l
Nk

V2s1−a1dDL
V

C
sxdK̃Vsr + «;dxd

=E
f0,rd

KexpS− l
Nk

V2s1−a1dDL
V

C
sxdK̃Vsr + «;dxd

+E
fr,`d

KexpS− l
Nk

V2s1−a1dDL
V

C
sxdK̃Vsr + «;dxd

ø K̃V„r + «;f0,rd…

+KexpS− l
Nk

V2s1−a1dDL
V

C
srdK̃V„r − «;fr,`d…. s3.17d

herefore

lim
V→`

KexpS− l
Nk

V2s1−a1dDL
V

GC

„mVsr + «d… ø lim inf
V→`

KexpS− l
Nk

V2s1−a1dDL
V

C
srd. s3.18d

h

The following theorem and corollary give the distribution and the mean ofNn /V2s1−a1d and
herefore they give the fluctuations about the mean.

Theorem 3.4: If a1.1/2 and r.rc then the limiting distribution in the canonical ensem
2s1−a1d
f Nn /V has Laplace transform forl.0 given by
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lim
V→`

KexpS− l
Nk

V2s1−a1dDL
V

C
srd = 5 1

1 + 2lsr − rcd2 , for n = sn1,1,1d,

0, for n Þ sn1,1,1d.
6 s3.19d

Proof: This follows from the preceding lemma and Theorem 2.1. h

Corollary 3.1: If a1.1/2 and r.rc then

lim
V→`

K Nn

V2s1−a1dL
V

C
srd = H2lsr − rcd2, for n = sn1,1,1d,

0, for n Þ sn1,1,1d.
J s3.20d

Proof: We have to check that there existsK,` such that for allV,

KS Nk

V2s1−a1dD2L
V

C
srd , K. s3.21d

hen the corollary follows from the preceding theorem. We have again for any«.0,

KS Nk

V2s1−a1dD2L
V

GC

„mVsr + ed… =E
f0,̀ d

KS Nk

V2s1−a1dD2L
V

C
sxdK̃Vsr + e;dxd

ù E
fr,`d

KS Nk

V2s1−a1dD2L
V

C
sxdK̃Vsr + e;dxd

ù KS Nk

V2s1−a1dD2L
V

C
srdK̃V„r + e;fr,`d… ù

1

2
KS Nk

V2s1−a1dD2L
V

C
srd,

s3.22d

f V is large enough. This implies the existence ofK as above since

KS Nk

V2s1−a1dD2L
V

GC

„mVsr + ed…, s3.23d

onverges asV→`. h

Corollary 3.2: Whena1.1/2, there is type III BEC in the canonical ensemble.
Proof: From the preceding corollary or from Theorem 3.3 we can deduce immediately

lim
V→`

KNk

V
L

V

C
srd = 0, s3.24d

or any r.rc. h

. Case a1=1/2

For this case BEC into the ground state is treated in Ref. 2. Here we extend the result to
evels.

Because fora1=1/2 thespectral series(1.7) corresponding ton1=1,2,3, . . ., has thesmalles
nergy spacingp2/2V, it plays a specific role in calculations of the limiting occupation dens
et

en ª p2n2/2, hm,n ª bsem − end, bm,n ª hm,n
−1 p

hm8Þn,m8Þmj

s1 − hm,n/hm8,nd−1, s3.25d

or mÞn.
In Ref. 2 the following result was proved.

Let a1=1/2. Then forr.rc,
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lim
V→`

KN1

V
L

V

C
srd =

o
m=2

`

bm,1hhm,1sr − rcd − 1 + expf− hm,1sr − rcdgj

o
m=2

`

bm,1hm,1h1 − expf− hm,1sr − rcdgj

. s3.26d

ere we give an extension of(3.26) to otherk’s. Note that by Theorem 3.3 and a comparison
he GCE, in this case there can only be condensation in states corresponding ton=sn1,1 ,1d. The
ain tool in the technique developed in Refs. 2 and 3 is the following identity.

Let hKk,Vsdxdjkù1 be (non-normalized) measures whose distributions are the functions

Kk,Vsxd = HZVsrdexph− b„Vpk − rEksVd…j, for r/V , x ø sr + 1d/V,

0, for x ø 0,
J s3.27d

or r =0,1,2, . . ., andsomehpkjkù1. Then we can re-write Eq.(3.1) as follows:

kexph− lNk/VjlV
Csrd = e−lrE

f0,r+1/Vg
elxKk,Vsdxd/Kk,Vsr + 1/Vd

= e−l/V − le−lrE
0

r+1/V

Kk,Vsxdelxdx/Kk,Vsr + 1/Vd. s3.28d

e shall use this identity to calculate the thermodynamic limit of its left-hand side for a
ensity andkù1. From (3.27) we can calculate the Laplace transformation of the mea

k,Vsdxd:

E
R

e−lxKk,Vsdxd = s1 − e−l/Vde−VbpkJV„EksVd − l/bV…, s3.29d

here for the PBG the grand-canonical partition function(1.6) has the explicit form

JVsmd = p
k=1

`

h1 − e−bsEksVd−mdj−1.

ow we fix thepk’s which are still arbitrary by defining

pk ª −
1

bV
o
jÞk

lnu1 − e−b„EjsVd−EksVd…u s3.30d

nd prove the following lemma. We put

K̃n,V ª Ksn,1,1d,V. s3.31d

Lemma 3.3: Leta1=1/2. Then

K̃nsxd ª lim
V→`

K̃n,Vsxd = 50, for x ø rc,

s− 1dsn−1d o
m=1,mÞn

`

bm,nhm,nh1 − expf− hm,nsx − rcdgj, for x . rc.6
s3.32d

Proof: Let l.VsEk−E1d. From the definitions(3.29) and (3.30) we get

E e−lxKk,Vsdxd = p u1 − e−bsEjsVd−EksVddu
1 − e−bsEjsVd−EksVd+l/bVd = expH− o lnU1 +

1 − e−l/V

ebsEjsVd−EksVdd − 1
UJ .
R jÞk jÞk
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or kù1 andhùh1sVd−hksVd we define theshiftedintegrated density of states; cf.(1.8):

Fk,Vsh ù 0d ª
1

V
# h j :h jsVd ø h + hksVd, j Þ kj = FV„h + hksVd… −

1

V
1f0,̀ dshd. s3.33d

or b.a, let

Ik,Vsa,bd ª VE
fa,bd

lnU1 +
1 − e−l/V

ebh − 1
UFk,Vsdhd. s3.34d

hen

o
jÞk

lnU1 +
1 − e−l/V

ebsEjsVd−EksVdd − 1
U = VE

fh1sVd−hksVd,`d
lnU1 +

1 − e−l/V

ebh − 1
UFk,Vsdhd = Ik,V„h1sVd − hksVd,`….

s3.35d

e can write

Ik,V„h1sVd − hksVd,`… = Ik,V„h1sVd − hksVd,1/V2a3
… + Ik,Vs1/V2a3,`d. s3.36d

ince limV→` hksVd=0, by Lemma 3.1 we have

lim
V→`

Fk,Vshd = lim
V→`

FV„h + hksVd… = Fshd s3.37d

nd

Fk,Vshd ø C8h3/2, s3.38d

or h.1/V2a3; using the estimatex−x2/2ø lns1+xdøx we get

lim
V→`

Ik,Vs1/V2a3,`d = lrc. s3.39d

n the lower part of the spectrum we need to scaleFk,V. Let

Gk,Vsjd ª VFk,Vsj/Vd. s3.40d

hen

Ik,V„h1sVd − hksVd,1/V2a3
… =E

fVsh1sVd−hksVdd,V1−2a3g
lnU1 +

1 − e−l/V

ebj/V − 1
UGk,Vsdjd. s3.41d

ow let EksVd correspond toesn,1,1d,V. Then in the limit,Gk,V gives a nontrivial point measu
oncentrated on the sethb−1hm,n,mÞnj:

lim
V→`

Gk,Vsj . 0d = #hm:b−1hm,n ø j,mÞ nj. s3.42d

herefore, by(3.41) and (3.42) we get

lim
V→`

hIk,V„Vsh1sVd − hksVd…,1/V2a3j = o
mÞn

lnU1 +
l

hm,n
U . s3.43d

hus forl. uh1,nu,

lim
V→`

E
0

`

Kk,Vsdxde−lx = exph− lrcjexpH− o
mÞn

lnU1 +
l

hm,n
UJ , s3.44d
nd the lemma follows by inverting the Laplace transform. h
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Theorem 3.5:Let r.rc and a1=1/2. Let EksVd correspond toesn,1,1d,V. Then

lim
V→`

kexph− lNk/VjlV
Csrd =

o
m=1,mÞn

`

bm,n
hm,n

2

hm,n − l
hexpflsr − rcdg − expf− hm,nsr − rcdgj

o
m=1,mÞn

`

bm,nhm,nh1 − expf− hm,nsr − rcdgj

.

s3.45d

Proof: The identity(3.28) gives

lim
V→`

kexph− lNk/VjlV
Csrd = 1 −

le−lrE
0

r

Kksxdelxdx

Kksrd
. s3.46d

rom the preceding lemma and forl.0,

le−lrE
0

r

Kksxdelxdx

Kksrd

=

o
mÞn

`

bm,nhm,nle−lrE
rc

r

elxh1 − expf− hm,nsx − rcdgjdx

o
mÞn

bm,nhm,nh1 − expf− hm,nsr − rcdgj

= −

o
mÞn

bm,n
hm,n

hm,n − l
hhm,nexpf− lsr − rcdg − l expf− hm,nsr − rcdg − shm,n − ldj

o
mÞn

bm,nhm,nh1 − expf− hm,nsr − rcdgj
. s3.47d

his gives(3.45). h

We are now in a position to prove that in this case there is BEC of type II forr.rc.
Theorem 3.6: For r.rc and for a1=1/2 all states withn=sn,1 ,1d are macroscopicall

ccupied (BEC of type II) while all the other states are not. The occupation density is giv

lim
V→`

KNsn,1,1d

V
L

V

C
srd =

o
m=1,Þn

`

bm,nhhm,nsr − rcd − 1 + expf− hm,nsr − rcdgj

o
m=1,mÞn

`

bm,nhm,nh1 − expf− hm,nsr − rcdgj

.

Proof: It is sufficient to check that there existsK,` such that for allV,

ksNk/Vd2lV
Csrd , K. s3.48d
hen the theorem follows from the preceding one. We have
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ksNk/Vd2lV
GC
„mVsrd… =E

f0,̀ d
ksNk/Vd2lV

CsxdK̃Vsr;dxd ù E
f0,̀ d

ksNk/Vd2lV
CsxdK̃Vsr;dxd

ùksNk/Vd2lV
CsrdK̃V„r;fr,`d…. s3.49d

his implies the existence ofK as above sinceksNk/Vd2lV
GC(mVsrd) converges asV→` and

˜
V(r ; fr ,`d) converges to a nonzero limit. h

. Case a1<1/2

In Ref. 3 the canonical PBG in parallelepipeds,

LV ª hx [ R3:0 ø xj ø ajV
1/3, j = 1,2,3j, a1a2a3 = 1, s3.50d

as considered. It was proved that for this system there is BEC oftype I. In particular the
ollowing was proved.

Proposition 3.1(Ref. 3, Theorem 1): For the PBG in parallelepipeds (3.50), the follow
imits hold whenlPR:

lim
V→`

kexph− lNk/VjlV
Csrd = Hexph− lsr − rcdj, for k = 1,

1, for k . 1,
J s3.51d

f r.rc, and

lim
V→`

kexph− lVgNk/VjlV
Csrd = 1, s3.52d

or any 0øg,1 and kù1, if rørc.
Note that in Ref. 3, Theorem 1,lø0, but this is not necessary.
In this section we shall prove a similar result to Proposition 3.1 for the case of the recta

arallelepipeds(1.1) with a1,1/2, that is, we shall show that in this case there is alsotype IBEC.
t is sufficient to show that there is condensation in the ground state since by Theorem 3.3
tate can be macroscopically occupied.

Let K1,Vsdxd be as in(3.27) in Sec. III B.
Lemma 3.4: Leta1,1/2. Then

lim
V→`

K1,Vsdxd = drc
sdxd. s3.53d

Proof: The proof is almost identical to that of Lemma 3.3. The only difference is that

jsVd−h1sVdùaj ,k/V2a1, (3.40) implies that

G1,Vsj . 0d = #h j :h jsVd − h1sVd ø j/Vj → 0, whenV → `, s3.54d

or a1,1/2, and the lemma follows. h

We can now prove that in this case there is BEC of type I forr.rc.
Theorem 3.7:For r.rc and fora1,1/2 only the ground-state is macroscopically occup

BEC of type I ):

lim
V→`

1

V
kNnlV

Csrd = Hr − rc for n = s1,1,1d,

0, for n Þ s1,1,1d.
J s3.55d
Proof: From the preceding lemma and the identity(3.28) we have forl.0,
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lim
V→`

kexps− lNn/VdlV
GCsrd = exps− lsr − rcdd. s3.56d

t is sufficient to show the second moment is bounded, that is, there existsK,` such that for a
,

ksNk/Vd2lV
Csrd , K. s3.57d

he bound can be obtained by the same argument as in Theorem 3.6. h

In the rest of this subsection we study the fluctuations ofN1/V. We need the shifted integrat
ensity of states ind dimensionsF1

sdd, d=1,2,3, in theunit boxesf0,1gd:

F1
sddshd ª #Hnun [ Nd,

p2

2 o
j=1

d

snj − 1d2 ø hJ . s3.58d

Theorem 3.8:Supposea1,1/2 and letg=1−2a1.0. Then forr.rc,

lim
V→`

kexphlVg
„N1/V − kN1/VlV

Csrd…jlV
Csrd

= 5exp„g1sld…, if a3 , a2 , a1 , 1/2,

exp„2g1sld + g2sld…, if a3 , a2 = a1 , 1/2,

exp„3g1sld + 3g2sld + g3sld…, if a3 = a2 = a1 = 1/3,

s3.59d

here

g1sld =E
s0,̀ d

F− lnS1 +
l

bh
D +

l

bh
GF1

s1dsdhd,

g2sld =E
s0,`d2

F− lnS1 +
l

bsh1 + h2dD +
l

bsh1 + h2dGF1
s2dsdh1,dh2d,

g3sld =E
s0,`d3

F− lnS1 +
l

bsh1 + h2 + h3dD +
l

bsh1 + h2 + h3dGF1
s3dsdh1,dh2,dh3d. s3.60d

Remark:Note that 3g1sld+3g2sld+g3sld is the same asgsld in Ref. 3.
Proof: Let

LVsxd ª HZVsrdexph− bsVp1 − rEksVddj, for Vgsr/V − rc
Vd , x ø Vg

„sr + 1d/V − rc
V
…,

0, for x ø − Vgrc
V,

J
or r =0,1,2, . . . ,wherep1 is as in(3.30),

rc
V
ª E

s0,̀ d

1

ebh − 1
FVsdhd, s3.61d

nd where we putZVs0d=1. Then

kexphlVl
„N1/V − sr − rc

Vd…jlV
Csrd =E

s−`,dVd
e−lxLVsdxd/K1,Vsr + 1/Vd, s3.62d

g V −2a1
heredV=V sr−rcd+V . By Lemma 3.4 forr.rc, limV→` K1,Vsr+1/Vd=1 and therefore
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kexphlVl
„N1/V − sr − rc

Vd…jlV
Csrd = lim

V→`
E

s−`,`d
e−lxLVsdxd. s3.63d

ow

lnE
s−`,`d

e−lxLVsdxd = VE
s0,̀ d

F− lnS1 +
1 − e−lV−2a1

ebh − 1
D +

lV−2a1

ebh − 1
GFVsdhd

= o
nÞs1,1,1d

F− lnS1 +
1 − e−lV−2a1

ebsen,V−es1,1,1d,Vd − 1
D +

lV−2a1

ebsen,V−es1,1,1d,Vd − 1
G .

s3.64d

onsider first the casea3,a2,a1,1/2. We split up the last sum into two parts, the
orresponds to the eigenvalues that go to zero likeV−2a1 and the second to the rest:

lnE
s−`,`d

e−lxLVsdxd = AV + BV, s3.65d

here

AV = o
n1Þ1

F− lnS1 +
1 − e−lV−2a1

ebsesn1,1,1d,V−es1,1,1d,Vd − 1
D +

lV−2a1

ebsesn1,1,1d,V−es1,1,1d,Vd − 1
G s3.66d

nd

BV = o
sn2,n3dÞs1,1d

F− lnS1 +
1 − e−lV−2a1

ebsen,V−es1,1,1d,Vd − 1
D +

lV−2a1

ebsen,V−es1,1,1d,Vd − 1
G . s3.67d

ote that by definition(3.58),

AV =E
s0,̀ d

F− lnS1 +
1 − e−lV−2a1

ebV−2a1h − 1
D +

lV−2a1

ebV−2a1h − 1
GF1

s1dsdhd. s3.68d

sing the bounds[obtained from the inequality −x,−lns1+xd,
1
2x2−x]:

0 ,
l − 1 +e−l

ex − 1
, − lnS1 +

1 − e−l

ex − 1
D +

l

ex − 1
,

1

2
S1 − e−l

ex − 1
D2

+
l − 1 +e−l

ex − 1
,

cl2

x2 , s3.69d

e get using the Dominated Convergence Theorem,

lim
V→`

AV = g1sld. s3.70d

sing the same inequality,

0 , BV ø
l2

b2V4a1
o

sn2,n3dÞs1,1d

1

sen,V − es1,1,1d,Vd2

=
4l2

p4b2V4a1
o

sn2,n3dÞs1,1d

1

S sn1
2 − 1d
V2a1

+
sn2

2 − 1d
V2a2

+
sn3

2 − 1d
V2a3

D2

=
4l2

p4b2 o
sn ,n dÞs1,1d

1

„sn1
2 − 1d + sn2

2 − 1dV2sa1−a2d + sn3
2 − 1dV2sa1−a2d

…

2 . s3.71d

2 3
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ow the summand in the last sum tends to zero asV→` and it is bounded above by

1

„sn1
2 − 1d + sn2

2 − 1d + sn3
2 − 1d…2 . s3.72d

ince

o
sn2,n3dÞs1,1d

1

„sn1
2 − 1d + sn2

2 − 1d + sn3
2 − 1d…2 , `, s3.73d

V→0 asV→` by the same theorem.
Next we consider the casea3,a2=a1,1/2. Now we take

AV = o
sn1,n2dÞs1,1d

F− lnS1 +
1 − e−lV−2a1

ebsesn1,n2,1d,V−es1,1,1d,Vd − 1
D +

lV−2a1

ebsesn1,n2,1d,V−es1,1,1d,Vd − 1
G s3.74d

nd

BV = o
n3Þ1

F− lnS1 +
1 − e−lV−2a1

ebsen,V−es1,1,1d,Vd − 1
D +

lV−2a1

ebsen,V−es1,1,1d,Vd − 1
G . s3.75d

n this case by definition(3.58),

AV = 2 o
n1Þ1

F− lnS1 +
1 − e−lV−2a1

ebsesn1,1,1d,V−es1,1,1d,Vd − 1
D +

lV−2a1

ebsesn1,1,1d,V−es1,1,1d,Vd − 1
G

+ o
n1Þ1,n2Þ1

F− lnS1 +
1 − e−lV−2a1

ebsesn1,n2,1d,V−es1,1,1d,Vd − 1
D +

lV−2a1

ebsesn1,n2,1d,V−es1,1,1d,Vd − 1
G

= 2E
s0,̀ d

F− lnS1 +
1 − e−lV−2a1

ebV−2a1h − 1
D +

lV−2a1

ebV−2a1h − 1
GF1

s1dsdhd

+E
s0,`d2

F− lnS1 +
1 − e−lV−2a1

ebV−2a1sh1+h2d − 1
D +

lV−2a1

ebV−2a1sh1+h2d − 1
GF1

s2dsdh1,dh2d. s3.76d

y the same argument as above,

lim
V→`

AV = 2g1sld + g2sld, s3.77d

nd

lim
V→`

BV = 0. s3.78d

inally, for a3=a2=a1=1/3,

E
s−`,`d

LVsdxde−lx = 3 o
n1Þ1

F− lnS1 +
1 − e−lV−2a1

ebsesn1,1,1d,V−es1,1,1d,Vd − 1
D +

lV−2a1

ebsesn1,1,1d,V−es1,1,1d,Vd − 1
G

+ 3 o
n1Þ1,n2Þ1

F− lnS1 +
1 − e−lV−2a1

ebsesn1,n2,1d,V−es1,1,1d,Vd − 1
D +

lV−2a1

ebsesn1,n2,1d,V−es1,1,1d,Vd − 1
G

= 3E F− lnS1 +
1 − e−lV−2a1

bV−2a1h
D +

lV−2a1

bV−2a1h GF1
s1dsdhd
s0,̀ d e − 1 e − 1
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+ 3E
s0,`d2

F− lnS1 +
1 − e−lV−2a1

ebV−2a1sh1+h2d − 1
D +

lV−2a1

ebV−2a1sh1+h2d − 1
GF1

s2dsdh1,dh2d

+E
s0,`d3

F− lnS1 +
1 − e−lV−2a1

ebV−2a1sh1+h2+h3d − 1
D +

lV−2a1

ebV−2a1sh1+h2+h3d − 1
G

3F1
s3dsdh1,dh2,dh3d. s3.79d

hus

lim
V→`

lnE
s−`,`d

e−lxLVsdxd = 3g1sld + 3g2sld + g3sld. s3.80d

e have therefore proved that

lim
V→`

kexphlVg
„N1/V − sr − rc

Vd…jlV
Csrd = 5exp„g1sld…, if a3 , a2 , a1 , 1/2,

exp„2g1sld + g2sld…, if a3 , a2 = a1 , 1/2,

exp„3g1sld + 3g2sld + g3sld…, if a3 = a2 = a1 = 1/3.
6

o finish the proof we center the distribution aboutkN1/VlV
Csrd. From (3.62) we get

khlVg
„N1/V − sr − rc

Vd…j2lV
Csrd =E

s−`,aVd
x2LVsdxd/K1,Vsr + 1/Vd ø 2E

s−`,`d
x2LVsdxd.

sing (3.64) this gives

kfVg
„N1/V − sr − rc

Vd…g2lV
Csrd ø V1−4a1E

s−`,`d
H 1

2sebh − 1d
+

1

sebh − 1d2JFVsdhd

ø
3V1−4a1

2
E

s−`,`d

1

h2FVsdhd. s3.81d

hus by the same arguments as we used above for dealing with the expression in(3.64), this
econd moment is bounded. Sinceg18s0d=g28s0d=g38s0d we then have

lim
V→`

Vg
„kN1/VlV

Csrd − sr − rc
Vd… = lim

V→`
kVg

„N1/V − sr − rc
Vd…lV

Csrd = 0, s3.82d

ompleting the proof. h

V. CONCLUSION

(a) Since the paper by Buffet and Pulé,3 it has been known that there are differences in
uctuations of the PBG condensate in the canonical and grand-canonical ensembles. W
hown that the picture becomes even more complicated if one passes to the case of Casim
here there is already generalized BEC in the GCE.

We have shown in general that there is a kind ofstability principlerelating the two ensemble
ondensation in the GCE is more stable than in the CE. In fact we proved(Theorem 3.3) that the
bsence of the macroscopically occupied single-particle states in GCE implies the same in
hereas the converse is not necessarily true. However in the case of the Casimir boxes co
ere the two ensembles exhibit the same types of BEC for the same geometry. What v
ome cases is the fluctuations and the amount of condensate in the individual levels.

(b) As we have mentioned in Sec. I, BEC oftypesI and II is also known in the literatu
escribing the experiments with trapped bosons as “fragmentation” of the condensate.5,6,13In these
apers the authors relate this phenomenon to the interaction properties of the Bose gas
hat it is the exchange interaction that causes bosons with repulsive interaction to condense into a
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ingle one-particle state whereas for attractive interactions the condensate may be “frag
nto a number of degenerate or nearly degenerate single particle states; see Refs. 11 and
e have shown that BEC of type II occurs in thenoninteractingBose gas and that this is d
imply to a geometric anisotropy of the boxes known since Casimir.4 On the other hand, there a
xactly soluble models(in cubic boxes) showing that some truncated repulsive interactions
ble to convert BEC in the ground state into a generalized condensation of type III(see Refs.
nd 8). In Ref. 12 an even simpler repulsive interaction than in Refs. 1 and 8 is propos
roduces type I condensation in a few degenerate single-particle states.

CKNOWLEDGMENTS

J.V.P. wishes to thank the Université du Sud(Toulon-Var) and the Centre de Physiq
héorique, CNRS-Luminy, Marseille, France for their kind hospitality and the former als
nancial support. He wishes to thank University College Dublin for the award of a Pres
esearch Fellowship. V.A.Z. wishes to thank University College Dublin and the Dublin In

or Advanced Studies for their kind hospitality and financial support.

1Bru, J.-B. and Zagrebnov, V. A., “A model with coexistence of two kinds of Bose condensations,” J. Phys.33,
449–464(2000).

2Buffet, E., de Smedt, Ph., and Pulé, J. V., “The condensate equation for some Bose systems,” J. Phys. A16, 4307–4324
(1983).

3Buffet, E. and Pulé, J. V., “Fluctuation properties of the imperfect Bose gas,” J. Math. Phys.24, 1608–1616(1983).
4Casimir, H. B. G., “On Bose-Einstein condensation,” inFundamental Problems in Statistical Mechanics III, edited by E
G. D. Cohen(North-Holland, Amsterdam, 1968), pp. 188–196.

5Dalibard, J.(private communication).
6Ho, T.-L. and Yip, S. K., “Fragmented and single condensate ground states of spin-1 Bose gas,” Phys. Rev.84,
4031–4034(2000).

7Lewis, J. T., Pulé, J. V., and Zagrebnov, V. A., “The large deviation principle for the Kac distribution,” Helv. Phy
61, 1063–1078(1988).

8Michoel, T. and Verbeure, A., “Non-extensive Bose-Einstein condensation model,” J. Math. Phys.40, 1268–1279
(1999).

9Mullin, W. J., Holzmann, M., and Lanoë, F., “Validity of the Hohenberg theorem for a generalized Bose-E
condensation in two dimensions,” J. Low Temp. Phys.121, 263–268(2000).

0Müstecaplioğlu, Ö. E., Zhang, M., Yi, S., You, L., and Sun, C. P., “Dynamic fragmentation of a spinor Bose-E
condensate,” Phys. Rev. A68, 063616(2003).

1Nozières, P., “Comments on Bose–Einstein condensation,” inBose–Einstein Condensation, edited by A. Griffin, D. W
Snoke, and S. Stringari(Cambridge University Press, Cambridge, 1995), Chap. 2, pp. 15–21.

2Papoyan, Vl. and Zagrebnov, V. A., “On generalized Bose–Einstein condensation in an almost-ideal boson ga
Phys. Acta63, 183–191(1990).

3Shin, Y., Saba, M., Schirotzek, A., Pasquini, T. A., Leanhardt, A. E., Pritchard, D. E., and Ketterle, W., “Distilla
Bose–Einstein condensates in a double-well potential,” preprint cond-mat/0311514, 2003.

4van den Berg, M. and Lewis, J. T., “On generalized condensation in the free boson gas,” Physica A110, 550–564(1982).
5van den Berg, M., Lewis, J. T., and de Smedt, Ph., “Condensation in the imperfect Boson gas,” J. Stat. P37,
697–707(1984).

6van den Berg, M., Lewis, J. T., and Pulé, J. V., “A general theory of Bose–Einstein condensation,” Helv. Phys. A59,
1271–1288(1986).

7Wilkin, N. K., Gunn, J. M. F., and Smith, R. A., “Do the attractive bosons condense?,” Phys. Rev. Lett.80, 2265–2268
(1998).

8Zagrebnov, V. A. and Bru, J.-B., “The Bogoliubov model of weakly imperfect Bose gas,” Phys. Rep.350, 291–434
(2001).

9Zagrebnov, V. A. and Papoyan, Vl. V., “The ensemble equivalence problem for Bose systems(non-ideal Bose gas),”
Theor. Math. Phys.69, 1240–1253(1986).
                                                                                                            



E

I

f two-
d

w ding
e d
c ts rapid
c

an be
a ct
r d com-
p ntity is
s tuations
r ttice of
i -
s e two-
d
t amics.

I

.
1 rs is
w be
r -
s

a

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 9 SEPTEMBER 2004

0

                        
valuation of phase-modulated lattice sums
Mark A. Stremlera)

Department of Mechanical Engineering, Vanderbilt University,
Nashville, Tennessee 37235-1592

(Received 20 May 2004; accepted 2 June 2004; published 9 August 2004)

An exact evaluation of two-dimensional phase-modulated lattice sums of the form
o8expsiG ·xduGu−2 is presented in terms of the Jacobian theta functions. The result
generalizes the identity derived by M. L. Glasser[J. Math. Phys.15, 188(1974)] to
allow for evaluation on nonrectangular lattices. The generalized identity is also
applied to a problem in vortex dynamics. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1777403]

. INTRODUCTION

A number of problems in mechanics and mathematical physics involve evaluation o
imensional phase-modulated lattice sums of the form

F = o
GÞ0

eiG·x

uGu2
, s1d

hereG is a (nonzero) lattice vector. Problems of interest come from various fields, inclu
lectrostatics,1 superconductivity,2 fluid turbulence,3 and vortex dynamics.4 This sum is slowly an
onditionally convergent, and numerous formulations have been presented to facilitate i
omputation.5

When the lattice defined byG is square or rectangular, the evaluation of these sums c
ccomplished very elegantly using an identity derived by Glasser.6 This identity provides an exa
epresentation of the sum in terms of the Jacobian theta functions, which allows for rapi
utation and enables mathematical analysis. However, the application of Glasser’s ide
omewhat limited by the restriction to square or rectangular lattices, as many physical si
equire consideration of a more general lattice structure. For example, a triangular la
dentical point vortices is more energetically favorable than a square lattice.7 The analysis pre
ented in Sec. II generalizes the identity derived by Glasser to include all possibl
imensional lattices that can be generated by two(unique) vectorse1 ande2. A brief look at how
he generalized identity can be used is shown in Sec. III with an example from vortex dyn

I. THE IDENTITY

Consider a general two-dimensional lattice generated by the vectorse1 ande2 as shown in Fig
. The magnitudes of these vectors area andb, respectively, and the angle between the vecto
. Without any loss of generality,e1 can be restricted to lie along thex axis and the angle can

estricted to 0,wøp. Any point in the basic parallelogram spanned bye1 ande2 can be repre
ented asx=j e1+h e2 for 0øj ,h,1, where

)
Electronic mail: mark.stremler@vanderbilt.edu
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j =
x sinw − y cosw

a sinw
and h =

y

b sinw
. s2d

he vectorG from Eq.(1) can then be given in terms of the reciprocal lattice vectorsê1 andê2 as

G =
2p

D
snê1 − mê2d, m,n = 0, ± 1, ± 2, . . ., s3d

hereD=absinw is the area of the basic parallelogram spanned bye1 ande2.
The evaluation of phase-modulated lattice sums presented here for general two-dim

attices parallels, in large part, the analysis of Glasser.6 The details of the analysis are includ
ere for completeness.

Rewriting the sum in Eq.(1) using the notation introduced above gives

F = Sa sinw

2p
D2

o
sm,ndÞs0,0d

expf2pismj + nhdg
m2 + sa/bd2n2 − 2sa/bdmncosw

, s4d

hich can be evaluated by first applying the identity

xE
0

`

e−xtdt = 1 s5d

nd then separating out the termn=0 from the double sum to obtain

F = Sa sinw

2p
D2E

0

`

dtH o
mÞ0

exps− tm2 + 2pimjd

+ o
m

nÞ0

expF− tSa

b
D2

n2 + 2pinhG exp F− tm2 + 2pimSj − itn
a cosw

pb
DGJ . s6d

y Jacobi’s imaginary transformation, namely8,9

o
u

exps− tu2 + 2piuxd =Îp

t
o
u

expF− p2sx − ud2

t
G , s7d

IG. 1. Lattice vectorse1, e2 and reciprocal lattice vectorsê1, ê2 defining the basic periodic parallelogram with side
engtha andb. In the complex plane the basic parallelogram is defined by the half-periodsv1 andv2.
he lattice sum in(6) becomes
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F = Sa sinw

2p
D2H o

mÞ0
exps2pimjdE

0

`

dt exp s− tm2d

+ Îp o
m

nÞ0

expF2piSnh + sj − md
ancosw

b
DG

3 E
0

`

dt Ît expF− t Sansinw

b
D2G exp F− p2sj − md2

t
GJ . s8d

his form of the lattice sum can be rewritten using the identity10

E
0

`

dt t−1/2 e−pt e−q/t = 2Sq

p
D1/4

K1/2s2Îpqd, s9ad

hereKs is the modified Bessel function. By the definition of the Basset function11 this identity
ecomes

E
0

`

dt t−1/2 e−pt e−q/t = Îp/p exps− 2Îpqd. s9bd

sing Eq.(9) and the identity in Eq.(5), the sumF can now be written as

F =
a2 sin2 w

2p2 o
m=1

`
coss2pmjd

m2 +
absinw

4p
o
n=1

`
1

n
HexpF2pnSs− sinw + i coswd

a

b
j + ihDG + c.c.J

+
absinw

4p
o
m=1

`

o
n=1

`
1

n
HexpF− 2pmn

a

b
ssinw + i coswdG

3 HexpF2pnSssinw + i coswd
a

b
j − ihDG

+ expF2pnSs− sinw − i coswd
a

b
j + ihDGJ + c.c.J , s10d

here c.c. denotes the complex conjugate.
At this point in his analysis, Glasser changes variables to12

q = expF− p
a

b
ssinw − i coswdG , a = h +

a

b
scosw + i sinwdj. s11d

lternatively, choose

q = e−pi/t and a =
ibz

at
, s12d

heret=sb/adscosw+ i sinwd andz=x+ iy. Then, Eq.(10) can be expressed as

F =
a2sin2 w

2p2 o
m=1

`
coss2pmjd

m2 +
absinw

4p
o
n=1

`
1

n
fe−2pna/b + c.c.g

+
absinw

4p
o
m=1

`

o
n=1

`
1

n
fq2mnse2pna/b + e−2pna/bd + c.c.g. s13d

6
his form of the sum allows the analysis to continue to parallel that of Glasserdespite the
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lternative change of variables. The sums overn are evaluated with the identity13

o
n=1

`
xn

n
= − lns1 − xd, s14d

iving

F =
a2 sin2 w

2p2 o
m=1

`
coss2pmjd

m2 −
absinw

2p
lnu1 − e−2pa/bu

−
absinw

2p
o
m=1

`

lnus1 − q2me2pa/bds1 − q2me−2pa/bdu . s15d

he first term in Eq.(15) is the well-know Fourier series14

a2 sin2 w

2p2 o
m=1

`
coss2pmjd

m2 =
a2 sin2 w

2
sj2 − j + 1

6d. s16d

fter a few manipulations the second term in Eq.(15) can be written as

− absinw

2p
lnu1 − e−2pa/bu =

a2 sin2 w

2
j −

absinw

2p
fln 2 + lnusinspia/bdug. s17d

he third term in Eq.(15) can be simplified by introducing the Jacobiq1-function15

q1sz;qd = 2Gq1/4 sinpzp
u=1

`

s1 − 2q2u cos 2pz+ q4ud, s18ad

here16

G = p
u=1

`

s1 − q2ud, q18s0;qd = 2Gq1/4p
u=1

`

s1 − q2ud2, s18bd

o that

p
u=1

`

s1 − 2q2u cos 2pz+ q4ud =
2−2/3q−1/6

sinpz

q1sz;qd
fq18s0;qdg1/3. s19d

ote that the result on the right-hand side of Eq.(19) disagrees with Glasser’s result by a fac
f 2.17 Using the identity in Eq.(19), the third term in Eq.(15) can be written as

− absinw

2p
o
m=1

`

lnus1 − q2me2pa/bds1 − q2me−2pa/bdu

=
− a2 sin2 w

12
+

absinw

2p
H2 ln 2

3
+ lnUsinSpia

b
DU − lnU q1sia/b;qd

fq18s0;qdg1/3UJ . s20d

y Jacobi’s imaginary transformation8,9

1 t it z2/p
q1sz;qd ; q1Sz;−
t
D = − iÎ

i
e q1szt;td, s21ad
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q18s0;qd ; q18S0;−
1

t
D = S t

i
D3/2

q18s0;td, s21bd

o that

q1sia/b;qd
fq18s0;qdg1/3 = − i expFssinw − i coswd

pa2

ab
Gq1siat/b;td

fq18s0;tdg1/3. s22d

pplying Eq. (22) to Eq. (20), the third term in Eq.(15) becomes

− absinw

2p
o
m=1

`

lnus1 − q2me2pa/bds1 − q2me−2pa/bdu

=
a2 sin2 w

2
FSb

a
D2

h2 − j2 − 1
6G +

absinw

2p
F2 ln 2

3
+ lnUsinSpia

b
DU − lnUq1siat/b;td

fq18s0;tdg1/3UG .

s23d

hus, combining Eqs.(16), (17), and(23) with the notation from Eqs.(2) and(12) gives the resu

F = o
GÞ0

eiG·x

uGu2
=

y2

2
−

D

6p
ln 2 −

D

2p
lnU q1sz/a;td

fq18s0;tdg1/3U . s24d

II. AN APPLICATION IN VORTEX DYNAMICS

The generalized identity in Eq.(24) allows for a new, independent derivation of the equat
f motion for point vortices arranged in a doubly-periodic lattice. Incidentally, this problem
ided the motivation for establishing the generalized result.

Consider a system ofN point vortices arranged within the basic parallelogram spanned b
ectorse1 and e2. Let vortex a s=1,2, . . . ,Nd have strengthGa and positionxa=sxa ,yad or za

xa+ iya. The equations of motion for these vortices can be cast in Hamiltonian form18 by taking

dxa

dt
=

1

Ga

dH

dya

, Ga

dya

dt
=

dH

dxa

, s25d

herexa are the generalized coordinates andGaya are the generalized momenta. In a fluid w
ensity r, the quantity rH gives the “interaction energy” of the fluid within the ba
arallelogram;19 that is, it gives the energy of the fluid less the(infinite) contribution to the energ

rom the fluid in the neighborhood of each point vortex. The Fourier representation of the
ction energy is well known to be3

E =
r

D
o
a=1

N

o
b=a+1

N

GaGb o
GÞ0

expfiG · sxa − xbdg
uGu2

. s26d

y applying Eq.(24) to Eq. (26), the Hamiltonian for this vortex system can be written as

H = −
1

2p
o
a=1

N

o
b=a+1

N

GaGbHlnUq1fsza − zbd/a;tg
fq18s0;td/2g1/3 U −

psya − ybd2

D
J

= −
1

2p
o
a=1

N

o
b=a+1

N

GaGbHlnussza − zbdu − ReFh1sza − zbd2

2v1
G −

psya − ybd2

D
J

−
1

3p
So

N

o
N

GaGbDlnUq18s0;td
2v3/2 U , s27d
a=1 b=a+1 1
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heressz;v1,v2d is the Weierstrasss-function defined in terms of the half-periodsv1 and v2

see Fig. 1), h1=zsv1;v1,v2d is the Weierstrassz-function evaluated at the half-periodv1, and the
ast term in Eq.(27) is a constant. This Hamiltonian can then be differentiated according t
25) to give the equations of motion

dz̄a

dt
=

1

2pi
o
b=1

N

8GbFzsza − zbd −
h1

v1
sza − zbd −

2p

D
sya − ybdG , s28d

here the overbar denotes complex conjugation and the sum is over allbÞa. This result confirm
revious derivations20 that determined the vortex velocities directly in terms of the Weiers
-function.

It would be interesting to examine the impact of the generalization in Eq.(24) on other result
hat use Glasser’s identity, such as the set of lattice sum identities derived by McPhed
o-workers.21,22
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eduction of the classical MICZ-Kepler problem to a two-
imensional linear isotropic harmonic oscillator

P. G. L. Leacha) and M. C. Nucci
Dipartimento di Matematica e Informatica, Università di Perugia, 06123 Perugia, Italy

(Received 9 February 2004; accepted 18 June 2004; published 9 August 2004)

The classical MICZ-Kepler problem is shown to be reducible to an isotropic two-
dimensional system of linear harmonic oscillators and a conservation law in terms
of new variables related to the Ermanno–Bernoulli constants and the components of
the Poincaré vector. An algorithmic route to linearization is shown based on Lie
symmetry analysis and the reduction method[Nucci, J. Math. Phys.37, 1772
(1996)]. First integrals are also obtained by symmetry analysis and the reduction
method[Marcelli and Nucci,J. Math. Phys.44, 2111 (2002)]. © 2004 American
Institute of Physics.[DOI: 10.1063/1.1781748]

. INTRODUCTION

The classical MICZ-Kepler problem was introduced and studied by McIntosh and
eros35—hence the MIC—and independently by Zwanziger54—whence the Z. The equation
otion is

r̈ +
lL

r3 + Sm

r2 +
2n

r3 Dr̂ = 0, s1d

n which r is the position vector, of magnituder and unit vectorr̂ , in R3, the overdot denote
ifferentiation with respect to time,L s:=r 3 ṙ d is the reduced angular momentum,l, m, andn are
onstants and the three forces are due to a magnetic monopole, the Newtonian grav
otential and a Newton–Cotes potential, respectively.

In the case of a particle moving in the field of a magnetic monopole, indifferently t
resence or absence of a central force, the angular momentum is not conserved. H
oincaré,49 writing on an experiment of Kristian Birkeland, the pioneer investigator of the A
orealis, showed that there does exist a related conserved vector, now known as the P
ector. In the literature relating to magnetic monopoles Poincaré’s vector is termed thtotal
ngular momentum to distinguish it from the mechanical angular momentum which is cal
rbital angular momentum. In this paper we use the notation and terminology to be found
eneral literature of Mechanics. If one takes the vector product ofr with (1),

0 = r 3 r̈ + l
r 3 L

r3 = r 3 r̈ − lr̂̇ ⇒ P: = L − lr̂ . s2d

ne notes that bothP andL are constants. Specifically they are given by

L2 = r4su̇2 + ḟ2 sin2 ud and P2 = L2 + l2. s3d

)Permanent address: School of Mathematical Sciences, University of KwaZulu-Natal, Howard College Campus

4041, Republic of South Africa.
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In the same spirit as adopted for the calculation of the Laplace–Runge–Lenz vector
lassical Kepler problem4,5 we take the vector product of(1) with P (rather than theL as in the
ase of the Kepler Problem) to obtain

r̈ 3 P +
l

r3SL +
2n

l
r̂D 3 P +

m

r2 r̂ 3 P = 0. s4d

f we restrict 2n to −l2, (4) becomes

r̈ 3 P +
l

r3P 3 P +
m

r2 r̂ 3 L = 0. s5d

he middle term of(5) vanishes and the third term reduces tor2r̂̇ when ṙ is written asṙ r̂ +r r̂̇ . We
ntegrate(5) to obtain a conserved vector of Laplace–Runge–Lenz-type,videlicet

J = ṙ 3 P − mr̂ . s6d

his vector can equally be written as

J = ṙ 3 L − mr̂ +
lL

r
, s7d

hich emphasizes the add-on effect of the magnetic monopole to the standard form
aplace–Runge–Lenz vector.

There is a vast literature devoted to the analysis of(1) and its higher dimensional analogu
see, for example, the original papers of Manton,33 Gibbons and Manton,14 Fehér and Horváthy,12

ibbons and Ruback,15 Cordaniet al.,6 and Cordaniet al.,7 and also those of Iwai and Sunako22

dzijewicz andŚwiçtochowski;46 Iwai et al.;23 Pletyulhov and Tolkachov;47 Pletyulhov and
olkachov;48 Lambert and Kibler;29 Kibler and Winternitz;26 Mladenov and Tsanov37) much of it
elated to the embedding of the problem in a space of greater dimension in which the no
roblem is reduced to an oscillator under constraint. The latter connection in the case
uantum mechanical problem was reported by Niederer.39A more recent extension into the Che
imons field theory has been given by Duvalet al.9

In this article we show how(1) (with 2n=−l2) can be reduced to a two-dimensional lin
sotropic oscillator plus a conservation law. The method used is an application of the me
eduction of order developed by Nucci42 to show how the nonlocal symmetries of the Ke
roblem derived by Krause27,28could be obtained by local methods. The method has been a
uccessfully to a variety of problems resembling the Kepler problem, such as the Kepler p
ith drag8,24,30,36to obtain their nonlocal symmetries and, by accident as it were, to show

hese problems are all related by means of generalized transformations.43,44

I. LIE SYMMETRIES: FIRST INTEGRALS AND LINEARIZATION

The equation of motion(1) with 2n=−l2 has the radial, polar, and azimuthal componen

r̈ − r u̇2 − rḟ2 sin2 u = −
m

r2 +
l2

r3 , s8ad

rü + 2ṙ u̇ − rḟ2 sin u cosu =
lḟ

r
sin u, s8bd

srf̈ + 2ṙḟdsin u + 2r u̇ḟ cosu = −
lu̇

r
, s8cd
espectively.
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The Cartesian components ofP andJ are

Px = − r2fu̇ sin f + ḟ sin u cosu cosfg − l sin u cosf,

Py = r2fu̇ cosf − ḟ sin u cosu sin fg − l sin u sin f, s9d

Pz = r2ḟ sin2 u − l cosu,

nd

Jx = SL2

r
− mDsin u cosf − r2ṙsu̇ cosu cosf − ḟ sin u sin fd − lrsu̇ cosf

− ḟ sin u cosu sin fd,

Jy = SL2

r
− mDsin u sin f − r2ṙsu̇ cosu sin f − ḟ sin u cosfd − lrsu̇ sin f

− ḟ sin u cosu cosfd, s10d

Jz = SL2

r
− mDcosu + r2ṙ u̇ sin u + lrḟ sin2 u,

espectively.
We examine the system(8) algorithmically in an approach based upon the underlying

ymmetries of the integrals and equations of motion and hence use the assistance of a
ymbolic manipulation code. We use the interactive package developed by Nucci.40,41

The algorithm is designed to calculate Lie symmetries42 and first integrals34 and in the proces
etermining parabolic partial differential equations arise the characteristics of which are
ariables” and consequently reduce the amount of branching in the algorithm.

A system of first-order equations has an infinite number of Lie point symmetries a
alculation of a subset of them requires the imposition of some constraint on the structur
ymmetries sought. Although there are instances, such as in systems of linear equations,20,21,45for
hich a prescribed structure can be argued to be sensible, such a prescription is not so o

he case of systems of nonlinear equations as we have here. The introduction of one
econd-order equations reduces the number of point symmetries and these can then be
sing Lie’s algorithm.42

We write the system of equations(8), as the set of six first-order equations

ẇ1 = w4, s11ad

ẇ2 = w5, s11bd

ẇ3 = w6, s11cd

ẇ4 = w1w5
2 + w1w6

2 sin2 w2 −
m

w1
2 +

l2

w1
3 , s11dd

ẇ5 = − 2
w4w5

w1
+ w6

2 sin w2 cosw2 +
lw6

w2 sin w2, s11ed

1
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ẇ6 = − 2
w4w6

w1
− 2w5w6 cot w2 −

lw5

w1
2 sin w2

, s11fd

herew1=r, w2=u, andw3=f. To make the process of the determination of the symmetri
11) finite we convert the system of six first-order equations to one of four first-order equ
lus a second-order equation. We use(11a) to eliminatew4 and now we have the system

ẅ1 = w1w5
2 + w1w6

2 sin2 w2 −
m

w1
2 +

l2

w1
3 ,

ẇ2 = w5,

ẇ3 = w6,

ẇ5 = − 2
ẇ1w5

w1
+ w6

2 sin w2 cosw2 +
lw6

w1
2 sin w2,

ẇ6 = − 2
ẇ1w6

w1
− 2w5w6 cot w2 −

lw5

w1
2 sin w2

. s12d

ote that we have not changed the independent variable which is the standard procedu
ethod of reduction of order.42,43 We are actually trying to find first integrals by using the

ymmetries in the manner described in Ref. 34. If we apply Lie symmetry analysis to syste(13),
.e., we look for a Lie symmetry of the formG=Vsw1,w2,w3,w5,w6,td]t, then, as was shown
ef. 34, the algorithm leads to a parabolic equation inV the characteristics of which, in this ca

1
2w5 andw1

2w6, provide the new set of dependent variables, i.e.,u5 andu4, respectively. Also, i
rder to avoid the ill-behavior of the computer algebra system in the presence of trigono

unctions, we introduce the transformationw2=2 arctansu2d and thereby render the system
quations in rational form. So we define a new set of dependent variables and list their diff
quations,videlicet

u1 = w1 ü1 =
l2su2

2 + 1d2 − mu1su2
2 + 1d2 + 4u2

2u4
2 + u5

2su2
2 + 1d2

u1
3su2

2 + 1d2 ,

u2 = tansw2/2d u̇2 =
u5su2

2 + 1d
2u1

2 ,

u3 = w3 u̇3 = u4u1
−1,

u4 = w1
2w6 u̇4 =

u5s− lu2
2 − l + 2u2

2u4 − 2u4d
2u1

2u2
,

u5 = w1
2w5 u̇5 =

2u2u4slu2
2 + l − u2

2u4 + u4d
u1

2su2
2 + 1d

.

s13d

f we apply Lie symmetry analysis to system(13), i.e., we again look for a Lie symmetry of t
orm G=Vsu1,u2,u3,u4,u5,td]t, then we obtain the following partial differential equation forV:

u5
2su2

2 + 1d3 ] V

] u2
+ 2u2u4su2

2 + 1d2 ] V

] u3
− u5ssu2

2 + 1dl − 2su2
2 − 1du4dsu2

2 + 1d2 ] V

] u4
+ 4u2

2u4slu2
2 + l

− u2
2u4 + u4d

] V

] u5
= 0 s14d
ith now V=Vsu2,u3,u4,u5d. There are three characteristics to be obtained from(14), each of
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hich is a first integral.34 The characteristics are found from the associated Lagrange’s sys

du2

u2u5su2
2 + 1d3 =

du3

2u2u4su2
2 + 1d2 =

du4

− u5ssu2
2 + 1dl − 2su2

2 − 1du4dsu2
2 + 1d2

=
du5

4u2
2u4slu2

2 + l − u2
2u4 + u4d

. s15d

e useMAPLE 7 to facilitate the solution of(15). We obtain

I1 =
2u2

2u4 − lu2
2 − l

2su2
2 + 1d2 , s16d

hich evidently comes from the first and third of(15) sinceu5 is a common factor of the tw
enominators,

I2 =
u5

2su2
2 + 1d4 + 2l2u2

2su2
2 + 1d2 − 4lu2

6u4 + 4lu2
2u4 + 4u2

2u4
2 + 4u2

6u4
2

su2
2 + 1d4 s17d

nd

I3 = u3 +
1

2
arctanSu5

2su2
2 + 1d3 + 4u2

2u4lsu2
2 + 1d − 4u2

4u4
2 + 4u2

2u4
2

2u2u5s1 + u2
2ds2u2

2u4 − lu2
2 − ld

D
−

1

2
arctanSu5

2su2
2 + 1d3 − 4u2

2u4lsu2
2 + 1d + 4u2

4u4
2 − 4u2

2u4
2

2u2u5slu2
2 + l + 2u4ds1 + u2

2d
D . s18d

It is perhaps of some interest to express the three integrals in terms of the known p
uantities of this problem. After some algebraic simplification we find that

I1 = 1
4sPz − ld,

I2 = 1
2sPx

2 + Py
2 + L2d,

I3 =
1

2
arctanH 2PxPy

Px
2 − Py

2J . s19d

n the case ofI3 we have used the formulas for the addition of arctans to combine the expre
ound in(18) which has the nature of a relationship of phases. When we express the three i
n terms of known physical quantities, as in(19), we see quite clearly the effect of the requirem
hat a variable be absent from the integral. We recall that the absent variable isw4= ṙ. The three
ntegrals are all combinations of components of the Poincaré vector, which are individual
erved, and the magnitude of the angular momentum.(The magnitude of the angular moment

s conserved, but the individual components are not conserved.) These conserved quantities are
ree of ṙ. One also notes that the expressions are not simple. In an arbitrary problem, for wh
oes not have a preknowledge of the conserved quantities, one can only expect someth
resented as an integral which is not necessarily a “physical” conserved quantity. This me

he algorithm finds first integrals if they exist with the only limitation being the absence of o
he variables, in this casew4. There is no essential difference in the working of the algorithm i
ish to take one of the other variables absent.

In Ref. 31 we found a transformation which reduced the Kepler Problem to a two-dimen
inear isotropic harmonic oscillator and also found the complete symmetry group of this p
s described by Krause.27,28 Here we show how to reduce the Kepler problem to a

imensional linear isotropic harmonic oscillator using Lie symmetries and the reduction method.
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hen we show how to do the same for the MICZ-Kepler problem. Thus the algorithm of Lie
ymmetries and the reduction method reveal the physical property underlying the model. A
e know such a reduction has never been described before.

The Kepler system of equations can be written as the set of six first-order equations,

ẇ1 = w4,

ẇ2 = w5,

ẇ3 = w6,

ẇ4 = w1w5
2 + w1w6

2 sin2 w2 −
m

w1
2 ,

ẇ5 = − 2
w4w5

w1
+ w6

2 sin w2 cosw2,

ẇ6 = − 2
w4w6

w1
− 2w5w6 cot w2, s20d

herew1=r, w2=u, andw3=f. We use the method of reduction of order by choosingy=w3 as the
ew independent variable to obtain the reduced system

w18 =
w4

w6
, s21ad

w28 =
w5

w6
, s21bd

w48 =
w1w5

2

w6
+ w1w6 sin2 w2 −

m

w1
2w6

, s21cd

w58 = − 2
w4w5

w1w6
+ w6 sin w2 cosw2, s21dd

w6 = − 2
w4

w1
− 2w5 cot w2. s21ed

f we eliminate w5 from (21b) and search for Lie symmetries we obtain the first integrj
w6w1

2 sinsw2d2, i.e., the “z-component” of the angular momentum, as the characteristic cu
parabolic determining equation. Finally we convert the system of six first-order equations

econd-order equations,videlicet

w49 = s2 cossw2dw48w28 − sinsw2d3w4 − sinsw2dw4w28
2d/sinsw2d,

w29 = scossw2dssinsw2d2 + 2w28
2dd/sinsw2d, s22d

y eliminatingw6=j / ssin2sw2dw1
2d from the integral obtained,w5=w28j /sin2sw2dw1

2 from (21b) and
2 2 2 2 2
1=j sw28 +sin sw2dd / ssin sw2dsw48j+sin sw2dmdd from (21c). Using the interactiveREDUCE pro-
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rams developed by Nucci40,41 we obtain a 15-dimensional Lie symmetry algebra, isomorph
ls4,Rd,13 generated by the following 15 operators:

X1 = cosecsw2dcossydw4]y + cossw2dsinsyd]w2
− sinsw2dsinsydw4

2]w4
,

X2 = cosecsw2dsinsydw4]y − cossw2dcossydw4]w2
+ sinsw2dcossydw4

2]w4
,

X3 = w4 sinsw2d]w2
+ cossw2dw4

2]w4
,

X4 = − cotsw2dsinsyd]y + cossyd]w2
,

X5 = cotsw2dcossyd]y + sinsyd]w2
,

X6 = cossw2d]w4
,

X7 = sin2sw2dsinsyd]w2
+ sinsw2dcossw2dsinsydw4]w4

,

X8 = sin2sw2dcossyd]w2
+ sinsw2dcossw2dcossydw4]w4

,

X9 = ]y,

X10 = sinsydcossyd]y − sinsw2dcossw2dcos2syd]w2
+ s1 − cos2sw2ddcos2sydw4]w4

,

X11 = cos2syd]y + sinsw2dcossw2dsinsydcossyd]w2
− s1 − cos2sw2ddsinsydcossydw4]w4

,

X12 = sinsw2dcossw2d]w2
+ cos2sw2dw4]w4

,

X13 = w4]w4
,

X14 = sinsw2dsinsyd]w4
,

X15 = cossydsinsw2d]w4
. s23d

In order to find the linearizing transformation we need to find a four-dimensional Ab
ubalgebra of rank 2.50 Following Soh and Mahomed’s classification of four-dimensional
lgebras in the real space,51 we have to transform this four-dimensional subalgebra into
anonical form

]ṽ1
, ]ṽ2

, fsyd]ṽ1
+ gsyd]ṽ2

, hsyd]ṽ1
+ ksyd]ṽ2

, ff8sydk8syd Þ g8sydh8sydg

ith ṽ1 andṽ2 the new dependent variables. We find that one such subalgebra is that gene

7,X8,X14,X15 for which we make the mappingX14→]ṽ1
,X7→]ṽ2

,X15→cotsyd]ṽ1
,X8

−cotsyd]ṽ2
. Then it is easy to derive that

ṽ1 =
w4

sinsydsinsw2d
, ṽ2 =

cotsw2d
sinsyd

s24d
nd system(22) becomes
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ṽ19 + 2 cotsydṽ18 = 0,

ṽ29 + 2 cotsydṽ28 = 0, s25d

hich is not the equation of motion of a free particle in two dimensions as was claimed it
e in Ref. 51.

Nevertheless we note that, if we take they-independent version of transformation(24), i.e.,

v1 =
w4

sinsw2d
, v2 = cotsw2d,

hen system(22) becomes

v19 + v1 = 0,

v29 + v2 = 0, s26d

.e., the two-dimensional harmonic oscillator.
Now we return to system(11) and mimic the same procedure as used for the Kepler pro

y taking y=w3 as the new independent variable. If we again eliminatew4, then the Lie grou
nalysis yields the substitutionsw5=u5/w1

2, w6=u4/w1
2 from the determining parabolic part

ifferential equation. Then, after replacingw2=2 arctansu2d for the reason based on the workin
f symbolic manipulation in a computer given above, derivingu4 from I1, i.e., u4=su2

2+1d
s2I1u2

2+l+2I1d / s2u2
2d and eliminating u5 from the system, i.e., u5=−slu2

2−l−u2
2I1

I1du28 / s2u2
2d, we find that the system(11) is reduced to the following three differential equatio

u9 = −
slu2 + l − I1u

2 + I1du2 + 2sl + I1du82

slu2 − l − I1u
2 − I1du

, s27d

w18 = −
4u2w1

2w4

slu2 − l − I1u
2 − I1dsu2 + 1d

, s28d

w48 = −
su2 + 1d2I1

2 − 4mu2w1 + slu2 + l − 2I1u
2 + 2I1dsu2 + 1dl

slu2 − l − I1u
2 − I1dsu2 + 1dw1

−
slu2 − l − I1u

2 − I1du82

su2 + 1du2w1
,

s29d

here prime denotes derivative with respect toy and u=u2. Equation (27) admits an eigh
imensional Lie symmetry algebra of point symmetries and therefore is linearizable by m
point transformation.32 The eight symmetries are

V1 = − cossyd
u2

l + I1 − sl − I1du2]u,

V2 = sinsyd
u2

l + I1 − sl − I1du2]u,

V3 = −
slu2 + l − I1u

2 + I1du
sl + I1 − sl − I1du2dsl − I1d

]u,
V4 = ]y,
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V5 = cossyd
lu2 + l − I1u

2 + I1

u
]y + sinsyd

sl2 + lI1 + I1
2dsu4 + 1d − s3u4 − 1dlI1

l + I1 − sl − I1du2 ]u,

V6 = − sinsyd
lu2 + l − I1u

2 + I1

u
]y + cossyd

sl2 + lI1 + I1
2dsu4 + 1d − s3u4 − 1dlI1

l + I1 − sl − I1du2 ]u,

V7 = coss2yd]y + sins2yd
slu2 + l − I1u

2 + I1du
l + I1 − sl − I1du2 ]u,

V8 = − sins2yd]y + coss2yd
slu2 + l − I1u

2 + I1du
l + I1 − sl − I1du2 ]u. s30d

n order to find the linearizing transformation we have to look for a two-dimensional Ab
ntransitive subalgebra and, following Lie’s classification of two-dimensional algebras in th
lane,32 we have to transform the subalgebra into the canonical form

]ũ, ỹ]ũ s31d

ith ũ and ỹ the new dependent and independent variables, respectively. We find that on
ubalgebra is that generated byV1 andV2, which yields the following point transformation:

ũ =
lu2 + l − I1u

2 + I1

cossydu
, ỹ = −

sinsyd
cossyd

s32d

nd Eq.(27) becomes

d2ũ

dỹ2 = 0. s33d

he transformation which takes the free particle equation(33) into a harmonic oscillator, i.e.,

d2x

dt2 + x = 0

s (see, for example, Whittaker,53 p. 307)

x =
1

Îũ2 + ỹ2
, t = arctanS−

ũ

ỹ
D

nd vice versa

ũ =
sinstd

x
, ỹ = −

cosstd
x

.

herefore we obtain a harmonic oscillator if we make the transformation

x =
cossydu

Îslu2 + l − I1u
2 + I1d2 + sinsyd2u2

,

t = arctanSlu2 + l − I1u
2 + I1

sinsydu D . s34d

The reduced system,(27)–(29), is separated into the second-order ordinary differential e

ion (27) containing the single dependent variableusyd and the pair of nonlinear first order ordi-

                                                                                                            



n
a
u y
a linear-
i
d etries
a

I

gebraic
a

L

w

w

w ,
v

E al
e

a f
P

a

efine

w

J. Math. Phys., Vol. 45, No. 9, September 2004 Reduction of the classical MICZ-Kepler problem 3599

                        
ary differential equations(28) and(29). Given the solution of(27) we may rewrite(28) and(29)
s a pair of nonautonomous first-order ordinary differential equations. We eliminatew4 from (29)
sing(28) to obtain a nonlinear second-order ordinary differential equation forw1. The symmetr
nalysis of this equation shows that it has eight Lie point symmetries. Consequently it is

zable by means of a point transformation. Thus we have shown how to reduce(21) to a two-
imensional linear isotropic harmonic oscillator plus a conservation law by using Lie symm
nd the reduction method.

II. ALGEBRAIC CONSIDERATIONS

The richness of the Lie algebraic structure of the symmetries suggests the following al
pproach.

We obtain the Ermanno–Bernoulli constants—so named to give the discoverers3,11,19 of the
aplace–Runge–Lenz vector at least a footnote in the history of the Kepler problem—as

J± = Jx ± iJy = FSL2

r
− mDsin u − r2ṙ u̇ cosu − lrḟ sin u cosu ± is− r2ṙḟ sin u + lr u̇dGe±if,

s35d

hich can be written in the more compact form

J± = sv1 ± iv18de
±if, s36d

here

v1 = SL2

r
− mDsin u − r2ṙ u̇ cosu − lrḟ sin u cosu,

v18 = − r2ṙḟ sin u + lr u̇

ith the prime denoting differentiation with respect to the azimuthal angle,f. The new variable

1, satisfies

v19 + v1 = 0. s37d

quation(37), that of a simple harmonic oscillator with independent variablef, replaces the radi
quation(8a).

The introduction of the standard integrating factor,r sin u, makes(8c) exact,videlicet

d

dt
sr2ḟ sin2 u − l cosud = 0 s38d

nd one recognizes that this simply represents the conservation ofPz, the z-component o
oincaré’s vector. To maintain a uniformity of notation we define

v3 = r2ḟ sin2 u − l cosu s39d

nd replace(8c) with the conservation law

v38 = 0. s40d

In a manner analogous to that used to obtain the Ermanno–Bernoulli constants we d

P± = − fPx ± iPyg = fr2ḟ sin u cosu + l sin u ± is− r2u̇dge±if = sv2 ± iv28de
±if,
here

                                                                                                            



s cillator,
v

E s. One
m

a st
o

-
o lator
p

b still
a

onser-
v ir of
o er
o sym-
m s to be
r

3600 J. Math. Phys., Vol. 45, No. 9, September 2004 P. G. L. Leach and M. C. Nucci

                        
v2 = r2ḟ sin u cosu + l sin u s41d

atisfies the second order ordinary differential equation for a second simple harmonic os
idelicet

v29 + v2 = 0. s42d

qually this equation may be obtained directly from the polar and azimuthal equation
ultiplies (8b) and (8c) by r and r sin u, respectively, to give

d

dt
sr2u̇d − ḟsr2ḟ sin u cosu + l sin ud = 0, s43d

d

dt
sr2ḟ sin u cosu + l sin ud + r2u̇ḟ = 0,

nd on replacement of time by the new independent variable,f, (43) is just the system of two fir
rder equations equivalent to(42) since

v2 = r2ḟ sin u cosu + l sin u,

v28 = − r2u̇. s44d

Consequently we have reduced the MICZ-Kepler problem,(1) with 2n=−l2, from the sixth
rder nonlinear system(8) to a fifth-order system comprising a linear isotropic harmonic oscil
lus a conservation law,videlicet

v19 + v1 = 0, s45ad

v29 + v2 = 0, s45bd

v38 = 0, s45cd

y virtue of using the conserved vectorsJ and P. We note that the reduced system is
utonomous.

The reduced system is a two-dimensional isotropic linear harmonic oscillator plus a c
ation law. The system(45) possesses 16 Lie point symmetries comprising 15 for the pa
scillators and an additional one for the conservation law.(One should note that the first-ord
rdinary differential equation for the conservation law has an infinite number of Lie point
etries. However, we are considering a system of three equations and that infinity ha

educed somewhat in number to be consistent with the two other equations.) They are16

G1 = ]f, G7± = e±if]v1
,

G2 = v1]v1
, G8± = e±if]v2

,

G3 = v1]v2
, G9± = e±2iff]f ± isv1]v1

+ v2]v2
dg,

G4 = v2]v1
, G10± = v1e

±iff± i]f + v1]v1
+ v2]v2

g,

G5 = v2]v , G11± = v2e
±iff± i]f + v1]v + v2]v g,
2 1 2
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G6 = ]v3
, s46d

hich is a representation of the algebraA1 % sls4,Rd andG6 is the symmetry associated with
onservation law and the contributor of theA1 part of the algebra given above. The original sys
8) (with 2n=−l2) possesses just the four Lie point symmetries

X1 = ]t, X2 = ]f, X3± = e±ifs± i cot u]f + ]ud, s47d

.e., a representation ofA1 % sos3d. (In the absence of the Newtonian gravitational potential(1) is
n instance of a generalized Ermakov system10 with sos3d imposed17 which possesses the s
imensional algebra sls2,Rd % sos3d—Mladenov37 prefers sos2,1d % sos3d—so that the addition o

he Kepler potential has the effect of symmetry-breaking. As is evident from the work repo
his note, the symmetry-breaking is at the level of point symmetries.)

From the set of symmetries(46) one can extract the representation of the complete sym
roup of the MICZ-Kepler problem. In general there are several equivalent representation
omplete symmetry group of systems of oscillators.2 The generic isotropic oscillator inn dimen-
ions is completely specified by thes2n+1d-dimensional algebraA1%ss2ndA1, i.e., a representatio
f the group of the semidirect product of dilations and translations ins2nd-dimensional spac
owever, there are some anomalies.2 In the case of dimension four there are two distinct comp
ymmetry groups. In the cases of dimensions two and three the anomalous group has one
ewer than the generic group and so is the sole representative of the complete symmetry g

he isotropic oscillator. Consequently for(45) we selectG1, G9± andG̃=G3−G4—the conservatio
aw, (45c), does not require any additional symmetry—with the algebra sls2,Rd % sos2d,31 which is
he direct sum of sls2,Rd with the algebra of rotations in two dimensions.

To this set of symmetries one adds]t to obtain a representation of the complete symm
roup of the MICZ-Kepler problem,videlicet A1 % sls2,Rd % sos2d.

Of some interest is that the reduction of the MICZ-Kepler problem to the system(45) parallels
hat of the Kepler problem and its variations.44 In the case of the latter systems a critical feature
he success of this reduction appears to be the possession of a conserved vector of
unge–Lenz-type and in the introduction of Ermanno–Bernoulli constants. We have seen
ethod of reduction of order leads to the reduction of the system to that of an isotrop
imensional oscillator plus a conservation law. In the case of the MICZ-Kepler problem w
uch a vector in(7) and we obtained the results presented above. We emphasize that the a
ic derivation of the reduction to the system of two oscillators plus a conservation law d

equire any preknowledge of the physical problem described by the equations for the
epler problem, but was simply a consequence of the general procedure.

The solution of the system(45) is

v1 = J+e−if + J−eif,

v2 = P+e−if + P−eif,

v3 = Pz, s48d

n which the constants of integration are expressed in terms of the Ermanno–Bernoulli co
nd the corresponding constants for the Poincaré vector.

V. CONCLUSION

One recalls that the Poisson bracket relation for the monopole is not standar
38
amiltonian for the equation of motion(1) is
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H =
1

2
Sp ·p +

l2

r2D −
m

r
, s49d

here the momentum isp= ṙ and the fundamental Poisson Bracket relations are

fxi,xjgPB = 0, fxi,pjgPB = di j , fpi,pjgPB = lei jk
xk

r3 s50d

ith r = ur u, xixi =r2 and di j and ei jk are Kronecker’s delta and epsilon, respectively. The Po
racket relations of the components of the conserved vectors,P andJ, are

fPi,PjgPB = ei jkPk, fPi,JjgPB = ei jkJk, fJi,JjgPB = − 2Hei jkPk, s51d

hich provides a representation of the algebras sos4d, es3d, and sos3,1d depending upon wheth
is negative, zero, or positive which is a result well-known in the literature. These are exa

ame algebras as are found for the Kepler problem. We note that the Poisson bracket alg
he first integrals and the Lie point symmetries of the underlying systems of ordinary diffe
quations which model the problems have different provenances. The former is based
ymplectic space of the Hamiltonian system and the latter on the invariance of the diffe
quations of the system under infinitesimal transformation. The Lie point symmetries
quations of motion differ for the two problems beingA1 % sos3d for the MICZ-Kepler problem
nd A2 % sos3d for the Kepler problem. However, the algebras become identical in the re
ystem since the reduced systems are identical.

In general the Lie point symmetries of the reduced system(45) are nonlocal symmetries f
he source system when expressed in terms of the coordinates of the original system. It is
f some curiosity that the majority of elements of the complete symmetry group should b
esented by nonlocal symmetries, but not an isolated instance. A classic example is the
see Ref. 25, Chap. 6, p. 542ff)

y9 =
y82

y
+ f8sxdyp+1 + pfsxdy8yp, s52d

hich has no Lie point symmetries for generalfsxd and yet is trivially integrable.52 By means o
he nonpoint transformation

X = x Y= logH− pyp expF−E pfsxdypdxGJ , s53d

52) is transformed to the trivial d2Y/dX2=0 for which three point symmetries with the alge

3,3 s⇔D%sT2d provide the representation of the complete symmetry group. These point s
ries become horribly nonlocal when expressed in terms of the variables of(52).1

Since the elements of the complete symmetry algebra are the minimal set of sym
equired to specify completely the system concerned, the importance of nonlocal symm
urther highlighted. One has the distinct impression that nonlocal symmetries come in tw
ties, useful and nonuseful.(This statement is probably true of all symmetries, but one ten
ttach a special value to point and contact symmetries.18) A possible definition of utility in thi

nstance is that there is some transformation of dependent and independent variables w
ers the nonlocal symmetry into the more comfortable point form. The technique of reduc
rder42,43 provides a systematic algorithmic procedure to identify these desirable transform
nd thereby provides greater information and the potential for greater understanding o
ystems.

In this paper we have approached the question of the possible linearization of the
epler problem on a purely algorithmic basis using a combination of the method of reduc
rder and the Lie point symmetry analysis. We have shown that the MICZ-Kepler prob

ssentially the same problem has the well-known Kepler problem, the reduction of which we have
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lso given. In terms of the natural coordinates for the description of each problem the Li
ymmetries of the equations of motion differ in number so that in terms of these coordina
roblems appear to be algebraically different. Nevertheless we have demonstrated their
neness in an appropriate coordinate system. The attraction of the algorithmic procedure
emonstrated here is that there is no necessity to have a deep knowledge of the syste
escribed. In our provision of an alternate derivation of the reduction through manipulation
quations of motion we highlighted the approach which one can take if one is very familia

he way these systems possess conserved quantities. Such systems are rare. We do no
legant treatments are possible for certain problems. Rather our concern is for those sys
hich these elementary manipulations are not obvious or perhaps even possible and y
ave a very simple structure in a suitable coordinate system. The method which we have p
ere is designed for the nonobvious.

Our considerations here have been confined to the three-dimensional MICZ-Kepler p
ince it is susceptible to a very transparent treatment. The extension of the application
ethod of reduction of order to the higher-dimensional problems of this type of interest

iterature is intended to be the subject of a future report.
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ystems in quantum probability

Palle E. T. Jorgensena)

Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242-1419

(Received 25 March 2004; accepted 29 May 2004; published 16 August 2004)

Motivated by existence problems for dissipative systems arising naturally in lattice
models from quantum statistical mechanics, we consider the following
C*-algebraic setting: A given Hermitian dissipative mappingd is densely defined in
a unital C*-algebra A. The identity element inA is also in the domain ofd.
Completely dissipative mapsd are defined by the requirement that the induced
maps,saijd→ sdsaijdd, are dissipative on then-by-n complex matrices overA for all
n. We establish the existence of different types of maximal extensions of com-
pletely dissipative maps. If the enveloping von Neumann algebra ofA is injective,
we show the existence of an extension ofd which is the infinitesimal generator of
a quantum dynamical semigroup of completely positive maps in the von Neumann
algebra. Ifd is a given well-behavedp-derivation, then we show that each of the
maps ±d is completely dissipative. © 2004 American Institute of
Physics.[DOI: 10.1063/1.1777401]

. INTRODUCTION

Recent applications of the operator-theoretic approach to dissipative quantum systems
efs. 22 and 37. For a more systematic approach, see Ref. 36. Suppose we are give
arameter group of automorphismsat :a°eitHae−itH which acts on some set of observablea,
pecified as a dense “local” subalgebra of a completedC*-algebra. If we then differentiate att
0, we get the derivationd :a° ifH ,ag= isHa−aHd which takes the form of a formal commutat
he issue is complicated by the fact that the HamiltonianH is typically an unbounded operator
tatistical models, say infinite lattice spin systems. In applications, it isH that is given, and th
rocess must be run in reverse. By analogy to boundary value problems from partial diff
quations, we then expect to encounter an existence problem for reconstructing the dyn

he system from knowing only a formula forH.
We adopt the C* – W*-formalism for the dynamics of infinite quantu

ystems.10,14,18,20,21,24,31,33For the special case of quantum spin systems it is believed th
ynamics in the time-reversible case is given by an unbounded derivation of a suitable algA
f observables.31 Depending on the range of the interaction, and the number of dimensions
pin lattice, it is possible to exponentiate the infinitesimal derivation to a one-parameter g
utomorphismsat s−` , t, ` d of A, or of the envelopingW*-algebraA9 (see Ref. 35), or the
*-algebra generated by a given invariant state.10,17,26,29,32,33

It is known that(open) irreversible systems may be obtained as restrictions of time-reve
ystems, and it follows20 that the dynamics of the open system is given mathematically
emigrouptt s0ø t, ` d of completely positive mappings of theC*-algebraA, or W*-algebraA9.
he corresponding infinitesimal generator is completely dissipative. Completely positive
roups also play a role in quantum computing algorithms.27 The philosophy is that noise in t
uantum processes dictates the dissipative systems, as opposed to the conservative ones(which are
overned by one-parameter groups of automorphisms).

)
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But in high lattice dimensions, or for long-range interaction, there are difficulties in exp
iating the infinitesimal generators. The determination of the time evolutionsat (respectively,tt)
eems to require “extra boundary conditions.”7,10,26,32,33It is therefore a meaningful foundation
uestion, for a given completely dissipative infinitesimal transformationd in a C*-algebraA, to

sk if it is always possible to extendd to a transformationd̃ which is the infinitesimal generator f
quantum dynamical semigroup. Under the assumption thatd is Hermitian, and that th

*-algebraA9 is injective, we establish the existence of a generator extensiond̃. Our extension i
hus an algebraic parallel to Friederichs’s extension for semibounded operators in Hilbert s
n analogue of Phillips’s30 maximal dissipative extension of the general dissipative opera
ilbert space.

In earlier articles7,10,28,31the uniqueness problem was considered for the generator exte

, d̃. But, just as the case for operators in Hilbert space(Friedrichs, Phillips), the extension i
enerally not unique, reflecting the possibility of different “boundary conditions” at infinity.

We refer the reader to Refs. 14, 18, and 33, for details on the mathematical founda
lgebraic quantum theory.

The issues centering around the existence problem for the dynamical one-parameter g
emigroups, of quantum statistical mechanics are perhaps best known in the setup ofquantum spi
ystems, as they are treated in Refs. 9, 25, and 34.

Example I.1:The mathematical framework is rather general such as to allow a wide var
pplications, including recent ones to nonequilibrium statistical mechanics.34 A countably infinite
etL (say a lattice; it may beZn wheren is the lattice rank, or dimension) is specified at the outse
oints s[L are sites at which quantum spins are located. For eachs[L, let Hs be a finite
imensional complex Hilbert space, i.e., the spin vectors at sites; and for a finiteL,L, set

HL ª ^
s[L

Hs.

hen letAL be thep-algebra of all(bounded) operators onHL. With the natural embedding

AL1
, AL2

for L1 , L2

iven by

AL1
° AL1

^1L2\L1
, AL2

,

e get the usual inductive limitC*-algebra limL AL¬A. A function L°FsLd=FsLd* [AL

efined on the finite subsetsL of L is called aninteraction, and

HFsLd = o
X,L

FsXd s1.1d

s the associated localHamiltonian, where in(1.1), the summation is over all finite subsetsX of L.
inceAL1

andAL2
commute whenL1ùL2=x, it follows that

dsad = lim
L

fHsLd,ag s1.2d

s well defined for all local observablesa in the densep-subalgebra,

A0 = ø
L fin

AL in A,

here f· , ·g in (1.2) denotes the usual commutatorfb,agªba−ab. Ruelle proved that, ifF is

ranslationally invariant, and if, for somel.0,
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o
n=0

`

enlsup
s[L

o
s [ X fin
card X=n+1

iFsXdi , ` , s1.3d

hen thep-derivationd defined in(1.2) is the infinitesimal generator of a one-parameter subg
f p-automorphismshatjt[R,AutsAd, which then satisfies

atsad = lim
L↗L

eitHsLdae−itHsLd s1.4d

or all a[A and t[R, i.e., it is approximately inner. This means that, ifa[A0, then

lim
t→0
tÞ0

t−1satsad − ad = dsad. s1.5d

oreover,d is, when extended fromA0, a closedp-derivation, in the sense that the graph ofd is
losed inA3A. But if F is not translationally invariant, or if(1.3) is not known to hold, then n
uch conclusion is within reach, and the issue of extensions ofd arises. We then ask if som

xtensiond̃ of d to a generator of a one-parameter group of automorphisms, or a semigr
issipations(see details below), exists.

I. DEFINITIONS AND TERMINOLOGY

Let X and Y be Banach spaces. Then the space of bounded linear operators fromX to Y is
enotedLsX,Yd. Theconjugate(i.e., dual) Banach space toX is LsX,Cd, and is denotedX8. If H

s a Hilbert space, theC*-algebra of all bounded operators onH is denotedBsHd. Let L be a
inear subspace ofBsHd which is self-adjoint and contains the identity operatorI. With the orde
nherited fromBsHd, the subspaceL gets the structure of anoperator system, in the terminology
f Effros.11 The full matrix algebraMn of all complexn-by-n matrices is also an operator syste
nd so isLn=L ^ Mn. The elements inLn may be realized asn-by-n matrices with entries fromL,
aijdi,j=1

n , aij [L. If L and R are operator systems andw :L→R is a linear mapping, then th
nduced mapsaijd→ swsaijdd of Ln into Rn is denotedwn. It is, in fact,w ^ idn. We say2 that w is
ompletely positive(respectively,completely contractive) if wn is positive(respectively, contrac
ive) for all n. We say thatR is injective if for every pair of operator systems,L,L1, and every
ompletely positive mapw :L→R, there is a completely positive extensionc :L1→R. That is
sxd=wsxd for all x[L. If R is a von Neumann algebra in a Hilbert spaceH, it is known13,38 that

is injective iff there is a norm-one projection ofBsHd onto R.
If A is a C*-algebra, it is known12 that A is nuclear iff the double conjugate(dual) A9 is

njective as aW*-algebra. Connes showed13 that a factorR on a separable Hilbert space
njective iff it is matricial.

II. DISSIPATIVE TRANSFORMATIONS

An operatord in a Banach spaceX is said to be dissipative29 if one of the following thre
quivalent conditions is satisfied:

i) For all x in the domainDsdd of d, there is an elementf [X8, depending onx, such tha
ifi=1, fsxd=ixi, and Refsdsxddø0.

ii ) For all x in Dsdd, and all f [X8 satisfyingifi=1, andfsxd=ixi, the inequality Refsdsxdd
ø0 is valid.

iii ) For all x in Dsdd, and alla[R+, the inequalityix−adsxdiù ixi holds.

The proof of the equivalence can be found, for example, in Ref. 7, but the equivalen
lso be shown to be a consequence of the approximation idea in Sec. IX and Proposition X
resent paper.
If X is an operator system, we say thatd is completely dissipativeif the induced mappingdn
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n Xn is dissipative for alln=1,2, . . . .Recall thatXn=X^ Mn, anddn: sxijd→ sdsxijdd, with domain
sdnd=hsxijd[Xn:xij [Dsddj.

Finally we say that the transformationd is Hermitian if the domainDsdd, in the operato
ystemX, is invariant under thep-involution of X, and if dsx* d=dsxd* for all x[Dsdd.

If d :X→Y is merely a linear transformation between Banach spacesX andY, with domain
sdd dense inX, then the transposed(or conjugate) transformationd8 is well defined as a line

ransformation d8 :Y8→X8 with domain Dsd8d=hf PY8 :∃gPX8 s.t. fsdsxdd=gsxd for all x
Dsddj. For f PDsd8d, d8sfd=g. The domainDsd8d is weak*-dense inY8 iff d is closable. It is

nown29 that dissipative operators are closable.

V. COMPLETELY POSITIVE SEMIGROUPS (QUANTUM DYNAMICAL SEMIGROUPS )

Let M be aW*-algebra with predualM* . Let tt be a family of completely positive mappin
f M into itself, indexed by the time parametertP f0,` d. Assume thatt0 is the identity transfor
ation in M, and thattts1d=1 for all tP f0,` d, where 1 denotes the unit element of t
*-algebra M in question. We assume further that the semigroup law holds,tt1+t2

=tt1
+tt2

for

1,t2P f0,` d, and finally that eachtt is a normal mapping inM. Recall that normality is equiv
ent to the requirement that the conjugate semigrouptt8 (Ref. 16) of M8 leaves invariant th
ubspaceM* . Finally we require continuity of each scalar function,t→wsttsadd, for all wPM*

ndaPM. A semigroup which satisfies all the requirements above is called acompletely positiv
emigroup. Because of the relevance to quantum dynamics, we shall also call it a qu
ynamical semigroup.21

The infinitesimal generatorof a given completely positive semigroupstt ,Md is a, generall
nbounded, transformation, denoted byz, in M. The domain of the generatorz is given by

Dszd =Ha P M: ∃ b P M s.t. for all t, ttsad − a =E
0

t

tssbddsJ .

By definition zsad=b. It is easy to see16 that zsad= usd/dtdttsadut=0, where the derivative
aken in thessM ,M * d-topology. Finally note that infinitesimal generators are completely d
ative.

Example IV.1:It is known that the generatord of a completely positive semigrouphttjtPR+
on

C*-algebraA is completely dissipative on a dense subspaceD in A; see Ref. 4. The followin
s a “canonical” example of this: it is built on theC*-algebra over the canonical commutat
elations (CCR); see Ref. 8. Specifically, letH be a complex Hilbert space. Then there
*-algebraA=AsHd which is generated by the identity element1 and a family of unitary ele
entshuj ujPH \ h0jj such that

ujuh = esi/2dImkjuhluj+h

or all j ,hPH, with the understanding thatu0=1. Then it follows that there is a unique, co
letely positive semigrouphttjtPR+

in A, such that

ttsujd = e−tijiH
2
uj for j P H.

ence the subalgebraD,A spanned by the elementshuj ujPHj is contained in the domain of t
eneratord, and

dsujd = − ijiH2 uj. s4.1d

t follows from the observation in Refs. 3 and 5 that thisd is completely dissipative with den

omainD in the C*-algebraA. That is,d defined by
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dsad = lim
t→0+

t−1sttsad − ad snorm limitd

s well defined fora=ujPD, and(4.1) holds.
We now turn to the general existence problem.
Theorem IV.2: Let A be a C*-algebra with unit1, and let d be a completely dissipati

ransformation inA with dense domainDsdd. Assume1PDsdd, ds1d=0, and further thatd is
ermitian. Moreover assume that the double conjugate (dual)A9 is an injective W*-algebra. Then

has an extensiond̃ to an ultraweakly densely defined transformation inA9 which is at the sam
ime the infinitesimal generator of a completely positive semigroup of normal unital transf
ions in A9.

We have divided the proof of Theorem IV.2 into two main sections: one is concerned w
nalysis of the family of extensions of thepartial resolvent operatorsI −dd−1. This analysis lead

o a distinguished set of contractive, and maximal, extensions which is associated with

xtensionsd̃ of d. But d̃ turns out to be an operator in the envelopingW*-algebra ofA. The

eneration properties ofd̃ are analyzed in the second section of the proof, Sec. VI below.

. EXTENSIONS OF „I−d…−1

We may assume thatd is in fact a closed operator inA. (If not, it would be possible to repla

by the closured̃, and d̃ will have the properties which were listed ford.)
This means that the linear spaceS=RansI −dd=hx−dsxd :xPDsddj is closed inA. In view of

he (Hermitian) assumption ond we note thatS is also self-adjoint, and that1PS. The operato
:S→A defined byx−dsxd→x, and denoted bysI −dd−1, is completely positive(Ref. 2, Prop
.2.8). ClearlyRs1d=1.

We now consider the double dual toA, denoted byA9, as aW*-algebraM, and make th
ppropriate identification(via the universal *-representation forA) such thatA is regarded as
*-subalgebra ofA9, and the predual ofA9 is identified with the dualA8 of A. (The reader i

eferred to Ref. 35 Sec. 1.17, p. 42 for details.) SinceM =A9 (with the Arens multiplication) is
njective as aW*-algebra, by the assumption, it follows that a completely positive exte

appingE:M→M exists. If we regardA as a subalgebra ofM (as we shall), then the extensio
roperty is given by the identity

Rssd = Essd for all sP S. s5.1d

ote thatS,A, so thatS becomes a subspace ofM with the above-mentioned identification.
The completely positive transformations ofM into itself will be denoted byCPsMd, and the

paceLsMd of completely bounded linear transformations inM gets an ordering arising from t
one CPsMd. Indeed, forFPLsMd we defineEøF by the requirement thatF−EPCPsMd.

Among all the particular extensionsF of R, FPLsMd, such thatEøF, we choose by Zorn
maximal elementF0. [For the basic facts on topologies onCPsMd which are needed, the reade
eferred to Ref. 2, Chap. 1.]

This extensionF0, described above, has the special property of being 1–1. We first co
he restriction ofF0 to the positive elements inM, M+, that is. More precisely, we have t
mplication

x P M+, F0sxd = 0 ⇒ x = 0. s5.2d

et h :M→M /S be the canonical linear quotient mapping, and consider the coneC in the normed
uotient spaceE=M /S given byC=hsM+d.

If the elementx in (5.2) belongs toS, then the conditionsRsxd=F0sxd=0 imply x=0, since
=sI −dd−1. Hence, we shall assume thatx is not in S. This means thathsxdPC defines a one
imensional subspacehkhsxd :kPCj in E, and the functionalf :khsxd→k is nonzero and positiv

y Krein’s theorem(Ref. 1, Theorem 1, Chap. 3, p. 157) f extends to a positive functionalf̃ on E,

nd we may define
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F1syd = F0syd + f̃shsydd1 for y P M . s5.3d

e claim thatF1 is one of the extensions considered in the Zorn process which was des
bove. ButF0øF1, and F0ÞF1, contradicting the maximality ofF0—and so, we must havex
0, concluding the proof of(5.2). [Note that in(5.3), instead of the identity element1 on the

ight-hand side of the equation, we could have used any nonzero element inM+. The correspond
ng F1-transformation would properly majorizeF0, and have its range contained inM, since the
ange ofF0 falls in M.]

SinceF0 is completely positive, we have, in particular,F0sx* d=F0sxd*. So, to establish th
dentity NsF0d=hxPM :F0sxd=0j=0, it is enough to show that the Hermitian part ofNsF0d is zero
ince we have already considered positive elements, it only remains to considerx=x* PNsF0d
atisfyingx¹S. Choose a positive real numberk such thatxk=x+k1PM+. We then haveF0sxkd=k

nd xk¹S. It is possible, therefore, by Krein’s theorem, to choose a positive functionalf̃ on E
M /S satisfying f̃shsxkdd= l .0. Then defineF2syd=F0syd+ f̃shsydd1 for yPM. It is a simple

atter to check thatF2 is one of the Zorn extensions. Indeed,F0øF2 since f̃ is chosen positive
inally F2sxkd=F0sxkd+ l1.F0sxkd. This contradiction to the maximality ofF0 concludes th
roof. SinceNsF0d=0, the inverseF0

−1 is defined onF0sMd=hF0sxd :xPMj.
We proceed to show thatF0sMd is in fact dense in thessM ,A8d-topology ofM: First note tha

he extension property(5.1) for F0 translates into

F0sx − dsxdd = x for x P Dsdd, s5.4d

nd the corresponding transposed mappings inA8 therefore satisfy

sI − d8dF08 = I sthe identity operator inA8d. s5.5d

enceF08 is 1–1, and the desired density ofF0sMd follows from the bipolar theorem applied to t
8–M duality. Note that in fact every extension ofR has dense range, because condition(5.5) is
atisfied for the most general such extension.

SinceF0 is an extension ofsI −dd−1 it is clear thatd̃= I −F0
−1 is therefore an extension ofd.

I. GENERATION PROPERTIES OF d̃

The operatord̃ is closed and densely defined in thes-topology ofM. But sI − d̃d−1=F0, so we

lso haveix− d̃sxdiù ixi for all xPDsd̃d. We proceed to show that in fact

ikx− d̃sxdi ù kixi s6.1d

or all k.0 andxPDsd̃d. Indeed, letL denote the set ofk.0 such that the inequality(6.1) is

atisfied for allxPDsd̃d. Then we have seen thatk=1 belongs toL. It turns out thatL is both
pen and closed as a subset ofR+, and our result follows by connectedness.

To show openness, suppose first thatk0PL, and thatkPR+ satisfiesuk−k0u,k0. We then us

6.1), for k0, in estimating the terms in the Neumann expansion forskI− d̃d−1, taken around th
oint k0. Due to the assumptionuk−k0u,k0, the Neumann series is convergent, and does in

efine a bounded inverseRsk, d̃d to kI− d̃. Termwise estimation givesiRsk, d̃diøk−1, and it follows
hat (6.1) is satisfied in a neighborhood ofk0.

Consider next a convergent sequence of pointskn→k0 with knPL andk0PR+. By assump

ion the resolvent operatorsRskn, d̃d=sknI − d̃d−1 exist, and they therefore satisfy the resolv

dentity
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Rskn,d̃d − Rskm,d̃d = skn − kmdRskn,d̃dRskm,d̃d,

s well as the estimateiRskn, d̃diøkn
−1. It follows that the norm-limitR̃=limn Rskn, d̃dPLsMd

xists, and it is trivial to check thatR̃ defines a bounded inverse tok0I − d̃. The estimate(6.1) for

0 is now implied in the limit byiR̃iøk0
−1. HenceL is closed, and the argument is complete

We have shown that the operatord̃ in M is dissipative and closed in thessM ,A8d-topology. It

s, of course, also closed in the norm topology, and it can be shown thatDsd̃d is norm dense.

ollows by semigroup theory23,29 that d̃ is the infinitesimal generator of a strongly continu
emigrouptt s0ø t, ` d of contraction operators in the Banach spaceM.

To show that eachtt is a normal transformation we consider the adjoint semigrouptt8 (cf. Ref.
6) in the norm-dualM8 and show thattt8 leavesA8 invariant. Note thatA8 is being identified with

he predual of theW*-algebraM, so that we may regard it as a subspace ofM8.

Let d̃8 (respectively,F08) denote the transposed operators tod̃ (respectively,F0) with respect to

he M –M8 duality. It follows by operator theory thatd̃8 is the generator oftt8, and thatsI
d̃8d−1=F08. From the construction ofF0 we now deduce thatA8 is invariant underF08. Indeed

ecall thatd8 denotes the transposed transformation tod with respect to theA–A8 duality. By
efinition Dsd8d=ha8PA8 : ∃b8PA8 ,kb8 ,xl=ka8 ,dsxdl for all xPDsddj. But for a8PA8 and x
Dsdd we havekF08sa8d ,x−dsxdl=ka8 ,xl. Hence,F08sa8dPDsd8d,A8 by (5.5).

An application of the Neumann expansion tofI −st /ndd̃8g−1 shows thatA8 is also invarian
nder this operator for alltù0, nPZ+. But tt8 is obtained as a weak*-limit of these opera
n→ ` d, and the desired invariancett8sA8d,A8 follows.

A final application of the Neumann series, now to the operatorsfI −st /ndd̃g−1, shows thattt is

ompletely positive inM for all tù0. IndeedfI −st /ndd̃g−1 may be expanded in a norm-converg

ower series in the completely positive operatorF0=sI − d̃d−1, andtt=limn→`fI −st /ndd̃g−1.

II. THE INEQUALITY d„x *x…Ðd„x…*x +x *d„x…

It was shown in Ref. 19 that ifd is a bounded Hermitian linear map in aC*-algebraA, then
he following two conditions are equivalent:

etdsx * xd ù etdsx * detdsxd, ∀ x P A, t P R+, s7.1d

nd

dsx * xd ù dsx * dx + x * dsxd, ∀ x P A. s7.2d

or unboundedA the situation is not as well understood. It is therefore of interest to stud
onnection between the property(7.2) for d, and the other conditions which are customarily u

n the applications of unbounded dissipative mappings in operator algebras to quantum dy
Theorem VII.1: Let A be a C*-algebra with unit1, and let d be a completely dissipati

ransformation inA with dense domainDsdd. Assume1PDsdd, and ds1d=0.

a) Let xPDsdd and assume that x* xPDsdd. Then

dsx * xd ù dsxd * x + x * dsxd. s7.3d

b) Suppose both x and x* belong toDsdd. Thendsx* d=dsxd*.

The following results are corollaries to the proofs of Theorems IV.2 and VII.1.
Corollary VII.2: Let A be a C*-algebra with unit1, and letd be completely dissipative inA

ith dense domainDsdd, 1PDsdd, ds1d=0.

a) If A,BsHd for some Hilbert spaceH, then there is a sequence of completely positive m

En:A→BsHd, Ens1d=1, such that the following norm convergence holds:
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i)

Ensxd → x for x P A,

and
ii d

nsEnsxd − xd → dsxd for x P Dsdd.

bd If Dsdd is Hermitian, thend is Hermitian as well, i.e., dsx* d=dsxd* for all xPDsdd, and it
is then possible, for each n, to choose En to be 1–1with dense range.

cd Let d andA be as insad, and letp :A→BsKd be a representation ofA in a Hilbert spaceK.
Then there exists a sequence EnPCPsA ,BsKdd such that the following norm convergen
holds:

i8d

Ensxd → psxd for x P A,

and
ii 8d

nsEnsxd − psxdd → psdsxdd for x P Dsdd.

Proofs: We consider again the range subspaceS=RansI −dd=hx−dsxd :xPDsddj. As in the
roof of Theorem IV.2 note thatR=s1−dd−1:S→A is completely contractive, andRs1d=1. If A is
onsidered as a subalgebra ofBsHd, whereH is the Hilbert space of the universal representa
hen there is, by Arveson’s extension theorem(Ref. 2, Theorem 1.2.9) a completely positiv

appingE:A→BsHd such that

Rssd = Essd for all sP S. s7.4d

If for each n=1,2, . . . theoperatord is replaced byn−1d, then the above argument yield
ompletely positive mapEn:A→BsHd such thatEn is an extension of the partially defined o
ratorsI −n−1dd−1.

We claim that the sequencesEnd satisfies conditions(i) and (ii ) which are listed in Corollar
II.2(a). Indeed, forx in denseDsdd we haveEnsx−n−1dsxdd=x, and therefore

Ensxd = n−1Ensdsxdd + x s7.5d

nd

Ensdsxdd = nsEnsxd − xd. s7.6d

assing to the limit in(7.5), we get(i) for the special casexPDsdd, but then also for allx in A

y a 3-« argument since eachEn is contractive. The result(ii ) of Corollary VII.2(a) is now an
mmediate consequence of(7.6).

Returning to the proof of Theorem VII.1, we note that(b) is trivial from (ii ). Indeed, forx and
* in Dsdd we have

dsx * d = lim nsEnsx * d − x * d = lim
n

snsEnsxd − xdd* = dsxd*.

he proof of Theorem VII.1(a) is based on both(i) and (ii ), together with the Kadison–Schwa
nequality for En: SupposexPDsdd and x* xPDsdd. Then dsx* xd=lim nsEnsx* xd−x* xd. For

ach term on the right-hand side we have
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nsEnsx * xd − x * xd ù nsEnsxd * Ensxd − x * xd

= 1
2ssnsEnsxd − xdd * sEnsxd + xd + sEnsxd + xd * nsEnsxd − xdd

→ 1
2sdsxd * s2xd + s2xd * dsxdd = dsxd * x + x * dsxd, s7.7d

here the last convergence→ is based on(i) and (ii ) from Corollary VII.2(a). Sincedsx* xd is
btained in the limit on the left, the desired inequality(7.3) in (a) of Theorem VII.1 follows.

Only part (b) of the corollary remains. The technique from the proof of Theorem IV
pplied here. We go back to the extensionE from (7.4) in the beginning of the present pro
onsider the ordering on all the extensionsF of R, FPLsA ,BsHdd, which is induced by the con
PsA ,BsHdd, and choose by Zorn a particular extensionF, EøF, which is maximal. The argu
ent from the proof of Theorem IV.2 then shows thatF is 1–1, and the range RansFd is dense. I

ollows that the operatord̃= I −F−1:RansFd→A exists and satisfiesd̃sxd=dsxd for all xPDsdd.
If a is a positive real number, then the same construction may be carried out for the

ormationad, instead ofd. Hence we get completely positive unital mapsFa such that the invers

a
−1 exists for eacha, and the domain ofI −Fa

−1 containsDsdd. Moreover d̃a= I −Fa
−1 satisfies

asxd=dsxd for xPDsdd. To get a sequence of mappings satisfying the conditions in Cor
II.2(b), we need only takeEn=Fn−1 in the special casea=n−1.

The proof of part(c) in the corollary is parallel to(a) with the following modification
rveson’s extension theorem is now applied to the mappingp+sI −dd−1:S→BsKd. h

III. THE IMPLEMENTATION PROBLEM

The conclusion(ii 8) in Corollary VII.2(c) is of interest when one wants to implement
ransformationd by a dissipative operator in Hilbert space. In particular, one is interest
mplementing a completely dissipatived-operator by a dissipative Hilbert-space operator. We
stablish a clear two-way connection between the dissipative notion ford, and for the implemen

ng Hilbert-space operator.
Theorem VIII.1: Let A be a C*-algebra with unit1, and let d be a completely dissipati

ransformation inA with dense domainDsdd. Assume1PDsdd andds1d=0. Let v be a state ofA,
nd let spv ,Kv ,Vd be the corresponding GNS representation ofA. Let ṽ be the vector state o
sKvd given by the cyclic vectorV, i.e., ṽsXd=kXV uVl for XPBsKvd, and assume that it
ossible to choose the sequencesEnd,CPsA ,BsKvdd from Corollary VII.2(c) in such a mann

hat

ṽsEnsxdd = vsxd for all x P A. s8.1d

hen there is a dissipative operator Lv in Kv such that

pvsdsxddV = LvspvsxdVd for all x P Dsdd. s8.2d

Proof: Let p=pv, K=Kv, and letsEnd,CPsA ,BsKdd be a sequence which, along with
onditions listed in Corollary VII.2(c), also fulfills the invariance restriction(8.1) of the presen
heorem. For eachn define an operatorCn in K as follows:

CnspsxdVd = EnsxdV, x P A.

hen

iCnpsxdVi2 = iEnsxdVi2

= ṽsEnsxd * Ensxdd ø ṽsEnsx * xdd = vsx * xd = kpsx * xdVuVl = ipsxdVi2,

here the norm is that ofK, and where the Schwarz inequality is applied toEn. It follows thatCn

s well defined, and that it extends by limits(in K) to a contraction operator,CnPBsKd, iCni

1.
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By Corollary VII.2(c) (ii 8), we then have

psdsxddV = lim nsEnsxdV − psxdVd

= lim nsCnspsxdVd − psxdVd = lim nsCn − IdpsxdV for x P Dsdd.

s a consequence, the following quadratic form onK:

psxdV,psydV → limknsCn − IdpsxdVupsydVlK

s well defined. Using the contractive property ofCn, it is easy to show that this quadratic form
iven by a dissipative operatorL; that is to say

limknsCn − IdpsxdVupsydVl = kLpsxdVupsydVl.

ince the limit on the left-hand side is also equal to the inner product

kpsdsxddVupsydVl,

he identity(8.2) of the theorem follows. h

X. A CONDITION FOR COMPLETE DISSIPATIVENESS

In applications18,24,33 it is often possible to determine the derivationd in a particular repre
entation. If moreover the derivation is known to be implemented by a dissipative operato
orresponding Hilbert space, then it follows in special cases thatd itself is completely dissipativ

Theorem IX.1: Let A be a C*-algebra with unit1 and let d be a densely defined transf
ation inA such that1PDsdd and ds1d=0. Let v be a state onA such thatd is implemented b
dissipative Hilbert-space operator L in the representationpv. Assume moreover thatpv is

aithful, and that LV=0 whereV denotes the cyclic vector in the GNS representation. Thend is
ompletely dissipative on its domain.

Proof: Let H=Hv be the Hilbert space of the faithful representationpv and let L be the
perator inH which is assumed to exist, satisfying conditions(i) and (ii ) below:

i) The domain ofL is pvsDsdddV, andL is a dissipative operator in the Hilbert spaceH;
ii ) L implementsd in the representationpv, which is equivalent to the requirement thatL* is

defined onpvsDsdddV, and that on this domain the following operator identiy is valid

psdsadd = Lpsad + psadL * for all a P Dsdd. s9.1d

We show first thatd must necessarily be a dissipative operator. Indeed, by Phillips’s the

Ref. 30, Theorem 1.1.3) an extensionL̃ of L exists which is the infinitesimal generator o
trongly continuous semigroupSstd of contraction operators in the Hilbert spaceH. We note tha
std implements a semigroupsstd of positive mappings inBsHd, given by

sstdsAd = SstdASstd* s9.2d

or all tP f0,` d andAPBsHd. By semigroup theory we note that the generator(z say) of sstd is
issipative, so the following estimate holds:

iA − azsAdi ù iAi s9.3d

or all aP f0,` d andAPDszd.
If dv denotes the operatorpvsad→pvsdsadd with domain pvsDsddd, then we claim(easy

roof) that

dvsAd = zsAd for all A P Dsdvd, s9.4d
nd the known estimate(9.3) above then implies
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ipvsad − apvsdsaddi ù ipvsadi s9.5d

or aPDsdd andaP f0,` d. But pv is faithful (and hence isometric), so(9.5) is in fact equivalen
o the dissipation estimate

ia − adsadi ù iai

or the operatord itself.
For eachn=1,2, . . ., we nowconsider the tensor-product construction of theC*-algebraA

ith the n-by-n complex matricesMn; and we defineAn=A ^ Mn, dn=d ^ idn, the operator ob
ained by application ofd to each entryaij in the matrix representation of elements inAn, vn

v ^ trn where trn denotes the normalized trace onMn, pvn
: the GNS representation ofAn asso

iated tovn.
The problem is to show that each of the operatorsdn is dissipative. We show that in factdn is

mplemented by a dissipative Hilbert-space operator in the representationpvn
. Hence, the first pa

f the proof applies and yields the conclusion of the claim since each representationpvn
is

aithful, being the tensor product of faithful representations.
Let Hn denote the representation Hilbert space ofpvn

. We proceed to find a dissipati
peratorLn in Hn such thatdn is implemented byLn. In view of (9.1) this means that

pvn
sdnsadd = Lnpvn

sad + pvn
sadLn

*

or all aPDsdnd=Dsdnd ^ Mn (algebraic tensor product) ,An as an operator identity o

vn
sDsdnddVn,Hn. HereVn denotes the cyclic vector for the representationpvn

, i.e.,

vnsad = kpvn
sadVnuVnl for all a P An. s9.6d

Our next step is the verification of the following:

Revnsa * dnsadd ø 0 for all a P Dsdnd, s9.7d

LnVn = 0, s9.8d

vnsa * dnsadd = kLnpvn
sadVnupvn

sadVnl for a P Dsdnd. s9.9d

t will follow from (9.7) and (9.9) that an implementing operatorLn satisfying(9.8) must neces
arily be dissipative.

Note that (9.8) is verified for n=1 by assumption. Hencevsa* dsadd=kpsdsaddV upsadVl
kLpsadV+psadL* V upsaVdl. Substitution ofL* V=−LV=0 into this identity yields identit

9.9) for the casen=1.
Let Tn denote the trace vector for the trace representativetn of Mn. Thenpvn

=p ^ tn, and
herefore

kpvn
sa ^ bdV ^ TnuV ^ Tnl = kpsadV ^ tnsbdTnuV ^ Tnl

= kpsadVuVlktnsbdTnuTnl = vsadtrnsbd = v ^ trnsa ^ bd = vnsa ^ bd

or all aPA and bPMn. HenceVn=V ^ Tn. If we can show that a simple tensor operatoLn

mplementsdn in pvn
, then identity(9.9), for arbitraryn, follows from the casen=1 which was

stablished above.
However, it is easy to see that the operatorLn=L ^ In satisfies the requirements which w
isted above. Indeed
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pvn
sdnsa ^ bdd = pvsdsadd ^ tnsbd

= sLpvsad + pvsadL * d ^ tnsbd

= Lnpvsad ^ tnsbd + pvsad ^ tnsbdLn
* = Lnpvn

sa ^ bd + pvn
sa ^ bdLn

*

or all aPA andbPMn. It follows thatLn implementsdn in pvn
.

Only the verification of(9.7) for n.1 then remains. Letaij PA be the matrix entries in som
PAn=A ^ Mn. Then thesi , jdth entrycij in a* dnsad is ok=1

n aki
* dsakjd. Hence

vnsa * dnsadd = sv ^ trndscijd = o
i=1

n

vsciid = o
i

o
k

vsaki
* dsakidd.

ince Revsaki
* dsakiddø0, (9.7) follows. h

Remark IX.2:In the foundations of irreversible statistical thermodynamics,14,20,21,24,28the mos
onclusive results have been obtained for dynamical semigroups which are described ma
ally as strongly continuous, completely positive, contraction semigroupsTt on the Banach spa
sHd of all trace-class operators on a given separable`-dimensional Hilbert spaceH. Lindblad28

ound a formula for the infinitesimal generator

W= U d

dt
TtU

t=0

n the case of norm-continuous semigroups, and Davies15 extended the results to strongly conti
usTt (i.e., unbounded generatorW), satisfying certain side conditions. The condition of releva
o our paper is the invariance assumption of Ref. 15 that

Tt8sCsHdd , CsHd

or all tP f0,` d, whereCsHd denotes the compact operators, andTt8 the conjugate semigroup
sHd. Our Theorem IV.2 does not apply to the algebraA=BsHd sinceBsHd9 is known not to b

njective.11 [Of course,BsHd is injective by Arveson’s theorem.]
However, Theorem IV.2 combined with the above results suggests that aW*-algebra, properl

maller thanBsHd, is suitable for quantum dynamics. On the one hand,BsHd [or TsHd in the
onjugate(dual) formulation] is too big to accommodate the extensions; and, on the other
he requirement thatCsHd contain the domain of the generator also appears to be too restr

. UNBOUNDED *-DERIVATIONS

Let A be a unitalC*-algebra, and letDsdd be a densep-subalgebra containing the identity1.
linear transformationd :Dsdd→A is said to be a(unbounded) *-derivation if dsabd=dsadb

adsbd for a,b[Dsdd, anddsa* d=dsad* for a[Dsdd.
Since, forp-derivations, one is primarily interested in extensions which are alsop-derivations

t is natural to work with a two-sided condition in place of the dissipative notions which
tudied in the preceding sections for more general operators. The following such two-sid
ition was suggested by Sakai,36 and adopted by several authors in subsequent research
oundedp-derivations.

Definition X.1:A p-derivationd :Dsdd→A is said to be well behaved if for all positivea
Dsdd there is a statef on A such thatfsad=iai andfsdsadd=0.

The argument in the preceding section yields the following.
Proposition X.2: Letd :Dsdd→A be a p-derivation. Then the following four conditions a

quivalent:

i) d is well behaved.
ii ) For all positive aPDsdd, and for all statesf on A satisfiying fsad=iai, we have
fsdsadd=0.
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iii ) Each of the operators±d is dissipative.
iv) ia+adsadiù iai for all aPR and all aPDsdd.

Definition X.3:A p-derivationd :Dsdd→A is said to be well behaved in thematricial senseif,
or eachn=1,2, . . ., thep-derivationdn=d ^ idn:Dsdd ^ Mn→A ^ Mn is well behaved. Recall th

n may be regarded as a transformation onn-by-n matrices with entries inA. For such a matri
=saijd, i, j =1, . . . ,n, we havednsad=sdsaijdd.

Theorem X.4: Every well-behaved *-derivation is also well behaved in the matricial s
i.e., completely well behaved).

Lemma X.5: Letd :Dsdd→A be a well-behaved *-derivation, and let aPDsdd be positive
hen there is a statef on A such thatfsad=iai, and fsdsbdd=0 for a dense set of elements
C* sadùDsdd. [Here C* sad denotes the Abelian C*-subalgebra generated by a; and ev

lement in C* sad can be approximated in norm by a sequence of elements b satisfyi
onclusion of the lemma.]

Proofs: The implicationsid⇒ sii d in Proposition X.2 is the key to the proof of Lemma X
ince functional calculus is also applied, we shall assume in fact thatd is closed. By a result o
ishimoto–Sakai36 this is no loss of generality. Leta be a positive element inDsdd. Note that the
elfand transform sets up an isomorphism between theC*-algebrasC* sad andCsspsadd, continu-
us functions on the spectrum ofa. Let l0= l.u.b.spsad. Then the statec→csl0d on Csspsadd
orresponds to a state onC* sad via the Gelfand transform. The latter state is then extendedA
y Krein’s theorem, and the extended state is denoted byf. It has the multiplicative propert
sb1b2d=fsb1dfsb2d for b1, b2PC* sad.

Now let g be a nondecreasing(monotone) continuous real function defined on spsad. Then the
elfand transform ofgsad achieves its maximum at the pointl0 since the transform ofa does. Bu

t is known that if g is also of classC2 (two continuous derivatives) then gsadPDsddùC* sad.
encefsgsadd=igsadi. An application of Proposition X.2,sid⇒ sii d, then yields the conclusion

fsdsgsaddd = 0.

he restriction of an arbitrary monomialln to spsad satisfies the conditions listed forg. Hence, by
tone–Weierstrass there is a dense set of elementsbPC* sadùDsdd satisfying the conclusion

he lemma.[Alternatively, every positive functionf in C4 may be written in the formf =g1−g2,
ith g1 and g2 both having the properties listed above forg, we conclude thatfsdsfsaddd
fsdsg1saddd−fsdsg2saddd=0.]

Now, for each fixed elementaPDsdd+ we choose a statef=fa and a dense *-subalgeb
=Ba of C* sad according to Lemma X.5; i.e., we require thatfasdsbdd=0 for bPBa, as well as

asad=iai. Consider the GNS representation of the algebraB, respectively,A, with representa
ion spaceHf, respectively,Kf, and define

H = o^ Hf, respectively,K = o^ Kf. s10.1d

henH is a closed subspace of the Hilbert spaceK, and we can then define an operatorS with
ense domain fromH to K as follows:

SpfsbdVf = pfsdsbddVf for b [ Bf. s10.2d

or vectorsj1 andj2 in the domain ofS we have

kSj1uj2l + kj1uSj2l = 0. s10.3d

he verification of(10.3) may be based on the direct-sum decomposition(10.1) above. If ji

of
^psbidVf for i =1, 2 andbi PBf, then identity(10.3) reduces to

o kpfsdsb1ddVfupfsb2dVfl + o kpfsb1dVfupfsdsb2ddVfl = 0.
The individual terms work out to be
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fsb2
*dsb1dd + fsdsb2d * b1d = fsdsb2

*b1dd = 0.

ence, the symmetry condition(10.3) is hereby reduced to the conclusion of Lemma X.5 f
iven well-behaved derivationd.

If P denotes the orthogonal projection inK with rangeH, identity (10.3) implies that the
peratorj→PSj may in fact be regarded as a skew symmetric operator in the Hilbert spaH,
ith dense domain there. We shall also denote this operator byS. The verification of the identit

psdsbdd = Spsbd − psbdS

s left to the reader.
Following the idea of Sec. IX, we now consider the *-derivationsdn=d ^ idn (for eachn

1,2, . . .) introduced in Definition X.3. For a given *-algebraC we denote byCn the *-algebra
^ Mn. Correspondingly, *-algebrasDsddn, An, andBn are defined for eachn. Application of the
NS representation to eachfn=f ^ trn yields sequences of Hilbert spaces

Hsnd , Ksnd

s in(10.1) with eachHsnd, respectively,Ksnd, a direct sum of GNS representation spaces as
ted tofn.

The calculations in Sec. IX show that the operatorSn=S^ In satisfies thenth-order version o
10.2), that is,(10.2) holds with the quadrupleS, p, B, d replaced bySn, pn, Bn, dn. Similarly
Snj1

snduj2
sndl+kj1

snduSnj2
sndl=0 for vectorsji

snd, i =1,2, in therespective domains.
Hence Theorem IX.1 in Sec. IX implies that each of the operators ±dn for n=1,2, . . . is

issipative. By Proposition X.2,(iii ) ⇒ (i), it follows thatdn is well behaved, concluding the pro
f Theorem X.4. h

As an application of the theorem we get the following existence result for generator
ions of well-behavedp-derivationsd :Dsdd→A in nuclear C*-algebrasA. Indeed, ifd is such a
-derivation, each of the operators ±d is completely dissipative. Hence, by Theorem IV.2, there

xtensionsd̃± . ±d to infinitesimal generators of dynamical semigroupsat
s±d in the envelopin

*-algebraA9.
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We consider the convex sets of QO’s(quantum operations) and POVM’s(positive
operator valued measures) which are covariant under a general finite-dimensional
unitary representation of a group. We derive necessary and sufficient conditions for
extremality, and give general bounds for ranks of the extremal POVM’s and QO’s.
Results are illustrated on the basis of simple examples. ©2004 American Institute
of Physics.[DOI: 10.1063/1.1777813]

. INTRODUCTION

The need for miniaturization and the new quantum information technology1 has recentl
otivated a search for new quantum devices with maximum control at the quantum level.

he many problems posed by the new technology there is the need of engineering quantum
hich perform specific measurements2–5 or particular state transformations—the so-calledquan-

um operations6–8—which are optimized with respect to some given criterion. In most cases
ptimal quantum measurements/operations arecovariant9 with respect to a group of physic
ransformations. For the case of a quantum measurement, “group-covariant” means that th
ction of the group on the probability space which maps events into events, in such a w
hen the quantum system is transformed according to a group transformation, the proba

he given event becomes the probability of the transformed event. This situation is very
nd occurs in most practical applications.(See Refs. 10 and 11.) For example, the heterody
easurement12,13 is covariant under the group of displacements of the complex field, which m

hat if we displace the state of radiation by an additional complex averaged field, then the
hotocurrent will be displaced by the same complex quantity.

In quantum mechanics the probabilities for a given apparatus for all possible states
cribed by positive operator valued measures(POVM),3 and we will say that the measuremen
ovariant when its POVM is covariant under a unitary group representation.2,10 For quantum
perations(QO), on the other hand, covariance means that the output of a group-transforme
tate is simply the transformed output state—a situation again quite common in practice. T
ovariance means that the apparatus is required to work equally well on a full set of state

s invariant under a group of transformations. For instance, if one wants to engineer an eav
ing apparatus for a BB84 cryptographic scheme14,15that clones equally well all equatorial qub

hen the optimal cloning operation must be covariant under the groupG=Z4 of p /2 rotations o
he Bloch sphere around its polar axis, which is a subgroup of the group of all axial ro

=Us1d.16 Similarly, if one wants to engineer a QO which works equally well on all pure s
hen the operation must be covariant under the fullSUsdd group, whered is the dimension of th
ilbert space of the quantum system.

It is easy to see that all POVM’s covariant under some group representation make a
et, which describes the complete class of possible covariant apparatuses. The same

)
Electronic mail: dariano@unipv.it; http://www.qubit.it
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olds for group-covariant QO’s. Typically in most applications the optimization resorts to
ize a concave function on the convex set of covariant machines(in quantum estimation theor3

ctually such function is generally linear), whence the optimal machine will correspond to
xtremal element of the convex set. For such purpose it is convenient to classify all e
ovariant POVM’s and QO’s, and this is precisely the subject of the present paper.

For finite dimensional Hilbert space, a characterization of all noncovariant extremal QO
iven in Ref. 17, whereas a characterization of all extremal POVM’s can be found in Refs.
9 for discrete finite probability space. On the other hand, no classification of the extrema
r POVM’s is available yet under a covariance constraint, since, as we will see, this con
akes the classification problem much harder. Coincidentally, in many applications the
O/POVM is restricted to be rank-one from the special form of the optimization function(this is

he case, for example, of optimal phase estimation for pure states,2,3,20 or of phase covaria
ptimal cloning of pure states16), and this has lead to a widespread belief that optimali
ynonym of rank-one. However, as we will see in this paper, for sufficiently large dimensi
xtremal QO’s/POVM’s can easily have rank larger than one: this can actually happen fo
ization with mixed input states, such as in the case of optimal phase estimation with

oherent mixed states.21

In this paper we provide a classification for finite dimensions of all extremal POVM’s
O’s that are covariant under a general unitary group representation. We will generally c

ontinuous Lie groups, since then all results will also apply to the case of discrete groups
ith just a little change of notation. We provide necessary and sufficient conditions for ext

ty, along with simple necessary conditions, which allow to “sieve” the extremal QO’s/PO
rom these conditions general bounds for the rank of the extremal QO’s/POVM’s easily fo
orollaries.

The paper is organized as follows. In Sec. II we briefly review the concept of POVM an
f covariant POVM based on the Holevo’s theorem.2 In Sec. III we recall the necessary conce
bout QO’s, including their operator form introduced in Ref. 22, which allows to easily cl

he covariant QO’s as non-negative operators in the commutant of a suitable representatio
roup. Section IV is entirely devoted to some technical lemmas which will be used in the
cation of both POVM’s and QO’s. Finally Secs. V and VI contains the classification theor
xtremal group covariant POVM’s and QO’s, respectively, with some simple explicit examp
articular with application to phase-covariant estimation and phase-covariant optimal clon

I. POSITIVE OPERATOR VALUED MEASURES

In the following we will denote byBsK ,Hd the linear space of bounded operators from
ilbert spaceK to the Hilbert spaceH, and byBsHd8BsH ,Hd the algebra of bounded operat
n H. By T1sHd we will denote the trace-class operators onH, and by T1

+sHd its positive
lements.

A general measurement is described by a probability spaceX equipped with a sigma-algeb
tructuressXd of measurable subsetsBPssXd. The measurement returns a random outcomx
X. In quantum mechanics the probability that the outcome belongs to a subsetBPssXd de-

ends on the staterPT1
+sHd of the system in a way which is distinctive of the measu

pparatus according to the Born rule

psBd = TrfPsBdrg, s1d

hereP is a function onssXd which is positive-operator valued inBsHd, with the normalizatio
ondition

PsXd = IH. s2d

ositivity of P is needed for positivity of probabilities for every stater, whereas Eq.(2) guaran
ees normalization of probabilities. In synthesis,P is a positive operator valued measure(POVM)

n the probability spaceX. In a sense the POVMP represents our knowledge of the measuring
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pparatus from which we can infer information on the stater from probabilities. The linearity o
he Born rule(1) in both argumentsr andP is consistent with the intrinsically statistical nature
he measurement, in which our partial knowledge of both the system and the apparatus re
onvex structures for both states and POVM’s. This means that not only states, but also P
an be “mixed,” namely there are POVM’s that give probability distributions that are equiva
hoose randomly among different apparatuses.

Group covariant POVM’s: Let us consider now the general scenario in which a grou
hysical transformationsG can act on the probability spaceX. We will write gx for the action o

he group elementgPG on the pointxPX, andgB for the action ofg on a whole subsetB#X.
e will always consider the case in whichG acts transitively onX, namely for any two points o
there is always a group element which connects them. A consequence of transitivity isX

an be always regarded as the homogeneous factor spaceX=G /Gx, Gx denoting the stabilit
roup of any pointxPX.

A POVM P on H for the probability spaceX is covariant under the unitary representa
→Ug of the groupG when for every setBPssXd one has

Ug
†PsBdUg = Psg−1Bd. s3d

he following general theorem by Holevo2 classifies all group-covariant POVM’s.
Theorem 1 (Holevo):For square-integrable representations, a POVM P on the probab

paceX is covariant with respect to the unitary representation g→Ug on H of the groupG of
ransformations ofX if and only if it admits a density of the form

dPx = Ugx

† JUgx
dx, gx P G:gxx0 = x, s4d

heredx is an invariant measure onX, with Jù0 in the commutantGx0
8 of the isotropy groupGx0

f x0, satisfying the constraint

E
G

dg Ug
†JUg = IH, s5d

ith dg invariant measure onG.
In the case in which the POVM is designed to estimate the group element itselfgPG

orresponding to an unknown transformationUg, then the stability group is the identity, when
=G and the POVMP is covariant if and only if it admits a density of the form

dPg = Ug
†JUg dg, g P G s6d

or any Jù0 satisfying the constraint(5). The possibleseedoperatorsJù0 satisfying the
onstraint(5) form a convex set. In Sec. V we will classify all extremal elementsJ of such
onvex set.

II. QUANTUM OPERATIONS

The mathematical structure that describes the most general state change in q
echanics—such as the evolution of an open system or the state change due to a measur

hequantum operation(QO) of Kraus.1,6 Such abstract theoretical evolution has a precise phy
ounterpart in its implementations as a unitary interaction between the system undergoing
nd a part of the apparatus—the so-calledancilla—which after the interaction is read by mean
conventional quantum measurement. We can consider generally different input and out

ert spacesH andK, respectively, allowing the treatment of very general quantum machines
f the kind of quantum optimal cloners.22,23For example, in the cloning from one ton copies on
as input spaceH and output spaceK=H^n, or its symmetric versionK=sH^nd+ for symmetric
loning. Within the present paper we will only consider finite-dimensional Hilbert spaces.

eisenberg picture the QO evolves observables, and will be denoted by a mapM from BsKd to
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sHd. In the Schrödinger picture the QO evolves states, and it is given by the dua
t :T1sHd→T1sKd, the dualism being determined by the equivalence of the two pictures in

f the trace inner product, namely TrfMsXdrg=TrfMtsrdXg for all rPT1sHd and for all X
BsKd. The mapsM andMt are linearcompletely positive(CP), namely they preserve posit

ty of the input operator for any trivial extensionM ^ I on a larger Hilbert space that includes
ossible additional quantum system,I denoting the identity map on the additional system. In
chrödinger picture the CP property physically means that the mapMt from T1sHd to T1sKd
reserves positivity of any input state of the quantum system(with Hilbert spaceH) entangled
ith any possible additional quantum system. The mapMt of a QO must also be trace-n

ncreasing, with the trace TrfMtsrdgø1 representing the probability that the transformation
urs, and the input and output states being connected as follows:

r ° r8 =
Mtsrd

TrfMtsrdg
. s7d

y denoting with IH the identity operator on the Hilbert spaceH, we see that the trace-n
ncreasing condition along with positivity of the map are equivalent to the constraint

MsIKd = K P BsHd, 0 ø K ø IH. s8d

or finite-dimensional Hilbert spaces it is convenient to represent the mapsM from BsKd to
sHd as operatorsRM on K ^ H using the following one-to-one correspondence:

RM = Mt
^ IsuIlkI ud, Mtsrd = TrHfsIK ^ rtdRMg, s9d

here uIl=on unl ^ unl is a fixed vector inH ^ H, hunl ^ umlj denotes an orthonormal basis
^ H, and the transpositiont for operators is defined with respect to the orthonormal basisunlkmu

or BsHd taken as real. One can easily check the correspondence(9), and injectivity follows from
inearity. In addition, the operatorRM is non-negative if and only if the mapM is CP, and th
onstraint(8) in terms of the operatorK rewrites as follows:

TrKfRMg = K, 0 ø K ø IH. s10d

he positive operatorsRM satisfying the constraint(10) make a convex set, which is the opera
ounterpart of the convex set of the corresponding QO’sM.

Group covariant CP-maps: We call the mapM from BsKd to BsHd G-covariant, when

MsVg
†XVgd = Ug

†MsXdUg, ∀ g P G, s11d

Ugj and hVgj denoting unitary representations ofG over the input and output spacesH andK,
espectively. The Schrödinger picture version of identity(11) is

MtsUgrUg
†d = VgMtsrdVg

†, ∀ g P G, s12d

hereMt goes fromT1sHd to T1sKd.
The operator formRM for mapsM simplifies the classification of QO’s that are covar

nder a groupG, resorting to the Wedderburn’s decomposition of the commutant of the rep
ation. It is easy to show that the mapM is G-covariant[i.e., it satisfies Eq.(11)] if and only if
ts corresponding operatorRM is invariant under the representationVg ^ Ug

* .22 In fact, from Eq.(9)
sing invariance of partial trace under cyclic permutation of operators acting only on the
pace one has

0 =Mtsrd − Vg
†MtsUgrUg

†dVg=TrHhsIK ^ rtdfRM − sVg
†

^ Ug
tdRMsVg ^ Ug

*dgj, s13d
nd, since Eq.(9) is a one-to-one correspondence between maps and operators, one concludes that
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fRM,Vg ^ Ug
*g = 0, ∀ g P G. s14d

herefore, the problem of classifying covariant CP-maps resorts to that of classifying p
lements of the commutant of the representationVg ^ Ug

* on K ^ H. By labeling withk the generi
quivalence class of the representation, with multiplicitymk, the Wedderburn’s decomposition
he representation space is written as follows:24

K ^ H = %
k

sHk ^ Cmkd. s15d

hen, sinceRM must be a positive operator in the commutant of the representation it mus
he general form

RM = %ksIHk
^ wk

†wkd = W†W, W8 %ksIHk
^ wkd, s16d

herewk is any operator onCmk, i.e., amk3mk matrix. Therefore, the classification of covari
race-not-increasing QO’s withMsIKd=Kø IH is equivalent to classify the operatorsRM of the
orm (16) with the constraint

o
k

TrKfsIHk
^ wk

†wkdg = K ø IH. s17d

he constraint(17) is generally quite involved, due to the subspace mismatch between the
roductK ^ H and the Wedderburn’s decomposition: its simplification will be the main ta
ec. VI.

V. TECHNICAL LEMMAS

This section will be entirely devoted to technical lemmas, which will be used for the c
cation of both extremal covariant POVM’s and QO’s. The lemmas connect conditions
anishing of partial traces with linear spannings.

In the following we will make use of the following simple fact for any linear spaceL and a
ubspaceS#L: if the only vector ofL that is orthogonal to the whole subspaceS is the nul
ector, then one hasS=L. Moreover, since orthogonality to a sets of vector implies orthogonalit
o its linear spanSpanssd, then the previous assertion holds also for subsetss#L (not necessaril
ubspace), namely if the only vector orthogonal to the subsets is the null vector, than one h
;Spanssd. From now we will also make use of the following natural notation

XsBsAd ^ IBdY† 8 SpanhXsA ^ IBdY†,A P BsAdj, s18d

or X,Y any operators with domainA ^ B.
Lemma 1: Let BPBsB2 ^ B1,Ad, A and B1,2 denoting arbitrary finite-dimensional Hilbe

paces. Then, the injectivity of the linear CP mapWsAd=TrB1
fB†ABg on BsAd is equivalent to th

panning condition

BsAd = BsBsB2d ^ IB1
dB†. s19d

Proof: The injectivity of the mapWsAd=TrB1
fB†ABg on BsAd means that

∀A P BsAd, TrB1
fB†ABg = 0 ⇒ A = 0. s20d

he condition TrB1
fB†ABg=0 is equivalent to TrfC TrB1

fB†ABgg=0 ∀CPBsB2d. Therefore, sinc
ne has

TrfC TrB1
fB†ABgg = TrfsC ^ IB1

dB†ABg = TrfBsC ^ IB1
dB†Ag s21d
ondition (20) is then equivalent to
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∀A P BsAd, TrfBsBsB2d ^ IB1
dB†Ag = 0 ⇒ A = 0, s22d

here we used notation(18). Equation(22) says that the only operatorAPBsAd orthogonal to th
perator spaceBsBsB2d ^ IB1

dB†#BsAd is the null operator, which means thatBsBsB2d ^ IB1
dB† is

ctually the full linear spaceBsAd, namely condition(22) is equivalent to condition(19). j

The above theorem leads immediately to the following corollaries.
Corollary 1: A necessary condition for injectivity of the mapWsAd=TrB1

fB†ABg on BsAd is

dimsAd ø minhdimsB2d,ranksBdj. s23d

Corollary 2: The injectivity of the mapWsAd=TrB1
fB†ABg on BsAd is equivalent to th

xistence of a linear injective mapV from BsAd to BsBd such that

∀A P BsAd, BsVsAd ^ IB1
dB† = A. s24d

he relation between the mapsW and V is given by

WsAd = TrB1
fB†BsVsAd ^ IB1

dB†Bg. s25d

Proof: The spanning condition(19)—equivalent to the injectivity of the mapWsAd
TrB1

fB†ABg on BsAd—guarantees that for eachAPBsAd there exists an element, sayVA, of
sBd such thatBsVA ^ IB1

dB†=A. Consider now an orthonormal basisAj for BsAd, and denote b

j any element ofBsBd such thatBsVj ^ IB1
dB†=Aj. It is clear that thehVjj can be chosen

inearly independent. Now, for every elementAPBsAd defineVsAd=o j TrfAj
†AgVj. This map is

learly linear and injective. The mapVsAd corresponds to a nonorthogonal change of basis(from
Ajj to hVjj) which compensates the nonorthogonal change of basisBsVj ^ IB1

dB†=Aj. Equation
25) follows by substituting Eq.(24) into the mapW. j

We have also the additional lemma.
Lemma 2: As in Lemma1, the injectivity of the mapWsAd=TrB1

fB†ABg on BsAd is equivalen
o the linear independence of the set of operatorshWi

†Wjj, where Wi PBsB1,B2d are defined from
he singular value decomposition B=oi uVilkWiu through the identityuWil=sWi ^ IB1

duIl, uIl
B1

^2 denoting the fixed vectoruIl=ol ull ^ ull, for hull ^ umlj arbitrary orthonormal basis ofB1
^2.

Proof: First, notice that the identityuXl=sX^ IB1
duIl sets a bijection between vectorsuXl

B2 ^ B1 and operatorsXPBsB1,B2d. Then, using the singular value decompositionB
oi uVilkWiu, with uVilPA and uWilPB2 ^ B1, the partial trace in Eq.(20) becomes

TrB1
fB†ABg = o

i j

kViuAuVjlTrB1
fuWilkWjug = o

i j

kViuAuVjlWi
tWj

* , s26d

here t denotes the transposition for whichsX^ IB1
duIl=sIB1

^ XtduIl, and * denotes comple
onjugation, i.e.,X†=sXtd* . By taking the complex conjugate of the last equation and introdu
he matrixAij =̇kViuAuVjl* PMNsCd whereN=ranksBd (N2 is the cardinality of the sethWi

†Wjj), the
tatement(20) is equivalent to

hAijj P MNsCd, o
i j

AijWi
†Wj = 0 ⇒ Aij = 0, ∀ i, j , s27d

amely the operatorshWi
†Wjj are linearly independent. j

In the following we will need the following generalization of Lemma 1.
Lemma 3: Let BPBs%ksB2

skd
^ B1

skdd ,Ad, and denote by Pk the orthogonal projector ove

2
skd

^ B1
skd, A and B1,2

skd being arbitrary finite-dimensional Hilbert spaces.
The following implication,

A P BsAd, TrB2
skdfPkB

†ABPkg = 0 ∀ k ⇒ A = 0, s28d
s equivalent to
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BsAd = SpanhBf%ksBsB2
skdd ^ IB1

skddgB†j, s29d

nd necessary conditions are

dimsAd2 ø o
k

dimsB2
skdd2, s30d

dimsAd ø ranksBd. s31d

Proof: The condition TrB
1
skdfPkB

†ABPkg=0 ∀k is equivalent to say that for anyCkPBsB2
skdd

ne has TrfPkCkTrB
1
skdfPkB

†ABPkgg=0 ∀k. Since one has

TrfCkTrB1
skdfPkB

†ABPkgg = TrfsCk ^ IB1
skddPkB

†ABPkg=TrfBPksCk ^ IB1
skddPkB

†Ag, s32d

nd, therefore, condition(28) is equivalent to

A P BsAd, TrfBPksBsB2
skdd ^ IB1

skddPkB
†Ag = 0 ∀ k ⇒ A = 0. s33d

he last condition says that the only operator inBsAd which is orthogonal to the s
PksBsB2

skdd ^ IB
1
skddPkB

† ∀k is the null operator, or, in other words that the set spans the
perator spaceBsAd, namely Eq.(29). The necessary conditions then follow trivially. j

We are now ready to classify the extremal group covariant POVM’s and QO’s in the foll
ections. In order to classify extremal elements of convex sets, we will use the method of
ations. We will call a non-null operatorB a perturbationfor an operatorA in a convex set if bot
± tB are still in the convex set for some(sufficiently small) t.0. Then, clearlyA is not extrema

n the convex set if and only if it has a perturbation.

. EXTREMAL COVARIANT POVM’S

We have seen that the covariant POVM for the estimation of a group elementg of an unknown
nitary transformationUg is of the general form

dPg = dg Ug
†JUg

†, s34d

ith probability spaceX=G, and with

E
G

dg Ug
†JUg = IH. s35d

he Wedderburn’s decomposition(15) of the representation space here rewrites as follows:

H = %
k

sHk ^ Cmkd, s36d

here we remind thatk labels the equivalence class of irreducible components, andmk denotes it
ultiplicity. The integral in the normalization condition(35) belongs to the commutant of t

epresentation, whence it can be rewritten as follows:

E
G

dg Ug
†JUg = %

k
dHk

−1fIHk
^ TrHk

sPkJPkdg = IH, s37d

Pk denoting the orthogonal projector on the subspaceHk ^ Cmk. Equation(37) follows from the
imple fact that for an irreducible representation on the space sayL, one haseG dg Ug

†ZUg

dL
−1 TrfZgIL for measure dg normalized to unit onG. Equation(37) allows to split the constrai
35) into the following set of constraints:
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TrHk
sPkJPkd = dHk

Imk
, ∀ k, s38d

here byImk
we denote the identity matrix overCmk. We then conclude that the classification

xtremalG-covariant POVM’s is equivalent to find the extremalJ within the convex set o
peratorsJù0 satisfying the constraints(38). For such purpose we have the following theor

Theorem 2: LetJ be an element of the convex set of positive operators onH satisfying the
onstraints

TrHk
sPkJPkd = dHk

Imk
, ∀ k P S, s39d

hereS denotes the set of equivalence classes of irreducible components in the represe
rite J in the formJ=X†AX with Aù0, choosingRngsXd=SuppsAd8KersAd'. Then

1) Q is a perturbation ofJ if and only if Q is Hermitian, withTrHk
sPkQPkd=0 ∀kPS, and

Q=X†BX for some nonzero Hermitian B withSuppsBd#SuppsAd.
2) For the specific choice of the form of Aas A= %kAk, with AkPBsHk ^ Cmkd, one has B

= %kBk, BkPBsHk ^ Cmkd and SuppsBkd#SuppsAkd, ∀kPS;
3) J=X†X is extremal if and only if

BsRngsXdd = SpanhXf%ksIHskd ^ BsCmkddgX†j. s40d

Proof:

1) Let Q Hermitian, with TrHk
sPkQPkd=0, and Q=X†BX for some nonzero HermitianB

PBsHd and with SuppsBd#SuppsAd. Then for ranksBd.0 Q is necessarily nonzero, a
sinceAù0, both constraintsA± tBù0 and TrHk

sPksJ± tQdPkd=dHk
Imk

∀k are satisfied fo
somet.0, whenceQ is a perturbation forJ. Conversely, supposeQPBsHd is a perturba
tion for J. Since we must haveJ± tQù0 andTrHk

fPksJ± tQdPkg=dHk
Imk

for somet.0,
then Q is Hermitian with TrHk

sPkQPkd=0 ∀kPS. Moreover, if we writeJ in the form J

=X†AX with nonnegativeAPBsHd, andRngsXd=SuppsAd, then alsoQ can be written in th
same form Q=X†BX for some nonzero HermitianBPBsHd and TrHk

fPksJ± tQdPkg
=dHk

Imk
. In fact, if X is not invertible, it can be always completed to an invertible ope

Z=X+Y by adding an operatorY with RngsYd=KersAd, and one can equivalently writeJ
=Z†AZ. Now we can write also the perturbation operator in the formQ=Z†BZ. However
since A± tBù0 for some t, then necessarilyB must haveSuppsBd#SuppsAd=RngsXd,
whenceZ†BZ=X†BX.

2) First it is obvious that a choice of the formA= %kAk, with AkPBsHk ^ Cmkd is always pos
sible. Then, in order to haveA± tBù0 for somet.0, one must haveB= %kBk, eachBk
Hermitian, withSuppsBkd#SuppsAkd, ∀kPS.

3) Since SuppsAd#RngsXd and Aù0, we can always mergeÎA into X by substitutingX
→ÎAX. Then, sinceJ is not extremal iff it has a perturbation, by part(1) one sees thatJ is
extremal iff for HermitianBPBsHd with SuppsBd#RngsXd, one has

TrHk
sPkX

†BXPkd = 0 ∀ k P S ⇒ B = 0, s41d

whence via Cartesian decomposition ofB we have the equivalent statement

B P BsRngsXdd, TrHk
sPkX

†BXPkd = 0 ∀ k P S ⇒ B = 0. s42d

Then, by Lemma 3 this is equivalent to conditions40d. j

Corollary 3: A necessary condition for extremality of the seedJ of a group covariant repre
entation as in Theorem 2 is

ranksJd2 ø o mk
2. s43d
k

                                                                                                            



ù e
l e
s
=
t

P

N
H ,
a
S
t
S
t e
s
t of
t

-
n ber
o e
c et
h

al
a

(

w to the
s

A

H
= nec-
e

a al
P

3628 J. Math. Phys., Vol. 45, No. 9, September 2004 Giacomo Mauro D’Ariano

                        
Proof: Equation(43) is a trivial consequence of the necessary condition(40). j

Corollary 4: Every rank-one POVM is extremal.
Proof: For ranksXd=1 the iff condition(40) is trivially satisfied. j

Theorem 3: For S containing only a single equivalence class, say h, with multiplicity mh

1, the extremality of a covariant POVM on the Hilbert spaceH=Hh ^ Cmh is equivalent to th
inear independence of the set of operatorshWi

†Wjj, where Wi PBsCmh,Hhd are defined from th
pectral decompositionJ=oi uWilkWiu of the seedJ of the POVM through the identityuWil
sWi ^ Imh

duIl, uIlP sCmhd^2 denoting the fixed vectoruil=ol ull ^ ull, for hull ^ umlj arbitrary or-
honormal basis ofsCmhd^2. Extremal POVM’s with any rankranksJdømh are admissible.

Proof: ForS containing a single equivalence classh with multiplicity mhù1 the seedJ of the
OVM must satisfy the single constraint

TrHh
sJd = dHh

Imh
. s44d

ow, write J in the formJ=X†AX with XPBsHh ^ Cmh,Ad, andRngsXd=SuppsAd, A being a
ilbert space such thatSuppsAd#A#Hh ^ Cmh, and which can be chosen asA.RngsXd. Then
ccording to Theorem 2Q is a perturbation forJ iff it is of the form Q=X†BX, with B Hermitian,
uppsBd#SuppsAd, and TrHh

sX†BXd=0. This means that the extremality ofJ is equivalent to
he injectivity of the mapWsBd=TrHh

sX†BXd over the set of Hermitian operatorsB with
uppsBd#SuppsAd, which is equivalent to injectivity of the same map onBsRngsXdd. We are

hus in the situation of Lemma 2, withA=RngsXd, B1=Cmh andB2=Hh. Therefore, by writing th
ingular value decomposition ofX=oi uVilkWiu, with SpanhuuVilj=RngsXd=SuppsAd the injec-
ivity of the mapWsBd=TrHh

fX†BXg on BsRngsXdd is equivalent to the linear independence
he set of operatorshWi

†Wjj, whereWi PBsCmh,Hhd are defined through the identityuWil=sWi

^ Imh
duI il, uIlP sCmhd^2 denoting the fixed vectoruIl=ol ull ^ ull, with hull ^ umlj arbitrary ortho

ormal basis ofsCmhd^2. Now, the maximum rank of the POVM is given by the maximum num
f operatorsWi such that the set of operatorshWi

†Wjj in BsCmhd is linearly independent. Since w
an have at mostmh

2 linearly independent operators inBsCmhd, the maximum cardinality of the s
Wij is mh. j

Corollary 5: A POVM which is covariant under an irreducible representation is extrem: If
nd only if iff it is rank one.

Proof: For S containing a single equivalence classh with multiplicity mh=1 the iff condition
40) rewrites

BsRngsXdd = SpanhXsIHshd ^ C1dX†j = SpanhXX†j, s45d

hich is satisfied iff ranksXd=1. As an alternative proof, the present corollary corresponds
ituation of Theorem 3 for multiplicitymh=1. j

. Example

Consider a POVM onH with dimsHd=d covariant underG=Us1d, with

Uf = expsifNd, N = o
n=0

d−1

nunlknu. s46d

ere we haved one-dimensional irreducible representations with charactersxksfd=expsikfd, k
0, . . . ,d−1, namely they are all inequivalent, whence with unit multiplicity. Therefore, the
ssary condition(43) bounds the rank of the POVM as follows:

ranksJd2 ø dimsHd, s47d

nd in order to have ranksJd=2 one must have dimsHdù4. According to Theorem 2 the extrem
†
OVM’s have seed of the formJ=X X satisfying the identity
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BsRngsXdd = SpanhuXklkXku:0 ø k ø dimsHdj, s48d

hereuXkl=Xukl, huklj denoting any orthonormal basis forH. Notice that in the present exam
he operatorJ corresponds to a so-calledcorrelation matrix, namely a positive matrix with a
nes on the diagonal. This follows from the constraint(38), which in our case is simplykkuJukl
1,∀k. Therefore, the present classification of extremal POVM’s coincides with the classifi
f extremal correlation matrices given in Ref. 25.

. Example

Consider a POVM forn qubits on the Hilbert spaceH=sC2d^n covariant under the tens
epresentationUf

^n of G=Us1d, with

Uf = expsifu1lk1ud, s49d

here hu0l , u1lj is a orthonormal basis forC2. Here we haven+1 one-dimensional irreducib
epresentations with charactersxksfd=expsikfd, k=0, . . . ,n, and with multiplicity mk= s n

k
d. An

rthonormal basis of each subspaceCmk of H= %kCmk is given by

s50d

herePj
sn,kd denotes thej th permutation ofk qubits in the stateu1l in the tensor product ofn qubits

n total, with all other qubits in the stateu0l. In the present example, the iff condition for ex
ality (40) requires thatJ=X†X satisfies the identity

BsRngsXdd = SpanhXuilkkk j uX†,k P S,i, j = 1, . . . ,mkj, s51d

here nowhuilkj denotes any orthonormal basis forCmk. The necessary condition(43) bounds th
ank of the POVM as follows:

ranksJd2 ø o
k=0

n Sn

k
D2

= S2n

n
D . s52d

ere, in order to have ranksJdù2 one needsnù2 qubits. Forn=2 according to the previou
xample, one necessarily must have at least two inequivalent classes, since each of the ir
omponents has less than four dimensions(the same is true also forn=3). The previous examp
s also recovered by considering the special case in whichRngsXd# ssC2d^nd+, i.e., containing
nly the subrepresentation ofUf

^n on the symmetric subspacessC2d^nd+, with multiplicity 1.

. Example

Consider a POVM onH^2 which is covariant under the group representationUg ^ IH, where

g is an irreducible representation ofG on H. Here, we trivially have a single equivalence cla
ayh, (corresponding to the irreducible representationUg) with multiplicity mh=dimsHd, i.e., the
ilbert spaceH coincides with the multiplicity spaceH.Cmh. This is exactly the case conside

n Theorem 3. Therefore, the extremality of the POVM is equivalent to the linear independe
he set of operatorshWi

†Wjj, whereWi PBsHd are defined from the spectral decompositionJ
oi uWilkWiu of the seedJ of the POVM through the identityuWil=sWi ^ IHduIl, as in Theorem 3
herefore, we can have extremal POVM’s with any ranksJdødimsHd. Notice that there cann
e more than a single maximally entangled vectoruWil in the decomposition ofJ, since, other
ise, at least two operatorsWi would be proportional to unitary operators, and then the sethWi

†Wjj
ould be necessarily linearly dependent(two products would be both proportional to the identi).
he rank-one case with a single maximally entangled projector corresponds to a so-calBell

OVM.
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I. EXTREMAL COVARIANT QUANTUM OPERATIONS

In the following we will denote shortly byAG the operator algebra generated by the g
epresentationVg ^ Ug

* , by AG8 its commutant, and finally byHG8 the Hermitian operators in th
ommutant. The following theorem classifies all extremalG-covariant mapsM in the convex se
iven by Eq.(17).

Theorem 4: Let R be an element of the convex set of positive operators in the commutAG8
f the operator algebraAG generated by the group representation Vg ^ Ug

* on K ^ H, i.e., of the
orm

R= %ksIHk
^ wk

†wkd = W†W, W8 %ksIHk
^ wkd, s53d

atisfying the constraint

o
k

TrKfsIHk
^ wk

†wkdg = K ø IH, s54d

here

H ^ K = %
k

sHk ^ Cmkd s55d

s the Wedderburn’s decomposition of the representation space, k labeling the equivalence class
epresentations, with multiplicity mk. Denote by Pk the orthogonal projector over the spaceHk

^ Cmk of the equivalence class. Write R in the form R=X†QX with Q,XPAG8 and RngsXd
SuppsQd. Then:

1) S is a perturbation of R if and only if SPHG8 , with TrKfSg=0, and S=X†OX for some nonze
OPHG8 with SuppsOd#RngsXd. Specifically, writing Q= %ksIHk

^ Qkd and X= %ksIHk
^ Xkd,

one has O= %ksIHk
^ Okd with SuppsOkd#RngsXkd ∀k.

2) One can always write R in the form R=X†X, with XPAG8 of the form X= %ksIHk
^ Xkd. Denote

by S the set of equivalence classes k for which XkÞ0. Then, a necessary and suffici
condition for extremality of R=X†X with TrKfRg=K is the injectivity of the mapTsOd
=TrKfX†OXg on AG8 ùBsRngsXdd, namely

O P AG8 ù BsRngsXdd, TrKfX†OXg = 0 ⇒ O = 0, s56d

which is equivalent to

%kPSBsRngsXkdd = %kPSXkTrHk
fPksIK ^ BsHddPkgXk

†. s57d

Proof:

1) Let SPHG8 , with TrKfSg=0, and S=X†OX for some nonzero HermitianO with
SuppsOd#SuppsQd. Then for ranksOd.0 SPHG8 is necessarily nonzero, and sinceHG8
PQù0, all constraints:Q± tOPHG8 , Q± tOù0, and TrKfR± tSg=K are satisfied for som
t.0, whenceS is a perturbation forR. Conversely, suppose thatSPK ^ H is a perturbatio
for R. Since we must haveHG8 {R± tSù0 and TrKfR± tSg=K for somet.0, thenSPHG8
with TrKfSg=0. Moreover, if we writeR in the formR=X†QX with RngsXd=SuppsQd, then
alsoS can be written in the formS=X†OX for some nonzero HermitianOPHG8 . In fact, if X
is not invertible, it can be always completed to an invertible operatorZ=X+Y by adding an
operator YPAG8 of the form Y= %ksIHk

^ Ykd with RngsYkd=KersQkd [where Q
= %ksIHk

^ Qkd], and one can equivalently writeR=Z†QZ with QPHG8 andZPAG8 . Now we
can write also the perturbation operator in the formS=Z†OZ. However, since for somet the
operator Q± tOù0 must belong to the commutantAG8 , then necessarilyOPHG8 and
SuppsOd#SuppsQd=RngsXd, with Z†OZ=X†OX. Specifically, writing Q

= %ksIHk

^ Qkd, one hasO= %ksIHk
^ Okd with SuppsOkd#SuppsQkd=RngsXkd∀k.
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2) As in part (1) we can always takeQ as the identity, and redefineX→ÎQX, sinceQù0,
keepingX of the formX= %ksIHk

^ Xkd, since both operators in the productÎQX belong to the
algebraAG8 . From part(1) we then see thatR=X†X with XPAG8 is extremal if and only if

O P HG8 ù BsRngsXdd, TrKfX†OXg = 0 ⇒ O = 0, s58d

and via Cartesian decomposition this is equivalent to

O P AG8 ù BsRngsXdd, TrKfX†OXg = 0 ⇒ O = 0. s59d

SinceOPAG8 ùBsRngsXdd can be decomposed asO= %ksIHk
^ Okd with OkPBsRngsXkdd

∀kPS, then the statements59d is equivalent to

∀k P S Ok P BsRngsXkdd,

o
kPS

TrKfsIHk
^ Xkd†sIHk

^ OkdsIHk
^ Xkdg = 0 ⇒ Ok = 0 ∀ k P S, s60d

or else

∀k P S Ok P BsRngsXkdd,

TrKf%kPSsIHk
^ Xkd†sIHk

^ OkdsIHk
^ Xkdg = 0 ⇒ Ok = 0 ∀ k P S, s61d

The vanishing of the partial trace can be written as the vanishing of the trace Trf%kPSsIHk
^ Xkd†sIHk

^ OkdsIHk
^ XkdsIK ^ Cdg for any CPBsHd, namely the vanishing o

Trh%kPSOkXk TrHk
fPksIK ^ CdPkgXk

†j for any CPBsHd, and upon definingS= %kPSOk, the
statements61d rewrites

SP %kPSBsRngsXkdd, TrhS%kPSXk TrHk
fPksIK ^ BsHddPkgXk

†j = 0 ⇒ S= 0, s62d

namely, since the only operator in the linear space%kPSBsRngsXkdd orthogonal to th
subspace%kPSXk TrHk

fPksIK ^ BsHddPkgXk
† is the null operator, one has

%kPSBsRngsXkdd = %kPSXk TrHk
fPksIK ^ BsHddPkgXk

†. s63d

j

Corollary 6: As in Theorem 4, a necessary condition for extremality is

o
kPS

ranksXkd2 ø dimsHd2. s64d

Corollary 7: Any rank-one covariant QO is extremal.
Proof: For ranksXd=1 the setS must contain only one equivalence class, and the iff cond

57) of Theorem 4 is then trivially satisfied. j

Corollary 8: For an irreducible representation any extremal covariant QO must be rank.
Corollary 9 (Choi): In the noncovariant case, a QOM from BsKd to BsHd is extremal iff i

an be written in the formMsOd=oi Wi
†OWi, with Wi PBsH ,Kd and the set of operatorshWi

†Wjj
inearly independent.

Proof: The noncovariant case corresponds to the trivial covariance groupG= I , i.e., the grou
ontaining only the identity element. This corresponds to have just a single equivalence cla
ultiplicity equal to dimsH ^ Kd. Then, as in the proof of point(2) of Theorem 4 the extremali
f R=X†XPBsH ^ Kd is equivalent to the injectivity of the mapWsAd=TrKfX†AXg on
sRngsXdd. According to Lemma 2, using the singular value decompositionX=oi uVilkWiu, with

Vil orthonormal basis forRngsXd and uWilPK ^ H, one hasMsOd=oi Wi
†OWi for OPBsKd,

t *
nd WsAd=oi j kViuAuVjlWi Wj for APBsRngsXdd, and injectivity of W is equivalent to linear
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ndependence of the set of operatorshWi
†Wjj. j

Corollary 9 is the same as Choi theorem.17 Notice that differently from the case of QO’s,
OVM’s the noncovariant case cannot be recovered as a special case of the covariant c

ion, since the group itself(or, more generally, the homogeneous factor space) coincides with th
robability spaceX of the POVM, whence trivializingG also trivializesX.

. Example

Consider the phase-covariant cloning16,22 for equatorial qubits from 1 to 2 copies. This c

esponds toG=Us1d, with representationsUf=eifu1lk1u0 andVf=eifos=1
2 u1lk1us wheres=0 denote

he input qubit ands=1,2 theoutput ones. HereH=C2 andK=H^2. We first need to decompo
he representationVf ^ Uf

* . This is made of one-dimensional representations, with charactereikf,
ith k=−1,0,1,2 andmultiplicities m−1=1, m0=3, m1=3, andm2=1. The necessary conditi

64) in the present case becomesokPS ranksXkd2ødimsHd2=4, which means that we can ha
ither a single equivalence class with ranksXkdø2, or two equivalence classes with ranksXkd=1
ach. Orthonormal bases for the supporting spacesHk ^ Cmk;Cmk of the kth equivalence class

rreducible representations are reported in Table I as subset of an orthonormal basis for th
roductK ^ H.

The operatorsR=okPS Rk=okPSol ucl
skdlkcl

skdu satisfying the necessary conditions and
race-preserving condition are reported in Table II. It is easy to check that the case of rasXkd
2, which would be possible only fork=0 or k=1, does not satisfy the iff condition(56).
herefore it is possible to have only rank-one operatorsXk.

As a specific optimization problem, let us consider the maximization of the fidelity ave
ver the two outputs

TABLE I. Orthonormal bases for the supporting spacesHk ^ Cmk;Cmk of thekth equivalence class of irreduc-
ible representations for 1 to 2 phase-covariant cloning. The orthonormal basis are chosen as subsets o
orthonormal basis for the tensor productK ^ H.

k ukil ^ uhjl

−1 u001l
0 u101l , u011l , u000l
1 u100l , u010l , u111l
2 u110l

ABLE II. Cloning from 1 to 2 copies: classification of operatorsR=okPS Rk=okPSol ucl
skdlkcl

skdu satisfying the necessa
ondition.

=̇hkj hucl
skdlj hucl

sk8dlj

−1,2j u001l u110l
0,1j au000l+bu011l+cu101l a8u111l+b8u100l+c8u010l uau2+ ub8u2+ uc8u2=1

ua8u2+ ubu2+ ucu2=1

0,−1j u000l+au011l+bu101l cu001l uau2+ ubu2+ ucu2=1

1,−1j au100l+bu010l+cu111l du001l uau2+ ubu2=1

ucu2+ udu2=1

1,2j au100l+bu010l+ u111l du110l uau2+ ubu2+ udu2=1

0,2j au000l+bu011l+cu101l du110l uau2+ udu2=1

ubu2+ ucu2=1

0j 1/Î2u101l+ 1/Î2u011l , u000l
1j 1/Î2u010l+ 1/Î2u100l , u111l
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F = kcu 1
2hTr1fMtsuclkcudg + Tr2fMtsuclkcudgjucl=Trf 1

2sI ^ uclkcu + uclkcu ^ IdMtsuclkcudg
s65d

nd for equatorial qubits we can chooseucl= u+l, whereu± l8 s1/Î2dsu0l± u1ld. Then the fidelity
ewrites as

F = TrfWRMg, s66d

W= u + lk+ u^3 + 1
2su− lk− u ^ u + lk+ u + u + lk+ u ^ u− lk− ud ^ u + lk+ u. s67d

ne can see thatW is invariant for permutations over the output copies, and, by construction
ll vectors in Table II have the same symmetry. Due to the special form of the fidelity, the o
ap [satisfyingMsIKd= IH] is obtained forS=h0,1j with corresponding rank-two operatorRM

iven by

RM = ucs0dlkcs0du + ucs1dlkcs1du,

ucs0dl − =
1
Î2

Su000l +
1
Î2

u011l +
1
Î2

u101lD ,

ucs1dl − =
1
Î2

Su111l +
1
Î2

u100l +
1
Î2

u010lD , s68d

. Example

Consider the phase-covariant cloning16,22 for equatorial qubits from 1 to 3 copies. This c

espond toG=Us1d, with representationsUf=eifu1lk1u0 and Vf=eifos=1
3 u1lk1uk wheres=0 denote

he input qubit ands=1,2,3 theoutput ones. HereH=C2 andK=H^3. We first need to decom
ose the representationVf ^ Uf

* . This is made of one-dimensional representations, with chara
ikf, with k=−1,0,1,2,3 andmultiplicities m−1=1, m0=4, m1=6, m2=4, andm3=1. Orthonorma
ases for the supporting spacesHk ^ Cmk;Cmk of the kth equivalence class of irreducible rep
entations are reported in Table III as subset of an orthonormal basis for the tensor proK

^ H. Again, since dimsHd=2, the necessary condition(64) says that we can have only o
quivalence classk with ranksXkdø2, or two equivalence classes both with ranksXkd=1. In Ref.
2 it is shown that the map which optimizes the averaged equatorial fidelity is actually gi

he rank-one map forS=h1j with corresponding operatorRM given by

s1d s1d

TABLE III. Orthonormal bases for the supporting spacesHk ^ Cmk;Cmk of the kth equivalence class of irre-
ducible representations for 1 to 3 phase-covariant cloning. The orthonormal basis are chosen as subsets
orthonormal basis for the tensor productK ^ H.

k ukil ^ uhjl

−1 u0001l
0 u1001l , u0101l , u0011l , u0000l
1 u1000l , u0100l , u0010l , u1101l , u1011l , u0111l
2 u1100l , u1010l , u0110l , u1111l
3 u1110l
RM = uc lkc u,
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ucs1dl =
1
Î3

su1000l + u0100l + u0010l + u1101l + u1011l + u0111ld. s69d

Notice that, as a consequence of the specific symmetric form of the chosen fidelity cr
he cloning maps of the examples in Secs. VI A and VI B are both symmetrical, namely the
ilbert space is indeed restricted to the symmetric tensor spacesH^nd+. Clearly, with the sam
ethod also nonsymmetric types of cloning can be analyzed well.

. Example

Consider a generic covariant QO withK.H, Vg=Ug, andG=SUsdd, whered=dimsHd. In
his case the representationUg ^ Ug

* has two irreducible components, one which is one dim
ional, corresponding to the invariant vectoruIlPH^2, and one on the orthogonal complem
nd the two components will be denoted byk=0 andk=1, respectively. Since both the irreduci
omponents of the representation have unit multiplicity, the operatorR=X†X must haveX
okPS ckPk, ckPC, Pk denoting the orthogonal projector on the invariant space of the irredu
omponentk, and the necessary condition(64) is trivially satisfied. On the other hand, one can
hat the iff condition (56) is satisfied for the irreducible representationsS=h0j and S=h1j,
hereas for the reducible oneS=h0,1j the map TsOd=TrKfX†OXg is never injective o

G8 ùBsRngsXdd [one has TrKfX†OXg=s1/ddfuc0u2a0+sd2−1duc1u2a1gIH for O=a0P0+a1P1,

0,a1PC]. Therefore, the only trace-preserving optimal maps are those corresponding
peratorsR= uIlkI u and R=fd/ sd2−1dgsI ^2−s1/dduIlkI ud, corresponding to the trivial mapM=J
nd to the so-called isotropic depolarizing channelMsOd=fd/ sd2−1dgTrfOgIH−f1/sd2−1dgr.
inally, notice that in the present example the optimal covariant maps are compatible on

multiple of) the trace-preserving condition, since both partial traces TrKfPkg are proportional t
he identity.

. Example

We consider now the same problem as in the previous example, but now withVg=Ug
* . In this

ase we need to consider the positive operatorsR which are invariant underUg
*

^ Ug
* . It will be

asier to consider the representationUg ^ Ug and then take the complex conjugate ofR at the end
ow we have again two irreducible inequivalent components, sayk=± with invariant space

H^2d±, the symmetric and the antisymmetric spaces. As in the previous example, the gene
f R=X†X is X=okPS ckPk, ckPC, andP±= 1

2sIH
^2±Ed, whereE is the swap operator on the ten

roduct. However, the mapTsOd=TrKfX†OXg is injective onAG8 ùBsRngsXdd only for represen
ations with a single irreducible component. One can see that TrHfP±g= 1

2sd±1dIH, and only
race-preserving(or multiplying by a constant) QO’s are compatible with the present covarian
n conclusion, the only extremal covariant operators areR±=sd±1d−1sI ^2±Ed, corresponding t
he channelsM±sOd=sd±1d−1fTrsOdIH±Otg. The mapM+ is the optimal transposition map
ef. 26.

CKNOWLEDGMENTS

The author is grateful to Koenraad Audenaert for having pointed attention to the work
nd Tam which inspired the present work. The author is also very grateful to Giulio Chiribe
aving pointed out an error in a preliminary version, and for a careful reading of the presen
substantial part of this work has been worked out during theBenasque Session on Quan

nformation and Communication 2003. It has been sponsored by INFM through the project P
002-CLON, and by EEC and MIUR through the cosponsored ATESIT project IST-2000-
nd Cofinanziamento 2003. Partial support is also acknowledged from the MURI program

stered by the Army Research Office under Grant No. DAAD19-00-1-0177.

1M. A. Nielsen and I. L. Chuang,Quantum Computation and Quantum Information(Cambridge University Pres

Cambridge, 2000).

                                                                                                            



2

1 surement
reason we
rement is
ction

nce of all
nt realiza-

1

1

1 and
.

1 and signal

1

1

1

1

1

2

2

2

2

2 73
2

2

J. Math. Phys., Vol. 45, No. 9, September 2004 Extremal covariant quantum operations and POVM’s 3635

                        
2A. S. Holevo,Probabilistic and Statistical Aspects of Quantum Theory, Series in Statistics and Probability(North-
Holland, Amsterdam, 1982).

3C. W. Helstrom,Quantum Detection and Estimation Theory(Academic, New York, 1976).
4E. B. Davies,Quantum Theory of Open Systems(Academic, London, 1976).
5P. Busch, P. J. Lahti, and P. Mittelstaedt,The Quantum Theory of Measurement, Lecture Notes in Physics Vol.
(Springer, Berlin, 1991).

6K. Kraus,States, Effects, and Operations(Springer-Verlag, Berlin, 1983).
7E. B. Davies,Quantum Theory of Open Systems(Academic, London, 1976).
8W. F. Stinespring, Proc. Am. Math. Soc.6, 211 (1955).
9E. B. Davies, J. Funct. Anal.6, 318 (1970).
0It must be noticed that in the present paper we are focusing only on the statistical description of the mea
process—not on the change of state due to the measurement, nor on its realization scheme—and for this
identify the measurement covariance with the covariance of the POVM. The state change due to the measu
described by the so-called “instrument”(Ref. 11), and the measuring scheme is given in terms of a unitary intera
with an ancilla and an orthogonal measurement on it. Clearly, the POVM covariance does not imply the covaria
of its instruments, and the covarance of an instrument does not imply the covariance of all of the measureme
tions of the instrument.

1E. B. Davies and J. T. Lewis, Commun. Math. Phys.17, 239 (1970).
2 H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory24, 657 (1978); 25, 179 (1979); 26, 78 (1980).
3G. M. D’Ariano, “Quantum estimation theory and optical detection,” inConcepts and Advances in Quantum Optics
Spectroscopy of Solids, edited by T. Hakioglu and A. S. Shumovsky(Kluwer Academic, Amsterdam, 1997), pp. 139–174

4C. H. Bennett and G. Brassard, Proceedings of the IEEE International conference on computers, systems,
processing, Bangalore, India, 1984, pp. 175–179.

5N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys.74, 145 (2002).
6G. M. D’Ariano and C. Macchiavello, Phys. Rev. A67, 042306(2003).
7M.-D. Choi, Linear Algebr. Appl.10, 285 (1975).
8K. R. Parthasaraty, Infinite Dimen. Anal., Quantum Probab., Relat. Top.2, 557 (1999).
9G. M. D’Ariano and P. Lo Presti, quant-ph/0301110.
0G. M. D’Ariano, C. Macchiavello, and M. F. Sacchi, Phys. Lett. A248, 103 (1998).
1G. M. D’Ariano, C. Macchiavello, P. Perinotti, and M. F. Sacchi, Phys. Lett. A268, 241 (2000).
2G. M. D’Ariano and P. Lo Presti, Phys. Rev. A64, 042308(2001).
3R. F. Werner, Phys. Rev. A58, 1827(1998).
4D. P. Zhelobenko,Compact Lie Groups and Their Representations(American Mathematical Society, Providence, 19).
5C.-K. Li and B.-S. Tam, SIAM J. Matrix Anal. Appl.15, 903 (1994).
6F. Buscemi, G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, Phys. Lett. A314, 374 (2003).
                                                                                                            



D
f

I

t
s
C

w ll
p s
e ical
f in Eq.
( us,
G -
C the
I 6 to
d

of the
H n
R . In its
m Tzetlin
c

have
a anifolds
S expect
a

w t
s in
S anifold
U

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 9 SEPTEMBER 2004

0

                        
erivation of the supersymmetric Harish-Chandra integral
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The previous supersymmetric generalization of the unitary Harish-Chandra integral
prompted the conjecture that the Harish-Chandra formula should have an extension
to superspaces. We prove this conjecture for the unitary orthosymplectic super-
manifold UOSpsk1/2k2d. To this end, we construct and solve an eigenvalue
equation. ©2004 American Institute of Physics.[DOI: 10.1063/1.1781746]

. INTRODUCTION

Harish-Chandra1 gave a closed formula for a class of group integrals. LetG be a compac
emisimple Lie group and leta andb fixed elements in the Cartan subalgebraH0 of G. Harish-
handra’s formula then reads

E
UPG

expstr U−1aUbddmsUd =
1

uWu o
wPW

exp„tr wsadb…
PsadP„wsbd…

, s1.1d

heredmsUd stands for the properly normalized invariant measure andPsad for the product of a
ositive roots ofH0. Moreover,W is the Weyl reflection group ofG and uWu is the number of it
lements. We notice that the integrals(1.1) should not be confused with Gelfand’s spher

unctions.2–5 They are defined by a group integral which looks at first sight just like the one
1.1), however, for Gelfand’s spherical functions,a andb are not in the Cartan subalgebra. Th
elfand’s spherical functions are very different objects. Only in the case ofG=SUsNd, the Harish
handra integral(1.1) coincides with the unitary spherical function of Gelfand. It is known as

tzykson–Zuber integral.6 A very handy diffusion equation method was developed in Ref.
erive this unitary case.

A supersymmetric generalization of the Itzykson–Zuber integral, i.e., the extension
arish-Chandra integral to the case of the unitary supermanifold Usk1/k2d, was first obtained i
ef. 7 by generalizing the Itzykson–Zuber diffusion equation method to supersymmetry
ost general form, this integral was obtained in Ref. 8 as an application of Gelfand–

oordinates for Usk1/k2d and also in Ref. 9 by employing the methods as given in Ref. 7.
Serganova10 and Zirnbauer11 conjectured that Harish-Chandra’s formula should not only

supersymmetric extension in the unitary case, but also generalize to all classical superm
G which can be viewes as certain extensions of the ordinary Lie groups. Thus, one would
result of the following form to hold,

E
uPSG

expstrg u−1surddmsud =
1

uSWu o
wPSW

expstrg wssdrd
pssdpswsrdd

, s1.2d

heres andr are in the Cartan subalgebraSH0 of SG. The Weyl reflection groupSW and the roo
ystempssd have to be properly generalized to superspace,uSWu is the number of elements
W. The extension of the Harish-Chandra integral to the case of the unitary superm

sk1/k2d is certainly of the form(1.2). The most interesting remaining case is the unitary ortho-
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ymplectic supermanifold UOSpsk1/2k2d. For this case, we present a proof of the conjecture(1.2)
n this note. In Sec. II, we state and derive the supersymmetric Harish-Chandra integ
OSpsk1/2k2d. We summarize and conclude in Sec. III.

I. THE SUPERMANIFOLD INTEGRAL AND ITS DERIVATION

After briefly summarizing properties of the supermanifold UOSpsk1/2k2d and introducing ou
otation in Sec. II A, we state the supermanifold integral in Sec. II B. The solution is sketc

he following two sections. In Sec. II C, we formulate an eigenvalue equation for the integra
olved by separation in Sec. II D.

. The supermanifold UOSp „k1/2k2…

Kac12,13gave a classification of the classical superalgebras similar to Cartan’s classifica
he Lie algebras in ordinary space. In principle, to each classical superalgebra a super
ssociated by the exponential mapping. However, the classification pattern of the superg
sually somewhat coarser.14,15 If one omits the supergroup stemming from the exceptional s
lgebras, one is left with only four different types of subgroups of the general linear supe
Lsk1/k2d, namely the unitary supergroup Usk1/k2d the orthosymplectic supergroup OSpsk1/2k2d
nd the supergroups associated with the strange superalgebras Pskd and Qskd. The supergrou
Spsk1/2k2d consists of the elementsu in GLsk1/2k2d which leave invariant the metric

L = diags1k1
,Jd, s2.1d

uch thatuTLu=L. Here,J is the symplectic metric

J = ts1d
^ 1k2

= F 0 1k2

− 1k2
0
G, with ts1d = F 0 1

− 1 0
G . s2.2d

specially important in physical applications are the supergroup Usk1/k2d and the supermanifo
OSpsk1/2k2d, formed by the elements of OSpsk1/2k2d which fulfill the additional conditio

†u=1. It contains the compact ordinary groups Osk1d and USps2k2d as subgroups. However, it
trictly speaking not a compact real form of OSpsk1/2k2d, see Appendix A and Refs. 16 and
hile the fermionic dimension 2k2 of UOSpsk1/2k2d is always even, the bosonic dimensionk1 can

e even or odd, eventually resulting in some slight differences for the supermanifold integr
an also define the superalgebra uospsk1/2k2d connected as usual to the supermani
OSpsk1/2k2d via the exponential mapping.15 For sPuospsk1/2k2d we have u=expssd
UOSpsk1/2k2d. These generatorss span the superalgebra. An element of this superalgebr

e written as

s = 3
ssod ssad† − ssadT

ssad

ssuspd

ssad*
4 . s2.3d

hek13k1 matrix ssod is antisymmetric, it is in the algebra osk1d and generates the ordinary gro
sk1d. The 2k232k2 matrix ssuspd is in the algebra usps2k2d and generates the ordinary gro
Sps2k2d, i.e. in the basis defined by Eq.(2.1) it is of the form

ssuspd = F ssusp,1d − ssusp,2d

ssusp,2d† − ssusp,1dTG . s2.4d

eressusp,1d is a skew–Hermitian matrix andssusp,2d is complex symmetric. Thek23k1 matrix ssad

n Eq. (2.3) containsk1k2 independent complex anticommuting variables, it is in the s

sopsk1/2k2d−osk1d−usps2k2d. The asterisk denotes the complex conjugate of the second kind for
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rassmann variables. One uses the supertrace denoted by trg to define an invariant bilin
n the superalgebra. Although the algebra uospsk1/2k2d defined by the matricess in Eq. (2.3) is
losely related to the algebra of the orthosymplectic group ospsk1/2k2d we avoid the notation of
eal form of ospsk1/2k2d since it cannot be derived from ospsk1/2k2,Rd by an involutive
utomorphism.17

Particularly important in the present context is the Cartan subalgebra uosps0dsk1/2k2d of
ospsk1/2k2d. As in the theory of Lie–algebras in ordinary space there is a difference fo
rthogonal group in even or odd dimension. We introduce the notationfk1/2g for the integer pa
f k1/2. Then, for even bosonic dimensionfk1/2g=k1/2, the elements of uosps0dsk1/2k2d are the
atrices

ss0d = diagss11t
s1d, . . . ,sfk1/2g1ts1d,is12, . . . ,isk22,− is12, . . . ,−isk22d, s2.5d

hile for odd bosonic dimensionfk1/2g=sk1−1d /2, the Cartan subalgebra uosps0dsk1/2k2d consists
f the matrices

ss0d = diagss11t
s1d, . . . ,sfk1/2g1ts1d,0,is12, . . . ,isk22,− is12, . . . ,−isk22d. s2.6d

hus, uosps0dsk1/2k2d is the direct sum of the Cartan subalgebras osk1d and usps2k2d. We could
ow work with the superalgebra as defined above. However, we redefine it by a procedure

o a Wick rotation. In most of the physics literature, this is done to ensure convergence
ntegrals in superspace, see for example Ref. 21. Although the Wick rotation is not nece
he present context, we decided to redefine the superalgebra to keep with the notatio
hysics literature and in previous work on the unitary supergroup.7–9 Hence, we proceed

ollows. The Killing–Cartan form of the supermatrices defined in Eqs.(2.5) and (2.6) is not
egative definite. We define another set of diagonal supermatrices by

s= F i 0

0 1
Gss0d, s2.7d

uch that always trgs2.0. In the sequel we use exclusively the set of supermatricess. We denote
t also by uosps0dsk1/2k2d. By the same token we refer to its orbits under the group actis
u−1su, uPUOSpsk1/2k2d as the superalgebra uospsk1/2k2d. We emphasize once more that t

edefinition has no direct impact in the present context.
A remark is in order for the mathematically oriented reader. The object UOSpsk1/2k2d defined

bove is not included in the usual classification of symmetric superspaces. However, it s
roup in the naive, but in the present context crucial, sense that it describes generalized

n a superspace. It belongs to a class of supermanifolds which have been termed cs man
ef. 18. We refer the reader to the literature for further reading on the classificat
upermanifolds12–16,19,20and to Appendix A. For this reason we refer to UOSpsk1/2k2d defined
bove always assupermanifold.

. Statement of the supermanifold integral

We can now write formula(1.2) for the case of the supermanifold UOSpsk1/2k2d more ex
licitly. For two fixed elementss and r of the Cartan subalgebra uosps0dsk1/2k2d, we have

E
uPUOSpsk1/2k2d

expsi trg u−1surddmsud

=
1

fk1/2g ! k2!

sdetfcoss2sp1rq1dg + detfi sins2sp1rq1dgddetf− 2i sins2sp2rq2dg
Bk12k2

ssdBk12k2
srd

s2.8d
or k1 even and
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E
uPUOSpsk1/2k2d

expsi trg u−1surddmsud =
1

fk1/2g ! k2!

detfi sins2sp1rq1dgdetf2 coss2sp2rq2dg
Bk12k2

ssdBk12k2
srd

s2.9d

or k1 odd. We introduced the functionBk12k2
ssd which is given by

Bk12k2
ssd = 2k2

p
p,q

ssp1
2 − sq1

2 dp
p,q

ssp2
2 − sq2

2 dp
p=1

k2

sp2

p
p,q

ssp1
2 + sq2

2 d
s2.10d

or even bosonic dimensionk1 and by

Bk12k2
ssd = 2k2

p
p,q

ssp1
2 − sq1

2 dp
p,q

ssp2
2 − sq2

2 d p
p=1

fk1/2g

sp1

p
p,q

ssp1
2 + sq2

2 d
s2.11d

or odd bosonic dimensionk1. These two formulas differ only in the last terms of the numera
Formulas(2.8) and (2.9) contain, as special cases, the ordinary orthogonal and unitary

lectic Harish-Chandra integrals forG=SOsk1d and for G=USps2k2d, if we set k2=0 or k1=0,
espectively. Thus, the derivation of the supersymmetric integral to follow also includes a
ation of those ordinary integrals. For equal bosonic and fermionic dimension, formula(2.8) was
onjectured in Ref. 11 and used to calculate the correlation functions in a certain circular
atrix ensemble.

We mention in passing that the invariant measuredmsud and its normalization relate to no
rivial questions of certain boundary contributions in superanalysis22 which are highly important i
pplications. In the present context, however, we do not need to go into this.

. Eigenvalue equation

The main idea for the derivation of formulas(2.8) and(2.9) is to properly modify the supe
ymmetric extension7 of the Itzykson–Zuber diffusion equation method6 to the present case.
urns out that it is somewhat more convenient to construct the eigenvalue equation associa
he diffusion equation. The two equations are related by Fourier expansion. Such an eig
quation for the ordinary case of SUsNd as originally discussed by Itzykson and Zuber6 was
onstructed by Brézin.23 Berezin and Karpelevich24 had studied such an eigenvalue equatio
alculate the twofold group integral named after them, see also Ref. 25. To construct the
alue equation needed to derive formulas(2.8) and(2.9), we adjust the steps made in Refs. 26
7, where a supersymmetric eigenvalue equation was employed for the extension of the B
arpelevich integral.

We introduce the Laplace operator over the superalgebra uospsk1/2k2d

D =
1

2 o
p,q

k1 ]2

] spq
sod2 + o

p,q

2k2 1 + dpq

4

]2

] spq
suspd ] spq

suspd* +
1

2o
p=1

k1

o
q=1

k2 ]2

] spq
sad ] spq

sad* . s2.12d

ts eigenfunctions are the plane waves expsi trg srd with both matricess ,rPuospsk1/2k2d. Thus
e have

D expsi trg srd = − trg r2 expsi trg srd. s2.13d

e now diagonalize both matrices according tos=u−1su andr=v−1rv, whereu andv are in the
s0d
upermanifold UOSpsk1/2k2d ands andr are in the Cartan subalgebra uospsk1/2k2d, i.e., given
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y Eq.(2.5) or Eq.(2.6), respectively. Integrating both sides overv and using the invariance of t
easuredmsvd, we arrive at the radial eigenvalue equation

Dsxk12k2
ss,rd = − trg r2xk12k2

ss,rd, s2.14d

here, now usingu instead ofv again, the function

xk12k2
ss,rd =E

uPUOSpsk1/2k2d
expsi trg u−1surddmsud s2.15d

s the integral we want to calculate. The operatorDs in Eq. (2.14) is the radial part ofD. The term
adial refers to the Cartan subalgebra. This usage which is common in mathematics sh
ead to confusions with the radial operators used, for example, in Refs. 28–31 where quite
nt spaces were studied. To obtain the radial operatorDs, we need the Jacobian, or Berezinian

he variable transformations=u−1su. This Berezinian is given by the the functionsBk12k2

2 ssd of
qs. (2.10) and (2.11). It was not possible for us to find out where this Berezinian was
btained, and we do not claim originality for its calculation. In any case, to make the
elf-contained, we sketch the calculation in Appendix B. Hence, the radial part of the La
ver uospsk1/2k2d reads

Ds =
1

2 o
p=1

fk1/2g
1

Bk12k2

2 ssd
]

] sp1
Bk12k2

2 ssd
]

] sp1
+

1

2o
p=1

k2 1

Bk12k2

2 ssd
]

] sp2
Bk12k2

2 ssd
]

] sp2
. s2.16d

he number of bosonic eigenvalues isfk1/2g, i.e., identical for the pairs uospsk1/2k2d and
ospsk1+1/2k2d with k1 even. However, the operatorDs is not the same in these two cas
ecause the functions(2.10) and (2.11) differ.

. Solution by separation

The Laplacian(2.16) is separable. We make an ansatz for the supermanifold integral
eparates off the square roots of the Berezinians,

xk12k2
ss,rd =

vk12k2
ss,rd

Bk12k2
ssdBk12k2

srd
. s2.17d

tedious but straightforward calculation then yields the trivial eigenvalue equation

]2

] sW2vk12k2
ss,rd = − trg r2vk12k2

ss,rd s2.18d

or the functionvk12k2
ss,rd. Here we introduced the gradient

]

] sW
= S ]

] s11
, . . . ,

]

] sfk1/2g1
,

]

] s12
, . . . ,

]

] sk22
D , s2.19d

hich also defines the flat Laplacian]2/]sW 2 appearing in the eigenvalue equation(2.18). A crucial
eature of the square root of the Berezinian enters the derivation of Eq.(2.18). It satisfies th
armonic equation

]2

] sW 2Bk12k2
ssd = 0, s2.20d

hich we prove in Appendix C. Any linear combination of products of exponentials solve
igenvalue equation(2.18). However, as the supermanifold integral and the eigenvalue
ions are obviously invariant under permutations of the variables in the osk1d sector
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p1,p=1, . . . ,fk1/2g or, equivalently,rp1,p=1, . . . ,fk1/2g and under permutations of the variab
n the uosps2k2d sector isp2,p=1, . . . ,k2 or, equivalently,ir p2,p=1, . . . ,k2, the desired solutio

ust have the same property. Moreover, there is a symmetry under a parity transformation
ariablesisp2,p=1, . . . ,k2 and ir p2,p=1, . . . ,k2. That is, the solution must be invariant under
ubstitutionsp2→−sp2 and rp2→−rp2. For k1 odd, the same symmetry must hold also forsp1,p
1, . . . ,fk1/2g and rp1,p=1, . . . ,fk1/2g respectively. By these symmetries the solution of

2.18) for k1 odd is up to normalization uniquely determined,

vk12k2
ss,rd =

1

fk1/2g ! k2!
detfi sins2sp1rq1dgdetf2 coss2sp2rq2dg. s2.21d

or k1 even, the part antisymmetric under the parity transformation has to be kept and we

vk12k2
ss,rd =

1

fk1/2g ! k2!
sdetfcoss2sp1rq1dg + detfi sins2sp1rq1dgddetf− 2i sins2sp2rq2dg.

s2.22d

hese results give, together with the ansatz(2.17), the desired supermanifold integrals(2.8) and
2.9). As already mentioned, our derivation of the supersymmetric group integral conta
pecial cases a rederivation of the ordinary orthogonal and unitary symplectic Harish-C

ntegrals fork2=0 or k1=0, respectively.

II. SUMMARY AND CONCLUSIONS

We calculated the supersymmetric Harish-Chandra integral for the unitary orthosym
upermanifold, thereby proving a conjecture.10,11 Our derivation uses a diffusion equation
quivalentely, eigenvalue equation method. It is based on the separability of the Laplaci
resent contribution is a further extension of this technique, which, to the best of our know
as previously only been used for group integrals over the unitary group: orginally, it was
uced for the Harish-Chandra integral over the ordinary unitary group,6,23 then extended for th
upersymmetric Harish-Chandra integral over the unitary supermanifold.7 Already in 1958, Be
ezin and Karpelevich24 had developed such a technique for an integral over two unitary gr
ee also Ref. 25. This was also extended to the supersymmetric case.26,27Here, we considered th
nitary orthosymplectic supermanifold and adjusted the eigenvalue equation method to th
s the unitary orthosymplectic supermanifold contains the ordinary orthogonal and unitar
lectic groups as subgroups and special cases, we automatically also extended the e
quation method to these two ordinary groups.

We are aware of only two methods which could be an alternative: character expansio
elfand–Tzetlin coordinates. Balantekin developed the character expansion method for the
rdinary and supermanifold32,33 and obtained various group integrals. Recently, this method

urther extended and employed in Ref. 34. Similar considerations are also of interest if one
he Itzykson–Zuber integral for matrices of large dimension.35 Moreover, character expansio
ould also be developed for the calculation of certain integrals over the ordinary orthogo
nitary symplectic group,36 but Harish-Chandra integrals have so far not been tackled with
pproach. Gelfand–Tzetlin coordinates37,38 allow one to compute the ordinary39 and
upersymmetric8 Itzykson–Zuber integral directly, i.e., without using a diffusion or eigenv
quation. This method has not been applied yet to work out Harish-Chandra integrals
rdinary orthogonal or unitary symplectic or the supersymmetric unitary orthosymplectic

old. However, it has been employed for Gelfand’s spherical functions.28–31

Considering all the cases, in which nontrivial group integrals could be obtained for th
ime or in which known results could be rederived faster, the diffusion or eigenvalue eq

ethod used and further extended here shows a remarkably wide range of applicability.
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PPENDIX A: ON THE SUPERMANIFOLD UOSp „k1/2k2…

The real form of a complex supergroupG is obtained by acting with some involutive antilin
utomorphisms onto the group. Then the setGs of fixed points ofs is a real form ofG. Since the
umber of antilinear involutive automorphisms is limited, so is the number of inequivalen

orms. Indeed, the real forms of all complex superalgebras(and therefore of the supergroups) have
een classified in Refs. 16 and 17. In particular, there it has been shown that the comple
roup OSpsk1/2k2d has only two real forms. They are most conveniently characterized b
estriction ofGs to its even partGs0. For OSpsk1/2k2d this even partGs0 has to be a product
ome real forms of Osk1,Cd and Sps2k2,Cd. The only two possibilities forGs0 are Osr ,k1−rd

^ Spsk2,Rd and in addition, fork1 even, O*sk1d ^ Spsr ,k2−rd. The corresponding automorphis
an also be found in Refs. 16 and 17. That is, both real forms are noncompact supergroup
e wish to generalize Harish-Chandra’s formula for ordinary compact groups we have to re
efinition above and seek for a class of automorphisms of the algebra that allow for c
anifolds. Therefore we consider automorphismst which are involutive only on the even eleme

2g0=g0 and antiinvolutivet2g0=−g0 on the odd elements. For ospsk1/2k2d such an automorphis
s given by tg=g† with gPospsk1/2k2d. Now we can construct a functor from the p
ospsk1/2k2d ,t) to a supermanifold. The so constructed object is, however not a real superm
ince the functor is not defined on the set of real supercommutative algebrae. It falls into t
f cs (complex supersymmetric) -manifolds.18 It is, however a frequently arising object
hysics21,40 and has an intuitive meaning in terms of the matrices as defined in Sec. II A w
sual anticommutator as product.

PPENDIX B: CALCULATION OF THE BEREZINIAN

We use the standard procedure of obtaining the metric tensorg whose superdeterminant is
quare of the Berezinian. The variation of the elements=u−1suPuospsk1/2k2d reads

ds = u−1sds+ fs,dũgdu, where dũ = duu−1 sB1d

s also in the superalgebra uospsk1/2k2d. Thus, the invariant length element is given by

trg ds2 = trg sds+ fs,dũgd2 = trg ds2 + trg fs,dũg2= o
p=1

fk1/2g

dsp1
2 + o

p=1

k2

dsp2
2 + o

n

san
sodd2sdũsod

n d2

+ o
n

san
suspdd2sdũsuspd

n d2 + o
n

san
sadd2sdũsad

n d2.

sB2d

n the last step, we expanded the traces, the metricg can then be read of from the coefficients
ront of the squared variation differentials. We split the contribution from the commutator in
erms and introduced a new indexn, labelling the roots and the variation differentials stemm
rom dũ. There are three types of roots, corresponding to the osk1d and the usps2k2d subalgebra
nd the remaining sector uospsk1/2k2d−osk1d−usps2k2d containing the anticommuting degrees

reedom. For even bosonic dimension 2k1, there are 2k1sk1−1d roots an
sod of os2k1d, given by

sp1±sq1 with independent signs andp,q. For odd bosonic dimension 2k1+1, there are 2k1

dditional roots ±sp1 which are needed for the complete root system of os2k1+1d. The rootsan
suspd

f usps2k2d are ±isp2± isq2 with independent signs andp,q, and furthermore ±2isp2, all togethe
2 sad
k2 roots. Finally, we have the 2k1k2 roots an from uospsk1/2k2d−osk1d−usps2k2d, which read
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sp1± isq2 with independent signs and indicesp,q. For odd bosonic dimension we havek1

dditional rootsan
sad= ± isp2. Collecting everything, the superdeterminant detgg of the metricg is

he product of all roots from osk1d and usps2k2d, divided by the product of all roots fro
ospsk1/2k2d−osk1d−usps2k2d. The square root of detg then gives the Berezinians(2.10) and
2.11).

PPENDIX C: SQUARE ROOT OF THE BEREZINIAN AS A HARMONIC FUNCTION

The result(2.20) is crucial for the separation ansatz and for the derivation of the en
igenvalue equations. It is tedious, but elementary to prove it by explicit calculation. We co
venk1, the case of oddk1 is treated in the same way. Using relations such as

o
pÞq

1

sp1
2 − sq1

2 = 0 and o
pÞqÞt

sp1
2

ssp1
2 − sq1

2 dssp1
2 − st1

2 d
= 0, sC1d

e find

1

Bk12k2
ssd o

p=1

fk1/2g
]2

] sp1
2 Bk12k2

ssd = o
p,q,t

4sp1
2

ssp1
2 + sq2

2 dssp1
2 + st2

2 d
− o

pÞq,t

8sp1
2

ssp1
2 − sq1

2 dssp1
2 + st2

2 d
− o

p,q

6

sp1
2 + sq2

2

+ o
p,q

4sp1
2

ssp1
2 + sq2

2 d2 . sC2d

imilarly, we obtain

1

Bk12k2
ssd op=1

k2 ]2

] sp2
2 Bk12k2

ssd = o
p,q,t

4sp2
2

ssp2
2 + sq1

2 dssp2
2 + st1

2 d
− o

pÞq,t

8sp2
2

ssp2
2 − sq2

2 dssp2
2 + st1

2 d
− o

p,q

2

sp1
2 + sq2

2

+ o
p,q

4sq2
2

ssp1
2 + sq2

2 d2 . sC3d

ombining these two intermediate results, we arrive at

1

Bk12k2
ssd

]2

] sW 2Bk12k2
ssd = o

pÞq,t
S 4st2

2

ssp1
2 + st2

2 dssq1
2 + st2

2 d
−

8sp1
2

ssp1
2 − sq1

2 dssp1
2 + st2

2 d
D

+ o
pÞq,t

S 4st1
2

sst1
2 + sp2

2 dsst1
2 + sq2

2 d
−

8sp2
2

ssp2
2 − sq2

2 dssp2
2 + st1

2 d
D + o

p,q
S 8sp1

2

ssp1
2 + sq2

2 d2

+
8sq1

2

ssq1
2 + sp2

2 d2D − o
p,q

8

sp1
2 + sq2

2

= o
pÞq,t

S 4st2
2

ssp1
2 + st2

2 dssq1
2 + st2

2 d
−

4sp1
2

ssp1
2 − sq1

2 dssp1
2 + st2

2 d
−

4sq1
2

ssq1
2 − sp1

2 dssq1
2 + st2

2 d
D

+ o
pÞq,t

S 4st1
2

sst1
2 + sp2

2 dsst1
2 + sq2

2 d
−

4sp2
2

ssp2
2 − sq2

2 dssp2
2 + st1

2 d
−

4sq2
2

ssq2
2 − sp2

2 dssq2
2 + st1

2 d
D

= 0, sC4d

hich is Eq.(2.20).
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In this paper we consider an Ising model with three competing restricted interac-
tions on the Cayley treeJ2sJ3d. The translation invariant and periodic Gibbs mea-
sures for these models are investigated and the problem of the phase transition in
these classes is solved. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1781747]

. INTRODUCTION

The Ising model, which was originally regarded as a ferromagnetic model, has found
pplications in many other physical, biological, and chemical systems, and even in sociolo
odel we considered in(Ref. 6) is a natural generalization of the Ising model, and a model o

imilar form has recently been investigated by Monroe11,12 to understand the physical aspe
ssociated with the Husimi tree or the Kagome lattice. On a similar note, the topic of sta
echanics on nonamenable graphs is a modern growing field.2,10 In the same paper,6 we have
resented the exact solution of an Ising model with competing restricted interactions a
xternal magnetic field on the Cayley tree forJ2 order 2.

In this paper we consider the Ising model with three competing interactions on the Cay
hich is defined by the following Hamiltonian:

Hssd = − J3 o
kx,y,zl

ssxdssydsszd − Jo
lx,yk

ssxdssyd − J1o
kx,yl

ssxdssyd − ho
xPV

ssxd, s1d

here the sum in the first term ranges all triples of neighbors, the second sum ranges al
eighbors, the third sum ranges all nearest neighbors and the spin variablesssxd assume the valu
1. (See Ref. 7 for models with competing interactions, and see Refs. 2 and 10–12 for the p
otivation underlying the study of these models.)

The various partial cases of this model have been investigated in numerous works,
mple, the caseJ3=h=0 was considered in Refs. 11, 12, and 6. In Ref. 6, the exact solution

sing model with competing restricted interactions with zero external field was presented. T
=h=0 was considered in Refs. 12 and 5. In Ref. 5, the exact solution was found for the p
f phase transitions in the Ising model for competing ternary and binary interactions.

Note: Let us connect all pairs verticessx,yd of J2 with the same level for whichdsx,yd=2.

hen the Cayley treeJ2 is transformed to a graphĴ2 (see Fig. 1). Assume that the interactio

)Electronic mail: nasirgani@hotmail.com
)Electronic mail: pahchinhee@hotmail.com
)
Electronic mail: mridza@iiu.edu.my
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etween nearest neighborskx,yl in Ĵ2 is defined by constantJ, if verticesx and y have distinc
evel and by constantJ1, if verticesx andy have the same level. The Hamiltonian of Ising mo

n graphĴ2 is the same as a modification to the Hamiltonian(1) with J3=0 which we will define
ater. Thus the result which is proved for modification to the Hamiltonian(1) will be also valid for

sing model on the graphĴ2. When we letJ1=J, we found a critical point,bJ= 1
4ln 5, which is the

ritical value found by Monroe for the special caseJ3=h=0.11

In this paper we also consider restricted ternary and binary interactions. Exact definit
uch restricted interactions will be given later. The general part of our results were proven
ayley tree of order 2, but some parts of the results were proven also in the Cayley tree
.

We end this section by some necessary definitions and preliminary results. The CayleyJq

see Ref. 1) of order qù1 is an infinite tree, i.e., a graph without cycles, from each verte
hich exactlyq+1 edges issue. LetJq=sV,L , id, whereV is the set of vertices ofJq, L is the se
f edges ofJq, and i is the incidence function associating each edgel PL with its end point
,yPV. If isld=hx,yj, then x and y are called nearest neighbouring vertices and we wrl
kx,yl. The distancedsx,yd, x,yPV on the Cayley tree is defined by the formuladsx,yd

=minhdux=x0,x1, . . . ,xd−1,xd=yPV such that the pairskx0,x1l , . . . ,kxd−1,xdl are neighboring ve
ices}.

For the fixedx0PV we set

Wn = hx P Vudsx,x0d = nj,

Vn = øm=0
n Wm = hx P Vudsx,x0d ø nj,

Ln = hl = kx,yl P Lux,y P Vnj.

A collection of the pairskx,x1l , . . . ,kxd−1,yl is called a path fromx to y. We writex,y if the
ath fromx0 to y goes throughx. We call the vertexy a direct successor ofx, if y.x andx,y are
earest neighbors. The set of the direct successors ofx is denoted bySsxd, i.e.,

Ssxd = hy P Wn+1udsx,yd = 1j, x P Wn.

e observe that for any vertexxÞx0, x hasq direct successors andx0 hasq+1.
The verticesx andy are called second neighbor which is denoted bylx,yk, if there exists

ertexzPV such thatx,z andy,z are nearest neighbors. Three verticesx,y andz are called a tripl
of neighbors and they are denoted bykx,y,zl, if kx,yl and ky,zl are nearest neighbors andxÞz.
The fixed vertexx0 is called the 0 th level and the vertices inWn are called thenth level.

FIG. 1. A semi-infinite Cayley treeJ2 of order 2.
Proposition 1 (Ref. 3): There exists a one-to-one correspondence between the set V of the
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ertices of the Cayley tree of order qù1 and the group Gq of the free products of q+1 cyclic
roups of the second order with generators a1,a2, . . . ,aq+1.

Let us define a group structure on theJq as follows. Vertices which correspond to the “wor
,hPGq are called nearest neighbors and are connected by an edge if eitherg=hai or h=gaj for
ome i or j . The graph thus defined is a Cayley tree of orderq. Consider a left(resp. right)
ransformation shift onGq defined as follows: forgoPGq we put

Tg0
h = g0hsresp .Tg0

h = g0hd ∀ h P Gq.

hen the set of all left(resp. right) shifts onGq is isomorphic to the groupGq.
A semi-infinite Cayley treeJq for orderq is a infinite tree that is a graph having no cyc

rom each vertex of which, except on vertexx0, which is the root of the tree, emanatesq edges
see Fig. 1). Here, just as before, we will use the same notation which is defined for the C
ree.

I. THE RECURRENT EQUATIONS FOR PARTITION FUNCTIONS IN THE ISING MODEL
ITH RESTRICTED INTERACTIONS

There are several approaches to derive the equation describing the limiting Gibbs mea
attice models on the Cayley tree. One approach is based on properties of Markov rando
n the Cayley tree(Refs. 16 and 13). Another approach is based on recurrent equation
artition functions.8 Naturally both approaches lead to the same equation. However, the la
ore suitable for models with competing interactions. For the sake of completeness, we re
ecessary notations.

From the beginning, we consider a semi-infinite Cayley treeJk. Let L be a finite subset ofV.
ssumeVsLd is the set of all configuration onL, that is the functionshssxd ,xPLj. Let s̄sV\Ld
e a fixed boundary configuration. The total energy of configurationssLdPVsLd under condition
sV\Ld is defined as

HsssLdus̄sV \ Ldd = − J3 o
kx,y,zl

x,y,zPL

ssxdssydsszd − J o
lx,yk

x,yPL

ssxdssyd− J1 o
kx,yl

x,yPL

ssxdssyd − ho
xPL

ssxd

− J3 o
kx,y,zl

xPL,y¹L,z¹L or

xPL,yPL,z¹L

ssxdssydsszd − J o
lx,yk

xPL,y¹L

ssxds̄syd − J1 o
kx,yl

xPL,y¹L

ssxds̄syd.

When all boundary pointshs̄syd ,yPV\Lj are fixed as +1, we have the positive bound
ondition and when they are fixed as −1, we have negative boundary condition. The free b
ondition corresponds to the case when the last three sums in the above are absent, that is
ll boundary points are fixed as 0.

The partition functionZLss̄sVLdd in volumeL under boundary conditions̄sV\Ldd is defined
s

ZL = o
ssLdPVsLd

exps− bHsssLddus̄sV \ Ldd,

hereb=1/kT is the inverse temperature. Then the conditional Gibbs measuremL in volumeL
nder boundary conditions̄sV\Ld is defined as

mLsssLdd =
exps− bHsssLddus̄sV \ Ldd

ZL

.

e consider the configurationsssVnd, the partition functionsZVn
and conditional Gibbs measu

Ln
in volumeVn whereVn=øi=0

n Wi and for brevity we denote it assn, Zsnd andmn, respectively

Definition 1: The second neighborslx,yk will be named one-level neighbors and is denoted by
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x,yk, if vertices x and y belong to Wn for some n, that is if they are situated on the same le.
Definition 2: The neighborskx,y,zl will be named two-level neighbors and is denoted

x,y,zl, if vertices x and z belong to Wn for some n, that is if they are situated on the same le
here as x and y, z, and y are nearest neighbors.

Definition 3: The Ising model with competing restricted ternary and binary interactions o
ayley tree is defined by the Hamiltonian

Hssd = − J3 o
kx,y,zl

ssxdssydsszd − Jo
lx,yk

ssxdssyd − J1o
kx,yl

ssxdssyd − ho
xPV

ssxd, s2d

here the sum in the first term is taken over two-level triples of neighbors, the second
aken over one-level second neighbors and the third term is taken over nearest neighbor.

We set

u3 = expsbJ3d, u = expsbJd, u1 = exps2bJ1du2 = expsbhd

nd

unsx0d =
Z+

sndsx0d
Z−

sndsx0d
,

here

Z+
snd = o

snPVsVnd:snsx0d=+1

exps− bHnssndd

nd

Z−
snd = Zsnd − Z+

snd.

Proposition 2: For q=2, the sequencehunsx0dj satisfies the following recurrent equation:

unsx0d = u2
2u3

2u2u1
2un−1

2 sx0d + 2u1un−1sx0d + u2u3
2

u2u1
2 + 2u1u3

2un−1sx0d + u2un−1
2 sx0d

, n = 2,3, . . . , s3d

hereu1sx0d=u1
2u2

2u3
2 for the positive boundary, u1sx0d=u2

2u3
2/u1

2 for the negative boundary a

1sx0d=u2
2fu2u3

2s1+u1d+2u1g / fu2s1+u1d+2u1u3
2g for the free boundary.

Proof: Consider the set of all configurations onV1=hx0,x1,x2j and enumerate them as sho
snd

FIG. 2. All possible configurations onV1=hx0,x1,x2j.
n Fig. 2. We divide the partition functionZ into eight sums
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Zsnd = o
i=1

8

Zi
snd,

here

Zi
snd = o

snPVsVnd:snu=si

exps− bHnssndd.

Next, we consider all the possibilities for the second levelW2 of our treeJ2 with si on the

1, i =1,2, . . . ,8. Forexample, there are a total of six different possibilities at the second lev
1 as shown in Fig. 3.

It is not hard to deduce the following system

Z1
snd = u3uu1u2fZ1

sn−1d + 2Z2
sn−1d + Z4

sn−1dg2,

Z2
snd = Z3

snd = u3
−1u−1u2fZ1

sn−1d + 2Z2
sn−1d + Z4

sn−1dg · fZ5
sn−1d + 2Z6

sn−1d + Z8
sn−1dg,

Z4
snd = u3uu1

−1u2fZ5
sn−1d + 2Z6

sn−1d + Z8
sn−1dg2,

Z5
snd = u3

−1uu1
−1u2

−1fZ1
sn−1d + 2Z2

sn−1d + Z4
sn−1dg2,

Z6
snd = Z7

snd = u3u−1u2
−1fZ1

sn−1d + 2Z2
sn−1d + Z4

sn−1dg · fZ5
sn−1d + 2Z6

sn−1d + Z8
sn−1dg,

Z8
snd = u3

−1uu1u2
−1fZ5

sn−1d + 2Z6
sn−1d + Z8

sn−1dg2.

We briefly describe how the first of the equations is obtained. According to Fig. 3, aZ2
snd

Z3
snd andZ6

snd=Z7
snd, we have

Z1
snd = u3uu1u2fsZ1

sn−1dd2 + 4Z1
sn−1dZ2

sn−1d + 2Z1
sn−1dZ4

sn−1d + 4sZ2
sn−1dd2 + 4Z2

sn−1dZ4
sn−1d + sZ4

sndd2g,

here the coefficientu3uu1u2 in front of the square bracket is taken into account for the inte
ions ons1. Here we do not take into account the interactions of the second neighborslx0,x3k,
x0,x4k, lx0,x5k, andlx0,x6k and also the interactions of triples of neighbors that are not two-

FIG. 3. Six essentially different possibilities at the second level fors1.
he other equations are obtained similarly. Then,
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unsx0d =
Z+

sndsx0d
Z−

sndsx0d
=

u3uu1u2fZ+
sn−1dg2 + 2u3

−1u−1u2Z+
sn−1dZ−

sn−1d + u3uu1
−1u2fZ−

sn−1dg2

u3
−1uu1

−1u2
−1fZ+

sn−1dg2 + 2u3u−1u2
−1Z+

sn−1dZ−
sn−1d + u3

−1uu1u2
−1fZ−

sn−1dg2

= u2
2u3

2u2u1
2un−1

2 sx0d + 2u1un−1sx0d + u2u3
2

u2u1
2 + 2u1u3

2un−1sx0d + u2un−1
2 sx0d

, n = 2,3, . . . .

Here we have the initial datau1=u1
2u2

2u3
2 for positive boundary andu1=u2

2u3
2/u1

2 for negative
oundary. For the free boundary we haveu1sx0d=u2

2fu2u3
2s1+u1d+2u1g / fu2s1+u1d+2u1u3

2g.
Evidently,

unsx0d =
mnssnsx0d = 1d

mnssnsx0d = − 1d
.

f we can find the limit ofunsx0d asn tends to infinity, we will find the ratio for probability of
1 to the probability of as−1d at the root of the limiting Gibbs measure.

Now we give the construction of a special class of limiting Gibbs measures for our mod(2).
e consider a Cayley treeJk below.

Let Hnssnd be the total energy ofsn with respect to the free boundary condition.
Let h:x→R be a real valued function ofxPV. Given n=1,2, . . ., consider the probabii

easuremsnd on h−1, +1jVn which is defined by

msndssnd = Zn
−1expH− bHssnd + o

xPWn

hxssxdJ .

Here, as before,b=1/kT andsn:xPVn→snsxd andZn is the corresponding partition functi

Zn = o
s̄nPVsVnd

expH− bHss̃nd + o
xPWn

hxssxdJ .

he consistency condition formsndssnd, nù1 is

o
ssnd

msndssn−1,s
sndd = msn−1dssn−1d, s4d

heressnd=hssxd ,xPWnj.
Let V1,V2, ¯ ,øn=1

` Vn=V and m1,m2, . . . be asequence of the probability measures
V1,FV2, . . . satisfying the consistency condition, whereF=h−1, +1j. Then, according to th
olmogorov theorem(see, e.g., Ref. 14), there is a unique limit Gibbs measuremh on V such tha

or everyn=1,2, . . . andsnPFVn the following equality holds:

mshsuVn
= snjd = msndssnd.

The following statement describes the conditions onhx which guarantee the consisten
ondition of measuresmsndssnd.

Proposition 3: The measuremsndssnd, n=1,2, . . .satisfies the consistency condition (4) if a
nly if for any xPV the following equation holds:

hx =
1

2
logSu2

2 u3
2u2u1

2e2shy+hzd + 2u1se2hy+2hzd + u2u3
2

u2u1
2 + 2u1u3

2se2hy + e2hzd + u2e2shy+hzd
D . s5d

ere Ssxd=hy,zj and ky,x,zl is a two level ternary neighbor.

Proof: Necessity. According to the consistency condition(4) we have
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Zn−1

Zn
o
ssnd

expH− bHn−1ssn−1d + bJ1 o
xPWn−1,

y,zPSsxd

ssxdsssyd + sszdd + bJ o
xPWn−1,

y,zPSsxd

ssydsszd

+ bJ3 o
xPWn−1,

y,zPSsxd

ssxdssydsszd+ o
xPWn−1

bhssxd + o
xPWn−1

hxsssxddJ
= expH− bHn−1ssn−1d + o

xPWn−1

hxsssxddJ .

fter simplification we have

Zn−1

Zn
o
ssnd

p
xPWn−1

exphbJ1ssxd„ssyd + sszd… + bJssydsszd + bJ3ssxdssydsszd + bhssxd + hyssyd

+ hzsszdj = p
xPWn−1

exphhxssxdj.

Let xPWn−1 andSsxd=hy,zj, sx
snd=hssyd ,sszdj. As ssnd=øxPWn−1

sx
snd, then

Zn−1

Zn
p

xPWn−1

o
sx

snd
exphbJ1ssxd„ssyd + sszd… + bJssydsszd + bJ3ssxdssydsszd + bhssxd + hyssyd

+ hzszdj = p
xPWn

exphhxssxdj. s6d

Now fix xPWn−1 and rewrite(6) for the casesssxd=1 andssxd=−1. If ssxd=1, we have

N = o
sx

snd=hssyd,sszdj

exphbJ1„ssyd + sszd… + bJssydsszd + bJ3ssydsszd + bhssxd + hyssyd + hzsszdj

= exphhxj;

nd if ssxd=−1, then

D = o
sx

snd=hssyd,sszdj

exph− bJ1„ssyd + sszd… + bJssydsszdj + bJ3ssydsszd + bhssxd + hyssyd + hzsszd

= exph− hxj.

o that

N

D
= exph2hxj. s7d

he numeratorN of the left-hand side is equal to

N = exps2bJ1 + bJ + bJ3 + bh + hy + hzd + exps− bJ − bJ3 + bh − hy + hzd + exps− bJ − bJ3 + bh

+ hy − hzd + exps− 2bJ1 + bJ + bJ3 + bh − hy − hzd

hile the denumeratorD is equal to

D = exps− 2bJ1 + bJ + bJ3 − bh + hy + hzd + exps− bJ − bJ3 − bh − hy + hzd + exps− bJ − bJ3 − bh

+ hy − hzd + exps2bJ1 + bJ + bJ3 − bh − hy − hzd.

Then the equalityN/D=exph2hxj implies (5).

Sufficiency. Assume that(5) is valid, then we have(7). From (7) we get
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o
sx

snd=hssyd,sszdj

exphbJ1ssxd„ssyd + sszd… + bJssydsszd + bJ3ssxdssydsszd + bhssxd + hyssyd

+ hzsszdj = asxdexphssxdhxj,

heressxd= ±1. This equality implies

p
xPWn−1

o
sx

snd=hssyd,sszdj

exphbJ1ssxdsssyd + sszdd + bJssydsszd + bJ3ssxdssydsszd

+ bhssxd + hyssyd + hzsszdj = p
xPWn−1

asxdexphssxdhxj. s8d

DenotingAnsxd=pxPWn−1
asxd, we have from(8)

Zn−1An−1m
sn−1dssn−1d = Zno

ssnd
msndssn−1,s

sndd.

s msnd, nù1 is a probability, we have

o
sn−1

o
ssnd

msndssn−1,s
sndd = o

sn−1

mn−1ssn−1d = 1.

From these equalities we getZn−1An−1=Zn, which means that(4) holds.
According to Proposition 3 the problem of describing the Gibbs measures is reduced

escription of the solutions of the functional Eq.(5).
Let V=h−1, +1jV. According to Proposition 1 any transformationS of the groupGq induces

shift automorphismS̃:V→V by

sS̃sdshd = ssShd,h P Gq,s P V.

y Gq we denote the set of all shifts onV. We say that a Gibbs measurem on V is translation
nvariant if for anyTPGq the equalitym(TsAd)=msAd is valid for all APF, whereF is a standar
-algebra of subsets ofV generated by cylinder subsets.

The analysis of the solution of(5) is rather tricky. It is nartural to begin with the translati
nvariant solutions wherehx=h is constant for allxPV. It is evident that a Gibbs measu
orresponding to this solution is translation-invariant. In this case from(5), we have

u = u2
2u3

2u2u1
2u2 + 2u1u + u2u3

2

u2u1
2 + 2u1u3

2u + u2u2 , s9d

hereu=e2h.
Note that this equation describes the fixed points of Eq.(4). If there is more than one positi

olution for Eq.(9), then there is more than one tranlation-invariant Gibbs measure corresp
o these solutions. We say that a phase transition occurs for model(2), if Eq. (9) has more than on
ositive solution. The number of the solutions of Eq.(3) naturally depends on the parameteb
1/kT. The phase transition usually occurs for low temperature. If it is possible to find an
alue of temperatureT* such that a phase transition occurs for allT,T* , whereT* is called a
ritical value of temperature.

Finding the exact value of the critical temperature for some models means to exactly so
odels.

II. THE PROOF OF EXISTENCE OF PHASE TRANSITIONS FOR ZERO EXTERNAL
IELD
For the caseh=0, Eq.(9) has the following form:
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u =
u3

2u2u1
2u2 + 2u1u + u2u3

2

u2u1
2 + 2u1u3

2u + u2u2 , s10d

hich is equivalent to the cubic equation

u3 + bau2 − au − b = 0, s11d

hereb=u3
2 anda=s2u1−u1

2u2d /u2.
By changing the variableu=v−sab /3d, we obtain as cubic equation9 as follows:

v3 + pv + q = 0,

here

p = −
a2b2 + 3a

3
and q =

2a3b3

27
+

a2b

3
− b.

It is well known (see, e.g., Ref. 9) that Eq.(11) has three real roots ifQ,0, where

Q = −
4a3b4 + sa4 + 18a2 − 27db2 + 4a3

108
.

n Ref. 5, it was proven thatQ,0 for all su1,u ,u3d such thatu1
2.3, u2.2u1/ su1

2−3d and

3
* ,u3,u3

** , where

u3
* =Î27 − 18a2 − a4 + sa2 − 9dÎa4 − 10a2 + 9

8a3

nd

u3
** =Î27 − 18a2 − a4 − sa2 − 9dÎa4 − 10a2 + 9

8a3 .

Proposition 4 (Ref. 5):If u1
2.3 and u2.2u1/ su1

2−3d, thenEq. (11) has three positive roo
or all u ,u1,u3 such that Q,0.

We write PR-domain to denote the set of allsu ,u1,u3d such thatu1
2.3, u2.2u1/ su1

2−3d and
,0 (see Fig. 4).

Now, we investigate the function

csud =
u3

2u2u1
2u2 + 2u1u + u2u3

2

u2u1
2 + 2u1u3

2u + u2u2

or u.0. Letu1
* ,u2

* ,u3
* be the fixed points of Eq.(10). It is not hard to show by simple calcul

hat for all su1,u ,u3d in the PR-domain(see Fig. 5), the functioncsud will be increasing and wi
ave a single positive point of inflection in the intervals1,u3

*d, whereu3
* is the largest fixed poin

It is easy to show diagrammatically(see Fig. 5), that if 0,u1,u1
* , un in Eq. (3) will mono-

onically increase tou1
* , the smallest fixed point. For valuesu1

* ,u1,u2
* , un will decrease mono

onically tou1
* . For valuesu2

* ,u1,u3
* , un will increase monotonically tou3

* . Finally, if u1.u3
* , un

ill decrease monotonically tou3
* .

As u1
2.3, thenu2u3

2/u1
2,u2u1

2u3
2 so that the smallest fixed point gives the limiting probab

atio for the negative boundary condition and the largest fixed point gives the limiting prob
atio for the positive boundary condition.

We have thus proven the following theorem:
Theorem 1: For the Ising model with ternary and binary interactions in Hamiltonian (2),
ith zero external field, the PR-domain is the region of phase transition.
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The particular case of this theorem forJ=0 was proven in Ref. 5 and the theorem forJ3=0
as proven in Ref. 6.

For q=3, we have the following theorem:
Theorem 2: For the Ising model (2) with J3=h=0 and q=3, the curveu* =3u1/ su1

2−2d in the
lanesu1,ud is a critical curve for phase transitions, namely, for an arbitrary pair of parame
u1,ud above the critical curve the phase transition takes place and for any pair of paramet
r below the critical curve there occurs a single Gibbs state.

FIG. 4. For allsu1,u ,u3d inside the surface, a phase transition occurs.

* *
FIG. 5. The largest fixed pointu3 and the smallest fixed pointu1.
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V. THE PERIODIC GIBBS MEASURES

The notions of periodic Gibbs measures, periodic Hamiltonians, and periodic config
re introduced in Ref. 15. LetGq be a free product ofq+1 cyclic groups of order 2. According
roposition 1 there is a one-to-one correspondence between the set of verticesV of the Cayley tre

q and the groupGq. Let G̃q,Gq be a normal subgroup of finite index.

Definition 4: We say that h=hhx:xPGqj is G̃q-periodic if hyx=hx for all xPGq and yPG̃q. A

ibbs measure is called G˜
q-periodic if it corresponds to G˜

q-periodic function h.
Observe that a translation-invariant Gibbs measure isGq-periodic.

Let G̃2 be the subgroup inG2 consisting of all words of even length. Clearly,G̃2 is a norma

ubgroup of index 2. In this section we considerG̃2-periodic Gibbs measure, that is perio
easures of period 2 only. The description of periodic extreme Gibbs measures on som
odels on the Cayley tree was given in Ref. 4. Here we consider a similar problem for our

o describe the periodic Gibbs measure, we begin by investigating the following equation

c„csud… = u,

here

csud =
u3

2u2u1
2u2 + 2u1u + u2u3

2

u2u1
2 + 2u1u3

2u + u2u2 .

vidently the positive roots of the equation

c„csud… − u

csud − u
= 0

escribe the periodic nontranslation-invariant states.
As we are looking for positive roots this equation has a following form:

u2u1
2su2 + u2u1

2u3
4 + 2u1u3

4du2 + u3
2su4u1

4 + 4u2u1
3 + 4u1

2 − u4du + u1
2u2su2u3

4 + u2u1
2 + 2u1d = 0.

s12d

he discriminantD of (12) is equal to

D = − 4u6u1
5su2u1 + 2du3

8 + Au3
4 − 4u6u1

5su2u1 + 2d,

here

A = s− 3u1
8 − 6u1

4 + 1du8 − 8u1
3su1

4 + 1du6 − 8u1
2s1 − u1

4du4 + 32u1
5u2 + 16u1

4.

quation(12) has two positive roots ifD.0 andu4s1−u1
4d−4u1

3u2−4u1
2.0. Evidently the las

nequality is valid foru1,1 andu2. s2u1/1−u1
2d.

The roots of equationD=0 with respect tou3, have the same sign. So they are positive w
.0 andA2−64u12u1

10su2u1+2d2.0, that isA.8u6u1
5su2u1+2d. After subsituting the value ofA,

he last inequality has the following form:

s1 − 3u1
2dsu1

2 + 1d3u8 − 8u1
3su1

2 + 1d2u6 + 8u1
2su1

4 − 1du4 + 32u1
5u2 + 16u1

4 . 0.

Factorizing the left hand side, we have

s1 − 3u1
2dsu1

2 + 1dSu2 −
2u1

1 − 3u1
2DSu2 −

2u1

1 + u1
2D2Su2 +

2u1

1 + u1
2D . 0.

his inequality has a solution when 1−3u1
2.0 and it follows thatu2.2u1/ s1−3u1

2d is the corre
ponding solution. Evidently from conditionu2.2u1/ s1−3u1

2d we have conditionu2.2u1/ s1
2 Î 2 2
u1d. Thus if u1,1/ 3 andu .2u1/ s1−3u1d, then the equationD=0 with respect tou3 has two

                                                                                                            



p
u

s for
a
a

= an
a

V
F

l
m

.7 in
R

(

s r

1

w

I e
s

I

e
r

3656 J. Math. Phys., Vol. 45, No. 9, September 2004 Ganikhodjaev, Pah, and Wahiddin

                        
ositive rootsu3
* andu3

** whereu3
* ,u3

** . In this case Eq.(12) has 2 positive roots whenu1,1/Î3,
2.2u1/ s1−3u1

2d andu3
* ,u3,u3

** .
Therefore, the following theorem is proven:
Theorem 3: For an Ising model (2) with zero external field, a phase transition occur

rbitrary su ,u1,u3d such that0,u1,1/Î3, u2.2u1/ s1−3u1
2d andu3

* ,u3,u3
** , whereu3

* andu3
**

re the positive solutions of the equationD=0.
Similarly, we have found the following assertion for the same model withq=3:
Theorem 4: For an Ising model (2) with J3=h=0 and q=3, for u1,1/Î2, the curveu*

3u1/ s1−2u1
2d in the planesu1,ud is a critical curve for phase transitions, such that for

rbitrary pair of parameterssu1,ud above the critical curve the phase transition takes place.

. THE PROOF OF EXISTENCE OF PHASE TRANSITIONS FOR NONZERO EXTERNAL
IELD

Here we solve the problem of phase transition for Ising model(2) for arbitrary externa
agnetic fieldh whenJ3=0. Then the Eq.(9) is reduced to the equation

u = u2
2u2u1

2u2 + 2u1u + u2

u2u1
2 + 2u1u + u2u2 . s13d

First of all, we prove the following lemma which is a generalization of Proposition 10
ef. 13.

Lemma: The equation

1

u2
2 ·u =

u2u1
2u2 + 2u1u + u2

u2u1
2 + 2u1u + u2u2 s14d

with u.0) has a unique solution ifuøÎ4 4/su1
2+1d.

If u.Î4 4/su1
2+1d, then there are numbersh1su ,u1d ,h2su ,u1d with 0,h1su ,u1d,h2su ,u1d

uch that Eq. (14) has three roots, whenh1su ,u1d,1/u2
2,h2su ,u1d; it has two roots if eithe

/u2
2=h1su ,u1d or 1/u2

2=h2su ,u1d and a unique solution if1/u2
2P̄fh1su ,u1d ,h2su ,u1dg.

The numbershi , i =1,2 are defined from the formula below:

hisu,u1d =
1

ui
·

u2u1
2ui

2 + 2u1ui + u2

u2u1
2 + 2u1ui + u2ui

2 ,

here u1,u2 are the solutions of the following equation:

u1
2u4u4 + 4u1u2u3 + s3u4 − u4u1

4 + 4u1
2du2 + 4u1u2u + u1

2u4 = 0. s15d

Proof: We first define

fsud =
u2u1

2u2 + 2u1u + u2

u2u1
2 + 2u1u + u2u2 .

t is easy to check that there is more than one solution to(14) if and only if there is at least on
olution to the equationx· f8sxd= fsxd which is the same as

u1
2u4u4 + 4u1u2u3 + s3u4 − u4u1

4 + 4u1
2du2 + 4u1u4u + u1

2u4 = 0.

t is a symmetric one. So, after substitution ofu+s1/ud= t, it reduces to the following:

u1
2u4t2 + 4u1u2t − fsu4su1

4 + 2u1
2 − 3d − 4u1

2dg = 0.

This equation has a positive root larger than 2 and, respectively, Eq.(14) has two positiv
2 2 2
ootsu1 andu2, whenu1.3 andu .2u1/ su1−3d. Solving the inequality
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2u1u2 + Î4u1
2u4 + u1

2u4fu4su1
4 + 2u1

2 − 3d − 4u1
2g

u1
2u4 . 2,

e have

u4su1
2 − 3dsu1

2 + 1d − 8u2u1 − 4u1
2 . 0.

vidently u1
2.3. Now solving this quadratic inequality with respect tou2, we have

2.2u1/ su1
2−3d.

Since u1 and u2 are solutions of the equationu2− tu+1=0, so u1·u2=1 and then

1su ,u1d ·h2su ,u1d=1.
Theorem 5: For Ising model (2) with J3=0 and nonzero external magnetic field, a ph

ransition occurs whenu1
2.3, u2.2u1/ su1

2−3d and for u2 which satisfies the following inequa
ies:

h1su,u1d , u2
2 , h2su,u1d,

hereh1su ,u1d and h2su ,u1d are defined in the Lemma above.
Proof: According to the Lemma, Eq.(14) has three positive different rootsu1

* ,u2
* ,andu3

* . It is
asy to show diagramatically(see Fig. 5) that if 0,u1,u1

* , un in Eq. (3) will monotonically
ncrease tou1

* , the smallest root of Eq.(14). For valueu1
* ,u1,u2

* , un will decrease monotonical
o u1

* . For valueu2
* ,u1,u3*, un will monotonically increase tou3

* . Finally if u1.u3
* , un will

ecrease monotonically tou3
* . Therefore, the rootsu1

* andu3
* of Eq. (14) are two stable fixed poin

f the recurrent equation(3). The smallest(resp. largest) fixed point gives the limiting probabilit
atio for the negative(resp. positive) boundary. Hence the theorem is proven.

In Fig. 6, it is shown that the surface such that for allsu1,u ,u2d inside it, the conditions o

FIG. 6. For allsu1,u ,u2d inside the surface, a phase transition occurs.
heorem 5 are valid.
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I. CONCLUSIONS

From Theorem 1 and Theorem 5, it follows that in the class of the translation-invarian
phase transition occurs whenu1.1, that is, the model(2) is a ferromagnetic one with respec

he binary interactionJ1 of the nearest neighboring vertices, namelyJ1.0. From Theorem 3,
ollows that in the case of nontranslation-invariant periodic state with period 2, a phase tra
ccurs whenu1,1, that is, the model(2) is an antiferromagnetic one with respect to the s
inary interactionsJ1, namelyJ1,0.
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inite size universe or perfect squash problem
Ludwik Turkoa)

Institute of Theoretical Physics, University of Wrocław, Pl. Maksa Borna 9,
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We give a physical notion to all self-adjoint extensions of the operatorid /dx in the
finite interval. It appears that these extensions realize different nonunitary equiva-
lent representations of CCR and are related to the momentum operator viewed from
different inertial systems. This leads to the generalization of Galilei equivalence
principle and gives a new insight into the quantum correspondence rule. It is pos-
sible to get transformation laws of the wave function under Galilei transformation
for any scalar potential. This generalizes the mass superselection rule. There is also
given a new and general interpretation of a momentum representation of the wave
function. It appears that consistent treatment of this problem leads to the time-
dependent interactions and to the abrupt switching-off of the interaction. ©2004
American Institute of Physics.[DOI: 10.1063/1.1782671]

. INTRODUCTION

A square well potential, although this is the simplest analytically solvable quantum mod
e used as a tool to investigate more involved quantum peculiarities. It was used recently
ifferent phenomena as quantum fractals,1,2 quantum chaos3 or wave-function revivals.4,5 It can
lso be used as an approximation to experimentally realized semiconductor quantum well
icromaser cavities with atomic rubidium.6,7

The Schrödinger equation with a square well potential can also be considered as a mo
uantum squash. An infinite well corresponds to perfectly rigid and perfectly resistant side

finite square well potential corresponds to perfectly rigid but not perfectly resistan
alls—a high energy squash ball breaks through the wall. A physicist is here like a passive
e or shef=ssdheg can use a racket only as a measurement apparatus—to register the energ
omentum of the ball.

A simplicity of the model may be misleading. A closer inspection(see, e.g., Refs. 8–10) shows
hat the infinite potential well has mathematical traps which, when neglected, lead to con
ions or misinterpreted results.

The aim of this paper is to study physical consequences of different self-adjoint extens
he “momentum” operator for a quantum squash. The “momentum” means here the diff
perator −i"¹. In the case of square integrable functions onRn sn=1,2,3d this operator is sel
djoint—so it is interpreted as the momentum operator. A situation is much more involve
article in a box. There are infinitely many self-adjoint extensions of the “momentum” op
ifferent extensions correspond to different boundary conditions of functions from the dom

he operator and they have different spectra. A question arises which of these extension
hysical momentum operator and what are physical notions of other self-adjoint extension
perator −i"=?

It will be shown that all those self-adjoint extensions have physical meanings. Th
losely related to the Galilei transformed reference frames moving with different velocitie
espect to the primary frame. The primary frame is chosen as the frame with a time-inde
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otential. This means that our squash play does not move on the squash field. When(s)he change
his passive strategy and starts to run(with a constant velocity of course) then (s)he observe
hifted momenta of the squash ball. This picture is in a perfect agreement with a physica
ical” intuition. It appears also that when(s)he solves corresponding Schrödinger equation th
ransformed wave function behaves according to projective representations of the Galilei

A role of projective representations of the Galilei group was well established long ago.11–16All
esults were then obtained with Galilei-invariant potentials. For one particle this was equiva
free-particle case. It appears that basic results, the Bargmann superselection rule inclu

e reproduced for any potential.
Finally, we are going to clarify the momentum representation puzzle. Let us consider a

layer confined to the finite region bounded by perfectly rigid and perfectly resistant side
or the player this squash-room is like a finite Universe. The spectrum of the momentum o

s discrete in this Universe. Since according to basic rules of quantum mechanics the only
esults of the momentum measurement are eigenvalues of the corresponding observable
entum distribution should be a discrete one. However, there is a common procedure(see, e.g
efs. 17 and 18) to take the Fourier integral transform of the wave function. This Fourier t

orm is interpreted as the momentum representation. This inconsistency was also observe
but authors did not push the problem further.

One can show that both momentum representations have well established physical
ations, although both describe different physical situations. The Fourier integral transforma
he wave function is simply related to the abrupt switch-off of the potential. As the infinite s
ell potential can be used as a model for the perfect squash so the Fourier integral of the h
scillator wave function can be used for the quantum sling theory.

We begin by consideration of the notion of momentum distributions. It appears that
entum distribution of the wave function understood as a Fourier transform is directly rel

he solution of Schrödinger equation with a time-dependent interaction. The Fourier tra
spW ,td of the wave functionCsrW ,td is the probability amplitude to measure at timet.0 the
omentumpW when an interaction was switch-off att=0. This gives also a new insight into
avid–Goliath fight, as is presented in Sec. II B.

In Sec. III some necessary mathematical preliminaries are given. These are related
djoint extensions of differential operatorsid /dx and d2/dx2. This material does not pretend
ive a new insight into the problem, but collects some mathematical facts not always know
hysical community. An analysis of stationary solutions of the infinite square well poten
iven as an example in Sec. III A.

Section IV deals with a physical interpretation of self-adjoint extensions of the op
id /dx in the Hilbert space of square integrable functions on a finite interval. First an anal

he notion of the quantum momentum observable is performed. An operator can be identifi
he physical momentum only if it transforms under Galilei transformation similarly to the cla
omentum. This assumption allows one to add physics to all self-adjoint extensions of
rator −id /dx. These extensions correspond to momenta seen by moving observers from d

nertial systems. It will be shown that those different extensions realize different nonu
quivalent representations of Canonical Commutation Relations.

A natural problem which arises at that moment is to find how different moving observe
uantum mechanics from their systems. It is well known since the papers of Bargmann, Inö
igner11,12 that the free Schrödinger equation is Galilei invariant provided that wave fun

ransforms under a projective representation of the Galilei group. Section V deals with thi
em and generalizes a concept of Galilean covariance to any scalar potential. Now, a pro
he momentum distribution is reexamined. Solutions of the infinite potential well are tak
xamples. It appears that momentum distributions are more tricky as it seemed before. In
ar, a mathematical identity,
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sin x =
1

2i
seix − e−ixd,

s not so obvious in a quantum word. This is explained in Sec. V C.
Final conclusions are given in Sec. VI.

I. MOMENTUM DISTRIBUTIONS

It is common knowledge that there is the discrete energy spectrum of a quantum
laced in an infinite square well potential. A one-dimensional potential of the form

Usxd = H0 for 0 ø x ø a,

` for x everywhere else,
s1d

ith boundary conditions

cs0d = csad = 0, s2d

eads to the solutions

cNsxd = 5Î2

a
sin

Np

a
x for 0 ø x ø a,

0 for x everywhere else,

s3d

hereN is an arbitrary positive integer.
Corresponding energy levels are

EN =
p2"2

2ma2N2. s4d

et us consider the Fourier integral of the wave function(3),

c̃Nskd =
1

Î2p
E

0

a

dxcNsxde−ikx. s5d

ne gets

c̃Nskd = − Îpa
2N

a2k2 − N2p2e−iak/25i sin
ak

2
for N even,

cos
ak

2
for N odd.

s6d

his mathematical expression is usually(see, e.g., Refs. 17 and 18 and a lot of other textbo)
nterpreted as the physical momentum(with p="k) representation of the wave function. Acco
ng to such an interpretation the probability distribution of the measurement of the mom
ielding a result betweenp andp+dp is

PNspd =
4pa"3N2

sa2p2 − "2N2p2d25sin2ap

2"
for N even,

cos2
ap

2"
for N odd.

s7d

his gives an average value of the momentum equal to zero, and an average value of the

omentum is
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kp2lN =E
−`

+`

dpp2PNspd =
N2p2"2

a2 . s8d

his is in agreement(on average) with (4). This is, however, not an answer for the question a
he squash ball momentum. Besides that, there is a question about the energy conservatio
t possible to get any value of the momentum in the state with a given value of the energ(4)?

For the player in h(is)er finite Universe 0øxøa the only allowed values of a momentum
hose which are eigenvalues of the corresponding self-adjoint observable. Using the trivial

cNsxd =Î2

a
sin

Np

a
x =

1

2i
Î2

a
sesipN/adx − e−sipN/adxd, s9d

ne gets a simple conclusion that allowed values of momenta are ±Np" /a. This is of course i
erfect agreement(not only on average) with (4).

Such kinds of contradictions led recently to the conclusion8 that the Fourier integral “is just
athematically equivalent version of the same object,not the momentum representation wa

unction.”
As we will see later, the use of Eq.(9) as a plane waves superposition is an oversimplifica

f the problem. There is, however, a surprisingly simple answer to a question about the p
otion of Eq.(6).

. General momentum distribution

Let us consider a time-dependent Hamiltonian,

Ĥ =5
"2

2m
D + UsrWd for t ø 0,

−
"2

2m
D for t . 0.

s10d

et c be any solution of the Schrödinger equation,

i"
] c

] t
= −

"2

2m
Dc + UsrWdc.

general form of the free Schrödinger equation is a wave packet,

E d3pgspWde−isp2/2m"dtesi/"dpW·rW.

function

CsrW,td = 5csrW,td for t ø 0,

E d3pgspWde−isp2/2m"dtesi/"dpW·rW for t . 0,
s11d

s a solution of the Schrödinger equation

i"
] C

] t
= ĤC,

W
nd the wave functionCsr ,td is continuous att=0. This continuity condition gives
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csrW,0d =E d3pgspWdesi/"dpW·rW. s12d

f a function c is a stationary solution then

cEsrW,td = fEsrWde−siE/"dt,

ith fE satisfying a stationary Schrödinger equation

−
"2

2m
DfE + UsrWdfE = EfE.

quation(12) now gives

fEsrWd =E d3pgspWdesi/"dpW·rW. s13d

So we have gotten a general interpretation of the Fourier transform of a wave functio
ives the momentum distribution of a particle which was influenced by a potential and att
0 was suddenly freed. There is no question here about the energy conservation becau

ime-dependency of the Hamiltonian(10).
Let us take as an example a well known Biblical story.

. How Goliath was defeated by David

David’s sling can be considered as a two-dimensional quantum rotator with a potentia

UsrWd =
1

2
mv2sx2 + y2d.

tationary solutions corresponding to the energy

En1,n2
= "vsn1 + n2 + 1d

re given by

fn1,n2
sx,yd = Cn1,n2

e−smv/2"dsx2+y2dHn1
SxÎmv

"
DHn2

SyÎmv

"
D . s14d

f Goliath were hit directly by a stone still on a cord then he would absorb an impact energyEn1,n2
.

ut if a stone was freed from the sling then its momentum distribution was given by the F
ransform of the function(14). So the probability distribution to have a stone with a momen
etweenp andp+dp is proportional to

e−spx
2+py

2d/mv"Hn1

2 S px

Îmv"
DHn2

2 S py

Îmv"
D . s15d

he corresponding impact energy isp2/2m, in general, different fromEn1,n2
. It is easy to chec

hat it is more probable to get the impact energylower than En1,n2
. However there is a finit

lthough exponentially decreasing, probability that a high momentum stone would be throw
hould notice that such an effect is impossible for a classical(i.e., not-quantum) sling. An expo
entially small probability was not a problem in the considered case taking into account D

rotector. The crucial point was here a quantum nature of the sling.
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II. MATHEMATICAL PRELIMINARIES

A cornerstone of quantum mechanics is a precise mathematical interpretation to the n
bservables. To each observable there corresponds a self-adjoint operator in the Hilbert sta19 For
nbounded symmetric operators there was a nontrivial problem to find all self-adjoint exte
ut it was solved long ago.20–22 To give a careful mathematical definition of operators relate
bservables is not a matter of a mathematical pedantry. Even in the simplest case of one
ional infinite square well a lack of precision leads to obvious paradoxes.9

Let us consider a differential operator −id /dx in the Hilbert spaceL2s0,ad. Since

E
0

a

dxf̄
dg

dx
= f̄gu0

a −E
0

a

dx
df̄

dx
g,

here are infinitely many self-adjoint extensions of the operator −id /dx. These extensions a
arametrized by a continuous parametersP f0,2pd and are defined on domains

Ds = hf:fsad = eisfs0dj. s16d

he corresponding eigenvalues are

ln
ssd =

s

a
+

2pn

a
, s17d

nd normalized eigenfunctions,

fn
ssdsxd = 5 1

Îa
eiss/adxeis2pn/adx for 0 ø x ø a,

0 for x everywhere else,

s18d

heren=0, ±1, ±2, . . ..
Self-adjoint operators,

p̂ssd = − i"
d

dx
,

efined on the domainsDs will henceforth be called thes-momentum operator. Standard so
ions of the infinite potential well take as the “physical momentum” the operatorp̂s0d and othe
xtensions are simply rejected. We are going to show that others-momenta have an also w
stablished physical meaning.

To consider the energy operator one should look for a self-adjoint extension of the o
2/dx2. Here the situation is more involved. It was shown23,24 that domains of self-adjoint exte
ions are given by a set of boundary conditions,

a11fs0d + b11fsad − a12f8s0d − b12f8sad = 0, s19ad

a21fs0d + b21fsad − a22f8s0d − b22f8sad = 0, s19bd

ith coefficientsai j andbkl satisfying

a11ā12 − a12ā11 = b11b̄12 − b12b̄11, s20ad

a21ā22 − a22ā21 = b21b̄22 − b22b̄21. s20bd

n the case of the infinite potential well(1) a natural choice is to impose on the wave funct

oundary conditions
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fs0d = fsad = 0, s21ad

hich are consistent with the continuity of the wave function. This choice corresponds to
ientsai j andbkl,

a11 = 1, b11 = − 1, a12 = 0, b12 = 0, s21bd

a21 = 1, a22 = 0, b21 = 0, b22 = 0. s21cd

his means that functions satisfying boundary conditions(21a) form a domainDP of the self-
djoint extension of the operatord2/dx2. In the case of a particle on a circle a natural choice

mpose on the wave functions boundary conditions

fs0d = fsad, f8s0d = f8sad. s22ad

his choice corresponds to coefficientsai j andbkl,

a11 = 1, b11 = − 1, a12 = 0, b12 = 0, s22bd

a21 = 0, a22 = 1, b21 = 0, b22 = − 1. s22cd

t is remarkable that the intersection of all admissible domains ofs-momenta is

ù
s

Ds = hf:fsad = fsbd = 0j = DP. s23d

his property makes the extension(21a) exceptional, at least from the point of view of momen
perators. A kinetic termd2/dx2 with this domain is well defined in(not on!) domains of al
-momenta.

DP is a dense set in the Hilbert spaceL2s0,ad as the domain of a self-adjoint operator. This
s too small, however, to define on it a self-adjoint extension of the operatorid /dx. But the
roperty(23) together with the general theorem,25 any function from the domain of a self-adjo
peratorA can be expanded in a uniformly convergent series of eigenfunctions of this op,
llows us to write the following corollary.

Corollary 1: Any energy eigenfunction (3) can be expanded in a uniformly convergent
f eigenfunctions of anys-momentum.

We also have the following corollary.
Corollary 2: s-momentum eigenfunctions (18) cannot be represented as uniformly conv

eries of energy eigenfunctions.
Both corollaries can be stated as follows.
In the infinite potential wells-momentum representations of stationary states are al

niformly convergent. Energy representations ofs-momentum eigenfunctions are not unifor
onvergent.

Let us make a mathematical exercise to calculate the following.

. s-momentum representation of stationary states

We have

Î2

a
sin

Np

a
x = eiss/adx 1

Îa
o

n=−`

+`

cnssdeis2pn/adx. s24d
oefficientscnssd are given here as
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Î2

a
E

0

a

dx e−iss/a+2pn/adx sin
pN

a
x = pNÎ2

e−iss− 1dN − 1

ss + 2pnd2 − p2N2 . s25d

t is convenient to discuss cases of even and oddN separately.
If N=2r we can write

cnssd = − 4iprÎ2e−iss/2d
sin

s

2

ss + 2pnd2 − 4p2r2 . s26d

special care is needed when the nominator of this expression is equal to zero. Fors=0 one get
hen

cns0d =
1

iÎ251 for n = r ,

− 1 for n = − r ,

0 in other cases.

s27d

fter substitution to Eq.(24) this gives a consistency check,

c2rsxd =
1

2i
Î2

a
seis2pr/adx − e−is2pr/adxd. s28d

or nonzeros we have

c2rsxd = − 4pirÎ2

a
e−iss/2deiss/adx sin

s

2 o
n=−`

+`
eis2pr/adx

ss + 2pnd2 − 4p2r2 . s29d

f N=2r +1 we can write Eq.(25) as

cnssd = − 2ps2r + 1dÎ2e−iss/2d
cos

s

2

ss + 2pnd2 − p2s2r + 1d2 . s30d

or s=p one gets similarly, like in Eq.(27),

cnspd =
1

iÎ251 for n = r ,

− 1 for n = − r − 1,

0 in other cases.

s31d

his gives, similarly like in Eq.(28),

c2r+1sxd =
1

2i
Î2

a
seif2sr+1dp/agx − e−if2sr+1dp/agxd. s32d

or sÞp we have

c2r+1sxd = − 2ps2r + 1dÎ2

a
e−iss/2deiss/adxcos

s

2 o
n=−`

+`
eis2pn/adx

ss + 2pnd2 − p2s2r + 1d2 . s33d

ll these mathematical expansions from Eqs.(28), (29), (32), and (33), would have a physic
eaning with a satisfactory physical interpretation ofs-momenta. This will be done in the ne

ection. It should be now noted that the choices=0 gives expansions of the potential w
tationary states into momentum eigenfunctions. The momentum spectrum is given then
17) with s=0. An elusively simple equation(9) is not alwaysa momentum expansion beca

p /a are allowed momenta only for evenN. Only in such cases a stationary state can be visual-
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zed as the superposition of two waves with opposite momenta. For oddN the momentum expa
ion is

c2r+1sxd = − 2ps2r + 1dÎ2

a
o

n=−`

+`
eis2pn/adx

4p2n2 − p2s2r + 1d2 , s34d

ith a much richer structure.
A more detailed analysis of this problem will be performed in Sec. V C.

V. MOMENTUM SEEN FROM THE MOVING REFERENCE FRAME

We are going to find the physical meaning of different self-adjoint extensions of the op
id /dx. It is a standard procedure to identify this operator with the translation generator. It
nough, however, to relate this to the physical momentum. The same differential operato
lso related to a component of the angular momentum even for the same boundary cond

Let us consider as an example the operator −i"d/dx in the Hilbert spaceL2s0,2pd defined on
he domain

D0 = hf:fs2pd = fs0dj. s35d

spectrum of this operator,

ln
s0d = n", s36d

nd normalized eigenfunctions,

fn
s0dsxd =

1
Î2p

einx, s37d

re the same both for the momentum in the intervals0,2pd as for the third component of t
ngular momentum when the variablexP s0,2pd is interpreted as an angular variable.

To get a momentum operator proper transformation properties are needed, specific
orresponding classical variable. Let us consider two coordinate systemsOsx,td and O8sz ,td
elated by the Galilei transformation

x = z + Vt; t = t. s38d

he following discussion is based on the “passive point of view” when the same sys
bserved by different observersA in O andA8 in O8 having different relations to the system.

Let −i"d/dx be a momentum operator in the systemO and let fl be an eigenfunction of th
omentum operator associated with the eigenvaluel. The momentum operator should fulfill t

ollowing conditions.

(i) A momentum operator has the same structure in all inertial systems, i.e.,

− i"d/dz is a momentum operator in the coordinate systemO8. s39ad

ii ) A physical state with a defined momentum in one inertial system has a definite mom
in any inertial system, i.e.,

fl is transformed intof̃ l̃:− i"
df̃l̃

dz
= l̃ f̃ l̃. s39bd

iii ) Eigenvalues of the momentum operator transform under the Galilei transformatio
their classical counterparts, i.e.,

˜
l = l − mV. s39cd
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We make an ansatz,

f̃ l̃sz,td = eigsz,tdfsz + Vtd. s40d

his gives

− i"
df̃

dz
= "

dg

dz
eigf − i"eigdfl

dx
= "

dg

dz
f̃ + l f̃ = l̃ f̃ . s41d

he correspondence rule(39c) gives

"
dg

dz
+ l = l − mV. s42d

general solution has a form

gsz,td = −
mV

"
z + Tstd, s43d

hereT is an arbitrary function of the variablet.
Starting from the consistency conditions(39a)–(39c) we have obtained a general transfor

ion rule for momentum eigenfunctions under the Galilei transformation

f̃l−mVsz,td = e−i„smV/"dz−Tstd…flsz + Vtd. s44d

ecause of properties of self-adjoint operators this rule gives transformation rules for any
rom the Hilbert space.

If the momentum operator has a point spectrum, then its eigenfunctions form a ba
ilbert space. This is a case for theL2s0,ad space. Any elementu of this space can be expand
s

usxd = o
l

cnf̃lsxd. s45d

t follows from this that an observer from the Galilei transformed reference frame(38) sees thi
ector as

ũsz,td = e−ismV/"z−Tstddo
l

cnflsz + Vtd = e−i„mV/"z−Tstd…usz + Vtd. s46d

function T is fixed by subsidiary conditions fulfilled by the functionu. It will be shown in Sec
that for one particle Schrödinger equation a functionTstd has a form −mV2t /2.

A result (46) can be easily generalized to the case of a continuous spectrum of the mom
perator. That is a standard mathematical procedure21,22,26 equivalent to the replacement of
um in Eq.(45) by the Fourier integral.

For the moment we restrict ourselves to the following.

. Momentum inside the infinite potential well

The momentum observable “at rest” is −i"d/dx with the domain

D0 = hf:fsad = fs0dj. s47d

oundary conditions in the moving reference frameO8sz ,td are given at pointsz=−Vt and
=−Vt+a. Using transformations rules given by Eqs(41) and(43) one gets the boundary con

˜
ions for the functionf,
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f̃s− Vt + a,td = e−ismV/"daf̃s− Vt,td. s48d

his gives us a direct interpretation ofs-momenta:s-momentum is the momentum observ
easured by the observer moving with a velocity V such that

s = −
mV

"
a mod 2p. s49d

o make thes-momentum a real quantum mechanical momentum one should check the val
anonical Commutation Relations(CCR) of a momentum and a position operator in our sys

n general, a problem of CCR on the finite interval is far from being obvious.27 As opposed to th

ntire real line case where both positionX̂ and momentumP̂ operators are unbounded, here

peratorX̂ is bounded in the Hilbert spaceL2s0,ad whereas the operatorP̂=−i"] is unbounded

his leads to technical troubles related to the domainDsfX̂, P̂gd of the commutatorfX̂, P̂g. The
omain where CCR are fulfilled is

DsP̂X̂d ù DsX̂P̂d, s50d

hereDsP̂X̂d andDsX̂P̂d are domains of operator productsP̂X̂ and X̂P̂ correspondingly.

The domainDsP̂X̂d is

DsP̂X̂d = hf:sX̂fd P DsP̂dj, s51d

and the domain of the productX̂P̂ is equal here to the domain of the momentum operator be
of the boundedness of the position operator.

For thes-momentump̂ssd the domainDs is given by(16). Then

DsfX̂,p̂ssdgd = hf:sX̂fdsad = eissX̂fds0dj ù hf:fsad = eisfs0dj = hf:fsad = fsbd = 0j. s52d

o CCR are realized on the dense domain inL2s0,ad. This domain does not depend on
-realization of the momentum operator and coincides with the domainDP (23) of the energ
perator.

Different s-momenta, as corresponding to unitary nonequivalent projective representa
he Galilei group, correspond to different unitary nonequivalent representations of CCR a
ll are realized on the same dense domainDP.

Coming back to our quantum squash model: a player running with the velocityV sees
quash ball havings-momentum.s is given here by Eq.(49). H(is)er momentum eigenfunctio
ake on the form

f̃ nsz,td = e−ismV/"dzeis2pn/adsz+Vtd = esi/"ds2pn/a−mVdzeis2pn/adVt. s53d

t is also interesting to look for solutions of the infinite potential well observed by a ru
layer. This will be the subject of the next section.

. SCHRÖDINGER EQUATION SEEN FROM THE MOVING REFERENCE FRAME

Let us consider a particle subjected to the influence of a time-dependent potentialU. In the
oordinate systemOsx,td the Schrödinger equation takes on the form

i"
] C

] t
= −

"2

2m

d2C

] x2 + Usx,tdC. s54d

his equation is obviously not Galilei-invariant unless the potential is a trivial constant. A t
rocedure is to investigate physical consequences of the symmetry group starting fr

ymmetry-invariant equations. In the case of the Galilei(or Poincaré) group this leads to a free
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article wave function realizing a unitary representation of the group. For the Galilei group a
chrödinger equation one gets11–14 that only nontrivial projective representations are phys

ealizations of the symmetry.
We are going to consider a more general approach based on the equivalence of al

oordinate systems. This Galilean equivalence principle demands that all laws of physics
ame form in different frames connected by the Galilei(or Poincaré for relativistic theory) trans-
ormations. We derive from the postulates that “the Galilei transformation is true” and
chrödinger equation is true” the transformation law of wave function for any scalar poten
e do what Galilei would do, “if Galilei had know quantum mechanics.”28

An observer in the reference frameO8sz ,td sees the potentialU as

Ũsz,td = Usz + Vt,td. s55d

t is assumed here that the potential is a scalar with respect to the Galilei transformation(38). The

quivalence principle demands that a wave functionC̃sz ,td viewed by an observerA8 in the
oordinate systemO8 satisfies the Schrödinger equation

i"
] C̃

] t
= −

"2

2m

d2C̃

] z2 + Ũsz,tdC. s56d

n ansatz,

C̃sz,td = eiusz,tdCsz + Vt,td, s57d

ives

] C̃

] t
= ieiu] u

] t
C + eiu] C

] x
V + eiu] C

] t
,

] C̃

] z
= ieiu] u

] z
C + eiu] C

] x
,

]2C̃

] z2 = ieiu ]2u

] z2C − eiuS ] u

] z
D2

C + 2ieiu] u

] z

] C

] x
+ eiu]2C

] x2 .

e see that Eq.(56) is fulfilled if

i"
] C

] x
V = −

"2

2m
2i

] u

] z

] C

] x
, s58ad

nd

− "
] u

] t
=

"2

2m

m2

"2 V2. s58bd

solution of Eqs(58a) and (58b) takes on the form

usz,td = −
m

"
Vz −

mV2

2"
t + CsVd. s59d

o wave functions in different inertial reference frames connected by the Galilei transfor
iC
38) are connected(up to the constant phase factore ) by the relation
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C̃sz,td = e−si/"dsmVz+smV2/2dtdCsx,td. s60d

e have obtained the same factor as obtained by Bargmann12 for a free Schrödinger partic
ubjected to the Galilei transformation. This factor leads to the mass-superselection rule w
athematically due to the fact that projective(ray) representations of the Galilei group are
nitary equivalent to the usual representations.13

. Stationary states seen from the moving reference frame

Let us consider now a particle in a static potentialUsxd described by a stationary wa
unction,

Cnsx,td = cnsxde−si/"dEnt, s61d

−
"2

2m

d2cn

dx2 + Usxdcnsxd = Encnsxd. s62d

ccording to the general rule(60), this state when viewed by a moving observer from the r
nce frameO8sz ,td is described by a wave function,

C̃nsz,td = e−si/"dmVzcnsz + Vtde−si/"dsEn+mV2/2dt. s63d

ne should note that this is not an energy eigenstate. This follows, at least formally, from

hat Galilei transformed potentialŨsz ,td is now time dependent. The energy, however, is
onserved. To check this let us calculate an average value of the energy for the state des
he wave function(63). It is given as

kEln = i"E dzC̃n
*sz,td

]

] t
C̃nsz,td. s64d

aking into account that solutions of Eq.(62) are real one obtains then

kEln = En +
mV2

2
. s65d

his result seems to be surprising even in the simplest case of a free particle with the mo
p. Taking into account that the energyE=p2/2m and the momentum is Galilei transformed tp

mVone should expect in Eq.(65) a subsidiary term of the form −pV. However, this not the cas
nergy p2/2m is “produced” by a particle with the momentum ±p. A real stationary state is
uperposition of two waves corresponding to opposite momenta ±p. They are Galilei transforme
o p7mV correspondingly and give contributions to the energyp2/2m+mV2/27pV. These ar
dditive contributions to the total energy so terms ±pv cancel each other. This remark give
erfect agreement of Eq.(65) with our classical intuition although, as we will see later, does
lways agree with a quantum reality.

. Infinite potential well seen from the moving reference frame

When the potential well(1) is observed from the moving reference frameO8 it is seen as

Usz + Vtd = H0 if − Vt ø z ø a − Vt,

` if z ¹ k− Vt,a − Vtl.
s66d
he wave function satisfies boundary conditions
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C̃s− Vt,td = C̃sa − Vt,td = 0. s67d

he solution(63) has now a form

C̃Nsz,td = 5Î2

a
e−si/"dmVz sin

Np

a
sz + Vtde−si/"dssp2"2/2ma2dN2+mV2/2dt if − Vt ø z ø a − Vt,

0 if z ¹ k− Vt,a − Vtl.

s68d

hereN=1,2, . . ..
This solution can be written in the region −Vtøzøa−Vt as a superposition of two pla

aves:

C̃Nsz,td = cs+d,Nsz,td − cs−d,Nsz,td, s69ad

here

cs+d,Nsz,td =
1

2i
Î2

a
e

i
"

sNp"/a−mVdze−si/2m"dsNp"/a − mVd2t, s69bd

cs−d,Nsz,td =
1

2i
Î2

a
e−si/"dsNp"/a+mVdze−si/2m"dsNp"/a + mVd2t. s69cd

his decomposition confirms our semiclassical understanding of the quantum problem. A
emiclassical understanding does not quite agree with the mathematics behind the scene

. Moving observer measures momentum in the well

A measurement of an observable is mathematically equivalent to the spectral decom
f the wave function into corresponding eigenfunctions. A general mathematical decomp

nto momentum eigenfunctions was done in Sec. III A. A physical problem “what are po
omenta measured by a moving observer in the infinite potential well?,” will be solved

(is)er wave functionC̃Nsz ,td (68) will be expanded into h(is)er momentum eigenfunctio

fnsz ,td (53),

C̃Nsz,td = o
n=−`

+`

cn
sNdstd f̃ nsz,td. s70d

oefficientscn
sNd are calculated as

cn
sNdstd =

Î2

a
e− i

"
ssp2"2/2ma2dN2+mV2/2dtE

−Vt

−Vt+a

dz sin
Np

a
sz + Vtde−is2pn/adsz+Vtd

= es−i/"d„p2"2/2ma2dN2+mV2/2t 35−
2NÎ2

s4n2 − N2dp
for odd N,

±
1

iÎ2
for evenN,n = ± N/2,

0 for evenN,n Þ N/2.

s71d
his givesfor even Na simple expression, consistent with a semiclassical approach,
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C̃Nsz,td =
1

2i
Î2

a
fesi/"dspN"/a−mVdze−sim/2"dsV − p"N/mad2t − e−si/"dspN"/a+mVdze−sim/2"dsp"N/ma+ Vd2tg.

s72d

he casefor odd N is more involved and the momentum expansion(70) takes on the form

C̃Nsz,td =
2

pN
Î2

a
e−ismV/"dze−si/"d„sp2"2/2ma2dN2+mV2/2…t

−
2N

p
Î2

a
e−ismV/"dze−si/"d„sp2"2/2ma2dN2+mV2/2…to

n=1

+`
1

4n2 − N2feis2pn/adsz+Vtd + e−is2pn/adsz+Vtdg.

s73ad

his can be also written as

C̃Nsz,td =
4N

p
Î2

a o
n=−`

+`
e−isp2"/2ma2dsN2−4n2dt

N2 − 4n2 esi/"ds2p"n/a−mVdze−sim/2"ds2p"n/ma− Vd2t, s73bd

here contributions from stationary plane waves states are explicitly selected. We shall c
his time on a “stationary plane wave state” a plain wave with an explicit time dependence
unction of the form

e−isp2/2m"dtesi/"dpW·rW. s74d

here is a striking difference in the behavior of odd- and even-N statesC̃N. Any evenN state is a
uperposition of two stationary plane waves states, while an odd-N state cannot be represented
superposition of stationary plane wave states. An underlying mechanism is the same whi
ifference between Eqs(28) and (34)—allowed momenta in the infinite well are not always
ame as formal arguments of the energy eigenfunctions(3).

This can be changed with a change of boundary conditions(2). If they are replaced b
eriodic-type conditions(22a),

cs0d = csad, c8s0d = c8sad, s75d

hen eigenfunctions of the Hamiltonian are

Î2

a
sin

2Np

a
x, Î2

a
cos

2Np

a
x. s76d

e see that for such boundary conditions allowed momenta in the infinite well are alwa
ame as formal arguments of energy eigenfunctions and any state(76) is a superposition of tw
lane waves with the definite momenta. So, in a sense, a situation of periodic boundary co

s “better” than for boundaries(3).
It is easy to create a “worse” situation. To this end it is enough to take antiperiodi

oundary conditions,

cs0d = − csad, c8s0d = − c8sad. s77d
hen eigenfunctions of the Hamiltonian are
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Î2

a
sin

s2N + 1dp
a

x, Î2

a
cos

s2N + 1dp
a

x. s78d

or such boundary conditions allowed momenta in the infinite well are never the same as
rguments of energy eigenfunctions and there is no state(78) as a superposition of two pla
aves with the definite momenta.

I. CONCLUSIONS

We performed a careful analysis of the notion of an observable related to the physic
entum. For the beginning one should identify a self-adjoint operator connected to this no
uantum mechanics defined on a finite interval a situation is more complicated than in the
n unrestricted theory onR because there is a continuum(16) of self-adjoint extensions of th
ifferential operatorid /dx.

If you want to go beyond an argument that −i"d/dx is a physical momentum when it
ssigned to the letter “p,” and it is an angular momentum when assigned to the sign “lz,” then
ppropriate transformation properties must be taken into account. In a similar manne
umbers can be a finite three-elements set or components of a three dimensional vector.
epends on assumed transformation properties with respect to rotations. In the moment

ransformation properties are given(in a nonrelativistic approach) by the Galilei group as wa
one by conditions(39a)–(39c). All this together, supplemented with the equivalence of all ine
oordinate systems, led to different realizations of the momentum operator in the
olume—in Sec. V C. Those different realizations have different spectra. This is quite o
rom the physical point of view.

Such an approach, based on a generalized correspondence principle(39a)–(39c), gave a phys
al interpretation of all self-adjoint extensions of the operator −i"d/dx. It was also shown th
hose different extensions realize different nonunitary equivalent representations of CCR
niversal dense domain.

Obtained results can be generalized for a three dimensional rectangular box and the
um operator −i"¹.

Results of Sec. V show that important physical properties, related to transformation l
ave functions, can be obtained under a much weaker assumption than was done in the
ondition of Galilei invariance, widely used to obtain the mass superselection rule, is repla
(generalized) Galilei equivalence principle. This allows us to go beyond a free particle t
nd gives results also for an arbitrary scalar potential.

The transformation law(63) can be treated as a realization of different self-adjoint exten
f the Hamiltonian. This is clearly visible in the infinite potential well where Eqs.(19) and (20)
ive different self-adjoint extensions of the operatord2/dx2. However, a situation here is not
imple as in the case of momentum operators. A structure of self-adjoint extensions of the
2/dx2 is much richer than in the case of the momentum operator. Only a part of those ext
an be related to the Galilei transformations and these are done by Eq.(68).

Results related to the momentum distribution, obtained in Secs. II and V C, need som
ents. We have shown that the Fourier integral of the stationary wave function is directly

o the time-dependent dynamics given by Eq.(10). This gives a direct interpretation of that, wh
s usually called the “momentum representation of the wave function” or the “wave funct

omentum space.” This interpretation is different from what is usually found in textboo
imple statement that a wave function in momentum space,

FspW ,td =E d3rCsrW,tde−si/"dpW·rW, s79d

s a probability amplitude to measure the momentumpW at time t is simply not true!It sometime
easonable, for technical reasons, to use a momentum representation of the wave function

ecause of its mathematical equivalence to the wave function.
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There is an exception in the “finite Universe” with dynamics defined on a finite interva
s introduce here two notions of momentum representation. The first is analogous to the p
ne. You take the Fourier integral and you obtain a dynamics as in Eq.(10). This means that
=0 all impenetrable walls vanish and you are left with a free particle. Such a situation is u
he HBT effect,29 originally invented to determine the dimensions of distant astronomical ob
his method is widely used in high energy hadronic interaction to obtain information abo
eometric properties of the source. Multi-pion and photon spectra provide precise infor
bout reaction space time geometry in hadron–hadron and heavy ion collisions.30,31

Another concept of momentum representation—let us call it the “momentum distributi
eans to expand a wave function into stationary plane wave states(74). It was shown in Eq.(72)

hat this was possible for even-N states and impossible for odd-N states.
Such a momentum distribution in the “infinite Universe” would mean that

CsrW,td =E d3pFspW ,tdesi/"dpW·rWe−isp2/2m"dt, s80d

hich is in general not possible.
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By using the method of Helffer and Sjöstrand to construct Moyal projections, we
extend the almost invariant subspace theory to the semiclassical context. Applica-
tions to the semiclassical limit for two component Klein–Gordon Hamiltonian are
given. More precisely, under the conditions that the potential is analytic and its
eigenvalues never cross we prove that the scattering matrix is block diagonal up to
exponentially small errors. Also, we show how the existence of almost invariant
subspaces leads to the existence of quasimodes with exponentially long
lifetimes. © 2004 American Institute of Physics.[DOI: 10.1063/1.1782279]

. INTRODUCTION

This paper is concerned with the semiclassical limit for matricial Klein–Gordon oper
ore precisely we consider the two component Klein–Gordon Hamiltonian, actingH
L2sRnd%2=L2sRnd % L2sRnd,

He = sÎe2D + 1 − 1d12 + Vsxd, s1.1d

hereVsxd is a 232 Hermitian matrix valued function. At the heuristic level, under the condi
hat Vsxd is smooth enough and its eigenvalues never cross, one expects(much like in the Born
ppenheimer approximation) that the spectral and scattering problems for(1.1) can be reduced, u

o some small errors, to the corresponding ones for two “scalar” effective Hamiltonians. Alt
he semiclassical limit can be viewed as a perturbation theory, it is a highly singular o
erturbed invariant subspaces do not exist and then one has to look foralmostinvariant subspace
s in the case of singular perturbation theory or adiabatic expansions[see Nenciu(2002), Nenciu
1993)]. The aim of this paper is to substantiate the heuristic picture by showing that the
nvariant subspace theory developed in Nenciu(2002) can be extended to the case at hand an
his respect the present paper can be considered as a direct continuation of Nenciu(2002).

The key point of the theory is to construct orthogonal projections,

Pe
2 = Pe = Pe

* ,

atisfying

ifPe,Hegi ø ssed, s1.2d

ith ssed as small as possible so that with respect to the decomposition

L2sRnd%2 = PesL2sRnd%2d % s1 − PedsL2sRnd%2d,
e takes an almost diagonal form

3676022-2488/2004/45(9)/3676/21/$22.00 © 2004 American Institute of Physics
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He = He
D + He

OD,

here

He
D = PeHePe + s1 − PedHes1 − Ped,

He
OD = s1 − 2PedfPe,Heg,

ith

iHe
ODi ø ssed.

As well known, the natural framework for the semiclassical limit is the theory of pseu
erential operators and indeed our construction of the almost invariant subspaces rely he
seudodifferential operators techniques, more exactly on the construction of Moyal proje

.e., of orthogonal projections in the algebra of formal symbols which(at the formal symbols leve)
ommutes with the symbol of the Hamiltonian. There are at least two different methods o
tructing Moyal projections[Helffer and Sjöstrand(1990), Emmrich and Weinstein(1996), Brum-
elhuis and Nourrigat(1999)] and we shall follow the method of Helffer and Sjöstrand(1990)
hich is close in spirit with the Rellich–Kato perturbation theory. Then we follow Nenciu(2002)

o construct, out of the formal Moyal projection, a bona fide orthogonal projection which a
ommutes with the Hamiltonian.

We use the existence of almost invariant subspaces to prove the following results on sc
nd spectral theory for matricial Klein–Gordon Hamiltonian:

(i) Under appropriate analytic and decay conditions on the potential, the scattering o
as, up to exponentially small errors, a block diagonal structure. This means that a state p
t t→−` to have zero lower component will have ast→` only an exponentially small low
omponent.

(ii ) The existenceand the control on the(exponentially long) lifetime of metastable stat
quasimodes). More precisely, suppose that the diagonal part,He

D has discrete spectrum of one
he “channels” embedded into the continuous spectrum of the other channel. Then the(small) off
iagonal partHe

OD turns these bound(stable) states into metastable states whose time li
ontrolled by the size ofHe

OD. Let us mention here that in many instances[see, e.g., Stefano
1999)] one can make the connection with the resonances defined as poles of the reso
cattering operator. In the cases when this connection can be made this implies that the im
art of the resonances is exponentially small.

The content of the paper is as follows. In Sec. II we give, at a general heuristic lev
onstruction of almost invariant subspaces. The reason for this is that we expect the m
eveloped here to be relevant and lead to a systematic theory for a much broader class of
uch as Born–Oppenheimer approximation[see, e.g., Littlejohn and Weigert(1993), Hagedorn an
oye (2000), Hagedorn and Joye(2001)], dynamics of crystal electrons in weak external fie
see, e.g., Blount(1962), Nenciu (1991), Hövermann, Spohn, and Teufel(2001)], dynamics o
auli–Fierz model[see Teufel and Spohn(2002)], semiclassical limit of the Dirac operator[see
.g., Littlejohn(1993), Spohn(2000)], etc. [Indeed after this paper appeared in the preprint

he almost invariant subspaces framework of this paper has been used in some recent p
hese subjects: Martinez and Sordoni(2002), Panati, Spohn, and Teufel(2003), Sordoni(2003),
olte and Glaser(2004). For a comprehensive review of all these new developements we se

nterested reader to the recent monograph Teufel(2003).]
Section III contains the technicalities for the case of analytic matricial Klein–Gordon o

ors as well as the applications to spectral and scattering theory. The technicalities are so
eavy for two reasons. First, in order to check the power of the method, we want to pu
stimations up to exponential order, i.e.,[see(1.2)], ssed,e−ct/e. The reader interested only

owerlike errors can skip most ot the technicalities and only the elementary pseudodifferential
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perators theory is needed[see Teufel(2003) for further discussion]. Second, the application to t
cattering theory is somewhat subtle since the perturbed Hamiltonian is almost diagon
epect to ae-dependentdecomposition while the free one is diagonal with respect to thecanonica
ecomposition given by

P0 = S1 0

0 0
D . s1.3d

Accordingly one must rotate the perturbed Hamiltonian so that the rotated one is
iagonal with respect to the canonical decomposition and to prove that the rotation does n

he scattering matrix. So besides the fact that one must prove that asx→` the rotated Hamiltonia
pproaches the free one sufficiently quick one needs also to prove that the rotation is clos

dentity for states localized far away(see Remark II.4).
In the Appendix we collect, in an appropriate form, the results we need on pseudodiffe

perators with analytic symbols. For a readable account of basic pseudodifferential op
heory we send the reader to Martinez(2002). Further details and references to pseudodiffere
perators with matrix valued symbols can be found in Teufel(2003), Bolte and Glaser(2003,
004).

We end with a few comments on earlier results on spectral and scattering theory
atricial Klein–Gordon Hamiltonian in the semiclassical limit. Results on almost diagonal

ure of the scattering matrix atfixedenergy were obtained before in Nakamura(1994), Benchaou
1998), Benchaou and Martinez(1999), Martinez, Nakamura, and Sordoni(2002) both for Klein–
ordon and Schrödinger cases, by the method of phase space tunnelling developed by

1994) [see also Martin and Nenciu(1995) where almost invariant subspaces at fixed ene
ere constructed in the case of the one-dimensional Schrödinger operator, for energies a
otential barrier]. We would like to stress that aside from more restrictive conditions o
otential the results quoted above were provedonly for nontrapping energies a condition wh

mplies, in particular, the absence of resonances close to real axis and it is not valid in ge
ow energies(which are the most interesting from the physical point of view). Without entering th
echnicalities[we send the interested reader to Jecko(1998), Jecko(2004) for details and extende
ibliography] we remind that an energy is nontrapping ifall the trajectories of the correspond
lassical system(i.e., the classical Hamiltonian is the symbol of the quantum Hamiltonian) are no
ounded. Notice that at the heuristic level on intervals of trapping energies one expects
tates and/or quasimodes to exist. In some sense our results on the existence of quasim
xtensions of the shape resonance theory to the matricial case. As for the scattering theory

hat our result is the first one valid also for the trapping energies. In the same time it is we
he sense that involve an averaging over intervals of energies(see Sec. III for precise formulatio
nd a heuristic discussion of its significance).

The results have been announced in Nenciu(2004).

I. GENERALITIES. MOYAL PROJECTIONS, ALMOST INVARIANT SUBSPACES AND
LOCK DIAGONALIZATION

We start by fixing some terminology and notations. In what follows,x, jPRn, nù1, e
f0,e0g, e0.0, andhsx,j ;ed areC`, m3m Hermitian matrix valued functions onR2n3 f0,e0g

actually by adding the necessary technicalities one can consider the case whenhsx,j ;ed areC`

elf-adjoint operator valued functions]. If h and its derivatives satisfies suitable estimates(see
ppendix ), then associated tohsx,j ;ed one can consider the(essentially self-adjoint under a
ropriate conditions) operatorHe obtained as the Weyl quantization ofhsx,j ;ed (called the symbo
f He), i.e., for fP sSsRndd%m,

sHefdsxd = sOpe
wshdfdsxd = S 1

2pe
DnE eifsx−ydj/eghSx + y

2
,j;eDfsyddy dj.
f hsx,j ;ed has an asymptotic expansion(ase→0)
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hsx,j;ed , o
j=0

`

hjsx,jde j , s2.1d

e say thato j=0
` hjsx,jde j is the formal symbol ofHe. Given another symbolb and denoting b

e=Ope
wsbd, then as is well known[see Martinez(2002)], the operator multiplication correspon

o the Moyal product of symbols

HeBe = Ope
wsh#̃bd,

hereh#̃b is given by the oscillatory integral

sh#̃bdsx,j;ed =
1

2pe
2nE eiwsx,y,v,j,h,ud/ehSx + u

2
,h;eDbSx + v

2
,u;eDdu dv dh du, s2.2d

ith wsx,y,v ,j ,h ,ud=sj−hdsv−xd+sj−udsx−vd. At the level of formal symbols by expandi
he oscillatory integral(2.2), one can obtain thath#̃b,o j=0

` sh#bd je
j, where

sh # bd jsx,jd = o
uau+ubu+k+l=j

Gsa,bd]j
aDx

bhksx,jd]j
bDx

ablsx,jd s2.3d

nd

Gsa,bdª
s− 1dubu

a!b!2uau2ubu .

As already mentioned, we are looking for almost invariant subspace forHe in the semiclas
ical limit, e→0. The basic idea is to construct first Moyal projections, i.e., formal symbol

psx,j;ed , o
j=0

`

p jsx,j;ede j s2.4d

atisfying(at a formal series level)

p , p * , p # p, s2.5d

p # h − h # p , 0 s2.6d

here byp* sx,j ;ed we mean the adjoint of the matrixpsx,j ;ed]. The proposition below says th
ne can always construct Moyal projections corresponding to isolated parts of the spectru
rincipal symbolh0sx,jd of hsx,j ;ed,

hsx,j;ed = h0sx,jd + Osed. s2.7d

et ssx,jd be the spectrum ofh0sx,jd and suppose that, for somesx0,j0dPR2n,

ssx0,j0d = s1sx0,j0d ø s2sx0,j0d,

distss1sx0,j0d,s2sx0,j0ddªdsx0,j0d . 0. s2.8d

hen by perturbation theory there exists a neighborhoodUsx0,j0d of sx0,j0d such that, forsx,jd
Usx0,j0d the spectrum ofh0sx,jd is well separated, i.e.,(2.8) is satisfied onUsx0,j0d with

sx,jdùdsx0,j0d /2, and there exists a contourGx0,j0
[not depending uponsx,jdPUsx0,j0d] en-

losings1sx,jd and satisfying

distsGx0,j0
,ssx,jdd ù dsx0,j0d/2. s2.9d
Proposition II.1: Suppose (2.8) holds true. Then, forsx,jdPUsx0,j0d, there exist unique
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jsx,jd, j =0,1, . . ., such thatp0sx,jd is the spectral projection of h0sx,jd corresponding t

1sx,jd and the formal symbolo j=0
` p jsx,jde j satisfies (2.5) and (2.6).

The result in Proposition II.1 was found independently by different authors in differen
exts and actually Proposition II.1 appeared many times in the literature, e.g., Helffe
jöstrand(1990), Emmrich and Weinstein(1996), Brummelhuis and Nourrigat(1999) [see als
jöstrand(1993) where the earlier construction in Nenciu(1993) and Joye and Pfister(1993) of
diabatic projections corresponding to the casehsx,j ;ed=j+Hesxd was obtained in the framewo
f the theory of pseudodifferential operators]. There are essentially two methods of proof. The
ne, Nenciu(1993), Emmrich and Weinstein(1996), Brummelhuis and Nourrigat(1999), is a
ecurrent construction forp j solving the equations coming from(2.5) and(2.6). The second on
elffer and Sjostrand(1990), Sjöstrand(1993) is close in spirit to Rellich–Kato perturbati

heory[see, e.g., Kato(1980)]: due to(2.9), for all zPGx0,j0
, one can construct[see Robert(1987),

artinez (2002)] the parametrix

qsx,j;e,zd , o
j=0

`

qjsx,j;zde j ,

atisfying(at a formal series level)

q # sh − zd , sh − zd # q , 1, s2.10d

nd then obtainp jsx,jd from Riesz formula for spectral projection,

psx,j;ed =
i

2p
E

Gx0,j0

qsx,j;e,zddz, s2.11d

.e.,

p jsx,jd =
i

2p
E

Gx0,j0

qjsx,j;zddz. s2.12d

n what follows, we shall use the second method since, on the one hand, it gives explicit fo
or p j and, on the other hand, allows a much easier control onp jsx,jd and their derivatives tha
he recurrent construction[compare for example the estimations in Nenciu(1993) with those in
artinez and Nenciu(1995) in the adiabatic case].

Remarks:
II.1. If h0sx,jd has a part of the spectrum which remains isolated for allsx,jdPR2n, then

rom Proposition II.1, one obtainsp jsx,jd defined on allR2n. Moreoverp jsx,jd are C` and if

jsx,jd are real analyticp jsx,jd are also real analytic.
II.2. It is known [Helffer and Sjöstrand(1990)] that the existence ofpsx,jd satisfying(2.5)

nd (2.6) is equivalent with the block diagonalization ofhsx,j ;ed at a formal level[see, e.g
irenberg(1973), Taylor (1981)], i.e., with the existence of a formal symbol

usx,j;ed , o
j=0

`

ujsx,jde j ,

atisfying(at the formal symbol level)

u # u * , u * # u , 1

uch that, setting

h̃: , u * # h # u,
hen
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p0 # h̃ − h̃ # p0 , 0.

t is worth mentioning that the formal block diagonalization appeared also in the physical
ure, see e.g., Blount(1962), Littlejohn and Weigert(1993) and references therein. Let us rem

hat, unlikep j, uj (and thenu and h̄) are not unique. A somewhat canonical choice is the
imicking the reduction scheme of Rellich–Kato perturbation theory, i.e., writingusx,j ;ed as the
z–Nagy matrix[see(2.25)] corresponding to the pairpsx,j ;ed, p0sx,jd,

u , sp # p0 + s1 − pd # s1 − p0dd #S1 + o
j=1

`
s2j − 1d!!

2j j !
sp − p0d#2jD .

Let us stress that Proposition II.1 givespsx,j ;ed only at the formal symbol level, that is t
erieso j=0

` p jsx,jde j is not convergent in general. As a consequence(2.5) and (2.6) do not imply
he existence of a corresponding orthogonal projection which commutes withHe. However, by
esummation[Martinez (2002)], there exist symbolsp̂sx,j ;ed [unique moduloOse`d] which are
symptotically equivalent with the formal symbolo j=0

` p je
j and satisfy(2.5) and(2.6) [where now

means the Weyl product in(4.6)] up of errors smaller than any power ofe, i.e., (2.5) and(2.6)
old moduloOse`d. In addition, the ressumation can be chosen(see Appendix) as to insure tha

ˆ sx,j ;ed=p̂* sx,j ;ed.
We turn now to the construction, out of the formal symbolo j=0

` p je
j of almost invarian

ubspaces for theHe. Suppose thatp jsx,jd are globally defined onR2n and are uniformly bounde
ogether with their derivatives. Then, by resummation, one can obtain[unique up toOse`d]
ˆ sx,j ;ed which is also bounded together with its derivatives uniformly onR2n3 f0,e0g, for some

0.0. Then, by Calderon–Vaillancourt theorem(see Appendix),

P̂e = Ope
wsp̂sx,j;edd s2.13d

s bounded and satisfies

P̂e
2 − P̂e = Ose`d, P̂e

* = P̂e. s2.14d

or applications to spectral and scattering theory one would like to construct almost in
ubspaces which amounts to construct out ofp j an orthogonal projectionPe,

Pe
2 = Pe = Pe

* , s2.15d

atisfying

ifPe,Hegi ø ssed s2.16d

ith ssedù0 as small as possible[if the series in(2.4) is nonconvergent one cannot have
eneralssed=0 in (2.16)]. Of course, such a construction is not unique and we shall follow th

f Nenciu (1993), Nenciu(2002). SinceP̂e
2−P̂e=Ose`d, for e sufficiently small the spectrum

ˆ
e is concentrate near 0 and 1 and then one can definePe by

Pe =
i

2p
E

uz−1u=1/2
sP̂e − zd−1 dz. s2.17d

bviouslyPe given by (2.17) satisfies(2.15). By a straightforward computation[Nenciu (1993),
enciu (2002)], it is easy to see that, fore sufficiently small, we have

ifPe,Hegi ø 2ifP̂e,Hegi. s2.18d
ince it turns out that(2.6) implies that
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fP̂e,Heg = Ose`d, s2.19d

e obtain almost invariant subspace moduloOse`d. It turns out that

iP̂e − Pei = Ose`d

o Pe is close to a pseudodifferential operator[actually, the results in Dimassi and Sjöstr
1999) implies thatPe is a pseudodifferential operator]. Moreover, under appropriate analytic
roperties ofhsx,j ;ed, one can choose a resummation of the analytic formal symbolo j=0

` p jsx,jde j

see Appendix) in order to obtain an almost invariant subspace moduloOse−c/ed for some positiv
onstantc.0 independent ofe, i.e., one can takessed=Ce−c/e in (2.16). With respect to th
ecomposition

L2sRnd%m = PesL2sRnd%md % s1 − PedsL2sRnd%md,

e takes an almost diagonal form,

He = He
D + He

OD, s2.20d

here

He
D = PeHePe + s1 − PedHes1 − Ped, s2.21d

He
OD = s1 − 2PedfPe,Heg, s2.22d

ith

iHe
ODi ø ssed. s2.23d

f p0sx,jd=p0sxd does not depend uponj (as is the case of the Klein–Gordon or Schrödin
perators) thenP0=Ope

wsp0d is just a multiplication matrix valued operator. Since

lim
e→0

iPe − P0i = 0, s2.24d

or sufficiently smalle one can write down the Sz–Nagy transformation matrix correspond
he pairPe, P0 [see Kato(1980)],

Ue = s1 − sPe − P0d2d−1/2sPeP0 + s1 − Peds1 − P0dd s2.25d

aving the properties

Ue
*Ue = UeUe

* = 1, s2.26d

Pe = UeP0Ue
* . s2.27d

rom (2.20)–(2.23), (2.26), and(2.27) one gets that

H̃e = Ue
*HeUe s2.28d

as an almost diagonal formH̃e=H̃e
D+H̃e

OD with respect to thee independent decomposition

L2sRnd%m = P0sL2sRnd%md % s1 − P0dsL2sRnd%md
ith
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iH̃e
ODi ø ssed. s2.29d

urther, sinceRn is contractible, one can findQsxd (see Lemma III.5 for an explicit constructi
n our case) unitary in Cn and satisfying

P0sxd = QsxdP0Q * sxd

ith P0=s 1p

0
0
0
d wherep=dim P0sxd (which does not depend uponx) and then

He
eff = QH̃eQ* s2.30d

as an almost block diagonal form with respect to thecanonicaldecomposition

L2sRnd%m = L2sRnd%p
% L2sRnd%sm−pd.

n this way, up to a unitary transformation and errors of orderssed the study ofHe in L2sRnd%m is
educed to the study of two operators insL2sRndd%p and sL2sRndd%sm−pd, respectively. If on
ssumes that all them eigenvalues ofh0sx,jd remain isolated over allR2n, one can make
omplete diagonalization which reduces[up to errors of orderssed] the study of them-states
amiltonianHe to the study ofm scalar operators inL2sRnd.

Remarks:
II.4. For the scattering theory the estimates(2.16) or (2.34) have to be improved atuxu→`; for

xample, in the Klein–Gordon case one has to replace(2.16) by (we use the notationkxl
Î1+x2)

ikxltdfPe,Hegkxls1−tddi ø ssed, t P f0,1g s2.31d

or somed.1. At the technical level this amounts to show that the decay ofVsxd [see(3.3) below]
propagates” through the construction ofPe.

II.5. The above construction works nicely ifp jsx,jd are bounded as it is the case for Kle
ordon or Dirac operators. Unfortunately, this is not the case in the Schrödinger case

jsx,jd behaves likekjl j as uju→` irrespective of how nice the potential is. As a consequen
lock diagonalization valid on the wholeL2sRnd%m seems not to exist(in concordance with th
hysical arguments saying that the adiabatic decoupling becomes poorer and poorer a

ncreases) [see also the remarks in Martin and Nenciu(1995)]. However one can still hope to ha
t as far as the energy(and thenuju) remains bounded. One can show[see Sordoni(2003)] that this

s indeed the case and the idea is to replaceP̂e with

P̂e
F = FsHedP̂e + s1 − FsHeddP̂eFsHed + s1 − FsHeddP0s1 − FsHedd, s2.32d

hereF is a smooth cutoff function onR. Then the whole procedure works and, defining

Pe
F: =

i

2p
E

uz−1u=1/2
sP̂e

F − zd−1 dz, s2.33d

ives instead of(2.16),

ixsHedfPe
F,Hegi ø ssed, s2.34d

or any cutoff functionx such thatxF=x.

II. TWO COMPONENT KLEIN–GORDON SYSTEMS. EXPONENTIAL ESTIMATES

In this section we prove the existence of invariant subspaces up to exponential small e
→0, for two component Klein–Gordon systems, and apply this to spectral and scattering

onsider the two-component Klein–Gordon Hamiltonian,
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He = aseDxd12 + Vsxd s3.1d

cting onH=L2sRnd%2
ªL2sRnd % L2sRnd. Hereasjd=sÎj2+1−1d,12 is the 232 identity matrix

nd Vsxd is a 232 Hermitian matrix valued function that admits an analytic extension in
trip

Ga = hx P Rn; uIm xu , aj, a . 0. s3.2d

oreover, since we have in mind application to scattering theory we assumeVsxd to be shor
ange, i.e., there exists a Hermitian 232 matrix V` such that

Sup
xPGa

kxlduVsxd − V`u , ` s3.3d

niformly on Ga with d.1. Without loss of generality we can assume that

V` = Sl1,̀ 0

0 l2,̀
D . s3.4d

oncerning the spectrum ofVsxd, we assume that the two real eigenvalueslisxd, satisfy

Inf
xPRn

sl1sxd − l2sxdd = 2d . 0. s3.5d

y eventually shrinkingGa, one can suppose that

Inf
xPGa

ul1sxd − l2sxdu ù d. s3.6d

t follows that onGa

Vsxd = l1sxdp0sxd + l2sxds1 − p0sxdd,

herep0sxd is a bounded projection inC2, analytic inGa and self-adjoint forxPRn. Due to(3.4),

0s`d=limuxu→+`psxd= s 1 0
0 0

d, and from(3.3),

Sup
xPGa

kxldup0sxd − p0s`du , `. s3.7d

n what follows, “for e sufficiently small” is short hand for “there existse0.0 such that fo
,eøe0.” A finite number of finite, strictly positive constants independent ofe will appear in this
ection; they are all denoted byc or C. For an operatorA andh.0 we shall denote

iAih = Sup
tPf0,1g

ikxlthAkxls1−tdhi.

n the following we denote byP0 the operator inH acting as multiplication by the matrixp0sxd.
Theorem III.1: Assume (3.2), (3.3), and (3.5) hold true. Then, for sufficiently smalle, there

xists an orthogonal projectionPe in H satisfying

ifPe,Hegid = Ose−c/ed, s3.8d

e−1iPe − P0id = Os1d s3.9d

niformly with respect toeP s0,e0g.
Proof: As already said in Sec. II, the main step in the proof of Theorem III.1 is the con

ion of Moyal projections for

h0sj,xd = asjd12 + Vsxd. s3.10d
Lemma III.2: There exists a formal analytic symbol
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psx,j;ed = p0sxd + o
j=1

`

psx,jde j , s3.11d

hat satisfies (2.5) and (2.6), and, in addition, such thatpsx,j ;ed−p0sxdPSA
0skxl−dd [see Appendi

or the definition of SA
0s1d and SA

0skxl−dd].
Proof: Let x0, j0PRn, 0,h,d/4 and Gx0,j0,d,h=hzPC ;d/2−h, uz−asj0d−l1sx0du,d/2

hj. SinceVsxd is analytic and uniformly bounded onGa, asjd is analytic onG1 and in addition

j
aasjd, uau=1 are uniformly bounded onG1, there existsb.0, M .0 independent onx0, j0

Rn such that for allzPGx0,j0,d,h,

q0sx,j,zd = sh0sx,jd − zd−1

s analytic inux−x0u,b, uj−j0u,b and in addition

Sup
ux−x0u,b,uj−j0u,b,zPGx,j,d,h

uq0sx,j,zdu , M . s3.12d

hen from Cauchy inequalities there existsC.0 such that for anya, bPNn,

Sup
x,jPRn,zPGx,j,d,h

u]j
a]x

bq0sx,j,zdu ø Cuau+ubu+1a!b! s3.13d

nd in addition[see(3.3)], if ubuÞ0,

Sup
x,jPRn,zPGx,j,d,h

ukxld]j
a]x

bq0sx,j,zdu ø Cuau+ubu+1a!b!. s3.14d

efine now forx, jPRn, zPGx,j,d,h the formal analytic symbol

r = o
j=1

`

r jsx,j;zde j

y

sh0sx,jd − zd # q0sx,j;zd = 1 − rsx,j;e,zd.

otice thatr0sx,jd=0. Taking into account(3.13) and (3.14) and that, for alla, bPNn, ubuÞ0,

Sup
sx,jdPRn

ukxld]j
a]x

bh0sx,jdu ø Cuau+ubu+1a!b!, s3.15d

rom the composition rule, Leibnitz formula and Lemma IV.4 one obtains that, for allj =0,1, . . .
nda, bPNn,

Sup
x,jPRn,zPGx,j,d,h

ukxld]j
a]x

br jsx,j,zdu ø Cj+uau+ubu+1a!b! j !. s3.16d

f we define the formal symbolqsx,j ;e ,zd by

q = q0 + q0 # o
j=1

`

r#j , s3.17d

henq satisfy an estimate like(3.16). More exactly we have the following.
Lemma III. 3: There exists C such that for all j=1,2, . . .,and a, bPNn,

Sup
x,jPRn,zPGx,j,d,h

ukxld]j
a]x

bqjsx,j,zdu ø Cj+uau+ubu+1a!b! j !. s3.18d
Proof: Replace the supremum oversx,jdPGa83Gb8 in (4.5) with the supremum overx, j
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Rn, zPGx,j,d,h and mimic the proof of Lemmas IV.4 and IV.5 in the Appendix.
From (2.10) it follows that, forx, jPRn, zPGx,j,d,h, qsx,j ;e ,zd satisfies the resolvent equ

ion

qsx,j;e,zd − qsx,j;e,z8d = sz− z8dqsx,j;e,zd # qsx,j;e,z8d. s3.19d

imicking the proof of the Riesz formula for the spectral projection[see, e.g., Kato(1980)] one
btains that the formal symbolo j=0

` p jsx,jde j defined by

p jsx,jd =
i

2ip
E

Gx,j

qjsx,j,zd dz, s3.20d

hereGx,j=hzPC ; uz−asjd−l1sxdu=d/2j satisfies(2.5) and (2.6).
We can now finish the proof of Lemma III.2: plug the estimation(3.18) into (3.20).
End of the proof of Theorem III.1:Let p̂N be a resummation of the formal analytic symbo

iven in the Appendix, i.e.,p̂Nsx,j ;ed=o j=0
N p jsx,jde j. From Lemmas IV.6 and III.2, it follows th

p̂N#̃p̂Nsx,j;ed = p̂Nsx,j;ed + rNsx,j;ed s3.21d

ith

iurNuip,d ø sCedN+1sN + 1d!

or a new constantC. Consider nowh0#̃p̂N−p̂N#̃h0. Sinceh0 is unbounded, at the first sight, o
annot use directly Lemmas IV.6 and III.2 to obtain a similar bound. However, due to the fa
ll the derivatives ofh0 are bounded and that since we consider a commutator so that th
ithout derivatives vanish one can still apply the stationary phase theorem and obtain the

ion

iuh#̃p̂N − p̂N#̃huip,d ø sCedN+1sN + 1d!.

hen, takingN=f1/Beg with B sufficiently large and denoting

p̂B
ª o

j=0

f1/Beg

p je j ,

y Stirling formula, one has

iup̂B#̃p̂B − p̂Buip,d + iuh0#̃p̂B − p̂B # h0uip,d ø Ce−c/h s3.22d

or some constantsc, C.0 independent ofe. Let now

P̂e = Ope
wsp̂Bd. s3.23d

hen from (3.22), Lemma IV.6 and Calderon–Vaillancourt theorem(see Theorem IV.7) P̂e is
ounded uniformly with respect toe, and in addition,

iP̂e
2 − P̂eid = Ose−c/ed, s3.24d

ifP̂e,Hegid = Ose−c/ed s3.25d

or some constantc.0 independent ofeP s0,e0g. Then[see Sec. II and Nenciu(1993), Nenciu

2002) for details], if Pe is given by
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Pe =
i

2p
E

uz−1u=1/2
sP̂e − zd−1 dz

he only thing to be verified is thekxl−d decay asuxu→`. By a simple computation[see Appendi
n Nenciu (2002)],

sP̂e − zd−1 =
P̂e + z− 1

zsz− 1d F1 +
De

zs1 − zdG−1

, s3.26d

here

De = P̂e
2 − P̂e. s3.27d

xpanding in(3.26) and using(3.24), one has uniformly for sufficiently smalle,

isP̂e − zd−1id = Os1d. s3.28d

gain by a simple computation

Pe − P̂e = − De

i

2p
R

uz−1u=1/2

1

zs1 − zd
S P̂e

zs1 − zd
+ 1DS1 +

De

zs1 − zdD
−1

dz,

hich together with(3.24) and (3.28) gives

iPe − P̂eid ø Ce−c/e, s3.29d

hich implies(3.9). For (3.8) use

fHe,Peg = −
i

2p
R

uz−1u=1/2
sP̂e − zd−1fHe,P̂egsP̂e − zd−1 dz,

3.28) and (3.25).
Remarks:

III.1. From (3.29), Pe is exponentially close toP̂e which is a pseudodifferential operator w
n analytic symbol. Actually, by using the results in Dimassi and Sjöstrand(1999) on functiona
alculus for pseudodifferential operators, one can show thatPe is a pseudodifferential opera
ith symbol p̂PSA

0s1d given by (3.11) and such thatp̂−p0PSA
0skxl−dd.

We turn now to applications to spectral and scattering theory forHe. Consider the scatterin
roblem for the pairHe and

He,0ª aseDxd12 + Sl1,̀ 0

0 l2,̀
D . s3.30d

e need the following elementary propagation estimate.
Lemma III.4: LetfPH, f̂s= the Fourier transform offdPC0

`sRn\ h0jd%2. Then there exis
sfd.0 such that, uniformly for sufficiently smalle,

ikxl−de−itHe,0fi ø Ksfde−2dktl−d. s3.31d

Proof: The proof is standard stationary phase estimates[see, e.g., Appendix to XI.3 in Re
nd Simon(1979)] and the only thing to do is to control theire dependence. For this, write

Îe2k2 + 1 − 1 =e2Keskd
nd observe that
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InfePs0,e0gugrad Keskdu =
uku

Îe0
2k2 + 1

nd

Keskd =
k2

2
+ Ose2k4d.

From Lemma III.4, by the standard Cook argument, the wave operators

W±sHe,He,0d = s− lim
t→±`

eitHee−itHe,0 s3.32d

xist for d.1. As for completeness, ifd.n, it follows by a direct application of Birman
heorem[see Reed and Simon(1979)], Theorem XI.10[mimic the proof of Theorem XI.30 i
eed and Simon(1979)]. Actually the completeness holds true ford.1; one can prove it[see
imon(1979)] using Enss method. The same argument applies to all the wave operators ap

n this section so in what follows we shall assume that all of them exist and are completeS
e the scattering operator corresponding to the pairHe, He,0,

S= W+sHe,He,0d*W−sHe,He,0d. s3.33d

ne expects that(3.8) implies thatS has an almost block diagonal structure with respect to
ecomposition given byPe, and indeed one can prove(see the proof of Theorem III.8 below) that

f f1PH, f2P s1−PedsHd and f̂ j PC0
`sRn\ h0jd%2 then

usf2,Sf1du ø Ksf1,f2de−c/e.

hat we shall prove below[under an additional condition onVsxd, see Lemma III.5 below] that
has an almost diagonal form with respect to thecanonicaldecomposition ofH, i.e., the decom
osition given by

P0 = S1 0

0 0
D .

e start with the following elementary lemma.
Lemma III.5: Suppose that either

Sup
xPGa

ip0sxd − P0i , 1 s3.34d

r, for xPRn, that

Vijsxd = Vijsxd, s3.35d

.e., Vsxd has real entries for xPRn. Then there exists a matrix Qsxd bounded with bounde
nverse uniformly inGa, unitary for xPRn and satisfying

p0sxd = QsxdP0Qsxd−1 s3.36d

nd

Sup
xPRn

usQsxd − 12dkxldu , `. s3.37d

Proof: If (3.34) holds true, one can take asQsxd the Sz–Nagy transformation matrix cor
ponding to the pairp0sxd, p0s`d=P0.

Suppose now(3.35) holds true. Forx=sx8 ,xndPGa, let us setxn=yn+ ih, ynPR and define

sxd by
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Qsxd = 1 +E
−`

yn

s1 − 2p0sx8,s+ ihddS d

ds
p0sx8,s+ ihdDQsx8,s+ ihdds. s3.38d

otice that the integral in(3.38) is convergent sincesd/dsdp0sx8 ,s+ ihd=Osksl−dd. Now [see, e.g
ato (1980), Reed and Simon(1978)] Qsxd is analytic and uniformly bounded inGa and satisfie

3.36) since

lim
yn→+`

p0sx8,yn + ihd = ps`d = P0. s3.39d

ince(3.38) implies that forxPRn, Qsxd=Qsxd, from (3.36) and (3.7) one obtains

Q1,1
2 sxd − 1 =Oskxl−dd, Q1,1sxdQ1,2sxd = Oskxl−dd. s3.40d

his implies that asuxu→ +`, Q1,1sxd→ ±1. By continuity the choice is the same for all directio
ince, for xn→−`, Qsxd→12, it follows that limuxu→+` Q1,1sxd=1 which together with(3.40)
nishes the proof.

Let now Ue be the Sz–Nagy transformation matrix corresponding to the pairPe ,P0 [see
2.25)] and consider the rotated Hamiltonian[see(2.28) and (2.30)]:

He
eff = Q * Ue

*HUeQ, s3.41d

hereQ is the operator of multiplication withQsxd.
Corollary III.6: Under assumptions (3.2), (3.3), (3.5), and (3.34) or (3.35) we have

He
eff = SaseDxd + l1sxd 0

0 aseDxd + l2sxd
D + eBe, s3.42d

here Be,ii ; i , j =1,2 are bounded operators satisfying

iBe,iiid = Os1d, s3.43d

iBe,12id = iBe,21id = Ose−c/ed, s3.44d

niformly with respect to sufficiently smalle.
Proof: Write

He
eff = Q * sHe + Ue

*fHe,UegQd = SaseDxd + l1sxd 0

0 aseDxd + l2sxd
D + Q * faseDxd12,Qg

+ Q * Ue
*fHe,UegQ. s3.45d

he fact that, uniformly fore sufficiently small,

e−1iO * faseDxd12,Qgid = Os1d s3.46d

ollows from the fact thatkxld commutes withQ, (3.37) and Lemma IV.6. Analogously

e−1ifHe,P0gid = Os1d. s3.47d

incekxld commutes withP0 from (3.9) one has

ikxldPekxl−di = Os1d. s3.48d

ence, from the Sz–Nagy formula forUe, (3.8), (3.47), and(3.48) one has

−1
e ifHe,Uegid = Os1d, s3.49d
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e−1iUe − 1id = Os1d, s3.50d

niformly for smalle. From (3.49) and (3.50),

e−1iQ * Ue
*fHe,UegQid, s3.51d

hich together with(3.46) finishes the proof of(3.43). Now from (3.36) and Pe=UeP0Ue
* it

ollows that

Pe = UeQP0Q * Ue
*

nd then

fHe
eff,P0g = Q * Ue

*fHe,PegUeQ, s3.52d

hich together with(3.8) and (3.50) gives

ifHe
eff,P0gid = Ose−c/ed. s3.53d

aking into account that

eBe,12+ eBe,21= s1 − 2P0dfHe
eff,P0g,

3.53) implies (3.44).
Let us stress here that the constructive proof above provides the means to compute ef

he formal symbol ofHe
eff.

Remarks:
III.2. As in the case ofPe, from (3.45) one sees thatHe

eff is exponentially close to a pseudo
fferential operator and again the results in Dimassi and Sjöstrand(1999) enables to show that
act He

eff is a pseudodifferential operator.
The following lemma allows to replaceHe by He

eff when computing the scattering operat

Lemma III.7: Let S˜ be the scattering operator corresponding to the pair He
eff He,0. Then for

ufficiently smalle,

S= S̃. s3.54d

Proof: Let Ve=QUe. From (3.37) and (3.50),

isVe − 1dkxldi = Os1d. s3.55d

ow [see(3.41)]

W±sHe
eff,He,0d = Ve

*ss− lim
t→±`

Vee
itHe

eff
e−itHe,0d = Ve

*W±sHe,He,0d + ss− lim
t→±`

Ve
*eitHesVe − 1de−itHe,0d.

et now fPH, f̂PC0
`sRn\ h0jd%2. Then from Lemma III.4 and(3.55),

iVe
*eitHesVe − 1de−itHe,0fi ø Csfde−2dktl−d.

endingutu→` (at fixede!), by density we get

s− lim
t→±`

Ve
*eitHesVe − 1de−itHe,0 = 0,

hich gives

W±sHe
eff,He,0d = Ve

*W±sHe,He,0d

nd the proof of the lemma is finished.

We are now in position to state one of the main results of the paper.
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Theorem III.8: Let, for j=1,2,

He,j
eff = aseDxd + l jsxd + eBe,ii , He,j ,0 = aseDxd + l j ,` s3.56d

cting in L2sRnd and Sj the scattering operator corresponding to the pair He,j
eff, He,j ,0. Then, there

xists c.0 independent ofe, such that, for anyfkPH, f̂kPC0
`sRn\ h0jd%2, k=1,2 and e

s0,e0g sufficiently small, we have

USf2,SS− SS1 0

0 S2
DDf1DU ø Csf1,f2de−c/e s3.57d

or some constant Csf1,f2d.0 depending onf1,f2 but not one.
Proof: Write

De = SHe,1
eff 0

0 He,2
eff D, Re: = He

eff − De

nd letfPH, f̂PC0
`sRn\ h0jd%2. By the usual Cook argument, forT.0, we have

isW+sHe
eff,He,0d − eiTHe

eff
e−iTHe,0fdi = IE

T

`

eitHe
eff

sHe
eff − He,0de−itHe,0fI ø Csfde−2d+1T1−d

s3.58d

nd

isW+sDe,He,0d − eiTDee−iTHe,0fdi = IE
T

`

eitDesDe − He,0de−itHe,0fI ø Csfde−2d+1T1−d.

s3.59d

or the last inequality we used Lemma III.4 and the fact that(see Corollary III.6) iHe
eff−He,0id

iDe−He,0id=Osed. On the other hand, from Duhamel’s formula,

eiTHe
eff

= eiTDe + iE
0

T

eisT−sdDReisHe
eff

ds, s3.60d

hich together with(3.44) gives

ieiTHe
eff

e−iTDe − 12i ø C8eTe−c/e. s3.61d

rom (3.58), (3.59), and(3.61) one obtains

isW+sHe
eff,He,0d − W+sDe,He,0ddfi ø 2Csfde−2d+1T1−d + C8eTe−c/e. s3.62d

y choosingT=e−2−1/dec/de in (3.62) one obtains

isW+sHe
eff,He,0d − W+sDe,He,0ddfi ø C1sfde−c/e s3.63d

or somec8, 0,c8øc, andC=Csfd.0 independent ofe. In the same manner

isW−sHe
eff,He,0d − W−sDe,He,0ddfi ø C2sfde−c/e. s3.64d

riting

SsHe
eff,He,0d − SsDe,He,0d = sW+sHe

eff,He,0d * − W+sDe,He,0d * dW+sHe
eff,He,0d

+ W+sDe,He,0d * sW+sHe
eff,He,0d − W+sDe,He,0dd
nd using(3.63) and (3.64) and Lemma III.7,(3.57) follows.
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SinceS̃ commutes withHe,0, one can define the scattering matrix at fixed energyS̃sld. Let us

tress that Theorem III.8 does not imply the corresponding result forS̃sld; when shrinking th
upports off1 andf2 the constantCsf1,f2d may blow up. At the heuristic level the reason
his blowing up is clear: Corollary III.6(via the Duhamel’s formula) implies that the transition
er unit timebetween the two levels is exponentially small, but if, at the given energy, the
esonance very(exponentially) close to the real axis, it has an exponentially long lifetime
uring this time considerable transitions can take place. Accordingly, one expects expon

lock diagonalization ofS̃sl0d only if there are no resonances aroundl0 or in other words ifS̃sld
s smooth in a neighborhood ofl0 and this is true ifl0 is nontrapping.

Remarks:
III.3. For nontrapping energies the block diagonal structure(up to exponentially small error)

f S̃sl0d has been proved in the papers quoted in the Introduction. Let us point out that o
rove similar results[see Sordoni(2003)] by using Corollary III.6 and resolvent estimates[see
.g., Jensen and Nakamura(1992), Wang(1988)].

We turn now to some direct applications of Corollary III.6 to spectral theory. We shall d

e
eff but all the results apply toHe also, since they are unitarily equivalent. If

Inf
xPRn

l2sxd = m2 , l2,̀

henHe
eff has discrete spectrum in the intervalsm2,l2,̀ d which, up to exponentially small erro

quals the union of the(discrete) spectra ofHe,j
eff in this interval[see Nenciu(2002) for details].

uppose now

Inf
xPRn

l1sxd = m1 , l1,̀ .

henHe,1
eff has bound states in the intervalsm1,l1,̀ d and as a consequence,De has bounded stat

mbedded in the continuum spectrum in the intervalsMaxhm1,l2,̀ j ,l1,̀ d. The small off-diagona
erm,Re, turns(generically) these bound(stable) states into metastable states. LetC be an eigen
unction of such a bound state, i.e.,

He,1
effC = EC, E P sMaxhm1,l2,̀ j,l1,̀ d.

hen from Corollary III.6,

isHe
eff − EdCi ø Ce−c/e,

.e., C ,E, are pseudoeigenvectors and pseudoeigenvalues[see Kato(1980)] of exponential orde
or He

eff (the name quasimodes is also used). A more physical picture is given by Duhamel form
3.60) which together with Corollary III.6 gives the following.

Corollary III.9:

usC,e−itHe
eff

Cdu ù 1 − Cutue−c/e. s3.65d

As it stands Corollary III.9 gives theexistenceand the control on the(exponentially long)
ifetime of metastable states(quasimodes) in the semiclassical limit. However in many instan
see, e.g., Stefanov(1999)] one can make the connection with the resonances(defined as poles
he resolvent of scattering operator). In the cases when this connection can be made Corollary
ays that the imaginary part of the resonances is exponentially small. The same argumen

o other bound states and/or resonances ofD in the intervalsl1,̀ ,`d (as far as they exist).
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PPENDIX A: ANALYTIC SYMBOLS

We recall here in an appropriate form, besides some standard facts about pseudodif
perators, the results we need for analytic symbols. For more details and proofs see Rober(1987),
imassi and Sjostrand(1999), Martinez (2002), Taylor (1981), Boutet de Monvel and Kre

1967).
We consider matrix valued symbols so the product and the modulus are the standard

nd matrix norm, respectively. We employ the standard notations concerning the deri
actorial, etc. Also foryPCn, kyl=s1+uyu2d1/2, and fora,b.0

Ga 3 Gb = hsx,jd P C2n, uIm xu , auIm ju , bj.

ymbols asx,j ;ed are smooth matrix valued functions ofsx,jdPR2n or Ga, depending one
s0,e0g, as a parameter.

Definition IV.1: A function asx,j ;ed defined onR2n3 s0,e0g, is said to be a symbol
mskxl−dd, for some m,dPR if a is a smooth function ofsx,jd and, for all a ,bPNn, there exis

a,b.0 such that

Sup
sx,jdPR2n,ePs0,e0g

ukjl−mkxld]x
a]j

basx,j,edu ø Ca,b.

n particular S0s1d is the set of asx,j ,ed which are uniformly bounded together with all th
erivatives. For aPS0skxl−dd and pPN we set

uiaiup,d = Sup
sx,jdPR2n,ePs0,e0g

o
uau+ubuøp

ukxld]x
a]j

basx,j;edu. s4.1d

Definition IV.2: A function asx,j ,ed, sx,jdPGa3Gb, eP s0,e0g is called an analytic symbol
lassSA

mskxl−dd for some m, dPR if it is analytic in Ga3Gb and, for any a8,a,b8,b, there exist
.0 such that

Sup
sx,jdPGa83Gb8,ePs0,e0g

ukjl−mkxldasx,j,edu ø K. s4.2d

Definition IV.3: Given a family ajsx,jdPSA
mskxl−dd, j PN, analytic onGa3Gb such that, fo

ny a8,a,b8,b, there exists a constant C.0 independent of j such that

Sup
sx,jdPGa83Gb8

ukjlmkxldajsx,jdu ø Cj+1j ! s4.3d

e call af =o j=0
` e jajsx,jd a formal analytic symbol of classSA

0skxl−dd on Ga3Gb.
We say that a symbol asx,j ;edPSA

mskxl−dd is asymptotic equivalent to the formal analy
ymbolo j=0

` e jajsx,jd and we write

a , o
j=0

`

e jajsx,jd

f there exists a constant C.0 such that for any NPN and any a8,a,b8,b,

Sup
sx,jdPGa83Gb8,ePs0,e0g

Ukjl−mkxldSasx,j;ed − o
j=0

N

e jajsx,jdDU ø CN+1eN+1sN + 1d!. s4.4d

f o j=0
` e jajsx,jd is a formal analytic symbol, and T.0 is sufficiently large then one can defi

Tsx,j ;ed=o j=0
f1/Tege jajsx,jd (unique moduloOse−c/ed) satisfying (4.4). The symbol aTsx,j ;ed is

alled a resummation of the formal analytic symbolo j=0
` e jajsx,jd and any symbol a that can

ritten as such a resummation up to error Ose−c/ed is an analytic representation of the form
` j
nalytic symbolo j=0e ajsx,jd.
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Let us notice [see Boutet de Monvel and Kree(1967)] that a formal symbola
o j=0

` e jajsx,jd belongs toSA
m1skxl−d1d on Ga3Gb if and only if, for anya8 ,b8.0,a8,a,b8,b,

he series

Nd1

m1sa,Td = o
j=0

`

TjS o
uau+ubu+2k=j

ck,a
b Ak,a,d1

b,m1 D ,

here

Ak,a,d1

b,m1
ª Sup

sx,jdPGa83Gb8

ukxld1kjl−m1]x
a]j

baku ø Ck+uau+ubu+1k!a!b! s4.5d

nd

ck,a
b =

2s2nd−kk!

sk + uaud!sk + ubud!

as a nonzero radius of convergence as a series inT.
If af =o j=0

` e jajsx,jd and bf =o j=0
` e jbjsx,jd are two formal analytic symbols onGa3Gb, we

efine, as usual, the Weyl product

af # bf ; r f = o
m=0

`

emrm, s4.6d

here

rm = o
ugu+uuu+l+s=m

Gsg,udDx
g]j

ualDx
u]j

gbl s4.7d

ndGsa ,bd=s1db /a!b!2uau2ubu.
The basic result[Boutet de Monvel and Kree(1967)] about the class of formal analy

ymbols is that it is closed under Mpyal multiplication. More precisely, using Lemma 1
outet de Monvel and Kree(1967), one can prove that

Nd1+d2

m1+m2sr,Td ! Nd1

m1sp,TdNd2

m2sq,Td,

here! means that the coefficient ofTj in the first member is less than the same in the se
ember. As a consequence we have the following.

Lemma IV.4: Let af =o j=0
` e jajsx,jd and bf =o j=0

` e jbjsx,jd two formal analytic symbol onGa

Gb, then af #bf is a formal analytic symbol onGa3Gb in the class SA
m1+m2skxl−d1−d2d.

Moreover, we have the following.
Lemma IV.5: Let rf =o j=1

` e jr j is a formal analytic symbol in the class SA
0skxl−d1d on Ga3Gb.

heno j=1
` r f

#j is a formal analytic symbol in the class SA
0skxl−d1d on Ga3Gb.

Proof: It is sufficient to observe that

Nd
0So

j=1

`

r#j,TD ! Nd
0sr,Tdo

j=0

`

N0
0sr,Td j = Nd

0sr,Tds1 − N0
0sr,Tdd−1.

The last series is a convergent for sufficiently smallkTl sinceN0
0sr ,Td is, for sufficiently smallT,

convergent series and has no constant term.]
We are now in position to state the basic result on composition of pseudodifferential op

see, e.g., Martinez(2002)]. Given a symbolaPSA
mskxl−dd we denote by Ope

wsqsx,j ;edd we denote
hee-pseudodifferential operator which, forfPC0

`sRn,R%kd is defined by the oscillatory integr

Opwsasx,j;eddf = s2ped−n eisx−ydj/eaSx + y
,j;eDfsyddy dj. s4.8d
e E
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Lemma IV.6: Let asx,j ,edeSm1skxl−d1d, bsx,j ,edPSm2skxl−d2d, mi ,di, i =1,2. Then a#̃b given
y the oscillatory integral (2.2) belong to Sm1+m2skxl−sd1+d2dd.

Moreover, if asx,j ,ed,o j=0
` ajsx,jde j PSA

m1skxl−d1d, bsx,j ,ed,o j=0
` bjsx,jde j PSA

m2skxl−d2d
hen a#̃bPSA

m1+m2skxl−sd1+d2dd and

a#̃b , So
j=0

`

ajsx,jde jD #So
j=0

`

bjsx,jde jD , s4.9d

here# is the Weyl composition of formal symbol defined in (4.6) and (4.7).
The last result we collect is the Calderon–Vaillancourt theorem.
Theorem IV.7: Let asx,j ;edPS0skxl−dd. Then, there exists M.0, pPN depending only o

,m,d such that

iOpe
wsadid ø Miuauip,d. s4.10d

For the proof of the theorem see, for example, Robert(1987), Martinez(2002).
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Quantum groups are a remarkable generalization of conventional groups using an a
anguage by now quite well-known to mathematical physicists. One replaces the notion o
lgebra symmetry by a “quantum enveloping algebra” which generalizes the usual env
lgebra of a Lie algebra. Or one may replace the coordinate algebra of functions on a conv
roup by a more general algebra, typically noncommutative or “quantum.” In either ca
atural formulation of the more general object is a “Hopf algebra,” a notion that had bee
osed in the 1940s by pure mathematicians but without truly representative examples. It
bout 20 years since the subject exploded with the discovery of such quantum groups i
matical physics, mainly in the theory of quantum inverse scattering(the quantum groupsUqsgd of
rinfeld and Jimbo) but also in Planck-scale physics(the less well-known bicrossproduct quant
roups based on Lie group factorizations). The latter have provided some of the first model
oncommutative space–time with potentially measurable quantum/gravity corrections.

Remarkably, it is also about 20 years since the serious development of “noncomm
eometry” in the form of cyclic cohomology as a means of capturing geometric information
space in terms of its algebra of functions, while making sense for more general algebra

gain the roots of the subject go back on the mathematics side to theorems of Gelfa
aimark in the 1940s and 1950s followed by the development of K-theory and K-homology
970s. From a physicists point of view the “general idea” of replacing classical coordinate
sx, p on a classical phase space by noncommuting operator variablesx, p dates back to the bir
f quantum mechanics itself; many authors, starting with Dirac in the 1920s, have asked
geometry” could be extended to such operator variables. Again, convincing examples w
ssue, with the papers of Connes and of Connes-Rieffel on the differential structure o
ang–Mills theory over, a noncommutative torus in the 1980s probably a turning point.

Both fields have matured considerably over the intervening 20 years and two things c
aid to be emerging. First of all, noncommutative geometry and quantum groupsshouldbe inti-
ately related and this is slowly beginning to be explored; the cyclic cohomology of(for example
icrossproduct) quantum groups has been computed while conversely quantum groups m
uch as “Drinfeld cotwisting” are being applied to construct geometry on noncommutative t
heir cousins. The process is still in its infancy; for example theq-deformed quantum groups
ot fit well into usual cyclic cohomology, which has to be generalized. Secondly, and

mportantly for this volume, 20 years has been long enough for mathematical physicists to
he new ideas and algebraic methods and, now finding them routine, begin actually to use
enuine physical situations. As with supersymmetry before it, it could be considered t
wave of algebraic methods” encompased by quantum groups and noncommutative geom
wept through the general mathematical physics community and left it enriched with po
ew tools which were not widely known before.

In this special issue onQuantum groups and noncommutative geometryit is certainly no
ossible to do justice to all the new directions which are opening up in the light of such
pments. Rather, the volume aims to provide a partial snapshot of a few of the more e
spects looking forward. Most of the articles are research articles but two are major r
earing in mind that both quantum groups and noncommutative geometry are already co
xisting textbooks(such as my 1995 book from the Hopf algebras perspective and Connes’
ook from the cyclic cohomology perspective), the review articles are intended to give m
xposure to other important points of view. The review article on the deformation theory v
uantum groups contains much that is accessible to physicists while providing a self-co
lean presentation of results which are otherwise scattered or vaguely formulated as well
ew results. The other review article is part of an approach to noncommutative algebraic g
nd introduces the reader to powerful homological methods which have an emerging role in

ymmetry, string theory, BRST quantization and other topics.

3701 © 2004 American Institute of Physics
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The research articles meanwhile fall into three groups reflecting a broad interpretation
oncommutative geometry and of the role of quantum groups and related objects. The firs
f papers consists of several articles involving quantum groups or Hopf algebras in their

orm. Two of them are applications to actual physics, to renormalization in quantum field
nd to anyons. Two more areq-deformation papers of the “classical” style in quantum gr

heory, here relating to noncompact quantum groups which is a topic currently on the cuttin
he remaining article in the group is about the famous “quantum Yang–Baxter equation
ow on finite sets which is another active frontier. New algebraic structures emerge in con
ith these famous equations, linked to finite group bicrossproducts among other things.

The second group of papers is centered on categorical methods and two themes w
onsider important for future developments in both physics and mathematics: 2-categorie
ne hand and nonassociative algebras such as the octonions on the other. If quantum g

aught us one thing, it is perhaps that categorical issues impinge directly on what is “nat
hysics and can be used to create and organize correct structures. Quantum group meth

n the form of quasi-Hopf algebras, monoidal categories, and in the foundations of the th
-categories, for example. While three of the papers are quite mathematical, three others

he potential physics of quite a concrete nature in the areas of nonstandard statistics and
arallel transport on surfaces in higher gauge theory, and the possible role of the octonion
tandard model.

The last group of papers contains work on Fedosov quantization, mirror symmetr
roupoids, all aspects of the broader noncommutative geometry of manifolds. We may stre

hat the special issue covers only a small and incomplete sample of the rapidly developin
ure.

Shahn Majid
School of Mathematical Sciences, Queen M

University of Londo
Mile End Road

London E14NS, United Kingdo
                                                                                                            



Q
a

-

a

b

c

d

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 10 OCTOBER 2004

0

                        
uantum groups and deformation quantization: Explicit
pproaches and implicit aspects

Philippe Bonneaua)

Institut de Mathématique de Bourgogne, Université de Bourgogne, BP 47870, F-21078
Dijon Cedex, France

Murray Gerstenhaberb)

Department of Mathematics, University of Pennsylvania, Philadelphia,
Pennsylvania 19104-6395

Anthony Giaquintoc)

Department of Mathematics and Statistics, Loyola University Chicago, Chicago,
Illinois 60626–5311

Daniel Sternheimerd)

Institut de Mathématique de Bourgogne, Université de Bourgogne, BP 47870, F-21078
Dijon Cedex, France

(Received 11 June 2004; accepted 7 June 2004; published 12 October 2004)

Deformation quantization, which gives a development of quantum mechanics inde-
pendent of the operator algebra formulation, and quantum groups, which arose
from the inverse scattering method and a study of Yang–Baxter equations, share a
common idea abstracted earlier in algebraic deformation theory: that algebraic ob-
jects have infinitesimal deformations which may point in the direction of certain
continuous global deformations, i.e., “quantizations.” In deformation quantization
the algebraic object is the algebra of “observables”(functions) on symplectic phase
space, whose infinitesimal deformation is the Poisson bracket and global deforma-
tion a “star product,” in quantum groups it is a Hopf algebra, generally either of
functions on a Lie group or(often its dual in the topological vector space sense, as
we briefly explain) a completed universal enveloping algebra of a Lie algebra with,
for infinitesimal, a matrix satisfying the modified classical Yang–Baxter equation
(MCYBE). Frequently existence proofs are known but explicit formulas useful for
physical applications have been difficult to extract. One success here comes from
“universal deformation formulas”(UDFs), expressions built from a Lie algebra
which deform any algebra on which the Lie algebra operates as derivations. The
most famous of these is the Moyal product, a special case of a class in which the
Lie algebra is Abelian. Another comes from recognition that the Belavin–Drinfel’d
solutions to the MCYBE are, in fact, infinitesimal deformations for which, in the
case of the special linear groups, it is possible to give explicit formulas for the
corresponding quantum Yang–Baxter equations. This review paper discusses, nec
essarily in brief, these and related topics, including “twisting” as a form of UDF
and finding formulas for “preferred deformations” of Hopf algebras in which the
multiplication or comultiplication is rigid and must be preserved in the course of
deformation. ©2004 American Institute of Physics.[DOI: 10.1063/1.1786681]
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. INTRODUCTION

Mathematics arose as an abstraction of the physical world and thenceforth often
omething entirely different. Still, the physical origin of many mathematical notions can be
nd is implicit in many developments. That is what we call physicalmathematics. On the othe
and, mathematics is the main language of theoretical physics, albeit used with a very
ccent, and the “mathematics toolbox” is crucial inmathematical physics. That mutual interactio
ppears as a watermark throughout many works, including the present paper.

It can be said that quantum groups arose “experimentally” in the Leningrad LOMI gro
udwig Faddeev around 1980[see, e.g., Kulish and Reshetikhin(1981) and Faddeevet al.
1988)], during attempts to quantize two-dimensional integrable models by methods comin
nverse scattering and a study of what they called Yang–Baxter equations.A posteriori it was
iscovered that some aspects(e.g., q-special functions in the 19th century) were present muc
arlier and that the notion is of importance in various areas of physics, including solid s
ecent primer of quantum groups from the physical viewpoint is Majid(2002).

Significant steps forward were made shortly afterwards, in particular when Jimbo(1985)
ystematized these attempts in his study of quantized enveloping algebras. Even more
rinfel’d (1987) made explicit the underlying Hopf algebra structures and, relating the dual

o deformation quantization, coined the expression “quantum groups.”
Deformation quantization was certainly “in the back of the mind” of many almost sinc

eginning of quantum mechanics[“wave mechanics” in de Broglie(1928)] and its avatars deve
ped since 1925 by Heisenberg(“matrix mechanics”), Schrödinger(with his celebrated equatio)
nd especially Weyl with his quantization procedure[Weyl (1931) and Wigner(1932)]. But the
elation with deformation theory[Gerstenhaber(1964)] and its role in physics[see, e.g., Flat
1982)] was made only in Bayenet al. (1978).

Already in the formulation of Drinfel’d(1987), it is clear that quantum groups are an avata
eformation quantization, when the category of Hopf algebras is taken into account. B
spect remained imprecise: the duality between the two aspects, deformations of(functions over)
oisson–Lie groups, and quantized enveloping algebras. That was, at least in the com
emisimple cases, made clear later[Bonneauet al. (1994) and Bidegain and Pinczon(1996)],
sing natural topologies on the corresponding Hopf algebras.

There is another duality which remains largely unexplored. The Gelfand isomorphism
em, by which commutative algebras can be considered as algebras of functions over som
their spectrum), expresses a “duality” between a commutative algebra and a topological
ow, on one hand, commutative algebras are deformed into noncommutative(associative or Hop)
lgebras. On the other hand, differentiable manifolds, characterized, e.g., by some algebr
rties, are deformed into noncommutative ones. And manifolds have symmetries that often
uantized. These related aspects are so far developed separately, to a large extent.
uestion is thus to study their relations. A very abstract attempt can be found in Kontsev
osenberg(2000). In view of the present rapid developments in noncommutative manifolds[see
.g., Kontsevich and Rosenberg(2000), Connes and Landi(2001), and Connes and Dubo
iolette (2003)] one should probably start with specific examples and see if a pattern arises

he need for explicit approaches.
In mathematics an abstract existence proof[such as the one in Etingof and Kazhdan(1998)]

s perfectly satisfactory, even more so when an algorithmic construction is given[such as in
edosov(1994)]. But for physical applications one needs to perform explicit calculations an

ealizations are truly explicit. In the compact case, the ideas underlying Bonneauet al. (1994)
ere tested in the basic example of SUs2d where explicit formulas were obtained[Bonneauet al.

(1992)]. We shall present here that example with this fact in mind. We also present the only
explicit formulas expressing the preferred deformation of a standard quantum algebra. Nam
preferred *-products for the quantum linear spaces associated with the standardq-deformation o
the special linear group SLsnd. These approaches show that deformation quantization is impl
most aspects of quantum groups theory.
Now, for deformation quantization, the paradigm of the Moyal star product is explicit enough,
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nd so are a number of related integral formulas inR2n and a few manifolds. Some examples
e found in Bieliavsky and Maeda(2002). But for general symplectic, even more so Pois
anifolds one has mainly existence theorems which are not easily made explicit. At its or

ears ago and again much more recently[Frønsdal(1979)], some explicit formulas were and a
eing developed. A somewhat explicit formula for many coadjoint orbits was recently dev
Alekseev and Lachowska) in terms of a pairing for generalized Verma modules. Related form
an be found in Donin and Mudrov(2002), Enriquezet al. (2004), and Karolinskyet al. (2003).
art of this paper will be devoted to explicit approaches in that underlying aspect of qu
roups theory. In particular we shall see that quantum groups techniques may produce
strict) deformation quantizations on the basis of what we call universal deformation for
UDFs). These come from mathematical entities living within a given algebraic structureS and
hey produce explicit deformations of any algebra which is also anS-module.

We start this paper(Sec. II) with a short presentation of deformation theory, mostly follow
erstenhaber. That somewhat arid presentation will be balanced by complements and, in
y a survey of how quantum mechanicsis a deformation of classical mechanics, with so
xplicit examples. Section IV begins with the explicit example[the case of SUqs2d] that triggered
he general theory(presented afterwards) of both approaches to quantum groups(functions on a
oisson–Lie group and quantized enveloping algebras) as dual topological Hopf algebras, at le

n the semisimple case. The latter theory being(in the general case) not explicit enough we devo
ec. V to a variety of explicit formulas for deformation quantization(star products), in particular

or symmetric spaces and related universal deformation formulas. Section VI discusses th
ations of the preceding study for obtaining explicit formulas for quantum groups, via sta
cts orR matrices.

This paper contains only a brief review of some of the rapid developments in deform
uantization since its introduction in Bayenet al. (1978). André Weil’s prediction near the end

he last century that deformation theory would be a major topic in the 21st so far seems ju

I. PRELIMINARIES

. The Gestenhaber theory of deformations of algebras

A concise formulation of a Gerstenhaber deformation of an algebra(associative, Lie, bialge
ra, etc.) is [Gerstenhaber(1963, 1964) and Bonneauet al. (1994)]:

Definition: A deformation of an algebraA over a fieldK with deformation parametern is a

ffngg-algebraÃ such thatÃ/nÃ<A, whereA is here considered as an algebra overKffngg by

ase field extension. Two deformationsÃ andA8̃ are called equivalent if they are isomorphic o
ffngg (by a deformation which reduces to the identity modulon, which will always be tacitly

nderstood). A deformationÃ is said to be trivial if it is isomorphic to the original algebraA
considered by base field extension as aKffngg-algebra).

Whenever we consider a topology onA, Ã is supposed to be topologically free. The ab
efinition can[cf., e.g., Kontsevich(1999) and Kontsevich and Soibelman(2000)] be extended t
perads, so as to apply to theAssoc, Lie, Bialg and maybeGerst operads, and also to the Ho
ategory(which can not be described by an operad), all possibly with topologies. In the prese
athematical physics paper we shall not probe these sophistications, but the reader sho

uch powerful possibilities in mind.
For associative(resp. Lie) algebras, the above definition tells us that there exists a

roduct * (resp. bracketf· , ·g) such that the new(deformed) algebra is again associative(resp
ie). Denoting the original composition laws by ordinary product(resp.h· , ·j) this means that, fo

1,u2PA (we can extend this toAffngg by Kffngg-linearity) we have

u1 * u2 = u1u2 + o
`

n rCrsu1,u2d, s1d

r=1

                                                                                                            



w g
2
w

uct
D f

K sor
p on

A

D -
h opf
a

t

T

(
a More
g
a er
t
k the
2

c
f ub-
a

-
t m
s
e ras may
b ipode.

B

1

e first
e to us,
t y
E hat the
G group,
t

hat
w
( an be
v ions
S , give
i
s d the
J that
d mple
b

3706 J. Math. Phys., Vol. 45, No. 10, October 2004 Bonneau et al.

                        
fu1,u2g = hu1,u2j + o
r=1

`

n rBrsu1,u2d, s2d

here theCr are Hochschild 2-cochains and theBr (skew-symmetric) Chevalley–Eilenber
-cochains, such that foru1,u2,u3PA we havesu1* u2d* u3=u1* su2* u3d and Sffu1,u2g ,u3g=0,
hereS denotes summation over cyclic permutations.

For a(topological) bialgebra(an associative algebraA where we have in addition a coprod
:A→A^ A and the obvious compatibility relations), denoted by^n the tensor product o

ffngg-modules we can identifyÃ^̂n Ã with sA^̂Adffngg, where ^̂ denotes the algebraic ten
roduct completed with respect to some topology(e.g., projective for Fréchet nuclear topology

). We similarly have a deformed coproductD̃=D+or=1
` n rDr, Dr PLsA,A^̂Ad, satisfying

˜ su1* u2d=D̃su1d* D̃su2d. In this context appropriate cohomologies can be introduced[Gersten
aber and Schack(1990) and Bonneau(1992)]. There are natural additional requirements for H
lgebras.

Equivalencemeans that there is an isomorphismTn= I +or=1
` n rTr, Tr PLsA,Ad so tha

nsu1* 8u2d=sTn u1* Tn u2d in the associative case, denoting by *(resp. *8) the deformed laws inÃ

resp.A8̃;) and similarly in the Lie, bialgebra and Hopf cases. In particular we see(for r =1) that
deformation is trivial at order 1 if it starts with a 2-cocycle which is a 2-coboundary.

enerally, exactly as above, we can show[Bayenet al. (1978)] [Gerstenhaber and Schack(1988)
nd Bonneau(1992) in the Hopf case] that if two deformations are equivalent up to some ordt,

he condition to extend the equivalence one step further is that a 2-cocycle(defined using theTk,
ø t) is the coboundary of the requiredTt+1 and thereforethe obstructions to equivalence lie in
-cohomology. In particular, if that space is null, all deformations are trivial.

Unit: An important property is that adeformation of an associative algebra with unit(what is
alled a unital algebra) is again unital, andequivalent to a deformation with the same unit. This
ollows from a more general result of Gerstenhaber(for deformations leaving unchanged a s
lgebra) and a proof can be found in Gerstenhaber and Schack(1988).

Remark 1:In the case of(topological) bialgebrasor Hopf algebras,equivalenceof deforma
ions has to be understood as an isomorphism of(topological) Kffngg-algebras, the isomorphis
tarting with the identity for the degree 0 inn. A deformation is again said to betrivial if it is
quivalent to that obtained by base field extension. For Hopf algebras the deformed algeb
e taken(by equivalence) to have the same unit and counit, but in general not the same ant

. Complements

. A brief historical survey: Contractions and deformations

The discovery, about 2000 years ago, of the nonflat nature of Earth is probably th
mpirical introduction of the notion of deformation in our description of the universe. Closer

he paradox coming from the Michelson and Morley experiment(1887) was resolved in 1905 b
instein with the special theory of relativity: in our context, one can express that by saying t
alilean geometrical symmetry group of Newtonian mechanics is deformed to the Poincaré

he deformation parameter beingc−1, wherec is the velocity of light in vacuum.
Curiously, it is the(less precisely defined) inverse notion of contraction of symmetries t

as first introduced in mathematical physics[Segal(1951), Inönü and Wigner(1953), Saletan
1961)]. Contractions, “limits of Lie algebras” as they were called in the first examples, c
iewed as an inverse of deformations—but not necessarily of Gerstenhaber-type deformat(see
ec. II B 3 below). We shall not expand here on that “inverse” notion but, for completeness

ts flavor. A(finite dimensional) Lie algebra can be described in a given basisLi si =1, . . . ,nd by its
tructure constantsCi,j

k . The equations governing the skew symmetry of the Lie bracket an
acobi identity insure that the set of all structure constants lies on an algebraic variety inn3

imensional space[Lévy-Nahas(1967)]. A contraction is obtained, e.g., when one makes a si

asis change of the formLi8=«Li on some of the basis elements, and then lets«→0. Take, for
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xample,n=3 and restrict to the three-dimensional subspace of the algebraic variety of
imensional Lie algebras with commutation relationsfL1,L2g=c3L3 and cyclic permutations. Th
emi-simple algebrassos3d and sos2,1d are obtained in the open setc1c2c3Þ0. A contraction
ives the Euclidean algebras, where oneci is 0. The “coordinate axes”(two of theci’s are 0) give

he Heisenberg algebra and the origin is the Abelian Lie algebra. This is of course a partial
e.g., solvable algebras are missing) but it is characteristic. The passage from the Poincaré
lgebra to the Galilean is a higher dimensional version of it. Dirac constraints[mathematically,
estriction fromR2n to a symplectic or Poisson submanifold, see, e.g., Lichnerowicz(1975)] can
ive such contractions and be interpreted in terms of star products[Arnal and Cortet(1979)].

An implicit mathematical example of deformations(in a geometric context) was introduced i
id-19th century by Riemann who counted the number of “moduli” or parameters of Rie

urfaces. Teichmüller(1939) [“It does not of necessity follow that, if the work delights you w
ts grace, the one who wrought it is worthy of your esteem,” cf. Lipman Bers(1998) (p. 324, afte
lutarch, Pericles 2.1; Lives, Loeb’s Classical Library 3, p. 5) who however, with André Wei
espite personal abhorrence of someone who helped drive Jewish mathematicians fro
ermany, fully credited his work] made deformations of Riemann surfaces explicit and iden

nfinitesimal deformations as quadratic differentials. The correct definition, applicable to co
anifolds of arbitrary dimension, is in the short but ground breaking note of Fröliche
ijenhuis (1957). They showed that if all infinitesimal deformations vanished then the man
as rigid (“stable” in their terminology), i.e., possessed no global deformations. This wa

mpetus for the deep and comprehensive work of Kodaira and Spencer(1958). Curiously, how
ver, the possibility of obstructions to infinitesimal deformations(which cannot occur in the ca
f Riemann surfaces because of the low dimension) was not originally understood, and appea

n the words of Kodaira and Spencer as an “experimental fact.”
Now, when one has an action on a geometrical structure, it is natural to try and “linea

y inducing from it an action on an algebra of functions on that structure. That is implicitly
erstenhaber(1964) did with his definition and thorough study of deformations of rings
lgebras. We shall encounter the concept of contraction more explicitly as it relates to q
roups later in Sec. VI D.

. Homotopy of deformations

For reasons that are related to the so-called Donald–Flanigan conjecture, two of us co
see Gerstenhaber and Giaquinto(1998) and Gerstenhaberet al. (2001)] the question of(formal)
ompatibilityof deformations, a kind of homotopy in the variety of algebras between two d
ations(1) with parametersn and n8 and cochainsCr and Cr8. By this he means a 2-parame
eformation of the form

u1*̃u2 = u1u2 + nC1su1,u2d + n8C18su1,u2d + o
r=2

`

Frsu1,u2;n,n8d, s3d

here eachFr is a polynomial of total degreer in n and n8, which reduces to the first on
arameter deformation whenn8=0 and to the second whenn=0. At the first order the conditio

or this to hold (e.g., for associative algebras) is that the Gerstenhaber bracket[Gerstenhabe
1964)] fC1,C18gG is a 3-coboundary, and here also there are higher obstructions. As an ex
t follows from Hochschildet al. (1962) that the Weyl algebra and the quantum plane are form
but nonanalytically[Giaquinto and Zhang(1995)]) compatible nonequivalent deformations of
olynomial algebraCfx,yg. Below we shall see another appearance of such a 2-parameter
ation in a physical context[Basartet al. (1984)].

. More general deformations

Deformations that are more general than the “DrG-deformations” of Gerstenhaber ca(and

ave been) introduced, where, e.g., the deformation “parameter” may act on the algebra.
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Nambu (1973) published some calculations which he had made a dozen years befor
uarks in the back of his mind he started with a kind of “Hamilton equations” onR3 with two
Hamiltonians” g, h functions ofr. In this new mechanics the evolution of a functionf on R3 is
f /dt=]sf ,g,hd /]sx,y,zd, a 3-bracket, where the right-hand side is the Jacobian of the ma
3→R3 given by sx,y,zd° sf ,g,hd. That expression was easily generalized, e.g., ton functions

f i, i =1, . . . ,n.
In order to quantize the Nambu bracket a natural idea is to replace, in the definition

acobian, the pointwise product of functions by a deformed product. For this to make se
eformed product should be Abelian, so we are lead to consider commutative DrG-defor
f an associative and commutative product. But the commutative part of Hochschild coho
called Harrison cohomology) is trivial, at least in the absence of singularities[see howeve
rønsdal(2002)]. So in Dito et al. (1997) a kind of “second quantization” procedure was u
here the deformation parameter behaves as if it was nilpotent(like Pauli matrices).

This triggered Pinczon(1997) and Nadaud(1998) to generalize the Gerstenhaber theory to
ase of a deformation parameter whichdoes not commute with the algebra, but acts on it. Thoug
his generalization of deformations does not(yet) give Nambu mechanics quantization, it open
hole new direction of research for deformation theory. In particular[Pinczon(1997)], while the
eyl algebraW1 (generated by the Heisenberg Lie algebrah1) is known to be DrG-rigid, it can b

ontrivially deformed in such asupersymmetric deformation theoryto the supersymmetry env
ping algebraUsosps1,2dd. Also [Nadaud(1998)] on the polynomial algebraCfx,yg in 2 variables
oyal-type products of a new type were discovered. All these deformations give the o
lgebra by a contraction, when the parameter goes to 0. So there is life outside the DrG
ork, even if that is so far largely unexplored.

II. QUANTUM MECHANICS AS A DEFORMATION

. The setting

Intuitively, classical mechanics is the limit of quantum mechanics when"=h/2p goes to zero
ut how can this be realized when in classical mechanics the observables are functions ov
pace(a Poisson manifold) and not operators? The deformation philosophy promoted by
hows the way: one has to look for deformations of algebras of classical observables, fu
ver Poisson manifolds, and realize there quantum mechanics in anautonomousmanner.

What we call “deformation quantization” relates to(and generalizes) what in the convention
operatorial) formulation are the Heisenberg picture and Weyl’s quantization procedure.
atter[Weyl (1931)], starting with a classical observableusp,qd, some function on phase spaceR2,

with p,qPR,), one associates an operator(the corresponding quantum observable) Vsud in the
ilbert spaceL2sR,d by the following general recipe:

u ° Vwsud =E
R2,

ũsj,hdexpsisP · j + Q · hd/"dwsj,hdd,jd,h, s4d

hereũ is the inverse Fourier transform ofu, Pa and Qa are operators satisfying the canon
ommutation relationsfPa ,Qbg= i"dab sa ,b=1, . . . ,,d, w is a weight function and the integral
aken in the weak operator topology. What is called in physics normal(or antinormal) ordering
orresponds to choosing for weightwsj ,hd=exps−1

4sj2±h2dd. Standard ordering(the case of th
sual pseudodifferential operators in mathematics) corresponds towsj ,hd=exps−si /2djhd and the
riginal Weyl (symmetric) ordering tow=1. An inverse formula was found shortly afterwards
ugene Wigner(1932) and maps an operator into what mathematicians call its symbol by a
f trace formula. For exampleV1 defines an isomorphism of Hilbert spaces betweenL2sR2,d and

2 ,
ilbert–Schmidt operators onL sR d with inverse given by
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u = s2p"d−, TrfV1sudexpssj · P + h ·Qd/i"dg s5d

nd if V1sud is of trace class one has TrsV1sudd=s2p"d−,euv,;TrMsud, the “Moyal trace,
herev, is the(symplectic) volumedx on R2,. Looking for a direct expression for the symbo
quantum commutator, Moyal(1949) found what is now called the Moyal bracket:

Msu1,u2d = n−1 sinhsnPdsu1,u2d = Psu1,u2d + o
r=1

`
n2r

s2r + 1d!
P2r+1su1,u2d, s6d

here 2n= i", Prsu1,u2d=Li1j1
¯Lir j rs]i1¯ir

u1ds] j1¯ j r
u2d is the rth power sr ù1d of the Poisso

racket bidifferential operatorP, ik, jk=1, . . . ,2,, k=1, . . . ,r and sLikjkd= s 0 −I
I 0

d. To fix ideas we
ay assume hereu1,u2PC`sR2,d and the sum is taken as a formal series. A correspon

ormula for the symbol of a productV1sudV1svd can be found in Groenewold(1946) and may now
e written more clearly as a(Moyal) star product:

u1* Mu2 = expsnPdsu1,u2d = u1u2 + o
r=1

`
n r

r!
Prsu1,u2d. s7d

he formal series may be deduced[see, e.g., Bieliavsky(2002)] from an integral formula of th
ype

su1 * u2dsxd = c"E
R2,3R2,

u1sx + ydu2sx + zde−si/"dL−1sy,zddydz. s8d

ther integral formulas are known for quite some time[Rieffel (1993) and Maillard(1986) where
he Weyl correspondence between bounded operators inL2sRld and bounded twisted convoluti
perators ofL2sR2ld is also described]. It was noticed, however after deformation quantization

ntroduced, that the composition of symbols of pseudodifferential operators(ordered, like differ
ntial operators, “firstq, thenp” ) is a star product.

One recognizes in(7) a special case of(1), and similarly for the bracket. So, via a We
uantization map, the algebra of quantized observables can be viewed as a deformation o
lassical observables.

But the deformation philosophy tells us more. Deformation quantization is not mer
eformulation of quantizing a mechanical system”[Douglas and Nekrasov(2001)], e.g., in the
ramework of Weyl quantization:The process of quantization itself is a deformation. In order to
how that explicitly it was necessary to treat in anautonomousmanner significant physical e
mples(in effect, those for which a complete and rigorous spectral theory exists), without recours

o the traditional operatorial formulation of quantum mechanics. That was achieved in Bayeet al.
1978) with the paradigm of the harmonic oscillator and more, including the angular mom
nd the hydrogen atom.

In particular what plays here the role of the unitary time evolution operator of a qua
ystem is the “star exponential” of its classical HamiltonianH (expressed as a usual exponen
eries but with “star powers” oftH / i", t being the time, and computed as a distribution bot
hase space variables and in time); in a very natural manner, the spectrum of the quantum ope
orresponding toH is the support of the Fourier-Stieltjes transform(in t) of the star exponenti
what Laurent Schwartz had called the spectrum of that distribution). It is worth mentioning tha
ur definition of spectrum permits to define a spectrum even for symbols of nonspectrable

ors, such as the derivative on a half-line which has different deficiency indices; this corre
o an infinite potential barrier. That is one of the many advantages of our autonomous app
uantization. Further examples were(and are still being) developed, in particular in the directi

f field theory.
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. Quantum mechanics without operators: Harmonic oscillator, angular momentum,
nd hydrogen atom

In quantum mechanics it is preferable to work(for X=R2,) with the Moyal product, which ha
aximal symmetry, i.e., hasspsR2,d ·h, as what we call(see Sec. IV C 2 below) algebra o
referred observables. One indeed finds[Bayenet al. (1978)] that star powers of these prefer
bservablesH (polynomials of orderø2) are usual polynomials inH (not only inp andq), and as
consequence their star exponential is proportional to the usual exponential and a functiH.
ore precisely, ifH=ap2+bpq+gq2Psls2d with p,qPR,, a ,b ,gPR, settingd=ag−b2 and
= udu1/2 one gets by summing the star exponential(with deformation parametern= i" /2) and then

aking its Fourier(or Fourier–Stieltjes) development, the sums and integrals appearing in
arious expressions of the star exponential being convergent as distributions, in phas
ariables and int or l:

expsHtd = 5scosdtd−lexpssH/i"ddtansdtdd for d . 01

expsHt/i"d for d = 01

scoshdtd−l expssH/i"ddtanhsdtdd for d , 0,

s9d

expsHtd =5o
n=0

`

Pn
s,desn+s,/2ddt for d . 0

E
−`

`

elt/i"Psl,Hddl for d , 0.

s10d

e thus get the discrete spectrumsn+s, /2dd" of the harmonicoscillator and the continuou
pectrumR for the dilation generatorpq. The eigenprojectorsPn

s,d andPsl ,Hd are given[Bayen
t al. (1978)] by known special functions on phase-space(generalized Laguerre and hypergeom
ic, multiplied by some exponential). Formulas(9) and(10) can, by analytic continuation, be giv

sense outside singularities and even(as distributions) for values oft for which the expression
re singular.

Other orderings give similar formulas[Maillard (2004)] and other examples can be brough
his case, in particular by functional manipulations[Bayenet al. (1978)]. For instance the Casim
lementC of sos,d representingangular momentum, which can be writtenC=p2q2−spqd2−,s,
1ds"2/4d, hasnsn+s,−2dd"2 for spectrum. For thehydrogen atom, with HamiltonianH= 1

2p2

uqu−1, the Moyal product onR2,+2 (,=3 in the physical case) induces a star product onX
T*S,; the energy levels, solutions ofsH−Ed* f=0, are found from(10) and the precedin
alculations for angular momentum to be(as they should, with,=3) E= 1

2sn+1d−2"−2 for the
iscrete spectrum, andEPR+ for the continuous spectrum.

We thus have recovered, in a completely autonomous manner entirely within defor
uantization, the results of “conventional” quantum mechanics in these typical example(and
any more can be treated similarly). It is worth noting that the term, /2 in the harmonic oscillato

pectrum, obvious source of divergences in the infinite-dimensional case, disappears if the
tar product is used instead of Moyal—which is one of the reasons it is preferred in field

. Modern developments

Since the original papers in 1976–1978[Flato et al. (1976) and Bayenet al. (1978)] defor-
ation quantization has been extended considerably. It now includes general symple
oisson(finite dimensional) manifolds, with further results for infinite dimensional manifolds,

manifolds with singularities” and for algebraic varieties, and has many far reaching ramific
n both mathematics and physics[see, e.g., a brief overview in Dito and Sternheimer(2002)]. As
n quantization itself[Weyl (1931)], symmetries(group theory) play a special role and an auton

ous theory of star representations of Lie groups was developed, in the nilpotent and s

ases of course(due to the importance of the orbit method there), but also in significant other
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xamples. The presentation that follows can be seen as an extension of the latter, when o
ull use of the Hopf algebra structures and of the “duality” between the group structure and
f its irreducible representations.

It goes without saying(but mentioning it will not hurt) that deformation theory and Ho
lgebras are seminal in a variety of problems ranging from theoretical physics to algebraic
try, number theory and more. We shall not insist here on the manifold applications of qu
roups, certainly treated in many contributions to this special issue. In theoretical phys
nds now applications(see, e.g., Connes and Kreimer(1999), Dito et al. (1997), Tamarkin(2003)]
o renormalization and Feynman integrals and diagrams. Noncommutativity is a staple in
heoretical physics[Douglas and Nekrasov(2001)] (including string theory and its avatars) even a
he level of space–time; deformation quantization(in particular Moyal products) is an importan
ool there, at least at the formal level. But the applications(and by-products therefrom to physi)
xtend as far as algebraic geometry and number theory[see, e.g., Kontsevich(2001) and Kont-
evich and Zagier(2001)] including algebraic curves à la Zagier[cf. Connes and Moscovi
2004), Connes and Marcoli, and Connes’s lectures at Collège de France, Winter 2003 and).

V. QUANTUM GROUPS AS DEFORMATIONS

In this section we explore in detail the concept of viewing quantum groups as Hopf a
eformations ofUg andC`sGd. We restrict to the case whereG is a semisimple Lie group with L
lgebrag.

. Formal deformations

We begin with a summary of important considerations regardingformal deformations: all
ector spaces, tensor products, etc. being complete in then-adic topology. This is a purely alg
raic approach with no consideration to any topological or convergence questions. All o

ollows can be extracted from Drinfel’d(1989a, 1989b), Gerstenhaber and Schack(1990a, 1990b).
Recall that a bialgebra is calledrigid it every deformation is trivial. NeitherUg nor C`sGd is

igid but, as the theorem below asserts, each ishalf-rigid in the following sense:Ug is rigid as an
lgebra andC`sGd is rigid as a coalgebra. This means that for any deformationUnsgd, there is an
quivalent one in which the original multiplicationm0:Ug ^ Ug→Ug is preserved and soUnsgd
sUgffngg ,m0,D̃d for some coassociativeD̃. Similarly, any deformationCn

`sGd is equivalent to
ne in which the comultiplicationD0:C`sGd→C`sGd is preserved on all elements. ThusCn

`sGd
sC`sGdffngg , * , D0d for some associative *-product. Such deformations in which one o

riginal structure maps is preserved are calledpreferred.
The structure of the deformed comultiplication ofUg and the deformed multiplicationC`sGd

re produced via certain elements ofsUg ^ Ugdffngg. For FP sUg ^ Ugdffngg and uPUg, define

Fsud=FD0sudF −1. In a dual sense, we can definef* Fg for f ,gPC`sGd. To define *F we need
ome notation first. ForxPg, let xl andxr be the left invariant and right invariant, respectiv
erivations ofC`sGd arising from the corresponding left and right invariant vector fields oG
ssociated withx. Taking the tensor product and extending linearly, we associate to evF
sUg ^ Ugdffngg two formal sums of bidifferential operatorsFl and Fr. With this, we defin

f* Fg=m0+ sFl +F r
−1dsf ^ gd. Note that ifF>1^ 1 modn, thenDFsud and f* Fg are series whos

onstant terms are the original structure mapsD0sud and f ·g. However,DF will not generally be
oassociative and *F will not generally be associative. The appropriate condition forF to satisfy is
iven by the following important result.

Theorem IV.1 [Drinfel’d (1989a, 1989b), Gerstenhaber and Schack (1992)]:Let G be a
emisimple Lie group with Lie algebrag, and suppose that FP sUg ^ Ugdffngg with F>1

^ 1 modn.
ThensUgffngg ,m0,DFd and sC`sGdffngg , *F ,D0d are deformations if and only if
F12sD0 ^ 1dF = FF23s1 ^ D0dF s11d
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or someFP sUg ^ Ug ^ Ugdg. Moreover, every deformation ofUg andC`sGd is equivalent to on
efined by such an F.

Note that(11) is an equation which must hold in the triple tensor productUg ^ Ug ^ Ug. (The
omultiplicationD0 in this equation is that ofUg.) The half-rigidity of Ug was first proved i
rinfel’d (1989a) and it was derived forC`sGd in Gerstenhaber and Schack(1992). The specific

orm of the deformations can be deduced from Drinfel’d(1989b).
If F=1^ 1^ 1 (a trivial g-invariant), then F is called a twisting elementand, if F is a

ontrivial invariant, thenF is a modified twisting element. In either case, we say the deformat
s given by a “twist.”

From the viewpoint of deformation quantization, it may seem that Theorem IV.1 settl
tory. In a way it does, but it opens up many more questions which we will address through
emainder of this survey. The most basic question is to find elementsF which solve Eq.(11). This
ask is easier said than done. Indeed, no modified twisting elements are explicitly known
imple Lie algebrag—even for the rank 1 case ofsls2d! The situation is different for twistin
lements—there is a handful which are explicitly known, and we will exhibit some of them

n Sec. VI B.
There is an interesting irony here concerning the infinitesimals(or first order terms) of the two

ypes of twisting elements. The possible infinitesimals of modified twisting elements are a
tructively classified in the famous paper of Belavin and Drinfel’d(1984). In contrast, such
lassification for the infinitesimals of the twisting elements is an intractable problem.(It would
equire, in particular, a constructive classification of all Abelian subalgebras ofg, a question whic
s known to be too broad to solve as stated.)

. Topological preliminaries

In the next few sections, we describe a “topological” approach to quantum groups via
ation quantization. Instead of working formally over complete power series rings, we co
ther topologies which have more desirable properties, especially in terms of dualizatio

heory was initiated in Bonneau(1994) and its generalizations can be found in Bidegain
inczon(1996).

. Example: The SU „2… case

First we will investigate in detail the example that the general theory is based on
nteresting and merits special attention because apart from giving the main ideas, it differs
rucial points: it isexplicit andconvergent. The main reference is Bonneauet al. (1992).

We start with Jimbo’s definition ofUqsls2d [Jimbo (1985)]. As an algebra,Uqsls2d has gen
ratorsE, F, K±1 and the relations

KEK−1 = qE, KFK−1 = q−1F, EF − FE =
K2 − K−2

q − q−1 .

he coalgebra structure onUqsls2d is given by

DsEd = E ^ K−1 + K ^ E, DsFd = F ^ K−1 + K ^ F, DsKd = K ^ K.

Remark IV.1:

1) One may viewUqsls2d as an algebra overK (with qPK*) or over the rational function fiel
Ksqd (with q an indeterminate). For what follows it will be convenient to view q=einPC.

2) Note that, as presented, Uqsls2d is not a deformation ofUsls2d. If one formally sets K
=qH/2 (where fE,Fg=H in sls2d) and completes the algebra with respect to then-adic
topology, then one indeed has a genuine deformation ofUsls2d. This fact, however, is not
obvious from looking at just the relations. It is usually proved by analyzing the representa

theory of the algebras involved.
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Even thoughUqsls2d is undefined atq=1, one may make sense of it asq approaches 1
pecifically, under the linear change of generators,

S=
K − K−1

q − q−1 ,

C =
K + K−1

2
,

ne has the following set of relations:

EF − FE = 2SC, SC= CS,

ES= sS cosn − CdE, EC= sC cosn + S sin2ndE,

FS= sS cosn + CdF, FC = sC cosn − S sin2ndF,

C2 + S2sin2n = 1. s12d

This new system of generators and relations is well-defined for alln, and it turns out tha

1sls2d>Usls2d ^ KfXg / sX2−1d. The elementX is called aparity. The Jimbo quantum groupsUqg

ave, in general,r parities, wherer is the rank ofg and so they are clearly not a formal def
ation ofUg, notwithstanding the aforementioned rigidity result of Theorem IV.1.

The algebraA: Let hspn,VndjnPs1/2dN be the finite dimensional irreducible representation
ls2d [or SUs2d, as they are the same]. Let A=pnPs1/2dNEndsVnd. We consider the product topo
gy on A (Fréchet). We have embeddingsUsls2d�A and CG�A by u° spnsudd and
° spnsxdd. These maps are injective becausehspn,Vndj is a complete set of representations
ls2d [or SUs2d].

Let p be the representation ofUsls2d [or SUs2d] defined byonPs1/2dNpn. ThenA coincides
ith the bicommutant ofp and, by semisimplicity ofp and the density theorem of Jacobson,
et

Usls2d = A and CḠ = A.

ince the sethspn,VndjnPs1/2dN is also a complete set of representations forUqG we have th
ollowing similar results:

Uq sls2d � A and Uqsls2d = A, for all n ¹ 2pQ.

etails can be found in Bonneauet al. (1992).
Thus, bothUsls2d andUqsls2d are dense subalgebras ofA. We denote byAn the subalgebra o

isomorphic toUqsls2d. SinceAn>An8 if and only if n8= ±n+2kp ,kPZ, it follows thatAn is a
eformation ofA0.

By a standard density argument, the coproductDn of An ,n¹2pQ, can be extended to t
hole algebraA; the same holds true for the antipode. Thus we have a preferred deforma
as the coalgebra structure varies with a fixed algebra structure. In fact, this deformatioA

as the same form as any preferred deformation ofUg. Specifically, there is an invertible elem

PA^̂A such thatDn=FD0F
−1. The elementF is constructed component by component u

quivalences of representations, see Bonneauet al. (1992) for details. A consequence is that all
opf structures onA induced by variousAn are isomorphic as quasi-Hopf algebras[see Drinfel’d

1989)].
So far we have not used the topology onA, but it will play a crucial role as we now want

*
onsider its dualization. The strong topological dual ofA=pnPs1/2dN End sVnd is A =H
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%nPs1/2dN End sVnd, the coefficient Hopf algebra of polynomial functions on SUs2d. SincesA
^̂Ad* =H^̂H, we obtain a Hopf algebra onA* , which we denoteHn.

Proposition IV.1:Hn coincides precisely with the deformation of the function Hopf alg
fSL2g, the quantum groupCfSL2g, given in Faddeev et al. (1988).

Thus we have shown that there is an explicit embedding of the Jimbo quantum

qsls2d ,qPC (qnÞ1 for all nPN) in the C-Hopf algebraA.
In the general case that will not be possible. We shall have to use theCffngg-Hopf algebra

ffngg and the nonexplicit Drinfel’d isomorphisms.

. Some topological Hopf algebras (well-behaved Hopf algebras )

We shall now briefly review applications of the deformation theory of algebras in the c
f Hopf algebras endowed with appropriate topologies and in the spirit of deformation qu

ion. That is, we shall consider Hopf algebras of functions on Poisson–Lie groups(or their topo
ogical duals) and their deformations, and show how this framework is a powerful tool to u
tand the standard examples of quantum groups, and more. In order to do so we first rec
otions on topological vector spaces and apply them to our context.

Definition IV.1: A topological vector space (tvs) V is said well-behaved if V is either nu
nd Fréchet, or nuclear and dual of Fréchet [Grothendieck (1955) and Trèves (1967)].

Proposition IV.2: If V is a well-behaved tvs and W a tvs, then

sidV** . V, sii dsV^̂ Vd* . V*
^̂ V* , siii dHomKsV,Wd . V*

^̂ W,

here V* denotes the strong topological dual of V, ^̂ the projective topological tensor product a
he base fieldK is R or C.

Definition IV.2: sA,m ,h ,D ,« ,Sd is a WB (well-behaved) Hopf algebra [Bonneau et a
1994)] if

1) A is a well-behaved topological vector space;

2) The multiplicationm :A^̂A→A, the coproductD :A→A^̂A, the unith, the counit«, and the
antipode S are continuous;

3) m ,h ,D ,«, and S satisfy the usual axioms of a Hopf algebra.

Corollary IV.1: If sA,m ,h ,D ,« ,Sd is a WB Hopf algebra, thensA* ,tD,t«,tm,th,tSd is also a WB
opf algebra.

Examples IV.1:Let G be a semisimple Lie group andg its complexified Lie algebra.

1) C`sGd, the algebra of the smooth functions onG, is a WB Hopf algebra(Fréchet an
nuclear).

2) DsGd=C`sGd* , the algebra of the compactly supported distributions onG, is a WB Hopf
algebra(dual of Fréchet and nuclear). The product is the transposed map of the coprodu
C`sGd that is, the convolution of distributions.

3) HsGd, the algebra of coefficient functions of finite dimensional representations ofG (or
polynomial functions onG) is a WB Hopf algebra, the Hopf structure being that indu
from C`sGd.
A short description of that algebra is as follows: We take a setĜ of irreducible finite
dimensional representations ofG such that there isone and only oneelement for eac

equivalence class, and, ifpPĜ, its contragredientp̌ is also inĜ. We define

Cp = vect hcoefficient functions of pj .
Burnside

EndsVpd for p P Ĝ.

ThenHsGd.
alg.

%pPĜCp.
v.s.

%pPĜ End sVpd. So we take onHsGd the “direct sum” topology

ThenHsGd is dual of Fréchet and nuclear and so is WB.
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4d Let AsGd, the algebra of “generalized distributions,” be defined byAsGd=HsGd* .
alg.

ppPĜ

End sVpd. The sproductd topology is Fréchet and nuclear, and thereforeAsGd is WB.

Proposition IV.3 [Bidegain and Pinczon (1996) and Bonneau et al. (1994)]: We denoteUg
he universal enveloping algebra ofg and by CG the group algebra of G. All the following
nclusions are inclusions of Hopf algebras.b, c, d, e mean a dense inclusion,

Ug b AsGd c
s* d

CG HsGd

ds* d es* d
Ug , DsGd c CG C`sGd

* d is true if and only if G is linear (i.e., with a faithful finite dimensional representation).

. Topological quantum groups

We shall now deform the preceding topological Hopf algebras and indicate how this e
arious models of quantum groups. For clarity of the exposition, throughout this section a
emainder of the paper, we shall limit to a minimum the details concerning the Hopf a
tructures other than product and coproduct. But whenever we write Hopf algebras and n
ialgebras, the relevant structures are included in the discussion and dealing with them
traightforward. Note that the results which pertain only to the formal aspect of the theor
lready mentioned in Sec. IV A.

. Topological quantization

If Ung is a deformation ofUg, then an isomorphism(it is not unique!) w :Ung→Ugffngg
uaranteed to exist by Theorem IV.1 will be called aDrinfel’d isomorphism.

Theorem IV.2 [Bonneau et al. (1994) and Bidegain and Pinczon (1996)]:Let G be a
onnected semisimple Lie group andg be its complexified Lie algebra.

1) If Ung is a deformation ofUg (a “quantum group”) then there exists FP sUg ^ Ugdffngg such
that sUng ,mn ,Dnd.sUgffngg ,m0,FD0F

−1d.

2) AnsGd : =sAsGdffngg ,m0,F ·D0·F −1d is a Hopf deformation ofAsGd and Ung ,
Hopf

AnsGd.

3) DnsGd : =sDsGdfftgg ,m0,F ·D0·F n
−1d is a Hopf deformation ofDsGd and Ung ,

Hopf

DnsGd.
4) Cn

`sGd : =DnsGd* and HnsGd : =AnsGd* are quantized algebras of functions. They are H
deformations ofC`sGd and HsGd.

Similar results hold for other WB Hopf algebras(e.g., constructed with infinite dimension
epresentations) [Bidegain(1996)].

Proof: Linear case:Item (1) is a direct consequence of Theorem IV.1. To prove item(2),
bserve thatFP sUg ^ Ugdffngg, sAsGd^̂AsGddffngg and coassociativity follows from the den

nclusionUgbAsGd. Item (3) it true by restriction of(2), and item(4) holds by simple dualizatio
rom (2) and (3).

Nonlinear case:Here, asDsGdúAsGd we have to treatDsGd andAsGd separately.

a) Since we can prove[see Bidegain and Pinczon(1996)] that “there exists a compact co
nected Lie groupK such thatHsGd=HsKd,” we haveAsGd=AsKd and we can apply th
linear case.

b) To treatDsGd we use the density ofCG in DsGd and go fromUg to CG by exponentiatin
[Bidegain and Pinczon(1996)]. j

Remark IV.2: “Hidden group structure” in a quantum group. All the deformations constructe
`
ere arepreferred, that is, the product onDnsGd and onAnsGd [resp. the coproduct onCn sGd and
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n HnsGd] is not deformed and the basic structure is still the product on the groupG. So this
pproach gives an interpretation of the Tannaka–Krein philosophy in the case of quantum

t has often been noticed that, in the generic case, finite dimensional representations of a
roup are(essentially) representations of its classical limit. So the algebras involved should
ame, which is justified by the above mentioned rigidity result of Drinfel’d. This shows th

nitial classical group is still there, acting as a kind of “hidden variables” in this quantum
heory, which is exactly what we see in this quantum group theory. This fact was impl
rinfel’d’s work. The Tannaka–Krein interpretation of the twisting of quasi-Hopf algebras c

ound in Majid[see, e.g., Majid(1992)]. It was made explicit, within the framework exposed h
n Bonneauet al. (1994).

Thus, for any connected Lie groupG and for any deformation of the universal envelop
lgebra ofg=LieCsGd, we obtain a star product * onC`sGd andHsGd. For noncompact groups s
idegain and Pinczon(1995). The next result shows that these deformation quantizations in
ther ones on some quotients ofG:

Proposition IV.4: Let H be a closed normal subgroup of G.

1) * induces a star product onC`sG/Hd.
2) If G is linear, * induces a star product onHsG/Hd.

. Unification of models and generalizations

a. Drinfel’d models:We call “Drinfel’d model of quantum group” a deformation ofUg for g
imple, as given in Drinfel’d(1987)). We have seen in the preceding section that from
rinfel’d model Ung of a quantum group(which can be generalized to any deformation of
opf algebraUg), we obtain a deformation ofDsGd andAsGd that containsUng as a sub-Hop
lgebra. SoDnsGd and AnsGd are quantum group models that describe Drinfel’d models
uality, Cn

`sGd andHnsGd are “quantum group deformations” ofC`sGd andHsGd. The deforme
roduct onHsGd is the restriction of that onC`sGd. Furthermore, as we shall see, these defo

ions coincide with the usual “quantum algebras of functions.” Let us look more in de

nsGd:
b. Faddeev–Reshetikhin–Takhtajan (FRT) models:In Faddeevet al. (1988) quantized algebra

f functions are defined in terms of generators and relations, the key relation being given
tar-triangle (Yang–Baxter) equation, RsT^ Id dsId ^ Td=sId ^ TdsT^ Id dR, for a given
-matrix RPEndsV^ Vd and forTPEndsVd, V being a finite dimensional vector space.

As our deformations are given by a twistF, it is not surprising, from a structural point of vie
Majid (1992)] that, dually, we obtain in each case a Yang–Baxter relation and so a “FRT
uantized algebra of functions. Our Fréchet-topological context permits us to write precise
construction for the infinite-dimensional Hopf algebras involved.

c. Linear case:If G is semisimple and linear, there existsp a finite dimensional representat
f G such thatHsGd.Cfpi j ;1ø i , j øNg where thepi j are the coefficient functions ofp. Denote
y sHnsGd , * d the deformation ofHsGd obtained in this way and byT the matrixfpi jg. Define

1: =T^ Id andT2: = Id ^ T. Then we have
Proposition IV.5 [Bonneau et al. (1994) and Bidegain and Pinczon (1996)]:

1) hpi j ;1ø i , j øNj is a topological generator system of theCffngg-algebraHsGdn.
2) There exists an invertibleRPLsVp ^ Vpdfftgg such thatR ·T1* T2=T2* T1·R (so HnsGd is

a “quantum algebra of functions” of type FRT).
3) We recover every quantum group given in [FRT] by this construction.

Sketch of proof:

1) Perform a precise study of the deformed tensor product of representations.
2) Since the deformationsAnsGd are given by a twistF, AnsGd is quasicocommutative, i.e

there existsRP sAsGd^̂AsGddffngg such thats +Dnsad=RDFsadR−1 with ssa^ bd=b^ a.

Standard computations give the result.
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3) We want to follow the ideas used in Drinfel’d(1987) to link Drinfel’d to FRT models. Sinc
the main point here is that our deformations are obtained through a Drinfel’d isomor
we therefore have to show:

(a) There exists a specific Drinfel’d isomorphism deforming the standard representa
g into the representation ofUng used in Drinfel’d(1987).

(b) Two Drinfel’d isomorphisms give equivalent deformations. j

For instance, the FRT quantization of SLsnd can be seen as a Hopf deformation ofHsSUsndd
with nondeformed coproduct). Moreover, this Hopf deformation extends toC`sGd.

Remark IV.3:

1) This proposition justifies the terminology “deformation,” often employed but never jus
in these cases. See, e.g., Gerstenhaberet al. (1990), where it is shown that relations of ty
RT1T2=T2T1R need not define a deformation, even ifR is Yang–Baxter.

2) Starting from Drinfel’d models, our construction produces FRT models also, e.G
=Spinsnd and for exceptional Lie groups. In addition, at least some multiparameter
mations[Reshetikhin(1990)] can be easily treated in this way[Bonneauet al. (1994)].

d. Nonlinear case:
Proposition IV.6 [Bidegain and Pinczon (1996)]: If G is semisimple with finite center,

xists a dense subalgebra ofsCn
`sGd , * d generated by the coefficient functions of a finite numb

possibly infinite dimensional) representations.
e. Jimbo-type models:The Jimbo models[Jimbo(1985)] have generatorsEi

±, Ki, andKi
−1. As

tated earlier(Sec. IV B 1) these are not deformations in our sense due to the presence of p
The G=SUs2d case was developed in Sec. IV B 1. Similarly, forG=SLs2,Cd, Martin and

ouagui (1996) realizeUn sls2,Cd as a dense sub-Hopf algebra ofAsGd, ∀tPC \2pQ (with q
ên). Then, for the Lorentz algebrasls2,Cd, this unifies[Martin and Zouagui(1996)] all the
odels proposed so far in the literature for a quantum Lorentz group. We obtain hereconvergen
eformations as in the above example of the SUs2d case.

For sls2,Cd, it was first proposed in Podleś and Woronowicz(1990) to consider the quantu
ouble [Drinfel’d (1987)] of Uq sus2d as theq-deformed Lorentz group. It was known fro
eshetikhin and Semenov-Tian-Shansky(1989) that in such cases the double, as an algebra,

ensor product of two copies ofUn sus2d. See also Ogievetskyet al. (1991), Schmidkeet al.
1991), and Majid(1993) for a dual version and another semidirect product form.

f. Deformation quantization:From the main construction, using deformations ofUg, we
educe the following general theorem:

Theorem IV.3 [Bidegain and Pinczon (1996)]:Let G be a semisimple connected Lie gr
ith a Poisson–Lie structure. There exists a deformationsCn

`sGd , * d of C`sGd such that* is a
differential) star product.

Remark IV.4:Techniques similar to those indicated here can be applied to otherq-algebra
more general quantum groups such as those in Frønsdal(1997) and more recent example
angians, etc.]. In particular those used in the case of the Jimbo models should be applic
-algebras defined by generators and relations. That direction of research has not yet bee
ped.

Since from any Drinfel’d quantum group we obtain a star product, and since any FRT
um group can be seen as a restriction of such a star product, we have showed that the
semisimple” quantum group is equivalent to the data of a star product onC`sGd satisfying
sf * gd=Dsfd* Dsgd.

Actually the functorial existence results of Etingof and Kazhdan(1996) on the quantization o
ie bialgebras[see also Enriquez(2002)] show that the latter is true also for “nonsemisimp
uantum groups.

In our framework, we obtained a result in this direction about preferred deformations:
Theorem IV.4 [Bidegain and Pinczon (1996)]:Let G be a simply connected Poisson–
roup such that its associated Lie bialgebra has a preferred quantization. Then there exists a
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eformationsCn
`sGd , * d of C`sGd such that* is a (differential) star product.

This can be applied, for example, when LiesGd is the double of some Lie algebra, since th
xists a preferred quantization[Etingof and Kazhdan(1996)].

It is important to remark that the proof of this theorem does not use the preceding co
ion. The main argument is an integrability result concerning formal deformations[Lesimple and
inczon(1993)].

. TOWARDS EXPLICIT REALIZATIONS. I

. Star exponentials and star representations

Let G be a Lie group(connected and simply connected), acting by symplectomorphisms on
ymplectic manifoldX (e.g., coadjoint orbits in the dual of the Lie algebrag of G). The element
,yPg will be supposed to be realized by functionsux,uy in C`sXd so that their Lie bracketfx,ygg

s realized byhux,uyj.
We definesg.u.dsjd=usg−1·jd the induced action ofG on C`sXd. A very natural problem i

he existence of a star product * onC`sXd such thatg.u. * g.v . =g.su* vd , ∀u,vPC`sXd , ∀g
G, that is, aG-invariant star product. Explicit examples of such star products will be given

on some symmetric spaces). But in general, even for a nilpotentG acting on a coadjoint orbit, a
nvariant star product does not always exists.

This leads to consider a weaker condition: we say that * iscovariant if there exists a defo
ationt of .stgsud=g·u+n ¯d such that * is invariant undert. It can be shown[Arnal and Corte

1985)] that is equivalent to ask thathux,uyj=fux,uyg;su* v−v* ud /2n.
Now take aG-covariant star-product *, then the mapg{x° s2nd−1uxPC`sXd is a Lie algebr

orphism. The appearance ofn−1 here and in the trace(see 2.2.1) cannot be avoided and expla
hy we have often to take into account bothn andn−1. We can now define thestar exponentia

Esexd = expsxd ; o
n=0

`

snd−1sux/2nd*n, s13d

herexPg, exPG and the power *n denotes thenth star-power of the corresponding function.
he Campbell–Hausdorff formula one can extendE to a group homomorphism E:G→ sC`sXd

ffn ,n−1gg , * d where, in the formal series,n andn−1 are treated as independent parameters fo
ime being. Alternatively, the values ofE can be taken in the algebrasPffn−1gg , * d, whereP is the
lgebra generated byg with the *-product(it is a representation of the enveloping algebra).

A star representation[Bayenet al. (1978)] of G is a distributionE (valued in ImE) on X
efined by

D { f ° Esfd =E
G

fsgdEsg−1ddg,

here D is some space of test-functions onG. The correspondingcharacter x is the (scalar
alued) distribution defined byD{ f °xsfd=eX Esfddm, dm being a quasi-invariant measure
.

The character is one of the tools which permit a comparison with usual representation
or semisimple groups it is singular at the origin in irreducible representations, which may
aution in computing the star exponential(13). In the case of the harmonic oscillator that difficu
as masked by the fact that the corresponding representation ofsls2d generated bysp2,q2,pqd is

ntegrable to a double covering of SLs2,Rd and decomposes into a sumDs 1
4

d % Ds 3
4

d: the singu
arities at the origin cancel each other for the two components.

This theory is now very developed, and parallels in many ways the usual(operatorial) repre-
entation theory. A detailed account of all the results would take us too far, but among th
otable one may quote:
i) An exhaustive treatment ofnilpotentor solvable exponential[Arnal and Cortet(1985)] and
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even general solvable Lie groups[Arnal et al. (1995) and Arnal and Cortet(1990)]. The
coadjoint orbits are there symplectomorphic toR2, and one can lift the Moyal product
the orbits in a way that is adapted to the Plancherel formula. Polarizations are not re
and “star-polarizations” can always be introduced to compare with usual theory. Wa
important in signal analysis, are manifestations of star-products on the(two-dimensiona
solvable) affine group ofR or on a similar three-dimensional solvable group[Bertrand an
Bertrand(1998)].

ii ) For semisimpleLie groups an array of results exists. Some explicit and autonomou
mulas for star exponentials[Frønsdal(1979)] are available. In[Arnal et al. (1988) and
Moreno(1986)] a complete treatment of theholomorphic discrete series(this includes th
case of compact Lie groups) was made, using a kind of Berezin dequantization. Sim
techniques have also been used[Cahenet al. (1995) and Karabegov(1998)] to find invari-
ant star-products on Kähler and Hermitian symmetric spaces(convergent for an appropria
dense subalgebra). Note however, as shown by recent developments of unitary repre
tions theory[see, e.g., Schmid(1997)], that for semisimple groups the coadjoint or
alone are no more sufficient for the unitary dual and one needs far more elabora
structions.

iii ) For semidirect products, and in particular for the Poincaré and Euclidean groups,
tonomous theory has also been developed[see, e.g., Arnalet al. (1980)].

Comparison with the usual results of “operatorial” theory of Lie group representations
erformed in several ways, in particular by constructing an invariant Weyl transform gener
4), finding “star-polarizations” that always exist, in contradistinction with the geometric q
ation approach(where at best one can find complex polarizations), study of spectra(of element

n the center of the enveloping algebra and of compact generators) in the sense of(2.2.3.1),
omparison of characters, etc. Note also in this context that the pseudodifferential analy
non autonomous) connection with quantization developed extensively by Unterberger, first
ase ofR2,, has been extended to the above invariant context[Unterberger(1984) and Unterberge
nd Upmeier(1994)]. But our main insistence is that the theory of star representations
utonomousone that can be formulated completely within this framework, based on coa
rbits (and some additional ingredients when required).

. Universal deformation formulas

For an endomorphismf of an algebraA, write af for the right action off on aPA. It was
oticed early in deformation theory[see Gerstenhaber(1968)] that if f and c are commutin
erivations ofA, then the product

a * b = ab+ nafbc +
n2

2
af2

bc2
+ ¯ +

nn

n!
afn

bcn
+ ¯

efines an associative multiplication. This deformation can simply be written as

a * b = m0ssa ^ bdexp nsf^cdd

nd can be generalized to any sum of commuting derivations. The Moyal product can be
n this fashion: takeA=C`sR2nd andoi, j]xi

∧]xj
as the infinitesimal.

The first explicit deformation formula involving noncommuting derivations appeared in
t al. (1989). Suppose thatf and c are derivations satisfyingff ,cg=c, and let fsnd=fsf
1d¯ sf+n−1d. Then,

a * b = ab+ nafbc +
n2

2
afs2d

bc2
+ ¯ +

nn

n!
afsnd

bcn
+ ¯ s14d
s associative. As an exponential, this deformation may be written as
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a * b = m0ssa ^ bdexpsf^ lns1+ncddd.

s we will see, it is this formula that produces the “Jordanian” quantization ofC`sSL2d. Related
-products are given in Bieliavsky and Maeda(2002).

These are examples ofuniversal deformation formulas, a construction of formal deformatio
nspired by Drinfel’d’s twisting concept of introduced in Drinfel’d(1989a, 1989b). The basic ide
s that one has a deformation solely based upon information about the Lie algebra of deri
nd the formula is independent of the actual algebra in question. Such constructions are e
f a mutual feedback between Hopf algebraic techniques in quantum groups and defo
uantization. The following subsections provide further examples.

Definition V.1: An element FPB^ B is a twisting element (based on a bialgebra B w
omultiplicationDB and counit«B) if

1) s«B ^ Id dF=1^ 1=sId ^ «BdF, and
2) F12fsDB^ Id dsFdg=F23fsId ^ DBdsFdg.

The virtue of having such anF is that it can be used to twist the entire category of r
-module algebras and leftB-module coalgebras in a uniform way. The following result f
iaquinto and Zhang(1998) is based on the fundamental ideas from Drinfel’d(1989b).

Theorem V.1: Let FPB^ B be a twisting element:

1) If A is a right B-module algebra, then AF=AsmA+Fr ,1Ad is an associative algebra;
2) If C is a left B-module coalgebra, then CF=CsFl +DC,«Cd is a coassociative coalgebra;
3) If F is invertible andDB8 =Fl +F r

−1+DB, then BF=BsmB,DB8 ,1B,«Bd is a k-bialgebra;
4) If F is invertible A is a right B-module algebra, then AF is a right BF-module algebra;
5) If F is invertible and C is a left B-module coalgebra, then CF is a left BF-module coalgebra.

The connection between twisting elements and deformations is the following:
Definition V.2: A universal deformation formula (UDF) based on a bialgebra B is a twi

lement F based on Bffngg of the form

F = 1 ^ 1 + nF1 + n2F2 + ¯ + nnFn + ¯ ,

here each Fi PB^ B.
If F is a UDF then it is clear thatAF, CF, andBF as constructed in the theorems above ar

eformations. It is clear that the twisting elements defined after Theorem(IV.1) are UDFs with
=Ugffngg.

Example V.1:

1) The most basic UDF is based on the bialgebra B=Ua wherea is an Abelian Lie algebra. Th
UDF is the classic exponential formula F=expnb, where bPa ^ a is arbitrarily chosen. An
example of a deformation arising from this UDF arise is the Moyal deformation ofC`sR2nd.
Another example is the deformation of the standard quantum groupCq

`sSLsndd to the multi-
parameter family first introduced in Reshetikhin (1990).

2) s is the two-dimensional solvable Lie algebra with basishf ,cj and relationff ,cg=c, and
set B=Us. Then F=expsf ^ lns1+ncdd is a UDF.

3) Other specific examples of UDF’s, including ones not based on enveloping algebras,
found in Bieliavsky et al. (2003), Caldararu et al. (2004), Connes and Moscovici (2
Kulish et al. (1999), Lyakhovsky and Samsonov (2002), Giaquinto and Zhang (1998

Note that, according to Theorems(IV.1) and(V.1), a UDF based onUg produces a preferre
eformationUg and matching “covariant” deformations ofC`sMd for every manifold which ad

its an action of the Lie groupG. We shall discuss this topic in more detail later on.
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. Crossed products

The literature on Hopf algebras and quantum groups contains a large collection of w
an call generically semidirect products, or crossed products. These constructions make cr
f the comultiplication and we will use the standard Sweedler notation for the copr
Sweedler (1969)]: in a coalgebrasH ,Dd, Dsxd=osxdxs1d ^ xs2d and, by coassociativity,sId

^ DdDsxd=sD ^ Id dDsxd=osxdxs1d ^ xs2d ^ xs3d. See also Abe(1980) for generalities on Hopf alg
ras.

Considering crossed products gives explicit, concise and workable formulas. The prope
hese structures, as well as for semidirect products of groups or Lie algebras, may be dedu
he ones of the two original structures. So we can hope to obtain interesting results
xample, cohomology or representation theories.

We will investigate two original examples: the topological quantum double and the de
ion quantizations of some symmetric spaces.

But first, let us give a general idea of what it is. The simplest example of these c
roducts is usually called the smash product[see Sweedler(1968) and Molnar(1977)].

Definition V.3: Let B be a bialgebra and C a B-module algebra. The smash product C]B is
he algebra constructed on the vector space C^ B where the multiplication is defined by

sf ^ ad*
⇀

sg ^ bd = o
sad

fsas1d⇀ gd ^ as2db s15d

or f ,gPC and a,bPB.
Remark V.1:

1) (a) Let H andK be groups and lett :K→Aut sHd be an action ofK on H. This induces
CK-module algebra structure onCH. ThenCH]CK>CsH’Kd, H’K denoting the se
midirect product ofH by K.

(b) Similarly, for Lie algebrash andk, a Lie algebra homomorphisms :k→Der shd induces
a Uk-module algebra structure onUh. ThenUh]Uk>Ush’kd.

2) The smash product can be seen as the algebraic version of what is called “crossed
in the C* -algebra literature[Drabantet al. (1999) and Pedersen(1979)]. Note that this is a
important structure in this context, extensively used, for example, in the works arou
Baum-Connes conjecture.

Now let us describe some generalizations:
This product can be seen in the cohomological interpretation of Sweedler(1968) as a repre

entative of the trivial class of a theory of extensions. The formula of the smash product
twisted” a little more by some 2-cocycle fromB^ B to C and is called a crossed product.

If B and C are bialgebras,C a B-module algebra andB a C-module algebra, with som
ompatibilities between the two actions, one can write some kind of more “symmetric” fo
ajid has called double crossproduct the resulting algebra[Majid (1990)]. This definition leads t
good description of the structure of quantum double introduced by Drinfel’d in 1987(see below

or details).
If C is a bialgebra andB is cocommutative, the natural tensor coproduct onC^ B yields a

ialgebra structure onC]B. If everything is Hopf,C]B can be made Hopf as well[Molnar
1977)].

By dualizing Definition V.3, one gets a coalgebra called the cosmash product. Com
mash and cosmash in order to form a bialgebra leads to the notion of bicrossproduc[Majid
1990)].

Before introducing a new and useful generalization of this kind of definitions let us go b
n application of the double crossproduct to the notion of quantum double in the con
opological Hopf algebras.
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. Topological quantum double

Drinfel’d (1987) defined the quantum double ofUng [see also Semenov-Tian-Shan
1994)]. This can be adapted to the context of topological Hopf algebras[Bonneau(1994)].

For this subsectionA will denoteDsGd ,AsGd ,DnsGd, or AnsGd.
Definitions: If A is described bysA,m ,D ,Sd then A* =sA* ,tD,tm,tSd. Define A0=A*co−op

sA* , tD , tm
op

, tSopd, wheremopsx^ yd : =msy ^ xd andSop is the antipode compatible withmop and
.

If we consider the vector spaceA* ^ A, Drinfel’d (1987) defines the quantum double
ollows:

(i) DsAd.A0 ^ A as coalgebras,
(ii ) sf ^ IdAd ·sIdA0 ^ bd= f ^ b,
(iii ) sIdA0 ^ esd ·set ^ IdAd=Ds

kjnmplk
t S8n

psel ^ IdAdsIdA0 ^ ejd, wherehesj is a basis ofA andhetj
the dual basis.

The Drinfel’d double was expressed[Majid (1990)] in a Sweedler form for dually paired Ho
lgebras as an example of a theory of ‘double smash products.’ Adapting that formulation

opological context we can now define the double as

Definition V.4: The double of A, DsAd, is the topological Hopf algebrasA* ^̄A,mD , tm
op

^ D , tSop
^ Sd with

mDssf ^ ad ^ sg ^ bdd = o
sad

fkg,Sopsas3dd ?as1dl ^ as2db

= o
sadsgd

kgs1d,as1dlk
tS

op
sgs3dd,as3dlfgs2d ^ as2db,

here k,l denotes the pairing A* /A, “?” stands for a variable in A and̂̄ is the complete
nductive tensor product.

As topological vector spaces we haveDsAd=A* ^̄A. ThusDsAd* =A^̂A* andDsAd** =DsAd.
o DsAd is “almost self-dual”(it is self-dual up to a completion) and is reflexive.

Extension theory:

If A is cocommutative then the productmD of DsAd is the smash productm⇀ on A0^̄A

m⇀ssf ^ ad ^ sg ^ bdd = o
sad

fsas1d⇀ gd ^ as2db

here⇀ denotes the coadjoint action ofA on A0, ka⇀ f ,bl=osadkf ,Ssas1ddbas2dl. This product i
he “zero class” of an extension theory, defined by Sweedler(1968), classified by a space
-cohomologyHsw

2 sA,A0d. The products are of the form, fort a 2-cocycle,

m⇀tssf ^ ad ^ sg ^ bdd = o
sadsbd

fsas1d⇀ gdtsas2d ^ bs2dd ^ as3dbs2d.

The coproduct ofDsAd is a smash coproduct for the trivial co-action. We can dualize
heory and, putting the two things together, we obtain an extension theory for bialgebras w
lassified by a cohomology spaceHbisw

2 sA0,Ad.
So we can ask the following question: are there other possible definitions of the doubl

xtension ofA0 by A?
We get a partial answer:
Proposition V.1 [Bonneau (1994)]: Hbisw

2 sDsGd ,C`sGdd=h0j so DsDsGdd is the unique exten
`
ion ofC sGd by DsGd.
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. L-R smash product

In order to shed light on the general definition which follows, we return to the simples
f deformation quantization: the Moyal product onR2. We look at R2 as T*R;R3R* and

herefore can writeC`sR2d.C`sRd^̂C`sR*d. We consider first two functions of a special kind
his algebra:usxd=usx1,x2d= fsx1dPsx2d and vsxd=vsx1,x2d=gsx1dQsx2d where f ,gPC0

`sRd and
P,Q are polynomials inPolsR*d.SR. We can then write the usual coproduct on the symm

lgebraSR asDsPdsx2,y2d=Psx2+y2ds =
notation

osPdPs1dsx2dPs2dsy2dd.
We now look at formula(8) for the Moyal star product onR2 and perform on it some form

alculations(we do not discuss the convergence of the integrals involved). Up to a constan
depending onn) we get

su * vdsxd =E
R23R2

usx + ydvsx + zde−si/vdL−1sy,zddydz

=E
R23R2

fsx1 + y1dPsx2 + y2dgsx1 + z1dQsx2 + z2de−si/vdsy1z2−y2z1ddy1dy2dz1dz2

=E
R2

fsx1 + y1dQsx2 + z2de−si/vdy1z2dy1dz2 ·E
R2

gsx1 + z1dPsx2 + y2desi/vdy2z1dy2dz1

= o
sPdsQd

s]Qs1d

+ fdsx1dQs2dsx2d · s]Ps1d

− gdsx1dPs2dsx2d sup to a constantd

ith ]Qs1d

± =Qs1ds7in]x1
d (the same forP), sinceFn

7saFn
±shdsaddsxd= 7 in]xhsxd for hPC0

`sRd with

n
±shdsad defined aseRhsxde7 si / nd xadx. This suggests the following small generalization of
mash product:

Definition V.5: Let B be a cocommutative bialgebra and C a B-bimodule algebra (i.e.,
-module algebra for both, left and right, B-module structures). TheL-R-smash product C\B is

he algebra constructed on the vector space C^ B where the multiplication is defined by

sf ^ ad * sg ^ bd = o
sadsbd

sf↼ bs1ddsas1d⇀ gd ^ as2dbs2d s16d

or f ,gPC and a,bPB.
Proposition V.2: The L-R smash product is associative.
In the same spirit, one has
Lemma V.1: If C is a B-bimodule bialgebra, the natural tensor product coalgebra structur

^ B defines a bialgebra structure to C\B.
If C and B are Hopf algebras, C\B is a Hopf algebra as well, defining the antipode by

J*sf ^ ad = o
sad

JBsas1dd⇀ JCsfd↼ JBsas2dd ^ JBsas3dd

= o
sad

s1C ^ JBsas1ddd * sJCsfd ^ 1Bd * s1C ^ JBsas2ddd. s17d

ow by a careful computation, one proves
Proposition V.3: Let B be a cocommutative bialgebra, C a B-bimodule algebra andsC\B, * d

heir L-R-smash product.
Let S be a linear automorphism of C (as a vector space). We define

(i) the product•S on C by

S −1
f• g = S sSsfd ·Ssgdd; s18d
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(ii ) the left and right B-module structures, ⇀S and↼S , by

a⇀S f: = S−1sa⇀ Ssfdd and f↼S a: = S−1sSsfd↼ ad; s19d

(iii ) the product, *S, on C^ B by

sf ^ ad* Ssg ^ bd = T −1sTsf ^ ad * Tsg ^ bdd, s20d

where T: =S^ Id .

ThensC, •Sd is a B-bimodule algebra for⇀S and↼S and * S is the L-R-smash product defin
y these structures.

Moreover, ifsC, . ,DC,JC,⇀ ,↼ d is a Hopf algebra and a B-bimodule bialgebra, then

CS: = sC,•S,DC
S: = sS−1

^ S−1d + DC + S,JC
S: = S−1 + JC + S,⇀S ,↼S d

s also a Hopf algebra and a B-bimodule bialgebra. Therefore, by Lemma V.1,

sCS] B,*S,DS= s23d + sDC
S

^ DBd,J*
Sd,

s a Hopf algebra forDS the natural tensor product coalgebra structure on CS\B (with (23): C
^ C^ B^ B→C^ B^ C^ B,c1 ^ c2 ^ b1 ^ b2°c1 ^ b1 ^ c2 ^ b2) and J*

S the antipode given o

S\B by Lemma V.1. Also, one has

DS= sT −1
^ T −1d + s23d + sDC ^ DBd + T and J*

S= T −1 + J* + T

ith T=S^ Id .

. Examples in deformation quantization on T *
„G…

Let G be a Lie group with Lie algebrag andT *sGd its cotangent bundle. We denote byUg,
g andSg, respectively, the enveloping, tensor, and symmetric algebras ofg. Let Polsg*d be the
lgebra of polynomial functions ong* . We have the usual identifications:

C`sT *Gd . C`sG 3 g*d . C`sGd^̂ C`sg*d . C`sGd ^ Polsg*d . C`sGd ^ Sg.

irst we deformSg via the “parametrized version,”Ung, of Ug defined by

Ung =
Tgffngg

kXY− YX− nfX,Yg;X,Y P gl
.

ng is naturally a Hopf algebra withDsXd=1^ X+X^ 1, «sXd=0 andSsXd=−X for XPg. For

Pg, we denote byX̃ (resp.X̄) the left- (resp. right-) invariant vector field onG such thatX̃e

X̄e=X. We consider the followingKffngg-bilinear actions ofB=Ung on C=C`sGdffngg, for f
C andlP f0,1g:

(i) sX⇀ fdsxd=nsl−1dsX̃· fdsxd,
(ii ) sf↼Xdsxd=nlsX̄· fdsxd.

One then has
Lemma V.2: C is a B-bimodule algebra w.r.t. the above left and right actions (i) and (ii).
Definition V.6: We denote by* l the star product onsC`sGd ^ Polsg*ddffngg given by the

-R-smash product onC`sGdffngg ^ Ung constructed from the bimodule structure of the prece
emma.

n 1
Proposition V.4: For G=R , *
2

is the Moyal star product (Weyl ordered), *0 is the standard
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rdered star product, and* 1 the antistandard ordered one. In general* l yields thel-ordered
uantization, within the notation of M. Pflaum (1999).

Remark V.2:In the general case, it would be interesting to compare ourl-ordered L-R smas
roduct with classical constructions of star products onT*sGd with Gutt’s product as one examp
Gutt (1983)].

. Hopf structures

We have discussed(see Lemma V.1) the possibility of having a Hopf structure onC\B. Let
s consider the particular case ofC`sRndffngg\UnRn=C`sRndffngg\SRn (Rn is commutative).
Rn is endowed with its natural Hopf structure but we also need a Hopf structure onC`sRnd
ffngg=C`sRnd ^ Rffngg. We will not use the usual one. Our alternative structure is defin

ollows:
Definition V.7: We endowRffngg with the usual product, the coproductDsPdst1,t2d : =Pst1

t2d, the co-unit «sPd=Ps0d and the antipode Jsnd=−n. We consider the Hopf algeb
C`sRnd , · ,1,DC,«C,JCd, with pointwise multiplication, the unit1 (the constant function of valu
), the coproductDCsfdsx,yd= fsx+yd, the co-unit«sfd= fs0d and the antipode JCsfdsxd= fs−xd. The
ensor product of these two Hopf algebras then yields a Hopf algebra denoted by

sC`sRndffngg, · ,1,Dn,«n,Jnd.

ote thatDn and Jn are not linear inn. We then define, on the L-R smashC`sRndffngg\SRn,

D* : = s23d + sDn ^ DBd,«* : = «n ^ «B andJ*

s in Lemma V.1.
Proposition V.5:sC`sRndffngg\SRn, *l ,1^ 1,D* ,«* ,J*d is a Hopf algebra.
Remark V.3:The casel= 1

2 yields the usual Hopf structure on the enveloping algebra o
eisenberg Lie algebra.

. UDFs revisited and quantization of symmetric spaces

. Introduction

The previous discussion of universal deformation formulas was purely formal. Howev
deas can be extended to include geometric considerations, which allows for more flexibility
pplications.

Let G be a group acting on a setM. Denote byt :G3M→M : sg,xd°tgsxd the (left) action
nd by a :G3FunsMd→FunsMd the corresponding action on the space of(complex valued)
unctions(or formal series) on M sag: =tg−1

* d. Assume that on a subspaceA,FunsGd, one has a
ssociativeC-algebra product *A

G:A3A→A such that

(i) A is invariant under the(left) regular action ofG on FunsGd;
(ii ) the product *A

G is left-invariant as well, i.e., for allgPG;a,bPA, one has

sLg
*ad* A

GsLg
*bd = Lg

*sa* A
Gbd. s21d

(In Hopf algebra language, this means thatsA , *A
Gd is a CG-module algebra.)

Given a function onM, uPFunsMd, and a pointxPM, one denotes byaxsudPFunsGd the
unction onG defined as

axsudsgd: = agsudsxd. s22d

hen one readily observes that the subspaceB,FunsMd defined as

B: = hu P FunsMdu∀x P M:axsud P Aj s23d
M
ecomes an associativeC-algebra when endowed with the product *B given by
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u* B
Mvsxd: = saxsud* A

Gaxsvddsed s24d

e denotes the neutral element ofG). Of course, all this can be defined for right actions as w
Definition V.8:A pair sA , *A

Gd is called a (left) universal deformation of G, while formula(24)
s called the associateduniversal deformation formula(briefly UDF).

In the present article, we will be concerned with the case whereG is a Lie group. The functio
paceA will be either a functional subspace(or a topological completion) of C`sG,Cd containing
he smooth compactly supported functions in which case we will talk aboutstrict deformation
following Rieffel (1989); or, the spaceA=C`sGdffngg of formal power series with coefficients
he smooth functions onG in which case, we will speak aboutformal deformation. In any case, w
ill assume the product *A

G admits an asymptotic expansion of star-product type:

a* A
Gb , ab+

n

2i
wsdu,dvd + osn2d sa,b P Cc

`sGdd,

herew denotes some(left-invariant) Poisson bivector onG [Bayenet al. (1978) and Drinfel’d
1993)]. In the strict cases considered here, the product will be defined by an integral thre
ernelKPC`sG3G3Gd:

a*A
Gbsgd: =E

G3G

asg1dbsg2dKsg,g1,g2ddg1dg2 sa,b P Ad,

here dg denotes a normalized left-invariant Haar measure onG. Moreover, our kernels will be o
KB type[Weinstein(1994) and Karasev(1994)], i.e.,

K = Aesi/ndF,

ith A (theamplitude) andF (thephase) in C`sG3G3G,Rd being invariant under the(diagonal)
ction by left-translations.

Note that in the case where the groupG acts smoothly on a smooth manifoldM by diffeo-
orphisms:t :G3M→M : sg,xd°tgsxd, the first-order expansion term ofu* B

Mv , u,vPC`sMd
efines a Poisson structurewM on M which can be expressed in terms of a basishXij of the Lie
lgebrag of G as

wM = fwegi jXi
* ∧ Xj

* , s25d

hereX* denotes the fundamental vector field onM associated toXPg.

. Elementary solvable symplectic symmetric spaces and their strict quantization

a. Symmetric spaces: Definition V.9 [Bieliavsky (1995)]:A symplectic symmetric space isa
riple sM ,v ,sd, wheresM ,vd is a smooth connected symplectic manifold and s:M 3M→M is a
mooth map such that

(i) For all x in M, the partial map sx:M→M :y°sxsyd : =ssx,yd is an involutive sym
plectic diffeomorphism ofsM ,vd called thesymmetryat x;

(ii ) For all x in M, x is an isolated fixed point of sx;
(iii ) For all x and y in M, one has sxsysx=ssxsyd.

Two symplectic symmetric spacessM ,v ,sd and sM8 ,v8 ,s8d are isomorphicif there exists
ymplectic diffeomorphismw : sM ,vd→ sM8 ,v8d such thatwsx=swsxd8 w.

We denote byG thetransvection groupof sM ,sd (i.e., the subgroup ofAut sM ,v ,sd generate
y hsx+sy;x,yPMj).

Definition V.10: Letsg ,sd be aninvolutive algebra,that is,g is a finite dimensional real L
lgebra ands is an involutive automorphism ofg. Let V be a skewsymmetric bilinear form ong.

hen the triplesg ,s ,Vd is called a symplectic triple if the following properties are satisfied:
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1) Let g=k % p, wherek (resp.p) is the+1 (resp.−1) eigenspace ofs. Thenfp ,pg=k and the
representation ofk on p, given by the adjoint action, is faithful.

2) V is a Chevalley 2-cocycle for the trivial representation ofg on R such that∀XPk,
isXdV=0. Moreover, the restriction ofV to p3p is nondegenerate.

The dimension ofp defines the dimension of the triple. Two such triplessgi ,si ,Vid si =1,2d
re isomorphicif there exists a Lie algebra isomorphismc :g1→g2 such thatc +s1=s2+c and
*V2=V1.

Proposition V.6 [Bieliavsky (1995)]: There is a bijective correspondence between the is
hism classes of simply connected symplectic symmetric spacessM ,v ,sd and the isomorphis
lasses of symmetric triplessg ,s ,Vd.

Proposition V.7: To each symplectic symmetric space (corresponding to a classfsg ,s ,Vdg, we
an associate another triplet=shsgd ,s ,Vd such that

a) hsgd is a one-dimensional central extension ofg;
b) shsgd ,sd is an involutive Lie algebra such that ifhsgd= l % p is the decomposition w.r.t.s one

has fp ,pg= l;
c) V is a Chevalley 2-coboundary (i.e.,V=dj ,jPhsgd*) such that isldV=0 and Vup3p is

symplectic.

Such a triple is calledexact triple.
b. Elementary solvable symplectic symmetric spaces:In Definition V.11 below, we define

articular type of solvable symmetric spaces which we call elementary. It has been prove[Bie-
iavsky (1998), Proposition 3.2] that every solvable symmetric space is realized through
uence of split extensions by Abelian(flat) factors successively taken over an elementary solv
ymmetric space. We therefore consider elementary solvable symmetric spaces as the “fir
ion step” when studying solvable symmetric spaces.

Definition V.11: A symplectic symmetric spacesM ,v ,sd is called an elementary solvab
ymplectic symmetric space if its associated exact tripleshsgd ,s ,V=djd (see Lemma V.7) is of t
ollowing type:

(i) The Lie algebrahsgd is a split extension of Abelian Lie algebrasa and b:

0 → b → hsgd → a → 0.

(ii ) The automorphisms preserves the splittinghsgd=b % a.

Such an exact triple (associated to an elementary solvable symplectic symmetric s
alled anelementary solvable exact triple.

Observe that, sinceaùk,aù fhsgd ,hsgdg=0, one hasa,p. Thereforeb=k % l, with l,p.
oreover, sincel anda are Abelian andV is nondegenerate, the subspacesa and l of p are dua

agrangians.
Now let sM ,v ,sd be an elementary solvable symplectic symmetric space with asso

xact tripleshsgd ,s ,V=djd as above. In a neighborhoodU of the origin, the map

p = a 3 l → M:sa,ld ° expsadexpsld . o s26d

urns out to be a Darboux chart whenU,p has the symplectic structureV=dj. Moreover, ther
xists a unique immersionf :Uùa→a such that in the local coordinate system(26), one has th
ollowing linearization property:

jssinhsadld = jffsad,lg, s27d

here, foraPa we set sinhsad : = 1
2ssexpsrsadd−exps−rsadddPEndsbd. This immersion is calle

he twisting map.
Proposition V.8: An elementary solvable symplectic symmetric space is strictly geode
onvex if and only if its associated twisting map extends toa as a global diffeomorphism ofa. In
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his case, the Darboux chart (26) extends as a global symplectomorphismsp ,Vd→ sM ,vd.
Quantization:Associated to the twisting map one has a three-point functionSPC`sM 3M

M ,Rd called the WKB-phase of the elementary solvable symplectic symmetric space

Ssx0,x1,x2d: = jSR
0,1,2

sinhsa0 − a1dl2D , s28d

herer0,1,2 stands for cyclic summation and wherexi =sai , l id si =0,1,2d. The phaseS turns out to
e invariant under the(diagonal) action of the symmetrieshsxjxPM on M 3M 3M. This will be the
ssential constituent of the associative oscillatory kernel defining a symmetry-invarian
uantization on every elementary solvable symplectic symmetric space. We now recall th
truction as in[Bieliavsky (2002)].

Definition V.12: For a compactly supported function uPCc
`spd, identifying l* with a, we

enote by u˜PC`sa3ad its partial Fourier transform

ũsa,ad: =E
l

eiVsa,ldusa,lddl . s29d

e also denote byfn :a→a the one-parameter family of twisting maps

fnsad: =
2

n
fSn

2
aD . s30d

or u,vPCc
`spd, we set

kuuvln: =E
a3a

ũsa,adṽsa,aduJacf−1sadudada. s31d

he pair sC`spd ,k,lnd is a pre-Hilbert space, and we denote byHn its Hilbert completion.
The Hilbert productk,ln turns out to be symmetry-invariant onCc

`sMd. The action of th
ransvection group then extends by continuity to an isometric action onHn.

Theorem V.2 [Bieliavsky (2002)]:Let sM ,v ,sd be a strictly geodesically convex elemen
olvable symplectic symmetric space. Realize it symplectically assp=a3 l ,Vd, and define th
wo-point function APC`sM 3Md by

Asx1,x2d: = uJacfsa1 − a2 . du. s32d

his function is called theWKB-amplitudeand turns out to be symmetry-invariant. In this no
ion, one has the following:

(i) For all nPR \ h0j and u,vPCc
`sMd, the formula

u* nvsx0d: =E
M3M

usx1dvsx2dAsx1,x2de
i
n

Ssx0,x1,x2ddx1dx2 s33d

extends as an associative product onHn sdx denotes some normalization of the s
plectic volume onsM ,vdd. Moreover (for suitable u,v and x0) the stationary phas
method yields a power series expansion of the form

u* nvsx0d , uvsx0d +
n

2i
hu,vjsx0d + osn2d, s34d

whereh,j denotes the symplectic Poisson bracket onsM ,vd.
sii d The pair sHn , *nd is a topological Hilbert algebra which the transvection group
sM ,v ,sd acts on by automorphisms.
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A classical procedure then produces a similar result in theC* -context, see Bieliavsky(2002)
or details.

Remark V.4:Whether a symmetric space is strictly geodesically convex is of course e
ncoded in the spectral content of the splitting endomorphismr :a→Endsbd. This is discussed
etail in Bieliavsky(2002).

Before applying these results, let us discuss heuristically the ideas that led to this quan

enote byG̃ the group naturally obtained from the Lie algebrahsgd. Proposition V.8 gives

lobal Darboux chart fromp.a3 l.M to the coadjoint orbitO=Ad*sG̃d .j,hsgd* . Denote by

XPC`spd the Hamiltonian function associated with the infinitesimal action ofXPhsgd and by *n
M

he standard Moyal star product onsp ,Vd. So, using ideas coming from star representation th
see Sec. V A) we remark thatflX,lYg*

n
M =sn / idhlX,lYj, that is, *n

M is hsgd-covariant. This cova
iance allows us to define a representation ofhsgd on the spaceC`sOdffngg, rnsXdu=si /nd

flX,ug*
n
M.

Through the partial Fourier transformF (29) sFsud : = ũd we obtain a representation onC`sa
adffngg, r̃n s.t. r̃nsXdũ=Xa .ũ+cnsXdũ. The expression of the cocyclecn is very similar to the on

f the “twisting map” fn (30). So now let us consider a deformation of the partial Fou
ransform defined byZnsudsa,ad= ũsa,fnsadd. Defining the commutative product •n on C`sa
adffngg by f•ng=ZnsZ n

−1sfd ·Z n
−1sgdd, calculations show that •n is invariant underr̃n.

More, we haveZ n
−1+ r̃nsXd +Zn=X* , X* being the vector field induced onM by the action o

sgd. That means that the action ofhsgd on the “underlying manifold”Mn of sC`sa3adffngg , •nd is
quivalent to the one ofhsgd on M. So, “going back” toM by F −1 we defineTn=F −1+Zn and we
et a formal product onC`spdffngg defined by

u* nv = T n
−1sTnu* n

MTnvd s35d

hich is invariant under the coadjoint action ofG̃ on O=p.

. UDF and Hopf algebra structure

In Bieliavskyet al. (2003) we define a specific class of Lie groups called elementary sol
resymplectic Lie groups. Letg be a group in this class. By the quantification of elemen
olvable symmetric spaces described above, we get a leftG-invariant star product on aG-invariant
under the regular action ofG) algebra of functions onG, A. That is, we get a UDFsA , *A

Gd (see
efinition V.8) for every groupG in this class. The formulas are convergent(strict deformation
uantization). By asymptotic expansion we obtain also a formal UDF onC`sGdffngg.

Now, at the formal level, we will obtain compatible coproducts and antipode, seeing the
uantization as a L-R smash product(definition V.5).

To do that let us recall that the obtained star products are of the form

u* nv = T n
−1sTnu* n

MTnvd

ith T=F −1+ sId ^ fn
*d +F. But F does not act on thea variable, so we can see it as a map fr

`sld to C`sad. So we haveT= Id ^ S with S=F −1+fn
* +F. Considering that

C`sMd . C`spd . C`sad^̂ C`sld .
a.l*

C`sl*d^̂ C`sld . Polsl*d ^ C`sld .
l Abelian

Ul ^ C`sld,

t is easy to show
Proposition V.9: The formal version of the invariant WKB-quantization of an eleme

olvable symplectic symmetric spaces defined in Theorem V.2 is a L-R-smash product of
S (cf. Proposition V.3).

Corollary V.1: The UDF’s for elementary solvable pre-symplectic Lie groups admit comp

oproducts and antipodes.
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Then Bieliavsky(2003) gives a UDF and an associated Hopf algebra structure for every
imensional solvable Lie group. The dressing action of the “book” group on SUs2d is particularly

nvestigated.

I. TOWARDS EXPLICIT REALIZATIONS. II

In the next sections, we revisit in more detail the ideas that were hinted upon in Sec
ecall that any formal deformation ofUg or C`sGd is preferred and all are produced by modi

wisting elements[solutions of(11) with nontrivial F] or twisting elements[solutions of(11) with
=1^ 1^ 1]. In both cases,F=1^ 1+nr +Osn2d. We will be particularly interested in the infin

esimalr.
The deformation ofUg or C`sGd is called “triangular” ifF is a twisting element. A standa

ohomological equivalence argument can be invoked to ensure that the infinitesimalr lies in g∧g
nd satisfies theclassical Yang-Baxter equation(CYBE)

fr12,r13g + fr12,r23g + fr13,r23g = 0. s36d

e will frequently call this type of infinitesimal atriangular r-matrix.
The deformation ofUg or C`sGd is calledquasitriangularif F is a modified twisting elemen

deep result of Drinfel’d(1989b) asserts that, in the quasitriangular case, the elementF is
niquely determined up to a certain natural equivalence. The elementF is known as theassociato
nd it has deep connections to the theory of quasi-Hopf algebras, the Kniznik–Zamolod
quations, and a theorem of Kohno regarding certain representations of braid groups. It als

n a crucial way in the operadic demonstration[Tamarkin (1998), Hinich (2003)] of the Kont-
evich formality theorem[Kontsevich (2003)] (which gives the existence of a star-product
very Poisson manifold).

We do not have the time to discuss these matters in this survey. In this case howe
nfinitesimal r still satisfies the CYBE butr Pg ^ g is no longer skew. Instead, we haver +r21

V whereV is the Casimir element ing ^ g chosen with respect to some fixed invariant bilin
orm on g. In this case, the infinitesimalr is called aquasitriangular r-matrix, and it necessari
ollows that r̃ =r −sV /2dPg∧g will satisfy the modified classical Yang-Baxter equat
MCYBE)

fr̃12, r̃13g + fr̃12, r̃23g + fr̃13, r̃23g P sg ∧ g ∧ gdg. s37d

Given anr-matrix of either type, it is natural to seek the twisting elementF [guaranteed t
xist by Drinfel’d (1985, 1989)] whose infinitesimal isr. In the explicit sense, the results are q
carce. Indeed, as previously mentioned,F is unknown for all quasitriangularr-matrices including

n particular, the “standard” solution which serves as the infinitesimal for the quantum

qsgd andCq
`sGd.

. Preferred *-products for the standard quantum n-space

Since theF is unknown, it should be no surprise that the preferred *-products have no
xhibited even forCq

`sSLsndd. However, we do have the preferred *-products for the cova
uantization,Cq

`sCnd, of the function algebraC`sCnd. If xi are the coordinate functions onCn, then

q
`sCnd is characterized by the relationsxixj =qxjxi for i , j . In the classical case, the action of
roup SLn on Cn makesC`sCnd into anC`sSLsndd-comodule algebra. This means thatC`sCnd is an
`sSLsndd-comodule with the compatibility condition that the coaction map is an algebra h
orphism. The same is true at the quantized level:Cq

`sCnd is anCq
`sSLsndd-comodule algebra.

referred covariant deformation in this case is a *-product onC`sCnd which is compatible wit
oth the original unchanged(on all elements) comodule structure map(on all elements) and the
referred quantization ofC`sSLsndd to Cq

`sSLsndd.
In order to describe the preferred *-products for the quantum linear space, we nee
ombinatorial notation. Define theq-factorial to be
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m!q =
s1 − qmds1 − qm−1d ¯ s1 − qd

s1 − qdm

nd forlPNn with ulu=l1+¯ +ln let

kllq =
ulu!q

l1!q ¯ ln!q

e theq-multinomial coefficient. Without the subscript,kll will denote the usual multinomi
oefficient. The symbolXl will denote the monomialx1

l1
¯xn

ln. Note that by linearity, it is onl
ecessary to consider the product of monomials. The ordinary commutative multiplica
imply expressible asXlXn=Xl+n. Finally, for l ,nPNn set

sl:nd = o
i=1

n

o
j.i

lin j .

Theorem VI.1 [Gerstenhaberet al. (1990) and Giaquinto (1992)]:The preferred deforma
ion for the quantum linear spaceCqsCnd is given by

Xl * Xn = S kllq2knlq2kl + nl

kllknlkl + nlq2
D1/2

qsl:ndXl+n. s38d

The presence of the factorqsl:nd is clear as it comes directly from the defining relationsxixj

qxjxi of Cq
`sCnd. The other numerical factor in the formula may be viewed as a ratio of norm

ts necessity is less obvious. Note that some of the products in(38) are undefined whenq is a roo
f unity which helps explain from the deformation quantization viewpoint that the standard

um groups at roots of unity have different behavior than at generic specializations ofq. Upon
eeing this formula in 1990, Ludwig Faddeev was startled and claimed that, within a ye
ould have the preferred *-products on all ofCq

`sSLsndd. Unfortunately, time has not been kind
is prediction as this problem is unfortunately still open.

Formula (38) of Theorem VI.1 was recently rediscovered by Blohmann(2003) using
-Clebsch–Gordan coefficients.

. Triangular r-matrices and twists

Suppose thatr is a triangularr-matrix [a solution of(VI )]. Drinfel’d has given a procedure
rinfel’d (1985) which, given a triangularr, produces the twistingF. It is generally difficul

hough to extract the exact form ofF since the construction uses, among other things
ampbell–Baker–Hausdorff formula for the series of lnsexeyd, where x,yPg. In the “strong”
xplicit sense, the twistingF is known only for certain classes ofr-matrices including the “Jo
anian” solution forsls2d and several of its generalizations.

Let us recall the basic classification scheme[see Belavin and Drinfel’d(1982)] for triangular
-matrices. Our formulation follows that of Stolin(1991). A Lie algebraf is quasi-Frobenius
here exists a nondegenerate two-cocyclef : f∧ f→C. The connection to triangularr-matrices is
hat the cocycle condition for the bilinear formf is equivalent tof−1 (the element off∧ f whose
atrix of coefficients is the inverse of the matrix off) satisfying the classical Yang–Bax
quation. The problem of finding triangularr-matrices up to equivalence is then reduced to lis
he quasi-Frobenius Lie algebras, their normalizers, and calculating the second cohomolog

2sf ,Cd. A simple Lie algebrag is never quasi-Frobenius but ifr Pg∧g is classicalr-matrix, then
here is a unique quasi-Frobenius “carrier” subalgebraf ,g for which r P f∧ f. Note that such a
is necessarily even-dimensional. This approach does not give a constructive classific
riangularr-matrices as there is no effective way to find all quasi-Frobenius Lie subalgebras ofg.
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The easiest example of the foregoing is whenf is an Abelian subalgebra ofg. Then anyr
f∧ f is a classicalr-matrix and it is elementary to check that the corresponding twisting ele

s F=expsnrd. We have already seen that this twisting elements=UDFd produces, in particular, th
oyal deformation.

Perhaps the most well known example of a triangularr-matrix is based on the Borel sub
ebra ofsls2d which is generated byh ande with fh,eg=2e. Ther-matrix h∧e is the infinitesima

of the “Jordanian” quantization ofC`sSLs2dd, which is its unique(up to equivalence) triangular
uantization. The twisting element can be derived using(14) and comes out to beF=expssh/2d

^ lns1+nedd. Note that the infinitesimal ish^ e and noth∧e. These are equivalentr-matrices an
he twisting element with infinitesimalh∧e is given in Giaquinto and Zhang(1998).

There are various extensions of the Jordanianr-matrix to slsnd with n.2. In particular, th
riangularr-matrix

r = se11 − ennd ∧ e1n + 2o
j=2

n−1

e1j ∧ ejn

as exhibited in Gerstenhaberet al. (1990). The elementF for this family has been called
xtended Jordaniantwist and was derived independently in Giaquinto and Zhang(1995) and
ulish et al. (1999), although the latter reference has the following more compact form o

wisting element

F = expH2no
i=2

n−1

e1i ^ eine−sJexphse11 − ennd ^ sj,

heres= 1
2 lns1+2ne1nd. Note that the carriers for this family are contained in the Borel su

ebra ofslsnd, and are hence solvable.
Another interesting generalization of the Jordanian twist is a family ofr-matrices whos

arriers, in contrast with the above examples, are nonsolvable subalgebras ofslsnd. In particular
he carrier algebra is the(Frobenius) Lie algebrap1 which denotes the maximal parabolic sub
ebra generated by all simple positive root vectorsei,i+1, the Cartan subalgebra of traceless

rices, and the simple negative root vectorsei+1,i except e21. For example, whenn=3, this Lie
lgebra consists of all traceless matrices of the form

1* * *

0 * *

0 * *
2 .

he r-matrix with carrierp1,slsnd was discovered in Gerstenhaber and Giaquinto(1997). For
=3 the explicit form is

r = s2e11 − e22 − e33d ∧ e12 + se11 + e22 − 2e33d ∧ e23 + e13 ∧ e32.

he twist for this family is only known in the case ofn=3; it has the form of a product of a
xtended Jordanian twist(as illustrated above) with a “deformed” Jordan type twist. Details of th

nteresting twist can be found in Lyakhovsky and Samsonov(2002).

. Quasitriangular r-matrices: The Belavin–Drinfel’d classification

We now turn to the case of quasitriangularr-matrices. First, some good news. There
omplete constructive classification of all suchr Pg ^ g when g is simple. This is the famou
elavin–Drinfel’d classification, see Belavin and Drinfel’d(1984). To describe this classificatio
e need some notation. Leth be a Cartan subalgebra ofg. The root system will be denoted byD
ndG will be a set of simple roots. LetV0Pg ^ g be the restriction of the Casimir elementV to
^ h.
Definition VI.1: A Belavin–Drinfel’d triple forg is a triple sG1,G2,Td, whereGi are subsets of
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he positive simple roots ofg and T:G1→G2 is a bijection which preserves the invariant biline
orm and for allaPG1, there exists k.1 such that Tk¹G1.

Given such a triple(henceforth simply denotedT), an elementsPh ^ h is calledT-admissible
f

s+ s21 = V0 and sTsad ^ 1ds+ s1 ^ ads= V0

or all aPG1. A T-admissibles is always of the forms= s̃+V0/2, wheres̃Ph∧h. The set of al
dmissibles̃ forms a linear subvariety ofh∧h whose dimension iss d

2
d whered= #sG−G1d.

The mapT can be extended to an isomorphism of Lie subalgebrasT:g1→g2 wheregi is the
ie subalgebra ofg generated by the simple roots inGi. ChooseeaPga such thatsea ,e−ad=1 and
sead=eTa and define an ordering onD by aab if Tka=b for some positive integerk. View g∧g

s a subset ofg ^ g according to the identificationx∧y=1/2sx^ y−y ^ xd. The spectacular resu
f Belavin and Drinfel’d is the content of the next theorem.

Theorem VI.2 [Belavin and Drinfel’d (1984)]: Let g be a simple complex Lie algebra a
uppose that T is a triple. Then for every admissible s, the element

r = s+ o
a.0

e−a ^ ea + 2 o
a,b.0

aab

e−a ∧ eb

s a quasitriangular solution to the Yang–Baxter equation satisfying r12+r21=V. Moreover, ever
uch solution is of this form up to the adjoint action ofg on g ^ g.

The standard solution,rst=V0+oa.0 e−a ^ ea, corresponds to the empty triple(with Gi =x)
nd s̃=0. It is the infinitesimal for the quantum groupsUqsgd and Cq

`sGd. For this triple, anys
V0+ s̃ with s̃Ph∧h is admissible so the dimension of this family of solutions iss l

2
d wherel is the

ank of g.
At the other extreme, there are certain triples for which there is a uniqueT-admissible ele

ent. Forg=sln, these are thegeneralized Cremmer–Gervaistriples, see Gerstenhaber and
quinto(1997). If ha1, . . . ,an−1j are the simple positive roots andi is relatively prime ton, then

he tripleTi with

G1 = G − han−ij, G2 = G − hamj, Tsa jd = ai+j mod n s39d

s a generalized Belavin-triple. Ther-matrix where m=1 serves as the infinitesimal of t
remmer-GervaisR-matrix, see Cremmer and Gervais(1990). The original approach o
remmer–Gervais made no mention of the Belavin–Drinfel’d triple; the connection was firs

n Gerstenhaberet al. (1993).

. Boundary solutions of the classical Yang–Baxter equation

Supposer Pg∧g is a solution of the modified classical Yang–Baxter equation(VI ) fr12,r13g
fr12,r23g+fr13,r23g=cv, wherev is ag-invariant element ing∧g∧g andc is a scalar. It shoul
e intuitively clear that asc tends to zero,r tends to a solution of the classical Yang–Ba
quation. This theory of this type of “degeneration” was made precise in Gerstenhaber
quinto(1997), and it is essentially the concept of contraction which was elaborated upon

n this paper.
Let M be the set of all solutions to the modified classical Yang–Baxter equation

rojective spacePsg∧gd of lines in g∧g. Similarly, C will denote the solutions to the classi
ang-Baxter equation inPsg∧gd.

Theorem VI.3 [Gerstenhaber and Giaquinto (1997)]:

1) The setM is a quasiprojective variety (i.e., an open subset ofM̄, its closure);
2) Any element in the closure ofM not lying in M is contained inC;

¯
3) There exist elements ofC which are not inM.
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In light of the theorem, call anr which lies in M̄ but not M a boundary solutionof the
lassical Yang–Baxter equation.

Question VI.1: Is there a reasonable constructive classification of the boundary r-matrices?
s stated earlier, no such classification seems likely for all triangular r-matrices. But the relatio
f the boundary solutions to the constructively known setM gives plausibility to a positive answ

o this question.
An easy way to construct boundaryr matrices is the following: Take an ad-nilpotent elem

Pg and any modified classicalr-matrix r. Then expsjadxd ·r is necessarily of the formr +jr1

¯ +j mrm. Dividing the result byj m and lettingj approach zero then shows thatrm must be a
oundary solution of the classical Yang–Baxter equation. The extended Jordanian and p

riangular r-matrices discussed earlier were first realized with this construction. The ex
ordanianr lies in the boundary of an orbit of the standard solution to the modified cla
ang–Baxter equation, see Gerstenhaberet al. (1990). The more interesting example is the pa
olic r-matrix. It lies in the closure of an orbit of the Cremmer–Gervais solution to the mo
lassical Yang–Baxter equation. What is striking here is that both the parabolic solution a
remmer–Gervais solution are uniquely determined by the first root ofslsnd. The parabolic sub
lgebra is the uniquer-matrix with carrierp1 (determined by deleting the first negative root), and

he Cremmer–Gervais triple is the unique one whoseG2 omits only the first root. There should
parallel situation with the modified Cremmer–Gervais triples, each of which is uniquely
ined by an integer relatively prime ton. Elashvili (1982) has proved that the parabolic suba
ra pi of slsnd determined by deletingai =ei+1,i is quasi-Frobenius if and only ifi and n are
elatively prime.

Conjecture VI.1: Suppose i is relatively prime to n. Then the triangular r-matrix whose carrie
s the maximal parabolic subalgebrapi lies in the closure of the orbit of the modifiedCremmer–

ervais quasitriangular r-matrix determined by the triple Ti [defined in formula (VI.3)].
In unpublished work, the second and third authors have verified this conjecture by

omputation in the casen=5 andi =2.

. The GGS “magic” formula

The central aspect of the FRT approach is a quantum Yang–Baxter matrixRPEndsV^ Vd
hereV is the vector representation ofG. The matrixR is used to provide commutation relatio

or the generators which define the quantized Hopf algebra of functions. Given a solutionr to the
lassical Yang–Baxter equation(triangular or quasitriangular), a natural question is quantize it
n R-matrix of the formR=1+nr +n2r2+¯ which satisfies the quantum Yang–Baxter equa

12R13R23=R23R13R12 (QYBE).
If r is triangular andF is its corresponding twisting element, thenR=FF 21

−1sUg ^ Ugdffngg is
universal solution to the QYBE. Specializing to the vector representation then gives a q

ang–Baxter matrix. However, it is hard to be explicit here because theF is unknown in the stron
xplicit sense, except in some cases previously mentioned. However, ifr is quasitriangular, the

s the Belavin–Drinfel’d classification and an interesting question is to quantize theser-matrices
or general simpleg there is no satisfactory answer as of yet, but forslsnd there is a remarkab
xplicit quantization called theGGS Formula, see Gerstenhaberet al. (1993). Our esteeme
olleague Yvette Kosmann–Schwarzbach calls this the magic formula because of its simpli
he remarkable fact that such a simple formula can work for all quasitriangularr-matrices.

For the standard solutionrst the correspondingR-matrix

Rst = qo
i

eii ^ eii + o
iÞ j

eii ^ ejj + sq − q−1do
i. j

eij ^ eji s40d

s well-known. In addition to the quantum Yang–Baxter equation,PRst satisfies the Hecke relati
PR−qdsPR+q−1d=0, whereP is the matrix representing the interchange of factors inV^ V. If
Ph∧h then recall thatrst+ s̃ is a quasitriangularr-matrix associated with the empty triple.

s̃ s̃
uantization has the elementary formq Rstq and was first given in Reshetikhin(1990), a paper
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hich initiated a flurry of activity in the area of multiparameter quantum groups.
Until 1993, the only other specificR-matrix was that given by Cremmer and Gervais(1990).

hen a conjecture was made by Gerstenhaber, Giaquinto, and Schack which gave a formu
as conjectured to produce anR-matrix from each Belavin–Drinfel’dr-matrix for slsnd. This
ecame known as the “GGS conjecture.” Evidence of the conjecture’s validity was confirm
omputer programs for all triples up throughsls5d in Giaquinto and Hodges(1998), and for al
riples up throughsls12d in Schedler(1999). Up to a natural notion of equivalence, there
10,300 triples forsls12d.

To describe the GGS formula, we need some notation. Letrst+s+a be a Belavin–Drinfel’d
uasitriangularr-matrix. Recall thats= s̃+V0/2 with s̃Ph ^ h. Set

« = arst + rsta + a2.

or M PMnsCd ^ MnsCd we use the Kronecker notationM =oMik
jl eij ^ ekl. Define

ã = o aij
klqaij

kl«i j
kl
eij ^ ekl.

Theorem VI.4 [Gerstenhaberet al. (1993) and Schedler (2000)]:Let rst+s+a be a Belavin
rinfel’d quasitriangular r-matrix, and define

RGGS= qs̃sRst + sq − q−1dãdqs̃. s41d

hen RGGSsatisfies the quantum Yang–Baxter equation which quantizes r, and PRGGSsatisfies th
ecke relation.

The proof of the conjecture is due to Schedler(2000) and is rather complicated. In relat
ork, Etingof, Schedler, and Schiffmann gave an(explicit) quantization of the so-called dynam
al r-matrices for simple Lie algebras[Etingof et al. (2000)]. A special case of their constructi
ives a universal quantization of any quasi-triangularr-matrix. Even though the construction
explicit,” it is a formidable task to perform computations with the universal quantization
pecific representation. Indeed, Schedler begins his proof of the GGS conjecture with t
niversal quantization and then he proceeds to evaluate it in the tensor square of th
epresentation. After 25 pages of lengthy combinatorial computations, he finds out that th
s exactly the GGS matrix! Something is wanting, however, for a more elementary proof
tatement of the GGS conjecture is just an assertion about specific linear transformation o
imensional vector space.

Question VI. 2:

1) Find a similar GGS-type formula which quantizes the quasitriangular r-matrices for the
other classical seriessB,C,Dd of simple Lie algebras. So far, no progress has been ma
this direction.

2) Find a “boundary GGS formula.” By this, we mean formula which quantizes the bou
r-matrices. For example, it was proved in Gerstenhaber and Giaquinto (1998) that fo
triangular r-matrix in slsnd∧slsnd which lies in the boundary of the standard solut
oi. j eij ∧eji to the MCYBE, thenexpsjrd is a boundary solution to the QYBE.

In a matter related to the second question, Endelman and Hodges(2000) have shown that th
remmer–GervaisR-matrix degenerates to a QYBE matrix which quantizes the parabolic
ular r-matrix associated to the parabolic subalgebrap1 of slsnd. This may be seen as the quant
ersion of the degeneration of the Cremmer–Gervais quasitriangularr-matrix to the triangula
arabolicr-matrix.

. Quantizing in representation space

Let V be the vector representation of a simple complex Lie algebrag. In the last section, w
xhibited a canonical QYBE matrixRPEndsV^ Vd associated with each Belavin–Drinfel’d

nitesimal forslsnd. The FRT formalism then may be used to produce commutation relations for
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he generators of a quantizationCRfSLsndg of the coordinate Hopf algebra of SLsnd. EachR-matrix

lso enjoys many other nice properties. For example, the operatorR̂=PR has eigenvaluesq and
q−1 with multiplicities sn2+nd /2 andsn2−1d /2, respectively. These numbers coincide with
ultiplicities of the eigenspaces corresponding to the eigenvalues ±1 of the permutation o

P.
What theR-matrix does not do, however, isquantizethe moduleV^ V—that is, transform th

1-eigenspace forP to the q-eigenspaces forR̂ and the—1-eigenspace forP to the

q−1-eigenspace forR̂. Some explanation is in order to explain more precisely what we mean
n the classicalsq=1d case the moduleV^ V splits into a direct sumV + % V −, whereV + consists
f the symmetric vectors(eigenvalue −1 forP) andV − is the space of skew-symmetric vect
eigenvalue −1 forP). In the quantized case the same idea holds. Specifically,V^ V>V q

+
% V q

−,

here V q
+ is the space ofq-symmetric vectors(eigenvalueq for R̂) and V q

− is the space o

-skew-symmetric vectors(eigenvalue −q−1) for R̂. What we seek is aquantizing transformatio
PEndsV^ Vd which takesV + to V q

+ andV − to V q
−. If the Belavin–Drinfel’d infinitesimal ofR

s r, then it is known that any possible quantizing transformationQ has infinitesimalr̃ =r
sV /2d, the solution to the MCYBE associated withr. Ideally we would like to have a canonic

explicit of course!) simple formula for the quantizing transformationQ as a function ofr̃.
For the standard solutionRst, we do have a pleasant description ofQ which we now describe

he solution to the MCYBE associated torst is r̃st=oi. j eij ∧eji . Let e1, . . . ,en be the standar
asis ofV>Cn. It will be convenient to use the inner product onV defined bysei ,ejd=di j . This
xtends to one onV^ V in which the set of allei ^ ej forms an orthonormal basis. Then
lementary calculation shows that

V q
+ = Hhuei ^ eiu1 ø i ø nj ø HUqei ^ ej + ej ^ ei

Î1 + q2 Ui , jJJ
nd

V q
− = HHUei ^ ej − qej ^ ei

Î1 + q2 Ui , jJJ .

ote that these are orthogonal bases and that settingq=1 gives orthogonal bases for the eige
acesV ± of P.

Theorem VI.5 [Gerstenhaber et al. (1990)]: Let Q=expsnr̃std and q=secn−tann. Then
sei ^ eid=ei ^ ei for each i and for all i, j

QFei ^ ej + ej ^ ei

Î2
G =

qei ^ ej + ej ^ ei

Î1 + q2
, and QFei ^ ej − ej ^ ei

Î2
G =

ei ^ ej − qej ^ ei

Î1 + q2

nd

R̂st =
1

cosn
sQ−1PQ− sin nd.

Thus Q is an orthogonal quantizing transformation andR̂st (and hence alsoRst) is easily
ecoverable fromQ. In fact, the transformationQ performs the quantization eigenvector by eig
ector, which is quite desirable. In the simplest case ofn=2, Q is a rotation in the plane spann
y e1 ^ e2 ande2 ^ e1. The striking aspect of this theorem is thatQ, being just an exponential,
roduced in a very elementary way solely based on infinitesimal data. Thus we recoverRst in a
articularly simple way. Also note that the choice ofq=secn−tann is absolutely necessary f

he theorem. From the viewpoint of deformation quantization, it turns out that this seems to
n in
atural choice for the parameterq, and note , or e as many(including us!) authors tend to use.
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It was shown in Gerstenhaberet al. (1990) [see also Blohmann(2003)] that if FPUsslsndd
^ Usslsnddffngg is the modified twisting element which gives the preferred deformatio

`sSLsndd to Cq
`sSLsndd, thensr ^ rdF=Q−1 wherer :slsnd→EndsVd is the vector representatio

hus, the inverse of the quantizing transformationQ coincides with the image of the modifi
wisting element in the vector representation.

Optimally, we would like to have such an elementary quantizing transformation as a
unction of the correspondingr̃st for the orthogonal and symplectic Lie algebras. Recent wo
econd and third authors shows that this is indeed possible, but the construction is mor
he difficulty lies in the fact that for these Lie algebras,V^ V contains a one-dimension
-module, a vector which represents the defining bilinear form ofg. For the orthogonal Li
lgebras, this vector splits off of the symmetric vectors and in the symplectic case it splits

he skew vectors. A similar decomposition occurs in the quantized cases. This difficulty is

elled in fact that the operatorR̂st has three eigenvalues. For typeBn, they areq, −q−1, andq1−N

hereN=2n+1, and the remaining types ofCn andDn have a similarly formed third eigenvalu
nfortunately, space prohibits a detailed description of the quantizing transformation in
ases. We can just say what it is not: unlike theAn series, the exponential ofr̃st does not produc
he quantizing transformation. Nevertheless, like many deformation problems, the expo
unction plays a substantial role in the construction of the quantizing transformation.

be, E.,Hopf Algebras, Cambridge Tracts in Mathematics(Cambridge University Press, Cambridge, 1980), Vol. 74.
lekseev, A. and Lachowska, A., “Invariant *-products on coadjoint orbits and the Shapovalov pairing,” ma

0308100.
rnal, D., Cahen, M., and Gutt, S., “Representations of compact Lie groups and quantization by deformation,” Bu

R. Med. Belg. 74, 123–141(1988); “Exponential and holomorphic discrete series,” Bull. Soc. Math. Belg.41,
207–227(1989).

rnal, D. and Cortet, J-C. “Geometrical theory of contractions and representations,” J. Math. Phys.20, 556–563(1979).
rnal, D. and Cortet, J-C., “Nilpotent Fourier transform and applications,” Lett. Math. Phys.9, 25–34(1985).
rnal, D. and Cortet, J-C., “Star-products in the method of orbits for nilpotent Lie groups,” J. Geom. Phys.2, 83–116

(1985).
rnal, D. and Corlet, J.-C., “Représentations star des groupes exponentiels,” J. Funct. Anal.92, 103–135(1990).
rnal, D., Cortet, J-C., and Ludwig, J., “Moyal product and representations of solvable Lie groups,” J. Funct. An133,

402–424(1995).
rnal, D., Cortet, J-C., and Molin, P., “Star-produit et représentation de masse nulle du groupe de Poincaré,” C.

Sci. Paris, Ser. A-B291, A327–A330(1980).
asart, H., Flato, M., Lichnerowicz, A., and Sternheimer, D., “Deformation theory applied to quantization and st

mechanics,” Lett. Math. Phys.8, 483–494(1984).
ayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., “Deformation theory and quantiz

Deformations of symplectic structures,” Ann. Phys.(N.Y.) 111, 61–110(1978); “Deformation theory and quantizati
II. Physical applications,”ibid. 111, 111–151(1978).

elavin, A. and Drinfel’d, V., “Solutions of the classical Yang–Baxter equation for simple Lie algebras,” Funkc
Priloz. 16 (3), 1–29(1982).

elavin, A. and Drinfel’d, V., “Triangle equations and simple Lie algebras,”Mathematical Physics Reviews(Harwood
Academic, Chur, 1984), Vol. 4, pp. 93–165.

ers, L.,Selected works of Lipman Bers. Part 1. Papers on complex analysis, edited by Irwin Kra and Bernard Mas
(American Mathematical Society, Providence, RI, 1998); Quasiconformal Mappings and Teichmüller’s Theorem, A
lytic Functions(Princeton University Press, Princeton, NJ, 1960), pp. 89–119.

ertrand, J. and Bertrand, P., “Symbolic calculus on the time-frequency half-plane,” J. Math. Phys.39, 4071–4090(1998).
idegain, F., “A candidate for a noncompact quantum group,” Lett. Math. Phys.36, 157–167(1996).
idegain, F. and Pinczon, G., “A star-product approach to noncompact quantum groups,” Lett. Math. Phys.33, 231–240

(1995); hep-th/9409054.
idegain, F. and Pinczon, G., “Quantization of Poisson-Lie groups and applications,” Commun. Math. Phys.179, 295–332

(1996).
ieliavsky, P., “Espaces symétriques symplectique,” Ph.D thesis, Université Libre de Bruxelles, 1995.
ieliavsky, P., “Four-dimensional simply connected symplectic symmetric spaces,” Geom. Dedic.69, 291–316(1998).
ieliavsky, P., “Strict quantization of solvable symmetric spaces,” J. Sympl. Geom.1 (2), 269–320(2002).
ieliavsky, P., Bonneau, P., and Maeda, Y., “Universal deformation formulae, symplectic Lie groups and sy

spaces,” math.QA/0308189.
ieliavsky, P., Bonneau, P., and Maeda, Y., “Universal deformation formulae for three-dimensional solvable Lie

math.QA/0308188.
ieliavsky, P. and Maeda, Y., “Convergent star product algebras on ‘ax+b,’ ” J. Math. Phys. 62, 233–243(2002).
lohmann, C., “Covariant realization of quantum spaces as star products by Drinfel’d twists,” Lett. Math. Ph44,
4736–4755(2003).

                                                                                                            



B ath. Phys.

B
B g duality,

B

d es

C
C sion” J.

C ”

C hys.

C ommun.

C tt. Math.

C tatistical

C

C lgebras,”

D ommun.

D

D .
D
D

D
D

D
D
D

E

quanti-

ous

f

,

i-

tions,” J.

3738 J. Math. Phys., Vol. 45, No. 10, October 2004 Bonneau et al.

                        
onneau, P., “Cohomology and associated deformations for not necessarily coassociative bialgebras,” Lett. M
26, 277–283(1992).

onneau, P., “Topological quantum double,” Rev. Math. Phys.6, 305–318(1994).
onneau, P., Flato, M., Gerstenhaber, M., and Pinczon, G., “The hidden group structure of quantum groups: stron

rigidity and preferred deformations,” Commun. Math. Phys.161, 125–156(1994).
onneau, P., Flato, M., and Pinczon, G., “A natural and rigid model of quantum groups,” Lett. Math. Phys.25, 75–84

(1992).
e Broglie, L., “Ondes et quanta,” C. R. Hebd. Seances Acad. Sci.177, 517–519(1923); Recherches sur la théorie d

quanta, thèse, Paris, 1924. La mécanique ondulatoire, Gauthier-Villars, Paris, 1928.
ahen, M., Gutt, S., and Rawnsley, J., “Quantization of Kähler manifolds IV,” Lett. Math. Phys.34, 159–168(1995).
aldararu, A., Giaquinto, A., and Witherspoon, S., “Algebraic deformations arising from orbifolds with discrete tor

Pure Appl. Algebra187, 51–70(2004).
oll, V., Gerstenhaber, M., and Giaquinto, A.,“An explicit deformation formula with noncommuting derivations,Ring

theory 1989, Israel Math. Conf. Proc., Weizmann, Jerusalem, 1989, Vol. 1, pp. 396–403.
onnes, A. and Dubois-Violette, M., “Moduli space and structure of noncommutative 3-spheres,” Lett. Math. P66,

99–121(2003); math.QA/0308275.
onnes, A. and Landi, G, “Noncommutative manifolds, the instanton algebra and isospectral deformations,” C

Math. Phys.221, 141–159(2001).
onnes, A. and Kreimer, D., “Lessons from quantum field theory—Hopf algebras and spacetime geometries,” Le

Phys. 48, 85–96(1999).
onnes, A. and Marcoli, M., “From physics to number theory via noncommutative geometry. Part I. Quantum s

mechanics ofQ-lattices,” math.NT/0404128.
onnes, A. and Moscovici, A., “Modular Hecke algebras and their Hopf symmetry,” Mosc. Math. J.4, 67–109(2004);

math.QA/0301089; “Rankin–Cohen Brackets and the Hopf Algebra of Transverse Geometry,”ibid. 4, 111–130(2004);
math.QA/0304316.

remmer, E. and Gervais, J-L., “The quantum group structure associated with nonlinearly extended Virasoro a
Commun. Math. Phys.134, 619–632(1990).

ito, G., Flato, M., Sternheimer, D., and Takhtajan, L., “Deformation quantization and nambu mechanics,” C
Math. Phys.183, 1–22(1997); hep-th/9602016.

ito, G. and Sternheimer, D., “Deformation uantization: Genesis, developments and metamorphoses,” inDeformation
Quantization, IRMA Lectures in Math. Theoret. Phys., edited by G. Halbout(de Gruyter, Berlin, 2002), Vol. 1, pp.
9–54; math.QA/0202168.

onin, J. and Mudrov, A., “Quantum coadjoint orbits of GL(n) and generalized Verme modules,” math.QA/0212318
ouglas, M. and Nekrasov, N., “Noncommutative field theory,” Rev. Mod. Phys.73, 977 (2001); hep-th/0106048.
rabant, B., Van Daele, A., and Zhang, Y., “Actions of multiplier Hopf algebras,” Commun. Algebra27 (9), 4117–4172

(1999).
rinfel’d, V., “Hopf algebras and the quantum Yang–Baxter equation,” Dokl. Akad. Nauk SSSR283, 1060–1064(1985).
rinfel’d, V., “Quantum groups,” inProceedings of the International Congress of Mathematicians(Berkeley, CA, 1986)

(American Mathematical Society, Providence, RI, 1987), Vols. 1–2, pp. 798–820.
rinfel’d, V., “Almost cocommutative Hopf algebras,” Algebra Anal.1 (2), 30–46(1989).
rinfeld, V., “Quasi-Hopf algebras,” Algebra Anal.1 (6), 114–148(1989).
rinfel’d, V., “On Poisson homogeneous spaces of Poisson–Lie groups,” Teor. Mat. Fiz.95, 226–227(1993) [Theor.

Math. Phys.95, 524–525(1993)].
lashvili, A., “Frobenius Lie algebras,” Funkc. Anal. Priloz.16 (4), 94–95(1982).

Endelman, R. and Hodges, T., “Generalized JordanianR-matrices of Cremmer–Gervais type,” Lett. Math. Phys.52,
225–237(2000).

Enriquez, B., “A cohomological construction of quantization functors of Lie bialgebras,” math.QA/0212325; “On
zation functors of Lie bialgebras,” The 2000 Twente Conference on Lie Groups(Enschede), Acta Appl. Math. 73 (1-2),
133–140(2002).

Enriquez, B., Etingov, P., and Marshall, I., “Quantization of some Poisson–Lier-matrices and Poisson homogene
spaces,” math.QA/0403283.

Etingof, P. and Kazhdan, D., “Quantization of Lie bialgebras I,” Selecta Math., New Ser.2, 1–41(1996); “Quantization o
Lie bialgebras II,”ibid. 4, 213–231(1998); “Quantization of Lie bialgebras III,”ibid. 4, 233–269(1998); “Quanti-
zation of Lie bialgebras IV,”ibid. 6, 79–104(2000); “Quantization of Lie bialgebras V,”ibid. 6, 105–130(2000);
“Quantization of Poisson algebraic groups and Poisson homogeneous spaces,” inSymètries Quantiques(Les Houches
1995) (North–Holland, Amsterdam, 1998), pp. 935–946.

Etingof, P., Schedler, T., and Schiffmann, O., “Explicit quantization of dynamicalr-matrices for finite dimensional sem
simple Lie algebras,” J. Am. Math. Soc.13, 595–609(2000).

Faddeev, L. D., Reshetikhin, N. Yu., and Takhtajan, L. A., “Quantization of Lie groups and Lie algebras,” inAlgebraic
Analysis(Academic, Boston, 1988), Vol. I, pp. 129–139.

Fedosov, B. V., “A simple geometrical construction of deformation quantization,” J. Diff. Geom.40, 213–238(1994);
Deformation Quantization and Index Theory, Mathematical Topics(Akademie Verlag, Berlin, 1996), Vol. 9.

Flato, M., “Deformation view of physical theories,” Czech. J. Phys., Sect. B32, 472–475(1982).
Flato, M., Lichnerowicz, A., and Sternheimer, D., “Deformations of Poisson brackets, Dirac brackets and applica

Math. Phys.17, 1754–1762(1976); “Crochets de Moyal-Vey et quantification,” C. R. Acad. Sci. Paris, Ser. A-B283,
A19–A24 (1976).

Frölicher, A. and Nijenuis, A., “A theorem on stability of complex structures,” Proc. Natl. Acad. Sci. U.S.A.43, 239–241
                                                                                                            



F
F
F -

;

F
G
G
G
G hys.

G in three

G en-
-

G ,

G finitesi-
t

G tt. Math.

G s
,

G cad. Sci.

G
ber

G bra

G
G
G bra

G
G
G
H
H th. Soc.

I S.A.

J
. Math.
. Soc.

J. Math.

geneous

A
ns
,”

.
96-

e

J. Math. Phys., Vol. 45, No. 10, October 2004 Quantum groups and deformation quantization 3739

                        
(1957).
rønsdal, C., “Some ideas on quantization,” Rep. Math. Phys.15, 111–145(1979).
rønsdal, C., “Generalization and exact deformations of quantum groups,” Publ. Res. Inst. Math. Sci.33, 91–149(1997).
rønsdal, C., “Harrison cohomology and abelian deformation quantization on algebraic varieties,” inDeformation Quan

tization, edited by G. Halbout,IRMA Lect. Math. Theor. Phys.(de Gruyter, Berlin, 2002), Vol. 1, pp. 149–161
hep-th/0109001.

rønsdal, C. and Sternheimer, D., “Explicit relations for deformation quantization in a Lie algebra context”(unpublished).
erstenhaber, M., “The cohomology structure of an associative ring,” Ann. Math.78, 267–288(1963).
erstenhaber, M., “On the deformation of rings and algebras,” Ann. Math.79, 59–103(1964).
erstenhaber, M., “On the deformations of rings and algebras, III,” Ann. Math.88, 1–34(1968).
erstenhaber, M. and Giaquinto, A., “Boundary solutions of the classical Yang–Baxter equation,” Lett. Math. P40,

337–353(1997).
erstenhaber, M. and Giaquinto, A., “Boundary solutions of the quantum Yang–Baxter equation and solutions

dimensions,” Lett. Math. Phys.44, 131–141(1998).
erstenhaber, M. and Giaquinto, A., “Compatible deformations,” inTrends in the Representation Theory of Finite Dim

sional Algebras, Contemporary Mathematics, edited by E. L. Green and B. Huisgen-Zimmermann(American Math
ematical Society, Providence, RI, 1998), Vol. 229, pp. 159–168.

erstenhaber, M., Giaquinto, A., and Schack, S. D., “Quantum symmetry,” inLecture Notes in Mathematics(Springer
Berlin, 1990), Vol. 1510, pp. 9–46.

erstenhaber, M., Giaquinto, A., and Schack, S. D., “Construction of quantum groups from Belavin–Drinfel’d in
mals,” Quantum Deformations of Algebras and Their Representations, Isr. Math. Conf. Proc.(Bar-Ilan Univ., Rama
Gan, 1993), Vol. 7, pp. 45–64.

erstenhaber, M., Giaquinto, A., and Schaps, M.,“ The Donald–Flanigan problem for finite reflection groups,” Le
Phys. 56, 41–72(2001).

erstenhaber, M. and Schack, S. D., “Algebraic cohomology and deformation theory,” inDeformation Theory of Algebra
and Structures and Applications, NATO ASI Ser. C, edited by M. Hazewinkel and M. Gerstenhaber(Kluwer Academic
Dordrecht, 1988), Vol. 247, pp. 11–264.

erstenhaber, M. and Schack, S. D., “Bialgebra cohomology, deformations, and quantum groups,” Proc. Natl. A
U.S.A. 87, 478–481(1990).

erstenhaber, M. and Schack, S. D., “Algebras, bialgebras, quantum groups, and algebraic deformations,” inDeformation
Theory and Quantum Groups with Applications to Mathematical Physics, edited by J. Stasheff and M. Gerstenha
(American Mathematical Society, Providence, RI, 1992), Vol. 134, pp. 51–92.

iaquinto, A., “Quantization of tensor representations and deformation of matrix bialgebras,” J. Pure Appl. Alge79,
169–190(1992).

iaquinto, A. and Hodges, T., “Nonstandard solutions of the Yang–Baxter equation,” Lett. Math. Phys.44, 67–75(1998).
iaquinto, A. and Zhang, J. J., “Quantum Weyl algebras,” J. Algebra176 (3), 861–881(1995).
iaquinto, A. and Zhang, J. J., “Bialgebra actions, twists, and universal deformation formulas,” J. Pure Appl. Alge128,

133–151(1998).
roenewold, H., “On the principles of elementary quantum mechanics,” Physica(Amsterdam) 12, 405–460(1946).
rothendieck, A., “Produits tensoriels topologiques et espaces nucléaires,” Mem. Am. Math. Soc.16. 1–140(1955).
utt, S., “An explicit *-product on the cotangent bundle of a Lie group,” Lett. Math. Phys.7, 249–258(1983).
inich, V., “Tamarkin’s proof of Kontsevich formality theorem,” Forum. Math.15 (4), 591–614(2003).
ochschild, G., Kostant, B., and Rosenberg, A., “Differential forms on regular affine algebras,” Trans. Am. Ma

102, 383–406(1962).
nönü, E. and Wigner, E. P., “On the contraction of groups and their representations,” Proc. Natl. Acad. Sci. U.39,

510–524(1953).
imbo, M., “A q-difference algebra ofUsgd and the Yang–Baxter equation,” Lett. Math. Phys.10, 63–69(1985).

Karabegov, A. V., “Cohomological classification of deformation quantizations with separation of variables,” Lett
Phys. 43, 347–357(1998); “Berezin’s quantization on flag manifolds and spherical modules,” Trans. Am. Math
350, 1467–1479(1998).

Karasev, M., “Formulas for noncommutative products of functions in terms of membranes and strings I,” Russ.
Phys. 2 (4), 445–462(1994).

Karolinsky, E., Muzykin, K., Stolin, A., and Tarasov, V., “Dynamical Yang–Baxter equations, quasi-Poisson homo
spaces, and quantization,” math.QA/0309203.

Kodaira, K. and Spencer, D. C., “On the variation of almost-complex structure,”Algebraic Geometry and Topology.
Symposium in Honor of S. Lefschetz(Princeton University Press, Princeton, NJ, 1957), pp. 139–150; “On deformatio
of complex analytic structures I, II,” Ann. Math.67, 328–466(1958); “III Stability theorems for complex structures
ibid. 71, 43–76(1960).

Kontsevich, M., “Deformation quantization of Poisson manifolds,” Lett. Math. Phys.66, 157–216(2003); q-alg/9709040
Kontsevich, M. and Rosenberg, A. L., “Noncommutative smooth spaces,”The Gelfand Mathematical Seminars, 19

1999, 85–108, Gelfand Math. Sem., Birkhäuser Boston 2000, math.AG/9812158.
Kontsevich, M., “Operads and motives in deformation quantization,” Lett. Math. Phys.48, 35–72 (1999); math.QA/

9904055.
Kontsevich, M. and Soibelman, Y., “Deformations of algebras over operads and the Deligne conjecture,” inConférenc

Moshé Flato 1999, Math. Phys. Stud., edited by G. Dito and D. Sternheimer(Kluwer Academic, Dordrecht, 2000), Vol.
21, pp. 255–307; math.QA/0001151.
                                                                                                            



K

K

K s.

K ntations,”

L hys.

L
L A-B

L
M hys.

M bra,” J.

M construc-

M
M . Phys.

M y

M th.

M
M hys.

M
N

N
O ys.

P ,

P
P
P
R ys.

R Phys.

R
R
S
S
S
S

,

S
S
S l

.

S
S
S
T
T
T . Wiss.,

T

3740 J. Math. Phys., Vol. 45, No. 10, October 2004 Bonneau et al.

                        
ontsevich, M., “Deformation quantization of algebraic varieties,” Lett. Math. Phys.56, 271–294(2001); math.AG/
0106006.

ontsevich, M. and Zagier, D., “Periods,” inMathematics Unlimited—2001 and Beyond(Springer, Berlin, 2001), pp.
771–808.

ulish, P. P., Lyakhovsky, V. D., and Mudrov, A. I., “Extended Jordanian twists for Lie algebras,” J. Math. Phy40,
4569–4586(1999).

ulish, P. P. and Reshetikhin, N. Yu., “Quantum linear problem for the sine-Gordon equation and higher represe
Zap. Nauchn. Semin. LOMI101, 101–110(1981) [J. Sov. Math.23, 24–35(1983)].

esimple, M. and Pinczon, G., “Deformations of representations of Lie groups and Lie algebras,” J. Math. P34,
4251–4272(1993).

évy-Nahas, M., “Deformations and contractions of Lie algebras,” J. Math. Phys.8, 1211–1222(1967).
ichnerowicz, A., “Variété symplectique et dynamique associée à une sousvariété,” C. R. Acad. Sci. Paris, Ser.280,

A523–A527(1975).
yakhovsky, V. D. and Samsonov, M. E., “Elementary parabolic twist,” J. Algebra Appl.1, 413–424(2002).
aillard, J. M., “On the twisted convolution product and the Weyl transform of tempered distributions,” J. Geom. P3,

231–261(1986).
aillard, J. M., “Star exponentials for any ordering of the elements of the inhomogeneous symplectic Lie alge

Math. Phys.45, 785–793(2004).
ajid, S., “Physics for algebraists: Noncommutative and noncocommutative Hopf algebras by a bicrossproduct

tion,” J. Algebra 130 (1), 17–64(1990).
ajid, S., “Tannaka–Krein theorem for quasi-Hopf algebras and other results,” Contemp. Math.134, 219–232(1992).
ajid, S., “Braided matrix structure of the Sklyanin algebra and of the quantum Lorentz group,” Commun. Math

156, 607–638(1993).
ajid, S., A Quantum Groups Primer, London Mathematical Society Lecture Note Series 292(Cambridge Universit

Press, Cambridge, 2002), x+169 pp.
artin, C. and Zouagui, M., “A noncommutative Hopf structureC` [SL (2, C)] as a quantum Lorentz group,” J. Ma

Phys. 37, 3611–3629(1996).
olnar, R., “Semidirect products of Hopf algebras,” J. Algebra47 (1), 29–51(1977).
oreno, C., “Invariant star products and representations of compact semisimple Lie groups,” Lett. Math. P12,

217–229(1986).
oyal, J. E., “Quantum mechanics as a statistical theory,” Proc. Cambridge Philos. Soc.45, 99–124(1949).
adaud, F., “Generalized deformations, Koszul resolutions, Moyal products,” Rev. Math. Phys.10, 685–704(1998);

“Generalized deformations and hochschild cohomology,” Lett. Math. Phys.58, 41–55(2001).
ambu, Y., “Generalized Hamilton dynamics,” Phys. Rev. D7, 2405–2412(1973).
gievetsky, O., Schmidke, W., Wess, J., and Zumino, B., “Six generatorq-deformed Lorentz algebra,” Lett. Math. Ph

23, 233–240(1991).
edersen, G.,C*-Algebras and Their Automorphism Groups, London Mathematical Society Monographs(Academic

London, 1979), Vol. 14.
inczon, G., “Noncommutative deformation theory,” Lett. Math. Phys.41, 101–117(1997).
flaum, M., “Deformation quantization on cotangent bundles,” Rep. Math. Phys.43, 291–297(1999).
odleś, P. and Woronowicz, S. L., “Quantum deformation of Lorentz group,” Commun. Math. Phys.130, 381–431(1990).
eshetikhin, N. Y., “Multiparameter quantum groups and twisted quasitriangular Hopf algebras,” Lett. Math. Ph20,

331–335(1990).
eshetikhin, N. Y. and Semenov-Tian-Shansky, M., “Quantum-matrices and factorization problems,” J. Geom.5,

533–550(1989).
ieffel, M., “Deformation quantization of Heisenberg manifolds,” Commun. Math. Phys.122, 531–562(1989).
ieffel, M., “Deformation quantization for actions ofRd,” Mem. Am. Math. Soc.106, No. 506(1993).
aletan, E. J., “Contraction of Lie groups,” J. Math. Phys.2, 1–21(1961); 2, 742 (1961).
chedler, T., “Verification of the GGS conjecture fornø12,” math.QA/9901079.
chedler, T., “Proof of the GGS conjecture,” Math. Res. Lett.7 (5-6), 801–826(2000).
chmid, W., “Character formulas and localization of integrals,” inDeformation Theory and Symplectic Geometry, in

Proceedings of Ascona meeting, June, 1996, edited by D. Sternheimer, J. Rawnsley, and S. Gutt(Kluwer Academic
Dordrecht, 1997), Vol. 20, pp. 259–270.

chmidke, W., Wess, J., and Zumino, B., “Aq-deformed Lorentz algebra,” Z. Phys. C52, 471–476(1991).
egal, I. E., “A class of operator algebras which are determined by groups,” Duke Math. J.18, 221–265(1951).
emenov-Tian-Shansky, M., “Poisson Lie groups, quantum duality principle, and the quantum double,” inMathematica

Aspects of Conformal and Topological Field Theories and Quantum Groups(South Hadley, MA, 1992), Contemp
Math. (American Mathematical Society, Providence, RI, 1994), Vol. 175, pp. 219–248.

tolin, A., “On rational solutions of Yang-Baxter equation forslsnd,” Math. Scand.69 (1), 57–80(1991).
weedler, M. E., “Cohomology of algebras over Hopf algebras,” Trans. Am. Math. Soc.133, 205–239(1968).
weedler, M. E.,Hopf Algebras(Benjamin, New York, 1969).
amarkin, D., “Another proof of M. Kontsevich formality theorem,” math.QA/9803025.
amarkin, D., “A formalism for the renormalization procedure,” math.QA/0312219.
eichmüller, O., “Extremale quasikonforme Abbildungen und quadratische Differentiale,” Abh. Preuss. Akad

Math.-Naturwiss. Kl.22, 1–97(1939).
rèves, F.,Topological Vector Spaces, Distributions and Kernels(Academic, New York, 1967), xvi1624 pp.

Unterberger, A., “Quantification et analyse pseudo-différentielle,” Ann. Sci. Ec. Normale Super.21, 133–158(1988); “La
                                                                                                            



U ematics
ath.

W d

W n-
e

W

J. Math. Phys., Vol. 45, No. 10, October 2004 Quantum groups and deformation quantization 3741

                        
série discrète de SLs2,Rd et les opérateurs pseudo-différentiels sur une demidroite,”ibid. 17, 83–116(1984).
nterberger, A. and Upmeier, H.,Pseudodifferential Analysis on Symmetric Cones, Studies in Advanced Math

(CRC Press, Boca Raton, FL, 1996); “The Berezin transform and invariant differential operators,” Commun. M
Phys. 164, 563–597(1994).

einstein, A., “Traces and triangles in symmetric symplectic spaces,”Symplectic Geometry and Quantization(Sanda an
Yokohama, 1993), Contemp. Math.179, 261–270(1994).

eyl, H., The Theory of Groups and Quantum Mechanics(Dover, New York, 1931); Gruppentheorie und Quante
mechanik,reprint of the 2nd ed.(Hirzel, Leipzig, 1931) of the original 1927 text, xi1366 pp. Wissenschaftlich
Buchgesellschaft, Darmstadt, 1977.

igner, E. P., “Quantum corrections for thermodynamic equilibrium,” Phys. Rev.40, 749–759(1932).
                                                                                                            



M
o

I

was
t ological
m
M ometry,
d more
g of
r g the
s e
l
s
K s of
m ranes is
“ -branes
( aves.
T of the
c ,
t ta.
C red from
t orld of
n

the
d omo-
l VI.

mirror
s from
K e
f u-
l apse a
c ited by
s admits
a

a

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 10 OCTOBER 2004

0

                        
irror symmetry and noncommutative geometry
f A`-categories

Yan Soibelmana)

Department of Mathematics, Kansas State University, Manhattan, Kansas 66506

(Received 27 January 2004; accepted 15 June 2004; published 12 October 2004)

Homological mirror symmetry aims to explain the phenomenon of mirror symme-
try in the language ofA`-categories and their deformation theory. In these notes I
discuss various aspects of this approach from the point of view of noncommutative
algebraic geometry in the tensor category of graded vector spaces. ©2004
American Institute of Physics.[DOI: 10.1063/1.1789282]

. INTRODUCTION

This review article is an extended version of my lectures at a workshop at UCLA. My aim
o discuss one aspect of mirror symmetry, namely, the categorical one. It is known as hom
irror symmetry, and was suggested by Maxim Kontsevich in 1993(see Kontsevich, 1994).
irror symmetry of course has many other aspects related to string theory, algebraic ge
ifferential equations, differential geometry, and symplectic geometry. In order to have a
eneral picture the interested reader should look at the literature[see, for example, the list
eferences in Cox and Katz(1999)]. The homological approach is characterized by restatin
ymplectic and complex geometry of mirror symmetry in terms of so-calledA`-categories. Th

atter are homotopy versions of ordinary categories. Thus, for example, A-branes(Lagrangian
ubmanifolds equipped with flat bundles) become objects of the so-called Fukaya category(see
ontsevich, 1994; Fukayaet al., 2000). Interaction between A-branes is interpreted in term
orphisms in the Fukaya category. In the simplest case the interaction between two A-b

measured” by the vector space spanned by their intersection points. On the other hand, B
holomorphic vector bundles) are naturally objects of the derived category of coherent she
he duality between the A and B sides of mirror symmetry then becomes an equivalence
orrespondingA`-categories assigned to dual Calabi–Yau manifolds. All numbers(for example
he number of rational curves on a Calabi–Yau manifold) become a part of categorical da
onversely, one expects that the numbers which appear in mirror symmetry can be recove

he categorical data intrinsically. This opens a way to generalize mirror symmetry to the w
oncommutative spaces.

It is clear after Kontsevich(1994) that homological mirror symmetry is closely related to
eformation theory ofA`-categories. Therefore one needs the language which fits well to h

ogical algebra and deformation theory. This language is briefly explained in Secs. III and
Another conceptual point of discussion is the geometric framework of homological

ymmetry. Currently, the only way to formulate rigorously homological mirror conjecture
ontsevich(1994) is to consider degeneratingfamiliesof Calabi–Yau manifolds. In this paper w

ollow the ideas of Kontsevich and Soibelman(2000a) where the relevant geometry was form
ated in terms of Gromov–Hausdorff collapse. In the simplest example of such a coll
omplex elliptic curve collapses to its equator circle. In general, various structures inher
uch a limit can be axiomatized. Subsequently the geometric portion of mirror symmetry
n easy formulation in terms of limiting data(see Sec. II).

)
Electronic mail: soibel@math.ksu.edu
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The nontrivial part of the story is to formulate instanton corrections(i.e., the structure o

`-category on A-branes) in terms of the limiting data. This is done in Sec. V.A`-category o
-branes is explained in Sec. IV.

Sections VII and VIII are devoted to the language suitable for generalization to nonco
ative Calabi–Yau manifolds(we give the definition of the latter in Sec. VII).

The paper has two appendixes. In the first one we recall the picture of Kontsevic
oibelman(2000a) of the collapse of conformal field theories. It makes a striking parallel t
urely mathematical picture of Gromov–Hausdorff collapse. Appendix B is devoted to th
uage of saturatedA`-categories. It is appropriate for the pure categorical definition of the n
f smooth projective variety, and hence works for noncommutative Calabi–Yau manifolds a

I should say that there are many topics within homological mirror symmetry which I d
iscuss in this review. Here are few examples of what is missing:

a) noncommutative periods(Barannikov and Kontsevich, 1997; Barannikov, 1999, 2000),
b) homological mirror symmetry for Fano and general type varieties(Kontsevich, Kapustin

Katzarkov, Seidel),
c) homological mirror symmetry for noncommutative spaces(see Bressler and Soibelm

2002;, Kapustin and Orlov, 2001; Soibelman, 2000), and
d) moduli space of stability structures(Bridgeland, 2002).

I. COMMUTATIVE CALABI–YAU MANIFOLDS

. Calabi–Yau manifolds and their moduli spaces

Definition 1: Let k be a field. A Calabi–Yau manifold over k is a smooth projective vari
aving the trivial canonical bundle KX=∧topTX

p .
Example 1: An Abelian variety over k is a Calabi–Yau manifold.
For the purposes of mirror symmetry the most interesting cases are

a) k=C;
b) k is a complete non-Archimedean local field, for example,k=Cssqdd.

In the case(a) of the field of complex numbers one can study Calabi–Yau manifolds by m
f differential geometry due to the following theorem of Yau.

Theorem 1: Let X be a compact complex manifold, dimCX=n, with the trivial canonica
undle. Let gX be a Kähler metric on X andvX the corresponding Kähler form. There exist
nique Kähler metric gX

CY with the holonomy in SUsnd such that the cohomology classes of
ähler formsvX and vX

CY are the same.
In Yau’s theoremX does not have to be algebraic. The metricgX

CY is calledCalabi–Yau metric.
t has vanishing Ricci curvature, i.e., in local coordinates one hasRiccisgX

CYd=]]̄slogsdetsgij
CYdd

0. One can see thatX admits a holomorphic volume formvolX (trivialization of KX) such that th
edge productvolX∧volX coincides(up to a known scalar factor) with the Riemannian volum

orm given by the Kähler metric. With these properties in mind one can speak even abo
ompact Calabi–Yau manifolds(unless we say otherwise, all complex Calabi–Yau manifolds
e assumed compact).

Formal deformationsof the complex structure ofX are described by the deformation func
efX:ArtinC→Setsfrom the category of Artinian local algebras to the category of sets. Na

or an Artinian local algebraA with the maximal idealm the setDefXsAd consists of isomorphis
lasses of families of Calabi–Yau manifolds overSpecsAd such that the fiber overC
SpecsA/md,SpecsAd is isomorphic toX. It follows from the Bogomolov–Tian–Todorov the

em (see Bogomolov, 1978; Tian, 1987; Todorov, 1989) that this functor is pro-represented by
ompleted local algebra of a point of a complex manifold. In particular, the formal moduli

s unobstructed and smooth. This is true for nonformal deformations as well. In other wor
eformation functor which describes isomorphism classes ofanalytic families of Calabi–Ya

anifolds, such thatX is the fiber over a marked point, is represented by the germ of a complex
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anifold. The structure of the global moduli space is more complicated. In the case of c
rojective Calabi–Yau manifolds the moduli space is an orbifold.

One of the ideas behind homological mirror symmetry is the suggestion to extend this
o the deformations ofX within the class of “noncommutative” Calabi–Yau manifolds. Be
iscussing the details I would like to make few motivating comments.

1) With a complex Calabi–Yau manifoldX which has “ very large volume” physicists sugg
to associate two “theories” denoted byAsXd andBsXd (A-model and B-model). The precis
meaning of these words is not important for us at this time. Roughly speaking, the
AsXd depends on the symplectic structure ofX, while the theoryBsXd depends on th
complex structure ofX. It is believed that for an algebraicX there is a “dual”(or mirror
symmetric) one denoted byX∨, which satisfies the following property:

The theory AsXd is equivalent to the theory BsX∨d, and the theory BsXd is equivalent to th
theory AsX∨d.

Construction of the dual Calabi–Yau manifoldX∨ is known for manyX, but not in genera
The equivalence of the theories is an incarnation of mirror symmetry. Moreover, acc

to Witten (1999) the graded tangent space to the moduli spaceMAsXd of formal deforma
tions of AsXd is naturally isomorphic to the cohomology spaceH•sX,Cd= %nù0H

nsX,Cd,
while the graded tangent space to the moduli spaceMBsXd of formal deformations ofBsXd
is isomorphic toH•sX,Cd= %p,qù0H

psX,∧qTXd. Notice that the former tangent space cont
H2sX,Cd (which is the tangent space to the moduli space of deformations of comple
symplectic structure), while the latter one containsH1sX,TXd (the tangent space to the mod
space of complex structures). ThereforeMAsXd andMBsXd can be treated as “generalize
moduli spaces of the corresponding structures. “Mirror map” identifiesMAsXd with
MBsX∨d, interchanging “stupid” and Hodge filtrations on the cohomology.

2) Mathematically these observations can be(roughly) encoded in the following way(see
Kontsevich, 1994; Kontsevich and Soibelman, 2000a, 2004a). To a “maximally degenerate
family X=sXqdq→0 of complex Calabi–Yau manifolds one associates two “noncommu
spaces” over a non-Archimedean fieldk, oftenk=Cssqdd. Let us denote these spaces byFsXd
andDsXd. The former depends on the symplectic structure of the canonically define(sin-
gular) torus fibration, while the latter depends on the structure of rigid analytic spacek
on the base of this torus fibration. The mirror dual familyX∨=sXq

∨dq→0 defines another pa
of noncommutative spacesFsX∨d and DsX∨d, which are associated with the dual to
fibration. Then the homological mirror conjecture is a statement about the equivalen
noncommutative spaces

FsXd . DsX∨d,

DsXd . FsX∨d.

As we will see below, the noncommutative spacesFsXd andDsXd are described in terms
he so-calledA`-categories, and the above statement claims an equivalence ofA`-categories. Mor
recisely one should take triangulated envelopes of these categories, which are in fact s

`-categories with Serre functor(see below and Kontsevich and Soibelman, 2004b).
Mirror map identifies the moduli spaces of formal deformations ofFsXd and DsX∨d [resp

sXd andFsX∨d], and there is a cohomological description of the tangent spaces to these
paces.

. Maximal degenerations of Calabi–Yau manifolds: Algebro-geometric description

We start with the geometric side of the story following Kontsevich and Soibelman(2000a).
Let Cq

mer=hf =onùn0
anq

nj be the field of germs atq=0 of meromorphic functions in on
omplex variable andXmer be an algebraicn-dimensional Calabi–Yau manifold overCq

mer (i.e.,
mer
mer is a smooth projective manifold overCq with the trivial canonical class:KXmer
=0). We fix
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n algebraic nonvanishing volume elementvolPGsXmer,KXmer
d. The pair sXmer,vold defines a

ne-parameter analytic family of complex Calabi–Yau manifoldssXq,volqd ,0, uqu , r0, for some

0.0.
Let fvgPHDR

2 sXmerd be the cohomology class in the ample cone. Then for everyq, such tha
, uqu , r0, it defines a Kähler classvq onXq. By Yau’s theorem, there exists a unique Calabi–
etric gXq

CY
ªgXq

on Xq with the Kähler classfvqg.
It follows from the resolution of singularities that asq→0, one has the following formula

E
Xq

volq ∧ volq = Csloguqumuqu2ks1 + os1dd

or someCPCp ,kPZ ,0ømøn=dim sXmerd.
Definition 2: We say thatXmer has maximal degeneration at q=0 if in the above formula w

ave m=n.
This definition is equivalent to the algebro-geometric one, given in terms of variatio

odge structures(see, for example, Morrison, 1993). More precisely, the following result hold
Proposition 1 (Kontsevich and Soibelman, 2000a): The Calabi–Yau manifoldXmer has maxi

al degeneration iff for all sufficiently small q there exists a vectorvPHnsXq,Cd such thatsT
Iddn+1v=0 and sT− iddnvÞ0, where T is the monodromy operator.

. Differential-geometric description

The Gromov–Hausdorff metricrGH is a metric on the set of isometry classes of com
etric spaces. We say that two metric spacesM1 andM2 are«-close with respect torGH if there
xists a metric spaceM containing bothM1 andM2 as metric subspaces, such thatM1 belongs to

he «-neighborhood ofM2 and vice versa. ThenrGHsM1,M2d is given by the infimum of such«.
Let us rescale the Calabi–Yau metric:gXq

new=gXq
/diamsXq,gXq

d2. Thus we obtain a on
arameter family of Riemannian manifoldsXq

new=sXq,gXq

newd of diameter 1. Motivated by Gro
ov’s theory of collapsing Riemannian manifolds(see, for example, Cheeger and Colding, 19)
nd some considerations from conformal field theory(see Kontsevich and Soibelman, 2000a) we
roposed the following conjecture.

Conjecture 1 (Gross and Wilson, 2000; Kontsevich and Soibelman, 2000a): IfXmer has maxi

al degeneration at q=0, then there exists a limitsȲ,gȲd of Xq
new in the Gromov–Hausdorff metr

uch that the following hold.

a) sȲ,gȲd is a compact metric space, which contains a smooth oriented Riemannian m
sY,gYd of dimension n=dimsXmerd as a dense open metric subspace. The Hausdorff d

sion of Ysing=Ȳ\Y is less than or equal to n−2.
b) Y carries an integral affine structure, i.e., a torsion-free flat connection¹ with the holonom

contained in SLsn,Zd.
c) The metric gY has a potential, i.e., it is locally given in affine coordinates by a symm

matrix sgijd=s]2K /]xi ]xjd, where K is a smooth function (defined modulo adding an a
function, i.e., the sum of a linear function and a constant).

d) In affine coordinates the metric volume element is constant, i.e., detsgijd=dets]2K /]xi ]xjd
=const(the latter is called real Monge–Ampère equation).

Example 2: Let Eq=Cp /qZ ,q→0 be a maximally degenerate family of elliptic curves. T

=Y=R /2pZ. Similarly, in the case of complex Abelian varieties of dimension n one gets=̄Y

flat n-dimensional torus. In the case of K3 surfaces Ȳ.S2, while Y is obtained from the sphe
2
 by removing 24 points.
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. Monge–Ampère manifolds and geometric mirror symmetry

In this section we propose mathematical language for the geometric counterpart of
ymmetry, which is understood as a duality of torus fibrations over the same base. We st
xiomatization of the Gromov–Hausdorff limits of Calabi–Yau manifolds discussed above[more
n this “real” analog of Kähler geometry see in Kontsevich and Soibelman(2000a)].

Definition 3: A Monge–Ampère manifold is a triplesY,g, ¹ d, wheresY,gd is a smooth Rie
annian manifold with the metric g, and ¹ is a torsion-free flat connection on TY such that w

ave the following.

a) ¹ defines an affine structure on Y.
b) Locally in affine coordinatessx1, . . . ,xnd the matrix ssgijdd of g is given by ssgijdd

=ss]2K /]xi ]xjdd for some smooth real-valued function K.
c) The Monge–Ampère equation detss]2K /]xi ]xjdd=const issatisfied.

Monge–Ampère manifolds were studied(under a different name) in Cheng and Yau(1982)
here it was proved that ifY is compact, then it is a finite cover of a torus.

Proposition 2: For a given Monge–Ampère manifoldsY,gY,¹Yd there is a canonically define
ual Monge–Ampère manifoldsY∨ ,gY

∨ ,¹Y
∨d such thatsY,gYd is identified withsY∨ ,gY

∨d as Riemann
an manifolds, and the local systemsTY∨ ,¹Y

∨d is naturally isomorphic to the local system dua
TY,¹Yd.

Corollary 1: If ¹Y defines an integral affine structure on Y (i.e., the holonomy of¹Y belongs
o GLsn,Zd), then¹Y

∨ defines an integral affine structure on Y∨. As the dual covariant lattice on
akes the latticesTY

Zd∨, which is dual to TY
Z with respect to the metric gY.

Let us callintegral Monge–Ampère manifolds with integral affine structure. Now we can
he geometric counterpart of the mirror symmetry conjecture.

Conjecture 2: Let X and X∨ be dual families of Calabi–Yau manifolds, which have max
egeneration at q=0. Let M=sY,gY,¹Yd and M8=sY8 ,gY8 ,¹8d be smooth parts of their Gromo
ausdorff limits (see Conjecture 1). Then M and M8 are dual integral Monge–Ampère manifol.

Reversing the logic, one can use our conjectures as a mathematical definition of dual
f Calabi–Yau manifolds.

Remark 1: If M =sY,gY,¹Y,TY
Zd is an integral Monge–Ampère manifold then the total spac

he torus fibration p:TY/TY
Z →Y carries a canonical structure of the complex Calabi–Yau man

noncompact if Y is noncompact). It is easy to see that passing from M to M∨ amounts to th
assing from the torus fibration p to the dual torus fibration p∨ :TY

p / sTY
Zd∨→Y. The dual potentia

unction K∨ is the Legendre transform (in affine coordinates) of the potential function K. This
icture should be compared with Strominger et al. (1996), where the special Lagrangian tor
bration structure of Calabi–Yau manifolds near the “large complex structure limit” was
ested. Our point of view is different in the following sense: we suggest to work with the l
onge–Ampère manifolds and their singularities. All the quantities appearing in the mirror
etry story (like the number of rational curves on a Calabi–Yau manifold) should be comp

erms of the limiting data.

II. A`-CATEGORIES AND NONCOMMUTATIVE SCHEMES

Here we only outline the geometric languageA`-categories. See Kontsevich and Soibelm
2004b) for the details.

Let k be a commutative unital ring andC be ak-linear Abelian tensor category. The categ
f (commutative) affine schemesAf fC is by definition the one opposite to the categoryCommC of
ommutative unital algebras inC. Similarly, the category of noncommutative affine schemesC
notationNAf fC) is the category opposite to the category of associative unital algebrasAlgC. For
n algebraAPObsAlgCd the corresponding noncommutative affine scheme is denoted bySpecsAd.
very affine scheme can be considered as a noncommutative affine scheme, so we use
otationSpecsAd for a commutative algebraA. To save the space we will discuss below ma

oncommutative affine schemes. The reader can make obvious changes for commutative affine
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chemes(see also Kontsevich and Soibelman, 2004a, 2004b). Morphisms of noncommutativ
chemes correspond to homomorphisms of unital algebras. Our main example from now
e the tensor categoryC=Vectk

Z, wherek is a field of characteristic zero[here we have the Quille
ule of signs:aibj =s−1di jbjai, wherei and j are degrees ofai andbj, respectively]. Noncommu
ative ind-affine schemes by definition correspond to projective systemsssAidiPI ,f jid of unital
lgebras inC, such that the morphismsf ji :Ai →Aj are surjective homomorphisms of unital al
ras. Equivalently, a noncommutative ind-affine scheme is an inductive systemssXidiPI ,c jid of
oncommutative affine scheme, such that the morphismsc ji :Xi →Xj are closed embeddings. Sin
ny counital coalgebraB in Vectk

Z is a union of finite-dimensional counital subcoalgebras, we
ssign toB a noncommutative ind-affine schemeXB.

Example 3: (a) Let V be aZ-graded k-vector space. Then the formal neighborhood of ze
he noncommutative affine space VNC, by definition, corresponds to the cofree tensor coalg
sVd= %nù0V

^n.
(b) Replacing TsVd by SsVd= %nù0S

nsVd (sum of symmetric tensor powers) we arrive at
efinition of the formal neighborhood of zero in the (commutative) affine space V.

This example can be generalized further. Indeed the cofree coalgebraTsVd is the coalgebra o
he quiver with one vertex andN=dimkV loops. LetQ be an arbitrary quiver inVectk

Z with the se
f verticesI. Then the coalgebraBQ of Q gives rise to a noncommutative ind-affine schemeXBQ

.
t contains a noncommutative closed ind-subschemeXI of disjoint points(vertices ofQ), corre-
ponding to the direct sum of trivial coalgebras% Ik. If I is finite, thenXBQ

is smooth in the sen
f Cuntz and Quillen(1995). In general it is an inductive limit of noncommutative smooth af
chemes(we can call them ind-smooth for short). In any case we can speak about vector field

BQ
. A vector field of degreen is a derivation ofBQ of degreen. Clearly vector fields onXBQ

form
differential-graded Lie algebra.

Let now X.XBQ
be an ind-affine scheme corresponding to a quiverQ, and letd be a vecto

eld on XQ of degree +1 which vanishes on the subschemeXI, commutes with the natural mo
hismsX→XI (projection) andXI →X (closed embedding), and satisfies the conditionfd,dg=0.

Definition 4: We say that the pairsX,dd defines a noncommutative differential-graded (dg
hort) ind-manifold with marked points XI.

Equivalently we say thatX is a (nonlinear) small A`-categorywith the set of objectsI.
ssumeQ has only one vertexi and N loops of various degrees. Then the coalgebraBQ is
enerated by aZ-gradedN-dimensional vector spaceA= %mPZAm of loops i → i (degree of th
rivial loop is zero, other degrees are arbitrary). Let Af−1g denote the vector spaceA with the
rading shifted by one:Af−1gn=An−1. Then we say thatAf−1g is anA`-algebra. It is easy to se

hat Taylor coefficients ofd at the marked point define a sequence of linear maps

mn:A
^n → Af2 − ng, n ù 1,

f degreen−2 (higher products) satisfying a system of quadratic equations.
Analogously, a smallA`-categoryA is defined by the set of objectsI, Z-graded spaces

orphismsHomAsX,Yd and a collection of higher composition maps

mn:HomAsX0,X1d ^ ¯ ^ HomAsXn−1,Xnd → HomAsX0,Xndf2 − ng

atisfying a system of quadratic equations(see, for example, Kontsevich and Soibelman, 200).
Therefore anA`-category is a nonlinearA`-category with the choice of affine structure(i.e., a

uiver Q and an isomorphismX.XBQ
).

Remark 2: For any collection of objectssX0,X1, . . . ,Xrd the sequence mn,nù1, defines a
tructure of an À-algebra on%0øi,jørHomAsXi ,Xjd. This À -structure is compatible with inclu
ions of collections of objects. Then one can derive many results about A`-categories from simila
esults about À-algebras.

In the above version ofA`-categories the space of morphismsHomAsM ,Nd is well-defined fo
ny two objectsM and N. Furthermore, for any objectM there is an identity morphismidM
HomAsM ,Md. There are various versions ofA`-categories in which these(or other) conditions
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re weakened[for example, one can work with the identity morphisms which exist on
ohomology H•sHomAsM ,Md ,m1dg. Moreover, there is a version of nonlinearA`-categorie
here I is a (commutative) dg ind-manifold. If we drop the condition that the vector field
anishes at the marked points, we obtain the notions ofgeneralized À-algebra andA`-category
n this case one can have a nontrivial elementm0. See Fukayaet al. (2000) and Kontsevich an
oibelman(2000a, 2004a, 2004b) for some details. For simplicity of the exposition we w
isregard all these difficulties below.

For two noncommutative dg ind-manifoldsX andY which correspond to theA`-categoriesA
ndB, respectively, one can define a noncommutative dg ind-manifoldMapssX,Yd of morphisms
→Y. Algebraically it corresponds to theA`-category ofA`-functors FunctsA ,Bd. There are
xplicit formulas for theA`-structure onFunctsA ,Bd given in terms of the summation over the
f trees(see Kontsevich and Soibelman, 2004b).

In the next two sections we are going outline constructions ofFsXd and DsXd (see the

ntroduction) in the simplest case whenȲ=Y (i.e., the torus fibration is nonsingular). The con
truction in the general case is not known.

V. NONCOMMUTATIVE SPACE D„X…
Let sY,gY,¹Y,TY

Zd be an integral Monge–Ampère manifold of dimensionn. The constructio
onsists of several steps[see Kontsevich and Soibelman(2000a) for the details].

1) Using the affine structure onY one defines a sheafOY of algebras over the fieldC« :
=hoiù0aie

−li/« uai PC ,li PR ,li → +`j. For an open chartU,Rn the algebraORnsUd is a
vector space overC« consisting of formal Laurent series

f = o
k1,. . .,knPZn

ak1¯kn
z1

k1
¯ zn

kn,

where z1, . . . ,zn are formal variables,ak1¯kn
PC«, and for anysy1, . . . ,yndPU we have

limoiukiu→`svsak1¯kn
d+oikiyid= +`. Here we denote byv :C«→Rø h+`j a snondiscreted

valuation such thatvsol1,l2,¯
cie

−li/«d=l1 if c1Þ0 andvs0d= +`.

2) The sheafOY admits a resolutionV̂Y
p by a soft sheaf of dg-algebras. Locally, for a small o

U,Y, sections of V̂p
Y are given by sumsa=oi1,. . .,in

ci1¯in
z1

i1
¯zn

in where ci1¯in
=o jcj ,i1¯in

e−l j ,i1¯in
/« ,cj ,i1¯in

PVpsUd (de Rham differential forms), with the same conve
gence conditions as for the sheafOY. Differential is given by the de Rham differential act
on the coefficientscj ,i1¯in

.
3) We define a dg-categoryDsXd such as follows. Objects are finite complexes of locally

OY-modules of finite rank. For any two such complexesE1 andE2 we define the space
morphisms as

HomsE1,E2d = GsY,HomOY
sE1,E2d^̂ OY

V̂p
Yd,

where we use the completed tensor product on the RHS. Differential and grading

spaces of morphisms are induced by those onE1,E2,V̂Y
p .

According to the general philosophy of the previous section we interpret this dg-catego
oncommutative dg ind-manifold. Notice that in general we have to work with the
rchimedean fieldC« rather than withCssqdd (the latter can be used under some integr
onditions onX).

Remark 3: The above discussion indicates the relevance of non-Archimedean geom
irror symmetry. There are too many non-Archimedean aspects of Kähler geometry in
nd mirror symmetry in particular to discuss them here. We refer the reader to Kontsevi
oibelman (2000a, 2004c), and Kontsevich and Tschinkel (2004) for some of them. Founda
acts about non-Archimedean geometry and Berkovich spectra can be found in Berkovich (1990).
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. NONCOMMUTATIVE SPACE F„X…
We will sketch main steps in the definition of theA`-categoryFsXd, assuming that the baseY

f the torus fibrationp:TY/TY
Z →Y has dimension greater than one.

The total spaceV of the torus fibration carries canonical symplectic formv, canonical metri

V (it is invariant with respect to the natural torus action onV) and a complex structureJ
ompatible withv andgV. Moreover,V carries a Calabi–Yau manifold structure.

Let L,V be a Lagrangian submanifold such thatpuL :L→Y is an unramified covering.
(1) Objects of theA`-categoryFsVd (the Fukaya category ofV) are pairssL ,rd whereL is a

agrangian submanifold as above(let us call it admissible) andr is a local system onL. We will
all L the support of the objectsL ,rd.

(2) For two objects with transversal supports we define the space of morphisms s
ollows:

HomFsVdssL1,r1d,sL2,r2ddªs%xPL1ùL2
Homsr1x,r2xdd ^ C«.

There is a Z-grading of the space of morphisms given in terms of Maslov in
eg:L1ùL2→Z.

(3) The A`-structure is defined by means of a collection of maps(higher compositions) of
raded vector spaces

mk
FsVd:^0øiøk−1HomFsVdssLi,rid,sLi+1,ri+1dd → HomFsVdssL0,r0d,sLk,rkddf2 − kg,

herekù1 and the sequencesL0, . . . ,Lkd corresponds to a “transversal” sequence of objec
sVd.

In the case, when all local systems are trivial of rank one, the mapmk is defined such a
ollows. LetD be a standard discD=hzPC u uzu ø1j. Let us fix a sequencesL0, . . . ,Lkd of supports
f objects with pairwise transversal intersections, intersection pointsxi PLi ùLi+1,0ø i øk−1,

kPL0ùLk, andbPp2
freesV,ø0øiøkLid. We denote byMsL0, . . . ,Lk;x0, . . . ,xk;bd the set of col

ections sy0, . . . ,yk;cd, whereyi ,0ø i øk are cyclically ordered pairwise distinct points on
oundary]D, and c :D→ sV,Jd a pseudo-holomorphic map such thatcsyid=xi ,csyiyi+1d,Li ,0
i øk,y0=yk, fcg=b. Hereyiyi+1 denotes the arc betweenyi andyi+1. There is a natural action

PSLs2,Rd on MsL0, . . . ,Lk;x0, . . . ,xk;bd arising from the holomorphic action onD by fractiona
inear transformations. The action is free except for the casek=1,x0=x1,b=0, which is no
elevant for our purposes.

Let xi PLi ùLi+1,0ø i øk−1,xkPL0ùLk satisfy the conditiondeg xk=o0øiøk−1deg xi +2−k.
hen the matrix element smksx0,x1, . . . ,xk−1d ,xkd is given by the formul
mksx0,x1, . . . ,xk−1d ,xkd=o±qsb,fvgd, where q=exps−1/«d, and the sum is taken over

PSLs2,Rd-orbits of points inMsL0, . . . ,Lk;x0, . . . ,xk;bd. Signs are derived from orientations
ertain cycles in the moduli space

M = MsL0, . . . ,Lk;x0, . . . ,xk;bd/PSLs2,Rd.

he precise definition depends on some other choices[see Fukayaet al. (2000) and Kontsevic
nd Soibelman(2000a) for more details].

(4) The dilation of the latticeTY
Z by a parameterh such thatsy,vd° sy,hvd ,yPY,vPTyY,

ives rise to a family of complex structuresJh on V (and the corresponding family of holomorp
olume formsVh). In this way one obtains a family ofA`-categories with the same objects
orphisms asFsVd, but with varying higher compositionsmn

h ,nù1. Moreover, one can prove th
here exist limitsmn

`=limh→0mn
h and they give rise to anA`-category, which we denote byFsXd

nd call theFukaya-Oh category. See Kontsevich and Soibelman(2000a), where its relation to th
orse theory is discussed and an important conjecture from Fukaya and Oh(1998) was proved
urthermore, it was used in Kontsevich and Soibelman(2000a) for the proof of a version o
omological mirror conjecture for Abelian varieties.
Remark 4: In the above sketch we skip several important points. In particular, there is an
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bvious problem with identity morphisms and nontransversal Lagrangian supports of o
lso, it is possible to have a Lagrangian submanifold L,V and a pseudo-holomorphic disc
ith the boundary]D,L. This creates the so-called“m0-problem” in the definition of the Fukay
ategory, and requires a generalization of the notion of A`-category we mentioned before.
gain refer the reader to Fukaya et al. (2000) and Kontsevich and Soibelman (2000a, 2004a,
004b) for the discussion on how to overcome these (and some other) difficulties in the d
f the Fukaya category.

I. DEFORMATION THEORY OF A`-CATEGORIES

Deformation theory ofFsXd and DsXd is a special case of the deformation theory

`-categories(or, more generally, noncommutative dg ind-manifolds). We are going to illustrate
n the case of the category with one object, since the general case is similar(see Kontsevich, 199
ontsevich and Soibelman, 2004a, 2004b).

Let A be a Z-graded vector space over the fieldk of characteristic zero. We denote
•sA,Ad=pnù0 HomVectk

ZsA^n,Ad the graded space ofHochschild cochains. Shifting the gradin
y 1 we can introduce a graded Lie algebra structure onC•sA,Adf1g=pnù0sC•sA,Adf1gdn. The Lie
racket is called theGerstenhaber bracket. It has the following well-known geometric interpre

ion. Consider the formal neighborhood of zero in the noncommutative affine spaceAf1g. Then
•sA,Adf1g is the graded Lie algebra of vector fields on this neighborhood. It contains the
ie subalgebraC+

• sA,Adf1g of vector fields preserving zero. Algebraically these graded Lie
ras are interpreted as derivations of the corresponding tensor coalgebras generated byAf1g. To
ave a structure of anA`-algebra onA is the same as to have an elementmPC+

• sA,Adf1g of
egree +1 such thatfm,mg=0 wherefx,yg denotes the Gerstenhaber bracket ofx andy. To have
structure of anA`-categoryA with one objectX such thatHomAsX,Xd=A means the same thi

ut this timemPC•sA,Adf1g. In the latter case we can have a nontrivialm0PHomVectk
Zsk,Ad. In

ither casem gives rise to a structure of differential-graded Lie algebra(DGLA for short)
n C•sA,Adf1g. In the case of the category with one object it is the structure of DGL
•sA,Adf1g, with the differentiald=dm=fm, •g. The pairsC•sA,Adf1g ,dd is called theHochschild
omplexof the category(the terminology is slightly abused because we care not only
tructure of a complex, but also about the Lie bracket). The cohomology of this complex is call
he Hochschild cohomologyand is denoted byHH•sA,Ad. The pairsC+

• sA,Adf1g ,dd is called the
runcatedHochschild complex. The same terminology is applied to theA`-algebraA.

Definition 5: The deformation functor associated with the DGLAsC•sA,Adf1g ,dd is the functo
efA:Artink→Sets from thecategory of Artinian local k-algebras to sets, such that for an Art

an algebra R with the maximal ideal mR the set DefAsRd consists of classes of equivalence
olutionsgP sCsA,Adf1gd1 ^ mR to the Maurer–Cartan equation

dg + 1
2fg,gg = 0,

odulo the following action of the groupexpssCsA,Adf1gd0 ^ mRd:

g ° ggg−1 − dg ·g−1.

Geometrically, the deformation functor can be interpreted in the following way. Lg
C•sA,Adf1g be our DGLA. Then the cocommutative cofree coalgebraCsgf1gd= %nù0S

nsgf1gd
ives rise to a(commutative) ind-affine scheme(in fact, formal manifold) with the marked poin
ero. The differentiald gives rise to a vector fielddgf1g in the formal neighborhood of zero. High
ompositions(products) mn are Taylor coefficients of the vector fielddgf1g at zero. In particular,

0Þ0, then the vector field does not vanish at zero. The Maurer–Cartan equation singles
ormal subschemeZ of zeros of the vector field[more precisely it givesR-pointsZsRd for every
PArtink]. Suppose 0PZsRd. Then for any local Artinian ringR we obtain anA`-categoryAsRd

uch that the set of objectsObsAsRdd is ZsRd and theA`-structure defined bym+g, wherem is the
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`-structure onA and g is a solution to the Maurer–Cartan equation. Therefore the DGg
C•sA,Adf1g gives rise to the deformation functor describing the formal deformation theory

`-category with one object.
The ind-affine schemeZ admits a(singular) foliation: two pointsg andg8 of ZsRd belong to

he same leaf of the foliation iff they can be joined by the curve which is tangent to the distri
dgf1g , •g (see Kontsevich, 1997; Kontsevich and Soibelman, 2004a, 2000b). This constructio
ives rise to a functor isomorphic toDefA.

The same considerations apply to generalA`-categories. Deformation theory of anA`-algebra
tructure on a fixed graded vector spaceA is controlled by the DGLAg+=C+

• sA,Adf1g.
The notion of quasi-isomorphismof noncommutative(or commutative) dg ind-manifolds

orresponds to the notion of quasi-isomorphism of the corresponding differential-graded
ras. The following result explains the role of this notion.

Theorem 2 (Kontsevich, 1997; Kontsevich and Soibelman, 2004a):Quasi-isomorphic d
nd-manifolds with marked points give rise to isomorphic deformation functors.

In other words, the corresponding deformation theories are equivalent. If a dg ind-m
as an affine structure at the marked point(i.e., if an explicit isomorphism of coalgebrasB
SsVf1gd is chosen), thenV is called anL`-algebra(or homotopy Lie algebra). Often the abov

otion of quasi-isomorphism refers directly toV. If V is quasi-isomorphic to anL`-algebra with
he trivial structure, then the deformation functor is especially simple(since the Maurer–Carta
quation is empty). In this case the formal moduli space is smooth(example: formal moduli spa
f deformations of the complex structure on a Calabi–Yau manifold).

The structure of the tangent space to the moduli space of deformations of anA`-category is
escribed in the following two results(see Kontsevich and Soibelman, 2004b).

Theorem 3: Let X be a noncommutative dg ind-manifold corresponding to an A`-algebra A,
nd CC•sA,AdªCC•sX,Xd be the Hochschild cochain complex. Then one has the following q

somorphism of complexes

CC•sX,Xdf1g . TfidXgsMapssX,Xdd,

here TfidXg denotes the tangent complex at the identity map.
Corollary 2: Let A be an À -category with finite-dimensional Hochschild cohomology. T

HH•sA,Ad . Ext•sIdA,IdAd,

here the RHS denotes the cohomology of the tangent complex at the identity functorA [we
onsider the identity functor as the identity map idXPMapssX,Xd, where X is the noncommutat
g ind-manifold corresponding to the A`-categoryFunctsA ,Ad].

Let me demonstrate how these results can be applied to homological mirror symmetry

he assumptionȲ=Y one can compute the Hochschild cohomology of theA`-categoriesDsXd and
sXd in terms of the torus fibrationp:TY/TY

Z →Y. The total spaceV of the torus fibration is
ymplectic manifold. Then(see Kontsevich, 1994) HH•sFsXd ,FsXdd.ExtFsV3Vd

• sD , D d, where
,V3V is the diagonal, considered as a Lagrangian submanifold, equipped with the trivia
ystem. SimilarlyHH•sDsXd ,DsXdd.ExtDsV3Vd

• sOD ,ODd. In both cases the cohomology grou
an be computed(see Kontsevich, 1994) and coincide with the total cohomology ofV, graded a
n the Introduction. The Fukaya category gives rise to the quantum cohomology product onH•sXd.
he equivalence ofA`-categoriesFsXd and DsX∨d implies the existence of the mirror map

ween the moduli spaces of their formal deformations. More explicitly, the equivalenceFsXd
DsX∨d is given by a combination of the Legendre transform alongY with the non-Archimedea

nalog of the Fourier–Mukai transform along fibers of the torus fibration(see Kontsevich an
oibelman, 2000a).

Remark 5: The À -category FsXd is a “generic fiber” of the one-parameter deformation of
trivial” A `-category FtrivsXd. Objects and morphisms of FtrivsXd are the same as for FsXd. All

FtrivsXd
ompositions mn ,nù0, are equal to zero. This observation follows from the fact that FsXd
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an be actually defined over the ringC«
+,C« consisting of formal series with all non-negat

i. Moreover, all higher compositions mn are given by formal series which start w
xps−l /«d ,l.0. Hence they vanish modulo the ideal J consisting of such series (ass
ertain integrality conditions we have a formal family overCffqgg, and all mn vanish modul
Cffqgg).

II. SATURATED A`-CATEGORIES AND NONCOMMUTATIVE CALABI–YAU MANIFOLDS

For an A`-categoryA there exists itstriangulated envelopeAtr, which is a triangulated

`-category[see Appendix B and Kontsevich and Soibelman(2004b)]. The category of com
lexes is anA`-category, and it is triangulated. TheA`-categoryDsXd=DsXdtr is triangulated, bu
sXd is not. Replacing the latter by its triangulated envelope(called the category of twiste
omplexes) one can formulate the homological mirror conjecture as an equivalenceFsXdtr

DsX∨dtr. The dg-categoryDsXd is anA`-version of the derived category of coherent sheave

he rigid analytic spacesY,OYd (remember that we are discussing the caseȲ=Y). Both categorie
sXdtr and DsXd possess the Serre duality: for any two objectsM and N one has a functori

somorphism HomsM ,Ndp.HomsM ,Nf2dimR Ygd (see Kontsevich, 1994). Furthermore, th

`-categoryDsXd is saturated[see Appendix B and Kontsevich and Soibelman(2004b)]. Homo-
ogical mirror symmetry predicts an equivalence of triangulatedA`-categories compatible with t
ualities. The last observation can be used for the following approach to the proof of homo
irror conjecture.

1) Construct a collection of objectssMidiPI in FsXd which generateFsXdtr.
2) Construct the mirror functorw :FsXd→DsX∨d.
3) Prove that the minimal triangulated subcategory ofDsX∨d, which contains allwsMid, con-

tains also the generator ofDsX∨d. Thenw provides the desire equivalence.

For example, one can take assMydyPY the set of Lagrangian tori which are fibers of the to
bration p:TY/TY

Z →Y. Then wsMyd is a torsion sheaf. Such sheaves generate theA`-category
sXd. This idea can be used even in the case of a singular torus fibration.

Motivated by all that, one can try to extend homological mirror symmetry to the wor
oncommutative spaces. In particular, one needs to define a noncommutative analog of
au manifold. Recall[see Appendix B and Kontsevich and Soibelman(2004b)] that if A is a

riangulatedA`-category, then theSerre functoris anA`-autoequivalenceS:A→A of triangulated

`-categories, such that for any two objectsM ,N one has a functorial isomorphism

HomAsM,Ndp . HomAsN,SsMdd.

It is well-known that ifX is a smooth projective variety over a fieldk andA=DbsXd is the
ounded derived category of coherent sheaves(or ratherA is theA`-version ofDbsXd, constructe
ia complexes of perfect sheaves), thenSsF•d=F• ^ KXfdim Xg is a Serre functor. IfX is a Calabi–
au manifold, then the canonical sheafKX is trivial, and the Serre functor reduces to the shif

he dimension. This motivates the following definition.
Definition 6: (a) A noncommutative Calabi–Yau manifold of dimension d (a.k.a. Calab

ategory) is a saturated À-categoryA which carries a Serre functor S such that S.fdg ,d
Z+.

(b) A fractional noncommutative Calabi–Yau manifold of dimension d is defined as in (a
he last condition being replaced by Sm.fdmg for dPZ+ and some integer mù1.

The notion of fractional Calabi–Yau manifold can be useful even in the commutative
ractional Calabi–Yau manifolds can appear as derived categories of coherent sheaves

olds or derived categories of representations of oriented quivers. Hopefully the homo
irror symmetry is a fact about the(properly defined) moduli space(stack) of noncommutativ
alabi–Yau manifolds. The reader can think that “commutative” points of this moduli spac(i.e.,
rdinary Calabi–Yau manifolds) are similar to the commutative algebras as points in the m

pace of all associative(or A` algebras) (see Kontsevich, 1997; Kontsevich and Soibelman,
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000b). This analogy implies that the tangent space to the moduli space ofA`-deformations of
commutative” Calabi–Yau manifold should carry a structure of 2-algebra[Deligne’s conjecture
ee Kontsevich and Soibelman(2000b)].

III. DEFORMATION THEORY OF A`-CATEGORIES WITH SERRE DUALITY

Let X be a noncommutative complex dg ind-manifold corresponding to a smallA`-category
. The moduli space of formal deformations ofA is a (commutative) dg ind-manifoldMX with

he marked pointfXgPMX. The tangent spaceTfXgMX is isomorphic to the Hochschild cohom
gy (Corollary 2): HH•sA ,Ad. % iù0ExtFunct

i sIdA ,IdAd, whereFunct=FunctsA ,Ad denotes th

`-category ofA`-functors. It turns out that ifA possesses the Serre duality(in particular if X is
noncommutative Calabi–Yau manifold), then one can say more. We are going to sketch the

dea below in the case of anA`-algebraA with a nondegenerate trace. We skip the definition
race in theA`-case. The reader can think ofA as an associative algebra. In this case the defin
f a trace is obvious. LetMA,trace denote the moduli space of deformations ofA as anA`-algebra
ith a trace, whileMA denotes the moduli space of its deformations as anA`-algebra. There
atural(forgetful) morphism of dg ind-manifolds with marked points,f :MA,trace→MA. It is easy

o see thatTfAgMA,trace.HC•sAd.HC•sAd, whereHC• andHC• denotes the cyclic homology a
ohomology, respectively(they can be identified by means of the trace). It is well-known tha
C•sAd is a module overHC•sCd.H•sCP`d.Cfug. For the periodic cyclic cohomologyHP•sAd
ne hasHP•sAd.HC•sAd^HC•sCdC. Hence we have a family of vector spaces over the lineC. The
ber overuÞ0 is isomorphic toHP•sAd, and the fiber overu=0 is isomorphic to the Hochsch
ohomology HH•sA,Ad. Then for any uÞ0 we have a linear mapHC•sAd=TfAgMA,trace

HP•sAd, i.e., to a one-forma on MA,trace with values inHP•sAd.
Conjecture 3: The one-forma is closed.
If the conjecture is true, then locallya=dgu for some functiongu. This gives us a ma

u:MA,trace→HP•sAd.HP•sAd which is defined up to a constant.
Conjecture 4: This map gives rise to an embedding ofMA,trace in the affine space, with th

nderlying vector space being the space of sections of a vector bundle onC with the fiber ove
Þ0 isomorphic to HP•sAd.

Corollary 3: There is a family of dg ind-manifoldssMA
uduPC such thatMA

u=0.MA andMA
uÞ0

arries an affine structure with the pole of first order at u=0.
The grading on the tangent space TfAgMA.HH•sA,Ad arises as the limit of filtrations on th

angent spaces toMA
u ,uÞ0.

It is natural to expect that the mirror functor extends to an isomorphism of the one-par
amilies of dg ind-manifoldsMA

u, constructed forFsXd andDsX∨d. It gives not only an isomo
hism of moduli spaces atu=0 [i.e., equivalences ofA`-categoriesFsXd and DsX∨d and the
oduli spaces of their formal deformations] but also identifies the corresponding Hodge struct
rising from the filtrations on the tangent space toMA

u ,uÞ0 (see Barannikov, 1999), Sec. V
here the “holomorphic” side of the story was considered).
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PPENDIX A: MODULI SPACE OF CONFORMAL FIELD THEORIES

It was first suggested in Kontsevich and Soibelman(2000a) that mirror symmetry should b
reated in the framework of collapsing conformal field theories, thus making yet another
oncommutative geometry. Here we recall very briefly the data of CFT.

Unitary conformal field theory(abbreviated by CFT below) is well-defined mathematically.
s described by the following data:

1) A real numbercù0 called central charge.
2) A bi-graded pre-Hilbert space of states H= %p,qPRù0

Hp,q,p−qPZ such tha
dims%p+qøEHp,qd is finite for everyEPRù0. Equivalently, there is an action of the Lie gro
Cp on H, so thatzPCp acts onHp,q aszpz̄q: =szz̄dpz̄q−p.

3) An action of the product of Virasoro and anti-Virasoro Lie algebrasVir 3Vir (with the sam

central chargec) on H, so that the spaceHp,q is an eigenspace of the generatorL0 (resp.L̄0)
with the eigenvaluep (resp.q).

4) The spaceH carries some additional algebraic structures derived from the operator p

expansion(OPE). The OPE is described by a linear mapH ^ H→H^̂Chz, z̄j. HereChz, z̄j is
the topological ring of formal power seriesf =op,q cp,qz

pz̄q wherecp,qPC ,p,q→ +` ,p,q
PR ,p−qPZ. The OPE satisfies a list of axioms[see Gawedzki(2000) for the details].

For a given CFT one can consider its group of symmetries(i.e., the group of automorphism
of the spaceH= %p,qH

p,q preserving all the structures). Conjecturally the group of symmetries i
ompact Lie group of dimension less than or equal todim H1,0.

Let us fix real numbersc0ù0, Emin.0, and consider the moduli spaceMcøc0

Emin of all irreduc-
ble CFTs with the central chargecøc0 and

minhp + q . 0uHp,q Þ 0j ù Emin.

t is expected thatMcøc0

Emin is a compact real analytic stack of finite local dimension. The dimen
f the base of the minimal versal deformation of a given CFT is less than or equal todim H1,1. We
efineMcøc0

=øEmin.0Mcøc0

Emin . It is natural to compactify this stack by adding boundary com
ents corresponding to certain asymptotic degenerations of the theories withEmin→0. Conjectur

lly, the compactified space is a compact stackM̄cøc0
. We will loosely use the word “spac

nstead of the word “stack.”
Remark 6: Mirror symmetry is related to N=2 superconformal field theories (SCFTs). Ther

version of the above data and axioms for SCFT. In that case each Hp,q is a Hermitian supe
ector space. There is an action of the super extension of the product of Virasoro an
irasoro algebra on H. We will not distinguish between CFTs and SCFTs, because except fo
inor details, main conclusions are true in both cases. The N=2 analog of the compactifie

oduli space will be denoted byM̄cøc0

N=2 .
Physicists believe that to a Calabi–Yau manifoldX of “large volume” one can assign anN

2 superconformal field theory, denoted bySCFT(X). The construction assumes some o
hoices[like the so-calledB-field, which can be thought of as an element ofH2sX,R /Zd]. Calabi–
au manifoldsX andX∨ are called dual ifSCFTsXd is equivalent toSCFTsX∨d. One can think o
CFTsXd as the “noncommutative extension” ofX. Central charge plays a role of the dimens

ompactified moduli spaceM̄cøc0

N=2 contains the moduli space of Calabi–Yau manifolds of
xed dimension as a boundary stratum. In other words, targets for sigma models can be th
s “commutative degenerations at infinity” of the noncommutative spaces.

Observation thatSCFTsXd does not determine the underlying Calabi–Yau manifold giv
triking parallel to the fact that the derived category of coherent sheaves of a projective
oes not determine it up to an isomorphism ifKX is trivial [see Bondal and Orlov(2002) about the
hilosophy of replacing a projective variety by the derived category of coherent sheaves].
he importance of the derived categories in homological mirror symmetry was recogni

ontsevich at the early stage of his program(see Kontsevich, 1994).
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PPENDIX B: TRIANGULATED AND SATURATED A`-CATEGORIES

The material of this section is largely borrowed from Kontsevich and Soibelman(2004b).
First we will define pairs ofA`-categories(in fact dg-categories) C1

sid ,C2
sid ,1ø i ø5.

1) The categoryC1
s1d is the empty category with no objects.

The categoryC2
s1d has one objectF such thatHomsF ,Fd=0.

2) The categoryC1
s2d is anA`-category with two objectsE1,E2 such thatHomsEi ,Ejd=0 for i

Þ j , andHomsEi ,Eid=k for all i , j .
The categoryC2

s2d has three objectsF1,F2,F such thatHomsFi ,Fjd.HomsEi ,Ejd and
HomsF ,F1d=HomsF ,F2d=HomsF1,Fd=HomsF2,Fd=k,HomsF ,Fd=k% k.

3) The categoryC1
s3d has one objectE1 such thatHomsE1,E1d=k.

The categoryC2
s3d has three objectsF0,F1,F−1 such thatHomsFi ,Fjd=kfi − jg for all i , j .

The differentials on the morphisms are zero in all cases 1–3.
4) The categoryC1

s4d has two objectsE1,E2 such thatHomsE1,E1d=0 and all other spaces
morphisms are isomorphic to the ground fieldk.

Differentials are trivial on the spaces of morphisms.
The categoryC2

s4d has three objectsF1,F2,F such thatHomsFi ,Fjd.HomsEi ,Ejd for all
i , j . We setHomsF1,Fd=k with the trivial differential, andHomsF2,Fd=kf1g % k. Further-
more,HomsF ,F1d=k% kf−1g ,HomsF ,F2d=kf−1g ,HomsF ,Fd=k% k% kf−1g.

Differentials on the spaces of morphisms are defined in such a way thatF=F1f1g % F2

with the differential corresponding to the cone of a morphism. For example,HomsF2,Fd
=kf1g % k carries the differentiald such thatds1kf1gd=1k.

5) The categoryC1
s5d has one objectE1 such thatHomsE1,E1d=kfpg / sp2−pd, wheredeg p=0.

The categoryC2
s5d has two objectsF1,F such thatHomsF1,F1d=kfpg / sp2−pd ,deg p=0 and al

ther spaces of morphisms are equal to the ground fieldk.
The differentials are trivial for these categories.
Obviously there areA`-functors fi :C1

sid→C2
sid ,1ø i ø5, such thatfisEjd=Fj for all j . The

unctorsfi are faithful (i.e., induce embeddings on the zero cohomologies of the comple
orphisms).

Definition 7: We say that an À-categoryA satisfies the Axiom i, 1ø i ø5, if the induced

`-functor fi
p :FunctsC2

sid ,Ad→FunctsC1
sid ,Ad is an equivalence of À-categories of functors.

We say that the categoryA is triangulated if it satisfies Axioms 1–5.
Axioms 1–5 have special names:
Axiom 1: Existence of a zero object of the category.
Axiom 2: Existence of the direct sum of two objects.
Axiom 3: Existence of shifts of an object.
Axiom 4: Existence of a cone of a morphism.
Axiom 5: Splitting of the image of a projector.
Motivations for these names are self-evident from the definitions[for example, in the case

xiom 5 one thinks of the objectF as ofpsF1d].
Similarly to the conventional theory of triangulated and derived categories one can de

otion of a thick subcategory of a triangulatedA`-category. Then one can embed anA`-category

into the A`-category Ĉ=FunctsCop,K d, where K is the category of complexes ofk-vector
paces. The embeddingA`-functor Yo is an A`-analog of the Yoneda functor. Finally,

`-categoryC is triangulated iff its imageYosCd is a thick subcategory ofĈ [see Kontsevich an
oibelman(2004b) for the details].

Let C be a triangulatedA`-category overk.

Definition 8: We say thatC is saturated if the following properties are satisfied:
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1) For any E,FPObsCd and one hasonPZdimsHomsE,Ffngdd,`.
2) The identity functor IdC belongs to the smallest triangulated category generated by the i

of the natural bifunctor CPBifunctssCop,Cd ,FunctsC ,Cdd such that CsX,YdsZd
=HomCsX,Yd ^ Z for any X,Y,ZPObsCd.

Definition 9: The triangulated envelope of a set of objects of a triangulated A`-category is th
inimal triangulated subcategory containing this set of objects.

The triangulated envelope consists of images of projectors of finite extensions of s
iven objects. Then we can say that the condition(2) above means that the identity func
elongs to the triangulated envelope of the setCsObsCdd. Let us denote byStr the triangulate
nvelope of the setS. If S=hFj consists of one objectF, we say thatF is a generatorof the
ategory.

Proposition 3: If C is saturated, then it has a generator.
Example 4: Let A be an À-algebra. The category A−mod of À -modules over A is saturat

ff A is a perfect A-A-bimodule, i.e., as an À-bimodule A is isomorphic to a direct summand o
xtension of the sequencesAop^ Adfnig ,ni PZ (in the category of bimodules).

Example 5 (Kontsevich, 1994, 1997; Seidel, 2000): Let X be a Calabi–Yau manifol, f :X
CP1 be a holomorphic map which has only isolated singularities. Assume that the gener

f f is a Calabi–Yau manifold Y,dimCY.2. Then the triangulated envelope of the Fukaya
gory FsYd is saturated. [Hint: it is generated by the Lagrangian spheres vanishing at the c
oints. Indeed the shift functor E°Ef2g (monodromy at infinity) can be represented as a pro
f reflections at the vanishing spheres. It follows that the identity functor belongs to the tr

ated envelope of the set of vanishing Lagrangian spheres.]
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In recent years a Hopf algebraic structure underlying the process of renormalization
in quantum field theory was found. It led to a Birkhoff factorization for(regular-
ized) Hopf algebra characters, i.e., for Feynman rules. In this work we would like
to show that this Birkhoff factorization finds its natural formulation in terms of a
classicalr-matrix, coming from a Rota–Baxter structure underlying the target space
of the regularized Hopf algebra characters. Working in the rooted tree Hopf alge-
bra, the simple case of the Hopf subalgebra of ladder trees is treated in detail. The
extension to the general case, i.e., the full Hopf algebra of rooted trees or Feynman
graphs, is briefly outlined. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1786680]

. INTRODUCTION

In 1960 the mathematician Glen Baxter1 used a simple algebraic identity to solve an ana
roblem in probability. Later, in 1963 Atkinson2 gave a characterization of this relation in term
irkhoff’s concept of a so-called subdirect(de)composition of algebras. It was Rota who inv

igated this identity more thoroughly and realized its importance within combinatorics and
elds in mathematics.3–5 This identity is called the Rota–Baxter relation and will be introduce
he next section. See Refs. 6,7 for reviews and Refs. 8–12 for recent developments rela
dentity to other fields in mathematics.

The same relation in its Lie algebraic version was later rediscovered under the name(operato
orm of the modified) classical Yang–Baxter(here the relation is named after the physicists Y
nd Baxter) equation within the field of integrable systems.13–15 See Ref. 16 for a nice revie
specially with respect to double Lie algebras and factorization theorems, i.e., the Rie
ilbert problem.

Very recently the Rota–Baxter relation was found to be of crucial importance within the
lgebraic approach of Kreimer, and Connes and Kreimer to renormalization theory of pertu
uantum field theory.17–20It implies a Birkhoff decomposition of Hopf algebra characters with

arget space being a Rota–Baxter algebra. See Ref. 21 for a first introduction.
In this work we aim at a clarification of the link between the last two subjects. We show

he Rota–Baxter relation on the target space of the Hopf algebra characters can be lifted to
lgebra of infinitesimal characters. Atkinson’s theorem then implies an infinitesimal factor
n this space. This factorization in turn implies the Birkhoff decomposition for the Hopf al

)Electronic mail: kurusch@ihes.fr
)Electronic mail: liguo@newark.rutgers.edu
)
Electronic mail: kreimer@ihes.fr and dkreimer@bu.edu
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haracters. We derive its twisted antipode form first found by one of us.17 There it was introduce
n a formal way mainly motivated by its ability to reproduce Zimmermann’s forest form
imensional regularization together with a minimal subtraction scheme furnishes one spec

distinguished by its convenience in applied particle physics) of our approach in which the targ
pace consists of the algebra of Laurent series with finite pole part. Its Rota–Baxter structu
rom the projection onto the pole part of a Laurent series. Here, we will discuss the alg
irkhoff decomposition for general Rota–Baxter mapsR, provided by various choices of ren
alization schemes. Let us mention here that we will restrict our attention later on to the

he Hopf subalgebra of rooted ladder trees. In this manner we can avoid lengthy formulas
ted by the Baker-Campbell-Hausdorff formula, and can treat this case in full technical de

he end it will be outlined though how the general case, i.e., for arbitrary rooted trees or gr
erived. Details and also a mathematically more rigorous presentation will be given in a
oming paper, emphasizing the link to integrable systems.

The paper is structured as follows. In the next section we introduce the notion of a
axter algebra and its main characterization by Atkinson’s theorem. Section III contains th

esults. We briefly introduce the Hopf algebra of rooted trees and the group of characters
ie algebra of infinitesimal characters, with target space of the Rota–Baxter type. The B
ecomposition is then derived. We stress that we obtain Bogoliubov’sR-bar operation from
cratch, as a natural consequence of Atkinson’s theorem. We end this work with a summar
utline describing the case when the Hopf algebra is not cocommutative.

I. ROTA–BAXTER ALGEBRAS AND THE DOUBLE CONSTRUCTION

Let K be a field of characteristic 0. By aK-algebra we mean an associative algebra ovK
hat is not necessarily unital or commutative unless stated otherwise.

Definition 2.1: LetA be a K-algebra with aK-linear map R:A→A. We call A a Rota–
axterK-algebra and R a Rota–Baxter map (of weightuPK) if the operator R holds the follow

ng Rota–Baxter relation of weightuPK:

RsxdRsyd + uRsxyd = R„Rsxdy + xRsyd…, ∀ x,y P A. s1d

Some authors denote this relation in the form RsxdRsyd=R(Rsxdy+xRsyd+lxy), so l=−u.]
We note that a Rota–Baxter relation can be defined onA even when the multiplication onA

s not associative, e.g., whenA is a Lie or pre-Lie algebra. In the caseu=0, the Rota–Baxte
perator is somewhat degenerate(see Atkinson’s theorem below). WhenuÞ0, a simple transfo
ation R→u−1R gives the standard form of Eq.(1). For the rest of the paper we will alwa

ssume the Rota–Baxter map to be of weightu=1, i.e., to be in standard form.

Remark 2.2:(1) If R fulfills relation (1) for u=1 thenR̃ª id−R fulfills the same Rota–Baxt
elation.

(2) The images ofR and id−R give subalgebras inA.
Example 2.3:(1) An important class of Rota–Baxter maps is given by certain projectors

s the case for the minimal subtraction mapRMS in renormalization theory, which is a Rota–Bax
ap of weightu=1 on the algebra of Laurent seriesCve ,e−1g.18 For okù−m

` cke
kPCve ,e−1g,

RMSS o
kù−m

`

cke
kDª o

kù−m

−1

cke
k. s2d

(2) Another nice example10 of a Rota–Baxter map of weightuPK is the operato
:Mn

upsKd→Mn
upsKd defined on the subalgebra ofn3n upper triangular matrice

Mn
upsKd,MnsKd, mapping an elementx to the diagonal matricesMn

upsKd{x°bsxd
d up
MnsKd,Mn sKd:
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„bsxd…i j ª di juo
kùi

n

xik.

(3) The Riemann integral,

Rffgsxd ª E
0

x

fsyddy,

rovides an example for a Rota–Baxter map of weight zero;(1) for u=0 gives the rule fo
ntegration by parts.

We now introduce the modified Rota–Baxter relation. Its Lie algebraic version can be fo
efs. 13,14.

Definition 2.4: LetA be a Rota–Baxter algebra, R its Rota–Baxter map. Define the modi
ota–Baxter map to be the operator B:A→A ,Bª id−2R, and call the corresponding relatio

ulfilled by B:

BsxdBsyd = B„Bsxdy + xBsyd… − xy, ∀ x,y P A s3d

the modified Rota–Baxter relation.
Proposition 2.5: In the case of the Rota–Baxter algebraA to be either an associative

pre-Lie K-algebra, the (modified) Rota–Baxter relation naturally extends to the Lie algebrLA
ith bracketfx,ygªxy−yx, ∀x,yPA:

fRsxd,Rsydg + Rsfx,ygd = R„fRsxd,yg + fx,Rsydg…, s4d

fBsxd,Bsydg = B„fBsxd,yg + fx,Bsydg… − fx,yg. s5d

The proof of this follows from a simple calculation. The relations(4) and(5) are well-known
as the(operator form of the) classical Yang–Baxter and modified Yang-Baxter equation.

The following Proposition 2.6 and Theorem 2.9 characterize Rota–Baxter algebras.
Proposition 2.6: LetA be a Rota–Baxter algebra with (modified) Rota–Baxter map RsB= id

−2Rd. Equipped with the new product,

apRbª Rsadb + aRsbd − ab s6d

=−
1

2
„Bsadb + aBsbd…, s7d

is again a Rota–Baxter algebra of the same type, denoted byAR.
The proof of this proposition is immediate by the definition ofpR. We call this new Rota

axter algebraAR the double ofA.
Remark 2.7:(1) It is obvious that Proposition 2.6 implies a whole hierarchy of doublesAR

sid

here,pR=pR
s1d):

AR
s0d

ª A, AR
s1d

ª sA,pRd,…, AR
sid
ª sA,pR

sidd,…,

apR
sidbª U di

dti
U

t=0
es−1/2dtBsades−1/2dtBsbd, a,b P A.

et us callAR
sid the i-th double ofA and the double ofAR

si−1d.
(2) The Rota–Baxter map becomes an algebra homomorphism betweenAR

sid and AR
si−1d , i

N:

Rsapsidbd = Rsadpsi−1dRsbd.
R R
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(3) For the Rota–Baxter mapR̃ª id−R, we have

R̃sapR
sidbd = − R̃sadpR

si−1dR̃sbd.

The last equation can be written asR̂ª−R̃,R̂sapR
sidbd=R̂sadpR

si−1dR̂sbd. As a side remark w
hould mention that the notion of the double ofA for associative and nonassociative algebras
e found in Ref. 14.

A relation closely related to the Rota–Baxter relation(1) is

NsxdNsyd + N2sxyd = N„Nsxdy + xNsyd…, x,y P A. s8d

he mapN might be called an associative Nijenhuis operator or just Nijenhuis map for sho28 In
his setting “associative” refers to the relation(8) to distinguish it clearly from its Lie algebra
ersion:29,30

fNsxd,Nsydg + N2sfx,ygd = N„fNsxd,yg + fx,Nsydg…. s9d

s in the case of the Rota–Baxter relation, a Nijenhuis map on aK-algebraA also gives
ijenhuis map for the associated Lie algebraLAª sA ,f−,−gd ,f−,−g being the commutator. Als
imilar to the case of the Rota–Baxter relation the associative Nijenhuis identity implies a
hy of algebra products. We will not go further into details with respect to this relation.

Proposition 2.8: LetA be a commutative, associative Rota–Baxter algebra. For nPN ,x
A we have

„− Rsxd…n = − RSxn + o
k=1

n−1 Sn

k
D„− Rsxd…sn−kdxkD , s10d

R̃sxdn = R̃Sxn + o
k=1

n−1 Sn

k
D„− Rsxd…sn−kdxkD . s11d

The proof works inductively. Proposition 2.8 will lead us to the twisted antipode formula17–19

We come now to the important result of Atkinson, reformulating the Rota–Baxter relat
erms of a subdirect(de)composition in the sense of Birkhoff.

Theorem 2.9 (Atkinson2): For a K-algebraA with a linear map R:A→A to be a Rota
axterK-algebra, it is necessary and sufficient thatA has a subdirect Birkhoff decomposition.

It should be underlined here that this theorem is true quite generally, in the sense
lgebra needs not to be associative, nor commutative.

Essentially, the subdirect Birkhoff decomposition in this case means that the Cartesian

ª (RsAd ,−R̃sAd),A3A is a subalgebra inA3A and that every elementxPA has a uniqu

ecompositionx=Rsxd+R̃sxd. The double construction introduced here and Atkinson’s the
hould be compared with the results in Refs. 13–16.

II. R-MATRIX APPROACH TO RENORMALIZATION: THE ROOTED LADDER TREE
ASE

We will now briefly introduce the Connes–Kreimer Hopf algebra of rooted trees.22–24

Definition 3.1: A rooted tree is a finite, connected oriented graph without loops in which
ertex has exactly one incoming edge, except one (the root) which has no incoming b
utgoing edges. We denote the set of edges and vertices of a rooted tree T by EsTd ,VsTd, respec
ively.
Let us denote the set of(isomorphism classes of) rooted trees byTrt:
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et Hrt be the commutative algebra generated by these symbolsTPTrt (one for each isomorphis
lass). The commutative product mHrt

:Hrt ^ Hrt→Hrt is written as concatenatio

Hrt
sT8 ,T9d¬T8T9 and the empty tree is denoted by 1 giving the unit. The algebra may be g

y the number of vertices#sTd= uVsTdu of the rooted treeT. We equip this algebra with a cou
ape :Hrt→K ,es1dª1 andesT1¯Tnd=0 for T1¯TnÞ1.

We now define the coproductD :Hrt→Hrt ^ Hrt. For this we first introduce the notion
imple cuts on rooted trees. A simple or admissible cutcT of a treeT is a subset of its edges su
hat along any path from its root to one of its leaves one meets at most one element ofcT. Deleting
he setcT,EsTd of edges inT produces one treeRcT

still containing the original root and a set
runed rooted treesPcT

, the roots of which are identified with the vertex which had the cut
n cT as an incoming edge. The following examples may be helpful in understanding the c
f simple cuts,RcT

andPcT
:

The coproduct may then be defined as follows. LetCT be the set of all admissible cuts of
ooted treeT. We exclude the empty cutcT

s0d ,Pc
T
s0d=x ,Rc

T
s0d=T and the full cutcT

s1d ,Pc
T
s1d=T,Rc

T
s1d

x:

DsTd = T ^ 1 + 1 ^ T + o
cTPCT

PcT
sT8d ^ RcT

sT9d. s12d

The coproduct(12) is extended by linearity, and we define it to be an algebra homomor
sT1¯Tn+Tn+1¯Tmd=pi=1

n DsTid+pi=n+1
m DsTid ,Ds1dª1^ 1. Obviously,(12) is not cocommuta

ive. So far we have a connected graded bialgebra, hence by general arguments a rooted
lgebra with antipodeS:Hrt→Hrt:

SsTd ª − T − o
cTPCT

S„PcT
sT8d…RcT

sT9d. s13d

gain we exclude the empty and full cut, i.e.cT
s0d ,cT

s1d, respectively, in the above sum.
The Hopf algebraHrt contains a cocommutative Hopf subalgebra denoted byHl rt, generate

y rooted ladder graphs:
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hich we will denote in general bytnPHl rt,Hrt, wherenPN is the number of vertices, havi
t most one incoming and also at most one outgoing edge. Byt0 we denote the unit, i.e. the emp

ree 1. The coproduct then becomes

Dstnd = tn ^ 1 + 1 ^ tn + o
i=1

n−1

ti ^ tn−i . s14d

he graded dualHrt
* equipped with the convolution productf !gªmK + f ^ g+D , f ,gPHrt

* be-
omes an associativeK-algebra. We denote the pairing by brackets,kf ,Tlª fsTdPK.

Let charK Hrt,Hrt
* be the group of characters, i.e. algebra morphisms intoK, with inverse

−1
ªf +S,fPcharK Hrt. Let ] charK Hrt,Hrt

* be the Lie algebra of infinitesimal characters,
erivations intoK:

ZsT8T9d = ZsT8desT9d + esT8dZsT9d, Z P ] charK Hrt, s15d

ith Lie bracket

fZ8,Z9g ª Z8 ! Z9 − Z9 ! Z8. s16d

charK Hrt is generated by the infinitesimal charactersZT indexed by rooted treesTPTrt, and
efined by

kZT,T8l ª dT,T8. s17d

ree monomials are excluded from the index set due to the Leibniz rule(15). The Lie bracket fo
hese generators is given by Ref. 22:

fZT8,ZT9g = o
TPTrt

„nsT8,T9;Td − nsT9,T8;Td…ZT, s18d

here thensT8 ,T9 ;TdPN denote so-called section coefficients which count the number of s
imple cuts,ucTu=1, such thatPcT

=T8 andRcT
=T9:

s19d

s20d

Remark 3.2:(1) The compositionZT8!ZT9=oTPTrt
nsT8 ,T9 ;TdZT defines a left pre-Lie algeb

tructure on] charK Hrt.
(2) Antisymmetrizing this pre-Lie product gives the above Lie algebra, which lies at the

f the combinatorics of renormalization theory in pQFT.25,26

The exponential map gives the bijection from] charK Hrt→charK Hrt:

exp!sZd ª o
n=0

`
Z!n

n!
P charK Hrt. s21d
ereZ is given as a series,
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he exponential map(21) is well defined since due to the Leibniz rule(15) we haveZ!nsTd=0 for
.#sTd.

Following the Hopf algebraic approach to renormalization in perturbative quantum
heory(pQFT), we introduce the notion of regularized(infinitesimal) characters, mappingHrt into

commutative, associative, unital Rota–Baxter algebraA. [A=Cve ,e−1g in dimensional regula
zation together with minimal subtraction in pQFT, where the Rota–BaxterR map is then given b
q. (2).] We therefore extendHrt

* to Hrt
*

^ A=LsHrt ,Ad, consisting ofK-linear maps fromHrt into
he Rota–Baxter algebraA, i.e. kf ,TlPA ,fPLsHrt ,Ad ,TPHrt.

We then lift the Rota–Baxter mapR:A→A to LsHrt ,Ad.
Proposition 3.3: Define the linear mapR :LsHrt ,Ad→LsHrt ,Ad by f°RsfdªR+ f :Hrt

RsAd. Then LsHrt ,Ad becomes an associative, unital Rota–Baxter algebra. The Lie alge
nfinitesimal charactersLHrt

* ,LsHrt ,Ad with bracket (16) becomes a Lie Rota–Baxter algebra
or Z8 ,Z9P] charA Hrt,

fRsZ8d,RsZ9dg = R„fZ8,RsZ9dg… + R„fRsZ8d,Z9g… − RsfZ8,Z9gd. s22d

Notice that we replacedK by A for the target space of the regularized infinitesimal charac
he proof follows from the fact thatR is K-linear and

Rsfd ! RsgdsTd = mA„Rsfd ^ Rsgd… + DsTd

= mAsR„fsTs1dd… ^ R„gsTs2dd…d

=
s1d

− R + mA„fsTs1dd ^ gsTs2dd… + R + mAsfsTs1dd ^ R„gsTs2dd…d

+ R + mAsR„fsTs1dd… ^ gsTs2ddd

= − R + mAsf ^ gd + DsTd + R + mA„f ^ Rsgd… + DsTd + R + mA„Rsfd ^ g… + DsTd

= R„f ! Rsgd…sTd + R„Rsfd ! g…sTd − Rsf ! gdsTd, s23d

here we used Sweedler’s notationDsTd=oTs1d ^ Ts2d for the coproduct(12), omitting the sum
ation sign above. For the second assertion, we only have to show thatR :] charA Hrt

] charA Hrt, but this again follows from theK-linearity of R andesTdPK.
Using the double construction and Atkinson’s theorem of Sec. II we have the follo
Lemma 3.4: The Rota–Baxter algebra LsHrt ,Ad equipped with the convolution product,

f!Rg = f ! Rsgd + Rsfd ! g − f ! g, s24d

ives a Rota–Baxter algebra structure on the set of linear functionals into the doubleAR of A,
enoted by LsHrt ,ARd. An analog forLHrt

* exists and is denoted byLHrt
* R. R becomes a (Lie

lgebra morphismsLHrt
* R→LHrt

* dLsHrt ,ARd→LsHrt ,Ad.
Remark 3.5:The above is also true forR̃ª id−R, respectivelyR̃ (see Remark 2.7). We will

enoteRsLHrt
* d by LHrt

*
− andR̃sLHrt

* d by LHrt
*

+ .

We now apply Atkinson’s theorem to the Lie algebraLHrt
* of infinitesimal characters, th

enerators of the group of Hopf algebra characters charA Hrt.
Lemma 3.6: Every infinitesimal character ZPLHrt

* has a unique subdirect Birkhoff decom

ition Z=RsZd+R̃sZd.
Remark 3.7:(1) In the case of an idempotent Rota–Baxter mapR we have a direct decom

*
− +
ositionA=A−+A+, respectively,LHrt

=LHrt
* +LHrt

* .
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(2) Let ZPLHrt
* be the infinitesimal character generating the characterf=exp!sZd

charA Hrt. Using the result in Proposition 2.8, easily generalized to the noncommutative
e then see that exp!(−RsZd)=R(exp!Rs−Zd).

Let us define

bffg ª exp!Rs− Zd,

hich is a character ofHrt→AR, i.e., bffgPcharAR
Hrt and which we will call Bogoliubov’

ecursionR̄-map for reasons which will become clear soon. Therefore

exp!
„− RsZd…sT8T9d = R„exp!Rs− Zd…sT8T9d = R„bffgsT8dpRbffgsT9d…

= exp!
„− RsZd…sT8dexp!

„− RsZd…sT9d. s25d

e then have the following.

Lemma 3.8: The Lie Rota–Baxter mapRsR̃d becomes a Lie group (anti-) homomorph
rom charAR

Hrt to charA
−s+dHrt, where charA

−s+dHrt are the Lie subgroups generated by the

ubalgebrasLHrt
*

−s+d
.

As we already mentioned in the Introduction, here we will only consider in detail the s
ase of the cocommutative Hopf subalgebraHl rt, respectivelyLsHl rt ,Ad. The latter is generate
y theZtn

P] charA Hrt ,nPN and necessarily is an Abelian Lie algebraLHl rt
* ,fZtn

,Ztm
g=0,n,m

N.
The Abelianess ofLHl rt

* and Atkinson’s result imply the following theorem[which extends t

he non-Abelian case using the appropriate BCH formulas for the(multi-)commutator ofRsZd
ith R̃sZd].

Theorem 3.9 (Ladder case of integrable renormalization):Let fPcharA Hl rt be generate
y ZPLHl rt

* , i.e. exp!sZd=f. We have the following factorization:

exp!sZd = f = exp!
„RsZd + R̃sZd… = exp!

„RsZd… ! exp!
„R̃sZd…. s26d

Proposition 3.10: With the same assumption as in Theorem 3.9 and the definitiof−
−1

exp!(RsZd) and f+ªexp!(R̃sZd), we have

f−stnd = exp!
„− RsZd…stnd = R„exp!Rs− Zd…stnd s27d

=− RHfstnd + o
k=1

n−1

f−stkdfstn−kdJ , s28d

f+stnd = exp!
„R̃sZd…stnd = − R̃„exp!Rs− Zd…stnd s29d

=R̃Hfstnd + o
k=1

n−1

f−stkdfstn−kdJ . s30d

The proof of this proposition follows immediately by Proposition 2.8 and(10) and(11). It can
e generalized to the non-Abelian case using the Hochschild cohomology of the Hopf alg
n Ref. 27 and the resolution of the non-Abelian Lie algebra in terms of its lower central series.

                                                                                                            



e
w

=

T u-
l ter
o e, i.e.,
t d trees.
N
a work.

–16.
W

e e. There-
f double
c Lie
s i-

t

h
ential

w
ª

H t-

T
f

imple
r er
t
e ter
f

3766 J. Math. Phys., Vol. 45, No. 10, October 2004 Ebrahimi-Fard, Guo, and Kreimer

                        
Remark 3.11:(1) From expressions(25), (27), and(29) it is evident thatf± are characters. W
ill see the same for the general case.

(2) For the ladder case we therefore arrive at the following result. Since exp!(−RsZd)
R(exp!Rs−Zd)¬Rsbffgd (Remark 3.7), we have

bffgstnd = exp!Rs− Zdstnd = − fstnd − o
k=1

n−1

f−stkdfstn−kd.

his justifies the name Bogoliubov’sR̄-map19 for bffg, which finds its natural algebraic form
ation as a characterbffg=exp!Rs−ZdPcharAR

Hl rt and which is mapped by the Rota–Bax
peratorR into charA Hl rt. As mentioned before this result carries over to the general cas

o the noncocommutative Hopf algebras of Feynman graphs or arbitrary decorated roote
ote that formulas(28) and (30) have been established already in Ref. 17, while to express(27)
nd(29) in a convenient way using the necessary BCH corrections will be reserved to future

Also, we would like to underline the similarity with the factorization theorems in Refs. 14
e will dwell on this connection in greater depth in the future.

Let us summarize the result in Proposition 3.10. The(Abelian) Lie algebraLHl rt
* naturally

xtends to a Lie Rota–Baxter algebra due to the Rota–Baxter structure on its target spac
ore it contains two Lie algebra structures with respect to the original Lie bracket and the
oming from the Rota–Baxter mapR. Due to Atkinson’s theorem it decomposes into two
ubalgebrasLHl rt

*
−s+d

which generate the Lie subgroups charA
−s+d Hl rt. The infinitesimal decompos

ion onLHl rt
* extends in the ladder case to the global factorization on the Lie group charA Hl rt. We

ave the following diagrams on the Lie algebra level, respectively, Lie group level.
Let b denote Bogoliubov’s recursion formula, which is defined in terms of the expon

ith respect to the double product!R. We defineGl
ªcharA Hl rt ,GR

l
ªcharAR

Hl rt and Gl±

charA
± Hl rt:

LHl rt
* R →

sR,R−idd
sLHl rt

*
− ,LHl rt

*
+ d →

sid,−idd
L

Hrt
*
. s31d

ere,Z=RsZd−sR− iddsZd=sid ,−idd + sR ,R− iddsZd gives the infinitesimal factorization, i.e., A
kinson’s theorem:

Gl→
b

GR
l →

s−R^R̃d
sGl−,Gl+d→

mGl

Gl . s32d

he last diagram contains the global factorization, i.e. on the level of the Lie groupGl coming
rom the Lie algebraLHl rt

* .

Remark 3.12:(1) Using the idea of normal coordinates in Ref. 31, we may relate the s
ooted ladder graphs, given by Schur polynomialsPsndst1,… ,tnd of ordern for each rooted ladd
ree tn and thef± character in the following way.[Schur polynomial of ordern,Psnd: Taylor
xpansion of logsonù0tnx

nd=onù0P
sndst1,… ,tndxn.31] Starting with the regularized charac

:Hrt→A, we define the series(we omit tensor product signs)

Zf ª o Ztn
f„Psndst1,…,tnd… P charK Hrt ^ A.
n.0
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(2) Let us briefly outline the approach to the general case. The full Lie algebra of infinite
haractersLHrt

* is of course non-Abelian and therefore the factorization has to include con
ions in a subtractive manner to eliminate BCH terms. This may be achieved in a systema
sing the Baker–Campbell–Hausdorff(BCH) functional,

BCHsA,Bd ª
1

2
fA,Bg +

1

12
s†A,fA,Bg‡ − †B,fA,Bg‡d + ¯ ,

xs2d = −
1

2
fRsZd,Zg,

or f=exp!sZdPcharA Hrt and which should be compared to(19). Again, the normal coordinat
heorem in Ref. 31 provides a convenient way to identify terms from the BCH formula. Thi
e derive the implicitly given formulas forf± in Ref. 19, respectively give an explicit formula

hem in terms of the exponential map and an element in the image of the Rota–Baxter mR,

espectivelyR̃.
(3) The present setting resembles the loop algebra-group case of integrable system

he generalization takes place by using a general Rota–Baxter algebra as the target sp
ater publication we will dwell more carefully on this point.

(4) Following the recent work by Sakakibara32 we derive the scattering type formula forf±.
e first extend the Lie algebra] charA Hrt by an elementZ0 such thatfZ0,ZTg=YsZTdª#sTdZT

hereY is the grading operatorYsTdª#sTd, i.e. a derivation onHrt (see Ref. 20 for details). This
mplies a one parameter grouputPAutsHrtd acting on charA Hrt by

kutsfd,Tl ª kf,utsTdl,

.e. ut=Adexp!stZ0d, and such thatsdut /dtdut=0=Y. We then define a so-calledb-function:

bsfd ª f± ! Ysf±
−1d = f± ! fZ0,f±

−1g = f± ! Z0 ! f±
−1 − Z0,

uch that32

exp!st„bsfd + Z0…d ! exp!s− tZ0d = f± ! utsf±
−1d →

t→`

f±.
his should be compared to the expression we found forf± in terms of the Rota–Baxter mapR.
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V. SUMMARY, CONCLUSION AND OUTLOOK

In an earlier work19 the combinatorics of renormalization in pQFT was described in term
Birkhoff factorization of the regularized Hopf algebra characters. The identification

ingular partf− as a character relies on the Rota–Baxter structure on the target space
haracters. Emphasizing the latter point and restricting for pedagogical reasons to the sim
f rooted ladder trees we were able to derive the twisted antipode formula for the singular

he Birkhoff decomposition, solely using the properties of the Rota–Baxter map lifted to t
lgebra of infinitesimal characters.

Extending this simple exercise to the general case of a noncocommutative Hopf algeb
o conceptual challenge but becomes technically more demanding and will be present
here.

In our view it is important to underline that it is the Lie algebra of rooted trees, or
enerally the insertion-elimination Feynman Lie algebra, which completely describes the
f renormalization in pQFT. This will become even more apparent when we treat the gener

ndicated in the last remark in Sec. III. These results strongly indicate that there is a dee
etween the realm of(classically) integrable systems and the RG-flows. The last point espe
emands for a deeper understanding of the Lie algebra of infinitesimal characters, respect
ie Group of regularized characters. We hope that this may be partly achieved by analyz

ink to the well established field of integrable systems.
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n the Fock space for nonrelativistic anyon fields
nd braided tensor products
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We realize the physicalN-anyon Hilbert spaces, introduced previously via unitary
representations of the group of diffeomorphisms of the plane, asN-fold braided-
symmetric tensor products of the 1-particle Hilbert space. This perspective provides
a convenient Fock space construction for nonrelativistic anyon quantum fields
along the more usual lines of boson and fermion fields, but in a braided category,
and clarifies how discrete(lattice) anyon fields relate to anyon fields in the con-
tinuum. We also see how essential physical information is encoded. In particular,
we show how the algebraic structure of the anyonic Fock space leads to a natura
anyonic exclusion principle related to intermediate occupation number statistics,
and obtain the partition function for an idealized gas of fixed anyonic vortices.
© 2004 American Institute of Physics.[DOI: 10.1063/1.1787620]

. INTRODUCTION

Anyons are particles or excitations in two-dimensional space that obey exchange s
nterpolating those of bosons and fermions. When two identical anyons are exchanged
oincidence along a continuous path in the plane, their relative winding numberm (the net numbe
f counterclockwise exchanges) is well-defined, depending only on the homotopy class of the

mplementing the exchange. The quantum-mechanical wave function then acquires a
haseeimu, whereu is a real fixed parameter between 0 and 2p. Whenu=0 we have bosons, a
=p corresponds to fermions.

The possibility of such intermediate statistics was suggested by Leinaas and Myrhei1 and
onfirmed by Goldin, Menikoff, and Sharp,2 who derived the quantum theory rigorously fr
epresentations of local nonrelativistic current algebra and the corresponding diffeomo
roup. They obtained the anyonic shifts in angular momentum and energy spectra, an
onnections with configuration space topology and the physics of charged particles circ
ions of magnetic flux. The term “anyon” was subsequently introduced by Wilczek,3 who pro-
osed a model for such objects based on charged-particle/flux-tube composites and sugge
ssociation with fractional spin in two dimensions. The idea found some immediate applica
urface phenomena and related areas of physics.4,5 Reference 6 clarified that the shift in t
ngular momentum spectrum associated with anyons is in the kinetic(or orbital) angular momen

um, not the canonical(or total) angular momentum.
In Ref. 7 thebraid group BN was identified as the group whose one-dimensional repres

ions describe the anyonic wave function symmetry. A more extensive discussion of th
roup and anyon statistics followed in Ref. 8, where it was argued that only the one-dime

)Electronic mail: gagoldin@dimacs.rutgers.edu
)
Electronic mail: s.majid@qmw.ac.uk
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epresentations ofBN should occur in quantum mechanics. However, as noted in Ref.
iffeomorphism group approach allows also the possibility of quantum systems descri
igher-dimensional representations ofBN (particles later termed “plektons”). An overview of tha
pproach, which underlies the present article, may be found in Ref. 10.

The extensive development of these ideas that occurred during the 1980s and earl
ncluding their relation to Chern–Simons quantum field theories, their application in describ
nteger and fractional quantum Hall effects, and their role in describing possible mechani
uperconductivity, are reviewed in Refs. 11 and 12.

Anyonic systems can also be associated with quantum groups andq-deformations of classic
ie algebras.13–17In Ref. 18 it was shown that creation and annihilation fields for anyons cou
onstructed so as to intertwine theN-anyon representations of the group of compactly supp
iffeomorphisms DiffcsR2d in the Hilbert spaceHN of N-particle states. The assumption that th
elds transform consistently with the diffeomorphism group representations dictates the fo
hould take; and the fact that they obeyq-commutation relations, whereq is the anyonic phas
hift, emerges as a consequence of this. In this work, the spacesHN were constructed(for eachN)
sing “topological configurations” ofN points equipped with attached filaments going ou

nfinity in the plane.
In the present article, we show how to construct such a theory along lines more familia

osonic (respectively, fermionic) algebras of canonical commutation(resp. anticommutation)
elations—i.e., CCR(resp. CAR) algebras—where theN-particle Fock subspaces are built up
ymmetrizing or antisymmetrizing sets of 1-particle states. We shall effectively “q-symmetrize”19

sing braided category techniques coming out of quantum group theory,20 so that

HN = H1^
s
H1^

s
¯ ^

s
H1

N times), where^s is the symmetrized tensor product with respect to a certain symmetryC0. A
ifficulty in formulating anyonic field theory this way has been the apparent need to wor
trictly braided category, with a braidingC defined byq. The fact that the braid group is infin
ould then seem to require an infinite sum of powers ofq. But it turns out that the associat
peratorC0 obeys the conditionC0

2= id. Thus it generates an action of the symmetric groupSN,
ather than the braid groupBN. In effect, the nontrivial braid group representation and its inv
onspire with each other to give us a braided tensor category that is actuallysymmetric(up to set
f measure zero).

Moreover, in our construction the full anyonic Fock spaceSC0
sH1d, obtained as the direct su

f the different spacesH1^s¯^sH1, is an algebra with product̂ s. This algebra generalizes t
lgebra of functions on a linear space or superspace in the Bose or Fermi cases, with its re
ommutative or anticommutative product. The annihilation and creation operators in our co
ion then act by pointwise multiplication and(functional) differentiation on this space, exactly
onformity with the usual functional representation in field theory. The difference is th
nyonic case only makes sense in a braided category, with a braidingC. In this categorySC0

sH1d
s the “coordinate ring” of a braided group, with the braided coproductDI expressin
ddition.13,20–22The use here oftwo Yang–Baxter operatorsC andC0 is a general feature of th
heory of such “braided linear spaces,” and the strictness of the braidingC is essential for this.

As an important application, we show how the structure ofSC0
sH1d as the braided version

he coordinate algebra of a linear space leads to an “anyonic exclusion principle” whenq is a roo
f unity. Specifically, withqr =1, the creation operatorc* sxd cannot occur in a reduced Fock st
ore thanr −1 times. This important physical fact means that the relevant occupation n

tatistics is of the nature of Gentile statistics,23 and has some similarities to other algeb
pproaches to generalized exclusion principles such as that proposed in Ref. 24. The e
lso applies to states obtained from the smeared field; i.e.,c* shdr =0 in our Hilbert space repr
entation for any test functionh. Earlier articles have approached the fractional exclusion sta
f a one-dimensional gas, or of anyons in two space dimensions, from quite di

25–30
erspectives; see also Ref. 31.
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An outline of the present article is as follows: In Sec. II we summarize the topolo
onstruction of the spacesHN of N-anyon states, and write the corresponding current alg
iffeomorphism group, and anyon creation and annihilation field representations. In Sec
arry out our construction using braided symmetric tensor categories, and in Sec. IV we sh
his indeed leads to the same result as the earlier topological construction. In Sec. V we
ome algebraic consequences, including the anyonic exclusion principle whenq is a root of unity
hroughout we consider both the physical continuum case and the discrete case, as the la
e useful for lattice versions of the theory or for anyon fields on a finite number of point
iscrete case turns out to have a number of instructive subtleties. Finally, in Sec. VI we offe

urther comments of a conceptual nature.

I. TOPOLOGICAL STATE SPACES HN

We begin by recalling the set-up for anyon field representations proposed in Ref. 18.
onrelativistic quantum theory of identical particles inn space dimensions, we are intereste
epresentationsr, J of the semidirect sum Lie algebraCc

`sRnd’vectcsRnd, wherer and J are
elf-adjoint operator-valued distributions describing the mass and momentum densities,
ively, i.e.,

rsfd =E rsxdfsxddnx, Jsvd =E Jsxd ·vsxddnx,

here the test functionf PCc
`sRnd is a compactly-supported real-valuedC` function onRn, and

PvectcsRnd is a compactly-supported(tangent) vector field onRn. Then the well-known curre
lgebra

frsfd,rsgdg = 0, frsfd,Jsvdg = i"rs¹vfd, fJsvd,Jswdg = − i"Jsfv,wgd s1d

epresents the bracket in the Lie algebra, wherefv ,wg is the usual Lie bracket of vector fields. T
roup-level version is based on the natural semidirect product of the group of com
upported functions under addition, with the group of compactly-supported diffeomorphismRn

nder composition:G=Cc
`sRnd’Diff csRnd, with sf ,fd ·sg,cd=sf +g+f ,c +fd. Then in a continu

us unitary representation ofG, we can write the 1-parameter subgroupsUsfd andVsftd, whereft

s the flow onRn generated byv. Under appropriate conditions, the self-adjoint generators de
rom Usfd=eirsfd and Vsftd=eist/"dJsvd represent the current algebra. The idea is that diffe
hysical systems in quantum mechanics should correspond to different(unitarily inequivalent)

rreducible representations ofG.
In particular consider a familyHN of Hilbert spaces, whereNPN, along with annihilation

peratorscshd and creation operatorsc* shd, where the test functionsh belong to a domain inH1.
hus

cshd:HN+1 → HN, c * shd:HN → HN+1.

uppose we have representationsUN, VN in HN of the groupG=Cc
`sRnd’Diff csRnd, for eachN,

ntertwined byc andc* in such a way that

UN+1sfdc * shd = c * sU1sfdhdUNsfd, VN+1sfdc * shd = c * sV1sfdhdVNsfd. s2d

hen theUN, VN sN=1,2,3, . . .d are interpreted as ahierarchyof representations ofG describing
ystems ofN particles(or quantum excitations) of the species created and annihilated by the
perators. At the level of the algebra, the corresponding requirements are

frsfd,c * shdg = c * sr1sfdhd, fJsvd,c * shdg = c * sJ1svdhd. s3d

erec* is the adjoint ofc; but we note that later, when we consider the discrete anyonic cas

ill be modified.
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Whenn=2, one has the possibility in this general framework of anyonic representationsG,
nd corresponding fields satisfying Eqs.(2) and(3). Then the representationUN, VN of G acts in

he Hilbert space

HN = LBN

2 sD̃Nd,

efined as follows. The configuration spaceDN for N identical anyons is the space of(unordered)
-point subsets ofR2; thus gPDN is given by g=hx1, . . . ,xNj,R2. The fundamental grou

1sDNd is BN, the braid group onN-strands. We denote byD̃N the universal covering space ofDN,

hich has infinitely many sheets; forg̃P D̃N, we have the projection mapp: g̃→g. The braid

roup then acts onD̃N; writing this action asg̃→ g̃ ·b for bPBN, we havepsg̃ ·bd=psg̃d. The

lements ofHN are now wave functionsF̃ on D̃N, taking values in an inner product spaceV that
arries a unitary representationTsbd of BN. We shall consider only the caseV=C (scalar-value
ave functions), and one-dimensional representations ofBN. Such a representation is specified
hoosing a fixed phaseq=expiu, and settingTsbd=q whenb is the crossing of one strand ov
nother in a forward(left over right) direction. The wave functions are required to beequivarian
nderT, in the sense that for allbPBN,

F̃sg̃ ·bd = TsbdF̃sg̃d.

n other words,F̃PHN is an equivariant section of a vector bundle overD̃N. WhenF̃1 and F̃2

atisfy the same such equivariance condition, the productF̃1sg̃dF̃2sg̃d depends only ong=psg̃d,
nd not on the particular choice ofg̃ within p−1sgd at which F̃1 and F̃2 are evaluated. Thus w
ay write the integral of this product with respect to a(local) Lebesgue measuredx1¯dxN on DN.

inally, we takeHN to consist of the square-integrable functions, so that for any pairF̃1, F̃2,

kF̃1,F̃2l =E
DN

F̃1sg̃dF̃2sg̃ddx1 ¯ dxN , ` s4d

efines the inner product ofF̃1 with F̃2 in HN.
Given any diffeomorphismf of R2, let f act onDN in the obvious way. This action lifts to a

ction onD̃N compatible with the projection map, i.e., ifpsg̃d=g, thenpsfg̃d=fg. TheN-anyon
epresentation inHN is then defined by

UNsfdF̃sg̃d = eiS j=1
N fsxjdF̃sg̃d, VNsfdF̃sg̃d = F̃sfg̃dp

j=1

N

ÎJfsxjd, s5d

here Jf is the Jacobian off. The factor of p j=1
N ÎJfsxjd means thatVN transforms

˜
1sg̃dF̃2sg̃d p j=1

N dxj to F̃1sfg̃dF̃2sfg̃d p j=1
N Jfsxjddxj, and thus does not change the value of

nner product.
One may construct these representations more explicitly as follows. We describe an ele

˜
N by a set of nonintersecting pathsG=hG1, . . . ,GNj in the plane, extending from infinity in(let us
ay) the negativey-direction, and terminating in the unordered setg of N distinct points inR2.

henD̃N is the set of homotopy classes of suchG, with the projection map given by mappingG to
he set of its end points. We shall call the homotopy class ofG a “topological configuration.
oreover, we can lift any configurationgPDN (with the exception of a measure zero set) to the

lementG0
g belonging toD̃N, given by taking paths that go vertically downward(in the negativ

y-direction) from each point ing. This defines a sheetG0sDNd, D̃N that we conventionally ass
iate with the identity element ofBN. Now diffeomorphisms in DiffcsR2d act as the identity aty
−` since they are compactly supported, and so they lift fromDN to act on the space of top
ogical configurations.
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Consider the subgroup Diffc
gsR2d of diffeomorphisms that take the set of end pointsg of a

xed topological configurationG into itself. This is the stability subgroup for the pointgPDN. A
iffeomorphismfPDiff c

gsR2d then determines an element ofBN by its action onG0
g, denoted b

=hgsfd. Moreover, given any topological configurationG with end pointsg, we can obtain it b
tarting withG0

g (with the same end pointsg), and applying a diffeomorphismfPDiff c
gsR2d, so

hat fG0
g=G. Then hg is a surjective homomorphism, from Diffc

gsR2d onto BN. A topologica
onfigurationG with end pointsg is conventionally identified with the pairsg ,bd; whenb is the

dentity element, we haveG0
g. The equivariance condition in this description becomes

F̃sGd = TsbdF̃sG0
gd.

hus it is enough to specifyF̃ on the sheetG0sDNd; the equivariance condition then define

lmost everywhere inD̃N.
In this explicit realization, one next defines the creation and annihilation fields intertw

he N-anyon representations(5) in accordance with Eqs.(2) or (3). Given anN-point subse

,R2, andxPR2, let us denote byGx
g the element ofD̃N+1 that is obtained byadjoining to G0

g an
dditional path, terminating atx, that extends towardy=−` on theleft of all the paths inG0

g (this
odifies the convention in Ref. 18). Then we set

scsxdF̃dsG0
gd = F̃sGx

gd.

o write the adjoint field, letĝ j =g−hxjj, wherej refers to some indexing of the elements ofg. The

opological configurationGx
ĝ j then defines an element ofD̃N, with the set of terminal poin

ˆ j ø hxj. ExpressGx
ĝ j asfG0

ĝ jøhxj, and definebx,j =hĝ jøhxjsfd. Then

sc * sxdF̃dsG0
gd = o

j=1

N

dsx − xjdF̃sG0
ĝ jdT * sbx,jd.

In this realization, one can recover the local current algebra(1) by defining

rsxd = c * sxdcsxd, Jsxd =
"

2i
sc * sxds¹cdsxd − s¹c * dsxdcsxdd, s6d

herer is the number density of anyons andJ is the momentum density. Then also

frsfd,c * shdg = c * sfhd, fJsvd,c * shdg =
"

2i
c * s¹vh + ¹ · svhdd, s7d

hich are precisely Eqs.(3). Equations(1), (3), and(6) are the same in the anyonic case as in
sual Bose or Fermi cases. But now we have, in place of the CCR or CAR algebras, the fo
qual-timeq-commutation relations:18 in the half-spacex1,y1, with fA,Bgq=AB−qBA (where the
haseq generates the representationsTsbd of BN),

fcsxd,csydgq = fc * sxd,c * sydgq = 0, fcsyd,c * sxdgq = dsx − yd. s8d

n the complementary half-spacex1.y1, q must be replaced byq̄=q−1. The choice of a half-spac
ike the definition of the sheetG0sDNd, is conventional and has no physical consequence.

II. ANYONIC FOCK SPACE CONSTRUCTION

For the usual bosonic or fermionic representations, we have of course a more conv
onstruction. LetH=H1=L2sRnd be the space of 1-particle states, andHN=H^sN be a symme
rized or skew symmetrized tensor product. Thenc* shd=h^s and cshd is given by the interio
roduct, yielding the usual equal-time commutation or anticommutation relations, respecti
his section we give such a “Fock space” construction, more in line with the usual Bose or Fermi

                                                                                                            



c se it
i he ma-
c 22, and
e

l
i
t ds
b
i

e
f

T he same,
b e
a

w of
E ntations
o

A

f s
C

T

w s-
c

I
r

t
A in
o cts of
t

J. Math. Phys., Vol. 45, No. 10, October 2004 On the Fock space for nonrelativistic anyon fields 3775

                        
ases but now with nontrivialq-statistics. We then show in Sec. IV that in the continuum ca
s isomorphic to the topological construction of Ref. 18 described above. We shall use t
hinery of braided linear spaces and braided Weyl algebras as described in Refs. 20–
lsewhere.

Let us start with a construction that works for any totally ordered spacesX, , d. We shal
nitially takeX to be discrete. Note that we donotassume here thatc* is the adjoint ofc, although
his turns out to be true in the continuum case(see Sec. VI); a more complicated relation hol
etweenc andc* in the discrete case. Subsequently we considerX=R2, with x,y if x1,y1, or

f x1=y1 thenx2,y2.
Let H denote a space of functions onX, andhdxj a basis ofd-functions. We also define th

unctions

e0sx,yd = 51 if x , y,

0 x = y,

− 1 x . y,
6

esx,yd = H1 if x ø y,

− 1 x . y.
J

hese are almost, but not quite, the same. Even in the continuum case they are not quite t
ecause of the existence of distributions with support on the setx=y. In what follows, we deriv
version of the equal timeq-commutation relations(8) as

csxdcsyd = qe0sx,ydcsydcsxd, c * sxdc * syd = qe0sx,ydc * sydc * sxd,

csxdc * syd − qesy,xdc * sydcsxd = dsx − yd, ∀ x,y [ X, s9d

here as notedc* is not the same as the adjoint operatorc†. Equations(9) are the refinement
qs.(8) that comes out of our Fock space construction, and are consistent with the represe
f the fields described using the topological configurations above.

. Discrete version

Let sX, , d be a discrete totally ordered space,H a space of functions onX, and dx the
unction that is 1 onx and 0 elsewhere inX. We define the generalized flip(or braiding) operator

, C0:H ^ H→H ^ H by

C0sdx ^ dyd = qe0sx,yddy ^ dx, Csdx ^ dyd = qesx,yddy ^ dx. s10d

hese both obey the familiar braid or Yang–Baxter relations

C12C23C12 = C23C12C23,

here the numerical subscripts refer to the position inH^3. They also satisfy the cros
ompatibility conditions

sC + iddsC0 − idd = 0, sC0d12C23C12 = C23C12sC0d23, C12C23sC0d12 = sC0d23C12C23.

s11d

n additionC0
2= id, but this fact and the braid relations forC0 are not essential here.

One can write these operators in anR-matrix form: Csdx ^ dyd=db ^ daR
a
x
b
y (summing ove

he repeated variablesa, b), with Ra
x
b
y=da

xd
b
yq

esx,yd; and similarly forC0, in terms of a matrixR8.
ssociated to any suchR, R8-matrices(Ref. 20, Th. 10.2.1) is a “braided linear space” which
ur case we denoteSC0

sHd. It is defined as the quadratic algebra generated by formal produ

he hdxj generators, modulo the relations
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dx^
s

dy = ^
s

sC0sdx ^ dydd ; dy^
s

dxq
e0sx,yd, s12d

here we denote the product inSC0
sHd by ^s. The actual braidingC enters in the braide

oproductDI :SC0
sHd→SC0

sHd ^ SC0
sHd, that makesSC0

sHd a braided group or a Hopf algebra
braided category. On generators, this is just the linear coproduct given byDI dx=dx ^ 1+1^ dx,

ut it extends to products under̂s via C; thus

DI sdx^
s

dyd = sdx^
s

dyd ^ 1 + dx ^ dy + qesx,yddy ^ dx + 1 ^ sdx^
s

dyd. s13d

s explained in Ref. 20, for the theory of braided spaces one needs not one buttwo operators. On
f these operators controls the “internal” noncommutativity of the algebra, and the other c

he “external” noncommutativity or braid statistics with other independent copies. In our ca
hysics actually dictates the use ofC rather thanC0 in the second role; as only this choice in
13) correctly reduces to the constant minus sign in the flip for fermions whenq=−1.

Next, we define the operatorscx
* andcx on SC0

sHd, by left multiplication and braided diffe
ntiation, respectively. LetfN+1,Cg=id+C12+C12C23+¯ +C12¯CN,N+1 be the braided inte
er matrix,20,22 where, for example,C12 denotesC acting in the(1, 2) pair of copies ofH. Then

cx
*sdx1

^
s
¯ ^

s
dxN

d = dx^
s

dx1
^
s
¯ ^

s
dxN

, s14d

nd

cxsdx1
^
s
¯ ^

s
dxN+1

d = dy2
^
s
¯ ^

s
dyN+1

fN + 1,Cgx1x2¯xN+1

xy2¯yN+1

= dx1

x dx2
^
s
¯ ^

s
dxN+1

+ qesx1,xddx2

x dx1
^
s

dx3
^
s
¯ ^

s
dxN+1

+ ¯ + qesx1,xd+¯+esxNxddxN+1

x dx1
^
s
¯ ^

s
dxN

. s15d

learly the braided derivativecx (or ]x in the notation of Ref. 20) is given by the evaluation
nterior product pairing withH, but extended to the whole ofSC0

sHd as a braided derivation. Th
s like a super-derivation, but usingC to braidcx past elements ofH. These operators of braid
ifferentiation arise as infinitesimal translations on the braided space, as expressed thro

inear braided coproduct. From the braided Leibniz rule for these operators, one has ea
ollowing relations:20

cx
*cy

* = cb
*ca

*R8a
x
b
y = cy

*ĉx
*qe0sx,yd, cxcy = R8x

a
y
bcbca = qe0sx,ydcycx, s16d

nd

dy
x = cxcy

* − ca
*Ra

y
x
bcb = cxcy

* − qesy,xdcy
*cx, s17d

ust as in Eqs.(9). Notice that thecx operators again obey the algebraSC0
sHd, as do(more

bviously) the cx
* , but now we have also the cross relation(17).

To sum up, the spaceSC0
sHd, which should be viewed geometrically as the algebr

0-symmetric functions(on the dual space ofH), first decomposes as a vector space. We

C0
sHd= %NH^sN, where the componentsH^s¯^sH (N copies) consist ofC0-symmetric func

ions of degreeN. We shall study these components more explicitly in the next section. Sec
he same algebra acts by “pointwise multiplication” and “infinitesimal translation” on itself,
rating a braided Weyl algebra and satisfying the relations(9) in our discrete setting. This co
truction generalizes both the usual CCR and CAR algebras, along with their usual realiza
ymmetric or antisymmetric product algebras. All of this is an easy case of the general th

22
raided spaces and braided derivatives,for our particularR, R8-matrices.
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Note also that although we have carefully distinguisheddx (the basis of the spaceH gener
ting SC0

sHd) from the operatorscx
* andcx that act onSC0

sHd, we can also identifyH with the
pace generated by thecx

* acting on 1 by multiplication. Thus we can identify the whole “ac
pon” copy ofSC0

sHd with the copy ofSC0
sHd generated by thecx

* . The vacuum state isu0l
1. From the geometrical point of view, thecx act by braided differentiation. From the “Fo
pace” point of view, they act via the commutation relations and the condition thatcxu0l=0.

Finally, let us specializeX to a finite ordered set, writingX=h1, . . . ,nj. Then using Eqs.(15),
e have the following results forSC0

sHd and the corresponding braided Weyl algebra:

ci
*c j

* = qc j
*ci

* , cic j = qc jci, cic j
* = q−1c j

*ci, c jci
* = qci

*c j s∀ i , jd

cici
* − qci

*ci = 1 s∀ id, s18d

here

ci
* um1, . . . ,mnl = q−S j,imjum1, . . . ,mi + 1, . . . ,mnl,

cium1, . . . ,mnl = qS j,1mjfmi ;qgum1, . . . ,mi − 1, . . . ,mnl. s19d

ere

um1, . . . ,mnl = sc1
*dm1

¯ scn
*dmnu0l,

hile

fm;qg = 1 +q + ¯ + qm−1 = s1 − qmd/s1 − qd

s a “q-integer.” These equations yield, for example, the “density operator” as

ri = ci
*ci, rium1, . . . ,mnl = fmi ;qgum1, . . . ,mnl. s20d

e note again that the final equation of(18) impliesci
* cannot be the adjoint ofci unlessq is real.

n general theq-integers in Eq.(20) are complex, and the operatorri is not self-adjoint.
Although we are taking the above “quantum-mechanical harmonic oscillator” point of

he same mathematical structures can also be viewed as space–time position and m
enerators. Then we would denote the generatorsdi by Xi, and regard them as the coordinate
noncommutative spacetime, with the usual “q-plane” relations,XiXj =qXjXi for i , j . Similarly,

e would writeci
* =X̂i for the operation of left-multiplication byXi, and ci =]i for the braided

ifferentiation

]isX1
m1

¯ Xn
mnd = qS j,imjfmi ;qgX1

m1
¯ Xi

mi−1
¯ Xn

mn.

his is the “geometrical” point of view to which we alluded above. Here]i acts on theXi variable
y q-differentiation, with an additional braidingq-factor as]i moves past theXj, j , i, in order to
each theXi. Note that theq-plane is usually associated with more complicatedR-matrices relate
o quantum groups SLqsnd but this is not the case here. Indeed, many differentR-matrices can giv
he same quantum plane.

. Functional version

We next proceed to a functional version of the above, more suitable for the continuum
learly, on general functionsh, gPH, the braiding is given by

C0sh ^ gdsx,yd = gsxdhsydq−e0sx,yd, s21d

hereC0sh^ gd=edxdyC0sh^ gdsx,yddx ^ dy (the integrals here and below should be interpr

s sums in the discrete case). Next, a basis forH^s¯^sH is given by “normal ordering,” i.e., we
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hoosehdx1
^s¯^sudxN

ux1øx2ø ¯ øxNj. We let the coefficients in this basis be partially defi
unctions fsx1,x2, . . . ,xNd so that

f =E
x1ø¯øxN

dx1 ¯ dxNfsx1,x2, . . . ,xNddx1
^
s
¯ ^

s
dxN

.

Then, definingc* shd=edxhsxdd̂x, we compute

c * shdf =E
xøx1ø¯øxN

dxdx1 ¯ dxNhsxdfsx1, . . . ,xNddx^
s

dx1
^
s
¯ ^

s
xxN

+ q−1E
x1,xøx2¯øxN

dx1dx¯ dxNhsxdfsx1, . . . ,xNddx1
^
s

dx^
s

dx2
^
s
¯ ^ dxN

+ ¯

+ q−NE
x1ø¯øxN,x

dx1 ¯ dxNdxhsxdfsx1, . . . ,xNddx1
^
s
¯ ^

s
dxN

^
s

dx, s22d

here we have used the relations(12). After relabeling, we read off the coefficients as

sc * shdfdsx1, . . . ,xN+1d = hsx1dfsx2, . . . ,xN+1d + q−1hsx2dfsx1,x3, . . . ,xN+1d + ¯

+ q−NhsxN+1dfsx1, . . . ,xNd, s23d

or distinct “normally ordered” arguments. This is our representation ofc* in the continuum case
Similarly, we linearly extend the definition(15) of ]x, doing in each case one of the integ

nd relabeling the integration variablesx1, . . . ,xN. This gives

csxdf =E
xøx1¯øxN

dx1 ¯ dxNfsx,x1, . . . ,xNddx1
^
s
¯ ^

s
dN

+ qE
x1øxøx2ø¯øxN

dx1 ¯ dxNfsx1,x,x2, . . . ,xNddx1
^
s
¯ ^

s
dN + ¯

+ qNE
x1ø¯øxNøx

dx1 ¯ dxNfsx1, . . . ,xN,xddx1
^
s
¯ ^

s
dN,

hich yields

scsxdfdsx1, . . . ,xNd = qmfsx1, . . . ,xm,x,xm+1, . . . ,xNd for xm , x , xm+1, s24d

ith distinct, “normally ordered”x1, . . . ,xN (using the usual conventions form=0 or m=N). This
s our representation ofc in the continuum case.

Finally, if the basis elements are taken in a different order, the corresponding coefficie
elated through Eq.(12), e.g., we have

fsx2,x1, . . . ,xNd = qe0sx1,x2dfsx1,x2, . . . ,xNd,

nd so forth. In this way, any coefficient function defined on “normally ordered” argum
xtends uniquely to an element ofH^N obeying such relations.

Hence, proceeding now in the continuum case, we can characterizeH^s¯^sH as the sub

pace of “C0-symmetric” functions
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H^
s
¯ ^

s
H = hf [ H^Nufsssx1, . . . ,xNdd = q,ssdfsx1, . . . ,xNd, ∀ s [ SN,x1 , ¯ , xNj,

s25d

here,ssd is the length of the permutations. It suffices to impose the symmetrization condit
ere almost everywhere. For example,

H^
s
H = hf ufsy,xd = qfsx,yd, ∀ x , yj,

nd

H^
s
H^

s
H = hf ufsy,x,zd = fsx,z,yd = qfsx,y,zd, fsz,x,yd = fsy,z,xd = q2fsx,y,zd,

fsz,y,xd = q3fsx,y,zd, ∀ x , y , zj.

aking use of the subspace description(25), there is a corresponding formula for the action
* shd that involves factors ofqe. For example, lettingc* shd act on a functionf PH^sH, we
ave

sc * shdfdsx,y,zd = hsxdfsy,zd + qesy,xdhsydfsx,zd + qesz,xd+esz,ydhszdfsx,yd. s26d

he general formula for degreeN is

c * shdf = sid + C12 + C23C12 + ¯ + CN,N+1¯ C23C12dsh ^ fd, s27d

hich up to a normalization is justh^ f followed by totalC-symmetrization(given the assume
-symmetry off). Similarly, the formula forcsxd may be written in the subspace description

omes out simply as the interior product

csxdf = fsx, . . . d, s28d

here we evaluate the first argument off at x. These are the field operators when we work w
-particle wave functions as symmetrized functions inN variables, as in the usual Bose or Fe
ock spaces.

When there are products of fields, we will typically smear at least some of the variable
est functions to make sense of the distributions. Thus theq-commutation relations can be writt
s

csxdcshd = csu0xhdcsxd, c * sxdc * shd = c * su0xhdc * sxd,

cshdc * sxd = c * sxdcsuxhd + hsxd, s29d

or xPX andh in a dense domain ofH, where for each fixedx we define

u0xsyd = qe0sx,yd, uxsyd = qesx,yd

s functions ofy (having modulus 1 whenq is a phase), and whereu0xh anduxh refer to the actio
n H given by pointwise multiplication. The second equation of(29) can also be written

csxdc * shd = c * sūxhdcsxd + hsxd,

hereūxsyd=qesy,xd.
As before, essentially the same algebraSC0

sHd leads both to the Hilbert space of the sys
ith componentsH^sN as above(ignoring its algebra structure), and to the generalized fie

lgebra of thec* shd together with another copy for thecshd as an algebra of operator-valued
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istributions obeying(9) and represented according to(23) and(24). The Fock space can also
iewed as generated by the operatorsc* shd for a sufficient set of test functionsh, acting repea
dly on u0l.

We also have a geometrical picture as at the end of the last section, withcshd acting now by
braided functional differentiation.”

. Unitarity considerations

Until now we have worked rather generally, and have takenq to be arbitrary. We now wor
pecifically overC, and takeq to be a phase. Addressing first the continuum case, we consid
2 inner product onH, and verify that all our operator constructions are suitably self-adjoin

First we see thatC0 is self-adjoint, since

sa ^ b,C0sh ^ gdd =E E dxdyāsxdb̄sydgsxdhsydq−e0sx,yd

=E E dxdyC0sa ^ bdsy,xdhsydgsxd = sC0sa ^ bd,h ^ gd.

Next we make use of the fact that the spacesH^s¯^sH haveL2 inner products, when w
rite their elements as functionsf defined on the fundamental domain of “normally order
oordinates. We perform the integration over this domain. Thus:

sg,c * shdfd =E
x1ø¯øxN+1

dx1 ¯ dxN+1ḡsx1, . . . ,xN+1d · o
m=0

N+1

q−mhsxm+1dfsx1, . . . ,x̂m+1, . . . ,xN+1d

= o
m=0

N E
x1ø¯øxN

dx1 ¯ dxN ·E
xm

xm+1

dxqmh̄sxdgsx1, . . . ,xm,x,xm+1, . . . ,xNdfsx1, . . . ,xNd

= scsh̄dg, fd, s30d

here we have used the previous results forc* shd andcsxd, interpretedcsh̄d as the integral o

sxd times h̄, and relabeled thexi in the calculation. The casesm=0 andm=N are understood
he obvious way(the integration is then taken to ±̀). In the summations forc* shdf (see Eq.(22))
ome of the inequalities in the region of integration are strict, but we are permitted to igno
istinction in the present continuum case.

Finally, in our subspace description ofH^s¯^sH we would like to define the inner produ
n terms of that onH^N. Indeed, forf, g extended toC0-symmetric elements ofH^N, we have

sg, fdH^N = o
sPSN

E
x1ø¯øxN

dx1 ¯ dxNḡsssx1, . . . ,xNddfsssx1, . . . ,xNdd = N ! sg, fd.

hat is, the natural inner product with respect to whichc and c* are mutually adjoint isN!−1

imes the usual tensor product inner product. Alternatively, if one wished to use the usua
roduct inner product, then one should work withsN+1d−1c* shd. From Eq.(27) we see that th
ould then be a true averaging over the symmetric group, and would correspond to th
ormalization in the Bose and Fermi cases.

For the continuum case, we see thatc* is the adjoint ofc as in Ref. 18. The discrete ca
equires us to perform summations instead of integrations, and to be careful about the dom
ummation. Thus, in the second term of Eq.(22), we havex1,xøx2ø ¯ øxN; and similarly for

he other terms. Then, as a correction to Eq.(30), we have the following:
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scsh̄dg, fd = sg,c * shdfd + o
x1øx2ø¯øxN

sq−1hsx1dḡsx1,x1,x2, . . . ,xNd + ¯

+ q−NhsxNdḡsx1, . . . ,xN−1,xN,xNdd · fsx1, . . . ,xNd. s31d

riting csh̄d†=c* shd+Th
* , wherecsh̄d† is the adjoint ofcsh̄d, we find

Th
*sdx1

^
s
¯ ^

s
dxN

d = o
m=1

N

q−mhsxmddx1
^
s
¯ ^

s
dxm

^
s

dxm
^
s
¯ ^

s
dxN

heredxm
is duplicated on the right-hand side, and wherex1ø ¯ øxN.

To proceed further, it is convenient(though not essential) to use the simplified notation for t
etX=h1, . . . ,nj. We then find

Ti
*ssd1dm1

¯ sdndmnd = q−S j,imjsq−1 + ¯ + q−midsd1
m1d ¯ sdi

mi+1d ¯ sdndmn

where we have omitted the symbols^s for the symmetrized tensor product). Hence

Ti
* um1, . . . ,mnl = q−1q−S j,imjfmi ;q

−1gum1, . . . ,mi + 1, . . . ,mnl,

nd

ci†um1, . . . ,mnl = s1 + q−1fmi ;q
−1gdci

* um1, . . . ,mnl = fmi + 1;q−1gci
* um1, . . . ,mnl.

oting thatri
† has values which are the complex conjugates of the values of the diagonal o

i in Eq. (20), we see that

ci† = ri
†ci

* , ci = sci
*d†ri . s32d

t is worth remarking that

ci†cium1, . . . ,mnl = ri
†ri = ufmi ;qgu2um1, . . . ,mnl =

1 − cosmiu

1 − cosu
um1, . . . ,mnl s33d

f q=eiu.
While the density operatorsri are not self-adjoint in the discrete case, they have some

roperties. For example,

fri,c j
*g = 0 = fri,c

jg s∀ i Þ jd

ut

rici
* − qci

*ri = ci
* , ciri − qric

i = ci , s34d

ith similar relations forri
†; alsofri ,ri

†g=0. The results differ from the continuum case, where
lready know that Eq.(7) holds with the usual commutator, not theq-commutator of Eq.(34).

The same conclusions apply for any discrete setX. The origin of the differences from th
orresponding equations in the continuum case is that in the discrete case, we have tre
-function in Eq.(9) as a Kronecker-d with values 0 and 1. This makes it the “same size” as
-functions arising in the combinatorics of the summations. Such a treatment leads to
-deformation formulas, as obtained above. For aZn-lattice theory that correctly converges in
ero-spacing limit to the continuum theory, one could usedx,y/Dn in the right-hand side of Eq.(9),
hereD is the lattice spacing.

V. IDENTIFICATION WITH THE TOPOLOGICAL PICTURE

It remains to identify the Hilbert spacesHN in the previous section with the braide

ymmetrized tensor products we have obtained. Let the mapp :BN→SN be the natural homomor-
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hism defined by identifying a crossing with its inverse crossing. As in Sec. II, we desc
opological configurationg̃ by the pairsg ,bd, wherepsg̃d=gPDNsR2d, and wherebPBN (the
undamental group ofDN). Then withg=hx1, . . . ,xNj,

HN > H^
s
¯ ^

s
H, F̃sg,bd = fspsbdsx1, . . . ,xNdd, ∀ x1 , x2 ¯ , xN.

hile g is unordered, we introduce the conventional lexicographic ordering in indexing it
ents.

For example ifx,y,z in R2, then

F̃shx,y,zj,ed = fsx,y,zd, F̃shx,y,zj,b23d = fsx,z,yd = qF̃shx,y,zj,ed = qfsx,y,zd

y equivariance, whereb23 is the braid group generator braiding strand 2 with strand 3. In ge
f x1, ¯ ,xN, then

fsssx1, . . . ,xNdd = F̃shx1, . . . ,xNj,issdd = q,ssdF̃shx1, . . . ,xNj,ed = q,ssdfsx1, . . . ,xNd, s35d

here issd is the braid defined as follows: Lets=sj1
¯sj,ssd

be a reduced expression fors in

erms of simple exchangessj =s j , j +1d. Let bj be the braid group generator braiding strandsj and
j +1. Thenissd=bj1

¯bj,ssd
. Note thatissd does not define a group homomorphism. Equation(35)

s just as required; our symmetry condition onf corresponds to the equivariance underBN of F̃.
Likewise, using the definitions in Sec. II and the diagrammatic notation as in Ref. 1

btains

sc * shdF̃dshx,y,zj,ed = q−#sy,z,xdhsxdF̃shy,zj,ed + q−#sx,z,ydhsydF̃shx,zj,ed

+ q−#sx,y,zdhszdF̃shx,yj,ed,

s well as

scszdF̃dshx,yj,ed = q#sx,y,zdF̃shx,y,zj,ed,

here #sx,y,zd denotes the number of points in the setg=hx,yj to the left of z in R2. These
ctions are to be compared with(24) and (26). Similarly one proves in general that the t
onstructions coincide; that is, the representation of the anyon creation and annihilation fi
he spacesHN of topological configurations is equivalent to their representation in the br
ock space byh^s and the interior product.

. ROOTS OF UNITY AND THE ANYONIC EXCLUSION PRINCIPLE

In this section we specialize further to the case whereq=e2pı/r is a primitiverth root of unity.
ur main observation is that in the continuum case, the explicit representation(23) on

0-symmetric tensor products implies that

cshdr = 0, c * shdr = 0 s∀hd; s36d

hat is, we have ananyonic exclusion principle. Hereh is any test-function, and the smearing oc
y h makes sense of the products of distributions. By taking “bump functions” that are in

ngly localized at an arbitrary pointx, we can also write informally,

csxdr = 0, c * sxdr = 0 s∀xd, s37d

condition which we shall justify directly in the discrete case. Before doing so let us no

onversely, the pointwise condition(37) in the discrete case implies(36), since
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csldx + mdydr = slcsxd + mcsyddr = o
s=0

s=r

lsmr−scsxdscsydr−sFr

s
;qe0sy,xdG = lrcsxdr + mrcsydr ,

s38d

or any constantsl ,m and xÞy. In obtaining (38), we use theq-binomial theorem fo
-commuting quantities, withq-binomial coefficients defined in the usual way but withq-integers

n place of integers in the factorials. Sinceqr =1 we havefr ;q±1g=0 and hence onlys=0 ands
r contribute. So the pointwise and smeared versions are formally equivalent, with the s
ersion being more suitable in the continuum case.

To prove(36) in the continuum, we use(23) acting on the vacuum(the identity function with
o arguments) to deduce that

c * shdmsx1, . . . ,xmd = fm;q−1g ! hsx1d ¯ hsxmd

or all non-negative integersm. This follows by induction onm. It is true form=1; assuming it fo
, we have

c * shdm+1sx1, . . . ,xm+1d = hsx1dc * shdmsx2, . . . ,xm+1d + q−1hsx2dc * shdmsx1,x3, . . . ,xm+1d + ¯

+ q−mhsxm+1dc * shdmsx1, . . . ,xmd

= s1 + q−1 + ¯ + q−mdfm;q−1g!hsx1d ¯ hsxm+1d

s required. The exclusion principle follows whenqr =1, since thenfr ;q−1g=0 as already note
bove. Next, lettingc* shdr act on any Fock state of the formc* sh1d¯c* shNdu0l, we move
* shdr to the right until it arrives to act on the vacuum. In doing so,h will be replaced by
onvolution with all theh1, . . . ,hN [see Eqs.(29)], giving us a new functionh8. But we have
lready verified thatc* sh8dru0l for all test functions; hence(36) holds in the representation. T
esult forcshdr follows, as in the continuum case it is the adjoint.

In fact, in the continuum theory one can formally conclude(36) as a statement about opera
alued distributions. We exhibit the reasoning forr =3 (the general case is similar). We have

c * shd3 =E dxdydzhsxdhsydhszdc * sxdc * sydc * szd

= o
sPS3

E
ssxd,ssyd,sszd

dxdydzhsxdhsydhszdq−,ssdc * sssxddc * sssyddc * ssszdd

= o
sPS3

q−,ssdE
x,y,z

dxdydzc * sxdc * sydc * szd = 0,

here we have writtenssx,y,zd=sssxd ,ssyd ,sszdd, and where,ssd is the length of the perm
ation. In effect we have broken up the threefold integral into 3! permutations of the funda
omain wherex,y,z (not being concerned about coincident points since these form a su
easure zero); then we have used theq-commutation relations(9), and finally we have chang

ariables to give many copies of the integral over the fundamental domain. The result is ze
q−,ssd=f3;q−1g ! =0 whenq3=1. The same argument holds for generalr and forcshdr =0.

The arguments for the discrete case are more subtle, and indeed the formulascsxdr =0 and
* sxdr =0 do not hold automatically in our representation. Rather, we argue that in this ca
atural toimposethese according to the algebraic structure. This is similar to “truncated ver
f quantum groups and otherq-algebras in conformal field theory and other settings at roo
nity. Indeed we then haveCr =id for the braiding, and we are essentially in the setting tha
een called “anyonic vector spaces ” in Refs. 13 and 20.

From a physical point of view, the key observation is that forq a primitive rth root of unity,

he operators
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csxdr, c * sxdr

re in any case central. In fact, from(9) we havecsxdmcsyd=qme0sx,ydcsydcsxdm, and

csxdmc * syd = csxdm−1qesy,xdc * sydcsxd + csxdm−1dsx − yd

= qmesy,xdc * sydcsxdm + dsx − ydcsxdm−1fm;qesy,xdg.

ence, whenqr =1, we havefr ;q±1g=0 andcsxdr is central. Note that here it is critical that
sede and note0 in the calculation involvingc* syd. Similarly, we have thatc* sxdr central
herefore, in an irreducible sector of the theory, these operators should be set to multiple

dentity.
This argument is needed only in the discrete case, but the algebraic structures apply(suitably

nderstood) in both cases; thus we have used a notation applicable to both.
As for which value these operators should be assigned, we have already seen tha(37) is

uitable for the constraint to be linear(basis independent), in the sense of applying to allh. Clearly
ero is the only value with this property. Another way to reach the same conclusion is in te
he braided coproduct onSC0

sHd. On products it extends byC, and one has

DI c * sxdr = o
s=0

s=r

c * sxds
^ c * sxdr−sFr

s
;qG = c * sxdr

^ 1 + 1 ^ c * sxdr .

similar result holds forcsxdr. Since DI 1=1^ 1, only (37) allows the braided coproduct
escend to the reduced algebra; no other constant will do. Moreover, since thisDI underlies th
raided-differentiation operation]x in Sec. III A, our representation ofc* (and more obviouslyc)

hen descends to an action of the truncated algebraSC0
sHd (in which (37) is imposed) on itself, by

he same formulas as before. This is in subtle contrast to the continuum case, where(36) already
olds.

Next we note that becausec* sxd andc* syd commute up to a factorqe0sx,yd, any state forme
y a sequence of creation field operators applied to the vacuum, wherer or more occurrences
* sxd are included, must vanish. That is,

c * sxdc * sydc * szd ¯ c * sxdc * swd ¯ c * sxd ¯ u0l = 0

f there arer or more instances ofc* sxd. The distinctc* syd, c* szd and so forth can equally b
nnihilation fieldscsyd, cszd and so forth, since these tooq-commute withc* sxd.

More generally, a state formed from the vacuum will be zero if there arem annihilationcsxd
perators, andr +m or morec* sxd. This can be proved by induction onm, as follows. The cas
=0 is covered above. Suppose it is true form−1. Given an expression withm annihilation
perators, look at the rightmostcsxd. Applying theq-commutation relation with thec* to its right,
e movecsxd to the right and pick up a second term with ad-function and with one fewercsxd,
nd at most one fewerc* sxd; by our induction hypothesis, this second term vanishes. Meanw
he first term hascsxd one step to the right; repeating this eventually brings it to act directly ou0l,
iving zero. This proof makes sense in the discrete case, or with the assumption t
-functions are approximated by bounded functions with the limit taken only at the end(in order
o treatds0d as a number). More precisely, in terms of annihilation operators smeared with
unctions,

c * sxd ¯ csh1d ¯ c * sxd ¯ cshmd ¯ c * sxd ¯ u0l = 0

f there arem annihilation operators and at leastr +m creationsc* sxd anywhere in the string. Th
ollows from (29) and a similar proof by induction.

For generalc* shd we always have the exclusion principle(36). But the stronger version,
hich some of thec* shd are not adjacent, is more complicated. The variousc* shd needed ar
odified by the intervening creation field operators, according to(29). Thus, one has inste

xclusion conditions that take the form
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c * su0x1
¯ u0xm

hdn0c * sx1dc * su0x2
¯ u0xm

hdn1
¯ c * sxm−1dc * su0xm

hdnm−1c * sxmdc * shdnmu0l

= 0,

henn0+¯ +nmù r. In the Bose or Fermi cases, the functionsu0x are constants±1d, up to a se
f measure zero; but otherwise they must be taken into account. The same complication
hen there are annihilation operators present. This would appear to be a feature of the

heory sr .2d, that is not present for fermions.
On the other hand, we do not see this complication if all our smeared fields have d

upport. Thus, from(29) we find that

c * shdc * sgd = c * sgdc * shdHq if suppshd , suppsgd
q−1 if suppshd . suppsgd J

cshdc * sgd = sḡ,hd + c * sgdc * shdHq−1 if suppshd , suppsgd
q if suppshd . suppsgd J

ith a similar equation forcshdcsgd. When they occur, these have a similar form to(9). Hence, a
n application, one may take thec* sxd as given more precisely by smearing with “bump fu
ions” of small support around the relevant point. As long as these bumps do not touch, the
mearedc* sxd fields behave as in the discrete case, and may be collected together by
elations. For such states we have the full exclusion principle again, without any compli
hen the instances of the smeared fieldc* sxd are separated from each other in the product of
perators.

With this last observation in mind, let us give a straightforward application of the exc
rinciple to a gas of noninteracting anyonic particles(e.g., vortices) localized in disjoint set
round pointsx1, . . . ,xn in R2. Let us suppose that each particle carries a fixed unitE of energy
hich does not depend on the positions; the latter will therefore be considered as fixed(or else, we
ust factor out the resulting degeneracy). As per the discrete version of the theory, the redu

ange of states is then

um1, . . . ,mnl = c * sx1dm1
¯ c * sxndmnu0l, mi = 0, . . . ,r − 1.

et us decompose this reduced Hilbert space as%NHN according toN=oi=1
n mi, which is the valu

f the occupation number operator

N =E dxrsxd =E dxc * sxdcsxd.

he statistical partition function is then

Zb = Tracese−bENd = o
N

e−bEN dimsHNd = o
hmij

e−bESimi = fr ;e−bEgn. s39d

he q-integer again appears, but now at the real valuee−bE. Each modeci
* may be counte

eparately, so that the computation here is the same as that for 1 particle, but raised tonth
ower. Whenr =2 we recover the usual partition function for fermions, while forr =` we recove
he usual result for bosons

f2;e−bEg = e−bE + 1; f`;e−bEg =
1

1 − e−bE .

he general formulafr ;e−bEg interpolates the two. From the partition function one may
32
roceed as usual to obtain the thermodynamic properties of such a gas.
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More generally, we may take Hamiltonians with interaction terms, including those tha
rom the field theory rather than the harmonic oscillator point of view(i.e., with kinetic and
urrent–current interaction terms). Such applications will be developed elsewhere.

I. CONCLUDING REMARKS

We have obtained a generalized exclusion principle for anyons—an important p
esult—not from analysis of the statistical mechanics of anyons, but from the explicit repr
ion of nonrelativistic creation and annihilation fields in an appropriate braided tensor p
pace. As one would expect in this context, the principle holds when the anyonic phase s
oot of unity. It applies both to smeared fieldscshd, c* shd and to(unsmeared) operator-value
istributionscsxd, c* sxd satisfyingq-commutation relations; but it takes a rather cleaner for

he latter case(a subtle distinction that disappears for bosons and fermions).
On the other hand, the discrete version in which we work directly with points(rather then with

ncreasingly peaked bump functions) turns out to be different and algebraically more complica
ith ci andci

* no longer adjoint to each other. The fact that one has a different theory fro
ontinuum limit is an interesting feature of our analysis. We believe this subject, and its rela
entile statistics and to generalized harmonic oscillators, deserves some renewed attent

Let us also mention some related conceptual aspects of interest. Our construction ofSC0
sHd in

ec. II is manifestly dependent on an ordering, since this enters in the braiding. This is
uantum planes(see the remarks at the start of Sec. V), whereX=h1,2, . . . ,nj is the indexing se
nd it remains true when we apply our formalism to the second quantization of nonrela
elds (so thatX denotes physical space). The Fock space construction might then seem t
trongly dependent on the somewhat artificial lexicographical total ordering onR2 used in Sec. III
owever the isomorphism in Sec. IV, with the spacesHN described by means of topologi
onfigurations, tells us that in fact the underlying diffeomorphism invariance remains as fa
hysics is concerned. The lexicographical ordering places the physical system into an a

orm described by the symmetric tensor products^s, but this is for mathematical convenien
nly.

This suggests an answer to a certain puzzle inq-deformed physics—how to physically int
ret noncommutative tensor products(as generated by noncocommutative quantum groups). That

s, if A and B are two physically equivalent systems, what is the difference betweenA^sB and
^sA, and which is the correct description of the joint system? In our anyonic model this
nphysical distinction that is needed to work algebraically; just as(physically) the pointsg
hx1, . . . ,xNj in DN are intrinsically unordered, but it can nevertheless be helpful(mathematically)

o order them. This is the difference between diffeomorphisms of the manifoldR2 acting on
ubsets ofR2, and the coordinate description of their lifting to the universal covering spa
-identical-particle configuration space.

Another interesting feature is the way that the strictness of the braidingC comes about from
he structure of the singularities at coincident points(expressed here as Kronecker or D
-functions). In general one has diagonal singularities when multiplying operator fields,
ome cases(such as in conformal field theory) these can be controlled(e.g., by the operato
roduct expansion). It would be interesting to see how braidings that arise in conformal

heory relate to diffeomorphism group ideas and toq-Fock space ideas along the lines of
resent paper. In some situations, such as the Wess–Zumino–Witten model, there is also

ogical path picture leading to the quantum groupUqssu2d.
Finally, we note that the basic ideas described here apply also to plektons—particles

ted with higher-dimensional(non-Abelian) unitary representations of the braid group. HereTsbd
n Sec. II is not simply a phase, but a finite-dimensional unitary operator acting on a mu
onent wave function; and we work with a multiplet of operator fields. Essentially, we then
nR-matrix for the linear braid group representation, in place ofq in the formulas above; and w
ust also be more careful about ordering. Thus the creation and annihilation fields act no

y multiplication by powers ofq representing the number of crossings in the resulting braid, but
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y matrix operation on the multiplet. In place ofqesx,yd andqe0sx,yd, we defineC andC0, usingR
r R−1 according to the ordering—but with the same conceptual picture that we have used
nyonic case.
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We give new solutions of the quantum conformal deformations of the full Maxwell
equations in terms of deformations of the plane wave. We study the compatibility
of these solutions with the conservation of the current. We also start the study of
quantum linear conformal(Weyl) gravity by writing the correspondingq-deformed
equations. ©2004 American Institute of Physics.[DOI: 10.1063/1.1790049]

. INTRODUCTION

One of the purposes of quantum deformations is to provide an alternative of the regula
rocedures of quantum field theory. Applied to Minkowski space–time the quantum deform
pproach is also an alternative to Connes’ noncommutative geometry.1 The first step in such a
pproach is to construct a noncommutative quantum deformation of Minkowski space–time
re several possible such deformations, cf. Refs. 2–6. We shall follow the deformation of
hich is different from the others, the most important aspect being that it is related to a de

ion of the conformal group.
The first problem to tackle in a noncommutative deformed setting is to study theq-deformed

nalogues of the conformally invariant equations. Here we continue the study of hierarc
eformed equations derived in Refs. 6–8 with the use of quantum conformal symmetry. W
ow a description of our setting starting from the simplest example.

It is well known that the d’Alembert equation,

hwsxd = 0, h = ]m]m = s]0d2 − s]Wd2, s1.1d

s conformally invariant, cf., e.g., Ref. 9. Herew is a scalar field of fixed conformal weightx
sx0,x1,x2,x3d denotes the Minkowski space–time coordinates. Not known was the fact tha(1.1)
ay be interpreted as conditionally conformally invariant equation and thus may be red

rom a subsingular vector of a Verma module of the algebra sl(4), the complexification of th
onformal algebra su(2,2).7

The same idea was used in Ref. 7 to derive aq-d’Alembert equation, namely, as arising fr
subsingular vector of a Verma module of the quantum algebraUqssls4dd. The resulting equatio

s a q-difference equation and the solution spaces are built on the noncommutativeq-Minkowski
pace–time of Ref. 6.

Besides theq-d’Alembert equation in Ref. 7 were derived a whole hierarchy of equa
orresponding to the massless representations of the conformal group and parametriz

)
Permanent address.

3788022-2488/2004/45(10)/3788/12/$22.00 © 2004 American Institute of Physics
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on-negative integerr.7 The caser =0 corresponds to theq-d’Alembert equation, while for eac
.0 there are two couples of equations involving fields of conjugated Lorentz representa
imensionr +1. For instance, the caser =1 corresponds to the massless Dirac equation, one c
f equations describing the neutrino, the other couple of equations describing the antin
hile the caser =2 corresponds to the Maxwell equations.

The construction of solutions of theq-d’Alembert hierarchy was started in Ref. 10 with
-d’Alembert equation. One of the solutions given was a deformation of the plane wav
ormal power series in the noncommutative coordinates ofq-Minkowski space–time and fou
omenta. Thisq-plane wave has some properties analogous to the classical one but is
xponent orq-exponent. Thus, it differs conceptually from the classical plane wave and may
s a regularization of the latter. In the same sense it differs from theq-plane wave in the paper11

hich is not surprising, since there is used differentq-Minkowski space–time(from Refs. 2–4)
nd differentq-d’Alembert equation both based only on a(different) q-Lorentz algebra, and not o
-conformal[or Uqssls4dd] symmetry as in our case. In fact, it is not clear whether theq-Lorentz
lgebra of Refs. 2–4 used in Ref. 11 is extendable to aq-conformal algebra.

For the equations labeled byr .0 it turned out that one needs a secondq-deformation of th
lane wave in a conjugated basis.12 The solutions of the hierarchy in terms of the twoq-plane
aves were given in Ref. 12 forr =1 and in Ref. 13 forr .1. Later these twoq-plane waves wer
eneralized and correspondingly more general solutions of the hierarchy were given in R

Another hierarchy derived in Ref. 6 is the Maxwell hierarchy. The two hierarchies hav
ne common member—the Maxwell equations—they are the lowest member of the M
ierarchy and ther =2 member of the massless hierarchy. The compatibility of the solutions

ree q-Maxwell equations with theq-potential equations was studied.15

In the present paper we study the fullq-Maxwell equations and the compatibility of th
olutions with the conservation of the current. We give new solutions of the fullq-Maxwell
quations in two conjugated bases. The solutions of the homogeneous equations are
generalizing previously given solutions).

Another family contained in Ref. 8, but not explicated there, is related with the linea
ormal (Weyl) gravity which we start to study in this paper. Namely, in the last section we
he quantum conformal deformations of the linear conformal(Weyl) gravity.

I. PRELIMINARIES

First we introduce new Minkowski variables,

x± ; x0 ± x3, v ; x1 − ix2, v̄ ; x1 + ix2, s2.1d

hich (unlike thexm), have definite group-theoretical interpretation as part of a six-dimen
oset of the conformal group SU(2, 2) (as explained in Ref. 6). In terms of these variables, e.g.,
’Alembert equation(1.1) is

hw = s]−]+ − ]v]v̄dw = 0. s2.2d

In theq-deformed case we use the noncommutativeq-Minkowski space–time of Ref. 6 whic
s given by the following commutation relations(with l;q−q−1):

x±v = q±1vx±, x±v̄ = q±1v̄x±, x+x− − x−x+ = lvv̄, v̄v = vv̄, s2.3d

ith the deformation parameter being a phase:uqu=1. Relations(2.3) are preserved by the an
inear anti-involutionv:

vsx±d = x±, vsvd = v̄, vsqd = q̄ = q−1 svsld = − ld. s2.4d

The solution spaces consist of formal power series in theq-Minkowski coordinates(which we

ive in two conjugate bases):
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w = o
j ,n,,,mPZ+

m jn,mw jn,m, w jn,m = ŵ jn,m,w̃ jn,m, s2.5d

ŵ jn,m = v jx−
nx+

,v̄m, s2.6d

w̃ jn,m = v̄mx+
,x−

nv j = vsŵ jn,md. s2.7d

he solution spaces(2.5) are representation spaces of the quantum algebraUqssls4dd. For the latte
e use the rational basis of Jimbo.16 The action ofUqssls4dd on ŵ jn,m was given in Ref. 17, and o

jn,m in Ref. 12. Because of the conjugationv we are actually working with the conform
uantum algebra which is a deformation ofUssus2,2dd.

Further we suppose thatq is not a nontrivial root of unity.
In order to write ourq-deformed equations in compact form it is necessary to introduce

dditional operators. We first define the operators

M̂k
±w = S j ,n,,,mPZ+

m jn,mM̂k
±w jn,m, k = ± ,v,v̄, s2.8d

Tk
±w = S j ,n,,,mPZ+

m jn,mTk
±w jn,m, k = ± ,v,v̄, s2.9d

nd M̂+
±, M̂−

±, M̂v
±, M̂ v̄

±, respectively, act onw jn,m by changing by ±1 the value ofj , n, ,, m,
espectively, whileT+

±, T−
±, Tv

±, Tv̄
±, respectively, act onw jn,m by multiplication ofq± j, q±n, q±,, q±m,

espectively. We shall use also the “logs”Nk such thatTk=qNk. Now we can define th
-difference operators,

D̂kw =
1

l
M̂k

−1sTk − Tk
−1dw =

1

l
M̂k

−1sqNk − q−Nkdw. s2.10d

ote that whenq→1 then D̂k→]k. Using (2.8) and (2.10) the q-d’Alembert equation may b
ritten as,7,12 respectively,

sqD̂−D̂+TvTv̄ − D̂vD̂v̄dTvT−T+Tv̄ŵ = 0, s2.11d

sD̂−D̂+ − qD̂vD̂v̄TvTv̄dT−T+w̃ = 0. s2.12d

ote that whenq→1 both Eqs.(2.11) and(2.12) go to (2.2). Note that the operators in(2.8) and
2.10)–(2.12) for different variables commute, i.e., we have passed to commuting variables
ver, keeping the normal ordering it is straightforward to pass back to noncommuting var

Next we recall that the Maxwell’s equations are part also of Maxwell’s hierarchy of equa
he quantum conformal deformation of the equations of the hierarchy are6

qIn
+

qFn
+ = qJ

n, qIn
−

qFn
− = qJ

n, s2.13d

here in the basis(2.6) the operators are

qIn
+ = 1

2ssqD̂v + M̂z̄D̂+sT−Tvd−1Tv̄dT−fn + 2 −Nzgq − q−n−2sD̂−T− + q−1M̂z̄D̂v̄

− lM̂vM̂z̄D̂−D̂+Tv̄dT−
−1D̂zdT+TvTzTz̄

−1, s2.14d

qIn
− = 1

2sD̂v̄ + qM̂zD̂+Tv̄T−Tv
−1 − qlM̂vD̂−D̂+Tv̄dTv̄fn + 2 −Nz̄gq − 1

2qn+3sD̂− + qM̂zD̂vT−dD̂z̄T−Tv̄,

s2.15d
hile where in the basis(2.7) the operators are
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qIn
+ = 1

2qsD̂v + M̂z̄D̂+T−Tv̄
−1TvdTvfn + 2 −Nzgq − 1

2qn+3sD̂− + M̂z̄D̂v̄T−

+ lq−1M̂vM̂z̄D̂−D̂+Tv̄
−1T−dD̂zT−Tv, s2.16d

qIn
− = 1

2ssD̂v̄Tv̄T− + M̂zD̂+Tv + q−1lM̂vD̂−D̂+T−dfn + 2 −Nz̄gq

− q−n−2sD̂− + M̂zD̂vT−
−1dD̂z̄Tv̄dT+Tz̄Tz

−1. s2.17d

ote that forq=1 (2.14) and (2.15) coincide with (2.16) and (2.17), respectively. Maxwell’
quations]mFmn=Jn, emnrs]mFrs=0 are obtained from(2.13) for n=0, q=1, substituting the fixe
elicity constituentsF± by F+=z2sF1

++ iF2
+d−2zF3

+−sF1
+− iF2

+d, F −= z̄2sF1
−− iF2

−d−2z̄F3
−−sF1

−

iF2
−d, Fk

±=Fk0± si /2d«k,mF,m=Ek± iHk, J0= z̄zsJ0+J3d+zsJ1+ iJ2d+ z̄sJ1− iJ2d+sJ0−J3d, and then
omparing the coefficients of the resulting first order polynomials inz and z̄.

We shall look for solutions of the fullq-Maxwell’s equations in terms of deformations of
lane wave. Let us first recall these deformations from Ref. 14. The first deformation is g

he basis(2.6):

exp̂qsk,xd = o
s=0

`
1

fsgq!
ĥs,

fsgq ! ; fsgqfs− 1gq ¯ f1gq, f0gq ! ; 1, fngq ;
qn − q−n

q − q−1 , s2.18d

ĥs = bs o
a,b,nPZ+

s− 1ds−a−bqnss−2a−2b+2nd+ass−a−1d+bs−s+a+b+1dqPssa,bd

Gqsa − n + 1dGqsb − n + 1dGqss− a − b + n + 1dfngq!

3 kv
s−a−b+nk−

b−nk+
a−nkv̄

nvnx−
a−nx+

b−nv̄s−a−b+n,

sbsd−1 = o
p=0

s
qss−pdsp−1d+p

fpgq ! fs− pgq!
, s2.19d

here the momentum componentsskv ,k−,k+,kv̄d are supposed to be noncommutative betw
hemselves[obeying the same rules(2.3) as theq-Minkowski coordinates], and commutative wit
he coordinates. Further,Gq is a q-deformation of theG-function, of which here we use only t
ropertiesGqspd=fp−1gq! for pPN, 1 /Gqspd=0 for pPZ−; Pssa,bd is a polynomial ina, b. Note

hat usĥsduq=1=sk·xds and thus usexp̂qsk,xdduq=1=expsk·xd. This q-plane wave has some proper
nalogous to the classical one but is not an exponent orq-exponent, cf. Ref. 18. This is enab
lso by the fact(true also forq=1) that solving the equations may be done in terms of

omponentsĥs. This deformation of the plane wave generalizes the original one from Ref.
btain which one setsPssa,bd=0, in which case we shall use the notationfs for the componen

rom Ref. 10 since

sĥsdPssa,bd=0 = fs. s2.20d

achĥs satisfies theq-d’Alembert equation(2.11) on the momentumq-cone,

Lq
k ; k−k+ − q−1kvkv̄ = k+k− − qkvkv̄ = 0. s2.21d
The second deformation is given in the basis(2.7),

                                                                                                            



w

w d
b
(

I

se
s

w or com-
m h
m ore
g ave
i

3792 J. Math. Phys., Vol. 45, No. 10, October 2004 V. K. Dobrev and S. T. Petrov

                        
exp̃qsk,xd = o
s=0

`
1

fsgq!
h̃s, s2.22d

h̃s = b̃s o
a,b,n

s− 1ds−a−bqns2a+2b−2n−sd+asa−s−1d+bss−a−b+1dqQssa,bd

Gqsa − n + 1dGqsb − n + 1dGqss− a − b + n + 1dfngq!

3 kv̄
nk+

a−nk−
b−nkv

s−a−b+nv̄s−a−b+nx+
b−nx−

a−nvn,

sb̃sd−1 = o
p=0

s
qsp−sdsp−1d+p

fpgq ! fs− pgq!
, s2.23d

hereQssa,bd are arbitrary polynomials. If the latter are zero then exp˜qsk,xd becomes theq-plane

ave deformation found in Ref. 12. Theh̃s have the same properties as theĥs but the conjugate
asis is used; in particular, they satisfy theq-d’Alembert equation(2.12) on the momentumq-cone
2.21).

II. SOLUTIONS OF THE q-MAXWELL EQUATIONS

First we shall use the basis(2.6). The solutions of(2.13) for n=0 in the homogeneous ca
J=0d are

F̂h± 8 sqF0
±dJ=0 = o

m,s=0

`
1

fsgq!
F̂ms

h±skdfs, s3.1d

F̂ms
h+skd = o

i=0

m So
j=0

m−i

p̂i j
ms1kv

i k−
m−i−jkv̄

j skv − qs+6zk−dskv − qs+3zk−d + p̂i
ms2kv

i kv̄
m−iskv − qs+6zk−dsk+ − qs+3zkv̄d

+ o
j=0

m−i

p̂i j
ms3kv

i k+
m−i−jkv̄

j sk+ − qs+6zkv̄dsk+ − qs+3zkv̄dD , s3.2d

F̂ms
h−skd = o

i=0

m So
j=0

m−i

r̂ i j
ms1kv

i k−
m−i−jkv̄

j skv̄ − q−1z̄k−dskv̄ − z̄k−d + r̂ i
ms2kv

i kv̄
m−isk+ − q−1z̄kvdskv̄ − z̄k−d

+ o
j=0

m−i

r̂ i j
ms3kv

i k+
m−i−jkv̄

j sk+ − q−1z̄kvdsk+ − z̄kvdD , s3.3d

here p̂is jd
msa, r̂ is jd

msa are independent constants. The check that these are solutions is done f
utative Minkowski coordinates and noncommutative momenta on theq-cone. The terms wit
=0 of the solutions(3.1)–(3.3), were obtained earlier13 (later they were generalized using m
eneralq-plane waves14). The solution(3.3) can be written in terms of the deformed plane w

f we suppose that ther̂ is jd
msa for different s coincide,r̂ is jd

msa= r̂ is jd
ma. Then we have

F̂h− = o
m=0

`

F̂m
h−skdexpqsk,xd, F̂m

h−skd = F̂ms
h−skd. s3.4d

In the inhomogeneous case the solutions of(2.13) for n=0 are

J0 = z̄zĴ + zĴ + z̄Ĵ¯+ Ĵ , s3.5d
q + v v −
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Ĵk = o
m,s=o

`
1

fsgq!
Ĵk

msskdfs−1, k = ± ,v,v̄; s3.6d

Ĵ+
msskd = − K̂m

s skdk−; s3.7d

Ĵ−
msskd = − q−s−2K̂m

s skdk+,

Ĵv
msskd = K̂m

s skdkv̄,

Ĵv̄
msskd = q−s−2K̂m

s skdkv,

K̂m
s skd 8 ĝv

skv
m+1 + ĝ−

sk−
m+1 + ĝ+

sk+
m+1 + ĝv̄

skv̄
m+1;

qF0
± = F̂± + F̂h±; s3.8d

F̂± = o
m,s=0

`
1

fsgq!
F̂ms

± skdfs, s3.9d

F̂ms
+ skd = 2dsq

−sssq−s−5ĝ−
sk−

m + zĝv
skv

mdskv − qs+3zk−d + sq−s−5ĝv̄
skv̄

m + zĝ+
sk+

mdsk+ − qs+3zkv̄dd,

F̂ms
− skd = 2dsq

−2s−2ssĝ−
sk−

m + q−2z̄ĝv̄
skv̄

mdskv̄ − z̄k−d + sĝv
skv

m + q−2z̄ĝ+
sk+

mdsk+ − z̄kvdd,

hereds=bs/bs+1. As in the homogeneous case we cannot makeF̂ms
+ skd independent ofs. We can

akeF̂ms
− skd independent ofs by choosingĝk

s ,q2sds
−1, but we cannot makeĴk

msskd independent o
.

Since we work with the full Maxwell equations we have also to check theq-deformation o
he current conservation]nJn=0,

I13J = 0, s3.10d

I13 = q3fNz − 1gqTzD̂z̄D̂vTvT−T+ + qD̂zTzD̂z̄D̂−TvT+ + qfNz − 1gqTzfNz̄ − 1gqD̂+T+Tv̄

+ q−1fNz̄ − 1gqD̂zTzD̂v̄TvT−
−1T+ − lM̂vfNz̄ − 1gqD̂zTzD̂−D̂+TvT−

−1T+Tv̄. s3.11d

ubstituting(3.5) and (3.6) in the above we get

qJ+
sskdk+ + Jv

sskdkv + qs+2Jv̄
skv̄ + qs+1J−

sskdk− = 0. s3.12d

he latter is fulfilled by the explicit expressions in(3.7), but we should note that these express
ulfill also the following splittings of(3.12):

qJ+
sskdk+ + Jv

sskdkv = 0, qJv̄
sskdkv̄ + J−

sskdk− = 0,

s3.13d
J+

sskdk+ + qs+1Jv̄
sskdkv̄ = 0, Jv

sskdkv + qs+1J−
sskdk− = 0.
urthermore the expressions from(3.7) fulfill also
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qJ+
sskdkv̄ + Jv

sskdk− = 0, qJv̄
sskdk+ + J−

sskdkv = 0,

s3.14d
J+

sskdkv + qs+1Jv̄
sskdk− = 0, Jv

sskdk+ + qs+1J−
sskdkv̄ = 0.

Now we shall use the basis(2.7). Then solutions of(2.13) for n=0 in the homogeneous ca
J=0d are

F̃h± 8 sqF0
±dJ=0 = o

m,s=0

`
1

fsgq!
F̃ms

h±skdh̃s, s3.15d

F̃ms
h+skd = o

i=0

m So
j=0

m−i

p̃i j
ms1kv̄

i k−
m−i−jkv

j skv − zk−dskv − qzk−d + p̃i
ms2kv̄

i kv
m−isk+ − zkv̄dskv − qzk−d

+ o
j=0

m−i

p̃i j
ms3kv̄

i k+
m−i−jkv

j sk+ − zkv̄dsk+ − qzkv̄dD , s3.16d

F̃ms
h−skd = o

i=0

m So
j=0

m−i

r̃ i j
ms1kv̄

i k−
m−i−jkv

j skv̄ − qs+1z̄k−dskv̄ − qs+2z̄k−d + r̃ i
ms2kv

i kv̄
m−iskv̄ − qs+1z̄k−dsk+ − qs+2z̄kvd

+ o
j=0

m−i

r̃ i j
ms3kv

i k+
m−i−jkv̄

j sk+ − qs+1z̄kvdsk+ − qs+2z̄kvdD , s3.17d

herep̃is jd
msa, r̃ is jd

msaare independent constants,Qssa,bd=0 in h̃s. The terms withm=0 of the solution
3.15)–(3.17) were obtained earlier in Ref. 13(and using the generalizedq-plane wave in Ref. 14).
he solution(3.16) can be written in terms of the deformed plane wave if we suppose that thp̃is jd

msa

or different s coincide,p̃is jd
msa= p̃is jd

ma. Then we have

F̃h+ = o
m=0

`

F̃m
h+skdexp̃qsk,xd, F̃m

h+skd = F̃ms
h+skd. s3.18d

In the inhomogeneous case the solutions of(2.13) for n=0 are

qJ
0 = z̄zJ̃+ + zJ̃v + z̄J̃v̄ + J̃−; s3.19d

J̃k = o
m,s=o

`
1

fsgq!
J̃k

msskdh̃s−1, k = ± ,v,v̄; s3.20d

J̃+
msskd = − qs+1K̃m

s skdk−, s3.21d

J̃−
msskd = − q−1K̃m

s skdk+,

J̃v
msskd = K̃m

s skdkv̄,

J̃v̄
msskd = qsK̃m

s skdkv,

K̃m
s skd 8 g̃skm+1 + g̃−

sk−
m+1 + g̃+

sk+
m+1 + g̃¯

sk¯
m+1;
v v v v
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qF0
± = F̃± + F̃h±; s3.22d

F̃± = o
m,s=0

`
1

fsgq!
F̃ms

± skdh̃s, s3.23d

F̃ms
+ skd = 2d̃sq

s−2ssg̃−
sk−

m + q−1zg̃v
skv

mdskv − qzk−d + sg̃v̄
skv̄

m + q−1zg̃+
sk+

mdsk+ − qzkv̄dd,

F̃ms
− skd = 2d̃sssq−s−3g̃−

sk−
m + qz̄g̃v̄

skv̄
mdskv̄ − qs+2z̄k−d + sq−s−3g̃v

skv
m + qz̄g̃+

sk+
mdsk+ − qs+2z̄kvdd,

hered̃s=b̃s/ b̃s+1, Qssa,bd=0 in h̃s. We cannot makeF̃ms
− skd or J̃k

msskd independent ofs. We can

akeF̃ms
+ skd independent ofs by choosingg̃k

s ,q−sd̃s
−1.

Also here we shall check whether theq-deformation of the current conservation(3.10) is
ulfilled. The analog of(3.11) in the basis(2.7) is

I13 = fNz − 1gqD̂z̄Tz̄D̂vTv̄T+T−
−1 + qD̂z̄Tz̄D̂zD̂−Tv̄T+ + qfNz̄ − 1gqTz̄fNz − 1gqD̂+T+Tv

+ q2fNz̄ − 1gqD̂zTz̄D̂v̄Tv̄T−T+ − lqM̂vfNz̄ − 1gqD̂zTz̄D̂−D̂+T−T+. s3.24d

hen the analog of(3.12) is

J+
sskdk+ + qsJv

sskdkv + Jv̄
skv̄ + qsJ−

sskdk− = 0. s3.25d

he latter is fulfilled by the explicit expressions in(3.21), but we should note that these expr
ions fulfill also the following splittings of(3.25):

J+
sskdk+ + qsJv

sskdkv = 0, Jv̄
sskdkv̄ + qsJ−

sskdk− = 0,

s3.26d
J+

sskdk+ + Jv̄
sskdkv̄ = 0, Jv

sskdkv + J−
sskdk− = 0.

urthermore the expressions from(3.21) fulfill also

J+
sskdkv̄ + qsJv

sskdk− = 0, Jv̄
sskdk+ + qsJ−

sskdkv = 0,

s3.27d
J+

sskdkv + Jv̄
sskdk− = 0, Jv

sskdk+ + J−
sskdkv̄ = 0.

Summarizing, we have given new solutions of the fullq-Maxwell equations in two conjugat
ases(2.6) and(2.7). The solutions of the homogeneous equations are also new(the old solution
re special cases). We see that the roles of the solutionsF+ and F − are exchanged in the tw

onjugated bases. We note also that the current components are different:Ĵk
msÞ J̃k

ms (for qÞ1, k
v), and in both cases they cannot be made independent ofs. Thus, there is no advantage

hoosing either of the bases(2.6) or (2.7). It may be also possible to use both in a Connes–
ype model.19

V. LINEAR CONFORMAL GRAVITY

We consider now the quantum group analogs of linear conformal gravity following th
roach of Ref. 8. We start with theq=1 situation and we first write the Weyl gravity equation
n indexless formulation, trading the indices for two conjugate variablesz, z̄, just as for the
axwell equations.
Weyl gravity is governed by the Weyl tensor,
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Cmnst = Rmnst − 1
2sgmsRnt + gntRms − gmtRns − gnsRmtd + 1

6sgmsgnt − gmtgnsdR, s4.1d

heregmn is the metric tensor. Linear conformal gravity is obtained when the metric ten
ritten as gmn=hmn+hmn, where hmn is the flat Minkowski metric,hmn are small so that a
uadratic and higher order terms are neglected. In particular,Rmnst= 1

2s]m]thns+]n]shmt

]m]shnt−]n]thmsd. The equations of linear conformal gravity are

]n]tCmnst = Tms, s4.2d

hereTmn is the energy-momentum tensor. From the symmetry properties of the Weyl te
ollows that it has 10 independent components. These may be chosen as follows(introducing
otation for future use):

C0 = C0123, C1 = C2121, C2 = C0202, C3 = C3012,

C4 = C2021, C5 = C1012, C6 = C2023, s4.3d

C7 = C3132, C8 = C2123, C9 = C1213.

urthermore, the Weyl tensor transforms as the direct sum of two conjugate Lorentz irreps
e shall denote asC±. The tensorsTmn andhmn are symmetric and traceless with nine indepen
omponents.

In order to be more precise we recall that the physically relevant representationsTx of the
our-dimensional conformal algebra su(2,2) may be labeled byx=fn1,n2;dg, where n1,n2 are
on-negative integers fixing finite-dimensional irreducible representations of the Lorentz s
ra [the dimension beingsn1+1dsn2+1d], andd is the conformal dimension(or energy). [In the

iterature these Lorentz representations are labeled also bys j1, j2d=sn1/2 ,n2/2d.] The Weyl tenso
ransforms as the direct sum,

x+
% x−,

s4.4d
x+ = f4,0;2g, x− = f0,4;2g,

hile the energy-momentum tensor and the metric transform as

xT = f2,2;4g, xh = f2,2;0g, s4.5d

s anticipated. Indeed,sn1,n2d=s2,2d is the nine-dimensional Lorentz representation(carried by

mn or hmn), andsn1,n2d=s4,0d ,s0,4d are the two conjugate five-dimensional Lorentz repres
ions (carried byC±), while the conformal dimensions are the canonical dimensions of a en
omentum tensorsd=4d, of the metricsd=0d, and of the Weyl tensorsd=2d. (For comparison
ote that the Maxwell componentsF+, F −, used in the preceding sections, have signatures:[2, 0;
], [0, 2; 2], respectively, while the currentJ has signature[1, 1; 3].) Further, we shall use aga
he fact that a Lorentz irrep(spin-tensor) with signaturesn1,n2d may be represented by a polyn

ial Gsz, z̄d in z, z̄ of ordern1,n2, respectively. More explicitly, for the irreps mentioned above
se

C+szd = z4C4
+ + z3C3

+ + z2C2
+ + zC1

+ + C0
+, s4.6ad

C−sz̄d = z̄4C4
− + z̄3C3

− + z̄2C2
− + z̄C1

− + C0
−, s4.6bd

Tsz,z̄d = z2z̄2T8 + z2z̄T8 + z2T8 + zz̄2T8 + zz̄T8 + zT8 + z̄2T8 + z̄T8 + T8 , s4.6cd
22 21 20 12 11 10 02 01 00
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hsz,z̄d = z2z̄2h228 + z2z̄h218 + z2h208 + zz̄2h128 + zz̄h118 + zh108 + z̄2h028 + z̄h018 + h008 , s4.6dd

here the indices on the right-hand side are not Lorentz-covariance indices, they just indi
owers ofz, z̄. The componentsCk

± are given in terms of the Weyl tensor components as foll

C0
+ = C2 − 1

2C1 − C6 + isC0 + 1
2C3 + C7d,

C1
+ = 2sC4 − C8 + isC9 − C5dd,

C2
+ = 3sC1 − iC3d,

C3
+ = 8sC4 + C8 + isC9 + C5dd,

C4
+ = C2 − 1

2C1 + C6 + isC0 + 1
2C3 − C7d,

s4.7d

C0
− = C2 −

C1

2
− C6 − isC0 + 1

2C3 + C7d,

C1
− = 2sC4 − C8 − isC9 − C5dd,

C2
− = 3sC1 + iC3d,

C3
− = 2sC4 + C8 − isC9 + C5dd,

C4
− = C2 − 1

2C1 + C6 − isC0 + 1
2C3 − C7d,

hile the componentsTij8 are given in terms ofTmn as follows:

T228 = T00 + 2T03 + T33,

T118 = T00 − T33,

T008 = T00 − 2T03 + T33,

T218 = T01 + iT02 + T13 + iT23,

T128 = T01 − iT02 + T13 − iT23, s4.8d

T108 = T01 + iT02 − T13 − iT23,

T018 = T01 − iT02 − T13 + iT23,

T208 = T11 + 2iT12 − T22,

T028 = T11 − 2iT12 − T22,
nd similarly forhij8 in terms ofhmn.
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In these terms all linear conformal(Weyl) gravity equations(4.2) may be written in compa
orm as the following pair of equations:

Ĩ+C+szd = Tsz,z̄d, s4.9ad

Ĩ−C−sz̄d = Tsz,z̄d, s4.9bd

here the operatorsI± are given as follows:

Ĩ+ = sz2z̄2]+
2 + z2]v

2 + z̄2]v̄
2 + ]−

2 + 2z2z̄]v]+ + 2zz̄2]+]v̄ + 2zz̄s]−]+ + ]v]v̄d + 2z̄]−]v̄ + 2z]v]−d]z
2

− 6szz̄2]+
2 + z]v

2 + 2zz̄]v]+ + z̄2]+]v̄ + z̄s]−]+ + ]v]v̄d + ]v]−d]z12sz̄2]+
2 + ]v

2 + 2z̄]v]+d,

s4.10ad

Ĩ− = sz2z̄2]+
2 + z2]v

2 + z̄2]v̄
2 + ]−

2 + 2z2z̄]v]+ + 2zz̄2]+]v̄ + 2zz̄s]−]+ + ]v]v̄d + 2z̄]−]v̄ + 2z]v]−d]z̄
2

− 6sz2z̄]+
2 + z̄]v̄

2 + 2zz̄]+]v̄ + z2]v]+ + zs]−]+ + ]v]v̄d + ]−]v̄d]z̄12sz2]+
2 + ]v̄

2 + 2z]+]v̄d.

s4.10bd

To make more transparent the origin of these expressions and in the same time to de
uantum group deformation of(4.9) and (4.10) we first introduce the following paramet
ependent operators:

Ĩ+snd = 1
2snsn − 1dI1

2I2
2 − 2sn2 − 1dI1I2

2I1 + nsn + 1dI2
2I1

2d, s4.11ad

Ĩ−snd = 1
2snsn − 1dI3

2I2
2 − 2sn2 − 1dI3I2

2I3 + nsn + 1dI2
2I3

2d, s4.11bd

here

I1 ; ]z, I2 ; z̄z]+ + z]v + z̄]v̄ + ]−, I3 ; ]z̄. s4.12d

t is easy to check that we have the following relation:

Ĩ± = Ĩ±s4d. s4.13d

e note in passing that group theoretically the operatorsIa correspond to the three simple roots
he root system of sl(4), while the operatorsIn

± correspond to the two nonsimple nonhigh
oots.20

This is the form that is immediately generalizable to theq-deformed case. Using results fro
ef. 8 we have

qĨ
+snd = 1

2sfngqfn − 1gqqI1
2
qI2

2 − 2fn − 1gqfn + 1gqqI1qI2
2
qI1 + fngqfn + 1gqqI2

2
qI1

2d, s4.14ad

qĨ
−snd = 1

2sfngqfn − 1gqqI3
2
qI2

2 − 2fn − 1gqfn + 1gqqI3qI2
2
qI3 + fngqfn + 1gqqI2

2
qI3

2d, s4.14bd

here theq-deformed versionsqIa of (4.12) in the basis(2.6) are

qI1 = D̂zTzTvT+sT−Tv̄d−1, s4.15ad

qI2 = sqM̂zD̂vT−
2 + M̂zM̂z̄D̂+T−Tv̄Tv

−1 + D̂−T− + q−1M̂z̄D̂v̄ − lM̂vM̂z̄D̂−D̂+Tv̄dTv̄Tz̄
−1,
s4.15bd
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qI3 = D̂z̄Tz̄. s4.15cd

hen theq-Weyl equations are

qĨ
+s4dC+szd = Tsz,z̄d, s4.16ad

qĨ
−s4dC−sz̄d = Tsz,z̄d. s4.16bd

For comparison, note that for the derivation of theq-Maxwell operators(2.13) were used for th
ollowing expressions:qIn

+= 1
2sfn+2gqqI1qI2−fn+3gqqI2qI1d, qIn

−= 1
2sfn+2gqqI3qI2−fn+3gqqI2qI3d.]

Finally, we write down the pair of equations which give the Weyl tensor components in
f the metric tensor,

qĨ
+s2dhsz,z̄d = C+szd, s4.17ad

qĨ
−s2dhsz,z̄d = C−sz̄d. s4.17bd

We stress the advantage of the indexless formalism due to which two different p
quations,(4.16) and(4.17), may be written using the same parameter-dependent operator e
ions by just specializing the values of the parameter.
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egenerate principal series of quantum Harish–Chandra
odules
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61103 Kharkov, Ukraine

(Received 22 January 2004; accepted 7 June 2004; published 12 October 2004)

In this paper we study a quantum analog of a degenerate principal series of
Uqsun,n-modules s0,q,1d related to the Shilov boundary of the quantum
n3n-matrix unit ball. We give necessary and sufficient conditions for the modules
to be simple and unitarizable and investigate their equivalence. These results are
q-analogs of known classical results on reducibility and unitarizability of
SUsn,nd-modules obtained by Johnson, Sahi, Zhang, Howe, and Tan. ©2004
American Institute of Physics.[DOI: 10.1063/1.1786348]

. INTRODUCTION

In this paper we investigate a quantum analog of the degenerate principal series of re
ations of the algebraUqsun,n related to the Shilov boundary of the quantumn3n-matrix unit ball.

e give necessary and sufficient conditions for the representations to be irreducible and
In this work we provideq-analogs of classical results obtained by Johnson, Sahi, Z

owe, and Tan.1–5 Another degenerate principal series is considered in the Klimyk and Pa
aper.6

We use Bargman’s approach for investigating representations(see Ref. 7, where unita
trongly continuous irreducible representations of the group SU(1,1) were described). Explicit
ormulas for operators ofsu1,1-representations were found in a weight vectors basis in R
esults on irreducibility and unitarizability can be obtained from the formulas as corollarie

In the general case one needs much more effort to obtain similar formulas. Important
n this direction were obtained by Howe in Ref. 1. He received certain results on irreducibili
nitarizability of modules of the simplest degenerate principal series for Usm,nd and some othe
lassical groups.

The Lee paper8 directly continues this Howe work. In Ref. 8 the degenerate principal s
or Usn,nd related to the Shilov boundary of then3n-quantum ball is investigated and answer
he same questions are obtained.

This work generalizes results from Ref. 8 to the quantum case with 0,q,1. Passing to th
imit as q°1 one can get up to notation the results of the above-mentioned paper.

This paper is organized as follows: In Sec. II we define the representationspa,b of the
egenerate principal series[see (5)]. In Sec. III we investigate the equivalence ofpa,b (see
roposition 3). In Sec. IV we discuss some auxiliary results onpa,b. These results will be used

he sequel. In Sec. V we give necessary and sufficient forpa,b to be irreducible(see Propositio
1). For the casepa,b is reducible, we describe all its irreducible subrepresentations. In Sec.
nd explicit formulas for intertwining operators betweenpa,b and p−n−b,−n−a [see(17)]. In Sec
II we investigate unitarizability of irreducible representations of the degenerate principal
ost of the technical details of the proofs are contained in the Appendix.

)
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I. DEFINITION OF THE DEGENERATE PRINCIPAL SERIES OF REPRESENTATIONS

Recall some concepts on geometric realizations for certain series of representations
emisimple Lie groups and Lie algebras.

Consider the affine algebraic groupG=SL2nsCd and its maximal parabolic subgroup

P = HSA B

0 D
DuA,B,D P Matn,nsCd,sdetAdsdetDd = 1J .

hen the projective varietyG/P is isomorphic to the spaceGrnsC2nd of n-dimensional subspac
n C2n. The subgroupK=SsGLnsCd3GLnsCdd acts naturally onG/P. Denote byV the open
-orbit. It can be easily proved that

V = hL P GrnsC2ndudim L ù sCnd1u = dim L ù sCnd2 = 0j,

heresCnd1 and sCnd2 are the subspaces generated by the elementsh«1, . . . ,«nj, h«n+1, . . . ,«2nj of
he standard basis forC2n, respectively. It can be verified thatV is an affine variety.

Set

t = 1 t11 t12 ¯ t12n

¯ ¯ ¯ ¯

tn1 tn2 ¯ tn2n
2, rkt = n,

ndCfMatn,2ng =
def

Cft11, . . . ,tn2ng. Define

tJ
∧n=

def

o
sPSn

s− 1dlssdt1jss1d
· t2jss2d

¯ tnjssnd
,

here lssd is the length of permutations, J=h j1, . . . ,jnj, 1ø j1, ¯ , jnø2n, and tij are the
atrix entries oft. The elementstJ

∧n are called Plucker projective “coordinates” onGrnsC2nd.
enote byCfPln,2ng,CfMatn,2ng the subalgebra generated by alltJ

∧n.
Consider the algebraCfVg of regular functions onV. Let us introduce some notation. S

=
def

thn+1,. . .,2nj
∧n and

za
b = t−1tJab

∧n , a,b = 1, . . . ,n, whereJab = hn + 1, . . . ,2nj \ h2n + 1 −bj ø haj;

z = 1 z1
1 . . . z1

n

. . . . . . . . .

zn
1 . . . zn

n 2, detz = det1 z1
1 . . . z1

n

. . . . . . . . .

zn
1 . . . zn

n 2 .

hen the algebraCfVg is canonically isomorphic to the localization of the alge

fMatng =
def

Cfz1
1, . . . ,zn

ng with respect to the multiplicative setsdetzdZ+. The vector spac
fVg=CfMatngdet z can be naturally equipped with thesl2n-module structure and theK-module
tructure, and these structures are compatible(see Ref. 9).

Therefore the action of the universal enveloping algebraUsl2n in the vector spaceCfMatngdet z
s well defined. Moreover, theUsl2n-action in the localization of the algebraCfPln,2ng with respec
o the multiplicative set tZ+ is well defined. Hence theUsl2n-action in the spac
fMatngdet z·sdetzdatb is well defined for eacha ,bPZ (they are spaces of sections of homo
eous vector bundles overV; we pass froma ,bPZ to a ,bPR standardly).

Now let us pass to the quantum case. Everywhere in the sequelqP s0,1d, C is the ground fiel
nd all algebras are unital and associative.

−1 2n−1
Denote byUqsl2n the algebra defined by its generatorshEi ,Fi ,Ki ,Ki ji=1 and the relations
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KiKj = KjKi, KiKi
−1 = Ki

−1Ki = 1;

KiEi = q2EiKi, KiFi = q−2FiKi;

EiFj − FjEi = di jsKi − Ki
−1d/sq − q−1d;

KiEj = q−1EjKi, KiFj = qFjKi, ui − j u = 1;

Ei
2Ej − sq + q−1dEiEjEi + EjEi

2 = 0, ui − j u = 1;

Fi
2Fj − sq + q−1dFiFjFi + FjFi

2 = 0, ui − j u = 1;

KiEj − EjKi = KiFj − FjKi, = EiEj − EjEi = FiFj − FjFi = 0, ui − j u . 1.

We equipUqsl2n with the standard Hopf algebra structure. The comultiplication, the c
nd the antipode are defined by their actions on the generators:

nEj = Ej ^ 1 + Kj ^ Ej, «sEjd = 0, SsEjd = − Kj
−1Ej ,

nFj = Fj ^ Kj
−1 + 1 ^ Fj, «sFjd = 0, SsFjd = − FjKj ,

nKj = Kj ^ Kj, «sKjd = 1, SsKjd = Kj
−1

or all j =1, . . . ,2n−1.
The algebraCfMatn,2ngq of polynomials on the quantumn32n-matrix space is defined by

eneratorshtijji=1,. . .,n; j=1,. . .,2n and the relations(cf. Ref. 10)

tiktjk = qtjktik, tkitkj = qtkjtki, i , j ,

tij tkl = tklti j , i , k and j . l ,

tij tkl − tklti j = sq − q−1dtiktjl , i , k and j , l . s1d

efineq-minors as follows:

tIJ
∧k=

def

o
sPSk

s− qdlssdti1jss1d
¯ tikjsskd

, s2d

or any I =hi1, . . . ,ikj, 1ø i1, ¯ , ikøn, J=h j1, . . . ,jkj, 1ø j1, ¯ , j kø2n; here lssd denote
he length of permutations.

Consider the algebraCfPln,2ngq,CfMatn,2ngq generated by allq-minorsth1,. . .,njJ
∧n , cardJ=n. It is

quipped with the standardUqsln
op

^ Uqsl2n-module algebra structure.(Uqsln
op is a Hopf algebr

ith the same multiplication and the opposite comultiplication.) It is easy to show that th

qsln
op-structure can be reconstructed from the below equalities:

Kltij = 5q−1tij , l = i − 1,

qtij , l = i , 6

0, otherwise;
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Eltij = q−1/2 ·Htsi+1d j , l = i ,

0, otherwise;
JFltij = q1/2 ·Htsi−1d j , l = i − 1,

0, otherwise.
J

The elementt =
def

th1,2,. . .,njhn+1,n+2,. . .,2nj
∧n quasicommutes withtij for all i =1, . . . ,n, j =1, . . . ,2n

nd isUqsln
op-invariant.

Denote byCfPln,2ngq,t the localization of the algebraCfPln,2ngq with respect to the multiplica
ive systemtZ+. Introduceq-analogs of coordinates onV as follows:

za
b=
def

t−1th1,2,. . .,njJab

∧n , s3d

hereJab=hn+1,n+2, . . . ,2nj \ h2n+1−bjø haj.
The defining relations for the subalgebra generated by the elementsza

b are obtained in Ref. 1

za
b1za

b2 = qza
b2za

b1, b1 , b2,

za1

b za2

b = qza2

b za1

b , a1 , a2,

za1

b1za2

b2 = za2

b2za1

b1, b1 , b2 anda1 . a2,

za1

b1za2

b2 − za2

b2za1

b1 = sq − q−1dza1

b2za2

b1, b1 , b2 anda1 , a2.

For the special casen=2 see the Noumi paper.12)
It can be checked easily thatzt=qtz for any zP hza

bua,b=1, . . . ,nj.
It can be proved that for anyjPUqsl2n, f PCfPln,2ngq,t there is a unique Laurent polynom

pf,j of the variableu=qk with coefficients inCfPln,2ngq,t such thatpf,jsqkd=j ·sftkdt−k. This allows
ne to prove the existence of an extension of theUqsl2n-module algebra structure ontoCfPln,2ngq,t

see Ref. 13).
The subalgebra generated byza

b is the algebraCfMatngq of “polynomials on the quantu
3n-matrix space” [cf. (1)]. The algebraCfMatngq is a Uqsl2n-module subalgebra of th

qsl2n-module algebraCfPln,2ngq,t (see Ref. 14).
Proposition 1 (Ref. 14): For all a,b=1, . . . ,n

Kn
±1za

b = 5q±2za
b, a = n andb = n

q±1za
b, sa = n andb Þ nd or sa Þ n andb = nd

za
b, otherwise,

6
Fnza

b = q1/2 ·H1, a = n andb = n

0, otherwise,
JEnza

b = − q1/2 ·5q−1za
nzn

b, a Þ n andb Þ n

szn
nd2, a = n andb = n

zn
nza

b, otherwise
6

nd for all kÞn we have

Kk
±1za

b = 5q±1za
b, sk , n anda = kd or sk . n andb = 2n − kd,

q71za
b, sk , n anda = k + 1d or sk . n andb = 2n − k + 1d,

zb, otherwise,
6

a
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Fkza
b = q1/2 ·5za+1

b , k , n anda = k,

za
b+1, k . n andb = 2n − k,

0, otherwise,
6Ekza

b = q−1/2 ·5za−1
b , k , n anda = k + 1,

za
b−1, k . n andb = 2n − k + 1,

0, otherwise.
6

h

In the sequel we use the following notation forq-minors:

zha1,. . .,akj
∧khb1,. . .,bkj =

def

o
sPSk

s− qdlssdza1

bss1d
¯ zak

bsskd, s4d

herea1, ¯ ,ak, b1, ¯ ,bk. It is known that the element detq z=
def

z h1,. . .,nj
∧nh1,. . .,nj belongs to th

enter ofCfMatngq andCfMatngq has no zero divisors.
Denote byCfMatngq,detq z the localization of the algebraCfMatngq with respect to the multipl

ative systemsdetq zdZ+. We considerCfMatngq,detq z as aq-analog of the space of regular functio
n the open orbitV. Let t̃= th1,. . .,njh1,. . .,nj

∧n . Since detq z= t−1t̃, we see that the algebraCfMatngq,detq z

s aUqsl2n-module subalgebra of theUqsl2n-module algebraCfPln,2ngq,t·t̃. (As above, to verify tha
he extension is well defined we use the following fact: for alljPUqsl2n, f PV the vector value
unction j ·sfsdetq zdkdsdetq zd−k is a Laurent polynomial of the variableu=qk.)

Denote byV the vector spaceCfMatngq,detq z. Assume first thata ,bPZ. Define a represent
ion pa,b :Uqsl2n→EndV as follows:

pa,bsjdf = sj · sfst̃datbddt−bst̃d−a = sj · sfsdetq zdatb+addt−a−bsdetq zd−a s5d

or everyjPUqsl2n, f PV. For eachlPZ we have

Ejt
l = 0, Fjt

l = 0, Kjt
l = tl, j = 1, . . . ,2n − 1, j Þ n,

Ent
l = q−3/21 − q−2l

1 − q−2 zn
ntl, Fnt

l = 0, Kn
±1tl = q7ltl,

Ejsdetq zdl = 0, Fjsdetq zdl = 0, Kjsdetq zdl = sdetq zdl, j = 1, . . . ,2n − 1, j Þ n,

Kn
±1ssdetq zdld = q±2lsdetq zdl, Enssdetq zdld = − q1/21 − q2l

1 − q2 zn
nsdetq zdl,

Fnssdetq zdld = q1/21 − q−2l

1 − q−2 zh1,. . .,n−1jh1,. . .,n−1j
∧n−1 sdetq zdl−1, l Þ 0.

From these equalities we see that for eachjPUqsl2n, f PV the vector valued functio

pf,jsqa ,qbd =
def

pa,bsjdsfd is a Laurent polynomial of the variablesqa, qb. These Laurent polynom
ls are defined by their values on the sethsqa ,qbd ua ,bPZj and deliver the canonical “analy
ontinuation” forpa,bsjdsfd to sa ,bdPC2.

Let sa ,bdPC2. Define a representationpa,bsjdsfd =
def

pf,jsqa ,qbd. Indeed, to prove that th
epresentationpa,b is well defined forsa ,bdPC2 it is sufficient to verify some identities f
aurent polynomials. These identities are correct fora, bPZ.

Introduce a “deformation parameter”h by the equalityq=e−h/2. Clearly, if a1=a2+ is2p /hd

ndb1=b2+ is2p /hd, thenpa1,b1

=pa2,b2
. Then it is enough to considersa, bdPD, where
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D = Hsa,bd P C2u0 ø Im a ,
2p

h
,0 ø Im b ,

2p

h
J .

Recall that a representationr :Uqsl2n→EndW is calledweight if the representation spaceW
ecomposes as follows:

W= %
l

Wl, wherel = sl1, . . . ,l2n−1d P Z2n−1,

Wl = hv P WursKj
±dv = q±l jv, j = 1, . . . ,2n − 1j .

he subspaceWl is called weight subspace with weightl. In the sequel we will consider on
eight representations. It is clear thatpa,b is a weight representation if and only ifqa−bPqZ.

Let W be a weightUqsl2n-module. Define operatorsHi for i =1, . . . ,2n−1 by the formula

iuWl
=li.

II. EQUIVALENCE OF THE REPRESENTATIONS

Recall thatq=e−h/2. For any complexa ,b such that 0ø Im a,2p /h, 0ø Im b,2p /h, the
tatementsa−bPZ andqa−bPqZ are equivalent.

Proposition 2: Ifa, b¹Z, then the representationspa,b and p−n−b,−n−a are equivalent.
The proof is reduced to explicit formulas for the intertwining operators. It is given in Se
If a ,bPZ, then the representationspa,b andp−n−b,−n−a are not equivalent. This fact follow

rom the statement that only one of the representationspa,b andp−n−b,−n−a for integrala ,b has a
nite dimensional subrepresentation. An explanation of this fact is given in the end of Se

The representationspa,b and pa−1,b+1 are equivalent for alla ,b. The corresponding inte
wining operatorT:V→V is defined as follows: for everyf PV=CfMatngq,detq z Tsfd= fsdetq zd−1.
ndeed, since for eachf PV, jPUqsl2n;

pa−1,b+1sjdsfd = sj · sfsdetq zda−1tb+addt−a−bsdetq zd1−a

= sj · sfsdetq zd−1sdetq zdatb+addt−a−bsdetq zd−asdetq zd = pa,bsjdsfsdetq zd−1ddetq z,

e see thatT intertwines the representationspa,b andpa−1,b+1. Therefore without loss of gene
lity we can assume thata ,bPD, where

D = Hsa,bd P C2ua − b P h0,1j,0 ø Im a ,
2p

h
,0 ø Im b ,

2p

h
J . s6d

et us introduce an equivalence relation onD. The equivalence class ofsa ,bd consists of on
oint for a ,bPZ and from two points fora ,b¹Z:

sa1,b1d , sa2,b2d, iff 5a1 = − n − b2, b1 = − n − a2 for Im a1 = Im a2 = 0,

a1 =
2pi

h
− n − b2, b1 =

2pi

h
− n − a2, otherwise.6

Proposition 3: The set of equivalence classesD /, is in the one-to-one corresponden
a ,bd°pa,b with the set of equivalence classes of the representations of the degenerate p
eries.

Proof: By the above, each representation of the degenerate principal series is equivale
epresentationpa,b for somesa ,bdPD.

Prove that the representationspa1,b1
andpa2,b2

, with sa1,b1d, sa2,b2dPD, are equivalent
nd only if sa1,b1d,sa2,b2d. For that we calculate the action of a central elementCPUqsl2n

ext

see Ref. 15 for the definition). It can be proved thatpa,bsCd is a scalar operator for a

,bPD.
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From Ref. 16 it follows that there exists a unique central elementC which acts on th

qsl2n-highest vectorvhigh with weight l as follows:

Csvhighd = o
j=0

2n−1

q−2sm j,l+rdvhigh,

here m0=Ã1, m j =−Ã j +Ã j+1 for j =1, . . . ,2n−2, m2n−1=−Ã2n−1, Ã j are the fundament
eights, 2r is the sum of positive roots of the Lie algebrasl2n, and we choose the invariant sca
roduct such thatsa ,ad=2 for any simple roota.

First let a ,b be integers. It can be proved that

pa,bsCdsdetq zdb = 4 ch
h

2
sa + b + ndSo

j=0

n−1

ch
h

2
jDsdetq zdb.

encepa,bsCd=4 chsh/2dsa+b+ndso j=0
n−1 ch sh/2d jd · Id for all sa ,bdPD.

Suppose thatpa1,b1
and pa2,b2

are equivalent. Equivalent representations have the
eight lattice. Thereforesa1−b1d−sa2−b2dP2Z. Since sa1,b1d ,sa2,b2dPD, we see tha

a1−b1d−sa2−b2d=0.
Then the equivalent representationspa1,b1

andpa2,b2
have the same values of central cha

ers, which means that

Sch
h

2
sa1 + b1 + nd − ch

h

2
sa2 + b2 + ndDo

j=0

n−1

ch
h

2
j = 0.

ince 0ø Im a1,2p /h, 0ø Im b1,2p /h, 0ø Im a2,2p /h, 0ø Im b2,2p /h, we have tha

1+b1=a2+b2, or a1+b1=−a2−b2−2n, or a1+b1=−a2−b2−2n−s4pi /hd. If a1+b1=a2+b2,
hena1=a2 andb1=b2. For any fixed nonintegrala1,b1 there is a unique pairsa2,b2dPD such
hat eithera1+b1=−a2−b2−2n or a1+b1=−a2−b2−2n−s4pi /hd, and sa1,b1d,sa2,b2d. Al-
hough for integral parameterspa1,b1

andpa2,b2
are not equivalent, because the only one of t

as a finite-dimensional subrepresentation. This can be deduced from Corollary 4. Th
quivalence class inD is assigned to a unique equivalence class of the representations
egenerate principal seriespa,b. h

V. AUXILIARY STATEMENTS ON THE pa,b-STRUCTURE

In this section we describe some necessary technical results, that will be useful in the
Everywhere in this section we assume thatn.1. However, Propositions 4, 7, and 10 a

orollaries 1 and 2 are still sensible and correct forn=1.
Let Uqkss,Uqsl2n be the Hopf subalgebra generated byEj, Fj, Kj

±1, j =1, . . ., 2n−1, j Þn and

qk,Uqsl2n be the Hopf subalgebra generated byKn
±1 andUqkss.

Note thatpa,buUqkss
does not depend ona ,b. The following preliminary result on reducibili

f pa,b is well known in the classical case. For brevity, set

z∧k = zh1,̄ ,kj
∧kh1,̄ ,kj

note that, obviouslyz∧n=detq z). Introduce the following notation:K̂=hk̄ =sk1, . . . ,kndPZnuk1

k2ù ¯ ùknj, ej =s0, . . . ,1
j

, . . . ,0dPZn.
Proposition 4: The representation space V forpa,b splits into a sum of simple pairwi

onisomorphic Uqk-modules as follows:

V = %
¯ ˆ

Vk̄, with Vk̄ = pa,bsUqkd ·vk̄

h
and vk̄

h
= sz∧1dk1−k2

¯ sz∧n−1dkn−1−knsz∧ndkn.

kPK
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Proof: Consider the filtrationV=øk=0
` Vskd with Vskd=CfMatngq·sdetq zd−k. It is sufficient to

rove that

Vskd = %
knù−k

Vk̄ .

Equip the vector spaceVskd with the natural gradingVskd= %

j=−nk

`

sVskdd j as follows

Vskdd j =hvPVskd uK0v=q2jvj, with K0 =
def

K1K2
2K3

3
¯Kn

nKn+1
n−1

¯K2n−2
2 K2n−1. Therefore we must prov

hat

sCfMatngq · sdetq zd−kd j = %
knù−k,

k1+¯+kn=j

Vk̄ . s7d

For k=0 statement(7) means thatsCfMatngqd j = %

knù0,k1+¯+kn=j

Vk̄.

First, the dimensions of homogeneous componentsCfMatngq,j of the standardly graded algeb
fMatngq are equal to the dimensions in the classical case,

dim CfMatngq,j = Sn2 + j − 1

j
D

it can be easily proved via the Bergman diamond lemma,15 Sec. 4.1.5). Second, the dimensions
he Uqk-modulesVk̄ are equal to the classical ones(this follows from results of quantum grou
heory,17 Chap. 5). Third, there is the well-known Hua result on the coincidence of the dimen
fMatng j and %

knù0,

k1+k2+¯+kn=j

Vk̄ in the classical case.18 Hence,

dim sCfMatngqd j = o
knù0,

k1+¯+kn=j

dim Vk̄ ,

nd, finally,

sCfMatngqd j = %
knù0,

k1+¯+kn=j

Vk̄ .

For k.0 one has

sCfMatngq · sdetq zd−kd j = CfMatngq,nk+j · sdetq zd−k = %
knù0,

k1+¯+kn=nk+j

Vk̄ · sdetq zd−k = %
knù−k,

k1+¯+kn=j

Vk̄ .

Since there are no zero divisors inCfMatngq,detq z, the proof of statement(7) follows from the las
quality.) h

Remark: It can be easily verified thatv
k̄

h
is a Uqk-highest vector and with weig

k1−k2, . . . ,kn−1−kn,2kn+a−b ,kn−1−kn, . . . ,k1−k2d. Then the highest weight of simp

qk-moduleVk̄ is equal tosk1−k2, . . . ,kn−1−kn,2kn+a−b ,kn−1−kn, . . . ,k1−k2d.
In the classical casesl2n=p− % k % p+ where

p− = HUS0 0

A 0
DUA P Matn,nsCdJ, p+ = HUS0 A

0 0
DUA P Matn,nsCdJ .

hereforeUsl2n.Up− ^ Uk ^ Up+ as Uk-modules(Up− and Up− are Uk-modules under th

djoint action).
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In the quantum case we have an analog of this decomposition obtained by Jakobsen
9. A quantum analog ada,aPUqsl2n of the adjoint action is introduced via the Hopf alge
tructure ofUqsl2n. (The operator ada is defined onbPUqsl2n in the following way: adasbd
SSsa8dba9, whereDa=Sa8 ^ a9 is the comultiplication,S is the antipode inUqsl2n.) There are
2-dimensional vector subspacespq

+=Uqk ·En, pq
−=Uqk ·sKnFnd, which areUqk-invariant under th

djoint action. Instead ofUp−, Up+, there are the subalgebrasUqp
−, Uqp

+,Uqsl2n generated b

q
−, pq

+, respectively. The algebrasUqp
− and Uqp

+ are Uqk-modules under the adjoint actio
herefore in the quantum case we getUqsl2n.Uqp

− ^ Uqk ^ Uqp
+ asUqk-modules(see Ref. 19).

t is worthwhile to note thatUqp
− andUqp

+ are not Hopf subalgebras unlike the classical ca
In the last part of this section we describe how eachUqk-isotypic componentVk̄ transforms

nder the action ofpq
− and pq

+. This allows one to understand howV transforms under th

qsl2n-action. Since

Uqssgln 3 glnd . CfK0
±1g ^ sUqsln ^ Uqslnd = CfK0

±1g ^ Uqkss,

here

K0 = K1K2
2K3

3
¯ Kn

nKn+1
n−1

¯ K2n−2
2 K2n−1, s8d

ndpa,bsK0d acts by scalar multiplications in every isotypic component, we see thatVk̄ is a simple

qsln ^ Uqsln-module. Hence theUqsln ^ Uqsln-moduleVk̄ decomposes into a tensor produc

qsln-modules:Vk̄ .V
k̄

s1d
^ V

k̄

s2d
with V

k̄

s1d
=Lsk1−k2, . . . ,kn−1−knd, V

k̄

s2d
=L* sk1−k2, . . . ,kn−1−knd,

here we denote byLsk1−k2, . . . ,kn−1−knd andL* sk1−k2, . . . ,kn−1−knd the simple finite dimen
ional Uqsln-modules with highest weightssk1−k2, . . . ,kn−1−knd and skn−1−kn, . . . ,k1−k2d, re-
pectively.

We can equip the vector spacesV
k̄

s1d
andV

k̄

s2d
with the structure ofUqsln ^ Uqsln-modules a

ollows:

sj ^ hdsvd = j · s«shdvd, sj ^ hdsv * d = h · s«sjdv * d,

or all j, hPUqsln, vPV
k̄

s1d
, v* PV

k̄

s2d
, where « denotes the counit ofUqsln. Note that a

qsln ^ Uqsln-modules

pq
+ . Cn

^ sCnd * , pq
− . sCnd * ^ Cn,

hereCn is the vector representation ofUqsln. Consider the natural maps

m
k̄

+
:pq

+
^ Vk̄ → V, m

k̄

−
:pq

−
^ Vk̄ → V.

ince there exist theUqsln ^ Uqsln-homomorphisms

pq
+

^ Vk̄ . Cn
^ sCnd * ^ V

k̄

s1d
^ V

k̄

s2d . Cn
^ V

k̄

s1d
^ sCnd * ^ V

k̄

s2d
,

pq
−

^ Vk̄ . sCnd * ^ Cn
^ V

k̄

s1d
^ V

k̄

s2d . sCnd * ^ V
k̄

s1d
^ Cn

^ V
k̄

s2d
,

e have the well-defined morphisms

M+
k̄
:Cn

^ V
k̄

s1d
^ sCnd * ^ V

k̄
s2d → V,

M− :̄sCnd * ^ V¯
s1d

^ Cn
^ V¯

s2d → V.

k k k
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For instance, if we consider aUqsln-highest vectorv1PCn ^ V
k̄

s1d
and aUqsln-highest vecto

2P sCnd* ^ V
k̄

s2d
, then M+

k̄
sv1 ^ v2d is a Uqsln ^ Uqsln-highest vector (or, equivalently,

qk-highest vector) in V.
In the sequel we are going to get explicit formulas forUqsln-highest vector

j PCn ^ Lsk1−k2, . . . ,kn−1−knd, j =1, . . . ,n with weightssk1, . . . ,kj +1, . . . ,knd, respectively.
In the classical case auxiliary elementsFm,j of the universal enveloping algebraUsln are use

n such formulas.
Lemma 1 (Ref. 8, lemma 3.4): Let1økøn−1 and 1øm, j øn.

1) If 1øk,m or j,køn, then EkFm,j =Fm,jEk;
2) If k=m, then EmFm,j ;Fm+1,jsHm+¯ +Hj−1+ j −m−1d smodUsln·Emd;
3) If m,kø j , then EkFm,j ;0 smodUsln·Ekd. h

Explicit formulas for the elementsFm,j are used for the proof of lemma:

Fm,j = Fm+1,jFm + o
t=m+2

j

s− 1dt+m+1Ft,jadFt−1
¯ adFm+1Fm

Hs j ;m+ 1,t − 1d,

hereHs j ;p,sd=Pa=p
s sHa+¯ +Hj−1+ j −ad.

We find quantum analogs of the previous lemma and the elements inUqsln.
For 1ømø j øn defineFm,j PUqsln inductively as follows:

Fj ,j = 1, Fj−1,j = Fj−1Kj−1,

Fm,j = Fm+1,jFmKm + o
s=m+2

j

s− 1ds+m+1Fs,j adFs−1
¯ adFm+1

sFmKmdKs j ,m+ 1,s− 1d,

hereKs j ,p,rd=Pa=p
r qj−aKa¯Kj−1fHa+¯ +Hj−1+ j −agq.

Here and everywhere below we use the standard notationfxgq=sqx−q−xd / sq−q−1d.
Lemma 2: The following relations are satisfied:

s1d KiFm,j = Fm,jKi for 1 ø i , m− 1 or j , i ø n, s9d

s2d KjFm,j = qFm,jKj, Km−1Fm,j = qFm,jKm−1, s10d

s3d qKj−1Fm,j = Fm,jKj−1, qKmFm,j = Fm,jKm, s11d

s4d EiFm,j = Fm,jEi for 1 ø i , m− 1 or j , i ø n, s12d

s5d Em−1Fm,j = qFm,jEm−1, EjFm,j = qFm,jEj , s13d

s6d EiFm,j ; 0smod Uqsln ·Eid for m, i , j , s14d

s7d EmFm,j ; Fm+1,jq
j−mKm¯ Kj−1fHm + ¯ + Hj−1 + j − m

− 1gq smodUqsln ·Emd. s15d

his lemma is proved in the Appendix. h

Let s«1, . . . ,«nd be the standard basis forCn. SupposeuPLsk1−k2, . . . ,kn−1−knd is a

qsln-highest vector with weightsk1−k2, . . . ,kn−1−knd.
n
Proposition 5: Define vectorshz jj j=1 as follows:
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z j = o
m=1

j

s− q2dm−1«m ^ Fm,jK−s j ,1,m− 1du P Cn
^ Lsk1 − k2, . . . ,kn−1 − knd,

here K−s j ,p,rd=Pa=p
r qj−a−1Ka¯Kj−1fHa+¯ +Hj−1+ j −a−1gq. Thenz j is a Uqsln-highest vec

or (i.e., Eiz j =0 for all i =1, . . . ,n−1) with weight sk1−k2, . . . ,kj−1−kj −1,kj +1−kj+1, . . . ,

n−1−knd for j =1, . . . ,n.
Proof: Using Lemma 2, it is easy to prove thatz j are weight vectors. We claim thatEiz j =0 for

ll 1ø i øn, 1ø j øn. Indeed, by Lemma 2,

Eiz j = EiSo
m=1

j

s− q2dm−1«m ^ Fm,jK−s j ,1,m− 1duD
= o

m=1

j

s− q2dm−1Eis«m ^ Fm,jK−s j ,1,m− 1dud

= s− q2di«i ^ Fi+1,jK−s j ,1,idu + s− q2di−1Eis«i ^ Fi,jK−s j ,1,i − 1dud

= s− q2di−1s− q2«i ^ Fi+1,jK−s j ,1,idu + q«i ^ Fi+1,jq
j−iKi ¯ Kj−1fHi + ¯ + Hj−1 + j − i

− 1gqK−s j ,1,i − 1dud = 0.

h

Similarly, we are going to get explicit formulas forUqsln-highest vector

j P sCnd* ^ L* sk1−k2, . . . ,kn−1−knd. For 1ø r ø tøn introduce the elementsSr,tPUqsln as fol-
ows (classic analogs of these elements were investigated by Lee in Ref. 8):

St,t = 1, St−1,t = FtKt,

Sr,t = Sr,t−1FtKt + o
s=r+1

t−1

Sr,s−1 adFs
¯ adFt−1

sFtKtdLst,s,t − 1d,

hereLs j ,p,rd=Pa=p
r qa−jKj+1¯KafHj+1¯ +Ha+a− jgq.

Lemma 3: The following relations are satisfied:

1) KiSr,t=Sr,tKi for 1ø i , r or t +1, i øn,
2) KrSr,t=qKrSr,t, Kt+1Sr,t=qKt+1Sr,t,
3) Kr+1Sr,t=q−1Kr+1Sr,t, KtSr,t=q−1KtSr,t,
4) EiSr,t=Sr,tEi for 1ø i , r or t +1, i øn,
5) ErSr,t=qSr,tEr, Et+1Sr,t=qSr,tEt+1,
6) EiSr,t;0 smodUqsln·Eid for r , i , t,
7) EtSr,t;−Sr,t−1q

t−rKr+1¯KtfHr+1+¯ +Ht+ t−r −1gq smodUqsln·Etd.

he proof of this lemma is completely analogous to the proof of Lemma 2.
Let s«1

* , . . . ,«n
*d be the basis forsCnd* dual to the basiss«1, . . . ,«nd for Cn. Suppose tha

* PL* sk1−k2, . . . ,kn−1−knd is a Uqsln-highest vector with weightskn−1−kn, . . . ,k1−k2d. The
roof of the next statement is similar to the proof of Proposition 5.

Proposition 6: Define vectorshj jj j=1
n as follows:

j j = o
m=j

n

«m
*

^ Sj ,mL−s j ,m+ 1,ndu * P sCnd * ^ L * sk1 − k2, . . . ,kn−1 − knd,

here L−s j ,p,rd=Pa=p
r qa−j−1Kj+1¯KafHj+1+¯ +Ha+a− j −1gq. Thenj j is a Uqsln-highest vecto

ith weightskn−1−kn, . . . ,kn−j+1+1−kn−j+2,kn−j −kn−j+1−1, . . . ,k1−k2d for j =1, . . . ,n. h

It follows from Propositions 5 and 6 thatM+
k̄
:Cn ^ V

k̄

s1d
^ sCnd* ^ V

k̄

s2d→ % j=1
n Vk̄+ej

. For all
+
j ,k=1, . . . ,n the vectorsM

k̄
sz j ^ jkd are Uqsln ^ Uqsln-highest vectors inV. By the action of
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a,bsK0d [see (8)], the vectorM+
k̄
sz j ^ jkd is a Uqk-highest vector inVk̄+ej

if and only if

=n− j +1. Since every isotypic component occurs with multiplicity one,M+
k̄
sz j ^ jn−j+1d

cj ·vk̄+e1

h
=cj ·sz∧1dk1−k2+1

¯ sz∧n−1dkn−1−knsz∧ndkn for somecj PC. (Here and below we suppose t

f m̄=sm1, . . . ,mnd¹ K̂, thenVm̄=0 andvm̄
h =0.)

The proof of the next statement, reduced to computation ofcj, is given in the Appendix.

Proposition 7: For every j=1, . . . ,n, k̄ P K̂,

M+
k̄
sz j ^ jn−j+1d = cjsb,kjdvk̄+ej

h
,

here cjsb ,kjd=q−b−n/2fb−kj + j −1gqv jsk̄ ,qd and v jsk̄ ,qdÞ0 for all k̄ P K̂.
We deduce sufficient conditions for reducibility ofpa,b from Proposition 7.

Let a, b be fixed. For anyj =1, . . . ,n and k̄ P K̂ if cjsb ,kjdÞ0, then there existvPVk̄,
Ppq

+ such thatpa,bsjd ·vPVk̄+ej
. That meanspa,bsUqsl2nd ·Vk̄ .Vk̄+ej

.
Let us consider in details other cases, i.e., letcjsb ,kjd=0 for somekj. For fixed b, by

roposition 7 and(6), the equationcjsb ,kjd=0 is equivalent tob−kj + j −1=0.

Corollary 1: For all j =1, . . . ,n, k̄ P K̂, the subspace Vøk
j =

def

% hk8PK̂ukùkj8jVk8 is a

qsl2n-submodule in V iffb−k+ j −1=0.
Proof: Let j =1, the other cases are similar. The necessity easily follows from the above

he sufficiency. Ifb−k1=0, thenM+
k̄
spq

+
^ Vk̄d, % j=2

n Vk̄+ej
. Introduce the natural filtration o

qp
+ (hereUqp

+ is the algebra generated bypq
+) in the following way:Uqp

+= ø
nù0

sUqp
+dsnd. Then

a,bssUqp
+ds1ddsVk̄d,Vk̄ % s% j=2

n Vk̄+ej
d. In the same way,pa,bssUqp

+ds2ddsVk̄d,pa,bssUqp
+ds1dd

sVk̄ % s% j=2
n Vk̄+ej

dd,Vk̄ % s% j=2
n Vk̄+ej

d % s%nù j1ù j2ù2Vk̄+ej 1
+ej 2

d. Then pa,bsUqp
+dsVk̄d, %m=0

`

s%nù j1ù¯ù jmù2Vk̄+ej 1
+¯+ej m

d, and pa,bsUqsl2ndsVk̄d,pa,bsUqp
−dpa,bsUqkd

spa,bsUqp
+dVk̄d,pa,bsUqp

−dpa,bsUqkds%m=0
` s%nù j1ù¯ù jmù2Vk̄+ej 1

+¯+ej m
dd,pa,bsUqp

−ds%mù0

s%nù j1ù¯ù jmù2Vk̄+ej 1
+¯+ej m

dd,Vøk
1 . Obviously the subspaceVøk

1 is aUqsl2n-submodule inV.h

By the same arguments as in Propositions 5, 6, and 7, one has the following.
Proposition 8: Define vectorshj j8j j=1

n as follows:

j j8 = o
m=j

n

«m
*

^ Sj ,mL−s j ,m+ 1,ndu P sCnd * ^ Lsk1 − k2, . . . ,kn−1 − knd,

here L−s j ,p,rd=Pa=p
r qa−j−1Kj+1¯KafHj+1+¯ +Ha+a− j −1gq. Thenj j8 is a Uqsln-highest vec

or with weightsk1−k2, . . . ,kj−1−kj +1,kj −1−kj+1, . . . ,kn−1−knd for j =1, . . . ,n. h

Proposition 9: Define vectorshz j8j j=1
n as follows:

z j8 = o
m=1

j

s− q2dm−1«m ^ Fm,jK−s j ,1,m− 1du * P Cn
^ L * sk1 − k2, . . . ,kn−1 − knd,

here K−s j ,p,rd=Pa=p
r qj−a−1Ka¯Kj−1fHa+¯ +Hj−1+ j −a−1gq. Thenz j8 is a Uqsln-highest vec

or with weightskn−1−kn, . . . ,kn−j+1−kn−j −1,kn−j +1−kn−j−1, . . . ,k1−k2d for j =1, . . . ,n. h

The proof of the next statement, reduced as for Proposition 7 to the computation ofdj, is given
n the Appendix.

Proposition 10: For every j=1, . . . ,n, k̄ P K̂

M−
k̄
sj j8 ^ zn−j+18 d = djsa,kjdvk̄−ej

h
,

here djsa ,kjd=qa+n/2fa+kj +n− jgqÃ jsk̄ ,qd and Ã jsk̄ ,qdÞ0 for all k̄ P K̂. h

By (6) and Proposition 10, we see that the equationsdjsa ,kjd=0 and a+kj +n− j =0 are

quivalent.
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Corollary 2: For all j =1, . . . ,n, k̄ P K̂ the subspace Vùk
j =

def

% hk8PK̂ukj8ùkjVk8 is a

qsl2n-submodule in V iffa+kj +n− j =0. h

. REDUCIBILITY OF pa,b

Proposition 11: The representationpa,b is irreducible if and only ifa ,b satisfy the followin
quivalent conditions (sincea−bPZ, these conditions are equivalent):

1 . a ¹ Z; 2 . b ¹ Z.

Proof: Supposea¹Z, b¹Z. Consider the system of equations

5
b − k1 = 0,

b − k2 + 1 = 0,

¯

b − kn + n − 1 = 0,

a + k1 + n − 1 = 0,

¯

a + kn = 0.

6
his system has no integral solution. Thereforecjsb ,kjd anddjsa ,kjd do not vanish. LetW be a

qsl2n-submodule ofV. ThenW= % k̄PIVk̄ for someI , K̂. Then, for all k̄ P I and j =1, . . . ,n, it

ollows that k̄ +ej , k̄ −ej P I (if the respective indexes belong toK̂). Therefore if I Þx, then I

K̂, and the moduleV has no proper submodules, i.e., it is simple. Conversely, by Corolla
nd 2, if pa,b is irreducible, thena¹Z, b¹Z. h

Corollary 3: Let a ,bPZ, and let W be the representation space of a subrepresentat

a,b. Then W is a finite intersection of some of the Uqsl2n-modules Vùk
j , Vøk

j defined in Corollarie
,2.

The proof follows directly from the previous proof. h

Now suppose thata, bPZ. We will investigate reducibility and proper subrepresentation

a,b. We use figures as in Refs. 1 and 8 for a description.

EachUqk-isotypic componentVk̄ is assigned to the pointsk1, . . . ,kndPRn. ThusK̂ is assigne
o the setK +=hsk1, . . . ,knd uk1ù ¯ ùknj,Rn. Consider 2n hyperplanes:

L j
+:kj = b + j − 1; L j

−:kj = − a − n + j .

These hyperplanes are parallel to the coordinate axis and pass through points with
oordinates. The distance betweenL j

+ andL j
− is equal toa+b+n−1.

By Corollaries 1 and 2,

k̄ P L j
+ iff Uqsl2n ·Vk̄ Ö Vk̄+ej

; k̄ P L j
− iff Uqsl2n ·Vk̄ Ö Vk̄−ej

.

Investigate the examplen=2. In this caseL j
±, j =1,2 arejust lines on the planeR2, parallel to

he coordinate axis. Let us consider different values ofa+b.
Case 1:a+bù0. In this case the lineL1

+ lies to the right ofL1
−, L2

+ lies higher thanL2
−. The

ines L1
±, L2

± are shown in Fig. 1. The intersection point ofL1
+ and L2

− has the coordinatessb ,
ad and belongs toK +. Arrows attached toL j

± show the direction of isotypic components “mo
ent” underpa,b. There exists a unique simple submoduleVs= % hk̄PK̂uk1øb,k2ù−ajVk̄ in V.

Case 2:a+b=−1. In this case the linesL1
+ andL1

−, L2
+ andL2

− coincide. The intersection poi
f the linesL1

+ andL2
+ does not belong toK + (Fig. 2). There are two simple submodules inV:

1
s= % hk̄PK̂uk1=−1−ajVk̄ andV2

s= % hk̄PK̂uk2=−ajVk̄.
+ − + −
Case 3:a+b=−2. In this case the lineL1 lies to the left ofL1, L2 lies lower thanL2.
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owever, the linesL1
− andL2

+ intersect in the point with coordinatess−a−1,b+1d (see Fig. 3).
esides, the distance betweenL j

+ andL j
− is equal to 1. This shows thatV is a direct sum of thre

ubmodules:

V1
s = %

hk̄PK̂uk1øbj
Vk̄, V2

s = %

hk̄PK̂uk2ù−aj
Vk̄, V3

s = %

hk̄PK̂uk1ù−a−1,k2øb+1j
Vk̄ .

FIG. 1. Structure ofpa,b with a+bù0.
FIG. 2. Structure ofpa,b with a+b=−1.
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Case 4:a+bø−3. In this case the intersection point ofL1
+ andL1

+ belongs toK + (see Fig. 4).
lso, there are simple submodulesV1

s, V2
s, V3

s in V, butV does not decompose into their direct s
Turn now to the general case. Consider all possible values ofa+b+n−1.
Case 1:a+b+n−1ù1. In this case the hyperplanesL j

±, j =1, . . . ,n bound inK + the subse
hat corresponds to a unique simplefinite dimensionalsubmodule

FIG. 3. Structure ofpa,b with a+b=−2.
FIG. 4. Structure ofpa,b with a+bø−3.
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Vs = %

hk̄PK̂u−a−n+jøkjøb+j−1 for all j=1,. . .,nj
Vk̄ .

Case 2:a+b+n−1=0. In this case the hyperplanesL j
+ andL j

− coincide. There aren simple
ubmodules inV:

Vj
s = %

hk̄PK̂ukj=b+j−1j
Vk̄, j = 1, . . . ,n. s16d

Case 3:a+b=−n. Here the distance betweenL j
+ and L j

− is equal to 1. This allows one

ecompose the setK̂ into a direct sum ofn+1 subsetsK̂i, i =1, . . . ,n+1, those correspond to t

imple submodules:Vi
s= % hk̄PK̄ij

Vk̄ ,V. The subsetsK̂i are defined as follows:

K̂i = hk̄ P K̂uki−1 ù − a − n + i − 1,b + i − 1 ù kij

for i =1 andi =n+1 we put, respectively,K̂1=hk̄ P K̂ uk1øbj and K̂n+1=hk̄ P K̂ uknù−aj).
Case 4:a+b+n−1ø−2. Also, there are simple submodules corresponded to the subsK̂i.

owever,V is not equal to their direct sum.
Thus we have proved the following:
Corollary 4: For a ,bPZ the only one from the representationspa,b and p−n−b,−n−a has an

rreducible finite dimensional subrepresentation. h

I. INTERTWINING OPERATORS

In this section we construct the intertwining operators between the representationspa,b and

−n−b,−n−a for nonintegrala ,b. This allows one to prove Proposition 2.
Let A:V→V be an intertwining operator, i.e., for alljPUqsl2n, vPV, we have

pa,bsjdsvd=p−n−b,−n−asjdsAvd. The operatorspa,bsUqkssd are independent ofa ,b andpa,bsKnd
p−n−b,−n−asKnd. Also, Vk̄ and Vm̄ are nonisomorphicUqk-modules fork̄ Þm̄. ThenAusa ,bduVk̄

ak̄sa ,bd, ak̄sa ,bdPC. Let us find necessary conditions forA to be an intertwining operator

erms of ak̄sa ,bd. By Propositions 5, 6, 8, and 9, it follows that for allk̄ P K̂ there existq j ,

j PUqsl2n, j =1, . . . ,n, such thatpa,bsh jdsvk̄

hd=cjsb ,kjdvk̄+ej

h
and pa,bsq jdsvk̄

hd=djsa ,kjdvk̄−ej

h
.

Recall thatv
k̄

h
is the Uqk-highest vector inVk̄.) Therefore the necessary conditions look

ollows: for all j =1, . . . ,n, k̄ P K̂,

Apa,bsh jdsvk̄

hd = p−n−b,−n−ash jdsAvk̄

hd and Apa,bsq jdsvk̄

hd = p−n−b,−n−asq jdsAvk̄

hd.

Equivalently, in terms ofak̄,

ak̄+ej
sa,bdcjsb,kjdvk̄+ej

h
= ak̄sa,bdcjs− n − a,kjdvk̄+ej

h
,

ak̄−ej
sa,bddjsa,kjdvk̄−ej

h
= ak̄sa,bddjs− n − b,kjdvk̄−ej

h
.

hus the coefficientsak̄ of the intertwining operatorA must satisfy the following conditions: f

ll j =1, . . . ,n, k̄ P K̂,

ak̄+ej
sa,bd

ak̄sa,bd
=

cjs− n − a,kjd
cjsb,kjd

,
ak̄−ej

sa,bd

ak̄sa,bd
=

djs− n − b,kjd
djsa,kjd

.

¯ ˆ
e get from Propositions 7 and 10 that for allj =1, . . . ,n,k PK,
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ak̄+ej
sa,bd

ak̄sa,bd
= qn+a+b f− n − a − kj + j − 1gq

fb − kj + j − 1gq
,

ak̄−ej
sa,bd

ak̄sa,bd
= q−n−b−a f− b + kj − jgq

fa + kj + n − jgq
.

As we see, the coefficientsak̄sa ,bd are defined up to a scalar multiplier. By additio
ssumptiona0̄sa ,bd=1, we get the explicit formulas for the coefficientsak̄sa ,bd=Ausa ,bduVk̄

of

he intertwining operatorA,

ak̄sa,bd = p
j=1

n

Pjsa,bd, s17d

here

Pjsa,bd =5p
i=0

kj−1
1 − q2sa+n+i−j+1d

1 − q2s−b+i−j+1d , for kj . 0,

1, for kj = 0,

p
i=1+kj

0
1 − q2s−b+i−jd

1 − q2sa+n+i−jd , for k j , 0.6
For fixed a−bPZ, the operatorA is a meromorphic operator-function with simple pole

ntegral points.

II. UNITARIZABLE REPRESENTATIONS OF THE DEGENERATE PRINCIPAL SERIES

In this section we find necessary and sufficient conditions for modules of the dege
rincipal series and their simple submodules to be unitarizable.

Equip Uqsl2n with the involutionp as follows:

En
* = − KnFn, Fn

* = − EnKn
−1, Kn

* = Kn,

Ej
* = KjFj, Fj

* = EjKj
−1, Kj

* = Kj, j = 1, . . . ,2n − 1, j Þ n.

he p-Hopf algebra Uqsun,n =
def

sUqsl2n, p d is a q-analog of Usun,n, and its subalgeb

qssun3und =
def

sUqk , p d is a q-analog ofUssun3und.
Let us introduce two auxiliaryp-algebras PolsSsUddq and PolsSsUd̂dq (a quantum analog of th

hilov boundarySsUd of the matrix ball is introduced in Ref. 20). Equip the algebraCfMatngq,detq z

ith the involutionp defined by the formula

sza
bd * = s− qda+b−2nsdetq zd−1 detq za

b,

here detq za
b is the q-determinant of the matrix derived fromz by deleting the lineb and the

olumna. Put PolsSsUddq=sCfMatngq,detq z, p d and equip it with the natural structure of ap-module
lgebra overUqsun,n. The involutions in PolsSsUddq and Uqsun,n are compatible, i.e., for allf
PolsSsUddq, jPUqsun,n we have

sjfd * = sSsjdd * f * ,

hereS is the antipode in the Hopf algebraUqsl2n.

The p-algebra PolsSsUd̂dq is generated byza
b, a,b=1, . . . ,n, sdetq zd−1, t and t−1. The relation

etweenza
b and sdetq zd−1 are inherited from thep-algebra PolsSsUddq, the other relations a
rovided by the following:
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t−1t = tt−1 = 1, tt * = t * t, tza
b = q−1za

bt, t * za
b = qza

bt * , a,b = 1, . . . ,n.

onsider an embedding ofUqsun,n-module algebras PolsSsUd̂dq�CfPln,2ngq,t which mapst to t
ndza

b to t−1th1,. . .,njJa b

∧n [see(3)]. Using this embedding, we can extend theUqsun,n-module struc

ure from PolsSsUddq onto PolsSsUd̂dq.
In Ref. 20, the invariant integral over the Shilov boundary of the quantum matrix

f °eSsUdq
fdm is defined and the following statement is actually proved.

Proposition 12: The linear subspacest−nd* ·PolsSsUddq·t−n,PolsSsUd̂dq is a Uqsun,n-module
he linear functional

st−nd * · f · t−n ° E
SsUdq

fdm

s a Uqsun,n-invariant integral.

The precise meaning of two next propositions will be given if we continue PolsSsUd̂dq via
dding to the list of generatorstl, st* dl, sdetq zdl for all lPC. The relations between the “ne
enerators and the action ofEj, Fj, Kj

±1, j =1, . . . ,2n−1 can be derived from the correspond
ormulas fortm, sdetq zdm and st* dm, wheremPZ. From the previous proposition it follows

Proposition 13 (cf. Ref. 13, lemma 3.2): LetRel=−n. Then the linear subspace

ssdetq zdl/2tld * · PolsSsUddq · sdetq zdl/2tl , PolsSsUd̂dq

s a Uqsun,n-module. The linear functional

ssdetq zdl/2tld * · f · sdetq zdl/2tl ° E
SsUdq

fdm

s a Uqsun,n-invariant integral.

For eacha, bPZ define an embeddingia,b: V=CfMatngq,detq z�PolsSsUd̂dq by the formula

a,bsfd= f ·sdetq zda ·ta+b for all f PCfMatngq,detq z. Using these embeddings and the commuta
elations betweent, t−1 and detq z, we get the following.

Corollary 5: Let Resa+bd=−n. Then the sesquilinear form V3V→C defined by

kf1, f2l =E
SsUdq

f2
* f1dm

atisfies the conditionspa,bsjdu,vd=su,pa,bsj* dvd for all u, vPV, jPUqsl2n.
Recall the definition of unitarizable module. Let A be ap-Hopf algebra,W anA-module. Then

n A-module W is unitarizable if there exists a Hermitian form(i.e., sesquilinear Hermitia
ymmetric positive definite form) (·,·), which isA-invariant, i.e.,

sau,vd = su,a * vd for any u,v P W,a P A.

Therefore the representationpa,b is unitary if Resa+bd=−n. Such representations formthe
rincipal unitary series.

Now we are going to find all unitarizable simple modules of the degenerate principal
nd their unitarizable submodules.

Weight subspaces are pairwise orthogonal with respect to everyUqsun,n-invariant scalar prod
ct. Therefore the isotypic componentsVk̄ are pairwise orthogonal too. From Proposition 4 and
urnside theorem(see Ref. 21, Sec. 27), it follows that in every componentVk̄ there exists
nique up to a constantUqssun3und-invariant scalar product. Fix such scalar products via

20
ntegral over the Shilov boundary of the quantum matrix ball
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ku,vlk̄ =E
SsUdq

v * udm u,v P Vk̄ .

ence each invariant scalar product(·,·): V3V→C is assigned to a sethck̄jk̄PK+,R+ such tha
u,vd=ck̄ku,vlk̄ for all u,vPVk̄. Conversely, eachhck̄jk̄PK+,R+ defines a unique sesquiline
ermitian-symmetric positive definiteUqssun3und-invariant form inV.

Let us find explicit conditions for the coefficientshck̄j to define aUqsun,n-invariant form.
Using the decompositionUqsl2n.Uqp

− ^ Uqk ^ Uqp
+ from Sec. IV and the definitions

qp
+ andUqp

−, we see that it is sufficient to investigate the invariance of(·,·) under the subspac

q
+ and pq

−. Moreover, it is enough to provepq
+-invariance of(·,·). We can see that if(·,·) is

q
+-invariant, then it ispq

−-invariant. Indeed, for allhPpq
−, u, vPV we haveshu,vd=sv ,hud

sh* v ,ud=su,h* vd.
Investigate thepq

+-invariance of the form(·,·). From the results of Sec. IV it follows th

a,bspq
+dsVk̄d, % j=1

n Vk̄+ej
. Since the isotypic componentsVk̄ are pairwise orthogonal, one need

heck the invariance in “nonzero cases” only(that means foruPVk̄, vPVk̄+ej
, j =1, . . . ,n). In this

ase the invariant conditions are the following: for alljPUqsl2n, uPVk̄, vPVk̄+ej
, j =1, . . . ,n,

usPk̄+ej
spa,bsjdud,vduVk̄+ej

= usu,Pk̄spa,bsj * dvdduVk̄
,

herePk̄ :V→Vk̄ is an orthogonal projection ontoVk̄. In other words,

ck+ej
kPk̄+ej

spa,bsjdud,vlk̄+ej
= ck̄ku,Pk̄spa,bsj * dvdlk̄ .

First consider the casea, b¹Z. Recall that from Propositions 5, 6, 8, and
t follows that in spq

−
% pq

+d ^ Vk̄ there exist Uqkss-highest vectors c j ,l
± , j , l =1, . . . ,n

ith weights sk1−k2, . . . ,kj−1−skj ±1d ,skj ±1d−kj+1, . . . ,kn−1−kn,2kn+a−b ,kn−1−kn, . . . ,
kn−l+171d−kn−l+2,kn−1−skn−l+171d , . . . ,k1−k2d, respectively. DefineUqk-invariant maps

T
k̄,j

±
:spq

−
% pq

+d ^ Vk̄ → Vk̄±ej

y their values on theUqkss-highest vectors as follows:

T
k̄,j

+ sc j ,l
+ d =Hv jsk̄,qd ·vk̄+ej

h
l = n − j + 1;

0 l Þ n − j + 1;
J

T
k̄,j

− sc j ,l
− d =HÃ jsk̄,qd ·vk̄−ej

h
l = n − j + 1;

0 l Þ n − j + 1.
J

erev
k̄

h
, Ã jsk̄ ,qd andv jsk̄ ,qd are introduced in Propositions 4, 7, and 10.

Lemma 4: For alljPpq
−

% pq
+, uPVk̄, j =1, . . . ,n the following holds:

Pk̄+ej
spa,bsjdud = q−b−n/2fb − kj + j − 1gqTk̄,j

+ sj ^ ud;

Pk̄−ej
spa,bsjdud = qa+n/2fa + kj + n − jgqTk̄,j

− sj ^ ud.

Proof: The proof completely repeats the proof of Lemma 9.10 of Ref. 8. h

Using the last lemma, we can rewrite theUqsun,n-invariance condition of the scalar produc
ollows: for all jPpq

−
% pq

+, uPVk̄, vPVk̄+ej
, j =1, . . . ,n

q−b−n/2fb − kj + j − 1gqck̄+ej
kT

k̄,j

+ sj ^ ud,vlk̄+ej
= qa+n/2fa + skj + 1d + n − jgqck̄ku,T

k̄+e ,j

− sj * ^ vdlk̄ .

j
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Proposition 14:kT
k̄,j

+ sj ^ ud ,vlk̄+ej
=−ku,T

k̄+ej ,j

− sj* ^ vdlk̄ for all j =1, . . . ,n.

Proof: Since the mapsT
k̄,j

±
do not depend ona, bPD, it is enough to consider only th

pecial case Resa+bd=−n. In this case the representationpa,b is unitary, thus we can putck̄ =1 for

ll k̄ P K̂. Sinceqa+n=q−b, we see that

q−b−n/2qb−kj+j−1 − q−b+kj−j+1

q − q−1 skT
k̄,j

+ sj ^ ud,vlk̄+ej
+ ku,T

k̄+ej ,j

− sj * ^ vdlk̄d = 0.

f we consider nonintegrala, b, then qb−kj+j−1−q−b+kj+1−j does not vanish. This completes
roof. h

Recall thata, b¹Z. Thus theUqsun,n-invariance condition of the scalar product can

ewritten as follows: for allk̄ P K̂, j =1, . . . ,n

s1 − q2s−b+kj+1−jdds1 − q2sa+skj+1d+n−jdd−1 = +
ck̄

ck̄+ej

. s18d

ince the scalar product must be positive definite, we have the following necessary condit
he unitarizability of modules of the degenerate principal series(recall that q=e−h/2): for all

P K̂, j =1, . . . ,n

sh
h

2
sb − kj + j − 1dSsh

h

2
sa + skj + 1d + n − jdD−1 . 0.

Using these inequalities, we can present the following series of simple unitaryrepresentation
f the degenerate principal seriesrelated to the Shilov boundary.

The principal unitary series:Resa+bd=−n, a, b¹Z. In this case all representations
nitary. The invariant scalar product is provided by theUqsun,n-invariant integral.20

The complementary series:Imsa+bd=0, uRea+nu,1, uRebu,1, sRea+ndReb,0,
,b¹Z. In this case the representationspa,b are unitary too.(The required invariant scal
roduct(·,·) is defined by the coefficientshck̄j as follows: letc0̄=1, other coefficients are compu

rom recurrent relations such as(18).)
The strange series:Im a=p /h. For such values of the parameters the respective repre

ions pa,b are irreducible and unitary. This series of representations has no classical ana
he first time it appears in unpublished works of Korogodsky and in Klimyk and Groza’s
see Ref. 6).

Now let a ,bPZ. (Recall that in this casepa,b is reducible.) For sucha ,b there might exis
nitarizable simple submodules in the respective module(we will mention them below), although

he module is not unitarizable. For each simple submodule the same arguments as in the
ase” on theUqsun,n-invariance of scalar product can be applied. In each case we ha

ecessary conditions like(18), however they must be satisfied only on a certain part ofK̂. Con-
ider all possible cases:

Case 1:a+bù2−n. In this case the representation is not unitary and its unique irred
ubrepresentation is not unitary too.

Case 2:a+b=1−n. In this case there existn irreducible unitary subrepresentations of
epresentationpa,1−n−a. Precisely,Vj

s (see(16)) is a simple submodule inV for any j =1, . . . ,n.
otice that eachVj

s can be equipped with aUqsun,n-invariant scalar product(·,·). Such module
re called small representations because they have “poor” decompositions into isotypic
ents.

Case 3:a+b=−n. In this case the representations are completely reducible, their irred
ubrepresentationsVi

s, i =1, . . . ,n+1 (see Sec. V) are unitary(actually, the required invariant sca
roduct is the same as for the principal unitary series).

Case 4:a+bø−1−n. In this case the submodulesVi
s, i =1, . . . ,n+1 are unitary althoug
here exist nonunitarizable quotient modules inV.
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PPENDIX

Let us prove Lemma 2. This proof is aq-analog of the proof of Lemma 3.4 from Ref. 8.
Proof of Lemma 2:Statements(9)–(12) can be easily checked.
For example, check the equalityKjFm,j =qFm,jKj. For j −m=1, i.e., m= j −1, we see tha

jFj−1,j =KjFj−1Kj−1=Fj−1Kj−1Kj =qFj−1,jKj. Assume that forj −m, r Eqs. (9)–(12) are proved
et j −m=r. Then,

KjFm,j = KjsFm+1,jFmKm + o
s=m+2

j

s− 1ds+m+1Fs,jadFs−1
¯ adFm+1

sFmKmdKs j ,m+ 1,s− 1dd

= KjFm+1,jFmKm + o
s=m+2

j

s− 1ds+m+1KjFs,jadFs−1
¯ adFm+1

sFmKmdKs j ,m+ 1,s− 1d

= qFm+1,jKjFmKm + q o
s=m+2

j−1

s− 1ds+m+1Fs,jKjadFs−1
¯ adFm+1

sFmKmdKs j ,m+ 1,s− 1d

+ qs− 1d j+m+1 adFj−1
¯ adFm+1

sFmKmdKj = qFm,jKj .

he proof is completed by induction.
Using (12), prove equality(14). Recall thatfxgq=sqx−q−xd / sq−q−1d,

EmFm,j= o
s=m+2

j

s− 1ds+m+1EmFs,j adFs−1
¯ adFm+1

sFmKmdKs j ,m+ 1,s− 1d + EmFm+1,jFmKm

; o
s=m+2

j

s− 1ds+m+1Fs,jEm adFs−1
¯ adFm+1

sFmKmdKs j ,m+ 1,s− 1d + qFm+1,jEmFmKm

; q o
s=m+2

j

s− 1ds+mFs,j adFs−1
¯ adFm+2

sFm+1Km+1dKm
2 Ks j ,m+ 1,s− 1d + qFm+1,jfHmgqKm

= S o
s=m+2

j

s− 1ds+m+2Fs,j adFs−1
¯ adFm+2

sFm+1Km+1dKs j ,m+ 2,s− 1dD
3Km

2 ·qj−m−1sKm+1¯ Kj−1fHm+1 + ¯ + Hj−1 + j − m− 1gqd + qFm+1,jfHmgqKm

= qFm+1,jsqj−m−1Km
2 Km+1¯ Kj−1fHm+1 + ¯ + Hj−1 + j − m− 1gq + fHmgqKmd

= Fm+1,jq
j−mKm¯ Kj−1fHm + ¯ + Hj−1 + j − m− 1gq smodUqsln ·Emd.

rove equality(13) by induction. If j −m=2 and m, i , j , then i = j −1, and (13) means tha

j−1Fj−2,j ;0 smodUqsln·Ej−1d. It can be proved as follows:

Ej−1Fj−2,j = Ej−1sFj−1,jFj−2Kj−2Ks j , j − 1,j − 2d − adFj−1
sFj−2Kj−2dKs j , j − 1,j − 1dd

; fHj−1gqKj−1Fj−2Kj−2 − qFj−2Kj−2Kj−1fHj−1 + 1gq = 0 smodUqsln ·Ej−1d.
or the inductive step it is sufficient to check that for allm, i , j ,
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EiFm,j = o
s=m+2

j

s1 − ds+m+1EiFs,j adFs−1¯ adFm+1
sFmKmdKs j ,m+ 1,s− 1d + EiFm+1,jFmKm

; o
s=m+2

i−1

s− 1ds+m+1EiFs,j adFs−1
¯ adFm+1

sFmKmdKs j ,m+ 1,s− 1d + EiFm+1,jFmKm

+ o
s=i+1

j

s− 1ds+m+1EiFs,j adFs−1
¯ adFm+1

sFmKmdKs j ,m+ 1,s− 1d

+ s− 1di+m+1EiFi,j adFi−1
¯ adFm+1

sFmKmdKs j ,m+ 1,i − 1d smodUqsln ·Eid

we use(12) and(14)). By the inductive hypothesis, fors, i we haveEiFs,j ;0 smodUqsln·Eid,
herefore for allm,s, i there exists an elementXsPUqsln such thatEiFs,j =XsEi. From (12),
iFs,j =Fs,jEi. From (14), EiFi,j =qFi+1,jq

j−i−1Ki¯Kj−1fHi +¯ +Hj−1+ j − i −1gq. Thus,

EiFm,j ; o
s=m+2

i−1

s− 1ds+m+1XsEi adFs−1
¯ adFm+1

sFmKmdKs j ,m+ 1,s− 1d + Xm+1EiFmKm

+ o
s=i+1

j

s− 1ds+m+1Fs,jEi adFs−1
¯ adFm+1

sFmKmdKs j ,m+ 1,s− 1d + s− 1di+m+1

3Fi+1,jq
j−iKi ¯ Kj−1fHi + ¯ + Hj−1 + j − i − 1gq Fi−1¯ adFm+1

sFmKmd ·Ks j ,m+ 1,i − 1d

; s− 1di+m+1qFi+1,j adFi−1
¯ adFm+1

sFmKmdKs j ,m+ 1,id + s− 1di+m

3Fi+1,jEi adFi
¯ adFm+1

sFmKmdKs j ,m+ 1,id = 0 smodUqsln ·Eid.

h

The proof of Lemma 3 is similar.
Let us prove Proposition 7. We just have to compute the coefficientscjsb ,kjd. Recall that ther

s a Uqsln ^ Uqsln-isomorphism j1:pq
+.Cn ^ sCnd*, where Cn is the vector representation

qsln. The isomorphismj1
−1 on the elements of the standard basis forCn ^ sCnd* is defined a

ollows:

j1
−11

«1 ^ «1
*

¯ «1 ^ «n
*

¯ ¯ ¯

«n−1 ^ «1
*

¯ ¯

«n ^ «1
*

¯ «n ^ «n
*
2

=1
adE1

¯ adEn−1
En ¯ ¯ s− 1dn−1adE2n−1

¯ adEn+1
adE1

¯ adEn−1
En

¯ ¯ ¯ ¯

adEn−1
En ¯ ¯ ¯

En − adEn+1
En ¯ s− 1dn−1adE2n−1

¯ adEn+1
En

2 .

This follows from the equalities adFj
En=0, adEj

2 En=0 for j =1, . . . ,2n−1,j Þn, adKj
En=En for

j =1, . . . ,n−2,n+2, . . . ,2n−1, adKj
En=q−1En for j =n−1 or j =n+1.) Consider the following em
eddings of vector spaces:
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i1:Uqsln � Uqsln ^ Uqsln, j ° j ^ 1;

i2:Uqsln � Uqsln ^ Uqsln, j ° 1 ^ j.

etjs1d=i1sjd andjs2d=i2sjd.
From Propositions 5 and 6, we deduce that for allj =1, . . . ,n, k̄ P K̂

M+
k̄
sz j ^ jn−j+1d = M+

k̄So
m=1

j

s− q2dm−1«m ^ Fm,j
s1d K−

s1ds j ,1,m− 1du

^ o
m=n−j+1

n

«m
*

^ Sn−j+1,m
s2d L−

s2dsn − j + 1,m+ 1,ndu * D
= M+

k̄So
m=1

j

o
l=n−j+1

n

s− q2dm−1«m ^ «l
*

^ Fm,jK−s j ,1,m− 1du

^ Sn−j+1,lL−sn − j + 1,l + 1,ndu * D .

Proposition 15: For all j=1, . . . ,n, k̄ P K̂

M+
k̄
sz j ^ jn−j+1d = l−sn − j + 1,n − j + 2,ndM+

k̄
sz j ^ «n−j+1

*
^ u * d,

here

L−
s2dsn − j + 1,n − j + 2,ndsvk̄

hd = l−sn − j + 1,n − j + 2,ndvk̄

h
.

Proof: In the same way as in Ref. 8, we have

M+
k̄
sz j ^ jn−j+1d = M+

k̄So
m=1

j

o
l=n−j+1

n

s− q2dm−1«m ^ «l
*

^ Fm,j
s1d K−

s1ds j ,1,m− 1du

^ Sn−j+1,l
s2d L−

s2dsn − j + 1,l + 1,ndu * D
= M+

k̄So
m=1

j

s− q2dm−1«m ^ «n−j+1
*

^ Fm,j
s1d K−

s1ds j ,1,m− 1du

^ L−
s2dsn − j + 1,n − j + 2 + 1,ndu * D + M+

k̄So
m=1

j

o
l=n−j+2

n

s− q2dm−1«m ^ «l
*

^ Fm,j
s1d K−

s1ds j ,1,m− 1du ^ Sn−j+1,l
s2d L−

s2dsn − j + 1,l + 1,ndu * D
= l−sn − j + 1,n − j + 2,ndM+

k̄So
m=1

j

s− q2dm−1«m ^ «n−j+1
*

^ Fm,j
s1d K−

s1ds j ,1,m− 1du ^ u * D + M+
k̄So

m=1

j

o
l=n−j+2

n

s− q2dm−1«m ^ «l
*

^ Fs1d Ks1ds j ,1,m− 1du ^ Ss2d Ls2dsn − j + 1,l + 1,ndu *
m,j − n−j+1,l − D
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= l−sn − j + 1,n − j + 2,ndM+
k̄
sz j ^ «n−j+1

*
^ u * d

+ M+
k̄S o

l=n−j+2

n

o
m=1

j

s− q2dm−1«m ^ sadEn−l−2
¯ adEj

ds2d«n−j+1
*

^ Fm,j
s1d K−

s1ds j ,1,m− 1du ^ Sn−j+1,l
s2d L−

s2dsn − j + 1,l + 1,ndu * D
= l−sn − j + 1,n − j + 2,ndM+

k̄
sz j ^ «n−j+1

*
^ u * d

+ o
l=n−j+1

n

sadEn−l−2
¯ adEj

ds2dSn−j+1,l
s2d L−

s2dsn − j + 1,l + 1,ndM+
k̄
sz j ^ «n−j+1

*

^ u * d.

he vector M+
k̄
sz j ^ «n−j+1

*
^ u* dPVk̄+ej

and is a Uqsln ^ 1-highest vector. Therefo
+

k̄
sz j ^ «n−j+1

*
^ u* dPVk̄+ej

, M+
k̄
sz j ^ «n−j+1

*
^ u* d=c·v

k̄+ej

h
with somecPC. Now we conclud

hat in the obtained expression all summands except the first equal 0. h

To find cjsb ,kjd we must compute

M+
k̄
sz j ^ «n−j+1

*
^ u * d = M+

k̄So
m=1

j

s− q2dm−1«m ^ «n−j+1
*

^ Fm,j
s1d K−

s1ds j ,1,m− 1du ^ u * D
= o

m=1

j

s− q2dm−1pa,bss− 1d j−1 adEn+j−1
¯ adEn+1

adEm
¯ adEn−1

EndFm,j
s1d K−

s1d

3s j ,1,m− 1dsv
k̄

hd. sA1d

e need some auxiliary lemmas. Recall that in this paper we introduce the notation forq-minors
f the matrixz [see(4)]. Setza1,. . .,ak

∧k =z ha1,. . .,akj
∧kh1,. . .,kj .

Lemma 5: For all1ømøkø j −2,

s− qd j−k−1z∧ j−1z1,. . .,m−1,m+1,. . .,j−
∧k o

s=k+1

j−2

s− qds−k−1z1,. . .,s−1,s+1,. . .,j
∧ j−1 z1,. . .,m−1,m+1,. . .,s

∧k = z1,. . .,m−1,m+1,. . .,j
∧ j−1 z∧k.

h

Lemma 6: For all1ømø j øn we have Fm,j =qj−m−1Gm,j, where

Gm,j = FmKmFm+1,j + o
s=m+2

j

s− qds−m−1 adFs−1
¯ adFm+1

sFmKmdFs,jK−s j ,m+ 1,s− 1d.

h

Lemma 7: For all1ømø j øn

Gm,jsvk̄

hd = sq1/2d j−mk−s j ,m, j − 1dz1,. . .,m−1,m+1,. . .,j
∧ j−1

vk̄

h

z∧ j−1 ,

here

K−s j ,m+ 1,j − 1dsvk̄

hd = k−s j ,m, j − 1dvk̄

h
.

Proof: We prove this lemma by induction. Forj −m=1 the statement is obvious, since
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Gm,m+1svk̄

hd = FmKmssz∧1dk1−k2
¯ sz∧ndknd

= qkm−km+1q1/2fkm − km+1gqsz∧1dk1−k2
¯ sz∧m−1dkm−1−kmz1,. . .,m−1,m+1

∧m

3sz∧mdkm−km+1−1 · sz∧m+1dkm+1−km+2
¯ sz∧ndkn

= q1/2k−sm+ 1,m,mdz1,. . .,m−1,m+1
∧m vk̄−em

h
.

or the proof of the inductive step we use two previous lemmas. By Lemma 6, we have

Gm,jsvk̄

hd = o
s=m+2

j

s− qds−m−1 adFs−1
¯ adFm+1

sFmKmd · sFs,jK−s j ,m+ 1,s− 1ddsvk̄

hd + FmKmFm+1,jsvk̄

hd

= FmKmFm+1,jsvk̄

hd + o
s=m+2

j

s− qds−m−1k−s j ,m+ 1,s− 1dadFs−1
¯ adFm+1

sFmKmdFs,jsvk̄

hd.

y the inductive hypothesis, for allj −s, j −m

Gm,jsvk̄

hd = q1/2s j−m−1dk−s j ,m+ 1,j − 1dFmKmSz1,. . .,m−1,m+1,. . .,j
∧ j−1

vk̄

h

z∧ j−1
D

+ o
s=m+2

j

s− qds−m−1 ·q1/2s j−sdk−s j ,m+ 1,s− 1dk−s j ,s, j − 1dadFs−1
¯ adFm+1

sFmKmd

3Sz1,. . .,m−1,m+1,. . .,j
∧ j−1

vk̄

h

z∧ j−1
D

= q1/2s j−m−1dk−s j ,m+ 1,j − 1d · sFmKmdSz1,. . .,m−1,m+1,. . .,j
∧ j−1

vk̄

h

z∧ j−1
D

+ o
s=m+2

j

s− q1/2ds−m−1 adFs−1
¯ adFm+1

sFmKmdSz1,. . .,s−1,s+1,. . .,j
∧ j−1

vk̄

h

z∧ j−1
D .

sing the explicit formulas for theUqsl2n-action inCfMatngq and properties of the comultiplic
ion (see Sec. II), we obtain that

dFs−1
¯ adFm+1

sFmKmdSz1,. . .,s−1,s+1,. . .,j
∧ j−1

vk̄

h

z∧ j−1
D

= sq1/2ds−msqkm−km+1fkm − km+1gqsz∧1dk1−k2 · ¯ · sz∧m−1dkm−1−kmz1,. . .,m−1,m+1,. . .,s
∧m

· sz∧mdkm−km+1−1
¯ sz∧s−1dks−1−ksz1,. . .,s−1,s+1,. . .,j

∧ j−1 sz∧sdks−ks+1 · ¯ · sz∧ndkn

+ s− qdqkm−km+1+km+1−km+2fkm+1 − km+2gqsz∧1dk1−k2 · ¯ · sz∧mdkm−km+1

·z1,. . .,m−1,m+1,. . .,s
∧m+1 sz∧m+1dkm+1−km+2−1

¯ sz∧s−1dks−1−ksz1,. . .,s−1,s+1,. . .,j
∧ j−1 · sz∧sdks−ks+1 · ¯ · sz∧ndkn

+ ¯ + s− qds−2qkm−km+1+¯+ks−2−ks−1fks−2 − ks−1gq · sz∧1dk1−k2 · ¯ · sz∧s−2dks−2−ks−1

3z1,. . .,m−1,m+1,. . .,s
∧s−1 · sz∧s−1dks−1−ks−1z1,. . .,s−1,s+1,. . .,j

∧ j−1

· sz∧sdks−ks+1 · ¯ · sz∧ndkn + s− qds−1qkm−km+1+¯+ks−1−ksfks−1 − ksgqsz∧1dk1−k2 · ¯

· sz∧s−2dks−2−ks−1sz∧s−1dks−1−ksz1,. . .,m−1,m+1,. . .,j
∧ j−1 sz∧sdks−ks+1 · ¯ · sz∧ndknd.
inally, by Lemma 5, we see that
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Gm,jsvk̄

hd = sq1/2d j−mk−s j ,m+ 1,j − 1d ·z1,. . .,m−1,m+1,. . .,j
∧ j−1

vk̄

h

z∧ j−1 ·
q2s j−2+k1−kjd − 1

q − q−1 .

h

By the last lemma and(A1), we can compute the coefficientscjsb ,kjd introduced in Propo
ition 7.

Proposition 16: For all1ø j øn,

M+
k̄
sz j ^ «n−j+1

*
^ u * d = q−b−n/2+kj+jfb − kj + j − 1gqk−s j ,1,j − 1dvk̄+ej

h
.

Proof: We have

+
k̄
sz j ^ «n−j+1

*
^ u * d

= o
m=1

j

s− q2dm−1pa,bss− 1d j−1 adEn+j−1
¯ adEn+1

adEm
¯ adEn−1

End ·Fm,j
s1d K−

s1ds j ,1,m− 1dvk̄

h

= o
m=1

j

s− q2dm−1k−s j ,1,m− 1d · pa,bss− 1d j−1 adEn+j−1
¯ adEn+1

adEm
¯ adEn−1

EndFm,j
s1d vk̄

h
.

y Lemma 7,

M+
k̄
sz j ^ «n−j+1

*
^ u * d = o

m=1

j−1

s− q2dm−1qj−m−1sq1/2d j−mk−s j ,m, j − 1dk−s j ,1,m− 1d · s− 1d j−1

3pa,bsadEn+j−1
¯ adEn+1

adEm
¯ adEn−1

EndSz1,. . .,m−1,m+1,. . .,j
∧ j−1

vk̄

h

z∧ j−1
D

+ s− q2d j−1k−s j ,1,j − 1dpa,bss− 1d j−1 adEn+j−1
¯ adEn+1

adEj
¯ adEn−1

End

3svk̄

hd

= q3/2j−3k−s j ,1,j − 1do
m=1

j−1

s− 1d j+mqm/2

· pa,bsadEn+j−1
¯ adEn+1

adEm
¯ adEn−1

End

3Sz1,. . .,m−1,m+1,. . .,j
∧ j−1

vk̄

h

z∧ j−1
D + q2j−2k−s j ,1,j − 1d

3pa,bsadEn+j−1
¯ adEn+1

adEj
¯ adEn−1

Endsvk̄

hd.

In Sec. II the following morphism ofUqsl2n-modules was defined:

i:CfMatngq → CfPln,2ngq,t, iszha1,. . .,akj
∧khb1,. . .,bkjd = t−1th1,. . .,njJ

∧n ,

ith
J= hn+ 1, .. . ,2nj \ h2n+ 1 −b1, . . . ,2n+ 1 −bkj ø ha1, . . . ,akj.

hereforeisz∧kd= t−1th1,. . .,njh1,. . .,k,n+1,. . .,2n−kj
∧n . It follows that

isvk̄

hd = qct−k1sth1,. . .,njh1,n+1,. . .,2n−1j
∧n dk1−k2

¯ sth1,. . .,njh1,. . .nj
∧n dkn,
here somecPC. Using the definition ofpa,b, we obtain that for alljPUqsl2n, f PCfPln,2ngq,t
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pa,bsjdsfd = qct−bj · stbfsth1,. . .,njh1,. . .,nj
∧n dadsth1,. . .,njh1,. . .nj

∧n d−a.

or m, j ,

sadEn+j−1
¯ adEn+1

adEm
¯ adEn−1

Endsth1,. . .,m−1,m+1,. . .,j ,n+1,. . .,2n−j ,2n−m+1j
∧nh1,. . .,nj d

= s− 1dm−jsq−1/2d j+n−mqm−j−1th1,. . .,njh1,. . .,j ,n+1,. . .,2n−jj
∧n ,

nd for m= j sadEn+j−1
¯adEn+1

adEj
¯adEn−1

Endsth1,. . .,njh1,. . .,j−1,n+1,. . .,2n−j+1j
∧n d

sq−1/2dnth1,. . .,njh1,. . .,j ,n+1,. . .,2n−jj
∧n . For other summands we use an analog of Lemma 5. Finall

ave

M+
k̄
sz j ^ «n−j+1

*
^ u * d = k−s j ,1,j − 1dq−n/2 ·Sq2o

m=1

j−1

q2m−2 +
1 − q−2b+2k1

1 − q−2

+ o
m=1

j−1

q−2b+2km
1 − q−2km+2km+1

1 − q−2 D ·vk̄+ej

h

= q−b−n/2+kj+jk−s j ,1,j − 1dfb − kj + j − 1gqvk̄+ej

h
.

h

Repeat the same arguments to prove Proposition 10. First, we have the explicit form
he isomorphismj2:pq

−.sCnd* ^ Cn:

j2
−11«1

*
^ «1 ¯ «n

*
^ «1

¯ ¯ ¯

«1
*

^ «n ¯ «n
*

^ «n
2

=1
s− 1dn−1adF1

¯ adFn−1
sKnFnd ¯ − adFn−1

sKnFnd KnFn

¯ ¯ ¯ adFn+1
sKnFnd

¯

s− 1dn−1adF2n−1
¯ adFn+1

adF1
¯ adFn−1

sKnFnd ¯ ¯ adF2n−1
¯ adFn+1

sKnFnd

or the proof of Proposition 10 we must compute the following:

M−
k̄
sj j8 ^ zn−j+18 d = M−

k̄So
m=j

n

«m
*

^ Sj ,m
s1d L−

s1ds j ,m+ 1,ndu

^ o
m=1

n−j+1

s− q2dm−1«m ^ Fm,n−j+1
s2d K−

s2dsn − j + 1,1,m− 1du*D
= M−

k̄So
m=j

n

o
l=1

n−j+1

s− q2dl−1«m
*

^ «l ^ Sj ,m
s1d L−

s1ds j ,m+ 1,ndu

^ Fl,n−j+1
s2d K−

s2dsn − j + 1,1,l − 1du*D .

Proposition 17: For all1ø j øn

M−
k̄
sj j8 ^ zn−j+18 d = l−s j , j + 1,ndM−

k̄
s« j

*
^ u ^ zn−j+18 d,
here
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L−
s1ds j , j + 1,ndu = l−s j , j + 1,ndu.

he proof is similar to the proof of Proposition 15.
Therefore in order to find the coefficientsdjsa ,kjd introduced in Proposition 10 we must o

ompute

M−
k̄
s« j

*
^ u ^ zn−j+18 d = M−

k̄S o
l=1

n−j+1

s− q2dl−1« j
*

^ «l ^ u ^ Fl,n−j+1K−sn − j + 1,1,l − 1du * D
= o

l=1

n−j+1

s− q2dl−1pa,bsadFj
¯ adFn−1

adFn−1+l
¯ adFn+1

sKnFndd

·Fl,n−j+1
s2d K−

s2dsn − j + 1,1,l − 1dsvk̄

hd.

hese computations are analogous to the ones from the proof of Proposition 16.
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combinatorial approach to the set-theoretic solutions
f the Yang–Baxter equation
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A bijective mapr: X2→X2, whereX=hx1, . . . ,xnj is a finite set, is called aset-
theoretic solution of the Yang–Baxter equation(YBE) if the braid relation
r12r23r12=r23r12r23 holds inX3. A nondegenerate involutive solutionsX,rd satisfy-
ing rsxxd=xx, for all xPX, is calledsquare-free solution. There exist close relations
between the square-free set-theoretic solutions of YBE, the semigroups of I-type,
the semigroups of skew polynomial type, and the Bieberbach groups, as it was first
shown in a joint paper with Michel Van den Bergh. In this paper we continue the
study of square-free solutionssX,rd and the associated Yang–Baxter algebraic
structures—the semigroupSsX,rd, the groupGsX,rd and thek-algebraAsk,X,rd
over a fieldk, generated byX and with quadratic defining relations naturally arising
and uniquely determined byr. We study the properties of the associated Yang–
Baxter structures, and prove a conjecture of the present author that the three no
tions: a square-free solution of(set-theoretic) YBE, a semigroup of I type, and a
semigroup of skew-polynomial-type, are equivalent. This implies that the Yang–
Baxter algebraAsk,X,rd is a Poincaré–Birkhoff–Witt-type algebra, with respect to
some appropriate ordering ofX. We conjecture that every square-free solution of
YBE is retractable, in the sense of Etingof–Schedler–Solovyev. ©2004 American
Institute of Physics.[DOI: 10.1063/1.1788848]

. INTRODUCTION

The Yang–Baxter equation appeared in 196736 in Statistical Mechanics and turned out to
ne of the basic equations in mathematical physics, and more precisely for introducing the
f quantum groups. At present the study of quantum groups, and, in particular, the solution
ang–Baxter equation attracts the attention of a broad circle of scientists and mathematic

Let V be a vector space over a fieldk. We recall that a linear automorphismR of V^ V is a
olution of the Yang–Baxter equation, if the equality

sR ^ idVdsidV ^ RdsR ^ idVd = sidV ^ RdsR ^ idVdsidV ^ Rd s1.1d

olds in the automorphism group ofV^ V^ V. R is a solution of thequantum Yang–Baxt
quation(QYBE) if

R12R13R23 = R23R13R12, s1.2d

hereRij meansR acting on theith and j th component.
Finding all solutions of the Yang–Baxter equation is a difficult task far from being reso

evertheless many solutions of these equations have been found during the last 20 year
elated algebraic structures(Hopf algebras) have been studied(for example, see Ref. 20). Most of
hese solutions were “deformations” of the identity solution. In 1990 Drinfeld5 posed the proble

)
Electronic mail: tatyana@aubg.bg, tatianagateva@yahoo.com, tatiana@math.harvard.edu
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f studying a class of solutions that are obtained in a different way—the so-calledset-theoreti
olutions.

Definition 1.1:Let X be a nonempty set. Letr :X3X→X3X be a bijection of the Cartesi
roductX3X onto itself. The mapr is calleda set-theoretic solution of the Yang–Baxter equa,

f

sr 3 idXdsidX 3 rdsr 3 idXd = sidX 3 rdsr 3 idXdsidX 3 rd.

Each set-theoretic solutionr of the Yang–Baxter equation induces an operatorR on V^ V for
he vector spaceV spanned byX, which is, clearly, a solution of(1.1). Various works dealing wit
et-theoretic solutions appeared during the last decade, cf. Refs. 35, 18, 15, 6, 7, 33, 23
0.

The purpose of this paper is first to present some recent conjectures on the set-t
olutions of the Yang–Baxter equation, and to give an account of the research in this ar
econd to continue the study of the general algebraic and homological properties of the a
tructures related to the so-called square-free solutions. Our approach is combinatorial.
olution sX,rd we associate a semigroupS=SsX,rd, a groupG=GsX,rd (the group was als

studied in Ref. 6), and a quadratic algebra over a fieldk, Ask,X,rd.kS, each of them with a s
of n generatorsX and with quadratic defining relationsRsX,rd naturally arising and unique
determined byr. We study the “behavior” of these relations, and use the obtained informati
establishing structural and homological properties of the associated algebraic objects. T
proach is natural, for usual linear solutions one has similar ideas for instance in Manin’s25

n the case of set-theoretic solutions to YBE it was initiated in the joint paper with Michel Va
ergh,15 and applied to the study of the close relations between different mathematical
uch as set-theoretic solutions of the Yang–Baxter equation, semigroups of I-type(which appeare

n the study of Sklyanin algebras) and the semigroupsS0 associated with the class of ske
olynomial rings with binomial relations, introduced and studied in Refs. 8 and 9. The semi

0, calledsemigroups of skew-polynomial typeare standard finitely presented, more precisely,
re defined in terms of a finite number of generators and quadratic square-free relations

orm a Groebner basis(or equivalently, the algebraA=kS is a PBW algebra) cf. 2.19. It is proven
n Ref. 15 that each skew-polynomial semigroupS0 defines a nondegenerate set-theoretic sol
=rsS0d of the Yang–Baxter equation. In connection with this result the present author ma
onjecture that under the restriction thatX is finite andr is square-free, i.e., rsx,xd=sx,xd for each
PX, all nondegenerate involutive solutions can be obtained in this way, cf. 2.18. The
heorem 2.26 proves this conjecture, and shows that there exists an ordering onX, X
hx1,x2, ¯ ,xnj, such that the Yang–Baxter algebraA=Ask,X,rd is a Poincaré–Birkhoff
itt-type algebra, with ak-basis—the set of ordered monomialshx1

a1x2
a2
¯xn

an uai ù0,1ø i ønj.
his result is used to show that eachbinomial solutionof the Yang–Baxter equation is obtain

rom a binomial skew-polynomial ring, see 9.7. We show that the Yang–Baxter semigroS
SsX,rd is a distributive lattice. Finally we study generalized twisted unions of solution
ultipermutation solutions. We make a stronger conjecture, 2.28, that every square-free

X,rd is retractable, furthermore it is a multipermutation solution of levelm,n.
In this work we will not be in a position to develop specific physical applications but al

e can say that several of the structures we introduce are highly relevant for physics. For e
he groupsGsX,rd act on each other to form a matched pair of groups and are hence a
source of quantum groups of bicrossproduct type. More details are to appear in our s16

icrossproduct quantum groups themselves are increasing importance in noncommutativ
try as for example the Connes–Kreimer quantum groups associated to renormalizat
-Poincaré quantum groups related to deformed spacetime, and the original “Planck-scale
um group; see Ref. 24 for this background.
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I. BASIC NOTIONS AND RESULTS

In this section we first recall some basic notions, definitions, and results, from Refs. 6
hey are related to both quantum group theory and noncommutative algebra, so we recall
onvenience of readers with various mathematical background. Next we formulate the m
ults of the paper and a conjecture about set-theoretic solutions of YBE.

We fix a finite nonempty setX with n elements. We shall often identify the setsX3X andX2,
he set of all monomials of length two in the free semigroupkXl.

Definition 2.1 (Ref. 6):Let r :X3X→X3X be a bijective map, we shall refer to it assX,rd.
he components ofr are the mapsL :X3X→X andR :X3X→X defined by the equality

rsx,yd = sLxsyd,Rysxdd.

i) sX,rd is left nondegenerateif for eachx the mapLxsyd is a bijective function ofy; sX,rd is
right nondegenerateif for each y the mapRysxd is a bijective function ofx; sX,rd is
nondegenerateif it is left and right nondegenerate.

ii ) sX,rd is involutive if

r2 = idX3X. s2.1d

iii ) sX,rd is a braided setif r satisfies the braid relation

r12r23r12 = r23r12r23, s2.2d

wherer12=r 3 idX and r23= idX3 r.
iv) sX,rd is symmetricif it is braided and involutive.
v) If sX,rd is a braided, involutive and nondegenerate set we shall call it simplya solution.

Clearly, every braided set presents a set-theoretic solution of the Yang–Baxter equa
eneral study of nondegenerate symmetric sets was given in Ref. 6.

In Ref. 15 was found a special class of solutions, here we call themsquare-free solutions(cf.
.2), which are defined via the semigroups of skew-polynomial type. These semigroup

ntroduced and studied first in Ref. 8. The study continued in Refs. 9, 10, 15, and 19, cf. a
7.

Definition 2.2:A mapr :X2→X2 is square-freeif it acts trivially on diagsX2d i.e., rsxxd=xx, for
ll xPX.

Example 2.3:Let X be a nonempty set and letrsxyd=yx. ThensX,rd is a square-free solutio
hich is calledthe trivial solution.

Example 2.4 (Permutational solution, Lyubashenko, Ref. 5):Let X be a nonempty set, letf ,g
be mapsX→X and letrsxyd=gsydfsxd. Then(a) sX,rd is nondegenerate if and only iff andg are
bijective; (b) sX,rd is braided if and only iffg=gf; (c) sX,rd is involutive if and only if f =g−1.

Remark 2.5:Note that for any permutationf of X, the mapr defined asrsxyd= fsydf−1sxd, is a
olution, but in generalr is not square-free. In fact, a permutational involutive solutionr is
quare-free if and only iff = idX, i.e., r = idX2. Nevertheless, we prove in 3.7 that each square
olution behaves “locally” as a permutational solution.

Clearly, when the orderuXu=2, the only square-free solutionsX,rd is the trivial one. Th
owest order ofX which allows a nontrivial, square-free solution is 3, as shown in the follow

Example 2.6:Let X=hx1,x2,x3j. Up to renumerating of the setX there exists a unique no
rivial square-free solutionsX,rd, namely,

rsx3x1d = x2x3, rsx2x3d = x3x1,

rsx3x2d = x1x3, rsx1x3d = x3x2,
rsx2x1d = x1x2, rsx1x2d = x2x1, rsxixid = xixi, i = 1,2,3.
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Up to isomorphism of solutions, there exist 5 square-free solutionssX,rd with uXu=4. The one
ith the greatest number nontrivial relations is given in the following example.

Example 2.7:Let X=hx1,x2,x3,x4j and letr be defined as

rsx1x3d = x4x2, rsx4x2d = x1x3, rsx1x4d = x3x2, rsx3x2d = x1x4,

rsx2x3d = x4x1, rsx4x1d = x2x3, rsx2x4d = x3x1, rsx3x1d = x2x4,

rsx1x2d = x2x1, rsx2x1d = x1x2, rsx3x4d = x4x3, rsx4x3d = x3x4,

rsxixid = xixi, i = 1, . . . ,4.

hensX,rd is a square-free solution. Consider the permutations=s12ds34d. Forx,y which belong
o different orbits ofs one hasrsxyd=ssyds−1sxd, and whenx andy belong to the same orbit, th
sxyd=s2syds−2sxd=yx.

Definition 2.8: The braid groupBn is the group generated byn generatorsb1, . . . ,bn and
efining relations

bibj = bjbi,ui − j u . 1; s2.3d

bibi+1bi = bi+1bibi+1. s2.4d

Recall that the symmetric groupSn is isomorphic to the quotient ofBn by the relationsbi
2

1.
The following remark is obvious, see for example Ref. 6.
Remark 2.9:Let mù3 be an integer.(i) The assignmentbi → r ii+1, 1ø i øm−1, extends to a

ction ofBm on Xm if and only if sX,rd is a braided set.(ii ) The assignmentbi → r ii+1, 1ø i øm
1, extends to an action ofSm on Xm if and only if sX,rd is a symmetric set.(Here, as usua

ii+1= idXsi−1d 3 r 3 idXsm−i−1d.)
The next well-known fact(see Ref. 6), gives the relation between the braided sets(i.e., the

et-theoretic solutions of the Yang–Baxter equation) and the set-theoretic solutions of the quan
ang–Baxter equation.

Fact 2.10: Let r:X2→X2 be a bijection, s :X2→X2 be the flipssxyd=yx, for all x, yPX. Let
=s + r (i.e., R is the so calledR-matrix corresponding to r). Then r satisfies the set-theo
ang–Baxter equation if and only if R satisfies the quantum Yang–Baxter equation:

R12R13R23 = R23R13R12. s2.5d

urthermore, r is involutive if and only if R satisfies (2.5) and the unitarity condition

R21R= 1. s2.6d

In the spirit of a recent trend called acombinatorial approach in algebra, to each bijectiv
apr :X2→X2 we associate canonically finitely presented algebraic objects(see precise definitio

n 2.12) generated byX and with quadratic defining relationsR naturally determined as

R = Rsrd = hsu = rsudduu P X2,u Þ rsud as words inX2j. s2.7d

We study the close relations between the combinatorial properties of the defining re
.g., of the mapr, and the structural properties of the associated algebraic objects.

Notation 2.11:For a nonempty setX, as usual, we denote bykXl the free semigroup genera
y X, and bykkXl—the free associativek-algebra generated byX, wherek is an arbitrary field. Fo
setF#kkXl, sFd denotes the two sided ideal ofkkXl, generated byF.

Definition 2.12:Assume thatr :X2→X2 is an involutive, bijective map.
i) The semigroup
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S= SsX,rd = kX;Rsrdl,

with a set of generatorsX and a set of defining relationsRsrd is called the semigrou
associated withsX,rd.

ii d The group G=GsX,rd associated withsX,rd is defined as

G = GsX,rd = grkX;Rsrdl.

iii d For arbitrary fixed fieldk, the k-algebra associated withsX,rd is defined as

A = Ask,X,rd = kkXl/sRsrdd. s2.8d

Clearly A is a quadratic algebra, generated byX and with defining relationsRsrd. Further-
ore,A is isomorphic to the semigroup algebrakSsX,rd.

Manin25 introduced the notion of aYang–Baxter algebra. He callsa Yang–Baxter algebraa
uadratic algebraA with defining relation determined via arbitrary fixed Yang–Baxter operato

his spirit we give the following definition.
Definition 2.13:AssumesX,rd is a solution. ThenSsX,rd, GsX,rd, andAsk,X,rd are called

espectively,the Yang–Baxter semigroup, the Yang–Baxter group, andthe Yang–Baxter k-algebra,
ssociated withsX,rd. We shall also use the abbreviation “YB” for “Yang–Baxter.”

In the case whensX,rd is a solution,GsX,rd is also calledthe structure group ofsX,rd, see
Ref. 6.

Example 2.14:Let sX,rd be the trivial solution, i.e.,rsxyd=yx, for all x,yPX, then clearly
SsX,rd=fx1, . . . ,xng, is the free Abelian semigroup generated byX, GsX,rd=ZX, is the free Abelia
roup generated byX, andAsk,X,rd=kfx1, . . . ,xng is the commutative polynomial ring overk.

Definition 2.15:Let S=kX;Rl be a semigroup with a set of generatorsX and a set of quadrat
inomial defining relations

R = hxy= y8x8ux,y,x8,y8 P Xj.

e assume that each monomialuPX2, occurs in at most one relation inR. Define the mapr
rsSd :X2→X2 as follows:

i) rsxyd=xy, if xy is a monomial of length 2 which does not occur in any relation inR; and
ii ) if sxy=y8x8dPR, then we setrsxyd=y8x8 andrsy8x8d=xy. We callrsSd the map associate

with the semigroup S.

Note that ifr is the map defined by the set of relations of a YB-semigroupS=kX;Rl, then the
et sX; rd is always symmetric, since clearly,r2= idX2.

We give now an example of a Yang–Baxter semigroupSwith 11 generators. In fact,Sbelongs
o the class of semigroups of skew-polynomial type, 2.19, and the maprsSd is a square-fre
olution.

Example 2.16:Let S=kX;Rl, where the set of generators isX=h1,2, . . . ,8 ,a,b,cj and the
efining relations are

1a = a2, 2a = a1, 2b = b3, 3b = b2, 3a = a4, 4a = a3, 4c = c1, 1c = c4,

5a = a6, 6a = a5, 6b = b7, 7b = b6, 7a = a8, 8a = a7, 8c = c5, 5c = c8,

1b = b5, 5b = b1, 2c = c6, 6c = c2, 3c = c7, 7c = c3, 4b = b8, 8b = b4,

ab= ca, ac= ba, bc= cb, i j = ji , 1 ø i, j ø 8.

Remark 2.17:Let S0 be a semigroup of skew-polynomial type(see 2.19). Let r =rsS0d be the

ap defined by the relations ofS0. ThensX,rd is a square-free solution(cf Ref. 15, Theorem 1.2,
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lso Theorem 2.26). Furthermore,S0 is a cancelative semigroup, and has a group of quot
rsS0d, which is a central localization ofS0, see Ref. 19. It is clear, that the groups grsS0d and the
ssociated groupGsX,rd are isomorphic. Moreover, the setX is embedded inGsX,rd.

The semigroups of skew-polynomial type were discovered while the author was search
new class of Artin–Schelter regular rings. It turned out thatthe skew-polynomial rings wi

inomial relations, or shortly binomial skew-polynomial ringsintroduced and studied in Re
–10, provide a class of Artin–Schelter regular rings of arbitrary global dimension, cf. Re
4, and 15. Furthermore, with each ringA0 of this type we associate(uniquely) a semigroupS0

hich defines(via its relations) a nondegenerate set-theoretic solutionrsS0d of the Yang–Baxte
quation, cf. Ref. 15. It is easy to generalize this result by showing that each skew-polynom
ith binomial relations defines a solution of the classical Yang–Baxter equation, see Theor
he semigroupS0 is called a semigroup of skew-polynomial type. The results in Ref. 15

urther study of the combinatorial properties of the solutions inspired the following Conje
hich we reported first in a talk at the International Conference in Ring Theory, Miskolc,
ee also Refs. 11 and 12.

Main Conjecture 2.18 (Ref. 13):Let sX,rd be a square-free(nondegenerate, involutive) solu-
ion of the Yang–Baxter equation. Then the setX can be ordered so, that the associated semig
s of skew-polynomial type.

Definition 2.19:We say that the semigroupS0 is a semigroup of skew-polynomial type(or
hortly,a skew-polynomial semigroup) if it has a standard finite presentation asS0=kX;R0l, where
he set of generatorsX is ordered:x1,x2, ¯ ,xn, and the set

R0 = hsxjxi = xi8xj8u1 ø i , j ø n,1 ø i8 , j8 ø nj,

ontains preciselynsn−1d /2 quadratic square-free binomial defining relations, each of them
sfying the following conditions:

i) each monomialxyPX2, with xÞy, occurs in exactly one relation inR0; a monomial of th
type xx does not occur in any relation inR0;

ii ) if sxjxi =xi8xj8dPR0, with 1ø i , j øn, theni8, j8, and j . i8 (further studies show that th
also impliesi , j8, see Ref. 9);

iii ) the monomialsxkxjxi with k. j . i ,1ø i , j ,k, øn do not give rise to new relations inS0, or
equivalently, cf. Ref. 4,R0 is a Groebner basis with respect to the degree-lexicogr
ordering of the free semigroupkXl.

Remark 2.20:SupposeS0 is a semigroup of skew-polynomial type. It follows from the D
ond Lemma4 that, each elementw of S can be presented uniquely as an ordered monomia

w = x1
a1x2

a2
¯ xn

an,

hereai ù0,1ø i øn. This presentation is calledthe normal form of wand denoted as Norswd. It
ollows from the Diamond lemma, that two monomialsw1,w2 in the free semigroupkXl are equa
n S if and only if their normal forms coincide, Norsw1d=Norsw2d. ThusS0 can be identified as
et with the set of ordered monomials

N0 = hx1
a1x2

a2
¯ xn

anuai ù 0,1ø i ø nj. s2.9d

urthermore, for an arbitrary fieldk, the setN0 is a k-basis of the quadratic algebra

A0 = kkXl/sR0d . kS0.

learly,A0 is a Poincaré–Birkhoff–Witt-algebra in the sense of Priddy27 with N0 as a PBW-basi

Remark 2.21:In Ref. 19 the skew-polynomial semigroupsS0 are calledbinomial semigroups.
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We now recall the definition of the semigroups ofI-type, see Ref. 15, which are closely rela
o both—the semigroups of skew-polynomial type and the set-theoretic solutions of Yang–
quation. The rings ofI-type were introduced and studied by Tate and Van den Bergh in their
n the homological properties of Sklyanin Algebras.34

Notation 2.22:Until the end of the paper we shall denote by

U = fu1, . . . ,ung, s2.10d

he free commutative multiplicative semigroup generated byu1, . . . ,un.
Definition 2.23 (Ref. 15):A semigroupS generated byhx1, . . . ,xnj is said to be of(left) I-type

f there exists a bijectionv :U→S called (a left) I-structure, such thatvs1d=1, and such that fo
achaPU there is an equality of setshvsu1ad ,vsu2ad , . . . ,vsunadj=hx1vsad ,x2vsad , . . . ,xnvsadj.
nalogously one definesa right I-structurev1:U→S.

Remark 2.24:It can be extracted from Ref. 15, see also(4.1), that if sX,rd is a square-fre
olution, andS=SsX,rd is the associated YB semigroup, then

a) There exists a unique leftI-structurev :U→S, such thatvsuid=xi, for 1ø i øn.
b) There exists a unique rightI-structurev1:U→S, such thatv1suid=xi for 1ø i øn.

In Sec. IV, Proposition 4.16, we show that a semigroup ofI-type is a distributive lattice wit
espect to the order induced from “one-sided” divisibility, defined below.

Definition 2.25:For every paira,bPS we set

i) aulb, if and only if there exists a monomialcPS, such thatb=ca. We call this relation
divisibility with respect to the left multiplication.

ii ) aurb, if and only if there exists a monomialcPS, such thatb=ac. This relation is calle
divisibility with respect to the right multiplication.

The following theorem proved in Sec. VI verifies the Main Conjecture 2.18.
Main Theorem 2.26: Assume that X is a finite set of order nù1, and r:X3X→X3X is a

quare-free involutive bijection. Let S=SsX,rd be the semigroup associated withsX,rd and let
A=Ask,X,rd be the quadratic k-algebra associated withsX,rd, where k is an arbitrary field. The
the following conditions are equivalent:

(1) sX,rd is a nondegenerate solution of the set-theoretic Yang–Baxter equation.
(2) S=SsX,rd is a semigroup of I-type.
(3) There exists an ordering on X,X=hx1,x2, ¯ ,xnj, such that S=SsX,rd is a semigroup o

skew-polynomial type.
4) There exists an ordering on X,X=hx1,x2, ¯ ,xnj such that for every field k the quadra

k-algebra A=Ask,X,rd is a Poincaré–Birkhoff–Witt algebra, with a k-basis—the set
ordered monomialsN0.

oreover, each of these conditions implies that the solutionsX,rd is decomposable, i.e., X
isjoint union of two nonempty r-invariant subsets.

Corollary 2.27: Let sX,rd be a square-free solution, with associated semigroup S=SsX,rd.
hensS, uld is a distributive lattice. Furthermore the left I-structurev :U→S is an isomorphism

attices.
Condition 2.26.2 implies, cf. Refs. 14 and 15, various nice algebraic and homologica

rties of the algebraA=Ask,X,rd, like being a Noetherian domain, Koszul, Cohen–Maca
rtin–Schelter regular, etc. In particular the semigroupS is cancelative. Hence it is natura
mbedded in its group of quotients grsSd=GsX,rd. We recall these results in Theorem 6.1.

My student, Garcia Roman shows in Ref. 29 that for an explicitly given solutionsX,rd,
ondition 2.26.3 is equivalent to a standard problem from Linear Programming.

In Ref. 16 is presented a matched pairs approach to the set-theoretic solutions of th
axter equation. One of the main results in Ref. 16, given here as Theorem 5.6 covers al

onstructions of solutionssX,rd, restricted to the case of square-free solutions, withX a finite set.
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In Sec. VIII we study retractability of solutions, generalized twisted unions of solutions
ultipermutation solutions.

Section IX gives an application of the Main Theorem to a particular class of solutions
lassical Yang–Baxter equation calledbinomial solutions of YBE. We show that each binom
olution of the classical Yang–Baxter equation is obtained from binomial skew polynomial
herefore the associated Yang–Baxter algebra has a PBW typek-basis, and the nice algebraic a
omological properties of binomial skew-polynomial rings. The study of these algebras co

n Ref. 14.
We close this section with the following conjecture:
Strong Conjecture 2.28:(I) Every square-free solutionsX,rd, whereX is a finite set of orde

ù2, is retractable, see 8.5. FurthermoresX,rd is a multipermutation solution of levelm,n.
(II ) Every multipermutation square-free solution of levelm is a generalized twisted union

ultipermutation solutions of levelsøm−1.

II. THE CYCLIC CONDITION AND COMBINATORICS IN S„X,r…

In this section we introduce a combinatorial technique for non-degenerate square-fre
ions sX,rd, which associates cycles in SymsXd to each pair of elementsy,x in X. We call the
orresponding property ofr cyclic condition. The cyclic condition is the base for all combinato
echniques in this paper. We use it here to deduce more precise pictures of the left and righ
f the groupGsX,rd on X, and to show that each involutive square-free solution acts “locall
permutational solution. Lemma 3.9 gives more precise information about the relationRsrd,
hich is used throughout the paper. We use the lengths of the cycles occurring inSsX,rd to deduce
ome important relations of higher degrees inSsX,rd, and to introduce an invariant integerM
MsX,rd called the cyclic degree ofsX,rd.

Definition 3.1:Let r :X3X→X3X be a bijection.

(1) We say thatsX,rd satisfiesthe weak cyclic condition, if for every pairy,xPX, there exist two
disjoint cyclesLy

x=sx1, . . . ,xmd and Rx
y=syk, . . . ,y1d in the symmetric group SymsXd, such

that x=x1,y=y1, and for all 1ø i øm, 1ø j øk there are equalities:

rsyjxid = Ly
xsxidRx

ysyjd = xi+1yj−1, s3.1d

wherexm+1: =x1, andy0: =yk.
In particular,rsyxd=Ly

xsxdRx
ysyd=x2yk.

In this case we also say that the semigroupSsX,rd satisfiesthe weak cyclic condition.
2d sX,rd satisfiesthe cyclic condition, if for every pairy,xPX, there exist two disjoint cycle

Ly
x=sx1, . . . ,xmd andLx

y=sy1, . . . ,ykd in SymsXd, such thatx=x1,y=y1, and for all 1ø i øm,
1ø j øk there are equalities:

rsxiyjd = yj+1xi−1 andrsyjxid = xi+1yj−1, s3.2d

wherex0=xm,xm+1ªx1, andy0ªyk,yk+1=y1.

In particular, for every pairsy,xdPX3X, the disjoint cyclesLy
x andLx

y satisfy

rsy,xd = Ly
xsxdsLx

yd−1syd, andrsx,yd = Lx
ysydsLy

xd−1sxd. s3.3d

We call Lx
y andLy

x the pair of cycles associated withsy,xd.
If this is the case forsX,rd we also say that the semigroupSsX,rd satisfiesthe cyclic condition.
Remark 3:2:Clearly, the(strong) cyclic condition implies thatr is involutive. We will show

hat every involutive square-free solutionsX,rd satisfies the cyclic condition and use this to st
he left (and the right) action ofGsX,rd on X. Note that if the cyclic condition holds, and we

s = sy,x = sx,y = sx1, . . . ,xmdsy1, . . . ,ykd P SymsXd,
he mapr is expressible “locally” as a permutational solution
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rsyjxid = ssxids−1syjd and rsxiyjd = ssyjds−1sxid.

f we do not assume involutiveness forr, then, in general, only the weak cyclic condition
atisfied. We give an example, see 3.3, of a noninvolutive solution in which the cyclic con
oes not hold.

Example 3.3:Let X=hx1,x2,x3,x4,x5,x6j and suppose the mapr :X2→X2 is defined as

x1x2 ↔ x2,x1; x3x4 ↔ x4x3;

x3x5 ↔ x5x3; x3x6 ↔ x6x3;

x4x5 ↔ x5x4; x4x6 ↔ x6x4; xx↔ xx, for all x P X;

x1x3 → x4x2 → x1x5 → x6x2 → x1x3;

x1x4 → x3x2 → x1x6 → x5x2 → x1x4;

x2x3 → x4x1 → x2x5 → x6x1 → x2x3;

x2x4 → x3x1 → x2x6 → x5x1 → x2x4.

hen sX,rd is a noninvolutive solution, withr4= idX2. Furthermore

Lx1
= sx3x4dsx5x6d, Rx1

= sx3x6dsx4x5d, andRx1
Þ sLx1

d−1.

Recall first a well known fact from Ref. 6.
Fact 3.4 (Ref. 6): LetsX,rd be nondegenerate, G=GsX,rd. ThensX,rd is a braided set if an

nly if the following three conditions are satisfied:

1) The assignment x→Lx induces a left action of G on X;
2) The assignment x→Rx induces a right action of G on X;
3) The following equality holds for any x, y, zPX:

LRLyszdsxdsRzsydd = RLRysxdszdsLxsydd. s3.4d

Notation 3.5:We shall denote byOGsxd the orbit ofx, xPX, under the left action ofG on X.
Lemma 3.6: Let r:X3X→X3X be a bijection. Then in the notation of 3.1 the follow

olds:
(I) Conditions (1), (2), and (3) are equivalent.(II ) Conditions (4), (5), and (6) are equivale

ach of them implies (1), (2), and (3).

1) sX,rd satisfies the weak cyclic condition.
2) For every x,yPX,xÞy, there are equalities

LRxsydsxd = Lysxd andRLysxdsyd = Rxsyd. s3.5d

3) For all i , j ,1ø i øm, 1ø j øk, there are equalities

Lyj

xi = Ly
x = sx1, . . . ,xmd, andRxi

yj = Rx
y = sy1, . . . ,ykd. s3.6d

4) sX,rd satisfies the cyclic condition.
5) For all x ,yPX there are equalities:

Rxsyd = Lx
−1syd, andLRxsydsxd = Lysxd. s3.7d
6) For all i , j ,1ø i øm, 1ø j øk, there are equalities
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Lyj

xi = sRyj

xi d−1 = Ly
x = sx1, . . . ,xmd, s3.8d

and

Lxi

yj = sRxi

yjd−1 = Lx
y = sy1, . . . ,ykd. s3.9d

The following theorem gives an account of various conditions on the bijective mapsr :X2

X2 and the corresponding semigroupSsX,rd. For some of them we assume neither thatr is
ecessarily a solution of the Yang–Baxter equation, nor we assume thatr is involutivene.

Theorem 3.7: Let r:X2→X2 be a bijective map, denoted bysX,rd. Let S=SsX,rd be the
emigroup associated tosX,rd. Let Lx andRx be the left and right components of r, introduced in
.1. Consider the following conditions:

1) (a) sX,rd is left nondegenerate; (b)sX,rd is right nondegenerate.
2) (a) (Right Ore condition) For every pair a,bPX, there exists a unique pair x,yPX, such

that ax=by; (b) (Left Ore condition) For every pair a,bPX there exists a unique pair z,t
PX, such that za= tb.

(3) sX,rd is square-free and nondegenerate.
(4) Lx is a bijection andLxsydÞx, for each yÞx; Ry is a bijection andRysxdÞy, for each y

Þx.

hen the following is true:

A) The conditions 1(a) and 2(a) are equivalent; the conditions 1(b) and 2(b) are equiva;
B) The conditions 3 and 4 are equivalent.
C) If sX,rd is a nondegenerate square-free solution of the Yang–Baxter equation (not ne

ily involutive) then the weak cyclic condition 3.1.1 holds.
D) If sX,rd is a nondegenerate involutive square-free solution of the Yang–Baxter equatio

the cyclic condition 3.1.2 holds.

Proof: (A) s1.ad⇒ s2.ad Let a,bPX. By our assumption the functionLa is a bijection ofX
nto itself, so there exists a uniquey such thatLasyd=b, hence the equalityrsayd=LasydRysad
ivesrsayd=bz, for somezPX. But r is a bijective map onX2 onto itself, soz is also determine
niquely. The implications1.bd⇒ s2.bd is analogous.

The implicationss2.ad⇒ s1.ad and s2.bd⇒ s1.bd are obvious.
(B) 3⇒4. Let x,yPX, xÞy. By assumptionrsxxd=xx, so Lxsxd=xÞLxsyd. 4⇒3. Let x

X, clearly there is an equality of sets

hLxsyduy P X,y Þ xj = X \ hxj

o Lxsxd=x. Similarly Rxsxd=x, thusrsxxd=xx.
For the following lemmas we assume the hypothesis of the theorem.
Lemma 3.8: IfsX,rd is nondegenerate and square-free, then rsxydÞxy if and only if xÞy.
Proof: The statement of the lemma follows immediately from B and from the equ

sxyd=LxsydRysxd. h

Lemma 3.9 gives important and explicit information about the relationsRsrd. In fact relations
3.10) and (3.11) are used in almost every computation throughout the paper.

Lemma 3.9: IfsX,rd is a nondegenerate and square-free solution of the Yang–Baxter eq
not necessarily involutive), then the following conditions hold in S:

fyx= x8y8,x Þ yg ⇒ fyx8 = x9y8,y8x = x8y9g, s3.10d

or some x9 ,y9PX.
Furthermore, there are equalities:
yxx= x8x8y9, andyyx= x9y8y8. s3.11d
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Proof: Let xÞy and letyx=x8y8, or equivalently,rsyxd=x8y8. It follows from (3.8) that yx
x8y8, as monomials in the free semigroupkXl. Assume that

rsyx8d = x9y9. s3.12d

ow consider the “Yang–Baxter diagram”

yyx →
r3idX

yyx

idX 3 r↓ ↓idX 3 r

yx8y8 yx8y8

r 3 idX↓ ↓r 3 idX

x9y9y8 →
idX3r

x9y9y8

. s3.13d

t follows then thatrsy9y8d=y9y8, which, sincer is square-free, is possible only ify9=y8. We
ave shown that

syx= x8y8d ⇒ syx8 = x9y8d s3.14d

y8=y is possible). Note thatx9Þy,y8.
Similarly, we prove that

syx= x8y8d ⇒ sy8x = x8y9d s3.15d

or some appropriatey9PX.
The equalityyyx=x9y8y8 in S also follows from the diagram(3.13). h

The validity of conditions C and D can be deduced from the following lemma. Note that
ypothesis of the lemma we do not assume thatsX,rd is a solution.

Lemma 3.10: (i)sX,rd satisfies the weak cyclic condition 3.1.1 if and only if r is nonde
rate and satisfies condition(3.10).

(ii) SupposesX,rd satisfies the weak cyclic condition. Then r is involutive if and only i
very pair y,xPX one hasLy

x=sRy
xd−1.

Proof: Clearly, the weak cyclic condition 3.1.1 implies(3.10) and r nondegenerate. Assum
ow thatr is nondegenerate and condition(3.10) holds.

Supposey,xPX, yÞx, and rsyxd=x8y8 (x8=x, or y8=y are possible). We denotex1=x, x2

x8, and apply(3.10) successively to obtain a sequence of pairwise distinct elementsx1, . . . ,xm

X, such that

rsyxid = xi+1y8, for 1 ø i ø m− 1, andrsyxmd = x1y8. s3.16d

imilarly (after an appropriate re-numeration) we obtainy1=y,y2, . . . ,yk=y8PX, such that

rsyjx1d = x2yj−1, for 2 ø j ø k, andrsy1x1d = x2ym. s3.17d

e claim that

rsyjxid = xi+1yj−1, for 1 ø i ø m, 1 ø j ø k, s3.18d

herexm+1ªx1, y0ªym. We prove(3.18) by induction onj .
Step 1: j=1. Clearly (3.16), with yk=y8, give the base for the induction. Assume(3.18) is

atisfied for allj ,1ø j ø j0−1. We shall prove(3.18) for j = j0, 1ø i øm−1, using induction oni.
he base of the induction,

rsyj0
x1d = x2yj0−1, s3.19d
ollows from (3.17). Assume now(3.18) is true for all i , i0. In particular,
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rsyj0
xi0−1d = xi0

yj0−1. s3.20d

hen by(3.10) one has

rsyj0
xi0

d = tyj0−1, for somet [ X, s3.21d

e apply(3.10) again and obtain

rsyj0−1xi0
d = tz, s3.22d

or somezPX. It follows from the inductive assumption that

rsyj0−1xi0
d = xi0+1 + yj0−2, s3.23d

hich together with(3.22) givest=xi0+1 thusrsyj0
xi0

d=xi0+1yj0−1. We have proven that(3.18) holds
or all i, 1ø i øm, and j = j0, which verifies(3.18). This proves(i).

We setLy
x=sx1, . . . ,xmdPSymsXd, andsRx

yd−1=sy1, . . . ,ykdPSymsXd. Consider the permut
ion

sy,x = sx1, . . . ,xmdsy1, . . . ,ykd.

learly,

rsyjxid = sy,xsxidsy,x
−1syjd. s3.24d

Assume now thatr is involutive, and applyr to (3.18) to obtainrsxi+1yj−1d=yjxi. This implies
or 1ø i øm and 1ø j øk:

Lx
y = Lxi

y = sy1, . . . ,ykd = sRx
yd−1 = sRxi

y d−1, s3.25d

Ly
x = Lyj

x = sx1, . . . ,xmd = sRy
xd−1 = sRyj

x d−1. s3.26d

Conversely,(3.25) and (3.26) imply that sy,x=sx,y thereforer is involutive. This proves th
emma, and completes the proof of the theorem. h

Remark 3.11:Let sX,rd be an arbitrary square-free nondegenerate solution(not necessaril
nvolutive). Consider the left and the right actions ofG on X, see(3.4), extending the assignme
y→Ly, respectively,x→Rx, where Ly, RxPSymsXd are the permutations defined viarsyxd
LysxdRxsyd. Since each permutation has a presentation as a product of disjoint cycles in SsXd

unique up to commutation of multiples) we obtain that the cycleLy
x=sx1, . . . ,xmd, sx1=xd occurs

s a multiple in such a presentation ofLy and the cycleRx
y=sy1, . . . ,ykd is a multiple of the

orresponding presentation forRx. The surprising part is that each pairyi, xi with 1ø j øk and
ø i øm, produces the same pair of cycles:Lyj

xi =Ly
x=sx1, . . . ,xmd, and Rxi

yj =Rx
y=sy1, . . . ,ykd.

herefore although in generalLyj
ÞLy, each permutationLyj

, 1ø j øk contains the same cyc
x1, . . . ,xmd in its presentation as products of disjoint cycles in SymsXd. Analogously, the cycl
y1, . . . ,ykd participates in the presentation of eachRxi

, 1ø i øm, as a product of disjoint cycle
e do not know how the cyclesLy

x andRy
x, are related to each other, in the general(noninvolutive)

ase of square-free nondegenerate solutions, besides the obvious property, that each
ontainsx, see example 3.3. In the case of involutive solutionssX,rd there is a “symmetry”Ly

x

sRy
xd−1=sx1, . . . ,xmd for each pairyÞx,y,xPX.
Notation 3.12:To avoid complicated expressions, sometimes we shall use also the n

y=Lxsyd andyx=Rxsyd.
The following corollary is a “translation” of the cyclic condition in the new notation. It ca

xtracted from a more general result in Ref. 16.
Corollary 3.13: Let r:X3X→X3X be a nondegenerate involutive bijection. Consider
ollowing conditions:
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1) xx=x for every x[X.
2) rsx,xd=sx,xd for every x[X.
3) sX,rd satisfies the cyclic condition.
4) For every x,yPX there are equalities:

sxydx = yx; syxdy = ysxyd = x. s3.27d

hen the following is true:

a) Conditions 1 and 2 are equivalent.
b) Conditions 3 and 4 are equivalent.

Convention 3.14:In the rest of the paper we shall consider only involutive nondegen
quare-free solutionssX,rd of the Yang–Baxter equation; they will be briefly calledsquare-free
olutions.

Let xPX. Clearly, for tPX the cycleLx
t is of length one if and only ifxt= tx8.

Notation 3.15:We denote byGL=GLsX,rd the image ofGsX,rd under the group homomo
hismL :G→SymsXd, which extends the assignmentx→Lx. GR=GRsX,rd denotes the image
sX,rd under the group homomorphismR :G→SymsXd, which extends the assignmentx→Rx.

Lemma 3.16: LetsX,rd be a square-free solution, Lx, andRx be the left and right componen
f r, which are extended to a left, respectively right action of GsX,rd on X. Then

1) The permutationLx is presented as a product of disjoint cycles inSymsXd via the equality

Lx = Lx
t1Lx

t2
¯ Lx

ts, s3.28d

where t1, . . . ,ts are representatives of all disjoint orbits ofLx in X.
2d The permutationsLx and Rx satisfy the equality

Rx = sLxd−1. s3.29d

Furthermore, the two permutation groups determined by the left and right action of GsX,rd
on X coincide:

GR = GL.

3d The assignment x→Lx, xPX, determines the solution r uniquely, via the formula

rsx,yd = LxsydsLyd−1sxd.

To each solution we associate an invariant integer numberM =MsX,rd defined as follows.
Definition 3.17: (1) For everyxPX we denote byMx the order of the permutationLx in

ymsXd, i.e. (in the notation of 3.16) the least common multiple of the lengths of the cyclesLx
ti,

ø i øs.
(2) By M =MsX,rd we denote the least common multiple of allMx, wherexPX, and callM

he cyclic degreeof the solutionsX,rd.
Lemma 3.18: Suppose ax=ya8, for some x,y,a,a8PX. Then Mx=My.
Proof: It will be enough to show that the lengthk of each cycleLx

j occurring inLx divides
My. h

Proposition 3.19: Assume x,yPX, and OGsxd=OGsyd. Then My=Mx.
Corollary 3.20: Suppose MxÞMy, for some x,yPX. Then G acts nontransitively on X, and X

s decomposable into a disjoint union of two r-invariant subsets.
The following proposition follows easily from the cyclic condition, and 3.17.
Proposition 3.21: LetsX,rd be a square-free solution of cyclic degree M. Let p, and q be

rbitrary natural numbers. Suppose y,xPX, yÞx, and let k, m be the natural numbers defined

.1. Let Mx denote the order ofLx. Then the following equalities hold:
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ymx = xyk
m, s3.30d

ypxq = sx8dqsy8dp, where x8 = sLydpsxd, and y8 = sLxd−qsyd, s3.31d

xMxy = ysxmdMx, s3.32d

xMyM = yMxM . s3.33d

The next corollary follows immediately from(3.33).
Corollary 3.22: Let sX,rd be a square-free solution, then the center of the Yang–B

lgebraAsk,X,rd contains all symmetric functions in x1
M ,x2

M , . . . ,xn
M.

Corollary 3.23: LetsX,rd be a square-free solution. Then the group A=grfx1
M , . . .xn

Mg is a free
belian subgroup of GsX,rd of index Mn.

V. THE LATTICE STRUCTURE OF S„X,r…

In this section we show that for a semigroupS of left I-type, the relationul of left divisibility,
efined in 2.25, and the leftI-structurev :U→S, see 2.23, are compatible, and prove thatsS, uld is
distributive lattice. Analogous results are true for semigroups with rightI-structurev1:U→S. As
corollary we obtain that the Yang–Baxter semigroupS=SsX,rd has a structure of distributiv

attice, induced by its leftI-structurev. We keep the notation from the previous sections
articular,

U = fu1, . . . ,ung s4.1d

s the free commutative multiplicative semigroup generated byu1, . . . ,un, andkXl denotes the fre
emigroup generated byX. The definition of anI-structure is given in 2.23.

The following result can be extracted from Ref. 15, Theorem 1.3.
Theorem 4.1: Let sX,rd be a square-free solution and S=SsX,rd be the associated Yan

axter semigroup. Then

A) There exists a unique left I-structurev :U→S, which is inductively defined by the followi
conditions:

(1) v1s1d=1, vsuid=xi, for 1ø i øn.
(2) For every bPU and every i, 1ø i øn, there exists an xb,i PX, such that vsuibd

=xb,ivsbd. Moreover, there is an equality of sets

hxb,iu1 ø i ø nj = hx1, . . . ,xnj. s4.2d

(3) For every bPU, and 1ø i , j øn, there is a relation in S:

xujb,ixb,j = xuib,jxb,i . s4.3d

B) There exists a unique right I-structurev1:U→S, which satisfies the following conditions

(1) v1s1d=1, v1suid=xi, for 1ø i øn.
(2) For every bPU and every i, 1ø i øn, there exists an xi,bPX, such that vsbuid

=vsbdxi,b. Furthermore, there is an equality of sets

hxi,bu1 ø i ø nj = hx1, . . . ,xnj. s4.4d

(3) For every bPU, and 1ø i, j øn, there is a relation in S:

xi,buj
xj ,b = xj ,bui

xi,b. s4.5d
Remark 4.2:SupposeS, is a semigroup of(left) I-type generated byx1, . . . ,xn, with a left
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-structurev :U→S. Then in general,v satisfies a modified version on condition A where co
ion 1 is modified to

vsujd = xi j
, 1 ø j ø n, s4.6d

herei1, . . . ,in is a permutation of 1, . . . ,n and conditions 2 and 3 are unchanged. Moreover(4.6)
etermines the bijectionv uniquely. Analogous statement is true for rightI-structures. Without los
f generality we can consider only the specialI-structurev andv1 defined in theorem 4.1.

Notation 4.3: Throughout this sectionS will denote a semigroup ofI-type generated b

1, . . . ,xn with a left I-structurev and a rightI-structurev1. We assume thatv and v1 satisfy
onditions 4.1(A) and 4.1(B), respectively.

Remark 4.4:Note that givenaPU, in finitely many steps one can find effectively the mo
ialsvsad andv1sad. In particular, it is easy to see that for anyi, 1ø i øn, and any positive integ
there are equalitiesvsui

kd=v1sui
kd=xi

k. In general, for a monomialuPU there might be inequali
sudÞv1sud (as elements ofS), see 4.11.

We study first the properties of the relations “ul”-divisibility with respect to left multiplicatio
r shortly-left divisibility and “ur”- right divisibility on S, defined as

aulb, if there exists ac [ S, such thatb = ca, s4.7d

aurb, if there exists ad [ S, such thatb = ad. s4.8d

he following lemma shows that the leftI-structurev is compatible with the left divisibility.
Lemma 4.5:ul is a partial order onS, compatible with the left multiplication. Furthermo

his order is compatible with the left I-structurev. More precisely, the following two conditio
old:

a) If a ubPU (i.e. b=ca is an equality inU) thenvsadulvsbd;
b) Conversely, let a,b,cPS satisfy b=ca. Let a0, b0 be the unique elements ofU which satisfy

vsa0d=a andvsb0d=b. Then b0=c0a0, for some c0PU.

Proof: First we show thatul is an ordering onS as a set. Clearly,aula for every aPS. It is
nown that each semigroupS of I-type is with cancellation low, see Ref. 15. It follows then
ulb andbula imply a=b. The transitiveness follows at once from the definition oful.

Next we prove(a). Assumeb=ca, for a,b,cPU. We use induction on the lengthucu of c to
nd a monomialc8PS, such thatvsbd=c8vsad. If c=ui, then by the definition ofv we have
sbd=vsuiad=xa,ivsad. Assume that the statement of the proposition is true for allc of length
m. Let b=ca, where ucu=m+1. Then c=uid, where 1ø i øn, and udu =m. We havevsbd
vsuidad=xda,ivsdad. By the inductive assumptionvsdad=d8vsad, so vsbd=xda,id8vsad, which
roves(a). Assume now thata,bPS andb=ca, for acPS. By definition,v is a bijection, so ther
re uniquea0 andb0 in U, such thatvsa0d=a, andvsb0d=b. We have to find ac0PU, such tha

0=c0a0. We show this again by induction on the lengthucu of c. If ucu=1, thenc=xi PX. It follows
rom 4.1 that there is an equality of sets

hvsu1a0d, . . . ,vsuna0dj = hx1vsa0d, . . . ,xnvsa0dj. s4.9d

learly, then there exists aj , such thatvsuja0d=xivsa0d=xia=b. This givesb0=uja0. Assume(b) is
rue for all cPS with length ucu øk. Let b=ca, whereucu=k+1. Thenc=xd, for somexPX and
du =k. It follows from the inductive assumption that there is ad0PU, such that

vsd0a0d = dvsad. s4.10d

n addition an equality of sets similar to(4.9) shows that there exists auj, such thatvsujd0a0d
xvsd0a0d. The last equality together with(4.10) gives vsujd0a0d=xvsd0a0d=xda=ca, so c0

ujd0 satisfies the desired equalityb0=c0a0. h
An analogous statement is true for the rightI-structurev1.
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Lemma 4.6: Let a,bPS. (a) There exists a uniquely determined least common multiple
nd b, with respect toul, that is a monomial w of minimal length, such that w=w1a=w2b, for some

1, w2PS. (b) There exists a uniquely determined least common multiple, of a and b, with respec
o ur, that is a monomial w8 of minimal length, such that w8=aw18=bw28, for some w18, w28PS.

Proof: The mapv is bijective, soa=vsa0d, andb=vsb0d, for some uniquely determineda0 and

0 in U. Let w0 be the least common multiplea0tb0 of a0 andb0 in U. It follows from (4.5) that
sw0d=jvsa0d=hvsb0d. Thusw=vsw0d satisfies

w = ja = hb, s4.11d

s a common multiple ofa andb (with respect toul). Thatw is of minimal possible length amo
he monomials satisfying(4.11) follows from (4.5). This proves(a). An analogous argume
roves(b). h

Notation 4.7:By atb we denote the least common multiple ofa andb with respect toul. a∨b
enotes the least common multiple ofa andb with respect tour.

Lemma 4.8: Letv, v1 be the left and the right I-structures onS, defined in 4.3. Then (a)v is
lattice isomorphism forsU , ud and sS , uld; (b) v1 is a lattice isomorphism forsU , ud and sS , urd.

Definition 4.9:Let uPS. We say thathPX is a headof u (as an element ofS), if u can be
resented asu=hu8, for someu8PS. The elementtPX is calleda tail of u (in S) if u=u9t is an
quality inS, for someu9PS.

Note that a monomialu has exactly one head(respectively:u has exactly one tail) if and only
f it is of the shapeu=xm, for somexPX, mù1.

Example 4.10:The relationsxy=y8x8dPR implies that the heads ofxy arex andy8, and its
ails arey andx8. Furthermore,xy=x∨y8=ytx8.

Example 4.11:Consider the YB semigroupS=kX;Rl, whereX=hx1,x2,x3,x4j and the set o
elations is

x4x1 = x2x3, x4x2 = x1x3, x3x1 = x2x4, x3x2 = x1x4, x1x2 = x2x1, x3x4 = x4x3.

hen

vsu2u4d = x1x4 = x3x2 = v1su1u3d, v1su2u4d = x4x1 = x2x3 = vsu1u3d,

vsu2
2u4d = x3x2

2 = x1x4x2 = x1
2x4 = v1su1

2u3d,

v1su2
2u4d = x2

2x4 = x2x3x1 = x4x1
2.

learly, vsu2
2u4dÞv1su2

2u4d as elements ofS. In fact, vsu2
2u4d=v1su1

2u3d. For w=x1
2x4 there are

qualities inS

w = x2
2 t x4 = x1

2 ∨ x4.

Lemma 4.12: Let w0PU. Suppose w0=ui1
a1ui2

a2
¯uik

ak, where1ø i1, i2, ¯ ikøn, and all a j

re positive integers. Then,

a) vsw0d=xi1
a1txi2

a2t¯txik
ak;

b) v1sw0d=xi1
a1∨xi2

a2∨ ¯ ∨xik
ak.

Remark 4.13:In general, forwPU there might be an inequalityvswdÞv1swd and it is not true
hat atb=a∨b, cf. (4.11). Still for the special monomial

W0 = u1u2 ¯ un s4.12d

ne has
vsW0d = v1sW0d = x1 t x2 t ¯ t xn = x1 ∨ x2 ∨ ¯ ∨ xn. s4.13d
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Definition 4.14:The monomialW=vsu1u2¯und is calledthe principal monomial ofS.
Remark 4.15:The principal monomialW “encodes” important information aboutS and the

olutionsX,rd. In particular, ifsX,rd is a solution andA=Ask,X,rd, is the associated Yang–Bax
lgebra, then the Koszul dual algebraA! is Frobenius andW projects to a basis of the socle ofA!.

n Ref. 14 we study various properties of the principal monomialW, and their implication to th
roperties ofA.

Proposition 4.16: LetS be a semigroup of I-type, letv andv1 be the left and right structure
n S as in 4.3. Then following conditions hold:

1) sS , uld is a distributive lattice. More precisely, any monomial wPS has a unique presentatio
as w=x1

a1tx2
a2t¯txn

an, whereai is a uniquely determined non-negative integer for ea,
1ø i øn. In particular, for each i, with ai ù1, there is an equality w=wixi

ai, where wi PS,
and xi does not occur as a tail of wi.

2) The properties of the latticesS , urd are analogous. In particular, every element wPS has a
unique presentation as w=x1

b1∨x2
b2∨ ¯ ∨xn

bn, where allbi are non-negative integers.
3) The following are equalities inS:

W0 = v1su1u2 ¯ und = x1 ∨ x2 ∨ ¯ ∨ xn = x1 t x2 t ¯ t xn = vsu1u2 ¯ und.

Proof: It is well known thatU is a distributive lattice with respect to the order of divisibil
ub. In particular, every elementaPU has a unique presentationa=u1

k1u2
k2
¯un

kn, wherek1, . . . ,kn

re non-negative integers, anda=u1
k1tu2

k2t¯tun
kn (vtw denotes the least common multiple

, w in U). Lemma 4.8 implies condition(1). One can show using induction onk that a monomia
f the shapeui1

ui2
¯uik

, where allui j
are pairwise distinct, has exactlyk different heads andk

istinct tails. Therefore the monomialW0=vsu1u2¯und has exactlyn distinct heads(respectively
distinct tails) so the set of heads forW0 coincides withX. h

. UNIONS OF SOLUTIONS AND MATCHED PAIRS OF GROUPS

In this section we briefly recall some definitions and properties of unions of solutions. W
tate a recent result from Ref. 16, in which matched pairs approach is used to describe ex
f solutions.

Definition 5.1 (Ref. 6):Let sX,rd be a solution. A subsetY#X is r-invariant, if r restricts to
bijection rY:Y3Y→Y3Y. sX,rd is decomposableif it can be presented as a union of t

onempty disjointr-invariant subsets. A solutionsZ,rd is a union of the solutionssX,rXd and
Y,rYd, if XùY=x, Z=XøY, as a set, and the bijectionr extendsrX, andrY.

Clearly, sZ,rd is a union of two nonemptyr-invariant subsets, if and only if it is decomp
ble.

Remark 5.2 (Ref. 6):Suppose the solutionsZ,rd is a union ofsX,rXd andsY,rYd. Then the ma
induces bijections

X 3 Y → Y 3 X, andY 3 X → X 3 Y.

Note that a(disjoint) union sZ,rd of two square-free solutionssX,rXd, and sY,rYd is also a
quare-free solution. The cyclic condition implies then that for everyzPZ, there is an equalit

z=Lz
−1. Therefore the equalityrsx,yd=sLxuYsyd ,LyuX

−1 sxdd defines a left action of the grou
sX,rXd on the setY and a left action of the groupGsY,rYd on the setX. Furthermore for ever
PZ there is an equality of permutations in SymsZd :Lz=LzuXLzuY. The following lemma i
traightforward.

Lemma 5.3: LetsX,rd be a solution. Suppose X1,X2, . . . ,Xk are all disjoint orbits of the le
ction of GsX,rd on X. Then r induces solutionssXi ,r id, 1ø i øk, where each ri is the restriction
f r on Xi 3Xi. Furthermore, X is a disjoint union ofsXi ,r id, 1ø i øk.

Clearly, sX,rd is decomposable if and only ifGsX,rd acts nontransitively onX.
30
Remark 5.4:Rump proved that every square-free solutionsX,rd is decomposable.
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Therefore to understand the structure of a solution and also for constructing solutio
ssential to study extensions of solutions.

Definition 5.5 (Ref. 6):SupposesX,rXd and sY,rYd are (disjoint) solutions. The set ofexten
ions of X by Y, denoted by ExtsX,Yd, is defined as the set of all decomposable solutionsZ which
re unions ofX andY.

It is shown in Ref. 6, that givensX,rXd, and sY,rYd, an elementZ of ExtsX,Yd is uniquely
etermined by the function:rX,Y:X3Y→Y3X.

The fact that every square-free solutionsZ,rd can be presented as a union of two disj
olutionssX,rXd andsY,rYd, where the bijective mapr :Z3Z→Z3Z extends the mapsrX, andrY,

mplies that the following theorem covers all known constructions of solutions restricted
quare-free case.

Theorem 5.6 (Ref. 16): Let sX,rXd and sY,rYd be disjoint solutions, GX=GsX,rXd, GY

GsY,rYd be the groups associated withsX,rXd, and sY,rYd, respectively. Suppose that Z=XøY
nd the bijective map r:Z3Z→Z3Z is an extension of the maps rX and rY. Then sZ,rd is a
olution if and only ifsGX,GYd is a matched pair of groups, in the sense of Majid.24 Moreover
Z,rd is square-free if and only ifsX,rXd and sY,rYd are square-free solutions.

I. THE EQUIVALENCE OF THE NOTIONS SQUARE-FREE SET-THEORETIC SOLUTION
F THE YANG–BAXTER EQUATION, SEMIGROUP OF I TYPE, AND SEMIGROUP
F SKEW-POLYNOMIAL-TYPE

We keep all notation and conventions from the previous sections. As usualsX,rd is a square
ree solution, whereX=hx1, . . . ,xnj is a finite set withn elements,S=SsX,rd, G=GsX,rd, and

sk,X,rd are the associated Yang–Baxter semigroup, group and algebra over a fieldk, defined in
.12. In this section we prove Theorem 2.26.

For convenience of the reader, we first recall some basic algebraic and homological pr
f S=SsX,rd andAsk,X,rd.

Theorem 6.1(Ref. 15): Let X be a finite set of n elements, sX,rd be a square-free solution. L
S=SsX,rd, GsX,rd, and A=kkX;Rsrdl be the associated Yang–Baxter semigroup, group,
algebra over a field k, respectively. Then the following conditions hold:

(1) The semigroup S is of I-type;
(2) S is a semigroup with cancellation and GsX,rd is its group of quotients;
(3) S is Noetherian;
(4) The algebraA is a Noetherian domain;
(5) The Hilbert series ofA is HAstd=1/s1−tdn, the same as the Hilbert series of the com

tative polynomial rings in n variables over k;
6) (Ref. 14) A is Koszul;
7) A satisfies the Auslander condition;
8) A is Cohen–Macaulay;
9) A is Artin–Schelter regular ring of global dimension n;
10) The Koszul dualA! of A is a Frobenius algebra;
11) (Ref. 17) A satisfies a polynomial identity. Moreover, S satisfies a semigroup identity;
12) A is catenary.

Sketch of the proof:For the definition of “Cohen–Macaulay” and the “Auslander condit
ee Ref. 22. Artin–Schelter regular rings are defined in Ref. 3. Conditions 6.1.1–6.1.9
xtracted from Ref. 15(cf. Ref. 15, Theorems 1.3, 1.4).

Condition 6.1.11 follows from a more general result in Ref. 17. It is proven(cf. Ref. 17
heorem 3.1 and Corollary 3.2) that if a semigroupShas homogeneous defining relations, and
emigroup algebrakfSg is right Noetherian and has finite Gelfand–Kirillov dimension, thenkfSg
atisfies a polynomial identity, andS satisfies a semigroup identity.

Condition 6.1.12 follows from Ref. 31. A The Koszul dual algebraA! for arbitrary quadrati
raded algebraA was introduced in Ref. 25. In Ref. 14 we give the precise defining relation
! ! !
and a direct combinatorial proof thatA is Frobenius(in fact, we prove more: thatA is a
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uantum Grassmanian algebra). Condition 6.1.10 follows also from the fact that a Koszul alg
of finite global dimension is Gorenstein if and only ifA! is Frobenius, see Ref. 32, Proposit

.10.
The following theorem proves Conjecture 2.18.
Theorem 6.2: Let sX,rd be a square-free solution, where X is a finite set with n elem,

ù2. Then there exists an ordering of X=hx1,x2, ¯ ,xnj, such that the Yang–Baxter se
roup SsX,rd is of skew-polynomial type (with respect to this ordering), and the Yang–B
lgebra Ask,X,rd, over an arbitrary field k is a PBW algebra with a k-basis the set of ordere
onomials:

N0 = hx1
a1x2

a2
¯ xn

anuai ù 0,1ø i ø nj.

Under the hypothesis of the theorem we first prove some lemmas.
Lemma 6.3: There exists an ordering on X, X=hx1,x2, ¯ ,xnj, such that for any pa

,tPX the following holds:

stx = x8t8d P RsX,rd, andst . xd ⇒ sx8 , t8d. s6.1d

Proof: We use induction onn= uXu. Assume that the statement of the lemma is true fo
olutions sX,rd, with uXuøn−1. It follows from a theorem of Rump,30 that every square-fre
olution sX,rd, whereX is a finite set, is decomposable into a disjoint unionX=YøZ of two
onemptyr-invariant subsetsY,Z. SupposeuYu=k, uZu=m, k+m=n. Let rY and rZ be the restric

ions on r on Y2 and Z2, respectively. It follows from the inductive assumption that there
rderings Y=hy1, ¯ ,ykj, and Z=hz1, ¯ ,zmj, which satisfy condition 6.1. We s

y1, ¯ ,yk,z1, ¯ ,zm and verify that this is an ordering onX, which satisfies 6.1. Assum

tx = x8t8 P RsX,rd, andt . x. s6.2d

e have to show thatx8, t8. Clearly if t ,xPY, or t ,xPZ, then by the inductive assumption a
y the choice of the ordering,, condition 6.1 is satisfied. Assume nowxPY, andtPZ. (Note tha
he casetPY, xPZ is impossible since we assumet.x.) The setsY, and Z, are r-invariant,
herefore by 5.2r induces a mapZ3Y→Y3Z. In particulartx=x8t8PRsX,rd, andtPZ, xPY,
mply that x8PY, t8PZ. Hence, by the choice of,, there is an inequalityx8, t8, which proves
.1. h

Lemma 6.4: Suppose condition 6.1 holds. Let x, tPX, and let Lt
x=sx1, . . . ,xkd, Lx

t

st1, . . . ,tmd be their associated disjoint cycles, see 3.1. Then t1.x1 implies tj .xi, for all i , j ,
ø i øk, 1ø j øm.

Proof: Using induction oni, we first show that

t1 . xi, 1 ø i ø k. s6.3d

y hypothesist1.x1, which gives the base for the induction. Assume

t1 . xs, for 1 ø sø i − 1. s6.4d

e claim t1.xi. Assume the contrary,

t1 , xi . s6.5d

ote thatt1=xi is impossible, since the cyclesLt
x andLx

t are disjoint. By the cyclic condition, 3
ne has

t1xi−1 = xitm, s6.6d
nd
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t1xi = Hxi+1tm if i , k

x1tm if i = k.
J s6.7d

n the case wheni =k, we obtain immediately a contradiction with(6.1), since

t1xk = x1tm, andx1 , t1 , xk , tm. s6.8d

ssume nowi ,k. Then(6.1) and (6.7), and the assumption(6.5), imply

xi+1 . tm. s6.9d

t the same time, the equalities(6.6) and (6.4) give

tm . xi . s6.10d

e have obtained

xi+1 . tm . xi . t1 . x1. s6.11d

nduction onj and analogous argument show, that for 1ø j øk− i, the following inequalities hold

xi+j . tm . xi . t1 . x1. s6.12d

n particular,

xk . tm . xi . t1 . x1. s6.13d

ow the equalityt1xk=x1tm together with(6.13) give a contradiction with(6.1). We have show
hat

t1 . xi, for all i, 1 ø i ø k. s6.14d

nduction onj and analogous argument show that

tj . xi, for all i, 1 ø i ø k. s6.15d

his proves the lemma. h

Lemma 6.5: LetsX,rd be a square-free solution, with an ordering, on X which satisfies (6.1,
=SsX,rd be the associated Yang–Baxter semigroup. Then the following two conditions a

sfied:

1)

stx = x8t8d P RsX,rd andst . xd ⇒ sx8 , t8d andst . x8d. s6.16d

2) The relationsRsX,rd form a Groebner basis, with respect to the degree-lexicographi
dering in the free semigroupkXl, induced by,, or equivalently the monomials txu, where
t ,x,uPX and t.x.u do not give rise to new relations in SsX,rd.

Proof: Condition (6.16) follows immediately from Lemma 6.4. Therefore the set of defi
relationsR=RsX,rd for the Yang–Baxter semigroupSsX,rd satisfies the following:

sxjxi = xi8xj8d P R ands j . id ⇒ si8 , j8d, ands j . i8d. s6.17d

e have to show thatR is Groebner basis. It follows from the theory of Groebner bases, tha
onomialuP kXl has a unique normal form, denoted by Norsud, with respect to the so calle

educed Groebner basis, R0, which is uniquely determined by the setR and,R#R0. As a setS

an be identified with the set of normal monomials
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NsSd = hNorsuduu [ kXlj. s6.18d

nowing the normal monomials one can uniquely restore the set of obstructions, i.e., the
ighest monomials in the reduced Groebner basis,R0. To verify the equalityR=R0, thereforeR

s a Groebner basis, it will be enough to show that the “ambiguities”xkxjxi, wherenùk. j . i
1, do not give rise to new relations inSsX,rd, or equivalently, that each monomial of the sh

ixjxk, with 1ø i ø j økøn is normal, with respect toR0. This will follow immediately from a
tronger statement:

Lemma 6.6: Each ordered monomial u=x1
a1x2

a2
¯xn

an, whereai ù0, 1ø i øn is in normal form
ith respect to the reduced Groebner basisR0 in kXl.

Proof: Each relation inR satisfies(6.17), so its highest monomial isxjxi, with j . i, therefore
he normal form Norsud of eachuP kXl does not containxjxi , j . i as a sub word. This shows th

S= NsSd # N0, s6.19d

hereN0 is the set of ordered monomialsN0=hx1
a1x2

a2
¯xn

an uai ù0,1ø i ønj.
The existence of theI-structurev on SsX,rd (by definitionv :U→S is a bijection) implies the

qualityNsSd=N0. h

We have proved 6.5. h

Proof of the theorem:The theorem follows from Lemma 6.5. Note that the Diamond Lem
.2 implies that the Yang–Baxter algebraA=Ask,X,rd is PBW in the sense of Priddy,27 and the
et of ordered monomialsN0 projects to ak-basis ofA (as ak-vector space).

Proof of theorem A:The equivalence of 2.26.1 and 2.26.2 follow from Ref. 15, Theorem
he implications 2.26.1⇒2.26.3, and 2.26.1⇒2.26.4 follow from theorem 6.2. Clearly, the the
f Groebner basis implies the equivalence of conditions 2.26.3 and 2.26.4. Theorem 1.2(Ref. 15),
roves the implication 2.26.3⇒2.26.1.

II. MORE ABOUT S„X,r… AND G„X,r…

In this section, as usualsX,rd denotes a square-free solution, whereX is a finite set ofn
lements. We show thatG=GsX,rd acts by conjugation on the setXM =hx1

M , . . . ,xn
Mj, whereM

MsX,rd is the cyclic degree ofsX,rd defined in 3.17. We compare this action with the left ac
f GsX,rd on the setX. Next we prove thatGsX,rd contains a free Abelian subgroupA of index

Mn, and prove that the quotient groupḠ=G/A can be presented as a product of its Sy
ubgroups(cf. 7.10). This implies a presentation of the groupGLsX,rd as a product of its Sylo
ubgroups. As a corollary we obtain a result of Etingof–Schedler–Solovyev,6 that the grou
sX,rd is solvable.

Notation 7.1:For any positive integerk we setXskd=hx1
k , . . . ,xn

kj. By Sk=kXskdl we denote th
ubmonoid ofS=SsX,rd generated byXskd. If A, B,S, then as usual,AB denotes the set of a
lementsu of the formu=ab, with aPA, bPB.

Proposition 7.2: Let k be a positive integer, Xskd and Sk as in 7.1. Then the following cond
ions hold:

1) The map r induces a map rk:Xskd3Xskd→Xskd3Xskd such thatsXskd ,rkd is a square-fre
solution;

2) Sk is of I-type;
3) SkSj =SjSk is an equality of sets in S, for every two positive integers k and j.

It follows from 3.21 that for any pairx,yPX andM =MsX,rd being the cyclic degree of th
olution, there is an equality inS,

yxM = x2
My, whereLysxd = x2.

his implies thatG acts by conjugation on the setXsMd. The following corollary follows easil
rom the existence of theI-structurev, and 3.21.
Corollary 7.3: SupposesX,rd is a square-free solution. Then,
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1) SsX,rd contains the free Abelian semigroupfx1
M , . . . ,xn

Mg=SM;
2) SsX,rd is left and right Noetherian;
3) The group A=grfx1

M , . . . ,xn
Mg is a free Abelian normal subgroup of G of index Mn;

4) The group G=GsX,rd acts by conjugation on the set XsMd. Moreover the action of A on XsMd

is trivial, thus the quotient group G¯=G/A acts on XsMd by conjugation. Clearly, Ḡ is a finite
group of order Mn;

5) The group A is contained in the kernelkerL of the homomorphismL :G→SymsXd. There-

fore there exists an epimorphismL̄ :Ḡ→GL, induced byL, satisfying the equality:L=L̄ +n,

wheren is the natural epimorphismn :G→Ḡ;
6) The order ofGL divides Mn.

Notation 7.4:For everyyPX we denote byOsyMd the orbit ofyM under the action ifG on
sMd. For x, yPX we define an equivalence onX by settingx<y iff OsxMd=OsyMd. By Xsyd we
enote the equivalence class ofy, yPX.

The lemma below follows straightforward from the definition of the actions ofG on the set
andXM, and from Proposition 3.21.

Lemma 7.5: The following conditions hold:

1) There exists a one-to-one correspondence between the G-orbits of XM and the G-orbits of X.
More precisely for everyjPX, there are equalities OGsjd=Xsjd=hxPXuxM POsjMdj. Fur-
thermore, the orbits OGsjd can be obtained simply by acting with the “semigroup” elem
of G, i.e., yPOGsxd if and only if, there exist monomials a,bPS, a=a1¯ak, and b
=b1¯bk sai ,bi PXd and elements y1, . . . ,ykPX, such that there are equalities:

akx = ykbk, ak−1yk = yk−1bk−1, . . . , a1y1 = yb1. s7.1d

2) If xPXsad, and yPXsbd, for some a, bPX (not necessarily aÞb) then there is an equali
xy=y8x8, with y8PXsbd, x8PXsad.

3) Each orbit OGsjd, jPX is r-invariant.

4) X is r-decomposable if and only if G¯ does not act transitively on XM. More precisely, i
OḠsji

Md, 1ø i øk are all disjoint orbits of this action then X splits into a disjoint union o
nonempty r-invariant subsets: X1=OGsj1d , . . . ,Xk=OGsjkd.

Remark 7.6:It is a routine fact, that the order of each orbitOsxMd, xPX is a divisor of the

rderMn of Ḡ, see for example Ref. 2, 6.1.
A sufficient condition forr-decomposability ofX follows immediately from 7.6. As a coro

ary we obtain a result from Ref. 6, that every solutionsX,rd, whereX is of prime orderp is
ecomposable.

Corollary 7.7: If M is not divisible by some prime divisor p of n, then the action of Ḡ(and of
) on XsMd is not transitive and X is a disjoint union of k r-invariant subsets, where kù2 is the
umber of orbits in XsMd.

Corollary 7.8 (Ref. 6): If n=p is a prime number, then X is a disjoint union of two nonem
-invariant subsets.

Next we study the relations between the cyclic degreeM =MsX,rd, the Sylow subgroups ofḠ,
nd the cyclic properties of the semigroupSsX,rd. Note that

Notation 7.9: Let M =MsX,rd be the cyclic degree of the solutionsX,rd defined in 3.17
upposeM =p1

a1p2
a2
¯pk

ak, wherep1, . . . ,pk are distinct prime numbers, anda1¯ak are positive
ntegers. Fori =1, . . . ,k, we set

qi = M/pai ,
i
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Sqi = kx1
qi, . . . ,xn

qil,

he submonoid ofSgenerated byx1
qi , . . . ,xn

qi, 1ø i øk. We denote bySqi the natural image ofSqi in

he quotient groupḠ, and by LsSqid the image of Sqi under the homomorphismL :G
GL,SymsXd, defined by the left action ofG on X.

Clearly, the integersq1, . . . ,qk are pairwise coprime, andSqi are submonoids ofḠ.

The next theorem gives a presentation ofḠ as a product of its Sylow subgroups. Surprisin

t also allows one to consider each element ofḠ as an element of the monoidS̄.
Theorem 7.10:The following conditions hold:

1) For every i, 1ø i ø r, the submonoidSqi is a subgroup of order pi
nai in Ḡ. In particular, it is

a Sylow pi-subgroup of Ḡ.
2) For every pair qi ,qj, 1ø i , j ø r, there is an equalitySqi .Sqj =Sqj .Sqi.

3) The group Ḡis a product of its Sylow subgroups: G¯=Sq1
¯Sqk. In particular, Ḡ=S̄.

4) For each i, 1ø i øk, such thatLsSqidÞ idX, LsSqid is a pi-Sylow subgroup ofGL.
5) Let 1ø i1, . . . ,isøk be all indices, for whichLsSqi jdÞ hidXj, 1ø j øs. Then the groupGL

=GLsX,rd is a product of its Sylow subgroups:

GL = LsSqi1d ¯ LsSqisd.

In particular, GL=LsSd.
6d The groupsGL, Ḡ, and G are solvable.

Proof: ConsiderSqi, where 1ø i øk. Note first that as a finite submonoid of the groupḠ, Sqi

s a subgroup ofḠ. We claim that the order ofSqi is exactlypi
nai. The equalities 3.31 imply th

very elementw of Sqi can be presented as

w = vssu1
qidb1

¯ sun
qidbnd, s7.2d

here 0øbsøpi
ai for all s,1øsøn. We setb=sb1,b2, . . . ,bnd, andw=wsbd, for the monomia

determined by(7.2). It follows from the properties of theI-structurev on S and from 3.31 tha

ach inequalityb8Þb9 implies an inequality inS̄,

wsb8d Þ wsb9d. s7.3d

his implies thatSqi is a group of orderspi
aidn thus a Sylowpi subgroup ofḠ, which proves 1.

Next we recall that for every pair of integersi , j ,1ø i , j øk, and for every pairx,yPX there
xist z,tPX, such that the equality

xqiyqj = zqjtqi s7.4d

olds inS. This implies thatSqiSqj =SqjSqi for all i , j , which verifies 2. LetS8=kSq1, . . . ,Sqkl be the
ubmonoid ofS, generated bySq1, . . . ,Sqk. It follows from 7.4 that there is an equality

S8 = Sq1
¯ Sqk. s7.5d

ence

S8 = Sq1
¯ Sqk s7.6d

s a presentation ofS8 as a product of subgroups with pairwise co-prime orders:p1
na1, . . . ,pk

nak,

espectively. It follows then that the order ofS8 is exactlyp1
na1

¯pk
nak=Mn, thusḠ=Sq1

¯Sqk. This
roves 3. The proof of 4, and 5 is routine. h

Note that, in general the Sylow subgroupsSqi might not be normal subgroups ofḠ, as show

he following example.
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Example 7.11:Let S=kX;Rl, whereX=hxi u1ø i ø6jø hyj u1ø j ø4j and the relationsR are
efined by the permutation

s = sx1x2x3x4x5x6dsy1y2y3y4d s7.7d

s follows:

yjxi = ssxids−1syjd, andxiyj = s1syjds−1sxid for 1 ø i ø 6, 1ø j ø 4; s7.8d

xixk = s3sxkds−3sxid, for all i Þ ksmod 3d, 1 ø i,k ø 6; s7.9d

xixk = xkxi, for all i = ksmod 3d, 1 ø i,k ø 6; s7.10d

yjyk = s2sykds−2syjd, for all j Þ ksmod 2d, 1 ø j ,k ø 4; s7.11d

yjyk = ykyj, for all j = ksmod 2d, 1 ø j ,k ø 4. s7.12d

t is easy to verify that the set of relationsR defines naturally a square-free solution,r, thusS is
YB semigroup. The set of all lengths of cycles is 6, 4, 2, soM =12=22.3, and(in the notation

.9), q1=3, andq2=4. Thus, by Theorem 7.10,Ḡ=S3S4. Note that none of the subgroupsS3, S4 is

ormal inḠ.
One can use Theorem 7.10 to give a straightforward proof of ther-decomposability ofsX,rd

n all cases when the cycles are not enough “dense” onX. More precisely, the following corolla
s true.

Corollary 7.12: Suppose that there exists a prime divisor p of n, and an xPX, such that x doe

ot belong to a cycle of length divisible by p. Then the action of Ḡon X is nontransitive, therefo
X,rd is decomposable.

III. MULTIPERMUTATION SOLUTIONS AND GENERALIZED TWISTED UNIONS

We give a description of the generalized twisted unions of solutionsZ=XøY, showing tha
he groupGY=GsY,rYd acts as automorphisms onX, and all the elementsj of an orbit Osxd
OGY

sxd have the same action onY see 8.3. Lemma 8.10 generalizes the cyclic condition. We
conjecture that every multipermutation solution of levelm is a generalized twisted union
ultipermutation solutions of leveløm−1. We keep the notation and conventions from the

ious sections. In particular, as before we shall use both notationxy=Lxsyd andyx=Rxsyd.
Definition 8.1 (Ref. 6):Let sZ,rd, be a disjoint union of the solutionssX,rXd, andsY,rYd.

1) sZ,rd is calleda twisted unionof X and Y if the mapsrXY:X3Y→Y3X and rYX:Y3X
→X3Y are defined as

rXYsx,yd = sgsyd, f−1sxdd s8.1d

and

rYXsy,xd = sfsxd,g−1sydd, s8.2d
where f PSymsXd, andgPSymsYd are fixed.
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2) sZ,rd is a generalized twisted unionof X andY if the mapr is determined by the formul

rXYsx,yd = sLxuYsyd,RyuXsxdd, s8.3d

where the permutationsLxuYPSymsYd, andRyuXPSymsXd satisfy the following condition

For every yPY the permutationLxyuY:Y→Y is independent of y, and for every xPX, the
ermutationRxyuX :X→X is independent of x.

Notation 8.2:When the elementjPZ is specified we shall simply write, as usual,Lxsjd, or xj
nstead ofLxuYsjd, respectively,Lysjd, yj instead ofLyuXsjd.

Proposition 8.3: LetsZ,rd be union of the disjoint solutionssX,rXd and sY,rYd. ThensZ,rd is
generalized twisted union of X and Y if and only if for every pair x,y, xPX, yPY the following
qualities hold:

LxyuY = LxuY = LyxuY; s8.4d

LxyuX = LyuX = LyxuX. s8.5d

Proof: Note first that the equalities(8.4) and (8.5) imply that sZ,rd is a generalized twiste
nion of X andY.

Assume now thatsZ,rd is a generalized twisted union ofX andY. Let xPX, yPY. We have
o show that for everyzPY there is an equality

Lxyszd = Lxszd. s8.6d

y definition 8.1 the mapLxyuY:Y→Y is independent ofyPY. Hence for every pairy,zPY there
s an equality

Lxyszd = Lxzszd. s8.7d

y the cyclic condition insZ,rd, see(3.27), one has

Lxzszd = Lxszd. s8.8d

ow the Eqs.(8.7) and (8.8) imply

Lxyszd = Lxszd s8.9d

or everyzPY. We have shown that

LxyuY = LxuY s8.10d

or arbitraryxPX andyPY. We apply this to the pairyxPX andyPY and obtain

LsyxdyuY = LyxuY. s8.11d

y (3.27) there is an equality,

syxdy = x, s8.12d

hich together with(8.11) and (8.10) implies LyxuY=LxuY=LxyuY.
This completes the proof of(8.4). Analogous argument proves(8.5). h

Theorem 8.4: Let sZ,rd be a generalized twisted union of the solutionssX,rXd and sY,rYd,
nd let GX=GsX,rXd, GY=GsY,rYd be the associated Yang–Baxter groups. Suppose OGY

sj1d , . . .,

GY
sjpd are the (distinct) orbits of the action of the group GY on X, and OGX

sh1d , . . ., OGX
shqd are

he (distinct) orbits of the action of GX on Y. Then the following conditions are satisfied.
1) The assignment
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x → LxuY, for all x P X

extends to a group homomorphism

LX:GsX,rXd → AutsY,rYd.

2d Let HX denote the kernel Ker LX. Then each orbit OGY
sjid, is contained in the left cosetjiHX,

i.e., OGY
sjid#jiHX. In particular, for every xPOGY

sjid, 1ø i øp there is an equality

LxuY = LjiuY
. s8.13d

3d The assignment

y → LyuX, for all y P Y

extends to a group homomorphism

LY:GsY,rYd → AutsX,rXd.

4d Let HY denote the kernel Ker LY. Then OGX
sh jd#h jHY, for 1ø j øq. In particular, for every

yPOGX
sh jd, there is an equality

LyuX = Lh j uX
. s8.14d

Definition 8.5 (Ref. 6):Let sX,rd be a square-free solution. Define an equivalence relatio
asx,y if and only if Lx=Ly.

Clearly, sinceRx=Lx
−1, one has alsox,y iff Rx=Ry. Let X,=X/,. It is known, see Ref. 6

hat the solutionr :X3X→X3X induces a bijectionr, :X,3X,→X,3X,, so thatsX, ,r,d is
solution. It is not difficult to see that this solution is also square-free. The solutionsX, ,r,d is

alled theretraction of sX,rd and is denoted by RetsX,rd. The solution isretractable if ; is a
ontrivial equivalence relation, or equivalently RetsX,rdÞ sX,rd. In the case when; is the trivial

equivalence onX, the solutionsX,rd is calledirretractable.
Lemma 8.6: For any x,yPX the equivalence x,y implies xy=yx.
Definition 8.7: Inductively, for 1,k we define the retractions of higher level as RetksX,rd

RetsRetk−1sX,rdd.
We denote byxskd the image ofx in RetksX,rd. The set

fxskdg ª hj P Xujskd = xskdj s8.15d

s calledthe kth retract orbit of x.
Definition 8.8 (Ref. 6):A solution sX,rd is calledmultipermutation solution of level mif m is

he minimal nonnegative integer, such that RetmsX,rd is finite of order 1.
Lemma 8.9: For any positive integer k, and any xPX the kth retract orbit fxskdg is r-invariant.

urthermore, if we denote byr x,k the corresponding solution induced by r, then sfxskdg ,r x,kd is a
ultipermutation solution of level k.

Lemma 8.10: LetsX,rd be a square-free solution. Then the following conditions hold:

1) For every x,y,tPX, and k a positive integer,

yskd = tskd ⇒ syxdsk−1d = stxdsk−1d. s8.16d

2) For every x,y,tPX

ys2d = ts2d ⇒ yx , tx, in particular, yt , t, and ty , y. s8.17d

skd skd
Proof: We first prove 1. By hypothesis,y = t , or equivalently
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ysk−1d , tsk−1d. s8.18d

et xPX. Clearly,

yx= jy1, tx = j1t1, for somej,j1,y1,t1 P X. s8.19d

his implies the following equalities in Retk−1sX,rd;

ysk−1dxsk−1d = jsk−1dy1
sk−1d, s8.20d

nd

tsk−1dxsk−1d = j1
sk−1dt1

sk−1d.

t follows then from(8.18) that

jsk−1d = j1
sk−1d, or equivalently,jsk−2d , j1

sk−2d. s8.21d

y (8.19), one hasj=yx, andj1= tx, which proves 1. Condition 2 follows straightforward from
ith k=2, and the cyclic condition. h

Corollary 8.11: Let sX,rd be a multipermutation solution of level m, GX=GsX,rd be the
ssociated Yang–Baxter group. Then for every yPX one has

OGX
syd # fysm−1dg,

here OGX
syd is the GX orbit of y in X, andfysm−1dg is thesm−1dth retract orbit of y. In particular,

GX
syd is a multipermutation solution of level at most m−1.

The cyclic condition,s
yxdsyd=xy is “extended” to the classfys2dg by the following lemma.

Lemma 8.12: LetsX,rd be a solution. Then the following conditions hold.

1) For every xPX, and zP fys2dg there is an equality

syxdszd = xz s8.22d

and

Lyxufys2dg= Lxufys2dg. s8.23d

2d Suppose thatfxs2dgÞ fys2dg, and the set fys2dg is invariant under the left action
Gsfxs2dg ,r x,2d, respectively, fxs2dg is invariant under the left action of Gsfys2dg ,r y,2d. Then the
disjoint union Z=fxs2dgø fys2dg is a generalized twisted union offxs2dg and fys2dg. Moreover,
sZ,rZd is a multipermutation solution of level 3, where rZ is the restriction of r on Z3Z.

Proof: Let xPX, and letzPys2d. We will show that(8.22) holds. It follows from(8.17) that

yx , zx. s8.24d

o, by the definition of;, and by the cyclic condition,

syxdszd = szxdszd = xz. s8.25d

e have shown(8.22). Clearly, (8.22) implies (8.23). Condition 2 follows easily from 1. h

Corollary 8.13: LetsX,rd be a multipermutation solution of level 3. ThensX,rd is a general
zed twisted union of multipermutation solutions of levelø2.

Example 8.14:Let X=hx,x1,j ,j1,t ,t1,h ,h1,y,y1j and letr be determined via

Lx = Lx = stt1dshh1dsyy1d; s8.26d

1
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Lj = Lj1
= sthdst1h1dsyy1d; s8.27d

Lt = Lt1
= Lh = Lh1

= idX; s8.28d

Ly = Ly1
= sxjdsx1j1d. s8.29d

hen RetsX,rd=sX, ,r,d, where X,=hx, ,j, ,t, ,y,j, and r, is determined byLy,=sx,j,d,
x,=Lj,=Lt,= idX,. Clearly, Xs2d=hys2d ,xs2dj, and Ret2sX,rd is the trivial solution, therefor
et3sX,rd=1. In this casesX,rd is a multipermutation solution of level 3.

X. BINOMIAL SOLUTIONS OF THE CLASSICAL YANG–BAXTER EQUATION

In this section we study a particular class of solutions of the classical Yang–Baxter eq
e call thembinomial solutions. We show that there is a close relation between the bino
olutions of the classical Yang–Baxter equation and thebinomial skew-polynomial rings, a class o
BW algebras, which are Artin–Schelter regular domains. These rings were introduced in
nd studied in Refs. 9, 10, 15, 14, 21, and 19.

Definition 9.1: Let V be a finite dimensional vector space over a fieldk with a k-basisX
hx1, . . . ,xnj. Suppose the linear automorphismR:V^ V→V^ V is a solution of the Yang–Baxt
quation. We say thatR is a binomial solution of the (classical) Yang–Baxter equationor shortly
inomial solutionif the following conditions hold:

1) For every pairi Þ j , 1ø i, j øn,

Rsxj ^ xid = cijxi8 ^ xj8, Rsxi8 ^ xj8d =
1

cij
xj ^ xi , s9.1d

wherecij Pk\ h0j, i8Þ j8.
2) For all i, 1ø i øn

Rsxi ^ xid = xi ^ xi . s9.2d

3) R is nondegenerate, that is the associated set-theoretic solutionsX,rsRdd is nondegenerat
wherer =rsRd :X3X→X3X is defined as

rsxj,xid = sxi8,xj8d if Rsxj ^ xid = cijxi8 ^ xj8. s9.3d

Note that definition 9.1 implies that for each binomial solutionR of the Yang–Baxter equatio
he associated set-theoretic solutionsX,rsRdd is square-free.

Notation 9.2:By sk,X,Rd we shall denote a binomial solution of the classical Yang–Ba
quation.

Each binomial solutionsk,X,Rd defines a quadratic algebraAR=Ask,X,Rd, namelythe as
ociated Yang–Baxter algebra, in the sense of Manin.25 The algebraAsk,X,Rd is generated byX
nd has quadratic defining relations,RsRd determined byR similarly to (2.7):

RsRd = hsxjxi − cijxi8xj8duRsxj ^ xid = cijxi8 ^ xj8j1øiÞ jøn. s9.4d

Sometimes it is more convenient to work with the free associative algebrakkXl, instead o
orking with the tensor algebra, generated byV. Similarly to the identification ofX3X and the
et ofX2, we identify the vector spacesV^m and Spank Xm, mù1.

Theorem 9.7 gives the close relation between the binomial solutions of the classical
axter equation and thebinomial skew-polynomial rings. It is an analog of Theorem 2.26.

Now we recall the definition of a binomial skew-polynomial ring.
Definition 9.3 (Ref. 8):Let A0=A0sk,X,R0d=kkXl / sR0d be a finitely presented quadra
lgebra.
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a) We say thatA0sk,X,R0d is an algebra with binomial relations of skew-polynomial type, if
the set of generatorsX is ordered:X=hx1,x2, ¯ ,xnj, and the set of defining relation

R0 = hxjxi = cijxi8xj8u1 ø i , j ø n,j,

contains preciselynsn−1d /2 quadratic square-free binomial relations such that the follo
three conditions hold:

1d Each monomialxy, with xÞy, x, yPX occurs in exactly one relation inR0; a monomial o
the typexx does not occur in any relation inR0;

2d cij Þ0, for all i , j with 1ø i , j øn;
3d For every pair,i , j with 1ø i , j øn, there are inequalities:j . i8, i8, j8.

bd An algebraA0=A0sk,X,R0d with binomial relations of skew-polynomial type is calleda
binomial skew-polynomial ringswe refer to it also asa skew-polynomial ring with binomi
relations, see Ref. 8d if

4d R0 is a Groebner basis of the idealI =sR0d in the free associative algebrakkXl, with respec
to the degree-lexicographic ordering of the free semigroupkXl.

Remark 9.4:It follows from the Diamond Lemma, cf. Ref. 4, that condition 9.3.4 is equiva
o each of the conditionss48d and s49d below.

48) The set of ordered monomials,

N0 = hx1
a1x2

a2
¯ xn

anuai ù 0,1ø i ø nj

is a k-basis ofA0, as ak-vector space.
49) The monomialsxkxjxi, with k. j . i do not give rise to new relations inA0.

Note that given the relationsR0, conditions49d is recognizable.
Definition 9.5: Let A0=A0sk,X,R0d be an algebra with binomial relations of ske

olynomial-type.
Let V be thek-vector space with a basisx1, . . . ,xn. Consider the linear automorphismR

RsR0d of V^ V defined as follows:

a) for each pairi, j , 1ø i , j øn, we set

Rsxj ^ xid = cijxi8 ^ xj8, 1 ø i , j ø n,

Rsxi8 ^ xj8d =
1

cij
xj ^ xi, 1 ø i , j ø n;

b) for eachi, 1ø i øn

Rsxi ^ xid = xi ^ xi .

We say thatR is the automorphismassociated with the relationsR0, and denote it byRsR0d.
e also define the bijectionr =rsR0d of X2 onto itself, as

rsxjxid = xi8xj8, rsxi8xj8d = xjxi, wheneverxjxi = cijxi8xj8 [ R0, s9.5d

nd

rsxxd = xx, for all x P X. s9.6d

Lemma 9.6: Assume thatA0sk,X,R0d=kkXl / sR0d is an algebra with binomial relations

kew-polynomial type, and let R=RsR0d be the automorphism of V̂V associated with the rela-
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ionsR0. Then R is a solution of the classical Yang–Baxter equation if and only ifR0 is Groebne
asis.

Proof: Assume thatR=RsR0d is a solution of the Yang–Baxter equation. We will prove

0 is a Groebner basis. It will be enough to show that each monomialxkxjxi, with k. j . i, can be
educed by means of reductions defined viaR0 to a unique element of the shapeai jkxi8xj8xk8,
here 1ø i8, j8,k8øn, andai jk is a uniquely determined coefficient, 0Þai jk Pk. Let sX,rsRdd
e the associated set-theoretic solution, see(9.3). Denoter12=r 3 idX, r23= idX3 r. Then the grou

rkr
12,r23l, which is isomorphic to the symmetric groupS3, acts on the setX3. Consider the orb

0 of w=xkxjxi under this action. It is not difficult to see that it has precisely 6 element
emma 6.5, the relationsRsrd form a Groebner basis, therefore the orbitO0 contains exactly on
rdered monomial, namely somew0=xi8xj8xk8, such that 1ø i8, j8,k8øn.

Clearly, the orbitO of xkxjxi under the action ofgrkR
12,R23l on kX3 contains the same mon

ials of X3 asO0, but, in general, they occur with nonzero coefficients which might be diff
rom 1. In particular,O contains exactly one element innormal form moduloR0, namely
xi8xj8xk8 whereaPk, aÞ0. It is also clear that each sequence of reductions(in the sense of Re
) reduces the monomialxkxjxi to some element of the orbitO. It follows then, that the ambigui

kxjxi, k. j . i is solvable, thereforeR0 is Groebner basis.
Conversely, letR0 be a Groebner basis. Consider the associated linear automorphismRsR0d

nd the associated bijective mapr =rsRsR0dd :X2→X2. By Ref. 15, Theorem 1.4,r is a solution o
he set-theoretic Yang–Baxter equation. Now one can easily deduce thatRsR0d is a solution of th
lassical Yang–Baxter equation. h

Theorem 9.7: Let V be finite-dimensional vector space over a field k, with a k-basis X.
uppose R is a linear automorphism of V^ V. Then the following conditions are equivalent:

1) sk,X,Rd is a binomial solution of the classical Yang–Baxter equation.
2) There exists an ordering of X, X=hx1,x2, ¯ ,xnj, such that the associated quadra

algebraA=Ask,X,Rd=kkXl / sRsRdd is a binomial skew-polynomial ring.

Furthermore, each of the above conditions implies thatA is a Yang–Baxter algebra whi
atisfies conditions 4–11 of Theorem 6.1. In particular, A is PBW, a Noetherian domain, and
rtin–Schelter regular ring of global dimension n.1,28

Proof: s1d⇒ s2d. Assumesk,X,Rd is a binomial solution of the classical Yang–Baxter eq
ion. Consider the associated set-theoretic solutionsX,rsRdd. It follows from 2.26 that there exis
n orderingX=hx1, ¯ ,xnj such that the relationsRsrsRdd are of skew-polynomial type. The

he relationsRsRd of the Yang–Baxter algebraA associated tosk,X,Rd are also of skew
olynomial-type. Now Lemma 9.6 implies thatRsRd is a Groebner basis, thereforeAsk,X,Rd is
skew-polynomial ring. The implications1d⇒ s2d follows from Lemma 9.6.

The remaining part of the theorem presents properties of the skew-polynomial ring
inomial relations,A0, which can be extracted from our previous works. The Noetherian pr

ies were proven in Ref. 9, a combinatorial proof of the Artin–Schelter regularity ofA0 was firs
iven in Ref. 10. Conditions 4–11 of Theorem 6.1, have been deduced in Ref. 15 from al
nd homological properties of the semigroupsS of I-type and the associated semigroup alge
S. h
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We formulate the algebraic version of recoupling theory suitable for commutation
quantization over any gradation. This gives a generalization of graded Lie algebra.
Underlying this is the new notion of anv-algebra defined in this paper.v-algebra
is a generalization of algebra that goes beyond nonassociativity. We construct the
universal envelopingv-algebra of recoupling Lie algebras and prove a generalized
Poincaré–Birkhoff–Witt theorem. As an example we consider the algebras over an
arbitrary recoupling ofZn graded Heisenberg Lie algebra. Finally we uncover the
usual coalgebra structure of a universal envelope and substantiate its Hopf
structure. ©2004 American Institute of Physics.[DOI: 10.1063/1.1789281]

. INTRODUCTION

Graded Lie algebra1–3 is of fundamental importance in quantum theory. It is the alge
tructure necessary to introduce a commutator(for bosons) and anticommutator(for fermions) to
chieve quantization of a physical system. The universal enveloping algebra provides crea
nnihilation operators which generate ensembles of particles. These particles must form r

ations of symmetries present in the physical system and as such must satisfy an app
ecoupling theory. In Joyce4 from broad physical requirements the most general form of a re
ling theory was deduced. This leads to a complete representation theory5–9 generalizing th
acah–Wigner calculus.10–14The process of recoupling could at best introduce recoupling p

or associativity, commutativity, and identity graded according to some Abelian group. F
mple, this Abelian group isZn for SUsnd. Usually the identity and associativity are implic
aken to be unity. However, Joyce4,15demonstrated that for SU(3) color this restriction admitted n
ose–Fermi recoupling. Moreover, it was shown that nonassociative recoupling phases b

he pentagon condition were crucial.
In the associative case the commutativity phase factors are precisely the color(or commuta

ion) factors of color algebra.16–21The general case is a nontrivial extension which is necess
rder to accommodate SU(3) color. This paper reviews the recoupling phases and define
xtension of graded Lie algebra(or color algebra) embodying the general recoupling situati
alled recoupling Lie algebra.

There is no acceptable notion of universal enveloping algebra. For example, Isaacet al.22

nvestigated SU(3) color. Although an apparent confinement mechanism23 analogous to the oct
ion confinement principle of Günaydin and Gürsey24 applies the envelope itself is finite. F
xample, the Bose–Fermi deformativity phase for two mesons isj1,2,1,2=−1 prohibiting the exis

ence of such a composite. This would run contrary to the existence of boundless multiple m
and baryonic) states observed in nature. The difficulty arises because any universal en
ased on the pentagon constraint, such as an algebra, is too restrictive. The solution is to

n the new notion of anv-algebra. This is an extension of algebra where such stateme
abdscdd, ambiguous in the sense that there is no unique order in which to evaluate, are a
n v-algebra this example would be eithersabd1scdd2 or sacd2scdd1. The first(respectively, secon)

)
Electronic mail: w.joyce@phys.canterbury.ac.nz
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valuatesab after (respectively, before) cd. Using this notion we construct a universal envelop
-algebra and prove the correspondingv-Poincaré–Birkhoff–Witt theorem under suitable con

ions. Note that the proof does not utilize the notion of anv-module which would parallel th
tandard proof.(See, for example, Knapp.25) We uncover the usual coalgebra structure of
niversal envelopingv-algebra and describe its Hopf structure.

Given the natural extension of algebra given byv-algebra it is natural to consider in gene
megafied structures. Particularly,v-coalgebra, v-bialgebra, Hopf v-algebra, v-modules
-comodules, andv-tensor product. The last leading to a notion ofv-Fock space. All thes

equire a general theory ofv-monoidal category theory.26

The last 20 years or so has seen the intense development of braided structures27–29 in math-
matics and physics. We suggest that any equally intense focus should be given to genera
f nonassociative structures. Let us not forget the important role that nonassociative st
lready play in physics. The most notable example being Lie alegbra.25 For a survey of nonass
iative structures in physics see Lõhmuset al.30

I. SYMMETRIC UNITAL PSEUDOMONOIDAL RECOUPLING

We begin with the constraints on the recoupling phase factors of a unital symmetric p
idal recoupling as derived in Joyce.4 This is a special case of the full premonoidal theory31,32and
dmits nonassociative recouplings. Given an Abelian groupA then a recoupling is determined

ts phase factors, compactly written as the maps

j:A4 → S1, sm,n,p,qd ° jm,n,p,q, s1d

a:A3 → S1, sm,n,pd ° am,n,p, s2d

g:A2 → S1, sm,nd ° gm,n, s3d

l:A → S1, m° lm, s4d

r:A → S1, m° rm s5d

or all m,n,p,qPA whereS1,C \ h0j is the unit circle. Note that the restriction toS1 could be
eneralized to the invertible elements of any field. These phases define, respectively, rec

or deformativity, associativity, commutativity, and left and right identity. It turns out to be u
o define a further phase map

b:A3 → S1, sn,m,pd ° bn,m,p =
am,n,pan,p,m

an,m,p
s6d

or all m,n,pPA. The phases are constrained by

jm,n,p,q =
am,n,pam,n+p,qan,p,q

am+n,p,qam,n,p+q
, s7d

jm,n,p,q = jn,m,p,q, s8d

jp,q,m,n =
1

jm,n,p,q
, s9d

gm,n+p =
gm,ngm,p , s10d
bn,m,p
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gn,m =
1

gm,n
, s11d

lm+n =
lm

a0,m,n
, s12d

rm = am,0,nln, s13d

rm+n = am,n,0rn s14d

or all m,n,p,q,r PA. Note that(7) provides a formula forjm,n,p,q and(13) provides a formula fo

m. Thus j and r are entirely redundant, as of course isb. Finally we denote theA graded
ecoupling by the tripletsa ,g ,ld. The set of recouplings for a given Abelian groupA is denoted

A. This is itself an Abelian group with addition given by pointwise multiplicationsa1,g1,l1d
sa2,g2,l2d=sa1·a2,g1·g2,l1·l2d. Clearly the identity is the recoupling with all phases one

he inverse is given by −sa ,g ,ld=s1/a ,1 /g ,1 /ld.
We make the following observations. Due to(10) we have

bp,m,n = bn,m,p. s15d

he constraints(8) and (9) imply the condition

jm,n,p,q = jm,n,q,p. s16d

aking n=0 in (12) gives

a0,m,0 = 1. s17d

ence(13) with m=n=0 showsl0=r0. Thus(12) with m=0 provides us with a formula forlm,
nd (13) with n=0 a formula forrm, in terms ofl0, am,0,0, anda0,0,m,

lm =
l0

a0,0,m
, s18d

rm = am,0,0l0. s19d

ubstituting these formulas back into(12), (13), and(14) gives formulas fora when one index i
,

am,n,0 =
am+n,0,0

an,0,0
, s20d

am,0,n = am,0,0a0,0,n, s21d

a0,m,n =
a0,0,m+n

a0,0,m
, s22d

or all m, nPA. Takingn=p=0 in (10) gives

gm,0 = am,0,0a0,0,m. s23d
n particularg0,0=1. Substituting into(7) using (20), (21), and(22) gives
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jm,n,p,q = 1, s24d

heneverm=0, n=0, p=0 or q=0. Thus we have the following two choices of indepen
hases given byl0, lm, andrm wheremPA \ h0j or l0, am,0,0, anda0,0,m wheremPA \ h0j.

Let Rcp be the category of recouplings whose objects are recouplingssa ,g ,ld and whos
orphismssa ,g ,ld→ sa8 ,g8 ,l8d are group homomorphismsf :A8→A satisfying

asf 3 f 3 fd = a8, s25d

gsf 3 fd = g8, s26d

lf = l8. s27d

recouplingsa ,g ,ld is called reducible if there is a groupA8 of lower cardinality thanA and an
pimorphismf : sa8 ,g8 ,l8d→ sa ,g ,ld. (That is,f :A→A8 is onto.) Whenever such a morphis
xists the recoupling is constant on each fiberf−1sa8d. This gives an isomorphism between

ypical fiber Kerf=f−1s0d direct product the base space coKerf=A8 and A. Equivalently
/Ker f>A8.

Example 1: LetA8,A then we may extended any recouplingsa8 ,g8 ,l8d on A8 to a recou
ling sa ,g ,ld on A as follows. Letf :A /A8→A be a mapping satisfyingfsm+A8dPm+A8, that

s a choice function. Given mPA there is a unique mˆ PA8 such that m=m̂+fsm+A8d. Thus we
efine the reducible recoupling onA (reducible toA8) by am,n,p=am̂,n̂,p̂8 , gm,n=gm̂,n̂8 , and lm=lm̂8 .

II. ALGEBRAIC RECOUPLING THEORY

We develop an extension of graded Lie algebra1–3 utilizing the recoupling phase theory su
erized in the preceding section. In this paper we letN+=h1,2,3, . . .j be the multiplicative
onoid of natural numbers, andN=h0jøN+=h0,1,2, . . .j the additive monoid of natural num
ers.

Definition 1: A recoupling Lie algebra for a symmetric unital recouplingsa ,g ,ld over an
belain groupA is an A graded vector space

L = %
mPA

Lm, s28d

nd an A graded bilinear mapfI , I g :L ^ L→L called the commutator taking âb° fa,bg
atisfying

i) Recoupling skew-symmetry,

fa,bg = − gm,nfb,ag s29d

for all aP kLlm and bP kLln.
ii d Recoupling Jacobi identity,

am,p,nffa,bg,cg − am,n,pgn,pffa,cg,bg − am,n,pam,p,nfa,fb,cgg = 0 s30d

for all aP kLlm, bP kLln, and cP kLlp.

The commutator is a multiplication forL making it an algebra. The grade zero compo
Ll0 is a Lie subalgebra ofL and has the adjoint action onL.

Given two recoupling Lie algebrasL andL8 over the same recoupling we can form the di
um recoupling Lie algebraL % L8 which is the direct sum of the underlying vector spaces

he bracket defined by
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fa % a8,b % b8g = fa,bg % 0 + 0 % fa8,b8g, s31d

herea, b, a8, b8PL. It is easy to see that the recoupling skew-symmetry and Jacobi ide
old.

If A=Z1 there is only the trivial choice of recoupling and henceL (with the commutator) is a
ie algebra. ForZ2 one can take all phases one exceptg1,1= ±1. If g1,1=1 thenL is a Lie algebra
therwiseg1,1=−1 andL is a super Lie algebra. ForA=ZN with a andl trivial we obtaingm,n

g1,1
mn. If g1,1=1 we have a Lie algebra, otherwiseg1,1=−1 andN is even giving theZN graded

ie algebras of Green.16 Moreover, these recouplings are reducible to theZ2 recoupling with

1,1=−1.

V. v-ALGEBRA

Nonassociative recoupling requires a generalization of the notion of an algebra. Th
llow us to define universal envelopes, prove a corresponding Poincaré–Birkhoff–Witt th
nd deduce a generalized Hopf structure.

Definition 2: A weakv-algebra consists of a vector spaceA, a family of symmetric subspac

n of A ^ A for all nPN+ such thatDm,Dn whenever m,n, and a family of linear map

m:Dm→A for all mPN+.
To simplify notation we writemmsa^ bd as sabdm. Recall that symmetry ofDm meansa^ b

Dm if and only if b^ aPDm.
An enhanced coupling tree is a rooted planar binary treet whose set of nodes is a finite sub

f N such that the root node is 0 and every sequence of nodes from the root node to a le
s an increasing sequence. Letutu represent the number of its leaves,htjE,N the set of nodes an
tj, htjE the nodes oft that are not leaves nor the root. LetTE denote the set of enhanced coup
rees. We define two useful families of cutting operations onTE. Let mPN then we define
espectively, the upper and lower cut operations∨m, ∧m:TE→TE as follows. GiventPTE cut the
dge joiningm to its immediate descendent. The tree containingm is taken to be∨mt (the empty

ree if m¹ htjE) and∧mt the portion remaining. Two enhanced coupling treess and t are equiva
ent, writtens, t, if the trees with the leaf and root edges and nodes removed are identica
quivalence class is called a coupling tree. The set of coupling trees is denotedT=TE/,.

Let tPT then we defineDt inductively to be the linear span of alla1 ^ ¯ ^ autuPA^ utu such
hat aj ^ akPDm for all l ø j ,kø utu and

a1 ^ ¯ ^ ai−1 ^ mmsai ^ ai+1d ^ ai+2 ^ ¯ ^ autu P D∧mt, s32d

herem=suphtj andm was attached to theith leaf of∧mt. If t is the tree with two leaves and t
ingle internal nodem then Dt=Dm. If t= u is the unique tree consisting of a single edge

t=A or the empty treet=x thenDt=h0j. Now we can define the product mapmt :Dt→A of utu
actors given byt. Inductively this is defined by

mtsa1 ^ ¯ ^ autud = m∧mts1^ i−1
^ mm ^ 1^ utu−i−1d, s33d

herem=suphtj andm was attached to theith leaf of ∧mt.
With this notation we can easily define the important notion of a(strong) v-algebra.
Definition 3: A (strong)v-algebra A is a weakv-algebra such that given s,tPT and m

N+ then wheneverhsjù htj=x and infhsj, infhtj.m we havemssDs8d ^ mtsDt8d,Dm wheneve

s8 ^ Dt8,Dsstdm
. The v-algebra is called strict if whenever s,t are such thathsjù htjÞx or

nfhsj, infhtj.m then we have that the intersection of the span ofhmssDs8d ^ mtsDt8d :Ds8
^ Dt8,Dsstdm

j with Dm is empty.
Define Am=haPA : there isbPA with a^ bPDmj. Thus An,Am wheneverm,n and

m+1sDm+1d,Am. An v-algebra is called unital if there is 1PA1 such that 1̂ aPDm for all a

Am and
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mms1 ^ ad = mmsa ^ 1d = a s34d

or all aPAm andmPN+. We write this ass1adm=a=sa1dm. Note that a unitalv-algebra canno
e strict. Anv-algebra is called associative if

mmsmnsa ^ bd ^ cd = mmsa ^ mnsb ^ cdd, s35d

or all a^ b, b^ cPDn and m,n. This may be written in the compact formssabdncdm

sasbcdndm. And commutative if

mmsa ^ bd = mmsb ^ ad s36d

or all a^ bPDm andmPN+.
Every algebra is anv-algebra withDm=A ^ A andmm=m for all mPN+. Given an algebraA

hen one may construct thev-algebra vfAg over A as follows. Consider the vector spa
hPsN+dj built from the finite power Abelian monoidPsN+d of finite subsets ofN+. A typical
lement is a finite formal suma=oPPPsN+da

PP with aPPA. That is, only a finite number of th
oefficients are nonzero. A multiplication is given by

ab= o
P,QPPsN+d

aPbQP ø Q. s37d

ake vfAg to be the vector spaceAhPsN+dj. Let Dn be the linear span of{a^ bPvfAg
^ vfAg :aP,bQÞ0 implies PùQ=x and sPøQdù h1, . . . ,nj=x for all P,QPPsN+d} then

m=haPvfAg :aPÞ0 impliesPù h1, . . . ,mj= x for all PPPsN+dj. We define the bilinea
apsmm:Dm→vfAg by

sabdm = o
P,QPPsN+d\hxj

aPbQP ø Q ø hmj + o
PPPsN+d\hxj

saPbx + axbPdP + axbxx s38d

or all a^ bPDm. If A is unital then so isvfAg with unit x. If A is associative(respectively
ommutative) then so isvfAg.

An important construction is the freev-algebra over coupling trees. LetChTj the vector spac
reely generated byT. Let Dm be the subspace spanned by the coupling treess^ tPChTj ^ ChTj
heres,t have no labels in common and all labels greater thanm. We definemm:Dm→ChTj to be
iven by joining the roots of the coupling treess,t to the nodem. Thusm is the root of the joine
ree sstdm. The unit is the tree with no leaves.

One may form the tensor product of twov-algebrasA andA8 as follows. LetA ^ A8 be the
sual tensored vector space. Define the trivial symmetric braidR:A8 ^ A→A ^ A8 by Rsa8

^ ad=a^ a8 for all aPA anda8PA8. The bilinear productsm9 :Dm9 →A ^ A8 are given bymm9
smm^ mm8 ds1^ R^ 1d and

Dm9 = hf ^ g ^ h ^ k P sA ^ A8d^2:f ^ h P Dm and g ^ k P Dm8 j. s39d

n particular we have

mm9 sf ^ g ^ h ^ kd = mmsf ^ hd ^ mm8 sg ^ kd s40d

or all gPA8, hPA, andmPN+. It is straightforward to check that this does indeed defin
-algebra. IfA andA8 are unital then so isA ^ A8 with unit 1^ 18. If A andA8 are associativ

respectively, commutative) thenA ^ A8 is associative(respectively, commutative).
A morphism ofv-algebras is a linear mapf :A→A8 satisfying
sf ^ fdDm , Dm8 , s41d
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fmm = mm8 sf ^ fd s42d

or all mPN+. It follows that fAm,Am8 .
An v-algebraA is called a derivedv-algebraA8 if there is an isomorphismf :A→vfA8g.

oreover, this isomorphism is weakly universal fromA to vfA8g. Hence given another algebraB
uch thatA>vfBg thenA8>B. Similarly we can conclude thatvfA8 ^ A9g,vfA8g ^ vfA9g for
ll algebrasA8 andA9 by considering the subsetA9x of vfA9g.

An v-algebraA is A graded if the underlying vector space and bilinear products areA
raded. In detail, if

A = %
pPA

Ap s43d

hen definekDmlp,q=hdP kAlp ^ kAlq:dPDmj for all p,qPA andmPN+, then we have that

Dm = %

sp,qdPA2
kDmlp,q. s44d

he bilinear product isA graded ifmmkDmlp,q, kAlp+q. In particular the free algebraCfTg over
oupling trees isZ graded because the monoidT is Z graded by leaf number.

An A gradedv-algebraA is called a recouplingv-algebra if there is a recouplingsa ,g ,ld
nd"P kA1l0 over A such that

ssabdncdm = ak,l,psasbcdndm, s45d

sabdm = gk,lsbadm, s46d

s"adm = lka, s47d

sa"dm = rka s48d

or all aP kAlk, bP kAll, cP kAlp, and m,nPN+ such thatm,n. No recouplingv-algebra is
trict.

. UNIVERSAL ENVELOPING v-ALGEBRA

In order to give the construction of universal envelopingv-algebra we need some prelimin
tructures. LetT* .T be the set of coupling trees with nodules attached to some leaves. G
etX, let T* sXd be thev-monoid of (noduled) coupling trees overX. That is the set of couplin
rees whose leaves are labeled by elements ofXq h+j where + denotes the nodule. Thusst ,xd

T* 3Xn, wheren is the number of leaves oft less the number of attached nodules, is comp
f a coupling treet whose nodule-free leaves are labeled(in order) by then-tuplex. T* sXd inherits
he v-multiplication fromT* given by

sss,xdst,yddm = ssstdm,xyd, s49d

here xy is the concatenate of the tuplesx and y. The unit is the tree with no leaves. T
-monoid isZ3Z graded by leaf and nodule number. In order to construct the freev-algebra ove
* sXd we need the notion of anv-ideal.

Definition 4: Given anv-algebraA, a left (respectively, right) v-ideal J is a subspace ofA
uch that for all mPN+, aPA and bPJ such that â bPDm we havesabdmPJ [respectively,
badmPJ]. An v-ideal is both a left and rightv-ideal.

Let CfT* sXdg be the vector space freely generated byT* sXd. An v-multiplication is given by

msoka
kssk,xkd ,olb

lstl ,yldd=ok,la
kblsssktldm,xkyld where akbl PC , sk ^ tl PDm, xkPXusku and yl

utlu
X . ClearlyCfT* sXdg is a unitalv-algebra. We call it the freev-algebra overX. Moreover, it
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as the following universal property. Leti :X→CfT* sXdg be the insertion mapx° su ,xd whereu is
he unique coupling tree with one leaf. Given any unitalv-algebraW and mappingf :X→W
here is a uniquec :CfT* sXdg→W such that

ommutes. IfX= %mPAkXlm is A-graded then so isT* sXd and henceCfT* sXdg. Each coupling tre
PT* defines a canonical mapt :X→T* sXd given by tx=st ,xd. Given a coupling treet with n

leaves andxPXn where eachxk is of grademk then tx has gradem1+¯ +mn.
Given a recoupling Lie algebraL let X be anA-graded basis forL. We write X=X+qX−

here the gradem of any member ofX± satisfiesgm,m= ±1, respectively. The universal envelop
lgebra ofL is defined to be

UsLd = CfT * sXdg/J, s50d

hereJ is the ideal with generators

ssrxsydltzdk − am,n,psrxssytzdldk, s51d

sxydk − gm,nsyxdk − fx,yg, s52d

s+rxdk − lmrx, s53d

srx + dk − rmrx, s54d

here r ,s,tPT* sXd have, respectively,u, v, and w leaves,xPXu, yPXv, and zPXw are of
radesm, n, andp, respectively,xP kXlm, yP kXln, andk, l. The symbol+ represents the uniq
ree with a single leaf that has a nodule attached. The universal enveloping algebraUsLd has the
ollowing universal property.

Proposition 1: Given anv-algebraW and linear mapf :L→W satisfying

ssrfusadsfvsbddltf
wscddk − am,n,psrfusadssfvsbdtfwscddldk, s55d

s+rfusaddk = lmrfusad, s56d

srfusad + dk = rmrfusad s57d

or all r ,s,tPT* with, respectively, u, v, and w leaves, aP kLulm, bP kLvln, cP kLwlp and k, l,
nd satisfying

fsfa,bgd = sfsadfsbddk − gm,nsfsbdfsaddk s58d
or all aP kLlm, bP kLln and kPN+, then there is a unique morphismc :UsLd→W such that
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ommutes.
The universalUsLd is of course defined up to isomorphism. The universal envelopeUsLd

nherits anA3Z grading from the freev-algebraCfT* sXdg or equivalently thev-monoidT* sXd.
he Z grading corrresponding to nodule number is lost because of(53) or (54). We write

UsLd = %
mPZ

UsLdm, s59d

hereUsLdm is generated by trees withm nodule free leaves.

I. THE GROUPOID OF UNIVERSAL v-ALGEBRA

In this section we reveal the combinatorics underlying universalv-algebra. These results a
undamental to the proof of thev-Poincaré–Birkhoff–Witt theorem in the next section. T
-monoidal groupoid of interest is built from thev-monoidal groupoid of noduled coupling tre
pTr and the exploded symmetricv-monoidal groupoidxS of the symmetric groups. The
roupoids are based onNCpTree and the exploded Artin braid groupoidxB defined in Joyce.32

The v-monoidal groupoidCpTr is defined to have objectsT* with a unique arrow betwee
,tPT* provided they have the same number of nodule free leaves. Thus

CpTr = q
nPN

CpTr n, s60d

here the objects of the full subcategoryCpTr n are Tn
* , the coupling trees withn nodule free

eaves. Note thatNCpTreen is finite where asCpTr n is infinite. Furthermore, there is a forget
unctor U :CpTr →NCpTree given by renaming the nodes oft by 1, . . . ,uhtju in the unique wa
reserving order. The resultant treeUt underlies premonoidal categories.

In addition to the upper and lower cutting operations defined earlier we define the le
ight cutting operations. GiventPT* the left (respectively, right) cut Lt (respectively,Rt) is the
aximal subtree formed from the left(respectively, right) descedents of the root. Finally we n

hat a treet is left (respectively, right) justified if R∨mt (respectively,L∨mt) is a singleton set fo
verymP htj.

If we forget the ordering of nodes then we arrive at the groupoid of bracketing tree
odulesNBrTree and the evident forgetful functorV:NCpTree→NBrTree. The groupoid o
racketing trees with nodules admits the functor^ :NBrTree 3NBrTree→NBrTree given by

oining roots. Thus two trees withm andn leaves join to give a tree withm+n leaves. The identit
bject is the empty tree. ThusNBrTree is a strict monoidal category. SinceCpTr is anv-monoid

hen given ss,tdPDm we have VUsstdm=sVUsd ^ sVUtd. See Joyce26 for the full theory o
-monoidal category theory.

The exploded symmetricv-monoidal groupoidxS has as objects all permutations. Ther
efined to be an arrow between two permutationsp ands whenever they have the same len
oreover, this arrow is unique and given bysp−1:p→s. Thus

xS= q
nPN

xSn, s61d

here the objects of the full subcategoryxSn areSn.

The v-monoidal groupoid of universalv-algebra is
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U = q
nPN

CpTr n 3 xSn. s62d

he set ofelementaryarrows spanning the category are given as follows.

i) Arrows ss,1d→ st ,1d that prune(or graft in opposite direction) a nodule. That is there
mP hsj such that∧ms= t with L∨ms=+ or R∨ms=+.

ii ) Arrows ss,pd→ ss,si i +1dpd that interchange two adjacent leafs and thei and i +1 leaves
have the same descendants.

iii ) Arrows ss,pd→ st ,pd which swing a single edge between two nodes with immediat
scendantm. That is, for a left to right swing∧ms=∧mt andLL∨ms=L∨nt, RL∨ms=LR∨mt,
R∨ms=RR∨mt.

These arrows play a crucial role in the next section whereby each is associated with ei
nd right identitivity, commutativity or associativity, respectively.

II. v-POINCARÉ–BIRKHOFF–WITT THEOREM

The v-Poincaré–Birkhoff–Witt theorem provides a basis for the universal envelopeUsLd just
onstructed. We suppose thatA is ordered by,. Given a recoupling Lie algebraL an importan
ubalgebra is the commutator subalgebrafL ,Lg. Let X0 be anA-graded basis forfL ,Lg then for
achxPX0 there ism,nPA such thatmøn andxP fkLlm,kLlng. We impose an order, on X0

atisfyingx,x8 implies møm8 wherexP kLlm and x8P kLlm8. We extendX0 to an A-graded
asisX for L. Let X1=X\X0 thenX=X0qX1. We extend the order, ensuring thatx,y wheneve
PX0 andyPX1. The order onX1 is required to satisfyy,y8 implies nøn8 whereyP kLln and

y8P kLln8.
Next we characterize admissible tuples ofX. A tuple xPX0

M is admissibleif and only if

1, ¯ ,xM and for all aP kLlm, bP kLln, cP kLlp, and dP kLlq with fa,bg=xi and fc,dg=xj

1ø i Þ j øMd we havejm,n,p,q=1. A tuplexPXM is admissibleif and only if x1, ¯ ,xM, every
ubtuplex0 with components inX0 is admissible and for all 1ø i , j ,køN distinct, aP kLlm and
P kLln with fa,bg=xi we havejm,n,p,q=1 wherexj P kLlp andxkP kLlq. We denote the collectio
f admissible ordered tuples ofX by AdmsXd. This set isA-graded given by adding grades

ndividual components and is the disjoint union of two important subsets

AdmsXd = AdmsXd0 q AdmsXd1, s63d

here AdmsXd0 is the set of tuples with at least three components one of which is inX0. AdmsXd1

s the complement in AdmsXd. Note that AdmsXd1 contains the empty tuple which has no co
onents.

If we append a nodule to the basisX we extend the order, on Xq h+j by +,x for all x
X. Let I=hxPXn: for somenPN such thatxi øxi+1 for all i =1, . . . ,n−1j. This set contain
dmsXd. We partitionI into I+qI− whereI−=hxPI : there existsi such thatxi =xi+1PX−j and
learly I+=I \I−. Consequently AdmsXd inherits this partition. The set of vectors in the theo
s AdmsXd+.

Theorem 1 (v–Poincaré–Birkhoff–Witt): Let L be a recoupling Lie algebra. Let X be a basi
or L constructed previously. A basis for the universal enveloping algebraUsLd is given by

s¯ssx1x2dN−1x3dN−2¯ xNd1, s64d

heresx1, . . . ,xNdPAdmsXd+0, and

s¯ssx1x2dk1
x3dk2

¯ xNdkN−1
, s65d

heresx1, . . . ,xNdPAdmsXd+1 and k1.k2. ¯ .kN−1.

The idealJ used in the construction ofUsLd is given by
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J = spanIPIJI , s66d

hereJI is the subideal generated by(51)–(53) restricted to coupling trees ofn= uI u nodule free
eaves that are a rearrangement ofI. To prove spanning we require the next lemma. LetL* ,T*
e the set of left-justified coupling trees. That is iftPL* with nodesn1, . . . ,nN (from left to right)

hen n1. ¯ .nN. The set of labeled left-justified coupling trees is denotedL* sXd. For eachn
N let tnPL* be the unique left-justified coupling tree withn leaves and no nodules.

Lemma 1: Let IPI, t a coupling tree with N leaves and n= uI u nodule free leaves, and p
Sn.

i) We have that

tspId + JI = bt,I,ptnI + xt,I,p + JI s67d

for some bt,p,I PS1 and

xt,p,I P S %

p ø N − n
m,n

CfT * sXdgm,pD % s %
p,N−n

CfT * sXdgn,pd . s68d

ii d Moreover, if I PI− then

tspId + JI = yt,I,p + JI s69d

for some

yt,I,p P S %

p ø N − n
m,n

CfT * sXdgm,pD % s %
p,N−n

CfT * sXdgn,pd . s70d

iii d If I PI \AdmsXd then tspIdPJI.

Proof: Let E be the set of elementary arrows inCpTr . Define the evaluation map evalE
I→CfT* sXdg given by mapping each elementary arrowE: ss,sd→ ss8 ,s8d underI PI to the

enerating function betweensssId ands8ss8Id given by (51), (52), (53), and(54).
To prove(i) we note that there exists a composable sequence of elementary arrowsE1, . . . ,EN

n CpTr from st ,pd to stn,1d. Let the source ofEk be denotedstk,pkd and the targetstk+1,pk+1d
hen t1= t, p1=p, tN+1=tn, and pN+1=1. We find thattkspkId−evalsEk,Id=bktk+1spk+1Id+xk for
omebkPS1 andxk in (68). Since evalsEk,IdPJI then we have that

tkspkId + JI = bktk+1spk+1Id + xk + JI s71d

or k=1, . . . ,N. Hence(67) holds withbt,p,I =pk=1
N bk and

xt,p,I = o
k=1

N Sp
l=1

k−1

blDxk. s72d

o prove(ii ) let sPSn such that the first two entries ofsI are inX−. Then by(i) the evaluation o
he arrowst ,sd→ st ,s12dsd at I gives tssId+JI =−tss12dsId+x+JI for somex in (68). Thus we
ave that

tssId + JI = 1
2x + JI . s73d

lso by (i) we can finda, bPS1 andy, z in (68) satisfying

tspId + JI = atnI + y + JI , s74d

tssId + JI = btnI + z + JI . s75d
simple calculation substituting(75) then (73) into (74) yields
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tspId + JI =
a

2b
x + y −

a

b
z + JI . s76d

he result follows withyt,p,I =sa/2bdx+y−sa/bdz.
Finally to prove (iii ) supposeI ¹AdmsXd. Either there isaP kLlm, bP kLln, cP kLlp, d

kLlq, and i Þ j with fa,bg= I i and fc,dg= I j such thatjm,n,p,qÞ1; or there isaP kLlm, bP kLln,

j P kLlp, IkP kLlq and i Þ j ÞkÞ i with fa,bg= I i such thatjm,n,p,qÞ1. In the first case we choo
PL andpPSuI u such that there is an arrowss,pd→ st ,pd andssp−1Id1= I i andssp−1Id2= I j. Thus
t follows from Proposition 2(this proposition, proved later, does not depend on this result) and
85) that

∨suphsjssI i,I jd = jm,n,p,q∨suphsjssI i,I jd. s77d

incejm,n,p,qÞ1 we have that∨suphsjssI i ,I jdPJsa,b,c,dd,J. Thusss,sdI PJ from which it follows
hat st ,pdI PJ. In the second case we choosesPL and pPSuI u such that there is an arro
s,pd→ st ,pd andssp−1Id1= I i, ssp−1Id2= I j andssp−1Id3= Ik. Thus it follows from Proposition
nd (83) that

∨suphsj\hsuphsjjssI i,I j,Ikd = jm,n,p,q∨suphsj\hsuphsjjssI i,I j,Ikd. s78d

incejm,n,p,qÞ1 we have that∨suphsj\hsuphsjjssI i ,I j ,IkdPJsa,b,c,dd,J. Thus ss,sdI PJ from it fol-
ows thatst ,pdI PJ. This completes the proof.

To prove that AdmsXd+ spansUsLd we use induction on%m,nUsLdm. Clearly it holds fo
=1. Now suppose it holds forn and thatxP %m,n+1UsLdm then we may decomposex as

x = o
t,p,I

at,p,ItspId, s79d

here all but finitely manyat,p,I are zero. Thus we have by the lemma

+ J = o
t,p,I

at,p,Ibt,p,ItnI + o
t,p,I

at,p,Ixt,p,I + J s80d

=S o
t,p,IPAdmsXd+

at,p,Ibt,p,ItnI + JD + S o
t,p,IPI

at,p,Ibt,p,Iyt,p,I + o
t,p,I

at,p,Ixt,p,I + JD s81d

he first line by(i) and the second line by(ii ) and(iii ) of the lemma. The first term is in the sp
y definition, while the second term is in the span by the induction step. Hence AdmsXd+ spans
sLd.

The other half of the theorem is to prove that AdmsXd+ is a linearly independent set inUsLd.
o this end we prove the next theorem below. We define the groupoid of noduled couplin

abeled byX to be

UsXd = q
nPN

Un 3 Xn. s82d

e also introduce thev-monoidJ00 defined by the generating relations

susuudkdhsfa,bg,c,dd − jm,n,p,qsusuudldhsfa,bg,c,dd, s83d

ssuudkudhsa,b,fc,dgd − jm,n,p,qssuudludhsa,b,fc,dgd, s84d

suudhsfa,bg,fc,dgd − jm,n,p,qsuudhsfa,bg,fc,dgd s85d

or all a, b, c, dPX of gradesm, n, p, q, respectively, andh,k, l. By construction one observ

that CfT* sXdg /J00 is spanned by AdmsXd.
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Now we can state a Mac Lane coherence betweenUsXd and the one object categoryCfT* sXdg
ith composition given by addition.

Theorem 2: There is a functor

F:UsXd → CfT * sXdg/J00 s86d

aking primitive arrows to their corresponding generating relations.
Proof: Premonoidal Mac Lane coherence impliesF restricted toCpTr sXd is a functor. In

emains to incorporate commutivity. Given a transpositions :sx→ tsskk+1dxd where i økø uxu
1, we can find arrowsf :ssxd→ rsxd andg: rsskk+1dxd→ tsskk+1dxd in CpTr wherer PT with

k and k+1 siblings, such thats=gsr,kf where sk: rx→ rsskk+1dxd. We define Fssd
FsgdFssr,kdFsfd. This definition is independent off, g, andr provided the squares

ommute for allh,k, l andxPX4 underF. This may be seen from the proof of theorems 9
0 in Joyce.32 A short calculation shows that these are the generating conditions(83) and(84) and
o belong toJ00. The proof is completed by showing symmetric braid conditions hold undF.
hat is,

FsskdFsskd = 1, s87d

FsskdFssld = FssldFsskd wheneveruk − l u . 1, s88d

Fssk+1dFsskdFssk+1d = FsskdFssk+1dFsskd providedk , uxu s89d

or all k, l =1,2, . . . ,uxu. The first holds by the recoupling symmetry. The second by choosr
T with k and k+1 siblings andl and l +1 siblings. The last condition follows by takingr PT

uch thatk andk+1 are siblings and their parent node has siblingk+2. Thus the condition hold
rovided

ommutes for allk, l and a, b, cPX underF. Supposea, b, andc are of gradesm, n, andp,

espectively, then the diagonal dashed arrow is well-defined if and only if
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suudlsfa,bg,cd + an,m,pgm,nsuudlsb,fc,agd +
an,m,p

an,p,m
gm,ngm,psuudlsfb,cg,ad

= am,n,psuudlsa,fb,cgd +
am,n,p

am,p,n
gn,psuudlsfa,cg,bd +

am,n,pap,m,n

am,p,n
gn,pgm,psuudlsc,fa,bgd. s90d

ubstituting sidlsfa,bg ,cd=gm+n,psidlsc,fa,bgd+ffa,bg ,cg and similarly for sidlsb,fc,agd and
idlsfb,cg ,ad reduces this condition to the recoupling Jacobi identity. Hence it vanishes.

This result has the obvious corollary.
Corollary 1: There is a unique extension of F to thev-algebra morphism

F̃:CfUsXdg → CfT * sXdg/J00. s91d

e have the following expected embedding.
Proposition 2: We have thatJ00,J.
Proof: We must show that(83), (84), and(85) are a consequence of the generating rela

or J. As a direct result of these we have the square

n J for all aP kLlm, bP kLln, cP kLlp, dP kLlq andm, n, p, qPA. This loop evaluates underF
o give (83). Similarly we may obtain(84). Finally we have

s1 − jm,n,p,qdsusuudkdlsfa,bg,c,dd = s1 − jm,n,p,qdgp,qsusuudkdlsfa,bg,d,cd + s1 − jm,n,p,qdsuudlsfa,bg,fc,dgd.

s92d

ince the first two terms are inJ then the last must be also. Hence(85) is in J.
A simple corollary is as follows.
Corollary 2: The subspace spanned by AdmsXd0+ is an algebra.
Let I PAdmsXd+ andUsXdI the coupling trees withuI u nodule free leaves labeled byI. We have

hat

F̃sCfUsXdIgd = JI . s93d

Lemma 2: Let IPAdmsXd+ and jPJI then whenever

j P spanI8PI\hIj,uI8uøuI uJI8 s94d

e have that j=0.
Proof: SupposeI PAdmsXd+1. The other case whenI PAdmsXd+0 will follow by a similar

grument using rooted planar binary trees. Letst ,pd→ st ,p8d be an arrow such thatIpi = Ip8i for all
=1,2, . . . ,uI u. The tupleI is partitionable into constant maximal subtuples. ChoosesPT such tha
he leaves corresponding to subtuples of length at least two are the descendents of a uniq

e have the diagram
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n U. If we evaluate this diagram atI and applyF then the side arrows are equal and if the bot
rrow is zero the top arrow is zero. Indeed the bottom arrow evaluates as zero because
ubtuples ofI of at least length two are bosonic. That is the commutator vanishes and the p
nity. Givenp, sPSuI u we say they are equivalent applied toI if Ipi − Isi for all i =1, . . . ,uI u. The se
f equivalence classes we denoteSI / I. Let r be the nodule free left-justified tree withuI leaves the
spanning set forJI is given by the arrowsrI → rspId wherepPSuI u / I underF. That is, eac

lement is of the form

rI − fprspId + bp s95d

or somefpPS1 and

bp P spanI8PI,uI8u,uI uJI8 s96d

or all pPSuI u / I. This is clearly a basis sincerI −fprspId wherepPSuI u / I is a basis. This com
letes the proof of the lemma. LetI1, . . . ,INPAdmsXd+ be any finite distinct collection withIk of

engthnk, anda1, . . . ,aNPC \ h0j such that

o
k=1

N

aktnk
Ik = 0, s97d

hooseIm such thatnkønm for all k=1, . . . ,N. We have that

amtnm
Im = − o

k Þ m
k=1

N

aktnk
Ik P spanI8PI\hImj,uI8uøuImuJI8 s98d

ence by the lemmaam=0 giving a contradiction. Thus AdmsXd+ is a linearly independent s
his completes the proof of thev-Poincaré–Birkhoff–Witt theorem.

III. ZN-GRADED HEISENBERG RECOUPLING LIE ALGEBRA

We consider in detail a generalized version of the Heisenberg algebraH for any ZN graded
ecoupling. The recoupling Lie algebra is spanned by a grade 0 elementh, grade 1 elementsam

nd gradeN−1 elementsam
† for all mPI satisfying

fam,ang = 0, fam,hg = 0,

fam
†,an

†g = 0, fam
†,hg = 0,

fam,an
†g = dm,nh, fh,hg = 0

or all m ,nPI. For simplicity supposeI is finite. We see that AdmsHd=H. Moreover, we usuall
dentify the elementh with "+. Thus we work in the factored universalv-algebraUsHd /h−"+.

The grade 0 componentkHl0 is a Lie algebra. Definehmn=aman
† then a straight forwar

alculation in the universal enveloping algebraUsHd /h−"+ shows that

fhmn,hm8n8g = "
a1,N−1,0l0

aN−1,1,N−1a0,0,N−1
gN−1,1Sdmn8hm8n −

a0,0,1

a1,0,0
g1,1gN−1,N−1dm8nhmn8D

+ s1 − g1,1gN−1,N−1dhmnhm8n8 s99d

losure requiresg1,1gN−1,N−1=1 anda1,0,0=a0,0,1 giving the Lie algebraus1d % susuI u d.

Two straightforward calculations in the universal enveloping algebraUsHd /h−"+ demonstrate
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fhmn,alg = − "a1,0,0l0g0,1g1,1dn,lam + S1 −
g0,1g1,1g1,N−1

a1,N−1,1
Dhmnal, s100d

fhmn,al
†g = "

g0,N−1gN−1,1l0

aN−1,1,N−1a0,0,N−1
dmlan

† + S1 −
g0,N−1gN−1,1gN−1,N−1

aN−1,1,N−1
Dhmnal

†. s101d

losure requires the term of each to vanish. Furthermore, ifam andam
† are to be a pair of lowerin

nd raising elements theng0,1=g0,N−1=1. The adjoint action on the space spanned byam gives the
undamental representation, while on the space spanned byam

† gives the dual fundamental rep
entation. We define the(standard) Bose–FermiA graded recoupling as the following irreduci
ecoupling. We takelm=rm=1 and

gm,n = H1, m= 0 or n = 0

− 1, otherwise,
J s102d

am,n,p = H1, m= 0,n = 0,p = 0 or m+ n = 0

− 1, otherwise.
J s103d

hem+n=0 in the definition ofam,n,p may equally well be replaced byn+p=0. These determin
he deformativity phases to be

jm,n,p,q = H1, m= 0,n = 0,p = 0,q = 0,m+ n = 0 or p + q = 0,

− 1, otherwise.
J s104d

lgebraic formulas fora ,j, andg utilizing Kronecker deltas are given in the Appendix. For
ecoupling the Heisenberg algebra reduces to

fhmn,hm8n8g = "dm8nhmn8
− "dmn8hm8n, s105d

fhmn,alg = "dn,lam, s106d

fhmn,al
†g = "dmlan

†, s107d

herem ,n ,m8 ,n8 ,lPI. For SU(3) color with a Z3 graded Bose–Fermi recoupling Heisenb
ie algebra the universal envelope is anv-algebra satisfying the Pauli exclusion principle
voiding the confinement outlined in Joyce.4,15

X. HOPF STRUCTURE OF THE UNIVERSAL ENVELOPING v-ALGEBRA

The universalv-algebra of a recoupling Lie algebra possesses coalgebra and Hopf alge
tructures. LetU0sLd be the maximalv-subalgebra ofUsLd excluding the unit.

Proposition 3: The universalv-algebraUsLd is a coalgebra.
A comultiplicationD :UsLd→UsLd^2 is given by

Dsad = 1 ^ a + a ^ 1, s108d

Ds1d = 1 ^ 1, s109d

heneveraPU0sLd. The corresponding counite :UsLd→C is given by
esad = 0, s110d
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es1d = 1, s111d

heneveraPU0sLd.
Using the symmetric unital braidR we can construct a coalgebra structure forUsLd. Comul-

iplication and counit are given by

Dsa ^ bd = sD ^ Ddsa ^ Rsb ^ ad ^ bd, s112d

esa ^ bd = esad ^ esbd, s113d

or all a,bPUsLd. We say that the coalgebra andv-algebra are compatible ifmm:Dm→A are
oalgebra morphisms on the restricted domainDm for eachmPN+. Equivalently, the comultipl
ation is a morphim between thev-algebrasUsLd andUsLd^2. Algebraically these conditions a

Dmmsa ^ bd = smm ^ mmds1 ^ R ^ 1dsDsad ^ Dsbdd, s114d

emmsa ^ bd = esad ^ esbd, s115d

Ds1d = 1 ^ 1 s116d

henevera^ bPDm, for all mPN+. One can easily check that these all hold.
Definition 5: A Hopfv-algebra is a unitalv-algebraA with a compatible coalgebra structu

nd an antipode S. The antipode is a contravariant morphism S:A→A satisfying

mmsS^ 1dDsad = hsadesad = mms1 ^ SdDsad s117d

or all aPUsLd such thatsS^ 1dDsadPDm, for all mPN+.
One can easily check that an antipode forUsLd is the unique linear map given bySsad=−a

heneveraPU0sLd andSs1d=1.

. CONCLUSION

We have extended the notion of a graded Lie algebra to include the recoupling ph
oyce4 necessary in the description of SU(3) color. In order to construct the appropriate notion
universal envelope we required the new notion of anv-algebra. One may think of this as

eneralization of algebra where the order in which brackets are evaluated is unique, a
mbiguous statements such assabdscdd. We constructed the universal envelopingv-algebra an
roved the correspondingv-Poincaré–Birkhoff–Witt theorem. Finally we recovered the u
oalgebra structure and uncovered the Hopf structure of the universal envelopingv-algebra.

The results of this paper provide motivation for the omegafication of a number of stru
equiring the development of a general theory ofv-monoidal categories.26 Of particular interest i
nv-tensor product(andv-Fock space) which should be the appropriate setting for the repre
ation theory ofv-algebra. This requires notions ofv-coalgebra,v-bialgebra, and Hopfv-algebra
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PPENDIX

Algebraic formulas for the(standard) Bose-Fermi recoupling phases are given by
lm = 1, sA1d
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gm,n = − 1 + 2dm,0 + 2dn,0 − 2dm,0dn,0, sA2d

am,n,p = − 1 + 2dm,0 + dn,0 + dm+n,0 + dp,0 − 2dm,0dn,0 − 2dm,0dm+n,0 − 2dn,0dm+n,0 − 2dm,0dp,0

− 2dn,0dp,0 − 2dm+n,0dp,0 + 2dm,0dn,0dm+n,0 + 2dm,0dn,0dp,0 + 2dm,0dm+n,0dp,0 + 2dn,0dm+n,0dp,0

− 2dm,0dn,0dm+n,0dp,0, sA3d

jm,n,p,q = − 1 + 2dm,0 + 2dn,0 + 2dm+n,0 + 2dp,0 + 2dq,0 + 2dp+q,0 − 2dm,0dn,0 − 2dm,0dm+n,0

− 2dn,0dm+n,0 − 2dm,0dp,0 − 2dm,0dq,0 − 2dm,0dp+q,0 − 2dn,0dp,0 − 2dn,0dq,0 − 2dn,0dp+q,0

− 2dm+n,0dp,0 − 2dm+n,0dq,0 − 2dm+n,0dp+q,0 − 2dp,0dq,0 − 2dp,0dp+q,0 − 2dq,0dp+q,0

+ 2dm,0dn,0dm+n,0 + 2dm,0dn,0dp,0 + 2dm,0dn,0dq,0 + 2dm,0dn,0dp+q,0 + 2dm,0dm+n,0dp,0

+ 2dm,0dm+n,0dq,0 + 2dm,0dm+n,0dp+q,0 + 2dn,0dm+n,0dp,0 + 2dn,0dm+n,0dq,0 + 2dn,0dm+n,0dp+q,0

+ 2dm,0dp,0dq,0 + 2dm,0dp,0dp+q,0 + 2dm,0dq,0dp+q,0 + 2dn,0dp,0dq,0 + 2dn,0dp,0dp+q,0

+ 2dn,0dq,0dp+q,0 + 2dm+n,0dp,0dq,0 + 2dm+n,0dp,0dp+q,0 + 2dm+n,0dq,0dp+q,0 + 2dp,0dq,0dp+q,0

− 2dm,0dn,0dm+n,0dp,0 − 2dm,0dn,0dm+n,0dq,0 − 2dm,0dn,0dm+n,0dp+q,0 − 2dm,0dn,0dp,0dq,0

− 2dm,0dn,0dp,0dp+q,0 − 2dm,0dn,0dq,0dp+q,0 − 2dm,0dm+n,0dp,0dq,0 − 2dm,0dm+n,0dp,0dp+q,0

− 2dm,0dm+n,0dq,0dp+q,0 − 2dn,0dm+n,0dp,0dq,0 − 2dn,0dm+n,0dp,0dp+q,0 − 2dn,0dm+n,0dq,0dp+q,0

− 2dm,0dp,0dq,0dp+q,0 − 2dn,0dp,0dq,0dp+q,0 − 2dm+n,0dp,0dq,0dp+q,0 + 2dm,0dn,0dm+n,0dp,q,0

+ 2dm,0dn,0dm+n,0dp,0dp+q,0 + 2dm,0dn,0dm+n,0dq,0dp+q,0 + 2dm,0dn,0dp,0dq,0dp+q,0

+ 2dm,0dm+n,0dp,0dq,0dp+q,0 + dn,0dm+n,0dp,0dq,0dp+q,0 − 2dm,0dn,0dm+n,0dp,0dq,0dp+q,0 sA4d

or all m, n, p, qPA.
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The known link of the division algebras to 10-dimensional spacetime and one
leptoquark family is extended to encompass three leptoquark families. ©2004
American Institute of Physics.[DOI: 10.1063/1.1786682]

. INTRODUCTION

No volume devoted to noncommutative mathematical structures of any sort would b
lete without some attention paid to the quaternionssHd and octonionssOd. These, together wi
he commutative algebrasR (real numbers) andC (complex numbers), are the four real norme
ivision algebras, linked to much that is elegant, noteworthy and exceptional in mathemat
bviously central role ofR andC in physics has also led many to believe thatH andO should
ave an equally central role in fundamental physics as they do in mathematics. In this ar

urther develop the idea that in fact all of these algebras tensored together should play a
onstructing the Standard Model. Our observations are also relevant to recent developm
tring theory, where the octonions are becoming increasingly of interest. We direct the re
ohn Baez’s excellent review for a broader discussion of quaternions and octonions.1

This article is an extension of work begun in Ref. 2, which builds on Ref. 3. There
ssumed that none of the three hypercomplex division algebras(C, H and O) is to be distin
uished over any other, and all should play a role. Thus it was proposed to consider

T = C ^ H ^ O

s a starting point for a particle physics model. HereT is nothing more than the complexificati
f the quaternionization of the octonions. More precisely, we consideredT2=T % T as follows.

Each of these algebras,C, H, O, the tensor product,T andT2, is a spinor space(see Ref. 2).
Dirac algebra spinor of a fundamental fermion like the electron is conventionally represe

n element ofC4, and so is 8-dimensional over the reals.T is 64-dimensional, andT2, a com-
lexified R1,9 spinor, is 128-dimensional. Since 128=s8+8d38, and associated with the fi

amily of leptons and quarks there are 8 fermions and 8 antifermions(neutrinos treated as Dir
hroughout), one might hope thatT2 is the correct object to account for 16 Dirac spinors. T
urns out to be a good point of view as shown in detail in Refs. 2 and 3, and elsewhere; m
he mathematical features of the Standard Model of quarks and leptons indeed fall naturall

theory based mathematically on this spinor spaceT2.
One feature that has, however, been missing, is how to account for the higher lep

amilies two and three in this picture. We propose a solution now.

I. PRELIMINARIES

Let PSOk be a projective special orthogonal group. In Ref. 4 the following is noted.

1) The existence ofC implies that PSO2 is commutative.
2) The existence ofH implies PSO4>PSO33PSO3.
3) The existence ofO implies that PSO8 has a triality automorphism of order 3.

)
Electronic mail: gdixon@7stones.com

3878022-2488/2004/45(10)/3878/5/$22.00 © 2004 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.1786682


bras as
s

( lti-

( on

nts

( on

nts

on

sphere
p licity.
T
(

over the
u

(
(
(
(
(

I

o-
c ns, we
t

C e,
w

J. Math. Phys., Vol. 45, No. 10, October 2004 Division algebras: family replication 3879

                        
We also have natural actions of the special orthogonal groups on the division alge
pinor spaces.

1) The special orthogonal group SO2 acting on 21-dimensionalC can be represented by mu
plication by a single complex unit,u+ iv, whereu2+v2=1.

2) Any element of the group SO4 acting on the 22-dimensionalH requires at most 16 quaterni
doublets,su,vd, summing actions of the form

x → uLvRfxg = uxv.

This becomes somewhat obvious when we realize that SO4 is generated by the six eleme
qLi andqRi, whereqi, i =1,2,3, are thethree imaginary quaternion units, andqLi andqRi
are the maps

X → qiX, X → Xqi ,

for X in H. A general element of SO4 takes the formu+viqLi +r jqRj+sijqLiqRj s1+3+3
+9=16d, with suitable conditions placed on the coefficients.

3) Any element of the group SO8 acting on the 23-dimensionalO requires at most 64 octoni
triples, su,v ,wd, summing actions of the form

X → uLvLwLfXg = u„vswXd….

This becomes somewhat obvious when we realize that SO8 is generated by the 28 eleme
eLa andeLab, whereea, a=1, . . . ,7, are the imaginary octonion units, andeLa andeLab sand
eLabcd are the maps

X → eaX, X → easebXd, X → ea„ebsecXd…,

for X in O sno right multiplication is needed: see Ref. 2d. A general element of SO8 takes the
form u+vaeLa+rabeLab+sabceLabc s1+7+21+35=64d, with suitable conditions placed
the coefficients.

Finally, we make a key observation from p. 12 of the Conway and Sloane book on
ackings(Ref. 5), where three laminated lattices are singled out for their density and simp
hese are(1) L2=A2, which can be represented inC1; (2) L8=E8, which can be represented inH2

andO1); (3) L24 (Leech lattice), which can be represented inO3.
In each case the representations are intimately related to certain integral elements

nderlying division algebras(Refs. 4 and 5).
We will also need some notations:

i) K L ,K R—the algebras of left and right actions of an algebraK on itself;
ii ) K A—the algebra of the combined left and right actions of an algebraK on itself;
iii ) MnsK d—n3n matrices over the algebraK ;
iv) K n—and then31 column overK ;
v) CLsp,qd—the Clifford algebra of the real spacetime with signaturesp+ ,q−d.

II. THREE LEPTOQUARK FAMILES

One thing to note from the mathematical preliminaries is thatC1, H2 andO3 are each ass
iated to exceptional structures. Motivated particularly by the list of lattice representatio
herefore propose to consider as the spinor space for the Standard Model,

T6 = C1
^ H2

^ O3.

learly, if T2 accounts for one full family and its antifamily, thenT6 should account for thre

hich is the accepted number.
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First of all, letP=C ^ H; thenPL is isomorphic to the Pauli algebra, soM2sPLd is isomorphic
o the Dirac algebra, andHR, which commutes withM2sPLd (which acts onH2), provides an
nternalSUs2d degree of freedom.

One can do much the same thing2 with T . TL is a Pauli-like algebra, andM2sTLd is the Dirac
lgebra of 1,9-spacetime. Again there remains the internalHR commuting withM2sTLd, providing
n isospinSUs2d. The associated spinor spacesT2d transforms with respect to the standard s
etry as the direct sum of a leptoquark family and antifamily of 1,3-Dirac spinors.

We would like to proceed similarly withT6. However, in Ref. 2 the algebraM2sTLd, which
cts onT2, is isomorphic to a Clifford algebra[the complexification ofCLs1,9d], which is
elevant to our interpretation above. But since all Clifford algebras are 2k-dimensional, th
2213-dimensionalM6sTAd (which is the full algebra of actions associated withT6) is not a
lifford algebra.

Let us plow ahead anyway, and first look at the 215-dimensionalM4sTAd, isomorphic to th
omplexification ofCLs1,13d. This acts onT4, which is a pair of leptoquark families(and thei
ntifamilies). We let

e = F1 0

0 1
G, a = F1 0

0 − 1
G, b = F0 1

1 0
G, g = F 0 1

− 1 0
G .

e define, for example, the following 434 real matrix:

fb ^ ag = F0 a

a 0
G .

We will use theCLs1,13d 1-vector basis[let CLksp,qd be thek-vector basis ofCLsp,qd]:

fe ^ bgsiqR3d, fe ^ ggqLkeL7siqR3d, k = 1,2,3, fe ^ ggieLpsiqR3d, p = 1,…,6,

fb ^ egqR1, fb ^ egqR2, fb ^ agqR3, fg ^ ag.

he first line contains 10 elements which generate aCLs1,9d subalgebra ofCLs1,13d. This is
ssentially theCLs1,9d that appeared in Ref. 2. The second line contains 4 elements
enerate aCLs0,4d subalgebra. Under the commutator product the associated 2-vectors are

or sos4d,sus2d3sus2d. The six generators are

1

2
s1 ± fa ^ egdhfe ^ agqR1,fe ^ agqR2,fe ^ egqR3j.

he 434 real matrixfa ^ eg is the product of the last four 1-vectors above; hence it comm
ith the CLs1,9d 1-vectors, but anticommutes with theCLs0,4d 1-vectors. Therefore it can
sed to reduce the 1,13-spacetime to 1,9-spacetime. In particular, at the 1-vector level,

1

2
s1 ± fa ^ egdCL1s1,13d

1

2
s1 ± fa ^ egd = CL1s1,9d

1

2
s1 ± fa ^ egd.

t the 2-vector level,

1

2
s1 ± fa ^ egdsos1,13d

1

2
s1 ± fa ^ egd = „sos1,9d 3 sus2d…

1

2
s1 ± fa ^ egd,

ach projector12s1±fa ^ egd picking out asus2d half of sos4d, and projecting from the spin
pace,T4, a T2 subspace. Hence this reduction results in exactly the scenario developed in
xcept doubled. Projection operators,rL±= 1

2s1± ieL7d and rR±= 1
2s1± ieR7d, further reduce th
L1s1,9d to CL1s1,3d, and yielding a total Lie algebra reduction:
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sos1,13d ° sos1,9d 3 sus2d ° sos1,3d 3 us1d 3 sus2d 3 sus3d.

The associatedT2 subspace is the direct sum of a family and antifamily of leptons and qu
ransforming appropriately with respect tous1d3sus2d3sus3d.

With a Clifford algebra and spinors we can form a Dirac operator and Lagrangian. If
ere 2k families thenT2k would be the appropriate hyperspinor space, acted on by a conve
lifford algebra. But it is believed there are exactly 3 families, and we will have to get a
reative in constructing a Dirac-like Lagrangian for this case.

A Dirac operator for theCLs1,13d 2-family model developed above would be

F]”1,9 ]”0,4
+

]”0,4
− ]”1,9

G ,

uilt from the original set of 14 1-vectors.(As noted in Ref. 6, this leads to interfamily mixin
ncluding neutrinos.) For the 3-family case, one suggestion is to incorporate 3 of these 2-
irac operators into something new, motivated by the form of matrices in the exceptional
lgebra. In particular, consider a Lagrangian term like

C̄DC = fc1̄ c2̄ c3̄ g3]”1,9 ]”0,4
+ ]”0,4

−

]”0,4
− ]”1,9 ]”0,4

+

]”0,4
+ ]”0,4

− ]”1,9
43c1

c2

c3
4=c1̄]”1,9c1 + c1̄]”0,4

+ c2 + ¯ .

ach of theck,k=1,2,3, is acomplete leptoquark family plus antifamily residing in a copy ofT2.

here are three terms likec1̄]”1,9c1, from which we derive single family interactions(Refs. 2 and

), and six of the formc1̄]”0,4
+ c2, which mixes two different families—on the assumption]”0,4

+ c2

0 (see Ref. 6).
If this approach is valid there is much that needs to be done to complete the pict

articular, there is no single conventional pseudo-orthogonal space associated with the opD.
hould the three]”1,9 on the diagonal, and three]”0,4

+ off-diagonal, be distinct? How does one obt
ivectors leading to Lie group actions and internal symmetries?

There are other 333 structures that may be relevant in this context, including a kin
ermionic Clifford algebra related to supersymmetry(Ref. 3, p. 25). This has not been pursued

his point.

PPENDIX

We list for completeness the explicit generators of the special orthogonal groups real
he division algebras, as used above:

so2:i .

so8:HF0 1

1 0
G,F1 0

0 0
G,F0 0

0 1
G JhqLi,qRjj,

F 0 1

− 1 0
Gh1,qLiqRjj.

so24:530 1 0

1 0 04,30 0 1

0 0 04,30 0 0

0 0 14 6heLa,eLabj,
0 0 0 1 0 0 0 1 0
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531 0 0

0 1 0

0 0 0
4,31 0 0

0 0 0

0 0 1
4,30 0 0

0 1 0

0 0 1
4 6heLa,eLabj,

53 0 1 0

− 1 0 0

0 0 0
4,30 0 − 1

0 0 0

1 0 0
4,30 0 0

0 0 1

0 − 1 0
4 6h1,eLabcj.

1J. Baez, Bull., New Ser., Am. Math. Soc.39, 145–205(2002).
2G. M. Dixon, “Algebraic spinor reduction yields the standard symmetry and family structure,” availab
www.7stones.com/Homepage/10Dnew.pdf

3G. M. Dixon, Division Algebras: Octonions, Quaternions, Complex Numbers, and the Algebraic Design of
(Kluwer, Dordrecht, 1994).

4J. H. Conway and D. A. Smith,On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry(AK Peters
Wellesley, MA, 2003).

5J. H. Conway and N. J. A. Sloane,Sphere Packings, Lattices and Groups(Springer-Verlag, Berlin, 1993).
6G. M. Dixon, “Division algebras: Interfamily mixing(including neutrions),” available on www.7stones.com/Homepa
14mix.pdf
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We use monoidal category methods to study the noncommutative geometry of
nonassociative algebras obtained by a Drinfeld-type cochain twist. These are the
so-called quasialgebras and include the octonions as braided-commutative but non
associative coordinate rings, as well as quasialgebra versionsCqsGd of the standard
q-deformation quantum groups. We introduce the notion of ribbon algebras in the
category, which are algebras equipped with a suitable generalized automorphisms,
and obtain the required generalization of cyclic cohomology. We show that this
braided cyclic cohomologyis invariant under a cochain twist. We also extend to our
generalization the relation between cyclic cohomology and differential calculus on
the ribbon quasialgebra. The paper includes differential calculus and cyclic co-
cycles on the octonions as a finite nonassociative geometry, as well as the algebrai
noncommutative torus as an associative example. ©2004 American Institute of
Physics.[DOI: 10.1063/1.1787621]

. INTRODUCTION

In the influential work,1 Drinfeld extended quantum groups or Hopf algebras to a
eneral notion of quasi-Hopf algebras stable under conjugation of the coproduct by a “twis
ual form the cotwist elementF is a cochain and modifies the product of the coquasi-H
lgebra. In Ref. 2 this construction was formulated as a monoidal equivalence between
odule category of the coquasi-Hopf algebraH and that of the cotwisted coquasi-Hopf alge
F. The differential geometry of quantum groupsHF from this point of view and assumingF was
cocycle(so that we stay in the associative setting) was studied in Ref. 3. The more gene

oquasi-Hopf setting was used recently in Ref. 4 and applied to the standard quantum

qsGd. This work proved that there is no associative differential algebra on the standard q
roups with classical dimensions(i.e., deforming the classical case in a strict sense) but that this

s possible as a supercoquasi-Hopf algebraVsCqsGdd. This could be considered a first hint t
onassociative geometry is necessary for a full understanding even of ordinary quantum g
lso suggests that one should take seriously nonassociative coordinate algebras thems(not

ust their exterior algebras) and moreover in much greater generality than just(coquasi-)Hopf
lgebras alone.

We do this in the present paper for algebrasA in monoidal Abelian categories. The idea is t
he nicest nonassociative algebras, which we callquasialgebras, should be ones which are no
ssociative but which may be viewed as associative by deforming the tensor product to a m
ategory with nontrivial associatorFU,V,W:U ^ sV^ Wd→ sU ^ Vd ^ W for the rebracketing of ten
or products of objectsU ,V,W. This complements the established idea of using braided cate
o view certain noncommutative algebras as “commutative” with respect to a nontrivial br

V,W:V^ W→W^ V for objectsV,W, see Ref. 5. Similarly, building on work of Drinfeld1 we
ill find quasialgebra versionsCqsGd of the standard quantum groups which are nonassociativ

ore commutative(i.e., one can trade one feature for the other).

3883022-2488/2004/45(10)/3883/29/$22.00 © 2004 American Institute of Physics
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In general terms, we study several key constructions borrowed from noncomm
eometry6,7 but now in the setting of quasialgebras, i.e., of algebras in monoidal categorie
ontrivial associator. The idea is to think of the quasialgebra geometrically as by definit
oordinates of a “quasiassociative” space, which may also be noncommutative(for example
ommutative with respect to a nontrivial braiding) and hence a “quantum quasispace.” Thus
ec. III we will associate a cocyclic module(see Ref. 6) to any algebra in a braided monoi
b-category. We show that the morphism

l = ss ^ iddC

rovides for us a cyclicity morphism in this category and hence a “braided cyclic cohom
heory. HereC :A^sn+1d ^ A→A^ A^sn+1d is the braiding isomorphism ands :A→A is a “gener
lized algebra automorphism.” For reasons which will become clear, we call it aribbon auto-
ophismon the algebraA and call sA,sd a ribbon (quasi)algebra. In the associative triviall
raided cases becomes an automorphism in the usual sense and our braided cyclic coho
educes to the “twisted” cohomology in Ref. 7 which has been successfully applied to qu
roups such asCqsSL2d. We also study how braided cyclic cocycles relate to differential cal

n the monoidal category.
The other key goal of the paper concerns the provision of examples. Indeed, the need f

ind of nonassociative geometry is hinted at from several directions in mathematical p
ncluding string theory. Its need is also indicated from Poisson geometry, where the ide
eneralized Poisson bracket violating the usual Jacobi identity is proposed.8 It turns out that a
dequate class that appears to cover such examples is based on the use of Drinfeld-type
ut not for(coquasi-)Hopf algebrasH as above. Rather, we consider an algebraA in the monoida
ategory ofH-comodules. After applying the monoidal equivalence one has an algebraAF in the
ategory ofHF-comodules. Indeed, all algebras and algebraic constructions “gauge transfo
his way. TheAF construction was introduced in Ref. 9(in a module version) and for our purpose
akes the form5

AF = A, with the new producta·Fb = Fsas1d,bs1ddas2dbs2d,

hereas1d ^ as2d denotes the(left) coaction. It turns out that a great many noncommutative
ras of interest fit into this cotwist framework for suitableH andF. Indeed, switching onF is a
seful formulation of quantization as an extension of the Moyal product: Even ifA is commuta

ive, AF in general becomes noncommutative whenF is not symmetric since

a·Fb = Fsas1d,bs1ddF−1sbs2d,as2ddbs3d·Fas3d.

ore relevant for us, even ifA is associative,AF in general becomes nonassociative unleF
beys a 2-cocycle condition.5 Recent applications include Refs. 10–12 in the associative cas
ef. 13, in the nonassociative case.

Section IV contains theorems about how braided cyclic cohomology and differential ge
espond under such cotwists. Thus, suppose for the sake of discussion thatA possesses a le
ovariant differential calculus,V= %k=0

n Vk which is supercommutative, i.e., two homogene
ifferential formsv andv8 commute up to a signs−1duvuuv8u. Thus in particular functions(0-forms)
ndn-forms commute. Therefore ife :Vn→C is a closed graded trace in the sense of Connes

ts character is a cyclic cocycle.6 Now if we cotwist the superalgebra of differential forms with
ame cocycle from one side as above, we obtain a calculusVF for AF but now functions an
-forms no longer commute. The noncommutativity is controlled by

vv8 = s− 1duvuuv8uFsvs1d,vs1d8 dF−1svs2d8 ,vs2ddvs3d8 vs3d,

here the product is the cotwisted·F one. Consequently the characterwsa0, . . . ,and
0 1 n
ea da ¯da after cotwisting is no longer a cyclic cocycle but obeys
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o
i=0

n

s− 1diwsa0, . . . ,aiai+1, . . . ,an+1d

+ s− 1dn+1Fsas1d
0

¯ as1d
n ,as1d

n+1dF−1sas2d
n+1,as2d

0
¯ as2d

n dwsas3d
n+1as3d

0 ,as3d
1 , . . . ,as3d

n d = 0.

he corresponding formula in the case whereF is just a cochain not a cocycle, is much m
nvolved and contains the associator in its formula(see Sec. IV A). We obtain, rather, a braid
yclic cocycle in the “gauge equivalent” category ofHF-comodules. Section IV A also conta
ather concrete formulas when the background Hopf algebraH is coquasitriangular. Section IV
pecializes the theory to the important case where in factH is the group algebra of an Abeli
roup, which is the setting needed for many examples including the octonions.

Finally, Sec. V presents a collection of key examples demonstrating the theory in our
e explicitly give the differential calculus and a cyclic cocycle on the octonions as a

onassociative geometry, as well as the usual(algebraic) noncommutative torus. Section V C a
utlines the theory applied to formal deformation theory, where we obtain the quasialgebraCqsGd
s mentioned above, using Drinfeld’s associator obtained from solving the Kniz
amalochikov equations. We can also in principle use cotwising to deformation-quant
uasi-Poisson manifold structure on aG-manifold M proposed in Ref. 8(which was not achieve
efore), which we do as a quasialgebraCqsMd. We also construct the differential calculus a
raided cyclic cocycles on all these quasialgebras. Further details of these potential exam
e presented elsewhere.

On the technical side, we start in the preliminary Sec. II, by explicitly embedding,
anonical way, any general(relaxed) braided monoidalAb-category in a strict braided monoid
b-category. This underlies Mac Lane’s coherence theorem14 and ensures that one can work w
relaxed category like a strict one. We also recall the Drinfeld’s “gauge transformation”(in a dua

otwist sense) at the level of braided monoidalAb-categories as in Ref. 2.
We conclude the Introduction with the geometric motivation behind our theory. In

ollows we will consider “branched ribbon tangles,” a modification of the usual notion of r
angles(see Ref. 15, and the references there). We are not going to give a precise meaning
ranched ribbon tangle, but limit ourselves to an informal discussion. Thus let us defindi, 0
i øn anddn+1 to be the isotopy type of the branched ribbon tangles in the stripR23 f0,1g in

igs. 1(a) and 1(b), respectively. Here by isotopy we mean isotopy inR23 f0,1g constant in
oundary intervals on the linesz=0 andz=1 in the planex=0. Then intuitively we have th

sotopies in Fig. 1 parts(c), (d), (e), and(f). In part (d) we used the isotopy in part(g). All these
sotopies should be clear except(f) which may need more explanation; in fact ignoring vert
ands indexed from 1 ton+1 in part(f), the left-hand side of(f) is isotopic with the left-hand sid
f (h). Now considering the last diagram in(h), rotate the upper branch in this diagram by 360
ive the right-hand side of(f). Now as in Ref. 15 or 5 we define the composition of two bran
ibbon tangles by putting one on top of the other one and compressing the resulting diagra
trandR23 f0,1g. Then parts(c), (d), (e), and(f) of Fig. 1 mean

didj = dj−1di .

These relations are the main content of the notion of a simplicial object in the categor
hat one can work essentially in the category of ribbon tangles as in Ref. 15, where r
peaking, a morphism is just an isotopy type of a ribbon tangle. This would need, howeve
eometric considerations whereas we prefer to work in a purely algebraic manner. Thus in
e axiomatize the precise assumptions which will lead us to above relations in the conte
eneral braided monoidal category. In this case, for braided categories we use the usual g
alculus, which should not be confused with the above isotopy argument on actual ribbon

hich are embedded surfaces in space. We recall that any braided category is the image of the
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ategory of braids which allows for the representation of the axiomatic properties of^ ,C by
trands and their braiding in the graphical notation(see the Preliminaries). In the same way, on
an define a functor from the category of branched ribbon graphs(see Ref. 15) to our category i
ec. III such that two isotopic branched ribbon tangles have the same image under this
nd the image of branched ribbon tangles under this functor can be considered as g

FIG. 1. Branched ribbon tangles, with(a), 0ø i øn. (c), 0ø i , j −1øn. (d), 1ø j øn+1. (e), 0ø i øn.
ymbols.
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I. PRELIMINARIES: MONOIDAL CATEGORIES, COHERENCE, AND “GAUGE”
QUIVALENCE

Here we establish the basic notations and methods needed in the paper. In order to b
ork effectively with the nonassociativity, we need in particular to fix some conventio
racketing and explain related issues. Then we recall the notion of monoidal equivalence

he construction of our examples.

Next, in order to be completely explicit, we canonically extend any braided mon
b-categoryC into a strict braided monoidalAb-category. First of all, using induction onn we
efine a familyLn of sets as follows. Let forn.0, Cn be then times Cartesian product ofC with

tself. Let L1 be the single set whose element is the identity functor onC and letL2 be the singl
et whose element is the functor̂:C3C→C. Now suppose thatLk,k,n has been define
lready such that for eachaPLk there is an associated functorā :Ck→C, then we defineLn for
.2 to be the set of all pairssa ,bd, aPLk, bPLl, k,n, l ,n, k+ l =n and we associate to t

air sa ,bd the functor^sā3b̄d :Cn→C. For Ui PC, 1ø i øn and aPLn the symbolsU1 ^ ¯

^ Un;ad or U1^a¯^aUn will denote the objectāsU1, . . . ,Und.
Now let C̄ be the category whose objects are symbolsU1 ^ ¯ ^ Un, n=1,2, . . . ,Ui PC such

hat if n.1 thenUi Þ1, ∀ i. The object1 of C̄ is called the degree zero object and the ob

1 ^ ¯ ^ Un, n=1,2, . . . ,1ÞUi PC are called of degreen. To define morphisms in this catego
e recall that by Mac Lane’s coherence theorem there exists a unique family of isomor

b
a= Ib

asU1, . . . ,Umd : sU1 ^ ¯ ^ Um;ad→ sU1 ^ ¯ ^ Um;bd, a ,bPLm,1ÞUi PC, induced by th
ssociator satisfyingIb

a=id for m=1,2 and

Ig
bIb

a = Ig
a, ∀ a, b, g P Lm, s2.1d

Ia2

a1sU1, . . . ,Ukd ^ Ib2

b1sUk+1, . . . ,Umd = I sa2,b2d
sa1,b1dsU1, . . . ,Umd, a1,a2 P Lk, b1, b2 P Lm−k,

s2.2d

I s^ ,idd
sid,^dsU1,U2,U3d = FU1,U2,U3

. s2.3d

e call these isomorphisms, thehigher degree associatorsof C.
Next we define an equivalence relation among the morphisms inøaPLm,bPLn

HomCssU1
^ ¯ ^ Um;ad ,sV1 ^ ¯ ^ Vn;bdd by
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f1 , f2 ⇔ f2 = Ib2

b1sV1, . . . ,Vndf1Ia1

a2sU1, . . . ,Umd s2.4d

or f i : sU1 ^ ¯ ^ Um;aid→ sV1 ^ ¯ ^ Vn;bid, ai PLm,bi PLn, i =1,2. One caneasily show tha
he above relation is an equivalence relation and each equivalence class contains one and
epresentative in each set HomCssU1 ^ ¯ ^ Um;ad ,sV1 ^ ¯ ^ Vn;bdd. We now define HomC̄sU1

^ ¯ ^ Um,V1 ^ ¯ ^ Vnd to be the equivalence classes of all morphisms in the

aPLm,bPLn
HomCssU1 ^ ¯ ^ Um;ad ,sV1 ^ ¯ ^ Vn;bdd. We denote the equivalence classes

otationffg.
For morphismsf :U1 ^ ¯ ^ Ul →V1 ^ ¯ ^ Vm andg:V1 ^ ¯ ^ Vm→W1 ^ ¯ ^ Wn in C̄ we

efine compositiongf to be the class of morphismgg
bfb

a. Here fb
a andgg

b are the representatives
f and g in HomCssU1 ^ ¯ ^ Ul ;ad ,sV1 ^ ¯ ^ Vm;bdd and HomCssV1 ^ ¯ ^ Vm;bd ,sW1 ^ ¯

^ Wn;gdd respectively, for arbitraryaPLl ,bPLm,gPLn. One can easily show that this com
ition is well-defined and is associative, and that the classes of identity morphisms inC are identity

orphisms inC̄.

To define a monoidal structure onC̄ we define1^ 1ª1 and 1^ sU1 ^ ¯ ^ UmdªU1 ^ ¯

^ Um¬ sU1 ^ ¯ ^ Umd ^ 1 and sU1 ^ ¯ ^ Umd ^ sV1 ^ ¯ ^ VndªU1 ^ ¯ ^ Um^ V1 ^ ¯ ^ Vn

or 1ÞUi ,Vi. And for f :U1 ^ ¯ ^ Um→V1 ^ ¯ ^ Vn and f8 :U18 ^ ¯ ^ Um8
8 →V18 ^ ¯ ^ Vn8

8 we

efine f ^ f8 to be the equivalence class of the morphismfb
a

^ f8b8
a8 : sU1 ^ ¯ ^ Um^ U18 ^ ¯

^ Um8
8 ; sa ,a8dd→ sV1 ^ ¯ ^ Vn ^ V18 ^ ¯ ^ Vn8

8 ; sb ,b8dd, aPLm,a8PLm8 ,bPLn,bPLn8.
gain one can show this is well-defined by using(2.2). From naturality of the associator, it
bvious that this tensor product is associative and the unit object ofC is also unit object of thi

roduct. ThereforeC̄ is a strict monoidal category. Similarly the addition of two morphi
f ,g:U1 ^ ¯ ^ Um→V1 ^ ¯ ^ Vn is defined to be the equivalence class of the morphismfb

a+gb
a,

PLm,bPLn, and it is straightforward to show this is well-defined andC̄ is a strict monoida
b-category.

Finally, when C is braided, we define braid isomorphismsC̄U1^¯^Um,V1^¯^Vn
to be the

quivalence class of morphismCsU1^¯^Um;ad,sV1^¯^Vn;bd. It is easy to show thatC̄ equipped with
his isomorphisms becomes a strict braided monoidalAb-category.

Note that the strict braided monoidal categoryC̄ is an extension ofC as anAb-category but no
s a braided monoidal one. Nevertheless, the braided monoidal structure ofC is used in building

and allows us to replace any nonstrictC by the strictC̄ by regarding its objects and morphis

n C̄. Note thatC does not inherit an associative tensor product fromC̄ because if we regard tw

bjectsU andV in C as first degree objects ofC̄ then their tensor productU ^ V in C̄ is a secon

egree object ofC̄ and therefore it is not inC which is the set of objects of degree less than

n C̄. For example we know that an algebra in a strict monoidal category is defined to be an
equipped with a morphismm:A^ A→A such thatmsid ^ md=msm^ idd as a morphism from

^ A^ A to A. Now let C be a nonstrict monoidal category, but view it inC̄. We define similarly

n algebraA to be an object inC (a first degree object inC̄) equipped with a morphismm:A

^ A→A (a morphism from a second degree object to a first degree object inC̄) such thatmsid
^ md=msm^ idd as an equality between morphisms fromA^ A^ A (a third degree object inC̄) to

(a first degree object inC̄). If in addition there exists a morphismh :1→A such thatmsid
^ hd=msh ^ idd=id then we callsA,m,hd a unital algebra inC.

The above construction of the familyhLnjn can be done for any set equipped with a bin
ction on it. Explicitly let A be a set with a binary action . :A3A→A, then similarly, usin

nduction, for eachn we have a set ofn-fold actionsA3 ¯ 3A→A. We denote this set again
Lnjn and foraPLn andai PA, 1ø i øn we use the notationa1

·a¯ .aan for asa1, . . . ,and.
We also want to recall quite explicitly the notion of a tensor functor between braided mo

ategories. It is known2 that equivalence by such tensor functors is the correct notion of “g

ransformation” relevant to the Drinfeld cotwist. At the moment, we give the general categorical
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etting for this. Thus, letsC , ^ ,F ,Cd and sC8 , ^8 ,F8 ,C8d be two braided unital monoid
b-categories and letT:C→C8 be an additive functor such thatTs1d=18 and suppose that the
xists a natural isomorphismF between the functorŝ 8sT3Td ,T^ :C3C→C8, i.e., there exist
family of isomorphismsFU,V:TsUd^8TsVd→TsU ^ Vd in C8, ∀U ,VPC, such thatFU,1=F1,U

idTsUd and for all objectsUi ,Vi , i =1,2 andmorphismsf :U1→U2,g:V1→V2 in C we have

Tsf ^ gdFU1,V1
= FU2,V2

sTsfd^8Tsgdd. s2.5d

ow suppose that

TsFU,V,WdFU,V^WsidTsUd^8FV,Wd = FU^V,WsFU,V ^ idTsWddFTsUd,TsVd,TsWd8 s2.6d

nd

TsCU,VdFU,V = FV,UCTsUd,TsVd8 s2.7d

U ,V,WPC.
Definition 1: A tensor functor between two braided monoidal Ab-categoriessC , ^ ,F ,Cd and

C8 , ^8 ,F8 ,C8d is a pair sT,Fd as above. A “gauge transformation” between braided monoi
b-categories is an invertible tensor functor, in which case we say that the categories are
quivalent.”

Indeed, ifT is an invertible functor, we set

FU8,V8
8 ª T−1sFT−1sU8d,T−1sV8d

−1 d, ∀ U8,V8 P C8.

hensT−1,F8d is a tensor functor fromsC8 , ^8 ,F8 ,C8d to sC , ^ ,F ,Cd. To prove this letUi8, Vi8,
8, V8 andW8 be objects inC8, wherei =1,2, and letf8 :U18→U28 ,g8 :V18→V28 be morphisms inC8,

hen we setUi¬T−1sUi8d, ViªT−1sVi8d, i =1,2, fªT−1sf8d and gªT−1sg8d. Then from(2.5) we
et FU2,V2

−1 Tsf ^ gd=sf8^8g8dFU1,V1

−1 . Thus applyingT−1 to this relation we get

T−1sf8^8g8dF8U18,V18
= F8U28,V28

sT−1sf8d^8T−1sg8dd s2.8d

hich is the counterpart of(2.5) for pair sT−1,F8d. The counterpart of(2.7) for the pairsT−1,F8d
an be proved similarly. Let us prove(2.6) for sT−1,F8d. At first note that if we apply(2.8) for

f8=idU8 ,g8=FV,W
−1 then we getT−1sidU8^8FV,W

−1 dF8U8,TsV^Wd=F8U8,V8^W8
sidT−1sU8d^8T−1sFV,W

−1 dd
F8U8,V8^W8

sidT−1sU8d^8F8V8,W8
d, and similarly applying (2.8) for

f8=FU,V
−1 ,g8=idW8 we get T−1sFU,V

−1
^8idW8dF8TsU^Vd,W8

=F8U8^V8,W8
sT−1sFU,V

−1 d^8idT−1sW8dd
F8U8^V8,W8

sF8U8,V8
^8idT−1sW8d. We call these two relations auxiliary relations. Now from(2.6)

e deduceFU8,V8,W8
8 sidU8^8FV,W

−1 dFU,V^W
−1 =sFU,V

−1
^ idW8dFU^V,W

−1 TsFU,V,Wd and if we applyT−1 to
his relation and use the auxiliary relations then we get the counterpart of(2.6).

We need to check how the above notions of tensor functor and gauge equivalence exteC̄.
hus, givensT,Fd, we construct a family of isomorphismsSa=SasU1, . . . ,Umd : sTsU1d^8¯

^8TsUmd ;ad→TsU1 ^ ¯ ^ Um;ad, ∀aPLm, Ui PC, by induction on m; for m=1 we se

asUd=idTsUd and form=2 we setSasU1,U2d=FU1,U2
. Now let Sa have been defined already

PLk, k,m and letgPLm. Then by definition of the setLm there exist unique integersk, l ,m
nd uniqueaPLk, bPLl such thatk+ l =m andg=sa ,bd. Then we set

Ssa,bdsU1, . . . ,Umd ª FsU1^¯^Uk;ad,sUk+1^¯^Um;bdsSasU1, . . . ,Ukd^8SbsUk+1, . . . ,Umdd. s2.9d

ow let Ib8
a denote the corresponding higher degree associators forC8, then we claim that

Sb
−1TsIb

asU1, . . . ,UmddSa = Ib8
asU

8
1, . . . ,U

8
md, s2.10d

here Ui8=TsUid. To prove this, let us denote the left-hand side of the above relatio
a

bsU18 , . . . ,Um8 d. We check that the relations(2.1)–(2.3) hold for this family and therefore by
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niqueness of higher degree associators the claim will be proven. We have

Jg
bJb

a = Sg
−1TsIg

bdSbSb
−1TsIb

adSa = Sg
−1TsIg

bIb
adSa = Sg

−1TsIg
adSa = Jg

a

nd

Ja2

a1^8Jb2

b1 = Sa2

−1TsIa2

a1dSa1
^8Sb2

−1TsIb2

b1dSb1
= sSa2

−1
^8Sb2

−1dsTsIa2

a1d^8TsIb2

b1ddsSa1
^8Sb1

d

= Ssa2,b2d
−1 FX2,Y2

sTsIa2

a1d^8TsIb2

b1ddFX1,Y1

−1 Ssa1,b1d = Ssa2,b2d
−1 TsIa2

a1 ^ Ib2

b1dSsa1,b1d

= Ssa2,b2d
−1 TsI sa2,b2d

sa1,b1ddSsa1,b1d = Jsa2,b2d
sa1,b1d,

here for simplicity we wroteXi =sU1 ^ ¯ ^ Uk;aid, Yi =sUk+1 ^ ¯ ^ Um;bid, and we have

Js^8,idd
sid,^8dsU81,U82,U83d = Ss^8,idd

−1
TsI s^ ,idd

sid,^dsU1,U2,U3ddSsid,^8d

= sFU1,U2

−1
^ idTsU3ddFU1^U2,U3

−1 TsFU1,U2,U3
dFU1,U2^U3

sidTsU1d ^ FU2,U3
d

= F8U81,U82,U83
,

here we usedSsid,^8dsU1,U2,U3d=FU1,U2^U3
sidTsU1d ^ FU2,U3

d which comes from(2.9), and simi-
arly for Ss^8,idd.

Now let C̄ and C8̄ be the canonical extensions ofC and C8 to strict braided monoid

b-categories respectively. We define a functorT̄: C̄→C8̄ by T̄sU1 ^ ¯ ^ UmdªTsU1d^8¯

^8TsUmd and for morphismf :U1 ^ ¯ ^ Um→V1 ^ ¯ ^ Vn in C̄ we defineT̄sfd as follows: le
fb

a : sU1 ^ ¯ ^ Um;ad→ sV1 ^ ¯ ^ Vn;bd be the representative off for any aPLm, bPLn. We

efine T̄sfd be the equivalence class of the morphismSb
−1Tsfb

adSa : sTsU1d^8¯^8TsUmd ;ad
sTsV1d^8¯^8TsVnd ;bd. We must show that this definition does not depend to the choice

epresentative. Thus letfbi

ai, i =1,2 be tworepresentatives off then we have

Ib2
8b1Sb1

−1Tsfb1

a1dSa1
Ia1
8a2 = Sb2

−1TsIb2

b1dSb1
Sb1

−1Tsfb1

a1dSa1
Sa1

−1TsIa1

a2dSa2
= Sb2

−1TsIb2

b1fb1

a1Ia1

a2dSa2
= Sb2

−1Tsfb2

a2dSa2
.

hus T̄sfd is well-defined.

Next, for composable morphismsf andg in C̄ we have

T̄sgfd = fSg
−1Tsgg

bfb
adSag = fSg

−1Tsgg
bdSbSb

−1Tsfb
adSag = T̄sgdT̄sfd

nd for addable morphismsf andg in C̄ we haveT̄sf +gd=fSb
−1Tsfb

a+gb
adSag=T̄sfd+T̄sgd. Clearly

or all objectsX=U1 ^ ¯ ^ Um, Y=V1 ^ ¯ ^ Vn in C̄ we haveT̄sX^ Yd=T̄sXd^8T̄sYd and if X8

U18 ^ ¯ ^ Um8
8 , Y8=V18 ^ ¯ ^ Vn8

8 are other objects inC̄ and f :X→Y, g:X8→Y8 are morphism

n C̄ we have

T̄sf ^ gd = fSsb,b8d
−1

Tsfb
a

^ gb8
a8dSsa,a8dg = fsSb

−1
^8Sb8

−1dF
Yb,Y

b8
8

−1
Tsfb

a
^ gb8

a8dF
Xa,X

a8
8

−1 sSa^8Sa8dg

= fsSb
−1

^8Sb8
−1dsTsfb

ad^8Tsgb8
a8ddsSa^8Sa8dg

= fSb
−1Tsfb

adSa^8Sb8
−1Tsgb8

a8dSa8g = T̄sfd^8T̄sgd,

here Xa=sU1 ^ ¯ ^ Um;ad, Xa8
8 =sU18 ^ ¯ ^ Um8 ;a8d, Yb=sV1 ^ ¯ ^ Vn;bd, Yb8

8 =sV18 ^ ¯

^ Vn8 ;b8d.

Now, with the above notation forX,Y,Xa, andYb, we show that
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T̄sC̄X,Yd = C̄8
T̄sXd,T̄sYd. s2.11d

et us denoteC̄X,Y by f for brevity. Then by definition foraPLm, bPLn we have f sb,ad
sa,bd

CXa,Yb
. Thus,

T̄sC̄X,Yd = fSsb,ad
−1 Tsf sb,ad

sa,bddSsa,bdg = fsSb
−1

^8Sa
−1dFYb,Xa

−1 TsCXa,Yb
dFXa,Yb

−1 sSa^8Sbdg

= fsSb
−1

^8Sa
−1dC8TsXad,TsYbdsSa^8Sbdg

= fC8
T̄sXda,T̄sYdb

g = C̄8
T̄sXd,T̄sYd,

here by T̄sXda we mean sTsU1d^8¯^8TsUmd ;ad and by T̄sYdb we mean sTsV1d^8¯
^8TsVnd ;bd and in the fourth equality we used naturality of the braiding inC8.

Summarizing the above argument, we have
Proposition 2: Any tensor functorsT,Fd from sC , ^ ,F ,Cd to sC8 , ^8 ,F8 ,C8d induces a

anonical additive functor T̄: C̄→C8̄ obeying

i) T̄sX^ Yd=T̄sXd^8T̄sYd, for all objects X, Y in C̄;

ii ) T̄sf ^ gd=T̄sfd^8T̄sgd, for all morphisms f, g in C̄;

iii ) T̄sC̄X,Yd=C
T̄sXd,T̄sYd
8 , for all objects X, Y in C̄.

II. BRAIDED HOCHSCHILD AND CYCLIC COHOMOLOGY

Before starting this section let us agree that if in a diagram all the bands are labeled
bject A, we label the bands by integers0,1,2,3, . . . . Forexamples we use the diagram(b)

nstead of diagram(a) in Fig. 2. We letC be a braided unital monoidalAb-category.
Definition 3: A ribbon algebra inC is an algebrasA,m,hd (see the previous section) equipp

ith an isomorphisms :A→A such that

mss ^ sdC2 = sm, sh = h,

hereC=CA,A is the braiding Â A→A^ A.
If the categoryC is the category of vector spaces over a field with trivial braiding i.e., the

hen these relations mean thats is just an algebra automorphism preserving the unit. In fac
efinition 3 is a combination of the axioms of an algebra homomorphism and the axiom

elation between the braiding and the ribbon structure in a ribbon category. In particul
lgebraA in a ribbon categoryC is automatically ribbon withs=nA where n is the ribbon

somorphism. We recall that a ribbon category is a braided monoidal category equippe

FIG. 2. Notation for multiplê products.
atural isomorphismsnX for any objectX such that
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nX^Y = snX ^ nYd + CY,X + CX,Y

or all X, Y. Since the product ofA is a morphism, we conclude by functoriality thatnA+m=m
nA^A=m+ snA ^ nAd +C2 as required. There are also plenty of examples whereC does not need
e a ribbon category. For example, ifA is a braided group or Hopf algebra in a braided cate
, then its antipodeS:A→A is known5 to be braided-antimultiplicative with the result thas
S2 makesA into a ribbon algebra in the sense above.

This definition will be rather essential for us in the construction of braided Hochschil
yclic cohomology. We calls a ribbon automorphismfor the algebraA. As mentioned in th

revious section, we will work via the strict extensionC̄ of C.

We setCn=A^sn+1d, nù0 as an object ofC̄ of degreen+1 and define morphisms

di = di
snd:Cn → Cn−1, si = si

snd:Cn → Cn+1, 0 ø i ø n, l = ln:Cn → Cn s3.1d

n C̄ by diagrams(a), (b), (c), and(g) in Fig. 3, where all bands in all diagrams in Fig. 3 are lab
y objectA in C. We use a diagrammatic notation for morphisms as explained in the Prelimi

FIG. 3. Structure ofCn.
Theorem 4: On Cn we have
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sid didj = dj−1di, 0 ø i , j ø n, sii d sisj = sj+1si, 0 ø i ø j ø n,

siii d disj = 5sj−1di , i , j

id, i = j or i = j + 1

sjdi−1, i . j + 1,
6

sivd dil = − ldi−1, 1 ø i ø n, d0l = s− 1dndn,

svd sil = − lsi−1, 1 ø i ø n, s0l = s− 1dnl2sn,

svid dil
n+1 = lndi, svii d sil

n+1 = ln+2si, 0 ø i ø n.

Proof: (i) The proof by means of graphical calculus is in Fig. 3 parts(d) (for j ,n, i , j −1),
e) (for j ,n, i = j −1), (f) (for j =n, i ,n−1 ) and Fig. 4 part(a) (for j =n, i =n−1). Note that in the

third equality of Fig. 4(a) we used the identity in Fig. 4(b) and in the fifth equality we use

FIG. 4. Further diagrams in the structure ofCn.
Definition 3.
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The proofs of parts(ii )–(v) are very straightforward and we leave them to the reader.(vi) At
rst note thatl is invertible with inverse given in Fig. 5. Now from the recursive relations in
art of (iv) it is easy to compute all thedi in terms ofdn andl and then using the last part of(iv)
e computedi in terms of d0 and l as di =s−1dil−n+id0ln−i+1, 0ø i øn. In particular d0

l−nd0ln+1. Thusdi =s−1dilid0l−i, ∀i. Hence we have

dil
n+1 = s− 1dilid0ln+1−i = s− 1dililnd0l−i = s− 1dilnlid0l−i = lndi .

art (vii ) is similar to (iv). j

Following the strategy in Ref. 7, we now define

CnsC;A,sd = hw P HomC̄sA^sn+1d,1duwln+1 = wj. s3.2d

y the above Theorem 4 the morphismsdi, l andsi induce morphisms

di:C
n−1 → Cn, l:Cn → Cn, si:C

n+1 → Cn, 0 ø i ø n, s3.3d

espectively, where we use same symbols. Hence for examplediswdªwdi , wPCn−1. Then we
btain a cocyclic modulehCnjnù0 with the above linear maps as face, cyclicity and degene
aps respectively. Namely we have

On Cn−1; djdi = didj−1, 0 ø i , j ø n,

On Cn+1; sjsi = sisj+1, 0 ø i ø j ø n,

On Cn; sjdi = 5disj−1, i , j

id, i = j or i = j + 1

di−1sj , i . j + 1,
6

On Cn−1; ldi = − di−1l, 1 ø i ø n, ld0 = s− 1dndn,

On Cn+1; lsi = − si−1l, 1 ø i ø n, ls0 = s− 1dnsnl2,

On Cn; ln+1 = id.

herefore the general theory of Hochschild and cyclic cohomology6 gives us a cochain compl
C* , dd, dªoi=0

n s−1didi and we call the cohomology of this complex thebraided Hochschil
ohomologyof the ribbon algebrasA,sd in the categoryC and denote it byHH* sC ;A,sd. We also
ave a subcomplex of the above complex defined as usual by

CnsC;A,sd = hw P Hom s̄A^sn+1d,1dulswd = wj

FIG. 5. Inverse ofl on Cn.
l C
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nd we call its cohomology thebraided cyclic cohomologyof the ribbon algebrasA,sd in the
ategoryC and denote it byHC* sC ;A,sd.

Now we suppose that the ringK=Homs1,1d is a field containingQ, the rational number
hen again the general theory of Hochschild and cyclic cohomology gives the SIB-long
equence

¯ → HCn−1→
S

HCn+1→
I

HHn+1→
B

HCn → ¯,

here I is induced from the inclusion mapCl
*
�C* and B is implemented by the Conne

oundary map B :Cn+1→Cn defined by B=s−1dnNss−1+snd, where N=oi=0
n li and s−1

s−1dns0l−1 is the extra degeneracy map. Finally,S is the periodicity map which[see, for exampl
ef. 17, formula(10.15)], is given explicitly by

Sswd =
− 1

nsn + 1d o
1øiø jøn

s− 1di+jdi−1sdj−1swdd. s3.4d

Let us now extend the notion of an ordinary “differential calculus”(DC) over an ordinar
lgebra(i.e., a DC over an algebra in the category of vector spaces) to an algebraA inside a
onoidal Ab-category. Until now we have seen only the universal calculus treated in
enerality,18 using diagrammatic methods. In fact the axioms are the same as usual, namely
differential graded algebra6 including A in degree zero; but this time all objects and morphi
ust be inside the category. Thus, adifferential calculus of degree1ønø` over algebra

A,m,hd, in C is a sequence of objectsV=hViji=0
n in C together with morphismshmi,j :Vi ^ V j

Vi+jji,j=0
n , called multiplication and morphismsd=hdi :Vi →Vi+1ji=0

n , called exterior differen
ials, such thatV0=A, m0,0=m, all with the well-known axioms for an ordinary DC when view

n the categoryC̄. For instance, the diagram of the Leibniz rule is in Fig. 6(c), where by labelsi
nd j we meanVi and V j. We do need to say some words about the following axiom o
rdinary DC, where one usually requires that everyk-form is a sum ofk-forms of the form
0da1

¯dak for someai PA. We translate this axiom for a DC in a category by requiring tha
achk the morphisms

msid ^ dd:A ^ Vk−1 → Vk s3.5d

e epimorphisms. One can easily conclude by using induction onk, that the morphisms

msidA ^ d^kd:A^sk+1d → Vk

re epimorphisms ofC̄ (the converse is also true but we do not need it). We recall that a morphis
f :U→V in a category is called anepimorphismif for each pair of morphismsg,h:V→W the
qualitygf=hf implies g=h. We suppose in what follows that the tensor product of two epi
hisms inC is also an epimorphism.

Definition 5: A ribbon DC over a ribbon algebrasA,sd is a DC, V, together with a sequen
f automorphismshsi :Vi →Viji=0

n such thats0=s and

mi,jssi ^ s jdC j ,iCi,j = si+jmi,j, disi = si+1di s3.6d

or all i , j , where byCi,j we meanCVi,V j
.

This has been presented in Fig. 6(b). It means thats extends to a ribbon structure onV in a
anner compatible withd.

Definition 6: A ribbon graded trace(r.g.t.) on a degree n ribbon DC is a morphisme :Vn

1 such that if i+ j =n, then

E mi,j = s− 1di j E mj ,iss j ^ idVi
dCi,j . s3.7d
t is called closedif ed=0.
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This has been presented in Fig. 6(a). If e satisfies(3.7) at least for i =n, j =0 on a (not
ecessarily ribbon) DC on a ribbon algebra inC then we call it aweak ribbon graded trac
w.r.g.t.). Following the strategy in Ref. 7 we have

Proposition 7: On a ribbon DC, any w.r.g.t. is also a r.g.t.
Proof: We use induction onj . Let (3.7) be true forj ; we prove it forj +1. We have the identi

n Fig. 6(e) as proven in part(f). In part (f) we used part(d) which is an immediate consequen
f the Leibniz rule[represented by the diagrams in part(c)] and closedness ofe. In the fourth
quality of part(f) we used the induction hypothesis. Now we have the identity in Fig. 7(a) as
roven in part(b), wherei meansVi, j meansV j and 0 meansV0=A. Here in the third equalit
e used the equality in Fig. 6(e) and in the sixth equality we used(3.7). Now since the morphis
sid ^ dd :A^ V j →V j+1 is an epimorphism, then by our assumption, id^ smsid ^ ddd :Vi ^ A

^ V j →Vi ^ V j+1, is also an epimorphism. Thus from the equality in Fig. 7(a) we conclude that th
nduction hypothesis holds forj +1. j

Theorem 8: Let V be a (not necessarily ribbon) DC of degree0ønø` on the ribbon
¯

FIG. 6. Ribbon differential calculi and ribbon graded traces.
lgebra sA,sd in C, and e a closed w.r.g.t. onV. Define the morphism inC
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w:A^sn+1d → 1, w =E msid ^ d^nd s3.8d

the diagram ofw is in Fig. 9(c)]. Thenw is a braided cyclic cocycle, i.e., wPZl
nsC ;A,sd. Here

is the morphism Â V1
^n→Vn induced by the multiplication morphisms mi (using associativ

ty).
Proof: Let us denote the morphismmd^k by fk. Then clearly we havefk=msd^ fk−1d

msfk−1 ^ dd anddfk=0 and by definition we havew=emsid ^ fnd. Then the proof thatlswd=w is
n Fig. 8, where the left-hand side diagram is by definitionlswd=w and byfkg we meanA^k.

FIG. 7. Further diagrams in the construction of ribbon graded traces.
To prove thatw is cocycle we first note the identity in Fig. 9(a) as proven in part(b). Now
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pplyinge to both sides of this identity and using the definition ofw, we just need to prove th
he left-hand side isdnswd, which is in part(d). j

Finally, we study the behavior of braided cyclic cohomology with respect to gauge tra
ation between braided monoidalAb-categories, using the definitions from the previous sec

Theorem 9: Let sT,Fd be a tensor functor between braided monoidal Ab-categoriessC ,
^ ,F ,Cd and sC8 , ^8 ,F8 ,C8d, and letsA,m,h ,sd be a ribbon algebra inC. Then A8ªTsAd is a
ibbon algebra inC8 with product m8ªTsmd, unit h8ªTshd and ribbon structures8ªTssd.
oreover, there exists a morphism of cocyclic modules

T̄:CnsC;A,sd → CnsC8;A8,s8d.

f in addition C and C8 are gauge equivalent then the above morphism is a cocyclic m
somorphism and therefore induces an isomorphism between Hochschild and cyclic cohom
f A and A8 in C and C8, respectively.

Proof: At first supposeC, C8 are strict categories andF is trivial i.e., TsU ^ Vd=TsUd
^8TsVd andFU,V=id for all objectsU, V in C. Then from(2.5) and (2.7) we getTsf ^ gd=Tsfd
^8Tsgd for all morphismsf, g in C, and TsCU,Vd=C8TsUd,TsVd. In this case it is obvious th
A8 ,m8 ,h8 ,s8d is a ribbon algebra inC8. Now if di, si, li anddi8, si8, li8 are the face, degenera
nd cyclicity maps forA andA8, respectively, then since these maps are constructed by c
ition, addition or tensor product of the product ofA, identity, braiding or ribbon morphisms a
inceT preserves composition, addition and tensor product of morphisms, we deduce ea

i8=Tsdid, si8=Tssid, and li8=Tslid. Thus the theorem is proved in this case. Now since bra

ochschild and cyclic cohomology is defined inside the extended strict categoryC̄, the genera
onstrict case follows using Proposition 2. j

V. BRAIDED CYCLIC COHOMOLOGY OF QUASIALGEBRAS OVER
OQUASITRIANGULAR COQUASIBIALGEBRAS

In this section we use “gauge transformation” to construct nontrivial quasialgebras fol
he methods in Ref. 13, and see how the differential calculi and the braided cyclic cohom
ehave in this case. We start with the general theory before specializing to the group alge
f particular interest. Concrete examples then follow in Sec. V.

. General construction by Drinfeld cotwists

We recall Refs. 2 and 5, cf. Ref. 1;
Definition 10: A coquasitriangular coquasibialgebra is a coalgebrasH ,D ,ed equipped with

inear map . :H ^ H→H, called product, an associated unit element, a convolution inve
^3

FIG. 8. Construction of a braided cyclic cocycle.
unital 3-cocycle,” in the sense of a linear mapf :H →C satisfying
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fsbs1d,cs1d,ds1ddfsas1d,bs2d . cs2d,ds2ddfsas2d,bs3d,cs3dd = fsas1d,bs1d,cs1d . ds1ddfsas2d . bs2d,cs2d,ds2dd,

fsa,1,bd = esadesbd,

uch thatD ,e are multiplicative and

as1d . sbs1d . cs1ddfsas2d,bs2d,cs2dd = fsas1d,bs1d,cs1ddsas2d . bs2dd . cs2d,

a,b,c,dPH, and finally a convolution invertible linear mapR :H ^ H→C, satisfying

Rsa . b,cd = fscs1d,as1d,bs1ddRsas2d,cs2ddf−1sas3d,cs3d,bs2ddRsbs3d,cs4ddfsas4d,bs4d,cs5dd,

Rsa,b . cd = f−1sb ,c ,a dRsa ,c dfsb ,a ,c dRsa ,b df−1sa ,b ,c d,

FIG. 9. Further diagrams in the construction of a braided cyclic cocycle.
s1d s1d s1d s2d s2d s2d s3d s3d s4d s3d s5d s4d s4d
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bs1d . as1dRsas2d,cs2dd = Rsas1d,bs1ddas2d . bs2d.

Also we recall that the category of(left) H-comodules(abbreviated asH-Com) is a braided
onoidalAb-category with

FU,V,W:U ^ sV ^ Wd → sU ^ Vd ^ W, u ^ v ^ w ° fsus1d,vs1d,ws1ddus2d ^ vs2d ^ ws2d,

CU,V:U ^ V → V ^ U, u ^ v ° Rsvs1d,us1ddvs2d ^ us2d

U ,V,WPH-Com. An algebraA in this category is called aleft quantum quasispace(or left
-comodule quasialgebra13). This means that we have a leftH-comodule structure,A→H

^ A, a°as1d ^ as2d, a linear map . :A^ A→A, called product, which is unital, associative in
ategory and equivariant under the coaction ofH. Specifically,

. sb . cd = fsas1d,bs1d,cs1ddsas2d . bs2dd . cs2d, sa . bds1d ^ sa . bds2d = as1d . bs1d ^ as2d . bs2d, a,b P A.

inally, a ribbon structure forA in the sense of Sec. III means aH-comodule isomorphisms :A
A such that

ssa . bd = Rsbs1d,as1ddRsas2d,bs2ddssas3dd . ssbs3dd. s4.1d

Now let us describe explicitly a braided cyclic cocycle in this category. First of all b
rgument in Sec. II, forH-comodulesUi , 1ø i øn, a morphismU1 ^ ¯ ^ Un→C in the categor
f H-Com, is an equivalence class ofH-comodule intertwinersU1^a¯^aUn→C for all a
Ln. Here aH-comodule intertwinerU1^a¯^aUn→C means a linear mapf :U1 ^ ¯ ^ Un

C satisfying

fsu1
^ ¯ ^ und1 = us1d

1 .a ¯ .aus1d
n fsus2d

1
^ ¯ ^ us2d

n d, ∀ ui P Ui , s4.2d

here we have usedU1 ^ ¯ ^ Un for the usual vector space tensor product,u1 ^ ¯ ^ un meaning
n element of the vector spaceU1 ^ ¯ ^ Un and the notationu1

.a¯un as defined in Sec. I
imilarly, a morphismU1 ^ ¯ ^ Um→V1 ^ ¯ ^ Vn is an equivalence class ofH-comodule inter

winersU1^a¯^aUm→V1^b¯^bVn, aPLm,bPLn.
Now let us describe the morphismsdi :Cn=A^sn+1d→Cn−1=A^n, 0ø i øn−1 in our particula

ategory. These are represented by morphisms

A^a ¯ ^asA ^ Ad^a ¯ ^aA → A^a ¯ ^aA,

sa0
^ ¯ ^ and ° sa0

^ ¯ ^ ai . ai+1
^ ¯ ^ and, ai P A,a P Ln

hile dn by definition issmA ^ idn−1dssA ^ idndCn,1, whereCn,1ªCA^n,A and idkª idA^k. Let us

rite for simplicity X for A^a
n−1

,aPLn−1. Then the representative ofdn from sA^ Xd ^ A to A
^ X is smA ^ idXdfA,A,Xss ^ idA^XdCA^X,A which has value ona0 ^ ¯ ^ an equal to

Rsas1d
n ,as1d

0 . sas1d
1 .a ¯ .aas1d

n−1ddsmA ^ idXdfA,A,Xss ^ idA^Xdsas2d
n

^ sas2d
0

^ sas2d
1

^a ¯ ^aas2d
n−1ddd

= Rsas1d
n ,as1d

0 . sas1d
1 .a ¯ .aas1d

n−1ddsmA ^ idXdfA,A,Xsssas2d
n d ^ sas2d

0
^ sas2d

1
^a ¯ ^aas2d

n−1ddd

= Rsas1d
n ,as1d

0 . sas1d
1 .a ¯ .aas1d

n−1ddfsas2d
n ,as2d

0 ,as2d
1 .a ¯ .aas2d

n−1dsmA ^ idXdssssas3d
n d ^ as3d

0 d ^ sas3d
1

^a ¯ ^aas3d
n−1dd

= Rsas1d
n ,as1d

0 . sas1d
1 .a ¯ .aas1d

n−1ddfsas2d
n ,as2d

0 ,as2d
1 .a ¯ .aas2d

n−1dssas3d
n d . as3d

0
^ as3d

1
^ ¯ ^ as3d

n−1.

^a
n−1

^a
n−1
herefore the representative ofdn from sA^ sA dd ^ A to A^ sA d is
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dnsa0
^ ¯ ^ and = Rsas1d

n ,as1d
0 . sas1d

1 .a ¯ .aas1d
n−1ddfsas2d

n ,as2d
0 ,as2d

1 .a ¯ .aas2d
n−1dssas3d

n d . as3d
0

^ as3d
1

^ ¯ ^ as3d
n−1, s4.3d

hereaPLn−1.

We can similarly representl with the representativesA^ sA^a
n−1

dd ^ A→A^ sA^ sA^a
n−1

dd by

lsa0
^ ¯ ^ and = s− 1dnRsas1d

n ,as1d
0 . sas1d

1 .a ¯ .aas1d
n−1ddssas2d

n d ^ as2d
0

^ ¯ ^ as2d
n−1, s4.4d

hereaPLn−2.
Next a DC,VsAd= % i=0

n VisAd, onA in this category is just a leftH-covariant DC as in Ref. 1
xcept that the product of forms are associative up to the associator, namely,

v . sv8 . v9d = fsvs1d,v8s1d,v9s1ddsvs2d . v8s2dd . v9s2d, ∀ v,v8,v9 P V.

w.r.g.t. onVsAd is a left H-invariant functionalVn→C satisfying

E v . a = Rsas1d,vs1dd E ssas2dd . vs2d. s4.5d

Now we recall briefly the so-called Drinfeld cotwist and associated “gauge transform
or this discussion we will denote the product of two elementsa andb in H or A, just byab and
e keep the notationa* b or a.b, respectively, for the new products defined as follows. Thu

H ,F ,Rd as above and any convolution invertible linear mapF :H ^ H→C obeying Fsa,1d
Fs1,ad=esad , ∀aPH (a 2-cochain), we define a coquasitriangular coquasibialgebraHF as fol-

ows; HF as a coalgebra is, by definition,sH ,D ,ed itself and the product forHF is defined by1

a * bª Fsas1d,bs1ddas2dbs2dF
−1sas3d,bs3dd, s4.6d

he unital 3-cocycle forHF is defined by

fFsa,b,cd ª Fsbs1d,cs1ddFsas1d,bs2dcs2ddfsas2d,bs3d,cs3ddF−1sas3dbs4d,cs4ddF−1sas4d,bs5dd s4.7d

nd the coquasitriangular structure forHF is defined by

RFsa,bd ª Fsbs1d,as1ddRsas2d,bs2ddF−1sas3d,bs3dd s4.8d

a,bPH. This is the dual version of the Drinfeld twist(see Ref. 5). Then, as above, we have
raided monoidalAb-category, namelyHF-Com, which is nothing other thanH-Com, as a
b-category but with new monoidal and braided structures. We denote the tensor prod
ssociator and the braiding of this category by^F ,FF ,cF respectively.

If A is a quantum quasispace overH then there is a gauge transformed copy of it inHF-Com,
amely we cotwist the product ofA as13

a . bª Fsas1d,bs1ddas2dbs2d, ∀ a,b P A,

henAF is by definitionA as a leftH-comodule equipped with the above product. It is easy to
hat AF is a (left) quantum quasispace overHF, see Ref. 13.

Now let us show that ifs is a ribbon structure forA in H-Com, thens is still a ribbon
F
tructure forAF in the category of leftH -Com. Indeed,
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RFssbs1d,as1ddRFsas2d,bs2ddssas3dd . ssbs3dd

= Fsas1d,bs1ddRsbs2d,as2ddF−1sbs3d,as3ddFsbs4d,as4ddRsas5d,bs5ddF−1sas6d,bs6dd

3Fsas7d,bs7ddssas8ddssbs8dd

= Fsas1d,bs1ddRsbs2d,as2ddRsas3d,bs3ddssas4ddssbs4dd

= Fsas1d,bs1ddssas2dbs2dd

= ssa . bd

s required.
Next it is known that the cotwisted comodule algebraVsAFdªVsAdF is a DC over the algeb

F in the category ofHF-Com (see Ref. 12). We recall that differential forms inVsAFd are the
ame as differential forms inVsAd with the same coaction ofH on them and the differenti
perator,d, remaining unchanged, but the product of forms has been cotwisted to

v . v8 ª Fsvs1d,v8s1ddvs1dv8s2d.

herefore for left invariant forms this product does not change, i.e., we have

v . v8 = vv8, a . v = av, v . a = va, ∀ v P Vinv, a P A,

hereVinv denote the space of left invariant forms.
Let us show now that ife is a w.r.g.t. onVsAd then it is also a w.r.g.t. onVsAFd. Indeed,

RFsas1d,vs1dd E ssas2dd . vs2d = Fsvs1d,as1ddRsas2d,vs2ddF−1sas3d,vs3ddFsas4d,vs4dd E ssas5ddvs5d

=E Fsvs1d,as1ddvs2das2d =E v . a

s required.
Remark:Observe that even if the associator and coquasitriangular structure are trivial

auge transformation, they are typically no longer trivial after gauge transformation. EvenF is
Hopf algebra 2-cocycle,5 the associator after gauge transformation becomes trivial bu

oquasitriangular structure is not typically trivial but is cotriangular. Also note that theF needed
or gauge transformation of classical semisimple Lie groups to their quantum counterpart
opf algebra 2-cocycles but are 2-cochains, thus these observations imply that we do
onsider the class of braided cyclic cocycles during such transformations.

As for any monoidal categoryC the functor Cn→C, sU1, . . . ,Und° s¯ssU1 ^ U2d ^ U3d
^ ¯ d ^ Un is called theleft-to-right arranger. We can use this to give explicit left-to-right re
esentatives of all formulas. Finally, the categoriessH-Com,^ ,F ,Cd and sHF-Com,

^F ,FF ,cFd are gauge equivalent, which is the categorical meaning of the Drinfeld cotwis
ef. 2. We chooseT=id and FU,Vsu^ vdªFsus1d ,vs1ddus2d ^ vs2d. Here FU,V is a morphism in
F-Com since

su ^ vds1d ^ FU,Vsu ^ vds2d = us1d p vs1d ^ Fsus2d,vs2ddus3d ^ vs3d

= Fsus1d,vs1ddus2dvs2dF
−1sus3d,vs3dd ^ Fsus4d,vs4ddus5d ^ vs5d

= Fsus1d,vs1ddus2dvs2d ^ us3d ^ vs3d = sFU,Vsu ^ vdds1d ^ sFU,Vsu ^ vdds2d.

imilarly, FU,V
−1 su^ vd=F−1sus1d ,vs1ddus2d ^ vs2d is a morphism inHF-Com. Moreover,(2.5) is a

onsequence of the definition of a morphism in the category ofH-Com and(2.6) and (2.7) are
onsequences of(4.7) and (4.8). Therefore by Theorem 9 we have:
Theorem 11: There is an isomorphism of cocyclic modules
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id̄:CksH-Com;A,sd → CksHF-Com;AF,sd, w ° wF.

or instance ifwlr be the left-to-right representative ofw then the left-to-right representative ofwF,
hich we denote bywF

lr is

wF
lrsa0, . . . ,akd = Fsas1d

0 ,as1d
1 dFsas2d

0 as2d
1 ,as1d

2 dFssas3d
0 as3d

1 das2d
2 ,as1d

3 d ¯

3Fss¯ssaskd
0 askd

1 dask−1d
2 d ¯ das2d

k−1,as1d
k dwlrsask+1d

0 ,ask+1d
1 ,askd

2 . . . ,as2d
k d. s4.9d

Proof: This is Theorem 9 in our present case. In(4.9) we just used the definition ofSa (see
ec. II). j

. Braided cyclic cocycles on group algebras and G-graded quasialgebras

Let G be a group andH=CG the group algebra onG. This is a Hopf algebra with

Dg = g ^ g, «sgd = 1, Ssgd = g−1, ∀ g P G

e recall that a unital 3-cocycle forH=CG is just the linear extension of a group cocy
:G3→C−h0j in the sense of a functionf :G3→C−h0j obeying

fsg1,g2,g3dfsg0,g1g2,g3dfsg0,g1,g2d = fsg0,g1,g2g3dfsg0g1,g2,g3d, fsg0,e,g1d = 1, ∀ gi P G.

Of interest is the case whenG is Abelian. SinceH is cocommutative and associative, we
onsiderCG as a coquasibialgebra with anyf, including to start with the trivialf;1. Then in this
tandard case, since we assumeG is Abelian, a coquasitriangular structure is just a group bic
cterR :G2→C−h0j in the sense of a function obeying

Rsg0g1,g2d = Rsg0,g2dRsg1,g2d, Rsg0,g1g2d = Rsg0,g1dRsg0,g2d, ∀ gi P G.

gain to start with we can choose the trivialR;1, so thatCG is considered as a coquasitriangu
oquasibialgebra with trivial associator and trivial coquasitriangular structure.

Next a leftCG-comodule means precisely aG-graded vector spaceV with coaction ofCG on
t given by asvd= uvu ^ v, whereuvuPG denotes the degree of a homogeneous vectorvPV.5 An
lgebraA in the category ofCG-comodules is just aG-graded algebra(recall that we have chos
rivial associator forCG). Now since for every bialgebraH (that is a coquasibialgebra with triv
ssociator), A=H is anH-comodule algebra with the coproduct ofH taken as coaction ofH on A,
e can consider the algebraA=CG in the category ofCG-comodules. Since we have chosen

rivial coquasitriangular structure forH=CG, a ribbon structures :A=CG→A=CG is just a group
omomorphisms :G→G extended by linearity toCG.

Finally, let hxi :G→C−h0jji=1
n be a finite set of group characters. We extend eachxi on CG by

inearity and denote the extended map still byxi. Clearly we havexisabd=xisadxisbd ∀a, bPA,
i. It is well-known that ifL is ann-dimensional vector space with basishviji=1

n then there exis
unique left covariant FODC,G, on A=CG such that∀gPG, ∀i

vig = xisgdgvi, dg= o
i=1

n

sxisgd − 1dgvi . s4.10d

n fact these calculi are bicovariant and the space of right invariant formsGr.inv, coincides with th
pace of left invariant forms,Gl.inv=L. Thus the Woronowicz braidingC :G^AG→G^AG is just
he map,Csav^Av8d=av8^Av, ∀v ,v8PGl.inv. Hence the relations among basis 1-formsvi in
he DC, VªTsGd /kersC− idd, are vi

2=0, viv j =−v jvi, ∀i, j , whereTsGd is the tensor algeb
verG. Therefore we have a top formuªv1¯vn for the space of left invariantn-forms, i.e., the
pace of left invariantn-forms is one dimensional. Now let us definep :Vn→A andr :A→A as
ollows; sincehuj is a freeA-basis forVn, for eachvPVn andaPA there exist unique elemen
f A, psvd andrsad such thatv=psvdu andua=rsadu. One can easily verify that bothp andr

re morphisms in the category ofH-comodules, andr is an algebra automorphism and by very
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efinition we havepsavd=apsvd, psvad=psvdrsad. In our case ofA=CG by (4.10) we have

rsgd = x1sgd ¯ xnsgdg.

Next there exists a unique left and right invariant functional onCG defined by

hsgd = 0, ∀ g Þ e, hsed = 1 s4.11d

hich defines a canonical left invariant functional

E :Vn → C, E v ª hspsvdd. s4.12d

inceva=psvdua=psvdrsadu=rsadpsvdu=rsadv, we haveeva=ersadv. Thus e is a w.r.g.t
ith ribbon morphismssgd=x1sgd¯xnsgdg. Let us show that it is closed. Sincee is left covarian
e havesedg1¯dgnde=g1¯gnedg1¯dgn, ∀gi PG thus if g1¯gnÞe, thenedg1¯dgn=0, and

f g1¯gn=e then we have
Proposition 12: If for g0, . . . ,gkPG we have g0¯gk=e, then dg0¯dgk=0.
Proof: We haveg−1dg=oi=1

n sxisgd−1dvi and sdg−1dg=oi=1
n sxisg−1d−1dg−1vig=oi=1

n sxisg−1d
1dxisgdvi =−oi=1

n sxisgd−1dvi. Thus dg−1dg=sdg−1dgg−1dg=−oi=1
n sxisgd−1dsx jsgd−1dviv j =0.

hus dg−1dg=0 and dvsgd=dsg−1dgd=dg−1dg=0. Since every left invariant formvPVinv is
enerated by left invariant 1-forms, we deduce thatdv=0, ∀vPVinv. Now we show by inductio
n k that for arbitraryg1, . . . ,gkPG we havesg1¯gkd−1dg1¯dgkPVinv

k ; for k=1 it is clear, and
ince for everygPG by (4.10) we havegVinv=Vinvg we conclude by using the induction hypo
sis that sg1¯gkd−1dg1¯dgk=gk

−1ssg1¯gk−1d−1dg1¯dgk−1ddgkPVinv
k . Now since g0

sg1¯gkd−1 we see thatdg0¯dgk=dssg1¯gkd−1dg1¯dgkd=0. j

Hence the characterwsg0, . . . ,gnd=eg0dg1¯dgn is a trivially braided cyclic cocycle. Now w
alculatew explicitly. First of all, using(4.10) one has

dg1 ¯ dgn = o
i1,. . .,in=1

n

sxi1
sg1d − 1d ¯ sxin

sgnd − 1d

3xi1
sg2d ¯ xi1

sgndxi2
sg3d ¯ xi2

sgnd ¯ xin−1
sgndg1 ¯ gnvi1

¯ vin
.

ow for any permutationtPSn we havevts1d¯vtsnd=sgnstdv1¯vn. Thereforewsg0, . . . ,gnd
0, if g0¯gnÞe and if g0¯gn=e, then

wsg0, . . . ,gnd = o
tPSn

sgnstdsxts1dsg1d − 1d ¯ sxtsndsgnd − 1dxts1dsg2d ¯ xts1dsgndxts2dsg3d

¯ xts2dsgnd ¯ xtsn−1dsgnd.

sing the fact thatxi are group characters we conclude that

wsg0, . . . ,gnd = o
tPSn

sgnstdsxts1dsg1 ¯ gnd − xts1dsg2 ¯ gndd

sxts2dsg2 ¯ gnd − xts2dsg3 ¯ gndd ¯ sxtsndsgnd − 1d. s4.13d

ence we have a braided monoidalAb-category, namely the category ofG-graded vector spac
ith trivial braiding and trivial associator, and we have an algebraA in it, i.e., A=CG itself but
ith a nontrivial ribbon structures :G→G, a group homomorphism given byssgd
x1sgd¯xnsgdg. Moreover, we have a DC onA and a closed w.r.g.t. and therefore the co
ponding cyclic cocycle. This is therefore an example of the theory in Ref. 7.

Moreover, since we are working with a strict category we can suppress the subscripta in the
0 n
xpressionU1^a¯^aUn anda ·a¯ ·aa . Therefore the mapsdi andl become as usual. Let us
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escribe them in this case more explicitly. First of all a morphismw :A^sk+1d→C in this categor
s determined by a functionw :Gk+1→C such thatwsg0, . . . ,gkde=g0¯gkwsg0, . . . ,gkd, but sinceG
s a vector space basis forCG, we conclude

HomG-VecssCGd^sk+1d,Cd = hw:Gk+1 → Cuwsg0, . . . ,gkd = 0, if g0 ¯ gk Þ ej s4.14d

nd

bwdsg0, . . . ,gk+1d = o
i=0

k

s− 1diwsg0, . . . ,gigi+1, . . . ,gk+1d + s− 1dk+1xsgk+1dwsgk+1g0, . . . ,gkd, s4.15d

slwdsg0, . . . ,gkd = s− 1dkxsgkdwsgk,g0, . . . ,gk−1d, s4.16d

herex=x1¯xn. Note that sinceslk+1wdsg0, . . . ,gkd=s−1dksk+1dxsg0¯gkdwsg0, . . . ,gkd we con-
lude that

CksG − Vec;CG,x̄d = HomG−VecssCGd^sk+1d,Cd = hf:Gk+1 → Cu f sg0, . . . ,gkd = 0, if g0 . . .gk Þ ej,

herex̄sgdªx1sgd¯xnsgdg.
Now we are ready to cotwist all of the above to obtain a braided cyclic cocycle. Th

:G2→C−h0j be a function such thatFsg,ed=Fse,gd=1, ∀gPG and H=CG as above. The
after cotwisting,HF has the same product asH, because

g1 . g2 = Fsg1,g2dg1g2Fsg1,g2d−1 = g1g2, ∀ g P G.

ut we have nontrivial 3-cocycle

fFsg1,g2,g3d = Fsg2,g3dFsg1,g2g3dFsg1,g2d−1Fsg1g2,g3d−1 s4.17d

nd nontrivial cotriangular structure

RFsg1,g2d = Fsg2,g1dFsg1,g2d−1. s4.18d

Therefore we have a cotriangular coquasibialgebra which we denote byCFG and an algebra
he category ofCFG-comodules is called aG-graded quasialgebra13 i.e., aG-graded algebraA

%gPGAg such that

asbcd = fFsuau,ubu,ucudsabdc s4.19d

n homogeneous elements. Recall that we choseA=CG as an algebra in the category ofG-graded
ector spaces which cotwists to aG-graded quasialgebraAF=CFG with the product

g1 . g2 = Fsg1,g2dg1g2. s4.20d

e also have

E v . g = Fsg,vs1ddFsvs1d,gd−1x1sgd ¯ xnsgd E g . vs2d, s4.21d

hile the isomorphism of Theorem 12 becomes

wFsg0, . . . ,gkd = Fsg0,g1dFsg0g1,g2d ¯ Fsg0 ¯ gk−1,gkdwsg0, . . . ,gkd. s4.22d

. EXAMPLES

In this section we collect examples that demonstrate key aspects of the theory above. T
ll constructed using cotwisting on coquasitriangular Hopf algebras in Sec. IV. The first t

ased on Abelian groups as in Sec. IV B.
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. Octonions

Let G=Z23Z23Z2. ThusCG is an associative algebra with generatorsh1,u,v .wj and rela
ions

u2 = 1, v2 = 1, w2 = 1, uv = vu, uw= wu, vw = wv.

or simplicity we will use the notationi =ui1vi2wi3 and i + j =ui1+j1vi2+j2wi3+j3 as well. In fact this
otation is statement of the groupZ2

3 as an additive group. EachZ2 has a unique nonzero diffe
ntial calculus(the universal one) and it is natural to equipG with the “direct product” of thre
opies of this. To do this, we choose three characters

x1suiv jwkd = s− 1di, x2suiv jwkd = s− 1d j, x3suiv jwkd = s− 1dk, i, j ,k = 0,1.

hen by(4.10) we have

v1u = − uv1, v2u = uv2, v3u = uv3,

v1v = vv1, v2v = − vv2, v3v = vv3,

v1w = wv1, v2w = wv2, v3w = − wv3,

nd again by(4.10) we have

du= − 2uv1, dv = − 2vv2, dw= − 2wv3,

nd

sdudu = − udu, sdvdu = udv, sdwdu = udw,

sdudv = vdu, sdvdv = − vdv, sdwdv = vdw,

sdudw = wdu, sdvdw = wdv, sdwdw = − wdw,

nd therefore

sdud2 = sdvd2 = sdwd2 = 0,

dudv = − dvdu, dudw= − dwdu, dvdw= − dwdv.

ow using the Leibniz rule and the above relations we havedsuvd=−2uvsv1+v2d, dsuwd=
2uwsv1+v3d, and dsvwd=−2vwsv2+v3d and thus we havedsuvwd=sdudvw+usdvwd=
2uvwsv1+v2+v3d. Therefore, generally, we have

dsui1vi2wi3d = − 2ui1vi2wi3si1v1 + i2v2 + i3v3d, ik = 0,1, k = 1,2,3

r in additive notation

di = − 2isi1v1 + i2v2 + i3v3d.

sing this formula and the above commutation relations we obtain

psidjdkdld = − 8si + j + k + ldfs− 1dl2+l3l1ss− 1dk2j2k3 − s− 1dk3j3k2d

+ s− 1dl1+l3l2ss− 1dk3j3k1 − s− 1dk1j1k3d + s− 1dl1+l2l3ss− 1dk1j1k2 − s− 1dk2j2k1dg.
hus we calculate the character of the trivially braided ribbon graded trace defined by(4.12) as
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wsi,j ,k,ld = − 8fs− 1dl2+l3l1ss− 1dk2j2k3 − s− 1dk3j3k2d + s− 1dl1+l3l2ss− 1dk3j3k1 − s− 1dk1j1k3d

+ s− 1dl1+l2l3ss− 1dk1j1k2 − s− 1dk2j2k1dg s5.1d

f i + j +k + l =0, and zero otherwise. One can compute this from the general formula(4.13) as well.
Now we study cotwisting ofG=Z2

3 to the octonions. The complex numbers, the quatern
he octonions and the higher Cayley algebras can be constructed by the Cayley–Dixon pro
he other hand it has been shown in Ref. 13 that these algebras areG-graded quasialgebras of t
orm CFG for G a power ofZ2 and for a suitableF.

For octonions we take13 G=Z2
3 and

Fsi,j d = s− 1di1s j1+j2+j3d+i2s j2+j3d+i3j3+j1i2i3+i1j2i3+i1i2j3 s5.2d

hich has coboundary

fFsi,j ,kd = s− 1duijk u, s5.3d

hereui j k u is a short notation for determinant of the matrix whose columns are the vectoi, j ,
ndk, respectively.

We denote the cotwisted product byx.y=Fsx,ydxy, ∀x,yPCG. Then we have the followin
elations:

u . u = − 1, v . v = − 1, w . w = − 1, u . v = − v . u, u . w = − w . u,

v . w = − w . v, u . sv . wd = − su . vd . w

nd the relations between 0-forms and left invariant forms remain unchanged after twist
bove DC onG=Z23Z23Z2. But we have

du . u = − u . du, dv . u = − u . dv, dw . u = − u . dw,

du . v = − v . du, dv . v = − v . dv, dwv = − v . dw,

du . w = − w . du, dv . w = − w . dv, dw . w = − w . dw,

nd

du . du= dv . dv = dw . dw= 0,

du . dv = dv . du, du . dw= dw . du, dv . dw= dw . dv.

his is our natural differential calculus or “exterior algebra” for the octonions as obtain
otwisting. Like the octonions themselves, it is a nonassociative quasialgebra. We see that
unction algebra generators and their differentials uniformly anticommute, while the latter
lly commute.

From the above, we havedsu.vd=du.v+u.dv=−2u.v1.v−2u.v .v2=−2u.v .sv1+v2d
nd similarly we have dsu.wd=−2u.w.sv1+v3d and dsv .wd=−2v .w.sv2+v3d
nd dssu.vd .wd=dsu.vd .w+su.vd .dw=−2su.v .sv1+v2dd .w−2su.vd .w.v3=−2su.vd .w.sv1

v2d−2su.vd .w.v3=−2su.vd .w.sv1+v2+v3d. Therefore, generally, we have

dssui . v jd . wkd = − 2sui . v jd . wksiv1 + jv2 + kv3d, i, j ,k = 0,1.

sing formula(4.22) we can then calculate

wFsi,j ,k,ld = Fsi,j dFsi + j ,kdFsi + j + k,ldwsi,j ,k,ld
s the left-to-right representative of the character.
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Let us remark that the octonions presented in the above way can be viewed as a “n
iative quantization” ofZ23Z23Z2 as follows. Indeed, it is well-known that the Weyl algebra
anonical quantization in quantum mechanics can be formally presented as a “Moyal p
odifying the original algebraA=C`sRnd to a new algebraAF with product

a . b = e"Si,jBij]i ^] jsa ^ bd,

here" is a deformation parameter andB an antisymmetric tensor. The product in the originaA
s understood on the right. TheF for the octonions similarly has a quadratic term in its expon
otwisting by this gives the Clifford algebra onR3 so this is like a “free field” quantization

23Z23Z2. The further cubic term in theF for the octonions is a bit like a “Chern–Simmon
nteraction term and it is this which makefF=]F nontrivial. If we accept this analogy then
ave the following proposal for physics: one might try to build cubic and higher interactio
uantum mechanics or quantum field theory by means ofnonassociative quantizationof the form

a . b = e"L0+"Vsa ^ bd,

here L0 is a bidifferential operator(as above) corresponding to a free particle andV is an
dditional term of joint degree three or higher to encode interactions. Another possibility is

or F simply a phase factore"S0sa,bd+"Vsa,bd, whereS0 is the bilinear functional in the free fie
ction andV is cubic or higher. The general idea, to be pursued elsewhere, is be to buil

nteraction terms into the algebra where their effect is a mild quasiassociativity; the system
till be equivalent to the the free case in the sense of being strictly related by cotwisting, a
he theory to be solved as easily as the free case.

. Noncommutative algebraic torus

Let G=Z3Z. ThusCG is an associative algebra with free invertible commuting gener
,v. The standard calculus on algebraCG, i.e., the two-dimensional bicovariant DC can be wri
ith basishv1,v2j for left invariant 1-forms and relations

vka = avk, dsuiv jd = uiv jsiv1 + jv2d, vk
2 = 0, v1v2 = − v2v1,

aPCG, ∀i, j PZ. This is obtained from characters as in the finite group case via a lim
rocedure.12

Then we havepsui1vi2dsuj1v j2ddsuk1vk2ddd=s j1k2− j2k1dui1+j1+k1vi2+j2+k2 and hence

wsui1vi2,uj1v j2,uk1vk2d = j1k2 − j2k1 s5.4d

f i1+ j1+k1= i2+ j2+k2=0, and zero otherwise.
Next, as in Ref. 12 we chose the cocycleFsui1vi2,uj1v j2d=eıui2j1 to gauge transform th

ategory ofZ3Z-graded vector spaces. Then the algebraCFG after cotwisting of the product h
he relationsv .u=eıuu.v, which we callalgebraic noncommutative torus. This observation itself
ell-known already for the full noncommutative torusC*-algebra in a more explicit(noncategori
al) context.20 From our point of view the algebra is associative since aboveF is a cocycle, but
till gives a nontrivial example of the theory of Sec. IV.

Now using(4.22) we compute the character of the above DC after gauge transformati

wFsui1vi2,uj1v j2,uk1vk2d = Fsui1vi2,uj1v j2dFsui1vi2uj1v j2,uk1vk2dwsui1vi2,uj1v j2,uk1vk2d

= eıusi2j1+si2+j2dk1ds j1k2 − j2k1d. s5.5d

ince, by the very definition ofF, we haveu.iv.j =uiv j, ∀i , j PZ, we conclude that

wFsu.i1v.i2,u.j1v.j2,u.k1v.k2d = eıusi2j1+si2+j2dk1ds j1k2 − j2k1d. s5.6d
.j .i ıui j i j
e remark that we havev u =e u v , ∀i , j PZ. Note thats is trivial in this example.
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. Quantum quasimanifolds covariant under quantum groups Cq„G…

Here we take the initial Hopf algebra to beH=CsGd, the algebraic version of a classical
roup of complex simple Lie algebrag. More precisely, we need to work in a deformati

heoretic setting whereH=CsGdff"gg is extended over this ringCff"gg of formal power series in
eformation parameter", rather than working overC itself. With this proviso, we are able to u
he theory in Sec. IV A withF a cochain with values inCff"gg. By essentially dualizing the theo
n Ref. 1, one knows that there exists anF such that

CqsGd > sCsGdff"ggdF,

.e., such that after cotwisting one obtains the(formal power-series version of the) standard
uantum groupCqsGd. Hereq=e"/2. Note that although the requiredF is not a cocycle so that th
otwist on the right-hand side here is in theory a coquasi-Hopf algebra, its coboundaryfKZ =]F
which is obtained by solving the Knizhnik–Zamolochikov(KZ) equations] happens to be centr
n the sense

abc= fKZsas1d,bs1d,cs1ddas2dbs2dcs2dfKZ
−1 sas3d,bs3d,cs3dd

o that the coquasi-Hopf algebra on the right-hand side happens to remain associative as

qsGd on the left-hand side(since it is a usual Hopf algebra). This point of view has bee
xpounded recently in Ref. 4. Let us note only that it is not exactly the one of Drinfeld even
ualization. For that one should start withCsGdff"gg as a nontrivial coquasi-Hopf algebra with
ontrivial initial coquasitriangular structureR0 built from the Killing form and a certainf0 as the

nitial associator, which is the object actually obtained by Drinfeld by solving the KZ-equa
eref0 is closely related tofKZ above as its “inverse” in the sense that cotwisting it byF gives
(the trivial associator). In this way, Drinfeld’s theory in the cotwist form would cotwist a cer

oquasi-Hopf algebrasCsGdff"gg ,R0,f0d into the ordinary Hopf algebraCqsGd with its usua
uasitriangular structure and trivial associator. By contrast in Ref. 4 one starts withCsGdff"gg as
ompletely classical with trivial coquasitriangular structure and trivial associator, and obtain
otwisting sCqsGd ,RF ,fKZd as a cotriangular coquasi-Hopf algebra. Like in our examples b
n Abelian groups, this happens to be an ordinary Hopf algebra in its algebra and coalgeb

F is given by(4.8) andfKZ by (4.7). This cotriangular coquasi-Hopf algebrasCqsGd ,RF ,fKZd is
he object under which our examples of quantum quasispaces below are covariant. As an
nd coalgebra it coincides with the usual quantum groupCqsGd.

Thus, in Ref. 4 thissCqsGd ,RF ,fKZd construction was used to obtain a quantum differe
alculus onCqsGd as a supercoquasi-Hopf algebraVsCsGddF. We extend this setting now to a
anifold M on which the classical Lie groupG acts. More precisely, we assume that there
lgebraic versionsCsMd for the coordinate algebra and for a coactionCsMd→CsGd ^ CsMd. Thus
sMd is given as an algebra in our initial category ofCsGd-comodules. Moreover, we extend

his data to the formal power series setting(we adjoin").
Theorem 13: Let M be a classical G-manifold in the sense above. Then there is a qua

ebra CqsMd=sCsMdff"ggdF in the category ofCqsGd-comodules, whereCqsGd is the standar
uantum group associated to G viewed as a cotriangular coquasi-Hopf algebra. Moreover, CqsMd
as a quasiassociative differential calculusVsCsMddF.

Proof: We apply the theory of Sec. IV A withH=CsGdff"gg, F the cochain above andA
CsMdff"gg. j

Similarly, any classical data onM such as a cyclic cocycle twists to a braided cyclic on
he symmetric but nontrivially monoidal category ofCqsGd-comodules.

Let us note also that when all of our data are obtained from exponentiating infinitesima

e can look at the structure ofCqsMd to lowest order. Then one finds
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hha,bj,cj + hhb,cj,aj + hhc,aj,bj = 2ñsa ^ b ^ cd,

heren~ fr+12,r+23gPg^ g^ g is the leading order part offKZ as explained in Ref. 4. Herer+ is
he symmetric part of the standard classicalr-matrix of g and is a multiple of the Killing form. I
his case the left-invariant trivector fieldñ given by the action ofn is some multiple of th
anonical “Cartan tensor” that exists for any manifoldM acted upon by a semisimple Lie algeb
e see thatCqsMd is not the quantization of a usual Poisson manifold but of a “quasi-Poi
anifold. Such a weaker concept was proposed recently in Ref. 8 and we see that we have

n quantizing it using cotwisting. We see, moreover, that the quantum quasispaceCqsMd remains
ovariant but under the quantum groupCqsGd (viewed as a cotriangular coquasi Hopf algebra). Let
s note, however, one technical difference from Ref. 8; our quasi-Poisson manifold is ass
ith an action ofG not to a Poisson action ofG (these are not quite the same thing).

Finally, we can apply all of this theory toM =G, i.e., toA=CsGdff"gg, whereG acts on itsel
y translation, i.e.,A=H and the coaction is via the coproduct. This is the same idea as f
xamples with finite groups, but now withG a Lie group of a simple Lie algebra.

Corollary 14: The standard quantum groupsCqsGd have quasialgebra versionsCqsGd as
lgebras in the category ofCqsGd-comodules as a symmetric monoidal category.

Proof: Here CqsGd=sCsGdff"ggdF, where we use the one-sided cotwist, in contrast to
rinfeld cotwist which givessCqsGd ,RF ,fKZd as explained above. The former lives in the
gory of comodules of the latter. j

If one wants to be concrete, lethti jj be the matrix of generators of the classical Lie groupG.
hese generate the classicalCsGd with the usual “matrix” coproduct. If we knowF then we know

n particular the tensors

Fi
k
j
l = Fstik,t

j
ld, sD2Fdi

l
j
m

k
n = Fstil,t

j
mtknd, sD1Fdi

l
j
m

k
n = Fstilt

j
m,tknd,

nd so forth, where the product is in the classicalCsGdff"gg. Next, we denote the generators

qsGd by hxi
jj say. They are the same as theti j but with a new product which then enjoys

eformed relations

x1x2 = FF21
−1x2x1.

e use here the standard notation in quantum group theory, where the numerical indices
he position in a tensor product. These relations have to be combined with the nonasso
elations

x1sx2x3d = F23sD2FdsD1Fd−1F12
−1sx1x2dx3.

he commutation relations reflect that the quasispace is braided-commutative with respe
otriangular structureRF, while the nonassociativity relations reflect the associatorfKZ obtained
rom F.

We also have a calculus, cocycle etc. onCqsGd, with VsCqsGdd=VsCsGdff"ggdF. Choosing a
atrix of invariant classical differential forms as generators of the classical calculus, o

imilar “F-matrix” formulas for the relations in the deformed calculus onCqsGd, and so forth
urther details will be given elsewhere.
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uasi-Hopf algebras and representations of octonions
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Modules over a quasialgebra(here, by quasialgebra we mean a leftH-module
algebra, whereH is a quasi-Hopf algebra), as defined by Albuquerque and Majid,
coincide with modules over a certain associative algebra, a quasi-Hopf smash prod-
uct. As a consequence of this, we get that the category of modules over the octo-
nions is isomorphic to the category of modules over the algebra of 838 real
matrices. We provide a new approach to the endomorphism quasialgebra associate
to a left H-module, which in the finite dimensional case yields the same results as
the one of Albuquerque and Majid. We discuss possible definitions as endomor-
phism quasialgebras for Heisenberg doubles of a finite dimensional quasi-Hopf
algebra. ©2004 American Institute of Physics.[DOI: 10.1063/1.1789280]

. INTRODUCTION

The starting point of this paper was the following question we asked ourselves: What c
module over the octonions? The usual approach to octonions(we refer to Ref. 2 for a rece

urvey of the existing theory for the octonions) does not provide an answer. However, it turned
hat such an answer is possible using the recent Hopf-algebraic approach to octonions pro
lbuquerque and Majid in Ref. 1. Namely, they first introduced the concept of a “quasialg
s being an algebra in a tensor category(in this paper we restrict the term to algebras in the te
ategory of modules over a quasi-Hopf algebra) and then proved that the(nonassociative) algebra
f octonions is such a quasialgebra; they defined also a module over a quasialgebraA as being a
-module in the same tensor category whereA lives as an algebra and hence a suitable defin
f modules over the octonions may be derived from this.

If H is a quasi-Hopf algebra andM is a finite dimensionalleft H-module, Albuquerque an
ajid constructed the so-called “endomorphism quasialgebra” ofM—which is built on the vecto

pace EndsMd and will be denoted below by endsMd—using “tensor-categorical” techniques, t
s by introducing first a quasialgebra structure onM ^ M* and then transfering it to EndsMd via
he linear isomorphism EndsMd.M ^ M*. Also, if A is an algebra in the category of l
-modules, they proved that setting a structure of anA-module onM is equivalent to giving
uasialgebra mapA→endsMd.

There is an obvious analogy with what happens for other classes of algebras(associative o
ie), where setting a module structure on a vector space is equivalent to giving an algeb

rom the algebra to a certain “endomorphism algebra” constructed out of the vector space
hose cases one can construct the “endomorphism algebra” of any object(not necessarily finit
imensional), so it is natural to see whether this is possible also for the class of quasialge

)Electronic mail: florin.panaite@imar.ro
)
Electronic mail: francine.schoeters@ua.ac.be
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In order to explain our contribution to this subject, let us first recall some results from R
irst, if H is a quasi-Hopf algebra,B an associative algebra andv :H→B an algebra map, then
one can introduce a structure of an algebra in the tensor category of leftH-modules(a left

-module algebra structure, in the terminology of Ref. 6), denoted byBv. Second, ifA is a left
-module algebra, an associative algebra, denoted byA#H and called the smash product,
een introduced in Ref. 6 and the leftA#H-modules were described. These turned out to coin
ith the A-modules in the category of leftH-modules(called leftA, H-modules in Ref. 6).

The first aim of this paper is to point out that the modules over a quasialgebra, as defi
lbuquerque and Majid, coincide with modules over an associative algebra, namely, a qua
mash product. As a consequence, we obtain that the category of modules over a twiste
uasialgebrakGF is isomorphic to the category of modules over the algebra ofuGu by uGu matrices
verk (whereuGu is the order of the groupG), and in particular that the category of modules o
he octonions is isomorphic to the category of modules over the algebra of 838 real matrices.

The second aim is to provide a different approach to the endomorphism quasialgebra
ted to an object, which works also in theinfinite dimensional case. Namely, ifH is a quasi-Hop
lgebra,A a left H-module algebra andM a left H-module, we have the algebra mapv :H
EndsMd, vshdsmd=h·m, so we can consider the leftH-module algebra EndsMdv (this will be the

ndomorphism quasialgebra associated toM); then we prove that setting a structure of a lefA,
-module onM is equivalent to giving a morphism of leftH-module algebrasw :A→EndsMdv

the proof relies on the use of the smash productA#H). Also, we prove that ifM is a finite
imensional leftH-module, then EndsMdv coincides with endsMd defined in Ref. 1 as le
-module algebras, and that ifM is moreover a leftA, H-module, then the mapw coincides with

he similar mapA→endsMd defined by Albuquerque and Majid.
As an immediate consequence of the identification EndsMdv;endsMd and of results in Ref. 4

e obtain that ifM is a finite dimensional Yetter–DrinfeldH-module, then EndsMdv is a Yetter–
rinfeld H-module algebra.

The analogy with the classes of associative or Lie algebras mentioned before can be
orward. Namely, the concepts of abimoduleover an associative or Lie algebra are a manifest
f a single concept, that of a bimodule over an algebra with respect to a class of algebras(see Ref
8). We prove that ifH is a quasi-bialgebra andA is a leftH-module algebra, then anA-bimodule
ith respect to the class of leftH-module algebras, in the sense of Ref. 18, is the same
-bimodule in the tensor category of leftH-modules.

In the final section we discuss possible definitions as endomorphism quasialgebras for
erg doubles of a finite dimensional quasi-Hopf algebra.

I. PRELIMINARIES

We work over a commutative fieldk. All algebras, linear spaces, etc., will be overk; un-
dorned̂ meanŝ k. Following Drinfeld,9 a quasi-bialgebra is a fourtuplesH ,D ,« ,Fd, whereH

s an associative algebra with unit,F is an invertible element inH ^ H ^ H, andD :H→H ^ H and
:H→k are algebra homomorphisms satisfying the identities

sid ^ DdsDshdd = FsD ^ iddsDshddF−1, s2.1d

sid ^ «dsDshdd = h ^ 1, s« ^ iddsDshdd = 1 ^ h, s2.2d

or all hPH, andF has to be a normalized 3-cocycle, in the sense that
s1 ^ Fdsid ^ D ^ iddsFdsF ^ 1d = sid ^ id ^ DdsFdsD ^ id ^ iddsFd, s2.3d
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sid ^ « ^ iddsFd = 1 ^ 1 ^ 1. s2.4d

he mapD is called the coproduct or the comultiplication,« the counit andF the reassociator. A
or Hopf algebras19 we denoteDshd=oh1 ^ h2, but sinceD is only quasi-coassociative we ad
he further convention

sD ^ iddsDshdd = o hs1,1d ^ hs1,2d ^ h2, sid ^ DdsDshdd = o h1 ^ hs2,1d ^ hs2,2d,

or all hPH. We will denote the tensor components ofF by capital letters, and those ofF−1 by
mall letters, namely,

F = o X1
^ X2

^ X3 = o T1
^ T2

^ T3 = o V1
^ V2

^ V3 = ¯ ,

F−1 = o x1
^ x2

^ x3 = o t1 ^ t2 ^ t3 = o v1
^ v2

^ v3 = ¯ .

he quasi-bialgebraH is called a quasi-Hopf algebra if there exists an antiautomorphismS of the
lgebraH and elementsa ,bPH such that, for allhPH, we have

o Ssh1dah2 = «shda and o h1bSsh2d = «shdb, s2.5d

o X1bSsX2daX3 = 1 and o Ssx1dax2bSsx3d = 1. s2.6d

or a quasi-Hopf algebra the antipode is determined uniquely up to a transformationa°Ua,
°bU−1, Sshd°USshdU−1, where UPH is invertible. The axioms for a quasi-Hopf alge

mply that «sad«sbd=1, so, by rescalinga andb, we may assume without loss of generality
sad=«sbd=1 and« +S=«. The identities(2.2)–(2.4) also imply that

s« ^ id ^ iddsFd = sid ^ id ^ «dsFd = 1 ^ 1 ^ 1. s2.7d

ogether with a quasi-bialgebra or a quasi-Hopf algebraH=sH ,D ,« ,F ,S,a ,bd we also haveHop,
cop andHop,copas quasi-bialgebras(respectively, quasi-Hopf algebras), where “op” means oppo
ite multiplication and “cop” means opposite comultiplication. The structures are obtain
etting Fop=F−1, Fcop=sF−1d321, Fop,cop=F321, Sop=Scop=sSop,copd−1=S−1, aop=S−1sbd, bop

S−1sad, acop=S−1sad, bcop=S−1sbd, aop,cop=b, andbop,cop=a.
Next we recall that the definition of a quasi-bialgebra or quasi-Hopf algebra is “twist c

nt” in the following sense. An invertible elementFPH ^ H is called agauge transformationor
wist if s« ^ iddsFd=sid ^ «dsFd=1. If H is a quasi-bialgebra or a quasi-Hopf algebra anF
oF1 ^ F2PH ^ H is a gauge transformation with inverseF−1=oG1 ^ G2, then we can define
ew quasi-bialgebra(respectively, quasi-Hopf algebra) HF by keeping the multiplication, un
ounit (and antipode in the case of a quasi-Hopf algebra) of H and replacing the comultiplicatio
eassociator and the elementsa andb by

DFshd = FDshdF−1, s2.8d

FF = s1 ^ Fdsid ^ DdsFdFsD ^ iddsF−1dsF−1
^ 1d, s2.9d

aF = o SsG1daG2, bF = o F1bSsF2d. s2.10d

t is well known that the antipode of a Hopf algebra is an anti-coalgebra morphism.
uasi-Hopf algebra, we have the following statement: there exists a gauge transformatiof PH
^ H such that
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fDsSshddf−1 = o sS^ SdsDcopshdd for all h P H. s2.11d

he elementf can be computed explicitly. First set

o A1
^ A2

^ A3
^ A4 = sF ^ 1dsD ^ id ^ iddsF−1d, s2.12d

o B1
^ B2

^ B3
^ B4 = sD ^ id ^ iddsFdsF−1

^ 1d, s2.13d

nd then defineg ,dPH ^ H by

g = o SsA2daA3
^ SsA1daA4 andd = o B1bSsB4d ^ B2bSsB3d. s2.14d

hen f and f−1 are given by the formulas

f = o sS^ SdsDcopsx1ddgDsx2bSsx3dd, s2.15d

f−1 = o DsSsx1dax2ddsS^ SdsDcopsx3dd. s2.16d

f H is a quasi-Hopf algebra, following Refs. 10 and 11 we may define the elements

pR = o p1
^ p2 = o x1

^ x2bSsx3d, qR = o q1
^ q2 = o X1

^ S−1saX3dX2, s2.17d

pL = o p̃1
^ p̃2 = o X2S−1sX1bd ^ X3, qL = o q̃1

^ q̃2 = o Ssx1dax2
^ x3 s2.18d

atisfying the relations(for all hPH):

o q1
1p1

^ q2
1p2Ssq2d = 1 ^ 1, o q1p1

1
^ S−1sp2dq2p2

1 = 1 ^ 1, s2.19d

o Ssp̃1dq̃1p̃1
2

^ q̃2p̃2
2 = 1 ^ 1, o q̃1

2p̃1S−1sq̃1d ^ q̃2
2p̃2 = 1 ^ 1, s2.20d

o Dsh1dpRf1 ^ Ssh2dg = pRfh ^ 1g, o f1 ^ S−1sh2dgqRDsh1d = fh ^ 1gqR, s2.21d

o Dsh2dpLfS−1sh1d ^ 1g = pLf1 ^ hg, o fSsh1d ^ 1gqLDsh2d = f1 ^ hgqL. s2.22d

uppose thatsH ,D ,« ,Fd is a quasi-bialgebra. IfU, V, W are left(right) H-modules, defineaU,V,W,

U,V,W: sU ^ Vd ^ W→U ^ sV^ Wd by

aU,V,Wssu ^ vd ^ wd = F · su ^ sv ^ wdd,

aU,V,Wssu ^ vd ^ wd = su ^ sv ^ wdd · F−1.

he categoryHM sMHd of left (right) H-modules becomes a monoidal category(see Refs. 12 an
4 for the terminology) with tensor product^ given via D, associativity constraintsaU,V,W

aU,V,Wd, unit k as a trivialH-module and the usual left and right unit constraints.
Now, let H be a quasi-bialgebra. We say that ak-vector spaceA is a leftH-module algebra

t is an algebra in the monoidal categoryHM, that isA has a multiplication and a usual unitA
atisfying the following conditions:

saa8da9 = sX1 ·adfsX2 ·a8dsX3 ·a9dg, s2.23d
o
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h · saa8d = o sh1 ·adsh2 ·a8d, s2.24d

h · 1A = «shd1A, s2.25d

or all a, a8, a9PA andhPH, whereh^ a→h·a is the leftH-module structure ofA. Following
ef. 6 we define the smash productA#H as follows: as vector spaceA#H is A^ H (elementsa

^ h will be written a#h) with multiplication given by

sa # hdsa8 # h8d = o sx1 ·adsx2h1 ·a8d # x3h2h8, s2.26d

or all a, a8PA, h, h8PH. ThenA#H is an associative algebra with unit 1A#1.
If A8 is another leftH-module algebra, a mapf :A→A8 is a morphism of leftH-module

lgebras if it is multiplicative, unital and a morphism of leftH-modules.
For further use we need also the notion of rightH-module algebra. LetH be a quasi-bialgebr

e say that ak-linear spaceC is a right H-module algebra ifC is an algebra in the monoid
ategoryMH, i.e., C has a multiplication and a usual unit 1C satisfying the following condition

scc8dc9 = o sc ·x1dfsc8 ·x2dsc9 ·x3dg, s2.27d

scc8d ·h = o sc ·h1dsc8 ·h2d, s2.28d

1C ·h = «shd1C, s2.29d

or all c, c8, c9PC andhPH, wherec^ h→c·h is the rightH-module structure ofC.
Let H be a quasi-bialgebra,FPH ^ H a gauge transformation andA a left H-module algebra

hen, following Refs. 6 and 5, we can define a new multiplication onA, by

aLb = o sG1 ·adsG2 ·bd, ∀ a,b P A, s2.30d

here F−1=oG1 ^ G2. If we denote byAF−1 the resulting structure, thenAF−1 becomes a le

F-module algebra, with the same unit andH-action as forA, and moreover the map

l:A # H → AF−1 # HF, lsa # hd = o F1 ·a # F2h,

s an algebra isomorphism.
If H is a quasi-Hopf algebra,B an associative algebra andv :H→B an algebra map, the

ollowing Ref. 6, we can introduce on the vector spaceB a left H-module algebra structur
enoted byBv in what follows, for which the multiplication, unit and leftH-action are

b ! b8 = o vsX1dbvsSsx1X2dax2X1
3db8vsSsx3X2

3dd, ∀ b,b8 P B, s2.31d

1Bv = vsbd, s2.32d

hxvb = o vsh1dbvsSsh2dd, ∀ h P H,b P B. s2.33d

f H is a quasi-Hopf algebra andA is a left H-module algebra, define the following maps:
j :H → A # H, jshd = 1 #h, ∀ h P H, s2.34d
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i0:A → A # H, i0sad = o x1 ·a # x2bSsx3d, ∀ a P A. s2.35d

hen, by Ref. 6,j is an algebra map andi0 is a morphism of leftH-module algebras fromA to
A#Hd j. Moreover, the following universal property of the smash productA#H holds(see Ref. 6
roposition 2.9): if B is an associative algebra,v :H→B is an algebra map andw :A→Bv is a
orphism of leftH-module algebras, then there exists a unique algebra mapw#v :A#H→B such

hat sw#vd + i0=w and sw#vd + j =v; this map may be described explicitly as follows:

sw # vdsa # hd = o vsX1dwsadvsSsX2daX3hd, ∀ a P A, h P H. s2.36d

ow recall from Ref. 6 the following concept.
Definition 2.1: Let H be a quasi-bialgebra andA a left H-module algebra. We say thatM, a

-linear space, is a leftA, H-module if

i) M is a left H-module with action denoted byh^ m°h·m.
ii ) A acts weakly onM to the left, i.e., there exists ak-linear mapA^ M→M, denoted b

a^ m°axm, such that 1Axm=m for all mPM.
iii ) The following compatibility relations hold:

a x sb x md = o fsx1 ·adsx2 ·bdg x sx3 ·md, s2.37d

h · sa x md = o sh1 ·ad x sh2 ·md, s2.38d

for all hPH, a, bPA and mPM sthese conditions may be expressed equivalentl
saying thatM is a left A-module in the tensor categoryHMd.

The category of all leftA, H-modules, morphisms being the maps that areH-linear and
reserve theA-action, will be denoted byA,HM.

Let A#H-mod be the category of leftA#H-modules; we have the following result(see Ref. 6).
Proposition 2.2: Let H be a quasi-bialgebra andA a left H-module algebra. Then the cate

ies A,HM andA#H-mod are isomorphic.
The isomorphism is given as follows. IfM PA#H-mod withA#H-module structure given b

a#hd ^ m° sa#hd ·m, then MPA,HM with A-action given byaxm=sa#1d ·m and H-action
iven by h·m=s1#hd ·m. Conversely, ifMPA,HM, then M becomes a leftA#H-module with
ction sa#hd ·m=axsh·md.

II. OCTONIONS AND OTHER TWISTED GROUP QUASIALGEBRAS

Let G be a finite group,kG its group algebra andksGd the dual Hopf algebra ofkG. We recal
rst the setting in Ref. 1, but in a quasi-Hopf framework(not dual quasi-Hopf as in Ref. 1). Let
:G3G→k* be an invertible map, with inverseF :G3G→k*, such thatTs1,xd=Tsx,1d=1 for
ll xPG, and regardT and F as extended tokG^ kG, so we can regard them as element
sGd ^ ksGd, where they become gauge transformations. So, we have the Hopf algebraksGd, T a
auge transformation on it, and we have the leftksGd-module algebrakG [with the left regula
ction ofksGd on kG, that isp⇀x=psxdx for all pPksGd andxPG]. From the preliminaries, w

know that we can consider the leftksGdT-module algebrakGF, and also that we have an alge
somorphism,

kGF # ksGdT . kG# ksGd.
et us mention that the multiplication inkGF (denoted in Ref. 1 bykFG), which is given by
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x·Fy = Fsx,ydxy, ∀ x,y P G,

s in general nonassociative, and thatksGdT, though is a Hopf algebra(being commutative), is
egarded here as a quasi-Hopf algebra, with reassociator obtained by extending the mf :G

G3G→k* given by

fsx,y,zd =
Tsx,yzdTsy,zd
Tsxy,zdTsx,yd

=
Fsx,ydFsxy,zd
Fsy,zdFsx,yzd

,

o in generalkGF is aksGdT-module algebraonly in the quasi-Hopf sense(not in the Hopf sense).
Now, it is well known(see Ref. 16) that kG#ksGd, which is the Heisenberg double ofkG, is

somorphic as an algebra to the matrix algebraM uGuskd, whereuGu is the order ofG. Since leftkGF,
sGdT-modules coincide to leftkGF#ksGdT-modules, we get the following result.

Proposition 3.1: The category of left kGF, ksGdT-modules is isomorphic to the category of
M uGuskd-modules.

In particular, as proved in Ref. 1, the algebraO of octonions is of the formkGF, for G=Z2

Z23Z2 (whereZ2 is the group with two elements) and a certain mapF, so we get the followin
s a consequence.

Corollary 3.2: The category of modules over the octonions is isomorphic to the categ
odules over the algebra of838 real matrices.

V. THE ENDOMORPHISM QUASIALGEBRA ASSOCIATED TO A MODULE

Lemma 4.1: Let H be a quasi-Hopf algebra, B, C associative algebras, h :B→C, j :H→B,
:H→C algebra maps such thath + j =v. Then the maph :Bj →Cv is a morphism of left H-modu
lgebras.

Proof: Follows by a direct computation, using the formulas(2.31)–(2.33). h

Let H be a quasi-Hopf algebra andM a left H-module, with action denoted byh^ m°h·m.
onsider the(usual) associative algebra EndsMd (with composition) and definev :H→EndsMd,
shdsmd=h·m, which is an algebra map, so we can consider the leftH-module algebra EndsMdv,
hose multiplication, unit andH-action are given as follows[using the formulas(2.31)–(2.33)]:

su ! u8dsmd = o X1 ·usSsx1X2dax2X1
3 ·u8sSsx3X2

3d ·mdd, s4.1d

1EndsMdvsmd = vsbdsmd = b ·m, s4.2d

shxvudsmd = o h1 ·usSsh2d ·md, s4.3d

or all hPH, u, u8PEndsMdv, mPM.
Suppose now that we have also a leftH-module algebraA, with notationh^ a°h·a anda

^ a8°aa8. Our first aim is to prove the following result.
Theorem 4.2: Setting a structure of a left A, H-module on M is equivalent to giving

orphism of left H-module algebrasw :A→EndsMdv. The correspondence is given as follows
M is a left A, H-module (with A-action denoted by â m°axm) then the mapw :A

EndsMdv is given by

wsadsmd = o sp1 ·ad x sp2 ·md, ∀ a P A, mP M , s4.4d

here pR=op1 ^ p2=ox1 ^ x2bSsx3d. Conversely, if w :A→EndsMdv is a morphism of le
-module algebras, then M becomes a left A, H-module, with A-action given by

a x m= q1 · wsadsSsq2d ·md, ∀ a P A, mP M , s4.5d
o
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here qR=oq1 ^ q2=oX1 ^ S−1saX3dX2, and the H-action being the original H-module structur
f M.

Proof: Suppose first thatM is a left A, H-module, withA-actiona^ m°axm. As we know
his is equivalent toM being a leftA#H-module, with structure

sa # hd ·m= a x sh ·md, ∀ a P A, h P H, mP M .

So, considering the usual associative algebra EndsMd, we obtain an algebra maph :A#H
EndsMd, hsa#hdsmd=sa#hd ·m. We also have the canonical algebra mapj :H→A#H, jshd

=1#h; since we obviously have thath + j =v, we may apply the previous lemma and obtain tha
aph : sA#Hd j →EndsMdv is a morphism of leftH-module algebras. It follows from the prelim
aries that the mapi0:A→ sA#Hd j, i0sad=op1·a#p2, wherepR=op1 ^ p2=ox1 ^ x2bSsx3d, is a
orphism of leftH-module algebras, so the composition

w = h + i0:A → EndsMdv

s also a morphism of leftH-module algebras, and one can easily check that it is given by

wsadsmd = o sp1 ·ad x sp2 ·md, ∀ a P A, mP M .

onversely, letw :A→EndsMdv be a morphism of leftH-module algebras; by applying the u
ersal property of the smash productA#H (see Sec. II) for B=EndsMd, we obtain the algebra m
#v :A#H→EndsMd, which [using the formula(2.36)] may be expressed as follows:

sw # vdsa # hdsmd = o q1 · wsadsSsq2dh ·md, ∀ a P A, h P H, mP M .

ence,M becomes a leftA#H-module(i.e., a leftA, H-module) with action

sa # hd ·m= o q1 · wsadsSsq2dh ·md, ∀ a P A, h P H, mP M .

n particular, theA-action is given by

a x m= sa # 1d ·m= o q1 · wsadsSsq2d ·md, ∀ a P A, mP M ,

nd, using the fact thatoq1bSsq2d=1 [which follows from the relation(2.6)], we obtain that th
-action is given by

s1 #hd ·m= o q1bSsq2dh ·m= h ·m, ∀ h P H, mP M .

ow the only thing left to prove is that the two correspondences are inverse to each othe
If M is an A, H-module with A-action denoted byx, if w is the associated mapw :A

EndsMdv and we denote byx8 the A-action associated tow, we have(for all aPA and m
M):

ax8m= o q1 · ssp1 ·ad x sp2Ssq2d ·mdd

s2.38d = o sq1
1p1 ·ad x sq2

1p2Ssq2d ·md

s2.19d = a x m.

onversely, ifw :A→EndsMdv is a leftH-module algebra map, ifx is theA-action obtained from
andw8 is the map obtained from thisA, H-module structure onM, we have(for all aPA and

PM)
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w8sadsmd = o sp1 ·ad x sp2 ·md

= o q1 · wsp1 ·adsSsq2dp2 ·md

= o q1 · ssp1xvwsaddsSsq2dp2 ·mdd

s4.3d = o q1 · sp1
1 · wsadsSsp2

1dSsq2dp2 ·mdd

= o q1p1
1 · wsadsSsS−1sp2dq2p2

1d ·md

s2.19d = wsadsmd,

nd the proof is complete. h

By taking in the TheoremA=EndsMdv andw=id, we obtain the following consequence:
Corollary 4.3: If H is a quasi-Hopf algebra and M is a left H-module, then M becomes a l

ndsMdv, H-module [i.e., a leftEndsMdv#H-module], withEndsMdv-action given by

u x m= o q1 ·usSsq2d ·md, s4.6d

or all uPEndsMdv, mPM.
We study now the behavior of the construction EndsMdv under twisting. Namely, letH be a

uasi-Hopf algebra,FPH ^ H a gauge transformation andM a left H-module. ThenM is also a
eft HF-module, with the sameH-action. Denote byv :H→EndsMd and vF :HF→EndsMd the
orresponding algebra maps, and consider theH-module algebra EndsMdv and theHF-module
lgebra EndsMdvF; we also consider theHF-module algebra EndsMdF−1

v . In view of similar result
oncerning invariance under twisting, one might expect to have EndsMdvF;EndsMdF−1

v , but in
eneral this is not true. Nevertheless, we will prove that they are isomorphic as leftHF-module
lgebras.

Actually, we will prove something more general. LetH be a quasi-Hopf algebra,FPH ^ H a
auge transformation,B an associative algebra,v :H→B an algebra map, which will be denot
y vF when considered as a map fromHF to B.

Proposition 4.4: The map

c:BF−1
v → BvF, csbd = o vsF1dbvsSsF2dd, ∀ b P B,

s an isomorphism of left HF-module algebras.
Proof: The mapc is obviously bijective, with inverse given byc−1sbd=ovsG1dbvsSsG2dd, for

ll bPB, whereF−1=oG1 ^ G2. Then one checks by a direct computation thatc is a morphism o
eft HF-module algebras, using the formulas forDF, FF, aF, bF and for the multiplications, uni
nd actions inBvF andBF−1

v . h

By taking B=EndsMd, we obtain the following.
Corollary 4.5: EndsMdvF and EndsMdF−1

v are isomorphic as left HF-module algebras.
If H is a quasi-Hopf algebra, the leftH-module algebraHidH was denoted in Ref. 6 byH0; its

ultiplication is given by

g ! h = o X1gSsx1X2dax2X1
3hSsx3X2

3d, ∀ g,h P H,

he unit isb and the leftH-action ishxh8=oh1h8Ssh2d, for all h, h8PH. Then, from the abov
roposition, we get also the following consequence(by takingB=H, v=idH in the proposition):

Corollary 4.6: sH0dF−1.sHFd0 as left HF-module algebras, with an isomorphism given
: sH0dF−1→ sHFd0, cshd=oF1hSsF2d for all hPH, where F=oF1 ^ F2 is a gauge transformatio
n H.
For completeness’ sake and further use, we also treat the case of rightA-modules inHM.
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Let H be a quasi-bialgebra andA a left H-module algebra. If we letAop be A with opposite
ultiplication, then it is easy to see thatAop becomes a leftHcop-module algebra, with the sam
nit andH-action as forA.

If H is a quasi-Hopf algebra,B an associative algebra andv :H→B an algebra map, consid
as algebra map fromHcop to B and denote it byvcop; then we have the leftHcop-module algebr

vcop, and by the abovesBvcopdop becomes a leftH-module algebra, which will be denoted byBv.
ts multiplication, unit andH-action are

b ·b8 = o vsx3db8vsS−1saX3x2dX2x2
1dbvsS−1sX1x1

1dd, ∀ b,b8 P B, s4.7d

1Bv
= vsS−1sbdd, s4.8d

h → b = o vsh2dbvsS−1sh1dd, ∀ h P H, b P B. s4.9d

onsequently, ifM is a left H-module andv :H→EndsMd is the algebra map as before, we
onsider the leftH-module algebra EndsMdv, whose structure is

su ·u8dsmd = o x3 ·u8sS−1saX3x2dX2x2
1 ·usS−1sX1x1

1d ·mdd, s4.10d

1EndsMdv
smd = S−1sbd ·m, s4.11d

sh → udsmd = o h2 ·usS−1sh1d ·md, s4.12d

or all u, u8PEndsMdv, mPM, hPH.
Now, if H is a quasi-bialgebra andA is a left H-module algebra, we can define a rightA,

-moduleM as being a rightA-module inHM. That is,M must be a leftH-module, together wit
right A-actionM ^ A→M, m^ a°mva, with mv1=m for all mPM, such that

smvadvb = o sX1 ·mdvfsX2 ·adsX3 ·bdg, s4.13d

h · smvad = o sh1 ·mdvsh2 ·ad, s4.14d

or all hPH, mPM, abPA.
It is easy to see thatM being a rightA, H-module is equivalent toM being a leftAop,

cop-module(i.e., a leftAop#Hcop-module). Then, ifH is moreover a quasi-Hopf algebra and us
lso the fact that the elementspR and qR for Hcop may be expressed aspR

cop=pL
21 and qR

cop=qL
21,

herepL and qL are the ones forH, by applying the theorem forAop, Hcop, M, EndsMdvcop, we
btain the following result.

Proposition 4.7: Let H be a quasi-Hopf algebra, A a left H-module algebra and M a le
-module. Then setting a structure of a right A, H-module on M is equivalent to giving
orphism of left H-module algebrash :A→EndsMdv. The correspondence is given as follows

M is a right A, H-module (with A-action denoted by m̂ a°mva) then the maph :A
EndsMdv is given by

hsadsmd = o sp̃1 ·mdvsp̃2 ·ad, ∀ a P A, mP M , s4.15d

here pL=op̃1 ^ p̃2=oX2S−1sX1bd ^ X3. Conversely, ifh :A→EndsMdv is a morphism of le
-module algebras, then M becomes a right A,H-module, with A-action given by

mva = q̃2 · hsadsS−1sq̃1d ·md, ∀ a P A, mP M , s4.16d
o
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here qL=oq̃1 ^ q̃2=oSsx1dax2 ^ x3, and the H-action being the original H-module structure o
M.

As we have seen, the construction of EndsMdv was obtained from the one of EndsMdv by
aking opposites and co-opposites. However, there is also another relation between the
tructions. Namely, ifM is a leftH-module, it is well known that on the linear dual ofM we can

ntroduce two leftH-module structures, denoted byM* and *M, with H-actions sh·m* dsmd
m* sSshd ·md, for all hPH, mPM, m* PM*, respectively,sh· *mdsmd= * msS−1shd ·md for all
PH, mPM, *mP * M [the corresponding algebra mapsH→EndsM * d and H→Ends* Md are
enoted byv*, respectively, *v].

If u:M→M is a linear map, we denote byu* its transpose given byu* sjd=j +u for all j
M*.

We have then the following result, which generalizes a part of Proposition 4.7 in Ref.
Proposition 4.8: Let H be a quasi-Hopf algebra and M a left H-module. Then the map u°u*

ives H-module algebra morphisms EndsMdv→EndsM * dv* and EndsMdv→Ends* Md*v, which
re isomorphisms if M is finite dimensional.

Proof: Follows by a direct computation, using the formulas for the structures of theH-module
lgebras EndsMdv, EndsM * dv* , etc. h

Let againH be a quasi-bialgebra andA a left H-module algebra. We introduce now
oncept of anA, H-bimodule, as being anA-bimodule inHM. That is,M must be a leftH-module
hich is a left and a rightA, H-module(with A-actions denoted byx andv) and such that

saxmdvb = o sX1 ·adxfsX2 ·mdvsX3 ·bdg, ∀ a,b P A, mP M . s4.17d

ecall now from Ref. 18 the following concept. LetC be a class of(not necessarily associativ)
lgebras,APC andM a linear space with two linear actionsa^ m°axm andm^ a°mva of A
n M. Then on the direct sumA% M one can introduce an algebra structure(called thesemidirec
um or split null extension) by defining a multiplication inA% M by

sa + mdsa8 + m8d = aa8 + smva8 + axm8d, s4.18d

or all a, a8PA andm, m8PM. Then, ifA% M with this algebra structure is inC, we say thatM
s an A-bimodule with respect toC. If C is the class of all associative algebras or of all
lgebras, we obtain the usual concepts of bimodule for these types of algebras. We have

ollowing result.
Proposition 4.9: Let H be a quasi-bialgebra, A a left H-module algebra and M a k-line

pace. Then M is an A-bimodule with respect to the class of left H-module algebras (tha, A
% M is a left H-module algebra) if and only if M is an A, H-bimodule.

Proof: If M is anA, H-bimodule, one can prove by a direct computation thatA% M become
left H-module algebra. Conversely, ifA% M is a leftH-module algebra, then firstM becomes

eft H-module with structure induced from the one ofA% M. Then, if the unit ofA% M is an
lement of the forma0+m0, writing down the unit condition we obtain first thata0 should be 1A,

hen that 1Axm=mv1A=m for all mPM and finally thatm0=0. Similarly, writing down the
onditions forA% M to be a leftH-module algebra, by taking properly particular values of
lements involved we obtain finally the conditions expressing the fact thatM is an A,
-bimodule. h

. THE FINITE DIMENSIONAL CASE

Let H be a quasi-Hopf algebra,A a left H-module algebra andM a finite dimensionalleft
-module. Then, by using the identification EndsMd.M ^ M*, Albuquerque and Majid intro
uced in Ref. 1 a leftH-module algebra structure on EndsMd, and, ifM is also a leftA, H-module
morphism of leftH-module algebrasA→EndsMd. Our aim now is to prove that they actua

v v
oincide with EndsMd andw :A→EndsMd , respectively(notation as in the preceding section).
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Let us recall some well-known facts, cf. Refs. 12 and 14. IfH is a quasi-Hopf algebra andM
s a leftH-module, we consider the two leftH-modulesM* (the left dual) and *M (the right dual)
s before. IfM is moreover finite dimensional and we fixhe1, . . . ,enj a basis inM with he1, . . . ,enj

ts dual basis inM*, then we have thek-linear maps,

evM:M * ^ M → k, coevM:k → M ^ M * , s5.1d

evMsei
^ ejd = eisa ·ejd, coevMs1d = o

i=1

n

b ·ei ^ ei , s5.2d

evM8 :M ^ * M → k, coevM8 :k → * M ^ M , s5.3d

evM8 sei ^ ejd = ejsS−1sad ·eid, coevM8 s1d = o
i=1

n

ei
^ S−1sbd ·ei s5.4d

the evaluation and coevaluation maps), which areH-linear and makeM a rigid object inHM.
With this notation, let us recall from Ref. 1 thatM ^ M* becomes a leftH-module algebra, a

ollows: the leftH-module structure is the tensor product ofM andM*, and the multiplication i
iven by the formula

sidM ^ sevM ^ idM*dd + sidM ^ aM*,M,M*
−1 d + aM,M*,M^M* s5.5d

as a mapsM ^ M * d ^ sM ^ M * d→M ^ M* ]. On the other hand, the map

l:EndsMd → M ^ M * , lsud = o
i=1

n

useid ^ ei, ∀ u P EndsMd

s a linear isomorphism, with inverse

l−1:M ^ M * → EndsMd, l−1sm ^ jdsm8d = jsm8dm, ∀ m,m8 P M, j P M * ,

o we can transfer theH-module algebra structure ofM ^ M* to EndsMd via l; let us denote b
ndsMd this H-module algebra structure on EndsMd (this is the one appearing, with differe
otation, in Ref. 1).

Proposition 5.1: With notation as above, endsMd and EndsMdv coincide as left H-module
lgebras.

Proof: The fact that endsMd=EndsMdv as leftH-modules follows from the fact, proved in R
, that the mapl given above, considered as a mapl :EndsMdv→M ^ M*, is H-linear. So, we
nly have to prove that the multiplications of endsMd and EndsMdv coincide. Let us compute th
ultiplication in endsMd. By using the identification endsMd.M ^ M* via l and by considerin

he multiplication as a map endsMd ^ endsMd→M ^ M*, the sequence of compositions in form
5.5) looks as follows[for u u8PendsMd]:

u ^ u8 ° o suseid ^ eid ^ su8sejd ^ ejd

° o X1 ·useid ^ sX2 ·ei
^ sX1

3 ·u8sejd ^ X2
3 ·ejdd

° o X1 ·useid ^ ssx1X2 ·ei
^ x2X1

3 ·u8sejdd ^ x3X2
3 ·ejd

° o sx1X2 ·eidsax2X1
3 ·u8sejddX1 ·useid ^ x3X2

3 ·ej

= eisSsx1X2dax2X3 ·u8se ddX1 ·use d ^ x3X3 ·ej
o 1 j i 2
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= o X1 ·usSsx1X2dax2X1
3 ·u8sejdd ^ x3X2

3 ·ej ,

o, if mPM, the multiplication of endsMd is

su ·u8dsmd = o sx3X2
3 ·ejdsmdX1 ·usSsx1X2dax2X1

3 ·u8sejdd

= o ejsSsx3X2
3d ·mdX1 ·usSsx1X2dax2X1

3 ·u8sejdd

= o X1 ·usSsx1X2dax2X1
3 ·u8sSsx3X2

3d ·mdd,

nd one can see that this is exactly the multiplication of EndsMdv. Moreover, the unit of EndsMdv

oincides withcoevMs1d after the identification EndsMdv;M ^ M* via l. h

Suppose now thatM is not only a leftH-module, but also a leftA, H-module, whereA is a left
-module algebra. Then Albuquerque and Majid constructed in Ref. 1 a mapr :A→endsMd,
hich is a morphism of leftH-module algebras, and which is given as follows:

r = l−1 + sx ^ idM*d + aA,M,M*
−1 + sid ^ coevMd. s5.6d

Proposition 5.2: The left H-module algebra mapsw :A→EndsMdv and r :A→endsMd coin-
ide.

Proof: Let us describe the mapr explicitly. For aPA, we have

rsad = l−1 + sx ^ idM*d + aA,M,M*
−1 sa ^ so b ·ei ^ eidd

= o l−1 + sx ^ idM*dssx1 ·a ^ x2b ·eid ^ x3 ·eid

= o l−1ssx1 ·ad x sx2b ·eid ^ x3 ·eid,

o, formPM, we obtain

rsadsmd = o sx3 ·eidsmdsx1 ·ad x sx2b ·eid

= o eisSsx3d ·mdsx1 ·ad x sx2b ·eid

= o sx1 ·ad x sx2bSsx3d ·md = o sp1 ·ad x sp2 ·md,

nd this is exactly the formula forwsadsmd, hence we haver=w. h

Moreover, Albuquerque and Majid proved that ifH is a quasi-Hopf algebra andM is a finite
imensional leftH-module, then we have an action of endsMd on M, which, using the identifica
ion endsMd.M ^ M* via l, is given by the map

sidM ^ evMd + aM,M*,M:sM ^ M * d ^ M → M . s5.7d

hen, using the formulas forl, evM andaM,M*,M, one can verify that this action coincides with
ne given by the formula(4.6).

Suppose again thatH is a quasi-Hopf algebra andM is a finite dimensional leftH-module
hen, similarly to the definition of endsMd, we can define another leftH-module algebra structu
n EndsMd, by first introducing one on *M ^ M by the formula

ssid* M ^ evM8 d ^ idMd + sa* M,M,*M ^ idMd + a* M^M,*M,M
−1

or the multiplication andcoevM8 s1d for the unit, and then transfering it to EndsMd via the canoni
al linear isomorphism EndsMd. * M ^ M. Then a similar computation yields the following
ult.

Proposition 5.3: The H-module algebra structure induced onEndsMd by the one of* M ^ M

oincides withEndsMdv.
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We give now an application of the identification EndsMdv;endsMd. Let us first recall from
ef. 15 that a(left) Yetter–Drinfeld module overH is a left H-moduleM, together with a lef
-coaction onM and some compatibility conditions between the two structures, ensuring
e take the category of Yetter–Drinfeld modules, it is just the center of the monoidal categ

eft H-modules(we refer to Ref. 15 for detail).
Suppose now thatH is a quasi-Hopf algebra andM is a finite dimensional Yetter–Drinfe

odule. The following result generalizes the corresponding one for Hopf algebras proved
.

Proposition 5.4: EndsMdv and EndsMdv are algebras in the category of Yetter–Drinfeld m
les over H.

Proof: We give the proof only for EndsMdv, it is similar for EndsMdv. It was proved in Ref.
hat M*, the left dual of M, becomes also a Yetter–Drinfeld module, soM ^ M* is a Yetter–
rinfeld module too; by the identification EndsMdv;M ^ M* via l we obtain that EndsMdv is
lso a Yetter–Drinfeld module. Since we already know that EndsMdv is an algebra inHM, the only
hing left to prove would be that the multiplication and unit of EndsMdv intertwine the correspon
ng H-coaction on EndsMdv; a direct proof of these facts would be quite technical and diffi
even for the unit). However, we can give an immediate proof using the identification EndsMdv

endsMd. Namely, it was proved in Ref. 4 thatevM andcoevM are morphisms not only inHM,
ut also in the Yetter–Drinfeld category, so the multiplication(5.5) of endsMd is a morphism in th
etter–Drinfeld category, and similarly for the unit of endsMd, which is exactlycoevM, and we ar
one. Alternatively, we can obtain the result as a particular case of general results on

ensor categories in Ref. 20. h

I. SOME EXAMPLES OF ENDOMORPHISM QUASIALGEBRAS: HEISENBERG
OUBLES

We start this section by giving an example taken from Ref. 3, which will turn out to be
ype EndsMdv. If H is a finite dimensional quasi-Hopf algebra, in Ref. 3 was constructe

o-calledquasi-smash product H#̄H*, which is a left H-module algebra structure built onH
^ H*, with multiplication, unit andH-action given, for allh, h8PH andj, j8PH*, by

sh#̄jdsh8 #̄j8d = o hh18x
1#̄sj↼ h28x

2dsj8↼ x3d, s6.1d

1H #̄H* = 1H #̄«, s6.2d

h · sh8 #̄jd = h8 #̄h⇀ j, s6.3d

here⇀ and↼ are the left and right regular actions ofH on H* given by

sh⇀ jdsh8d = jsh8hd, sj↼ hdsh8d = jshh8d. s6.4d

hen, in Ref. 3 was constructed a linear isomorphism,

m:H #̄H * . EndsHd, msh#̄jdsh8d = o jsh28p̃
2dhh18p̃

1, s6.5d

or all h, h8PH andjPH*, where pL=op̃1 ^ p̃2=oX2S−1sX1bd ^ X3, with inverse

m−1:EndsHd → H #̄H * , m−1sud = o usq̃2seid2dS−1sq̃1seid1d #̄ei , s6.6d

or all uPEndsHd, where heij and heij are dual bases inH and H*, and qL=oq̃1 ^ q̃2

oSsx1dax2 ^ x3. Then, theH-module algebra structure ofH#̄H* was transfered to EndsHd via m,

here it looks as follows(the multiplication, unit andH-action):

                                                                                                            



f c-
t

h ble
o ra
R e
i

d op-
e
D
H fs.
1
=

obtain
t tegorical
p si-Hopf
c ite

d ,
w f. 17,
p one,
w asial-
g

a
a

a

a
a

f
ted

b ove
r an
e

on
H t a
r

ve
t a
v

=

3926 J. Math. Phys., Vol. 45, No. 10, October 2004 F. Panaite and F. Van Oystaeyen

                        
su+Iu8dshd = o usu8shx3X2
3dS−1sSsx1X2dax2X1

3ddS−1sX1d, s6.7d

1EndsHd = S−1sbd⇀ idH, sh ·udsh8d = ush8h2dS−1sh1d, s6.8d

or all u,u8PEndsHd andh,h8PH. Then one can easily check that thisH-module algebra stru
ure on EndsHd is exactly EndsMdv, where M is H regarded as a leftH-module with action

·m=mS−1shd for all m,hPH. The quasismash productH#̄H* was called the Heisenberg dou
f H (its multiplication generalizes the one in the usual Heisenberg double of a Hopf algeb), cf.
ef. 3. For reasons to be discussed below, we call it thefirst Heisenberg double ofH and denot

t by H1sHd.
To motivate this terminology, we discuss the case of the Heisenberg doubleHsHd of a finite

imensional Hopf algebraH. It is built on H ^ H* and has the following tensor-categorical pr
rties: it is a leftDsHd-module algebra and a rightDsHdcop-module algebra[and hence aDsHd,
sHdcop-bimodule algebra], whereDsHd is the Drinfeld double ofH and the actions ofDsHd on
sHd are the left and right regular actions if we regardHsHd;DsHd* as linear spaces, see Re

3 and 17 for all these. In particular,HsHd is a left H-module algebra[with action h·sh8#jd
h8#h⇀j] and a rightHcop-module algebra.

Now, if one tries to define a quasi-Hopf analogue of the Heisenberg double, one should
he same tensor-categorical properties as in the Hopf case. But since the three tensor-ca
roperties of the Heisenberg double normally cannot be satisfied simultaneously in the qua
ase, it follows that one might be looking for(at least) three Heisenberg doubles of a fin

imensional quasi-Hopf algebra. The first one then should beH1sHd=H#̄H* defined in Ref. 3
hich is a left H-module algebra, and a construction for the third was proposed in Re
roviding aDsHd, DsHdcop-bimodule algebra. Now we propose a definition for the second
hich will be a rightHcop-module algebra and will be realized also as an endomorphism qu
ebra.

Again we start with a general construction. IfH is a quasi-bialgebra andA is a leftH-module
lgebra with actionh^ a°h·a, then one can prove thatAop becomes a rightHop cop-module
lgebra, with actiona·h=h·a. Then we have the following result.

Proposition 6.1: Let H be a quasi-Hopf algebra, B an associative algebra andv :H→B an
lgebra map. Define a new multiplication on B by

b ( b8 = o vsS−1sx2
3X3ddbvsx1

3X2S−1sx2X1bddb8vsx1d, ∀ b,b8 P B, s6.9d

nd denote byvB this structure. ThenvB becomes a right Hcop-module algebra, with unitvsS−1sadd
nd right H-action onvB given by

bvvh = o vsS−1sh2ddbvsh1d, s6.10d

or all hPH and bP vB, whereDshd=oh1 ^ h2 is the comultiplication of H.
Proof: Sincev is an algebra map,v :Hop→Bop is also an algebra map, which will be deno

y vop. Then we can considersBopdvop
, which is a leftHop-module algebra, hence, by the ab

emark, we get thatssBopdvop
dop becomes a rightsHopdop cop=Hcop-module algebra, and one c

asily see thatvB is exactly thisssBopdvop
dop. h

In particular we may takeB=H, v=idH, and obtain a rightHcop-module algebra structure
, or we may takeM to be a leftH-module and the mapv :H→EndsMd as before, and we ge

ight Hcop-module algebravEndsMd.
We are now interested in the case whenM =H with the left regular action on itself, so we ha

he algebra mapv :H→EndsHd, vshdsh8d=hh8, and we can consider the rightHcop-module algebr
EndsHd. Let us record that the rightH-action on vEndsHd is given by suvvhdsh8d

−1 v
oS sh2dush1h8d, for all h,h8PH anduP EndsHd, whereDshd=oh1 ^ h2 is the comultiplication
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f H. We propose thisvEndsHd as thesecondHeisenberg double ofH and denote it byH2sHd.
his proposal will be supported by the next results.

Suppose now thatH is moreover finite dimensional. Then, besides the isomorphismm intro-
uced in Ref. 3, we can construct another linear isomorphism betweenH ^ H* and EndsHd,
amely,

n:H ^ H * → EndsHd, nsh ^ jdsh8d = o jsX2h28p̃
2dS−1sX3dhX1h18p̃

1,

or all h,h8PH andjPH*; one can prove as in Ref. 3 that its inverse is given by

n−1:EndsHd → H ^ H * , n−1sud = o S−1sx3dusq̃2seid2dS−1sq̃1seid1dx1
^ ei↼ x2,

or all uPEndsHd.
Now, we consider on EndsHd the right Hcop-module algebra structurevEndsHd, and we ca

ransfer it to H ^ H* via the isomorphismsm or n, thus obtaining two(isomorphic) right
cop-module algebra structures onH ^ H*.

Proposition 6.2: If we denote by‚, respectively↽, the right H-module structures of
^ H* obtained by transfer viam, respectivelyn, then‚ and↽ look as follows:

sh8 ^ jd ‚ h = o S−1sh2dh8hs1,1d ^ j↼ hs1,2d, s6.11d

sh8 ^ jd↽ h = o S−1shs2,2ddh8h1 ^ j↼ hs2,1d, s6.12d

or all h ,h8PH and jPH*, whereDshd=oh1 ^ h2 is the comultiplication of H.
Proof: We give the proof only for‚, the one for↽ is similar. We computesh8 ^ jd‚h

H ^ H* by applying it to an elementgPH on the second component. We have

ssh8 ^ jd ‚ hdsgd = m−1smsh8 ^ jdvvhdsgd

= o smsh8 ^ jdv v hdsq̃2g2dS−1sq̃1g1d

= o svsS−1sh2ddmsh8 ^ jdvsh1ddsq̃2g2dS−1sq̃1g1d

= o S−1sh2dmsh8 ^ jdsh1q̃
2g2dS−1sq̃1g1d

= o S−1sh2djshs1,2dq̃2
2gs2,2dp̃

2dh8hs1,1dq̃1
2gs2,1dp̃

1S−1sg1dS−1sq̃1d

s2.22d = o jshs1,2dq̃2
2p̃2gdS−1sh2dh8hs1,1dq̃1

2p̃1S−1sq̃1d

s2.20d = o jshs1,2dgdS−1sh2dh8hs1,1d = o sS−1sh2dh8hs1,1d ^ j↼ hs1,2ddsgd,

nd the proof is finished. h

Now, letH be a finite dimensional quasi-Hopf algebra. We recall from Refs. 10 and 11 th
ealizations of the quantum double ofH built on H* ^ H, hereafter denoted byD1sHd andD2sHd,
hose multiplications are, respectively, given, for allj ,j8PH* and h,h8PH, by

sj ^ hdsj8 ^ h8d = o sV1⇀ j↼V5dsV2hs1,1d⇀ j8↼ S−1sh2dV4d ^ V3hs1,2dh8,

sj ^ hdsj8 ^ h8d = o sv1⇀ j↼ v5dsv2h1⇀ j8↼ S−1shs2,2ddv4d ^ v3hs2,1dh8,

hereV=oV1 ^ ¯ ^ V5, v=ov1 ^ ¯ ^ v5PH^5 are given by

V = o X1 x1y1
^ X1 x2y2

^ X1x3y2
^ S−1sf1X2y3d ^ S−1sf2X3d, s6.13d
s1,1d s1,2d 1 2 2
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v = o x1
^ x2Y1

^ x1
3X1Y1

2
^ S−1sf1xs2,1d

3 X2Y2
2d ^ S−1sf2xs2,2d

3 X3Y3d, s6.14d

nd wheref =of1 ^ f2 is the twist defined in(2.15).
Using these formulas, one can prove that the comultiplications ofD1sHd* andD2sHd* (both

dentified withH ^ H* as linear spaces), dual to the above multiplications, are given by

DD1sHd*sh ^ jd = o sV5h1V1
^ feisj1↼V3dgejd ^ sS−1sejdV4h2V2ei ^ j2d, s6.15d

DD2sHd*sh ^ jd = o sv5h1v1
^ eifsj1↼ v3dejgd ^ sS−1sejdv4h2v2ei ^ j2d, s6.16d

or all hPH andjPH*, whereDsjd=oj1 ^ j2 is the comultiplication ofH* and heij andheij are
ual bases inH and H*. Using these formulas, one can prove that the right regular actio

1sHd on D1sHd* and of D2sHd on D2sHd*, respectively, look as follows:

sh8 ^ jd↼ sj8 ^ hd = o j8sV5h18V
1dS−1sh2dV4h28V

2hs1,1d ^ j↼V3hs1,2d,

sh8 ^ jd↼ sj8 ^ hd = o j8sv5h18v
1dS−1shs2,2ddv4h28v

2h1 ^ j↼ v3hs2,1d,

or all h,h8PH and j ,j8PH*. By taking j8=« in these formulas, we get two rightH-module
tructures onH ^ H*, and one can easily see that they are exactly(6.11) and (6.12).

Let us mention that, if the proposed definitions ofH1sHd andH2sHd are natural, they shou
e not only leftH and, respectively, rightHcop-module algebras, but also leftDsHd and, respec

ively, right DsHdcop-module algebras, but so far we have not been able to prove this(direct
omputations are very cumbersome).

CKNOWLEDGMENTS

Research supported by the bilateral project “Hopf Algebras in Algebra, Topology, Geo
nd Physics” of the Flemish and Romanian Ministries of Research. Parts of this paper ha
ritten while the first author(F.P.) was visiting the University of Antwerp, and he would like

hank UA for its warm hospitality. F.P. was also partially supported by the programmes SC
nd EURROMMAT.

1Albuquerque, H. and Majid, S., “Quasialgebra structure of the octonions,” J. Algebra220, 188–224(1999).
2Baez, J. C., “The octonions,” Bull., New Ser., Am. Math. Soc.39, 145–205(2002).
3Bulacu, D. and Caenepeel, S., “Two-sided two-cosided Hopf modules and Doi-Hopf modules for quasi-Hopf a
J. Algebra 270, 55–95(2003).

4Bulacu, D., Caenepeel, S., and Panaite, F., “Yetter-Drinfeld categories for quasi-Hopf algebras,” math.QA/031
5Bulacu, D. and Nauwelaerts, E., “Relative Hopf modules for(dual) quasi-Hopf algebras,” J. Algebra229, 632–659
(2000).

6Bulacu, D., Panaite, F., and Van Oystaeyen, F., “Quasi-Hopf algebra actions and smash products,” Commun. Al28,
631–651(2000).

7Bulacu, D., Panaite, F., and Van Oystaeyen, F., “Quantum traces and quantum dimensions for quasi-Hopf
Commun. Algebra27, 6103–6122(1999).

8Caenepeel, S., Van Oystaeyen, F., and Zhang, Y., “Quantum Yang–Baxter module algebras,” K-Theory8, 231–255
(1994).

9Drinfeld, V. G., Quasi-Hopf algebras, Leningrad Math. J.1, 1419–1457(1990).
0Hausser, F. and Nill, F., “Diagonal crossed products by duals of quasi-quantum groups,” Rev. Math. Phys.11, 553–629
(1999).

1Hausser, F. and Nill, F., “Doubles of quasi-quantum groups,” Commun. Math. Phys.199, 547–589(1999).
2Kassel, C., “Quantum groups,”Graduate Texts in Mathematics(Springer-Verlag, Berlin, 1995), Vol. 155.
3Lu, J.-H., “On the Drinfeld double and the Heisenberg double of a Hopf algebra,” Duke Math. J.74, 763–776(1994).
4Majid, S.,Foundations of Quantum Group Theory(Cambridge University Press, Cambridge, 1995).
5Majid, S., “Quantum double for quasi-Hopf algebras,” Lett. Math. Phys.45, 1–9 (1998).
6Montgomery, S., “Hopf algebras and their actions on rings,” CBMS Regional Conference Series, Vol. 82(American
Mathematical Society, Providence, RI, 1993).

7Panaite, F., “Doubles of(quasi) Hopf algebras and some examples of quantum groupoids and vertex groups re

them,” math.QA/0101039.

                                                                                                            



1

1

2

J. Math. Phys., Vol. 45, No. 10, October 2004 Quasi-Hopf algebras 3929

                        
8Schafer, R. D.,An Introduction to Nonassociative Algebras(Academic, New York, 1966).
9Sweedler, M. E.,Hopf Algebras(Benjamin, New York, 1969).
0Van Oystaeyen, F. and Zhang, Y., “The Brauer group of a braided monoidal category,” J. Algebra202, 96–128(1998).
                                                                                                            



F

s

I

cknowl-
e
K
K stical
m . A
t ategory
o truct the
k d using
m isms
c
b e will
w

any
s are
g ,
w at
i

the
s ry
m ful to
m s
c
S
h
c en-
t of
S e
g

terest.
T call the

a

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 10 OCTOBER 2004

0

                        
robenius monads and pseudomonoids
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Six equivalent definitions of Frobenius algebra in a monoidal category are pro-
vided. In a monoidal bicategory, a pseudoalgebra is Frobenius if and only if it is
star autonomous. Autonomous pseudoalgebras are also Frobenius. What it mean
for a morphism of a bicategory to be a projective equivalence is defined; this
concept is related to “strongly separable” Frobenius algebras and “weak monoidal
Morita equivalence.” Wreath products of Frobenius algebras are discussed. ©2004
American Institute of Physics.[DOI: 10.1063/1.1788852]

. INTRODUCTION

Over the last two decades, the relevance of categories to physics has become widely a
dged in at least two particular areas: quantum group theory(QGT) [see Joyal and Street(1991),
assel(1995), Majid (1995)] and topological quantum field theory(TQFT) [see Kock(2003) and
erler and Volodymyr(2001)]. Quantum groups arise from the Yang–Baxter equation of stati
echanics, while each quantum group has a monoidal(or “tensor”) category of representations

wo-dimensional TQFT can be regarded as a tensor-preserving functor from a monoidal c
f 2-cobordisms to the category of vector spaces. Monoidal categories can be used to cons
nown three-dimensional TQFTs while some four-dimensional TQFTs can be constructe
onoidal bicategories(see Baez). Both QGT and TQFT feature categories whose morph

ome from low-dimensional topology(braids, links, tangles, surfaces, and so on). Mainly for the
enefit of readers from mathematical physics, in this introduction and the next section, w
arm up to the categorical notions just mentioned and a few others we require.

Of course, the use in physics of(classical) groups and their representations goes back m
core years. A lot of information about a groupG is contained in its characters. Characters
roup morphisms fromG into the multiplicative monoid of an appropriate fieldk. In other words
e find a category(in this case the category of monoids) whereG andk both live as objects so th

t makes sense to look at morphisms between these objects.
Representations reveal even more aboutG than characters yet can be introduced using

ame philosophy. The groupG can be regarded as a categorySG having only one object and eve
orphism invertible. Although this could be taken as the definition of group, it is often help
aintain a notational distinction between the group and the one-object category(after all, group

an be defined in alternative categorical terms as discrete closed monoidal categories). We think of
G as a kind of suspension ofG, where the morphisms ofSG are the elements ofG. Since we
ave putG into the category Cat of categories, we can look at morphisms fromSG into other
ategories such as the category Vectk of vector spaces overk. These are precisely linear repres
ations of the groupG: a morphism of categoriesF :SG→Vectk (functor) takes the one object
G to the vector space underlying the representation and the morphisms ofSG to action by thos
roup elements.

This paper is concerned with the identification of mathematical structure on objects of in
he structure of particular interest is an abstraction of Frobenius algebra; we will soon re

)
Electronic mail: street@math.mq.edu.au
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asic concept. The connection between TQFT and Frobenius algebras is pointed out
2003) and we proceed to outline how that works. Some connection between quantum gro
robenius algebras is already apparent from the fact that quantum groups are Hopf alge
nite-dimensional Hopf algebras are Frobenius[Larson and Sweedler(1969)]. We intend to
eepen the connection between Frobenius algebras and quantum group theory.

A k-algebraA is calledFrobeniuswhen it is equipped with an exact pairing

s:A ^ A → k

atisfying the condition

sssabd ^ cd = ssa ^ sbcdd

or all elementsa, b and c of A. (The exact bilinear pairing in the sense of monoidal cate
heory here means thatA is finite dimensional as a vector space and the pairing provid
somorphism betweenA and its linear dual.) In fact, s is determined by a linear function« :A

k via the formulas«sad=ss1,ad andssa,bd=«sabd. The group algebrakG of any finite group
is Frobenius when equipped with the forms that hasssx,yd=1 if and only if xy=1.

We shall recall in Sec. II how each Frobenius algebra becomes a coalgebra. Howeve
ase where the Frobenius algebra comes from a finite-dimensional Hopf algebra, this coa
ot the same as the coalgebra underlying the Hopf algebra. For one thing, a morphism o
ius algebras(preserving the algebra and coalgebra structure) is invertible[see Kock(2003); Sec
II D ], whereas Hopf algebra morphisms between group algebras are in bijection with
orphisms.

Each commutative Frobenius algebra determines(uniquely up to isomorphism) a two-
imensional TQFT; that is, a tensor-preserving functor from the monoidal category 2-C

wo-dimensional cobordisms to Vectk. More precisely, the category of commutative Frobe
-algebras is equivalent to the category of symmetric strong-monoidal functors from 2-
ectk [see Kock(2003), Theorem 3.3.2]. Both of these categories are actually groupoids: e
orphism is invertible. We already mentioned this fact for Frobenius algebras, while the mo

ategory 2-Cob isautonomous(that is, its objects all have both left and right duals) and this
lready implies that every morphism between 2D TQFTs is invertible.

A categoryV is monoidalwhen it is equipped with a functor̂ :V3V→V (called thetensor
roduct), an objectI of V (called thetensor unit), and three natural families of isomorphisms

sA ^ Bd ^ C > A ^ sB ^ Cd, I ^ A > A > A ^ I

n V (calledassociativityandunital constraints), such that the pentagon, involving the five w
f bracketing four objects, commutes, and the associativity constraint withB= I is compatible with
he unit constraints. CallV braidedwhen it is equipped with a natural family of isomorphism

cA,B:A ^ B > B ^ A

called thebraiding) satisfying two conditions(one expressingcA^B,C in terms of associativit
onstraints, 1A ^ cB,C andcC,A ^ 1B, and a similar one forcA,B^C). A braiding is asymmetrywhen

B,A+cA,B=1A^B. A monoidal category is calledstrict when the associativity and unital constra
re identities.

Monoids can be defined in any monoidal categoryV. A monoidin V is an objectA equipped
ith a multiplicationm :A^ A→A and a unith : I →A satisfying unital and associativity con

ions. A monoid in the category Set of sets, where the tensor product is cartesian produ
onoid in the usual sense. If we use the coproduct(disjoint union) in Set as tensor product, eve

et has a unique monoid structure. A monoid in Vectk, with the usual tensor product of vec
paces, is precisely ak-algebra; monoids in monoidalk-linear categories are also sometimes ca
lgebras. A monoid in the category Cat of categories(where the morphisms are functors and

ensor product is a Cartesian product) is a strict monoidal category. For any categoryA, the

ategoryfA ,Ag of endofunctors onA becomes strict monoidal by taking composition as the
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ensor product: a monoid infA ,Ag is called amonadon A [see MacLane(1971) for the theory o
onads and their algebras].

Frobenius structure on a monoid makes sense in any monoidal category. We recall this
I, where we assemble some facts about Frobenius monoids. Many of the facts are s
hroughout the literature. To begin with, for a concrete case that denies us the luxury of sym
e express the results in terms of monads on categories; but clearly the results carry
onoids in general monoidal categories.

In a symmetric(or even braided) monoidal category we can define commutative monoid
act, what is shown in Kock(2003) is that 2-Cob possesses a distinguished commutative Frob

onoid and that every commutative Frobenius monoid in every symmetric monoidal cate
he image, under an essentially unique symmetric monoidal functor, of the distinguished

Notice from the above discussion that it is the strict monoidal categories, and not the
nes, that are genuinely examples of monoids in Cat. The reason nonstrictness arises is t
2-category: natural transformations between the functors provide Cat with the two-dime

tructure of2-morphismsor 2-cellsand their compositions. Cartesian product is compatible
he 2-cells and so Cat is actually amonoidal 2-category.

Composition of functors is strictly associative so Cat itself is stricter than it might be
wo-dimensional setting. This leads to a weaker version of 2-category due to Bénabou(1967). A
icategoryB hasobjects, and, for objectsA and B, we have a categoryBsA,Bd (called ahom-
ategory) whose objects are calledmorphisms f:A→B of B, whose morphisms are called2-cells
: f ⇒g:A→B of B, and whose composition is calledvertical compositionin B; there are functor

− + − :BsB,Cd 3 BsA,Bd → BsA,Cd

calledhorizontal composition) and morphisms 1A:A→A (called identity morphisms). Horizonta
omposition is associative with units the identity morphisms: but only up to invertible 2-cel
re just like the associativity and unital constraints of a monoidal category. In fact, for each
, the categoryBsA,Ad becomes monoidal by using the horizontal composition as tensor pr

his is the two-dimensional version of the fact that endomorphism sets in any catego
onoids. An objectA together with a monoidt, h, m in the monoidal categoryBsA,Ad is called
monadin B. Each monoidal categoryV can be regarded as a bicategorySV with one object; th
ndohom of that object isV and the horizontal composition is the tensor product ofV.

In a bicategory, Bénabou introduced the operation ofpastingwhich is applied to diagram
uch as

n which the left square depicts a 2-cella :v + f ⇒h+u, the middle square depicts a 2-cellb :w
g⇒k+v and the right triangle depicts a 2-cellg :p⇒q+w. Once a bracketing is chosen for
pper pathp+g+ f yielding a morphisms:A→G and a bracketing is chosen for the lower p
+k+h+u yielding a morphismt :A→G, there is a unique 2-cells :s⇒ t determined by the diagra
sing the compositions and constraints of the bicategory; we calls the pasting compositeof the
iagram. In the exemplary diagram, takings=p+ sg+ fd and t=q+ sk+ sh+udd, we obtains as the

omposite
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p + sg + fd →
a+sg+fd

sq + wd + sg + fd > q + ssw + gd + fd →
q+sb+fd

q + ssk + vd + fd

>q + sk + sv + fdd →
q+sk+ad

q + sk + sh + udd

n the categoryBsA,Gd. For simplicity we sometimes ignore the brackets and constrain
escribing such composites(that is, we act as if we were in a 2-category). String diagrams can al
e used: suffice it to say here that the string diagram corresponding to our pasting diagra

ollows where the 2-cells label vertices, the morphisms label edges, and the objects labe

Each bicategoryB hasdualsBop, Bco, andBcoop: the first has morphisms reversed, the sec
as 2-cells reversed, while the third has both morphisms and 2-cells reversed.

In any bicategoryB, we can defineadjoint morphisms: we sayu:A→B is right adjoint to
f :B→A when there are 2-cells

«:f + u ⇒ 1A:A → A and h:1B ⇒ u + f:B → B

called the counit and unit) satisfying the following 2-cell equations:s« + fdsf +hd=1f and
u+«dsh +ud=1u (the reader might like to draw the pasting and string diagrams as an exercis). We
ayu is anequivalencewhen it is right adjoint to anf with invertible counit and unit(actually, in
his case we do not need to have the 2-cell equations; the unit can always be rechosen so
old). If u is right adjoint tof, thenB together witht=u+ f form a monad inB with unit h and
ultiplication u+« + f.

For any morphismf :X→Y in the bicategory, we writef * : Y→X for a right adjoint shoul
here be one.

An object U of a monoidal categoryV is said to beright dual to an objectV when the
orphismU is right adjoint toV in the bicategorySV. For example, a vector spaceU is a right

ual in Vectk if and only if U is finite dimensional; in this case,U is right dual to the spac
ectksU ,kd of linear functions fromU to k. A monoidal category is calledright autonomouswhen
very object has a right dual; it is calledautonomouswhen every object has both a left and ri
ual. If V is symmetric then every right dual is also a left dual.

There is a weaker kind of monoidal duality that was conceived by Barr[see Barr(1979, 1995
996)] based on examples in topological algebra yet the notion has received a lot of atten
omputer scientists interested in Girard’s “linear logic.” A monoidal categoryV is said to be
-autonomouswhen there is an equivalence of categoriesS:V→Vop and a natural family o

somorphisms
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VsU ^ V,Id > VsV,SUd.

ach autonomous monoidalV is *-autonomous withSU a right dual forU; the existence of le
uals is needed for thisS to be an equivalence.

If B andD are bicategories, alax functor (or “morphism”) F :B→D consists of a functio
etween the sets of objects together with functors

FA,B:BsA,Bd → DsFA,FBd

nd 2-cellsFB,Csgd +FA,Bsfd⇒FA,Csg+ fd, natural inf andg, and 1FA⇒Fs1Ad; these 2-cells satis
hree conditions very much like associativity and unital conditions for a monoid. When
tructural 2-cells are all invertible the lax functor is called apseudofunctor(or “homomorphism”).
biequivalenceis a pseudofunctorF for which eachFA,B is an equivalence of categories and,

ach objectD of D, there is an objectA of B and an equivalenceFA→̃D. Every bicategory i
iequivalent to a 2-category(giving some justification for leaving out constraints when wri
quations).

Between pseudofunctors there arepseudonatural transformations: these are a two
imensional version of natural transformation in which the naturality equations are “brok
sking them to hold only up to extra invertible 2-cells that satisfy some further condition[see
elly and Street(1974), for example]. There is a bicategory HomsB ,Dd whose objects are th
seudofunctors fromB to D, whose morphisms are the pseudonatural transformations, and
-cells are calledmodifications. We shall only have need of modifications in one place in
aper(in defining “scalars”) and there we shall spell out exactly what we mean.

A 2-category can be defined to be a strict bicategory: one in which the associativity and
onstraints are identities. So Cat is special among bicategories; it is strict. Cartesian produ
pecial among monoidal structures on bicategories; it is stricter in many ways than requir
eneral monoidal bicategory. A bicategoryB is monoidalwhen it is equipped with a pseudofunc

^ :B3B→B and an objectI together with associativity and unital constraints much like a mo
al category except that they need only be equivalences rather than isomorphisms and t
nly satisfy the conditions up to further selected isomorphisms that themselves satisfy con
onoidal bicategories are not all monoidally biequivalent to monoidal 2-categories but
egree of strictness can be attained. We do not need more detail than this; however, the i
eader can consult Day and Street(1997) and McCrudden(1999).

In any monoidal bicategory it is possible to definepseudomonoids; these are like monoid
xcept that the associativity and unital conditions only hold up to invertible 2-cells that are
ssociativity and unit constraints; they are required to satisfy conditions that are said to ex
oherence; again, a reference is Day and Street(1997). In particular, a pseudomonoid in Cat
recisely a monoidal category. Hence a pseudomonoid is also called a “monoidal object
onoidal bicategory.

In Sec. III we continue this review of categorical structures highlighting enriched categ
In Sec. IV we define what it means for a pseudomonoid in any monoidal bicategory

robenius. It is an easy corollary of results of Dayet al. (2003) that every autonomou
seudomonoid(whose unit has a right adjoint) is Frobenius. As we have mentioned, finite dim
ional Hopf algebras are known to be Frobenius, yet our corollary provides a setting in whic
he more general quasi-Hopf algebras of Drinfeld are Frobenius irrespective of dimensio
ther example is any autonomous monoidalV-category. In Day and Street(2004), we showed how
uantum groups(and more generally “quantum groupoids”) and star-autonomous monoidal c
gories are instances of the same mathematical structure. Although the term Frobenius
sed in Day and Street(2004), the star-autonomy defined there is precisely the higher-dimen
ersion of Frobenius structure.

Section V is largely inspired by the discussion of “weak monoidal Morita equivalenc
üger (2003a, 2003b) where it is shown that monoidal categories that are equivalent in this

ense still give rise to the same state sum invariants of closed oriented 3-manifolds[see Barre

nd Westbury(1996, 1999)]. We define a notion of projective equivalence between objects in any
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icategory. In the same general setting, we define what it means for a Frobenius mona
trongly separable and relate this to projective equivalence. Both concepts require the
otion of “scalar” determined by the bicategory. In the bicategory ofk-linear categories for
ommutative ringk, the scalars are in bijection with elements ofk. Section VI says a little abo
orita equivalence.

Finally, in Sec. VII, we discuss wreath products of Frobenius algebras. This is done
evel of generalized distributive laws between monads as developed in Lack and Street(2002).

I. FROBENIUS MONADS

Let T =sT,h ,md be a monad on a categoryX. We writeXT for the category ofT-algebras in
he sense of Eilenberg and Moore(1965) (although those authors called monads “triples”). We
rite UT :XT →X for the forgetful functor andFT :X→XT for its left adjoint. Similarly, for a
omonadG=sG,« ,dd, we write XG for the category ofG-coalgebras, we writeVG :XG→X for
he forgetful functor, and we writeCG :X→XG for the right adjoint ofVG.

Before defining Frobenius monads and finding several equivalent definitions, we sha
he results in Sec. 3 of Eilenberg and Moore(1965) on adjoint monads. LetT =sT,h ,md be a
onad on a categoryX such that the endofunctorT has a right adjoint: our notation isT¢G with

ounit s :TG→1 and unitr :1→GT. Eilenberg and Moore showed that:
AM1: G=sG,« ,dd is a comonad where« andd are the mates[in the sense of Kelly and Stre

1974)] of h andm under adjunction, with the explicit formulas being

« = s + hG and d = G2s + G2mG + GrTG + rG,

nd the comonadG is said to beright adjoint to the monadT;
AM2: mateship under adjunction of action and coaction defines an isomorphism of cat

T >XG that commutes with the forgetful functorsUG andVG into X;
AM3: each of the forgetful functorsUT andVG has both left and right adjoints; and,
AM4: if F¢U¢C, then the comonad generated byU¢C is right adjoint to the monad gene

ted byF¢U.
We can add the following extra observation on adjoint monads; it is a trivial conseque

eck’s monadicity theorem[Beck (2003)].
AM5: if F¢U¢C andU is conservative(that is, reflects invertibility of morphisms) then the

omparison functor, into the category of Eilenberg–Moore algebras for the monad gener
¢U, is an equivalence;

If T =sT,h ,md is a monad on a categoryX such that the endofunctorT has a left adjointH, we
an apply the duality explained in Street(1972) to obtain five corresponding results. In particu
here is a comonadH =sH ,« ,dd for which there is an isomorphismXT >XH whereXT andXH are
he Kleisli categories of the monadT and the comonadH, respectively. Also, if a functorF :X

K has a left adjoint, a right adjoint, and is essentially surjective on objects, thenK is equivalen
o the Kleisli categories for the appropriately generated monad and comonad onX.

Definition 1.1: A monadT =sT,h ,md is calledFrobeniuswhen it is equipped with a natur
ransformation« :T→1 such that there exists a natural transformationr :1→T2 satisfying the
quations

Tm + rT = mT + Tr and T« + r = h = «T + r.

Lemma 1.2: For a Frobenius monadT, put d : =Tm +rT=mT+Tr. Then

a) Tm +dT=d +m=mT+Td,
b) T« +d=1T=«T+d,
c) r=d +h.
Proof:
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a) Tm +dT=Tm +TmT+rT2=Tm +T2m +rT2=Tm +rT+m=d +m
mT+Td=mT+TmT+T2r=mT+mT2+T2r=mT+Tr +m=d +m

b) T« +d=T« +mT+Tr=m +T2« +Tr=m +Th=1T
«T+d=«T+Tm +rT=m +«T2+rT=m +hT=1T

c) d +h=Tm +rT+h=Tm +T2h +r=r. Q.E.D.

Remark: Condition (a) of Lemma 1.2 has occurred in the work of Carboni and Walters[see
arboni and Walters(1987) and Carboni(1991)] and of Boyer and Joyal[unfortunately Boyer an
oyal (1994) is unpublished, but see Street(1995) for some details]. The condition relates
eparability of algebras and discreteness. Condition(b) expesses that« is a counit for the comu
iplication d. Condition(c) suggests dually introducings=« +m as we shall now do.

Lemma 1.3: For a Frobenius monadT, there is an adjunction T¢T with counits=« +m :T2

1 and unitr :1→T2. Moreover, G=sT,« ,dd is a right adjoint comonad for the monadT.
Proof: We shall do this using the string calculus[as justified by Joyal and Street(1991)]. We

se Lemma 1.2.
One of the counit/unit identities is proved by the following calculation; look in a mirror fo

roof of the other.

or the second sentence we need to show thatd=T2s +T2mG+TrT2+rT and«=s +hT. The latter is
asy sinces +hT=« +m +hT=«. For the former we have

Q.E.D.
Remark: (a) It follows from the first sentence of Lemma 1.3 thatr is uniquely determined b

he monadT =sT,h ,md and «. This is because the counits is determined bym and «, and the

ounit of any adjunction uniquely determines the unit.
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(b) It is implicit (using AM1) in the second sentence of Lemma 1.3 thatd is coassociative.
Proposition 1.4: For a Frobenius monadT, the left adjoint FT :X→XT to the forgetful functo

T :XT →X is also a right adjoint to UT with counit«.
Proof: By AM2 we know that there is an isomorphism of categoriesK :XT >XG such tha

GK=UT. The left adjointFT to UT is given byFTX=sT2X→
mX

TXd and the right adjointCG to VG

s given byCGX=sTX→
dX

T2Xd. SinceTm ·rT=d, we see thatm andd are mates as required to pro
hat KFT =CG. SinceVG¢CG with counit «, we haveVGK¢K−1CG with counit «; that is,UT ¢FT

ith counit «. Q.E.D.
Proposition 1.5: Suppose F¢U¢F (written F£¢U). Then the monadT generated by the a

unction F¢U together with the counit for U¢F is Frobenius.
Proof: Let l :FU→1 be the counit andh :1→UF be the unit forF¢U. Let « :UF→1 be the

ounit andk :1→FU be the unit forU¢F. The multiplication forT is m=UlF. Take r=UkF
h :1→T2. ThenT with « is Frobenius since

Tm + rT = UFUlF + UkFUF + hUF = UkF + UlF + hUF = UkF = UkF + UlF + UFh

= UlFUF + UFUkF + UFh = mT + Tr,

T« + r = UF« + UkF + h = h, and«T + r = «UF + UkF + h = h.

Q.E.D.
See Freydet al. (1999) for a discussion ofF£¢U in the special case whereinter alia U is fully

aithful.
Theorem 1.6: SupposeT =sT,h ,md is a monad on a categoryX and suppose« :T→1 is a

atural transformation. Then the following conditions are equivalent:

a) equipped with«, the monadT is Frobenius;
b) there exists a natural transformationd :T→TT such that

Tm + dT = d + m = mT + Td and T« + d = 1T = «T + d;

c) there exists a comonadG=sT,« ,dd such that

Tm + dT = d + m = mT + Td;

d) there exists a counits :T2→1 for an adjunction T¢T satisfying the equation

s + Tm = s + mT,

where«=s +mT;
ed the natural transformations=« +m :T2→1 is a counit for an adjunction T¢T;
fd the functor FT :X→XT is right adjoint toUT :XT →X with counit «.

Proof: Equivalence of(a), (b), and(c).
We have proved that(a) implies(b) and(c). Clearly(c) implies(b). To see that(b) implies(a),

ut r=d +h. Then,

Tm + rT = Tm + dT + hT = d + m + hT = d = d + m + Th = mT + Td + Th = mT + Tr and

T« + r = T« + d + h = h = «T + d + h = «T + r.

Equivalence of(a) and (d).
Assuming (a), we know thats=« +m :T2→1 is a counit forT¢T by (b). But then s +Tm

s +mT is obvious by associativity ofm.

Assume(d) and note thats +Tm=s +mT, in string notation, becomes
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et r be the unit corresponding to the counits. The following provesTm +rT=mT+Tr.

ow notice thats +hT=s +Th by the following calculation.

o put«=s +hT=s +Th and notice that

T« + r = Ts + T2h + r = Ts + rT + h = h = sT + Tr + h = sT + hT2 + r = «T + r.

o (a) holds.
Equivalence of(a) and (e).
Lemma 1.3 provides one direction. Conversely, if(e) holds then(d) holds sinces +Tm

s +mT by associativity ofm. So (a) holds.
Equivalence of(a) and (f).
This is an immediate consequence of Propositions 1.4 and 1.5. Q
It is clear from Theorem 1.6 that our definition agrees with Lawvere’s definition of Frob

onad[see Lawvere(1969), pp. 151 and 152]. Using the “algebra” terminology, it also agrees
xample with Chap. 5 of Carmody(1995), Sec. 6 of Bichon and Street(2003) and Definition 3.1
f Müger (2003a, 2003b).

It follows also that the notion of Frobenius monad is self-dual in the sense that it is the
s a comonadG=sG,« ,dd with a natural transformationh :1X→G such thatd +h is a unit for
¢G.

II. REVIEW OF ENRICHED CATEGORIES

References for enriched categories are Kelly(1982) and Lawvere(1974). Let V denote a
articularly familiar symmetric monoidal category. The reader really only needs to keep in

he category Set of sets with Cartesian product as tensor product and the category Vectk of k-linear
paces with usual tensor product. There are other nice examples such as Cat with C
roduct or the category DGVectk of chain complexes of(that is, differential graded) vector space

We call V our basemonoidal category. AcategoryA enriched in the baseV, also called
-category, consists of:

i) a set obA whose elements are calledobjects;
ii ) for each pair of objectsA andB of A, an objectAsA,Bd of V (that some people write

HomAsA,Bd);
iii ) morphismsAsB,Cd ^ AsA,Bd→AsA,Cd in V calledcomposition; and

iv) morphismsI →AsA,Ad in V called identity morphisms ofA;
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subject to associativity and unital conditions. There is an underlying ordinary ca
whose objects are the same as those ofA and whose morphismsf :A→B (we call them
morphisms ofA) are morphismsf : I →AsA,Bd in V. Each objectA of A determines
monoidAsA,Ad in V. Each monoidM in V determines aV-categorySM with one objec
whose endohom isM. Taking the other view, we can think ofV-categories as “monoids
V with several objects.”

WhenV=Set, aV-category is a category. WhenV=Vectk, a V-category is ak-linear categor
this is simply an ordinary category whose homs arek-vector spaces and whose compositio
ilinear). Eachk-algebraE determines a Vectk-categorySE with one object. A 2-category is
at-category!

The nice basesV we have in mind areclosed: for each pair of objectsX andY of V there is
n objectfX,Yg (called theinternal homof X andY) and a natural bijection

VsW ^ X,Yd > VsW,fX,Ygd.

n this caseV itself becomes aV-category; so sometimes we writeVsX,Yd for the objectfX,Yg
rather than merely its underlying set. In a nonsymmetric monoidal categoryV this fX,Yg would be
called aleft internal hom. A right internal homfX,Ygr satisfies

VsX ^ W,Yd > VsW,fX,Ygrd.

n any monoidal categoryV then, ifU is right dual toV, then there is a right internal hom ofV and
ny Y given by fV,Ygr =U ^ Y.

The oppositeAop of a V-categoryA is theV-category with the same objects asA and with
opsA,Bd=AsB,Ad; the composition uses that ofA but “in the reverse order” as allowed by

ymmetry ofV. We will see that, in the appropriate context,Aop is a dual ofA in the same wa
hat for finite-dimensional vector spacesV, the spaceV* of linear functionals is a dual ofV.

The definition ofV-functor T:A→B betweenV-categoriesA andB is made in the obviou
ay: it consists of a functionT:obA→obB and morphisms

T = TA,B:AsA,Bd → BsTA,TBd

n V (calledthe effect of T on homs) compatible with composition and identities. The definition
-natural transformationu :T⇒T8 :A→B needs a little more care in general, however, for
asesV=Set andV=Vectk, it amounts to an ordinary natural transformation.

With compositions that are straightforward(especially in the examples), we obtain a
-categoryV-Cat whose objects are(small) V-categories, whose morphisms areV-functors and
hose 2-cells areV-natural transformations. As a technical point concerning size, we allow
elves to writeV-Cat sA ,Bd for the category ofV-functors fromA to B even whenA andB are
ot small.

There is atensor productA ^ B of V-categories with obsA ^ Bd=obA3obB and

sA ^ BdssA,Bd,sA8,B8dd = AsA,A8d ^ BsB,B8d;

he composition uses the compositions ofA andB and the symmetry ofV. The unit for this tenso
roduct is theV-categoryI with one object, denoted by·, and withIs·, ·d= I. Equipped with this
-Cat becomes a symmetric monoidal 2-category. Actually it is also closed; we now desc

nternal hom.
For V-categoriesA andB, there is aV-functor categoryfA ,Bg: it is the V-category whos
bjects areV-functors fromA to B and whose homs are given by the ends
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fA,BgsT,T8d =E
A

BsTA,T8Ad

see MacLane(1971) for Yoneda–Day–Kelly integral notation]. In the examples of bases
nterest here, it is clear that theV-natural transformations fromT to T8 form an object ofV. There
s a canonical isomorphism of categories

V-CatsC,fA,Bgd > V-CatsC ^ A,Bd.

There is another monoidal bicategoryV-Mod whose objects are also the(small) V-categories
n this case however, the hom-categories are defined by

V-ModsA,Bd = V-CatsBop
^ A,Vd.

n other words, the morphisms ofV-Mod are V-functors M :Bop^ A→V and the 2-cells ar
-natural transformations. These objectsM of V-Mod sA ,Bd are calledmodulesfrom A to B (or

left A-, right B-bimodules”) because of the actions(albeit a “several object version” of actio)

AsA,A8d ^ MsB,Ad ^ BsB8,Bd → MsB8,A8d

hat correspond to the effect ofM on homs. The composite of modulesM :A→B andN:B→C is
efined by the coend

sN + MdsC,Ad =EB

MsB,Ad ^ NsC,Bd;

his colimit can be constructed by taking a sum(coproduct) in V over all objectsB and factoring
ut the left action ofB on N and the right action ofB on M (instead of a composition we can th
f it as a tensor product overB: in that spirit we can writeN+M =M^B N. This composition(like

ensor product) is only associative up to isomorphism(which is allowed in a bicategory). The
dentity module ofA is the module 1A defined by 1AsA,A8d=AsA,A8d.

Each V-functor T:A→B yields modulesT* :A→B and T* : B→A defined byT*sB,Ad
BsB,TAd andT* sA,Bd=BsTA,Bd. In fact,T* is right adjoint toT* in the bicategoryV-Mod: the
nit 1A→T* +T* has components

AsA,A8d → EB

BsTA,Bd ^ BsB,TA8d = BsTA,TA8d

iven by the effect ofT on homs. We obtain an “inclusion” pseudofunctor

V-Cat→ V-Mod

hat takes eachV-category to itself, takes eachV-functorT to T* , and is bijective on 2-cells; so w
ometimes writeT for the moduleT* .

So we can think ofV-Mod as an expansion ofV-Cat designed to provide the morphisms
-Cat with right adjoints. Not only adjoints but equivalences inV-Mod are also of interest.

Equivalence inV-Mod is calledCauchy equivalence ofV-categories. In the particular cas
hereV is the monoidal category of Abelian groups with the usual tensor product, we obta
otion of Cauchy equivalence for additive categories. RingsR can be regarded as additive c
goriesSR with a single object; in this way, Cauchy equivalence is none other than or
orita equivalence of rings.

EachV-categoryA has aCauchy completion QA: it is the smallest full sub-V-category of th
-functor V-categoryPA=fAop,Vg that contains the representableV-functors As−,Ad and is
losed under absoluteV-colimits. [AbsoluteV-colimits are those preserved by allV-functors; se
treet(1983).] For example, ifV=Set thenQA is the completion of the categoryA under splitting

f idempotents; and ifV=Vectk, then QA is the completion of the additive categoryA under
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irect sums and splitting of idempotents. For reasonableV, if A is small, so isQA [see Johnso
1989b)].

It is easy to see thatV-categoriesA andB are Cauchy equivalent if and only ifPA andPB
re equivalentV-categories(that is, equivalent in the 2-categoryV-Cat). It is well known [see
treet (1983) for a proof in a very general context] that V-categoriesA and B are Cauch
quivalent if and only ifQA andQB are equivalentV-categories. The inclusion ofQA in QQA

s an equivalence, soA is Cauchy equivalent toQA. We sayA is Cauchy completewhen it admits
ll absoluteV-colimits; that is, when the inclusion ofA in QA is an equivalence.

Tensor product ofV-categories extends toV-Mod making V-Mod a symmetric monoid
icategory and the inclusion ofV-Cat in V-Mod strict monoidal. We have seen thatV-Cat is

closed. However, there is a much stronger structure possessed byV-Mod; it is “autonomous” like
the category of finite-dimensional vector spaces, and we shall now make this precise.

We work in a monoidal bicategoryB. A morphisme:A^ B→ I is called abiexact pairing
hen the functor

BsC,B ^ Dd → BsA ^ C,Dd,

aking C→
f

B^ D to A^ C ——→
A^ f

A^ B^ D ——→
e^D

D, is an equivalence of categories for
bjectsC andD. In this case, there is a unique(up to isomorphism) morphismn: I →B^ A such

hat the compositeA ——→
A^n

A^ B^ A ——→
e^A

A is isomorphic to the identity ofA. We say thatB
s a right bidual for A with counit eandunit n. Of course,A is called aleft bidual for B.

The monoidal bicategoryB is calledautonomouswhen each object has both a left and a r
idual. A choice of right bidual of an objectA is denoted byA+: with unit n: I →A+ ^ A and couni
:A^ A+→ I.

In the case ofV-Mod, a right bidual for theV-categoryA is provided byAop since

V-ModsA ^ B,Cd > V-CatsCop
^ A ^ B,Vd > V-ModsB,Aop

^ Cd.

he counite:A ^ Aop→ I is the module defined byes·,A,A8d=AsA8 ,Ad. SinceV-Mod is sym-
etric, it is autonomous.

V. FROBENIUS PSEUDOMONOIDS

We consider a pseudomonoid(or monoidal object) A in a monoidal bicategoryB: the under
ying object is also denoted byA, the unit isj : I →A, the multiplication isp:A^ A→A, and there
re invertible coherent associativity and unital constraints. When the unit constraints are id

he pseudomonoid is said to benormalized. When the unit and associativity constraints are id
ities, the pseudomonoid is said to bestrict; it is then just a monoid.

Motivated by Theorem 1.6(e) we make a natural higher-dimensional extension of the F
ius notion.

Definition 3.1: A pseudomonoidA is Frobeniuswhen it is equipped with a morphisml :A
I such that the composite

A ^ A→
p

A→
l

I

s a biexact pairing.
Proposition 1.1 of Dayet al. (2003) states that the pseudomonoidA is left autonomouswith

ualizationd:A+→A if and only if

p * > sp ^ Ad + sA ^ d ^ Ad + sA ^ nd,
nd this holds if and only if
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sp + sd ^ Add * > sA+
^ pd + sn ^ Ad.

roposition 1.2 of Dayet al. (2003) gives the formula

d > sA ^ ed + sp * ^ A+d + s j ^ A+d.

urthermore, in the case wherej has a right adjoint, Proposition 1.4 of Dayet al. (2003) states tha
is also right autonomous, and then simply called autonomous, if and only ifd is an equivalence

hen the right adjointd* of d is an inverse equivalence and[Proposition 1.2 of Dayet al. (2003)]
s given by the formula

d * > sA+
^ j * d + sA+

^ pd + sn ^ Ad.

Proposition 3.1: Every autonomous pseudomonoidsA, j ,pd, for which j has a right adjoint, i
robenius with l= j*.

Proof: In an autonomous monoidal bicategory, the composites :A^ A→
p

A→
l

I is a biexac
airing if and only if the corresponding morphism

ŝ:A ——→
n^A

A+
^ A ^ A ——→

A+
^s

A+

s an equivalence. So, withl = j*, we have

ŝ = sA+
^ j * d + sA+

^ pd + sn ^ Ad > d * ,

n equivalence. Q.E.D
A pseudocomonoidal structure onA in Proposition 3.1 is provided byj* and p*; compare

heorem 1.6(c). We also note that there are isomorphisms

p * > sd ^ Ad + sA+
^ pd + sn ^ Ad > sA ^ pd + sr ^ Ad > sp ^ Ad + sA ^ rd,

herer=sI→
j

A→
p*

A^ Ad.
Example: Quasi-Hopf algebras
A quasibialgebra(over a fieldk) is a k-algebra H equipped with algebra morphisms

D:H → H ^ H and E:H → k,

nd with an invertible elementfPH ^ H ^ H, such that

sE ^ 1HdsDsadd = a = s1H ^ EdsDsadd and fsD ^ 1HdsDsadd = s1H ^ DdsDsaddf

or all aPH; furthermore,f satisfies thepentagon condition

s1 ^ 1 ^ Ddsfd · sD ^ 1 ^ 1dsfd = s1 ^ fd · s1 ^ D ^ 1dsfd · sf ^ 1d.

A quasibialgebra reduces to an ordinary bialgebra whenf is the identity element 1̂ 1^ 1.) We
an makeH ^ H into a left H ^ H-, right H-bimodule by means of the actions

sa ^ bd · sx ^ yd ·c = o
i

axci
1

^ byci
2,

hereDscd=o
i
ci

1 ^ ci
2; for the time being, let us call this bimoduleM. Given an algebra antimo

hismS:H→H, there is another leftH ^ H-, right H-bimodule structure defined onH ^ H by the
ctions

sa ^ bd · sx ^ yd ·c = o
j

axSsbj
1d ^ bj

2yc,

1 2
hereDsbd=o
j
bj ^ bj ; for the time being, let us call this bimoduleN. A quasi-Hopf algebrais a
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uasibialgebraH together with an algebra antimorphismS:H→H (called theantipode) and a
imodule isomorphismp :M >N. This is equivalent to the original definition of Drinfel’d(1990)

hat, instead of the isomorphismp, involved two elementsa andb of H satisfying the equation

Escda = o
i

Ssci
1daci

2, Escdb = o
i

ci
1bSsci

2d,

o
i

fi
1bSsfi

2dafi
3 = 1, ando

i

Ssfi
−1dafi

−2bSsfi
−3d = 1

see Sec. 2.4 of Majid(1995)]. We shall say a bit more about the equivalence of the defin
oon.

TakeV=Vectk and recall that ak-algebraA is a one-objectV-categorySA. It is obvious tha
n algebra morphismf :A→B is the same as aV-functor f :SA→SB. So what is aV-natura
ransformations : f ⇒g in terms of the algebra morphismsf andg from A to B ? It is nothing othe
han an elementa of B such thatafsad=gsada for all elementsa of A. Therefore we see thatf
elongs in the square

n V-Cat. From this it follows easily that:a quasibialgebra structure on an algebra H is precis
normalized pseudomonoid structure onSH in sV-Catdcoop.

Now we move fromsV-Catdcoop to sV-Moddcoop whereV-functors have right adjoints and t
bjectSHop is a bidual forSH. Here we can observe that the right adjointD* : SH ^ SH→SH of
is the bimoduleM above and the composite module

SH ^ SH ——→
SH^D

SH ^ SH ^ SH ——→
SH^S^SH

SH ^ SHop
^ SH ——→

e^SH

SH

s N. It follows that:a quasi-Hopf structure on the quasialgebra H is precisely a left autono
tructure on the normalized pseudomonoidSH in sV-Moddcoop. Therefore Proposition 3.1 appl
o yield a Frobenius structure onSH in sV-Moddcoop using E*. This means thatSH becomes
seudomonoid inV-Mod usingE* and D*; of course, this is not the original algebra structure
.

Finally in this example, we can say something about the equivalent definitions of quas
lgebra: specifically about howp is obtained froma and f. The above-mentioned equat
atisfied by the elementa of H says precisely that it is a(bi)module morphism fromE to e+ s1

^ Sd +D (note thatE is k and e+ s1^ Sd +D is H with appropriate actions). Thenp is the pastin
omposite of the following diagram.

imilarly, b is used to define a 2-cell in the opposite direction; the further conditions ona, b, and
say that this really is the inverse ofp. Further details can be found in the general results of

t al. (2003). This ends our example.

In Sec. 9 of Day and Street(2004) a form for a pseudomonoidA in a monoidal bicategoryB
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s defined to be a morphisms :A^ A→ I together with an invertible 2-cellg as below.

hen the authors define the pseudomonoid to bep-autonomouswhens is a biexact pairing.(There
as an extra condition in[Day and Street(2004)] requirings to be “representable”; however, th

s automatic under a mild completeness condition on the pseudomonoid.)
Proposition 3.2: A pseudomonoid isp-autonomous if and only if it is Frobenius.
Proof: Supposes and g is a form on the pseudomonoidA with s a biexact pairing. Putl

sA→
j ^A

A^ A→
s

Id so that

s > s + sp ^ Ad + s j ^ Ad > s + sA ^ pd + s j ^ Ad > s + s j ^ Ad + p > l + p,

here the second isomorphism involvesg. So A equipped withl is Frobenius. Conversely, p
= l +p which is a biexact pairing by definition of Frobenius; the isomorphismg is obtained b
omposing the associativity constraint

p + sp ^ Ad > p + sA ^ pd

n the left withl. Q.E.D.
Corollary 3.3: For any object X ofB and any equivalencey :X→X++, the pseudomonoid +

^ X is Frobenius when equipped with l:X+ ^ X→
1^y

X+ ^ X++→
e

I.
Example: Star-autonomous monoidal enriched categories
A V-categoryA is monoidalwhen it is equipped with the structure of pseudomonoid inV-Cat;

e write #:A ^ A→A for the “multiplication”V-functor(to distinguish it from the tensor produ
^ of V) and J for the unit object. We say thatA is p-autonomouswhen it is equipped with a
quivalence ofV-categoriesS:A→Aop and aV-natural family of isomorphisms

AsA # B,Jd > AsB,SAd.

his is a straightforward enrichment of the concept due to Barr(1996) and considered mo
enerally in Day and Street(2004) in connection with quantum groupoids. Here we wan
mphasize the Frobenius aspect. In order to obtain an autonomous monoidal bicategory,

o move fromV-Cat toV-Mod. Because of the way we have definedV-Mod, it is better to conside
op rather thanA; to say one is monoidal is the same as saying the other is. For simplicity, w

upposeA is Cauchy complete(see Sec. VI); then any equivalenceA→Aop in V-Mod is auto
atically of the formS* for an equivalenceS:A→Aop in V-Cat. As a consequence of Proposit
.2 we have that:the monoidalV-categoryA is p-autonomous if and only ifAop is Frobenius in

-Mod. If we write Š:Aop^ Aop→I for the module defined byŠsA,Bd=AsB,SAd, we see that th

somorphism definingp-autonomy is preciselyJ* +#* > Š. Corollary 3.3 implies a result of Da
nd Street(2004) that, for anyV-categoryX, the monoidalV-categoryXop^ X is p-autonomous

. PROJECTIVE EQUIVALENCES

This section was inspired to a large extent by the discussion of “weak monoidal
quivalence” in Müger(2003a, 2003b).

It is well known what it means for a morphism to be an equivalence in any bicategory a
very equivalence can be made an adjoint equivalence. We wish to discuss a more gener

f equivalence. For this we need to clarify a concept of scalar.
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A scalar for a bicategoryD is a modification

v:11D → 11D:1D → 1D:D → D.

hat is,v assigns to each objectA of D a 2-cell vA:1A→1A such that, for all morphismsf :A
B,

fvA = vBf .

calars form a commutative monoid under composition. By abuse of language,
: f ⇒ f :X→Y will be called ascalar when there exists an actual scalarv such that

u = fvX;

e sayu is an invertible scalarwhenv is invertible.
Take the example of enriched categories; that is, in the case whereD=V-Mod. It is easy to se

hat the commutative monoid of scalars is isomorphic to the endomorphism monoidVsI ,Id of the
nit objectI. In particular, whenV is the category of sets, the monoid is trivial(consisting only o

he identity). More interestingly, ifV is the monoidal category of modules over a commutative
then the scalars forV-Mod are precisely the elements ofk.

Remark:The braided monoidal category HomsD ,Dds1D ,1Dd whose objects are pseudonatu
ransformations of the identity ofD, whose morphisms are modifications, and whose te
roduct is either of the two compositions, is called thecenterof the bicategoryD. So scalars ar
ndomorphisms of the unit of the centre. IfD is the one-object bicategorySC with hom monoida
ategoryC then HomsD ,Dds1D ,1Dd is the centerZC of C in the sense of Joyal and Street(1991).

Definition 4.1:A morphismu:A→X in a bicategoryD is called aprojective equivalencewhen
here is a morphismf :X→A adjoint to u on both sides(that is, f £¢u) and there are invertib
calarsv andÃ such that the composites

1X→
h

uf→
«

1X and 1A→
k

fu→
l

1A

re equal tovX and ÃA, respectively, whereh, l and k, « are the unit-counit pairs for th
djunctions.

In any projective equivalence, by suitable rescaling of units and counits, we can ens
itherv or Ã is an identity. Equivalences are precisely the projective equivalences in whic
andÃ can be chosen to be identities.

Proposition 4.1: A composite of projective equivalences is a projective equivalence.
Proof: Supposef £¢u with u:A→X and f8£¢u8 with u8 :X→K whereh, l and k, « are the

nit-counit pairs for the adjunctionsf £¢u and those forf8£¢u8 are similar except that they ha
rimes. The counit foru8u¢ f f8 is

u8uf f8 →
u8«f8

u8f8→
«8

1K

hile the unit for f f8¢u8u is

1K→
h8

u8f8 →
u8hf8

u8uf f8.

ut « +h=vX and«8 +h8=vK8 . So,

«8 + su8«f8d + su8hf8d + h8 = «8 + su8s« + hdf8d + h8 = «8 + su8vXf8d + h8 = «8 + svKu8f8d + h8

= «8 + h8 + vK = vK8 + vK = sv8 + vdK.

similar argument applies for the other composite. Q.E
Definition 4.2:A Frobenius monadt =st ,h ,m ,« ,dd on an objectX of D is strongly separabl
hen there exist invertible scalarsv andÃ such that the composites
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1X→
h

t→
«

1X and t→
d

tt→
m

t

re equal tovX andÃXt, respectively.
Proposition 4.2: A morphism inD is a projective equivalence if and only if it is monadic

strongly separable Frobenius monad.
Proof: A projective equivalenceu:A→X is conservative since the counitl for its left adjoint

s a retraction(split epimorphism). Sinceu also has a right adjoint, it is monadic. The compos
+h and m +d=ulf +ukf =usl +kdf are invertible scalars from Definition 4.1. Sou generates
trongly separable Frobenius monad onX.

Conversely, suppose we have a strongly separable Frobenius monadt =st ,h ,m ,« ,dd on X and
:A→X together with actionj : tu→u provide an Eilenberg–Moore construction fort. So there
xists f £¢u, whereuf is isomorphic tot and jf transports tom. We can replacet by uf so tha
f =m. Thenh is the unit forf ¢u and« is the counit foru¢ f. So we have that« +h is an invertible
calar. The counitk for f ¢u is determined byuk=j and unitl for u¢ f is determined by

ul = tj + du + hu.

o,

usk + ld = j + tj + du + hu = j + mu + du + hu = j + ÃXu + hu = ÃXu + j + hu = ÃXu = uÃA,

hich implies thatk +l=ÃA. Thereforeu is a projective equivalence. Q.E.

I. VARIATIONS ON MORITA EQUIVALENCE

SupposeA is a monoidalV-category(that is, a pseudomonoid inV-Cat). ThenPA become
cocomplete monoidalV-category via the convolution tensor product

sM p NdsAd =EXY

AsA,X ^ Yd ^ MX ^ NY

f Day (1970). MonoidalV-categoriesA andB are defined to beCauchy equivalentwhenPA and
PB are equivalent monoidalV-categories(that is, equivalent in the 2-category of monoi

-categories and monoidalV-functors). Johnson(1989a) showed that the convolution tensor pr
ct onPA restricts toQA and that monoidalV-categoriesA andB are Cauchy equivalent if an
nly if QA andQB are equivalent monoidalV-categories. MoreoverA is Cauchy equivalent
A as monoidalV-categories.

From this we see in particular that Cauchy equivalence, monoidal or not, is a special
equivalence once we find the appropriate ambient bicategory. Having in Sec. IV weake
notion of equivalence to projective equivalence, we can now contemplate projective C
equivalence. TwoV-categoriesA andB areprojectively Cauchy equivalentwhenPA andPB are
rojectively equivalentV-categories. ForV equal to the category of sets or the category of Abe
roups, this concept is the same as Cauchy equivalence. However, ifV is the category of vecto
paces over a field, for example, we do obtain a weaker kind of equivalence; in particu
pplies to associative unital algebras over the field. In general,A andB are projectively Cauch
quivalent if and only ifQA andQB are projectively equivalentV-categories.

Similarly, two monoidalV-categoriesA andB areprojectively Cauchy equivalentwhenPA
nd PB are projectively equivalent monoidalV-categories. IfV is the category of vector spac

over a fieldk, we do obtain a weaker kind of Cauchy equivalence for monoidalk-linear categories
In general, monoidalV-categoriesA andB are projectively Cauchy equivalent if and only ifQA
andQB are projectively equivalent monoidalV-categories.

II. WREATH PRODUCTS OF FROBENIUS ALGEBRAS
As in Sec. II, we express our results in terms of monads rather than algebras.
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We shall begin by recalling some notions from Lack and Street(2002). Given a 2-categoryK,
here is a 2-category EMsKd which turns out to be the free completion ofK with respect to th
ilenberg–Moore construction on monads. Explicitly, an object of EMsKd is a pairsA,td whereA

s an object ofK and t is a monad onA in K. A morphismsf ,fd : sA,td→ sB,sd consists of
orphismf :A→B and 2-cellf :s+ f ⇒ f + t in K satisfying two compatibility conditions with th

nitsh and multiplicationsm of the monadst ands. A 2-cell r : sf ,fd⇒ sg,cd is a 2-cellr : f ⇒g+ t
n K such that

sg + mdsr + tdf = sg + mdsc + tdss + rd.

omposition in the category EMsKdssA,td ,sB,sdd involves using the multiplicationm of t. Hori-
ontal composition is straightforward.

A wreath in K is defined in Lack and Street(2002) to be a monad in EMsKd. Explicitly, a
reath consists of an objectA of K, monadt on A, a morphisms:A→A, and 2-cellsl : t +s⇒s
t, i :1A⇒s+ t, andn :s+s⇒s+ t satisfying seven conditions(on top of those that sayt is a monad).
otice thats need not itself be a monad, but it could be whilei andn could be obtained from th
nit and multiplication: in this casel is called adistributive lawbetween the monadst ands.

For any wreath, we obtain a monad structure on the composite endomorphisms+ t. The unit is
and the multiplication is the composite

s + t + s + t ——→
s+l+t

s + s + t + t ——→
n+m

s + t + t ——→
s+m

s + t.

his composite monad is thewreath product.
A wreath is calledFrobeniuswhen the monadss,ld on sA,td in EMsKd is equipped with

robenius structure. We leave this to the reader to make more explicit[Johnson(1989b)].
Proposition 6.1: The wreath product of a Frobenius wreath on a Frobenius monadsA,td is

robenius.
Proof: Without loss of generality we may supposeK admits the Eilenberg–Moore constr

ion. We use Theorem 1.6sfd. SincesA,td is Frobenius, the left adjointf t to ut :At→A is also righ
djoint. The Eilenberg–Moore construction on the wreath, as a monad in EMsKd, is the wreath
roduct. So the left adjoint of the underlyingsA,s+ td→ sA,td is also a right adjoint. Since a
-functors preserve adjunctions, the 2-functor EMsKd→K assigning to each monad its Eilenbe
oore construction, assigns tosA,s+ td→ sA,td, a morphismAs+t→At whose left adjoint is also i

ight adjoint. The underlyingAs+t→A is the composite of the underlyingsAs+t→At→A, and so ha
two-sided adjoint. It follows then thats+ t is Frobenius. Q.E.D
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The term higher gauge theory refers to the generalization of gauge theory to a
theory of connections at two levels, essentially given by 1- and 2-forms. So far,
there have been two approaches to this subject. The differential picture uses non
Abelian 1- and 2-forms in order to generalize the connection 1-form of a conven-
tional gauge theory to the next level. The integral picture makes use of curves and
surfaces labeled with elements of non-Abelian groups and generalizes the formu-
lation of gauge theory in terms of parallel transports. We recall how to circumvent
the classic no-go theorems in order to define non-Abelian surface ordered products
in the integral picture. We then derive the differential picture from the integral
formulation under the assumption that the curve and surface labels depend
smoothly on the position of the curves and surfaces. We show that some aspects o
the no-go theorems are still present in the differential(but not in the integral)
picture. This implies a substantial structural difference between nonperturbative
and perturbative approaches to higher gauge theory. We finally demonstrate tha
higher gauge theory provides a geometrical explanation for the extended topologi-
cal symmetry of BF-theory in both pictures. ©2004 American Institute of
Physics.[DOI: 10.1063/1.1790048]

. INTRODUCTION

Gauge theory can be formulated in two ways which we term the differential and the in
icture. As an illustration, recall, for example, Maxwell’s equations which can be formu
ither in terms of integral equations relating electric and magnetic fluxes through surfac
urrents through solenoids(this is actually the form which corresponds to experimental setup

n which the laws of electrodynamics were originally discovered) (integral picture) or alternatively
n terms of the familiar differential equations(differential picture).

Similarly, any gauge theory can be formulated in two ways. LetM be some space–tim
anifold and the gauge groupG be a Lie group with Lie algebrag. In the differential formulatio
f gauge theory, one considers a connection of some principalG-bundleP→M. In local coordi-
ates, i.e., using a local trivialization of the bundle, the connection is given by ag-valued con
ection 1-formA which transforms under changes of the coordinates as

A ° A8 = g−1Ag+ g−1 dg, s1.1d

here g:U1ùU2→G denotes a transition function on the overlap of the coordinate pa

1,U2#M.
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The connection is usually taken to be the basic field of the theory, i.e., the variation
ction principle is with respect toA, and in a path integral quantum theory, one must integrate
ll possible connections. The Lagrangian and the action of the theory depend on the cur

F = dA + 1
2fA,Ag, s1.2d

hich is ag-valued 2-form. It transforms under coordinate changes in a gauge covariant

F ° F8 = g−1Fg. s1.3d

As an alternative to this differential picture, there exists the integral formulation. In
ormulation, one uses the group valued parallel transports,

Ug = P expSE
g

AD P G, s1.4d

long curvesg : f0,1g→M ,t°gstd as the basic variables. Locally, the parallel transport alw
xists, and it is uniquely determined as the solution of the first order matrix differential eq

d

dt
Ugstd = fAmsgstddġmstdgUgstd, s1.5d

here we have written

Ugstd = P expSE
0

t

AmsgstddġmstddtD , s1.6d

or the parallel transport alongg from t=0 to t= t. The initial condition isUgs0d=1PG.
The curvature can then be calculated from the holonomyUg of a closed loopg in the limit in

hich the loop shrinks to infinitesimal size. This integral picture of gauge theory close
embles what is done in lattice gauge theory, but without the restriction that the curves m
n some fixed lattice. Note that in the integral formulation, the parallel transports satisfy v
elations.

Now let us illustrate the basic idea of higher gauge theory. Suppose first that the gaug
n conventional gauge theory is Abelian, sayG=Us1d. Then the connection 1-formA is imaginary
nd the transition functions are of the formgsxd=ewsxd, wherew :U→ iR is a suitable imaginar
alued function, and(1.1) becomes

A ° A8 = A + dw, s1.7d

o that the curvature 2-form(1.2) is just the exterior derivative,

F = dA. s1.8d

Abelian gauge theory with(1.7) and (1.8) now admits the following higher level generali
ion. Let A be some(imaginary valued) p-form which becomes the basic field of the theory.
agrangian and the action depend only on the curvaturesp+1d-form F=dA. The theory therefor
njoys a local gauge symmetry with the transformation law(1.7) for somesp−1d-form w. This is
consequence of the Poincaré lemma because locally any closedp-form A−A8 is of the form dw.
he Abelian theory at levelp is therefore completely governed by the de Rham cohomologyM.

The Abelian theory at levelp=2 is known in the physics literature as Kalb–Ramond fie1

nd at generic levelp as p-form electrodynamics.2 Both refer to the differential picture of th
heory. The corresponding integral picture makes use ofp-dimensional surfaces labeled w
lements of the Abelian group U(1). If the p-surfaces were restricted to a fixed hypercubic lat
e would have at levelp=0 the xy model of statistical mechanics, atp=1, U(1)-lattice gaug
heory, and at higherp the models of Ref. 3.
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We refer to these higher level theories ashigher gauge theory. Does there exist a non-Abeli
igher gauge theory, at least at levelp=2? Many authors4–8 have attempted to construct su
odels, but the necessity to find an underlying geometrical picture by suitably generalizin
undles seems to impose serious constraints. To our knowledge, the most thoroughly
odel was the Freedman–Townsend model4 which, however, has only an Abelian local symme
nd lacks a geometrical understanding of why this must be Abelian.

What precisely are the geometrical conditions involved in higher gauge theory? The co
ry conditiond+d=0 of the Abelian case is, of course, no longer useful as the curvatureF is in
eneral no longer just dA, but rather given by(1.2). Assume we have some non-Abelian conn
ion 2-form and wish to define its curvature 3-form. Geometrically, the 2-form would be asso
ith surfaces labeled by elements of some non-Abelian groupH, and the curvature 3-form shou
e some group element associated with a closed surface, composed from several co
urfaces that are all labeled with elements ofH. Since the groupH is non-Abelian and there is n
anonical surface order available, we simply do not know how to compose the variou
belian labels.

Recall that the points of a curve have a natural order, and the definition of the p
ransport along a given curve indeed makes use of this order. For higher dimensional s
olds, however, such a canonical order is not available. This lack of natural order h
eitelboim9 to the formulation of a no-go theorem ruling out the existence of non-Abelian g
heories for extended objects. This applies essentially to any gauge theory whose connec
on-Abelianp-form, pù2.

With the introduction of 2-categories in mathematics, it recently became possible to s
his no-go theorem atp=2. On the mathematical side, there is the construction of non-Ab
erbes generalizing fiber bundles, see, for example, Ref. 10. It is expected that gerbes pro
esired generalization of fiber bundles. They are, for example, conjectured to play a

heories on coincident 5-branes is string theory, see for example, Refs. 11 and 12. In the
aper, we prefer a slightly different approach based on the definition of Lie 2-groups by13

hich generalize ordinary Lie groups to a higher level and which include the symmetries of
t least in the case of strict categories. This will allow us to explicitly solve the surface or
roblem, thereby providing a rigorous basis for Chepelev’s conjectures,7 and to see in detail ho
eitelboim’s no-go theorem is avoided. Our results finally provide the geometrical backgro
ost of the traditional approaches to non-Abelian 2-forms, at least as long as strict catego

ufficient, and explain geometrically why there are some restrictions that become effective
ne requires smooth 1- and 2-forms, but not necessarily in a nonperturbative approach. It c
surprise thatBF-theory which is usually not mentioned in the context of non-Abelian 2-fo

oes form a nontrivial example of higher gauge theory.
Let us now briefly outline our approach. Starting from the notion of Lie 2-groups, Bae

efined Lie 2-algebras and started to generalize the differential picture of gauge theory to
nvolving non-Abelian connection 1- and 2-forms.13 Open questions in this approach are
recise form of the local gauge transformations and of the gauge invariant expressions w
equired in order to define Lagrangians and actions in physics.

Also starting from the notion of Lie 2-groups, we have generalized the integral pict
auge theory to a theory involving curves and surfaces labeled with elements of non-A
roups.14 This formulation has the advantage that the theory of 2-categories dictates the

he local gauge transformations and the expressions for the gauge invariant quantities. Th
heorems can be avoided because the underlying 2-categorical structure leads to a n
nterplay of the curve and surface labels.

An important question is how the differential13 and the integral approach14 are related. In thi
aper, we start from the integral picture of Ref. 14 and systematically derive the corresp
ifferential expressions by studying the non-Abelian curve and surface labels of the theor

nfinitesimal limit, assuming that the labels depend smoothly on the curves and surfaces

mooth case, we find an additional flatness condition at level 1 which has not yet appeared in the

                                                                                                            



l s with
t rvature
3

n fact
e for the
e assic
n gener-
a r, still
a sociated
w roup is
d tral
e y based
o erential
o

rities of
c icts the
e

higher
g tion is
s le of the
2 igher
g nclude
i

I

4. We
c as a
1 lated
a m some
a by addi-
t

A

roup
u , are the
c t we can
c

g uct
a

f ion
g

3952 J. Math. Phys., Vol. 45, No. 10, October 2004 F. Girelli and H. Pfeiffer

                        
iterature. It implies in particular that the non-Abelian part of the connection 2-form agree
he curvature of the connection 1-form, that the curvature 2-form vanishes and that the cu
-form is Abelian.

We show that an interesting example of higher gauge theory is given byBF-theory with
on-Abelian gauge group15 in which the level-1 flatness is a key feature of the theory, in
ncoded in the field equations. The theory of 2-categories then provides the explanation
xtended local(topological) symmetry. Otherwise, the resulting conditions show that the cl
o-go theorems reappear only in the differential picture in which they rule out the naive
lization of the Yang–Mills action. The algebraic structure of the integral picture, howeve
llows us to have nontrivial central group elements that characterize the 2-curvature as
ith closed labeled surfaces which we call 2-holonomies. If the center of the gauge g
iscrete such as, for example, for SUsNd, the differential picture would require these cen
lements to be trivial, but in the integral picture and in any nonperturbative quantum theor
n it, no such restriction applies. The integral picture is therefore more general than the diff
ne and is in some sense essentially nonperturbative.

Since the nontrivial central elements can be interpreted as the presence of singula
odimension 2, one can say that the integral picture of higher gauge theory rather pred
xistence of topological defects in the differential formulation.

The present paper is structured as follows. In Sec. II, we recall the construction of
auge theory in the integral formulation as it was developed in Ref. 14. Our presenta
elf-contained. We emphasize the calculational aspects and try to hide as much as possib
-category theory in our notation. In Sec. III, we then derive the differential formulation of h
auge theory starting from the integral picture and compare the result with Ref. 13. We co

n Sec. IV with comments on interesting questions for further investigations.

I. THE INTEGRAL FORMULATION

In this section, we review the integral picture of higher gauge theory following Ref. 1
all the higher level model a 2-gauge theorywhereas we refer to conventional gauge theory
-gauge theoryin view of the hierarchy of models sketched in Ref. 14. The theory is formu
t the integral level, i.e., it describes curves and surfaces which are labeled with data fro
lgebraic structure, supplementing the parallel transports of conventional 1-gauge theory

ional group elements which are used to label surfaces.

. Lie 2-groups

The algebraic structure required to describe a 1-gauge theory is just some gauge gG,
sually taken to be a Lie group. The geometric objects that are labeled with algebraic data
urves giving rise to the parallel transports of the theory. The group structure ensures tha
onsistently compose(multiply) parallel transports and also reverse their direction(inversion).

The algebraic structure for a 2-gauge theory is a so-called 2-group.13,16This is a pairG, H of
roups with two maps.(We define here acrossed module, a structure from which we can constr
strict 2-group.13,16) The first map is a group homomorphismt :H→G, i.e.,

tsh1 ·h2d = tsh1d · tsh2d, s2.1d

ts1d = 1, s2.2d

or all h1,h2PH. The second map is an action ofG on H by automorphisms. This is an operat
xh taking values inH, which is a group action, i.e.,
sg1 ·g2dxh = g1xsg2xhd, s2.3d
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1xh = h, s2.4d

or all g1,g2PG andhPH, such thath°gxh is a homomorphism for eachgPG, i.e.,

gxsh1 ·h2d = sgxh1d · sgxh2d, s2.5d

gx1 = 1, s2.6d

or all h1,h2PH. These maps are required to satisfy the following two compatibility condit

tsgxhd = g · tshd ·g−1, s2.7d

tshdxh8 = h ·h8 ·h−1, s2.8d

or all gPG,h,h8PH. A Lie 2-group is a 2-group in whichG and H are Lie groups and bo
apst andx are smooth.

Plenty of examples of Lie 2-groups are known.13,14 Here we mention the following cases.

1) The Euclideanand Poincaré 2-groups. HereH=Rn is Euclidean or Minkowski space a
G=SOsnd or SOsn−1,1d. The mapt is trivial, i.e., tshd=1 for all hPH, andx is the obviou
action by rotation.

2) More generally, one can chooseH to be any vector space on which the Lie groupG is
represented. The mapt is trivial in this case, andx and is the action ofG on its represen
tation H. In this way, one defines, for example, theadjoint and theco-adjoint 2-groups in
which H=g or H=g* where g denotes the Lie algebra ofG.

(3) Theautomorphism2-groups. Let H be any Lie group andG its group of automorphisms. T
actiongxh is the application of the particular automorphism, andt :H→G associates wit
each elementh the correspondinginner automorphism h8°hh8h−1. This example is relate
to non-Abelian gerbes.13 For example, ifH=SUs2d, we haveG=SUs2d /Z2>SOs3d whereZ2

is the centre of SUs2d. In general, kert#ZsHd is always contained in the center ofH.

. 2-gauge theory

In a 2-gauge theory, we have to label geometric objects at two levels. Curves are lab
lements ofG. Their composition and orientation reversal is defined as in conventional

heory.
In addition, surfaces are labeled with elements ofH. For each surface(the elementary surfac

re chosen to have the topology of a disk), we choose two reference points on the boundary(full
ots in the diagram below, we are going to suppress them later on) and split the boundary into tw
urves with labelsg1PG (source) andg2PG (target) as follows:

s2.9d

he labelh of the surface is required to satisfy

tshd = = g2 ·g1
−1, s2.10d

.e., tshd is the(inverse) holonomy along the boundary curve. This condition appears when w
he Lie crossed module in order to construct a Lie 2-group.13,14,16The first reference point is th
ase point of this holonomy and therefore plays a role in(2.10) whereas the second reference p

oes not enter this condition.
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We can now compose surfaces in two different ways. First, we can join themhorizontally in
ne common reference point,

s2.11d

here the label of the composition is given by

h̃ = h · sg1xh8d. s2.12d

ote the asymmetry: the source of the first surface acts on the label of the second one.[The pairs
h,g1d of surface label and source curve label form the semidirect productH’G under horizonta

omposition.] As required, it follows thattsh̃d=sg2g28dsg1g18d
−1. Alternatively, we can glue th

urfacesvertically along a common curve,

s2.13d

here the composition is simply given by

h̃ = h8 ·h. s2.14d

bserve thattsh̃d=g3g1
−1 as expected.

The orientation of a surface can be reversed if it is labeled by the inverse elementh−1 instead

s2.15d

oth source and target curve of some surface can be reversed,

s2.16d

f the surface label is replaced byh̃=g1
−1xh−1. Observe thattsh̃d=g2

−1sg1
−1d−1 as required.

An important operation is known aswhiskering. By attaching whiskers to a surfaceh, for
xample, attaching whiskersg1 andg19 to some surfaceh8 with sourceg18 and targetg28,

s2.17d

e can construct a surface with sourceg1g18g19 and targetg1g28g19, carrying the label

h̃8 = g1xh8. s2.18d

he attachment of the left whisker can be understood as a special case of the horizontal

ition (2.11) in which g1=g2 and h=1 so that the left surface collapses to a line. A similar
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rgument is available for the right whisker. The asymmetry in the expression(2.18) originates
rom the asymmetry of the horizontal composition(2.12).

Whiskering allows us to change the reference points of a surface. For example, starti
surfaceh with reference pointsx andy, i.e., sourceg1·g2 and targetg3,

s2.19d

e can whisker from the left byg1
−1 and obtain the surfaceh̃=g1

−1xh with reference pointsz and
y, i.e., sourceg2 and targetg1

−1·g3.
Given any collection of curves and surfaces, aconfigurationof 2-gauge theory is an assig

ent of elements ofG to the curves and of elements ofH to the surfaces so that the followi
onditions hold. Compositions of curves are labeled by the product of elements inG, curves o
pposite orientation are labeled by the inverse group element. For each surface labelh
H, we havetshd=g2·g1

−1 whereg1 andg2 are the source and target curve, respectively. Fin
ompositions of surfaces, and surfaces whose reference points have been changed, are
escribed above in this section. The configurations thus defined can be viewed as the
onfigurations of 2-gauge theory or, in a path integral quantum theory, these are the config
ver which we sum in the path integral. The path integral was given in detail in Ref. 14.

. Local 2-gauge transformations

The 2-gauge theory defined in the preceding section enjoys an extended local gauge s
hich we call alocal 2-gauge symmetry.

First recall the conventional local 1-gauge symmetry in a formulation of gauge theory
anguage of parallel transports. A local gauge transformation is given by agenerating functio
ssigning group elementshx,hyPG to the points. For each curveg from point x to point y with

abel ggPG, the transformed parallel transport is then calculated by

g̃g = hx
−1gghy, s2.20d

hich we visualize by the following diagram:

s2.21d

e say that the diagramcommutes, i.e., it does not matter which way a round we go from
orner to another. If we view all four labeled curvesgg, g̃g, hx, andhy as a gauge connection, th
his connection isflat, i.e., the parallel transport is path independent.

In 2-gauge theory, the local gauge transformation(2.20) is weakened by extending the g
rating function to the next level. The 2-generating functionnot only assigns group eleme

x,hyPG to the points, but there is the additional freedom of choosing elementshgPH for the

urves.(These curve labels are in general path dependent.) Diagram(2.21) is generalized to
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s2.22d

here we requiretshgd=shxg̃gdsgghyd−1. The full diagram involvinggg, g̃g, hx, hy, and hg can
herefore be viewed as a configuration of 2-gauge theory in which the surface labeled withhg has
he sourcegg ·hy and the targethx·g̃g. We can thus calculate the gauge transformed pa
ransport by

g̃g = hx
−1tshgdgghy, s2.23d

hich generalizes the conventional local gauge transformation(2.20).
This is the prescription of how to transform the curve labels. In 2-gauge theory, we

pecify in addition how to transform the surface labels. Therefore we write down the s
nalogue of the diagram(2.21) and require that for each surface labeledhPH with source an
arget curvesg, g8 labeled bygg andgg8, the following “tin can” diagram:

s2.24d

-commutes. This means that it does not matter which way round we compose the labele
aces, i.e., the configuration of 2-gauge theory shown in diagram(2.24) is 2-flat. The top of this
tin can” is the old configuration and the bottom the new one with curve labelsg̃g, g̃g8 and surfac

abel h̃. The transformed surface label is thus given by

h̃ = hx
−1xshg8hhg

−1d. s2.25d

We can summarize this paragraph as follows. The local 2-gauge transformations are g
-generating functions which assign elements ofG to the points and elements ofH to the curves
he transformed curve and surface labels are then determined by(2.23) and (2.25). Although, a
rst sight, these transformation rules look quite artificial, they follow immediately from th
erlying 2-categorical structure.14

. Pure 2-gauge and 2-flatness

In conventional 1-gauge theory, we say that a configuration ispure gaugeif it is gauge

quivalent to the trivial connection in which all curves are assigned the group unit. A configuration
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s therefore pure gauge if there exists a generating function associating group elementsh j PG with
ll points so that the parallel transports are given by

g12 = h1
−1h2, s2.26d

or any curve from 1 to 2, cf.(2.20). Observe that any configuration which is pure gauge, is
at, i.e., its parallel transports are path independent.

In complete analogy, we say that a configuration of 2-gauge theory ispure 2-gaugeif it is
-gauge equivalent to the trivial configuration in which all curves are labeled by the group

and all surfaces by the group unit ofH. A configuration with curve labelsgg ,gg8PG and
urface labelshPH is therefore pure 2-gauge if there exists a 2-generating function that a
lementshx,hyPG to the points andhg ,hg8PH to the curves such that for any curveg from x

o y,

gg = hx
−1tshgdhy, s2.27d

nd for any surface with source curvegg and target curvegg8,

h = hx
−1 x shg8hg

−1d, s2.28d

f. (2.23) and (2.25).
A configuration of 2-gauge theory is called 2-flat if the surface label on any surface

opologyS2 which is the boundary of a 3-ball, is just the group unit 1PH. As a consequence,
-flat configurations, the surface label of any disk shaped surface depends only on the b
source and target) curve labels inG. Note also that being pure 2-gauge implies 2-flatness.

. Composition of labeled surfaces

In this section, we describe how the language of 2-gauge theory can be used in order t
ompositions of labeled surfaces. We will make use of this surface composition in Sec.
rder to construct gauge invariant quantities that are associated with closed surfaces, an

II in order to derive the differential formulation.
In Sec. II B, we have introduced a number of operations by which we can modif

ombine labeled surfaces: vertical and horizontal composition, two types of orientation r
nd the change of reference point by whiskering. These rules can be employed in order t

ate the composition of elementary surfaces to arbitrarily large ones.
We illustrate this procedure for the boundary surface of a tetrahedron,

s2.29d

e have numbered the vertices by 1, 2, 3, 4. The edgess j ,kd, j ,k, are labeled by group eleme
jkPG and the triangless j ,k,,d, j ,k,,, by elementshjk,PH. We have oriented the triangles
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j ,k,,d so that they have the sourcegjk ·gk, and the targetgj,, i.e., tshjk,d=gj,sgjkgk,d−1.
We choose reference points, here 1 and 4, and cut the tetrahedron surface along the e(14).

his base edgeforms both the source and the target curve of the surface. Imagine that a
tarting from the source sweeps out the entire surface until it reaches the target. This de
he ordering of the vertical composition of the constituent surfaces. We just have to make s
ll surfaces are composable, i.e., they have the suitable reference points and the correct o

n order to compose them vertically by(2.13).
Consider the diagram(2.29). We first move the curve fromg14 to g12g24 via h124

−1 . At this
tage we cannot compose the result with the triangle(123) because source and target would
atch, but we can use the orientation reversed triangle(234), whiskered from the left byg12. This
oves our curve tog12g23g34 using the labelg12xh234

−1 of the whiskered and reversed surface
he next step, we can use the triangle(123), whiskered from the right byg34 which does no
hange the labelh123. Finally, we move our curve fromg13g34 to g14 alongh134.

The label associated to the boundary surface of the tetrahedron is therefore the vertic
osition, cf.(2.13),

h̃ = h134h123sg12 x h234
−1 dh124

−1 . s2.30d

his is a useful notation for the automorphism 2-group in which typically bothG and H are
on-Abelian. In the case of the Euclidean and the Poincaré 2-groups, it is preferable to w
roup structure ofH additively, i.e.,

h̃ = h134+ h123− g12 x h234− h124. s2.31d

The following geometrical picture illustrates the surface composition. Imagine the s
abelshjk, are interpreted in a local coordinate system associated with their first referencej ,
he common starting point of their source and target curves. If we vertically compose surfa
re based at the same reference point, i.e., whose labels are given in the same coordinat

he composition is just the group product inH, cf. (2.14). If the reference points and therefore
oordinate systems are different, however, then we must parallel transport before we can
nd multiply their surface labels. In the example(2.30), this is relevant for the surfaceh234, the
nly surface that is not based at point 1 but rather at 2. We have to whiskerh234

−1 from the left by

12 in order to obtain a surfaceg12xh234
−1 with reference point 1.

For a closed surface of topologyS2, i.e., of genus zero, source and target curve agree s

sh̃d=1. Recall that kert#ZsHd is always contained in the centerZsHd of H and therefore Abelian
e call the labelshP ker t of closed surfaces the 2-holonomiesof the theory.

. Gauge invariant expressions

For all the assignments of algebraic data to geometric objects, we should understand h
epend on the choices made. Consider, for example, the holonomy along a closed loop(Wilson

oop) in conventional gauge theory. It still depends on the base point of the loop. It do
owever, in a well-understood way. Changing the base point leads to the conjugation
olonomy with the parallel transport from the old to the new base point. Any group cha
pplied to the holonomy yields an invariant. Observe that the independence of the base p

he invariance under local gauge transformations are both implemented by the same o
amely by calculating the character. Due to its gauge invariance, the character can then

he Lagrangian or as the action of a physical theory.
An analogous result can be shown for the integral picture of 2-gauge theory.14 Consider a

losed surface of topologyS2, for example, the surface of the tetrahedron(2.29). We must choos
base edgeat which we start and finish the surface composition. In our tetrahedron examp
as the edge(14). When we change the base edge, holding its two end points fixed, th

-holonomyh8 of such a closed surface(Wilson surface) is conjugated,
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h8 ° hh8h−1, s2.32d

y the labelhPH associated with the surface enclosed between the old and the new base
e change the reference point of a closed surface(the starting point of its base edge) by whis-
ering with gPG, then the 2-holonomy is acted upon by the corresponding parallel transp

h8 ° gxh8. s2.33d

We have seen that the 2-holonomies, i.e., the labelsh8 associated with closed surfaces,
ontained in kert. The functionss: ker t→R that are independent of the base edge and o
eference points, i.e., that satisfy for allgPG, hPH, andh8Pker t,

sshh8h−1d = ssh8d,

s2.34d
ssgxh8d = ssh8d,

re called2-actions. We have shown in Ref. 14 that these are precisely the functions
-holonomy that are invariant under the local 2-gauge transformations(2.23) and(2.25), hence th
ame. They form the generalization of the Wilson action to 2-gauge theory.

For the Euclidean and Poincaré 2-groups, the 2-actions are the mapss:H→R that are consta
n the orbits ofG on H=Rn, i.e., they are functions of the invariant Euclidean or Minkow
orm, ssvd= fshsv ,vdd where f :R→R is any function,vPRn, and h denotes the Euclidean
inkowski scalar product. For the automorphism 2-group, any maps:ZsHd→R gives rise to a
cceptable 2-action.

Even though there exists no canonical surface ordering, we have shown, using ideas
heory of 2-categories, that the interplay of curves and surfaces not only circumvents th
heorems, but also provides us with an unambiguous and gauge covariant composition o
urfaces.

Whereas in conventional gauge theory, the gauge invariant expressions are associa
losed loops, we have seen that in 2-gauge theory, we can form 2-gauge invariant expres
losed surfaces. Is there a also a 2-gauge invariant expression associated with loops, i.e
eneralization of the Wilson loop to 2-gauge theory?

Recall that in a 1-gauge theory, we would just calculate the(real part of a unitary) character

xsg2
−1g1d, s2.35d

f the holonomyg2
−1g1PG in order to obtain a locally 1-gauge invariant expression. If we

nto account a possibly nontrivial transport of curves along surfaces, then we cannot
ompare the two curve labelsg1 andg2, but rather we must surface transport one curve ont
ther,

s2.36d

ather than the usual holonomyg2
−1g1, we should therefore consider the expression,

F = g2
−1tshdg1, s2.37d

hich takes the surface transport into account. Due to condition(2.10), however, this expressio
lways gives the group unit ofG, F=1.

There is therefore no loop based gauge invariant expression in 2-gauge theory which
eneralize the Wilson loop of 1-gauge theory, but only the surface based construction w
nvariance(2.34).

                                                                                                            



I

nds to
t ion of
2 thly on the
p tesimal
s

o
b yet
a s.

A

g ed with
t

a
d ra.
T

f on
X

f
i

f ions:

f

o of
t
t

a

a f
t

ase,
=
a

e
a
a

3960 J. Math. Phys., Vol. 45, No. 10, October 2004 F. Girelli and H. Pfeiffer

                        
II. THE DIFFERENTIAL FORMULATION

In this section, we derive the differential formulation of 2-gauge theory which correspo
he integral picture of the preceding section. We therefore study the integral formulat
-gauge theory on squares, cubes, and hypercubes, assume that the labels depend smoo
ositions of the curves and surfaces and consider the limit in which these shrink to infini
ize.

The theory we derive uses the same connection 1- and 2-forms as Baez13 which have als
een found independently by Hofman,8 but with a flatness condition at level 1 which has not
ppeared in the literature. As a bonus, we can also derive the local gauge transformation

. Lie 2-algebras

Just as the differential picture of conventional gauge theory involves the Lie algebrag of the
auge groupG, we need here the appropriate generalized notion of a Lie algebra associat

he gauge 2-group.
A Lie 2-algebraconsists of two Lie algebrasg and h with two maps.(We describe here

ifferential crossed module, a structure from which we can construct a strict Lie 2-algeb13,17)
he first map,t :h→g, is a homomorphism of Lie algebras, i.e., a linear map that satisfies

t sfY1,Y2gd = ft sY1d,t sY2dg, s3.1d

or all Y1,Y2Ph. The second map is an action ofg on h by derivations, i.e., a bilinear operati
xY for XPg, YPh, taking values inh, such that it is an action, i.e.,

fX1,X2gxY = X1xsX2xYd − X2xsX1xYd, s3.2d

or all X1,X2Pg andYPh, and such that for anyXPg, the mapY°XxY is a derivation onh,
.e., linear and,

XxfY1,Y2g = fXxY1,Y2g + fY1,XxY2g, s3.3d

or all Y1,Y2Ph. These maps are required to satisfy the following two compatibility condit

t sXxYd = fX,t sYdg, s3.4d

t sYdxY8 = fY,Y8g, s3.5d

or all XPg, Y,Y8Ph.
Given some Lie 2-group in terms of the Lie groupsG, H and the mapst andx (Sec. II A),

ne can construct its Lie 2-algebra as follows.17 The Lie algebrasg andh are the Lie algebras
he Lie groupsG andH. The mapt :h→g is the derivativet=dt of the mapt :H→G. Finally, let
he map,

a:G → Aut H, asgdfhg ª gxh, s3.6d

ssociate an automorphismasgd of H with each elementgPG. Then the derivative ofa,

da:g → Der h, X ° dasXd, s3.7d

ssociates with each elementXPg a derivation dasXd of h. The operationx in the definition o
he Lie 2-algebra is chosen to beXxY: =dasXdfYg.

Consider first the Lie 2-algebra of the Euclidean and Poincaré 2-groups. In this cg
sosnd or g=sosn−1,1d, andh=Rn. The action ofg on h is in the defining representation ofg,
nd the mapt :h→g is the null map.

For the automorphism 2-group ofH=SUs2d, we haveG=SUs2d /Z2. In this case, both Li
lgebras agree,g=h, and we havetsYd=Y for all YPh. Finally, the action ofg on h=g is the

djoint action,XxY=fX,Yg.
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Let us conclude this section with a remark on the category theory underlying the const
f Lie 2-algebras. When we construct a Lie 2-algebra from the differential crossed module

s the condition[analogous to(2.10)],

t sYd = X2 − X1, s3.8d

or each 2-cell,

s3.9d

i Pg, YPh, of the 2-category which is defined by the Lie 2-algebra. In the gauge theor
uage, this would correspond to an infinitesimally small surface. The condition(3.8) is in fact
lready present in the 2-vector spaces of Ref. 17.

. Notation

For the discussion of the differential picture of higher gauge theory, we restrict ourse
rivial bundles and present the theory in the language of theg- andh-valued connection 1- an
-forms. As we will see in the following section, the basic fields of the differential picture
-valued connection 1-formA and anh-valued connection 2-formB.

We denote bydA the exterior covariant derivative for the connectionA which acts ong-valued
p-forms w by

dAswd = dw + fA,wg. s3.10d

ere the bracket of a 1-formA with a p-form w, both taking values ing, is defined by

fA,wg ª Aa ∧ wbfTa,Tbg, s3.11d

here we have chosen a basissTad of g and writtenA=AaTa, w=wbTb with coefficient formsAa

ndwb. Summation over repeated indices is understood. Similarly, we define the action oA on
-valuedp-forms c, using the action ofg on h via the operationx,

dAscd = dc + Axc, s3.12d

here thex of a g-valued 1-form with anh-valuedp-form is defined by

Axc ª Aa ∧ c bsTaxTb8d, s3.13d

heresTad denotes a basis ofg and sTb8d a basis ofh. We calculate forg-valuedp-forms w,

sdA + dAdswd = fF,wg, s3.14d

nd forh-valuedp-forms c,

sdA + dAdscd = Fxc. s3.15d

. Configuration variables and their curvature

We shall first identify the basic fields and their associated curvature. We then compu
espective transformations under the local 2-gauge transformations.

We assume that all labels depend smoothly on the curves and surfaces. The key ide

erivation of the differential picture is to write down the integral formulation on squares and cubes

                                                                                                            



a
h l forms,

H .
W
w

t

W get the
c

T

T

A s
( tial
p

t
w esimal
s

n the
c
(

U e

o

F d
h

3962 J. Math. Phys., Vol. 45, No. 10, October 2004 F. Girelli and H. Pfeiffer

                        
nd then to study the limit in which these shrink to infinitesimal size. We write the labelsgPG,
PH as exponentiated curve and surface integrals over approximately constant differentia

gms0d = eegA , eaAm,

s3.16d
hmns0d = eeSB , ea2Bmn.

ereg denotes a curve of lengtha from x=0 to x=m andS a square of areaa2 in the smnd-plane
e abbreviate the coordinates byx=m : =aem whereem is a vector of unit length. AllAm, etc.,
ithout argument are atx=0.

The basic fields in the differential picture are theg-valued connection 1-formA=Am dxm and
he h-valued connection 2-formB= 1

2Bmn dxm∧dxn. Note thathmn=hnm
−1.

We will make use of the usual Taylor expansion,

gmsad , eaAm+a2]aAm, s3.17d

hmnsad , ea2Bmn+a3]aBmn. s3.18d

hen we have a product of Lie group elements, the Baker–Hausdorff formula allows us to
orresponding operation at the Lie algebra level,

exey = ex+y+s1/2dfx,yg+¯ . s3.19d

he action da of g on h is the infinitesimal version of the action ofG over H,

gbs0dxhmnsbd , ea2Bmn+a3]bBmn+a3 dasAbdsBmnd. s3.20d

he mapt :h→g is the infinitesimal version of the mapt :H→G,

tshmnd , ea2tsBmnd. s3.21d

s mentioned earlier, they satisfy the compatibility conditions(3.5) and(3.4). The approximation
3.16)–(3.20) together with(3.4) and (3.5) are all we need in order to derive the differen
icture.

So far we have identified as the basic fields the generalized connectionsA,Bd in agreemen
ith Ref. 13. Let us now calculate a curvature 2-form, using the holonomy around an infinit
quare, and a curvature 3-form, using the 2-holonomy around an infinitesimal cube.

In 1-gauge theory, the curvature 2-form is given by an infinitesimal Wilson loop. I
ontext of 2-gauge theory, it depends also on theB-field because of(2.37). The expressionF of
2.37) reads for the square of Fig. 1(c),

ea2F̃mn , Fmn = gm
−1sndgns0d−1tshmns0ddgms0dgnsmd. s3.22d

sing the approximations(3.16)–(3.19) and dropping all terms of ordera3 in the exponent, w
˜ 1˜ m n

IG. 1. Conventions for the integral formulation of 2-gauge theory on the squares, in particular(c) the generalize
olonomy(3.22).
btain the curvature 2-formFmn= 2Fmn dx ∧dx as follows:

                                                                                                            



w
s

W
s

ve
=

T se-

q

I

o

L
e

a

T

D

w Here the
o param-
e ting
f

J. Math. Phys., Vol. 45, No. 10, October 2004 Higher gauge theory 3963

                        
F̃mn = ]mAn − ]nAm + fAm,Ang + tsBmnd = Fmn + t sBmnd, s3.23d

hereF denotes the conventional curvature ofA. This agrees with Baez’s expression13 (up to a
ign which is matter of convention),

F̃ = dA +
1

2
fA,Ag + t sBd = F + t sBd. s3.24d

e have therefore found a geometrical interpretation for the generalized curvatureF̃ from the
urface transport of the curve(2.36).

It is important here to remember that in the definition of a strict Lie 2-group, we haF
1PH in (2.37) and therefore at the differential level,

t sBd = − F. s3.25d

his condition is the alter ego of the equations(2.10) and (3.8) and has some drastic con

uences: it means that the curvature 2-formF̃ is always zero.
Let us now compute the curvature 3-formG= 1

6Gamn dxa∧dxm∧dxn associated withA andB.
t is the differential counterpart of the 2-holonomy around a cube(Fig. 2).

To calculate it, we use the same technique as for the tetrahedron in(2.29) and (2.30). We
btain

ea3Gamn , Gamn = fgas0dxhmnsadghmas0dfgms0dxhnasmdghnms0dfgns0dxhamsndghans0d.

s3.26d

et us use once again the approximations(3.16)–(3.19) and drop all terms of ordera4 in the
xponent, so that we get

Gamn = ]aBmn + dasAadsBmnd + ]nBam + dasAndsBamd + ]mBna + dasAmdsBnad, s3.27d

nd using the simplified notation,

G = dB + AxB = dAsBd. s3.28d

his coincides with Baez’s definition of the curvature 3-form.13

. Differential gauge transformations

In order to derive the differential form of the local 2-gauge transformations(2.23) and(2.25),
e draw the analogous diagrams for a square and a cube, respectively, cf. Figs. 1 and 2.
ld configuration corresponds to the bottom of the diagram, the new one to the top. We
trize differential gauge transformations by the height« of these diagrams, i.e., the 2-genera

unction,

«X

FIG. 2. A flattend cube in order to read off the 2-holonomy(3.26)
has0d , e , s3.29d
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hmas0d , e«aYm, s3.30d

s parametrized by ag-valued functionX and by anh-valued 1-formY=Ym dxm. Similarly to Sec
II C, we use the Taylor expansion,

hasmd , e«sX+a]mXd, s3.31d

hmasnd , e«saYm+a2]nYmd, s3.32d

he conventionhma=ham
−1 , the derivativet=dt,

tshmas0dd , ea«tsYmd, s3.33d

nd the group actions,

gns0dxhmasnd , e«saYm+a2]nYm+a2 dasAndsYmdd, s3.34d

has0dxhmns0d , ea2sBmn+« dasXdsBmndd. s3.35d

The gauge transformation for the connection 1-formA is read off from the square of Fig.
nd the formula(2.20),

eaAm+a«dAm , g̃msad = ha
−1s0dtshmas0ddgms0dhasmd. s3.36d

sing the approximations(3.16)–(3.19) and dropping terms of order«2 anda2 in the exponent, w
et the gauge transformation,

Am ° Am + «dAm, dAm = ]mX + fAm,Xg + t sYmd, s3.37d

hat is

dA = dAsXd + t sYd. s3.38d

The 2-gauge transformations of theB-field can be deduced from the flattened cube(Fig. 2)
hose height ina-direction is« for the gauge transformation,

ea2Bmn+a2«dBmn , h̃mnsbd = has0d−1xhhnas0dfgns0dxhmasndghmns0dfgms0dxhna
−1smdghma

−1 s0dj.

s3.39d

he infinitesimal transformation is calculated as usual with the help of(3.16)–(3.19), dropping
erms of order«2 anda3 in the exponent, and we get

Bmn ° Bmn + «dBmn,

dBmn = − ]mYn + ]nYm − dasAmdsYnd + dasAndsYmd − dasXdsBmnd. s3.40d

o by using the shorthand notation, we have

dB = − dY − AxY − XxB = − dAsYd − XxB. s3.41d

From the gauge transformations(3.37) and (3.40) for A andB, we can deduce the transf
ation of the curvature 2-form,

F̃ ° F̃ + «dF̃, dF̃ = fF̃,Xg, s3.42d

p to terms of order«2. This means thatF̃ transforms covariantly even without the assump

=0, and on the other hand, that the transformation preserves the conditionF̃=0.

For the curvature 3-formG, we obtain after a rather lengthy calculation,
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G ° G + «dG, dG = − F̃xY − XxG, s3.43d

p to terms of order«2. This transformation shows thatG transforms covariantly if and only

=0. However, if we are considering the case of a strict Lie 2-algebra, then this flatness co
s naturally present, andG transforms covariantly, moreover it sees only the level 1 of the g
ting function,

dG = − XxG. s3.44d

. Large gauge transformations

In the preceding section, we have derived the differential gauge transformations in the
ntial picture. What can we conclude from their existence?

Recall first the role of large and differential gauge transformations in conventiona
belian gauge theory with gauge groupG. A large gauge transformation is a bundle automorph
f the principal bundleP→M. In a local trivialization onU#M, it is given by aG-valued
enerating functiong:U→G. The connection 1-form and the curvature 2-form transform as

A ° g−1Ag+ g−1 dg, s3.45d

F ° g−1Fg. s3.46d

t is often convenient to consider only the tangents to the above transformations which m
arametrizeg in terms of the Lie algebra,

g = e«X, s3.47d

hereX:U→g is a Lie algebra valued function. IfG is compact and connected, then the ex
ential map is surjective, see for example, Ref. 18, and any generating function is of this f

is noncompact or not connected, this is in general no longer true. Usually, one consid
arametrization(3.47) only for small« and finds

A ° A + «sdX + fA,Xgd = A + «dAsXd, s3.48d

F ° F + «fF,Xg, s3.49d

ropping terms of order«2. Since we know that we can always integrate these differential g
ransformations, we can recover the large transformations as long as the exponential
urjective.

Let us now try to derive the large counterparts of the differential 2-gauge transformat
ec. III D. Therefore, we again consider the integral formulation on squares and cubes,

IG. 3. The local gauge transformation of the edge labels in the integral picture, cf.(3.50). The bottom layer is the o
onfiguration, the top layer the new one. In order to pass to the differential picture, we shrink the rectangle to infi
idth, a→0, but keep its height« fixed.
ime we keep the height« fixed and consider only the limita→0, see Fig. 3.
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First we restrict ourselves to the case in which the curve labels of the gauge gen
ransformation are trivial, i.e., the surface in Fig. 3 has the trivial labelhmas0d=1PH. Rather tha

3.36), we now writeeaAm ,gms0d andeaAm8 , g̃msad and obtain

s1 + aAm8 d , eaAm8 , has0d−1eaAmhasmd , has0d−1s1 + aAmdshas0d + a]mhas0dd. s3.50d

ropping terms of ordera2, this gives the familiar transformation rule(3.45) for the G-valued
unction gspd=haspd, pPU. The indexa was just used in order to denote the vertical ga
irection in our figure.

All the data required in order to describe the gauge transformation are associated with
urves or surfaces which link the bottom with the top layer of Fig. 3. If the surface label is

.e., if the gauge generating transformation assigns the group unit 1PH to each curve, we have
eal only with vertical lines labeled by elements,

haspd = gspd P G, s3.51d

t each pointpPU, Fig. 4(a). Indeed, the gauge generating function,

g:U → G, s3.52d

an be visualized by a bunch of such vertical lines between the old configuration(bottom) and the
ew one(top). It poses no problem that the labels are in the groupG. The transformation is just
hange of coordinates.

Let us now consider the case in which the curve labels of the 2-generating functi
ontrivial, i.e., the square in Fig. 3 has a nontrivial labelhmas0dPH. The indexa just indicate

hat the surface is vertical, but the indexm has indeed a geometrical meaning. In order to de
he differential gauge transformations we have expanded(3.30) in terms of botha and« in order
o obtain a 1-formYm dxm as the differential expression.

If we expand only in terms ofa, but keep« fixed, we run into the following geometric
bstruction as depicted in Fig. 4(b). By expansion in terms ofa, we wish to obtain a 1-form, sa

m dxm, from the vertical surface. For any tangent vectorXPTpM at some pointpPU, we should
herefore be able to evaluatehsXd=hmXm. On the other hand, from the surface label,hmas0dPH,
here remains for each choice ofm a group element inH. We are tempted to write,

hmaspd = hmspd P H. s3.53d

inceTpM is a linear space, however, this is possible only ifhm gives rise to a linear map,

h:TM → H. s3.54d

IG. 4. (a) After shrinking the square of Fig. 3 to infinitesimal widtha→0, its vertical edges carry a group labelgspd
haspdPG at each pointpPM. (b) The vertical surface labelhmaspd would ideally yield anH-valued 1-form

mspddxm=hmaspddxm which associates with each vectorXPTpM an elementhsXdPH. The linear structure ofTpM here
mposes a serious constraint as we explain in the text.
his condition is stronger than that in(3.51) and (3.52).
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The construction of the large gauge transformations in the differential picture is the
ossible only ifH=Rn for somen. In this case, the actionx of G on H is actually a representati
f the Lie groupG and induces a representationx of the Lie algebrag on H.

We parametrize the large gauge transformations byhmspdPH, pPM, i.e.,

hmaspd = ahmspd, s3.55d

dentifying H with its Lie algebra and indicating thathm is already a quantity of ordera. Rathe
han (3.36), we obtain for the transformation of the connection 1-form,

A ° A8 = g−1Ag+ g−1 dg + tshd. s3.56d

n order to derive the large gauge transformations for the connection 2-formBmn, we replace(3.39)
y

ea2Bmn8 , ha
−1s0dxfhnas0dseaAnxhmasnddea2BmnseaAmxhna

−1smddhma
−1 s0dg. s3.57d

xpanding everything up to ordera2, usinghas0d=gs0d, (3.55), andhmsnd=hms0d+a]nhms0d, we
btain the transformation

B ° B8 = g−1xB − dAshd. s3.58d

rom the large gauge transformations(3.56) and (3.58) one can recover the differential transf
ations(3.38) and (3.41) using the parametrizations(3.47) and (3.55).

We conclude that we have a full extended local gauge symmetry only ifH>Rn. In general, i
s not possible to integrate the differential gauge transformations and to obtain proper(large)
ransformations. The large transformations are given by(3.56) and (3.58), and

G ° G8 = g−1xG. s3.59d

. Pure 2-gauge and 2-flatness

For the caseH>Rn, we can now express the condition of being pure 2-gauge(Sec. II D) in
he differential language. A generalized connectionsA,Bd is pure gauge if there exists(locally) a
-valued functiong:U→G and anH-valued 1-formuh:T* MuU→H such that,

A = g−1 dg + t shd, s3.60d

B = − dh. s3.61d

t is straightforward to show that these configurations are also 2-flat.

. Flatness at level 1

The level-1 flatness conditionF̃=0, cf (3.25), has the following effect on the curvatu
-form. The definitionG=dAsBd implies t sGd=dAstsBdd=−dAsFd=0 by the Bianchi identity fo
he conventional curvatureF of A. This implies thatG takes values in kertvI h which is an
belian ideal ofh. This is the differential counterpart of the result14 that the 2-holonomy of anS2

urface in the integral picture takes values in the Abelian normal subgroup kertvI H (Sec. II F).
We can always decompose theh-valued connection 2-formB=z% B8 wherezPkert andh

kert % h8 is split into a direct sum of vector spaces. The non-Abelian part ofB is therefore
ontained inB8Ph8 and related to the conventional curvatureF of A by F=−t sB8d due to(3.25).
he only contribution toB unrelated to the curvature ofA is contained in some Abelian subalge

f h.
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. Higher Bianchi identities

As a generalization of the Bianchi identity dAsFd=0 of conventional 1-gauge theory, we h
n 2-gauge theory,

dAsF̃d = dAsFd + t sdAsBdd = t sGd = 0, s3.62d

here we have used the condition(3.25) only in the last step, and

dAsGd = FxB = − tsBdxB = − fB,Bg = 0, s3.63d

here we have used(3.25) in the second step. They can be derived from the integral pictu
rawing the square and cube from the definition of the curvature 2- and 3-form and by p

ransporting the entire diagram in an independent direction.

. Examples

BF-theory: Consider first the special example in which we use the adjoint 2-group of
ie group G, i.e., H=g is the Lie algebra,G acts onH=g by the adjoint action, and the m
:H→G is tshd=1 for all hPH. The corresponding Lie 2-algebra is given by the Lie alge
=h, the adjoint action ofg on h and the null mapt=dt=0.

In this case, the differential formsA, B, F, F̃, andG are allg-valued. In four dimensions, o
an therefore consider the Lagrangian ofBF-theory,15

L = trgsB ∧ Fd. s3.64d

he local 2-gauge transformations are generated by ag-valued functionX and ag-valued 1-form
,

dA = dAsXd, s3.65d

dB = dAsYd − fX,Bg, s3.66d

dF = − fX,Fg, s3.67d

dG = − fX,Gg. s3.68d

hey encompass both the ordinary local gauge symmetry(generated byX) and the extende
o-called topological, local symmetry which is a special feature ofBF-theory (generated byY).
oth are unified in the local 2-gauge symmetry. We have therefore discovered the actual g
al reason for the topological symmetry ofBF-theory. Notice that the level-1 flatness condit
3.25) reads in this caseF=0 which is actually one of the field equations ofBF-theory.

Notice that in the case ofBF-theory, the Abelian ideal is kert=g which is an Abelian grou
sing the addition of elements ofg, even thoughg as a Lie algebra can be non-Abelian if
auge groupG is non-Abelian.

Yang–Mills theory: Let us now try to construct a higher level analogue of the Yang–
ction. In conventional gauge theory, the Yang–Mills Lagrangian reads

L = trgsF ∧ * Fd, s3.69d

here trg denotes the Cartan–Killing form ofg. A candidate for a Lagrangian density in hig
auge theory is therefore given by the expression

L = trhsG ∧ p Gd. s3.70d

e could have tried trgsF̃∧ * F̃d which, however, vanishes because of(3.25) in the case of stric

ie 2-groups. We have seen that the curvature 3-formG is always Abelian.
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If we choose the Euclidean or Poincaré 2-group, we haveg=sosnd or sosn−1,1d, h=Rn and

:h→g the null map. This implies in particular thatF̃=F, and the condition(3.25) furthermore
tates that the connectionA is flat. In addition, we have a connection 2-formB taking values in
=Rn with a curvature 3-formG=dAsBd. Locally, the flatness ofA implies that it is pure gaug

.e., gauge equivalent toA=0, so that locallyG is just the exterior derivative,G=dB. The Yang–
ills Lagrangian(3.70) therefore agrees locally with that of Abelian 2-form electrodynamic

A similar result can be shown for all 2-groups in whichH=V is a vector space on whichG is
epresented. The connection 1-formA is locally pure gauge and the Yang–Mills Lagrangian(3.70)
educes to that of Abelian 2-form electrodynamics.

Consider finally the automorphism 2-group ofH=SUs2d, i.e., g=h=sus2d, t is the identity
ap, andg acts onh=g by the adjoint action. In this case, the condition(3.25) implies thatB
−F is just (minus) the ordinary curvature 2-form ofA. The Yang–Mills Lagrangian(3.70)

herefore vanishes because of the conventional Bianchi identityG=dAsBd=−dAsFd=0.
With the known Lie 2-groups alone, it is therefore not possible to find a nontrivial gen

ation of the Yang–Mills action. This is in outright contrast to the integral picture for whic
ave shown14 that nontrivial generalizations exist. This result points towards a genuine di
ncy between perturbative and nonperturbative formulations of higher gauge theory on w
omment in the conclusion.

V. CONCLUSION AND OUTLOOK

In this paper, we have reviewed both the integral and the differential picture of higher
heory. One main result is the appearance of the condition(3.25) at the differential level as soo
s the curve and surface labels depend smoothly on the positions of the curves and surf

Another main result is that we are able to construct large(as opposed to differential) 2-gauge
ransformations in the differential picture only in the case in whichH>Rn as an Abelian group
his seriously restricts the applications of the differential formulation and prevents us fro

aining an interesting level-2 generalization of Yang–Mills theory.BF-theory, however, forms a
nteresting example of a 2-gauge theory. The local 2-gauge transformations unify the two t
ocal symmetries ofBF-theory and thereby provide a structural explanation for the existence
opological symmetry ofBF-theory.

We have chosen the language of 2-groups13 in order to study higher gauge theory. T
ategorical structure of 2-groups leads directly to the integral picture14 and as a consequence to
ifferential formulation as derived in the present paper. Alternatively it would be possible

he language of gerbes and to start with a differential formulation of higher gauge theory. O
hen ask under which conditions it is possible to integrate the connection 1-form along cur
he connection 2-form along surfaces in a consistent way. The result of the present article
he conjecture that(3.25) is the required integrability condition.

How serious are the restrictions we have found, in particular the Abelianness of the cu
-form?

First note that all the Lie 2-groups and Lie 2-algebras used in the present paper arestrict. They
orm only the simplest examples of these structures which can be constructed in a
-categorical framework, but there exist the more general notions ofweakandcoherent2-groups
nd their Lie 2-algebras. For 2-groups, see, for example, Refs. 19 and 20 and for Lie 2-alg17

ne can hope that the differential picture becomes less restrictive once we generalize fro
ie 2-groups and 2-algebras to weak ones. Since the origin of the level-1 flatness is the ve
ondition(2.10), a fully successful weakening should therefore allow for a non-Abelian kern
he mapt :H→G.

We also observe that the nontrivial 2-holonomies are ruled out in the differential pictur
f one requires the connection 1- and 2-forms to be both smooth and well defined everyw
pace–time. In particular, in the integral picture with the automorphism 2-group of SU(2), we can

2
aveZ2-valued 2-holonomies associated with surfaces of topologyS . If we assume that a smooth
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eformation of the surface changes the 2-holonomy only smoothly, then the nontrivialZ2-elemen
ndicates that theS2 is not smoothly contractible. This can be interpreted as an indication tha
re singularities of codimension 2 in the theory which are actuallypredictedby the algebrai
tructure. Solitonlike solutions of some classical field equations come to mind. In fact, the i
icture for the inner automorphism group of SU(3) is related to the symmetries of center vorti

n QCD as sketched in Ref. 14.
The difference of the differential and the integral picture is much deeper, though.

llustration, we refer to a result in the context of the path integral quantization of conven
auge theory. For simplicity, assume that we work in the Euclidean setting(i.e., with imaginary

ime) on some Riemannian manifoldM.
The obvious naive choice is to consider the setA of all smooth connectionsA on M which

orm an affine space, and then to divide out the action of the gauge transformations. Th
owever, destroys the linear structure so that the standard techniques fail to construct a us

ntegral measure on the quotientA /G. This failure to implement the gauge symmetry correctly
e seen as a main reason why perturbative QCD does not predict confinement as obs
ature.

A nonperturbative approach, see, for example, Ref. 21, is to consider the collection
raphs embedded inM, to study gauge theory in the integral picture on these graphs, i.
onnections that are given by group labels attached to the edges of the graph, and finally
se of a refinement relation on the class of all graphs which facilitates the constructio
rojective continuum limit for the set of connections. Not only does this set of gener
onnections form a compact Hausdorff space, it is also possible to fully divide out the
ymmetry. This set of generalized connections modulo gauge transformations is a huge sp

ncludes not only smooth or continuous connections, but rather mainly distributional ones. I
o appreciate the physical significance of this space of generalized connections it is useful
he most basic example of a field theory which admits a rigorous Euclidean path integral
ation, the free relativistic scalar field. Its path integral measure22 is supported mainly on non
ooth scalar fields. In fact, the subsets of smooth fields form sets of measure zero.

This is a strong indication that a restriction to smooth fields does not yield an ad
escription of the corresponding quantum theory and that we should take the integral form
eriously. In a proper continuum limit, constructed from a suitable refinement of the in
ormulation of higher gauge theory, the above-mentioned codimension-2 singularities will n
e allowed, they may actually be abundant in the path integral.
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We discuss the possible relationship of homological mirror symmetry with defor-
mation quantization. We speculate that after certain nonlinear “twist” the Fukaya
category becomes equivalent to the category of holonomic modules over a quan-
tized algebra of functions. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1786350]

. INTRODUCTION

The mathematical foundation of mirror symmetry belongs both to geometry(the Strominger
au-Zaslow conjecture; see Stromingeret al., 1996) and algebra(Kontsevich’s homological mi
or symmetry program; see Kontsevich, 1994). In the present paper we deal with some aspec
he latter. Our methods and conjectures have an algebraic(categorical) nature. On the other han
ased on the ideas of Kontsevich(1994) and Kontsevich and Soibelman(2000, in press), we stres

he role ofnoncommutativegeometry of mirror symmetry, making an attempt to connect it
eformation quantization. The latter is a generalization of the theory of(pseudo)-differential
perators(or D-modules) to arbitrary symplectic manifolds.

In homological mirror symmetry and in the theory of D-modules one meets similar ob
hey are pairssL ,rd whereL is a Lagrangian manifold, andr is a flat bundle onL (local system).

n the framework of homological mirror symmetry such pairs are objects of the so-called F
ategory, which is the principal mathematical structure of the genus zero part of the A-mo
he framework of D-modules they are holonomic D-modules(in the C` category). It is natural to
ompare the categories themselves. This comparison is the main theme of the present p

One can object any relationship between mirror symmetry and deformation quant
ndeed we have the following.

a) Theory of D-modules works well in an algebraic or complex analytic framework, whil
Fukaya category(and in general Floer theory) exists in theC`-category only.

b) In mirror symmetry one considers a series in an exponentially small(with respect to th
symplectic structure) parameter, while in deformation quantization the parameter “is o
size” of the symplectic structure.

rom our point of view these are rather research problems than objections.
In regard to point(a) we remark that the finding of a complex analog of the Floer theory

nteresting problem. At this time we can only speculate in this direction.
Our aim in the present paper is to summarize our present understanding of the topic an

ome conjectures. Our main conjecture can be briefly formulated such as follows.

)Electronic mail: bressler@hedgehog.math.arizona.edu
)
Electronic mail: soibel@math.ksu.edu
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i) There is a category of holonomic modules over the quantized algebra of smooth fu
on a symplectic manifold.

ii ) It is possible to change morphisms in this category by a kind of integral transformat
that it becomes equivalent(at least locally) to the Fukaya category of the same symple
manifold.

Let us mention two possible applications of this idea. First, it can help in the construc
n algebraic model of the Fukaya category(analogy: de Rham complex is an algebraic mode
orse complex). Second, it might help to resolve some difficulties in the definition of the Fu

ategory(nontransversality of supports, nonexistence of identity morphisms, etc.). In our opinion
he current situation is not completely satisfactory despite the recent progress(cf., for example
ukayaet al., 2000). Third, one can go beyond Lagrangian submanifolds by considering

ropic submanifolds or even nonsmooth varieties(cf. Kapustin and Orlov, 2001). Finally, one
opes to achieve a deeper understanding of the relationship at the level of chiral algeb(see
eilinson and Drinfeld, 1999; Malikovet al., 1998; Kapranov and Vasserot, 2001). Hence the
ubject of this paper is just the first approximation to the full picture.

The paper is organized as follows. In Sec. II we briefly recall basics on the deformation
ndA`-categories. Our purpose in this section is to fix the language. Details of the formalis
e explained in Kontsevich and Soibelman(in press).

In Sec. III we recall the main facts about the Fukaya category, which is one of the
tructures of homological mirror symmetry. Section IV is a reminder on the deformation q
ation of symplectic manifolds. Section V is devoted to the comparison of the Fukaya ca
ith the category of holonomic modules over the quantized algebra of functions.

The main idea of Sec. III goes back to the pioneering paper(Kontsevich, 1994). As explained
n loc. cit., homological mirror symmetry is not a statement about individual categories, but
bout families ofA`-categories overZ-graded formal schemes. Geometrically this structu
odeled by a “family of noncommutative differential-graded manifolds over a commu
ifferential-graded base.” The framework in which the latter phrase has a precise meaning
xplained in Kontsevich and Soibelman(in press). The reader can keep in mind the example o
eformation theory of an associative algebra. In this case one has a family of associative
arametrized by the formal moduli spaceMA of deformations of a given algebraA. The modul
paceMA is a formal pointed differential-graded manifold(dg-manifold for short) (see, for ex
mple, Kontsevich, 1997 and Kontsevich and Soibelman, 2000). By definitionMA is a base of

amily of associative algebrasAg ,gPMA. Each algebra gives rise to a “noncommutative sche
pecsAgd, hence one has the desired structure.

I. REMINDER ON A`-CATEGORIES AND DEFORMATION THEORY

In this section we recall some facts about the homological algebra of mirror symmetr
etails including the necessary language of noncommutative geometry will appear in Kon
nd Soibelman(in press). Some of the material can be found in the existing literature, for exa

n Kontsevich(1994). We are not going to discuss in detail motivations for all of the definit
nd notions below. The main purpose of this section is to fix the language.

Let A be a freeZ-gradedk-module over a unital commutative ringk of characteristic zero(the
ain applications deal with the case whenk is a field).

Definition 1: An À -algebra A over k is given by the following data.

a) A Z-graded free k-module A.
b) A codifferential d on the cofree coalgebra TsAf1gd= %nù1Af1g^n, where Af1g denotes th

graded free k-module such that Af1gi =Ai+1 (A with shifted grading).

(We recall that a codifferential means a derivation d of the coalgebra satisfying the con
2
=0).
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Sinced is uniquely defined on generators, it gives rise to “higher multiplications”mn:A^n

A,nù1 of degrees 2−n satisfying a system of quadratic equations which follows from
quationd2=0.

Definition 2: An L̀ -algebra on A is given by the following data.

a) A Z-graded vector space A.
b) A codifferential on the cofree cocommutative coalgebra CsAf1gd= %nù1S

nsAf1gd, where
SnsVd denotes the nth symmetric power in the symmetric monoidal category ofZ-graded
k-modules.

The codifferentiald defines a sequence of “higher Lie brackets”mn:A^n→A,nù1 of degree
−n satisfying a system of quadratic equations which follows from the equalityd2=0.

It is useful to have in mind a geometric picture for both algebraic structures defined abo
tart withL`-algebras.

An L`-algebra gives rise to aformal pointedZ-graded manifold X, which carries a vector fie

X of degree +1 such thatdX vanishes at the marked point, and satisfies the conditionfdX,dXg
0. This structure is calledformal pointed differential-graded manifoldin Kontsevich(1997) and
ontsevich and Soibelman(in press, 2000) (it was introduced by Schwarz under the name of
-manifold). The algebra of formal functions ofX is isomorphic to the graded dual to the co
ebraCsAf1gd. Thus we can writeX=Spf(sCf1gd*), whereSpf stands for the formal spectrum

Remark 1: (a) One should remember that formalZ-graded manifolds have only nilpote
oints.

(b) It is useful to interpret maps mn as a Taylor coefficient of the vector field dX at the marke
oint.

Let us consider two examples.
Example 1: Let A be an associative algebra. Then its truncated Hochschild com

+
• sA,Adf1g= %nù1HomksA^n,Adf1g carries a structure of differential-graded Lie algebra, he
efines a formal pointed dg-manifold (see Kontsevich, 1997).

One can interpret the DGLA from the example as a DGLA of derivations of the t
oalgebra generated byAf1g. Equivalently, it is the DGLA of vector fields on the formal poin
raded manifoldX vanishing at the marked point. Then the DGLA structure is the natural o
ector fields.

One also has the notion of aformal differential-graded manifold, where the condition o
anishing at the marked point is dropped. Algebraically this means that we allow the co

0Þ0.
Example 2: In the previous example we consider the full Hochschild complex C•sA,Adf1g

%nù0HomksA^n,Adf1g. It gives rise to a formal dg-manifold.
The importance ofL`-algebras and formal dg-manifolds in deformation theory is based o

act that they define deformation functors(see, for example Kontsevich, 1997, and Kontsevich
oibelman, 2000). Let us briefly recall the construction. Ifg= %nù0g

n is anL`-algebra(gn is the
th graded component) then one has the deformation functor from commutative nilpotent alg
possibly graded) to groupoids. Namely to a commutative nilpotent ringR one assigns th
roupoid DefgsRd consisting ofgPg1 ^ R which satisfy the Maurer-Cartan equation,

m1sgd + m2sg,gd/2 ! + ¯ + mnsg, . . . ,gd/n ! + ¯ = 0,

heremn are the higher Lie brackets.
Formal deformations of many algebraic and geometric structures give rise to formal p

g-manifolds. Formal dg-manifolds without marked points arise, for example, when one d
ategories(i.e., when objects of a category are deformed). In Example 2 the corresponding d
anifold controls deformations of the category with one objectX such that HomsX,Xd=A.

One can develop a similar geometric language forA`-algebras. Namely, anA`-algebra give
ise to a noncommutative formal pointed dg-manifold. It is modeled by the cofree coalgeb
sAf1gd which carries a codifferentialdX. One also has the notion of anoncommutative form

g-manifold(no marked point is specified). In this case one can have a nonzero mapm0:k→A.
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eometrically this structure corresponds to a vector fielddX of degree +1 such thatfdX,dXg=0,
ithout any condition at the marked point. The corresponding algebraic structure is define

ollowing way.
Definition 3: We say that a codifferential on the coalgebra k% TsAf1gd defines a structure

eneralized À-algebra on A.
The notion of a smallA`-category is a natural generalization of the notion ofA`-algebra

raditionally, such a category is defined by a set of objectsObsCd, Z-graded freek-modules o
orphisms HomsX,Yd, and structures ofA`-algebras on the spaces%0øi,jønHomsXi ,Xjd for any

ollection of objectsX0, . . . ,Xn,nù1. These structures are given by the higher composition

mn:^0øiønHomsXi,Xi+1d → HomsX0,Xnd,

hich are maps ofZ-graded freek-modules of degrees 2−n satisfying quadratic relations simi
o those forA`-algebras. The structures ofA`-algebras are compatible with inclusions of col
ions of objects.

One can think of anA`-categoryC as of the largeA`-algebra Ends%XPObsCdXd (compare with
he relation between additive categories and associative algebras). The Hochschild complex an
ochschild cohomology of anA`-category can be defined in terms of thisA`-algebra.

For any objectX thek-module EndsXd=HomsX,Xd is anA`-algebra. Its truncated Hochsch
omplex gives rise to a formal pointed dg-manifoldMX. Then the formal dg-manifoldM
tXPObsCdMX “controls” A`-deformations of the categoryC with the fixed set of objects.

Replacing in the above discussion the truncated Hochschild complex by the full Hoch
omplex one obtains a new structure calledgeneralized À-category. GeneralizedA`-categorie
o not have a fixed set of objects. This is due to the fact that now for theA`-algebra EndsXd one
an havem0Þ0. As before, one can derive the formal dg-manifoldM [now using the generalize

`-algebras EndsXd]. For a commutative nilpotentk-algebraR one can considerk-pointsMsRd. If

0,M is the subset of zeros of the odd vector fielddM then one can speak about objects
omeA`-category. The objects are parametrized byM0. We omit here the description which c
e given in terms ofR-points ofM0 andM.

We will keep the name of the generalizedA`-category for a slightly more general structu
he point is that we allow the higher compositionsmn be defined not for all collections of objec
ut only for some of them(transversal collections). The Fukaya category discussed in the n
ection will be this kind of generalizedA`-category.

We summarize without details the data defining a generalizedA`-category in the followin
ay.

a) We are given a formal dg-manifoldObsCd=M.
b) For anynù1 we are given a formal dg-submanifoldMtr

n ,Mn called the space of tran
versaln-families. It is assumed thatMtr

1 ,M (i.e., every object is transversal to itself).
c) For a pointsX,YdPMtr

2 we are given aZ-graded freek-module HomCsX,Yd called a spac
of morphisms betweenX and Y. Thesek-modules are organized in a formal dg-bun
HomC→Mtr

2.
d) For nù1 and anysX0, . . . ,XndPMtr

n we are given a higher composition mapmn
sX0,. . .,Xnd

which gives rise to a morphism of the obvious pullbacks of HomC to Mtr
n. The compositio

maps give rise to a structure of generalizedA`-algebraAsX0, . . . ,Xnd, or, equivalently to
noncommutative formal dg-manifoldMsX0, . . . ,Xnd.

e) Let MsCd be the inductive limit ofMsX0, . . . ,Xnd taken over increasing collections
transversal objects. This is a noncommutative formal dg-ind-scheme(it can be properl
defined as an inductive limit in the appropriate category).

f) Finally MsCd is a noncommutative formal dg-manifold over the commutative sch
Specskd.
The structure defined in(a)–(e) is called the generalizedA`-category. It gives rise to the usual
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-linearA`-category, which we will call associated toC. The latter is defined by a noncommutat
ormal dg-ind-subschemeMsCd0,MsCd of zeros of the odd vector fielddMsCd.

Remark 2:(a) One can define the Hochschild complex of a generalized A`-category. It give
ise to a formal dg-manifold. The corresponding deformation functor describes the formal
ation theory of the generalized A`-category in the class of generalized A`-categories. If th

ategory has one object X we have the full Hochschild complex of the corresponding gen

`-algebraEndsXd.
(b) We do not discuss the delicate problem of unital A`-algebras (more generall,

`-categories with identity morphisms). It is an interesting question because in practice i
orphisms may be defined up to a homotopy only. All this can be formulated in the lang
oncommutative geometry.

There is a notion of anA`-functor between two generalizedA`-categories.A`-functors form
hemselves a generalizedA`-category. UsingA`-functors one defines the notion of equivalenc

`-categories(see Kontsevich and Soibelman, 2000).
Let us illustrate the notion of equivalence in the case when both categories have o

bject. Then we are dealing with generalizedA`-algebras, sayA andB. Assume in addition tha

0
A=0 andm0

B=0 (i.e., we have ordinaryA`-algebras). If A is equivalent toB then the complexe
A,m1

Ad and sB,m1
Bd are quasi-isomorphic. Geometrically this means that the tangent spa

arked points of equivalent noncommutative formal pointed dg-manifolds are quasi-isom
he converse is also true(this is theA`-version of the inverse function theorem). A generalized

`-algebra withm0Þ0 is equivalent to one which hasm0Þ0, andmnù1=0 (cf. the vector field
hich is nontrivial at a point is locally equivalent to a constant one). The latter observatio
xplains why generalizedA`-categories should be studied in families rather than individu

ndeed generalizedA`-categories withm0Þ0 are trivial in the sense that all higher compositi
an be killed by an appropriate equivalence functor.

Similarly to the case of formal pointed dg-manifolds there is a theory of minimal mod
oncommutative formal pointed dg-manifolds. For such a theory one needs to assume
round ringk is a field of characteristic zero(there is more complicated theory for nonpoin
g-manifolds).

If two A`-categories are equivalent then the formal pointed dg-manifolds of their def
ions are quasi-isomorphic(i.e., tangent complexes at the marked points are quasi-isomorp).

Finally, there is a theory of generalizedA`-categories over a formal dg-base. In the ab
iscussion we discussed the case when the base was an ordinary scheme Specskd. We can als
ssume that the base is a formal scheme. As we will see in the next section the latter

mportant in symplectic geometry.

II. FUKAYA CATEGORY

. Fukaya category and noncommutative geometry

The Fukaya categoryFsXd of a smooth symplectic manifoldX is a generalizedA`-category
ver a base. It can be constructed as anA`-deformation of the following trivialC-linear categor

0sXd. Objects ofF0sXd are pairssL ,rd, whereL is a Lagrangian submanifold ofX andr is a loca
ystem onL. Transversal collections of objects correspond to transversal collections of Lagr
ubmanifolds[in fact we need a more sophisticated transversality condition; see Kontsevi
oibelman (2000)]. We set HomF0sXd(sL0,r0d ,sL1,r1d)= %xPL0ùL1

Homsr0x,r1xd and
omF0sXd(sL ,rd ,sL ,rd)=V•(L ,Endsrd). All compositionsmn,nù1 are trivial for collections o
ifferent objects. Otherwisemnù3=0, andm2 is the natural product on the differential-grad
lgebraV•(L ,Endsrd).

To a pairsL ,rd one can associate a generalizedA`-algebraAsL ,rd. Let us assume for sim
licity that r is a trivial rank one local system. Then the corresponding generalizedA`-algebra
sLd is generated by geometric cycles inL. Higher multiplicationsmnsC1, ... ,Cnd between gener
yclesCi are given by a kind of quantum cohomology construction. Namely, one counts

2 2 2
ome weight pseudo-holomorphic mapsf : sD ,]D d→ sX,Ld with marked pointsx1, ... ,xnP]D .
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ereD2,C is the standard disk. It is required that the pointxi is mapped toCi. The weight is
xp(−1/eeD2f*svd), wherev is the symplectic form onX, ande is a parameter. The idea of th
onstruction ofAsLd was suggested by Kontsevich. Difficult analytic details have been worke
n Fukaya, Oh, Ohta, and Ono(2000). In what follows we will assume the conditions on the d
mposed in Fukaya, Oh, Ohta, and Ono(2000). The resulting generalizedA`-algebraAsLd is
efined over the valuation ringCe

ù0=hf =oiù1aie
−li/ej, whereai PC ,a1Þ0, andli ù0 is a mono

onically increasing sequence of real numbers such that limi→+` li = +`. The valuation map
iven by vsfd=l1. The corresponding valuation fieldCe consists of seriesf as above, withli

R. It is useful to notice thatCe
ù0 contains the maximal idealCe

.0 consisting of series with a

i .0. One observes that the compositionm0=0 moduloCe
.0, but in generalm0Þ0.

It can be proved that the disjoint union of noncommutative dg-manifolds associate
eneralizedA`-algebrasAsL ,rd gives rise to a generalizedA`-categoryFesXd over the forma
pectrum of the ringCe

ù0. Its reduction modulo the idealCe
.0 is equivalent toF0sXd. If the

ymplectic formv satisfies certain rationality conditions then one can introduce a new para
=exps−1/ed, thus replacing the ringCe

ù0 by the ring of formal seriesC[fqg]. Then the maxima
deal is justqC[fqg], and the fieldCe coincides with the field of Laurent seriesC(sqd).

The Fukaya categoryFsXd is defined as anA`-category obtained fromFesXd by restriction to
eros of the odd vector field. In particular, for an objectA of FsXd the compositionm0 vanishes

0
A=0. The conditionm0

A=0 defines a “subvariety” of the noncommutative moduli sp
MOb(FesXd)

NC . Objects of the Fukaya category exist only along this “subvariety.” This geom
icture explains why it is too naive to work with the Fukaya category for fixede, even if one ca
rove convergence of the series definingmn (the latter is still an open problem).

Let us assume for simplicity the above-mentioned rationality conditions ofv. Then the
ukaya category is defined over the formal spectrumSpfsC[fqg]d. In fact one can extend th
efinition so that the base will beSpfsC[fqg] ^ s^ iÞ2Cfti,mgdd, whereq has degree zero, andti,m
re parameters of degrees 2−i corresponding to some basis in the graded vector space of
ologyHisX,Cd. We introduce new parametersz,t of degree zero by settingz=qet. Then, invert

ng z we obtain a family ofA`-categories over the fieldC(szd) parametrized bySpfsC[ftg] ^

^ iÞ2Cfti,mgdd. This family should be thought of as the formal deformation of a ce

`-category overC(szd). The tangent space to the moduli space of the formal deformations
ategory is isomorphic to the cohomologyH•(X,Csszdd). The latter cohomology group is isom
hic to % iù0ExtisId, Idd, where Id is the identity functor, and the extensions are taken i
roperly definedA`-category of endofunctors. This description is useful for the purpos
uantum cohomology(the Yoneda product on functors gives rise to the quantum product o
ohomology group).

. Conventional approach to the Fukaya category

Below we briefly recall the “naive” definition of the Fukaya category, when the compo

0 is ignored. It is useful in some questions, for example, in mirror symmetry for Abelian va
see Kontsevich and Soibelman, 2000). As we will discuss below, this “naive” Fukaya categor
elated to deformation quantization.

Objects ofFnaivesXd are pairssL ,rd, whereL,X is a Lagrangian submanifold andr is a loca
ystem onL. Morphisms betweensL0,r0d and sL1,r1d are defined only ifL0 and L1 intersec
ransversally. In this case Hom(sL0,r0d ,sL1,r1d)= %xPL0ùL1

Homsr0x,r1xd ^ Ce. The space o
orphisms isZ-graded by means of the Maslov index. Thus we are dealing with graded La

an manifolds(cf. Seidel, 2000). There are higher compositionsmn,nù1, which are linear maps
egrees 2−n:

mn:^0øiøn Hom„sLi,rid,sLi+1,ri+1d… → Hom„sL0,r0d,sLn,rnd….

hey are defined by means of the Floer-type construction associated with the “transvers
ection of Lagrangian submanifoldsLi ,0ø i øn. It is usually said that the mapsmn give rise to an

naive

`-structure onF sXd. We refer the reader to Kontsevich and Soibelman(2000) about the
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etails of this definition, and to Fukaya, Oh, Ohta, and Ono(2000) about definitions of the relate
oduli spaces.

There are several problems with the naive definition of the Fukaya category. One of th
ssential is the presence of pseudo-holomorphic disks with the boundary mapped to a La
ubmanifold. This amounts to nontrivial mapsm0:Ce→HomsX,Xd. As a result, the axioms of th

`-category are not satisfied, and one has to work with generalizedA`-categories. It was e
lained in the preceeding sections[for all details see Kontsevich and Soibelman(2000)] how a
onsistent theory of such can be developed in the framework of noncommutative formal ge
ne can still work withFnaivesXd with understanding that it is only a part of the “true” Fuk

ategoryFsXd.

V. REMINDER ON DEFORMATION QUANTIZATION

We recall that a symplectic 2n-dimensional manifoldsX,vd gives rise to an Abelian catego
sXd of modules over a noncommutative algebraAsXd (deformation quantization of the algeb
`sXd of smooth functions onX). Such a deformation quantization is nonunique. We will use
ne which has the characteristic classfvg / t [see Deligne(1995)]. The algebraAsXd is a topologi
al algebra over the ring of formal seriesC[ftg]. As aC[ftg]-module it is isomorphic to the algeb
f formal seriesC`sXd[ftg]. The algebraAsXd consists of global sections of a sheaf of nonc
utative algebrasAX, such that locallyAX is isomorphic to the sheaf oft-pseudo-differentia

perators onRn [the latter are locally seriesP=ouI uù0aIsxdst]xdI]. The Poisson structure induced

X
`.AX/ tAX coincides with the one given by the symplectic form.

One has a category ofAsXd-modules M such thatM is t-adically complete, flat as
[ftg]-module, andM / tM is the space of sections of a sheaf of modules over the sheaf of s

unctionsCX
`. The category ofAX-modules will be denoted byCsXd. Morphisms are defined

[ftg]-linear homomorphisms of topological modules. We will keep the same notation f
elated category defined over the fieldC(std). It is obtained fromCsXd, respectively,CX by adding
−1, so that modulesV and tV become equivalent.

Let holsXd be a full subcategory ofCsXd which consists of modulesM such that the suppo
uppsM / tMd is a Lagrangian submanifold.

We will call objects of holsXd holonomic. The Lagrangian support SuppsMd of a holonomic
odule will be sometimes called itscharacteristic varietyof M and denoted byChsMd. The

ategory holsXd contains objectsVsL,rd which correspond to pairssL ,rd whereL,X is a Lagrang
an submanifold andr is a local system onL. In what follows only such objects will be cons
red.

Remark 3: In [Karasev and Maslov (1983)] the authors constructed (for every Lagra
ubmanifold L satisfying some topological conditions) an AX-module VL such that ChsVLd=L. One
an easily generalize their construction including local systems on L. We will call the correspond

ng objects Karasev–Maslov modules.
We will need symplectic manifoldsXn,nù2. The corresponding symplectic forms are gi

y sv ,−v ,−v , ... ,−vd.
The identity functor IdAX−mod is represented by theAX3X-moduleKD supported on the diagon

,X3X. It can be identified with the sheafAX. Deformations ofAX−mod as anA`-category ha
he tangent complex quasi-isomorphic(after a shift) to the tangent complex to the deformation
he identity functor IdAX−mod. The latter deformations are described by the deformations ofKD as
n object of AX3X−mod. The tangent space atKD to the moduli space of its deformations

somorphic to% iù0ExtAX3X−mod
i sKD ,KDd. After changing scalars toC(std) the latter sum can b

dentified withH•sX,C(std)d. We can restrict the deformation functor to the subcategory holsXd. It
s not difficult to see that the support of a holonomic module remains Lagrangian. These
ations lead to the following result.

Proposition 1:

•
a) The Hochschild cohomology of the category AX−mod is isomorphic to HsX,C(std)d. (Here
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we consider AX−modas an À -category with mnÞ2=0 and m2 given by the usual compo
tion of morphisms).

b) The tangent space to the deformations of an objectsL ,rdPholsXd is isomorphic to
H•(L ,Endsrd) ^ C(std).

We also mention the following proposition[see Soibelman(2001)]. It should be compare
ith the definition of Hom’s in the Fukaya category.

Proposition 2: Let VsL,rd denotes the object ofholX corresponding to the pairsL ,rd. If L0 is
ransversal to L1 then

a) ExtisVsL0,r0d ,VsL1,r1dd is trivial if i Þn, where n=1/2 dimX;
b) ExtnsVsL0,r0d ,VsL1,r1dd. %xPL0ùL1

Homsr0x,r1xd ^ C(std);
c) the algebraExt•sVsL,rd ,VsL,rdd is isomorphic to the cohomology H•(L ,Endsrd) ^ C(std) [cf.

part (b)] of the previous Proposition).

Let D`
b(holsXd) be theA`-category associated with the category holsXd. It is in fact a dg

ategory. In order to construct it one chooses injective resolutions ofAX-modulesIM andIN of two
olonomic modulesM and N. Then one defines HomD

`
b (holsXd)sM ,Nd=Hom•sIM ,INd. In this way

ne obtains anA`-model for the derived category of the category of holonomic modules.
The discussion above shows a certain similarity betweenD`

b(holsXd) and FnaivesXd. At the
ame time their deformation theories induce different products on the cohomology ofX. In case o
he Fukaya category it is the quantum product, while in case of holsXd it is the usual cup produc
he reader will also notice that the Maslov index is not visible in the case of holsXd.

On the other hand we will explain in the next section that

a) The algebras EndD
`
b (holsXd)(sL ,rd) and EndFnaivesXd(sL ,rd) areA`-equivalent.

b) If L and L8 are Hamiltonian isotopic, then we can “twist” the sp
HomD

`
b (holsXd)ssL ,rd ,sL8 ,r8dd in such a way that it becomes quasi-isomorphic to the c

sponding complex of morphisms inFnaivesXd.

. COMPARISON OF THE CATEGORIES

Let sL ,rd be a pair as before, i.e.,L is a Lagrangian submanifold ofX andr is a local system
n L. Let us denote byEsL,rd the corresponding object ofFsXd, and byVsL,rd the correspondin
bject of holsXd. We assume thatm0=0 in theA`-algebraAsL ,rd. This means that in fact we a
ealing with the categoryFnaivesXd. We also assume the conditions imposed onL in Fukaya, Oh
hta, and Ono(2000). This allows us to make necessary choices without further explanatio
articularL is relatively spin in the sense of Fukaya, Oh, Ohta, and Ono(2000), so the modu
paces of pseudo-holomorphic discs are orientable. Taking the Hochschild complex ofAsL ,rd we
an construct the formal pointed dg-manifoldMEsL,rd

of deformations ofEsL,rd. Similarly, we can

tart with the Lie algebra HomD
`
b (holsXd)sVsL,rd ,VsL,rdd and construct the formal pointed dg-manif

VsL,rd
of deformations ofVsL,rd.

Let us imagine that bothFnaivesXd and D`
b(holsXd) are “sheaves ofA`-categories” on th

moduli space of objects”. Let us also imagine that there is a well-defined moduli spaceLagrX of
agrangian submanifolds ofX. Then we should have a natural projectionp :MX→LagrX. If L is
Lagrangian submanifold, andfLgPLagrX, the corresponding point of the moduli space then

ber p−1sfLgd consists of local systems supported onL (or on any Lagrangian submanifold re
esenting the same equivalence class in the moduli space). We would like to compareFnaivesXd and
olsXd in a “small neighborhood offsL ,rdg”. From the categorical point of view we have t

`-categoriesA and B with the same “space” of objects, and such that for any objectX the

`-algebras EndAsXd and EndBsXd are equivalent. We would like to find a functorF :A→A such
hat changing morphisms inA to HomA

newsX,Yd=HomA(X,FsYd) one gets a newA`-category

quivalent toB.
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. Main conjecture

We will denote by holsLd the full subcategory of holsXd consisting of holonomic modules w
he given supportL. For simplicity we will assume the rationality condition imposed on
ymplectic formv. Hence the Fukaya category is defined overC(sqd) (this is not a seriou
estriction because one can consider deformation quantization over any pro-nilpotent alg
articularC«).

Our main idea can be explained such as follows. Having in mind the intuitive picture
revious subsection we consider bothFnaivesXd andD`

bsholsXdd in a small neighborhood of a giv
LgPLagrX. For a pair L1,L2 sufficiently close to L we would like to find a functo

L1,L2
:D`

bsholsL2dd→D`
bsholsL1dd, such that Hom(r1,FL1,L2

sr2d) [morphism as objects

`
b(holsL1d)] is quasi-isomorphic to HomFnaive(Xd(sL1,r1d ,sL2,r2d). Such a functor should be re

esented by a bimodule. Let us describe all this more precisely.
Let Mi =VsLi,rid

PholsLid , i =1,2. Weexpect that there exists a Lagrangian submanifoldL12

LsL1,L2d,X3X andKsL1,L2d=KL12
PholsX3Xd such that the following occurs.

1) If L1 and L2 have a nonempty intersection thenL12+L1=L2. Here L +L=p2(p1
−1sLdùL),

where pi :X3X→X, i =1,2 are thenatural projections. In particular we assume that
restrictions ofpi , i =1,2 toL are coverings.

2) HomD
`
b (holsXd)(M1,KsL1,L2d +M2).HomFnaivesXdssL1,r1d ,sL2,r2d), where . means a quas

isomorphism of complexes, and we consider both categories over the fieldC(sqd) [i.e., q
= t in the case of holsXd]. The composition+ for modules is given by the formulaK +M
=p2*fK ^ p1

*sMdg.We denote by HomnewsM1,M2d the left hand side of(2).
3) For a generic sequence of Lagrangian submanifoldsL1,L2, ... ,Ln,nù2 and holonomic mod

ules M1, ... ,Mn such thatMi =VsLi,rid
for all i, we expect to have an isomorphism

AXn-modules:

KsL1,L2d + KsL2,L3d + ¯ + KsLn−1,Lnd → KsL1,Lnd.

Such an isomorphism defines a linear map,

mn
new:^1øiøn−1HomnewsMi,Mi+1d → HomnewsM1,Mnd.

We expect the above data to satisfy the following.

Conjecture 1: (i) Higher compositions mn
new,nù1 give rise to a structure of an À-category

n D`
b(holsXd).

(ii) This category is À-equivalent to FnaivesX,vd (with q= t).

. The conjecture in the case of cotangent bundle

Let us fix a Lagrangian submanifoldL,X, and consider only thoseL8 which are “very close
o L. More precisely we assume that they are not only close toL but also Hamiltonian isotopic
. We want to “restrict”FnaivesXd to this “neighborhood ofL.” This means that we consider

`-subcategory with the objects taken from the above-mentioned subset, and morphisms
s inFnaivesXd. We do the same thing with holsXd andD`

b(holsXd). We would like to compare the
ategories in the case whenX=T*Y is the cotangent bundle with the standard symplectic stru
notice that a neighborhood of a Lagrangian submanifoldL can be identified by a symplectom
hism with a neighborhood of the zero section inT*L). We are going to consider Lagrang
ubmanifolds of the typeLi =h(x,dfisxd)uxPYj. Let ri be local systems onLi.

For a pair of such Lagrangian submanifolds we have a symplectomorphismf :X→X such tha
x,jd° (x,j+df2sxd−df1sxd). Clearly it maps isomorphicallyL1 into L2.

Let us defineL=L12 as graphsfd,X3X. The corresponding bimoduleKL is the quotient o

X�AX
op by the left ideal generated by the relationa^ 1=1^ es1/tdadsf2−f1dsad, aPAX. Hereadsad

`
sbd=ab−ba (clearly AX containsCY as a subalgebra, so the ideal is well-defined).
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Notice that exp1/ t (adsf2− f1d)exp1/t(adsf3− f2d)¯exp1/ t (adsfn− fn−1d)=exp1/ t (adsfn

f1d). Hence we have an isomorphismKsL1,L2d +KsL2,L3d + ¯ +KsLn−1,Lnd→KsL1,Lnd.
In order to check the conjecture we may assume thatf1=0. Then we observe that

HomD
`
b
„holsXd…„r1,KsL1,L2d + r2… = V•sY,r1

*
^ r2d,

here the rhs is the complex of de Rham forms with values in the local system. Let=i , i =1,2
enote the flat connection onri , i =1,2. Then the differential is given by=1

*
^ 1+1^ =2

df2∧ s·d. The latter complex is equivalent to the standard de Rham complex(without df2) if one
wists the sections by exp(s1/tdf2), i.e., s°s exp(s1/tdf2). Then according to Kontsevich a
oibelman (2000), in Sec. IV the resulting complex is quasi-isomorphic
omFnaive(XdssL1,r1d ,sL2,r2d). We remark that in the notation of Kontsevich and Soibel

2000), one hasq=exps−1/«d.
Remark 4:. The case of a general symplectic manifold does not follow automatically fro

esults of this section. Indeed, in order to define morphisms in the Fukaya category for Lagr
ubmanifolds in a small neighborhood of a given L one has to consider pseudo-holomorph
hich do not belong entirely to the neighborhood (we are restricted by the boundary con
nly). Nevertheless, if our main conjecture is true, one can find a family of kernels KsL1,L2d which

akes care of such disks.

. Complex structure on the moduli space of holonomic modules

We observe that the tangent space to the moduli space of deformations of a moM
holsXd ,suppsMd=L is isomorphic to HomD

`
b (holsXd)sM ,Md [derived deformations of HomholsXd

sIdX, IdXd]. There is a natural embedding HomD
`
b (holsLd)sM ,Md→HomD

`
b (holsXd)sM ,Md, corre-

ponding to the deformations with the fixed supportL. On the other hand there is a natu
rojection HomD

`
b (holsXd)sM ,Md→V•sLd, whereV•sLd denotes the de Rham complex ofL. Indeed

deformation of the moduleM induces the deformation of the support ofM. The latter ar
ontrolled by differential forms on the support. We can perform computations in the d
ategories. Then we have an exact sequence of the tangent spaces to the formal moduli
eformations:

ExtholsLd
• sM,Md → ExtholsXd

• sM,Md → HDR
• sLd.

uppose thatM is a simple module. Then

R HomholsLdsM,Md . RG„L,RHomI sM,Md… . RGsL,CLd . V•sLd.

aking the first cohomology(this corresponds to “classical” tangent space) we obtain in this cas
n exact sequence,

HDR
1 sLd → ExtholsXd

1 sM,Md → HDR
1 sLd.

This means that the tangent space to the “classical” deformations ofM inside of holsXd is
wice as big as the tangent space to the “classical” deformations ofL inside of LagrX. If X is a
alabi–Yau manifold then one hopes to obtain a complex structure on the moduli space o
eformations of a simple holonomic moduleM. We expect that it is isomorphic to a subvariety

he dual Calabi-Yau manifold. In order to describe the complex structure explicitly we n
dentify the tangent spaceTLsLagrXd with the tangent spaceTMsholsLdd. It is sufficient to describ
he lifting of paths from LagrX to holsLd. Given a pathLstd,LagrX such thatLs0d=L, we define
pathMstd,holsLd ,Ms0d=M in the following way:Mstd=M ^ rstd. Hererstd is the restriction t
std of the unitary bundle overX with a connection= such that curvs¹d=vX (it is often called th

re-quantum line bundle). The restriction of¹ to Lstd is a flat connection.
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I. CONCLUSION

We have suggested the way to compare the Fukaya category with the category of ho
odules over the quantized algebra of smooth functions. The idea is for a pair of Lag

ubmanifoldsL1,L2 to find a kernelKsL1,L2d which transforms local systems(or more genera

X-modules) supported onL2 to local systems supported onL1. We have conjectured that it
ossible to make these choices in such a way that the counting of instantons(i.e., higher compo
itions in the Fukaya category) can be replaced by pure algebraic operation of taking homo
hisms between local systems having the same Lagrangian support. We have checked th

ure in the simplest case. It would be interesting to check it in other cases as well as “glo
his picture, finding kernelsKsL1,L2d for Lagrangian submanifolds which are not close to e
ther.

CKNOWLEDGMENTS

We thank Dima Arinkin and especially Maxim Kontsevich for useful discussions. Some
ackground material is taken from the joint book of Kontsevich and a second author(see Kont
evich and Soibelman, in press). We thank Sergei Barannikov for comments on the paper.
hanks the Clay Mathematics Institute for supporting him as a Fellow and IHES for hospital
xcellent research conditions. He also thanks the organizers of the workshop CATS-1(Nice,
ovember 2001) where the main ideas were reported.

eilinson, A. and Drinfeld, V., Chiral algebras, preprint, 1999.
eligne, P., “Deformations de l’algebre des fonctions d’une variete symplectique,” Selecta Math., New Ser.1, 667–698

(1995).
ukaya, K., Oh, Y. G. , Ohta, H., and Ono, K., “Lagrangian intersection Floer theory-Anomaly and obstruction,”

Kyoto University, 2000.
arasev, M. and Maslov, V., “Pseudo-differential operators and canonical operator on general symplectic manifo

Akad. Nauk SSSR, Ser. Mat.47, 999–1029(1983).
apranov, M. and Vasserot, E., “Vertex algebras and the formal loop space,” math.AG/0107143, 2001.
apustin, A. and Orlov, D., “Remarks onA-branes, mirror symmetry and the Fukaya category,” hep-th/0109098, 2
ontsevich, M., “Homological algebra of mirror symmetry,”Proceedings of the ICM in Zurich, Vol. 1 (1994), pp.

120–139.
ontsevich, M., “Deformation quantization of Poisson manifolds, I,” q-alg/9709040, 1997.
ontsevich, M. and Soibelman, Y., “Homological mirror symmetry and torus fibrations,” math.SG/001104, 2000.
ontsevich, M. and Soibelman, Y.,Deformations Theory(in press).
ontsevich, M. and Soibelman, Y., “Deformations of algebras over operads and Deligne’s conjecture,” math.QA/0

2000.
alikov, F., Schechtman, V., and Vaintrob, A., “Chiral de Rham complex,” math.AG/9803041, 1998.
eidel, P., “Vanishing cycles and mutations,” math.SG/0007115, 2000.
oibelman, Y., “Quantum tori, mirror symmetry and deformation theory,” Lett. Math. Phys.56, 99 (2001).
trominger, A., Yau, S-T., and Zaslow, E., “Mirror symmetry isT-duality,” Nucl. Phys. B479, 243 (1996).
                                                                                                            



D

I

ive as-
s u-
t d as a
l d to be
i pon-
d

e
R

w n
t re
o

ulation
o ducing
n closely
r fs. 2
a

ry was
t anifold
f re gen-
e e gener-

a

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 10 OCTOBER 2004

0

                        
eformation quantization in singular spaces
Cesar Maldonado-Mercadoa)

Department of Mathematics, University Gardens, University of Glasgow,
Glasgow G12 8QW, United Kingdom and ITESM CEM Carretera Lago de Gaudalupe
Km. 3.5, Atizapán de Zaragoza, Estado de México, C.P. 52926, Mexico

(Received 4 January 2004; accepted 7 June 2004; published 12 October 2004)

We present a method of quantizing analytic spacesX immersed in an arbitrary
smooth ambient manifoldM. Remarkably our approach can be applied to singular
spaces. We begin by quantizing the cotangent bundle of the manifoldM. Using a
supermanifold framework we modify the Fedosov construction in a way such that
the !-product of the functions lifted from the base manifold turns out to be the
usual commutative product of smooth functions onM. This condition allows us to
lift the ideals associated to the analytic spaces on the base manifold to form left(or
right) ideals onsOV1Mff"gg ,!"d in a way independent of the choice of generators
and leading to a finite set of PDEs defining the functions in the quantum algebra
associated withX. Some examples are included. ©2004 American Institute of
Physics.[DOI: 10.1063/1.1788847]

. INTRODUCTION

Deformation quantization is mathematically speaking a way of defining noncommutat
ociative products on a Poisson manifold, called!-products, in a way such that the noncomm
ativity is controlled by a deformation parameter. The usual pointwise product is recovere
imit case when this deformation parameter is negligible and the Poisson structure is foun
n the same fashion a limit case of the!-commutator in accordance with the quantum corres
ence principle.

Formally speaking, consider a smooth manifoldN. A star product onONff"gg is an associativ
ff"gg-linear product

f!"g: = o
k=0

` S−
i"

2
Dk

mksf,gd,

here anymk is a bidifferential operator of finite total order andm0sf ,gd= fg. It then can be show
hat the operation onONff"gg defined byhf ,gj=lim"→0s1/i"dff ,gg is indeed a Poisson structu
n M. (For a review from the mathematical perspective see Ref. 1.)

From the physics point of view deformation quantization is a new autonomous reform
f quantum mechanics. Although still in development nowadays it is capable of repro
umerous examples from the ordinary operator formulation and has been found to be
elated to the path integral formulation.(For a review from the physics perspective, see Re
nd 3.)

One of the most powerful trends of work in mathematical physics during the last centu
he generalization of the formulation of physical theories from the Euclidean case to the m
ramework. In this way classical mechanics was formulated in terms of a Poisson structu
ralizing the classical notion of the Poisson bracket. Another example of this has been th

)
Electronic mail: cm@maths.gla.ac.uk
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lization of the operator formulation of quantum mechanics to the nonflat case. Different a
ave been found e.g., geometric quantization, group theoretic quantization.(For an extende
iscussion, see Ref. 4.)

Deformation quantization has followed a similar way going from the first!-product found b
oyal following physical ideas and then generalized by Fedosov, who gave an explicit co

ion of a !-product in an arbitrary symplectic manifold.5,6

The quantization of singular spaces has been somewhat rejected until very recently.
ne of the new possibilities provided by deformation quantization, since the traditional appr
reakdown in this case. Merkulov proposed in Ref. 7 a way of quantizing algebraic variet

mmersed in someRn. This included the possibility of a nonempty set of singular points.
In this work we provide a general construction to quantize arbitrary analytic spaces(including

he singular case), immersed in any smooth analytic real manifold.(A different approach can b
ound in Ref. 8.) We summarize the general context of this work in the following:

Euclidean Manifold framework

lassical mechanics Poisson bracket Poisson structu
uantum mechanics Heisenberg’s formulation e.g., group quanti
eformation quantization Moyal!-product Fedosov constructio
eformation quantization of singular spaces Merkulov’s work This article

I. QUANTIZATION OF ANALYTIC SPACES

Consider a smooth analytic manifoldM andOMff"gg, the ring of formal power series wi
lobal analytic functions as coefficients equipped with the usual commutative product. Cla
n analytic spacesX,OXff"ggd immersed onM is defined by choosing a finitely generated v

shing idealI. Then the subspaceX, which in general is not a smooth submanifold, correspon
he set of solutions of the system of equationsfi =0, for any setf1, . . . ,fn of generators ofI. The
ssociated ring of functions is defined then asOXff"gg=OMff"gg / I. (For a detailed exposition se
or example, Ref. 9.)

Now consider the cotangent bundlep :V1M→M. The idealI can be lifted viap−1sId and in
his way an analytic spacesX,OXff"ggd can be defined. This timeOXff"gg=OV1Mff"gg /p−1sId and
,V1M. In physical terms this would describe a system with a set of constrictions
onfiguration space. Our goal is to define a quantum version of this structure capable of
ith singular spaces.

Note that if one tries to replace naively the pointwise product of functions by the star p
n V1M (which can be found via the standard Fedosov construction for symplectic man),
ne finds two possible scenarios. If one fixes a set of generators of the vanishing ideap−1sId
efore quantizing, the construction will depend on this choice since the star product dep

he smoothness around the vanishing points of the possible choices of generators. On
and, if one avoids this choice and defines a left(or right) ideal and proceeds to determine
ormalizer, one finds an infinite number of equations.

In our approach, we modify the Fedosov construction5,6 in a way that allows us to find
uantum algebra independently of the choice of generators and corresponding to the solu
finite set of partial differential equations.

The quantization procedure goes as follows:
Step 1. Initial data: The necessary data to begin the construction are

1) A smooth manifold M;
2) A torsion free affine connection] defined on M;

3) The vanishing ideal I associated to the classical analytic space.
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Step 2. Quantization ofV1M: Before discussing the details we give in rough terms an o
iew of this step(for a related material on the deformation quantization of cotangent bundle
different approach, see Ref. 10). The goal is to construct a star product on the ring of funct

V1Mff"gg which coincides with the pointwise multiplication when restricted to functions l
rom the base, which is not the case in general for the standard Fedosov construction. T
ool is an auxiliary algebraW where a star product!" can be defined in a straightforward man
hen a subalgebraWD,W with a one to one correspondence that we will denote
:OV1Mff"gg→WD is found. The star product!"8 for OV1Mff"gg is defined as the one making

ollowing diagram commute:

OV1Mff"gg ^ OV1Mff"gg →
!"8 OV1Mff"gg

f ^ f↓ ↓f

WD ^ WD
→
!"

WD

hen the key point in this step is to find the subalgebraWD, which turns out to be the set of fl
ections of a connection, and the correspondent mapf.

Now we proceed with the exposition in detail. We shall use the language of superma
hich makes it more simple and makes the nature of the objects used more transparent.

Consider as3nund-dimensional supermanifoldM : =V1M 3 MTM3 MPsTMd (where we hav
sed the parity change operatorP). For a coordinate system inV1M of the formsx1. . .xn,p1. . .pnd
e have an associated coordinate system onM of the form

sx1
¯ xn,p1 ¯ pn,y

1
¯ yn,c1

¯ cnd.

Definition 2.1: The Weyl algebraW on the supermanifoldM is the usual supercommutat
lgebraOMff"gg, and a typical element ofW has locally the form

asx,p,y,cd = o
k,p,r=0

`

"kak,i1¯ip,j1¯ jq

k1¯kr sxdyi1
¯ yippk1

¯ pkr
c j1

¯ c jq, s1d

here the tensor ak,i1¯ip,j1¯ jq
k1¯kr is symmetric in the i1¯ ip and k1¯kr indices and antisymmetric

he j1¯ j r indices.
There is a natural!-product defined onW given as follows:

f!"g = expS−
i"

2
S ]2

]ya]p̃a

−
]2

]ỹa]pa
DDufsx,p,y,cdgsx,p̃,ỹ,cdup=p̃,y=ỹ,

here f ,gPW. This product is manifestly covariant and is easy to check it is associative
lso thatf!"g=g!−"f.

Then some auxiliary vector fields onM are defined:

sid d ª ca ]

]ya ,

sii d d!
ª ya ]

]ca ,

siii d dª ca ]
a ,
]x
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sivd d−1aª

d*

p + q
a,

svd ]aª ci]ia,

here aPW is a homogeneous element of orderp in the variableya and of orderq in the
nticommutative variableca.

Lemma 2.2: Let aPW be a homogeneous element as in the last paragraph and defi00

=asx,p,0 ,0d, then

sid d2a = 0,

sii d d!2
a = 0,

siii d da = −
i

"
fpjc

j,ag* ,

sivd a = a00 +
1

p + q
sdd!a + d!dad.

Proof is done by direct calculation, to illustrate we show the check for(iii ) which goes a
ollows:

−
i

"
fpic

i,ag* = −
i

"
Spic

ia + S− i"

2
DS ]2

]ya]p̃a

−
]2

]ỹa]pa
Dpic

iasx,ỹ,p̃,cd − s− 1dãSapic
i + S− i"

2
D

3S ]2

]ya]p̃a

−
]2

]ỹa]pa
Dasx,y,p,cdp̃ic

iDD
= −

i

"
S− i"

2
DS− ci ]a

]yi − s− 1dã ]a

]yi c
iD = ci ]a

]yi = da.

h

Note that property(iv) implies that for allaPW there is a decomposition

a = dd−1a + d−1da + a00. s2d

he local expression of] is

]a = caS ]

]xa + Gab
c pc

]

]pb
− Gab

c yb ]

]yc
Da. s3d

Lemma 2.3: It is possible to express]a as

]a = da+
i

"
fG,ag*

or someGPW of odd parity.
Proof: This can be shown as follows. Consider, for some constanta, the expression

da+ faG,ag* = da+ i"aS−
]G

]yb

]a

]pb
+

]G

]pc

]a

]ycD + Os"2d.
omparing this equation with Eq.(3) leads us to the equations
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caGab
c pc = − i"

]aG

]yb , − caGab
c yb = i"

]aG

]pc
.

his implies that we must takeG=Gab
c ybpcc

a anda= i /" and the result follows. h

The auxiliary algebra is defined as the setWDª haPW :Da=0j, for some connectionD
caDa that must satisfy the integrability conditionD2=0. It turns out that takingD=] is not a
ood choice as the following proposition shows.

Proposition 2.4: The integrability condition for the connection] can be expressed as

]2a =
i

"
fR,ag* s4d

here R: = 1
2cbccRabc

d pdy
a.

Proof:

1

2
f],]g*a =

1

2
FcaS ]

]xa + Gab
c pc

]

]pb
− Gab

c yb ]

]ycD,cdS ]

]xd + Gde
f pf

]

]pe
− Gde

f ye ]

]yfDG
*a

=
1

2
cacdSS ]Gde

f

]xa −
]Gae

f

]xd Dpf
]

]pe
+ S ]Gae

f

]xd −
]Gde

f

]xa Dye ]

]yf + sGam
f Gde

m − Gae
mGdm

f dpf
]

]pe

+ sGae
mGdm

f − Gde
mGam

f dye ]

]yfDa.

nd since

Rjkl
i =

]G jl
i

]xk −
]G jk

i

]xl + Gmk
i G jl

m − Gml
i G jk

m,

e have that

]2 =
1

2
cbccSRabc

d pd
]

]pa
− Rabc

d ya ]

]ydD
nd, on the other hand, we have

i

"
fR,ag* =

]R

]ya

]a

]pa
−

]R

]pd

]a

]yd .

his implies that we must take

R= 1
2cbccRabc

d pdy
a,

n order to have]2=si /"dfR, ·g* . This completes the proof. h

In other words the connection] should be flat to fulfill the condition, which is far to
estrictive. The way out is to define a new generalized connection of the form

Da = da+
i

"
f− capa + G + g,ag* = ]a +

i

"
f− capa + g,ag* ,

hereg is

g = o
n=3

`

Gi1¯in,b
a yi1

¯ yinpacb, s5d
o be determined to fulfill the integrability condition. Further calculation shows
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D2a =
i

"
fR,ag* +

i

"
]f− capa + g,ag* +

i

"
f− capa + g,]ag* + S i

"
D2

f− capa + g,f− capa + g,ag*g*

=
i

"
fR,ag* +

i

"
f]g,ag* + S i

"
D21

2
ffcapa + g,− capa + gg* ,ag* =

i

"
FR+ ]g − dg +

i

"
g!"g,aG

*
.

hen the equivalent condition for havingD2=0 is

dg = R+ ]g +
i

"
g2. s6d

Proposition 2.5:g is a solution of Eq. (6) if and only if

g = d−1R+ d−1S]g +
i

"
g2D s7d

nd the conditiond−1g=0 is fulfilled.
Fedosov’s proof6 can be applied here so we shall not include it.
Substitution of the general form ofg given in(5) into Eq.(7) leads to an iterative process w

nitial condition d−1R. The first terms of the solution are

g = 1
3Rabc

d yaybccpd + 1
12]lRabc

d ylyaybccpd + ¯ .

The subalgebraWD is defined by the conditionDa=0, i.e.,

da = ]a +
i

"
fg,ag* . s8d

Proposition 2.6: There is a one to one correspondencef :OV1Mff"gg→WD.
Proof: This can be shown as follows. Condition(8) is equivalent to

a = a00 + d−1S]a + F i

"
g,aG

*
D . s9d

he equivalence of these two equations is proved as in the Fedosov construction. Indee
2a=0

dDa = ]Da + F i

"
g,DaG

*
. s10d

n the other hand, using(9) d−1Da=0 and so

Da = d−1S]Da + F i

"
g,DaG

*
D .

olution of this equation by an iterative process implies thatDa=0. The converse assertion
rivial.

These are the first few terms of the solution for Eq.(9)

a = a00 + ]ia00y
i +

1

2
]i] ja00y

iyj +
1

6
]i] j]ka00y

iyjyk −
1

12
Rabc

d yaybpd
]a00

]pc
+ ¯

iving the one to one mapa00°fsa00d : =a. h
The star product forf00,g00POV1Mff"gg is finally defined as
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f00!"8g00 = f−1sf!"gd,

heref−1sf!"gd= f!"gsx,p,y,0duy=0u. The star product!"8 inherits from!" the natural shift from
eft to right multiplication f00!"g00=g00!−"f00, implying that our construction will not depend
ur choice to use left ideals instead of right ideals.

We find our key result for this step
Theorem 2.7:Let f00,g00Pp* sOMff"ggd, then

f00!"8g00 = f00g00.

Proof: Suppose that in Eq.(9) the starting conditiona00sx,pd does not depend onp, therefore
he commutatorfg ,a00g vanishes and one can check that this happens for every step in the it
olution. We are left then with the equation

a = a00sx,pd + d−1sci]iad.

olutions of this equation are

a = a00 + o
i=1

n
1

n!
]i1

¯ ]in
a00y

i1
¯ yin.

tar products of functions of this type are clearly just the usual commutative product. N
f00,g00 be two functions not depending onp then

f00sxd!"8g00sxd = f−1sf!"gd = f−1sfgd = f00sxdg00sxd.

h

From this point we denote the star product onV1M simply as!".
Step 3. Define the left idealJl and compute the normalizerNl: With the natural projectio

:V1M→M the idealI ,OMff"gg can be lifted toV1M giving a setp* sId,OV1M which define
left ideal

Jl = hOV1Mff"gg!"p * sIdj.

onsider now the normalizerNl ,AM for the left idealJl,

Nl = hh P OV1Mff"gg:p * sId!"h , Jlj.

learly Jl ,Nl and moreoverJl is a double sided ideal ofNl, this is

f!"sP Jl, s!"f P Jl ,

or all f PNl, sPJl.
Step 4. Take the quotientQX: =Nl /Jl: The result is a well defined noncommutative associ

lgebra which we call the quantum algebra of observables of X.
Computing the normalizer of a one-sided ideal and taking the quotient to find a nonc

ative ring is a rather common procedure which in general leads to conditions difficult to sol
n our case, remarkably we have

Theorem 2.8:The algebraQX corresponds to the quotient solution space of a finite num
f partial differential equations and it does not depend on the choice of generators of the.

Proof: The key point of the proof is given by theorem 2.7. This implies that for ag
OV1M the condition to be in the normalizer

p−1sId!"g = 0 modJl
s equivalent to
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So
i=1

n

aifiD!"g = o
i=1

n

ai!"sfi!"gd = 0 modJl . s11d

n other words to the condition thatfi!"g=0 modJl for the n generatorsfi of p−1sId. Each
quation being in fact a partial differential equation for functions inOV1Mff"gg. The independenc
f the choice of generators of the ideal follows trivially from the fact that any new set of ge

ors f̃i can be rewritten as a combination of the original ones leading again to Eq.(11). h

II. EXAMPLES

We shall develop next several examples of the explained technique when the ambie
guration space isR2. The natural choice of star product is the Moyal product onV1R2, given by

fplg = elSi=1
2 s]/]xi

]/]p̃i
− ]/]x̃i

]/]pi
dfsx1,x2,p1,p2dgsx̃1,x̃2,p̃1,p̃2dux̃=x,p̃=pu

ith f ,gPOV1R2fflgg. Clearly the Moyal product of functions not depending on the mome
ariables coincides with the pointwise product. We shall be using the following:

Lemma 3.1: Every analytic function fsx1,x2,p1,p2dPV1R2 can be uniquely decomposed

fsx1,x2,p1,p2d = o
i,j=0

`

f ijsp1,p2dplx1
i plx2

j . s12d

Proof: It is sufficient to note that

hsp1,p2dx1
Mx2

N = hsp1,p2dplx1
Mx2

N − o
n=1

M

o
k=0

minsN,nd
s− ldn

sn − kd ! k!

M ! N!

sM − n + kd ! sN − kd!
x1

M−n+kx2
N−k ]nh

]p1
sn−kd]p2

k

mplying that the Taylor expansion can be re-expressed in terms of the Moyal product.h

. The cross

Consider now the analytic variety of the cross defined by the equationx1x2=0. Any function
n the quantum algebraQ=Nl /Jl can be expressed as

hsx1,x2,p1,p2d = h0sp1,p2d + h1sx1,p1,p2dplx1 + h2sx2,p1,p2dplx2.

he left ideal is

Jl = hfplx1x2:f P OV1R2j.

he condition for the functionh to be in the normalizerNl is x1x2* lhPJl, i.e.,

0 modJl = x1x2plh0 + x1x2plh1plx1 + x1x2plh2plx2

= fx1x2,h0g + fx1x2,h1gplx1 + fx1x2,h2gplx2

= 2l
]2h0

]p1]p2
+ S ]h0

]p2
+ l

]2h1

]p1]p2
+ x1

]h1

]p2
Dplx1 + S ]h0

]p1
+ l

]2h2

]p1]p2
+ x2

]h2

]p1
Dplx2.

olutions have the form

h1sx1,p1,p2d = −
h0

2sp2d
+ jsx1,p2de−x1p1/l + asx1,p1d,
x1
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h2sx2,p1,p2d = −
h0

1sp1d
x2

+ zsx2,p1de−x2p2/l + bsx2,p2d,

hereh0
1sp1d ,h0

2sp2d are arbitrary functions. The solutions of the formh0
2sp2d /x1,h0

1sp1d /x2 are no
efined on the cross, therefore we do not consider them, similarly the termsjsx1,p2de−x1p1/l and
sx2,p1de−x2p2/l must be rejected as they are not meromorphic inl. (However such solutions m
ave a physical interpretation which we hope to elucidate later.)

We have then a family of functions for the quantum algebra of the cross given by

QC ª hh P OV1R2fflgg:hsx1,x2,p1,p2d = asx1,p1dplx1 + bsx2,p2dplx2j.

omputing the Moyal product of two elementsh, h̃PQC and eliminating terms with the fact

1x2 we find

hplh̃ = saplx1 + bplx2dplsãplx1 + b̃plx2d = aplx1plã + bplx2plb̃.

In other words the quantum algebra of the cross has then elements of the form

h = sasx1,p1d,bsx2,p2dd,

herea, b are arbitrary functions and the noncommutative product is

h!Ch̃ = saplx1plã,bplx2plb̃d.

. The double line

Consider now the analytic space of the double line defined by the equationx2
2=0. Functions o

he quantum algebraNl /Jl can be represented as

hsx1,x2,p1,p2d = h0sx1,p1,p2d + h1sx1,p1,p2dplx2.

he condition forh to be in the normalizer of the left idealJl =hf* lx2
2; f POV1R2j is

0 modJl = fx2
2,h0g + fx2

2,h1gplx2.

eading to the differential equation

x2
]h0

]p2
+ lx2

]2h

]p2
2 + l2]3h

]p2
3 = 0

hose general solution is

hsx1,x2,p1,p2d = asx1,p1d + bsx1,p1dp2 + Scsx1,p1d + dsx1,p1dp2 −
bsx1,p1d

2l
p2

2Dplx2.

he product of two of these functions can be represented as a matrix star product denoted!, in
he following way:

fshd ª Sa + 2ld b

2lc a
D ; SA B

C D
D .

hen

sfshd ! fsh̃dd = SA B

C D
DplSÃ B̃

C̃ D̃
D = SAplÃ + BplC̃ AplB̃ + BplD̃

CplÃ + DplC̃ CplB̃ + DplD̃
D

˜
s equal tofsh* lhd.

                                                                                                            



C

as the
q
w

w he
s

w
t of
a

D

w

he
n

T to take

of the
f

w

3992 J. Math. Phys., Vol. 45, No. 10, October 2004 Cesar Maldonado-Mercado

                        
. Line with a double point

We shall proceed now with the quantization of the line with a double point defined
uotient of the quantum algebra of the double line quotient by the ideal generated byx1x2=0
hich has the form

fshplx1x2d = fshd ! fsx1x2d = SA B

C D
DplS 0 0

x1 0
D = SBplx1 0

Dplx1 0
D ,

hereB, D are arbitrary functions depending onx1, p1. The corresponding normalizer will be t
et of solutions of the equation

S 0 0

x1 0
DplSa b

c d
D = 0 modJl , s13d

herea, b, c, d are a different set of arbitrary functions depending onx1, p1. This implies in turn
hatb=0 since the only solutions of the differential equationx1b+l]p1

b=0 are not in the space
cceptable formal functions. Thenasx1,p1d must be a solution of the equation

x1pla = 0smodDplx1d.

ecomposinga=oi=0
` aisp1d* lx1

i and factoring out we can rewrite this as

x1pla0sp1d = 0smodDplx1d.

Lemma 3.2:

Asx,pdplBspd = o
n=0

`

s2ldnAnspdBsndspdsmodDplxd,

here Asx,pd=oAnspd* lxn and Bsnd is the nth derivative of B.
Proof:

o
i=0

`

Aispdplxi−1plxplBspd = o
i=0

`

Aispdplxi−1pl2lBs1dsmodDplxd = o
i=0

`

s2ldiAispdplBsidspd.

h

In particular this implies that the second equation means thata=k for some constant. Then t
ormalizer has the form

S k 0

csx1,p1d dsx1,p1d
D .

he last step is to factor out the members of the left ideal from this normalizer. This means

csx1,p1dmodDplx1.

The resulting quantum algebra for the line with a double point is the set of matrices
orm

S k 0

csp1d dsx1,p1d
D

ith multiplication law
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S k 0

csp1d dsx1,p1d
D!8S k̃ 0

c̃sp1d d̃sx1,p1d
D

=S kk̃ 0

k̃csp1d + on=0

`
s2ldndnsp1dc̃sndsp1d dsx1,p1dpld̃sx1,p1d

D ,

here we have used Lemma 3.2.

. The doubly fattened circle

Let us consider now the space associated to the ideal generated byx1
2+x2

2, that we refer to a
he “doubly fattened” circle. Although the zero set of this polynomial is just the origin
esulting quantum algebra, as we shall show, is nontrivial. Any function in this quantum a
an be represented as

hsx1,x2,p1,p2d = h0sx1,p1,p2d + h1sx1,p1,p2dplx2.

he left ideal is

Jl = hfplsx1
2 + x2

2d:f P OV1R2fflggj.

he condition for a functionhsx1,x2,p1,p2d to be in the normalizer is

0 modJl = sx1
2 + x2

2dplh = −
]h1

]p2
x1

2 + 2lx1
]2h1

]p1]p2
− l2 ]3h1

]p1
2]p2

+ l
]2h0

]p2
2 + x1

]h0

]p1
+ S ]h0

]p2
+ l

]2h1

]p2
2

+ x1
]h1

]p1
Dplx2.

anipulations in the last equation lead to the condition

x1
2sDh1d − l2 ]2

]p2
2sDh1d = 0,

hereD=]p1

2 +]p2

2 , is the Laplacian operator. Therefore the two-dimensional spherical harm
ive a family of solutionsh1.

. Conclusion

We have shown a way to define noncommutative associative products to analytic
mmersed in analytic manifolds. The procedure works for smooth spaces and more rema
orks for singular spaces. This opens new possibilities in the field of deformation quant
nd leaves many open questions. One such question is how the singularity affects the
lgebra, or more generally how the singularity type affects it. Questions like these can be

hrough the introduction of parameters deforming the analytic spaces which will enter the
ifferential equations defining the associated algebras. These equations turn out to be co
ost cases. New techniques need to be developed to find the representation of the alg
ake possible the study of such questions.

Another interesting possibility is to develop a comparative study of the different quanti
rograms. The common goal of all such programs is to give a quantized version of c
hysical systems. Naturally for any given classical system there should be a unique p
uantum version, thus one would expect the different approaches to be equivalent in som
aving an affirmative answer to this would give a hint of some deep mathematical re

etween the different approaches.
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Another important line of work is to develop proper physical applications of the progra
ather interesting question to be studied is to find out how the singularity affects the physic
pace.

We expect to elucidate these and other questions in the future.
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lassification of extensions of principal bundles
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The equivalence of principal bundles with transitive Lie groupoids due to Ehres-
mann is a well-known result. A remarkable generalization of this equivalence,
given by Mackenzie, is the equivalence of principal bundle extensions with those
transitive Lie groupoids over the total space of a principal bundle, which also admit
an action of the structure group by automorphisms. In this paper the existence of
suitably equivariant transition functions is proved for such groupoids, generalizing
consequently the classification of principal bundles by means of their transition
functions, to extensions of principal bundles by an equivariant form ofČech
cohomology. ©2004 American Institute of Physics.[DOI: 10.1063/1.1786349]

NTRODUCTION

Lie groupoids are categories where every arrow has an inverse, plus a smooth structu
eneralize at the same time the notion of a manifold and a group, and are widely understo
art of the general context of noncommutative geometry. First, because groupoids are in
oncommutative objects, to a greater extent than are groups. Second, Lie groupoids p
odern context for the understanding of the geometry of symplectic and Poisson manifolds
re equipped with noncommutative structures. Following a result of Mackenzie, it was sh
ef. 1, that the prequantization problem for a symplectic manifold amounts to the existen
uitable transitive Lie groupoid. Furthermore, given a Poisson manifold, the existence of(non-
ransitive) symplectic groupoid provides a way to quantize it.

A rough and descriptive definition of a Lie groupoid is a pair of manifoldsV andM such tha
he elements ofV are arrows between points ofM. The functionsa ,b :V→M mapping ever
rrow to its source and target points inM are differentiable. Moreover there is a differentiable w

o multiply suitable arrows(such that the source of one is exactly the target of the other), and the
nversion of arrows is also differentiable. In this setting, forx,yPM we denoteVx the set o
rrows inV with sourcex, Vy the arrows with targety andVx

y the arrows with sourcex and targe
y. In particular,Vx

x is a Lie group called theorbit of V at x. A Lie groupoid is denoted byV¹M.
The simplest example of a Lie groupoid is the productM 3M¹M of a manifoldM, with the

bvious groupoid structure. This is called the “pair” groupoid. IfV andJ are Lie groupoids ove
he same base manifoldM, then a smooth mapw :V→J is a morphismof Lie groupoids ifa
w=a, b +w=b and wsh ·jd=wshd ·wsjd for any pair of composable arrows inV. For example
iven any Lie groupoidV¹M, the mapsb ,ad :V→M 3M is a morphism of Lie groupoids. Th
articular morphism is called theanchor.

The most well-known classification of Lie groupoids is the one of the transitive case.
itive Lie groupoids are the ones whose anchor is a surjective submersion, in other words
n arrow between any two points inM. The choice of a basepointxPM for a transitive Lie
roupoidV¹M gives rise to the principal bundleVxsM ,Vx

x,bxd. The principal bundles arisin

)
Electronic mail: iakovos@math.ist.utl.pt
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rom different choices of elements inM are isomorphic. Given a principal bundlePsM ,G,pd on
he other hand, the associated transitive Lie groupoid is the quotientsP3 Pd /G¹M. The
roupoid structure here is as follows: For an elementku2,u1l, the source ispsu1d and the targe
su2d. Suitable arrowsku2,u1l and ku28 ,u18l such that there exists agPG with u1=u28g can be
ultiplied by

ku2,u1lku28,u18l = ku2,u18gl.

he inverse ofku2,u1l is ku1,u2l and the unit element over anxPM is ku,ul for any uP P such
hat psud=x. It is shown in Ref. 8, Vol. II, Sec. I that the two processes are mutually inver

So transitive Lie groupoids are classified by the well-known classification of principal bu
y Čech cohomology.

A different classification of the transitive case was given by Mackenzie in Ref. 9. I
hown that if we shift the point of view from the prescription ofVx

x (for any given basepoint) to
he prescription of the Lie group bundleIV over M, of orbits, then transitive Lie groupoids a
lassified byČech cohomology with Abelian coefficients. This classification is always possi
alculate in contrast with the often non-Abelian classification of principal bundles. To achie
lassification, a transitive Lie groupoid is considered as an extension,

IV�V�
sb,ad

M 3 M ,

f the Lie groupoidM 3M¹M (with the obvious groupoid structure) by the Lie group bundl
V, instead of the principal bundleVxsM ,Vx

x,bxd. For example, the groupoid extension associ
o a principal bundlePsM ,Gd is

P 3 G

G
�

P 3 P

G
�M 3 M , s1d

heresP3Gd /G→M is the well-known gauge group bundle ofPsM ,Gd (where theG-action on

tself implied is the adjoint). The usual classification of principal bundles byȞ1sM ,Gd is the
nswer to the problem “given a Lie groupG and a manifoldM, classify all principal bundle

PsM ,Gd.” Mackenzie’s results imply that if we shift the problem to “given a Lie group bu
→M classify all groupoid extensions ofM 3M by this bundle,” then we get a classification
ech cohomology with coefficients in an Abelian group which is always computable, inst

ˇ 1sM ,Gd.
Another classification appeared recently by Moerdijk. In Ref. 11 regular Lie groupoid

lassified, i.e., those whose orbits have a constant dimension. Many Lie groupoids are reg
xample those arising from regular Poisson manifolds; moreover all transitive Lie groupo
egular. Extensions appear in this classification as well. Namely, it is shown that regu
roupoids are extensions of foliation groupoids by bundles of connected Lie groups, and t
lassified as such. In the case of transitive Lie groupoids, the results in Ref. 9 are a variatio
esults of Moerdijk in Ref. 11.

The main result of the present paper is the classification of extensions of transiti
roupoids by bundles of Lie groups. Denote such an extension,

F�V�J, s2d

hereF is a bundle of Lie groups andV,J are Lie groupoids, all of them over the same conne
anifold M. Due to the equivalence of transitive Lie groupoids with principal bundles,
xtensions are equivalent to extensions of principal bundles,

N�QsM,Hd� PsM,Gd. s3d
ereN is a Lie group and the notation implies the existence of an extension of Lie groups,
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N� H�G.

n the other hand, an extension of principal bundles(3) gives rise to the extension of transit
ie groupoids overM,

Q 3 N

H
�

Q 3 Q

H
�

P 3 P

G
.

ere the quotientsQ3Nd /H→M is the bundle of Lie groups associated to the principal bu
sM ,Hd through the action ofH on N by (the restrictions of) inner automorphisms. It is shown
ef. 7 that the two processes are mutually inverse.

From this point of view, the importance of such a classification is more than the genera
f the classification of transitive Lie groupoids to extensions. The central problem it deals

he classification of the covering bundles of a given principal bundlePsM ,Gd with connected bas
anifold M. Less abstract uses of such a classification arise from an abundance of parad
xtensions of principal bundles(see for example Ref. 6).

The classification of extensions(2) is made possible using a result of Mackenzie.7 It was
roved that such extensions are equivalent to a special kind of transitive Lie groupoi
o-called PBG-groupoids. These are transitive Lie groupoids over the total space of a p
undle which admit an action of the Lie group of the bundle by Lie groupoid isomorphis
escription of this equivalence is given in Sec. II of this paper. Roughly speaking, the
roupoid that corresponds to(2) is a Lie groupoid over the principal bundlePsM ,Gd, togethe
ith a G-action by(Lie groupoid) automorphisms. Thinking in terms of the extension of princ
undles(3) corresponding to(2), this is a remarkable result; because although the Lie groG
oes not always act on the kernelN (unlessN is Abelian), due to Mackenzie’s result there alwa
xists a Lie groupoid which admits an action ofG.

Once this result is well understood, the problem shifts to the classification of PBG-grou
he classification we give here is similar to the one given for general transitive Lie groupo

hat case, the equivalence with principal bundles ensures the existence of transition func
ie groupoids, which suffice to classify them by the usualČech cohomology. In the case
BG-groupoids though, it is necessary to encode the group action as well, and the exis

ransition functions which keep track of the action is not established.
In this paper it is shown that there exist transition functions for PBG-groupoids whic

quivariant in a certain sense. This is a nonstandard notion of equivariance which we callisometa
licity. In turn, a nonstandard form of equivariance inČech cohomology arises. The first isome
lic Čech cohomology then classifies PBG-groupoids.

Furthermore, a rather old problem is answered. Lie algebroids are the infinitesimal obje
rise from Lie groupoids, remotely related to them like Lie algebras are related to Lie g
ackenzie in Ref. 8 gave a classification of transitive Lie algebroids, but it is not clear ho

lassification integrates to the groupoid level. A reformulation of the isometablic transition
ions is given here, which clearly differentiates to the equivariant analog of the classification
n Ref. 8.

This paper is structured in the following way: Section I is an account of PBG-groupoid
heir relation with extensions of Lie groupoids and principal bundles. In Sec. II the re
onnection theory is described, emphasizing on the material that is of use for the scope
aper. In Sec. III we prove the existence of transition functions which keep track of the
ction, and clarify the notion of isometablicity. In Sec. IV we give the classification of PBG
roup bundles. A remarkable result yielding from this is that the localG-actions which give rise t

he notion of isometablicity are local expressions of the action ofG on the Lie group bundleIV of
given PBG-groupoidV¹PsM ,Gd. Section V contains the proof of the fact that isometa

ransition functions indeed classify PBG-groupoids. In Sec. VI we provide the reformulat
osmetablic transition functions to a form that differentiates to the equivariant analog
lassification of Lie algebroids given in Ref. 8. Finally, the formulation of the suitable coh

gy groups where the cocycles of isometablic transition functions live is given in Sec. VII.
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. LIE GROUPOID EXTENSIONS AND PBG-GROUPOIDS

In this section we recall in short the material from Ref. 7 on the correspondence of exte
f transitive Lie groupoids to PBG-groupoids.

Definition 1.1: APBG-groupoidis a Lie groupoidV¹P whose base is the total space o
rincipal bundle PsM ,Gd together with a right action of G on the manifoldV such that for al
j ,hdPV* V and gPG we have

i) bsj ·gd=bsjd ·g andasj ·gd=asjd ·g;
ii ) 1u·g=1u·g;
iii ) sjhd ·g=sj ·gdsh ·gd;
iv) sj ·gd−1=j−1·g.

The notationV* V stands for the pairssj ,hdPV3V such thatasjd=bshd. We denote
BG-groupoidV over the principal bundlePsM ,Gd by V¹PsM ,Gd and the right-translation

coming from theG-action byR̃g for anygPG. The right-translation inP will be denoted byRg.

he previous definition implies thatR̃g is an automorphism of the Lie groupoidV over the
iffeomorphismRg for all gPG. A morphismw of Lie groupoids between two PBG-groupoidsV
ndV8 over the same principal bundle is called a morphism of PBG-groupoids if it preserv

roup actions, namely ifw + R̃g=R̃g8 +w for all gPG. In the same fashion, a PBG-Lie group bun
PBG-LGB) is a Lie group bundleF over the total spaceP of a principal bundlePsM ,Gd such tha
he groupG acts onF by Lie group bundle automorphisms. We denote a PBG-LGB bF

PsM ,Gd. It is easy to see that the gauge Lie group bundleIV→P associated with a PBG
roupoidV¹PsM ,Gd is a PBG-LGB.

Numerous examples of transitive PBG-groupoids and their corresponding extensions
found in Ref. 6. In Ref. 2 nontransitive examples are given as well. Transitive PBG-groupo
the concern of this paper, due to their equivalence with extensions of transitive Lie groupo(or,
equivalently, extensions of principal bundles7). Let us give an outline of this equivalence.

Given an extension of Lie groupoids(2), the choice of a basepoint gives rise to its co
ponding principal bundle extension(3) as was discussed in the Introduction. With the notatio
3), the Lie groupN acts on the manifoldQ by the restriction of theH-action onQ to the
mbedding ofN in H. It is immediate thatQsP,N,pd is a principal bundle. Here the projecti
:Q�P is the surjective submersion given with the extension(3). In Ref. 7 this was called th

ransverse bundle.
DenoteV the (transitive) Lie groupoid sQ3Qd /N¹P associated to the transverse bun

nd define a right action of the Lie groupG on V by

kq2,q1lg = kq2h,q1hl,

herehPH is any element which projects tog. It is trivial to see that this action is well defin
nd makesV a transitive PBG-groupoid over the principal bundlePsM ,Gd.

It is shown in Ref. 7, Sec. 1.3 that the Lie group bundleIV→P of the orbits of V is
somorphic to the pullback bundlep* ssQ3Nd /Hd. Therefore the PBG-groupoidV¹PsM ,Gd
an be presented canonically in the following form:

p * SQ 3 N

H
D�V� P 3 P.

ere the injection is

sp,kq,nld ° kqnh−1,qh−1l,

here the elementhPH is chosen so thatpsqd=ppshd. Moreover, it is shown in Ref. 7, Sec. 1

hat IV is a PBG-Lie group bundle overPsM ,Gd, the action ofG defined as
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ḡ

c a
p curva-
t
C

J. Math. Phys., Vol. 45, No. 10, October 2004 Classification of extensions of principal bundles 3999

                        
sp,kq,nldg = spg,kq,nld.

onversely, consider given a transitive PBG-groupoidY¹PsM ,Gd. It follows easily from(i) of
efinition 1.1 that the action ofG is free. In Ref. 7, Sec. 2.2 it is shown that the criterion
odement(see Ref. 4, Sec. 16.10.3) applies, therefore the quotient manifoldY /G exists and th
rojection] :Y→Y /G is a surjective submersion.

This manifold has a natural Lie groupoid structure with baseM defined as follows: Since th
source and target projections ofY areG-equivariant, they induce mapsa8 ,b8 :Y /G→M, which
re surjective submersions because the projection], the projection of the principal bund

PsM ,Gd, as well as the source and target maps ofY are submersions as well. Takeu1,u2PY such
hat a8sku1ld=b8sku2ld. Then there existsgPG such thatasu1d=bsu2dg, so it is meaningful t
efine

ku1lku2l = ku1u2gl.

inally, the mapsb ,ad :Y→P3 P is equivariant, so it induces a smooth submersionp :Y /G
sP3 Pd /G. It is clear that this is a groupoid morphism overM, and its kernel isIY /G.

herefore

IY

G
� Y

G
�
p P 3 P

G

s an extension of Lie groupoids overM. Finally, it is easy to see that the two processes
utually inverse. In Ref. 7 the following theorem is proven.

Theorem 1.2:The category of transitive Lie groupoid extensions is equivalent to the cat
f transitive PBG-groupoids.

I. CONNECTIONS OF PBG-GROUPOIDS

An alternative formulation of the connection theory of principal bundles is by using the A
equence. Given a principal bundlePsM ,G,pd, it follows from the fact that the bundle projecti

p is G-invariant, that the vector bundle morphismTp:TP→TM quotients to a mapp* : TP/G
TM which, like Tp, is a fiberwise surjective vector bundle morphism, therefore a surje

ubmersion. The kernel of this map is of courseTpP/G, whereTpP is the vertical subbundle
P, i.e., the kernel ofTp. Now the mapj : sP3gd /G→TpP/G, induced by

P 3 g → TP,su,Xd ° T1smudsXd

wheremu:G→P is g°ug), is a vector bundle isomorphism(see Ref. 8, Appendix A, Sec. 3.).
ote that theG-action ong implied here is the adjoint. Therefore the principal bundlePsM ,G,pd
ives rise to the extension of vector bundles,

P 3 g

G
�

j TP

G
�
p*

TM, s4d

hich is known as theAtiyah sequence.
The properties of a connection 1-formg̃ :TP→M 3g allow it to quotient to a left-splittin

:TP/G→ sP3gd /G of (4). In turn, the rule

j + ḡ + g + p * = 0

orrespondsḡ to a right-splittingg :TM→TP/G of (4). This way the connection forms of
rincipal bundle correspond to the right-splittings of its Atiyah sequence. Respectfully, the

ure of the connection 1-formg̃ corresponds to the 2-formRg :TM3TM→ sP3gd /G defined by
gsX,Yd=gfX,Yg−fgsXd ,gsYdg.
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The module of sections of the vector bundleTP/G→M can be identified with theG-invariant
ector fields ofP (see Ref. 8, Appendix A), thus inheriting a Lie bracket which, together withp*,
atisfy the properties of the following definition.

Definition 2.1: ALie algebroidis a vector bundle A on base M together with a vector bu
ap ] :A→TM, called theanchorof A, and a bracketf,g :GA3GA→GA which isR-bilinear,
lternating, satisfies the Jacobi identity, and is such that we have the following:

i) ]sfX,Ygd=f]X, ]Yg;
ii ) fX, fYg= ffX,Yg+s]XdsfdY;

for all X ,YPGA and fPC`sMd.
Basic material on Lie algebroids can be found in Refs. 8 and 5. The notion of a Lie alg

eneralizes that of the tangent bundleTM of a given manifoldM, which can be thought of as a L
lgebroid with the well-known Lie bracket of vector fields and the identity as the anchor
oreover, any bundle of Lie algebras is a Lie algebroid with zero as the anchor map.

If A and A8 are Lie algebroids over the same baseM, then a morphism of Lie algebroi
:A→A8 overM is a vector bundle morphism such that]8 +w=] andwsfX,Ygd=fwsXd ,wsYdg for
,YPGA. A Lie algebroid is calledtransitive if its anchor map is a surjective submersion. In
ase the kernel of the anchor map is a bundle of Lie algebras, called theadjoint bundle, and the
ie algebroid can be presented as an extension of vector bundles,

L� A�
]

TM, s5d

here the injection ofL into A and the anchor map are morphisms of Lie algebroids.
Definition 2.2: Let A,A8 be Lie algebroids over the manifold M and L→M. An extension o

ector bundles,

K� A� A8,

s called anextension of Lie algebroidsif the injection and surjection maps are morphisms of
lgebroids.

Extensions such as(5) are the simplest form of Lie algebroid extensions, in fact, they are
n alternative way to present a transitive Lie algebroidA over a manifoldM. In this setting, th
onnection theory of principal bundles gives rise to the following notions.

Definition 2.3: Let L�A�
]

TM be a transitive Lie algebroid.

i) A connection of A is a vector bundle morphismg :TM→A such that] +g=0.
ii ) Thecurvatureof a connectiong is the 2-form Cg :TM3TM→L defined by

CgsX,Yd = gfX,Yg − fgsXd,gsYdg,

for all X ,YPGA.

connectiong is calledflat if Cg=0.
Note that a flat connection is evidently a morphism of Lie algebroidsg :TM→A.
All Lie groupoids differentiate to Lie algebroids. A full account of this process can be

n Ref. 8, Vol. III, Sec. 3. The reader can get a rough idea by comparing the extension(1) to the
tiyah sequence(4). Lie III does not apply for groupoids and algebroids though. The integra
f Lie algebroids has a cohomological obstruction in the transitive case, which was gi
ackenzie in Ref. 8, Vol. V. In the nontransitive case, integrability of Lie algebroids is a pro
f different order which was tackled by Crainic and Fernandes in Ref. 3. In general,
lgebroid that integrates to a Lie groupoidJ¹M is denoted byAJ. Note that the tangent bund
M of a manifoldM integrates to the “pair” groupoidM 3M¹M.

Analogously with the reformulation of principal bundle connections as right-splittings o

tiyah sequence, it is legitimate to regard theconnectionsof a transitive Lie groupoidJ¹M as
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he connections of the Lie algebroidAJ it differentiates to, and the same is valid for the curva
-forms. This terminology will be used in the remainder of this paper.

Once again though, the concern of this paper is extensions of transitive Lie groupoids
s make a fresh start by giving the notion of a PBG-algebroid.

Definition 2.4: APBG-algebroidover the principal bundle PsM ,Gd is a Lie algebroid A ove

P together with a right action of G on A denoted bysX,gd° R̂gsXd for all XPA,gPG such tha

ach R̂g:A→A is a Lie algebroid automorphism over the right translation Rg in P.
We denote a PBG-algebroidA over PsM ,Gd by A⇒ PsM ,Gd. TheG-action onA induces a

ction ofG on the moduleGA of sections of the vector bundleA→M, namely

X ·g = R̂g + X + Rg−1.

he right-translation with respect to this action is denoted byR̂g
G :GA→GA for all gPG. With this

otation Definition 2.4 implies that

R̂g
GsfX,Ygd = fR̂g

GsXd,R̂g
GsYdg.

iven atransitivePBG-algebroidA⇒ PsM ,G,pd, its adjoint bundleL→P inherits aG-action by
utomorphisms, thus making

L� A�
]

TP

n extension of PBG-algebroids. That is to say it is an extension of Lie algebroids such
njection and surjection maps are moreover equivariant. It is shown in Ref. 2, Sec. 3.4 t

odement criterion applies, so the quotient manifoldA/G exists. Therefore the previous extens
uotients to a vector bundle extension,

L

G
� A

G
�
]/G

TP

G
, s6d

f the(integrable) Lie algebroidTP/G by the quotient Lie algebra bundleL /G. Observe that sinc
he quotient manifoldA/G exists, the vector bundle structure ofA quotients toA/G→M. More-
ver, the natural projection\A:A→A/G is a pullback overp:P→M.

The vector bundleA/G has the following Lie algebroid structure: The anchor is the com
ition of vector bundle morphismsp* +]/G. Moreover, the sections ofA/G are isomorphic to th
-invariant sections ofA, thereforeGsA/Gd inherits the Lie bracket fromGGA. The verification

hat this bracket together with the anchor mapp* +]G satisfy the properties of a Lie algebroid c
e found in Ref. 7, Sec. 3.2. It is immediate thatA/G is transitive. A more elaborate presenta
f the extension 6 is given in Fig. 1, which helps to keep track of all the structures related
ie algebroid extension. Note that the adjoint bundleK of A/G is an extension ofsP3gd /G by
/G. This diagram makes it clear that the cokernel of the extension(6) is in fact the Atiyah
equence of the bundlePsM ,G,pd.

On the other hand, pulling back(6) by the mapTp:TP→TM we recover the given PBG
algebroid(see Ref. 7, Sec. 4). This consists of the proof of the following theorem.

Theorem 2.5:The category of transitive PBG-algebroids over a manifold M is equivale
the category of Lie algebroid extensions,

K� A� AJ, s7d

of an integrable transitive Lie algebroid by a Lie algebra bundle (over M).
Now extensions of Lie groupoids differentiate to extensions(7). The connection theory of L

groupoid extensions(2) is encoded by the right-splittings of extensions(7). These in turn corre
spond to the following notion of connection for the equivalent PBG-algebroid(see Refs. 6 and 7).
Definition 2.6: Let A⇒ PsM ,G,pd be a transitive PBG-algebroid. A connectiong :TP→A is
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alled isometablic,if it satisfies

g + TRg = R̂g + g. s8d

n account of isometablic connections and their holonomy is given in Ref. 2, however
aper we are interested in a different problem. The groupoid extensions that we intend to
ave a prescribed kernel and cokernel. In other words,givena transitive Lie groupoidJ¹M and
Lie algebra bundleF→M, we classify all transitive Lie groupoidsF→M which fit into a Lie

roupoid extension,

F�F�J.

n this sense, we are interested in the connections ofF rather than the splittings of the extens
f the Lie algebroid extensionAF�AF�AJ. The following theorem clarifies exactly wh
hese connections correspond to in the relevant PBG-algebroid.

Theorem 2.7:Suppose we are given a transitive PBG-algebroid A⇒ PsM ,G,pd and conside
ts corresponding extension of Lie algebroids (6) over M. The connections of the (transitive) L
algebroid A/G→M are equivalent to the isometablic connections of A which vanish on the
TpP of Tp:TP→TM.

Proof: Consider an isometablic connectiong :TP→A such thatgsXd=0 if XPTpP. This
uotients to a splittingg/G:TP/G→A/G. Given a connectiond :TM→TP/G of the principa
undlePsM ,Gd, define

g̃ = g/G + d:TM → A

G
.

he assumption thatg vanishes on the kernel ofTp makes the definition ofg̃ independent from
he choice ofd. It follows immediately from the assumption thatd is a connection ofPsM ,Gd and
/G is a splitting of(6) that this is a connection of the Lie algebroidA/G.

Conversely, given a connectionu :TM→A/G of the Lie algebroidA/G, compose it with th
nchor mapp* : TP/G�TM of the Atiyah sequence corresponding to the bundlePsM ,G,pd [see
4)] to the vector bundle morphism,

ū = u + p * :
TP

G
→ A

G
.

enote\ :TP→TP/G and \A:A→A/G the natural projections. Since\A is a pullback ove

FIG. 1. The extension of Lie algebroids induced by a PBG-algebroid.
p:P→M, there is a unique vector bundle morphismg :TP→A such that
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\A + g = ū + \ .

ue to theG-invariance of\ and\A the morphism of vector bundlesR̂g−1+g +TRg also satisfies th
revious equation for everygPG; therefore it follows from the uniqueness argument thatg is

sometablic. It is an immediate consequence of the previous equation thatg vanishes atTpP.
To see that it is indeed a connection ofA, let us recall the fact thatu is a connection ofA/G.

his givesp* +]/G+u=idTM. Now ]/G= \ +] and by definition we havep* + \ =Tp, therefore
p+ ] +u=idTM. Now take an elementXPTP. ThenTpsXdPTM, and it follows from this equatio

hat there exists an elementgPG such that

s] + ud„TpsXd… = X ·g.

ultiplying this by g−1 and using theG-invariance ofTp we get

] + su + Tpd = idTP.

inally, from the properties of the pullback, it follows immediately thatg is the mapsp , ū + \ d,
herep :TP→P is the natural projection of the tangent bundle. It is straightforward to chec

his reformulates tosp ,u +Tpd, and this proves thatg is a connection. j

Definition 2.8: The isometablic connections of a PBG-algebroid A⇒ PsM ,G,pd which vanish
t the kernel TpP of p* are calledbasic connections.

It is therefore necessary to focus on basic connections of PBG-groupoids for the pur
his paper. The following result follows from Proof 2.7.

Corollary 2.9: Let A⇒ PsM ,Gd be a transitive PBG-algebroid. A flat connection of the
lgebroid A/G→M gives rise to a unique flat basic connection of A.

Note that the Proof 2.7 does not give force to the converse of this result. That is beca
onnection ofA/G corresponding to a given flat basic connection ofA arises by composition wi

an arbitrary connection ofTP/G, which is not necessarily a flat one, unless the bundlePsM ,Gd is
flat.

II. TRANSITION FUNCTIONS FOR TRANSITIVE PBG-GROUPOIDS

This section is concerned with the study of those transition functions of transitive
roupoids which encode the group action.

Let us start with a principal bundlePsM ,Gd and a simple open coverU=hUijiPI of M. This is
n open cover such that eachUi is contractible, and the intersection of two as well as three
ets is also contractible. Then a coverP=hPijiPI of P by principal bundle charts such thatPi

Ui 3G exists.
Consider now a PBG-groupoidV¹PsM ,Gd over this bundle and its corresponding

lgebroidAV⇒ PsM ,Gd with adjoint bundleLV. The extension of Lie algebroids correspond
o that is

LV

G
� AV

G
� TP

G
.

t follows from Ref. 8, Vol. IV, Sec. 4 that the Lie algebroidAV /G (over M) has local fla

onnectionsũi
* :TUi → sAV /GdUi

. Due to 2.9 these give rise to flatbasic connectionsui
* :TPi

AVPi
.

Since the connectionsũi
* are flat, they can be regarded as morphisms of Lie algebroids.

onsider the following theorem from Ref. 10.
Theorem 3.1:Let V ,J be Lie groupoids over the same manifold M andm :AV→AJ a Lie

lgebroid morphism. IfV is a-simply connected, then there exists a unique morphism o
roupoidsw :V→J which differentiates tom, i.e., w* = m.

With the assumption that everyUi is contractible, and by force of the previous resul
˜* ˜ Ui
ollows that theui ’s integrate uniquely to morphisms of Lie groupoidsui :Ui 3Ui →VUi

/G. It was
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hown in Proof 2.7 that the basic flat connectionsui
* corresponding to theũi

* ’s are in essence th

apsũi
* +Tp, therefore they also integrate uniquely to morphisms of Lie groupoids,

ui:Pi 3 Pi → VPi

Pi .

Proposition 3.2: Theui’s are morphisms of PBG-groupoids.
Proof: It suffices to prove the equivariance of theui’s. For everygPG, the mapui

g: Pi 3 Pi

VPi

Pi defined by

ui
gsu,vd = uisug,vgdg−1

s clearly a morphism of Lie groupoids and it differentiates toui
* . It therefore follows from th

niqueness ofui that ui
g=ui for all gPG; consequentlyui is equivariant. j

For everyi P I choose an elementui P Pi and defines̄i: Pi →VPi
by s̄isud=uisu,uid. We call

hese mapsschisms. Note thats̄isuid=1ui
. The following proposition clarifies the behavior of

chisms with respect to theG-action. We call this notion of equivarianceisometablicitybecause
ollows directly from the isometablicity property of the local flat connections of the PBG-gro
e discussed above.

Proposition 3.3: The schismss̄i are isometablicin the sense that

s̄isugd = „s̄isudg… · s̄isuigd,

or all uP Pi and gPG.
Proof: From the definition of thes̄i’s and the equivariance of the morphismsui we ge

s̄isudg) ·s̄isuigd=(uisu,uidg) ·uisuig,uid=uisug,uigd ·uisuig,uid=uisug,uid=s̄isugd. j

For every choice of aui P Pi, consider the Lie groupHi =Vui

ui. In order to refer to a unique L
roup independent to the indexi P I, we need to fix au0P P and defineH=Vu0

u0. Then, for ever
P I choose aji PVu0

ui and consider the mapsti: Hi →H defined bytishd=j−1·h ·j. These ar
somorphisms of Lie groups. Now definesi: Pi →Vu0

by

s = s̄i · ji .

hese are sections of the Lie groupoidV. Note thatsisuid=ji. The isometablicity of these sectio
s described in the following proposition:

Proposition 3.4: The sectionssi are isometablicin the sense that

sisugd = fsisudgg · sji
−1gd · sisuigd,

or all i P I, uP Pi and gPG.
The proof is a straightforward calculation.
Now we look at the isometablicity of the transition functions. We denotehs̄i j :Pij →Vuj

uiji,jPI

he transition functions of the schismshs̄ijiPI andhsij :Pij →Vu0

u0ji,jPI the transition functions of th
ectionshsijiPI. The following proposition is an immediate consequence of the isometablic
he schisms and the sections.

Proposition 3.5: For every i, j P I such that Pij Þx, uP Pij and gPG we have the following.

i) s̄i jsugd=s̄isuigd−1·(s̄i jsudg) ·s̄ jsujgd.
ii ) sijsugd=sisuigd−1·sjigd ·(sijsudg) ·sj jgd−1·s jsujgd.

This gives rise to the following formulation ofG-actions:
Definition 3.6: DenoteVui

ui =Hi and Vu0

u0=H. The following formulas:

i) r̄i j :G3Hi →Hi, r̄i jsg−1dshid=s̄isuigd−1·shigd ·s̄ jsujgd, and
ii ) ri j :G3H→H, ri jsg−1dshd=sisuigd−1·sjigd ·shgd ·sj jgd−1·s jsujgd, define families o
G-actions on Hi and H, respectively.
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With this notation, it is legitimate to reformulate the isometablicity equations of 3.5 to

s̄i jsugd = r̄i jsg−1d„s̄i jsud…

nd

sijsugd = ri jsg−1d„sijsud….

et us now examine the properties of theG-actions r̄i j and ri j . The proof of the following
roposition is, again, straightforward.

Proposition 3.7: LetV¹PsM ,Gd be a PBG-groupoid. Then the families of G-actions
r̄i jji,jPI and hri jji,jPI satisfy the following identities:

ri jsg−1dsh1h2d = riksg−1dsh1drkjsg−1dsh2d, s9d

or all i , j ,kP I such that Pijk Þx and h1,h2PH:

ri jsg−1dshd = riisg−1dshd · sisuigd−1 · sjigd · sj jgd−1 · s jsujgd

= sisuigd−1 · sjigd · sj jgd−1 · s jsujgd · r j jsg−1dshd, s10d

ti„r̄iisg−1dshid… = riisg−1d„tishid…, s11d

or all hi PHi.
Due to(10), it is possible to say that the family of actionshri jji,jPI is fully determined by th

ubset of those actions withi = j . Now (11) shows that for alli P I the isomorphismti :Hi →H
aps everyG-action r̄ii on Hi exactly to theG-actionrii on H.

Last, notice that(9) is a nonstandard property. From this it follows immediately

iisg−1dseHd=eH for all i P I. These two properties almost make theri j ’s representations in a certa
ense. We single out(9) by giving the following definition.

Definition 3.8: Let G and H be Lie groups. If a family hri jji,jPI of G-actions on H satisfy

ri jsg−1dsh1h2d = riksg−1dsh1drkjsg−1dsh2d,

or all gPG, h1,h2PH and i, j ,kP I, then G is said to be acting on H by cocycle morphism.

. Equivalence of transition functions

So far we have demonstrated that PBG-groupoids have sections which are suitably e
nt. These sections arise naturally from the local flat basic connections that exist on the a

evel. But what happens if we start with a different family of local flat basic connections?
Let us start with two familieshui

*jiPI andhu8i
*jiPI of flat basic connections over the same co

=hPijiPI of P by principal bundle charts. Then there exist maps,i
* :TPi →Pi 3hi such that

u8i
* = ui

* + ,i
* ,

or every i P I. Heregi denotes the Lie algebra of the Lie groupHi. Therefore every,i
* must also

e isometablic, that is to say

,i
*sXgd = ,i

*sXdg,

or all XPTPi and gPG. Moreover, the,i
* ’s integrate to PBG-groupoid morphisms,i :Pi 3 Pi

Hi such thatu8i =ui ·,i. As far as the isometablicity of the,i’s is concerned, it follows that

,isug,vgd = r̄iisg−1d„,isu,vd…. s12d

¯
ow definer i :Pi →Hi by
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r̄ isud = ,isu,uid,

nd r i :Pi →H by r i =ti + r̄ i. That is to say,

r isud = ji
−1 · r̄ isud · ji ,

or all uP Pi. We call ther̄ i’s and ther i’s conjugationmaps. The proof of the following propo
ion is a simple calculation.

Proposition 3.9: The schisms, sections and the respective transition data induced byhui
*jiPI

nd hu8i
*jiPI are related by the following:

i) s8i =s̄i ·r̄ i,
ii ) s8i j = r̄ i

−1·s̄i j ·r̄ j,
iii ) s8i =si ·r i,
iv) s8i j =r i

−1·sij ·r j.

Corollary 3.10: The families of G-actionsr=hri jji,jPI and r8=hri j8 ji,jPI arising from the con
ectionsui

* and ui8
* , respectively, are related by

ri j8 sg−1dshd = r isuigd−1 · ri jsg−1dshd · r jsujgd,

or all hPH and gPG.
Now let us examine the isometablicity of the conjugation maps.
Proposition 3.11: The conjugation maps satisfy the following:

i) r̄ isugd= r̄iisg−1d(r̄ isud) ·r̄ isuigd,
ii ) r isugd=riisg−1d(r isud) ·r isuigd,

or all uP Pi and gPG.
Proof: Note that(ii ) follows by applying the isomorphismsti to (i) and taking into accou

11). For (i) we have

r̄ isugd = ,isug,uid = ,isug,uigd · ,suig,uid.

ecause of(12) the last part of the above equation becomesr̄iisg−1d(,su,uid) ·,suig,uid, and the
esult follows. j

V. THE CLASSIFICATION OF PBG-LIE GROUP BUNDLES

Consider the adjoint bundleIV→PsM ,Gd associated with a given PBG-group
¹PsM ,Gd. This section is concerned with the isometablic transition data that classifie

undle. Apart from this classification, another result given here is that theG-actionsri j given in
he previous section are local expressions of the action ofG on the Lie group bundleIV.

Proposition 4.1: LethUijiPI be a simple open cover of M and Pi >Ui 3G charts of the
rincipal bundle PsM ,Gd. The mapsci :Pi 3H→ IVPi

defined by

cisu,hd = sisud ·h · sisud−1

re local charts for the Lie group bundle IV. They are isometablic in the sense that

ci„ug,riisg−1dshd… = cisu,hd ·g.

Proof: The fact thatci is a bijection andci,u:H→Vu
u is a morphism of Lie groups for allu

Pi are simple calculations. For the isometablicity we have

ci„ug,riisg−1dshd… = sisugd · riisg−1dshd · sisugd−1

= „sisudg… · sji
−1gd · sisuigd · sisuigd−1 · sjigd · shgd · sji

−1gd
−1 −1
· sisuigd · sisuigd · sjigd · „sisud g…
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= „sisudg… · sjigd · „sisud−1g… = cisu,gd ·g.

j

The transition functions of these charts areai j :Pij →AutsHd defined by

ai jsudshd = sijsud ·h ·sijsud−1.

s far as the isometablicity of the respective transition functions is concerned, the fol
roposition is a straightforward calculation.

Proposition 4.2: The transition functionsai j are isometablic in the sense that

ai jsugd„r j jsg−1dshd… = riisg−1d„ai jsudshd…. s13d

Theorem 4.3: Let PsM ,Gd be a principal bundle,P=hPijiPI be an open cover of P b
rincipal bundle charts and H a Lie group. Letr=hrijiPI be a family of actions of G on H. Given
cocyclea=hai j :Pij →AutsHdji,jPI which satisfies(13), there exists a PBG-Lie group bundle o

PsM ,Gd with transition functions the given ones.
Proof: Let Fi =Ui 3H and on the union of theFi define the following equivalence relation

„i,su1,h1d… , „ j ,su2,h2d… ⇔ u1 = u2 = u andh2 = ai jsudsh1d.

his is an equivalence relation because we assumed that theai j ’s form a cocycle. Denote th
uotient set byF and equivalence classeski ,su,hdl. Define a mapp :F→P by pki ,su,hdl=u and
G-action by

ki,su,hdl ·g = ki,„ug,risg−1dshd…l.

t is easy to see that the mapci :Pi 3H→p−1sPid defined bysu,hd° ki ,su,hdl is an equivarian
ijection. GiveF the smooth structure induced from the manifoldsPi 3H via the ci’s. Clearly
→PsM ,Gd is a PBG-Lie algebra bundle, and its transition functions are

ci,u
−1
„c j ,ushd… = ci,u

−1
„k j ,su,hdl… = ci,u

−1ski,„u,ai jsudshd…ld = ai jsudshd.

j

It will be shown in Sec. VI that the construction of a PBG-LGB given in Theorem 4.3 is
efined. The family ofG-actionshri jji,jPI arises naturally from the local flat basic connections
very PBG-groupoid has. A remarkable result, which is presented here, is that these ac
eally only local expressions of theG-action on the groupoid. We prove this for the subset o

i js for which i = j . This is enough, as it was shown in(10) that these actions determine the wh
amily. To this end, it is necessary to establish the notion of an action groupoid.

Definition 4.4: Given a manifold M together with a right action of a Lie group G on M, the
ction groupoid M³G¹M associated with this action is the product manifold M3G, togethe
ith the following groupoid structure:

i) The source map isasx,gd=x, and the target mapbsx,gd=xg.
ii ) Multiplication is defined bysxg,hd ·sx,gd=sx,ghd.
iii ) The unit element over any xPM is 1x=sx,eGd.
iv) The inverse of an elementsx,gdPM ³G is sxg,g−1d.

Note that the action groupoid is transitive if and only if theG-action onM is transitive.
Now suppose given a PBG-groupoidV¹PsM ,Gd and a coverP=hPijiPI of P by principa

undle charts. For everyi P I, consider the action groupoidPi ³G¹PisUi ,Gd and define a ma

i :Pi ³G* IVPi
→ IVPi

by

r̃i„su,gd,h P Vu
u
… = cisug,riisg−1d„ci,u

−1shd…d.

˜ ˜
bviously,psri(su,gd ,h)d=ug=bsu,gd andri(su,eGd ,h)=h. It is easily verified that
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r̃i„sug1,g2d · su,g1d,h… = r̃i„sug1,g2d,r̃isu,g1d,h….

lso, eachr̃isu,gd is an automorphism ofVu
u; therefore it is a representation of the Lie group

Pi ³G on the Lie group bundleIVPi
, in the sense of Ref. 9. The following proposition allows

o “glue” the r̃i’s together to a global map.
Proposition 4.5: For all i, j P I such that Pij Þx, uP Pij , gPG andhPVu

u we have

r̃i„su,gd,h… = r̃ j„su,gd,h….

Proof: The isometablicity of theai j ’s gives

r̃i„su,gd,h… = cisug,riisg−1d„ci,u
−1shd…d = ci„ug,riisg−1dsai jsud„c j ,u

−1shd…d…

= ci„ug,ai jsugdsr j jsg−1d„ci,u
−1shd…d…

= c jsug,r j jsg−1d„ci,u
−1shd…d = r̃ j„su,gd,h….

j

Now we can definer : sP³Gd* IV→ IV by r(su,gd ,hPVu
u)= r̃i(su,gd ,h), if uP Pi. The

revious proposition shows that it is well defined. More than that, it is a representation b
ach r̃i is. As a matter of fact,r is a lot simpler than it seems. Since the chartshcijiPI are

sometablic we have

r„su,gd,h… = cisug,riisg−1d„ci,u
−1shd…d = ci„u,ci,u

−1shd… ·g = h ·g.

o r is, in fact, just the PBG structure ofIV.
Conversely, it is possible to retrieve the local representationshriijiPI from the PBG structur

f IV. Supposehsi :Pi →Vu0
jiPI is a family of sections ofV. Consider the chartsci :Pi 3H

IVPi
defined asci,ushd= Isisudshd and definer̃i :Pi ³G→AutsHd by

r̃isu,gdshd = ci,ug
−1

„ci,ushd ·g…,

or all gPG, hPH anduP Pi. This is a morphism of Lie groupoids overPi → ·. For everyi P I
hooseui P Pi and define

riisg−1dshd = r̃isui,gdshd = ci,uig
−1

„ci,ushd ·g….

hen

riisg−1dshd = Isisuigd−1„Isisuid
shd ·g… = sisuigd−1 · „sisuidg… · shgd · „sisuid−1g… · sisuigd.

he latter is exactly the original definition of therii ’s. Since therii ’s determine theri j ’s, the
revious considerations are the proof of the following theorem.

Theorem 4.6: Given a PBG-groupoidV¹PsM ,Gd, the representationshri jjiPI are local
xpressions of the PBG structure of IV.

. THE CLASSIFICATION OF TRANSITIVE PBG-GROUPOIDS

In this section we deal with a single result: It is shown that the isometablic transition fun
lassify transitive PBG-groupoids.

Theorem 5.1: Let PsM ,Gd be a principal bundle andP=hPijiPI an open cover of P b
rincipal bundle charts. Consider a Lie group H and a family of actionsr=hri jji,jPI of G on H
hich has the property of the cocycle morphism. Given ar-isometablic cocyclehsij :Pij

Hji,jPI there is a PBG-groupoidV over PsM ,Gd whose PBG-Lie group bundle IV of orbits is
he one produced byhai j = Isij

ji,jPI.
Proof: For everyi , j P I consider the setsSi

j =Pi 3H3 Pj and letS=øi,jPISi
j. Consider th
quivalence relation
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si,u,h,v, jd , si8,u8,h8,v8, j8d ⇔ u = u8,v = v8 and h8 = si8isud ·h ·sjj 8svd.

hen it is shown in Ref. 8, Vol.II, Sec. 2.19 that the following defines a groupoid structure
uotientV=S /,: The source and target projections areki ,u,h,v , jl=v, ki ,u,h,v , jl=u, the ob-

ect inclusion map is 1:u°1u=ki ,u,eH ,u, il (any i P I such thatuP Pi), and the multiplication i

ki,u,h1,v, j1l · k j2,v,h2,w,kl = ki,u,h1 ·sj1j2
svd ·h2,w,kl.

he inversion iski ,u,h,v , jl−1=k j ,v ,h−1,u, il. This groupoid becomes a PBG-groupoid with
ion

ki,u,h,v, jl ·g = ki,ug,ri jsg−1dshd,vg, jl.

his is well defined because ifki ,u,h,v , jl=ki8 ,u,h8 ,v8 , j8l; then h8=si8isud ·h·sjj 8svd. The co-
ycle morphism condition then gives

ri8 j8sg
−1dsh8d = ri8isg−1d„si8isud… · ri jsg−1dshd · r j j 8sg

−1d„sjj 8sud… = si8isugd · ri jsg−1dshd ·sjj 8sugd.

o, ki ,u,h,v , jl ·g=ki8 ,u,h8 ,v , j8l ·g. It is straightforward that this action makesV a PBG-
roupoid. For instance, we prove here that this action preserves the multiplication. Again, b
f the cocycle morphism property, we have

ski,u,h1,v, j1l · k j2,v,h2,w,kld ·g = ki,u,h1 ·sj1j2
·h2,w,kl ·g

= ki,ug,riksg−1dsh1 ·sj1j2
·h2d,w,kl

= ki,ug,ri j 1
sg−1dsh1d · r j1j2

sg−1dssj1j2
svdd · r j2ksg−1dsh2d,wg,kl

= ki,ug,ri j 1
sg−1dsh1d ·sj1j2

svgd · r j2ksg−1dsh2d,wg,kl

= ski,u,h1,v, j1l ·gd · sk j2,v,h2,w,kl ·gd.

Proposition 5.2: Let PsM ,Gd be a principal bundle, hPijiPI an open cover of P by princip
undle charts, H a Lie group andr8, r be two families of actions of G on H by cocycle morphi
hich are conjugate under a family of maps r=hr i :Pi →HjiPI such that risugd
riisg−1d(r isud) ·r isuigd for all uP Pi, gPG and iP I. Let hsijji,jPI and hs8i jji,jPI be r8-isometablic
ndr-isometablic systems of transition data overhPijiPI with values in H, respectively, which ar
quivalent under the family of maps r. Let V8 and V be the PBG-groupoids constructed fr
sijji,jPI and hs8i jji,jPI, respectively. Then the mapw :V8→V defined by

ki,u,v,hl ° ki,u,r isud ·h · r jsvd−1,v, jl

s an isomorphism of PBG-groupoids over PsM ,Gd.
Proof: It is shown in Ref. 8, Vol. II, Sec. 2.19 thatw is an isomorphism of Lie groupoids.

how that it is an isomorphism of PBG-groupoids, take anygPG. Then

wski,u,h,v, jl ·gd = wski,ug,r8i jsg
−1dshd,vg, jld

= ki,ug,risugd · ri suigd−1ri jsg−1dshd · r jsujgd · r jsvgd−1,vg, jl

= ki,ug,riisg−1d„r isud… · r isuigd · r isuigd−1ri jsg−1dshd · r jsujgd · r jsujgd−1r j jsg−1d

3„r jsvd−1
…,vg, jl

= ki,ug,ri jsg−1d„r isud ·h · r jsvd−1
…,vg, jl = wski,u,h,v, jld ·g.
j
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I. ISOMETABLIC TRANSITION DATA

Let us move to the Lie algebroid level for a while. In Ref. 8, Vol. IV, Sec. 4, it is shown
transitive Lie algebroidL�A�TM is locally described by the following data: Ifh denotes th

ber type ofL, then for a simple open coverhUijiPI of M there exists a family of differential-
orms x=hxi j :TUij 3TUij →Uij 3hji,jPI and a cocyclea=hai j :Uij →Autshdji,jPI such that w
ave the following:

i) The xi js are Maurer-Cartan forms, i.e.,dxi j +fxi j ,xi jg=0, wheneverUij Þx;
ii ) xik=xi j +ai jsx jkd, wheneverUijk Þx;
iii ) Dsai jd=ad+xi j , wheneverUij Þx.

The ai j ’s here are the transition functions of the Lie algebra bundleL. The notationD stands
or the Darboux derivative. More than that, it is shown that this data classifies transiti
lgebroids.

Since transitive Lie groupoids differentiate to transitive Lie algebroids, it is reasona
xpect that so does the respective classification data. Mackenzie in Ref. 8, Vol. III, Sec. 5

ull account of this process, however it is expected that the transition functions that cla
ransitive Lie groupoid can be reformulated in a fashion which makes their correspondenc
air sx ,ad on the algebroid level immediate.

In this section we give this reformulation for transitive PBG-groupoids. For any P
roupoidV→PsM ,Gd such that the fiber bundle of the associated PBG-Lie group bundleIV is H,
e have the following definition.

Definition 6.1: The Lie groupoid morphismsxi j : Pij 3 Pij →H defined by

xi jsu,vd = sijsud ·sjisvd

over the map Pij → ·) are called transition morphisms.
Let us see now how the transition morphisms intertwine with the transition functionsai j .
Proposition 6.2: The transition morphismsxi j and the transition functionsai j satisfy the

ollowing:

i) xiksu,vd=xi jsu,vd ·ai jsvd(x jksu,vd).
ii ) For a choice of uij P Pij ,

ai jsud = Ixi j su,uij d
+ Isij suij d

.

iii ) riisg−1d(xi jsu,vd)=xi jsug,vgd.

gain, the proof is straightforward. Note that these conditions differentiate to the respectiv
n the Lie algebroid level.

Definition 6.3: Let PsM ,Gd be a principal bundle, P=hPijiPI a cover of P by principal bund
harts, H a Lie group andr=hrijiPI a family of G-actions on H. Let x=hxi j :Pij 3 Pij →Hji,jPI be
family of Lie groupoid morphisms anda=hai j :Pij →AutsHdji,jPI a cocycle, such that we ha

he following:

i) riisg−1d(xi jsu,vd)=xi jsug,vgd;
ii ) ai jsugd(r j jsg−1dshd)=riisg−1d(ai jsudshd);
iii ) xiksu,vd=xi jsu,vd ·ai jsvd(x jksu,vd);
iv) For a choice of uij P Pij ,

ai jsud = Ixi j su,uij d
+ Isij suij d

.

hen the pairsx ,ad is called ar-isometablic system of transition data overPsM ,Gd with values
n H.
Let us now examine the relation of systems of transition data when we start with different
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amilies of flat isometablic basic connections. Denotesx ,ad andsx8 ,a8d the respective systems
sometablic transition data. Again, the proof of the following proposition is just a matt
alculations.

Proposition 6.4: Twor-isometablic andr8-isometablic systems of transition datasx ,ad and
x8 ,a8d, respectively, are related by

x8i jsu,vd = r isud−1fxi jsu,vd · ai jsvdsr isud · r jsvd−1dg · r isvd s14d

nd

a8i jsud = Irisud−1 + ai jsud + Ir jsud. s15d

Definition 6.5: Two isometablic systems of transition data which satisfy (14) and (1
alled equivalent.

Finally we prove that the PBG-Lie group bundles induced by equivalent transition fun
re isomorphic, thus showing that the classification of PBG-Lie group bundles we gave in
ell defined.

Theorem 6.6:Let PsM ,Gd be a principal bundle, P=hPijiPI a cover of P by principal bund
harts and H a Lie group. Letr=hrijiPI andr8=hr8ijiPI be two families of actions of G on H su
hat we have the following:

i) risg−1dsh1h2d=risg−1dsh1d ·risg−1dsh2d
ii ) There exists a family of mapshr i :Pi →HjiPI which are r-isometablic [i.e. risugd

=risg−1d(r isud) ·r isuigd] such that

r8isg
−1dshd = r isuigd−1 · risg−1dshd · r isuigd.

f a and a8 are cocycles which satisfy (15) which give rise to the PBG-Lie group bundles
8, respectively, then the mapw :F→F8,

ki,su,hdl ° ki,„u,r isud−1 ·h · r isud…l

s an isomorphism of PBG-Lie algebra bundles.
The proof of this is analogous to the one given in 5.2.

II. ISOMETABLIC COHOMOLOGY

In this section we give a formulation of the cohomology that classifies PBG-groupoi
eneral, consider a principal bundlePsM ,Gd, a coverP=hPijiPI of P by principal bundle char
nd a Lie groupH. We also suppose given a familyr=hri jji,jPI of G-actions onH with the
roperty of the cocycle morphism.

For nù3 we denote byČG
n sP,Hd the set of differentiable mapsei0,. . .,in

:Pi0,. . .,in
→H such tha

or everyuP Pi0,. . .,in
andgPG we have the following:

i) ei0,. . .,in
sugd=rin−1,in−2

sg−1d(ei0,. . .,in
sud), if n is odd, and

ii ) ei0,. . .,in
sugd=rin−1,in−3

sg−1d(ei0,. . .,in
sud), if n is even.

For n=0 defineČG
0 sP,Hd to be the set ofei :Pi →H such thateisugd=riisg−1d(eisud). For n

1 defineČG
1 sP,Hd to be the set ofeij :Pij →H such thateijsugd=ri jsg−1d(eijsud). Finally, define

ˇ
G
2 sP,Hd to be the set ofeijk’s such thateijksugd=r j jsg−1d(eijksud) and identifyČG

−1sP,Hd with H.

Then the usualČech differentiald : ČnsP,Hd→ Čn+1sP,Hd, defined by

dsedi0,. . .,in
= p

k=0

n

fei0,. . .,ik
ˆ ,. . .,in

gs− 1dk+1
,

s isometablicin the sense that
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i) dsedi0,. . .,in
sugd=rin−1in−2

sg−1d(dsedi0,. . .,in
sud) if n is odd, and

ii ) dsedi0,. . .,in
sugd=rin−1in−3

sg−1d(dsedi0,. . .,in
sud) if n is even.

Definition 7.1: The cohomology of the complex,

. . .→
d

ČG
n sP,Hd→

d

ČG
n+1sP,Hd→

d

. . . ,

s calledan isometablicČechcohomology and is denoted by Hˇ
G
n sP,Hd.

The next theorem follows immediately from 5.1.

Theorem 7.2:With the notation above, PBG-groupoids are classified by Hˇ
G
1 sP,Hd.
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opf maps as static solutions of the complex eikonal
quation

C. Adam
Departamento de Física de Partículas, Facultad de Física, Universidad de Santiago,
E-15706 Santiago de Compostela, Spain
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We demonstrate that a class of torus-shaped Hopf maps with arbitrary linking
number obeys the static complex eikonal equation. Further, we explore the geomet-
ric structure behind these solutions, explaining thereby the reason for their exis-
tence. As this equation shows up as an integrability condition in certain nonlinear
field theories, the existence of such solutions is of some interest. ©2004 American
Institute of Physics.[DOI: 10.1063/1.1792931]

. INTRODUCTION

In this article we want to report on a class of Hopf maps with arbitrary linking number, w
re, at the same time, static solutions to the complex eikonal equation. Further, we want to

he geometric structure which is behind these solutions and explains, in fact, their existen
The eikonal equation reads

s]mxds]mxd = 0, s1d

nd describes, for a real scalar functionx, the propagation of wave fronts(field discontinuities) in
inkowski space. Its generalization to complexx has some applications in optics and quan
echanics, as well as in general relativity(see Ref. 1 and the literature cited there). In Ref. 1 an

lgebraic procedure(based on twistor methods) for the construction of complex solutions to E
1) was developed, and some examples of singular solutions were provided. The complex
quation admits even static solutions, i.e., solutions to the equation

s¹xd · s¹xd = 0, s2d

n contrast to the case of realx.
The complex eikonal equation(1) has also appeared, in quite a different context, a

ntegrability condition in some nonlinear field theories. In the last few years there has bee
nterest in integrable field theories in higher(i.e., more than two) dimensions, where soliton
olutions are, in many cases, provided by certain Hopf maps, see, e.g., Refs. 2–5. In a
ome nonlinear field theories which are, in general, not integrable, containintegrable subsecto
here certain integrability conditions are satisfied. Specifically, the complex eikonal equat(1)
efines integrable subsectors in the Skyrme and Skyrme–Faddeev models.6,7 For static, solitoni
olutions, this condition reduces to the static complex eikonal equation(2). Finite energy soliton

n these integrable subsectors correspond to static solutions defined on one-point compacR3

nd may, therefore, be identified with functions onS3 via stereographic projection. Further,
arget space of the fieldsx in the integrable subsectors can be identified with the Riemann s
2 (i.e., x is a holomorphic variable onC). Therefore, the fieldsx in the integrable subsectors
hese models are Hopf mapsS3→S2, and can be classified by the Hopf index(the homotopy grou

3sS2d=Z). Consequently, solutions of the complex, static eikonal equation which are, at th
ime, Hopf maps, are of some interest for these nonlinear field theories, because they prov

nergy field configurations in their integrable subsectors.

4017022-2488/2004/45(11)/4017/8/$22.00 © 2004 American Institute of Physics
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In addition, the static complex eikonal equation(2) has appeared as an integrability condi
or the existence of multiple zero modes of the static, Abelian Dirac operator.8–10 In this case
olutionsx to Eq. (2) are again required to be Hopf maps. The Hopf maps described belo
ndeed give rise to the construction of new classes of zero modes with new and inte
roperties, but this issue shall be discussed elsewhere.

In Sec. II we show that certain toroidal Hopf mapsxsm,nd obey the static eikonal equation
rbitrary integerm and n (herem and n count the number of times the level curves ofx wrap
round the two circular directions of a certain torus). Further, we briefly discuss the symmetrie
he static eikonal equation, which enables us to construct new solutions from the ones ju
ioned.

In Sec. III we explain the geometric structure which lies behind the existence of thes
ions. It turns out that the solutions of Sec. II may be understood as pullbacks of trivial so
f the complex eikonal equation in two dimensions which preserve some metric propertie
iding thereby nontrivial three-dimensional solutions. Further, we give a sufficient conditi
he existence of solutions of the geometric type discussed in this paper.

I. THE SOLUTIONS

In the sequel, we will express Hopf maps as complex-valued functions which depend o
ariables like, e.g.,sx,y,zd. Here, the space spanned by these variables may be interpreted
s one-point compactifiedR3 or as the three-sphereS3, where a stereographic projection has b
erformed. The solutions to the static eikonal equation described below do not depend

nterpretation, i.e., they may be interpreted as solutions onR3 or onS3. This result is related to th
act that the metrics onR3 and S3 are conformally equivalent(i.e., equal up to a local, spac
ependent scale transformation), as will become clear in the next section.

The simplest Hopf map is

xs1,1d = i
2sx + iyd

2z+ isr2 − 1d
s3d

the meaning of the superscripts1,1d is explained below in Eq.(10)]. Further,r2;x2+y2+z2, and
he irrelevant pre-factori has been chosen for later convenience. The simplest Hopf m
ell-known to obey the static eikonal equation(2), see, e.g., Ref. 8. Before demonstrating

act, we want to introduce toroidal coordinatessh ,j ,wd via

x = q−1 sinh h cosw, y = q−1sinh h sin w,

z= q−1sin j; q = coshh − cosj. s4d

urther, we need the gradient in terms of the toroidal coordinates,

¹ = s¹hd]h + s¹jd]j + s¹wd]w = qSêh]h + êj]j +
1

sinh h
êw]wD , s5d

heresêh ,êj ,êwd form an orthonormal frame inR3. In terms of toroidal coordinates, the simp
opf map reads

xs1,1d = sinhh eiw+ij. s6d

ere, surfaces ofh=const are tori inR3. These tori are rotation symmetric around thez axis, and
ll of them enclose the circleC=hxW PR3:z=0∧ r2=1j. The coordinatesw and j are angula
oordinates along the two circular directions on each torus. Each level curve ofxs1,1d (i.e., each
urve xs1,1d=const) is located on one torus. It is, in fact, a circle that winds once around
ircular direction of the torus. Further, any two different level curves are linked with lin
umber one, and this linking number is the geometric definition of the Hopf index[which is equa
o one for the simplest Hopf map(3)].
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For a simple demonstration of the fact that the Hopf map(6) really obeys the eikonal equati
t is useful to re-express a general Hopf mapx in terms of two real functions(modulusS and
hases) like

x = S eis. s7d

n terms of these real functions, the static eikonal equation(2) leads to the conditions

s¹Sd · s¹sd = 0, s¹Sd2 = S2s¹sd2. s8d

or the simplest Hopf map(6) we find, withS=sinhh, s=j+w,

¹S= q coshh êh, ¹ s = qSêj +
1

sinh h
êwD , s9d

hich indeed obey Eqs.(8). The important point here is that the equations(8) are expressed on
n terms of the target space coordinatesSands, making the problem essentially two-dimensio
his is precisely what happens for the simplest Hopf map. The factorq, which is present in(9) and
annot be expressed in terms of the target space coordinates, cancels in the relations(8).

A simple generalization to higher Hopf maps is provided by the functions

xsm,nd = fshd einw+imj, m,n P Z, s10d

hich are true Hopf maps if the real functionf obeys certain regularity conditions like, e
fs0d=0 andfs`d=` (what we assume in the sequel). The level curves of these Hopf maps still
n the same tori as above, but now they windn times around thew direction andm times aroun

he j direction. Further, the Hopf indexNH (i.e., the linking number of any two different lev
urves) is NH=nm.

We find for the gradient

¹xsm,nd = q eimj+inwS f8êh + imfêj +
in

sinh h
fêwD , s11d

here f8;]hf, and Eq.(2) leads to the simple differential equation

f8

f
= Sm2 +

n2

sinh2 h
D1/2

s12d

ith the solution

f = sinhunu h
sumucoshh + În2 + m2 sinh2 hdumu

sunucoshh + În2 + m2 sinh2 hdunu . s13d

hese solutions are genuine Hopf maps for all nonzero, integerm,n, becausef obeys fs0d=0,
fs`d=`.

At this point it is of interest to briefly consider the symmetries of the complex static ei
quation(2). This will lead to some further understanding of these solutions and allow to con
ore solutions from the ones obtained so far. The symmetry group of Eq.(2) is a direct produc
f base space and target space symmetries, where the group of base space symmetr
onformal group in three-dimensional Euclidean space. The group of target space symm
iven locally by the mapsx→Fsxd, whereF is an arbitrary complex function ofx, but not of its
omplex conjugatex̄. The requirement that the solutionsx8=Fsxd are single-valued again restri
he allowed functionsFs·d to the set of holomorphic functions onC.

The presence of the conformal symmetry on base space implies that the ansatz(10) is an
educated guess” for a solution to Eq.(2) in the sense of the Lie theory of symmetry. That i
ay, if we choose a rotation about thez axis and a certain combination of proper confor

ransformation along thez axis and translation along thez axis as a maximal set of two commuting
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ase space transformations, then the corresponding infinitesimal symmetry generators(vectorsvi)
re precisely given by the tangent vectors alongw and j, v1=]w, andv2=]j. The ansatz(10) is

nvariant under a combination of these base space transformations and phase transform
he target space variablex, i.e., under the action of the vector fieldsṽ1=]w− inx]x and ṽ2=]j

imx]x, which provides precisely the educated guess according to Lie. A concise discus
hese points can be found in Ref. 4, where the symmetries of an integrable model with in
any Hopf solitons are discussed in detail.

Further, we may use the target space symmetries to construct more solutions from t
iven in (13). In fact, each fieldx8=Fsxd is a solution, wherex is a solution andF is a holomor
hic function onC.

II. GEOMETRIC BACKGROUND

Here we want to explain the geometric structure behind the solutions(13), which will, in fact,
llow to understand the reason why they exist. For this purpose, let us first observe that th

rivial solutions to the complex eikonal equation inR2 or, equivalently, inC. Indeed, for rea
artesian coordinatessu,vdPR2 with w=u+ iv and gradient

¹s2d ; êu]u + êv]v, s14d

he complex eikonal equations¹s2dfswdd2=0 is equivalent to the Cauchy–Riemann equati
hich are obeyed by arbitrary holomorphic functionsfswd. So, obviously, the complex coordina
=u+ iv itself obeys the eikonal equation,

s¹s2dwd2 = 0. s15d

y introducing the modulusr and phasef of w,

w = reif, s16d

his equation leads to the conditions

s¹s2drd · s¹s2dfd = 0, s¹s2drd2 = r2s¹s2dfd2. s17d

t holds in fact also that

s¹s2drd2 = r2s¹s2dfd2 = 1. s18d

onditions(17) are completely analogous to the conditions(8) in three dimensions. This leads
he natural assumption that the conditions(8) in three dimensions are just the pullbacks unde
opf mapx of the two-dimensional conditions(17). In the sequel we want to show that this is t

n a specific sense.
For this purpose, we want to re-express the above remarks in a more geometric fashio

e introduce the metrics of the spaces under consideration and replace the gradients by
erivatives.

The metric on the spaceR2 is

gs2d = dr ^ dr + r2df ^ df, s19d

nd the dual metric is

Gs2d = ]r ^ ]r +
1

r2]f ^ ]f. s20d

he conditions(17) translate into

Gs2dsdr,dfd = 0, Gs2dsdr,drd = r2Gs2dsdf,dfd = 1, s21d
nd are obviously true.
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The metric inR3 is

g = q−2sdh ^ dh + dj ^ dj + sinh2 h dw ^ dwd

=
q−2

1 + t2
fdt ^ dt + s1 + t2ddj ^ dj + t2s1 + t2ddw ^ dwg, s22d

heresh ,j ,wd are the toroidal coordinates[see(4)] and the coordinate

t = sinhh s23d

as introduced for later convenience. The dual metric is

G = s1 + t2dq2S]t ^ ]t +
1

1 + t2
]j ^ ]j +

1

t2s1 + t2d
]w ^ ]wD . s24d

s a next step we need the observation that a Hopf mapx introduces a fiber-bundle structure
ne-point compactifiedR3 (or, equivalently, onS3). Here, the fibers are the level curves of
opf map. The fiber has the topology of the circleS1, and the base space has the topology o
phereS2 for all Hopf maps, but the induced metric properties depend on the specific Hop

Further, the Hopf map allows for a decomposition of the tangent bundleTM of the fiber
undle M =R3 (or S3) into vertical and horizontal directions at each point ofM. Thereby two
ubbundles of the full tangent bundleTM are induced, which are called the vertical distributioV
nd the horizontal distributionH. The vertical direction at each point points along the fiber a
panned(in our case) by one vertor fielde3 which is pushed forward to zero under the Hopf m

*e3=0. The horizontal directions are spanned(in our case) by two vector fieldse1, e2, which are
erpendicular to the vertical vectore3. Obviously, the vertical direction only depends on the H
ap, whereas the horizontal directions depend on the bundle metric, as well. Further,

hoose all three vectorsei to have unit length(this condition depends, of course, on the met).
his decomposition leads to an analogous decomposition at each pointpPM of the cotangen
paceTp

* M into a vertical direction spanned byv3 and horizontal directions spanned byv1 andv2,
here thevi are defined via

svi,ejd = di j , s25d

nd s· , ·d denotes the canonical inner product.
Finally, the decomposition of the tangent space(and the cotangent space) into vertical and

orizontal directions allows for a corresponding decomposition of the metric and its dual
ertical and a horizontal component,g=gv+gh. They may be expressed like

gh = v1 ^ v1 + v2 ^ v2, gv = v3 ^ v3, s26d

Gh = e1 ^ e1 + e2 ^ e2, Gv = e3 ^ e3, s27d

n terms of the above vector fields and one-forms(observe that this notation just expresses
etric in terms of vielbeins in a coordinate-independent way).

Now we are in a position, eventually, to formulate sufficient conditions for the existen
olutions to the conditions(8).

One sufficient condition is like follows: Obviously, the push-forwardx* of the Hopf map
efines an isomorphism from vectors in the horizontal distributionH of TM at pointsxW to vectors

n TN at pointsxsxWd (hereN is the target space manifold, i.e.,C or S2, andM is the fiber bundle).
ow assume that this isomorphism is, at the same time, an isometry, i.e., the lengthux*vu of a
ushed-forward vector fieldx*v in TN w.r.t. the metricgs2d on N at pointsxsxWd is equal to th

ength uvu of an arbitrary horizontal vector fieldv in H with respect to the horizontal metricgh at
ointsxW. Then, obviously, the lengths of one-forms remain invariant under the pull-backx* . For a

W
opf mapw=xsxd, which reads, in terms of real coordinates, like
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r = SsxWd, f = ssxWd, s28d

his means that the lengths should pull back like

udru = udSu, udfu = udsu, s29d

nd the target space metricgs2d expressed in coordinatesr ,f should be identical to the horizon
etric gh expressed in coordinatesS,s. Obviously, length relations are now conserved unde
ull-back, as well,

udru2 = r2udfu2 ⇒ udSu2 = S2udsu2, s30d

Gs2dsdr,dfd = 0 ⇒ GhsdS,dsd = 0, s31d

hich is precisely what we need in order to have solutions to the conditions(8). (Mapsx such tha
he push-forwardx* :H→TN is an isometry are called Riemannian submersions and are des
t length, e.g., in Ref. 11.)

It turns out that the condition on the Hopf mapx to be a Riemannian submersion is too str
or our purposes. But there is a simple generalization which does just what we want. Supp
he lengths of horizontal vector fields are multiplied by acommonfactor at each point under t
ush-forward, instead of being invariant. Then the lengths of one-forms will be multiplied
ommon factor under the pull-back, and this is sufficient for the conservation of the
elations(30) and(31) under the pull-back. For the horizontal metricgh and the target space met
s2d this implies that they should be conformally equivalent, i.e., equal up to a local scale
his is precisely what happens for our solutions, as we want to demonstrate now explicit

First, we want to demonstrate it for the simplest Hopf map(6). We re-display the metric inR3,

g = fdt ^ dt + s1 + t2ddj ^ dj + t2s1 + t2ddw ^ dwg, s32d

here we already ignored an irrelevant local scale factor, see(22). For the Hopf mapx=Seis with
= t, s=j+w, the vertical unit vector fielde3 is

e3 =
1

1 + t2
s]j − ]wd s33d

remember thate3ssd=e3sSd=0). The horizontal unit vector fields may be chosen as

e1 = ]t, e2 =
t

1 + t2
s]j + t−2]wd. s34d

he corresponding vertical and horizontal one-forms are

v1 = dt, v2 = tsdj + dwd, s35d

v3 = dj − t2dw, s36d

nd the horizontal metric is

gh = v1 ^ v1 + v2 ^ v2 = dt ^ dt + t2sdj + dwd ^ sdj + dwd. s37d

bviously, this is identical to the target space metric(19) once the identificationr→ t, f→s
j+w is made.

Now we repeat this procedure for the class of Hopf mapsS= t, s=mj+nw which are genuin
opf maps with toroidal symmetry, but not yet the solutions(13). We find for the horizontal an

ertical unit vector fields
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e1 = ]t, e2 =
t

Îsn2 + m2t2ds1 + t2d
sm]j + nt−2]wd, s38d

e3 =
1

Îsn2 + m2t2ds1 + t2d
sn]j − m]wd, s39d

nd for the corresponding one-forms

v1 = dt, v2 = tÎ 1 + t2

n2 + m2t2
smdj + ndwd, s40d

v3 =Î 1 + t2

n2 + m2t2
sndj − mt2dwd. s41d

he horizontal metric now is

gh = dt ^ dt + t2
1 + t2

n2 + m2t2
smdj + ndwd ^ smdj + ndwd, s42d

nd is not yet manifestly conformally equivalent to the target space metric. However, the h
al metric only depends on the “horizontal” coordinatesS= t ands=mj+nw and, therefore, ce
ainly is conformally equivalent to the target space metric, because it is a well-known fact th
ifferent metrics on a two-dimensional surface with a given topology are always confo
quivalent(see, e.g., Theorem 13.1.1 in Ref. 12). All we have to do is to find the coordina

ransformation from the horizontal coordinatessS,sd to some new coordinatessS̃,s̃d such that th
onformal equivalence becomes manifest. This shows that the initial problem must have
ion, i.e., higher Hopf maps, related to the Hopf maps(10), which solve the static eikonal equati
ustexist.

Explicitly, a transformationst ,sd→ st̃std ,sd is sufficient such that

gh =
t2

t̃2
1 + t2

n2 + m2t2
fdt̃ ^ dt̃ + t̃2smdj + ndwd ^ smdj + ndwdg. s43d

herefore,t̃ has to obey

sdtd2 =
s1 + t2dt2

sn2 + m2t2dt̃2
sdt̃d2 ⇒

1

t̃

dt̃

dt
=

1

t
În2 + m2t2

1 + t2
. s44d

e-introducing the variableh and usingt̃std= t̃ssinh hd; fshd, Eq. (44) leads to Eq.(12) with the
olution (13).

We want to close with two remarks. Firstly, the geometric setting developed above easi
o more Hopf maps which solve the static eikonal equation. Obviously, the sufficient condit
he existence of a solution related to a given Hopf map is that the induced horizontal metric
e expressible—up to a local scale factor—in terms of the horizontal coordinatessS,sd (where the
opf map isx=Seis). Once this condition is met, the solution can be found by transformi

ew horizontal coordinatessS̃,s̃d such that the horizontal metric is manifestly conformally equ
ent to the target space metric. This transformation is always possible for genuine Hopf ma
implest example of this type for the generation of new solutions is the composition of e
olutions with mapsS2→S2, i.e., the choice of new complex-valued functionsx8=Fsxd, where
s·d is a holomorphic function(e.g., a rational map), andx is a solution. However, we alrea

ound these solutions from the symmetries of the static eikonal equation in Sec. II.
Second, we want to remark that the above Hopf maps(10) do, in fact, provide genuin

3
iemannian submersions from the three-sphereS to some two-dimensional target spaces with the
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opology of the two-sphere but, in general, metrics different from the two-sphere(except for the
implest casem=n=1, which provides a Riemannian submersion fromS3 to S2, see, e.g., Refs. 1
nd 11). This may be understood from what we said above by noting that the local scale facq−2,
hich is present in the metric onR3 (see(22)), and which cannot be expressed in terms of
orizontal coordinates alone, is absent for the metric onS3.
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We consider a nearest-neighborp-adic l-model with spin values ±1 on the Cayley
tree of orderkù1. We prove that ap-adic Gibbs measure is unique forpù3. If
p=2 then we find a condition which guarantees uniqueness ofp-adic Gibbs mea-
sure. Besides, the results are applied to thep-adic Ising model. ©2004 American
Institute of Physics.[DOI: 10.1063/1.1792932]

. INTRODUCTION

Thep-adic numbers were first introduced by the German mathematician K. Hensel. Fo
century after the discovery ofp-adic numbers, they were mainly considered objects of
athematics. However, numerous applications of these numbers to theoretical physics ha
roposed in papers.1,2,6,7,13,18It is known7 that number ofp-adic models in physics cannot
escribed using ordinary probability theory based on the Kolmogorov axioms.12 New probability
odels-p-adic probability models were investigated in Refs. 7 and 8. This is non-Kolmogor
odel, since probabilities take values in fields ofp-adic numbers.

In Refs. 9 and 10 the theory of stochastic processes with values inp-adic and more gener
on-Archimedean fields having probability distributions with non-Archimedean values, ha
eveloped. The non-Archimedean analog of the Kolmogorov theorem that gives the possi
onstruct wide classes of stochastic processes by using finite dimensional probability distri
as proved.

It is known that the theory of statistical mechanics lies in the base of the theory of prob
nd stochastic processes. Since the theory of probabilities and stochastic processes i
rchimedean setting has been introduced, it is natural to begin the study and initiate furt
evelopment of the problems of statistical mechanics in the context of thep-adic theory o
robability.

One of the central problems in the theory of Gibbs measures is to describe infinite-v
ibbs measures corresponding to a given Hamiltonian. However, a complete analysis of th
ibbs measures for a specific Hamiltonian is often a difficult problem. If for a given Hamilt

here are at least two Gibbs measures then it is said that aphase transitionoccurs for the mode
The existence of a phase transition for the Ising model(real case) on the Cayley tree of ord

ù2 was established by Katsura and Takisawa.5 The analysis of the Cayley tree Ising model
e extended in several directions(see Refs. 14, 15, and 4).

In this paper we develop thep-adic probability theory approaches to the study of s
tatistical mechanics models on a Cayley tree in the field ofp-adic numbers. In Ref. 3 we ha
roved the existence of the phase transition for the homogeneousp-adic Potts model withqù2

)Electronic mail: dagnirmor@uwmt.uz
)Permanent address: Department of Mechanics and Mathematics, National University of Uzbekistan, Vuz

700095, Tashkent, Uzbekistan. Electronic mail: far75m@yandex.ru
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pin variables on the set of integersZ. The present paper deals with a nonhomogeneousp-adic
-model on the Cayley tree of orderk, kù1. The aim of this paper is to show the uniquenes
ibbs measures for the considered model.

I. DEFINITIONS AND PRELIMINARY RESULTS

. p-adic numbers and measures

Let Q be the field of rational numbers. Every rational numberxÞ0 can be represented in t
orm x=prsn/md, wherer ,nPZ, m is a positive integer,sp,nd=1, sp,md=1 andp is a fixed prime
umber. Thep-adic norm ofx is given by

uxup = Hp−r for x Þ 0

0 for x = 0.

t satisfies the following properties:

) uxyup= uxupuyup,
) the strong triangle inequality

ux + yup ø maxhuxup,uyupj,

this is a non-Archimedean norm.

The completion ofQ with respect top-adic norm is calledp-adic field which is denoted byQp.
The well-known Ostrovsky’s theorem asserts that normsuxu`= uxu and uxup, p=2,3,5, . . . ex

aust all nonequivalent norms onQ (see Ref. 11). Any p-adic numberxÞ0 can be uniquel
epresented in the canonical series:

x = pgsxdsx0 + x1p + x2p
2 + ¯ d,

here g=gsxdPZ and xj are integers, 0øxj øp−1, x0.0, j =0,1,2, . . .(for more details se
efs. 11 and 17). In this caseuxup=p−gsxd.

Let Bsa,rd=hxPQp: ux−aupø rj, where aPQp, r .0. The p-adic logarithm is defined b
eries

logpsxd = logps1 + sx − 1dd = o
n=1

`

s− 1dn+1sx − 1dn

n
,

hich converges forxPBs1,1d. And p-adic exponential is defined by

exppsxd = o
n=1

`
xn

n!
,

hich converges forxPBs0,p−1/sp−1dd.
Lemma 2.1:11,17 Let xPBs0,p−1/sp−1dd then we have

uexppsxdup = 1, uexppsxd − 1up = uxup , 1, ulogps1 + xdup = uxup , p−1/sp−1d

nd

logpsexppsxdd = x, exppslogps1 + xdd = 1 +x.

Let sX,Bd be a measurable space, whereB is an algebra of subsetsX. A function m :B→Qp is
aid to be ap-adic measure if for anyA1, . . . ,An,B such thatAi ùAj =x si Þ jd the equality hold

mSø
j=1

n

AjD = o
n

msAjd.

j=1
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A p-adic measure is called a probability measure ifmsXd=1.
For more detailed information aboutp-adic measures please refer to Refs. 7 and 8.

. The Cayley tree

The Cayley treeGk of orderkù1 is an infinite tree, i.e., a graph without cycles, such that
ertex of which lies onk+1 edges. LetGk=sV,Ld, whereV is the set of vertices ofGk, L is the
et of edges ofGk. The verticesx and y are callednearest neighbors, which is denoted byl
kx,yl if there exists an edge connecting them. A collection of the pairskx,x1l , . . . ,kxd−1,yl is
alledpath from the pointx to the pointy. The distancedsx,yd ,x,yPV, on the Cayley tree, is th
ength of the shortest path fromx to y.

We set

Wn = hx P Vudsx,x0d = nj,

Vn = ø
m=1

n

Wm = hx P Vudsx,x0d ø nj,

Ln = hl = kx,yl P Lux,y P Vnj,

or an arbitrary pointx0PV.
Denote

Ssxd = hy P Wn+1 : dsx,yd = 1j x P Wn,

his set is called the setdirect successorsof x. Observe that any vertexxÞx0 has k direct
uccessors andx0 hask+1.

. The p-adic l-model

We consider ap-adic l-model, where the spin takes values in the setF=h−1,1j,Qp and is
ssigned to the vertices of the tree. A configurations on V is then defined as a functionxPV

ssxdPF; in a similar fashion one defines a configurationsn and ssnd on Vn and Wn, respec
ively. The set of all configurations onV (resp. Vn, Wn) coincides with V=FV (resp. VVn
FVn,VWn

=FWn). One can see thatVVn
=VVn−1

3VWn
. Using this, for given configurationssn−1

VVn−1
andssndPVWn

we define their concatenations by the formula

sn−1 ∨ ssnd = hhsnsxd,x P Vn−1j,hssndsyd,y P Wnjj.

t is clear thatsn−1∨ssndPVVn
. Let functionslx,y: su,vdPF3F→lx,ysu,vdPQp. be given fo

ach pairs of neighboring verticesx,y. The HamiltonianHn:VVn
→Qp of the p-adic inhomoge

eousl-model has the form

Hnssnd = o
kx,ylPLn

lx,yssnsxd,snsydd, n P N, s2.1d

here the sum is taken over all pairs of neighboring verticeskx,yl andsnPVVn
.

We say that(2.1) is homogeneousl-modelif all functionslxysu,vd do not depend onx,y and
n this case we putlsu,vd : =lx,ysu,vd , ∀ kx,ylPL.

We note thatl-model of this type were firstly considered in Ref. 15.

II. CONSTRUCTION OF GIBBS MEASURES

In this subsection we give a construction of a special class of Gibbs measures forp-adic
-model on the Cayley tree.
To define Gibbs measure we need in the following
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Lemma 3.1: Let hx,xPV be aQp-valued function such that hxPBs0,p−1/sp−1dd for all xPV
nd ulx,ysu,vdup,p−1/sp−1d for all u ,vPF. Then the relation

Hnssd + o
xPWn

hxssxd P Bs0,p−1/sp−1dd,

s valid for any nPN.
The proof easily follows from the strong triangle inequality for the normu ·up.
Let h:xPV→hxPQp be a function ofxPV such thatuhxup,p−1/sp−1d for all xPV. Given n

1,2, . . .consider ap-adic probability measuremsnd on FVn defined by

mh
sndssnd = Zn

−1exppHHnssnd + o
xPWn

hxssxdJ . s3.1d

ere, as before,sn:xPVn→snsxd andZn is the corresponding partition function:

Zn = o
s̃nPVVn

exppHHss̃nd + o
xPWn

hxs̃sxdJ .

Note that according to Lemma 3.1 the measuresmsnd exist.
The compatibility conditions formh

sndssnd ,nù1 are given by the equality

o
ssndPVWn

mh
sndssn−1 ∨ ssndd = mh

sn−1dssn−1d, s3.2d

heresn−1PVVn−1
.

We note that an analog of the Kolmogorov extension theorem for distributions can be
or p-adic distributions given by(3.1) (see Ref. 10). Then according to the Kolmogorov theor
here exists a uniquep-adic measuremh on V=FV such that for everyn=1,2, . . . andsnPFVn the
quality holds

mh(hsuVn
= snj) = mh

sndssnd,

hich will be calledp-adic Gibbs measurefor the consideredl-model. It is clear that the measu

h depends on the functionhx. By Sl we denote the set of allp-adic Gibbs measures associa
ith functionsh=shx,xPVd. If uSl u ù2, then we can say that, for this model, there existsa phase

ransition, otherwise, we say there isno phase transition(hereuAu means the cardinality of a s
). In other words, the phase transition means that there are two different functionsh=shx,x
Vd ands=ssx,xPVd for which there exists twomh andms p-adic Gibbs measures onV, respec

ively.
The following statement describes conditions onhx guaranteeing the compatibility conditi

f measuresmsndssnd.
Theorem 3.2: The measuresmsndssnd ,n=1,2, . . . satisfy the compatibility condition (3.2)

nd only if for any xPV the following equation holds:

hx = o
yPSsxd

Fx,yshy;ld s3.3d

here Ssxd is the set of all direct successors of xPV and

Fx,ysh,ld =
1

2
logpS exppslx,ys1,1ddexpps2hd + exppslx,ys1,− 1dd

exppslx,ys− 1,1ddexpps2hd + exppslx,ys− 1,− 1ddD .
Proof: Necessity. According to the compatibility condition(3.2) we have
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Zn
−1o

ssnd
exppF o

kx,ylPLn

lx,ysssxd,ssydd + o
xPWn

hxssxdG
= Zn−1

−1 exppF o
kx,ylPLn−1

lx,ysssxd,ssydd + o
xPWn−1

hxssxdG . s3.4d

t yields

Zn−1

Zn
o
ssnd

exppF o
xPWn−1

o
yPSsxd

lx,ysssxd,ssydd + o
xPWn−1

o
yPSsxd

hyssydG = p
xPWn−1

expp„hxssxd…. s3.5d

rom this equality we find

Zn−1

Zn
p

xPWn−1

p
yPSsxd

o
ssydPF

expp„lx,ysssxd,ssydd + hyssyd… = p
xPWn−1

expp„hxssxd…. s3.6d

ow fix xPWn−1 and dividing the equalities(3.6) with ssxd=1 andssxd=−1 we obtain

p
yPSsxd

o
ssydPF

exppslx,ys1,ssydd + hyssydd

o
ssydPF

exppslx,ys− 1,ssydd + hyssydd
= expps2hxd, s3.7d

ence we get

p
yPSsxd

exppslx,ys1,1ddexpps2hyd + exppslx,ys1,− 1dd
exppslx,ys− 1,1ddexpps2hyd + exppslx,ys− 1,− 1dd

= expps2hxd, s3.8d

hich implies(3.3).
Sufficiency: Now assume that(3.3) is valid, then it implies(3.8), and hence(3.7). From (3.7)

e obtain the following equality:

asxdexppshxsd = p
yPSsxd

o
s̃sydPF

exppslx,yss,s̃sydd + hys̃sydd, s P h− 1,1j;

his equality implies

p
xPWn−1

asxdexppshxssxdd = p
xPWn−1

p
yPSsxd

o
s̃sydPF

exppslx,ysssxd,s̃sydd + hys̃sydd, s3.9d

here

sszd = H s, z= x

sszd, zÞ x
s P h− 1,1j.

enotingAnsxd=pxPWn
asxd from (3.9) and (3.2) we find

Zn−1An−1mh
sn−1dssn−1d = Zno

s̃snd
mh

sndssn−1 ∨ s̃sndd.

ince eachmh
snd, nù1 measure is ap-adic probability measure, so we should have

o
sn−1

o
s̃snd

mh
sndssn−1 ∨ s̃sndd = 1, o

sn−1

mh
sn−1dssn−1d = 1.

herefore, from these equalities we findZn−1An−1=Zn which means that(3.2) is valid.
Observe that according to this Theorem the problem of describing ofp-adic Gibbs measur
s reduced to the description of solutions of functional equation(3.3).
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V. THE UNIQUENESS OF GIBBS MEASURE FOR THE p-ADIC l-MODEL

In this section we will show that the phase transition does not occur for thep-adic l-model.
Put

J = hh = shx,x P Vd : hx satisfies the equations3.3dj.

According to Theorem 3.2 the description of Gibbs measures is reduced to the descri
lements of the setJ.

. Nonhomogeneous case

In this subsection we will consider nonhomogeneousl-model. We claim that the functionlx,y

atisfies the following condition: for all nearest-neighbor verticesx,yPV the equality

exppslx,ys1,1dd + exppslx,ys1,− 1dd = exppslx,ys− 1,1dd + exppslx,ys− 1,− 1dd, s4.1d

s valid.
This condition implies that the functionhx=0,∀xPV is a solution of(3.3).
Let Ssxd=hx1, . . . ,xkj, here as beforeSsxd is the set of direct successors ofx. Then the equatio

3.3) can be rewritten as follows:

zx = p
i=1

k

ax,i , s4.2d

herezx=exppshxd , zxi
=exppshxi

d,

ax,i =
ax,xi

zxi
+ bx,xi

cx,xi
zxi

+ dx,xi

,

ax,xi
= exppslx,xi

s1,1dd, bx,xi
= exppslx,xi

s1,− 1dd,

cx,xi
= exppslx,xi

s− 1,1dd, dx,xi
= exppslx,xi

s− 1,− 1dd
s4.3d

or every i =1, . . . ,k, here as beforeuhxupø 1/ p for all xPV.
Lemma 4.2: Ifuai −1upøM and uaiup=1, i =1, . . . ,n, then

Up
i=1

n

ai − 1U
p

ø M . s4.4d

Proof: We prove by induction onn. The casen=1 is the condition of lemma. Suppose t
4.4) is valid atn=m. Now let n=m+1. Then we have

Up
i=1

m+1

ai − 1U
p

= Up
i=1

m+1

ai − p
i=1

m

ai + p
i=1

m

ai − 1U
p

ø maxHUp
i=1

n

aisan+1 − 1dU
p

,Up
i=1

n

ai − 1U
p

J ø M .

This completes the proof.
Lemma 4.3: For every xPV the following inequality holds

uhxup ø
1

p
max
1øiøk

huhxi
upj.
Proof: For everymP h1,2, . . . ,kj we have
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uax,m − 1up = U sax,xm
− cx,xm

dszxm
− 1d

cx,xm
zxm

+ dx,xm

U
p

ø
1

p
uhxm

up.

ere we have used(4.1) and the following relations: forpù3

uax,xm
− cx,xm

up ø
1

p
, ucx,xm

zxm
+ dx,xm

up = 1,

or p=2

uax,xm
− cx,xm

up ø
1

22, ucx,xm
zxm

+ dx,xm
up =

1

2
,

hich follow from (4.3) and the equalityuexppsxd−1up= uxup (see Lemma 2.1). Then according t
emma 4.2 and(4.2) we obtain

uhxup = uzx − 1up ø
1

p
max
1øiøk

huhxi
upj.

emma is proved.
Theorem 4.4: Let kù1, ulx,ysu,vdupø1/p for all ,x,y. PL, u,vPF and (4.1) be satisfie

hen for the p-adic nonhomogeneousl-model (2.1) on the Cayley tree of order k there is no ph
ransition for any prime p.

Proof: To obtain the proof it is enough to show thatJ=hhx;0j. In order to do so it is enoug
o show that for arbitrary«.0 and everyxPV the inequalityihxip,« is valid. Letn0PN be such
hat 1/pn0,«. According to Lemma 4.3 we have

uhxup ø
1

p
uhxi0

up ø
1

p2uhxi0,i1
up ø ¯ ø

1

pn0−1uhxi0,. . .,in0−2
up ø

1

pn0
, «,

erexi0,. . .,in,j, j =1,k are direct successors ofxi0,. . .,in
, where

uhxi0,. . .,im
up = max

1ø jøk
huhxi0,. . .,im−1,j

upj.

his completes the proof.

. Homogeneous case

In this subsection we will consider the homogeneousl-model, i.e., lxysu,vd
lsu,vd , ∀ kx,ylPL.

In this subsection at first we restrict ourselves to the description of translation-invariashx

hPQp, ∀xPVd elements ofJ.
Let hx=h for all xPV. Then(3.3) implies

S exppsls1,1ddexpps2hd + exppsls1,− 1dd
exppsls− 1,1ddexpps2hd + exppsls− 1,− 1ddD

k

= expps2hd. s4.5d

enoting

z= expps2hd, a = exppsls1,1dd, b = exppsls1,− 1dd,

s4.6d
c = exppsls− 1,1dd, d = exppsls− 1,− 1dd,
rom (4.5) we obtain
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Saz+ b

cz+ d
Dk

= z. s4.7d

enote

fsxd = Sax+ b

cx+ d
Dk

.

Let S1=hxPQp: uxup=1j. Then it is clear thatfsS1d,S1. Using this fact for everyxPS1 we
nd

ufsxd − 1up = U sa − cdx + b − d

cx+ d
U

p
Uo

m=0
k − 1Sax+ b

cx+ d
DmU

p

ø
1

p
, s4.8d

ere we have used(4.6) and Lemma 2.1.
Let x,yPS1, then

ufsxd − fsydup = Uax+ b

cx+ d
−

ay+ b

cy+ d
U

p
Uo

m=0

k−1Say+ b

cy+ d
DmSax+ b

cx+ d
Dk−m−1U

p

ø
uad− bcupux − yup
ucx+ dupucy+ dup

.

s4.9d

Now consider two different cases with respect top.
Let us assume thatpù3. In this case we have

uad− bcup ø
1

p
, ucx+ dup = 1, ucy+ dup = 1,

hich are obtained from(4.6) and Lemma 2.1. Using these equalities from(4.9) it can be found

ufsxd − fsydup ø
1

p
ux − yup. s4.10d

Now supposep=2. Then

uad− bcup ø
1

22, ucx+ dup =
1

2
, ucy+ dup =

1

2
.

e claim thatuad−bcupø1/23 is satisfied. It follows from(4.9) that

ufsxd − fsydu2 ø
1

2
ux − yu2. s4.11d

Thus the equalities(4.10) and(4.11) imply that f is a contraction ofS1, hencef has a uniqu
xed pointzPS1 such thatuz−1upø1/p (see(4.8)). So we have proved the following

Proposition 4.5: (i) Let pù3 and ulsu,vdupø1/p for all kx,ylPL, u,vPF. Then for the
p-adic homogeneousl-model (2.1) on the Cayley tree of order kskù1d the Eq. (4.5) has a uniqu
olution.

(ii) Let p=2, ulsu,vdu2ø1/22 for all kx,ylPL, u,vPF and the following condition be sa
sfied:

uexppsls1,1ddexppsls− 1,− 1dd − exppsls− 1,1ddexppsls1,− 1ddu2 ø
1

23 . s4.12d

hen for the2-adic homogeneousl-model (2.1) on the Cayley tree of order kskù1d the Eq. (4.5
as a unique solution.
Theorem 4.6: Let the condition of the previous Proposition be satisfied. Then for the p-adic
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omogeneousl-model (2.1) on the Cayley tree of order k there is no phase transition fo
rime p.

Proof: In the homogeneous model(4.2) is written as

zx = p
i=1

k

ax,i , s4.13d

ere

ax,i =
azxi

+ b

czxi
+ d

,

here as beforezx=exppshxd ,zxi
=exppshxi

d, and the coefficientsa,b,c,d are defined by(4.6).
Let z be a solution of(4.7). Then using(4.13) we have

uzx − zup = Up
i=1

k Sazxi
+ b

czxi
+ d

D − Saz + b

cz + d
DkU

p

= Up
i=1

k Sazxi
+ b

czxi
+ d

D − Sazxk
+ b

czxk
+ d

DSaz + b

cz + d
Dk−1

+ Sazxk
+ b

czxk
+ d

DSaz + b

cz + d
Dk−1

− Saz + b

cz + d
DkU

p

ømaxHUazxk
+ b

czxk
+ d
U

p

Up
i=1

k−1Sazxi
+ b

czxi
+ d

D − Saz + b

cz + d
Dk−1U

p

,Uaz + b

cz + d
U

p

k−1Uazxk
+ b

czxk
+ d

−
az + b

cz + d
U

p

J
=maxHUazxk

+ b

czxk
+ d
U

p

Up
i=1

k−1Sazxi
+ b

czxi
+ d

D − Saz + b

cz + d
Dk−1U

p

,
uzxk

− zupuad− bcup
uczxk

+ dupucz + dup
J

ø ¯ ø maxH uzxk
− zupuad− bcup

uczxk
+ dupucz + dup

J ø
1

p
max

1ømøk
huzxm

− zupj.

Now repeating the argument of the proof of Theorem 4.4 we obtainzx=z for all xPV. This
ompletes the proof.

. APPLICATIONS TO p-ADIC ISING MODEL

In this section we will show that the phase transition does not occur for thep-adic Ising
odel.

Recall thep-adic Ising model. This model is a particular case ofl-model, namely it corre
ponds to the function:

lx,ysu,vd = Jx,yuv + hsu + vd, s5.1d

ereuJx,y u øp−1/sp−1d, uhupøp−1/sp−1d and kx,ylPL, u,vP h−1,1j.
First consider the caseh=0, this corresponds to the inhomogeneousp-adic Ising mode

ithout external field. For the considered model it is easy to see that the condition(4.1) is
atisfied. So according to Theorem 4.4 we infer that the following

Theorem 5.1: Let kù1, uJx,yupøp−1/sp−1d for all kx,ylPL. Then for the p-adic inhomogeneou
sing model on the Cayley tree of order k there is no phase transition for any prime p.

Now consider a caseJx,y=J for all kx,ylPL andhÞ0. This corresponds to the homogene
p-adic Ising model with an external field.
Let p=2, then the condition(4.12) can be written as follows:
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uexppsJ + 2hdexppsJ − 2hd − expps− Jdexpps− Jdu2 = uexpps4Jd − 1u2 = u4Ju2 ø
1

24 ,

ere we have used Lemma 2.1. Hence(4.12) is satisfied. So we can formulate the following.
Theorem 5.2: Let kù1, uhupøp−1/sp−1d and uJupøp−1/sp−1d for all kx,ylPL. Then for the

p-adic homogeneous Ising model on the Cayley tree of order k there is no phase transition
rime p.

Remark:It is known5,16 that for the Ising model on the Cayley tree of orderkù2 overR on
ome condition upon parameterJx,y there is a phase transition. Theorems 5.1 and 5.2 sho
ifference between the real Ising model and the consideredp-adic one.
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n extremal quantum states of composite systems with
xed marginals
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We study the convex setCsr1,r2d of all bipartite quantum states with fixed mar-
ginal statesr1 andr2. The extremal states in this set have recently been character-
ized by Parthasarathy[Ann. Henri Poincaré(to appear), quant-ph/0307182]. Here
we present an alternative necessary and sufficient condition for a state inCsr1,r2d
to be extremal. Our approach is based on a canonical duality between bipartite
states and a certain class of completely positive maps and has the advantage that
is easier to check and to construct explicit examples of extremal states. In dimen-
sion 232 we give a simple new proof for the fact that all extremal states in
Cs 1

21 , 1
21d are precisely the projectors onto maximally entangled wave functions. We

also prove that in higher dimension this does not hold and construct an explicit
example of an extremal state inCs 1

31 , 1
31d that is not maximally entangled. Gener-

alizations of this result to higher dimensions are also discussed. ©2004 American
Institute of Physics.[DOI: 10.1063/1.1776642]

. INTRODUCTION

In the paradigmatic situation encountered in quantum information processing, two o
often spatially separated) parties share the different parts of a composite quantum system
arties are able to perform arbitrary operations on their respective parts “locally” and to c
icate classically among each other to orchestrate their actions. The fundamental realiz
uantum information theory is that sharing the parts of a composite quantum system can

he parties to perform certain communication or information processing tasks more efficien
lassically(see Ref. 1 for an introduction). Mathematically this setting raises a number of new
nteresting structural questions. Among them the study of quantum channels and the char
ion of quantum entanglement play a central role.2–4 The present work is devoted to the cha
erization of the set of quantum states with fixed marginal states. This problem was recentl
nd studied in detail by Parthasarathy.5 Let H1 andH2 be two finite dimensional complex Hilbe
paces, corresponding to two finite level quantum systemsS1 andS2. Without loss of generality w
ssume thatdªdimsH1d=dimsH2d. (Otherwise we embed the lower dimensional Hilbert sp

nto the larger one.) The states forSi are given by the positive operators onHi with trace one. W
enote the set of all states onHi by SsHid. The composite quantum systemS12 of S1 and S2 is
escribed by the tensor productH1 ^ H2. A statefor S12 is a positive operator onH1 ^ H2 with

race one. The space of all states is denoted bySsH1 ^ H2d. Considerr[SsH1 ^ H2d. Thereduc-
ionsor marginal statesof r are given byr1ª tr2srd[SsH1d andr2ª tr1srd[SsH2d. Here tr1 and
r2 denote the partial traces overH1 andH2, respectively. Now fixr1[SsH1d andr2[SsH2d. We
enote byCsr1,r2d the convex set of all statesr[SsH1 ^ H2d whose marginal states are equa

1 and r2, respectively. The set of extreme points ofCsr1,r2d will be denoted byEsr1,r2d.
hroughout this paper we will denote the set of all operators on a Hilbert spaceH by LsHd. The

dentity in LsHd is denoted by1, or, whenH is d-dimensional, by1d. Slightly abusing the notatio
e will also denote the identity map fromLsHd into itself by 1.

In his work5 Parthasarathy presented a necessary and sufficient condition for an e
[Csr1,r2d to be an extreme point. This was then used to derive an upper bound on the

2 1
uch an extremal state. In the special caseH1=H2=C andr1=r2= 212, Parthasarathy found that

4035022-2488/2004/45(11)/4035/7/$22.00 © 2004 American Institute of Physics
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stater[Cs 1
212, 1

212d is extremal if and only if it is a projector onto the subspace spanned
aximally entangled wave function. A wave function inC2 ^ C2 is called maximally entangled

t is of the form uc+l=s1/Î2dsu0luf0l+ u1luf1ld wherehu0l , u1lj denotes the canonical basis ofC2

nd wherehuf0l , uf1lj is any other orthonormal basis ofC2. For higher dimensions the question
hether or not there are extremal states with maximally mixed marginals—i.e., sta
s 1
d1 , 1

d1d—that are not projectors onto maximally entangled wave functions was left open i
.

In the present work we present an alternative approach to the characterization ofEsr1,r2d that
ransforms the problem into that of finding the extreme points of a certain convex set o
letely positive maps that satisfy an additional requirement. This will allow us to deri
lternative necessary and sufficient condition for a stater[Csr1,r2d to be extremal. We will the
tudy the special case of states with maximally mixed marginals, i.e., whenr1=r2=s1/dd1. For
=2 we will give a simple proof for Parthasarathy’s result that the extremal states are exa
rojectors onto maximally entangled wave functions. Ford.2 our results imply that there a
xtremal states inEs1 /d,1 /dd that are not projectors onto maximally entangled pure states
ive an explicit example for an extremal state onC3 ^ C3 with maximally mixed marginals that
ot equal to a projector onto a maximally entangled wave function. Finally, we discuss ge
ations of this result to higher dimensions.

I. DUALITY BETWEEN BIPARTITE STATES AND COMPLETELY POSITIVE MAPS

The approach in the present paper relies upon a duality between bipartite quantum s

1 ^ H2 and completely positive mapsL :LsH2d→LsH1d that preserve the trace of the co
letely mixed state, i.e., that satisfy trsLss1/dd1dd=1 (this is very often called theJamiołkowsk

somorphism, see Ref. 6 and, for a related duality, Ref. 2). A map L :LsH2d→LsH1d is called
ompletely positive ifL ^ 1 :LsH2 ^ Kd→LsH1 ^ Kd is positive for any finite dimensional anci
ilbert spaceK.

We make the identificationH1.Cd andH2.Cd. In other words, we pick orthonormal ba
n H1 andH2 and identify them with the canonical real basis inCd andCd, respectively. We deno
hese bases byhuil1ji=1

d and huil2ji=1
d , respectively. Finally, we introduce the maximally entang

ure wave function

uc+lª
1
Îd

o
i=1

d

uil2uil2 [ H2 ^ H2.

The duality between bipartite state and completely positive maps depends explicitly
hoice for the canonical bases. LetL :LsH2d→LsH1d be a completely positive map w
rsLss1/dd1dd=1. Then

rL ª L ^ 1suc+lkc+ud s1ad

efines a bipartite state onH1 ^ H2. The complete positivity ofL ensures thatrù0 while the
ondition trsLss1/dd1dd=1 ensures that trsrLd=1.

Conversely, letr be a bipartite state onH1 ^ H2. Then

Lrssdªdtr2fs1 ^ sTrdg s1bd

efines a completely positive mapLr :LsH2d→LsH1d that satisfies trsLrss1/dd1dd=1. HereT

enotes the transposition with respect to the canonical real basis. By explicit calculati
hecks that for a givenL we haveLrL

=L and for a givenr we haverLr
=r. Thus the correspo

6
enceL↔r described by Eqs.(1a) and (1b) is bijective.
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II. JOINT LINEAR INDEPENDENCE

To formulate the main result in this paper it is useful to introduce the concept ofjoint linear
ndependenceof two families of vectors. In the following definitionX3r denotes ther-fold Car-
esian product of the setX by itself.

Definition 1: Let V and W be complex vector spaces. Then two ordered r-tuplessvidi=1
r [V3r

nd swidi=1
r [W3r are calledjointly linearly independentif the familyhvi % wiji=1

r in the direct sum
% W is a linearly independent family.

Notice that this definition depends on the order of ther-tuples. The following is an immedia
onsequence of the definition.

Lemma 1: Let V and W be complex vector spaces and letsvidi=1
r [V3r and swidi=1

r [W3r be
wo ordered r-tuples of vectors. If hviji=1

r is linearly independent in V or ifhwiji=1
r is linearly

ndependent in W, then svidi=1
r and swidi=1

r are jointly linearly independent.
Notice that the converse implication does not hold in general. Ifhviji=1

r is linearly dependen
n V and if hwiji=1

r is linearly dependent inW, thenhvi % wiji=1
r is not necessarily linearly depend

n V% W.
Lemma 2: Let V be a complex*-algebra and letsv jd j=1

r [V3r be an ordered r-tuple of
lements. If hv jj j is linearly dependent, then the r2-tuples svi

*v jdi j and sv jvi
*di j cannot be jointly

inearly independent.
Proof: Sincehv jj j is linearly dependent, there existsl jd j [Cr such thatl j0

Þ0 for somej0 and

j=1
r l jv j =0. Therefore alsooi jdii 0

l jsvi
*v j ,v jvi

*d=0 for all i0. h

V. EXTREMAL STATES IN C„r1 ,r2…

Let r[Csr1,r2d. In H2 consider an orthonormal basis of eigenvectors ofr2, i.e., r2

oir iur ilkr iu. We identify the basishur ilji=1
d of eigenvectors ofr2 with the canonical real basis

2.Cd. Further, we write

uc+lª
1
Îd

o
i

ur il ^ ur il. s2d

n the sequel it is always understood that the bijection between states and completely
aps from Sec. II is with respect to this choice of the canonical basis and that the ma
ntangled state in Eq.(1a) is the state from Eq.(2). To every stater[Csr1,r2d Eq. (1b) gives a
nique completely positive mapLr that satisfies

Lrs1d = dr1, s3ad

Lr8s1d = dr2. s3bd

ere Lr8 denotes the canonical dualization ofLr defined by trsLr8sxdyd=trsxLrsydd for all y. In
erms of the Kraus representation ofLrsxd=o jVj

†xVj the conditions(3a) and(3b) can be expresse
s

o
j

Vj
†Vj = dr1, s4ad

o
j

VjVj
† = dr2. s4bd

e denote the set of all completely positive mapsL :LsH2d→LsH1d satisfying the conditions(3a)
nd (3b) by CPsH2,H1,r1,r2d. It is clear that CPsH2,H1,r1,r2d is a convex set. The bijectio
escribed in(1a) and (1b) obviously respects the convex structure. In particular it establis
ijection betweenEsr1,r2d and the extreme points of CPsH2,H1,r1,r2d.
We are now ready to state our main result.
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Theorem 1: Let L :LsH2d→LsH1d be a completely positive map inCPsH2,H1,r1,r2d. Then
is extreme inCPsH2,H1,r1,r2d if and only if L admits an expressionLsxd=o jVj

†xVj for all
[LsH2d, where Vi are d3d matrices, satisfying the following conditions:

i) o jVj
†Vj =dr1,

ii ) o jVjVj
†=dr2, and

iii ) sVi
†Vjdi j and sVjVi

†di j are jointly linearly independent.

or the proof of Theorem 1 we need the following lemma. For a proof see Remark 4 in R
Lemma 3: LetL be a completely positive map with Kraus representationLsxd=o jVj

†xVj with

Vjj j
, linearly independent. LethWpjp

,8 be a class of d3d matrices, thenL has the expressio

sxd=op
,8Wp

†xWp if and only if there exists an isometric,83, matrix smpidpi, such that Wp

oimpiVi for all p.
Proof of Theorem 1: The proof is an only slight modification and generalization of the p

f Theorem 5 in Ref. 7. We include it for the convenience of the reader. First assume thL is
xtremal in CPsH2,H1,r1,r2d. We expressL in Kraus form Lsxd=o jVj

†xVj. Without loss o
enerality we can assume thathVjj j is linearly independent.7 Now suppose thatoli jVi

†Vj =0 and

i jli jVjVi
†=0. We need to show thatli j =0. Without loss of generality we can assume thatsli jdi j is

Hermitian matrix and −1ø sli jdi j ø1 (for details see Ref. 7).
Define F± :LsH2d→LsH1d by F±sxdªo jVj

†xVj ±oi jli jVi
†xVj. HenceF±s1d=dr1 and F±8s1d

dr2 We set 1+sli jdi j =sai jdi j
†sai jdi j ù0 and Wiªo jai jVj By direct computation, F+sxd

oiWi
†xWi. HenceF+ is completely positive. Similarly it can be shown thatF− is completely

ositive. SinceL is extremal, we find thatL=F+. Therefore by Lemma 3sai jdi j is an isometry an
+sli jdi j =1. This impliessli jdi j =0.

Now assume thatL admits a representation of the formLsxd=o jVj
†xVj for all x[LsH2d

hereo jVj
†Vj =dr1, o jVjVj

†=dr2, and sVi
†Vjdi j and sVjVi

†di j are jointly linearly independent. B
emma 2 alsohVjj j is linearly independent. Now supposeL= 1

2sF1+F2d with F1sxd=opWp
†xWp,

2sxd=oqZq
†xZq, and opWp

†Wp=oqZq
†Zq=dr1, opWpWp

†=oqZqZq
†=dr2 Since Lsxd= 1

2opWp
†xWp

1
2oqZq

†xZq, it follows by Lemma 3 thatWp andZq can be expressed as a linear combination o

j. Let Wp=oimpiVi for all p. Then o jVj
†Vj =opWp

†Wp=opijmpi
* mpjVi

†Vj and o jVjVj
†=opWpWp

†

opijmpi
* mpjVjVi

†. The joint linear independence ofsVi
†Vjdi j and sVjVi

†di j implies opmpi
* mpj=di j .

n other wordssmpidpi is an isometry. By Lemma 3, we conclude thatL=F1 ThusL is extrema
n CPsH2,H1,r1,r2d. h

Corollary 1: Let r[Csr1,r2d. Write the spectral decomposition ofr2 as r2=oir iur ilkr iu. Then
[Esr1,r2d if and only if there exists a family of d3d matriceshVjj such thatr can be expresse
s

r =
1

d
o
i jk

Vj
†ur ilkrkuVj ^ ur ilkrku,

herehVjj j satisfy the following conditions:

i) o jVj
†Vj =dr1,

ii ) o jVjVj
†=dr2, and

iii ) sVi
†Vjdi j and sVjVi

†di j are jointly linearly independent.

Remark 1: SupposeL :LsH2d→LsH1d is completely positive. Then we can writeLsxd
o jVj

†xVj wherehVjji=1
, is a class of linearly independent d3d matrices. Therefore,ød2. If L is

xtremal inCPsH2,H1,r1,r2d, we can conclude that,øÎ2d. Indeed, sVi
†Vjdi j and sVjVi

†di j are
ointly linearly independent only if the cardinal number ofhVi

†Vj % VjVi
†ji j is smaller than

imsLsH2dd+dimsLsH1dd. In other words, ,2ø2d2, i.e., ,øÎ2d. Parthasarathy found a slight
tronger bound inRef. 5.,øÎ2d2−1 It is not known whether this bound is tight.

Remark 2: The bound,øÎ2d also implies that for anyr[Esr1,r2d we haveranksrdøÎ2d.

n all dimensions dù2 this implies that anyr[Esr1,r2d is singular.
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. EXAMPLES

. A two dimensional example

ConsiderC2 ^ C2 and the convex setCs 1
21 , 1

21d of states onC2 ^ C2 with maximally mixed
arginals. This is a physically interesting example. It was previously studied in Ref. 5.

Assume thatr[Es 1
21 , 1

21d, i.e., that r is extremal inCs 1
21 , 1

21d. By Corollary 1 there is
inearly independent family of 232 matriceshViji=1

, such that

r =
1

2o
i jk

Vj
†ur ilkrkuVj ^ ur ilkrku,

herehVjj satisfy the following conditions:

o
j

Vj
†Vj = 12, s5ad

o
j

VjVj
† = 12, s5bd

nd wheresVi
†Vjdi j and sVjVi

†di j are jointly linearly independent.
By Remark 1 either,=1 or,=2. In the case,=1, the matrixV1 is unitary and it follows from

orollary 1 thatr is equal to the projector onto the subspace spanned by a maximally ent
ave function.

Now consider the case,=2. Consider the singular value decompositions ofV1 and V2, re-
pectively, i.e.,V1=os=1

2 Înss1duwslkcsu andV2=os=1
2 Înss2duws8lkcs8u, wherenssid are non-negativ

oefficients and wherehucsljs=1
2 , hucs8ljs=1

2 , huwsljs=1
2 andhuws8ljs=1

2 are four orthonormal bases ofC2.
hen V1

†V1=os=1
2 nss1ducslkcsu, V2

†V2=os=1
2 nss2ducs8lkcs8u, V1V1

†=os=1
2 nss1duwslkwsu and V2V2

†

os=1
2 nss2duws8lkws8u.
First consider the case of degenerate singular values, i.e., assumen1s1d=n2s1d. Then V1

†V1

V1V1
†=n1s1d1 and V2

†V2=V2V2
†=n1s2d1. Moreover, (5a) and (5b) imply that n1s1d=1−n1s2d.

owever, this implies thatsVi
†Vjdi j andsVjVi

†di j are not jointly linearly independent. By Corolla
r is not extremal inCs 1

21 , 1
21d. This is a contradiction.

Second, consider the case of nondegenerate singular values, i.e.,n1s1dÞn2s1d. In this case
qs. (5a) and (5b) imply that nss1d=1−nss2d, uwsl= uws8l and ucsl= ucs8l for s=1, 2. By direc
omputation it is easily verfied thatV1

†V2=V2
†V1 and V1V2

†=V2V1
†. This implies thatsVi

†Vjdi j and
VjVi

†di j are not jointly linearly independent. Again by Corollary 1r is not extremal inCs 1
21 , 1

21d. A
ontradiction.

We summarize our results in the following proposition.
Proposition 1: In dimension232 the extremal states inCs 1

21 , 1
21d are precisely the projecto

nto the subspaces spanned by maximally entangled pure wave functions.
Proposition 1 has previously been found, using different methods, by Parthasarathy in

. A three dimensional example

From the preceding example it is clear that also in higher dimensions all projectors o
ubspaces spanned by maximally entangled wave functions are extremal elem
ss1/dd1 ,s1/dd1d. However, in the present section we show that the extension of Propositio
igher dimensions does not hold. In other words the set of extremal states inCss1/dd1 ,s1/dd1d is
ot exhausted by the projectors onto maximally entangled pure states. Here we use our c

zation of extremal states inCss1/dd1 ,s1/dd1d to construct an explicit counterexample in dim
ion 333.

3 3
Denote byhuilji=1 the canonical real orthonormal basis ofC . Define the following operators:
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V1 =
1
Î2

su1lk1u + u2lk3ud, s6ad

V2 =
1
Î2

su2lk2u + u3lk1ud, s6bd

V3 =
1
Î2

su3lk3u + u1lk2ud. s6cd

y explicit calculation one checks thato j=1
3 Vj

†Vj =o j
3VjVj

†=1. Moreover,

V1
†V2 = V3V1

† = 1
2u3lk2u, s7ad

V1
†V3 = V3V2

† = 1
2u1lk2u, s7bd

V2
†V3 = V1V2

† = 1
2u1lk3u, s7cd

V2
†V1 = V1V3

† = 1
2u2lk3u, s7dd

V3
†V1 = V2V3

† = 1
2u2lk1u , s7ed

V2
†V2 = V2V3

† = 1
2u3lk1u . s7fd

encehVi
†Vjji j and hVjVi

†ji j are both linearly independent and thus by Lemma 1 jointly line
ndependent. By Corollary 1 the state

r ª

1

3 o
i jk=1

3

Vj
†uilkkuVj ^ uilkku s8d

s extremal inCs 1
31 , 1

31d. An explicit calculation gives the following matrix representation ofr in
he canonical product basis in lexicographic order:

r =
1

61
1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0

0 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1

2 . s9d

his state is entangled but not maximally entangled and an extremal element ofCs 1
31 , 1

31d.

. Higher dimensions

It is possible to construct counterexamples to Proposition 1 also in higher dimensio
nstance, considerC2 ^ C2. We denote the canonical basis ofC4 as usual byhu1l , u2l , u3l , u4lj. The

hree dimensional example above can be generalized to dimension 434 by letting
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V1 =
1
Î3

su1lk1u + u2lk4u + u3lk2ud,

V2 =
1
Î3

su2lk2u + u3lk1u + u4lk3ud,

V3 =
1
Î3

su3lk3u + u4lk2u + u1lk4ud,

V4 =
1
Î3

su4lk4u + u1lk3u + u2lk1ud.

t is straightforward to show that bothsVi
†Vjdi j andsVjVi

†di j are linearly independent families. Th
n analysis similar to the one given above shows that

r ª

1

4 o
i jk=1

4

Vj
†uilkkuVj ^ uilkku s10d

s extremal inCs 1
41 , 1

41d but is not a maximally entangled pure state. It is easy to construct s
ounterexamples also in higher dimensions. It seems therefore likely that there are co
mples to Proposition 1 in all dimensions greater than 2.
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he Newtonian limit of the relativistic Boltzmann equation
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The relativistic Boltzmann equation for a constant differential cross section and
with periodic boundary conditions is considered. The speed of light appears as a
parameterc.c0 for a properly large and positivec0. A local existence and unique-
ness theorem is proved in an interval of time independent ofc.c0 and conditions
are given such that in the limitc→ +` the solutions converge, in a suitable norm,
to the solutions of the nonrelativistic Boltzmann equation for hard spheres. ©2004
American Institute of Physics.[DOI: 10.1063/1.1793328]

. INTRODUCTION

Our purpose in this paper is to show that solutions of the relativistic Boltzmann equat
ell-approximated by solutions of the classical(nonrelativistic) Boltzmann equation. A mo
recise statement will be given later in the Introduction.

The relativistic Boltzmann equation can be written in the form

]t f + p̂ · =xf = Qrelsf, fd, s1.1d

here the various symbols have the following meaning.f = fst ,x,pd is the distribution function i
hase-space of a single nondegenerate relativistic gas.p̂=cp/p0 is the relativistic velocity, withc
enoting the speed of light andy0=Îc2+ uyu2. The molecular rest-mass is set to unity and
onvention for the signature of Minkowski’s metric iss+−−−d, so thatp0=p0. Finally, Qrel is the
elativistic collision operator defined by

Qrelsf,gd =E
R3
E

S2
Kcsp,q,vdffsp8dgsq8d − fspdgsqdgdv dq. s1.2d

n the previous definition,p8 ,q8 are the momenta after the elastic collision of two particles
re-collisional momentap,q. These quantities are subjected to the conservation of momentu
nergy, which read as

p + q = p8 + q8, Ecspd + Ecsqd = Ecsp8d + Ecsq8d, Ecsyd = cy0. s1.3d

solution of (1.3) can be represented as

p8 = p − asp,q,vdv, q8 = q + asp,q,vdv, s1.4d

here

asp,q,vd =
2sp0 + q0dfc−1v · sp̂ − q̂dgp0q0

sp0 + q0d2 − fv · sp + qdg2 .

sing this representation, the relativistic collision kernelKc takes the form

)
Electronic mail: simcall@aei-potsdam.mpg.de

4042022-2488/2004/45(11)/4042/11/$22.00 © 2004 American Institute of Physics
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Kcsp,q,vd = 16ssc2 + g2d
sp0 + q0d2uv · sp̂ − q̂du

fsp0 + q0d2 − sv · sp + qdd2g2 , s1.5d

g =
1
Î2

sp0q0 − p ·q − c2d1/2. s1.6d

ereg is a Lorentz invariant defined so that −2g is the relative momentum in the center of m
ystem ands denotes the differential cross section. In generals is a function ofg and of a secon
orentz invariant quantity which in the center of mass system reduces to the cosine of th

ering angle of the collision. In this article the differential cross section is assumed to be co
s usual, the local dependence onst ,xd in (1.2) is omitted. This formulation of the relativist
oltzmann equation forc=1 is derived for instance in Refs. 6,7. We refer to Refs. 1,3,5,1
ore background on the subject.

In this paper, the solutions of(1.1) will be directly compared to the solutions of the class
oltzmann equation for hard spheres, which is

]t f` + p · =xf` = Qclsf`, f`d, s1.7d

here

Qclsf,gd = dE
R3
E

S2
uv · sp − qduffsp̄dgsq̄d − fspdgsqdgdv dq. s1.8d

The meaning of the various symbols in(1.7) is the same as in the relativistic case.
ost-collisional momenta are now denoted byp̄,q̄, the conservation of momentum and energy

he form p+q= p̄+ q̄ and 1
2upu2+ 1

2uqu2= 1
2up̄u2+ 1

2uq̄u2, respectively, while the analog of(1.4) in the
lassical case is

p̄ = p − v · sp − qdv, q̄ = q + v · sp − qdv. s1.9d

he factord in (1.8) is the differential cross section for hard spheres interaction, which
onstant with the same dimensions ass, namelyflengthg2. A standard mathematical reference
he classical Boltzmann equation is Ref. 4.

In this paper it is shown that there is a class of solutions to the relativistic Boltzmann eq
hich have a Newtonian limit, i.e., which tend to solutions of the classical Boltzmann equat(in

he corresponding class) as the speed of light goes to infinity. For this purpose, the speed o
ill be treated as a parameterc.c0—wherec0 is a fixed and properly large positive constan
nd the difference between the classical and the relativistic solution will be estimatec

+`. (No loss of generality arises in lettingc.c0, since only the limit behavior asc→ +` is of
nterest here.) In order to obtain the correct Newtonian limit it is also necessary to relat
onstantsd and s in a proper way. From(1.5) it follows that Kcsp,q,vd→4suv ·sp−qdu as c

+`. This leads topostulatethe relation 4s=d. By further choosing units such thatd=1, the
lassical collision kernel reduces touv ·sp−qdu, while the relativistic collision kernel becomes

Kcsp,q,vd = 2sp0q0 − p ·q + c2d
sp0 + q0d2uv · sp̂ − q̂du

fsp0 + q0d2 − sv · sp + qdd2g2 . s1.10d

The precise formulation of the result will be now given. The conditions on the distrib
unctions mentioned in the theorem are introduced thereafter. The symbolT3 denotes the thre
orus and the normi i0,1 is defined as follows:

igstdi0,1=E
R3

ugst,pdu0dp, ugst,pdu0 = sup
3
ugst,x,pdu.
xPT
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Theorem 1: Let f`std be a solution of(1.7) which satisfies the properties (C1), (C2) and w
nitial datum f̀inPC1 such thatu=pf`

inu0PL1sR3d. Let fcstd be a solution of(1.1), depending o
.c0, which satisfies the properties (R1)–(R3) and with the c-dependent initial datum fc

in. Assum
f`
in− fc

ini0,1=Osc−1d as c→ +`. Then

lim
c→+`

if`std − fcstdi0,1= 0, t P f0,Tg.

The following notation will be used. Given two functionsg andh on Rn we writeg&h if the
stimategøDh holds for a positive constantD independent ofc.c0. The constantD may also
epend on the length of some time intervalf0,Tg, in which case we writeg&h for tP f0,Tg.
henever necessary or convenient, the constantD will be recovered in the computations.

The classes of solutions of the Boltzmann equations to be considered are defined
ollowing properties. In the classical case it is required that, in some intervalf0,T1g:

sC1d f` P Csf0,T1g 3 T3 3 R3d,

sC2d ∃ a0 . 0:f`st,x,pd & exps− a0upu2d, t P f0,T1g, x P T3, p P R3.

In the relativistic case letfc denote a(one parameter family of) solution(s) of (1.1) and require
hat, for allc.c0 and in some intervalf0,Tcg,

sR1d fc P Csf0,Tcg 3 T3 3 R3d,

sR2d ∃ b0 . 0:fcst,x,pd & expf− b0„Ecspd − c2
…g, t P f0,Tcg, x P T3, p P R3,

sR3d T2ªinfc.c0
Tc . 0.

Let us briefly comment on the above conditions. The existence of solutions to the c
oltzmann equation satisfying the properties(C1), (C2) is proved in Ref. 9—see also Refs. 2,8
uestions concerning the global existence of such solutions. A similar argument applies
elativistic Boltzmann equation to prove the local existence and uniqueness of solutions sa
R1)—(R3). A short sketch of the proof is given in Sec. III to show that the property(R3) is
atisfied. The latter is necessary for studying the Newtonian limit, since it assures that th
ence interval of a solution of the relativistic Boltzmann equation does not shrink to zerc

+`. The timeT in Theorem 1 is defined as the minimum betweenT1 andT2.
Note also that the assumptionxPT3 allows one to neglect technical difficulties not relate

he problem under discussion, such us the choice of boundary or fall-off conditions. The
lization of the result whenx lies in a region ofR3 with a smooth boundary—or simplyxPR3—is
ot attempted here but it should not be too difficult.

I. PROOF OF THE MAIN THEOREM

The following lemma collects some estimates which are required in the proof of the
heorem.

Lemma 1: The following estimates hold:

sad uq8 − q̄u + up8 − p̄u &
suqu + upud3

c2 ,

sbd uKcsp,q,vd − uv · sp − qduu &
s1 + upu + uqud9

2 ,

c
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scd EE Kcsp,q,vd expf− b0sEcsqd − c2dgdv dq & s1 + upud.

Proof: From (1.4) and (1.9) we have

uq8 − q̄u = up8 − p̄u = uv · sp − qd − au,

nd a computation shows that

v · sp − qd − a =
v · sp + qdsupu2 − uqu2 + sv · pd2 − sv ·qd2d

sp0 + q0d2 − fv · sp + qdg2 =
Num

Den
.

oreover,

Den = 2c2 + upu2 + uqu2 + 2Îc2 + upu2Îc2 + uqu2 − sv · pd2 − sv ·qd2 − 2sv · pdsv ·qd

ù 2c2 + 2Îc2 + upu2Îc2 + uqu2 − 2upuuqu ù 2c2 +
c2sc2 + upu2 + uqu2d
Îc2 + upu2Îc2 + uqu2

. s2.11d

n particular Den.2c2 and since Num& supu+ uqud3, the estimate(a) is proved. Next, from(1.10)
e have

uKcsp,q,vd − uv · sp − qduu & U2sp0q0 − p ·q + c2dsp0 + q0d2sv · p̂ − v · q̂d
fsp0 + q0d2 − „v · sp + qd…2g2 − v · sp − qdU

& uv · puU 2csp0q0 − p ·q + c2dsp0 + q0d2

p0fsp0 + q0d2 − „v · sp + qd…2g2 − 1U + sq ↔ pd, s2.12d

heresq↔pd denotes the expression obtained by exchangingp andq in the first term. Recall th
efinition of “Den” in (2.11). The first term in(2.12) is estimated as

upu
p0sDend2u2csp0q0 + c2dsp0 + q0d2 − 2cp ·qsp0 + q0d2 − p0sp0 + q0d4 − p0fv · sp + qdg4

+ 2p0sp0 + q0d2fv · sp + qdg2u

&
upu

p0sDend2usp0 + q0d2s2cp0q0 + 2c3 − p0
3 − p0q0

2 − 2p0
2q0d + c3s1 + upu + uqud5u.

erep0sDend2ù4c5 and so to prove(b) one needs to estimate only the expression containin
fth order powers ofc, which is given by

Psp,qd = sp0 + q0d2f2cp0q0 + 2c3 − p0
3 − p0q0

2 − 2p0
2q0g.

e have

uPsp,qdu
p0sDend2 &

s1 + upu + uqud2

c3 u2cp0q0 + 2c3 − p0
3 − p0q0

2 − 2p0
2q0u.

sing that

2cp0q0 − 2p0
2q0 =

2p0q0

c + p0
sc2 − p0

2d ø 2cupu2s1 + uqud,

c3 − p0q0
2 = c2sc − p0d − cuqu2s1 + upud ø

c2sc2 − p0
2d

+ cuqu2s1 + upud ø csupu2 + uqu2ds1 + upud,

c + p0
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c3 − p0
3 = c3S1 −S1 +

upu2

c2 D3/2D ø cs1 + upud6,

nd repeating the argument for the second term in(2.12) concludes the proof of(b). To prove(c)
onsider the following pointwise estimate onKc:

Kc &
cp0q0

sDend2sp0
2 + q0

2 + 2p0q0dsupu/p0 + uqu/q0d

&
c

sDend2fupup0
2q0 + upuq0

3 + 2upup0q0
2 + p0

3uqu + p0uquq0
2 + 2p0

2q0uqug

&
c4

sDend2s1 + upuds1 + uqu2d3/2S1 +
upu2

c2 D .

rom (2.11) it follows that

Denù c2
Î1 + upu2/c2

Î1 + uqu2/c2
.

oreover, sinceÎc4+c2uqu2−c2ù
1
2sÎ1+uqu2−1d, then

expf− b0sEcsqd − c2dg & expF−
b0

2
Î1 + uqu2G , s2.13d

nd so

EE Kcsp,q,vde−b0„Ecsqd−c2
… dv dq & s1 + upud E s1 + uqu2d5/2es−b0/2dÎ1+uqu2dq,

y which the claim follows. h

Remark 1:The simple estimate(2.13) will be often used in the sequel for the same purpos
n Lemma 1, i.e., to obtain an estimate independent ofc.c0 of the integrals containing the fac
xpf−b0(Ecsqd−c2)g.

In the class of solutions that we are considering, the distribution functions satisfy the
ann equations in the mild form

fcst,x,pd = fc
insx − p̂t,pd +E

0

t

Qrelss,x + p̂ss− td,pdds, s2.14d

f`st,x,pd = f`
insx − pt,pd +E

0

t

Qclss,x + pss− td,pdds. s2.15d

e use this representation to estimate the following quantity:

Fhff`g =E sup
uhu,h

uf`sp + hd − f`spdu0dp, h . 0.

Lemma 2: For all h0,T.0,hP f0,h0g and tP f0,Tg, there exists a positive constant
CsT,h0,a0d such that

in
Fhff`g ø CÎFhff`g.
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Proof: By (1.8),

Qclsf`, f`dsp + hd =EE uv · sp − qduff`sp̄ + hdf`sq̄ + hd − f`sp + hdf`sq + hdgdv dq.

herefore by(2.15),

uf`sp + hd − f`spdu0 ø uf`
insp + hd − f`

inspdu0 +E
0

t EE uv · sp − qduuf`sqdu0uf`sp + hd

− f`spdu0 dv dq ds+E
0

t EE uv · sp − qduuf`sq̄du0uf`sp̄ + hd

− f`sp̄du0 dv dq ds+E
0

t EE uv · sp − qduuf`sp + hdu0uf`sq + hd

− f`sqdu0 dv dq ds+E
0

t EE uv · sp − qduuf`sp̄ + hdu0uf`sq̄ + hd

− f`sq̄du0 dv dq ds.

ence changing to the post-collisional variables,

Fhff`g & Fhff`
ing +E

0

tEEE uv · sp − qdue−a0uqu2 sup
uhu,h

uf`sp + hd − f`spdu0 dv dq dp ds

+E
0

t

sup
uhu,h

EEE uv · sp − h − qdue−a0upu2uf`sq + hd − f`sqdu0 dv dq dp ds

= Fhff`
ing + A + B.

or R.0 we write

A &E
0

t E
upuøR

s1 + upud sup
uhu,h

uf`sp + hd − f`spdu0 dp ds+E
0

t E
upu.R

s1 + upud

3expf− a0supu2 − 2hupudgdp ds& s1 + RdE
0

t

Fhff`gssdds+ Ce−a0R2/2.

he estimate for B is obtained in the same way,

B & f1 + sR+ h0dgE
0

t

Fhff`gssdds+ Ce−a0R2/2.

ence, finally,

Fhff`gstd & Fhff`
ing + Ce−a0R2/2 + f1 + sR+ h0dgE

0

t

Fhff`gssdds.

hooseR such thate−a0R2/2=s1+Fh0
ff`

ingd−1Fhff`
ing, so that

Fhff`gstd & Ce−a0R2/2 + f1 + sR+ h0dgE
0

t

Fhff`gssdds.
ence, by the Grönwall Lemma,
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Fhff`gstd & C expF−
a0R

2

2
+ sR+ h0dtG & C expS−

a0R
2

4
Dsup

R.0
expF−

a0R
2

4
+ sR+ h0dTG

& C expS−
a0R

2

4
D = CÎFhff`

ing.

h

Note also that for an initial datum as given in Theorem 2 the estimateFhff`
ing&h holds. Then

emma 2 implies

Fhff`g & Îh. s2.16d

The next goal is to estimate the differenceQrel−Qcl in the normi i0,1.
Lemma 3: The following estimate holds:

iQrelstd − Qclstdi0,1 & c−1slog cd5/4 + expf− b0sÎc4 + c2 log c − c2dg + expf− a0 log cg

+ Îlog cif`std − fcstdi0,1.

Proof: From (1.2) and (1.8),

iQrelstd − Qclstdi0,1 &EEE uKcsp,q,vdffsp8dfsq8d − fspdfsqdg − uv · sp − qduff`sp̄df`sq̄d

− f`spdf`sqdgu0dv dq dp =EEE
upu+uquøÎlog c

¯ +EEE
upu+uqu.Îlog c

¯ .

bserving the conservation of energy and using(c) of Lemma 1, the integral in the exterior reg
s dominated by

EEE
upu+uqu.Îlog c

Kcsp,q,vdexpf− b0sEcspd + Ecsqd − 2c2dgdv dq dp +E E E
upu+uqu.Îlog c

uv · sp

− qdu

3expf− a0supu2 + uqu2ddp dv dq dp & expf− b0sÎc4 + c2log c − c2dg + exps− a0log cd.

or the integral over the interior part consider the splitting,

EEE
upu+uquøÎlog c

¯ ø I + II + ¯ + VIII,

here

I = EEE
upu+uquøÎlog c

ufcspdu0ufcsqdu0uuv · sp − qdu − Kcudv dq dp,

II = EEE
upu+uquøÎlog c

uf`sp̄du0uf`sq̄du0uuv · sp − qdu − Kcudv dq dp,

III = EEE
upu+uquøÎlog c

uv · sp − qduuf`spdu0uf`sqd − fcsqdu0 dv dq dp,

IV = EEE
Î

uv · sp − qduufcsqdu0uf`spd − fcspdu0 dv dq dp,

upu+uquø log c
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V = EEE
upu+uquøÎlog c

Kcufcsp8du0ufcsq8d − f`sq8du0 dv dq dp,

VI = EEE
upu+uquøÎlog c

Kcufcsp8du0uf`sq8d − f`sq̄du0 dv dq dp,

VII = EEE
upu+uquøÎlog c

Kcuf`sq̄du0ufcsp8d − f`sp8du0 dv dq dp,

VIII = EEE
upu+uquøÎlog c

Kcuf`sq̄du0uf`sp8d − f`sp̄du0 dv dq dp.

t follows directly from the estimate(b) of Lemma 1 that

I + II & c−2.

he integrals III and IV satisfy the estimate

III + IV & E
uquøÎlog c

s1 + uquduf`sqd − fcsqdu0 dq & s1 +Îlog cdif`std − fcstdi0,1.

n the integral V we change to the post-collisional variables. SinceKcsp,q,vddq dp
Kcsp8 ,q8 ,vddq8 dp8 and, by(1.3), up8u+ uq8uø4Îlog c for upu+ uquøÎlog c, then

V &EEE
upu+uquø4Îlog c

Kcsp,q,vdufcspdu0ufcsqd − f`sqdu0udv dq dp & Îlog cif`std − fstdi0,1.

or the integral VI we have, by the estimate(a) of Lemma 1, Lemma 2, and(2.16),

VI &EEE
upu+uquøÎlog c

Kcufcsp8du0 sup
uhu&slog cd3/2/c2

uf`sq8 + hd − f`sq8du0 dv dq dp

&EEE
upu+uquø4Îlog c

Kce
−b0sEspd−c2d sup

uhu&slog cd3/2/c2
uf`sq + hd − f`sqdu0 dv dq dp

& E
uquø4Îlog c

s1 + uqud sup
uhu&slog cd3/2/c2

uf`sq + hd − f`sqdu0

& Îlog cFslog cd3/2/c2ff`g & c−1slog cd5/4.

t is now straightforward to estimate VII and VIII; therefore we merely state the result

VII + VIII & c−1slog cd5/4 + Îlog cif`std − fstdi0,1.

ollecting the various bounds, the claim follows. h

The proof of Theorem 1 is now almost complete. From(2.14) and (2.15) we have

ifcstd − f`stdi0,1 ø ifc
in − f`

ini0,1+E
0

t

iQrelssd − Qclssdi0,1.
sing Lemma 3 and applying Grönwall’s inequality one obtains, fortP f0,Tg,
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ifcstd − f`stdi0,1 & ifc
in − f`

ini0,1e
DÎlog c + c−1slog cd5/4eDÎlog c + expf− b0

Îc4 + c2 log c + b0c
2

+ DÎlog cg + expf− a0 log c + DÎlog cg.

he expression on the right hand side tends to zero asc→` and this concludes the proof
heorem 1.

II. EXISTENCE IN A UNIFORM SHORT TIME INTERVAL

The equation to be studied reads explicitly as

fcst,x,pd = fc
insx − p̂t,pd +E

0

t

fQrel
+ sfc, fcd − Qrel

− sfc, fcdg„s,x − p̂st − sd,p…ds, s3.17d

here Qrel
+ and Qrel

− refer to the gain and loss part of the relativistic collision operator(1.2),
espectively. Given two functionsu0std andl0std, the approximation sequenceshunjnù0, hlnjnù0 are
efined recursively by

ln+1st,x,pd = fc
insx − p̂t,pd +E

0

t

fQrel
+ sln,lnd − Qrel

− sln+1,undgss,x − p̂st − sd,pdds,

un+1st,x,pd = fc
insx − p̂t,pd +E

0

t

fQrel
+ sun,und − Qrel

− sun+1,lndg„s,x − p̂st − sd,p…ds,

nd as in Lemma 5.1 in Ref. 9 one can prove the following.
Proposition 1: Assume the beginning condition is satisfied:

0 ø l0std ø l1std ø u1std ø u0std; s3.18d

hen0ø lnstdø ln+1stdøun+1stdøunstd for all nù0.
Next assume thatu0&expf−b0sEcspd−c2dg; it follows by the previous proposition thatun, ln

re also dominated by expf−b0sEcspd−c2dg. Moreover lnstd↑ lstd ,unstd↓ustd, and uustdu , ulstdu
expf−b0sEcspd−c2dg. All these preliminary facts are valid for any collision kernel. When

atter is given by(1.10) one can also prove that(i) ustd= lstd and (ii ) the limit is a continuou
olution of (3.17). The second statement is an obvious consequence of the first one, so o
roof of (i) will be given. By the dominated convergence theorem,ustd , lstd satisfy

lst,x,pd = fc
insx − p̂t,pd +E

0

t

fQrel
+ sl,ld − Qrel

− sl,udgss,x − p̂st − sd,pdds,

ust,x,pd = fc
insx − p̂t,pd +E

0

t

fQrel
+ su,ud − Qrel

− su,ldgss,x − p̂st − sd,pdds.

stimating the differenceustd− lstd in the normi i0,1 and using(c) of Lemma 1 we get

iustd − lstdi0,1 & E
0

t E s1 + upuduuss,pd − lss,pdu0 dp ds

& E
0

t E
upuøR

s1 + upuduuss,pd − lss,pdu0 dp ds

+Et E s1 + upudexpf− b0sÎc4 + c2upu2 − c2dgdp ds

0 upu.R
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& s1 + RdE
0

t

iussd − lssdi0,1+ tes−b0/2dsÎc4+c2R2−c2d.

ence by the Grönwall inequality

iustd − lstdi0,1 & tetexpFDtR−
b0

2
Îc4 + R2c2 +

b0

2
c2G ,

or some constantD independent of the speed of light. FortP f0,Tg andc.Î48DT/b0ªc0, this
mplies

iustd − lstdi0,1 & es−DTRd, for R.
12DT

b0
,

nd so the claimustd= lstd, for tP f0,Tg andc.c0 follows by lettingR→ +`.
It remains to show that the beginning condition(3.18) is attained in some intervalf0,Tcg

atisfying the property(R3) (indeed it will be shown thatTc is independent ofc.1). Following
ef. 9 we choosel0;0 andu0std of the form

u0std = vstde−bstdfEcspd−c2g,

hereb andv are positive functions andbs0d=b0. We also setv0=vs0d. Thenu1 arel1 are given
y

l1st,x,pd = fc
insx − p̂t,pdexpF− vstd EE Kcsq,p,vde−bstdfEcsqd−c2gdv dqG ,

u1st,x,pd = fc
insx − p̂t,pd +E

0

t

vssd2EE Kcsq,p,vde−bssdfEcspd+Ecsqd−2c2gdv dq ds.

ence 0ø l1stdøu1std. Moreover,

u1s0d − u0s0d = fc
in − v0e

−b0fEcspd−c2g & e−b0fEcspd−c2g − v0e
−b0fEcspd−c2g ø 0,

or v0 large enough and

d

dt
fu1st,x + p̂t,pd − u0st,x + p̂t,pdg ø fDs1 + upudv2 − v̇ + vḃsÎc4 + c2upu2 − c2dg

3expf− bstd„Ecspd − c2
…g,

here an upper dot has been used to denote differentiation in time. Hence the proof of(3.18) is
omplete if one can choosev ,b such that

Ds1 + upudv2 − v̇ + vḃsÎc4 + c2upu2 − c2d ø 0. s3.19d

et

vstd =
v0

1 − 3Dv0t
, bstd = b0 + 2

3logs1 − 3Dv0td,

o thatv̇=3Dv2 and ḃ=−2Dv. HeretP f0,Tg, whereT=s6Dv0d−1s1−e−s3/2db0d so thatv andb
re well-defined positive functions inf0,Tg. In this way, the left hand side of(3.19) is dominated
y −Dv2ø0 and this concludes the proof of the following

Theorem 2: Let fc
inPCsT33R3d such that fc

in&expf−b0sEcspd−c2dg. There exist c0,T.0

uch that for all c.c0, the relativistic Boltzmann equation, Eq. (1.1) withKcsp,q,vd given by
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1.5) and initial datum fc
in, has a unique solution fPCsf0,Tg3T33R3d which also satisfies

expf−b0(Ecspd−c2)g; in particular the class of solutions satisfying (R1)–(R3) is not empty
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xact series solution to the two flavor neutrino oscillation
roblem in matter
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In this paper, we present a real nonlinear differential equation for the two flavor
neutrino oscillation problem in matter with an arbitrary density profile. We also
present an exact series solution to this nonlinear differential equation. In addition,
we investigate numerically the convergence of this solution for different matter
density profiles such as constant and linear profiles as well as the Preliminary
Reference Earth Model describing the Earth’s matter density profile. Finally, we
discuss other methods used for solving the neutrino flavor evolution problem.
© 2004 American Institute of Physics.[DOI: 10.1063/1.1793330]

. INTRODUCTION

In general, there are several phenomena and processes in physics, but also in other
cience such as chemistry, that can be described in terms of a system with two(quantum mechan
al) states and a time-dependent Hamiltonian, i.e., so-called two-level systems—neutrino
ions with two flavors being one such system. Other representatives of such systems
xample, a spin 1/2 particle in a time-dependent electromagnetic field having the states “s

nd “spin down,”K0-K̄0 mixing, a Josephson device, nuclear magnetic resonance used for
ng bits of information(i.e., quantum bits for a quantum computer), the left and right chiralit
tates of molecules in chemistry, etc. The problem of neutrino oscillations in matter, which
oncerned with in this paper, is mathematically equivalent to a spin 1/2 particle in a ma
eld that is constant in one direction, zero in another direction, and time-dependent in
irection.1

Neutrino oscillations have recently been extensively studied in the literature2–6 and they act a
he most plausible description of both the solar2 and atmospheric3 neutrino problems. At an ear
tage, neutrino oscillations were mainly investigated with two flavors and without including
ffects. Nowadays, we know that there are at least three neutrino flavors and that matter ef

mportant. For example, in matter, the so-called Mikheyev–Smirnov–Wolfenstein(MSW) effect7,8

an take place, which is an amplifying resonant effect due to the presence of matter. How
ost situations, neutrino oscillations can be effectively investigated with two flavors, sin

eptonic mixing in the 1–3 sector is indeed small,4,5 leading to the fact that the full three flav
cenario can be decoupled into two effective two flavor scenarios, each of which can be
eparately.

In this paper, we present an exact analytic solution to the two flavor neutrino osci
roblem in matter. Since there are many similar two-level systems, as discussed abo
olution will also be interesting and applicable to this kind of system. However, before we p
o present our solution, we will give a brief overview of what has previously been done
eld. Note that this overview is not presented in chronological order. First, in Refs. 9,1
eutrino flavor evolution has been investigated by a discretization of the effective po
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econd, exact solutions exist for a number of specific effective potentials.7,11–13Third, in Refs
4,15, the evolution was studied by using an adiabatic approximation. Fourth, approxima

ions valid for small effective potentials have recently been studied in detail.16 Finally, there hav
lso been other attempts to write the evolution in terms of a second order nonlinear o
ifferential equation.17 However, this has been done for the neutrino oscillation probability
litudes and not for the neutrino oscillation probabilities. The advantage of working with a

inear differential equation for the oscillation probability rather than a linear system of differ
quations for the probability amplitudes is that we only have one real variable instead
omplex variables. The disadvantage is that the resulting differential equation is nonlinea

This paper is organized as follows. In Sec. II, the neutrino flavor evolution in matter wit
avors is studied and a second order nonlinear ordinary differential equation for the n
scillation probability is derived. Then, in Sec. III, we perform series expansions of bo
eutrino oscillation probability and the effective potential in order to solve the differential

ion presented in Sec. II. Next, in Sec. IV, we continue by studying the numerical converge
he solution for a number of different effective potentials and baselines. In Sec. V, we pr
rief summary of other methods for solving the neutrino evolution in matter. Finally, in Se
e summarize our results and give our conclusions.

I. NEUTRINO FLAVOR EVOLUTION IN MATTER

When neutrinos propagate in matter, neutrino flavors are affected differently by co
orward scattering against the matter constituents. Assuming that there are no sterile neutr
ffect of matter is to add an effective potential tone; this effective potential is given byVstd
Î2GFNestd, whereGF is the Fermi coupling constant andNestd is the electron number densit

In the two flavor case, the time evolution of a neutrino stateunstdl=sunestdlunxstdldT is given by

i
dunstdl

dt
= „Hvac+ Hmatstd…unstdl, s1d

hereHvac=U diagsm1
2,m2

2dU†/2E is the free Hamiltonian in vacuum,Hmatstd=diag(Vstd ,0) is the
ddition to the free Hamiltonian due to matter effects, and

U = S c s

− s c
D s2d

s the leptonic mixing matrix in vacuum. Herec;cosu ,s;sinu, andu is the leptonic mixing
ngle. Adding or subtracting terms proportional to the unity operator to the total Hamil
std=Hvac+Hmatstd will only contribute with an overall phase to the neutrino stateunstdl, and thus
oes not affect the neutrino oscillation probabilities. Using this fact, the total Hamiltonian m
ritten as

Hstd =
1

21Vstd −
Dm2

2E
cos 2u

Dm2

2E
sin 2u

Dm2

2E
sin 2u

Dm2

2E
cos 2u − Vstd 2 =

1

2
Fs1

Dm2

2E
sin 2u + s3SVstd −

Dm2

2E
cos 2uDG ,

s3d

here thesi’s (i =1, 2, 3) are the Pauli matrices andDm2;m2
2−m1

2 is the mass squared differen
etween the two mass eigenstates in vacuum.

The density matrixrstd= unstdlknstdu can be parametrized asrstd=(1+Sstd ·s) /2, where1 is
he unity matrix,s=ss1 s2 s3dT is the vector of Pauli matrices, andSstd is a vector such th
std2=1. Differentiating the density matrixr with respect to timet, the equation of motion forSstd

ecomes
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Ṡstd = Sstd Ã Bstd, s4d

here Bstd;ge1+ fstde3 and we have definedg;−sins2udDm2/2E and fstd;coss2udDm2/2E
Vstd. Note thatg is independent of timet. The probability of neutrinos produced asne to oscillate

nto nx (where nx is some linear combination ofnm and nt) is now given byPsne→nxd; Pex

(1−S3std) /2. With the parametrization

Sstd ; 1sina cosb

sina sinb

cosa
2 , s5d

here a=astd and b=bstd, we obtain the following nonlinear system of ordinary differen
quations:

ḃ = g cota cosb − f , s6d

ȧ = g sinb. s7d

liminating b from the above expressions, we obtain the differential equation

fä + cotasȧ2 − Gdg2 = FstdsG − ȧ2d, s8d

hereFstd; fstd2 andG;g2.
Now, we make the substitutionp=S3std=cosa after which Eq.(8) becomes

sp̈ + Gpd2 = FstdfGs1 − p2d − ṗ2g. s9d

ote thatF=0 corresponds to the so-called MSW resonance condition coss2udDm2/2E=V. In this
ase, Eq.(9) takes the simple form

p̈ + Gp= 0, s10d

ith the trivial solutionsp=A cossgtd+B sinsgtd just as expected.
In general, the expression forPex is known for constant matter density and is given by7

Pex= sin2s2ũdsin2SDm̃2

4E
tD =

G

F + G
sin2SÎF + G

2
tD , s11d

here ũ is the effective leptonic mixing angle in matter andDm̃2 is the effective mass squar
ifference in matter. Using thatp=1−2Pex, it is a matter of trivial computation to show that t

s the solution to Eq.(9) with constantF, which corresponds to any constant matter density
In the threesnd flavor case, the density matrix can be parametrized by fourf2sn−1dg real

arameters. If we would adopt our approach to the threesnd flavor case, then we would end
ith a system of sevenf2sn−1dg nonlinear ordinary differential equations, which, in principle,
e solved in a manner analogous to the one described above for the two flavor case.

II. SERIES EXPANSION OF THE SOLUTION

In order to solve the propagation of neutrinos in matter with arbitrary density profile
dopt the method of series expansion. We suppose that neutrinos are produced asne and then
ropagate through a given effective potentialVstd; this gives the initial valuesps0d=1 andṗs0d
0. Series expanding the effective potentialVstd and the quantitypstd, we obtain the following
xpressions:

Vstd = o
`

Vnt
n, s12d
n=0
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pstd = o
n=0

`

pnt
n, s13d

here the coefficientsVn sn=0,1,…d define the effective potential and where we wish to com
he coefficientspn sn=0,1,…d. By using the relation betweenf andV, we obtain

fstd = o
n=0

`

fnt
n, fn = dn0

Dm2

2E
coss2ud − Vn, s14d

Fstd = o
n=0

`

Fnt
n, Fn = o

k=0

n

fkfn−k. s15d

Inserting the above expressions into Eq.(9) and identifying terms of the same order int gives
he relation

FnG = o
s=0

n

ss+ 2dss+ 1dsn − s+ 2dsn − s+ 1dps+2pn−s+2 + o
s=0

n

f2Gss+ 2dss+ 1dps+2pn−s + G2pspn−sg

+ o
s=0

n

Fn−so
k=0

s

Gpkps−k + sk + 1dss− k + 1dpk+1ps−k+1. s16d

or n=0 with the given initial conditions, Eq.(16) is a second order equation inp2 with p2

−G/2 as a double root. This corresponds well to the fact that att=0, the right-hand side of E
9) vanishes for the given initial conditions and we are left with the equationp̈s0d=−Gps0d. For
=1, Eq. (16) is trivially fulfilled (given the assumed initial conditions, terms withpn+2 will
ppear with the prefactorGp0+2p2 only), while the solution to the equation forn=2 is simply

p3=0.
Also the solution forn=3 is now trivially fulfilled, since the terms includingpn+1 also cance

or nù3. Forn=4, the equation is a second order equation inp4 with the solutions

p4 =
G2

24
andp4 =

GsG + F0d
24

. s17d

f these two solutions, only the latter will be a solution to our problem; this is easily check
nserting the known solution in the case of constant effective potential from Eq.(11).

For nù5, Eq.(16) is now linear inpn. Fornù6, we obtain a solution forpn in terms of lowe
rderpk,G, andFs, wherek,n andsøn−4. This expression is the following recurrence relat

pn = −
1

Gsn2 − 3n + 2dF0
FF1o

s=1

n−2

ss+ 1dsn − sdps+1pn−s + GsG + F0do
s=2

n−2

pspn−s + F0o
s=3

n−3

ss+ 1dsn − s

+ 1dps+1pn−s+1 + 2Go
s=2

n−4

ss+ 2dss+ 1dpn−sps+2 + Go
s=4

n−1

Fn−so
k=0

s

pkps−k + o
s=4

n−2

Fn−so
k=0

s

sk + 1dss− k

+ 1dpk+1ps−k+1 + o
s=3

n−3

sn − s+ 2dsn − s+ 1dss+ 2dss+ 1dpn−s+2ps+2G . s18d

or the first few coefficients we obtain

p0 = 1,
p1 = 0,
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p2 = −
G

2
,

p3 = 0,

p4 =
G

24
sG + F0d,

p5 =
GF1

48
,

p6 = −
Gs4G2F0 + 8GF0

2 + 4F0
3 + F1

2 − 36F0F2d
2880F0

,

p7 = −
Gs8GF0

2F1 + 8F0
3F1 − F1

3 + 4F0F1F2 − 48F0
2F3d

5760F0
2 ,

p8 =
G

645120F0
3h48GF0

5 + 16F0
6 − 63F1

4 + 16F0
4s3G2 − 34F2d + 312F0F1

2F2 + 8F0sGF1
2 − 30F2

2

− 48F1F3d + 4F0
3f4sG3 − 34GF2 + 240F4d − 53F1gj. s19d

s can be observed by settingFk=0, the solution forF=0, i.e., at the MSW resonance, is just
eries expansion forp=cossgtd, which is clearly as expected.

V. CONVERGENCE OF THE SOLUTION

In order to test our solution, we perform a number of numerical tests. First of all, we g
verview of how we approximate the electron number density(i.e., in principle, the effectiv
otential) by a polynomial. Then, we proceed by confirming that our solution really conv
icely towards the simple trigonometric function that is the exact solution for a constant e
umber density. In this case, we also study the convergence of the energy dependenc
eutrino oscillation probabilityPexsLd for a baseline ofL=3000 km. After the constant electr
umber density case, we investigate the case of a linear effective potential, and finally, w

he case of the Preliminary Reference Earth Model(PREM).18

In the numerical calculations, we have used the mixing angleu=13° and the mass squar
ifferenceDm2=2310−3 eV2.19 The value ofu approximately corresponds to the upper limit

he leptonic mixing angleu13 from the CHOOZ experiment withDm2=2310−3 eV2.5 The reaso
o use this particular choice of parameters is thatu13 and the large mass squared difference give
ain effects to neutrino oscillations fromne into other flavors for the baselines and energies
ave studied(for L=3000 km andE=1 GeV, the neutrino oscillations governed by the small m
quared difference contribute with an approximate addition of 0.05 to the neutrino osc
robability Pex, for shorter baselines and higher energies, this effect decreases); see, for example
ef. 20. The reason for using the upper bound value for the mixing angleu and not some small
alue is that we wish to study the behavior of our solution rather than to make any p
redictions about the neutrino oscillation probabilities.

. Series expansion of the effective potential

In order to use the series solution, which was obtained in the previous section, we w
he coefficientsVn. In general, for a given baseline lengthL, the effective potentialVstd can be

xpanded in terms of Legendre polynomials, i.e.,
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Vsxd = o
n=0

`

cnPnsxd, Pnsxd =
1

n ! 2n

dn

dxnfsx2 − 1dng, cn =
2n + 1

2
E

−1

1

VsxdPnsxddx, s20d

here x;2t /L−1. For numerical treatments, we cannot use the entire expansion in Le
olynomials because of finite computer memory and finite computer time. However, if we a

hat the coefficientscn are negligible forn.N, whereN is some integer, then we have a poly
ial approximation,

Vsxd . o
n=0

N

cnPnsxd, s21d

f the effective potential. Clearly, given any polynomialVstd, it is a trivial matter to extract th
oefficientsVn. This approach turns out to be quite handy in the case of the PREM profile,

s discussed below.

. Constant matter density

The first case we study numerically is the case of a constant effective potential. We
aseline lengthL=3000 km and the electron number densityNe=Ne,core/3, where VcoreÎ2GFNe,core.5.6310−19 MeV corresponds to a matter density of about 13 g/cm3, which is the
aximum matter density in the Earth’s core.18 In this case, the coefficientsVn are easily obtaine
sV0=Vstd andVn=0 for n.0. Since the exact solution to this problem is known,7 we focus on

he convergence of our solution forPex, both in the energy spectrum and the time evolution.
umerical results are shown in Fig. 1. In this figure, we can observe that approximately 2
re needed to reconstruct one period of oscillation and that the convergence is indeed the

IG. 1. The neutrino oscillation probabilityPex as a function of energy and time, respectively. Upper panel: The co
ence of the energy spectrum given by our series expansion for a constant electron number density profileNe

Ne,core/3. Lower panel: The convergence of the series expansion forE=1.2 GeV, corresponding to the bold line in
nergy spectrum. The solid curves correspond to the exact solutions and the dashed curves correspond to
xpansion. The numbers correspond to the number of terms used in the series expansion. The solid vertical line in
anel corresponds to the energy used for the lower panel.
or a simple trigonometric function.
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. Linearly varying matter density

Now, we turn our interest towards the case of a linearly varying effective potential. I
icular, we study a baseline ofL=3000 km, where the electron number density is given

estd=Ne,corest /L+1d /4. As in the case of constant effective potential, it is again easy to obta
oefficientsVn from our equation forVstd. Performing the numerical calculations results in Fig
n this figure, we have excluded the plot for our solution in the shaded region, which ro
orresponds to an energy equal to the resonance energy of the effective potentialV=V0, where the
olution breaks down numerically. The reason for this breakdown can be found in Eq.(18), where
e repeatedly divide byF0. For the resonance energy corresponding toV=V0, we haveF0,0,
hich leads to large absolute values of numbers that should add up to a number between
ne. Due to finite machine precision, we have numerical errors as a result.

Apart from neutrino energies near the resonance energy, we can observe that we aga
nice convergence of both the energy spectrum and the time evolution, where we reprod

ull oscillation by approximately 20 terms of our series expansion. It should be pointed o
his case of linearly varying matter density has no known application to experiments an
erves as an illustrative example.

. PREM profile

For the PREM electron number density profile, which is the interesting profile in, for exa
ong-baseline neutrino oscillation experiments, we use the expansion in Legendre polynom
runcate the series usingN=2 for definiteness. In effect, this corresponds to projecting the fun
std, which is an element in the vector space of real functions on the intervalf0,Lg, onto the

IG. 2. The energy spectrum of the neutrino oscillation probabilityPex for a linear profile (upper panel) with Ne

Ne,cores1+t /Ld /4 along with the convergence of the solution forE=1.2 GeV (lower panel). In the energy spectra, t
otted curve corresponds to the numerical solution for the given profile, the dashed curve corresponds to
olution, where we have included the first 35 terms, and the dash–dotted curve corresponds to an approximation
atter density. The solid vertical line corresponds to the energy used in the lower panel and the series solut
lotted in the shaded region where it breaks down numerically. In the time evolution plot, the solid curve corres

he numerical solution, the dotted curve corresponds to the approximation of constant matter density, the dash
orrespond to our series solution for different numbers of included terms, and the numbers correspond to the n
erms used for each of these curves.
ubspace of second order polynomial functions onf0,Lg, using the inner product
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kf,gl =E
0

L

fsxdgsxddx. s22d

n Fig. 3, we plot the electron number density profiles for the baseline lengthsL=250 km, 750 km
000 km, and 5000 km along with the second order polynomial approximations and the c
pproximations. In Fig. 4, we plot the energy spectra and time evolution atE=1.2 GeV for a
aseline ofL=3000 km for the PREM profile. Again, our solution is not plotted in the sh
egion in which it breaks down numerically for the same reasons as discussed previously
ase, it is apparent that if the number of terms used in the series expansion is large eno
olution is a significant improvement from the constant matter density approximation.

Clearly, the approximation of using a second order polynomial for the electron number
ives a very good reproduction of the numerical solution(which uses the profiles obtained fro

he PREM). As can be seen in the time evolution plot, the error made is barely noticeabl
pproximately one and a half oscillations, i.e., for lower neutrino energies if the baseline leL

s kept fixed. This is in good agreement with the results obtained in Ref. 21, where the e
otential is expanded in a Fourier series, as well as Ref. 22, which shows that details
ffective potential that are smaller than the oscillation length cannot be resolved by n
scillations. As noticed in both of the earlier cases, about 20 terms are needed in th
xpansion in order to reproduce one full oscillation.

For the PREM profile, we are also interested in a number of other baseline leng
articular, in Fig. 5, we plot the energy spectra for the baseline lengthsL=250 km, 750 km, 300
m, and 5000 km. For the baseline lengthsL=250 km and 750 km, there is no noticeable dif
nce between the numerical solution, our exact solution, and the approximation using c
lectron number density. This is to be expected as the electron number density does
ignificantly for these baseline lengths(see Fig. 3). However, for bothL=3000 km and 5000 km
e do observe a difference between the constant electron number density approximations

IG. 3. The matter density profiles for different baseline lengthsL according to the PREM. The solid curves are the e
rofiles, the dashed curves are profiles approximated by a second order polynomial, and the dotted lines are t
atter densities, i.e., the matter density of approximations using constant electron number density. ForL=250 km and 75

m the exact profiles and the approximations using a second order polynomial are practically the same and as a
re not distinguishable in the figure.
ther two solutions. Again, we can conclude that the approximation with a second order polyno-
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ial for the electron number density agrees remarkably well with the numerical calculation
he profile obtained directly from the PREM. Note that the comparison of the energy spe
ifferent matter density profiles and baselines has been studied before.23

For baselines longer thanL=5000 km, the region near the resonance forV=V0 tends to
xpand and ruin the numerical convergence of our solution. Also, this region expands

nclude more terms of the series expansion. For the baseline lengths belowL=5000 km, this ca
e somewhat compensated by using fewer terms of the series expansion for high energies

he numerical cancellation effects and more terms for lower energies to obtain a nice conve

. OTHER METHODS OF SOLVING THE NEUTRINO FLAVOR EVOLUTION

In general, there have been numerous methods on how to solve the problem of neutrin
volution in matter.7,9–17 First of all, there is the obvious formal solution using a time-ord
xponential, i.e.,

unstdl = TFexpS− iE
0

t

HstddtDGuns0dl. s23d

his solution is exact, but it is not very helpful in actual calculations due to the nature
ime-ordered exponential. A way of solving this problem is to use a discretization of the ef
otential.9,24 The effective potential is then divided into a finite number of layers with con
ffective potentials(i.e., constant electron number density), which approximate a given effecti
otential. Clearly, when the number of layers goes to infinity, one regains the time-ordere

IG. 4. The energy spectrum for the neutrino oscillation probabilityPex using 35 terms of our series solution(upper pane)
nd the convergence of the time evolution forE=1.2 GeV(lower panel). Here we assume a baseline ofL=3000 km and
sing the PREM profile for the electron number density. In the energy spectrum, the dashed curve correspon
umerical solution using the PREM profile, the dotted curve corresponds to our series solution, and the dash-do
orresponds to the approximation using constant matter density. The solid vertical line corresponds to the ener
he lower panel and the series solution is not plotted in the shaded region where it breaks down numerically. In
volution plot, the solid curve corresponds to the numerical solution, the dotted curve to the solution for the consta
ensity approximation, the dashed curves correspond to our series solution using different numbers of terms
umbers correspond to the number of terms used for each of these curves.
ential.
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There is also the pure numerical approach to the problem, where the neutrino flavor ev
s easily solved numerically for any effective potential. While this gives the possibility of ac
alculating numerical values for the neutrino oscillation probabilities, it does not offer any i

nto how these probabilities vary with different parameters.
In addition, the neutrino flavor evolution can be analytically solved for some specific eff

otentials. Examples are the constant(two flavors7 and three flavors11), linearly12 and
xponentially13 varying effective potentials.

Moreover, a widely used solution is the adiabatic solution,14,15where the effective potential
ssumed to change slowly, so that there are no transitions between different matter eigen

he full Hamiltonian. This approximation can be derived by, for example, using the We
ramers–Brillouin (WKB) method,15 where also higher order corrections due to nonadia

ransitions can be calculated.
There have also been earlier efforts to write the neutrino evolution equations as o

onlinear differential equations; see, for example, Ref. 17. However, such equations hav
lly been complex differential equations for the probability amplitudes and not, as in the p
ase, real differential equations for the probabilities. Also, the solutions in such cases ha
ade for special cases of the effective potential and not as series solutions valid for all e
otentials.

Lately, approximate solutions, valid when the effective potentialV!Dm2/ s2Ed, have bee
resented16 and applied to oscillations of solar neutrinos and the solar neutrino day–night
owever, these solutions are not valid for the baseline lengths and neutrino energies w
ave treated numerically.

I. SUMMARY AND CONCLUSIONS

We have shown that solving the general problem of two flavor neutrino oscillations w

IG. 5. The energy spectra of the neutrino oscillation probabilityPex for different baselines using the PREM profile for
lectron number density. Again, we have used 35 terms from our series solution for each of these energy spec
ashed curves correspond to the numerical solutions, the dotted curves correspond to our series solution, an
otted curves correspond to the constant density approximations. The series solution is not plotted in the shad
here it breaks down numerically.
rbitrary effective potential is equivalent with solving the nonlinear ordinary differential equation,
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sp̈ + Gpd2 = FstdfGs1 − p2d − ṗ2g, s24d

here G;fDm2/ s2Edg2 sin2s2ud ,Fstd;fDm2coss2ud / s2Ed−Vstdg2, and the neutrino oscillatio
robability Pex is given by

Pex=
1

2
s1 − pd. s25d

e have presented an exact solution[see Eqs.(18) and (19)] to this equation by adopting t
ethod of series expansion of both the solution and the effective potentialVstd and demonstrate

he numerical convergence of this solution for a number of different effective potentials.
ases investigated, about 20 terms in the series expansion are required to reproduce one
scillation. We have also seen that for the neutrino energies and baselines considered, th
pectra of the neutrino oscillation probability is well reproduced by approximating the eff
otential by a second order polynomial.
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he asymptotic behavior of the stochastic
inzburg–Landau equation with multiplicative noise
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The asymptotic behavior of the stochastic Ginzburg–Landau equation is studied.
We obtain the stochastic Ginzburg–Landau equation as a finite-dimensional random
attractor. ©2004 American Institute of Physics.[DOI: 10.1063/1.1794365]

. INTRODUCTION

Let us consider the following stochastic Ginzburg–Landau equation perturbed by a m
ative white noise of Itô form:

du= sl + iadDu dt+ nu dt− sk + ibduuu2u dt+ su dWstd. s1d

s one of the nonlinear Schrodinger equation, it can be found in many areas of phys
hemistry(Ref. 9). The white noise described by a Wiener processWstd results from the fact th
mall irregularity has to be taken account in some circumstances. Due to the special line
iplicative noise, the equation(1) can be reduced to an equation with random coefficients and
olved pathwise. As the solution of the stochastic Ginzburg–Landau equation exists glo
atural problem is the qualitative analysis of the solution, and from which, to understand th
ffect on the deterministic differential system.

As it is well known, the equation(1) can be rewritten as the Stratonovich form(Ref. 8)

du= sl + iadDu dt+ Sn −
s2

2
Du dt− sk + ibduuu2u dt+ su + dW. s2d

e find, if nøll1+s2/2, the trivial solution is stable with probability one. For an unpertu
ystem, the stationary solution is stable ifnøll1. The similar fact can also be found in t
tochastic reaction-diffusion equation(Ref. 2). If n.ll1+s2/2, we need the random attractor
tudy the long-time behavior of our problem. The notion of an attractor of the semigroup
ssociated deterministically differential system is well known to be a compact invariant se
hase space which attracts all bounded sets of the initial state. Recently, the correspond
ralization of this concept to the stochastic case was introduced by Crauel and Flandoli(Ref. 4)
nd Schmalfuss(Ref. 6) independently. Since a stochastic differential equation is driven
iener process, the equation is nonautonomous and the trajectory of the solution ca

ttracted by some bounded set. They exploited successfully a random attractor to tack
ifficulties by introducing a cocycle and redefining the absorption concept. It is shown th
andom attractor is a proper extension and some important information on the asymptotic b
f the stochastic system can be obtained(Ref. 3). Their framework is suitable for our proble
irst, the linear multiplicative noise makes us construct a random dynamical system mode
tochastic differential equation. By assuming thatubu,k, we verify the compactness of the a
orbing set. Finally, we obtain the existence of the random attractor for the stochastic Gin
andau equation.

)
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Another important problem is the Hausdorff dimension of the random attractor. A fin
ension of the attractor characterize the number of degrees of freedom present in the lo
ynamics of the system. Since the random attractor is not uniformly bounded, some
estrictive assumptions must be imposed to guarantee the generalization of the theory o
inistic system to the stochastic case(Refs. 5,6). Applying the approach developed by Debuss

n Ref. 5 to the stochastic Ginzburg–Landau equation, we prove that the random attracto
nite Hausdorff dimension. The key is to prove that the cocycle associated with the sto
quation is uniformly differentiable. It needs the bound of the solution inLp for ∀pPZ+, which is
ot easy to obtain for the stochastic Ginzburg–Landau equation. We have to assume thatuau,l to
btain the bound of the solution inLp for 1øpø8, and then to choose proper parameters to p

he differentiability.
This paper is arranged as follows. In Sec. II, we will present some preliminaries a

tability conclusion for the unperturbed system. The stability of the stationary solution f
tochastic system will be included in Sec. III. In Sec. IV, we introduce the framework of the
f a random dynamical system and random attractor and prove the existence of the
ttractor for the stochastic Ginzburg–Landau equation. In the end, we prove that the
ttractor has a finite Hausdorff dimension.

I. PRELIMINARIES

Let D,Rn sn=1,2d be an open bounded set with a boundary]D sufficiently regular. W
onsider the following the stochastic Ginzburg–Landau equation inD perturbed by a multiplica
ive white noise:

du= sl + iadDudt+ nudt− sk + ibduuu2udt+ sudWstd, in D;

ustd = 0, on D;

us0d = u0; s3d

herel ,a ,n ,k,b ,sPR,l. uau ,k. ubu ,s.0, andWstd :V→R is a two-sided standard Wien
rocess. The unknown functionu is a complex valued function defined onD3R+. We now

ntroduce the following complex Sobolev space. Denoted byX with the normu ·uX, the complexi
ed space of a functional spaceX with the normu ·uX, by s· , ·d and u ·u the inner product and th
orm in L2sDd, respectively, by(s·d) and i ·i+ u ·u, the inner product and the norm inH0

1sDd,
espectively, where

su,vd = ReE
D

usxdv̄sxddx

or u,vPL2sDd and foru,vPH0
1sDd,

„su,vd… = Reo
i=1

n E
D

DiuDiv̄ dx, iui = s„su,ud…d1/2.

e always writeH=L2sDd ,V=H0
1sDd , Au=−Du, and fsud= uuu2u. The operatorA is an isomor

hism fromDsAd=VùH2sDd onto H. Let henj be the orthonormal basis inH of its eigenvector
ith the corresponding eigenvaluesln,ln.0,ln↗`. For the first eigenvalue, we have the
qualityl1uuu2ø iui2. The stochastic Ginzburg–Landau equation(3) can be rewritten as follows

he abstract form:

du+ sl + iadAu dt− nu dt+ sk + ibdfsuddt = su dWstd,
us0d = u0. s4d
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For the unperturbed system(i.e., s=0), the stabilization of the trivial solution and the ex
ence of the global attractor is well known(Ref. 9). For convenience, we will give a conc
tatement. First the Ginzburg–Landau equation has a unique solution,

u P Csf0,Tg;Hd ù L2s0,T;Vd, ∀ T , ` for u0 P H

nd

u P Csf0,Tg;Vd ù L2
„0,T;DsAd…, ∀ T , ` for u0 P V.

he energy equation can be given as

1

2

d

dt
uuu2 + liui2 − nuuu2 + kuuuL4

4 = 0. s5d

If n,ll1, (5) leads to

uustdu ø uu0uexphsn − ll1dtj,

hich follows the stationary solutionu=0 is exponentially stable.
If n=ll1, we have from(5),

uustdu ø Ct1/2,

or some constantC dependent on the initialu0,k, and the domainD. So the stationary solutio
=0 is asymptotically stable.

If n.ll1, the dynamical system associated with the Ginzburg–Landau possesses
imensional global attractor.

The analysis above shows that, ifnøll1, all the trajectories converge to 0 ast→`. Hence
he global attractor is reduced to the stationary solution{0}.

II. STABILITY

In this section, we continue to consider the asymptotic behavior of the determ
inzburg–Landau equation perturbed by a multiplicative white noise in the Itô sense. First

pecial linear multiplicative noise, the stochastic Ginzburg–Landau equation can be reduc
quation with random coefficients by a suitable change of variable. Then the same metho
eterministic theory leads to the existence and uniqueness of the solution to(4). Consider th
rocess

zstd = e−sWstd,

hich satisfies the stochastic differential equation

dzstd =
1

2
s2z dt− sz dWstd.

he processvstd=zstdustd follows the random differential equation,

dvstd + sl + iadAv dt − Sn −
s2

2
Dv dt + sk + ibdzfsuddt = 0.

incezstd is a real-valued process, the equation above can be rewritten as a more explici

dvstd + sl + iadAv dt − Sn −
s2

2
Dv dt + sk + ibdz−2fsvddt = 0, s6d
his equation can be solved pathwise. Exploiting the Galerkin approximation anda priori esti-
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ates, the same conclusion as Theorem 5.1 in Temam9 can be derived as folllows. ForP-almos
veryvPV, the equation(6) possesses a unique strong solution,

v P Csfs,tg;Hd ù L2ss,t;Vd, ∀ s, t for vssd P H

nd

v P Csfs,tg;Vd ù L2
„s,t;DsAd…, ∀ s, t for vssd P V.

henustd=Zstdvstd with Zstd=esWstd is a solution to the equation(4). We now state the stabili
onclusion.

Theorem 1: Assumen,ll1+ 1
2s2. Then there is a P-full setV1 such that for allvPV1,

uust,v,u0du ø uu0ues1/2d†n−ll1−s1/2ds2
‡t, s7d

olds for each u0PH, and tùTsvd for some Tsvd.0.
Proof: Applying the Itô formula touustdu2, we have

uustdu2 = uu0u2 + 2E
0

t S− liussdi2 + Sn +
s2

2
Duussdu2 − kuussduL4

4 Dds+ 2E
0

t

suussdu2 dWssd.

et us apply once again the Itô formula to the function loguustdu2. It follows that

loguustdu2 = loguu0u2 − 2E
0

t 1

uussdu2
„liussdi2 + kuussduL4

4
…ds+ s2n − s2dt + 2sWstd

ø loguu0u2 + s2n − ll2 − s2dt + 2sWstd. s8d

As limt→`(Wstd / t)=0,P-a.s., there exists aP-full set V1 such that forvPV1 there exist
svd.0 such that

2sWstd
t

ø Sll1 +
s2

2
− nD for t ù Tsvd,

olds. It leads to

loguustdu2 ø loguu0u2 + Sn − ll2 −
1

2
s2Dt, s9d

hich completes the proof. h

We have proved that the trivial solution is asymptotically exponentially stable with proba
ne. The stability interval onn is extended froms−` ,ll1g in the unperturbed system
−` ,ll1+s2/2g in the system perturbed by the Itô noise. Note that it is the extra term app
n the Itô formula that leads to the longer partfll1,ll1+s2/2g. In fact, Stratonovich noise is t
orrect one in the usual idealization from smooth perturbations to rough ones, while Itô n
rtificial. Considering the Itô equation is equivalent to adding two terms: a multiplicative
nd a deterministic damping; the resulting stabilization is a trivial consequence of the add
amping, not of the noise. Similar to the deterministic case, asn.ll1+s2/2, we will exploit the
andom attractor to study the long-term behavior of the stochastic Ginzburg–Landau equ

V. EXISTENCE OF RANDOM ATTRACTORS

Let us begin with the definitions of a random dynamical system(RDS) and a random attract
eveloped by Arnold(Ref. 1), Crauel and Flandoli(Ref. 4) and Schmalfuss(Ref. 6), and then

rove the existence of the random attractor for the stochastic Ginzburg–Landau equation.
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Let sV ,F ,Pd be a probability space andhut :V→V ,tPRj a family of measure-preservi
ransformations such thatu0= idV, andut+s=ut +us, for all t ,sPR. We sayhutj is a metric dynam
al system onsV ,F ,Pd. We assume thatu is ergodic underP.

Definition 2: LetsX,dd be a Polish space. A measurable map,

w:R+ 3 V 3 X → X,st,v,xd → wst,vdx,

s called a random dynamical system (RDS) ifw satisfies the cocycle property:ws0,vd= idX,wst
s,vd=wst ,usvdwss,vd, for all t ,sPR+ and P-a .s .vPV.

A RDS is continuous ifwst ,vd :X→X is continuous. In order to define the random attra
ome crucial notions are needed.

Definition 3: A set-valued map K:V→2X, the set of all subsets of X, is called a rand
ompact set if Ksvd is a compact P-almost surely and ifv→d(x,Ksvd) is measurable for eac
PX, where dsx,Mdª infyPMdsx,yd.

Definition 4: Let Asvd and Bsvd be two random sets. We say the following.

(1) Asvd attracts Bsvd if

lim
t→`

dist„wst,u−tvdBsu−tvd,Asvd… = 0, P-a.s.

wheredists· , ·d denotes the Hausdorff semidistance in X.
s2d Asvd absorbs Bsvd if there exists tBsvd such that for all tù tBsvd,

fst,u−tvdBsu−tvd , Asvd, P-a.s.

Definition 5: A random setAsvd is said to be a random attractor for the RDSw if P-a.s.

(1) Asvd is a random compact set.
(2) Asvd is invariant, that is,wst ,vdAsvd=Asutvd, for ∀tù0.
(3) Asvd attracts all deterministic bounded sets BPX.

Similar to the deterministic theory, the existence result of random attractors can be s
ollows (Refs. 4 and 6).

Theorem 6: If there exists a random compact set absorbing every bounded nonrand
,X, the RDSw possesses a random attractorAsvd,

Asvd = ø
B,X

LBsvd,

hereLBsvdªùsù0tùsøwst ,u−tvdB is the omega-limit set of B.
Remark 7:(1) The random attractor in Definition 5 is in fact a global random set attrac

s unique(Ref. 4).
(2) wst ,u−tdx can be interpreted as the position att=0 of the trajectory which was atx at time

t, that is, while timet is moving, the trajectorywst ,u−tvdx is always at the position at time ze
herefore, the random attractor in Definition 5 is also called the “pullback attractor.”

Now we construct a RDS modeling the stochastic Ginzburg–Landau equation. For ex
onsider the set of continuous functions with value 0 at 0,

V = hv P CsR,Rd:vs0d = 0j.

et F be the Borel sigma-algebra induced by the compact-open topology ofV, and letP be a
iener measure onsV ,Fd. Writing Wst ,vd=vstd, we define

utvssd = vst + sd − vstd, s10d

hich satisfiesut +us=ut+s. Then (V ,F ,P,sutdtPR) is an ergodic metric dynamical system wh

odels white noise. We set
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ust,vd = cst,s;vdus,vst,vd = fst,s;vdvs,

hereustd is a solution to the equation(4) with the initial valueussd=us andvstd satisfies(6) with
ssd=vs. Obviously, forsø r ø t, we have

cst,s;vd = cst,r ;vdcsr,s;vd.

hanks to(10), for anys,tPR+,u0PH, we haveP-a.s.,

cst + s,0;vdu0 = cst,0;usvdcss,0;vdu0.

herefore, the processw :R+3V3H→H, defined by

wst,vdu0 = cst,0;vdu0, s11d

s a cocycle. It is a continuous RDS onH over(V ,F ,P,sutdtPR) and models the dynamical syst
ssociated with the stochastic equation(4).

In order to prove the existence of a compact absorbing set, we give first the fol
stimates:

Lemma 8: Given any ball of H,Bs0,rd centered at 0 of radiusr, there exists random variabl

tsvd and tsv ,rdø−1 such that for any sø tsv ,rd ,usPBs0,rd ,vs=zssdus and −1ø tø0,

ufst,s;vdvsu ø rtsvd, P-a.s., s12d

olds. Hence, we have

ucs0,s;vdusu ø r0svd.

Proof: Let vstd=vst ,s,vs;vd be the solution of(6) with the initial valuevs. We have

d

dt
uvu2 + livi2 = − livi2 + s2n − s2duvu2 − 2kz−2uvuL4

4
ø − sll1 + s2duvu2 + 2nuvu2 − 2kz−2uvuL4

4 .

s13d

aking into account thatuvuø uDu1/4uvuL4, we get

d

dt
uvu2 + livi2 ø − sll1 + s2duvu2 + 2nuDu1/2uvuL4

2 − 2kz−2uvuL4
4

ø − sll1 + s2duvu2 + n2uDuk−1z2 − kz−2uvuL4
4

ø − sll1 + s2duvu2 + n2uDuk−1z2. s14d

t follows that, for tùs,

uvstdu2 ø uvssdu2e−sll1+s2dst−sd + n2uDuk−1E
s

t

e−sll1+s2dst−tdz2stddt

ø e−sll1+s2dtSesll1+s2dsz2ssduusu2 + n2uDuk−1E
s

t

esll1+s2dtz2stddtD . s15d

ince esll1+s2dsz2ssd=esll1+s2ds−2sWssd→0,P-a.s. ass→−`, we can find, forusPBs0,rd,H, a
ime tsv ,rdø−1 such that

esll1+s2dsz2ssdr2 ø 1,
oldsP-a.s. forsø tsv ,rd. Hence, choosing the positive variablertsvd,
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rt
2svd = e−sll1+s2dtS1 + n2uDuk−1E

−`

t

esll1+s2dtz2stddtD ,

e obtainP-a.s.uvstduø rtsvd. h

Note that ifn,ll1+s2/2, from (13), we obtain

uvstdu ø uvs0duesn−ll1−s2/2dt.

t follows that

uust,vdu ø uu0ue„n−ll1−s2/2+sfWstd/tg…t.

ince limt→`fWstd / tg=0,P-a.s., there exitstsvd such that for alltù tsvd,

s
Wstd

t
ø

1

2
Sll1 +

s2

2
− nD .

t leads to the same result as Theorem 1. From the view of the attractor, since forsø0,

uus0du ø uusue−sn−ll1−s2/2ds−sWssd,

e haveuus0du→0,P-a.s. ass→−`. Hence the global random attractor is reduced to{0}. From
ow on, we will assume thatnùll1+s2/2.

Lemma 8 shows there exists an absorbing setB(0,r0svd) in H. In order to obtain the existen
f the absorbing set inV, we need the assumptionubuøk.

First, integrating(14) between −1 and 0, we have

E
−1

0

ivi2 dsø
1

l
Suvs− 1du2 + n2uDuk−1E

−1

0

z2ssddsD .

ultiplying (6) by −Dv̄, integrating overD, and taking the real part, we obtain

1

2

d

dt
ivi2 + luDvu2 − Sn −

1

2
s2Divi2 = z−2 Resk + ibd E fsvdDv̄ dx. s16d

sing ubuøk, the right of(16) is nonpositive,

Resk + ibd E fsvdDv̄ dx= − Resk + ibd E suvu2u = vu2 + v = v̄ = uvu2ddx

= − kE uvu2u = vu2 dx−
k

2
E s¹ uvu2d2 dx+ b ImE v2s= v̄d2 dx

ø subu − kd E uvu2u = vu2 dxø 0.

o (16) can be rewritten as

d

dt
ivi2 ø − 2luDvu2 + 2Sn −

s2

2
Divi2 ø 2Sn − ll1 −

s2

2
Divi2.

or anysP f−1,0g, we have

ivs0di2 ø ivssdi2 + 2Sn − ll1 −
s2

2
DE

s

0

ivstdi2 dt.
ntegrating again inf−1,0g,
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ivs0di2 ø 2S1

2
+ n − ll1 −

s2

2
DE

−1

0

ivssdi2 ds

ø
2

l
S1

2
+ n − ll1 −

s2

2
DSuvs− 1du2 + n2uDuk−1E

−1

0

z2ssddsD . s17d

herefore, givenr.0, there existsTsvdø−1 such that forsøTsvd andusPBs0,rd,H,

ius0di2 = ivs0di2 ø R0
2svd, s18d

oldsP-a.s., where

R0
2 =

2

l
S1

2
+ n − ll1 −

s2

2
Dsell1+s2

+ n2uDuk−1dS1 +E
−`

0

esll1+s2dtz2stddt +E
−1

0

z2ssddsD .

In the end, applying Theorem 6, we conclude the following.
Theorem 9: Under the assumptionubuøk, the random dynamical system associated with

tochastic Ginzburg–Landau equation possesses a global random attractorAsvd. If n,ll1

s2/2, the attractorAsvd is reduced to{0}.
Although we have obtained a compact absorbing set which guarantees the existenc

andom attractor, the union inv of Asvd is not compact in general. However, ass→0, theAsvd
ay converge to the corresponding deterministic attractor with probability one(Ref. 3).

SinceP is invariant underut, the asymptotic behavior with an attraction property from 0̀
an be obtained in a weaker convergence in probability, that is,

lim
t→`

Psdist„wst,vdB,Asutvd… , «d = 1,

olds for all «.0 and all deterministic bounded setB,H. Especially, if n,ll1+s2/2, the
ttraction ast→` holds not only in probability and not alsov-wise.

. HAUSDORFF DIMENSION OF THE RANDOM ATTRACTOR

Although the random attractor is not uniformly bounded, it is expected that the theory
ausdorff dimension of a global attractor of a deterministic system can be generalized
tochastic case under some assumption(Refs. 5,7). The following conclusion is due to Debussc
Ref. 5).

Theorem 10:Let Asvd be a compact measurable set which is invariant under a random
svd ,vPV, for some ergodic metric dynamical system(V ,F ,P,sutdtPR). Assume the followin

(1) Ssvd is almost surely uniformly differentiable onAsvd, that is, for every u,u+h
PAsvd there exists D(Ssv ,ud) in LsHd, the space of the bounded linear operator fr
H to H, such that

uSsvdsu + hd − Ssvdu − DSsv,udhu ø k̄svduhu1+m,

wherem.0, k̄svd is a random variable satisfying ks̄vdù1,Eslog k̄d,`.
s2d vd(DSsv ,ud)øv̄dsvd for uPAsvd and some random variablev̄dsvd satisfying

E(logsv̄dd),0, where

vdsLd = a1sLd ¯ adsLd,aisLd = sup
F,H

dim Føn−1

inf
wPF
uwu=1

uLwu for L P LsHd.

s3d a1(DSsv ,ud)øā1svd, for uPAsvd and a random variable ā1svdù1 with
Eslog ā1d,`.
Then the Hausdorff dimension dH(Asvd) of Asvd is less than d almost surely.
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According to this theorem, in fact, the main task is to verify that the cocycle defined b(11)
as the uniform differentiability. We set

Ssvd = ws1,vd, Tsvdv0 = fs1,0,v0;vd; s19d

hen the random attractorAsvd is a compact measurable set invariant byS. Since Ssvd
esWs1dTsvd, it is easy to see that ifTsvd is almost surely uniformly differentiable with the Fréc
erivativeDT, thenSsvd is also almost surely uniformly differentiable with the Fréchet deriva
S=esWs1dDT. Consequently, we turn to prove the following.

Lemma 11: Tsvd is almost surely uniformly differentiable onAsvd: for v ,v+hPAsvd, there
xists DTsv ,vdPLsHd such that

uTsvdsv + hd − Tsvdv − DTsv,vdhu ø k̄svduhu1+m,

olds P-a.s., wherem.0,k̄svdù1,E(log k̄svd),` and DTsv ,v0dh=Vs1d ,Vstd solves the firs
ariation equation for (6),

dV

dt
= Lst,vdV,

Vs0d = h, s20d

herevstd=fst ,0 ,v0;vd ,Lst ,vd=−sl+ iadA+sn−s2/2d−sk+ ibdz−2f8svd.
The proof will be given in the Appendix.
From Eq.(20), we have

1

2

d

dt
uVu2 = − liVi2 + Sn −

s2

2
DuVu2 − Resk + ibdz−2E

D

„uvu2uVu2 + 2vV̄ Resv̄Vd…dx.

he third term of the right is nonpositive,

− Resk + ibd E „uvu2uVu2 + 2vV̄ Resv̄Vd…dx

ø − kE uvu2uVu2 dx− 2E Resv̄Vdhk ResvV̄d − b ImsvV̄djdx

ø − kE uvu2uVu2 dx+ 2bE ImsvV̄dResvV̄ddxø subu − kd E uvu2uVu2 dxø 0.

enceuVstduø uVs0duesn−ll1−s2/2dt. Sincea1(DTsv ,vd) is equal to the norm ofDTsv ,vdPLsHd, it
s not difficult, choosingā1svd=maxhesWs1d+n−ll1−s2/2,1j, to get

a1„DSsv,ud… ø ā1svd,

ndEslog ā1d,`.
Note that we can write

DTsv,vd = expHE
0

1

L„s,vssd…dsJ

nd
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DSsv,ud = expHsWs1d +E
0

1

L„s,vssd…dsJ .

ollowing Ref. 9, we have

vd„DSsv,ud… = sup
ujiuPH

ujiuø1,i=1,·,d

expHsWs1d +E
0

1

TrsL„s,vssd… + QdssdddsJ ,

hereQdssd is the orthogonal projector inH onto the space spanned byV1ssd , . . . ,Vdssd, andVissd
s the solution of(20) with Vs0d=ji.

Let wissd , i PN be an orthonormal basis ofH such thatQdssdH=Spanfw1ssd ,… ,wdssdg; then

TrsL„s,vssd… + Qdssdd = oi=1

d
sL„s,vssd…wissd,wissdd

ø − loi=1

d
iwii2 + Sn −

s2

2
Dd ø − loi=1

d
li

2 + Sn −
s2

2
Dd.

enotingv̄dsvd=exphsWs1d−loi=1
d li

2+fn−ss2/2dgdj and choosingd such that

n −
s2

2
,

l

d
o
i=1

d

li
2,

hen we havevdsDSdøv̄dsvd andE(logsv̄dd),0.
In conclusion, we have the following result.
Theorem 12: If there exists d such thatnø ss2/2d+ l

doi=1
d li then P-a.s.dH(Asvd),d.

Note that ifn,ll1+ss2/2d, the random attractorAsvd consists of one point which may
random point.

PPENDIX: PROOF OF LEMMA 11

In this appendix, we prove the differentiability ofTsvd. The proof will be divided into thre
teps.

Step 1.Bound inLp,pPZ+, 1øpø8.
Lemma 13: Assume thatlù uau and letvstd be the solution of (6); then for pPZ+,1øpø4,

here exists a random variable I2psvd such that

E
0

1

uvssduL2p
2p dsø I2psvd, sA1d

here we use the notationu ·uLp= u ·up, and for ∀mù0,

EsI2p
m d , `.

Proof: Due to the invariance of the random attractorAsvd, for v0PAsvd, there exists th
olutionvstd of (6) with vs0d=v0 such thatvstdPAsutvd for ∀tPR. In order to obtain(A1), we
how first that forpPZ+,1øpø3 andr .0,

E
t−r

t

uvssdu2p+2
2p+2 dsø C sup

t−røsøt
e−2sWssdE

t−r−1

t

uvssdu2p
2p ds, sA2d

hereC is a deterministic constant which may be changed from one line to another; som
e denote byCsvd a random constant dependent onvPV. Taking the scalar product of(6) with

2p−2
uvu spù1d, and using the estimate
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Resl + iadE
D

Dvv̄uvu2p−2 dx= − lpE
D

u = vu2uvu2p−2 dx− sp − 1dResl + iadE
D

sv̄ = vd2uvu2p−4 dx

ø − lsp − Î2p + Î2dE
D

u = vu2uvu2p−2 dxø 0,

e obtain

1

2p

d

dt
uvu2p

2p + e2sWstduvu2p+2
2p+2 ø Sn −

s2

2
Duvu2p

2p. sA3d

ntegrating(A3) betweens and t, we have

1

2p
uvstdu2p

2p ø
1

2p
uvssdu2p

2p + Sn −
s2

2
DE

s

t

uvstdu2p
2p dt.

et us integrate ons once again betweent−1 andt to give

uvstdu2p
2p ø E

t−1

t

uvssdu2p
2p ds+ 2pSn −

s2

2
DE

t−1

t

uvssdu2p
2p ds. sA4d

sing (A4), we then integrate(A3) betweent−r and t to give

E
t−r

t

e2sWssduvssdu2p+2
2p+2 ds, ø

1

2p
uvst − rdu2p

2p + Sn −
s2

2
DE

t−r

t

uvssdu2p
2p ds

ø
1

2p
E

t−r−1

t−r

uvssdu2p
2p ds+ Sn −

s2

2
DE

t−r−1

t−r

uvssdu2p
2p ds

+ Sn −
s2

2
DE

t−r

t

uvssdu2p
2p dsø s1 + 2n − s2dE

t−r−1

t

uvssdu2p
2p ds.

t leads to

E
t−r

t

uvssdu2p+2
2p+2 dsø s1 + 2n − s2d sup

t−røsøt
e−2sWssdE

t−r−1

t

uvssdu2p
2p ds.

riting Si =sup1−iøsø1e
−2sWssd, we have

E
0

1

uvssdu2p+2
2p+2 dsø s1 + 2n − s2dS1E

−1

1

uvssdu2p
2p dsø s1 + 2n − s2d2S1S2E

−2

1

uvssdu2p−2
2p−2 ds

ø s1 + 2n − s2dpS1S2SpE
−p

1

uvssdu2 ds.

incevs−3dPAsu−3vd, we have

uvs− 3du ø r−3su−3vd

inally, using (15), we obtain the bound inH of vstd for −3ø tø1, and hence complete t
roof. h

Step 2. Lipschitz property for the solution. Letvistd si =1,2d be two solution of(6) with
0

is0d=vi and denotegstd=v1std−v2std. Thengstd solves
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dg

dt
+ sl + iadAg− Sn −

s2

2
Dg + sk + ibdz−2

„fsv1d − fsv2d… = 0.

aking the scalar product of the equation withg, we get

1

2

d

dt
ugu2 + ligi2 − Sn −

s2

2
Dugu2 = − Resk + ibdz−2E

D

„fsv1d − fsv2d…sv̄1 − v̄2ddx. sA5d

ote that the right side of Eq.(A5) is bounded by

Cz−2suv1u6
3 + uv2u6

3dugu2.

ence we obtain

ugstdu2 ø ugs0du2 expHSn − ll1 −
s2

2
Dt + CE

0

t

z−2ssdsuv1ssdu6
3 + uv2ssdu6

3ddsJ . sA6d

rom (A1), it leads to

ugs1du2 ø ugs0du2 expHn − ll1 −
s2

2
+ C sup

0øsø1
z−2ssdI6svdJ .

inally, we get

uv1s1d − v2s1du ø Csvduv1
0 − v2

0u,

ith E(Csvd),`. h

Step 3.Differentiability of Tsvd.
Let rstd=v1std−v2std−Vstd, wherevistdsi =1,2d be two solutions of(6) with vis0d=vi

0 andVstd
atisfies the linear equation(20) with Lst ,v2d andh=v1

0−v2
0. Thenrstd satisfies the equation

dr

dt
+ sl + iadAv − Sn −

s2

2
Dr = − sk + ibdz−2

„fsv1d − fsv2d − f8sv2dsv1 − v2 − rd….

aking the scalar product this equation withr, we get

1

2

d

dt
ur u2 + liri2 ø Sn −

s2

2
Dur u2 − Resk + ibdz−2E

D

f8sv2dur u2 dx− Resk + ibdz−2E
D

„fsv1d − fsv2d

− f8sv2dsv1 − v2d…r̄ dx. sA7d

he second term of the right side is nonpositive,

− Resk + ibdz−2E
D

f8sv2dur u2 dx= − Resk + ibd E „uv2u2ur u2 + 2v2r̄ Resv2r̄d…dx

= − kE suv2u2ur u2 dx− 2kE „Resv2r̄d…d2 dx+ 2bE Resv2r̄d

3sImsv2r̄dddxø subu − kd E uv2u2ur u2 dxø 0.

e continue to estimate the third of(A7). First, the nonlinearityf satisfies the estimate

ufsv1d − fsv2d − f8sv2dsv1 − v2du ø Csuv1u2 + uv2u2duv1 − v2u.
y the Hölder estimate and the Sobelev embedding theorems, we have
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− Resk + ibdz−2E
D

sfsv1d − fsv2d − f8sv2dsv1 − v2ddr̄ dx

ø Cz−2usuv1u2 + uv2u2dsv1 − v2dusur us* ø Cz−4usuv1u2 + uv2u2dsv1 − v2dus
2 + «iri2,

here«.0,s.1 ands* is the conjugate exponent ofs. Let

0 , d ,
2

3
, 1 , s,

8

6 + 3d
.

t follows easily that

1 , s,
2

1 + d
, s1 ª

2ss2 − dd
2 − ss1 + dd

, 8.

herefore, we have

usuv1u2 + uv2u2dsv1 − v2dus
s ø CE

D

suv1u + uv2ud3s−ss1+dduv1 − v2uss1+dd dx

ø Csuv1us1

ss2−dd + uv2us1

ss2−ddduv1 − v2uss1+dd.

eturning to(A7), for « small enough, we get

1

2

d

dt
ur u2 ø Sn −

s2

2
Dur u2 + Cz−4suv1us1

2s2−dd + uv2us1

2s2−ddduv1 − v2u2s1+dd.

his yields

urs1du2 ø CsvdE
0

1

z−4ssd„uv1ssdus1

2s2−dd + uv2ssdus1

2s2−dd
…ds h2s1+dd.

riting

k̄1
2svd = Csvd sup

0øtø1
z−4stdE

0

1

„uv1ssdus1

2s2−dd + uv2ssdus1

2s2−dd
…ds,

nd choosingk̄svd=maxhk1svd ,1j, which satisfiesE(log k̄svd),`, we conclude the proof o
emma 11.
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In this paper, we discuss umbral calculus as a method of systematically discretizing
linear differential equations while preserving their point symmetries as well as
generalized symmetries. The method is then applied to the Schrödinger equation in
order to obtain a realization of nonrelativistic quantum mechanics in discrete
space–time. In this approach a quantum system on a lattice has a symmetry algebr
isomorphic to that of the continuous case. Moreover, systems that are integrable,
superintegrable or exactly solvable preserve these properties in the discrete case
© 2004 American Institute of Physics.[DOI: 10.1063/1.1780612]

. INTRODUCTION

A sizable literature exists on discrete quantum mechanics, that is on quantum mech
iscrete space–time. We refer to a recent review for motivation and for an extensive
eferences.20 There are many reasons for considering quantum systems in discrete spac
ne is that physical space–time may indeed be discrete, involving an elementary length re

he Planck length and some minimal time interval. Then continuous theories would o
pproximations to the real world. This is the scenario proposed, for instance, in loop q
ravity. In its recent formulation, a fundamentally discrete evolution law has been derive59,1,6

urther conditions must be imposed in order to provide a consistent quantum theory.7 Another
eason is the usual one: on a lattice one can avoid some of the divergence problems oc
uantum field theories. On the other hand, some properties of quantum systems are los
iscretization. The aim of this paper is to discuss a discretization of space–time in wh
chrödinger equation is replaced by a difference equation. This is done in such a man
any of the essential properties of the continuous system are preserved. In particular, we

he Lie algebraic and integrability properties of the Schrödinger equation. This is true for th
ependent, as well as the stationary equation. The free equations, as well as those with p
fter discretization have symmetry algebras, isomorphic to those of the continuous case. L
ymmetries, after discretization, may however act at several points of the lattice. An applic

)Electronic mail: levi@fis.uniroma3.it
)Electronic mail: tempesta@crm.umontreal.ca
)Present address: Scuola Internazionale Superiore di Studi Avanzati, via Beirut 4, 34014, Trieste, Italy.
)
Electronic mail: wintern@crm.umontreal.ca

4077022-2488/2004/45(11)/4077/29/$22.00 © 2004 American Institute of Physics
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ur approach is to preserve Lorentz and Galilei invariance in a classical or even quantu
heory on a lattice, via a suitable discretization of the infinitesimal operators generating
ymmetries.35

Another property that we wish to preserve is that of integrability, and also superintegr
y integrability, for ann dimensional quantum system, we mean the existence ofn well defined
lgebraically independent Hermitian operatorshX1, . . . ,Xnj (including the HamiltonianH) com-
uting pairwise. Superintegrability means that there exist further independent ope

Y1, . . . ,Ykj, 1økøn−1, commuting with the HamiltonianH, but not necessarily with the oth
peratorsXi, nor Yi.

19,64,43,56,58,51,23,48,30

Finally, we wish to preserve exact solvability in the discretization, i.e., the fact that for c
ystems(like the harmonic oscillator, or hydrogen atom) it is possible to calculate all energy lev
lgebraically.

A mathematical tool that we shall use for the study of symmetries and exact solutions o
quations is the so-called “umbral calculus.” This calculus, which originated in 19th centur

he work of Sylvester, Cayley, and others, was used for a long time as a useful tool to
ombinatorial identities(see, for instance, Ref. 50). Nevertheless, it was only with Rotaet
l.55,54,53,52that this calculus was set on an axiomatic basis using the language of linear alg
perators. In Ref. 9, the interested reader can find an up to date survey concerning the o
mbral calculus and its many applications in several branches of mathematics, like combin

unctional analysis, algebraic topology, theory of special functions and orthogonal polyno
tc.

Umbral calculus has recently been used explicitly,11 or implicitly,22,60,57,10to provide discret
epresentations of canonical commutation relations, specially in the context of exactly s
nd quasiexactly solvable quantum systems.61–63 Linear differential equations have been d
retized in a symmetry preserving manner using commuting difference operators.17,44,18An alter-
ative approach38 to symmetries of linear difference equations makes use of a discretized v
f the prolongation theory of evolutionary vector fields. Finally, umbral calculus was used

mplicit manner, to obtain several different symmetry preserving discretizations of the line
quation.32

Symmetries of difference equations, mainly nonlinear ones, have recently received
ttention(see, e.g., Refs. 17, 44, 18, 38, 32, 41, 39, 24, 36, 37, 40, and 12–15, and ref

herein). What has emerged for purely difference equations is that in order to capture the e
eatures and usefulness of symmetries of differential equations it is necessary to make
djustments. Either one must go beyond point transformations to generalized ones,25,24 or one
ust use symmetry adapted and transforming lattices(as proposed initially b
orodnitsyn).36,37,40,12–15

In this paper we follow the first approach. We consider a fixed lattice and use umbral c
o obtain symmetries acting simultaneously on more than one point of the lattice. We ap
pproach to quantum mechanics. In Sec. II we provide a very short summary of umbral c

n addition to standard definitions and known facts, we obtain some new results on the
etween umbral calculus, linear difference operators and solutions of linear difference eq
ection III is devoted to an “umbral” discretization of the Schrödinger equation in a mann
reserves the algebraic features of all point symmetries. In particular, for the free Schr
quation we construct a realization of the Schrödinger Lie algebra in terms of difference op
ections IV and V are devoted to discrete analogs of quantum superintegrable system
pectral properties and exact solvability are discussed. Some conclusions are drawn in
ec. VI. In the Appendix we consider a discrete relativistic wave equation in two dimensio
se the discrete version of Lorentz invariance to obtain solutions of the discrete wave eq
nd discuss their convergence properties.

I. UMBRAL CALCULUS

To make this paper self-contained let us sum up in Sec. II A some known definitions a
54 52 11
ome results proven as theorems by Rota,Roman, and Dimakiset al..
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We shall actually need umbral calculus on spaces of many variables in order to study
imensional difference equations. However, for simplicity of exposition and notation we s

his section restrict to the case of one variablex.
Sections II B and II C contain results that are, to our knowledge, new.

. General theory

Let J be the algebra of formal power series in a variablex, andP the algebra of polynomia
n the same variable. The algebras will be considered over a fieldF of characteristic zero. Th
eld in the subsequent considerations will be identified withR or C. An element ofJ is of the form

o
k

akx
k ; fsxd. s2.1d

he operations defined inJ are the addition of series

o
k=0

`

akx
k + o

k=0

`

bkx
k = o

k=0

`

sak + bkdxk, s2.2d

nd the multiplication

So
k=0

`

akx
kDSo

l=0

`

blx
lD = o

m=0

` So
j=0

m

ajbm−jDxm. s2.3d

he algebraJ is also called theumbral algebra.52

A polynomial sequencepnsxdPP is a sequence whosenth element is a polynomial of degr
. We will denote byL the algebra of linear operators acting onJ or P.

Definition 2.1: A shift operator TPL is a linear operator such that

Tpsxd = psx + sd, s2.4d

here psxd is a polynomial andsPF.
Definition 2.2: An operator FPL is said to be shift invariant if it commutes with all sh

perators (i.e., with T for all values ofs).
Definition 2.3: An operator U is said to be a delta operator if it is shift invariant and

Ux = c Þ 0, s2.5d

here cPF.
Using Definition 2.1 and the linearity of shift-invariant operators one can prove the follo

esult. If U is a delta operator, for everycPF we have

Uc = 0. s2.6d

Definition 2.4: A polynomial sequence pnsxd, n=0,1,2, . . ., is called a sequence of ba
olynomials for the delta operator U if

p0sxd = 1, pns0d = 0 ∀n . 0, s2.7d

nd

Upnsxd = npn−1sxd. s2.8d

It is easy to show that every delta operator has a unique sequence of basic polynom
ill denote byI the one-to-one correspondence between basic sequences and delta ope

Let A be the algebra of shift-invariant operators, endowed with the usual operations of
wo operators, product of a scalar with an operator, and product of two operators. We intro

ultiplication operationp :A3L→L, defined by
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F p O = fF,Og = FO − OF, s2.9d

here F is a shift-invariant operator andOPL. In particular, if x denotes the multiplicatio
peratorx:psxd→xpsxd, thenFpx corresponds to what in the umbral literature is known as

Pincherle derivative ofF. In this case we will write

F8 = F p x = fF,xg. s2.10d

sing thep multiplication the Leibnitz rule becomes

F p sfgd = sF p fdg + fsF p gd s2.11d

and the Jacobi identity is expressed by

F p G p H + G p H p F + H p F p G = 0. s2.12d

Let us now consider a pair of shift-invariant operators: adelta operatorUPL and its conjugat
operatorbPL, defined in such a way that theHeisenberg–Weyl algebrais satisfied,

fU,xbg = 1. s2.13d

f U is a delta operator, then the inverse ofU8 exists(Ref. 54, p. 18). Therefore, the operatorb is
etermined by the relation

b = sU8d−1. s2.14d

o prove this it suffices to notice that

1 = fU,xbg = fU,xgb = U8b,

here the propertyfU ,bg=0 has been exploited. Equation(2.14) follows.
Let us present some specific examples of realizations of the conjugate operatorsU andb in

erms of derivatives and shifts, respectively.
Example 2.1:The continuous case. We have

U = ]x, b = 1. s2.15d

Example 2.2:The discrete case. The variablex is defined over an equally spaced lattice, w
pacings. Two of the most common choices for the discrete derivative are as follows:

a) The right discrete derivative,

U = D+ =
T − 1

s
, b = T−1. s2.16d

b) The left discrete derivative,

U = D− =
1 − T−1

s
, b = T. s2.17d

ther cases will be considered below.
Using thep multiplication of Eq. (2.9) it is easy to construct the basic sequence for

peratorU. Let us introduce the polynomial sequence of operators

Pn = sxbdn, n [ N. s2.18d
he delta operatorU satisfies the relation
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fU,sxbdng = nsxbdn−1, n [ N. s2.19d

his is an immediate consequence of the definition(2.13) and of the Leibnitz rule(2.11). A proof
s obtained by induction. From(2.19) we immediately obtain

U p Pn = nPn−1, n [ N. s2.20d

his shows thathsxbdnjn[N is the basic sequence for the operatorU, under thep multiplication.
Definition 2.5: An umbral correspondence is a mapR :L→L defined by

sxb1dn→
R

sxb2dn, s2.21d

here Pn
1=hsxb1dnj and Pn

2=hsxb2dnj are basic sequences of operators for two delta operator1
ndU2, respectively.

The umbral correspondence(2.21) naturally induces a correspondence between the tw
ratorsU1 andU2, according to the following scheme:

sxb1dn↔
R

sxb2dn

I l Il

U1↔
R

U2. s2.22d

e shall also denote the induced correspondence between delta operators by the symboR.
Systems of equations connected by the umbral map(2.21) share many algebraic properties

articular case of the umbral correspondence is whenU1 is the standard derivative]x, andU2 is a
iscrete derivativeD. Then according to the scheme(2.22) we have

xn↔
R

sxbdn s2.23d

I l Il

]x↔
R

D. s2.24d

Let us observe that Definition(2.5) generalizes the notion of an umbral operator introduce
ef. 54: an umbral operatorR:P→P is an operator(in general not necessarily shift-invaria)
hich maps some basic sequence of polynomialspnsxd into another basic sequenceqnsxd:

pnsxd↔
R

qnsxd. s2.25d

ndeed, we observe that, sinceb is a function of shifts and any constant is invariant under
ction of a shift operator, an umbral operatorR is deduced from the action ofR simply applying

he sequence of operatorssxbdn onto 1:

sxb1dn · 1↔
R

sxb2dn · 1. s2.26d

rom (2.19) we also get

Uisxbidn · 1 =nsxbidn−1 · 1, i = 1,2. s2.27d

An important consequence is that the umbral correspondence(2.22) preserves commutatio

elations between operators inL. In particular, it preserves Lie algebras.
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Indeed, letA1 be am-dimensional Lie algebra, generated by vector fieldshviji=1,. . .,m of the
orm

vi = o
j

ajsx1, . . . ,xpd]xj
. s2.28d

he umbral correspondence(2.22) mapsA1 isomorphically into an algebraA2, generated by th
ector fieldshvi

Uji=1,. . .,m, with

vi
U = o

j

ajsx1bx1
, . . . ,xpbxp

dDxj
. s2.29d

his follows from the fact that the umbral correspondence(2.22) preserves the Heisenberg–W
lgebra.

. Umbral calculus and linear difference operators

The umbral approach reveals its power in the study of linear difference operators.
For our purposes, namely the study of difference equations and their continuous lim

hall need only two types of delta operators. The first is simply the derivativeU=]x, with b=1.
he second is a general difference operator that has]x as its continuous limit. We set

U ; D =
1

s
o
k=l

m

akTs
k , l,m[ Z, l , m, s2.30d

hereak ands are constants andTs;T is the shift operator of Eq.(2.4). In order forD in (2.30)
o be a delta operator, it must satisfy Eq.(2.5). For any functionfsxd[F Eq. (2.30) implies

Dfsxd =
1

s
o
k=l

m

akT
kfsxd =

1

s
o
k=l

m

akfsx + ksd. s2.31d

sing a Taylor expansion arounds=0 we get

Dfsxd =
1

s
o
q=0

`
f sqdsxd

q!
sqo

k=l

m

akk
q. s2.32d

hoosingfsxd=x we immediately see that Eq.(2.5) implies

o
k=l

m

ak = 0, s2.33d

ndok=l
m akk=c. We require that in the continuous limitD be the derivative]x; this impliesc=1, i.e.

o
k=l

m

akk = 1. s2.34d

quation(2.30) involvesm− l +1 constantsak, subject to two conditions(2.33) and(2.34). To fix
ll constantsak we must imposem− l −1 further conditions, for instance,

gq ; o
k=l

m

akk
q = 0, q = 2,3, . . . ,m− l . s2.35d

onditions(2.33) and(2.34) are necessary and sufficient forU=D to be a delta operator which h

he derivative]x as its continuous limit.
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Definition 2.6: A difference operator of order p=m− l is a delta operator of the form (2.3
atisfying Eqs. (2.33) and (2.34).

Theorem 2.1: If the difference operatorD of order sm− ldù2 satisfies the supplementa
onditions (2.35) it provides an approximation of ordersm−l of the derivative]x.

Proof: We immediately have from Eq.(2.32) and Eqs.(2.33)–(2.35),

Df ,
s→0

f8sxd +
sm−l

sm− l + 1d!
f sm−l−1dsxdo

k=l

m

akq
m−l−1. s2.36d

Q.E.D.
Remark:Formula (2.30) definesU as an operator parametrized bys, wheres[F. It may

appen that for specific values ofs the operatorU could involve less thanp points, and conse
uently its order would be less thanp. Once a representation ofU as a difference operator
hosen, these points can be easily determined by solving a linear system of algebraic eq

By way of an example, let us consider the following equation:31

D3fsxd + 3D2fsxd + Dfsxd − fsxd = 0. s2.37d

f D=sT−1d /s, for s=1 Eq. (2.37) becomes

fsx + 3d − fsx + 1d = 0,

hich is of second order, in an appropriate domain.
In the following,U will be assumed to be an operator of orderp parametrically depending o

, and we shall omit the simple analysis of the specific cases in which the order could be le
aximal.

Theorem 2.2: If D is a difference operator of order p, then D̃=TjD, j [Z is a difference
perator of the same order.

Proof: Let us first prove the result forj =1. We have

TD =
1

s
o
k=l

m

akT
k+1 =

1

s
o

k=l−1

m+1

ãkT
k, ãk = ak−1.

ence

o
k=l+1

m+1

ãk = o
k=l

m

ak = 0,

o
k=l+1

m+1

kãk = o
k=l

m

sk + 1dak = o
k=l

m

kak = 1.

hus, conditions(2.31) and(2.33) are satisfied forŨ and that is all that is needed. The proof
j =−1 is analogous and forj arbitrary the result follows by induction. Q.E.

Conditions(2.35) are not shift invariant. However, oncem and l are chosen, Eqs.(2.35) can
lways be imposed. Their solution depends onm and l, not only on the shift invariant differen
− l.

Theorem 2.3:The operatorb conjugate to the difference operatorD of Eq. (2.30) is

b = So
k=l

m

akkTkD−1

. s2.38d
Proof: Using Eq.(2.14) we have
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b = sD8d−1 = fD,xg−1.

oreover

fD,xg =
1

s
So

k=l

m

aksx + ksdTk − xo
k=l

m

akT
kD = o

k=l

m

akkTk

nd (2.38) follows. Q.E.D
Examples of difference operators and the corresponding operatorsb are D+ and D− of Eqs.

2.16) and (2.17). Both are of order 1. Higher order examples are

Ds =
T − T−1

2s
, b = ST + T−1

2
D−1

, s2.39d

DsIII d = −
1

6s
sT2 − 6T + 3 + 2T−1d, b = S−

T2 − 3T − T−1

3
D−1

, s2.40d

DsIV d = −
1

12s
sT2 − 8T + 8T−1 − T−2d, b = S−

T2 − 4T − 4T−1 + T−2

6
D−1

. s2.41d

he operatorsDs, DsIII d, andDsIV d approximate the derivative to orders2, s3, ands4, respectively
Theorem 2.4:The expression

Pnsxd ; sxbdn · 1 s2.42d

s a well-defined polynomial in x of order n with finite coefficients depending on a finite num
onnegative powers of the shiftss for any difference operatorD. The expression for Pn is

Pnsxd = o
k=1

n

Aks
n−kxk, An = 1, s2.43d

here all coefficients Ak are finite and depend only on the coefficients ak in the definition ofD [see
q. (2.30)]. In particular, they do not depend ons.

Proof: Let us consider the difference operatorD of Eq. (2.30) and define the quantities

g j = o
k=l

m

akk
j, g0 = 0, g1 = 1, j = 0,1,2, . . . . s2.44d

et us now prove Eq.(2.43) by induction. LetPn be a basic sequence of polynomials for anyD,
s given by Eq.(2.27). Thus we set

Pn+1sxd = o
a=1

n+1

Bax
a, s2.45d

nd must prove that the coefficientsBa are finite and depend ons in the proper way(i.e., Ba

B̃asn+1−a, whereB̃a is finite and does not depend ons).
We rewrite Eq.(2.8) (with n substituted byn+1) as

DPn+1 = sn + 1dPn. s2.46d
he left-hand side is
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DPn+1 =
1

s
o
b=l

m

abo
a=1

n+1

Basx + bsda = o
a=1

n+1

Bao
k=0

a Sa

k
Dxksa−k−1ga−k = o

k=0

n+1

o
a=k

n+1

BaSa

k
Dxksa−k−1ga−k.

omparing powers on the left- and right-hand side of Eq.(2.46), we obtain a system of line
lgebraic equations for the coefficientBk,

o
a=k

n+1

BaSa

k
Dsa−k−1ga−k = sn + 1dAks

n−k. s2.47d

he system(2.47) has a triangular structure. Fork=n+1, we get the identity 0=0. Fork=n, only
ne term is present on the left and we getBn+1=1 (since we haveg0=0 andAn=1). The value
=n−1 gives

Bn = s
n + 1

n
SAn−1 −

n

2
D .

n general, the system(2.47) implies

Bn−j = s j+1 o
k=n−j−1

n

mkAk, s2.48d

here the coefficientsmk are easy to calculate, but are cumbersome(and of little interest), so we
o not spell them out. Q.E.D

Let us present the first few basic polynomialsPksxd=sxbdk1 for arbitraryD as given by Eq
2.30) with g j defined in terms ofak by Eq. (2.44). We obtain

P0 = sxbd0 · 1 = 1,

P1 = sxbd1 · 1 =x,

P2 = sxbd2 · 1 =x2 − sg2x, s2.49d

P3 = sxbd3 · 1 =x3 − 3sg2x
2 − s2sg3 − 3g2

2dx,

P4 = sxbd4 · 1 =x4 − 6sg2x
3 + s2s− 4g3 + 15g2

2dx2 + s3s− g4 + 10g2g3 − 15g2
3dx.

For s→0, we obviously reobtain the basic series(sequence) for D=]x.
For D+=sT−1d /s we have only two values ofaj, namely a1=1, a0=−1, henceg j =1, j

2,3, . . . . Thepolynomials (2.49) in this case reduce to the well-known factorial powersPn

xsx−sdsx−2sd¯ sx−sn−1dsd.

. Linear difference equations and umbral equations

Let us introduce the notationf̂ = fsxbd, i.e., to each functionfsxd[F we associate an opera

f̂ [L. We shall consider an operator equation of the form

o
k=0

n

ÂkU
kf̂ = ĝ, s2.50d

hereU is a delta operator andb is its conjugate operator defined in Eqs.(2.13) and(2.14). We

ssume that the operatorsÂk and ĝ can be expanded into formal power series insxbd.
Definition 2.7: An umbral equation of order n is an operator equation of the form (2.5

ˆ ˆ ˆ
hich the operators Ak and gare given. The unknown is the operator f.
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If U is specified to beU=]x, thenb=1 and Eq.(2.50) reduces to a differential equation
rdern. If U is a difference operator,(2.50) is still an operator equation. Projecting both sides
space of functions, i.e., applying them to a constant, we obtain a difference equation. Th

f the difference equations obtained projecting Eq.(2.50) may vary depending on the structure

he operatorÂk (since it acts on the operatorf̂) and on the choice of the operatorD (and conse
uently ofb) in terms of shift operators.

Let us first takeU=]x, b=1 in Eq. (2.50). The obtained linear ODE will haven linearly
ndependent solutionsf isxd. We can expand them into formal power series about any poix0,
herex0 is not a singular point of the equation. Now letU=D be a difference operator andb the
orresponding conjugate operator. Thenf isxbd ·1 viewed as a formal power series, will be
olution of the corresponding difference equation.

Definition 2.8: We shall call fˆ ·1 an “umbral solution”of the difference equation

o
k=0

n

ÂkU
kf̂ · 1 =ĝ · 1 s2.51d

f the real valued function fsxd is a solution of the differential equation

o
k=0

n

Ak]x
kfsxd = gsxd. s2.52d

Thus each solution of the ODE(2.52) provides a formal power solution of the differen
quation(2.51) [and of the umbral equation(2.50)]. However, Eq.(2.51) and (2.50) may have
ther solutions. Indeed, for a linear difference equation with constant coefficients we ha

ollowing theorem.
Theorem 2.5:Let U be a difference operator of order p and let us assume that the ope

ˆ
k in Eq. (2.50) are constant. Equation (2.51) will then have np linearly independent soluti
f them umbral ones.

Proof: Equation(2.51) in this case is a difference equation involvingnp+1 different points
ence to obtain a solution in a new point we must specify initial conditions innp points. This
rovidesnp linearly independent solutions, uniquely defined in the lattice pointsxn=x0+ns.16,31

ow, let us consider the continuous limit of Eq.(2.51). It is a linear partial differential equation
rder n, possessing analytic solutions which can be expanded around any nonsingula
pplying the umbral correspondence to the series expansion of these solutions, we on
olutions of Eq.(2.51) which are expressed as formal power series insxbdk, and therefore ar
lements of the algebraF. These are the umbral solutions admitted by Eq.(2.51). The remaining
n−1dp do not belong toF. Q.E.D.

WhenÂk are polynomials insxbd, then additional shifts may appear in the explicit form of
quations coming from the umbral equation(2.50) via projection and their order may be differ

hannp.
As an example, let us consider the “umbral Airy equation,”

fD2 + axbgĈ = 0, a = const. s2.53d

or D+=sT−1d /s, b=T−1, andC̃sxd=Ĉ ·1 we have

1

s2fC̃sx + 2sd − 2C̃sx + sd + C̃sxdg + axC̃sx − sd = 0.

his is a third order difference equation since it involves the functionC̃sxd at the pointsx+2s,
s
+s, x andx−s. For D=D Eq. (2.53) would seem to involve infinitely many points,
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1

4s2fC̃sx + 2sd − 2C̃sxd + C̃sx − 2sdg + axST + T−1

2
D−1

C̃sxd = 0. s2.54d

owever, multiplying Eq.(2.54) by b−1 we obtain

1

4s2fC̃sx + 3sd − C̃sx + sd − C̃sx − sd + C̃sx − 3sdg + axC̃sxd = 0. s2.55d

his equation is a sixth order difference equation.
As a simple example of umbral and nonumbral solutions, let us consider a first order

eneous umbral equation with constant coefficients,

Uf̂ = af̂, a Þ 0. s2.56d

or U=]x, the solution is

fsxd = Aeax. s2.57d

ow, let us consider the first order difference operatorD+. Equation(2.56) reduces to

fsx + sd − fsxd = asfsxd. s2.58d

e look for a solution in the formfsxd=lx and find

l = s1 + asd1/s. s2.59d

hus we obtain a single solution

f1sxd = As1 + asdx/s s2.60d

nd of course we have

lim
s→0

fsxd = Aeax. s2.61d

he umbral correspondence provides the solution

fusxd = AeaxT−1
· 1. s2.62d

xpanding(2.60) and(2.62) in formal power series ina, we find that the two series coincide, i
f1= fu.

For comparison, let us consider the second order difference operatorDs. Equation(2.56) in
his case yields

fsx + sd − fsx − sd = 2safsxd. s2.63d

etting fsxd=lx we obtain two values ofl and the general solution of Eq.(2.63) in this case is

f = A1sÎ1 + a2s2 + asdx/s + A2s− 1dx/ssÎ1 + a2s2 − asdx/s = A1f1 + A2f2. s2.64d

he first solution haseax as its continuous limit. The second one does not have a limit fs
0. The umbral correspondence provides the solution

fusxd = AeaxfT + T−1/2g−1
· 1 s2.65d

see Eq.(2.39)]. Expanding into formal power series ina we find fu= f1 and f2 is nonumbral.

The question arises whether an expression of the type
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f̂ = eaxb s2.66d

s meaningful, at least in the sense of a formal power series. The problem is that for a
ifference operatorD, the expression forb, given in Eq.(2.38), is quite complicated. If we expa

into a power series inT, it will for m− l ù3 involve infinitely many shifts. Convergen
roblems may arise. Luckily, it is not Eq.(2.66) itself that provides the umbral solution o

ifference equation. Rather, it is the projection of the operatorf̂ onto a space of functions,
ormal power series. The expressions that appear in the corresponding expansions aPnsxd
sxbdn·1 and these are finite polynomials inx, and in the shiftss, with well-defined finite
oefficients(see Theorem 2.4). As a matter of fact these are the basic polynomials for the d
nce operatorD defined in Eq.(2.30).

It follows that if we know a solution of the umbral equation(2.50) for U=]x, and have

fsxd = o
n=0

`
f snds0d

n!
xn,

hen forU=D as in (2.30) the corresponding umbral solution will be

f̂ · 1 =o
n=0

`
f snds0d

n!
Pnsxd.

he matter of convergence is a separate issue.
Umbral calculus and especially the umbral correspondence also provide us with a p

ool with which to handle symmetries of linear difference equations, both ordinary and
nes. On the one hand, we can discretize a linear differential equation, in particular the
chrödinger equation, via the(multidimensional) umbral substitutions

]xi
→
R

Dxi
, xi→

R
xibxi

, ]t→
R

Dt, t→
R

tbt.

ie symmetries, both point and generalized ones, of linear differential equations can be ex
n terms of commuting operators. Since the umbral correspondence preserves commutat
ions, it will also preserve symmetries. On the other hand, we may have more symmetries
he continuous case due to the nonumbral solutions of the determining equations.

II. DISCRETIZATION OF THE TIME-DEPENDENT SCHRÖDINGER EQUATION
RESERVING ALL POINT SYMMETRIES

Before considering discrete space–time, let us first give a detailed and rigorous analys
oint symmetries of the time-dependent Schrödinger equation in continuous space–tim
esults will be presented in a form well suited for the discretization.

. Point symmetries and commuting operators in continuous space–time

We write the Schrödinger equation inRn+1 as

Lc = 0,

s3.1d

L = i]t − H, H = −
1

2o
k=1

n
]2

]xk
2 + VsxW,td.

A local Lie point symmetry transformation is generated by a vector field that we wr
volutionary form47 as

E
v = Q]c + Q * ]c* , s3.2d
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Q = h − t
]c

]t
− jk

]c

]xk
. s3.3d

he functionsh, t, andjk depend ont, xW, c, andc* where the star denotes complex conjugat
hese functions are determined from the requirement

uprs2dvEsLcduLc=L*c*=0 = 0, uprs2dvEsL * c * duLc=L*c*=0 = 0. s3.4d

The following theorem will provide a basis for studying the symmetries of a nonrelat
uantum system.

Theorem 3.1:All Lie point symmetries of the time-dependent Schrödinger equation (3.
enerated by evolutionary vector fields of the form (3.2) with

Q = xsxW,td + iXc, s3.5d

X = iststd]t + jksxW,td]xk
− ifsxW,tdd, s3.6d

jksxW,td = 1
2xkt8 − Aklxl + fkstd, s3.7d

fsxW,td =
1

4
t9r2 + xk fk8 + gstd + iFn

4
t8 − BG , s3.8d

here the prime denotes a derivative. The functionxsxW ,td satisfies the Schrödinger equation (3

kl=−Alk and B are real constants. The real functionststd, fkstd, gstd and the constants Akl depend
n the potential and satisfy the equation

tstdV t + jksxW,tdVxk
+ t8V + 1

4t-r2 + xkfk9 + g8 = 0, s3.9d

ith r2=ok=1
n xk

2. Moreover, the linear operator X commutes with L on the solutions o
chrödinger equation

ufL,XgcuLc=0 = 0. s3.10d

Proof: Equation(3.4) implies a system of determining equations. Those among them
ome from terms involving derivatives ofc, e.g., cxcxx, cxx, cx

k, kù1 do not depend on th
otential VsxW ,td. From them we obtain the fact that the corresponding transformations ar
reserving and linear(inhomogeneous). That is,Q has the form(3.3) with t andjk independent o
andc*. From the same equations we find thatt depends only ont and thatjksxW ,td are linear in

W. Thusjk andf have the form(3.7) and (3.8), respectively.
Once these conditions are satisfied, only one determining equation remains, namely E(3.9),

nvolving the potential in a crucial manner.
To prove the commutativity relation(3.10) we use the compatibility of the two flows,

i
]c

]t
= Hc,

]c

]l
= Q, s3.11d

herel is a group parameter andQ is the characteristic of the vector field[see Eqs.(3.5)–(3.8)].
quating the cross derivativesctl=clt and using the equationLxsxW ,td=0, we obtain

fH,Xgc = − iXtc, s3.12d

here c is any solution of the Schrödinger equation. This is equivalent to Eq.(3.10). Simply
tated, finding point symmetries of the Schrödinger equation is equivalent to finding linea
djoint operatorsX commuting withL on the solution set ofL. Q.E.D.
Comments:
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1) For any potentialVksxW ,td, the functionxsxW ,td, the constantB, and a constantg=g0 are
solutions of Eq.(3.9). Hence we always have a “trivial” symmetry algebra

Ssxd = xsxW,td]c + x * sxW,td]c* , Lx = 0,

N = c]c + c * ]c* , s3.13d

E = isc]c − c * ]c*d,

due to the linearity of the Schrödinger equation.
2) Each symmetry generatorvE provides us with a flow that is by construction compatible w

the time flow(3.1), that is, we can simultaneously solve the equations(3.11). The fixed poin
]c /]l=0 corresponds to group invariant solutions.

3) While the result presented in Theorem 3.1 is quite simple and natural, we have not f
explicitly in the literature, so we have sketched a proof. For other results on point sy
tries of linear differential equations, see, e.g., Refs. 5, 42, and 8.

Let us consider the implications of Theorem 3.1 for special cases of the potential VsxW ,td. We
hall omit the operators(3.13) that are present for any potential VsxW ,td.

Let us first consider the free Schrödinger equation(for further discussions, see also Ref. 4).
or VsxW ,td=0 in R3+1 the so-called “Schrödinger group” was first obtained by Niederer.45 For n
rbitrary we obtain its generalization, i.e., the group Schsnd. Its Lie algebra can be written as

P0 = ]t, D = 2t]t + xk]xk
− 1

2sc]c + c * ]c*d,

C = t2]t + txk]xk
−

1

2
tsc]c + c * ]c*d +

in

4
r2sc]c − c * ]c*d,

Lik = xi]xk
− xk]xi

, Pk = ]xk
, s3.14d

Bk = t]xk
+

i

2
xksc]c − c * ]c*d,

E = isc]c − c * ]c*d.

he Levi decomposition28 of this algebra fornù3 is

L , fsls2,Rd % Osndg x Hn, s3.15d

here the radicalHn is then-dimensional Heisenberg algebra. Explicitly we have

sls2,Rd , hP0,D,Cj, Osnd , hLikj, Hn , hPk,Bk,Ej. s3.16d

e included the central elementE explicitly in (3.14) since it appears in the derived algebra of
chrödinger algebra[it is also present in(3.13)].

Equation(3.9) implies that for a general time-independent potential VsxWd we have only on
dditional symmetry generator to the set given by Eqs.(3.13), namely time translationsP0=]t.

For a central potential V=Vsrd, the additional elements are time translations and rotatio

P0 = ]t, Lik = xi]xk
− xk]xi

, 1 ø i ø k ø n. s3.17d

In the case of a translationally invariant potentialV=Vsxnd, the additional symmetry elemen

re
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P0 = ]t,Pj = ]xj
,Bj = t]xj

− ixjsc]c − c * ]c*d, 1 ø j ø n − 1,

s3.18d
Lik = xi]xk

− xk]xi
, 1 ø i ø k ø n − 1.

. Symmetries of the discrete time-dependent Schrödinger equation

The umbral correspondence, together with Theorem 3.1 provide the tools necessa
ymmetry preserving discretization of quantum mechanics.

Indeed, let us consider a discrete space–time, more precisely ann+1 dimensional orthogon
nd equally spaced lattice with time stepst and space stepssk, 1økøn. In this space we writ
“Schrödinger difference equation”

LDc = 0, LD = iDt − HD,

s3.19d

HD = −
1

2o
k=1

n

Dxkxk
+ Vsx1b1, . . . ,xnbn,tbtd,

here we have

fDxk
,xkbkg = 1, fDt,tbtg = 1. s3.20d

ach Dxk
, Dt is some chosen difference operator andbk, bt are the corresponding conjug

perators satisfying the Heisenberg commutation relations(3.20).
The continuous limit of Eq.(3.19) is Eq. (3.1), obtained by takingsk→0, st→0, i.e.,

Dxkxk
→ ]2

]xk
2, Dt → ]t, bi → 1, bt → 1. s3.21d

et us assume that in the continuous limit the obtained Schrödinger equation(3.1) is invarian
nder some Lie point symmetry group generated by some evolutionary vector field(3.2). Sym-
etries of linear difference equations on fixed lattices can also be expressed in terms o

ionary vector fields.38,40 For Eq.(3.19) we set

vD
E = QD]c + QD

* ]c* ,

s3.22d
QD = hD − tDDtc − jkD

Dxk
c,

herehD, tD, and jkD
are functions ofxibi, tbt, c, and c*. The functionsc and c* are to be

valuated at the pointsxibi, tbt.
The prolongation of the vector field(3.22) must act on the dependent variablesc andc* and

n their discrete derivativesDtc, Dxkxk
c. As in the continuous case, we require that an infinites

ransformation

x̃kb̃k = xkbk, t̃b̃t = tbt,

s3.23d
c̃sxk̃bk

˜ , t̃b̃td = csxkbk,tbtd + lQD, l ! 1

hould take a solutionc into a solutionc̃ of the same equation. First of all, we have

b̃k = bk, b̃t = bt, s3.24d

incebk andbt are expressed in terms of shifts operators and we are considering equatio

xed (not transforming) lattice. Equation(3.23) is an infinitesimal transformation in the evolu-
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ionary formalism, hence only the dependent variables transform. The transformation of
rete derivatives is given by

Dtc̃ = Dtc + lDtQD,

s3.25d
Dxkxk

c̃ = Dxkxk
c + lDxkxk

QD,

hereDt, Dxk
, etc., are discrete total derivatives. One can of course also introduce discrete

erivatives,40 but we shall not need them here.
In terms of the vector fieldsvD

Eof Eq. (3.22) the prolongation ofvD
E is

prvD
E = QD]c + QD

t ]Dtc
+ QD

xkxk]Dxkxk
c + ¯ + c.c., s3.26d

here c.c. denotes the complex conjugate terms and we have

QD
t = DtQD, QD

xkxk = Dxkxk
QD. s3.27d

he determining equations for the characteristicQD are obtained as in the continuous case,
rom the invariance condition

uprvD
EsLDcduLDc=LD

* c*=0 = 0, uprvD
EsLD

* c * duLDc=LD
* c*=0 = 0. s3.28d

rom this we conclude that the following theorem holds.
Theorem 3.2:The discrete time-dependent Schrödinger equation (3.19) allows a Lie a

f “umbral symmetries” isomorphic to that of its continuous limit (3.1). This Lie algeb
ealized by vector fields (3.22) with

QD = xsxkbk,tbtd + iXDc, s3.29d

XD = iFtstbtdDt + o
k

jkDxk
− ifG , s3.30d

jk =
1

2
xkbkDtt − o

l=1

n

Aklxlbl + fkstbtd, s3.31d

f = F1

4
Dttto

k=1

n

sxkbkd2 + o
k=1

n

xkbkDt fk + gstbtdG + iFn

4
sDttd − BG . s3.32d

he functionx satisfies the discrete Schrödinger equation (3.19), Akl=−Alk and B are real con
tants. The real functionst, fk and g all depend only on tbt and the potentialVsxkbk,tbtd satisfies

tDtV + o
k=1

n

jkDxk
V + sDttdV +

1

4
sDttttdo

k=1

n

sxkbkd2 + o
k=1

n

xkbkDtt fk + Dtg = 0. s3.33d

inally, the difference operator XD commutes with LD on the solutions of the discrete Schrödin
quation (3.19):

ufLD,XDgcuLDc=0 = 0. s3.34d

Proof: The proof of Theorem 3.2 is quite analogous to that of Theorem 3.1 in the cont
ase. To see the similarities and differences, let us restrict ourselves to the casen=2.
The invariance condition(3.28) implies the following determining equations:
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jk,c = jk,c* = tc = tc* = 0, Dxi
t = 0, fc* = 0, fcc = 0, s3.35d

Dx1
j2 + Dx2

j1 = 0, s3.36d

Dtt − 2Dx1
j1 = 0, Dtt − 2Dx2

j2 = 0, s3.37d

2iDtj1 + 2Dx1
f1c + Dx1x1

j1 + Dx2x2
j1 = 0,

s3.38d
2iDtj2 + 2Dx2

f1c + Dx1x1
j2 + Dx2x2

j2 = 0,

2chtDtV + j1Dx1
V + j2Dx2

V + VDtt + Vfcj − 2Vf + 2iDtf + Dx1x1
f + Dx2x2

f = 0. s3.39d

It is now obvious that Eq.(3.30)–(3.32) (for n=2) provide a solution to Eq.(3.35),…, (3.38)
nd that(3.39) reduces to Eq.(3.33), once (3.35),…, (3.38) are solved. Equation(3.34) then

ollows in exactly the same manner as in the continuous case. Q
Comment:
There is an important difference between the continuous and the discrete case. In Theo

e presented the most general solution of the determining equations. In Theorem 3.2 we p
solution and added the requirement that the solution should have the correct continuo

ake for instance the functiont. Equations(3.35) for anyDt, Dx allow the solutiontst ,btd, i.e., an
rbitrary function of timet and the “shift” operatorbt independently. For first order operatorsD±

see Sec. II), the functiont will depend only onstbtd. This follows from the determining equ
ions, and agrees with the result of umbral correspondence. Moreover, the result will h
orrect continuous limit. Thus the discretization and the continuous equation have isom
ymmetry algebras. For other choices of the discrete derivatives we may get more gene
ions. For instance, let us consider the case of a “symmetric” derivative,

Dx
st =

Tx − Tx
−1

2s
t =

tsx + sd − tsx − sd
2s

= 0. s3.40d

quation(3.40) has the general solution

t = t0std + t1stdeipx/s, s3.41d

x = xn = x0 + ns. s3.42d

e see that Eq.(3.40) actually allows anx-dependence int. However, the second term in(3.42)
oes not have a continuous limit(for s=xn+1−xn→0). See Ref. 37 for further discussions.

. Examples

As in the continuous case, for any discrete potential we have the “trivial” symmetries(3.13)
with xW, t, replaced byxkbk, tbt).

Let us consider the case V=0, i.e., a free quantum particle in discrete space–time of
ionn+1. Operators commuting with the operatorLD of Eq. (3.19) are obtained from(3.14) by the
mbral correspondence. We obtain the “discrete” Schrödinger algebra

P0 = Dt, D = 2stbtdDt + o
n

sxkbkdDxk
−

1

2
sc]c + c * ]c*d,
k=1
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C = stbtd2Dt + o
k=1

n

stbtdsxkbkdDxk
−

1

2
stbtdsc]c + c * ]c*d +

in

4 o
k=1

n

sxkbkd2sc]c − c * ]c*d,

Lik = sxibidDxk
− sxkbkdDxi

, Pk = Dxk
, s3.43d

Bk = stbtdDxk
+

i

2
sxkbkdsc]c − c * ]c*d,

E = isc]c − c * ]c*d.

For a general time-independent potentialVsxibid we have only one additional[to (3.13)].
ymmetry generator, namely time translationsP0=Dt.

For a time-independent central potentialV=Vsoisxibid2d the additional symmetries are e
ressed by the operators

P0 = Dt, Lik = xibiDxk
− xkbkDxi

, 1 ø i ø k ø n. s3.44d

For a translationally invariant potentialV=Vsxnbnd the additional symmetry operators are

P0 = Dt,

Pj = Dxj
, Bj = tbtDxj

− ixjb jscDc − c * Dc*d, 1 ø j ø n − 1, s3.45d

Lik = xibiDxk
− xkbkDxi

, 1 ø i ø k ø n − 1.

V. DISCRETE SUPERINTEGRABLE SYSTEMS

The umbral calculus provides a systematic method for transfering results from standar
um mechanics to quantum mechanics in a discrete space–time. This is particularly simp
esults are formulated in terms of commuting differential operators. It has been shown else56

hat there is a direct relation between generalized symmetries in quantum mechanics an
rder differential operators, commuting with the Hamiltonian. Here we shall briefly sum u
esults and then adapt them to the discrete case.

. Generalized symmetries in quantum mechanics

Let us consider the stationary Schrödinger equation in real two-dimensional Euclidean

Hc = Ec, H = − 1
2D + Vsx,yd, s4.1d

nd look for second order generalized symmetries in their evolutionary formvE (3.2) with char-
cteristicQ satisfying

Q = Qsx,y,c,cx,cy,cxx,cxy,cyyd. s4.2d

e require that the second prolongation of the vector fieldvE should annihilate Eq.(4.1) on its
olution space, i.e.,

prs2dvEusH − EdcuHc=Ec
Hc*=Ec*

= 0, prs2dvEusH − EdcuHc=Ec
Hc*=Ec*

= 0. s4.3d

f we also require thatQ be energy independent, we obtain the following result.
Theorem 4.1: The characteristic Q of the evolutionary vector fieldvE=Q]c+Q* ]c* , corre-
ponding to a second order generalized symmetry of the Schrödinger equation (4.1) has the form
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Q = Xc + xsx,yd, s4.4d

X = aL3
2 + bsL3P1 + P1L3d + csL3P2 + P2L3d + dsP1

2 − P2
2d + 2eP1P2 + aL3 + bP1 + gP2 + fsx,yd.

s4.5d

he functionxsx,yd satisfies the Schrödinger equation (4.1). The operator X commutes w
amiltonian H,

fH,Xg = 0. s4.6d

he quantities a, . . . ,e,a ,b ,g are constants and

P1 = ]x, P2 = ]y, L3 = y]x − x]y s4.7d

re generators of the Euclidean group E2.
For a proof of Theorem 4.1, see Ref. 56.
The commutativity relation(4.6) is equivalent to the following linear partial differential eq

ions satisfied by the potentialVsx,yd and the functionfsx,yd,

fasy]x − x]yd + b]x + g]ygVsx,yd = 0, s4.8d

s− axy− bx+ cy+ edsVxx − Vyyd + fasx2 − y2d − 2by− 2cx− 2dgVxy

− 3say+ bdVx + 3sax− cdVy = 0, s4.9d

fx = − 2say2 + 2by+ ddVx + 2saxy+ bx− cy− edVy, s4.10d

fy = 2saxy+ bx− cy− edVx + 2s− ax2 + 2cx+ ddVy. s4.11d

Here Eq.(4.9) is the compatibility condition for the two equations(4.10) and(4.11). Equation
4.8) is easily solved.

For aÞ0 we can translatex andy to transformb→0, g→0. Then the potential is rotationa
nvariant,V=Vsrd.

For a=0, b2+g2Þ0 we can rotate to obtainb→0. Then the potential is translationa
nvariant,V=Vsxd.

To avoid the geometric symmetries(4.7) we solve Eq.(4.8) trivially by imposing a=b=g
0. We then simplify the second order operatorX of Eq. (4.5) by rotations, translations, and line
ombinations with the HamiltonianH.

These transformations leave two expressions in the space of the coefficientsa, . . . ,e invariant,
amely

I1 = a, I2 = fs2ad− b2 + c2d2 + 4sae− bcd2g. s4.12d

n the nongeneric case whenI1= I2=0, a third invariant exists, namely

I3 = d2 + e2. s4.13d

sing these invariants, one obtains four equivalence classes of operatorsX and correspondingl
our classes of potentials allowing for the existence of an operatorX, commuting with the
amiltonian.64,56The existence of one second order operatorX, satisfying(4.6) makes the syste

ntegrable. Moreover, the corresponding Schrödinger equation will allow separation of varia
artesian, polar, parabolic or elliptic coordinates. Which is the separable system depend
alues of the invariants(4.12) and (4.13).

We are interested in the case of superintegrable Hamiltonians, when two operatorsX1 andX2
xist, satisfying
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fH,X1g = fH,X2g = 0, fX1,X2g Þ 0. s4.14d

our classes of such potentials exist, each allowing the separation of variables in at le
oordinate systems. The Hamiltonians and corresponding integrals of motion are

1)

HI = −
1

2
s]x

2 + ]y
2d +

v2

2
sx2 + y2d +

a

2x2 +
b

2y2 ,

X̂1 = P1
2 − P2

2 − Fv2sx2 − y2d +
a

x2 −
b

y2G ,

s4.15d

X̂2 = L3
2 − S a

cos2 f
+

b

sin2 f
D ,

x = r cosf, y = r sinf.

2)

HII = −
1

2
s]x

2 + ]y
2d + v2S2x2 +

y2

2
D +

a

2y2 + bx,

X̂1 = P1
2 − P2

2 − Fv2s4x2 − y2d + bx−
a

y2G , s4.16d

X̂2 = L3P2 + P2L3 − 2v2xy2 +
2ax

y2 − by2.

The remaining two systems are best written in parabolic coordinates,

x = 1
2sj2 − h2d,y = jh. s4.17d

3)

HIII = −
1

2

1

j2 + h2s]j
2 + ]h

2d +
1

j2 + h2S2a +
b

j2 +
c

h2D ,

X1 = L3
2 − 2sj2 + h2dS b

j2 +
c

h2D , s4.18d

X2 = L3P2 + P2L3 +
2

j2 + h2Sasj2 − h2d − b
h2

j2 + c
j2

h2D .

(For b=c=0, aÞ0 this is the Coulomb atom.) The system allows separation of variable
polar and parabolic coordinates(and also in elliptic coordinates).

4)

HIV = −
1

2

1

j2 + h2s]j
2 + ]h

2d +
2a + bj + ch

j2 + h2 ,

X̂1 = L3P1 + P1L3 +
bhsh2 − j2d + cjsj2 − h2d − 4ahj

2 2 , s4.19d

sj + h d
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X̂2 = L3P2 + P2L3 + 2
asj2 − h2d + hjscj − bhd

sj2 + h2d
.

The equation separates in two mutually orthogonal parabolic coordinate systems, name(4.17)
and a similar system withx andy interchanged. ForaÞ0, b=c=0 we again obtain the Co
lomb atom.

We shall call the systemsHI andHII the generalized isotropicandgeneralized nonisotrop
armonic oscillators, respectively. Similarly,HIII andHIV can both be calledgeneralized Coulom
ystems.

The Schrödinger equations forHIII andHIV can be rewritten as

H−
1

2
s]j

2 + ]h
2d − Esj2 + h2d +

b

2j2 +
c

2h2Jc = − ac, s4.20d

H−
1

2
s]j

2 + ]h
2d − EFSj −

b

2E
D2

+ Sh −
c

2E
D2GJc = S− 2a −

b2 + c2

4E2 Dc, s4.21d

espectively. Thus, the systemHIII is reduced toHI with the energys−Ed and coupling constantv2

nterchanged. The systemHIV is reduced to a “shifted” harmonic oscillator. This interchange o
nergy and a coupling constant has been called “metamorphosis of the coupling constan26

. Discrete generalized harmonic oscillators

The umbral correspondence immediately provides us with discrete versions of these s
Let us first consider the potentialVI of Eq. (4.15). The discrete version of this system is

HI
D = −

1

2
sDx

2 + Dy
2d +

v2

2
fsxbxd2 + sybyd2g +

a

2
sxbxd−2 +

b

2
sybyd−2 s4.22d

ith the integrals of motion

X1 = f− 1
2Dx

2 + v2sxbxd2 + asxbxd−2g − f− 1
2Dy

2 + v2sybyd2 + bsybyd−2g s4.23d

nd

X2 = sxbxDy − ybyDxd2 − fas1 + sxbxd−2sybyd2d + bs1 + sxbxd2sybyd−2dg. s4.24d

Similarly, the discrete version of the system with potentialVII is

HII
D = −

1

2
sDx

2 + Dy
2d + v2F2sxbxd2 +

1

2
sybyd2G +

a

2
sybyd−2 + bxbx. s4.25d

he second order operators commuting with the Hamiltonian(4.25) are

X1 = Dx
2 − Dy

2 − fv2s4sxbxd2 − sybyd2d + bsxbxd − asybyd−2g s4.26d

nd

X2 = fsybydDx − sxbxdDygDy + DyfsybydDx − sxbxdDyg − 2v2sxbxdsybyd2 + 2asxbxdsybyd−2

− bsybyd2. s4.27d

The model(4.15) has also been discretized in Ref. 62 using the formalism of raising

owering operators.
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. Discrete generalized Coulomb potentials

To discretize the systemsHIII and HIV we again use the umbral correspondence, this
sing parabolic coordinates. Thus, we replace

]j → Dj, ]h → Dh, j → jbj, h → hbh. s4.28d

With these replacements it is a simple matter to write the discrete versions of the s
orresponding to the potentialsVIII andVIV. Indeed, we have

HIII = − 1
2fsjbjd2 + shbhd2g−1fDj

2 + Dh
2 − 4a − 2bsjbjd−2 − 2cshbhd−2g, s4.29d

X1 = fsjbjdDh − shbhdDjg2 − 2fsjbjd2 + shbhd2gfbsjbjd−2 + cshbhd−2g, s4.30d

X2 = fsjbjd2 + shbhd2g−1hshbhd2Dj
2 − sjbjd2Dh

2 + 2afsjbjd2 − shbhd2g − 2bshbhd2sjbjd−2

+ 2csjbjd2shbhd−2j, s4.31d

nd

HIV = − 1
2fsjbjd2 + shbhd2g−1fDj

2 + Dh
2 − 4a − 2bsjbjd − 2cshbhdg, s4.32d

X1 = fsjbjd2 + shbhd2g−1hsjbjdshbhdsDj
2 + Dh

2d + f− bshbhd + csjbjdgfsjbjd2 − shbhd2g

− 4asjbjdshbhdj − Djh
2 , s4.33d

X2 = 1
2fsjbjd2 + shbhd2g−1hshbhd2Dj

2 − sjbjd2Dh
2 + 2afsjbjd2 − shbhd2g

+ 2sjbjdshbhdfcsjbjd − bshbhdgj. s4.34d

. EXACT SOLVABILITY AND SPECTRAL PROPERTIES OF DISCRETE
UPERINTEGRABLE SYSTEMS

We have shown that certain important properties of the Schrödinger equation, such a
nd generalized symmetries, and hence also integrability, are preserved when we pass f

inuous to discrete space–time via an umbral correspondence.
Another important property of some quantum systems is their “exact solvability.” This m

hat their Hamiltonian can be transformed into a block diagonal form with finite-dimen
locks. In other words, their complete energy spectrum can be calculated algebraically.
athematical terms, we give the following definition.

Definition 5.1: A quantum mechanical system with Hamiltonian H is called exactly solv
ts Hilbert space S of bound states consists of a flag of finite-dimensional subspaces,

S0 , S1 , S2 , ¯ , Sn , ¯ s5.1d

reserved by the Hamiltonian

HSi # Si . s5.2d

ll known exactly solvable systems also have the following properties.

1) In appropriate coordinates and in an appropriate gauge, the bound state wave fu
CNsxWd are polynomials,

CNsxWd = gsxWdPNssWd, si = sisxWd. s5.3d

W W
The gauge factorgsxd is a priori defined and can be energy dependent. The functionPNssd
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are polynomials of orderN in the variablessi. The integerN labels the subspacesSi in the
flag.

2d In the same gaugeg and same variablessi the HamiltonianH can be written as

H = ghg−1, hPN = ENPN s5.4d

with

h = aik
aTik

a + aik,lm
ab Tik

aTlm
b , s5.5d

whereaik
a andaik,lm

ab are constantsssubject to some further conditions21d and

Tik
a = si

a]sk
, a = 0,1, i,k = 1, . . . ,n. s5.6d

In other words, the gauge rotated Hamiltonianh is an element of the enveloping algebra o
ffine Lie algebra affsn,Rd (or one of its subalgebras). It is clear that(5.5) guarantees that th
amiltonian H will preserve, or decrease the order of the polynomialsPN. This is a concret

ealization of the flag condition(5.2).
We mention that all known quadratically superintegrable systems are exactly solva

articular those of Sec. IV.58 For the generalized harmonic oscillators the gauge factorg is equa
o the ground state wave function and is energy independent. The generalized Coulomb
ave been reduced to the harmonic oscillator ones[see(4.20) and (4.21)]. However, due to th

nterchange of the energy and the coupling constant, the gauge factorg will be energy dependen
The aim of this section is to show how exact solvability manifests itself in discrete s

ime. First of all, let us consider an arbitrary one-dimensional linear spectral problem

Ls]x,xdcsxd = lcsxd. s5.7d

et x=0 be a regular point of this equation. Then any solution can be expanded into a Taylo

csxd = o
k=0

`

akx
k. s5.8d

sing the umbral correspondence we write the umbral equation

LsD,xbdcsxbd = lcsxbd s5.9d

ith the same eigenvaluel as in the ODE(5.7). Viewed as a difference equation, Eq.(5.9) will
ave a formal power series solution,

csxbd1 = o
k=0

`

ak
ksxbdk · 1. s5.10d

n particular, if (5.8) is a polynomial solution, then Eq.(5.10) will also be a finite sum of term
nvolving the basic polynomials of the operatorD. Thus,(5.10) will also be a polynomial and a
onvergence problems disappear.

Now let us turn to the specific case of the generalized harmonic oscillator system
amiltonianHI [see Eq.(4.15)] and its discretization(4.22). The gauge factorg of Eq. (5.3) and

5.4) is

g = xp1yp2 expF−
vsx2 + y2d

2
G, a = p1sp1 − 1d, b = p2sp2 − 1d. s5.11d

e setvx2=s1, vy2=s2 and in these variables the affs2,Rd operators of Eq.(5.6) reduce to

J1 = ]s , J2 = ]s , J3 = s1]s , J4 = s2]s ,

1 2 1 2
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J5 = s2]s1
, J6 = s1]s2

. s5.12d

he gauge rotated Hamiltonianh and gauge rotated integrals of motionx1̂=gX1
ˆ g−1, x2̂=gX2

ˆ g−1

an now be written as58

h = − 2J3J1 − 2J4J2 + 2J3 + 2J4 − s2p1 + 1dJ1 − s2p2 + 1dJ2,

x1̂ = 2J3J1 − 2J4J2 − 2J3 + 2J4 + s2p1 + 1dJ1 − s2p2 + 1dJ2, s5.13d

x2̂ = 4J3J5 + 4J4J6 − 8J3J4 + 2s2p1 + 1dJ5 − 2s2p2 + 1dJ3 − 2s2p1 + 1dJ4 + 2s2p2 + 1dJ6.

y construction, all three of these operators will conserve the flag of polynomials

Pnss1,s2d = kss1dN1ss2dN2u0 ø N1 + N2 ø nl s5.14d

nd this is the reason why the superintegrable system with HamiltonianHI is exactly solvable. Th
ctual solutions of Eq.(5.4) are Laguerre polynomials,

HPnm= EnmPnm, Emn= n + m,

s5.15d
Pnmsx,yd = Ln

s−1/2+p1dsvx2dLm
s−1/2+p2dsvy2d.

The umbral discretization will preserve the above properties and will give umbral La
olynomial expressed in terms ofxbx andyby. The algebra affs2,Rd is represented by differen
perators,

J̃1 = Ds1
, J̃2 = Ds2

, J̃3 = ss1b1dDs1
, J̃4 = ss2b2dDs2

,

s5.16d
J̃5 = ss2b2dDs1

, J̃6 = ss1b1dDs2
.

he formulas(5.13) remain the same(with Ji →Jĩ) and all commutation relations are preserved
re polynomial solutions. For similar results formulated in terms of operators acting in
paces and the notion of isospectral discretization see Turbineret al. (Refs. 60–63, 57, and 10),
nd Ref. 11 for further discussions.

We mention here that other discretizations of superintegrable systems, especially the h
scillator, exist in the literature.2–4,27They are either related to quantum groups, or the discre

ion is based on noncommuting coordinates in configuration space.

I. CONCLUSIONS

Much, if not all of nonrelativistic quantum mechanics can be viewed as the “theory
nveloping algebra of the Heisenberg algebra.”

Indeed, let us define the Heisenberg algebraHn by the relations

fXj,Ykg = d jkC, j ,k = 1, . . . ,n, s6.1d

nd then set

Xj = xj, Yk = − i"]xk
, C = i". s6.2d

We can say that all quantum mechanical operators lie in the enveloping algebra ofHn, or in an
xtension of the enveloping algebra obtained by adding all formal power series inx1, . . . ,xn,
p1, . . . ,pn.
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If we replace the coordinatesxj and the momentapj by some other quantities satisfying
elations(6.1) then all polynomials and all power series in these objects will commute in the
ay as the corresponding quantum mechanical quantities.

Indeed, the umbral correspondencexi →xibi, ]xi
→Dxi

preserves the commutation relatio
6.1) between quantum mechanical operators. Thus, the umbral correspondence allow
onsider quantum mechanics on a lattice and to preserve all properties of quantum mech
ontinuous space and time that are expressed in terms of the commutation properties of
uantities(quantum mechanical operators). In particular, infinitesimal point symmetries and g
ralized symmetries are preserved, as shown in Secs. III and IV, respectively. Exact solva
educed to an algebraic property and then discretized in Sec. V(and also in Refs. 57, 62, and 6).

Some nonalgebraic properties are lost in the discretization. For instance, the “umbra
elds” (2.29), obtained by the umbral correspondence, do not generate global transformatio(like
otations, or dilations). The solutions of umbral equations(obtained by the umbral correspo
ence) are often formal, i.e., they may diverge.

The physical content of this paper is based on the results contained in Sec. II, wh
resented and proved several theorems that, to our knowledge, extend the previously
mbral formalism to linear difference equations. In particular we associate with a linear di

ial equation an abstract operator equation, written in terms of delta operators, using the
orrespondence(2.23). Any representation ofD and b in terms of shift-invariant operators pr

ides a difference equation, whose analytic solutions can be obtained from the solutionsf̂ of the

perator equation(2.50) via the projectionf̂ ·1=fsxbd ·1. These are the umbral solutions admi
y a given difference equation. The other possible solutions do not have a continuous limit
ot provided by the umbral approach.

Many of the results presented here can be considered also in the case ofq-difference
perators.34 The delta operatorU in this case is defined in terms of aq-shift operator satisfying

Tqfsxd = fsqxd. s6.3d

n the simplest case, theq-difference operator reads

Dq =
1

sq − 1dx
sTq − 1d, lim

q→1
Dqf = fx s6.4d

nd its conjugate operator, obtained imposing the Heisenberg commutation relation,

fDq,xbqg = 1, s6.5d

s written in terms of aq shift and differential operators as

bq = sq − 1dsqT− 1d−1x]x. s6.6d

In this case we can still consider the umbral correspondence, but theDq operator is not a shi
nvariant operator, asfDq,TqgÞ0.

Among open questions, presently under consideration, we mention the following.

i) This paper deals with the Lie-algebraic aspects of the discretization of the Schrö
equation. The analytic aspects, like the self-adjointness properties of the discrete H
nians, and the convergence properties of the formal power series remain to be inves

ii ) The umbral correspondence has lead us to various linear umbral equations and di
equations. It would be of considerable interest to study their solutions directly and
case of polynomial solutions, establish their relation to orthogonal polynomials of d
variables, known in the literature.50,46

iii ) Although many of the results presented in this paper can also be carried out
q-difference case,34,29,33a reformulation of the umbral theory in this case is necessar

iv) The connection between umbral calculus, delay equations and functional analysis sh

studied.
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v) The simultaneous diagonalization of commuting sets of second order differential op
is intimately related to the separation of variables in the Schrödinger equation. It wo
important to further investigate common solutions of commuting sets of difference
tors from this point of view. An example of such a study is given in the Appendix, w
we present solutions of an “umbral Klein–Gordon equation.”

vi) A related problem is that of establishing a connection between umbral formalisms
duced in different coordinate systems, e.g., the Cartesian quantitiesDx, Dy, bx, by and the
corresponding polar ones, or parabolic onesDj, Dh, bj, bh introduced in Secs. IV and V
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PPENDIX: DISCRETIZATION OF A RELATIVISTIC WAVE EQUATION

Let us consider a relativistic wave equation in two dimensions,

S ]2

]t2
−

]2

]z2Df = kf. sA1d

n light-cone coordinates

x =
z+ t

2
, y =

z− t

2
,

e write this equation as

Rf =
]2

]x]y
fsx,yd = − kf. sA2d

Equation(A2) is invariant under the Poincaré group of two-dimensional Minkowski spac
ymmetry algebra is given by

P0 = ]x, P1 = ]y, M = x]x − y]y. sA3d

ince the operatorsR andM commute, we can construct common eigenfunctions satisfying

Mf = lf, sA4d

n addition to Eq.(A2). The solution of Eq.(A4) can be written as monomialsxn+lyn, or more
enerally

flsx,yd = o
n=0

`

anx
n+lyn sA5d

we choose not to follow the standard procedure of separating variables). Substituting(A5) into
q. (A2) we obtain the recursion relation

an+1sn + l + 1dsn + 1d = − kan, sA6d
.e.,
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an = s− kdna0
Gsl + 1d

Gsl + n + 1dn!
. sA7d

ith an as in Eq.(A7) we write the(unnormalized) solution (A5) as

flk = xlo
n=0

`

s− kdn 1

Gsl + n + 1dn!
sxydn. sA8d

his can be rewritten as

flksx,yd =
1

skdl/2Sx

y
Dl/2

Jls2Îkxyd, sA9d

hereJnszd is a cylindrical function. The umbral version of the system(A2) and (A4) is

DxDyc = − kc, sA10d

sxbxDx − ybyDydc = lc. sA11d

Since Eq.(A5) is a power series we can immediately write the corresponding solution
A1) as

clsx,yd = o
n=0

`

ansxbxdn+lsybydn · 1. sA12d

Setting clsx,yd into Eq. (A10), we reobtain the two-term recursion relation(A6) with the
olution (A7). The solution of the umbral system(A10) and (A11), is hence

clsx,yd = sxbxdlo
n=0

`
s− kdn

Gsl + n + 1dn!
sxbxdnsybydn · 1. sA13d

Equation (A13) provides a formal power series solution for any choice of the differ
peratorsDx, Dy and the corresponding conjugate operatorsbx, by. If the series converges, th
q. (A13) is a solution of the system(A10) and (A11).

Let us fix the values ofx andy and apply the ratio test of convergence to the series(A13). The
atio of two consecutive terms is

an+1

an
= − k

1

sl + n + 1dsn + 1d
sxbxdn+1

sxbxdn

sybydn+1 · 1

sybydn · 1
.

The value of this limit depends on our choice ofDx andDy, and hence ofbx andby.
For the right and left derivativesD+ andD−, we haveb=T−1 andT, respectively, and henc

lim
n→`

Uan+1

an
U = uku lim

n→`
U sx 7 nsxdsy 7 nsyd

sl + n + 1dsn + 1d
U = uksxsyu. sA14d

We see that the series(A13) converges(absolutely) for any finite values ofx andy, provided
e have

uksxsyu , 1. sA15d

It is interesting to compare the two series expansions(A8) and(A13). In the continuous cas

e can introduce “polar” coordinatessr ,ad

                                                                                                            



a

t
a

umbral”
s 44 on
s

1)

I. The

I. The

lassical

//

1 5

1 lattice,”

1

1

1 ns,” J.

1 ions of

1

1 . Phys.

1

1 ntum

2

2 olvable

2

2 nics,” J.

2 es of the

2 s. A

2 between

4104 J. Math. Phys., Vol. 45, No. 11, November 2004 Levi, Tempesta, and Winternitz

                        
x =
r

2
ea, y =

r

2
e−a, sA16d

nd Eq.(A8) then corresponds to the separation of variables

flksx,yd = elao
n=0

`

s− kdn 1

n!Gsl + n + 1dSr

2
D2n+l

= elak−l/2JlsÎkrd. sA17d

In the discrete case we obtain a solution of the difference scheme by applyingcl of Eq. (A13)
o a constant. This is however not a separated solution, sincefsxbxdsybydgn is not a function ofxy
lone. For example, forbi =Ti

−1 andn=2 we have

fsxTx
−1dsyTy

−1dg2 = xsx − sxdysy − sydTx
−2Ty

−2.

Thus, separation of variables techniques in the discrete case lead to very specific “
olutions like(A13). They only separate in the continuum limit. See also Refs. 17, 18, and
imultaneous eigenfunctions of commuting difference operators.
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tability of spot and ring solutions of the diblock
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The G-convergence theory shows that under certain conditions the diblock copoly-
mer equation has spot and ring solutions. We determine the asymptotic properties
of the critical eigenvalues of these solutions in order to understand their stability. In
two dimensions a threshold exists for the stability of the spot solution. It is stable if
the sample size is small and unstable if the sample size is large. The stability of the
ring solutions is reduced to a family of finite dimensional eigenvalue problems. In
one study no two-interface ring solutions are found by theG-convergence method if
the sample is small. A stable two-interface ring solution exists if the sample size is
increased. It becomes unstable if the sample size is increased further. ©2004
American Institute of Physics.[DOI: 10.1063/1.1782280]

. INTRODUCTION

A diblock copolymer is a soft material, characterized by fluidlike disorder on the mole
cale and a high degree of order at longer length scales. A molecule in a diblock copolym

inear subchain ofA monomers grafted covalently to another subchain ofB monomers. Because
he repulsion between the unlike monomers, the different type subchains tend to segrega
hey are chemically bonded in chain molecules, segregation of subchains cannot lead to a
copic phase separation. Only a local microphase separation occurs: microdomains richA and
emerge. These microdomains form morphology patterns/phases in a larger scale.

The Ohta–Kawasaki21 free energy of an incompressible diblock copolymer melt is a f
ional of theA monomer density field. Letusxd be the relativeA monomer number density at po
in the sampleD. When there is highA monomer concentration atx, usxd is close to 1; when the

s high concentration ofB monomers atx, usxd is close to 0. A value ofusxd between 0 and
eans that a mixture ofA andB monomers occupiesx. The re-scaled, dimensionless free ene

f the system is

Isud =E
D
H e2

2
u ¹ uu2 +

eg

2
us− Dd−1/2su − adu2 + WsudJdx, s1.1d

hich is defined in the admissible set

Xa = hu P W1,2sDd:ū = aj, s1.2d

hereū=s1/uD u deDu dx is the average ofu in D. a is a fixed constant in(0,1). It is the ratio of the
umber of theA monomers to the number of all the monomers in a chain molecule.

In (1.1) e is a small positive parameter andg is a fixed positive constant, i.e.,

)Author to whom correspondence should be addressed. Phone: 1 435 797-0755; fax: 1 435 797-1822; electr

ren@math.usu.edu
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e → 0, g , 1. s1.3d

The termWsud is the internal energy field. Originally in Choksi and Ren8 it is taken to be

Wsud = Hu − u2 if u P f0,1g
` otherwise.

s1.4d

ere we change it to a smooth function so thatW is a double well potential of equal depth. It h
lobal minimum value 0 achieved at 0 and 1. We assume for simplicity thatW is smooth, grow
t least quadratically at ±̀, and symmetric about 1/2:Wsud=Ws1−ud. 0 and 1 are nondegenera
9s0d=W9s1d.0. An example ofW is Wsud= 1

4su2−ud2.
The other two terms in(1.1) give the entropy of the system. The peculiar nonlocal term is

o the fact that molecules in a diblock copolymer are connected long cains. It models a
onlocal interaction known as the Coulomb interaction(Muratov17). Mathematically we view

−Dd−1 as a bounded positive operation fromhzPL2sDd : z̄=0j to hjPW2,2sDd : j̄=0j :j=s−Dd−1z
f

− Dj = z in D, ]vj = 0 on] D, j̄ = 0.

hen s−Dd−1/2 is the positive square root ofs−Dd−1.
To understand the parameter range(1.3) we recall the physical parameters in a diblock

olymer system(cf. Ref. 8).

1) The polymerization indexN that is the number of all the monomers in a chain molecule
consider the ideal situation where thisN is the same in all molecules;

2) The Kuhn statistical lengthl measuring the average distance between two adjacent m
mers in a chain molecule, which is the same regardless the monomer types;

3) The Flory–Huggins parameterx that measures the repulsion between unlike monomer
is inversely proportional to the absolute temperature;

4) RelativeA monomer ratioa mentioned earlier;
5) The volumeV of the sample.

hey are related to the mathematical dimensionless parameterse andg by

e2 =
p2/3l2

12as1 − adxV2/3, g =
18Î3V

pa3/2s1 − ad3/2x1/2N2l3
. s1.5d

mong the physical parametersa andx are dimensionless and order 1. So we focus onl, V, and
. N is necessarily large in a polymer system. By takinge small we have assumed that the sam

s large compared tol. On the other hand havingg,1 means thatV, l3N2. After we find spot an
ing solutions of a finite number of microdomains separated by interfaces whose width is o
in the parameter range(1.3), we conclude that the size of a microdomain is of orderl3N2 and the

hickness of the interfaces is of orderl, facts very well matched by experiments.21

Another choice ofg was used in Müller,16 Nishiura and Ohnishi,19 and Ren and Wei:26 g
e−1, i.e., V, l3N3. In this larger sample one finds that the number of the microdomains

rdere−1. Then again the size of a microdomain is of orderl3N2.
The diblock copolymer equation

− e2Du + fsud + egs− Dd−1su − ad = h in D, ]nu = 0 on] D, ū = a s1.6d

s the Euler–Lagrange equation of(1.1), where f =W8. For the example ofW, fsud=usu−1/2dsu
1d. The unknown constanth is a Lagrange multiplier due to the constraintū=a. If we integrate

1.6) over D, then
h = fsud. s1.7d
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Many morphology patterns are observed in diblock copolymers. See Bates and Fredr4

amley,11 and the references therein. The most popular ones are the spherical, cylindric
amellar phases, Fig. 1. The existence of the lamellar phase was shown in Ren and Wei,24 and its
tability in three dimensions was studied in Ren and Wei.27 Surprisingly we found that the lamel
hase is onlymarginally stable. Physicists believe that defects should appear commonly

amellar phases, Tsoriet al., Refs. 36 and 17.
One type of defect is the wriggled lamellar pattern studied in Ren and Wei,33 where interface

eparating microdomains oscillate like the sinusoidal curve. Here we study another type o
pot and ringlike microdomains, Fig. 2. We consider(1.6) in the unit diskD=hxPR2: uxu ,1j. Let
=s−Dd−1su−ad. If u and v are radially symmetric, then(1.6) may be written in the radi
oordinates,r = uxu, as

5
− e2urr −

e2

r
ur + fsud + egv = h,

− vrr −
1

r
vr = u − a,

urs0d = urs1d = vrs0d = vrs1d = 0,

ū − a = v̄ = 0.

s1.8d

he average now becomesū=2e0
1usrdrdr. We are interested in radial solutions of(1.6) that show

he phenomenon of microphase separation. They are close to 0 or 1 in most ofD but chang
etween 0 and 1 in small regions. These small transition regions are called the interface
adial solutionu an interface may be identified by a numberr j, whereusr jd=1/2. Thefollowing
heorem was proved in Ren and Wei25 using theG-convergence theory(cf. De Giorgi,9 Modica,15

nd Kohn and Sternberg14).
Theorem 1.1 (Ren and Wei25): For anyg.0, there exist two radial solutions of (1.6) on t

nit disk with one circular interface whene is small. If Kù2 andg is large enough there exist tw
adial solutions with K circular interfaces whene is small.

IG. 1. The spherical, cylindrical, and lamellar morphology phases commonly observed in diblock copolymer m
hite color indicates the concentration of typeA monomer, and the dark color indicates the concentration of tyB
onomer.
FIG. 2. (1) A spot solution.(2) A K=2 ring solution. In both casesa=1/2 andg=25.
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For eachK one of the solutions, which we simply denote byu, in Theorem 1.1 is close to
ear the origin and the other one is close to 1 near the origin, which we denote byũ. However the
wo solutions are related. If we changea to 1−a in (1.1) and(1.2), then 1−ũ is a solution of th
ew problem which is close to 0 near the origin, and 1−u is a solution of the new problem whi

s close to 1 near the origin. So it suffices to studyu. u is a spot solution ifK=1, and a ring
olution if Kù2, Fig. 2. Throughout this paperv=s−Dd−1su−ad.

The spot solution is also useful in the study of the cylindrical phase, Fig. 1(2). A cross sectio
f the cylindrical phase has a pattern of many spots. It is believed that these spots pa
exagonal way.4 A good understanding of a single spot is essential before one can mathem
rove the existence of the cylindrical phase.

In this paper we derive a criterion for the stability of the spot and ring solutions by obt
etailed information on the eigenvalues and eigenfunctions of the linearized problem,

Lw: = − e2Dw + f8sudw − f8sudw + egs− Dd−1w = lf in D, ]nw = 0 on] D, f̄ = 0. s1.9d

t is easy to see, Lemma 2.4, that lim infe→0 lù0. To determine the stability we need to study
’s that tend to 0 ase→0. Thesel’s are called the critical eigenvalues. They are foun
heorems 3.1 and 4.1. Consequently we show in Theorem 5.1 that the spot solution is stg

s small and unstable ifg is large. The threshold ofg is denoted byĝ. It is calculated numerical
or variousa.

To better appreciate this theorem let us recall the stationary Cahn–Hilliard equation,5 which is
1.6) with g=0, the local counterpart. It is known that the Cahn–Hilliard equation on the uni
as an unstable spot solution. Once the nonlocal term with a smallg, which encourages oscill

ion, is added, the spot solution becomes stable. The abrupt change of stability here is d
fter the proof of Theorem 5.1. Ifg is further increased, more oscillation is required and the
olution, which only has one interface, becomes unstable.

The second change of stability has a simple physical explanation. According to(1.5) g is
roportional to the size of the sample. When the sample is sufficiently large, one big
nstable in two dimensions. It should break into multiple spots to form a cylindrical phas
(2). The valueV corresponding toĝ in (1.5)2 suggests a scale for a cell with one spot
ultispot cylindrical phase.

For the ring solutionsKù2d, we will use Theorems 3.1 and 4.1 to numerically study a ca
=2. Wheng is small, we cannot find a ring solution by theG-convergence method. Wheng is

ncreased, there exists a ring solution that is stable in two dimensions. Wheng is further increase
ver ĝ, a ring solution exists but is no longer stable.

This change of stability of the ring solution and the second change of stability of th
olution lead to a bifurcation phenomenon nearĝ. Following Ref. 33 one should be able to fi
ifurcation solutions. They are depicted in Fig. 3. Based on our experience in Ref. 33 we

hat most of them are stable.
More information on the model(1.1) and its extension to triblock copolymers may be fo

18 29

FIG. 3. Bifurcation solutions forK=1 andK=2.
n Nakazawa and Ohta,and Ren and Wei. The mathematical study of stable domain structures
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ith multiple sharp interfaces started rather recently. On the block copolymer problem the
ure includes Ohnishiet al.,20 Ren and Wei,30 Choksi,7 Fife and Hilhorst,10 Henry,13 and Teramot
nd Nishiura.35 Elsewhere Ren and Truskinovsky23 study the phenomenon in elastic bars, Ren
ei32,28,31in the Seul–Andelman membrane, charged monolayers, and smectic liquid crysta

espectively. Taniguchi34 and Chen and Taniguchi6 study spot and ring patterns in a free bound
roblem.

The paper is organized as follows: In Sec. II we review the construction of the spot an
olutions u, give some properties ofu, and explain the classification intolm where m
0,1,2,3, . . . of theeigenvalues of the linearized operator atu. The properties oflm are given in
heorems 3.1 and 4.1 in Sec. III and IV, respectively. In Sec. V we show the stability prop

he spot solution, calculate the second thresholdĝ, and use Theorems 3.1 and 4.1 to studyK
2 ring solution. This section also includes some remarks. The Appendix contains the pro

echnical lemma.

I. PRELIMINARIES

To make the paper more readable a quantity’s dependence one is usually not reflected in i
otation but implied in the context. On the other hand, a quantity’s independence ofe is often
mphasized with a superscript 0. For instance the spot or ring solutionu is not denoted byue,
hile theL2sDd-limit of u ase→0 is denoted byu0.

Throughout the paper, theL` norm of a function is denoted simply byi ·i. Other norms ar
ore explicitly written, likei ·i2.

We define some frequently used quantities.H is the heteroclinic solution of

− H9 + fsHd = 0, Hs− `d = 0, Hs`d = 1, Hs0d = 1/2. s2.1d

ur assumption thatWsud=Ws1−ud implies thatHstd=1−Hs−td. The interface tensiont is a
onstant defined by

t : =E
R

sH8stdd2 dt. s2.2d

n the special caseWsud= 1
4su2−ud2, t=Î2/12.

Theorem 1.1 was proven in Ref. 25 by locally minimizingI in the radial class

Xa
R = hu P W1,2sDd:usxd = usuxud,ū = aj. s2.3d

o do so we used theG-convergence theory in the perturbation variational analysis.sepd−1I
onverges in a particular sense to a singular limitJ. J is defined in the classA which may be
ecomposed to

A = ø
K=1

`

sAK ø ÃKd. s2.4d

function U is in AK if Ū=a and there existq1,q2, . . . ,qK, satisfying 0,q1,q2, ¯ ,qK,1,

uch thatUsrd=0 if r P s0,q1d , =1 if r P sq1,q2d , = 0 if r P sq2,q3d. . .. Similarly a functionŨ
ÃK if Ũ¯=a and there existq1,q2, . . . ,qK, satisfying 0,q1,q2, ¯ ,qK,1, such thatŨsrd
1 if r P s0,q1d , =0 if r P sq1,q2d , =1 if r P sq2,q3d , . . .. By theremark after Theorem 1.1 we w

ot considerJ in Ã. In eachAK the functionJ depends onq=sq1,q2, . . . ,qKd only

Jsqd = 2tsq1 + q2 + ¯ + qKd + gE
0

1

V8srd2rdr . s2.5d

n (2.5) q determinesUPAK. We emphasize thatU depends on allqj. We sometimes use t

otationU=Usr ;qd. Let V be the solution of
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− V9 −
V8

r
= U − a, V8s1d = 0, V̄ = 0. s2.6d

e defineG0 to be the solution operator of(2.6) so thatV=G0fU−ag. Again we may writeV
Vsr ;qd. The constraintŪ=a becomes a constraint onq,

Ssqd: = − q1
2 + q2

2 − q3
2 + ¯ + s− 1dKqK

2 +
1 − s− 1dK

2
= a. s2.7d

o incorporate the constraint(2.7) we defineF : =J+nS, wheren is the Lagrange multiplier i
ccordance to the constraint.

Using ideas from Refs. 15 and 14 the following result is obtained in Ref. 25.
Lemma 2.1: If J has a strict local minimizerUs· ;r 0dPAK, then there existsê.0 such tha

or all eP s0,êd, (1.6) has a solution u with the propertieslime→0iu−Us· ;r 0di2=0 and
ime→0sepd−1Isud=JsUs· ;r 0dd.

Lemma 2.1 reducesI to J which is finite dimensional in eachAK and ÃK. To studyJ we
efine from the operatorG0 the Green function

G0sr,sd = G0fds·−sd − 2sgsrd, s2.8d

here 2s is the average ofds·−sd. More explicitly

G0sr,sd =5
sr2

2
−

3s− 2s3

4
− s log s if r , s

sr2

2
− s log r −

3s− 2s3

4
if r ù s.

s2.9d

ote thatG0sr ,sd is not symmetric inr ands, althoughrG0sr ,sd is. Also noteds·−sd=2s. Then we
ay write

Vsrd =E
0

1

G0sr,sdsUssd − adds=E
0

1

G0sr,sdUssdds.

We calculate the derivatives ofJ andF. J may be rewritten as

Jsqd = 2to
j=1

k

qj + gE
0

1

UsrdVsrdr dr .

hen

] J

] qj
= 2t + g

]

] qj
FE

q1

q2

Vsrdr dr +E
q3

q4

Vsrdr dr + ¯G
= 2t + s− 1d jgqjVsqjd + gE

0

1

Usrd
]

] qj
Vsrdr dr .

ote that

]

] qj
Vsrd =

]

] qj
FE

q1

q2

G0sr,sdds+E
q3

q4

G0sr,sdds+ ¯G = s− 1d jG0sr,qjd.
ence
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] J

] qj
= 2t + 2s− 1d jgqjVsqjd,

nd

] F

] qj
= 2t + 2s− 1d jgqjVsqjd + 2ns− 1d jqj .

et r 0=sr1
0,r2

0, . . . ,rK
0d be a solution of]F /]qj =0, j =1,2, . . . ,K, i.e.,

2t + 2s− 1d jgr j
0Vsr j

0d + 2ns− 1d jr j
0 = 0, j = 1,2, . . . ,K. s2.10d

he second derivatives ofJ are

]2J

] qj ] qk
= 2s− 1d j+kgqjG0sqj,qkd, if j Þ k,

]2J

] qj
2 = 2s− 1d jgVsqjd + 2s− 1d jgqjss− 1d jG0sqj,qjd + V8sqjdd

= 2gqjG0sqj,qjd + 2s− 1d jgsVsqjd + qjV8sqjdd.

ence

]2F

] qj ] qk
= H2gqjG0sqj,qjd + 2s− 1d jgsVsqjd + qjV8sqjdd + 2ns− 1d j if j = k

2s− 1d j+kgqjG0sqj,qkd if j Þ k.
s2.11d

t r 0, because of(2.10), we have

]2F

] qj ] qk
sr 0d = 52gr j

0G0sr j
0,r j

0d + 2s− 1d jgr j
0V8sr j

0d −
2t

r j
0 if j = k

2s− 1d j+kgr j
0G0sr j

0,rk
0d if j Þ k.

s2.12d

e emphasize that the functionV in (2.12) is associated withr 0, i.e., V=Vs· ;r 0d.
Whether a critical pointr 0 is a local minumum is determined by the matrix(2.12) in the

ubspace

T = hb = sb1,b2, . . . ,bKdT P RK:o
j=1

K

s− 1d jbjr j
0 = 0j. s2.13d

is the tangent space of the domain ofJ at r 0. When(2.12) is positive definite inT, i.e.,

o
j ,k=1

K
]2F

] qj ] qk
sr 0dbjbk . 0, if b P T andb Þ 0, s2.14d

he critical pointr 0 is a strict local minimum.
The condition(2.14) may be rephrased as follows. Define aK by K matrix M 0 whosekj entry

s

Mkj
0 = dkjS−

t

srk
0d2 + gs− 1dkV8srk

0dD + gs− 1dk+jG0srk
0,r j

0d, s2.15d

heredkj=1 if k= j and 0 otherwise.Mkj
0 is not symmetric inj and k but rk

0Mkj
0 is. Let g0 be a

K
on-standard inner product onR defined by
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g0sA,Bd = o
j=1

K

AjBjr j
0, A = sA1,A2, . . . ,AKdT, B = sB1,B2, . . . ,BKdT. s2.16d

ith respect tog0, the matrixM 0 represents a symmetric linear operator onRK. Also with respec
y g0 we choose an orthonormal basise1

0,e2
0, . . . ,eK

0 with

e1
0 =

1

Îr1
0 + r2

0 + ¯ +rK
0

s− 1,1,− 1,1,̄ ,s− 1dKdT. s2.17d

ince

1

2 o
j ,k=1

K
] F

] qj] qk
sr 0dbjbk= o

j ,k=1

K

Mkj
0 bjbkrk

0 = g0sM 0b,bd,

2.14) is equivalent to the condition thatM 0 is positive definite in theK−1 dimensional subspa
erpendicular toe1

0 with respect tog0. This form of (2.14) is closer to the contents of Sec. III
Lemma(2.1) now implies the following theorem:
Theorem 2.2: If J has a critical pointr 0 at which (2.12) is positive definite in T, then there

xistsê.0 such that for alleP s0,êd there is a solution u of(1.6) with the propertieslime→0iu
Us· ;r 0di2=0 and lime→0sepd−1Isud=JsUs· ;r 0dd.

Only whenK=1, r 0=sr1
0d alsways exists and equalsÎ1−a. It is regarded trivially as a stri

ocal minimizer ofJ. Hence whene is small, a spot solution of(1.6) exists unconditionally.
WhenKù2, J may not have a strict local minimizer. Another perturbation argument c

sed. Note that wheng is large,J may be viewed as a perturbation of

J*sqd = gE
0

1

sV8srdd2rdr . s2.18d

t was proved in Ref. 25 thatJ* has a unique critical pointr * =sr1
* ,r2

* , . . . ,rk
*d. Wheng is large

2.12) is dominated by

H2gr j
*Gsr j

* ,r j
*d + 2s− 1d jgr j

*V8sr j
*d if j = k

2s− 1d j+kgr j
*Gsr j

* ,rK
* d if j Þ k.

s2.19d

t was shown in Ref. 25 that(2.19) is positive definite inT. For largeg r * perturbs tor 0, a strict
ocal minimizer of J. Theorem 1.1 hence is a consequence of Theorem 2.2. In this pap
ssume that the condition(2.14) is satisfied and henceu exists.

We denote the functionUs· ;r 0d by u0 and setv0=G0fu0− ū0g. u0 takes values 0 and 1, and
umps between these two values atr1

0,r2
0, . . . ,rk

0. The G-convergence theory asserts thatu con-
erges tou0 in L2sDd. Then there existr1,r2, . . . ,rk such thatusr jd=1/2,j =1,2, . . . ,K, and r
sr1,r2, . . . ,rKdT→ r 0 ase→0. Theser j’s are called the interfaces ofu. We will see that they ar

he only interfaces.
We also need to know the asymptotic behavior ofu. First we construct aninner expansion

round eachr j we introduce the scaled variabler =r j +et so to expand

usrd = usr j + etd = Hjstd + ePjstd + e2Qjstd + ¯ . s2.20d

orrespondingly

vsrd = vsr jd + etv8sr jd + ¯ . s2.21d

s we insert(2.20) and (2.21) into (1.8) we find the leading term

Hjstd = Hstd if j is odd, Hjstd = Hs− td if j is even. s2.22d
he next term isPjstd defined to be the solution of
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− P9 + f8sHjdP −
Hj8

r j
+ j j = 0, Ps0d = 0. s2.23d

Pj is even. The constantj j is chosen so thatsHj8 / r jd+j j is perpendicular toHj8 for solvability.
herefore

j j =
s− 1d j+1

r j
E

R

sH8stdd2 dt =
s− 1d j+1t

r j
. s2.24d

n our rigorous setting of asymptotic expansionsPj depends one becauser j andj j do so. This wa
e avoid expandingr j. The third term in the inner expansion isQjstd which is the solution of

− Q9 + f8sHjdQ −
Pj8

r j
+

tHj8

r j
2 +

f9sHjdPj
2

2
+ gv8sr jdt = 0, Qs0d = 0. s2.25d

j is odd. AgainQj depends one, via r j andv8sr jd. We set the inner approximation ofu nearr j to
e

zjsrd = HjS r − r j

e
D + ePjS r − r j

e
D + e2QjS r − r j

e
D . s2.26d

The outer approximation is done in one step. It is denoted byz and defined for allr not equa
o r1,r2, . . . ,rK by the equation

fszd + egvsrd − h = 0. s2.27d

inceh=Osed andv=Os1d, facts proved in the Appendix,z is chosen to be close to 0 or 1 on e
r j ,r j+1d nonambiguously, in agreement with the shape ofu, i.e.,z is close to 0 ons0,r1d, close to
on sr1,r2d, close to 0 onsr2,r3d, etc.

The inner approximation is used in eachsr j −ea ,r j +ead where aP s1/2,1d. The outer ap
roximation is used ins0,1d \ sø j=1

K sr j −2ea ,r j +2eadd. The inner approximation is matched to
uter approximation in the matching intervalssr j −2ea , r j −ead and sr j +ea ,r j +2ead, j
1,2, . . . ,K. Let x j be smooth cut-off functions so that

x jsrd = H0 if r ¹ sr j − 2ea,r j + 2ead
1 if r P sr j − ea,r j + ead,

nd moreoversx jdr =Ose−ad sx jdrr =Ose−2ad in sr j −2ea ,r j −ead and sr j +ea ,r j +2ead.
We then glue the two approximations to form a uniform approximation

wsrd = o
j=1

K

x jzj + S1 − o
j=1

K

x jDz. s2.28d

emma 2.3: w−u=ose2d.
According to this lemma, whose proof is left to the appendix, the uniform approximatiow is

ccurate up to ordere2. This lemma also implies that ther j’s are the only interfaces ofu.
To understand the stability of a spot or a ring solution in two dimensions we need to fi

pectrum, which only contains eigenvalues, of the linearized operatorL defined in (1.9). We
eparate variables in the polar coordinates to let

wsxd = wsr cosu,r sin ud = o
m=0

`

fmsrdsAm cossmud + Bm sinsmudd. s2.29d

fter substituting(2.29) into (1.9), we deduce thatwsxd is a linear combination offmsrdcossmud

nd fmsrdsinsmud for some non-negative integerm. The corresponding eigenvaluel is thus
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lassified intol=lm,m=0,1,2, . . .. Thepair slm,fmd satisfies the following equations:

1) If m=0,

L0f0: = − e2f09 −
e2

r
f08 + f8sudf0 − f8sudf0 + egG0ff0g = l0f0, f8s0d = f8s1d = 0, f0̄

= 0; s2.30d

2) if mù1,

Lmfm: = − e2fm9 −
e2

r
fm8 +

e2m2

r2 fm + f8sudfm + egGmffmg = lmfm, fms0d = fm8 s1d = 0.

s2.31d

he operatorG0 is defined in(2.6), and whenmù1, Gm is the inverse of the differential opera
sd2/dr2d−s1/rdsd/drd+sm2/ r2d with the Neumann boundary condition atr =1 and the Dirichle
oundary condition atr =0.

Lemma 2.4: Letl be an eigenvalue of L. Thenlim inf e→0 lù0.
Proof: Suppose that the lemma is false. We may assume that lime→0l=l0,0. Sincel is

lassified in tolm, m=0,1,2, . . ., weconsider the case thatl is one ofl0. The casemù1 may be
andled similarly and we omit the proof.

Let f be an eigenfunction of(2.30) associated withl. Without the loss of generality w
ssume thatifi=fsr*d=1. First we claim that there is ar j whose distance tor* is of orderOsed.
therwise −e2f9sr*d^1 since r* is a maximum;se2/ rdf8sr*d=0 whether or notr* is on the
oundary; f8susr*ddfsr*d.0 since f8susr*dd.0 outside anye-neighborhood of r j; f8sudf
sf8sud− f8s0ddf=Osed by the uniform estimate ofu in Lemma 2.3;egG0ffgsr*d=Osed, and
fsr*d=l,0. Then

− e2f9sr*d −
e2

r
f8sr*d + f8susr*ddfsr*d − f8sudf + egG0ffgsr*d . lfsr*d,

nd (2.30) is not satisfied atr* .
If r* is in a sizeOsed neighborhood ofr j, thenfsr j +etd→Fò0 in Cloc

2 sRd, andF satisfies
F9+ f8sHjdF=l0F. However this equation has no nonzero, bounded solution whenl0,0, since

j is a minimizer of EsUd : =eRs 1
2sU8d2+WsUdddt. Here U is in the classWloc

1,2sRd and
imt→±`sUstd−Hjstdd=0. h

Hence to understand the stability ofu we must analyze all the eigenvalues that tend to
→0. They are called the critical eigenvalues.

II. THE CRITICAL EIGENVALUES l0

RecallM 0 andg0 defined in(2.15) and(2.16), respectively, andej
0 with e1

0 defined in(2.17).
Theorem 3.1:Whene is sufficiently small, there exist exactly K eigenpairssl0,f0d, of (2.30)

ith l0=os1d. Onel0 is positive and of ordere. This l0 and its eigenfunction expand like

l0 =

2f8s0do
k=1

K

rk
0

t
e + osed, f0 = o

j=1

K

cjsHj8 − Hj8d + Ose ucud.

herec=sc1,c2, . . .cKdT→c0, as e tends to0. c0 is a nonzero scaler multiple ofe1
0.

The remaining K−1 l0’s are positive and of ordere2. Each of them and its correspondi

igenfunction expand like
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l0 = m0
0e2 + ose2d, f0 = o

j=1

K

cjsHj8 − Hj8 + esPj8 − Pj8dd + Ose2ucud.

et c0= lime→0 c. Thenc0=on=2
K c̃n

0en
0, and m0

0 and sc̃2
0, c̃3

0, . . . ,c̃K
0dT form an eigenpair of the K−1

imensional eigenvalue problem

o
m=2

K

c̃m
0 g0sM 0em

0 ,en
0d = m0

0rc̃n
0, n = 2,3, . . . ,K.

We expect that the eigenfunctions associated with small eigenvalues may be approxim
ombinations of

Hj8 − Hj8 + esPj8 − Pj8d. s3.1d

ereHj8 is the derivative ofHj =Hjstd with respect tot evaluated att=sr −r jd /e. In this section w
rite sl ,fd for an eigenpairsl0,f0d. We decompose

f = o
j=1

K

cjsHj8 − Hj8 + esPj8 − Pj8dd + f' s3.2d

n the L2sDd space whereHj8−Hj8+esPj8−Pj8d'f' for j =1,2, . . . ,K. First we estimate

L0sHj8 − Hj8d = − e2sHj8drr −
e2

r
sHj8dr + f8sudsHj8 − Hj8d − f8sudsHj8 − Hj8̄d + egG0fHj8 − Hj8g,

n which

f8sudHj8 = 2E
0

1

sf8sHjd + ePj f9sHjddHj8r dr + Ose3d

=2eE
R

ff8sHjdHj8r j + etf8sHjdHj8 + ePj f9sHjdHj8r jgdt + Ose3d = Ose3d s3.3d

inceeRf8sHjdHj8dt=eRtf8sHjdHj8dt=eRPj f9sHjdHj8dt=0 (tf8sHjdHj8 andPj f9sHjdHj8 are odd). Then

L0sHj8 − Hj8d = sf8sud − f8sHjddHj8 −
e

r
Hj9 + sf8sud − f8suddHj8 + e2gs− 1d j+1G0sr,r jd + Ose3d

= ef9sHjdPjHj8 + e2S f9sHjdQj +
f-sHjdPj

2

2
DHj8 −

e

r
Hj9

+ e2gs− 1d j+1G0sr,r jd + sf8sud − f8suddHj8 + Ose3d.

y differentiating(2.23) we have

− Pj- + f8sHjdPj8 + f9sHjdHj8Pj −
Hj9

r j
= 0.
hen
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L0sPj8 − Pj8d = − e2sPj8drr −
e2

r
sPj8dr + f8sudsPj8 − Pj8d − f8sudsPj8 − Pj8d + egG0fPj8 − Pj8g

=sf8sud − f8sHjddPj8 − f9sHjdHj8Pj +
Hj9

r j

−
e

r
Pj9 + sf8sud − f8suddPj8 + Ose2d

=ef9sHjdPjPj8 − f9sHjdHj8Pj +
Hj9

r j

−
e

r
Pj9 + sf8sud − f8suddPj8 + Ose2d,

here we have used the fact

f8sudPj8 = 2E
0

1

f8sudPj8r dr = 2eE
R

f8sHjdPj8r jdt + Ose2d = Ose2d s3.4d

ince f8sHjdPj8 is odd. Therefore

L0sHj8 − Hj8 + esPj8 − Pj8dd = e2FS f9sHjdQj +
f-sHjdPj

2

2
DHj8 + f9sHjdPjPj8 + S 1

er j
−

1

er
DHj9 −

Pj9

r
+ gs

− 1d j+1G0sr,r jdG + sf8sud − f8suddHj8 + ePj8 + Ose3d.

n the other hand,

Hj8 = 2E
0

1

Hj8r dr = 2eE
R

Hj8stdsr j + etddt = 2er jE
R

Hj8stddt + 2e2E
R

Hj8stdtdt = 2es− 1d j+1r j

inceHj8stdt is odd, and

Pj8 = 2E
0

1

Pj8r dr = 2er jE
R

Pj8dt + Ose2d = Ose2d

incePj8 is odd. We find

Hj8 + ePj8 = 2es− 1d j+1r j + Ose3d. s3.5d

ence we deduce that

L0sHj8 − Hj8 + esPj8 − Pj8dd = e2FS f9sHjdQj +
f-sHjdPj

2

2
DHj8 + f9sHjdPjPj8 + S 1

er j
−

1

er
DHj9 −

Pj9

r

+ gs− 1d j+1G0sr,r jdG + 2es− 1d j+1r jsf8sud − f8sudd + Ose3d. s3.6d

ote that in(3.6)

S 1

er j
−

1

er
DHj9 =

tH9std
r jr

= Os1d.

ewrite the equationL0f=lf as

o
j=1

K

cjL0sHj8 − Hj8 + esPj8 − Pj8dd + L0f' = lSo
j=1

K

cjsHj8 − Hj8 + esPj8 − Pj8dd + f'D . s3.7d

'
henf satisfies
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L0f' = OSeuo
j=1

K

s− 1d jr jcjuD + Ose2ducu + Osuludsucu + if'id. s3.8d

ere if'i is theL` norm of f' on (0,1). The following lemma estimatesf'.
Lemma 3.2:There exists C.0 independent ofe such that for allc in the domain of L0 and

'Hj8−Hj8+esPj8−Pj8d , j =1,2,¯ ,K ,iciøCiL0ci.
Proof: Suppose that the lemma is false. There existc and somer* such thatici=csr*d=1,

'Hj8−Hj8+esPj8−Pj8d, j =1,2,¯ ,K, andL0c=os1d. Thenr* must lie in a neighborhood ofr j for
omej . The size of this neighborhood must be of ordere. Otherwise we argue as in the proof
emma 2.4: −e2c9sr*dù0; s−e2/ rdc8sr*d=0; egGmfcgsr*d=Osed; f8sudc=sf8sud− f8s0dc=Osed;
nd f8sudcsr*d is positive and bounded away from 0 independent ofe. Then the equationL0c
os1d is not satisfied atr* .

So let us assume thatr* is in a neighborhood, of sizee, of r j. Thencsr j +etd→C0std in Cloc
2 sRd

se tends to 0.C0 satisfies −C09+ f8sHjdC0=0. ThereforeC0=cHj8 for some constantcÞ0. On
he other hand if we denote the inner product inL2sDd by k· , ·l, then c'Hj8−Hj8+esPj8−Pj8d
mplies

0 = kc,Hj8 − Hj8 + esPj8 − Pj8dl = 2pecrjE
R

sH8d2dt + osed,

hich is possible only ifc=0. h

We obtain by Lemma 3.2 that

f' = Oseuo
j=1

K

s− 1d jr jcjud + Ose2ducu + Osuludsucu + if'id

hich implies, sincel=os1d,

f' = Oseuo
j=1

K

s− 1d jr jcjud + Ose2ducu + Osuluducu. s3.9d

We multiply (3.7) by Hk8−Hk8+esPk8−Pk8d and integrate with respect to 2pr dr over (0, 1) to
nd the equations

o
j=1

K

kcjL0sHj8 − Hj8 + esPj8 − Pj8dd,Hk8 − Hk8 + esPk8 − Pk8dl + kf',L0sHk8 − Hk8 + esPk8 − Pk8ddl

= lo
j=1

K

cjkHj8 − Hj8 + esPj8 − Pj8d,Hk8 − Hk8 + esPk8 − Pk8dl.

n these equations

kf',L0sHk8 − Hk8 + esPk8 − Pk8ddl = Osif'i · iL0sHk8 − Hk8 + esPk8 − Pk8ddi1d,

herei ·i1 denotes theL1sDd norm. By (3.6) we find

iL0sHk8 − Hk8 + esPk8 − Pk8ddi1 = Ose2d.
hen by(3.9) we deduce the equations
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o
j=1

K

cjkL0sHj8 − Hj8 + esPj8 − Pj8dd,Hk8 − Hk8 + esPk8 − Pk8dl+OSe3uo
j=1

K

s− 1d jr jcjuD + Ose4ducu

+ Ose2uluducu = lo
j=1

K

cjkHj8 − Hj8 + esPj8 − Pj8d,Hk8 − Hk8 + esPk8 − Pk8dl, s3.10d

or k=1,2, . . . ,K. The inner products in(3.10) are given in the next lemma.
Lemma 3.3:In Eq. (3.10):

s1d k Hj8−Hj8+esPj8−Pj8d ,Hk8−Hk8+esPk8−Pk8dl=2perktd jk+Ose2d;

s2d kL0sHj8 − Hj8 + esPj8 − Pj8dd,Hk8 − Hk8 + esPk8 − Pk8dl

= 4pe2s− 1dk+jr jrkf8sud + 2pe3rkHd jkF−
t

rk
2 + s− 1dkgv8srkdG + gs− 1dk+jG0srk,r jdJ + Ose4d.

Proof: (1) is obvious. To prove(2) we note thatP8 decays exponentially fast. Then(3.6)
mplies that

kL0sHj8 − Hj8 + esPj8 − Pj8dd,Hk8 − Hk8 + esPk8 − Pk8dl

= kL0sHj8 − Hj8 + esPj8 − Pj8dd,Hk8 − Hk8 + ePk8l

= e2KS f9sHjdQj +
f-sHjdPj

2

2
DHj8 + f9sHjdPjPj8 +

tHj9

r jr
−

Pj9

r
+ gs− 1d j+1G0sr,r jd,Hk8 + ePk8L

+ 2es− 1d j+1r jkf8sud − f8sud,Hk8 + ePk8l + Ose4d

= e2KS f9sHjdQj +
f-sHjdPj

2

2
DHj8 + f9sHdPjPj8 +

t

r jr
Hj9 −

Pj9

r
+ gs− 1d j+1G0sr,r jd,Hk8L

+ 2eps− 1d j+1r j f8sud Hk8 + ePk8 + Ose4d s3.11d

=2pe3rkHd jkE
R
FS f9sHkdQk +

f-sHkdPk
2

2 DHk8 + f9sHkdPkPk8 +
tHk9

rk
2 −

Pk9

rk
GHk8dt

+ gs− 1dk+1G0srk,r jdJ + 4e2ps− 1dk+jr jrkf8sud + Ose4d. s3.12d

ote that we have again used(3.3) and(3.4) to reach(3.11), and used(3.5) to reach(3.12). To find
he integral in(3.12), we differentiate(2.25) to obtain

− Qk- + f8sHkdQk8 + f9sHkdHkQk −
Pk9

rk
+

Hk8 + tHk9

rk
2 +

f-sHkdHk8Pk
2

2
+ f9sHkdPkPk8 + gv8srkd = 0.

ultiplying by Hk8 and integrating overs−` ,`d yield

E
R
F f9sHkdQksHk8d

2 −
Pk9 Hk8

rk
+

sHk8d
2 + tHk9Hk8

rk
2 +

f-sHkdPk
2sHk8d

2

2
+ f9sHkdPkPk8Hk8G dt

+ s− 1dk+1gv8srkd = 0.
he integral in(3.12) now becomes
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−
1

rk
2E

R

sH8d2dt + s− 1dkgv8srkd.

h

With Lemma 3.3 we will write(3.10) in the vector form. We viewc=sc1,c2,¯ ,cKdT as a
olumn vector inRK. Let R be aK by K rank one matrix:

R = 2f8sud3
r1 − r2 r3 − r4 ¯ s− 1d1+krK

− r1 r2 − r3 r4 ¯ s− 1d2+krK

r1 − r2 r3 − r4 ¯ s− 1d3+krK

s− 1dK+1r1 s− 1dK+2r2 s− 1dK+3r3 s− 1dK+4r4 ¯ rK

4 , s3.13d

ndM be aK by K matrix whosekj entry is

Mkj = d jkS−
t

rk
2 + s− 1dkgv8srkdD + gs− 1dk+jG0srk,r jd.

In RK we define a nonstandard inner productg by

gsA,Bd = o
j=1

K

AjBjr j, A = sA1,A2, . . . ,AKdT, B = sB1,B2, . . . ,BKdT. s3.14d

he matricesR and M represent symmetric linear operators onRK with respect to this inne
roduct. The symmetry ofM underg is a consequence of the fact thatrkG0srk,r jd=r jG0sr j ,rkd. Let
enj be an orthonormal basis underg in which

e1 = Îr1 + r2 + ¯ + rKs− 1,1,− 1,1̄ ,s− 1dKdT. s3.15d

1 is an eigenvector vector ofR with eigenvalue 2f8sudsr1+r2+¯ +rKd .e2,e3,¯ ,eK span the
igenspace of the eigenvalue 0, which has multiplicityK21.

Now we rewrite(3.10) as

e2Rc + e3Mc + Ose3ugsc,e1dud + Ose4ucud + Ose2uluucud = etlc. s3.16d

n (3.16) ucu, the norm ofc, may be understood as either the norm under the standard inner p
r the norm underg, because the two norms are equivalent uniformly ine.

We must consider two cases:

s1d gS c

ucu
,e1Dy 0; s2d gS c

ucu
,e1D = os1d.

f course whenK=1, the second case does not occur.
In the first case we use a rough form of(3.16):

e2Rc + Ose3ucud + Ose2uluucud = etlc. s3.17d

ake theg-inner product of(3.17) ande1:

2e2f8sudSo
j=1

K

r jDgsc,e1d + Ose3ucud + Ose2uluucud = etlgsc,e1d. s3.18d
incegsc/ ucu ,e1dy0, (3.18) implies that
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l =
e

t
So

k=1

K

2rkf8sudD + Ose2d. s3.19d

his eigenvalue is positive for smalle and of ordere. Consequently(3.9) implies that

f' = Oseucud. s3.20d

f we take theg-inner product of(3.17) anden, nù2, then

gsc,end = Oseucud, n ù 2. s3.21d

he asymptotic properties ofl andf in the first case follows from(3.19)–(3.21).
In the second case we take theg-inner product of(3.16) anden, nù2, to deduce

e3gsMc,end + Ose3ugsc,e1dud + Ose4ucud + Ose2uluucud = etlgsc,end, n = 2,3, . . . ,K. s3.22d

ote thatgsc/ ucu ,e1d=os1d and (3.22) imply that l=Ose2d.
Then we take theg-inner product of(3.16) ande1:

2e2f8sudSo
j=1

K

r jDgsc,e1d + Ose3ucud + Ose3ugsc,e1dud + Ose2uluucud = etlgsc,e1d. s3.23d

3.23) andl=Ose2d imply that

gsc,e1d = Oseucud, s3.24d

hich turns(3.9) to

f' = Ose2ucud, s3.25d

nd (3.22) is simplified to

e3gsMc,end + Ose4ucud = etlgsc,end, n = 2,3, . . . ,K. s3.26d

We pass limit in (3.26) and (3.24). Let M 0= lime→0 M , R0= lime→0 R, g0= lime→0 g, ej
0

lime→0 ej, andm0
0= lime→0 l /e2, andc0= lime→0 c, whereuc0uÞ0. Then

g0sM 0c0,en
0d = m0

0tg0sc0,en
0d, sn = 2,3 . . . ,Kd, g0sc0,e1

0d = 0. s3.27d

he second equation implies that we can decomposec0 as

c0 = o
n=2

K

c̃n
0en

0. s3.28d

he first equation in(3.27) becomes

o
m=2

K

c̃m
0 g0sM 0em

0 ,en
0d = m0

0tc̃n
0, n = 2,3, . . . ,K. s3.29d

ere (3.29) is a K−1 dimensional eigenvalue problem from which we findK−1 pairs ofm0
0 and

c̃2
0, c̃3

0, . . . ,c̃K
0d. This proves the asymptotic properties ofl andf in the second case.

As we have explained in Sec. II that the construction ofu via the G-convergence theo
ssumes that(2.12) is positive definite inT. The paragraph after(2.12) shows that this conditio
2.14), is equivalent to the condition thatm0

0 in (3.29) are all positive. Hencel0 are all positive
hene is sufficiently small.

In summary, we have proven that ifsl0,f0d is an eigenpair of(2.30) with the propertyl0

os1d then l0 and f0 must possess the asymtotic properties described in Theorem 3.1. W

eed to show that there indeed exist exactlyK eigenparis of(2.30) with the properties. The proof
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f this fact uses some ideas from the linear perturbation theory. Not to prolong this sec
mit the proof. Instead we will give a full proof in the next section for themù1 case, which i
imilar to the one for them=0 case.

V. THE CRITICAL EIGENVALUES lm

Theorem 4.1:Whene is sufficiently small, there exist exactly K eigenparisslm,fmd of (2.31)
ith lm=os1d. Eachlm and fm have the asymptotic expansion

lm = e2mm
0 + ose2d,fm = o

j=1

K

cjsHJ8 + ePj8d + Ose2ucud.

m
0 and the limit c0= lime→0sc1,c2, . . . ,cKd form an eigenpair of the K-dimensional eigenva
roblem

H sm2 − 1dt
srk

0d2 + s− 1dkgsy0d8srk
0dJck

0 + go
j=1

K

s− 1dk+jGmsrk
0,r j

0dcj
0 = mm

0 tck
0, k = 1,2, . . . ,K.

Gm is defined after(2.31): Gmsr ,sd=Gmfds·−sdgsrd. More explicitly

Gmsr,sd =5S
s1−m

2m
+

s1+m

2m
Drm if r , s

s1+m

2m
srm + r−md if r ù s.

s4.1d

ote thatGmsr ,sd is not symmetric inr and s, althoughrGmsr ,sd is. So with respect tog0 the
atrix in theK dimensional eigenvalue problem represents a symmetric operator.

In the proof of Theorem 4.1 we writesl ,fd for slm,fmd for simplicity. We decompose
2sDd

fsrd = o
j=1

K

cjsHj8 + ePj8d + f', wheref' ' Hj8 + ePj8 s j = 1,2, . . . ,Kd. s4.2d

First we compute

LmHj8 = − e2sHj8drr −
e2

r
sHj8dr +

e2m2

r2 Hj8 + f8sudHj8 + egGmfHj8g

=sf8sud − f8sHjddHj8 −
e

r
Hj9 +

e2m2

r2 Hj8 + e2gs− 1d j+1Gmsr,r jd + Ose3d

=ef9sHjdPjHj8 + e2S f9sHjdQj +
f-sHjdPj

2

2
DHj8 −

e

r
Hj9 +

e2m2

r2 Hj8+ e2gs− 1d j+1Gmsr,r jd

+ Ose3d.

y differentiating(2.23) we have

− Pj- + f8sHjdPj8 + f9sHjdHj8Pj −
Hj9

r j
= 0.
hen
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LmPj8 = − e2sPj8drr −
e2

r
sPj8dr +

e2m2

r2 Pj8 + f8sudPj8 + egGmfPj8g

=sf8sud − f8sHjddPj8 − f9sHjdHj8Pj +
Hj9

r j
−

e

r
Pj9 + Ose2d

=ef9sHjdPjPj8 − f9sHjdHj8Pj +
Hj9

r j
−

e

r
Pj9 + Ose2d.

herefore,

LmsHj8 + ePj8d=e2FS f9sHjdQj +
f-sHjdPj

2

2
DHj8 + f9sHjdPjPj8 +

tHj9

r jr
+

m2Hj8

r2 −
Pj9

r

+ gs− 1d j+1Gmsr,r jdG + Ose3d. s4.3d

In particular,

LmsHj8 + ePj8d = Ose2d. s4.4d

ewrite the equationLmf=lf as

o
j=1

K

cjLmsHj8 + ePj8d + Lmf' = lSo
j=1

K

cjsHj8 + ePj8d + f'D . s4.5d

henf' satisfies

Lmf' = Ose2ducu + Osuludsucu + if'id.

Lemma 4.2: There exists C.0 independent ofe such that for all c'Hj8+ePj8 , j
1,2, . . . ,K , iciøCiLmci.

The proof of this lemma is similar to that of Lemma 3.2, so we omit it. We obtain by Le
.2 that

f' = Ose2ducu + Osuludsucu + if'id,

hich implies, sincel=os1d, that

f' = Ose2ducu + Osuluducu. s4.6d

We multiply (4.5) by Hk8+ePk8 and integrate with respect to 2pr dr over s0,1d. Then

o
j=1

K

kcjLmsHj8 + ePj8d,Hk8 + ePk8l + kf',LmsHk8 + ePk8dl = lo
j=1

K

cjkHj8 + ePj8,Hk8 + ePk8l,

hich, by (4.6) and (4.4), may be written as

o
j=1

K

cjkLmsHj8 + ePj8d,Hk8 + ePk8l + Ose4ducu + Ose2uluducu = lo
j=1

K

cjkHj8 + ePj8,Hk8 + ePk8l s4.7d

or k=1,2. . . ,K.
Lemma 4.3:In Eq. (4.7):

1) kHj8+ePj8 ,Hk8+ePk8l=2perktd jk+Ose2d,
3 2 2 k k+j 4
2) kLmsHj8+ePj8d ,Hk8+ePk8l=2pe rkhd jkfsm −1dt / rk+s−1d gv8srkdg+gs−1d Gmsrk,r jdj+Ose d.
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Proof: (1) is obvious. To prove(2) we note thatP8 decays exponentially fast. Then(4.3)
mplies that

kLmsHj8 + ePj8d,Hk8 + ePk8l = kLmsHj8 + ePj8d,Hk8l + Ose4d

=2pe3rkHd jkE
R
FS f9sHkdQk +

f-sHkdPk
2

2
DHk8 + f9sHkdPkPk8 +

tHk9

rk
2

+
m2Hk8

rk
2 −

Pk9

rk
GHk8dt + gs− 1dk+jGmsrk,r jdJ + Ose4d.

o find the integral in the last line we follow the argument used in the proof of Lemma 3.h

This lemma simplifies(4.7) to

S sm2 − 1dt
rk

2 + s− 1dkgv8srkdDck + go
j=1

K

s− 1dk+jGmsrk,r jdcj + Oseucud + OS uluucu
e

D =
tlck

e2 .

s4.8d

encel is of ordere2. (4.6) now becomes

f' = Ose2ucud. s4.9d

fter passing limit in(4.8) we deduce the asymptotic properties in Theorem 4.1 forl andf.
We have proved that ifslm,fmd is an eigenpair associated withm with l=os1d, then it mus

ave the asymptotic behavior described in Theorem 4.1. To complete the proof of the theo
roceed to show that there exist exactlyK simple eigenpairs of(2.31) with the properties.

Let F be the linear subspace spanned by critical eigenfunctions. It is defined unambig
y F=spanhfPL2s0,1d :Lmsfd=lf , ul u ,e1/2j. Since the critical eigenvalues ofLm are of orde
2,F includes all the critical eigenfunctions.

First dim F, the dimension ofF, is at mostK. Suppose that this is not the case. There exis
istinct eigenpairssl ,fd and sl8 ,f8d with the same asymptotic behavior. That is

l = e2h + ose2d, l8 = e2h + ose2d, f = o
j

cjsHj8 + ePj8d + c,

f8 = o
j

cj8sHj8 + ePj8d + c8, lim
e→0

cj = lim
e→0

cj8 = cj
0.

ut the two eigenfunctions must be orthogonal, so

0 = kf,f8l = 2epg0sc0,c0dE
−`

`

sH8stdd2dt + oseduc0u2.

his is obviously impossible whene is sufficiently small.
Next dim F is at leastK. Suppose otherwise that dimF,K. Define a subspace ofL2s0,1d:

=spanho jcj
0sHj8+ePj8dj, wherecj

0 are theK eigenvectors of theK-dimensional eigenvalue pro
em in the statement of the theorem. We use a perturbation argument. The asymmetric
etween the closed subspacesS andF is

dsS,Fd = suphdsw,Fd:w P S,iwi2 = 1j,

heredsx,Fd=infhix−yi2:yPFj. Since dimF,dim S, there existso jbj
0sHj8+ePj8dPS such tha

or every eigenvector inF which may be written aso jcjsHj8+ePj8d+c with ici=Ose2ucud,
0 0 0
sc/ ucu ,b / ub ud=os1d. Then straight calculations show that
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K o j
cjsHj8 + ePj8d + c

io j
cjsHj8 + ePj8d + ci

2

,
o j

bj
0sHj8 + ePj8d

io j
bj

0sHj8 + ePj8di2

L = os1d.

o if we usew=o jbj
0sHj8+ePj8d / io jbj

0sHj8+ePj8di2,dsw ,Fd=1−os1d anddsS,Fd=1−os1d. The fol-
owing lemma due to Helffer and Sjöstrand12 will give us a contradiction.

Lemma 4.4: Let L be a self-adjoint operator on a Hilbert space H, Q a compact interval i
−` ,`d and e1,e2, . . . ,eK normalized linearly independent elements in the domain of L. Assum
hat the following are true.

1) Lsekd=pkek+rk,irkiHøe8 and pkPQ,k=1,2, . . . ,K.
2) There isv.0 so that Q isv-isolated in the spectrum of L, i.e., sssLd \Qdù sQ+s−v ,vdd

=0” .

hen dsS,FdøK1/2e8 / svk1/2d, where S=spanhe1, . . . ,eKj F= the closed subspace associated
sLdùQ, and k= the smallest eigenvalue of the matrixfkej ,eklg.

Here we takeL=Lm, eachek is normalized and proportional too jcj
0sHj8+ePj8d for each one o

heK vectorsc0, andS, F as before.v andk are positive and bounded away from 0 ase→0. Se
pk=he2 andQ=f−e1/2,e1/2g. From (4.3) we find

LmSo
j

cj
0sHj8 + ePj8dD − pko

j

cj
0sHj8 + ePj8d = Ose2uc0ud,

nd on the other handio jcj
0sHj8+ePj8di2,e1/2uc0u. Therefore irki2=Ose3/2d, Consequentl

sS,Fd=os1d, a contradiction.

. THE CASES OF K =1 ANDK =2

We know from Theorem 1.1 that the spot solutionsK=1d exists for all g. However the
tability of the solution in two dimensions depends ong. For smalle, the spot solution is stable
is small and unstable ifg is large. More precisely we have

Theorem 5.1:Let K=1. There existsĝ.0 such that whengP s0,ĝd there existsê such tha
or everyeP s0,êd all lm.0, i.e., the spot solution u is stable. On the other hand ifg.ĝ, there
xist ẽ.0 and mù2 such that for alleP s0,ẽd ,lm,0, i.e.,u is unstable.

Proof: Theorem 3.1 shows that whenK=1, there is only onel0 with the propertyl=os1d.
his l0 is positive and of ordere for all g if e is sufficiently small.

Whenm=1, in Theorem 4.1:

gh− sy0d8sr1
0d + G1sr1

0,r1
0dj = m1

0t. s5.1d

ccording to (4.1), G1sr1
0,r1

0d=ssr1
0d3+r1

0d /2. WhenK=1,a=1−sr1
0d2 by (2.7) and sy0d8sr1

0d=sr1
0

sr1
0d3d /2 by solving the equation

− sy0d9 −
1

r
sy0d8 = u0 − a, sy0d8s0d = sy0d8s1d = 0.

hereforem1
0=gsr1

0d3/t.0 andl1.0.
Whenmù2, let K=1 in Theorem 4.1:

sm2 − 1dt
sr1

0d2 + gH sr1
0d3 − r1

0

2
+

sr1
0d2m+1 + r1

0

2m
J = mm

0 t. s5.2d

learly wheng is small, the first term on the left side dominates andmm
0 is positive for allm

2. On the other hand we find that the quantity in the braces is negative ifm is sufficiently large
ixing suchm and takingg large enough, we find that the entire left-hand side of(5.2) become
egative. h

ˆ
The borderline valueg for g can be calculated easily from(5.2) in two steps.
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1) For each integermù2 find ĝm by setting the right-hand side of(5.2) to be 0 and solving th
equation forg. If the resultingĝm is less than or equal to 0, this modem does not yield a zer
eigenvalue. Discard suchĝm.

2) Minimize the ĝm’s from the last step with respect tomù2. The minimum isĝ, achieved a
m=m̂ wherelm̂, the principal eigenvalue, vanishes up to ordere2.

he valuesĝ for severala are reported in Table I. Curiously whena=1/2 theborderlineĝ occurs
t two modesm̂=3 andm̂=4. In this case ifg= ĝ bothl3 andl4 are of orderose2d while the othe

m’ ssmù2d are positive and,e2.
One gains more insight into the diblock copolymer equation by comparing with the C

illiard equation, which is(1.6) with g=0. The Cahn–Hilliard equation also has a spot solu
ts critical eigenvalues are again classified intolm for non-negative integersm. If we formally se
=0 in Theorem 3.1 and(5.2) it appears that for the Cahn–Hilliard equationl0 is positive and o
rdere, andlm with mù2 is also positive and of ordere2. From (5.1) with g=0, one thinks tha
p to ordere2, l1 vanishes. These statements are actually all correct, although the exact v

1 is negative, and the spot solution is unstable in the Cahn–Hilliard problem. Therefore Th
.1 does not cover the Cahn–Hilliard equation. Nevertheless the distance betweenl1 and 0 is
xponentially small there and is not visible in(5.1). The smallness ofl1 is related to the phenom
non of the slow motion of a bubble profile in a general domain(see Alikakos and Fusco,2,3

ard,37 and Alikakos, Bronsard and Fusco1). One may feel uneasy about the abrupt change
egativel1 to positivel1 as we add a nonlocal term with a smallg. This is a result of our settin
f fixing g while takinge small. To find the threshold wherel1=0 one must takeg to vary with
. We suspect that a borderline lies whereg is exponentially small compared toe.

When we further increaseg, we reach the second threshold where one oflm with mù2
ecomes 0. Beyond this criticalg value the spot solution is unstable. It no longer has en
scillation demanded by the stronger nonlocal term now. Note that the first stability thr
ccurs because ofl1 which is related to the translation of the spot, while the second thre
ccurs because of somelm with mù2 which is related to the oscillation of the boundary of
pot.

The situation is more complex whenKù2, because the existence ofu is conditional. Accord
ng to Theorem 2.2, we haveu if (2.12) is positive definite inT. This condition requires tw
hings. First(2.10) must have a solutionr 0. From thisr 0 we constructUs· ;r 0d, Vs· ;r 0d, g0, ej

0, and
nally the matrixM 0. The second requirement is that the eigenvalues of theK−1 by K−1 matrix
0sM 0en

0,em
0 d ,n,m=2,3, . . . ,K, in Theorem 3.1 must all be positive. When these two requirem

re met,u exists and its stability in two dimensions is determined by the eigenvalueslm, mù1.
heir leading order approximationsmm

0 are calculated from theK by K matrix in Theorem 4.1.
The determination ofr 0 and the analysis of the matrices have to be done numerically.

xample we considerK=2. Let a=1/2, t=Î2/12, and try various values ofg. Instead of consid
ringq1 andq2 under the constraint −q1

2+q2
2=a, we lety=q1

2 andq2=Îy+a. Then as done in Re
5, J may be treated as a function, ofy without constraint,Jsyd=Jsq1syd ,q2sydd.

According to Sec. II for giveny we findq1 andq2, Us· ;q1,q2d, Vs· ;q1,q2d, andJsyd. Wheng
s small, e.g.,g=1, J is increasing iny, Fig. 4(1), and(2.10) has no solution.

When g is increased to 25,J has a critical point aty=0.0802, Fig. 4(2), i.e., (2.10) has a
0 0 0 0 0 0

ABLE I. The value ofĝ for variousa and the corresponding modem̂ of the principal eigenvaluelm̂ which varnishes u
o ordere2. Heret=Î2/12.

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m̂ 19 9 6 4 3, 4 3 2 2 2
ĝ 2468.56 356.23 123.86 64.69 42.67 30.38 27.76 28.23 56
olutionr =s0.2832,0.7616d. We calculate gsM e2,e2d which turns out to be positive. Hencem0
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s positive,y=0.0802 is a local minimum ofJ, and a solutionu exists. Then we compute t
igenvaluesmm

0 of the matrix in Theorem 4.1. They are all positive, Table II. Sou is a stable
olution in two dimensions.

Wheng is further increased to 200,J has a critical point aty=0.1841, Fig. 4(3), correspond
ng to r 0=s0.4290,0.8271d, g0sM 0e2

0,e2
0d is positive, so a solutionu exists. However som

m
0 smù1d are negative, Table III. Henceu is unstable in two dimensions.

There is something interesting in Fig. 4(2) and(3). If we blow them up neary=0, Fig. 5, then
n each case we find a localmaximumneary=0. This is because thatJsyd is increasing iny near
y=0 and neary=1−a. So whenever there is a local minimum, there must be a local max
efore the local minimum. This local maximum gives rise to a solutionr̂ 0 of (2.10). However we
annot use theG-convergence theory to find a solution of(1.6) nearUs· ;r̂ 0d. We conjecture tha
uch a solution exists.

When the critical eigenvalues of a spot or a ring solution, determined from Theorems 3
.1, are nonzero, we may expect to have a similar solution of(1.6) on a slightly perturbed domai
owever finding solutions of(1.6) on a general domainV,RN is rather difficult. It was noted i
ef. 19 that(1.6) has a singular limit ase→0. One looks for a functionu0PBVsVd defined suc

hat for a.e.xPV , u0sxd=0 or u0sxd=1 andu0̄=a. Let S be the union of the hypersurfaces t
eparate the regionsu0=0 from the regionsu0=1, andv0=s−Dd−1su0−ad. Then one requires th
t everyxPS,

tksxd + gv0sxd = h, s5.3d

here ksxd is the mean curvature ofS at x viewed from theu0=1 side, andh is a Lagrang
ultiplier to be determined. If the free boundary problem(5.3) admits an isolated stable solut

0, then nearu0, in the L2sVd sense, there exists a local minimizer solutionu of (1.6) by the
-convergence theory. However(5.3) is a challenging nonlocal geometric problem. Even tho
ig. 1(2) and (3) suggest we look for solutions with multiple spots,(5.3) implies that for such
olution the curvature of the boundary of a spot is in general not constant(there is the impact o
0), i.e., the spots are not exactly round, unless we deal with the one spot or the ring solu
disk as in this paper. Nevertheless if we consider the situation wherea is close to 0(or 1), then

TABLE II. mm
0 wheng=25. Herer 0=s0.2832,0.7616d.

m0
0 m1

0 m2
0 m3

0 m4
0 m5

0 m6
0 m7

0 m8
0 m9

0 m10
0

14.90 8.15 27.80 16.73 19.11 29.36 45.07 65.30 89.59 117.70 149.52
107.71 39.65 94.79 179.58 290.33 426.53 587.96 774.51 986.13 1222.77

IG. 4. (1) When g=1, Jsyd is increasing iny. No r 0 exists.(2) When g=25, a local minimum ofJsyd appears andr 0

xists. TheK=2 ring solution is stable.(3) Wheng=200,r 0 still exists, but theK=2 ring solution is unstable. In all thr
asesa=1/2 andt=Î2/12.
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0 is near constant throughoutV and hencek becomes close to a constant and the spot
pproximately round. The cylindrical and spherical phases in Fig. 1 are thus heuristica
lained. Note that in the singular limit of the Cahn–Hilliard equation, which is(5.3) without the
v0sxd term, k is constant.
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PPENDIX: PROOF OF LEMMA 2.3

Sinceh= fsud, we obtain a rough estimate forh,

uhu = ufsudu ø CSE
D

WsuddxD1/2

= Ose1/2d, sA1d

ince Isud=Osed. uuuu u2=Os1d implies thatuuv u u2,2=Os1d and in particularv=Os1d. A maximum
rinciple argument shows that

− Ose1/2d = − sOsed + Osuhudd ø u ø 1 + Osed + Osuhud = 1 +Ose1/2d. sA2d

In the G-convergence theoryu satisfiesu→u0 in L2sDd and sepd−1Isud→Jsu0d.25 The factu
u0 in L2sDd implies the existence ofr j whereusr jd=1/2 andthat r j → r j

0 for j =1,2, . . . ,K. We
onstruct a preliminary approximationh of u,

hsrd = HS r − r1

e
D + FHS−

r − r2

e
D − 1G + HS r − r3

e
D + FHS−

r − r4

e
D − 1G + ¯ ,r P sr1,1d,

nd letd=u−h.
If we considerh on sr1,1d, the argument in Proposition 8.2(Ref. 26) shows thatd=os1d on

r1,1g. Next we improve(A1) to

TABLE III. mm
0 wheng=200. Herer 0=s0.4290,0.8271d.

m0
0 m1

0 m2
0 m3

0 m4
0 m5

0 m6
0 m7

0 m8
0 m9

0 m10
0

135.39 48.34 −5.03 −21.81 −10.89 19.86 18.00 15.40 21.97 35.43 54.42
1220.57 384.95 163.82 75.22 35.73 68.85 130.74 205.72 293.01 392.18

FIG. 5. (1) The enlarged Fig. 4(2) neary=0. (2) The enlarged Fig. 4(3) neary=0.
                                                                                                            



a

N

o
e

T arts to
t

w

s
s
i

H
+
H

C
e

t t
u
s on
8
=

H
i

J. Math. Phys., Vol. 45, No. 11, November 2004 Stability of spot and ring solutions 4129

                        
h = Osed, sA3d

nd show that

d = Osed in fr1,1g. sA4d

ote thatd=u−h satisfies the equation

− e2drr + f8shdd + Osuuduu2d + Osed = h, dsr jd = 0 s j = 1,2, . . . ,Kd, d8s1d = 0

n sr1,1d. Then d=Ose+ uh u d in fr1,1g. Now we use an idea of Pohozaev.22 Multiply the first
quation of(1.8) by r2ur and integrate with respect todr on (0, 1). Then

E
0

1

f− e2srurdrsrurd + r2fsudur + egr2vurgdr = hE
0

1

r2urdr.

he first term on the left-hand side becomes 0 after integration. Applying integration by p
he second and third terms on the left-hand side and the right-hand side shows that

ur2Wsudur=0
r=1 − 2E

0

1

uWsudr dr + egr2vuur=0
r=1 − egE

0

1

usr2vdrdr = hsur2uur=0
r=1 − 2E

0

1

u rdrd,

hich is simplified to

Wsus1dd −
1

p
E

D

Wsuddx+ Osed = hsus1d − ad

inceegvs1dus1d=Osed andege0
1usr2vdrdr=Osed. The integral in the last equation is of orderOsed

ince it is a part ofIsud andIsud=Osed by sepd−1Isud→Jsu0d. Moreoverus1d→0 or 1 to whicha
s not equal, so the last equation reads

h = Osed + OsWsus1ddd.

owever d=Ose+ uh u d on fr1,1g proved earlier implies thatus1d=Ose+ uh u d or us1d=1+Ose
uh u d. Then Wsus1dd=WsOse+ uh u dd=Osse+ uh u d2d, or Wsus1dd=Ws1+Ose+ uh u dd=Osse+ uh u d2d.
ence we derive

h = Osed + Osse + uhud2d, i.e., h = Osed.

onsequentlyd=Osed in fr1,1g.
Now we consideru, h, andd on s0,r1d. We proceed to show thatd=os1d on s0,r1d. Suppos

hat this is false. Then there exist a smalld.0, independent ofe, and r* P f0,r1d such tha
dsr*d u =d and udsrd u ,d if r P sr* ,r1d. d is so small that 0 is the only critical point ofW in
−d ,dd. Sinceuset+r1d→Hstd in Cloc

2 sRd, sr1−r*d /e→`. Moreover the argument in Propositi
.2 Ref. 26 shows thatr* =os1d. There are two cases left:(1) r* /e→` and r* =os1d, and (2) r*

Osed.
In the first case we multiply the first equation of(1.8) by ur and integrate with respect todr:

−E
0

1 e2

r
ur

2 dr + Wsus1dd − Wsus0dd + egE
0

1

vur dr = hsus1d − us0dd.

ereWsus1dd is of orderOse2d by (A4). The right-hand side is of orderOsed by (A3). ege0
1vur dr
s of orderOsed after integration by parts. Hence
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E
0

1 e2

r
ur

2 dr + Wsus0dd = Osed.

inceWsus0ddù0,

E
0

1 e2

r
ur

2 dr = Osed. sA5d

n the other hand if we scaleu at r* so thatUstd : =usr* +etd→Hstd locally in C2, then

E
0

1 e2

r
ur

2 dr =
e

r*
E

−r* /e

s1−r* d/e 1

1 + set + r*d
sU8d2 dt ù

e

r*
SE

R

sH8d2 dt + os1dD . sA6d

owever(A5) and (A6) are inconsistent ifr* =os1d.
In the second case we scaleu so thatUstd : =usetd→U0std locally in C2 and

− Utt
0 −

Ut
0

t
+ fsU0d = 0 in R, U0s`d = 1, uuU0uu ø 1.

oreoverUsr* /ed→d. We multiply the equation forU0 by Ut
0 and integrate with respect todt

ver s0,`d. Then

− WsU0s0dd −E
0

` sUt
0d2

t
dt = 0,

hich implies thatU0;0 or U0;1. Neither case is consistent withUsr* /ed→dP s0,1d.
We have shown thatd=u−h=os1d on (0,1). In particular we know that there are exactlyK

nterfacesr1,r2, . . . ,rK. Now we consider the more accurate approximationw of u defined in Sec
I. We call sr j −ea ,r j +ead an inner region,s0,1d \ sUj=1

K sr j −2ea ,r j +2eadd the outer region, an
r j −2ea ,r j −ead and sr j +ea ,r j +2ead matching regions. Recall thataP s1/2,1d.

In the inner and matching regions, using(2.22), (2.23), and(2.25) we find that

− e2Dzj + fszjd = − e2DsHj + ePj + e2Qjd + fsHj + ePj + e2Qjd

=− F fsHjd + eSHj8

r
+ f8sHjdPj −

Hj8

r j
+ j jD+ e2SPj8

r
+ f8sHjdQj −

Pj8

r j
+

tHj8

r j
2

+
f9sHjdPj

2

2
+ gv8sr jdtDG+ fsHjd + ef8sHjdPj + e2S f9sHjdPj

2

2
+ f8sHjdQjD + Ose3d

=ej j − e2gv8sr jdt +
e2t

r j
S1

r
−

1

r j
DHj8 + e3tPj8

r jr
+ Ose3d = ej j − e2gv8sr jdt + Ose3d.

herefore

− e2Dzj + fszjd + egv − h = ej j + egvsr jd − h + Ose3t2d + Ose3d=s j + Ose1+2ad, sA7d

here we have defined

s j = ej j + egvsr jd − h. sA8d

By (A3) implicit differentiation of (2.27) andv9=Os1d yield that

− e2Dz+ fszd + egv − h = − e2Dz= Ose3d, sA9d
hich is valid ons0.1d \ hr1,r2, . . . ,rKj.
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We now estimate the difference ofzj andz on a matching region. First using(2.23) and(2.25)
e find

e2Dzj = Ose3d.

hen (A7) implies that

fszjd + egv − h = s j + Ose1+2ad.

omparing this to(2.27) we deduce that

zj − z= Osus jud + Ose1+2ad sA10d

n the matching regionssr j −2ea ,r j −ead andsr j +ea ,r j +2ead. Then we considerw in the matching
egion. Here by(A10)

− e2Dw + fswd + egv − h = − e2Dw + fszd + egv − h + Osizj − z i d

=− e2Dw + Osus jud + Ose1+2ad

=− e2Dz− e2Dsx jszj − zdd + Osus jud + Ose1+2ad

=− e2ssx jdrrszj − zd + 2sx jdrszj − zdr + x jszj − zdrrd

−
e2

r
ssx jdrszj − zd + x jszj − zdrd+ Osus jud + Ose1+2ad

=Osus jud + Ose1+2ad + Ose3−ad. sA11d

f we let g=u−w, then(A7), (A9), and(A11) imply that

− e2Dg + f8swdg + Osigi2d = 5− s j + Ose1+2ad in an inner region

Osusud + Ose1+2ad + Ose3−ad in a matching region

Ose3d in the outer region.

sA12d

e deduce from(A12) andgsr jd=0 that

g = Osus jud + Ose1+2ad + Ose3−ad. sA13d

On the other hand, if we multiply(A12) by Hj8 and integrate with respect tor dr on (0,1), then

E
0

1

f− e2srgrdrHj8 + f8swdgHj8rgdr + Oseigi2d = s− 1d jes jr j + Ose2us jud + Ose2+2ad.

ut the integral on the left-hand side after integration by parts becomes

E
0

1

f− egHj9 + sf8swd − f8sHjddgHj8rgdr = Ose2 i g i d,

rom which we conclude that

s j = Ose i g i d + Osiguu2d + Ose1+2ad. sA14d
Inserting(A14) into (A13) we find that
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g = Ose1+2ad + Ose3−ad; sA15d

ubstituting(A15) into (A14) we deduce that

s j = Ose1+2ad. sA16d

inceaP s1/2,1d, (A15) implies thatg=ose2d.
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In this paper we prove an extension of the Avez–Seifert theorem to the relativistic
Lorentz force equation. LetsM ,gd be a globally hyperbolic space–time,F an exact

2-form onM representing the electromagnetic field,F̂ the Lorentz force associated
to F, andq a charge for a test particle. Letp0 andp1 be two chronologically related
points onM, then there exists a future-pointing timelike solution of the Lorentz

force equationDsż=qF̂szdfżg, connectingp0 andp1. © 2004 American Institute of
Physics.[DOI: 10.1063/1.1782673]

. INTRODUCTION

The Avez and Seifert theorem is the first classical result in Global Lorentzian Geomet
efs. 1, 2, and 7. It can be considered as the extension to globally hyperbolic space–time
opf–Rinow Theorem in Riemannian Geometry, stating that any couple of points in a co
iemannian manifold are joined by a minimizing geodesic. It states that on a globally hyp
pace–timesM ,gd, any two causally related pointsp0 andp1 on M are connected by(at least) one
uture-pointing causal maximizing geodesic. In particular, ifp0 andp1 are chronologically relate
hen there exists a timelike future-pointing geodesic connectingp0 andp1.

This result has a clear geometric meaning but its importance comes from General Re
ndeed lightlike and timelike geodesics on a space–time represent, respectively, the trajec
ight rays and of freely falling particles(i.e., particles subjected only to the gravitational field).

Our aim in this paper is to extend the above result to the trajectories of charged particle
he action of gravitational and electromagnetic fields.

Let sM ,gd be a space–time, letLksMd, kP h1,2,3,4j, be the fiber bundle ofk-forms and
onsider the differential operator d:LksMd→Lk+1sMd and the Hodge operator* :LksMd

L4−ksMd acting on differential forms on the manifoldM. An electromagnetic field Fon the
pace–timesM ,gd, is a smooth 2-form onM satisfying the Maxwell equations of the electrom
etism; see, for instance, Refs. 4 and 6,

dF = 0,

dsF*d = 4pJ* ,

hereJ is a smooth 1-form onM called thecharge-current density. In particular the first Maxwe
quation means that the 2-formF is closed.

TheLorentz forceassociated to the electromagnetic field is the mapF̂ on TM defined for an

PM as F̂szd :TzM→TzM and

)Electronic mail: caponio@poliba.it
)
Electronic mail: masiello@poliba.it
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gszdfv,F̂szdfwgg = Fszdfv,wg. s1d

hus for everyzPM, F̂szd is a linear map onTzM and, in local coordinates, the components oF̂

re given byF̂j
i =gikFkj, wheregik is the inverse matrix of the metric tensorgij .

The Lorentz force equation governing the motion of a particle with chargeq is (cf. Ref. 6)

Dsż= qF̂szdfżg, s2d

hereDsż is the covariant derivative ofż alongzssd associated to the Levi–Civita connection
We will assume thatF is exact and we will denote byv a potential formfor F, that is dv

F. Since the electromagnetic fieldF is exact, Eq.(2) is the Euler–Lagrange equation of
unctional

1

2
E sgszdfż,żg + qvszdfżgdds, s3d

herev is a potential form of the electromagnetic fieldF.
Before stating our main result, we shortly recall some basic notions about causality(for details

ee Ref. 2).
The causality relationson M are defined as follows. Letp0 p1PM; we call p0 andp1 chro-

ologically relatedand we writep0!p1, if there is a smooth future-pointing timelike curve fr
p0 to p1. Furthermore, we sayp0 and p1 are causally relatedand we writep0øp1, if either p0

p1 or there is a future-pointing(hence nowhere vanishing) causal curve fromp0 to p1.
Let g:ba,bv→M be a curve onM. A point pPM is said to be theend point ofg correspondin

o s=b if lim s→b−gssd=p. If g is a future-pointing(respectively, past-pointing) causal curve wit
nd pointp corresponding tos=b, the pointp is called afuture (respectively,past) end pointof g.
causal curve is said to befuture inextendible(respectively,past inextendible, inextendible) if it

as no future(respectively, past, nor future neither past) end point.
A Cauchy surface Sis a subset ofM such that every inextendible causal curve meetsSexactly

nce. A Lorentzian manifoldM is said to beglobally hyperbolicif M admits a Cauchy surfac
he main result of this paper is stated in the following theorem.

Theorem 1:Let sM ,gd be a globally hyperbolic space–time, endowed with an exact2-form F,
p0,p1 two points on M, p0!p1. Then for any qPR there exists a timelike future-pointing solut
f Eq. (2), connecting p0 and p1.

The theorem will be proved by using a five-dimensionals5-Dd Kaluza–Klein framework
aluza–Klein theories have been developed in the last century as attempts to build up a
pproach to the fundamental interactions. They are based on a higher-dimensional geom

he 4-D geometry of Einstein relativistic gravity theory(see Ref. 5 for a survey about Kaluz
lein theories).

According to the Kaluza–Klein framework, we will consider the 5-D manifoldM =M 3R,
ndowed with the Lorentzian metric,

k = g + sdy + vd2, s4d

herey is the canonical coordinate onR. It is well known (see, for instance, Ref. 3) that the
rojection onM of any timelike geodesicg of sM ,kd represents a trajectory for test partic
ubjected to the action of the external fieldv.

The chargeq0 of the particle is determined by the constant of the motion(coming from the
act that the vector field]y on M is a Killing field for the metrick):

ksgdfġ,]yg = const; q0. s5d

n any Lorentzian manifoldsN,hd, the timelike geodesicsg=gssd connecting two pointsp0 and

p1 on N can be characterized as the critical points of theenergy functional,
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1

2
E hsgdfġ,ġgds,

n the set of the piecewise smooth timelike curves joiningp0 andp1. In the case of the Kaluza
lein metric (4), the Euler–Lagrange equations of the energy functional(i.e., the geodesic equ

ions) are

Dsż= sẏ + vszdfżgdF̂szdfżg,

ẏ + vszdfżg = const. s6d

rom (2) and (6), we see thatẏ+vszdfżg plays effectively the role of the charge of the part
oving along the trajectoryz=zssd.

Thus in order to establish the existence of timelike connecting trajectories for charg
icles onM, we may study the existence of the timelike connecting geodesic onM.

In Sec. II we will show that ifsM ,gd is globally hyperbolic thensM ,kd is as well. The Ave
nd Seifert Theorem provides the existence of a timelike geodesicz for the 5-D Kaluza–Klein
anifold, connecting two chronologically related points onM. Thus we gain the existence o

imelike connecting trajectoryz=pMszd (pM is the canonical projection onM) for a particle
arrying a chargeq0, which depends on the 5-D timelike geodesicz. If q0Þ0 we can reparam
trize the curvez, considering the new mapcssd=z(sq/q0ds), whereq is the fixed test charge. T
apc solves Eq.(2), in fact,

Dċssdċssd = S q

q0
D2

Dżssq/q0dsdżS q

q0
sD = S q

q0
D2

q0F̂SzS q

q0
sDDFżS q

q0
sDG = qF̂scssddfċssdg.

inally an analysis based on the relations between causality on the 4-D space-timesM ,gd and the
-D space-timesM ,kd, allows us to prove the existence of a 5-D future-pointing timelike
ecting geodesic having a constant of the motionq0Þ0 (in other words a 5-D future-pointin

imelike geodesicz, such that its projection onM is not a 4-D geodesic).

I. KALUZA–KLEIN METRICS

Let sM ,gd be a space–time[i.e., sM ,gd is a smooth time-oriented Lorentzian manifold] andv
smooth 1-form onM. The Kaluza-Klein metrick associated tosM ,g,vd is defined onM =M
R as follows:

kszdfsz,hd,sz8,h8dg = gszdfz,z8g + sh + vszdfzgdsh8 + vszdfz8gd, s7d

or all z;sz,ydPM, and for allsz ,hd ,sz8 ,h8dPTzM ;TzM 3R (throughout the paper bold sy
ols will refer to 5-D manifoldM).

Consider the canonical projections mapspM :M →M, pR :M →R and denote bypM
* andpR

*

he corresponding pullback maps. From(7) we see thatk is given by

k = pM
* sgd + fpR

* sdyd + pM
* svdg ^ fpR

* sdyd + pM
* svdg. s8d

Proposition 2:k is a symmetric nondegenerate bilinear form.
Proof: k is clearly symmetric and bilinear. In order to prove thatkszd is nondegenerate, f

ny z in M, let z;sz ,hdPTzM be such that for anyz8;sz8 ,h8dPTzM:

kszdfz,z8g = gszdfz,z8g + sh + vszdfzgdsh8 + vszdfz8gd = 0.

hoosingz8;s0,1d, we obtain

0 = kszdfsz,hd,s0,1dg = sh + vszdfzgd. s9d
n the other hand, for anyz8PTzM:
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0 = kszdfsz,hd,sz8,0dg = gszdfz,z8g + sh + vszdfzgdvszdfz8g. s10d

rom (9) and(10) we deduce thatgszdfz ,z8g=0, for anyz8PTzM. Thus it resultsz=0 and, from
9), h=0 too. h

Proposition 3:k is a Lorentzian metric.
Proof: We will show that for anyzPM, kszd has index 1. Indeedk is positive definite on an

ubspaceF,TzM of the formF=F03 h0j, with F0 spacelike with respect tog. On the subspac
panned by the vectors0,1dPTzM, it results that

kszdfs0,ld,s0,ldg = l2 . 0.

ow let zPTzM be a timelike vector with respect tog and for anylPR consider the vectorz
sz ,ldPTzM. It results that

kszdfsz,ld,sz,ldg = gszdfz,z8g + sl + vszdfzgd2 = l2 + 2vszdfzgl + gszdfz,zg + svszdfzgd2.

s11d

rom (11) we see that there exist two real numbersl1 and l2 such that, for anylP bl1,l2v,
szdfsz ,ld ,sz ,ldg,0, that is the vectorsz ,ld is timelike andkszd has index 1. h

Let V be a timelike vector field onM which gives a time-orientation toM (i.e., V is continu-
us and timelike). Then consider the vector fieldV=sV,−vfVgd on M. ClearlyV is continuous an
imelike with respect tok. Thus we can state the following.

Proposition 4:sM ,kd is time-oriented.
It is natural to consider if causality conditions satisfied bysM ,gd are preserved bysM ,kd.
Proposition 5: Assume thatz=zssd is a smooth timelike (causal) future-pointing curve onM.

Then zssd=pMszssdd is a smooth timelike (causal) future-pointing curve on M.
Proof: Clearly z is a smooth curve onM. Let y=yssd be the functionyssd=pRszssdd. From

0 . kszdfż,żg = gszdfż,żg + sẏ + vszdfżgd2,

e have thatgszdfż, żg,0, that isz is timelike. Since

kszdfż,Vszdg = gszdfż,Vszdg,

ndkszdfż,Vszdg,0, z is future-pointing. h

Another result about causality is the following.
Proposition 6: If sM ,gd is globally hyperbolic, thensM ,kd is globally hyperbolic.
Proof: Let S be a Cauchy surface forM. We will prove thatS=S3R is a Cauchy surface f

M =M 3R. By contradiction assume that there exists an inextendible smooth future-p
causal curvez:ba,bv→M s−`øa,bø +`d, which does not intersectS. Consider zssd
=pMszssdd. Clearly z does not intersectS otherwisez would meetS. By Proposition 5,z is a
mooth future-pointing causal curve onM and, beingS a Cauchy surface forM, we deduce thatz
ust be extendible. So letp be a future end point forz corresponding tos=b. Now sincez is

ausal we deduce that

uẏ + vszdfżgu ø Î− gszdfż,żg,

nd, integrating fromc.a to d,b, we get

E
c

d

uẏ + vszdfżgudsø E
c

d
Î− gszdfż,żgds. s12d

Now consider the Lorentzian distance functiond on M associated to the metricg. SinceM is
lobally hyperbolic andz is causal, the right-hand side of(12) is less thandszscd ,zsddd, +`. As
has future end pointp corresponding tos=b, it results thatdszscd ,pd, +`. So there exists th

−
imit as d→b of the right-hand side of(12). Therefore the left-hand side of(12) has a finite limit
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sd→b−. Now consider the termec
d vszdfżgds. It is well known that, for anyqPM there exists

eighborhoodUq,M of q and a coordinate systemw=sx1,x2,x3,td on Uq such thatV=]t and

q=S3 ba1,b1v, whereS is a spacelike hypersurface parametrized byx1,x2,x3. Moreover in the
oordinate systemx=sx1,x2,x3dPS and tP ba1,b1v the metricg is given by

gsx,tdfsj,td,sj,tdg = kasx,tdj,jl + 2kdsx,td,jlt − bsx,tdt2,

heresj ,tdPTxS3R, k· , ·l is the restriction ofg to S, a is a smooth, symmetric positive defin
perator,d is a smooth vector field onUq andb is a smooth, positive real function onUq. Pick a
oordinate systemsUp,wd as above for the future end pointp. Without loss of generality we ca
ssume thatzscdPUp and zsddPUp, for any c,døb. Denotezssd by sxssd ,tssdd for any s
bc,bb. Sincez is causal, we have

kasx,tdẋ,ẋl + 2kdsx,td,ẋlṫ ø bsx,tdṫ2. s13d

oreover asz is future-pointing,ṫssdÞ0 on bc,bv, thustssd is strictly monotone onbc,bv. Since
szssdd is a linear form onTzssdM, it results that

uv„zssd…fżssdgu ø C„zssd…Îka„xssd,tssd…ẋssd,ẋssdl + bsxssd,tssddṫssd2,

or any sP bc,bb. But the fieldv(zssd) is continuous onbc,bb, so the positive functionC(zssd) is
niformly bounded onbc,bb. Thus, by(13), we have

E
c

d

uvszdfżgudsø C1E
c

d
Îkasx,tdẋ,ẋl + bsx,tdṫ2dsø C2E

c

d

uṫuds= ± Cstsdd − tscdd.

assing to the limit asd→b−, we conclude thatuvszdfżgu is integrable onbc,bb. As

lim
d→b−

E
c

d

„ẏ − vszdfżg…dsP R,

e conclude that

lim
d→b−

ysdd − yscd = lim
d→b−

E
c

d

ẏdsP R.

et ȳ=limd→b−ysdd. Clearly the pointsp, ȳdPM is a future end point forz corresponding tos
b. This fact yields the desired contradiction. Now assume that an inextendible smooth
ointing causal curvez meetsS at least twice. So the maximal causal future-pointing extensi
ssd=pMszssdd meetsS at least two times. This contradiction concludes the proof. h

II. PROOF OF THEOREM 1

Let us consider the setTp0,p1
of the smooth future-pointing timelike curvesz: v0,1b→M on

M ,gd, such thatzs0d=p0 andzs1d=p1.
Lemma 7: LetsM ,gd be globally hyperbolic and p0!p1. Then

sup
zPTp0,p1

E
0

1

uvszdfżguds, + `. s14d

Proof: Denote byD the quantity supzPTp0,p1
e0

1uvszdfżguds and lethznjnPN,Tp0,p1
be a sequenc
uch that
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E
0

1

uvszndfżnguds→ D.

incesM ,gd is globally hyperbolic, we can extract a subsequence, denoted byzn too, such thatzn

onverges to a continuous curvez: v0,1b→M in theC0 topology of curves(see Ref. 2, Corollar
.32 and Proposition 3.34). Coverz by a finite number of coordinate neighborhoodshUkj1økøm of

he same type as in the proof of Proposition 6. SoUk=Sk3 bak,bkv. Let D=max1økømsbk−akd. In
he coordinate systemxk=sx1k,x2k,x3kdPSk and tkP bak,bkv, the metricg is given by

gsxk,tkdfsj,td,sj,tdg = kaksxk,tkdj,jlk + 2kdksxk,tkd,jlkt − bksxk,tkdt2,

or any sj ,tdPTxk
Sk3R. Consider a partitionhvsk−1,skbj1økøm, s0=0,s1, ¯ ,sm=1, of the

nterval v0,1b, such thatzsvsk−1,skbd,Uk. As zn converges toz in the C0 topology of curves,
esults definitively, up to reparametrize the curveszn, znsvsk−1,skbd,Uk. Now arguing as in Propo
ition 6, we have

kaksxnk,tnkdẋnk,ẋnklk + 2kdksxnk,tnkd,ẋnklkṫnk , bksxnk,tnkdṫnk
2 ;

urthermoreṫnkssdÞ0 on vsk−1,skb and

E
0

1

uvsznssddfżnssdguds= o
k=1

m E
sk−1

sk

uvsznkssddfżnkssdguds

ø Co
k=1

m E
sk−1

sk Îkaksxnk,tnkdẋnk,ẋnklk + bksxnk,tnkdṫ2
nkds

ø Co
k=1

m E
sk−1

sk

uṫnkudsø CmD.

assing to the limit onn, we conclude. h

Proof of Theorem 1:We begin by considering the caseq.0. Sincep0!p1, there exists
mooth future-pointing timelike curvez: v0,1b→M on sM ,gd, such thatzs0d=p0 andzs1d=p1. So
onsider the curvez: v0,1b→M defined aszssd=szssd ,−e0

svszdfżgdsd. Clearly zs0d=sp0,0d, zs1d
sp1,−e0

1vszdfżgdsd, z is a future-pointing timelike curve onsM ,kd, and the pointssp0,0d and
p1,−e0

1vszdfżgdsd are chronologically related onsM ,kd. Thus set

y1 = sup
zPTp0,p1

S−E
0

1

vszdfżgdsD .

et «.0 and consider the pointssp0,−«d sp1,y1−« /2d. Since the relation! is open,sp0,−«d
sp1,y1−« /2d for « small enough. Hence there exists a 5-D future-pointing timelike geodeg1

onnectingsp0,−«d andsp1,y1−« /2d. Let q1=ksg1dfġ1,]yg. It results thatq1= ẏ1+vsg1dfġ1g, with
y1=pRsg1d andg1=pMsg1dPTp0,p1

. Therefore

q1 = y1s1d − y1s0d +E
0

1

vsg1dfġ1gds= y1 −
«

2
+ « +E

0

1

vsg1dfġ1gdsù
«

2
. 0.

s q1= ẏ1+vsg1dfġ1g.0, we can conclude, by(6), that g1 is not a 4-D geodesic. Then consi
he curvec1, defined onv0,q1/qb asc1ssd=g1sq/q1sd. Clearlyc1 connectsp0 andp1, is timelike,
uture-pointing and solves Eq.(2).

Now assume thatq,0. Arguing as above, we find a 5-D future-pointing timelike geodesg2

onnectingsp0,«d and sp1,y2+« /2d, where now
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y2 = inf
zPTp0,p1

S−E
0

1

vszdfżgdsD .

ow it results thatq2= ẏ2+vsg2dfġ2gø−« /2,0. Soc2=g2(sq/q2ds) is the desired solution. h

1Avez, A., “Essais de Géométrie Riemannienne Hyperbolique Globale—Applications a la Relativité Générale,” A
Fourier 13, 105–190(1963).

2Beem, J. K., Ehrlich, P. E., and Easley, K. L.,Global Lorentzian Geometry(Dekker, New York, 1996).
3Lichnerowicz, A.,Thèorie Relativistes de la Gravitation et de l’Électromagnetisme(Masson, Paris, 1955).
4Misner, C., Thorne, K., and Wheeler, J.,Gravitation (Freeman, San Francisco, 1973).
5Overduin, J. M. and Wesson, P. S., “Kaluza–Klein gravity,” Phys. Rep.283, 303–378(1997).
6Sachs, R. K. and Wu, H.,General Relativity for Mathematicians(Springer-Verlag, New York, 1977).
7Seifert, H.-J., “Global connectivity by timelike geodesics,” Z. Naturforsch.22, 1356–1360(1967).
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ovariants, joint invariants and the problem
f equivalence in the invariant theory of Killing

ensors defined in pseudo-Riemannian spaces
f constant curvature

Roman G. Smirnova) and Jin Yueb)

Department of Mathematics and Statistics, Dalhousie University, Halifax,
Nova Scotia, Canada B3H 3J5

(Received 2 June 2004; accepted 3 August 2004; published 25 October 2004)

The invariant theory of Killing tensors(ITKT ) is extended by introducing the new
concepts of covariants and joint invariants of(product) vector spaces of Killing
tensors defined in pseudo-Riemannian spaces of constant curvature. The covarian
are employed to solve the problem of classification of the orthogonal coordinate
webs generated by nontrivial Killing tensors of valence two defined in the Euclid-
ean and Minkowski planes. Illustrative examples are provided. ©2004 American
Institute of Physics.[DOI: 10.1063/1.1805728]

. INTRODUCTION

The second half of the 19th century saw the development of the post-“Theorema Egre
auss” differential geometry going in two major directions. Thus, Riemann1 generalized Gauss
eometry of surfaces in the Euclidean space by introducing the concept of a differentiabl

old of arbitrary dimension and defining the inner product in terms of the metric tensor
paces of tangent vectors. This remarkable work has evolved in time into what is known t
Riemannian) differential geometry. The other direction originated in the celebrated “Erla
rogram” of Klein.2,3 According to his manifesto any branch of geometry can be interpreted

nvariant theory with respect to a specific transformation group. Moreover, the main goal
eometry is the determination of those properties of geometrical figures that remain unc
nder the action of a transformation group. One of the main contributions of Cartan to diffe
eometry, in particular with his moving frames method,4 is the blending of these two directio

nto a single theory. An excellent exposition of this fact can be found in Sharpe5 (see also, fo
xample, Arvanitoyeorgos6). The following diagram presented in Ref. 5 elucidates the relatio
mong the different approaches to geometry described above:

Euclidean Geometry →
generalization

Klein Geometries

↓generalization generalization↓
Riemannian Geometry →

generalization
Cartan Geometries

s1d

Being a result of the natural fusion of classical invariant theory(CIT) and the(geometric)
tudy of Killing tensors defined in pseudo-Riemannian manifolds of constant curvature,
ariant theory of Killing tensors(ITKT ) formed recently a new direction of research,7–16which, in
iew of the above, can be rightfully placed into the theory initiated by Cartan. This is esp

)Electronic mail: smirnov@mathstat.dal.ca
)
Electronic mail: jyue@dal.ca
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vident in the study of vector spaces of Killing tensors of valence two. Indeed, by now a n
f vector spaces of Killing tensors have been investigated from this viewpoint by me
etermining the corresponding sets of fundamentalinvariantsand, much like in CIT, using the

o solve the problem of equivalence in each case. These results have been employed in
ions arising in thetheory of orthogonal coordinate webs,17–25,16,12,7where Killing tensors o
alence two play a pivotal role(see Ref. 22 for a complete list of references). Admittedly, an
rthogonal coordinate web is an integral part of the geometry of the underlying p
iemmanian manifold. Therefore the problem of group invariant classification of orthogon
rdinate webs in a specific pseudo-Riemannian space of constant curvature is a problem o
pproach to geometry, as well as that of Riemann, both leading to the theory due to Cartan[see the
iagram(1)].

The main goal of this paper is to further the development of the invariant theory of K
ensors by introducing the concepts of acovariantand ajoint invariant. In this setting they can b
ntroduced by establishing a natural extension of the main ideas of CIT to the geometric s
illing tensors in pseudo-Riemannian geometry. Furthermore, we employ the latest genera
f Cartan’s method of moving frames due to Fels and Olver26,27 (see also Refs. 4 and 28–32
ore details and references) to determine complete systems of fundamental covariants fo

ector spaces of Killing tensors of valence two defined in the Euclidean and Minkowski p
he covariants are employed to classify in both cases orthogonal coordinate webs gene
illing tensors. We also compare the results with the classifications of the orthogonal webs

n the Minkowski plane obtained in McLenaghanet al.12,15 by means of invariants only.

I. INVARIANT THEORY OF KILLING TENSORS (ITKT)

In this section we establish the requisite language and recall the basic notions of the in
heory of Killing tensors(ITKT ) defined in pseudo-Riemannian spaces of constant curv
ore specifically, we review what is known about isometry group invariants and extend the
y introducing the concepts ofcovariantsand joint invariantsof product vector spaces of Killin

ensors in ITKT. LetsM ,gd be a pseudo-Riemannian manifold, dimM =n.
Definition 2.1: AKilling tensorK of valencep defined insM ,gd is a symmetricsp,0d tensor

atisfying the Killing tensor equation,

fK ,gg = 0, s2d

heref,g denotes the Schouten bracket.33 When p=1, K is said to be aKilling vector (infinitesi-
al isometry) and the equation (2) reads

LKg = 0,

hereL denotes the Lie derivative operator.
Remark 2.1:Throughout this paper, unless otherwise specified,f,g denotes the Schout

racket, which is a generalization of the usual Lie bracket of vector fields.
Killing tensors appear naturally in many problems of classical mechanics, general re

eld theory, and other areas. To demonstrate this fact, let us consider the following exam
Example 2.1:Let sXH ,P0,Hd be a Hamiltonian system defined onsM ,gd by a natural Hamil

onianH of the form

Hsq,pd = 1
2gij pipj + Vsqd, i, j = 1,…,n, s3d

heregij are the contravariant components of the corresponding metric tensorg,sq ,pdPT*M are

he canonical position-momenta coordinates and the Hamiltonian vector fieldXH is given by
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XH = fP0,Hg s4d

ith respect to the canonical Poisson bi-vectorP0=oi=1
n ] /]qi ∧] /]pi. Assume also that the Ham

onian system defined by(3) admits a first integral of motionF which is a polynomial function o
egreem in the momenta:

Fsq,pd = Ki1i2¯imsqdpi1
pi2

¯pim
+ Usqd, s5d

here 1ø i1,… , imøn. Since the functionsH andF are in involution, the vanishing of the Poiss
racket defined byP0:

hH,Fj0 = P0 d H d F = ffP0,Hg,Fg = 0 s6d

ields

fK ,gg = 0 sKilling tensor equationd s7d

nd

Ki1i2¯im
] V

] qi1
pi2

¯ pim
= gij ] U

] qi pj scompatibility conditiond, s8d

here the symmetricsm,0d-tensor K has the componentsKi1i2¯im and 1ø i , j , i1,… , imøn.
learly, in view of Definition 2.1 the equation(7) confirms thatK is a Killing tensor. Furthermor

n the casem=2 (see Benenti22) the compatibility condition(8) reduces toK d V=g d U or

sK̂ d Vd=0, where the(1,1)-tensorK̂ is given byK̂ =Kg−1. We also note that the vanishing of
oisson bracket(6) and the assumed form of the first integralF (5) imply the following additiona
onditions:

]iU = 0, Ki1i2¯im]i1
V = 0.

ndeed, the right-hand side(RHS) of (5) does not have the terms which are polynomials ofp of
egrees less thanm.

In view of linear properties of the Schouten bracket the sets of Killing tensors of the
alence form vector spaces insM ,gd. Let KpsMd denote the vector space of Killing tensors
alencepù1 defined insM ,gd. Assume also dimM =n. Then if sM ,gd is a pseudo-Riemanni
pace of constant curvature, the dimensiond of the corresponding vector spaceKpsMd for a given

pù1 is determined by theDelong–Takeuchi–Thompson (DTT) formula,34–36

d = dimKpsMd =
1

n
Sn + p

p + 1
DSn + p − 1

p
D, p ù 1. s9d

hat being the case, a Killing tensor of valencepù1 defined in a pseudo-Riemannian sp
M ,gd of constant curvature can be viewed as an algebraic object, or, an element ofKpsMd. Note
he vector spaceKpsMd for a fixed pù1 is determined byd arbitrary parameterssa1,… ,add,
hered=dimKpsMd is given by(9). This approach to the study of Killing tensors introduce
ef. 15 differs significantly from the more conventional approach based on the proper
illing tensors defined in pseudo-Riemannian spaces of constant curvature are sums of

rized tensor products of Killing vectors(see, for example, Ref. 36). Moreover, the idea leads to
atural link between the study of vector spaces of Killing tensors and the classical the

nvariants of vector spaces of homogeneous polynomials, which has become in the last d
rowth industry once again(see Olver39 and the references therein). Thus, it has been shown in
eries of recent papers11,16,10,12–15that one can utilize the basic ideas of classical invariant th
n the study of Killing tensors defined in pseudo-Riemannian spaces of constant curvatu
oncept of aninvariant of KpsMd was introduced in Ref. 16 in the study of nontrivial Killi

2 2
ensors of the vector spaceK sR d generating orthogonal coordinate webs in the Euclidean plane.
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. Invariants

It has been shown that one can determine the action of the isometry groupIsMd in the
-dimensional spaceS.Rd defined by the parametersa1,… ,ad. In this view, the action i

nduced by the corresponding action ofIsMd in KpsMd, which, in turn, is induced by the action
sMd in M. More specifically, it induces the corresponding transformation laws for the para
a1,… ,add given by

ã1 = ã1sa1,…,ad,g1,…,grd,

ã2 = ã2sa1,…,ad,g1,…,grd,

s10d
]

ãd = ãdsa1,…,ad,g1,…,grd,

here g1,… ,gr are local coordinates onIsMd that parametrize the group andr =dim IsMd
1
2nsn+1d. The formulas(10) can be obtained in each case by making use of the sta

ransformation rules for tensor components. We note that the action ofIsMd can be considered
he spacesM and S concurrently, provided there is an isomorphism between the correspo
roup actions(see below).

Definition 2.2: LetsM ,gd be a pseudo-Riemannian manifold of constant curvature. For a
pù1 consider the corresponding spaceKpsMd of Killing tensors of valence p defined insM ,gd. A
mooth functionI :S→R defined in the space of functions on the parameter spaceS is said to be
n IsMd invariant of the vector spaceKpsMd iff it satisfies the condition

I = Fsa1,…,add = Fsã1,…,ãdd s11d

nder the transformation laws (10) induced by the isometry group IsMd.
The main problem of invariant theory is to describe the whole space of invariants(covariants

oint invariants) for a given vector space under the action of a group. To solve this proble
as to find a set offundamental invariants (covariants, joint invariants)with the property that an
ther invariant(covariant, joint invariant) is a (analytic) function of the fundamental invarian
covariants, joint invariants). The fundamental theorem on invariants of a regular Lie g
ction39 determines the number of fundamental invariants required to define the whole of th
f IsMd invariants.

Theorem 2.1: Let G be a Lie group acting regularly on an m-dimensional manifold X wit
-dimensional orbits. Then, in a neighborhood N of each point x0PX, there exist m−s functionally
ndependent G invariantsD1,… ,Dm−s. Any other G-invariant I defined near x0 can be locally
niquely expressed as an analytic function of the fundamental invariants throuI
FsD1,… ,Dm−sd.

Hence, if we assume that the groupIsMd ,dim IsMd=r = 1
2nsn+1d acts in a subspaceSr of the

arameter spaceS defined by the correspondingKpsMd , pù1 regularly withr-dimensional or
its, then, according to Theorem 2.1, the number of fundamental invariants required to d

he whole space ofIsMd invariants ofKpsMd is d−r, whered is given by(9) (notedù r). This has
een shown to be the case for the vector spacesK2sR2d,16 K2sR1

2d,12 K3sR2d,10 andK2sR3d,7 where
2,R1

2, andR3 denote the Euclidean, Minkowski planes and the Euclidean space, respective
imension of the orbits of the isometry groupIsMd acting in S is not always the same as
imension of the group. For example, this is the case for the vector spaceK1sR3d.11 To determine

he dimension of the orbits one can use the infinitesimal generators of the groupIsMd in S.
In what follows we use the approach introduced in Ref. 15. LetX1,… ,X r PXsMd be the

nfinitesimal generators(Killing vector fields) of the Lie group IsMd acting on M. Note
panhX1,… ,X rj=K1sMd= isMd, whereisMd is the Lie algebra of the Lie groupIsMd. For a fixed

p
pù1, consider the corresponding vector spaceK sMd. To determine the action ofIsMd in the
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paceS, we find first the infinitesimal generators ofIsMd in S. Consider DiffS, it defines the
orresponding space DiffKpsMd, whose elements are determined by the elements of DiffS in an
bvious way. LetK 0PDiff KpsMd. Note K 0 is determined byd parametersai

0sa1,… ,add , i
1,… ,d, which are functions ofa1,… ,ad—the parameters ofS. Define now a ma
:Diff KpsMd→XsSd, given by

K 0 → o
i=1

d

ai
0sa1,…,add

]

] ai
. s12d

o specify the action ofIsMd in S, we must find the counterparts of the generatorsX1,… ,X r in
sSd. Consider the compositionp +L, wherep is defined by(12) and L is the Lie derivative
perator. LetK be the general Killing tensor ofKpsMd, in other wordsK is the general solutio

o the Killing tensor equation(2). Note, for p=2 we haveK =Spanhg,K 1,… ,K d−1j, where
g,K 1,… ,K d−1j is a basis of the vector spaceK2sMd andg is the metric ofsM ,gd. Next, define

V i = pLX i
K , i = 1,…,r . s13d

he composition mapp +L : isMd→XsSd maps the generatorsX1,… ,X r to XsSd.
Conjecture 2.1 (Ref. 10): Suppose the generatorsX1,… ,X r of isMd satisfy the followin

ommutator relations:

fX i,X jg = cij
kXk, i, j ,k = 1,…,r , s14d

here cij
k , i , j ,k=1,… ,r are the structural constants. Then the corresponding vector fieldV i

XsSd, defined by (13) satisfy the same commutator relations,

fV i,V jg = cij
kVk, i, j ,k = 1,…,r . s15d

herefore the map F* ªp +L : isMd→ iSsMd is a Lie algebra isomorphism, where iSsMd is the Lie
lgebra generated byV1,… ,V r.

We emphasize that the technique of the Lie derivative deformations used here is
owerful tool. It was used before, for example, in Ref. 37 to generate compatible Poisson

ors in the theory of bi-Hamiltonian systems. The idea introduced in Ref. 37 was utilized i
8 and applied to a different class of integrable systems. The validity of the formula(15) can be
onfirmed directly on a case by case basis, provided that the general form of a Killing
pPKpsMd is available. The proof of the general statement of Conjecture 2.1 will be pub
lsewhere.8

Remark 2.2:Alternatively, the generators(13) can be obtained from the formulas for
ction of the group(10) in the usual way taking into account that a Lie algebra is the tangent
t the unity of the corresponding Lie group. We note, however, that in this way the formula(10)
re not easy to derive in general.

In view of the isomorphism exhibited in the conjecture and the fact that invariance
unction under an entire Lie group is equivalent to the infinitesimal invariance under the
esimal generators of the corresponding Lie algebra one can determine a set of fund
nvariants by solving the system of PDEs

V isFd = 0, i = 1,…,r s16d

or an analytic functionF :S→R, where the vector fieldsV i , i =1,… ,r are the generators defin
y (13). As is specified by Theorem 2.1, the general solution to the system(16) is an analytic
unction F of the fundamental invariants. The number of fundamental invariants isd−s, whered
s specified by the DTT formula(9) ands is the dimension of the orbits ofIsMd acting regularly
in the parameter spaceS. To determines and the subspaces ofS where the isometry group ac

39
with orbits of the same dimension, one employs the result of the following proposition.
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Proposition 2.1: Let a Lie group G act on X, g is the corresponding Lie algebra and le
X. The vector space Sux=SpanhV isxd uVi Pgj spanned by all vector fields determined by

nfinitesimal generators at x coincides with the tangent space to the orbitOx of G that passe
hrough x, so Sux=TOxux. In particular, the dimension ofOx equals the dimension of Sux. Moreover
he isotropy subgroup Gx,G has dimensiondim G−dimOx=r −s.

Example 2.2:Consider the action of the isometry groupIsR1
2d on the vector spaceK2sR1

2d.
ore information about the geometry of Minkowski planeR1

2 can be found in the monograph
hompson.40 The general form of the elements ofK2sR1

2d in terms of the standard pseud
artesian coordinatesst ,xd is given by

K = sa1 + 2a4x + a6x
2d

]

] t
(

]

] t
+ sa3 + a4t + a5x + a6txd

]

] t
(

]

] x
+ sa2 + 2a5t + a6t

2d
]

] x
(

]

] x
.

s17d

he isometry groupIsR1
2d acts in the Minkowski planeR1

2 parametrized byst ,xd as follows:

S t̃

x̃
D = Scoshf sinhf

sinhf coshf
DS t

x
D + Sa

b
D , s18d

heref ,a,bPR are local coordinates that parametrize the groupIsR1
2d. The generators of the L

lgebraisR1
2d of the isometry group with respect to the coordinatesst ,xd take the following form

T =
]

] t
, X =

]

] x
, H = x

]

] t
+ t

]

] x
s19d

orresponding tot andx translations and(hyperbolic) rotation, given with respect to the stand
seudo-Cartesian coordinatesst ,xd. Note the generators(19) of the Lie algebraisR1

2d enjoy the
ollowing commutator relations:

fT,Xg = 0, fT,Hg = X, fX,Hg = T . s20d

e use the formula(18) and the transformation laws for the components of(2, 0) tensors

K̃ijsỹ1,ỹ2,ã1,…,ã6d = Kk,sy1,y2,a1,…,a6d
] ỹi

] yk

] ỹj

] y, , i, j ,k,, = 1,2, s21d

here the tensor componentsKij are given by(17), y1= t ,y2=x. In view of (17), (18), and(21) the
ransformation laws(10) for the parametersai , i =1,… ,6 take in this case the following form(see
lso Refs. 23 and 12),

ã1 = a1 cosh2 f + 2a3 coshf sinhf + a2 sinh2 f + a6b
2 − 2sa4 coshf + a5 sinhfdb,

ã2 = a1 sinh2 f + 2a3 coshf sinhf + a2 cosh2 f + a6a
2 − 2sa5 coshf + a4 sinhfda,

ã3 = a3scosh2 f + sinh2 fd + sa1 + a2dcoshf sinhf − saa4 + ba5dcoshf

− saa5 + ba4dsinhf + a6ab,

s22d
ã4 = a4 coshf + a5 sinhf − a6b,

ã5 = a4 sinhf + a5 coshf − a6a,

ã6 = a6.
We note that the corresponding transformation formulas for the parameters obtained in Ref. 12
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ere derived forcovariantKilling tensors. Accordingly, they differ somewhat from(22) presente
bove[compare with(7.6) in Ref. 12]. According to Proposition 2.1, in order to determine
ubspaces ofS where the orbits have the same dimensions, one must check the subspacS
here the system(16) retains its rank. In many cases the system of PDEs(16) can be solved b

he method of characteristics. The determination of fundamental invariants by solving(16) is the
ey idea used in Ref. 15 to adapt themethod of infinitesimal generatorsto the problem of findin
undamental invariants of Killing tensors under the action of the isometry group. Whe
ethod of characteristic fails, one can employ themethod of undetermined coefficientsto find a se
f fundamental invariants.11,7 Alternatively, a set of fundamental invariants can be determine
sing themethod of moving frames(see Sec. III for more details). To determine the space ofIsR1

2d
nvariants, we employ the procedure described above and derive the corresponding infin
eneratorsV i , i =1, 2, 3 by the formula(13),

V1 = a4
]

] a3
+ 2a5

]

] a2
+ a6

]

] a5
,

V2 = a5
]

] a3
+ 2a4

]

] a1
+ a6

]

] a4
, s23d

V3 = − 2a3
]

] a1
− a5

]

] a4
− sa1 + a2d

]

] a3
− 2a3

]

] a2
− a4

]

] a5
,

nd then solve by the method of characteristic the corresponding system of PDEs(16) with respec
o (23). Note the vector fields −V i , i =1, 2, 3 satisfy the same commutator relations as(19) [see
20)], which confirms Conjecture 2.1. Ultimately, this leads to the following theorem.

Theorem 2.2: Any algebraic IsR1
2d-invariant I of the subspace of the parameter spaceS of

2sR1
2d defined by the condition that the vector fields (23) are linearly independent can b

ally) uniquely expressed as an analytic function,

I = FsI1,I2,I3d,

here the fundamental invariantsIi , i =1, 2, 3are given by

I1 = „a4
2 + a5

2 − a6sa1 + a2d…2 − 4sa3a6 − a4a5d2,

I2 = a6sa1 − a2d − a4
2 + a5

2, s24d

I3 = a6.

he fact thatI3=a6 is a fundamentalIsR1
2d invariant of the vector spaceK2sR1

2d trivially follows
rom the transformation formulas(22). The fundamentalIsR1

2d-invariantI1 was derived in Refs
2 and 15 in the study of the five-dimensional subspace of nontrivial Killing tensors ofK2sR1

2d. As
xpected, in this case by Theorem 2.1, we have obtained 6sdimension of the spacd
3 sdimension of the orbitsd=3 fundamentalIsR1

2d invariants of the vector spaceK2sR1
2d.

. Covariants

Consider now the action of the isometry groupIsMd on the product spaceKpsMd3M , p
1. As above it induces the transformation laws on theextended parameter spaceS3M, where

p
is the parameter space of the vector spaceK sMd,
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ã1 = ã1sa1,…,ad,g1,…,grd,

ã2 = ã2sa1,…,ad,g1,…,grd, … ,

ãd = ãdsa1,…,ad,g1,…,grd,

s25d
x̃1 = x̃1sx1,…,xn,g1,…,grd,

x̃2 = x̃2sx1,…,xn,g1,…,grd, … ,

x̃n = x̃nsx1,…,xn,g1,…,grd,

here as beforea1,… ,ad are the parameters ofKpsMd that defineS ,g1,… ,gr , r = 1
2nsn+1d are

ocal parameters parametrizing the groupIsMd andx1,… ,xn are local coordinates on the manif
M.

Definition 2.3: An IsMd covariant of the vector spaceKpsMd pù1 is a function C:S3M
R satisfying the condition

C = Fsa1,…,ad,x1,…,xnd = Fsã1,…,ãd,x̃1…,x̃nd s26d

nder the transformation laws (25) induced by the isometry group IsMd, whereS is the paramete
pace ofKpsMd.

Conjecture 2.1 entails the following corollary.
Corollary 2.1: Consider the product vector spaceKpsMd3M , pù1. Define the vector field

V i8 ª V i + X i, i = 1,…,r , s27d

here V i , i =1,… ,r are the infinitesimal generators of the Lie algebra isMd in the paramete
paceS of the vector spaceKpsMd obtained via (13) andX i , i =1,… ,r are the generators of isMd.
hen the vector fieldsV18 ,… ,V r8 enjoy the same commutator relations as the generatorsX1,… ,X r

f isMd in XsMd:

fV i8,V j8g = cij
kVk8, i, j ,k = 1,…,r , s28d

here the structural constants cij
k are as in (14).

Proof: Straightforward. h

Therefore, in view of the above,IsMd covariants of a vector spaceKpsMd can be obtained b
olving the corresponding system of PDEs generated by the vector fields(27):

V i8sFd = 0, i = 1,…,r . s29d

lternatively, one can employ the method of moving frames. To demonstrate how it works
ramework of ITKT we shall employ the method in Sec. III to compute the covariants of the
pacesK2sR2d andK2sR1

2d.

. Joint invariants

Consider now the action of the isometry groupIsMd on the product spaceK,sMd3KmsMd
¯ 3KqsMd , , ,m,… ,qù1. Let a1,… ,ad,b1,… ,be,… ,g1,… ,g f be the parameters of t

ector spacesK,sMd ,KmsMd ,… ,KqsMd, respectively, whered,e,… , f are the corresponding d
ensions determined by(9). Then the action of the isometry groupIsMd induces the correspon
ng transformation laws for the parametersa1,… ,ad,b1,… ,be,… ,g1,… ,g f:
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ã1 = ã1sa1,…,ad,g1,…,grd,

ã2 = ã2sa1,…,ad,g1,…,grd, … ,

ãd = ãdsa1,…,ad,g1,…,grd, … ,

b̃1 = b̃1sb1,…,be,g1,…,grd, … ,

b̃2 = b̃2sb1,…,be,g1,…,grd, … , s30d

b̃e = b̃esb1,…,be,g1,…,grd, … ,

g̃1 = g̃1sg1,…,g f,g1,…,grd,

g̃2 = g̃2sg1,…,g f,g1,…,grd, … ,

g̃ f = g̃ fsg1,…,g f,g1,…,grd,

here as beforeg1,… ,gr are local coordinates onIsMd that parametrize the group andr
dim IsMd= 1

2nsn+1d. This observation leads us to introduce the concept of ajoint IsMd-invariant.
Definition 2.4: A joint IsMd invariantof the product spaceK,sMd3KmsMd3 ¯ 3KqsMd, is

function J:S,3Sm3 ¯ 3Sq\R satisfying the condition

J = Fsa1,…,ad,b1…,be,…,g1…,g fd

=Fsã1,…,ãd,b̃1…,b̃e,…,g̃1…,g̃ fd s31d

nder the transformation laws (30) induced by the isometry group IsMd.
In this case again Conjecture 2.1 entails the following corollary.
Corollary 2.2: Consider the product vector space,

K = K,sMd 3 KmsMd 3 ¯ 3 KqsMd, s32d

here, ,m,… ,qù1. Define the vector fields

Ṽ i ª V i
, + V i

m + ¯ + V i
q, i = 1,…,r , s33d

herehV i
,j ,hV i

mj ,… ,hV i
qj , i =1,… ,r are the sets of infinitesimal generators of the Lie alge

sMd in the parameter spacesS, ,Sm,… ,Sq of the vector spacesK,sMd ,KqsMd ,… ,KnsMd, re-

pectively, obtained via (13). Then the vector fieldsṼ1,… ,Ṽ r enjoy the same commutator re
ions as the generatorsX1… ,X r of isMd in XsMd:

fṼ i,Ṽ jg = cij
k Ṽk, i, j ,k = 1,…,r , s34d

here the structural constants cij
k are as in (14).

Proof: Straightforward. h

Example 2.3:Consider the product vector spaceK1sR2d3K2sR2d. The general form of th
1 2
lements ofK sR d (Killing vectors) with respect to the Cartesian coordinates is given by
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K 1 = sa1 + a3yd
]

] x
+ sa2 − a3xd

]

] y
, s35d

hile the (contravariant) elements ofK2sR2d assume the following general form with respec
he same coordinate system:

K 2 = sb1 + 2b4y + b6y
2d

]

] x
(

]

] x
+ sb3 − b4x − b5y − b6xyd

]

] x
(

]

] y

+ sb2 + 2b5x + b6x
2d

]

] y
(

]

] y
, s36d

here( denotes the symmetric tensor product. The formulas(35) and (36) put in evidence tha
he corresponding parameter spacesS1 andS2 are determined by the three parametersai , i =1,…,3
nd the six parametersbi , i =1,…,6, respectively. LetIsR2d be the proper Euclidean group t
onsists of the orientation-preserving isometries ofR2 (rigid motions). Its action inR2 can be
escribed as the semidirect product of rotations and translations. In view of its standard
trization, we have the transformation of the Cartesian coordinatesx=sx,yd,

x̃ = Rux + a, Ru = Fcosu − sinu

sinu cosu
G P SOs2d, a = sa,bd P R2. s37d

ote, the generators ofisR2d=K1sR2d, which is the Lie algebra of the Lie groupIsR2d, are given
ith respect to the Cartesian coordinates by

X =
]

] x
, Y =

]

] y
, R = x

]

] y
− y

]

] x
, s38d

hose flows are translations and a rotation, respectively. Employing the construction(13), we
erive two triples of the vector fields representing the generators(38) in XsS1d

V1
1 = − a3

]

] a2
,

V2
1 = a3

]

] a1
, s39d

V3
1 = a1

]

] a2
− a2

]

] a1
,

ndXsS2d,

V1
2 = − 2b5

]

] b2
− b4

]

] b3
+ b6

]

] b5
,

V2
2 = 2b4

]

] b1
− b5

]

] b3
+ b6

]

] b6
, s40d

V3
2 = − 2b3S ]

] b1
−

]

] b2
D + sb1 − b2d

]

] b3
+ b5

]

] b4
− b4

]

] b5
,

espectively. We note that in view of Conjecture 2.1 both the vector fields(39) and the vecto
2
elds (40) satisfy the same commutator relations as the generators ofisR d (38). By Corollary 2.2
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his fact entails immediately that the vector fieldshṼ ij , i =1, 2, 3 defined by

Ṽ i ª V i
1 + V i

2, i = 1,2,3 s41d

lso enjoy the same commutator relations. This property can be also verified directly. Th
e have determined the action ofIsR2d in the product spaceS13S2. To determine the dimensio
f the orbits of the group we use the result of Propositon 2.1. Thus, the orbits of the is
roup IsR2d acting in S13S2 are three dimensional in the subspaceS3,S13S2, where the
enerators(41) are linearly independent. According to Theorem 2.1, the number of fundam

nvariants inS3 is 9 sdimension ofS13S2d−3 sdimension of the orbits inS3d=6. Some of thes
undamental invariants may be the fundamental invariants of the group action in the vector

1sR2d andK2sR2d. Indeed, it is instructive at this point to review the transformations impos
he nine parameterssa1,a2,a3,b1,b2,b3,b4,b5,b6d of the product spaceS13S2 by the group
ction:

ã1 = a1 cosu − a2 sinu − ba3,

ã2 = a1 sinu + a2 cosu + aa3,

ã3 = a3,

b̃1 = b1 cos2 u − 2b3 cosu sinu + b2 sin2 u − 2bb4 cosu − 2bb5 sinu + b6b
2,

b̃2 = b1 sin2 u − 2b3 cosu sinu + b2 cos2 u − 2ab5 cosu + 2ab4 sinu + b6a
2, s42d

b̃3 = sb1 − b2dsinu cosu + b3scos2 u − sin2 ud + sab4 + bb5dcosu + sab5 − bb4dsinu − b6ab,

b̃4 = b4 cosu + b5 sinu − b6b,

b̃5 = b5 cosu − b4 sinu − b6a,

b̃6 = b6,

heresu ,a,bd given by (37) parametrize the isometry groupIsR2d. Hence, the dimension of t
rbits in this subspace coincides with the dimension of the group. We also observe thata3 andb6

re fundamentalIsR2d invariants of the group action inS13S2.
To determine the remaining four fundamental invariants we use the method of charac

o solve the system of linear PDEs,

Ṽ isFd = 0, i = 1,2,3, s43d

hereF :S13S2→R and the vector fieldsṼ i , i =1, 2, 3 are given by(41). Having solved th
ystem of PDEs(43), we have therefore proven the following result.

Theorem 2.3: Any algebraic joint IsR2d-invariant I defined over the subspace ofS13S2

here the vector fields (41) are linearly independent can be locally uniquely expressed
nalytic function,

I = FsI1,I2,I3,I4,J1,J2d,

2
here the fundamental joint IsR d-invariantsIi ,J j , i =1,…, 4, j =1, 2 are given by
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I1 = fb6sb1 − b2d + b5
2 − b4

2g2 + 4sb3b6 + b4b5d2,

I2 = b6sb1 + b2d − b4
2 − b5

2,

I3 = b6,

s44d
I4 = a3,

J1 = sb6a2 + b5a3d2 + sb6a1 − b4a3d2,

J2 = sb6a2 + a3a5dsb6b2 − b5
2d + 2sb3b6 + b4b5dsb6a1 − b4a3d.

he fundamental jointIsR2d invariantsIi , i =1, 2, 3 are the fundamentalIsR2d invariants of the
ector spaceK2sR2d (I1 was derived in Ref. 15), while I4 is the fundamentalIsR2d invariant of the
ector spaceK1sR2d. Note the fundamentalIsR2d invariantsJ1 and J2 are “truly” joint IsR2d
nvariants of the vector spacesK1sR2d andK2sR2d. Therefore we have introduced an analogu
he concept of a joint invariant in the classical invariant theory of homogeneous polynomial(refer
o Ref. 41 for more details). The problem of the determination of fundamental invariants, so
n this section for a particular(product) vector space of Killing tensors(Theorem 2.3) by the

ethod of infinitesimal generators, can also be solved by the purely algebraicmethod of movin
rames. This is the subject of the considerations that follow.

II. THE METHOD OF MOVING FRAMES

The method of moving frames, introduced originally by Cartan,4 is a powerful technique th
an be employed to solve a wide range of equivalence-type problems. In its original interp

t is based on an equivariant map from the space of submanifolds to a bundle of fram
implest example of a moving frame is the Frenet frameht ,nj of a regular curvegPR2 param
trized by its arc length. In this case the equivariant map assigns to each point on the cugssd

he corresponding framehtssd ,nssdj. Clearly, the moving frame alongg can be obtained from
xed frame via a combination of rotations and/or translations. This puts in evidence that
natural isomorphism between the moving frame and the orientation-preserving isometr

Euclidean group) IsR2d. This is the essence of the later generalizations of the moving
ethod,28–30 where the moving frame was viewed as an equivariant map from the sp

ubmanifolds to the group itself. In recent works by Fels and Olver26,27the classical moving fram
ethod was further generalized to completely general transformation groups, including i
imensional Lie pseudogroups(see also Kogan32). Ultimately, the authors have succeeded
ringing the theory up to the level where the bundle of frames is no longer needed. We very
eview the basic definitions and results of the moving frames theory in its modern formulati(for

complete review, see Ref. 39).
Definition 3.1: Amoving frameis a smooth, G-equivariant mapr :M→G, where G is an

-dimensional group acting smoothly on an n-dimensional underlying manifold M.
Theorem 3.1:A moving frame exists in a neighborhood of a pointxPM iff G acts freely an

egularly nearx.
To construct a moving frame, one employs Cartan’snormalization method.4

Theorem 3.2:Let G act freely and regularly on M and let K,M be a (local) cross section
he group orbits. GivenxPM, let g=rsxd be the unique group element that mapsx to the cros
ection:g·x=rsxd ·xPK. Thenr :M→G is a right moving frame.
More specifically, letx=sx1,… ,xndPM be local coordinates. Consider the explicit formulas
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or the coordinate transformations induced by the action ofG:vsg,xd=g·x. The right moving
rameg=rsxd can be constructed by making use of acoordinate cross section,

K = hx1 = c1,x2 = c2,…,xr = crj,

hereci , i =1,… ,r are some constants and solving the correspondingnormalization equations

v1sg,xd = c1, v2sg,xd = c2, …, vrsg,xd = cr , s45d

or the group G locally parametrized byg=sg1,… ,grd in terms of the local coordinat
x1,… ,xnd. Substituting the resulting expressions forg1,… ,gr in terms of the local coordinat
x1,…xnd into the remainingn−r formulas for the transformation rulesvsg,xd=g·x yields a
omplete set of fundamental invariants for the action ofG on M.

Theorem 3.3: If g=rsxd is the moving frame solution to the normalization equations
hen the functions

I1sxd = vr+1srsxd,xd,…,In−rsxd = vnsrsxd,xd s46d

orm a complete system of functionally independent fundamental G invariants.
Let us now illustrate the procedure and demonstrate how the method of moving frames

ffectively applied to the problem of the determination of the fundamental invariants
sometry group in the invariant theory of Killing tensors.

Example 3.1:Consider the extended vector spaceK2sR2d3R2. The corresponding extend
arameter spaceS3R2 is determined by the parametersb1,… ,b6,x,y, wherebi , i =1,… ,6 are
s in (36) and x,y are the standard Cartesian coordinates. The isometry groupIsR2d acting on
2sR2d3R2 induces the corresponding transformations on the extended parameter spaceS3R2

25), which in this case take the following form:

b̃1 = b1 cos2 u − 2b3 cosu sinu + b2 sin2 u − 2bb4 cosu − 2bb5 sinu + b6b
2,

b̃2 = b1 sin2 u − 2b3 cosu sinu + b2 cos2 u − 2ab5 cosu + 2ab4 sinu + b6a
2,

b̃3 = sb1 − b2dsinu cosu + b3scos2 u − sin2 ud + sab4 + bb5dcosu + sab5 − bb4dsinu − b6ab,

b̃4 = b4 cosu + b5 sinu − b6b,

s47d
b̃5 = b5 cosu − b4 sinu − b6a,

b̃6 = b6,

x̃ = x cosu − y cosu + a,

ỹ = x sinu + y cosu + b.

Next, we construct a moving frame by using the cross section(for example),

K = hb3 = b4 = b5 = 0j, s48d
hich yields the corresponding normalization equations,
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0 = sb1 − b2dsinu cosu + b3scos2 u − sin2 ud + sab4 + bb5dcosu + sab5 − bb4dsinu − b6ab,

0 = b4 cosu + b5 sinu − b6b, s49d

0 = b5 cosu − b4 sinu − b6a.

olving (49) for the parametersa,b, andu, we obtain the moving frame mapr :S3R2→ IsR2d
etermined by the following formulas:

a =
b5 cosu − b4 sinu

b6
,

b =
b4 cosu + b5 sinu

b6
, s50d

u =
1

2
arctan

2sb3b6 + b4b5d
b6sb1 − b2d − b4

2 + b5
2 .

It was observed in Ref. 11 that the method of moving frames could be used to so
roblem of the determination of fundamental invariants of vector spaces of Killing tensors

he action of the isometry group. Indeed, having derived the moving frame map(50) and the
ransformation laws(47), we can now make use of the result of Theorem 3.3 and determine
f fundamentalIsR2d covariants ofK2sR2d. Substituting(50) into (47), by Theorem 3.3, we arriv
t the following result.

Theorem 3.4: Consider the vector spaceK2sR2d. Any algebraic IsR2d-covariant C define
ver the subspace ofS3R2 where the isometry group IsR2d acts freely and regularly with thre
imensional orbits can be locally uniquely expressed as an analytic function,

C = FsI1,I2,I3,C1,C2d,

here the fundamental IsR2d-covariantsIi ,C j , i =1, 2, 3, j =1, 2 are given by

I1 = fb6sb1 − b2d + b5
2 − b4

2g2 + 4sb3b6 + b4b5d2,

I2 = b6sb1 + b2d − b4
2 − b5

2,

I3 = b6, s51d

C1 = sb6x + b5d2 + sb6y + b4d2,

C2 = fsb6x + b5d2 − sb6y + b4d2g„b5
2 − b4

2 + b6sb1 − b2d… + 4sb6x + b5dsb6y + b4dsb6b3 + b4b5d,

hereS is the parameter space ofK2sR2d.
We immediately observe that the functionsI1,I2,I3 constitute in fact a set of fundamen

sR2d invariants of the vector spaceK2sR2d, while the functionsC1 andC2 are “truly” fundamenta
sR2d covariants of the vector spaceK2sR2d. We also observe that the fundamental covarianC1
an be expressed as
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C1 = I3 tr K̂ − I2,

here the(1, 1)-tensorK̂ is given byK̂ =Kg−1. This observation immediately suggests that trK̂ is

fundamentalIsR2d covariant ofK2sR2d. We note, however, that the function detK̂ is not a
undamentalIsR2d covariant ofK2sR2d.

Consider a similar example.
Example 3.2:Let K2sR1

2d3R1
2 be the extended vector space ofK2sR1

2d. The action of th
sometry groupIsR1

2d in the Minkowski planeR1
2 is given by(18), while the corresponding actio

n the parameter spaceS of K2sR1
2d is given by(22). The transformation laws(22) combined with

he transformations(18) yield an analogue of(47). Next, we proceed as in Example 3.1. T
esulting moving frame mapr :S3R1

2→ IsR1
2d is given by

a =
a4 sinhf + a5 coshf

a6
,

b =
a4 coshf + a5 sinhf

a6
, s52d

f =
1

2
arctanh

2sa3a6 − a4a5d
a4

2 + a5
2 − a6sa1 + a2d

.

Now we can continue as in the previous example to determine a set of fundamentaIsR1
2d

ovariants of the vector spaceK2sR1
2d.

Theorem 3.5: Consider the vector spaceK2sR1
2d. Any algebraic IsR1

2d covariant C define
ver the subspace ofS3R1

2 where the isometry group IsR1
2d acts freely and regularly with thre

imensional orbits can be locally uniquely expressed as an analytic function

C = FsI1,I2,I3,C1,C2d,

here the fundamental IsR1
2d covariantsIi ,C j , i =1, 2, 3, j =1, 2 are given by

I1 = fa4
2 + a5

2 − a6sa1 + a2dg2 − 4sa3a6 − a4a5d2,

I2 = sa1 − a2da6 − a4
2 + a5

2,

I3 = a6, s53d

C1 = sa6t + a5d2 − sa6x + a4d2,

C2 = fsa6t + a5d2 + sa6x + a4d2g„a4
2 + a5

2 − a6sa1 + a2d… + 4sa6t + a5dsa6x + a4dsa3a6 − a4a5d,

hereS is the parameter space ofK2sR1
2d.

The conclusion is similar to that following Theorem 3.4. Thus, we observe again th
unctionsI1,I2,I3 constitute in fact a set of fundamentalIsR1

2d invariants of the vector spa
2sR1

2d, while the functionsC1 andC2 are “truly” fundamentalIsR1
2d covariants of the vector spa

2sR1
2d.

V. EQUIVALENCE CLASSES OF VECTOR SPACES K2
„R2

… AND K2
„R1

2
…

In this section we use the results obtained in the preceding section to solve the prob
quivalence for the vector subspaces ofnontrivial Killing tensors ofK2sR2d and K2sR1

2d. As is
22 2 2
ell-known the elements of these subspaces generateorthogonal coordinate websin R andR1,
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espectively, provided the Killing tensors in question have distinct(and real) eigenvalues. Th
roblem of equivalence in this case is the problem of classification of orthogonal coordinat
n the other hand, from the invariant theory point of view the problem of equivalence a

elated canonical form problem are intimately related to the problem of the determina
undamental invariants(covariants, joint invariants).

. The vector space K2
„R2

…

Let Knt
2 sR2d,K2sR2d be the vector subspace of nontrivial Killing two tensors defined in

uclidean planeR2. “Nontrivial” in this context means that none of the elements ofKnt
2 sR2d is a

ultiple of the metric ofR2. Clearly dimKnt
2 sR2d=5. It has been established in Refs. 13,14,16

he functionsI1 andI3 given by(51) are the fundamentalIsR2d invariants ofKnt
2 sR2d. Moreover

hey can be used to solve the problem of classification of orthogonal coordinate webs
uclidean plane. The fundamentalIsR2d invariants divide the vector subspaceKnt

2 sR2d into four
quivalence classes. The elements within each equivalence class generate a particular o
eb(see Ref. 13 for more details). These results are summarized in Table I. Clearly, any(analytic)

sR2d covariant of the vector subspaceKnt
2 sR2d takes the following general form:

C = FsI1,I3,C1,C2d,

here the functionsI1,I3,C1, andC2 are given by(51).
The same classification can be done by means of the fundamentalIsR2d covariantsC1 andC2

iven by (51). The results are summarized in Table II.
Recall that in most of the problems studied so far within ITKT the associatedcanonical form

roblemhas been solved for vector spaces of Killing tensors of valence two via transform
orresponding Killing tensors in orthogonal coordinates back to the original(pseudo-)Cartesian
oordinates by using the standard transformations from the orthogonal coordinates to(pseudo-)
artesian coordinates(see, for example, Refs. 7,12,13,16). In the problems involving Killing

ensors of valence two(with distinct eigenvalues and integrable eigenvectors) the equivalenc
lasses(ECs) of the corresponding vector spaces are associated with the corresponding ort
oordinate webs and so such an approach seems to be natural.

However, one may wish to solve the canonical form problem for vector spaces of K
ensors of valences higher than two, in which case a connection with the theory of orth

ABLE I. Invariant classification of the orthogonal coordinate webs inR2 by means ofIsR2d invariants.

Equivalence class I1 I3 Orthogonal web

EC1 0 0 Cartesian

EC2 0 Þ0 Polar

EC3 Þ0 0 Parabolic

EC4 Þ0 Þ0 Elliptic–hyperbolic

ABLE II. Invariant classification of the orthogonal coordinate webs inR2 by means ofIsR2d covariants.

Equivalence class C1 C2 Orthogonal web

EC1 0 0 Cartesian

EC2 Positive–definite 0 Polar

EC3 1 1 Parabolic

EC4 Positive–definite Indefinite Elliptic–hyperbolic
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oordinate webs is not evident. In such a case, another, more general approach can be
rom CIT39 to the study of Killing tensors. Indeed, recall first the following definitions
esults.39

Definition 4.1: Two submanifolds N,P,X are said to intersecttransversallyat a commo
oint x0PNù P if they have no nonzero tangent vectors in common: TNux0

ùTPux0
=h0j.

Definition 4.2: Let G be a Lie transformation group that acts regularly on an m-dimensiona
anifold X with s-dimensional orbits. A (local)cross sectionis an sm−sd-dimensional subman

old K,X such that K intersects each orbit transversally and at most once.
Proposition 4.1: If a Lie group G acts regularly on a manifold X, then one can construct

ocal cross section K passing through any point xPX.
One can define acoordinate cross section K, in which case the firsts coordinates themselv

efine a coordinate cross section39

K = hx1 = c1,…,xs = csj s54d

ff

] sD1,…,Dm−sd
] sxs+1,…,xmd

Þ 0, s55d

hereD1,… ,Dm−s are the fundamental invariants of the group action. Then, in view of the a
e can obtain canonical forms of the equivalence classes set by the fundamental inva

ntersections of the coordinate cross sections and the level sets(invariant submanifolds) defined by
he fundamental group invariants. To illustrate this simple procedure consider the followi
mple.

Example 4.1:ConsiderKnt
2 sR2d,K2sR2d. Without loss of generality we can assume that

lements of the vector subspaceKnt
2 sR2d enjoy the following general form:

K nt
2 = sb18 + 2b4y + b6y

2d
]

] x
(

]

] x
+ sb3 − b4x − b5y − b6xyd

]

] x
(

]

] y
+ s2b5x + b6x

2d
]

] y
(

]

] y
,

s56d

hereb18=b1−b2 and the parametersbi , i =1,… ,6 are as in(36). The four equivalence class
C1–4 ofKnt

2 sR2d have been classified in Table I and Table II. The Killing tensors within
quivalence class share the same geometrical properties, that is they define the same o
oordinate webs equivalent up to the action of the isometry groupIsR2d. This fact can be used
elect appropriate canonical forms for each of the four equivalence classes. Thus, one can
he Killing tensors in terms of the orthogonal coordinatessu,vd (see Ref. 16) and then use th
tandard coordinate transformations from the orthogonalsu,vd coordinates to the Cartesian co
inatessx,yd in order to determine the corresponding canonical forms for EC1–4. Alterna
ne can proceed by using the coordinate cross sections. The procedure is outlined below

EC1: In this case the parameter spaceS8 defined by the five parameters of(56) can be
ntersected by the coordinate cross section,

K1 = hb3 = b4 = b5 = 0j. s57d

aking into account(56) and the corresponding formulas forI1 andI3 given by(51), we conclude
hat all but onesb18d parameters vanish in this case. The parameterb18 is arbitrary, without loss o
enerality we can setb18=1, which leads to the canonical form

K I =
]

] x
(

]

] x
. s58d
lternatively, we could have used the coordinate cross section,
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K2 = hb18 = b4 = b5 = 0j, s59d

hich would have led to the canonical form

K I8 =
]

] x
(

]

] y
. s60d

ote the canonical forms(58) and (60) are equivalent up to a rotation.
EC2: Reason as in EC1 above. Either of the coordinate cross sections(57) or (59) leads to th

anonical form

K II = y2 ]

] x
(

]

] x
− xy

]

] x
(

]

] y
+ x2 ]

] y
(

]

] y
. s61d

EC3: First, note that the conditionI1Þ0,I3=0 (see Table I) promptsb4
2+b5

2Þ0. Therefore
he coordinate cross sections that can be used in this case are

K3 = hb18 = b3 = b4 = 0j s62d

nd

K4 = hb18 = b3 = b5 = 0j, s63d

hich lead to the canonical forms

K III = − y
]

] x
(

]

] y
+ 2x

]

] y
(

]

] y
s64d

nd

K III8 = 2y
]

] x
(

]

] x
− x

]

] x
(

]

] y
, s65d

espectively. Note the canonical forms(64) and (65) are equivalent up to a rotation.
EC4: In this case we can use either of the coordinate cross sections(57) or (59). Intersecting

he common level set defined byI1Þ0,I3Þ0 (see Table I) with (57) yields the canonical form

K IV = sb18 + y2d
]

] x
(

]

] x
− xy

]

] x
(

]

] y
+ x2 ]

] y
(

]

] y
, s66d

hile with (59)—the canonical form

K IV8 = y2 ]

] x
(

]

] x
+ sb3 − xyd

]

] x
(

]

] y
+ x2 ]

] y
(

]

] y
. s67d

ote the canonical forms(66) and (67) are equivalent up to a rotation and rescaling.

. The vector space K2
„R1

2
…

The problem of classification of the 10 orthogonal coordinate webs defined in the Mink
laneR1

2 was initially solved by Kalnins23 in 1975. The approach used in Ref. 23 is based o
roperty that the Killing tensors defined in pseudo-Riemannian spaces of constant curva

he sums of symmetrized tensor products of Killing vectors. In Ref. 23 different combinatio(as
ymmetric tensor products) of the basic Killing vectors(19) were analyzed modulo the action
he eight-dimensional discrete groupR of permutations of coordinates and reflections of
ignature of the Minkowski metricg=diags1,−1d given in terms of the pseudo-Cartesian coo
atesst ,xd (see below). A different approach was used in Rastelli,42 where the 10 orthogonal we

2 2
ere classified based on the algebraic properties of the nontrivial Killing tensors ofK sR1d. More
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pecifically, the author made use of the points where the eigenvalues of such Killing
oincide(singular points). Finally, McLenaghanet al.12,15employed a set of the fundamentalIsR1

2d
nvariants of the vector subspace of nontrivial Killing tensors ofK2sR1

2d to classify the 10 orthogo
al webs defined inR1

2. The problem appeared to be incommensurably more challenging th
roblem of classification of the orthogonal coordinate webs inR2.13,16 The reason is simple:
oth cases one has two fundamental invariants at one’s disposal, while the number of ort
oordinate webs is four(Euclidean plane) and 10(Minkowski plane). In the latter case the pro

em was solved12,15by introducing the concept of aconformal IsR1
2d invariant, which was used t

enerate additionaldiscrete IsR1
2d invariants. To solve the problem, the authors had to invest

he effect of the eight-dimensional discrete groupR on the discreteIsR1
2d invariants. Unordere

airs(as the objects preserved by the discrete group) of discrete invariants along with one of t
undamental invariants were used to solve the problem. In what follows, we propose a
olution based on the fundamentalIsR1

2d covariants obtained in the preceding section.
Let Knt

2 sR1
2d,K2sR1

2d be the vector subspace of nontrivial Killing two tensors defined in
inkowski planeR1

2. Here “nontrivial” has the same meaning as above. Again dimKnt
2 sR1

2d=5.
ithout loss of generality we can assume that in terms of the pseudo-Cartesian coordinast ,xd

he general form of the elements ofKnt
2 sR1

2d is given by

K = sa18 + 2a4x + a6x
2d

]

] t
(

]

] t
+ sa3 + a4t + a5x + a6txd

]

] t
(

]

] x
+ s2a5t + a6t

2d
]

] x
(

]

] x
,

s68d

here a18=a1+a2 and the parametersai , i =1,… ,6 are as in(17). Note that in this case th
arameter spaceS8 is determined by the five parametersa18 ,a3,a4,a5, anda6. Our next obse
ation is that by Theorem 3.5 anyIsR1

2d covariant ofKnt
2 sR1

2d enjoys the form

C = FsI1,I3,C1,C2d,

here the functionsI1,I3,C1, andC2 are given by(53). As in the case ofKnt
2 sR2d we can us

1,I3,C1, andC2 to classify the 10 orthogonal webs. However, in view of the number of cas
ust use these functions concurrently. Before doing so, we check the effect ofR onI1,I3,C1, and

2. Recall23,12 that the group(under composition) R=kR1,R2l consists of eight discrete transf
ations generated by

R1: t̃ = t, x̃ = − x sspatial reflectionsd,

R2: t̃ = x, x̃ = t spermutationd. s69d

ote the groupR [along with the isometry groupIsR1
2d] preserves the geometry of the 10

hogonal webs defined in the Minkowski plane. Recall next12 thatR1 andR2 induce the following
ransformations on the parametersai , i =1,… ,6 of K2sR1

2d [see(36)]:

R1: ã1 = a1, ã2 = a2, ã3 = − a3, ã4 = − a4, ã5 = a5, ã6 = a6,

R2: ã1 = a2, ã2 = a1, ã3 = a3, ã4 = a5, ã5 = a4, ã6 = a6. s70d

t follows immediately that the fundamentalIsR1
2d covariantsI1,I3,C1, andC2 remain unchange

nder the transformations(70) induced by the groupR. We conclude therefore that we can
hem in the classification of the 10 orthogonal webs. Recall that the vector subspaceKnt

2 sR1
2d can

e divided into 10 equivalence classes EC1–10 within each of which the corresponding e
enerate thesame orthogonal coordinate web(for more details see Refs. 23 and 12). We conside
ext the 10canonical elementsdetermined in Ref. 12 representing each class EC1–10 by

orming them to contravariant form and making them compatible with the general form(68) by

dding multiples of the metric when necessary. The latter operation does not affect the geometry
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f the coordinate webs generated by the canonical elements. We arrive at the following l

EC1 K 1 =
]

] t
(

]

] t
, s71d

EC2 K 2 = x2 ]

] t
(

]

] t
+ tx

]

] t
(

]

] x
+ t2

]

] x
(

]

] x
, s72d

EC3 K 3 = S1

2
− xD ]

] t
(

]

] t
+ S1

4
−

1

2
t +

1

2
xD ]

] t
(

]

] x
+ t

]

] x
(

]

] x
, s73d

EC4 K 4 = x
]

] t
(

]

] x
+ 2t

]

] x
(

]

] x
, s74d

EC5 K 5 = S2k2 −
1

4
x2D ]

] t
(

]

] t
−

1

4
tx

]

] t
(

]

] x
−

1

4
t2

]

] x
(

]

] x
, s75d

EC6 K 6 = S1

4
+

1

4
x2D ]

] t
(

]

] t
+ S1

4
+

1

4
txD ]

] t
(

]

] x
+

1

4
t2

]

] x
(

]

] x
, s76d

EC7 K 7 = S−
1

2
+

1

4
x2D ]

] t
(

]

] t
+ S−

1

4
+

1

4
txD ]

] t
(

]

] x
+

1

4
t2

]

] x
(

]

] x
, s77d

EC8 K 8 =
1

4
x2 ]

] t
(

]

] t
+ S− k2 +

1

4
txD ]

] t
(

]

] x
+

1

4
t2

]

] x
(

]

] x
, s78d

EC9 K 9 = S2k2 +
1

4
x2D ]

] t
(

]

] t
+

1

4
tx

]

] t
(

]

] x
+

1

4
t2

]

] x
(

]

] x
, s79d

EC10 K 10 = S− 2k2 +
1

4
x2D ]

] t
(

]

] t
+

1

4
tx

]

] t
(

]

] x
+

1

4
t2

]

] x
(

]

] x
, s80d

here the parameterk is a IsR1
2d invariant ofKnt

2 sR1
2d. In view of Theorem 2.2(see also Theore

.5), it can be represented via the fundamentalIsR1
2d invariants. Indeed, the corresponding form

as were found in Ref. 12,

EC5, EC9, EC10: k2 =
ÎI1

I3
sI1 . 0d,

EC8: k2 =
Î− I1

I3
sI1 , 0d. s81d

ote the canonical forms(71)–(80) are compatible with the general form given by(68). Following
he procedure devised in Ref. 12, we use the canonical forms(71)–(80) to evaluate the corr
ponding values of the fundamentalIsR1

2d covariantsI1,I3,C1,C2 and employ the results to d
inguish the elements belonging to different equivalence classes EC1–10. The elements ofKnt

2 sR1
2d

ust have the same values ofI1,I3,C1, and C2. We note however that these functions do
2
istinguish EC1 from EC3 and EC6 from EC8. Therefore we have to derive some auxiliaryIsR1d
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nvariants to complete the classification scheme. Indeed, consider the vector spaceK2sR1
2d under

he action of the isometry groupIsR1
2d. SinceI3 is a fundamentalIsR1

2d invariant, we can consid
he level set

SI3
= hsa1,…,a5d P Su I3 = 0j. s82d

oteSI3
is anIsR1

2d-invariant submanifold inS defined by the parametersai , i =1,… ,5. Next we
rove the following result by using the techniques exhibited in Sec. II.

Lemma 4.1: Any algebraic IsR1
2d invariant I of the IsR1

2d-invariant submanifoldSI3
defined b

82) can be (locally) uniquely expressed as an analytic function

I = FsI18,I28d,

here the fundamental invariantsIi8 , i =1, 2 are given by

I18 = a4
2 − a5

2,

I28 = 2a3a4a5 − a2a4
2 − a1a5

2, s83d

rovided the group acts inSI3
with three-dimensional orbits.

We note that the fundamentalIsR1
2d invariantsI18 andI28 still cannot be used in the problem

lassification of the elements ofKnt
2 sR1

2d. In particular,I28 appears to be a function ofa1,a2,a3,a4,
nda5 (not a18 ,a3,a4,a5). However, under the additionalinvariant condition

I18 = a4
2 − a5

2 = 0 s84d

t assumes the following form:

I28 = 2a3a4a5 − a18a4
2, s85d

herea18=a1+a2. We immediately recognize theIsR1
2d-invariant(85) to be anIsR1

2d invariant of
he submanifold inSI3

determined by the condition(84). Hence,I28 given by(85) can be used t
istinguish between EC1 and EC3.

Next, in order to distinguish between the elements of EC6 and EC8, introduce the fol
uxiliary IsR1

2d invariant:

I*
ª k4I3 + I1, s86d

herek is given by(81) (the formula for EC8). We note thatI* given by(86) is anIsR1
2d invariant.

he values ofI1 andI3 evaluated with respect to the parameters of the canonical form EC8
y (78) are

I1 = −
k4

4
, I3 =

1

4
.

herefore theIsR1
2d invariantI* =0, whenever the Killing tensor in question belongs to EC8.

lassification scheme is now complete. We summarize the results in Table III.
Using the results obtained we can devise a general algorithm of classification for the e

f the vector spacesK2sR2d andK2sR1
2d. It consists of the following two steps. LetK PK2sR2d

sK2sR1
2dd.
i) If K has arbitrary constants, decomposeK as follows:
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K = ,0g + o
i=1

5

,iK i , s87d

where,i , i =1,…,5 are the arbitrary constants. Noteoi=1
5 ,iK i PKnt

2 sR2dsKnt
2 sR1

2dd. Clearly,
K PKnt

2 sR2dsKnt
2 sR1

2dd iff ,0=0.
ii ) Each Killing tensor in the representation(87) represents one of the equivalence classes(and

thus, an orthogonal coordinate web), provided it has real eigenvalues in the case of
vector space beingK2sR1

2d. We can determine which one by evaluating the correspon
IsR2d andIsR1

2d invariants and covariants and then using the information provided in
I or Table II for the Killing tensors defined in the Euclidean plane and Table III defin
the Minkowski plane.

The problem of classification is therefore solved.
Remark 4.1:We note that EC5 and EC10 are characterized by the same values of the

ental IsR1
2d convariants. It agrees with the geometry of the corresponding orthogonal

amely they determine two distinct coordinate systems that cover two disjoint areas of th
pace(see Miller25 for more details).
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n perturbations of Dirac operators with variable
agnetic field of constant direction
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We carry out the spectral analysis of matrix valued perturbations of three-
dimensional Dirac operators with variable magnetic field of constant direction.
Under suitable assumptions on the magnetic field and on the pertubations, we
obtain a limiting absorption principle, we prove the absence of singular continuous
spectrum in certain intervals and state properties of the point spectrum. Various
situations, for example, when the magnetic field is constant, periodic or diverging
at infinity, are covered. The importance of an internal-type operator(a two-
dimensional Dirac operator) is also revealed in our study. The proofs rely on com-
mutator methods. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1792933]

. INTRODUCTION AND MAIN RESULTS

We consider a relativistic spin-1
2 particle evolving inR3 in presence of a variable magne

eld of constant direction. By virtue of the Maxwell equations, we may assume with no l

enerality that the magnetic field has the formBW sx1,x2,x3d=s0,0,Bsx1,x2dd. So the unperturbe
ystem is described, in the Hilbert spaceL2sR3;C4d, by the Dirac operator

H0: = a1P1 + a2P2 + a3P3 + bm,

hereb;a0,a1,a2,a3 are the usual Dirac–Pauli matrices,m is the strictly positive mass of th
article andP j : =−i] j −aj are the generators of the magnetic translations with a vector po

Wsx1,x2,x3d=sa1sx1,x2d ,a2sx1,x2d ,0d that satisfiesB=]1a2−]2a1. Since a3=0, we have writte
P3: =−i]3 instead ofP3.

In this paper we study the stability of certain parts of the spectrum ofH0 under matrix value
erturbationsV. More precisely, ifV satisfies some natural hypotheses, we shall prove the ab
f singular continuous spectrum and the finiteness of the point spectrum ofH : =H0+V in intervals
f R corresponding to gaps in the symmetrized spectrum of the operatorH0: =s1P1+s2P2

s3m in L2sR2;C2d. The matricess j are the Pauli matrices and the symmetrized spectrumssym
0 of

0 is the union of the spectra ofH0 and −H0. We stress that our analysis does not require
estriction on the behavior of the magnetic field at infinity. Nevertheless, the pertinence
ork depends on a certain property of the internal-type operatorH0; namely, the size and th
umber of gaps inssym

0 . We refer to Refs. 2, 7, 10, 12, and 16 for various results on the spe
f H0, especially in the situations of physical interest, for example, whenB is constant, periodic o
iverges at infinity.

Technically, this work relies on commutator methods initiated by Mourre14 and extensivel
eveloped in Ref. 1. For brevity we shall constantly refer to the latter reference for notatio
efinitions. Our choice of a conjugate operator enables us to treat Dirac operators with

)Electronic mail: richard@kalymnos.unige.ch
)
Electronic mail: rafael.tiedra@physics.unige.ch

4164022-2488/2004/45(11)/4164/10/$22.00 © 2004 American Institute of Physics
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agnetic fields provided they point in a constant direction. On the other hand, as already
vidence in Ref. 9, the use of a conjugate operator with a matrix structure has a few
wkward consequences” for long-range perturbations. We finally mention that this study
ounterpart for Dirac operators of Ref. 13, where only Schrödinger operators are con
nfortunately, the intrinsic structure of the Dirac equation prevents us from using the p
agnetic anisotropy to control the perturbations(see Remark 3.2 for details).

We give now a more precise description of our results. For simplicity we impose the
uity of the magnetic field and avoid perturbations with local singularities. Hence we assum
is a CsR2;Rd-function and choose any vector potentialaW =sa1,a2,0dPCsR2;R3d, e.g. the on

btained by means of the transversal gauge.16 The definitions below concern the admissible
urbations. In the long-range case, we restrict them to the scalar type in order not to
nsatisfactory constraints. In the sequel,BhsC4d stands for the set of 434 Hermitian matrices, an
·i denotes the norm of the Hilbert spaceH : =L2sR3;C4d as well as the norm ofBsHd, the set o
ounded linear operators onH. N : =h0,1,2, . . .j is the set of natural numbers.q is an arbitrary
`sf0,`dd-function such thatq=0 near 0 andq=1 near infinity.Qj is the multiplication operato

y the coordinatexj in H, and the expressionk·l corresponds toÎ1+s·d2.
Definition 1.1: Let V be a multiplication operator associated with an elemen

`sR3;BhsC4dd.

a) V is small at infinity if limr→`iqskQl / rdVi=0,
b) V is short-range ife1

`iqskQ3l / rdVidr ,`,
c) Let VL be in C1sR3;Rd with x° kx3ls] jVLdsxd in L`sR3;Rd for j =1,2,3, then V: =VL is

long-range if

E
1

` IqS kQ3l
r

DkQ3ls] jVdIdr

r
, ` for j = 1,2,3.

Note that Definitions 1.1.(b) and 1.1.(c) differ from the standard ones: The decay rat
mposed only in thex3 direction.

We are in a position to state our results. LetDskQ3ld denote the domain ofkQ3l in H, then the
imiting absorption principle for H is expressed in terms of the Banach sp
: =sDskQ3ld ,Hd1/2,1 defined by real interpolation.1 For convenience, we recall thatDskQ3lsd is
ontained inG for eachs.1/2.

Theorem 1.2: Assume that B belongs to CsR2;Rd, and that V belongs toL`sR3;BhsC4dd, is
mall at infinity and can be written as the sum of a short-range and a long-range matrix
unction. Then

a) The point spectrum of the operator H inR \ssym
0 is composed of eigenvalues of finite mu

plicity and with no accumulation point inR \ssym
0 .

b) The operator H has no singular continuous spectrum inR \ssym
0 .

c) The limitslim«→+0kc ,sH−l7 i«d−1cl exist for eachcPG, uniformly in l on each compa
subset ofR \ hssym

0 øsppsHdj.

The limiting absorption principle(c), together with the inclusions mentioned before the t
em, lead to locallyH-smooth operators. They imply the existence of local wave operators

Corollary 1.3: Let V belong toL`sR3;BhsC4dd and be small at infinity. Assume there ex
ome s.1 such thatkQ3lsVPBsHd. Then for each open set J,R \ hssym

0 øsppsHdj, the local wave
peratorss-limt→±`eitH0e−itHEHsJd exist and their ranges are equal to EH0sJd, where EH and EH0

re the spectral measures of H and H0, respectively.
Remark 1.4: H0-bounded perturbations (with relative bound less than one) may als

reated with some slight adaptations of Definition 1.1. In particular Coulomb-type potentia
eeman effect11 could be considered for certain magnetic fields and vector potentials. Howe
ur knowledge, there is not any explicit class of H0-bounded perturbations for arbitrary contin

us magnetic fields. For this reason, we concentrate on bounded potentials V only, and thus
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resent a simplified version of a more general, and more complicated, perturbation theor.
The above statements seem to be new for such a general magnetic field. In the sp

mportant case of a nonzero constant magnetic fieldB0, the admissible perturbations introduced
efinition 1.1 are more general than those allowed in Ref. 17. We stress that in this situatissym

0

s equal toh±Î2nB0+m2:nPNj, which implies that there are plenty of gaps where our ana
ives results. On the other hand, ifBsx1,x2d→0 asusx1,x2du→`, our treatment gives no inform

ion since boths−` ,−mg andfm,`d belong tossym
0 . We finally mention Ref. 3 for related work

erturbations of magnetic Dirac operators.

I. MOURRE ESTIMATE FOR THE OPERATOR H0

. Preliminaries

Let us start by recalling some known results. The operatorH0 is essentially self-adjoint o
: =C0

`sR3;C4d [Ref. 5, Thm. 2.1]. Its spectrum is symmetric with respect to 0 and does
ontain the intervals−m,md [Ref. 16, Cor. 5.14]. Thus the subsetH0D is dense inH sinceD is
ense inDsH0d (endowed with the graph topology) andH0 is a homeomorphism fromDsH0d onto
.

We now introduce a suitable representation of the Hilbert spaceH. We consider the parti
ourier transformation

F : D → E
R

%

H12dj, sFcdsjd: =
1

Î2p
E

R
e−ijx3cs·,x3ddx3, s2.1d

hereH12: =L2sR2;C4d. This map extends uniquely to a unitary operator fromH onto eR
%H12dj,

hich we denote by the same symbolF. As a first application, one obtains the following dir
ntegral decomposition ofH0:

FH0F−1 =E
R

%

H0sjddj,

hereH0sjd is a self-adjoint operator inH12 acting asa1P1+a2P2+a3j+bm on C0
`sR2;C4d. In

he following remark we draw the connection between the operatorH0sjd and the operatorH0

ntroduced in Sec. I. It reveals the importance of the internal-type operatorH0 and shows why it
egative −H0 also has to be taken into account.

Remark 2.1: The operator H0s0d acting on C0
`sR2;C4d is unitarily equivalent to the direct su

perator s m P−

P+ −m
d % s m P+

P− −m
d acting on C0

`sR2;C2d % C0
`sR2;C2d, where P± : =P1± iP2. Now, thes

wo matrix operators act inL2sR2;C2d and are essentially self-adjoint on C0
`sR2;C2d [Ref. 5, Thm

.1]. However, the first one is nothing but H0, while the second one is unitarily equivalent to−H0

this can be obtained by means of the abstract Foldy–Wouthuysen transformation [Ref. 1
.13]). Therefore, H0s0d is essentially self-adjoint on C0

`sR2;C4d and

sfH0s0dg = ssH0d ø ss− H0d ; ssym
0 .

oreover, there exists a relation betweensfH0sjdg andssym
0 . Indeed, for jPR fixed, one can sho

hat H0sjd2=H0s0d2+j2 on DsH0sjd2d=DsH0s0d2d, so that

sfH0sjd2g = sfH0s0d2 + j2g = ssfH0s0dgd2 + j2 = sssym
0 d2 + j2, s2.2d

here the spectral theorem has been used for the second equality. Since the spectrum o0sjd is
ymmetric with respect to 0 [Ref. 16, Cor. 5.14], it follows that

sfH0sjdg = − Îsssym
0 d2 + j2 ø Îsssym

0 d2 + j2.

efinem0: = infussym
0 u (which is bigger or equal to m because H0 has no spectrum ins−m,md [Ref.
6, Cor. 5.14]). Then from the direct integral decomposition of H0, one readily gets
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ssH0d = s− `,− m0g ø fm0, + `d. s2.3d

We conclude the section by giving two technical lemmas in relation with the operatoH0
−1.

roofs can be found in an Appendix.
Lemma 2.2:

a) For each nPN, H0
−nD belongs toDsQ3d,

b) P3H0
−1 is a bounded self-adjoint operator equal to H0

−1P3 on DsP3d. In particular, H0
−1H

belongs toDsP3d.

One may observe that, given aC1sR ;Cd-function f with f8 bounded, the operatorfsQ3d is
ell-defined onDsQ3d. Thus fsQ3dH0

−nD is a subset ofH for eachnPN. The preceding lemm
nd the following simple statement are constantly used in the sequel.

Lemma 2.3: Let f be in C1sR ;Cd with f8 bounded, and nPN. Then

a) iH0
−1fsQ3d− i f sQ3dH0

−1 is equal to−H0
−1a3f8sQ3dH0

−1 on H0
−nD,

b) P3H0
−1fsQ3d− fsQ3dP3H0

−1 is equal to isP3H0
−1a3−1df8sQ3dH0

−1 on D.

Both right terms belong toBsHd. For shortness we shall denote them byfiH0
−1, fsQ3dg and

P3H0
−1, fsQ3dg, respectively.

. The conjugate operator

The aim of the present section is to define an appropriate operator conjugate toH0. To begin
ith, one observes thatQ3P3H0

−1D,H as a consequence of Lemma 2.2. In particular, the fo
xpression

A: =
1

2
sH0

−1P3Q3 + Q3P3H0
−1d s2.4d

eads to a well-defined symmetric operator onD.
Proposition 2.4: The operator A is essentially self-adjoint onD and its closure is essentia

elf-adjoint on any core forkQ3l.
Proof: The claim is a consequence of Nelson’s criterion of essential self-adjointness[Ref. 15

hm. X.37] applied to the triplehkQ3l ,A,Dj. Let us simply verify the two hypotheses of t
heorem. By using Lemmas 2.2 and 2.3, one first obtains that for allcPD:

iAci = ISP3H0
−1Q3 −

1

2
fP3H0

−1,Q3gDcI ø CikQ3lci,

or some constantC.0 independent ofc. Then, for allcPD one has

kAc,kQ3lcl − kkQ3lc,Acl = i ImkQ3c,fP3H0
−1,kQ3lgcl=i Reksa3P3H0

−1 − 1dQ3c,Q3kQ3l−1H0
−1cl.

few more commutator calculations, using again Lemma 2.3 withfsQ3d=kQ3l1/2, lead to the
ollowing result: For allcPD, there exists a constantD.0 independent ofc such that

ukAc,kQ3lcl − kkQ3lc,Aclu ø DikQ3l1/2ci2.

h

As far as we know, the operator(2.4) has never been employed before for the stud
agnetic Dirac operators. In Ref. 17, a slightly different conjugate operator has been intr
or Dirac operators with constant magnetic field, namely
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A =
1

2
UFW

−1 skP3l−1P3Q3 + Q3P3kP3l−1dbUFW,

hereUFW is the Foldy–Wouthuysen transformation that diagonalizesH0. Though this operato
ould also be used in our more general context, it presents the major drawback of mak
erturbation theory somewhat more complicated.

. Strict Mourre estimate for H0

We now gather some results on the regularity ofH0 with respect toA. We recall thatDsH0d*

s the adjoint space ofDsH0d and that one has the continuous dense embed
sH0d�H�DsH0d* , whereH is identified with its adjoint through the Riesz isomorphism.

Proposition 2.5:

a) The quadratic formDsAd{c° kH0
−1c , iAcl−kAc , iH0

−1cl extends uniquely to the bound
form defined by the operator−H0

−1sP3H0
−1d2H0

−1PBsHd.
b) The groupheitAjtPR leavesDsH0d invariant.
c) The quadratic form

DsAd { c ° kH0
−1sP3H0

−1d2H0
−1c,iAcl − kAc,iH0

−1sP3H0
−1d2H0

−1cl, s2.5d

extends uniquely to a bounded form onH.

n the framework of Ref. 1, the statements of(a) and(c) mean thatH0 is of classC1sAd andC2sAd,
espectively.

Proof:

a) For anycPD, one gets

2skH0
−1c,iAcl − kAc,iH0

−1cld = kfiH0
−1,Q3gc,P3H0

−1cl + kP3H0
−1c,fiH0

−1,Q3gcl

=− kH0
−1c,sa3P3H0

−1 + H0
−1a3P3dH0

−1cl, s2.6d

where we have used Lemmas 2.2 and 2.3. Furthermore, one has

H0
−1a3 = − a3H0

−1 + 2H0
−1P3H0

−1, s2.7d

as an operator identity inBsHd. When insertings2.7d into s2.6d, one obtains the equality

kH0
−1c,iAcl − kAc,iH0

−1cl = − kc,H0
−1sP3H0

−1d2H0
−1cl. s2.8d

SinceD is a core forA, the statement is obtained by density. We shall writefiH0
−1,Ag for the

bounded extension of the quadratic formDsAd{c° kH0
−1c , iAcl−kAc , iH0

−1cl.
b) SinceDsH0d is not explicitly known, one has to invoke an abstract result in order to

the invariance. LetfiH0,Ag be the operator inBsDsH0d ,DsH0d*d associated with the uniq
extension toDsH0d of the quadratic formc° kH0c , iAcl−kAc , iH0cl defined for allc
PDsH0dùDsAd. Then DsH0d is invariant underheitAjtPR if H0 is of classC1sAd and if
fiH0,AgDsH0d,H [Ref. 8, Lemma 2]. From Eq.(2.8) and[Ref. 1, Eq.(6.2.24)], one obtain
the following equalities valid in form sense onH:

− H0
−1sP3H0

−1d2H0
−1 = fiH0

−1,Ag = − H0
−1fiH0,AgH0

−1.

ThusfiH0,Ag andsP3H0
−1d2 are equal as operators inBsDsH0d ,DsH0d*d. But since the latte

belongs toBsHd, fiH ,AgDsH0d is included inH.
c) The boundedness onD of the quadratic form(2.5) follows by inserting(2.4) into the r.h.s

term of(2.5) and by applying repeatedly Lemma 2.3 withfsQ3d=Q3. Then one concludes b

using the density ofD in DsAd. h
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From now on we shall simply denote the closure inH of fiH0,Ag by T=sP3H0
−1d2PBsHd.

ne interest of this operator is thatFTF−1 is boundedly decomposable[Ref. 6, Prop. 3.6], more
recisely:

FTF−1 =E
R

%

Tsjddj with Tsjd = j2H0sjd−2 P BsH12d.

In the following definition, we introduce two functions giving the optimal value to a Mo
ype inequality. Remark that slight modifications have been done with regard to the usua
ion [Ref. 1, Sec. 7.2.1].

Definition 6: Let H be a self-adjoint operator in a Hilbert spaceH and assume that S is
ymmetric operator inBsDsHd ,DsHd*d. Let EHsl ;«d : =EHssl−« ,l+«dd be the spectral projec
ion of H for the intervalsl−« ,l+«d. Then, for alllPR and «.0, we set

%H
Ssl;«d: = supha P R : EHsl;«dSEHsl;«d ù aEHsl;«dj,

%H
Ssld: = sup

«.0
%H

Ssl;«d.

Let us make three observations: The inequality%H
Ssl ;«8dø%H

Ssl ;«d holds whenever«8ù«,

H
Ssld= +` if l does not belong to the spectrum ofH, and%H

Ssldù0 for all lPR if Sù0. We
lso mention that in the case of two self-adjoint operatorsH andA in H, with H of classC1sAd and
: =fiH ,Ag, the function%H

Ss·d is equal to the function%H
As·d defined in[Ref. 1, Eq. 7.2.4]. Taking

dvantage of the direct integral decomposition ofH0 andT, one obtains for alllPR and«.0:

%H0

T sl;«d = ess inf
jPR

%H0sjd
Tsjd sl;«d. s2.9d

ow we can deduce a lower bound for%H0

T s·d.
Proposition 2.7: One has

%H0

T sld ù infHl2 − m2

l2 : m P ssym
0 ù f0,ulugJ , s2.10d

ith the convention that the infimum over an empty set is+`.
Proof: We first consider the caselù0.

i) Recall from(2.3) that m0; infussym
0 u=infhssH0dù f0, +`dj. Thus, forlP f0,m0d the l.h.s

term of (2.10) is equal to +̀ , sincel does not belong to the spectrum ofH0. Hence(2.10)
is satisfied onf0,m0d.

ii ) If lPssym
0 , then the r.h.s. term of(2.10) is equal to 0. However, sinceT is positive

%H0

T sldù0. Hence the relation(2.10) is again satisfied.
iii ) Let 0,«,m0,l. Direct computations using the explicit form ofTsjd and the spectr

theorem for the operatorH0sjd show that forj fixed, one has

%H0sjd
Tsjd sl;«d = infH j2

r2 : r P sl − «,l + «d ù sfH0sjdgJ ù
j2

sl + «d2 . s2.11d

On the other hand, one has%H0sjd
Tsjd sl ;«d= +` if sl−« ,l+«dùsfH0sjdg=x, anda fortiori

%H0sjd
Tsjd sl;«d = + ` if ssl − «d2,sl + «d2d ù sfH0sjd2g = x.

Thus, by taking into account Eqs.s2.9d and s2.11d, the previous observation and relat

s2.2d, one obtains that
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%H0

T sl;«d ù ess infH j2

sl + «d2 : j2 P ssl − «d2,sl + «d2d − sssym
0 d2J . s2.12d

Suppose now thatl¹ssym
0 , define m : =suphssym

0 ù f0,lgj and choose«.0 such tha
m,l−«. Then the inequalitys2.12d implies that

%H0

T sl;«d ù
sl − «d2 − m2

sl + «d2 .

Hence the relations2.10d follows from the above formula when«→0.

For l,0, similar arguments lead to the inequality

%H0

T sld ù infHl2 − m2

l2 : m P ssym
0 ù fl,0gJ .

he claim is then a direct consequence of the symmetry ofssym
0 with respect to 0. h

The above proposition implies that we have a strict Mourre estimate, i.e.,%H0

T s·d.0, on
\ssym

0 . Moreover it is not difficult to prove that%H0

T sld=0 wheneverlPssym
0 . It follows that the

onjugate operatorA does not allow to get spectral informations onH0 in the subsetssym
0 .

II. MOURRE ESTIMATE FOR THE PERTURBED HAMILTONIAN

In the sequel, we consider the self-adjoint operatorH : =H0+V with a potentialV that belong
o L`sR3;BhsC4dd. The domain ofH is equal to the domainDsH0d of H0. We first give a result o
he difference of the resolventssH−zd−1−sH0−zd−1 and, as a corollary, we obtain the localizat
f the essential spectrum ofH.

Proposition 3.1: Assume that V is small at infinity. Then for all zPC \ sssHdøssH0dd the
ifference sH−zd−1−sH0−zd−1 is a compact operator. It follows in particular thatsesssHd
sesssH0d.

Proof: Since V is bounded and small at infinity, it is enough to check thatH0 is locally
ompact[Ref. 16, Sec. 4.3.4]. However, the continuity ofaW implies thatDsH0d,Hloc

1/2 [Ref. 4,
hm. 1.3]. Hence the statement follows by usual arguments. h

Remark 3.2: In the study of an analogous problem for Schrödinger operators,13 the authors
rove a result similar to Proposition 3.1 without assuming that the perturbation is small at in
it only has to be small with respect to B in a suitable sense). Their proof mainly relies
tructural inequalities HSch: =P1

2+P2
2+P3

2ù ±B. In the Dirac case, the counterpart of these t
ut to be

H0
2 ù 2B · diags0,1,0,1d and H0

2 ù − 2B · diags1,0,1,0d,

herediags. . .d stands for a diagonal matrix. If we assume that the magnetic field is bounde
elow, the first inequality enables us to treat pertubations of the typediagsV1,V2,V3,V4d with V2,

4 small with respect to the magnetic field and V1, V3 small at infinity in the original sense. If th
agnetic field is bounded from above, the second inequality has to be used and the role o2, V4

nd V1, V3 are interchanged. However, the unnatural character of these perturbations mot
s not to include their treatment in this paper.

In order to obtain a limiting absorption principle forH, one has to invoke some abstr
esults. An optimal regularity condition ofH with respect toA has to be satisfied. We refer to R
, Chap. 5 for the definitions ofC1,1sAd andC1,1sA;DsH0d ,DsH0d*d, and for more explanations
egularity conditions.

Proposition 3.3: Let V be a short-range or a long-range potential. Then H is of classC1,1sAd.
Proof: SinceheitAjtPR leavesDsHd=DsH0d invariant, it is equivalent to prove thatH belongs

o C1,1sA;DsH0d ,DsH0d*d [Ref. 1, Thm. 6.3.4.(b)]. But in Proposition 2.5.(c), it has already bee
2 1,1 *
hown thatH0 is of classC sAd, so thatH0 is of classC sA;DsH0d ,DsH0d d. Thus it is enough to
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rove thatV belongs toC1,1sA;DsH0d ,DsH0d*d. In the short-range case, we shall use Ref. 1, T
.5.8, which implies thatV belongs toC1,1sA;DsH0d ,DsH0d*d. The conditions needed for th

heorem are obtained in points(i) and(ii ) below. In the long-range case, the claim follows by R
, Thm. 7.5.7, which can be applied because of points(i), (iii ), (iv), and(v) below.

i) We first check thatheitkQ3ljtPR is a polynomially boundedC0-group in DsH0d and in
DsH0d* . Lemma 2.3.(a) (with n=0 and fsQ3d=kQ3l) implies thatH0 is of classC1skQ3ld.
Furthermore, by an argument similar to that given in part(b) of the proof of Propositio
2.5, one shows thatheitkQ3ljtPR leavesDsH0d invariant. SinceH0e

itkQ3l−eitkQ3lH0, defined on
D, extends continuously to the operatorta3Q3kQ3l−1eitkQ3lPBsHd, one gets tha
ieitkQ3liBsDsH0ddøConst.ktl for all tPR, i.e., the polynomial bound of theC0-group in
DsH0d. By duality,heitkQ3ljtPR extends to a polynomially boundedC0-group inDsH0d* [Ref.
1, Prop. 6.3.1]. The generators of theseC0-groups are densely defined and closed inDsH0d
and inDsH0d* , respectively; both are simply denoted bykQ3l.

ii ) Since heitAjtPR leavesDsH0d invariant, one may also consider theC0-group in DsH0d
obtained by restriction and theC0-group inDsH0d* obtained by extension. The generato
each of these C0-groups will be denoted by A. Let DsA;DsH0dd : =hw
PDsH0dùDsAd :AwPDsH0dj be the domain ofA in DsH0d, and letDsA2;DsH0dd : =hw
PDsH0dùDsA2d :Aw ,A2wPDsH0dj be the domain ofA2 in DsH0d. We now check tha
kQ3l−1A andkQ3l−2A2, defined onDsA;DsH0dd and onDsA2;DsH0dd, respectively, exten
to operators inBsDsH0dd. After some commutator calculations performed onD and involv-
ing Lemma 2.3, one first obtains thatkQ3l−1A andkQ3l−2A are, respectively, equal onD to
some operatorsS1 andS2kQ3l−1 in BsHd, whereS1 andS2 are polynomials inH0

−1, P3H0
−1,

a3 and fsQ3d for bounded functionsf with bounded derivatives. SinceD is a core forA,
these equalities even hold onDsAd. Hence one has onDsA2d:

kQ3l−2A2 = skQ3l−2AdA = S2kQ3l−1A = S2S1.

In consequence,kQ3l−1A and kQ3l−2A2 are equal onDsAd and onDsA2d, respectively, t
operators expressed only in terms ofH0

−1, P3H0
−1, a3, and fsQ3d for bounded functionsf

with bounded derivatives. Moreover, one easily observes that these operators a
products belong toBsDsH0dd. Thus, it follows thatkQ3l−1A and kQ3l−2A2 are equal o
DsA;DsH0dd and onDsA2;DsH0dd, respectively, to some operators belonging toBsDsH0dd.

iii ) By duality, the operatorskQ3l−1Ad* belongs toBsDsH0d*d. Now, for cPDsH0d* and w
PDsA;DsH0dd, one has

kskQ3l−1Ad*c,wl = kc,kQ3l−1Awl = kkQ3l−1c,Awl, s3.13d

wherek· , ·l denotes the duality betweenDsH0d andDsH0d* . SincekQ3l−1 is a homeomor
phism fromDsH0d* to the domain ofkQ3l in DsH0d* , it follows from s3.13d that the domai
of kQ3l in DsH0d* is included in the domain ofA in DsH0d* sthe adjoint of the operatorA
in DsH0d is equal to the operator −A in DsH0d*d.

iv) The inequalityriskQ3l+ ir d−1iBsDsH0d* døConst. for allr .0 is obtained from relation(A1),
given in the proof of Lemma 2.3, withfsQ3d=skQ3l+ ir d−1.

v) Assume thatV is a long-range(scalar) potential. Then the following equality holds in fo
sense onD:

2fiV,Ag = − Q3s]3VdH0
−1 − H0

−1Q3s]3Vd + fiV,H0
−1gQ3P3 + P3Q3fiV,H0

−1g, s3.14d

with fiV ,H0
−1g=o j=1

3 H0
−1a js] jVdH0

−1. Using Lemma 2.3a, one gets that the last two term

s3.14d are equal in form sense onD to
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2 Reo
j=1

3

H0
−1a jQ3s] jVdP3H0

−1 − 2 Imo
j=1

3

H0
−1a js] jVdH0

−1a3P3H0
−1.

It follows that fiV ,Ag, defined in form sense onD, extends continuously to an operato
BsHd. Now let q be as in Definition 1.1. Then a direct calculation using the explicit f
of fiV ,Ag obtained above implies that

IqS kQ3l
r

DfiV,AgI ø Co
j=1

3 IqS kQ3l
r

DkQ3ls] jVdI +
D

r
,

for all r .0 and some positive constantsC andD. h

As a direct consequence, one obtains that
Lemma 3.4: If V satisfies the hypotheses of Theorem 1.2, then A is conjugate to H onR \ssym

0 .
Proof: Proposition 3.3 implies that bothH0 and H are of classC1,1sAd. Furthermore, th

ifferencesH+ id−1−sH0+ id−1 is compact by Proposition 3.1, and%H0

T .0 onR \ssym
0 due to Propo

ition 2.7. Hence the claim follows by[Ref. 1, Thm. 7.2.9 & Prop. 7.2.6]. h

We can finally give the proof of Theorem 1.2.
Proof of Theorem 1.2:SinceA is conjugate toH on R \ssym

0 by Lemma 3.4, the assertions(a)
nd (b) follow by the abstract conjugate operator method[Ref. 1, Cor. 7.2.11 & Thm. 7.4.2].

The limiting absorption principle directly obtained via Ref. 1, Thm. 7.4.1 is expressed in
f some interpolation space, associated withDsAd, and of its adjoint. Since both are not stand
paces, one may use Ref. 1, prop. 7.4.4 for the Friedrichs couplesDskQ3ld ,Hd to get the stateme
c). In order to verify the hypotheses of that proposition, one has to check that for ez
C \ssHd the inclusionsH−zd−1DskQ3ld,DsAd holds. However, sinceDskQ3ld is included in
sAd by Proposition 2.4, it is sufficient to prove that for eachzPC \ssHd the operatorsH−zd−1

eavesDskQ3ld invariant. SinceDsHd=DsH0d is left invariant by the groupheitkQ3ljtPR (see Propo
ition 3.3(i)) one easily gets from Ref. 1, Thm. 6.3.4.(a) thatH is of classC1skQ3ld, which implies
he required invariance ofDskQ3ld [Ref. 1, Thm. 6.2.10.(b)]. h
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PPENDIX

Proof of Lemma 2.2:(a) Let w, c be in D. Using the transformation(2.1), one gets

kH0
−nw,Q3cl =E

R
kH0sjd−nsFwdsjd,si]jFcdsjdlH12

dj.

ow the mapR{j°H0sjd−nPBsH12d is norm differentiable with its derivative equal
o j=1

n H0sjd−ja3H0sjd j−n−1. Hence h]jfH0sjd−nsFwdsjdgjjPR belongs toeR
%H12dj. Thus one ca

erform an integration by parts(with vanishing boundary contributions) and obtain

kH0
−nw,Q3cl =E

R
ki]jfH0sjd−nsFwdsjdg,sFcdsjdlH12

dj.

t follows that ukH0
−nw ,Q3cluøconst.ici for all cPD. SinceQ3 is essentially self-adjoint onD,

his implies thatH0
−nw belongs toDsQ3d.

−1
(b) The boundedness ofP3H0 is a consequence of the estimate
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ess sup
jPR

ijH0sjd−1iBsH12d = ess sup
jPR

I uju
fH0s0d2 + j2g1/2I

BsH12d
, `

nd of the direct integral formalism[Ref. 6, Prop. 3.6 & 3.7]. The remaining assertions follow
tandard arguments. h

Proof of Lemma 2.3:(a) One first observes that the following equality holds onD:

iH0
−1fsQ3dH0 = − H0

−1a3f8sQ3d + i f sQ3d. sA1d

ow, for w ,cPD andhPH0
−nD, one has

w,iH0
−1fsQ3dhl − kw,i f sQ3dH0

−1hl

=kw,iH0
−1fsQ3dH0cl + kw,iH0

−1fsQ3dsh − H0cdl − k f̄sQ3dw,iH0
−1hl

=− kw,H0
−1a3f8sQ3dH0

−1hl − kw,H0
−1a3f8sQ3dH0

−1sH0c − hdl

+ k f̄sQ3dw,iH0
−1sH0c − hdl + k f̄sQ3dH0

−1w,ish − H0cdl,

here we have used(A1) in the last equality for the termkw , iH0
−1fsQ3dH0cl. Hence there exis

constantC (depending onw) such that

ukw,iH0
−1fsQ3dhl − kw,i f sQ3dH0

−1hl + kw,H0
−1a3f8sQ3dH0

−1hlu ø Cih − H0ci.

hen the statement is a direct consequence of the density ofH0D andD in H.
(b) This is a simple corollary of the point(a). h
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We consider a spinless particle coupled to a quantized Bose field and show that
such a system has a ground state for two classes of short-range potentials which ar
alone too weak to have a zero-energy resonance. ©2004 American Institute of
Physics.[DOI: 10.1063/1.1793329]

. INTRODUCTION AND MAIN RESULTS

Our aim in this paper is to prove the existence of the ground state for a spinless nonrel
article interacting with a short-range potential and coupled to a quantized radiation field. W

o show that this can be achieved using the threshold-coupling behavior of the corresp
chrödinger operator, without using explicitly the zero-energy resonance property.

Let us begin by specifying the classes of potentials to be considered. Throughout the p
uppose that(i) VPL` is nonzero and attractive,Vø0, and(ii ) V belongs toL3/2sR3d, which is
ell known to ensure, in particular, thatV lies in the Rollnik class, i.e.,

iViR
2
ªEE

R6

uVsxduuVsydu
ux − yu2

dx dy, + `.

inally, we adopt one of the following assumptions:(iii ) V is strictly attractive,V,0, and satisfie
he inequality

uDVu ø CuVu, s1.1d

ith a positive constantC, or alternatively(iii 8) V is compactly supported withDV integrable. We
ill say more on the meaning of these assumptions in the remarks following Theorem 1
ere we just comment that our goal is to explain the above indicated idea, rather than to p
n optimal result, and therefore the stated assumptions leave ample room for improveme

We denote byHl the family of Schrödinger operatorsHlªp2+lV on L2sR3d for positive
arametersl. Its eigenvalues are monotonically decreasing functions ofl in f0, +`d, and it is

)Electronic mail: catto@ceremade.dauphine.fr
)Electronic mail: exner@ujf.cas.cz
)
Electronic mail: hainzl@ceremade.dauphine.fr
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ell known that at some positive critical valuel0, which is called the “coupling-constant thre
ld” an eigenvalue emerges from the continuum. More precisely, ifløl0, Hl has no negativ
igenvalues, whereas whenl.l0 it has at least one bound state.

We now couple this Schrödinger operator to the radiation field and consider the so
auli–Fierz operator,

Ha
V = „p + Îa Asxd…2 + Hf + lV, s1.2d

cting on the Hilbert space,

H = L2sR3;Cd ^ F,

here F= %n=0
+` Lb

2sR3n;Cd is the Fock space for the photon field andLb
2sR3nd is the space o

ymmetric functions inL2sR3nd representingn-photon states, withn=0 corresponding to th
ne-dimensional vacuum sector. Following the usual convention we abuse notation and
ame symbol forHf and I ^ Hf, etc. The operatorHa

V is essentially self-adjoint onDsDdùDsHfd,
here the symbolD denotes the operator domain—see Bach, Fröhlich, and Sigal(1999) and
iroshima(2002).

We denote the ground state energy as

Esa,lVdªinf specHa
V, s1.3d

nd the spectrum is then the half-linefEsa ,lVd , +`d. In Griesemer, Lieb, and Loss(2001),
heorem 3.1, the authors show under rather weak assumptions about the potentialV that, in the
ase whenl.l0, i.e. when the Schrödinger operator −D+lV has a ground state, it persists a
oupling to the radiation field. Moreover, in Hainzl, Vougalter, and Vugalter(2003), the author
rove for a particular class of potentials that in the case whenl=l0, the coupling to the field ca
reate a ground state for small coupling constanta, despite the fact that the underlyi
chrödinger operator −D+l0V has no ground state. Recall also that in the case of a particle
pin the same result was proved by two of the present authors in Catto and Hainzl(2004); a
ifferent proof is given in Chen, Vougalter, and Vugalter(2003).

Our goal here is to show thatEsa ,lVd is an eigenvalue ofHa
V for coupling in some interva

g ,l0g, with l0−g=Osad for a small. It means that we do not require the existence of a
nergy resonance in the absence of the field. This is due to the fact that, in contrast to t
xisting work quoted above, we employ a tool adopted from Klaus and Simon(1980) which
akes it possible to estimate “how much” the binding is enhanced.

The strategy of proof will be based on the expansion of the self-energy in powers oa, as
rovided in Hainzl(2003), Hainzl (2002), Hainzl, Vougalter, and Vugalter(2003), and Catto an
ainzl (2004), and by checking that the Griesemer–Lieb–Loss criterium[i.e., inequality(2.1)
elow] is satisfied fora small enough. To this aim we use the coupling constant thre
xpansion of Klaus and Simon(1980), which will allow us to demonstrate the enhanced bind

or the class of potentials indicated above. For any ultraviolet cutoffL our result holds true fora
ufficiently small. In fact for a large class of potentials(see Remark 3) the physical value ofa is
n the range of validity, since we will fix the photon energy cutoff to bemc2. This is physically
easonable, since for larger values nonrelativistic QED might no longer be applicable due
act that pair-production can take place.

Recall that in the dipole approximation, in the case of a large couplinga the enhanced bindin
as shown earlier by Hiroshima and Spohn(2001); see also Arai and Kawano(2003) in the
ontext of linear coupling.

We fix units in such a way that the Planck constant"=1, the speed of lightc=1, and the
lectron massm= 1

2. The electron charge is then given bye=Îa, with a<1/137 being the fin
tructure constant. In the present papera plays the role of a small, dimensionless number w
easures the coupling to the radiation field. Our results hold forsufficiently small valuesof a. The
peratorp=−i= is the electron momentum whileA is the quantized magnetic vector poten

hich is given by
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Asxd = o
l=1,2

E
R3

xsukud
2puku1/2 «lskdfalskdeik·x + al

* skde−ik·xgdk,

here the annihilation and creation operatorsal andal
* , respectively, satisfy the usual commu

ion relations,

fanskd,al
* sqdg = dsk − qddl,n,

nd

falskd,ansqdg = 0, fal
* skd,an

*sqdg = 0.

n the following we use the notation

Asxd = Dsxd + D * sxd. s1.4d

he vectors«lskdPR3 in Asxd are orthonormal polarization vectors perpendicular tok which are
hosen in a such a way that

«2skd =
k

uku
∧ «1skd. s1.5d

he functionxsukud describes the ultraviolet cutoff for the interaction at large wave-numbersk. For
he sake of simplicity we choose forx the Heaviside functionQsL− ukud; more general cuto
unctions would work, however, let us emphasize the fact that we shall sometimes use th
ymmetry ofx in the proofs. Throughout the paper we assumeL=1. This corresponds to t
nergymc2 in our system of units and represents a natural upper bound to which the validity
onrelativistic QED can be extended.

The photon field energyHf is given by

Hf = o
l=1,2

E
R3

ukual
* skdalskddk, s1.6d

nd the field momentum reads

Pf = o
l=1,2

E
R3

kal
* skdalskddk. s1.7d

inceH can be also written as%n=0
+` L2sR3;Cd ^ Lb

2sR3n;C2nd we can express a general vectoC
H as a direct sum,

C = %
n=0

`

cn, s1.8d

herecn=cnsx,k1,… ,knd is an n-photon state. For simplicity, we do not include the varia
orresponding to the polarization of the photons.

To simplify further the notation, we introduce the unitary transformation

U = eiPf·x s1.9d

cting onH. Since

UAsxdU * = As0d
nd
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UpU * = p − Pf , s1.10d

e obtain

UHa
VU * = sp − Pf + ÎaAd2 + Hf + lV, s1.11d

hereA=As0d. The operatorU preserves spectral properties, in particular,

inf specfUHa
VU * g = inf specHa

V. s1.12d

hus we shall rather work withUHa
VU* in the following; abusing the notation we will use ag

he symbolHa
V for it.

Our main result is the following.
Theorem 1: Adopt the assumptions (i), (ii), and either (iii) orsiii 8). Then there exists

unction g:R+→ s0,1d such that for any small enougha and all lP sl0(1−gsad) ,l0g, the spectra
hreshold Esa ,lVd is an eigenvalue of Ha

V.
Remark 1:The assumptions about the potential combine different types of requiremen

nstance, hypotheses involving the Laplacian, i.e.,(1.1) or DVPL1 impose restrictions mainly o
ocal regularity of the potential. On the other hand, the integrability condition(ii ) which guaran
ees the Rollnik property regulates the potential decay; on a heuristic level one may say
hould behave asuxu−2−e at infinity.

Remark 2:It comes out of the proof thatgsad is of order ofa, more specifically, the relatio
2.37) shows thatgsad=ca+Osa2 ln ad with c.0 holds asa→0. It is important that we get
his way an asymptoticallower bound togsad which allows us to assess how much the bindin
nhanced.

Remark 3:In connection with the previous remark we want to emphasize that all the con
ppearing in the proof can be evaluated explicitly. Assuming that we choose a potentialV such tha
he constantsC,bsVd in (1.1) and (2.39), respectively, are of the order of one, it turns out
heorem 1 holds fora&10−2 which covers the physically important case.

Remark 4:We have recalled above the results of Griesemer, Lieb, and Loss(2001) and Hainzl
ougalter, and Vugalter(2003), the latter using the existence of a zero-energy resonance
ogether with a continuity argument which shows thatHa

V has a bound state for values ofl slightly
elowl0. As we have said our strategy is similar but the proof is more constructive, in part

t provides a rough estimate on how far belowl0 one can descend to still ensure the existenc
ground state. In addition our method covers a different and in several respects a wider

otentialsV, in particular, we require neither a compact support nor the radial symmetry
otential.

Remark 5:Using the methods of Catto and Hainzl(2004), Theorem 1 can also be proven
he case of particles with spin. Unfortunately the numbers of inequalities needed increase
ally. For that reason we restricted our attention to the more convenient case of bosons.

I. PROOF OF THEOREM I

Let 0,løl0. According to Griesemer, Lieb, and Loss(2001), the ground state exists pr
ided

Esa,lVd , Esa,0d, s2.1d

here Esa ,0d is the electron self-energy. Thus we are going to construct a trial staC
L2sR3d ^ F which ensures that the last inequality is satisfied,

sC;Ha
VCd , Esa,0diCi2. s2.2d

he strategy of proof is as follows: we will compare the respective expansions ofEsa ,0d and
V
C ;HaCd for the trial stateC in terms of the coupling constanta. From Hainzl (2003) and
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ainzl, Vougalter, and Vugalter(2003) we already know the first three terms in the Taylor exp
ion of the former, namely

uEsa,0d − ap−1 + a2k0uDDAa
−1D * D * u0lu ø Cselfa

3, s2.3d

or some positive constantCself, whereu0l is the vacuum vector,k· ; ·l denotes the scalar produ
n the photon Fock spaceF, and with

Aa = Pf
2 + Hf + 2aD * D. s2.4d

ecall that actually in Hainzl, Vougalter, and Vugalter(2003) the proof is given forA0 instead o

a in the second-order term in(2.3), but the same argument carries throughmutatis mutandisto
he present case.

Consider now a quantitygsadP s0,1d, to be determined later, and observe that when
oupling parameterl satisfies

„1 − gsad…l0 , l ø l0,

hen the Schrödinger operator,

ha
l
ª„1 − gsad…p2 + lV,

as a negative eigenvalueelsadª− uelu at the bottom of the spectrum. This trivially follows fro
he inequalityl / f1−gsadg.l0 and our choice ofl0 to be critical. We denote bycl a correspond
ng eigenstate which may be chosen without loss of generality as real-valued and normalizeL2.
ur trial function, to be inserted into(2.2), will involve only two photons being of the form

C = cl % c1 % c2 % ¯ , s2.5ad

ith

c1 = − 2ÎaL−1D * pcl s2.5bd

nd

c2 = − aL−1D * D * cl. s2.5cd

he operatorL on L2sR3d ^ F appearing in here is defined by

L = „1 − gsad…sp − Pfd2 + lV + uelu + Hf + 2aD * D; s2.6d

he definitions(2.5b) and(2.5c) make sense becauseL is invertible on the orthogonal complem
f the vacuum sectorL2sR3d ^ Cu0l; this follows from the fact that it is unitarily equivalent

a
l + uelu+Hf +2aD* sxdDsxd by means of the operator(1.9). Note that, with the abuse of notati
entioned in the opening, we often usecl as a shorthand forcl ^ u0l.

The canonical commutation relations yield the identity

A2 = D * D * + DD + 2D * D +
1

p
;

sing it together with commutativity ofPf with D , D*, we find that

sC;Ha
VCd = gsadiPCi2 + Fa

p
− ueluGiCi2 + sC;LCd + 2RsC;f2ÎaPD * + aD * D * gCd

+ „cl;sha
l + ueludcl…, s2.7d

herePªp−Pf denotes the total momentum; the last term on the right-hand side of(2.7) cancels
l
y definition ofel , ha, andcl.
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Let us further remark that it will be convenient in the following to replace the field Ha

onian Hf by H̃fªHf +a3 in order to avoid dealing with the logarithmically divergent infra
erms; this trick was already used in Hainzl and Seiringer(2002), Catto and Hainzl(2004), and
ainzl, Hirokawa, and Spohn(2003). It amounts to adding an extra −a3iCi2 term at the right
and side of(2.7) which does not change, of course, the expansion up to the second ordea.
bserve that by our choice ofC the identity

sC;LCd + 2RsC;f2ÎaPD * + aD * D * gCd

= scl;Lcld − 2R„cl;− aDDL−1s− 2ÎaPDd*L−1s− 2ÎaPDd*cl…

− iL−1/2f2ÎaPD * + aD * D * gcli2, s2.8d

olds, and the same is true if we replaceL in the last relation byL̃ referring toH̃f. Thus we obtai

sC;H̃a
VCd = gsadiPCi2 + Fa

p
− uelu − a3GiCi2 − 4aiL̃−1/2D * pcli2 − a2scl;DDL̃−1D * D * cld

+ 8a2RsL̃−1D * D * cl;PD * L̃−1D * pcld, s2.9d

hereH̃a
V refers again toH̃f. On the other hand, apart from taming the infrared singularity

xtra term is irrelevant, as long as we are looking for an effect of an order ofa2. This is why we
ill abuse notation writing nontilded quantities everywhere except the one place whe
amiltonian shift indeed matters, that is, in the proof of Lemma 2.4.

To estimate the last term at the right-hand side of(2.9), notice that the Cauchy–Schwa
nequality yields

8a2usL−1D * D * cl;PD * L−1D * pcldu ø
4a3

a
iL−1/2PDL−1D * D * cli2 + 4aaiL−1/2D * pcli2,

s2.10d

ith a positive constanta to be chosen later. The last term can be combined with the similar
n (2.9) giving

sC;Ha
VCd ø gsadiPCi2 − ueluiCi2 +

a

p
iCi2 − 4as1 − adiL−1/2D * pcli2

− a2scl;DDL−1D * D * cld +
4a3

a
iL−1/2PDL−1D * D * cli2. s2.11d

o estimate further the terms appearing in(2.10) we need a series of technical lemmata.
Lemma 2.1: The following inequality holds:

scl;DDL−1D * D * cld ù k0uDDAa
−1D * D * u0l + gsadC1, s2.12d

here

C1ªiPfAa
−1D * D * u0li2.

Proof: We denoteL=Q+b, with

Q = „1 − gsad…sp2 + Pf
2d + lV + uelu + Hf + 2aD * D,
ndb=−2(1−gsad)pPf, and we use twice the second resolvent equation,
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sQ + bd−1 = Q−1 − Q−1bQ−1 + Q−1bsQ + bd−1bQ−1 ù Q−1 − Q−1bQ−1, s2.13d

here the inverse ofQ+b and the last inequality makes sense in the complement to the va
ector where the operator is strictly positive as we have remarked above. Hence we hav

scl;DDL−1D * D * cld ù scl;DDQ−1D * D * cld + 2„1 − gsad…scl;DDQ−1pPfQ−1D * D * cld.

s2.14d

urthermore, the second term at the right-hand side vanishes. To check this claim, recalcl

elongs by construction to the null-space ofha
l + uelu, and thatha

l commutes with the operator

Kª„1 − gsad…Pf
2 + Hf + 2aD * D.

t follows easily that

Q−1D * D * cl = K−1D * D * cl, s2.15d

nd therefore

scl;DDQ−1pPfQ−1D * D * cld = scl;pcldk0uDDK−1PfK−1D * D * u0l = 0,

ecausecl is real-valued as indicated above making the first factor zero.
Using (2.15) again, we find that the first term reads as

scl;DDQ−1D * D * cld = scl;DDK−1D * D * cld

= icli2k0uDDK−1D * D * u0l ù k0uDDAa
−1D * D * u0l + gsad

3k0uDDAa
−1Pf

2Aa
−1D * D * u0l, s2.16d

here in the last line we used the fact thatcl is normalized together with the second resolv
quation and positivity ofK in the complement of the vacuum sector. Hence we have the fo

ng claim. h

Lemma 2.2: For any positive constantm we have

iL−1/2D * pcli2 ù fC4smd + mC3smdgipcli2 −
l

2
C3smdscl;DVcld, s2.17d

ith

C3smd = 2
3k0uDsK + md−2D * u0l s2.18d

nd

C4smd = 2
3k0uDsK + md−1D * u0l. s2.19d

Proof: Using the relation analogous to(2.13), we find

pDL−1D * p ù pDsK + md−1D * p − pDsK + md−1f− 2pPf„1 − gsad… + ha
l + uelu − mg

3sK + md−1D * p.

gain, sincecl is real valued the term containingpPf vanishes; notice that the same conclu
an also be made using symmetry of the cutoff function. SinceK acts on photon variables where

a
l acts on those of the electron, the two operators commute and the second term at the ri

ide of the last estimate can be rewritten as

                                                                                                            



w r
c

t

O

w

p

ide
h
a
f

w

b e-

g m

b

r

L e
r
=

J. Math. Phys., Vol. 45, No. 11, November 2004 Spinless particle in nonrelativistic QED 4181

                        
scl;pDsK + md−1f− 2pPf„1 − gsad… + ha
l + uelu − mgsK + md−1D * pcld

= C3smd„pcl;sha
l + uelu − mdpcl…, s2.20d

ith C3smd given by(2.18). Observing thatcl belongs to the null-space ofha
l + uelu we can furthe

ast a part of the last expression into the form

„pcl;sha
l + ueludpcl… = − 1

2scl;†p,fp,ha
l + uelug‡cld =

l

2
scl;DVcld, s2.21d

o obtain

„pcl;sha
l + uelu − mdpcl… = − mipcli2 +

l

2
scl;DVcld.

n the other hand,

„cl;pDsK + md−1D * pcl… = C4smdipcli2,

ith C4smd given by (2.19), which concludes the proof. h

Our next auxiliary result is the following.
Lemma 2.3: Leta.0 and 0,løl0, then for any positive number gsad,1−l /l0 there are

ositive constantsb and CsVd such that

p2 ø bsha
l + uelud + CsVd. s2.22d

Proof: For the inequality(2.22) to hold, the constantb which appears at the right-hand s
as obviously to satisfy the inequalityb.1/f1−gsadg, or equivalentlyb(1−gsad)−1.0. We fix
n arbitraryb with this property, to be specified later. Next we notice that inequality(2.22) will

ollow from

p2 + lṼ ù − C̃sVd,

ith

Ṽª
1

1 − gsad − b−1V, C̃sVdª
CsVd

b„1 − gsad… − 1
,

ecause the last inequality is equivalent to(2.22) with the term uelu at the right-hand side n

lected. In other words, it is sufficient that the Schrödinger operatorp2+lṼ has no spectru

elow −C̃sVd. From the proof of the Birman-Schwinger bound in Reed and Simon(1975), Theo-

em XIII.10, and the fact thatṼ is nonpositive it follows that this happens if and only if

l2

16p2 EE
R6

uṼsxduuṼsydu
ux − yu2

e−2ÎC̃sVdux−yu dx dy, 1. s2.23d

et us denote byKm the functionx°e−Îmuxu /4puxu2 with a fixed positivem which represents th
esolvent kernel in the above expression; it is clear thatKm belongs toL1sR3d and eR3Kmsxddx

Î
1/ m. We employ these observations in the following chain of inequalities:

                                                                                                            



w ectively.
T fixed
b lity
( e
e

w

→ e
v

T otential
b e
l e valid.

a

w

p

v rs annu-
l rators
B

a

4182 J. Math. Phys., Vol. 45, No. 11, November 2004 Catto, Exner, and Hainzl

                        
l2

16p2 EE
R6

uṼsxduuṼsydu
ux − yu2

e−2ÎC̃sVdux−yu dx dy=
l2

4p„1 − gsad − b−1
…

2E
R3

sV ! K4C̃sVddsxdVsxddx

ø
l2

4p„1 − gsad − b−1
…

2iViL2
2 iK4C̃sVdiL1

ø
l2

8p„1 − gsad − b−1
…

2ÎC̃sVd
iViL2

2 ,

here in the second and third line we used Cauchy–Schwarz and Young inequalities, resp
hus the bound(2.23) will be satisfied if the last expression is smaller than one. For a
.2(1−gsad)−1 we can estimate(1−gsad−b−1)−1/2 by Îb, and consequently, the inequa

2.22) will hold uniformly in lP f0;l0d, as long as the positive constantCsVd is chosen larg
nough to satisfy

l0
2 ÎbiViL2

2

8p„1 − gsad − b−1
…

3/2 , ÎC̃sVd, s2.24d

hich we set out to prove. h

Note that the constants can be chosen explicitly. The left-hand side of(2.24) diverges asb
` and in the allowed interval it has a unique minimum atb=4/f1−gsadg where it attains th

alue 2l0
2iViL2

2 /3Î3p(1−gsad)2. In other words, the lemma is valid for thisb and

CsVd = S 2l0
2iViL2

2

3p„1 − gsad…2D2

.

he reader may wonder that we have not used here fully our assumptions about the p
ecause for a bounded functionVPL2 is a weaker requirement thanVPL3/2, however, without th

atter our main premise about the existence of the coupling constant threshold may not b
Lemma 2.4 : The following estimates hold:

iPL−1D * D * cli2 ø C5 s2.25d

nd

iPL−1D * pcli2 ø C6sadipcli2, s2.26d

ith positive C5 and C6sad given in (2.28) and (2.29) below, depending onb and CsVd of the

revious lemma. Using the shifted Hamiltonian H˜
fªHf +a3, we have C6sad, lnsa−3d as a→0+.

Proof: By means of(2.22) we get the estimates

L−1P2L−1 ø L−1fbsha
l + uelud + CsVdgL−1 ø

b

2
Hf

−1 + CsVdHf
−2, s2.27d

alid in the appropriate part of the state space, namely, when sandwiched between vecto
ated byPf; in the second inequality we used the fact that for any pair of commuting ope
,C with C strictly positive we havesB+Cd−1BsB+Cd−1ø

1
2C−1. In this way we arrive at

iPL−1D * D * cli2 ø Fb

2
k0uDDHf

−1D * D * u0l + CsVdk0uDDHf
−2D * D * u0lGªC5 s2.28d
nd

                                                                                                            



N f
i

w e since
e the
a

h
f e
f e
a
i

h
c onance
I

w y
l

w

U

w

i ert
i

J. Math. Phys., Vol. 45, No. 11, November 2004 Spinless particle in nonrelativistic QED 4183

                        
iPL−1D * pcli2 ø ipcli22

3
Fb

2
k0uDHf

−1D * u0l + CsVdk0uDHf
−2D * u0lGªipcli2C6sad.

s2.29d

ow we come to the place where the shift matters because without it the right-hand side o(2.29)
s infrared divergent. With the replacementHf →Hf +a3 we have

k0uDfHf + a3g−2D * u0l = 8pE
0

1

duku
uku

fuku + a3g2 = 8p„lnsa−3d + a3 − 1…, s2.30d

hich concludes the argument. Let us stress that this trick is mainly used for convenienc
ven without it the term on the left-hand side of(2.29) is finite, which can be seen by repeating
rgument in Hainzl and Seiringer(2002), Eq. (4.4). h

Finally we come to our last technical result.
Lemma 2.5: Under the assumption (iii8) there is a positive constant C such that

uscl;DVcldu ø Cscl; uVucld. s2.31d

Proof: Since VPL` the ground state is represented onGªsuppV by a positive smoot
unction. HencersldªsupGclsinfG cld−1 makes sense and satisfies 1ørsld,`; the same is tru
or l=(1−gsad)l0 corresponding to the zero-energy resonance. Using the standard estimat[Reed
nd Simon(1975), Thm. IX.28] one can check thatl°cl is continuous in thei ·i` norm which

mplies continuity of the functionr. Consequently, there are positivem andM such that

0 , mø c̃lsxd ø M , ` s2.32d

olds for allxPG, lP gl0(1−gsad) ;l0g, and a suitable family of non-normalized solutions(for

l both the infimum and supremum vanish, of course, as we approach the zero-energy res).
t follows that

sc̃l;DVc̃ld ø M2iDViL1, s2.33d

hile sc̃l ; uVuc̃ldùm2iViL1 is positive, so it can majorize(2.33) when multiplied by a sufficientl
argeC. h

Now we are ready to complete the proof of the theorem. From the definitions ofc1 andc2 and
ith the help of(2.25) and (2.26) we get

gsadiPCi2 ø gsad„1 + 4aC6sad…ipcli2 + a2gsadC5. s2.34d

sing our assumptions aboutV we can write

scl; uVucld = − scl;Vcld = „1 − gsad…ipcli2 + uelu,

hich yields an estimate to the last term at the right-hand side of(2.17),

iL−1/2D * pcli2 ù FC4smd + mC3smd −
l

2
C3smdC„1 − gsad…Gipcli2 −

l

2
C3smdCuelu; s2.35d

n case of(iii ) this follows from (1.1), whereas for(iii 8) we employ Lemma 2.5. Next we ins

nto (2.11) from (2.34) and (2.35); in combination with Lemma 2.1 we obtain
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sC;Ha
VCd ø

a

p
iCi2 − a2k0uDDAa

−1D * D * u0l s2.36ad

− ueluiCi2 + auelu2lC3smdCs1 − ad s2.36bd

+ Fgsads1 + 4aC6sad − 2as1 − adlC3smdCd − 4as1 − ad

3FC4smd + mC3smd −
l

2
C3smdCGGipcli2 s2.36cd

+ a2gsadC5 − a2gsadC1+ s2.36dd

+
4a3

a
iL−1/2PDL−1D * D * cli2. s2.36ed

otice first that the term(2.36e) behaves asOsa3d for a→0 which follows, e.g., from Hainz
irokawa, and Spohn(2003), Lemma 15(v); thus it is irrelevant for the argument in the same
s the shift coming from the infrared regularization.

The main idea is now to choose the functiongsad in such a way that it cancels the factor
ront of ipcli2 in (2.36c); this yields

gsad =

4as1 − adFC4smd + mC3smd −
l

2
C3smdCG

1 + 4aC6sad − 2as1 − adlC3smdC
. s2.37d

e choose alsom=sl /2dC and fix the parameter in(2.10) by setting

1 − aªminh„4C4smd…−1,C6sad„mC3smd…−1,3/4j;

his yieldsgsadøa which means that(2.36d) =Osa3d.
On the other hand, since

iCi2 = 1 + 4aiL−1D * pcli2 + a2iL−1D * D * cli2 = 1 +Osad, s2.38d

e deduce from(2.3) that

s2.36ad = Esa,0diCi2 + Osa3d.

e denote byEsbd the bottom of the spectrum ofp2+bV, i.e.,

Esbdªinf specsp2 + bVd.

e haveEsl0d=0 by assumption, and since the ground state represents always case(A) in the
erminology of Klaus and Simon(1980); in other words, zero is not an eigenvalue ofp2+l0V; we
now that

Esbd = − bsVdsb − l0d2 + O„sb − l0d3
…, s2.39d

olds forbùl0, close tol0, and for some positive constantbsVd depending only on the potent
. Notice that the above asymptotic expansion coming from Klaus and Simon(1980), Theorem
.3 was derived there forVPC0

`sR3d, however, an extension to the Rollnik class is straigh

ard. Recall now that
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uelu = − „1 − gsad…Esl„1 − gsad…−1d.

ince(1−gsad)l0,løl0 holds by assumption andgsad=Osad, we have

l„1 − gsad…−1 − l0 ø l0gsad„1 − gsad…−1 = Osad,

nd therefore

uelu = bsVdS l

1 − gsad
− l0D2

+ Osa3d,

here the first term at the right-hand side isOsa2d. Returning to(2.36) we conclude from the la
laim that the second term in(2.36b) is of order ofa3. This yields for alll in the considered rang
nd for smalla the asymptotic inequality,

Esa,lVd ø Esa,0d − uelu + Osa3d.

incebsVd.0 the second term at the right-hand side is negative and dominates over the e
sufficiently small. This demonstrates that the sought inequality(2.1) is valid under the assum

ions we have made and thus it proves Theorem 1.
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wo-dimensional Riemannian and Lorentzian geometries
rom second-order ODE’s
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In this paper we give an alternative geometrical derivation of the results recently
presented by García-Godínez, Newman, and Silva-Ortigoza on the class of all
two-dimensional Riemannian and Lorentzian metrics from second-order ODE’s
which are in duality with the two-dimensional Hamilton–Jacobi equation. We show
that, as it happens in the null surface formulation of general relativity, the
Wünschmann-type condition can be obtained as a requirement of a vanishing tor-
sion tensor. Furthermore, from these second-order ODE’s we obtain the associated
Cartan connections. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1806261]

. INTRODUCTION

In a couple of recent works, García-Godínez, Newman, and Silva-Ortigoza(GNS) presente
he (pseudo-)Riemannian geometries which are hidden in a certain class of differential equ
those which satisfy a Wünschmann-type condition,IGNS=0). In the first of these works,1 they
tudied how to obtain all two-dimensional Riemannian and Lorentzian metrics from a certa
f second-order ODE’s. Furthermore, in Ref. 2, they extended their work and showed how
ll three-dimensional metrics from a certain class of three second-order PDE’s and also
ertain class of third-order ODE’s. From now on, we will say that these equations are in th
lass.

The special status of these ODE’s and PDE’s is that they are in duality with the Ham
acobi equation. For example, if we have a second-order ODE in the GNS class,

u9 = Lsu,u8,sd, s1d

nd if we know a solutionu=Zsxa,sd, with xa=sx1,x2d integration constants, then this solut
utomatically satisfies the two-dimensional Hamilton–Jacobi equation:

gab¹aZ¹bZ = 1, s2d

here¹a means a differentiation with respect toxa, and gab, is a (pseudo-)Riemannian metri
onstructed fromL and its derivatives.

All these problems share similar characteristics with the problem of the null surface
ation (NSF) of general relativity in three and four dimensions.3–6 In NSF, from a certain class
ifferential equations, known as the Wünschmann class, one can construct all three- a
imensional conformal Lorentzian metrics. The three-dimensional conformal metrics are o

rom a class of third-order ODE,

u- = Fsu,u8,u9,sd, s3d

ith F satisfying the so-called Wünschmann conditionIfFg=0. Likewise, the four-dimension
etrics are obtained from a pair of second-order PDE’s,

)
Electronic mail: egallo@fis.uncor.edu

4186022-2488/2004/45(11)/4186/5/$22.00 © 2004 American Institute of Physics
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uss= Lss,s* , u,us,us* ,uss*d,

s4d
us*s* = L * ss,s* , u,us,us* ,uss*d,

heres ands* are complex variables, andL andL* satisfy the generalized Wünschmann c
ition WfL ,L* g=0 and its complex conjugate. It can be shown thatIfFg and WfL ,L* g are

nvariant under contact transformations.7–9 Again, these equations are in duality with ano
quation, namely the eikonal equation,

gab¹aZ¹bZ = 0. s5d

nd the level surfaces of the solutionu=Zsxa,sd to (3), or u=Zsxa,s,s* d to (4) are null surfaces o
he respective metrics that they generate.

In NSF, the Wünschmann condition can be obtained in several ways.3,10–12Two of these wer
sed by GNS to obtain the Wünschmann-type condition for differential equations in dualit

he Hamilton–Jacobi equation. There exists a third method which is used in NSF, the tors
ethod, and from which one can obtain not only the Wünschmann class and its respective
ut also more geometrical structures associated to the equations, in particular all norma
onformal connections.13,12 In this paper we show that this method can also be applied t
roblem of (pseudo-)Riemannian metrics discussed by GNS. In particular, we show ho

orsion-free condition restricts the class of second-order ODE’s to those belonging to th
lass and such that we get all two-dimensional Riemannian and Lorentzian metrics, and re
artan connections.

In Sec. II we briefly present the notation and basic concepts about the geometry of
rder ODE’s. In Sec. III, we show how to get the GNS class from the torsion-free conditio
onstruct the associated Cartan connections. Finally, in the conclusions, we discuss the e
f this approach to the problem of the GNS class of third-order ODE’s.

I. NOTATION AND BASIC NOTIONS

Let the second-order ODE be

u9 = Lsu,u8,sd, s6d

heresPR is the independent variable, and the primes denote derivative of the depende
bleu with respect tos.

On the jet-spaceJ1 with local coordinatesss,u,u8d we consider the Pfaffian systemP

v1 = du − u8 ds, s7d

v2 = du8 − L ds. s8d

ocal solutions of(6) are in one-to-one correspondence with integral curvesg : R→J1 of P
atisfyingg* dsÞ0. These curves are generated by the vector field onJ1 given by

es ; D =
]

] s
+ u8

]

] u
+ L

]

] u8
. s9d

e will restrict the domain ofL to a open neighborhoodU of J1 whereL is C` and the Cauch
roblem is well posed. Then, it follows from Frobenius theorem that the solution spaceM is a

wo-dimensionalC` manifold, and we will denote a given local coordinates system on it bxa

sx1,x2d. It means that we can construct a mapZ: M 3R→R , u=Zsxa,sd, such that by a give

0
aPM the mapu=Zsx0

a,sd is a solution of(6).

Then, if onM 3R we define a Pfaffian systemS generated by
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b1 = Za dxa,

b2 = Za8 dxa

where primes mean derivatives ons, andZa=]aZ), it follows that there exist a diffeomorphis
: J1→M 3R which pulls back the Pfaffian systemS on the systemP, i.e.,

z * S = P. s10d

e will make use of this diffeomorphism later.

II. RIEMANNIAN AND LORENTZIAN GEOMETRIES FROM SECOND-ORDER ODE’s

From v1,v2 which generate the Pfaffian systemP, we construct the following one-forms:

u1 =
1
Î2

sv1 + av2d, s11d

u2 =
1
Î2

sv1 − av2d, s12d

herea=ass,u,u8d is a nonvanishing function to be determined. Next, we construct a dege
etric onJ1,

hsu,u8,sd = 2us1
^ u2d = hi ju

i
^ u j , s13d

here

hi j = S0 1

1 0
D .

ote that ifa2.0, thenu1 andu2 behave as null real vectors, and ifa2,0, they are complex nu
ectors.

Let v j
i be a connection such that we have the following.

A) The connection is skew-symmetric,

vi j = vfi j g, s14d

wherevi j =hikvk
j.

B) The one-formsu1 andu2 satisfy the Cartan’s torsion-free first structure equations,

Ti ; dui + vk
j ∧ u j = 0. s15d

Now, we state and prove the following theorem.
Theorem: The Torsion-free condition on the skew-symmetric connection:

1) uniquely determines the connection, with the only nonvanishing component given by

vf12g = −
1
Î2

sln aduu1 +
1
Î2

sln aduu2 +
1

a
ds, s16d

2) uniquely determines the function a in terms ofL,

a2 =
1

Lu
, s17d
3) impose a Wünschmann-type condition onL,
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IGNS= Da + aLu8 = 0. s18d

Proof: From (11) and (12) we have

du1 = −
1

Î2a
auu1 ∧ u2 −

1

2a
s1 + Da + a2Lu + aLu8du

1 ∧ ds−
1

2a
s− 1 −Da + a2Lu − aLu8du

2 ∧ ds,

s19d

du2 =
1

Î2a
auu1 ∧ u2 +

1

2a
s− 1 +Da + a2Lu + aLu8du

1 ∧ ds+
1

2a
s1 − Da + a2Lu − aLu8du

2 ∧ ds.

s20d

he condition of free torsion(15) reads

du1 − vf12g ∧ u1 = 0, s21d

du2 + vf12g ∧ u2 = 0, s22d

nd by solving these equations we get

vf12g = −
1
Î2

sln aduu1 +
1
Î2

sln aduu2 +
1

2a
s1 + Da + a2Lu + aLu8dds, s23d

ogether for the three conditions,

s− 1 −Da + a2Lu − aLu8d = 0, s24d

s− 1 +Da + a2Lu + aLu8d = 0, s25d

sDa + aLu8d = 0. s26d

inally, from (23), and the conditions(24), (25), and (26) we get the results stated in t
heorem. Q.E.D.

Note now, that with the mapz : J1→M 3R discussed in Sec. II, we have a one-param
amily of (pseudo-)Riemannian metrics in the solution spaceM (Riemannian metrics ifLu,0,
nd Lorentzian metrics ifLu.0), i.e., we have the following family of metrics:

gsxa,sd = sz−1d*h, s27d

r written in coordinates,

gsxa,sd = b1
^ b1 −

1

Lu
b2

^ b2 = FZaZb −
1

Lu
Za8Zb8Gdxa dxb. s28d

n fact, they are equivalents, because it is easy to show thath satisfies

Les
h = 0. s29d

i i
inally, let us collect the one-formsu andv j into the matrix-valued one-form
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vc = 1 0 0 0

u1 − vf12g 0

u2 0 vf12g
2 ,

nd let us study two cases.
(a) Lu.0: In this case we have a Lorentzian metric, andvc takes its values in the Lie algeb

f SOs1,1d’R2.
This matrix valued one-form can be regarded as a SOs1,1d’R2 Cartan connection14 on the

rincipal bundle SOs1,1d→P→M with associated curvatureVc=dvc+vc∧vc given by

Vc = 1 0 0 0

T1 V1
1 V2

1

T2 V1
2 V2

22 = 10 0 0

0 − R 0

0 0 R
2 , s30d

hereV j
i =dv j

i +vk
i ∧v j

k is the standard curvature, and

R= −
1

a
auuu

1 ∧ u2. s31d

(b) Lu,0: In this case we have a Riemannian metric, andvc takes its values in the L
lgebra of SOs2d’R2.

This construction gives a SOs2d’R2 Cartan connection on the principal bundle SOs2d→P
M with associated curvatureVc=dvc+vc∧vc given by a similar formula to(30).

V. CONCLUSIONS

In this paper we show that, as it happens in NSF, all two-dimensional Riemannia
orenztian metrics can be obtained from the geometrical condition of a torsion-free conn
urthermore, we construct all associated Cartan connections to these equations. This app
e extended to the study of third-order ODE and a pair of second-order PDE’s, but the ch

he differential quadratic formh, is not a priori so clear. In fact, all these problems should
tudied with the Cartan’s equivalence method15 applied to differential equation under a subgr
f contact transformations: the canonical transformations. With this algorithmic method, the
rising from these equations can be naturally obtained as the group of allowed transforma

he study of the equivalence problem. Work in this area has begun.
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omments on matter collineations of plane symmetric,
ylindrically symmetric, and spherically symmetric
pace–times

Asghar Qadira)
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[DOI: 10.1063/1.1793331]

Recently matter collineations(MCs) of plane symmetric static1 and cylindrically symmetri
tatic space–times2 have been presented. Earlier, the same author also classified spherical
etric static space–times according to their MCs.3 For an energy-momentum tensorT, we callj
n MC if

£jT = 0. s1d

n component form, Eq.(1) becomes the MC equation

Tab,cj
c + Tacj ,b

c + Tbcj ,a
c = 0.

n these equations, ifT is replaced by the Ricci tensorR then the vectorj is called a Ricc
ollineation(RC). Noting the apparently similar form of the equations and the role of the m
nd Ricci tensors in the Einstein field equations(EFEs)

Rab − 1
2Rgab = kTab, s2d

he author merely replaced the Ricci tensor by the matter tensor in Refs. 4–6 for the class
ccording to RCs of plane symmetric, cylindrically symmetric, and spherically symmetric
pace–times, respectively. All that remains to be done is to check that the RCs satisfy
quations. Even if he has done so, errors persist in his papers. For example, because of

n calculations the Lie algebra for a case, as given in Eq.(B47) of Ref. 4, does not close. This er
as been carried over in Eqs.(43) of his paper(Ref. 1). (A typographical error there is carried ov
s well.) Now, as plane symmetry can locally be considered as a special case of cyli
ymmetry, this particular case appears in Ref. 5 also, where it has been corrected. This c
as been carried over into Eqs.(27) of his paper(Ref. 2) as well, but the author has not cited th
apers.

It is worth mentioning a serious misconception in the three subject papers(Refs. 1–3) that was
ot imported from the Ricci collineation papers. The author says that there are “three, fou
ix, seven, or ten MCs out of which three are isometries and the rest are proper.”1,2 He has
ssumed that the isometry group is minimal. This is simply incorrect as there are numerou
f nonminimal isometry groups. It is possible that all the four, five, six, seven, or ten MCs m

sometries and there may be no proper MCs. A similar problem arises for the spherically s
ic case.3

)Electronic mail: aqadirs@comsats.net.pk
)
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We also mention here that Ref. 7, on the same subject as Ref. 1, does not only clas
lane symmetric space–times(with the correct Lie algebras provided) but it discusses the issue

he relationship between the RCs and MCs and also provides a number of explicit exam
hat purpose. We will not go into further detail on this because this is the subject of a s
ull-length study8 in itself.

1M. Sharif, J. Math. Phys.45, 1518(2004).
2M. Sharif, J. Math. Phys.45, 1532(2004).
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ddendum: Symmetries of the energy-momentum tensor
M. Sharifa)

Department of Mathematics, University of the Punjab,
Quaid-e-Azam Campus Lahore-54590, Pakistan

(Received 21 May 2004; accepted 31 May 2004; published 25 October 2004)

In recent papers[J. Math. Phys.44, 5142 (2003); 45, 1518 (2003); 45, 1532
(2004)] we have discussed matter symmetries of nonstatic spherically symmetric
space–times, static plane symmetric space–times, and cylindrically symmetric static
space–times. These have been classified for both cases when the energy-momentu
tensor is nondegenerate and also when it is degenerate. Here we add up som
consequences and the missing references about the Ricci tensor. ©2004 American
Institute of Physics.[DOI: 10.1063/1.1777404]

Recently, we have presented a detailed analysis of matter collineations(MCs) for nonstatic
pherically symmetric space–times,1 static plane symmetric space–times,2 and cylindrically sym
etric static space–times.3 We have discussed in detail the matter symmetries for each o
etrics and have found the corresponding constraint equations. In general, it is not easy

hese constraint equations, sometimes the solution of the constraint equations may not e
ave constructed some examples which help us in exploring the difference between RCs a

It is usually believed that matter and Ricci symmetries are the similar symmetries and o
nd MCs directly from the RCs. However, this is not true in general. This has been shown in
apers on this topic.1–9 In this short communication, we express this difference with exam
urther, we add up some references missing in Refs. 1–3 which should have been insert

Let sM ,gd be a space–time manifold with signatures+,−,−,−d. It is assumed that the ma
old M, and the metricg, are smooth. Einstein’s field equations(EFEs), which relate the geomet
nd matter, are given by

Rab − 1
2Rgab ; Gab = kTab sa,b = 0,1,2,3d, s1d

herek is the gravitational constant,Gab is the Einstein tensor,Rab is the Ricci, andTab is the
atter (energy-momentum) tensor. Also,R=gabRab is the Ricci scalar. It is obvious from EF

hat for vacuum space–times,Rab=Tab and consequently, RCs and MCs are similar in this sp
ase.

We define a differentiable vector fieldj on M to be a matter collineation if £jTab=0 which can
e written in component form as

Tab,cj
c + Tacj,b

c + Tcbj,a
c = 0, s2d

here £ is the Lie derivative operator,ja is the symmetry or collineation vector. Since the Eins
ensor is related to the matter content of the space–time by the EFEs, the investigation
eems to be more relevant from the viewpoint of physics. Here we would not give details
alculations as the procedure has been explicitly given in the papers.1–3 Rather we would explor
he difference of RCs and MCs for nonstatic spherically symmetric, static plane symmetr
ylindrically symmetric static space–times with the help of examples.

The most general form of the metric for a spherically symmetric space–time is given

)
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ds2 = enst,rd dt2 − emst,rd dr2 − elst,rd dV2, s3d

here dV2=du2+sin2 u df2. The surviving components of the energy-momentum tenso

00,T01 T11,T22,T33, whereT33=sin2 uT22. We have found1 that, for the nondegenerate case, th
xist either four, six, seven or ten independent MCs in which four are isometries and the

he proper. For the degenerate case, most of the cases give the infinite-dimensional M
orth-noting cases are those where the energy-momentum tensor is degenerate but the
Cs is finite dimensional, i.e., four or ten. Similar analysis has been given in the paper10 for the
icci tensor. It can be seen from the comparison of the two papers1,10 that MCs and RCs turn o

o be the same but the constraint equations are entirely different. For example, in the E
nti-Einstein metric, we obtain seven MCs5 but RCs are infinite dimensional.

The metric for static plane symmetric space–times is given in the form11

ds2 = ensxd dt2 − dx2 − emsxdsdy2 + dz2d. s4d

he surviving components of the energy-momentum tensor areT0,T1,T2,T3, whereT3=T2. When
e solve MC equations for the static plane symmetric space–times it turns out2 that the nonde
enerate case yields either four, five, six, seven or ten independent MCs in which four ar
tries and the rest are proper. We have also obtained three interesting cases where th
omentum tensor is degenerate but the group of MCs is finite dimensional which are eith

ix or ten.
Again when we compare the analysis given in the two papers,2,12 it is concluded that RCs an

Cs are similar but with different constraint equations. We can construct some examp
olving these constraint equations which exhibit the difference between RCs and MCs adm
he space–time. Consider the following plane symmetric static space–time:

ds2 = sax+ bd2 dt2 − dx2 − scx+ dd2sdy2 + dz2d, s5d

herea,b,c,dPR ,acÞ0Þad−bc. In this example, we obtain five MCs in which three are
usual isometries and the remaining two are proper MCs but the RCs are infinite dimensio

The most general form of cylindrically symmetric static space–time is given by

ds2 = ensrd dt2 − dr2 − elsrd du2 − emsrd dz2. s6d

he only nonzero components of the energy-momentum tensor turn out to beT00,T11,T22,T33. We
ave found3 that the nondegenerate energy-momentum tensor gives either three, four, fi
even or ten independent MCs in which three are isometries and the rest are proper. There
orth-mentioning cases where we have obtained the group of MCs finite dimensional, e
nergy-momentum tensor is degenerate, i.e., either three, four, five or ten. It can be seen

wo papers3,13 that RCs and MCs become similar but the constraints are different. Here we p
xamples by solving these constraints which give different space–times for the two colline

The following cylindrically symmetric metric,

ds2 = cosh2 cr dt2 − dr2 − scoshcrd−1 du2 − scoshcrd−1 dz2, s7d

herec is an arbitrary constant, admits four MCs and also four isometries but it has seve
he space–time

ds2 = sr/r0d2a dt2 − dr2 − sr/r0d2a du2 − sr/r0d2a dz2, s8d

herea andr0 are arbitrary constants such thataÞ0,1, admits ten MCs with six KVs but sev
Cs. Takingn=l=m in Eq. (6), this metric admits six MCs and also six KVs but seven RCs.

ollowing space–time,

ds2 = scoshcrd−1 dt2 − dr2 − cosh2 cr du2 − scoshcrd−1 dz2, s9d
as four MCs and also four KVs but seven RCs.
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In this addendum, we have provided examples which clearly indicate the difference
ymmetries for the Ricci and matter tensors. Also, we have incorporated the missing refer
he previous papers.1–3 It is mentioned here that RCs and MCs will exactly be similar for th
pace–times whereRab=Tab or equivalently for vacuum space–times. For example, in the ca
chwarzschild metric, every direction is RC/MC.
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lmost sharp quantum effects
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Quantum effects are represented by operators on a Hilbert space satisfying 0øA
ø I, and sharp quantum effects are represented by projection operators. We say tha
an effectA is almost sharp ifA=PQP for projectionsP and Q. We give simple
characterizations of almost sharp effects. We also characterize effects that can be
written as longer products of projections. For generality we first work in the for-
malism of von Neumann algebras. We then specialize to the full operator algebra
BsHd and to finite dimensional Hilbert spaces. ©2004 American Institute of
Physics.[DOI: 10.1063/1.1806532]

. INTRODUCTION

Let H be a complex Hilbert space that represents the state space of a quantum systemS. The
et ofeffectsEsHd for S is the set of operators onH satisfying 0øAø I. Effects represent yes–
easurements that may be unsharp(imprecise, fuzzy). It is interesting that many of the importa

lasses of quantum operators are given by subsets ofEsHd. For example, thesharp yes–no
easurements are represented by the set of projection operatorsPsHd,EsHd. A state for S is

epresented by an operatorW[EsHd satisfying trsWd=1. We callW a density operatorand denot
he set of density operators byDsHd. Thepure statesfor S are given byDsHdùPsHd.

The probability thatA[EsHd has values yes(or is true) in the stateW[DsHd is given by
pWsAd=trsWAd. If W happens to be a pure state corresponding to the unit vectorc, thenpWsAd

kAc ,cl. In particular, sharp effects are calledquantum eventsand the probability that eve
[PsHd occurs in the stateW[DsHd is pWsQd=trsWQd. For P,Q[PsHd we define thecondi-

ional probability of Q given Pin the stateW by

pWsQuPd =
trsPWPQd

trsWPd
=

trsWPQPd
trsWPd

rom which we obtain

pWsPQPd = trsWPQPd = pWsPdpWsQuPd. s1.1d

ow (1.1) is analogous to the traditional probability formula

psA ù Bd = psAdpsBuAd

o in some sensePQP corresponds to an intersection of events. However, in generalpWsPQPd
pWsQPQd so the order of measurements is relevant. In fact,P+Q=PQP corresponds to

equential measurement in which we measureP first andQ second. We callP+Q the sequentia
roduct of P and Q (see Refs. 2 and 3). More generally, we define thesequential product A+B
A1/2BA1/2[EsHd for any A,B[EsHd but our main interest is in sequential products of s
ffects. The formP+Q=PQP for projective measurements is well established, but the ge
orm A+B=A1/2BA1/2 is not unique and depends on the particular measurement techniq
eneral, we may have a sequential product given byC*BC whereC is any operator satisfyin
*C=A. Note however thatC=A1/2 is the simplest such operator and moreover in this
[EsHd. The next result gives some of the important properties of the sequential produc
Theorem 1 (Ref. 3):Let A,B[EsHd, P,Q[PsHd. Then

4196022-2488/2004/45(11)/4196/11/$22.00 © 2004 American Institute of Physics
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1) A+B=B+A if and only if AB=BA.
2) If A +B[PsHd then AB=BA.
3) P+Q[PsHd if and only if PQ=QP.

If AB=BA we say thatA andB arecompatible. Physically, compatible effects correspond
ffects that are simultaneously measurable. Thus,A andB are simultaneously measurable if a
nly if their order of measurement is irrelevant. A stateW[DsHd is faithful if tr sWAd=0 for

A[EsHd implies thatA=0. The next result gives an interesting probabilistic characterizati
compatible sharp effects.

Corollary 2: For P,Q[PsHd and faithful W[DsHd, PQ=QP if and only if pWsQ+ Pd
pWsQ+ sP+Qdd.

Proof: Suppose thatpWsQ+ PdøpWsQ+ sP+Qdd. Then

trfWsQPQ− QPQPQdg ø 0.

t is easy to check thatPQPø P and it follows that QPQPQøQPQ. Hence, QPQ
QPQPQ[EsHd so that

trfWsQPQ− QPQPQdg = 0.

inceW is faithful, we conclude that

QPQ= QPQPQ= sQPQd2.

hus,Q+ P=QPQ[PsHd so by part 3 of Theorem 1,PQ=QP. The converse is trivial. j

The next corollary solves Problem 11028 in the American Mathematical Monthly[Vol. 110, p.
36 (2003)].

Corollary 3: Let dimsHd=n,` and let P,Q[PsHd. Then PQ[PsHd if and only if trsPQd
trsPQPQd.

Proof: Notice thatW=s1/ndI [DsHd is faithful and

pWsQ + Pd = trsWQPQd =
1

n
trsQPQd =

1

n
trsPQd.

ssuming that trsPQd=trsPQPQd we have that

pWsQ + Pd =
1

n
trsQPQPd = pWsQ + sP + Qdd.

y Corollary 1.2 we havePQ=QP so thatPQ[PsHd. The converse is trivial. j

One of our main concerns is to characterize effects of the formA=P+Q for P,Q[PsHd. Such
ffects are calledalmost sharpbecause they may be obtained by measuring two sharp effe
sense, almost sharp effects are “close” to being sharp and we shall present a simple c

zation of such effects. Defining thenegationof A[EsHd by A8= I −A, we see immediately th
8[EsHd. We say thatA is nearly sharpif both A andA8 are almost sharp. We shall show that
et of nearly sharp effects has the structure of an orthocomplemented partially ordered s

Letting P1sHd=PsHd andP2sHd be the set of almost sharp elements we see that

P2sHd = hA [ EsHd:A = P1 + P2,P1,P2 [ PsHdj

nd it follows from part 3 of Theorem 1 thatP2sHd strictly containsP1sHd. We shall show tha

P3sHd = hA [ EsHd:A = P1 + sP2 + P3d,P1,P2,P3 [ PsHdj

trictly containsP2sHd if dim sHd is sufficiently large. This suggests the natural problem of w

[EsHd has the form
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A = P1 + „P2 + ¯ + sPn−1 + Pnd…. s1.2d

riting (1.2) in terms of operator products gives

A = P1P2 ¯ Pn−1PnPn−1¯ P2P1.

e shall also characterize effects that have the form(1.2)
For generality we shall first work in the formalism of a von Neumann algebra. We

onsider the full operator algebraBsHd for H separable. Finally, we show that simplifications
urther insights can be obtained from considering finite dimensional Hilbert spaces.

I. EFFECTS ON VON NEUMANN ALGEBRAS

Let M be a von Neumann algebra on a Hilbert spaceH. The set of effects inM is

EsMd = hA [ M:0 ø A ø Ij

nd the set of projections or sharp effects inM is

PsMd = hP [ M:P = P* = P2j , EsMd.

or P,Q[PsMd, according to the usual comparison of projections we definePdQ if there exists
partial isometryU[M such thatU*U=P andUU* øQ. Notice thatUU* is a projection whos

ange is contained in the range ofQ.
For A[EsMd we definePA to be the projection onto the closure of the range ofA. It can be

hown that

PA = lim
n→`

A1/n

n the strong operator topology so thatPA[M. Moreover, PAA=APA=A. Letting NA be the
rojection onto the null space ofA we have that

NA = I − PA = sPAd8.

t is easy to check thatPA is the smallest projection satisfyingAø PA, NA8 is the largest projectio
atisfyingNA8øA and that

NA8 = lim
n→`

An.

t follows that NA=limn→`sA8dn and hence

NA8A = ANA8 = NA8.

otice that ifA[ EsMd has the formA=PQP for someP,Q[PsMd, then we also have thatA
PAQPA.

Lemma 4: For A[EsMd we have that PAA8=PA−NA8.
Proof: It is clear thatAA8[EsMd, AA8øA, andAA8øA8. Hence,PAA8ø PA, PAA8ø PA8, and

t follows thatNAøNAA8 andNA8øNAA8. SinceNA andNA8 are mutually orthogonal we conclu
hat NA+NA8øNAA8. To prove the reverse inequality, letxÞ0 satisfyingNAA8x=x. Write x=Ax
A8x and notice thatA8sAxd=0 and AsA8xd=0. Then Ax=NA8sAxd and A8x=NAsA8xd. Since

A8A=NA8 andNAA8=NA, we have thatx=NAx+NA8x. We conclude thatNA+NA8=NAA8. There-
ore

PAA8 = I − NAA8 = I − NA − NA8 = PA − NA8.

j

In the process of proving Lemma 4 we also obtained the interesting resultNA+NA8=NAA8.

The motivation for the next theorem is the following: If 0øAø I, then
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S A ÎAA8

ÎAA8 A8
D

s a projection whose compression to the(1,1) component isA.
Theorem 5: An effect A[EsMd is almost sharp if and only if PAA8dNA.
Proof: Suppose thatPAA8dNA. Then there exists a partial isometryU[M such thatU*U

PAA8 andUU* øNA. ThenU maps the range ofPAA8 into the range ofNA andU* maps the rang
f NA into the range ofPAA8. Notice thatNA8=PA−PAA8, PAA8, andNA are mutually orthogon
rojections satisfying

NA + NA8 + PAA8 = I . s2.1d

efineQ1 by the formula

Q1 = PAA8APAA8 + PAA8
ÎAA8U*NA + NAUÎAA8PAA8 + NAUA8U*NA.

t is clear thatQ1=Q1
* and to show thatQ1[PsMd we have

Q1
2 = PAA8sA

2 + ÎAA8U*NAUÎAA8dPAA8+ PAA8sAPAA8
ÎAA8U* + ÎAA8U*NAUA8U*dNA

+ NAsUÎAA8PAA8A + UA8U*NAUÎAA8dPAA8+ NAsUÎAA8PAA8
ÎAA8U*

+ UA8U*NAUA8U*dNA. s2.2d

otice that

U = NAU = UPAA8 = NAUPAA8 s2.3d

nd hence

PAA8 = U*NAU. s2.4d

y (2.4) the first term in(2.2) becomes

PAA8sA
2 + AA8dPAA8 = PAA8APAA8.

y (2.4) again, the second term in(2.2) becomes

PAA8sAÎAA8U* + A8ÎAA8U*dNA = PAA8
ÎAA8U*NA.

n a similar way, the third term in(2.2) becomes

NAsUAÎAA8 + UA8ÎAA8dPAA8 = NAUÎAA8PAA8.

inally, by (2.3) and (2.4) the fourth term in(2.2) becomes

NAUsAA8 + PAA8A8A8dU*NA = NAUsAA8 + A8A8dU*NA = NAUA8U*NA.

e conclude thatQ1[PsMd. To show thatQ1ø PAA8+NA we have that

Q1sPAA8 + NAd = sPAA8 + NAdQ1 = Q1.

inceNA8 is orthogonal toPAA8 andNA we see that

Q = NA8 + Q1 [ PsMd.
inceNA8øAø PA, PAA8ø PA, andPANA=0 we have by Lemma 4 that
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PAQPA = PANA8PA + PAQ1PA = NA8 + PAA8Q1PAA8=NA8 + PAA8APAA8

= NA8 + sPA − NA8dAsPA − NA8d=NA8 + sPA − NA8dA

= NA8 + PAA − NA8A=NA8 + A − NA8 = A.

Conversely, suppose that there exists aQ[PsMd such thatA=PAQPA. LettingB=PAQNA we
ave thatBB* ù0 and

BB* = PAQNAQPA = PAQsI − PAdQPA=PAQPA − PAQPAQPA = A − A2 = AA8.

sing the polar decomposition ofB we find a partial isometryU[M, with initial spacePB*, the
ange ofB* , and final spacePB, the range ofB, such thatB=ÎAA8U. Now

PB = PBB* = PAA8

nd sincePB* øNA we obtain thatUU* =PAA8 andU*UøNA. Hence,PAA8dNA. j

We can gain an intuitive feeling for Theorem 5 as follows. SinceAA8=A−A2 we see thatA is
harp iffAA8=0 or equivalentlyPAA8=0. Now Theorem 5 states thatA is almost sharp if and on
f PAA8 is not too big in the sense thatPAA8 is dominated byNA. Recall that afactor is a
on Neumann algebra with trivial center and that in this case all projections are comp
elatively tod. It follows that projections have a well-defined dimension dimsPd in a factor.

Corollary 6: If M is a factor, then an effect A[EsMd is almost sharp if and only
imsPAA8dødimsNAd.

Corollary 6 is not true ifM is not a factor even when there is a well-defined dimen
unction. To show this, letMn be the matrix algebra ofn3n complex matrices and letM be the
on Neumann algebraM =Mn % Mn. Let In[Mn be the identity matrix and let

A =
1

2
In % 0 =

31/2 ¯ 0

A � A
0 ¯ 1/2

4
30 ¯ 0

A � A
0 ¯ 0

4
[ Mn % Mn.

hen dimsPAA8d=dimsNAd=n but A cannot be written in the formPAQPA for some projectionQ in
M =Mn % Mn.

Applying Corollary 6, a moment thought shows thatA[EsMd is almost sharp if and only ifAn

s almost sharp for every positive integern. This gives the nontrivial result that ifA=PAQPA for
[PsMd, thenAn=PAQnPA for someQn[PsMd.

In a type III factor, all proper projections are equivalent(have the same dimension). Recal
hat if A is not invertible, thenA is singular.

Corollary 7: Let M be a type III factor and let A[EsMd with AÞ I. Then A is almost sha
f and only if A is singular.

Proof. SupposeA is invertible andA=PAQPA for someQ[PsMd. SinceAø PA, PA is also
nvertible which implies thatPA= I. Hence,A=Q which implies thatA= I. Conversely, suppo
hatAÞ0 and thatA is singular. ThenPAA8Þ I andNAÞ0. The result follows from Corollary 6.j

Recall that an effectA[EsMd is nearly sharpif A andA8 are both almost sharp.
Corollary 8: An effect A[EsMd is nearly sharp if and only if PAA8dNA and PAA8dNA8. If M

s a factor, then A[EsMd is nearly sharp if and only ifdimsPAA8dødimsNAd and dimsPAA8d
dimsNA8d.

An orthoposetis a systemsP , ø ,8 ,0 ,1d where sP , ø ,0 ,1d is a bounded poset and8 :P
P satisfiesa9=a, aøb implies b8øa8 and a∧a8=0. An orthoposetP is orthomodular if a
b8 implies a∨b exists andaøb implies b=a∨ sb∧a8d. It is well known thatPsMd forms an

1
rthomodular lattice.
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Corollary 9: If EsMdns is the set of nearly sharp elements inEsMd, thensEsMdns, ø ,8 ,0 ,1d is
n orthoposet.

Proof: All the properties of an orthoposet are clear except for the conditionA∧A8=0 for every
[EsMdns. To verify this condition suppose thatB[EsMdns with BøA and BøA8. Then B
sA+A8d /2= 1

2I. Since s 1
2Id8= 1

2I, it follows that 1
2I øB8 so thatNB8=0. SinceB[EsMdns, by

heorem 5,PBB8dNB8 so thatPBB8=0. Hence,BB8=0. SinceB8ù
1
2I we conclude thatB=0 and

t follows that A∧A8=0. j

II. EFFECTS ON B„H…

Let H be a separable Hilbert space and letM be the factorBsHd consisting of all bounde
inear operators onH. As in Sec. I, we use the notationEsHd, PsHd for EsMd, PsMd, respectively
or P[PsHd we define

f0,Pg = hA [ EsHd:0 ø A ø Pj.

Theorem 10:

(1) If P[PsHd with dimsP8d=`, then

f0,Pg = hP1QP1:Q,P1 [ PsHd,P1 ø Pj.

2) If P[PsHd with dimsPd=dimsP8d=`, then A[EsHd satisfies AP=PA if and only if A
=P1QP1+P2RP2 with P1,P2,Q,R[PsHd and P1ø P, P2ø P8.

Proof: (1) If A=P1QP1, then 0øAø P1ø P so A[ f0,Pg. Conversely, if 0øAø P, then
PAø P and henceNAù P8. Thus dimsNAd=` and the result follows from Corollary 6.

(2) If A=P1QP1+P2RP2 with the given properties, it is clear thatAP=PA. Conversely
uppose thatAP=PA. Then we can write A=PAP+P8AP8. Since PAP[ f0,Pg and

P8AP8[ f0,P8g the result follows from part(1). j

A projection P is an example of a simplesuperselection ruleand anA[EsHd satisfying
P=PA is said to satisfy the superselection ruleP. Part (2) of Theorem 10 states that
imsPd=dimsP8d=`, thenA[EsHd satisfies the superselection ruleP if and only if A is the sum
f two nearly sharp elements,A=A1+A2, whereA1 is contained in thesuperselection sectorf0,Pg
ndA2 is contained in the superselection sectorf0,P8g.

SupposeP[PsHd with dimsPd=dimsP8d=`. If A[ f0,Pg then by Part(1) of Theorem 10,A
s almost sharp. IfA,B[ f0,Pg andA+B[EsHd, thenA+B[ f0,Pg. It follows that f0,Pg is an
effect algebra with unit P(see Refs. 1 and 2). If A[ f0,Pg, thenlA[ f0,Pg for everyl[ f0,1g
and it follows thatf0,Pg is a convexeffect algebra.1 Finally, if A,B[ f0,Pg then A+BøAø P

here A+B=A1/2BA1/2. Hence,A+B[ f0,Pg and we conclude thatf0,Pg is a sequential effec
lgebra2 of almost sharp effects. Notice however, that ifA[ f0,Pg then A=PAQPA where

PA[ f0,Pg but Q¹ f0,Pg in general.
We now consider the question of whenA[EsHd has the form

A = P1P2 ¯ PnQPn ¯ P2P1 s3.1d

or Pi ,Q[ PsHd for i =1, . . . ,n. To answer this question we shall need some preliminary resu
imsNAd=`, then by Corollary 6,A is almost sharp so thatA certainly has the form(3.1). We

herefore assume that dimsNAd,`.
Lemma 11:

1) Suppose that A,B[EsHd satisfy A=PABPA, dimsNAd,`, and dimsPAA8d=`. Then
dimsNBd,` and dimsPBB8d=`.

2) If A[EsHd satisfiesdimsNAd,` and dimsPAA8d=`, then A does not have the form(3.1).

Proof: (1) We first show that dimsNBdødimsNAd. If this is not true, then there exists a nonz

ector x[kersBd * kersAd. But then PAx=x and we have thatAx=PABPAx=PABx=0. Hence
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[kersAd which is a contradiction. We now show that dimsPBB8d=`. If dimsPBB8d,`, then by
2.1) we have that

dimsPB8d = dimsI − NB8d = dimsNB + PBB8d , `.

ence,B8 is a finite rank operator and it follows thatB= I −B8 is the identity plus a finite ran
ap. SincePA= I −NA andNA has finite rank, we conclude thatA=PABPA is also the identity plu
finite rank operator. But this contradicts the fact that dimsPAA8d=`.

(2) Suppose on the contrary thatA has the form(3.1) for some integern. For eachi
1,2, . . . ,n−1, let

Bi = Pi+1Pi+2¯ PnQPn ¯ Pi+2Pi+1.

henA=P1BP1, Bi =Pi+1Bi+1Pi+1 for i =1, . . . ,n−2, andBn−1=PnQPn. By Corollary 6

dimsPBn−1Bn−18 d ø dimsNBn−1
d.

n the other hand, by successive applications of part(1) of this theorem we deduce th
imsNBn−1

d,` and dimsPBn−1Bn−18 d=`. j

For the remaining case, assume that dimsNAd=k,` and dimsPAA8d=m,`.
Lemma 12: Suppose that A,B[EsHd, that dimsNAd=k,`, dimsPAA8d=m.k and A

PABPA. ThendimsNBdøk and dimsPBB8dùm−k. Moreover, there exists a B[EsHd such tha
=PABPA, dimsNBd=k, and dimsPBB8d=m−k.

Proof: That dimsNBdøk follows from part (1) of Lemma 11. To show that dimsPBB8dùm
k, define

Ã = sNA + PAA8dAsNA + PAA8d = PAA8APAA8,

B̃ = sNA + PAA8dBsNA + PAA8d,

nd think of them as being defined in the range ofNA+PAA8 which is ak+m dimensional Hilber

pace. It is easy to check thatPÃ=PAA8 and thatPÃB̃PÃ=PAA8BPAA8=PAA8APAA8=Ã. The eigen

alues ofÃ are

l1 ù l2 ù ¯ ù lm . 0,

here 0 has multiplicityk and 1.l1. The eigenvalues ofB̃ are

s1 ù ¯ ù sk ù sk+1 ù ¯ ù sm ù sm+1 ù ¯ ù sm+k,

here 1ùs1 andsm+kù0. SinceÃ is the compression ofB̃ to ak-codimensional space, it follow
rom Cauchy’s interlacing theorem4 that

sj ù l j ù sj+k for j = 1, . . . ,m.

e then obtain that 0,lmøsm andsk+1øl1,1. This implies that 1.sk+1ù ¯ ùsm.0 and it

ollows that dimsPB̃B8
˜ dùm−k. To see that dimsPBB8d=dimsPB̃B8

˜ d, considerÃ and B̃ as operator
n NA+PAA8 and representA andB by the block matrices

A = SINA8 0

0 Ã
D andB = SINA8 0

0 B̃
D .
hen notice that
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BB8 = SINA8 0

0 B̃
DS0 0

0 B̃8
D = S0 0

0 B̃B̃8
D .

o check the second assertion, consider the effect defined onPAA8+NA,

B̃ =1
l1 ¯ 0 ¯ 0 Îl1s1 − l1d ¯ 0

A � A A A A � A
0 ¯ lk ¯ 0 0 ¯

Îlks1 − lkd
A A A � A A A A
0 ¯ 0 ¯ lm 0 ¯ 0

Îl1s1 − l1d ¯ 0 ¯ 0 1 − l1 ¯ 0

A � A � A A � A
0 ¯

Îlks1 − lkd ¯ 0 0 ¯ 1 − lk

2 .

t is easy to check thatÃ=PÃB̃PÃ. Since

S li Îlis1 − lid
Îlis1 − lid I − li

D
s unitarily equivalent tos 1

0
0
0

d for every i øk, it follows that B̃ has eigenvalues

0, . . . ,0,lk+1,lk+2, . . . ,lm,1, . . . ,1,

here the multiplicity of 0 and 1 are eachk. SinceA=NA8+Ã we defineB=NA8+B̃ and we ar
nished. j

Lemma 13: Suppose thatdimsNAd=k.0, dimsPAA8d=m and A has the form (3.1). Then
m/k.

Proof: The casen=1 follows from Corollary 6. Assume that the result is true forn−1 and
uppose thatA has the form(3.1). Then

B = P2 ¯ PnQPn ¯ P2

atisfies the hypothesis and we conclude that

n − 1 ù
dimsPBB8d

dimsNBd
.

y Lemma 12 we have that dimsNBdøk and dimsPBB8dùm−k. Hence,n−1ùm−k/k so thatn
m/k. j

Lemma 14: Suppose that A[EsHd with dimsNAd=k.0 and dimsPAA8d=m. Then for any n
m/k, A has a representation of the form(3.1).

Proof: If møk, by Corollary 6 we can writeA=PQP and we are finished. We now assu
hat m.k. By Lemma 12 we can findB1[EsHd such that A=PAB1PA, dimsNB1

d=k and
imsPB1B18

d=m−k. If m−køk, by Corollary 6 we can writeB1=PQP which implies that

A = PAPQPPA.

n this casem/kø2 and we again are finished. If on the other hand,m−k.k, by Lemma 12 w
nd B2[EsHd such thatB1=PB1

B2PB1
, dimsNB2

d=k and dimsPB2B28
d=m−2k. If m−2køk we are

gain finished, otherwise there existsB3[EsHd such that B2=PB2
B3PB2

, dimsNB3
d=k and

imsPB3B38
d=m−3k. Proceeding this way, we can findn such thatm−sn−1dkøk and we prove th

esult. j
Applying these lemmas, we obtain the following.
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Theorem 15:Let A[EsHd with H separable and AÞ I. Then A has the form (3.1) if and on
f dimsNAd=` or 0,dimsNAd,` and dimsPAA8d,`.

For A[EsHd we define thefuzzy index fsAd to be the smallest integern so thatA has the form
3.1). ThenA is sharp if and only iffsAd=0 andA is almost sharp if and only iffsAd is 0 or 1. By
onvention, if no suchn exists thenfsAd=`. For m,k positive integers we denote the smal
nteger greater than or equal tom/k by dm/ke. We extend this definition to include values 0 aǹ
or m andk by defining

dm
k

e =5
` if k = 0 andmÞ 0,

0 if m= 0,

1 if k = ` andmÞ 0,

` if m= ` andk Þ `.

he next result again follows from the previous lemmas.
Theorem 16: Let A[EsHd with H separable. Then

fsAd = ddimsPAA8d

dimsNAd e.
The fuzzy indexfsAd designates the fewest number of sharp effects whose sequential p

ivesA[EsHd. Since sharp effects are frequently thought of as filters such as polarization
n an optical bench,fsAd is the fewest number of filters that can be placed in series to giv
ame effectA. Theorem 15 characterizes whenfsAd is finite and Theorem 16 provides the value

fsAd as a simple function ofA.

V. FINITE DIMENSIONAL EFFECTS

We now show that we can obtain further insights and some simpler proofs for the setEsHd on
finite dimensional Hilbert space. Although finite dimensional Hilbert spaces may seem res

or quantum systems, there are important fields such as quantum computation and info
heory that are based on such spaces.5

Let A[EsHd where dimsHd,`. We define the following non-negative integers:

n0sAd = dimsNAd,

n1sAd = dimsNA8d,

nsAd = dimsHd − n0sAd − n1sAd.

otice thatn0sAd is the multiplicity of the eigenvalue 0,n1sAd is the multiplicity of the eigenvalu
, andnsAd is the number of eigenvaluesl with 0,l,1 including multiplicity.

Lemma 17: If A[EsHd with dimsHd,`, then nsAd=dimsPAA8d=ranksPA−Ad.
Proof: By diagonalizingA we can assume without loss of generality thatA has the form

A = diagsl1, . . . ,lm,1, . . . ,1,0, . . . ,0d, s4.1d

here 0,li ,1 for i =1, . . . ,m. We then have that

AA8 = diagsl1s1 − l1d, . . . ,lms1 − lmd,0, . . . ,0,0, . . . ,0d,

nd

PA − A = diags1 − l1, . . . ,1 −lm,0, . . . ,0,0, . . . ,0d.
t follows that dimsPAA8d=ranksPA−Ad=nsAd=m. j
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The next result follows from Corollary 6 and Lemma 17. However, we give a much s
roof which relies on the fact that dimsHd,`.

Theorem 18: Let A[EsHd with dimsHd,`.

1) A is almost sharp if and only if nsAdøn0sAd.
2) A is nearly sharp if and only if nsAdøminhn0sAd ,n1sAdj.

Proof: (1) SupposeA=PAQPA for Q[PsHd. Then by Lemma 17 we have that

nsAd = ranksPA − Ad = ranksPAsI − QdPAd ø ranksI − Qd

=dimsNQd ø dimsNPAQPA
d = dimsNAd = n0sAd.

onversely, suppose thatm=nsAdøn0sAd. Without loss of generality we can representA as a
iagonal matrix(4.1) Let.

L = diagsl1, . . . ,lmd = 1l1 ¯ 0

A � A
0 ¯ lm

2 [ Mm,

nd representA by the block matrix,

A = 1L 0 0

0 In1sAd 0

0 0 0n0sAd
2 .

ince møn0sAd, we can split the last block into am3m block and anl 3 l block, wherel
n0sAd−m. Let Q be the block matrix

Q =1
L 0 ÎLsIm − Ld 0

0 In1sAd 0 0

ÎLsIm − Ld 0 Im − L 0

0 0 0 0l

2 .

t is easy to check thatPAQPA=A and thatQ[PsHd.
The proof of(2) follows directly from (1). j

We may think ofnsAd as the number of fuzzy eigenvalues ofA and n0sAd+n1sAd as the
umber of sharp eigenvalues. As one might expect, the almost(or nearly) sharpness ofA depend
n nsAd compared ton0sAd andn1sAd and this is the content of Theorem 18. Moreover, it follo

rom Theorem 16 and Lemma 17 that if dimsHd,` then

fsAd = d nsAd
n0sAd e.

We now consider some examples inEsC3d. Let 0,li ,1 for i =1,2,3, andconsider th
ollowing effects:

A = 1l1 0 0

0 l2 0 2, B = 1l1 0 0

0 l2 02 ,
0 0 l3 0 0 0
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D = 1l1 0 0

0 0 0

0 0 0
2, andE = 1l1 0 0

0 1 0

0 0 0
2 .

henA andB are not almost sharp,D is almost sharp but it is not nearly sharp andE is nearly
harp. The fuzzy indexes arefsAd=`, fsBd=2, fsDd= fsEd=1. The decompositionE=PEQPE has
he following form:

1l1 0 0

0 1 0

0 0 0
2 = 11 0 0

0 1 0

0 0 0
21 l1 0 Îl1s1 − l1d

0 1 0

Îl1s1 − l1d 0 1 − l1
211 0 0

0 1 0

0 0 0
2 .

lthough E is almost sharp,lE for 0,l,1 is not almost sharp. Our last result follows fr
heorem 18.

Theorem 19: Let A[EsHd, AÞ I, with dimsHd,`. Then A has the form (3.1) if and only
is singular.

1Dvurečenskij, A. and Pulmannová, S.,New Trends in Quantum Structures(Kluwer, Dordrecht, 2000).
2Gudder, S. and Greechie, R., “Sequential products on effect algebras,” Rep. Math. Phys.49, 87–111(2002).
3Gudder, S. and Nagy, G., “Sequential quantum measurements,” J. Math. Phys.42, 5212–5222(2001).
4Horn, R. and Johnson, C.,Matrix Analysis(Cambridge University Press, Cambridge, 1990).
5Nielsen, M. and Chuang, I.,Quantum Computation and Quantum Information(Cambridge University Press, Cambrid
2000).
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nhomogeneous quantum groups for particle algebras
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We construct the inhomogeneous quantum groups FIOsdd and BISps2dd and inves-
tigate their Hopf algebra structure. FIOsdd and BISps2dd leave the algebra of fer-
mion and boson creation/annihilation operators invariant, respectively. We also
present the correspondingR-matrices. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1794367]

. INTRODUCTION

The importance of inhomogeneous groups in physics cannot be overestimated. Well
xamples are the Poincaré and Galilean groups. Deformations of inhomogeneous Lie gro

o inhomogeneous quantum groups. This procedure entails the deformation of the function
ver the classical group and/or the deformation of the enveloping algebra of the Lie alge1,2

In the present paper we will construct a different type of inhomogeneous quantum gro
onsidering their action on the algebra of fermionic and bosonic creation/annihilation ope
he algebra of such operators for particles obeying fermionic and bosonic statistics are de

fci,cj
*g± = 1di j ,

fci,cjg± = 0. s1.1d

ll known particles in physics are bosons and fermions and thus obey(1.1). In Quantum Field
heory the discrete indices are replaced by continuous momentum indices.

As a motivation for the next section, in which we clothe our calculation with compac
tandard notation using the language of Hopf algebra, we investigate the nature of the t
ation parameters which mixes up the creation and annihilation operators together w

dentity element of the algebra as

ci ° ci8 = aik ^ ck + bik ^ ck
* + gi ‹ 1,

ci
* ° ci8

* = aik
*

^ ck
* + bik

*
^ ck + gi

* ‹ 1, i,k = 1,2,…,d. s1.2d

ere, the minimal assumption we presume is that the homogeneous parametersaik ,aik
* ,bik ,bik

*

ommute among themselves in accordance with the results found in Ref. 3 for FIO(2). Note tha
he p structure is of some physical significance and will be discussed in Sec. III. We d
mpose the invariance of the above algebras under the above transformation. As they sta
re defined equally for fermions and bosons. As we will see, this seemingly simple transfo
onsists of parameters which turn out to belong to a Hopf algebra with respective nu
-matrices.

Now, using the algebra of the original operators, we calculate the(anti-)commutator of th
ransformed operators, for example, for the first commutation relation, we have

)
Electronic mail: baykala@boun.edu.tr

4207022-2488/2004/45(11)/4207/11/$22.00 © 2004 American Institute of Physics
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fci8,cj8
*g± = fsaik ^ ck + bik ^ ck

* + gi ‹ 1d,sa jl
*

^ cl
* + b jl

*
^ cl + g j

* ‹ 1dg±

= hhaika jl
* ± bikb jl

* jdkl + fgi,g j
*g±j ‹ 1 + hfgi,b jk

* g± + faik,g j
*g±j ^ ck + hfgi,a jk

* g±

+ fbik,g j
*g±j ^ ck

* . s1.3d

xploiting the canonical isomorphismC ^ A>A for the tensor product defined over the fieldC,
or the vector spaceA, this must be equal to

di j1 > di j ‹ 1 = fci8,cj8
*g± ‹ 1. s1.4d

pon requiring the transformations to be an algebra homomorphism, one assumes the re

aika jk
* ± bikb jk

* + fgi,g j
*g± = di j , s1.5d

ogether with

fgi,b jk
* g± = 0, faik,g j

*g± = 0,

fgi,a jk
* g± = 0, fbik,g j

*g± = 0, s1.6d

mong the elements that parametrize the transformations.
Similarly, for the invariance of the second set of the transformed(anti-) commutators, th

traightforward calculation,

fci8,cj8g± = fsaik ^ ck + bik ^ ck
* + gi ‹ 1d,sa jl ^ cl + b jl ^ cl

* + g j ‹ 1dg± = haikb jl ± bika jlj

^ fck,cl
*g± + fgi,g jg± ‹ 1 + hfbik,g jg± + fgi,b jkg±j ^ ck

* + hfaik,g jg± + fgi,a jkg±j ^ ck,

s1.7d

s consistent with the(anti-)commutation relations

aikb jk ± bika jk + fgi,g jg± = 0, s1.8d

fbik,g jg± = 0, faik,g jg± = 0. s1.9d

hese calculations show that it is the inhomogeneous transformation parameters that res
ontrivial algebraic relations. Collecting all the relations defining the algebra of the transfor
arameters we have

aikb jk ± bika jk + fgi,g jg± = 0, s1.10d

aika jk
* ± bikb jk

* + fgi,g j
*g± = di j , s1.11d

fbik,g jg± = 0, faik,g jg± = 0, s1.12d

fbik,g j
*g± = 0, faik,g j

*g± = 0, s1.13d

ogether with thep-conjugates of all the relations.
The derivation of the quantum invariance group given above, in fact, mimics the deriva

ther matrix quantum groups, such asGLqs2d or SLqs2d that leave the underlying quantum pla
ith coordinates sx,yd and the 1-forms, the differentials ofx and y, sj ,hd having the
anti-)commutations
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xy= qyx, jh = − q−1hj, j2 = 0, h2 = 0, s1.14d

nvariant. In this way, the study of the automorphisms of noncommutative spaces natural
o the notion of the quantum groups.4 In our case the matrix quantum group acts, exclusively
he vector space which is either fermionic or bosonic in nature.

Intending to emphasize the action of the transformations on the creation/annihilation op
ather than the algebra of creation/annihilation operators, we write the transformation par
s a quantum matrix and the elements of the particle algebra as a column vector.

I. QUANTUM GROUPS, FIO„2d… AND BISp „2d…

If we are to emphasize that the action of the quantum matrix group on the alge
reation/annihilation operators, we forms2d+1d-dimensional column vectorsC;fci ,ci

* ,1gt on
hich the action is defined via

C8 = M ‹̇C, s2.1d

r supplying the indices,

C8i = Mk
i ‹ Ck, s2.2d

hereCk is thekth entry of the column vectorC and the quantum matrixM is given by

s2.3d

f the elements of the matrixM satisfy the relations(1.10)–(1.13) we will name the correspondin
uantum groups as the Fermionic Inhomogeneous Orthogonal Group(FIO) and the Bosonic In
omogeneous Symplectic Quantum Group(BISp), respectively, for the upper and the lower sig

n this section this definition will be made more rigorous by defining the correspo
-matrices.

The space of vectorsC, built out of the generators of the algebras(1.1), is therefore a le
M-comodule for the bialgebra defined by all the relations among the transformation para
btained in the first section. In order to be able to make the algebra of the transformation
ters(1.10)–(1.13) into a bialgebra, it is convenient to define the vectors

C1C2 = 3
c1C

c2C

]

cdC

c1
*C

c2
*C

]

cd
*C

1 ·C

4, C2C1 = 3
Cc1

Cc2

]

Ccd

Cc1
*

Cc2
*

]

Ccd
*

C ·1

4 , s2.4d

here bothC1C2 and C2C1 carry double indices assC1C2di j , for example,sC1C2dsd+1dk=c1
* ·Ck,

tc. Since these two indexed column vectors cover all possible “multiplications” in the alge

reation/annihilation operators, it is possible to write Eqs.(1.1) as a matrix equation in the form
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RC1C2 = C2C1, s2.5d

here the entries of thes2d+1d3 s2d+1d matrix R are also labeled by double indices asRlm
ik . With

ll these new conventions, the invariance of the algebras defined by Eqs.(1.1) under the actio
2.1) boils down to

Rkl
ij sC18C28d

kl = sC28C18d
i j . s2.6d

iven the relation betweenC andC8 asC8=M ‹̇C and the original algebra(1.10)–(1.13), even-
ually, Eqs.(2.1) and (2.5) are consistent with

RM1M2 = M2M1R, s2.7d

here M1=M ‹1, M2=1‹M , and the numerical matricesR−1,RPMs2d+1d2sCd ^ Ms2d+1d2sCd.
ctually, Eq.(2.7) is a just proper way of writing the algebra defined in Eqs.(1.10)–(1.13). It also

eflects the fact that theR matrix is of fundamental importance for quantum groups; in th
xpresses how the multiplicationsM1M2dkl

i j =Mk
i Ml

j is related to the opposite multiplication, that
M2M1dkl

i j =Ml
jMk

i . As the consistency conditions for the associativity of the multiplication in
lgebra generated byMk

i , theR matrix satisfies the quantum Yang–Baxter equation,

R12R13R23 = R23R13R12, s2.8d

here,R12,R13,R23P sMs2d+1d2d^3 and sR12dlmn
ijk =Rlm

ij dn
k, etc.

A quantum group is a noncommutative and noncocommutative Hopf algebraH with quasi-
riangular structureRPH‹H (Drinfel’d).5 There are different lines of approach to the quan
roups depending on the usage and/or the purpose. For example, the commutative al

unctions on a group manifold, for which the noncocommutative coproduct defined by poi
ultiplication, carries a natural Hopf algebra setting(together with appropriate antipode a

ounit).6,7

The vector fields on the group manifold are dual to the functions on the manifold, in the
hat they act on the function algebra as derivations. As for the algebra of functions, the un
nveloping algebra,Usgd can also be equipped with the Hopf algebra setting by definin
ppropriate(primitive) bialgebra structure and an antipode. The noncommutative(Lie) product on
sgd, inherited fromg, corresponds to the noncocommutative coproduct on the algebra of

ions, whereas the cocommutative product onUsgd corresponds to the commutative product on
lgebra of functions. In the case of complex semisimple Lie algebrag, there is a standard way
efining the deformed quantum enveloping algebraUqsgd.8,9

The duality of two different approaches, crudely mentioned above, turn out to hold wh
espective algebras are deformed. The simplest nontrivial example is thatSLqs2d is dual toUqssl2d.
owever, there are examples of quantum groups that do not belong to any of the above two6

he quantum groups presented here can be considered to fit into the former construction. A
xample presented here, both the use and the importance of abstract Hopf algebras(quantum
roups) in applications to physics emerges when they act on other structures, carrying c
hysical relevance.10 If a Hopf algebra has a quasitriangular structureRPH ^2, which controls th
oncocommutativity of the coproduct, in the dual Hopf algebra(if it can be found) the noncom
utativity of the multiplication is controlled by the numericalR matrix. The quasitriangula

tructureR is often called the universalR matrix, probably for the reason that it produces
atrix solutions of the quantum Yang–Baxter equation on all of its modules, and while th
roducing solutions of the Yang–Baxter on all of its comodules.7

Returning to our presentation, we need to prove that the coassociative coproductD :M °M

^ M defined by

                                                                                                            



t ap
« s the
f t refer-
r -
t e the
a
w p
i

I

r r
f

sical
c n space
o ions be-
c nonde-
g
c ot
a t also be
e

e
f in
t
i er

c
− hat

t

w

t utation
r ntum

m le to

o w
m

J. Math. Phys., Vol. 45, No. 11, November 2004Inhomogeneous quantum groups for particle algebras 4211

                        
DsM d = M ‹̇M , s2.9d

ogether with the antipodeS:M °M ,SsM d=M −1 as an anti-algebra map and the counit m
:M °C given by«sM d= I s2d+1d3s2d+1d, defines the matrix quantum groups which we name a

ermionic orthogonal and the bosonic symplectic inhomogeneous quantum groups withou
ing to anyp structure. We denote these quantum groups as FIOs2d,Cd, and BISps2d,Cd, respec
ively. The coproductD :M °M ‹M should be an algebra homomorphism, in order to mak
lgebra(2.7) into a bialgebra:DsMM 8d=DsM dDsM 8d for all the elements in the algebra(2.7). We
ill come back to this point after we present the differentp-conjugation choices for FIO and BIS

n the following section.

II. p-STRUCTURE AND REAL FORMS

In this section, we will obtain FIOs2d,Rd and BISps2d,Rd by changing thep-conjugation
elations among theMk

i , for d=1 and generalize what we find to thes2d+1d-dimensional case fo
ermions.

The boson algebra in Eqs.(1.1), unlike the fermion algebra, has a corresponding clas
ounterpart, the Poisson algebra of functions over the cotangent bundle of the configuratio
f the corresponding classical system. The Poisson bracket makes the algebra of funct
omes aǹ -dimensional Lie algebra and the definition of the Poisson bracket requires a
enerate, closed 2-formV, the symplectic form. In terms of canonical coordinatespi ,qi, it has
onstant componentsV=odpi ∧dqi so that hpi ,qjj=d j

i . An odd dimensional manifold cann
ccommodate a nondegenerate symplectic two form and the quantum counterpart mus
ven dimensional.

After this digression, we first take the simplest example FIOs2,Cd and its action on th
ermion algebra(1.1). It acts on the column vectorC=fc,c* ,1gt via (2.1) and the conjugation
he entries ofM is forced by the fermion algebra defined in Eqs.(1.1). Hence, thep-conjugation
n the Hopf algebraM directly reflects the choice of the vectorC. What if one begins with anoth

hoice of the column vectorC? If we begin with the column vectorĈ=f1/Î2sc+c*d , i /Î2sc
c*d ,1gt, accordingly thep-conjugation relations amonghMk

i ji,k=1,2,3 changes. It is easy to see t

he vectorsĈ andC are related by

s3.1d

hereU†=U−1. If one relabels the entries ofĈ as

a1 ;
1
Î2

sc + c*d,

a2 ;
i

Î2
sc − c*d, s3.2d

he anti-commutation relations for these new operators can be derived from the anti-comm
elations among the original operatorsc,c* . This is the same thing as the corresponding qua

atricesM̂ andM are related by a similarity transformation. Therefore, in turn, it is possib

btain the algebra ofhM̂k
i ji,k=1,2,3 from those ofhMk

i ji,k=1,2,3. If we denote the entries of the ne

atrix as
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s3.3d

e have

s3.4d

f we invert the above relations we obtain

a = 1/2sA11 + A22d + i/2sA12 − A21d,

b = 1/2sA11 − A22d − i/2sA12 + A21d. s3.5d

ow calculating the anticommutatorsfGi ,G jg+, using (3.4) and the algebra ofa ,a* ,b ,b* ,g ,g* ,
e have

fG1,G2g+ =
1

2
sa + b*dsa* + bd −

1

2
sa − b*dsa* − bd,

2G1
2 = 1 − sa + b*dsa* + bd,

2G2
2 = 1 − sa − b*dsa* − bd. s3.6d

sing (3.5), we can convert rhs of the above anticommutators also in terms of the self con
ariables as

fG1,G2g+ = − A11A21 − A12A22,

2G1
2 = 1 −A11

2 − A12
2 ,

2G2
2 = 1 −A22

2 − A21
2 , s3.7d

ll of which combine into the equation

fGi,G jg+ = di j − AikAjk, i, j = 1,2. s3.8d

or BISps2,Rd, similar linear algebra calculations yields

fG1,G2g− = ih1 − A11A22 + A12A21j. s3.9d

oreover, since the transformations byU do not mix the homogeneous parameters with
nhomogeneous ones, the(anti-)commutation relations involving the homogeneous parts re
ntact. Eventually, for the BISp(2), by introducing the matrix

G− ; F 0 i

− i 0
G , s3.10d

he (anti-)commutation relations with real parameters bosonic transformation parameters

ritten as
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fGi,G jg− = sG− − AG−A tdi j . s3.11d

s mentioned in the digression in the beginning of this section, the matrixG− is related to th
ymplectic formV and generalizes to even dimensions only.

Our aim is to treat both FIO and BISp on the same footing, thus rewritten as in Eq.(3.11),
oth real forms FIOs2d,Rd and BISps2d,Rd can be fused into a single set of equations
enotingG+;1232 as

fGi,G jg± = G± − AG±A t
i j . s3.12d

y the “real form” we refer to the particularp-conjugation relation among the algebra trans
ation, not to the elements of the correspondingR-matrices. With the additional ingredientsG±,

he coproduct defined asDsM̂ d=M̂ ‹̇M̂ extends as an algebra homomorphism to make the
ras defined in Eqs.(3.12) bialgebras. Explicitly, for the real forms, the coproducts for the

ents of the matrixM̂ ,

DsGid = o
k

Aik ^ Gk + Gi ^ 1, DsAijd = o
n

Ain ^ Anj, s3.13d

espect the relations(3.12):

DsfGi,G jg±d = o
k,n

AikAjk ^ fGi,G jg± + fGi,G jg± ‹ 1

= o
k,n

AikAjn ^ hsG±dkn − AkpAnrsG±dprj + hsG±di j − AikAjnsG±dknj ‹ 1

= sG±di j ‹ 1 − o
k,n

AikAjn ^ sG±dprAkpAnr

= sG±di jDs1d − o
p,r

sG±dprDsAipdDsAjrd = D„sG± − AG±A tdi j…, s3.14d

here we have exploited the coproduct

DSo
k

AikAjkD = o
k

DsAikAjkd = o
k

DsAikdDsAjkd = o
k,n,p

AinAjp ^ AnkApk, s3.15d

eading it from right to left. As a result, both FIO(2) and BISp(2) satisfy the Hopf Algebra axiom
ndependent of thep-structure, with the antipode

s3.16d

nd the counit«sM̂ d= I434. For the fermions, the arguments of this section concerning
-structures do not touch upon the dimensionality of the vectorsC and can easily be extended
ny dimensiond that can be either odd or even. But in the case of bosons differentp-conjugation
hoices exist in even dimensions only. The next section is devoted to the systematic calcu
heir numericalR-matrices.

V. R-MATRICES FOR FIO„d… ,BISp „2d…

Because theR-matrices of the quantum groups FIOsdd and BISps2dd follow a pattern that i
asy to figure out for increasingd, we will present only theR-matrices ford=2 and for both
-choices in the previous section as 939 matrices. In light of these, we give the nonzero elem

f the R-matrices ford.2, which are not easy to display as matrices fitting to the page.
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For the convenience of the notation and ease for calculation, we relabel the elem
IOs2,Cd and BISps2,Cd as

M = fMk
i g = 3M1

1 M2
1 M3

1

M1
2 M2

2 M3
2

M1
3 M2

3 M3
34 ; 3 a b g

b* a* g*

0 0 1
4 , s4.1d

nd similarly for the real forms which we denoted byM̂ . If we supply the indices to Eq.(2.7), we
ave

Rkl
ij sM1dcd

kl sM2dab
cd = sM2dcd

ij sM1dkl
cdRab

kl ,

Rkl
ij Mc

kdd
l da

cMb
d = dc

i Md
j Mk

cdl
dRab

kl ,

Rab
ik Mj

aMl
b = Mb

kMa
i Rjl

ab, s4.2d

here all the indices runs over the same range,i , j ,k, l ,a,b=1, 2, 3. From this matrix equation
s possible to extract theR-matrices using(1.10)–(1.13) as

R= 3
− 1 0 0 0 0 0 0 0 0

0 − 1 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0

0 0 0 − 1 0 0 0 0 1

0 0 0 0 −1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

4 , s4.3d

R= 3
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 − 1

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

4 , s4.4d

or the FIOs2,Cd and the BISps2,Cd, respectively. Because the real forms are just a parti
hoice of thep-structure, it is possible to guess the numericalR-matrices for the FIOs2,Rd and the
ISps2,Rd by inspecting those of FIOs2,Cd and the BISps2,Cd together with their correspondi
lgebra(3.12). Besides, since FIO(2) can be extended to FIOsdd for both even and oddd, it is
ractical to work with its real forms.

The only nontrivial (anti-)commutation relations involve the inhomogeneous param
herefore the only difference between theR-matrices of the real forms and those above

ik
nvolve R33 components. In fact, thed=2 real forms have theR-matrices are
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R= 3
− 1 0 0 0 0 0 0 0 1

0 − 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 − 1 0 0 0 0 0

0 0 0 0 −1 0 0 0 1

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

4 , s4.5d

R= 3
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 − i

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 i

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

4 , s4.6d

or the FIOs2,Rd and the BISps2,Rd, respectively. Note that theR-matrix for FIO(2) is a 939
atrix, likewise the R-matrix for FIOsdd is sd+1d23 sd+1d2-dimensional, etc. In all th
-matrices given above the places of the nonzero elements of their last columns refe

anti-)commutation relations of the pairwisep-conjugate elements of the vectorC. For example
or FIOs2,Cd, the equations,

Rab
12M3

aM3
b = Mb

2Ma
1R33

ab, s4.7d

Rab
21M3

aM3
b = Mb

1Ma
2R33

ab, s4.8d

ictate that the nonzero elements of the last column to beR33
12, R33

21, and R33
33. Similarly for

IOs2,Rd it is easy to see that

Rab
11M3

aM3
b = Mb

1Ma
1R33

ab, s4.9d

Rab
22M3

aM3
b = Mb

2Ma
2R33

ab, s4.10d

ictate the nonzero elements to beR33
11, R33

22, andR33
33. However, the relative signs of all the nonz

ntries can be obtained by inspecting the other components in matrix equations(4.2). One can
how that these observations also hold for BISp and for higher dimensions. Keeping the
iderations in mind, it can be shown that the nonzero diagonal elements of thes2d+1d23 s2d
1d2 R-matrix for FIOs2d,Cd are

Rik
ik = 5− 1, if ∀ i,k , 2d,

+ 1, ifHi ø s2d + 1d, with k = s2d + 1d,

k ø s2d + 1d, with i = s2d + 1d,
J 6 s4.11d
hereas the nonzero off-diagonal entries are
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Rs2d+1d
i

s2d+1d
k = 5+ 1, ifHi = k + d, k , i , d,

k = i + d, i , k , d,
J

0, otherwise.
6 s4.12d

ow, for the real forms FIOsd,Rd, with which we refer to the fact that its elements are equ
heir p-conjugates,R-matrices can be given in a unified manner in arbitrary dimensiond. In
ccordance with this choice ofp-conjugation, only the position of the off-diagonal nonzero
ents change places. The nonzero elements of thesd+1d23 sd+1d2 R-matrices for FIOsd,Rd are

Rik
ik = 5− 1, if ∀ i,k , sd + 1d,

+ 1, ifHi ø sd + 1d, with k = sd + 1d,

k ø sd + 1d, with i = sd + 1d,
J 6 s4.13d

Rsd+1d
i

sd+1d
k = H+ 1, if i = k,

0, otherwise.
J s4.14d

imilarly, the off-diagonal nonzero elements theR-matrices for BISps2d,Cd are

Rs2dd
i

s2dd
k = 5+ 1, if i = k + d, k , i , d,

− 1, if k = i + d, i , k , d,

0, otherwise,
6 s4.15d

ith all the diagonal entriesRik
ik=1. Last, for the BISps2d,Rd, with the elements having se

- conjugation relations, the nonzero off-diagonal elements turn out to be a complex unit n
p to sign. The relative sign of these terms are also inherited from thep-conjugate pairs o
perators. They are given by

Rs2dd
l

s2dd
k = 5+ i , if l = k + d, k , l , d,

− i , if k = l + d, l , k , d,

0, otherwise,
6 s4.16d

n addition to the elements along the diagonal all of which are equal to 1.

. CONCLUSION AND FUTURE PERSPECTIVE

The inhomogeneous quantum groups we obtained constructively in a somewhat mor
lized form than they appear in Refs. 3 and 11 are richer, in content, than one expects.

Considering the matrix quantum group FIO(2), the homogeneous part of the matrix can
dentified with the groupSUs1,1d.Sps2,Rd and it is the inhomogeneous parameters that m
he algebra(2.7) noncommutative. The noncommutativity is controlled by the numerical matR.
oreover, the partitioning the quantum matrixM indicated by Eqs.(3.12), makes it possible t
efine various subgroups of the quantum groups FIOsdd and BISps2dd, yielding as well the
ifferent classical groups in appropriate limits.12 Also, dropping all the homogeneous parame

he algebra of the remaining inhomogeneous parameters is equivalent to the algebra on w
ct (1.1).

To construct a quantum group that act on systems carrying both fermions and boson
ame framework may be a valuable construction, since interesting and also physically re
athematical models involve interaction. In this respect, it may be interesting to look for a s
hich can combine the FIO and BISp, as a supersymmetry theory.

A two-dimensional irreducible representation of the fermion algebra(1.1) is the algebra of th
auli matricess7=1/2ss17 is2d. Since the inhomogeneous parameters can be identified wi

lgebra(1.1) setting the homogeneous parameters zero, if one pursues this correspondence for
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rbitrary dimensions, in terms of the Clifford algebra, similar to those given in Ref. 3, thi
elp to put a differential geometric structure on the quantum groups FIOsdd.13
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n algorithm for quaternionic linear equations
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By means of complex representation and companion vector, in this paper we intro-
duce a definition of rank of a quaternion matrix, study the problems of quaternionic
linear equations, and obtain an algorithm for quaternionic linear equations in
quaternionic quantum theory. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1794368]

. INTRODUCTION

In the study of theory of quaternionic quantum mechanics and some applied disc
Finkelsteinet al., 1962; Adler and co-workers, 1985, 1986, 1988, 1995, 1997; Sutcliffe, 2),
ne often encounters a problem of solution of quaternionic linear equations. Because
oncommutation of quaternions, the solution of quaternionic linear equations is more diffi
rder to solve quaternionic linear equations, the author(Adler, 1995) changed the quaternion

inear equations into a two-component complex quaternionic linear equations, and turn
roblem of quaternionic linear equations into that of complex linear equations. This pap
eans of complex representation and companion vector, studies the problems of qua

inear equations, and gives a technique of computing quaternionic linear equations in quat
uantum theory.

Let R denote the real number field,C=ha+bÎ−1ua,bPRj the complex number field,Q the
uaternion number field. LetFm3n denote the set ofm3n matrices on a fieldF. For any A

Cm3n, Ā andAT denote the conjugate and the transpose of the matrixA, respectively.
For any quaternionx=x0+x1i +x2j +x3k=y+zjPQ, in which xi PR, and i2= j2=k2=−1, i j

−ji =k, and quaternion matrixAPQm3n, the complex representation of quaternionx andA are,
espectively, defined to be

xf = S x0 + x1
Î− 1 x2 + x3

Î− 1

− x2 + x3
Î− 1 x0 − x1

Î− 1
D = S y z

− z̄ ȳ
D P C232, s1.1d

nd

Af = saij
f d = SS yij zij

− z̄i j ȳi j
DD P C2m32n. s1.2d

Let APQm3n, BPQn3s; by the definition of complex representation we easily get the
owing results:

sABd f = AfBf , s1.3d

)
Electronic mail: tsjemail@163.com
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Af = Pm
TAfPn, s1.4d

here

Pt = diagsJ,J, . . . ,Jd, J = S0 − 1

1 0
D ,

ndPPT= I.
If a=sx1,x2, . . . ,x2ndTPC2n31, then the companion vectorac of vector a is defined to b

c=s−x̄2, x̄1,−x̄4, x̄3, . . . ,−x̄2n, x̄2n−1dTPC2n31.
For any quaternion matrixAPQm3n, by the definition of the complex representation o

uaternion matrix there exist complex vectorsa1,a2, . . . ,an such that A
sa1,a1

c ,a2,a2
c , . . . ,an,an

cd.
By the definition of the companion vector we easily prove that if complex ve

1,a1
c ,a2,a2

c , . . . ,as are linearly independent, then complex vectorsa1,a1
c ,a2,a2

c , . . . ,as,as
c are

lso linearly independent.
From the statement above we get the following result.
Proposition 1.1:Let APQn3n. Then the rank of complex representation matrixAf is even.

I. RANK OF QUATERNION MATRICES

In this section, we introduce a definition of rank of quaternion matrices by means of co
epresentation and a companion vector.

For any quaternion matrixAPQm3n, from Proposition 1.1 we know that the rank ofAf is
ven, the rank ofA is defined to be ranksAd= 1

2ranksAfd.
By the definition of rank and(1.3) we easily know that almost all the equalities and ineq

ies of rank to complex matrices hold to quaternion matrices. For instance, ifAPQm3n, B
Qn3s, then

ranksABd ø minhranksAd,ranksBdj.

ut ranksAd and ranksATd are not always the same. For example,

A = S1 i

j k
D, ranksAd Þ ranksATd.

II. QUATERNIONIC LINEAR EQUATIONS

In this section, we study the solution of quaternionic linear equationsAx=b andAXB=C, and
ive a technique of finding a solution of the quaternionic linear equations in quaternionic qu
echanics and quantum fields.

If APQm3n, bPQm31, then by the definition of complex representation and(1.3), Ax=b if
nd only if Afxf =b f. That isAx=b has a solutionx if and only if AfY=b f has a solutionY=xf.

If Y is a solution ofAfY=b f, by (1.4),

AfY = b f ⇔ AfsPn
TYP1d = b f ⇔ AfsPn

TȲP1d = b f , s3.1d

.e., Pn
TȲP1 is a solution ofAfY=b f, therefore

Ŷ =
1

2
sY + Pn

TȲP1d s3.2d

f f
s also a solution ofA Y=b . Let
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Y = sYl1d P C2n32, Yl1 = Szl1 zl2

zl3 zl4
D P C232, l = 1,2, . . . ,n. s3.3d

t is easy to get, by direct calculation,

Ŷ = sŶl1d P C2n32, Ŷl1 = S ẑl1 ẑl2

− z̄̂l2 z̄̂l1

D P C232, l = 1,2, . . . ,n, s3.4d

n which

ẑl1 =
1

2
szl1 + z̄l4d, ẑl2 =

1

2
szl2 − z̄l3d. s3.5d

From (3.4) we construct a quaternion matrix,

x = sxl1d P Cn31, xl1 = ẑl1 + ẑl2j =
1

2
s1,− jdŶl1S1

j
D, l = 1,2, . . . ,n. s3.6d

herefore we have

x =
1

2
s1,− j ,1,− j , . . . ,1,−jdŶS1

j
D =

1

4
s1,− j ,1,− j , . . . ,1,−jdsY + Pn

TȲP1dS1

j
D .

learly xl1
f =Ŷl1, andxf =Ŷ. This means thatxf =Ŷ is a solution ofAfY=b f, so x is a solution o

x=b.
From the statement above we get following result.
Theorem 3.1: Let APQm3n, bPQm31. Then quaternionic linear equationsAx=b have a

olution if and only if ranksAd=ranksA,bd, i.e.,Ax=b has a solution if and only ifAfY=b f has a
olution, in which case, ifY is a solution toAfY=b f, then the following quaternion is a solution
x=b:

x =
1

4
s1,− j ,1,− j , . . . ,1,−jdsY + Pn

TȲP1dS1

j
D . s3.7d

oreover, if ranksAd=ranksA,bd=n, then quaternionic linear equationsAx=b have a uniqu
olution.

Remark:Theorem 3.1 gives not only sufficient and necessary conditions for quater
inear equationsAx=b to have a solution, but also a technique of finding a solution to quatern
inear equationsAx=b. When the quaternionic linear equationsAx=b have a solution, we can fin

solution by a solution of complex representation equationAfY=b f from the formula(3.7).
heorem 3.1 turns the problem of the solution of quaternionic linear equations into that
olution of complex linear equations by means of complex representations of quaternion m

Similarly we easily get the following result.
Theorem 3.2: Let APQm3n, BPQp3q, CPQm3q. Then quaternionic matrix equationAXB

C has a solution if and only if ranksAd=ranksA,Cd and ranksBd=ranks B
C

d, i.e., quaternioni
atrix equationAXB=C has a solution if and only if complex matrix equationAfYBf =Cf has a

olution, in which case, ifY is a solution to complex matrix equationAfYBf =Cf, then the follow
ng matrix is a solution toAXB=C:

x =
1

4
s1,− j ,1,− j , . . . ,1,−jdsY + Pn

TȲPqds1,j ,1,j , . . . ,1,jdT. s3.8d

oreover, if ranksAd=ranksA,Cd=n and ranksBd=ranks B
C

d=p, then quaternionic matrix equati

XB=C has a unique solution.
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V. EXAMPLE

Example:Let

A = S i 1 + j

− 1 + j − k
D, b = S i

− 1
D .

ind all solutions of quaternionic linear equationsAx=b.
It is easy to find theAf andb f by the definition of complex representation, and

Af =1
i 0 1 1

0 − i − 1 1

− 1 1 0 − i

− 1 − 1 − i 0
2, b f =1

i 0

0 − i

− 1 0

0 − 1
2 ,

nd ranksAfd=ranksAf ,b fd=4, i.e., ranksAd=ranksA,bd=2, then quaternionic linear equatio
x=b have a unique solution.

Since ranksAfd=ranksAf ,b fd=4, so AfY=b f has a unique solution. The unique solution
asily found to be

Y =1
2

3

1

3

−
1

3

2

3

i

3
0

0 −
i

3

2 .

By (3.7), we easily find the unique solutionx of quaternionic linear equationsAx=b, and

x =
1

4
s1,− j ,1,− jdsY + P2

TȲP1dS1

j
D =1

2

3
+

1

3
j

1

3
i 2 .

By means of a complex representation and companion vector, this paper introduces
ion of rank of a quaternion matrix, studies the solutions of quaternionic linear equations
ufficient and necessary conditions for the quaternionic linear equations to have a solut
btains a technique of finding a solution to quaternionic linear equations. This paper tu
roblem of quaternionic linear equations into that of complex linear equations, changes n
utative quaternion problems to a complex question, and provides a practical algorithm

olution of quaternionic linear equations in quaternionic quantum theory.
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opological density gravitation
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Department of Physics, King’s College London, Strand, London WC2R 2LS, United
Kingdom

(Received 15 September 2003; accepted 7 July 2004; published 25 October 2004)

We consider intersecting hypersurfaces in curved spacetime with gravity governed
by a class of actions which are topological invariants in lower dimensionality.
Along with the Chern–Simons boundary terms there is a sequence of intersection
terms that should be added in the action functional for a well defined variational
principle. We construct them in the case of Characteristic Classes, obtaining rela-
tions which have a general topological meaning. Applying them on a manifold with
a discontinuous connection 1-form we obtain the gravity action functional of the
system and show that the junction conditions can be found in a simple algebraic
way. At the sequence of intersections there are localized independent energy ten
sors, constrained only by energy conservation. We work out explicitly the simplest
nontrivial case. ©2004 American Institute of Physics.[DOI: 10.1063/1.1794841]

. INTRODUCTION

General relativity can be generalized to a manifold with a boundary. The inclusion of a
oundary term(Gibbons–Hawking) makes the action principle well defined on the boundary. A
ingular hypersurfaces of matter1 can be incorporated into a manifold with piece-wise diffe
iable metric.2 We will see that these are part of the general properties of actions built
imensionally continued topological invariants. The Einstein–Hilbert action of General Rel

s the dimensionally continued form of the two-dimensional Euler Characteristic. A linear c
ation of terms which are dimensionally continued Euler densities in arbitrary dimens
nown variously as Lovelock or Lanczos–Lovelock or Gauss–Bonnet gravity. It has been
xtensively3–6 and the boundary action has been constructed.7–9

An interesting problem in gravity is the study of collisions of shells of matter.10–12 Brane-
orld models of matter on the intersection of co-dimension 1 branes were studied and it wa

hat the Gauss–Bonnet term was needed in order to get a tension on the intersection in
ay.13 The Gauss–Bonnet term is the dimensionally continued 4-dimensional Euler dens
ddress this problem of intersections and collisions of co-dimension 1 hypersurfaces in
eneralized way, motivated by the properties of the topological invariants.

A topological invariant “action” contains no local degrees of freedom. The only informa
ncodes is topological. As such, it is independent of the local form of the metric. We co
ctions which are topological in a certain dimensionality and then generalize to higher dime
hese actions have the property that the independent infinitesimal variation of the actio

espect to the connection is a total derivative.
We consider a smooth manifold with embedded arbitrarily intersecting hypersurfaces

ular matter. We can view a hypersurface as the shared boundary of two adjacent regio
ravity of localized matter can be described by a boundary action. As in Ref. 13, we allow
ossibility of matter being localized on the surfaces of intersection also. The spacetime is

)
Electronic mail: steven.willison@kcl.ac.uk
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p into polyhedral regions bounded by piece-wise smooth hypersurfaces—like a matrix o
e show that this situation is compatible with any theory of gravity based on a dimens

ontinued topological invariant.
We exploit the topological nature of the theory to write the action in terms of diff

onnections in different regions. This generates our surface actions remarkably simply.
erive the Israel junction conditions and the junction conditions for any intersections in a
lgebraic way.

In Sec. II we review basic material on topological densities, introducing Characteristic C
n a manifold with boundary. In Sec. III A we derive the intersection forms generalizing C
imons forms and in Sec. III B we construct the action functional of gravity in the prese

ntersecting hypersurfaces employing the properties of the intersection forms. The topo
heory is dealt with in Sec. III B 1 and the dimensionally continued case of interest is dealt
ec. III B 2. In Sec. IV we work out a simple example along with the energy exchange re

n that case.

I. TOPOLOGICAL DENSITIES AND GRAVITATION

Let M be a manifold with a Riemannian or Lorentzian metricg and a Levi-Cività connectio
et v be the connection 1-form andV the curvature form. For dimM =2n consider the integra

E
M

fsV, . . .Vd, fsV, . . . ,Vd = Va1a2 ∧ ¯ ∧ Va2n−1a2nea1¯a2n
, s1d

heree. . . is the fully anti-symmetric symbol ande1¯2n= +1 and the integral is assumed to ex
he frame E is ortho-normal in the sense thatgsEa,Ebd=dab in the Riemannian case a
sEa,Ebd=hab=diags−1,1, . . . ,1d in the Lorentzian case.

Wheng is Riemannian andM is compact and orientedfsV , . . . ,Vd represents the Euler cla
he integral overM, normalized properly, gives the Euler number ofM, according to the re
owned Gauss–Bonnet–Chern Theorem.14 There are more general(and precise) definitions than

he one we give here. The details are in the textbooks15–17 but we only need to point out th
imilarity and make intelligible borrowing of tools from global differential geometry.fsV , . . . ,Vd
ill be called the Euler density. In general an invariant whose integral overM gives a topologica

nvariant ofM will be called topological density.
Let us now repeat the Chern–Weil construction and show that under a continuous ch

he connection,v→v8, fsV , . . . ,Vd changes by an exact form. In fact we are only going to
f to be invariant, symmetric and multi-linear. These general properties are provided by the
nt polynomials and lead to the so-called Characteristic Classes, of which the Euler cla
xample. The following applies globally on the principal bundle but it is sufficient for our pu

o work on the manifold.
Define

vt = tv + s1 − tdv8.

Call

u = v − v8

nd note that

u =
d

dt
vt,
nd for the curvature associated withvt,
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Vt = dvt + vt ∧ vt, s2d

hat

d

dt
Vt = Dtu, s3d

hereDt is the covariant derivative associated withvt. Then

fsV, . . . ,Vd − fsV8, . . . ,V8d =E
0

1

dt
d

dt
fsVt, . . . ,Vtd = nE

0

1

dtfsdVt/dt,Vt, . . . ,Vtd

= nE
0

1

dtfsDtu,Vt, . . . ,Vtd = nE
0

1

dtdfsu,Vt, . . . ,Vtd, s4d

here symmetry and multi-linearity off have been used, as well asDtVt=0.
If we define

Lsvd = fsV, . . . ,Vd s5d

nd

Lsv,v8d = − nE
0

1

dtfsv − v8,Vt, . . . ,Vtd, s6d

e can write

Lsvd = Lsv8d − dLsv,v8d. s7d

ow, assume that, for example,M is noncompact and without a boundary. IfLsv ,v8d vanishe
ast enough asymptotically,

E
M

Lsvd s8d

assumed to exist) does not depend onv. It is this property that makesLsvd so useful when, wit
little modification, it is used as a Lagrangian for gravity for dimM .2n.

Define thesd-rd-form [which is a naturalsd-rd-dimensional volume element]:

ea1a2¯ar
=

1

sd − rd!
ea1a2¯ad

Ear+1 ∧ ¯ ∧ Ead. s9d

he associated dimensionally continued Euler density ford.2n is

Lgsv,ed = fsV, . . . ,V,ed = Va1b1 ∧ Va2b2 ∧ ¯ ∧ Vanbn ∧ ea1b1a2b2¯anbn
, s10d

hich is also an invariant.
Then, the Euler–Lagrange variation with respect tov in

E
M

Lgsv,ed, s11d

oting thatdV=Dsdvd, vanishes by the Bianch identity and the assumed zero torsion con
Ea=0.18 The equations of motion are obtained simply by the Euler–Lagrange variation
rame, applying the formula
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dea1¯ar
= dEar+1 ∧ ea1¯arar+1

, s12d

n a purely algebraic way.
In the next section we find how the action(10) is re-expressed in the presence of hyper

aces and their intersections, by generalizing(7) appropriately, and show that the equation
otion (junction conditions) are still obtained from the mere variation of the frame.

II. TOPOLOGICAL DENSITIES ON MANIFOLDS CONTAINING INTERSECTING
YPERSURFACES

A hypersurface is understood as a smooth co-dimension 1 subspace of the manifold w
onnection form exhibits discontinuity or as a(higher co-dimension) intersection of such disco
inuities.

IntegratingLsvd over the manifold, whenv is the discontinuous connection form, one ha
dd a Chern–Simons term integrated over the discontinuity for the final result to have well-
ariations with respect tov (and to be diffeomorphism invariant). If discontinuities intersect, in a
ossible ways, one should, in general, add appropriate generalizations of the Chern–Simo

ntegrated over the intersections.
A discontinuity can be thought of as the common boundary of twod-dimensional(bulk)

egions. The intersection of discontinuities can be thought of as common subspaces of(not
mooth) boundaries of a larger number of bulk regions. It is also helpful to think of the
ingular overlaps(at the boundaries) or intersections of two or more bulk regions.

With this in mind, we first find generalizations of the Chern–Simons forms.

. From boundary to intersection action terms

Given an invariant polynomial, we found in the previous section a relation of the form(7)
y interpolating between the given connectionv and an arbitrary onev8. We can continue b

nterpolating between the latter and a new connection. In general, let us define thep-paramete
amily of connections, interpolating betweenp+1 connections,v1, . . . ,v p+1,

vp = vt1¯tp
= v1 − s1 − t1du1 − ¯ − s1 − t1d ¯ s1 − tpdu p, s13d

here

u r = vr − vr+1, r = 1, . . . ,p. s14d

ote: For the purposes of Sec. III A and Eqs.(38)–(44) only, the subscriptp refers to a functio
f t1, . . . ,tp.

Define

]

] tq
vp =

]

] tq
vt1¯tp

= o
rùq

p

s1 − t1d ¯ s1 − tqd̂ ¯ s1 − trdu r = u
t1¯tq

ˆ
¯tp

q
= u p

q, s15d

here the over caret means that the index is omitted. Note that

uvt1¯tp
utr=0 = vt1¯tr−1tr+1¯tp

, s16d

etting the connectionvr =0. This will be useful below. LetVp be thep-parameter curvatu
-form associated withvp. Then

]

] tq
Vp =

]

] tq
Vt1¯tp

= Dt1¯tp
u

t1¯tq
ˆ
¯tp

q
= Dpu p

q. s17d
here is also a “Bianchi identity” forVp,
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DpVp = 0; s18d

p is the covariant derivative associated withvp.
Proposition 1:We introduce asp+1d-point term withp+1 connection entries. We now sh

hat thesp+1d-point generalization of the 2-point Chern–Simons term takes the form

Lsv1, . . . ,vp+1d = hp
n!

sn − pd!E0

1

dt1 ¯ dtpfsup
1,up

2, . . . ,up
p,Vp, . . . ,Vpd, s19d

herehp=s−1dpsp+1d/2. These terms obey the following rule:

o
s=1

p+1

s− 1ds−p−1Lsv1, . . . ,vŝ, . . . ,vp+1,vp+2d = Lsv1, . . . ,vp+1d + dLsv1, . . . ,vp+1,vp+2d. s20d

Proof: If we define

vtp+1

p+1 = tp+1v
p+1 + s1 − tp+1dvp+2, s21d

hen

Lsv1, . . . ,vtp+1

p+1d = hp
n!

sn − pd!E0

1

dt1 ¯ dtpfsup+1
1 ,up+1

2 , . . . ,up+1
p ,Vp+1, . . . ,Vp+1d.

We have

Lsv1, . . . ,vp,vp+1d − Lsv1, . . . ,vp,vp+2d =E
0

1

dtp+1
]

] tp+1
Lsv1, . . . ,vp,vtp+1

p+1d

= hp
n!

sn − pd!E0

1

dt1 ¯ dtpdtp+1
]

] tp+1

3fsup+1
1 ,up+1

2 , . . . ,up+1
p ,Vp+1, . . . ,Vp+1d.

rom the multi-linearity of the invariant polynomialf we have

]

] tp+1
fsup+1

1 ,up+1
2 , . . . ,up+1

p ,Vp+1, . . . ,Vp+1d = o
r=1

p

fSup+1
1 , . . . ,

]

] tp+1
up+1

r , . . . ,up+1
p ,Vp+1, . . . ,Vp+1D

+ sn − pdfSup+1
1 ,up+1

2 , . . . ,up+1
p ,

]

] tp+1
Vp+1, . . . ,Vp+1D .

sing (17), we can write the last term as

sn − pds− 1dpdfsup+1
1 ,up+1

2 , . . . ,up+1
p ,up+1

p+1,Vp+1, . . . ,Vp+1d

− sn − pdo
s=1

p

s− 1dp+s−1fsup
1, . . . ,Dp+1up+1

s , . . . ,up+1
p+1,Vp+1, . . . ,Vp+1d,
nd using again(17) in the last term we obtain
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− o
s=1

p

s− 1dp+s−1 ]

] ts
fsup+1

1 , . . . ,up+1
ŝ , . . . ,up+1

p+1,Vp+1, . . . ,Vp+1d

+ o
s=1

p

s− 1dp+s−1 o
r=1,Þs

p+1

fSup+1
1 , . . . ,

]

] ts
up+1

r , . . . ,up+1
ŝ , . . . ,up+1

p ,up+1
p+1,Vp+1, . . . ,Vp+1D .

n all

sn − pds− 1dpdfsup+1
1 ,up+1

2 , . . . ,up+1
p ,up+1

p+1,Vp+1, . . . ,Vp+1d

− o
s=1

p

s− 1dp+s−1 ]

] ts
fsup+1

1 , . . . ,up+1
ŝ , . . . ,up+1

p+1,Vp+1, . . . ,Vp+1d

+ o
s=1

p+1

s− 1dp+s−1 o
r=1,Þs

p+1

fSup+1
1 , . . . ,

]

] ts
up+1

r , . . . ,up+1
ŝ , . . . ,up+1

p ,up+1
p+1,Vp+1, . . . ,Vp+1D .

ote now that

]

] ts
up+1

r =
]

] ts

]

] tr
vp+1 =

]

] tr
up+1

s ; s22d

hen, in the last term, if we split the sum intor ,s andr .s, changing variablesr ↔s in the latte
nd using this identity we see that the term vanishes. We have shown then thatsp+1d-point Lp+1

efined in(19) obeys a rule,

o
s=1

p+1

s− 1ds−p−1Lsv1, . . . ,vŝ, . . . ,vp+1,vp+2d = Lsv1, . . . ,vp+1d + dLsv1, . . . ,vp+1,vp+2d.

he relation(16) has been used. h

It is not hard to show thatL is fully anti-symmetric in its entries, so we can write the ab
n the form

o
s=1

p+1

Lsv1, . . . ,vs−1,v8,vs+1, . . . ,vp+1d = Lsv1, . . . ,vp+1d + dLsv1, . . . ,vp+1,v8d, s23d

herev8 is arbitrary.
As ur is a 1-form we havefs. . . ,ur , . . . ,ur , . . . ,Vp, . . .Vpd=0 and we can write(19) explicitly

n terms ofur =vr −vr+1, r =1. . .p in the form

Lsv1, . . . ,vp+1d =E
0

1

dt1 ¯ dtpzpfsu1,u2, . . .up,Vp, . . . ,Vpd, s24d

zp = s− 1dpsp+1d/2 n!

sn − pd! pr=1

p−1

s1 − trdp−r . s25d

Let us show thatLp’s, constructed from Characteristic Classes, are invariant under
orentz transformations. The connections transform as

vsgd
r = g−1vrg + g−1 dg, s26d

or all r =1, . . . ,p+1, whereg belongs to the adjoint representation of SO(d-1,1). Then, usgd
r

−1 r −1 20
g u g andVpsgd=g Vpg, so
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Lsvsgd
1 , . . . ,vsgd

p+1d = Lsv1, . . . ,vp+1d. s27d

In fact, one can derive(23) without reference to the invariant polynomial, by use of
oincare lemma and the following observation[inspired by the form of(23)]. If fsx1, . . . ,xnd is an
nti-symmetric function ofn variables and

Afsx1, . . .xp,xp+1d = fsx1, . . .xpd − o
i=1

p

fsx1, . . . ,xi−1,xp+1,xi+1, . . . ,xpd s28d

antisymmetrizing overn+1 variables) thenAAfsx1, . . . ,xp+2d=0. The proof is trivial.
We can now show(23) by induction, assuming only thatLsvd obeys(7). That is, it is true fo

he p=0 case. Assume(23) for p=k−1 [let us use the symbolLksv1. . .vkd for the intersectio
orms in this proof],

ALksv1
¯ vk+1d = − dLk+1sv1

¯ vk+1d. s29d

hendALk+1sv1
¯vk+2d=0. By the Poincare lemma we have that there exists an invariant

ocally, such that

ALk+1sv1
¯ vk+2d = − dLk+2sv1

¯ vk+2d, s30d

hich completes the induction.(19) is a solution of the general relation(23).
There is similarity between our composition rule and Stora–Zumino descent equations21 The

eason is the existence in both cases of a nilpotent operator,A in our case and the fermionic BRS
perator there, which commutes and anticommutes, respectively, with the derivative operd.

. Manifolds with discontinuous connection 1-form

We now construct the action functional of gravity on a manifold containing interse
urfaces. It will also enable us to draw conclusions for arbitrary intersections of hypersurfa
general dimensionally continued topological density.

. Topological density

If the functional eM L is independent of theC0 metric of the manifoldM, then it can b
valuated using a continuous connection as well as a connection that is discontinuous
ubspaces(namely there are hypersurfaces involved). That is, the result will be the same. We
his formal equivalence to give a meaning toeM Lsvd whenv is discontinuous.

Let us start with the case of a topological densityLsv0d of a continuous connectionv0

ntegrated overM which contains a single hypersurface. Label 1 and 2 the regions ofM separate
y the hypersurface. Introduce two connections,v1 andv2, which are smooth in the regions 1 a
, respectively. We now write

E
M

Lsv0d =E
1

Lsv1d + dLsv1,v0d +E
2

Lsv2d + dLsv2,v0d. s31d

abel the surface, oriented with respect to region 1, with 12(formally e12=−e21 ):

E
M

Lsv0d =E
1

Lsv1d +E
2

Lsv2d +E
12

Lsv1,v0d − Lsv2,v0d

=E
1

Lsv1d +E
2

Lsv2d +E
12

Lsv1,v2d + dLsv1,v2,v0d. s32d
hat is, for a smooth surface the rhs is independent ofv0.
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Consider now a sequence of co-dimensionp=1,2,3, . . . ,h hyper-surfaces which are inters
ions of p+1=2,3, . . . ,h+1 bulk regions, respectively. We will use the terms intersection
ypersurface alternatively. A co-dimensionp hyper-surface is labeled byi0¯ ip wherei0, . . . ,ip are

he labels of the bulk regions which intersect there. We call this configuration a simplicia
ection.

We take the exampleh=2 (Fig. 1), where the intersections areh12j, h13j, h23j, h123j. An
xact form integrated overh12j will contribute at h123j the opposite that when integrated o
21j, that is, for the latter integration the intersection can be labeled by −123=213, if we a
nti-symmetry of the label. The arrows of positive orientations in Fig. 1 tell us that a
nti-symmetric symbolh123j will adequately describe the orientations of the intersection 123.

s in contrast to the nonsimplicial intersection(Fig. 2).
Definition 2 (for a simplicial intersection):hi0¯ ipj is the setī0ù ¯ ù ī p where ī r is the

losure of the open seti r (a bulk region). ī r overlap such that]i r =os=0,Þr
h ī r ù ī s and i r ù is=x for

ll sÞ r. This formalises our definitions at the beginning of Sec. II. By]sĀù B̄d
s]Āù B̄dø sĀù]B̄d, for A, B open sets, we can write

IG. 1. The simplicial intersection of co-dimension 2sh=2d. The totally antisymmetric symbolh123j specifies th
ntersection including the orientation.

IG. 2. A nonsimplicial intersection of co-dimension 2sh=2d. The intersection, including the orientation, would no

roperly represented by the totally anti-symmetric symbolh1234j.

                                                                                                            



F
c

e, the
c

u
ature

t nsional
i efined
o

W

+

A

F
c

hich is
v a
c roup.
S

inde-
p rely
i lso.
S secting
h

J. Math. Phys., Vol. 45, No. 11, November 2004 Intersecting hypersurfaces 4231

                        
] hi0 ¯ ipj = o
ip+1

hi0 ¯ ip+1j. s33d

ull anti-symmetry of the symbolhi0¯ ipj keeps track of the orientations properly in(33). As a
heck,

]2hi0 ¯ ipj = o
ip+1,ip+2

hi0 ¯ ip+1ip+2j = 0.

Lemma 3:When all intersections are simplicial intersections, with no localized curvatur
ontribution from each intersectionhi1¯ ikj is

E
hi1¯ikj

Lsvi1
, . . . ,vik

d, s34d

p to a boundary term on]M.
By “no localized curvature,” it is meant that the distributional part of the Riemann curv

ensor must have its support only on co-dimension 1 hypersurfaces and not on lower-dime
ntersections. This is an important condition. We require this in order to have a well-d
rtho-normal frame at the intersections.

Proof: Assume, forl ,h, we can write

E
M

Lsv0d = o
k=1

l−1
1

k! o
i1¯ik

E
hi1¯ikj

Lsvi1
¯ vik

d +
1

l! o
i1¯i l

E
hi1¯i lj

Lsvi1
¯ vi l

d + dLsvi1
¯ vi l

,v0d.

s35d

e have already seen that this is true forl =1 andl =2. The exact form gives

1

l! o
i1¯i l i l+1

E
hi1¯i l i l+1j

Lsvi1
¯ vi l

,v0d,

a term on]M. From the anti-symmetry ofhi1¯ i li l+1j and ofL we have

1

l! o
i1¯i l+1

E
hi1¯i l i l+1j

1

l + 1o
r=1

l+1

Lsvi1
¯ vir−1

,v0,vir+1
¯ vi l+1

d.

pplying the composition rule we get

E
M

Lsv0d = o
k=1

l
1

k! o
i1¯ik

E
hi1¯ikj

Lsvi1
¯ vik

d +
1

sl + 1d! o
i1¯i l+1

E
hi1¯i l+1j

Lsvi1
¯ vi l+1

d

+ dLsvi1
¯ vi l+1

,v0d. s36d

inally we note that the total derivative term on the highest co-dimension intersections(orderh),
an only contribute to]M. So by induction we have proved the Lemma.

Note that apart from our composition formula we have used only Stokes’s theorem, w
alid on a topologically nontrivial manifoldM assuming a partition of unityf i subordinated to
hosen covering. By(27) each of the terms appearing will be invariant w.r.t. the structure g
o the last formula is valid overM understanding eachL asoi f iL. h

We began with a smooth manifold with an Euler Density action which is completely
endent of the choice ofv0. This gives only a topological invariant of the manifold and is enti

ndependent of any embedded hypersurfaces. Thevi’s, as well as their number, are arbitrary a
o we see that we have constructed a “theory of gravity,” in the presence of arbitrarily inter

ypersurfaces of discontinuity in the connection, which is a topological invariant. It is a trivial
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heory in that the action is completely insensitive to these hypersurfaces. The “gravita
quations of motion vanish identically, regardless of the geometry, providing no way to
eometry to energy–momentum.

. Dimensionally continued Euler densities

Now we consider the dimensionally continued Euler density for arbitrarily intersecting h
urfaces separating bulk regions counted byi. We postulate the action

Sg = o
i
E

i

Lgsvi,ed + o
k=2

h
1

k! o
i1¯ik

E
hi1¯ikj

Lgsvi1
, . . . ,vik

,ed. s37d

We will show that this action is “one and a half order” in the connection. We will ne
evisit our derivation of the composition rule in Sec. III A, this time interpolating betwee
ifferent metric functionsEisxd, where the index represents the region(the local Lorentz inde
eing suppressed). Physically, we require the metric being continuous at a surfaceS1¯p+1: i*Ei

E which impliesi*seid=e. Here i* is the pullback of the embedding ofS1¯p+1 into M. We will
ee that this continuity condition arises naturally from the action principle. Define the Lagr
n the surfaceS1¯p+1 to be

Lsv1, . . . ,vp+1,ed =E
0

1

dt1 ¯ dtpzpfsu1,u2, . . . ,up,Vp, . . . ,Vp,epd,

sepda1¯a2n
=

1

sd − 2nd!
sEpda2n+1 ∧ ¯ ∧ sEpdadea1¯ad

, s38d

hereEp=E1−s1−t1dsE1−E2d−¯−s1−t1d¯ s1−tpdsEp−Ep+1d andzp is given by(25).
Following through the calculation of Sec. III A, we pick up extra terms, involving deriva

f Ep−1, from using the Leibnitz Rule onf:

]

] tp+1
fsup+1

1 ,up+1
2 , . . . ,up+1

p ,Vp+1, . . . ,Vp+1,ep+1d

= o
s=1

p+1

fSup+1
1 , . . . ,up+1

ŝ , . . . ,up+1
p+1,Vp+1, . . . ,Vp+1,

] ep+1

] ts
D

+ sn − pdfsup+1
1 ,up+1

2 , ·up+1
p+1,Vp+1, . . . ,Vp+1,Dp+1ep+1d + s¯d.

he s¯d are terms which appear just as in Sec. III A.
We will verify our assertion that the action is one-and-a-half order by infinitesimally va

he metric and connection in one region. We vary them as independent fields. Usingtp+1 to
nterpolate betweenEp+1 andEp+1+dEp+1 and the corresponding variation ofvp+1:

dLsv1, . . . ,vp+1,ed =E
0

1

dt1 ¯ dtp+1zpJ + s¯d, s39d

J = p
i=1

p

s1 − tido
s=1

p

fSup+1
1 , . . . ,up+1

ŝ , . . . ,dvp+1,Vp+1, . . . ,Vp+1,
] ep+1

] ts
D

− fSup+1
1 , . . . ,up+1

p ,Vp+1, . . . ,Vp+1,
] ep+1

] tp+1
D + p

i=1

p

s1 − tidsn − p + 1d

3fsu1 , . . . ,up ,dvp+1,Vp+1, . . . ,Vp+1,Dp+1ep+1d. s40d
p+1 p+1
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he s¯d are terms which will cancel when intersections are taken into account, just as
opological theory(provided that the metric is continuous). Above, we have made use ofup+1

p+1

−s1−t1d¯ s1−tpddvp+1.
We require the vanishing of the terms in(40) involving dvp+1. Now Ep+1=E1−s1−t1dsE1

E2d−¯ +s1−t1d¯ s1−tp+1ddEp+1. Making use of formula(12),

]

] ts
sep+1da1¯a2n

=
]

] ts
sEp+1db ∧ sep+1da1¯a2nb

= o
i=1

p

s1 − t1d ¯ s1 − tsd̂ ¯ s1 − tidsEi − Ei+1db ∧ sepda1¯a2nb + OsdEp+1d. s41d

o we see the first term in(40) vanishes ifi*sEi+1d= i*sEid for all i =1¯p+1, i.e., the metric i
ontinuous. Given this, we see that

i*sDp+1Ep+1d = i*sdEp+1 + vp+1 ∧ Ep+1d = i*„dhE1 + t1sE2 − E1d + ¯ t1 ¯ tp+1dEp+1j

+ hv1 + t1u1 + ¯ + t1 ¯ tpdvp+1j ∧ sE

+ t1 ¯ tp+1dEp+1d…

= i*SDsv1dE1 + o
i=1

p

t1 ¯ tisDsvi+1dEi+1 − DsvidEid

+ Osdvp+1d + OsdEp+1dD . s42d

he third term in(40) already contains advp+1 apart from theDp+1ep+1. Dp+1ep+1 is proportiona
o Dp+1Ep+1 so to first order indEp, this term vanishes ifDsvidEi =0 for all i =1. . .p.23

The only nonvanishing term in(40) is the second which involves

]

] tp+1
sep+1da1¯a2n

= − s1 − t1d ¯ s1 − tpdsdEp+1db ∧ sep+1da1¯a2nb = − sdepda1¯a2n
.

o we arrive at a simple expression for the variation of the action, once the equation of mo
he connection and continuity of the metric have been substituted:

dLsv1, . . . ,vp+1,ed =E
0

1

dt1 ¯ dtpzpfsu1, . . . ,up,Vp, . . . ,Vp,ded + s¯d.

Then, variation of anvi will vanish automatically upon imposing the zero torsion cond
nd the continuity of the metric at the intersections.24 Second, from the variation of the frameEa

e obtain a field equation for gravitation and its relation to the matter present, by

dESg + dESmatter= 0. s43d

he field equations are actually algebraically obtained, on the gravity side, using(12). Note tha
lthough intersections describe physically a situation such as collisions, there is a nonzero
omentum tensor at the intersection when the theory is not linear in the curvature 2-for
imensionally continuednth Euler density produces a nonzero energy tensor down tod-n dimen-
ional intersections. Explicitly, the gravitational equation of motion for a fundamental inters

1¯p+1, carrying localized matterLms1¯p+1d is

E
0

1

dt1 ¯ dtpzpu1 ∧ ¯ ∧ up ∧ sVpdn−p ∧ dE ∧ e= dELms1¯p+1d. s44d

n−p
e have dropped the local frame index andsVpd =Vp∧ ¯ ∧Vp.
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V. AN EXPLICIT EXAMPLE

We calculate the Lagrangian of the simplest intersection, that ofN d-1-dimensional(non-null)
urfaces intersecting at the samed-2-dimensional(non-null) surface. We then find explicitly th
quations of motion for the intersection in the simplest topological density such that equa
otion are nontrivial, then=2 Euler density(Gauss–Bonnet term). We also express the ene

onservation in the form of relations among the energy tensors involved in this case.

. Equation of motion

We can treat the nonsimplicial intersection with a 2-dimensional normal space as follow
ivide the space–time intoN+1 regions formed byN surfaces intersecting a cylinder in
iddle. Taking the cross section of the system, we see a circle withN outgoing lines, withou

urther intersections(Fig. 3). We callv the connection inside the circle andvi the connections o
heN regions formed outside between the lines. We are going to take the limit of the circle
ize. The intersections areN lowest-dimensional simplicial intersections. We calculate the co
utions at the intersections implying that they are integrated over the same surface.

The action functional of the hypersurfaces is

E
12

Lsv1v2d +E
23

Lsv2v3d + ¯ +E
N1

LsvNv1d. s45d

n order to calculate the equation of motion explicitly in terms of intrinsic and extrinsic curv
ensors we should introduce the connectionvi j associated with the induced metric at the com
oundaries. Using the composition rule

Lsviv jd = Lsvivi jd + Lsvi jv jd − dLsviv jvi jd, s46d

e obtain one set of contributions at the intersection, when the common boundary connec
nvolved.

From theN fundamental intersection,k=3 terms in(37), we have

Lsv1v2vd + Lsv2v3vd + ¯ + LsvNv1vd. s47d

p to total derivatives, the expression is independent of the connectionv, but depends only on th
ulk region connectionsvi. Adding trivially a set of termsLsviv1vd+Lsv1vivd=0, i =3. . .N,
nd using the composition rule we have

Lsv1v2v3d + Lsv1v3v4d + ¯ + Lsv1vN−1vNd, s48d

lus an exact form containingv. The variation of(47) with respect to the frame gives us

FIG. 3. The nonfundamental intersection viewed as the limith0j→ I, whereI is a co-dimension 2 surface.
quation of motion.
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If we want to express things in terms of extrinsic curvatures, we can use

Lsviv jvd + Lsvivvi jd + Lsvv jvi jd = Lsviv jvi jd s49d

dropping the exact forms integrated on the smooth infinite intersection) and (46) and (47) to
btain finally

Ld−2 = s12d + s23d + ¯ + sN1d; si j d = Lsvivi jvd − Lsv jvi jvd. s50d

learly v can be taken as the connection associated with the induced metric of the inter
ow we can express everything in terms of the bulk region connections, the second fund

orms ui ui j of the surfacehi j j induced by the regioni and thexi j , the second fundamental form
he intersection regarded as the boundary ofhi j j:

uii j = vi − vi j , xi j = vi j − v. s51d

Note that, as the form of the Lagrangian suggests, we could directly try to build the La
an by applying the method Sec. II directly without the use of a simplicial intersection and lim
ases. That is, there is nothing singular in the limit taken.

In order to write the simplest nontrivial equation of motion for the common intersecti
d-1-dimensional surfaces, we consider then=2 dimensionally continued Euler density. App

ng (19) or (24) we find easily

Lsvivi jvd = fsui ui j ,xi jd. s52d

As noted above, formula(48), the equation of motion forLd−2 w.r.t. the connection whic
emains vanished via the assumed zero torsion condition in the dimensionally continued
arying the frameEa we obtain the equations of motion. We define the gravity Lagrangia

g=Ls1d+a1Ls2d, where Lsnd is the n-th Euler Density anda1 is the constant of dimensio
lengthd2, the coupling of the Gauss–Bonnet term. We express the second fundamental formuab in
erms of the extrinsic curvatureKab by

uab = ucabEc, where ucab= − esnd2nfag=fbgnc = − esnd2nfagKfbgc, s53d

herenm is the normal vector of asd-1d-dimensional surface embedded in a given bulk an
arries the same indices as theuab [see (51)] and Kmn=hm

r =rnn with hmn=gmn−esndnmnn ,esnd
nmnm= ±1. The vielbeinea

m and its inverseem
a is used to change from spacetime to local fra

ndices.xab is defined similarly forvm, the normal vector of the intersection embedded in a g
d-1d-dimensional hypersurface and it carries the same indices asxab, and the extrinsic curvatu

mn=gm
r hn

s=rvs with gmn=hmn−esvdvmvn. We have

2a1 o esndesvdHsKC̄dab + sK̄Cdab −
1

2
gabTrsKC̄ + K̄CdJ = − Td−2

ab , s54d

hereKab is the projection ofKab on the intersection. Clearly the sum in(54) is over all terms in
50), one for each embedding of eachsd-1d-surface in the adjacent bulk region. We use

otation K̄ab=Kab−gabK, where K=gabKab, and compact matrix multiplication, for exam

K̄Cdab=K̄a
cCcb. Td−2

ab is the energy momentum tensor which in general should be localized
ntersection.

. Energy conservation at the intersection

Let us see the implications of these results for the question of energy conservation. W
hat the local expression of the energy-momentum tensor conservation is related to the dif
hism invariance of the action, under which the metric tensor changes asdgab=2=sadjsbd where
a=dxasxd are infinitesimal coordinate transformations. Note that 2=sajb=dgab has to be

ontinuous.
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Let us first consider the case of an intersection whose action term is zero. LetN regions
ntersect, labeled byi, at a common intersectionI. We write the energy exchange relations in
ystem as

djSmatter= o
i
E

i

Td
ab=ajb +

1

2 o
i,j=i±1

E
i j

Td−1
ab =ajb = 0, s55d

here the normal vectors obeynij =−nji , j = i ±1. Then byjb=jib+esndnbn
cjc with jib=hb

cjc we
btain

− o
i
E

i

=aTd
abjb + o

i j
E

i j

esndnaTd
abhb

cjc −
1

2
DaTd−1

ab jb + o
i j
E

i j

naTd
abnbn

cjc

+
1

2
Td−1

ab Ksndabesndncjc +E
I
o

i j

1

2
esvdvaTd−1

ab jb = 0, s56d

hereKsndab=ha
c=cnb andna;Kab carries an indexi j . Also j = i ±1; the same forva which is the

ormal onI induced byi j pointing outwards. Recall that integrals are taken over the interio
he sets. Along with the known relations we then obtain the ones related with the intersec

o esvdvaTd−1
ab gb

c = 0, o vaTd−1
ab vbv

c = 0, s57d

here the sum is over all shared boundaries.gab is the induced metric atI.
Equation(57) implies that the total energy current density at the intersection or collis

ero. This is valid though when the energy tensor at the intersection vanishes identically.
ther hand, as we have learned, the energy tensor is not zero in general and the energy

ion has to take into account this lower-dimensional energy tensor existing at the inter
ypersurface. In such a case there is an additional term in(55) that can be written as

1

2N
E

I
o

i j

Td−2
ab =ajb, s58d

here we sum over the contribution from each side of every shared boundary forN regions.Td−2
ab

s the total energy momentum tensor onI. We decomposejb=jib+esndnbn
cjc+esvdvbvcjc where

ib=gb
cjc. We then have

−E
I

DaTd−2
ab jib +E

I

DasTd−2
ab jibd +E

I

Td−2
ab 1

No
i j

sesndKabn
c + esvdCabv

cdjc; s59d

is the covariant derivative associated withg. The second term is useful when the intersectio
ot smooth itself. The energy exchange relation are then

o esvdvaTd−1
ab gb

c = DaTd−2
ac o vaTd−1

ab vbv
c + Td−2

ab 1

No
i j

„esndKabn
c + esvdCabv

c
… = 0, s60d

here the first sums are over all shared boundaries.
For a collision of hypersurfaces, the intersection surface will be space-like. Thev vectors ar

ime-like (velocity) vectors. We assume the hypersurface matter of the form

vavbTab = r, gc
aTabv

b = 0. s61d
he first of (57) is satisfied automatically while the second becomes
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o
L

rLvL
a = 0, s62d

here the upper case greek index counts the hypersurfaces. We can recover the results of
aeda, and Wands11 by first introducing the ortho-normal basis at the intersection. The ba

aken to line up with the two vectorsvL andnL of one of the hypersurfaces:

Es0d = vL, Es1d = nL. s63d

e can write the otherv vectors in the following way, motivated by special relativity,

vJ = guJuLEs0d + guJuLbuJuLEs1d, s64d

here theb andg have the usual interpretation from S.R. Hence, the two components of E(62)
re

o
J

rJguJuL = 0, s65d

o
J

rJguJuLbuJuL = 0. s66d

hese are the results found in Ref. 11; they are conservation of energy and momentum
ively.

The hypersurfaces obey the same rules in terms of the local inertial frame as do point
ollisions in two dimensions. This is true for quite general bulk backgrounds. The only es
eature is the absence of a deficit angle at the collision. This means that there is a well
ocal inertial frame at the collision and the S.R. addition of velocities applies.

We have calculated the contribution to the energy–momentum tensor at the collision du
unction conditions. Our calculation implicitly assumed that there was no conical singulari(see
he footnote to Lemma 3). There may be some correction to this from a conical singularity. I
mpose some reasonable energy condition such as the dominant energy condition, this s

atter should vanish—the two contributions should cancel. The assumption of no conica
s then justified for theEinsteintheory, because we have seen that there is no contribution
he junction conditions. But this would not be so for the Gauss–Bonnet theory. In that ca
ancellation would demand that there be a conical singularity at the collision. Conversely

mpose that there be no such singularity, we must have space-like matter localized at the c
Since completion of this work, intersecting branes in Lovelock gravity have been stud

ee and Tasinato25 and by Navarro and Santiago.26 A further analysis of the geometry of inte
ections has been done by us in Ref. 27.
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We give an asymptotic upper bound asn→` for the entropy integral,Enswd
=−epn

2sxdlogspn
2sxddwsxddx, where pn is the nth degree orthonormal polynomial

with respect to a weightwsxd on f−1,1g which belongs to the Szegő class. We also
study two functionals closely related to the entropy integral. First, their asymptotic
behavior is completely described for weightsw in the Bernstein class. Then, as for
the entropy, we obtain asymptotic upper bounds for these two functionals when
wsxd belongs to the Szegő class. In each case, we give conditions for these upper
bounds to be attained. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1794842]

. INTRODUCTION

In the framework of the density functional theory(see, e.g., Refs. 6 and 11), the physical an
hemical properties of fermionic systems are described by means of the single-particle pro
ensities. IfCsrWd is the wave function of a single-particle system in a(D-dimensional) position

pace, andĈspWd is the corresponding wave function in momentum space[that is, the Fourie
ransform ofCsrWd], then the position and momentum densities of the system are given by

rsrWd = uCsrWdu2, gspWd = uĈspWdu2,

espectively. It is known that the Boltzmann–Gibbs–Shannon position–space entropy,

Ssrd = −E rsrWdlog rsrWddrW,

easures the uncertainty in the localization of the particle in space(lower entropy indicates
ore concentrated wave function, with the associated higher accuracy in predicting the l

ion of the particle). The similar is true for the momentum–space entropy,

)
Corresponding author. Electronic mail: andrei@ual.es

4239022-2488/2004/45(11)/4239/16/$22.00 © 2004 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.1794842
http://dx.doi.org/10.1063/1.1794842


T ic and
m
a blished
t ality

w air of
o

l
h l poly-
n n of the
e

d

W

T s
w

F

T -
t

lled
R re some
f rals, and
b ro
c

a

4240 J. Math. Phys., Vol. 45, No. 11, November 2004 Beckermann et al.

                        
Ssgd = −E gspWdlog gspWddpW .

hese quantities have importance in the study of the structure and dynamics of atom
olecular systems; we refer the reader to the survey5 and to references therein. BothSsrd andSsgd
lso play a role in a generalization of the Heisenberg uncertainty relation: it has been esta3

hat for any pair of densitiesrsrWd andgspWd in D-dimensional space, we have the sharp inequ

Ssrd + Ssgd ù Ds1 + log pd, s1d

hich expresses quantitatively the impossibility of the simultaneous localization of a p
bservables with no common eigenstates.

It is well known that the wave function of many important systems, such asD-dimensiona
armonic oscillator and hydrogen atom, are expressible in terms of families of orthogona
omials. It is not surprising that, as it has been shown in Refs. 4 and 13, the computatio
ntropiesSsrd andSsgd usually can be reduced to integrals involving these polynomials.

Let n be a positive unit Borel measure onD : =f−1,1g and let

pnsxd = gnp
j=1

n

sx − z j
sndd, gn . 0, n P N,

enote the corresponding sequence oforthonormalpolynomials such that

E pnsxdpmsxddnsxd = dmn, m,n P N.

e define theinformation entropyof the polynomialspnsxd as

En = Ensnd = −E pn
2sxdlog„pn

2sxd…dnsxd. s2d

hroughout the paper, we will assume that the orthogonality measuren is absolutely continuou
ith respect to the Lebesgue measurel on D with the Radon–Nikodym derivative

dn/dl = n8sxd = wsxd, w P L1sDd.

or normalization purposes, we will always assume that the weightw is unitary, i.e.,

E
D

wsxddx= 1. s3d

he information entropy will be indistinctly denoted byEnsnd andEnswd. We follow this conven
ion below for other notations.

The asymptotic behavior ofEn as n→` has a special interest in the study of the so-ca
ydberg states of quantum-mechanical systems. Besides physical motivations, there a

ascinating aspects of this problem because of a certain universal behavior of related integ
ecause of a close connection of the entropyEn with important functionals of the normalized ze
ounting measures of the polynomialspn,

mn =
1

n
o
j=1

n

dz j
snd, n . 0,
nd of the following probability measuresnn:
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dnnsxd = pn
2sxddnsxd, n ù 0

note thatn0=n). Both measures are standard objects of study in the analytic theory of orth
olynomials. For instance, the normalized zero counting measuremn is closely connected with th
th root asymptotics ofpn, and as was shown in Ref. 12,nn is associated with the behavior of
atio pn+1/pn asn→`.

If m andn are positive Borel measures onC, then theirmutual entropyis defined as

Ssu,vd = 5− ` if m is not n-absolutely continuous,

−E logSdm

dn
Ddm if m is n-absolutely continuous,

nd theirmutual logarithmic energyas

Isn,md = −E E loguz− tudnstddmszd.

ith these notations the entropy(2) is equivalently rewritten as

Ensnd = Ssnn,nd = − 2 log gn + 2n Ismn,nnd. s4d

n particular, from a classical Jensen’s inequality for integrals, it follows immediately that i
andn are unit measures onD, thenSsm ,ndø0, with equality if and only ifm=n. Hence,

Ensnd ø 0,

ith equality if and only ifn=0.
Aptekarevet al.1 considered two subfamilies of the usual Szegő class of weights onD, namely

he Jacobi weights and the Bernstein-Szegő class(weights being bounded above, bounded a
rom zero, and satisfying a Dini–Lipschitz condition). In this last case it is known that t
symptotic formula for the orthogonal polynomialspn holds uniformly inD, asn tends to infinity
ith these assumptions it has been proved in Ref. 1 that

lim
n→`

Enswd = Ssr,wd + logs2d − 1, s5d

here

rsxd = 1/spÎ1 − x2d

enotes the Chebyshev unit weight onD. We are concerned here with the problem of wheth
eaker form of this equality holds in the Szegő class of weights. We will show that the right-ha
ide of(5) is actually an asymptotic upper bound for the entropyEnswd when the weightw satisfies
he Szegő condition [see assumption(6) below]. Furthermore, the expression(2) for the entropy
an be naturally split into two functionals, which have simple asymptotic behaviors ww
elongs to the Bernstein class(see Proposition 1). The situation with the Bernstein class is i
ense optimal: the corresponding limits provide asymptotic upper bounds forw in the whole Szegő
lass. We also give conditions for the entropy and the two functionals to tend to their upper
s the degreen becomes large.

Finally, we must mention that in the case of an unbounded support of the weight of or
ality interesting results concerning the asymptotics of theEn and related functionals have be
btained recently in Ref. 9.

I. STATEMENTS OF RESULTS

p
The weightedL norm of a functionf with respect to a weightk on D will be denoted by

                                                                                                            



W
ses

a
n

D

w

d
P

H

N

r
f

a or
e ne
h

a

O

A bound
t

g
a

4242 J. Math. Phys., Vol. 45, No. 11, November 2004 Beckermann et al.

                        
ifiLpskd = SE
D

ufsxdupksxddxD1/p

, 1 ø p ø `.

e will simply write Lp whenk;1 on D.
Though our main interest in this paper lies in the Szegő class of weights, some other clas

ppear at different places. We recall the definitions of these classes now.
The Erdős–Turan classET consists of weightswPL1 such thatw.0 almost everywhere o

.
The Szegő classS consists of weightswPL1 such that

logsw0d P L1srd, s6d

here

w0sxd: = wsxd/rsxd = pÎ1 − x2wsxd

enotes the trigonometric weight corresponding tow. The fact thatw0PL1srd implies log+sw0d
L1srd, where, as usual, we denote

log+sxd = maxhlogsxd,0j, x . 0.

ence, condition(6) is actually equivalent to

Ssr,wd =E
D

log„w0sxd…rsxddx. − `. s7d

ote that(6) and (7) can equivalently be rewritten as logswdPL1srd and

E
D

log„wsxd…rsxddx. − `,

espectively.
Finally, theBernstein classB consists of weightsw such thatw0 is given by the reciprocal o

positive polynomial onD. As it is well-known, the classB is an important class useful f
stablishing asymptotic properties in the Szegő theory of orthogonal polynomials. Obviously, o
as the following inclusionsB,S,ET.

We will also use the notations

fnsxd: = pnsxdÎw0sxd, s8d

nd forM .0,

DnsMd: = hx P D:ufnsxdu ù Mj. s9d

ne of the main results of the paper is the following theorem.
Theorem 1: Assume that the weight w belongs to the Szegő classS. Then, for all M.Î2,

Enswd = Ssr,wd + logs2d − 1 −E
DnsMd

pn
2sxdlog+

„pn
2sxd…wsxddx+ os1d, n → `. s10d

s a simple consequence of the above formula, we obtain the following asymptotic upper
ogether with necessary and sufficient conditions for equality.

Corollary 1: Assume that the weight w belongs to the Szegő class S. Then the followin
symptotic upper bound for the entropy holds:

lim supEnswd ø Ssr,wd + logs2d − 1. s11d

n→`
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oreover, for a subsequence nPL,N,

lim
nPL

Enswd = Ssr,wd + logs2d − 1, s12d

f and only if there exists a constant M.Î2, such that

lim
nPL

E
DnsMd

pn
2sxdlog+

„pn
2sxd…wsxddx= 0. s13d

n this case (13) is valid for all M.Î2.
Furthermore, (13) holds if there exists«.0 such that either

sup
nPL

E
D

slog+
„pn

2sxd…d1+«pn
2sxdwsxddx, ` or sup

nPL
E

D

„pn
2sxd…1+«wsxddx, `. s14d

Remark 1:Notice that the findings of Ref. 1 on Bernstein–Szegő polynomials are included
orollary 1 since forwPB, logsw0d is bounded and thefn are uniformly bounded inf−1,1g. In
ontrast, the case of Jacobi polynomials requires some extra considerations. One knows
he orthonormal Jacobi polynomials there exists a constantc such that fornù0 andxP f−1,1g,

uPn
sa,bdsxdu ·SÎ1 − x +

1

n
Da+1/2SÎ1 + x +

1

n
Db+1/2

ø c/Îp.

aking into account that herew0sxd=ps1−xda+1/2s1+xdb+1/2, we find that forpn=Pn
sa,bd,

„pnsxd…2+«w0sxd ø cÎpS 1 − x

sÎ1 − x + 1/nd2+«Da+1/2S 1 + x

sÎ1 + x + 1/nd2+«Db+1/2

,

nd the second condition in(14) is satisfied.
Remark 2:An inequality weaker than(11) is a straightforward consequence of the asymp

ehavior of the measuresnn. Indeed, if wPET, we know from Rakhmanov’s Theorem12 that
nnsxd→rsxddx asn→` in the weak-* topology. It follows from the weak upper semicontin
f the mutual entropy(Ref. 7, Corollary 5.3) that lim supEnswd=lim supSsnn,wdøSsr ,wd. In
articular, it shows that if the weightw is in ET \S,

lim
n→`

Enswd = − `.

evertheless, it seems that a semicontinuity argument for the entropy does not allow us to
he additional term logs2d−1 occurring on the right-hand side of(12).

The information entropy for Chebyshev polynomials orthonormal with respect tor has bee
omputed in Refs. 4,14:

Ensrd = logs2d − 1, for n ù 1. s15d

ntuitively, Chebyshev polynomials are the most “uniformly” distributed polynomials, bot
achn and asymptotically asn→`. This fact is formally set in the next corollary.

Corollary 2: If

lim sup
n→`

Enswd ù logs2d − 1, s16d

hen w=r and Enswd=logs2d−1, nù1.
The proof is a simple consequence of inequality(11). Indeed, from this inequality, we see t
16) can only happen ifSsr ,wd=0 that isr=w.
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Now we exploit the connection between the entropyEnswd and the mutual energyIsmn,nnd
iven in (4). It is well known that in the classET bothmn andnn tend(asn→`) to the Chebyshe
equilibrium) distribution given by the weightr on D. In particular, from the convexity properti
f the mutual energy it follows that

lim
n→`

Ismn,nnd = Isr,rd = logs2d.

hat is more surprising is that the next term of the asymptotic expansion ofIsmn,nnd also exhibits
“universal” behavior, in the sense that it does not depend on the choice of the weightw. Namely

f the entropyEnswd satisfies(12), then the following result is a direct consequence of(4) and the
ell known asymptotic behavior of the leading coefficient ofpn [see(29)].

Corollary 3: Assume w is a weight in the Szegő classS and condition (13) is satisfied. Th
he mutual energy Ismn,nnd has the following asymptotic expansion:

Ismn,nnd = logs2d −
1

2n
+ oS1

n
D, n P L, n → `.

his remarkable fact certainly deserves further study.
Another aim of the paper is to study two related functionalsFn andGn, whose sum equals t

ntropy,

Enswd = Fnswd + Gnswd,

nd which are defined by

Fnswd = −E
D

log„pn
2sxdw0sxd…pn

2sxdwsxddx= Ssfn
2r,rd, s17d

nd

Gnswd =E
D

log„w0sxd…pn
2sxdwsxddx= − Sspn

2w,pn
2rd. s18d

We will see that the functionalFn also exhibits a “universal” behavior, whileGn is sensitive to
particular choice of the weightw, and is related naturally with the mutual entropySsr ,wd.

unctionalsFn andGn have a particularly nice behavior forw in the Bernstein classB:
Proposition 1: Let S be a polynomial of degree2N sNù0d such that Ssxd.0 for xPD, and

ssume that the orthogonality weight satisfies

w0sxd =
1

Ssxd
, x P D.

hen

Fnswd = logs2d − 1, for n . N. s19d

oreover,

lim
n→`

Gnswd = Ssr,wd, s20d

nd this limit takes place with a geometric rate. Consequently, the same holds true for the
5).

The conjecture that constant entropyEnswd is a (yet another) characterization of Chebysh
olynomials[cf. (15)] belongs to Golinsky. We were able to prove it in the Bernstein classB.
Proposition 2: Let wPB such that Enswd is constant for all sufficiently large n. Then w=r.
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Since Bernstein weights are suitable as approximation tool for the whole Szegő class, we
ould expect the asymptotic behavior from Proposition 1 to hold in a more general s
evertheless, the behavior of the entropy, as well as the behavior of the two functionalsFn andGn

s extremely sensitive to the growth ofpn
2w, which may affect convergence. In general,

ollowing expression for the first functionalFn holds true:
Theorem 2: Assume the weight w belongs to the Szegő classS. Then, for all M.Î2,

Fnswd = logs2d − 1 −E
DnsMd

log„fn
2sxd…fn

2sxdrsxddx+ os1d, n → `. s21d

gain, as a simple consequence of the above formula, we get the following corollary.
Corollary 4: Assume the weight w belongs to the Szegő class S. Then, the followin

symptotic upper bound for Fn holds:

lim sup
n→`

Fnswd ø logs2d − 1. s22d

oreover, for a subsequence nPL,N,

lim
nPL

Fnswd = logs2d − 1, s23d

f and only if there exists a constant M.Î2, such that

lim
nPL

E
DnsMd

fn
2sxdlog„fn

2sxd…rsxddx= 0, s24d

or fn and DnsMd defined in (8) and (9), respectively. In this case, (24) is valid for every M.Î2.
Furthermore, (24) holds if there exists an«.0 such that either

sup
nPL

E
D

slog+
„fn

2sxd…d1+«fn
2sxdrsxddx, ` or sup

nPL
E

D

„fn
2sxd…1+«rsxddx, `. s25d

Remark 3:The method of proof of Theorem 2 can be applied to larger classes of weig
act, we only need anL2 asymptotics of the polynomialspn on the supportD of the measuren, and
hat has been extended beyond the Szegő class. For instance, using our technique we can p
hat (11) is valid for weightswPFsdinid, introduced in Ref. 8.

Remark 4:Apparently, a necessary condition for(25) is thatw0 logsw0dPL1srd [cf. with (6)].
f logsw0dPL` then there is equivalence between conditions(13) and(24), and between(14) and
25), respectively.

Concerning the second functionalGn, we use a result from Ref. 10 to deduce the follow
roposition.

Proposition 3: Assume the weight w belongs to the Szegő classS and log+sw0dPL`; then

lim sup
n→`

Gnswd ø Ssr,wd =E
D

log„w0sxd…rsxddx. s26d

imilarly, assume thatlog−sw0dPL`; then

lim inf
n→`

Gnswd ù Ssr,wd =E
D

log„w0sxd…rsxddx. s27d

ence, iflogsw0dPL`, then

lim Gnswd = Ssr,wd.

n→`
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urthermore, if the weight w belongs to the setET \S, the assumptionlog+sw0dPL` still implies
nequality (26). In this case, (26) simplifies tolimn→`Gnswd=−`.

II. PROOFS OF THEOREMS 1 AND 2, COROLLARIES 1 AND 4

Before entering the proofs of our results, let us state two preliminary lemmas. The first
orrowed from Ref. 1.

Lemma 1 (Ref. 1, Lemma 2.1): Let g be a continuous function onR, gsu+pd=gsud, f
L1sf0,pgd, and letgsud be a function that is measurable and almost everywhere finite onf0,pg.

hen, as n→`,

E
0

p

g„nu + gsud…fsuddu → 1

p
E

0

p

gsudduE
0

p

fsuddu.

s remarked in Ref. 1, whengsud=0 andgPL`f0,pg, the statement of the lemma become
ell-known result of Fejer; cf. Ref. 2, Chap. I, Sec. 20.

As the second main ingredient in our proofs let us recall the Szegő asymptotics forfnsxd
Îw0sxdpnsxd: if

gnsxd = Î2cos„n arccosx + gsxd…,

here

gsxd =
1

2p
E

D

log w0sxd − log w0std
x − t

Î1 − x2

1 − t2
dt

s the harmonic conjugate function to logw0; then in the Szegő classS, one has

lim
n→`

ifn − gniL2srd = 0, s28d

nd

lim
n→`

logSgn

2nD = −
1

2
„logs2d + Ssr,wd…. s29d

he mutual entropy on the right-hand side of(29) is known as the Szegő constant for the weigh
. Since the entropy integral is very sensitive to the growth offn

2=pn
2w0, the following lemma wil

e useful; roughly speaking, it shows that the subsetsDnsMd, defined in(9), have no influence o
he L2 asymptotics(28):

Lemma 2: For wPS,

lim
n→`

E
DnsMd

rsxddx= 0, s30d

or every M.Î2. Furthermore, let f˜n, nù0, be the sequence of truncated functions,

f̃nsxd: = H fnsxd, for x P D \ DnsMd,

1, for x P DnsMd.
s31d

hen

lim
n→`

i f̃ n − gniL2srd = 0. s32d
Proof: Observe first that by the Cauchy–Schwarz inequality,
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E
D

ufn
2sxd − gn

2sxdursxddxø ifn + gniL2srd · ifn − gniL2srd ø sifniL2srd + igniL2srdd · ifn − gniL2srd,

o that

E
D

ufn
2sxd − gn

2sxdursxddxø s1 +Î2difn − gniL2srd. s33d

ow we can show that the Chebyshev(and hence, Lebesgue) measure ofDnsMd is asymptotically
anishing: by(33),

sM2 − 2dE
DnsMd

rsxddxø E
DnsMd

sfn
2sxd − 2drsxddx

ø E
DnsMd

ufn
2sxd − gn

2sxdursxddxøs1 +Î2difn − gniL2srd,

he right-hand side tending to zero asn→` by (28); this proves(30). Moreover, sinceu f̃nsxd u
1 andugnsxd u øÎ2 for xPDnsMd, we have by(33),

i f̃n − gniL2srd
2 =E

D\DnsMd
ufnsxd − gnsxdu2rsxddx+E

DnsMd
u f̃ nsxd − gnsxdu2rsxddx

øs1 +Î2difn − gniL2srd + 3E
DnsMd

rsxddx.

t remains to use(28) and (30) to see that(32) is satisfied. h

. Proof of Theorem 1

Fix arbitraryM .Î2 and letDnsMd and f̃ be as defined in(9) and(31), respectively. We writ
he entropy as

Enswd = Ssfn
2r,wd = Ssgn

2r,wd + fSs f̃n
2r,wd − Ssgn

2r,wdg + fSsfn
2r,wd − Ss f̃n

2r,wdg. s34d

n three steps let us prove that the first term on the right has as a limit the first three terms
ight-hand side of(1), the second term tends to 0, and the third term is asymptotically negativ
elated to the integral in(1).

Let

Rsyd = y2 logsy2d, y P R.

rom Lemma 1 we get

lim
n→`

Ssgn
2r,wd = − lim

n→`
E

0

p

Rsgn„cossud…d
du

p
+ lim

n→`
E

0

p

logsw0„cossud…dgn
2
„cossud…

du

p

= −E
0

p

R„
Î2 cossud…

du

p
+E

0

p

2 cos2sud
du

p
E

0

p

logsw0„cossud…d
du

p

= E1srd + Ssr,wd = logs2d − 1 +Ssr,wd. s35d

ence the first term on the right-hand side of(34) has the required limit. The second term in(34)

an be written as
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Ss f̃ n
2r,wd − Ssgn

2r,wd =E
D

FRS f̃ nsxd
Îw0sxd

D − RS gnsxd
Îw0sxd

DGwsxddx. s36d

ecall that bothf̃n andgn are uniformly bounded onD by M, and hence forxPD,

URS f̃ nsxd
Îw0sxd

DUw0sxd ø uR„ f̃nsxd…u + ulog„w0sxd…u f̃ n
2sxd ø M2 log M2 + M2ulog„w0sxd…u = :hsxd,

herehPL1srd by assumption(6). Similarly,

URS gnsxd
Îw0sxd

DUw0sxd ø hsxd, x P D.

he integral in(36) will be split into two parts depending on whetherw0 is small or large. Fix a
rbitrary 0,«,1; by the monotone convergence theorem there exists a constantC=Cs«d such
hat

0 ø E
hsxd.C

hsxdrsxddx=E
D

hsxdrsxddx−E
hsxdøC

hsxdrsxddx, «.

efining t : =M2 exps−C/M2d we see thatw0sxd,t implies thathsxd.C, and hence

UE
w0sxd,t

FRS f̃ nsxd
Îw0sxd

D − RS gnsxd
Îw0sxd

DGwsxddxU ø 2E
w0sxd,t

hsxdrsxddxø 2«.

n the other hand, ifw0sxdùt, then

U f̃ nsxd
Îw0sxd

U ø
M

Îw0sxd
ø

M
Ît

= eC/s2M2d = :C1,

nd the same inequality is valid forgn/Îw0. Taking into account thatR is smooth,

URS f̃ nsxd
Îw0sxd

D − RS gnsxd
Îw0sxd

DU ø max
uyuøC1

uR8syduU f̃ nsxd
Îw0sxd

−
gnsxd

Îw0sxd
U

ø max
uyuøC1

u2ys1 + logsy2dduU f̃ nsxd
Îw0sxd

−
gnsxd

Îw0sxd
U

ø C2U f̃ nsxd
Îw0sxd

−
gnsxd

Îw0sxd
U ,

ith C2: =maxh4e−3/2,2C1(1+logsC1
2d)j. Hence, using the Cauchy–Schwarz inequality,

UE
w0sxdùt

FRS f̃ nsxd
Îw0sxd

D − RS gnsxd
Îw0sxd

DGwsxddxU ø C2is f̃ n − gndÎw0sxdiL1srdøC2i f̃ n − gniL2srd,

hich by (32) tends to 0 asn→`. Taking into account that«P s0,1d was chosen arbitrarily, w
onclude that

Ss f̃n
2r,wd − Ssgn

2r,wd → 0, n → `. s37d

hus, for establishing the expression for the entropy in Theorem 1, it only remains to exam
˜
ast bracket on the right-hand side of(34). Notice that sincefn= fn on D \DnsMd,
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Ssfn
2r,wd − Ss f̃n

2r,wd=−E
DnsMd

pn
2sxdlog„pn

2sxd…wsxddx+E
DnsMd

logX 1

w0sxd
Drsxddx

=−E
DnsMd

pn
2sxdlog+

„pn
2sxd…wsxddx+E

D̃nsMd
pn

2sxdulog„pn
2sxd…uwsxddx

−E
DnsMd

log„w0sxd…rsxddx,

here

D̃nsMd = hx P DnsMd:pn
2sxd , 1j , DnsMd.

bserving that, forpn
2sxdø1, we have 0øpn

2sxd u log(pn
2sxd) u ø1, we obtain

0 ø E
D̃nsMd

pn
2sxdulog„pn

2sxd…uwsxddxø E
DnsMd

wsxddx=E
DnsMd

w0sxdrsxddx.

incew0PL1srd, logsw0dPL1srd, by the absolute continuity of the Lebesgue integral, rela
30) implies that

lim
n→`

E
DnsMd

w0sxdrsxddx= 0, and lim
n→`

E
DnsMd

log„w0sxd…rsxddx= 0, s38d

howing that

Ssfn
2r,wd − Ss f̃n

2r,wd = −E
DnsMd

pn
2sxdlog+

„pn
2sxd…wsxddx+ os1d, n → `. s39d

ence, gathering(35), (37), and(39) in (34), we get(10). h

. Proof of Corollary 1

Since

E
DnsMd

pn
2sxdlog+

„pn
2sxd…wsxddxù 0,

elation(11) is a trivial consequence of Theorem 1. Suppose now that(13) holds for someM .Î2,
hen(12) follows immediately from(10). Conversely, if(12) is true then it follows from Theore

that (13) holds for allM .Î2.
In order to prove that(14) is sufficient for(13), notice that, by Hölder’s inequality,

E
DnsMd

pn
2sxdlog+

„pn
2sxd…wsxddxøSE

DnsMd
pn

2sxdslog+
„pn

2sxd…d1+«wsxddxD1/s1+«d

3SE
DnsMd

pn
2sxdwsxddxD1−1/s1+«d

. s40d
urthermore,

                                                                                                            



w
ide

o

ù

C

some
p s
f

H .
T

t at

t
a

t

D

4250 J. Math. Phys., Vol. 45, No. 11, November 2004 Beckermann et al.

                        
E
DnsMd

pn
2sxdwsxddxø E

DnsMd
ffn

2sxd − gn
2sxdgrsxddx+E

DnsMd
gn

2sxdrsxddx

øE
DnsMd

ffn
2sxd − gn

2sxdgrsxddx+ 2E
DnsMd

rsxddx

øs1 +Î2difn − gniL2srd + 2E
Dn

rsxddx= os1d, n → `,

here we have used(28), (30), and(33).
If we assume that the first condition in(14) holds, then the first factor on the right-hand s

f (40) is uniformly bounded inn, and(13) follows.
Finally, notice that the second condition in(14) implies the first one since log+szdøz for z

0, and hence

„log+syd…1+« = S1 + «

«
D1+«

„log+sy«/s1+«dd…1+« ø S1 + «

«
D1+«

y«, y ù 0.

h

. Proof of Theorem 2

Our proof for Theorem 2 follows closely the arguments of the proof of Theorem 1, but
arts simplify. As before letRsyd=y2 logsy2d, yPR, and fix M .Î2. We write the functional a

ollows:

Fnswd =E
D

f− R„gnsxd…grsxddx+E
D

fR„gnsxd… − R„ f̃nsxd…grsxddx+E
D

fRs f̃ nsxdd

− R„fnsxd…grsxddx. s41d

ere the first integral on the right-hand side of(41) has the limitE1srd=logs2d−1 by Lemma 1
he last one can be written as

E
D

fR„ f̃ nsxd… − R„fnsxd…grsxddx= −E
DnsMd

log„fn
2sxd…fn

2sxdrsxddxø 0,

he right-hand side coinciding with the integral in(21). Thus Theorem 2 follows by showing th

he second integral on the right-hand side of(41) is asymptotically vanishing. Recalling thatu f̃ nsxdu
nd ugnsxdu are uniformly bounded byM for all nù0 andxPD, we obtain

UE
D

fR„gnsxd… − R„ f̃nsxd…grsxddxU
ø max

yPf−M,Mg
uR8syduE

D

ugnsxd − f̃nsxdursxddx

øM2s1 + log M2dign − f̃ niL1srd ø M2s1 + log M2dign − f̃ niL2srd,

he term on the right tending to zero asn→` by (32). h

. Proof of Corollary 4
Since
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E
DnsMd

fn
2sxdlog„fn

2sxd…rsxddxù 0,

elation(22) is a trivial consequence of Theorem 2. Suppose now that(24) holds for someM .Î2;
hen(23) follows immediately from(21). Conversely, if(23) is true then it follows from Theore

that (24) holds for allM .Î2.
In order to prove that the first condition in(25) (which clearly is weaker than the second o)

s sufficient for(24), notice that, by Hölder’s inequality,

E
Dn

fn
2sxdlog+

„fn
2sxd…rsxddxø SE

Dn

fn
2sxdslog+sfn

2sxddd1+«rsxddxD1/s1+«dSE
Dn

fn
2sxdrsxddxD1−1/s1+«d

,

nd we may conclude as in the proof of Corollary 1 that the second factor on the right-ha
ends to zero. h

V. PROOFS OF PROPOSITIONS 1, 2, AND 3

. Proof of Proposition 1

Let us make the change of variablesx=sz+1/zd /2. It is well known that sinceSsxd.0 on D
e may writeS as

Ssxd = uqszdu2 = qszdqs1/zd, s42d

ith q a polynomial of degree 2N with real coefficients having all its zeros outside the disk
s0d.0. Moreover,

pnsxd =
1
Î2

„znqsz−1d + z−nqszd… s43d

s the orthonormal polynomial of degreen.N with respect to the Bernstein weightr /S. Intro-
ucing the Blaschke product,

Bnszd = z2nqs1/zd/qszd, n ù N, s44d

e find that

pn
2sxdw0sxd = 1

2u1 + Bnszdu2 = 1 + 1
2„Bnszd + Bns1/zd…, uzu = 1.

ince, forn.N, Bns0d=0, andBn is analytic in the disk, we have

logs2d − Fnswd = logs2d +E log„pn
2sxdw0sxd…pn

2sxdw0sxdrsxddx

=
1

2p
E

uzu=1
log(u1 + Bnszdu2)F1 +

1

2
„Bnszd + Bns1/zd…Gudzu

=ReS 1

2pi
E

uzu=1
log„1 + Bnszd…f2 + Bnszd + Bns1/zdg

dz

z D .

ince uBnszd u ,1 for uzu ,1, the function logs1+Bndf2+Bng is holomorphic inside the disk a
anishes at the origin. Thus,

logs2d − F swd = Re
1 E log„1 + B szd…B s1/zd

dz
s45d
n S2pi uzu=1

n n z D
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=ReS 1

2pi
E

uzu=1

log„1 + Bnszd…
Bnszd

dz

z D , s46d

here we have used thatBns1/zd=1/Bnszd. Observe that the last integrand is analytic in a ne
orhood of the unit circle, and we can integrate along a smaller circleuzu =r ,1, whereuBnszd u ,1.
eplacing the log by its uniformly convergent Taylor expansion we get finally that this in
quals 1, which proves(19).

On the other hand, by a similar reasoning we have

Gnswd =E
−1

1

log„w0sxd…pnsxd2wsxddx

= − 2ReS 1

2pi
E

uzu=1
log„qszd…F1 +

1

2
„Bnszd + Bns1/zd…GudzuD

= − 2 log„qs0d… −
1

2pi
E

uzu=1
log„qszd…Bns1/zd

dz

z
. s47d

ote that in the last expression of(47), taking the real part is not necessary sinceq andBn are rea
unctions. Integrating now alonguzu =R.1, we observe thatuBns1/zdu becomes geometrica
mall, there which yields a geometric rate of convergence for

lim
n→`

Gnswd = − 2 log„qs0d… = − Re
1

p
E

uzu=1
log„qszd…

dz

z
= Ssr,wd,

hich proves(20). h

. Proof of Proposition 2

From the computations ofFnswd andGnswd in the proof of Proposition 1, see(45) and (47),
e know thatEnswd is constant forn large, sayn.N0.N, if and only if

1

2pi
E

uzu=1

BNs1/zdlog„qszd…
z2n−2N

dz

z
= 0, n . N0, s48d

here the polynomialq and the Blaschke productBN are defined by(42) and (44), respectively
ince log(qszd) is analytic in some neighborhoodU of the unit disk, we may conclude th

og(qszd)BNs1/zd is meromorphic inU, and thus can be written as

BNs1/zdlog„qszd… = rszd + fszd, zP U, s49d

herer is a rational function such thatz2Nqs1/zdrszd is a polynomial of degree at most 2N−1, and
f is analytic inU. Sincer is analytic outside the unit disk and grows like at most 1/z at infinity,

e deduce

1

2pi
E

uzu=1

rszd
z2n−2N

dz

z
= 0, n . N0,

hich implies, together with(48) and (49), that

1

2pi
E

uzu=1

fszd
z2n−2N

dz

z
= 0, n . N0.

ence, all sufficiently high even Taylor coefficients off vanish. As a consequence,fszd+ fs−zd

Pszd is a polynomial, and
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BNs1/zdlog„qszd… + BNs− 1/zdlog„qs− zd… = rszd + rs− zd + Pszd, uzu ø 1. s50d

Since the right-hand side of(50) is a rational function, the principle of analytic continuat
applies, showing that(50) actually holds everywhere inC. First, assume that the polynomialq is
even, that isqszd=qs−zd, zPC. Then, it follows from(50) that log(qszd) is a rational function s
thatq can only be a constant, namely 1 by the normalization(3) of the weightw. Second, assum
that the polynomialq is not even(hence different from a constant). It implies the existence o
some rootaPC of q such that eitherqs−adÞ0 or −a is a root ofq of different multiplicity than
hat of a. Note thataÞ0 since, by assumption,qs0d.0. Then we get a contradiction. Indeed
iew of the definition(44) of BN, we readily observe that the left-hand side of(50) has a branc
oint ata while the right-hand side has not. Hence,qszd is constant, equal to 1, and the proo
roposition 2 is finished. h

. Proof of Proposition 3

Choosingp=2 andg= ulogsw0dwu1/2PL1 in Theorem 2 of Ref. 10 shows that

lim inf
n→`

E
D

ulog„w0sxd…upn
2sxdwsxddxù E

D

ulog„w0sxd…ursxddx, s51d

or any weightw in the Erdős–Turan classET. If log+sw0dPL`, there exists a constantC.1 such
hat w0sxdøC, xPD. Henceulogsw0/Cd u =−logsw0/Cd and substracting logsCd to both sides o
51), we get(26) since

E
D

rsxddx=E
D

pn
2sxdwsxddx= 1.

similar reasoning shows(27) when log−sw0dPL`. Since this argument applies for any weigh
he Erdős–Turan class, the last assertion in the proposition also follows. h
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ecovering the M-channel Sturm-Liouville operator
rom M 11 spectra
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For a system of M coupled Schrödinger equations, the relationship is found be-
tween the vector-valued norming constants andM +1 spectra corresponding to the
same potential matrix but different boundary conditions. Under a special choice of
particular boundary conditions, this equation for norming vectors has a unique
solution. The double set of norming vectors and associated spectrum of one of the
M +1 boundary value problems uniquely specifies the matrix of potentials in the
multichannel Schrödinger equation. © 2004 American Institute of
Physics.[DOI: 10.1063/1.1794844]

. INTRODUCTION

Consider the system of coupled one-dimensional Schrödinger equations

−
d2

dx2Casxd + o
b

VabsxdCbsxd = sE − «adCasxd, a = 1, . . . ,M . s1d

n this system, each equation is referred to as a “channel” and«a’s are the energies of chann
thresholds.” OnceEù«a, it is said thata’s threshold becomes open. The system(1) is a matrix
eneralization of the ordinary one-dimensional Schrödinger equation. The coupled Schr
quations originate in the Feshbach’s unified theory, see Ref. 1, of nuclear reactions an
pond to so-called approximation of the strong coupling[when a finite number of equations in(1)

s left]. Now, that method, renewed and generalized(see, e.g., Ref. 2), finds a lot of application
nd, rightfully, is one of the most universal tools for microscopic description of systems
any degrees of freedom(nuclear structure, reactions, molecules, etc).

The inverse problem for multichannel Schrödinger Eq.(1) has also been developed.3–5 As in
ne-channel case, one can uniquely restore the potential matrixVabsxd from the spectral measu
hat, e.g., for the case of bounded interval, is specified by the complete set of eigenvalueEn and
o-called norming vectors(spectral weight vectors) gasEnd. These vectors characterize the beh
or of the normalized wave functionsCasx,End at one of the boundaries of interval(or at the
rigin for a half-axis problem, etc.), see also below.

At the same time, in the one-channel case we have more variants of the inverse p
mong them, there is a statement of an inverse eigenvalue problem on a bounded interv
o norming constants occur. Namely, the potential is uniquely recovered from a knowledge

wo different spectra, each for a distinct pair of homogeneous boundary conditions(with the sam
otential).6 There were established necessary and sufficient conditions of the solvability

nverse Sturm–Liouville problem from two-spectra, see, e.g., Ref. 7.
Until now, one attempt to generalize this theorem to the multichannel Sturm–Liouville o

or has been known to the author—see Ref. 8(the case of a finite-difference operator). Though no
omplete, this work gave an idea of the existence of such a generalization in principle. No
he possibility of deriving potential matrix from a certain set of spectra would contribute

)
Electronic mail: chabanov@thsun1.jinr.ru

4255022-2488/2004/45(11)/4255/6/$22.00 © 2004 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.1794844
http://dx.doi.org/10.1063/1.1794844


m lem are
o is
p

d
M s
o with
b niquely
r l. The
r ef. 5, p.
1

ression
w oice of
b s which
g nience,
t f two
s

I

m

w

a

T ,
t i-
t

w of the
M ing
o gen-
e

l
c

w e
t s a
v d-
a

4256 J. Math. Phys., Vol. 45, No. 11, November 2004 V. M. Chabanov

                        
ultichannel inverse problem theory. In the present article, results concerning that prob
btained. It is found thatM +1 spectra determine theVabsxd and, under special conditions, it
ossible to uniquely restore multichannel Sturm–Liouville operator.

The central idea of this article is to derive the relationship betweenM +1 spectra an
-component norming vectorgasEnd associated with one of theM +1 boundary value problem
n a finite interval(which may be a good model for a description of the compacted system
ound states). Then, having the double set of eigenvalues and norming vectors, one can u
estore an interaction matrix by the Gel’fand–Levitan inversion procedure on finite interva
eader can get acquainted with a multichannel extension of the inverse problem in, e.g., R
35 (Sec. IX.4 “Coupled Channels”).

The next section is devoted to setting forth these results. We shall find the sought exp
hich, however, does not guarantee the uniqueness in itself. Only under a special ch
oundary conditions can it be represented in a form of system of linear algebraic equation
ive a simple criterion of the uniqueness and solvability. For the sake of the reader’s conve

he narrative is organized so that it goes partially in parallel with standard derivation o
pectra formulas given in Ref. 7, Chap. 3.

I. DERIVATION OF THE FORMULA FOR NORMING VECTOR

We are beginning this section with preliminary notations. Let us rewrite the system(1) in a
ore symbolic form as follows:

−
d2

dx2ysxd + V̂sxdysxd = lysxd, x P f0,ag, s2d

herey stands for the whole vector-column solution

ysxd ; 1C1sxd
A

CMsxd
2 ,

nd

V̂ ; Vab + «adab, l ; E.

he potential matrix is the real symmetric matrix of continuous functions,xP f0,ag. In this article
he hat will always stand for the matrix. Next, we add to Eq.(2) the following boundary cond
ions:

H y8s0d − ĥys0d = 0, y8sad + Ĥysad = 0,

yi8s0d − ĥiyis0d = 0, yi8sad + Ĥyisad = 0, i = 1, . . . ,M ,
s3d

here we takeĥ, ĥi, and Ĥ to all be the real symmetric matrices. We denote the spectra
11 problems(2) and(3) by hlnjn=1

` andhln
i jn=1

` , respectively. There is no theorem of interlac
f the spectra in the M-channel case,M .1. So, we additionally require that no spectrum de
racy should occur.

Let us denote byf̂sx,ld and x̂isx,ld the matrix solutions of Eq.(2) satisfying the initia
onditions

f̂s0,ld = 1̂, uf̂8sx,ldux=0 = ĥ, x̂is0,ld = 1̂, ux̂i8sx,ldux=0 = ĥi , s4d

here the prime stands for the derivative with respect tox. In what follows we shall use the prim
o denote this derivative. A matrix solution of(2) means that each column of the matrix i
ector-solution, only satisfying a specific initial(boundary) condition. Eigenvalues of the boun

ry value problems(2) and (3) coincide with zeros of determinants of the matrices
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H F̂sld = f̂8usx,ldux=a + f̂sa,ldĤ,

F̂isld = x̂i8usx,ldux=a + x̂isa,ldĤ,
s5d

here the bar sign denotes transpose.
Now we introduce the norming vectors associated with the spectrumhlnjn=1

`

gln
; 1 g1slnd

A
gMslnd

2 ,

uch that

f̂sx,lndgln
= ysx,lnd s6d

ith uy8sx,lndux=a+Ĥysa,lnd=0 ande0
a oa=1

M fCasx,lndg2dx=1. Likewise, for the spectrahln
i jn=1

`

gln
i ; 1 g1sln

i d
A

gMsln
i d
2 ,

uch that

x̂isx,ln
i dgln

i = yisx,ln
i d s7d

ith yi8sx,ln
i dux=a+Ĥyisa,ln

i d=0 ande0
a oa=1

M fCasx,ln
i dg2dx=1. Let us also introduce the functi

l (versusl) such thatgl=gln
whenl=ln andgl=gln

i whenl=ln
i . That function makes sen

t the pointsln andln
i only. In between, we have the freedom to specify it arbitrarily. We can

equire this function to be continuously differentiable and have no singularities,glÞ0.
We take

f isx,ld ; ḡlx̂isx,ld + misldḡlf̂sx,ld, s8d

heremisld is scalar and we require that

f i8sx,ldx=a + f isa,ldĤ = 0⇒ s9d

misldfḡlf̂8 sx,ldux=a + ḡlf̂sa,ldĤ = − fḡlx̂i8sx,ldux=a + ḡlx̂isa,ldĤ. s10d

omparing with(5) we have

misld = −
F̄isldFsld

F̄sldFsld
, s11d

here we denoteFsld;F̂sldgl andFisld;F̂isldgl.
Next, employing the well known Green formula we have

sl − lndE
0

a

f isx,ldf̂sx,lndgln
dx= f i8usx,ldux=0f̂s0,lndgln

− f is0,ldf̂8usx,ldux=0gln
= ḡlsĥi − ĥdgln

.

rom the other hand,
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sl − lndE
0

a

f isx,ldf̂sx,lndgln
dx= sl − lndE

0

a

ḡlx̂isx,ldf̂sx,lndgln
dx− sl − lnd

3E
0

a F̄isldFsld

F̄sldFsld
ḡlf̂sx,ldf̂sx,lndgln

dx= ḡlsĥi − ĥdgln
,

s12d

here we used, in the two last formulas, the definitions(4), (8), and(11). The last equality follow
rom the fact that the matrices in(3) are symmetric.

Let us pass to the limitl→ln. Then the Eq.(12) goes over into

−

d

dl
ufF̄sldFsldgul=ln

F̄islndFslnd
ḡln

sĥi − ĥdgln
= 1, s13d

here we used the L’ Hospital rule and definition(6).
We shall prove that this formula can be represented as

sln
i − lnd−1p

mÞn
m=1

`
lm − ln

lm
i − ln

ḡln
sĥi − ĥdgln

= 1. s14d

inceFsld andFisld are the entire holomorphic functions they are determined(to within constan
ultipliers) by their zeros and, hence, can be represented as follows:

Fsld = Cp
m=1

` S1 −
l

lm
D ; Fisld = Cip

n=1

` S1 −
l

ln
i D . s15d

ubstituting(15) into (13) we have

1

ln
p
mÞn
m=1

` S1 −
ln

lm
DC̄C

p
n=1

` S1 −
ln

ln
i DC̄iC

ḡln
sĥi − ĥdgln

= 1. s16d

ow we have to ascertain the expression for theC̄C/ C̄iC. We shall need some knowledge ab
n asymptotic behavior of the solutions of(2). First of all, these equations become uncouple

he limit l→`. So, as in the one-channel case, we have liml→`F̂sldhF̂isldj−1=1, and the sam
or the transpose of these matrices. Here the limit is taken for the diverging sequencel;lskd
k2±«+Os1d for any «.0 andk being integer and sufficiently large[we choose such a seque

est lskd should coincide with M11 spectra at even if one point].
Taking this into account we obtain

C̄C

C̄iC
p
m=1

`
lm

i

lm

lim
l→`

p
m=1

`
lm − l

lm
i − l

= 1. s17d

e have the following asymptotic formulas forl andli: lm=sp /ad2m2+Os1d and the same forli.
henlm

i −lm=Os1d and the seriesom
` uslm−lm

i d / slm
i −ldu converges uniformly asl→` on the se

i
\ slmølmd. Hence, we can pass to the limit in each term of the infinite product
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lim
l→`

p
m=1

`
lm − l

lm
i − l

= lim
l→`

p
m=1

` S1 +
lm − lm

i

lm
i − l

D = 1. s18d

e see from(18) and (17) that

C̄C

C̄iC
p
m=1

`
lm

i

lm

= 1. s19d

t last, we can obtain the final expression forgln
. Substituting(19) into (16) we have the formul

14)—the system ofM equationssi =1, . . . ,Md for determiningM components ofgln
.

In the one-channel case the formula(14) goes over into the known expression for two spe

sln
2 − ln

1d−1p
mÞn
m=1

`
lm

1 − ln
1

lm
2 − ln

1sh2 − h1dgln

2 = 1, s20d

here the matrix values become scalars, and we denote, by indices 1 and 2, two spect
ining scalar norming factorgln

.

The system(14) is not linear one: Each row in it contains the quadratic formḡln
sĥi − ĥdgln

.
ence, these equations cannot be solved uniquely in general(including solvability itself). In other

ords, we have to impose some constraint on choosing the matricesĥi, i.e., the differenceĥi − ĥ.
mong other possibilities, we give several realizations which will allow a unique solvability
ystem(14).

(i) The symmetric matrixĥi − ĥ; ĵsid has the form of a Jacobi matrix

ĵsid =1
j11

sid j12
sid 0 0 . . 0

j12
sid 0 j23

sid 0 . . .

0 j23
sid 0 j34

sid . . .

. . . . . . .

. . . . . . jM−1M
sid

0 . . . 0 jM−1M
sid 0

2 , s21d

where the main diagonal contains only one nonzero element,j11
sid. Then

ḡln
sĥi − ĥdgln

= j11
sidg1slnd2 + 2o

kÞ1

M

jk−1k
sid gk−1slndgkslnd. s22d

Introducing the variablesv1;g1slnd2 andvk;gk−1slndgkslnd ,k=2, . . . ,M we can re
write the last expression as follows:

ḡln
sĥi − ĥdgln

= j11
sidv1 + 2o

kÞ1

M

jk−1k
sid vk. s23d

Then s14d becomes the system of linear algebraic equations for the variablesv. If
v1=g1slnd2.0, theng1slnd= ±v1

1/2, g2slnd= 7v2/v1
1/2 and so forth. The sign in fro

of v1
1/2 in the expression forg1slnd determines the common sign forgln

and, hence,
inessential: The whole vector-valued wave function is determined to within sigs±d.
With the nonzero elementjll

sidÞ0,l Þ1 positioned in arbitrary place of the main di
onal, the scheme is analogous.

ˆ ˆ ˆ sid
ii ) The matrixhi −h;z is represented as follows:

                                                                                                            



h other

n

se
d

of
t

I

tor
a a
( atrix
V

T
o from
+ lem of
s ear that
s ill be
r
p subject.

4260 J. Math. Phys., Vol. 45, No. 11, November 2004 V. M. Chabanov

                        
ẑsid =1
0 . 0 z1l

sid 0 . 0

. . . . . . .

. . 0 zl−1l
sid 0 . .

zl1
sid . zll−1

sid zll
sid zll+1

sid . zlM
sid

. . 0 zl+1l
sid 0 . 0

. . . . . . .

0 . 0 zMl
sid 0 . 0

2 , s24d

i.e., the matrix contains one nonzero row and one nonzero column which cross eac

in a place of the entryzll
sid. For the quadratic form we havesusing the symmetry ofĥi − ĥd

ḡln
sĥi − ĥdgln

= zll
sidglslnd2 + 2o

kÞl

M

zlk
sidglslndgkslnd. s25d

Introducing new variablesuk;glslndgkslnd, kÞ l, andul ;glslnd2 we can now look upo
s14d as a linearized system again

sln
i − lnd−1p

mÞn
m=1

`
lm − ln

lm
i − ln

Hzll
sidul + 2o

kÞl

M

zlk
sidukJ = 1. s26d

After deriving ui, one can obtaingislnd trivially. Of course, the solvability in this ca
depends on whether the corresponding determinant for the systems26d is nonzero an
ul .0.

In all the cases, the knowledge of the complete sethln,gln
jn=1

` allows a unique restoration
he potential matrix by the standard Gel’fand–Levitan theory(its multichannel generalization).

II. CONCLUSIONS

In this article, the relationship is established between components of the norming vecgln
ssociated with a certain boundary value problem(with the spectrumhlnjn=1

` ) and the spectr
includinghlnjn=1

` ) of M +1 multichannel Sturm-Liouville operators with the same potential m

absxd but different boundary conditions. As a matter of fact, the central result is formula(14).

hough giving no unique solutions in general, it can get linear if we require the matricesĥi to be
f special type. Hence, the uniqueness of the multichannel inverse eigenvalue problemM
1 spectra is however possible for a particular class of boundary conditions. The prob
pecifying the necessary and sufficient conditions needs a special examination. It is cl
crutinizing the asymptotic behavior of the spectra with different boundary conditions w
equired. It is closely associated with specifying the class of differentiable functions theVabsxd
ertain to. So, the results given present only an intermediate stage in investigations on the

1H. Feshbach, Ann. Phys.(N.Y.) 19, 287 (1962).
2B. N. Zakhariev and A. A. Suzko,Direct and Inverse Problems(Springer, Heidelberg, 1990).
3J. R. Cox, Ann. Phys.(N.Y.) 39, 216 (1966); J. Math. Phys.8, 2327(1967).
4J. R. Cox and H. R. Garcia, J. Math. Phys.16, 1402(1975).
5K. Chadan and P. Sabatier,Inverse Problems in Quantum Scattering Theory, 2nd ed.(Springer, Heidelberg, 1989).
6G. Borg, Acta Math.78, 1 (1946).
7B. M. Levitan, Inverse Sturm-Liouville Problems(VSP, Zeist, The Netherlands, 1987).
8B. N. Zakhariev, JINR Rapid Commun.,N6[45]-90, 41 (1990).
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We prove that under short range potentials a semiclassical wave packet’s propaga
tion is accurate for infinite times in the"→0 limit. © 2004 American Institute of
Physics.[DOI: 10.1063/1.1780613]

. INTRODUCTION

Semiclassical analysis is the study of the connections between the quantum dynamics
orresponding classical dynamics in the"→0 limit. Consider the quantum dynamics determi
y the time dependent Schrödinger equation

i"
]

]t
csx,td = H−

"2

2
Dx + VsxdJcsx,td. s1d

ollowing the prescription defined in Refs. 1–5 one can construct approximate solutions
quation whose time propagation is determined by the corresponding classical mechanic
ave packets depend explicitly on the corresponding classical dynamics of the system", and
osition. These semiclassical wave packets can be used to approximate the quantum dyn1–5

ere we present a result for the semiclassical wave packets that is uniform in time. This r
n extension of a known result1 to one and two space dimensions.

The organization of the paper is as follows: In Sec. II we present the construction
emiclassical wave packets. In Sec. III we introduce the needed results from classical sc
heory. In Sec. IV we state and prove Theorem 1, the main result of the paper forn=1, referring
he reader to some technical lemmas from Sec. V. In Sec. VI we provide the necessa
eeded to extend the proof to two dimensions.

Throughout we adopt standard multi-index notation.7 The inner products are linear in t
econd term, conjugate linear in the first. Furthermore, we assume that our potential is
ange,” i.e.,Vsxd satisfies the short-range assumptionsDd if for any multi-index a such thatuau
0,1,2,3,there existsCuau.0, 0,n,1, such that

usDaVdsxdu ø Cuaus1 + uxud−1−uau−n.

otice that if a potential is short range then

Vsxd P LpsRnd for p . maxH n

1 + n
,1J

nd

Vsxds1 + xd−fsn/2d−1g+sn/2d P L2sRnd.

2 n
o, forn=1,2 ourpotentials are inL sR d.

4261022-2488/2004/45(11)/4261/10/$22.00 © 2004 American Institute of Physics
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I. SEMICLASSICAL WAVE PACKETS

Here we present a definition of the semiclassical wave packets. Our construction is an
o the standard construction of the harmonic oscillator eigenstates using raising and lo
perators. Greater detail on the construction presented here can be found in Ref. 4. La, h
Rn, and".0. Furthermore assume thatA andB are complexn3n matrices satisfying

AtB − BtA = 0, s2d

A * B + B * A = 2I . s3d

onditions(2) and (3) are known to be equivalent to the following four conditions assume
ef. 1:

i) A andB are invertible;
ii ) the real and imaginary parts ofBA−1 are both real symmetric;
iii ) ReBA−1 is strictly positive definite;
iv) sReBA−1d−1=AA*.

et p=−i"¹x be the momentum operator. For anyvPCn we define associated raising and low
ng operators by

AsA,B,",a,h,vd* =
1

Î2"
fkBv̄,sx − adl − ikAv̄,sp − hdlg

nd

AsA,B,",a,h,vd =
1

Î2"
fkB̄v,sx − adl + ikĀv,sp − hdlg.

et hejj be any orthonormal basis forRn, and define

A jsA,B,",a,hd* = AsA,B,",a,h,ejd*,

A jsA,B,",a,hd = AsA,B,",a,h,ejd.

hen we can define

AsA,B,",a,hd* =
1

Î2"
fB * sx − ad − iA * sp − hdg,

AsA,B,",a,hd =
1

Î2"
fBtsx − ad + iAtsp − hdg,

here the representation is in terms of the above basis. Definef0sA,B," ,a,h , ·d to be a norma
zed vector with respect toL2sRnd such that

AsA,B,",a,hdf0sA,B,",a,h, · d = 0.

t is seen that

f0sA,B,",a,h,xd = sp"d−n/4sdetsAdd−1/2exph− ksx − ad,BA−1sx − adl/s2"d + ikh,sx − adl/"j.

ere a particular choice of phase is being made. For any multi-indexk, we define

fksA,B,",a,h,xd =
1

sA1sA,B,",a,hd * dk1 3 ¯ 3 sAnsA,B,",a,hd * dknf0sA,B,",a,h,xd.
Îk!
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Remark:The only ambiguity here is in the choice of sign onsdetsAdd−1/2, it is chosen depen
ng on the initial conditions and continuity.

Remark:The functionsfksA,B," ,a,h , ·d form an orthonormal basis ofL2sRnd.4

Let Sstd be inR, astd, hstd be vectors inRn, Astd, Bstd be complexn3n matrices all governe
y the following system of ordinary differential equations:

ȧstd = hstd,

ḣstd = − ¹W Vsastdd,

Ȧstd = iBstd, s4d

Ḃstd = iVs2dsastddAstd,

Ṡstd =
shstdd2

2
− Vsastdd,

uppose the initial conditions given such thatAs0d, Bs0d together satisfy(2) and(3) andSs0d=0.
t is known thatAstd, Bstd together still satisfy(2) and (3).4

Remark:Let

Wastdsxd = Vsastdd + kVs1dsastdd,sx − astddl + 1
2ksx − astdd,Vs2dsastddsx − astddl,

he functionscsx,td=eiSstd/"fksAstd ,Bstd ," ,astd ,hstd ,xd provide exact solutions to the time dep
ent Schrödinger equation,

i"
]

]t
csx,td = −

"2

2
Dxcsx,td + Wastdsxdcsx,td.

e state a result about the wave packets that will be used later. The reference is Ref. 4.
Lemma 1: Suppose VPC3sRnd satisfies−C1øVsxdøC2e

Mx2
for some C1, C2 and M. Let

Astd ,Bstd ,astd ,hstd ,Sstdd be a solution to the system (4) with appropriate initial conditions.
s"d=−s"2/2dD+Vsxd. Then there exists some Csk,td such that

ie−itHs"d/"fksAs0d,Bs0d,",as0d,hs0d,xd − e−iSstd/"fksAstd,Bstd,",astd,hstd,xdi ø Csk,td"1/2. s5d

Using these semiclassical wave packets one can now attempt to provide a construc
pproximate solutions to the Schrödinger equation and prove accuracy estimates. For d

his see Refs. 1–5.

II. CLASSICAL SCATTERING

Existence of scattering states in classical mechanics is crucial to our study.
Lemma 2: Let Vsxd satisfy the short-range assumptionsDd. Given anysa−,h−dPR2n such tha

−Þ0. Let A−, and B− be complex n3n matrices satisfying conditions (2) and (3) then there e
unique solutionfastd ,hstd ,Astd ,Bstd ,Sstdg to the system (4) such that

lim
t→−`

uastd − a− − h−tu = 0,

lim uhstd − h−u = 0,

t→−`
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lim
t→−`

uSstd − th−
2/2u = 0, s6d

lim
t→−`

iAstd − A− − iB−ti = 0,

lim
t→−`

iBstd − B−i = 0.

oreover, there exists n3n complex matrices A+,B+ satisfying (2) and (3) and a closed set E
easure zero contained inR2n such thatsa−,h−dPR2n\E implies the existence ofsa+,h+dPR2n

ith h+Þ0, S+PR such that

lim
t→`

uastd − a+ − h+tu = 0,

lim
t→`

uhstd − h+u = 0,

lim
t→`

iAstd − A+ − iB+ti = 0, s7d

lim
t→`

iBstd − B+i = 0,

lim
t→`

uSstd − S+ − th+
2/2u = 0.

This result basically says that given an incoming free state we can find an interacting st
pproaches it at infinite negative time. Then for almost any free incoming state there exist
utgoing state that approximates the interaction state at infinite time. In the language of sc

he above theorem is existence, uniqueness of scattering operators coupled with asympto
leteness. The proof of this for the position and momentum variablesastd, hstd, is given in Ref. 8

he proof for the spreading variablesAstd, Bstd and the action variableSstd, is given in Ref. 1.

V. STATEMENT AND PROOF OF THE MAIN RESULT FOR N=1

Let

Hs"d = −
"2

2
Dx + Vsxd

nd

H1st,"d = −
"2

2
Dx + Wastdsxd,

ith corresponding unitary propagatorsUstd andU1st ,0d, respectively. Recall

U1st,0df0sAs0d,Bs0d,",as0d,hs0d,xd = eiSstd/"f0sAstd,Bstd,",astd,hstd,xd.

Theorem 1: If Vsxd satisfies the short-range assumptionsDd, then there exists C, l.0, both
ndependent of t and" such that

iUstdf0sAs0d,Bs0d,",as0d,hs0d, · d − eiSstd/"f0sAstd,Bstd,",astd,hstd, · di2 ø C"l
or all t P s−` ,`d, "P s0,1d, any As0d, Bs0d satisfying Eqs. (2) and (3) and almost all as0d, hs0d.
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Remark:The theorem is an analogous statement to that of lemma 2 for the semiclassic
ackets.

The proof given in Ref. 1 that is restricted tonù3 uses the fact that the wave packet de
s t−n/2, and thus the wave packet is itself inL1 when nù3. For n=1 andn=2 we remove th
ortion of the state that has small asymptotic momentum. This portion of the wave pa
s"1/2d. The remaining portion of the wave packet decays fast enough int to prove the estimate
e need. Our idea is to write the wave packet as

f0sAstd,Bstd,",astd,hstd,xd =
p

h
f0sAstd,Bstd,",astd,hstd,xd +

h − p

h
f0sAstd,Bstd,",astd,hstd,xd

nd then drop the second term at time 0 in order to get the asymptotics to cancel out corre
ntuition is that the second term above is on the order ofÎ" at time zero and can be disregar
n the semiclassical limit. The idea to write the wave packet in this way was inspired by Ref

any ideas from this paper can be seen in the proof. We need the portion of the wave pa
s not disregarded to be propogated exactly by the semiclassics given in Sec. II, therefore w
he wave packet as

f0sAstd,Bstd,",astd,hstd,xd = H1 +
sx − astddiB+

Astdh+
Jf0sAstd,Bstd,",astd,hstd,xd

−
sx − astddiB+

Astdh+
f0sAstd,Bstd,",astd,hstd,xd

= H1 +
sx − astddiB+

Astdh+
Jf0sAstd,Bstd,",astd,hstd,xd

−Î"

2

iB+

h+
f1sAstd,Bstd,",astd,hstd,xd

= f̃0sAstd,Bstd,",astd,hstd,xd

−Î"

2

iB+

h+
f1sAstd,Bstd,",astd,hstd,xd. s8d

e have used the fact that in one dimension

f1sAstd,Bstd,",astd,hstd,xd =Î2

"

sx − astdd
Astd

f0sAstd,Bstd,",astd,hstd,xd. s9d

he argument of the theorem almost exactly follows the argument in Ref. 1. Besides th
uction of the modified wave packet the changes that we have made are imbedded in t

emmas 3 and 4.
Proof of Theorem 1 for n=1: Let m,1, eP s0, 1

6
d, and define

x1s",astd,xd = H1 if ux − astdu ø s1 + uastdudm"1/2−e,

0 otherwise.
J

efine x2s" ,astd ,xd=1−x1s" ,astd ,xd. Now definef̃0sAstd ,Bstd ," ,astd ,hstd ,xd as above an
roceed to calculate. By(8) and sincehUstd−U1st ,0dj is bounded by lemma 2 it is clear that

ihUstd − U1st,0djf0sAs0d,Bs0d,",as0d,hs0d, · di2

ø ihUstd − U1st,0djf̃0sAs0d,Bs0d,",as0d,hs0d, · di2 + kÎ", s10d
here
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k =
uB+u

Î2uh+u
.

y the fundamental theorem of calculus,

ihUstd − U1st,0djf̃0sAs0d,Bs0d,",as0d,hs0d, · di2

= IE
0

t d

ds
hUssd − U1ss,0djf̃0sAs0d,Bs0d,",as0d,hs0d, · ddsI

2

ø "−1E
0

t

ihVs·d − Wassds·djf̃0sAssd,Bssd,",assd,hssd, · di2 ds. s11d

nalyzing the integrand in the last expression,

ihVsxd − Wassdsxdjf̃0sAssd,Bssd,",assd,hssd,xdi2

ø ihVsxd − Wassdsxdjx1s",assd,xdf̃0sAssd,Bssd,",assd,hssd,xdi2

+ iVsxdx2s",assd,xdf̃0sAssd,Bssd,",assd,hssd,xdi2

+ iWassdsxdx2s",assd,xdf̃0sAssd,Bssd,",assd,hssd,xdi2 = Issd + IIssd + III ssd. s12d

f ux−assduø s1+uassdudm"1/2−e then following the analysis from Ref. 1 we letz* PZ=hz=rx+s1
rdyj such thatuz* uø uzu for all zPZ. By the fundamental theorem of calculus and the tria

nequality it can be seen that

uV2sxd − V2sydu ø C3s1 + uzud−4−nux − yu ø C3s1 + uyu − uy − zud−4−n ø C3fs1 − mds1 + uyud−4−nux − yug,

s13d

hereC3 is taken from the short-range assumption. From here it follows that

ix1s",assd,xdsVsxd − Wassdsxddi` ø C3s1 + uassdud−1−n"3/2−3e. s14d

ence

Issd ø C3s1 + uassdud−1−n"3/2−3eS1 + kÎ"

2
D .

gain we follow the argument in Ref. 1. Due to continuity and asymptotics of the cla
uantitiesassd, Assd that

II ssd ø Ix2s",assd,xdexpH− sx − assdd2

4uAssdu2"
JI

`
Ix2s",assd,xdVsxdS1 +

sx − assddiB+

Assdh+
D

3sp"d−1/4sAssdd−1/2 expH− sx − assdd2

4uAssdu2"
JI

2

ø exph− C8"−2ejIx2s",assd,xdVsxdS1 +
sx − assddiB+

Assdh+
D

3sp"d−1/4sAssdd−1/2 expH− sx − assdd2

4uAssdu2"
JI

2

, s15d

hereC8 is some constant independent ofs and". By lemma 5.1 and dividing byAssdh+ there

xistsCV, T1 such that fors.T1,
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II ssd ø CV"−1/2−n/2 exph− C8"−2ejusu−1−n/2.

e can do the same thing with IIIssd as well. By lemma 5.2 there existsT2, CW such that fo
.T2,

III ssd ø CW"−1 exph− C8"−2ejusu−1−n.

he theorem is now proven by takingT=maxhT1,T2j and writing for t.T,

"−1E
0

t

sIssd + IIssd + III ssddds= "−1HE
0

T

sIssd + IIssd + III ssddds+E
0

t

sIssd + IIssd + III ssdddsJ .

he first term is bounded by someCT"1/2 by lemma 1. The second term is bounded by s
"−2 exph−C8"−2ej+C3"1/2−3e by the work shown here. In order to propagate to large neg

imes we write the modified wave packet withh−,B− in place ofh+,B+ and the details are th
ame. h

. TECHNICAL LEMMAS

Lemma 3: In space dimension one if Vsxd satisfies the short-range assumptionsDd, then there
xists some constant C such that for t sufficiently large, "P s0,1d,

Ix2s",astd,xdVsxdhh+Astd + sx − astddiB+jsp"d−1/4sAstdd−1/2 expH− sx − astdd2

4uAstdu2"
JI

2

ø C"−1/2−n/2t−n/2,

herex2s" ,astd ,xd is as defined in the proof of Theorem 1.
Proof: Let k1.0. By lemma 2 there existsT such thatt.T implies that

Ix2s",astd,xdVsxdhh+Astd + sx − astddiB+jsp"d−1/4sAstdd−1/2 expH− sx − astdd2

4uAstdu2"
JI

2

ø Ix2s",astd,xdVsxd · hh+sA+ + iB+td + sx − a+ − h+tdiB+j

3 sp"d−1/4sAstdd−1/2 expH− sx − astdd2

4uAstdu2"
JI

2

+ k1"−1/4uAstdu−1/2. s16d

sing the triangle inequality we find that

Ix2s",astd,xdVsxd · hh+sA+ + iB+td + sx − a+ − h+tdiB+jsp"d−1/4sAstdd−1/2 expH− sx − astdd2

4uAstdu2"
JI

2

ø IVsxdfh+A+gsp"d−1/4sA−1/2stddexpH− sx − astdd2

4uAstdu2"
JI

2

+ Ix2s",astd,xdVsxdfiB+sx − a+dg

3sp"d−1/4sA−1/2stddexpH− sx − astdd2

4uAstdu2"
JI

2

. s17d

inceVsxdPL2sRd we have some constantk2 such that for large enought,

IVsxdfh+A+gsp"d−1/4sA−1/2stddexpH− sx − astdd2

4uAstdu2"
JI

2

ø k2"−1/4t−1/2. s18d
imilarly,
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Ix2s",astd,xdVsxdfiB+sx − a+dgsp"d−1/4sA−1/2stddexpH− sx − astdd2

4uAstdu2"
JI

2

ø iiB+Vsxdsx − a+d1/2+n/2i2Ix2s",astd,xdsp"d−1/4sAstdd−1/2sx − a+d1/2−n/2

3expH− sx − astdd2

4uAstdu2"
JI

`

. s19d

he first factor is a constant independent oft and". Evaluating the second term further we see

Ix2s",astd,xdsp"d−1/4sAstdd−1/2sx − a+d1/2−n/2 expH− sx − astdd2

4uAstdu2"
JI

`

= Ix2s",astd,xd
sx − a+d1/2−n/2

sx − astdd1/2−n/2

sx − astdd1/2−n/2

sp"d1/4sAstdd1/2 expH− sx − astdd2

4uAstdu2"
JI

`

ø Ix2s",astd,xd
sx − a+d1/2−n/2

sx − astdd1/2−n/2I
`
Ix2s",astd,xd

sx − astdd1/2−n/2

sp"d1/4sAstdd1/2 expH− sx − astdd2

4uAstdu2"
JI

`

ø Ix2s",astd,xd
sx − a+d1/2−n/2

sx − astdd1/2−n/2I
`

"−n/4+en/2

sms1 + uastduddn/2I sx − astdd1/2

sp"d1/4sAstdd1/2 expH− sx − astdd2

4uAstdu2"
JI

`

.

s20d

he second norm in the last expression is bounded by a constant. For the first norm we

Ix2s",astd,xd
sx − a+d1/2−n/2

sx − astdd1/2−n/2I
`

ø maxH1,Ix2s",astd,xd
sx − a+d

sx − astddI`
J . s21d

ow we see that

Ix2s",astd,xd
sx − a+d

sx − astddI`

ø Ix2s",astd,xd
sx − astd + astd − a+d

sx − astdd I
`

1 + Ix2s",astd,xd
sastd − a+d
sx − astdd I`

ø 1 + Ix2s,astd,xd
sastd − a+d

s1 + astddm"1/2−n/2I
`

ø 1 + k3"−1/2+n/2, s22d

herek3 is a constant independent oft and". The lemma now follows. h

Lemma 4: If Vsxd satisfies the short-range assumptionsDd, then there exists some constan
uch that for large enough t, and "P s0,1d,

IWastdsxdF1 +ÎĀstd
Astd

sx − astddiB+

uAstduh+
Gsp"d−1/4sA−1/2stddexpH− sx − astdd2

4uAstdu2"
JI

2

ø C"−1t−1−n.
Proof: SinceVsxd satisfies the short-range condition there existsCj, j =0,1,2such that
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IWastdsxdF1 +ÎĀstd
Astd

sx − astddiB+

uAstduh+
Gsp"d−1/4sA−1/2stddexpH− sx − astdd2

4uAstdu2"
JI

2

ø o
j=0

2

Cjs1 + uastdud−1−j−n · uAstdu j · 2j · " j /2IS sx − astdd
2uAstdu"1/2D j

·H1 +ÎĀstd
Astd

sx − astddiB+

uAstduh+
J

3sp"d−1/4sAstdd−1/2 expH− sx − astdd2

4uAstdu2"
JI

2

. s23d

y explicit evaluation, we see that the norms in the last expression are bounded by co
ndependent oft and". h

I. EXTENSION TO TWO DIMENSIONS

The extension of this result to two dimensions has a few complications due to the struc
igher order states in more than one dimension. Here we point out the changes that ne
ade in the proof of Theorem 1 in order to extend it ton=2. The techniques follow the constru

ion given in Ref. 3. We present this in a less general manner for the sake of clarity. Lethe1,e2j be
he standard basis forR2. By the polar decomposition theorem for allt there exists a uniqu
nitary matrixUAstd such thatAstd= uAstduUAstd. We then define

H̃1sv,xd = 2kv,xl

nd

Hej
sAstd;xd = H̃1sUAstdej,xd.

ow we proceed to define the higher order wave packet,

fej
sAstd,Bstd,",astd,hstd,xd = 2−1/2Hej

sAstd;"−1/2uAstdu−1sx − astdddf0sAstd,Bstd,",astd,hstd,xd

s24d

=21/2kUAstdej,"
−1/2uAstdu−1sx − astddlf0sAstd,Bstd,",astd,hstd,xd.

s25d

ow define

f̃0sAstd,Bstd,",astd,hstd,xd = H1 +KUAstde1,
i uAstdu−1B+sx − astdd

ke1,h+l LJf0sAstd,Bstd,",astd,hstd,xd

s26d

nd the modified wave packet is again propagated as in Theorem 1. Since we have assu

+Þ0 we can usee2 instead ofe1 if ke1,h+l=0. Recall

UAstd = uAstdu−1Astd,

mplying

UA
* std = A−1stduAstdu,
nd so similar to the analysis in one dimension we have
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f̃0sAstd,Bstd,",astd,hstd,xd = H ke1,h+l
ke1,h+l

+Ke1,
iA−1stdB+sx − astdd

ke1,h+l LJf0sAstd,Bstd,",astd,hstd,xd

=
1

ke1,h+l
ke1,h+ + A−1stdsx − astddiB+lf0sAstd,Bstd,",astd,hstd,xd

=
1

ke1,h+l
ke1,A

−1stdhAstdh+

+ sx − astddiB+jlf0sAstd,Bstd,",astd,hstd,xd. s27d

oting that

Vsxds1 + xdn/2 P L2sR2d

nd thus

iiB+Vsxdsx − a+dn/2i2

s constant in place of

iiB+Vsxdsx − a+d1/2+n/2i2

n the one dimensional case, the proof is now analogous to the proof forn=1.
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An exact solution of the time-dependent master equation that describes the evolu-
tion of two two-level qubits(ions or atoms) within a perfect cavity for the case of
multiphoton transition and in the presence of both the Stark shift and phase shift is
obtained. Employing this solution, the significant features of the entanglement
when a second qubit is allowed to interact with cavity mode and becomes entangled
with the first qubit are investigated in the context of the measure defined by nega-
tive eigenvalues for the partial transposition of the density operator. The effects of
Stark shift, distance between the two qubits, and an instantaneous phase shift ex
perienced by the second qubit on the entanglement and probability amplitudes are
indicated. It has been shown that the entanglement as well as the intensity are
markedly affected by different parameters when the nonlinear two-photon process
is involved. Moreover, the quasiprobability distribution function is investigated
before and after the sudden phase shift experienced by the second qubit. We believ
that this may throw some light on the question of the entanglement of multi-qubit
systems. ©2004 American Institute of Physics.[DOI: 10.1063/1.1795986]

. OVERVIEW

Investigations into the emerging science of quantum information has led to the wide
elief that entanglement in states shared between two systems can be used as a re
onclassical applications.1–3 The theory of quantum entanglement has occupied a central pl
odern research because of its promise of enormous utility in quantum computing, crypto
tc.4–8 A major thrust of current research is to find a quantitative measure of entanglem
eneral states. One of the most intriguing problems of quantum mechanics is the interpre

he measurement process(for an overview of fundamental problems in quantum measurem
ee, for example, Refs. 9–11). The reason for this central role of the measurement process
bsence of fundamental, elements of reality, that would simultaneously characterize b
ynamics and the measurement results. At this end, in quantum information, the maxim

angled states have a special significance.
For the experiments in the newest fields of physics, quantum computing, quantum co

ation, and quantum cryptography4–8 the quantitative analysis of the multiqubit or ion is of s
tantial interest.12 The dipole-dipole interaction between two atoms can be understood throu
xchange of virtual photons and depends on the transition dipole moment of the levels in

t can be characterized by complex coupling constants, or by their real and imaginary parts
he former affect decay constants and the latter lead to level shifts.13 There is an inherent intere
n analytical and nonperturbative solutions of multiatom interacting with the cavity field prob
ll the more considering quantum systems with more than one particle. One example of

)
Electronic mail: abdelatyquant@yahoo.co.uk
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ind is the system of two two-level qubits in an electromagnetic field.14–20 Entanglement o
dentical particles is a property dependent on which single-particle basis is chosen, as an
ion should act on each identical particle in the same way. Indeed, individual particles are
ions of a quantum field, and the single-particle basis defines which set of particles are
epresenting the many-particle state.21

One aim of the present article is to extend the previous models to a much more genera
o be more precise, we assume that two two-level atoms(two qubits) share a bipartite syste
aking into account the multiphoton transition and the presence of Stark shift with the secon
ndergoing phase shift. Another principal aim is to elucidate the extent to which mixed en
tates can affect the entanglement. The emphasis being put on the investigation of the e
ent in a more general situation in which the two atoms(qubits) share a mixed state, rather th
pure state. The issue of attributing objective properties to the constituents of a quantum

omposed of identical atoms, does not turn out to be a straightforward generalization of
nalyzed case involving distinguishable atoms, and the problem of entanglement has to b
idered. If a system interacts unitarily with an imperfectly known environment, the subdyn
f the system, averaged over the unknown states of the environment is nonunitary, and ca
ure state to a mixed state. In general it is known that there are also cases when entang
re mixed with other entangled states and where the sum is separable.

The outline of this article is arranged as follows: In Sec. II, we give notation and defin
f the model and its analytical solution to be used in the rest of the article. The entang
easure calculation is presented in Sec. III. By a numerical computation, we examine th
nce of distance between the qubits, Stark shift, and phase shift on the evolution of the me
ntanglement which will be defined in terms of the negative eigenvalues of the partial tra

ion. Finally, Sec. IV has few concluding remarks, and few avenues for further investigatio
ndicated.

I. TWO QUBITS MODEL

To set the stage, we first begin with a discussion of where the two-qubit model come
herefore, the physical system on which we focus is a two three-level harmonically trapp
ith its center-of-mass motion quantized. The ions are subjected to a laser field. This mode

rom the standard micromaser setup in that instead of a single qubit we have assumed
ubits interacting with a single mode of the cavity field. The position of the first qubit in the c

s fixed and the second qubit is at some distanceL from it. This distance will be a variab
arameter of the problem.9–11 Our interest lies in the case where the Stark shift and phase sh

ncluded. The electronic levelsual and ubl are assumed to be metastable and coupled via a
eld of the form

Esx̂,td = E0 expfisk̂ . x̂ − vt + fstddg, s1d

hereE0 is the strength of the electric field,k̂ is the wave vector of the driving laser field,x̂ is the
osition operator associated with the center-of-mass motion, andv is the laser frequency. W
enote byfstd the fluctuations in the laser phase. Therefore, we can express the center-
osition in terms of the creation and annihilation operators of the one-dimensional trap, n

x̂ =Î "

2Mvs
sâ† + âd = Dxsâ† + âd. s2d

e denote byâ andâ† the annihilation and creation operators andvs is the vibrational frequenc
elated to the center-of-mass harmonic motion along the directionx̂. In the absence of the rotati
ave approximation, the trapped ions Hamiltonian that describes the system between de

ay be written as
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Ĥ = Ĥ0 + Ĥ1, s3d

here

Ĥ0 = "vsâ
†â + o

i=a,b,c
"viuilki u,

Ĥ1 = "o
i=1

2

hsl1
side−iski.x̂−vt+fidSbc

sid + H.c.d + sl2
side−iski.x̂−vt+fidSac

sid + H.c.dj. s4d

he transition in the three-level ions is characterized by the dipole matrix elementl j
sid where

lm
sid = ul sidlkmsidu sl ,m=a,b,cd being the considered three atomic levels. For the sake of simp
but without loss of generality), we have assumed to deal with the case in whichf1=0, f2=f and
he levelucl is assumed to be dipole-coupled to both the levelsual and ubl via a far detuned las
eld. While this is straightforward, it is often the case that it is simpler to work in the intera
icture in which the Hamiltonian(4) evolves in time according to the interaction with the vacu
eld. If we express the center-of-mass position in terms of the creation and annihilation op
he interaction part of Eq.(4) becomes

Ĥint = − "Do
i=1

2

sSbb
sid + Saa

sidd + "sl1
s1de−ihsâ†+âdSbc

s1d + H.c.d + "sl2
s1de−ihsâ†+âdSac

s1d + H.c.d

+ "sl1
s2de−ihsâ†+âdSbc

s2de−if + H.c.d + "sl2
s2de−ihsâ†+âdSac

s2de−if + H.c.d, s5d

here h=kÎ" /2Mvs, is the Lamb–Dicke parameter. In Eq.(5) the time-dependent factor
liminated in the interaction picture, sincevc−svb+Dd=mvs andvc−sva+Dd=mvs. We assum

he Lamb–Dicke regime with smallh. In order to obtain this we detune the laser frequencyv to
he mth vibrational red sideband. Also, we apply the rotating wave approximation discardi
apidly oscillating terms and selecting the terms that oscillate with minimum frequency.22 In these
imits we can expand the interaction Hamiltonian to lowest order inh. The resulting effectiv
amiltonian may be written as

Ĥint = − "Do
i=1

2

sSbb
sid + Saa

sidd + "g1
s1dsâ†mSbc

s1d + H.c.d + "g2
s1dsâ†mSac

s1d + H.c.d + "g1
s2dsâ†mSbc

s2de−if + H.c.d

+ "g2
s2dsâ†mSac

s2de−if + H.c.d, s6d

ith new coupling parametergi
s jd including the Dicke parameter in its definition. The analysi

uch a Hamiltonian model can be carried out, providing eliminating of the nonresonantly c
tomic levelucl adiabatically in the same manner as the standard JCM. Indeed, due to th
etuning, the transitions for instance from the levelual to the levelucl are very fast and immed
tely followed by decays on the atomic levelubl. Therefore, considering only coarse grai
bservables, meaning that the system is observed at a rough enough time scale, effective
ates the far detuned level, namely, at such a time scale, the only observables and hen

ngful dynamical behaviors, involve levelsual and ubl as a result of time averaging second-o
rocesses havingucl as an intermediate virtual level. This procedure hence suppresses t
ynamics, that is it sacrifices any information concerning the fast dynamics the third l

nvolved in. So that the effective Hamiltonian of the system form=1 in Eq. (6), including the
14–20
c-Stark shift, in the dipole and rotating wave approximation, can be written ass"=1d
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Ĥ = â†âsb1Sba
s1dSab

s1d + b2Sab
s1dSba

s1dd + â†âsb1Sba
s2dSab

s2d + b2Sab
s2dSba

s2dd + vâ†â + vsSaa
s1d − Sbb

s1dd + vsSaa
s2d − Sbb

s2dd

+ g1sSab
s1dâ2 + H.c.d + g2seifSab

s2dâ2 + H.c.d. s7d

e denote byb1 andb2 the intensity-dependent Stark shifts, that are due to the virtual trans
o the intermediate relay level andgi =h2g1

sidg2
sid /D.

It has been shown that entangled states in a two-atom system can be created by a co
riving of the atoms with a coherent or chaotic thermal field, or by a pulse excitation follow
continuous observation of radiative decay.23 To begin with, we shall choose the following mix

tate:

r = r ue1,g2lke1,g2u + s1 − rdug1,e2lkg1,e2u P SA. s8d

e may write the initial state of the field in vacuum state as

Ã = u0lk0u P SF. s9d

he continuous mapEt
* describing the time evolution between the qubits and the field is defin

he unitary evolution operator generated byĤ such that

Et
* :SA → SA ^ SF,

Et
*r = Ûtsr ^ ÃdÛt

* . s10d

he interaction Hamiltonian, in this case, leads to an exactly solvable time evolution op
esuming our analysis, the time evolution operator can be written as

Ût ; expS−
i

"
E

0

t

Ĥst8ddt8D , s11d

.e., Ût satisfies the interaction picture Schrödinger equation. Most of the authors who have
ultiqubits systems interacting with cavity fields have dealt with the case in which the Sta
as been ignored.9–11 However, in reality it cannot be ignored. Our interest in the current a

ies in looking for a time dependent analytical solution even when the Stark shift and pha
re nonzero. Using the above equations, in the interaction picture and after some algeb
ipulations we find that the final stateEt

*r at any timet.0 is given by

Et
*r = o

i=1

3

o
j=1

3

Uijstducilkc ju, s12d

here

U11std = rAtAt
* + s1 − rdBtBt

* , U12std = rAtCt
* + s1 − rdBtCt

* ,

U13std = rAtBt
* + s1 − rdBtAt

* , U22std = CtCt
* ,

U23std = rCtBt
* + s1 − rdCtAt

* , U33std = rBtBt
* + s1 − rdAtAt

* , s13d
*

i jstd=r jistd, and
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At = −
g2

2

m1
−

g1
2 exps− i2b1td

m1
Scosmt + i2b1

sinmt

m
D ,

Bt = −
g1

*g2 expsifdexps− i2b1td
m1

Scosmt + 2b1
sinmt

m
D +

g1
*g2 expsifd

m1
,

Ct = − i2g1
* exps− i2b1td

sinmt

m
, s14d

nd

m = Î4b1
2 + 2sg1

2 + g2
2d, m1 = sg1

2 + g2
2d,

c1 = ue1,g2,0l, c2 = ug1,e2,0l, c3 = ug1,g2,2l. s15d

e have therefore obtained an analytical solution of the final state of the system for this
odel. Having obtained the explicit form of the final state of the system under considerati
re therefore in a position to discuss the statistical properties of the system.

II. ENTANGLEMENT

The characterization and classification of entanglement in quantum mechanics is on
ornerstones of the emerging field of quantum information theory. Although an entangle
ubit stateEt

*r is not equal to the productEt
*r1 andEt

*r2 of the two single-qubit states contain
n it, it may very well be a convex sum of such products. In general it is known that micros
ntangled states are found that to be very stable, for example electron-sharing in atomic
nd two-qubit entangled photon states generated by parametric down conversion. Entangl
ne of the most nonclassical features of quantum mechanics is usually arisen from q
orrelations between separated subsystems which cannot be created by local actions
ubsystem. By definition, a mixed state of a bipartite system is said to be nonentangled if i
ritten as a convex combination of pure product states. Although, in the case of pure s
ipartite systems it is easy to check whether a given state is entangled or not, the questi
n open problem in the case of mixed states. There is also an increasing attention in qua
ntanglement, particularly for mixed states of a bipartite system.24–38

In this article, we take the measure of negative eigenvalues for the partial transpositio
ensity operator. It was proved that the negativity is an entanglement monotone,38 hence, th
egativity is a good entanglement measure. According to the Peres39 and Horodeckiet al.40

ondition for separability,39,40 a two-qubit state for the given set of parameter values is enta
f and only if its partial transpose is negative. The measure of entanglement can be de
erms of the negative eigenvalues of the partial transposition in the following form36,37

IEt
*rstd = 2 maxs0,−lnegd, s16d

herelneg is the sum of the negative eigenvalues of the partial transposition of the time-dep
educed atomic density matrixra, which can be obtained by tracing out the field variables

ra = TrfsEt
*rd. s17d

n the two qubit systemsC2 ^ C2d it can be shown that the partial transpose of the density m
an have at most one negative eigenvalue.40 The partial transposition ofraT has four eigenvalue

ne of which is negative, then the entanglement is given by
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IEt
*rstd = ÎU33

2 std + 4U21stdU12std − U33std.

he entanglement measure then ensures the scale between 0 and 1 and monotonously in
ntanglement grows. An important situation is that, whenIEt

*rstd=0 the two qubits are separa
nd IEt

*rstd=1 indicates maximum entanglement between the two qubits. It was proved38 that the
egativity is an entanglement monotone, and hence is a good entanglement measure.

An interesting question is whether or not the entanglement is affected by the different
ters of the present system with the initial state in which one of the qubits is prepared in its
tate and the other in the ground state. In particular, the mixed state parameterr, the Stark shif
arameterb1, the distance between the qubitsL, and the phase shiftf. A numeric evaluation of th
ntanglement measure leads to the plot in Fig. 1(a). We consider the coupling of the first qubi

aken to be constantg1=g. Although we allow the second qubit to be at a distanceL away and
xperience a variable qubit field couplingg2=g coskL (where we setb1=0, L=0, f=0, andr
1). It is shown that the two qubits are entangled in this case, with the maximum valueIEt

*rstd
0.2 for r =1, IEt

*rstd<0.4 for r =0.6 andIEt
*rstd<0.7 for r =0.2. In all these cases we see that

ome interaction times the entanglement is equal to zero, this period is increased with de
he parameterr. We now consider the two qubits interacting with the cavity field in the pres
f Stark shift parameterb1, where we set three different values ofb1 for the sake of compariso
see Fig. 1(b)]. It is remarkable to see that with the value of the Stark shift parameter,b1=2g the
ntanglement is nearly zero for the initial period of the interaction time. This period increas

ncreasing the Stark shift. Also, the maximum value of the entanglement is decreased
reasingb1. In this case we can say that, when the system is allowed to evolve without ap
phase shift, the entanglement degree is a periodic function of time. This is particularly b

f the nonlinear nature of the coupling in this case(two-photon process).
We now pause to touch on certain entanglement features when a phase shift is applie

econd qubit at the timet. To this end we consider the same values of the other parameters
o Fig. 1(a). Three important values for the timing of the phase shift, namely,t=psJ±0.25d, 3p,
nd Jp (here J=3) corresponding to the maximum and minimum values of the probabili
mission of photon pair. This is illustrated in Fig. 2, where we have shown the time evolu

he entanglement for different values of the timing of the phase shift andf=p /2. First of all, we
ote that the regular behavior has been seen only for the case whent=3p. While for the other two
alues, i.e., fort=psJ±0.25d, we see that there are two maximum values of the entangle

Et
*rstd<0.5 and 0.97. This situation is quite different from the maximum values of the ent
ent att=3p, where the two peaks have the same maximum value atIEt

*rstd<0.85. It should b
oted that the entanglement vanish for some period of the interaction time only whent=3p.
hese properties show that the role played by the timing of the phase shift on the entangle

IG. 1. This figure presents the results of a numerical calculation of the time evolution of the negativity as a me
ntanglement. The parametersf=0, andL=0, where(a) r =0.2(solid curve), r =0.6(dashed curve), andr =1 (dotted curve)
nd (b) r =0.2, b1=5g (solid curve), b=3g (dashed curve), andb1=2g (dotted curve).
ssential. Interestingly, whenr is taken to be nonzerosr =0.2d, the values of the maximum en-
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anglement are decreased, indicating that the mixed state setting leads to a decreasin
ubit-qubit entanglement. While the qubit-qubit entanglement has the same feature for d
alues of the mixed state parameterr, the change only occurs on the amplitude of the oscilla
see Fig. 2).

In the previous discussion, we have discussed different excitation processes which can
wo qubits in the asymmetric state and we have assumed that both the qubits in the same
.e., L=0. This assumption is only valid if the coupling parametersg1=g2. The analysis involve
ingle mode cavities, but ignored spontaneous emission from the qubits and the cavity d
ere, we will extend this analysis to consider that two qubits separated by an arbitrary distL,
nd we would like to highlight briefly why the qubit-qubit entanglement measure might
ifferent features in the presence of the distance between the qubits. Figure 3(a) shows the bas

eatures of the behavior of the qubit-qubit entanglement with different values of the di
etween the qubitsL. We remark that the entanglement has some kind of periodicity[see Fig. 3(a)]
hen L=p /2k. It is important to note here that, the minimum value of the entangleme

IG. 2. This figure presents the results of a numerical calculation of the time evolution of the negativity as a me
ntanglement.f=p /4, b1=0, L=0 and for different values of the timing of an applied phase stept, where (a) t
13p /4, (b) t=4p, and(c) t=11p /4.

IG. 3. Plot of the negativity as a measure of entanglement against the scaled timegt, the parametersb1=0, f=0, and

=1, where(a) kL=p /2 (solid curve), andkL=p /3 (dotted curve). (b) The same as(a) but r =0.2.
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chieved, i.e.,IEt
*rstd<0 which means that the two qubits are separable and also the ma

alues IEt
*rstd=1 is reached which indicates maximum entanglement between the two

herefore, one can say that an appropriate choice of distance between the two qubits lea
ne hand, a complete separability between the qubits at other values of the interaction tim

he other hand maximum entanglement in other intervals of the interaction time. Meanwh
eneral feature of the entanglement in the caseL=p /3k is dramatically changed[see Fig. 3(a)].
his behavior is affected once the mixed state parameterr is decreased[see Fig. 3(b)]. It is noticed

hat the amount of entanglement is strongly decreased due to settingL=p /2k andr =0.2, while it
ncreased again whenL=p /3k. Generally speaking, because of the influence of a mixed
arameter on entanglement, the amplitude of local maxima and minima decrease with in

he deviation ofr from the unity. However, asr takes values close to the unity we return to
ame behavior in the initial pure state setting, i.e.,r= ue1,g2l ^ ke1,g2u. However a slight change
therefore, dramatically alters the entanglement. This is remarkable as the entangle

trongly dependent on the initial state, which can be entangled or unentangled. Here, we
hat it can be done by using a different initial state, which is strongly affected by the qubit n
epresentation. This naturally leads to the use of occupation numbers of different single-qu
tates in quantifying identical-qubits entanglement even when the number of qubits is con
he occupation-numbers of different modes have already been used in quantum comput41

To this end, we devote the discussion in Fig. 4 to consider the effect of these di
arameters on the probability of the first qubit(or atom) in excited state, the probability of t
econd qubit in excited state and probability of emission of photon pair. We would like to r
hat when qubit 2 is initially prepared in eitherug2l sr =1d or ue2l sr =0d, which are stationary stat
or qubit 2, there will be substantial changes to the evolution of qubit 1 due to phase
ntroduced in the field through the dispersive interaction. The subsystem qubit 2 plays the

single qubit reservoir,42 in the sense that it will induce modifications in the subsystem qu
ithout having its state changed. If we increase the value of Stark shift parameterb1=0.8g, we
ave the situation shown in Fig. 4(b). We note a stronger modulation in the oscillations and a

IG. 4. This figure presents the results of the numerical calculations of the time evolution of the probability of
ubit in excited state(solid line), probability of the second qubit in excited state(dotted line), and probability of emissio
f photon pair(dashed line), where(a) f=0, b1=0, kL=0, r =1, (b) b1=0.8g, (c) f=0, b1=0, kL=p /3, r =1, and(d) f=0,

1=0, kL=p /2, r =1.
eparture from ordinary Rabi oscillations is verified(see Fig. 4). The populations clearly exhibit
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he characteristic features observed in the entanglement behavior and provide us with info
bout the discrete nature of the quantized atom-field interaction. The remaining task is to
nd compare the results presented above for the entanglement degree with another
ntanglement measure such as the concurrence.43 One, possibly not very surprising, princip
bservation is that the numerical calculations corresponding to the same parameters, wh
een considered above, give nearly the same behavior. This means that both the entangle

o the negativity and concurrence measures are qualitatively the same.
There exists a neat explanation from the phase space point of view. Next, we will comp

elevant field quasiprobability in phase space. TheQ-function computed for the field reduc
ensity matrixr fstd in the following form:

Qsad =
1

p
kaur fstdual,

hereual is a coherent state. The quasiprobability will be obtained in terms of probability a
udes and photon occupation amplitudes. We now attempt to identify regions in the
imensional space spanned by the quasiprobability function that is inhabited by physica

.e., characterized by legitimate density matrices. Since the timing of an applied phase st
arge influence on the result, therefore to complete our work we shall consider in this dis
he quasiprobability function and how it is affected by the phase step in two different cas
his purpose we have plotted Figs. 5 taking into consideration the same values of all param
n the above figures. For instance we have depicted theQ-function in Fig. 5(a) for b1=0, L=0,
=1, andgt=p /2, when the timing of an applied phase stept=11p /4 andf=p /2. We observ
n general there is no change in the figure shape, i.e., there is no influence on theQ-function. The
-function feature is exactly similar to that observed in the absence of the phase shift. As
e increase the values oft such thatt=3p, which means that the phase step is applied a
oment of maximum probability of pair photon emission, then we can observe a drastic
ccurring in the function behavior. Therefore the shape of the quasiprobability is very sens

he choice of the application time of the phase step. Meanwhile, the general feature of t
iprobability distribution function in the caset=13p /4, is almost identical to that in the previo
ase in which the timing of an applied phase stept=11p /4.

V. CONCLUSION

We have investigated the entanglement in the context of an ensemble of two identica
or atoms) coupled to a cavity field which can become entangled with one another, even wh

IG. 5. Plot of quasiprobability function(Q-function) as a function ofX=Resad andY=Imsad, where the coherent sta
ere is given byual=expf−uau2/2gan/În! unl, a=X+ iY. The scaled timegt=p /2, L=0, b1=0, r =1. (a) corresponds to th
ase where the phase shiftf=p /2, the timing of phase shiftt=13p /4 and(b) the same as in(a) but t=3p.
o not interact directly with each other. We have treated the more general case where initial states
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f the two qubits can be mixed with any state of the field. We have obtained an exact solu
he density operator taking into account the presence of Stark shift and an instantaneou
hift experienced by one of the atoms that can be easily interpreted physically, and thus p

nsight into the behavior of more complicated multiqubit systems. It is found that entangle
tates for this generalized case did not have the same entanglement as the mixed st
ntanglement is measured via the negativity, currently defined only for an arbitrary system
ubits, but similar analysis can in principle be applied to other systems such as a bipartite
ith arbitrary dimensions. The influences of the Stark shift and the distance between th
ubits have been presented. We have elucidated our studies by giving a detailed anal
xplanation of the predicted entanglement, intensity, and quasiprobability phenomena w
ero values of the phase shift. The effect of phase shift is discussed when we apply a ph
t the moment of the maximum or minimum probability of photon pair emission. Finally, we
oted that the inclusion of the Stark shift in the present model, under suitable conditions

ead to zero values of the entanglement, an effect that may have important consequences
onlinear processes. Finally, in addition to quantum computing implementations involving

ical particles, the result here is also useful for many-body physics.
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Based on the standard fact that any matrix potentialu=usxd determines a family of
Jost solutions whose parameter runs analytically(continuously) on the(closed) half
planes, respectively, the zeros of a suitable matrix valued Wronskian of a Jost
solution pair are explored. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1795987]

. INTRODUCTION

Jost and Faddeev and their Wronskians play a crucial role in the direct and inverse sc
heory of the usual Schrödinger equation on the line(see, e.g., Deif and Trubowitz in Ref. 1). The
act that the Jost solutions are scalar functions allows one to prove that their Wronskians
nly of the spectral variable, to relate it to the entries of the scattering matrix and to the
tates as well as to use it as a tool for studying asymptotic properties for small values
pectral variable.

All of this changes when studying the matrix equation of Schrödinger-type where th
olutions generalize and become matrix functions. One can define the Wronskian following
nd Kamijo in Ref. 2, Martínez Alonso and Olmedilla in Ref. 3, and Aktosun, Klaus and Va
ee in Ref. 4. The basic facts such as dependence upon the spectral variable, relatio

cattering matrix coefficients and bound states and facilitation of the study of asymptotic b
s the spectral variable tends to zero, still go through. The major inconvenience is the
tudy the direct and inverse theory for the matrix equation of Schrödinger-type on the l
atrix potentials together with its adjoint at the same time, or to restrict oneself to self-a
otentials.

Here we shall consider a different way to define a Wronskian that only involves data p
ng to the matrix potential but not to its adjoint. It has the disadvantage that depends not
he spectral variable and does not satisfy an antisymmetry relation but allows one to relate
o the bound states. The goal of this work is to show that, under suitable conditions, the
f zeros is finite.

There will be four additional sections. Section II will be dedicated to quoting issues abo
xistence and asymptotic behavior for large values of both spatial and spectral variables of
nd Faddeev matrix solutions of Schrödinger-type for any matrix potential. Section III wil
ith the analyticity and continuity on the half planes and the closed half planes, respectiv

he Faddeev and Jost matrix solutions and their derivatives with respect to the spectral
ncluding the asymptotic behavior for small values. All of this material in these sections is
ard. Its formulation and proofs are as those for the usual Faddeev and Jost solutions(see Ref. 4).

n Sec. IV we shall define a Wronskian for the Jost matrix solutions, state and prove its pro
hat imply that, under certain conditions its zeros form a discrete set in the upper half plane
ast section(Sec. V), we shall give some comments and conclude from the results of Sec. I
he number of bound state wave numbers is finite for suitable non-self-adjoint matrix pote

)
Electronic mail: ccg@correo.azc.uam.mx
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I. JOST AND FADDEEV SOLUTIONS

By a matrix potentialu of Faddeev type we shall mean a square-matrix-valued functu
suijd1øi,jøn, wheren is a positive integer fixed, defined on the real line whose entry functiouij

re complex valued integrable functions satisfying the Faddeev condition(see Ref. 5): e−`
` s1

uxuduuij u,` ,1ø i , j øn
For these(nonself-adjoint) matrix potentials of Faddeev-type there exists a one-param

amily of solutions for the spectral problem for the matrix equation of Schrödinger-type.
Proposition 2.1: Let u be a matrix potential of Faddeev-type. Then the spectral problem

wxx + k2w = uw, s2.1d

as a solution for each complex number k, i.e., a C1-square matrix valued function x°fsx,kd
ith second derivative defined on the real line satisfying the differential matrix equation in.

The second order linear differential matrix equation(2.1) may be converted into an integ
atrix equation of Volterra-type for which we need a classification of solutions according t
symptotic behavior. For instance,

e−kixc+sx,kd =E
x

` 1 − e2iksy−xd

2ik
e−kiyusydc+sy,kddy.

or all realk the iterates are dominated in the spectral norm by the corresponding iterate
calar equationssx,kd=1+ex

`sy−xdiusydissy,kddy, implying (see Ref. 1)

ie−ikxc+sx,kd − In3ni , ssx,kd − 1 = o
,=1

`
1

,Fs1 + maxs0,−xddE
x

`

s1 + uyudiusydidyG,

= expsf1 + maxs0,−xdgE
x

`

s1 + uyudiusydidyd − 1

ø expSE
x

`

s1 + uyudiusydidyD − 1,x ù 0, s2.2d

here we used that maxs0,−xd=0 for xù0 andi ·i is any norm over the complexn3n matrices
inceu is a matrix potential of Faddeev-type, we haveex

`s1+uyudiusydidy→0 asx→ +`. Hence
iven a positive numbere.0, there exists a positive numberN such that ie−ikxc+sx,kd
In3ni,e, for all k, Im kù0 andx.N. All of this is summarized as follows.

Proposition 2.2: Let u be a matrix potential of Faddeev-type. Then there exist uniqu1

atrix solutions with second derivative, x°f±sx,kd, x°c±sx,kd for the spectral (2.1) proble
ith the following asymptotic behavior.

On the closed upper half k plane,
f+sx,kd,e−ixkIn3n as x→−`, c+sx,kd,eixkIIn3n as x→`.

On the closed lower half k plane,
f−sx,kd,eixkIn3n as x→−`, c−sx,kd,e−ixkIn3n as x→`, and are called the Jost solutions.

The Jost solutionsc±, f± without the factorse±ixk, for examplem+sx,kd=e−2kixc+sx,kd, are
ere denoted bym±, m̂± and called the Faddeev solutions(see Ref. 4), respectively.

In the sequel, the statements will be formulated in terms of the Jost and Faddeev s
ertaining to the matrix potentialu of Faddeev-type.

Corollary 2.3: There exist a numberN and a neighborhood Vsx0d for each real number x0 in
he intervalsN , +`d such that the function k° fc+sx,kdg−1 is well-defined on the whole clos
pper half plane for all xPVsx0d, or equivalently, the function x° fc+sx,kdg−1 is well defined o
sx0d for all k , Im kù0.

Proof: It is enough to prove that there exist a numberN and a neighborhoodVsx0d for each
eal numberx0 in the intervalsN , +`d such that then3n matrix c+sx,kd is invertible for al

`
, Im kù0 and for allxPVsx0d. First of all defineGsxd=s1+maxs0,−xddex s1+uyudiusydidy. We
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ave just seen that fork, Im kù0 ie−ikxc+sx,kd−In3ni,expfGsxdg−1 [see inequality in(2.2)].
husc+sx,kd is a nonsingularn3n matrix for everyk, Im kù0 if the last member of this estima

s strictly less than 1. The latter is equivalent to requiring that the expressionGsxd, lns2d. How-
ver, Gsxd is monotonically nonincreasing inx, tends to +̀ as x→−` (unlessusxd=0 almos
verywhere) and vanishes asx→`. Letting N stand for the supremum of all real x for wh
sxd=lns2d, we see thatfc+sx,kdg−1 is well-defined for allx.N, irrespective of the choice
, Im kù0. Thus for any real fixedx0P sN ,`d, by choosing asVsx0d, the entire interval itse
N ,`d or any open subset of it containingx0, we get the claim. h

The Jost solutions have the following asymptotic behavior of the spectral variab
symptotic relations.

Proposition 2.4: For x on the real line,
f+sx,kd,e−ixkIn3n, c+sx,kd,eixkIn3n as k→`, Im kù0
f−sx,kd,eixkIn3n, c−sx,kd,e−ixkIn3n as k→`, Im kø0.
Proposition 2.5: There exist unique matrix functions a,, ar, b,br such that we have th

symptotic relations c+sx,kd,seikxa,skd+e−ikxb,skdd as x→−` and f+sx,kd,e−ikxarskd
eikxbrskd as x→ +` for kÞ0 on the real line.

II. ANALYTICITY AND CONTINUITY OF THE JOST AND FADDEEV SOLUTIONS

Theorem 3.1: Let u a matrix potential of Faddeev type. Then

(1) The functions k° sd,m+/dx,dsx,kd, k° sd,m̂+/dx,dsx,kd are analytic on the open upp
half plane. Fix a complex number k0 Im k0ù0.

(2) On fa , +`d, sd,m+/dx,dsx,kd,sd,m+/dx,dsx,k0d as k→k0, Im kù0, and on s−` ,bg,
sd,m̂+/dx,dsx,kd,sd,m̂+/dx,dsx,k0d as k→k0, Im kù0, wherea ,b are any real num
bers fixed and,=0,1.

(3) Similar results hold for the maps k° sd,m−/dx,dsx,kd, k° sd,m̂−/dx,dsx,kd, ,=0,1.

Remark: The proof for,=1 follows at once from establishing the result for,=0. For the Jos
olutions, the conclusion of Theorem 3.1 can only be true on the close half planes unifor

in any finite interval of the real line, respectively. Note limx→`c+sx,kd
limx→`lim k→k

Im k.0
c+sx,kd does not exist for realkÞ0 and fork=0 such limit is equal to In3n

ecausec+sx,kd,exkIn3n asx goes to`, but lim k→k
Im k.0

limx→`c+sx,kd=0n3n. Hence for Jost so

utions the uniform convergence as in Theorem 3.1 is only true for any realk and x in a finite
nterval.

Theorem 3.1 has a straightforward consequence for the Faddeev and Jost solutions.
Corollary 3.2: The Faddeev and Jost solutions together with their derivatives respect

patial variable x are analytic on the open half planes and continuous on the closed upp
lanes, respectively.

V. A WRONSKIAN OF THE JOST SOLUTIONS

Let us consider the Wronskian(see Ref. 6)

Wsc,wd = cc8c−1w − cw8 = − c2 d

dx
sc−1wd, s4.1d

here a prime indicates derivative respect the variablex.
In contrast to the Wronskian 2-4,Wsc ,wd=fc8g†w−fcg†w8, ours depends on wherec−1 is

efined and on the variablex, and does not satisfy the usual antisymmetry relationWsc ,fd
−Wsf ,cd† but allows one to relate it to the bound states for sufficiently large real numbx0

hich is sufficient for the purposes of this work.
By virtue Corollary 2.3, the Wronskian is defined on the closed upper half plane for an

umber fixedx0 large enough and Corollary 3.2 implies its analyticity and continuity.

Proposition 4.1: Let x0 be a fixed real number large enough according to the Corollary 2.3.
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hen the Wronskian k°Wsc+s· ,kd ,f+s· ,kddsx0d is defined on the closed upper half plane, ana
n the open upper half plane and continuous on the closed upper half plane.

Similar results for the matrix WronskianWsc−,f−d can be obtained in the same way. In
equel, we generate results only for the matrix Wronskian in(4.1) for the Jost solutionc+, f+.

Proposition 4.2: The setWx0
=hk, Im kù0:Wsc+s· ,kd ,f+s· ,kddsx0d=0j is bounded for an

xed real number x0 large enough as in the previous proposition.
Proof: By Proposition 2.3,Wsc+s· ,kd ,f+s· ,kddsx0d,s−2ikdIn3n ask→`, Im kù0. Therefore

he setWx0
is bounded as a set of the closed upper half plane for any real numberx0 large enough

From now onx0 will be a fixed real number large enough which means a real number c
ccording to Corollary 2.3.

Proposition 4.3: The setWx0
satisfies that

Wx0
= hk,Im k ù 0: ∃ a matrix c= cskd such thatf+s·,kd ; c+s·,kdcj.

roof: Fix x0 a real number as the statement, i.e., as in Corollary 2.3.
Let k0 a complex number in the closed upper half planesIm k0ù0d where f+s· ,k0d

c+s· ,k0dc being c=csk0d a constant matrix. It is straightforward to see that by replacing
dentity in the expression of the Wronskian given in(5.1) Wsc+s· ,k0d ,f+s· ,k0ddsxd=0n3n for any

on the real line, wherec+sx,k0d is defined(Corollary 2.3) in particular forx=x0. Thus Wx0
ontains the set.

Take k0PWx0
. By Corollary 2.3,x° fc+sx,k0dg−1 is well-defined on a neighborhoodVsx0d

k0, Im k0ù0d. Thus writef+sx,k0d=c+sx,kdcsx,k0d for xPVsx0d, wherex°csx,k0d is differen-
iable at x=x0 and the Wronskianx°Wscs· ,k0d ,fs· ,k0ddsxd is well-defined onVsx0d. Since

sc+s· ,k0d ,f+s· ,k0ddsx0d vanishes, then in view of (4.1), Wsc+s· ,k0d ,f+s· ,k0ddsx0d
c+sx0,k0dc8sx0,k0d=0n3n. From this and the choice ofx°csx,k0d,

f+sx0,k0d = c+sx0,k0dc

f+8sx0,k0d = c+8sx0,k0dc,

eingc=csx0,k0d. Thusf+, c+c are two solutions of the second order linear diferential equ
2.1) that agree atx0 as well as their derivatives. By uniqueness, we have thatf+s· ,k0d

c+s· ,k0dc. HenceWx0
is contained in the set, which finally proves the claim. h

Proposition 4.4: Wx0
is a discrete set of the open upper half plane.

Proof: This follows at once because the Wronskiank°Wsc+s· ,kd ,f+s· ,kddsx0d is analytic on
he open upper half plane(Proposition 4.1), therefore, its zeros are isolated in the upper half p
howing the claim. h

Proposition 4.5: Letk0Þ0 be a real number where the zeros in the open upper half pla
he Wronskian k°Wsc+s· ,kd ,f+s· ,kddsx0d accumulate. Then arsk0d=0.

Proof: Let k0 be as in the statement. By Proposition 4.5 the Wronskian is continuous
losed upper half plane which shows thatWsc+s· ,k0d ,f+s· ,k0ddsx0d=0. By virtue of Propositio
here exists a constantc=csk0d such thatf+sx0,k0d=c+sx0,k0dc. This together with Propositio
.5 imply f+sx,k0d,eixk0c and f+sx0,k0d,se−ixkarsk0d+eixk0brsk0dd as x→ +`. Thus

rsk0d=0. h

Proposition 4.6: Assume the existence oflim k→0
Im kù0

Wsc+s· ,kd ,f+s· ,kddsx0d /k and the accumu

ation of zeros of the Wronskian k°Wsc+s· ,kd ,f+s· ,kddsx0d to k0=0. Then
sd/dkdWsc+s· ,kd ,f+s· ,kddsx0duk0=0=0.

Proof: Let hknjn be a sequence of complex numbers in the upper half planesIm kn.0d which
ccumulates to 0 and wherek°Wsc+s· ,kd ,f+s· ,kddsx0d vanishes. ThenWsc+s· ,knd ,f+s· ,kndd
sx0d /kn=0 for all n. Hence by the first part of the hypothesisusd/dkdWsc+s· ,kd ,f+s· ,kdd
sx0duk0=0= lim k→0

Im kù0
Wsc+s· ,kd ,f+s· ,kddsx0d /k=0n3n where we use the fact th
sc+s· ,0d ,f+s· ,0ddsx0d=0. h
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. CONCLUSIONS

The usual Schrödinger equation has scalar Jost solutionsc+sx,kd,eikx as x→ +`, f+sx,kd
e−ikx as x→−`. This fact allows to prove that their WronskianWsc+,f+d=c+8f+−c+f+8 is

ndependent of the real variablex and to relate it to the scattering coefficients by using
symptotic relations fork in the real line c+sx,kd,a,skdeikx+b,skde−ikx as x→−` and

+sx,kd,arskde−ikx+brskdeikx as x→−`, kÞ0. It also allows one to relate bound state wa
umbers to the Wronskian which arise as zeros ofa,skd=arskd on the positive imaginary axis a

o use it as a tool for studying asymptotic properties ask→0, Im kù0. Since, in addition
a,skdu2− ub,skdu2=1 for real kÞ0, the continuity ofk°a,skd in the closed upper half pla
mplies the finiteness of the number of bound state wave numbers(it also implies that they cann
ccumulate to any real numberkÞ0).

As we have seen this changes when studying then3n matrix equation of Schrödinger ty
here the Jost solutions generalize and becomen3n matrix functions. One may consider t
ronskianWsc+,f+d=fc+8g†f+−fc+g†f+8, where † denotes the conjugate transpose,f+ is a Jos

olution pertaining to then3n matrix potentialusxd, andc+ is a Jost solution pertaining to t
atrix potentialusxd†. The basic stuff such asx-independence, relationships to scattering co

ients and bound states and facilitation of the study of smallk asymptotic, still go through(see
ef. 4). The major drawback is the need to study the direct and inverse scattering theory
atrix Schrödinger equations on the line for the potentialsu andu† at the same time, or to restr
neself to self-adjoint potentials. On the other hand, one may consider the WronskianWsc ,wd
−c2sd/dxdsc−1wd to obtain a Wronskian which is not well-defined for allc, not independent o

he spatial variablex and does not satisfy an usual antisymmetry relationWsc ,fd=−Wsf ,cd† but
nly involves data pertaining tou (and not data pertaining tou†) and allows to relate it to th
ound states(also to the scattering matrix coefficients).

It is indicated by Boris Pavlov(see Refs. 7 and 8) that the(scalar) Schrödinger equation on t
alf-line with complex potential has finitely many discrete eigenvalues if the potential d
xponentially, but often infinitely many discrete eigenvalues if the potential decays algebr

t is a standard argument, involving the observation that the resolvent of the full-line Schrö
quation is a rank one perturbation of the direct sum of the resolvents of the Schrödinger e
n the positive and negative half-lines, to see that this result goes through for the Schr
quation with complex potential on the full line. The standard result that Schrödinger eq
ith a Faddeev class potential[i.e., one wheres1+uxudqsxd belongs toL1] has only finitely man
iscrete eigenvalues, is only true for real potentials. Here it has been studied a generaliz

he class of Schrödinger equations considered by Boris Pavlov, but has assumed a Faddee
ondition on the matrix potential. Unfortunately, the standard argument of excluding accum
f discrete eigenvalues on the real line requires thatialskdiù1. However, the identit

lskd†alskd−blskd†blskd= In3n on which this can be based, has only been proved for selfa
atrix potentials(see Ref. 4). For complex potentialssn=2d this identity would imply tha

lsk0d=0 andblsk0d= ± i at a real numbersk0 where the discrete eigenvalues accumulate(here it is
sed thatk°alskd is continuous in the closed upper half plane). Thus even in the case that t

dentity will hold, we cannot conclude that the number of discrete eigenvalues is finite for a
otential which is not self-adjoint.

It is well-known that the norm of Jost solutionf+s· ,k0d which is a bound state is a squ
ntegrable function, therefore, the complex numberk0 belongs to the open upper half plane,
m k0.0 and there exists a constant matrixc=csk0d such thatf+s· ,k0d;c+s· ,k0dc. This fact
ogether with the discussion in the previous section yield to the following conclusion.

Theorem 5.1: Assume the existence oflim k→0
Im kù0

Wsc+s· ,kd ,f+s· ,kddsx0d /kÞ0 and arskdÞ0

or real kÞ0. Then the number of bound state wave numbers is finite.
Proof: Let x0 be a number large enough as indicated in the Corollary 2.3. In view of P

ition 4.3, we only need to consider the cardinality ofWx0
. Given a complex numberk0PWx0

,

m k0.0, the discreteness ofWx0

(Proposition 4.4) shows that there exist a neighborhoodVsk0d,
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uch thatWx0
ùVsk0d=hk0j (the zeros of the Wronskian cannot accumulate to complex numb

he upper half plane).
Consider a real numberk0Þ0. In view of Proposition 4.5 andask0dÞ0 by hypothesis, th

eros of the Wronskian cannot accumulate tok0. In addition, by virtue of Proposition 4.6 a
im k→0

Im kù0
Wsc+s· ,kd ,f+s· ,kddsx0d /kÞ0 by hypothesis, the zeros of the Wronskian cannot acc

ate to 0. Thus the zeros of the Wronskian in the upper half plane cannot accumulate t
umbers. In consequence, for each real numberk0, we can find a neighborhoodVsk0d such tha

x0
ùVsk0d=x, k0Þ0 andWx0

ùVs0d=h0j. Note thatøk,Im k.0Vskdøøk,Im k=0Vskd is an open
overing forWx0

which is a compact set of the closed upper half plane(Proposition 4.2). Hence
here exist a finite collection of complex numberski , Im ki .0,i =1, . . . ,,1, and real numbe

j , j =1, . . . ,,2, such thatøi=1
,1 Vskidøø j=1

,2 Vsk jd8Wx0
. By the choice of the covering, we mu

avehk1, . . . ,k,1
jø hk1, . . . ,k,2

j8Wx0
. Since the set of the bound state wave numbers is a s

f both the open upper half plane andWx0
sets, it is totally contained inhk1, . . . ,k,1

j, which shows
he claim. h
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n the Bose condensation in some model of a nonideal
ose gas

D. P. Sankovich
V. A. Steklov Institute of Mathematics, Gubkin str. 8, 119991 Moscow, Russia
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A model of a nonideal Bose gas with a repulsive interaction is considered. It is
proved that there is not macroscopic occupation of the ground state in the thermo-
dynamic limit in this model, but nevertheless the generalized condensation
occurs. ©2004 American Institute of Physics.[DOI: 10.1063/1.1795971]

. INTRODUCTION

The experimental creation of Bose condensates(for a review of the theory of trapped Bos
ondensed gases with extensive references in the literature see Ref. 1) has sparked interest in th
roperties. One of the most important and knotty problems is connected with the rigorous p

he existence(or absence) of Bose condensation for nonideal(imperfect) Bose systems. Anoth
spect which in particular has received much attention is the relation between nature of i

icle interaction and Bose condensation.
Schröder2 considered a model of a nonideal Bose gas contained in ad-dimensionalsdù3d

ubical box with Dirichlet boundary conditions on two opposite faces and periodic bou
onditions on the remaining surface. From the results of this work the absence of macr
ccupation of the zero momentum one particle state was ensued. In Ref. 3 the model f

ooking like Schröder’s model has been studied. The Hamiltonian of Michoel and Ver3

iffers from the Huang–Yang–Luttinger Hamiltonian4 by the plus sign in the additional ter
hich is purely quantum mechanical contribution to the mean-field interaction energy. M
nd Verbeure, referring to the approximation theorem proved in Ref. 5 showed that their
as so-called nonextensive Bose condensation, i.e., there is generalized condensation6,7 without
acroscopic occupation of the ground state level.

In the following a model of a nonideal Bose gas, which is some minimal generalization
ichoel–Verbeure model, is considered. By the Bogoliubov method8–10 we prove that there is n
ose condensation,11 in which the total condensate is in the ground state so that the groun

s macroscopically occupied. The aim of this article is to analyze the simple diagonal mode
he framework of the general ideas and methods, which are referred to as the Bogoliubo
f superfluidity. They were introduced in Refs. 8 and 9 and later further extended by Gini10

In Sec. II we give a definition of the model and present the main result. In Sec. III we
he main theorem. Section IV contains a few concluding remarks. In particular, using the
f Ref. 3 we prove that the model has the generalized condensation.

I. MODEL AND MAIN RESULT

We consider a system of spinless identical nonrelativistic bosons of massm enclosed in
entered hypercubic boxL,Rd, dù3, of volumeV= uLu=Ld with periodic boundary condition
or the wave functions. The Hamiltonian of the model is given by

ĤL = o
pPL*

epn̂p +
l

V
N̂L

2 +
g

2V
o

pPL*
n̂p

2, s1d

2
hereep=p / s2md, positive constantsl andg do not depend onV,

4288022-2488/2004/45(11)/4288/13/$22.00 © 2004 American Institute of Physics
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N̂L = o
pPL*

n̂p,n̂p = âp
†âp.

ereâp
#=hâp

† or âpj are the usual boson creation(annihilation) operators for the one-particle st

psxd=V−1/2 expsipxd, pPL*, xPL, acting on the Fock spaceFL= %n=0
` HB

snd, where HB
snd

fL2sLndgsymm is the symmetrizedn-particle Hilbert space appropriate for bosons, andHB
s0d;C.

he sums in(1) run over the dual set

L * = Hp P Rd:pj =
2p

L
nj,nj = 0, ± 1, ± 2, . . . ,j = 1,2, . . . ,dJ .

he Michoel-Verbeure model is a special case of(1) whereg=l. Obviously, the Hamiltonian(1)
s superstable.12

Let us prove, that in the case of model(1) for everypPL* \ h0j

lim
V→`

kn̂plĤLsmd

V
= 0, s2d

here k¯lĤLsmd denotes the finite-volume grand-canonical Gibbs state for the Hamilt
ˆ

Lsmd; ĤL−mN̂L andm is the chemical potential.
First, we define the Bogoliubov inner product13–15(or the Duhamel two-point function) for the

amiltonianĜ and for any two operatorsÂ, B̂ by

sÂ,B̂dĜ =E
0

1

dxkexbGÂe−xbGB̂lĜ. s3d

ere k¯lĜ denotes the appropriate thermal average with respect to the HamiltonianĜ and the
nverse temperatureb. The Bogoliubov inner product is positive semidefinite. It also satisfie
ymmetry property, so

sÂ,B̂dĜ = sB̂,ÂdĜ,sÂ†,ÂdĜ ù 0. s4d

he properties(4) follow from the definition(3). Noting that

trse−xbGfÂ,bĜge−s1−xdbĜB̂d =
d

dx
trse−xbGÂe−s1−xdbĜB̂d

e have the relation

kfÂ,B̂glĜ = sfÂ,bĜg,B̂dĜ. s5d

We then prove the following result.
Lemma 1: In the case of model (1) for every pPL* \ h0j one has

sâp
†,âpdĤL

ø sbepd−1, s6d

ith the Bogoliubov inner product defined in the canonical ensemble.

Proof: Take Â= âp, B̂= âp
†, Ĝ=ĤL in the equality(5). Then it becomes

1 = bepsâp
†,âpdĤL

+ bsâp
†,ĈpâpdĤL

, s7d
here
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Ĉp ;
2

V
Sg

2
n̂p + lN̂D +

1

V
Sl +

g

2
D . s8d

ote thatĈp is a positive Hermitian operator and it commutes withĤL. Then, because of(4), the
econd term in the right-hand side of(7) is non-negative. This completes the proof of Lemm

Note that the inequality(6) has a highly general nature, expressing a so-called local Ga
omination property.16

Lemma 2: In the case of model (1) the condition

lim
V→`

1

V
kn̂plĤL

= 0 s9d

s satisfied for every pPL* \ h0j, wherek¯lĤL
denotes the finite-volume canonical Gibbs state

he Hamiltonian ĤL.
Proof: Use the Falk-Bruch inequality.14,17 Then

kn̂plĤL
ø

1

2
FÎcp

s0dbp
s0d cothÎ cp

s0d

4bp
s0d − 1G , s10d

here

bp ; sâp
†,âpdĤL

ø bp
s0d = sbepd−1,

cp ; kfâp
†,fbĤL,âpgglĤL

ø cp
s0d = bSep + 2lr +

2

V
sl + gdkn̂plĤL

+
1

V
Sl +

g

2
DD , cp

s0d ù 0

ndr is the mean number of particles per unit volume for model(1). From cothx,1+1/x, x.0,
ne deduces

1

V
kn̂plĤL

ø
1

2V
FÎep + 2lr + sl + gdkn̂plĤL

/V + sl + g/2d/V

ep
+

2

bep
− 1G .

ince

inf
pPL*\ h0j

ep =
2p2

m
V−2/3,

e obtainkn̂plĤL
/V,V−1/3. The Lemma 2 is proved.

Condition (2) is a consequence of condition(9). It follows from the formula

kn̂plĤLsmd = JL
−1o

N=0

`

expF− bVS fN − m
N

V
DGkn̂plĤL

, s11d

here the grand canonical partition function is given by

JL = o
N=0

`

expF− bVS fN − m
N

V
DG

ndN-particle free energy is

fN = −
1

bV
ln trHB

sNde−bĤL.

¯
amely, let us definer by the condition
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inf
N/V

FNSN

V
D = FNsr̄d ; F̄N.

n virtue of convexity of the free energy as a function ofr12 for N/V− r̄.j.0 one gets

FNSN

V
D ù a1 + a2SN

V
− r̄ − jD ,

herea1=FNsr̄+jdù F̄N+s, s.0, a2=FN8 sr̄+jd.0. Furthermore, foruN/V− r̄u,j8,j we have

Nø F̄N+s /2. Then we can write the following lower bound:

JL ù o
uN/V−r̄u,j8

exps− bVFNd ù 2j8V expF− bVSF̄N +
s

2
DG .

rom Lemma 2 and(11) we get, for everypPL* \ h0j andV large enough,

kn̂plĤLsmd ø c1JL
−1o

N=0

`

N2/3 exps− bVFNd

= c1JL
−1 o

0øNøVsr̄+jd
N2/3 exps− bVFNd + c1JL

−1 o
NùVsr̄+jd

N2/3 exps− bVFNd

ø c1sr̄ + jd2/3V2/3 + c1JL
−1 o

NùVsr̄+jd
N2/3 expH− bVFa1 + a2SN

V
− r̄ − jDGJ

ø c1sr̄ + jd2/3V2/3 + c2 expS−
sV

2
D ,

herec1 andc2 are some positive constants.(2) follows from the last relation.
To study the behavior ofkn̂0lĤLsmd /V we are concerned with the Bogoliubov–Ginibre

roach. Let us first rewrite the HamiltonianĤLsmd in the form

ĤLsmd = − mâ0
†â0 + o

pPL*,pÞ0
sep − mdn̂p+

l

VFâ0
†â0

†â0â0 + â0
†â0 + 2â0

†â0 o
pPL*,pÞ0

n̂p + S o
pPL*,pÞ0

n̂pD2G
+

a

2VSâ0
†â0

†â0â0 + â0
†â0 + o

pPL*,pÞ0
n̂p

2D . s12d

ccording to the Bogoliubov method,18 we now replace

â0 → cV1/2, â0
† → c̄V1/2, s13d

herecPC and the bar means complex conjugation. So we have the approximating Ham

ĤLsm,cd = ĤL
s0dsm,cd + ĤL8 smd, s14d

here

ĤL
s0dsm,cd = VSlucu2 − m +

g
ucu2Ducu2 + Sl +

gDucu2 + 2lucu2N̂L8 ,

2 2
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ĤL8 smd = o
pPL*,pÞ0

sep − mdn̂p +
l

V
N̂L8

2 +
g

2V
o

pPL*,pÞ0
n̂p

2,NL8 ; o
pPL*,pÞ0

n̂p.

fter the canonical gauge transformation to boson operatorsâp
#→exps±i argcdâp

# note that Hamil
onian (14) depends only onc= ucu;Îr0, r0ù0.

Define the grand-canonical pressures

pL = sbVd−1 ln trFL
expf− bĤLsmdg

nd

pLscd = sbVd−1 ln trFL
expf− bĤLsm,cdg

ssociated with HamiltoniansĤLsmd and ĤLsm ,cd, respectively.
Theorem: The model Hamiltonian (1) and the approximating Hamiltonian (14) are the

ynamically equivalent in accordance to Wentzel,19 i.e.,

lim
V→`

sup
c

pLscd = lim
V→`

pL ; p.

The proof of this theorem is given in Sec. III.
Theorem states that the self-consistency parameterc in the Bogoliubov-Ginibre method

etermined by the condition that the approximate pressurepLscd be maximal. If an appropria
quation(self-consistency equation) has the nontrivial solution(this equation always has the triv
olution c=0 for gauge invariant Hamiltonians), then we prove that Bose condensation actu
ccurs in the system under consideration20

r0 = lim
V→`

kâ0
†â0lĤLsmd

V
. 0. s15d

n absence of the nontrivial solution implies an absence of the Bose condensate. Let us pr
he last just and is realized in a considered case.

A necessary condition forpLscd to be maximum is

K ]ĤL
s0dsm,cd
]c

L
ĤLsm,cd

= 0.

y explicit calculations we get the following equation to obtain a nontrivial solution

gr0 = m − 2lr0 −
2l

V
o

pPL*,pÞ0
kn̂plĤLsm,cd −

1

V
Sl +

g

2
D . s16d

rove that forV sufficiently large (16) does not have a positive solutionr0.0. Use the
nequality13,21

kfÂ,fĤ,Â†gglĤ ù 0, s17d

hich is valid for any operatorÂ and for any self-conjugate superstable HamiltonianĤ. TakeÂ

âp
†spÞ0d, Ĥ=ĤLsm ,cd. One gets

m − 2lr0 −
2l

V
o

pPL*,pÞ0
kn̂plĤLsm,cd −

1

V
Sl +

g

2
D ø ep +

2

V
sl + gdkn̂plĤLsm,cd s18d
or all pPL* \ h0j. As in the case of Hamiltonian(1) (see Lemma 2) we get
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lim
V→`

1

V
kn̂plĤLsm,cd = 0

or all pPL* \ h0j. Hence the right-hand side of(18) can be made arbitrarily small forV suffi-
iently large. Thus we conclude that forV→` and for anyg.0 Eq.(16) does not have a positi
olutionr0.0.

II. PROOF OF THEOREM

The following fact10 will be needed below.
Lemma 3: pLùpLscd for all cPC.
For later purpose, we remind a convenient definition of the Bogoliubov approximation,

as proposed by Ginibre. The boson Fock spaceFL is isomorphic to the tensor productF0L

^ FL8 , whereF0L and FL8 are the symmetric tensor algebras constructed on the one-dimen
ubspace of the constant functionsc0=V−1/2, and on its orthogonal complement, respectively.
ny complexcPC, we consider inF0L the coherent vector

ucl = expS− V
ucu2

2
Do

n=0

`
1

n!
sV1/2cdnsâ0

†dnu0l,

here u0l is the vacuum vector ofFL. Then â0ucl=cucl. To every operatorÂ on FL and any

omplex numberc, we can associate the operatorÂscd on FL8 defined by its quadratic form

kw18uÂscduw28l = kw18 ^ cuÂuw28 ^ cl,

here the vectorsuw18l, uw28l lie in FL8 . The transformation from the operatorÂ to operatorÂscd is

alled by Bogoliubov approximation ofÂ. This transformation consists in replacingâ0 and â0
† by

ÎV and c̄ÎV in Â, after Â has been expanded as a normal Vick form. Taking into account
efinitions, we have

trF
L8

expf− bĤLsm,cdg = sup
huwn8lj

o
n

expf− bkwn8uĤLsm,cduwn8lg

= sup
huwn8lj

o
n

expf− bkwn8 ^ cuĤLsmduwn8 ^ clg

ø sup
huwn8lj

o
n

kwn8 ^ cu expf− bĤLsmdguwn8 ^ cl ø trFL
expf− bĤLsmdg.

he sup in these relations is taken over all possible orthonormal bases ofFL8 contained in the form

omain ofĤLsm ,cd. The former inequality is the Peierls’s inequality. The latter is the imme
onsequence of the definition of Bogoliubov’s approximation, since, as the coherent vectorucl can
e taken as the first vector of an orthonormal basis inF0L. This ends the proof of Lemma 3.

We prove the Theorem.
(1) By the Bogoliubov inequality13 and Lemma 3 one gets

0 ø pL − pLscd ø
1

V
kĤLsm,cd − ĤLsmdlĤLsmd. s19d

n order to write the average in the right-hand side of(19), it will be helpful to express th
ˆ ˆ#
amiltonianHLsm ,cd by a Taylor expansion arounda0. Then
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ĤLsm,cd − ĤLsmd = − Â†fâ0,ĤLsmdg + H.c. +
1

2
Â†Â†fâ0,fâ0,ĤLsmdgg + H.c. +Â†fâ0,fĤLsmd,â0

†ggÂ

−
1

2
Â†Â†fâ0,fâ0,fĤLsmd,â0

†gggÂ + H.c. +
1

4
Â†Â†fâ0,fâ0,ffĤLsmd,â0

†g,â0
†gggÂÂ,

s20d

hereÂ; â0−cÎV, Â†; â†− c̄ÎV. The third- and fourth-order terms in(20) are bounded by

−
1

2
Â†Â†fâ0,fâ0,fĤLsmd,â0

†gggÂ + H.c. +
1

4
Â†Â†fâ0,fâ0,ffĤLsmd,â0

†g,â0
†gggÂÂ

= −
3

2V
s2l + gdSÂ2 +

2

3
cÎVÂD†SÂ2 +

2

3
cÎVÂD +

2

3
s2l + gducu2Â†Â ø

2

3
s2l + gducu2Â†Â.

s21d

he terms of first and second order can be combined to give

− Â†fâ0,ĤLsmdg + H.c. +
1

2
Â†Â†fâ0,fâ0,ĤLsmdgg + H.c. +Â†fâ0,fĤLsmd,â0

†ggÂ

= −
1

2
fÂ†Â,fĤLsmd,Â†Âgg + 2Â†fÂ,fĤLsmd,Â†ggÂ −

3

2
Â†fÂ,ĤLsmdg −

3

2
fĤLsmd,Â†gÂ.

s22d

ecause of(17), the Gibbs average of the first term in the right-hand side of(22) is negative an
an be dropped, since we are looking for an upper bound in(19). Since

fÂ,fĤLsmd,Ĥ†gg = − m +
1

V
s2l + gd +

1

V
s2l + gd2â0

†â0 +
2l

V
N̂L8 ø − m +

1

V
s2l + gd +

2

V
s2l + gdN̂L,

e have

2Â†fÂ,fĤLsmd,Â†ggÂ ø 2S2l + g

V
− mDÂ†Â + 4

2l + g

V
ÂN̂LÂ. s23d

We consider the last two terms in the right-hand side of(22). Their averages with respect
ˆ

Lsmd do not depend onc, and are real and equal. Furthermore,

− 2kÂ†fÂ,ĤLsmdglĤLsmd = kfÂ†,fĤLsmd,ÂgglĤLsmd + kfÂ†,fĤLsmd,Âgg+lĤLsmd, s24d

heref. . . , . . .g+ is the anticommutator. The first term in(24) is bounded by

kfÂ†,fĤLsmd,ÂgglĤLsmd ø − m +
1

V
s2l + gd + 2

2l + g

V
r, s25d

herer;kN̂LlĤLsmd. Using a spectral decomposition ofĤLsmd one can estimate the second te
n (24) as10

kfÂ†,fĤLsmd,Âgg+lĤLsmd ø kfÂ,fĤLsmd,Â†gglĤLsmd + 2b−1kfÂ,Â†g+lĤLsmd. s26d
herefore, it follows from(24)–(26) that
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−
3

2
kÂ†fÂ,ĤLsmdglĤLsmd −

3

2
kfĤLsmd,Â†gÂlĤLsmd ø − 3m +

3

V
s2l + gd +

6

V
s2l + gdr

+ 3b−1kfÂ,Â†g+lĤLsmd. s27d

ollecting(21), (23), and(27) we obtain finally the following upper bound for the average in
ight-hand side of the Bogoliubov inequality(19):

kĤLsm,cd − ĤLsmdlĤLsmd ø
2

3
s2l + gducu2kÂ†ÂlĤLsmd + 2S− m +

1

V
s2l + gdDkÂ†ÂlĤLsmd +

4

V
s2l + gd

3kÂ†N̂LÂlĤLsmd + 3b−1kfÂ,Â†g+lĤLsmd − 3m +
3

V
s2l + gd +

6

V
s2l + gdr.

s28d

(2) The next step in the proof of Theorem is to obtain an upper bound forkN̂LÂ†ÂlĤLsmd. We
rite this average as

kN̂LÂ†ÂlĤLsmd = QL + r̄kÂ†ÂlĤLsmd,

here

QL ;KS N̂L

V
− r̄DÂ†ÂL

ĤLsmd

enotes the grand-canonical average and the positive numberr̄ will be defined below. The avera

L can be written as

QL = JL
−1o

N=0

` SN

V
− r̄Dexps− bVFNdkÂ†ÂlĤL

, s29d

hereFN; fN−mN/V, fN represents the free-energy density andJL is the grand-canonical par

ion function associated with the HamiltonianĤL.
Let us partition the sethNj and write the average(29) as

QL ; QL
s1d + QL

s2d + QL
s3d.

ow, we have to estimate from above the every term in this decomposition.

QL
s1d ; JL

−1 o
0øN,Vr̄

SN

V
− r̄Dexps− bVFNdkÂ†ÂlĤL

ø 0,

QL
s2d ; JL

−1 o
Vr̄øNøVsr̄+jd

SN

V
− r̄Dexps− bVFNdkÂ†ÂlĤL

ø jkÂ†ÂlĤLsmd.

erej.0. Finally, we estimate the last termQL
s3d. The free energy is the convex function ofr, so

e have

FNSN

V
D ù a1 + a2SN

V
− r̄ − jD , s30d

¯ ¯ ¯
herea1=FNsr+jd, a2=FN8 sr+jd.0 andr is defined by the condition
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inf
N/V

FNSN

V
D = FNsr̄d ; F̄N.

sing (30), we obtain

QL
s3d ; JL

−1 o
N.Vsr̄+jd

SN

V
− r̄Dexps− bVFNdkÂ†ÂlĤL

ø JL
−1 o

N.Vsr̄+jd
SN

V
− r̄DexpH− bVFa1 + a2SN

V
− r̄ − jDGJkÂ†ÂlĤL

ø JL
−1 o

N.Vsr̄+jd
SN

V
− r̄DexpH− bVFa1 + a2SN

V
− r̄ − jDGJsN + ucu2Vd

= JL
−11

V
exps− bVa1d o

N.Vsr̄+jd
sN − Vr̄d2 exph− ba2fN − Vsr̄ + jdgj + JL

−1sr̄ + ucu2d

3exps− bVa1d o
N.Vsr̄+jd

sN − Vr̄d2 exph− ba2fN − Vsr̄ + jdgj

= JL
−1 exps− bVa1dF 1

V

e−ba2s1 + e−ba2d
s1 − e−ba2d2 + 2j

e−ba2

s1 − e−ba2d2 + j2V
1

1 − e−ba2

+ sr̄ + ucu2dS e−ba2

s1 − e−ba2d2 + + jV
1

1 − e−ba2
DG . s31d

Let us find the lower bound forJL. The convexity implies that for anys.0 and any

ufficiently smallj8, uN/V− r̄u,j8,j, one hasF̄NøFNø F̄N+s /2. Then

JL ù o
uN/V−r̄u,j8

exps− bVFNd ù 2j8V expF− bVSF̄N +
s

2
DG . s32d

utting together the bounds(31) and (32), we obtain

QL
s3d ø a3 expF− bVSa1 − F̄N −

s

2
DG ø a3 expS− bV

s

2
D ,

ith some positive constanta3.
Collecting the estimates above, we obtain that there exist some positive constantsu and v,

ndependent onV, such that

1

V
kÂ†N̂LÂlĤLsmd ø u + vkÂ†ÂlĤLsmd. s33d

herefore, it follows from(33) that there exist two positive constantss1 ands2, independent o
, such that

kĤLsm,cd − ĤLsmdlĤLsmd ø s1 +
s2

2
kÂ†ÂlĤLsmd. s34d

(3) It remains to prove that

lim
V→`

inf
c
F 1

V
kĤLsm,cd − ĤLsmdlĤLsmdG = 0. s35d

he proof is a standard application of the Bogoliubov method.21 Since in the approximatin

amiltonian the gauge symmetry is broken, we introduce
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ĤL
sndsmd ; ĤLsmd − ÎVsn̄â0 + nâ0

†d,

ĤL
sndsm,cd ; ĤLsm,cd − Vsn̄c + nc̄d

ith sourcesnPC breaking the symmetry ofĤLsmd. The best bound in(34) is obtained forc*
kâ0/ÎVlĤ

L
sndsmd, uc* uøM ,`. By the Harris inequality22 one gets

1

2
kfdâ0

†,dâ0g+lĤ
L
sndsmd ø sdâ0

†,dâ0dĤ
L
sndsmd +

b

12
kfdâ0,fĤL

sndsmd,dâ0
†gglĤ

L
sndsmd, s36d

heredâ0
#= â0

#−kâ0
#lĤ

L
sndsmd. The second term in the right-hand side of(36) is bounded by

kfdâ0,fĤL
sndsmd,dâ0

†gglĤ
L
sndsmd ø − m + 4Sl +

g

2
DrL

snd, s37d

hererL
snd;kN̂LlĤ

L
snd /V,`. To get an upper estimate for the first term in the right-hand sid

36), use the formula

sdâ0
†,dâ0dĤ

L
sndsmd = b−1]2pL

snd

]n̄]n
,

ith pL
snd;sbVd−1ln trFL

expf−bĤL
sndsmdg. Without restriction we may assume thatn̄=n=r ù0.

hen

sdâ0
†,dâ0dĤ

L
sndsmd =

1

4br

d

dr
Sr

dpL
snd

dr
D . s38d

enoting

Dsrd ; pL
snd − sup

c
pL

sndscd,

nd using relations(19), (34), (36), and(37), we get

Dsrd ø V−1fs3 + s2sdâ0
†,dâ0dĤ

L
sndsmdg, s39d

heres3=s1+s2bf4sl+g/2drL
snd−mg /12. Multiply both sides of(39) by r, integrate overr from

to R+«, and use the formula(38). Then

E
R

R+«

rDsrddr ø V−1FUs3
sR+ «d2 − R2

2
+

s2

4b
Sr

dpL
snd

dr
DU

R

R+«G .

ote now, that

dpL
snd

dr
=

2

V
kâ0lĤ

L
sndsmd ø 2ÎrL

snd. s40d

herefore,

E
R

R+«

rDsrddr ø V−1Fs3
sR+ «d2 − R2

2
+

s2

2b
ÎrL

snds2R+ «dG . s41d
ake into account, that
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UdDsrd
dr

U ø 2sÎrL
snd + Md. s42d

his estimate follows from the definition ofDsrd and (40). The last inequality gives

DsRd ø Dsrd + 2sr − RdsÎrL
snd + Md, s43d

herer P fR,R+«g. Multiplying (38) by r and integrating, we have

DsRd
sR+ «d2 − R2

2
ø E

R

R+«

rDsrddr + 2sÎrL
snd + MdUS r3

3
− R

r2

2
DU

R

R+«

.

sing (41), we get

DsRd ø
1

V3s3 +
s2

b«
ÎrL

snd + sÎrL
snd + Md«

R+
2«

3

R+
«

2
4 . s44d

inimizing the right-hand side of(44) one obtains that forV→` the best choice of« is «

1/ÎV, which givesDsRdøhV−1/2, whereh is independent ofV and can be taken independen
in any bounded interval. Forn=0 this implies(35). This finishes the proof of the Theorem.

V. CONCLUSION

For l=0 the Bogoliubov method implies the absence of Bose condensation also. In th
n appropriate self-consistency equation has the trivial solution only. On the other handg
0 andl.0 (mean field model) a self-consistency equation in the thermodynamic limit take
egenerate formsm−2lrdc=0 as for free bosons. Condensation can occur only atm=2lr, and the
ensityr0 of the condensate is not determined by the equation.

The results of Michoel and Verbeure3 on the nonextensive Bose condensation can be exte
o our case. Let us take into account the correlation inequality23,24

bkÂfĤ,ÂglĤ ù kÂ†ÂlĤ ln
kÂ†ÂlĤ

kÂÂ†lĤ

s45d

or all local observablesÂ belonging to the domain offĤ , . . .g. Taking Â= âk, Ĥ=ĤLsmd in (45),
ne gets

kn̂klĤLsmd lns1 + kn̂klĤLsmd
−1 d ù bFs«k − mdkn̂klĤLsmd +

g

V
kn̂k

2lĤLsmd +
2l

V
kn̂kN̂LlĤLsmd −

1

V
Sl +

g

2
D

3kn̂kN̂LlĤLsmdG . s46d

eferring to(17) with Ĥ=ĤLsmd, Â= n̂k
1/2âp, pÞk, we have

KSm −
2l

V
N̂LDn̂kL

ĤLsmd
ø epkn̂klĤLsmd +

1

V
Sl +

g

2
Dkn̂klĤLsmd +

2

V
sl + gdkn̂pn̂klĤLsmd, p Þ k.

s47d

ˆ2 ˆ
nserting(47) into (46) and using the boundknklHLsmdù0, we get forpÞk
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kn̂klĤLsmd lns1 + kn̂klĤLsmd
−1 d ù bFSek − ep −

2l + g

V
Dkn̂klĤLsmd −

2sl + gd
V

kn̂pn̂klĤLsmdG .

aked.0 arbitrary,ukuùd and upuød /2. Then for everyV,

kn̂klĤLsmd lns1 + kn̂klĤLsmd
−1 d ù ckkn̂klĤLsmd −

2b

V
sl + gdkn̂pn̂klĤLsmd,

here

ck ; bSek −
d2

8m
−

2l + g

V
D .

olving the last inequality with respect tokn̂klĤLsmd, one has

kn̂klĤLsmd ø seck − 1d−1 +
2b

V
sl + gdkn̂pn̂klĤLsmds1 − e−cdd−1, s48d

herecd;uckuuku=d. (46) gives

bFS− ep + m +
1

V
Sl +

g

2
DDkn̂plĤLsmd −

2l

V
kn̂pN̂LlĤLsmdG ù − 1. s49d

aking Ĥ=ĤLsmd, Â= âp
† in the inequality(17), we have

m ø ep + 2lr +
2

V
sl + gdkn̂plĤLsmd +

1

V
Sl +

g

2
D .

utting this into(49) gives

2l

V2 kn̂pN̂LlĤLsmd ø
1

bV
+ F2lr +

1

V
s2l + gdG kn̂plĤLsmd

V
+

2sl + gd
V2 kn̂pl

ĤLsmd
2

.

sing Theorem and formula(2), we get

1

V2kn̂pN̂LlĤLsmd , « s50d

or every«.0, V large enough andpPL*. Since

1

V
o

kPL*, uku,d

kn̂klĤLsmd = r −
1

V
o

kPL*, ukuùd

kn̂klĤLsmd,

he inequality(48) implies that forupuød /2

1

V
o

kPL*, uku,d

kn̂klĤLsmd ù r −
1

V
o

kPL*, ukuùd

seck − 1d−1 −
2bsl + gd

V
o

kPL*, ukuùd

kn̂pn̂klĤLsmds1 − e−cdd−1.

s51d

ake«.0 arbitrary andV large enough such that(50) is satisfied. Then

1

V2 o
kPL*, ukuùd

kn̂pn̂klĤLsmd ø
1

V2kn̂pN̂LlĤLsmd , «.
inally, we have from(51) that
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lim
d→0

lim
V→`

1

V o
kPL*, uku,d

kn̂klĤLsmd ù r −E
Rd

dk

s2pdd

1

ebek − 1
.

ence for everyr.0 there existsbc.0, defined by

r =E
Rd

dk

s2pdd

1

ebcek − 1
,

uch that for allb.bc the generalized condensation, also called frgmentation, takes place
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. INTRODUCTION

Two-dimensional lattice spin models in statistical mechanics have traditionally been so
mposing periodic boundary condition. The Yang–Baxter equation1,2

R12su1 − u2dR13su1 − u3dR23su2 − u3d = R23su2 − u3dR13su1 − u3dR12su1 − u2d, s1.1d

ogether with such boundary condition then leads to families of commuting rowtransfer matrice
nd hence solvability.2 The work of Sklyanin3 shows that, by using the reflection equation(RE)

ntroduced by Cherednik4

R12su1 − u2dK1su1dR21su1 + u2dK2su2d = K2su2dR12su1 + u2dK1su1dR21su1 − u2d, s1.2d

t is also possible to construct families of commutingdouble-row transfer matricesfor vertex
odels with open boundary conditions. Then such a scheme has been generalized toface-type

olid-on-solid(SOS) models.5,6

In order to construct thedouble-row transfer matrices, besides the RE, one needs the d
eflection equation whose explicit form is related with the crossing-unitarity relation o
-matrix.3,7,5,6For theZn Belavin model,8 the dual RE reads6

R12su2 − u1dK̃1su1dR21s− u1 − u2 − nwdK̃2su2d = K̃2su2dR12s− u1 − u2 − nwdK̃1su1dR21su2 − u1d,

s1.3d

herew is the crossing parameter of theR-matrix. Moreover, there exists asimple-formisomor-
hism between the solution of the RE(1.2) and that of its dual(1.3)

K̃sud = KS− u −
nw

2
D . s1.4d

owever, for integrable SOS models, due to the complicated crossing-unitarity relat
-matrix (Boltzmann weight) (2.18),9,10 the dual RE(3.2) contains the face-type parametershl jj

n addition to the spectral parameter. A generalized isomorphism between the solutions to
nd its dual for SOS models, if exists, is yet to be found. In this sense, the dual RE

)
Present address: Department of Mathematics, The University of Queensland, Brisbane 4072, Australia.
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ace-type models has got its ownindependentrole in contrast with the vertex model.
The RE of SOS models has been solved to give the diagonalK-matrices for theAn

s1d, Bn
s1d, Cn

s1d,

n
s1d, A2n

s2d, and A2n+1
s2d SOS models.11 But the generic(nondiagonal) K-matrix is known only fo

he A1
s1d SOS model.12,5 However, the dual RE of the face type was solved only for theA1

s1d SOS
odel.5 In this article, we consider the dual RE for theAn−1

s1d SOS model. After briefly reviewin
he face-vertex correspondence between theZn Belavin model and theAn−1

s1d SOS model,14 we
onstruct the isomorphism between the solution of the RE and its dual for theAn−1

s1d SOS model in
ec. III. In Sec. IV, we derive a diagonal solution to the dual RE by solving directly. The
rove that our diagonal solution to the dual RE can be obtained through the isomorphism

ormation(3.16) from the diagonal solution11 of RE by a special choice of the free parameterl8.
he final section is for conclusions.

I. REFLECTION EQUATION AND ITS DUAL FOR An−1
„1… SOS MODEL

. Zn Belavin R-matrix

Let us fix t such that Imstd.0 and a generic complex numberw. Introduce the following
lliptic functions:

uFa

b
Gsu,td = o

m=−`

`

exphÎ− 1pfsm+ ad2t + 2sm+ adsu + bdgj, s2.1d

us jdsud = u3
1

2
−

j

n

1

2
4su,ntd, ssud = u3

1

2

1

2
4su,td. s2.2d

mong them thes-function satisfies the following identity:

ssu + xdssu − xdssv + ydssv − yd − ssu + ydssu − ydssv + xdssv − xd

= ssu + vdssu − vdssx + ydssx − yd, s2.3d

hich will be useful in the following.[Our s-function is theq-function q1sud.13 It has the
ollowing relation with theWeierstrassians-function if denoted byswsud :swsud~eh1u2

ssud, h1

p2s 1
6 −4on=1

` nq2n/ s1−q2ndd andq=eÎ−1t.]
Let RBsudPEndsCn ^ Cnd be theZn Belavin R-matrix8 given by

RBsud = o
i,j ,k,l

Rij
klsudEik ^ Elj , s2.4d

n which Eij is the matrix with elementssEijdk
l =d jkdil . The coefficient functions are9

Rij
klsud = 5 hsudsswdusi−jdsu + wd

ssu + wdusi−kdswdusk−jdsud
if i + j = k + l mod n,

0 otherwise.
6 s2.5d
ere we have set
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hsud =

p
j=0

n−1

us jdsud

p
j=1

n−1

us jds0d

. s2.6d

he R-matrix satisfies the quantum Yang–Baxter Eq.(1.1) and the following unitarity an
rossing-unitarity relations:15

Unitarity: RB
12sudR21

B s− ud = id, s2.7d

Crossing-unitarity:sRBd21
t2 s− u − nwdsRBd12

t2 sud =
eÎ−1nwssudssu + nwd

ssu + wdssu + nw− wd
id, s2.8d

hereti denotes the transposition in theith space.

. An−1
„1… SOS R-matrix and face-vertex correspondence

Let hei u i =1,2, . . . ,nj be the orthonormal basis of the vector spaceCn such thatkei ,e jl=di j .
he An−1 simple roots arehai =ei −ei+1u i =1, . . . ,n−1j and the fundamental weightshLi u i
1, . . . ,n−1j satisfyingkLi ,a jl=di j are given by

Li = o
k=1

i

ek −
i

n
o
k=1

n

ek.

et

î = ei − ē, ē =
1

n
o
k=1

n

ek, i = 1, . . . ,n, theno
i=1

n

î = 0. s2.9d

or each dominant weightL=oi=1
n−1aiLi, ai PZ+, there exists an irreducible highest weight fin

imensional representationVL of An−1 with the highest vectoruLl. For example the fundamen
ector representation isVL1

.
Let h be the Cartan subalgebra ofAn−1 andh* be its dual. A finite-dimensional diagonalizab

-module is a complex finite-dimensional vector spaceW with a weight decompositionW
%mPh*Wfmg, so thath acts onWfmg by xv=msxdv, sxPh ,vPWfmgd. For example, the fund

ental vector representationVL1
=Cn, the nonzero weight spacesWfîg=Cei, i =1, . . . ,n.

For a genericlPCn, define

li = kl,eil, li j = li − l j, ulu = o
l=1

n

ll, i, j = 1, . . . ,n. s2.10d

et Rsz,ldPEndsCn ^ Cnd be theR-matrix of theAn−1
s1d SOS model given by

Rsz,ld = o
i=1

n

Rii
iisz,ldEii ^ Eii + o

iÞ j

hRij
ijsz,ldEii ^ Ejj + Rij

jisz,ldEji ^ Eijj. s2.11d

he coefficient functions are

Rii
iisz,ld = 1, Rij

ijsz,ld =
sszdssli jw − wd

, s2.12d

ssz+ wdssli jwd
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Rij
jisz,ld =

sswdssz+ li jwd
ssz+ wdssli jwd

, s2.13d

ndli j is defined in(2.10). TheR-matrix satisfies the dynamical(modified) quantum Yang–Baxte
quation

R12sz1 − z2,l − hs3ddR13sz1 − z3,ldR23sz2 − z3,l − hs1dd

= R23sz2 − z3,ldR13sz1 − z3,l − hs2ddR12sz1 − z2,ld, s2.14d

ith unitarity relation

R12su,ldR21s− u,ld = id. s2.15d

e adopt the notation:R12sz,l−hs3dd acts on a tensorv1 ^ v2 ^ v3 as Rsz,l−md ^ id if v3

Wfmg. Let us introduce

R̃su,ldi j
kl = Rsu,ldi j

klH f2sl;kd

f2sl + k̂;kd

f2sl + î + ĵ ; id

f2sl + ĵ ; id
J , s2.16d

f2sl; jd = p
kÞ j

ssl jkwd
sswd

. s2.17d

he R-matrix satisfies the following crossing-unitarity relation6

o
i2,j2=1

n

R̃s− u − nw,l − ĵ2d j1 i2

j2 i1Rsu,l − ĵ2di3 j2

i2 j3 =
eÎ−1nwssudssu + nwd

ssu + wdssu + nw− wd
di3

i1d j3

j1. s2.18d

Let us introduce an intertwiner—an-component column vectorfl,l− ĵsud whosekth element i

f
l,l− ĵ
skd sud = uskdsu + nwl jd. s2.19d

sing the intertwiner, the face-vertex correspondence can be written as14

R12
B su1 − u2dfl,l−îsu1d ^ fl−î,l−î− ĵsu2d = o

kl

Rsu1 − u2,ldi j
klfl−l̂,l−l̂−k̂su1d ^ fl,l−l̂su2d.

s2.20d

hen the Yang–Baxter equation of theZn Belavin R-matrix RBsud (1.1) is equivalent to th
ynamical Yang–Baxter equation of theAn−1

s1d SOSR-matrix Rsu,ld (2.14).

II. RE AND DUAL RE FOR An−1
„1… SOS MODEL

In this section, using the intertwiner between theZn Belavin R-matrix and that of theAn−1
s1d

OS model, we construct the isomorphism between the solution of the RE for theAn−1
s1d SOS mode

nd that of its dual from the isomorphism(1.4).

. RE and its dual for SOS model
5,12,16,17
The RE of theK-matrix Ksl uud for the face-type SOS model was given as follows:
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o
i1,i2

o
j1,j2

Rsu1 − u2,ldi1 j1

i0 j0Ksl + ĵ1 + î2uu1di2

i1Rsu1 + u2,ld j2 i3

j1 i2Ksl + ĵ3 + î3uu2d j3

j2

= o
i1,i2

o
j1,j2

Ksl + ĵ1 + î0uu2d j1

j0Rsu1 + u2,ldi1 j2

i0 j1Ksl + ĵ2 + î2uu1di2

i1Rsu1 − u2,ld j3 i3

j2 i2. s3.1d

he dual RE of theK-matrix K̃sl uud was written down by5,6

o
i1,i2

o
j1,j2

Rsu2 − u1,ldi1 j1

i0 j0K̃sl + ĵ1 + î1uu1di2

i1R̃s− u1 − u2 − nw,ld j2 i3

j1 i2K̃sl + ĵ2 + î3uu2d j3

j2

= o
i1,i2

o
j1,j2

K̃sl + ĵ0 + î0uu2d j1

j0R̃s− u1 − u2 − nw,ldi1 j2

i0 j1K̃sl + ĵ2 + î1uu1di2

i1Rsu2 − u1,ld j3 i3

j2 i2,

s3.2d

hereR̃su,ld is defined in(2.16) for theAn−1
s1d SOS model. The explicit expressions ofR̃su,ld for

ther types of SOS models were given in Ref. 6. Because of thenontrivial dependence on th
ace-type parametershl jj, the dual RE of SOS models should be treated separately in contra
hose of the vertex models.

As in the Sklyanin scheme for the vertex models, one can construct families of com
ouble-row transfer matricesfor the SOS model with open boundary condition in terms of

-matricesKsl uud andK̃sl uud.5,6

. Isomorphism between the solutions of the RE and its dual for An−1
„1… SOS model

Thanks to the face-vertex correspondence between theZn Belavin vertex model and theAn−1
s1d

OS model(2.20), we can construct the isomorphism between the solutions of the RE and i
or the An−1

s1d SOS model from the isomorphism(1.4) of the Zn Belavin vertex model.
Let us introduce other types of intertwinersf̄ and f̃ satisfying the following orthogonali

onditions:

o
k

f̄
l,l−î

skd sudf
l,l− ĵ
skd sud = di j , s3.3d

o
k

f̃
l+î,l

skd sudf
l+ ĵ ,l
skd sud = di j . s3.4d

ne can derive the “completeness” relations from the above conditions

o
k

f̄
l,l−k̂

sid sudf
l,l−k̂

s jd sud = di j , s3.5d

o
k

f̃
l+k̂,l

sid sudf
l+k̂,l

s jd sud = di j , s3.6d

nd the following relation between the intertwinersf̄ andf̃ from their definitions(3.3) and(3.4):6

f̄l+ ĵ ,lsud =

sSu + wulu −
n − 1

2
− wD

sSu + wulu −
n − 1

2
D Hp

kÞ j

ssl jkwd
ssl jkw + wdJf̃l+ ĵ ,lsu − nwd. s3.7d

oting the factkē ,e jl=1/n and the definition of the intertwiner(2.19), one can derive the follow

ng relations: for∀aPC
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fl+aē,l+aē− ĵsud = fl,l− ĵsu + awd, s3.8d

f̄l+aē,l+aē− ĵsud = f̄l,l− ĵsu + awd, s3.9d

f̃l+aē,l+aē− ĵsud = f̃l,l− ĵsu + awd. s3.10d

Define

Ksluudi
j = o

s,t
f̃

l−î+ ĵ ,l−î

ssd sudKsudt
sf

l,l−î

std s− ud, s3.11d

K̃sluudi
j = o

s,t
f̄

l,l− ĵ
ssd s− udK̃sudt

sf
l− ĵ+î,l− ĵ

std sud. s3.12d

hen we have

Theorem 1 (Ref. 6):The above relations (3.11) and (3.12) map the solutions Ksud and K̃sud
o the RE (1.2) and the dual (1.3) for theZn Belavin R-matrix to the solutionsKsl uud andK̃sl uud
o the RE (3.1) and the dual (3.2) for the An−1

s1d SOS R-matrix, and vice versa.
Using the relations(3.5) and (3.6), one can invert(3.11)

Ksudt
s = o

i,j
f

l−î+ ĵ , l−î

ssd sudKsluudi
jf̄

l,l−î

std s− ud. s3.13d

sing the isomorphism(1.4) between the solutions of the RE and the dual RE for theZn Belavin
-matrix, the relations(3.5), (3.6), and(3.12), we have

K̃sluudm
n = o

s,t
f̄l,l−n̂

ssd s− udK̃sudt
sfl−n̂+m̂,l−n̂

std sud

= o
s,t

f̄l,l−n̂
ssd s− udKS− u −

nw

2
D

t

s

fl−n̂+m̂, l−n̂
std sud

= o
i,j

o
s,t

f̄l, l−n̂
ssd s− udf

l8−î+ ĵ , l8−î

ssd S− u −
nw

2
DKSl8u− u −

nw

2
D

i

j

3f̄
l8, l8−î

std Su +
nw

2
Dfl−n̂+m̂, l−n̂

std sud

= o
i,j

Msl,l8 − î u− ud j
nKSl8u− u −

nw

2
D

i

j

MSl8,l − n̂uu +
nw

2
D

m

i

, s3.14d

herel8PCn is arbitrary and acrossing matrix Msl ,l8 uud j
n is defined by

Msl,l8uud j
n = o

t

f̄l, l−n̂
std sudf

l8+ ĵ ,l8
std Su −

nw

2
D . s3.15d

inally, we obtain
Theorem 2: The solutions to the RE (3.1) and the dual (3.2) for the An−1

s1d SOS R-matrix have
he following isomorphism:

K̃sluudm
n = o

i,j
Msl,l8 − î u− ud j

nKSl8u− u −
nw

2
D

i

j

MSl8,l − n̂uu +
nw

2
D

m

i

, s3.16d

herel8PCn is arbitrary.

We remark that the crossing matrix(3.15) is generallynondiagonal. Hence, the corresponding
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˜ sl uud of the solution to the dual RE(3.2) obtained by the isomorphism(3.16) from the diagona
olution11 to RE is generally nondiagonal, too, except for the case that a special cho
moduli” parameterl8 is chosen as(4.5) (this special case will be clarified later in the n
ection). However, in order to diagonalize the correspondingdouble-row transfer matricesfor the

n−1
s1d SOS model by the algebraic Bethe ansatz method, one needsKsl uud and K̃sl uud both

iagonal.18,19 In the next section, we shall search for a diagonalK̃sl uud.

V. DIAGONAL SOLUTION OF THE DUAL RE FOR An−1
„1… SOS MODEL

In this section we look for the diagonal solution to the dual RE(3.2) for theAn−1
s1d SOS mode

amely, theK-matrix K̃sl uud of following form:

K̃sluudi
j = k̃sluudidi

j , s4.1d

herehk̃sl uudij are the functions of the face parametershl jj and the spectral parameteru. From
irectly solving the Eq.(3.2), we have

Theorem 3: For

k̃sluudi =Hp
kÞi

sslikw − wd
sslikwd JsSliw + j̄ + u +

nw

2
D

sSliw + j̄ − u −
nw

2
D fsu,ld, s4.2d

n which j̄ is a free parameter and fsu,ld is any nonvanishing function ofl and u, the diagona

-matrix K̃sl uud with entries (4.1) and (4.2) is a solution to the dual RE (3.2) for the An−1
s1d SOS

odel.

Proof: SubstitutingK̃sl uud of form (4.1) into the dual RE(3.2) for theAn−1
s1d SOS model, on

nds the only nontrivial conditions ofk̃sl uudi are

Rsu2 − u1,ld ji
ji k̃sl + î + ĵ uu1d jR̃s− u1 − u2 − nw,ld ji

i j k̃sl + î + ĵ uu2d j

+ Rsu2 − u1,ldi j
ji k̃sl + î + ĵ uu1diR̃s− u1 − u2 − nw,ld ji

ji k̃sl + î + ĵ uu2d j

= Rsu2 − u1,ld ji
ji k̃sl + î + ĵ uu1diR̃s− u1 − u2 − nw,ldi j

ji k̃sl + î + ĵ uu2di

+ Rsu2 − u1,ld ji
i j k̃sl + î + ĵ uu1d jR̃s− u1 − u2 − nw,ld ji

ji k̃sl + î + ĵ uu2di, i Þ j .

ubstituting(2.16) and (4.2) into the above equation, the dual RE(3.2) is equivalent to th
ollowing equation:

Hssu− + li jwdssu+d − ssu−dssu+ − li jwd
ssl jw + j̄8 − u18dssliw + j̄8 + u18d

ssl jw + j̄8 + u18dssliw + j̄8 − u18d
J

3
ssl jw + j̄8 − u28dssliw + j̄8 + u28d

ssl jw + j̄8 + u28dssliw + j̄8 − u28d

= ssu+ + li jwdssu−d − ssu+dssu− − li jwd
ssl jw + j̄8 − u18dssliw + j̄8 + u18d

ssl jw + j̄8 + u18dssliw + j̄8 − u18d
, s4.3d

hereu−=u18−u28, u+=u18+u28, ui8=−ui −nw/2, j̄8= j̄+sn−2d /nw. Equation(4.3) is a consequenc
f the identity(2.3). Then we complete our proof.

Now we shall study the relation between our solution of the dual RE and the diagonal s
11
f RE which was given as follows:
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Ksluudi
j = ksluudidi

j = gsu,ld
ssliw + j − ud
ssliw + j + ud

di
j . s4.4d

ere,gsl uud is any nonvanishing function ofl andu, andj is a free parameter. Let us choo

l8 = l +
n

2
ē ⇒ li8 = li + 1

2 , s4.5d

he vector ē is defined in(2.9). Using the relation(3.8), the crossing matrixMsl ,l+sn/2dē
î uudi

n defined in(3.15) becomes simple

MSl,l +
n

2
ē − î uuD

i

n

= o
t

f̄l,l−n̂
std sudfl+sn/2dē,l+sn/2dē−n̂

std Su −
nw

2
D = o

t

f̄
l,l−î

std sudf
l,l−î

std sud = di
n.

s4.6d

he resulting solution to the dual RE by the isomorphism transformation(3.16) from the diagona
olution to RE is

K̃sluudm
n = kSl +

n

2
ēu− u −

nw

2
D

n

MSl +
n

2
ē,l − n̂uu +

nw

2
D

m

n

. s4.7d

he relations(3.7) and (4.5) enable us to further simplify the expression of the crossing m
Msl+sn/2dē ,l− n̂ uu+nw/2dm

n :

MSl +
n

2
ē,l − n̂uu +

nw

2
D

m

n

=

sSu + ul − n̂uw +
n − 2

2
w −

n − 1

2
D

sSu + ul − n̂uw +
n

2
w −

n − 1

2
D Hp

kÞn

sslnkw − wd
sslnkwd J

3o
t

f̃l+sn/2dē,l+sn/2dē−n̂
std Su −

nw

2
Dfl−n̂+m̂,l−n̂

std sud

=

sSu + ul − n̂uw +
n − 2

2
w −

n − 1

2
D

sSu + ul − n̂uw +
n

2
w −

n − 1

2
D Hp

kÞn

sslnkw − wd
sslnkwd J

3o
t

f̃l,l−n̂
std sudfl−n̂+m̂,l−n̂

std sud

=

sSu + ul − n̂uw +
n − 2

2
w −

n − 1

2
D

sSu + ul − n̂uw +
n

2
w −

n − 1

2
D Hp

kÞn

sslnkw − wd
sslnkwd Jdm

n .

inally, the resulting solution to the dual RE by the isomorphism transformation(3.16) from the

iagonal solution to RE is given by
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K̃sluudm
n =

sSu + ul − n̂uw +
n − 2

2
w −

n − 1

2
D

sSu + ul − n̂uw +
n

2
w −

n − 1

2
D Hp

kÞn

sslnkw − wd
sslnkwd JkSl +

n

2
«̄u− u −

nw

2
D

n

dm
n .

s4.8d

ubstituting the diagonal solution of RE(4.4) into the above equation and after redefining

oundary parameterj̄ and the free nonvanishing functionfsu,ld, one finds that the resultin
iagonal solution(4.8) to the dual RE is exactly the same as(4.2).

. CONCLUSION AND COMMENTS

By using the face-vertex correspondence(2.20) and the isomorphism(1.4) between the solu
ions to the RE and its dual for theZn Belavin R-matrix, we construct the isomorphism betw
he solutions to the RE and its dual for theAn−1

s1d SOSR-matrix. By directly solving the equatio
e obtain a diagonal solution to the dual RE. Our solution to the dual RE can also be o

hrough the isomorphism transformation(3.16) from the diagonal solution to RE obtained in R

1 by a special choice of the free parameterl8 (4.5). Furthermore, the diagonalK̃sl uud obtained
n this article enables us to diagonalize thedouble-row transfer matricesof theZn Belavin mode

ith open boundary condition described by the diagonalKsl uud and the diagonalK̃sl uud.19

Alternatively in Ref. 20, the very isomorphism with the special choice of the free para
8 (4.5) from the diagonal solution of RE to the diagonal solution of the dual RE was const
y fusion procedure. However, ourgeneric isomorphism transformation(3.16) gives a way to
onstruct anondiagonalsolution of the dual RE with additional free parametershli8j.
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pproximation of sums of oscillating summands in certain
hysical problems

Ekatherina A. Karatsubaa)

Computing Centre of RAS, Vavilova 40, Moscow, 119991, Russia
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The motion of a one-dimensional harmonic oscillator caused by recurring pushes in
the absence of friction is considered. In particular, two cases are studied: the case
when the pushes become more frequent and the other one when the pushes becom
less frequent. By means of an application of the Hardy–Littlewood–Vinogradov–
Van der Corput theorem on the approximation of exponential sums by shorter ones,
new asymptotic formulas for the solution of the problem are obtained. ©2004
American Institute of Physics.[DOI: 10.1063/1.1797552]

. INTRODUCTION

In some fields of mathematics and mathematical physics the sums of the form

S= o
a,køb

wskde2pi f skd s1d

re studied. Herewsxd and fsxd are real functions of real argument,i2=−1. Such sums appear,
xample, in number theory in the analysis of the Riemann zeta function, in the solution
roblems, connected with integer points in the domains on plane and in space, in the stud
ourier series, in the solution of such differential equations as the wave equation, the p
quation, the heat conductivity equation and so on.

We call the numberb−a the length of the sum S(for the integersa andb, this is the numbe
f the summands inS).

Whenwsxd and fsxd satisfy certain conditions, the sumS can be replaced with good accura
y another sumS1,

S1 = o
a,køb

Fskde2piFskd, s2d

ith the lengthb−a, which is much smaller thenb−a. First relations of the form

S= S1 + R, s3d

hereS, S1 are the sums(1) and(2), respectively,R is a remainder term, with concrete functio
sxd and fsxd, were obtained by Hardy and Littlewood,1 when they deduced approximate fu

ional equation for the Riemann zeta functionzssd and by Vinogradov,2 in the study of tota
umbers of integer points in the domains on plane. In the general form the theorem was pr
an der Corput3 (for the recent results connected with the Van der Corput theorem, see R).

In each of the above-mentioned papers, some restrictions on the functionswsxd and fsxd were
mposed. With certain restrictions onwsxd and fsxd which are convenient for applications,
heorem was proved by Karatsuba in Ref. 5(see also Ref. 6).

We shall use the following notations:

)
Electronic mail: ekar@ccas.ru; fax:17-095-1356159.

4310022-2488/2004/45(11)/4310/12/$22.00 © 2004 American Institute of Physics
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1) For B.0, B→ +`, or B→0, we write

1 !
A

B
! 1,

if there are constants C1.0 and C2.0, such that

C1 ø
uAu
B

ø C2.

2d For a real numbera, the notationiai, is understood in the following sense:

iai = minshaj,1 − hajd,

wherehaj is the fractional part ofa.

We formulate the main theorem about replacing of an exponential sum by shorter
ccordance with the equality(3).

Theorem: Assume that the real functions fsxd andwsxd satisfy the following conditions on t
egmentfa,bg :

1) f 99sxd and w9sxd are continuous;
2) there exist numbers H, U and V such that H.0, 1!U!V, 0,b−aøV and

1

U
! f9sxd !

1

U
, wsxd ! H,

f -sxd !
1

UV
, w8sxd !

H

V
,

f99sxd !
1

UV2, w9sxd !
H

V2 .

Then, if we define the numbers xm by the equation

f8sxmd = m,

we obtain

o
a,møb

wsmde2pi f smd = o
f8sadømøf8sbd

CsmdZsmd + R, s4d

where

R= OS HU

b − a
+ HTa + HTb + H log„f8sbd − f8sad + 2…D;

Tj = 5 0, i f f 8s jd is an integer;

minS 1

if8s jdi
,ÎUD, i f if8s jdi Þ 0;

j =a,b;

Csmd = 51, i f f 8sad , m , f8sbd;
1

, i f m = f8sad or m = f8sbd;

2
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Zsmd =
1 + i
Î2

wsxmd
Îf 9sxmd

e2pisfsxmd−mxmd.

It is possible to prove this theorem with slightly weaker restrictions onfsxd andwsxd, replac-
ng the condition(1) by the following condition

s1*d The finite derivatives f99sxd and w9sxd exist at every point of the segmentfa,bg.
The simplest version of the formulated theorem is the statement, which is calledthe Van de

orput lemma(see Ref. 7, for example).
Lemma (Van der Corput): Let fsxd be a real differentiable function on the interval a,xøb.

oreover, assume that inside this interval it’s derivative f8sxd is a monotonic and of a consta
ign function, and for a constantd such that0,d,1 the function f8sxd satisfies the inequali
f8sxduød.

Then

o
a,køb

e2pi f skd =E
a

b

e2pi f sxddx+ uS3 +
2d

1 − d
D , s5d

hereuuuø1.
Remark: If the parameters a and b are integers, then it is possible to replace the relat

y the following one:

o
a,køb

e2pi f skd =E
a

b

e2pi f sxd dx+
1

2
e2pi f sbd −

1

2
e2pi f sad + u

2d

1 − d
, s6d

hereuuuø1.

I. STATEMENT OF THE PROBLEM

Our aim in the present paper is to apply the theorem(the lemma) to the solution of th
roblem of description of dynamics of the harmonic oscillator under the action of rec
ushes. Such an oscillator is an exact or approximate model in many problems of class
uantum physics.

We consider the simplest example of vibrations of the one-dimensional harmonic oscil
he absence of friction. The equation of the motion of such an oscillator is(see Ref. 8, fo
xample)

ẍ + v0
2x = 0, s7d

herev0.0 is a constant which is called the fundamental frequency of the oscillator vibra
7) describes the free oscillations of the harmonic oscillator without the friction:

x0std = x0 sinsv0t − w0d, s8d

herex0=const andw0=const are the given initial amplitude and phase.
Assume that the pushes act on the oscillator in the successive time m

, t0, t1, t2, ¯ , tn, ¯ , tn→ +`. These pushes give the positive increments the veloc
he oscillator motion:V0,V1, . . . ,Vn, . . .. Themathematical description of such a problem pres
he Cauchy problem with initial conditions

xs0d = X0; ẋs0d = X1. s9d
or t.0, xstd satisfies the equation(see Ref. 9)
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ẍ + v0
2x = o

k=0

`

Vkdst − tkd, s10d

heredstd is the Dirac delta-function:

dsxd = 0, x Þ 0, E
−`

+`

dsxddx= 1.

he solution of this problem fortn−1, t, tn has the following form:

xstd = x0std + Sstd = x0std + o
k=0

n−1

Vk
sin v0st − tkd

v0
. s11d

ere and below,x0std is the free harmonic vibrations of the oscillator(8).

II. PERIODIC PUSHES OF EQUAL VALUE ACT ON THE OSCILLATOR

The case when the pushes of the form

Vk = V, tk = kt; t = const. 0; k = 0,1,2, . . . ,n; n → + `; s12d

ct on the one-dimensional harmonic oscillator is explicitly investigated in Ref. 9. The
olution of the problem(9), (10), (12) in the form

xstd = x0std +
V

v0

sin
nv0t

2

sin
v0t

2

sin v0St −
n − 1

2
tD

s obtained fortn−1, t, tn. It is noted in Ref. 9 that “it is impossible to simplify the sum(11) for
rbitrarytk,Vk.” We demonstrate below how applying the theorem(lemma) it is possible to obtai
ew asymptotic formulas for the solution of the problem(9), (10) also in the case of mo
omplicated, nonperiodic pushes.

V. THE PUSHES ACTING ON THE OSCILLATOR BECOME MORE FREQUENT

Consider the following example: in the absence of friction the pushes of the form

Vk = V, tk = tsk + Ddb; k = 0,1,2, . . . ,n; n → + `; s13d

ct on the harmonic oscillator, whereV;t ;b ;D are positive constants, withDù1, and

0 , b , 1. s14d

ote that the condition(14) means that the pushes become more frequent. For the pushe(13),
14) the sumS=Sstd in (11) takes the form

S=
V

v0
Imo

k=0

n−1

eiv0st−tkd =
V

v0
Imseiv0tS0d, s15d

here

S0 = o
k=0

n−1

e−2pisv0/s2pddtk.
et
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fsxd =
v0

2p
tx =

v0

2p
tsx + Ddb.

e note that

0 , f8sxd =
v0

2p
btsx + Dd−1+b,

nd forx→ +` , f8sxd→0 monotonically. That is why, defining the numberx1 by the equality

v0

2p
btsx1 + Dd−1+b =

1

2
,

hat is

x1 = Sv0bt

p
Ds1/s1−bdd

− D,

e find that forxùx1 the derivativef8sxd satisfies the relation

0 , f8sxd ø
1

2
.

et n1=fmaxs0,x1dg+1,n.n1 (here and belowfXg means the integer part of the numberX). We
epresentS0std in the form of the sum of two summands

S0std = S1std + S2std, s16d

here

S1std = o
0økøn1

e−2pi f skd, s17d

S2std = o
n1,køn−1

e−2pi f skd. s18d

o estimate the sumS2std we apply the Van der Corput lemma; from(6) we obtain

S2std =E
n1

n−1

e−2pi f sxd dx+
1

2
e−2pi f sn−1d −

1

2
e−2pi f sn1d + u

2d

1 − d
, uuu ø 1, s19d

here

0 , d =
v0

2p
btsn1 + Dd−1+b ø

1

2
.

onsider the integral from(19):

J = Jsn − 1d =E
n1

n−1

e−2pi f sxd dx=E
n1

n−1

e−iv0tsx + Ddb
dx. s20d

aking the following change of variables of integration:

y = v0tsx + Ddb,
e find from (20),
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J = b−1sv0td−1/bE
v0tsn1 + Ddb

v0tsn + D − 1db

y1/b −1e−iy dy= b−1sv0td−1/bJ1, s21d

here

J1 =E
A

B

y1/b −1e−iy dy,

A = v0tsn1 + Ddb, B = v0tsn − 1 +Ddb. s22d

ntegratingJ1 by parts one time, we obtain

J1 = iB1/b −1e−iB − iA1/b −1e−iA − isb−1 − 1dJ2, s23d

here

J2 =E
A

B

y1/b −2e−iy dy. s24d

ince from(14) 1/b −1.0, in (23) we getB1/b −1.A1/b −1.
Let us get an upper bound for the integralJ2. Assume at first thatbÞ 1

2. From (24) we have

J2 = UiE
A

B

y1/b −2 de−iy = iy1/b −2e−iyU
A

B

− iS 1

b
− 2DE

A

B

y1/b −3e−iy dy.

rom here,

uJ2u ø B1/b −2 + A1/b −2 + U 1

b
− 2UE

A

B

y1/b −3 dyø 2B1/b −2 + 2A1/b −2, b Þ
1

2
.

f b= 1
2, thenJ2=eA

B e−iy dy, and uJ2uø2. Hence, for anyb ,0,b,1, the inequality

uJ2u ø 2B1/b −2 + 2A1/b −2 + 2 s25d

s valid. From(23)–(25) we obtain

J1 = iB1/b −1e−iB − iA1/b −1e−iA + u1
2s1 − bd

b
sB1/b −2 + A1/b −2 + 1d, s26d

u1uø1.
From (18)–(22) and (26) we find the following approximation of the sumS2std:

S2std = isv0tbd−1sn − 1 +Dd1−be−iv0tn−1 + u12s1 − bdsv0tbd−2sn − 1 +Dd1−2b − isv0tbd−1sn1

+ Dd1−be−iv0tn1 + u12s1 − bdsv0tbd−2sn1 + Dd1−2b +
1

2
e−iv0tn−1 −

1

2
e−iv0tn1

+ u12s1 − bdsv0td−1/bb−2 + u
2d

1 − d
, s27d

hereuuuø1, uu1uø1, 0,dø
1
2, tn1

=tsn1+Ddb, tn−1=tsn−1+Ddb.
The sumS1std from (17) is estimated in the trivial way by the amount of its summands,

s,

S1std = u2sn1 + 1d, uu2u ø 1. s28d
rom (16), (27), and(28) we have

                                                                                                            



w

0

u

(

w
, more

p the next
p

V
O

m-
e

t

h the sum
S

w

A

F

4316 J. Math. Phys., Vol. 45, No. 11, November 2004 Ekatherina A. Karatsuba

                        
eiv0tS0std = isv0tbd−1sn − 1 +Dd1−beiv0st−tn−1d + u3R, s29d

hereuu3uø1,

R= 2s1 − bdsv0tbd−2sn − 1 +Dd1−2b + sv0tbd−1sn1 + Dd1−b + 2s1 − bdsv0tbd−2sn1 + Dd1−2b

+ n1 + 2 +u12s1 − bdb−2sv0td−1/b +
2d

1 − d
, s30d

,dø
1
2.

The imaginary part of the expression(29) is

Im„eiv0tS0std… = sv0tbd−1sn − 1 +Dd1−bcosv0st − tn−1d + u3R,

u3uø1.
From here and from(11) and(15) we find the general solution of the problem(9), (10), (13),

14): for tn−1, t, tn,

xstd = x0std +
V

v0
2tb

sn − 1 +Dd1−b sinSv0t +
p

2
− v0tsn − 1 +DdbD + u4R0, s31d

hereuu4uø1,R0=sV/v0dR.
Remark: It is possible to make (27), and therefore the solution of the problem (31)

recise, integrating by parts (22) not once, as it was done above, but several times (see
aragraph).

. A SPECIAL CASE OF THE PROBLEM IN WHICH THE PUSHES ACTING
N THE OSCILLATOR BECOME MORE FREQUENT

We consider again the problem(9), (10), (13), (14), but now with such values of the para
tersb ,t ,D ,v0, that for the function

f8sxd =
v0

2p
btsx + Dd−1+b

he relation

uf8sxdux=0 =
v0

2p
btD−1+b = d , 1 s32d

olds. In this case we can apply the Van der Corput lemma to the asymptotic evaluation of

0 in (15). According to(6) we have

S0 = e−iv0t0 + o
0,køn−1

e−iv0tk = J + uS1 +
2d

1 − d
D ,

hereuuuø1,

J = Jsn − 1d =E
0

n−1

e−iv0tx dx= b−1sv0td−1/bE
v0t0

v0tn−1

y1/b −1e−iy dy. s33d

s before, herey=v0tsx+Ddb, t0=tDb, tn−1=tsn−1+Ddb.
We assume at first that 1/b=mù2,m is an integer. Then from(33) we find

E
v0t0

v0tn−1

ym−1e−iy dy= ue−iysiym−1 − i2sm− 1dym−2 + ¯ + i3m−2usm− 1d ! duv0t0

v0tn−1.
rom here we obtain
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Imseiv0tS0d = b−1sv0td−1/b
„sv0tn−1dm−1 cosv0st − tn−1d + sv0tn−1dm−2sm− 1dsin v0st − tn−1d

− sv0tn−1dm−3sm− 1dsm− 2dcosv0st − tn−1d − sv0tn−1dm−4sm− 1dsm− 2d

3sm− 3dsin v0st − tn−1d + ¯ + sm− 1d ! Imsi3m−2eiv0st−tn−1dd… + u1m„sv0t0dm−1

+ sm− 1dm−1
… + uS1 +

2d

1 − d
D ,

hereuuuø1, uu1uø1. It is possible to rewrite the last expression in the form

Imseiv0tS0d = msv0td−mA sin„v0st − tn−1d + w… + u2R, s34d

hereuu2uø1,

R= m„sv0t0dm−1 + sm− 1dm−1
… + 1 +

2d

1 − d
, s35d

A = ÎA1
2 + A2

2, s36d

A1 = sv0tn−1dm−1 − sv0tn−1dm−3sm− 1dsm− 2d + ¯ , sv0tn−1dm−1, s37d

A2 = sv0tn−1dm−2sm− 1d − sv0tn−1dm−4sm− 1dsm− 2dsm− 3d + ¯ , sm− 1dsv0tn−1dm−2,

s38d

w = arctan
A1

A2
=

p

2
− arctan

A2

A1
,

p

2
, s39d

=1/b, t0=tDb, tn−1=tsn−1+Ddb, n→ +`.
From (11), (15), (34) we find the solution of the problem(9), (10), (13), (14), (32): for

n−1, t, tn,

xstd = x0std +
V

v0b
sv0td−1/bA sin„v0t − v0tsn − 1 +Ddb + w… + u0R0, s40d

hereuu0uø1, R0=sV/v0dR, and the valuesA andw are defined by(36)–(39).
Remark: We obtained the solution of the problem of the form (40) in the assumptio

/b=m is an integer. If1/b is not an integer, then defining m by the equalityf1/bg=m , we
ntegrate (33) by parts m+1 times, and then we estimate from above by the absolute value
ast “remainder” integral. After that the solution is obtained in the same way as in the case
/b is an integer. The remainder (35) also includes the estimate of the “remainder” integr

Remark: In the solution (40) the remainder expressed via (35) does not depend on n [c
ith the remainder (30) obtained in the previous paragraph].

Remark: Substituting in (40) not the exact values of A andw , but using the equivalences (3
nd (39), we obtain, instead of the forced oscillations (40):

V

v0b
sv0td−1/bA sin„v0t − v0tsn − 1 +Ddb + w…,

he forced oscillations of the problem considered before:

V

v0
2tb

sn − 1 +Dd1−b sinSv0t +
p

2
− v0tsn − 1 +DdbD ,
ee (31).
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I. THE PUSHES ACTING ON THE OSCILLATOR BECOME LESS FREQUENT

Consider the following example: the pushes of the form

Vk = V, tk = tsk + Ddb; k = 0,1,2, . . . ,n; n → + `; s41d

ct on the harmonic oscillator in the absence of friction, whereV,t ,b ,D are positive constant
nd alsoDù1,

1 , b , 2. s42d

t is easy to see that under the condition(42) the pushes become less frequent. To obtain
olution of the problem(9), (10), (41), (42), we transform the sumS0 from (15) in the following
ay. We divide the interval of summation ink into m+1 intervals of the form

n − 1

2
, k ø n − 1;

n − 1

4
, k ø

n − 1

2
; . . . ; 0ø k ø

n − 1

2m ,

herem is a natural number such that

2m ø n − 1 , 2m+1.

e representS0 in the form

S0 = o
0økøsn−1d2−m

e−iv0tk + o
n=0

m−1

o
sn−1d2−n−1,køsn−1d2−n

e−iv0tk = S1 + S2, s43d

here

S1 = o
0økøsn−1d2−m

e−iv0tk = e−iv0t0 + e−iv0t1, s44d

S2 = o
n=0

m−1

Ssnd, Ssnd = o
sn−1d2−n−1,køsn−1d2−n

e−iv0tk. s45d

e transform the sumSsnd using a simple variant of the main theorem. We setwsxd=1, H=1,

a=Tb=ÎU. Since in the theorem the estimate

uZsmdu ø HÎU = ÎU,

olds, then it is possible to suppose that in the relation(4) each factorCsmd is equal to 1. We hav

Ssnd = o
A,xø2A

e−2pi f sxd, S̄snd = o
A,xø2A

e2pi f sxd,

here

fsxd =
v0t

2p
sx + Ddb, s46d

=sn−1d2−n−1,0ønøm−1.
From (46) it follows that

f8sxd =
v0tb

2p
sx + Ddb−1, f 9sxd =

v0tbsb − 1d
2p

sx + Ddb−2.

f we set U=d−1sA+Dd2−b, where d=v0tbsb−1d / s2pd, then for Aøxø2A the inequalitie

/s2Udø f 9sxdø1/U are satisfied.
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We define the numbersxm by the equality

f8sxmd =
v0tb

2p
sxm + Ddb−1 = m,

hat is

xm = S 2p

v0tb
D1/sb−1d

m1/sb−1d − D.

hen

fsxmd − mxm =
v0t

2p
S 2p

v0tb
Db/sb−1d

mb/sb−1d − S 2p

v0tb
D1/sb−1d

m1+1/sb−1d + Dm = − D1m1+1/sb−1d + Dm,

here

D1 = S1 −
1

b
DS 2p

v0tb
D1/sb−1d

.

esides,

f 9sxmd =
v0tbsb − 1d

2p
S 2p

v0tb
Dsb−2d/sb−1d

msb−2d/sb−1d = sb − 1dSv0tb

2p
D1/sb−1d

m1−1/sb−1d.

ince in our exampleb=2A, a=A, U=d−1sA+Dd2−b, we get

f8sbd − f8sad = sb − adf 9sjd ø
A

U
=

Ad

sA + Dd2−b ø dsA + Ddb−1.

his implies that the remainder term from(4) takes the form

Rn = OsUA−1 + ÎU + log„2 + dsA + Ddb−1
…d = Osd−1A−1sA + Dd2−b + d−1/2sA + Dd1−b/2

+ log„2 + dsA + Ddb−1
…d = O„d−1/2sA + Dd1−b/2

… = Osd−1/2A1−b/2d = Osd−1/22−ns1−b/2dn1−b/2d.

e apply the theorem to the asymptotic evaluation of the sumS̄snd. We find

S̄snd = o
A,xø2A

e2pisv0t/s2pddsx + Ddb

= eisp/4d o
m1,møm2

sb − 1d−1/2Sv0tb

2p
D−1/s2sb−1dd

m−1/2+1/s2sb−1dde−2pisD1m1+1/sb−1d−Dmd + OsRnd,

r using the complex conjugated sum we get

Ssnd = e−isp/4dsb − 1d−1/2Sv0tb

2p
D−1/s2sb−1dd

o
m1,møm2

m−1/2+1/s2sb−1dde2pisD1m1+1/sb−1d−Dmd + OsRnd,

s47d

herem are the integers, and also

m1 = f8sAd =
v0tb

sA + Ddb−1,

2p
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m2 = f8s2Ad =
v0tb

2p
s2A + Ddb−1.

ubstituting(47) into (45) and summing over alln, or what is the same, over allm,

1 ø m ø
v0tb

2p
sn − 1 +Ddb−1,

e obtain

S2 = e−isp/4dsb − 1d−1/2Sv0tb

2p
D−1/s2sb−1dd

o
1ømøv0tb/s2pdsn − 1 + Ddb−1

m−1/2+1/s2sb−1dde2pisD1m1+1/sb−1d−Dmd

+ OSo
n=0

m−1

RnD . s48d

rom (48) and (43)–(45) we obtain for the sumS0 the following asymptotic expression:

S0 = e−isp/4dsb − 1d−1/2Sv0tb

2p
D−1/s2sb−1dd

o
1ømøv0tb/s2pdsn − 1 + Ddb−1

m−1/2+1/s2sb−1dd

3e2pissb−1d/bs2p /sv0tbdd1/sb−1dm1+1/sb−1d−Dmd + Osd−1/2n1−b/2d. s49d

Comparing(43) and(49) we see that applying the theorem we approximate the initial su
summands by the sum ofnb−1,1,b,2, summandsn→ +` From (11), (16), and(49) we find

he general solution of the problem(9), (10), (41), and(42) in the following form: fortn−1, t, tn,

xstd = x0std +
V

v0
sb − 1d−1/2Sv0tb

2p
D−1/s2sb−1dd

ImSeisv0t−p/4d o
1ømøv0tb/s2pdsn − 1 + Ddb−1

m−1/2+1/s2sb−1dd

3 e2pissb−1d/bs2p/sv0tbdd1/sb−1dm1+1/sb−1d−DmdD + Osn1−b/2d. s50d

eplacing in(50) the variable of summationm by k and introducing new parameters,

N = Fv0tb

2p
sn − 1 +Ddb−1G + 1;

Ak = sk + 1d−1/2+1/s2sb−1dd;

Tk = 2p
b − 1

b
S 2p

v0tb
D1/sb−1d

sk + 1d1+1/sb−1d − 2psk + 1dD;

W= Vsb − 1d−1/2Sv0tb

2p
D−1/s2sb−1dd

,

e obtain the solution of the problem in the following more compact form: fortn−1, t, tn,

xstd = x0std +
W

v0
o
k=0

N−1

Ak sinSv0t −
p

4
+ TkD + OsN−1/2+1/s2sb−1ddd.

Remark: In the results obtained above, it is assumed thatt ,v0,b, and D are constants, an
he constants in the remainders of the approximate solutions depend on the parameterst ,v0,b

nd D. In the examples considered above, it is assumed also that the total number of pushes n
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ust be great enough, that is nùn1st ,v0,b ,Dd.
Remark: It is possible to obtain the asymptotic approximation of the solution xstd, which is

niform not only in n, n→ +` , but also in the parameterst ,v0,b ,D. However, to obtain suc
ormulas one needs very cumbersome calculations.
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rror syndrome calculation for graph codes on a one-way
uantum computer: Towards a quantum memory

Dirk-M. Schlingemanna)

Institut für Mathematische Physik, TU-Braunschweig, Mendelssohnstraße 3, 38106
Braunschweig, Germany

(Received 26 March 2004; accepted 21 July 2004; published 25 October 2004)

For realizing a quantum memory the encoded quantum information can be pro-
tected against decoherence via repeated decoding and re-encoding operations. Th
requires us to perform fast encoding and decoding operations. The computationa
model underlying the one-way quantum computer provides a suitable concept for a
fast implementation, which has been solved in a previous article for the encoding
operation. In the present paper we show that the missing part, the decoding opera
tion, can also be realized on a one-way quantum computer. This is based on the
graph code representation for stabilizer codes, on the one hand, and the relation
between cluster states and graph codes, on the other hand. ©2004 American In-
stitute of Physics.[DOI: 10.1063/1.1797533]

. INTRODUCTION

The concept of quantum error correcting codes plays a central role for the realiza
uantum computational processes. In particular, quantum information, that is stored in a q
ystem, has to be protected against decoherence. The states of the “input system” des
uantum information we wish to store. These input states are given by density operr
L1sKd acting on an “input Hilbert space”K. The second system under consideration is

output system” whose states are the density operators on an “output Hilbert space”H.
The output system is the one which is present in nature, and in which we wish to e

uantum information. All relevant decoherence processes operating on the output system
he coupling with the environment. A possible description of decoherence is the following
ider a one parameter semi-groupt°Tt ,Tt +Ts=Tt+s, of channels acting on the observable alge
f all linear operators onH. (In the Heisenberg picture, a channelT is a completely positive ma

hat preserves unit operator.) The channelTt is interpreted as the process of decoherence(error)
hat is present at the “time”t. A quantum computational process is only sufficiently reliable if
ffect of errors is below a thresholde. We define the “decoherence time” of the system to be

argest times for which the cb-normiTs−idiøe is below the tolerable threshold. For most of
ystems, which can be realized in experiments, the decoherence times is too small for a sensib
uantum memory.

In order to protect quantum information, we encode quantum states of the input syst
uantum states of the output system. In the Heisenberg picture, which is preferably used
ncoding operation is described by a channelE that maps the observable algebraBsHd of the
utput system into the observable algebraBsKd of the input system. For receiving the enco
uantum information back, we also need a decoding operation which is a channelD that maps th

nput observable algebra into the output observable algebra.
We encode states of the input system via a channelE to realize a quantum memory. Afte

ertain timet, the encoded quantum information is corrupted due to the decoherence proTt.
he stored information is recovered by an application of an appropriate decoding operationD. The

)
Electronic mail: d.schlingemann@tu-bs.de
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otal channel that has been performed operates on the input system and it is given by the
ition E+Tt +D. If this channel is close to the identityiE+Tt +D−idiøe, we would have stored o
uantum information successfully during the timet. For a reasonable coding scheme, the sto
ime t is much larger than the decoherence times of the output system. The ratiot /s can be
ncreased by increasing the ratio dimsHd /dimsKd of the dimension of the output system and
imension of the input system. Thus, increasing the storing time requires a larger am
esources.

An alternative idea for obtaining large storing times is to concatenate decoding a
ncoding operations. Suppose we are able to store quantum information successfully fort.
hen we just re-encode the corrected quantum information again, which corresponds to
rationE+Tt +D +E. Again the system undergoes decoherence for a further timet. Then the decod

ng operation is applied once more. The channelE+Tt +D +E+Tt +D is close to the identity and w
ave stored our quantum information successfully for a time period 2t. This heuristic picture i
nly realistic, if we assume that the decoding re-encoding operationD +E can be performed muc
aster than the typical decoherence times of the output system.

For realizing a quantum memory, we are therefore interested in “fast implementatio
ncoding and decoding operations. The model of one-way quantum computing, introdu
aussendorf and Briegel,1–8 suggest being an appropriate base for realizing fast operations

he intrinsic parallelism of this model. A one-way quantum computer operates on a sys
udits (quantum digits). Elementary operations within this scheme are(a) local preparation pro
edureswhich address every qudit individually,(b) oneelementary step of a dynamicsthat cor-
esponds to two-qudit next-neighbor interactions,(c) local measurement operationswhich operat
ndependent on each qudit, and(d) conditional local unitary operations, depending on the me
urement outcomes. The parallelism of a one-way quantum computer is based on the d
hich is a global operation that addresses all qudits at the same time.

The pattern of two-qudit interactions defines a “weighted graph” on the set of qudit pos
amely, two positions are connected by an edge, if the corresponding qudits interact wi
ther. The “weight,” attached to an edge, is the “strength” of the qudit coupling(which is an

ntegral number for suitable interactions).
As we have discussed in previous articles,9,10 quantum error correcting codes associated

graphs” are closely related to one-way quantum computing. The qudits under considera
rouped into “input” qudits and “output qudits.” In Ref. 11 we have shown that every enc
rocedure for a graph code can be implemented on a one-way quantum computer by four

ary operations:(1) First one applies an appropriate local preparation procedure: Every
udit is prepared in the “standard state”s1/ÎddsoqPFd

uql, whereuql ,qPFd is an orthonormal bas
abeled by the elements of a finite fieldF of order d, that is,d is a power of a prime.(2) One
lementary step of a discrete dynamics is performed. This dynamics corresponds to the in
attern which is given by the underlying graph.(3) The input qudits are measured independe

n the “x-basis,” the nonbinary generalization of thesx-eigenbasis.(4) Depending on the measu
ent outcome, a suitable local unitary operation is performed. This scheme can be applie

tabilizer codes over finite fields,12 since any such code is equivalent to a graph code.10,13

The main result of the present paper is concerned with an implementation of the “de
peration” of a graph code. It is based on a suitable extension of the coding graph by
syndrome vertices” and edges that connect the syndrome vertices with the output vertic
ppropriate manner. The syndrome vertices are the positions of the syndrome qudits w
sed to measure the “error syndrome.”

Theorem: For every graph code over a finite field, the syndrome calculation can be i
ented one a one-way quantum computer by a sequence of three elementary operations

nput qudits as well as the syndrome qudits are individually prepared in the “standard state
ne inverse elementary step of the discrete dynamics, which corresponds to the extende
raph, is performed. (3) The output qudits are measured independently in the x-basis
yndrome qudits are measured independently in the z-basis which generalizes thesz-eigenbasis t

he nonbinary case.
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Remark:The decoding operation can be completed by a conditional local unitary ope
4) Depending on the measurement outcome of the output and syndrome qudits, a suita
nitary operation is performed. This correction operation depends on the calculated syn
nd therefore on the class of errors that yield the same syndrome. Recall that the error s

s only uniquely determined by the error if the code is nondegenerate. We prove here that
alculated error syndrome an appropriate local correction operation exists. However, to c

t explicitly may be an NP hard problem concerning the length of the code.
We mention at this point that both operations, the encoding and the decoding, are base

ame dynamics. This is of course what one expects as far as the implementation of stabiliz
y quantum circuits(consisting of one- and two-qudit elementary gates) is concerned:14 The
ecoding one just uses the reversed circuit.

The paper is organized as follows: In Sec. II, we give some mathematical preliminaries
s notations and conventions which are used in the subsequent sections. A precise desc

he elementary operations that can be performed on a one-way quantum computer is give
II. The realization of a decoding operation on a one-way quantum computer is presented
V. Some technical proofs are given in the Appendix and Sec. IV C in order to keep the
ore comprehensive.

I. MATHEMATICAL PRELIMINARIES

The classical configuration space of a “digit” is given by a finite “alphabet” which is a
eld F of order d. For binary systems we are concerned with the field of two elemenF2

h0,1j. A classical register is described by its configurations which are given by tupqI

sqidiPI in the vector spaceFI. Each positioni P I of the register is given by a “letterqi” from the
lphabetF. It is convenient to identify a vectoraK=sakdkPKPFK with the vector inFI that has onl
onvanishing components in the subsetK, I. The phase spaceof a registerI is modeled by th
ector spaceJI =FI % FI.

The Hilbert space, describing a quantum register of qudits, is the spaceL2sFId of complex
alued functions onFI and its complex dimension isduI u whereuI u is the number of elements inI.

he scalar product of two functionsc1,c2 is given bykc1,c2l=d−uI uoqIc̄1sqIdc2sqId. The algebr
sId of all linear operators onL2sFId is the “observable algebra” of the quantum register.

A useful basis of unitary operators inAsId is given by the unitary “Weyl” operato
sjId ,jI PJI. For a given vectorjI =spI ,qIdPJI in phase space the corresponding Weyl ope

s defined by

„wsjIdc…sq1
I d = xspI,q1

I dcsq1
I − qId, s1d

ith cPL2sFId. The phasesxspI ,qId form a symmetric bicharacter of the additive groupFI.9 If the
eld F has characteristicd, then the bicharacter is given byxspI ,qId=exps2pid−1oiPIp

iqid. By
onstruction, the Weyl operators satisfy a discrete version of the canonical commutation re

wsj1
I dwsj2

I d = xsp2
I ,q1

I dwsj1
I + j2

I d. s2d

or a phase space vectorjI =s0I ,qId, the Weyl operatorxsqIdªws0I ,qId is a pureshift by qI. On
he other hand, the phase space vectorjI =spI ,0Id corresponds to amultiplier operator zspId

wspI ,0Id.

II. ONE-WAY QUANTUM COMPUTING

After a brief introduction into the basic elementary operations of one-way quantum co
ng, we apply the results of Ref. 11 to derive an implementation of both the encoding and de
peration, on a one-way quantum computer.

It is convenient to fix one normalized “standard vector”VKPL2sFKd which we choose to b
he constant function onFK. The application of multiplier operators yields an orthonormal b

K
zsp dVK)pKPFK. This basis is called the “x-basis,” which is the joint eigenbasis of the shift
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perators. Any other product basis can be obtained by applying a local unitary operaUK

^kUk to thex-basis. In particular, the local Fourier transformFK, which is given by

sFKcdspKd =
1

ÎduKuo
qK

xspK,qKdcsqKd, s3d

ransforms thex-basis to the so calledz-basis which is nothing else but the joint eigenbasis o
ultiplier operators.

The elementary operations are successively applied to a system of multiple qudits, wh
rouped into three different types, according to their role. The “input qudits,” “output qudit
ell as the “measuring qudits.” They are labeled by the sets of verticesI ,J, andK, respectively
he corresponding observable algebra(of the full quantum system) is given by AsIJKd=AsId

^ AsJd ^ AsKd. In order to arrange formulas more clearly, we writeIJKL¯ for the disjoint union
øJøKøLø¯ of sets of qudit positions(vertices).

. Local preparation

Mathematical description:To each local unitary operatorUJK= ^ jPJKUj in AsJKd we associ
te the channelEUJK

which maps an operatorAPAsIJKd to

EUJK
sAd = FJK

* UJK
* A UJKFJK P AsId. s4d

ereFJK is the isometry which assigns to a vectorc the tensor productFJKc=c ^ VJK.
Interpretation:The channelEUJK

describes thelocal preparationwhich prepares each qudit
osition j PJ individually in the state which corresponds to the unit-vectorUjV j.

. Elementary step of a discrete dynamics

Mathematical description:Let L=sL j
i di,jPIJK be the adjacency matrix of a weighted gr

ith verticesIJK. We define the unitary multiplication operatorusLd according to

susLdcdsqIJKd ª tsqIJKdcsqIJKd, s5d

hich implements an automorphismaL of AsIJKd. An operatorA is mapped to

aLsAd = usLd*AusLd. s6d

he phase-valued functionqIJK→tsqIJKd is chosen in such a way that

tsqIJK + q1
IJKd = tsqIJKdtsq1

IJKdxsq1
IJK,LqIJKd s7d

olds forqIJK+q1
IJKPFIJK.

Remark:For all graphsL a phase valued functiont that fulfills (7) exists. To see this, w
uild the finite-dimensional Abelian C*-algbra which is generated by unitary operatorsusqIJKd that

ulfill the relations

usqIJK + q1
IJKd = usqIJKdusq1

IJKdxsq1
IJK,LqIJKd. s8d

ach pure state(character) of this C*-algebraz induces a functiont that fullfills (7) by putting
sqIJKdªz(usqIJKd).

To be more concrete, we can give an explicite formula for an appropriate functiont provided
he graphL has no self-links. In this case, a solution for(7) is given by

tsqIJKd ª expS ip

d
o

i,jPIJK

L j
iqiqjD . s9d

Interpretation:The weighted graphL describes a next-neighbor interaction pattern subje

he dynamicsaL. Two positionsi , j are neighbored if the corresponding matrix element of the
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djacency matrix does not vanishL j
i Þ0. The value ofL j

i corresponds to the strength of
oupling between quditi and j .

. Local measurements

Mathematical description:A local measurement operation is determined by a local un
perator UIK =UI ^ UK. The corresponding operation is the channelM UIK

which maps th
*-algebraC(FIK ,AsJd) of operator valued functionsA:FIK →AsJd to the operator

M UIK
sAd = o

pIK

UIKzspIKdFIKAspIKdFIK
* zspIKd*UIK

* , s10d

n AsIJKd. The operatorsUIKzspIKdFIK ,pIK PFIK, are a complete family of mutually orthogon
sometries. This implies, in particular, thatM UIK

is an algebra homomorphism. Concerning
eisenberg picture, this is the characteristic property of a projection valued measure.
urposes, there are two interesting measurement bases: Thex-basis corresponding toUIK =1IK and

he z-basis corresponding toUIK =FIK.
Interpretation:Local measurements are dual to the local preparation schemes. They d

he individual measurement of a certain subset of qudits which consists here of input an
uring quditsIK. After the measurement operation has been performed, the remaining
udits at positionsJ are in a quantum state that depends on the measurement outcome.

. Conditional phase space translations

Mathematical description:Let f IK
J be a function that maps a configurationqIK PFIK to a phas

pace vectorf IK
J qIK PJIK. We associate tof IK

J the conditional phase space translationC f IK
J . It is

he channel that assigns to an observableAPAsJd the operator valued functionC f IK
J sAd

C(FIK ,AsJd) by

qIK ° C f IK
J sAdsqIKd = wsf IK

J qIKdAwsf IK
J qIKd* . s11d

Interpretation:After the qudits at the positionsIK are measured, a measurement resulqIK

FIK is received. Depending on this outcome, a phase space translation is performed. T
ion f IK

J describes a role which the phase space translationf IK
J qIK one has to perform in case

andomly produced measurement resultqIK is received.

V. IMPLEMENTING THE DECODING OPERATION BY A ONE-WAY QUANTUM
OMPUTER

The encoding and decoding operation of a quantum error correcting code can be imple
s “quasi-free operations.” Concerning the Heisenberg picture, quasi-free operations are
from the output algebraAsJd into the input algebraAsId that map Weyl operatorswsjJd to a
ultiples of Weyl operatorsT(wsjJd)=zsjJdwsjId. As we have shown in Ref. 11, each quasi-
peration can be implemented on a one-way quatum computer by local preparation, one

ary step of a discrete dynamics(acting globally), a local measurement, and finally a phase s
ranslation conditioned by the measurement outcome. The following definition expresses
recise mathematical terms.

Definition IV.1: Let L be the adjacency matrix of a graph on the union of input verticI,
utput verticesJ, and syndrome verticesK, let UIK = ^ iPIKUi PAsIKd be a local unitary operato
nd let f IK

J :FIK →JJ be a function. We associate to the triplesL ,UIK , f IK
J d the channe

fL,UIK,f IK
J g :AsJd→AsId, which is defined by

T fL,UIK,f IK
J g ª E1JK

+ aL + M UIK
+ C f IK

J . s12d

Interpretation: (1) The channelE1JK
describes the preparation of the output and meas
udits in the shift invariant standard state.(2) The next-neighbor interaction, which is described by
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he graphL, is switched on for a definite period of time. This corresponds to the application
lementary step of the discrete dynamicsaL which acts globally on “all” quditsIJK. (3) The inpu
nd measuring quditsIK are measured in the product basissUIKzspIKdVIKdpIKPFIK. For quasi-fre
perations, the measurement of the input qudits is performed in thex-basis whereas the measu
ent qudits are either measured in az- or anx-basis. This corresponds to the choiceUi =1i for i P I
nd UkP h1k,Fkj for kPK. (4) After the measurement has been performed, one has produ
uantum state of the output quditsJ which depends on the measurement outcomepIK PFIK. In
rder to realize a pure quantum operation, one has to perform, on the output quditsJ, a phas
pace translation by the vectorf IK

J pIK which depends on the measurement outcomepIK.
Note that in general the channels, given by Definition IV.1, are not pure. This requires

ional conditions on the graph, on one hand, and on the conditional phase space translatio
ther hand.

. Quantum error correction

We briefly recall here the concept of a quantum error correcting code that is able to
rrors that occur at a particular numbere of qudits. A channelT:AsJd→AsJd is localized at
ubsetE,J of qudit positions, ifTsAd=A holds for all operatorsAPAsJ\Ed that are localized i

the complement ofE. This means that only the qubits at the positionsE are affected by errors.
quantum error correcting code, that is able to correcte errors, is a pairsE,Dd that consists of a
encoding operationE:AsJd→AsId and a decoding operationD :AsId→AsJd such that the com
positionE+T+D=id is the ideal channel for allT that are localized at any subsetE that containse
elements.

. How to realize the decoder

The encoder and decoder can be related to the same adjacency matrixL of a graph on th
nion of input verticesI, output verticesJ, and syndrome verticesL. For the implementation of
easonable quantum error correcting code, which is able to correcte-errors, the matrixL has to
ulfill the subsequent three conditions.[The following notation is used: For a matrixQM

N and for
wo subsetsK,M ,L,N, we writeQK

L =sQk
l dlPL,kPK for the corresponding sub-block. For a vec

K we defineQK
LaK=sokQk

l akdlPL.]
Definition IV.2: The set ofe-error correcting graphsGesI ,J,Ld is defined to consist of a

raphs on the union of input verticesI, output verticesJ, and syndrome verticesL whose adja
ency matrixL=sL j

i di,jPIJL fulfills the following conditions.

G-1: The block matrixLIL
J is invertible with an inverseL̄J

IL.
G-2: There are no edges that connect input and syndrome vertices, i.e., the block
LIL

IL =0 vanishes.
G-3: For all setsE,J that contain at most 2e elements the condition

LIE
J\EqIE = 0 impliesqI = 0 andLE

I qE = 0 s13d

is fulfilled.

Description of the encoding operation:As we have shown in Ref. 11, to ane-error correcting
raph LPGesI ,J,Ld corresponds the encoding channelEL=T fLIJ

IJ,1I,eI
Jg of an e-error correcting

ode. HereeI
J is the function fromFI to JJ which is defined by

eI
JpI = sLJ

JL̄I
JpI,− L̄I

JpId. s14d

he encoding scheme only operates on the input and output qudits and depends jus
ubgraphLIJ

IJ where the syndrome vertices are removed.
Interpretation:(1) The output qudits are prepared in the shift invariant state.(2) One step o

he discrete dynamics, associated with the subgraphLIJ
IJ is applied. (3) The input qudits ar
easured inx-basis.(4) Depending on the measurement outcome, a phase space translation is

                                                                                                            



d described
b

raph
L output
v e
s itional
p tle as for
t

or
e

f

o

r
c -
d n
E

f
a

f
D n
v

d re-
m

t

i

i
erations

o

t

4328 J. Math. Phys., Vol. 45, No. 11, November 2004 Dirk-M. Schlingemann

                        
one. The relation between the measurement outcome and the phase space translation is
y the “classical device”eI

J.
Description of the decoding operation:The decoding operation makes use of the same g

PGesI ,J,Ld as the encoding operation but the vertices are interpreted differently. The
erticesJ are now interpreted as inputs and,vice versa, the input verticesI as outputs. Th
yndrome verticesL are measuring vertices, to fix the error syndrome. However, the cond
hase space translation, which is performed after the measurement procedure, is more sub

he encoding case and relies on the following theorem:
Theorem IV.1: Let LPGesI ,J,Ld be an e-error correcting graph (see Definition IV.2). F

ach qLPFL there is at most one solution fL
I qL=spI ,qIdPJI of the system of equations,

pE − LIEL
J qIEL = 0J,

pI − LE
I qE = 0I , s15d

or somespE,qEdPJJ, provided E contains at most e elements.
Proof: Let us assume that for the two vectorsbL ,qLPFL there are solutionssaI ,bId andspI ,qId

f the system of equations,

aE = LIEL
J bIEL andaI = LE

I bE,

pE = LIEL
J qIEL andpI = LE

I qE, s16d

espectively. The vectorssaE,bEd and spE,qEd have components in a common setE,J that
ontains at most 2e elements. This is true ifsaE,bEd=saK ,bKd andspE,qEd=spF ,qFd are indepen
ently supported in setsK and F that contain at moste elements. The setE is then their unio
=KF. If bL=qL holds, then the identity,

aE − pE = LIE
J sbIE − qIEd, s17d

ollows. We split the system of equations(17) into the components, belonging to the subsetE,J
nd its complementJ\E. This yields the identity

LIE
J\EsbIE − qIEd = 0J\E, s18d

or the components in the complementJ\E. We conclude, by making use of the conditionG-3 in
efinition IV.2, thatbI =qI holds as well asLE

I bE=LE
I qE=aI =pI. This implies that for a give

ectorqL=bL there is indeed at most one solutionfL
I qL=spI ,qIdPJI of (15). h

With the help of Theorem IV.1, we are able to define the functiondJL
I :FJL→JI, which

etermines which conditional phase space translationdJL
I mJL one has to perform if the measu

ent outcomemJL has been received.
Definition IV.3: The functiondJL

I :FJL→JI assigns to each measurement outcomemJLPFJL

he phase space vector

dJL
I mJL

ª spI,qI − L̄J
I mJd, s19d

f spI ,qId is the unique solution of(15) for qL=mL+L̄J
LmJ and

dJL
I mJL

ª 0I s20d

f (15) has no solution forqL=mL+L̄J
LmJ.

The subsequent theorem gives a description of the decoder in terms of elementary op
n a one-way quantum computer.

Theorem IV.2: Let LPGesI ,J,Ld be an e-error correcting graph and let DL :AsId→AsJd be

he channel,
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DL ª T f−L,1J^FL,dJL
I g, s21d

here the function dJL
I is given by Definition IV.3. Then the pairsEL ,DLd is an e-error correcting

ode.
Before going into the details of the proof, we comment here how to interprete the op

L concerning one-way quantum computing. The proof of Theorem IV.2 is postponed to th
ubsection “Verifying the correction property” since it requires some technical tools whi
rovided therein.

Interpretation:We describe now the implementation of the decoder as a four-step pro
f elementary operations on a one-way quantum computer.

Step 1:The input quditsI and the syndrome quditsL are individually prepared in the sh
invariant state.
Step 2:One elementary step of the dynamics with respect to the graph −L is performed.
Step 3:The syndrome quditsL are measured inz-basis and the output quditsJ are measure
in x-basis which produces a measurement resultmJL the “error syndrome.”
Step 4:Depending on the “error syndrome”mJL the phase space translation with respe
the vectordJL

I mJL is performed which is the final “correction operation.”

. Verifying the correction property

We can verify that the pairsEL ,DLd is an e-error correcting code by making use of
ollowing useful lemmas, where we choose, for the subsequent, a fixede-error correcting grap

PGesI ,J,Ld with inputs I, outputsJ, and syndrome verticesL.
Lemma IV.1: For eachspI ,qIdPJI, for eachspJ,qJdPJJ, and for each qLPFL the following

dentities hold:

vfL,qLgxsqId = zsLI
JqIdvfL,qLg, s22d

wspJ,qJdvfL,0Lg = tsqJdzspJ − LJ
JqJdvfL,0Lgzs− LJ

I qJd, s23d

vfL,qLg = zsLL
JqLdvfL,0Lg. s24d

Proof of (22):We observe for a vectorcPL2sFId ,spI ,qId andqL that the identity,

fvfL,qLgxsqIdcgsbJd = ÎduI u−uJuo
bI

tsbIJ + qILdcsbId, s25d

s valid for all bJ. Now, we make use of the fact that the relationtsbIJ+qIJd=tsbIJ

qLdxsLI
JqI ,bJd holds where we have used the assumption thatLIL

IL =0. This implies that th
dentity (22) is true.

Proof of (23): For a vector cPL2sFId and for each pJ,qJ we apply the operato
spJ,qJdvfL,0Lg to cPL2sFId. We find for allbJPFJ:

fwspJ,qJdvfL,0LgcgsbJd = ÎduI u−uJuxspJ,bJdo
bI

tsbIJ − qJdcsbId. s26d

e compute the termxspJ,bJdtsbIJ−qJd as a product of four phases:

xspJ,bJdtsbIJ − qJd = tsqJdtsbIJdxspJ − LJ
JqJ,bJdxs− LJ

I qJ,bId. s27d

y means of this decomposition, the vectorwspJ,qJdvfL,0Lgc can be obtained by the followin
equence of operations: First we apply the multiplier operatorc°c1ªzs−LJ

I qJdc which corre
ponds to multiplying the phasesxs−LJ

I qJ,bId for all bI. Then we apply the isometryc1°c2
IJ
vfL,0Lgc1 which corresponds to multiplying the phasestsb d and summation over the
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I-variables. In the next step, the multiplierc2°c3ªzspJ−LJ
JqJdc2 is performed due to mult

lication by the phasesxsbJ,pJ−LJ
JqJd. Finally, the constant phasetsqJd remains and we obta

he relationwspJ,qJdvfL,0Lgc=tsqJdc3. More explicitly, the identity

wspJ,qJdvfL,0Lgc = tsqJdzspJ − LJ
JqJdvfL,0Lgzs− LJ

I qJdc, s28d

s true which proves(23).
Proof of (24): The third identity just follows directly from the definition of the isomet

fL,qLg. h

We prove in the Appendix that the channelDL has a representation by Kraus opera

qL ,qLPFL, which are labeled by syndrome configurations. By making use of Lemma A.3, w
ormulate the following statement.

Lemma IV.2: If E,J is a set that contains at most e elements. For eachspE,qEd there exist
qLPFL such that the identity

tsqEd−1wspE,qEdvfL,0Lg = vfL,qLgws− fL
I qLd* = SqL, s29d

olds where fL
I qL=spI ,qId is the unique solution of the system of equations pI =LE

I qE and pE

LIEL
J qIEL.
Proof: We make use of Lemma IV.1 in order to prove(29). Combining the identities(22)–(24)

e conclude that

tsqEd−1wspE,qEdvfL,0Lg = zspE − LEIL
J qIELdvfL,qLgwsLE

I qE,− qId* , s30d

s valid for eachspE,qEdPJJ, for eachqI PFI, and for eachqLPFL. This can be verified a
ollows: First we conclude from(23) that the left hand side of(29) is equal to zspE

LE
JqEdvfL,0Lgzs−LE

I qEd. Then we apply(22) for someqI PFI which implies that the left hand si
f (29) coincides withzspE−LEI

J qIEdvfL,0LgxsqIdzs−LE
I qEd. According to (24), we derive forqL

FL that (30) is indeed true.
We observe that for eachspE,qEd there exist aqL such that that the range ofwspE,qEdvfL,0Lg

oincides with the range ofvfL,qLg. In fact, we have shown in Ref. 11 that the ranges of isome
vfL,qLgdqLPFL are the multiplicity spaces of characters of the Abelian algebra, thestabilizer alge
ra, that is generated by the Weyl operatorswsLJ

JbJ,bJd with LJ
I bJ=0I. This corresponds to th

igenvalue equationwsLJ
JbJ,bJdvfL,qLg=tsbJ−qLdvfL,qLg which can also be verfied by combini

23) and(24) in a suitable way. Since the Weyl operatorswspE,qEd andwsLJ
JbJ,bJd commute up

o a phase, the range of the operatorwspE,qEdvfL,0Lg is a multiplicity space of some character a
herefore coincides with the range ofvfL,qLg for someqL, which can be computed in terms

pE,qEd form (23) and (24) and the assumptionG-1 that LIL
J is invertible with an inverseL̄J

IL.

amely qL fulfills the identity qL=L̄J
LspE−LE

JqEd. We choosepI
ªLE

I qE and qI
ª L̄J

I spE−LE
JqEd

hich implies that the system of equationspI =LE
I qE andpE=LIEL

J qIEL has a solutionspI ,qId.
We have assumed that the setE contains at moste elements which implies, by Theorem IV

hat fL
I qL=spI ,qId is the uniquesolution of the system of equations, which is completely d

ined byqL. Thus the identity(30) becomes

tsqEd−1wspE,qEdvfL,0Lg = vfL,qLgws− fL
I qLd* = SqL, s31d

hich concludes the proof. h

Proof of Theorem IV.2:With help of Lemma IV.2 we can prove that the encoderEL and the
ecoderDL are indeed ane-error correcting code. The Kraus operators of a channelT:AsJd
AsJd that are localized in a setE,J with at moste elements are spanned by Weyl opera

spE,qEd. In order to verify the identityEL +T+DL=id it is sufficient to show that the operato

qL
* wspE,qEdvfL,0Lg ,spE,qEdPJE,qLPFL, are multiples of the identiy. By Lemma IV.2 for ea
E E L L
p ,q d there exists ab PF such that
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SqL
* wspE,qEdvfL,0Lg > SqL

* SbL = dsqL − bLd1, s32d

here we have used the fact thatsSqLdqLPFL is a complete family of mutually orthogonal isom
ries. h

Interpretation of the correction procedure:We conclude by making a few remarks on
ecoding procedure. The system of equationpI =LE

I qE and pE=LIEL
J qIEL has a unique solutio

pI ,qId, provided the components of the vectorspE,qEd has nonvanishing components for a su
with at moste elements. This fact(Theorem IV.1) is essential for a successful decoding pro

ure since it identifies the effect of an error operatorwspE,qEd uniquely with an error syndrom
L. The phase space translation byf L

I qL is then the corresponding correction operation w
liminates the effect of the error.

However, if we relax the condition that the error occurs at a setE of at moste qudits, then th
ecoding operation can fail. For a general error operatorwsaJ,bJd the identity

tsbJd−1wsaJ,bJdvfL,0Lg = vfL,qLgws− aI,− bId* s33d

olds where the error syndrome is related to the error byqL=L̄J
LsaJ−LJ

JbJd. The protected sub

pace is affected by the effective errorsaI ,bId which is given byaI
ªLE

I qE and bI
ª L̄J

I saJ

LJ
JbJd. The solutionfL

I qL, which corresponds to some other errorspE,qEd on e= uEu qudits, may
e different from saI ,bIdÞ fL

I qL. Thus the errorsaJ,bJd causes a nontrivial effective err
s−fL

I qLdws−aI ,−bId* on the protected subspace which cannot be corrected by the decod
ration. Namely we have

SqL
* wsaJ,bJdvfL,0Lg = tsbJdws− fL

I qLdws− aI,− bId* Þ 1, s34d

nd the correction procedure fails.
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PPENDIX: KRAUS REPRESENTATIONS FOR THE ENCODER AND THE DECODER

The encoding and decoding operations are channels of the type given by Definition IV
ive here a Kraus representation for a general channel of this kind.15

Lemma A.1: LetL be the adjacency matrix of a graph with input vertices I, output vertic
nd measuring vertices K. Let UIK PAsIKd be a local unitary opertor and let fKL

I be a function
orm FIK to JJ. The channelT fL,UIK,f IK

J g can be represented by dIK Kraus operators,

T fL,UIK,f IK
J gsAd = o

pIK

TpIK
* ATpIK , sA1d

here for each pIK PFIK the corresponding Kraus operator is given by

TpIK = wsf IK
J pIKdFIK

* zs− pIKdUIK
* usLdFJK. sA2d

Proof: The preparation channelE1JK
is pure and implemented by the isometryFJK. The

ynamicsaL is implemented by the unitary operatorusLd. The Kraus operators for the loc
easurement operationM UIK

are given by the co-isometriesFIK
* zs−pIKdUIK

* ; each of them corre
ponds to the measurement outcomepIK PFIK. Finally, the Kraus operators for the conditio
hase space translation are the Weyl operatorswsf IK

J pIKd ,pIK PFIK. Thus a Kraus representati
J
or the channelT fL,UIK,f IKg is indeed given by the operators
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TpIK = wsf IK
J pIKd*FIK

* zs− pIKdUIK
* usLdFJK, sA3d

ith pIK PFIK. h

In Ref. 11 it is shown how to associate to ane-error correcting graphLPGesI ,J,Ld (Defini-
ion IV.2) a complete family of mutually orthogonal isometriessvfL,qLgdqLPFL. Each of the isome
ries map the input Hilbert spaceL2sFId into the output Hilbert spaceL2sFJd. For qLPFL, the
orresponding isometry is given by

svfL,qLgcdsqJd =
1

ÎduJuo
qI

tsqIJLdcsqId, sA4d

ith cPL2sFId andqJPFJ. The range ofvfL,qLg is the protected subspace of a graph code9 To
oint out the relation to the Kraus representation of Lemma A.1 we claim that the the is

fL,qLg can also be represented by

vfL,qLg = ÎduI uFIL
* usLdxsqLdFLFJL. sA5d

n Ref. 11 we have shown that the following is true.
Lemma A.2: The encoding operation EL=T fLIJ

IJ,1I,eI
Jg :AsJd→AsId is pure and for all A

AsJd the identity,

ELsAd = vfL,0Lg
*

AvfL,0Lg, sA6d

s valid.
By making use of Lemma A.1, we also obtain a useful Kraus representation for the de

hannel in terms of the isometriesvfL,qLg ,q
LPFL. For this purpose, we introduce the funct

unction fL
I :FL→JI by fL

I qL=0I if the equation(15) has no solution forqL. Otherwise, we put

fL
I qL = spI,qId, sA7d

here the phase space vectorspI ,qId is theuniquesolution (Theorem IV.1) of the equation(15),
hat is,pI =LE

I qE and pE=LIEL
J qIEL holds for some vectorspE,qEd which has nonvanishing com

onents in for a setE,J which contains at moste elements.
Lemma A.3: The decoding channel DL :AsId→AsJd has a Kraus representation,

DLsBd = o
qL

SqLBSqL
* , sA8d

here for qLPFL the Kraus operator SqL is given by

SqL = vfL,qLgws− fL
I qLd* . sA9d

n particular, the operatorssSqLdqLPFL form a complete family of mutually orthogonal isomet
nd DL is an *-algebra homomorphism.

Proof: By Lemma A.1 we conclude thatDL has a representation by the Kraus operators

S̃mJL ª FIL
* usLdFLzsmJLdFJLwsdJL

I mJLd, sA10d

ith mJLPFJL. By the definition of the functiondJL
I , the identitydJL

I mJL=spI ,qI −L̄J
I mJd holds for

pI ,qId= fL
I qL and formL=qL−L̄J

LmJ. Inserting this into(A10) yields

S̃mJL = FIL
* usLdzsmJdxs− qL + L̄J

LmJdFLFJLwspI,qI − L̄J
I mJd, sA11d

here we have used the relationFLzsqLd=xsqLdFL. SincexsL̄J
I mJd is localized inI and commute
ith FLFJL. This yields

                                                                                                            



w u-
t rty
F

w he
K
o ,
S

C.

1

1

1

1 ,

1

1

J. Math. Phys., Vol. 45, No. 11, November 2004 Error syndrome calculation for graph codes 4333

                        
S̃mJL > FIL
* zsmJdusLdxsqL − L̄J

ILmJdFLFJLwspI,qId* , sA12d

here we writeS>S8 if S=eiuS8 holds for some phaseeiu. In the next step we use the comm
ation relationusLdxsaILd=wsLIL

J aIL ,aILdusLd and the fact thatFIL
* has the invariance prope

IL
* xsaILd=FIL

* . This implies

S̃mJL > FIL
* usLdFLzsqLdFJLws− pI,− qId* =

1
ÎduJu

SqL, sA13d

here we have used the identity(A5) for the isometryvfL,qLg. ThusDL has a representation by t
raus operatorssSqLdqLPFL. We have shown in Ref. 11 thatsvfL,qLgdqLPFL is a family of mutually
rthogonal isometries and thus the same holds for Kraus operatorssSqLdqLPFL too. That is

qL
* SaL=dsqL−aLd1 andoqLSqLSqL

* =1 holds andDL is a homomorphism. h
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on-null Lie quadratics in E3
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Interpolation problems in the space SO(3) of rotations of Euclidean 3-spaceE3 are
reviewed in Secs. I and II as background and motivation to a study of curves inE3

called Lie quadratics. Except for a special class called null, Lie quadratics have
resisted analysis until now. The rest of the present paper is devoted to new results
showing non-null Lie quadratics have rich analytical, geometrical, and asymptotic
structures: rates of growth are studied using differential equations and inequalities,
Lie quadratics are proved to be extendible over the whole ofR, and existence of
axes is proved under fairly general conditions. Examples show sharpness of many
results. ©2004 American Institute of Physics.[DOI: 10.1063/1.1803609]

. INTRODUCTION

Interpolating in the group SO(3) of rotations of Euclidean 3-spaceE3, and in Riemannia
anifolds generally, is a more significant task, in terms of applications and mathematic
ight at first be suspected. To place the new mathematical results of the present paper in
e first say something about applications and previous mathematical work. Interpolation in(3)

s very different to the standard problem of interpolation inE3.
Example 1: A rigid body K, perhaps a camera, is free to rotate about the origin0 in Euclidean

-space E3. Configurations xi, and possibly angular velocitiesvi, are specified at times i=0, T. The
roblem is to move K accordingly. At time t the configuration xstd is given by a positively oriente
rthonormal framesx1std ,x2std ,x3stdd fixed relative to K. Equivalently, xstd is the rotation matrix

fx1std x2std x3std g P SOs3d,

nd so we have an interpolation problem for a curve x: f0,Tg→SOs3d. In the simplest case, whe
ngular velocities are not specified at endpoints, the interpolation conditions are

xs0d = x0, xsTd = xT. s1d

f our elementary problem was posed in E3, instead of SO(3), the affine line segment from x0 to xT

ould probably be chosen as interpolant. However, although SO(3) is contained in the Eu
pace M333>E9 of real 333 matrices, an affine line in E9 intersects SO(3) in at most two poin
o line segments are not available for interpolation in SO(3). However SO(3) is covered b
ubsets U diffeomorphic to open subsets of E3. Such covers must contain several open
ecause U cannot be the whole of SO(3). For instance, rotations may be mapped to Euler an
c ,u ,fdP f0,2pd3 f0,pd3 f0,2pd,E3. Chart-based interpolation proceeds by mapping x0, xT

o points in E3, interpolating in E3 then mapping the interpolant back into SO(3). This prescrip
s less straightforward than it sounds. For instance, if the Euler angle of xi are sci ,ui ,fid
Fsxid for i =0, T, small perturbations in xi can give large changes inci, fi whenui <0. Also,
hether theui are small or not, the chart-based interpolant x may be a very unnatural choice
xample, taking

)
Electronic mail: lyle@maths.uwa.edu.au

4334022-2488/2004/45(11)/4334/18/$22.00 © 2004 American Institute of Physics
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xjT = 31 0 0

0 Î3/2 s− 1d j/2

0 s− 1d j+1/2 Î3/2
4 ,

here j=0, 1, the curve of directions of the camera lens takes the long way around (Fig. 1
Although these difficulties can be ameliorated by switching between charts, this com

mplementation and has unwelcome side effects: the interpolant from xT to x0 may be different t
hat from x0 to xT. h

The geometrical difficulties in Example 1 suggest using a more geometrical interp
cheme, like the following simple method from Riemannian geometry. ARiemannian metricon a
` manifold M such as SO(3) is a smooth assignment of inner products to the tangent spa
ach point inM. The length Lsxd andenergy J1sxd of a smooth curve x: f0,Tg→SOs3d are then
efined as

Lsxd =E
0

T

ixs1dstdidt andJ1sxd =E
0

T

ixs1dstdi2 dt,

here the normi i is calculated using the Riemannian metric, and superscriptsnd meansn-fold
erivative. Curves satisfying(1) of minimum length and uniform speed are calledminimal geo
esics. They also minimize energy. Geodesics on SO(3) can sometimes be written down in clos

orm, notably when the metric isbi-invariant. In this case rotations are represented by
uaternions, namely points in the three-dimensional unit sphereS3,E4, with geodesics repr
ented by arcs of great circles. Interpolation by geodesics effectively deals with the pr
aised in Example 1, but is inadequate for most applications.

In Example 1 only two camera configurationsx0, xTPSOs3d are prescribed, whereas
ractice x may need to satisfy many such constraints. Piecewise geodesics are inapp
ecause, like piecewise-linear curves inE3, they are usually nondifferentiable at junctions
imple way to ensure this does not occur is to prescribe derivatives ofx at junctions, replacing(1)

FIG. 1. Lens directions with chart-based linear interpolation.
y
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xs0d = x0, xs1ds0d = v0, xsTd = xT, xs1dsTd = vT. s2d

f the problem was posed inE3 a cubic polynomial could satisfy(2), but SO(3) has no nonconsta
olynomial curves, and chart-based cubic polynomials are problematic in the same ways a
ased line segments. On the other hand, geodesics in SO(3) are readily calculable, at least fo
i-invariant metric, and correspond to lines inE3. This reminds us of the classicaldeCastlejau
lgorithm for generating polynomial curves inE3 from line segments.

Replacing line segments by geodesic arcs in the cubic deCastlejau algorithm gives c
O(3) capable of satisfying(2), as in Refs. 29 and 12. This elegant and effective meth

requently applied, and has been investigated further in Ref. 11. A recursive form of the de
au algorithm also adapts to Hermite interpolation in SO(3).19–23 Unlike the Euclidean version
he adapted nonrecursive and recursive deCastlejau schemes generate different curves(3).
et another kind of curve results when we insist on an analogue of the importantvariation
iminishing property, that cubics inE3 minimize

E
0

T

ixs2dstdi2 dt

mong curvesx: f0,Tg→E3 satisfying(2).

I. RIEMANNIAN CUBICS AND LIE QUADRATICS

A Riemannian manifold comes equipped with aLevi–Cività covariant derivative¹, which is
procedure for differentiating vector fields, whose associatedparallel translation respects th
iemannian metric.Riemannian cubicsare critical points of the functionalJ2 given by

J2sxd =E
0

T

i¹d/dt xs1di2 dt, s3d

herex: f0,Tg→M satisfies(2). As shown in Refs. 13 and 26, the Euler–Lagrange equationJ2

s

¹d/dt
3 xs1d + Rs¹d/dt xs1d,xs1ddxs1d = 0, s4d

hereR is theRiemannian curvatureof ¹. Let M be SO(3) with a bi-invariant Riemannian metr
hen, as it stands,(4) amounts to 36 nonlinear first order ODEs for 36 scalar functions, wi
quality constraints, and 36 scalar boundary conditions. The first step in solving this syste
eduction in Ref. 26 of(4) to a second order system of ODEs forV: f0,Tg→E3,

Vs2dstd = Vs1dstd 3 Vstd + C whereC P E3, s5d

ogether with the first order equation

xs1dstd = xstdBsVstdd, s6d

hereB:E3→sos3d is the linear isomorphism fromE3 onto the space of skew-symmetric 333
eal matrices given byBsvdswd=v3w, and3 denotes the vector product inE3. In Sec. IV of the
resent paper Eqs.(5) and (6) are shown to be solvable over the whole real line. In Ref. 25
6) is solved using at most one quadrature. For any intervalS#R, a curveV:S→E3 satisfying(5)
s called aLie quadraticin E3. DefiningF :S→ f0,`d by Fstd=iVstdi2, it follows easily from(5)
hat

Fs2dstd = 6kC,Vstdl + 2b, s7d

s1d 2
iV stdi = 2kC,Vstdl + b, s8d
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iVs2dstdi2 = c, s9d

hereb, cPR are constant. Setd=3siCi2+cd andd±=3siCi±Îcd2.
Example 2: Takingv0, vT as

3 0.0000 0.9280 − 0.3725

− 0.6175 − 0.1225 0.2121

0.7866 − 0.2121 − 0.1225
4, 30.0000 − 0.2708 − 0.2380

0.1155 − 0.0224 − 0.0388

0.3415 0.0388 − 0.0224
4 ,

he curve of lens directions for the Riemannian cubic shown (thick) in Fig. 2 is less w
ppearance than the curve for the adapted nonrecursive deCastlejau algorithm of Sec. I
urves were generated in about 7 seconds on a 2 GHz PC running Mathematica. h

There is a special class of Lie quadratics for which quite a lot is known: the Lie qua
:S→E3 is callednull when its constantC is 0. In Ref. 24 null Lie quadratics inE3 are shown t
ave constant(usually nonzero) curvature, linearly varying torsion, and twoaxes. The axes ar
ays through0, to which V becomesC0 close ast→ ±`. The space of null Lie quadratics h
otational symmetry, and individual null quadratics haveinternal symmetry. A Riemannian cubi
n SO(3) associated with a null Lie quadratic also has internal symmetries and is asympto
air of geodesics.

Example 3: Figure 3 shows the null Lie quadratic V: f0,26g→E3 with Vs0d, Vs1ds0d taken as

f3.2734 0.6697 − 5.1300gT, f− 0.2320 − 0.0935 0.3427gT ,

hereT means transpose. The Lie quadratic starts in the lower right, spiralling outwards
n axis pointing upwards and to the left. Around Vs14d the curve spirals inwards along the oth
xis, which points to the left and slightly downwards.

Figure 4 shows the curve x1 in S2 of first columns of x: f0,26g→SO(3) associated with th
ull Lie quadratic V.

x1 spirals downwards from a closed curve in the upper left, switches, then spirals up

FIG. 2. Lens directions for the Riemannian cubic.
owards a closed curve in the lower right (note the change in sense of spiralling). The limiting
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urves are projections of geodesics in SO(3), namely circles in S2. Self-symmetry of x is n
vident on casual inspection. h

In addition to references already cited, for further background on null Lie quadratics
annian cubics, variational problems, reduction to Lie quadratics, generalizations, and alte

ee Refs. 6, 16, 28, 14, 15, 33–35, 10, 18, 8, 9, 30, and 2. For engineering applications s
7, 4, 27, 5, 3, 31, and 32.

For the larger class of non-null Lie quadraticsV we note that ifAPSOs3d thent°AVstd is a
on-null Lie quadratic with constantAC, if t0PR thent°Vst− t0d is a non-null Lie quadratic wit

FIG. 3. Null Lie quadraticV in E3, showingVs0d, Vs14.3d, Vs26d, and axes.

2
FIG. 4. x1: f0,26g→S , x1s0d, x1s14.3d, x1s26d.
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onstantC, and if 0Þa1PR then t°a1Vsa1td is a non-null Lie quadratic with constanta1
3C. So

fter a rotation, change of origin, and change of scale a non-null Lie quadraticV:R→E3 can be
ade to satisfy

C = f1 0 0gT, V1s0d = 0, kVs0d,Vs1ds0dl = 0.

he geometry of Lie quadratics is much more complicated in the non-null case.
Example 4: Taking Vs0d=f1.0 2.0 2.0gT, Vs1ds0d=f−1.0 1.0 1.0gT, and C=−f0.4 0.5 0.75gT,

e find

b = 8.800 00, c = 20.4742, d = 64.34, d− = 37.5669, d+ = 91.1131.

umerical simulation with Mathematica’s default16 significant figures working precision giv
ig. 5 for V: f−45,30g→E3. The curve appears to spiral backwards and forwards along

hrough the origin. h

From this point onwards the results are new, emphasizing the squared-norm functionF of a
ie quadraticV. There are seven theorems, all central to the paper. These emphasize asy
roperties ofV, through a detailed analysis ofF and its relationship to the constantsb,c,d,d±.

i) Lie quadratics inE3 (whether null or not) extend to Lie quadratics defined on the whol
R (Corollary 5), as do Riemannian cubics(Theorem 2), and can be sensitive to initial da
(Example 5).

ii ) F satisfies various differential inequalities and differential equations(Theorem 1).
iii ) F satisfies a nonlinear third-order differential equation(11) from which follow further

inequalities(Corollaries 1 and 2), and a second order equation(14) for G;sFs1dd2.
iv) Whenb,0 F is strictly convex, withFstd increasing ast4 for t→ ±` (Theorem 3).
v) For b.0 V can be periodic(Example 6) and sometimesF is multimodal(Example 5).
vi) For bù0 V is often unbounded(Theorem 5) and thenFstd increases ast2 or t4.
vii ) For bù0 there are relationships between critical values ofF (Theorem 5, Example 9).
viii ) WhenV is unbounded the angular partUstd of Vstd converges to a limita±sVd as t→ ±`

(Theorem 6) with a± ;kC,a±sVdlù0 (Corollary 9).
ix) WhenV is unboundedFstd=Ost2d as t→ ±` if and only if a±=0 (Theorem 7).

FIG. 5. V: f−45,30g→E3 computed with 16 significant figures in Example 4.
x) The asymptotic directionsa±sVd may be difficult to determine(Example 11).

                                                                                                            



f our
a l
a ns and
i

I

→ ng
t

a

−

D

F

a

E

+
−

.

P

4340 J. Math. Phys., Vol. 45, No. 11, November 2004 Lyle Noakes

                        
Properties ofF, as well as being of interest in their own right, are the key to the rest o
nalysis. Whereas in the null caseF is a quadratic polynomial, the possibilities whenV is non-nul
re more various and take a little longer to unfold, starting with some differential equatio

nequalities.

II. DIFFERENTIAL EQUATIONS AND INEQUALITIES

Let V:S→E3 be a Lie quadratic defined on an open intervalS, with constant vectorC, F :S
f0,`d, and associated constantsb,c,d,d± as defined in Sec. II. A result similar to the followi

heorem appeared independently in Ref. 1.
Theorem 1: Fù0, Fs2d+b=3iVs1di2ù0,

d− ø sFs2d + bdF − 3
4sFs1dd2 = d − Fs4d ø d+, s10d

nd

48FsFs3dd2 − 48Fs1dsFs2d − 2bdFs3d + 64b3 + 48d2 − 96bdF+ 48b2F2 + 72dsFs1dd2 − 72bFsFs1dd2

+ 27sFs1dd4 − 96dFFs2d + 96bF2Fs2d − 72FsFs1dd2Fs2d − 48bsFs2dd2 + 48F2sFs2dd2 + 16sFs2dd3

− 576diCi2 + 1728iCi4 = 0. s11d

Proof: Eliminating kC,Vl between(7) and (8), iVs1di2= 1
3sFs2d+bd. By (9) and (5), iVs1di2F

kVs1d ,Vl2+2kC,Vs1d3Vl+iCi2=c. Then

1
3sFs2d + bdF − 1

4sFs1dd2 + 2kC,Vs1d 3 Vl + iCi2 = c.

ifferentiating (7) twice, and by(5), Fs4d=6kC,Vs1d3V+Cl and consequently

kC,Vs1d 3 Vl = 1
6Fs4d − iCi2. s12d

or (10), it remains to proved−ød−Fs4død+: by (7), uFs4du=6ukC,Vs2dluø6iCiÎc. So

d− = 3siCi − Îcd2 ø d − Fs4d ø 3siCi + Îcd2 = d+,

nd this proves(10). Now Fs4d=6kC,Cl+6kC,Vs1d3Vl by (5), and then

SFs4d

6
− iCi2D2

= iCi2siVs1di2iVi2 − kVs1d,Vl2d − ikC,VlVs1d − kC,Vs1dlVi2

= iCi2SSFs2d + b

3
DF −

sFs1dd2

4
D − SFs2d − 2b

6
D2SFs2d + b

3
D

− SFs3d

6
D2

F + SFs2d − 2b

6
DFs3d

6
Fs1d.

liminating Fs4d with (10) gives (11). h

Corollary 1: 64b3F+48d2F−96bdF2+48b2F3−48b2sFs1dd2+72dFsFs1dd2−72bF2sFs1dd2

27FsFs1dd4−96dF2Fs2d+96bF3Fs2d+48bsFs1dd2Fs2d−72F2sFs1dd2Fs2d−48bFsFs2dd2+48F3sFs2dd2

12sFs1dd2sFs2dd2+16FsFs2dd3−576diCi2F+1728iCi4Fø0.
Proof: Equation(11) is quadratic inFs3d, with discriminant −192 times the left-hand sideh
Corollary 2: At a critical point t0 of F where Fst0d.0,

sFs2dd3 − 3bsFs2dd2 + 3sd − bF − FFs2dd2 − 108iCi2c + 4b3 ø 0.

roof: SetFs1d=0 in Corollary 1 and divide both sides by 16F. h
s1d 2 s1d
Writing G=sF d for F Þ0,
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Fs2d =
1

2

dG

dF
, Fs3d =

e

2
G1/2d2G

dF2 , Fs4d =
1

2
G

d3G

dF3 +
1

4

dG

dF

d2G

dF2 ,

heree is the sign ofFs1d. Then, from(10) and (11), we have the following.
Corollary 3: In any open interval where Fs1dÞ0,

2G2d3G

dF3 +
dG

dF

d2G

dF2 + 2F
dG

dF
− 3G + 4bF − 4d = 0, s13d

nd

12
d2G

dF2S4bG− G
dG

dF
+ FG

d2G

dF2D + 2SdG

dF
D3

− 12
dG

dF
S4F − 4bF2 + b

dG

dF
+ 3FG − F2dG

dF
D

+ 9Gs8d − 8bF + 3Gd + 48bFsbF − 2dd + 16s4b3 + 3d2 − 36diCi2 + 108iCi4d = 0. s14d

h

Despite extreme sensitivity of solutions of(5) to numerical measurements, the evidence
ests these inequalities are sharp.

Example 5: In Example 4, numerical simulation with 16 significant figures working pre
ives Fig. 5 for V: f−45,30g→E3. Figure 6, using 25 significant figures (our default from now

s noticeably different, although the two figures share some similarities in general appear.
In particular, both Figs. 5 and 6 suggest F is multimodal. The graph of Fu f−45,30g in Fig. 7

hows more detail: eight points of local minimum and seven of local maximum. In Fig. 6, the
tarts from around the right of the front panel, spirals outwards then, after sporadic spirall
he middle range, spirals outwards to the panel on the left.

In Fig. 8 d−Fs4d is plotted together with the horizontal lines throughd±. Fs4d appears is highl
scillatory, and the inequalities in (10) seem sharp.

Corollary 1 is also sharp, as illustrated by the plot in Fig. 9 of the left-hand side o
nequality.

However, for a null Lie quadratic F is a quadratic polynomial.24
h

Another basic fact is the extendibility of Riemannian cubics and Lie quadratics from int

FIG. 6. V: f−45,30g→E3 computed with 25 significant figures in Example 5.
to the whole ofR. The following inequality is needed for the proof in Sec. IV.
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Corollary 4: Given t0PS, there are constantsk0,k2.0 depending only on Vst0d, Vs1dst0d,
s2dst0d such that, for all tPS,

iVstdi,iVs1dstdi2 ø k2
2t2 + k0

2.

Proof: For tPS, uFs4dstduø6iCiÎc. So whentù t0, uFs3dstduø uFs3dst0du+6iCiÎcst− t0d. Then
Fs2dstduøk0+k1st− t0d+k2st− t0d2 wherek0, k1, k2 depend only onVst0d, Vs1dst0d, Vs2dst0d, and so
n: Fstd is bounded by a quartic int, at least fortù t0, and a similar argument applies fort, t0. So
Vi is bounded by a quadratic. BecauseFs2d is bounded by a quadratic so isiVs1di2. h

V. EXTENDING RIEMANNIAN CUBICS AND LIE QUADRATICS

We prove an extendibility result for Riemannian cubics in SOs3d, then use it to prove exten
bility for Lie quadratics inE3. Reference 7 also contains results on extendibility of cubics.

Lemma 1: For somed.0, given t0PR, x0PSO(3), and vi PTSO(3)x0
with iB−1sx0

−1vidiø1
or 0ø i ø2, there is a unique Riemannian cubic x: st0−d ,t0+dd→SO(3) satisfying

xst0d = x0, xs1dst0d = v0, u¹d/dt xs1dut0 = v1, and u¹d/dt
2 xs1dut0 = v2. s15d

Proof: Picard’s theorem on local unique solvability of ordinary differential equations a
sserts this, but withd depending onx0, v0, v1, v2. However SOs3d is compact. Restrictingv0, v1,

2 also to lie in a compact set permits a uniform choice ofd. h

Lemma 2: Ford as in Lemma 1, given t0PR, x0PSO(3), and vi PTSO(3)x0
for 0ø i ø2, if

FIG. 7. F in Example 5.

s4d
FIG. 8. d−F andd± in Example 5.
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ù1+maxiivii then there is a unique Riemannian cubic x: st0−d /l ,t0+d /ld→SO(3) satisfyin
15).

Proof: Using Lemma 1, letx̂: st0−d ,t0+dd→SOs3d be the Riemannian cubic satisfying

x̂st0d = x0, x̂s1dst0d = v0/l, u¹d/dt x̂s1dut0 = v1/l
2, andu¹d/dt

2 x̂s1dut0 = v2/l
3.

hen setxstd= x̂st0+lst− t0dd. h

Theorem 2: Given t0PR, x0PSO(3), and v0, v1, v2PTSO(3)x0
, there is a unique Rieman

an cubic x:R→SO(3) satisfying (15).

Proof: By Lemma 1, for somed̃.0 there is a(Riemannian) cubic x̃: st0− d̃ ,t0+ d̃d→SOs3d
atisfying(15). If x̃ is not extendible to a cubic onst0− d̃ ,`d, let T be the set of real numbersT for

hich x̃ extends to a cubic onst0− d̃ ,Tg. SetT̄=supT and

l = sk2
2T̄2 + k0

2 + 1d2 + iVs2dst0di + 1.

hooseTPT with T. T̄−sd /2ld andd as in Lemma 1. By(9) and Corollary 4, the Lie quadra
associated with a cubic extensionx: st0−d0,Tg→SOs3d of x̃ satisfies

iVstdi ø k2
2t2 + k0

2, iVs1dstdi ø Îk2
2t2 + k0

2, iVs2dstdi = iVs2dst0di, for t P st0 − d0,Td,

herek0, k2 depend only onx̃. By Ref. 26 Lemma 2,

iB−1sxstd−1xs1dstddi = iVstdi ø l − 1,

iB−1sxstd−1¹d/dt xs1ddi = iVs1dstdi ø l − 1,

iB−1sxstd−1¹d/dt
2 xs1ddi = iVs2dstd + 1

2Vstd 3 Vs1dstdi ø iVs2dst0di + 1
2sk2

2t2 + k0
2d3/2 ø l − 1.

pplying Lemma 2, withT̂;T−sd /4ld in place oft0, xu fT̂−sd /4ld ,Tg extends to a cubic defin

n fT̂−sd /ld ,T̂+s3d /4ldg. So x, and thereforex̃, extends to a Riemannian cubic onft0− d̃ ,T̄

sd /4ldg, namelyT̄+sd /4ldPT, contradictingT̄=supT. So x̃ is right extendible after all. Le
xtendibility is proved similarly. Uniqueness follows from Picard’s local uniqueness. h

Corollary 5: Given CPE3, t0PR and w0, w1PE3, there is a unique Lie quadratic V:R
E3 with constant C, satisfying

s1d

FIG. 9. Corollary 1 in Example 5.
Vst0d = w0 and V st0d = w1.
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Proof: Setw2=w13w0+C, x0=1, v0=B−1w0, v1=B−1w1, v2=B−1w2, apply Theorem 2, and l
be the Lie quadratic associated with the Riemannian cubicx:R→SOs3d. h

So there is no loss in restricting attention to Lie quadratics inE3 defined on the whole ofR.
e may then ask about rates of growth ofVstd, or equivalently ofFstd, ast→ ±`.

. RATES OF GROWTH I

By Theorem 1, for a Lie quadratic,V:R→E3,

Fs4d + sFs2d + bdF = 3
4sFs1dd2 + d, whered ù 0. s16d

hend=0 V is null of the formVstd=st− t0db, wheret0PR and bPE3. For d.0, F̃ given by

std=d1/3F̃sd1/6td satisfies(16) with b replaced byd−2/3b andd by 1. So there would be no re
oss of generality in takingd=1, but we continue with only the assumptiond.0. By Corollary 4
im supt→±`fFstd / t4g,` and lim supt→±`fiVs1dstdi2/ t2g,`. Sharper results follow from Theore
.

Corollary 6: We have maxh0,−b/2jø lim inf t→±`fFstd / t2g and lim supt→±`fFstd / t4g
iCiÎc/4.

Proof: BecauseFs2dstdù−b, Fs1dstd−Fs1dst0dù−bst− t0d for any tù t0PR. Integrating again,

Fstd ù Fst0d + st − t0dFs1dst0d −
b

2
st − t0d2. s17d

or t, t0, Fs1dstd−Fs1dst0dø−bst− t0d, and again(17) holds on second integration. Similarly, b
ause

Fs4dstd ø d − d− = 6iCiÎc, we have lim sup
t→±`

Fstd
t4

ø
iCiÎc

4
.

h

Corollary 7: Let t0 be a point of local minimum of F. Then bFst0død+.

1) If Fst0d=0 thend−=0.
2) If t0 is a degenerate critical point then bFst0dùd−.

Proof: By (10), d−ø sFs2dst0d+bdFst0død+, whereFs2dst0dù0. h

By Theorem 1, forFs1dFÞ0, we have 2d−F−5/2ø2bF−3/2+sd/dFdsF−3/2Gdø2d+F−5/2 and,
ntegrating overfFst1d ,Fst2dg whereFs1d.0 on ft1,t2g,

4d−

3
sr3/2 − 1d ø 4bFst1drsr1/2 − 1d + Gst2d − r3/2Gst1d ø

4d+

3
sr3/2 − 1d, s18d

herer;Fst2d /Fst1d.1.
Theorem 3: Suppose bø0. Then F is convex. If b,0 or d−.0 then F is strictly convex an

im inf t→±`fFstd / t4g.0.
Proof: By Theorem 1,Fs2d+bù0, andF is convex becausebø0. Similarly, if b,0 thenF is

trictly convex. Forbø0 andd−.0, sFs2d+bdFùd−+ 3
4sFs1dd2.0 by (10), and againF is strictly

onvex.
BecauseF is strictly convex, it is unbounded, has a pointt0 of global minimum, andt0 is the

nly critical point. Takeft1,t2g, st0,`d in (18), let t1→ t0
+, and writet2= t,

Gstd ù 4sr1/2 − 1dSSd−

3
− bFst0dDr +

d−

3
r1/2 +

d−

3
D .

2 1/2 1/2
iven 0,e,1, chooset3. t0 so large thatr.e for all tù t3. Thenr −1ù s1−edr , and
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Fs1dstd = ÎGstd ù gr3/4, whereg ; 2Îs1 − edSd−

3
− bFst0dD .

o Fstd−3/4sdF/dtdùgFst0d−3/4 and, integrating again,Fstd1/4−Fst3d1/4ù4gFst0dst− t0d, so tha
im inf t→`fFstd / t4gùg. Now if Fst0d=0 we haveVst0d=Vs1dst0d=0, and the unique solution of(5)
atisfying these conditions isVstd= 1

2st− t0d2C, for which b=0. So eitherFst0d.0 or b=0, and
ither b.0 or d−.0 by hypothesis. So in any case we haveg.0, completing the proof fort

`. For t→−` consider the Lie quadratics°−Vs−sd. h

I. POLYNOMIAL SOLUTIONS FOR F

Comparing Corollary 6 and Theorem 3, ifbd−,0 thenFstd=Ost4d but FstdÞOst3d. On the
ther hand,F is sometimes bounded whenb.0.

Example 6: Given a0, c0, t0PR, APSO(3), define a Lie quadratic,

Vstd = a0As− c0,cosa0c0st − t0d,sina0c0st − t0dd. s19d

hen C=a0
3c0As1,0,0d, F is constant with value a0

2s1+c0
2d,

b = 3a0
4c0

2, c = a0
6c0

4, d = 3a0
6c0

2s1 + c0
2d and d± = 3a0

6c0
2s1 ± c0d2.

f a0c0=0 then V is constant. Otherwise V is periodic and non-null (the only bounded null
uadratics in E3 are constants).

Conversely, let V be any Lie quadratic in E3 with F constant. If C=0 then b=0 by (7) and the
Vs1di=0 by (8), namely V is constant. If CÞ0 then, after rotation in E3 and time dilation, we can
uppose C=s1,0,0d, so that the first component V1 of V is −c0. By (5), the other componen
atisfy

V2
s2d = − c0V3

s1d, V3
s2d = c0V2

s1d,

iving V2=cosc0st− t0d, V3=sinc0st− t0d for some t0PR. So, in any case where F is constant, V
as the form (19) after rotation and dilation. h

Example 7: For b.0, cù0, APSO(3) and t0PR, let V be the null quadratic for which

Vst0d = AsÎc,0,0d, Vs1dst0d = As0,Îb,0d.

hen Fstd=bst− t0d2+c, and d=d+=d−=3c. Alternatively, F is also realized by the affine L
uadratic

t ° − AsÎbst − t0d,Îc,0d,

hich is non-null for c.0. h

Example 8: For a0.0, c0PR, APSO(3) and t0PR, set

Vstd = sa0st − t0d2 + c0dAs1,0,0d.

hen V is a Lie quadratic in E3 with C=2a0As1,0,0d, Fstd=sa0st− t0d2+c0d2,

b = − 4a0c0, c = 4a0
2, d = 24a0

2, d+ = 48a0
2, and d− = 0.

h

In particular, Examples 6, 7, and 8 give constant, quadratic and quartic solutions of(16) with
ù0, Fs2d+bù0, anddù0. There are no other examples: all polynomial solutions of(16) have

he form

a0st − t0d2 + c0 or sb0st − t0d2 + d0d2, s20d
here
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i) a0=b and 3bc0=d, or a0=0 andbc0=−d,
ii ) 24b0

2=d and 4b0d0=−b, or b0=0 andbd0
2=d.

When b,0 the solutionFstd=bst− t0d2+d/ s3bd of (16) satisfies neitherFù0 nor Fs2d+b
0. In Examples 6, 7, and 8,t0 is a point of global minimum ofF. In Example 6, and in Examp
whenc0=0, t0 is degenerate.

Theorem 4: Unless V is one of the periodic Lie quadratics in Example 6,

1) the critical points of F are isolated, and
2) if Fst0d.0 and Fs1dst0d=Fs3dst0d=0 then Fstd=sa0st− t0d2+c0d2 where a0, c0PR,
3) if t0 is a degenerate critical point of F either Fs3dst0dÞ0 or Fstd=sd/24dst− t0d4.

Proof: For (2), Fst0d, Fs2dst0d determineF uniquely as a solution of(16), and all sFst0d ,Fs2d

st0ddP s0,`d3R are realized in Example 8. For(3), F is determined byFst0dù0. Positive
alues are realized by takingF constant, and 0 is achieved in Example 8 by settingc0=0. If F is
onstantV appears in Example 6. For(1), if F is nonconstant a critical point then, by(3), t0
atisfiesFsidst0dÞ0 for somei =2, 3, 4. Sot0 is isolated. h

Corollary 8: If F is nonconstant its points of local maximum are nondegenerate. h

II. RATES OF GROWTH II: bÐ0

Theorem 5: Suppose bù0. If t0 is a point of local maximum of F, thend−øbFst0d. If t0 is a
oint of local minimum of F then bFst0død+, and

1) if F u st0,`d has no critical points and is unbounded, then3bFst0død+, and either

lim
t→`

Fstd
t2

= b or lim inf
t→`

Fstd
t4

. 0;

2) if F u s−` ,t0d has no critical points and is unbounded, then3bFst0død+, and either

lim
t→−`

Fstd
t2

= b or lim inf
t→−`

Fstd
t4

. 0;

3) if 3bFst0død− and d−.0, then t0 is the only critical point of F, is nondegenerate, and F
unbounded onf0,`d and ons−` ,0g;

4) if 3bFst0d,d− then

lim inf
t→±`

Fstd
t4

. 0;

5) for d−.0, let t1 be another critical point of F, where F has no critical points between t0,t1.
Then3bFst0d.d− and

Fst1d ù SmFst0d1/2 + Î4mFst0d2 − 3m2Fst0d
2sFst0d − md

D2

, wherem =
d−

3b
. s21d

If also 3bFst0d.d+ then

Fst1d ø SmFst0d1/2 + Î4mFst0d2 − 3m2Fst0d
2sFst0d − md

D2

, wherem =
d+

3b
. s22d

Proof: For t0 a critical point ofF, d−ø sFs2dst0d+bdFst0død+, by (10). If t0 is a point of loca
aximum thenFs2dst0dø0 and therefored−ø sFs2dst0d+bdFst0døbFst0d. Similarly, if t0 is a poin

s2d
f local minimumF st0dù0 andbFst0død+. For s1d, by (18), with ft1,t2g, st0,`d,
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r3/2S4bFst1d − Gst1d −
4d+

3
D − 4bFst1dr ø − SGst2d +

4d+

3
D , s23d

r3/2S4bFst1d − Gst1d −
4d−

3
D − 4bFst1dr ù − SGst2d +

4d−

3
D . s24d

y hypothesis, lim supt2→` r=`. By (23), and becauseGst2d+s4d+/3dù0,

4bFstd − Gstd ø
4d+

3
for all t . t0.

o 3bFst0død+. By (24) if, for any t1ù t0, kst1d;4bFst1d−Gst1d−s4d−/3d,0, then for alltù t1,

Gstd ù − kst1dr3/2 + 4bFst1dr −
4d−

3
, wherer = Fstd/Fst1d.

hen, as in the proof of Theorem 3, lim inft→`fFstd / t4g.0. Alternatively if kstdù0 for all tù t0,
henGstd,4bFstd and 0øFs1dstd,2ÎbFstd1/2. So

0 ø Fstd , sFst0d1/2 + Îbst − t0dd2,

nd lim supt→`fFstd / t2gøb. Whenb=0 this provess1d, and whenb.0 we argue as follows. B
23), sincer is unbounded,Gstdù4bFstd−s4d+/3d, for all tù t0. Eventually the right-hand side
ositive, whent= t1 say, and

Fs1dstd ù 2sbF − d+d1/2,

or all tù t1. IntegratingsbFstd−d+d1/2ùbst− t1d+sbFst1d−d+d1/2, which completes the proof
1d.

Now s2d follows by applyings1d to the Lie quadraticW whereWssd=−Vs2t0−sd. The param
tersb,c,d,d± are the same forW, andC is replaced by −C.

For s3d Fst0dÞ0 andt0 is nondegenerate, by Corollary 7. Takingt1→ t0
+ in (24),

Gstd ù
4
3sr1/2 − 1dssd− − 3bFst0ddr + d−r1/2 + d−d ù

4
3sr − 1dd−, s25d

here rstd=Fstd /Fst0d. In particular Fs1dstdÞ0 for tP st0,t1g and, sincet0 is a point of loca
inimum of F, Fs1d is positive onst0,t1g. So F u st0,t1g is increasing, andFst1dFs1dst1d.0. So
stdFs1dstd.0 for all t. t0, and (25) still holds. SinceF is strictly increasing onst0,`d, so isr.
lso

Fs1dstd ù 2Îd−

3
sr − 1d1/2 = 2Îd−

3
sFstd/Fst0d − 1d1/2.

hen integration gives lim inft→`fFstd / t2g.0, ands3d follows by applying this toW in place ofV.
For s4d, given lP s0,1d, chooser so large(and t accordingly) so that(25) gives

rstd−3/4Fs1dstd ù lÎ4sd− − 3bFst0dd
3

, namelyFstd−3/4Fs1dstd ù lÎ4sd− − 3bFst0dd
3

Fst0d−3/4.

ntegration then provess4d for t→`, and applying this toW proves the rest ofs4d.
For s5d, bFst0d.0 by s3d. Also (18) gives d−sr+r1/2+1dø3bFst1død+sr+r1/2+1d, where

=Fst1d /Fst0d. Writing f i =Fstid1/2,

f1
2sm − f0

2d + f1smf0d + mf0
2 ø 0, s26d

2
herem=d−/3b andm− f0,0 by s3d. So either
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f1 ø
mf0 − Î4mf0

4 − 3m2f0
2

2sf0
2 − md

or f1 ù
mf0 + Î4mf0

4 − 3m2f0
2

2sf0
2 − md

.

ow smf0d2−s4mf0
4−3m2f0

2d=4mf0
2sm− f0

2d,0 and, sincef1ù0, this proves(21). Taking m
d+/3b, the direction of the inequality in(26) reverses. When also 3bFst0d.d+, namely m
f0
2,0, (22) follows in similar fashion to(21). h

Notice that when 3bFst0d,2d−, (21) in s5d of Theorem 5 is stronger thanFst0d,Fst1d.
Example 9: Figure 10 plots F in Example 5, with horizontal lines of heightsd± /3b. As in,

heorem 5, Fst0død+/3b for every point t0 of local minimum of F. Also notice that Fst0d
d+/3b only for the first and last observed points t0 of local minimum. Even if we only kno
u f−20,20g, it follows from Part 1 of Theorem 5 that the restriction of F to each ofs−` ,−20d and

20,`d is either bounded or has a point of local minimum. h

Under fairly general conditionsFstd grows faster than linearly andV can be shown to posse
xes, generalizing a result for null Lie quadratics. The axes of a non-null Lie quadraticV have
on-negative components in the direction of the constant vectorC.

III. SUPERLINEARITY

Whether b.0 or not, for VstdÞ0 write Ustd=Vstd / iVstdi. Then Us1d=sVs1d /F1/2d
sFs1dU /2Fd.

Lemma 3: iUs1di=Îsd−Fs4dd /3 /Fø siCi+Îcd /F.
Proof: iUs1di2 = f4FiVs1di2−sFs1dd2g /4F2 = fFsFs2d + bd − 3

4sFs1dd2g /3F2 = sd−Fs4dd /3F2

d+/3F2, by Theorem 1. h

Definition 1: For s=±, F is said to bes-superlinearwhen, for somee.0, we have
, lim inf t→s`fFstd / utu1+cg,`. h

In Example 6,V is not superlinear. In general,

i) if F is superlinear theneø3, by Corollary 6,
ii ) if b,0 thenF is 6 superlinear withe=3, by Theorem 3,
iii ) for bù0, if Fstd is unbounded forst.0, with finitely many critical pointsti satisfying

sti .0, thenF is s superlinear withe either 1 or 3, by Theorem 5,
iv) if V is null and nonconstant thenF is 6 superlinear withe=1.

Definition 2: Let s=±, pPR and h:R→R be given. A function g:R→R is said to be Osshd
henlim supt→s`fgstd /hstdg,`. h

Theorem 6: If F is s-superlinear thenassVd; limt→s` Ustd exists, and

−e

FIG. 10. F in Examples 5 and 9.
Ustd = assVd + Ossutu d.
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Proof: For r ,s,

iUssd − Usrdi øE
r

s

iUs1dstdidt ø E
r

s iCi + Îc

Fstd
dt.

For s=+, the right-hand side is bounded above byksr−e−s−ed for some constantk.0, at leas
or r sufficiently large. SohUs jd : j ù1j,S2 is Cauchy, therefore convergent, then lims→` Ussd
xists, in the limit ass→` ia+sVd−Usrdiøkr−e, and similarly fors=−. h

Example 10: Let V be a null Lie quadratic V with b=1, c.0, and Fstd=c+ t2. Set tstd
e0

t fÎc/Fstdgdt=s1/Îcdarctanst /cd and W2std;Ustd=sc+ t2d−1/2Vstd. Differentiating with respec
o t, set W1std;W28std=c−1/2ssc+ t2d1/2Vs1d− tsc+ t2d−1/2Vd, and W3std;W1std3W2std. Then W

fW1 W2 W3gPSO(3), and

W8std = 3 0 − 1 c sec3sÎctd
1 0 0

− c sec3sÎctd 0 0
4Wstd,

heretP s−p / s2Îcd ,p / s2Îcdd. So U and therefore V can be found by solving the third-o
omogeneous linear differential equation with variable coefficients

cos3sÎctd
d

dt
ssy9std + ystddcos3sÎctdd + c2y8std = 0,

or y: s−p / s2Îcd ,p / s2Îcdd→R. h

Theorem 7: Let F bes superlinear. Then

fstd
t2

=
as

2
+ Ossutu−1d,

here f;F1/2 and as;kC,assVdl.
Proof: Supposes=+. By (5), fUs2d+2f s1dUs1d+ f s2dU= f2Us1d3U+C, and, sinceiUi;1, tak-

ng inner products of both sides withU gives

0 ø f s2d − kC,Ul = fkUs1d,Us1dl ø
d+

3f3 = O+st−3s1+ed/2d,

y Lemma 3 and becauseF is 1 superlinear. Thenf s2dstd=a++O+st−ed, by Theorem 6. Integratin
or large t0, t,

f s1dstd = a+st − t0d + f s1dst0d + O+sK1std − K1st0dd,

hereK1std is ln t or t1−e / s1−ed, according toe=1 or not. Integrating again,

fstd =
a+st − t0d2

2
+ st − t0df s1dst0d + fst0d + O+sK2std − st − t0dK1st0dd,

hereK2std= t ln t− t0 ln t0− t+ t0, t0
−1− t−1, or st2−e− t0

2−ed / ss1−eds2−edd, according toe is 1, 2 or
either. In any case,fstd / t2=sa+/2d+O+st−1d. For s=− apply what has already been proved to
ie quadraticW given byWssd=−Vs−sd, noting thatW has constant −C anda+sWd=−a−sVd. h

Corollary 9: Let F bes superlinear. ThenkC,aslù0, and either

i) e=1, kC,asl=0, and bù0, or
ii ) e=3, or

iii ) kC,asl=0, bù0, and F has critical points t0 with st0 arbitrarily large.
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Proof: If a+.0 thene=3, by Theorem 7. Alternatively, ifas=0 thenbù0 by Theorem 3
hen, by Theorem 5, eithere=1 or F has critical pointst0 with st0 arbitrarily large. h

Unlike the null case, where convergence to axes is more or less steady, unbounded
ie quadratics inE3 may explore numerous possibilities before settling on an asymptotic dire
t least whenb.0.

Example 11: In Example 5,kC,Us−45dl=−0.032 55and kC,Us30dl=0.2915.So, by Corollary
, Us−45d is far froma−sVd, which is not apparent from Figs. 6 and 7. Solving (5) numerically
over the larger domainf−240,30g, U : f−240,30g→S2 is shown in Fig. 11, together with the li

egment from(0,0,0) to C and labels when t=−240,−45,30.We findkC,Us−240dl=0.62375,and
orollary 9 permitsa−sVd<Us−240d, a+sVd<Us30d. h

1Abrunheiro, L. and Camarinha, M., “Riemannian cubic polynomials,” preprint 04-03, January 2004, Depart
Mathematics, University of Coimbra, Portugal.

2Altafini, C., “Reduction by group symmetry of second order variational problems on a semidirect product of Lie
with positive definite Riemannian metric,” ESAIM: Control, Optimisation and Calculus of Variations(in press).

3Angeles, J. and Akras, R., “Cartesian trajectory planning for 3-DOF spherical wrists,” IEEE Conference on Robo
Automation, Scottsdale, AZ, 1989, pp. 68–74.

4Barr, A. H., Currin, B., Gabriel, S., and Hughes, J.F., “Smooth interpolation of orientations with angular v
constraints using quaternions,” Comput. Graphics26, 313–320(1992).

5Brady J. M., Hollerbach, J. M., Johnson, T. L., Lozano-Perez, T., and Masson, M. T.,Robot Motion: Planning an
Control (MIT Press, Cambridge, MA, 1982).

6Buss, S. R. and Fillmore, J. “Spherical averages and applications to spherical splines and interpolation,” AC
Graphics 20, 95–126(2001).

7Camarinha, M., “The geometry of cubic polynomials on Riemannian manifolds,” Ph.D. thesis in Pure Mathe
University of Coimbra, Portugal, 1996.

8Camarinha, M., Silva Leite, F., and Crouch, P., “On the geometry of Riemannian cubic polynomials,” Diff.
Applic. 15, 107–135(2001).

9Camarinha, M., Silva Leite, F., and Crouch, P., “Splines of classCk on non-Euclidean spaces,” IMA J. Math. Control
12, 399–410(1995).

0Chapman, P. B. and Noakes, L., “Singular perturbations and interpolation—a problem in robotics,” Nonline
Theory, Methods Appl.16, 849–859(1991).

1

FIG. 11. U in Examples 5, 11.
Crouch, P., Kun, G., and Silva Leite, F., “The De Castlejau algorithm on Lie groups and spheres,” J. Dyn. Control Syst.

                                                                                                            



1 12–13

1

1 Math.

1

1

1 g.

1

1

2 .

2

2

2

2

2

2

2

2

2

3 n control

3 l. Math.

3

3 Trans.

3 e on

3

J. Math. Phys., Vol. 45, No. 11, November 2004 Non-null Lie quadratics in E3 4351

                        
5, 397–429(1999).
2Duff, T., “Quaternion splines for animating rotations,” Second Summer Graphics Workshop, Monterey, CA,
December 1985(Usenix Association), pp. 54–62.

3Gabriel, S. A. and Kajiya, J. T., Spline Interpolation in curved manifolds(unpublished).
4Giambo, R., Giannoni, F., and Piccione, P., “An analytical theory for Riemannian cubic polynomials,” IMA J.
Control Inf. 19, 445–460(2002).

5Giambo, R., Giannoni, F., and Piccione, P., Higher order interpolation in Riemannian manifolds(unpublished).
6Jost, J.,Riemannian Geometry and Geometrical Analysis(Springer-Verlag, Berlin, 1995).
7Kang, I. G. and Park, F. C., “Cubic spline algorithms for orientation interpolation,” Int. J. Numer. Methods En46,
45–64(1999).

8Krakowski, K., “Geometrical methods of inference,” Ph.D. thesis, University of Western Australia, 2002.
9Noakes, L., “Asymptotically smooth splines,” World Scientific Series in Approximations and Decompositions4, 131–
137 (1994).

0Noakes, L., “Riemannian quadratics,” inCurves and Surfaces with Applications in CAGD, edited by A. Le Méhauté, C
Rabut, L. Schumaker(Vanderbilt University Press, Nashville, TN, 1997), Vol. 1, pp. 319–328.

1Noakes, L., “Nonlinear corner-cutting,” Adv. Comput. Math.8, 165–177(1998).
2Noakes, L., “Accelerations of Riemannian quadratics,” Proc. Am. Math. Soc.127, 1827–1836(1999).
3Noakes, L., “Quadratic interpolation on spheres,” Adv. Comput. Math.17, 385–395(2002).
4Noakes, L., “Null cubics and Lie quadratics,” J. Math. Phys.44, 1436–1448(2003).
5Noakes, L., “Duality and Riemannian cubics,” Adv. Comput. Math.(in press).
6Noakes, L., Heinzinger, G., and Paden, B., “Cubic splines on curved spaces,” IMA J. Math. Control Inf.6, 465–473
(1989).

7Paul, R. P., “Manipulator path control,” IEEE Trans. Syst. Man Cybern.SMC-9, 702–711(1979).
8Park, F. C., and Ravani, B., “Smooth invariant interpolation of rotations,” ACM Trans. Graphics16, 277–295(1997).
9Shoemake, K., “Animating rotation with quaternion curves,” Comput.-Aided Des.19, 245–254(1985).
0Silva Leite, F., Camarinha, M., and Crouch, P., “Elastic curves as solutions of Riemannian and sub-Riemannia
problems,” Math. Control, Signals, Syst.13, 140–155(2000).

1Tan, H. H. and Potts, R. B., “A discrete path/trajectory planner for robotic arms,” J. Aust. Math. Soc. Ser. B, App
31, 1–28(1989).

2Taylor, R. H., “Planning and execution of straight-line manipulator trajectories,” IBM J. Res. Dev.23, 424–436(1979).
3Zefran, M., Kumar, V., and Croke, C., “On the generation of smooth three-dimensional rigid body motions,” IEEE
Rob. Autom.(1995).

4Zefran, M. and Kumar, V., “Planning of smooth motions onSEs3d,” Proceedings of the 1996 International Conferenc
robotics and automation.

5Zefran, M. and Kumar, V., “Interpolation scheme for rigid body motions,“ Comput.-Aided Des.30, 179–189(1998).
                                                                                                            



q

I

t

T is
p
t s
t l Euclid-
e
H e
s

the
a ion
o
; ded to
t on
S ri-
c

ation
f
t p
w rs
o
S feld
d ft
m a-
t
o the
R

ry of
q ie
c uble or
t

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 11 NOVEMBER 2004

0

                        
-deformation of z\ „az+b… / „gz+d…

Ctirad Klimčík
Institute de mathématiques de Luminy, 163, Avenue de Luminy, 13288 Marseille, France

(Received 30 October 2003; accepted 29 July 2004; published 25 October 2004)

We construct the action of the quantum double of Uqssus2dd on the standard Podleś
sphere and interpret it as the quantum projective formula generalizing to the
q-deformed setting the action of the Lorentz group of global conformal transfor-
mations on the ordinary Riemann sphere. ©2004 American Institute of
Physics.[DOI: 10.1063/1.1803610]

. INTRODUCTION

As it is well known, the Lorentz group SLs2,Cd naturally acts on the Riemann sphereS2 by
he conformal transformations

z→ az+ b

gz+ d
, a,b,g,d P C, ad − bg = 1. s1d

heq-deformation ofS2 is referred to as the Podleś sphere(Podleś, 1987). One of the goals of th
aper is to find the correspondingq-deformation of the conformal transformations(1). We note

hat the restrictionā=d, ḡ=−b gives the action of the group SU(2) on S2 which just correspond
o the standard geometrical rotations of the two-sphere embedded into three-dimensiona
an space. Theq-deformed version of this SU(2) action was studied in detail by Podleś (1987).
owever, to our best knowledge, theq-conformal action of the fullq-Lorentz group on the Podlś
phere has not yet been reported.

Recall, that the algebra of functions FunsS2d on ordinary two sphere can be viewed as
lgebra of those functions on the group SU(2) which are invariant with respect to the right act
f the maximal torus U(1) on SU(2). This gives the dual description of the coset SUs2d /Us1d
S2. The group SU(2) acts naturally from the left on this coset and this action can be exten

he action(1) of the Lorentz group SLs2,Cd on S2 since we have a well-known identificati
Us2d /Us1d;SLs2,Cd /B with B being the Borel subgroup(consisting of upper triangular mat
es) of SLs2,Cd.

In order to construct theq-deformation of the picture just described, we take some inspir
rom the theory of Poisson–Lie groups(see Semenov-Tian-Shansky, 1985, and Klimčík, 2004 for
he elements). There is the Iwasawa decomposition SLs2,Cd=SUs2dAN of the Lorentz grou
hereAN is the subgroup of upper triangular complex 232 matrices with real positive numbe
n diagonal and unit determinant.AN turns out to be the dual Poisson–Lie group of SU(2) and
Ls2,Cd is the Drinfeld double of SU(2) in the Poisson–Lie sense of this word. Now the Drin
ouble SLs2,Cd acts on Fun(SU(2)): the action of its subgroup SU(2) is induced just by the le
ultiplication of SU(2) on itself and the subgroupAN acts by the so-called dressing tranform

ions. This action of the SLs2,Cd on Fun(SU(2)) descends to FunsSUs2d /Us1ds;S2d and it turns
ut to be given by the projective action(1), wherez is the standard complex coordinate on
iemann sphere.

The theory of Poisson–Lie groups is a sort of the semiclassical limit of the theo
-deformed Hopf algebras for the deformation parameterq approaching 1. Many Poisson–L
oncepts can be directly generalized to the Hopf algebra setting like, e.g., the Drinfeld do

he dressing transformations. In particular, the Poisson–Lie concept of the duality translates into

4352022-2488/2004/45(11)/4352/8/$22.00 © 2004 American Institute of Physics
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he famous(Drinfeld, 1986) duality in the world of Hopf algebras. Having in mind the paral
etween the Poisson–Lie and the Hopf worlds, it is not difficult to find theq-deformation of th
rojective formula. We proceed as follows.

The Podleś sphere FunqsS2d is a one-parameter deformation of the algebra FunsS2d. It is
enerated by the U(1) right-invariant elements of the quantum group FunqsSUs2dd. The deforme
nveloping algebra Uqssus2dd naturally acts on the deformed FunqsSUs2dd. [This corresponds
he left action of SU(2) on Fun(SU(2)) just described above.] The Hopf dual Uqsand of Uqssus2dd
cts on FunqsSUs2dd in the Hopf-dressing way. This corresponds to the dressing action ofAN on
un(SU(2)). As noted by Korogodsky(unpublished), the Hopf analogue of the dressing action

qsand on FunqsSUs2dd is the adjoint action of the Hopf algebra FunqsSUs2dd on itself. This
tatement is consistent due to the Drinfeld duality isomorphism between Uqsand and FunqsSUs2dd.
he respective actions of Uqsand and Uqssus2dd on FunqsSUs2dd combine to the action of th
rinfeld doubleDsUqssus2ddd on FunqsSUs2dd. This Drinfeld double is nothing but theq-Lorentz
roup (see Podleś and Woronowicz, 1990) and the only consistency check of the construc
onsists in verifying that the action of theq-Lorentz group descends from FunqsSUs2dd on
unqsS2d. It turns out to be the case and thus we obtain theq-deformation of the projective formu
1).

In Sec. II, we describe the action of the quantum doubleDsUqssus2ddd on the Podleś sphere
nd in Sec. III we show that it leads to the projective formula(1) in the limit q→1. We finish with
short outlook.

I. ACTION OF THE DRINFELD DOUBLE D„Uq„su „2……… ON THE PODLEŚ SPHERE

First we recall some relevant facts concerning(the p-actions of) the Drinfeld double. Th
eader can mostly find them also in Majid(1995), however, our exposition between Eqs.(9) and
11) is original.

Thus letH be a Hopf algebra,H̃ its dual andHcop the co-opposite Hopf algebra ofH. The
rinfeld doubleDsHd is another Hopf algebra which is generated by its two sub-Hopf alg
cop andH̃. The coalgebra structure ofDsHd is just that ofHcop^ H̃, the antipodeSD is given by

SDsU ^ fd ; s1 ^ SfdsScopU ^ 1d = sScopUd9 ^ sSfd9ksScopUd8,sSfd8lkScopsScopUd-,sSfd-l, s2d

nd the product is defined by the following cross relations(Majid, 1995):

kU8, f8lsU9 ^ 1ds1 ^ f9d = kU9, f9ls1 ^ f8dsU8 ^ 1d. s3d

ere UPHcop, f P H̃, k.,.l is the duality pairing betweenH and H̃ and we use the Sweed
otation for the coproduct

DcopsUd = o
p

Up8 ^ Up9 ; U8 ^ U9, Dsfd = f8 ^ f9. s4d

he formula (3) is particularly useful if we know the generators and their relations for

lgebrasHcop andH̃ separately. The set of relations for the algebra structure ofDsHd can be the
irectly obtained from(3) and (4).

If, moreover,H andH̃ are equipped with compatible star structures, then the quantum d
sHd can be also naturally made ap-Hopf algebra. Recall that a starp on H is an antilinea
ntihomorphism ofH satisfyingSpSp = Id, p2= Id ,sp ^ p dD=Dp, andp«=«p. The standard com

atibility relation (cf. Majid, 1995) between the stars onH and H̃ reads

kU * , fl = kU,sSfd * l, U P H, f P H̃. s5d
he explicit formula for the starp on DsHd is then uniquely determined as follows:
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sU ^ fd * ; s1 ^ f * dsU * ^ 1d = U* 9 ^ f * 9kU* 8, f * 8lkScopU*-, f *-l, U P Hcop, f P H̃,

s6d

here the star onHcop is the same as that onH.

The algebrasHcop and H̃ act (from the left) on H̃, respectively, as

Uxh = kScopsUd,h8lh9, U P Hcop, h P H̃, s7ad

fxh = f8hSsf9d, f,h P H̃. s7bd

e note thatScop=S−1, whereS is the antipode ofH. Using the basic axioms of Hopf algebras
s easy to check that the definitions(7a) and (7b) imply

kU8, f8lU9xsf9xhd = kU9, f9lf8xsU8xhd, U P Hcop, f,h P H̃.

y comparing with the defining relation(3), this means that(7a) and(7b) describe in fact the le

ction of the quantum doubleDsHd on H̃. Explicitly,

sU ^ fdxh ; Uxsfxhd, U P Hcop, f,h P H̃. s8d

t can be also directly checked[with the help of the condition(5)], that this action is compatib

ith the algebra structure ofH̃ and with thep-structure onH̃. Explicitly,

xxsfhd = sx8xfdsx9xhd, x P DsHd, f,h P H̃, s9ad

sxxfd * = sSDsxdd * xf * , x P DsHd, f P H̃. s9bd

ow let kPHcop be a grouplike self-adjoint element, i.e.,k* = k, Dcopk=k^ k, «skd=1. We can

hen define a linear spaceA consisting of invariant elements ofH̃ with respect to the right actio

f k andSskd on H̃,

A = hf P H̃, kf9,klf8 ; fvk = f, fvSskd = fj. s10d

e have forf ,gPA

sfgdvk = kf9g9,klf8g8 = kf9,klkg9,klf8g8 = fg

nd, in the same way,sfgdvSskd=1 which means thatA is the subalgebra ofH̃. We obtain easil
lso thep-stability of A, since for f PA we have

f * vk = kf * 9,klf * 8 = skf9,sSskdd * lf8d * = sfvSskdd * = f *

nd, in the same way,f * vSskd=sfvkd* = f*.
It is not difficult to prove thatA is also stable with respect to the action(7a) and (7b) of the

uantum doubleDsHd on H̃. Indeed, we have for theHcop action (7a),

Uxsfvkd = kScopsUd, f8lf9kf-,kl = sUxfdvk, U P Hcop, f P H̃.

he proof of stability forH̃ action (7b) is slightly more involved,

shxfdvk = ksh8fSsh9dd9,klssh8fSsh9ddd8 = kh9f9Sh-,klh8f8Sh-8 = kh9,klkf9,klkSh-,klh8f8Sh-8

= kh9,kSskdlkf9,klh8f8Sh- = kf9,klh8f8Sh9 = hxsfvkd, h, f P H̃.
he same formulas hold true upon replacingk→Sskd.
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In the context of our paper, the *-Hopf algebraH will be the standard deformation Uqssus2dd
f Ussus2dd, H̃ will be the corresponding dual deformation FunqsSUs2dd of FunsSUs2dd andA will
e the Podleś sphere FunqsS2d. For the sake of mathematical rigor, we should pay attention t

act that the notion of the dual Hopf algebra needs some clarification in the infinite-dimen
ase. Actually, Uqssus2dd and FunqsSUs2dd are in duality in the sense of Chaps. V.7 and VII.4
he book by Kassel(1995). The general Drinfeld double formulas(2)–(10) then work with this
otion of duality with the bilinear pairing given by Eq.(12d).

For the description of the Hopf algebras FunqsSUs2dd and Uqssus2dd, we use the conventio
f Dąbrowski and Sitarz(2003) and Dąbrowski et al. (unpublished). Thus letqÞ1 be a rea
ositive number and denote FunqsSUs2dd a *-Hopf algebra generated bya and b, subject to
elations

ba= qab, b * a = qab* , bb* = b * b, a * a + q2b * b = 1, aa* + bb* = 1, s11ad

quipped with a coproduct

Da = a ^ a − qb ^ b * , Db = b ^ a * + a ^ b, s11bd

counit«sad=1, «sbd=0 and an antipode

Sa= a * , Sa* = a, Sb= − qb, Sb* = − q−1b * . s11cd

he algebra FunqsSUs2dd is thus well defined but it is perhaps useful to comment its nam
verywhere in this paper, the symbol FunqsMd indicates the deformation of the algebra of a cer
lass of functions on the ordinary manifoldM. If the manifoldM is the Lie group then the typic
unctions in this class are the matrix elements of the finite-dimensional representations
roup (cf. Levendorskii and Soibelman, 2001).

The *-Hopf algebra Uqssus2dd is generated by elementse and (invertible self-adjoint) k,
ubject to relations

ek= qke, k2 − k−2 = sq − q−1dse* e− ee* d, s12ad

quipped with a coproduct

Dk = k ^ k, De= e ^ k + k−1
^ e, s12bd

counit«skd=1, «sed=0 and an antipode

Se= − q−1e, Se* = − qe* , Sk= k−1. s12cd

he (nondegenerate) duality pairing between Uqssus2dd and FunqsSUs2dd is given by the two
imensional representation of Uqssus2dd, i.e.,

kk,al = q1/2, kk,a * l = q−1/2, ke,− qb* l = ke* , bl = 1 s12dd

ith all other couples of generators pairing to 0. It is easy to verify that the star structu
unqsSUs2dd and Uqssus2dd are compatible in the sense of Eq.(5).

The Podleś sphere is the algebra FunqsS2d viewed as the subalgebra of FunqsSUs2dd of right
nvariant elements with respect to the action of the self-adjoint grouplike elementsk andk−1 [cf.
10)]. It is generated by

B = ab, B * = b * a * , A = bb* ,

beying the following relations:

AB= q2BA, AB* = q−2B * A, BB* = q−2As1 − Ad, B * B = As1 − q2Ad.

The action of theq-Lorentz groupDsUqssus2ddd on FunqsS2d,FunqsSUs2dd is described b

he formulas(7a) and (7b). We obtain explicitly
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kxB = q−1B, kxB * = qB* , kxA = A,

k−1xB = qB, k−1xB * = q−1B * , k−1xA = A,

exB = 0, exB * = q−1/2 − sq3/2 + q−1/2dA, exA = q1/2B,

e* xB = − q−3/2 + sq1/2 + q−3/2dA, e* xB * = 0, e* xA = − q−1/2B * , s13ad

axB = q−1B + sq − q−1dBA, axB * = q−1B * + sq − q−1dAB* ,

axA = q−2A + s1 − q−2dA2,

a * xB = qB+ sq − q3dAB, a * xB * = qB* + sq − q3dB * A,

a * xA = q2A + sq2 − q4dA2,

bxB = sq2 − 1dB2, bxB * = s1 − q2dA2, bxA = sq3 − qdBA,

b * xB = sq − q−1dA2, b * xB * = − sq − q−1dB*2, b * xA = s1 − q2dAB* . s13bd

We note, that the notion of *-structure is crucial for our paper because the group SLs2,Cd (in
he context of the conformal transformations acting on the Riemann sphere) is viewed as thereal
roup. It is this fact which is the starting point of our strategy to deform the projective formu(1),
ince the real group SLs2,Cd is the Poisson–Lie Drinfeld double of the group SUs2d. The concep
f reality in the deformed Hopf picture is encoded in the *-structure. Thus we need a star *
uantum doubleDsUqssus2ddd=SLqs2,Cd. It is in fact given by the formula(6) uniquely in term
f the standard stars on Uqssus2dd and FunqsSUs2dd (see Majid, 1995; Dąbrowski et al., unpub-

ished). The star-compatible action of the *-Hopf algebraDsUqssus2ddd on the *-algebr
unqsSUs2dd [and on its subalgebra FunqsS2d] is theq-deformed version of the statement that
eal group SLs2,Cd acts on the real algebra FunsSUs2dd and on its subalgebra FunsS2d.

II. THE LIMIT q\1

In this section, we want to show that the action(7a) and (7b) of the quantum doub
sUqssus2ddd on FunqsS2d described explicitly by the formulas(13a) and (13b) gives in the limi
→1 the same result as the action of the group SLs2,Cd on FunsS2d induced by the projectiv

ormula (1). First of all, the limit q→1 of FunqsS2d gives the commutative algebra of comp
unctions on the sphereS2, generated by

B =
z

zz̄+ 1
, B * =

z̄

zz̄+ 1
, A =

1

zz̄+ 1
,

herez is the standard complex coordinate on the Riemann sphere given by the stereo
rojection.

The subgroup SU(2) of SLs2,Cd acts onS2 via formula (1),

z→ az+ b

− b̄z+ ā
, z̄→ āz̄+ b̄

− bz̄+ a
.

2
ts Lie algebra LiesSUs2dd therefore acts on FunsS d via three vector fieldsR j, j =1,2,3,
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R3 = isz]z − z̄]z̄d, R1 + iR2 = is]z + z̄2]z̄d, − R1 + iR2 = isz2]z + ]z̄d.

he subgroupAN of SLs2,Cd is formed by complex upper-triangular 232 matrices with rea
ositive numbers on the diagonal. Its action onS2 is obtained from the projective formula(1) for

he following choice of parameters:g=0, Ima=0, Rea.0, andb an arbitrary complex numbe
hus

z→ asaz+ bd, z̄→ asaz̄+ b̄d.

he Lie algebra LiesANd therefore acts on FunsS2d via three vector fieldsT j, j =0,1,2,

T0 = z]z + z̄]z̄, T2 + iT1 = − 2]z̄, − T2 + iT1 = 2]z.

t is now straightforward to calculate

R3B = iB, R3B * = − iB * , R3A = 0.

sR1 + iR2dB = is2A − 1d, sR1 + iR2dB * = 0, sR1 + iR2dA = − iB * , s14ad

s− R1 + iR2dB = 0, s− R1 + iR2dB * = is2A − 1d, s− R1 + iR2dA = − iB,

T0B = Bs2A − 1d, T0B * = B * s2A − 1d, T0A = 2AsA − 1d,

sT2 + iT1dB = 2B2, sT2 + iT1dB * = − 2A2, sT2 + iT1dA = 2AB, s14bd

s− T2 + iT1dB = 2A2, s− T2 + iT1dB * = − 2B*2, s− T2 + iT1dA = − 2AB * .

e recall, that the formulas(14a) and(14b) describe the infinitesimal projective action(1) of the
ie algebra LiesSLs2,Cdd on FunsS2d. We wish to show that they can be obtained from

ormulas(13a) and (13b) in the limit q→1.
In the limit q→1, the Hopf algebra Uqssus2dd reduces to the enveloping algebra

iesSUs2dd. Upon the standard identification

− ie = − R1 + iR2, ie * = R1 + iR2, k = qiR3, k−1 = q−iR3,

e indeed obtain in the limit the standard definition of the Ussus2dd (viewed as the Hopf algebr)
rom the defining relations(12a)–(12c) of Uqssus2dd. In particular, the commutations relatio
12a) give in the limit fRj ,Rkg=e jklRl. (Note thatRj

* =−Rj.) In the limit q→1, the action(13a) of

qssus2dd thus gives

sR3xBdq→1 = lim
q→1

k − 1

i ln q
xB = iB, sR3xB * dq→1 = − iB * , sR3xAdq→1 = 0.

ssR1 + iR2dxBdq→1 = lim
q→1

sie * xBd = is2A − 1d, ssR1 + iR2dxB * dq→1 = 0,

s15ad
ss− R1 + iR2dxBdq→1 = 0, ss− R1 + iR2dxB * dq→1 = lim

q→1
s− iexB * d = is2A − 1d,

ssR1 + iR2dxAdq→1 = − iB * , ss− R1 + iR2dxAdq→1 = − iB.

omparing(15a) with (14a), we immediately observe that theq→1 limit of the Uqssus2dd action
n the Podleś sphere indeed coincides with the LiesSUs2dd action induced by the projecti
ormula.
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Now we turn our attention to theq-deformation of the action of LiesANd. We define th
ollowing elements of FunqsSUs2dd:

qT0 =
a − a*

2sln qd
, iqT1 + qT2 =

b

sln qd
, iqT1 − qT2 =

b*

sln qd
s16ad

nd calculate

lim
q→1

sqT0xBd = Bs2A − 1d, lim
q→1

sqT0xB * d = B * s2A − 1d, lim
q→1

sqT0xAd = 2AsA − 1d,

lim
q→1

siqT1 + qT2dxB = 2B2, lim
q→1

siqT1 + qT2dxB * = − 2A2,

s15bd
lim
q→1

siqT1 − qT2dxB = 2A2, lim
q→1

siqT1 − qT2dxB * = − 2B*2 ,

lim
q→1

siqT1 + qT2dxA = 2AB, lim
q→1

siqT1 − qT2dxA = − 2AB* .

omparing(15b) with (14b), we immediately observe that theq→1 limit of the FunqsSUs2dd
ction on the Podleś sphere indeed gives the LiesANd action induced by the projective formula(1).

The reader may find somewhat mysterious why theq→1 limit of FunqsSUs2dd contains
iesANd generators. The explanation of this fact resides in the famous Drinfeld duality pri
hich states that there is a natural identification of Hopf algebras FungsGd and UqsG* d. HereG is
Poisson–Lie group andG* is the Lie algebra of its dual Poisson–Lie groupG*. Let us indicate

a rigorous proof would require to give meaning to nonpolynomial functions appearing in(16b)]
hy the Drinfeld duality takes place in the caseG=SUs2d andG* = AN. The Lie algebra LiesANd

s generated by three generatorsTj, j =0,1,2,Tj
* =−Tj obeying the following commutation rel

ions:

fT0,T1g = − T1, fT0,T2g = − T2, fT1,T2g = 0. s17d

e set

a = qT0Î1 + q2sln qd2sT1
2 + T2

2d, a * = Î1 + q2sln qd2sT1
2 + T2

2dq−T0,

b = sln qdsiT1 + T2d, b * = sln qdsiT1 − T2d. s16bd

hen it is not difficult to check two things:(1) the formulas(16b) and (17) imply the defining
ommutation relations(11a) of the Hopf algebra FunqsSUs2dd; (2) it holds limq→1sqTjd=Tj.

Remark 1:Note that this explicit relation(16b) between UqsLiesANdd and FunqsSUs2dd de-
enerateswhenq→1. This fact was important for establishing the limitq→1 of the Hopf adjoin
ction of FunqsSUs2dd on FunqsS2d,FunqsSUs2dd. Indeed, it appears superficially that in thq
1 limit, the algebra FunqsSUs2dd becomes commutative and the adjoint action trivial. T

bservation is too naive, however, and the explanation of the paradox resides in the dege
f the relation(16b) between the sets of generatorsTj anda, a*, b, b* in the limit q→1.

Remark 2:We have established the correctq→1 limit of the quantum double action(7a) and
7b) by performing the detailed calculations with the generators, relations, etc. However, it
ossible to establish it on the conceptual level. First of all, the experts in Poisson–Lie grou
opf algebras know that theq→1 of the adjoint action(7b) of UqsG* d on itself is indeed th
ressing transformation of the Poisson–Lie groupG by its dual Poisson–Lie groupG* [hereG
SUs2d andG* = AN]. The reader can find the detailed proof of this fact in the paper of K
odsky(unpublished). The conceptual proof of the correctq→1 limit of the formula(7a) is even

impler. Indeed we have the following.

                                                                                                            



t
d

R

w
s

T d
t
h
=

I

P e
f ann
s d mainly
i
i
t f those
o m
t

A

paper
(

D nd

D
D
K
K
K
L tum tori,”

M
O
P
P
S iversity,

J. Math. Phys., Vol. 45, No. 11, November 2004 q-deformation of z→ saz+bd / sgz+dd 4359

                        
The standard left action of the enveloping algebra U(su(2)) on Fun(SU(2)) is given by lef
erivations, i.e., ifX is an element of su(2) andhsgd is in Fun(SU(2)) then we have

sXxhdsgd = U d

dt
hse−tXgdU

t=0
. s18d

ecall the coproduct and the counit of the Hopf algebra structure of the nondeformed Fun(SU(2)),

sDhdsg1,g2d = hsg1g2d, «shd = hsed,

heree is the group unit. Recall also thatSsXd=−X for XPsus2d,Ussus2dd. Finally note the
tandard formula for the pairingk.,.l betweenXPsus2d andhPFunsSUs2dd:

− kX,hl = «sXxhd.

Setting all of these pieces of information together, we see that(18) can be written as

sXxhdsgd = U d

dt
hse−tXgdU

t=0
= kS−1sXd,h8lh9sgd.

his is indeed the formula(7a) for H=Ussus2dd andH̃=FunsSUs2dd. In this way, we have verifie
hat the action(7a) of Uqssus2dd on FunqsSUs2dd [and, consequently on FunqsS2d,FunqsSUs2dd]
as the correctq→1 limit, because it is well known that the left action of SU(2) on S2

SUs2d /Us1d is induced by the projective formula(1) for ā=d, ḡ=−b.

V. CONCLUSIONS AND OUTLOOK

We have constructed theq-Lorentz group extension of the natural action of Uqssus2dd on the
odleś sphere and shown that it can be naturally interpreted as theq-deformation of the projectiv

ormula z→ saz+bd / sgz+dd describing the global conformal transformation of the Riem
phere. Our results are rather mathematical in nature but we believe that they can be use

n mathematical physics, e.g., in further studies of braided field theories(cf. Oeckl, 2001) and also
n studies ofq-differential operators(cf. theq-Dirac operator by Dąbrowski and Sitarz, 2003) on
he Podleś sphere. Indeed, our studies suggest to investigate the symmetry properties o
bjects not only from the point of view of the action of the Uqssus2dd quantum group but also fro

he point of view of the action of its quantum double.
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lobal classical solution of the Vlasov–Maxwell–Landau
ystem near Maxwellians
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We consider a classical model in the kinetic theory of plasma—the Vlasov–
Maxwell–Landau system. Global in time classical solutions near Maxwellians are
constructed for hard potential and soft potential, i.e.,gù−1. The construction of
global solution is based on an energy method. Meanwhile, global classical solutions
of the Vlasov–Poisson–Landau system near Maxwellians forgù−1 and the expo-
nential decay of such solutions are obtained. ©2004 American Institute of
Physics.[DOI: 10.1063/1.1803611]

. INTRODUCTION

The dynamics of charged dilute particles in plasma physics can be described by the V
axwell–Landau system(see Refs. 1–3),

]tF + v ·¹xF +
e

m
HE +

v
c

3 BJ ·¹vF = QfF,Fg, Fs0,x,vd = F0sx,vd, s1.1d

hereFst ,x,vd is the spatially periodic distribution function for the particles at timetù0, with
patial coordinatesx=sx1,x2,x3dP f−p ,pg3=T3 and velocityv=sv1,v2,v3dPR3. And e,m, andc
enote the magnitude of their charges and mass, the light speed, respectively. The colli

ween particles is described by the following Landau operator:

QfF,Gg = ¹v ·HE
R3

wsv − v*dfFsv*d¹vGsvd − Gsvd¹vFsv*dgdv*J
= ]iE

R3
wi jsv − v*dfFsv*d] jGsvd − Gsvd] jFsv*dgdv* .

n the case of an interaction forceR between the particles which depends on the interpa
istancer according to an inverse power lawR=r−s with sù2,wi jsvd=hdi j −viv j / uvu2juvug+2 where
=ss−5d / ss−1d. This leads to the usual classification in terms of hard potentialsg.0d, Maxwell-

an moleculessg=0d or soft potentialsg,0d (see Ref. 4). The present study is restricted to
asegù−1.

The self-consistent, spatially periodic electromagnetic fieldfEst ,xd ,Bst ,xdg in (1.1) is coupled
ith Fst ,x,vd through the Maxwell system,

)
Electronic mail: yuhj@amss.ac.cn
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]tE − c ¹ 3 B = − 4pJ = − 4pE
R3

evF dv, ¹ ·B = 0,

]tB + c ¹ 3 E = 0, ¹ ·E = r = 4pE
R3

ehF − mjdv, s1.2d

Es0,xd = E0sxd, Bs0,xd = B0sxd.

The Vlasov–Maxwell–Landau system is a classical model in the kinetic theory of plasm
lso arises in several branches of continuum physics. This system provides a statistical de
f a plasma, in terms of its densityFst ,x,vd, when the collisions moving particles are taken
ccount. There are two reduced descriptions of a high-temperature, low-density plasma
btained by assuming that collisions are so rare that they are neglected. The associate
onstitutes the Vlasov–Maxwell system, which is investigated by many authors(see Refs. 1 an
–7). By neglecting the magnetic field(B;0 and E=¹xf), one obtains the second redu
ystem, that is, the Vlasov–Poisson–Landau system,

]tF + v ·¹xF +
c

m
¹xf ·¹vF = QfF,Fg,

Df = 4pE
R3

ehF − ujdv, E
T3

f dx = 0,

Fs0,x,vd = F0sx,vd.

here are some investigations about the Vlasov–Poisson–Landau system(see Refs. 1,2,8,9,3). The
urpose of this paper is to construct global classical solutions for(1.1) and (1.2) near a globa
axwellian m=sn0/edsm/2pkT0d3/2e−muvu2/2kT0. For convenience, we normalize all the phys

onstants involved in(1.1) and(1.2) to be one and let the global Maxwellian bemsvd=e−uvu2. We
efine the standard perturbationfst ,x,vd to m asF=m+m1/2f. It is well known thatQfm ,mg=0.
y expandingQfm+m1/2g1,m+m1/2g2g, we define

Qfm + m1/2g1,m + m1/2g2g ; Qfm,mg + m1/2hKg1 + Ag2 + Gfg1,g2gj.

he system(1.1) for fst ,x,vd turns into

f]t + v ·¹x + sE + v 3 Bd ·¹vgf − 2E ·vm1/2 + Lf = E ·vf + Gff, fg, s1.3d

ith fs0,x,vd= f0sx,vd andL=−A−K. Notice thatA,K, andG are defined in the same way as
ef. 10, namely,si =wi j p fv jmg ,si j =wi j pm,

Ag= m−1/2]ihm1/2si jf] jg + v jggj, Kg = − m1/2]ihmfwi j p hm1/2f] jg + v jggjgj,

Gfg1,g2g = ]ifhwi j p fm1/2g1g] jg2g − hwi j p fvim
1/2g1gj] jg2 − ]ifhwi j p fm1/2] jg1gjg2g

+ hwi j p fvim
1/2] jg1gjg2.
he coupled Maxwell system takes the form
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]tE − c ¹ 3 B = − J = −E
R3

fvm1/2 dv, ¹ ·B = 0,

]tB + c ¹ 3 E = 0, ¹ ·E = r =E
R3

m1/2f dv, s1.4d

Es0,xd = E0sxd, Bs0,xd = B0sxd.

bviously, the conservation laws of mass, momentum, and energy of(1.1) hold

d

dt
E

R33T3
Fstd =

d

dtFER33T3
vFstd +E

T3
Estd 3 BstdG = 0,

d

dtFER33T3
uvu2Fstd +E

T3
uEstdu2 + uBstdu2G = 0.

otice that from the Maxwell system and the periodic boundary condition

st ,xd ,sd/dtdeT3Bst ,xddx;0. Thus we have a constantB̄ such thats1/uT3udeT3Bst ,xddx=B̄. By
ssuming that initiallyfF0,E0,B0g has the same mass, total momentum, and total energy

teady statefm ,0 ,B̄g, we can rewrite the conservation laws in the terms of the perturb
f ,E,Bg as

E
R33T3

fstdm1/2 =E
R33T3

vfstdm1/2 +E
T3

Estd 3 Bstd = 0, s1.5d

E
R33T3

uvu2fstdm1/2 +E
T3

uEstdu2 + uBstd − B̄u2 = 0. s1.6d

e shall uses· , ·d to denote either the standardL2 inner product inT3 or in T33R3. We shall us
·i to denote the corresponding norms. Let the multi-indicesa and b be a=fa0,a1,a2,a3g ,b
fb1,b2,b3g with uau=ok=0

3 ak andubu=ok=1
3 bk. We define]b

a;]t
a0]x1

a1]x2

a2]x3

a3]v1

b1]v2

b2]v3

b3. If each com

onent ofb is not greater than that ofb̄’s, we denote it bybøb̄. We defineb,b̄ if bøb̄, and

bu, ub̄u. We denotes b

b̄
d by C

b̄

b
.

We define the weighted norm and the high order energy norm as

ugus
2 =E

R3
fsi j]ig] jg + si jviv jg

2gdv, igis
2 =E

R33T3
fsi j]ig] jg + si jviv jg

2gdx dv,

E„fst,x,vd… ; o
uau+ubuøN

F1

2
i]b

afstdi2 +E
0

t

i]b
afssdis

2 dsG + o
uauøN

fi]aEstdi2 + i]aBstdi2g,

ith the initial energy

Esf0d = Esfs0dd ; o
uau+ubuøN

1

2
i]b

af0i2 + o
uauøN

fi]aE0i2 + i]aB0i2g.

hroughout this paper,Nù8. The main result in this paper is as follows.
Theorem 1.1: Assume thatff0,E0,B0g satisfies the conservation laws (1.5) and (1.6).

0sx,vd=m+m1/2f0ù0. There exist C0.0 and M.0 such that if Esf0døM, then there exists

nique global solution fst ,x,vd to the system (1.3) and (1.4). Moreover, Fst ,x,vd=m
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m1/2fst ,x,vdù0 and sup0øtø`E(fstd)øC0Esf0d.
For the simpler Vlasov–Poisson–Landau system from(1.3) and (1.4), we have

f]t + v ·¹x + ¹xf ·¹vgf − 2¹xf ·vm1/2 + Lf = ¹xf ·vf + Gff, fg,

Df =E
R3

m1/2f dv, E
T3

f dx = 0, s1.7d

fs0,x,vd = f0sx,vd.

e define the same energy norm as the above withB;0 andE=¹xf. The conservation laws
ass, momentum, and total energy are

E
R33T3

fstdm1/2 =E
R33T3

vfstdm1/2 = 0, s1.8d

E
R33T3

uvu2fstdm1/2 +E
T3

u¹xfstdu2 = 0. s1.9d

e have the following result for the decay of such a simpler system.
Theorem 1.2:Assume that f0 satisfies (1.8) and (1.9). Let F0sx,vd=m+m1/2f0ù0. There exis

0.0 and M.0 such that if Esf0døM, then there exists a unique global solution fst ,x,vd to the
ystem (1.7). Moreover, Fst ,x,vd=m+m1/2fst ,x,vdù0 and sup0øtø` EsfstddøC0Esf0d.

Moreover, there is ad* .0 such that

o
uau+ubuøN

i]b
afstdi ø E1/2sf0de−d* t.

Although there are some research about the dynamical problems of the Landau equa(see
efs. 1,4,2,11,12,10,13,14,8,9,3), but few global classical solutions have been constructed e

or Refs. 11,12,10, especially little for soft potential, i.e.,g,0 as pointed out by Desvillettes a
illani in Refs. 11,12, where they have constructed global classical solutions to the sp
omogeneous Landau equation for hard potential 0,gø1. Guo first obtains the global classi
olution of the Vlasov–Poisson–Boltzmann near Maxwellians under the hard sphere cond
he pioneering paper, Ref. 15. And then he also shows in Ref. 16 that under the hard
ondition, global classical solution of the Vlasov–Maxwell–Boltzmann near Maxwellians c
onstructed, which is the first result of global solution in this direction. In Ref. 10, the first g
lassical solution of the Landau equation withgù−3 near Maxwellians can be obtained
riginal energy method. Zhan establishes the local existence of weak solution of the syste(1.1)
nd (1.2) with initial data of unrestricted size in Ref. 3.

Motivated by the framework used in Ref. 16, we establish the existence and unique
lobal in time classical solution of the system(1.1) and (1.2) near Maxwellians for both ha
otential and soft potential, i.e.,gù−1. Although our construction of global solutions is base
n energy method developed in Refs. 15,16,10, we cannot obtain the crucial positivity

inearized Landau operatorL by using the similar argument developed in Refs. 15,17,10. T

ecause either −eE3B in the momentum conservation in(1.5) or −iEstdi−iBstd−B̄i in the re-
uced energy conservation(1.6) cannot be controlled byos1di]b

afstdi, due to the presence of t
agnetic fieldfEst ,xd ,Bst ,xdg. Instead, we revised the methods in Ref. 16 to obtain it. Fur
ore, we introduce the normi ·is in the total energy and use the following inequality(1.14) with
ù−1 in order to control the product of the term]bfvfg and the term]bf in the energy estimat
owever, we cannot control this product by(1.14) wheng,−1. As for this problem, we consid

t in the future.

In the following we give some lemmas which can be found in Ref. 10.
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Lemma 1.3: Let ubu.0,uau+ ubuøN. Then for smallh.0, there exists C.0 and Ch.0 such
hat

− s]bfAgg,]bgd ù i]bgis
2 − h o

ub1uøubu
i]b1

gis
2 − Chimgi2, s1.10d

us]bfKg1g,]bg2du ø Hh o
ub1uøubu

i]b1
g1is + Chimg1iJi]bg2is, s1.11d

s]b
aGfg1,g2g,]b

ag3d ø CFH o
a1øa,b1øb

i]b1

a1g1iJH o
a1øa,b1øb

i]b1

a1g2isJ + H o
a1øa,b1øb

i]b1

a1g1isJ
3H o

a1øa,b1øb

i]b1

a1g2iJGi]b
ag3is. s1.12d

It is well known that the linearized collision operatorL is non-negative. And for fixedst ,xd,
he null space ofL is the five dimensional space ofN=spanh1,vi , uvu2jm1/2, where 1ø i ø3. We
enoteh1,vi , uvu2jm1/2 as he1,e2,e3,e4,e5j in Ref. 7. We define a projectionP0 in L2sR3d for any
xed x asP0gsx,vd=o(gsx, ·d ,ej)ej andP1= I −P0 whereI is the identity operator.

Lemma 1.4: For any m.1, there is0,Csmd,`, such that

us]is
ig1,g2du + usKg1,g2du ø

C

m
ug1usug2us + CsmdHE

uvuøCsmd
ug1u2 dvJ1/2HE

uvuøCsmd
ug2u2 dvJ1/2

.

s1.13d

oreover, we have that there exists c.0 and d.0 such that

igis
2 ù cif1 + uvugsg+2d/2gi2, s1.14d

sLg,gd ù diP1gis
2 . s1.15d

Lemma 1.5: Letxsvd be a smooth function so thathuxu+ u¹xu+ u¹2xuøCmsv /4d, then

IE ]aGfg1,g2gx dvI ø CH o
ua1uøN

i]a1g1iJH o
ua1uøN

i]a1g2isJ . s1.16d

I. ENERGY ESTIMATES

The goal in this section is to construct local in time solutions to the system(1.3) and(1.4). The
onstruction is based on a uniform energy estimate for the following sequence of iterat
roximate solutions:

f]t + v ·¹x + sEn + v 3 Bnd ·¹vgFn+1 = QfFn,Fn+1g,

Fn+1s0,x,vd = F0sx,vd,
ogether with the coupled Maxwell system:
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]tE
n − ¹ 3 Bn = − Jn = −E

R3
vFn dv, ¹ ·Bn = 0,

]tB
n + ¹ 3 En = 0, ¹ ·En = rn =E

R3
hFn − mjdv,

Ens0,xd = E0sxd, Bns0,xd = B0sxd.

e start withF0st ,x,vd=F0sx,vd. And then fE0st ,xd ,B0st ,xdg is solved through the Maxwe
ystem with initial datumfE0sxd ,B0sxdg. SinceFn+1=m+m1/2fn+1, we need to solvefn+1 such tha

f]t + v ·¹x + sEn + v 3 Bnd ·¹v − sEn ·vd − Agfn+1 − 2En ·vm1/2 − Kfn = Gffn, fn+1g,

s2.1d

]tE
n − ¹ 3 Bn = − Jn = −E

R3
vfnm1/2 dv, ¹ ·Bn = 0,

]tB
n + ¹ 3 En = 0, ¹ ·En = rn =E

R3
fnm1/2 dv,

s2.2d
Ens0,xd = E0sxd, Bns0,xd = B0sxd, fn+1s0,x,vd = f0sx,vd,

tarting with f0st ,x,vd= f0sx,vd. Our goal is to get a uniformly inn estimate forE(fn+1std). The
rucial energy estimate is as follows:

Lemma 2.1: The sequencehFnj is well defined and non-negative. Moreover, there e
*(Esf0d).0 and C.0 such that for0ø tøT* and Esf0d sufficiently small, then

sup
k

E„fkstd… ø CEsf0d. s2.3d

Proof: The proof is based on an induction overk. Clearly(2.3) holds whenk=0. Assume(2.3)
s valid for k=n so thatFnù0. We notice thatQfFn,Fn+1g can be written as the linear form

n+1 (see Ref. 10) and then(2.1) is a linear equation onFn+1. For givenFnù0, there exists
olutionFn+1 to the linear equation(2.1). Moreover,Fn+1ù0 sinceF0sx,vdù0.

To prove (2.3) for k=n+1, the first step is to estimate the]b
a derivatives of fn+1. Taking

b
a sbÞ0d of (2.1), multiplying ]b

afn+1, and then integrating overT33R3, we obtain

1

2

d

dt
i]b

afn+1i2 − s]bAf]afn+1g,]b
afn+1d − s]bKf]afng,]b

afn+1d

= s]b
aGffn, fn+1g,]b

afn+1d − o
j ,b1,b

sCb
b1]b−b1

v j]
j]b1

a fn+1,]b
afn+1d + s]b

afEn ·vfn+1g,]b
afn+1d

+ 2s]aEn · ]bfvm1/2g,]b
afn+1d− o

0Þa1øa

Ca
a1s]a1En · ]b

a−a1¹vfn+1,]b
afn+1d

− o
0Þa1øa,0Þb1øb

Ca
a1Cb

b1s]b1
v 3 ]a1Bn · ]b

a−a1¹vfn+1,]b
afn+1d. s2.4d

e now estimate(2.4) term by term. For anyh.0, applying Lemma 1.3 andimgiøCigis, we

educe
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− s]bAf]afn+1g,]b
afn+1d ù i]b

afn+1is
2 − h o

ub1uøubu
i]b1

a fn+1is
2 − Chi]afn+1is

2 ,

s2.5d
− s]bKf]afng,]b

afn+1d ù − Hh o
ub1uøubu

i]b1

a fnis + Chim]afniJi]b
afn+1is

ù− h o
ub1uøubu

i]b1

a fnis
2 − hi]b

afn+1is
2 − Chim]afni2.

e now estimate the second term on the right-hand side of(2.4).

o
j ,b1,b

sCb
b1]b−b1

v j]
j]b1

a fn+1,]b
afn+1d ø C o

j ,b1,b

i]b
afn+1i i] j]b−b1

a fn+1i

ø o
j ,b1,b

fhi]b
afn+1i2 + Chi] j]b−b1

a fn+1i2g. s2.6d

The fourth term on the right-hand side of(2.4) is bounded by

2s]aEn · ]bfvm1/2g,]b
afn+1d ø Ci]aEni i]b

afn+1i. s2.7d

We now estimate the fifth term on the right-hand side of(2.4). Recalling tha
4,1sT3d,L`sT3d, we have

sup
x
FE

R3
ugsx,udu2 duG ø C o

u,uø4
E

T3
U] ,E

R3
gsx,udduU2

dx

ø C o
u,1u+u,2uø4

E
T33R3

u],1gsx,ud],2gsx,ududu dx ø C o
u,uø4

i],gsx,udi2.

s2.8d

e separate two cases. Ifua1uù5, thenua−a1u+4ø uau−1. From(2.8), we have

− o
0Þa1øa

Ca
a1s]a1En · ]b

a−a1¹vfn+1,]b
afn+1d ø C o

0Þa1øa
E

T3
u]a1Enu

3HE u]b
a−a1¹vfn+1u2 dvJ1/2HE u]b

afn+1u2 dvJ1/2

dx

ø C o
0Þa1øa

i]a1Enisup
x
HE u]b

a−a1¹vfn+1u2 dvJ1/2

i]b
afn+1i

ø CH o
0Þa1øa

i]a1EniJ · o
u,uøua−a1u+4

i]b
,¹vfn+1i · i]b

afn+1i

ø CH o
0Þa1øa

i]a1EniJ · o
u,uøuau−1

i]b
,¹vfn+1i · i]b

afn+1i.
n the other hand, ifua1uø4 andua1u+1ø5, we have
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− o
0Þa1øa

Ca
a1s]a1En · ]b

a−a1¹vfn+1,]b
afn+1d ø C o

0Þa1øa

sup
x

u]a1Enu · i]b
a−a1¹vfn+1i · i]b

afn+1i

ø C o
0Þa1øa

i]a1EniH2i]b
a−a1¹vfn+1i · i]b

afn+1i

ø CH o
u,uøua1u+2

i],EniJ · o
0Þa1øa

i]b
a−a1¹vfn+1i · i]b

afn+1i.

e thus have a unified estimatesNù8d for the fifth term as

− o
0Þa1øa

Ca
a1s]a1En · ]b

a−a1¹vfn+1,]b
afn+1d ø CH o

u,uøN

i],EniJ ·H o
u,u+uluøN

i]l
, fn+1iJ · i]b

afn+1i.

s2.9d

e now estimate the third term on the right-hand side of(2.4). In the caseua1uù5,ua−a1u+4
uau−1. From(1.14) in Lemma 1.4 withgù−1, we have

o
a1øa

Ca
a1s]a1En · ]b

a−a1fvfn+1g,]b
afn+1d

ø C o
a1øa

E
T3

u]a1EnuH o
b1øb

E s1 + uvudu]b1

a−a1fn+1u2 dvJ1/2

·HE s1 + uvudu]b
afn+1u2 dvJ1/2

dx

ø CH o
a1øa

i]a1EniJsup
x
H o

b1øb
E s1 + uvudu]b1

a−a1fn+1u2 dvJ1/2

· i]b
afn+1is

ø CH o
a1øa

i]a1EniJ ·H o
u,uøua−a1u+4,b1øb

is1 + uvud1/2]b1

, fn+1iJ · i]b
afn+1is

ø CH o
a1øa

i]a1EniJ ·H o
u,uøua−a1u+4,b1øb

i]b1

, fn+1isJ · i]b
afn+1is.

imilarly, for ua1uø4,

o
a1øa

Ca
a1s]a1En · ]b

a−a1fvfn+1g,]b
afn+1d ø C o

a1øa

sup
x

u]a1Enu ·H o
b1øb

is1 + uvud1/2]b1

a−a1fn+1iJ
3his1 + uvud1/2]b

afn+1ij

ø CH o
u,uøua1u+2

i],EniJ ·H o
a1øa,b1øb

i]b1

a−a1fn+1isJ · i]b
afn+1is.

e thus conclude fromNù8 that the third term is bounded by

o
a1øa

Ca
a1s]a1En · ]b

a−a1fvfn+1g,]b
afn+1d ø CH o

u,uøN

i],EniJ ·H o
u,u+uluøN

i]l
, fn+1isJ · i]b

afn+1is.

s2.10d

y the estimate similar to the above, we have that the sixth term on the right-hand side of(2.4) is
ounded by

CH o
u,uøN

i],BniJ ·H o
u,u+uluøN

i]l
, fn+1isJ · i]b

afn+1is. s2.11d
inally, we estimate the nonlinear collision terms in(2.4). Applying (1.12) in Lemma 1.3, we have
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s]b
aGffn, fn+1g,]b

afn+1d ø Cfho i]b1

a1fnijho i]b1

a1fn+1isj + ho i]b1

a1fnisjho i]b1

a1fn+1ijgi]b
afn+1is.

s2.12d

ntegrating overf0,tg of (2.4), collecting the above estimate, and applying the elementary ine
ty, we have

1

2
i]b

afn+1stdi2 + fi]aEn+1stdi2 + i]aBn+1stdi2g +E
0

t

i]b
afn+1ssdis

2ds

ø
1

2
i]b

af0i2 + fi]aE0i2 + i]aB0i2g + CE
0

t H o
uauøN

i]aEiJ ·H o
uau+uluøN

i]l
afn+1ssdiJds

+ CE
0

t

o
ua1uøN

i]a1fnssdi2 ds+ ChE
0

t

o
ua1uøN

im]a1fnssdi2 ds+E
0

t

CH o
u,uøN

fi],Eni + i],BnigJ
3H o

u,u+uluøN

i]l
, fn+1isJ · i]b

afn+1is ds+ ChE
0

t

o
ua1u+ub1uøN

i]b
afn+1ssdis

2 ds

+ ChE
0

t

o
ua1uøN

i]a1fn+1ssdis
2 ds+ CE

0

t H o
ua1u+ub1uøN

i]b1

a1fnssdiJH o
ua1u+ub1uøN

i]b1

a1fn+1ssdisJ
3i]b

afn+1ssdis ds+ CE
0

t H o
ua1u+ub1uøN

i]b1

a1fnssdisJH o
ua1u+ub1uøN

i]b1

a1fn+1ssdiJi]b
afn+1ssdis ds.

s2.13d

n the following we consider]a derivatives. Taking]a of (2.1), we get

f]t + v ·¹x + sEn + v 3 Bnd ·¹v − Ag]afn+1 − Kf]afng − 2f]aEn ·vgm1/2 + ]afEn ·vfn+1g

+ o
0Þa1øa

Ca
a1f]a1En + v 3 ]a1Bng]a−a1¹vfn+1 = ]aGffn, fn+1g, s2.14d

pplying (1.12) in Lemma 1.3 yields

s]aGffn, fn+1g,]afn+1d ø CF o
ua1uøN

i]a1fn+1isGHF o
ua1uøN

i]a1fniGF o
ua1uøN

i]a1fn+1isG
+ F o

ua1uøN

i]a1fnisGF o
ua1uøN

i]a1fn+1iGJ . s2.15d

We notice, from Lemma 1.3 and(1.13) (see Ref. 10), that for anyh.0 small,

−E
0

t

sAf]afn+1g,]afn+1d −E
0

t

sKf]afng,]afn+1d ù
3

4
E

0

t

i]afn+1ssdis
2 ds− CE

0

t

i]afn+1ssdi2 ds

− hE
0

t

i]afnssdis
2 ds− ChE

0

t

im]afnssdi2 ds.

s2.16d

t is easily founded that

− 2f]aEn ·vgm1/2 = − 2f]aEn+1 ·vgm1/2 − 2f]aEn+1 − ]aEng ·vm1/2.

otice that from Maxwell system, the inner product of the first term on the right-hand side
a n+1
bove equality with] f is
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−E 2]aEn+1 ·vm1/2]afn+1 = −E 2]aEn+1]aJn+1 dx =
d

dt
fi]aEn+1stdi2 + i]aBn+1stdi2g.

s2.17d

nd the inner product of the second term with]afn+1 is bounded by

Cfi]aEni + i]aEn+1igi]b
afn+1i.

Multiplying both sides of(2.14) by ]afn+1 and using(2.9), (2.11), and (2.15)–(2.17), then
ntegrating overT33R3, we are able to obtain

1

2
i]afn+1i2 + fi]aEn+1stdi2 + i]aBn+1stdi2g +

3

4
E

0

t

i]afn+1ssdis
2 ds

ø
1

2
i]af0i2 + fi]aE0i2 + i]aB0i2g + CE

0

t

i]afn+1ssdi2 ds+ CE
0

t

fi]aEni + i]aEn+1igi]b
afn+1ssdids

+ hE
0

t

i]afnssdis
2 ds+ ChE

0

t

im]afnssdi2 ds+E
0

t

CF o
ua1uøN

i]a1fn+1isGHF o
ua1uøN

i]a1fniG
3F o

ua1uøN

i]a1fn+1isG + F o
ua1uøN

i]a1fnisGF o
ua1uøN

i]a1fn+1iGJds. s2.18d

ombining this with(2.13) implies, for anyh.0 small,

E„fn+1std… ø CEsf0d + Ct sup
0øsøt

E„fn+1ssd… + Ct sup
0øsøt

E„fnssd… + Ct sup
0øsøt

E„fn+1ssd… sup
0øsøt

E1/2
„fnssd…

+ Ct sup
0øsøt

E1/2
„fn+1ssd… sup

0øsøt
E„fnssd….

ince sup0øsøt E(fnssd)øCEsf0d, we have

„1 − CT*E1/2sf0d − CT*Esf0d… sup
0øsøT* sMd

E„fn+1ssd… ø CEsf0d + CT*Esf0d.

hoosingT* andEsf0d small enough, we conclude the proof of Lemma 2.1.
Theorem 2.2:For any sufficiently small M.0, there exists T*sMd.0 and M1.0 such tha

f Esf0døM1, then there is a unique classical solution fst ,x,vd to (1.2) in f0,T*sMdd3T33R3

uch thatsup0øtøT* E(fstd)øM and E(fstd) is continuous overf0,T*sMdd. If F0sx,vd=m+m1/2f0

0, then Fst ,x,vd=m+m1/2fst ,x,vdù0. Furthermore, the conservation laws (1.5) and (1.6) h
or all 0, t,T* if they are valid initially at t=0.

Proof: Let F0st ,x,vd;F0sx,vd. Taken→` in Lemma 2.1 to obtain a classical solutionf so
hat Fsx,t ,vd=m+m1/2fst ,x,vdù0.

In order to prove the uniqueness, we assume that there exists another solutiong such tha
up0øsøT* E(gssd)øM. Taking the difference, we have

h]t + v ·¹x + sEf + v 3 Bfd ·¹v + Ljff − gg = − fEf − Eg + v 3 sBf − Bgdg¹vg

+ 2fEf − Egg ·vm1/2 + Ef ·vff − gg

+ fEf − Egg ·vg + Gff − g,gg + Gfg, f − gg,
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]tsEf − Egd − ¹ 3 sBf − Bgd = −E
R3

vm1/2sf − gddv, ¹ · sEf − Egd =E
R3

sf − gdm1/2 dv,

s2.19d
]tsBf − Bgd + ¹ 3 sEf − Egd = 0, ¹ · sBf − Bgd = 0,

ith fs0,x,vd=gs0,x,vd ,Efs0,xd=Egs0,xd, andBfs0,xd=Bgs0,xd as well asL=−A−K.
By an argument similar to(2.8), we obtain supxugus

2 øCouauø4i]agis
2 (see Ref. 10). We apply

emma 1.3 and the above estimate to get

usfEf − Eg + v 3 sBf − Bgdg¹vg, f − gdu ø CH o
uauø4

i]agis
2JhiEf − Egi2 + iBf − Bgi2j +

1

4
if − gis

2 ,

sGff − g,gg + Gfg, f − gg, f − gd ø o
uauø4

fi]afi + i]agigif − gis
2

+ o
uauø4

fi]afis + i]agisgif − gisif − gi

ø CM1/2if − gis
2 +

1

8
if − gis

2 + C o
uauø4

fi]afis
2 + i]agis

2gif − gi2,

usfEf − Egg ·vg, f − gdu ø
1

4
if − gis

2 + C o
uauø4

i]agis
2iEf − Egi2,

suEf ·vsf − gdu,uf − gud ø CM1/2if − gis
2 .

rom the Maxwell system in(2.19), we deduce from(2.17) that

2sfEf − Egg ·vm1/2, f − gd = −
d

dt
fiEf − Egi2 + iBf − Bgi2g.

oreover, from(2.16), we easily know,

sLff − gg, f − gd ù
1
2if − gis

2 − Cif − gi2.

ultiplying (2.19) by sf −gd, and collecting the above estimates, we have

d

dt
F1

2
if − gi2 + iEf − Egi2 + iBf − Bgi2G +

1

2
if − gis

2 ø CH o
uauø4

fi]afis
2 + i]agis

2 + 1j

3fif − gi2 + iEf − Egi2 + iBf − Bgi2g

+ FCM1/2 +
3

8
Gif − gis

2 . s2.20d

f we chooseM small enough, the last term on the right-hand side of(2.20) can be absorbed b
1
2if −gis

2. It is easy to know thate0
t houauø4fi]afis

2 +i]agis
2gjdsø2M. Then, we deducef ;g from

he Gronwall inequality.
To show the continuity ofE(fstd) with respect tot, we use the summation of(2.13) and(2.18)

n n+1
with f = f = f) to get
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uE„fstd… − E„fssd…u ø Cf1 + sup
søyøt

E1/2
„fsyd…gE

s

t

o fi]b
afsydis

2gdy → 0

s t→s. By F=m+m1/2f, it is straightforward to verify that the mass, total momentum, and
nergy conservations hold for such solution constructed.

II. POSITIVITY OF L

In this section, we shall establish the positivity of the linear operatorL for any small solutio
fst ,x,vd ,Est ,xd ,Bst ,xdg to the system(1.3) and (1.4). Together with the Maxwell system, t
onservation laws of mass, momentum, and energy play an important role.

Then for fst ,x,vd and fixed st ,xd, we know in the introduction thatP0f =ast ,xdm1/2

bst ,xd ·vm1/2+cst ,xduvu2m1/2 for someast ,xd ,cst ,xd and vector functionbst ,xd. Thus we splitf as
f =P0f +P1f in the system(1.3) and (1.4) and we have

f]t + v ·¹xgP0f − 2E ·vm1/2 = lsP1fd + hsfd, s3.1d

here

lsP1fd ; − f]t + v ·¹x + LgP1f , s3.2d

hsfd ; − sE + v 3 Bd ·¹vf + E ·vf + Gff, fg. s3.3d

Lemma 3.1: Let]a=]t
a0]x1

a1]x2

a2]x3

a3, then]aP0f =P0]
af and i]aP0fis

2 +i]aP1fis
2 ù i]afis

2. There
xists C.1 such that for any fPCc

`sR3T33R3d

1

C
i]aP0fis

2 ø i]aai2 + i]abi2 + i]aci2 ø Ci]aP0fi2. s3.4d

Proof: A direct computation implies]aP0f =P0]
af. It is easy to get the second result from

riangle inequality. We substitutei ·is with P0]
af =]aast ,xdm1/2+]abst ,xd ·vm1/2+]acst ,xduvu2m1/2.

sing si j øCf1+uvugg+2 and the exponential decay ofej, we can obtain the first half of(3.4) by a
irect computation. For the second half of(3.4), sincea,b, andc are the coefficients of a basis

he finite dimensional spaceN, u]aau2+ u]abu2+ u]acu2 is bounded byCe u]aP0f u2 dv for any st ,xd.
e then deduce(3.4) by a further integration overx.

Lemma 3.2: Letffst ,x,vd ,Est ,xd ,Bst ,xdg be the solution constructed in Theorem 2.2 to (
nd (1.4). Then we have

r2E
T3

bst,xd = −E
T3

Bst,xd 3 Est,xd, s3.5d

UE
T3

ast,xdU + UE
T3

cst,xdU ø CfiEi2 + iB − B̄i2g, s3.6d

herer2=euvu2m.
Proof: Plugging f =P0f +P1f into the momentum equation(1.5). For fixed st ,xd, notice tha

P1f ,ejd=0 and P0f =ast ,xdm1/2+bst ,xd ·vm1/2+cst ,xduvu2m1/2, we have evfm1/2 dv
bst ,xde uvu2m dv. Hence(3.5) follows from (1.5). Similarly, we have

E fm1/2 dv = r0ast,xd + r2cst,xd and E uvu2fm1/2 dv = r2ast,xd + r4cst,xd,

hereri =euvuim dv. Further integration overT3, we have(3.6) from the above equations and

chwartz inequality.
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We plug P0f =ast ,xdm1/2+bst ,xd ·vm1/2+cst ,xduvu2m1/2 into the left-hand side of(3.1) and
xpand it as the products of a polynomial inv andm1/2,

o
i
Fvi]

icuvu2 + f]0c + ]ibgvi
2 + o

j.i

f]ibj + ] jbigviv j + f]0bi + ]ia − 2Eigvi + ]0aGm1/2,

here]0=]t ,]
j =]xj

. For any fixedst ,xd, this is an expansion of the left-hand side of(3.1) with
espect to the basis ofm1/2,vim

1/2,vi
2m1/2,viv jm

1/2, and uvu2vim
1/2 denoted bye j where 1ø i Þ j

3. Expand the right-hand side of(3.1) with respect to the same basis, and compare with
oefficients on two sides. Then we have

s1d ¹xc = lc + hc, s2d ]0c + ]ibi = l i + hi, s3d ]0a = la + ha,

s4d ]ibj + ] jbi = l i j + hij , i Þ j , s5d ]0bi + ]ia − 2Ei = lbi + hbi,

here ]0=]t and ] j =]xj
. Here lcst ,xd , l ist ,xd , l i jst ,xd , lbist ,xd, and last ,xd are the correspondin

oefficients of such an expansion of the linear termlsP1fd, andhcst ,xd ,hist ,xd ,hijst ,xd ,hbist ,xd,
ndhast ,xd are the corresponding coefficients of the same expansion of the higher order terhsfd.

Let e j
* be the corresponding orthogonal basis ofe j such that for some constantsli j ,e j

*

oi=1
13 li je j. Then for any fixedst ,xd , lcst ,xd , l ist ,xd , l i jst ,xd , lbist ,xd, and last ,xd take the form

i,n=1
13 li jlineR3lsP1fdensvddv. The same is true after we take]a. Let uauøN−1. By (3.2), we have

hat

IE s− f]t + v ·¹xgdP1]
af · ensvddvI2

øE uensvdudvE
R33T3

uensvdusuP1]
0]af u2

+ uvu2uP1¹x]
af u2ddx dv ø CfiP1]

0]afi + iP1¹x]
afig2,

s3.7d

E LP1]
afensvddv =E s− A − KdP1]

afensvddv.

ecalling the expressions ofA,K, anden, integration by parts and the Schwartz inequality
esult in

IE LP1]
afensvddvI2

ø CiP1]
afi2. s3.8d

ombining(3.7) and (3.8), we have

IE ]alsP1fd · ensvddvI2

ø CfiP1]
0]afi + iP1¹x]

afi + iP1]
afig2.

ere]0=]t and we have used the facts that]aP1f =P1]
af and the exponential decay ofensvd. The

bove proof is summarized in the following lemma.
Lemma 3.3: Leta=fa0,a1,a1,a2g, then for any1ø i , j ø3,

o
uauøN−1

fi]alci + i]al ii + i]al i ji + i]albii + i]alaig ø C o
uauøN

iP1]
afi.

Since]aJ=eR3]afvm1/2 dv, we easily know thati]aJiøCi]afi. Thus, by(1.16) and (1.14)
ith gù−1, the arguments similar to Lemma 8 in Ref. 16 will imply that the following

emmas hold.
Lemma 3.4: Letffst ,x,vd ,Est ,xd ,Bst ,xdg be the solution constructed in Theorem 2.2 to (
nd (1.4) such that
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o
uauøN

f 1
2i]afstdi2 + i]aEstdi2 + i]aBstdi2g ø M , s3.9d

ith the constant M.0 small enough. Then we have

o
uauøN−1

fi]ahci + i]ahii + i]ahiji + i]ahbii + i]ahaig ø CM1/2 o
uauøN

i]afis.

Lemma 3.5: Letffst ,x,vd ,Est ,xd ,Bst ,xdg be the solution constructed in Theorem 2.2 to (
nd (1.4). Let the small assumption (3.9) be valid for some Mø1. Then there is a constant C.0
uch that

o
uauøN−1

fi]aEstdi + i]afBstd − Bgig ø C o
uauøN

i]afis.

Theorem 3.6: Let ffst ,x,vd ,Est ,xd ,Bst ,xdg be the solution constructed in Theorem 2.2
1.3) and (1.4). If the small amplitude assumption (3.9) holds. Then there existsdM .0 such tha

o
uauøN

sL]af,]afd ù dM o
uauøN

i]afis
2 .

Using Lemmas 3.1–3.5,(1.15), equations(1.1)–(1.5) and (1.14) with gù−1, the argumen
imilar to those in the proof of Theorem 3 of Ref. 16, except for several differences, will
heorem 3.6.

The first difference is to prove the estimate of the purely spatial derivative ofast ,xd. The
irect calculation implies¹ ·]aE=e]af m1/2=r0]

aast ,xd+r2]
acst ,xd. Since]acst ,xd is controlled

y the argument similar to those in Ref. 16, we thus obtain the estimate of the purely
erivative ofast ,xd by the same method as in Ref. 16.

The second difference is to prove the estimate of the higher purely temporal derivati]abj

ith uauù3. It is clear that the direct calculation impliesJ=r2bst ,xd. The Maxwell system lead
o

]a−1E − ¹ 3 ]a−2B = − ]a−2J, ¹ 3 ]a−2B + ¹ 3 f¹ 3 ]a−3Eg = 0.

t is easy to get

]a−1E + ¹ 3 f¹ 3 ]a−3Eg = − ]a−2J = − r2]
a−2b.

ogether with]a−1 on Eq.(5), we get

i]abii = i− ]i]a−1a + 2]a−1Ei + ]a−1flbi + hbigi ø i]i]a−1ai + 2r2i]a−2bii + 2i ¹ 3 f¹ 3 ]a−3Egi

+ i]a−1flbi + hbigi.

hus we have

i]abii − 2r2i]a−2bii ø i]i]a−1ai + 2i ¹ 3 f¹ 3 ]a−3Egi + i]a−1flbi + hbigi.

he right-hand side of the above inequality is bounded byCouauøNiP1]
afi+CM1/2ouauøNi]afis,

hich can be proved by the same arguments as in Ref. 16. Then we can obtain the estima
igher purely temporal derivative]abj by a bootstrap argument.

V. GLOBAL EXISTENCE

In this section, we will prove the existence of global classical solution to the system(1.3) and
1.4). We first derive a refined energy estimate for(1.3) and (1.4).

Theorem 4.1: Let ffst ,x,vd ,Est ,xd ,Bst ,xdg be the solution constructed in Theorem 2.2
1.3) and (1.4). Let the small amplitude assumption (3.9) be valid. For any given0ømøN, ubu

*
m, there are constants Cubu.0,Cm.0 and dm.0 such that
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o
ubuøm,uau+ubuøN

F d

dt
sCubui]b

afi2 + i]aEstdi2 + i]aBstdi2d + dmi]b
afis

2G ø Cm
* E1/2

„fstd… o
uau+ubuøN

i]b
afis

2 .

s4.1d

Proof: We use an induction overm, the order of thev-derivatives. Form=0, by taking the
ure]a derivatives of(1.3), we obtain

f]t + v ·¹x + sE + v 3 Bd ·¹v − sE ·vdg]af + Lf]afg − 2f]aE ·vgm1/2

= ]aGff, fg − o
0Þa1øa

Ca
a1f]a1E + v 3 ]a1Bg]a−a1¹vf + o

0Þa1øa

Ca
a1]a1E ·v]a−a1f . s4.2d

ake the inner product with]af of Eq. (4.2). Recalling estimates(2.15) and(2.17) in Lemma 2.1
ith fn= fn+1= f, applying Theorem 3.6 toLf]afg and summing overuauøN, we deduce, for som
onstantC.0, that

o
uauøN

d

dt
S1

2
i]afi2 + i]aEstdi2 + i]aBstdi2D + d0 o

uauøN

i]afis
2 ø CE1/2

„fstd… o
uauøN

i]afis
2 .

his concludes the case form=0 with C0=1/2 andC0
* =C.

Assume the theorem is valid form. For ubu=m+1, taking]b
a of (1.3), we obtain

f]t + v ·¹x + sE + v 3 Bd ·¹vg]b
af − 2]aE · ]bfvm1/2g + ]bfL]afg + o

b1Þ0
Cb

b1]b1
v ·¹x]b−b1

a f

= o Ca
a1Cb

b1]a1E · ]b1
v]b−b1

a−a1f − o
a1Þ0

Ca
a1]a1E¹v]b

a−a1f − o
a1Þ0,b1Þ0

Ca
a1Cb

b1]b1
v

3 ]a1B ·¹v]b−b1

a−a1f + o Ca
a1]bGf]a1f,]a−a1fg. s4.3d

rom (2.5) in Lemma 2.1, for anyh.0, there is a constantCh.0 such that

s]bfL]afg,]b
afd ø i]b

afis
2 − h o

b8øb

i]b8
a fis

2 − Chi]afis
2 .

e can further chooseCh.0 such that the inner product of the last term on the left-hand si
4.3) with ]b

af is bounded by

hi]b
afis

2 + Ch o
ub1u=1

i¹x]b−b1

a fis
2 .

inceubu=m+1,uauøN−1 and by Lemma 3.5 andifiø ifis, we have

s2]aE · ]bfvm1/2g,]b
afd = s− 1dubus2]aE · ]b

2fvm1/2g,]afd ø Cmi]aEi · i]afi ø Cm o
ua8uøN

i]a8fis
2 .

y the arguments similar to those in Lemma 2.1, the inner product of other terms on the
and side of(4.3) with ]b

af is bounded byCE1/2(fstd)ouau+ubuøNi]b
afis

2. We have, by collecting term

nd summing overubu=m+1 anduau+ ubuøN,
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o
ubu=m+1,uau+ubuøN

F1

2

d

dt
i]b

afstdi2 + i]b
afstdis

2G
ø o

ubu=m+1,uau+ubuøN
F o

ubu=m+1

2hi]b
afstdis

2 + s2h + Cm + Chd

3 o
ubuøm,uau+ubuøN

i]b
afstdis

2 + CE1/2
„fst…d o

uau+ubuøN

i]b
afis

2G
ø Zm+1F o

ubu=m+1

2hi]b
afstdis

2 + s2h + Cm + Chd

3 o
ubuøm,uau+ubuøN

i]b
afstdis

2 + CE1/2
„fstd… o

uau+ubuøN

i]b
afis

2G .

ere we have used thati]b
afstdiøCi]b

afstdis andZm+1 denotes the number of all possiblesa ,bd
uch thatubuøm+1,uau+ ubuøN.

By choosingh=1/4Zm+1, we have, for some constantCsZm+1d.0,

o
ubu=m+1,uau+ubuøN

F1

2

d

dt
i]b

afstdi2 +
1

2
i]b

afstdis
2G ø CsZm+1dF o

ubuøm,uau+ubuøN

i]b
afstdis

2

+ CE1/2
„fstd… o

uau+ubuøN

i]b
afis

2G . s4.4d

e may assumeCsZm+1dù1. Multiply (4.3) by dm/2CsZm+1d and add it to(4.1) for ubuøm to get

o
ubu=m+1,uau+ubuøN

F dm

4CsZm+1d
d

dt
i]b

afstdi2 +
dm

4CsZm+1d
i]b

afstdis
2G

+ o
ubuøm,uau+ubuøN

F d

dt
sCubui]b

afi2 + i]aEstdi2 + i]aBstdi2d + dmi]b
afis

2G
ø

dm

2 o
ubuøm,uau+ubuøN

i]b
afstdis

2 + SCm
* +

dm

2
DE1/2

„fstd… o
uau+ubuøN

i]b
afis

2 .

bsorb the first term on the right-hand side by the last term on the left-hand side. W
onclude the lemma by letting

Cm+1
* = Cm

* +
dm

2
, Cm+1 =

dm

4CsZm+1d
, dm+1 =

dm

4CsZm+1d
ø

dm

2
.

Proof of Theorems 1.1 and 1.2:The proof of Theorems 1.1 and 1.2 can be obtaine
heorem 4.1 and the arguments similar to those in the proof of Theorem 1 and Theorem 2
6.
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We introduce a definition of upper Lyapunov exponent for quantum systems in the
Heisenberg representation, and apply it to parametric quantum oscillators. We pro-
vide a simple proof that the upper quantum Lyapunov exponent ranges from zero to
a positive value, as the parameters range from the classical system’s region of
stability to the instability region. It is also proved that in the instability region the
parametric quantum oscillator satisfies the discrete quantum Anosov relations de-
fined by Emch, Narnhofer, Sewell, and Thirring. ©2004 American Institute of
Physics.[DOI: 10.1063/1.1803926]

. INTRODUCTION

Several definitions of quantum Lyapunov exponents have been proposed(see Refs. 1–6 an
eferences therein). Due to the fact that there are few examples on which these definitions
xplicitly tested in detail, their range of applicability is not well established. Emch
o-workers1,2 formulated a definition of quantum Anosov systems, and the associated qu
yapunov exponents. This definition of the Lyapunov exponents is however too rigid, and i
pplicable to systems that do not have a global structure with a constant hyperbolicity p
ajewski and Kuna5 extracted from Ref. 1 a more general definition, that is still too restric

ince it assumes the existence of certain limits that one cannot expect to be well defined in
n a quite different approach, Vilela Mendes6 introduced a definition of the quantum Lyapun
xponents based on the probability densityrsx,td= ucsx,tdu2 in the position representation. T

imitation of this approach is that it singles out the position representation, and thus it is no
elated to the dependence on initial conditions in phase space(x, andp).

In the present paper we propose a definition of the upper quantum Lyapunov exponen
lose in spirit to the ones of Refs. 1 and 5, but is more general and with a wider ra
pplicability. It is formulated in terms of the evolution of observables in an algebraic settin
ased by analogy on the classical upper Lyapunov exponent, as defined in the general c
ocycles.7,8An essential ingredient is the behavior with respect to changes in the initial cond
n Refs. 1, 3, and 5 these are taken in a very general framework, by considering the va
enerated by all the derivations on the algebra of observables. For our definition we res
lass of variations of initial conditions to those derivations that correspond to translations in
pace, i.e., inx and in p. We illustrate this definition with the example of a parametric quan
scillator, which shows the utility of the extension.

I. DEFINITION OF THE UPPER QUANTUM LYAPUNOV EXPONENT

Consider a quantum mechanical particle and letx̂ and p̂ denote its coordinate and moment
perators, on the Hilbert spaceH=L2sR ,dxd, with fx̂, p̂g= i". We choose the units such tha"

1. We define the self-adjoint operator

4377022-2488/2004/45(11)/4377/9/$22.00 © 2004 American Institute of Physics
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LaIªapp̂ + axx̂, with aI ; sap,axd P R2. s1d

t defines a derivation1 daI, acting on operatorsAPA, whereA denotes the algebra of observab
y

daIA = fLaI,Ag, ∀ A P DomsdaId, s2d

here

DomsdaId ; hA P A such thatfLaI,Ag P Aj. s3d

his derivation may be interpreted as a derivation in the direction of phase space determ
ap,axd and is thus naturally suggested by classical mechanics.

Let Ust ,t0d denote the unitary propagator which defines the dynamics, with initial timet0. In
rder to proceed we must also specify the algebra of observables. Experience with ex2

uggests the choice of the Weyl algebraW, which consists of finite linear combinations of
perators

Wsb,gd = expfisbx̂ + gp̂dg, sb,gd P R2. s4d

his is particularly natural becauseW,DomdaI, since

fLaI,Wsb,gdg = sapb − axgdWsb,gd. s5d

quivalently,2 one can consider polynomials inW=expfisbx̂+gp̂dg with the multiplication law
szdWsz8d=expsissz,z8ddWsz+z8d, with zªsb ,gd , z8ªsb8 ,g8d, and the symplectic form
sz,z8d=sbg8−b8gd /2. Note that once the equations(20) and (21) of Theorem 2 have bee
stablished, theC* character of the algebra is inessential: ap-algebra is sufficient(see Ref. 1
emark 3.7, No. 6).

We also assume that the dynamics defines an automorphism ofW,

U†st,t0dAUst,t0d P W, ∀ A P W, ∀ t,t0 P R. s6d

nder the above assumptions, we can formulate the following.
Definition: The upper quantum Lyapunov exponentis defined as

l̄ = sup
aIPR2

l̄aI , s7d

here

l̄aIsU,LaI,A,t0dªlim sup
t→`

1

t
lnifLaI,Ast,t0dgi s8d

nd

Ast,t0dªU†st,t0dAUst,t0d s9d

ndAPW. The norm is chosen asiAi=supcPHiAci / ici.
Remarks:

1) This definition is adapted from the general formulation for cocycles described, e.g.,

8. l̄ is expected to be independent oft0 and of the choice of the observableA, under suitabl
conditions, e.g.,

fL,Ast,t0dg Þ 0. s10d

2) If the limit in (8) exists, then it is called the Lyapunov exponentlaIsU ,L ,A,t0d.
¯
3) Because of the unitarity of the time evolution, the exponentlaI can also be expressed as
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l̄aIsU,LaI,A,t0d = lim sup
t→`

1

t
lnifLaIst0,td,Agi s11d

with

LaIst0,tdªU†st0,tdLaIUst0,td. s12d

4) The main differences with the earlier definitions of Refs. 1, 2, and 5 are the lim sup in E(8)
and the restriction to the derivations(1) corresponding to directions in phase space.

II. APPLICATION TO PARAMETRICALLY DRIVEN QUANTUM OSCILLATORS

In order to show the usefulness of the above definition, we consider the parametric q
scillator,9–11 one of the simplest paradigms of the transition from regular to unstable beha
lassical mechanics.12,13 The Hamiltonian(we take the mass=1) is

Hstd = 1
2 p̂2 + 1

2 fstdx̂2, s13d

here f is a periodic function of periodT,

fst + Td = fstd. s14d

t is convenient to decomposef as fstd=E+ fza with E=s1/Tde0
Tdt fstd [and thuss1/Tde0

Tdt fzastd
0]. We will analyze the one parameter family of systems defined by varying the averE
R.

The classical equation corresponding to(13) is Hill’s equation,14,15

ẍ + fstdx = 0, s15d

hich is well known(Ref. 14, Chap. 4, and Ref. 15) to have bands of stability regionsS, and
nstability regions I(“gaps”), when the parameterE is varied.

For the quantum parametric oscillators we will prove the following results:
Theorem 1: For any observableA=Wsb ,gd of the form(4), in the stability regionEPS one

as

l̄aIsU,LaI,A,t0d = 0, ∀ aI, ∀ t0. s16d

n the instability regionEP I, there is a stable directionaIs, which depends ont0, for which

l̄aIs
sU,LaIs

,A,t0d = − lr , 0, s17d

hereas for all other directionsaI,

l̄aIsU,LaI,A,t0d = lr . 0, s18d

here lr is the absolute value of the real part of the Floquet exponent of the corresp
lassical oscillator defined below in Eq.(32). Thus the upper Lyapunov exponent is

l̄ = sup
aI

l̄aI = lr . 0. s19d

here is thus a transition in the upper quantum Lyapunov exponentl̄ as the parameterE ranges
rom the classical system’s region of stability to the instability region.

Theorem 2: If we consider the time evolution in the instability regionEP I at discrete time

n=n2T given by even integer multiples of the periodT, there is an unstable eigendirectionaI+
sap+,ax+d such that the corresponding derivationLaI+
satisfies for alltn,
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eiLaI+
s e−lrtnU†stn,0d = U†stn,0deiLaI+

s, s20d

nd a stable eigendirectionaI−;sap−,ax−d such that

eiLaI−
s elrtnU†stn,0d = U†stn,0deiLaI−

s, s21d

here lr .0 is the real part of the classical Floquet exponent. Thus the system satisfi
iscrete quantum Anosov relations defined by Emch, Narnhofer, Sewell, and Thirring.1–3

Remarks:This system satisfies the quantum Anosov relations but it lacks two other pro
hat enter in the definition of quantum Anosov systems as formulated in Refs. 1–3: Ther
tate that is invariant with respect toUstn,0d, nor with respect toeiLaI±

s [Ustn,0d has no eigenvalue
or EP I and there are no translation invariant states inH=L2sR ,dxd]. However, as it was re

arked in Ref. 1(Remark 3.7, No. 7) the requirement of the invariant state may be dispe
ith, depending on the intended application.

The relations(20) and (21) can be written equivalently, by changingtn→−tn as

eiLaI+
s elrtnUstn,0d = Ustn,0deiLaI+

s, s22d

eiLaI−
s e−lrtnUstn,0d = Ustn,0deiLaI−

s. s23d

ith this representation(22) one can give an intuitive interpretation for the Lyapunov expone
he Schrödinger picture: We compare the forward time evolutionstn+1. tnd of two initial statesc
ndc+dc that are related to each other by a translation in phase space in directionaI+ of sizes.
he time evolutionUstn,0dfc+dcg to time tn will yield a statef+df, that can be related tof
Ustn,0dc by a translation in phase space in the same directionaI+ but of a sizes8 that is
xponentially amplifieds8=s elrtn. This can be visualized by the following diagram:

c →
Ustn,0d

f

eiLaI+
s↓ ↓eiLaI+

s elrtn

c + dc →
Ustn,0d

f + df

s24d

or Anosov systems this property is satisfied globally for any sizes of the translation. Th
efinition of the Lyapunov exponent(11) can be interpreted on the basis of this picture but ta

nfinitesimally small translations.
In order to determine the upper quantum Lyapunov exponent according to Eq.(11) we first

eed to calculateLaIst0,td.
Lemma 1:

LaIst1;t2d = apst1;t2dp̂ + axst1;t2dx̂ s25d

ith

apst1;t2d = est1−t2dl+hp+st1;t2d + est1−t2dl−hp−st1;t2d, s26d

axst1;t2d = est1−t2dl+hx+st1;t2d + est1−t2dl−hx−st1;t2d, s27d

ndhp±st1; t2d , hx±st1; t2d are periodic functions of the same periodT of the functionf, andl± are
he Floquet exponents associated to the classical dynamics[defined below in Eq.(32)]. In the
tability bandsEPS, l± are purely imaginary, whereas in the instability regionsEP I , l± has a
onvanishing real part, that we will denote ±lr.
Proof of Lemma 1:The classical equation(15) may be written
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d

dt
Sp

x
D = S0 − fstd

1 0
DSp

x
D . s28d

he propagatorFst ,t0d of the classical equation, defined by

Spstd
xstd

D = Fst,t0dSpst0d
xst0d

D, Fst,td = 1 ∀ t, s29d

ay be written, by Floquet’s theorem15 as the following.
Lemma 2:

Fst,t0d = Gstdest−t0dBG−1st0d, s30d

here

Gst + Td = Gstd s31d

s an invertible differentiable matrix, andB a constant traceless matrix.
ThusB is of one of the following three forms:

1) B has two complex eigenvalues

l± = ± slr + ilid Þ 0 s32d

swe choose the notation such thatlr ù0d: ThusB is diagonalizable and there are two ca

1ad lr =0 sstable case, bandd,
1bd lr Þ0 sunstable case, gapd.

In these two cases one can write

Fst,t0d = GstdSest−t0dSl+ 0

0 l−
DS−1G−1st0d, s33d

hereS is some invertible matrix.

2d l±=0.
In this caseB is not diagonalizable, and has Jordan canonical forms 0

0
1
0

d. It corresponds to
band edge, which we shall not discuss further in this paper.

Using the fact that the Heisenberg equations of motion for the operatorsx̂std andp̂std have the
ame form as the classical equations forpstd andxstd, we can write

SU†st,t0d p̂ Ust,t0d
U†st,t0d x̂ Ust,t0d

D = Fst,t0dSp̂

x̂
D = gstdSest−t0dl+ 0

0 est−t0dl−
Dg−1st0dSp̂

x̂
D , s34d

ith gstd;GstdS. Writing explicitly the matrix elementsgst1d;sgijst1dd ,g−1st2d;sgij
−1st2dd, we

nd, by (26), (27), and(34) that the functions in Eq.(26) are given by

hp+st1;t2d = sapg11st1d + axg21st1ddg11
−1st2d, s35d

hp−st1;t2d = sapg12st1d + axg22st1ddg21
−1st2d, s36d

hx+st1;t2d = sapg11st1d + axg21st1ddg12
−1st2d, s37d

hx−st1;t2d = sapg12st1d + axg22st1ddg22
−1st2d, s38d

hich are periodic int1 and in t2 sincegstd is periodic.
Proof of Lemma 2:The time evolution is symplectic, thus the Jacobi matrixFst ,t0d of the map

12
21) satisfies
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FJFT = J, J = S0 − 1

1 0
D s39d

nd hence detF=1. Thus we may defineeBT
ªFsT,0d, i.e., Bªs1/Tdln FsT,0d, and define

stdªFst ,0de−Bt. Then

Gst + Td = Fst + T,0de−Bst+Td = Fst + T,TdFsT,0de−Bst+Td = Fst,0de−Bt = Gstd,

hich is Floquet’s theorem.15

It follows that

Fst,t0d = Fst,0dFs0,t0d = Fst,0dF−1st0,0d = GstdeBst−t0dG−1st0d,

hich is (30).
Now FsT,0d=GsTdeBTG−1s0d and 1=detFsT,0d=detsGsTdddetseBTdsdetGs0dd−1=deteBT be-

auseGsTd=Gs0d, hence TrB=0.
Proof of Theorem 1:The Weyl algebra of observables is in the domain of the famil

erivations defined as

d̃aI
t0,tAªfLaIst0,td,Ag s40d

arametrized by the time variable,

W , Domsd̃aI
t0,td, ∀ t0,t P R.

ndeed, by(5) and (25), if A=eisbx̂+gp̂d then

fLaIst0,td,Ag = sapst0,tdb − axst0,tdgdA P W. s41d

In order to determine the Lyapunov exponent we calculate

ifLaIst0,td,Agi = uapst0,tdb − axst0,tdgu, s42d

here we have usediAi=1. By (26), (27), and(35)–(38) we may write, fort ,t0PR+,

ifLaIst0,td,Agi = uest−t0dl+fhapg12st0d + axg22st0djsbg21
−1std − gg22

−1stddg + est−t0dl−fsapg11st0d + axg21st0dd

3sbg11
−1std − gg12

−1stddgu, s43d

here we have usedl−=−l+. The stable directionaIs is determined by the condition that the cu
racket in the first term vanishes,

hapg12st0d + axg22st0dj = 0, s44d

hich leads to

aIs ; saps,axsd = hss− g22st0d,g12st0dd, s45d

herehs is an arbitrary constant. We remark that the second term in(43) is not identically zer
ince

apg11st0d + axg21st0d = hss− g22st0dg11st0d + g12st0dg21st0dd = − hs detg Þ 0. s46d

n this case we can write

ifLasI
st0,td,Agi = e−tlrSstd, s47d

herelr is the absolute value of the real part ofl±, andSstd is a periodic function oft. There is

hus a sequence of timeshtk→`j, such thatSstkd.d.0, for some constantd, and therefore
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l̄aIs
sU,LaIs

,A,t0d = − lr + lim sup
t→`

1

t
ln Sstd = − lr . s48d

or all other directionsaI we can write

ifLaIst0,td,Agi = etlrRstd, s49d

hereRstd is the sum of a periodic function and one that is either exponentially decreas
dentically zero. Thus there is a sequence of timeshtk→`j, such thatRstkd.d.0, for some
onstantd, and therefore

l̄aIsU,LaI,A,t0d = lr + lim sup
t→`

1

t
ln Rstd = lr . s50d

n the stability bandsEPS,l± are imaginary, and thusl̄aI=0 for all directionsaI.
Remark:A simple extension of this proof shows that Theorem 1 is also true for any obse

PW provided thatfLaI ,AgÞ0.
Proof of Theorem 2:We remark first that(20) and(21) are equivalent, by deriving with respe

o s at s=0 to

U†stn,0dLaI+
Ustn,0d = e−lrtnLaI+

, s51d

U†stn,0dLaI−
Ustn,0d = elrtnLaI−

. s52d

he eigendirections are thus determined by the conditions

LaI±
stn,0d = e7l±tnLaI±

s0,0d. s53d

ccording to Eqs.(25)–(27), sincehp±st ,0d andhx±st ,0d areT periodic and sincel−=−l+, these
onditions will be satisfied.

For aI+, if hp+stn,0d=hp+s0,0d=0 andhx+stn,0d=hx+s0,0d, i.e., according to(35) and (37), if

sap+g11s0d + ax+g21s0ddg12
−1s0d = 0, s54d

sap+g11s0d + ax+g21s0ddg22
−1s0d = 0. s55d

For aI−, if hp−stn,0d=hp−s0,0d=0 andhx−stn,0d=hx−s0,0d, i.e., according to(36) and (38), if

sap−g12s0d + ax−g22s0ddg22
−1s0d = 0, s56d

sap−g12s0d + ax−g22s0ddg21
−1s0d = 0. s57d

inceg−1 is nonsingular,g12
−1 and g22

−1 cannot both be zero, and therefore foraI− we obtain the
ondition

ap−g12s0d + ax−g22s0d = 0, s58d

hich has the solution

aI− ; sap−,ax−d = h−s− g22s0d,g12s0dd, s59d

hereh− is an arbitrary constant. Sinceg is nonsingular,g12 andg22 cannot both be zero, and th
59) determines the unique stable eigendirection. It coincides fort0 with the stableaIs of Theorem
, Eq. (45).
By the same type of argument we obtain the unstable eigendirection as
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aI+ ; sap+,ax+d = h+s− g21s0d,g11s0dd. s60d

e remark that

e2Tl± = e±2Tlre±i2Tli = e±2Tlr , s61d

ince in the gapsEP I the imaginary partli of the Floquet eigenvalues takes constant values o
orm

li = k
2p

2T
, k P Z. s62d

his can be shown as follows:L± ;el±T are the eigenvalues of the propagator matrixFsT,0d
efined in Eq.(30). Since it is a real matrix with detFsT,0d=1, its eigenvalues are either rea
omplex conjugate to each otherL−=L+

* , in which caseuL±u=1. Therefore, in the instabili
egionEP I the eigenvaluesL±=e±slr+ilid are necessarily real, and thusliT=kp , kPZ.

This completes the proof of the Anosov property(51) and (52).
Remark 1:The factor 1/2 in Eq.(62) explains the need to take time intervals that

ultiples of 2T in order to have the Anosov property. For the gaps with evenk one has the Anoso
roperty also in the discrete timestn8=nT, nPZ.

Remark 2:We have sett0=0 above, but, although the eigenvaluesl± do not vary upo
ariation of t0, the eigendirections do. This is the reason why we have an Anosov sys
iscretized time but not in continuous time.

Remark 3:The above example of a quantum Anosov structure is interesting because i
lobal in the space of parametersE, i.e., if EPS it is not realized. ForEPS, the upper quantu
yapunov exponent equals zero, a case which is included in our definition, but not by Re

Remark 4:The parametric quantum oscillator(13) is, of course, very special, being quadr
n x̂ and p̂. We have used the fact that the Heisenberg equations of motion forx̂, p̂ have the sam
orm as the classical Hamiltonian equations. The dynamics are, however, rich and nontriv
ot explicitly soluble both classically and quantum mechanically: the complexity manifests

n the fact that the symmetry group of(13) is SU (1,1) rather than the Heisenberg group.16 The
ransition in the theorem has a physical interpretation in a model of quadrupole radio-fre
raps(Paul–Penning traps), see Refs. 9, 10, and 17 and references given there.

Remark 5:The case of a quasiperiodic time dependence has a very interesting structur(Refs.
8 and 19), and our approach is, in principle, applicable to this case.
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luctuation statistics in networks: A stochastic path
ntegral approach
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We investigate the statistics of fluctuations in a classical stochastic network of
nodes joined by connectors. The nodes carry generalized charge that may be ran
domly transferred from one node to another. Our goal is to find the time evolution
of the probability distribution of charges in the network. The building blocks of our
theoretical approach are(1) known probability distributions for the connector cur-
rents, (2) physical constraints such as local charge conservation, and(3) a time
scale separation between the slow charge dynamics of the nodes and the fast cu
rent fluctuations of the connectors. We integrate out fast current fluctuations and
derive a stochastic path integral representation of the evolution operator for the
slow charges. The statistics of charge fluctuations may be found from the saddle-
point approximation of the action. Once the probability distributions on the discrete
network have been studied, the continuum limit is taken to obtain a statistical field
theory. We find a correspondence between the diffusive field theory and a Langevin
equation with Gaussian noise sources, leading nevertheless to nontrivial fluctuation
statistics. To complete our theory, we demonstrate that the cascade diagrammatics
recently introduced by Nagaev, naturally follows from the stochastic path integral.
By generalizing the principle of minimal correlations, we extend the diagrammatics
to calculate current correlation functions for an arbitrary network. One primary
application of this formalism is that of full counting statistics(FCS), the motivation
for why it was developed in the first place. We stress however, that the formalism
is suitable for general classical stochastic problems as an alternative approach to th
traditional master equation or Doi–Peliti technique. The formalism is illustrated
with several examples: Both instantaneous and time averaged charge fluctuation
statistics in a mesoscopic chaotic cavity, as well as the FCS and new results for a
generalized diffusive wire. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1803927]

. INTRODUCTION

Consider an exclusive nightclub with a long line at the entrance. A bouncer is at the f
he line to keep out the riffraff. At every time step, a person is accepted inside the clu
robability p, or rejected with probability 1−p. Inside the club, people stay for a while a
ventually leave. At every time step, the probability a person leaves isq. We want to answer
uestion such as “what is the probability thatQ people leave the club aftert time steps?”

Assuming thatp and q remain constant, the situation is simple and we can easily solv
elevant probabilistic problem. However, in realistic situations this rarely happens: The m
ent wants to make money. If the club is almost empty, they instruct the bouncer to
iscriminating, while if the club is almost full, the bouncer is to be more discriminating. Thp
ecomes a function of the number of people in the club. People will be more likely to leave
lub is very crowded, soq is also a function of the number of people inside the club. The pro
osed now is much more difficult because of the presence of feedback: The elementary p

hange in response to the cumulative effect of what they have accomplished in the past.

4386022-2488/2004/45(11)/4386/32/$22.00 © 2004 American Institute of Physics
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This simple example captures all the basic features of the problems we wish to co
lthough the example was given with people, the actors in the probability game may
uantity such as charge, energy, heat, or particles, which we will refer to simply as gene
harge. Similarly, the nightclub can be a mesoscopic chaotic cavity,1 a birth-death process,2 a
iological membrane channel,3 etc.

Historically, general stochastic problems are solved with the master equation. The time
hange of the probability to be in a particular state is given in terms of transition rates to
tates. This approach has had great success and leads naturally to the Fokker–Planck and
quations.4 However, once the master equation is given, the solution is often quite diffic
btain.

This paper takes a different approach. Rather than beginning with a master equation
ng the probability of all processes happening in a unit of time, we make several assumptio
hich we can reformulate the problem. Although these assumptions limit the applicability

heory, when they apply, the problems are much easier to solve. The assumptions are:

• The system we are interested in is a composite system made out of constituent part
nightclub example, the system is made up of three physical regions: Outside the fron
the interior of the club, and outside the back door. The decomposition of a larger syste
smaller interacting parts is only meaningful for us if there is a separation of time scale
means that the charge inside the constituent parts changes on a slower time scale
fluctuations at the boundaries. In the nightclub example, this simply means that the a
time a person spends in the club will be much longer than the typical time needed to e
door.

• Taken alone, the parts of the composite system have a finite number of simple prope
parameters. The only property of the nightclub that was relevant for the problem was t
number of people in it at any given time. The important element of the line out in front
it never runs out. All other details are irrelevant.

• In the limit where all parts of the network are very large(so that the elementary transp
processes do not affect themselves in the short run), the transport probability distributio
between elements are known. In the nightclub example, the probability of gettingQ people
through the front door aftert time steps(given a constant, large number of people insid) is
easy to find, because we have assumed that the elementary probabilityp does not chang
from trial to trial. The transport probability distribution is simply the binomial distribut4

where the probabilityp is a function of the(approximately unchanging) number of peopl
inside. The back door distribution is obtained in the same way.

• There are conservation laws that govern the probabilistic processes. No matter wh
ability distributions we have, there are certain rules that must be obeyed. The net nu
people that enter, stay, and leave the club must be a constant. This means that the
of change of the club’s occupancy is given by the people-current in minus the people-
out. The people in the line outside are a special case. There is in principle always a r
ment, so moving one person inside the club does not affect the properties of the line

Now, the strategy is to use this information as the starting point to find transport statis
he combined interacting system. The main result derived is a path integral expression
onditional probability(taking conservation laws into account) for starting and ending with
iven amount of charge at each location after some time has passed. From this condition
bility, specific quantities such as transport statistics through the system, fluctuation stat
harge at a particular location and the like may be found.

One primary application of this formalism is that of full counting statistics(FCS),5,6 the
otivation for why it was developed in the first place.7 FCS describes the fluctuations of curre

n electrical conductors. It gives the distribution of the probability that a certain numb
lectrons pass a conductor in a certain amount of time. Mean current flow and shot noise1 corre-
pond to the first and second cumulant of this distribution. The full distribution(defined by al
umulants) provides a full characterization of the transport properties of an electrical condu

he long time limit. In the past, FCS was mainly addressed with quantum mechanical tools such as
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he scattering theory5,6,8,9 of coherent conductors, the circuit theory based on Keldysh G
unctions,10–13 or the nonlinears model.14 However, a number of works realized that for se
lassical systems with a large number of conductance channels, shot noise may be c
ithout accounting for the phase coherence of the electron.15–18 These works treat the ba
ources of noise quantum mechanically, but calculate the spread of the noise through
onductor classically. For specific conductors like diffusive wires and chaotic cavities, th
as been extended to the calculation of third and fourth cumulants via the cascade princ19,20

nd to the full generating function of FCS.7,21–23 In the present work, we consider an abst
odel instead of any particular example and develop the mathematical foundations of t
osed semi-classical procedure to obtain FCS. We introduce and investigate networks of e
ith known transport statistics and show how the FCS of the entire network can be cons
ystematically.

The formalism we present is related to a different approach in nonequilibrium sta
hysics called the Doi–Peliti technique.24 The idea is that once the basic master equation go

ng the time evolution of probability distributions is given, it may be interpreted as a Schrö
quation which may be cast into a second-quantized language. This quantum problem
onverted into a quantum mechanical path integral(often obeying bosonic or fermionic statisti)
rom which one may take the continuum limit and use a field theory renormalization
pproach with diagrammatic perturbation expansion.25 This approach is useful in many situatio

ar from equilibrium and has several parallels to our approach. It has been pointed out t
echnique is in some sense the classical limit of the quantum mechanical Keldysh formalis26 the
ame tool used in the past to calculate FCS, so this gives another connection with the
atter we are concerned with.

There are several advantages of our approach. First, we skip the master equation ste
robability distributions of the connector fluctuations are given, we may immediately con
etwork distributions. Second, from a computational view, our formulation of the problem is
impler than starting from first principles for situations where the ingredients we need are
ble, and results are much easier to obtain than beginning with the master equation alone
ur formulation also applies to situations where temporal transition probabilities may be
inally, the formalism’s physical origin is clear, so the needed mathematical objects a
otivated.

The rest of the paper is organized as follows. In Sec. II, we introduce and develop the
heory. After reviewing elements of probability theory, we derive the stochastic path integra
etwork of nodes as well as explore the relationship to the master equation and Doi–Pe
alism. In Sec. III, the continuum limit is taken to derive a stochastic field theory and lin

ormalism with the Langevin equation point of view. In Sec. IV, we develop diagrammatics
o calculate cumulants of the current distribution as well as current correlation functions
rbitrary network. Section V gives several applications of the theory to different physical

ions. We solve the field theory for the mesoscopic wire and demonstrate universality in m
imensions as well as present new results for the conditional occupation function and pro
istribution. We also consider the problem of charge fluctuation statistics(both instantaneous a

ime-averaged) in a mesoscopic chaotic cavity. Section VI contains our conclusions.

I. GENERAL FORMALISM

Once we have the basic elements of our theory(the generalized charges), we must specif
ome spatial structure that they move around on. As we noted in the introduction, the e
tructure needed to state the problem are simply points we refer to as nodes, joined by con
his defines a network(see Fig. 1). The state of each nodea is described by one(effectively
ontinuous) chargeQa,27 andQ is the charge vector describing the charge state of the net
he node’s state may be changed by transport: Flow of charges between nodes takes pla
onnectors carrying currentsIab from nodea to nodeb. The variation of these chargesQa is given

y
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Qast + Dtd − Qastd = o
b

Qab, s1d

here the transmitted chargesQabstd=e0
Dtdt8Iabst+ t8d are distributed according toPabsQabstdd.

he fact that the probabilitiesPabstd also depend on the chargesQstd is one source of the difficul
f the problem.

Assuming that the probability distributionsPab (which depend parametrically on the state
odesa andb) of the transmitted chargesQab are known, we seek the time evolved probab
istributionGsQ ,td of the set of chargesQ for a given initial distributionGsQ ,0d. In other words
ne has to find the conditional probability(which we refer to as the evolution operat)
sQ ,Q8 ,td such that

GsQ,td =E dQ8UsQ,Q8,tdGsQ8,0d. s2d

e assume that there is a separation of time scales,t0!tC, between the correlation time of curre
uctuations,t0, and the slow relaxation time of charges in the nodes,tC. As we will show in the
ext section, this separation of time scales allows us to derive a stochastic path integral r

ation for the evolution operator,

UsQ f,Qi,td =E DQDL exphSsQ,Ldj, s3ad

SsQ,Ld =E
0

t

dt8F− iL · Q̇ + s1/2do
ab

HabsQ,la − lbdG , s3bd

here the vectorL has componentsla: Node variables conjugated to theQa that impose charg
onservation in the network.

In the following, we define the functionsHab as the generating functions of the fast curr
etween nodesa and b. On the time scaleDt@t0, the currents through isolated connectors
arkovian, so that all cumulants(irreducible correlators which are denoted by double a
rackets) of the transmitted chargekksQabdnll are linear inDt. Following the standard notation

esoscopic physics,28 we define the current cumulantskksĨabdnll as the coefficients in

kksQabdnll = DtkksĨabdnll, s4d

here the tilde symbol has been introduced to distinguish the bare currents of each conne(the
ources of noise) from the physical currentsIab flowing through that same connector when i

IG. 1. An arbitrary network. Each node has charge and counting variableshQa ,Laj. The nodes transfer charge
urrentsIab through the connectors. The absorbed counting fieldssLa

ad are constants by definition of the absorbed cha

a
a (see text). Each node may have an arbitrary number of different charge species,Qa=hQa

1 ,Qa
2 , . . . ,Qa

j j.
laced into the network. Then the generatorsHab are defined via the equation
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kksĨabdnll = U ]nHabsQ,labd
si ] labdn U

lab=0
, s5d

nd thus contain complete information about the statistics of the noise sources. Thelab [eventu

lly to be replaced with withla−lb in Eq. (3)] is the generating variable for the currentĨab. The
otion of current cumulants is useful because they are the time independent objects, and t

ime independent generators, Eq.(5). The generatorsHabsQ ,labd depend in general on the f
ectorQ and not just on the generalized charges of the neighboring nodesQa andQb. This may
erve to incorporate long range interactions between distant nodes.

The chargeQab transferred through the connectors[characterized by Eqs.(4) and(5)] may be
iscrete. However, the charge in the nodesQa is treated as an effectively continuous variabl
qs.(1)–(3). This is justified if many charges in the node participate in transport. Formally

imit allows a saddle-point evaluation of the propagator(3a).

. Derivation of the path integral

To derive the path integral Eq.(3), we follow the usual procedure29 and first discretize time
=nDt to derive an expression forU that is valid for propagation over one time stepDt. Becaus
f the separation of time scalest0!tC, we can considerDt as an intermediate time scale,

t0 ! Dt ! tC. s6d

he left inequality,t0!Dt, implies that the transmitted chargesQab are Markovian.4 This mean
hat charges transmitted in separate time intervals are uncorrelated with each other. While
ecessary to specify the source of the current correlation in the general formulation, it is
oting two examples. In a mesoscopic point contact, the correlation timet0 has the interpretatio
f the time taken by an electron wavepacket to pass the point contact. In chemical dyna
ould be the time taken for a long molecule in solution to traverse a filter.

In a time Dt, the probability that chargeQab is transmitted between nodesa and b can be
ritten as the Fourier transform of the exponential of a generating functionSab:

PabsQab,Dtd =E dlab

2p
exph− ilabQab + Sabslabdj. s7d

he definition of the cumulant of transmitted charge is

kksQabdnll = U ]nSabslabd
si ] labdn U

lab=0
. s8d

he Markovian assumption implies that the probability of transmitting chargeQab in time Dt
ollowed by chargeQab8 in time Dt8 through any connector is given by the product of indepen
robability distributions. This implies that the probability of transmitting chargeQab in time Dt
Dt8 may be calculated by finding all ways of independently transferring chargeQab8 in the first
tep andQab−Qab8 in the second step,

PsQab,Dt + Dt8d =E dQab8 PsQab − Qab8 ,Dt8dPsQab8 ,Dtd, s9d

hich takes the form of a convolution of probabilities. Applying a Fourier transform to both
f Eq. (9) with argumentlab decouples the convolution into a product of the two Fourier tr

ormed distributions. Equation(7) impliesSabsDt+Dt8 ,labd=SabsDt ,labd+SabsDt8 ,labd. It then
mmediately follows that the generating function must be linear in time. Therefore, a time
endentHab may be introduced:Sab=Dt Hab. The linear dependence ofSab on time implies tha
ll charge cumulants(8) will be proportional to time. Therefore, we define the time indepen

urrent cumulants, Eq.(5).
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Different connectors are clearly uncorrelated forDt!tC, which indicates that the total pro
bility distribution of transmitted charges is a product of the independent probabilities in
onnector:30

PfhQabjg = p
a.b

PabfQab,Dtg. s10d

hus far, the analysis is only valid for times much smaller thantC. For this case, the charges in
odes will only slightly change. Since we wish to consider longer times, we need to tak
ccount the fact that charge transfer between different nodes will be correlated as charge

nside the nodes. This may be accounted for by imposing charge conservation Eq.(1) during the
ime interval with a delta function,

dSQa − Qa8 − o
b

QabD =E dla

2p
expH− ilaFQa − Qa8 − o

b

QabGJ . s11d

ere,Qa8 is the charge in the node before the time interval whileQa is the charge accumulated
he node after the time interval is over. In Eq.(11), la (referred to as acounting variable) plays
he role of a Lagrange multiplier. The propagator is obtained by multiplying the constraint(11) and
he independent probability distribution(10). Representing the probabilities in their Fourier fo
7) then yields

ŨsQ,Q8,Qab,Dtd = p
a
E dla

2p
p
a.b
E dlab

2p
expsSd,

S= − io
a

laSQa − Qa8 − o
b

QabD + o
a.b

f− ilabQab + DtHabsQ8,labdg. s12d

he full propagatorŨsQ ,Q8 ,Qab ,Dtd still keeps track of each individual connector contribu

ab. We now integrate out the fast fluctuations to obtain the dynamics of the slow variable
ay be done by using the identityoa laob Qab=oa.bslaQab+lbQbad and Qab=−Qba. The

ntegration overQab gives a delta function of argumentlab−sla−lbd, so that thelab integrals
ay be trivially done. We obtain

UsQ,Q8,Dtd = p
a
E dla

2p
expH− io

a

lasQa − Qa8d + Dto
a.b

HabsQ8,la − lbdJ . s13d

his is the general result for the one step propagator. If any two nodes are unconnectedHab is
ero.

An important comment is in order: BecauseHab changes slightly over the time period, wh
n turn affects the probability of transmitting charge through the contacts, it is not clear a
art of the time stepHab should be evaluated. This ambiguity exists because our theory
icroscopic. Rather, it takes the microscopic noise generators as an input. This ambigui

he freedom of stochastic quantization.31 The same problem also occurs in quantum mecha
ath integrals, and its source there is an ambiguity in operator ordering.32 As we are interested

he large transporting charge limit,g@1, and evaluate the integrals in leading order saddle-
pproximation, this ambiguity will not affect the results.7 For calculations beyond the large tra
orting charge limit, the canonical variablesQ andL need to be properly ordered, which can o
e done with a microscopic theory. For example, the master equation discretized in
iscussed in Sec. II D requires the placement ofL operators in front ofQ operators, since th
enerating functionsHab of the transition probabilities depend on the state of the system
eginning of the time period.

To extend the propagator(13) to longer timest=nDt, we use the composition property of
4
volution operator(also known as the Chapman–Kolmogorov equation). This requires separate
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Qaj integrals at each time step, so that forn time steps there will ben−1 integrals overQ, while
ach of then one-step propagators comes with its ownL integral,L=hlaj. Inserting our expres
ion for theDt step propagator Eq.(13), we find

UsQ f,Qi,td =E dL0p
k=1

n−1E dQkdLk expFo
k=0

n−1

− iLk · sQk+1 − Qkd + DtHsQk,LkdG , s14ad

ith

HsQk,Lkd = o
a.b

HabfQa,k;la,k − lb,kg, s14bd

here we have introduced the notationsdQk=pa dQa,k anddLk=pasdla,k/2pd. We are now in

osition to take the continuous time limit. WritingQk+1−Qk=DtQ̇, which is valid because th
harge in any node changes only slightly over the time scaleDt, the action of this discrete pa

ntegral has the formS=Dtok=1
n Sk, which goes over into a time integral in the continuous li

sing the standard path integral notationeDQDL=edL0pk=1
n−1edQkdLk, and invoking the sym

etry Habsla−lbd=Hbaslb−lad we recover Eq.(3). The only explicit constraint on the pa
ntegral comes with the charge configurations at the start and finish,Qi andQ f. We also note tha

ab depends on any external parameters such as voltages or chemical potentials driving th
.

In the simplest case of one charge and counting variable, the form of the path integra
ame as the(Euclidian time) path integral representation of a quantum mechanical propaga
hase space with position coordinateQ and momentum coordinatel.32 The differences with th
uantum version are that the propagator evolves probability distributions, not amplitudes(simi-

arly to Ref. 25), as well as the fact that the “Hamiltonian”H=s1/2doabHabsQ ,la−lbd is not
eally a Hamiltonian, but rather a current cumulant generating function and, therefore,
ermitian in general. Even so, because of the similarity we shall refer toH as the Hamiltonia

rom now on.

. Absorbed charges, boundary conditions, and correlation functions

A useful special case occurs when one has absorbed charges. These are charges th
nto (or are injected from) absorbing nodes without altering the system dynamics. In mesosc
or example, the absorbing nodes are metallic reservoirs. Formally, we divide the charg
hose that are conserved and those that are absorbed:Q=hQc,Qaj, where the subset of absorb
hargesQa=hQa

aj does not appear inHab. We do the same for the corresponding counting v
bles:L=hLc,Laj. BecauseHab does not depend onQa, these charges may be integrated ou

ntegrating the action by parts,

iE
0

t

dt8La · Q̇a = − iE
0

t

dt8Qa · L̇a + isL f
a ·Q f

a − Li
a ·Qi

ad, s15d

nd then functionally integrating overQa to obtaindsL̇ad, whered is a functional delta function
his immediately constrains theLa to be constants of motion so the functional integration oveLa

ecomes a normal integration,DLa→dLa. The absorbed kinetic terms in the action may the
ntegrated to obtain

UsQ f,Qi,td =E dLaE DQcDLcexphSsQ,Ldj, s16ad

SsQ,Ld =Et

dt8F− iLc · Q̇c + s1/2do Habsla − lbdG − iLa · sQ f
a − Qi

ad. s16bd

0 ab
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Often one is interested in the probability to transmit some amount of charge through e
he absorbing nodes. By applying a Fourier transform to Eq.(16a) with respect toQastd−Qas0d we
emove the last term in Eq.(16b) and obtain the path integral representation for the characte
unction Z which generates current moments at every absorbing node

ZsLad =E DQcDLc exphSsQ,Ldj, s17ad

SsQ,Ld =E
0

t

dt8F− iLc · Q̇c + s1/2do
ab

Habsla − lbdG . s17bd

ote that the counting variablesLa enter the action(17b) only as a set of constant parameters.
nitial condition in the path integral(17) is given by the initial charge statesQcs0d. There is a
hoice of the final condition: By fixing the finalQcstd one obtains the distribution of the conser
harge subject to this constraint, while by fixingLcstd the corresponding characteristic functio
btained. The choice ofLcstd=0 in Eq. (17) gives the characteristic function of the absor
harge under the condition that the conserved charge is not being monitored, i.e., the fina
tate is integrated over. Therefore, lnZ becomes the generator of the FCS, defining the ch
umulants at the absorbing node,

kkfQa
astd − Qa

as0dgnll = U ]n ln Z

s] ila
adnU

La=0

. s18d

n the long time limit, this quantity is proportional to time, independent of the details o
oundary conditions.

Alternatively, in the short time limit one may calculate irreducible correlation function

bsorbed and conserved current fluctuations,I =Q̇. These correlation functions can be obtained
xtending the time integral in(3b) to infinity, introducing sources32 in the action, S→S
i edt xstd ·I std, and applying functional derivatives with respect tox. Repeating the steps lead

o Eqs. (17), we find that variablesla in the Hamiltonian in Eq.(17b) have to be shiftedla

la+xa. Then, the irreducible current correlation function is given by

kkIa1
st1d ¯ Ian

stndll = U dn ln Zfxg
dixa1

st1d ¯ dixan
stndU

x=0

. s19d

ith these correlation functions, one may calculate, for example, the frequency depend
urrent cumulants.33

. The saddle point approximation

If the Hamiltonian has some dimensionless large prefactor, then the path integral(3) may be
valuated using the saddle point approximation, which is justified below. At the saddle
where the first variation of the action vanishes), we can write equations of motion analogou
he Hamiltonian equations of classical mechanics:

iQ̇c =
]

] LcHsQc,Ld, iL̇c = −
]

] QcHsQc,Ld, s20d

hereHsQc,Ld=s1/2doabHabsQc;la−lbd. There may be many saddle point solutions in g
ral, and one has to sum over all of them. Equations(20) are solved subject to the tempo
oundary conditions and generally describe the relaxation of the conserved charges from t

tate to a stationary statehQ̄c,L̄cj on a time scale given bytC, the dynamical time scale of t
odes. These stationary coordinates are functions of any external parameters as well as(con-

a
tant) absorbed counting variablesL . In the saddle point approximation, the action takes the form
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=Ssp+Sfluc.
7 The termSsp is the contribution to the action from the solution of the Eqs.(20),

hich describes the evolution of the system from the initial to the final state. The termSfluc

escribes fluctuations around the saddle point and is suppressed compared to the sad
ontribution, if the Hamiltonian has a large prefactor(in analogy to the"-expansion of quantu
echanics). Physically, the validity condition for the saddle point approximation is that

hould be many(transporting) charge carriers in the nodes. For times longer than the c
elaxation time of the node, the dominant contribution is from the stationary state only, wh
addle-point part of the action is simply linear in time:

SspsQ̄,L̄d = tHsQ̄,L̄d, t @ tC. s21d

he linear time dependence of Eq.(21) indicates that the dynamics are Markovian on a long
cale. It is the fact that the contributionSsp emerges in a dominant way which makes the appr
iven here a powerful tool to analyze the counting statistics of transmitted charge.

We now discuss the large parameter that justifies the saddle point approximation. The
ry conditions on the charge in the absorbing nodes fix a(dimensionless) charge scale of th
ystem,g. All charges in the network are scaled accordingly,Q→gQ. We make the assumpti
hat there is a one parameter scaling of the Hamiltonian,H→gH. The time is also scaled bytC,
he time scale of charge relaxation in the nodes. The dimensionless action is nowS=ge0

t/tCdt8
s−iQ̇l+tCHd. The saddle point action is proportional togt /tC, while the fluctuation contributio
ill be of order t /tC. We note that the parameterg is related to(though not necessarily the sa
s) the separation of time scales,tC/t0, needed to derive the path integral. For the mesos
onductors considered in the example section V B of this paper, the charge scale is se
aximum number of semiclassical states on the cavity involved in transport,g=DmNF@1, the
ias times the density of states at the Fermi level. On the other hand, for the chaotic

C/t0=g / sGL+GRd, whereGL,R@1 are the dimensionless conductances of the left and right
ontact.

. Relation to the master equation and Doi–Peliti technique

The evolution operatorUsQ ,Q8 ,td may be interpreted as a Green function of a differe
quation which determines the propagation in time of an initial probability distributionGsQd. In

he theory of stochastic processes, such a differential equation is called a master equ
atural question that arises is the relationship of the formalism presented here to other ap

o stochastic problems.
The most general type of Markovian master equation for discrete states and discrete ti

he form

Gnstk+1d = o
m

Pnmstk+1,tkdGmstkd, s22d

hereGmstkd is the probability to be in statem at timetk andPnm is the transition probability from
tatem to staten. The state is described by a vectorn=sn1, . . . ,nNd whose components are t
hargesna of each nodea. The Markovian assumption implies thattk+1− tk=Dt is greater than th
orrelation time,t0. If we further assume that the probability to make a transition to another

s small,Pnm!1 for nÞm, so that the transition probability is only linear inDt, a transition rat

nm=Pnm/Dt may be defined. It then follows that we may write a differential master equa

Ġnstd = o
m

fWnmGmstd − WmnGnstdg. s23d

quation(23) is the starting point for the Doi–Peliti technique,24 where one formally maps th
pace of physical states to the Fock space of statesunl=sa1

†dn1
¯saN

†dnNu0l, wheren is the numbe
f charges. The entire state of the system is expressed by a vectoruCl=onGnunl which weights th

tatesunl with their probabilitiesGn. Thus, the master equation(23) may be interpreted as a
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any-body Schrödinger equation where the ratesWmn are incorporated into a Hamiltonian in
econd-quantized form. One may then write a coherent-state path integral over the variablea, and
† for this many-body quantum system and perform perturbation expansions along with the
alization group.25 This procedure eventually involves taking the continuum limit so the dis

harge states become continuous.
Let us now consider how our formalism is related to the master equation or the Doi

echnique. According to the results of Sec. II, our stochastic path integral, Eq.(3) solves the
ontinuum variable version of Eq.(22) with the transition probabilities given by the one s
ropagatorUsQ ,Q8 ,Dtd. In general, the transition probabilities are neither small nor linea
ime for Dt.t0. It is instructive nevertheless to consider the special case of processes
t0!1, when we can expand the one-step propagator(13) to first order inDt,

UsQ,Q8,Dtd < dsQ − Q8d + DtE dLe−iL·sQ−Q8dHsQ8,Ld. s24d

efining the Fourier transform of the generating function asH̃sQ ,Q8d, the differential equatio
overning the evolution of a probability distribution of chargesGsQd is then

ĠsQ,td =E dQ8H̃sQ,Q8dGsQ8,td. s25d

omparison with the continuous version of the master equation(23),

ĠsQ,td =E dQ8fWsQ,Q8dGsQ8,td − WsQ8,QdGsQ,tdg, s26d

ndicates thatH̃ is related toW. The Hamiltonian may be expressed in terms of the trans
ernel34 as,

HsQ8,Ld =E dQfeisQ−Q8d·L − 1gWsQ,Q8d, s27d

here the normalization of probability is expressed byHsQ8 ,0d=0. Equation(27) is an importan
esult, because it allows the conversion of the master equation(26) into the stochastic path integ
3).

We would like to stress that our formalism is not simply equivalent to the differential m
quation(26) (and, therefore, the Doi–Peliti technique), but that it allows the treatment of
omplementary class of problems. Our formalism assumes effectively continuous charge,
annot resolve effects due to the discreteness of charge on the nodes. Such effects are
he master equation(23). In contrast, the differential master equation assumption,Ht0!1 (which
imply states that transition probabilities are small in the time intervalt0) is not required. Ou
ormalism is especially important when this is not the case, i.e.,Ht0,1.

This is illustrated by the simple example from mesoscopics of two metallic reservoir
ected by a single electron barrier with hopping probabilityp and biasDm at zero temperature. F
time intervalDt larger than the correlation timet0=" /Dm (the time scale for an electr

avepacket to transverse the barrier), Dt /t0 electrons approach the barrier and either are t
itted or reflected. Mathematically, this is a classical binomial process with the generator

S= sDt/t0dlnf1 + pseiel − 1dg. s28d

s this action is the starting point of many mesoscopic implementations of the formalism,
mportant example. Since the action is proportional to the large parameterDt /t0.1, for p,1 the
xpansion of expsSd to first order inDt is strictly forbidden, effectively not allowing a first ord
ifferential master equation. Only in the limitp!1, (i.e., when Eq.(28) describes a Poissoni

rocess) may the logarithm be expanded to first order. This suggests that Eq.(26) describes the
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low dynamics of systems whose fast transitions are Poissonian in nature. A more genera
ynamics such as the binomial distribution may only be found using the continuous charg
aster equation in discrete time(22).

II. THE FIELD THEORY

From the stochastic network, Fig. 1, it is straightforward to go to spatially continuous sy
s the spacing between the nodes is taken to zero. The goal is to introduce a Hamiltoni

ional hsr ,ld whose arguments are the charge densityr and the counting field functionsl, that are
hemselves functions of space and time. We may then replaces1/2doa,bHa,b→edzhsr ,ld. Our
escription is local, so in the model each node is only connected to its nearest neighbors.
erive the one-dimensional field theory with one charge species in detail, and then gene
ultiple dimensions and charge species.

Consider a series of identical, equidistant nodes separated by a distanceDz. This nodal chai
ould represent a chain of chaotic cavities, Fig. 2, in a mesoscopic context.35,36 The sum overa
nd b becomes a sum over each node in space connected to its neighbors. The action
rrangement is

S=E
0

t

dt8o
a

h− laQ̇a + HsQa,Qa−1;la − la−1dj, s29d

here for simplicity we have chosen real counting variables,ila→la. The imaginary countin
ariables will be restored at the end of the section. The only constraint made onH is that
robability is conserved,Hsla−la−1d=0 for la=la−1. We now derive a lattice field theory

ormally expandingH in la−la−1 andQa−Qa−1. Only differences of the counting variables w
ppear in the series expansion, while we must keep the fullQ dependence of the Hamiltonian

here areN@1 nodes in the lattice, for fixed boundary conditions the difference between ad
ariables,la−la−1 andQa−Qa−1 will be of order 1/N, and therefore, provides a good expan
arameter. The expansion of the Hamiltonian(29) to second order in the difference variables g

H =
] H

] la

sla − la−1d +
1

2

]2H

] la
2 sla − la−1d2 +

]2H

] Qa ] la

sQa − Qa−1dsla − la−1d, s30d

here the expansion coefficients are evaluated atla=la−1 and Qa=Qa−1 and are functions o

a−1. Terms involving only differences ofQa−Qa−1 are zero becauseHsla−la−1d=0 for la

la−1. All terms in Eq.(30) need explanation. First, the expression]H /]la is the local current a
ero bias(because the charges in adjacent nodes are equal) which will usually be zero. There ma
e circumstances where this term should be kept,37 but we do not consider them here. The te
2H /]Qa]la=−GsQa−1d is the linear response of the current to a charge difference. HenceG is
he generalized conductance38 of the connector between nodesa anda−1. ]2H /]la

2 =CsQa−1d is
he current noise through the same connector becauseH is the generator of current cumulants

We are now in a position to take the continuum limit by replacing the node indexa with a

IG. 2. A one-dimensional lattice of nodes connected on both ends to absorbing reservoirs. This situation could
series of mesoscopic chaotic cavities connected by quantum point contacts.
oordinatez, introducing the fieldsQszd ,lszd, and making the expansions
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la − la−1 → l8Dz+ s1/2dl9sDzd2 + OsDzd3, s31ad

Qa − Qa−1 → Q8Dz+ s1/2dQ9sDzd2 + OsDzd3. s31bd

he action may now be written in terms of intensive fields by scaling awayDz,

H → hsr,ldDz, Qa → rszdDz, GasDzd2 → Dsrd, CaDz→ Fsrd, s32d

nd taking the limitoaH→edzhsr ,ld. One may check that expanding the Hamiltonian to hi
han second order inDz will result in terms suppressed by powers ofDz/L and consequent
anish asDz→0. This scaling argument for the field theory is analogous to Van Kampen’
xpansion.39 Though the lattice spacingDz does not appear in the continuum limit, it provide
hysical cutoff for any ultra-violet divergences that might appear in a loop expansion.

These considerations leave the one-dimensional action as

S= −E
0

t

dt8E
0

L

dzflṙ + Dr8l8 − 1
2Fsl8d2g. s33d

ereD is the local diffusion constant andF is the local noise density which are discussed in d
elow. It is very important that these two functionalsD ,F are all that is needed to calculate curr
tatistics. Classical field equations may be obtained by taking functional derivatives of the
ith respect to the charge and counting fields:dS/drszd=dS/dlszd=0 to obtain the equations
otion,

l̇ = −
1

2

dF

dr
sl8d2 − Dl9, ṙ = f− Fl8 + Dr8g8. s34d

rom the charge equation, one can see immediately that the term inside the derivative
nterpreted as a current density so that local charge conservation is guaranteed. We have
hese coupled differential equations subject to the boundary conditions

rst,0d = rLstd, rst,Ld = rRstd, lst,0d = lLstd, lst,Ld = lRstd, s35d

hererLstd, rRstd, lLstd, and lRstd are arbitrary time dependent functions. FunctionsrLstd and

Rstd are the charge densities at the far left and right end of the system which may be ex
ontrolled. FunctionslLstd andlRstd are the counting variables of the absorbed charges at t

eft and right end which count the current that passes them.
Once Eqs.(34) are solved subject to the boundary conditions(35), the solutionsrsz,td and

sz,td should be substituted back into the action(33) and integrated over time and space.
esulting function,SspfrLstd ,rRstd ,lLstd ,lRstd ,t ,Lg is the generating function for time-depend
umulants of the current distribution. Often, the relevant experimental quantities are the sta

umulants. These are given by neglecting the time dependence, finding static solutions,ṙ= l̇=0,
nd imposing static boundary conditions. Similarly to Sec. II D, we can also introduce s
dtdzxsz,tdrsz,td and calculate density correlation functions.

To estimate the contribution of the fluctuations to the action, it is useful to define dime
ess variables. The boundary conditionsrL, and rR provide the charge density scaler0 in the
roblem, so we definerszd=r0fszd, wheref ,1 is an occupation. We furthermore rescalez→Lz,
nd t→tDt, wheretD=L2/D is the diffusion time, thus obtaining

S= − Lr0E
0

t

dt8E
0

1

dz8Fl ḟ + f8l8 −
F

2Dr0
sl8d2G . s36d

e assume that the combinationF /Dr0 is of order 1. From Eq.(36), the dimensionless larg
arameter isg=r0L@1, i.e., the number of transporting charge carriers. As in Sec. II C, the s

oint contribution is of ordergt /tD, while the fluctuation contribution is of ordert /tD.
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Repeating this derivation in multiple dimensions withN charge speciesr=hrisr dj and count
ng fieldsL=hlisr dj, i =1, . . . ,N yields the action

S= −E
0

t

dt8E
V

dr fLṙ + ¹ LD̂ ¹ r − s1/2d ¹ LF̂ ¹ Lg, s37d

here tensor notation is used and we have introducedF̂ij =]li
]l j

h and D̂ij =−]ri
]l j

h as genera
atrix functionals of the field vectorr and coordinater which should be interpreted as noise
iffusion matrices. If the medium is isotropic, then the vector gradients simply form a dot pr

t should be emphasized that the vectors appearing are vectors of different species of char
s all node delimitation has been accounted for in the spatial integration. The functional
ow runs over all field configurations that obey the imposed boundary conditions at the
V. Classical field equations may be formally obtained by taking functional derivatives
ction with respect to the charge and counting fields as in the one-dimensional(1D) case.

As in any field theory, symmetries of the action play an important role because they
onserved quantities. We first note that the Hamiltonianhsr , ¹r , ¹Ld is a functional of¹L alone
ith no L dependence. This symmetry is analogous to gauge invariance, and leads to the
f motion

ṙ + ¹ · j = 0, j = − D̂ ¹ r + F̂ ¹ L, s38d

hich can be interpreted as conservation of the conditional currentj . The next symmetry is relate
o the invariance under a shift in the space and time coordinateshdr ,dtj. This symmetry leads
quations analogous to the conservation of the local energy/momentum tensor.40 We do not ex
licitly give this quantity because it is rather cumbersome in the general case. However,

tationary limit (where ṙ and l̇ vanish) and for symmetric diffusion and noise tensors, the
harge species conservation law is relatively simple and is given by

o
m

¹mTmn= 0, Tmn= jms¹nld − s¹nrdsD̂ ¹ ldm − hdmn. s39d

or the special case of a one-dimensional geometry, the Hamiltonian itself is the con
uantity (see Sec. V A).

In the continuum limit, all terms of higher order inL are suppressed so that the actio
uadratic in theL variables. This fact may be viewed as a consequence of the centra

heorem and confirms the observation made by Nagaev that local noise in the mesoscopic
ire (see Sec. V A) is Gaussian.19 To further clarify the physical meaning ofD andF, and also to
ake connection with previous work,32 we restore the complex variables,L→ iL, and make
ubbard–Stratronovich transformation by introducing an auxiliary vector fieldn,

exph− s1/2d ¹ LF̂ ¹ Lj = sdetF̂d−1/2E Dn exph− s1/2dnF̂−1n + in ¹ Lj. s40d

e may then integrate out theL variables, taking account of the boundary terms to obtain,

U = expHE
0

t

dt8E
]V

ds · siLaJdJ E DrDndsṙ + ¹ ·JdsdetF̂d−1/2expH−
1

2
E

0

t

dt8E
V

dr 8nF̂−1nJ ,

s41d

here thed above is a functional delta function, imposing the Langevin equation

˙
r + ¹ ·J = 0, s42ad
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J = − D̂ ¹ r + n, s42bd

ith a current noise sourcen, whose correlator41 is given by

knsr ,tdnsr 8,t8dl = dst − t8ddsr − r 8dF̂srd. s42cd

may be interpreted as the physical current density[not to be confused with the condition

urrent density(38)] so that local current conservation is guaranteed, and thesdetF̂d−1/2 serves to
ormalize then probability distribution. The role of the boundary term is to count the curreJ
owing out of the boundary with the counting variableLa, which serves as a Lagrange multipl
his formula gives an immediate translation between the Langevin approach and full co
tatistics, a connection not previously known. The algorithm is as follows:

1) Given a Langevin equation of the form(42), write the average of the boundary term w
sourceLa as a path integral(41) over noise and density fields;42

2) introduce an auxiliary fieldL that takes on the valueLa at the boundaries and represents
delta function in Eq.(41) imposing current conservation(42a) in Fourier form;

3) integrate out the Gaussian noise to obtain an action of the form of Eq.(37);
4) find where the first variation of the action is zero and solve the equations of motion s

to the boundary conditions;
5) insert the solutions back into the action, and do the space and time integrals. The an

the current cumulant generating function.

V. PERTURBATION THEORY

We have shown in Sec. II C that a large number of participating elementary charges
he saddle point approximation for the generator of counting statistics. While the generat
ometimes be found in closed form,7 in general, it has no compact expression and the cumu
hould be found separately at every order. This may be done by expandingSspsQ,l ,xd as a serie
n x and solving the saddle point equations to a given order inx directly. However, there is anoth
pproach for evaluating the higher cumulants, the cascade diagrammatics representing
rder cumulants in terms of the lower ones. It has been introduced by Nagaev in the co
esoscopic charge statistics in the diffusive wire19 and later extended to the chaotic cavity,20 but
ithout proof. The basic idea is that lower order cumulants mix in to yield corrections to th
uctuations of higher order cumulants. This method was used successfully in Ref. 43 to
he recent experiment of Ref. 44. In this section, we demonstrate that these rules follow n
rom the stochastic path integral in the same way as Feynman diagrams follow from the q
echanical functional integral. In Sec. IV C we present another(simpler) method for computin

umulants based completely on differential operators obtained from the Hamiltonian equa
otion. In Sec. IV D we generalize the cascade diagrammatics to an arbitrary network, an

ase of time-dependent correlators.

. The principle of minimal correlations

To motivate the cascade diagrammatics, we refer to a specific physical system(see the inset o
ig. 8), the mesoscopic chaotic cavity.1 For the purposes of this section, the cavity is a conse
ode carrying chargeQ, the electronic reservoirs correspond to the left and right are abso
odes, and the two point contacts are the connectors described by HamiltoniansHL ,HR (see Fig
). Although a detailed description of this system is given in Sec. V B, we would like to me
hat the mesoscopic cavity is described by an electron distribution functionf, which is fluctuating
round its mean value,f0. The actual electrical charge in the cavityQ and the occupationf are
elated via the large parameterg throughQ=gsf − f0d, whereg=DmNF@1 (the density of states
he Fermi energyNF times the biasDm) is the maximum possible number of electrons on

avity which contribute to the transport(see Sec. II C).
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The cascade approach builds on the principle of minimal correlations developed in R

he point contacts create bare noisekkĨL
2ll=]2HL / s]ilLd2, andkkĨR

2ll=]2HR/ s]ilRd2 with no cor-

elation, kkĨLĨRll=0 [see Eq.(5)]. However, for times longer than the average dwell time
lectrons in the cavity, the current conservation requirement imposes “minimal correlatio

he fluctuations of the physical currentsIL and IR, which can be expressed in the form of
angevin equations,

IL = ĨL − GLQ, IR = ĨR + GRQ, s43d

hereĨL,R are now the sources of bare noise,GL,R are the generalized conductances of the left
ight point contact, andQ is the fluctuating charge in the cavity. Current conservation o
hysical currents,IL= IR= I, can now be used to obtain

I =
GRĨL + GLĨR

GL + GR
, Q =

ĨL − ĨR

GL + GR
. s44d

ombining powers ofI andQ and averaging over the bare noise, we obtain the minimal co

ion result for arbitrary cumulantskkQkIlllm. In particular, usingkkĨLĨRll=0, we find the secon
umulant of current is17,18

kkI2ll = kkI2llm =
GR

2kkĨL
2ll + GL

2kkĨR
2ll

sGL + GRd2 , s45d

here the subscriptm denotes the minimal correlation result. We stress that the bare corr

kĨL,R
2 ll are fully determined by the average occupation functionf0 of the cavity.
This example demonstrates that a simple redefinition of the current fluctuations m

traightforward to find the noise. Therefore, it came as a surprise45 that the minimal correlatio
pproach is not sufficient to correctly obtain higher-order cumulants of current. The reason

ailure of the minimal correlation approach has been found recently by Nagaev,19 who showed tha
rom the third order cumulant on, there are “cascade corrections” to the minimal correlation
hich may be interpreted as “noise of noise.” For example, the third cumulant of current t

he mesoscopic cavity,20

kkI3ll = kkI3llm + 3kkIQllm
]

] Q
kkI2llm, s46d

ontains a contribution from fluctuations of the charge in the cavity that couples back in
urrent fluctuations. The factor of 3 comes from the fact that there are 3 independent curre
he charge fluctuation may be correlated with. For higher cumulants, there will be more c
orrections that may be represented in a diagrammatic form.19,20

. Derivation of diagrammatic rules

We now present a derivation of these diagrammatic rules for a single node attached b

IG. 3. Network representing a chaotic cavity. The state of the internal node is described by the variableQ, the charge o
he cavity. The statistics of the connectors are characterized by the two generating functionsHL,R.
wo absorbing nodes. Generalizations to an arbitrary network will subsequently be given in Sec.
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V D. As we have shown in Sec. II C, the charge scale imposed by the boundary conditig,
ives a dimensionless large parameter which justifies the saddle point approximation of t

ntegral, so that fluctuations around the saddle point are suppressed by 1/g. In the diagrammati
anguage, we will show that loop diagrams are suppressed by the same factor 1/g. The diagram

atic approach given here is based on perturbation theory originally developed in q
echanics.29

Consider the path integral expression of the generating function for the charge absorbe
eft (L) and right(R) node:

ZsxL,xRd =E DQDl expHE
0

t

dt8f− iQ̇l + HsQ,l,xL,xRdgJ , s47d

hereH=HLsQ,l−xLd+HRsQ,xR−ld. The perturbation theory is formulated as follows. F
he external counting variables are set to zero,xL=xR=0. The HamiltonianH→HLsQ,ld
HRsQ,−ld has a stationary saddle point located athQ0,l0j that we wish to define as the origin
oordinates. The probability distributions of transferred charge are normalized, so

u]Q
n HL,RsQ,ldul=0 = 0, ∀ n. s48d

n particular, ]QHLsldul=0=]QHRsldul=0=0, and thereforel0=0. Next, ]ilHsldul=0=kILsQdl
kIRsQdl=0, sinceHL andHR are the generators of the left and right current respectively. T

ore, Q0 is fixed as the charge in the node such that left and right connector currents are e
verage. The stability of the saddle point is guaranteed by the fact that the bare noise cor

kĨL,R
2 ll, are positive. The derivatives]il]QHL=−GL ,]il]QHR=−GR define the generalized condu

ance of each connector, where the current flows from left to right in both connectors.
The principle of minimal correlation plays an important role in the cascade diagrammati

ill show that this principle is equivalent to exploiting certain freedoms in the path integ
rder to postpone the cascade corrections to third and higher order cumulants. In the lo

imit, t@tC (where 1/tC=GL+GR is the relaxation rate of the charge in the node), the absorbe
urrent is conserved,IR= IL. Therefore, the current through the node can be defined as we
verage of the left and right connector currentsI =s1−vdIL+vIR, wherev is an arbitrary constan
he corresponding counting variablex is introduced by substitutingxR=vx and xL=sv−1dx.
onsider now the second derivative

U ]2H

] ix ] Q
U

x=0
= sv − 1dGL + vGR. s49d

e may set it to zero by fixingv=GL / sGL+GRd. This is equivalent to imposing conservation
urrent fluctuations as in Eq.(44). If we consider further the derivative

U ]2H

] il ] Q
U

x=0
= − sGL + GRd, s50d

e have the freedom to scalel to make the right hand side of Eq.(50) equal to −1[this scaling
nly alters thex independent prefactor of Eq.(47)]. The Hamiltonian takes the new form

H = HLSQ,
GRx + l

GL + GR
D + HRSQ,

GLx − l

GL + GR
D . s51d

e refer to these new variables as minimal correlation coordinates and will see that they s
he diagrammatic expansion.

DefinedQstd=Qstd−Q0 anddlstd=lstd−l0. If we expand the Hamiltonian in a power ser
n x, dQ, anddl, the terms linear indQ anddl vanish at the saddle point, as well as thesdQd2

oefficient by Eq.(48) with n=2. As argued above, in the minimal correlation coordina
il]QHsQ0,l0d=−1. With these transformations, we may split the actionS as
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S= S0 +E
0

t

dt8Vst8d, S0 = − iE
0

t

dt8dlstCdQ̇ + dQd, s52d

hereV represents the rest of theH power series and will be treated perturbatively. It shoul
mphasized thatV is a general nonlinear function ofdl, so unlike most quantum examples,

ull momentum dependence must be kept.
In order to formulate the perturbation theory, we add two sources,J and K to the action,S

S+edt8fJdQ+ iKdlg, so that any average of a function of the variablesdQ,dl may be evalu
ted by taking functional derivatives with respect to the sourcesJ, andK, and then setting th
ources to zero. In particular, for the generating function we can write

Zsxd =E DQDl expHE
0

t

dt8VsdQ,dl,xdJexpUHS0 +E
0

t

dt8fJdQ + iKdlgJU
J,K=0

= expHE
0

t

dt8VS d

dJ
,

d

diK
,xDJ E DQDl expUHS0 +E

0

t

dt8fJdQ + iKdlgJU
J,K=0

. s53d

sing S0. from Eq. (52) we evaluate the integral overQ andl and obtain

Zsxd = expHUE
0

t

dt8VS d

dJ
,

d

diK
,xDJWsJ,KdU

J,K=0

, s54d

here the functionalWsJ,Kd is

WsJ,Kd = expHE E
0

t

dt8dt9Jst8dDst8,t9dKst9dJ . s55d

he operatorD=stC]t+1d−1 is the retarded propagator, and may be found explicitly by inve
he kernel in frequency space,

Dst,t8d =E
−`

` dv

2p

e−ivst−t8d

− itCv + 1
= tC

−1Qst − t8dexpf− st − t8d/tCg. s56d

t describes the relaxation of the chargeQstd to the stationary stateQ0 with the rate 1/tC=GL

GR.
Expanding the exponential in Eq.(54) and taking thet@tC limit, we arrive at the following

xpression for thenth current cumulant

kkInll = t−1 dn

dsixdnUo
m=1

`
1

m!FE0

t

dt8VS d

dJ
,

d

diK
,xDGm

WsJ,KdU
x = J = K = 0

connected

. s57d

ccording to the linked cluster expansion,32 by considering lnZsxd rather thanZsxd, we have
liminated all disconnected terms. In order to compare with the results of Ref. 20, we intro
ew notation by defining

]Q
j kkQkIlllm ; ]Q

j ]il
k ]ix

l VsQ0,l0,x = 0d. s58d

ere kkQkIlllm is the irreducible correlator expressed in terms of the noise sources, i.
inimal correlation cumulant. In this notation, the expansion ofV in a Taylor series of all var

bles takes the form:
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VsdQ,dl,xd = o
j ,k,l

1

j ! k ! l!
]Q

j kkQkIlllmfdQstdg jfidlstdgkfixgl . s59d

nserting the expansion Eq.(59) into the formula for the current cumulants Eq.(57) gives the
ormal solution to the problem. From the form ofWsJ,Kd andV, we can immediately read off th
iagrammatic rules with the internal lines given by the propagators(56), and the expansio
oefficients]Q

j kkQkIlllm playing the role of vertices.
The following simplifications can be done before the rules are finally formulated. Firs

traightforward to see that loop diagrams are suppressed by powers ofg−1. Indeed, according
ur single-parameter scaling assumption, the action(52) has a large prefactorg, which can be
xplicitly displayed,S→g S, by rescaling the charge,Q→g Q. Then it becomes clear that ea
ropagatorD, represented by an internal line, comes with a factor ofg−1. Each vertex comes fro
and therefore has a factor ofg. If a diagram hasI internal lines,E external legs,V vertices an
loops, it will come with a totalg power ofV− I. Furthermore, Euler’s formula tells us thaV
L− I =1. Therefore, diagrams with no loops(“tree” diagrams) come with a power ofg, while

oop diagrams are suppressed by the number of loops,g1−L. From now on we will concentrate o
ree-level diagrams, since they represent current cumulants at the level of the saddle-p
roximation.

Second, in the long time limit,t@tC, each propagator(56) integrated over time gives 1. As
esult, since every vertex is connected to at least one other vertex, all the time integrals
imply give a factor oft, and the time dependence cancels on the right hand side of the Eq(57).
here are no time integrals in the vertices and the propagators just give a factor of 1 as in
e are now able to formulate the diagrammatic rules for high-order current cumulants:

1) Thenth order cumulantkkInll is a connectedn-point function ofn external legsI represente
by solid arrows[see Fig. 4(a)];

2) the external legs must be connected by using vertices[see Fig. 4(b)] and linking interna
dashed lines to internal dashed arrows;

3) the vertices]Q
j kkI lQkllm are represented by a circle withl external legs,k internal outgoing

dashed lines, andj internal incoming dashed arrows[see Fig. 4(b)].
4) Multiply each diagram by the number of inequivalent permutations(NIP).

Formally, the vertices]Q
j kkI lQkllm are the expansion coefficients in(59). However, it is im

ortant to note that they can also be easily evaluated by solving the Langevin equations(43) and
xpressing the minimal correlation cumulantskkI lQkllm in terms of cumulants of the noise sourc

kĨL
l+kll and kkĨR

l+kll. Some vertices are zero,]pH /]QpsQ0,l0dux=0=0 because of probability co
ervation, but other may or may not be zero depending on the physical system. Here, the
age of the minimal correlation coordinates is made clear: the vertex]QkkIllm=0, and therefore an

IG. 4. (a) An n-point current cumulant.(b) The vertex connectingl external lines withj internalQ lines andk internall
ines. (c) The propagator connectingl to Q, equal to 1 in the stationary limit.(d) The vanishing vertex]QkIl in minimal
orrelation coordinates.
iagram that contains this vertex is zero[see Fig. 4(d)].
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To obtain the overall prefactor of a diagram, one can write out all the numerical consta
ount the number of different ways of producing the same diagram.32 For example, there is then!
rom thex derivatives, the 1/m! from the Taylor series ofeV, a binomial coefficient from expan
ng Vm, and the 1/s j ! k! l ! d from every vertex withj +k+ l attachments for the different lines.
ompensate these factors, we have to do the combinatorics of the number of equivalen
nterchange the vertices, find the number of different placements of lines on a vertex, etc
he number of permutations of then external legs will cancel them!, and thej ! k! l! number o
ermutations of the internal legs attaching to the vertex will cancel that factor arising fro
aylor expansion.

Rather than making this expansion, there is a simpler method which exploits these c
ions given by counting the number of inequivalent permutations of the diagram(NIP). The NIP
f the diagram is defined by how many ways the external legs of the diagram may be re
uch that the diagram is not topologically equivalent under deformation of the external l
ther words, a diagram withn external legs hasn! ways of labeling them. If this diagram with
iven labeling of the legs may be topologically deformed to give the diagram back with a di

abeling, these two sets of labelings are equivalent permutations. If we write out all the d
abelings the external legs can have, and cross out every labeling that is an equivalent per
f another, then the number of labelings that remain is the NIP. This number is most easil
y dividing n! by the number of equivalent permutations of the diagram. The number of e

ent permutations of the diagram is also called the symmetry factor of the diagram.
We illustrate these two approaches with the third cumulant, see Fig. 5. With the simplific

iscussed above, these diagrams may be written as

kkI3ll = kkI3llm + 3kkIQllm
]

] Q
kkI2llm + 3kkIQllm

2 ]2

] Q2kkIllm. s60d

ote that diagram(c) does not appear in Ref. 20, because it happens to vanish for the c
avity [see also Eq.(46)]. Referring to the formula(57), the contributions in Eq.(60) are from
=1,2,3 respectively. Each diagram must have ax3 term in the expansion. We first show

ombinatorial method to obtain the prefactor: Diagram(a) has a factor of 1/3! from the number
ermutations of thex variables, canceling the 3! from thex derivatives. Diagram(b) has a facto
f 1/2! from the number of permutations of thex variables, a factor of 1/2! from the Taylor ser
f the exponential, a factor of 2 from the binomial expansion ofV2, and the 3! from thex
erivatives, leaving a factor of 3. Diagram(c) has a factor of 1/3! from the Taylor series of
xponential, a factor of 3 from the binomial expansion ofV3, a factor of 1/2! from the number
ermutations of thedQ variables, a factor of 2 from the functional derivatives acting onW, and the
! from the x derivatives, leaving a factor of 3. The NIP is simpler to derive: We divide
umber of permutations of the external legs,m!, by the number of equivalent permutation of
lements of the diagram that leave it unchanged. The number of equivalent permuta
iagrams(a,b,c) are 3! ,2 ! ,2!, leaving the overall factors 1, 3, 3.

The computation of these diagrammatic contributions is best understood by a little prac
ome examples. Consider three of the diagrams that contribute to the fourth cumulant d

FIG. 5. Tree level contributions to the third cumulant of transmitted current.
ig. 6. The diagrams symbolically represents the combinations:

                                                                                                            



T
s s
m ws join
w e
N ngst
t am
m

C

of
t n
a

T .
I integral
m l exploit
t to an
a imit, the
c t
t rder. In
t

e-
c e

p
b

B n be
w

J. Math. Phys., Vol. 45, No. 11, November 2004 Fluctuation statistics in networks 4405

                        
sad =
]

] Q
kkI2llm

]2

] Q2kkQllmkkIQllm
2 , s61ad

sbd =
]3

] Q3kkIllmkkIQllm
3 , s61bd

scd = kkQ2llmS ]2

] Q2kkIllmD2

kkIQllm
2 . s61cd

o figure out the numerical prefactors, we divide 4!(4 is the number of external legs) by the
ymmetry factor of the diagram. We first consider the symmetry factor of(a): The upper two leg
ay be flipped, and the lower two legs may be independently flipped where the dotted arro
ithout altering the topology of the diagram. Therefore, the symmetry factor is 232=4, and th
IP is 4! /4=6. Moving on to diagram(b), the three lower legs may be permuted amo

hemselves to give a symmetry factor 3!, and therefore, the NIP is 4! /3 ! =4. Finally, diagr(c)
ay be flipped about its center for a symmetry factor of 2, giving a NIP of 4!/2=12.

. Operator approach

In the stationary limit,t@tC, the action takes the formS= tHsQ,l ,xd so that the evaluation
he cumulant generating function reduces to finding the stationary point of the HamiltoniaH as
function of the variablesl andQ. This can be done by solving the equations]QH=0 and]lH=0.

he generating function is then obtained by substituting the solutionshQ̄,l̄j into the Hamiltonian
n the previous section we have shown that this problem can be solved using path
ethods, and the solution can be represented diagrammatically. In the next section we wil

he full strength of the path integral formalism in order to generalize the diagrammatics
rbitrary network, and for the case of time-dependent charges. However, in the stationary l
onceptual simplicity of the problem of finding the stationary point of the functionH indicates tha
here should exist a simple iterative procedure for evaluating the cumulants up to a given o
his section we use classical mechanics methods to prove that this is indeed the case.

We first make the variable transformationil→l, and ix→x, so that the Hamiltonian b
omes a real function. Forx=0 the saddle point is located athQ0,l0j. For nonzerox the saddl

oint moves to a new positionhQ̄,l̄j, which depends onx, and the HamiltonianHsQ̄,l̄ ,xd
ecomes the generator of cumulants of the current,

kkInll = dnHsQ̄,l̄,xd/dxn
ux=0u. s62d

y expressing the totalx derivative in terms of partial derivatives, the average current ca

FIG. 6. Three examples of diagrams contributing to the fourth cumulant.
ritten as
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kIl = s]x + Q8]Q + l8]ldHusQ,l,xduhx=0,Q0,l0j, s63d

hereQ8=dQ/dx ,l8=dl /dx arex dependent. We wish to eliminate the functionsQ8 andl8 and
o express the cumulant in terms of the partial derivatives ofH. This is done by applying a tot
erivative to the equations of motion:f]QHg8=f]lHg8=0 and leads to two equations forQ8 andl8
hich may be solved,

Q8 =
h]lH,]xHj
h]QH,]lHj

, l8 = −
h]QH,]xHj
h]QH,]lHj

, s64d

herehA,Bj is the Poisson bracket, defined ashA,Bj=]lA ]QB−]QA ]lB. The solutions have
e inserted into the Eq.(63).

The advantage of this representation is clear: Now the right hand side of the Eq.(63) (before
aking thex=0 saddle point) depends only on variablesl, Q, andx. Therefore, we can apply t
rocedure again in order to express the high-order cumulant in terms of partial derivative
rocedure solves the problem by giving a single operator,

D = ]x +
h]lH,]xHj]Q − h]QH,]xHj]l

h]QH,]lHj
, s65d

hich, being appliedn times to a given HamiltonianH and evaluating the resulting expressio
he x=0 saddle point, gives cumulants of current:

kkInll = DnHusQ,l,xduhx=0,Q0,l0j. s66d

his approach is obviously more simple compared to the diagrammatic method, since
iagrammatics, after drawing all of the diagrams, they have to be evaluated individually by
any partial derivatives of the Hamiltonian and evaluating them at thex=0 saddle point. Wit

his new approach, given the HamiltonianH, the operator D may be constructed(65) and with a
athematical program, an arbitrary cumulant may be easily computed(66).

It is easy to see the importance of the minimal correlation coordinates in this solution
pplying D several times, the derivative quotient rule generates a large number of denom
]QH ,]lHj=s]Q]lHds]l]QHd−s]Q]QHds]l]lHd. At x=0, as we argued previously,]Q]QH=0, and
t is possible to change coordinates so that]Q]lH=−1. As a result, the denominator in(66) is equa
o 1, which greatly simplifies the expansion. Finally, we would like to stress that the op
pproach, introduced in this section for the one node case, can be easily generalized to a

. Network cascade diagrammatics: Correlation functions

Consider now a general network. In the Sec. IV B, we saw that the dominant contribu
q. (47) arises from tree-level diagrams. On time scalest@tC, the time dependence drops out,

he current cumulants are static. We now generalize the diagrammatic rules presented in
V B to investigate time- and node-dependent correlation functions of conserved and ab
harges, Eq.(19). To define the network, we must arbitrarily label the current flow, yieldi
irected network. By doing so we fix the signs of the elementsHab=−Hba of the Hamiltonian. In

articular, the elements of the generalized conductance matrixĜ,

Gab =
]2H

] silad ] Qb

s67d

evaluated atQ=Q0,L=0) are negative or positive depending on the chosen direction.

egregate absorbing(a) and conserving(c) nodes, the conductance matrixĜ may be put in bloc

orm. Two of them, the blocksĜcc (real symmetric) and Ĝac will be relevant. This gives us th
ecessary tool to define the generalized minimal correlation coordinates. We consider

uency dependent response by letting the evolution time extent to infinity, and introduce the time
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ourier transform of the variableshQc,Lc,xc,xaj, where the vectorhxc,xaj is a time-depende
ource term introduced to produce correlation functions of the conserved and absorbed
see Eq.(19)].

Following the steps of Sec. IV B, we again split the action into two parts,S=S0+edtV, where

S0 = i E dtf− LcQ̇c + LcĜccQ
c + sxcĜcc + xaĜacdQcg

= i E E dvdv8

2p
fLcsiv8 + ĜccdQc + sxcĜcc + xaĜacdQcgdsv + v8d, s68d

nd where we have dropped thed in front of the variables for simplicity. As in Sec. IV B, t
eneralized minimal correlation coordinates are defined by shifting and rescaling theLc variables

n order to eliminate thex variables in Eq.(68). However, becausex is now a vector, th
roportionality factor must be a frequency dependent matrix,

Lcsvd → D̂†svdfLcsvd + Ĝcc
† xcsvd + Ĝca

† xasvdg. s69d

ere D̂svd is the matrix network propagator,

D̂svd = − sivÊ + Ĝccd−1, s70d

ndÊ is the identity matrix. It is straightforward to verify that after the shift, the functionaledtV
ecomes the generator of cumulants of minimal correlation currents, i.e., of the currents w
olutions of the Langevin equations:

Ia
c = − ivQa

c = − ivo
bg

DabsvdĨbg, s71ad

Ia
a = o

bga8

Gaa8Da8bsvdĨbg + o
g

Ĩag, s71bd

here Ĩab are the bare noise sources as defined in Eq.(5). We finally rescalexcsvd
xcsvd / sivd in order to replace conserved currents with charges,I c→Qc.

The total action now acquires the following form

S= s2pid−1E dvLcs− vdQcsvd +E dtVfQc,D̂†sLc + xcd + D̂†Ĝca
† xa,xag, s72d

here the simplified form of theL argument ofV follows after composing the various transf
ations. Following the plan of the previous section, we replace the charge and counting v

Qsvd ,Lsvdj by functional derivatives with respect to the charge and counting so
Jsvd ,K svdj, and take theV term outside of the functional integral. The functional integrals
ow be performed to obtain

WsJ,K d = expHE E dvdv8

2p
Jsv8dK svddsv + v8dJ . s73d

he perturbationV must now be expanded in a Taylor series with respect to all variables. Th
ependence only appears through the variables themselves, so the expansion coefficien
ime independent, with the exception of the propagatorDabsvd multiplying the counting variables.
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V = o
hia,ja,ka,laj=0

`
d j1+¯+jn

dsQ1
cd j1

¯ dsQn
cd jn

kksI1
adl1

¯ sIr
adlrsQ1

cdi1
¯ sQq

cdiqsQ1
cdk1

¯ sQp
cdkpllm

3
sx1

adl1

l1!
¯

sxr
adlr

l r!
3

sx1
cdi1

i1!
¯

sxr
cdiq

iq!
3

l1
k1

k1!
¯

lp
kp

kp!
3

sQ1
cd j1

j1!
¯

sQn
cd jn

jn!
. s74d

s in the one node case, the verticesdQ
a
ckIb

al vanish. We note again that the notation chosen fo
xpansion coefficients in Eq.(74) connects the formalism described here with the Lang
quation point of view. The minimal correlation cumulantkk¯llm may be calculated either by t
xpansion procedure described by Eqs.(72) and (74), or by expressing the physical currents
harges in terms of the current source cumulants by solving the Langevin equations for
nd charges, given by Eq.(71).

The nth order irreducible correlatorkkI1
asv1d¯Qn

csvndll may be expressed as a tree-le
iagram withn external lines representing absorbed currentsIa

a and conserved chargesQa
c . Every

ertex is local in time, so if there arep legs at a vertex, each is assigned an independent frequ
hile the time integral imposes overall frequency conservation,dsoi vid. The cascade rules a
eneralized as follows:

1) Every vertex represents the object

dQ1
csv1d ¯ dQl

csvld
kkI l+1

a svl+1d ¯ Qn
csvndllm,

which is multiplied by ad-function conserving overall frequency,dsoi=1
n vid;

2) the minimal correlation cumulantskkI l+1
a svl+1d¯Qn

csvndllm may be evaluated by express

them in terms of cumulants of sourceskkĨab
n ll via the solutions(71) of the Langevin equa

tions, or by Eq.(74) if the Hamiltonian is known;
3) the internal dashed arrow goes fromQa

csvd to dQ
a
c svd. It conserves the node indexa and the

frequencyv;46

4) external lines for absorbed currents and conserved charges originate fromIa
asvd or Qa

csvd of
the vertexes. They conserve the node index and the frequency;

5) sum over all internal node indices, and integrate over all internal frequencies to rem
but one of the frequency delta functions;

6) the result has to be multiplied by the total number of inequivalent permutations.

The cascade rules are easily extended to the field theory(see Sec. III). The functional analo
o the inverse conductance matrix is the operator

Ĝ−1sr − r 8d ;
d2h

dlsr ddrsr 8d
= − dsr − r 8d ¹ D̂ ¹ . s75d

he diffusion propagatorsiv+Ĝ−1d−1 can be used to solve the Langevin equations(42) for the
ensityrsv ,r d and currentIsvd in order to evaluate minimal correlation cumulants. We would

o stress that these cumulants are limited to second order only, because in the diffusion
oise sources are Gaussian. The summation over node indices is replaced with an integra

he coordinater .

. APPLICATIONS

The formalism presented above is intentionally abstract and general. This is to fa
aximum applicability and not to tie it to a particular field. However, it is important to

oncrete examples. For this reason, we give a detailed treatment of two problems. As
roblem, we consider the saddle-point equations of the 1D field theories forD and F being
rbitrary functions of the densityr [see Eq.(33)]. We apply the results of this analysis to
ransport in a diffusive mesoscopic wire at zero temperature, rederive the FCS generating

f the transmitted charge obtained in Refs. 8 and 10, and give new results. We also prove the
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onjecture made in Ref. 22 that the current noise of the diffusive symmetric exclusion pro
alf-filling is Gaussian, i.e., all high-order cumulants of transmitted charge vanish. In the

he Sec. V A we generalize our results to multi-dimensional diffusion models and pro
niversality of their transport statistics. As a second problem, we address the statistics o
uctuations in a mesoscopic chaotic cavity. We explicitly find the probability distribution
ifferent physical configurations.

. FCS for one-dimensional field theories. The mesoscopic diffusive wire

Before demonstrating our solution for the FCS of the mesoscopic diffusive wire speci

e first consider the general 1D field theory with the action(33). In the stationary limit,ṙ= l̇
0 the action can be written as

S= tE
0

L

dzF− Dr8l8 +
1

2
Fsl8d2G . s76d

he stationary saddle-point equations

sFl8 − Dr8d8 = 0, 2Dl9 +
dF

dr
sl8d2 = 0, s77d

an be partially integrated leading to the following two equations:

Dr8 = ± ÎI2 − 2HF, s78ad

l8 = 2H/sI − Dr8d. s78bd

he two integration constantsI=−Dr8+Fl8 andH=−Dr8l8+sF /2dsl8d2 are the conserved(con-
itional) current and the Hamiltonian density, respectively. These conservation laws follow
he symmetries of our 1D field theory[see Eqs.(38) and (39) and the surrounding discussio].
hus we obtain the following result for the action(76),

S= tLH. s79d

quations(78) and(79) represent the formal solution of the FCS problem for 1D diffusion mo
ith Dsrd andFsrd being arbitrary functions ofr. The following procedure has to be done in or

o obtain the cumulant generating functionSsxd of the transmitted charge:

1) The differential equation(78a) has to be solved forrszd with the boundary condition
rszduz=0=rL andrszduz=L=rR. The constantI should be expressed through the constantrL,
rR, andH;

2) next,rszd is substituted into Eq.(78b) which is integrated to obtainlszd with the boundar
conditionslL=0 andlR=x;

3) finally, using the solution forlszd the constantH is expressed in terms ofrL, rR, x, and
substituted into the action(79).

We note that by expressingH andx in terms ofI, we may also formally obtain the logarith
f the current distribution,

ln PsId = SsId − tIxsId, I → I , s80d

s a result of the stationary phase approximation for the integralPsId=edx expfSsxd− tIxg and
ecause]H /]x=I /L.

As an example of the 1D field theory, we consider the FCS of the electron charge tran
hrough the mesoscopic diffusive wire. When the chemical potential differenceDm=mL−mR.0 is

pplied to the wire, the electrons flow from the left lead to the right lead with the average current
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0=e−1GDm, whereG is the conductance of the wire. The elastic electron scattering cause
quilibrium fluctuations of the current. At zero temperature, and for noninteracting electro(the
old electron regime), the zero-frequency current noise power has been found15,47,48to be equal t
kI2ll=s1/3deI0, i.e., the noise is suppressed compared to the Poissonian value. The sup
actor 1/3 was shown to be universal,49,50 i.e., it does not depend on the character of the diso
r on the shape of the wire. The FCS of the transmitted charge has been studied in Refs.
sing quantum-mechanical methods, and recently in Ref. 22 using a classical method

ollowing result for the generating function of cumulants of the dimensionless chargeQ/e:

Ssxd = stI0/edarcsinh2fÎexpsxd − 1g. s81d

ere we will rederive this result using our classical method.
On the classical level, the electrons in the diffusive wire are described by the distr

unction fszd. Under transport conditions(and at zero temperature), this distribution fszd varies
rom fL=1 in the left lead tofR=0 in the right lead. Starting from the Langevin equation32 as
escribed in Sec. III or, alternatively, taking the continuum limit for the series of meso
avities,36 we arrive at the action(76) with the form51

S= stI0/edE
−1/2

1/2

dzf− f8l8 + fs1 − fdsl8d2g, s82d

here we have rescaled the coordinatez, rszd has been replaced with the distributionfszd, and
hereD=1, andF=2fs1− fd up to the overall constantI0/e. This form of F is quite general fo

ermionic systems. It originates from the Pauli blocking factors, i.e., the transition probab
roportional to the probability that the initial state is populated times the probability that th
tate is empty.15 Applying now the procedure described in the beginning of this section, we
he saddle-point equations and find the fieldsf andl,

fsz,xd =
1

2
F1 −

sinhs2azd
sinh a

G , s83ad

lsz,xd = 2 arctanhftanhsa/2dtanhsazdg, s83bd

a = arcsinhfÎexpsxd − 1g, s83cd

hereH=a2, so that according to the Eq.(79) we immediately obtain the result(81).
The logarithm of the current distribution lnfPsIdg can be now found from Eq.(80). We obtain

he following result:

lnfPsIdg = − stI0/edf2a coth a lnscoshad − a2g, s84d

herea has to be expressed in terms ofI= I / I0 by solving the equation

a coth a = I/I0. s85d

he last equation has real positive solutions, 0,a,`, for I . I0, and pure imaginary solutio
= ib with 0,b,p /2, for I , I0. The distributionPsId is strongly asymmetric around the aver
urrent I = I0 (see Fig. 7). It has the following asymptotics: lnP=−stI0/edfI2−s2 ln 2dIg, for I
I / I0@1, i.e.,P has a Gaussian tail, and lnP=−sp2/4dstI0/ed, for I =0.

We also plot the conditional electron occupationfsz,Id, Eq. (83a), for different values of th
ormalized currentI / I0. There are several interesting points to stress.(i) For large currents,I . I0,

he functionf drops mostly at the ends of the wire, while for small currents,I , I0, the drop off
s mostly concentrated in the center of the wire. This effect has a simple explanation. At t
oints of the wire,z= ±1/2, theoccupationfszd is fixed independent of the particular value of

urrentI. On the other hand, its derivative takes the valuef8=−I=−I / I0 at z= ±1/2,which can be
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asily verified using Eqs.(83a) and (85). As a result,fszd deviates from its linear behavior,fszd
1/2−z, characteristic of the average value of current,I=1. The actual reason for this effec

hat according to Eq.(42b) the total currentI=−f8+n contains a contribution from the source
oise,n. The greatest contribution is concentrated at the center of the wire, where the noise
=2fs1− fd has its maximum, while it vanishes at the ends of the wire. Since the currenI is
onserved,f8 has to be redistributed in such a way as to partially compensate the effect
ourcen. (ii ) Fluctuations off are strongly suppressed at the ends of the wire, which is imp
y the boundary conditions, and at the center of the wire, as a result of the discrete sy
z→−z; f →1− fj. (iii ) Eq. (85) has additional solutions withb.p /2. These solutions are n
hysical however, sincef becomes negative or larger than 1 leading toI ,0, which is impossibl
t T=0.

Returning to the saddle-point equations(77), we note that ifdF /dr=0 for a particular densit

0, then the fieldsrszd=r0, andlszd=xz/L solve these equations. The fluctuations of the cu
ecome Gaussian with the noise powerkkI2ll=Fsr0d /L. This generalizes and proves the conjec
ade in Ref. 22 that the noise of the diffusive symmetric exclusion process is Gaus
alf-filling, f =1/2.

As a final remark we note that the whole class of multi-dimensional field theories,

S= tE
V

dr f− ¹ l D̂ ¹ r + s1/2d ¹ l F̂ ¹ lg, s86d

ith D̂=DsrdT̂, F̂=FsrdT̂, and T̂ being an arbitrary constant symmetric tensor,52 bear the sam
ind of the universality as the shot noise in diffusive conductors discussed above(see Refs. 49 an
0). The reason is that the field theory with the action(86) can be mapped on the 1D theory w

he action(76) by making use of the parameterization

rsr d = rfwsr dg, lsr d = lfwsr dg, s87d

here the functionwsr d satisfies the equation

¹ · fT̂ ¹ wsr dg = 0. s88d

sing Eqs.(77) for r andl as functions ofw, it is straightforward to verify that the fieldsrsr d and
sr d given by (87) and (88) satisfy the saddle-point equations for the action(86). One of the

IG. 7. The logarithm of the distribution of the current through a mesoscopic diffusive wire as a function of the raI / I0

f the current to its average valueI0. The distribution is strongly asymmetric, with the Gaussian tale atI @ I0. Inset: The
lectron occupationf inside the wire as a function of the rescaled coordinatez, under the condition that the average cur
= I0, no currentI =0, and large currentI =5I0 has been measured.
quations is the conservation of current:

                                                                                                            



S

w

a se
t

s a
f itted
c
o
c uc-
t
I t
c l
c

e for a
t r

F or

D or on its
d of

u he
g

B

e now
c scopic
p ucting
i ontacts
( sive
c chaotic
c semi-
c f
c equency
n n
p results
a

up, the
c nearby
m ditional
g charge
fl

4412 J. Math. Phys., Vol. 45, No. 11, November 2004 Jordan, Sukhorukov, and Pilgram

                        
j = − D̂ ¹ r + F̂ ¹ l = IT̂ ¹ w. s89d

ince the 1D Hamiltonian density is conserved, the action takes the following form

S= tGH, s90d

here the constantG depends only on the geometry of the boundary]V by Eq. (88):

G =E
V

dr ¹ wT̂ ¹ w =E
]V

ds · wT̂ ¹ w. s91d

Consider now a two-terminal diffusive wire, so that the surface]V consists of the left]VL

nd right]VR contact surfaces, and the open surface]V0 with no current through it. We choo
he boundary conditions forw to be

wsr d]VL
= 0, wsr d]VR

= 1, ds · T̂ ¹ wsr d]V0
= 0, s92d

o thatrsr du]VL
=rL, rsr du]VR

=rR, lsr du]VL
=0, lsr du]VR

=x, andds·j sr du]V0
=0. ThenH becomes

unction of rL, rR, and x, and the action is the generator of the cumulants of the transm
harge. If instead,H and x are expressed in terms ofI (as above for the 1D theory), then one
btains the logarithm of the distribution of the current, lnfPsIdg=SsId− tIxsId, where I =GI, ac-
ording to Eqs.(89), (91), and(92). The constantG may be interpreted as a “geometrical cond
ance” of a wire. In particular, in the “ohmic” regime, i.e., whenD is independent ofr, we have

0=Isxdux=0=DsrL−rRd, and thereforeG= I0/ fDsrL−rRdg. In this case, the ratioS/ I0 does no
ontainG and becomes fully universal, proving also the universality of the result(81) as a specia
ase.

To summarize, we have proven the universality of the FCS of the transmitted charg
wo-terminal multi-dimensional generalized wire described by the action(86) with the noise tenso

srdT̂, being an arbitrary function of the charge densityr, and with the constant diffusion tens

T̂. The universality means that the FCS depends neither on the shape of the conductor, n
imensionality.53 The FCS of a mesoscopic wire given by Eq.(81) is a particular example

niversal FCS. In the more general case, whenD̂ is a function ofr, the FCS depends on t
eometry through only one parameterG, the geometrical conductance given by Eq.(91).

. Charge fluctuations in a chaotic cavity

As another example of the applicability of the stochastic path integral approach, w
onsider transport through a chaotic cavity. This problem is often investigated in meso
hysics because of its simplicity and conceptual clarity. A cavity consists of a large cond

sland of irregular shape that is connected to two metallic leads through quantum point c
see inset of Fig. 8). The distinctive property of the chaotic cavity separating it from diffu
onductors is that the conductance is determined solely by the ballistic point contacts. The
avity itself may be either disordered or ballistic. Chaotic cavities can be described by a
lassical theory if the point contacts have conductances much larger thane2/h. The statistics o
urrent flow through the cavity have been addressed using various methods. The zero-fr
oise power has been calculated using random matrix theory54 and the minimal correlatio
rinciple.18 The higher order current cumulants have been obtained in Refs. 7 and 20. The
re in complete agreement with random matrix theory.

In this section we will address another type of statistics. In a typical experimental set
avity is connected to the electrical circuit not only through the leads, but also through
etallic gates via the electrostatic interaction. Observing potential fluctuations at these ad
ates gives direct insight into the statistics of charge on the cavity. The noise power of the

uctuations in this system has been calculated in Ref. 55. The full statistics have been recently
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ddressed using a random matrix theory.56 Here, we rederive these results using the stochastic
ntegral, show new results on the temperature dependence of these statistics, and also in
he instantaneous fluctuation statistics.

In a semiclassical approach, both leadsL ,R and the cavity are described by electron distr
ion functionsfL , fR, and f. The Fermi functions in the leadsfa= fFsE−mad are characterized b
heir chemical potentialma and their temperatureT. The chaotic electron motion inside the cav
akes the cavity distribution functionfsE,td isotropic and position independent. Only its ene
ependence must be retained. From now on we set the electron charge to one,e=1. Then the
hargeQ in the cavity is given in terms of the electron distribution function and density of s

F as Q=NFedEf. The average value of charge is determined by the low-energy cutoff
ntegral and is not relevant for the present discussion. The charge and electrostatic potent
avity are related by a geometrical capacitanceCg. In the following, we restrict ourselves to t
aseCg@e2NF which describes complete screening of the charge in the cavity. A more g
iscussion can be found in Ref. 56. To analyze the time evolution of the charge, we note th
ize of the cavity is smaller than the electron–electron and electron–phonon scattering
very electron entering the cavity at a certain energy leaves it at the same energy. Th
lectron energy is thus conserved and we can formulate a current conservation law sepa
ach energy intervaldE,

NFḟsE,td = JLsE,td + JRsE,td, s93d

hereJa denote ingoing particle currents per energy intervaldE in the left and right contact
hese currents are described by binomial processes with the cumulant generating functio
y5

Hasf,iladdE= G−1GadE lnf1 + Gfas1 − fdseila − 1d + Gfs1 − fadse−ila − 1dg, s94d

here we have introduced the conductances of the point contactsGa, a=L ,R, and their transpa
ncyG.

The quantity of interest is the total number of electrons in the cavity averaged ov
easurement timet,

Qt = sNF/tdE
0

t

dtE dEfsE,td. s95d

e first consider the long time limit,t@tD, wheretD=NF / sGL+GRd is the average dwell time

IG. 8. The logarithm of the distribution of chargeQt in a symmetric cavity,GL=GR, averaged over measurement timt
n the long time limitt@tD and at zero temperature. The results are presented for several transparenciesG of the poin
ontacts. It is clearly seen that the tails of the distribution grow in the tunneling limitG!1. The distribution is symmetri
.e., odd cumulants vanish.
n electron in the cavity. In this limit, the action is stationary with respect to the variablesf andl,
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S= tE dEfHsf,ild + isNF/tdxfg, H = HL + HR, s96d

here the external variablex generates the statistics of the desired quantityQt.
At zero temperatureT=0, the variablesl and f are independent of the energyE, and the

ntegration in Eq.(96) amounts to a multiplication byDm=mL−mR. Evaluating the Fourier tran
orm of the characteristic functionZsixd,

Zsixd = s2pd−1E dQdl expsSd, s97d

e express the full probability distributionPsQtd of charge on the cavity as an integral

PsQtd = s2pd−1E dl expftDmHsf,ildg, f = Qt /sNFDmd. s98d

his integral will be calculated in the saddle-point approximation. For the tunneling limitG!1
nd for open point contactsG=1 we obtain

ln PsQtdG!1 = − tGDmfÎfs1 − f0d − Îf0s1 − fdg2, s99ad

ln PsQtdG=1 = tGDmF f0 lnS f

f0
D + s1 − f0dlnS 1 − f

1 − f0
DG , s99bd

hereG=GL+GR, and where we have introduced the average distribution functionf0=GL / sGL

GRd in the cavity. We summarize that the results(99) have been obtained under the conditi
=0, t@tD, and for G!1 and G=1. These results can be easily generalized to the case
ulti-terminal cavity.

Although the general case of an arbitrary transparencyG has been also solved analytically,
nal expression for the charge distribution is too lengthy to be presented here. The Fig. 8
he distributionPsQtd at zero temperature for various transparenciesG of the point contacts. Th
avity is taken to be symmetricGL=GR. It is clearly seen that the tails of the distribution gr
owards the tunneling limit.

At finite temperature, further analytical progress can be made by considering the fi
umulants of the chargeQt. The integral(96) for the cumulant generating function has to
valuated at the saddle point. Forx=0 the solution of the saddle-point equations]S/]l=0 and
S/]f =0 are simply given byl=0 and f = f0, where f0=sGLfL+GRfRd / sGL+GRd is the averag
lectron distribution function in the cavity. From the diagrammatic technique discussed in S
e derive analytical expressions for the first few cumulants. The second cumulant ha
btained in Ref. 55. As an example, we present here the result for the third cumulant for t
f open point contacts,G=1:

kkQt
3ll = −

2tD
3

t2

GLGRsGL − GRd
sGL + GRd2 FDm + 3

Dm − kBT sinhsDm/kBTd
coshsDm/kBTd − 1

G . s100d

he first few cumulants are plotted in Fig. 9 as a function of the dimensionless biasDm /kBT. Note
hat the fourth cumulant may change its sign as one goes from a symmetric cavitysb=0d to an
symmetric cavitysb=0.9d.

So far we have considered the time of measurementt longer than the dwell timetD. Next we
onsider the opposite limitt!tD (but still larger thant0=" /Dm) and study the instantaneo
uctuations of the chargeQ in the cavity at zero temperature,T=0. For this purpose we will us
he stochastic path integral(3) for the propagatorUsQf ,Qi ,td of the cavity charge. The distributio
PsQd of instantaneous fluctuations can be obtained by taking thet→` limit of the propagato
sQf ,Qi ,td and settingQf =Q. We note that in the long time limit,t@tD, the initial stateQi
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elaxes to the stationary stateQ̄, and as a result the saddle-point expression of the propagaU

expsSspd factorizes according toSsp=S0sQ̄d+SisQid+SfsQfd. Here the stationary contribution
he action is zero,S0=0, since there is no charge accumulation on a long time scale. We will
hat the initial state contribution vanishes,Si =0, so the system looses its memory about the in
tate. Thus we obtain lnPsQd=SfsQd.

We now focus on the case of a cavity with two tunneling contactssG!1d. Using the Hamil
onians in Eq.(94), and replacing the counting variablel→ il, we write the action as

S= GDmE dtftDl ḟ + hssl, fdg, s101ad

hs = s1 − f0dfsel − 1d + f0s1 − fdse−l − 1d, s101bd

herehs is the scaled Hamiltonian. The saddle point equations take the following form

tDḟ = − s1 − f0dfel + f0s1 − fde−l, s102ad

tDl̇ = sinhsld + s1 − 2f0dfcoshsld − 1g. s102bd

he solution of the Eq.(102b) for l reads

lstd = lnF 1 + Af0 expst/tDd
1 − As1 − f0dexpst/tDdG , s103d

hereA is the integration constant.
To show that the initial contribution to the actionSi is zero, we note that independent of

onstantA, the absolute value ofl is a growing function with the stationary state given bl̄
0 at t=−`. This means that starting from early timest0→−`, the solutions arelstd=0 and

fstd− f0=ffst0d− f0gexpf−st− t0d /tDg. They describe the relaxation of the initial statefst0d to the

tationary statef̄ = f0. Substituting these solutions to Eqs.(101) we immediately find thatSi =0.
After making this point we skip the rest of the details and present the final resu

n PsQd=SfsQd:

ln PsQdG!1 = − tDGDmF f lnS f

f0
D + s1 − fdlnS 1 − f

1 − f0
DG , s104d

hich can now be compared to the results(99). The cumulant generating function for the dis
ution (104) is given by Ssxd=tDGDm lnf1+ f0sex−1dg. Note thattDGDm=NFDm is the tota
umber of the semi-classical states in the cavity which participate in transport. Theref

IG. 9. Cumulants of the charge inside a chaotic cavity,kkQt
nll, n=2,3,4 (in arbitrary units) as functions of the dime

ionless potential differenceDm /kBT. The parameterb=sGL−GRd / sGL+GRd characterizes the asymmetry of the cavit
istribution(104) can be interpreted as being a result of uncorrelated binomial fluctuations of the

                                                                                                            



F sult can
b

V

works.
T rt
p the
c een
n ed from
t e.
T he path
i saddle
p the net-
w onto a
L reement
w ns in an
a n sta-
t s of the
t ad and
a conom-
i

vious
r did
c sity in
d the
l our
a

A

rated
i Foun-
d

1

1

1

1

1

1

1 ön,

1

1

1

2

2

2

2

4416 J. Math. Phys., Vol. 45, No. 11, November 2004 Jordan, Sukhorukov, and Pilgram

                        
ermi occupations of each semi-classical state. We would like to mention that the same re
e obtained by solving the stationary master equation.

I. CONCLUSIONS

We have put forth a stochastic path integral formulation of fluctuation statistics in net
he mathematical building blocks of the theory are(1) the probability distributions of transpo
rocesses through the connectors,(2) a continuity equation linking the connector currents to
harge accumulation in nodes(charge conservation), and(3) a separation of time scales betw
odal dynamics and connector fluctuations. The relevant action of the path integral is deriv

hese considerations and is related to the probability of(charge conserving) paths in phase spac
he dominant contribution to the statistics comes from the saddle point approximation to t

ntegral, and the generating function for the interacting system is simply the action at the
oint. Fluctuations are suppressed by the number of transporting elementary charges in
ork. We have considered the continuum limit to obtain a field theory, and mapped it
angevin equation with Gaussian noise. Cascade diagrammatic rules were found in ag
ith Nagaev for the one node case, and extended to general current correlation functio
rbitrary network. Applications to the current statistics of the diffusive wire and fluctuatio

istics of the charge inside a mesoscopic cavity were also discussed. As the building block
heory are classical probability theory, the potential application of this formalism is very bro
pplicable to any field where fluctuations are important, including mesoscopics, biology, e

cs, fluid and chemical dynamics.
Note added.After this paper was submitted for publication, the authors learned of pre

elated work by Bertiniet al.57 Although they did not consider transport statistics, they
onsider the probability to manifest a given macroscopic fluctuation of the particle den
iffusive lattice gas models and arrive at the action Eq.(33). However, the Gaussian nature of

ocal fluctuations was assumeda priori. We thank B. Derrida for bringing these papers to
ttention.
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One of the simplest pseudo-Hermitian models with real spectrum(viz., square-well
on a real intervalI of coordinates) is re-examined. APT-symmetric complex
deformationC of I is introduced and shown tractable via an innovated approach to
matching conditions. The result is surprising: Anarbitrarily small deformationI
→C implies a sudden collapse(i.e., the spontaneousPT-symmetry breaking) of
virtually all the spectrum(i.e., up to its low-energy part). © 2004 American Insti-
tute of Physics.[DOI: 10.1063/1.1803928]

. NON-HERMITIAN HAMILTONIANS AND THEIR SPECTRA

Thirty-five years ago, Bender and Wu1 published an extremely exciting discovery that cer
ound-state problems may be much better understood when one drops the “obligatory” H

ty assumptionH=H† and admits that a coupling constantg.0 in Schrödinger equation

Hsgducnsgdl = Ensgducnsgdl, n = 0,1, . . . s1d

s analytically continued to a complex valuegPC. In this perspective Bender and Wu worked,
efiniteness, with the quartic anharmonic-oscillator Hamiltonians

Hsgd = Hs4dsgd = p̂2 + f2x̂2 + g x̂4, s2d

nd demonstrated that the separate(though, in general, complex) spectrahEnsgdj may all be
nterpreted as the sets of an intersection ofall the Riemann sheets of asingle analytic function

s4dsgd with a corresponding “line” of a constantg. Many years later, similar observations w
ade and verified for the cubic model

Hsgd = Hs3dsgd = p̂2 + f2x̂2 + i g x̂3 s3d

see Ref. 2 for more details), etc. In all of these models, the costs of the generalizationHÞH†

roved much lower than expected. For all the nonzero couplingsgÞ0, all of their complex
exceptional points”(EP)3 proved well separated in the complex plane ofg for both Eqs.(2) and
3).

A new important development of the subject emerged cca six years ago when Ben
oettcher published their letter.4 Having extended their attention to the whole class of the po

aw models

Hsgd = Hs2+ddsgd = p̂2 + f2x̂2 + g x̂2 six̂dd, d . 0, g . 0 s4d

reproducing the above special cases(2) and(3) at d=2 andd=1, respectively], they summarize
everal existing perturbative and numerical experiments(for illustration one could cite, e.g., Re
–7), complemented them by numerous new WKB arguments and conjectured that af

ntroduces a suitable Hilbert space,all the Hamiltonians(4) (with, for simplicity, f =0) will
ossess thepurely real(and discrete and, from below, bounded, i.e., “observable-like”) spectra, in
pite of theirmanifestlynon-Hermitian origin.

)
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For the pioneering conjecture of this type, several rigorous proofs[cf., e.g., the Fourie
ransformation results7 for Eq. (2) at g,0, or the manifest reality of perturbative energies a
e-summation for Eq.(3) at the realg5] were already available and many other had only to c
cf., for illustration, proofs in the difficult case of Eq.(3) in Ref. 8]. Nevertheless, the core of t
essage delivered by Bender and Boettcher lied in the emphasis attributed to the par

omplex-conjugation symmetry(conveniently calledPT-symmetry) of their sample non
ermitian HamiltoniansHs2+ddsgd with real spectra. This inspired an extensive subsequent stu

he structure of the relationship between the reality of the spectrum and thePT-symmetry of the
nderlying non-Hermitian Hamiltonian.9

We intend to contribute to the latter effort by the description of an exactly solvable ex
hich exhibits a rather counterintuitive enhanced sensitivity to a very small change of its
ate domain. We shall start from an overall review of the state of the art in Sec. II whe
mphasize the theoretical importance as well as some practical weaknesses of the
ermitian constraint imposed upon the non-Hermiticity of the Hamiltonians.

In Sec. III we return to the study of quantitative characteristics of the specific, differe
quation models where the current and robust property of HermiticityH=H† is being replaced b

he PT-symmetry which may be fragile.10,11 We restrict our attention to the most elemen
on-Hermitian square-well model(of Ref. 12, with real spectrum) and extend its scope slightly

he replacement of its usual domain(viz., a finite intervalI) by a broken line(or by any othe
moothly deformed curveC—cf. Fig. 1) in the complex plane of coordinates.

Our main mathematical results are presented in Sec. IV where our new method of solv
atching conditions is shown applicable to an explicit qualitative description of the struc

he bound states in the broken-path regime. We explain in detail how our “moving-lattice” m
ecisively facilitates the global analysis of the matching conditions.

Our key physical message is finally formulated in Sec. V emphasizing that our inno
eometric interpretation of the matching conditions offers the rigorous proof that in our ex
n arbitrarily small imaginary shift 0→ iv of the matching point causes a non-perturbative,sudden
omplexification ofall the high-energy part of the spectrum. In the currently accepted termin
his means that the vast majority of the wave functions encounters a spontaneous break
heir PT-symmetry. We shall conclude in Sec. VI that this symmetry ismanifestlyfragile in our
articular model.

I. PT-SYMMETRY
. Variational picture

In the early stages of study ofPT-symmetric quantum mechanics people tried to unders

FIG. 1. Integration pathC with an upwards deformationv.0.
he complexified Schrödinger Hamiltonians of the type(4) as models on the real line, with a pair
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f the real and imaginary potentials of a definite behavior with respect to the parityP. Along these
ines one arrives at an introduction of the two harmonic-oscillator-type baseshuns±dlj (with definite,
xed parities s±d) and transforms thePT-symmetric differential Schrödinger equationsHucl
Eucl with a pre-selected normalization ofucl=on suns+dlcn

s+d+ i uns−dlcn
s−dd into the variational-like

eal and partitioned matrix problems containing arrayscW s±d of the real wave function compone

n
s±d,

S A − C

CT D
DScW s+d

cW s−d
D = EScW s+d

cW s−d
D . s5d

he infinite-dimensional submatricesA=AT andD=DT are real and symmetric but the spectr
tself need not be real at all.13 These considerations inspired Mostafazadeh who conjectured
eries of papers,14 that the Bender’s and Boettcher’sPT-symmetric quantum mechanics should
lassified as a mere special case of the more universal pseudo-Hermitian quantum mecha
rigins and foundations of which might be traced back to Diracet al.15 In such an overall settin
e proposed to weaken thePT symmetry of the Hamiltonians to their mere pseudo-Hermitic

H† = hHh−1, h = h†, s6d

here we may set, in our particular example(5),

h = hP = S I 0

0 − I
D = hP

−1. s7d

n the light of the well known16 huge ambiguity of the assignment of the “metric”h to any given
seudo-Hermitian HamiltonianHÞH†, Mostafazadeh also proposed that the “natural” cho
ith the indeterminate parity-like metric operators[like hP in Eq. (7)] should beall replaced b
ny (i.e., very often, nondiagonal and strongly Hamiltonian-dependent) positive definite alterna

ive h+.0. In parallel to Mostafazadeh, similar conclusions have been reached in Refs. 17
efining, in the present language, the particular positive definite metricsh+=PQ and h+=CP
sing the additional symmetry generatorsQ andC of quasi-parity and charge, respectively.

The latter procedure enables us to call all the similar non-Hermitian HamiltoniansH “quasi-
ermitian” because, in accord with the Ref. 16, the positivity ofh+.0 suppresses many int
retation difficulties and leaves the quasi-normiwi=Îkwuh+uwl real and nondegenerate. T
akes the corresponding Hamiltonians compatible with their standard quantum-mechanica
ilistic tractability.19

. Square-well illustration

One of the main sources of inspiration for the selection of potentials in Schrödinger eq
say, in the Coulombic form) is the principle of correspondence which allows us to extend
ransfer to quantum mechanics the experimental experience gained during centuries in t
on, macroscopic world. A counterintuitive character of many quantum phenomena allow

earch for some new and unusual Schrödinger equations, e.g., by a complexification of th
f coordinatesR→C.4 Alternatively, we may obtain manifestlyPT-symmetric equations

F−
d2

dx2 + Vsxd + iWsxdGcsxd = Ecsxd s8d

y staying on the real line and “deforming” the shapes ofVsxd= +Vs−xd and Wsxd=−Ws−xd.
amples of both these approaches may be found, e.g., in Ref. 10(considering mainly the asym

otically power-law potentials) or Ref. 20 (paying attention to some exponentially confin
orces) or Ref.12(where an even steeper, infinitely deep square well has been complexifi) or
ef. 21 (where the mathematical properties have been discussed for the next-step mod

elta-functions mimicking the “infinitely thin” square wells).
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The square-well model represents a reasonable phenomenological compromise exhib
bonus, an important merit of exact solvability. We shall pick up it in what follows, interpr

he infinitely deep real part of the potential

Vsxd = 5+ `

0

+ `

for 5x . 1

− 1 , x , 1

x , − 1

s9d

s a requirement that all the wave functions vanish atx= ±1. We break the Hermiticity of ou
amiltonian by adding the imaginary andPT-symmetric finite interaction term with coupli
.0,

Wsxd = H+ Z,

− Z
for H Re x , 0

Re x . 0.
s10d

nce we assume that the interval of the coordinatesx remains purely real, the spectrum
nergiesEn=EnsZd proves discrete and real at allZ,Zcritical<4.48 (cf. Ref. 22). It smoothly
onverges towards the well known square-well energy levelsEns0d=sn+1d2p2/4 in the Hermitian

imit Z→0.
In an extension of the above square-well model we shall now assume that the interva

oordinatesx will be deformed to complex plane, to a suitable curveC of integration of ou
omplexified Schrödinger equation. More rigorously, we reinterpret our original differenti
8) with nonanalytic potentialWsxd as two individual equations, each of which is only defined
he respective half-plane ofx with Rex.0 andRex,0. Both of them contain a constant, saf
nalytic potential, but their solutions must be matched at a point where the curveC intersects th
oundary of the two domains. The corresponding generalized,PT-symmetric (i.e., left-right–
ymmetric) curveC is sampled in Fig. 1.

II. EXACT SOLVABILITY OF THE NEW MODEL

Once we define our potential(10) in the whole complex plane ofxPC, solutionscsxd will be
nalytic in both its half-planes. The only distinctive feature of our present generalizations−1,1d
I→C lies in the requirement of the matching of the left and right branchesc7sxd of our full
ave functioncsxd at a pointx0= iv on the imaginary axis. This enables us to postulate
atching rules

c−sivd = c+sivd = 1, ]xc−sivd = ]xc+sivd = iA s11d

n terms of an auxiliary real parameterAP s−` ,`d.

. Re-parametrization of the matching conditions

As long as our potentialsV andW are constant almost everywhere, the general solution o
ifferential Schrödinger equation(8) may be put equal to a sum of the hyperbolic sine and co
he left and right solutionsc7sxd are different, having to vanish at the different boundary po
→ 71,

c−sxd = R− sinh k*s1 + xd, c+sxd = R+ sinh ks1 − xd. s12d

ith k=s− it, the values of the two free real parameterss and t will be determined by th
ifferentiation in Eq.(8),

E = t2 − s2, Z = 2 st. s13d

s long as a change of the sign ofk would influence just the(arbitrary) sign of the overa
ormalization coefficientsR±, we conveniently restrict our attention to the quadrant ofs.0 and

.0 (note that we fixed the sign ofZ.0 in advance). The insertion of the right and left solutions
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12) in the matching conditions(11) gives the following complex(and transcendental) algebraic
quations,

L sinh k*s1 + ivd = R sinh ks1 − ivd = 1,

k*L coshk*s1 + ivd = − k R coshks1 − ivd = iA.

heir solution is our main task. In the first step, we can get rid of the redundant consta
aking the ratios,

k* cotanhk*s1 + ivd = − k cotanhks1 − ivd = iA. s14d

he former equal sign is trivial while the latter one represents a complex equation which
he real parameterA and inter-relates the two real and positive parameterss and t in addition. As
ong as we haveZ=2st, this should determine all their admissible values.

Changing our notation and puttingv=tanw with wP s−p /2 ,p /2d, let us now introduce tw
uxiliary linear functionsS=Sss,td and T=Tss,td defined by the elementary two-dimensio
otation

SS

T
D = Scosw − sin w

sin w cosw
DSs

t
D s15d

here the angle of the rotation measures also the upward shift of the matching point
omplex plane of our complex coordinates. In this notation we may re-write our matchin
traint (14) in the form

A sinhS S

cosw
− i

T

cosw
D = st + isdcoshS S

cosw
− i

T

cosw
D s16d

hich admits a facilitated separation of its real and imaginary part. The value ofA drops out o
heir ratio which may be further re-arranged to represent our matching condition in the
ompact real form

s sinhS 2S

cosw
D = − t sinS 2T

cosw
D . s17d

n the limit w→0 the latter equation coincides with thev=0 prescription of Ref. 12. At th
eneralizedvÞ0 the replacement ofs and t by S andT via Eq. (15) converts our new and mo
omplicated matching formula(17) into its final form

t = s
v + %stdsinh s

1 −%stdv sinh s
, v = tanw, s18d

here we abbreviateds=2S/cosw, t=2T/cosw and %=%std=−1/sint. This equation is a
mplicit definition of a certain set of curvest=Qssd in thes−t plane. In principle, the knowledg
f these curves would enable us to find all their intersectionsssk, tkd , k=0,1, . . .with our origina
onstraintt=Z/ s2sd.

. The lattice-moving method of solving Eq. (18)

Our present key idea is that the function%=%std is periodic, i.e., it remains constant on
iscrete latticeL of its argumentt. In this spirit we shall split the real axis oft into intervals o

he length 2p numbered by an integerk. Then we introduce the second variablep= ±1 marking
he right and the left half of each of these intervals, respectively. This guarantees that at ap
he sign of the sine function remains the same and equal to −p. Finally, due to the symmetry
ach of the sine-shaped curves we split the half-intervals in the quarter-intervals mar

nother indexq= ±1,
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t = s2k + 1dp + p
p

2
+ q

p

2
j ; tsk,qdsp,jd, j = jstd P s0,1d. s19d

s a consequence, our parameters%std become represented by the functions which are inde
ent ofk andq,

Vsp,jd = −
1

sin tsk,qdsp,jd
= +

p

cosspj/2d
. s20d

he parameters% remain constant over all the latticesLsp0,j0d of pointstsk,qdsp0,j0d where the sig
p0 and the parameterj0 are temporarily fixed.

. Verification: Straight-path solution re-visited

At v=0 andC=I, the use of the limiting, simplified version

t = %stds sinh s, v = 0 s21d

f our matching condition(18) leads to an enormous simplification of the construction perfo
n Ref. 12. There, severe difficulties originated from a strong and pronouncedt-dependence of th
actor%=%std which is a very quickly changing function of its argumentt. In our present settin
he discretization(19) enables us to fix the value of%=V by reducing our attention from all th
alues oft to their latticesLsp,jd. Treating them separately, one at a time, we only have to ke
ind the overall range of our real constantsVsp,jd=puVsp,jdu=pVs+1,jd¹ s−1,1d. This enable
s to re-parametrize the matching condition(21),

t = tsk,qdsp,jd = Vsp,jds sinh s, p,j = f ixed. s22d

n the new language, the graph of the functionV s sinh s is a parabolic curve which is orient
p or down at the respectivep= +1 andp=−1. As long as we are interested in the positivet.0,
e may discardp=−1 and fixt=tsk,qds+1,jd.0 and%std=Vsp,jd=Vs+1,jdù1. The curvest
Vs+1,jds sinh s;Qjssd then shrink in proportion to the growth ofj, proceeding from the
roadestj=0 version (where uVu=1) via the narrowing parabolic curves until the degene
ingle and upwards-oriented half-line in the limitj→1, i.e., V→`. This is illustrated in Fig.
here the unlimited shrinking of the curves is sampled atj=0,0.5,0.9, andj=0.99.

When we zoom out a stripe oft=tsk,qdsp,jd at a fixedk=30 in Fig. 2, we get Fig. 3. In Fi
the variations oft are determined solely by the changes ofj andq which are sampled by a fe

orizontal lines. As long as the right-hand-side functionQjssd depends on boths andj, Eq. (22)
ill be satisfiedonly at the points of intersection of each particularj-marked horizontal line wit

FIG. 2. The lattice-dependent curve(22) with p= +1 at a fewj.
nother particular,j-assigned parabolic curve. In this manner the points of intersectionssjm
,tjm

d
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n Fig. 3 sample the graphical solution of the matching condition(22). As long as we choose
airly large stripe numberk=30, the parabolas of Fig. 2 are represented by the almost straig
lmost vertical lines in Fig. 3. This makes the identification of all the intersections partic
asy. We see that the points of intersection form the horizontally prolate ovals, each o
eing confined within itsk=k0 andp= +1 stripe, and not exceeding the interior of the “maxim

Vu=1 parabola. It is obvious that the horizontal lines(5 lattices oft) as well as the more or le
ertical parabolas move smoothly with the growth ofj. The resulting picture reproduces precis
ur old graphical proof12 of the existence of solutions atv=0. Our present new discretizati
ethod appears to offer a feasible extension of this proof and analysis tovÞ0.

V. BOUND STATES AT vÅ0 IN GRAPHICAL REPRESENTATION

Once we wish to determine the spectrum of the square-well energiesEn= tn
2−sn

2 at anyvÞ0,
e have to find all the real values ofs=sn and t= tn which satisfyboth the constant-couplin
onstraint(13) and the matching condition(17). In the first step, let us re-express the for
lementary hyperbolic-curve correlationZ=2st in the new variabless andt.

. The Z-dependent hyperbolic-curve constraint

Rotation(15) implies that under the assumptionv.0 we havet.0 while the sign ofs may
e both positive and negative. Alternatively, the choice ofv,0 would imply that we must kee
.0 while the sign oft is allowed to vary. This means that one of the two hyperbolas defin

he rule Z=2st may be discarded immediately. Of course, in our innovated notation we
escribe these hyperbolas by the slightly less transparent rotated quadratic equation

t2 + 2ts
cos 2w

sin 2w
− s2 −

4Z

sin 2w cos2 w
= 0. s23d

t v=tanw.0 it is easy to select the correct branch defined by the formula

t = Jssd =
1

2
Sv −

1

v
D s +

1

2
ÎSv +

1

v
D2

s2 + 4X2, X2 =
4Z

sin 2w cos2 w
. s24d

˜

FIG. 3. The oval-shaped matching constraintt=Qssd in its j-discretization atv=0 andk=30.
n parallel, atv=tanw=−v,0 we must use thedifferent formula
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s = Ystd =
1

2
S 1

v
− vD t +

1

2
ÎSv +

1

v
D2

t2 + 4Y2, Y2 =
− 4Z

sin 2w cos2 w
. s25d

n other words, we must treat the up and down shiftsiv of the matching point separately, reflect
he fact that we already broke the symmetry between the half-planes of coordinatesxPC by
aving chosen the positive couplingZ.0 in advance.

. The second, matching constraint

The application of the lattice-shifting technique of Sec. III B may be extended to bo
ositive and negativev. The variablet=tsk,qdsp,jd remains represented by the same functio

he interval selectork, of the two sign-variablesq= ±1 andp= ±1 and of the continuousj varying
n the compact intervals0,1d.

. Moving lattices

Let us now selectv.0 and keep the two auxiliary variablesp andj fixed. This restricts th
ange of our variablet to the latticeL=Lsp,jd where the functionV=Vsp,jd=p/cosspj /2d
emains constant. This leads to a decisive simplification of our matching condition(18),

t = Qsp,jdssd = s
v + V sinh s

1 − V v sinh s
, p,j = f ixed. s26d

typical graph of the functionQsp,jdssd at bothp= ±1 and at the minimalj=0 and/oruVu=1 is
isplayed in Fig. 4. With respect to the growth of the lattice-characterizing parameterj from 0 to

FIG. 4. Two lattice-dependent functionst=Qsp,0dssd at v=0.06.
it is trivial to see from Eq.(26) that
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• at p= +1 ands.0, the right branch of the well-shaped curveQs+1,jdssd.0 is bounded by it
perpendicular asymptote ats`sjd=arcsinhs1/fvVs+1,jdgd. With the growth ofj and V it
inadvertently moves to the left and in the limit ofj→1 it coincides with the vertical half-ax
Vrightss`s1d=0d;

• in parallel, the left branch of the same well moves upwards and coincides with its di
asymptoteDleft in the same limit, limj→1Qs+1,jdssd=−s /v;

• at p=−1 ands,−s`sjd,0, there exists another hyperbolic well sampled in Fig. 4,
definition t=Qs−1,jdssd and asymptotesDleft and (j-dependent) Aright. With the growth ofj
this well moves downwards and to the right and coincides with the wedge formed byDleft and
Vright at j=1.

This geometric picture has several consequences. The most important one is that at t
al j=0 the curves of Fig. 4 contain the initial points of all the ovals of the solutions i
anner indicated by thej=0 point in Fig. 3 above. With the growth ofj the similar oval-shape

urves are then being formed at anyv.

. Four families of half-ovals

In a continuing description of the structure of solutions of Eq.(26) we must distinguis
etween the positive and negatives. For sù0, the analysis is simpler since the ovals(or rathe
alf-ovals) as sampled in Fig. 3 atv=0 can solely exist in the stripes withp= +1. With the growth
f j they open their twoq= ±1 branches to the left until they attain their maximal width and r

he boundaries of their stripes on the vertical axisVright in the limit j→1.
At s,0 we have to parallel the above half-ovals by theirp= +1 partners which start to op

o the right at the leftmost curve withj=0. They end their growth atj=1 while touching th
oundaries of theirp= +1 stripes on the diagonalDleft.

In contrast to our abovev=0 exercise in Sec. III B 1, the choice ofs,0 admits the existenc
f another family of the half-ovals within theDleft−Vright wedge. Of course, they can only ex
ithin the stripes wherep=−1 and in the domain of the sufficiently larget*t0 (i.e., at k
kminimal) where they can originate on the curvet=Qs−1,0dssdùt0. In this domain they form th

wo subfamilies again, depending on whether they originated on the left or right branch of tj=0
urve.

. Two patterns of gluing the half-ovals

With the growth ofj, the left half-ovals within the wedgeDleft−Vright open to the left, endin
heir growth atj=1 in the intersections of the boundaries of theirp=−1 stripes with the le
iagonal straight lineDleft. At these points these half-ovals meet theirp= +1 partners so that
ontrast to thev=0 pattern(with a series of the separated and closed ovals—cf. their pictu
ef. 12), the resulting locus of the solutions forms a wavy, sine-like-shaped line which osc

o the left and right and moves up to the left along the diagonalDleft. As long as this curve remai
onfined between its two envelopesQs±1,0dssd, the asymptotic decrease of the amplitude of
obbling is exponential. A schematic example of such a wavy curve appears in Fig. 5.

In the same range of the sufficiently larget, the second, similar wavy pattern is formed al
he axisVright. In exactly the same manner it results from the gluing of the rightp=−1 half-ovals
hich open to the right and reach the lineVright where they find a continuation in the abo
entionedp= +1 half-ovals ats.0. In contradistinction to the previous case, the amplitud

he wobbling is asymptotically constant. Still, this fact alone is sufficient to exclude this b
rom further consideration because theZ=2st constraint is asymptotically a hyperbola with
mptotes at the anglesw=arctanv andw8=arctanv−p /2 with respect to the axisVright.

In all the remaining domain of the not too large values oft, just smooth perturbations ocur
he v=0 pattern of disconnected ovals. Atv.0 the height of the ovals exceeds the height
ingle stripe. This is consistent with the fact that an inner part of the ovals lies within thDleft

Vright wedge and must belong, therefore, to ap=−1 stripe. This also does not contradict to

teady decrease of the minimum of the graph of the curveQs−1,jdssd since with the growth ofj the
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olutions of Eq.(26) start to exist in the lower and lowerp=−1 stripes within the wedge. In th
ay, the resulting loci of solutions of Eq.(26) are allowed to form the separate ovals in a f
onsistent manner, indeed.

. ENERGIES

The ultimate goal of our considerations is achieved. We clarified that an optimal strat
he determination of all the parameterss=sn and t= tn in the bound-state formulaEn= tn

2−sn
2, n

0,1, . . . isbased on a suitable change of variablesss,td→ ss ,td which merely re-scales a
otates the original hyperbolic constraintZ=2st and re-expresses all the real deformed-
quare-well energies by the “rotated” formula

E = EnsZ,wd = 1
4 fstn

2 − sn
2dcos 2w − 2 sntn sin 2wgcos2 w. s27d

his leads to a vital simplification of the matching of wave functions. In the reals−t plane, the
onstruction of all the physical bound states(if any) is reduced to an identification of all t
dmissible parametersssn,tnd with all the intersections of a certain pair of curves. One of the

he elementaryZ-dependent hyperbola(the smooth curve in Fig. 5). A sufficiently transparen
raphical representation of the shape of the second one is more difficult and required in
reater portion of our previous text. This curve is sampled by its quickly oscillating asym
art in Fig. 5.

. A comment on asymmetry between v>0 and v<0

We mainly paid attention to the positive values of the shiftv.0 pertaining to the gener
orm of the family of the hyperbolae given by Eq.(24). They are sampled by the smoother cu
n Fig. 5. The figure also illustrates a generic pattern of the intersection of these hyperbol
alf-oval families confined within areas specified by their envelope curves exemplified in

We did not notice in Sec. IV B 1 that after reflection of Fig. 4 with respect to the orig
oordinatess and t, its p=−1 andp= +1 envelope curves are mapped upon each other.
implifies marginally the construction and follows from the invariance of Eq.(26) on the lattice
ince the simultaneous replacementst→−t ands→−s are equivalent toV→−V while the latte
hange of sign merely means that we have to transformp→−p.

We did not deduce,ibidem, that another simultaneous sign-change ofs→−s and v→−v
reserves the form of the original, lattice-independent matching condition(18). This is more

˜

FIG. 5. Damped oscillations ofQssd vs constraint 2st=Z.
mportant because at the negativev=−v,0 we would be forced to replace the most complicated
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attern of Fig. 4(where we always employ the positiveṽ= uvu) by its left-right-reflected cop
omplemented by the corresponding correct hyperbolic branch of curveZ=2st in its alternative
orm (25). After the left-right mirroring transform it enables us to simplify the situation
eturning to the original Fig. 4 complemented by the trivially modified reflected hyperbola

s = Sstd =
1

2
S 1

ṽ
− ṽD t −

1

2
ÎSṽ +

1

ṽ
D2

t2 + 4Y2, Y2 =
+ 4Z

sin 2w̃ cos2 w̃
. s28d

ence, all what we have derived at the positivev may immediatelybe transferred to the ca
here v is negative,without changing the half-oval curves and with the mere addition o
econd branch(28) of the hyperbola. In Fig. 5 this would just mean a replacement of the
yperbola by its minus-sign partner. Of course, such an extension of the whole picture is

ially trivial and it need not be discussed separately at all.

. The breakdown of PT symmetry at high energies

Our construction of a closed form of the bound states is transparent and, undoubtedly
ially useful. For the straight pathC with v=w=0 and for all the values ofZ.0 which are not to
arge, the square-well model already found interesting applications in the study of the spon
T-symmetry breaking at the sufficiently largeZ.22 An even more important role of this mod
eems to have emerged within the supersymmetric quantum mechanics.23 In all these and simila
pplications, our present results simply mean that all the changes caused by a shift of a s

vu remain smooth if and only if we do not move to the very high energies.
In contrast to that, an introduction ofanynonvanishing shiftv changes the high-energy reg

ompletely and abruptly. In place of infinitely many real and positive energiesEnsZd , n
0,1, . . .which formed the complete spectrum atv=0, the choice ofanyv=tanwÞ0 makes th
umber of the real intersectionsssn,tnd finite, n=0,1, . . . ,nmaxsZ,wd with a certain maximal re
nergy atnmaxsZ,wd,`. The mathematical foundation of this conclusion is almost trivial: U
finite number of exceptions, the energies may only be generated by the intersection

omain of the larget@1 where both theZ-dependent hyperbolas withv.0 andv=−uvu,0 have
lmost the same asymptotic representation,

t = −
1

uvu
s 7

uX2u
suvu + 1/uvuds

+ Oss−3d, signv = ± 1, s ! − 1. s29d

his means that both of them share the dominant term(representing just the straight line of th
ommon asymptoteDleft) and approach this asymptote at an inverse-power rate from abo
elow, respectively(the former case is illustrated in Fig. 5 displaying just the deviation from
symptote).

The same asymptoteDleft is further shared by both the upper and lower envelopesQs71,0d
ssd of the second, quickly wobbling curve. Nevertheless, from definition(26) we easily deriv

heir leading-order asymptotic form

t = −
1

uvu
s 7

uvu + 1/uvu
sinh s

+ Ossinh−2 sd, signv = ± 1, s ! − 1. s30d

his implies that thequick, exponentialdecrease ofboth the envelopes in Eq.(30) guaranteesthat
he wobbling line cannot haveany real intersections withneither of the two hyperboli
-dependent curves(29) with their too slow, power-law rate of approach to the asymptote. T

llustrated in Fig. 5 as a key message of the whole construction and implies that the numbe
eal energies remains finite atany nonvanishingvÞ0 andZ. In the other words, infinitely man
eal energies which existed atv=0 become “lost” and “dissolved” in complex conjugate pa
his occurs precisely at the moment when(say, in Fig. 5) the intersectingZ-dependent hyperbo
oves (say, due to a slight increase ofZ) to the top of a particular half-oval(there, the two

1 3
nergies merge at a “Bender–Wu singularity”or “exceptional point”) and, in the next stage,
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eparates from the half-oval completely(Ref. 22 studied this type of a pairwise complexifica
f the square-well energies atv=0 in more detail).

The disappearance of the real intersections of the two curves in Fig. 5 occurs at anyZÞ0 and
mplies that thePT symmetry of our wave functions becomes broken at all the sufficiently
nergies. In the other words, our initial choice of the form of the wave functions does not su
epresentall the possible bound-state solutions. In a way discussed in full detail in our pre
=0 study22 this means that all the “missing” bound states must be sought in a certain
arametric and manifestlyPT-symmetry-breaking form.

The only exception in encountered atZ=0 where the message offered by Fig. 5 is diffe
ecause in the limitZ→0 the upper hyperbolic curve moves down and coincidesstrictly with the
orizontal axis. This forces us to return to the very origin of our present construction and re

ts steps under the new explicit postulate thatt=0. In this case, the kind reader may easily ve
hat theZ=0 resultprovesin fact independentof the value ofv so that all the repeatedZ=0 and
Þ0 (i.e., non-Hermitian though stillPT-symmetric) construction returns us back to the ener
hich coincidewith the well known Hermitian square-well spectrum.

I. SUMMARY

All our results are summarized in Table I which may be read, first of all, as an advertis
f our almost involuntary discovery of an extremely elementary and transparen
T-symmetric model with real energies(cf. the last line). On a more general level, the main it

n the review Table I(viz., its last but one line) warns against all the noncritical intuition whi
ight prove misleading in the realm ofPT symmetric models. In this sense, our results ma
erceived as a nonnumerical complement to numerical experiments of paper10 where several “no
ntirely smooth” potentials clearly inclined towards a spontaneousPT-symmetry breakdown
igh energies.

On this background we believe that in the nearest future, attention will be re-attracted
eal role of non-analyticity in thePT symmetric potentials and models, with inspiration by
resent rigorous proof that any nonvanishing shift ofv at ZÞ0 makesthe PT-symmetry of ou
quare-well modelsuddenlyto break down. This breakdown involves infinitely many level
nce, i.e., it occurs in a way which seems characteristic for virtually all the exactly so
nalytic models.11,24 At the same time, the discontinuity of the breakdown might reflec
onanalytic origin, contrasting with the robust survival of the reality of spectra under
eformations in many not too strongly singular analytic potentials.25

We have seen that the square-well model is exceptional in representing a solvable la
hich seems to lie on a very boundary between “robust” and “fragile” models withPT-symmetry

n this sense, our present key message is encouraging since the geometric language of
ated “moving-lattice” method proved extremely efficient and seems productive. Its former
ecomes clear when we compare thev=0 discussion here and in Ref. 12, while its sec

TABLE I. CardinalitiesNsreald andNscomplexd of the square-well energiesE with Im E=0 and ImEÞ0, respec-
tively.

v Z Nsreald Nscomplexd Comment

0 0 ` 0 Hermitian case

0 0,Z,4.475. . . ` 0 PT-symmetric case of Ref. 12

0 4.475. . .,Z,12.8015. . . ` 2 PT-symmetry broken Ref. 22

0 ZN,Z,ZN+1 ` 2N PT-symm. br. atE,EcritsNd
Þ0 Þ0 finite ` PT-symm. br. atE.EcritsZ,vd
Þ0 0 ` 0 newPT-symmetric case
roperty is still to be verified in the future.
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We consider the convex set of positive operator valued measures(POVM) which
are covariant under a finite dimensional unitary projective representation of a
group. We derive a general characterization for the extremal points, and provide
bounds for the ranks of the corresponding POVM densities, also relating extrem-
ality to uniqueness and stability of optimized measurements. Examples of applica-
tions are given. ©2004 American Institute of Physics.[DOI: 10.1063/1.1806262]

. INTRODUCTION

An essential step in the design of the new quantum information technology1 is to assess th
ltimate precision limits achievable by quantum measurements in extracting informatio
hysical systems. For example, the security analysis of a quantum cryptographic protocol2 is based
n the evaluation of the limits posed in principle by the quantum laws to any possible eav
ing strategy. A general method to establish such limits is to optimize a quantum measu
ccording to a suitable criterion, and this is the general objective of the so-calledquantum est
ation theory.3,4 Different criteria can be adopted for optimizing the measurement, the cho
particular one depending on the particular problem at hand. Moreover, many different

ation problems often share the same form, e.g., they resort to the maximization of a c
unction on the set of the possible measurements. We remind that measurements form a
et, the convex combination corresponding to the random choice between two different
uses. Since a concave function attains its maximum in an extremal point, it is clear t
ptimization problem is strictly connected to the problem of characterizing the extremal po

he convex set.
The quantum measurements interesting in most applications arecovariant4 with respect to

roup of physical transformations. In a purely statistical description of a quantum measure
erms of the outcome probability only—i.e., without considering the state-reduction—the
urement is completely described by a positive operator valued measure(POVM) on its probabil

ty space. In terms of POVM’s, “group covariant” means that there is an action of the tra
ation group on the probability space which maps events into events, in such a way that w
easured system is transformed according to a group transformation, the probability of
vent becomes the probability of the transformed event. Such a scenario naturally occu
stimation of an unknown group transformation performed on a known input state, e.g.
stimation of an unknown unitary transformation,5,6 in the measurement of a phase shift in
adiation field,4,7 or in the estimation of rotations on a system of spins.8 A first technique fo
haracterizing extremal covariant POVM’s and quantum operations has been presented i

)Electronic mail: chiribella@unipv.it; http://www.qubit.it
)
Electronic mail: dariano@unipv.it; http://www.qubit.it
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nspired by the method for characterizing extremal correlation matrices of Ref. 10, in par
lassification of extremal POVM’s has been presented for the case of trivial stability grou
hen the only transformation which leaves the input state unchanged is the identity. Here w

he characterization problem for extremal covariant POVM’s in the general case of no
tability group, providing a simple criterion for extremality in Theorem 1 in terms of minim
f the support of theseedof the POVM, presenting iff conditions for extremality in Theorem
nd providing bounds for the rank of extremal POVM’s[in the following we will define the ran
f a POVM as the rank of its respective density: see Eq.(6) for its definition]. We show tha
ontrarily to the usual credo, the optimal covariant POVM can have rank larger than one.
here are group representations for which covariant POVM cannot have unit rank, since thi
iolate a general bound for the rank of the POVM in relation to dimensions and multiplicity

nvariant subspaces of the group. In the present paper we adopt the maximum likelihood o
ty criterion, which, however, as we will show, is formally equivalent to the solution o
ptimization problem in a very large class of optimality criteria. Other issues of practical in

hat we address are the uniqueness and the stability of the optimal covariant POVM. The
erivation is given for finite dimensional Hilbert spaces: as we will show in a simple exam
an be generalized to infinite dimensions, however, at the price of making the theory muc
echnical.

The paper is organized as follows. After introducing covariant POVM’s and their co
tructure in Sec. II, the main group theoretical tools that will be used for the characteriza
ovariant POVM’s are presented in Sec. III. In Sec. IV we give a characterization of ex
ovariant POVM’s in finite dimension with a general stability group, deriving an algebraic
ality criterion, along with a general bound for the rank of the extremal POVM’s in terms
imensions of the invariant subspaces of the group and of the stability subgroup. Prope
xtremal POVM’s in relation with optimization problems are analyzed in Sec. V, where al

ssues of uniqueness and stability of the optimal covariant POVM’s are addressed. Fina
mples of application of the theory to estimation of rotation, state, phase shift, etc., are g
ec. VI, providing extremal POVM’s with a nontrivial stability group and giving example
ptimization problems with solution consisting of extremal POVM with rank greater than o

I. CONVEX STRUCTURE OF COVARIANT POVM’S

The general description of the statistics of a measurement is given in terms of a pro
paceX—the set of all possible measurementoutcomes—equipped with as-algebrassXd of
ubsetsB#X and with a probability measurep on ssXd. Each subsetBPssXd describes th
vent “the outcomex belongs toB” and the statistics of the measurement is fully specified b
robability measurep, which associates to any eventB its probabilitypsBd.

In quantum mechanics the probabilitypsBd is given by the Born rule,

psBd 8 TrfrPsBdg, s1d

herer is a density operator(i.e., a positive semidefinite operator with unit trace) on the Hilber
paceH of the measured system, representing its state, whereasP is the POVM of the apparatu
iving the probability measurep for every given stater of the quantum system. Mathematicall
OVM P:ssXd→BsHd is a positive operator valued measureon ssXd, namely it satisfies th

ollowing defining properties:

0 ø PsBd ø I ∀ B P ssXd, s2d

Psøi=1
` Bid = o

`

PsBid ∀ hBij disjoint, s3d

i=1
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PsXd = I . s4d

otice that the set of POVM’s forssXd is a convex set, namely, ifP1 and P2 are POVM’s for
sXd, then alsolP1+s1−ldP2 is a POVM forssXd for any 0ølø1. The measurement describ
y the POVMlP1+s1−ldP2 corresponds to randomly choosing between two different meas
pparatuses described by the POVM’sP1 andP2, respectively. The extremal points of such con
et of POVM’s—the so-calledextremal POVM’s—correspond to measurements that cannot r
rom a random choice between different measuring apparatuses.

In the following we will focus attention to the case of probability spaceX given by the
uotientG /G0 of a compact Lie groupG with respect to a subgroupG0. Physically, this situatio
rises when the POVM is designed to estimate a state in the group-orbithUgrUg

†ugPGj of a given
tater, with the groupG acting on the Hilbert spaceH of a quantum system via the unita
rojective representationRsGd8 hUgugPGj. In such a case, in fact, the probability space of
OVM is exactlyX=G /G0, andG0=hhPG uUhrUh

†=rj is the stability group ofr, whence th
oints of the orbit are in one-to-one correspondence with the elements ofX=G /G0. Notice that in

he following the fact that the representation is projective is inconsequential, whence there
o need for reminding.

An important class of measurements withX=G /G0 is described by thecovariantPOVM’s,4

amely those POVM’s which enjoy the property

PsgBd = UgPsBdUg
† ∀ B P ssXd, ∀ g P G, s5d

heregB8 hgxuxPBj. Any POVM P in this class is absolutely continuous with respect to
easure dx induced onX by the normalized Haar measure dg on the groupG, and admits a

perator densityM, namely

M:X → BsHd, PsBd =E
B

dx Msxd. s6d

or a covariant POVM, the operator density has the form4

Msxd = UgsxdJUgsxd
† , s7d

here gsxdPG is any element in the equivalence classxPX=G /G0, and J is an Hermitian
perator satisfying the constraints

J ù 0, E
G

dg UgJUg
† = I , s8d

fJ,Uhg = 0 ∀ h P G0. s9d

he operatorJ is usually referred to as theseedof the covariant POVM.11

Notice that the constraints(8) are needed for positivity and normalization of the probab
ensity, whereas identity(9) guarantees thatMsxd=UgsxdJUgsxd

† does not depend on the particu
lementgsxd in the equivalence classx. It is easy to see that the constraints(8) and(9) still define
convex setC, namely, for anyJ1,J2PC and for any 0ølø1 one haslJ1+s1−ldJ2PC.
recisely, the convex setC is the intersection of the cone of positive semidefinite operators

he two affine hyperplanes given by identity(9) and by the normalization condition in Eq.(8).
ince a covariant POVM is completely specified by its seedJ as in Eq.(7), the classification o

he the extremal covariant POVM’s resorts to the classification of the extremal points

onvex setC.
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II. GROUP THEORETIC TOOLS

Let G be a compact Lie group, with invariant Haar measure dg normalized aseGdg=1, and
onsider a unitary representationRsGd=hUgugPGj on a finite dimensional Hilbert spaceH. Then

is decomposed as direct sum of orthogonal irreducible subspaces as follows:

H = %
mPS

%
i=1

mm

Hi
smd, s10d

denoting the collection of equivalence classes of irreducible components of the represe
he classes being labeled by the greek indexm, whereas the italic indexi numbers equivale
epresentations in the same class. LetTij

smd :H j
smd→Hi

smd denote invariant isomorphisms connec
he irreducible representations of the equivalence classm of dimensiondm, namely for anyi , j
1, . . . ,mm Tij

smd :H j
smd→Hi

smd is an invertible operator satisfying the identity

UgTij
smdUg

† = Tij
smd, ∀ g P G. s11d

onsistently with this notationTii
smd will denote the projection operator onHi

smd. Since all sub
pacesHi

smd are isomorphic, we can equivalently write

%
i=1

mm

Hi
smd ; Hm ^ Mm, s12d

hereHm denotes therepresentation space, i.e., an abstractdm-dimensional subspace where
epresentation of the classm acts, whileMm denotes themultiplicity space, i.e., amm-dimensiona
pace which is unaffected by the action of the group. In this way, the decomposition(10) can be
ritten in the Wedderburn’s form,12

H = %
mPS

Hm ^ Mm. s13d

Due to Schur lemmas, an operatorO in the commutant of the representationRsGd can be
ecomposed as follows:13

O = o
m

o
i,j=1

mm TrfTji
smdOg

dm

Tij
smd, s14d

hereas, in terms of the decomposition(13) one has

O = %mPSsIm ^ Omd, s15d

m denoting the identity on the representation spaceHm, andOmPBsMmd being a suitable set
perators on the multiplicity spacesMm.

In this paper we will consider covariant POVM’s withX=G /G0 where bothG and G0 are
ompact Lie groups, represented on the Hilbert spaceH by the unitary representationsRsGd
hUgugPGj andRsG0d=hUhuhPG0j. We will denote withS andS0 the equivalence classes

rreducible representations ofRsGd and RsG0d, respectively. The constraints(8) and (9) can be
ewritten in a remarkably simple form using the decompositions ofH in irreducible subspac
nder the action ofG andG0. In fact, due to the invariance of the Haar measure dg, the integra

n (8) belongs to the commutant ofRsGd. Rewriting the constraint(8) by using(14), one obtain
asily,

TrfTij
smdJg = dmdi j , ∀ m P S, ∀ i, j = 1, . . . ,mm. s16d

oreover, according to(8) and(9), the operatorJ must be a positive semidefinite operator in

ommutant ofRsG0d (9), then we have
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J = %nPS0
sIn ^ Xn

†Xnd, s17d

hereXn is an operator on the multiplicity subspaceMn.

V. EXTREMAL COVARIANT POVM’S WITH A NONTRIVIAL STABILITY GROUP

In this section we will classify the extremal points of the convex setC of covariant seed
amely the convex set of operators that satisfy both conditions(8) and(9). For the characterizatio
f the extremal points of a convex set we will use the well-known method of perturbation
ill say that the operatorQPBsHd is a “perturbation” of a givenJPC if and only if there exist
n e.0 such thatJ+ tQPC for any tP f−e ,eg. With such definition one has that an operatoJ

s extremal if and only if its unique perturbation is the trivial one, namely ifQ is a perturbation o
thenQ=0.

Let us start with a simple lemma which is useful for the characterization of the perturb
f a given seedJ.

Lemma 1: LetJPBsHd be a positive semidefinite operator. Then, for any HermitiaQ
BsHd the condition

∃e . 0: ∀ t P f− e,eg J + tQ ù 0 s18d

s equivalent to

SuppsQd # SuppsJd. s19d

Proof: Suppose that the condition(18) holds. Then for anyuflPKersJd one necessarily h
fuQufl=0. Therefore, for any vectoruclPH one has

ukcuQuflu =
1

t
ukcusJ + tQduflu ø

1

t
ÎkcusJ + tQduclkfusJ + tQdufl = 0.

ence KersJd#KersQd, implying that SuppsQd#SuppsJd. Conversely, suppose that(19)
olds. Let us denote byl the smallest nonzero eigenvalue ofJ and byiQi the norm ofQ, then
ondition (18) holds withe=l / iQi. j

Using the previous lemma we can state that an Hermitian operatorQ is a perturbation for
iven seedJ if and only if the following conditions are satisfied:

SuppsQd # SuppsJd, s20d

TrfQTij
smdg = 0 ∀ m P S, ∀ i, j = 1, . . . ,mm, s21d

fQ,Uhg = 0 ∀ h P G0 s22d

conditions(21) and (22) follow directly from the normalization constraints(16) and (17)].
This set of conditions leads to an interesting property of extremal seeds.
Theorem 1: J is an extremal point ofC if and only if for anyzPC one has

Suppszd # SuppsJd ⇒ z = J. s23d

Proof: To prove necessity it is sufficient to defineQ8J−z and note that it is a perturbati
f J. In fact, Q is in the commutant ofRsG0d, SuppsQd#J, and TrfQTij

mg=0 ∀mPS, ∀i, j
1, . . . ,mm. But, sinceJ is extremal, thenQ must be zero.

Vice versa, assume(23). If Q is a perturbation forJ, then there exists sometÞ0 such tha
8J+ tQPC. But a perturbation must satisfy(19), thenSuppszd#SuppsJd. Using (23) it is
hen clear thatQ= t−1sz−Jd=0. j

The proposition tells us that extremal seeds have “minimal support,” in the sense that

o elementzPC with Suppszd#SuppsJd which is different fromJ.

                                                                                                            



f
J

a

w
n

( e
b
w
s or
S
S n
B
o

t
o

w

r
a
t

u we
c

D a-
t -
a

I ue
H s
8

o
= of
H e see
t

4440 J. Math. Phys., Vol. 45, No. 12, December 2004 G. Chiribella and G. M. D’Ariano

                        
Theorem 2: Let beJPC. Write J in the form(17). Then an operatorQ is a perturbation o
if and only if

TrfQTij
smdg = 0 ∀ m P S, ∀ i, j = 1, . . . ,mm s24d

nd Q can be written as follows:

Q = %nPS0
sIn ^ Xn

†AnXnd, s25d

ith XnPBsMnd and AnPBsRngsXndd Hermitian ∀nPS0.
Proof: SupposeQ is a perturbation. Condition(21) is the same as(24). Due to the conditio

22), Q must be an Hermitian operator in the commutant ofRsG0d, then we can write it in th
lock formQ= %nPS0

sIn ^ Ond, with eachOnPBsMnd Hermitian. Moreover, condition(20) along
ith (17) imply that each operatorOn must haveSuppsOnd#SuppsXn

†Xnd=SuppsXnd. Using the
ingular value decompositionXn=oi=1

rn li
snduwi

sndlkvi
nu [huvi

nlj and huwi
sndlj are orthonormal bases f

uppsXnd and RngsXnd, respectively] one can see that any Hermitian operatorOn with
uppsOnd#SuppsXnd admit the decompositionOn=Xn

†AnXn, with An Hermitian operator i
sRngsXndd. Conversely, if both conditions(24) and (25) hold, then conditions(20)–(22) are
bviously fulfilled. j

Theorem 3:Let Pn be the projection operator onto the subspaceHn ^ Mn#H corresponding
o the classnPS0. An operatorJPC written in the formJ= %nPS0

sIn ^ Xn
†Xnd is extremal if and

nly if

%nPS0
BsRngsXndd = SpanhFij

smdum P S, i, j = 1, . . . ,mmj, s26d

here

Fij
smd 8 %nPS0

Xn TrHn
fPnTij

smdPngXn
†.

Proof: Using the characterization of Theorem 2, we know thatJ is extremal if and only if fo
ny operatorQ satisfying(24) and(25) one hasQ=0. Let us takeQ in the form(25), and rewrite
he direct sum as an ordinary sum

Q = o
nPS0

PnsIn ^ Xn
†AnXndPn, s27d

sing the projectorsPn onto Hn ^ Mn. Using invariance of trace under cyclic permutations,
an write

TrfQTij
smdg = o

nPS0

TrfsIn ^ AndsIn ^ XndPnTij
smdPnsIn ^ Xn

†dg = o
nPS0

TrfAnXnTrHn
fPnTij

smdPngXn
†g.

s28d

efine the spaceR8 %nPS0
RngsXnd and denote as%nPS0

BsRngsXndd the linear space of oper
ors acting onR which are block diagonal on the subspacesRngsXnd, nPS0. Then, the extrem
lity condition forJ becomes: for any Hermitian operatorAP %nPS0

BsRngsXndd one has

TrfAFij
smdg = 0 ∀ m P S, ∀ i, j = 1, . . . ,mm ⇒ A = 0. s29d

n terms of the Hilbert–Schmidt productsA,Bd8TrfA†Bg this condition says that the uniq
ermitian operatorAP %nPS0

BsRngsXndd which is orthogonal to the whole set of operatorF
hFij

smd umPS , i , j =1, . . . ,mmj is the null operator. Orthogonality to the setF is equivalent to
rthogonality to the set of Hermitian operatorsF8=hsFij

smd+Fji
smdd , isFij

smd−Fji
smdd umPS , i , j

1, . . . ,mmj. Such orthogonality holds if and only ifF8 is a spanning set for the real space
ermitian operators in%nPS0

BsRngsXnd. Nevertheless, using the Cartesian decomposition w

hat any complex block operatorOP %nPS0

BsRngsXndd can be written as a sum of two Hermitian
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nes, whence the extremality condition is equivalent toSpansF8d= %nPS0
BsRngsXndd. Finally, the

bservationSpansF8d=SpansFd completes the proof. j

Notice that for trivial stability groupG0=hej (e denotes the identity element), we recover th
haracterization of Ref. 9: there, one has indeed a single equivalence classn̄ in S0 with one-
imensional representation spaceHn̄, so that the whole Hilbert spaceH is isomorphic to th
ultiplicity spaceMn̄ and the extremality condition(26) reduces toSpanhXTij

smdX†umPS , i , j
1, . . . ,mmj=BsRngsXdd.

Corollary 1: Any rank-one seed is extremal.
Proof: Let J be a rank-one seed. In this case there is only one classn0 in the decompositio

17) of J (otherwiseJ could not have unit rank), and the spaceBsRngsXn0
dd to be spanned is on

imensional, whence the condition(26) is always satisfied. j

An alternative proof of Corollary 1 follows by observing that any rank-one element o
oneD of positive semidefinite operators is necessarily extremal for such cone: since the
etC is a subset ofD, a rank-one seedJPC is necessarily an extreme point ofC.

Corollary 2: Let JPC be an extremal seed and write it in the formJ= %nPS0
sIn ^ Xn

†Xnd.
efine rn8 ranksXnd. Then

o
nPS0

rn
2 ø o

mPS
mm

2 . s30d

Proof: This relation follows directly from the extremality condition by noting that the
and side is the dimension of the complex linear space of block operators%nPS0

BsRngsXndd,
hile the right-hand side is the cardinality of the spanning setF=hFij

smd umPS , i , j =1, . . . ,mmj.j
In Sec. VI we will see an explicit example of extremal POVM which achieves this bou

. EXTREMAL POVM’S AND OPTIMIZATION PROBLEMS

A crucial step in a quantum estimation approach is the optimization of the estimation s
or a given figure of merit. This consists in finding the POVM which maximizes some linear(more
enerally concave) functionalF—e.g., the average fidelity of the estimated state with the true
hen, the convex structure of the set of POVM’s plays a fundamental role in this problem
ue to concavity ofF, one can restrict the optimization procedure to the extremal POVM’s

In the covariant case, the problem resorts to optimize the state estimation in th
UgrUg

†ugPGj. G /G0 of a given stater under the action of a groupG, G0 being the stabilit
roup ofr. The optimization typically is the maximization of a linear functional correspondi

he average value of a positive functionfsx,x*d, where the average is taken over all the cou
x,x*d of measured and true valuesx, x* PX8G /G0, respectively. The joint probability dens

psx,x*d is connected to the conditional densitypsxux*d given by the Born rule via Bayes, assum
n a priori probability distribution of the true valuex* . In the covariant problem the functionf
njoys the invariance propertyfsgx,gx*d= fsx,x*d ∀gPG, and is taken as a decreasing functio
he distanceux−x* u of the measured valuex from the true onex* . In the case of compactG one can
ssume a uniforma priori distribution forx* values, so that the functional corresponding to
verage can be written as follows:

FrfJg =E
G

dgE
G

dg* fsgx0,g*x0dTrfUg*
rUg*

† UgJUg
†g s31d

=E
G

dg fsx0,gx0dTrfUgrUg
†Jg, s32d

herex0 is the equivalence class containing the identity. In the following, we will consider a
3,4
rototype optimization problem the maximization of the likelihood functional
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LrfJg 8 TrfrJg, s33d

orresponding to the choicefsx,x*d=dsx−x*d in Eq. (31). Maximizing LrfJg means maximizin
he probability density that the measured valuex coincides with the true valuex* . For such
stimation strategy the optimization problem has a remarkably simple form, enabling a

reatment for a large class of group representations.13 Moreover, the solution of the maximu
ikelihood is formally equivalent to the solution of any optimization problem with a pos
which, a part from an additive constant, means bounded from below) summable functionfsx,x*d.
ndeed, we can define the map

Msrd = k−1E
G

dg fsx0,gx0dUgrUg
†, s34d

herek=eGdg fsx0,gx0d. This map is completely positive, unital and trace preserving, an
articular,Msrd is a state. With this definition, we have

FrfJg = kLMsrdfJg, s35d

hence the maximization ofFr is equivalent to the maximization of the likelihood for the tra
ormed stateMsrd.

Essentially all optimal covariant measurements known in the literature are represen
ank-one operators. The rank-one assumption often provides a useful instrument for sim
alculations. Nevertheless, as we will show in the following, the occurrence of POVM’s with
rater than one is unavoidable in some relevant situations.

Proposition 1: For anyJPC,

rankfJg ù max
mPS

Smm

dm
D . s36d

Proof: Let us decomposeH into irreducible subspaces for the representationRsGd of G as
ollows:

H = %mPS% i=1
mmHi

smd. s37d

ake an orthonormal basisBi
smd=husm , id ,nl un=1, . . . ,dmj for each subspaceHi

smd in such a wa
hat usm , id ,nl=Tij

smdusm , jd ,nl for any n, Tij
smd :H j →Hi being the invariant isomorphism whi

ntertwines the equivalent representationssm , id and sm , jd. DiagonalizeJ as

J = o
k=1

ranksJd

uhklkhku s38d

nd write

uhkl = o
mPS

o
i=1

mm

o
n=1

dm

csm,id,n
k usm,id,nl. s39d

incekhkuTij
smduhkl=on=1

dm csm,id,n
k* csm,jd,n

k , the normalization constraints(16) become

o
k=1

ranksJd

o
n=1

dm

csm,id,n
k* csm,jd,n

k = dmdi j . s40d

his relation implies that for anymPS the vectorshcsm,id u i =1, . . . ,mmj defined by scsm,iddk,n

csm,id,n
k are orthogonal: since they aremm orthogonal vectors in a linear space whose dimen
s dm3 ranksJd, it follows thatmmødm3 ranksJd, hence ranksJdùmm /dm ∀mPS. j
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Summarizing, every timesmm.dm for some classmPS, a covariant POVM cannot be re
esented by a rank-one seed, due to the normalization constraints.

The previous proposition exhibits a structural reason for which, in the presence of equ
epresentations, the setC of covariant seeds may contain only elements with rank greater tha
n the other hand, in the following we will discuss the occurrence of covariant POVM’s with
reater than one in explicit optimization problems, independently of the presence of equ
epresentations.

Proposition 2: LetJ be an extremal point ofC. Denote by P the projector ontoSuppsJd, and
et r8 ranksPd. ThenJ is the unique seed which maximizes the likelihood for the stater=P/ r.

Proof: First, we need to prove thatJ commutes with the representationRsH0d8 hUkuk
H0j, whereH0 is the stability group ofr. Define the group average

j 8

E
H0

dh UhJUh
†

E
H0

dh

. s41d

inceRsH0d is the stability group of the projector ontoSuppsJd, clearly SuppsJd is invarian
nderRsH0d, whencej satisfiesSuppsjd#SuppsJd. Moreover, using the invariance of the H
easure it is easy to see thatj commutes withRsH0d. Finally, j is an element ofC. In fact, it is

ositive semidefinite, satisfies(16) and commutes withRsG0d, which is by definition a subset
sH0d. SinceJ is extremal, using Theorem 1 we can conclude thatJ=j, whenceJ commute
ith RsH0d.

Let us prove now optimality. For any arbitrary seedzPC, the following bound holds:

Lrfzg = Trfrzg =
TrfPzg

r
ø

Trfzg
r

=
dimsHd

r
, s42d

here the last equality follows from the normalization constraints(16). Clearly J achieves th
ound, whence it is optimal. Notice that the inequality TrfPzgøTrfzg becomes equality if an
nly if Suppszd#SuppsJd, then using Theorem 1 we can see thatJ represents the uniq
ptimal POVM. j

Consider now a density matrixs with support in the orthogonal complement ofSuppsJd, and
onsider the randomization

r = s1 − ad
P

r
+ as, s43d

ith 0øaø1. In the following we prove that, for sufficiently smalla.0, J is still optimal for
he maximum likelihood strategy. In other words, the extremal POVM represented byJ is stable
nder randomization, and the same measuring apparatus can be used for a larger class
tates.

Proposition 3: Consider the randomized stater in (43) and denote by q¯the maximum eige
alue ofs. If a,1/s1+rq̄d, thenJ is the unique seed which maximizes the likelihood for the
.

Proof: First, notice thatJ commutes with the representationRsH0d of the stability group ofr.
his follows from the observation that the conditiona,1/s1+rq̄d implies thats1−ad / r is strictly

he largest eigenvalue ofr. Then,P is the projector on the eigenspace with maximum eigenv
f r, while, for anyhPG, Ph8UhPUh

† is the projector on the eigenspace with maximum ei
alue ofrh8UhrUh

†. If hPH0 then it must berh=r, and, necessarily,Ph=P. ThereforeH0 is a
ubgroup of the stability group ofP. But J commutes with the representation of the stab

roup ofP, as proven in Proposition 2, then it commutes also withRsH0d.
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Now we prove optimality ofJ. Let us denote byQ the projection ontoSuppssd. The
ollowing bound holds for anyzPC:

Lrfzg =
s1 − ad

r
TrfPzg + a Trfszg s44d

ø
s1 − ad

r
TrfPzg + aq̄ TrfQzg s45d

ø
s1 − ad

r
TrfsP + Qdzg s46d

ø
s1 − ad

r
Trfzg =

s1 − ad
r

dimsHd. s47d

his bound is achieved byJ, proving its optimality. Notice thatJ is the unique optimal seed.
act, equality in(46) is attained if and only if TrfQzg=0, namely whenSuppsQd#Kerszd, while
n (47) equality is attained if and only ifSuppszd#SuppsPd % SuppsQd. Therefore the bound
chieved if and only ifSuppszd#SuppsPd=SuppsJd, implying z=J. j

I. EXAMPLES

. Extremal POVM’s with a nontrivial stability group

Example 1:Consider the group of rotations, represented in as2j +1d-dimensional Hilber
paceH j by the irreducible representationRn,w8eiwn·j , wherew is an angle,n is a unit vector, an
8 s jx, j y, jzd is the angular momentum operator. In this case a covariant estimation in the o
pure stateucl generally may involve a nontrivial stability group. This is actually the case

cl8 u jmln0
, is an eigenvector ofn0·j for some unit vectorn0. Clearly in such case the stabil

roup G0 consists of rotations aroundn0, and the state estimation in the orbit reduces to
stimation of a rotated directionn8. The same situation arises for any stater mixture of eigen
ectors ofn0·j . Without loss of generality, let us taken0 as the direction of thez axis, and write
=om=−j

j pmu jmlk jmu with pmù0 ∀m. Let us denote byP the projector ontoSuppsrd, and takem̄
uch thatpm̄=maxmhpmj. Then, since

Trfrzg ø pm̄ TrfPJg ø pm̄ TrfJg = pm̄s2j + 1d,

ne has thatJ=s2j +1du jm̄lk jm̄u is the optimal POVM. Notice that such POVM commutes w
he stability groupRsG0d and is extremal, as a consequence of Corollary 1.

Example 2:Consider the groupSUsdd of unitary d3d matrices with unit determinant, acti
n the spaceH8Cd. It is easy to see that each vectoruclPH has a nontrivial stability grou

0;Usd−1d. In fact, by introducing an orthonormal basisB'8 hunl un=1, . . . ,d−1j for the or-
hogonal complementH' of the lineSpanhuclj, and the basisB8 ucløB' for H, the stability
roupG0 consists on matrices of the form

Uh = Svh 0

0 Vh
D , s48d

herevhPC , uvhu=1, andVh is a unitarysd−1d3 sd−1d matrix with DetsVhd=vh
* . Let us con

ider now the tensor representationRsGd=hUg
^2uUgPSUsddj on the spaceH^2. This representa

ion has two irreducible subspaces, the symmetric and the antisymmetric onesH+ andH−, with
imensionsd+=dsd+1d /2 andd−=dsd−1d /2, respectively. Denote byP+ andP− the projectors o

+ andH−. Let us apply the representationRsGd on the stateucl^2PH^2. Clearly the stability
^2
roup is the sameG0 as before, and it is represented byRsG0d=hUh uhPG0j. It is easy to see that
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sG0d contains five irreducible components, carried by the subspacesH1=Spanhucl^2j, H2

Spanhuclj ^ H', H3=H' ^ Spanhuclj, H4=P+sH'^2d, and H5=P−sH'^2d. Notice thatH2

ndH3 carry equivalent representations, corresponding to a two-dimensional multiplicity
n example of extremal POVM is given by

J =
dsd + 1d

2
uclkcu^2

%
d

d − 2
P−QP−,

hereQ is the projection onH'^2. Since the two summands are proportional touclkcu^2 and
P−QP−, which are the projectors onH1 andH5, respectively, thenJ belongs to the commutant

sG0d=hUh
^2uhPG0j. Notice that the subspacesH1 andH5 have multiplicitiesm1=m5=1, cor-

esponding to one-dimensional multiplicity spacesM1;M5;C (whence the partial traces ov

1,5 will be c numbers). Moreover, using the fact that TrH1
fP+g=1, TrH1

fP−g=0, TrH5
fP+g=0,

rH5
fP−g=sd−1dsd−2d /2 one can check extremality using the condition(26). Let us observe th

n this example we haver1=r5=1 andm+=m−=1, wherer1 andr5 are defined as in Corollary
hile m+ andm− are the multiplicities of the two irreducible representations ofRsGd. Then the
ound of(30) is saturated. Finally, we remark that this POVM is optimal for discriminating s

n the orbit of ucl^2,13 in the orbit of r=s1/rdsuclkcu^2+P−QP−d where r =1+fsd−1dsd−2d /2g
ecause of Proposition 2, and also in the orbit of any randomizationr8=s1−adr+as wheres is
ensity matrix withSuppssd#KersPd, anda,1/s1+rd, because of Proposition 3.

. Extremal POVM’s with rank greater than one

Example 1:Consider the Abelian groupG=Us1d of phase shifts, acting in the spaceH=Cd by
he representationRsGd=hUswd=expsiwNj u hwP f−p ,pgj, where the generatorN is given byN
on=0

d−1nunlknu for some orthonormal basishunl un=0,1, . . . ,d−1j. The stability groupG0 may be
ither the wholeUs1d (for r diagonal on the eigenstates of the generator), or a discrete subgrou

0=Zk for some integerk, including the casek=1 of trivial stability group. We exclude th
egenerate caseG0=Us1d of shift invariant states. The parameter spaceX=Us1d /Zk will be a
ircle, parametrized by an angleuP f−p ,pg, and the action of a group elementgswdPG on an
lementuPX will be given bygswdu=u+kw.

Due to constraint(16), a seedJ is represented in the eigenbasis of the generator
orrelation matrix, namely by a positive semidefinite matrix with unit diagonal entries. Vice
ny correlation matrix corresponds to a seed in the case of trivial stability groupG0. In Ref. 10 one
an find a constructive method which provides extremal correlation matrices with rankr .1: here
e show that any of such matrices can be viewed as the optimal seed for the estimation

n the orbit of a particular state. Let us choose as optimality criterion the maximization
verage value of a positive summable functionf :X3X→R+ depending only on the differen
−u* between the measured and the true value. Supposer a state with stability groupG0=Zk. As
e noted at the beginning of Sec. V, the maximization ofFrfJg—the average value

fsu−u*d—corresponds to the maximization of the likelihoodLMsrdfJg for the transformed sta
srd= f0

−1e−p
p sdw /2p dfs−kwdUwrUw

† [from Eq. (34)]. Notice that the mapM is trivially
ovariant—i.e.,MsUfrUf

†d=UfMsrdUf
†—since the group is Abelian. For simplicity here

equire that the mapM is invertible, whence alsoM−1 is covariant and trace preserving(but
enerally not positive). Covariance ofM implies that the stability group ofMsrd contains th
tability group ofr, and covariance ofM−1 implies the reverse inclusion, whence the stab
roup is not changed by the maps.

Let us take now an extremal correlation matrixJ with ranksJd=r ù1 and denote byP the
rojector ontoRngsJd. Using Proposition 2, we can see thatJ commutes with the representat
sH0d, whereH0 is the stability group ofP. Call l the modulus of the minimum eigenvalue

−1
sP/ rd, then
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r =
l

1 + dl
I +

1

1 + dl
M−1sP/rd

s a density operator. Notice that the stability groupG0 of r is the same stability group ofM−1sPd,
hich coincides withH0, the stability group ofP. ThereforeJ commutes with the representat
sG0d. It is easy to show thatJ is the unique seed commuting withRsG0d which is also optima

or the estimation of states in the orbit ofr. In fact, for anyz in the convex setC of the seeds wit
tability groupG0, we have

Frfzg = f0 TrfzMsrdg = f0S l

1 + dl
Trfzg +

1

rs1 + dld
TrfzPgD ø f0Sd

r
DS 1 + rl

1 + dl
D .

his bound is achieved choosingz=J, moreover, as in Proposition 2, we can observe tha
unctional TrfzPg with zPC is maximum if and only ifz=J, then the maximum is unique.

Example 2:We provide now an example with a noncompact group represented in an i
imensional Hilbert space. This example is out of the general treatment of the present
hich considers only finite dimensions—and is given only with the purpose of showing th

esults could be generalized to infinite dimensions, however at the price of much more te
roofs.

Take H as the Fock space, and consider the projective representationonH of the group o
ranslations on the complex planeC in terms of the Weyl–Heisenberg operatorsRsGd=hDsad
eaa†−āauaPCj, where fa,a†g=1. Here we will consider the twofold tensor representa

Dsad^2uaPCj on H^2. Using the unitary operatorV=esp/4dsa1a2
†−a1

†a2d, one can writeDsad^2

VsDsÎ2ad ^ IdV† and see that the irreducible subspaces of this representation areHn=VsH
^ Spanhufnljd, wherehufnl un=1,2, . . . ,̀ j is any orthonormal basis forH. All these subspace
arry equivalent representations, the isomorphism betweenHm andHn being

Tmn= VsI ^ ufmlkfnudV†. s49d

n terms of these isomorphisms, the normalization constraints(16) for a seed operator become13

TrfTmnzg = 2dmn. s50d

otice that the number 2 in this formula has nothing to do with the dimension ofHn which is
nfinite: in the noncompact case the dimensions are replaced by positive numbers depend
n the equivalence class of representations. In principle, since the spaceH^2 is infinite dimen
ional, there is the possibility of extremal covariant POVM’s with an infinite rank. Actually w
rovide the remarkable example

J = 2Vsu0lk0u ^ IdV†, s51d

here u0l is the vacuum state of the Fock basishuml ua†auml=mumlj. The corresponding POV
an be realized by averaging the outcomes of two independent measurements withJ1= u0lk0u

^ I andJ2= I ^ u0lk0u,13 which in quantum optics correspond to two heterodyne measurem14

We can observe thatJ maximizes the likelihood functional for any state of the formr
Vsu0lk0u ^ sdV†, wheres=on=0

` pnufnlkfnu, is a mixed state withpn.0∀n. In fact, for any see
, one has the bound

TrfVsu0lk0u ^ sdV†zg = o
n=0

`

pn TrfVsu0lk0u ^ ufnlkfnudV†zg

ø o
n=0

`

pn TrfVsI ^ ufnlkfnudV†zg = o
n

`

pn TrfTnnzg = 2, s52d
nd sinceJ achieves the bound(52), it is optimal. MoreoverJ is the unique optimal seed. In fact,
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he equality in (52) is achieved if and only if TrfVsu0lk0u ^ ufnlkfnudV†zg=TrfVsI ^ ufnl
kfnudV†zg for any n: by expanding the identity on the Fock basis, the positivity ofz implies

mukfnuV†zVumlufnl=0 for anymÞ0. Hence the unique nonzero diagonal elements ofz are on the
ectorsVu0lufnl. On the other hand, the positivity ofz along with the normalization constra
rfTmnzg=0 ∀mÞn imply that all the off diagonal elements ofz are zero. Hencez=2Von=1

` su0l
k0u ^ ufnlkfnudV†=2Vsu0lk0u ^ IdV†=J. The fact thatJ is the unique optimal seed ensures th

s also extremal, otherwise there would be two different seeds which are equally optimal.
hat J is extremal also according to our characterization(26).
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new geometrical look at gravity coupled with
ang–Mills fields
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A new geometrical framework for tetrad-affine formulation of gravity, pure or
coupled with Yang–Mills fields, is proposed. After analyzing the geometrical prop-
erties of the new mathematical setting, field equations are deduced from a varia-
tional principle in the Poincaré–Cartan formalism. A generalized Noether Theorem
is stated and classical relationship between symmetries and conserved quantities ar
recovered in the newer scheme. Some explicit examples are given. ©2004
American Institute of Physics.[DOI: 10.1063/1.1806536]

. INTRODUCTION

In recent papers,1,2 we developed a geometrical framework for the description of Lagra
eld theories depending on the derivatives of the fields, only through their antisymmetric
ations.

For example, for Yang–Mills theories,3–7 where one can interpret the dynamical fieldA as a
onnection on a suitable principal fiber bundle, and the strength fieldF as the associated curvatu
nly the antisymmetric part of the gradient ofA is involved in the construction ofF; in this case
he approach outlined in Refs. 1 and 2 allows to cut away the “inessential” coordinates fr
eometrical construction, so getting some important results: Taking care from the beginni
f the physical degrees of freedom of the theory, regularizing Yang–Mills Lagrangians a

aining a simpler action of gauge transformations on the “derivatives” of the dynamical fieA.
The aim of this paper is to extend the mathematical machinery to gravity, in a tetrad

ormulation.
The mathematical arena we chose to formulate our theory is the gauge natural bundle

ork for gravity (see, for example, Refs. 8–13). Dynamical fields are metric connections(a priori
ot necessarily torsion-free) and pseudo-orthonormal tetrads. More precisely, metric conne
re viewed as principal connections on the structure bundlefP,M ,p ,SOs1,3dg over the space

ime manifold M, while tetrads turn out to be sections of a suitable associated bundle,
iffeomorphic to the co-frames bundle.

The resulting geometrical framework automatically embodies the Lorentz invariance
heory; here, in fact, tetrads are truly gauge natural objects, subject to the transformation
tructure bundleP. Moreover, the use of the gauge natural bundle framework also avoid
ecessity of assuming the existence of a globally defined tetrad field.

Following the lines traced in Refs. 1 and 2, we construct a new affine bundle ov
onfiguration space of the theory, by changing the standard definition of jet-equivalence.

In the resulting mathematical setting, we describe a class of interaction between the
ional and the Yang–Mills fields, including minimal coupling, in the Poincaré–Cartan forma

)Electronic mail: vignolo@dipem.unige.it
)
Electronic mail: cianci@dipem.unige.it
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This is achieved by adopting as preferred coordinates in the new space directly the
ents of the curvature and torsion tensor fields, thereby gauging away all unphysical de

reedom.
The paper is organized as follows. In Sec. II, we construct the new bundle as an app

uotient space of the standard jet-bundle. In order to implement a variational calculus, we
o the newly defined space some classical geometrical structures of jet-bundle theory. For
ty, we develop in detail the purely gravitational case only. The geometrical setting suita
escribing coupled gravitational and Yang–Mills fields is easily obtained joining togeth
resent geometrical framework with the one proposed in Refs. 1 and 2. The argument is
traightforward and is left to the reader.

In Sec. III, we define the Poincaré–Cartan form associated with a Lagrangian on th
undle. We derive the field equations from a variational principle. Both purely gravitation
oupled with Yang–Mills fields cases are explicitly worked out.

In Sec. IV, making use of the Poincaré–Cartan formalism, we state a generalized
heorem and investigate the relationships between symmetries and conserved curren
ewer scheme. We analyze explicitly the coupled gravitational Yang–Mills Lagrangian in
pace–time and get the conserved quantities related to gauge and diffeomorphism invari

The supersymmetric extension of this formalism and the description of the interactio
pinor fields are, at the moment, under investigation and will form the subject of a future

I. THE GEOMETRICAL FRAMEWORK

A mathematical scenario suitable for globally describing gravity in the tetrad formalism
auge natural bundle framework, where the structure bundle of the theory is a princip
undle fP,M ,p ,SOs1,3dg over space–timeM (see, for example, Refs. 8–12 and referen
herein).

In this context, denoting byLsMd the frame bundle overM, a tetrad field turns out to be
ection of aGLs4,Rd bundleE, which is the bundle associated withP3LsMd through the lef
ction

l:sSOs1,3d 3 GLs4,Rdd 3 GLs4,Rd → GLs4,Rd, lsL,J;Xd = L ·X ·J−1.

ccordingly, local fibered coordinates onE→M are functions of the kindxi, ei
m si ,m=1, . . . ,4d

ndergoing the transformation laws

x̄j = x̄jsxid, ēj
m = ei

sLm
ssxd

]xi

]x̄j , s2.1d

hereLm
ssxdPSOs1,3d, ∀xPM.

The assignment of a tetrad fieldx→emsxd=ei
msxddxi allows to define a metric overM by

etting gªhmne
m ^ ensgij ªhmnei

mej
nd, with hªdiags−1,1,1,1d. By construction,g is invarian

nder transformations(2.1).
In this way, the structure bundlefP,M ,p ,SOs1,3dg becomes the bundle of orthonorm

rames associated with the metricg: For each tetrade there is an isomorphism betweenP and
OsM ,gd.

Therefore, the quotient bundleCªJ1P/SOs1,3d of principal connections over the struct
undleP is naturally identified with the bundle ofg-metric compatible linear connections overM.

As is well known, every connection one-form onP may be expressed locally as

vsx,Ld = vm
nsx,Ld ^ uIm

n
ª fLm

sLn
gvi

s
gsxddxi − Ln

hdLm
hg ^ uIm

n, s2.2d

herevi
m

nsxd are the connection coefficients, uIm
n denote a basis of the Lie algebraSOs1,3d of

O(1, 3), andLm
h
ª sL−1dh

m. In view of this, we can put onC local coordinates of the formxi,
mn m sn
i sªvi sh d with m,n.
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Because of the above identification, given a(local) tetrad fieldei
msxddxi the transformation

2.1) can be viewed as changes of(local) sectionsen→ ēm=Lm
nsxden of P→M. The latter induc

ssociated changes of(local) trivialization of P itself, in turn yielding corresponding coordina
ransformations inC of the form

x̄ i = x̄ isxjd, v̄i
mn = Lm

ssxdLn
gsxd

]xj

]x̄ i v j
sg − Ls

hsxd
]Lm

hsxd
]xh

]xh

]x̄ i h
sn, s2.3d

herev j
sg
ª−v j

gs whenevers.g.
Now, let us consider the fibered productE3 MC (E3C for short) overM, between the bundle

andC.
We apply to the study of the bundleE3C→M and its sections the whole geometrical m

hinery developed in Refs. 1 and 2. Referring systematically to Refs. 1 and 2 for proofs, com
nd notations, we outline here the main results, especially useful for the present purpose

First of all, let J1sE3C ,Md be the first jet-bundle associated withE3C→M, referred to
et-coordinatesxi, ei

m, vi
mn, eij

ms.]ei
m /]xjd, vi j

mns.]vi
mn /]xjd. The latter are subject to the tra

ormation laws(2.1) and (2.3) together with

ējk
m = eih

s ]xh

]x̄ kLm
s

]xi

]x̄j + ei
s]Lm

s

]xh

]xh

]x̄ k

]xi

]x̄j + ei
sLm

s

]2xi

x̄ kx̄j s2.4ad

nd

v̄ik
mn = Lm

sLn
g

]xj

]x̄ i

]xh

]x̄ kv jh
sg +

]Lm
s

]xh

]xh

]x̄ kLn
g

]xj

]x̄ i v j
sg + Lm

s

]Ln
g

]xh

]xh

]x̄ k

]xj

]x̄ i v j
sg

+ Lm
sLn

g

]2xj

]x̄ k]x̄ i v j
sg + −

]Ls
h

]xs

]xs

]x̄ k

]Lm
h

]xh

]xh

]x̄ i h
sn − Ls

h]2Lm
h

]xs]xh

]xs

]x̄ k

]xh

]x̄ i h
sn

− Ls
h]Lm

h

]xh

]2xh

]x̄ k]x̄ i h
sn. s2.4bd

ollowing the main idea of Refs. 1 and 2, we introduce the following equivalence relation
undle J1sE3C ,Md: Given two pointsz=sxi ,ei

m ,vi
mn ,eij

m ,vi j
mnd and ẑ=sx̂i ,êi

m ,v̂i
mn ,êij

m ,v̂i j
mnd

J1sE3C ,Md, we setz, ẑ⇔xi = x̂i, ei
m= êi

m, vi
mn=v̂i

mn, and seij
m−eji

md=sêij
m− êji

md, svi j
mn−v ji

mnd
sv̂i j

mn−v̂ ji
mnd (the geometrical meaning of the above equivalence relation is explained in R).

Transformation laws(2.1), (2.3), (2.4a), and(2.4b) ensure that the above equivalence rela
s independent of the choice of local coordinates and, therefore, geometrically significant

We denote byJsE3Cd the quotient spaceJ1sE3C ,Md /, and by r :J1sE3C ,Md→JsE
Cd the corresponding canonical projection. We may referJ1sE3C ,Md to localJ-coordinatesxi,

i
m, vi

mn, Eij
m
ª

1
2seij

m−eji
md, Vi j

mn
ª

1
2svi j

mn−v ji
mnd si , jd, whose transformation laws are given

qs.(2.1) and (2.3) together with

Ējk
m = Eih

s Lm
s

]xh

]x̄ k

]xi

]x̄ j +
1

2
ei

s]Lm
s

]xh

]xh

]x̄ k

]xi

]x̄ j −
1

2
ei

s]Lm
s

]xh

]xh

]x̄ j

]xi

]x̄ k s2.5ad
nd
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V̄ik
mn = Lm

sLn
g

]xj

]x̄ i

]xh

]x̄ kV jh
sg +

1

2

]Lm
s

]xh

]xh

]x̄ kLn
g

]xj

]x̄ i v j
sg −

1

2

]Lm
s

]xh

]xh

]x̄ i L
n

g

]xj

]x̄ kv j
sg

+
1

2
Lm

s

]Ln
g

]xh

]xh

]x̄ k

]xj

]x̄ i v j
sg −

1

2
Lm

s

]Ln
g

]xh

]xh

]x̄ i

]xj

]x̄ kv j
sg −

1

2

]Ls
h

]xs

]xs

]x̄ k

]Lm
h

]xh

]xh

]x̄ i h
sn

+
1

2

]Ls
h

]xs

]xs

]x̄ i

]Lm
h

]xh

]xh

]x̄ khsn, s2.5bd

ith the identificationsEij
m=−Eji

m andVi j
mn=−V ji

mn (implicitly understood) wheneveri . j .
Still following Refs. 1 and 2, we may endow the affine bundleJsE3Cd→E3C with the

ollowing geometrical structures, reproducing some standard results of jet-bundle geom
sE3Cd:

• J-extension of sections. Given a (local) sections :M→E3C, we define itsJ-extension
s :M→JsE3Cd asJsªr + j1s, j1s :M→ j1sE3C ,Md denoting the standard first jet-extens
f s.

Any sectiong :M→JsE3Cd is saidholonomicif there exists a sections :M→E3C such tha
=Js. Every holonomic sectiong is then expressed locally asg :x→ sxi ,ei

msxd ,vi
mnsxd ,Eij

msxd
1
2s]ei

msxd /]xj −]ej
msxd /]xid ,Vi j

mnsxd= 1
2s]vi

mnsxd /]xj −]v j
mnsxd /]xidd.

• Contact forms. We may introduce inJsE3Cd the concept of contact form by defining
ollowing two-forms

um
ª dej

m ∧ dxj + Eij
mdxi ∧ dxj, umn

ª dv j
mn ∧ dxj + Vi j

mndxi ∧ dxj, m,n = 1, . . . ,4. s2.6d

t is easily seen that the behavior of the two-forms(2.6) under changes of coordinates(2.1), (2.3),
nd (2.5) is given by the equations

ūm
ª dēj

m ∧ dx̄j + Ēij
mdx̄i ∧ dx̄j = Ls

mus s2.7ad

nd

ūmn
ª dv̄ j

mn ∧ dx̄j + V̄i j
mndx̄i ∧ dx̄j = Ls

mLg
nusg, s2.7bd

howing the invariance of the module generated locally by the two-forms(2.6). The bundle
panned locally by the forms(2.6) is calledcontact bundleover JsE3Cd and it is denoted b
sJsE3Cdd; every sectionh :JsE3Cd→CsJsE3Cdd is called acontact two-formon JsE3Cd. As

t happens for standard jet-bundles, the contact forms(2.6) characterize the holonomic sections
sE3Cd→M, namely

Proposition 2.1: A sectiong :M→JsE3Cd is holonomic if and only ifg* sumd=0 and
* sumnd=0∀m ,n=1, . . . ,4.

• J-prolongation of morphisms. We want to construct a sort ofJ-prolongation for bundl
orphismsF of E3C

E 3 C ——→
F E 3 C

↓ ↓
M ——→

x
M

rojecting to diffeomorphismsx of M. As we shall see, this is possible for a particular famil
undle morphisms only, but general enough for our purposes.

Once again borrowing from Ref. 1, we start by singling out those bundle morphismssF ,xd

hose ordinary jet-prolongationsj1F on J1sE3C ,Md satisfy the requirement

                                                                                                            



f nd end
u
h

w
G
i , it
i

w

a

t

4452 J. Math. Phys., Vol. 45, No. 12, December 2004 S. Vignolo and R. Cianci

                        
r + j1Fsw1d = r + j1Fsv2d ∀ w1,w2 P r−1szd, s2.8d

or anyzPJsE3Cd. In a local chart, we may repeat the same arguments stated in Ref. 1 a
p with the conclusion that the most general bundle morphismsf ,xd satisfying the ansatz(2.8)
as necessarily the local form

yi = xisxd,

bi
n = Fi

nsx,e,vd = Gm
n sxd

]xr

]yi er
m + Ggh

m sxd
]xr

]yi vr
gh + f i

nsxd, s2.9d

hi
ng = Fi

ngsx,e,vd = Gm
ngsxd

]xr

]yi er
m + Gms

ng sxd
]xr

]yi vr
ms + f i

ngsxd,

hereGm
n sxd, Ggh

n sxd, Gm
ngsxd, Gms

ng sxd, f i
nsxd, and f i

ngsxd are arbitrary local functions onM (with

gh
n =−Ghg

n andGms
ng =−Gsm

ng ). Moreover, a direct calculation shows that the characterization(2.9) is
nvariant under changes of coordinates(2.1) and(2.3), and then geometrically well set. Indeed
s easily seen that the formal expressions(2.9) transform as

ȳ i = x̄ isx̄d,

b̄i
n = Ḡm

n sx̄d
]x̄ r

]ȳ i ēr
m + Ḡgh

n sx̄d
]x̄ r

]ȳ i v̄r
gh + f̄ i

nsx̄d,

h̄i
ng = Ḡm

ngsx̄d
]x̄ r

]ȳ i ēr
m + Ḡms

ng sx̄d
]x̄ r

]ȳ i v̄r
ms + f̄ i

ngsx̄d,

here

Ḡm
n sx̄d ª Ghuxsx̄d

l Ln
luxsxsx̄ddLm

h
ux̄,

Ḡgh
n sx̄d ª Gmruxsx̄d

s Ln
suxsxsx̄ddLh

r
ux̄Lg

m
ux̄,

f̄ i
nsx̄d ª

]xj

]x̄ i f j uxsx̄d
l Ln

luxsxsx̄dd − Ln
suxsxsx̄ddGgluxsx̄d

s Lr
mux̄

]Lr
g

]x̄ k ux̄
]x̄ k

]ȳ i h
ml,

Ḡm
ngsx̄d ª Gs

lt
uxsx̄dL

n
luxsxsx̄ddL

g
tuxsxsx̄ddLm

s
ux̄,

Ḡms
ng sx̄d ª Ln

ruxsxsx̄ddL
g

huxsxsx̄ddGbauxsx̄d
rh Lm

b
ux̄Ls

a
ux̄,

nd

f̄ i
ngsx̄d ª Ln

ruxsxsx̄ddL
g

huxsxsx̄ddF− Gbauxsx̄d
rh ]x̄ h

]ȳ i Lm
sux̄

]Lm
b

]x̄ h ux̄h
sa +

]xj

]x̄ i f j
rhG

− Ls
m

uxsxsx̄dd
]Ln

m

]xh uxsxsx̄dd
]xh

]x̄ j h
sg,

hus proving the required invariance.

Condition (2.8) being satisfied, given any bundle morphism(2.9) we may define its
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-prolongationJF :JsE3Cd→JsE3Cd as

JFszd ª r + j1Fswd ∀ w P r−1szd,zP JsE 3 Cd

n local coordinates, the explicit expression ofJF is given by(see Ref. 1 for details)

JF:5
yi = xisxd

bi
n = Gm

n sxd
]xr

]yi er
m + Ggh

n sxd
]xr

]yi vr
gh + f i

nsxd

hi
ng = Gm

ngsxd
]xr

]yi er
m + Gms

ng sxd
]xr

]yi vr
ms + f i

ngsxd

Bij
n = sGm

n Eks
m + Gsg

n Vks
sgd

]xk

]yi

]xs

]yj +
1

2
F ]Gm

n

]xk S ]xk

]yj

]xr

]yi −
]xk

]yi

]xr

]yj Der
mG

F +
]Gsg

n

]xk S ]xk

]yj

]xr

]yi −
]xk

]yi

]xr

]yj Dvr
sg +

]f i
n

]xk

]xk

]yj −
]f j

n

]xk

]xk

]yi G
Di j

ng = sGm
ngEks

m + Gms
ng Vks

msd
]xk

]yi

]xs

]yj +
1

2
F ]Gms

ng

]xk S ]xk

]yj

]xr

]yi −
]xk

]yi

]xr

]yj Dvr
msG

F +
]Gm

ng

]xk S ]xk

]yj

]xr

]yi −
]xk

]yi

]xr

]yj Der
m +

]f i
ng

]xk

]xk

]yj −
]f j

ng

]xk

]xk

]yi G
4 .

s it happens for standard jet-prolongations in ordinary jet-bundles,16 J-prolongations are cha
cterized by the property of preserving contact forms andJ-extensions. More precisely we ha

Proposition 2.2: A bundle automorphismsC ,xd of JsE3Cd→M satisfies C* shd
Spanhus ,usn ; s ,n=1, . . . ,4j∀hPSpanhus ,usn ; s ,n=1, . . . ,4j⇔C=JF for some bundl
orphismsF ,xd of E3C→M.

Proposition 2.3: Given a bundle automorphismsC ,xd of JsE3Cd→M, one hasC +Js
x−1 is a J-extension for every sections :E3C→M ⇔C=JF for some bundle morphismsF ,xd
f E3C→M.

The proofs of the above Propositions are strictly analogous to the corresponding ones
ef. 1 and will be omitted.

• J-prolongation of vector fields. As made for bundle morphisms, we want to define a so
-prolongation for vector fieldsX on E3C, projecting toM.

To this end, still following Ref. 1, we first single out those vector fieldsX on E3C, projecting
o M, whose first jet-prolongationsJ1sXd on J1sE3C ,Md pass to the quotientJsE3Cd.

Indeed, given any such vector fieldX, it is well defined theJ-prolongationJsXd :JsE3Cd
TJsE3Cd as

JsXdszd ª r*r−1szds j1sXdd ∀ zP JsE 3 Cd, s2.10d

mounting to taking the standard first jet-prolongationJ1sXd and to projecting it onJsE3Cd.
Proceeding as in Ref. 1, we may conclude that the most general vector field satisfy

equired ansatz is expressed locally as

X = eisxd
]

]xi + S−
]ek

]xqek
m + Dn

msxdeq
m + Dgs

m sxdvq
gs + Gq

msxdD ]

]eq
m + o

m,n
S−

]ek

]xqvk
mn + Ds

mnsxdeq
s

+ Dgs
mnsxdvq

gs + Gq
mnsxdD ]

]vq
mn , s2.11d

hereeisxd, Dn
msxd, Dgs

m sxd, Gq
msxd, Ds

mnsxd, Dgs
mnsxd, andGq

mnsxd are arbitrary local functions onM
m m mn mn
with Dgs=−Dsg andDgs=−Dsg). A straightforward check shows that the representations(2.11)
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re invariant under changes of coordinates(2.1) and (2.3). In fact, it is easily seen that th
ndergo the transformation law

X = ē i ]

]x̄ i + S−
]ē k

]x̄ qēk
m + D̄n

mēq
n + D̄gs

m v̄q
gs + Ḡq

mD ]

]ēq
m+ o

m,n
S−

]ēk

]x̄qv̄k
mn + D̄s

mnēq
s + D̄gs

mnv̄q
gs

+ Ḡq
mnD ]

]v̄q
mn ,

here

ē i
ª ek]x̄ i

]xk ,

D̄n
m
ª Dr

hLn
rLm

h + Ln
hei ]Lm

h

]xi ,

D̄gs
m

ª Djn
h Lm

hLg
jLs

n,

Ḡq
m
ª Gj

n ]xj

]x̄qLm
n − Dgs

h Lj
n

]Lj
g

]x̄q hnsLm
h,

D̄s
mn

ª Dh
abLs

hLm
aLn

b,

D̄gs
mn

ª Fji ]sLm
aLn

bd
]xi + Lm

rLn
hDab

rhGLg
aLs

b,

nd

Ḡq
mn

ª Gj
abLm

aLn
b

]xj

]x̄q − ji ]

]xiSLr
h]Lm

h

]x̄q hrnD −
]j̄h

]x̄qLr
h]Lm

h

]x̄h hrn

− Fji ]sLm
aLn

bd
]xi + Lm

rLn
hDab

rhGLl
g

]Ll
a

]x̄q hgb.

Still referring to Ref. 1 for details, in local coordinates we have the explicit expression

JsXd = ei ]

]xi + S−
]ek

]xqek
m + Dn

meq
n + Dgs

m vq
gs + Gq

mD ]

]eq
m + o

m,n
S−

]ek

]xqvk
mn + Ds

mneq
s + Dgs

mnvq
gs

+ Gq
mnD ]

]vq
mn + o

i, j

hij
m ]

]Eij
m + o

m,n
o
i, j

hij
mn ]

]Vi j
mn , s2.12d

here

hij
m
ª

1

2
S ]Dn

m

]xj ei
n −

]Dn
m

]xi ej
n +

]Dsg
m

]xj vi
sg −

]Dsg
m

]xi v j
sg +

]Gi
m

]xj −
]Gj

m

]xi D + Dn
mEij

n + Dsg
m Vi j

sg

+ SEki
m ]ek

]xj − Ekj
m ]ek

]xi D ,
nd

                                                                                                            



A ing
c r
p

d Y
o
a

a

w
+

the
v

N

h
v

s
bundles

T o this
e

T

a

a

J. Math. Phys., Vol. 45, No. 12, December 2004 A new geometrical look at gravity 4455

                        
hij
mn

ª

1

2
S ]Ds

mn

]xj ei
s −

]Ds
mn

]xi ej
s +

]Dgs
mn

]xj vi
gs −

]Dgs
mn

]xi v j
gs +

]Gi
mn

]xj −
]Gj

mn

]xi D + Ds
mnEij

s + Dsg
mnVi j

sg

+ SVki
mn]ek

]xj − Vkj
mn]ek

]xi D .

ccording to ordinary jet-prolongations,16 J-prolongations(2.10) are characterized by preserv
ontact forms and are a Lie algebra. More specifically, we have the following(see Ref. 1 fo
roofs).

Proposition 2.4: Letp :JsE3Cd→E3C denote the natural projection. Given a vector fiel
n JsE3Cd, projectable onE3C, such that its projection Xszdªp*p−1szdsYd s∀zPE3Cd defines
vector field onE3C of the form (2.11), then

Y = JsXd ⇔ LYum,LYumn P Spanhus,usm;s,m = 1, . . . ,4j

Corollary 2.1: TheJ-prolongations (2.10) from a Lie algebra.
For later use, we introduce new fibered coordinates onJsE3Cd of the form

xi = xi, ei
m = ei

m, vi
mn = vi

mn, Tij
m
ª 2Eji

m + vi
m

nej
n − v j

m
nei

n s2.13ad

nd

Rij
mn

ª 2V ji
mn + 1

2svi
m

lv j
ln − v j

m
lvi

ln − vi
n

lv j
lm + v j

n
lvi

lmd, s2.13bd

here vi
m

nªvi
mshsn. The idea is to take the components of the torsion tensorTm=dem

vm
n∧en and the curvature tensorRmn=dvmn+vm

l∧vln asJ-coordinates.
Taking Eqs.(2.1), (2.3), and (2.5) into account, it is a straightforward matter to verify

alidity of the expected transformation laws

T̄ij
m = Thk

s Lm
s

]xh

]x̄ i

]xk

]x̄ j andR̄ij
mn = Rhk

sgLm
sLn

g

]xh

]x̄ i

]xk

]x̄ j . s2.14d

ow, we define the following two-forms onJsE3Cd

Tm
ª

1
2Tij

mdxi ∧ dxj andRmn
ª

1
2Rij

mndxi ∧ dxj , s2.15d

enceforth referred to as thetorsion and thecurvature two-forms onJsE3Cd, respectively. In
iew of Eqs.(2.14), the latter undergo the transformation laws

T̄ = TsLm
s andR̄mn = RsgLm

sLn
g s2.16d

howing the invariance of the module locally generated by the forms(2.15).
We conclude this section by introducing suitable bases of the tangent and cotangent

JsE3Cd andT* JsE3Cd, respectively, which will be useful in the subsequent discussion. T
nd, we preliminarily define the forms

ti
m
ª dei

m + v j
m

nei
ndxj andri

mn
ª dvi

mn + 1
2sv j

m
lvi

ln − v j
n

lvi
lmddxj .

hen we choose the 1-forms

Dxi
ª dxi, ti

m, ri
mn, DTij

m
ª dTij

m + vk
m

lTij
ldxk s2.17ad

nd

DRij
mn

ª dRij
mn + vk

m
lRij

lndxk − vk
lnRij

m
ldxk, s2.17bd
s a local basis ofT* JsE3Cd; the vectors
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D

Dxk ª
]

]xk − vk
m

nei
n ]

]ei
m −

1

2
vk

m
lvi

ln ]

]vi
mn −

1

2
vk

m
lTij

l ]

]Tij
m

+
1

4
s− vk

m
lRij

ln + vk
lnRij

m
ld

]

]Rij
mn ,

D

Dei
m ª

]

]ei
m , s2.18ad

D

Dvi
mn ª

]

]vi
mn ,

D

DTij
m ª

]

]Tij
m ,

D

DRij
mn ª

]

]Rij
mn ,

orm the local dual basis ofTJsE3Cd.
We also notice that, if we set

tm
ª ti

m ∧ dxi andrmn
ª ri

mn ∧ dxi , s2.19d

hen we can represent the contact forms as

um = tm − Tm andumn = rmn − Rmn. s2.20d

II. THE FIELD EQUATIONS

In this section we shall derive the field equations of the theory from a variational prin
To this end, we notice that a Lagrangian onJsE3Cd is a horizontal four-form, locally ex

ressed in terms of the coordinates(2.13) as

L = Lsx,e,v,T,Rdds, s3.1d

ith dsªdx1∧dx2∧dx3∧dx4 andL is a scalar density.
Borrowing from Refs. 1 and 2, we associate with any Lagrangian(3.1) a correspondin

oincaré–Cartan four-form onJsE3Cd, locally described as

QL ª Lds− 1
2um ∧ Pm − 1

4umn ∧ Pmn, s3.2d

herePmª s]L /]Tij
mddsij andPmnª s]L /]Rij

mnddsij (with dsij ª] /]xic] /]xjcds).
To every LagrangianL we associate the action functional

ALssd ª E
D

Js * sLd =E
D

Js * sQLd,

sections :D,M→E3C, D compact domain.
Now, let Fj be a one-parameter group ofJ-prolongable diffeomorphisms(2.9) on E3C,

rojecting(for simplicity) on the identity map ofM. Let X denote the infinitesimal generator

j; it follows that X is a J-prolongable vector field(2.11) on E3C, vertical with respect to th
bration E3C→M.

Given a sections :M→E3C, we can deform it alongX by settingsjªFj+s; then we hav
sj=JsFj+sd=JFj+Js.

We call first variation of AL at s in the directionX, the expression

dAL

dX
ssd ª

d

dj
E

D

Jsj
*QLuj=0u

=E
D

Js * sJsXd c dQLd +E
]D

Js * sJsXd c QLd. s3.3d

n connection with this, a sections is saidcritical if dAL /dXssd=0 for all compact domainsD and
ll deformationsJsj constant on the boundary]D. Due to this last condition at the boundary
ollows that a sections is critical if and only if the equation
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Js * sJsXd c dQLd = 0 s3.4d

olds true, for allJ-prolongable vector fieldsX.
In order to develop the calculations about Eq.(3.4), let us introduce the following differenti

perators acting on tensor-valued forms onJsE3Cd:

Dhm = dhm + vi
m

ndxi ∧ hn, s3.5ad

Dhm = dhm − vi
n

mdxi ∧ hn, s3.5bd

Dhm
n = dhm

n + vi
m

ldxi ∧ hl
n − vi

l
ndxi ∧ hm

l, s3.5cd

Dhn
m = dhn

m − vi
l

ndxi ∧ hl
m + vi

m
ldxi ∧ hn

l. s3.5dd

aking use of the bases(2.17) and taking Eqs.(2.20) and (3.5) as well as the identitiesDtm

r j
mnhnsei

s∧dxj ∧dxi, Drmn=0, s]L /]Tij
mdds= 1

2dxj ∧dxi ∧ Pm and s]L /]Rij
mndds= 1

2dxj ∧dxi ∧ Pmn

nto account(we notice that the identitiesDtm=r j
mnhnsei

s∧dxj and Drmn=0 are nothing but
estatement of the Bianchi identities in the present geometrical setting), it is easily seen that

dQL = DQL = sDL/Dei
mdti

m ∧ ds+ 1
2sDL/Dvi

mndri
mn ∧ ds− sDL/DTji

mdej
shsnri

mn ∧ ds− 1
2um ∧ DPm

− 1
4umn ∧ DPmn.

hoosing infinitesimal deformationsX of the special form

X = Gi
msxd

D

Dei
m +

1

2
Gi

mnsxd
D

Dvi
mn ,

or simplicity, we have then

JsXd c DQL =
DL
Dei

mGi
mds+

1

2

DL
Dvi

mnGi
mnds−

1

2
Gi

mnS DL
DTji

mej
shsn −

DL
DTji

n ej
shsmDds+

−
1

2
Gi

mdxi ∧ DPm −
1

4
Gi

mndxi ∧ DPmn −
1

2
um ∧ JsXd c DPm −

1

4
umn ∧ JsXd c DPmn.

s3.6d

ulling-back Eq.(3.6) throughJs, we obtain the expression

Js * sJsXd c DQLd = Gi
msxdJs * S DL

Dei
mds−

1

2
dxi ∧ DPmD +

1

2
Gi

mnsxdJs * S DL
Dvi

mnds

−
DL
DTji

mej
shsnds+

DL
DTji

n ej
shsmds−

1

2
dxi ∧ DPmnD .

ue to the arbitrariness ofX, by imposing the requirement(3.4), we get two sets of final equatio

Js * S DL
Dei

m − Dk

DL
DTki

mD = 0, s3.7ad

Js * S DL
Dvi

mn −
DL
DTji

mej
shsn +

DL
DTji

n ej
shsm − Dk

DL
DRki

mnD = 0, s3.7bd

epresenting the actual field equations of the theory.

In particular, if we consider the purely gravitational Lagrangian
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L = 1
2ei

mdxi ∧ ej
ndxj ∧ Rlremnlr ª Lds, s3.8d

hereLª

1
4ei

mej
nRk,

lrei jklemnlr, Eqs.(3.7) yield

1
2ej

nRkl
slei jklemnsl = 0, s3.9ad

− 2Dksep
sdeq

lepqkieslmn = 0, s3.9bd

hereDksep
sd=]ep

s /]xk+vk
s

lep
l.

As is well known,(provided that detsei
mdÞ0) the theory described by Eqs.(3.9) is on-shel

quivalent to Einstein’s theory in empty space.
Joining together the present mathematical setting with that proposed in Refs. 1 and 2,

evelop a new geometrical approach to the combined theory of gravitational and Yang
elds.

To this end, letQ→M be a principal fiber bundle over space–time, with structural gro
emisimple Lie groupG.

Principal connections ofQ→M are additional dynamical fields; the latter may be represe
s sections of the affine bundleJ1Q/G→M (the space of principal connections), referred to loca
oordinatesxi, ai

A, A=1, . . . ,r =dim G (see Refs. 1 and 2 for more details).
The extended configuration space of the theory is the fibered productE3MC3MJ1Q/G (E

C3J1Q/G for short) over M.
The construction of the associated quotient spaceJsE3C3J1Q/Gd follows the lines illus

rated in Refs. 1 and 2 and in the present paper too. Then, once again referring to Refs. 1 a
omments and details, we recall that we can choose the components of the curvature tenFij

A of
he connection asJ-coordinates(together withTij

m and Rij
mn) on JsE3C3J1Q/Gd [More pre-

isely, if Aij
As. 1

2s]ai
A/]xj −]aj

A/]xidd are J-coordinates onJsE3C3J1Q/Gd, then we haveFij
A

2Aji
A+aj

Bai
CCCB

A , CCB
A being the structure coefficients of the Lie algebra of the groupG.]

There arer further contact two-forms onJsE3C3J1Q/Gd, expressed as

uA
ª dai

A ∧ dxi + Aij
Adxi ∧ dxj = FA − FA,

hereFA
ª

1
2Fij

Adxi ∧dxj, FA
ªFi

A∧dxi with Fi
A
ªdai

A+ 1
2ai

Baj
CCCB

A dxj.
Also, we complete the bases(2.17) and (2.18) to local bases ofTJsE3C3J1Q/Gd and

* JsE3C3J1Q/Gd, respectively, by introducing the vectors

D

Dxk ª
]

]xk − vk
m

nei
n ]

]ei
m −

1

2
vk

m
lTij

l ]

]Tij
m −

1

2
vk

m
lvi

ln ]

]vi
mn +

1

4
s− vk

m
lRij

ln + vk
lnRij

m
ld

]

]Rij
mn

+
1

2
ak

Bai
CCCB

A ]

]ai
A −

1

2
Fij

Bak
CCCB

A ]

]Fij
A ,

D

Dai
A ª

]

]ai
A,

D

DFij
A ª

]

]Fij
A ,

nd the forms

Fi
A, DFij

A
ª dFij

A + Fij
Bak

CCCB
A dxk.

he latter are consistent with the definition of the covariant differential operator D, acti
ensorial forms onJsE3C3J1Q/Gd as

DhA
ª dhA + ak

Bdxk ∧ hCCBC
A ,

DhA ª dhA − ak
Bdxk ∧ hCCBA

C .

or the present case, a Lagrangian is then a horizontal four-form onJsE3C3J1Q/Gd, locally

xpressed as
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L = Lsx,e,v,a,T,R,Fdds.

he corresponding Poincaré–Cartan form is given by

QL = Lds− 1
2um ∧ Pm − 1

4umn ∧ Pmn − 1
2uA ∧ PA,

herePAª s]L /]Fij
Addsij , and the ansatz

Js * sJsXd c dQLd = 0,

or all J-prolongable vector fieldsX on E3C3J1Q/G, yields field equation of the form(3.7)
ogether with(see Refs. 1 and 2)

Js * S ]L
]ai

A − Dk

]L
]Fki

AD = 0. s3.10d

ore in detail, in the theory of interacting gravitational and free Yang–Mills fields, the Lagra
is the sum of the purely gravitational Lagrangian(3.8) and of the free Yang–Mills one. Ther

ore, in the present geometrical framework, we have explicitly

L = Ldsª s 1
4ei

mej
nRkl

lr«i jkl«mnlr − 1
4Fij

AFpq
B gABhmnem

pen
i hlsel

qes
j edds, s3.11d

here eªdetsei
md, em

i denotes the inverse matrix ofei
m and gAB indicates the adjoint-invaria

etric of the Lie algebraG of the Lie groupG.
Inserting expression(3.11) in Eqs.(3.7) and (3.10) as well as taking the identities]en

j /]ei
m=

em
j en

i and]e/]ei
m=eem

i into account, we get the final equations

1
2ej

nRkl
sl«i jkl«mnsl = − sFj

AiFAk
j em

k − 1
4Fjk

AFA
jkem

i de, s3.12ad

− 2Dksep
sdeq

lepqkieslmn = 0, s3.12bd

DksFA
iked = 0, s3.12cd

hereFA
ij
ªFkh

B gBAhmnem
k en

i hsles
hel

j andDksFA
iked=]sFA

iked /]xk−ak
BsFC

ikedCBA
C .

In the right side of Eq.(3.12a) we recover the energy-momentum tensorTm
i
ªFj

AiFAk
j em

k

1
4Fjk

AFA
jkem

i of the Yang–Mills field.
It is worth noticing that all the restrictions about the vector fieldsJsXd in Eq. (3.4) may be

emoved. In fact, it is easily seen that Eq.(3.4) automatically implies

Js * sX c dQLd = 0, ∀ X P D1sJsE 3 C 3 J1Q/Gdd. s3.13d

s pointed out in Ref. 1, this remark plays an important role in the study of the relatio
etween Nöther vector fields and infinitesimal dynamical symmetries. This topic will be dea

n the next Section.

V. SYMMETRIES AND NOETHER THEOREM

The Poincaré–Cartan representation(3.13) of the field equations turns out to be especi
seful in the study of symmetries and conserved quantities. To see this point, let us introd

ollowing14,15

Definition 4.1: A vector field Z onJsE3C3J1Q/Gd is called a generalized infinitesim
agrangian symmetryif it satisfies the requirement

LZsLdsd = da, s4.1d
or somesm−1d-form a on JsE3C3J1Q/Gd.
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Definition 4.1 extends the usual notion of Lagrangian symmetry. In fact, if the vector fiZ
atisfiesLZsLdsd=0 and projects toM, then we have

L = detU ]xs
i

]xj UL + Cs ∀ s,

Cs,xsd denoting the flow ofZ.
Definition 4.2: A vector field Z onJsE3C3J1Q/Gd is called a Noether vector fieldif it

atisfies the following condition

LZQL = v + da, s4.2d

here v is a m-form belonging to the ideal generated by the contact forms anda is any
m−1d-form onJsEd.

As above, ifZ satisfies the trivial caseLZQL=0 and projects toM, thenZ is an infinitesima
ynamical symmetry. Indeed, in such a circumstance, denoting again bysCs,xsd the flow of Z, it

s a straightforward matter to see thatCs
* +Js +x−s

* is a critical section ifJs does.
Directly from Proposition 2.4 we derive
Proposition 4.1: If a generalized infinitesimal Lagrangian symmetry Z is aJ-prolongation o

ome vector field(2.11) on E3C3J1Q/G, then it is a Noether vector field.
Also, we have
Proposition 4.2: If a Noether vector field Z is aJ-prolongation of some vector field(2.11) on

3C3J1Q/G, then it is an infinitesimal dynamical symmetry. (See Ref. 1 for proofs.)
We can associate with any Noether vector fieldZ a corresponding conserved current,

estating a sort of Noether theorem in the present geometrical setting. In fact, givenZ satisfying
q. (4.2) and a critical sections :M→E3C3J1Q/G, Eqs.(3.13) and (4.2) imply

dJs * sZ c QL − ad = Js * sv − Z c dQLd = 0,

howing that the currentJs* sZcQL−ad is conserved on shell.
As an example, let us consider once again the Lagrangian(3.11), expressing gravity couple

ith a Yang–Mills field; the associated Poincaré–Cartan form is

QL = Lds− 1
4umn ∧ ei

sej
l«i jpq«slmndspq + 1

2uA ∧ FA
ijedsij .

s it is well known, diffeomorphisms, Lorentz transformations(for tetrad and connection) and
auge transformations(for the Yang–Mills field) are dynamical symmetries of the theory. We w
o restate these results in the newer scheme.

To start with, letY=jis] /]xid be the generator of a(local) one parameter group of diffeomo
hisms ofM. The vector fieldY may be “lifted” to vector fieldsX on E3C3J1Q/G, by setting

ocally

X = ji ]

]xi −
]jk

]xqek
m ]

]eq
m −

1

2

]jk

]xqvk
mn ]

]vq
mn −

]jk

]xqak
A ]

]aq
A . s4.3d

e stress that the procedure is not covariant but strictly depends on the local coordinates
e are working. In any case, we show that vector fields having a local representation(4.3) are
oether vector fields and infinitesimal dynamical symmetries.

To this end, recalling Eq.(2.11), we notice that vector fields(4.3) are J-prolongable; in

onnection with this, making use of Eq.(2.12), we easily get the local expression
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JsXd = ji ]

]xi −
]jk

]xqek
m ]

]eq
m −

1

2

]jk

]xqvk
mn ]

]vq
mn −

]jk

]xqak
A ]

]aq
A + Tjk

m ]jk

]xi

]

]Tij
m +

1

2
Rjk

mn]jk

]xi

]

]Rij
mn

+ Fjk
A ]jk

]xi

]

]Fij
A , s4.4d

or their J-prolongations onJsE3C3J1Q/Gd.
We prove now that the fieldsJsXd are infinitesimal Lagrangian symmetry. To do this, i

onvenient to work in new “tetrad” coordinates onE3C3J1Q/G of the form [of course, th
oordinate transformation(4.5) is thought in the invariant region ofE3C3J1Q/G in which one
aseÞ0]

xi, ei
m, vs

mn
ª vi

mnes
i , as

A
ª ai

Aes
i ,

Tsl
m

ª Tij
mes

i el
j , Rsl

mn
ª Rij

mnes
i el

j , Fsl
A

ª Fij
Aes

i el
j . s4.5d

n these coordinates the vector fieldJsXd assumes the simpler expression

JsXd = ji ]

]xi −
]jk

]xqek
m ]

]eq
m ,

hile the Lagrangian is locally described as

L = Lds= sRmn
mne− 1

4Fmn
A FA

mnedds,

hereFA
mn
ªFsl

B hsmhlngBA.
It is then a straightforward matter to verify that

LJsXdsLdsd = JsXdsLdds+ LdsJsXd c dsd = −
]jk

]xkLds+
]jk

]xkLds= 0.

herefore, from Propositions 4.1 and 4.2, we conclude that the vector fieldsJsXd are Noethe
ector fields and thus infinitesimal dynamical symmetries.

There are no(nontrivial) conserved quantities arising from the fields(4.4). In fact, a direc
alculation shows that the inner productJsXdcQL consists in an exact term plus a term vanish

dentically when pulled-back under critical section.
Another family of Noether vector fields and infinitesimal dynamical symmetries is giv

nfinitesimal gauge transformations for the Yang–Mills field.
The latter may be represented by vector fieldsX on E3C3J1Q/G of the form

X = Dib
A ]

]ai
A , s4.6d

herebA=bAsxdPFsMd andDib
A=]bA/]xi +bCai

BCBC
A .

As above, vector fields(4.6) are J-prolongable and theirJ-prolongationsJsXd on E3C
J1Q/G are locally expressed as

JsXd = Dib
A ]

]ai
A +

1

2
bCFij

BCBC
A ]

]Fij
A . s4.7d

he latter are infinitesimal Lagrangian symmetries, indeed one has

LJsXdsLdsd = LJsXds−
1
4Fij

AFA
ijedsd = − 1

2bBFij
CCCB

A FA
ijeds= 0. s4.8d

he vanishing of(4.8) is due to the relationgABCCD
A =gAfBgCfCDg

A , consequence of the adjoi

nvariance of the metricg.
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Once again, it follows that the vector fields(4.7) are Noether vector fields and infinitesim
ynamical symmetries of the theory. Moreover, ifs is a critical section, then the quantities

Q = Js * sJsXd c QLd = Dib
AsxdFA

ijsxddsj ,

re the conserved Noether currents, associated with the fields(4.7).
To introduce the third and last example, let us consider a tensor-valued functionAm

nsxd
GDs1,3d, ∀xPM. Through any such anAm

n, we can define the following vector field onE
C3J1Q/G

X = Ag
seq

s ]

]eq
g −

1

2
DqA

mn ]

]vq
mn , s4.9d

hereDqA
mn=]Amn /]xq+vq

msAsn−vq
snAm

s. We notice that expressions(4.9) are covariant, i
he sense that, under changes of coordinates, they undergo the transformation law

X = Āg
sēq

s ]

]ēq
g −

1

2
DqĀ

mn ]

]v̄q
mn ,

ith Ān
l=Ln

mAm
sLl

s.
Taking Eqs.(2.11) and (2.12) into account, it is easily seen that vector fields(4.9) are

-prolongable and theirJ-prolongations are locally described as

JsXd = Ag
seq

s ]

]eq
g −

1

2
DqA

mn ]

]vq
mn +

1

2
Am

sTij
s ]

]Tij
m +

1

2
Am

sRij
sn ]

]Rij
mn . s4.10d

s made for the previous cases, we show that vector fields(4.10) are infinitesimal Lagrangia
ymmetries. To do this, it is again convenient working in the coordinates(4.5), in which the fields
4.10) have local expression

JsXd = Ag
seq

s ]

]eq
g −

1

2
fDqA

mnes
q + Ag

svg
mng

]

]vs
mn − Ag

mag
A ]

]am
A +

1

2
fAm

sTlr
s − 2Ag

lTgr
m g

]

]Tlr
m

+
1

2
fAm

gRsl
gn − Ag

sRgl
mng

]

]Rsl
mn − Ag

mFgn
A ]

]Fmn
A .

sing the latter, it is a straightforward matter to verify that the identity

LJsXdsLdsd = Am
mLds+ AmlFmn

A Fls
B hnsgABeds= 0

olds true, because of the skew-symmetry ofAmn and the symmetry ofFmn
A Fls

B hnsgAB.
As above, the conclusion follows that the fields(4.10) are infinitesimal dynamical symmetr

nd that, denoting bys a critical section, the quantities

Q = Js * sJsXd c QLd = − 1
2DtA

absxdei
msxdej

nsxdei jptemnabdsp,

re the corresponding conserved Noether currents.
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yperbolic Kac Moody algebras and Einstein billiards
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We identify the hyperbolic Kac Moody algebras for which there exists a Lagrang-
ian of gravity, dilatons, andp-forms which produces a billiard that can be identified
with their fundamental Weyl chamber. Because of the invariance of the billiard
upon toroidal dimensional reduction, the list of admissible algebras is determined
by the existence of a Lagrangian in three space–time dimensions, where a system
atic analysis can be carried out since only zero-forms are involved. We provide all
highest dimensional parent Lagrangians with their full spectrum ofp-forms and
dilaton couplings. We confirm, in particular, that for the rank 10 hyperbolic algebra,
CE10=A15

s2d∧, also known as the dual ofB8
∧∧, the maximally oxidized Lagrangian is

nine-dimensional and involves besides gravity, 2 dilatons, a 2-form, a 1-form, and
a 0-form. ©2004 American Institute of Physics.[DOI: 10.1063/1.1806537]

. INTRODUCTION

It has been shown recently that the dynamics of the gravitational scale factors b
quivalent, in the vicinity of a spacelike singularity, to that of a relativistic particle moving f
n an hyperbolic billiard and bouncing on its walls.1–6A criterion for the gravitational dynamics
e chaotic is that the billiard has a finite volume. This in turn stems from the remarkable p

hat the billiard can be identified with the fundamental Weyl chamber of an hyperbolic Kac M
lgebra. Some of these algebras are well known: in particular, the famous hyperbolic a
E10=E8

∧∧, BE10=B8
∧∧, DE10=D8

∧∧, AEn=An−2
∧∧ ; more generally, the names here given to the a

ras are taken from Refs. 12 and 13; in the table of the Dynkin diagrams given in Ref.
ameDr+1

s2d should be replaced byDr+1
s2d∧] E10,BE10,DE10 (Refs. 8–10) are related to strings, sup

ravities, andM-theory; theAEn,n,10 (Ref. 7) emerge from pure gravity in various dimensi
nd more generally, the algebras that are overextensions of finite dimensional sim
lgebras11,12—also twisted overextensions13—are associated with gravitational models that red

o G/H coset models upon toroidal dimensional reduction toD=3. Several other hyperbo
lgebras also appear in the billiard analysis ofD=4 andD=5 spatially homogeneous cosmolog
odels.14 This kind of analysis has attracted a lot of interest recently in connection
-dualities15 and hidden symmetries ofM-theory.16–21

The purpose of this paper is twofold: first we select all hyperbolic Kac Moody algebr
hich a billiard description exists and then we explicitly construct all Lagrangians desc
ravity coupled to dilatons andp-forms producing these billiards.

We are able to give exhaustive results because(i) the hyperbolic algebras are all known a
lassified(note however six missing cases in Ref. 22, two with rank 3, two with rank 4, an
ith rank 5; their Dynkin diagrams are displayed at the end of the paper),22 and(ii ) only the finite
umber of algebras with rankr between 3 and 10 are relevant in this context. Note that the

nfinitely many hyperbolic algebras of rank two and that there exists no hyperbolic algebra
.10. The analysis is considerably simplified because of the invariance of the billiard

)Aspirant du Fonds National de la Recherche Scientifique, Belgique. Electronic mail: sdebuyl@ulb.ac.be
)
Electronic mail: cschomb@ulb.ac.be
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oroidal dimensional reduction to dimensionsDù3. Indeed, as explained in Ref. 12, the billi
egion stays the same, but a symmetry wall inD dimensions may become an electric or magn

p-form wall in a lower dimension. The invariance under dimensional reduction implies in pa
ar that the selection of algebras with a billiard description can be performed by ana
agrangians inD=3 dimensions.

Simplifications inD=3 occur because only 0-forms are present: indeed, via appropria
lizations, allp-forms can be reduced to 0-forms. To be concrete, for the hyperbolic algeb
eal rank r between 3 and 6, we first try to reproduce their Dynkin diagram with a setr
ominant walls comprising one symmetry wallsb2−b1d and sr −1d scalar walls. If this can b
one, we still have to check that the remaining walls are subdominant i.e., that they can be
s linear combinations of the dominant ones with positive coefficients. In particular, this a
equires that any dominant set necessarily involves one magnetic wall andsr −2d electric walls
ote that our search for gravitational Lagrangians inD=3 is systematic although no symmetry

equired. To deal with the hyperbolic algebras of ranks 7–10, it is actually not necessary
educe to three dimensions: the overextensions of finite simple Lie algebras have alrea
ssociated with billiards of some Lagrangians and for the remaining four algebras, the r
ave found in the previous cases allow to straightforwardly construct the Lagrangian
aximal oxidation dimension.

We then analyze which three-dimensional system admits parents in higher dimensio
onstruct the Lagrangian in the maximal oxidation dimension. In order to do so, we ta
lgebra in the previous list and we determine successively the maximal space–time dimen
ilaton number, thep-form content, and the dilaton couplings:

1) One considers the Dynkin diagram of the selected algebra and looks at the lengt
“A-chain” (an “A-chain” of lengthk is a chain ofk vertices with norm squared equal to 2 a
simply laced), starting with the symmetry root. Our analysis produces the following o
tion rule: if the A-chain has lengthk, the theory can be oxidized up to

(a) Dmax=k+2, if the next connected root has a norm squared smaller than 2;
(b) Dmax=k+1, if the next connected root has a norm squared greater than 2.

This generalizes the oxidation rule by Refs. 23–26, obtained by group theoretica
ments applied to coset models.

2) For given space dimensiond=D−1 and rankr of the algebra, the number of dilatons is giv
by N=r −d because the dominant walls are required to ber independent linear forms in t
d scale factorshb1, . . . ,bdj and theN dilatons.

3) Because it is known how thep-form walls connect to the A-chain,12 one can read on th
Dynkin diagram whichp-forms [or their dualsd−p−1d-forms] appear in the maximal ox
dation dimension.

4) The dilaton couplings of thep-forms are computed from the norms and scalar products o
walls which have to generate the Cartan matrix of the hyperbolic algebra. This me
particular that, even if the nature of the walls changes during the oxidation procedur
norms and scalar products remain unchanged. Note also that in all dimensionsD.3 the
subdominant conditions are always satisfied.

As a by-product of our analysis, we note that, for each billiard identifiable as the funda
eyl chamber of an hyperbolic algebra, the positive linear combinations of the dominan

epresenting the subdominant ones only contain integer coefficients. Hence, the dominant
he Lagrangian correspond to the simple roots of the hyperbolic algebra, while the subdo
nes correspond to nonsimple positive roots. The gravitational theory does not give all the
oots; even the three-dimensional scalar Lagrangians do not describe coset spaces in
evertheless, the reflections relative to the simple roots generate the Weyl group of the hy
lgebra; this group in turn gives an access to other positive roots and suggests that a La
apable to produce these roots via billiard walls needs more exotic fields than justp-forms.
Our analysis is linked with the important physical problem of hidden symmetries of gravita-
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ional theories. Furthermore, as recalled above, the hyperbolic character of the underly
oody algebra has crucial consequences on the dynamical features of the physical syste

onsideration as it is linked to chaos and the BKL behavior.1 As these properties are discusse
ength in the literature, we shall not repeat them here and refer the interested reader to Ref
7–29 for hidden symmetries and Refs. 5 and 7 for chaotic behavior.

Our paper is organized as follows: The general framework of our analysis is outlined
rst section: the form of the searched for gravitational Lagrangians is recalled, together w

ist of their walls and the metric used to build the Cartan matrix. In the next four sections, w
ith hyperbolic algebras of rank 3–6. First, inD=3 space–time dimensions, we compute

hree-dimensional dilaton couplings needed to reproduce the Dynkin diagram and check th
f the subdominant walls. This is how we select the admissible algebras. Next, for each o
e determine which Lagrangian can be oxidized and we produce it in the maximal ox
imension. The 18 hyperbolic algebras of ranks 7–10 are reviewed in the last section; as e
efore, they are singled out for special treatment because 14 of them are overextensions
imensional simple Lie algebras and the remaining 4 are dual to the overtextensionBn

∧∧ (with n
5,6,7,8). We explicitly write down theDmax=9 Lagrangian system obtained previously in R
0, the billiard of which is the fundamental Weyl chamber of the algebraCE10. Among the fou
yperbolic algebras of rank 10,CE10 is special because, unlikeE10, BE10, andDE10, it does no
tem from supergravities. Finally, we close our paper with some conclusions.

I. GENERAL FRAMEWORK

The billiard analysis refers to the dynamics, in the vicinity of a spacelike singularity
ravitational model described by the Lagrangian(compared to the notations of Ref. 12, we h
ut a factor of 2 in the exponents of the dilaton couplings; this way, a factor 1/2 will be rem

n front of the dilatonic part of thep-form walls)

LD = sDdR! 1 − o
a

! dfa ∧ dfa −
1

2o
p

e2lspdsfd ! Fsp+1d ∧ Fsp+1d, D ù 3, s2.1d

here lspdsfd=oa la
spdfa and !1=ÎusDdgu dx0∧ ¯ ∧dxD−1. The dilatons are denoted byfa sa

1, . . . ,Nd; their kinetic terms are normalized with a weight 1 with respect to the Ricci scala
instein metric has Lorentz signatures−, + , . . . , +d; its determinant issDdg. The integerpù0

abels the variousp-formsAspd present in the theory, with field strengthsFsp+1d=dAspd. If there are
everalp-form gauge fields with the same form degreep, we will use different lettersAspd ,Bspd , . . .,
o distinguish them.

The rules for computing the billiards have been given in details in Refs. 6, 7, and 12 to
e refer the reader. We here recall the essential tools that are used throughout the pape

. The walls

The walls bounding the billiard have different origins: some arise from the Einstein–H
ction and involve only the scale factorsbi si =1, . . . ,dd, introduced through the Iwasawa deco
osition of the space metric. They are

1) the symmetry walls

wij
Ssbd = b j − bi, i , j , s2.2d

and

2) the curvature walls
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wi; jk
G sbd = 2bi + o

,Þi,j ,k
b,, i Þ j ,i Þ k, j Þ k. s2.3d

The others come from the energy densities of thep-forms; they depend on the scale fac
and the dilatons and are

3) the electric walls

wi1¯ip
Espd sb,fd = bi1 + ¯ + bip + o

a

la
spd fa, i1 , ¯ , ip s2.4d

and
4) the magnetic walls

wi1¯id−p−1

Mspd sb,fd = bi1 + ¯ + bid−p−1 − o
a

la
spd fa, i1 , ¯ , id−p−1. s2.5d

Notice that upon the change offa into −fa, the electric walls of ap-form become th
agnetic walls of its dualsd−p−1d-form and vice versa.

The region of hyperbolic space where the particle motion takes place is defined thro
nequaltieswij

Sù0, wi; jk
G ù0, wi1¯ip

Espd ù0, andwi1¯id−p−1

Mspd ù0; in fact, these inequalities follow from
impler subset, namely

b1 ø b2
¯ ø bd, w1;23

G ù 0, w1¯p
E ù 0, w1¯sd−p−1d

M ù 0, s2.6d

hich may still be redundant. The walls forming the minimal set needed to define complet
illiard are called “dominant”; the others are referred to as subdominant. More precisely, a
alled subdominant if it can be expressed as a linear combination with positive coefficient
ominant ones.

. The metric

Given two walls wsb ,fd=wi bi +wa fa=wm bm and w8sb ,fd=wi8b
i +wa8fa=wm8bm—the

msm=1, . . . ,d,1+d, . . . ,N+dd here denote scale factorsbi si =1, . . . ,dd and dilatons
a+d=fa—their scalar product is defined as

swuw8d = Gmn wm wn8 = o
i

swi wi8d −
1

d − 1Soi

wiDSo
j

wj8D + o
a

swa wa8d. s2.7d

he metricGmn is the inverse of the Lorentzian metricGmn defining the kinetic term of the sca
actors and dilatons; as shown in(2.7), it depends explicitly on the spatial dimensiond. Notice tha

symmetry wall has a norm squared equal to 2. Furthermore, thep-form electric wallw1¯p
E is

rthogonal to all symmetry walls except one, namely,wp,p+1
S =bp+1−bp; the corresponding sca

roduct is equal to −1.
Let hwB=wBsb ,fd ,B=1, . . . ,rj denote a set of dominant walls. The enclosed billiard vol

s finite if the scalar products are such that ther 3 r matrix

ABC = 2
swBuwCd
swBuwBd

s2.8d
s the generalized Cartan matrix of an hyperbolic Kac Moody algebra of rankr.
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II. RANK 3 HYPERBOLIC ALGEBRAS

. D=3

In space dimensiond=2, one has a single symmetry wall, namely,

a1 = b2 − b1 s3.1d

ndN=r −d=3–2=1dilaton denoted asf. It is obvious that only a 0-form magnetic wall can
onnected to the symmetry wall, say

a2 = b1 − lf. s3.2d

Let us show that the last dominant wall has to be an electric one denoted by

a3 = l8f. s3.3d

Indeed, had one taken for dominant the magnetic wallã3=b1−l8f instead of(3.3), then, its
orresponding electric wall, which is preciselya3=l8f, would be dominant too because of
mpossibility to write it as a linear combination with positive coefficients of the other threea1,a2,
nd ã3.

Using the metric(2.7) adapted tod=2, we build the matrix

Aij = 2
saiua jd
saiuaid

s3.4d

nd obtain

A =1
2 − 1 0

−
2

l2 2 − 2
l8

l

0 − 2
l

l8
2 2 , s3.5d

hich has to be identified with the generalized Cartan matrix of an hyperbolic Kac Moody a
f rank 3. Becausef can be changed into −f, l andl8 can be chosen positive.

Since in such a matrix(i) the nonzero off-diagonal entries are negative integers and(ii ) not
ny finite or affine Lie algebra of rank 2 has an off-diagonal negative integer,−4, one immedi
tely infers from the expression ofA21 in (3.5) that the allowed values forl are

l P hÎ2,1,Î2/3,1/2j. s3.6d

eing a symmetry wall,a1 has norm squared equal to 2;a2 has norm squaredl2ø2, so that, i
he Dynkin diagram has an arrow betweena1 and a2, this arrow must be directed towardsa2.
nce the value ofl has been fixed, one needs to findl8 such that both 2l8 /l and 2l /l8 are
ositive integers: this leavesl=l8 /2 ,l8 ,2l8. These values are further constrained by the co
ion that the subdominant wallsã2=lf and ã3=b1−l8f, stay really behind the others, i.e., t
here existk.0 and,ù0 such that

ã2 = ka3 ⇒ l/l8 = k, s3.7d

ã3 = a2 + ,a3 ⇒ l/l8 = , + 1, s3.8d
hich impliesk=,+1ù1. Hence, the subdominant conditions require
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l8 = l or l8 = l/2. s3.9d

et us summarize the 8 different possibilities for the pairssl ,l8d that lead to Cartan matrices a
raw the corresponding Dynkin diagrams:

i) for l=Î2 andl8=Î2, the Dynkin diagram describes the overextensionA1
∧∧

and for l=Î2 and l8=1/Î2, the Dynkin diagram corresponds to the twis
overextension13 A2

s2d∧

ii ) l=1; the two possibilities arel8=1 andl8=1/2. TheDynkin diagrams are, respective

iii ) l=Î2/3; the two possibilities arel8=Î2/3 andl8=1/Î6 with Dynkin diagrams given b

iv) l=1/2; the twopossibilities arel8=1/2 andl8=1/4. TheDynkin diagrams are, respe
tively,

Comments:

1) Whenl8=l, a2 anda3 have to be assigned to a single scalar field; whenl8Þl, two scalar
are needed in the three-dimensional Lagrangian.

2) The algebras3-8d is missing in Table 2 of Ref. 22. The subalgebra obtained when rem
the first or the last root is the affineA2

s2d; the removal of the middle root givesA13A1 so tha
this algebra satisfies indeed the criterion of hyperbolicity.

3) Remark that none of the 8 algebras above is strictly hyperbolic.(A strictly hyperbolic algebr
is such that upon removal of a simple root, only finite Lie algebras are left behind.) The latte
are listed in Table 1 of Ref. 22.

. D=4

The four-dimensional Lagrangian will have no dilaton in it sinceN=r −d=0; hence, if such
agrangian exists, it cannot stem from a higher dimensional parent andDmax=4. When looking a

he algebras of rank 3 selected above, one sees that onlys3-1d ands3-2d have an A-chain of leng

=2 and allow,a priori, a second symmetry wall. One starts with
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a1 = b3 − b2 and a2 = b2 − b1. s3.10d

The third root may only containb1 and can be associated with

1) The curvature walla3=2b1 in the case of four-dimensional pure gravity. The Dynkin
gram bears numbers3-1d above and is the overextensionA1

∧∧.
2) The electric/magnetic wall of a 1-form:a3=b1. This case leads to diagrams3-2d which

belongs to the twisted overextensionA2
s2d∧.

One sees immediately that the regions of hyperbolic space delimited by both sets o
oincide; the difference is entirely due to the normalization of the third wall which is thus re
ible for the emergence of two distinct Cartan matrices.

V. RANK 4 HYPERBOLIC ALGEBRAS

. D=3

In order to reproduce through walls the four roots of such an algebra, besides the scale
1 andb2, one needsN=2 dilatons; they will be denoted asf1=f ,f2=w. There is one symmet
all, i.e., a1=b2−b1 and,a priori, two choices can be made for the next three dominant w
ither(i) one takes one magnetic wall and two electric ones or(ii ) one takes one electric wall a
wo magnetic ones. We will start with case(i) and show later how case(ii ) is eliminated on
ccount of the subdominant conditions.

. One magnetic wall and two electric ones

The dominant walls are thus the symmetry wall

a1 = b2 − b1, s4.1d

he magnetic wall, written as(this ansatz represents no loss of generality because starting fro
ore general expressiona2=b1−lf+mw, one can redefine the dilatons via an orthog

ransformation—leaving the dilaton Lagrangian invariant—to get the simpler expressio
bove)

a2 = b1 − lf s4.2d

nd the two electric ones

a3 = l8f − m8w, s4.3d

espectively,

a4 = l9f + m9w. s4.4d

s before, the signs have already been distributed to account for the negative signs of
iagonal Cartan matrix elements when allowing the parameters to be either allù0 or all ø0; that

hey can further be chosen positive is due to the possibility to changefa into −fa. The genera
tructure of the Dynkin diagram is therefore the following:

here we have not drawn the arrows andq,m,n,p are integers which count the number of li
oining two vertices.

What are the possible values that can be assigned toq, m, n, andp? Since this diagram has
ecome the Dynkin diagram of an hyperbolic algebra, the maximal value of each of these
s 3, because there is no finite or affine algebra of rank 3 with off-diagonal Cartan matrix elements
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maller than −3. Another point is that if there were an arrow betweena1 and a2 it necessaril
oints towardsa2: one has indeedsa1,a2d=−1, sa1,a1d=2 (it is a symmetry wall), sa2,a2d=l2

ndA21=−2/l2 can only be −1,−2 or −3. We may also state that ifAij is neither 0 nor −1 the

ji =−1, because this is a common property of all finite or affine algebras of rank 3. Tak
hese restrictions into account, one has to consider three different situations characterized
ively, by (i) m, n, p are all different from zero,(ii ) n=0 andm, p are not zero,(iii ) p=0 andn, m
re not zero.

i) If m, n, andp are all nonzero, then they must all be equal to 1 because, upon remova
root a1, one obtains a triangular diagram; now, in the set of the finite or affine alg
there is only one such triangular Dynkin diagram and it is simply laced. That leaa
priori , three cases labeled by the valuesq=1,2,3. Thecorresponding dilaton couplings a

l =Î2

q
; l8 =

1
Î2q

; m8 =Î 3

2q
; l9 =

1
Î2q

; m9 =Î 3

2q
. s4.5d

The Dynkin diagrams corresponding toq=1, 2, and 3, are respectively,

which is the overextensionA1
∧∧ and

The subdominant conditions are satisfied in all cases; let us show this explicitly. W
couplings in(4.5), the dominant walls other than the symmetry wall read

a2 = b1 − 2
f

Î2q
, a3 =

f

Î2q
− wÎ 3

2q
, a4 =

f

Î2q
+ wÎ 3

2q
. s4.6d

The corresponding subdominant ones are

ã2 = 2
f

Î2q
, ã3 = b1 −

f

Î2q
+ wÎ 3

2q
, ã4 = b1 −

f

Î2q
− wÎ 3

2q
s4.7d

and they obey

ã2 = a3 + a4, ã3 = a2 + a4, ã4 = a2 + a3. s4.8d

ii ) If n=0 andm, p are not zero, the structure of the Dynkin diagram is the following:

Comparison with the similar graphs of Ref. 22 impose(i) m=p=2, (ii ) q=1 or q=2, and
(iii ) an arrow pointing froma2 to a3 and another arrow froma2 to a4. Accordingly, the
dilaton couplings producing them are given by

l =Î2
; l8 =

1
; m8 =

1
; l9 =

1
; m9 =

1
. s4.9d
q Î2q Î2q Î2q Î2q
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The Dynkin diagrams corresponding toq=1 and 2, are, respectively,

Again, the subdominant conditions are fulfilled: indeed, one getsã2=a3+a4, ã3=a2+a4,
ã4=a2+a3.

iii ) If p=0 andn, m are not zero, the structure of the Dynkin diagram is the following:

The dominant walls now simplify as

a1 = b2 − b1, a2 = b1 − lf, a3 = l8f − m8w, a4 = m9w. s4.10d

We want the corresponding magnetic and electric walls to be effectively subdomina
is indeed satisfied whens1d l and thereforel8 are positive;s2d l8 /lø1 sthat isl8 /l=1 or
l8 /l=1/2d, ands3d m8 /m9ùl8 /l. Accordingly, the remaining possibilities forl, l8, and
m8 are,a priori, those given in Table I.

The different values form8 correspond to distinct admissible values forA32. Finally, for the
alues ofm9, we again meet two cases depending on which ofA34 or A43 is equal to −1. In eac
ase, one has still to check the subdominant conditions.

1) The two possibilities lead to a Cartan matrix: eitherm9=2Î2 or m9=Î2. The former case
ruled out because the subdominant conditions cannot be satisfied. The Dynkin diagra
remaining case describes the twisted overextensionD3

s2d∧,

2a) Eitherm9=Î2/3 orm9=Î6; both lead to hyperbolic algebras which correspond, respect
to the overextensionG2

∧∧,

TABLE I. Possible couplings.

l l8 m8

1 Î2 Î2 Î2
2.a Î2 1/Î2 Î3/2
2.b Î2 1/Î2 1/Î2
2.c Î2 1/Î2 1/Î6
3 1 1 1
4.a 1 1/2 Î3/2
4.b 1 1/2 1/2
4.c 1 1/2 1/Î12
5 Î2/3 Î2/3 Î2/3
6.a Î2/3 1/Î6 1/Î2
6.b Î2/3 1/Î6 1/Î6
6.c Î2/3 1/Î6 1/Î18
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and to the twisted overextensionD4
s3d∧,

2b) Either m9=Î1/2 or m9=Î2; the Dynkin diagrams correspond respectively to the tw
overextensionA4

s2d∧,

and to the overextensionC2
∧∧,

2c) Only the valuem9=2/Î6 is compatible with the subdominant conditions. The correspon
algebra is given by

3) Here again, only the valuem9=1 can be retained on account of the subdominant condi
This leads to

4a) Either m9=Î3 or m9=1/Î3; both values are admissible. They lead to

4b) Either m9=1/2 or m9=1; both values are allowed and they give, respectively,

4c) Does not correspond to any hyperbolic algebra.
5) Only the valuem9=Î2/3 is compatible with the subdominant conditions but again there

corresponding hyperbolic algebra.
6a) Only the first of the 2 valuesm9=Î2 andm9=Î2/3 leads to an hyperbolic algebra, which

6b) and (6c) do not give a hyperbolic algebra.

. One electric wall and two magnetic ones

This case can be eliminated on account of the subdominant conditions. Indeed, withou
enerality, one may choose the parametrization of the dominant walls such that the elec
akes a simple form, i.e., such that
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a1 = b2 − b1,

a2 = b1 − lf − mw,

a3 = b1 − l8f + m8w,

a4 = l9f. s4.11d

eing assumed subdominant, the electric walls associated witha2 and a3, namelyã2=lf+mw
ndã3=l8f−m8w need be proportional toa4; this happens only whenm=m8=0, but then(4.11)
oes no longer define a rank four root system.

. D>3

Our aim is now to determine which of the 17 algebras selected in the previous section
agrangians in higher space–time dimensions and to provide the maximal oxidation dim
nd thep-forms content with its characteristic features. By considering each Dynkin diagra

ooking at the length of the A-chain starting from the symmetry roota1, we establish the followin
empirical” oxidation rule: if the A-chain has lengthk one can oxidize the spatial dimension up
i) d=k+1 if the norm squared of the next connected root is smaller than 2 and up(ii ) to d=k if
he norm squared of the next connected root is greater than 2. In particular, the subd
onditions are always satisfied. Explicitly,

1) Diagrams4-1d is the overextensionA2
∧∧. We know from Ref. 12 that it corresponds to p

gravity in Dmax=5.
2) Diagramss4-2d ands4-3d have an A-chain of length 1; the three-dimensional theory ca

be oxidized.
3) Diagrams4-4d: Dmax=4. The walls are given by

a1 = b3 − b2, a2 = b2 − b1, s4.12d

a3 = b1 − f/Î2, a4 = b1 + f/Î2. s4.13d

The last two are the electric and magnetic dominant walls of a one-form coupled
dilaton. One sees immediately thatã3=a4 and ã4=a3.

4) Diagrams4-5d: the three-dimensional Lagrangian has no parent inD.3.
5) Diagrams4-6d is the twisted overextensionD3

s2d∧. The 3D Lagrangian cannot be oxidiz
the reason being thatia3i2.2.

6) Diagram s4-7d is the overextensionG2
∧∧. We know from Ref. 12 that the theory can

oxidized up toDmax=5 where the Lagrangian is that of the Einstein–Maxwell system
7) Diagrams4-8d describesD4

s3d∧. The A-chain has lengthk=3 and the next connected roo
longer thanÎ2. The maximal oxidation dimension isDmax=4 and the dominant walls a
given by

a1 = b3 − b2, a2 = b2 − b1, s4.14d

a3 = b1 − Î3/2f, a4 = Î6f. s4.15d

The roota3 is the electric wall of a 1-form,a4 is the electric wall of a 0-form. One eas
checks that the subdominant magnetic walls satisfy

ã3 = b1 + Î3/2f = a3 + a4, s4.16d

1 2
ã4 = b + b − Î6f = 2a3 + a2. s4.17d
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8) Diagrams4-9d representsA4
s2d∧. Dmax=4. Its billiard realization requires

a1 = b3 − b2, a2 = b2 − b1, s4.18d

a3 = b1 − Î1/2f, a4 = Î1/2f. s4.19d

The last two are again the electric walls of a 1-form and a zero-form; only the d
couplings differ from the previous ones. The subdominant conditions are fulfilled: in
one obtainsã3=a3+2a4 and ã4=2a3+a4+a2.

9) Diagrams4-10d is the overextensionC2
∧∧. We know from Ref. 12 that the theory can

oxidized up toDmax=4.
10) Diagrams4-11d hasDmax=4 and

a1 = b3 − b2, a2 = b2 − b1, s4.20d

a3 = b1 − Î1/6f, a4 = Î2/3f. s4.21d

It has the same form content ass4-8d ands4-9d but the dilaton couplings are still differe
Again, the subdominant conditions are fulfilled:ã3=a3+a4 and ã4=2a3+a2.

11) Diagramss4-12d to s4-17d: their 3D Lagrangians cannot be oxidized because there
unique root of norm squared equal to 2.

Comments:

a) The subdominant conditions are indeed always fulfilled inD.3 and only positive intege
coefficients enter the linear combinations.

b) In cases4-4d, a3 and a4 are the electric and magnetic walls of the same one-form. I
other cases, they are respectively assigned to a single one-form and a single zero-fo
root multiplicity being one, there is no room for variousp-forms with identical couplings

. RANK 5 HYPERBOLIC ALGEBRAS

. D=3

The three-dimensional Lagrangians needN=r −d=3 dilatonssf1=f ,f2=w ,f3=cd; there are
wo scale factors and one symmetry walla1=b2−b1. In order to reproduce the other four sim
oots of the algebra in terms of dominant walls, one hasa priori three different cases to consid
ndeed, the set of dominant walls can comprise(i) one magnetic wall and three electric ones,(ii )
wo electric walls and two magnetic ones and(iii ) one electric wall and three magnetic ones. O
he first possibility will survive because as soon as the set of dominant walls contains mo
ne magnetic wall, one can show that the corresponding electric walls cannot fulfill the su
ant conditions. Although the proof is a straightforward generalization of the one given i

V A, we will provide it at the end of this section.

. One magnetic wall and three electric ones

As in the previous sections, we use the freedom to redefine dilatons through an orth
ransformation and choose the parametrization of the dominant walls such that

a1 = b2 − b1, s5.1d

a2 = b1 − lf, s5.2d
a3 = l8f − m8w, s5.3d
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a4 = l9f + m9w − n9c, s5.4d

a5 = l-f + m-w + n-c. s5.5d

One sees immediately that the symmetry roota1 is only linked to the magnetic roota2 while

2 can further be connected to one, two or three roots. According to(Ref. 22), five different
tructures for the Dynkin diagrams can be encountered; we classify them below accordin
otal number of roots connected toa2; this number is 4 in case A, 3 in cases B and C, 2 in c

and E.

Note that C and D simply differ by the assignment of the symmetry root.

Case A:This case may be discarded. Indeed, there are in fact two hyperbolic algebras
ynkin diagram of that shape: one of them has a long and four short roots, while the other
ne short and four long roots. Either one cannot find couplings that reproduce their Cartan
r it is the subdominant condition that is violated. More concretely:

(A1) Consider first the case for whicha1,a2,a3,a4 correspond to the short roots anda5 is the
ong root. Then, according to(Ref. 22), one needs

ia1i2 = ia2i2 = ia3i2 = ia4i2 = 2, and ia5i2 = 4. s5.6d

hese conditions are immediately translated into

l2 = 2, l82 + m82 = 2, l92 + m92 + n92 = 2, l-2 + m-2 + n-2 = 4. s5.7d

encel=Î2. From the shape of the diagram or equivalently from the elements of the
atrix, one infers successively

1) A23=−1=−ll8 which givesl8=1/Î2 andm8=Î3/2;
2) A24=−1=−ll9 andA34=0=l8l9−m8m9 which givesl9=1/Î2, m9=1/Î6 andn9=2/Î3;
3) A25=−2=−ll- which givesl-=Î2;
4) A35=0=l8l-−m8m- which givesm-=Î2/3 and, using the norm ofa5, n-=2/Î3.

Notice that the conditionA45=0=l9l-+m9m-−n9n- is identically satisfied.
In summary, in order to fit the Dynkin diagram displayed in A(with simple lines betweena2

nda1,a3,a4 and a double line betweena2 anda5 oriented towardsa2), besides the symmet
all, we need the following set of dominant walls:

a2 = b1 − Î2f, a4 =
f

+
w

−
2c

, s5.8d
Î2 Î6 Î3
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a3 =
f

Î2
−Î3

2
w, a5 = Î2f +Î2

3
w +

2c

Î3
. s5.9d

t is now easy to verify, for instance, thatã3=b1−sf /Î2d+Î3
2w, cannot be written as a positi

inear combination of theai , i =2, . . . ,5. Accordingly, on account of the subdominant conditi
his case has to be rejected.

(A2) There is another possibility producing the same diagram as in(A1) above where th
ymmetry walla1 now plays the role of the long root: their norms are

ia1i2 = 2 and ia2i2 = ia3i2 = ia4i2 = ia5i2 = 1, s5.10d

ut the equations giving the couplings analogous to Eq.(1)–(4) above have no solution.
(A3) In the third case, there is a short and four long roots with norms

ia1i2 = ia2i2 = ia3i2 = ia4i2 = 2 and ia5i2 = 1. s5.11d

ne can solve the equations for the couplings and write the following set of billiard wal
ymmetry walla1=b2−b1 and

a2 = b1 − Î2f, a4 =
f

Î2
+

w

Î6
−

2c

Î3
, s5.12d

a3 =
f

Î2
−Î3

2
w, a5 =

f

Î2
+

w

Î6
+

c

Î3
. s5.13d

owever, like in case(A1) above, one sees immediately thatã3=b1−sf /Î2d+s3w /Î6d, for in-
tance, is not subdominant; that is the reason why we discard this possibility.

Cases B:There are three hyperbolic algebras with a Dynkin diagram of this shape.
(B1) The first one admits the following couplings:

l = Î2; l8 =
1
Î2

; m8 = Î3
2;

l9 = 0; m9 = Î2
3 ; n9 =

2
Î3

; l- =
1
Î2

; m- =
1
Î6

; n- =
2
Î3

s5.14d

nd is the overextensionA3
∧∧

(B2) The second one has the following Dynkin diagram:

nd the following set of dilaton couplings:

l = 1;l8 = 1
2 ; m8 =

Î3

2
;

l9 = 0; m9 =
1

; n9 =
Î2

; l- = 1
2 ; m- =

1
; n- =

Î2
. s5.15d
Î3 Î3 2Î3 Î3
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(B3) The diagram of the third one is the same ass5-2d but with the reversed arrow; this
mpossible since in the present context the norms are required to satisfyia1i2ù ia2i2.

Case C:In order to generate this kind of structure, one needsl-=m-=0 andl8l9=m8m9.
ext, from the subdominant condition forã3, we deduce thatA32 can be −2 or −3 but since w
ant hyperbolic algebras, only the valueA32=−2 can be retained. ThereforeA23=−1 andl=Î2,
8=l9=1/Î2, m8=1/Î2, m9=1/Î2, andn9=1. A priori, one might still haven-=2,1,Î2 but only
ne value is compatible with the magnetic wallã5 being subdominant, namelyn-=1. Accord-

ngly, the couplings need to be defined as

l = Î2; l8 =
1
Î2

; m8 =
1
Î2

;

l9 =
1
Î2

; m9 =
1
Î2

; n9 = 1; l- = 0; m- = 0; n- = 1. s5.16d

nd the Dynkin diagram is the following:

Case D:Dynkin diagrams of this shape can only be recovered with

l9 = l- = 0 and either l = Î2 or l = 1. s5.17d

(D.1) l=Î2.
All hyperbolic diagrams of that type have in their Cartan matrixA34=A43=−1 which mean

hat ia3i2=ia4i2. Two additional cases must be considered depending on which ofa2 or a5 has a
orm equal to the norm ofa3:

1) In case(D.1.1) we assume that the norms ofa3, a4, anda5 are equal.
2) In case(D.1.2) we assume that the norms ofa2, a3, anda4 are equal.

The subdominant conditions here simply reduce toA23=−1.
(D.1.1) Again two hyperbolic algebras correspond to this case. For the first one, the b

alls are built out of the following couplings:

l = Î2; l8 =
1
Î2

; m8 =Î3

2
;

l9 = 0; m9 =Î2

3
; n9 =

1
Î3

; l- = 0; m- =Î2

3
; n- =

2
Î3

s5.18d

nd the Dynkin diagram is that of the overextensionB3
∧∧,

One can produce a billiard for the second one using the same couplings as in(5.18) except fo

l9 = 0; m9 = 2Î2

3
; n9 =

2
Î3

. s5.19d

s2d∧
The Dynkin diagram here describes the twisted overextensionA5 ,
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(D.1.2) Here also, two hyperbolic algebras correspond to this case but one is elimina
ccount of the subdominant conditions. For the remaining one, the couplings are

l = Î2; l8 =
1
Î2

; m8 =
1
Î2

;

l9 = 0; m9 =
1
Î2

; n9 =
1
Î2

; l- = 0; m- =
1
Î2

; n- =
1
Î2

s5.20d

nd the Dynkin diagram is

(D.2) l=1.
In Table 2 of Ref. 22, there are two hyperbolic algebras with a Dynkin diagram of this

oth are admissible for our present purpose:
(D.2.1) The first one has couplings given by

l = 1; l8 =
1

2
; m8 =

Î3

2
;

l9 = 0; m9 =
2
Î3

; n9 =Î2

3
; l- = 0; m- =

1
Î3

; n- =Î2

3
s5.21d

nd corresponds to

(D.2.2) The second one requires

l = 1; l8 =
1

2
; m8 =

Î3

2
;

l9 = 0; m9 =
1
Î3

; n9 =
1
Î6

; l- = 0; m- =
1
Î3

; n- =Î2

3
s5.22d

nd has the following diagram:

Case E:Table 2 of Ref. 22 displays two hyperbolic algebras of rank 5 which are duals o
ther and have linear diagrams. Only one of these two can be associated to a billiard the
hich correspond to(E.1) l=Î2, l9=l-=m-=0 and all other dilaton couplings equal to 1/Î2.

Its Dynkin diagram is the twisted overextensionA6
s2d∧ and is given by
                                                                                                            



ey are
m

w

d

a

2

nt can be
e ric ones,
w

B
p s
n

B

gebras:

( of

( orm of

( ls
a

O

4480 J. Math. Phys., Vol. 45, No. 12, December 2004 S. de Buyl and C. Schomblond

                        
There are however two more hyperbolic algebras with such linear Dynkin diagrams; th
issing in Ref. 22 but perfectly relevant in the present context:

(E.2) the first one is the overextensionC3
∧∧,

hose couplings are equal to the previous ones exceptn-=Î2.
(E.3) The second one is the dual ofC3

∧∧ known as the twisted overextensionD4
s2d∧; its Dynkin

iagram corresponds to the previous one with reversed arrows

nd the dilaton couplings are such thatl=l8=m8=m9=n9=n-=Î2 while l9=l-=m-=0.

. Two or more magnetic walls

That these cases may be discarded will be proved on a particular case but the argume
asily generalized. Suppose the dominant set comprises two magnetic walls and two elect
e can always choose the parametrization such that

a1 = b2 − b1,

a2 = b1 − lf − mw − nc,

a3 = b1 − l8f − m8w + n8c,

a4 = l9f + m9w,

a5 = l-f. s5.23d

eing assumed subdominant, the electric wallsã2=lf+mw+nc and ã3=l8f+m8w−n8c, inde-
endent ofb1, must be written as positive linear combinations ofa4 and a5 only; this require
=n8=0 but then(5.23) can no longer describe a rank five root system.

The same argument remains of course valid for more magnetic walls.

. D>3

The empirical oxidation rule set up in the previous sections also holds for the rank 5 al

1) Diagrams5-1d is the Dynkin diagram of the overextensionA3
∧∧. The Lagrangian is that

pure gravity inDmax=6.
2) Diagrams5-2d: the three-dimensional Lagrangian cannot be oxidized because of the n

a2.
3) Diagrams5-3d: The Lagrangian can be oxidized twice, up toDmax=5. The dominant wal

are the three symmetry wallsa1=b4−b3, a2=b3−b2, a3=b2−b1 and the electric wall of
1-form

a4 = b1 − Î1/3f s5.24d

and its magnetic wall

a5 = b1 + b2 + Î1/3f. s5.25d

˜ ˜
bviously,a4=a5 anda5=a4.
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4) Diagrams5-4d representsB3
∧∧. The maximally oxidized Lagrangian is six-dimensional.

dominant walls are here the four symmetry wallsa1=b5−b4, a2=b4−b3, a3=b3−b2, a4
=b2−b1, and

a5 = b1 + b2, s5.26d

which is the electric or magnetic wall of a self-dual 2-form: obviouslyã5=a5.
5) Diagrams5-5d is the twisted overextensionA5

s2d∧. Here,Dmax=4 and besides the symme
walls a1=b3−b2 anda2=b2−b1, one finds

a3 = b1 − Î3/2f, s5.27d

a4 = Î2/3f − 2/Î3w, s5.28d

a5 = 2Î2/3w + 2/Î3c, s5.29d

which are the electric walls, respectively, of a one-form and two 0-forms. One easily
that ã3=a3+a4+a5, ã4=a2+2a3+a5, andã5=a2+2a3+a4.

6) Diagrams5-6d: Dmax=4 and one needsa1=b3−b2, a2=b2−b1, and

a3 = b1 − Î1/2f, s5.30d

a4 = Î1/2f − Î1/2w, s5.31d

a5 = Î1/2f + Î1/2w. s5.32d

The form-field content is the same as the previous one but the dilaton couplings are d
Moreover:ã3=a3+a4+a5, ã4=a2+2a3+a5, andã5=a2+2a3+a4.

7) Diagramss5-7d and s5-8d: their 3D Lagrangians cannot be further oxidized because o
norm of a2.

8) Diagram s5-9d describesA6
s2d∧. Here, Dmax=4. One obtains the billiard witha1=b3−b2,

a2=b2−b1, and

a3 = b1 − Î1/2f, s5.33d

a4 = Î1/2f − Î1/2w, s5.34d

a5 = Î1/2w. s5.35d

One draws the same conclusion as fors5-6d and s5-9d above. Here again:ã3=a3+a4+a5,
ã4=a2+2a3+a4+2a5, andã5=a2+2a3+2a4+a5.

9) Diagrams5-10d is the overextensionC3
∧∧; the maximal oxidation dimension isDmax=4 and

the corresponding Lagrangian can be found in Ref. 12.
10) Diagram s5-11d is the twisted overextensionD4

s2d∧. No Lagrangian exists in high
dimensions.

Comment:
The results of this section show again that the subdominant conditions play an import

n three dimensions where they effectively contribute to the elimination of several Dynki
rams. However, once they are satisfied in three dimensions, they are always fulfilled

imensions where a Lagrangian exists and only integers enter the linear combinations.
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I. RANK 6 HYPERBOLIC ALGEBRAS

. D=3

The number of dilatons in the three-dimensional Lagrangian is equal toN=4: we denote them
y f1=f ,f2=w ,f3=c ,f4=x. A straightforward generalization of the argument used in the
ious sections implies that a single configuration for the set of dominant walls has to be
red. It comprises one magnetic wall and four electric ones.

After allowed simplifications, the dominant walls are parametrized according to

a1 = b2 − b1, s6.1d

a2 = b1 − lf, s6.2d

a3 = l8f − m8w, s6.3d

a4 = l9f + m9w − n9c, s6.4d

a5 = l-f + m-w + n-c − r-x, s6.5d

a6 = l-8f + m-8w + n-8c + r-8x. s6.6d

The structure of the Dynkin diagrams is therefore displayed in one of the cases label
elow, depending on the number of vertices connected toa2. When necessary, further subclas
re introduced according to the number of vertices linked toa3.

Case A:The central vertex is labeleda2 and is connected to the five other vertices:

There is a single hyperbolic algebra of this type in Ref. 22; one can solve the equations
ilaton couplings, but the subdominant walls are not expressible as positive linear combina

he dominant ones.
Case B:The roota2 is connected to four vertices:

There are three hyperbolic algebras with that kind of Dynkin diagram but none of them
etained: indeed, couplings exist but the subdominant conditions cannot be fulfilled.

Case C:a2 has three links.
One has first the loop diagram

One hyperbolic algebra has such a Dynkin diagram, namely, the overextensionA4
∧∧. As we

lready know from Ref. 6, the searched for three-dimensional Lagrangian coincides w
oroidal dimensional reduction of the seven-dimensional Einstein–Hilbert Lagrangian. The

ouplings are given by
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l = Î2; l8 =
1
Î2

; m8 =Î3

2
; l9 = 0; m9 =Î2

3
; n9 =

2
Î3

; l- = 0; m- = 0;

s6.7d

n- =
Î3

2
; r- =

Î5

2
; l-8 =

1
Î2

; m-8 =
1
Î6

; n-8 =
1

2Î3
; r-8 =

Î5

2

nd its Dynkin diagram is

ext comes the tree diagram

Two hyperbolic algebras have a Dynkin diagram of this shape; but they cannot be ass
ith billiards again because of the impossibility to satisfy the subdominant conditions.

One also has to allow a relabeling of the vertices according to

There are five hyperbolic algebras of that type; but for only one of them can one ful
onditions. The dilaton couplings are given by

l = Î2; l8 =
1
Î2

; m8 =Î3

2
; l9 = 0; m9 =Î2

3
; n9 =

1
Î3

; l- =
1
Î2

; m- =
1
Î6

;

s6.8d

n- =
1
Î3

; r- = 1; l-8 = 0; a-8 = 0; b-8 = 0; r-8 = 1

nd its Dynkin diagram is the following

Cases Dare characterized by the fact thata2 has two links:
(D.1). Corresponds further toa3 having four links

Three diagrams of(Ref. 22) fit in this shape; only two of them are realized through billia

he couplings of the first one are given by
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l = Î2; l8 =
1
Î2

; m8 =Î3

2
; l9 = 0; m9 =Î2

3
= m-; n9 =

2
Î3

; l- = 0;

s6.9d

n- =
1
Î3

; r- = 1; l-8 = 0; m-8 =Î2

3
; n-8 =

1
Î3

; r-8 = 1,

hey provide the Dynkin diagram which isD4
∧∧:

For the second one,l=1 and all the other couplings are those given in(6.9) divided byÎ2.
hey lead to the following diagram:

ase (D.2)corresponds toa3 having three connections

nd differs from (C.3) above by the assignment of the symmetry root. There are 4 D
iagrams representing hyperbolic algebras of this type and they all admit a billiard.

(D.2.1) The couplings are

l = 1; l8 =
1

2
; m8 =

Î3

2
; l9 = 0; m9 =

1
Î3

; n9 =Î2

3
; l- = 0; m- =

1
Î3

;

s6.10d

n- =
1
Î6

; r- =
1
Î2

; l-8 = 0; m-8 = 0; n-8 = 0; r-8 = Î2,

nd the Dynkin diagram corresponds to

(D.2.2) The couplings are the same as in(6.10) above exceptr-8 which reads

r-8 = 1/Î2. s6.11d

he Dynkin diagram is
(D.2.3) The dilaton couplings are given by
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l = Î2; l8 =
1
Î2

; m8 =Î3

2
; l9 = 0; m9 =Î2

3
; n9 =

2
Î3

; l- = 0; m- =Î2

3
;

s6.12d

n- =
1
Î3

; r- = 1; l-8 = 0; m-8 = 0; n-8 = 0; r-8 = 1

hey provide the Dynkin diagram ofB4
∧∧,

(D.2.4) The couplings are the same as in(6.12) except

r-8 = 2 s6.13d

nd the algebra isA7
s2d∧,

Case D.3describes the general structure below in whicha2 anda3 have two links whilea4 is
onnected three times

There are two hyperbolic algebras of that type but only one satisfies all billiard conditio
onzero couplings are

l = Î2 and l8 = m8 = m9 = n9 = n- = r- = r-8 = 1/Î2. s6.14d

he Dynkin diagram is

Case E:This set provides all linear diagrams. There are seven hyperbolic algebras of th
nd all of them are admissible

(E.1) has the following couplings:

l = Î2; l8 =
1
Î2

; m8 =Î3

2
; l9 = 0; m9 =Î2

3
; n9 =

2
Î3

; l- = 0; m- = 0;

s6.15d
n- = Î3; r- = 1; l-8 = 0; m-8 = 0; n-8 = 0; r-8 = 2,

nd its Dynkin diagram belongs toE6
s2d∧,
(E.2) corresponds to
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l = Î2; l8 =
1
Î2

; m8 =Î3

2
; l9 = 0; m9 =Î2

3
; n9 =

1
Î3

; l- = 0; m- = 0;

s6.16d

n- =
Î3

2
; r- =

1

2
; l-8 = 0; m-8 = 0; n-8 = 0; r-8 = 1,

nd its algebra is associated with

(E.3) The walls are defined through the following set of parameters:

l = Î2; l8 =
1
Î2

; m8 =Î3

2
; l9 = 0; m9 =Î2

3
; n9 =

2
Î3

; l- = 0; m- = 0;

s6.17d

n- =
Î3

2
; r- =

1

2
; l-8 = 0; m-8 = 0; n-8 = 0; r-8 = 1,

nd the algebra isF4
∧∧,

(E.4) has the following couplings:

l = Î2; l8 =
1
Î2

; m8 =
1
Î2

; l9 = 0; m9 =
1
Î2

; n9 =
1
Î2

; l- = 0; m- = 0;

s6.18d

n- =
1
Î2

; r- =
1
Î2

; l-8 = 0; m-8 = 0; n-8 = 0; r-8 = Î2

nd its diagram corresponds toC4
∧∧,

(E.5) has the same couplings as those given in(6.18) except

r-8 =
1
Î2

. s6.19d

ts diagram corresponds toA8
s2d∧,

(E.6) is characterized by

l = Î2; l8 = Î2; m8 = Î2; l9 = 0; m9 = Î2; n9 = Î2; l- = 0; m- = 0;

s6.20d
n- = Î2; r- = Î2; l-8 = 0; m-8 = 0; n-8 = 0; r-8 = Î2

nd its diagram describesD5
s2d∧,
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(E.7) is the last one of this rank; its couplings are

l = 1; l8 =
1

2
; m8 =

Î3

2
; l9 = 0; m9 =

1
Î3

; n9 =Î2

3
; l- = 0; m- = 0;

s6.21d

n- =
Î3

2Î2
; r- =

1

2Î2
; l-8 = 0; m-8 = 0; n-8 = 0; r-8 =

1
Î2

nd its diagram givesA8
s2d8∧,

. D>3

Our next task is again to study which of the 16 algebras admitting a three-dimensional
odel allow in addition a higher dimensional Lagrangian description.

1) Diagram(6-1) is the overextensionA4
∧∧. The maximal oxidation dimension isDmax=7, where

the Lagrangian describes pure gravity.7

2) Diagram(6-2): Here,Dmax=5. The dominant walls are the symmetry wallsa1=b4−b3, a2
=b3−b2, a3=b2−b1, and

a4 = b1 − 1/Î3f, s6.22d

a5 = b1 + b2 + 1/Î3f − c, s6.23d

a6 = c. s6.24d

These are respectively the electric walls of a one-form, a two-form and a zero-form
easily checks thatã4=a5+a6, ã5=a4+a6 and ã6=a2+a3+a4+a5.

3) Diagram(6-3) is the overextensionD4
∧∧; its 3D version can be oxidized up toDmax=6 and

the Lagrangian is written in Refs. 11 and 12.
4) Diagrams(6-4), (6-5), and(6-6): their Lagrangians have no higher dimensional parent
5) Diagram(6-7) is the overextensionB4

∧∧. Remark that since the diagram has a fork one
oxidize in two different ways, both lead toDmax=6. The Lagrangians can again be foun
Refs. 11 and 12.

6) Diagram(6-8) is the twisted overextensionA7
s2d∧. Dmax=6. The dominant walls are the sy

metry wallsa1=b5−b4, a2=b4−b3, a3=b3−b2, anda4=b2−b1, and

a5 = b1 + b2 − f, s6.25d

a6 = 2f, s6.26d

which are the electric walls of a 2-form and a zero-form. Their respective magnetic wa
subdominant; indeed one finds

ã5 = b1 + b2 + f = a5 + a6, s6.27d

ã6 = b1 + b2 + b3 + b4 − 2f = 2a5 + a4 + 2a3 + a2. s6.28d

7) Diagram(6-9): Dmax=4. The wall system readsa1=b3−b2, a2=b2−b1 and

1
a3 = b − 1/Î2f, s6.29d
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a4 = 1/Î2sf − cd, s6.30d

a5 = 1/Î2sc − xd, s6.31d

a6 = 1/Î2sc + xd; s6.32d

the last four are the electric walls of a 1-form and three zero-forms. The subdo
condition is fulfilled: indeed, one findsã3=a3+2a4+a5+a6, ã4=a2+2a3+a4+a5+a6,
ã5=a2+2a3+2a4+a6, ã6=a2+2a3+2a4+a5.

8) Diagram (6-10) is the twisted overextensionE6
s2d∧. The oxidation rule gives the maxim

dimensionDmax=5. The walls other than the symmetry ones are

a4 = b1 − 2/Î3f, s6.33d

a5 = Î3f − w, s6.34d

a6 = 2w. s6.35d

One checks thatã4=a3+2a4+2a5+a6, ã5=a2+2a3+3a4+a5+a6, ã6=a2+2a3+3a4
+2a5.

9) Diagram(6-11): A Lagrangian exists inDmax=5 which produces besides the symmetry w

a4 = b1 − 1/Î3f, s6.36d

a5 = Î3/2f − 1/2w, s6.37d

a6 = w. s6.38d

The subdominant conditions readã4=a3+2a4+2a5+a6, ã5=a2+2a3+3a4+a5+a6, and
ã6=a2+2a3+3a4+2a5.

10) Diagram(6-12) is the overextensionF4
∧∧; the maximally oxidized theory is six-dimensio

and contains the metric, one dilaton, one zero-form, and a one-form.11,12

11) Diagram(6-13) is the overextensionC4
∧∧.11 This is the last one of its series: remember

the Cn
∧∧ algebras are hyperbolic only fornø4. The maximal oxidation dimension isDmax

=4; besides the symmetry walls, the other dominant ones are

a3 = b1 − 1/Î2f, s6.39d

a4 = 1/Î2sf − wd, s6.40d

a5 = 1/Î2sw − cd, s6.41d

a6 = Î2c. s6.42d

The subdominant conditions are satisfied, they readã3=a3+2a4+2a5+a6, ã4=a2+2a3
+a4+2a5+a6, ã5=a2+2a3+2a4+a5+a6, ã6=a2+2a3+2a4+2a5.

12) Diagram(6-14) is the twisted overextensionA8
s2d∧. There is no higher dimensional theor

13) Diagram (6-15) representsD5
s2d∧. In Dmax=4, the dominant walls other than the symm

ones are given by

a3 = b1 − 1/Î2f, s6.43d
a4 = 1/Î2sf − wd, s6.44d
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a5 = 1/Î2sw − cd, s6.45d

a6 = 1/Î2c. s6.46d

One obtains easily the following expressionsã3=a3+2a4+2a5+a6, ã4=a2+2a3+a4
+2a5+2a6, ã5=a2+2a3+2a4+a5+2a6, ã6=a2+2a3+2a4+2a5+a6.

14) Diagram(6-16) describesA8
s2d8∧; it cannot be associated to a billiard inD.3.

Comment:
Here again, inD.3, the subdominant conditions are always satisfied; it is only inD=3 that

heir role is crucial in the selection of the admissible algebras. Hence, they do not a
onstraint in the oxidation construction.

II. RANK 7, 8, 9, AND 10 HYPERBOLIC ALGEBRAS

These hyperbolic algebras fall into two classes: the first one comprises all algebras
ø r ø10 that are overextensions of the following finite simple Lie algebrasAn,Bn,Dn,E6,E7,E8.
hey are

An
∧∧ sn = 5,6,7d,

Bn
∧∧ sn = 5,6,7,8d,

Dn
∧∧ sn = 5,6,7,8d,

E6
∧∧,

E7
∧∧,

E∧∧,
8
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In the second class, one finds the four duals of theBn
∧∧ sn=5,6,7,8d, i.e., the algebras know

sCEn+2=A2n−1
s2d∧ ,

CEn+2 = A2n−1
s2d∧ ,

. Overextensions of finite simple Lie algebras

The algebras of the first class have already been encountered as billiards of som
imensionalG/H coset theories as explained in Ref. 12 to which we refer for more inform
hose of rank 10,E10, BE10, andDE10 have been found8 to describe the billiards of the sev
tring theories,M ,IIA ,IIB ,I ,HO,HE and the closed bosonic string in 10 dimensions. More
isely, these theories split into three separate blocks which correspond to three distinct b
amely, B2=hM ,IIA ,IIBj leads to E10, B1=hI ,HO,HEj corresponds toBE10, and B0=hD
10 closed bosonic stringj givesDE10.

For sake of completeness, we here simply recall the maximal spacetime dimensions
pecificp-forms menus producing the billiards.

1) An
∧∧ sn=5,6,7d: the Lagrangian is that of pure gravity inDmax=n+3.

2) Bn
∧∧ sn=5,6,7,8d: the maximally oxidized Lagrangian lives inDmax=n+2, where it com

prises a dilaton, a 1-form coupled to the dilaton with coupling equal tols1dsfd=f /Îd−1 and
a 2-form coupled to the dilaton with coupling equal tols2dsfd=2f /Îd−1.

3) Dn
∧∧ sn=5,6,7,8d: a Lagrangian exists inDmax=n+2 and comprises a dilaton and a 2-fo

coupled to the dilaton with coupling equal tols2dsfd=2f /Îd−1.
4) E6

∧∧: the maximal oxidation dimension isDmax=8. The Lagrangian has a dilaton, a 0-fo
with couplingls0dsfd=fÎ2 and a 3-form with couplingls3dsfd=−f /Î2.

5) E7
∧∧: the maximal space–time dimension isDmax=10. The Lagrangian describes gravity

a 4-form: it is a truncation of type IIB supergravity.
6) E8

∧∧: Dmax=11. The Lagrangian describes gravity coupled to a 3-form; it is the bosonic
of eleven dimensional supergravity.

. The algebras CEn+2=A2n−1
„2…†

The Weyl chamber of the algebrasCEn+2 sn=5,6,7,8d, which are dual toBn
∧∧, allows a

illiard realization in maximal dimensionDmax=n+1=d+1. The field content of the theory is t
ollowing: there are two dilatons,f andw, a 0-form coupled to the dilatons through

ls0dsfd = 2Îsd − 1d
d

f −
2
Îd

w, s7.1d

one form with dilaton couplings

ls1dsfd = −Î d

sd − 1d
f s7.2d
nd a 2-form with the following couplings
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ls2dsfd = −
2

Îdsd − 1d
f −

2
Îd

w. s7.3d

In particular, the Lagrangian inDmax=9 producing the billiard identifiable as the fundame
eyl chamber ofCE10 corresponds ton=8=d and is explicitly given by30

L9 = s9dR* 1 − ! df ∧ df − ! dw ∧ dw − 1
2 es2fÎ7/2−wÎ2d ! Fs1d ∧ Fs1d − 1

2e−4fÎ2/7 ! Fs2d ∧ Fs2d

− 1
2 e−sfÎ2/7+wÎ2d ! Fs3d ∧ Fs3d. s7.4d

CE10 is the fourth hyperbolic algebra of rank 10; contrary to the other three cited above,
elong to the class of the overtextensions of finite simple Lie algebras, its Lagrangian(7.4) does
ot stem from string theories.

III. CONCLUSIONS

In this paper we have presented all Lagrangian systems in which gravity, dilatons andp-forms
ombine in such a way as to produce a billiard that can be identified with the Weyl chamb
iven hyperbolic Kac Moody algebra. Exhaustive results have been systematically obta
rst constructing Lagrangians in three space–time dimensions, at least for the algebras or
6. We insist on the fact that our three-dimensional Lagrangians are not assumed to r

oset theory. We also have solved the oxidation problem and provided the Lagrangian
aximal space time dimension with theirp-forms content and specific dilaton couplings. It tu
ut that the subdominant conditions play no role in the oxidation analysis. The positive
oefficients that appear when expressing the subdominant walls in terms of the dominant
he maximal oxidation dimension have been systematically worked out.

X. MORE HYPERBOLIC ALGEBRAS

For completeness, we draw hereafter the Dynkin diagrams of 6 hyperbolic algebras mi
ef. 22. This raises their total number to 142, in agreement with Ref. 31.
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ifshits tails for random smooth magnetic vortices
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We study the density of states of the Pauli Hamiltonian with a Poisson random
distribution of smooth finite-width vortices and we obtain classical bounds for the
Lifshits tails for them. These Hamiltonians are smooth approximations to the self-
adjoint extensions of the Aharonov–Bohm Hamiltonian. In this case because pairs
of impurities are coupled by the magnetic field we cannot use the Laplace charac-
teristic functional. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1807955]

. INTRODUCTION

The following formal Hamiltonian may be used to represent a system of magnetic v
istributed randomly in a two-dimensional domain:

H =
1

2m
Sp − o

i=1

N

a
k 3 sr − r id

sr − r id2 D2

+ o
i=1

N

p
b

m
d2sr − r id. s1.1d

t is known experimentally1,2 that magnetic vortices may appear in two-dimensional electro
ayers on top of superconductivity materials when the external magnetic field penetra
ample at some points in the form of isolated random flux tubes. Suppression of the Hall c
ivity has been observed in these cases.

Numerical calculations using perturbation theory have been carried out in Refs. 3–5.
perator considered in(1.1), with a repulsive delta function and the assumption thataPf−1

2 , 1
2
g,

umerical calculations for the caseb= uau, have shown that4 if a is small, the density of states
his operator exhibits Landau oscillations, while fora close to 1

2, no such oscillations are o
erved, indeed the density of states increases monotonically and there is a Lifshits ta
ottom of the spectrumsE=0d. It has been proposed5 that this model may explain some featu
f the integer quantum Hall effect.

The integrated density of states and the existence of Lifshits tails for random Schrö
perators of the type −D+Vv, whereVv is a random scalar potential, have been the obje
xtensive study in mathematical physics(see Refs. 6–8 for the basic theory and results). Recently

here has been much interest in the study of their generalization to random Schrödinger o
ith magnetic field

HsA,Vvd = sp + Avd2 + Vv. s1.2d

he case of nonrandom magnetic field was studied in, for example, Refs. 9–13 while othe
ave proved results for Lifshits tails for operators where the magnetic field is random.14–16
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)
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4493022-2488/2004/45(12)/4493/13/$22.00 © 2004 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.1807955
http://dx.doi.org/10.1063/1.1807955


3 he
L

U

w r
− n
fi

w
mooth

fi s to the
s added
c

ssical
b e spec-
t oisson
d over all
t nnot use
t entioned
a e
n

I

w

djoint
e s that
c

nian
w

ø

e

f

4494 J. Math. Phys., Vol. 45, No. 12, December 2004 J. L. Borg and J. V. Pulé

                        
Nakamura14 has studied the case whereAv is random,Vv=0 and the magnetic fieldBv= ¹
Av is almost surely uniformly bounded onRd, dù2. He obtained the following result for t

ifshits tails of the integrated density of statesNsld:

lim sup
l↓0

lns− ln Nsldd
ln l

ø −
d

2
. s1.3d

eki15 considered the case whenAv andVv are independent, andVv is Gaussian. He obtained

lim
l→−`

ln Nsld
l2 = −

1

2gs0d
, s1.4d

here g is the covariance ofVv. In Ref. 16, the operator considered is the Pauli operatosp
Avd2± sg/2dk ·Bv, whereg.2 is the anomalous magnetic moment, andk ·Bv is a Gaussia
eld. In this case

lim
l→−`

ln Nsld
l2 = −

2

sg − 2d2gs0d
, s1.5d

hereg is the covariance ofk ·Bv.
In this paper we study the Pauli Hamiltonian for a Poisson random distribution of s

nite-width Aharonov–Bohm vortices. These vortices are based on smooth approximation
elf-adjoint extensions of the Aharonov–Bohm Hamiltonian analyzed in Ref. 17, with the
ondition that cutoffs are introduced to ensure that the vector potential is summable.

With probability one, the spectrum of this operator is the whole real line. We obtain cla
ounds for the asymptotic behavior of the integrated density of states at the bottom of th

rum. The analysis follows the method of Ref. 6 for a random Schrödinger operator with a P
istributed random potential. However the expression for the potential is not simply a sum

he atoms of the Poisson distribution, but contains also cross-terms. For this reason, we ca
he Laplace characteristic functional and have to proceed by a direct method. The cases m
bove for random magnetic fields are different from the present one, since in this casBv is
either bounded nor Gaussian.

I. THE MODEL

The Aharonov–Bohm(AB) Hamiltonian18 is formally given by

HAB = sp + Ad2, s2.1d

here

Asr d = a
k 3 r

r2 .

This Hamiltonian is not essentially self-adjoint, but has a four-parameter family of self-a
xtensions,19,20 which reduces to a two-parameter family if only those self-adjoint extension
ommute with the angular momentum operator are considered.

In Ref. 17, finite-width approximations to the self-adjoint extensions of the AB Hamilto
ere studied. Letã:R°R be a smooth, monotonic nondecreasing function withãsrd=0 for r

0 and ãsrd=1 for r ø1. Let b̃srd=s1/rdsd/drdãsrd. Then b̃ has support only in[0, 1], and

0
`b̃srdr dr =1. Let a¹Z, and writeuau=N+d, whereNPN0 and 0,d,1. We take

Arsr d = a
k̂ 3 r

r2 ãS r − r

r5 D s2.2d
or r.0 andBr=curl Ar. Then
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k̂ ·Brsr d = aS1 −
r

r
Dr−10b̃S r − r

r5 D . s2.3d

et

Hr = si ¹ + Ard2 +
b

a
k̂ ·Br. s2.4d

may be identified with −12ga, whereg is the anomalous magnetic moment. In Ref. 17 it
hown that only two one-parameter subfamilies of self-adjoint extensions of the Aharonov
amiltonian can be approximated asr→0, in the norm resolvent sense, by such Pauli opera
or the operatorHr in L2sR2d to be a smooth approximation an element of the one of
ne-parameter families of self-adjoint extensions,b must depend onr, for smallr, in one of the

ollowing ways:

sad bsa,rd . − uauS1 −
2d

uau
nr2dD , s2.5d

sbd bsa,rd . suau − 2sN + 1ddS1 −
2s1 − dd

2sN + 1d − uau
nr2s1−ddD , s2.6d

or some constantn satisfying −̀ ,nø`.
We note here that

1) limr→0 bø−uau;
2) if we suppose thatk̂ ·Brsr d has a maximum point atr0, then it is easy to see that for smar

the inequality

k̂ ·Brsr0d .
asr0d

r0
2 , s2.7d

is satisfied.

Motivated by the above discussion, we shall consider the following Hamiltonian inL2sR2d

H = si ¹ + Asr − r 1dd2 +
b

a
k̂ ·Bsr − r 1d, s2.8d

here

Asr d = a
k̂ 3 r

r2 asrd andB = curl A . s2.9d

e shall assume thatbø−uau and thata:R°R is of classC0
4 with asrd=0 for r ø0. Note tha

iv A =0 and we havek̂ ·Bsr d=a bsrd where bsrd=s1/rdsd/drdasrd. We assume also that a
aximum pointr0 of b,

b0 ª bsr0d .
asr0d

r0
2 . s2.10d

o far we have considered a smooth magnetic vortex centered atr 1. Let r i PR2, wherei PN, be
istributed with a Poisson distribution inR2. Then the Pauli HamiltonianHv in L2sR2d for an
nfinite set of Poisson distributed smooth vortices is as follows:

                                                                                                            



W ctrum of
t
a

T

a

w

w

C e of
r the
o

T nfigu-
r

I

l

a

w

4496 J. Math. Phys., Vol. 45, No. 12, December 2004 J. L. Borg and J. V. Pulé

                        
Hv = Si ¹ + o
i=1

`

Asr − r idD2

+
b

a
k̂ ·o

i=1

`

Bsr − r id. s2.11d

e can use an adaptation of the usual argument to show that with probability one the spe
his operator isR. We need to show that with nonzero probability the spectrum ofHv contains
rbitrarily large negative numbers(cf. Theorem 5.34 of Ref. 6). Since divA =0,

kc,As·− r id · ¹ cl = − kAs·− r id · ¹ c,cl. s2.12d

herefore ifc is real valued

kc,As·− r id · ¹ cl = 0 s2.13d

nd thus

kc,Hvcl = kc,s− D + Vdcl, s2.14d

here

Vsr d =
b

a
k̂ ·o

i=1

`

Bsr − r id + Uo
i=1

`

Asr − r idU2

= bo
i=1

`

bsur − r iud + a2Uo
i=1

`

Dsr − r idU2

, s2.15d

ith

Dsr d =
asur ud
ur u2

r .

onsider what happens at the origin ifn Poisson points are placed symmetrically on a circl
adiusr0 centered at the origin so thatoi=1

n r i =0, while all the others are located very far from
rigin. Then

Vs0d = bo
i=1

n

bsur iud + a2Uo
i=1

n

Dsr idU2

= bnbsr0d + a2a2sr0d
r0

4 Uo
i=1

n

r iU2

= − nubub0. s2.16d

hus by this configuration we can produce an arbitrarily deep well and by varying this co
ation slightly we can do this with nonzero probability.

II. LIFSHITS TAILS

In this section we prove upper and lower bounds on the integrated density of statesNsld as
→−`. Our result is as follows:

Theorem: Let the Hamiltonian Hv be as defined in Sec. II. Then,

lim sup
l→−`

ln Nsld ø −
ulu

ubub0
lnulu s3.1d

nd

lim inf
l→−`

ln Nsld ù −
ulu

c1ubub0
lnulu, s3.2d

here

c1 =
6

11
F1 −

uau
ubuS1 −

8

3

asr0d
b0r

2 +
22

9

a2sr0d
b 2r4 D1/2G . s3.3d
0 0 0
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Proof: The upper bound is straightforward. Applying the diamagnetic inequality(see fo
xample, Theorem 15.7 of Ref. 22), we have

Trsexps− tHv,Ldd ø Trsexps− tHv,L8 dd, s3.4d

hereHv8 =−D+boi=1
` bsur −r iud, and the operatorsHv,L and Hv,L8 are, respectively,Hv and Hv8

estricted to some finite domainL with Dirichlet boundary conditions.

If Ñ is the Laplace transform ofN then from the corresponding bounds for the nonmag
ase we get(see, for example, Theorems 5.18 and 9.1 of Ref. 6),

Ñstd ø
1

4pt
exps2prr0e

ubub0tds1 + os1dd s3.5d

s t→` and (3.1) follows by a Tauberian argument.
As mentioned earlier, because the magnetic field couples pairs of impurities, the lowe

equires much more work. From Theorem 9.5 of Ref. 6 we have the following lower bou
˜ std:

Ñstd ù
1

Lc

Efexps− tkc,Hvcldg s3.6d

or any c which has unit norm and compact support, and is in the quadratic form domainHv.
his simply means that it is in the form domain of the Laplacian operator. HereLc= usuppcu. If
is real valued, we have from(2.14)

Efexps− tkc,Hvcldg = e−tkc,−DclEfe−tkc,Vclg. s3.7d

ince the first term in(2.15) is nonpositive, the problem may be treated in a similar way to th
n attractive Poisson potential.21 The crucial difference in the subsequent discussion is
ecause of the second term on the r.h.s. of(2.15), we cannot calculate the expectation
xps−tkc ,Vcld using the Laplace characteristic functional(Sec. 1.C of Ref. 6). So proceeding i
direct fashion, sincea andb have compact support:

Efe−tkc,Vclg = e−ruLuo
N=0

`
rN

N!
INsc,td, s3.8d

here

INsc,td =E
LN

d2r 1 ¯ d2r N expS− tE d2rVNsr 1 − r , . . . ,r N − r ;1ducsr du2D s3.9d

nd

VNsr 1, . . . r N;sd =
b

a
k̂ ·o

i=1

N

Bsr id + sa2Uo
i=1

N

Dsr idU2

. s3.10d

ithout loss of generality we can takeL to be a disk of radiusL centred at the origin. Fro
3.6)–(3.8) we obtain

Ñstd ù
1

Lc

e−tkc,−Dcle−ruLuo
N=0

`
rN

N!
INsc,td. s3.11d
or t.0 let the functionfsr d=ftsrd be defined by
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ftsrd =5Ntsstde−s1/2ds2stdr2
, 0 ø r ø 1 −

1

sstd
,

Nts
2stdexpS−

1

2
ssstd − 1d2Ds1 − rd, 1 −

1

sstd
, r ø 1,

0, r . 1,
6 s3.12d

heresstd=expsexpsjtdd for somej,c1ubub0 and the constantsNt are such thatifti2=1. The
unction ft is circularly symmetric with support in the unit ball centered at the origin. We
xplain the choice of this function later. Take

ctsr d =
1

Rstd
fS r

Rstd
D ,

hereRstd is a function oft to be determined later. We shall writef, c, andR rather thanft, ct,
ndRstd to make the notation less cumbersome and we shall also use the notation

s1
2
ª E

0

1

f82srdrdr ands2
2
ª E

0

1

f2srdr3dr. s3.13d

e have

Lc = pR2, s3.14d

kc,− Dcl = R−2s1
2, s3.15d

nd

INsc,td =E
LN

d2r 1 ¯ d2r N expS− tE
rø1

d2rVNsr 1 − Rr , . . . ,r N − Rr ;1dufsr du2D . s3.16d

aking one term in(3.11) we get

Ñstd ù
e−ruLu

N!pR2e−s1
2t/R2

INsc,td. s3.17d

s usual we shall be makingR small and using the Laplace approximation theorem to est

Nsc ,td for large t. Now −VNsr 1, . . . ,r N;1d has maximum equal toubuNb0. This maximum is
ttained whenb is at a maximum, and the second term in(3.10) is zero, that is whenr 1, . . . ,r N lie
n a circle of radiusr0 centered at the origin so thatoi=1

N r i =0. However there are a large num
f these configurations for largeN and this makes the second derivative at these points sin
ecause it is difficult to estimateINsc ,td for large t and N we find a lower bound by takingN
3n for somenPN. See the remark at the end of the proof for a justification of this choice. U

sx1 + ¯ + xrd2 ø rsx1
2 + ¯ + xr

2d, s3.18d

e find that

Uo
i=1

3n

Dsr idU2

ø suDsr 1d + Dsr 2d + Dsr 3du + ¯ + uDsr 3n−2d + Dsr 3n−1d + Dsr 3ndud2

ø nsuDsr 1d + Dsr 2d + Dsr 3du2 + ¯ + uDsr 3n−2d + Dsr 3n−1d + Dsr 3ndu2d. s3.19d
herefore
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V3nsr 1 − Rr , . . . ,r 3n − Rr ;sd ø o
i=1

n

V3sr 3i−2 − Rr ,r 3i−1 − Rr ,r 3i − Rr ;snd. s3.20d

ubstituting this into(3.16) gives

I3nsc,td ù fĪ3sn,f,tdgn, s3.21d

here

Ī3sn,f,td =E
L3

d2r 1d
2r 2d

2r 3 expS− tE
rø1

d2rV3sr 1 − Rr ,r 2 − Rr ,r 3 − Rr ;ndufsr du2D .

s3.22d

herefore(3.17) implies that

Ñstd ù
e−ruLu

s3nd!pR2e−s1
2t/R2

fĪ3sn,f,tdgn. s3.23d

ow we use the Laplace approximation theorem to estimateĪ3sn,f ,td for large t. As explained
arlier, −V3sr 1,r 2,r 3;nd attains its maximum whenr 1, r 2, andr 3 are equally spaced on a circle
adiusr0 centered at the origin.

Using the rotational symmetry ofV3s· ;nd andf we can integrate over the orientation ofr 1 to
et

Ī3sn,f,td = 2pE
0

L

r1dr1E
L2

d2r 2d
2r 3 expS− tE

rø1
d2rV3sr1i − Rr ,r 2 − Rr ,r 3 − Rr ;nd · ufsr du2D .

s3.24d

V3sr1i ,r 2,r 3;nd is at a maximum whenr1=r0, r 2= r̃ 2ªr0s−1
2i + 1

2
Î3j d and r 3= r̃ 3ªr0s−1

2i
1
2
Î3j d. Therefore we make the transformationsr1→ r0+r1, r 2→ r̃ 2+r 2 and r 3→ r̃ 3+r 3 which

ives

Ī3sn,f,td = 2pE
−r0

L−r0

dr1sr0 + r1dE
L−r̃ 2

d2r 2E
L−r̃ 3

d2r 3expS− tE
rø1

d2rV3ssr0 + r1di

− Rr , r̃ 2 + r 2 − Rr , r̃ 3 + r 3 − Rr ;ndufsr du2D . s3.25d

ow, from Taylor’s theorem, we know that

fsx + x8d = fsxd + x8 · ¹ fsxd + 1
2sx8 · ¹ d2fsxd + 1

6sx8 · ¹ d3fsx + zx8d, s3.26d

here zP s0,1d. Let us apply this to the functionV3s· ;nd, taking x=sr0i , r̃ 2, r̃ 3d, and x8=sr1i
Rr ,r 2−Rr ,r 3−Rr d.

First, we have that

V3sr0i, r̃ 2, r̃ 3;nd = 3bb0, s3.27d

hereb0=bsr0d and

¹V3sr0i, r̃ 2, r̃ 3;nd = 0, s3.28d
ecause the function has a minimum at that point. In the next term,
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ssr1i − Rr ,r 2 − Rr ,r 3 − Rr d · ¹ d2V3sr0i, r̃ 2, r̃ 3;nd

= ksr1i − Rr ,r 2 − Rr ,r 3 − Rr d,D2,nsr0i, r̃ 2, r̃ 3dsr1i − Rr ,r 2 − Rr ,r 3 − Rr dl, s3.29d

here the 636 matrix D2,nsr0i , r̃ 2, r̃ 3d is given in the Appendix. We can write(3.29) as a sum o
our terms:

ksr1i,r 2,r 3d,D2,nsr0i, r̃ 2, r̃ 3dsr1i,r 2,r 3dl + R2ksr ,r ,r d,D2,nsr0i, r̃ 2, r̃ 3dsr ,r ,r dl

+ Rksr1i,r 2,r 3d,D2,nsr0i, r̃ 2, r̃ 3dsr ,r ,r dl + Rksr ,r ,r dD2,nsr0i, r̃ 2, r̃ 3d,sr1i,r 2,r 3dl. s3.30d

he first term in(3.30) is independent ofr and it is equal to

ksr1,r 2,r 3d,D2,n8 sr0i, r̃ 2, r̃ 3dsr1,r 2,r 3dl, s3.31d

hereD2,n8 sr 8 ,r 9 ,r-d is the 535 matrix obtained by deleting fromD2,nsr 8 ,r 9 ,r-d all the terms
nvolving derivatives with respect to the second component ofr 8. This is another step needed
ccount for the symmetry inherent in maximizing the integrand in(3.22).

For the second term, writingr =sx,yd and using

E
rø1

d2r x2ufsr du2 =E
rø1

d2r y2ufsr du2 =
1

2
s2

2, s3.32d

e have that

E
rø1

d2r ksr ,r ,r d,D2,nsr0i, r̃ 2, r̃ 3dsr ,r ,r dlufsr du2 = 2C1s2
2, s3.33d

here

C1 =
3

4
b9sr0d + a2nS9

4
b0

2 − 6b0
asr0d

r0
2 +

11

2

a2sr0d
r0

4 D . s3.34d

ote that all the terms in the integrand of(3.33) are even or odd inr and only the even terms gi
nonzero result. The contribution from the last two terms in(3.30) is zero since, for example,

E
rø1

d2r ksr1i,r 2,r 3d,D2,nsr0i, r̃ 2, r̃ 3dsr ,r ,r dlufsr du2 s3.35d

anishes because integrand is odd inr .
For the third order term, we have that

ussr1i − Rr ,r 2 − Rr ,r 3 − Rr d · ¹ d3V3sssr0i, r̃ 2, r̃ 3d + zsr1i − Rr ,r 2 − Rr ,r 3 − Rr dd;ndu

ø fmaxsur1u,ir 2i,ir 3id + Rir ig3uD3,nssr0i, r̃ 2, r̃ 3d + zsr1i − Rr ,r 2 − Rr ,r 3 − Rr ddu, s3.36d

here

D3,nsxd = o
i,j ,k=1

6
]3V3sx;nd
]xi]xj]xk

,

nd ir iø1 because the integration in the exponential in(3.22) is carried out over the unit disk
Also, the above assumptions on the functionsa and b imply that their derivatives are un

ormly bounded, so that

uD3,nssr0i, r̃ 2, r̃ 3d + zsr1i − Rr ,r 2 − Rr ,r 3 − Rr ddu ø nC2, s3.37d

here the constantC2 does not depend onn or R.

This gives
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Ī3sn,f,td ù 2pe3tubub0 exps− tC1s2
2R2dE

−r0

L−r0

dr1sr0 + r1dE
L−r̃ 2

d2r 2E
L−r̃ 3

d2r 3

3expS−
t

2
ksr1,r 2,r 3d,D2,n8 sr0i, r̃ 2, r̃ 3dsr1,r 2,r 3dl − tnC2fmaxsur1u,ir 2i,ir 3id + Rg3D .

s3.38d

ow we perform the following transformation

sr1,r2,r3d =
t1/2

Î2
fD2,n8 sr0i, r̃ 2, r̃ 3dg1/2sr1,r 2,r 3d s3.39d

nd afterwards restrict the domain of integration toBh, a hypercube in 5 dimensions of side 2t1/2h
round 0.

Letting Dn=detfD2,n8 sr0i , r̃ 2, r̃ 3dg, after the transformation(3.39), we get

Ī3sn,f,td ù
27/2p

Dn
1/2t−s5/2de3tubub0 exps− tC1s2

2R2 − tnC2fÎ10hifD2,n8 sr0i, r̃ 2, r̃ 3dg−s1/2di + Rg3d

3 E
Bh

dr1d
2r2d

2r3sr0 + Î2t−1/2sfD2,n8 sr0i, r̃ 2, r̃ 3dg−s1/2dsr1,r2,r3dd1de−sr1,r2,r3d2,

s3.40d

heresxd1 denotes the first component ofx.
The second term in the integrand in(3.40) is odd, and so its integral over a symmetric dom

s zero. We further define

C̃1 = uauS9b0
2 − 24b0

asr0d
r0

2 + 22
a2sr0d

r0
4 D1/2

s3.41d

o thatC1= 3
4b9sr0d+ 1

4C̃1
2n. There exist positive constantsC4, C5, C6, andC7 such that

Dn
−s1/2d ù C4n

−s5/2d, s3.42d

Î10ifD2,n8 sr0i, r̃ 2, r̃ 3dg−s1/2di ø C5n
−s1/2d s3.43d

nd

E
Bh

dr1d
2r2d

2r3e
−sr1,r2,r3d2 ù p5/2s1 − C6e

C7th2
d. s3.44d

utting together what we have obtained so far and substituting into(3.23), we get

Ñstd ù e−ruLu K3
nt−s5/2dn

ns11/2dnR2s1 − C6e
−C7th2

dnexpSS3ubub0n −
s1

2

R2 −
1

4
C̃1

2s2
2R2n2

−
3

4
b9sr0ds2

2R2n − C2C5n
1/2DtD , s3.45d

here K3=s8Î2/27dp5/2r3r0C4. We would like to make the term inn2 in the exponentia
1
4C̃1

2s2
2R2n2, small by lettingR→0. However in doing this we make the terms1

2/R2 large. There

ore we minimize the sum of the two terms by takingR=Î2/C̃1ss1/s2d1/2n−s1/2d. Note that in the
2
onmagnetic case the corresponding term is of ordern and notn . To maximize the right-hand
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ide of(3.45) we taken as a function oft. We shall also writeR in terms ofn, and hence in term
f t so thatR→0 ast→`. Therefore we write

nstd =
K3

2/11

e
t−s5/11ds1 − C6e

−C7th2
d2/11expS 2t

11
s3ubub0 − C̃1s1s2dD , s3.46d

o that

Rstd =Î2e

C̃1

Ss1

s2
D1/2

K3
−s1/11dt5/22s1 − C6e

−C7th2
d−s1/11d expS−

t

11
s3ubub0 − C̃1s1s2dD s3.47d

s t→`.
Then we have that there existst0 independent off such that

Ñstd ù
e−ruLu

2
C̃1

s2

s1
expS11

2e

K3
2/11

t5/11 s1 − C6e
−C7th2

d2/11expS 2t

11
s3ubub0 − C̃1s1s2dD

−
C2C5

Îe
K3

1/11t17/22s1 − C6e
−C7th2

d1/11expS t

11
s3ubub0 − C̃1s1s2dD −

3

2C̃1

b9sr0ds1s2tD
s3.48d

or t. t0. The last two terms are subdominant. Clearly, the above is meaningful only if

3ubub0 − C̃1s1s2 . 0. s3.49d

irst of all, we note that by the Heisenberg Uncertainty Principle,s1s2 cannot be made smal
han 1. However we have definedf so thats1s2→1 ast→`. This explains our choice off in
3.12). So then ast→`,

2
11s3ubub0 − C̃1s1s2d → c1ubub0, s3.50d

herec1 was defined in(3.3).
Now, the fact thatubu. uau together with assumption(2.10) which implies that

8

3

asr0d
b0r0

2 −
22

9

a2sr0d
b0

2r0
4 . 0, s3.51d

nsures that(3.49) is true. This gives us ast→`

Ñstd ù
e−ruLu

2
C̃1

s2

s1
expS11

2e
K3

2/11t−s5/11ds1 − C6e
−C7td2

d2/11expsc1ubub0tdD . s3.52d

urthermore, ast→`,

s2

s1
=

1

s2std
s1 + os1dd, s3.53d

o that

ln Ñstd ù
11

2e
K3

2/11t−s5/11d expsc1ubub0tds1 + os1dd s3.54d
s t→` or
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lim inf
t→`

t5/11exps− c1ubub0tdln Ñstd ù
11

2e
K3

2/11. s3.55d

rom this we can use a Tauberian argument(Theorem 9.7 of Ref. 6) to obtain(3.2). h

Remark 1:In the above calculation, we have been working with the choiceN=3n which, after
pplying the inequality(3.18), leads us to work withV3s· ;nd. This choice demands some just
ation.

We note first of all that working withVmsr 1, . . . ,r m;nd for m.1 ensures that we can expl
he fact the second term in(3.10) is zero for a certain configuration ofr 1, . . . ,r m, so that the
aximum value of −Vmsr 1, . . . ,r m;nd is mubub0 (as in (3.27)).

If we apply inequality(3.18) directly toN, leading us to work withV1sr ;nd, the correspondin
aximum value will be less than the expectedubub0, so that we get a worse lower bound.

For the casem=2 (i.e., choosingN=2n), we find that the expression corresponding to
.h.s. of (3.49) is of the order 2ubub0−2Î2uaub0s1s2. As noted earlier, the Heisenberg Uncerta
rinciple forbidss1s2,1, so the method does not work in this case.

For m.3, we find that we do not get any improvement over the casem=3. For example, fo
he casem=4, the expression corresponding to the l.h.s. of(3.49) is

4ubub0 − 4uaub0s1s2S1 −
2asr0d
b0r0

2 D1/2

s3.56d

hile for the casem=5, it is again of the order 5ubub0−5uaub0s1s2. This explains why we hav
hosen to work with the casem=3.

Remark 2:We have hitherto assumed thatbø−uau. We note, however, that because of(3.51),
here exists«.0 such that(3.49) is true whenb,−uau+«. In this case,c1ubub0 is not of orderb0

or largeb0.
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PPENDIX

Let sr 1, r̃ 2, r̃ 3d= sr0i ,r0s−1
2i + 1

2
Î3j d ,r0s−1

2i − 1
2
Î3j dd. ThenD2,nsr 1, r̃ 2, r̃ 3d=B+2a2nA, where

B =1
b9sr0d 0 0 0 0 0

0 0 0 0 0 0

0 0 1
4b9sr0d

Î3
4 b9sr0d 0 0

0 0
Î3
4 b9sr0d 3

4b9sr0d 0 0

0 0 0 0 1
4b9sr0d −

Î3
4 b9sr0d

0 0 0 0 −
Î3
4 b9sr0d 3

4b9sr0d

2 sA1d

nd the matrixA is symmetric and its entriesaij are given by

a11 = Sb0 −
asr0d

r0
2 D2

, sA2d
a12 = 0, sA3d
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a13 = Sb0 −
asr0d

r0
2 DS1

4
b0 −

asr0d
r0

2 D , sA4d

a14 = Sb0 −
asr0d

r0
2 DS−

Î3

4
b0 +

Î3asr0d
2r0

2 D , sA5d

a15 = a13, sA6d

a16 = − a14, sA7d

a22 = Sasr0d
r0

2 D2

, sA8d

a23 =
asr0d

r0
2 S−

Î3

4
b0 +

Î3asr0d
2r0

2 D , sA9d

a24 =
asr0d

r0
2 S3

4
b0 −

asr0d
2r0

2 D , sA10d

a25 = − a23, sA11d

a26 = − a24, sA12d

a33 = S1

4
b0 −

asr0d
r0

2 D2

+ S−
Î3

4
b0 +

Î3asr0d
2r0

2 D2

, sA13d

a34 = S1

4
b0 −

asr0d
r0

2 DS−
Î3

4
b0 +

Î3asr0d
2r0

2 D+ S−
Î3

4
b0 +

Î3asr0d
2r0

2 DS3

4
b0 −

asr0d
2r0

2 D , sA14d

a35 = S1

4
b0 −

asr0d
r0

2 D2

− S−
Î3

4
b0 +

Î3asr0d
2r0

2 D2

, sA15d

a36 = S1

4
b0 −

asr0d
r0

2 DSÎ3

4
b0 −

Î3asr0d
2r0

2 D+ S−
Î3

4
b0 +

Î3asr0d
2r0

2 DS3

4
b0 −

asr0d
2r0

2 D , sA16d

a44 = S−
Î3

4
b0 +

Î3asr0d
2r0

2 D2

+ S3

4
b0 −

asr0d
2r0

2 D2

, sA17d

a45 = S1

4
b0 −

asr0d
r0

2 DS−
Î3

4
b0 +

Î3asr0d
2r0

2 D− S−
Î3

4
b0 +

Î3asr0d
2r0

2 DS3

4
b0 −

asr0d
2r0

2 D , sA18d

a46 = − S−
Î3

4
b0 +

Î3asr0d
2r2 D2

+ S3

4
b0 −

asr0d
2r2 D2

, sA19d

0 0
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a55 = a33, sA20d

a56 = − a34, sA21d

a66 = a44. sA22d
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oherent solutions for relativistic vectorial fields
Attilio Maccari
Technical Institute “G. Cardano,” Piazza della Resistenza 1, 00015 Monterotondo, Rome,
Italy

(Received 17 May 2004; accepted 18 August 2004; published 4 November 2004)

Approximate interacting localized solutions of a vectorial massive nonlinear equa-
tion are obtained by using the asymptotic perturbation(AP) method, based on
Fourier expansion and spatio-temporal rescaling. The amplitude slow modulation
of Fourier modes is described by a system of nonlinear evolution equations solv-
able via an appropriate change of variables. Various types of localized solutions
(dromions, lumps, ring solitons, and breathers) as well as multiple soliton and
instanton solutions can be explicitly constructed and their interaction is completely
elastic, because they pass through each other and preserve their shape, the on
change being a phase shift. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1807956]

. INTRODUCTION

Many methods are available for obtaining nontrivial solutions of nonlinear partial differ
quations. We cite, for example, the bilinear method, inverse scattering transformation, sy
eductions, Backlund and Darboux transformations, etc.1–3 The most important solutions are
elebrated solitons, i.e., exponentially stable localized solutions of integrable(exact solutions) or
onintegrable nonlinear equations(exact or approximate solutions) in 1+1 dimensions. In the pa
0 years, solitons have been extensively applied in many natural sciences and especially
ll fields of physics such as plasma physics, optics, fluid mechanics, and so on.4,5

In 2+1 dimensions, there are many nonlinear equations integrable by the inverse sc
ethod such as the Davey–Stewartson(DS) equation, Kadomtsev–Petviashvili(KP) equation. A

ew type of coherent(exponentially localized in all directions) solution (dromion) driven by
traight line solitons has been found in some cases, for example for the so calle
quation.6–11

Moreover, it has been demonstrated that dromions exist as approximate solutions
articular case of ion acoustic waves in an unmagnetized or magnetized plasma and
coustic waves.12–14 Each dromion propagates with its own group velocity and during a col
aintains its shape, because a phase shift is the only change. They are solutions of aC-integrable

solvable via an appropriate change of variables) nonlinear partial differential system of equatio
escribingN-interacting wavessN.1d for modulated amplitudesC j =C jsj ,h ,td, j =1, . . . , N.

In this paper, we seek approximate localized solutions for the following nonlinear equat
massive vectorial field,

s]m]m + M2dAn + auAmu2An = 0, s1.1d

hereAn=sA0,AI d, ]m]m=]t
2−¹2, M anda are parameter anduAmu2=AmAm

* .
We consider the interaction and eventually the collisions among coherent solution

ifferent velocities that are not close to each other and use the asymptotic reductio(AP)
ethod15,16 based on the spatio-temporal rescaling

jm = «2xm, s1.2d
here

4506022-2488/2004/45(12)/4506/9/$22.00 © 2004 American Institute of Physics
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jm = sj0,jId, xm = sx0,xId, s1.3d

ith j0=t andx0= t. The small positive nondimensional parameter« is artificially introduced to
erve as bookkeeping device and will be set equal to unity in the final analysis. The re
ethod focuses on a solution that is small and is close to a superposition ofN several dispersiv
aves, with different group velocities.

In the linear limit the solution is

o
j=1

N

Cj
n exps− isjd, sj = kj ,mxm = v jt − KI j . xI, j = 1, . . . , N, N . 1, s1.4d

hereCj
n are the complex amplitudes,KI j ;sK1,j ,K2,j ,K3,jd the wave vectors and the(circular)

requencyv j is furnished by the dispersion relationv j =v jsKI jd. The amplitudes of theseN non-
esonant dispersive waves(constant in the linear limit) are slowly modulated by the non line
erm of the vectorial massive nonlinear Eq.(1.1).

In Sec. II we derive a model system of equations for the slow modulation of the F
odes amplitudes and, subsequently, in Sec. III we show that it isC-integrable. The Cauch
roblem is resolved, just by quadratures, and explicit nontrivial solutions are constructed.

V, we demonstrate the existence of dromions which preserve their shape during collisio
nly change being a phase shift. Moreover, other coherent solutions(line solitons, multilump
olutions, ring solitons, instanton solutions, and breathers) are derived. Conclusion and final co
iderations are reserved for the last section.

I. DERIVATION OF THE MODEL SYSTEM

It is well known that the linearized version of Eq.(1.1),

s]m]m + M2dAn = 0, s2.1d

s satisfied by Fourier modes with constant amplitudes,

Aj
n < Cj

n expisKI j . XI − v jtd = Cj
n exps− ikj ,mxmd, s2.2d

f the following dispersion relation is verified:

v j
2 = Kj

2 + M2. s2.3d

he group velocityUI j (the speed with which a wave packet peaked at that Fourier mode
ove) is

UI j =
dv j

dKI j
=

KI j

v j
. s2.4d

n the following we consider a superposition ofN dispersive waves, characterized by differ
alues of the wave vectorKI j and by group velocities not close to each other. Weak nonline

nduces a slow variation of the amplitudes of these dispersive waves and the AP method
he nonlinear system of equations for the Fourier modes amplitudes modulation, obvio
ppropriate “slow” and “coarse-grained” variables defined by Eq.(1.2). Since the amplitude o
ourier modes are not constant, higher order harmonics appear and in order to cons
pproximate solution that is small of order« and that is close in the limit of small« to the linea

olution (2.2), we introduce the asymptotic Fourier expansion
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Ansxd = o
nI=−`

`

expSio
j=1

N

njsjD«gnIcnI
nsj;«d, s2.5d

here the indexnI stands for the sethnj ; j =1, 2, . . . ,Nj, sj is given in Eq.(1.4) and summation
imited only to terms withnj odds(note that the only nonlinear term present in Eq.(1.1) is cubic).
he functions,cnI

nsj ,h ,t ,«d depend parametrically on« and we assume that their limit for«
0 exists and is finite. We moreover assume that there hold the conditions

gnI = g−nI , s2.6d

gnI = o
j=1

N

unju, otherwise. s2.7d

his implies that we obtain the main amplitudes if one of the indicesnj has unit modulus and a
he others vanish. We use the following notations:

cnIsj,« → 0d = C jsjd, if nj = 1 andnm = 0 for j Þ m, s2.8ad

cnIsj,« → 0d = F jsjd, if nj = − 1 andnm = 0 for j Þ m. s2.8bd

aking into account(2.6) and(2.8), the Fourier expansion(2.5) can be written more explicitly i
he following form:

Ansxd = o
j=1

N

fexpsisjdC jsjd + «2 exps3isjdC3,jsjd + c.c.g + o
j=1

N

fexps− isjdF jsjd

+ «2 exps− 3isjdC−3,jsjd + c.c.g + Os«4d, s2.9d

here c.c. stands for complex conjugate.
Substituting(2.9) in Eq. (1.1) and considering the different equations obtained for e

armonic and for a fixed order of approximation in«, we obtain fornj =1, nm=0, if j Þm, to the
rder of«3, the following system of equations for the modulated amplitudes:

s− 2ikm]mdC j
n + ao

m=1

N

fsCm,mCm
*m + Fm,mFm

*mdC j
n + Fm

n Fm
*mCm,jg = 0, s2.10d

ndnj =−1, nm=0, if j Þm, to the order of«3,

s2ikm]mdF j
n + ao

m=1

N

fsFm,mFm
*m + Cm,mCm

*mdF j
n + Cm

n Cm
*mFm,jg = 0. s2.11d

he validity of the approximate solution should be expected to be restricted on bounded in
f the t-variable and on time-scalet=Os1/«2d. If one wishes to study solutions on intervals s

hat t=Os1/«d, then the higher terms will in general affect the solution and must be includ

II. INTEGRABILITY OF THE MODEL SYSTEM OF EQUATIONS

The system of nonlinear equations(2.10) and(2.11) is C-integrable by means of an approp
te transformation of the dependent variables. We set

C j
nsjd = r j

nsjdexpbiq j
nsjdc, F j

nsjd = x j
nsjdexpbiw j

nsjdc, j = 1, . . .N, s3.1d

ith r j
n=r j

nsjd, x j
n=x j

nsjd.0 andq j
n=q j

nsjd, w j
n=w j

nsjd real functions. Then Eqs.(2.10) and(2.11)

ield
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r j ,t
n sjd + UI j . ¹ r j

nsjd = 0, s3.2d

x j ,t
n sjd + UI j . ¹ x j

nsjd = 0, s3.3d

sq j ,tsjd + UI j . ¹ q j
nsjddr j

n +
a

2v j
o
m=1

N

fsrm,mrm
m + xm,mxm

mdr j
n + xm

n xm
mrm,jg = 0, s3.4d

sw j ,t + UI j . ¹ w j
ndx j

n −
a

2v j
o
m=1

N

fsxm,mxm
m + rm,mrm

mdx j
n + rm

n rm
mxm,jg = 0. s3.5d

suitable solution for the Cauchy problem of(3.2) and (3.3) reads

r j
n = r j

nsam,jj
md, x j

n = x j
nsbm,jj

md, s3.6d

heream,j
n =sa0,j

n ,aI j
nd, bm,j

n =sb0,j
n ,bI j

nd, the 8N real functionsr jsaI j
n ·jId, x jsbI j

n ·jId which represent th
nitial shape can be chosen arbitrarily andam,j

n ,bm,j
n are real constants which satisfy the relati

a0,j
n + aI j

nUI = 0, b0,j
n + bI j

nUI = 0. s3.7d

suitable solution of(3.4) and (3.5) is

q j
n = d jsãm,j

n jmd −
a

2v j
o
m=1

N E
0

t
„xm

n sldxm
msldrm,jsld…

r j
nsld

dt̃ −
a

2v j
o
m=1

N E
0

t

srm,msldrm
msld

+ xm,msldxm
msldddt̃, s3.8ad

here

fsld = f„jI − UI j · st − t̃d,t̃…, s3.8bd

nd

w j
n = d̃ jsb̃m,j

n jmd +
a

2v j
o
m=1

N E
0

t
„rm

n sldrm
msldxm,jsld…
x j

nsld
dt̃ +

a

2v j
o
m=1

N E
0

t

„xm,msldxm
msld

+ rm,msldrm
msld…dt̃, s3.9d

here the 8N functionsd j
nsaI j

n ·jId, d̃ j
nsaI j

n ·jId are fixed by the initial data and

ã0,j
n + ã

I
j
n ·UI j = 0, b̃0,j

n + b̃
I

j
n ·UI j = 0. s3.10d

he approximate solution for the massive vector field Eq.(1.1) is

An = 2«o
j=1

N

r j
n cossq j

n + kj ,mjmd + 2«o
j=1

N

x j
n cossw j

n − kj ,mjmd + Os«3d. s3.11d

he corrections of order«3 to the approximate solution depend on higher harmonics and c

asily calculated from results obtained in Sec. II.
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V. EXACT SOLUTIONS FOR THE C-INTEGRABLE MODEL EQUATION

. Nonlinear wave

The most simple solution of the system(2.10) and (2.11) is the plane wave

x j
n = C̃j

n = const, q j
n = − k̃m,j

n jm, s4.1ad

r j
n = Cj

n = const, w j
n = − k̂m,j

n jm, s4.1bd

k̂m,j
n = sv̂ j

n,KI jd, k̃m,j
n = sṽ j

n,KI jd, s4.1cd

here the amplitudes and phases are connected according to the dispersion relation

ṽ j = UI j · K̃
I

j +
a

2v j
o
m=1

N S C̃m
n C̃m

mCm,j

Cj
n + Cm,mCm

m + C̃m,mC̃m
mD , s4.2ad

v̂ j = UI j · K̃
I

j −
a

2v j
o
m=1

N SCm
n Cm

mC̃m,j

C̃j
n

+ C̃m,mC̃m
m + Cm,mCm

mD . s4.2bd

. Solitons

The C-integrable nature of the system(2.10) and (2.11) implies the existence of more inte
sting solutions. It is possible the existence ofN solitons which interact each other preserving t
hapes and propagate with the relative group velocityUI j (see(2.4)). TheseN solitons have fixe
peeds but arbitrary shapes:

r j
n =

2Cj
n

ch„2Cj
nsam,j

n jmd…
, x j

n =
2C̃j

n

ch„2C̃j
nsbm,j

n jmd…
, s4.3ad

d j
n = 0 for j = 1, . . . , N, s4.3bd

heream,j
n , bm,j

n are given by(3.7), Cj
n, C̃j

n for j =1, . . . , N, are real constants of order«, and the
hasesq j

n, w j
n are given by(3.8)–(3.9).

Substituting(4.3) in (3.7) we obtain the approximate solution good to the order of«. Each
oliton advances with a constant velocity(the group velocity) before and after collisions. Only t
hase is changed during collisions owing to the presence of the other solitons.

For example, if for the initial conditions we chooseN=2 and

AnsxI,0d = 4o
j=1

2
Cj

n

chs2Cj
nsaI j

n · sxI − xI0,j
n ddd

cossKI j ·xId, s4.4d

here the initial positions arex0,1
n , x0,2

n , then the approximate solution good to the order of« is
iven by

AnsxI,td = 4o
2

Cj
n cosskm,jx

m + q j
nd

chs2Cnsa · sxm − xm ddd
. s4.5d
j=1 j m,j 0,j
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. Dromions

It is well known that dromions have been found in manys2+1d-dimensional equations int
rable by the inverse scattering method and usually are driven by two or more nonparallel s

ine “ghost” solitons. The localized wave packet is located at the intersection of two line-s
f the mean field and the lump travels along the tracks. In the DS-I system dromion soluti
riven by two perpendicular line “ghost” solitons, while in the Kadomtsev–Petviashvili equ

he dromion solutions are driven by nonperpendicular line “ghost” solitons. In the last cas
ions exist only for some suitable potentials of the field. Recently dromions solutions dri

urved and straight-line solitons have been found for some nonlinear equations i
imensions.9

The existence of localized solutions is possible also forC-integrable systems, because d
ion solutions are not exclusive characteristics of equations integrable by the inverse sc
ethod.

A particular solution of the model system(2.10) and (2.11) is given by

r j
n = Cj

n exps− Bj
nujI − UI jtud, x j

n = 0, w j
n = 0, s4.6d

d j
n = 0 for j = 1,2, . . . ,N, s4.7d

hereBj
n, Cj

n are real constants(note that the functionsr j
n 4.6(a) are localized) andq j

n is given by
q. (3.5).

Substituting the solution(4.6) in Eq. (3.7) and takingN=2 we obtain for two dromions wit
ifferent shapes and amplitudes the approximate solution

AnsxI,td = 2o
j=1

2

Cj
n exps− Bj

nujI − UI jtudcosskm,jx
m + q j

nd. s4.8d

n Fig. 1 we show a collision between two dromions: the initial condition is shown in Fig.(a),
hen the two dromions collide[Fig. 1(b)] and then separate[Fig. 1(c)]. We can see that dromio
reserve their shapes but with a phase shift.

. Lumps

It is well known that in high dimension, in addition to the dromion solutions, other intere
ocalized solutions, formed by rational functions, are the multiple lumps. Obviously, the

any possible choices in order to obtain multilump solutions. For instance, we take

r j
n =

Bj
n

Cj
n + Dj

nujI − UI jtu2
, x j

n = 0, w j
n = 0, s4.9ad

d j
n = 0 for j = 1, . . . , N, s4.9bd

hereBj
n, Cj

n, andDj
n are arbitrary real constants andq j

n is given by Eq.(3.5).

. Ring solitons

The multiple ring solitons are solutions that are not equal to zero at some closed cur
ecay exponentially away from the closed curves. A possible selection is

r j
n = Cj

n exp„− Bj
nf j

nsRjd…, x j
n = 0, w j

n = 0, s4.10ad

d j
n = 0 for j = 1, . . . , N, s4.10bd

n

j given by Eq.(3.5) and
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IG. 1. Evolution plots of two dromions with different shapes and amplitudessA1=2.0, A2=2.5, B1=0.01,B2

0.01,K1,1=1.3, K2,1=1.2, K1,2=0.8, K2,2=0.7d. The initial condition is represented in(a), then the two dromions under
collision (b) and separate(c).
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Rj = ujI − UI jtu, s4.10cd

f j
nsRjd = sRj − R0,j

n d2, s4.10dd

ith Cj
n, Bj

n, andR0,j
n as arbitrary constants.

. Instantons

If we choose a decaying function of time, we obtain also multiple instanton solution
xample,

r j
n = Cj

n expsaI j
n · jI − l j

ntd, x j
n = 0, w j

n = 0, s4.11ad

d j
n = 0 for j = 1, . . . , N, s4.11bd

ith q j
n given by Eq.(3.5), Cj

n, aI j
n arbitrary constants and

l j
n = aI j

n ·UI j . s4.11cd

. Moving breatherlike structures

Finally, if we choose some types of periodic functions of time in the above mentioned
ions, then we obtain breathers. For example, we take

r j
n = Cj

n cossaI j
n · jI − V j

ntdexpb− Bj
nujI − UI jtuc, x j

n = 0, w j
n = 0, s4.12ad

d j
n = 0 for j = 1, . . . , N, s4.12bd

ith q j
n given by Eq.(3.5), Bj

n, Cj
n, aI j

n arbitrary constants and

V j
n = aI j

n ·UI j . s4.12cd

. CONCLUSION

We have found approximate analytical solutions for the vectorial massive nonlinear eq
1.1). Appropriately coarse-grained and slow variables have been introduced and a mode
f equations for the amplitudes modulation of Fourier modes has been derived by means o
ethod.

The model system isC-integrable and with appropriate nontrivial initial conditions we
btain multiple localized solutions(dromions, solitons, lumps, ring solitons, breathers, instan)
oving with different and not close to each other velocities. The richness of the solitons t
bviously a consequence of the high dimensions of the nonlinear equations.

This topic will be further investigated with the derivation of the model equation for
onlinear waves and of the model equations for the interactions among phase resonan
oreover, it will be worthy to study further the behavior of the solutions, and in particular
romions, beyond the leading order in the expansion parameter«.
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voiding superluminal propagation of higher spin waves
ia projectors onto W 2 invariant subspaces
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We propose to describe higher spins as invariant subspaces of the Casimir operator
of the Poincaré Group,P2, and the squared Pauli–Lubanski operator,W2, in a
properly chosen representation,cspd (in momentum space), of the Homogeneous
Lorentz Group. The resulting equation of motion for any field withsÞ0 is then just
a specific combination of the respective covariant projectors. We couple minimally
electromagnetism to this equation and show that the corresponding wave fronts of
the classical solutions propagate causally. Furthermore, forss,0d % s0,sd represen-
tations, the formalism predicts the correct gyromagnetic factor,gs=1/s. The advo-
cated method allows us to describe any higher spin without auxiliary conditions and
by one covariant matrix equation alone. This master equation is only quadratic in
the momenta and its dimensionality is that ofcspd. We prove that the suggested
master equation avoids the Velo–Zwanziger problem of superluminal propagation
of higher spin waves and points toward a consistent description of higher spin
quantum fields. ©2004 American Institute of Physics.[DOI: 10.1063/1.1794843]

. INTRODUCTION

The field theoretical description of interacting particles with spin.1 is a long standin
roblem. The interaction of a spin32 Rarita–Schwinger(RS) field minimally coupled to an extern
lectromagnetic field was shown to be inconsistent more than 40 years ago.1 Later on, Velo an
wanziger observed superluminal propagation of the RS wave front in the presence of a m
oupled electromagnetic field2 and also studied the conditions under which the Proca field
cting with an external electromagnetic field propagates causally.3 After these works many autho
ave addressed the above problem from different perspectives and for different interactio4 and

he general feeling seems to be that it is not possible to construct a consistent quantum th
assive particles withs.1.

At several decades of distance in looking afresh onto the equations of motion can le
ifferent understanding of this fundamental problem. Weinberg emphasizes in his textb
uantum field theory5 that the equation of motion satisfied by the Dirac field is nothing bu
ecord about the way how one puts together the two irreducible representations,s1/2,0d, and
0,1/2d, of the proper orthochronous Lorentz group to form a field that transforms invar
nder parity. In a wider understanding, this means that the equations of motion satisfied b
re just a consequence of the properties of the representations of the Homogeneous Loren
HLG) chosen by us to accommodate the field and the discrete symmetries we requir
ealized in this space. Closely related arguments can be found, among others, in Refs. 6

)
Electronic mail: mauro@fisica.ugto.mx

4515022-2488/2004/45(12)/4515/9/$22.00 © 2004 American Institute of Physics
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More recently, Refs. 10 and 11 studied covariant projectors onto invariant subspace
quared Pauli–Lubanski operator in the representation space of the four-vector–spinor and
hat the associated equations are free from the Velo–Zwanziger problem. The correspond
ectors for thess,0d % s0,sd representation space were studied in Ref. 12 where it was show
nder minimal coupling a particle in this representation has the correct value for the spi
agnetic factor,gs=1/s, thus proving Belinfante’s conjecture13 from 1953.

In this work we explore the projectors onto the invariant subspaces of the Poincaré C
perators, the squared four-momentum and the squared Pauli–Lubanski operator, for ans, and
tudy the propagation of the corresponding wave fronts along the lines of Refs. 2 and 3. Th

s organized as follows. In the next section we recall in brief a current description of highe
nd its relation to the Poincaré group. In Sec. III we suggest describing higher spins as in
ubspaces of the Poincaré Casimirs. In Sec. IV we show that particles within this fram
ropagate causally in the presence of an electromagnetic field, thus avoiding the classic
wanziger problem. In this paper we close with a brief summary.

I. CURRENT DESCRIPTION OF FIELDS AND ITS RELATION TO POINCARÉ GROUP
EPRESENTATIONS

The primary classification of elementary systems is usually done by identifying them(up to
orm factors) with the irreducible representations(irreps) of the Poincaré groupsPGd. If so, then
ne necessarily has to consider particles as invariant spaces of the Casimir operator
roup—the squared four-momentumP2, on the one side, and the squared Pauli–Lubanski ope
2, on the other side and label them by their respective eigenvalues,p2, and −p2sss+1d, as

p2,sss+1dl. Further quantum numbers can be associated with the Casimir invariants of
erlying Homogeneous Lorentz Group(HLG), SOs1,3d, and are approached by the reduc
hainPG.SOs1,3d. For finite dimensional representations, the Casimir invariants ofSOs1,3d are
requently expressed in terms of twoSUs2d Casimirs, in turn denoted bySL

2, andSR
2, of SUs2dL

^ SUs2dR, a group that is locally isomorphic toSLs2,Cd, the universal covering of HLG. The tw
dditional quantum labels gained in this manner are the well known left- and right-hande
ular momenta,”sL, andsR, respectively. Therefore, a covariant state labeling can be introdu

p2,sss+1d ;sL ,sRl, with s= usL−sRu , ... ,sL+sR. In so doing one encounters essentially two type
nite dimensional HLG representations.

1) The first ones contain just oneW2 invariant subspace, and correspond to the case whe
of the sL, sR labels vanishes[i.e., either ssL ,0d, or s0,sRd], and sR=sL. In such a cas
sL/RssL/R+1d=sss+1d, equals thef−s1/m2dW2g eigenvalue in the space under considera
[see Eq.(20)] and W2– and SL/R

2 invariant spaces coincide. Irreps of the above type
suggestive of replacingW2– by SUs2d spin labels.

As long as the basic fields in physics are precisely of the above type[the Dirac field is
1/2,0d % s0,1/2d, the electromagnetic field strength tensor iss1,0d % s0,1d, and scalars are ju
0,0d] identifying Poincaré labels withSUs2d spins works out without any harm.

2) The second ones are HLG irreps containing severalW2 invariant subspaces. In this case, b
sL and sR are nonvanishing, and the irreps are of the typessL ,sRd with sLÞ0, andsRÞ0.
Examples are the vector- and tensor-gauge fields,s1/2,1/2d and s1,1d, respectively. In th
rest frame,W2=−s1/m2d S2 henceW2 andS2 invariant subspaces coincide. However, bey
the rest frame, in flight,W2 and S2 invariant subspaces are no longer identical, a situ
caused by the property of the boost to mix up SU(2) spins differing by one unit.

Often, Lorentz representations that contain as building blocks irreps of the secon
ppear attractive for the description of higher spins, the classical examples being the
ymmetricK rank Lorentz tensors with Dirac spinor components, generically denoted bycm1¯mK

.
hey are exploited for the description of fields that have been labeled in the rest frame

ighest spinJ=K+1/2. The separation between Lorentz and spinor indices inherent to such
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ensors makes them especially appealing for the construction of covariant fermion–boson
owever, one has to face the problem of how to pick up the favored degrees of freedo
xclude interference with the unwanted ones. It seems inevitable to return back to the P

nvariants, if one wishes to distinguish all the degrees of freedom contained incm1¯mK
in a

ovariant and transitionally invariant fashion. Yet, for one reason or the other, this is not th
enaciously pursued by the theory. Rather, one still prefers to stay within the elaborated sc
ubstitutingW2 by SUs2d labels, but, yes, modify the latter scheme to account for the
ituation in introducing constraints, considered as appropriate.

To be specific, in order to select out ofcm (a field belonging tofs1/2,0d % s0,1/2dg
^ s1/2,1/2d) the W2 invariant subspace that relates to spin 3/2 at rest, one requires

si]mgm − mdcn = 0,

]mcm = 0,

gmcm = 0. s1d

xploiting constraints(some times termed to as auxiliary, or, supplementary, conditions) in place
f W2 quantum numbers brings the advantage of remaining within the framework of equ

inear in the momenta, and to work with four-dimensional Dirac spinors. However, these
ages reveal themselves as deceptive at the moment one has to face grave worries a
ompatibility of constraints and dynamics. Recall that the constraints change upon gaug
ne has to make sure that the modification is preserved in time by the equation of motion

atter does not violate causality. Notice that covariance alone is indeed a necessary b
ufficient condition for special relativity. For example, space-like intervals are doubtlessly
iant objects, but they are unacceptable for the description offreephysical fields as they prescri
he particle to violate causality during propagation. Precisely a flaw of that very type was re
y Velo and Zwanziger in Ref. 2 regarding thegmcm=0 constraint onto the four-vector spin
elo and Zwanziger showed that the above constraint triggers acausal propagation of
chwinger particles crossing an electromagnetic field.

In the present article we shall avoid the previous inconsistencies in developing a d
iew on the form and content of wave equations for higher spins. Namely, we take the p
hat the equation of motion for whatever free particle has to be(i) a function ofP2 andW2, the
asimir invariants of the Poincaré group,(ii ) operates immediate, i.e., without any supplemen
onstraints, on the HLG representation chosen to embed the field as one of its covariant s16

Within this context, there are two primordial equations of motion to be satisfied by any
ne of them searches forP2 invariant subspaces. It is nothing more but the Klein–Gordon e

ion. The other one secures in addition invariance under pseudo-rotations and pins-doW2

nvariant subspaces by means of appropriately constructed covariant projectors. It is th
atter type of equations on which we focus attention here. For the sake of self-sufficiency
resentation, the subsequent section opens with a brief review of the basics of space–ti
etries.

II. COVARIANT WAVE EQUATIONS FOR HIGHER SPINS FROM W 2 INVARIANT
UBSPACES

. Basics of space–time transformations

A general Poincaré transformation in space–time can be written in the factorized form

gsb,Ld = TsbdL, s2d

hereTsbd=gsb,Ed (E denotes the unit matrix) is a translation andL=gs0,Ld is a proper Lorent
ransformation. In the standard convention, the generators of the translation group in 1+

pace dimensions,T1,3, arePm in Tsbd, which are commuting,
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fPm,Png = 0. s3d

he HLG transformation in coordinate space,

xm8 = Lm
n xn, Lmn = expF−

i

2
umnLmnG, Lmn = XmPn − XnPm, s4d

nduces the following transformation for a fieldcsxd,

c8sxd = expF−
i

2
umnMmnGcsL−1xd. s5d

ere,umnare continuous parameters, while then3n matricesMmn represent a totally antisymm
ic 2nd rank Lorentz tensor. They are the generators of the homogeneous Lorentz grou
epresentation space of interest, and satisfy the commutation relations of the associated

fMmn,Mabg = − isgmaMnb − gmbMna + gnbMma − gnaMmbd. s6d

heir commutators with the generators of the translation group read as

fPm,Mabg = isgmaPb − gmbPad, s7d

heregmn=diags1,−1,−1,−1d is the metric tensor. TheMmn generators consist of

Mmn = Lmn + Smn, fLmn,Smng = 0, s8d

hereLmn and Smn in turn generate rotations in external coordinate- and internal represen
paces. The generators of boostssKx,Ky,Kzd and rotationssJx,Jy,Jzd are related toMmn via

Ki = M0i, Ji =
1

2
ei jkMjk, s9d

espectively.

. Pauli Lubanski vector and associated Casimir invariant

The Pauli–Lubanski(PL) vector is now defined as

Wm =
1

2
emnabMnaPb, s10d

heree0123=1. This operator can be shown to satisfy the commutators

fWa,Mmng = isgamWn − ganWmd, fWa,Pmg = 0, s11d

.e., it transforms as a four-vector under Lorentz transformations. The remarkable point is
xternal coordinate part ofMmn, namely the “orbital” momentumLmn, does not contribute toWm

ue to the anti-symmetric Levi-Civita tensor. As a result,Wm restricts to

Wm =
1

2
emnrtS

nrPt, s12d

nd its square(in covariant form) is calculated to be

W2 = −
1

2
SmnS

mnP2 + G2, Gm: = SmnP
n. s13d
he operatorsSmn act exclusively in the internal spin space and commute like
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fSmn,Sabg = − isgmaSnb − gmbSna + gnbSma − gnaSmbd. s14d

s long as Eq.(14) has same form as Eq.(6), one may viewSmn as generators of Loren
ransformations in the intrinsic space. However, in contrast to Eq.(7), Smn commutewith the
perators of translations,

fPa,Smng = 0. s15d

n effect, one does not find precisely Poincaré transformations in the internal space but
ontracted form of them. Hereafter we will refer to the group generated bySmn as the “Interna
omogeneous Lorentz Group”sIHLGd to distinguish it from the HLG spanned byMmn. In
ummary, one can write down generators of boosts and rotations in the internal space as

Ki = S0i, Si =
1

2
ei jkSjk. s16d

he internal HLG has by itself two Casimir invariants, in turn given byC1= 1/4SmnS
mn, and

2=SmnS̃
mn, with S̃mn=emnrtS

rt. In terms ofK , andS one finds

C1 =
1

2
sS2 − K 2d, C2 = iS ·K . s17d

he latter equation allows us to castW2 into the form

W2 = − 2C1P
2 + G2. s18d

or irreps of the typess,0d % s0,sd whereKi = 7 iSi, one finds the insightful relation11

G2 = − W2. s19d

he insertion of Eq.(19) into Eq. (18) amounts to

W2 = − S2P2. s20d

he latter relation explains the privileged position ofss,0d % s0,sd states to carry a unique SU(2)
pin both at rest[whereW2 any way reduces to −S2 m2 in accord with Eq.(20)] and in flight.
owever, for all the other types of Lorentz representations,W2ÞG2 and thef−s1/m2dW2g labels

or particles in flight do not have the interpretation of ordinarySUs2d spin. In the following we
abel W2 invariant subspaces bys but in general without any reference to SU(2) spin.

. Covariant projectors onto W 2 invariant subspaces

To begin with, we recall that the interpretation of elementary systems as Poincaré
rreducible representations requires any field to transform invariantly under the action of bP2

ndW2. In the following we work with massive fields. The former invariance leads to the K
ordon equation for any arbitrary field,

sP2 − m2dcspd = 0. s21d

nvariance under the action ofW2 results in the new condition

Psspdcspd = cspd, s22d

here Psspd stands for an appropriately constructed covariant projector onto the(−p2sss+1d)
nvariant subspace ofW2 in cspd. To be specific, for the case of the four-vector spinor, s

rojectors have been presented in Ref. 10. In general, equations of the type(22) are equivalent to
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fW2 + P2sss+ 1dgcspd = 0. s23d

ext, it is necessary to account for the mass shell condition in Eq.(21). For this purpose, we su
p Eqs.(23) and (21), weighted by 1/s and s−sd, respectively, to obtain

F1

s
W2 + sP2 + m2Gcspd = 0, s24d

nd cast the latter equation into the explicitly covariant form

ftmnP
mPn − m2gcspd = 0. s25d

ere tmn stands for

tmn =
1

s
s2C1gmn − SanS

a
md − s gmn;

1 denotes the first Casimir in Eq.(17) and Sbr are theIHLG generators in the particul
epresentation chosen forcspd. Their construction as solutions of the algebra of the Lorentz g
or the representation space under consideration is straightforward.7,9,10

Using now the gauge principle for electromagnetism in this equation, we obtain

FS1

s
s2C1gmn − SanS

a
md − s gmnDpm pn − m2Gcspd = 0, s26d

ith pm=Pm+eAm, ande denoting the charge of the fieldcspd. Notice that Eq.(26) is a covarian
atrix equation that operates in the vector space of the dimensionality ofcspd. For example, whe
spd stands for the four-vector-spinor,W2 is represented by a 16316 matrix. For the sake

llustration, here we bring the Lagrangian density for the lowest Rarita–Schwinger represe
t reads as

Lsxd = c̄sxdtmn pm pn csxd − m2c̄sxdcsxd, s27d

herec̄sxd=c†sxdsg0 ^ gd whereg is the matrix of the metric tensor. The definition ofc̄sxd has to
e performed for each representation individually. When applied to the Dirac represe
1
2 ,0d % s0, 1

2
d, Eq. (26) also has the great advantage to yield the correct value of the gyroma

actor,gs=2. This is not fortuitous but reflects the general property of our master equation(26) to
redict the correct value for the gyromagnetic ratio asgs=1/s for fields in ss,0d % s0,sd. Had we
sed instead Eq.(23) alone, we would have found the problematic case ofgs=1/sss+1d.

With respect tos 1
2 ,0d % s0, 1

2
d, Eq. (24) is nothing more than the Klein–Gordon equation

ach field component. This is due to the fact that the squared Pauli–Lubanski vector
s,0d % s0,sd fields is just −sss+1dP21s2s+1d3s2s+1d. The W2 Casimir invariant identifies only th
pin content and remains indifferent to the discreteC, P, or, T properties of the representation
nterest. Recall that one has different options to stick together, say,s 1

2 ,0d and s0, 1
2

d depending o
hether one wantss 1

2 ,0d % s0, 1
2

d to diagonalize the parity,g0R or, the charge conjugation,ig2K,
perator. For parity eigenstates one ends up with the standard Dirac equation, while forC-parity
tates one finds again the Dirac equation but with a Majorana mass term, respectively
owever that, under gauging, this equation gives the right magnetic properties forss,0d % s0,sd
elds. This means that solutions to Dirac equation are solutions to Eq.(26) although the convers

s not necessarily true since our equation specifies just the value of the spin.
For product representation spaces of the typecm1m2...mK

, the most interesting representat
pace for applications in hadron physics, the situation is different provided, one is track
ighest spin. As long as the highest spins are nondegenerate, there is no confusion wi

oubling, as would be the case for the lower spins. For these reasons, Eq.(26) has its major merits
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ith respect to the highest spins in the representations. Next we study wave front propag
articles described by means of Eq.(26) along the line of Refs. 2 and 3.

V. AVOIDING SUPERLUMINAL PROPAGATION OF HIGHER SPIN WAVES

Wave propagation is associated with a hyperbolic system of partial differential equa14

or such a class of differential equations the initial value problem can be posed on a c
urfaces(“space-like” surfaces with respect to the equation of motion). The equations posse
olutions with wave fronts traveling along rays at finite velocities. At any point on the surfac
ays form a cone that is entirely determined by the coefficients of the highest derivatives
quation of motion.14 The wave front can be characterized bynm=sn0,nd, the vectors normal t

he characteristic surface. The system of equations is hyperbolic ifn0 is real for anyn. To find the
ormal vectors it is sufficient to first replace in the highest derivatives of the equation of m

Pm by nm and then calculate the determinantDsnd (so called “characteristic determinant”3) of the
atrix given by the corresponding coefficients.

. Wave front propagation of the Klein–Gordon, Dirac, and Rarita–Schwinger
quations

In cases when the coupling to external fields is carried by the lower derivatives in the e
f motion, such as, say, the Klein–Gordon equation, the ray cones for interacting and fre
oincide. Indeed, in the latter case and under minimal coupling one finds

fpmpm − m2gcspd = fPmPm + esPmAm + AmPmd + e2AmAm − m2gcspd = 0. s28d

he vanishing of the characteristic determinant in this case yields

Dsnd = Detsn2d = n2 = 0, s29d

hich has realn0 for anyn. The same is true for Dirac particles, though not as obvious. As is
nown, a Dirac particle coupled minimally to the electromagnetic field is described by

fgmsPm + eAmd − mgcspd = 0. s30d

ow, the resulting characteristic determinant is found to be the square of Eq.(29),

Dsnd = Detsgmnmd = sn2d2. s31d

he vanishing of this determinant results once again into a ray cone that coincides with t
one.

The wave front propagation of the solution of the Rarita–Schwinger set of equation
tudied in great detail in Ref. 2. To understand the essence of the latter work recall that Eq(1) or
he analogous equation in the interacting case can be derived from a Lagrangian, a
uggested by Fierz and Pauli.15 Within the latter framework not all the Euler–Lagrange equat
ppear as genuine equations of motion, meaning that some of them may not involve time

ives, a property that qualifies them only as constraints onto the fields. Precisely this is the
he Rarita–Schwinger framework discussed in Sec. II. As a consequence, any surface in
ime is a characteristic surface.14 The Rarita–Schwinger system of coupled equations turns
quivalent to a system of hyperbolic equations supplemented by constraints that are cons

ime. In this case, the wave fronts of the constrained system are no longer given by the
eristic determinant of the Euler-Lagrange equations. Rather, it is necessary to find the
quation of motion, i.e., the one which(i) contains all the higher order derivatives needed fo
omplete characterization of the system, and(ii ) preserves the constraints in time. Finding suc
quation in general introduces, in addition to the derivatives already present in the sy
oupled equations, also new ones which as a rule spoil causal propagation, a result due t

nd 3.
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. Wave front propagation of W 2 invariant subspaces

In the present work we suggested an alternative formalism to the Rarita–Schwinger
ork. Our proposal was to pin down the degrees of freedom of interest by means of Eq.(26). This
quation was build upon the covariant projector onto theW2 invariant vector spaces in the rep
entation under consideration, and did not invoke any supplementary conditions. In this c

t is worth remarking that the formalism does not deal with the whole representation spa
nly with one of itsW2 invariant subspaces. Below we prove that equations of the latter ty
ot suffer the Velo–Zwanziger problem upon gauging.

First, we have to check that for all the degrees of freedom ofcspd, the second order tim
erivatives enter Eq.(26) with nonvanishing coefficients. This can be done in full generali
omentum space where

t00 =
1

s
s2C1g00 − Sa0S

a
0d − sg00 = 1. s32d

herefore, for allW2 invariant subspaces, the time derivative of each field component in Eq(26)
oes not vanish. This equation will be hyperbolic if the solutionsn0 to Dsnd=0 are real for anyn.
n this case we must solve

DetF−
1

s
W2snd − s n2G = 0. s33d

n order to demonstrate that(26) is a hyperbolic equation in the HLG representation space ch
or cspd here we exploit decomposition of the latter into invariant subspaces ofW2.

The most transparent representation ofW2 is obtained in the basis ofp-dependentW2 eigen-
tates whereW2 is block diagonal and equal to

W2sPd = − P2 Diagfs1ss1 + 1d1s1
,s2ss2 + 1d1s2

, . . . ,sNssN + 1d1sN
g. s34d

ere hs1,s2, ... ,sNj label the different eigensubspaces ofW2 (one of them beings) in the repre
entation of interest, while1sj

denotes the unit matrix of dimensionalitys2sj +1d3 s2sj +1d. Notice
hat the dimensionality,sdd, of the representation spacecspd relates to theW2 quantum numbe
ia d=oi mis2si +1d, wheremi is the multiplicity of si. The latter accounts for possible degen
ies of theW2 invariant subspaces incspd with respect to further symmetries such as, one o
iscrete space–time symmetries.

The determinant(33) is calculated as

DetF−
1

s
W2snd − s n2G = p

k=0

N Sn2Sskssk + 1d
s

− sDD2sk+1

. s35d

As long as for the integer/half-integers under consideration, there are no positive integers
alf-integerssk satisfying

skssk + 1d
s

− s= 0, s36d

he roots of the characteristic determinant aren2=0. Thus the solutions haven0 real for anyn, and
q. (26) is a set of hyperbolic equations for thecspd components. The characteristic surfaces

he same for free and interacting particles, and the ray cone coincides with the light cone.
ords, the wave front propagation ofW2 invariant subspaces is free from the Velo–Zwanz

roblem.
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. CONCLUSIONS AND PERSPECTIVES

In the present article we advocate the idea to consider higher spins as invariant subs
he Casimir operators of the Poincaré group, the squared four-momentum and the square
ubanski vector, in a properly chosen representation of the HLG,cspd. In executing the idea w
emonstrated that any higher spin is described in terms of one covariant matrix equation th(i) is
etermined exclusively by the HLG generators incspd, (ii ) is of the dimensionality ofcspd, and
iii ) is always of second order in the momenta. We gauged this equation minimally and fou
esulting particle propagation to be causal, thus avoiding the classical Velo–Zwanziger p
oreover, for the single spin valuedss,0d % s0,sd representations, our master equation(26) has

he great advantage to predict the correct value for the gyromagnetic ratio,gs=1/s, thus proving
elinfante’s conjecture13 from 1953.

The development of a calculation scheme for interacting particles of higher spins fro
erspective of the present work is underway.
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inite size effects in thermal field theory
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We consider a neutral self-interacting massive scalar field defined in a
d-dimensional Euclidean space. Assuming thermal equilibrium, we discuss the one-
loop perturbative renormalization of this theory in the presence of rigid boundary
surfaces(two parallel hyperplanes), which break translational symmetry. In order to
identify the singular parts of the one-loop two-point and four-point Schwinger
functions, we use a combination of dimensional and zeta-function analytic regular-
ization procedures. The infinities which occur in both the regularized one-loop
two-point and four-point Schwinger functions fall into two distinct classes: local
divergences that could be renormalized with the introduction of the usual bulk
counterterms, and surface divergences that demand counterterms concentrated o
the boundaries. We present the detailed form of the surface divergences and discus
different strategies that one can assume to solve the problem of the surface diver-
gences. We also briefly mention how to overcome the difficulties generated by
infrared divergences in the case of Neumann–Neumann boundary conditions.
© 2004 American Institute of Physics.[DOI: 10.1063/1.1808485]

. INTRODUCTION

The Casimir effect is the manifestation of the zero-point energy of the quantized elect
etic field, in the presence of metallic plates.1 A very simple calculation predicts that in a fo
imensional space–time, uncharged perfectly conducting parallel plates should attract ea
ith a force per unit areaFsLd~1/L4, whereL is the distance between the plates. Exten

eviews of this subject can be found in Refs. 2–6. As stressed by Milloniet al.,7 a brief argumen
howing that the zero-point energy associated with the quantized electromagnetic field m
physical meaning was already given by Einstein and Stern.8 These authors noted that a ze

oint energy seems necessary in order to avoid a first-order quantum correction tob−1 in the
lassical limitb@v in Planck’s expression for the average energy of an oscillator in equilib
ith radiation at temperatureb−1.

Although the vacuum energies of different physical configurations are formally dive
heir diference can be finite. In the case of a free scalar field, interacting only with bou
urfaces, the Casimir approach can be summarized as follows: first a complete set o
olutions of the Klein–Gordon equation satisfying appropriate boundary conditions, an
espective eigenfrequencies are presented. Next, the divergent zero-point energy is regul
he introduction of an ultraviolet cutoff. Finally, the polar part of the regularized energy
oved using a renormalization procedure. This procedure was first discussed by Fierz9 a long time
go, followed by Boyer10 and also by Svaiter and Svaiter11,12 In these two last references,
ttempt to clarify the relation between the cutoff method and analytic regularization proced
asimir effect has been developed. In particular, in these papers an analytic regularizatio
ure was interpreted as a cutoff method, and using a mixed cutoff in the regularized ze
nergy, it was possible to unify these two methods both in two- and three-dimensional

)
Electronic-mail: nfuxsvai@cbpf.br

4524022-2488/2004/45(12)/4524/15/$22.00 © 2004 American Institute of Physics
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imes. Further, a general proof was given that when the introduction of an exponentia
ields an analytic function with a pole at the origin, then the analytic regularization using th
unction (or a generalization for the zeta function) is equivalent to the application of a cutoff w
he subtraction of the singular part at the origin.13,14 More recently, Fulling offered an interesti
iscussion with regard to the problems in the renormalization program devised to find the
alized vacuum stress tensor in different field theories.15

It is important to point out that these results are valid at one-loop level and one is dealin
ree fields only. It is clear that the formalism must be generalized to take into account the
elf-interacting fields. Although higher-loop corrections to the Casimir effect seem beyond
ental reach today, theoretically such corrections are certainly of interest. Nevertheless,
xception for some few papers, only global issues have been discussed in the study of
orrections to the Casimir effect. One such exception is the discussion presented by Robaet
l.16 With this scenario in mind, it is natural to ask the important question: how to impleme
erturbative renormalization algorithm, assuming the presence of rigid boundaries(hard walls),
sing the standard weak-coupling perturbative expansion in quantum field theory, that is,

mplement the one-loop perturbative renormalization of a self-interacting scalar theory, as
oundary conditions which do break translational symmetry. Our aim when studying these

s linked to the following question: does the infrared problem have a solution in theories
ranslational invariance is broken? Note that temperature effects can solve the infrared pro
ome models in quantum field theory;17 for a recent treatment in non-abelian gauge theori
igh temperature, and the infrared problem, see for example, Ref. 18. Also, in massless sclw4

heory, if thermal equilibrium with a reservoir is assumed, the infrared problem can be solve
ressumation procedure. The standard is to use the Dyson–Schwinger equation to writ

erturbative version of the self-energy gap equation, or to use the composite o
ormalism.19–21

We would like to call the attention of the reader that there are some disagreements
iterature as to implementing the one-loop perturbative renormalization in finite size system
ranslational invariance is broken. In the one-loop approximation, Albuquerqueet al.22 found tha
he mass counterterm depends on the size of the compact dimension in thelw4 theory. Also
albouissonet al.23 assumed a self-interacting scalar field confined between two infinite p
lates, and using the techniques developed by Ananoset al.21 these authors did not find a
urface counterterm in thelw4 theory at finite temperature. Furthermore, they were able to d
emperature and size-dependent mass and coupling constant terms in systems where tra
nvariance is broken.

The purpose of this paper is to present a detailed calculation of the one-loop renorma
f thelw4 theory at finite temperature, assuming that one of the spatial coordinates is con
finite interval. Since this assumption is not sufficient to explicitly breaking the transla

ymmetry, we will further introduce boundary surfaces where the field satisfies appropriate
ry conditions. In this situation, the breaking of the translational invariance of the the
nsured. This paper is a natural continuation of the papers of Fosco and Svaiter24 and also Caiced
nd Svaiter.25 Our aim is to further the understanding of the renormalization procedure in sy
t finite temperature where there is a break of translational symmetry. We will discu
irichlet–Dirichlet (DD) and also the Neumann–Neumann(NN) boundary conditions. For th
irichlet–Dirichlet boundary conditions, the model is free of infrared divergences. I
eumann–Neumann boundary conditions case, infrared divergences associated with zer
ill appear for bare massless fields. We show that there is no clear meaning for a ther
ize-dependent mass in such situations. Consequently, a resummation procedure cannot b
olve the infrared problem in the case of Neumann–Neumann boundary conditions.

The organization of the paper is the following: in Sec. II we sketch the general formal
he theory, deriving the one-loop two-point and four-point functions. In Sec. III we use
ifferent analytic regularization procedures, i.e., dimensional regularization and zeta-functi

ytic regularization, to identify the polar contributions that appear in the expressions of th

oop two-point and four-point Schwinger functions. In Sec. IV we renormalize the four-point
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chwinger function and the problem for the infrared divergences is raised. In the conclus
ill discuss alternative solutions for the problem of the surfaces counterterms. In this paper
=c=kB=1.

I. GENERAL FORMALISM AND THE FINITE TEMPERATURE GENERATING
UNCTIONAL OF SCHWINGER FUNCTIONS

The static properties of finite temperature field theory can be derived from the pa
unction.26 To obtain the partition function the starting point is the Feynman, Matheus, and
pproach.27 Thus, let us consider the generating functional of(complete) Green’s functions for
elf-interacting scalar field theory defined in a flatd-dimensional Euclidean spaceZshd, given by

Zshd =E fdwgexpS− Sfwg +E ddx hsxdwsxdD , s1d

herefdwg is a translational invariant measure[formally given byfdwg=pxPRd dwsxd] andSfwg is
he classical action associated with the scalar field. The quantityZshd can be regarded as t
unctional integral representation for the imaginary time evolution operatorkw2uUst2,t1duw1l, with
oundary conditionswst1,xWd=w1sxWd andwst2,xWd=w2sxWd which gives the transition amplitude fro
he initial stateuw1l to a final stateuw2l in the presence of some scalar source of compact su
s usual, the generating functional of the connected correlation functions shall be gi
shd=ln Zshd. In a free scalar theory,Zshd as well asWshd can be calculated exactly. Regard

he Lagrangian density, we assume that

Lsw,] wd =
1

2
s] wd2 +

1

2
m0

2w2 +
1

4!
l0w4, s2d

herem0 is the bare mass andl0 is the bare coupling constant of the model. We are also assu

0
2ù0 and alsol0.0. The Euclideann-point correlation functions, i.e., then-point Schwinge

unctions are given by the expectation value with respect to the weight exps−Sswdd, defined as

Gsndsx1,x2, . . . ,xnd =
1

Zshd
U dnZshd

dhsx1d ¯ dhsxnd
U

h=0
. s3d

he n-point connected correlation functionsGc
sndsx1,x2, . . . ,xnd are given by

Gc
sndsx1,x2, . . . ,xnd =

1

Zshd
U dnWshd

dhsx1d ¯ dhsxnd
U

h=0
. s4d

inally, the generating functional of connected one-particle irreducible correlation function(the
ffective action) is introduced by performing a Legendre transformation onWshd,

Gsw0d = − Wshd +E dd x w0sxdhsxd. s5d

et us define the proper verticesGsndsx1, . . . ,xnd as

Gsndsx1, . . . ,xnd = U dnGsw0d
dw0sx1d ¯ dw0sxnd

U
w0=0

, s6d
here the normalized vacuum expectation value of the fieldw0sxd is given by
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w0sxd =
dW

dhsxd
. s7d

t is clear that in the case of a single scalar field, for a zero normalized vacuum expectatio
f the fieldw0sxd, the effective action may be represented as a functional power series aro
aluew0=0, with the form

Gsw0d = o
n=0

`
1

n!
E ddx1 ¯ ddxn Gsndsx1, . . . ,xndw0sx1d ¯ w0sxnd. s8d

f the bare coupling constant vanishes, i.e.,l0=0, the generating functional of alln-point
chwinger functionsZshd can be calculated exactly, since we have to evaluate only Ga

ntegrals. After some manipulations we obtain that the Gaussian generating functionalZ0shd is
iven by

Z0shd = expS1

2
E ddxE ddy hsxdG0

s2dsx − y,m0dhsydD , s9d

here the two-point Schwinger function(the inverse kernel) satisfies

s− Dx + m0
2dG0

s2dsx − y,m0d = ddsx − yd. s10d

n this situation, the free Euclidean field is a Gaussian random variable defined by its tw
orrelation function

G0
s2dsx − y,m0d = kxus− D + m0

2d−1uyl, s11d

nd the two-point Schwinger function has a well-known Fourier representation given by

G0
s2dsx − y,m0d =

1

s2pddE ddp
eipsx−yd

sp2 + m0
2d

. s12d

In the next section we will show that the two-point functionG0
s2dsx−y,m0d can be expressed

erms of the modified Bessel function of the third kind or Macdonald’s functionKmsxd. At present
e are not interested in evaluating the two-point Schwinger function, but only in the anal

he behavior ofG0
s2dsx−y,m0d in a givene neighborhood. Let us assume thatmux−y u !1; in this

ase, fordù3 we can use thatG0
s2dsx−y,m0

2d<G0
s2dsx−y,m0

2=0d= ux−yu−sd−2d. For d=2, the mas
arameter cannot be eliminated from the denominator and we have the following short d
ehavior:G0

s2dsx−y,m0
2d~ lnsmux−y u d. It is well known that a massless two-dimensional sc

eld theory is not consistent, once the model has severe infrared divergences. There are
roposals to circumvent this problem; we only mention some of them. For instance, on
iolate the positivity of the state vector space; another attempt is to restrict the test function
heory, and finally one can introduce a cutoff in the definition of the positive and negative W
an functions. It is clear that such cutoff procedure is equivalent to introducing a box to re

he theory in the infrared. Later, we will discuss other strategies to solve the problem
nfrared divergences in scalar theories at finite temperature.

Coming back to the generating functional of all Schwinger functions, forl0Þ0 it is not
ossible to find a closed exact expression for the partition function, and a perturbative ex

s mandatory. Let us then assume the weak-coupling perturbative expansion of the theo
mportant to point out that the partition function can be defined in arbitrary geometrie
lassical boundary conditions must be implemented in the two-point Schwinger function, r

ng the space of functions that appear in the functional integrals. If we want to include t
ffects, and assuming thermal equilibrium, from the Feynman, Matheus, and Salam form

ave
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kwbue−iHstf−tiduwal =E
wstid=wa

wstfd=wb

expSiE
ti

tf

dtE dd−1x Lsw,] wdD , s13d

here we have to assume thattf − ti =−ib and also setwa=wb, and the sum over allwa must be
erformed in order to produce the trace. The partition function Trfe−bHg is given by

Trfe−bHg =E
periodic

fdwgexpSiE
ti

ti−ib

dtE dd−1x Lsw,] wdD , s14d

here the integration over the fields satisfyingwsti − ib ,xWd=wst ,xWd. Since the time integration mu
ange from some valueti to ti − ib, let ti =0 and set the contour along the negative imaginary
rom 0 to −ib. Thus,t=−it, where 0øtøb, and we have

Zshduh=0 =E
periodic

fdwgexpSE
0

b

dtE dd−1x Lsw,] wdD . s15d

o generate then-point Schwinger functions we need to couple the field with an external so
e will assume that the system is confined between two parallel hyperplates(which we call the
asimir configuration), localized atz=0 andz=L, and we are using Cartesian coordinatesxm

srW ,zd, whererW is a sd−1d dimensional vector perpendicular to thezW vector. Note that since w
ssume thermal equilibrium with a reservoir, we have periodicity in the first coordinate
r1øb. See, for example, Ref. 28, or for a complete review of quantum field theory at th

quilibrium, see for example, Ref. 29. The choice of Dirichlet–Dirichlet boundary cond
eans that the scalar field satisfies

wsrW,zduz=0 = wsrW,zduz=L, s16d

nd Neumann–Neumann boundary conditions means that

]

] z
wsrW,zduz=0 =

]

] z
wsrW,zduz=L. s17d

In the next section we will discuss the perturbative renormalization at the one-loop leve
eld theory in the presence of rigid boundaries. The great interest of this matter is when s
ontain macroscopic structures, how is it possible to implement the renormalization progra
ill examine how the weak-coupling perturbative expansion and the renormalization progr
e implemented. In order to identify the singular part of the one-loop two-point Schwinger

ion, we use a combination of dimensional and zeta-function analytic regularization proc
e also present the detailed form of the surface divergences. Note that due to our choic(two-

arallel hyperplates), the region outside the boundaries is the union of two-simple conn
omains. The renormalization of the field theory in such exterior regions must be carried ou

he same lines as for the interior region. For simplicity we are considering only the interior r

II. THE REGULARIZED ONE-LOOP TWO AND FOUR-POINT SCHWINGER
UNCTIONS

The aim of this section is to reshape a well-known result, adding finite temperature eff
he problem. In order to implement the renormalization program in a scalar field theory wh
ssume Dirichlet–Dirichlet or Neumann–Neumann boundary conditions on rigid surfac
ust introduce surface counterterms. To write the full renormalized action for the theory wit
oundaries we need two regulators: the first one is the usuale that is introduced in the dimension
egularization procedure and the second one which we callh, represents the distance to a bou

ry. Accordingly we will show that the full renormalized action must be given by
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Sswd =E
0

L

dzE dd−1rSAsed
2

s]mwd2 +
Bsed

2
w2 +

Csed
4!

w4D +E dd−1rsc1shdw2srW,0d + c2shdw2srW,Ldd

+E dd−1rsc3shdw4srW,0d + c4shdw4srW,Ldd, s18d

hereAsed, Bsed, andCsed are the usual coefficients for the bulk counterterms and the coeffi

ishd, i =1, . . . ,4, which depend on the boundary conditions for the field, are the coefficie
he surface counterterms. As usual, all of these coefficients must be calculated order by
erturbation theory. Note that we are interested in systems that are invariant under tra
long directions parallel to the plates, which implies that the full momentum is not conserv
uch conditions, a more convenient representation for then-point Schwinger functions to impl
ent the perturbative renormalization is a mixedspW ,zd representation. Careless one-loop pe
ation theory leads to ultraviolet counterterms that depend on the distance between the
lso to the absence of surface counterterms.22,23

In a straightforward way, in the Matsubara formalism all the Feynman rules are the sam
he zero temperature case, except that the momentum-space integrals over the zeroth com
eplaced by a sum over discrete frequencies. For the case of boson fields we must per
eplacement

E ddp

s2pdd fspd → 1

b
o

n
E dd−1p

s2pdd−1 fS2np

b
,pWD , s19d

here we are using the following notation:sedd−1r =e0
bdr1edd−2rd.

We begin the study of the interacting theory by building the one-loop corre
G1

s2dsl0,x,x8dd to the bare two-point Schwinger functionG0
s2dsx,x8d, for both the DD and NN

oundary conditions. Using the Feynman rules we have thatG1
s2dsl0,rW1,z1,rW2,z2d can be written a

G1
s2dsl0,rW1,z1,rW2,z2d =

l0

2
E dd−1rE

0

L

dz G0
s2dsrW1 − rW,z1,zdG0

s2ds0W,zdG0
s2dsrW − rW2,z,z2d. s20d

ven though the functionsG0
s2dsrW1−rW2,z1,z2d and G0

s2dsrW2−rW3,z2,z3d are singular at coincide
oints (rW1=rW2, z1=z2) and (rW2=rW3, z2=z3), the singularities are integrable for points outside
lates. It is worth mentioning that the most simple way to take into account the boundar

mplement the boundary conditions through the explicit form of the free two-point Schw
unction G0

s2dsx−y,m0d. A straightforward substitution yields the orderl0 correction to the bar
wo-point Schwinger function in the one-loop approximation for the case of Dirichlet–Dir
oundary conditions. Using the Feynman rules,G2

s4dsl0,x1,x2,x3,x4d, i.e., theOsl0
2d correction to

he bare one-loop four-point Schwinger function, is given by

G2
s4dsl0,rW1,z1,rW2,z2,rW3,z3,rW4,z4d =

l0
2

2
E dd−1rE dd−1r8E

0

L

dzE
0

L

dz8G0
s2dsrW1 − rW,z1,zdG0

s2dsrW2 − rW,z2,zd

3sG0
s2dsrW − r8W ,z,z8dd2G0

s2dsrW8 − rW3,z8,z3dG0
s2dsrW8 − rW4,z8,z4d. s21d

ote that we supress them0 term in each expression. Again, allG0’s are singular at coincide
oints, but the singularities are integrable for points outside the plates, except forG0

s2dsrW
rW8 ,z,z8d. Having in mind the above discussion, in this section we will study the follo
xpressions:

l0

2
E dd−1rE

0

L

dzsG0
s2ds0W,zdd s22d
nd
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l0
2

2
E dd−1rE dd−1r8E

0

L

dzE
0

L

dz8sG0
s2dsrW − rW8,z,z8dd2. s23d

et us first study1
2G0

s2ds0W ,zd; Isz,m0,L ,b ,dd, and define the following quantities: 1/b=2/b, L
a and finally the dimensionless coupling constantg=m4−dl0. Therefore, the argument in t

ntegral defined in Eq.(22) , Isz,m0,a,b,dd can be written as

Isz,m0,a,b,dd =
g

2s2pdd−2ab
o

n=−`

`

o
n8=1

`

sin2Sn8pz

a
DE dd−2p

1

SpW2 + Sn8p

a
D2

+ Snp

b
D2

+ + m0
2D .

s24d

here are two points that we would like to stress. First to perform analytic regularizations w
ntroduce a parameterm with dimension of mass in order to have dimensionless quantities
o a complex power. Second, the generalization for the case of Neumann boundary cond
traightforward, although in this case infrared divergences associated with then=0 mode will
ppear in the case of massless scalar field. To circumvent this situation, we must have
uclidean volume to regularize the model in the infrared, or trying to implement a resumma
enerate a thermal mass. We will return to this point later.

Using trigonometric identities, it is convenient to write the amputated one-loop two
chwinger in two parts. The first comprises the contributions that do not depend on the dis

he boundary, and the second the contributions that do depend on this distance. There
uantity Isz,m0,a,b,dd can be split in two partsT1sm0,a,b,dd andT2sz,m0,a,b,dd, i.e.,

Isz,m0,a,b,dd = T1sm0,a,b,dd + T2sz,m0,a,b,dd. s25d

he first quantityT1sm0,a,b,dd, independent on the distance to the boundaries can be exp
n the following way:

T1sm0,a,b,dd = I0sm0,a,b,dd + I1sm0,a,b,dd + I2sm0,a,b,dd, s26d

here each term is given, respectively, by

I0sm0,a,b,dd = −
g

16s2pdd−2ab
E dd−2p

1

spW2 + m0
2d

, s27d

I1sm0,a,b,dd =
g

8s2pdd−2ab
o
n=1

` E dd−2p
1

SpW2 + m0
2 + Snp

a
D2D , s28d

nd finally

I2sm0,a,b,dd =
g

4s2pdd−2ab
o

n,n8=1

` E dd−2p
1

SpW2 + Snp

a
D2

+ Sn8p

b
D2

+ m0
2D . s29d

he contribution that depends on the distance to the boundaries given byT2sz,m0,a,b,dd, can be
plit in the following way:

T2sz,m0,a,b,dd = I3sz,m0,b,dd + I4sz,m0,a,b,dd + I5sz,m0,b,dd + I6sz,m0,a,b,dd. s30d
ach term contributing toT2sz,m0,a,b,dd is given, respectively, by
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I3sz,m0,b,dd =
g

2b
hsddE

m0

`

dvsv2 − m0
2dsd−4d/2 exps− 2vzd, s31d

I4sz,m0,a,b,dd =
g

2b
hsddE

m0

`

dvsv2 − m0
2dsd−4d/2scoth av − 1dcosh 2vz, s32d

I5sz,m0,b,dd =
g

b
hsddo

n=1

` E
m0

`

dvSv2 − m0
2 − Snp

b
D2Dsd−4d/2

exps− 2vzd, s33d

nd finally

I6sz,m0,a,b,dd =
g

b
hsddo

n=1

` E
a

`

dvSv2 − m0
2 − Snp

b
D2Dsd−4d/2

scoth av − 1dcosh 2vz. s34d

n the above expression the quantitya is given by

a = Sm0
2 + Snp

b
D2D1/2

, s35d

ndhsdd, that appears in Eqs.(31)–(34) is an entire function given by

hsdd =
1

4s4pdsd−2d/2
1

GSd − 2

2
D . s36d

et us investigate each contribution in detail. Using dimensional regularization we obta

0sm0,dd the following expression:

I0sm0,a,b,dd = −
g

16abs2Îpdd−2
GS2 −

d

2
Dsm0

2dsd/2d−2. s37d

n analytic expression for the gamma functionGszd, defined in the whole complex plane, can
ound and in the neighborhood of a polez=−n sn=0,1,2, . . .d the gamma function has t
epresentation

Gszd =
s− 1dn

n!

1

sz+ nd
+ Vsz+ nd, s38d

ith regular partVsz+nd. Using that 4−d=e and the duplication formula for the gamma funct
szd we have

I0usm0,a,b,ddud=4 = −
g

16p ab

1

m0
eS1

e
+ VsedD . s39d

ere one may adopt different renormalization schemes. We can choose the minimal sub
MS) scheme, in which we eliminate only the pole term 1/e in the dimensionally regularize
xpression for the Schwinger functions. Another choice is the modified minimal subtraction(MS)
cheme, where we eliminate not only the pole term 1/e but also the regular part around the p
ote that in the minimal subtraction scheme the counterterms acquire the simplest exp
hile the renormalized Schwinger functions have more complicated expressions. Let us

he second expression, given byI1sm0,a,b,dd. Using dimensional regularization it is possible

how that
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I1sm0,a,b,dd =
g

8s2Îpdd−2ab
GS2 −

d

2
Do

n=1

`
1

Sm0
2 + Snp

a
D2D2−sd/2d . s40d

e note that to extract a finite result fromI1sm0,a,b,dd we still have to use the analytic extens
f the Epstein–Hurwitz zeta function. A direct calculation gives

I1sm0,a,b,dd = −
g

8ab
m0

d−4
Îp

s2Îpdd−1
GS2 −

d

2
D +

gm0
d−3

8b

1

s2pdd−1

3SGS3 − d

2
D + 4o

n=1

`

sam0nds3−dd/2Ks3−dd/2s2m0nadD . s41d

he first term in the above equation is a polar part and the second one is finite. Assum
inimal subtraction scheme,I1sm0,a,b,dd becomes finite. The next term that we must analy

2sm0,a,b,dd defined by

I2sm0,a,b,dd =
g

4ab

1

s2pdd−2 o
n,n8=1

` E dd−2p
1

SpW2 + Snp

a
D2

+ Sn8p

b
D2

+ m0
2D . s42d

he contribution given by the above equation is a part of the amputated one-loop tw
chwinger function that does not depend on the distance to the boundaries, and in the re

zation procedure it will require only a usual bulk counterterm. The form of the counterte
iven by the principal part of the Laurent expansion of Eq.(42) around somed, which must be
iven by the analytic extension of the Epstein zeta function in the complexd plane. The structur
f the divergences of the Epstein zeta function is well known in the literature.30–33Since the pola
tructure of the above equation can be found in the literature, we will focus only on the po
ependent divergent part given byT2sz,m0,a,b,dd. We are now in position to discuss the beha
f I3sz,m0,b,dd , I4sz,m0,a,b,dd , I5sz,m0,b,dd and finally I6sz,m0,a,b,dd.

Let us first analyzeI3sz,m0,b,dd. Using the following integral representation of the modi
essel functions of third kind, or Macdonald’s functionsKnsxd,34

E
u

`

sx2 − u2dn−1e−mx dx =
1

Îp
S2u

m
Dsn−1/2d

GsndKn−1/2sumd, s43d

hich is valid foru.0, Resmd.0 and Resnd.0, we see thatI3sz,m0,a,b,dd can be written in
erms of these functions. A simple substitution gives

I3sz,m0,a,b,dd =
2

b

hsdd
s2Îpdd−1Sm0

z
Dsd−3d/2

Ksd−3/2ds2m0zd. s44d

sing a asymptoptic formula for the Bessel function,I3sz,m0,a,b,dd is given by

I3sz,m0,a,b,dd =
2

b

hsdd
s2Îpdd−1

GSd − 3

2
D

zd−3 . s45d

e can see that we have a divergent behavior asz→0, which demands a surface counterterm.
s show that the other terms also contain surface divergences, and studyI4sz,m0,a,b,dd. To
dvance in the calculations, we must extend the binomial series for both positive or n
ntegral exponents, written in the form
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s1 + xdk = o
n=0

`

Cn
kxn. s46d

irst, it is possible to show that the binomial expansion holds for any real exponenta, uxu ,1 and
eR, i.e.,

s1 + xda = o
n=0

`

Ca
nxn, s47d

here Ca
n are the generalization of the binomial coefficients. Since we are using dimen

egularization, it is possible to extend the binomial expansion when both the exponenta as wel
he variablex assume complex values. For this purpose we use the following theorem.

For any complex exponenta and any complexz in uzu ,1, the binomial series

o
n=0

`

Ca
nzn = 1 +Ca

1z+ ¯ + Ca
nzn + ¯ s48d

onverges and has for sum the principal value of the powers1+zda, where the principal value
he powerba is given by the number uniquely defined by the formulaba=expsa ln bd, wherea and

denotes any complex numbers, withbÞ0 as the only condition, and lnb is given its principa
alue. Going back toI4sz,m0,a,b,dd, using the generalization of the binomial theorem, le
efineCs1dsd,kd= 1

2hsdds−1dkCsd−4d/2
k to obtain

I4sz,m0,a,b,dd =
g

ad−3b
o
k=0

`

Cs1dsd,kdsm0ad2kE
m0a

`

ud−4–2kscoth u − 1dcoshS2uz

a
D . s49d

et us use the following integral representation of the gamma function:

E
0

`

dt tm−1e−nt =
1

nmGsmd, Resmd . 0, Resnd . 0, s50d

nd also the following integral representation of the product of the gamma function tim
urwitz zeta function,

E
0

`

dt tm−1e−atscoth t − 1d = 21−mGsmdzSm,
a

2
+ 1D, Resad . 0, Resmd . 1, s51d

herezss,ud is the Hurwitz zeta function defined by34

zss,ud = o
n=0

`
1

sn + uds, Ressd . 1, u Þ 0,− 1,− 2, . . . . s52d

t is not difficult to show thatI4sz,m0,a,b,dd contains surface divergences atz=0 and alsoz=a.
or more details, see, for example, Ref. 35. The other expression that we must s

5sz,m0,a,b,dd. Using an integral representation of the Bessel function of third kind we ha

I5sz,m0,a,b,dd =
1

b

1

s2Îpdd−1o
n=1

` Sa

z
Dsd−3d/2

Ksd−3d/2s2azd. s53d

sing an asymptotic representation of the Bessel function it is posssible to present a
ingular behavior nearz=0. Let us finally investigateI6sz,m0,a,b,dd. A simple calculation for th

assless case gives
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I6usz,m0,a,b,ddum=0 =
1

ad−3b
o
k=0

`

Cs2dsd,kdSa

b
D2k

o
n=1

`

n2kE
npa/b

`

du ud−4–2kscoth u − 1dcoshS2uz

a
D ,

s54d

hereCs2dsd,kd=hsdds−1dkCsd−4d/2
k p2k is an entire function in the complexd plane. The integra

hat appears in Eq.(54) cannot be evaluated explicity in terms of well-known functions. Ne
heless it is possible to write Eq.(54) in a convenient way where the structure of the diverge
ear the plate wheny→b appear. Clearly for details see Ref. 35. In the next section we

nvestigate the singularities of the four-point Schwinger function.

V. THE FOUR-POINT SCHWINGER FUNCTION IN THE ONE-LOOP APPROXIMATION

We now turn our attention to the four-point Schwinger function in the one-loop appro
ion. For simplicity we shall study only the zero temperature case. In this section we are fol
he discussion developed in Ref. 25. Introducing new variables asu± ;z±z8, and alsosrW =rW−rW8d,
he zero-temperature two-point Schwinger function in the tree-levelG0

s2dsrW ,z,z8d can be split into

G0
s2dsrW,z,z8d = G+

s2dsrW,u+d + G−
s2dsrW,u−d, s55d

here we are definingAnsa,m0,d,rWd by

Ansa,m0,d,rWd =
1

s2pdd−1E dd−1p
eipW·rW

SpW2 + Snp

a
D2

+ m0
2D , s56d

nd soG±
s2dsrW ,u±d can be expressed as

G±
s2dsrW,u±d = 7

1

a
o
n=1

`

cosSnpu±

a
DAnsa,m0,d,rWd. s57d

efore proceeding, let us present a explicit formula for the free two-point Schwinger fu

±
s2dsr ,u±d in terms of Bessel functions. Let us define an analytic functionfsdd by

fsdd =
1

Îps2pdsd−1d/2

GSd − 2

2
D

GSd − 3

2
D . s58d

trictly speaking, it is possible to show that we can writeG±
s2dsr ,u±d in terms of the Bess

unction of the third kind. To this end, we use the standard formula

1

s2pddE ddr FsrdeikW·rW =
1

Îps2pdd/2

GSd − 1

2
D

GSd − 2

2
DE0

`

Fsrdrd/2Jsd−3d/2skrddr , s59d

hich leads us to

G±
s2dsr,u±d = 7

fsdd
rsd−3d/2a

o
n=1

`

cosSnpu±

a
DE

0

`

dp
psd−1d/2

Sp2 + Snp

L
D2

+ m0
2DJsd−3d/2sprd, s60d

hereJnsxd is the Bessel function of the first kind of ordern. The integral in Eq.(60) can be
34
alculated by using the result
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E
0

`

dx
xn+1Jnsaxd
sx2 + b2d

= bnKnsabd, s61d

mplying that it is possible to writeG±
s2dsr ,u±d as

G±
s2dsr,u±d = 7

fsdd
rsd−3d/2a

o
n=1

`

cosSnpu±

a
DSSnp

a
D2

+ m0
2Dsd−3d/4

Ksd−3d/2SrÎm0
2 + Snp

a
D2D .

s62d

sing Eq.(55) and the above formula, the explicit expression for the two-point Schwinger
ion in a genericd-dimensional Euclidean space confined between two flat parallel hyperp
here we assume Dirichlet–Dirichlet boundary conditions is given. It is difficult to use the
xpressions forG±

s2dsr ,u±d to investigate the analytic structure of the four-point function for
he bulk and near the boundaries. Nevertheless, it is clear that the divergences of the fo
unction in the one-loop approximation appear at coincident points and therefore the s
ehavior is encoded in the polar part ofMsl0,a,m,dd given by

Msl0,a,m0,dd = g2E dd−1rE dd−1r8E
0

a

dzE
0

a

dz8FsrW,rW8,z,z8dsG0
s2dsrW − rW8,z,z8dd2. s63d

t is easy to show thatG2
s4dsl0,a,m0,ddamp is given by

G2
s4dsl0,a,m0,ddamp=

g2

2s2pd2d−2E dd−1rE dd−1r8E dd−1kE dd−1q

3o
n=1

`
eirW·sqW−kWd

SqW2 + Snp

a
D2

+ m0
2DSkW2 + Snp

a
D2

+ m0
2D , s64d

hereFsrW ,rW8 ,z,z8d is a regular function. As with the one-loop two-point function, it is not diffi
o realize that the above equation has two kinds of singularities, those coming from the b
hose arising from the behavior near the surface. As before, the behavior in the bulk is sim
he thermal field theory case and consequently we will discuss only the singularities arisin

he boundaries. This can be done studying the polar part ofM̃sl0,a,m0,dd given by

M̃sl,a,m0,dd =
g2

2
E

0

a

dzE
0

a

dz8Fsz,z8dsG0
s2ds0W,z,z8dd2, s65d

hereFsz,z8d is a regular function. Now, we recall that the form ofG±
s2dsr ,u±dur=0 is given by

G±
s2dusr,u±dur=0 = 7

1

s2pdd−1a
o
n=1

`

cosSnpu±

a
DE dd−1p

1

SpW2 + m0
2 + Snp

a
D2D , s66d

here it is not difficult to show that

G±
s2dusr,u±dur=0 = 7 S−

1

2a
A0usr,L,m0dur=0 + f2Sa,m0,d,

u±

2
DD . s67d
n the above definition we are making use of the auxiliary functionf2sa,d,m0,zd given by
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f2sa,m0,d,zd =
1

2s2pdd−1E dd−1p
1

ÎpW2 + m0
2

coshssa − 2zdÎpW2 + m0
2d

sinhsaÎpW2 + m0
2d

. s68d

ote that the amputated one-loop two-point Schwinger function can be decomposed in a
ional invariant part and a translational invariance breaking part, given exactly byf2sa,m0,d,zd.

hen we sum to find the free propagator, we end up with the following expression:

G0
s2dusr,z,z8dur=0 = f2Sa,m0,d,

u−

2
D − f2Sa,m0,d,

u+

2
D . s69d

or the sake of simplicity, we will discuss only the massless case once the singularities
assive case have the same structure as in the massless one. The functionf2sa,m0,d,u+/2d is
onsingular in the bulk, i.e., in the interior of the intervalf0,ag, while f2sa,m0,d,u−/2d has a
ingularity along the linez=z8. Indeed, closer inspection shows that for 0øz,z8øa the only
ingularities are those atu+=0, u+=2a and alsou−=0. The former two are genuinely bound
ingularities(the two conditions implyz,z8→0 or z,z8→a), while the last comes fromz=z8 in
he whole domain and is just the standard bulk singularity. In fact, using the structure
wo-point function and showing just those terms from which singularities might arise, one

hat the counterterms forM̃ are given by

− poleE
0

a

dzE
0

a

dz8F C1

sz+ z8dd−2 +
C2

s2a − z− z8dd−2 +
C3

sz− z8dd−2 + ¯G2

, s70d

hereCi , i =1, . . . ,3 are regular functions that do not depend onz or z8. From this discussion
s clear that in order to render the field theory finite, we must introduce surface terms in the
his is a general statement. For any fields that satisfy boundary conditions that break the

ional invariance it suffices to introduce surface counterterms in the action, in addition to th
ulk counterterms, to render the theory finite in the ultraviolet.36–38 Now we are able to discu
hether in the Casimir configuration the infrared problems can be solved for the case of Ne
oundary conditions. For the case of masslessslw4dd theory at finite temperature, the infrar
roblem can be solved after a resummation procedure.17–20,39The key point for the solution of th

nfrared problem is to use the Dyson–Schwinger equation to rewrite the self-energy gap e
imple inspection of Eq.(24) show us that it is not possible to implement such scheme
ituation where there is a break of translational invariance.

A different possibility to approach the infrared problem is to single out the zero mode
onent of the field, treating the nonzero modes perturbatively and treating the zero mode
his is a standard procedure in high-temperature field theory, where by means of the dim

eduction idea, we relate the thermal Schwinger functions in ad-dimensional Euclidean space
ero temperature Schwinger functions in asd−1d dimensional Euclidean space.40–42 In this situ-
tion we have a dimensionally reduced effective theory. The key point in this construction

act that the leading infrared behavior of any field theory at high temperature in ad-dimensiona
uclidean space is governed by the zero frequency Matsubara mode.

. DISCUSSIONS AND CONCLUSIONS

In this paper we are interested in the analysis of the important questions of pertu
xpansion and renormalization program in quantum field theory with boundary conditio
reak translation symmetry, assuming that the system is in equilibrium with a reservoir
eratureb−1. Specifically, the purpose of this paper is to study the renormalization procedur
ne-loop level in theslw4dd theory at finite temperature assuming that the scalar field sa
irichlet–Dirichlet or Neumann–Neumann boundary conditions on two parallel hyperplate

We first obtained the regularized one-loop diagrams associated with scalar field define
asimir configuration in ad-dimensional Euclidean space. We obtained a well-known r

oncerning surface divergences that appear in the one-loop two-point and four-point Schwinger
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unctions as a consequence of the uncertainty principle. There are at least three different
olutions to eliminate these divergences. The first one is to take into account that real m
ave imperfect conductivity at high frequencies. As was stressed by many authors, the i

hat appear in renormalized values of local observables for the ideal conductor(or perfect mirror)
epresent a breakdown of the perfect-conductor approximation. A wavelength cutoff corre
ng to the finite plasma frequency must be included. The second one is to substitute c
oundary conditions by classical potentials; for previous papers using this idea see, for e
efs. 43–45. A localized boundary with some cutoff can also be used to replace the po
evertheless, it is necessary to renormalize the potential.25 The third one regards a quant
echanical treatment of the boundary conditions. A fruitful approach to avoid surface diverg
iscussed by Kennedyet al.46 is to treat the boundary as a quantum mechanical object.
pproach was developed by Ford and Svaiter47 to produce finite values for the renormalizedkw2l
nd other quantities that diverge as one approaches the classical boundary.

Consequently, we have two main distinct directions for future investigations. The fi
elated to the infrared divergences of our model. Infrared divergences of massless therm
heory arise from the zero frequency Matsubara modes, so we construct an effectivesd−1d di-

ensional theory by integrating out the nonstatic modes and therefore the zero frequen
ubara modes which are responsible for infrared divergences can be treated separately. Th
irection is related to the surface divergences. In the Euclidean formalism for field theory, o

magine that our simplified model of rigid boundaries is a good approximation only for poi
he bulk; for points close to the surfaces however, our approximation is no longer acurat
odel taking into account at least thermal fluctuations of the boundaries must be develop48 In
ther words, a fundamental understanding of the perturbative renormalization algorithm
tandard weak-coupling perturbative expansion of an Euclidean field in the presence of flu
oundaries is desired. This interesting situation of thermal fluctuating boundaries is un

nvestigation by the authors.
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n a conjecture of Givental
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Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

Yun S. Songb)

Department of Physics and SLAC, Stanford University, Stanford, California 94305

(Received 25 June 2004; accepted 18 August 2004; published 5 November 2004)

These brief notes record our puzzles and findings surrounding Givental’s recent
conjecture which expresses higher genus Gromov–Witten invariants in terms of the
genus-0 data. We limit our considerations to the case of a complex projective line,
whose Gromov–Witten invariants are well-known and easy to compute. We make
some simple checks supporting his conjecture. ©2004 American Institute of
Physics.[DOI: 10.1063/1.1808486]

. BRIEF SUMMARY

These notes are brief sketches of our troubles and findings surrounding a work of Gi5

Let Fg be the generating function in the small phase space for genus-g Gromov–Witten(GW)
nvariants of a manifoldX with a semisimple Frobenius structure onH*sX,Qd. Then, Givental’
onjecture, whose equivariant counterpart he has proved,5 is

eSgù2lg−1Fgstd = UFesl/2dSk,lù0Si,jVkl
i j ÎDi

ÎD j]qk
i ]ql

jp
j

tslD j ;hqn
j jdGU

qn
j =Tn

j

, s1d

herei , j =1,… ,dim H*sX,Qd; t is the KdV tau-function governing the intersection theory on

eligne–Mumford spaceM̄g,n; andVkl
ij ,D j, andTn

j are functions of the small phase space coo
atestPH*sX,Qd and are defined by solutions to the flat-section equations associated w
enus-0 Frobenius structure ofH*sX,Qd.5 This remarkable conjecture organizes the higher g
W invariants in terms of the genus-0 data and thet function for a point. The motivation for o
ork lies in verifying the conjecture forX=P1, which is the simplest example with a semisim
robenius structure on its cohomology ring and whose GW invariants can be easily comp

We have obtained two particular solutions to the flat-section equations(5), an analytic on
ncoding the two-point descendant GW invariants ofP1 and a recursive one corresponding
ivental’s fundamental solution. According to Givental, both of these two solutions are su

o yield the same dataVkl
ij ,D j, and Tn

j . Unfortunately, we were not able to produce the des
nformation using our-analytic solutions, but the recursive solutions do lead to sensible qu
hich we need. Combined with an expansion scheme which allows us to verify the conje
ach order inl, we thus use our recursive solutions to check the conjecture(1) for P1 up to orde
2. Already at this order, we need to expand the differential operators in(1) up to l6 and need t
onsider up to genus-3 free energy in thet functions, and the computations quickly beco
umbersome with increasing order. We have managed to re-express the conjecture for

nto a form which resembles the Hirota-bilinear relations, but at this point, we have no in
nto a general proof. It is nevertheless curious how the numbers work out, and we hope
esults would provide a humble support for Givental’s master equation.

)Electronic mail: jssong@alum.mit.edu
)
Author to whom correspondence should be addressed. Electronic mail: yss@stanfordalumni.org
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Many confusions still remain—for instance, the discrepancy between our analytic and
ive solutions. As mentioned above, Givental’s conjecture forP1 can be rewritten in a form whic
esembles the Hirota-bilinear relations for the KdV hierarchies[see(32)]. It would thus be inter
sting to speculate a possible relation between his conjecture and the conjectural Toda h

or P1.
We have organized our notes as follows: in Sec. II, we review the canonical coordina

1, to be followed by our solutions to the flat-section equations in Sec. III. We conclu
resenting our checks in Sec. IV.

I. CANONICAL COORDINATES FOR P1.

We here review the canonical coordinateshu±j for P1.1,2,4 Recall that a Frobenius structure
*sP1,Qd carries a flat pseudo-Riemannian metrick· , ·l defined by the Poincaré intersection p

ng. The canonical coordinates are defined by the property that they form the basis of idem
f the quantum cup product, denoted in the present note by+. The flat metrick· , ·l is diagonal in

he canonical coordinates, and following Givental’s notation, we defineD±ª1/k]u±
,]u±

l.
Let htaj ,a P h0,1j be the flat coordinates of the metric and let]aª] /]ta. The quantum

ohomology ofP1 is

]0 + ]a = ]a and ]1 + ]1 = et1]0.

he eigenvalues and eigenvectors of]1+ are

±et1/2 ands±et1/4]0 + e−t1/4]1d,

espectively. So, we have

s±et1/4]0 + e−t1/4]1d + s±et1/4]0 + e−t1/4]1d = ± 2 et1/4s±et1/4]0 + e−t1/4]1d,

hich implies that

]

]u±

=
]0 ± e−t1/2]1

2
,

uch that

]u±
+ ]u±

= ]u±
and]u±

+ ]u7
= 0.

e can solve foru± up to constants as

u± = t0 ± 2 et1/2. s2d

To computeD±, note that

1

D±
ª k]u±

,]u±
l = ±

1

2et1/2
.

he two bases are related by

]0 = ]u+
+ ]u−

and]1 = et1/2s]u+
− ]u−

d.

efine an orthonormal basis byf i =Di
1/2] /]ui. Then the transition matrixC from h] /]taj to hf ij is
iven by
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Ca
i =

1
Î2
Se−t1/4 − i e−t1/4

et1/4 i et1/4
D = SD+

−1/2 D−
−1/2

1
2D+

1/2 1
2D−

1/2D , s3d

uch that

]

] ta

= o
i

Ca
i f i .

e will also need the inverse of(3):

sC−1di
a =

1
Î2
S et1/4 e−t1/4

i et1/4 − i e−t1/4D = S 1
2D+

1/2 D+
−1/2

1
2D−

1/2 D−
−1/2D . s4d

II. SOLUTIONS TO THE FLAT-SECTION EQUATIONS

The relevant dataVkl
ij ,D j, andTn

j are extracted from the solutions to the flat-section equa
f the genus-0 Frobenius structure forH*sP1,Qd. We here find two particular solutions. T
nalytic solution correctly encodes the two-point descendant GW invariants, while the re
olution is used in the next section to verify Givental’s conjecture.

. Analytic solution

The genus-0 free energy forP1 is

F0 = 1
2st0d2t1 + et1.

lat sectionsSa of TH*sP1,Qd satisfy the equations

z ]aSb = FabmgmnSn, s5d

herezÞ0 is an arbitrary parameter andFabmª]3F /]ta] tb] tm. The only nonvanishing comp
ents ofFabm are

F001= 1 andF111= et1.

ence, we find that the general solutions to the flat-section equations(5) are

S0 = et0/zfc1I0s2 et1/2/zd − c2K0s2 et1/2/zdg s6d

nd

S1 = et0/zet1/2fc1I1s2et1/2/zd + c2K1s2et1/2/zdg,

hereInsxd andKnsxd are modified Bessel functions, andci are integration constants which m
epend onz.

We would now like to find two particular solutions corresponding to the following Given
xpression:

Sabszd = gab + o
nù0,sn,ddÞs0,0d

1

n!
Kfa ·

fb

z− c
· st0f0 + t1f1dnL

d

, s7d

hereSab denotes theath component of thebth solution. Here,hfaj is a homogeneous basis
*sP1,Qd , gab is the intersection paringeP1faøfb and cPH2sM̄0,n+2sP1,dd ,Qd is the firs

hern class of the universal cotangent line bundle over the moduli spaceM̄0,n+2sP1,dd. In order to

nd the particular solutions, we compare our general solution(6) with the 0th components ofS0b
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n (7) at the origin of the phase space. The two-point functions appearing in(7) have bee
omputed at the origin in Ref. 6 and have the following forms:

S00uta=0u = − o
m=1

`
1

z2m+1

2dm

sm ! d2, wheredm = o
k=1

m

1/k, s8d

nd

S01uta=0u = 1 + o
m=1

`
1

z2m

1

sm ! d2 . s9d

sing the standard expansion of the modified Bessel functionK0, we can evaluate(6) at the origin
f the phase space to be

c1I0S2

z
D − c2K0S2

z
D = c1I0S2

z
D − c2F− s− logszd + gEdI0S2

z
D + o

m=1

cm

z2msm ! d2G , s10d

heregE is Euler’s constant. Now matching(10) with (8) gives

c1 = − c2 logs1/zd − c2gE andc2 =
2

z
,

hile noticing that(9) is precisely the expansion ofI0s2/zd and demanding that our gene
olution coincides with(9) at the origin yields

c1 = 1 andc2 = 0.

o recapitulate, we have found

S00 = −
2et0/z

z
FsgE − logszddI0S2et1/2

z
D + K0S2et1/2

z
DG ,

S10 =
2et0/zet1/2

z
FK1S2et1/2

z
D − sgE − logszddI1S2et1/2

z
DG ,

S01 = et0/zI0S2et1/2

z
D ,

S11 = et0/zet1/2I1S2et1/2

z
D .

e have checked that these solutions correctly reproduce the corresponding descendant
itten invariants obtained in Ref. 6.

If the inverse transition matrix in(4) is used to relate the matrix elementsSa
i to Sab as Sa

i

Sabssc−1dtd j
bd ji , then we should have

Sa
± = Î±2et1/4S1

2
Sa0 ±

e−t1/2

2
Sa1D . s11d

. Recursive solution

In Refs. 4 and 5, Givental has shown that near a semisimple point, the flat-section eq

5) have a fundamental solution given by
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Sa
i = Ca

j sR0 + zR1 + z2R2 + ¯ + znRn + ¯ d jkfexpsU/zdgki,

hereRn=sRnd jk ,R0=d jk and U is the diagonal matrix of canonical coordinates. The matriR1

atisfies the relations

C−1] C

] t1
= F ] U

] t1
,R1G s12d

nd

F ] R1

] t1
+ C−1S ] C

] t1
DR1G

±±
= 0, s13d

hich we use to find its expression. From the transition matrix given in(3) we see that

C−1] C

] t1
=

1

4
S 0 i

− i 0
D ,

hile taking thes+−d component of the relation(12) gives

i

4
=

] U++

] t1
sR1d+− − sR1d+−

] U−−

] t1
= 2et1/2sR1d+−,

here in the last step we have used the definition(2) of canonical coordinates. We therefore h

sR1d+− =
i

8
e−t1/2,

nd similarly considering thes−+d component of(12) gives

sR1d−+ =
i

8
e−t1/2.

he diagonal components ofR1 can be obtained from(13), which implies that

] sR1d++

] t1
= sR1d+−

] U−−

] t1
sR1d−+ −

] U++

] t1
sR1d+−sR1d−+ =

exps− t1/2d
32

= −
] sR1d−−

] t1
.

ence,sR1d++=−exps−t1/2d /16=−sR1d−− and the matrixR1 can be written as

sR1d jk =
1

16
e−t1/2S− 1 2i

2i 1
D . s14d

n general, the matricesRn satisfy the recursion relations4

sd + C−1 dCdRn = fdU,Rn+1g,

hich, for our case, imply the following set of equations:

] Rn

] t0
= 0, s15d

] sRnd++

] t1
= −

i

4
sRnd−+, s16d

sRn+1d−+ = −
1

e−t1/2F ] sRnd−+
1 −

i
sRnd++G , s17d
2 ] t 4
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] sRnd−−

] t1
=

i

4
sRnd+−, s18d

sRn+1d+− =
1

2
e−t1/2F ] sRnd+−

] t1
+

i

4
sRnd−−G . s19d

Lemma 3.1: For nù1, the matrices Rn in the fundamental solution are given by

sRndi j =
s− 1dn

s2n − 1d
an

2n e−nt1/2S − 1 s− 1dn+12n i

2n i s− 1dn+1 D , s20d

here

an = s− 1dn 1

8nn! p,=1

n

s2, − 1d2, a0 = 1.

hese solutions satisfy the unitarity condition,

RszdRts− zd ª s1 + zR1 + z2R2 + ¯ + znRn + ¯ ds1 − zR1
t + z2R2

t + ¯ + s− 1dnznRn
t + ¯ d = 1,

nd the homogeneity condition and, thus, are unique.
Proof: For n=1,a1=−1/8 and(20) is equal to the correct solution(14). The proof now

ollows by an induction onn. Assume that(20) holds true up to and includingn=m. Using the fac
hat

am+1 = −
s2m+ 1d2

8sm+ 1d
am,

e can show thatRm+1 in (20) satisfies the relations(16)–(19) as well as(15).
To check unitarity, consider thezk-term Pkªo,=0

k s−1d,Rk−,R,
t in RszdRts−zd=ok=0Pkz

k. As
hown by Givental, the equations satisfied by the matricesRn imply that the off-diagonal entries

Pk vanish. As a result, combined with the antisymmetry ofPk for odd k, we see thatPk vanishe
or k odd. Hence, we only need to show that for our solution,Pk vanishes for all positive evenk
s well. To this end, we note that Givental has also deduced from the equatioPk

fC−1 dC ,Pkg=fdU ,Pk+1g that the diagonal entries ofPk are constant. The expansion ofP2k is

P2k = R2k + R2k
t + ¯ ,

here the remaining terms are products ofR,, for ,,2k. Now, we proceed inductively. We fir
ote thatR1 and R2 given in (20) satisfy the conditionP2=0, and assume thatR,’s in (20) for
,2k satisfyP,=0. Then, since the off-diagonal entries ofPn vanish for alln, the expansion o

P2k is of the form

P2k = A e−2k t1/2 + B,

hereA is a constant diagonal matrix resulting from substituting our solution(20) and B is a
ossible diagonal matrix of integration constants forR2k. But, since the diagonal entries ofPn are
onstant for alln, we know thatA=0. We finally choose the integration constants to be zero s
=0, yieldingP2k=0. Hence, the matrices in our solution(20) satisfy the unitarity condition an
re manifestly homogeneous. It then follows by the proposition in Ref. 5 that our solutionsRn are
nique. h

Let Rª sR0+zR1+z2R2+¯ +znRn+¯ d. Then, we can use the matricesRn from Lemma 3.1

o find
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S0
+ = sR++ − i R−+d

expsu+/zd
ÎD+

= F1 + o
n=1

`
an

2n expS− nt1

2
Ds− zdnGexpsu+/zd

ÎD+

, s21d

S0
− = sR−− + i R+−d

expsu−/zd
ÎD−

= F1 + o
n=1

`

s− 1dnan

2n expS− nt1

2
Ds− zdnGexpsu−/zd

ÎD−

, s22d

S1
+ = sR++ + i R−+d

ÎD+

2
expsu+/zd = F1 − o

n=1

`
s2n + 1d
s2n − 1d

an

2n expS− nt1

2
Ds− zdnGÎD+

2
expsu+/zd,

s23d

S1
− = sR−− − i R+−d

ÎD−

2
expsu−/zd = F1 − o

n=1

`

s− 1dns2n + 1d
s2n − 1d

an

2n expS− nt1

2
Ds− zdnGÎD−

2
expsu−/zd.

s24d

sing the above expressions forSa
iszd, we can also findVijsz,wd, which is given by the expressi

Vijsz,wd ª
1

z+ w
fSm

iswdgtfgmngfSn
jszdg.

f we define

Ap,q ª
s4p q− 1d

s2p − 1ds2q − 1d
apaq

2p+q ef−sp+qdt1/2g

nd

Bp,q ª
2sp − qd

s2p − 1ds2q − 1d
apaq

2p+q ef−sp+qdt1/2g,

hen after some algebraic manipulations we obtain

V++sz,wd = eu+/w+u+/zH 1

z+ w
+ o

k,l=0

` Fo
n=0

k

s− 1dnAl+n+1,k−nGs− 1dk+lwkzlJ ,

V−−sz,wd = eu−/w+u−/zH 1

z+ w
− o

k,l=0

` Fs− 1dk+lo
n=0

k

s− 1dnAl+n+1,k−nGs− 1dk+lwkzlJ , s25d

V+−sz,wd = eu+/w+u−/zH o
k,l=0

` Fis− 1dlo
n=0

k

Bl+n+1,k−nGs− 1dk+lwkzlJ ,

V−+sz,wd = eu−/w+u+/zH o
k,l=0

` Fis− 1dko
n=0

k

Bl+n+1,k−nGs− 1dk+lwkzlJ . s26d

. A puzzle
Incidentally, we note that in the asymptotic limitz→0,
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S0
+ = RFÎ2p

z
et0/zI0S2et1/2

z
DG

nd

S0
− = − iÎ 2

pz
et0/zK0S2et1/2

z
D

eproduce the expansions in(21) and (22). This is in contrast to what was expected from
iscussion leading to(11). Despaired of matching the two expressions, it seems to us th
nalytic correlation functions obtained in Sec. III A do not encode the right information
ppear in Givental’s conjecture. In the following section, we will use the recursive solution
ec. III B to check Givental’s conjectural formula at low genera.

V. CHECKS OF THE CONJECTURE AT LOW GENERA

The Tn
i that appear in Givental’s formula(1) are defined by the equations5

S0
±
ª F1 − o

n=0

`

Tn
±s− zdn−1Gexpsu±/zd

ÎD±

.

rom the computations ofS0
+ andS0

− in (21) and (22), respectively, one can extractTn
i to be

Tn
+ = 50, n = 0,1,

−
an−1

2n−1expF− sn − 1dt1

2
G, n ù 2,6

Tn
− = 50, n = 0,1,

− s− 1dn−1an−1

2n−1expF− sn − 1dt1

2
G, n ù 2.6

otice that

Tn
− = s− 1dn−1Tn

+. s27d

he functionsVkl
ij are defined by the expansion5

Vijsz,wd = eui/w+uj/zF d i j

z+ w
+ o

k,l=0

`

s− 1dk+lVkl
i j wkzlG ,

nd from(25) and (26) we see that

Vkl
++ = o

n=0

k

s− 1dnAl+n+1,k−n = o
n=0

k
s− 1dns4sl + n + 1dsk − nd − 1d

s2l + 2n + 1ds2k − 2n − 1d
Tl+n+2

+ Tk−n+1
+ ,

Vkl
+− = is− 1dlo

n=0

k

Bl+n+1,k−n = is− 1dlo
n=0

k
2sl + 2n + 1 −kd

s2l + 2n + 1ds2k − 2n − 1d
Tl+n+2

+ Tk−n+1
+ .

here seems to be a misprint in the original formula forVkl
ij in Ref. 5, i.e., we believe thatw and

should be exchanged, as in our expression here.

Now, thet function for the intersection theory on the Deligne–Mumford moduli spaceM̄g,n
f stable curves is defined by
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tsl;hqkjd = expSo
g=0

`

lg−1F g
ptshqkjdD

nd has the following nice scaling invariance: consider the scaling of the phase-space varqk

iven by

qk ° sk−1qk s28d

or some constants. Then, since a nonvanishing intersection numberktk1
¯tkn

l must satisfy

o
i=1

n

ski − 1d = dimsM̄g,nd − n = 3g − 3,

e see that under the transformation(28), the genus-g generating functionF g
pt must behave as

F g
ptshsk−1qkjd = ss3dg−1F g

ptshqkjd.

ence, upon scaling the “string coupling constant”l to s−3l, we see that

tss−3l;hsk−1qkjd = tsl;hqkjd. s29d

ow, consider the function

Fshqn
+j,hqn

−jd ª fesl/2dSk,lù0Si,jPh±jVkl
ij ÎDiÎD j]qk

i ]ql
jtslD+;hqn

+jdtslD−;hqn
−jdg. s30d

hen, since the Gromov–Witten potentials ofP1 for gù2 all vanish, Givental’s conjectural fo
ula for P1 is

FshTn
+j,hTn

−jd = 1,

here it is understood that one setsqk
i =Tk

i after taking the derivatives with respect toqk
i . SinceTn

+

ndTn
− are related by(27), let us rescaleqk

−° s−1dk−1qk
− in (30). Then, sinceD+=−D−, we observ

rom (29) that

FshTn
+j,hTn

−jd = UHexpFl

2
D+ o

k,lù0
sVkl

++]qk
+]ql

+ + is− 1dl−1Vkl
+−]qk

+]ql
− + is− 1dk−1Vkl

−+]qk
−]ql

+

− s− 1dk+lVkl
−−]qk

−]ql
−dGtslD+;hqn

+jdtslD+;hqn
−jdJU

qn
+,qn

−=Tn
+

.

ut, theVkl
ij satisfy the relationsVkl

−−=−s−1dk+lVkl
++ andVkl

+−=Vlk
−+, so

FshTn
+j,hTn

−jd = UHexpFl

2
D+ o

k,lù0
sVkl

++s]qk
+]ql

+ + ]qk
−]ql

−d

+ 2is− 1dl−1Vkl
+−]qk

+]ql
−dGtslD+;hqn

+jdtslD+;hqn
−jdJU

qn
+,qn

−=Tn
+

. s31d

ow, consider the following transformations of the variables:

qk
+ = xk + yk andqk

− = xk − yk,

o that

]qk
+ = 1

2s]xk
+ ]yk

d and]qk
− = 1

2s]xk
− ]yk

d.
hen, in these new coordinates,(31) becomes
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FshTn
+j,hTn

−jd = GshTn
+j,h0jd,

here the new functionGshxkj ,hykjd is defined by

Gshxnj,hynjd = expFl

4
D+ o

k,lù0
sVkl]xk

]xl
+ Wkl]yk

]yl
dGtslD+;hxn + ynjdtslD+;hxn − ynjd, s32d

here

Vkl ª Vkl
++ + is− 1dl−1Vkl

+−,

Wkl ª Vkl
++ − is− 1dl−1Vkl

+−.

ere, we have simplified the expression by noting that the mixed derivative terms cancel b
f the identityVkl

+−=s−1dk−1Vlk
+−.

Remark: The conjecture expressed in terms of(32), i.e., thatGshTk
+j ,h0jd=1, is now in a form

hich resembles the Hirota bilinear relations, which might be indicating some kind of an
rable hierarchy, perhaps of Toda type.

Because the tau functions are exponential functions, upon acting on them by the diff
perators, we can factor them out in the expression ofGshxkj ,hykjd. We thus define the followin

Definition 4.1: PslD+,hxkj ,hykjd is a formal power series in the variableslD+,hxkj and hykj
uch that

Gshxkj,hykjd = PslD+,hxkj,hykjdtslD+,hxk + ykjdtslD+,hxk − ykjd.

ence, Givental’s conjecture forP1 can be restated as follows.
Conjecture 4.2 (Givental): The generating function GshTk

+j ,h0jd is equal to one, or equiva
ently

PslD+,hTk
+j,h0jd =

1

tslD+,hTk
+jd2 . s33d

his conjecture can be verified order by order inl. This procedure is possible because wheq0

q1=0, only a finite number of terms in the free energies and their derivatives are nonvan
n particular, the genus-0 and genus-1 free energies vanish whenq0=q1=0.

Let us check(33) up to orderl2, for which we need to consider up tol6 expansions in th
ifferential operators acting on thet functions. Leth=lD+. The low-genus free energies fo
oint target space can be easily computed using the KdV hierarchy and topological axiom
an also be verified using Faber’s program.3 The terms relevant to our computation are

F 0
pt

h
+ F 1

pt + hF 2
pt =

1

h
F sq0d3

3!
+

sq0d3q1

3!
+ 2 !

sq0d3sq1d2

3 ! 2!
+ 3 !

sq0d3sq1d3

3 ! 3!
+

sq0d4q2

4!

+ 3
sq0d4q1q2

4!
+ 12

sq0d4sq1d2q2

4 ! 2!
+

sq0d5q3

5!
+ 4

sq0d5q1q3

5!
+ 6

sq0d5sq2d2

5 ! 2!

+ 30
sq0d5q1sq2d2

5 ! 2!
+

sq0d6q4

6!
+ 10

sq0d6q2q3

6!
+ 90

sq0d6sq2d3

6 ! 3!
+ ¯G + F 1

24
q1

+
1

24

sq1d2

2!
+

1

12

sq1d3

3!
+

1

4

sq1d4

4!
+

1

24
q0q2 +

1

12
q0q1q2 +

1

4

q0sq1d2q2

2!

+
q0sq1d3q2 +

1 sq0d2sq2d2

+
2 sq0d2q1sq2d2

+
10sq0d2sq1d2sq2d2
3! 6 2 ! 2! 3 2 ! 2! 3 2 ! 2 ! 2!
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+
1

24

sq0d2q3

2!
+

1

8

sq0d2q1q3

2!
+

1

2

sq0d2sq1d2q3

2 ! 2!
+

7

24

sq0d3q2q3

3!

+
35

24

sq0d3q1q2q3

3!
+ 2

sq0d3sq2d3

3 ! 3!
+ 12

sq0d3q1sq2d3

3 ! 3!
+

1

24

sq0d3q4

3!
+

1

6

sq0d3q1q4

3!

+ 48
sq0d4sq2d4

4 ! 4!
+

59

12

sq0d4sq2d2q3

4 ! 2!
+

7

12

sq0d4sq3d2

4 ! 2!
+

11

24

sq0d4q2q4

4!

+
1

24

sq0d4q5

4!
+ ¯G + hF 7

240

sq2d3

3!
+

29

5760
q2q3 +

1

1152
q4 +

7

48

q1sq2d3

3!

+
7

8

sq1d2sq2d3

2 ! 3!
+

29

1440
q1q2q3 +

29

288

sq1d2q2q3

2!
+

1

384
q1q4 +

1

96

sq1d2q4

2!

+
7

12

q0sq2d4

4!
+

49

12

q0q1sq2d4

4!
+

5

72

q0sq2d2q3

2!
+

5

12

q0q1sq2d2q3

2!

+
29

2880

q0sq3d2

2!
+

29

576

q0q1sq3d2

2!
+

11

1440
q0q2q4 +

11

288
q0q1q2q4 +

1

1152
q0q5

+
1

288
q0q1q5 +

245

12

sq0d2sq2d5

2 ! 5!
+

11

6

sq0d2sq2d3q3

2 ! 3!
+

109

576

sq0d2q2sq3d2

2 ! 2!

+
17

960

sq0d2q3q4

2!
+

7

48

sq0d2sq2d2q4

2 ! 2!
+

1

90

sq0d2q2q5

2!
+

1

1152

sq0d2q6

2!
+ ¯G .

his expression gives the necessary expansion oftslD+; hxk±ykjd for our consideration, and up
valuatingGshTk

+j ,h0jd, we find

Psh,hTk
+j,h0jd = 1 −

17

2 359 296
e−3t1/2h +

41 045

695 784 701 952
e−3t1h2 + Osh3d. s34d

t this order, the expansion of the right-hand side of(33) is

tsh,hTk
+jd−2 = 1 − 2F 2

pth + 2fsF 2
ptd2 − F 3

ptgh2 + Osh3d.

t qn=Tn
+, ∀n, the genus-2 free energy is precisely given by

F 2
pt =

1

1152
T4 +

29

5760
T3T2 +

7

240

T2
3

3!
=

17

4 718 592
e−3t1/2,

nd the genus-3 free energy is

F 3
pt =

1

82 944
T7 +

77

414 720
T2T6 +

503

1 451 520
T3T5 +

17

11 520
sT2d2T5 +

607

2 903 040
sT4d2

+
1121

241 920
T2T3T4 +

53

6912
sT2d3T4 +

583

580 608
sT3d3 +

205

13 824
sT2d2sT3d2 +

193

6912
sT2d4T3

+
245

20 736
sT2d6 = −

656 431

22 265 110 462 464
e−3t1.

hus, we have

tsh,hTk
+jd−2 = 1 −

17

2 359 296
e−3t1/2h +

41 045

695 784 701 952
e−3t1h2 + Osh3d,

+
hich agrees with our computation ofPsl ,hTkj ,h0jd in (34).
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It would be very interesting if one could actually prove Givental’s conjecture, but eve
articular example remains elusive and verifying its validity to all orders seems intractable
ur method.
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pace–time slices and surfaces of revolution
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Under certain conditions, as1+1d-dimensional sliceĝ of a spherically symmetric
black hole space–time can be equivariantly embedded ins2+1d-dimensional
Minkowski space. The embedding depends on a real parameter that correspond
physically to the surface gravityk of the black hole horizon. Under conditions that
turn out to be closely related, a real surface that possesses rotational symmetry ca
be equivariantly embedded in three-dimensional Euclidean space. The embedding
does not obviously depend on a parameter. However, the Gaussian curvature is
given by a simple formula: If the metric is writteng=fsrd−1 dr2+fsrddu2, then
Kg=−1

2f9srd. This note shows that metricsg andĝ occur in dual pairs, and that the
embeddings described above are orthogonal facets of a single phenomenon. In
particular, the metrics and their respective embeddings differ by a Wick rotation
that preserves the ambient symmetry. Consequently, the embedding ofg depends
on a real parameter. The ambient space is not smooth, andk is inversely propor-
tional to the cone angle at the axis of rotation. Further, the Gaussian curvature ofĝ
is given by a simple formula that seems not to be widely known. ©2004 American
Institute of Physics.[DOI: 10.1063/1.1808487]

. INTRODUCTION

The most concrete way to study a surface is(when possible) to embed it isometrically in a fl
hree-dimensional space. Isometric embedding “realizes” the abstract surface, and is u
eveloping geometric intuition.1 Naturally, the signature of the surface metric is related to
ignature of the ambient metric. For example, a “space–time slice” of signatures1+1d cannot be

sometrically embedded inR3; instead, one might seek an embedding into the Minkowski s
2+1.

If an abstract surface has symmetry, it is natural to seek an embedding in which the i
ymmetry is realized by a symmetry of the ambient space. When this occurs, the embe
aid to beequivariant(with respect to the actions of the abstract symmetry groups).

This paper originates with two families of equivariant isometric embeddings. The first re
lices of certain spherically symmetric static space–times as surfaces in Minkowski spacR2+1,
ee Refs. 7 and 10.(These papers were in turn inspired by earlier work3,4,6,9,11,12involving higher-
imensional embeddings into flat space.) The second is a “symplectic” description of(classical)
urfaces of revolution, see Ref. 8. Each family of metrics has continuous symmetry: time

ation and rotation, respectively.
These two families of metrics are equivariantly related by “Wick rotation,” in a sense

recise below. The relationship is roughly analogous to the duality between conjugate m
urfaces: For each suitable space–time slice, there is a “dual” surface of revolution, and
quivariant embedding intoC3 that interpolates the embeddings of the respective surfaces in
real) three-dimensional spaces. The resulting one-parameter family of metrics on the
urface interpolates metrics of different signatures, so unlike the situation for minimal su

he interpolating metrics are not mutually isometric(even locally).

4551022-2488/2004/45(12)/4551/9/$22.00 © 2004 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.1808487
http://dx.doi.org/10.1063/1.1808487


( ula.
( r defect

a one-

points
a metry.
I lex
g bed-
d ces of
r s
“

I

and a
p cted,
o

e addi-
t nature,
t e–
t ept that
fi

for the
m

A

ntary:
C .
C ction is
a res that
t

w ,
t

B

p

4552 J. Math. Phys., Vol. 45, No. 12, December 2004 J. T. Giblin, Jr. and A. D. Hwang

                        
Geometric properties of one family have consequences for the other family.

i) The Gaussian curvature of a space–time slice is given by an extremely simple form
ii ) The surface gravity of a black hole horizon has a geometric interpretation as angula

of a cone singularity. In particular, the metrics studied in Ref. 8 are instances of
parameter family of(possibly singular) metrics that are “smoothly embedded” in a(flat)
singular ambient space.

Organization: In Sec. II we introduce the abstract surfaces under consideration; fixed
re removed for simplicity, and the intrinsic “Wick rotation” is described as a discrete sym

n Sec. III, we equip the ambient spaceC3 with coordinates, an action of the additive comp
roup, and an appropriate(flat) indefinite metric. Section IV describes the interpolating em
ing, a map fromC3R to C3. The equivariant embeddings of space–time slices and surfa
evolution are the restrictions of this embedding toiR3R and R3R. In Sec. V, we addres
boundary” questions of smoothness and embeddability.

I. INTRINSIC METRICS

We take the mathematical point of view that a “metric” comprises a metric tensor
arameter domain(or manifold). Thus, a metric can be two-dimensional, compact, conne
riented, etc.

Consider an oriented two-dimensional metric that admits a free, isometric action of th
ive groupR. The interpretation of the symmetry depends on the signature: In Lorentz sig
he action should be viewed as time translation of as1+1d-dimensional slice of a static spac
ime. In Riemannian signature, the action is something like a rotation about an axis, exc
xed points have been removed and the resulting metric lifted to its universal cover.

The existence of useful coordinate systems is independent of the metric signature, so
oment we work with a Riemannian metricg.

. Isothermal parameters

Away from fixed points of the action, existence of isothermal parameters is eleme
onstruct nets of curves by taking orbits of the action and the associatedg-orthogonal family
learly these curves are coordinate curves in which the metric is diagonal and the group a
coordinate translation. A change of variable in the direction transverse to the action ensu

he diagonal metric components are equal; see Ref. 8 for details.
More precisely, our metric may be regarded as living on the planar domainDªR3 sa,bd

ith coordinatesst ,sd, and withR acting by translation int, Fig. 1. After changings if necessary
here exists a smooth functionw : sa,bd→R such that

g = wssdsdt2 + ds2d. s2.1d

. Action-angle coordinates

An additional change of transverse coordinate expresses the metric inaction-angle(or sym-

FIG. 1. The domain of an intrinsic metric.
lectic) form
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g = fsrddt2 +
1

fsrd
dr2. s2.2d

ndeed, set

r =Es

wszddz, fsrd = wssd. s2.3d

he integral equation definesr as a function ofs (up to an additive constant) on each interva
herew is nonvanishing, and the resulting coordinate is easily shown to satisfy(2.2). The additive
onstant amounts to translation of the intervalsa,bd, and is geometrically harmless.

Given a nonvanishing functionf : sa,bd→R, the equations

s=Er dz

fszd
, wssd = fsrd, s2.4d

efine a translation-invariant, isothermal metric onD that satisfies(2.1). These constructions a
nverse to each other up to isometry ofg and domain translation off. In other words, an isomet
lass ofg corresponds to a functionf that is unique up to translation in the domain. For rea
riginating in symplectic geometry, this correspondence is called themomentum construction, and

he functionf is called themomentum profileof g.

. Elementary metric geometry

In action-angle coordinates, the arc length element along a generator, and the area f

ds =
dr

Îfsrd
, dA = dr dt. s2.5d

he second formula highlights the geometric significance of the coordinater: In a region o
urface defined by the inequalitiesc1ø tøc2, the change inr is proportional to the enclos
urface area. On a surface of revolution where thet-interval f0,2pg corresponds to one full tur
pr measures zonal area.

The Killing field d/dt that generates the group action has squared lengthfsrd. This formula is
eaningful even for metrics of Lorentz signature: The symmetry is time translation. For
annian metric embedded as a surface of revolution inR3, one full turn of the surface is at

nterval of length 2p, andÎfsrd is the Euclidean radius of the surface atr.

. Gaussian curvature

The interplay between action-angle and isothermal(i.e., holomorphic) coordinates on a su
ace of revolution leads to a remarkable formula for the Gaussian curvature, see Ref. 8,

K = − 1
2f9srd.

n the Lorentzian side, direct calculation shows that the Gaussian curvature of a space–t
s

K = 1
2f9srd.

n both signatures

K = − 1
2gtt9srd. s2.6d

From the standpoint of constructing metrics of specified(e.g., constant) curvature, action

ngle coordinates have the substantial advantage that the Gaussian curvature is alinear function of
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he profile. Further, as we shall see, metrics presented in this form are explicitly embedda
at ambient space.

. Complexification

Regardt as acomplexcoordinate. The complex-valued tensor,

gC = fsrddt2 +
1

fsrd
dr2,

n C3 sa,bd is real valued onR3 sa,bd, where it is positive–definite, and oniR3 sa,bd, where
t has Lorentz signature.Intrinsic Wick rotationis the transformationt° it, under whichg corre-
sponds to

ĝ = − fsrddt2 +
1

fsrd
dr2. s2.7d

e assume from now on that the additive groupC acts by translation int. Sincet is determine
y the group action, whiler is characterized by(2.2), the dualityg↔ ĝ (which is defined usin
oordinates) actually depends only ongC. The metricĝ is the space–time slice associated to
urface of revolutiong.

. An example

Consider the momentum profilefsrd=1−r2 on s−1,1d. By (2.4),

s=E
0

r dz

1 − z2 =
1

2
logU1 + r

1 − r
U ,

r r =tanhs andwssd=sech2 s. The arc length element and function are

ds =
dr

Î1 − r2
, s = arcsinr, or r = sin s.

f this metric is embedded isometrically inR3, the radius atr is Îfsrd=Î1−r2=coss. As should
e clear, we are looking at the round metric of unit radius on a sphere, a fact that is confir(at

east circumstantially) by the fact that the Gaussian curvature is −1
2f9srd=1. The dual space–tim

lice is

ĝ =
dr2

1 − r2 − s1 − r2ddt2,

portion of the well-known de Sitter metric, which embeds inR2+1 as(part of) a hyperboloid o
ne sheet. Figure 2 depicts the images at the same scale. The coordinate curves on the hy
re not those of embedding coordinates. These classic embeddings are presented here to
imilarity; a formal relationship is developed below.

II. THE AMBIENT SPACE

Consider the ambient spaceC3=hsT,X,Ydj, and writeT=T1+ iT2, etc. EndowC3 with the flat
etric

E = ResdT2 + dX2 + dY2d = sdT1
2 + dX1

2 + dY1
2d − sdT2

2 + dX2
2 + dY2

2d.

uclidean space is identified with the totally real sliceR3,C3, while Minkowski space is th
hree-dimensional subspaceiR3R2=R2+1 defined by the equationsT1=X2=Y2=0. Theambien

3 2+1
ick rotationis the mapW : sT,X,Yd° siT ,X,Yd, which carriesR to R .
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The ambient symmetry group that realizes the intrinsic symmetries of our surface me
he additive complex group acting as “(complex) rotation about theY axis,”

RusT,X,Yd = sX sin u + T cosu,X cosu − T sin u,Yd. s3.1d

short calculation gives

W−1RiuWsT,X,Yd = sX sinh u + T coshu,X coshu + T sinh u,Yd.

his formula hints at the close relationship between rotations of Euclidean space and b
inkowski space.

Henceforth, the ambient space is essentiallyC23R,C3. In fact, the embeddings of prima
nterest take values inC3R3R; only T is “really” complex. However, Eq.(3.1) shows tha
ontinuous interpolation of embeddings requires consideration ofC2=R2,2.

Cylindrical coordinates: The complex cylindrical coordinatesmappingsF± :C2→C2 are de
ned by

sT,Xd = F+sr,cd = erssin c,coscd,

sT,Xd = F−sr,cd = ierscosc,− sin cd. s3.2d

wo mappings are required to cover a dense open set inC2, see below. The ambient group act
s coordinate translation,

RuF±sr,cd = F±sr,c + ud.

The metric quadratic formQ= t1
2+x1

2− t2
2−x2

2 partitionsC2 into sets of spacelike(for which Q
s positive), timelike (for which Q is negative), and lightlike vectors. Each of these sets is a u
f rays into the origin, so understanding these sets amounts to understanding the way ea
ects the unit sphereS3=ht1

2+x1
2+ t2

2+x2
2=1j. The lightlike cone intersects the sphere in a

-torus whose complement consists of two linked solid tori. The real cones over these so
re the sets of spacelike and timelike vectors, and the mappingsT,Xd° siX ,−iTd (among others)

nvolutively exchanges these sets. The image ofF+ is the set of spacelike vectors, so the imag
− is the set of timelike vectors.

The pullback tensorssF±d*E express the metricE “in cylindrical coordinates,”

sF±d*E = ± e2rsdc2 + dr2d + dY2. s3.3d

t is straightforward to verify that the restrictions to the real three-dimensional ambient sl

FIG. 2. Riemannian and Lorentzian embeddings offsrd=1−r2.
nterest satisfy
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E3 = e2rsdc2 + dr2d + dY2,

E2+1 = e2rs− dc2 + dr2d + dY2.

o check the second equation, it is necessary to use both cylindrical coordinate regions.
An equivariant embedding of a surface is one for which(intrinsic) t-translation is induced b

-translation in cylindrical coordinates.

V. EMBEDDINGS

Fix a real constantk.0, let f : sa,bd→R be a positive profile satisfyinguf8uø2k, and letg
e the metric onC3 sa,bd as in (2.2). The functions

T =
1

k

Îfsrdsinsktd,

X =
1

k

Îfsrdcossktd,

Y =ErÎ 1

fszd
F1 −S 1

2k
f8szdD2Gdz, s4.1d

efine a mappingf :C3 sa,bd→C3. (The functionY, which depends only onr, is well-defined up
o an additive constant, which alters the mapping by an ambient translation.) Not incidentally,Y is
eal valued. To see thatf is an isometric embedding ofg into sC3,Ed, use cylindrical coordinate

dc = k dt, dr =
f8srd

2fsrd
dr, dY =Î 1

fsrd
F1 −S 1

2k
f8srdD2Gdr

o the pullback ofE by f is

f*E = e2rsdc2 + dr2d + dY2 =
fsrd
k2 Sk2dt2 +

f8srd2

4fsrd2dr2D + dY2 = fsrddt2 +
1

fsrd
dr2 = g.

bserve that the embedding “decouples” in complex cylindrical coordinates,c is a function oft
lone, whiler andY are functions ofr alone. Since the ambient and intrinsic group actions

ranslations inc and t, respectively, equivariance off is obvious.

. Negative profiles

The embedding(4.1) was introduced under the condition thatf.0. If f,0 on an interva
he wish thatY be real valued imposes the conditionuf8uù2k. In this situation, we are led
efine

T =
1

k

Î− fsrdcossktd,

X = −
1

k

Î− fsrdsinsktd,

Y =ErÎ 1

fszd
F1 −S 1

2k
f8szdD2Gdz. s4.2d

he formal expression of this mapping in terms of the cylindrical coordinate mappingF− is
dentical to that of(4.1) with respect toF+. In particular, Eq.(4.2) defines an equivariant isomet

mbedding of the metric
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g =
1

fsrd
dr2 + fsrddt2, f , 0,

nto C3. Since f,0 but t is imaginary, the intrinsic coordinates have “switched roles,”r is
imelike andt is spacelike.

. The Schwarzschild–de Sitter metric

The metrics associated to the positive portion of the profilefsrd=1−s2/rd−sr2/100d are
epicted in Fig. 3. TheX andY axes are the real axes of the complex coordinate directions
pace–time slice that results is part of the Schwarzschild–de Sitter metric.

Each surface intersects thesX,Yd plane in the curve whose parametrization may be rea
q. (4.1); the respective surfaces are swept out as this curve is acted on by a real or im
oordinate translation inc.

. FIXED POINTS AND HORIZONS

In the preceding section we omitted points at whichf=0, including fixed points of the grou
ction and null lines in the ambient space. In this section, we investigate issues related to b
onditions.

. Riemannian signature

In the Riemannian situation, the profile is non-negative,Îfsrd is the length of the Killing field
enerating the group action, and at interval of length 2p /k corresponds to one full turn of t

mage surface. Consequently, the action has a fixed point at each zero off. To understand th
ignificance ofk, we look more closely at the geometry ofg near a fixed point.

Without loss of generality, we transform such thatfs0d=0, andf.0 in some interval to th
ight of 0. The Taylor expansion is

fsrd = f8s0dr + osrd nearr = 0.

et u be the cone angle at the vertex. Because the area element ofg is dA=dr dt, the portion o
urface 0ø r ø« has area 2p« /k. The boundary curvehr =«j has circumference 2pÎfs«d /k. By
lementary geometry, the cone angle is

u = lim
«→0

circumference2

2 · area
=

p

k
f8s0d.

ince the image of the embedding is smooth at a fixed point iffu=2p, smoothness is equivale

FIG. 3. A surface of revolution and the dual space–time slice.
o f8s0d=2k. A similar argument holds iff is positive to the left of 0: The embedding is smooth
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ff f8s0d=−2k. Generally,f8s0d is a measure of angular defect(also known as point curvature) at
fixed point.2

In Ref. 8, the valuek=1 was used tacitly. IfkÞ1, it is appropriate to view the embedd
4.1) as taking values not inR3, but in a space that is flat away from theY axis and has cone ang
p /k along theY axis. If uf8u=2 at a zero of the profile, the embedding meets theY axis
erpendicularly; the intrinsic and ambient metric singularities have the same total angle.

. Lorentz signature

Provided the radicand in the definition ofY is non-negative, the embedding of a space–
lice extends to intervals on whichf achieves negative values. Geometrically, a zero of the p
ust map to a null line inR2+1, and the image of the embedding can cross from the spa
ortion of R2+1 to the timelike portion, see Fig. 4.

A horizonof an embedding is a curve inR2+1 along which the image is null. Intrinsically,
orizon comes from a zero off, where the space–time slice degenerates. A glance at(4.1) shows

hat the embedding is smooth at a horizon only ifuf8u=2k andf9,0. There are two horizons
ig. 4: one in the foreground(a cosmological horizon), and one containing the origin(the black
ole horizon).

. Embeddability criteria

Engman5 studied momentum profiles and their associated surfaces of revolution, and
erized embeddability in terms of bounds on the total curvature of a disk centered at a fixe
is bounds naturally have a space–time analogue, though a satisfactory topological interp

s lacking due to noncompactness.
The portion of metric associated to a profilef embeds iff the coordinate functionY in (4.1) is

eal valued. Non-negativity of the radicand is an obvious necessary condition, and is suffi
he profile is(say) real analytic at each zero. If a metric associated tof embeds, then at each po
f the momentum interval one of the following conditions holds:

i) f.0 anduf8uø2k,
ii ) f,0 anduf8uù2k,

FIG. 4. Extension of the Schwarzschild–de Sitter embedding.
iii ) f=0, uf8u=2k.
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In the Riemannian situation, the profile must be non-negative, and the metric emb
f8uø2k. To obtain bounds on the total curvature of a disk, assume without loss of general
=1 (so that the ambient space is smooth), fs0d=0, andf8s0d=2. Forr1.0, the total curvatur
f the diskD=h0ø r ø r1j is

E
D

K dA = − pE
0

r1

f9srddr = p„2 − f8sr1d….

e read off at once that the metric embeds iff the total curvature of an arbitrary disk(centered a
he fixed point) is between 0 and 4p. A similar analysis holds for profiles that are positive to
eft of a zero.

The upper bound is topologically significant: By the Gauss–Bonnet theorem, a sur
evolution generated by a profile that vanishes twice has total curvature 4p, even if the surface
ot smooth at a fixed point. There are two ways the upper bound can be achieved by a
atisfyingfs0d=0 andf8s0d=2: The profile can become too steep(downward), or vanish at som

1.0. In either case,f no longer defines an embedding.
The space–time situation is analogous to an extent: There is an embeddability crite

erms of total curvature, which has the expected sign change from the Riemannian case.
he symmetry group is noncompact, we must speak of curvatureper unit time. Further, it is
eaningful to speak of embeddings defined by negative profiles, so there are two cases

ider. As above, we assumef is a profile satisfyingfs0d=0 and f8s0d= ±2k, and thatf is
onvanishing between 0 andr1 for somer1.0.

If f.0, embeddability is equivalent to the pointwise inequalityuf8uø2k. Integrating the
urvature formK dA over at interval of length 1 and ther interval f0,r1g, we find that the tota
urvature per unit time is nonpositive, but no less than −4p, in every neighborhood of the horiz
=0.

If f,0, embeddability is equivalent to the boundsuf8 u ù2k. By an entirely analogou
rgument, the total curvature overf0,r1g is eitherù2p or is nonpositive. However, total curvatu

s a continuous function ofr1, and since the total curvature vanishes in the limit asr1→0, the firs
ound cannot hold for arbitraryr1.

We conclude that embeddability of a piece of space–time metric associated to a n
rofile implies that the metric has nonpositive total curvature in every neighborhood of th
on, regardless of the sign of the profile. In an interval where the profile is positive, th
urvature is no smaller than −4p, while if the profile is negative, there is noa priori lower bound
n the total curvature.

Nonpositivity of the total curvature implies the observation made in Ref. 7, iff8s0d=2k
0 then the metric embeds in a neighborhood of the horizon iff9,0.
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We consider the resolvent of a second order differential operator with a regular
singularity, admitting a family of self-adjoint extensions. We find that the
asymptotic expansion for the resolvent in the general case presents unusual power
of l which depend on the singularity. The consequences for the pole structure of
thez function, and for the small-t asymptotic expansion of the heat kernel, are also
discussed. ©2004 American Institute of Physics.[DOI: 10.1063/1.1809257]

. INTRODUCTION

It is well known that in quantum field theory under external conditions, quantities like va
nergies and effective actions, which describe the influence of boundaries or external field
hysical system, are generically divergent and require a renormalization to get a physical m

In this context, a powerful and elegant regularization scheme to deal with these prob
ased on the use of thez function1,2 or the heat kernel(for recent reviews see, for example, R
–7) associated to the relevant differential operators appearing in the quadratic part of the

n this way, ground state energies, heat-kernel coefficients, functional determinants, and
unctions for quantum fields can be given in terms of the correspondingz function, where th
ltraviolet divergent pieces of the one-loop contributions are encoded as poles of its holom
xtension.

Thus, it is of major interest in Physics to determine the singularity structure ofz functions
ssociated with these physical models.

In particular,8 for an elliptic boundary value problem in an-dimensional compact manifo
ith boundary, described by a differential operatorA of orderv, with smooth coefficients and

ay of minimal growth, defined on a domain of functions subject to local boundary condition
function

zAssd: = TrhA−sj s1.1d

as a meromorphic extension to the complexs plane whose singularities are isolated simple p
t s=sn− jd /v, with j =0,1,2, . . ..

In the case of positive definite operators, thez function is related, via Mellin transform, to t
race of the heat kernel of the problem, and the pole structure ofzAssd determines the smalt

8,9
symptotic expansion of this trace,

4560022-2488/2004/45(12)/4560/18/$22.00 © 2004 American Institute of Physics
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Trhe−tAj , o
j=0

`

ajsAdts j−nd/v, s1.2d

here the coefficients are related to the residues by

ajsAd = uResus=sn−jd/v GssdzAssd. s1.3d

For operators of the form −]x
2+Vsxd with a singular potentialVsxd asymptotic tok /x2 as x

0, this expansion is substantially different. Ifkù3/4, the operator is essentially self-adjo
his case has been treated in Refs. 10–12, where log terms are found, as well as ter
oefficients which are distributions concentrated at the singular pointx=0. For the casek
−1/4, the Friedrichs extension has been treated in Ref. 13 for operators inL 2s0,1d, and in Ref

4 for operators inL 2sR+d, making use of the scale invariance of the operator domain and e
epresentations of the resolvent. Moreover, as a particular case of a manifold with an
onic singularity, Ref. 15 gave a description of the boundary behavior of the Friedrichs hea
hich does not make use of the resolvent, and showed via boundary maps how it can be
onstruct the heat kernel for other self-adjoint extensions of these operators, showing expli
rst two terms in the asymptotic expansion of the trace of their difference.

On the other hand, Ref. 16 gave the pole structure of thez function of a second ord
ifferential operator defined on the(noncompact) half-line R+, having a singular zeroth order te
sxd=k x−2+x2. It showed that, for a certain range of real values ofk, this operator admi
ontrivial self-adjoint extensions inL 2sR+d, for which the associatedz function (given by an

ntegral representation) presents isolated simple poles which(in general) do not lie at s=s1
jd /2 for j =0,1, . . .[as would be the case for a regularVsxd], and can even take irrational valu

A similar structure has been noticed in Ref. 17 for the singularities of thez andh functions o
system of first order differential operators with a singular zeroth order term,g x−1, which also

dmits a family of self-adjoint extensions for realg taking values in a certain range. It has b
hown that, in the general case, the asymptotic expansion of the resolvent containsg-dependen
owers ofl which make thez andh functions to present poles lying at points which depen
he singularity, with residues depending on the self-adjoint extension.

Let us mention that singular potentials,1/x2 have been considered in the description
everal physical systems, like the Calogero model,16,18–20conformal invariant quantum mechani
odels21–23and, more recently, the dynamics of quantum particles in the asymptotic near-h

egion of black-holes.24–28 The self-adjoint extensions of these operators have also been c
red in Ref. 29. Moreover, singular superpotentials has been considered as possible a
upersymmetry breaking in models of supersymmetric quantum mechanics.30–32

It is the aim of the present paper to analyze the behavior of the resolvent, thez function and
he trace of the heat kernel of a second order differential operator with a regular singular
ompact segment,Dx=−]x

2+gsg−1dx−2, for those values ofg for which it admits a family o
elf-adjoint extensions.

Following the scheme developed in Ref. 17, we will show that the asymptotic expans
he resolvent in the general case presents powers ofl which depend on the singularity, and c
ven take irrational values. The consequence of this behavior on the correspondingz function is

he presence of simple poles lying at points which also depend on the singularity, with r
epending on the self-adjoint extension considered.

We first construct the resolvents for two particular extensions, for which the boundary
ion at the singular pointx=0 is invariant under the scalingx→c x. The resolvent expansion f
hese special extensions displays the usual powers, leading to the usual poles for thez function
and the usual structure for the asymptotic expansion of the heat-kernel trace).

The resolvents of the remaining extensions are convex linear combinations of these
xtensions, but the coefficients in the convex combination depend on the eigenvalue paral.
his dependence leads to unusual powers in the resolvent expansion, and hence to unus
or the zeta function(and unusual powers in the asymptotic expansion of the heat-kernel trace).
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These self-adjoint extensions are not invariant under the scalingx→c x. As c→0 they tend
at least formally) to one of the invariant extensions, and asc→` they tend to the other. Asc

0 the residues at the anomalous poles tend to zero, whereas asc→` these residues becom
nfinite. The way these residues depend on the boundary condition is explained by a
rgument in Sec. VII.

The structure of the paper is as follows: In Sec. II we define the operator and determ
elf-adjoint extensions for12 ,g,

3
2, and in Sec. III we study their spectra. In Sec. IV we cons

he resolvent for a general extension as a linear combination of the resolvent of two limiting
nd in Sec. V we consider the traces of these operators. The asymptotic expansions of the
valuated in Sec. VI, are used in Sec. VII to construct the associatedz function and study it
ingularities, as well as the small-t asymptotic expansion of the heat-kernel trace. The specia
= 1

2 is considered in Appendix A.

I. THE OPERATOR AND ITS SELF-ADJOINT EXTENSIONS

Let us consider the differential operator,

Dx = −
d2

dx2 +
gsg − 1d

x2 , s2.1d

ith gPR, defined on a domain of smooth functions with compact support in a segment,DsDd
C0

`s0,1d. It can be easily seen thatDx so defined is symmetric.
The adjoint operatorDx

* , which is the maximal extension ofDx, is defined on the doma
sDx

*d of functionsfsxdPL 2s0,1d, having a locally sumable second derivative and such th

Dxfsxd = − f9sxd +
gsg − 1d

x2 fsxd = fsxd P L 2s0,1d. s2.2d

Lemma 2.1: IffsxdPDsDx
*d and 1

2 ,g,
3
2, then(the caseg= 1

2 will be considered separate
n Appendix A)

Ufsxd − SC1ffgxg + C2ffgx1−g

Î2g − 1
DU ø

iDxfsxdi
s3/2 −gdÎ2g + 1

x3/2 s2.3d

nd

Uf8sxd − SgC1ffgxg−1 + s1 − gdC2ffgx−g

Î2g − 1
DU ø

3/2iDxfsxdi
s3/2 −gdÎ2g + 1

x1/2 s2.4d

or some constants C1ffg and C2ffg, wherei ·i is theL 2 norm.
Proof: Let us writefsxd=xgusxd. Then, Eq.(2.2) implies

u8sxd = K2x
−2g − x−2gE

0

x

ygfsyddy,

usxd = K1 +
K2

1 – 2g
x1–2g −E

0

x

y−2gE
0

y

zgfszddz dy, s2.5d
or some constantsK1 andK2. Now, taking into account that
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UE
0

x

ygfsyddyU ø
xg+1/2

Î2g + 1
ifi,

UE
0

x

y−2gE
0

y

zgfszddz dyU ø
x3/2−g

s3/2 −gdÎ2g + 1
ifi, s2.6d

e immediately get Eqs.(2.3) and (2.4).
Lemma 2.2: Letfsxd ,csxdPDsD*d and 1

2 ,g,
3
2. Then

sDxc,fd − sc,Dxfd=hC1fcg*C2ffg − C2fcg*C1ffgj + hcs1d*f8s1d − c8s1d*fs1dj. s2.7d

Proof: From Eq.(2.2) one easily obtains

sDxc,fd − sc,Dxfd= lim
«→0+

E
«

1

]xhcsxd*f8sxd − c8sxd*fsxdjdx, s2.8d

rom which, taking into account the results in Lemma 2.1, Eq.(2.7) follows directly.

Now, if csxd in Eq. (2.7) belongs to the domain of the closure ofDx, D̄x=sDx
*d* ,

csxd P DsD̄xd , DsDx
*d, s2.9d

hen the right-hand side of Eq.(2.7) must vanish for anyfsxdPDsDx
*d. Therefore

C1fcg = C2fcg = cs1d = c8s1d = 0. s2.10d

On the other hand, ifcsxd ,fsxd belong to the domain of a symmetric extension ofDx [con-
ained inDsDx

*d], the right-hand side of Eq.(2.7) must also vanish.
Thus, the closed extensions ofDx correspond to the subspaces ofC4 under the mapF

sC1fFg ,C2fFg ,fs1d ,f8s1dd, and the self-adjoint extensions correspond to those subs
,C4 such thatS=S', with the orthogonal complement taken in the sense of the symplectic
n the right-hand side of Eq.(2.7).

For definiteness, in the following we will consider self-adjoint extensions satisfying the
oundary condition:

fs1d = 0. s2.11d

ach such extension is determined by a condition of the form

aC1fFg + bC2fFg = 0, s2.12d

ith a ,bPR, anda2+b2=1. We denote this extension byDx
sa,bd.

II. THE SPECTRUM

In order to determine the spectrum of the self-adjoint extensions ofDx for 1
2 ,g,

3
2, we need

he solutions of

sDx − ldflsxd = 0, s3.1d

atisfying the boundary conditions in Eqs.(2.11) and (2.12).
The general solution of the homogeneous equation forl=0 is

f0sxd =
1

Î2g − 1
sC1x

g + C2x
1−gd, s3.2d
nd the boundary conditions in Eqs.(2.11) and (2.12) imply that
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C1 + C2 = 0, aC1 + bC2 = 0. s3.3d

onsequently, there are no zero modes except for the self-adjoint extension characteriza
b=1/Î2.

For lÞ0, the solutions of Eq.(3.1) are of the form

fsxd =
C1

Î2g − 1

Gs 1
2 + gd

21/2−gmg−1/2
ÎxJg−1/2smxd +

C2

Î2g − 1

Gs 3
2 − gd

2g−1/2m1/2−g
ÎxJ1/2−gsmxd, s3.4d

herem= +Îl, and them-dependent coefficients have been introduced for later convenien
Taking into account that

Jnszd = znH 1

2nGs1 + nd
+ Osz2dJ , s3.5d

e get from Eqs.(2.3) and (2.12),

a C1 + b C2 = 0. s3.6d

On the other hand, the condition in Eq.(2.11) implies

fs1d =
C1

Î2g − 1

Gs 1
2 + gd

21/2−gmg−1/2Jg−1/2smd +
C2

Î2g − 1

Gs 3
2 − gd

2g−1/2m1/2−gJ1/2−gsmd = 0. s3.7d

For a=0, Eq. (3.6) implies C2=0 (Dirichlet boundary conditions at the origin). Therefore
s1d=0⇒Jg−1/2smd=0. Thus, the spectrum of this self-adjoint extension is positive and n
enerate, with the eigenvalues ofDx

D : =Dx
s0,1d given by

ln = jg−1/2,n
2 , n = 1,2, . . . , s3.8d

here jn,n is thenth positive zero of the Bessel functionJnszd. [Let us recall that large zeros
jn,sld have the asymptotic expansion

jn,n . g −
4n2 − 1

8g
+ OS1

g
D3

, s3.9d

ith g=fn+sn /2d− 1
4
gp.]

For aÞ0, from Eqs.(3.6) and (3.7) we easily get the following transcendental equation
he eigenvalues ofDx

sa,bd:

Fsmd: = m2g−1J1/2−gsmd
Jg−1/2smd

= rsa,bd, s3.10d

here we have defined

rsa,bd: =
b

a

22g−1Gs 1
2 + gd

Gs 3
2 − gd

. s3.11d

For the positive eigenvaluesl=m2, both sides in Eq.(3.10) have been plotted in Fig. 1, f
articular values ofrsa ,bd andg.

Moreover, ifb /a.1⇒rsa ,bd.rsa ,ad, and the extensionDx
sa,bd has a negative eigenvalu

2
ndeed, ifl−=simd ,0, then
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Fsimd = m2g−1I1/2−gsmd
Ig−1/2smd

=22g−1
Gs 1

2 + gd

Gs 3
2 − gd

H1 +
s2g − 1dm2

s3 – 2gds1 + 2gd
+ Osm4dJ , s3.12d

hereInsmd is the modified Bessel function. For a plot, see Fig. 2.(It can be seen that this negat
igenvalue goes to −̀asa→0, while the corresponding eigenfunction tends to concentrate

o concentrate on the singularity atx=0. See also Ref. 33.)
Notice that the spectrum is always nondegenerate, and there is a positive eigenvalue

ach pair of consecutive squared zeros ofJg−1/2sld. Therefore, from Eq.(3.9) we getln=p2 n2

Osnd.
In particular, for theb=0 extension(which we call the “N-extension”), Dx

N: =Dx
s1,0d, it can be

een from Eq.(3.10) that the eigenvalues are given by

ln = j1/2−g,n
2 , n = 1,2, . . . , s3.13d

here j1/2−g,n
2 are the positive zeros ofJ1/2−gsmd.

V. THE RESOLVENT

In this section we will construct the resolvent ofDx,

Gsld = sDx − ld−1, s4.1d

or its different self-adjoint extensions when1
2 ,g,

3
2.

FIG. 1. Plot forFsmd, rsa ,bd=−3 andrsa ,ad, with g=3/4.
FIG. 2. Plot forFsi md, rsa ,bd=1.2 andrsa ,ad, with g=3/4.
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We will first consider the two limiting cases in Eq.(2.12), namely the “D-extension,” fo
hich a=0⇒C2ffg=0, and the “N-extension,” withb=0⇒C1ffg=0. The resolvent for a gene
elf-adjoint extension will be later evaluated as a linear combination of those obtained fo
wo limiting cases.

For the kernel of the resolvent we have

sDx − m2dGsx,y;m2d = dsx − yd, s4.2d

herem2=l, with −p /2,argsmdøp /2.
To proceed, we need some particular solutions of the homogeneous equation(3.1). Then, le

s define

LDsx,md = ÎxJg−1/2smxd,

LNsx,md = ÎxJ1/2−gsmxd,

Rsx,md = ÎxsJ1/2−gsmdJg−1/2smxd − Jg−1/2smdJ1/2−gsmxdd. s4.3d

otice thatRs1,md=0.
We will also need the Wronskians,

WfLDsx,md,Rsx,mdg =
2 cossgpd

p
Jg−1/2smd =

1

gDsmd
,

WfLNsx,md,Rsx,mdg =
2 cossgpd

p
J1/2−gsmd =

1

gNsmd
, s4.4d

hich vanish only at the zeros ofJnsmd, for n= ± sg− 1
2

d.

. The resolvent for the D-extension

In this case, the function

fsxd =E
0

1

GDsx,y;m2dfsyddy s4.5d

ust satisfyfs1d=0 andC2ffg=0, for any functionfsxdPL 2s0,1d.
This requires that

GDsx,y;m2d = gDsmd 3HLDsx,mdRsy,md for x ø y,

Rsx,mdLDsy,md for x ù y.
s4.6d

he fact that the boundary conditions are satisfied, as well assDx−m2dfsxd= fsxd, can be straigh
orwardly verified from Eqs.(4.3) and (4.4).

Indeed, from Eqs.(4.5), (4.6), (4.3), and(4.4), one gets

fsxd =
C1

Dffg
Î2g − 1

xg + Osx3/2d, s4.7d

ith

C1
Dffg =

pmg−1/2Î2g − 1

21/2+gcossgpdJg−1/2smdGs 1
2 + gd

E
0

1

Rsy,mdfsyddy, s4.8d
or m not a zero ofJg−1/2smd.
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Notice thatC1
DffgÞ0 if the integral on the right-hand side of Eq.(4.8) is nonvanishing.

. The resolvent for the N-extension

In this case, the function

fsxd =E
0

1

GNsx,y;m2dfsyddy s4.9d

ust satisfyfs1d=0 andC1ffg=0, for any functionfsxdPL 2s0,1d.
This requires that

GNsx,y;m2d = gNsmd 3HLNsx,mdRsy,md for x ø y,

Rsx,mdLNsy,md for x ù y.
s4.10d

hese boundary conditions, as well as the fact thatsDx−m2dfsxd= fsxd, can be straightforward
erified from Eqs.(4.3) and (4.4).

In this case, from Eqs.(4.9), (4.10), (4.3), and(4.4), one gets

fsxd =
C2

Nffg
Î2g − 1

x1−g + Osx3/2d, s4.11d

ith

C2
Nffg =

pm1/2−gÎ2g − 1

23/2−g cossgpdJ1/2−gsmdGs 3
2 − gd

E
0

1

Rsy,mdfsyddy, s4.12d

or m not a zero ofJ1/2−gsmd.
Notice thatC2

NffgÞ0 if the integral on the right-hand side of Eq.(4.12) [the same integral a
he one appearing in theD-extension, Eq.(4.8)] is nonvanishing.

. The resolvent for a general self-adjoint extension of Dx

For the general case, we can adjust the boundary conditions

fs1d = 0, aC1ffg + bC2ffg = 0, a,b Þ 0, s4.13d

or

fsxd =E
0

1

Gsx,y;ldfsyddy, s4.14d

or any fsxdPL 2s0,1d, by taking a linear combination of the resolvent for the limiting case

Gsx,y;ld = f1 − tsldgGDsx,y;ld + tsldGNsx,y;ld. s4.15d

Since the boundary condition atx=1 is automatically fulfilled, one must just impose

af1 − tsldgC1
Dffg + btsldC2

Nffg = 0. s4.16d

otice that, in view of Eqs.(4.8), (4.12), and(3.10),

aC1
Dffg − bC2

Nffg = 0, s4.17d

recisely whenl=m2 is an eigenvalue ofDx
sa,bd. Therefore, from Eq.(4.16) we get the resolve

sa,bd
f Dx by setting
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tsm2d =
aC1

Dffg
aC1

Dffg − bC2
Nffg

=
1

1 − rsa,bdm1–2gJg−1/2smd
J1/2−gsmd

, s4.18d

or m not a zero ofJ1/2−gsmd.

. THE TRACE OF THE RESOLVENT

It follows from Eq. (4.15) that the resolvent of a general self-adjoint extension ofDx can be
xpressed in terms of the resolvents of the two limiting cases,GDsld andGNsld. Moreover, sinc
he eigenvalues of any extension grow asn2 (see Sec. III), these resolvents are trace class op
ors.

Then, we have

TrhGsldj = TrhGDsldj − tsldfTrhGDsldj − TrhGNsldjg. s5.1d

From Eqs.(4.6) and (4.10) we straightforwardly get(see Appendix B for the details)

TrhGDsm2dj =E
0

1

trhGDsx,x;m2djdx=
J1/2+gsmd

2mJg−1/2smd
=

2g − 1

4m2 −
Jg−1/28 smd

2mJg−1/2smd
s5.2d

nd

TrhGNsm2dj =E
0

1

trhGNsx,x;m2djdx=
J3/2−gsmd

2mJ1/2−gsmd
= −

2g − 1

4m2 −
J1/2−g8 smd

2mJ1/2−gsmd
, s5.3d

here we have taken into account that

Jn+1szd =
n

z
Jnszd − Jn8szd. s5.4d

Finally, we get

TrhGsm2dj = H2g − 1

4m2 −
Jg−1/28 smd

2mJg−1/2smdJ − tsm2dH2g − 1

2m2 −
1

2m
SJg−1/28 smd

Jg−1/2smd
−

J1/2−g8 smd
J1/2−gsmd

DJ .

s5.5d

I. ASYMPTOTIC EXPANSION FOR THE TRACE OF THE RESOLVENT

Using the Hankel asymptotic expansion for Bessel functions34 (see Appendix C), we get for
he first term on the right-hand side of Eq.(5.5),

TrhGDsm2dj , o
k=1

`
Aksg,sd

mk =
is

2m
+

g

2m2 −
isgsg − 1d

4m3 +
gsg − 1d

4m4 + Osm−5d, s6.1d

heres=1 for Ismd.0, ands=−1 for Ismd,0. The coefficients in this series can be strai
orwardly evaluated from Eqs.(C8) and(C19). Notice thatAksg,−1d=Aksg,1d* , sinceA2ksg,1d is
eal andA2k+1sg,1d is pure imaginary.

Similarly, from (C22) we simply get for the second factor in the second term on the right
ide of Eq.(5.5),

TrhGDsm2d − GNsm2dj ,
2g − 1

2m2 . s6.2d
Finally, taking into account Eq.(C12), we have
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tsm2d ,
1

1 − esipsg−1/2drsa,bdm1–2g , o
k=0

`

sesipsg−1/2drsa,bdm1–2gdk, s6.3d

heres=1 ss=−1d corresponds toIsmd.0 sIsmd,0d.
Notice the appearance ofg-dependent powers ofm in this asymptotic expansion.

II. THE z FUNCTION AND THE TRACE OF THE HEAT KERNEL

The z function for a general self-adjoint extension ofDx is defined, forRssd.1/2, as

zssd = −
1

2pi
R

c

l−s TrhGsldjdl, s7.1d

here the curveC encircles counterclockwise the spectrum of the operator, keeping to the
he origin. According to Eq.(5.1), we have

zssd = zDssd +
1

2pi
R

c

l−stsldTrhGDsld − GNsldjdl, s7.2d

herezDssd is thez function for theD-extension.
Since, according to the discussion in Sec. III,Dx

D has a positive spectrum, and the self-adj
xtensionDx

sa,bd has at most one negative eigenvalue, we can write

zsa,bdssd = zDssd + Qssd −
1

2pi
E

−i`+0

i`+0

l−stsldTrhGDsld − GNsldjdl, s7.3d

hereQssd=l−
−s if there is a negative eigenvalue, and vanishes otherwise.

We can also write

zsa,bdssd =
e−isp/2ds

p
E

1

`

m1–2s TrhGsseisp/4dmd2djdm +
eisp/2ds

p
E

1

`

m1–2s TrhGsse−isp/4dmd2djdm + h1ssd,

s7.4d

hereh1ssd is an entire function.[The cut of the complex plane has been chosen to lie on th
alf-plane. So, a negative real number can be written asl−=eiuul−u, whereu can take the value +p
r −p, depending on the position of the cut. In any case,Qssd=l−

−s=e−isuul−u−s is an entire
unction, and the value ofu has no effects on the singular part of thez function.] Therefore, in
rder to determine the poles ofzsa,bdssd, we can subtract and add a partial sum of the asymp
xpansion obtained in the preceding section to TrhGsldj in the integrands on the right-hand side
q. (7.4).

In so doing, we get for theD-extension and for a reals.1/2,

zDssd =
1

p
o
s=±1

E
1

`

e−issp/2dsm1–2sHo
k=1

N

e−issp/4dkAksg,sdm−kJdm + h2ssd

=
1

p
o
k=1

N
Rhe−isp/2dss+k/2dAksg,1dj

s− s1 − k/2d
+ h2ssd, s7.5d

hereh2ssd is holomorphic in the open half-planeRssd. s1−Nd /2.
Consequently, the meromorphic extension ofzDssd presents simple poles at

s= 1 −k/2 for k = 1,2,3, . . . , s7.6d
ith residues
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ReszDssds=1−k/2 = −
1

p
RhiAksg,1dj, s7.7d

here the coefficientsAksg,1d are given in Eq.(6.1). Notice that these residues vanish for evek.
In particular, fors=1/2 sk=1d one gets

ReszDssduus=1/2 = −
1

p
RhiA1sg,1dj =

1

2p
. s7.8d

his is the unique pole present inzDssd for the g=1 case, where there is no singularity in the
rder coefficient ofDx.

For a general self-adjoint extensionDx
sa,bd, we must also consider the singularities com

rom the asymptotic expansion oftsldTrhGDsld−GNsldj in Eq. (5.1), given in Eqs.(6.2) and
6.3).

From Eq.(7.3), and taking into account Eq.(7.4), for reals.1/2 we can write

zsa,bdssd − zDssd = h3ssd −
2g − 1

2p
o
s=±1

e−issp/2dss+1dE
1

`

m−1–2sHo
k=0

N

seissp/2dsg−1/2drsa,bdm1–2gdkJdm

= − S2g − 1

2p
Do

k=0

N
1

s− s 1
2 − gdk

Rheisp/2dssg−1/2dk−s−1drsa,bdkj + h3ssd, s7.9d

hereh3ssd is holomorphic forRssd. s 1
2 −gdsN+1d.

Therefore,szsa,bdssd−zDssdd has a meromorphic extension which presents simple poles lo
t negativeg-dependent positions,

s= − sg − 1
2dk for k = 1,2, . . . , s7.10d

ith residues which depend on the self-adjoint extension given by

Reshzsa,bdssd − zDssdjuus=s1/2−gdk = − S2g − 1

2p
Drsa,bdk sinFp

2
s2g − 1dkG . s7.11d

Notice that these poles are irrational for irrational values ofg. Moreover, the residues van
or the “N-extension”srsa ,0d=0d, and have a singular limit fora→0.

In particular, these poles for theg=1 case(for which there are no singularity in the zer
rder term ofDx) are negative half-integers, since in this case the residues vanish for evek.

It is interesting to notice that the poles in Eq.(7.10) are also poles of thez function of the
orresponding self-adjoint extension of the operator −]x

2+gsg−1dx−2+x2 in L 2sR+d considered i
ef. 16, with exactly the same residues, as can be easily verified.

Let us remark that whenaÞ0 the residue ofzsa,bd at s=−sg− 1
2

dk is a constant timessb /adk.
his is consistent with the behavior ofDx under the scaling isometryTusxd=c1/2uscxd taking

2s0,1d→L 2s0,1/cd. The extensionDx
sa,bd is unitarily equivalent to the operators1/c2dḊx

sa8,b8d

imilarly defined onL 2s0,1/cd, with a8=c−ga andb8=cg−1b,

T Dx
sa,bd =

1

c2Ḋx
sa8,b8d T. s7.12d

otice that only for the extensions witha=0 or b=0 the boundary condition at the singular po
=0, Eq.(2.12), is left invariant by this scaling.

Therefore, we have for thez function of the scaled problem

żsa8,b8dssd = c−2szsa,bdssd, s7.13d
nd for the residues
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Reshżsa8,b8dssdjuus=s1/2−gdk = cs2g−1dk Reshzsa,bdssdjuus=s1/2−gdk. s7.14d

he factorcs2 g−1dk exactly cancels the effect the change in the boundary condition at the
arity has onrsa ,bd,

rsa,bdk = cs1–2gdkrsa8,b8dk. s7.15d

hen, the difference between the intervalss0,1d ands0,1/cd has no effect on the structure of th
esidues, which presumably are determined locally in a neighborhood ofx=0.

In this way we conclude that, for a general self-adjoint extension, the presence of pole
function located atg-dependent positions is a consequence of the singular behaviors,x−2d of the
eroth order term inDx near the origin, together with a scaling noninvariant boundary condit
he singularity.

Finally, let us remark that the relation between thez function and the trace of the heat ker
f Dx

sa,bd,

zsa,bdssd =
1

GssdE0

1

ts−1 Trhe−tDx
sa,bd

j dt + Hssd, s7.16d

hereHssd is an entire function, straightforwardly lead to the following small-t asymptotic ex
ansion:

Trhe−tDx
sa,bd

− e−tDx
D
j , Sg −

1

2
D − o

k=1

` HGSF1

2
− gGkD2g − 1

2p
rsa,bdk sinFp

2
s2g − 1dkGJtsg−1/2dk.

s7.17d

he first term on the right-hand side, coming from Eq.(6.2) and the first term in the asympto
xpansion oftsld in Eq. (6.3), coincides with the result reported in Ref. 15. Notice also
-dependent powers oft appearing in the asymptotic series on the right-hand side of Eq.(7.17) for
ny general self-adjoint extension[except for the “N-extension,“ for whichrsa ,0d=0]. In particu-

ar, the first term in this series reduces to

−
b

a

22g−1

Gs 1
2 − gd

tg−1/2. s7.18d

his power oft also coincides with the result quoted in Ref. 15, but we find a different coeffi
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PPENDIX A: THE CASE g =1/2

The caseg=1/2, for which the differential operatorDx takes the form

Dx = −
d2

dx2 −
1

4 x2 , sA1d

equires a separate consideration which we briefly present in this appendix.
Along the same lines as in the proof of Lemma 2.1, it is straightforward to show th

*
sxdPDsDxd, then
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ufsxd − sC1ffgÎx + C2ffgÎx log xdu ø
iDxfsxdi

Î2
x3/2 sA2d

nd

Uf8sxd − F1

2
C1ffgx−1/2 + C2ffgSx−1/2 +

1

2
x−1/2 log xDGU ø

3

2Î2
iDxfsxdix1/2 sA3d

or some constantsC1ffg andC2ffg, wherei ·i stands for theL 2 norm.
Therefore, it is easy to see that Eq.(2.7) is also valid in the present case, and the self-ad

xtensions ofDx correspond again to those subspacesS,C4 such thatS=S', with the orthogona
omplement taken in the sense of the symplectic form on the right-hand side of Eq.(2.7).

If, in addition, we select the Dirichlet condition atx=1, fs1d=0, the remaining self-adjoi
xtensions ofDx correspond to a one-parameter family characterized by Eq.(2.12), Dx

sa,bd.
There exists a particular self-adjoint extension for whichC2ffg=0, namelyDx

D : =Dx
s0,1d, such

hat the functions in its domain behave near the origin as

fsxd = C1ffgÎx + Osx3/2d. sA4d

he eigenfunction ofDx
D corresponding to the eigenvaluel is given by

fsxd = C1ffgÎxJ0smxd, sA5d

herel=m2 andm is a (positive) zero ofJ0smd.
For an arbitrary self-adjoint extensionDx

sa,bd with aÞ0, the eigenfunction corresponding
he eigenvaluel=m2 is given by

fsxd = hC1ffg − C2ffgslog m − log 2 +gdjÎxJ0smxd +
p

2
C2ffgÎxN0smxd, sA6d

hereC1ffg, C2ffg are constrained by Eq.(2.12). The conditionfs1d=0 leads to the equation

su − log mdJ0smd +
p

2
N0smd = 0, sA7d

here u=−b /a+log 2−g, which determines the spectrum ofDx
sa,bd. Notice that there are n

egative eigenvalues.
In order to determine the kernels of the resolventsGDsm2d : =sDx

D−m2d−1 and Gsa,bdsm2d
=sDx

sa,bd−m2d−1, we define

LDsx;md = ÎxJ0smxd,

Lsa,bdsx;md = ÎxHsu − log mdJ0smxd +
p

2
N0smxdJ ,

Rsx;md = ÎxhN0smdJ0smxd − J0smdN0smxdj, sA8d

o get

GDsx,y;m2d =
1

WfLDsx;md,Rsx;mdg
3 HLDsx;mdRsy;md, x ø y,

LDsy;mdRsx;md, x ù y,
sA9d
nd
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Gsa,bdsx,y;m2d =
1

WfLsa,bdsx;md,Rsx;mdg
3 HLsa,bdsx;mdRsy;md, x ø y,

Lsa,bdsy;mdRsx;md, x ù y,
sA10d

here the Wronskians can be easily computed from(A8),

WfLDsx;md,Rsx;mdg =
2

p
J0smd,

WfLsa,bdsx;md,Rsx;mdg =
2

p
su − log mdJ0smd + N0smd. sA11d

From Eq.(3.9), it can be seen that bothGDsld andGsa,bdsld are trace class operators.
Now, taking into account that34,35

E x Z1s0,xdZ2s0,xddx =
x2

2
hZ1s0,xdZ2s0,xd + Z1s1,xdZ2s1,xdj, sA12d

hereZ1,2sn ,xd=Jnsxd or Nnsxd, the traces of the resolvents can be readily computed to ge

TrhGDsm2dj =E
0

1

GDsx,x;m2ddx =
1

2m

J1smd
J0smd

,

TrsGsa,bdsm2dd =E
0

1

Gsa,bdsx,x;m2ddx =
1

2m

2

p
su − log mdJ1smd + N1smd

2

p
su − log mdJ0smd + N0smd

. sA13d

From Eqs.(C6) and(C7) one straightforwardly gets the same asymptotic expansion for
wo traces,

TrhGDsm2dj ,
eissp/2d

2m
SPs1,md − is Qs1,md

Ps0,md − is Qs0,mdD
, TrsGsa,bdsm2dd , o

k=1

`
Aks1/2,sd

mk =
i s

2m
+

1

4 m2 +
i s

16m3 −
1

16 m4 + Osm−5d,

sA14d

heres= +1 s−1d for Ismd.0 sIsmd,0d.
Notice that the asymptotic series in Eq.(A14) coincides with the right-hand side of Eq.(6.1)

valuated atg=1/2.Therefore, from Eq.(7.5) one concludes that, in the present case,zsa,bdssd has
imple poles only ats=1−k/2, for k=1,2,3, . . .,with residues given by

ReszDssduus=1−k/2 = −
1

p
RhiAks1/2,1dj sA15d

vanishing for evenk) for all the self-adjoint extensions ofDx.
So, in contrast to the case of 1/2,g,3/2, the pole structure of thez function for g=1/2 is

ndependent of the self-adjoint extension considered and does not differ from the usual o

PPENDIX B: EVALUATION OF THE TRACES OF THE RESOLVENTS

In this appendix we briefly describe the evaluation of the traces appearing in Sec. V.

From Eq.(4.6) we get for the kernel ofGDsld on the diagonal
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GDsx,x;m2d = gDxhJ1/2−gsmdJg−1/2sm xd2 − Jg−1/2smdJg−1/2sm xdJ1/2−gsmdj. sB1d

herefore, in order to evaluate its trace it is sufficient to know the primitives35,36

E xJn
2sm xddx =

x2

2
hJnsx md2 − Jn−1sx mdJn+1sx mdj sB2d

nd

E xJnsm xdJ−nsm xddx =
− n2

m2Gs1 − ndGs1 + nd
f1F2sh− 1/2j,h− n,nj,− x2m2d − 1g , sB3d

here

1F2sh− 1/2j,h− n,nj,− x2m2d = −
px2m2 cscspnd

4n
hJ−1−nsx mdJ−1+nsx md + 2 J−nsx mdJnsx md

+ J1−nsx mdJ1+nsx mdj. sB4d

These primitives, together with the relation

Jn−1szd + Jn+1szd =
2n

z
Jnszd, sB5d

ecessary to simplify the intermediate results, straightforwardly lead to Eq.(5.2).
Similarly, for the kernel ofGNsld on the diagonal we have

GNsx,x;m2d = gN xh− Jg−1/2smdJ1/2−gsm xd2 + J1/2−gsmdJ1/2−gsm xdJg−1/2sm xdj. sB6d

he same argument as before leads to Eq.(5.3).

PPENDIX C: THE HANKEL EXPANSION

To develop an asymptotic expansion for the trace of the resolvent we employ the
symptotic expansion for the Bessel functions which, for completeness, we briefly describe
ppendix.

For uzu→`, with n fixed anduarg zu,p, we have34

Jnszd , S 2

p z
D1/2

hPsn,zdcosxsn,zd − Qsn,zdsin xsn,zdj sC1d

nd

Nnszd , S 2

p z
D1/2

hPsn,zdsin xsn,zd + Qsn,zdcosxsn,zdj, sC2d

here

xsn,zd = z− Sn

2
+

1

4
Dp, sC3d

Psn,zd , o
k=0

` s− 1dk Gs 1
2 + n + 2kd

s2kd ! Gs 1
2 + n − 2kd

1

s2zd2k , sC4d
nd
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Qsn,zd , o
k=0

` s− 1dkGs 1
2 + n + 2k + 1d

s2k + 1d ! Gs 1
2 + n − 2k − 1d

1

s2zd2k+1 . sC5d

Moreover,Ps−n ,zd=Psn ,zd and Qs−n ,zd=Qsn ,zd, since these functions depend only onn2

see Ref. 34, p. 364).
Therefore,

Jnszd ,
e−isz eispfsn/2d+1/4g

Î2pz
hPsn,zd − is Qsn,zdj, sC6d

heres=1 for z in the upper open half-plane ands=−1 for z in the lower open half-plane.
Similarly,

Nnszd , is
e−isz eispfsn/2d+1/4g

Î2pz
hPsn,zd − is Qsn,zdj, sC7d

ith s=1 if Iszd.0 ands=−1 for Iszd,0.
In these equations,

Psn,zd − is Qsn,zd , o
k=0

`

kn,klS− is

2z
Dk

, sC8d

here the coefficients

kn,kl =
Gs 1

2 + n + kd

k ! Gs 1
2 + n − kd

= k− n,kl sC9d

re the Hankel symbols.
For the quotient of two Bessel functions we have

Jn1
szd

Jn2
szd

, eissp/2dsn1−n2d Psn1,zd − is Qsn1,zd
Psn2,zd − is Qsn2,zd

, sC10d

heres=1 for Iszd.0 ands=−1 for Iszd,0. The coefficients of this asymptotic expansion
e easily obtained, to any order, from Eq.(C8),

Psn1,zd ± i Qsn1,zd
Psn2,zd ± i Qsn2,zd

, 1 + skn1,1l − kn2,1ldS± i

2z
D + OS 1

z2D . sC11d

In particular,

J1/2−gszd
Jg−1/2szd

, eisps1/2−gd Ps 1
2 − g,zd − is Qs 1

2 − g,zd

Psg − 1
2,zd − is Qsg − 1

2,zd
= eisps1/2−gd, sC12d

incePsn ,zd andQsn ,zd are even inn.
Similarly, the derivative of the Bessel function has the following asymptotic expansion34 for

arg zu,p:

Jn8szd , −
2

Î2pz
hRsn,zdsin xsn,zd + Ssn,zdcosxsn,zdj sC13d
nd
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Nn8szd ,
2

Î2pz
hRsn,zdcosxsn,zd − Ssn,zdsin xsn,zdj, sC14d

here

Rsn,zd , o
k=0

`

s− 1dkn2 + s2kd2 − 1/4

n2 − s2k − 1/2d2

kn,2kl
s2zd2k sC15d

nd

Ssn,zd , o
k=0

`

s− 1dkn2 + s2k + 1d2 − 1/4

n2 − s2k + 1 – 1/2d2

kn,2k + 1l
s2zd2k+1 . sC16d

hen,

Jn8szd , 7 i
e7iz e±ipfsn/2d+1/4g

Î2pz
hRsn,zd 7 i Ssn,zdj, sC17d

here the upper sign is valid forIsld.0, and the lower one forIsld,0. We have also

Rsn,zd ± i Ssn,zd = Psn,zd ± i Qsn,zd + T±sn,zd, sC18d

ith

T±sn,zd , o
k=1

`

s2k − 1dkn,k − 1lS± i

2z
Dk

. sC19d

Therefore, we get

Jn8szd
Jnszd

, 7 iH1 +
T7sn,zd

Psn,zd 7 iQsn,zdJ , sC20d

here the upper sign is valid forIsld.0, and the lower one forIsld,0. The coefficients of th
symptotic expansion on the right-hand side of Eq.(C20) can be easily obtained from Eqs.(C8)
nd (C19),

T±sn,zd
Psn,zd ± iQsn,zd

= S± i

2z
D + OS 1

z2D . sC21d

Finally, since the Hankel symbols are even inn [see Eq.(C9)], from Eqs.(C8), (C19), and
C20) we have

Jn8szd
Jnszd

,
J−n8 szd
J−nszd

. sC22d
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eformations of loop algebras and integrable
ystems: hierarchies of integrable equations

T. Skrypnyka)
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Using special quasigraded Lie algebras, that could be viewed as deformations of
loop algebras, we obtain new hierarchies of integrable nonlinear equations admit-
ting zero-curvature representations. In particular, we obtain integrable hierarchies
that generalize the Heisenberg magnet, Landau–Lifshitz, and anisotropic chiral
field hierarchies. We also obtain a new type ofsos3d anisotropic chiral field equa-
tion along with its higher rank generalization. ©2004 American Institute of
Physics.[DOI: 10.1063/1.1804229]

. INTRODUCTION

It is known that integrability of equations of 1+1 field theory and condensed matter p
s based on the possibility to represent them in the form of the so-called zero-cu
quations:1–3

] Usx,t,ld
] t

−
] Vsx,t,ld

] x
+ fUsx,t,ld,Vsx,t,ldg = 0, s1d

hereU, V are the matrix-valued functions, depending on the dynamical variables(fields), their
erivatives with respect to the “space” coordinatex and an additional complex parameterl usually
alled “spectral.”

The most convenient interpretation of zero-curvature equations, that has arisen indep
n Refs. 4 and 5 for the case of the rational dependence ofU−V pair onl, is to consider them a

consistency condition for a set of a commuting Hamiltonian flows on the dual space to
nfinite-dimensional Lie algebrag̃ of matrix-valued function ofl written in the Euler–Arnol
generalized Lax) form

] Lsld
] tl

= ad¹I lsLsldd
* Lsld,

] Lsld
] tk

= ad¹IksLsldd
* Lsld, s2d

here LsldP g̃* is the generic element of the dual space,¹IksLslddP g̃ is the algebra-value
radient ofIksLsldd, and the “Hamiltonians”IksLsldd,I lsLsldd belong to the set of mutually com
uting with respect to the natural Lie–Poisson bracket functions ong̃* . Consistency condition o
qs.(2) coincides with Eq.(1), whereU; ¹ Ik, V; ¹ I l, x; tk, t; tl for some fixed indicesk and

. Requiring Eq.(1) to be true for all degrees of spectral parameterl we obtain a self-consiste
ystem of differential equations in the dynamical variables—coordinate functions ong̃* . In this
ay we obtain a lot of equations in partial derivatives that are labeled by the two comm
amiltoniansIk andI l. The set of such equations with differentl and fixedk (i.e., with fixed spac
ariablex; tk) constitutes so-calledintegrable hierarchy.3

Hence, in order to construct integrable hierarchies in the framework of the described
pproach it is necessary to construct infinite family of commuting Hamiltonians on the dua

)
Electronic mail: tskrypnyk@imath.kiev.ua
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o some infinite-dimensional Lie algebrag̃ of the algebra-valued functions of one complex v
blel. From the fact that not for arbitrary dependence ofU, V on l corresponding Eq.(1) have
ontrivial solutions,6 it follows that not for all algebrasg̃ this program could be realized. Tha
hy very special Lie algebrasg̃ admitting some algorithm of construction of infinite set
utually commuting functions ong̃* are required in this approach. The most powerful of s
lgorithms is the famous Kostant–Adler scheme.7,8 In particular, it is known2,4,5,9 that applying i

o the graded loop algebrasLsgd=g ^ Polsl ,l−1d it is possible to obtain almost all known in
rable equations.

The main purpose of the present paper is to extend applications of the approach of Re
to construction of integrable differential equations in order to obtain new hierarchies o

rable differential equations in partial derivatives. For this purpose we construct a new c
nfinite-dimensional Lie algebras to which the Kostant–Adler scheme may be applied. Con
he loop algebras they are not graded but possess a weaker property of aquasigradation. Con-
tructed quasigraded Lie algebras arecontinuous multiparametric deformationsof the graded loo
lgebrasLsgd. Matrix elements of a certain matriceA serve for the parameters of the deformat
e denote the corresponding infinite-dimensional Lie algebras byg̃A. We study the properties

he obtained algebrasg̃A in detail. We construct their coadjoint representations and infinite s
oadjoint invariantshIk

mj. Restricting these invariants onto subspacessg̃A
±d* , whereg̃A= g̃A

+ + g̃A
−, we

btain two infinite sets of polynomial functionshIk
m±j. From the framework of the Kostant–Ad

cheme it follows that the functionshIk
m±j mutually commute inside each set:hIk

m± ,I l
n±j=0, where

,j is the standard Lie–Poisson bracket ong̃A. In such a way we obtain two sets of integra
quations: the first set is generated by pairs of the HamiltonianshIk

m+j andhI l
n+j and associated wi

he Lie algebrag̃A
+ and the second set is associated with the Lie algebrag̃A

− and pairs of th
amiltonianshIk

m−j andhI l
n−j. Besides, like in the case of the ordinary loop algebras,2 the scope o

he Kostant–Adler(K–A) scheme can be extended, proving thathIk
m± ,I l

n7j=0. This fact permits u
o consider the third type of integrable equations generated by the HamiltonianshIk

m±j and hI l
n7j

nd associated with the whole Lie algebrag̃A. Although this set of equations contains in itself s
f equations connected withg̃A

±, the last two are completely self-contained and could be consi
eparately. Hence, in the result, using the triplesg̃A, g̃A

−, g̃A
+d we obtain three types of integrab

ierarchies: two “small” hierachies associated withg̃A
± and “large” hierarchy associated withg̃A.

We show that for all the types of hierarchies their structure depends on the matrix of
ationA which play the role of the anisotropy tensor. There are two substantially different
he first case is connected with the nondegenerate matricesA. In this case the hierarchies co
ected with the algebrasg̃A

+ and g̃A
− are equivalent and yield integrable hierarchies that cou

iewed as an “anisotropic deformation” of the generalized Heisenberg magnet hierarch
atrix generalization of the Landau–Lifshitz hierarchy. Large hierarchy connected with the
lgebrag̃A gives in case of the nondegenerate matricesA a new type of anisotropic chiral fie
quation. The second case is connected with the degenerated matricesA. In this case the hiera
hies corresponding to the algebrasg̃A

± cease to be equivalent. Moreover in the case of hierar
ssociated with the algebrasg̃A

+ an additional reduction appears. Multiparametric character o
lgebrag̃A gives us a new possibility to perform reduction procedure. Manipulating by
arameters(matrix elements of the matrixA) we can, in some cases, substantially simplify
espondingU-operator and reduce the number of its independent components. In the prese
e illustrate this by the simplest example of the minimally degenerated matricesA. In this case th

ntegrable hierarchy, that corresponds to the algebrag̃A
+ andg=sosnd, is a vector generalization

he Landau–Lifshitz hierarchy. Ordinary Landau–Lifshitz hierarchy corresponds to theg
sos4d, A=diagsa1,a2,a3,0d. The large hierarchy connected with the whole algebrag̃A gives us in

his degenerated case “coupled” generalized Landau–Lifshitz and generalized anisotrop
eld hierarchies.

The structure of the present paper is the following: in the second section we introduce a
A and describe their properties, in the third section we describe infinite-dimensional Hamiltonian
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ystems on the algebrasg̃A
± andg̃A possessing infinite sets of mutually commuting integrals. In

ourth section we consider the corresponding hierarchies of integrable equations admittin
urvature representations.

I. K–A ADMISSIBLE QUASIGRADED LIE ALGEBRAS

In this section we describe a new class of infinite-dimensional Lie algebrasg̃ that could be
sed to generate classical integrable systems. These algebras satisfy the following inte
equirements(IR):

• (IR1) they possess an infinite number of algebraically independent invariants of co
representation;

• (IR2) they are decomposable into the direct sum of two subalgebras:g̃= g̃−+ g̃+; and
• (IR3) subalgebrasg̃+, g̃− possess infinite set of embedded idealsJ±n of finite codimensions

. General construction

Definition 1: Infinite-dimensional Lie algebrag̃ is calledZ-quasigraded of typesp,qd10 if it
dmits the decomposition

g̃ = o
jPZ

g j, such thatfgi,g jg , o
k=−p

q

gi+j+k.

The following proposition holds true.16

Proposition 1: Letg̃ be Z-quasi graded of types0,1d, or s1,0d. Then g̃ satisfies condition
IR2) and (IR3).

So our aim in this section will be a construction ofZ-quasi graded algebras of types0,1d. For
his purpose we will deform Lie algebraic structure in loop algebras. We will introduce
sgd=g ^ Polsl ,l−1d new Lie bracket

fX ^ psld,Y ^ qsldgF = fX,Yg ^ psldqsld − FsX,Yd ^ lpsldqsld, s3d

hereX,YPg, psld ,qsldP Polsl ,l−1d, f,g in the right-hand side of this identity denotes ordin
ie bracket ing and mapF :g3g→g is skew. It is evident by the very construction that the
lgebras with the so defined bracket areZ-quasi graded Lie algebras of types0,1d with the
uasigrading being defined in the standard way by degrees of the spectral parameterl.

The following propositions answer the question when bracket(3) satisfies the Jacobi identi
Proposition 2: For bracket (3) to satisfy the Jacobi identities the cochain F should satis

ollowing two requirements:

sJ1d o
c.p.hi,j ,kj

sfFsXi,Xjd,Xkg + fFsXi,Xjd,Xkgd = 0,

sJ2d o
c.p.hi,j ,kj

FsFsXi,Xjd,Xkd = 0.

In the case of classical matrix Lie algebras it is possible to give an explicit construct
arge(multiparametric) family of cochainsF, that satisfy conditionssJ1d–sJ2d. Let g be hereafte

classical matrix Lie algebra of the typeglsnd, sosnd, andspsnd over the field of the complex
eal numbers. We will realize algebrasosnd as algebra of skew-symmetric matrices:sosnd=hX

glsnd uX=−XTj and algebraspsnd as the following matrix algebra:spsnd=hXPglsnduX=sXTsj,
heren is an even number,sPsosnd ands2=−1.

The following proposition holds true.
Proposition 3: Letg be a classical matrix Lie algebra over the fieldK of complex or rea
umbers. Let us define the numerical(K-valued) n3n matrix A of the following type:
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1) A is arbitrary for g=glsnd;
2) A=AT for g=sosnd; and
3) A=−sATs for g=spsnd.

hen maps FA:g3g→g of the form FAsX,Yd=XAY−YAX are correctly defined skew symme
aps that satisfy conditions(J1)–(J2).

Remark 1:CocycleFA defines a second Lie bracket in the finite dimensional Lie algebrg,
hat is compatible with the standard one. This fact was noticed in Ref. 11 and was u
onstruct compatible Poisson brackets on the finite-dimensional Lie algebrasg. The idea to use th
ame cocycle to generate infinite-dimensional Lie algebras with Kostant–Adler decomposit
roposed in Ref. 12 as a natural generalization of semi-geometric construction of Refs. 1
pecial quasigraded Lie algebras on the higher genus curves.

Definition 2: We will denote Lie bracket in the spaceg, defined by the cocycle FA by f,gA and
he corresponding finite-dimensional Lie algebra bygA. We will denote infinite-dimensional spa
^ Polsl ,l−1d with the Lie bracket given by(3) and cocycle FA by g̃A.

Lie bracket in the algebrag̃A will have the following form:

fXsld,YsldgFA
= fXsld,Ysldg − lfXsld,YsldgA, s4d

hereXsld ,YsldPLsgd=g ^ Polsl ,l−1d, Asld;1−lA, and we extend bracketsf,g andf,gA from
ie algebrag to Lie algebra ofg-valued functionsLsgd in a natural way. This bracket can be a
ritten in the more compact form as follows:

fXsld,YsldgFA
; fXsld,YsldgAsld = XsldAsldYsld − YsldAsldXsld. s5d

Now we can introduce the convenient bases in the algebrasg̃A. Due to the fact that we a
ealing with matrix Lie algebrasg, we will denote their basic elements asXij . For example, for th
aseg=glsnd we will have thatXij = I ij , wheresI ijdab=daidbj for the caseg=sosnd we will have tha

i j = I ij − I ji etc. LetXij
m;Xij ^ lm be the natural basis ing̃A. Commutation relations(4) in this basis

ave the following form:

fXij
r ,Xkl

mgFA
= o

p,q
Cij ,kl

pq Xpq
r+m − o

p,q
Cij ,kl

pq sAdXpq
r+m+1, s6d

hereCij ,kl
pq andCij ,kl

pq sAd are the structure constants of the Lie algebrasg andgA, respectively.
Remark 2:Algebrasg̃A can be realized also in the space of special matrix valued functio

with an ordinary Lie bracketf,g. In particular in the case of the diagonal matricesA they can b
ealized as the special quasigraded Lie algebras on the higher genus curves(see Refs. 13–16).
hey can be also realized asspecial quasigraded subalgebrasof glsnd-loop algebras, whic
ontrary to the graded subalgebras of loop algebras are not isomorphic to the correspond
lgebras. Nevertheless we consider realization in the spaceg ^ Polsl ,l−1d with the “deformed
racket to be the most convenient.

Remark 3:Contrary to the case of loop algebras our algebrasg̃A admit only one type o
ecompositiong̃A= g̃A

+ + g̃A
− compatible with quasigrading, where the subalgebrasg̃A

± are defined i
he natural way

g̃A
+ = SpanKhXij

mumù 0j, g̃A
− = SpanKhXij

mum, 0j. s7d

he following proposition holds true.
Proposition 4: LetdetAÞ0 then the algebrag̃A−1

− is isomorphic to the algebrag̃A
+.

Proof: This follows from the substitution of variables in the algebrag̃A: X−ñ=A−1/2Xn−1A−1/2,
hich maps generators ofg̃A

+ into the generators ofg̃A−1
− .

Let us consider several examples of the algebrag̃A:
Example 1:Let g=sos4d and matrixA be diagonal:A=diagsa1,a2,a3,a4d. In this case com
utation relations will be more simple if we introduce standard basis insos4d algebra. Putting
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k
n;ei jkXij

n, Yk
m;Xi4

m where i , j ,kP1,3 we obtain the following commutation relations for

os4dA:

fXi
r,Xj

sg = ei jkXk
r+s − ei jkakXk

r+s+1, s8ad

fXi
r,Yj

rg = ei jkYk
r+s − ei jkajYk

r+s+1, s8bd

fYi
r,Yj

sg = ei jkXk
r+s − a4ei jkXk

r+s+1. s8cd

n the case whena4=0 this algebra coincides with anisotropic affine algebra discovered in R
see also Ref. 18) in the connection with the integrability of Landau–Lifshitz equations.

. Coadjoint representation and its invariants

In this subsection we define dual spaces, coadjoint representations and their invariant
ie algebrasg̃A. Let us at first explicitly describe the dual spaceg̃A

* of g̃A. For this purpose we wi
efine the pairing betweeng̃A and g̃A

* in the following standard way:

kX,Ll = resl=0 Tr sXsldLsldd. s9d

he generic element of the dual spaceLsldP g̃A
* is written as follows:

Lsld = o
kPZ

o
i,j=1,n

l ij
skdl−sk+1dXij

* . s10d

The following proposition holds true:12

Proposition 5: The coadjoint action of the algebrag̃A on the dual spaceg̃A
* has the form

adXsld
* + Lsld = AsldXsldLsld − LsldXsldAsld, s11d

here Xsld ,YsldP g̃A, LsldP g̃A
* .

Remark 4:Note that linear spacesg̃A and g̃A
* do not coincide asg̃A-modules. Moreove

igorously speaking, they also do not coincide as linear spaces becauseg̃A
* contains formal powe

eries, andg̃A, by the very definition, consists of the Loran polynomials.
Proposition 5 has the following important corollary.
Corollary 1: Let Lsld be the generic element ofg̃A

* . Then the functions

Ik
msLsldd =

1

m
resl=0l

−sk+1d Tr sLsldAsld−1dm s12d

re invariants of the coadjoint representation ofg̃A.
Remark 5:Matrix Asld−1;s1−lAd−1 has to be understood as a power series inl in the

eighborhood of 0 or̀ : Asld−1=s1+Al+A2l2+¯ d or Asld−1=−sA−1l−1+A−2l−2+¯ d.
Remark 6:We will also use invariants of the Lie algebrassos2nd̃A of the form

PksLsldd = resl=0l
−sk+1dPfsLsldd. s13d

hey can be expressed as functions of the invariants introduced in corollary 1.

. Lie–Poisson structure

Let us define the Poisson structures in the spaceg̃A
* using the defined earlier pairingk,l. It

efines Lie–Poisson(Kirillov–Kostant) bracket onPsg̃A
* d in the following standard way:

hFsLsldd,GsLslddj = kLsld,f¹FsLsldd, ¹ GsLslddgAsldl, s14d
n skd k n smd m
here¹FsLsldd=okPZ oi,j=1f]F /]l i j gXij , ¹GsLd=omPZ ok,l=1f]Gsld /]lkl gXkl.
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From corollary 1 and standard arguments follows the next statement.
Proposition 6: Functions Ik

msLsldd are central for the Lie–Poisson bracket (14).
Let us explicitly calculate Poisson bracket(14). It is easy to show that for the coordin

unctionsl i j
smd these brackets will have the following form:

hl i j
snd,lkl

smdj = o
p,q

Cij ,kl
pq lpq

sn+md − o
p,q

Cij ,kl
pq sAdlpq

sn+m+1d. s15d

t is evident that this bracket determines in the space of linear functionshl i j
sndj a structure of the Li

lgebra isomorphic tog̃A. That is why the corresponding Poisson algebra possesses decomp
nto direct sum of two Poisson subalgebras or, in other words, subspacessg̃A

±d* are Poisson.

II. INFINITE-DIMENSIONAL HAMILTONIAN SYSTEMS VIA K–A ADMISSIBLE LIE
LGEBRAS

In the previous section we have constructed infinite-dimensional Lie algebrasg̃A that have
ecomposition into direct sum of two subalgebras and possess an infinite set of invar
oadjoint representation, i.e., admit so-called the Kostant–Adler scheme. In this section w
he Kostant–Adler scheme and its extension tog̃A in order to construct an infinite set of mutua
ommuting(with respect to the natural Lie–Poisson bracket) functions ong̃A

± and g̃A and obtain
deformed” Lax representation for the corresponding Hamiltonian equations.

. Integrable Hamiltonian systems connected with algebras g̃A
±

Let L7sld;oi,j=1,nLij
7sldXji =okPZ±

oi,j=1,nl ij
skdl−sk+1dXji be the generic elements of the spa

g̃A
±d* . Let us consider restriction of the invariant functionshIk

msLslddj onto these subspaces. No
hat although Poisson subspacessg̃A

±d* are infinite dimensional, all functionshIk
msL±slddj are poly-

omials, i.e., after restriction tosg̃A
±d* no infinite sums appear in their explicit expressions. Co

ponding Hamiltonian equations are written as

] Lij
7sld

]tk
m = hLij

7sld,Ik
msL7slddj. s16d

he following important theorem holds true.
Theorem 1: (i) Time flows defined by Eq. (16) mutually commute.(ii ) Euler–Arnold equation

16) are written in the deformed Lax form

] L7sld
] tk

m = AsldMk
msldL7sld − L7sldMk

msldAsld, s17d

here Mk
msld= ¹ Ik

msL7sldd;osPZ±
oi,j=1

n f]Ik
m/]l i j

ssdgXij
s is an algebra-valued gradient of Ik

msL7sldd.
iii ) Functions Il

nsL±d are constant along all times tk
m±: f]I l

nsL±d /]tk
m±g=0.

Proof of the theorem follows from the general framework of the Kostant–Adler schem8

Remark 7:Using earlier mentioned realizations ofg̃A deformed Lax equations could be
ritten in the forms of the standard Lax equations, but in this case correspondingL–M pairs will
e more complicated and we prefer to work with the Lax equations in the “deformed” form(17).

. Integrable Hamiltonian systems connected with algebras g̃A

Let us now extend our phase space fromsg̃A
±d* to the whole spaceg̃A

* and extend correspondi
amiltonian flows. In other words, let us consider the same Hamiltonians as functions

xtended phase space. Corresponding Hamiltonian equations are written in the standard way
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] Lijsld
]k

m7t
= hLijsld,Ik

msL7slddj. s18d

ote, that on the extended phase space there are two types of the Hamiltonian flows: “p
ows defined by the HamiltoniansIk

msL+sldd and “negative” flows defined by the Hamiltonia

l
nsL−sldd. A remarkable fact is positive time flows commute with negative ones. The follo
nalog of theorem 1 holds true.

Theorem 2: The time flows defined by Eq. (18) commute for all times tk
m+,tl

n−.
(ii ) Euler–Arnold equations (18) could be written in the deformed Lax form

] Lsld
] tk

m7 = AsldMk
m7sldLsld − LsldMk

m7sldAsld, s19d

here Mk
m7sld= ¹ Ik

msL7sldd;osPZ±
oi,j=1

n f]Ik
m/]l i j

ssdgXij
s .

(iii ) The functions Iq
psL±d are constant along all times tk

m± and tl
n7.

Proof of this theorem is analogous to the proof of the corresponding theorem for the
he loop algebras(see Ref. 4, and references therein).

Remark 8:Note that theorem 2 does not follow directly from the Kostant–Adler sch8

ecause commutativity of the time flows(18) implies commutativity of the corresponding Ham
oniansIk

msL±sldd ,I l
nsL7sldd with respect to the initial Lie–Poisson bracket ong̃A

* (commutativity
f these functions with respect to ther-matrix bracketh,j0 (see Ref. 8) follows trivially from

heorem 1).
In this section we have obtained Hamiltonian systems of the Euler–Arnold type on the

nfinite-dimensional Lie algebras posessing infinite number of the commuting integrals of m
hese Hamiltonian systems, despite being infinite-dimensional are “mechanical” because
escribed by ordinary differential equations. Nevertheless we can consider our dynamic
blesl i j

spd to be functions of all time variablestk
m± and using the commutativity of all time flow

btain differential identities on functionsl i j
spdstk

m±d, that coincide with the wanted integrable eq
ions in partial derivatives. For this purpose in the next section we will derive an ana
ero-curvature equations.

V. DEFORMED ZERO CURVATURE EQUATIONS

In this section we will obtain zero curvature-type equations as compatibility conditions f
et of the commutative Hamiltonian flows constructed in the previous section.

The following theorem holds true.
Theorem 3: Let infinite-dimensional Lie algebrasg̃A, g̃A

±, their dual spaces and polynom
amiltonians Ik

msL±sldd, I l
nsL±sldd on them be defined as in previous sections. Then alg

alued gradients of these functions satisfy the deformed zero-curvature equations

] ¹ Ik
msL±sldd
] tl

n± −
] ¹ I l

nsL±sldd
] tk

m± + f¹Ik
msL±sldd, ¹ I l

nsL±slddgAsld = 0, s20d

] ¹ Ik
msL±sldd
] tl

n7 −
] ¹ I l

nsL7sldd
] tk

m± + f¹Ik
msL±sldd, ¹ I l

nsL7slddgAsld = 0. s21d

roof of this theorem is analogous to the proof of the analogous theorem of Ref. 16.
Remark 9:Using earlier mentioned realizations ofg̃A deformed zero-curvature equations

e rewritten in the form of the standard zero-curvature equations, but in this case corres
–V pairs will be more complicated and we will work with zero-curvature equations i
eformed form(20) and (21).

Theorem 3 provides us with an infinite number ofg̃A
±-valued U–V pairs that satisfy zer

urvature-type equations. The latter are nonlinear equations in the partial derivatives on
±
amical variables—matrix elements of the matricesL sld. In the terminology of Ref. 3 equations
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enerated by the infinite set ofU–V pairs are called “integrable in the kinematic sense.” In
ext subsections we will consider the simplest examples of such integrable equations a
ierarchies. We distinguish three types of hierarchies connected with the algebrasg̃A

± and g̃A. For
he case of integrable hierarchies connected withg̃A

± we should consider only Eq.(20) while
onsidering hierarchies connected withg̃A we should consider both Eqs.(20) and (21), which
eflects the fact, that we have in this case both positive and negative flows.

Now we will explain in more detail the technique of obtaining integrable equations in p
erivatives starting from zero-curvature equations. Let us at first note that in the descri
roach no space variablex is a priori singled out: all timestk

m± are equivalent. Fixation of th
pace flow is equivalent to the fixation of integrable hierarchy. For this purpose one sho
amiltonians that generatex-flow. For the case of integrable systems, connected with algebg̃A

*

his choice yields fixation of dynamical variables. In more detail, for the dynamical variab
his case serve the matrix elements ofU; ¹ Ik

msL7sldd, where HamiltonianIk
msL7sldd is chosen t

enerate anx-flow. Using zero-curvature conditions one can express matrix elements of al
atrix gradients¹I l

nsL7sldd via these dynamical variables and their derivatives with respect
pace coordinate. Substituting these expressions back to zero-curvature condition we o
anted equation in partial derivatives on the matrix elements of¹Ik

msL7sldd.
For the case of integrable systems associated with the whole algebrasg̃A there are two type

f Hamiltonians and two types of flows. That is why in this case the number of indepe
ynamical variables may be doubled: their role is played by matrix elements of¹Ik

msL+slddand
I l
nsL−sldd that generate evolution with respect tox+ andx− correspondingly.

. INTEGRABLE HIERARCHIES ASSOCIATED WITH ALGEBRAS g̃A
−

In this section we will obtain integrable hierarchies of differential equations in partial d
ives, admitting a zero curvature type representation(20) with the values ing̃A

−.
Let us consider dual spacesg̃A

−d* . Its generic element has the following form:

L+sld = o
k,0

o
i,j=1,n

l ij
skdl−sk+1dXji = Ls−1d + Ls−2d + l2Ls−3d + l3Ls−4d + ¯ , s22d

here Ls−kd;Si,j=1,nl ij
s−kdXji . Let us now calculate the HamiltoniansIk

msL+sldd. In order for the
amiltoniansIk

msL+sldd to be polynomials we have to expand expressionAsld−1 in the powe
eries in the neighborhood of zero:Asld−1=1+Al+A2l2+¯. From the results of the previo
ection it follows that the matrix gradients of HamiltoniansIk

msL+sldd satisfy deformed zero
urvature Eq.(20). We will be interested in the two simplest Hamiltonians of the setIk

2sL+sldd. By
he direct calculations we obtain for them the following expressions:

I0
2sL+sldd = 1/2 TrsLs−1dd2, I1

2sL+sldd = Tr sAsLs−1dd2d + Tr sLs−1dLs−2dd. s23d

The corresponding matrix gradients are

¹I0
2sL+sldd = Ls−1dl−1, ¹ I1

2sL+sldd = Ls−1dl−2 + ssALs−1d + Ls−1dAd + Ls−2ddl−1. s24d

As it follows from the earlier work, in order to fix integrable hierarchy we should choos
amiltonian, that generatesx-flow. We will take for such the Hamiltonian functionI0

2sL+sldd,
utting t0

2+;x, ¹I0
2sL+sldd;Usx,ld, ¹Ik

msL+sldd;Vk
msx,ld ,m,k.0 as the basicU–V pairs tha

enerate this hierarchy. In this case the role of the dynamical variables is played by the
lements of the matrixLs−1d.

. Matrix generalization of the Landau–Lifshitz equation

In this subsection we will obtain an explicit form of the simplest equation of the e

escribed hierarchy. For this purpose we have to choose a Hamiltonian that generates “time” flow
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n the simplest possible way. We take for such Hamiltonian the functionI1
2sL+sldd, i.e., t; t1

2+. In
he result we obtain that zero-curvature Eq.(20) is equivalent to the followingl-independen
quations:

] L

] t
−

] M

] x
= fL,MgA, s25ad

] L

] x
= fL,Mg, s25bd

hereL;Ls−1d ,M ;Ls−2d+sALs−1d+Ls−1dAd.
In order to obtain equations in partial derivatives on the dynamical variables—matr

ents of the matrixL it is necessary to solve Eq.(25b), i.e., to expressM via L andLx and then
ubstitute this expression into Eq.(25a). We will illustrate this procedure on the simplest, but m
nteresting example and show that corresponding equation coincides with matrix generaliz
he Landau–Lifshitz equation.

Let g=glsnd, sos2nd, or spsnd. In this case in order to solve Eq.(25b), i.e., in order to obtai
nstead of two Eqs.(25a) and (25b) one matrix equation in partial derivatives it is necessar
mpose additional constraint on the matrixL15 (a similar situation holds for the Heisenberg mag
ierarchies associated with the higher rank algebras19,20). We will chose the simplestG-invariant

orm of such matrix constraint

L2 = − 1
4E, s26d

hereE is a unit matrix. This constraint means thatL belongs to the degenerated coadjoint or
f G of the following type:Glsnd /GLspd3GLsqd, SOs2nd /Glsnd, or SPsnd /GLsnd.

On this orbit we may solve Eq.(25b) in the next way

M = − FL,
] L

] x
G + M8, whereM8 P ker adL.

mbiguity connected with the existence of keradL is removed by the requirement that the c
traint (26) is consistent with Eqs.(25a) and (25b). The following proposition is true.

Proposition 7: Let M8=1/2sAL+LAd. Then the constraint (26) is consistent with Eqs. (2
nd (25b), i.e.,s]L2/]xduL2=−s1/4dE=0 and s]L2/]tdL2=−s1/4dE=0.

Proposition is proved by direct verification.
The resulting equation acquires the following form:

] L

] t
= − FL,

]2L

] x2G +
1

2

]

] x
sAL + LAd − FL,FL,

] L

] x
GG

A

+
1

2
fL,AL + LAgA, s27d

hereL2=−1
4E. This equation is an “anisotropic” generalization of the Heisenberg magnet

ion. Let us also show that it coincides with matrix generalization of the Landau–Lifshitz equ
n order to do this we will consider the following example.

Example 2:Let g=sos4d, Tr A=0 and matrixL satisfyG-invariant constraint(26). In this case
t is easy to show that matrixS can be written in the form

L =1
0 − s3 s2 s1

s3 0 − s1 s2

− s2 s1 0 s3

− s1 − s2 − s3 0
2 ,

2
here three-component vectors belongs toS =SOs3d /SOs2d=SOs4d /SOs3d3SOs2d:
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ks,sl = 1/4.

s a result of the special form of matrixL, the second and third items of the right-hand side of
27) conceal and it could be rewritten as equation for the vectors as follows:

] s

] t
= Fs3

]2s

] x2G + fs3 Jssdg,

hereJ=1/4sÂ2−2a4Âd, Â=diagsa1,a2,a3d. This is the famous Landau–Lifshitz equation.
In such a way we have obtained that the caseg=sos4d in Eq. (27) corresponds to the Landa

ifshitz equation. Hence, Eq.(27) could be indeed considered as a direct matrix generalizati
he Landau–Lifshitz equation.

. Other equations from the hierarchy. Anisotropic chiral field equations

In this subsection we will show that the hierarchy of differential equations associated wg̃A
−

nclude[except Eqs.(25a) and(25b)] other interesting equations. In order to obtain such equa
e have to choose other Hamiltonians that generate time flows. For this purpose, we will c
lso HamiltoniansPsL+sldd. We will be interested in the simplest Hamiltonian of this po
eries, namely inP0sL+sldd. Direct calculation gives

P0sL+sldd = PsLs−1dd, s28d

here PsLd;detsLd if g=glsnd or g=spsnd, PsLd;PfsLd if g=sosnd and n is even. Its matri
radient has the following form:

¹P0sL+sldd = o
i,j=1

n
] PsLs−1dd

] l i j
s−1d Xijl

−1. s29d

he corresponding zero-curvature condition yields the followingl-independent equation:

] L

] t
−

] M

] x
= − fL,MgA, s30d

hereL;Ls−1d, M ; ¹P and we have used thatfL ,Mg=0 due to theG-invariance ofP. Equation
30) is, in some sense, the higher rank generalization of the ordinarysos3d-anisotropic chiral fiel
quation. In order to show this we consider the following example.

Example 3:Let g=sos4d. The corresponding Lax operatorLPsos4d has the form

L = o
1øi, jø3

l i jXij + o
1øiø3

l i jXi4 ; o
1økø3

lk
+Xk + o

1økø3
lk
−Yk,

here Xk;ei jkXij , Yk;Xk4, lk
+;ei jkl i j , lk

−; lk4. Introducing the vectorsl+=S1økø3lk
+Xk, l−

S1økø3lk
−Yk, L; l++ l− we obtain for our Hamiltonians the following expressions:

I0
2sLd = 1/2ssl+,l+d + sl−,l−dd, P0

2sLd = sl+,l−d.

he corresponding matrix gradients are easily calculated to be the following:

¹I0
2sLd ; l−1L, ¹ P0

2sLd ; l−1M = l−1S o
1økø3

lk
−Xk + o

1økø3
lk
+YkD . s31d

et us hereafter assume that matrixAPSymms4d is diagonal:A=diagsa1,a2,a3,a4d. By direct
alculation, using commutation relations

fXi,XjgA = ei jkakXk, fXi,YjgA = ei jkajYk, fYi,YjgA = a4ei jkXk, s32d
±
e obtain the following differential equations for components of vectorsl :
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] l i
+

] t
−

] l i
−

] x
= aiei jkl j

+lk
− + a4ei jkl j

+lk
−,

] l i
−

] t
−

] l i
+

] x
= ei jkl j

+aklk
+ − ei jkl j

−aklk
−. s33d

ntroducing vectorsu, v with the componentsui = l i
++ l i

−, vi = l i
+− l i

− and new “light-cone” coord
atesj;t−x, h;t+x we can rewrite Eqs.(33) in the following form:

] ui

] j
= 1/2s− aiei jkujvk − a4ei jkujvk + ei jkujakvk + ei jkv jakukd,

] vi

] h
= 1/2s− aiei jkujvk − a4ei jkujvk − ei jkujakvk − ei jkv jakukd.

aking into account thatei jksai +aj +akd;sa1+a2+a3dei jk and putting for simplicity TrA;a1

a2+a3+a4=0 we obtain that the last equations are written as follows:

] ui

] j
= ei jkujakvk,

] vi

] h
= ei jkajujvk s34d

r, introducing matrixÂ=diagsa1,a2,a3d we can rewrite Eqs.(24) in vector form

] u

] j
= fu 3 Âsvdg,

] v
] h

= fÂsud 3 vg. s35d

quations(35) are the standard anisotropicsos3d-chiral field equations21 (see also Refs. 18 and 2
nd references therein). They satisfy two second order constraints

su,ud = c1, sv,vd = c2. s36d

hat follow from the constancy of the HamiltoniansI0
2sLd andP0

2sLd along all time flows.
Remark 10:Considered earliersos4d-example is very special. Resulting decomposition of

30) in a pair of Eqs.(35) is a consequence of the fact that the algebrasos4d is decomposed in
he direct sum of twosos3d subalgebras. That is why, in the general case, Eq.(30) could not be
ransformed into the simple form of Eqs.(35).

I. INTEGRABLE HIERARCHIES ASSOCIATED WITH ALGEBRAS g̃A
+

In this section we consider integrable hierarchies admitting the deformed zero-curvatu
esentation withU–V pairs taking the value in the algebrag̃A

+. The generic element of the du
pacesg̃A

+d* has the following form:

L−sld = o
kù0

o
i,j=1,n

l ij
skdl−sk+1dXji = l−1Ls0d + l−2Ls1d + l−3Ls2d + ¯ , s37d

hereLskd;Si,j=1,nl ij
skdXji . Contrary to the case of the algebrag̃A

− the structure of the hierarchy w
trongly depend on the form of the matrixA. There will be two essentially different cases: the c
hat corresponds to the nondegenerated matricesA and the case that corresponds to the deg
ted matricesA. We begin with the first case.

. Hierarchies connected with the nondegenerated matrices A

Let us consider HamiltoniansIk
msL−sldd in case detAÞ0. In order for these Hamiltonians

e well-defined we have to expand expressionAsld−1 in the power series in the neighborhood
nfinity: Asld−1=−sA−1l−1+A−2l−2+A−3l−3+¯ d. In this case all functionsIk

msL−sldd are polyno
skd
ials in the dynamical variablesl i j . Hence, as it follows from the results of the previous sections,
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heir matrix gradients satisfy deformed zero-curvature Eq.(20). Let us consider correspondi
amiltonians. For the first two Hamiltonians of the setIk

2sL−sldd we obtain the following expre
ions:

I−4
2 sL−sldd = 1

2 Tr sA−1Ls0dd2, I−5
2 sL+sldd = Tr sA−1sA−1Ls0dd2d + Tr sA−1Ls0dA−1Ls1dd.

heir matrix gradients are

¹I−4
2 sL−sldd = A−1Ls0dA−1, ¹ I−5

2 sL−sldd = A−1sLs0dl + ssA−1Ls0d + Ls0dA−1d + Ls1dddA−1. s38d

y direct calculation it is easy to show that corresponding zero-curvature Eq.(20) after substitu
ion: Ls−1d=A−1/2Ls0dA−1/2, M =A−1/2sLs1d+sA−1Ls0d+Ls0dA−1ddA−1/2 coincide with Eqs.(25) with
atrix A replaced by the matrixA−1. Hence,U–V pair (38) gives differential equations equivale

o Eqs.(25). Corresponding hierarchies will also be equivalent. This equivalence is a conse
f the fact that in the case of the nondegenerated matricesA algebrasg̃A

+ andg̃A−1
− are isomorphic

e will use these Lax pairs and the corresponding Hamiltonians in the next subsecti
articular, considering integrable equations connected with the whole algebrag̃A.

. Hierarchies connected with the degenerated matrices A

In this subsection we will consider integrable hierarchy connected with the algebrasg̃A
+ and

egenerated matricesA. We will restrict ourselves to the consideration of the case of the “m
al” degeneracy ofA, i.e., when rankA=n−1 and the case of the algebrasg=sosnd. We will show

hat simplest of the corresponding hierarchies coincide with the vector generalization
andau–Lifshitz hierarchy.

Let us now consider the corresponding hierachies in details. Without the loss of the gen
e will put A=diagsA8 ,0d, whereA8PSymmsn−1d. Let us consider commuting second or

ntegrals(Hamiltonians), that generate our hierarchies. For this purpose we will consider b
iagonal nondegenerate matricesA of the type:A=A+aI, whereA is the earlier described matr
=diags0,0, . . . ,0 ,1d. By the very definitionA=lima→0A. We will consider commuting integra
f the systems connected withg̃A

+ and obtain the corresponding commuting integrals ong̃A
+ as a

imiting case of the commuting integrals ong̃A
+ . Commuting integrals of the seriesIrsL−sldd

ontain expressionA−1 and in the limita→0 should be regularized in the appropriate way.
xample, in order to regularize the simplest integral of the seriesI2sL−sldd we have to multiply i
y a. Taking into account thatA−1=A−1+a−1I we obtain its explicit form

I−4
28sL−sldd = lim

a→0
aI−4

2 sL−sldd = 1/2 TrsIL s0dA−1Ls0dd.

ere, without abuse of notation we introduce the following:A−1;diagssA8d−1,0d.
Matrix gradient ofI−4

28 has the form¹I−4
28 =−sIL s0dA−1+A−1Ls0dId. As it was explained abov

xation of the integrable hierarchy is equivalent to fixation of theU operator that generate spa

ow. We will take matrix¹I−4
28 for such theU-operator. This is the simplest possible choice

rovides integrable hierarchy with the minimal number of dynamical variables equal tosn−1d. In
he next subsections we will show that this hierarchy coincides with the generalized La
ifshitz hierarchy.

. Simplest equation of the generalized Landau–Lifshitz hierarchy

In order to choose one of the equations from the fixed hierarchy, i.e., whenU operator is fixe
e have to choose second operator inU–V pair that generates time flow. In this subsection

28 28
onsider the case whenV; ¹ I−5, where the “regularized” HamiltonianI−5 is defined as follows:
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I−5
28sL−sldd = lim

a→0
saI−5

2 sL−sldd − 2I−4
2 sL−slddd.

irect calculation gives its following explicit form:

I−5
28sL−sldd = − sTrsIL s1dA−1Ls0dd + TrsIL s0dA−1Ls1ddd + 1/2 TrsA−1Ls0dA−1Ls0dd − TrsA−2Ls0dIL s0dd.

n the case of the diagonal matricesA8=diagsa1,a2, . . . ,an−1d HamiltoniansI−4
28 andI−5

28 acquire the
ollowing coordinate form:

I−4
28sL−sldd = o

i,n

sl in
s0dd2

ai
, I−5

28sL−sldd = o
i,n

S2
l in
s1dl in

s0d

ai
+

sl in
s0dd2

ai
2 D − o

0,i, j,n

sl i j
s0dd2

aiaj
.

orresponding matrix gradients are written as follows:

¹I−4
28 = 2o

i,n

l in
s0d

ai
Xin, ¹ I−5

28 = 2lo
i,n

l in
s0d

ai
Xin − 2 o

i, j,n

l ij
s0d

aiaj
Xij + 2o

i,n
S l in

s1d

ai
+

l in
s0d

ai
2 DXin.

ividing both matrix gradients by two(it is equivalent to the rescaling of the corresponding
ariables) and introducing the following notations:mi

s1d= l in
s1d+fl in

s0d /aig, we obtain that for th
hosenU–V pair deformed zero-curvature equation is equivalent to the following syste
ifferential equations:

] l in
s0d

] t
−

] mi
s1d

] x
= o

k=1

n−1
l ik
s0dlkn

s0d

ak
2 , s39d

] l in
s0d

] x
= o

k=1

n−1
l ik
s0dlkn

s0d

ak
, s40d

] l i j
s0d

] x
= mi

s1dl jn
s0d − mj

s1dl in
s0d. s41d

n order to obtain differential equation in partial derivatives in the dynamical variablesl jn
s0d we have

o expressmi
s1d and l i j

s0d via l jn
s0d and their derivatives. Using this and Eq.(40) it is easy to deduc

hat

l i j
s0d =

] l in
s0d

] x
l jn
s0d −

] l jn
s0d

] x
lin
s0d, s42d

mi
s1d =

]2l in
s0d

] x2 + c2sLs0ddl in
s0d, s43d

herec2sLs0dd is some scalar function of the dynamical variablesl in
s0d. In order to determine i

xplicit form we will use that HamiltoniansI−4
28 and I−5

28 are constant along all the flows. F

onvenience we will hereafter putI−4
28 =const1=1, I−5

28 =const2=0. Introducing the vectorsldi

l in
s0d /ai we obtainc2sld=1/2sl , ld+3/2ss]l /]xd ,A8s]l /]xdd. Using Eq.(42) it is easy to deduc

hat:

o
k=1

n−1

fl ik
s0dlkn

s0d/aiak
2g = − 1/2f] sl,ld/] xgsldi + sl,ldf] sldi/] xg.
n the result we obtain the following differential equation in partial derivatives:
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] l

] t
=

]

] x
S ]2l

] x2 + 3/2S ] l

] x
,A8

] l

] x
DlD + 3/2sl,ld

] l

] x
. s44d

n new notations:s=sA8d1/2l, J;sA8d−1 we obtain that constraintsl ,A8ld=1 passes to the standa
onstraintss,sd=1 and Eq.(44) passes to the higher Landau–Lifshitz equation

] s

] t
=

]

] x
S ]2s

] x2 + 3/2S ] s

] x
,
] s

] x
DsD + 3/2ss,Jsd

] s

] x
. s45d

n the casen=4 this equation is the higher equation of the Landau–Lifshitz hierarchy.18 For n.4
his equation was obtained also in Ref. 23 using the technique of “dressing” and the embe

special realization of the algebrasosndA
+̃ into algebrasosndssldd of formal power series.

. Landau–Lifshitz equation

In this subsection we will consider another equation from the earlier introduced gene
andau–Lifshitz hierarchy. In such a way we will obtain the ordinary Landau–Lifshitz equ
nd show that although there is direct vector generalization of the Landau–Lifshitz hierarc

t does not contain vector generalization of the Landau–Lifshitz(L–L) equation.
In order to obtain a precise analog of L–L equation we have to find out Hamiltonia

enerates a “correct” time flow. This will be the simplest Hamiltonian of the series

PsL−sldd ; Pfsl−1Ls0d + l−2Ls1d + l−3Ls3d + ¯d. s46d

Due to the fact that pfaffian exists only for the orthogonal matrices in the spaces o
imensions there arise the natural conditionn=2N. By direct calculation we obtain:P−NsL−sldd
PfsLs0dd. Its matrix gradient is written as follows:

¹P−NsL−sldd = o
i,n

] PfsLs0dd
] l in

s0d Xin + o
i,j,n

] PfsLs0dd
] l i j

s0d Xij . s47d

et us consider the corresponding zero-curvature equations

] ¹ I−4
28sL−sldd
] t

−
] ¹ P−NsL−sldd

] x
+ f¹I−48

2sL−sldd, ¹ P−NsL−slddgAsld = 0.

aking into account, thatfXin ,XjngA=0, and Si=1
n−1f]P−NsL−sldd /]l i j

s0dgl in
s0d=0, we obtain tha

¹I−4
28sL−sldd , ¹P−NsL−slddgA=0 and the corresponding zero-curvature type equation is redu

he spectral parameter-independent form

] ¹ I−4
28sLs0dd
] t

−
] ¹ P−NsLs0dd

] x
+ f¹I−4

28sLs0dd, ¹ P−NsLs0ddg = 0. s48d

efore making a more detailed analysis of Eq.(48) in the case of generaln, we will considern
4 example in order to obtain the ordinary Landau–Lifshitz equation.

Example 4:Let g=sos4d. Taking into accountZ2 grading of sos4d: sos4d=sos3d+R3 and
enoting projection of¹P−NsL−sldd onto subalgebrasos3d,sos4d by ¹+P−NsL−sldd and projec

ion onto subspaceR3,sos4d by ¹−P−NsL−sldd we obtain that Eq.(48) is rewritten as follows:

] ¹ I−4
28sLs0dd

= − f¹I−4
28sLs0dd, ¹+P−4sLs0ddg +

] ¹−P−4sLs0dd
, s49d
] t ] x
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] ¹+P−4sLs0dd
] x

= f¹I−4
28sLs0dd,¹−P−4sLs0ddg. s50d

ntroducing notations:l i = l i4
s0d, mi =ei jkl jk

s0d, Yi =Xi4, Xk=ei jkXjk si , j ,k,4d we obtain

¹I−4
28sLs0dd = o

i=1

3

ai
−1l iYi, ¹+P−4sLs0dd = o

i=1

3

l iXi, ¹−P−4sLs0dd = o
i=1

3

miYi .

ubstituting this expression into Eqs.(49) and introducing in the evident manner vectorsl, m, and
atrix J;diagsa1

−1,a2
−1,a3

−1d we obtain the following equations:

J
] l

] t
= − fJl 3 lg +

] m

] x
, s51ad

] l

] x
= fJl,mg. s51bd

ue to the fact that all Hamiltonians are constant along all time flows, vectorsm and l are

ubjected to the conditions:I−4
28 =sJl , ld=c2, P−4=sm, ld=c1. For the sake of simplicity we wi

ereafter putc2=1, c1=0. Using these constraints and Eq.(51b) we obtain for the vectorm the
xplicit expression:m=−fl ,s]l /]xdg. Substituting this expression into Eq.(51a) we obtain the
ollowing equation:

J
] l

] t
= − Fl,

]2l

] x2G − fJl 3 lg. s52d

ntroducing variables:s=J1/2l, t=−sdet Jd1/2t we can write Eq.(52) as follows:

] s

] t
= Fs,

]2s

] x2G + fJs3 sg,wheress,sd = 1. s53d

t is easy to see, that Eq.(53) coincides with the standardLandau–Lifshitz equation.
Let us now consider Eq.(48) in the case ofn.4. The next theorem is true.
Theorem 4: In the case n.4 hierarchy of the vector Eq. (45) contains no nontrivial ana

f the Landau–Lifshitz equation.
Proof: Let us show, that the Hamiltonian flows that generate time flow of L–L equation

rivial for the casen.4. In order to do this it is enough to show that theV operator(i.e., matrix
radient of the corresponding Hamiltonian) is trivial. But this follows from the definition of th
faffian: P−NsLs0dd=Si1,i2,. . .,i2Nønei1i2i3¯i2N

l i1i2

s0d l i3i4

s0d
¯ l i2N−1i2N

s0d and Eq.(42). Indeed, substituting e

ressionl i j
s0d=f]l in

s0d /]xgl jn
s0d−f]l jn

s0d /]xgl in
s0d in the explicit expression of¹P−NsLs0dd and taking into

ccount skew symmetry of the tensorei1i2i3¯i2N
, we obtain that for the case when¹P−NsLs0dd is a

olynomial inLs0d of the degree exceeding one, i.e., whenn=2N.4, ¹P−NsLs0dd turns identically
ero.

The theorem is proved.

II. INTEGRABLE HIERARCHIES ASSOCIATED WITH ALGEBRAS g̃A

In this section we will obtain the simplest equations of integrable hierarchies associat
lgebrasg̃A. We will again distinguish two types of hierarchies—those connected with degen
nd those connected with nondegenerated matricesA.

. Hierarchy connected with nondegenerated matrices A

Let us consider the second order HamiltoniansIk
2sL+slddand I l

2sL−sldd. For the first Hamilto

ians of these sets we have(see previous sections) the following expressions:
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I0
2sL+sldd = 1/2 TrsLs−1dd2, I−4

2 sL−sldd = 1/2 TrsA−1Ls0dA−1Ls0dd. s54d

he corresponding matrix gradients are

¹I0
2sL+sldd = Ls−1dl−1, ¹ I−4

2 sL−sldd = A−1Ls0dA−1. s55d

s it follows from the results of Sec. III B HamiltoniansIk
2sL+sldd and I l

2sL−sldd, considered a
unctions ong̃A

* commute with respect to the usual Lie-Poisson bracket ong̃A
* . Hence, their matri

radients satisfy deformed zero-curvature equations

] ¹ I0
2sL+sldd
] x−

−
] ¹ I−4

2 sL−sldd
] x+

+ f¹I0
2sL+sldd, ¹ I−4

2 sL−slddgAsld = 0. s56d

A direct calculation gives usl independent form of Eqs.(56):

] U

] x+
= fU,VgA,

] V

] x−
= fU,Vg, s57d

hereV;Ls−1d, U;A−1Ls0dA−1. We consider Eqs.(57) to be the new examples ofanisotropic
hiral field equations. They go together with natural constraints

TrsUAdr = constr
−, TrsVdr = constr

+,r P 1,n s58d

hat follows from the fact that HamiltoniansI0
r sL+sldd andI−r−2

r sL−sldd are constant along all tim
ows: I0

r sL+sldd=constr
+, I−r−2

r sL−sldd=constr
−.

Remark 11:Note, that in order to obtain usual “isotropic”chiral field equations we have t

i j →adi j not Aij →0. This is explained by the fact that a standard Lax pair generating iso
hiral field equations depends not onl±1 but on sl±ad−1.

Example 5:Let g=sos3d, A=diagsa1,a2,a3d. In this case we can consider elements ofU ,V
g* .sos3d as vectorsu ,vPR3 and rewrite Eqs.(57) in the following form:

] u

] x+
= Asfu 3 vgd,

] v
] x−

= fu 3 vg, s59d

here matrixA acts onu=Si=1,3ukXk as on a vector inR3: Asud=Si=1,3akukXk. Constraints(58)
hat correspond to the two second order HamiltoniansI0

2sL+sldd are written as follows
u ,A−1ud=const−, sv ,vd=const+.

Using Eqs. (59) it is easy to deduce that there exists vector-potentialf such thatu
As]f /]x−d ,v=s]f /]x+d. In the result we obtain that Eqs.(59) are equivalent to the followin
quation:

]2f

] x+ ] x−
= − F ] f

] x+
3 AS ] f

] x−
DG . s60d

. Hierarchies connected with the degenerated matrices A

Let us consider the simplest equation of the hierarchy associated with the degenerate

esA. In this case, like in the case of hierarchies associated with Lie algebrasgÃ
+ degeneration o

will lead to the “reduction” i.e., decreasing the number of independent “fields” in the
ponding system of equations in partial derivatives. We will again restrict ourselves to the s
ase of rankA=n−1.

Let us consider the second order HamiltoniansI0
2sL+sldd and I−4

28sL−sldd. They have(see

revious sections) the following form:
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I0
2sL+sldd = 1/2 TrsLs−1dd2, I−4

28sL−sldd = − Tr sIL s0dA−1Ls0dd. s61d

he corresponding matrix gradients are

¹I0
2sL+sldd = Ls−1dl−1, ¹ I−4

28sL−sldd = − sIL s0dA−1 + A−1Ls0dId. s62d

ere, as in the previous section, without abuse of notation we introduce the followinA−1

diagssA8d−1,0d whereA=diagsA8 ,0d and matrixA8 is nondegenerate.

The HamiltoniansI0
2sL+sldd and I−4

28sL−sldd, considered as functions ong̃A
* commute with

espect to the usual Lie–Poison bracket ong̃A
* . Corresponding zero-curvature condition

] ¹ I0
2sL+sldd
] x−

−
] ¹ I−4

28sL−sldd
] x+

+ f¹I0
2sL+sldd, ¹ I−4

28sL−slddgAsld = 0

ields the followingl-independent equations:

] V

] x−
= fU−,Vg,

] U−

] x+
= fU−,VgA, s63d

hereU−;sIL s0dA−1+A−1Ls0dId, V;Ls−1d. Note, that although Eqs.(63) look very similar to Eqs
57) they do not coincide: matrix-valued functionsU andU− have a different number of indepe
ent components.

Let us now consider the most interesting caseg=sosnd and rewrite Eqs.(63) in a more simpl
ay. Let us take into consideration the followingZ2 grading of sosnd: sosnd=sosnd0+sosnd1

sosn−1d+Rn−1. We will denote the part of the matrix valued functionV, that belongs to th
ubalgebrasosn−1d of the earlier decomposition byV+ and the part that belongs toRn−1 by

− (note that by the definitionU− belong toRn−1). In the result we obtain that Eqs.(63) are
quivalent to the following three equations:

] V+

] x−
= fU−,V−g,

] V−

] x−
= fU−,V+g,

] U−

] x+
= fU−,V+gA. s64d

ntroducing in the evident manner vectorsu− andv− that correspond to the matricesU− andV− we
ay rewrite these equations as follows:

] V+

] x−
= u− ∧ v−,

] v−

] x−
= − V+su−d,

] u

] x+
= − V+A8su−d. s65d

his is a system of differential equations in partial derivatives on thensn−1d /2+sn−1d indepen
ent functions—components of vectorsu− andv− and matrixV+. Comparing with Eqs.(56) we
ee that we have reduced our system onsn−1dsn−2d /2 functional degrees of freedom. In the c
=4 system(64) admit further reduction.

Example 6:Let g=sos4d. In this case, introducing instead ofsos3d-valued matrixV+ vector

+PR3 we may rewrite all Eqs.(64) in the vector form:

] v+

] x−
= fu− 3 v−g,

] v−

] x−
= fu− 3 v+g, s66d

] u−

] x+
= fA8su−d 3 v+g, s67d

hereu3v denote ordinary vector product of two vectorsu, v. These equations satisfy thr

econd order constraints
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su−,A8u−d = const−, sv+,v−d = const1
+, sv+,v+d + sv−,v−d = const2

+, s68d

hat follows from the constancy of functionsI−4
28sL−sldd, P0sL+sldd, I0

2sL+sldd along all flows.
Taking into account definition of the vectorsv+ and explicit form of the isomorphismsos4d

sos3d+sos3d we may putv+= ±v− [evidently such reduction is well agreed with Eqs.(66)]. In
he result we obtain the system of two vector equations that after replacement of variu
A81/2su−d, v;v− pass to the standard anisotropic chiral field Eqs.(35).
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We classify parallelizable noncommutative manifold structures on finite sets of
small size in the general formalism of framed quantum manifolds and vielbeins
introduced previously[S. Majid, Commun. Math. Phys.225, 131(2002)]. The full
moduli space is found forø3 points, and a restricted moduli space for 4 points.
Generalized Levi–Cività connections and their curvatures are found for a variety of
models including models of a discrete torus. The topological part of the moduli
space is found forø9 points based on the known atlas of regular graphs. We also
remark on aspects of quantum gravity in this approach. ©2004 American Institute
of Physics.[DOI: 10.1063/1.1804231]

. INTRODUCTION

There has been a lot of interest over the years1–8 in the specific application of noncommutat
eometry9 to the commutative algebra of functions on a finite setS (usually a finite group) in
hich the differential forms do not commute with functions. This provides a systematic w
andling geometry on finite lattices which, at the level of cohomology, electromagnetism
ang–Mills theory has already proven interesting and computable. Notably, Ref. 8 conta
oduli of Us1d-Yang–Mills on the permutation groupS3 while Ref. 7 quantizesUs1d-Yang–Mills

heory on the finite groupZ23Z2.
In this paper we want systematically to extend this theory to the gravitational case. So

teps are in Ref. 10, to which the present paper is a sequel. It was shown there that finite
ave indeed a natural Riemannian geometry in a vielbein and frame-bundle formalism11 which
as worked out in detail forS3 (it turns out to have Ricci essentially proportional to the me

.e., an “Einstein manifold”). Similarly, the alternating groupA4 was considered in Ref. 12 and h
n essentially unique invariant metric with 4-bein and an associated spin connection with n
urvature but with Ricci=0, i.e., solves the vacuum Einstein equations. Hence the sys
quations for a framed quantum Riemannian manifold is already known to have interestin

rivial solutions. However, for quantum gravity(or classical but finite gravity) we need a bette
nderstanding of the moduli spaces ofall metrics, connections, etc. and this is what we study
n small sets. Once one has this, one can in principle begin to quantize this moduli space

ntegral approach, i.e., quantum gravity.
Section II starts with a brief account of the formalism for algebras which we then ra

pecialize to the caseCsSd, the algebra of functions in a finite set. That the theory is a spe
zation of a functorial construction that is formulated for general algebras ensures that it isad
oc (indeed, this same theory can be specialized to classical geometry and toq-deformed geom
try for other choices of algebra13). Following Ref. 10, we find that for finite setsS the classifi
ation of “differential forms” or exterior algebras of parallelizable type reduces to the clas
ion of finite regular graphs with verticesS and a fixed numbern arrows from every vertex. Ne
esults are Theorem 2.1 showing in detail that the calculus is then inner, and Theorem 2.2
onstruction of two-forms. Both are needed in the paper. Further ingredients in the formal

)
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choice ofn-beins and a frame groupG (in our case a finite group) acting on the vector spa
panned by them. This gives the moduli of “quantum framed manifold” structures onS. After this,
ne may look for a compatible connection¹, find the Riemann curvature and from this the R

ensor and Ricci scalar. In this way we set up the theory that we are going to explore fo
umbers of points.

In Sec. III A we analyze the caseS=hx,yj of two points and frame groupsS2,S3 acting on an
inbeine1 parametrized by a functionQ. We find that for each einbein there is a natural gen

zed Levi–Cività connection

¹sfe1d = df ^ e1 + 2fkQle1 ^ e1

or any functionf, wherek l is the average value over the two points. This has zero Riema
urvature, which emerges as a typical feature on two points. In our spin connection appro
nd also the moduli of spin connections; forS2 framing we have a unique spin connect
nderlying¹. For S3 we find a larger moduli of spin connections, with gauge curvature, und

ng the Riemannian geometry itself(all giving the same¹).
In Sec. III B we similarly cover the caseS=hx,y,zj of three points and frame groupsS2,S3

cting on a zweibein. The zweibein moduli space is itself nontrivial as an algebraic variety
how how to put a generic point into a canonical form, and then study spin connections for
weibein. A general feature for three points emerges, namely that in all our models the Ricc
anishes, but the Riemann and Ricci tensors themselves generically do not. ForS2 we have a

inear constraint on the zweibein to admit a connection, after which there is a one-pa
amily of connections. ForS3 there is no constraint on the zweibein and an eight-dimens
oduli of connections.

The canonical form for the vielbeins obtained in our analysis of 2 and 3 points in Sec
ne where(after linear transformations), one may restrict to vielbeins which have only a scalaQa

ssociated to each edge. In Sec. IV we proceed to restrict attention to this canonical form,
our point sets. Physically, the modulus of the vielbein assigns a “length” to each edge, w
atural connectivity for 4 points is that ofZ23Z2 (interpreted as a discrete model of a tor),
hich we consider in Secs. IV A–IV C; we consider various frame groups, among them an
sting choice(Sec. IV B) is a frame groupZ4 of “quarter rotations” again as a discrete mode
torus; we find the most general connection, its Riemann and Ricci curvatures, etc. This

as the feature(Theorem 4.4) that a fully metric compatible spin connection is determ
niquely by the zweibein, but with the latter further constrained. By contrast, our weaker
etric compatible” or cotorsion free condition admits further parametersa,b with the zweibein

elatively unconstrained. We also see what happens if one takes too big a calculus on th
roup, namely additional unphysical modes emerge which do not, however, enter into th
iant derivative. This seems to us an important lesson for finite manifold-building by these
ds. Section IV D completes the picture by covering the alternative connectivity of 4 points

n a tetrahedron, which is more like a sphere. Here withZ3 frame group of “one-third” rotation
e find an unusual but interesting calculus, moduli, etc., without classical analogue.

Later, in Sec. V we make some first remarks on the quantum theory, including a look
iscrete torus model onZ23Z2. Mainly, we find what we show on this model to be a reason
nitarity or * -structure on the system which is needed to reduce the functional integrals
ariables. We do not try to do the integrals themselves, which would be beyond the scop
urrent analysis.

Finally, Sec. VI return to a more qualitative account of all bidirectional framed geometr
o 9 points, deduced from the known atlas of graphs.14 This covers the connectivity or topologic
spect of the vielbein moduli space. At this level a vielbein amounts to a coloring of the gra
-colors. For each such vielbein, there are further continuous degrees of freedom for maea

abeled according to the coloringa (as seen in detail in Sec. III). If we ignore these then we ha
n principle a “combinatorial quantum gravity” in which one sums over all such colorings.

Let us note that “geometry” on finite sets in some form or other has a long pedigree. Co

o all approaches is the basic data of “differentials” as defined by directed edges between vertices
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a “digraph” or quiver). Such objects are used in representation theory for quivers form
ynkin diagrams. One also considers in that context some kind of “vector bundles” with
paces over each vertex albeit of varying dimension. Similarly in physics as well as in sim
ohomology one may “approximate” a manifold by a finite triangulation and work on that.
he algebraic point of view one does not actually need bidirectional edges, e.g., every pose

connectivity graph and differential calculus withx→y if x,y (albeit not a parallelizable one
t is finite). This would be relevant to modeling Lorentzian manifolds15 with x→y modeling a
ime-like path fromx to y. Hence the deeper notions of vielbeins and Riemannian geomet
e develop on such data potentially have several applications.

I. PRELIMINARIES: FORMALISM OF QUANTUM RIEMANNIAN MANIFOLDS

Here we briefly recall the formalism of Ref. 10. To tie in with the general theory we star
brief recap over general algebras in Sec. II A. Then in Sec. II B we specialize to the fin

ase in more detail than outlined in Ref. 10. We cover here only the parallelizable case wh
rame bundle algebra has a trivial tensor product form. There is a still more general theory
he bundle is nontrivial, see Ref. 10, but this needs much more machinery and we do not
ere. It would be needed for finite posets, for example.

. Over general algebras

Let M be a unital algebra. We equipM with a differential structure in the sensesV1sMd ,dd,
here V1sMd is an M −M bimodule, and d:M→V1sMd. This is a notion common to all a
roaches to noncommutative geometry including Ref. 9. We also needV2sMd or (in principle)
igherVksMd with d2=0, for which we can take the maximal prolongation ofV1sMd or any of its
uotients.

In this context we define a(left) vielbeinor V-bein as a collectionheaj forming anM-basis o
ne-formseaPV1sMd, i.e.,V1sMd>M ^ V whereV=spanheaj. One can also think equivalently
he V-bein as a mape:V→V1sMd as in Ref. 10 if we regardV as a fixed abstract vector spa
iven a vielbein we deduce operatorsra

b,]a:M→M where

eaf = o
b

ra
bsfdeb, df = o

a

s]afdea, ∀ f P M s1d

s an expression of the bimodule and exterior derivative structure.
Next, we assume that we actually have anA-vielbein, i.e., we requireV to be anA-comodule

nder a Hopf algebraA. There is also a more general theory withA merely a coalgebra, i.e., th
s not a critical assumption. We fix a left-covariant differential structureV1sAd on the fiber of th
rame bundle. Like Lie groups, quantum groups are always parallelizable and henceV1sAd=A

^ L1 for some space of invariant one-formsL1. This is a quotient of the augmentation idealA+ of
(classically it means the functions that vanish at the group identity), i.e., L1=A+/QA for some

eft ideal QA#A+. We call L1* ,H+ the associated “quantum tangent space,” where we su
1 is finite dimensional andH a Hopf algebra dually paired withA (it plays the role classically o

he enveloping algebra of the Lie algebra of the frame group). We will be interested only in th
icovariant case as in Ref. 10 where one knows from the Worononwicz theory16 that L1 is
d-stable or thatL1* inherits Ad as a “quantum Lie bracket.” WhenA is coquasitriangular on
nows thatL1* is in fact a braided-Lie algebra.17 However, neither assumption is critical for
eometry.

We let hf ij be a basis ofL1* and we denote byx its left action inherited from the left actio
f H on V corresponding to the coaction ofA. It is only this action which is needed in the formu
elow. In this basis a spin connection means a collection of one-formshAij. Its torsion tenso

orresponds to
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dea + o
i

Ai ∧ f i x ea s2d

nd we are interested in torsion-free connections. We also(optionally) impose a regularity o
differentiability” condition linking V2sMd andV1sAd, namely

o
i j

Ai ∧ Aj kf i f j,ql = 0 ∀ q P QA. s3d

his ensures that the component two-formshFij of the curvature of the spin connection, nam

Fi = dAi + o
jk

ci
jkAj ∧ Ak s4d

ave a proper geometrical interpretation as a curvature two-form with values inL1*. Here ci
jk

kei , f j fkl are structure constants of the product ofH projected toL1* (whereheij is a dual basi
f L1).

For metrics we specialize to the caseg=oa,b habea^M eb wherehPV^ V is a nondegenera
-invariant “local metric.” This is not the most general setup up in Refs. 11 and 10, where o
onsiderg an arbitrary(but nondegenerate) two-form. In our case the cotorsion-free conditi
hich is the natural generalization of Levi–Cività metric compatibility in Refs. 11 and 1
anishing of

dea + o
i

S−1sf id x ea ∧ Ai s5d

hereS denotes the antipode ofH.
Finally, we specialize to the case ofV2sMd constructed from anH-equivariant projectio

:V^ V→V^ V according to the scheme indicated in Ref. 10. From the above, we kno
1sMd^M V1sMd>M ^ V^ V allowing us to define surjections

V1sMd^
M

V1sMd → V2sMd,

here we quotient outM ^ ker p. In fact we defineL as a quadratic algebra onV with relations
er p, and VsMd>M ^ L. Such a scheme imposes constraints onp. In this setting there is
anonical lift

i:V2sMd � V1sMd^
M

V1sMd, isea ∧ ebd = psea ^ ebd. s6d

Finally, we let isFid=oa,b isFidabea^M eb define the components in theV-bein basis of th
ifted Fi. Then

Ricci =o
i,a,b

isFidabeb^
M

f i x ea. s7d

he full Riemann curvature of the connection and the covariant derivative acting on one-fo

Riemannsad = o
i,a

aaFi ^
M

f i x ea, ¹ a = o
a

daa
^
M

ea − o
i,a

aaAi ^
M

f i x ea s8d

herea=oa aaea. The derivation of these local formulas from a more abstract theory is in
0, in an equivalent comodule notation.

. Over finite sets

We now specialize the above to the caseM =CsSd whereS is a finite set andH=CsGd where
1
is a finite group. In this case the possibleV sSd are given by subsets
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E , S 3 S − diagonal

f “allowed directions.” This is already known from Ref. 9 andE is the same as the structure
quiver or digraph with vertex setS and the notationx→y wheneversx,yd PE. In the geometri

al examples we typically expectE symmetric or “bidirectional,” i.e., for every edgex→y there
s an edgex←y, but we do not assume this in general. Explicitly,

V1sSd = spanhudx ^ dyux → yj, df = o
yPFx

sfsyd − fsxdddx ^ dy; Fx = huyux → yj.

ote also that thek-fold product

V1sSd^
M
¯ ^

M
V1sSd = spanhudx ^ dx1

^ ¯ ^ dxk
ux → x1 → x2 → ¯ → xkj,

.e., the linear span of the set ofk-arcs. The bimodule structures are the pointwise one
roducts from the extreme left and right.

As explained in Ref. 10 a vielbein in this setting is possibleiff E fibers overS, i.e., Fx have
ardinality n (say), independent ofx. In this case ann-bein is the specification of invertiblen
n matricese·,x,· for eachxPS. Here eaxy has indicesaP1, . . . ,n and yPFx. We write the

nverses asea
−1xy with

o
yPFx

ea
−1xyebxy= da,b, o

a

ea
−1xyeaxy8 = d y8

y . s9d

n this case the operators(1) are

ra
bsfdsxd = o

yPFx

eb
−1xyfsydeaxy, s]afdsxd = o

yPFx

sfsyd − fsxddea
−1xy. s10d

A calculus on an algebraM is inner if there is a one-formu with df =fu , fg for f PM.
Theorem 2.1:cf. Ref. 10. A finite set calculus equipped with a vielbein is inner,

u = o
a

Qaea, Qasxd = o
yPFx

ea
−1xy.

oreover, the maximal prolongation exterior algebraVsSd has likewised=fu , j (graded anti
ommutator) and is generated byCsSd and the quadratic algebra on theheaj with relations

o
yPFx,z

o
a,b

ea
−1xyeb

−1yzea ∧ eb = 0, ∀ sx,zd ¹ E ø diag; Fx,z = huyux → y → zj.

Proof: We defineu as stated. Then the explicit formulas(10) allow one to verify that df
fu , fg for any functionf, as required. The maximal prolongation of theV1 is defined as the tens
lgebra overM =CsSd modulo the relations in degree 2 imposed by extending d as a sup
ation with d2=0. More precisely, we lift any one-form to the universal differential calculus
sSd, apply the universal exterior derivative there, and then project down toV2. That this shoul
e well-defined defines the minimal relations in degree 2(which are the only ones imposed in
aximal prolongation). In our case a basis of the kernel of the projection toV1 is given by

xddz=0 wheneversx,zd¹Eødiag, so we require for each suchsx,zd the relation

ddx ∧ ddz = 0.
e compute
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ddx = o
a

o
yPF·

sdxsyd − dxdea
−1·yea = o

a

sea
−1·,x − dxQasxddea,

here · denotes a functional dependence on points inS and we adopt the convention thatea
−1wx

0=eawx if x¹Fw. Note also that

o
a

ea
−1·xra

csfd = o
yPF·

o
a

ea
−1·xec

−1·yfsyde·y = fsxdec
−1·x

y (10) and (9). The latter also implies thatoa Qasxdeaxy=1 if yPFx. Hence

ddx ∧ ddz = o
a,b,c

ea
−1·xra

cseb
−1·zdec ∧ eb − o

a,b,c
ea

−1·xQbszdra
csdzdec ∧ eb − o

a,b,c
dxQasxdra

cseb
−1·zdec ∧ eb

+ o
a,b,c

dxQasxdQbszdra
csdzdec ∧ eb

= o
b,c

ec
−1·xeb

−1xzec ∧ eb − o
b,c

dzsxdQbszdec
−1·zec ∧ eb − dxo

b,c
o
yPFx

ec
−1xyeb

−1yzec ∧ eb

+ dxo
a,b,c

QasxdQbszdeaxzec
−1xzec ∧ eb.

he first and last terms vanish forsx,zd¹E and the second term forxÞz. Hence in this case w
btain precisely the relation stated from the remaining third term. This completes the proo
esult mentioned in Ref. 10.

It is then a computation to write

ea = o
sx,ydPE

eaxydxddy = o
yPF·

ea·yddy

nd obtain dea=uea+eau. Note that the compatibility of d with the relations(1) for all f more or
ess requires this relation since applying d to(1) gives sdea−hu ,eajdf =ra

bsfdsdeb−hu ,ebjd after
sing (1) and that the calculus is inner. h

We note in passing that by similar computations the maximal prolongation has

u ∧ u = o
a,b

QaeaQbeb = o
a,b,c

Qao
yPF·

ec
−1·yQbsydea·yec ∧ eb

= o
b,c

o
yPF·

ec
−1·yQbsydec ∧ eb = o

a,b
o

·→y→z

ea
−1·yeb

−1yzea ∧ eb

hich [in view of the relations forV2sSd] has contributions only fromz=· and ·→z. This is no
ecessarily zero, i.e.,u is not necessarily closed[rather, du=2u∧u so thata=−2u is always a zer
urvatureUs1d connection].

We also require for aG-covariant vielbein thatV=spanheaj is a G module. The above co
tructions are allG-covariant under these local transformations ofV. To define more gener
xterior algebrasVsSd we letp :V^ V→V^ V be aG-equivariant projection operator, with co
onents defined bypxsea ^ ebd=oc,d pab

cdec ^ ed. We define operators

px,z:CFx,z → CFx,z, px,z
y
y8

= o
a,b,c,d

pab
cdea

−1xyeb
−1yzecxy8edy8z s11d

n the space spanned by 2-arcs with fixed endpointsx,z.
Theorem 2.2:p defines an exterior algebra withd2=0 as a quotient of the tensor algebra

by the quadratic relations

ker p = 0
ff
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sid oa,b,c,d
pab

cdea
−1xyeb

−1yzecxy8edy8z8 = 0, ∀ zÞ z8; y P Fx,z, y8 P Fx,z8

sii d oyPFx,z
px,z

y
y8

= 0, ∀ sx,zd ¹ E ø diag, y8 P Fx,z.

Proof: We identify V1sSd^M V1sSd with CsSd ^ V^ V via the vielbein so thatp induces
eft-module projection operators on this. These are, therefore, given by projection matricepx on
he space spanned by the 2-arcs fromx, for eachx. Their components are

pxy8z8

yz = o
a,b,c,d

pab
cdea

−1xyeb
−1yzecxy8edy8z8.

e require that these are also right module maps, which is the condition(i) stated. It means th

xy8z8

yz =px,z
y
y8

d z
z8 for a family of projectionspx,z for each fixedx,z. These are the operators(11). As

xplained in Ref. 10 there is then a condition on the family of projectors to ensure that the q
1sSd^M V1sSd→V2sSd factors through the maximal prolongation, namely the condition(ii ).
his is necessary and sufficient for the relations inV2sSd defined by kerp to be compatible wit

he extension of d to two-forms via the graded Leibniz rule. h

The maximal prolongation in Theorem 2.1 can be viewed as given by a generalization
onstruction in which the projectionp is allowed to vary from point to point. The more spec
onstruction in Theorem 2.2 is necessarily a quotient of it by further relations.

Finally, we fix an Ad-stable subsetC,G with e¹C (e here the group identity), e.g., a
ontrivial conjugacy class. These describe the bicovariant calculiV1sGd in the Woronowicz

heory.16 The space of invariant formsL1 in V1sGd has basishei u i PCj. The dual basis ofL1* is
f ij with f i = i −e. The torsion and cotorsion equations then have the same forms(2) and(5), with
i= i−1 the group algebra antipode. The regularity condition now reads

o
i j =q

Ai ∧ Aj = 0, ∀ q ¹ C ø hej. s12d

his is empty if we chose the universal calculus onG (whereC=G−hej), but in general it is
uadratic constraint. The curvature form is then

Fi = dAi + o
jk=i

Aj ∧ Ak − HAi,o
j

AjJ . s13d

he formulas for the Ricci and Riemann tensors and¹ have the same form(8).

II. MODULI OF GEOMETRIES ON TWO OR THREE POINTS

In this section we describe the moduli space of possible vielbeins and metrics on two o
oints, and moduli of spin connections and their curvature for some points in the mo
ielbeins with respect to frame groupS2 or S3.

More precisely, the moduli of possible vielbeins is in the first place labeled by two n
umbersm= uSu andn a fixed number of arcs from each point. For eachm,n, the combinatoria
art of the moduli space consists of determining all possible quiver structures with no se

.e., all E#S3S−diag with Fx of cardinality n at eachxPS. We interpret it as finding a

ossible parallelizableV1sSd with n-dimensional cotangent space. Note thatĒ where we flip the

ntries ofE defines another calculusV̄1sSd and in the asymmetric case one could(although we d
ot do it here) demand this to also be parallelizable, with an associated numbern̄. There is a
orresponding moduli of geometries built on this arrow-reversed calculus.

For m=2 or S=hx,yj there is only one possibility, namelyn=1 and the quiver

x ↔ y
p to relabelings. This is the universal calculus onS whereE is as large as possible.
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For m=3 or S=hx,y,zj there are two cases forn=1, namely

p to relabelings. These are asymmetric. Forn=2 there is only one possibility, the univer
alculus onS again, which is always symmetric. It is given by

Next, for our projection matrixp to defineV2sSd we make the “naïve” choice

p = 1
2sid − td, s14d

heret is the usual “flip” operator on the tensor product, i.e., we assume the basic one
nticommute. This seems to give reasonable results forn=2 and a small number of points(in
eneral it would be too restrictive). For n=1 we choosep=1 (the choicep=0 is also allowed bu
ot very interesting). More generally, we should determine all possible equivariantp :V^ V→V

^ V for choice of frame groupG and a representationV of dimensionn. The representation theo
f G then dictates the possible equivariant projection matricesp :V^ V→V^ V. This is the rep
esentation theoretic part of the moduli space. In our case, we take symmetric groupS2,S3

ppropriate to a our small number of points. Forn=1, V has to be trivial(we denote this byC) or
he sign representation given bys−1dlsgd where l is the length function. Forn=2 we haveV=C

% sign, V=sign% sign or, in the case ofS3 also its two-dimensional representation. In all th
asesV^ V=C % sign% V and the “naïve”p (14) projects out all but the sign representation h
cf. in classical geometry the top form transforms by the determinant under a linear trans
ion). The invariant local metrich up to a normalization is also classified by representation th
nd we take it as the generator of the natural trivial representation in the decompositioV

^ V.
Fixing all the above quasi-combinatorial data, we have a moduli space

Vielbeinsm,n,E,p = hea,x,yj/GLn s15d

onsisting ofm n3n invertible matrices subject to the constraints in Theorem 2.2. We divid
n overallGLn acting on the left and corresponding to a change of basis ofV. We arrive at a
ertain algebraic variety which we shall describe first.

Finally, for a fixed vielbein and the above data, we look at the moduli of spin connectio
. This last part requires us to fix a differential structure onG. For S2 the only choice is th
niversal calculusV1sS2d. For S3 there is the universal calculus and the calculus correspond

he two-cycles conjugacy class. The remaining conjugacy class does not give a reasonab
try of S3 (it is not connected) and does not appear to give interesting results, so we omit it.
ases we assume that the action ofG on V is not trivial when restricted to the braided-Lie alge
eneratorsf i. Otherwise, they would act as zero, the Riemann curvature would be automa
ero and¹ would be just given by d for any spin connection. So we omit this uninteresting
n our analysis.

The casep=0 is trivial and we deal with it here. In this caseV1sSd is the top degree so th
here is no constraint on theheaxyj other than being invertible, i.e.,

Vielbeinsm,n,E,0 = sGLndm−1.

imilarly the torsion, cotorsion and regularity conditions are empty and any collection o

orms hAij are trivially a spin connection, with zero curvature.
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. Two points

For S=hx,yj the only choice is the universal calculus as explained above, which hasn=1, i.e.,
e look for a 1-beine1. We write

e1 = adx ^ dy + bdy ^ dx; e1xy = a, e1yx = b, a,b Þ 0.

he partial derivatives and commutation relations are

e1f = f̄e1, ]1f = s f̄ − fdQ; Qsxd = a−1, Qsyd = b−1;

f̄sxd = fsyd, f̄syd = fsxd.

he generating one-form and exterior derivative are

u = Qe1, df = s f̄ − fdu.

or V2sSd we have only one nontrivial possibility, namelyp=1, which gives the maximal pr
ongation with no relations in the exterior algebra(it is the universal exterior algebra onS). The
onditions in Theorem 2.2 are empty as the assumptions are never satisfied. HereL=Cfe1g and
achVksSd is one-dimensional overCsSd. The exterior derivatives are defined by the grad
eibniz rule and

de1 = sQ + Q̄de1
2.

Proposition 3.1: For anyQ the dimensions pi of Hi are 1:0:0: . . ..Here

H0 = C.1, Hi = h0j; i ù 1.

Proof: First of all we show explicitly that, in accordance with Theorem 2.2, d2=0.

dsdfd = dsQs f̄ − fde1d = sQQ̄sf − f̄d + QQ̄s f̄ − fdde1
2 = 0.

he functionsf such thatdf=0 are the constant ones so the nullspace of d acting onCsSd is
ne-dimensional(and therefore,p0=1). Since the dimension ofV1sSd=2 this means that th

mage of d inV1sSd is one-dimensional. Ifv= fe1 is a one-form, dv=0 if and only if f̄Q+ fQ̄
0, or f =Qsdx−dyd which implies that the nullspace of d contained inV1sSd is one-dimensiona
hen,p1=1−1=0. Inturn, the image of d inV2sSd is one-dimensional, and sop2=1−1=0 and s

orth. h

Since we are working modulo an overall change of basis including normalization, onlya−1b
s significant, so

Vielbeins2,1,univ,1= C* .

Next we look at spin connections. For groupG we assume a symmetric group acting in
nly nontrivial possibility, the sign representation one1. Thus f i xe1=0 if the permutationi is
ven andf i xe1=−2e1 if i is odd. ForS2 we have only the universal calculus, hence only onf i

herei =s12d. We writeA=ae1 for a functiona. Then the torsion-free condition becomes

Q + Q̄ − 2a = 0,

hich is also the cotorsion-free condition, while the regularity condition is empty. Hence fo

ne-bein there is a unique spin connection

                                                                                                            



w

w

t
t

w

T ace of
s

a nd
(

ents
b s
d

f i space
o vel but
a

e spin
c unique
g nn-
i

B

f
fi 2.2
a

b ion
t

I e
p

J. Math. Phys., Vol. 45, No. 12, December 2004 Moduli of quantum Riemannian geometries 4605

                        
a =
a + b

2ab
=

Q + Q̄

2
,

hich is a constant function. Its curvature is

F = dA − 2A2 = 0,

hich means that the Riemann tensor is also zero. The covariant derivative is

¹sfe1d = df ^ e1 + fsQ + Q̄de1 ^ e1. s16d

For S3 with its three-dimensional(two-cycles) calculus we havef i xe1=−2e1 and writing the
hree components functionsa1,a2,a3 of the spin connections in directions(12), (23), and(13), the
orsion and cotorsion conditions for any fixed one-bein become

Q + Q̄ − 2sa1 + a2 + a3d = 0

hile the regularity(which does not depend on the representation) is

a1ā2 + a2ā3 + a3ā1 = 0.

here are different classes of solutions including a two-dimensional part of the moduli sp
pin connections for a generic one-bein. The curvature is

Fi = sai − āidsQ̄ − Qde1 ∧ e1

nd is typically nonzero if the factorsQ̄−Qdsxd=sa−b/dab is nonzero. On the other hand, we fi
16) again, with zero Riemann curvature.

For S3 with its five-dimensional(universal) calculus, a spin connection consists of compon

1,b2 in the three-cycles directions which are unconstrained, anda1,a2,a3 in the two-cycle
irections, with the single linear equation

Q + Q̄ − 2sa1 + a2 + a3d = 0

or vanishing of torsion and cotorsion. The regularity condition is empty. So here the modul
f connections is linear for each vielbein. There is typically curvature at the frame bundle le
gain the Riemann curvature vanishes since¹ is still given by (16).

We conclude for 2 points that increasing the frame braided Lie algebra allows mor
onnections but these do not enter into the Riemannian geometry itself. Instead, we find a
eneralized Levi–Cività type covariant derivative(16) for each einbein, and it has zero Riema

an curvature.

. Three points

For S=hx,y,zj there are two fibrations forn=1 and one forn=2 as explained above.
For n=1 a vielbein means three invertible numbershe·x·j ,he·y·j ,he·z·j. However, both types o

brations forn=1 imply p=0 as the only solution. This is forced by the conditions in Theorem
s follows. For the triangular fibration the 2-arcs are

x → y → z, y → z→ x, z→ x → y

ut then condition(ii ) requirespx,z
y
y8

=0, which impliesp=0. For the case of the other fibrat
he two-arcs are

z→ x → y, x → y → x, y → x → y.

n this case condition(ii ) requirespz,y
x
x8

=0 and hencep=0. Hence forn=1 only the trivial cas

=0 already covered in general above is allowed.
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For n=2 we have only one fibration, which is the universalV1sSd. Then a vielbein means
he first place three invertible matrices

e·x· = X, e·y· = Y, e·z· = Z.

ecause of the cyclic nature of the graph, we label the columns ofX asy,z, of Y asz,x and ofZ
sx,y. There are two types of two-arcs, namely

x → y → z, x → z→ y, y → x → z, y → z→ x, z→ x → y, z→ y → x

r

x → y → x, x → z→ x, y → x → y, y → z→ y, z→ x → y, z→ y → x.

inally, we take the “naive” form(14) for p. The condition(ii ) in Theorem 2.2 is empty becau
1sSd is universal. Condition(i) gives equations of the form

0 = pxy8z8
xyz = 1

2se1
−1xye2

−1yz− e2
−1xye1

−1yzdse1xy8e2y8z8 − e2xy8e1y8z8d

or z8Þz andx→y8→z8. Similarly for other 2-arcs in place ofx→y→z. The allowed cases a
anishing of

pxzy
xyz, pxyx

xyz, pxzy
xyx, pxyz

xzx, pxzy
xzx, pxyz

xzy, pxyz
xyx, pxyx

xzy, pxzx
xyz, pxzx

xzy

nd the cyclic rotations ofsxyzd. Finally, keeping in mind the factorization in the formula forp,
e define

fsx,y,zd = X1yY2z − X2yY1z = X11Y21 − X21Y11,

fsx,y,xd = X1yY2x − X2yY1x = X11Y22 − X21Y12,

tc. Here the first two entries off determine the matrices used, while the second two entrief

abel the indices on the matrices. Similarly, we definef̄sx,y,zd, etc. in the same way but withX−t,
−t, Z−t the inverse-transposed matrices. With these notations we see that

Vielbeins3,2,univ,flip

s the variety consisting of three invertible matricesX,Y,Z subject to the relations

0 = f̄sx,y,zdfsx,z,yd, 0 = f̄sx,y,zdfsx,y,xd, 0 = f̄sx,y,xdfsx,z,yd,

0 = f̄sx,z,xdfsx,y,zd, 0 = f̄sx,z,xdfsx,z,yd, 0 = fsx,y,zd f̄sx,z,yd,

0 = fsx,y,zd f̄sx,y,xd, 0 = fsx,y,xd f̄sx,z,yd,

0 = fsx,z,xd f̄sx,y,zd, 0 = fsx,z,xdsx,z,yd,

nd their cyclic rotations ofsxyzd, and modulo an overallGL2.
In principle this could have several cases depending on which factor vanishes in eac

ne special case is

fsx,y,zd = 0, fsx,z,yd = 0, f̄sx,y,zd = 0, f̄sx,z,yd = 0,
nd its cyclic rotations. These equations reduce to
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X21Y11 = X11Y21, Y12X22 = X12Y22, X11Z21 = Z11X21, X22Z12 = X12Z22.

p to an overallGL2, this component of the moduli space of vielbeins has the general sol

X = Sa1 0

0 a2
D, Y = Sb1 0

0 b2
D, Z = Sg1 0

0 g2
D

odulo a remainingC* 3C* (e.g., up toGLn one can assumea1=a2=1). We have

Qasxd = aa
−1, Qasyd = ba

−1, Qaszd = ga
−1

nd

eaf = Rasfdea, ]af = sRasfd − fdQa,

here we identifyS with Z3 and use its addition law according to the conventions above to d

asfd= fss d+ad. For the exterior algebra, by our choice ofp, the exterior algebra relations a

1∧e2=−e2∧e1 ande1
2=e2

2=0. We are finally ready to look at compatible spin connections, w
e do for groupsS2 and thenS3, with their natural nontrivial representations and calculi. Note
ince we have already chosen a diagonal form of the vielbein moduli space, different act
ot all equivalent.

Proposition 3.2: For any values ofQ1,Q2 the dimensions pi of Hi are 1:2:1.Here

H0 = C.1, H1 = C . k− Q1dye1 + Q2dze2,− Q1dxe1 + Q2dye2l, H2 = C . e1 ∧ e2.

Proof: Since in this caseR2=R1
−1 we have

dsdfd = sQ1R1Q2 − Q2R2Q1dsR1R2f − fd = 0, ∀ f P CfSg

nd d is cohomological. By observing that df =0 if and only if f is constant, we havep0=1 and the
imension of the image of d inV1sSd (which is itself of dimension 6) is 2. If v= fe1+ge2 is a one

orm, then dv=0 if and only if s−Q2]̄
2f + f ]̄1Q2+Q1]̄

1g−g]̄ 2Q1d=0. This equation admits
our-dimensional space of solutions, thereforep1=4−2=2.Moreover the image of d in the tw
orms is of dimension 2, and given that d sends every two-form to zero, one obtainsp2=3−2
1. H1 is spanned byk−Q1dye1+Q2dze2,−Q1dxe1+Q2dye2l, andH2=C .e1∧e2. h

For S2 with its universal calculus, we choose the natural action ofi =s12d of V=spanhe1,e2j
hat flips the basis vectors(hence by orientation reversal of the frame). The invariant metric her
s

h = e1 ^ e1 + e2 ^ e2

nd the action of the braided-Lie algebra generator ofS2 is f i xe1=e2−e1 and f i xe2=e1−e2. Let
s denote by]̄ i ;Ri −id the usual finite difference on the groupZ3, and k l denotes the avera
alue over the three points.

Proposition 3.3: For 3 points, two-dimensional cotangent space and S2 frame group, existenc
f a torsion free cotorsion free connection requires the zweibein to obey

Q1 + R1Q2 = kQ1 + Q2l.

n this case there is a one-parameter family of connections of the form

A = sQ1 − lde1 + s− R2Q1 + lde2

or an arbitrary constantl. The covariant derivative is

¹e1 = − ¹ e2 = ssQ1 − lde1 + s− R2Q1 + lde2d ^ se1 − e2d.
ts Riemannian and Ricci curvatures are
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Riemannse1d = − Riemannse2d = re1 ∧ e2 ^ se2 − e1d, Ricci =
r

2
se1 + e2d ^ se1 − e2d,

here

r = s2l − kQ1 + Q2ld]̄ 2Q1.

he Ricci scalar vanishes identically.
Proof: Writing a spin connectionA=ae1+be2, the torsion and cotorsion equations reduce

]̄ 1Q2 = ]̄ 2Q1 = − sa + bd = R2sad + R1sbd

nd there is no regularity condition since the calculus onS2 is universal. The third of thes
quations has solutionb=−R2sad sincesid+R1d is invertible onZ3. The full system for a vielbei
nd spin connection then reduces to invertibility of theQi values, the stated constraint on
weibein, and

a = Q1 − l, b = − R2Q1 + l

or an arbitrary constantl. A straightforward computation then gives the curvature as

F = dA − A2 = re1 ∧ e2

or r as stated, which Riemann curvature as the action ofF. One may also compute this direc
rom the covariant derivative stated. Finally, for the antisymmetrization projector that we u
ifting map i is

ise1 ∧ e2d = 1
2se1 ^ e2 − e2 ^ e1d. s17d

sing this to lift the two-form values of the Riemann tensor and contracting as in(7) we obtain the
icci tensor as stated. Its further contraction by the inverse metric is then zero. h

We see among other things thatQ2 is determined up to a constant fromQ1, i.e., not ever
weibein is allowed. On the other hand, for a generic allowed zweibein we have zero full
ure for a unique spin connection in the family, given byl= 1

2kQ1+Q2l. Otherwise the curvatur
re nonzero.

For S3 with its standard two-dimensional irreducible representation and 2-cycles calcul
ave nowi =s12d ,s23d ,s13d (as i ranges 1,2,3) with the above flip action ofs12d extended to
ermutation ofe1,e2,e3;−e1−e2. The invariant metric is

h = e1 ^ e1 + e2 ^ e2 + 1
2se1 ^ e2 + e2 ^ e1d

nd the action ofS3 on the vielbein is

f1 x e1 = e2 − e1, f2 x e1 = 0, f3 x e1 = − 2e1 − e2,

f1 x e2 = e1 − e2, f2 x e2 = − e1 − 2e2, f3 x e2 = 0.

Proposition 3.4: For 3 points, two-dimensional cotangent space and S3 frame group, th
weibein is unconstrained and the torsion free cotorsion free connections are of the form

Ai = aie1 + bie2; a1 = a, b1 = b,

a2 = 1
2sQ̄1 − ad, b2 = R2Q̄1 + b, a3 = R1Q̄2 + a, b3 = 1

2sQ̄2 − bd

or arbitrary functions a,b and constantsl ,m. Here Q̄1;Q1−l and Q̄2;Q2−m are notations

or a regular connection we would need in addition:
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aR1b2 − bR2a2 + a3R1b − b3R2a + a2R1b3 − b2R2a3 = 0,

a2R1b − b2R2a + aR1b3 − bR2a3 + a3R1b2 − b3R2a = 0.

he covariant derivative for the connection is

¹e1 = s3a + 2R1Q̄2de1 ^ e1 + R1Q̄2e1 ^ e2 + Q̄2e2 ^ e1 + 1
2sQ̄2 − 3bde2 ^ e2,

¹e2 = 1
2sQ̄1 − 3ade1 ^ e1 + Q̄2e1 ^ e2 + R2Q̄1e2 ^ e1 + s3b + 2R2Q̄1de2 ^ e2.

Proof: The torsion equations for a spin connection with componentsai ,bi are

]̄ 1Q2 + a1 + b1 + 2b3 − a3 = 0, − ]̄ 2Q1 − a1 − b1 + b2 − 2a2 = 0

nd the cotorsion equations

]̄ 1Q2 − sR2a1 + R1b1 − R2a3 + 2R1b3d = 0,

− ]̄ 2Q1 + R1b1 + R2a1 − R1b2 + 2R2a2 = 0.

y combining these equations and using similar methods as in the previousS2 examples, one find
hat their general solution is of the form:

Q1 = 2a2 + a1 + l, R1sQ2d = a3 − a1 + m,

b1 + 2b3 = R2sa3 − a1d, 2b3 + b2 = R2s2a2 + a3d

or some constantsl ,m. This means that for a fixed vielbein and constantsm ,l the equations fo
connection are solved as stated. One then writes out the covariant derivative and the

egularity condition. h

We can see here(and also in our previous examples) why full metric compatibility¹h=0 is
oo strong in finite noncommutative geometry(which is why we need our weaker cotorsion-f
ondition):

Proposition 3.5: The covariant derivatives above do not fully preserve the metric un
b=0 and Q1=l ,Q2=m are constant.

Proof: We compute

¹h = S9

2
a + 4R1Q̄2 +

Q̄1

2
De1 ^ e1 ^ e1 + s2R1Q̄2 + Q̄1de1 ^ e1 ^ e2 + s2R1Q̄2 + Q̄1de1 ^ e2 ^ e1

+ s2Q̄2 + R2Q̄1de2 ^ e1 ^ e1 + s2Q̄1 + R1Q̄2de1 ^ e2 ^ e2 + sQ̄2 + 2R2Q̄1de2 ^ e1 ^ e2 + sQ̄2

+ 2R2Q̄1de2 ^ e2 ^ e1 + S9

2
b + 4R2Q̄1 +

Q̄2

2
De2 ^ e2 ^ e2.

or this to be zero forcesa=b=Q̄1=Q̄2=0 which translates as stated sincel ,m are arbitrary.h
One may proceed to compute the curvatures, etc., for a general solution. Here we pre

esults for the special case where the zweibein is constant withQ1=l, Q2=m say, but thea,b are
rtibrary, i.e., the flat background but not flat spin connection case.

Proposition 3.6: For constant zweibein but a,b arbitrary, the Riemann and Ricci curvatu
ake the form

2 1 1
Riemannse1d = s3] a − ] bde1 ∧ e2 ^ e1 − 2] be1 ∧ e2 ^ e2,
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Riemannse2d = − ]2ae1 ∧ e2 ^ e1 + 3]1be1 ∧ e2 ^ e2,

Ricci = − 3
4]2ae1 ^ e1 + 3

2]1be1 ^ e2 − 1
2s3]2a − ]1bde2 ^ e1 + ]1be2 ^ e2.

he Ricci scalar vanishes identically. The regularity condition is

aR1sbd = 0.

Proof: We compute the gauge curvature of the spin connection as

F1 = sm]̄ 2a + l]̄ 1bde1 ∧ e2,

F2 = − S1

2
m]̄ 2a − l]̄ 1bDe1 ∧ e2,

F3 = − s− m]̄ 2a + l]̄ 1bde1 ∧ e2.

ts action on the zweibein then determines the Riemann curvature as stated, using(8). We recal
hat ]i =Qi]̄

i is the geometrical partial derivative defined by d and we revert to this. We u
ame lifting map as in Proposition 3.1 and(7) to find

Ricci =
1

2
S F2 − F1 F1 + 2F2

− F1 − 2F3 F1 − F3
D

n the ei basis. This gives the result stated. Finally, note that the inverse of the matrix inh is

h−1 =
4

31 1 −
1

2

−
1

2
1 2

n the dual basis and it is this which we use to contract against the Ricci tensor to obtain th
calar. Independently of the details ofFi, we have this as2

3
sF2−F1+F1−F3− 1

2sF1+2F2−F1

2F3dd=0, i.e., vanishes identically. h

The general case may be worked out in the same way: The formulas for theFi are rather mor
omplicated functions of thea,b,l ,m ,Qi, but the other steps follow the same pattern. In par

ar, the Ricci tensor has the same asymmetric form and the Ricci scalar vanishes in genera
hat with 3 points, the conditions with frame groupS2 are a little strong and constrain t
weibein, while withS3 there are an abundance of spin connections compatible with any zw
amelya,b arbitrary (and two further parameters which one might fix, for example, byl=kQ1l
ndm=kQ2l) and that in all cases with three points, the Ricci scalar vanishes. Note that w
ot covered it here, but one has a similar picture forS3 with its universal calculus; then there
ve one-formsAi for the spin connection with linear equations for the torsion and cotorsio
rescribe the derivatives ofQ1,Q2 in terms of the fields, and an empty equation for regular

V. GEOMETRIES ON FOUR POINTS

For four points we will not be fully general as above but restrict to the more interesting
f models featuring already in our analysis for 2,3 points. First of all, we shall focus on th
f all arrows bidirectional, i.e., a symmetric subsetE to define the calculus. This means for f
oints that we have(a) the square connectivity which is a two-dimensional calculus or(b) the
niversal or three-dimensional calculus. We look mainly at the former since it has a cle

etrical interpretation as the connectivity of a torus, namely in Secs. IV A–IV C. Indeed, this is

                                                                                                            



t V D
c ty of a
t

ven by
s ve. These
s lse” by
s atorics.
O giving
s

A

=

o form

f s
n

F to the
v o
m

a

a
b

f ng
s

ok
i ed in
T t
s orms:

J. Math. Phys., Vol. 45, No. 12, December 2004 Moduli of quantum Riemannian geometries 4611

                        
he natural calculus for the groupZ23Z2 viewed as a discrete model of a torus. Section I
overs the alternative of the universal calculus on the basis which has the connectivi
etrahedron or discrete model of a sphere.

Next, rather than the full analysis, we shall restrict attention to the diagonal vielbeins gi
calars attached to the edges as we deduced up to equivalence for the 3 points case abo
calars are our remaining continuous degrees of freedom and allow our square to “pu
tretching or contracting edges. Such a restricted class is interesting for any fixed combin
n the other hand, we will have more choices for the frame group and its calculus, still

everal models.

. Discrete torus as base space

Thus, in this section, and the next two, we write the vertices asS
hs0,0d ,s1,0d ,s0,1d ,s1,1dj, using an additive group notation.

Over each point we have a fiber

Fs0,0d = hs1,0d,s0,1dj, Fs1,0d = hs0,0d,s1,1dj, Fs0,1d = hs0,0d,s1,1dj, Fs1,1d = hs1,0d,s0,1dj

f order 2. We fix the connectivity by identifying these fibers by vielbeins of the diagonal

e1,x,y = Q1
−1sxddy−x,s1,0d, e2,x,y = Q2

−1sxddy−x,s0,1d

or any two pointsx,yPS. This is the natural vielbeinonZ23Z2 with additional continuou
owhere-zero functional parametersQi. We have the picture

rom each point in the lattice it is possible to move in two directions, which correspond
ectorse1 ande2. Heree1 translates adding the elements1,0d of Z23Z2, ande2 corresponds t
oving by addings0,1d. We define the translation operators acting on the functionsf as

sR1fdsxd = fsx + s1,0dd, sR2fdsxd = fsx + s0,1dd

nd obtain the partial derivatives

]1fsxd = sfsx + s1,0dd − fsxddQ1, ]2fsxd = sfsx + s0,1dd − fsxddQ2

nd commutation relations[which define the right multiplication onV1sSd, left multiplication
eing the obvious one] as:

e1f = R1sfde1, e2f = R2sfde2

or all functionsf. This has the same form as we found up toGL2 for three points in the precedi
ection and completes our description ofV1 and itsCsZ23Z2d-basishe1,e2j.

Next we fix the projectorp as the naive antisymmetrizer(14) on theea basis, again as we to
n Sec. III B for three points. We check that for four points it obeys the condition need
heorem 2.2 to define the two-formsV2. Thus, labeling the points asx,y,z,t where we start a
0,0d and go around the square clockwise, we have the possible 2 arcs of two different f

x → y → z, y → z→ t,
x → t → z, y → x → t,
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z→ t → x, t → x → y,

z→ y → x, t → z→ y,

r

x → y → x, y → z→ y,

z→ y → z, x → t → x,

y → x → y, z→ t → z,

t → x → t, t → z→ t.

o check out condition(i) in Theorem 2.2 we will consider the two-arcs leaving fromx, the
tarting point being irrelevant in the reasoning which follows. This implies that we have to
he vanishing ofpxyz

yx ,pxyz
tx ,pxyx

yz ,pxtx
yz . Now, in general

pxy8z8

yz = se1
−1xye2

−1yz− e2
−1xye1

−1yzdse1xy8e2y8z − e2xy8e1y8z8d

nd replacing in this expression the actual form of the arc, we establish that

pxyz
yx , pxyz

tx , pxyx
yz , pxtx

yz

re zero.(We obtain a similar result swapping upper and lower indices.) The second constraint
heorem 2.2 is not trivially satisfied in this case. The conditionspx,z

y
t+px,z

t
t=0 and px,z

y
y

px,z
t
y=0 both give

Q1R1Q2 = Q2R2Q1, i.e., ]1Q2 − ]2Q1 = 0. s18d

inally, we will take as a metric the elementh=e1 ^ e1+e2 ^ e2 and we will take the lifting(17)
hich is the natural choice for the antisymmetrizer projector. The exterior differentials of th
lements are

de1 = ]̄ 1Q2e1 ∧ e2, de2 = − ]̄ 2Q1e1 ∧ e2,

here we recall that]̄a=Qa
−1]a=Ra−id are the usual group finite differences.

Proposition 4.1: For generic values ofQ1,Q2 the dimensions pi of Hi are 1:2:1. Here

H0 = C.1,H1 = ksQ2syddt + Q2szddzde1,sQ2szddx + Q2syddtde2l, H2 = C . e1 ∧ e2.

Proof:

dsdfd = sQ1R1Q2 − Q2R2Q1dsR1R2f − fde1 ∧ e2 = 0, ∀ f P CfSg

hich is zero due to the constraint we imposed on theQs. In the usual way,p0=1, and the
imension of the image of d inV1sSd (itself of dimension 8) is 3. A one formfe1+ge2 is in the
ullspace of d if and only if it satisfiess−Q2]̄

2f + f ]̄1Q2+Q1]̄
1g−g]̄2Q1d=0; it is easy to find tha

he solution space of this equation has, for generic values ofQi satisfying(18), dimension 5(and
herefore,p1=5−3=2). This, in turn, implies the image of d insideV2sSd is three-dimensiona
hen,p2=4−3=1. Forgeneric values ofQ, e1∧e2 is not in the image of d, and gives a repres

ative for H2. h

For the remaining aspects of the geometry we fix the frame group and its calculus. T
an solve for the connections, curvature, etc. Even with all of the above choices, we have

odels.
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. Torus model with Z4£SO„2… frame group

Here we think of the additive groupZ4=h0̄, 1̄, 2̄, 3̄j as a discrete model of SOs2d, i.e., 90-
egree notations. This is in keeping with our discrete model of a torus. We have onZ4 either the

hree-dimensional universal calculus or the natural two-dimensional calculus given by a s

. 3D calculus on Z4

We choose the three-dimensional(universal) calculus defined onZ4 by h1̄, 2̄, 3̄j. This corre

ponds tof 1̄, f 2̄, f 3̄ acting as the corresponding rotation of the vielbein vectorse1 ande2, minus the
dentity, that is

f 1̄ x e1 = e2 − e1, f 1̄ x e2 = − e1 − e2,

f 2̄ x e1 = − 2e1, f 2̄ x e2 = − 2e2,

f 3̄ x e1 = − e1 − e2, f 3̄ x e2 = e1 − e2.

Proposition 4.2: The moduli space of torsion free cotorsion free connections on the qu
iemannian manifold above is given by

A1 = ae1 + be2,

A2 =
1

2
s− a + b − g − d − ]̄ 2Q1de1 +

1

2
s− a − b + g − d − ]̄ 1Q2de2,

A3 = ge1 + de2

or four functionsa ,b ,g ,d subject to the linear constraint

sR1 + R2da = 0, sR1 + R2db = 0,

here a=g−a and b=b−d. The corresponding covariant derivative is

¹e1 = sb − ]̄ 2Q1de1 ^ e1 + ae1 ^ e2 + sa − ]̄ 1Q2de2 ^ e1 − be2 ^ e2,

¹e2 = − ae1 ^ e1 + sb − ]̄ 2Q1de1 ^ e2 + be2 ^ e1 + sa − ]̄ 1Q2de2 ^ e2.

Proof: We want the connection to be torsion free, i.e., it has to satisfy the following two
quations:

A1
1 + A1

2 + 2A2
2 − A3

1 + A3
2 = − ]̄ 1Q2,

− A1
1 + A1

2 − 2A2
1 − A3

1 − A3
2 = ]̄ 2Q1,

rom which we obtain the general solution above, without constraints ona ,b ,g ,d. In conformity
o what we have done so far, we also demand that the cotorsion of the connection be zero
hat, differently from the previous cases investigated in this paper, the elements of the fibe

4 are not of order 2, which implies that the action ofS on the f is is not trivial; we have in fac
−1sf1d= f3,S−1sf2d= f2,S−1sf3d= f1, and the zero-cotorsion condition can be put down as

− R1A
2 + R2A

1 − 2R1A
2 − R2A

1 − R1A
2 = − ]̄ 1Q2,
1 1 2 3 3
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R1A1
2 + R2A1

1 + 2R2A2
1 − R1A3

2 + R2A3
1 = ]̄ 2Q1.

he requirement on the cotorsion translates into the constraintsR1+R2da=sR1+R2db=0, where
,b are defined in the statement of the proposition. The regularity condition is empty, beca
alculus onZ4 is the universal one. We then compute the covariant derivative using(8). h

Note that the covariant derivative depends only ona,b so these parametrize the “physical”
ffective moduli space, which is, therefore, four-dimensional: Two functions onZ23Z2 modulo

he linear constraint. One may check that the torsion is indeed zero, which is to say¹∧e1=de1 and
∧e2=de2. The cotorsion condition means that¹ respectsh in a skew sense, as one may a
irectly verify evaluating the cotorsion of the metric(when the torsion is null)

Gh = s¹ ∧ id − id ∧ ¹ dse1 ^ e1 + e2 ^ e2d = 0,

here

s¹ ∧ iddh = ]̄ 1Q2e1 ∧ e2 ^ e1 − ]̄ 2Q1e1 ∧ e2 ^ e2

nd

sid ∧ ¹ dh = s− sR1 + R2da + ]̄ 1Q2de1 ∧ e2 ^ e1 − ssR1 + R2db + ]̄ 2Q1de1 ∧ e2 ^ e2

later on we will consider¹h=0 in the usual full sense).
Proposition 4.3: The Ricci scalar for the covariant derivative above is

R= ]2a + ]̄ 1Q2R2a − 2aR2a + ]1b + ]̄ 2Q1R1b − 2bR1b

Proof: From the action of thef i we can then compute the Riemann curvature using the ge
heory in Sec. II, finding now

Riemannse1d = s− F1 − 2F2 − F3d ^ e1 + sF1 − F3d ^ e2,

Riemannse2d = s− F1 + F3d ^ e1 + s− F1 − 2F2 − F3d ^ e2.

n the same way the Ricci tensor is

Ricci = 1
2ssF1 − F3de1 ^ e1 + sF1 + 2F2 + F3de1 ^ e2 − sF1 + 2F2 + F3de2 ^ e1 + sF1 − F3de2 ^ e2d,

here we identify the two-formsFi with their scalar coefficients as multiples of the top fo

1∧e2. Taking the trace in a standard way, the Ricci scalar isR=F1−F3 (this and the othe
omponentF1+2F2+F3 occur also in the Riemann tensor so we see that the Ricci tensor va

f and only if the entire Riemann tensor does). We can computeF1,F2,F3 by means of

F1 = dA1 + A2 ∧ A3 + A3 ∧ A2 − 2A1 ∧ A1 − A2 ∧ A1 − A1 ∧ A2 − A3 ∧ A1 − A1 ∧ A3,

F2 = dA2 + A1 ∧ A1 + A3 ∧ A3 − A1 ∧ A2 − A2 ∧ A1 − 2A2 ∧ A2 − A3 ∧ A2 − A2 ∧ A3,

F3 = dA3 + A2 ∧ A1 + A1 ∧ A2 − A3 ∧ A1 − A1 ∧ A3 − A3 ∧ A2 − A2 ∧ A3 − 2A3 ∧ A3,

s inferred from(13) where

dA1 = s− Q2]̄
2a + a]̄ 1Q2 + Q1]̄

1b − b]̄ 2Q1de1 ∧ e2,

dA2 =
1

2
sQ1]̄

1s− a − b + g − dd + Q2]̄
2sa − b + g + dd + ]̄ 1Q2s− a + b − g − d + 2Q1d + ]̄ 2Q1sa
+ b − g + d − 2Q2dde1 ∧ e2,
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dA3 = s− Q2]̄
2g + g]̄ 1Q2 + Q1]̄

1d − d]̄ 2Q1de1 ∧ e2,

nd

A1 ∧ A1 = aR1b − bR2a,

A1 ∧ A2 =
a

2
s− R1a − R1b + R1g − R1d + ]̄ 1Q2d +

b

2
sR2a − R2b + R2g + R2d − ]̄ 2Q1d,

tc. The detailed form of the curvature two-form is

F1 = − ]2a + ]1b + aS− R1b − R1d − R2a + R2g +
]̄ 1Q2

2
D + bSR2a + R2g + R2b − R2d −

]̄ 2Q1

2
D

+ gS− R1d − R1b − R1a + R1g +
]̄ 1Q2

2
D + dSR1b − R1d + R2g + R2a −

]̄ 2Q1

2
D +

]̄ 2Q1

2
R1sb

− dd −
]̄ 1Q2

2
R2sa − gd,

F2 =
1

2
]1s− a − b + g − dd +

1

2
]2sa − b + g + dd +

]̄ 1Q2

2
s− R2sb − dd − a + b − g − dd

+
]̄ 2Q1

2
s− R1sa − gd + a + b − g + dd +

a

2
s3R1b − R2sb − dd − ]̄ 2Q1 + R1dd +

b

2
s− 3R2a

+ R1sa − gd − ]̄ 1Q2 − R2gd +
g

2
s3R1d + R2sb − dd + ]̄ 2Q1 + R1bd +

d

2
s− 3R2g − R1a

+ ]̄ 1Q2 − R2ad,

F3 = − ]2g + ]1d +
]̄ 1Q2

2
R2sa − gd −

]̄ 2Q1

2
R1sb − dd + aS− R1d − R1a + R1g − R1b +

]̄ 1Q2

2
D

+ bSR2a + R2g + R1b − R1d −
]̄ 2Q1

2
D + gS− R1d + R1a − R1g +

]̄ 1Q2

2
− R1bD

+ dSR2g + R2a + R2b − R2d −
]̄ 2Q1

2
D ,

rom which we compute the Ricci curvature, etc. as above, and write in terms ofa,b. h

It is useful to observe that it is not mandatory to compute the curvature two-form in or
et hold of the Riemann tensor. One could also10 use the formula Riemannse1d=ssid∧ ¹ d−sd

^ iddd + ¹ se1d and similarly fore2, which provides a useful check. Either way, the Riemann te
urns out to have the form

Riemannse1d = re1 ∧ e2 ^ e1 + Re1 ∧ e2 ^ e2, Riemannse2d = − Re1 ∧ e2 ^ e1 + re1 ∧ e2 ^ e2

ith

r = ]2b − ]1a + 2bR1a − 2aR2b − ]̄ 2Q1R1a + ]̄ 1Q2R2b

ndR the Ricci scalar computed above. We see in particular thata=b=0 is a natural point in th
ffective moduli space where the Ricci tensor(and the entire curvature) is zero.
Next we consider full metric compatibility as opposed to the weaker cotorsion condition.
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Theorem 4.4:The metrich satisfies the equation¹h=0, if and only if

a = ]̄ 1Q2, b = ]̄ 2Q1, ]̄ 2s]̄ 1Q2d = 0, ]̄ 1s]̄ 2Q1d = 0.

he Ricci scalar is given by

R= − s]̄ 1Q2d2 − s]̄ 2Q1d2.

Proof: We only need to state explicitly the equality¹h=0, as in

¹se1 ^ e1 + e2 ^ e2d = 2ssb − ]̄ 2Q1de1 ^ e1 ^ e1 + sa − ]̄ 1Q2de2 ^ e1 ^ e1 + sb − ]̄ 2Q1de1 ^ e2

^ e2 + sa − ]̄ 1Q2de2 ^ e2 ^ e2d = 0

he solution to the above equation isa= ]̄1Q2, b= ]̄2Q1. The kernel constraint ona,b then require
he constraint on the vielbein. h

We see that not every vielbein admits a strictly metric compatible condition—in gene
eed our weaker cotorsion-free condition. However, when it does so, the covariant deriv
niquely determined as in classical Riemannian geometry.

. 2D calculus on Z4

We also consider the two-dimensional(2D) calculus onZ4, defined byh1̄, 3̄j with f 1̄ and f 3̄,
cting as before. Our interesting result is that the geometric content is the same as the u
alculus above except that some redundant modes in the universal case are not pre
eplaced by a quadratic regularity condition.

Proposition 4.5: With the above specification for the action, the moduli space of torsio
otorsion free connections is given by

A1 = S− a −
]̄ 2Q1

2
De1 + Sb −

]̄ 1Q2

2
De2,

A3 = Sb −
]̄ 2Q1

2
De1 + Sa −

]̄ 1Q2

2
De2,

ith the conditions

sR1 + R2da = 0, sR1 + R2db = 0,

here a=a+b and b=b−a. In terms of a,b the covariant derivative¹ is as before, in Propos
ion 4.1, and the regularity condition reads

]̄ 2Q1]̄
2a − ]̄ 1Q2]̄

1b = 0.

Proof: Here the parametersa ,b are not the same as in the previous section(but related to
hem). We solve the zero torsion condition

A1
1 + A1

2 − A3
1 + A3

2 = − ]̄ 1Q2,

− A1
1 + A1

2 − A3
1 − A3

2 = ]̄ 2Q1,

hich gives the solution above in terms ofa ,b or the combinationsa,b, but free of any constrai
n thea,b. Next we require the connection to have zero cotorsion:

− R1A
2 − R1A

2 − R2A
1 + R2A

1 = − ]̄ 1Q2,
1 3 1 3
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− R1A1
2 + R1A3

2 + R2A1
1 + R2A3

1 = ]̄ 2Q1,

nd obtain the constraintsR1+R2da=sR1+R2db=0. We then compute the covariant deriva

sing the action off 1̄, f 3̄. The regularity condition in this case is given by

A1 ∧ A1 + A3 ∧ A3 = 0.

h

Corollary 4.6: The Riemann and Ricci tensors corresponding to the connection abov
he form (in terms of a and b) as in Proposition 4.2.

Proof: This follows since the Riemann and Ricci tensors are determined by¹ which has th
ame form. It is also instructive(but a different computation) to compute them directly; as usu
rom the definition of the curvature

F1 = dA1 − 2A1 ∧ A1 − A3 ∧ A1 − A1 ∧ A3,

F3 = dA3 − A1 ∧ A3 − A3 ∧ A1 − 2A3 ∧ A3,

e compute the expression for the Riemann tensor:

Riemannse1d = s− F1 − F3d ^ e1 + sF1 − F3d ^ e2,

Riemannse2d = s− F1 + F3d ^ e1 + s− F1 − F3d ^ e2,

nserting the actual form ofF1 andF3 and the regularity condition.
The Ricci tensor is

Ricci =
1

2
ssF1 − F3de1 ^ e1 + sF1 + F3de1 ^ e2 + s− F1 − F3de2 ^ e1 + sF1 − F3de2 ^ e2d.

h

If we want Ricci flatness, we must forceF1=F3=0. Note that if the Ricci is null, so is th
iemann tensor.

The condition for the metric compatibility is the same as in Theorem 4.4.
Proposition 4.7: The metrich satisfies the equation¹h=0, if and only if

a = ]̄ 1Q2, b = ]̄ 2Q1, ]̄ 2s]̄ 1Q2d = 0, ]̄ 1s]̄ 2Q1d = 0.

he regularity condition holds and the Riemann and Ricci tensors are as in Theorem 4.4
Proof: We impose the condition¹h=0, which has the same shape as in the previous cas

hen check that the regularity condition in Proposition 4.1 indeed holds for thesea,b. h

We conclude that moving to the 2D calculus onZ4 gives essentially the same Riemann
eometry as using the universal(3D) calculus but without some of the superfluous modes tha

ound there. Instead, these are replaced by a regularity condition. This gives us some ins
he “correct” choice of calculus for the frame group and what happens if one chooses one
oo big.

. Torus model with translations Z2ÃZ2 as frame group

We take now the frame group to beZ23Z2 acting by “translation” on our base space wh
e recall is also the groupZ23Z2. We write the frame group elements as00,01,10,11, say. As

efore, we have two choices for the calculus on the frame group.
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. 3D calculus on Z2ÃZ2

This is the universal calculus defined byh10,10,11j. The correspondingf ’s act by

f10 x e1 = − 2e1, f10 x e2 = 0,

f01 x e1 = 0, f01 x e2 = − 2e2,

f11 x e1 = − 2e1, f11 x e2 = − 2e2.

Proposition 4.8: The moduli space of torsion free, cotorsion free connections is given

A10 = ae1 − Sd +
]̄ 1Q2

2
De2,

A01 = − Sg +
]̄ 2Q1

2
De1 + be2,

A11 = ge1 + de2.

e set a=a+g, b=b+d. The covariant derivative corresponding to this connection is

¹e1 = 2ae1 ^ e1 − ]̄ 1Q2e2 ^ e1, ¹ e2 = − ]̄ 2Q1e1 ^ e2 + 2be2 ^ e2.

Proof: We solve the torsion condition

2A10
2 + 2A11

2 = − ]̄ 1Q2, − 2A01
1 − 2A11

1 = ]̄ 2Q1

nd the zero cotorsion condition

− 2R1A10
2 − 2R1A11

2 = − ]̄ 1Q2, 2R2A01
1 + 2R2A11

1 = ]̄ 2Q1;

hen we work out the covariant derivative using(8). h

There is no regularity condition for the universal calculus on the frame group(because the
s no element different from the identity which lies outside the subset defining the calculu).

Proposition 4.9: The Riemann and Ricci tensors corresponding to the above connecti

Riemannse1d = − 2S− ]2a + ]̄ 1Q2sQ1 − R2ad +
]̄ 1Q2]̄

2Q1

2
De1 ∧ e2 ^ e1,

Riemannse2d = − 2S]̄ 2Q1sR1b − Q2d + ]1b −
]̄ 2Q1]̄

1Q2

2
De1 ∧ e2 ^ e2,

Ricci =S− ]2a + ]̄ 1Q2sQ1 − R2ad +
]̄ 1Q2]̄

2Q1

2
De1 ^ e2

− S]̄ 2Q1sR1b − Q2d + ]1b −
]̄ 2Q1]̄

1Q2

2
De2 ^ e1.

Proof: We have

F10 = dA10 + A01 ∧ A11 + A11 ∧ A01 − 2A10 ∧ A10 − A10 ∧ A01 − A01 ∧ A10 − A10 ∧ A11 − A11 ∧ A10,
F01 = dA01 + A10 ∧ A11 + A11 ∧ A10 − A10 ∧ A01 − A01 ∧ A10 − 2A01 ∧ A01 − A01 ∧ A11 − A11 ∧ A01,
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F11 = dA11 + A10 ∧ A01 + A01 ∧ A10 − A11 ∧ A10 − A10 ∧ A11 − A11 ∧ A01 − A01 ∧ A11,

nd

Riemannse1d = − 2sF10 + F11d ^ e1, Riemannse2d = − 2sF01 + F11d ^ e2.

he same result is obtained by Riemannsead=ssid∧ ¹ d−sd^ iddd + ¹ sead. h

Proposition 4.10: The condition¹h=0 is satisfied if and only ifa=−g and b=−d and
1Q2= ]̄2Q1=0. In this case, both the Riemann and the Ricci tensor are zero.

Proof: The first part of the proposition is easily proved by computing

¹se1 ^ e1 + e2 ^ e2d = 4ae1 ^ e1 ^ e1 − 2]̄ 1Q2e2 ^ e1 ^ e1 − 2]̄ 2Q1e1 ^ e2 ^ e2 + 4be2 ^ e2 ^ e2

= 0

hich meansa=b= ]̄1Q2= ]̄2Q1=0 have; this implies that the Riemann and the Ricci tenso
oth zero. h

. 2D calculus on Z2ÃZ2

The calculus on the fiber will be defined now byh10̄,01̄j
Proposition 4.11: The moduli space of torsion free, cotorsion free connections is given

A10 = ae1 −
]1Q2

2
e2,

A01 = −
]2Q1

2
e1 + be2.

e set a=a, b=b (as in the case before but withg=d=0), then the covariant derivative has t
ame form as in Proposition 4.8. The regularity condition is

a]̄ 1b − b]̄ 2a = 0.

Proof: We solve the torsion equations

2A10
2 = − ]̄ 1Q2, − 2A01

1 = ]̄ 2Q1

nd the cotorsion equations

− 2R1A10
2 = − ]̄ 1Q2, 2R2A01

1 = ]̄ 2Q1.

he regularity condition is, in this case,A10∧A01+A01∧A10=0, which comes out asaR1b−bR2a
0, which can be written as stated. h

Corollary 4.12: The Riemann and Ricci tensors are (as functions of a, b) as in Proposition
.9.

Proof: This follows from¹ but can also be computed directly as useful check; the curv
wo form corresponding to the regular connection above, is given by

F10 = S− Q2]̄
2a + ]̄ 1Q2sQ1 − R2ad +

]̄ 1Q2]̄
2Q1

2
De1 ∧ e2,

F01 = S]̄ 2Q1sR1b − Q2d + Q1]̄
1b −

]̄ 2Q1]̄
1Q2

2
De1 ∧ e2,
omputed from the expression forF (regularity condition applied)
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F10 = dA10 − 2A10 ∧ A10,

F01 = dA01 − 2A01 ∧ A01,

he Ricci tensor isF01e1 ^ e2−F10e2 ^ e1, Riemann is given by Riemannse1d=−2F10^ e1,
iemannse2d=−2F01^ e2. h

Finally, the only connection fulfilling the condition

¹h = ¹ se1 ^ e1 + e2 ^ e2d = − 4ae1 ^ e1 ^ e1 + 2be2 ^ e2 ^ e2 + ]̄ 1Q2se1 ^ e2 ^ e1 + e1 ^ e1

^ e2d − 2]̄ 2Q1e1 ^ e2 ^ e2 = 0

s, in this case, the null connection.
We see again the same phenomenon as in Sec. IV B; working with the “correct” 2D ca

ather than the universal 3D eliminates redundant fields that do not enter into the Riem
eometry, trading them for an optional regularity condition.

. Discrete sphere base with Z3£SO„2… frame group

As the main alternative to the above models, we look at the case of the universal calc
he 4 points of our base space, which has the connectivity of a tetrahedron or discrete mo
phere:

ur results are rather unusual, probably due to the small number of points in the mode
rojector we are led top defined by

psea ^ ebd = isea ∧ ebd = 50 a Þ b

1

3
se1 ^ e1 + e2 ^ e2 ^ e3 ^ e3d a = b.

his means thatV2 has the relations

e1
2 = e2

2 = e3
2 ; Top, ea ∧ eb = 0, ∀ a Þ b.

his projector obeys the compatibility condition(i) of Theorem 2.2 as follows. We are required
ist all the two-arcs contained in the graph. Naming the vertices asx,y,z,t (starting from(0,0) and
oing clockwise) the possible two arcs fromx are

x → y → x, x → y → z, x → y → t,

x → z→ x, x → z→ y, x → z→ t,

x → t → x, x → t → y, x → t → z.
ow we have to make sure all the possible expression of the form
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pxyx
yz ,pxyx

yt ,pxyx
zy ,pxyx

zt , . . .

60 of them in total) vanish, which happens to be the case. Note that we just considered t
rcs departing fromx, since the choice of “start point” is immaterial here due to the symme

he graph. The second condition of Theorem 2.2 is empty in the case, because the calcuS
s the universal one.V2sSd The action of the external derivative on the vielbein elementsea is
omputed from Theorem 2.1 and is

de1 = sQ1 + R1Q1dTop; Q̃1Top, de2 = sQ2 + R2Q2dTop; Q̃2Top,

de3 = sQ3 + R3Q3dTop; Q̃3Top.

Next, we takeZ3=h0̄, 1̄, 2̄j as a frame group, with calculus defined byh1̄, 2̄j. f 1̄, f 2̄ will act on

1,e2,e3 as e1→e3→e2→e1 (notice that the definition of the projector is invariant under
ction), or

f 1̄ x e1 = e3 − e1, f 2̄ x e1 = e2 − e1,

f 1̄ x e2 = e1 − e2, f 2̄ x e2 = e3 − e2,

f 1̄ x e3 = e2 − e3, f 2̄ x e3 = e1 − e3

it is an anticlockwise rotation in the picture below, which is the tetrahedron from the viewpo
he vertexs0,0d]

Proposition 4.13: The moduli space of torsion free connections is 16-dimensional, give
unctional parametersa1, . . . ,a3,b1, . . . ,b3 with two independent equations given by

Q̃1 + a3 − a1 − b1 + b2 = 0

nd cyclic permutations. The additional conditions for zero-cotorsion are the two indep
quations given by

]̄ 1sa1 + b1d − ]̄ 2a2 − ]̄ 3b3 − a2 + a3 + b2 − b3 = 0

nd cyclic permutations.
Proof: Firstly, we write down the zero torsion conditions, but with a notation of the for

A1
1 = a1, A1

2 = a2, A1
3 = a3, A2

1 = b1, A2
2 = b2, A2

3 = b3

o underline a symmetry of the theory with respect to cyclical permutations in the upper i
f the Ai

j (as usual, the lower index refers to the frame group directions). The vanishing of th
otorsion corresponds to

Q̃1 + R2a2 − R1a1 + R3b3 − R1b1 = 0

nd cyclic permutations. Combining the torsion and cotorsion equations we obtain the equa

tated. h
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The covariant derivative shows the same rotational symmetry. In fact,

¹e1 = sv + ṽd ^ e1 − v ^ e2 − ṽ ^ e3,

v = o
a

aaea, ṽ = o
a

baea

nd¹e2 and¹e3 can be found by cyclical rotations of¹e1.
Proposition 4.14: The Riemann tensor corresponding to the connection above is

Riemannse1d = − sr + r̃d Top ^ e1 + r̃ Top ^ e2 + rTop ^ e3

Riemannse2d ,Riemannse3d can be found by cyclical rotation] where

r = ]1a1 + a1Q̃1 + b1R1sb1 − a1d − a1R1s2a1 + b1d + cycl . ,

r̃ = ]1b1 + b1Q̃1 + a1R1sa1 − b1d − b1R1s2b1 + a1d + cycl . ,

nd the Ricci scalar, R=−sr+ r̃d.
Proof: Riemann tensor is obtained in the usual way from the curvature componentsFi; the

xpression for Ricci then comes out as

Ricci =
1

3
f− sF1 + F2de1 ^ e1 + F2e1 ^ e2 + F1e1 ^ e3 + F1e2 ^ e1 − sF1 + F2de2 ^ e2 + F2e2 ^ e3

+ F2e3 ^ e1 + F1e3 ^ e2 − sF1 + F2de3 ^ e3g

from which the Ricci scalarR=−sF1+F2d]. The curvature two-form is

F1 = dA1 + A2 ∧ A2 − 2A1 ∧ A1 − A2 ∧ A1 − A1 ∧ A2,

F2 = dA2 + A1 ∧ A1 − A1 ∧ A2 − A2 ∧ A1 − 2A2 ∧ A2

nd similarly for the other components. h

We know that the moduli space of connections has two functional parameters, which
ere is reflected in the two physical curvature parametersr , r̃. This model is obviously far from
lassical, but we see that it has several reasonable features including a cyclic symmet
egree 2 top form, i.e., a nonclassical “surface.”

. REMARKS ON THE QUANTUM THEORY

So far we have solved only the classical geometry, which could form the basis for cl
quations of motion for gravity and matter in a classical background. For quantum theory

n a path integral approach one must integrate over all such moduli with respect to an
eighting. Here quantum gravity, in particular, diverges badly. The advantage of working o
finite number of points as we have done above is that now such functional integrals

nite dimensional integrals, which may still diverge but which are surely much more trac
uch integrals for gauge theory onS3 are discussed in Ref. 8 and carried to fruition for Yang–M
n Z23Z2 in Ref. 7, where the theory was found to be divergent but renormalizable. He
ake some first remarks about how to extend this in principle to the gravitational case. T

ngredient, not yet covered, is the correct “unitarity” or reality condition on the spin conne
hich we now propose.

Thus, until now we could have worked above over a generic field, but now we work oC
nd specify reality or “unitarity” conditions which should be expected for a physical interpre
his cuts down our moduli still further and also reduces us to integration over real variables

nite setting. To do this, we note thatCsSd is a * -algebra with* given by pointwise complex
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onjugation. We extend this to inner calculi with the assumptionu* =u so that* anticommute
ith d (other conventions are also possible). For models based on groups and conjugacy cla
ith elements of order 2 this is naturally implemented byea

* =ea (more generally,ea−1), as in Refs
–8. For the models based onZ23Z2 connectivity in Sec. IV we takeea

* =ea. We likewise, an
ore importantly, take

u* = u,

hich ensures that d=fu , j behaves as usual for a* structure in the differential graded algebra(so
graded-commutes with* ). In terms of field components this translates to

Qasxd = RaQasxd.

his is consistent with our model in Sec. IV, for example, where the condition(18) on Q in Sec
I A for a two-form projector is invariant under* .

Next, we consider the spin connection components. For a unitary action for the braid
lgebra generatorsf i we would takeAi

* =Ai. What is a unitary action is motivated from Ho
lgebra theory where for the action of a Hopf* -algebra one would requiresf i xead*

S−1sf i*dxea
* , where in our caseSfi = f i−1

is inversion in the frame group algebra. The* -structure
n the braided-Lie algebra generators is not so clear, but if we assumed thatf i* = f i−1

as for
lements in a group algebra, these two inverses cancel and we would be led to
f i xead* = f i xea. This indeed holds for the actions in the present paper, particularly those i
V, since these are obtained from permutations. Next, if the generators are unitary in this se
ant the frame group connection to be “antihermitian” so we propose here

Ai
* = Ai−1

or the component one-forms. This has the reasonable consequence that applying* to the torsion
quations gives the cotorsion equations, i.e., these are related by complex conjugatio
nitary version of the theory. This is desirable as it suggests that imposing the unitarity co
n the moduli space of torison and cotorsion free connections is not so likely to give no so
his too is borne out when we look closely at the moduli of connections on ourZ23Z2 in
roposition 4.2 or 4.5. We concentrate on the second of these as the more physical mo
odesa,b.

Proposition 5.1: The reality condition in the moduli of torsion free and cotorsion free

ections on the discrete torus in Proposition 4.5 is a=̄R2a, b̄=R1b. The regularity condition i
nvariant under conjugation and the Ricci scalar in Proposition 4.5 is real up to a “total d
ence” given by]̄1, ]̄2.

Proof: From the above, we deduce from Proposition 4.5 and the reality condition on tQa

hat ā=−R1b, b̄=R2a which translates as stated given that the functionsa,b reverse sign und

1R2. The latter also means thatR1s]̄2ad= ]̄2s−R2ad= ]̄2a, and similarly]̄1b is R2-invariant. Since
]̄2Q1d* =R1s]̄2Q1d, and similarly withR2 for ]̄1Q2, we see that the regularity condition is invari
nder* . We then compute

R̄= R1s]1b + ]̄ 2Q1R1bd + R2s]1a + ]̄ 1Q2R2ad − 2bR1b − 2aR2a

= R+ ]̄ 1s]1b + ]̄ 2Q1R1bd + ]̄ 2s]2a + ]̄ 1Q2R2ad,

heres]1bd* =sR1Q1d]1R1b=R1s]1bd, and similarly for]2a. h

The reduced moduli space with full metric compatibility in Proposition 4.7 is also cons
ith this * -structure, i.e., our reality condition holds fora,b given byQa as stated there. Mor
ver, the stated condition on theQa required for this reduces simply toa,b real.

After that, for quantum gravity one should presumably take as actionS=oxPS Rsxd using the
icci scalar curvature; we are not in a position to deduce field equations by a variational pr

o this is an assumption of one way to make sense of the quantum theory. To see how this works
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e again look at our discrete torus model on 4 points. We already know from Sec. III that f
points the Ricci scalar vanishes in all our models, so this model would be the first with no
icci scalar. From the above Propostition 5.1 we see that the actionS is real. Moreover, our field
,b, etc. are functions on the four points but so highly constrained as to be fully determine
y a single complex number, which we denoteA,B. Here

A = as0,0d = − as0,0d, Ā = as0,1d = − as1,0d,

B = bs0,0d = − bs1,1d, B̄ = bs1,0d = − bs0,1d.

ote that the Ricci scalar splits up into two terms

R= RB + RA; RB = ]1b + ]̄ 2u1R1b − 2bR1b = R2u1b̄ − u1b − 2bb̄

nd the similar expression forRA with 1,2 interchanged. Writing

Q = Q1s0,0d, Q̄ = Q1s1,0d, Q̃ = Q1s0,1d, Q̃
¯

= Q1s1,1d

e find

S= SB + SA; SB = − 8BB̄+ 2BsQ̃¯− Qd + 2B̄sQ̃ − Q̄d,

here we computeRB at the four points in terms of our new variables and add up. Similarl
heA field andQ2. If we restrict to the full metric compatibility in Theorem 4.4 then the actio

ust SB=−4B2 and the dynamical variables areQ ,Q̃ constrained such thatB=Q̃−Q̄ is real. Again
imilarly for theA system.

Finally, we make a polar decomposition of the fields as

B = leıf, Q = meıc, Q̃ = m̃eic̃

n terms of real positivel ,m ,m̃ and anglesf ,c ,c̃. In terms of these, we find

SB = − 8l2 + 4lm̃ cossf − c̃d − 4lm cossf + cd

ith similar results for theA system. Then “quantum gravity” is reduced to integrals over t
eal variables. There remains the constraint(18) as well as the optional regularity condition to
mposed on the moduli in Proposition 4.5. These both cross-couple theA andB systems makin
ven this simplest model nontrivial.

It is not our scope to consider the quantum theory in detail here, particularly sin
eometries in this paper are low dimensonal, where one does not expect very dynamical q
ravity; for a compact surface in two-dimensions the integral of the classical Ricci scal
onstant by the Gauss–Bonnet theorem. For a classical torus this should be zero, so we se
iscrete torus model already exhibits nonstandard behavior, the meaning of which remai
nderstood. It also remains to identify physical observables to be computed by such fun

ntegral methods. However, our low-dimensional example does indicate the possibility of r
ble unitarity constraints and illustrate how a quantum gravity theory might proceed in pri

I. COMBINATORICS OF GEOMETRIES UP TO NINE POINTS

For higher numbers of points we do not attempt a detailed classification but rather w
iew the range of possibilities with a view to picking out the most interesting ones.

In the first place, we now limit ourselves to the more interesting case of symmetric(“bidirec-
ional”) differential calculi. These are just graphs with no self-edges and no more than on
etween vertices. For a fibration with fiber sizen, these are the so-calledn-regular graphs. The
s no classification theory forn-regular graphs(e.g., anyn-regular simplicial approximation of a
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anifold gives one) but small ones are listed in Ref. 14. From there we see that ther
easonable number formø8 after which the number grows rapidly. We deal only with conne
raphs.

Note also for anym that here are none forn=1 (exceptm=2). Forn=2 there is just them-gon
or all m. This is the differential calculus onZm with C=h−1,1j. For n=m−1 there is exactly th
niversal calculus or totally connected graph. We observe that them-gon and universal calculi a
embers of a “circulant graph” familyZm

1,p,q,. . . wherep,q, . . . aredistinct integers modulom. They
orrespond to the calculus onZm with C=h±1, ±p, ±q, . . .j where we only havep if 2p=0 modm,
tc. The direct product of circulants withC1,C2 means withC=sC1,0dø s0,C2d (as for the produc
f any groups equipped with differential structures, see Ref. 10). An example of a circulant is
ig. 1. Note also the “handshaking lemma” in graph theory thatnm has to be even. Then we ha

he following list of connected graphs which is complete up tom=8:
For m=2 we have only the universal calculus atn=1.
For m=3 we have only the universal calculus which equals the 3-gon calculus atn=2.
For m=4 we have only the 4-gon atn=2, which can also be viewed asZ2

s1d3Z2
s1d (i.e., with

he direct product calculus whereC=hs0,1d ,s1,0dj), and the universal calculus atn=3.
For m=5 we have only the 5-gon atn=2 and the universal atn=4.
For m=6 we have only the 6-gon atn=2 and two choices atn=3. These are the circula

6
s1,3d, which is also the graph for theS3 calculus with its two-cycles conjugacy class, and
irculantZ2

s1d3Z3
s1d. At n=4 we have only the circulantZ6

s1,2d, which is a triangulation of the sphe
nd is also the graph forS3 with a left-covariant calculus. See Figs. 1(a) and 1(b). At n=5 we jus
ave the universal one. Note that the three-cycles calculus onS3 is not connected so does n
ppear in this list.

For m=7 we have only the 7-gon atn=2, none atn=3,5 and twochoices atn=4. One is th
irculantZ7

s1,2d and the other is shown in Fig. 1(c). At n=6 we just have the universal one.
For m=8 we have the 8-gon atn=2 and five atn=3. One of these is the cube, which

2
s1d3Z2

s1d3Z2
s1d. It can also be viewed asZ2

s1d3Z4
s1d. Another is the circulantZ8

s1,4d. See Fig. 1(b).
he remaining three are as in Fig. 1(c). At n=4 there are six, namely the circulantsZ8

s1,2d andZ8
s1,3d,

ndZ2
s1d3Z4

s1,2d and the remaining three in Fig. 1(c). At n=5 there are three, namely the circula

8
s1,2,4d andZ8

s1,3,4d and the remaining one in Fig. 1(c). At n=6 we have only the circulantZ8
s1,2,3d.

t n=7 we just have the universal calculus.
For m=9 there is the 9-gon atn=2, none atn=3 and already sixteen atn=4, of which three

re groups, namely the circulantsZ9
s1,3d, Z9

s1,4d and a simplicial torus[see Fig. 1(b)], which is
s1d s1d

IG. 1. (a) Examples of circulant graphs;(b) all products of circulants up tom=9; (c) graphs up tom=8 not circulants o
roducts of them;(d) Petersen graph atm=10.
3 3Z3 . There are none atn=5 and three atn=6 of which two are circulants onZ9, and so forth.
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igure 1(d) also shows an importantm=10 graph withn=3 which is aZ2 quotient of the dodec
edron and can be thought of as a discreteRP2.

At the qualitative or “topological” level of this section, we can immediately present a di
oduli space of combinatorial solutions for vielbeins. Namely, for anyE that fibers overS with

Fxu=n, ann-bein is provided by any choice of bijectionssx: h1, . . . ,nj→Fx by

eaxy= dsxsad,y = ea
−1xy, ea = o

x

dxddsxsad s19d

iving

eaf = fss·sbddea, s]afdsxd = fssxsadd − fsxd. s20d

eres·sad is a function onS (with · denoting the functional dependence). Pictorially, we label a
ne-arcs arbitrarily byh1, . . . ,nj andsxsad is the endpoint of the arc labeleda from x. The elemen
and the relations of the maximal prolongation are

u = o
a

ea, o
x→

a
→
b

z

ea ∧ eb = 0, ∀ x Þ z,x→” z. s21d

he corresponding projectors are

psea ^ ebd = ea ^ eb − o
x

dx

uFx,zu
o

x→
c

→
d

z

ec ^ ed; wherex→
a

→
b

z s22d

nd have a functional dependence. Since the wedge product is given by setting to z
lements of the tensor product which are in the kernel of this projector, we have the lifi :V2

V1 ^ V1 given by the same formula. These formulas are for general left-parallelizable c
n our bidirectional case each arc really means two arrows since we can move along it i
irection. In this case the combinatorial datahsxsadj for this class of vielbeins is a bicoloring of t
raph, with two colorsaP h1, . . . ,nj for each arc, namely one for each arrow. Moveover, we
ollow the colored arrows from vertex to vertex and in this way the doubled-up graph(in which
ach arc is a pair of arrows going in opposite directions) is decomposed into colored loops. T

oops of each color need not be connected.
For the framed geometry one must also choose a frame groupG acting on the vector spaceV

panned by the vielbeins, a calculus on the group given by an Ad-stable subset, and projep.
or the combinatorial solutions above it is natural to takeG=Sn acting by permuting the color

.e., gxea=egsad for a permutationg. We can then take(for example) the universal differentia
alculus onSn wherei PSn−hej so that there is no regularity condition to solve when we us
raided-Lie algebra with basishf ij. Then the torsion and cotorsion equations forAi are linear an
ence determined by linear algebra. More generally, our choice of frame group and as
tructures have to be chosen according to what geometry we want to model. I.e., for eac
f regular graph for the “topology” of the finite set, we have further choices for the a
eometry we want to model. We have already seen how this goes for a small number of

here are progressively more choices as the number of points increases.
Finally, putting together all the considerations in the paper, we arrive at a first impres

quantum gravity” in our finite geometry approach. Let us discuss this in a fixedn dimensions
ay. As in our examples in Sec. IV, we focus for the sake of discussion on the case of bidir
raphs and vielbein of the form

eaxy= Qasxd−1dsxsad,y,

here we are allowed to vary each edge in the combinatorial vielbein discussed above
inuous degree of freedomQa. Then for the partition function of this part of quantum gravity

hould sum over all remaining topological variables, i.e., all numbersm of points, alln-regular
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raphs(so the cotangent bundle isn-dimensional) with the variablem vertices, and all coloring

a of them into loops(see above); then for each of those(and associated choices of frame gro)
e integrate over the moduli spaces for the continuous degrees of freedomQa of the vielbein an

he spin connection, weighted with some action such as the Einstein–Hilbert one. For exam

ave at this point the real integrals dl ,df ,dm ,dm̃ ,dc ,dc̃ with the action in Sec. V as a sm
iece of such a quantum gravity in two-dimensions, in the sector consisting of 4 points with
onnectivity and coloring according toZ2

s1d3Z2
s1d. Note carefully that our approach is intrinsica

quantum gravity theory in which differential structures(which go into the graph) are summe
ver as well as more familiar modes.

We are now ready to observe a new kind of duality which is suggested by our ske
uantum gravity: The sum over alln-regular graphs(n fixed) with variable numbersm of points,
hich is the main combinatorial part of our theory inn-dimensions, is the same as in the Feyn
iagram rules for a scalar theory in flat space withFn-interaction terms. There the graph ed
orrespond to propagating fields and each vertex is an interaction, i.e., the interpretation is
ifferent. The weights for each graph are also somewhat different, but in the Feynman ru
gain identifies the loops in the graph(each contributes a momentum integral). One could, there
ore, speculate that some flat space quantum field theory with Feynman rules could be eq
o finite quantum gravity with some action, which would be a novel and somewhat unex
uality between gravity and elementary particles. These remarks are of course speculativ
oment but may be an interesting direction for further study.

CKNOWLEDGMENTS

E.R. gratefully acknowledges the financial support of the United Kingdom Engineerin
hysical Sciences Research Council and of the Itialian Foundation “Angelo Della Riccia.”

1A. Dimakis and F. Müller-Hoissen, J. Math. Phys.35, 6703(1994).
2K. Bresser, F. Mueller-Hoissen, A. Dimakis, and A. Sitarz, J. Phys. A29, 2705(1996).
3M. Paschke and A. Sitarz, J. Math. Phys.39, 6191(1998).
4T. Krajewski, J. Geom. Phys.28, 1 (1998).
5T. Brzeziński and S. Majid, Acta Appl. Math.54, 185 (1998).
6S. Majid and T. Schucker, J. Geom. Phys.43, 1 (2002).
7S. Majid, in Clifford Algebras: Application to Mathematics, Physics, and Engineering, edited by R. Ablamowic
(Birkhauser, Boston, 2003), pp. 491–518.

8S. Majid and E. Raineri, J. Geom. Phys.44, 129 (2002).
9A. Connes,Noncommutative Geometry(Academic, New York, 1994).
0S. Majid, Commun. Math. Phys.225, 131 (2002).
1S. Majid, J. Geom. Phys.30, 113 (1999).
2F. Ngakeu, S. Majid, and D. Lambert, J. Geom. Phys.42, 259 (2002).
3S. Majid, “Noncommutative Riemannian and spin geometry of the standardq-sphere,” math.QA/0307351, pp. 1–26
4R. C. Read and R. J. Wilson,An Atlas of Graphs(Clarendon, New York, 1998).
5R. D. Sorkin, Int. J. Theor. Phys.39, 1731(2000).
6S. L. Woronowicz, Commun. Math. Phys.122, 125 (1989).
7X. Gomez and S. Majid, J. Algebra261, 334 (2003).
                                                                                                            



N

I

unda-
m rem
p m. In
a everal
H e of an
a ta–
U

eedom,
w of the
s umerical
e in one-
d neral
n e
o eneous
i
w ition.
F dditional
a

ribed by
t

w -
s h-
b

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 12 DECEMBER 2004

0

                        
onintegrability of nonhomogeneous nonlinear lattices
Kazuyuki Yoshimura
NTT Communication Science Laboratories, NTT Corporation, 2-4, Hikaridai, Seika-cho,
Soraku-gun, Kyoto 619-0237, Japan

Ken Umeno
ChaosWare, Inc., National Institute of Information and Communications Technology,
4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan

(Received 30 May 2004; accepted 18 August 2004; published 15 November 2004)

We study the integrability of nonlinear lattices with nonhomogeneous polynomial
potentials. We prove a nonintegrability theorem for these dynamical systems.
© 2004 American Institute of Physics.[DOI: 10.1063/1.1806260]

. INTRODUCTION

The integrability or nonintegrability of a given Hamiltonian system is one of the most f
ental and important issues in characterizing the dynamics of its solutions. Ziglin’s theo1,2

rovides a powerful method to prove the nonintegrability of a given Hamiltonian syste
ddition to Ziglin’s original example, the Ziglin’s theorem has been successfully applied to s
amiltonian systems with a small number of degrees of freedom to prove the nonexistenc
dditional first integral: some homogeneous potential systems,3 the three-particle Fermi–Pas
lam (FPU) lattice,4 and the Hénon–Heiles system.5,6

Nonlinear lattices are simple Hamiltonian systems with a large number of degrees of fr
hich have been of great physical interest in connection with the dynamical foundation
tatistical mechanics. Their dynamical behavior has been extensively studied since the n
xperiments by Fermi, Pasta, and Ulam on the relaxation process toward equilibrium
imensional nonlinear lattices.7 It has been believed that nonlinear lattice models are in ge
onintegrable, except for some integrable models such as the Toda lattice.8 However, there ar
nly a few nonlinear lattice models that have been proved to be nonintegrable: homog

nteraction potential lattices with the fixed-end boundary condition9,10 and the FPU-b lattice,
hich has quadratic and quartic interaction potentials, with the fixed-end boundary cond11

or these lattice models, the nonintegrability has been proved in a strong sense that no a
nalytic first integral exists in the complex phase space.

In the present paper, we consider a more general class of nonlinear lattice models desc
he Hamiltonian

H =
1

2o
i=1

N

pi
2 + o

i=1

N

fUsqid + Vsqi − qi−1dg, s1d

hich is defined on the complex symplectic manifoldM=C2N=hsq1,… ,qN,p1,… ,pNdj. We as
ume the periodic boundary condition, i.e.,q0=qN. The on-site potentialU and the nearest neig
or interaction potentialV are of the forms

UsXd = o
2m

mk

k
Xk, s2d
k=2

4628022-2488/2004/45(12)/4628/12/$22.00 © 2004 American Institute of Physics
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VsXd = o
k=2

2m
kk

k
Xk, s3d

heremkPR and kkPR are the real constants. We assumemk=0 for oddk so that the on-sit
otentialUsXd may have the symmetryUsXd=Us−Xd. The purpose of the present paper is to g
igorous results on the nonintegrability of the nonlinear lattices described by Eq.(1). For this
urpose, we derive a reduced Hamiltonian system for the system(1), which describes the dynam

cs on a low-dimensional invariant manifold, and apply a version of the Ziglin’s theorem d
y Yoshida12 to the reduced system. We prove a nonintegrability theorem for the nonlinear l
escribed by Eq.(1).

The present paper is organized as follows. In Sec. II, we review the Ziglin’s theorem
ase of generic two-dimensional systems. In Sec. III, we review known results on the app
f Ziglin’s theorem to nonhomogeneous potential systems. In Sec. IV, we relate the non
ility of the reduced system with that of the original full system. The reduced Hamiltonian s
f (1) is derived and the main theorem is given in Sec. V.

I. ZIGLIN’S THEOREM

The aim of this section is to give a brief review of Ziglin’s theorem.1 Consider the two
imensional Hamiltonian system

H = 1
2spx

2 + py
2d + Fsx,yd s4d

ith an analytic potential functionFsx,yd in the complex phase spaceC4=hsx,y,px,pydj. The
olutions of this system are functions of complex timetPC. Assume that there exists a straig
ine solution of the form

xstd = 0, ystd = wstd. s5d

he solutionwstd satisfies the differential equation

d2w

dt2
+ Fys0,wd = 0, s6d

hereFy=]F /]y. This equation has the integral

1

2
Sdw

dt
D2

+ Fs0,wd = h, s7d

herehPR is a constant corresponding to the energy. The functionwstd is determined as th
nverse function of

t =E
w0

w

dw/ÎPswd, s8d

ith

Pswd = 2fh − Fs0,wdg, s9d

here the integral(8) is taken along a path of integration starting from an initial pointw0 to the

nd pointw in the w plane. The valuew determined as a function oft gives the solutionwstd.
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he functionz=ÎPswd defines a Riemann surfaceR and the roots ofPswd=0 give the branc
oints. Letg be an arbitrary closed path encircling some of the branch points. The valueTg of

ntegral (8) given by

Tg =R
g

dw/ÎPswd s10d

oes not vanish in general andTg gives a period of the functionwstd. The periodTg depends onl
n the homotopy classfgg of g on R.

Now we consider variational equations along the solutionwstd. The variational equations f
and y directions are decoupled because the existence of solution(5) implies thatFxys0,wstdd
0 holds identically. Letj be the variation in thex direction. The equation forj is called the
ormal variational equation(NVE) and given by

d2j

dt2
+ Fxxs0,wstddj = 0. s11d

et us consider a sethgj of closed paths, which share a common base pointw0=wst0d on R. Since
is parametrized bytPC, a closed pathg corresponds to a path in thet plane. In what follows

he analytic continuation along a closed pathg in R is considered as the analytic continua
long the corresponding path in thet plane. A 232 symplectic matrixgsgdPSLs2,Cd called a
onodromy matrix is defined for each closed pathg. The monodromy matrixgsgd describes th

ime evolution of a system of fundamental solutions of Eq.(11) alongg, i.e.,gsgd is defined as th
atrix such that

sj1st + Tgd,j2st + Tgdd = sj1std,j2stdd ·gsgd, s12d

here hj1,j2j is a system of fundamental solutions of the NVE. The monodromy matrixgsgd
epends only on the homotopy classfgg of g on R. The set of all monodromy matrices form
roupG called the monodromy group.

Definition: A monodromy matrix gPG is said to be nonresonant if the eigenvalueshr ,r−1j of
satisfy thatrnÞ1 for any nonzero integer n.

Let H−1shd be the energy surface defined byH−1shd=hsx,y,px,pydPC4uHsx,y,px,pyd=hj. We
efine a point setGh by Gh=hs0,wstd ,0 ,ẇstddPH−1shd u tPCj. Ziglin’s theorem1 can be stated a

ollows in our situation.
Theorem 1: Suppose that system (4) has an integral fsx,y,px,pyd=const, which is analytic in

neighborhood ofGh and functionally independent of H. If there exists a nonresonant monodro
atrix g1PG, then any monodromy matrix g2PG satisfies that either (i) g2 commutes with g1, or

ii) tr g2=0.

II. APPLICATION OF ZIGLIN’S THEOREM TO POLYNOMIAL POTENTIAL SYSTEMS

. Monodromy group for homogeneous potential systems

We briefly review some known results on the monodromy matrices of NVE for a hom
eous potential system(for detail, see Ref. 3). Consider the Hamiltonian system(4) with a
omogeneous potential of degree 2mù4, which has the straight-line solution of the form(5). The
quation forwstd and the NVE can be written as

d2w

dt2
+ a2mw2m−1 = 0 s13d
nd
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d2j

dt2
+ b2mwstd2m−2j = 0, s14d

herea2m andb2m are real constants and we assumea2m.0. We define a parameterl2m as

l2m =
b2m

a2m
. s15d

n this case, the functionPswd in Eq. (8) is given by

Pswd = 2Fh − Sa2m

2m
Dw2mG , s16d

nd the branch pointsŝk, k=0,1,… ,2m−1 in the Riemann surfaceR defined byz=ÎPswd are
ocated at

ŝk = S2mh

a2m
D1/2m

expFi
pk

m
G . s17d

We define two closed pathsĝ1 and ĝ2 in R as follows: ĝ1 is a counterclockwise circu
ncircling two branch pointsŝ0 and ŝm, which defines the real period;ĝ2 is a counter-clockwis
ircuit encirclingŝ1 and ŝm+1. A common base pointw0 is taken betweenw=0 andŝ0 on the rea
axis. It is known that the NVE(14) is transformed into the Gauss hypergeometric equatio

he change of the independent variable fromt to z=sa2mh/2mhdfwstdg2m.3 This fact enables us
btain explicit expressions for the two monodromy matricesĝ1 and ĝ2, which associate withĝ1

nd ĝ2, respectively, as follows:12

ĝ1 = S− 1 − BC

A ABC− 1
D2

, s18d

ĝ2 = S− 1 −VAB − BsABC+ VAB+ V−1Cd
VA ABC+ VAB− 1

D2

, s19d

here

A = 1 −V−1e−i2pa, B = 1 −V−1e−i2pb, C = 2V/sV − 1d, s20d

nd

V = eip/m, a + b = 1/2 − 1/2m, ab= − l2m/4m. s21d

n the homogeneous potential case, the monodromy matrices do not depend on the eneh as
een in Eqs.(18) and (19). A simple computation shows that

tr ĝ1 = tr ĝ2 = F2msl2md, s22d

here the functionF2msl2md is defined by

F2msl2md =
4

sin2sp/2md
cos2fsp/2mdÎsm− 1d2 + 4ml2mg − 2. s23d

t can be confirmed thatĝ1 andĝ2 commute, i.e., the commutatorfĝ1,ĝ2g=0, if and only ifl2m has
alues such thatF2msl2md= ±2. In addition, we can show thatF2msl2md.2 whenl2m is in the

egionS2m defined by
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S2m = hl P Rul , 0 or 1, l , 2m− 1 or 2m+ 2 , l , 6m− 2 or ¯ or js j − 1dm+ j , l , js j

+ 1dm− j or ¯ j. s24d

. Nonintegrability theorem for nonhomogeneous potential systems

Consider the nonhomogeneous Hamiltonian system

H =
1

2
spx

2 + py
2d + o

k=2

2m

Fksx,yd, s25d

hereFksx,yd is the homogeneous part of degreek, and assume that the system has the stra
ine solution of the form(5). The equation forwstd can be written in the form

d2w

dt2
+ W8swd = 0, s26d

here we introduced an effective potential functionWsXd defined by

WsXd = o
k=2

2m
ak

k
Xk. s27d

he NVE can be written in the form

d2j

dt2
+ Fo

k=2

2m

bkwstdk−2Gj = 0. s28d

n Eqs. (27) and (28), ak and bk represent the real constants, and we assume thata2.0 and

2m.0.
The functionPswd in Eq. (8) is given by

Pswd = 2fh − Wswdg. s29d

here areh-dependent branch pointssk, k=0,1,… ,2m−1 in the Riemann surfaceR such tha

k/ ŝk→1 in the limit h→`, whereŝk is the branch point of the homogeneous system given b
17). In what follows, we assume that the branch pointss0,s1,… ,s2m−1 differ from each other fo
ny h.0, i.e., the algebraic equationWsXd−h=0 has 2m distinct roots for anyh.0. Since an
ranch pointsk does not collide with the others ash varies under this assumption, we can de

he following two closed pathsg1shd andg2shd, which deform continuously ash varies:g1shd is
counterclockwise circuit encircling only two branch pointss0 andsm on the realw axis;g2shd is
counterclockwise circuit encircling onlys1 andsm+1. A common base pointw0 is taken betwee
=0 ands0 on the realw axis.

Let g1shd andg2shd be the two monodromy matrices associated withg1shd andg2shd, respec
ively. These monodromy matrices depend onh. The elements ofg1shd and g2shd are analytic
unctions ofh in the intervals0,`d, sincesk, k=0,1,… ,2m−1 are analytic functions ofh due to
he assumption thatWsXd−h=0 has 2m distinct roots for anyh.0. When the potential is nonh

ogeneous, there is no analytical method to calculate the monodromy matrices. However,
ointed out in Ref. 12 that they can be evaluated in the limitsh→0 andh→`.

In the limit h→`, the highest order terms ofw become dominant in Eqs.(26) and (28).
herefore,g1shd andg2shd converges to the monodromy matricesĝ1 and ĝ2 of the homogeneou
ystem of degree 2m, respectively, which are given by Eqs.(18) and (19). We have

lim
h→`

tr g1shd = lim
h→`

tr g2shd = F2msl2md s30d
nd
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lim
h→`

fg1shd,g2shdg = fĝ1,ĝ2g. s31d

In the opposite limith→0, the lowest order terms ofw become dominant in Eqs.(26) and
28): the NVE (28) tends to that of the homogeneous system of degree 2. The assumption
oots ofWsXd−h=0 implies that only two branch pointss0 andsm are real numbers for anyh.0.
hese two real branch points approach those of the homogeneous system of degree 2, w
iven byw= ± s2h/a2d1/2, in the limit h→0. Therefore,g1shd converges to the monodromy mat
f the homogeneous system of degree 2 that corresponds to the real period and we hav

lim
h→0

tr g1shd = 2 cosf2pÎl2g, s32d

herel2=b2/a2.
Based on the above arguments, Yoshida obtained the following useful theorem.12 To state th

heorem, we define a point set of a straight line solutionGh=hs0,wstd ,0 ,ẇstddPH−1shd u tPCj and
family of the straight line solutionshGhjh0,«=hGhPC4uhPU«sh0d=sh0−« ,h0+«dj, where h0

s0,`d is an arbitrary fixed energy value and« is a small positive real number.
Theorem 2: Suppose that mù2, a2.0, a2m.0, and the algebraic equation WsXd−h=0

as 2m distinct roots for any h.0. If l2m=b2m/a2m is a value such tha

2msl2md¹ h0, ±2,2 cosf2pÎl2gj, then for any h0.0 and any«.0 the system (25) cannot ha
n additional integral, which is analytic and functionally independent of H in a connected n
orhood ofhGhjh0,«.

Proof: We consider the monodromy matricesg1shd and g2shd defined in the above. Th
omponents ofg1shd andg2shd are analytic functions ofh in the whole intervals0,`d. From Eqs
30) and (32), in the limits h→0 and h→`, we know trg1s0d=2 cosf2pÎl2g and trg1s`d
tr g2s`d=F2msl2md.

Sinceg1shd is an analytic function ofh in the whole intervals0,`d, the conditionF2msl2md
2 cosf2pÎl2g implies that trg1shd actually changes ash varies. Therefore, there exists a de

ubsetS of the intervals0,`d such thatg1shd is nonresonant for anyhPS. Assume that ther
xists an additional integral in a neighborhood ofhGhjh0,«. It follows from Theorem 1 that eith
g1shd ,g2shdg=0 or trg2shd=0 holds for any fixedhPSùU«sh0d.

Assume that fg1sh̄d ,g2sh̄dgÞ0 for some h̄PSùU«sh0d. Because of the continuity

g1shd ,g2shdg with respect toh,fg1shd ,g2shdgÞ0 holds in some neighborhoodU8sh̄d#U«sh0d of

. Thus, trg2shd=0 holds for anyhPS8, whereS8 is defined byS8=SùU8sh̄d. Since trg2shd is an

nalytic function ofh and trg2shd=0 holds in the dense subsetS8 of U8sh̄d, it follows that
r g2shd=0 holds identically over the whole intervals0,`d. This contradicts the assumpti

r g2s`d=F2msl2mdÞ0. On the other hand, if we assume that trg2sh̄dÞ0 for some h̄
SùU«sh0d, then it follows thatfg1shd ,g2shdg=0 holds for anyhPS9, whereS9 is a dense subs

f some neighborhood ofh̄, by a similar argument to the above. Sincefg1shd ,g2shdg is an analytic
unction of h and fg1shd ,g2shdg=0 holds in the dense subsetS9, it follows that fg1shd ,g2shdg=0
olds identically over the whole intervals0,`d. Thus, we have limh→`fg1shd ,g2shdg=0. The
ommutator is given byfĝ1,ĝ2g in the limit h→` from Eq.(31). Therefore,F2msl2md= ±2 follows
rom limh→`fg1shd ,g2shdg=0. This contradicts the assumptionF2msl2mdÞ ±2. From the abov
rguments, the nonexistence of an additional integral, which is analytic and functionally in
ent ofH in a connected neighborhood ofhGhjh0,«, has been proven. j

Remark:A condition to guarantee the analyticity ofg1shd andg2shd was not included in th
riginal statement of this theorem in Ref. 12. As a sufficient condition, we added the non

racy condition on the roots ofWsXd−h=0.
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V. REDUCED HAMILTONIAN SYSTEM ON LOW-DIMENSIONAL INVARIANT MANIFOLD
ND NONINTEGRABILITY

In this section we give a lemma, which relates the nonintegrability of a reduced syste
ow-dimensional invariant manifold and that of the full system. Consider the Hamiltonian s
f n+2 degrees of freedom,

Hsq1,…,qn+2,p1,…,pn+2d, s33d

hich is defined on the complex symplectic manifoldN=C2sn+2d. Suppose that the Hamiltoni
ystem(33) has a four-dimensional invariant manifoldI defined by

I = hsq1,…,qn+2,p1,…,pn+2d P C2sn+2duqi = pi = 0,i = 1,2,…,nj , s34d

nd the vector field restricted toI is associated with the HamiltonianH̃sqn+1,qn+2,pn+1,pn+2d,
hich we call thereduced Hamiltonian. The reduced HamiltonianH̃ is related to the origina
amiltonianH as

H̃sqn+1,qn+2,pn+1,pn+2d = Hs0,…,0,qn+1,qn+2,0,…,0,pn+1,pn+2d. s35d

et Gh be a straight line solution of the reduced Hamiltonian system. We denote its family bhGhj.
hen, we have the following lemma.

Lemma 1: Suppose that the reduced Hamiltonian system (35) is nonintegrable, in th
hat there does not exist an additional integral which is analytic and functionally independ
˜ in a connected neighborhood ofhGhj in I. Then, the full Hamiltonian system (33) cannot h

set of n+2 analytic integrals f1=H , f2,… , fn+2 defined in a connected neighborhood U ofhGhj
n N, such that

(C1) The 1-formsdf i , i =1,2,… ,n+2 are linearly independent over a dense open set D#U
uch that DùIÞf.

(C2) They form an involutive set: the Poisson brackets for any pair of fi and f j vanish, i.e.,
f i , f jj=0,i , j =1,2,… ,n+2.

Proof: Suppose that there exists a set ofn+2 integrals satisfying the conditions(C1) and(C2).
et f̃ i defined byf̃ isqn+1,qn+2,pn+1,pn+2d= f is0,… ,0 ,qn+1,qn+2,0 ,… ,0 ,pn+1,pn+2d. SinceI is the

nvariant manifold, eachf̃ i is an integral of the reduced system(35) in IùU. The nonexistence

n additional integral, which is functionally independent ofH̃ in IùU, implies thatf̃ i andH̃ are

unctionally dependent inIùU. Then, f̃ i is a function of H̃ only, i.e., f̃ i =CisH̃d with some
nalytic functionCi. Therefore, except for the Hamiltonianf1=H, we can assume thatf i =0 over

ùU for i =2,3,… ,n+2. In fact, if f̃ i Þ0, then we can usef i −CisHd as an integral instead off i.
There is a pointxPDùI such that df i , i =1,2,… ,N are linearly independent atx. Let Ux be

neighborhood ofx in N. Since f i is an analytic function ofsq1,… ,qn+2,p1,… ,pn+2d, we can
xpandf i for i =2,3,… ,n+2 in Ux as

f i = o
unu=1

`

fn
sidsqn+1,qn+2,pn+1,pn+2dq1

n1
¯ qn

nnp1
nn+1

¯ pn
n2n, s36d

heren j , j =1,… ,2n are non-negative integers,n is the multi-indexn=sn1,… ,n2nd , unu=n1+n2

¯ +n2n, and fn
sid is an analytic function ofsqn+1,qn+2,pn+1,pn+2d, and we used the factf̃ i =0.

A simple calculation using Eq.(36) shows that the 1-form df i at x is of the form

df i = o
j=1

n

faj
sidsxddqj + an+j

sid sxddpjg, s37d

or i =2,3,… ,n+2. In Eq. (37), aj
sid is given by fn

sid with the multi-indexn such that itskth

omponent isnk=d jk, whered jk is the Kronecker’s delta. Note that df i does not include the terms
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f dqi and dpi , i =n+1,n+2. LetLx be a subspace of the tangent spaceTxN at the pointx defined
y Lx=spanh] /]q1,… ,] /]qn,] /]p1,… ,] /]pnj and Lx

* be the dual space ofLx defined byLx
*

spanhdq1,… ,dqn,dp1,… ,dpnj. Equation(37) shows that df i PLx
* for i =2,3,… ,n+2. In addi-

ion, we define a subspaceLf,x=hvPLxudf isvd=0, i =2,3,… ,n+2j#Lx. Since the 1-form
f i , i =2,3,… ,n+2 are linearly independent atx, the dimension ofLf,x is obtained as dimLf,x

dim Lx−sn+1d=n−1.
Let I be the isomorphism between the cotangent bundleT*N and the tangent bundleTN,

hich maps a 1-form to the associated Hamiltonian vector field. From Eq.(36), the Hamiltonian
ector fieldsI df i , i =2,3,… ,n+2 associated with the Hamiltonianf i are obtained atx as follows

I df i = o
j=1

n Fbj
sidsxd

]

] qj
+ bn+j

sid sxd
]

] pj
G , s38d

here bj
sid=an+j

sid , bn+j
sid =−aj

sid , j =1,2,… ,n. The condition (C2) implies that df isI df jd=0, i , j ,
2 ,3 ,… ,n+2 and thusI df j PLf,x, j , =2,3,… ,n+2. Since the mapI is nondegenerate, then
1 vectorsI df j , j =2,3,… ,n+2 are linearly independent. This implies dimLf,xùn+1 and we
et a contradiction. Therefore, there cannot exist a set ofn+2 integrals satisfying the two cond
ions (C1) and (C2). j

. NONINTEGRABILITY THEOREM FOR NONLINEAR LATTICES

. Invariant manifold and reduced Hamiltonian

Consider the lattice Hamiltonian(1) with the polynomial potential functions(2) and (3) in
=C2N. Suppose that the on-site potentialUsXd has the symmetryUsXd=Us−Xd, that is,mk=0

or oddk. In the following arguments, we employ the periodic boundary condition and assu
attice sizeN to be a multiple of four, i.e.,

q0 = qN, qN+1 = q1, N = 4n sn P Nd. s39d

he equations of motion read

d2qi

dt2
+ U8sqid − V8sqi+1 − qid + V8sqi − qi−1d = 0, i = 1,2,…,N. s40d

e define the canonical transformationsq1,… ,qN,p1… ,pNd° sQ0,… ,QN−1,P0,… ,PN−1d as fol-
ows:

qi = o
k=0

N−1

QkFsinS2pk

N
iD + cosS2pk

N
iDG , s41d

pi =
1

N
o
k=0

N−1

PkFsinS2pk

N
iD + cosS2pk

N
iDG , s42d

herei =1,2,… ,N. This new variablesQk andPk are called the normal mode coordinates. T
s for the invariant manifold, we have the following.

Proposition 1: Suppose that UsXd has the symmetryUsXd=Us−Xd andN=4n snPNd. Non-
inear lattice (1) with the periodic boundary condition has the four-dimensional invariant m
old I1 defined by

I1 = hsQ0,…,QN−1,P0,…,PN−1d P C2NuQk = Pk = 0, k Þ N/4,N/2j. s43d

˜
oreover, the reduced Hamiltonian H1, which determines the vector field onI1, is given by
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H̃1 =
1

2N
spx

2 + py
2d +

N

2
fUsx − yd + Usx + ydg +

N

4
fVs2sx + ydd + Vs2sy − xdd + 2Vs− 2ydg, s44d

heresx,y,px,pyd=sQN/4,QN/2,PN/4,PN/2d.
Proof: From Eqs.(41) and(42), any point inI1 is expressed in the originalsq ,pd coordinate

s follows:

q4k+1 = − q4k+2 = QN/4 − QN/2, p4k+1 = − p4k+2 =
1

N
sPN/4 − PN/2d,

s45d

− q4k+3 = q4k+4 = QN/4 + QN/2, − p4k+3 = p4k+4 =
1

N
sPN/4 + PN/2d,

herek=0,1,… ,N/4−1. LetI18 be the submanifold ofM defined by

I18 = hsq1,…,qN,p1,…,pNd P C2Nuq4k+1 = − q4k+2 = q1, q4k+3 = − q4k+4 = q3,

p4k+1 = − p4k+2 = p1, p4k+3 = − p4k+4 = p3, k = 0,1,…,N/4 − 1j. s46d

he submanifoldI18 is identical withI1. Then, in order to show thatI1 is an invariant manifold
t is enough to show thatI18 is invariant under the flow associated with Hamiltonian(1). Since

sXd=Us−Xd, it can be easily checked that for any initial point onI18 the solution to Eqs.(40) with
he periodic boundary condition is of the form

q4k+1std = − q4k+2std = c1std, q4k+3std = − q4k+4std = c2std, k = 0,1,…,N/4 − 1, s47d

herec1 andc2 are the solutions of the set of differential equations

d2c1

dt2
+ U8sc1d − V8s− 2c1d + V8sc1 + c2d = 0, s48d

d2c2

dt2
+ U8sc2d − V8s− 2c2d + V8sc1 + c2d = 0. s49d

ince the solution(47) is contained inI18 for any t , I18, or I1 is an invariant manifold. The reduc
amiltonian(44) is obtained by substituting Eq.(45) into the original Hamiltonian(1) and rewrit-

ng sQN/4,QN/2,PN/4,PN/2d by sx,y,px,pyd. j

Remark:It is not assumed that the potential functionsUsXd andVsXd are polynomials in th
roof of Proposition 1.

The reduced Hamiltonian system(44) with the potentials(2) and (3) has a straight lin
olution of the formxstd=0, ystd=wstd. The solutionw satisfies the differential equation

d2w

dt2
+ o

r=1

m

sm2r + 22rk2rdw2r−1 = 0, s50d

ith the integral

1

2
Sdw

dt
D2

+ W1swd = h, s51d
here the effective potential functionW1sXd is defined by
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W1sXd = o
r=1

m
1

2r
sm2r + 22rk2rdX2r . s52d

n Eq. (51), h can be regarded as the single particle energy and is related to the energyH of the
hole system(1) ash=H /N. As for the NVE, we have

d2j

dt2
+ Fo

k=2

2m

sk − 1dsmk + 2k−1kkdwstdk−2Gj = 0. s53d

rom Eqs.(50) and (53), parametersl2 andl2m are determined as

l2 =
m2 + 2k2

m2 + 4k2
, l2m = s2m− 1d

m2m + 22m−1k2m

m2m + 22mk2m
. s54d

. Main theorem

The straight line solutionw defines a point setG1,h=hsq1,… ,qN,p1,… ,pNdPH−1sNhd uqi

s−1diwstd , pi =s−1diẇstd , tPC , i =1,2,… ,Nj#M=C2N. In addition, we define a family o

1,h by hG1,hjh0,«=hG1,hPM uhP sh0−« ,h0+«dj, whereh0P s0,`d and « is a small positive rea
umber. Then, our theorem is stated as follows.

Theorem 3: Suppose that mù2 and N=4n snPNd. Further, suppose that parameters in
otentialsmk, kk, k=2,3,… ,2m have values such that (i)mk=0 for odd k, (ii) the inequalities
inhm2+2k2,m2+4k2j.0, m2mù0, and k2m.0 hold, and (iii) the algebraic equation W1sXd
h=0 has2m distinct roots for any h.0. Then, for any h0.0 and any«.0, reduced system (4

annot have an additional integral, which is analytic and functionally independent of H˜
1, in a

onnected neighborhood ofhG1,hjh0,« in I1. Moreover, periodic nonlinear lattice (1) with potent
unctions (2) and (3) is nonintegrable in the following sense: for any h0.0 and any«.0, in a
onnected neighborhood UM of hG1,hjh0,« in M, there does not exist an involutive set of N ana
ntegrals f1=H , f2,… , fN such that there is a point in UMùI1 at which df i , i =1,… ,N are
inearly independent.

Proof: Consider the invariant manifoldI1 and the reduced Hamiltonian systemH̃1. Equation
50) shows thata2=m2+4k2 anda2m=m2m+22mk2m. It follows from the assumptions in(ii ) that

2.0 anda2m.0. From Eq.(54), the parameterl2m is rewritten as

l2m = s2m− 1dF1 −
22m−1

sm2m/k2md + 22mG . s55d

incemù2 andm2m/k2mù0, we see that 1, s2m−1d /2øl2m,2m−1 and thusl2m is in the
egion S2m defined by Eq.(24). This implies F2msl2md.2. It follows from the assumptio
inhm2+2k2,m2+4k2j.0 that l2.0 and 2 cosf2pÎl2gø2. Therefore, F2msl2md
h0, ±2,2 cosf2pÎl2gj. From Theorem 2, the reduced Hamiltonian system(44) cannot have a

dditional integral, which is analytic and functionally independent ofH̃1 in a connected neighbo
ood ofhG1,hjh0,« in I1. Then, the hypotheses of Lemma 1 are satisfied and hence Theorem
een proven. j

. Application to small m cases

We apply Theorem 3 to some cases of smallm. For these cases, we can give explicit co
ions on the parametersmk andkk such thatW1sXd−h=0 has 2m distinct roots for anyh.0. If we

2
ntroduce a new variableY=X , we have the algebraic equation
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FmsYd = o
r=1

m

ArY
r − h = 0, s56d

nstead of the equationW1sXd−h=0, whereAr is defined by

Ar =
1

2r
sm2r + 22rk2rd. s57d

he equationW1sXd−h=0 has 2m distinct roots for anyh.0 if and only if FmsYd=0 hasm
istinct roots for anyh.0. In what follows, we consider the cases ofm=2, 3, and 4.

Corollary 1: Suppose that m=2 and N=4n snPNd. If parametersmk,kk, k=2,3,4satisfy tha
inhm2+2k2,m2+4k2j.0, m4ù0, k4.0, and m3=0, then periodic nonlinear lattice (1) wi
otential functions (2) and (3) is nonintegrable in the sense of Theorem 3.

Proof: The discriminantDsF2d of the polynomialF2 is calculated as

DsF2d = A1
2 + 4A2h. s58d

ince A1.0 and A2.0, DsF2d.0 holds for anyh.0. This implies thatF2sYd=0 has two
istinct roots for anyh.0. Therefore, the hypotheses of Theorem 3 are satisfied and the co
as been proven. j

The FPU lattice corresponds to the case ofm2=m3=m4=0. Corollary 1 shows that ifk2,k4.0
hen the FPU lattice is nonintegrable.

Corollary 2: Suppose that m=3 and N=4n snPNd. If parametersmk,kk, k=2,3,… ,6 satisfy
hat minhm2+2k2,m2+4k2j.0, m6ù0, k6.0, m3=m5=0, and −Î3A1A3,A2ø2ÎA1A3, then
eriodic nonlinear lattice (1) with potential functions (2) and (3) is nonintegrable in the sen
heorem 3.

Proof: The discriminantDsF3d is calculated as

DsF3d = − 27A3
2h2 + 2A2s2A2

2 − 9A1A3dh + A1
2sA2

2 − 4A1A3d. s59d

f DsF3dÞ0 holds for anyh.0, thenF3sYd=0 has three distinct roots for anyh.0. The dis
riminantDsF3d is simply a quadratic function ofh. In Eq. (59), A1.0 andA3.0 because of th
ssumptionsm2+4k2.0, m6ù0, andk6.0. It is easily confirmed thatDsF3d,0 holds for any
.0 if A1,A3.0 and −Î3A1A3,A2ø2ÎA1A3. Then, the hypotheses of Theorem 3 are sati
nd the Corollary has been proven. j

Corollary 3: Suppose that m=4 and N=4n snPNd. If parametersmk,kk, k=2,3,… ,8 satisfy
hat minhm2+2k2,m2+4k2j.0, m8ù0, k8.0, m3=m5=m7=0, and 108A1

2A4
2+27sA3

2

4A2A4dA1A3+s32A2A4−9A3
2dA2

2.0, then periodic nonlinear lattice (1) with potential functio
2) and (3) is nonintegrable in the sense of Theorem 3.

Proof: SinceF4sYd is a quartic function withA1,A4.0, it has two distinct real roots and
air of two complex conjugate roots forh.0 if F4sYd is a unimodal function on the realY axis

or h=0, i.e., if dF4sYd /dY=0 has only one real root. The derivative dF4sYd /dY is a cubic
unction and the discriminant of dF4sYd /dY is given by

DsdF4/dYd = − 4f108A1
2A4

2 + 27sA3
2 − 4A2A4dA1A3 + s32A2A4 − 9A3

2dA2
2g. s60d

he equation dF4sYd /dY=0 has only one real root whenDsdF4/dYd,0. SinceDsdF4/dYd,0
olds from the assumption, it follows thatF4sYd=0 has four distinct roots for anyh.0. Then, the
ypotheses of Theorem 3 are satisfied and the corollary has been proven. j

CKNOWLEDGMENTS

One of the authors(K.Y.) would like to thank the members of NTT Communication Scie

aboratories for their continual encouragement.

                                                                                                            



o,

1

1

1

J. Math. Phys., Vol. 45, No. 12, December 2004 Nonintegrability of nonhomogeneous lattices 4639

                        
1S. L. Ziglin, Funct. Anal. Appl.16, 181 (1983).
2S. L. Ziglin, Funct. Anal. Appl.17, 6 (1983).
3H. Yoshida, Physica D29, 128 (1987).
4H. Yoshida, A. Ranmani, and B. Grammaticos, Physica D30, 151 (1988).
5H. Ito, Kodai Math. J.8, 120 (1985).
6H. Ito, J. Appl. Math. Phys.38, 459 (1987).
7E. Fermi, J. Pasta, and S. Ulam, inCollected Papers of E. Fermi, edited by E. Segré(University of Chicago, Chicag
1965).

8M. Toda,Theory of Nonlinear Lattice(Springer, Berlin, 1981).
9H. Yoshida, Phys. Lett. A141, 108 (1989).
0K. Umeno, Phys. Lett. A190, 85 (1994).
1K. Umeno, Physica D94, 116 (1996).
2H. Yoshida, Commun. Math. Phys.116, 529 (1988).
                                                                                                            



T
a

I

variant
a int-
p ons
o
w aces is
n ponds to
a fore, the
N ace. As
s system
w

that the
N n can be
c the
w
s of
i s in the
d wledge
o ts
w a, and—
a hysi-
c

n of the
N ould be
a ns that
i ebra of
i ndence
p
q cal and
t truction
r
c certain
c r modes

a

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 12 DECEMBER 2004

0

                        
he invariant charges of the Nambu–Goto string
nd canonical quantization
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It is shown that the algebra of diffeomorphism-invariant charges of the Nambu–
Goto string cannot be quantized in the framework of canonical quantization. The
argument is shown to be independent of the dimension of the underlying
Minkowski space. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1776644]

. INTRODUCTION

The action of the Nambu–Goto string is a generalization of the reparametrization-in
ction of the relativistic particle ind-dimensional Minkowski space, where instead of a po
article, a one-dimensional extended object(a string) is considered. Correspondingly, the soluti
f the equations of motion are surfaces swept out by the string in space–time(called world-sheets)
hich are extremal with respect to the Minkowski metric. The parametrization of these surf
ot fixed by the equations of motion, and, hence, a change of the parametrization corres
symmetry transformation which does not change the physical state of the system. There
ambu–Goto string is a system with gauge group given by the diffeomorphisms of a surf
uch, it provides an interesting model to study the fundamental problem of quantizing a
ith gauge freedom given by the diffeomorphism group.

For closed strings, the world-sheet is tube-shaped. It was shown especially in this case
ambu–Goto string can be treated as an integrable system and that its integrals of motio
onstructed from a suitably defined monodromy.1 These integrals of motion are functionals on
orld-sheet which are invariant under arbitrary reparametrizations(gauge transformations) and as
uch are observable quantities. They form a graded Poisson algebra,2,3 the Poisson algebra

nvariant charges, and were shown to be complete in the sense that, up to translation
irection of its total energy-momentum vector, the string can be reconstructed from the kno
f the invariant charges and the infinitesimal generators of boosts.4 In this scheme, the constrain
hich are present in the system enter as a condition on the representation of the algebr
long with conditions regarding Hermiticity and positivity of the energy—distinguish its p
ally meaningful representations.

The algebra of invariant charges provides the starting point of the algebraic quantizatio
ambu–Goto string.1 This scheme is based on the idea that the correspondence principle sh
pplied to physically meaningful quantities only, which in a theory with gauge freedom mea

t is applicable only to gauge-invariant observables. In this spirit, the graded Poisson alg
nvariant charges of the Nambu–Goto string is quantized by application of the correspo
rinciple, replacing the Poisson brackets by commutators and allowing for particular(observable)
uantum corrections which are restricted by demanding structural similarity of the classi

he quantum algebra. So far, it does not seem at all likely that in this scheme an obs
egarding the dimensiond of the underlying Minkowski space should appear(other thand.2). In
ontrast to this, the canonical quantization of the Nambu–Goto string is consistent only in
ritical dimensions. Here, the correspondence principle is assumed to hold for the Fourie

)
Electronic mail: bahns@mail.desy.de

4640022-2488/2004/45(12)/4640/21/$22.00 © 2004 American Institute of Physics
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f some particular parametrization, i.e., for quantities which are not observable. It leads
ell-known construction of Fock space which contains the physically relevant states as
pace.

In this paper, which is an exposition of results gained some years ago,5 it is shown tha
anonical quantization does not yield a representation of the algebra of invariant charges
hort exposition of known results regarding the algebraic approach to the quantization
ambu–Goto string2,3,6 in the following two sections, the fourth section contains an investig
f the canonical quantization and its application to the algebra of invariant charges. It is

hat unobservable anomalies arise in the defining relations of the algebra in 3+1 dimens
ec. V it is then shown that the problem cannot be cured by adjusting the dimension
nderlying Minkowski space.

I. THE POISSON ALGEBRA OF INVARIANTS

In the Hamiltonian formalism, the fact that the world-sheet is independent of the par
arametrization chosen to describe it becomes manifest in the appearance of two prim
traints which are the infinitesimal generators of gauge transformations(reparametrizations). The
anonical momentapm and positionsxm, m=0, . . . ,d−1 are not independent of each other, and
anonical Hamilton function vanishes. Following Dirac’s treatment of systems with constra
otal HamiltonianHT is introduced which is a linear combination of the two primary constr
ith two Lagrangian multipliersa andb. Here, we specialize to the case wherea andb do not
epend on the original degrees of freedomxm andpm. The dynamics of the string is thus govern
y the gauge freedom only, and fixing the two Lagrangian multipliers corresponds to fi
auge. It follows that integrals of motion ofHT are gauge-invariant quantities, i.e., invar
harges which do not depend on the parametrization. In Ref. 1 it was shown that by trea
tring as an integrable system, such invariant charges arise as(symmetric polynomials of) the
igenvalues of a monodromy matrix of a system of linear differential equations whose c

bility condition (a “zero curvature condition”) is equivalent to the equations of motion of
tring.

It is convenient to express the equations of motion as well as the constraints in terms
nd right moversum

±st ,sd=pmst ,sd± s1/2pa8d]sxmst ,sd, m=0, . . . ,d−1, where 1/2pa8 is the
tring tension. Here, a foliation is chosen such that]txmst ,sd is a timelike vector and]sxmst ,sd
s spacelike,sP f0,vstdd, wherevstd is the period of the string’s parametrization(as a function
f s at fixedt). The constraints are then equivalent to demanding thatu± be lightlike. With left
nd right movers, an invariant charge is given by the following explicit expression,

Zm1¯mN

± st,sd =
def

Rm1¯mN

± st,sd + Rm2¯mNm1

± st,sd + ¯ + RmNm1¯mN−1

± st,sd

=E
s

s+vstd

ds8um1

± st,s8dRm2¯mN

± st,s8d, s1d

here

Rm1¯mN

± st,sd =E
s

s+vstd

ds1mm1

± st,s1dE
s

s1

ds2um2

± st,s2d ¯ E
s

sN−1

dsNumN

± st,sNd. s2d

rom the equations of motion of the monodromy matrices(see Ref. 3), one finds

]sRm1¯mN

± st,sd = um1

± st,sdRm2¯mN

± st,sd − Rm1¯mN−1

± st,sdumN

± st,sd,

]tRm1¯mN

± st,sd = sa ± bdst,sd]sRm1¯mN

± st,sd, s3d
uch that, indeed,
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]sZm1¯mN

± st,sd = ]tZm1¯mN

± st,sd = 0. s4d

nother way to express the fact that the functionalsZ are gauge invariant is that they Poiss
ommute with the total Hamiltonian,hZm1¯mN

± ,HTj0=0. Here, the Poisson bracket is derived fr
he canonical Poisson brackethxm ,pnj0, such that(for fixed t, where w.l.o.g.vstd=2p and with
he periodicd-distributiond2p),

hum
±st,sd,un

±st,s8dj0 = ±
1

2pa8
2hmn]sd2pss − s8d, all others 0. s5d

he invariant charges form a Poisson algebra with respect to this bracket.2,3 From the knowledg
f the invariants, together with the generators of boosts, the string can be reconstructe

ranslations in the direction of its total energy-momentum vector and, in this sense, the in
harges are complete.4 (The ambiguity is due to the fact that the construction of theZ relies only
n ]sx, not onx itself. If the string splits into different parts or if two strings collide,7 an absolut
osition, the splitting or meeting point, enters.)

Let us now turn to an exposition of the structure of the Poisson algebra of invariant ch6

n invariant chargeZm1¯mN
can be split into a sum of so-called homogeneous invariantsZm1¯mN

sKd

f orderK=1, . . . ,N, which arise from powers of the logarithm of the monodromy matrices2,3 and
re themselves invariant under arbitrary reparametrizations,

Zm1¯mN

± = o
K=1

N

Zm1¯mN

±sKd .

he only invariant charge of orderK=1 is the total momentum,Zm
−s1d=Zm

+s1d=rds1um
±st ,s1d

Pm. It is the only invariant charge which is an element of both the algebra built from left m
nd the one built from right movers, and it Poisson-commutes with all(homogeneous) invariant
harges. In what follows, only massive strings will be considered, whereP2=m2, and we pass t
he rest frame of the string wherePm=sm ,0 , . . . ,0d, m.0. By (5), the algebra built from le

overs and the one built from right movers Poisson-commute with one another, and their s
onstants differ only by signs. It is therefore sufficient to analyze the right mover part(referred to
sh) only. Analogous results then hold also for the left mover part. The algebrah is graded unde

he action of the Poisson bracketh· , ·j which, compared to the canonical one, is rescaled
actor 2pa8,

h = %
,=0

`

V,shd, hV,1,V,2j , V,1+,2, V,1 ·V,2 , V,1+,2+1, , = N − K − 1, s6d

here eachV, is finite dimensional as a vector space. A parity operator is defined onh which
ssigns positive(negative) parity to an invariant which contains an even(odd) number of spacelik

ndices. EachV, splits up into a direct sum of a space with evensV+
,d or oddsV−

,d parity (one of
hich may be trivial). The vector spaceV0 is sd−1d-dimensional and forms a subalgebra isom
hic to the Lie algebra sosd−1d, the Lie algebra of the stabilizer group ofPm. All vector spacesV±

,

re invariant under the Poisson action ofV0, and, therefore, each of them carries a linear re
entation of sosd−1d and can be decomposed into a direct sum of isotypical components(corre-
ponding to different spins and parities).

By a well-scrutinized conjecture, which has been proved ford=3 up to degree,=7, any
nvariant charge can be expressed as a polynomial in certain standard invariants, and the
f standard invariants in each levelV, is known. It was shown, however, in Refs. 2 and 3
ome invariant charges, the so-called exceptional elements, cannot be expressed in termPois-
on bracketsof standard invariants of lower degrees. Moreover, a major complication

nvestigation ofh is that taking a Poisson bracket of two standard invariants, one in g
btains not only a standard invariant, but, additionally, a linear combination ofproductsof other

tandard invariants, whence the standard invariants do not form a Lie algebra. In fact, it was
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hown that there is no algebraic basis which would renderh as the enveloping algebra of aLie
lgebra.2,3 Instead, it is necessary to generateh by (multiple) Poisson bracketsas well asby
roducts of a set of generating invariant charges. The generating invariant charges do n
enerateh, and relations(other than those given by antisymmetry and the Jacobi identity) between
multiple) Poisson brackets and products persist. Their number at given degree, is equal tom,

n,, wheren, is the number of standard invariants inV, and m, is the number of Hall-bas
lements inV, which can be built from standard invariants of lower degree than,, see Ref. 6.(A
all-basis contains only such Poisson brackets as cannot be transformed into each
ntisymmetry or by the Jacobi identity.)

In what follows,d=4 spacetime dimensions are considered and some of the structural
ained in Ref. 6 is reproduced. The set of generating invariants ind=4 is given by 3+14 invar
nts from V0 and V1, respectively, which generate a subalgebraU of h, together with th
modified) exceptional elementsB0

s,d, ,=1,3,5, . . .,which form an Abelian subalgebra ofh,
nd act semidirectly onU. In the present investigation only,ø2 will be considered, whe
hese claims were proved rigorously. Employing an angular momentum(or rather a spin) basis
e0,e±=s1/Î2dse1± ie2d ,e3j in R4, we obtain the following generating invariants for the ve
pace basis ofV0:

J1,1=
− 1

4m
siZ0+3

s2d − iZ03+
s2d d, J1,0=

− 1

4m
siZ0+−

s2d − iZ0−+
s2d d, J1,−1=

− 1

4m
siZ0−3

s2d − iZ03−
s2d d.

s a vector space,V1 is spanned by

sJ1
2d0, B0

s1d, S1 andsJ1
2d2, T2, S2,

hich are multiplets of so(3) with spin J=0, 1, and 2, respectively, with the 14 genera
nvariants given by

B0
s1d = Z0−0+

s2d +
1

2
Z0303

s2d ,

T2 = hT2,mum= − 2, . . . ,2j with T2,−2=
1

2
Z00−−

s2d ,

S2 = hS2,mum= − 2, . . . ,2j with S2,−2= iZ03−−
s2d , s7d

S1 = hS1,mum= − 1, . . . ,1j with S1,−1= Z0+−−
s2d − Z0−33

s2d ,

with ihJ1,±1,Xj ,mj = ±
1
Î2

Îs j ± m+ 1ds j 7 mdXj ,m±1,

nd where

ere, the Clebsch–Gordan coefficientsk j ,mu j1,m1; j2,m2l are defined with conventions of Co
on and Shortley. The action ofJ1,1 respects the parity, the tensor rankN, as well as the orderK,
nd, hence, the basis elements with higher magnetic numbers thanm=−J are indeed again inva

nts of the same parity, tensor rankN=4 and orderK=2, whose explicit form can be calculated
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sing(5) (or the closed formulas for Poisson brackets of invariant charges given in Refs. 2).
omplex conjugation yields an involution on the algebra, and the phases of the generating
nts are chosen such that form=0 they are real,Xj ,m

* =s−1dmXj ,−m.
The vector space basis ofV2 is again given by products and Poisson brackets of the a

enerating invariant charges. By(6), such Poisson brackets can only be single brackets built
lements ofV1. The number of standard invariants inV1 being 14,12 ·14·13=91 such brackets c
e formed, if the antisymmetry of the bracket is taken into account(no dependences from t
acobi identity arise, since no multiple brackets appear). The number of standard invariants inV2

eing 40, 51 algebraic relations between these brackets persist, which by the above rem
lso involve products of generators. They were given in Ref. 6 and are reproduced in Appe
he relations, which are real, are organized in nine multiplets, and it follows that only

elations are truly independent, while the others can be produced by the action ofV0.

II. ALGEBRAIC QUANTIZATION BY CORRESPONDENCE

The basic idea of the algebraic approach is that the correspondence principle is ph
eaningful only forobservable(i.e., gauge-invariant) quantities. Since it provides an alternative

he canonical quantization scheme of the Nambu–Goto string, the general idea is reproduc
f. Ref. 6. The classical Poisson algebra with commutative multiplication is to be deformed
ssociative algebra, where Poisson brackets are replaced by commutators and certain
orrections are admitted, which are restricted by demanding structural similarity of the c
nd the quantum algebra(see below). In particular, it is required that the number of indepen
elations should not be changed. In principle, this quantization scheme is applicable in a
imensions, but the calculations used in this paper have been performed in 1+3 dimensio

rst step, it is assumed that(dimensionless) quantum generatorsJ\̂1, T\̂2, S\̂2, S\̂1, B\̂0
s,d, ,=1,3, . . .

xist which correspond to the classical ones(when scaled by factorss" /2pa8d,+1). The quantum
ersion of a classical relation at order, is then obtained as follows:

i) Replace each rescaled Poisson bracket by a commutatorf· , ·g (multiplied with a facto
2pa8 / i") without changing the order of the bracket’s entries. The action ofV0 on highe
levelsV, remaining the same, this replacement can be done for the full multiplet. R
the multiplication by anticommutatorsh· , ·j (multiplied with a factor1

2).
ii ) By construction, the resulting relation consists of(anti-)commutators of the dimensionle

generators, multiplied by a global factors" /2pa8ds,+1d. Now quantum corrections are a
mitted which have the same spin and parity as the relation under consideration bu
lower degree. They enter the relation multiplied by an appropriate positive power o" as
well as with parameters which respect the reality property of the relation and are re
by the structural similarity conditions(see below).

As an example, we consider the classical relation withJP=1− involving B0
s1d,

hB0
s1d,S1j1 = − i6Î2

5
hT2,S2j1 + 2Î3

5
hT2,S1j1 − 24Î3

5
sJ1 ·S2d1 + i12Î2sJ1 ·S1d1,

here Poisson brackets and products are multiplets of spinJ=1 as given in formulas(A1) and
A2) in Appendix A. This relation is replaced by

fB\̂0
s1d,S\̂1g1 = − i6Î2

5
fT\̂2,S\̂2g1 + 2Î3

5
fT\̂2,S\̂1g1 − i12Î3

5
hJ\̂1,S\̂2j1 − 6Î2hJ\̂1,S\̂1j1 + idS\̂1

ith a real (in fact, rational) parameterd and multiplets of(anti-)commutators with spinJ=1.
ote that in quantum relations,h· , ·j denotes the anticommutator, not the Poisson bracket. L
ow consider the requirement of structural similarity of the classical and the quantized
hich puts restrictions on these parameters. In order to compare two relations, they ha

rought into some standard form, and the multiplication now being noncommutative, it is clear
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hat in doing so, one may pick up correction terms of lower order, for instance(see Ref. 6),

hhAj1
,Bj2

j j,Cj3
jJ = o

k

s− dk+j2+j3Îs2j + 1ds2k + 1d ·Ss− d j+1H j2 j1 j

j3 J k
JffAj 1

,Cj 3
gk,Bj 2

gJ

+ H j1 j2 j

j3 J k
JhhBj2

,Cj3
jk,Aj1

jJD
ith 6j-symbolsh: : : j (the correction term is printed in boldface letters). By this mechanism, ne
ependences between these lower order correction terms may arise, which do not p
lassical analog. It has been shown explicitly up to the fifth degree6,8 that these dependences
e trivially fulfilled or can be reduced to old dependences by fixing the parameters in the q
elations in a suitable way. In,=2, all but one(which appears in the relation withJP=1+) have
een shown to be trivial. The elements of the quantized algebra are again referred to as
bles.

In Refs. 9 and 10 it was shown that a quantization which is consistent with the relations
o far is possible to all orders,, provided that certain hypotheses concerning the classical a
as sketched in the preceding section) are true. There, ana posteriori approach was pursue
amely to use an explicit infinite dimensional embedding Lie algebra whose elements
ecessarily invariant under reparametrizations, but which is distinguished by the fact t
tricted to its reparametrization invariant elements, it provides a concrete realization of th
um algebra of observables found in Ref. 6.

V. CANONICAL QUANTIZATION

The canonical quantization of the Nambu–Goto string is by far more popular than t
roach described above. Its virtue is that it is much simpler. On the other hand, it ha
ndesirable features, for instance, to name but two, the appearance of a critical dimension

mpossibility to fully implement the constraints. While the general theory of strings has b
volved into an elaborate theory in its own right and has moved away from the original N
oto action, it is still worthwhile to consider the fundamental question whether, in the prese

he alternative approach of algebraic quantization, the canonical quantization scheme i
apture the reparametrization invariance of the Nambu–Goto string. It is the aim of the fol
ections to show that the Fourier modes of an arbitrary parametrization do not provide a
tarting point for the quantization of the algebra of invariant charges.

. Classical Fourier modes

In order to fix the notation, the well-known decomposition of left and right moversum
±,

=0, . . . ,d−1, into Fourier modes is reproduced here,

um
−st,sd = pmst,sd −

1

2pa8
]sxmst,sd =

Pm

2p
+

m

2p
o
n.0

sam
nstdeins + am

−nstde−insd

s8d

um
+st,sd = pmst,sd +

1

2pa8
]sxmst,sd =

Pm

2p
+

m

2p
o
n.0

sbm
nstde−ins + bm

−nstdeinsd,

ith sam
−nd* = am

n and sbm
−nd* = bm

n . The zero modesam
0 and bm

0 are equal toPm /m, since the
ositions’ zero mode is independent ofs and hence vanishes in]sx. Note that in the conform
auge, where 2pa8pst ,sd=]txst ,sd, the components’ dependence ont is given as follows:

am
±nstd = am

±ne7int andbm
±nstd = bm

±ne7int. s9d

n what follows, the dependence ont is suppressed, and we writeam
±n for am

±nstd. With convention

s above, we find the following(un-rescaled) Poisson brackets,

                                                                                                            



a r
c at certain
p ples are
t aborated
i des:
I ise
f

w ss of
g ombi-
n

(
(

(

nations
o t
t

I ined
o e
p

ly men-
t lowing
d

w

4646 J. Math. Phys., Vol. 45, No. 12, December 2004 Dorothea Bahns

                        
ham
m,an

−nj0 = −
4p

2pa8m2inhmndm,n and hbm
m,bn

−nj0 = −
4p

2pa8m2inhmndm,n, s10d

ll others 0. It is important to bear in mind that, apart from the zero modePm /m, the Fourie
oefficients depend on the chosen parametrization. Nonetheless, it is of course possible th
olynomials in the coefficients are independent of the parametrization. Prominent exam

he generators of the Poincaré group. Moreover, as was analyzed in Ref. 4 and further el
n Ref. 11, theclassicalinvariant chargesZ can be expressed as polynomials of Fourier mo
nserting the decomposition(8) in (1), we find(for the left mover part of the algebra, and likew
or the right mover part)

Zm1. . .mN
=

mN

s2pdN o
n1=−`

`

¯ o
nN=−`

`

am1

n1
¯ amN

nN R ds1e
in1s1E

s1

s1+2p

ds2e
in2s2

¯ E
s1

sN−1

dsNeinNsN

=
mN

s2pdN o
n1=−`

`

¯ o
nN=−`

`

am1

n1
¯ amN

nN o
K=1

N
s2pdK

sK − 1d! S1

i
DN−K

Cn1¯nN

fK,Ng ,

here, by(4), the starting point of the last integration is irrelevant, and where, without lo
enerality,vstd=2p. Following Ref. 11, the iterated integrals are replaced by a sum over c
atorial factorsCn1¯nN

fK,Ng with the following properties:

i) cyclic symmetry inn1, . . . ,nN
ii ) recursion relation:

Cn1¯nN

fK,Ng =
1

nN
sCn1¯nN−2nN−1+nN

fK,N−1g − Cn1+nNn2¯nN−1

fK,N−1g d for nN Þ 0,

iii )

Cn1¯nN

fN,Ng = dn1,0¯ dnN,0 andC0¯0
fK,Ng = dK,N.

Due to the recursion relation, the combinatorial coefficients are in general linear combi
f products of Kronecker symbols(with rational coefficients). It follows from the definitions tha

he Fourier decomposition of homogeneous invariants is given as follows,

Zm1¯mN

sKd =
mN

s2pdN−K

1

sK − 1d! S1

i
DN−K

o
n1=−`

`

¯ o
nN=−`

`

am1

n1
¯ amN

nNCn1¯nN

fK,Ng . s11d

t is important to note that the degree,=N−K−1 of the homogeneous invariant can be determ
nly by the inverse power of the factor 2p (minus 1), while its tensor rankN is encoded in th
ower of the massm. The rest system is implemented by requesting thatam

n=0=dm,0.
The reader is assumed to be familiar with the canonical approach and hence it is on

ioned that the decomposition of left and right movers into Fourier modes leads to the fol
ecomposition of the constraints:

0 < pa8su−d2
¬ o

n=−`

`

L̄neins, 0 < pa8su+d2
¬ o

n=−`

`

L−neins,

n n̄
hereL andL are generators of(two copies of) the Witt algebra.
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. Normal ordering of the invariant charges

In the canonical quantization procedure, the correspondence principle is applied to th(non-
bservable) Fourier modes. They are replaced by operators on Fock space, with positive
orresponding to annihilation operators, and negative modes corresponding to creation o
such that in the conformal gauge,e−int, n.0, belongs to an annihilation operator). Zero mode
orrespond to multiples of the identity and normal ordering is used to define monom
perators. The Poisson brackets(10) are replaced by commutatorss1/i"df· , ·g, such that

fam
m,an

−ng = "
4p

2pa8m2nhmndm,n and fbm
m,bn

−ng = "
4p

2pa8m2nhmndm,n, s12d

ll others 0. The consequences of this quantization procedure for the Witt algebra are well
t yields a nontrivial central extension of it, the so-called Virasoro algebra, and, due t
ppearance of the central charge, it is not possible to define the physical subspace of

pace as the kernel of all generators :Ln: and :L̄n:, but only of those withnù−1 (alternatively o
hose withnø1). For later use, the explicit form of a generator withn.0 is reproduced here,

:L̄n: =
a8

2
mP · an +

a8

4
m2o

m=1

n−1

am · an−m +
a8

2
m2o

m=1

`

a−m · an+m, s13d

he dot · denoting Lorentz products. Application of the canonical quantization procedu
omogeneous invariant chargeZm1¯mN

sKd as in (11) renders a normally ordered counterpart

:Zm1¯mN

sKd : =
mN

s2pdN−K

s− idN−K

sK − 1d! o
n1=−`

`

¯ o
nN=−`

`

:am1

n1
¯ amN

nNCn1¯nN

fK,Ng :. s14d

he combinatorial factors are to be calculated in such a manner that after evaluation
ronecker symbols no indices with relative signs(for instance,n1−n2 with n1, n2.0) arise in
rder to simplify the distinction between positive, negative and zero modes, and lengthy c

ions then yield homogeneous invariant charges expressed in terms of annihilation and
perators(for those needed in what follows, see Appendix B).

In this section, the dimension of the underlying space–time has so far been arbitrary.
ttempt to quantize the algebra of observables canonically, let us again specialize to 1+3
ions and proceed as follows: in a first step, the normally ordered quantum analogs of the
eneratorsJ1, T2, S2, S1 andB0

s,d are calculated by application of formula(14). Next, we conside
he zeroth levelV0 as well as the action ofV0 on the other levelsV,, where the rescaled Poiss
rackets are replaced by commutators multiplied by 2pa8 / i". By Appendix B, we find for th
enerators ofV0:

:J1,−1: = −
m2

4p
o
n=1

`
1

n
sa−

−na3
n − a3

−na−
nd, :J1,0: = −

m2

4p
o
n=1

`
1

n
sa+

−na−
n − a−

−na+
nd,

:J1,+1: = −
m2

4p
o
n=1

`
1

n
sa+

−na3
n − a3

−na+
nd.

bviously, commutators of the form

fam
−nan

n, :polynomial ina ’ s:g, n . 0,

an only yield normally ordered terms, and we may conclude that the action ofJ1,m remains
nchanged. Therefore,V0 as well as the multiplet structure ofV, is not affected by the quan
ation prescription. Regarding the quantum relations in higher degrees,, one now proceeds

ollows. Write all terms of the classical relation(in terms of the appropriate multiplets) on the left
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and side of an equation. Replace all generators by their normally ordered counterparts,
escaled Poisson brackets and products as described in Sec. III. The commutators are th
ted by application of the derivation rule. Finally, all resulting terms are brought into normal
rom the classical relation it follows that in leading order the result is 0, but from the proc

eordering, quantum corrections may arise.
Explicitly, the relations which form the starting point of the calculations are the followi

P = 4−:
2pa8

"
f:T2:,:S2:g4 = 0 + anomalies,

P = 3+ sid:
2pa8

"
f:T2:,:T2:g3 + i

2pa8

"
f:S2:,:S1:g3 + 16s:J1:

3d3 = 0 + anomalies,

sii d:
2pa8

"
f:S2:,:S2:g3 − i2

2pa8

"
f:S2:,:S1:g3 − 4h:J1:,:T2:j3 − 48s:J1:

3d3 = 0 + anomalies,

P = 3−:
2pa8

"
f:T2:,:S2:g3 − i

2pa8

"
f:T2:,:S1:g3 + 4h:J1:,:S2:j3 = 0 + anomalies,

P = 2−:
2pa8

"
f:T2:,:S2:g2 +

i

3
Î7

2

2pa8

"
f:T2:,:S1:g2 −

2

3
Î14h:J1:,:S2:j2 = 0 + anomalies,

P = 1+:
2pa8

"
f:S2:,:S2:g1 + iÎ2

3

2pa8

"
f:S2:,:S1:g1 +

1

6
Î5

2pa8

"
f:S1:,:S1:g1 − 8Î2

3
h:J1:,:T2:j1

− 16Î 2

15
h:J1:,s:J1:

2d0j1 +
"2

s2pa8d2 f Î10:J1: = 0 +anomalies,

nd for the action of :B0
s1d:,

JP = 2+:
2pa8

"
f:B0

s1d:,:T2:g2 − iÎ6
2pa8

"
f:S2:,:S1:g2 = 0 + anomalies,

JP = 1−:
2pa8

"
f:B0

s1d:,:S1:g1 + i6Î2

5

2pa8

"
f:T2:,:S2:g1 − 2Î3

5

2pa8

"
f:T2:,:S1:g1

+ 12iÎ3

5
h:J1:,:S2:j1 + 6Î2h:J1:,:S1:j1 = 0 + anomalies,

JP = 2−:
2pa8

"
f:B0

s1d:,:S2:g2 + i2Î2

3

2pa8

"
f:T2:,:S1:g2 − i2Î2

3
h:J1:,:S2:j2 − i6h:J1:,:S1:j2

=0 + anomalies.

ote that(as in the case of algebraic quantization) there is no need to use an anticommutator if
oupling to spinJ in a products:J1:

ndJ is unique.
The observablequantum correction +s"2/ s2pa8d2dfÎ10:J1:, found in Ref. 6 for the relatio

ith JP=1+, was added to the left hand side of the equation(in normally ordered form) in order to
implify the comparison with the algebraically quantized relations: if they were reproduced
anonical approach, all right hand sides would be identically 0(with the parameterf fixed).
owever, as we shall see below, we will find anomalies which destroy the algebraic struc

he algebrah. What is worse, the anomalies neither possess reparametrization-invariant c
ounterparts, nor can they be written in terms of Virasoro generators.

. Anomalies for ø=2

Let us start with some general considerations as to which anomalies are to be expecte
2 s2d s2d
elations in V . First we note that commutatorsf:Zm1. . .m4

: , :Zn1. . .n4
: g yield at most2+2−1
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nnihilation operators and as many creation operators. Likewise, we find at most three ann
nd three creation operators in productsm−1:Z0m1m2

s2d : :Zn1. . .n4

s2d : andm−3:Z0m1m2

s2d : :Z0n1n2

s2d : :Z0r1r2

s2d :,
espectively(see Appendix B). Now, reordering terms with at most three annihilation and t
reation operators, we derive a quantum correction consisting of at most two annihilation a
reation operators, and reordering such terms finally yields quantum corrections consisti
ost one annihilation and one creation operator. The expressions possess the following
nits:

Order Unitss,=2d

leadings=0d
2pa8

"

m8

s2pd4

"2p

2pa8m2 =
m6

s2pd3

first reordering
m6

s2pd3

"2p

2pa8m2 =
m4

s2pd2

"

2pa8

second reordering
m4

s2pd2

"

2pa8

"2p

2pa8m2 =
m2

2p

"2

s2pa8d2

hich makes sense asm4/ s2pd2 is the unit of an element ofV1, and m2/ s2pd is that of an
lement ofV0. By the canoncial commutation relationss12d, either two spacelike or tw
imelike indices are contracted, whence the parity is unchanged by reorderings. The an
ill again arise as multiplets of sos3d, such that it suffices to calculate the anomalies for fi
agnetic quantum numberm=−J. In fact, the possible anomalies for each relation ca
redicted. For example, the only possible quantum correction withm=−4 would be

−
s·da−

s·da−
s·da−

s·d, which, however, has positive parityP and hence cannot appear in the rela
ith JP=4−. While many of the possible anomalies arise somewhere in the course
alculation, most of them cancel and only some remain in the end.

The calculations are performed for fixed but arbitrary summation indices and, at interm
teps, involve several thousand terms.(The convergence problem of the infinite series of oper

s ignored, since the sole purpose of this investigation is the comparison with the ordinary
al approach, where these questions likewise do not play a role.) It is therefore necessary to u
omputer algebra, and the program packageMATHEMATICA was employed(for an explanation o
he devised routines, see Ref. 5). In the course of the calculation, some simplifications have
one by hand, such as

o
n1,n2.0

3

n1n2
am

−n1−n2an
n1an

n2 + o
n1,n2.0

4

n1sn1 + n2d
am

−n1−n2an
n1an

n2 + o
n1,n2.0

2

n2sn1 + n2d
am

−n1−n2an
n1an

n2

= o
n1,n2.0

− n1 + n2

n1n2sn1 + n2d
am

−n1−n2an
n1an

n2 = 0,

r

o
n1,n2.0

1

n1n2
am

−n1−n2an
n1an

n2 = o
n1,n2.0

2

n1sn1 + n2d
am

−n1−n2an
n1an

n2.

n order to check the manipulations, it was calculated that indeed, the leading order term

elations yield 0. The results of the calculation are
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P Anomalies form=−J

− 0

+ sid
"

2pa8

m4

s2pd2 o
n,m.0

− 8

nm
sa−

−na−
−ma−

ma3
n − a3

−na−
−ma−

ma−
nd

sii d
"

2pa8

m4

s2pd2 o
n,m.0

20

nm
sa−

−na−
−ma−

ma3
n − a3

−na−
−ma−

ma−
nd

− "

2pa8

m4

s2pd2 o
n,m.0

4i

nm
s2a0

−na−
−ma−

ma−
n − 2a−

−na−
−ma−

ma0
n + a−

−na−
−ma−

n+m − a−
−n−ma−

na−
md

− 0

+
"

2pa8

m4

s2pd2

1
Î10

80

3 So
n.0

1

n2sa3
−na−

n − a−
−na3

nd + o
n,m.0

1

sn + md2sa3
−n−ma−

n+m − a−
−n−ma3

n+mdD
nd similar results were found for the relations involvingB0

s1d ssee Appendix Cd. In addition to
he anomalies given above, the following term appeared in the relation withJP=1+ for
=−1,

"2

s2pa8d2

m2

2p

1
Î10

64

3 o
n.0

1

n
sa3

−na−
n − a−

−na3
nd,

hence we deduce thatf =−128/30. Note that this is not consistent with the result found lat
he method presented in Ref. 10.

The anomalies in the relation withJP=1+ can be rewritten in the following way. Since th
re n−1 possibilities to writeN{n.0 as a sum of two natural numbersni .0, the following

dentity holds:

o
n1,n2.0

1

sn1 + n2d2Xsn1+n2d = o
n.0

n − 1

n2 Xn,

nd the anomalies forJP=1+ can be simplified to yield

"

2pa8

m4

s2pd2So
n.0

1

n2sa3
−na−

n − a−
−na3

nd + o
n.0

S1

n
−

1

n2Dsa3
−na−

n − a−
−na3

ndD
=

"

2pa8

m4

s2pd2 o
n.0

1

n
sa3

−na−
n − a−

−na3
nd =

"

2pa8

m4

p
:J1,−1:. s15d

t first sight, this is surprising, since after once reordering an expression inV2 we would no
xpect an element ofV0 to arise(but rather one ofV1). However, as was remarked in Sec. IV
he tensor rank of an expression in terms of annihilation and creation operators(or Fourier com
onents) is given by the power ofm in the expression, while the corresponding degree, is given
nly by the negative power of 2p in the expression minus 1(which is correctly given here b

0
=2−1). We should therefore not think of the above expression as an element ofV , but rather as
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n anomaly with,=1, accidentally having a similar form asJ1,−1PV0. It is illustrative to explic
tly retrace how this term arises.

Remark 1:The term(15) is part of the following commutator:

2pa8

"
f:Z0−++

s2d :,:Z03−−
s2d :g, s16d

hich appears in the relation withJP=1+, m=−1.
Proof: First note that by(7) this commutator appears infS2,S1g1,−1 and, hence, is indeed p

f the relation under consideration. Now, in the homogeneous invariants :Zm1. . .m4

s2d :, terms of the
ollowing form appear,

m4

s2pd2dm1,0 o
n1.0

o
n2.0

1

n1sn1 + n2d
sam2

−n1−n2am4

n1am3

n2 + am4

−n1am3

−n2am2

n1+n2d,

uch that a commutators2pa8 /"df:Zm1¯m4

s2d : , :Zn1¯n4

s2d : g yields (among other terms)

m8

s2pd4

2pa8

"
o

n1,n2.0
o

m1,m2.0

1

n1sn1 + n2dm1sm1 + m2d
am2

−n1−n2am4

n1fam3

n2 ,an4

−m1gan3

−m2an2

m1+m2

=
2m6

s2pd3 o
n1,n2.0

o
m2.0

hm3n4

n1sn1 + n2dsn2 + m2d
am2

−n1−n2am4

n1an3

−m2an2

n2+m2.

ence from(16) we find the contribution

−
m6

4p3 o
n1,n2,m2.0

1

n1sn1 + n2dsn2 + m2d
a−

−n1−n2a+
n1a−

−m2a3
n2+m2,

hich by normal ordering yields the anomaly

−
m6

4p3 o
n1,n2,m2.0

1

n1sn1 + n2dsn2 + m2d
fa+

n1,a−
−m2ga−

−n1−n2a3
n2+m2

=
"

2pa8

m4

p2 o
n1,n2.0

1

sn1 + n2d2a−
−n1−n2a3

n1+n2

nd in the same manner we find

−
"

2pa8

m4

p2 o
n1,n2.0

1

sn1 + n2d2a3
−n1−n2a−

n1+n2.

j

Let us now turn to an interpretation of the anomalies.

. Unobservability of the anomalies

First we note that in the conformal gauge(9) the anomalies are independent oft. However, no
nvariant chargesZ. . . correspond to the anomalies, and it can even be shown directly th

nomalies do not in general correspond to classical functionals on the world-sheet which are
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nvariant under changes of the parametrization. To see this, we rewrite the anomalies in
ompact manner as multiplets of so(3). To that end, the following operators are defined:

A2,m: is symmetric in the coordinate indices, since for the Clebsch–Gordan coefficients w
2, ±1u1, ±1;1,0l=k2, ±1u1,0;1, ±1l and k2,0u1,−1;1,1l=k2,0u1,1;1,−1l.

An elementary calculation now shows that the anomalies can be written as follows:

P Anomalies

− 0

− sid
"

2pa8
8h:J1:,:A2:j3

sii d −
"

2pa8
20h:J1:,:A2:j3

−
"

2pa8
4ih:R1:,:A2:j3 + “more”

− 0

+
"

2pa8

1
Î10

80

3

m2

p
:J1:

ith anticommutatorsh· , ·j j ,m again coupled to spinj and magnetic quantum numberm, and
heresstilld f =−128/30. Here, the term “more” in a relation indicates that further anom

erms appear which involve mixed summation indices such asn+m and for which no furthe
s1d
implification has been found. Similarly, for the relations involvingB0 ,
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P Anomalies

+ −
"

2pa8
4Î6h:J1:,:A2: j2

− −
"

2pa8
2Î6ih:R1:,:A2: j2 + “more”

− −
"

2pa8
12Î3

5h:R1:,:A2: j1 + “more” +
"2

s2pa8d212:R1:

here the anomaly of second order in the relation withJP=1− appears when the norma
rdered anomaly term is written as the anticommutatorh:R1: , :A2: j1.

We are now prepared to state the main result of the present investigation.
Remark 2:The classical symmetric monomialsA2,m which correspond to the products :A2,m:

re not observable.
Proof: Consider a left moverum which is written in terms of classical Fourier modes(8) and

plit it into its negative, positive, and null modes,

umssd =
m

2p
o
n.0

am
neins +

m

2p
o
n.0

am
−ne−ins +

m

2p
am

0
¬ um

pssd + um
nssd + um

0 ,

nd calculate the following integral, which is symmetrized in the coordinate indicesm andn,

or m and n spacelike, the term~ vanishes in the rest system and, hence, the productsA2,m:
which contain spacelike indices only) are linear combinations of integrals of the formIsm ,nd.

ˆ
ow consider a change of parametrizations→s. Then the integral overun is invariant:
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E
s0

s

ds1fun
pss1d + un

nss1d + un
0g =E

s0

s

ds1unss1d =E
ŝ0

ŝ

dŝ1ûnsŝ1d =E
ŝ0

ŝ

dŝ1fûn
psŝ1d + ûn

nsŝ1d + un
0g.

ere, we have used that the zero modesan
0 are independent of the parametrization. Note tha

plitting of û into positive and negative modes has to be done with respect to the new par
ation. In contrast to this, the difference of positive and negative modes does not in
ossess the correct behavior under reparametrizations,

E
s0

s

ds1fun
pss1d − un

nss1dgÞ
i.g.E

ŝ0

ŝ

dŝ1fûn
psŝ1d − ûn

nsŝ1dg. s17d

o see this, consider the following counter example. Given a left mover with

u0ssd = 1, henceu0
pssd = u0

nssd = 0,

he left hand side of(17) is zero, while this is not true in general for the right hand side. Con
he reparametrizations→ ŝ with s= fsŝd, where

eis =
eiŝ − w

w̄eiŝ − 1
with fixed w, uwu , 1, w = uwueix.

n more technical terms, consider the unit disk,C, whose boundary corresponds to the str
hen the above defines an automorphism of the disk which maps the boundary of the disk
hile respecting its orientation. Therefore, it does indeed define a parametrization. Obviou
ave

ds = s1 − uwu2d
dŝ

s1 − w̄eiŝds1 − we−iŝd
,

nd, hence, the transformedû0sŝd is given as

û0sŝd = u0sfsŝdd
dfsŝd

dŝ
=

1 − uwu2

s1 − w̄eiŝds1 − we−iŝd
.

n particular, the zero modeû0
0sŝd=u0

0ssd=1 is invariant, while for positive and negative modes
xplicit calculation yields

û0
psŝd = s1 − uwu2do

lù1
So

nù0
uwu2nDuwule−ilxeil ŝ,

û0
nsŝd = s1 − uwu2d o

lø−1
S o

nùul u
uwu2nDuwule−ilxeil ŝ.

e may thus conclude that while the left hand side of(17) is zero, the right hand side yields

E
ŝ0

ŝ

dŝ1fû0
psŝ1d − û0

nsŝ1dg = s1 − uwu2do
lù1

So
nù0

uwu2nuwule−ilxeil ŝ − eil ŝ0

il

− o
nùl

uwu2nuwu−leilxe−il ŝ − e−il ŝ0

− il D Þ 0

or generalŝÞ ŝ0+2p. Therefore, the productsA2,m are not invariant under general reparam
ations. j

An alternative proof of the above remark is to show that theclassicalmonomial correspond
ng to an anomaly does not Poisson-commute with the generators of the Witt algebra. For i

2 −n n l̄
or the Poisson bracket ofA2,−2=sm /2pdos1/nda− a− andL , l ù2, we find the following term,
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− o
m=1

l−1

a−
ma−

l−m,

nd similarly forl ø−2. Since the anomalies cannot be written as functions of the constraint
o not even vanish weakly(on the physical subspace) and we may conclude that not even in
ense, the invariant charges in 3+1 dimensions can be represented as a subalgebra of th
ial algebra of normally ordered annihilation and creation operators.

To conclude, it is emphasized that the anomalies are not multiples of the identity, and
ore, canonical quantization does not merely yield a central extension of the algebra of in
harges.

. ANOMALIES APPEAR IN ANY DIMENSION

The calculations in the preceding section were performed in ad=3+1 dimensional back
round. A natural objection would be to claim that in some critical dimension, the problem
e absent. This, however, is not the case.

From the relation ind=3+1 with JP=2+ involving the exceptional elementB0
s1d, we can

educe that in arbitrary dimensionsd, commutators of normally ordered invariant charges wi
eneral yield anomalies which do not correspond to classical reparametrization-invariant

ies. This follows directly from the fact that the relation under consideration for, say,m=−2 can
lso be read independently of the dimensiond as follows:

1
2f:Z0−0+

s2d : + 1
2:Z0303

s2d :,:Z00−−
s2d :g − f:Z0−33

s2d :,:Z0+−−
s2d :g + f:Z0+−−

s2d :,:Z0−33
s2d :g − 2f:Z03−−

s2d :,:Z0−3+
s2d :g

= −
"

2pa8
8S Î2

4m
hi:Z0−3

s2d :− i:Z03−
s2d :,Xj −

1

2m
hi:Z0+−

s2d :− i:Z0−+
s2d :,YjD ,

ith

X =
m2

2p

1
Î2

o
n.0

1

n
sa−

−na3
n + a3

−na−
nd, Y =

m2

2p
o
n.0

1

n
a−

−na−
n,

nd where the basise0, e±=s1/Î2dse1± ie2d, e3, . . ., ed−1 is chosen ind-dimensional Minkowsk
pace.

Although the above may not be one of the defining relations ind dimensions, its classic
ounterpart(where the commutators are again replaced by Poisson brackets and the right h

s set to 0) is an identity in the Poisson algebra of invariant charges for arbitrary dimensiond. The
roof of Remark 2 being independent of the dimension of the underlying space, we deduce
ight hand side of the above still is not observable. Neither is it a function of the Vir
enerators, and hence the algebra of normally ordered invariant charges is no subalgeb
ormally ordered polynomials in annhihilation and creation operators, not even on the p
ubspace and independently of the dimensiond.

It is instructive to consider this result also from the following different point of view.
Remark 3:Consider the commutator of a normally ordered invariant charge :Zm1¯m4

s2d : with a

irasoro generator :L̄n:, n.0. Then from the terms in :L̄n: which involve two annihilation oper
ors, we find anomalies of the following form:

Asi1,i2,i3,i4d = hmi1
mi2

o
n1=1

n−1

sami3

n−n1ami4

n1 + ami3

n1 ami4

n−n1d, s18d

Asi1,i2,i3d = hmi1
mi2

n
sn − 1dami

n . s19d

2 3
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Proof: The claim follows from Appendix B by simple calculations. Anomalies of the f
18) arise from normal ordering expressions such as

o
m1,m2.0

1

m1m2
o
n1=1

n−1

o
n=0

d−1

fan
n−n1,ami1

−m1gan1nami2

−m2ami3

m2ami4

m1

+ o
m1,m2.0

1

m1m2
o
n1=1

n−1

o
n=0

d−1

fan
n−n1,ami2

−m2gan1nami1

−m1ami3

m2ami4

m1 .

ikewise, anomalies of the form(19) arise from normal ordering of expressions

o
m1,m2.0

1

m1sm1 + m2d o
n1=1

n−1

o
n=0

d−1

an1n fan
n−n1,ami1

−m1ami2

−m2gami3

m1+m2

s well as

o
m1,m2.0

1

m1m2
o
n1=1

n−1

o
n=0

d−1

an1n fan
n−n1,ami1

−m1ami2

−m2gami3

m1+m2.

ere, the anomalies turn out to be independent ofn1 such that the sumon1=1
n−1 yields the facto

1
2nsn−1d. j

No other anomalies appear, since one needs at least three operators which are not mu
he identity and at least two creation operators in order to find nontrivial contributions. The l
rder of the commutator is 0, as it corresponds to the classical result(the invariant charge
oisson-commute with the generators of the Witt algebra). From Appendix B one calculates th

he complete set of anomalies is given by

As1,2,3,4d − As1,3,4,2d − As1,3,2,4d + As1,4,3,2d + As2,3,4,1d

− As2,4,3,1d − As2,4,1,3d + As3,4,1,2d

and

− sdm1,0As2,3,4d + dm1,0As4,3,2d + dm2,0As3,4,1d + dm2,0As1,4,3d + dm3,0As4,1,2d

+ dm3,0As2,1,4d + dm4,0As1,2,3d + dm4,0As3,2,1dd

+ sdm1,0As2,4,3d + dm2,0As1,3,4d + dm3,0As2,4,1d + dm4,0As1,3,2dd.

hese anomalies do not vanish in any particular dimension of the underlying Minkowski
either are they functions of the Virasoro generators and hence they do not vanish on the
ubspace. To see that they furthermore do not in general correspond to classical observa
onsider the following example ind dimensions with canonical basise0, . . . ,ed−1:

f:L̄m:,:Z0011:g, mù 2.
ere, a simple calculation shows that the anomalies are proportional to
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2o
n=1

m−1

sa1
m−na1

n − a0
m−na0

nd andmsm− 1dsa0
m − a1

md, s20d

uch that the Poisson bracket ofL̄l with the classicalmomomials corresponding to(20) yields
erms of the form

2o
n=1

m−1

ssm− ndsa1
na1

l+m−n − a0
na0

l+m−nd + nsa1
m−na1

l+m − a0
m−na0

l+mdd

nd

− m2sm− 1dsa1
l+m − a0

l+md.

t follows that the normally ordered invariants do not commute with the generators of the Vi
lgebra, and that, again, the anomalies which arise are neither themselves invariant nor
anish on the physical subspace. Again, they are not simply multiples of the identity, and,
or invariants of higher tensor rank may even be polynomials in annihilation and creation
ors of arbitrary rank. Hence, the question of whether canonical quantization encodes the
ic content of the Nambu–Goto string has to be answered in the negative.

Similar problems occur when the gauge is fixed to the light-cone gauge. One of the
or the necessity of a critical dimension in the canonical approach is that in this gaug
enerators of the Poincaré group only close as a Lie algebra(at least weakly) in d=26. Calculating

he action of these generators on invariant charges we also find anomalies which, howev
rary to those arising in a commutator of two generators, do not vanish in some critical dim
ence, the canonically quantized invariant charges no longer transform covariantly in t
roach. For details, see Ref. 5.

The results presented here show that the canonical approach and the algebraic quantiz
nequivalent. This means, in particular, that the usual Fock space does not yield a suitab
entation of the algebra of invariant charges. Lately, a representation providing an altern
he Fock space construction was proposed in Ref. 12.

To conclude, some comments on the relation between the algebra of the invariant cha
he so-called DDF operators13 seem to be appropriate. Since the latter commute with all Vira
enerators(in the conformal gauge), they are sometimes considered to provide a “cano
lgebra of invariant quantities.” However, the crucial point is that theconstruction rulesfor a
enuine invariant quantity must be gauge-independent. This requirement is met by the al

nvariant charges: regardless of whether one starts from a conformal or from some other
trization, the rules for the construction of the algebra of invariant charges are the same(and the
harges are invariant under arbitrary reparametrizations). In contrast to this, the construction of
DF operators relies on choosing the conformal gauge, and, hence, by the above crite
DF operators are not genuinely invariant.

Note added.In the meantime, a construction of classical DDF-like operators independe
articular gauge has been given and it was shown that the classical invariant charges
ritten as functionals of these operators.14 One main difficulty in using these operators a
tarting point for quantization is to show that Lorentz symmetry can be kept after quantiz
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PPENDIX A: THE CLASSICAL RELATIONS AT ø=2

JP = 4−: 0 = hT2,S2j4,

JP = 3+: 0 = hT2,S2j3 + ihS2,S1j3 − i16sJ1
3d3,

0 = hS2,S2j3 − i2hS2,S1j3 + i8sJ1 ·T2d3 + i48sJ1
3d3,

JP = 3−: 0 = hT2,S2j3 − ihT2,S1j3 − i8sJ1 ·S2d3,

JP = 2−: 0 = hT2,S2j2 +
i

3
Î7

2
hT2,S1j2 + i

4

3
Î14sJ1 ·S2d2,

JP = 1+: 0 = hS2,S2j1 + iÎ2

3
hS2,S1j1 +

1

6
Î5hS1 ·S1j1

+ i16Î2

3
sJ1 ·T2d1 + i32Î 2

15
sJ1 · sJ1

2d0d1.

ction of the exceptional elementB0
s1d:

JP = 2+: hB0
s1d,T2j2 = iÎ6hS2,S1j2,

JP = 2−: hB0
s1d,S2j2 = − i2Î2

3
hT2,S1j2 − i4Î2

3
sJ1 ·S2d2 + 12sJ1 ·S1d2,

JP = 1−: hB0
s1d,S1j1 = − i6Î2

5
hT2,S2j1 + 2Î3

5
hT2,S1j1 − 24Î3

5
sJ1 ·S2d1

+ i12Î2sJ1 ·S1d1.

ere,

sA1d

sA2d

PPENDIX B: NORMALLY ORDERED ALGEBRA ELEMENTS

:Z0i j
s2d: =

m3

2p

1

i o
n.0

1

n
sai

−na j
n − a j

−nai
nd,

:Zm1m2m3m4

s2d : =
m4

4p2 o
n1.0

o
n2.0

1

n1n2
sam1

−n1am2

−n2am3

n2am4

n1 − am1

−n1am3

−n2am4

n2am2

n1 − am1

−n1am3

−n2am2

n2am4

n1

+ am1

−n1am4

−n2am3

n2am2

n1 + am2

−n1am3

−n2am4

n2am1

n1 − am2

−n1am4

−n2am3

n2am1

n1 − am2

−n1am4

−n2am1

n2am3

n1

+ am
−n1am

−n2am
n2am

n1d

3 4 1 2
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−
m4

4p2dm1,0 o
n1.0

o
n2.0

1

n1sn1 + n2d
sam2

−n1am3

−n2am4

n1+n2 + am4

−n1am3

−n2am2

n1+n2 + am2

−n1−n2am4

n1am3

n2

+ am4

−n1−n2am2

n1am3

n2d

−
m4

4p2dm2,0 o
n1.0

o
n2.0

1

n1sn1 + n2d
sam3

−n1am4

−n2am1

n1+n2 + am1

−n1am4

−n2am3

n1+n2 + am3

−n1−n2am1

n1am4

n2

+ am1

−n1−n2am3

n1am4

n2d

−
m4

4p2dm3,0 o
n1.0

o
n2.0

1

n1sn1 + n2d
sam4

−n1am1

−n2am2

n1+n2 + am2

−n1am1

−n2am4

n1+n2 + am2

−n1−n2am4

n1am1

n2

+ am4

−n1−n2am2

n1am1

n2d

−
m4

4p2dm4,0 o
n1.0

o
n2.0

1

n1sn1 + n2d
sam1

−n1am2

−n2am3

n1+n2 + am3

−n1am2

−n2am1

n1+n2 + am1

−n1−n2am2

n1am3

n2

+ am3

−n1−n2am2

n1am1

n2d

+
m4

4p2dm1,0 o
n1.0

o
n2.0

1

n1n2
sam2

−n1am4

−n2am3

n1+n2 + am3

−n1−n2am2

n1am4

n2d

+
m4

4p2dm2,0 o
n1.0

o
n2.0

1

n1n2
sam1

−n1am3

−n2am4

n1+n2 + am4

−n1−n2am1

n1am3

n2d

+
m4

4p2dm3,0 o
n1.0

o
n2.0

1

n1n2
sam2

−n1am4

−n2am1

n1+n2 + am1

−n1−n2am2

n1am4

n2d

+
m4

4p2dm4,0 o
n1.0

o
n2.0

1

n1n2
sam1

−n1am3

−n2am2

n1+n2 + am2

−n1−n2am1

n1am3

n2d

+
m4

4p2dm1,0dm2,0 o
n1.0

1

n1
2sam3

−n1am4

n1 + am4

−n1am3

n1d

− 2
m4

4p2dm1,0dm3,0 o
n1.0

1

n1
2sam2

−n1am4

n1 + am4

−n1am2

n1d

+
m4

4p2dm1,0dm4,0 o
n1.0

1

n1
2sam2

−n1am3

n1 + am3

−n1am2

n1d

+
m4

4p2dm2,0dm3,0 o
n1.0

1

n1
2sam1

−n1am4

n1 + am4

−n1am1

n1d

− 2
m4

4p2dm2,0dm4,0 o
n1.0

1

n1
2sam1

−n1am3

n1 + am3

−n1am1

n1d

+
m4

4p2dm3,0dm4,0 o
n1.0

1

n1
2sam1

−n1am2

n1 + am2

−n1am1

n1d.
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PPENDIX C: THE ANOMALIES FOR THE RELATIONS INVOLVING B0
„1…

P Anomalies withm=−J

+
"

2pa8

m4

s2pd2 o
n,m.0

4

nm
s2a−

−na+
−ma−

ma−
n − 2a−

−na−
−ma+

ma−
n + a3

−na3
−ma−

ma−
n − a−

−na−
−ma3

ma3
nd

− "

2pa8

m4

s2pd2 o
n,m.0

4i

nm
s2a−

−na3
−ma0

ma−
n − 2a−

−na0
−ma3

ma−
n + a0

−na−
−ma3

ma−
n − a−

−na−
−ma3

ma0
n

+ a0
−na3

−ma−
ma−

n − a−
−na3

−ma−
ma0

nd

+
"

2pa8

m4

s2pd2 o
n,m.0

4i

nsn + md
s− 2a3

−na−
−ma−

n+m + 2a−
−n−ma3

na−
m + a−

−na−
−ma3

n+m

− a3
−n−ma−

na−
ms + a−

−na3
−ma−

n+m − a−
−n−ma−

na3
md

− "

2pa8

m4

s2pd2 o
n,m.0

4

nm

3

5
s6a0

−na−
−ma−

ma+
n − 6a+

−na−
−ma−

ma0
n+ 3a0

−na−
−ma3

ma3
n − 3a3

−na−
−ma3

ma0
n

+ 3a0
−na3

−ma−
ma3

n − 3a3
−na3

−ma−
ma0

n− 2a0
−na3

−ma3
ma−

n + 2a−
−na3

−ma3
ma0

n+ a0
−na−

−ma+
ma−

n

− a−
−na−

−ma+
ma0

n+ a0
−na+

−ma−
ma−

n − a−
−na+

−ma−
ma0

nd

+
"

2pa8

m4

s2pd2 o
n,m.0

4

nsn + md
3

5
s6a+

−na−
−ma−

n+m − 6a−
−n−ma+

na−
m+ 3a3

−na3
−ma−

n+m

− 3a−
−n−ma3

na3
m+ 3a3

−na−
−ma3

n+m − 3a3
−n−ma3

na−
m− 2a−

−na3
−ma3

n+m + 2a3
−n−ma−

na3
m

+ a−
−na+

−ma−
n+m − a−

−n−ma−
na+

m+ a−
−na−

−ma+
n+m − a+

−n−ma−
na−

md
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technique to identify solvable dynamical systems,
nd another solvable extension of the goldfish
any-body problem
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We take advantage of the simple approach, recently discussed, which associates t
(solvable) matrix equations(solvable) dynamical systems interpretable as(interest-
ing) many-body problems, possibly involving auxiliary dependent variables in ad-
dition to those identifying the positions of the moving particles. Starting from a
solvable matrix evolution equation, we obtain the corresponding many-body model
and note that in one case the auxiliary variables can be altogether eliminated,
obtaining thereby an(also Hamiltonian) extension of the “goldfish” model. The
solvability of this novel model, and of itsisochronousvariant, is exhibited. A
related, as wellsolvable, model, is also introduced, as well as itsisochronous
variant. Finally, the small oscillations of theisochronousmodels around their equi-
librium configurations are investigated, and from their isochronicity certain dio-
phantine relations are evinced. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1809256]

. INTRODUCTION AND SOME RESULTS

Recently we discussed a simple approach which associates to(solvable) matrix equation
solvable) dynamical systems, generally interpretable as(interesting) many-body problems, po
ibly involving auxiliary dependent variables in addition to those identifying the positions
oving particles.16,17 In this paper we apply the same approach to a new(namely, not previousl

onsidered in this context), but againsolvable, matrix evolution equation, and we thereby ob
novel class ofsolvablemany-body models, generally involving auxiliary variables.16 We then

ote that in one case the auxiliary variables can be altogether eliminated, obtaining thereby
olvable extension, see(7) and its isochronousvariant (10), of the “goldfish” many-bod
roblem.13,8,14,15In this section we outline the main findings concerning these models, and i

I we prove them. In Sec. III we introduce an alternative approach, which leads to the ide
ion of anothersolvablemodel, also endowed with anisochronousvariant. In Sec. IV we focus o
he (obviously isochronous) behavior of these twoisochronousmodels around their equilibriu
onfigurations, and we thereby obtain, as a purely mathematical by-product, certaindiophantine
esults(including a conjecture that we test numerically but we have been so far unable to).
ince the equilibrium configuration of the firstisochronousmodel—the one which provides
eneralized version of the goldfishN-body problem—turns out to coincide with the(complex)
erosxn of the generalized Laguerre polynomialLN

s−2N−1dsxd the first class ofdiophantinerelations
nvolves these zeros. The second class involves less exotic numbers. Some additional rem
roffered in Sec. V. A more detailed analysis of the behavior of this extended “goldfish” m

ncluding the explicit display of its solution in the three cases with only one, only two and
hree particles, will be presented in a separate paper.19

)
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The starting point of the treatment is thesolvablematrix evolution equation

Ü = asU̇U + UU̇d. s1d

ere theN^ N matrix U;Ustd is the dependent variable, the independent variablet (“time” ) is
eal and superimposed dots indicate derivatives with respect to it;a indicates ascalar constant
hich might of course be eliminated by a trivial rescaling of the dependent or indep
ariables, although we prefer not to do so in order to keep track of the contributions comin
he(nonlinear) right-hand side of this matrix evolution equation,(1), and also to maintain open t
ption to seta to zero, going thereby back to the standard goldfish many-body problem and
esults.16,17,13

It is easily seen that thegeneralsolution of this matrix evolution equation,(1), reads

Ustd = a−1fcossAtd − BA−1 sinsAtdg−1fA sinsAtd + B cossAtdg, s2ad

hereA andB are two arbitraryconstant N̂ N matrices. In terms of the initial-value problem
he matrix evolution equation(1) clearly (2a) entails

Us0d = a−1B, U̇s0d = a−1sA2 + B2d, s2bd

nd these two matrix equations can be inverted to yield

A2 = − a2fUs0dg2 + aU̇s0d, B = aUs0d. s2cd

ote that the explicit expression(2a) entails that the matrixUstd is actually a function of th
atrix A2 rather thanA.

As shown in Sec. II, thesolvablemany-body problem related to thesolvablematrix evolution
quation(1) is characterized by the following Newtonian equations of motion:

z̈n = 2ażnzn − 2 o
m=1,mÞn

N

szn − zmdMnmMmn, s3ad

szn − zmdṀnm+ 2sżn − żmdMnm= aszn
2 − zm

2 dMnm+ o
,=1;,Þn,m

N

szn + zm − 2z,dMn,M,m

− szn − zmdMnmsFn − Fmd, n Þ m. s3bd

heN coordinateszn;znstd denote the positions of theN moving particles, theNsN−1d “auxiliary
ariables”Mnm;Mnmstd evolve according to the system ofNsN−1d first-order ODEs(3b), and the
“source terms”Fn can be assigned as arbitrary functions of time, or even of the other dep

ariableszm andMm, without spoiling the solvable character of the model. Here and throu
ndices liken,m,, range from 1 toN unless otherwise indicated.

An interesting redefinition of the auxiliary variables obtains by setting

Mnm= szn − zmd−1sżnżmd1/2unm s4d

as already mentioned in Ref. 16 this assignment is suggested by the form of the Lax
ntroduced in Ref. 7). The equations of motion(3) of the many-body model take thereby the fo

z̈n = 2ażnzn + 2 o
N

żnżm

zn − zm
unmumn, s5ad
m=1,mÞn
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u̇nm+
żn − żm

zn − zm
unms1 − unmumnd = − o

,=1;,Þn,m

N

ż,Fun,su,m + unmu,nd
zn − z,

+
u,msun, + unmum,d

zm − z,
G

− unmsFn − Fmd, n Þ m. s5bd

ere the auxiliary variables are of course theNsN−1d quantitiesunmstd; and note that, while th
Newtonian) equations of motion(5a) that characterize the evolution of the “particle coordina

nstd follow straightforwardly from(3a) via (4), to obtain the equations(5b) that characterize th
volution of the auxiliary variablesunmstd from (5b) one must use, in addition to(4), the equation
f motion (5a). It is now clear that, forFn=0 (or, equivalently, forFn=F), theNsN−1d evolution
quations(5b) admit the(special) solution

unm= − 1, n Þ m, s6d

ntailing that the Newtonian equations of motion(5a) become then

z̈n = 2ażnzn + 2 o
m=1,mÞn

N
żnżm

zn − zm
. s7d

or a=0 these equations of motion coincide with those of the standard “goldfish” model(see Refs
3, 8, 14, 15, and 17 and the literature quoted there); for aÞ0 they characterize a novelsolvable
xtension of the goldfish many-body problem.

Before discussing the solvability of this model,(7), let us note its Hamiltonian character(see
ef. 14 and the literature quoted there). Indeed the Hamiltonian

H = o
n=1

N H−
a

s
zn

2 + expsspnd p
m=1,mÞn

N

szn − zmd−1J , s8ad

heres is an arbitrary(nonvanishing) constant, yields the Hamiltonian equations

żn =
]H

]pn
= sexpsspnd p

m=1,mÞn

N

szn − zmd−1, s8bd

ṗn = −
]H

]zn
=

1

sH2azn + o
m=1,mÞn

N
żn + żm

zn − zm
J . s8cd

ote that to write more neatly the second set of these Hamiltonian equations,(8c), we used th
rst, (8b). It is then obvious thatt-differentiation of(the logarithm of) the first set of Hamiltonia
quations(8b), yields, via the second set(8c), just the Newtonian equations of motion(7), dem-
nstrating thereby their Hamiltonian character.

The solution of the initial-value problem for this many-body model,(7), is given by the
ollowing result(proven in Sec. II): the coordinatesznstd are theN eigenvalues of theN^ N matrix
2a) with

sA2dnm= − dnma2zn
2s0d + afżns0dżms0dg1/2, Bnm= dnmazns0d. s9d

ere dnm is the standard Kronecker symbol,dnm=1 if n=m, dnm=0 if nÞm. These formula
ndicate that theN^ N matrix B is diagonal, while theN^ N matrix A2 is the sum of a diagon

atrix and a dyadic matrix.
Via the standard trick(outlined at the end of this section; for more detailed and ge

reatments see, for instance, Refs. 10, 12, and 14) the following variant of the model(7) is

btained:
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z̈n − 3ivżn − 2v2zn = 2asżn − ivzndzn + 2 o
m=1,mÞn

N
żnżm − ivsżnzm + żmznd − v2znzm

zn − zm
. s10d

ere and throughoutv is a real (for definiteness,positive) constant, and because of the way
-modified system is obtained from(7) all its nonsingular solutions are completely periodic w
eriod,

T =
2p

v
, s11d

r with an integer multiple of this basic period. Indeed the solutionsznstd of these equations

otion, (10), are theN eigenvalues of thev-modified matrixŨstd defined as follows:

Ũstd = expsivtdUstd, t =
expsivtd − 1

iv
, s12ad

here the matrixUstd is defined by(2a) (of course witht replaced byt), but now with

Ũs0d = a−1B, Ũs0d = a−1sA2 + B2d + ivŨs0d, s12bd

ntailing

A2 = − a2fŨs0dg2 + aŨs0d − iavŨs0d, B = aŨs0d. s12cd

n terms of the initial-value data for the model(10) these expressions read

sA2dnm= − dnma2zn
2s0d + ahfżns0d − ivzns0dgfżms0d − ivzms0dgj1/2,

Bnm= dnmazns0d. s12dd

ote that the assertion made above about the complete periodicity ofall the nonsingular solution
f the system(10) is implied by the assertion made now about the solution of this system, s

s clear that the matrixŨ is periodic in the time variablet with periodT, see(11), (12a), and(2a).
his incidentally allows to consider this generalized goldfish model,(10), as describing an asse
ly of “nonlinear harmonic oscillators.”18 The behavior of this system in the neighborhood o
quilibrium configuration is discussed in Sec. IV.

Finally let us emphasize that the solutionsznstd of the generalized goldfish model(10) are
ecessarilycomplex(for positivev, v.0) and that these equations of motion can be reformu
sreal andcovariantequations describing the motion in the(horizontal) plane ofN particles the
ositions of which there are identified by thereal two-vectorsrWn related to thecomplexnumbers

n by the standard11,12,16relations

zn = xn + iyn, a = ax − iay, s13ad

rWn = sxn,yn,0d, aW = sax,ay,0d, k̂ = s0,0,1d, s13bd
hich entail that the equations of motion(10) read then as follows:
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rẄn − 3vk̂ ∧ rẆn − 2v2rWn = 2frẆnsaW · rWnd + rWnsaW · rẆnd − aWsrẆn · rWndg − 2vk̂ ∧ f2rWnsaW · rWnd − aWrn
2g

+ 2 o
m=1,mÞn

N

rnm
−2hrẆnsrẆm · rWnmd + rẆmsrẆn · rWnmd − rWnmsrẆn · rẆmd − vk̂ ∧ frẆnsrWm · rWnmd

+ rẆmsrWn · rWnmd − rWnsfrẆn + rẆmg · rWmd + rWmsfrẆn + rẆmg · rWmdg + v2frWnrm
2 − rWmrn

2gj,

s13cd

here we use the short-hand notationrWnm; rWn−rWm entailingrnm
2 =rn

2+rm
2 −2rWn·rWm. This equation i

ovariant[thanks to the definition(13) of a; note the minus sign there], but it is not rotation
nvariant because the constant two-vectoraW identifies a preferred direction in the plane.

Before closing this section let us, for completeness, outline how theisochronousmodel(10) is
btained from(7), which to this end we rewrite here in the following(merely notationally)
odified guise:

zn9 = 2azn8zn + 2 o
m=1,mÞn

N
zn8zm8

zn − zm
, s14d

herezn;znstd and appended primes indicate of course differentiations with respect to the(com-
lex, see immediately below) independent variablet. We then set

znstd = expsivtdznstd, t =
expsivtd

iv
. s15d

nd it is then easily verified that(14) implies (10).

I. SOLUTION TECHNIQUE

The point of departure of our treatment is theN^ N matrix equation(1). We then introduce th
arametrization of theN^ N matrix Ustd in terms of itsN eigenvaluesznstd and of its diagona

zing N^ N matrix Rstd,

U = RZR−1, s16ad

Z = diagfzng. s16bd

ut before proceeding to obtain the evolution equations implied by(1) for the diagonal matrixZstd
nd for the diagonalizing matrixRstd, or rather(see below) for the matrixMstd defined in terms o
std by the formula

M = R−1Ṙ, s17d

et us note that the formulas(16) define the matrixR only up to multiplication from the right b
n arbitrary diagonal matrix, say

D = diagfdng, s18d

ince replacing in(16a) R with

R̃= RD s19d

s clearly of no consequence. The corresponding “gauge transformation” of the matrixM,

M̃ = R̃−1R̃
˙

= D−1MD + D−1Ḋ, s20ad
amely
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M̃nn = Mnn +
ḋn

dn
, s20bd

M̃nm= dn
−1Mnmdm, n Þ m, s20cd

ntails that in our parametrization of theN^ N matrix Ustd [via (16) with (17)] the N2 matrix
lements of this matrix get replaced by theN elementsznstd of the diagonal matrixZstd [namely by

he N eigenvalues of the matrixUstd: see(16)] and by theNsN−1d off-diagonal elementsMnmstd
with nÞm) of the N^ N matrix Mstd, while theN diagonal elementsMnnstd can be arbitraril
djusted by choosing appropriately the elementsdnstd of the diagonal matrixDstd, see(20b) [of
ourse, up to a corresponding adjustment of the corresponding off-diagonal elements, se(20c)].

Differentiation of (16a) with respect to the independent variablet yields, using(17),

U̇ = RhŻ + fM,ZgjR−1, s21ad

Ü = RhZ̈ + fṀ,Zg + 2fM,Żg + fM,fM,ZggjR−1. s21bd

ere and throughout we use of course the standard notationfX,Yg;XY−YX for the commutato
f two matrices.

The treatment in this section has been up to now identical to that of Ref. 16(it is reported her
o make this paper self-contained). We now insert these formulas,(16) and (21), in the matrix
volution equation(1) and we thereby obtain theN^ N matrix evolution equation,

Z̈ + fṀ,Zg + 2fM,Żg + fM,fM,Zgg = ahsŻ + fM,ZgdZ + ZsŻ + fM,Zgdj, s22d

namely, by separating the diagonal and off-diagonal terms, precisely the system(3), where we
made the notational assignment

Mnn ; Fn s23d

nd, consistently with the observation made above, we retain the freedom to assign ar
heseN quantitiesFn.

All the other findings reported in Sec. I follow sufficiently straightforwardly not to req
dditional elaboration here.

Of course alternative assignments, different from(4), could be made.16 For instance th
ntroduction of the new auxiliary variablesgnmstd in place ofMnmstd via the natural position16

Mnm= szn − zmd−2gnm, n Þ m, s24d

ransforms the equations of motion(3) into

z̈n = 2ażnzn − 2 o
m=1,mÞn

N
gnmgmn

szn − zmd3 , s25ad

ġnm− aszn + zmdgnm= − o
,=1;,Þn,m

N

gn,g,mfszn − z,d−2 − szm − z,d−2g − gnmsFn − Fmd, n Þ m.

s25bd

ut, for aÞ0, there is no choice of the arbitrarily assignable quantitiesFn that is consistent wit
etting rid of the auxiliary variablesgnm (in the sense of making them time independent).

Before ending this section we like to reiterate16 that the approach presented here is
ltogether new, see, for instance, the following papers: Refs. 4, 25, 20, 26–29, 23, 5, 6, 2

, and 17.
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II. AN ALTERNATIVE APPROACH

In this section we describe an alternative approach(see, for instance, Sec. 2.3 of Ref. 14). Let
sz,td be a monic polynomial of degreeN in the(complex) variablez, and let us denote withcmstd

ts coefficients and withznstd its zeros[which will be eventually identified with the coordinates
he particles evolving according to the Newtonian equations of motion(7)]:

csz,td = p
n=1

N

fz− znstdg = zN + o
m=1

N

cmstdzN−m. s26d

ote that this formula implies the relation

c1std = − o
n=1

N

znstd. s27d

We now recall the relations[that obtain by logarithmic differentiation of the representatio
sz,td via its zeros, see(26); or see the Eqs.(2.3.2–8, 11) of Ref. 14],

ctsz,td = − csz,tdo
n=1

N

fz− znstdg−1żnstd, s28d

hat clearly implies[via (27)]

zctsz,td − ċ1stdcsz,td = csz,tdo
n=1

N

fz− znstdg−1h− znstdżnstdj s29ad

nd

cttsz,td = csz,tdo
n=1

N

fz− znstdg−1H− z̈nstd + 2 o
m=1,mÞn

N
żnstdżmstd

znstd − zmstdJ . s29bd

ere and below subscripted variables denote of course partial differentiations.
It is clear from these formulas,(29), that the equations of motion(7) imply that the polyno

ial (26) satisfy the PDE

cttsz,td − 2afzctsz,td − ċ1stdcsz,tdg = 0, s30d

nd clearly this PDE, via the(second) relation (26), entails the system of ODEs,

c̈m − 2aċm+1 + 2aċ1cm = 0, s31ad

upplemented with the “boundary conditions”

c0 = 1, cN+1 = 0. s31bd

ote that(31a) is trivially satisfied form=0 [see(31b)], and that it can be integrated once
=1 yielding

c2 =
1

2
c1

2 +
1

2a
sċ1 + Cd, s32d
hereC is an integration constant. Insertion of this expression ofc2 in (31a) with m=2 yields
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ċ3 = S 1

2a
D2

ĉ1 +
c̈1c1 + 2ċ1

2 + Cċ1

2a
+

1

2
ċ1c1

2, s33d

he right-hand side of which is however not an exact differential. Alternatively one could
rom m=N [which yields, see(34), the Schrödinger-type linear equation

c̈N + 2aċ1cN = 0, s34d

ith cNstd playing the role of eigenfunction andċ1std playing the role of “potential”] and work al
he way down by solving sequentially(but only formally) the series of second-order, nonhom
eneous, linear ODEs forcmstd with m=N−1,N−2, . . . ,arriving in the end, form=1, to a highly
onlinear(integrodifferential) equation forc1std.

Clearly the fact that the system(31) is solvableis far from trivial. It is obviously implied b
he results described above, since the coefficientscmstd can be explicitly written in terms of th
erosznstd (see, for instance, Sec. 2.3.1 of Ref. 14); in particular(26) and (16) clearly entail the
elations

c1std = − tracefUstdg, cNstd = s− dN detfUstdg s35d

ith the N^ N matrix Ustd evolving according to(2a).
The isochronousvariant of this system,(31), can be obtained by first rewriting it in t

ollowing guise:

gm9 − 2agm+18 + 2ag18gm = 0, g0 = 1, gN+1 = 0 s36d

ith gm;gmstd, and by then setting

cmstd = expsimvtdgmstd, t =
expsivtd − 1

iv
. s37d

t reads

c̈m − is2m+ 1dvċm − msm+ 1dv2cm − 2afċm+1 − ism+ 1dvcm+1g + 2afċ1 − ivc1gcm = 0,

c0 = 1, cN+1 = 0. s38d

Again, the isochronouscharacter of thegeneral solution of this system, implied by o
reatment, is a nontrivial finding(up to the observation that all true mathematical results are in
rivial).

A detailed discussion of the behavior of thesesolvablesystems of ODEs,(31) and (38), as
ell as(7) and(10), for small values ofN is postponed to a separate paper.19 In the next sectio
e consider the behavior of theisochronousmodels,(10) and (38), in the neighborhood of the
quilibrium configurations.

V. EQUILIBRIUM CONFIGURATIONS OF THE ISOCHRONOUS MODELS, SMALL
SCILLATIONS AND DIOPHANTINE RELATIONS

In this section we discuss the equilibrium configuration of the two(clearly related) isochro-
ousmodels characterized by the equations of motion(10) and (38), as well as the behavior
hese systems in the neighborhood of their equilibrium configurations. In this manner w
btain some results for “remarkable matrices,” following an approach already employed
ast in analogous contexts, see for instance Refs. 1, 9, and 14 and the references cited
The equilibrium configuration
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znstd = z̄n, żnstd = 0 s39ad

f the system(10) is clearly characterized by the following system ofN algebraic equations whic
etermine(up to permutations) the N unknownsz̄n:

1 = iS a

v
Dz̄n + o

m=1,mÞn

N
z̄m

z̄n − z̄m

. s39bd

his suggests setting

z̄n = S iv

2a
Dxn. s40d

his notation is convenient to make contact with other results; the reader should of cour
hat the numbersxn introduced here have nothing to do with the real parts of the quantitieszn, see
13). Indeed theseN numbersxn need not be real; they satisfy theN algebraic equations

xn = − 2 + 2 o
m=1,mÞn

N
xm

xn − xm
, s41ad

r equivalently

xn = − 2N + 2 o
m=1,mÞn

N
xn

xn − xm
, s41bd

nd can therefore be identified as theN zeros of the generalized Laguerre polynom

N
s−2N−1dsxd,

LN
s−2N−1dsxnd = 0. s41cd

[Let us provide, for completeness, a proof of this result(not new, see Refs. 1 and 9 and
iterature quoted there). The (conveniently normalized) generalized Laguerre polynomial

s− dNN!LN
s−2N−1dsxd ; xsxd = o

m=0

N
sN + md!xN−m

sN − md!m!
s42d

s characterized by the ODE

xx9sxd − sx + 2Ndx8sxd + Nxsxd = 0, s43d

hile its representation via its zeros,

xsxd = p
n=1

N

sx − xnd s44ad

ntails clearly[by logarithmic differentiation; or see the Eqs.(7), (12), and(13) of Sec. 2.3.2 o
ef. 14]

x8sxd = xsxdo
n=1

N

sx − xnd−1, s44bd

xx8sxd − Nxsxd = xsxdo
N

sx − xnd−1xn, s44cd

n=1
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xx9sxd = xsxdo
n=1

N

sx − xnd−12 o
m=1,mÞn

N

sxn − xmd−1xn, s44dd

here the appended primes denote of course differentiations. It is then clear that the inse
hese three formulas in(43) entails(41b).

Let us now consider the behavior of ourisochronoussystem(10) in the neighborhood of i
quilibrium configuration. To this end we set

znstd = z̄n + «wnstd, s45d

nd we then insert this assignment in the equations of motion(10) treating« as a small paramete
e thus get thelinearizedequations of motion

ẅn − 3ivẇn − 2v2wn = 2az̄nsẇn − 2ivwnd + 2 o
m=1,mÞn

N F− ivsz̄mẇn + z̄nẇmd
z̄n − z̄m

+
v2sz̄m

2 wn − z̄n
2wmd

sz̄n − z̄md2 G ,

s46ad

amely

ẅI + ivGI ẇI + v2LI wI = 0. s46bd

ere and throughout this section, to underline the vector and matrix character of our fo
-vectors are denoted bylower caseunderlinedletters, hencewI ;wI std denotes theN-vector of
omponentswn;wnstd, and likewiseN^ N matrices are denoted byuppercaseunderlinedletters
n particular the two(constant) matricesGI and LI are defined(componentwise) as follows, via
40), in terms of theN zerosxn of the generalized Laguerre polynomialLN

s−2N−1dsxd:

Gnm= − dnm+ s1 − dnmd
2xn

xn − xm
, s47ad

Lnm= − dnm2F1 + xn + o
,=1,,Þn

N
x,

2

sxn − x,d2G + s1 − dnmd
2xn

2

sxn − xmd2 . s47bd

ote that to simplify the expression of the diagonal part of the matrixGI we used(41a). For an
nalogous simplification of the expression of the diagonal part of the matrixLI see, in the Appen
ix, (A8) with (A2).

The generalsolution of the linear evolution equations(46), is provided by the formula

wI std = o
k=1

2N

ak expsilkvtdvI skd, s48d

here the 2N constantsak are arbitrary[to be determined, in the context of the initial-va
roblem, from the 2N initial data wns0d and ẇns0d], while the 2N numberslk, respectively, th
orrespondingN-vectorsvI skd, are the eigenvalues, respectively, the eigenvectors, of the follo
generalized) N-vector eigenvalue equation[see(46b)]:

− lk
2vI skd − lkGI vI skd + LI vI skd = 0, k = 1, . . . ,2N. s49d

ence the numberslk are the 2N roots of the following equation(polynomial of degree 2N) in l:

detfl21I + lGI − LI g = 0. s50d

ere and throughout 1I denotes of course theN^ N unit matrix, s1I dnm=dnm.
But we already know, from our previous treatment, that the solutions of theisochronou
odel (10) are completely periodicwith period T, see(11). [Actually solutions with a(larger)
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eriod which is an integer multiple ofT can also emerge, due to the exchange of the identity o
igenvalues of the matrixUstd, see (12), through the motion; and some exceptional sing
olutions also exist, in which two or more particles collide at some finite time; but neither
hese two phenomena can occur for thesmall oscillations around the equilibrium configurat
onsidered here.] The same periodicity property must therefore characterize the behavior(48) in
he neighborhood of the equilibrium configuration of this system. We thus arrive at the foll
iophantinefinding: the2N numberslk are all integers. In fact, motivated by this finding and
ome numerical checks, we make the following conjecture.

Conjecture: Let the two N̂ N matricesGI andLI be defined by (47), in terms of the N zeron
f the generalized Laguerre polynomial LN

s−2N−1dsxd, namely the polynomial of degree N char
erized by the ODE (43); then

detfl21I + lGI − LI g = p
k=1

N

fsl − 2kdsl + 2k − 1dg. s51d

t stands to reason that a route to prove this result emerge from the approach(based on generaliz
agrangean interpolation and yielding finite-dimensional representations of the diffe
perator14) employed in Refs. 1 and 9 to obtain analogous results; an outline of this app
hich seems to indicate some progress in this direction, is provided in the Appendix, but

unately it does not quite allow to prove the above conjecture, of the validity of which w
evertheless quite certain, on the basis of numerical checks, see below.

Indeed a relateddiophantineconjecture—more explicit hence more suitable for nume
hecks—is provided below, in the context of the investigation of the behavior of theisochronou
ystem(38) in the neighborhood of its equilibrium configuration,

cmstd = c̄m = S iv

2a
Dm sN + md!

sN − md!m!
. s52d

he fact that this formula provides a time-independent solution of(38) can be easily verified, a
ell as its consistency with(42) and (40).

To study the behavior of the system(38) in the neighborhood of this equilibrium configu
ion, (52), we now set

cmstd = c̄m + «S iv

2a
Dm

hmstd, s53d

nd by treating« as a small parameter we obtain the followinglinearizedsystem for the tim
volution of the quantitieshmstd:

ḧm − is2m+ 1dvḣm + fNsN + 1d − msm+ 1dgv2hm − ivḣm+1

− sm+ 1dv2hm+1 +
sN + md!

sN − md!m!
fivḣ1 + v2h1g = 0,

h0 = 0, hN+1 = 0, s54ad

amely

ḧI + ivCI ḣI + v2LI hI = 0, s54bd

here the two matricesCI andLI are defined(componentwise) as follows:

Cnm= − dnms2n + 1d − dn+1,m + d1m
sN + nd!

, s55ad

sN − nd!n!
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Lnm= dnmfNsN + 1d − nsn + 1dg − dn+1,msn + 1d + d1m
sN + nd!

sN − nd!n!
. s55bd

The generalsolution of this system of linear equations reads

hI std = o
k=1

2N

bk expsilkvtdwI skd, s56d

here the 2N constantsbk are arbitrary[to be determined, in the context of the initial-va
roblem, from the 2N initial data hns0d and ḣns0d], while the 2N numberslk, respectively, th
orrespondingN-vectorswI skd, are the eigenvalues, respectively, the eigenvectors, of the follo
generalized) matrix eigenvalue equation[see(54b)]:

− lk
2wI skd − lkCI wI skd + LIwI skd = 0, k = 1, . . . ,2N. s57d

ence the numberslk are the 2N roots of the following equation(polynomial of degree 2N) in l:

detfl21I + lCI − LI g = 0. s58d

But obviously these numbers coincide with those defined above, see(50). We may therefor
ssert with certainty that they areall integers, and the Conjecture made above can no
eformulated to read

detfl21I + lCI − LI g = p
k=1

N

fsl − 2kdsl + 2k − 1dg. s59d

An even more explicit reformulation of thisdiophantineassertion can be made by tak
dvantage of the expressions(55) and noting that they entail thatl=2 is certainly a root of(58)
ecause the first line of the determinant of orderN in the left-hand side of(58) and (59) is
roportional tol−2. It reads[after factoring out thesl−2d factor]

*
l − 1 +NsN + 1d − 1 0 0 0 0 0 0

g2 f2 h2 0 0 0 0 0

g3 0 f3 h3 0 0 0 0

] 0 0 � � 0 0 0

gn 0 0 0 fn hn 0 0

] 0 0 0 0 � � 0

gN−1 0 0 0 0 0 fN−1 hN−1

gN 0 0 0 0 0 0 fN

* = Fp
k=2

N

sl − 2kdGFp
j=1

N

sl + 2j − 1dG

s60ad

here

fn = sl − n + Ndsl − n − N − 1d, s60bd

gn =
sN + nd!

sN − nd!n!
sl − 1d, s60cd

hn = n + 1 −l. s60dd

xamples of the(true) diophantinerelations entailed, for increasing values ofN, by this formula

ollow:
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U l + 5 − 1

12sl − 1d lsl − 5d
U = sl − 4dsl + 1dsl + 3d = l3 − 13l − 12, s61d

* l + 11 − 1 0

60sl − 1d sl + 1dsl − 6d 3 − l

120sl − 1d 0 lsl − 7d
*

= sl − 4dsl − 6dsl + 1dsl + 3dsl + 5d

= sl − 7dsl − 6dlsl + 1dsl + 11d + 60sl − 1dfsl − 7dl + 2sl − 3dg

= sl − 7dsl − 6dlsl + 1dsl + 11d + 60sl − 6dsl − 1dsl + 1d

= 120sl − 3dsl − 1d + sl − 7dlfsl − 6dsl + 1dsl + 11d + 60sl − 1dg

= l5 − l4 − 43l3 + l2 + 402l + 360, s62d

*
l + 19 − 1 0 0

180sl − 1d sl + 2dsl − 7d 3 − l 0

840sl − 1d 0 sl + 1dsl − 8d 4 − l

1680sl − 1d 0 0 lsl − 9d
*

= sl − 4dsl − 6dsl − 8dsl + 1dsl + 3dsl + 5dsl + 7d

= sl − 8dsl + 1dfsl − 9dsl − 7dlsl + 2dsl + 19d − 60sl − 1ds3l2 − 13l − 42dg

= sl − 4df1680sl − 3dsl − 1d + sl − 9dlsl4 + 11l3 + 9l2 − 179l − 1522dg

= l7 − 2l6 − 98l5 + 100l4 + 2809l3 − 98l2 − 22 872l − 20 160, s63d

*
l + 29 − 1 0 0 0

420sl − 1d sl + 3dsl − 8d 3 − l 0 0

3360sl − 1d 0 sl + 2dsl − 9d 4 − l 0

15 120sl − 1d 0 0 sl + 1dsl − 10d 5 − l

30 240sl − 1d 0 0 0 lsl − 11d
*

= sl − 4dsl − 6dsl − 8dsl − 10dsl + 1dsl + 3dsl + 5dsl + 7dsl + 9d

= sl − 10dsl − 8dsl + 1dsl + 3dfsl − 11dsl − 9dsl + 2dsl + 29d − 420sl − 1dlsl2 − 5l − 18dg

= sl − 4df− 30 240sl − 5dsl − 3dsl − 1d

+ sl − 11dlsl6 + 12l5 − 50l4 − 900l3 + 229l2 + 888l + 120 780dg

= l9 − 3l8 − 186l7 + 378l6 + 11 529l5

− 11 907l4 − 275 584l3 + 11 532l2 + 2 078 640l + 1 814 400. s64d

n these equations we also reported the expressions that are obtained when the determ
omputed by expanding via the first, or the last, line, which only contain two nonvanishing
nd yield relations that also have a nontrivial diophantine character.

The determinant appearing in the left-hand side of(60a) can be somewhat simplified, witho
hanging its value, by performing the similarity transformation that corresponds to multiply
lement in the linen and the columnm by the factorgm/gn, see(60c). Thereby(60) gets replace

y
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*
l − 1 +NsN + 1d −

sN + 2dsN − 1d
2

0 0 0 0 0 0

NsN + 1dsl − 1d f2 h̃2 0 0 0 0 0

NsN + 1dsl − 1d 0 f3 h̃3 0 0 0 0

A 0 0 � � 0 0 0

NsN + 1dsl − 1d 0 0 0 fn h̃n 0 0

A 0 0 0 0 � � 0

NsN + 1dsl − 1d 0 0 0 0 0 fN−1 h̃N−1

NsN + 1dsl − 1d 0 0 0 0 0 0 fN

*
= Fp

k=2

N

sl − 2kdGFp
j=1

N

sl + 2j − 1dG , s65ad

here fn is of course always defined by(60b) and

h̃n =
sN + n + 1dsN − ndsn + 1 −ld

n + 1
. s65bd

Another version of this formula is obtained by subtracting, in the determinant which a
n the left-hand side of(65a), from every line(except the first two) the line above it,

*
l − 1 +NsN + 1d −

sN + 2dsN − 1d
2

0 0 0 0 0 0

NsN + 1dsl − 1d f2 h̃2 0 0 0 0 0

0 − f2 f̃3 h̃3 0 0 0 0

0 0 � � � 0 0 0

0 0 0 − fn−1 f̃ n h̃n 0 0

0 0 0 0 � � � 0

0 0 0 0 0 − fN−2 f̃N−1 h̃N−1

0 0 0 0 0 0 − fN−1 f̃N

*
= Fp

k=2

N

sl − 2kdGFp
j=1

N

sl + 2j − 1dG , s66ad

here fn, respectively,h̃n continues of course to be defined by(60b), respectively,(65b) while

f̃ n = fn − h̃n−1 = sl − 2ndSl − n +
NsN + 1d

n
D . s66bd

ince clearly[see(60b) and (66b)]

fN−1 = f̃N = sl + 1dsl − 2Nd, s66cd

e identify from this formulation,(66), two additional roots of the original determinant[in addi-
ion to l=2, see(59)], namelyl=−1 andl=2N, since the last line of the determinant in
eft-hand side of(66a) vanishes for these values ofl, see(66c).
As example, let us exhibit(66) for N=5,
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*
l + 29 − 14 0 0 0

30sl − 1d sl − 8dsl + 3d − 8sl − 3d 0 0

0 − sl − 8dsl + 3d sl − 6dsl + 7d − 9
2sl − 4d 0

0 0 − sl − 9dsl + 2d sl − 8dsl + 7
2d − 2sl − 5d

0 0 0 − 1 1
*

= sl − 4dsl − 6dsl − 8dsl + 3dsl + 5dsl + 7dsl + 9d, s67d

here we eliminated from the last line, and of course from the right-hand side, the facsl
10dsl+1d.

Let us end this section by mentioning that an analogous discussion could be made
onisochronouscases(7) [namely,(10) with v=0] and (31) [namely,(38) with v=0]. In those
asesany configuration is an equilibrium one, since particles with vanishing initial velocitie
ot move. But the mathematical implications of the behavior of these models near their e
ium configuration are not so interesting: indeed a treatment analogous to that made abo
erely to the rather trivial identity

*
z+ c1 − 1 0 0 0 0 0 0

c2 z − 1 0 0 0 0 0

c3 0 z − 1 0 0 0 0

A 0 � � � 0 0 0

cn 0 0 0 z − 1 0 0

A 0 0 0 � � � 0

cN−1 0 0 0 0 0 z − 1

cN 0 0 0 0 0 0 z

* = zN + o
m=1

N

cmzN−m, s68d

alid for any arbitrary set ofN numberscn.

. OUTLOOK

Recently, via an approach analogous to that described in Sec. III, a model remarkably
o that considered in this paper has been investigated by Gomez-Ullate, Hone, and Som21

he equations of motions of their model, in its “many-body problem” formulation, read

z̈n = 2s1 − Ndzn
3 + 2 o

m=1,mÞn

N
żnżm + zn

4

zn − zm
, s69d

nd those of the model related to it via the approach of Sec. III read

c̈m + sm+ 1dsm+ 2dcm+2 − 2c2cm = 0, s70ad

ith the “boundary conditions”

c0 = 1, cN+1 = 0. s70bd

ia the simple change of dependent variables,

zn = bz̃n, b = S a

1 − N
D1/2

, s71d
he equations of motion(69) can be recast in the form
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z̈̃n = 2az̃n
3 + 2 o

m=1,mÞn

N
ż̃nż̃m + b2z̃ n

4

z̃n − z̃m

, s72d

emonstrating that they are indeed rather similar to(7). Likewise, via the simple change
ependent variables,

c2m =
s− admc̃m

s2md!
, s73d

he evolution equations(70a) (with evenm; note that they are decoupled from those for oddm)
ecome

c̈̃m − 2ac̃m+1 + 2ac̃1c̃m = 0, s74d

hich are remarkably similar to the evolution equations(31a). However, in contrast to the syste
reated in this paper,(7) and (31), which aresolvable, as explained above, forall values of the
ositive integerN, the systems(69) and (70), or equivalently(72) and (74), have been shown
e solvableonly for N,4; moreover, forN=3 their solution generally involves transcende
more precisely, elliptic) functions of the time variable, as well as algebraic functions of
lliptic functions(typically roots ofN-degree polynomials the coefficients of which evolve in t
s elliptic functions), in contrast to the solution of the models treated in this paper, which c
nly involve, for all values ofN, algebraic functions of elementary(more precisely, exponenti
r equivalently trigonometric) functions of the time variable[again, typically, via roots o
-degree polynomials the coefficients of which evolve exponentially, or equivalently tri
etrically, in the time variable, see(2a)].

PPENDIX

Let the twoN^ N matricesXI andDI be defined, in terms of theN, a priori arbitrary, number

n, as follows:

XI = diagfxng, Xnm= dnmxn, sA1d

Dnm= dnmdn + s1 − dnmdsxn − xmd−1, sA2ad

dn = o
,=1,,Þn

N

sxn − x,d−1. sA2bd

Beware, this nondiagonal matrixDI has nothing to do with the diagonal matrixD of Sec. II, se
18)–(20).] It is then known[see Eq.(2.4.1–5d) of Ref. 14] that

sDI 2dnm= dnmFdn
2 − o

,=1,,Þn

N

sxn − x,d−2G + s1 − dnmd2fdnsxn − xmd−1 − sxn − xmd−2g, sA3d

nd that the following result(Corollary 2.4.1–3 of Ref. 14) holds: if for the differential operato

Â = o
k

aksxdS d

dx
Dk

sA4ad

here holds the equation

Âfsxd = 0 sA4bd
ith fsxd a polynomial in x of degree less than N, then the N̂ N matrix
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AI = o
k

aksXI dDI k sA5ad

as vanishing determinant,

detfAI g = 0. sA5bd

Assume now that theN numbersxn coincide with theN zeros of the generalized Lague
olynomialLN

s−2N−1dsxd. There holds then the following relations:

dn =
1

2
+

N

xn
, sA6ad

xn
2 o

,=1,,Þn

N

sxn − x,d−2 = −
1

12
sxn

2 + 4N2 − 8Nd, sA6bd

o
,=1,,Þn

N

x,
2sxn − x,d−2 = −

1

12
sxn

2 + 12xn + 4N2 + 4N + 12d sA6cd

the first coincides with(41b) via (A2b), the second and third can be easily obtained from the
r, more directly, from Eq.(4.2c) of Ref. 1, via(41a) and (41b)].

Using these formulas we see[from (47a), via (A1), (A2), and(A6a)] that

GI = 2XI DI − XI − s1 + 2Nd1I , sA7d

nd likewise[from (47b), via (A1), (A2), and(A6)] that

LI = − XI 2DI 2 + sXI + 2NdXI DI − NXI . sA8d

ence(50) reads now

dethXI 2DI 2 − fXI + 2sN − ldgXI DI + sN − ldXI + fl2 − s1 + 2Ndlg1I j = 0. sA9d

herefore if, for some value ofl, the ODE

x2f9sxd − fx + 2sN − ldgxf8sxd + fsN − ldx + l2 − s1 + 2Ndlgfsxd = 0 sA10d

ere satisfied by a polynomial inx of degree less thanN, we could assert that that same valu
satisfies the determinantal equation(A9). But unfortunately, as it can be easily shown, for

alue ofl this ODE is satisfied by a polynomial of degree less thanN [for certain values ofl it
s satisfied by a polynomialfsxd of degree no less thanN; for instance forN=1 andl=0 this
equation is satisfied by the polynomialfsxd=x+2 of degree 1]. We must therefore conclude(much
to our surprise) that this approach does not(seem to) allow us to prove the conjecture proffer
above.
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This paper aims at presenting the first steps towards a formulation of the Exact
Renormalization Group Equation in the Hopf algebra setting of Connes and
Kreimer. It mostly deals with some algebraic preliminaries allowing us to formulate
perturbative renormalization within the theory of differential equations. The rela-
tion between renormalization, formulated as a change of boundary condition for a
differential equation, and an algebraic Birkhoff decomposition for rooted trees is
explicited. ©2004 American Institute of Physics.[DOI: 10.1063/1.1794366]

. INTRODUCTION

During the last five decades, renormalization group theory has proven to be a major di
n theoretical physics whose applications range from high energy physics, its original birthp19

o statistical physics and dynamical systems, thanks to the work of Wilson.16 Originally propose
s a computational device in quantum field theory allowing to compare physical theories
t different energy scales, it finally turned out to have a deep conceptual significance. Inde
nown since more than twenty years that renormalization group arguments allow to de
heory in the sense that one can construct a finite renormalized quantum field theory by a
o fulfil a differential equation known as the Exact Renormalization Group Equation.20

On the other side, renormalization recently triggered a couple of mathematical work4 that
ocused on algebraic aspects of the subtraction procedure and of the resulting renorm
roup invariance. While these works mostly focus on the BPHZ procedure formulated wit
inimal subtraction procedure in dimensional regularization(see, for instance, Ref. 17 for
pplication to the renormalization of the wave function), it is obvious that the framework propos
y Connes and Kreimer is versatile enough to encompass the ERGE.

This paper aims at presenting the first steps towards a formulation of the ERGE in th
lgebra setting. It mostly deals with some algebraic preliminaries allowing to formulate pe

ive renormalization within the theory of differential equations.
In the first part, we present some general results on rooted trees and their interpretat

oefficients of formal power series of nonlinear operators, in analogy with the theory develo
umerical analysis under the name of B-series.2,10 In the second part, we explicit the relat
etween renormalization, formulated as a change of boundary condition for a differential eq
nd an algebraic Birkhoff decomposition for rooted trees.
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While this paper mostly presents some elementary facts, a more thorough survey invol
recise relation between trees and Feynman diagrams and their use as computational
ffective actions will be the subject of a forthcoming publication.

I. TREES AND POWER SERIES OF NONLINEAR OPERATORS

This section presents the algebraic tools for the interpretation of the continuous renor
ion group in term of Birkhoff decomposition. We introduce the well-known Hopf algebraH of
ooted trees to generate formal power series of(nonlinear) operators. Recalling the isomorphi
etween the group of characters ofH and series with nonzero constant term, we focus on
articular series: The geometrical seriesff1

fXg and the exponential seriesffe
fXg.

. The Hopf algebra of rooted trees

Most of the material is detailed in Refs. 9 and 7 and refers to the original work Ref
ooted tree is a distinguished vertex, theroot, together with a set of vertices and nonintersec
riented lines. Any vertex has one and only one incoming line, except the root which ha
utgoing lines. Thefertility of a vertex is the number of its outgoing lines, itslengthis the numbe
f lines of the(unique) path that joins it to the root. Two rooted trees are isomorphic if the nu
f vertices with given length and fertility is the same for all possible choices of length

ertilities. SymbolsT, one for each isomorphism class, together with a unit 1 corresponding
mpty tree generate a complex commutative algebraH with disjoint union as a product.

A simple cut cof a treeT is a (nonempty) subset of its lines(selected for deletions) such tha
he path from the root to any other vertex includes at most one line ofc. Deleting the cut line
roduces Cardscd+1 subtrees: Thetrunk RcsTd which contains the original root and the setPcsTd
f the pruned branches. The set of simple cuts ofT is written CsTd.

Definition II.1: H is a Hopf algebra with counite=0 exceptes1d=1, the antipode

s1d

nd the coproduct

DsTd = T ^ 1 + 1 ^ T + o
cPCsTd

PcsTd ^ RcsTd, Ds1d = 1 ^ 1. s2d

See Fig. 1.)
Among the common quantities associated to a treeT, we use thesymmetry factor ST which is

he number of isomorphic trees that can be generated by permutation of the branches, the
f verticesuTu (including the root) and thedepthwhich is the maximum length of the vertices
. The number of vertices is a natural graduation which makesH a graded connected Ho

15

FIG. 1. Example of coproduct.
lgebra.
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The dualH* (i.e., the set of linear applications from an Hopf algebraH to C) is an algebra wit
he convolution productp

f p gsad 8 kf ^ g,Dal, s3d

or f ,gPH* ,aPH andk,l the duality pairing. For thosef in H* for which the transposition of th
ultiplication m of H takes its values inH* ^ H* , one writesDsfd8 tmsfd, i.e.,

Dfsa ^ bd = fsabd ∀ a,b P H. s4d

derivation is an elementd of H* satisfying

Dd = d ^ e + e ^ d. s5d

he algebra generated by the derivations ande is an Hopf algebra15 Hp for the product(3) and
oproduct(4) (antipode, unit and counit are obtained by transposition of antipode and unitH).
characterf (algebra morphism fromH to C) is a grouplike element ofHp

Df = f ^ f. s6d

haracters with product(3) and unitye form a groupG. The inverse is given by the antipode

f−1 = f + S. s7d

WhenH is graded, with degreeu . u, derivations are calledinfinitesimal charactersbecause

ed 8 o
n=0

+`
dn

n!
s8d

well defined sincednsad vanishes as soon asn. uau) is grouplike.9 The correspondence betwe
haracters and infinitesimal characters is one to one:

ln f 8 o
n=1

+`
s− 1dn−1

n
sf − edn,f P G, s9d

s a derivation satisfyingeln f=f. [Identify

Dsln fd = o
n=1,p=0

n=+`,p=n
s− 1dp+1

n
Cp

nfp
^ fp to ln xy= o

n=1,p=0

n=+`,p=n
s− 1dp+1

n
Cp

nxpyp, x,y P R,

ln f ^ e + e ^ ln f = o
n=1

+`
s− 1dn−1

n
sfn

^ e + e ^ fnd to ln x + ln y = o
n=1

+`
s− 1dn−1

n
sxn + ynd.

eveloping eln fsad in f̃8f−e, terms in f̃p cancel by combinatoric for 2øpø uau. For
p. uau ,f̃psad vanishes because for graded connected Hopf algebra9 Dsad=a^ 1+1^ a+oa8
^ a9 with ua8u , ua9u, uau.] Similarly ln ed coincides withd. The set of infinitesimal characters
inearly spanned by derivationsZT that cancel everywhere but on a given generator

ZTsT8d 8 0 for anyT8 Þ T, ZTsTd 8 1, ZTs1d = 0. s10d

. Power series of operators

Let E be a Banach vector space with normi .i ,SsEd the set of smooth applications fromE to
and Ln

ssEd the set ofn-linear symmetric applications fromEn to E. TakeXPSsEd. For anyx

E, there exists an infinite sequence of smooth
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Xx
fng P Ln

ssEd, s11d

uch that for anyy in the neighborhood ofx

Xsx + yd = Xsxd + Xx8syd + ¯ +
1

n!
Xx

fngsy,…,yd + Osiyin+1d. s12d

or instance when the norm is associated to real coordinates over a baseem , X is a collection o
mooth functionsXm with derivativesX,n…

m and (summing on repeated indices)

Xx8syd = X,n
msxdynem, Xx9sy1,y2d 8 X,nr

m sxdy1
ny2

rem. s13d

ere we intend to work with a coordinate free notation and we viewXfng as an element o

n
ssSsEdd

XfngsX1,X2,…,Xnd: E → E s14d

x ° Xx
fngsX1sxd,X2sxd,…,Xnsxdd. s15d

ne defines a formal power series in" by Taylor expandingX around the identity

Xsx + "Ysxdd = Xsxd + "X8sYdsxd +
"2

2
X9sY,Ydsxd + ¯, s16d

ith YPSsEd. When Y=X, (16) can be written in a nice graphic way by using rooted tr
xplicitly one defines

s17d

s18d

o that(16) writes

s19d

ormally there is no reason to limit to trees of depth 1 and one associates to anyT the operato
ecursively defined by

s20d

X1 = I s21d

here theTi’s are the subtrees ofT obtained by promoting as roots the vertices ofT of length 1
ndn=oi=1

m ui is the fertility of the root ofT. For instance

s22d
T
ote that the numerical factor inX is 1/ST. In the following, we use the shorthand notation
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XT =
1

p ui!
XfngsXi

uid. s23d

henX is a linear operator,XT=0 as soon asn.1. The following construction, inspired from t
heory of Butcher group,10 is mostly interesting for nonlinear operators and provide a gener
ion of Taylor expansion(19) by associating to any smoothX a formal power serieffXg

ffXg 8 o
T

fTXT"uTu, s24d

here fT are complex numbers and the sum runs over all generators(including unit 1).
The setG of series with f1=1 is in one to one correspondence with the charactersH.

oreoverG with the composition of series

f + gfXg = o
T

fTXTSo
T8

gT8X
T8"uT8uD"uTu, s25d

s a group, isomorphic toGop, the opposite of the group of characters ofH. ThatG is a group is
nown from the theory of Butcher group. However, by using the Hopf algebraic structure o
e present a proof of the isomorphism

Gop , G, s26d

hat does not require to compute explicitly the coefficients of the product series(25), as this is
one in Ref. 10 for instance. The main tool for our proof is a slight adaptation to our com

ree notation of Caley’s relation3 between differentials and trees. It appears indeed that the d
ntials of theXT’s are easily computed in a graphic way. In the simplest cases this is imm

rom definition (20), for instance

s27d

he differentiation process consists in grafting on a tree as many trees as the order of de
ith a suitable numerical ponderation reflecting the symmetry of the argument.

Lemma II.2: For any trees T,T1,… ,Tl and integersb1,…bl

s28d

here k8oi=1
l bi and nsT̃;T,PTi

bid is the number of simple cut c of T˜ such that

RcsT̃d = T and PcsT̃d = PTi
bi . s29d

Proof: Let XPSsEd ,xPE and y8y1+…+yJ in a neighborhood ofx. For any collection
zijiPf1,ng of elements ofE,

Xx+y
fng szid = o

b=0

+`

o
fb jg=b

1

p b j!
Xx

fn+bgsyj
b j,zid, s30d

here the second sum runs on all the configurations of theb j’s such thatoi=1
J b j =b and we us
otation similar as(23). This formula can be obtained by comparing
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Xsx + y + zd = Xsx + yd + o
n=1

+`

o
faig=n

1

p ai!
Xx+y

fng szi
aid, s31d

herez=z1+¯+zn is in a neighborhood ofx+y, to

Xsx + y + zd = Xsxd + o
n=1

+`

o
fb j,aig=n

1

p b j ! p ai!
Xx

fngsyj
b j,zi

aid. s32d

hoosing allai =1, the termXx+y
fng szid in (30) is identified to the sum of terms of(31) that are linea

n eachzi. For instance

Xx+y1+y2
8 sz1d = Xx8sz1d + Xx9sz1,y1d + Xx9sz1,y2d + Xx-sz1,y1,y2d + 1

2Xx-sz1,y1,y1d + 1
2Xx-sz1,y2,y2d + ¯.

hen

XTsx + yd =
1

p ui!
Xx+y

fng sXi
uisx + ydd s33d

=
1

p ui!
o
b=0

+`

o
fb jg=b

1

p b j!
Xx

fn+bgsyj
b j,Xi

uisx + ydd. s34d

nserting

Xisx + yd = Xisxd + o
r=1

+`

o
fb j8g=r

1

p b j8!
Xix

frgsyj
b j8d, s35d

nd choosinghyjj of cardinalityJ=k, one identifiesXx
Tfkgsyjd as the terms of(34) linear in eachyj,

amely those appearing with eitherb j or b j8=1. Explicitly, for a treeT with depth 1,

XT8sXT̃1d =
1

n!
Xx

fn+1gsXT̃1,Xnd +
1

sn − 1d!
Xx

fngsX8sXT̃1d,Xn−1d = o
T̃

nsT̃;T,T̃1dXT̃,

or any T̃1. For instance, with notations(13)

s36d

s37d

imilarly for anyk and distinctTj’s one obtains

XTfkgsXT̃1,…,XT̃kd = o
T̃

nsT̃;T,PT̃jdXT̃. s38d

hen some of theT̃j’s are identic, the extra factor 1/b j! is absorbed by the definition ofT̃ but
uch terms have to be identified as part of

1

b j!
XTfb jgsX̃j

b jd. s39d

ence the lemma for anyT of depth 1. The final result is obtained recursively on the depth ofT.j
op
Proposition II.3:G is a group, isomorphic to G.
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Proof: SinceG is in bijection withG, we just have to show that

o
T

fsTdXTSo
T8

csT8dXT8"uT8uD"uTu = o
T

sc p fdsTdXT"uTu, s40d

or anyf ,cPG. In the l.h.s.f is evaluated on generators only. By(2) and(3) one checks that th
ame is true for the r.h.s. Moreover both sides are linear inf so this is enough to work with th

nfinitesimal character

f = ZT0, s41d

or a fixedT0. Note that a similar simplification is not available forc sincePcsTd may not be
ingle generator. Then r.h.s. of(40) reduces to

XT0"uT0u + o
T

o
cPC̃sTd

csPcsTddXT"uTu, s42d

hereC̃sTd is the set of simple cuts ofT such thatRcsTd=T0. The l.h.s. of(40) developed thank
o (19) writes

XT0"uT0u + o
T1

csT1dXT08sXT1d"uT0u+uT1u + ¯ + o
hTi

bij

PcsTidbi

Pbi!
XT0

fng
sTi

bid"SiuTiu + ¯, s43d

here sums run over generators distinct from 1 and we use a similar notation as in(23). Thanks
o lemma II.2,(43) 5 (42). j

Thanks to this isomorphism one can easily compute some interesting series. Let us w

fffXg, s44d

he formal power series associated to a characterf by the isomorphism II.3. We define t
xponential seriesas the one corresponding to the character

fe 8 eZ•, s45d

efined by(8) and (10). Since(see Ref. 4 for the definition of the factorialT! of a tree)

fesTd =
1

T!
, s46d

he exponential series writes

ffe
fXg = o

T

1

T!
"uTuXT. s47d

nother nice example is thegeometrical series

sI − "Xd−1 = ff1
fXg = o

T

"uTuXT, s48d

btained by noting that the constant character

f1:T ° 1 ∀ T, s49d

s the inverse of the characterT°0 except 1°1,•°−1.

II. FIXED POINT EQUATION AND ALGEBRAIC BIRKHOFF DECOMPOSITION

The geometrical and exponential series(47) and (48) are interesting to solve a fixed po

quation. In particular if we view a fixed point equation as the integral form of a differential
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quation then the change of initial condition(corresponding to the change of the constant in
xed point equation) is coded into the groupG2 of characters of the Hopf algebra of decora
ooted trees. Namely iffPG2 represents the solution for initial conditionx0 and f+PG2 corre-
ponds to the solution for initial conditionx1, then the decomposition

f+ = f− p f, s50d

urns out to define analgebraic Birkhoff decomposition(see definition III.1) similar as the on
ntroduced by Connes and Kreimer in their seminal paper Ref. 4.

Using trees to solve fixed point and differential equations is at the heart of the the
-series(see Ref. 1 for a nice overview of such applications). However, to the knowledge of t
uthors, the interpretation in terms of Birkhoff decomposition is not found in the literature

. Change of initial conditions in fixed point equations

Let us start by the fixed point equation

x = x0 + "Xsxd, s51d

hereXPSsEd ," is small andx0PE. (51) is formally solved by writing

x = sI − "Xd−1sx0d, s52d

hat is to say, thanks to(48)

x = ff1
fXgsx0d = o

T

"uTuXTsx0d. s53d

his is the same series as the one found by recursively developingx=x0+"Xsx0+"XsX0+¯dd.
Consider now a curvex:R→E given by

xstd = x0 + "E
t0

t

Xsxsudddu, s54d

or someXPSsEd. This is the integral form of the differential equation

dx

dt
= "Xsxd, xst0d = x0. s55d

y recursively developing

xstd = x0 + "E
t0

t

XSx0 + "E
t0

t1

XSx0 +E
t0

t2

¯Ddt2Ddt1, s56d

ne finds1

xstd = o
T

1

T!
st − t0duTu"uTuXTsx0d, s57d

hat is to say, according to(47)

xstd = ffe
fX0gsx0d, s58d

here

X0 8 st − t0dX. s59d
ne may be tempted to solve(55) formally by writing
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xstd = e"X0sx0d. s60d

he genuine definition of the exponential of an operator(expsXd=I+X+s1/2dX+X+¯) is not
ompatible with(58). However,defining

e"X0 8 ffe
fX0g, s61d

nsures that(58) equals(60). In other terms rooted trees provide a definition of the exponent
(nonlinear) operator which is compatible with the resolution of fixed point equations.

The same differential equation can be directly solved in its integral form(54) by considering
he Banach vector spaceE8 of curves inE and the operatorxPSsE8d defined by

xsxd:t ° E
t0

t

Xsxsudddu. s62d

onsideringx0 as the curvet°x0, (54) reads as the fixed point equation

x = x0 + "xsxd, s63d

hose formal solution is given by(53)

x = sI − "xd−1sx0d = ff1
fxgsx0d. s64d

Trees are especially useful to deal with change of initial condition. Let us fix

xst1d = x1, s65d

or a givenx1PE and t1Þ t. Solution(58) becomes

xstd = ffe
fX1gsx1d, s66d

here

X1 8 st − t1dX. s67d

n order to keep a trace of the solution with an initial condition att0, let us write(66) for t= t0,

x0 = ffe
fX1 − X0gsx1d, s68d

hich, inserted into(58)

xstd = ffe
fX0g + ffe

fX1 − X0gsx1d, s69d

nd compared to(66) yields

ffe
fX1g = ffe

fX0g + ffe
fX1 − X0g. s70d

similar decomposition can be found for the integral form(54) of the differential equation. Th
olution for initial condition(67) is

x = ff1
fzgsx1d, s71d

ith

zsxd:t ° E
t1

t

Xsxsudddu. s72d
actorizing
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sI − "zd−1 = sI − "xd−1 + sI − "jd−1 s73d

here we define

"j 8 I − sI − "zd + sI − "xd−1, s74d

ields by (48)

ff1
fzg = ff1

fxg + ff1
fjg. s75d

Both (70) and(75) involves a unique characterf1 or fe and three distinct operatorsx ,z ,j, or

0,X1,X1−X0. To fix notations we now focus on the decomposition of geometrical series(75) but
he following is also true for exponential series. In order to take advantage of the isomo
26) one needs a series involving the same operator. This can be obtained by considering t

2 of characters of the Hopf algebraH2 of decorated rooted trees, i.e., trees whose vertices ca
decoration chosen in a set of cardinality two, in our case of interest either a bullet or a

o any generatorT of H2, one associatesYTPSsE8d defined in a similar manner as in(20) with the
xtra rule that bullets are associated toj and squares toz. For instance

Yj = z, Y• = j, s76d

s77d

et G2 be the group of power seriesI+oT fTYT. A straightforward adaptation of proposition I
hows that

G2 G2
op. s78d

et us define two characters ofH2

f−sT d 8 Hf1sT d if T P H•

0 if T ¹ H•,
J f+sT d 8 Hf1sT d if T P Hj

0 if T ¹ Hj,
J s79d

hereH• is the set of trees decorated with bullets only andHj those decorated by square on
hen

ff1
fzg = ff+

fYg, ff1
fjg = ff−

fYg, s80d

re both elements ofG2
op. By (75) and (78)

ff1
fxg = fffYg, s81d

or the characterfPG2 given by(remembering(49), f−
−1 vanishes on all generators ofH2 excep

−
−1s1d=1,f−

−1s•d=−1; by (3) one obtains

fsT d = 51 for T P Hj

− 1 for T = •

− nT otherwise,
6 s82d

herenT=1 if there is a simple cut such thatRcsTdPHj andPcsTd=• ,nT=0 otherwise)

f = f−
−1 p f+. s83d
75) can be written with a unique operatorY and three characters

                                                                                                            



(
t

xed
p trees. In
n
t

B

ory
w a
l

w f
c ua-
t r
i Ref.
4

de
C e
C a
p

p

F

T

w

w

O

E

i ing
t

J. Math. Phys., Vol. 45, No. 12, December 2004 An algebraic Birkhoff decomposition 4689

                        
ff+
fYg = ff + ff−

fYg. s84d

70) can be written as well, by associating bullet toX1−X0, square toX1 and definingf± according
o fe instead off1.

(83) is the announced equation(50), establishing that the change of initial condition in a fi
oint equation is coded into the group of characters of the algebra of decorated rooted
ext section, we show that(83) [or equivalently(84) by identifying characters and series] allows

o define a so-called algebraic Birkhoff decomposition.

. Algebraic Birkhoff decomposition

A decomposition of the same kind as(83) appears in renormalization of quantum field the
ith minimal subtraction scheme and dimensional regularization.4 The bare theory gives rise to

oop

gszd P GF, zP C, s85d

here CPC is a small circle around the dimensionD of space time andGF is the group o
haracters of the Hopf algebra of Feynman diagramsHF. The renormalized theory is the eval
ion at z=D of the holomorphic partg+ of the Birkhoff decompositionof g. To give a simila
nterpretation to our decomposition(83), we need to adapt to rooted trees some of the tools of

initially developed for Feynman diagrams.
An important feature is the commutative algebraA of smooth functions meromorphic insi

with pole only atD. Also important are the subalgebrasA+,A of functions holomorphic insid
, andA−,A the subalgebra of polynomial in 1/sz−Dd without constant term. There exists
rojection

p−:A → A−, s86d

arallel toA+, i.e.

Ker p− = A+. s87d

eynman rules(ponderated by a suitable mass factor) yields an algebra homomorphism

U:HF → A. s88d

he counterterms are given by the algebra homomorphism

CsXd 8 − p−sUsXd + o CsX8dUsX9dd , s89d

here

DsXd = X ^ 1 + 1 ^ X + o X8 ^ X9, X P H̃F 8 Ker e, s90d

hile the renormalized theory is given by the homomorphism

RsXd = sC p UdsXd. s91d

ne checks that

CsH̃Fd , A−, RsH̃Fd , A+. s92d

quation(91) viewed as an equality between algebra homomorphisms

C p U = R, s93d

s called thealgebraic Birkhoff decompositionof U. Such a terminology is justified by consider

he GF-valued loops
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gszd 8 xz + U, g−szd = xz + C, g+szd = xz + R, s94d

here

xzsfd 8 fszd ∀ f P A. s95d

ndeed(91) indicates that

g+szd = g−szdgszd ∀ zP C, s96d

or the pointwise product inG. One then shows that(96) is precisely the Birkhoff decompositio
f g. Namely, viewingC as a subset of the Riemann sphereCP1,g− extends to aGF-valued
olomorphic maps onC− (the component of the complement ofC containing`) with g−s`d=0
hile g+ extends toGF-valued holomorphic maps onC+ (the other component of the complem
f C). The reader is invited to consult Ref. 4 for a precise definition of the Birkhoff decompo
nd its link to the Riemann–Hilbert problem. Let us simply recall that the replacement ofg by g+

s a natural principle to extract a finite value from the singular expressiongszd.
The use of the algebra of meromorphic functions onC is intimately linked to dimension

egularization scheme. In the framework of the continuous renormalization group, there is
iven by the dimension of space–time. However, given a decomposition of algebra hom
hisms such as(93), satisfying conditions(92), it still makes sense to talk of Birkhoff decomp
ition, but in the following algebraic sense(taken from Refs. 15 or 12).

Definition III.1: Let H be a commutative Hopf algebra,A a commutative algebra with
rojection p− on a subalgebraA−. An algebra homomorphismg :H→A has an algebraic Birkho
ecomposition if there exists two algebras homomorphismsg+,g− from H to A such that

g+ = g− p g, s97d

herep is the convolution product(3) and

p+g+ = g+, p−g− = g−, s98d

here p+ is the projection on

A+ = Ker p−. s99d

To interpret(83) and(84) as an algebraic Birkhoff decomposition one may be first tempt
onsider the algebra of polynomials inYT as the equivalent in the continuous renormaliza
ramework of the meromorphic functions. As well characters may be understood as the eq
f the homomorphisms defined by Feynman rules: In the same way thatU ,C,R map a Feynma
iagram to a meromorphic function, characters map a decorated rooted tree to a monomiYT,

FsT d 8 fsT dYT, F±sT d 8 f±sT dYT. s100d

nfortunatelyF ,F± do not define an algebraic Birkhoff decomposition. For instance(see the
roof of proposition III.2 for the computation off)

s101d
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s102d

s103d

solution would be to define the product of monomials so that(103) vanishes,

s104d

ut such a product would not be commutative. However, by considering the(commutative) formal
roduct of decorations, it appears that the sum(ponderated by the numerical coefficient) of the
roducts of decorations in(103) vanishes(i.e., −+j+ +j=0). Consequently we propose
irkhoff decomposition with value on the the algebraA of decorations, that is to say the fr
nital algebra generated by square and bullet

A = h1,•,jj. s105d

or A− we choose the unital subalgebra ofA generated by the bullet

A− = h1,•j. s106d

e notep− the projectionA→A−

p−s1d = 1, p−s•d = •, p−sjd = 0, s107d

xtended to allA by algebra homomorphism

p−s•njm + •n8jm8d = •n + •n8. s108d

+ andp+ are defined by(99). Let G be the algebra homorphismH2→A

Gs1d = 1, GsT d = •uT u+juT uh s109d

here uT u+ is the number of bullets ofT and uT uh is the number of squares.G just “counts the
ecorations,” for instance

s110d

inally we define three algebra homomorphisms fromH2 to A,

gsT d = fsTdGsTd, g±sT d = f±sTdGsTd. s111d

Proposition III.2: g+=g−pg is an algebraic Birkhoff decomposition.
Proof: Let H• be the algebra of trees with bullets only(and similarlyHj). Then

g−sT d = H•uT u+ for T P H•

0 otherwise,
J g+sT d = HjuT uh for T P Hj

0 otherwise,
J s112d

o that(98) is satisfied, as well as(99) by construction. By algebra homomorphism,(97) has to be
hecked only on generators. Let us first note that

gsT d = 5juT uh for T P Hj

− • for T = •

− nT •uT u+juT uh otherwise
6 s113d
herenT is defined in(82). Second, for anyTÞ1
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sg− p gdsT d = gsT d + g−sT d + o
cPCsT d

g−sPcsT ddgsRcsT dd. s114d

his is then not difficult to check(97) for TPH• or TPHj.
For T¹H•øHj,

sg− p gdsT d = − nT •uT u+juT uh + o
cPCsT d

g−sPcsT ddgsRcsT dd. s115d

ssumenT=0. Then(115) is nonzero only if there is at least either a simple cutc such that

PcsT d P H• andRcsT d P Hj, s116d

r a simple cutc̃ with

Pc̃sT d P H• andnRc̃sT d Þ 0. s117d

ssume there exists a simple cutc for which PcsT d is a single tree. Then there exist ac̃ in which

c̃sT d is the subtree ofT consisting inRcsT d and the root ofPcsT d while Pc̃sT d is the union of al
he subtrees ofPcsT d obtained by promoting as roots the vertices of length 1(Pc̃sT dÞx becaus

T=0). The simple cutc contributes to(115) with a factor

•uPcsT dujuRcsT du, s118d

hereasc̃ contributes with a factor

•uPc̃sT dus− •juRc̃sT duhd. s119d

his is easy to observe that(118) =− (119). The same is true ifPcsT d is a product ofm trees, the
nly difference being that the contribution ofc is canceled by the sum of the contributions of

c̃ obtained by grafting alternatively toRcsT d each of the roots ofPcsT d. Also, starting from
, one would similarly notice that its contribution is canceled by ac so that, finally,(115) vanishe
or any T¹HjøH• with nT=0. Hence(97).

The same procedure applies whennTÞ0. The term of(115) in gsT d is cancelled by the su
f the nT terms corresponding to the simple cuts withPcsT d=•. j

As announced in(50), we have shown that the change of initial condition in a fixed p
quation does correspond to the algebraic Birkhoff decomposition of the algebra mor
ssociated by(111) to the characters encoding the solutions. By convention we say thatg+ is the
ositive part of the algebraicA-valued Birkhoff decomposition ofg.

. Continuous renormalization group

Birkhoff decomposition has been introduced in renormalization of quantum field theo
onnes and Kreimer in the framework of minimal subtraction scheme and dimensional r

zation. Our algebraic Birkhoff decomposition(83) has an interpretation in the framework of
ontinuous renormalization group of Wilson23 (see also Ref. 18 for a nice introduction). The lates
escribes the evolution of the parameters of a quantum field theory under a change of th
ation scale. When the rescaling is parametrized by a continuous quantity, say the ene
volution is governed by flow equation

L
]

] L
S= bsL,Sd, s120d

n which LPR*+ is the scale andS=SsLd implements the parameters(mainly S is a functional o
he fields and their coupling constants). The initial conditions are encoded by the knowledg

08SsL0d at a given scaleL0. A typical example of continuous renormalization group equa
20
120) are Polchinski’s equationswhich givesbsL ,Sd for a theory with an infrared(IR) cutoff.
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Let us consider the most general context by simply assuming that the theory is descr
smooth operatorS

S:L ° SsLd P E,

hereE8SsHd andH is the(infinite dimensional) vector space spanned by vectors labeled
he parameters of the theory. A scale transformation

L → Ls,

ith sPR*+ induces the transformation14

SsLd → SsLsd = sDSsLd

hereDPE is the diagonal matrix whose coefficients are the dimensions of the paramete
efine the dimensionless quantitiesxsLdPE and tPR,

SsLd = LDxsLd, t 8 lnSD

m
D ,

herem is a parameter of the theory with same dimension asL. Then(120) yields

L
] x

] L
= − Dx + L−DbsL,LDxd. s121d

y dimensional analysis,b is transforming homogeneously under change of scale,

bsL,LDxd = LDbs1,xd, s122d

o that, writing"Xsxd8bs1,xd andD=−D,

] x

] t
= Dx + "Xsxd, s123d

hose integral form, with initial conditionx0=L0
DS0, is

xstd = est−t0dDx0 + "E
t0

t

est−udDXsxsudddu. s124d

iewing x as an element ofE8, Banach vector space of applications fromR*+ to E, we define

x̃0 P E8:t ° est−t0dDx0, s125d

ndxPSsE8d,

xsxd:t ° E
t0

t

est−udDXsxsudddu ∀ x P E8 s126d

o that(124) reads as the fixed point equation

x = x̃0 + "xsxd. s127d

In the context of Wilson’s continuous renormalization group,L0 is interpreted as an ultravio
UV) cutoff and one is interested in the limits of very high energy scale, i.e.,t0→ +`. Howeverx̃0
s already ill-defined since
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est−t0dDx05converges onH+

is constantly zero onH0 as t0 → + `

diverges onH−,
6 s128d

hereH+,H0,H−,H are the proper subspaces ofD corresponding to positive, zero and nega
igenvalues(the corresponding parameters are calledrelevant, marginalandirrelevant). x as wel

s ill defined, even in the relevant sector. A solution to ensure the finiteness ofxstd at high scal
onsists in fixing the initial conditions for the irrelevant sector at scalet1 (equivalently: At scal

1) distinct from t0. Namely one imposes the mixed boundary conditions

xR 8 Px̃1 + sI − Pdx̃0, s129d

hereP is the orthogonal projection fromH to H− and

x̃1 P E8:t ° est−t1dDx1. s130d

efining

rsxd:t ° E
t1

t

est−udDXsxsudddu s131d

nd

z 8 Pr + sI − Pdx, s132d

llows us to write(127) with initial condition xR

xstd = xR + "zsxd. s133d

This is a well-known result thatxstd computed with mixed boundary condition, namely

xstd = ff1
fzgsxRd s134d

emains finite at high energy scale and does not depend onx0. Trees have already been used
rove this result(see Refs. 11, 8, and 21, for instance). To be complete we propose here a sim
roof taking advantage of the Hopf algebraic structure.

Proposition III.3: limt0→+` ff1
fzgsxRd is finite order by order and does not depend on x0.

Proof: The idea is to use decorated trees in a similar way as(76) except that the rule now

Y• = z1 8 Pr, Yj = z2 8 sI − Pdx. s135d

hen

s136d

=sz1d8sz1d + sz1d8sz2d + sz2d8sz1d + sz2d8sz2d s137d

s138d
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s139d

herehTj2 is the set of all decorated trees obtained by decoration of the vertices ofTPH, e.g.,

h•j2 = h•,jj. s140d

t is not difficult to check that the same is true for anyTPH,

zT = o
TPhTj2

YT. s141d

hus

ff1
fzg = o

TPH2

YT. s142d

ince

lim
t0→+`

Y1sxRd = lim
t0→+`

xR = x̃1, s143d

ndY• does not depend ont0 then

lim
t0→+`

Y•sxRd = Y•sx̃1d. s144d

imilarly for anyTPH• , limt0→+`YTsxRd is bothx0 and t0 independent. In the same way

lim
t0→+`

YjsxRd = lim
t0→+`

sI − PdE
t0

t

est−udDXsx̃1sudddu, s145d

s finite becauseX is smooth. Similarly for anyTPHj. For T decorated with both bullets a
quares, combination of(144) and (145) ensures thatYT is finite andx0 independent. j

Now, using decorated rooted trees with the rule(76), one identifiesff1
fzgsxRd= ff+

fYgsxRd as
he renormalized theory,ff1

fxgsxRd= fffYgsxRd as the bare theory and the counterterms are g
y ff−

fYgsxRd. By proposition III.2 one finally obtains the main result of this paper:
The bare and renormalized theories define two algebra morphismsg andg+ between the Hop

lgebra of decorated rooted trees and the free algebraA of decorations.g+ is the positive part o
he algebraicA-valued Birkhoff decomposition ofg.

V. OUTLOOK AND CONCLUSION

As a nice application for the tools developed above in the resolution of fixed point eq
et us mention Schwinger–Dyson equations. The latest(see Ref. 13 as well as Ref. 5 for
edagogical account) form a system of nonlinear implicit functional differential equations an
ous to the exact renormalization group equation in many respects. They are best formula
quation for the functional derivative of the connected generating functionalWf jg

Sshx + m2d
d

dJsxd
− V8S d

dJsxd
D + JsxdDewfJg = 0, s146d

or a Euclidian scalar field theory with interacting potentialVsfd. In the simplest case of alf3
heory, the equation reads
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dW

dJsxd
=E dy Ksx,ydJsyd +

l

2
E dy Ksx,ydS dW

dJsyd
D2

+
l

2
E dy Ksx,yd

d2W

dJsyd2 , s147d

here Ksx,yd is the kernel of the free propagator. They are best captured by a diagram
xpression,

hat can be used recursively to generate the full Feynamn diagram expansion. Beyond
onvention of QFT, note that the cross stands for an insertion of the sourceJ.

For our purpose, it is rewritten as a fixed point equation for the classical fieldfsxd
dW/dJsxd

f = f0 + l F1sfd + l F2sfd, s148d

heref0 is the classical field in the absence of interaction. The functionsFi are in one-to-on
orrespondence with the diagrams appearing above. This equation can be solved perturb
owers ofl by a recursive procedure. The ordern term can be easily expressed as a sum

rees withn vertices which are decorated with the 2 diagrams of(147). These are trees that a
rawn on the Feynman diagram and that retrace the ways a given Feynman diagram
btained through an iteration of the Schwinger–Dyson equations.

While the correspondence between Feynman diagrams and trees is in general compl
ne restricts to the classical level, the Schwinger–Dyson degenerates because onlyF1 survives
ccordingly, they reduce to the classical equation of motion so that the previous tree expa
othing but the tree level Feynman diagram expansion. Finally, a Legendre transformatio
f jg to Gffg allows to formulate an equation fordG /dfsxd.

A more precise treatment of Schwinger–Dyson equations within the Hopf algebraic
ork of rooted trees will be developped in some future work. As a(temporary) conclusion, let u

ecall that we have presented the first algebraic steps towards an adaption of Connes–
ork to the ERGE. As in the BPHZ procedure with minimal subtraction scheme in dimen

egularization, renormalized and bare theories are linked inside a Birkhoff decomposition
PHZ framework, renormalization corresponds to the projection of meromorphic functions(with
ole only at dimension of space time) on their holomorphic part. Continuous renormaliza
ppears as a projection on one decoration. Whether the algebra of decorations is an a
iding deeper connection with the Rieman–Hilbert problem—or is truly meaningful is no

ectly clear at the moment. Hopefully this might be clarified by revisiting our algebraic Bir
ecomposition within the more general framework of Rota–Baxter equation(see Ref. 6 for nic
nd recent development on this topic).

Finally, it appears that the Birkhoff decomposition, which plays a major role in the the
ntegrable systems, provides a relation between the latter and renormalization theory.22 This could
ave important consequences for actual computations in renormalization by using the ful
f complete integrability.
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The exact computation of asymptotic quasinormal frequencies is a technical
problem which involves the analytic continuation of a Schrödinger-type equation to
the complex plane and then performing a method of monodromy matching at sev-
eral poles in the plane. While this method was successfully used in asymptotically
flat space–time, as applied to both the Schwarzschild and Reissner–Nordstrøm
solutions, its extension to nonasymptotically flat space–times has not been achieved
yet. In this work it is shown how to extend the method to this case, with the explicit
analysis of Schwarzschild–de Sitter and large Schwarzschild–anti–de Sitter black
holes, both in four dimensions. We obtain, for the first time, analytic expressions
for the asymptotic quasinormal frequencies of these black hole space–times, and
our results match previous numerical calculations with great accuracy. We also list
some results concerning the general classification of asymptotic quasinormal
frequencies ind-dimensional space–times. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1812828]

. INTRODUCTION

A long time has passed since research first focused on analyzing the linear stability
imensional black hole solutions in general relativity.1,2 However, it was not until very rece

imes that this stability problem was addressed within ad-dimensional setting.3–5 These pape
ried to be as exhaustive as possible, studying in detail the perturbation theory of sph
ymmetric black holes ind dimensions and allowing for the possibilities of both charge a
ackground cosmological constant. Having thus acquired a list of stable black hole solutio
ext question to address within this problem are quasinormal modes—the damped osc
hich describe the return to the initial configuration, after the onset of a linear perturbatio(see
efs. 6 and 7 for reviews).

Besides their natural role in the perturbation theory of general relativity, quasinormal
ave recently been the focus of much attention following suggestions that they could hav

o play in the quest for a theory of quantum gravity.8,9 The idea is to look at those special mo
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)
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hich are infinitely damped, and thus do not radiate. It was suggested in Ref. 8 that an app
f Bohr’s correspondence principle to these asymptotic quasinormal frequencies could yie

nformation about quantum gravity, in particular on the quantization of area at a black hole
orizon. It was further suggested in Ref. 9 that asymptotic quasinormal frequencies could
ertain parameters in loop quantum gravity. Both these suggestions lie deeply on the fact
eal part of the asymptotic quasinormal frequencies is given by the logarithm of an intege
er, a fact that was analytically shown to be true, for Schwarzschild black holes ind-dimensiona
pace–time, in Refs. 10 and 11. A question of particular relevance that immediately foll
hether the suggestions in Refs. 8 and 9 are universal or are only applicable to the Schwa
olution. Given the mentioned analysis of Refs. 3 and 5, one has at hand all the require
ation to address this problem and compute asymptotic quasinormal frequencies ofd-dimensiona
lack holes. A preliminary clue is already present in Ref. 11, where the analysis of the
imensional Reissner–Nordstrøm solution yielded a negative answer: the asymptotic qua

requencies obeyed a complicated relation which did not seem to have the required form
xtending this result to both thed-dimensional and the extremal Reissner–Nordstrøm solution
ot pose great obstacles,12 an extension of the analytical techniques in Ref. 11 to nonasym
ally flat space–times proves to be a greater challenge. It is the goal of this paper to carr
xtension of the techniques in Ref. 11 to nonasymptotically flat space–times, with the
nalysis of Schwarzschild–de Sitter and large Schwarzschild–anti–de Sitter black holes,

our dimensions. The detailed study of these solutions ind-dimensions will appear elsewhere12

ncluding charged solutions in asymptotically de Sitter and asymptotically anti–de Sitter
imes, as well as an analysis of the implications of our results on what concerns the prop
efs. 8 and 9, dealing with the application of quasinormal modes to quantum gravity.

It is important to stress that even if the ideas in Refs. 8 and 9 turn out not to be unive
s still the case that quasinormal frequencies will most likely have a role to play in the que
heory of quantum gravity. Indeed, quasinormal frequencies can also be regarded as the
he black hole greybody factors which play a pivotal role in the study of Hawking radi
urthermore, the monodromy technique introduced in Ref. 11 to analytically compute asy
uasinormal frequencies was later extended, in Ref. 13, so that it can also be used in the

ation of asymptotic greybody factors. It was first suggested in Ref. 13 that the results obta
hese asymptotic greybody factors could be of helpin identifying the dual conformal field
hich microscopically describes the black hole, and these ideas have been taken one step
ith the recent work of Ref. 14. It remains to be seen how much asymptotic quasinormal
nd greybody factors can help in understanding quantum gravity.

Let us conclude this introduction with some generics concerning quasinormal frequenc(we
efer the reader to the upcoming12 for a full list of conventions and details). Later, in Sec. II, w
hall compute asymptotic quasinormal frequencies for a Schwarzschild–de Sitter black
our-dimensional space–time. Our results will also be shown to match earlier numerical c
ations with great accuracy. In Sec. III, we shall study large Schwarzschild–anti–de Sitte
oles in four dimensions, and analytically compute their asymptotic quasinormal frequ
gain, our results match earlier numerical computations to great accuracy. We end wit
omments concerning the general classification of asymptotic quasinormal frequen
-dimensional space–times.12

For a four-dimensional Schwarzschild black hole, one has the asymptotic quasinorm
uencies

lim
n→+`

vn , foffsetg + infgapg + OS 1
În

D ,

here the real part of the offset is the frequency of the emitted radiation, and the gap
uantized increments in the inverse relaxation time. Here, the gap is given by the surface
ne can try to extend this analysis to more general situations and also include space–tim

15–18
wo horizons, but then generic results become much harder to obtain.We shall take the time
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ependence for the perturbation to beeivt, so thatImsvd.0 for stable solutions. There is also
eflection symmetryv↔−v̄ which changes the sign ofResvd. In this case, our quasinormal mo
onventions are the following(see Ref. 12 for a full list of conventions ind dimensions). The
erturbation master equations of Refs. 3 and 5 can be cast in a Schrödinger-type form a

−
d2Fv

dx2 sxd + VsxdFvsxd = v2Fvsxd, s1.1d

here the potential will vary according to the specific case at hand. The boundary conditi
he usual: incoming waves at the black hole horizon and outgoing waves at infinity(or at the
osmological horizon, for the asymptotically de Sitter case). (For the asymptotically anti–de Sit
ituation things will be different.) These can be written as

Fvsxd , eivx asx → − `,

Fvsxd , e−ivx asx → + `,

herex is the tortoise coordinate. Indeed, if the metric is chosen asg=−fsrddt ^ dt+ fsrd−1 dr
^ dr +r2 dV2

2, with parametersM =m for the black hole mass andL=3l for the backgroun
osmological constant, then at any(event or cosmological) horizon, fsRHd=0. One can expan
ear the horizonfsrd.sr −RHdf8sRHd+¯, and it follows for the tortoise,

x ;E dr

fsrd
. E dr

sr − RHdf8sRHd
=

1

f8sRHd
logsr − RHd ;

1

2kH
logsr − RHd ;

1

4pTH
logsr − RHd,

ocally near the chosen horizon. HerekH is the surface gravity andTH is the Hawking temperatur

I. ASYMPTOTICALLY DE SITTER SPACE–TIMES

Reference 5 discusses the stability of black holes in asymptotically de Sitter(dS) space–time
o tensor, vector, and scalar-type perturbations of the metric and the electromagnetic fi
lack holes without charge, which is the case we shall focus on, tensor and vector-type p

ions are stable in any dimension. Scalar-type perturbations are stable up to dimension
here is no proof of stability in dimensiondù7. As we shall work in four dimensions, we a
uaranteed a stable solution. Quantization in dS space was first addressed in Ref. 1
uthors found that the cosmological event horizon is stable, but also that there is an i
ackground of thermal radiation. Analysis of the wave equation in dS space also led to the
oundary conditions on quasinormal modes: incoming waves at the black hole horizon a
oing waves at the cosmological horizon. The Schwarzschild dS solution in dimensiond=4 has
arametersm andl.0, with metric

fsrd = 1 −
2m

r
− lr2.

he potentials to be used in the master equation(1.1), describing the evolution of scalar, elect
agnetic and gravitational fields, can be followed through the Klein–Gordon, Maxwell, an

tein equations, respectively. They will necessarily depend on the specific field under co
tion and are as follows. For scalar perturbations20

Vssrd = fsrdS,s, + 1d
r2 +

2m

r3 − 2lD , s2.1d

21
hile for electromagnetic perturbations
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Vemsrd = fsrdS,s, + 1d
r2 D . s2.2d

he gravitational perturbations decompose into two sets, the odd and the even parity one.21 For the
dd parity perturbations one has(these are the vector-type gravitational perturbations)

Voddsrd = fsrdS,s, + 1d
r2 −

6m

r3 D , s2.3d

hile for the even parity perturbations(these are the scalar-type gravitational perturbations),

Vevensrd =
2fsrd

r3

9m3 + 3a2mr2 + a2s1 + adr3 + 3m2s3ar − 3lr3d
s3m + ard2 , s2.4d

here a= 1
2s,s,+1d−2d. In all cases, we have denoted by, the angular momentum quantu

umber, which yields the multipolarity of the field. These are the potentials we shall use
ollowing.

To simplify the calculation, we choose the radius of the black hole to be our length un
adius of the cosmological horizon will then be an adimensional quantityR.1. In this case, it i
asily seen that the warp factor must be of the form

fsrd = 1 −
2m

r
− lr2 = −

lsr − 1dsr − Rdsr + R+ 1d
r

,

nd consequently the black hole’s parameters will be given in our units by

l =
1

R2 + R+ 1
,

m =
R2 + R

2sR2 + R+ 1d
.

he (complex) tortoise coordinate which vanishes at the origin is

x =E dr

fsrd
=

1

2kH
logs1 − rd +

1

2kC
logS1 −

r

R
D +

1

2kF
logS1 +

r

R+ 1
D ,

here

kH =
1

2
f8s1d =

sR− 1dsR+ 2d
2sR2 + R+ 1d

,

kC =
1

2
f8sRd = −

sR− 1ds2R+ 1d
2RsR2 + R+ 1d

,

kF =
1

2
f8s− R− 1d =

sR+ 2ds2R+ 1d
2sR+ 1dsR2 + R+ 1d

,

re the surface gravities at the black hole horizonr =1, the cosmological horizonr =R, and the
ctitious horizonr =−R−1. Notice that we take the surface gravity at the cosmological horiz
e negative.

As in Ref. 11, we notice that althoughx has a ramification point at each horizon,Resxd is well
efined and we can look at the Stokes lineResxd=0. Sincexs0d=0, this curve contains the orig

nd its singular points are given by
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dx

dr
= 0 ⇔

1

fsrd
= 0 ⇔ r = 0.

or r ,0 one hasfsrd,s−2m / rd and hence

x , −E r dr

2m
= −

r2

4m
.

onsequently the Stokes line is given byr =re±sip/4d, rPR in a neighborhood of the origin. On t
ther hand, forr ,` one hasfsrd,−lr2, and thus

x , −E dr

lr2 = x0 +
1

lr
.

otice that in particularx has no monodromy at infinity, and hence

1

kH
+

1

kC
+

1

kF
= 0.

hus we can choose the three ramification lines ofx to cancel each other off, andx0 is well
efined. Using the expression forx with an appropriate choice of ramification line in each lo
ithm, one can compute the real part ofx0, which is not zero. Therefore the Stokes line can
xtend all the way to infinity and the four lines starting out at the origin must thus connect

hemselves. Studying the behavior ofResxd near the horizons, it is not hard to guess that
tokes line is as indicated in Fig. 1. This guess is moreover verified by a numerical comp
f the same Stokes line, indicated in Fig. 2.

Since forr ,0 the presence of the cosmological constant is irrelevant, we expect the po
o behave as in the Schwarzschild black hole, and this is indeed the case,

V ,
j2 − 1

4x2 ,

here j =0 for scalar fields and scalar-type gravitational perturbations,j =1 for electromagnet
erturbations, andj =2 for vector-type gravitational perturbations. Correspondingly, forx,0 the

FIG. 1. Stokes line for the Schwarzschild dS black hole, along with the chosen contour for monodromy matc
omplexified solution of the Schrödinger-type equation is of the form
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Fsxd , A+
Î2pvxJj /2svxd + A−

Î2pvxJ−j /2svxd,

hereJn represents a Bessel function of the first kind andA± are(complex) integration constant
For the asymptotic quasinormal modes one hasImsvd@Resvd, and hencev is approximatel

urely imaginary. Consequently in a neighborhood of the origin one hasvxPR+ for r =reip/4,
PR, andvxPR− for r =re−ip/4, rPR. From the asymptotic expansion

Jnszd =Î 2

pz
cosSz−

np

2
−

p

4
D, z@ 1,

e see that

Fsxd , 2A+ cossvx − a+d + 2A− cossvx − a−d = sA+e−ia+ + A−e−ia−deivx + sA+eia+ + A−eia−de−ivx,

or r =reip/4, rPR−, where

a± =
p

4
s1 ± jd.

or z,0 one has the expansion

Jnszd = znwszd,

here wszd is an even holomorphic function. Consequently, as one rotates fromr =reip/4,
PR− to r =re−ip/4, rPR−, one has

Î2pe3pivxJ± j /2se3pivxd = es3pi/2ds1±jdÎ2pvxJ± j /2svxd , 2e6ia± cossvx − a±d

nd hence

Fsxd , 2A+e6ia+ coss− vx − a+d + 2A−e6ia− coss− vx − a−d

= sA+e7ia+ + A−e7ia−deivx + sA+e5ia+ + A−e5ia−de−ivx,

or r =re−ip/4, rPR−. As one would expect, this completely parallels the computation fo
chwarzschild solution in Ref. 11. Next we compute the monodromy of the solution at in
or r ,` we have

Vs , 2l2r2 ,
2

2 =
32 − 1

2 ,

FIG. 2. Numerical calculation of the Stokes line for the Schwarzschild dS black hole.
sx − x0d 4sx − x0d
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Vem, Vodd, − l,s, + 1d,

Veven, − lF,s, + 1d −
18m2l

a2 G .

onsequently, either

Fsxd , B+
Î2pvsx − x0dJ3/2svsx − x0dd + B−

Î2pvsx − x0dJ−3/2svsx − x0dd

r (here ṽ2=v2+l,s,+1d for the electromagnetic and odd parity perturbations, andṽ2=v2

lf,s,+1d−18m2l /a2g for the even parity perturbations)

Fsxd , B+eiṽsx−x0d + B−e−iṽsx−x0d

or r ,`; in any case,F is holomorphic and hence the monodromy ofF at infinity is equal to one
f F corresponds to a quasinormal mode, its monodromy aroundr =1 must be the same as
onodromy ofeivx, that is,eivs2pi/2kHd=e−pv/kH. Similarly, its monodromy aroundr =R must be th

ame as the monodromy ofe−ivx, that is,epv/kC. Since the only other singularities ofF are at the
rigin and atr =−R−1, it is then clear that the monodromy ofF around the contour depicted in t
gure must be

1

e−spv/kHd+spv/kCd = espv/kHd−spv/kCd.

The monodromy ofe±iv around the contour ise±ivs2pi/2kFd=e7pv/kF. As one goes around t
ontour the coefficient ofeivx in the asymptotic expansion ofF gets multiplied by

A+e7ia+ + A−e7ia−

A+e−ia+ + A−e−ia−
.

or this term to have the required monodromy we must impose

A+e7ia+ + A−e7ia−

A+e−ia+ + A−e−ia−
e−pv/kF = espv/kHd−spv/kCd ⇔

A+e7ia+ + A−e7ia−

A+e−ia+ + A−e−ia−
= e−2pv/kC.

imilarly, for the term ine−ivx we get the condition

A+e5ia+ + A−e5ia−

A+eia+ + A−eia−
e−pv/kF = espv/kHd−spv/kCd ⇔

A+e5ia+ + A−e5ia−

A+eia+ + A−eia−
= e2pv/kH.

he condition for these equations to have nontrivial solutionssA+,A−d is then

Ue7ia+ − e−2pv/kCe−ia+ e7ia− − e−2pv/kCe−ia−

e5ia+ − e2pv/kHeia+ e5ia− − e2pv/kHeia−
U = 0 ⇔ *sinS4a+ −

ipv

kC
D sinS4a− −

ipv

kC
D

sinS2a+ +
ipv

kH
D sinS2a− +

ipv

kH
D * = 0.

s in the Schwarzschild case, this equation is automatically satisfied forj =0. This is to be
xpected, as forj =0 the Bessel functionsJ± j /2 coincide and do not form a basis for the spac
olutions of the Schrödinger-type equation near the origin. As in Ref. 11, we consider this e
or j nonzero and take the limit asj →0. This amounts to writing the equation as a power s
n j and equating to zero the first nonvanishing coefficient, which in this case is the coeffic
he linear part. Thus, we just have to require that the derivative of the determinant abo

espect toj be zero forj =0. This amounts to
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*p cosSp −
ipv

kC
D − p cosSp −

ipv

kC
D

sinSp

2
+

ipv

kH
D sinSp

2
+

ipv

kH
D * + * sinSp −

ipv

kC
D sinSp −

ipv

kC
D

p

2
cosSp

2
+

ipv

kH
D −

p

2
cosSp

2
+

ipv

kH
D * = 0,

rom where we obtain our final result as

coshSpv

kH
−

pv

kC
D + 3 coshSpv

kH
+

pv

kC
D = 0. s2.5d

otice that ifv is a solution of this equation then so is −v̄, as must be the case with quasinor
odes.

To recover the Schwarzschild quasinormal frequencies we first write out the equation

espv/kHd−spv/kCd + e−spv/kHd+spv/kCd + 3espv/kHd+spv/kCd + 3e−spv/kHd−spv/kCd = 0,

nd next take the limit asR→`, in which kH→ 1
2 andkC→0−. If we assume thatResvd.0, we

ee that the two middle terms are exponentially small, and hence the equation reduces t

epv/kH + 3e−pv/kH = 0 ⇔ e4pv = − 3,

hich is exactly the equation obtained in Refs. 10 and 11. Therefore, the Schwarzschild bla
s not a singular limit of the Schwarzschild dS black hole as far as the quasinormal mo
oncerned, unlike what happens with the Reissner–Nordstrøm black hole solution. The re
his is clear from the monodromy calculation: whereas the structure of the tortoise ne
ingularity r =0 in the Reissner–Nordstrøm solution depends crucially on whether the ch
ero or not, in the Schwarzschild dS case it does not depend onl. Thus, asR→ +`, the cosmo
ogical horizon approaches the point at infinity and the contour approaches the contour
ef. 11.

For j =1 one hasa+=p /2, a−=0 and hence the condition for the quasinormal frequenc

*− sinS ipv

kC
D − sinS ipv

kC
D

− sinS ipv

kH
D sinS ipv

kH
D * = 0 ⇔ sinS ipv

kC
DsinS ipv

kH
D = 0,

ith the solutions

v = inkH or v = inkC sn P Nd.

gain, as R→` one obtains the Schwarzschild result,v=ni /2. Finally, for j =2 one ha
a±=sp /2d±p, 4a±=p±2p, and consequently the quasinormal frequencies are the same a

j =0 case, for which 2a±=p /2, 4a±=p.
Let us now review the literature concerning asymptotic quasinormal frequencies

chwarzschild dS space–time, so that we can compare our results to what has been p
ccomplished on this subject. First of all, it is possible to prove, without computing explicit
uasinormal frequencies, thatj =0 and j =2 perturbations must have the same quasino
pectra,22 and so this is a consistency check on our results. For Schwarzschild dS, early re
uasinormal modes were studied in Ref. 23, without great emphasis on the asymptotic c
rst analytical results ind=4 were derived in the near-extremal situation, where event and
ological horizons are nearly coincident,24 but the approximation used therein is not expecte
old in the asymptotic limit, at least on what concerns the real part of the asymptotic frequ
urther approximations were studied in Ref. 25, in a limit where the black hole mass is
maller than the space–time radius of curvature, but focusing explicitly on the timedependen

ransient situation. An attempt at an analytic solution for the asymptotic quasinormal frequencies,
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sing the monodromy technique of Ref. 11, was done in Ref. 26. However, an erroneous
cation of the relevant contours led these authors to an incorrect result(see also Ref. 27, whe
ther arguments were given trying to explain the failure of Ref. 26 to reproduce available n
al data). Perhaps the most thorough analytical work on Schwarzschild dS asymptotic quas
requencies to date is the one in Ref. 18. These authors find that because there are two
urface gravities, there are also two sets of solutions forImsvd when the horizons arewidely
paced, namelyImsvd equally spaced with spacing equal tokH or Imsvd equally spaced wit
pacing equal tokC. It was further claimed in Ref. 18 that this lack of consensus on quasin
requencies was due to the fact that there is no global definition of temperature in this spac
ur results appear to confirm this expectation: in the limit where the cosmological radius

nfinity, and one recovers the Schwarzschild modes, we found the spacing to be equal tokH. In the
imit where the black hole radius is very small,(2.5) yields modes with spacing equal tokC (notice
hat this formula does not depend on the choice of units).

Besides the mentioned works, there are also numerical results available, and this is w
omparisons prove to be most conclusive. In Ref. 28 the asymptotic quasinormal frequen
lectromagnetic and gravitational perturbations of nearly extremal Schwarzschild dS spac
ere studied. It turned out that, for gravitational perturbations, the real part of the asym
uasinormal frequencies has an oscillatory behavior as plotted against its imaginary part.

he same figure as in Ref. 28, using our final result(2.5), in Fig. 3. This figure corresponds to t
oots of (2.5) for a near extremal black hole withkH=10−3, and should be compared to Fig. 4
ef. 28 which refers to the same value ofkH. One immediately observes agreement to l
ccuracy: first, the oscillation period is exactly the same. Second, the value of maxsResvdd in Ref.
8 is of the same order as our maximum, but always larger than it, as it must be since ou
efers to the asymptotic regime only. Moreover, and on what concernsj =1 electromagnetic pe
urbations, the numerical data in Ref. 28 is very clear and indicates that the real part
symptotic quasinormal frequencies should vanish, and this is precisely what we have o
urther numerical results have recently been obtained in Ref. 29, this time around witho
ear extremality constraints. Again, for the gravitational perturbations, the real part
symptotic quasinormal frequencies was found to have an oscillatory behavior. Also, for e
agnetic perturbations, the real part of the asymptotic quasinormal frequencies was f

anish. Our analytical results still agree very well with the numerics: we are able to reprod
asic features of Fig. 2 in Ref. 29, with the exception that we also find modes with a zero re
his should not be cause for concern as it is known to be highly difficult to numerically o
odes with a vanishing real part. On what concerns thej =1 perturbations of Ref. 29, we obta

FIG. 3. Real versus imaginary part of quasinormal frequencies for the nearly extremal Schwarzschild dS so
xactly what they have found.
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II. ASYMPTOTICALLY ANTI–DE SITTER SPACE–TIMES

Reference 5 discusses the stability of black holes in asymptotically anti–de Sitter(AdS)
pace–times to tensor, vector and scalar perturbations of the metric and the electromagn
or black holes without charge, which is the case we shall focus on, tensor and vector p

ions are stable in any dimension. Scalar perturbations are stable in dimension four but the
roof of stability in dimensiondù5. As we shall work in four dimensions, we are guarante
table solution. Quantization of scalar field in AdS was first addressed in Ref. 30. An im
heme concerned boundary conditions: because AdS light rays can reach spatial infinity an
o the origin in finite time, as measured by the observer at the origin, one could exp
eflecting boundary conditions at the AdS walls. However, these walls are at timelike
nfinity. As it turns out, the sensible boundary conditions to impose on quasinormal modes
he usual incoming waves at the black hole horizon and then vanishing of the fields at infini(i.e.,
t the boundary of AdS). The Schwarzschild AdS solution in dimensiond=4 has parametersm and
,0, with metric

fsrd = 1 −
2m

r
− lr2 = 1 −

2m

r
+ ulur2.

he potentials to be used in the master equation(1.1) are the same as before. Also, in
ollowing we shall focus on scalar field perturbations.

Again, to simplify the calculation we choose the radius of the black hole to be our lengt
he length scale determined by the cosmological constant will then be an adimensional quR,
ith l=−1/R2. It is then easily seen that the warp factor must be of the form

fsrd = 1 −
2m

r
− lr2 =

sr − 1dsr2 + r + 1 +R2d
R2r

nd consequently the black hole mass will be given in our units by

m =
1 + R2

2R2 .

oreover, one can compute

fsrd =
sr − 1dsr − gdsr − ḡd

R2r
,

here

g = −
1

2
+

i

2
Î4R2 + 3.

or simplicity, we shall consider quasinormal modes for large black holes only, in whichR!1.
his serves our purpose of illustrating how the techniques in Ref. 11 are generalized for

otically AdS space–times, whereas the full case is carefully analyzed in Ref. 12. For thes
lack holes we have, approximately,

g = eis2p/3d = Î31, ḡ = g2,

nd consequently

1

fsrd
=

R2

3
S 1

r − 1
+

ḡ

r − g
+

g

r − ḡ
D .
he (complex) tortoise coordinate which vanishes at the origin is therefore
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x =E dr

fsrd
=

R2

3
slogs1 − rd + ḡ logs1 − ḡrd + g logs1 − grdd.

We now wish to examine the Stokes line, i.e., the curveImsvxd=0. However, this tim
round, the expression of the tortoise makes it clear thatImsvxd is a multivalued function. T
ypass this problem, we choose a particular branch and simply trace out the curve shif
amification lines so that it never hits them. Note that the behavior ofe±ivx will still be oscillatory
long the curve. Again the Stokes line has a unique singular point at the origin, where fo
eet, as

vx , −E vr dr

2m
= −

vr2

4m

or r ,0. To understand its behavior near the singularities, we notice that following our proc
he curve

Imsa logszdd = 0

s the curve

a logszd = r ⇔ z= ejreihr

with a=1/sj+ ihd andrPR a parameter]. This is a spiral that approaches the singularityz=0,
xcept in the case wherej=0, i.e., whena is purely imaginary. Therefore, generically one exp

he Stokes line to hit all three singularities, and hence the fourth line starting out at the orig
xtend all the way to infinity. Forr ,` we have

x ,E R2 dr

r2 = x0 −
R2

r
.

n particular,x has no monodromy at infinity, as can also be seen from its expression and t
hat

1 + g + g2 = 0.

e can therefore choose the three ramification lines ofx to cancel each other off, makingx0 well
efined.(There are however three nonequivalent ways of doing this, leading to three p
alues ofx at infinity: x0, x̄0, and −ux0u. The second choice leads to the quasinormal freque
v̄, wherev are the quasinormal frequencies obtained by choosingx0; the third choice leads to n
olutions.) Using the expression forx with appropriate choice of ramification line in each lo
ithm, one then obtains

x0 =
2pÎ3R2

9
e−ip/3.

herefore we must have

vx0 P R ⇔ v = zeip/3 sz P R+d.

or such a value ofv and our choice of ramification lines, it is easily seen thatvx is real for
=reip/3, rP s−1, +`d. On the other hand, near the origin the Stokes line is given by

Ims− eip/3r2d = 0 ⇔ r = re−ip/6 or r = reip/3 sr P Rd.

onsequently, it is not hard to guess that the Stokes line is as depicted in Fig. 4. We have
his guess with a numerical computation of the same Stokes line, and this is indicated in F
hould be noted that due to the ramification lines(which can be readily identified in the figure) the

pirals at the singularities are not so clearly depicted in the numerical result.
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Now, for r ,` we have

Vs , 2l2r2 ,
2

sx − x0d2 =
32 − 1

4sx − x0d2 .

onsequently,

Fsxd , B+
Î2pvsx − x0d J3/2svsx − x0dd + B−

Î2pvsx − x0d J−3/2svsx − x0dd

or r ,`. The boundary conditionF=0 at r =` requires thatB−=0. Hence,

Fsxd , B+
Î2pvsx − x0d J3/2svsx − x0dd,

or r ,`. Now, and as in the Schwarzschild dS case, forr ,0 the presence of the cosmologi
onstant is irrelevant, and the potential behaves as in the Schwarzschild black hole,

FIG. 4. Stokes line for the Schwarzschild AdS black hole.
FIG. 5. Numerical calculation of the Stokes line for the Schwarzschild AdS black hole.
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Vs ,
j2 − 1

4x2 ,

here j =0 for scalar field perturbations. Correspondingly, forx,0 the complexified solution o
he Schrödinger-type equation is of the form

Fsxd , A+
Î2pvx Jj /2svxd + A−

Î2pvx J−j /2svxd,

here A± are (complex) integration constants. One hasvxPR+ for r =reip/3, rPR, and
xPR− for r =re−ip/6, rPR. From the asymptotic expansion forJnszd, with z@1, we see that

Fsxd , 2A+ cossvx − a+d + 2A− cossvx − a−d

= sA+e−ia+ + A−e−ia−deivx + sA+eia+ + A−eia−de−ivx,

or r =reip/3, rPR+, where

a± =
p

4
s1 ± jd.

he same expansion yields

Fsxd , B+e−ib+eivsx−x0d + B+eib+e−ivsx−x0d = − B+e−ivx0eivx − B+eivx0e−ivx

n the same limit, since

b+ =
p

4
s1 + 3d = p.

e conclude thatA+,A− must satisfy

sA+e−ia+ + A−e−ia−deivx0 = sA+eia+ + A−eia−de−ivx0.

gain for z,0, one has the expansion

Jnszd = znwszd,

here wszd is an even holomorphic function. Consequently, as one rotates fromr =reip/3,
PR− to r =re−ip/6, rPR+ one has

Î2pe−pivx J± j /2se−pivxd = es−pi/2ds1±jdÎ2pvx J± j /2svxd , 2e−2ia± cossvx − a±d

nd hence

Fsxd , 2A+e−2ia+ coss− vx − a+d + 2A−e−2ia− coss− vx − a−d

= sA+e−ia+ + A−e−ia−deivx + sA+e−3ia+ + A−e−3ia−de−ivx,

or r =re−ip/6, rPR+. This form of the solution can be propagated along the corresponding b
f the Stokes line which approaches the event horizon, and where we know thatFsxd must behav
seivx. Consequently we obtain the second condition onA+, A− as

A+e−3ia+ + A−e−3ia− = 0.

he two conditions on these coefficients can only have nontrivial solutions if and only if

U e−3ia+ e−3ia−

e−ia+eivx0 − eia+e−ivx0 e−ia−eivx0 − eia−e−ivx0
U = 0 ⇔ U e−3ia+ e−3ia−

sinsa+ − vx0d sinsa− − vx0d
U = 0.

gain, this equation is automatically satisfied forj =0. We must thus considerj nonzero and the

ake the limit asj →0. This amounts to writing the equation as a power series inj and equating to
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ero the first nonvanishing coefficient, which in this case is the coefficient of the linear par
e just have to require that the derivative of the determinant above with respect toj be zero fo

j =0. This is

* −
3ip

4
e−3ip/4 3ip

4
e−3ip/4

sinSp

4
− vx0D sinSp

4
− vx0D * + * e−3ip/4 e−3ip/4

p

4
cosSp

4
− vx0D −

p

4
cosSp

4
− vx0D * = 0

rom where we obtain our final result as

tanSp

4
− vx0D =

i

3
⇔ vx0 =

p

4
− arctanS i

3
D + npsn P Nd. s3.1d

f one makes use of the notationv=foffsetg+nfgapg (which is slightly different from the one
he Introduction), it is simple to obtain the numerical values

foffsetg =

p

4
− arctanS i

3
D

R2SÎ3p

9
−

ip

3
D =

1

R2s0.572 975 + 0.419 193id

nd

fgapg =
9

4Î3R2
+

9i

4R2 =
1

R2s1.299 04 + 2.25id,

n complete agreement with available numerical results, as we shall see in the following(recall
hat we have taken the radius of the black hole horizon as our length unit).

We now need to review the literature concerning the calculation of asymptotic quasi
requencies in the Schwarzschild AdS space–time, in order to compare our results to earl
one on this subject. Quasinormal modes of Schwarzschild AdS black holes were addr
efs. 31, 20, and 32, having a direct interpretation in terms of the dual conformal field the

arge static AdS black holes correspond to conformal field theory thermal states. Howe
hat concerns us in this paper, only the first modes were computed in Refs. 31 and 20. Du
dS/CFT correspondence, this work sparked a series of investigations on AdS asymptoti
ormal frequencies, which naturally concentrated on the five-dimensional case(see, e.g., Ref
3–36). For the case that concerns us in here,d=4, the first numerical results for the asympt
uasinormal frequencies were published in Ref. 37. These authors found that scalar pertu
re isospectral with both odd and even parity gravitational perturbations, and they also fo
xistence of modes with purely imaginary frequency. Later, an extensive study of asym
uasinormal frequencies for Schwarzschild AdS black holes ind=4 was done in Ref. 38, an
umerically produced a number which exactly matches our analytical prediction. While t

hors of Ref. 38 found that the real part of the frequency mode increases with the overtone
, in what seems to be a characteristic particular to AdS space, they also found that, for t
lack holes which we have studied in the present paper, the offset is

foffsetg =
1

R2s0.578 + 0.420id,
nd the gap is

                                                                                                            



i

I

f. 11 to
t ials for
b
p ne
i nd, one
w e great
c ory. On
t way to
t ave
a han the
q on dual
s to
w

g t in
t what
r uasinor-
m ,
w

w

T netic
p s charge,
w

w for
n ure dS
s in Ref.
1

4712 J. Math. Phys., Vol. 45, No. 12, December 2004 Cardoso, Natário, and Schiappa

                        
fgapg =
1

R2s1.299 + 2.250id,

n complete and precise agreement with our analytical results.

V. FUTURE DIRECTIONS

Having opened the way for an extension of the monodromy technique introduced in Re
he case of nonasymptotically flat space–times, and having at hand the full list of potent
oth gravitational and electromagnetic perturbations ofd-dimensional black holes,3,5 one can now
roceed and compute asymptotic quasinormal modes ford-dimensional black holes. This is do

n Ref. 12. The relevance of this calculation towards quantum gravity is dual: on the one ha
ould like to test if the ideas in Refs. 8 and 9 are universal. A positive answer would hav
onsequences in the theoretical development of both loop quantum gravity and string the
he other hand, the computation of these asymptotic quasinormal frequencies will open the
he calculation of asymptotic greybody factors ford-dimensional black holes which, as we h
lluded at previously, may have a deeper role to play on the road to quantum gravity t
uasinormal frequencies. Indeed, it is expected that these greybody factors may yield clues
tring theoretic microscopic descriptions of black holes, at high energies.13,14These are themes
hich we shall return in future publications.

For the moment, let us conclude with some comments on the upcoming results.12 Besides
eneralizing the present results tod dimensions(and removing the large black hole constrain

he AdS case), we also show how to include charge in this nonasymptotically flat situation. In
espects the charged solutions, we have also generalized the computation of asymptotic q
al frequencies in the four-dimensional Reissner–Nordstrøm solution of Ref. 11, tod dimensions
ith the following result:

ebH
+ v + s1 + 2 cossp jdd + s2 + 2 cossp jdde−bH

− v = 0,

here thebH
± are the inverse temperatures at the outer and the inner horizons, and

j =
d − 3

2d − 5
.

his formula is valid in any dimension and for any type of gravitational or electromag
erturbation. In the case of the extremal Reissner–Nordstrøm solution, where mass equal
e have found that the asymptotic frequencies are solutions of the expression

v =
d − 3

d − 2
S d − 3

4pRH
D log 1 sinS5p j

2
D

sinSp j

2
D 2 ,

hereRH is the radius of the extremal horizon andj is as before. We have also found solutions
ormal modes ind-dimensional pure AdS space, and solutions for quasinormal modes in p
pace, for particular values of the dimension. A complete list of all these results will appear

2.
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An axiomatic approach to the mathematical formalism of quantum mechanics,
based upon a certain concept of conditional probability, has been proposed in two
recent papers by the author. It leads to Jordan operator algebras and thus come
rather close to the standard Hilbert space model of quantum mechanics, but still
includes the so-called exceptional Jordan algebras, for which a Hilbert space rep-
resentation does not exist. This approach is now extended by defining a mathemati
cal model of composite systems. Such a model is required for the study of the joint
distribution of two quantum observables. A very general type of observables(not
only the real-valued observables corresponding to the self-adjoint operators) is
considered. The joint distribution is defined, using the concept of conditional prob-
ability, and exhibits a certain dependence on the succession of the observations
which is different from the classical case and unknown so far in quantum mechan-
ics. Finally, it turns out that, at least in the finite-dimensional case, a really satis-
fying model of the composite system exists only if each single system is modeled
by a complex Jordan matrix algebra(or a direct sum), and the model then becomes
the tensor product. This provides some reasoning why the exceptional Jordan alge
bras can be ruled out, why quantum mechanics needs the complex numbers and th
complex Hilbert space, and why the tensor product is the right choice for the model
of a composite system. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1811371]

. INTRODUCTION

An axiomatic approach to the mathematical formalism of quantum mechanics, based
ertain concept of conditional probability and some interpretable postulates concernin
onditional probabilities, has recently been presented by the author.10,11 It leads to Jordan operat
lgebras and thus comes rather close to the standard Hilbert space model of quantum m
ut still includes the so-called exceptional Jordan algebras, for which a Hilbert space rep

ion does not exist.
This approach is extended by proposing a mathematical model of composite system

ombination of two systems to a single one is equally important for modeling physical as
tochastic systems, e.g., for the definition of a joint distribution of two random variables. F
urpose, classical probability theory contains the concept of products-algebras, and quantu
echanics uses the Hilbert space tensor product.

The proposed model renders possible the study of joint distributions of a very general
uantum observables(usually, only real-valued observables corresponding to self-adjoint o

ors are considered). The joint distributions are defined using the concept of the condit
robabilities, thus differ from those considered by other authors,5,12,13and exhibit a certain depe
ence on the succession of the observations which is different from the classical case
nown so far in quantum mechanics. The goal to become able to define a unique joint dist

or a pair of quantum observables satisfying a certain compatibility criterion is the major motiva-

4714022-2488/2004/45(12)/4714/12/$22.00 © 2004 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.1811371
http://dx.doi.org/10.1063/1.1811371


t ebraic
c the
u

posite
s stem is
m the
t ternion
J numbers
a oduct is
t

puting
w
m

ch,
w l of a
c e ques-
t unique
m lved
a summa-
r

I

a

a
m
T
e e
s -
a

of
m
s

ne

Þ
a

p
i
t

J. Math. Phys., Vol. 45, No. 12, December 2004 Composite systems and the role of numbers 4715

                        
ion for the proposed model of a composite system, which thus differs from the alg
oncepts6,16 and from other concepts1,8,9 where only product distributions are considered and
niqueness of the joint distribution is not addressed.

Finally, it turns out that, at least in the finite-dimensional case, a model of the com
ystem that satisfies all the postulates from Refs. 10 and 11 exists only if each single sy
odeled by a complex Jordan matrix algebra(or a direct sum), and the model then becomes

ensor product. This rules out not only the exceptional octonion, but also the real and qua
ordan matrix algebras and may be a reason why quantum mechanics needs the complex
nd the complex Hilbert space. Moreover, this provides some reasoning why the tensor pr

he right choice for modeling composite systems.
Beyond that, this may have some impact on quantum information and quantum com

here a certain phenomenon of composite quantum systems, the so-calledentanglement, plays a
ajor role, but this is out of the scope of the present paper.

Section II of the paper provides a brief survey of the author’s recently presented approa10,11

hich is then extended in Sec. III by defining the postulates for a mathematical mode
omposite system. After studying the joint distributions in Sec. IV, the paper addresses th
ions whether and when the postulates can be fulfilled and whether they determine a
athematical model(Secs. V and VI); currently, only the finite-dimensional case can be reso
nd, for this purpose, Jordan matrix algebras are considered. Some still open issues are
ized in the conclusions.

I. NON-BOOLEAN PROBABILITIES

An orthospace10 is a setE with distinguished elements 0 andI, an orthogonality relation',
nd a partial binary operation + such that forD ,E,FPE:

(OS1) E'F⇒F'E,
(OS2) E+F is defined forE'F, andE+F=F+E,
(OS3) D'E,D'F ,E'F⇒D'E+F ,F'D+E andD+sE+Fd=sD+Ed+F,
(OS4) 0'E andE+0=E for all EPE,
(OS5) For everyEPE there exists a uniqueE8PE such thatE'E8 andE+E8=I,
(OS6) E'F8⇔ There exists aDPE such thatE'D andE+D=F.

Then 08=I and E9=E for EPE. A further relation a is defined on E via E
F : ⇔E'F8⇔E containing an elementD such thatD'E andF=E+DsE,FPEd. A stateis a
ap m :E→ f0,1g such thatmsId=1 andmsE+Fd=msEd+msFd for all orthogonal pairsE,FPE.
henms0d=0, andm is additive for each finite family of pairwise orthogonal elements inE. (OS6)
nsures thatmsEdømsFd for EaF. If m is a state andEPE with msEd.0 and ifn is another stat
uch thatnsFd=msFd /msEd holds for all FPE with FaE, thenn is called aconditional prob
bility of m underE.

A s-orthospaceis an orthospaceE such thaton=1
` En is defined inE for every sequence

utually orthogonal eventsEn, and a statem is s-additive if mson=1
` End=on=1

` msEnd. A s-UCP
paceis a s-orthospaceE satisfying the following two axioms:11

(UC1) If E ,FPE and EÞF, then there is as-additive statem with msEdÞmsFd.
(UC2) For each s-additive statem and EPE with msEd.0, there exists one and only o

s-additive conditional probabilitymE of m under E.

With a s-UCP spaceE, there is as-additive statem with msEd=1 for each elementE
0,D in (OS6) becomes unique, the relationa is antisymmetric(but still not an order relation),

nd we haveE'E⇔E' I⇔E=0sEPEd.
The elementsEPE are interpreted aseventsand will be called so in the following. The(only

artially defined) operation + is interpreted as theor connection of mutually exclusive events,E8
s thenegationof E. For as-additive statem, the interpretation of the real numbermsEd is that of

heprobability of the eventE in the statem, andmEsFd is the probability of the eventF in the state
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after the eventE has been observed. Using the same terminology as in mathematical prob
heory, we will also writemsF uEd for mEsFd in the sequel. IfmsEd=1, thenmE=m and msF uEd
msFd for all FPE.

If msF uEd does not depend onm for two eventsE,F with EÞ0, we say thatF is statistically
redictableunderE and denote the state-independent conditional probability byPsF uEd. We then
ave thatF is statistically predictable underE with PsF uEd=l if and only if msFd=l holds for
very s-additive statem with msEd=1. Cases with 0,PsF uEd,1 are a particular non-Boole
henomenon playing a major role within quantum measurement.10

An observableis as-homomorphismX from anothers-orthospaceF to E. If m is as-additive
tate onE, a s-additive statemX is defined onF via mXsFdªmsXsFdd ;mX is called the distributio
f X underm.

The classicals-algebras and particularly the systemB of Borel-measurable sets inR are
-orthospaces. IfF=B, the observableX:B→E is called areal-valuedor R-valuedobservable o
, although it is a map fromB to E. The reason is that we want to keep the notation in line
hat is called a real-valued classical random variable. Theexpectation valueof a real-value
bservableX in a s-additive statem on E is defined as ExpmsXdªet dmX, andX is boundedif

iXi ª infhr ù 0uXsf− r,rgd = Ij

s finite sinf x=`d. Now letObsE ,Rd denote the set of all boundedR-valued observables onE. An
bservablexEPObsE ,Rd is allocated to eachEPE via sBPBd,

xEsBd ª 5
E for 1 P B and 0¹ B,

E8 for 1 ¹ B and 0P B,

0 for 1¹ B and 0¹ B,

I for 1 P B and 0P B.
6

With a real-valued observableX and a measurable functionf :R→R, another real-value
bservableY is defined viaYsBdªXsf−1sBdd for BPB ;Y is denoted byfsXd in the sequel. The

XsBd= IBsXd, whereB is any Borel set andIB is the indicator function withIBstd=1 for tPB and

Bstd=0 for t¹B.
ObsE ,Rd forms a pre-JB algebra(i.e., its completion is a JB algebra7) if the following three

xioms hold in thes-UCP spaceE:11

(A1) msEuFdmsFd+msE8 uF8dmsF8d=msF uEdmsEd+msF8 uE8dmsE8d for all events E and F
and all s-additive statesm on E.

(A2) For each pair of events E and F there is a bounded real-valued observable UEsFd such
that msF uEdmsEd=ExpmsUEsFdd for everys-additive statem on E.

(A3) For each pair of bounded real-valued observables X and Y there is one and on
bounded real-valued observable X+Y such thatExpmsX+Yd=ExpmsXd+ExpmsYd for
everys-additive statem on E.

The addition operation onObsE ,Rd is given by(A3), the generally nonassociative multip
ation operation+ can be derived from(A1) and (A2). The relationa then becomes an ord
elation and coincides with the usual order relationø on JB algebras if, as it is often done later
PE andxEPObsE ,Rd are identified with each other.

II. POSTULATES FOR A MODEL OF A COMPOSITE SYSTEM

A model of a composite system consisting of two single systems each modeled by thes-UCP
pacesE andF, respectively, should be as-UCP spaceC with at least the following property:

C1) There is a map̂ :E3F→C such that 0̂ F=E^ 0=0 for allEPE andFPF ,I ^ I=I, and

E1 ^ F1'E2 ^ F2 whenever E1'E2 or F1'F2sE1,E2PE andF1,F2PFd. Moreover,
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SsEk ^ Fd=sSEkd ^ F for every sequence of mutually orthogonal eventsEk in E and every
eventF in F, andSsE^ Fkd=E^ sSFkd for every sequence of mutually orthogonal eve
Fk in F and every eventE in E.

A particular role is played by the state-independent conditional probabilities, and we sh
ee that they are multiplicative onC.

Proposition 3.1: Assume thatE and F are s-UCP spaces and thatC is a s-UCP space suc
hat (C1) holds. If EPE is statistically predictable under Ds0ÞDPEd and FPF is statistically
redictable under Gs0ÞGPFd, then Ê F is statistically predictable under D̂ G with PsE

^ F uD ^ Gd=PsEuDdPsF uGd.
Proof: Let r be as-additive state onC with rsD ^ Gd=1. ThenrsD ^ Id=1=rsI ^ Gd. We now

efines-additive statesm1 and m2 on E via m1sCdªrsC^ Gd and m2sCdªrsC^ Id for CPE.
incem1sDd=1=m2sDd and sinceE is statistically predictable underD, we getPsEuDd=m1sEd
rsE^ Gd=m2sEd=rsE^ Id andPsE8 uDd=m1sE8d=rsE8 ^ Gd=m2sE8d=rsE8 ^ Id.

If PsEuDd.0, we define as-additive staten on F via nsHdªrsE^ Hd /PsEuDd for HPF.
hennsGd=1 andPsF uGd=nsFd=rsE^ Fd /PsEuDd.

If PsEuDd=0, thenPsE8 uDd=1 and we consider thes-additive statesn1 andn2 on F defined
ia n1sHdªrsE8 ^ Hd and n2sHdªrsI ^ Hd for HPF. Thus n1sGd=1=n2sGd and PsF uGd
n1sFd=rsE8 ^ Fd=n2sFd=rsI ^ Fd. HencersE^ Fd=rsI ^ Fd−rsE8 ^ Fd=0.

We thus get thatE^ F is statistically predictable underD ^ G with PsE^ F uD ^ Gd
PsEuDdPsF uGd. h

With a furthers-UCP spaceD and two observablesX:E→D andY:F→D, as-additive stat
on C is called ajoint distribution of sX,Yd under thes-additive statem on D, if

nsE ^ Fd = msXsEddmsYsFduXsEdd

or all EPE andFPF. This definition of a joint distribution is rather naturally based upon
oncept of conditional probabilities and differs from the joint distributions considered by
uthors.5,12,13 Gudder5 defines a joint distribution viamsXsEd∧YsFdd, which coincides with th
bove one when the lattice operation∧ exists andXsEd andYsFd commute for allE,F.

Generally, the right-hand side of the above equation is additive only inF, but not inE, and a
ecessary condition for the existence of the joint distribution is that it is additive inE as well. We
hall discuss this later on. Moreover, beyond that, the existence and the uniqueness of
istribution require the following second postulate onC:

C2) For everys-additive bistater onE3F, there exists one and only ones-additive statev on
C with rsE,Fd=vsE^ Fd for EPE andFPF.

Here, abistateis a mapr :E3F→ f0,1g with rsI ,Id=1,rsE1+E2,Fd=rsE1,Fd+rsE2,Fd and
sE,F1+F2d=rsE,F1d+rsE,F2d for all E,E1,E2PE with E1'E2 andF ,F1,F2PF with F1'F2.
bistate iss-additive if it is s-additive in each component with the other component fixed

A stochastically independent couplingm ^ n of the s-additive statesm on E andn on F is a
-additive statem ^ n on C with sm ^ ndsE^ Fd=msEdnsFd for EPE and FPF. It immediately

ollows from (C2) that a unique stochastically independent couplingm ^ n exists by applying(C2)
o the bistatersE,FdªmsEdnsFd for EPE andFPF. Other authors,1,8,9 when defining a mod
or a composite system, consider only these product states and no bistates and do not ad
niqueness of the coupled state.

When(C2) holds, the following proposition now provides the reverse of Proposition 3.1.
hat E^ F is statistically predictable underD ^ G with PsE^ F uD ^ Gd=0 for anyF andG in F
f E andD are orthogonal inE (and for anyD andE in E if F andG are orthogonal inF).

Proposition 3.2: Assume thatE and F are s-UCP spaces and thatC is a s-UCP space suc
hat (C1) and (C2) hold. Let Ê F be statistically predictable under D̂G for the events D,E
E and F,GPFsDÞ0,GÞ0d.

If PsE^ F uD ^ Gd.0, then E is statistically predictable under D and F is statistically p

ictable under G withPsE^ F uD ^ Gd=PsEuDdPsF uGd.
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If PsE^ F uD ^ Gd=0, then E is statistically predictable under D withPsEuDd=0 or F is
tatistically predictable under G withPsF uGd=0.

Proof: Let m be anys-additive state onE with msDd=1 andn anys-additive state onF with
sGd=1. Thensm ^ ndsD ^ Gd=1 andlªPsE^ F uD ^ Gd=sm ^ ndsE^ Fd=msEdnsFd.

l.0: ThenmsEdÞ0ÞnsFd. SincemsEd=l /nsFd holds for alls-additive statesm on E with
sDd=1 and n fixed, we get thatE is statistically predictable underD with PsEuDd=l /nsFd
0. Now nsFd=l /PsEuDd for all s-additive statesn on F with nsGd=1. ThusF is statistically

redictable underG with PsF uGd=l /PsEuDd.
l=0: If msEd=0=nsFd for all m ,n with msDd=1=nsGd, then PsEuDd=0=PsF uGd. If

sEd.0 for somem with msDd=1, then nsFd=0 for all n with nsGd=1, i.e., PsF uGd=0. If
sFd.0 for somen with nsGd=1, thenmsEd=0 for all m with msDd=1, i.e.,PsEuDd=0. h

An eventDÞ0 in as-UCP spaceE is called anatomif 0 aEaD for an eventE in E implies
hat eitherE=0 or E=D. Then all events inE are statistically predictable underD. Vice versa, i
ll events inE are statistically predictable under an eventD, D must be an atom. To see th
ssume that an event 0aEaD exists with 0ÞEÞD. Then there is an eventFÞ0 with E'F and
=E+F, and there ares-additive statesm and n with msEd=1 andnsFd=1. HencemsEuDd=1

ndnsEuDd=0 such thatE cannot be statistically predictable underD.
Proposition 3.3: Assume thatE and F are s-UCP spaces and thatC is a s-UCP space suc

hat (C1) and (C2) hold. If DPE and GPF are atoms, then D̂ G is an atom inC.
Proof: Let DPE andGPF be atoms. From Proposition 3.1 we get thatE^ F is statistically

redictable underD ^ G for everyEPE andFPF. A s-additive bistater on E3F is defined via
sE,FdªPsE^ F uD ^ Gd, and there is a uniques-additive statev on C with vsE^ Fd=rsE,Fd
or EPE andFPF.

Now let m be a s-additive state onC with msD ^ Gd=1. ThenmsE^ Fd=PsE^ F uD ^ Gd
rsE,Fd for all EPE andFPF. Thereforem=v, and every eventC in C is statistically predict
ble underD ^ G with PsCuD ^ Gd=vsCd. ThusD ^ G is an atom inC. h

V. JOINT DISTRIBUTIONS OF QUANTUM OBSERVABLES

Note that the products-algebraC=B ^ B which is identical with the Borel measurable sub
f R2 satisfies(C1) and (C2) for E=F=B. Therefore, the joint distribution of two real-valu
bservables, if it exists, is a probability distribution onR2.

In classical probability theory, a joint distribution of a family of random variables al
xists. In thes-UCP space model, however, many different cases are possible, and th
istribution of sX,Yd may exist while the one ofsY,Xd does not.

Let E ,F ,C be s-UCP spaces such thatC satisfies(C1) and (C2) for E andF. With a fourth
-UCP spaceD and two observablesX:E→D andY:F→D, we write

X→
m

Y, if the joint distributionmsX,Yd of sX,Yd under thes-additive statem on D exists onC,

X↔
m

Y, if X→
m

Y as well asY→
m

X sX andY are then calledcompatible undermd,

X → Y, if X→
m

Y holds for all statesm on D, and

X ↔ Y, if X → Y as well asY → X sX andY are then calledcompatibled.

e have

X→
m

Y ⇒ xXsEd→
m

xYsFd for all E P E andF P F,
nd with two eventsE andF in the s-UCP spaceD, we have
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xE→
m

xF ⇔ msFd = msFuEdmsEd + msFuE8dmsE8d

m a s-additive state onD). Two eventsE andF are said to be compatible(compatible underm),
f xE andxF are compatible(compatible underm).

In classical probability theory, the joint distributionsmsX,Yd and msY,Xd are connected v
sX,YdsE^ Fd=msY,XdsF ^ Ed, which is equivalent to msXsEddmsYsFd uXsEdd=msYsFdd
msXsEd uYsFdd. It is axiom (A1) that ensures this property for thes-UCP spaces as well.

Lemma 4.1: Let E and F be events in as-UCP spaceD that satisfies (A1). They are equiv
ent for a s-additive statem on D:

i) E and F are compatible underm,
ii ) msEdmsF uEd=msFdmsEuFd ,msEdmsF8 uEd=msF8dmsEuF8d, and

msE8dmsF uE8d=msFdmsE8 uFd.

Proof: First we assume (ii ). Then msF uEdmsEd+msF uE8dmsE8d=msEuFdmsFd
msE8 uFdmsFd=msFd and msEuFdmsFd+msEuF8dmsF8d=msF uEdmsEd+msF8 uEdmsEd=msEd.
ote that(A1) is not needed here for the proof of the implication(ii ) ⇒ (i).

We now assume(i). Then msEd=msEuFdmsFd+msEuF8dmsF8d and msFd=msF uEdmsEd
msF uE8dmsE8d. Hence

msE8uF8dmsF8d = s1 − msEuF8ddmsF8d

= msF8d − msEd + msEuFdmsFd = 1 −msFd − msEd + msEuFdmsFd

nd

msF8uE8dmsE8d = s1 − msFuE8ddmsE8d

= msE8d − msFd + msFuEdmsEd = 1 −msEd − msFd + msFuEdmsEd.

hus, by forming the difference of these two identities and then by(A1),

msEuFdmsFd − msFuEdmsEd = msE8uF8dmsF8d − msF8uE8dmsE8d = msFuEdmsEd − msEuFdmsFd,

.e.,

msEdmsFuEd = msFdmsEuFd.

Since the compatibility ofE andF underm implies the one ofE andF8 as well as ofE8 and
, the other two equations of(ii ) follow in the same way. h

Theorem 4.2:Let E ,F ,C be s-UCP spaces such thatC satisfies (C1) and (C2) forE andF.
et D be a fourths-UCP space where (A1) holds,m a s-additive state onD and let X:E→D and
:F→D be observables. If XsEd and YsFd are compatible underm for all EPE and FPF, then

he joint distributionsmsX,Yd on C andmsY,Xd on C (which is similar toC, but with exchanged role
f E and F) exist and satisfymsX,YdsE^ Fd=msY,XdsF ^ Ed.

Proof: From Lemma 4.1 we get thatmsXsEd uYsFddmsYsFdd=msYsFd uXsEddmsXsEdd for
PE and FPF. This then implies(1) the s-additivity in E with F fixed as well as inF with
fixed, (2) the existence of both the joint distributions, and(3) the identity msX,YdsE^ Fd

msY,XdsF ^ Ed. h

We now assume thatE=F=B (B is the system of the Borel sets inR) and thatD is a standar
uantum logic, i.e., the system of the closed linear subspaces of a Hilbert spaceH or, equivalently

he system of the orthogonal projectors onH. ThenmsEuFd=ExpmsFEFd /msFd for E,FPD.10

Therefore,F→E holds if and only ifE=FEF+F8EF8, which is equivalent toEF=FE. Thus
→E,E→F and E↔F are equivalent to each other and to the standard quantum-mech

oncept of compatibility in this case. Moreover,X→Y,Y→X,X↔Y, and fX,Yg=0 become
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quivalent for real-valued observablesX andY. Here the observable which is a spectral mea
s identified with the corresponding operator, and the observablesxE,xF are identified with th
ventsE,F.

However, the situation is different when the joint distribution exists only under a s
-additive statem. We haveF→

m
E if and only if

msEd = ExpmsFEF + F8EF8d = Expms2FEF + E − EF − FEd

r, equivalently,
ExpmsFEFd = ExpmsEF + FEd/2,

hich is not symmetrical inE andF. An example can easily be constructed by using two no
hogonal vectorsh ,jPH with ihi=1=iji and choosingE= uhlkhu ,F= ujlkju, and msDd
kh uDhl; thenE→

m
F, but notF→

m
E. Moreover, the above equivalence immediately implies

ll pairs of events are compatible under the trace state ifH has a finite dimension, which disti
uishes the trace among other states.

If X and Y are real-valued observables,msX,Yd is the joint distribution of two subseque
bservations(measurements) of X andY, whereX is observed(measured) first andY second. Tha
sX,Yd may exist whilemsY,Xd does not exist, shows that the time order of observations(measure
ents) plays a more significant role with the non-Boolean probabilities than with the cla
robabilities. Quantum probabilities are non-Boolean, which is the origin of many typical qu
henomena.10

The classical concept of stochastic independence can now be extended to the genera
bservablesX:E→D andY:F→D (E ,F ,D s-UCP spaces) in the following obvious way:X and

are independent underm if msXsEdd=msXsEd uYsFdd holds for msYsFdd.0 and msYsFdd
msYsFd uXsEdd holds formsXsEdd.0 (EPE andFPF). Note that this impliesXsEd↔

m
YsFd for

PE ,FPF and, if the assumptions of Theorem 4.2 hold, the joint distributions exist with

msX,YdsE ^ Fd = mXsEdmYsFd = msY,XdsF ^ Ed.

When(A1), (A2), and(A3) hold, two eventsE andF in E are independent underm if and only
f they are compatible underm and the identity ExpmsE+Fd=msEdmsFd holds for the productE
F in ObsE ,Rd. For two independent real-valued observables we then get ExpmsX+Yd
ExpmsXdExpmsYd and VarmsX+Yd=VarmsXd+VarmsYd. The first equation follows since t
ounded real-valued observables can be approximated by linear combinations of ev

bsE ,Rd; the second equation follows from the first one. Using the Chebychev inequali
eak law of large numberscan now be proved under the same assumptions and in the sam
s with classical probabilities, but only for the bounded observables.

In classical probability theory, the law of large numbers provides the link between pro
ies and relative frequencies as well as between expectation values and statistical ave
uantum theory, the law of large numbers gets an additional significance since the conv

owards a constant observable also means that large systems become asymptotically cla

. JORDAN MATRIX ALGEBRAS

We shall now study the question whether as-UCP spaceC satisfying(C1) and(C2) exists for
ivens-UCP spacesE andF. Unfortunately, a general answer cannot be given at present, a
ave to restrict to the case whenE ,F as well asC satisfy (A1), (A2), and(A3) andObsE ,Rd as
ell as ObsF ,Rd are finite dimensional. ThenObsE ,Rd ,ObsF ,Rd and, as we shall see later

bsC ,Rd as well are finite-dimensional formally real Jordan algebras and are direct sums
omplex, quaternion or octonion Jordan matrix algebras.7

Let H denote the noncommutative field of quaternions andO the noncommutative and no
ssociative field of octonions(Cayley numbers). For K=R ,C ,H or O ,MnsKd is the algebra ofn
n-matrices overK andHnsKd the algebra of the Hermitian elements ofMnsKd equipped with th
ordan product. ThenHnsKd with K=R ,C ,H is a Jordan algebra for all positive integersn,HnsOd
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s a Jordan algebra if and only ifnø3 (Ref. 7). These are the real, complex, quaternion,
ctonion Jordan matrix algebras. The real dimension ofHnsKd is n+knsn−1d /2 wherek is the rea
imension ofK, i.e., k=1 for K=R ,k=2 for K=C ,k=4 for K=H, andk=8 for K=O.

Let JnsKd denote the system of idempotent elements inHnsKd ;JnsKd with nÞ2 andKÞO as
ell asJ3sOd are UCP spaces10 and satisfy(A1), (A2), and(A3). Note thats-additivity need no
e distinguished from finite additivity, due to the finite dimension, and thatObsJnsKd ,Rd
HnsKd by identifying the Hermitian matrices with their spectral measures.

Theorem 5.1: AssumeE=JnsKd and F=JmsKd with K=R ,C ,H and m,nù3, or with K=O
nd m=n=3. Then as-UCP spaceC satisfying (C1) and (C2) as well as (A1), (A2), and (
xists if and only if K=C.

In this case, (C1) and (C2) are fulfilled withC=JmnsCd and E^ FPJmnsCd being the Kro
ecker product of EPJnsCd and FPJmsCd.

The proof of Theorem 5.1 will be broken into a series of lemmas. First note that the
roductMnsCd ^ MmsCd can be identified withMmnsCd via the Kronecker product,

X ^ Y = 1x11Y … x1nY

] � ]

xn1Y … xnnY
2 ,

or XPMnsCd andYPMmsCd. ThenE^ FPJmnsCd for EPJnsCd ,FPJmsCd.
The real-linear spacesHnsCd ^ HmsCd andHmnsCd coincide, andHmnsCd is the real-linear hu

f theE^ FPJmnsCd with EPJnsCd andFPJmsCd. Note that this does not hold for the real Jor
atrix algebras.

Lemma 5.2:C=JmnsCd with E^ F being the Kronecker product fulfills (C1) and (C2) foE
JnsCd and F=JmsCd ,n,mù3.

Proof: (C1) is obviously fulfilled, and we prove(C2). Let r be a bistate onJnsCd3JmsCd. By
leason’s theorem,4 there is one and only one positive matrixTFPHnsCd for everyFPJmsCd such

hatrsE,Fd=trsETFd for all EPJnsCd. The mapF→TF is then orthogonally additive inF and, for
ach positive matrixXPHnsCd, we again apply Gleason’s theorem, this time to the maF
trsXTFd on JmsCd, such that there is one and only one positive matrixSXPHmsCd with

rsXTFdd=trsSXFd. Since every matrix inHnsCd is the difference of two positive matrices, we c
ssume that anSXPHmsCd with trsXTFdd=trsSXFd exists for everyXPHnsCd. The mapX→SX is
eal-linear, and the mapHnsCd3HmsCd{ sX,Yd→ trsSXYd is a bilinear extension ofr. Therefore
here exists a real-linear functionalv on the real-linear tensor productHnsCd ^ HmsCd=HmnsCd
uch thatvsX^ Yd=trsSXYd for XPHnsCd and YPHmsCd. HencersE,Fd=vsE^ Fd, and v is
ositive as well as uniquely determined sinceHmnsCd is the real-linear hull of theE^ F
JmnsCd with EPJnsCd and FPJmsCd. The restriction ofv to C=JmnsCd provides the desire

tate. h

We now assume thatE ,F ,C ares-UCP spaces where(A1), (A2), and(A3) hold, thatObsE ,Rd
ndObsF ,Rd are finite-dimensional and thatC satisfies(C1) and(C2) for E andF. Note thatxE

ndE as well asxE^F andE^ F are not distinguished in the sequel.
On ObsC ,Rd, we consider the weak topology induced by those linear functionalsw which

ave the shapewsXd=sExpmsXd− t ExpnsXd with s-additive statesm ,n on C ,s,tPR.
Lemma 5.3:ObsC ,Rd is the weakly closed linear hull ofhE^ F :EPE ,FPFj.
Proof: We assume that the weakly closed linear hull ofhE^ F :EPE ,FPFj does not coincid

ith ObsC ,Rd. Then there is a linear functionalwÞ0 on ObsC ,Rd, having the above shape w
-additive statesm ,n on C ,s,tPR, such thatwsE^ Fd=0 for EPE ,FPF. Thens= tÞ0, since
sI ^ Id=0 andwÞ0. Since the restrictions ofm andn to hE^ F :EPE ,FPFj provide identica
istates onE3F ,m andn must coincide onC, contradictingwÞ0. Note thatObsC ,Rd is the linea
ull of C.11

h

Lemma 5.4: For every bistater on E3F, there is a unique linear functionalwr on the linea
ensor productObsE ,Rd ^ ObsF ,Rd such thatrsE,Fd=wrsE^ Fd for EPE ,FPF.

ˆ
Proof: For EPE with rsE,Id.0 define a staterE on F via rEsFdªrsE,Fd /rsE,Id. Let rE be
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ts linear extension toObsF ,Rd, i.e., r̂EsYd is the expectation value of the observableX in the state
ˆE. Define r̂Eª0 for rsE,Id=0. SinceObsE ,Rd is the linear hull ofE,11 we can choose a ba

1,… ,En of ObsE ,Rd such thatE1,… ,EnPE. Every XPObsE ,Rd then has the shapeX= t1E1

¯ + tnEn with unique numberst1,… ,tnPR, and we define a bilinear functionalw0 via

w0sX,Yd ª o
k=1

n

tkrsEk,Idr̂Ek
sYd

or XPObsE ,Rd and YPObsF ,Rd. Hence, there is a linear functionalwr on ObsE ,Rd
^ ObsF ,Rd with wrsX^ Yd=w0sX,Yd. ThenwrsEk ^ Fd=rsEk,Fd for FPF.

For FPF with rsI ,Fd.0 define a staterF on E via rFsEdªrsE,Fd /rsI ,Fd. Let r̂F be its
inear extension toObsE ,Rd. Define r̂F

ª0 for rsI ,Fd=0. The mapsX→rsI ,Fdr̂FsXd and X
wrsX^ Fd are linear functionals onObsE ,Rd coinciding on the basisE1,… ,En and therefor

eing identical. HencewrsE^ Fd=rsE,Fd for all EPE andFPF.
Since ObsE ,Rd is the linear hull of E and ObsF ,Rd is the linear hull of F ,ObsE ,Rd

^ ObsF ,Rd is generated byhE^ F :EPE ,FPFj, which implies the uniqueness ofwr. h

Lemma 5.5: Every linear functionalr on the linear tensor productObsE ,Rd ^ ObsF ,Rd has
he shaper=ar+−br− with a ,bù0 such that the mapsE3F{ sE,Fd→r±sE^ Fd are bistates.

Proof: For X,YPObsE ,Rd ^ ObsF ,Rd, we defineXøY: ⇔ sw ^ cdsXdø sw ^ cdsYd for all
ositive linear functionalsw on ObsE ,Rd andc on ObsF ,Rd.

Since every linear functional onObsE ,Rd or ObsF ,Rd is the difference of two positive fun
ionals, the dual space ofObsE ,Rd ^ ObsF ,Rd is generated by thew ^ c with positive functional

on ObsE ,Rd andc on ObsF ,Rd. Therefore,Xø0 and 0øX holds if and only ifX=0 such tha
becomes an order relation.
Now let XPObsE ,Rd ^ ObsF ,Rd. ThenX has the shape

X = o
k=1

n

tkEk ^ Fk

ith kPN ,E1,… ,EnPE ,F1,… ,FnPF and t1,… ,tnPR. Hence usw ^ cdsXduøSutkusw ^ cdsI
^ Id for positive functionalsw on ObsE ,Rd and c on ObsF ,Rd, i.e., −SutkuI ^ IøXøSutkuI ^ I.

bviously,ObsE ,Rd ^ ObsF ,Rd is Archimedian and thus an order unit space7 with the order uni
^ I.

Therefore,7 every linear functionalr on ObsE ,Rd ^ ObsF ,Rd has the shaper=r+−r− with
ositive linear functionalsr+ and r−. Then, eitherr±=0 or the mapsE3F{ sE,Fd→r±sE

^ Fd /r±sI ^ Id are bistates. h

Lemma 5.6:dim ObsC ,Rd=dimObsE ,Rddim ObsF ,Rd.
Proof: We prove that there is a linear bijectionF from the linear tensor productObsE ,Rd

^ ObsF ,Rd onto ObsC ,Rd. Every elementZ of ObsE ,Rd ^ ObsF ,Rd has the shape

o
k=1

n

tkEk ^ Fk

ith E1,… ,EnPE ,F1,… ,FnPF andtkPR, and we allocate toZ the elementFsZd of ObsC ,Rd,
aving the same shape inObsC ,Rd. Note that the same notationE^ F is used here for tw
ifferent objects, one lying inObsE ,Rd ^ ObsF ,Rd and the other one inC#ObsC ,Rd. In

bsE ,Rd ^ ObsF ,Rd,

o
k=1

n

tkEk ^ Fk = 0
olds if and only if(use Lemma 5.4 and Lemma 5.5)
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o
k=1

n

tkrsEk,Fkd = 0

or every bistater on E3F. By (C2), this is equivalent to

o
k=1

n

tkmsEk ^ Fkd = 0

or everys-additive statem on C, i.e., to

o
k=1

n

tkEk ^ Fk = 0

n ObsC ,Rd. ThereforeF :ObsE ,Rd ^ ObsF ,Rd→ObsC ,Rd is a well-defined and injective line
ap. The range ofF has a finite dimension, is closed then and thus, by Lemma 5.3,F is surjective

s well. h

Thecenterof a Jordan algebraA is the set of those elements ofA that operator-commute wi
very element ofA, andA is called afactor if its center consists of the scalar multiples of

dentity I alone. The finite-dimensional JB factors are the Jordan matrix algebras overR ,C ,H or
.

In the sequel, we shall need the so-calledJordan triple product7 h , , j, which is defined a
ollows for three elementsX,Y,Z in a Jordan algebra:hX,Y,ZjªX+ sY+Zd−Y+ sZ+Xd+Z+ sX+Yd.

If E and F are atoms in a finite-dimensional JB factorA, there is an atomD which is
orthogonal neither withE nor with F. If E andF are not orthogonal, chooseD=E or D=F. If E
and F are orthogonal, they must bestrongly connectedand hencehE,A ,FjÞ h0j.7 SinceA is
enerated by its atoms, there is an atomD with 0Þ hE,D ,Fj=E+ sF +Dd−D + sE+Fd+F + sE+Dd

=E+ sF +Dd+F + sE+Dd, and sinceE and F operator-commute,E+ sF +Dd=F + sE+Dd, such thatF
+DÞ0ÞE+D.

Lemma 5.7: IfObsE ,Rd and ObsF ,Rd are factors, thenObsC ,Rd is a factor.
Proof: ObsC ,Rd is a factor if and only if 0 andI ^ I are the only idempotent elements in

enter. Assume thatH is an idempotent element in the center, and letEPE andFPF be atoms
hen (see Ref.7)

E ^ F = hH,E ^ F,Hj + hH8,E ^ F,H8j

ndhH ,E^ F ,Hj as well ashH8 ,E^ F ,H8j are idempotentsH8=I ^ I−Hd. SinceE^ F is an atom
Proposition 3.3), one of these two idempotent elements must equal 0 and the other one mu

^ F, i.e., eitherE^ FøH or E^ FøH8. Both cases are symmetric, and we assumeE^ FøH.
Now let DoPE and GoPF be atoms such thatPsEuDodÞ0 andPsF uGodÞ0. Then agai

ither Do ^ GoøH or Do ^ GoøH8. From Proposition 3.1 we getPsE^ F uDo ^ GodÞ0, i.e.,
Do ^ Go,E^ F ,Do ^ GojÞ0, which excludesDo ^ GoøH8 such thatDo ^ GoøH.

Now let DPE andGPF be any atoms. Then there exists an atomDoPE which is orthogona
ith neitherE nor D, and there is an atomGoPF which is orthogonal with neitherF nor G. Then
sEuDodÞ0ÞPsDouDd and PsF uGodÞ0ÞPsGouGd. Applying the above, we get firstDo ^ Go

H and thenD ^ GøH (by exchangingE,F with Do,Go andDo,Go with D ,G).
Now let D1,… ,DnPE andG1,… ,GmPF be pairwise orthogonal atoms inE andF, respec

ively, with I=SDj and I=SGk. ThenI ^ I=SSDj ^ GkøH and thereforeI ^ I=H. h

Proof of Theorem 5.1:E=JnsKd andF=JmsKd with K=R ,C ,H, or O ,m,nù3, andm=n=3 if
=O. Assume that a UCP spaceC satisfying(C1) and(C2) as well as(A1), (A2), and(A3) exists
ith ObsC ,Rd being finite-dimensional. By Lemmas 5.6, 5.7 and Proposition 3.3,ObsC ,Rd is a JB

actor with dimObsC ,Rd=dim HnsKddim HmsKd and the identity inObsC ,Rd is the sum of themn
airwise orthogonal atomsEj ^ Fk, whereE1,… ,En are orthogonal atoms inE the sum of which
s I, and F1,… ,Fm are orthogonal atoms inF the sum of which isI. ThereforeObsC ,Rd
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HmnsK0d with K0=R ,C or H; K0=O is not possible sincemnù9 andHmnsOd is a Jordan algeb
nly if mn=3.

Case 1: K=R. Then dimObsC ,Rd=dim HnsRddim HmsRd=msm+1dnsn+1d /4. On the othe
and, dimObsC ,Rd must equal dimHmnsK0d which is mnsmn+1d /2 for K0=R ,m2n2 for K0=C,
nd mns2mn−1d for K0=H, i.e., sm+1dsn+1d=2smn+1d ,4mn, or 8mn−4, but all these thre
ases are impossible sincesm+1dsn+1d,2smn+1dø4mnø8mn−4 for m,nù3.

Case 2: K=C. See Lemma 3.2.
Case 3: K=H. Then dimObsC ,Rd=ms2m−1dns2n−1d which must equalmnsmn+1d /2 for

0=R ,m2n2 for K0=C, and mns2mn−1d for K0=H, i.e., s2m−1ds2n−1d=smn+1d /2 ,mn or
mn−1, which is impossible sinces2m−1ds2n−1d.2mn−1ùmnù smn+1d /2.

Case 4: K=O. ThenE=F=J3sOd ,dimObsC ,Rd=272Þ45,81,153 which are the dimensions

9sRd ,H9sCd ,H9sHd. h

I. NONUNIQUENESS OF THE MODEL

We now turn to the question whether the postulates for a model of a composite
niquely determine such a model, and we first define with mathematical rigor what uniq
ere means.

Let E andF be twos-UCP spaces, and letC1, ^1 andC2, ^2 be two models for a compos
ystem consisting ofE andF such that the axioms(C1) and(C2) are fulfilled. The two models a

somorphic if there is an isomorphismp between the twos-UCP spacesC1 and C2 with psE
^1Fd=psEd^2psFd for all EPE andFPF.

We shall now see that there are two nonisomorphic models forE=JnsCd andF=JmsCd ,n,m
3. The first one isC1ªJmnsCd with ^1 being the Kronecker product(Lemma 5.2). The secon

ne C2ªC1=JmnsCd, but ^2 is now defined differently from̂ 1 in the following way: E^2F
E^1F

t, whereFt is the transposed matrix of the matrixF.
The second modelC2, ^2 satisfies the axioms(C1) and (C2) as well; (C1) follows from the

act that the mapF→Ft is an isomorphism ofF=JmsCd, and (C2) can be seen in the followin
ay. If r is a bistate onE3F, define another bistater8 by r8sE,FdªrsE,Ftd. From Lemma 5.
e get that there is a statev8 on JmnsCd with v8sE^1Fd=r8sE,Fd for all EPE andFPF. Then
sE,Fd=r8sE,Ftd=v8sE^1F

td=v8sE^2Fd such thatv8 is the desired state extendingr onC2 with
^2. It is unique sinceHmnsCd is the real-linear hull of theE^2FPJmnsCd with EPJnsCd and F

JmsCd.
If C1 with ^1 andC2 with ^2 were isomorphic, there would be an automorphismp of JmnsCd

ith psE^1Fd=psEd^2psFd=psEd^1spsFddt for all EPE and FPF. Then, p would have a
nique extension to an automorphism ofHmnsCd which would have a unique complex-line
xtensionp8 to MmnsCd. The latter extension would be either multiplicative or antimultiplicati7

.e., eitherp8sABd=p8sAdp8sBd for all matricesA,B in MmnsCd or p8sABd=p8sBdp8sAd for all
,B in MmnsCd. However, both cases are impossible since the restriction ofp8 to MnsCd ^ I is the

dentity map and is multiplicative while the restriction ofp8 to I ^ MmsCd is the matrix transpo
ition which is antimultiplicative.

Therefore, the two modelsC1 with ^1 andC2 with ^2 are not isomorphic. The same kind
onuniqueness occurs with those tensor products that have been considered by other au1,8,9

II. CONCLUSIONS

The conditional probabilities considered in thes-UCP space model take us directly to
efinition of joint distributions in Sec. III. The Hilbert space formalism of quantum mech

tself does not give such a clear answer to the question what a joint distribution could b
ifferent solutions, all distinct from the above one, have therefore been proposed(e.g., by
rbanik12,13or Gudder5,12). A new phenomenon of the joint distributions defined in Sec. III is

he joint distribution ofsX,Yd under a given state may exist while the one ofsY,Xd does not. Tim
rder of observations(measurements) plays a more significant role here than in classical prob
ty theory.
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Moreover, the consideration of joint distributions not only for real-valued observables, b
very general type of observables has immediately provided the postulates for a math
odel of a composite quantum system. This model is in line with products-algebras used

lassical probability theory as well as with the Hilbert space tensor product used in qu
echanics—at least in the finite-dimensional case.

The UCP space modeling the combined system[e.g.,JmnsCd for the single systemsJmsCd and

nsCd] contains atoms that do not have the shapeE^ F with atomsE and F in the UCP space
odeling the single systems. This means that maximum information on the combined sy
ot the same as maximum information on each single system, which is a well-known and
iscussed quantum feature calledentanglement.14 It originates from the underlying non-Boole
vent structure and distinguishes quantum mechanics from classical physics and classic
bility theory, both using Boolean event structures. Quantum entanglement has been r

nterest during the past 10 years because of its role in the theories of quantum informat
uantum computing.

Theorem 5.2 distinguishes the complex Jordan matrix algebras not only from the exce
ctonion one, but also from the real and quaternion ones. This might be a reason why q
echanics needs the complex numbers and the complex Hilbert space. There are other
istinguishing the complex case from the real one and the other cases by features eithe
nderlying state space2,3 or of the underlying orthomodular space.15 Such features can mathem
ally be described, but are physically or statistically less plausible.

Theorem 5.2 covers the finite-dimensional case. The infinite-dimensional case, includ
ype II and type III JBW factors,7 still needs further study. If it turns out that the existence
atisfactory model of a composite system requires the complex numbers in the i
imensional cases as well, we would get a complete axiomatic characterization of the q
echanical standard model which uses only the complex Hilbert space.

Furthermore, the combination of only two single systems to a composite system ha
egarded. The extension to a finite number of systems is straightforward, but an extensio
rbitrary number of systems may be required. Note that products-algebras of an infinite(count-
ble as well as noncountable) number ofs-algebras are used in mathematical probability th

or the study of stochastic processes.
Another open issue is the question whethers-UCP spaces exist that do not stem from Jo

perator algebras; so far all known examples do, and thus satisfy the axioms(A1), (A2), and(A3).
r are these axioms automatically fulfilled by everys-UCP space and redundant therefore? F
CP spaces are the finite Boolean algebras, but do UCP spaces exist that contain only
umber of events and at least one pair of incompatible events?

1Aerts, D. and Daubechies, I., “Physical justification for using the tensor product to describe two quantum syst
joint system,” Helv. Phys. Acta51, 661–675(1978).

2Alfsen, E. M. and Shultz, F. W., “State spaces of Jordan algebras,” Acta Math.140, 155–190(1978).
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6Hanche-Olsen, H., “On the structure and tensor products of JC-algebras,” Can. J. Math.35, 1059–1074(1984).
7Hanche-Olsen, H. and Størmer, E.,Jordan Operator Algebras(Pitmann, Boston, 1984).
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9Matolcsi, T., “Tensor product of Hilbert lattices and free orthodistributive product of orthomodular lattices,” Ac
Math. 37, 263–272(1975).
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1Niestegge, G., “Why do the quantum observables form a Jordan operator algebra?,” Int. J. Theor. Phys.43, 35–46
(2004).

2Pták, P. and Pulmannová, S.,Orthomodular Structures as Quantum Logics(Kluwer, Dordrecht,(1991).
3Urbanik, K., “Joint probability distributions of observables in quantum mechanics,” Stud. Math.21, 117–133(1961).
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A family of spherically symmetric solutions in the model withm-component mul-
ticomponent anisotropic fluid is considered. The metric of the solution depends on
parametersqs.0, s=1, . . . ,m, relating radial pressures and the densities and con-
tains sn−1dm parameters corresponding to Ricci-flat “internal space” metrics and
obeying certainmsm−1d /2 (“orthogonality”) relations. Forqs=1 (for all s) and
certain equations of statespi

s= ±rsd the metric coincides with the metric of inter-
secting black brane solution in the model with antisymmetric forms. A family of
solutions with(regular) horizon corresponding to natural numbersqs=1,2, . . . is
singled out. Certain examples of “generalized simulation” of intersectingM-branes
in D=11 supergravity are considered. The post-Newtonian parametersb and g
corresponding to the four-dimensional section of the metric are calculated. ©2004
American Institute of Physics.[DOI: 10.1063/1.1812357]

. INTRODUCTION

This paper is devoted to spherically symmetric solutions with a horizon in the multid
ional model with multicomponent anisotropic fluid defined on product manifoldsR3M03 ¯

Mn. These solutions in certain cases may simulate black brane solutions1–3 (for a review on
p-brane solutions see Ref. 4 and references therein).

We remind thatp-brane solutions(e.g., black brane ones) usually appear in the models w
ntisymmetric forms and scalar fields(see also Refs. 5–15). Cosmological and spherically sy
etric solutions withp-branes are usually obtained by the reduction of the field equations
agrange equations corresponding to Toda-type systems.14 An analogous reduction for the mod
ith multicomponent “perfect” fluid was done earlier in Refs. 16 and 17.

For cosmological models with antisymmetric forms without scalar fields anyp-brane is
quivalent to a multicomponent anisotropic perfect fluid with the equations of state:

pi = − r, or pi = r, s1.1d

hen the manifoldMi belongs or does not belong to the brane world-volume, respectively(herepi

s the pressure inMi andr is the density, see Sec. II).
In this paper we find a new family of exact spherically symmetric solutions in the mode

-component anisotropic fluid for the following equations of state(see Appendix for more fam
ar form of equations of state):

)Electronic mail: heinz.dehnen@uni-konstanz.de
)
Electronic mail: ivas@rgs.phys.msu.su

4726022-2488/2004/45(12)/4726/11/$22.00 © 2004 American Institute of Physics
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pr
s = − rss2qs − 1d−1, p0

s = rss2qs − 1d−1, s1.2d

nd

pi
s = S1 −

2Ui
s

di
DrsYs2qs − 1d, s1.3d

.1, s=1, . . . ,m, where forsth component:rs is a density,pr
s is a radial pressure,pi

s is a pressur
n Mi, i =2, . . . ,n. Here parametersUi

s si .1d and the parametersqs=U1
s.0 obey the following

orthogonality” relations(see also Sec. II below)

Bsl = 0, sÞ l , s1.4d

here

Bsl ; o
i=1

n
Ui

sUi
l

di
+

1

2 − D
So

i=1

n

Ui
sDSo

j=1

n

Uj
lD , s1.5d

sÞ1/2; ands, l =1, . . . ,m. The manifoldM0 is d0-dimensional sphere in our case andp0
s is the

ressure in the tangent direction.
The one-component case was considered earlier in Ref. 1. For the special case withqs=1 see

efs. 2 and 3(for one-component and multicomponent case, respectively).
The paper is organized as follows. In Sec. II the model with multicomponent(anisotropic o

perfect”) fluid is formulated. In Sec. III a subclass of spherically symmetric solutions(general
zing solutions from Ref. 3) is presented and solutions with(regular) horizon corresponding
ntegerqs are singled out. Section IV deals with certain examples of two-component soluti
imensionD=11 containing forqs=1 intersectingM2ùM2, M2ùM5, andM5ùM5 black bran
etrics. In Sec. V the post-Newtonian parameters for the four-dimensional section of the
re calculated. In the Appendix a class of general spherically symmetric solutions in the
nder consideration is presented.

I. THE MODEL

Here, we consider a family of spherically symmetric solutions to Einstein equations
ulticomponent anisotropic fluid matter source

RN
M − 1

2dN
MR= kTN

M s2.1d

efined on the manifold

M = R
radial variables

3 sM0 = Sd0d
spherical variables

3 sM1 = Rd
time

3 M2 3 ¯ 3 Mn, s2.2d

ith the block-diagonal metrics

ds2 = e2gsud du2 + o
i=0

n

e2Xisudhmini

sid dymi dyni . s2.3d

HereR=sa,bd is interval. The manifoldMi with the metrichsid, i =1,2, . . . ,n, is the Ricci-fia
pace of dimensiondi:

Rmini
fhsidg = 0, s2.4d

ndhs0d is standard metric on the unit sphereSd0,

Rm0n0
fhs0dg = sd0 − 1dhm0n0

s0d , s2.5d

s1d
is radial variable,k is the multidimensional gravitational constant,d1=1 andh =−dt ^ dt.
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The energy-momentum tensor is adopted in the following form:

TN
M = o

s=1

m

TN
ssdM , s2.6d

here

TN
ssdM = diags− s2qs − 1d−1rs,s2qs − 1d−1rsdk0

m0,− rs,p2
sdk2

m2, . . . ,pn
sdkn

mnd, s2.7d

s.0 andqsÞ1/2. The pressurespi
s and the densityrs obey the relations(1.3) with constantsUi

s,
.1.

The “conservation law” equations

¹MTN
ssdM = 0 s2.8d

re assumed to be valid for alls.
In what follows we setk=1 for simplicity.

II. EXACT SOLUTIONS

Let us define

1° , U0
s = 0, s3.1d

2° , U1
s = qs, s3.2d

3° , sUs,Uld = Ui
sGijUj

l , s3.3d

hereUs=sUi
sd is sn+1d-dimensional vector and

Gij =
di j

di
+

1

2 − D
s3.4d

re components of the matrix inverse to the matrix of the minisuperspace metric18,19

sGijd = sdidi j − didjd, s3.5d

, j =0, . . . ,n, andD=1+Si=0
n di is the total dimension.

In our case the scalar products(3.3) are given by relations

sUs,Uld = Bkl s3.6d

ith Bkl from (1.5) and hence due to(1.4) vectorsUs are mutually orthogonal, i.e.,

sUs,Uld = 0, sÞ l . s3.7d

It is proved in the Appendix that the relation 1° implies

sUs,Usd . 0, s3.8d

or all s.
For the equations of state(1.2) and(1.3) with parameters obeying(1.4) we have obtained th

ollowing spherically symmetric solutions to the Einstein equations(2.1) (see Appendix),

ds2 = J01 dr2

1 −
2m

d

+ r2 dVd0

2 2 − J1S1 −
2m

rd Ddt2 + o
i=2

n

Jihmini

sid dymi dyni , s3.9d
r
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rs =
s2qs − 1dsdqsd2PssPs + 2mds1 – 2mr−ddqs−1

2sUs,UsdSp
s=1

m

HsD2

J0r
2d0

, s3.10d

y methods similar to obtainingp-brane solutions.14 Here d=d0−1, dVd0

2 =hm0n0

s0d dym0 dyn0 is
pherical element, the metric factors

Ji = p
s=1

m

Hs
−2Usi/sUs,Usd, s3.11d

Hs = 1 +
Ps

2m
F1 −S1 −

2m

rd DqsG; s3.12d

P.0, m.0 are constants and

Usi = GijUj
s =

Ui
s

di
+

1

2 − D
o
j=0

n

Uj
s. s3.13d

Using (3.13) andU0
s=0 we get

Us0 =
1

2 − D
o
j=0

n

Uj
s s3.14d

nd hence one can rewrite(3.9) as follows:

ds2 = J03 dr2

1 −
2m

rd

+ r2 dVd0

2 − Sp
s=1

m

Hs
−2qs/sU

s,UsdDS1 −
2m

rd Ddt2

+ o
i=2

n Sp
s=1

m

Hs
−2Ui

s/sdisU
s,UsddDhmini

sid dymi dyni4 . s3.15d

These solutions are the special case of general solutions spherically symmetric s
btained in the Appendix by the method suggested in Ref. 17.

Black holes for natural qs: For natural

qs = 1,2, . . . , s3.16d

he metric has a horizon atrd=2m=rh
2. Indeed, for these values ofqs the functionsHssrd.0 are

mooth in the intervalsr* , +`d for somer* , rh. For oddqs=2ms+1 (for all s) one getsr* =0.
A global structure of the black hole solutions corresponding to these values ofqs will be a

ubject of a separate publication.
It was shown in Ref. 1 that in the one-component case for 2Us0Þ−1 and 0,qs,1 one

btains singularity atrd→2m.
Remark: For nonintegerqs.1 the functionHssrd have a nonanalytical behavior in the vicin

f rd=2m. In this case one may conject that the limitrd→2m corresponds to the singularity(in the

eneral case) but here a separate investigation is needed.
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V. EXAMPLES: GENERALIZED SIMULATION OF INTERSECTING BLACK BRANES

The solutions with a horizon from the preceding section allows us to simulate the inter
lack brane solutions4 in the model with antisymmetric form without scalar fields2 when all qs

1.
These solutions may also be generalized to the case of general naturalqsPN. In this case th

arametersUi
s and the pressures have the following form:

Ui
s = qsdi, pi

s = − rs, i P Is,

0, s2qs − 1d−1rs, i ¹ Is. s4.1d

Here Is=hi1, . . . ,ikjP h1, . . .nj is the index set4 corresponding to the “brane” submanif
Mi1

3 ¯ 3Mik
.

The “orthogonality” relations(1.4) lead us to the following dimension of intersection of br
ubmanifolds:4

dsIs ù I ld =
dsIsddsI ld

D − 2
, sÞ l , s4.2d

heredsIsd=oiPIs
di is dimension ofp-brane world volume.

Remark: The set of Diophantus equations(4.2) was solved explicitly in Ref. 20 for so-call
flower” Ansatz from Ref. 21. The solution in this case takes place for infinite number of d
ionsD=6,10,11,14,18,20,26,27, . . .,etc.

As an example, here we consider a “generalized simulation” of intersectingM2ùM5,
M2ùM2 and M5ùM5 black branes inD=11 supergravity. In what follows functionsHs, s

1,2, aredefined in(3.12).

a) For an analog of intersectingM2ùM5 branes the metric reads

ds2 = H1
1/s3q1dH2

2/s3q2dF dr2

1 – 2m/rd + r2dVd0

2 − H1
−1/q1H2

−1/q2HS1 −
2m

rd Ddt2 + dym2 dym2J
+ H2

−1/q2hm3n3

s3d dym3 dyn3 + H1
−1/q1 dym4 dym4 + hm5n5

s5d dym5 dyn5G , s4.3d

whereM2-brane includes three one-dimensional:M2, M4 and the time manifoldM1; and
M5-brane includesM1,M2, M3sd3=4d.

b) An analog of two electricalM2 branes intersecting on the time manifold has the follow
metric

ds2 = H1
1/s3q1dH2

1/s3q2dF dr2

1 – 2m/rd + r2 dVd0

2 − H1
−1/q1H2

−1/q2S1 −
2m

rd Ddt2 + H1
−1/q1hm2n2

s2d dym2 dyn2

+ H2
−1/q2hm3n3

s3d dym3 dyn3 + hm4n4

s4d dym4dyn4G , s4.4d

whered2=d3=2.
c) For an analog of two intersectingM5 branes the dimension of intersection is 4 and the m

reads

ds2 = H1
2/s3q1dH2

2/s3q2dF dr2

1 – 2m/r
+ r2 dV2

2 − H1
−1/q1H2

−1/q2HS1 −
2m

r
Ddt2 + hm2n2

s2d dym2 dyn2J
+ H1

−1/q1hm3n3

s3d dym3 dyn3 + H2
−1/q2hm4n4

s4d dym4 dyn4G . s4.5d
Hered0=d3=d4=2 andd2=3.
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For the density of thesth component we get in any of these three cases

rs =
s2qs − 1dd2PssPs + 2mds1 – 2mr−ddqs−1

4sH1H2d2J0r
2d0

, s4.6d

here

J0 = p
s=1

2

Hs
dsIsd/s9qsd s4.7d

nddsIsd=3,6 for M2, M5 branes, respectively.

. PHYSICAL PARAMETERS

. Gravitational mass and PPN parameters

Here we setd0=2 sd=1d. Let us consider the four-dimensional space–time section o
etric (3.15). Introducing a new radial variable by the relation

r = RS1 +
m

2R
D2

, s5.1d

e rewrite the 4-section in the following form:

dss4d
2 = Sp

s=1

m

H−2Us0/sUs,UsdD3− Sp
s=1

m

Hs
−2qs/sU

s,UsdD11 −
m

2R

1 +
m

2R
2

2

dt2 + S1 +
m

2R
D4

di j dxi dxj4 ,

s5.2d

, j =1,2,3.HereR2=di j x
ixj.

The parametrized post-Newtonian(Eddington) parameters are defined by the well-kno
elations

g00
s4d = − s1 – 2V + 2bV2d + OsV3d, s5.3d

gij
s4d = di js1 + 2gVd + OsV2d, s5.4d

, j =1,2,3.Here

V =
GM

R
s5.5d

s the Newtonian potential,M is the gravitational mass andG is the gravitational constant.
From (5.2)–(5.4) we obtain

GM = m + o
s=1

m
Psqssqs + Us0d

sUs,Usd
s5.6d

nd

b − 1 =o
m uAsu

sGMd2sqs + 2Us0d, s5.7d

s=1
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g − 1 = −o
s=1

m
Psqs

sUs,UsdGM
sqs + Us0d, s5.8d

here

uAsu = 1
2qs

2PssPs + 2md/sUs,Usd s5.9d

see Appendix) or, equivalently,

Ps = − m + Îm2 + 2uAsusUs,Usdqs
−2 . 0. s5.10d

For fixed Ui
s the parameterb−1 is proportional to the ratio of two quantities: the weigh

um of multicomponent anisotropic fluid density parametersuAsu and the gravitational radiu
quaredsGMd2.

. Hawking temperature

The Hawking temperature of the black hole may be calculated using the well-known rel22

TH = u
1

4pÎ− gttgrr

ds− gttd
dr horizon. s5.11d

e get

TH =
d

4ps2md1/dp
s=1

m S1 +
Ps

2m
D−qs/sU

s,Usd

. s5.12d

ere allqs are natural numbers.
For any ofD=11 metrics from Sec. IV the Hawking temperature reads

TH =
d

4ps2md1/dp
s=1

2 S1 +
Ps

2m
D−1/s2qsd

.

I. CONCLUSIONS

In this paper, using the methods developed earlier for obtaining perfect fluid andp-brane
olutions, we have considered a family of spherically symmetric solutions in the mode
-component anisotropic fluid when the equations of state(1.2)–(1.4) are imposed. The metric
ny solution containssn−1d Ricci-flat “internal” space metrics and depends upon a set of pa
tersUi

s, i .1.
For qs=1 (for all s) and certain equations of state(with pi

s= ±rs) the metric of the solutio
oincides with that of intersecting black brane solution in the model with antisymmetric
ithout dilatons.3 For natural numbersqs=1,2, . . . , wehave obtained a family of solutions w

egular horizon.
Here we have considered three examples of solutions with horizon, that simulate(by fluids)

inary intersectingM2 andM5 black branes inD=11 supergravity.
We have also calculated(for possible estimations of observable effects of extra dimens)

he post-Newtonian parametersb and g corresponding to the four-dimensional section of
etric and the Hawking temperature as well.
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PPENDIX A: LAGRANGE REPRESENTATION

It is more convenient for finding of exact solutions, to write the stress-energy ten
osmological-type form,

sTN
ssdMd = diags− r̂s,p̂0

sdk0

m0,p̂1
sdk1

m1, . . . ,p̂n
sdkn

mnd, sA1d

herer̂s and p̂i
s are “effective” density and pressures ofsth component, respectively, depend

pon the radial variableu and the physical densityrs and pressurespi
s are related to the effectiv

“hat”) ones by formulas

rs = − p̂1
s, pr

s = − r̂s, pi
s = p̂i

s si Þ 1d, sA2d

=1, . . . ,m.
The equations of state may be written in the following form:

p̂i = S1 −
2Ui

s

di
Dr̂s, sA3d

hereUi
s are constants,i =0,1, . . . ,n. It follows from (A2) and (A3), andU1

s=qs that

rs = s2qs − 1dr̂s. sA4d

The “conservation law” equations¹MTN
ssdM =0 may be written, due to relations(2.3) and(A1)

n the following form:

ṙ̂s + o
i=0

n

diẊ
isr̂s + p̂i

sd = 0. sA5d

sing the equation of state(A3) we get

r̂s = − Ase
2Ui

sXi−2g0, sA6d

hereg0sXd=oi=0
n diX

i andAs are constants.
The Einstein equations(2.1) with the relations(A3) and (A6) imposed are equivalent to t

agrange equations for the Lagrangian,

L = 1
2e−g+g0sXdGij Ẋ

iẊj − eg−g0sXdV, sA7d

here

V = 1
2d0sd0 − 1dexps2Ui

0Xid + As exps2Ui
sXid sA8d

s the potential and the components of the minisupermetricGij are defined in(3.5),

Ui
0Xi = − X0 + g0sXd, Ui

0 = di
0 + di , sA9d

=0, . . . ,n (for the cosmological case see Refs. 16 and 17).
For g=g0sXd, i.e., when the harmonic time gauge is considered, we get the set of La

quations for the Lagrangian,

L = 1
2Gij Ẋ

iẊj − V, sA10d
ith the zero-energy constraint imposed,
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E = 1
2Gij Ẋ

iẊj + V = 0. sA11d

It follows from the restrictionU0
s=0 that

sU0,Usd ; Ui
0GijUj

s = 0. sA12d

Indeed, the contravariant componentsU0i =GijUj
0 are the following ones:

U0i = −
d0

i

d0
. sA13d

Then we getsU0,Usd=U0iUi
s=−U0

s /d0=0. In what follows we also use the formula

sU0,U0d =
1

d0
− 1 , 0 sA14d

or d0.1.
Now we prove thatsUs,Usd.0 for all s.0. Indeed, minisupermetric has the signatures−,

, . . . ,+d,18,19 vectorU0 is timelike and orthogonal to any vectorUsÞ0. Hence any vectorUs is
pacelike.

PPENDIX B: GENERAL SPHERICALLY SYMMETRIC SOLUTIONS

When the orthogonality relations(A12) and (3.7) are satisfied the Euler–Lagrange equat
or the Lagrangian(A10) with the potential(A8) have the following solutions(see relations from
ef. 17 adopted for our case):

Xisud = − o
a=0

m
Uai

sUa,Uad
lnufasu − uadu + ciu + c̄i , sB1d

hereua are integration constants; and vectorsc=scid and c̄=sc̄id are dually orthogonal to c
ectorsUa=sUi

ad, i.e., they satisfy the linear constraint relations

U0scd = Ui
0ci = − c0 + o

j=0

n

djc
j = 0, sB2d

U0sc̄d = Ui
0c̄i = − c̄0 + o

j=0

n

djc̄
j = 0, sB3d

Usscd = Ui
sci = 0, sB4d

Ussc̄d = Ui
sc̄i = 0. sB5d

ere

fastd = Ra

sinhsÎCatd
ÎCa

, Ca . 0, ha = + 1,

Ra

coshsÎCatd
, Ca . 0, ha = − 1,
ÎCa
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Ra

sinsÎuCautd
ÎuCau

, Ca , 0, ha = + 1,

Rat, Ca = 0, ha = + 1, sB6d

=0, . . . ,m; whereR0=d0−1, h0=1, Rs=Î2uAsusUs,Usd, hs=−signAs ss=1, . . . ,md.
The zero-energy constraint, corresponding to the solution(B1) reads

E =
1

2o
a=0

m
Ca

sUa,Uad
+

1

2
Gijc

icj = 0. sB7d

Special solutions: The (weak) horizon condition(i.e., infinite time of propagation of light fo
→ +`) leads us to the following integration constants:

c̄i = 0, sB8d

ci = m̄o
a=0

m
U1

aUai

sUa,Uad
− m̄d1

i , sB9d

Ca = sU1
ad2m̄2, sB10d

herem̄.0, a=0, . . . ,m. For analogous choice of parameters in thep-brane case see Refs. 13,
nd 4.

We also introduce a new radial variabler =rsud by relations

exps− 2m̄ud = 1 −
2m

rd , m = m̄/d . 0, d = d0 − 1, sB11d

nd setus,0 andAs,0 for all s and alsou0=0.
The relations of the Appendix imply the formulas(3.9) and(3.10) for the solution from Sec

II with

Hs = exps− m̄qsudfssu − usd, As = −
sdqsd2

2sUs,Usd
PssPs + 2md, sB12d

Ps.0.
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n the Treves theorem for the
blowitz–Kaup–Newell–Segur equation
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According to a theorem of Treves, the conserved functionals of the Ablowitz, Kaup,
Newell, and Segur(AKNS) equation vanish on all pairs of formal Laurent series
sq̃, r̃d of a specified form, both of them with a pole of the first order. We propose a
new and very simple proof for this statement, based on the theory of Bäcklund
transformations; using the same method, we prove that the AKNS conserved func-
tionals vanish on other pairs of Laurent series. The spirit is the same as in our
previous paper on the Treves theorem for the Korteweg–de Vries hierarchy, with
some nontrivial technical differences. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1805730]

. INTRODUCTION AND PRELIMINARIES

Some recent works of Treves(see Refs. 10 and 11, and references therein) have introduced, i
he words of Dickey,2 a “fresh idea” in the sector of integrable evolutionary PDEs[Korteweg–de
ries (KdV), nonlinear Schrödinger, etc.]. The discovery of Treves is that all the conser

unctionals of these equations vanish when they are evaluated on certain formal Lauren
intending the integrals which appear in the functionals as loop integrals inC around zero).

To be more specific, let us consider the KdV equationqt=qxxx−12qqx, and the functiona
=hsqd which are integrals of polynomials inq and itsx derivatives; for any such functional to
onserved by the KdV equation, it is necessary and sufficient10 thathsq̃d=0 for all formal Lauren
eries with complex coefficients of the formq̃=1/x2+ q̃0+ok=2

+` q̃kx
k. Now, let us pass to th

oupled equations

qt = 1
2qxx − q2r, rt = − 1

2rxx + qr2, s1.1d

hich have been considered in Ref. 11; as well known, these become the nonlinear Sch
quationiqt=s1/2dqxx− uqu2q if r is the complex conjugate ofq andtª it; if q,r are regarded a

ndependent, the pair(1.1) is usually called the AKNS equation after Ablowitz, Kaup, Newell,
egur(see Ref. 8, and references therein), a terminology which we also use in this paper.

Let us consider the functionalshsq,rd which are integrals of polynomials inq,r and theirx
erivatives; for any such functional to be conserved by Eq.(1.1), it is necessary11 that hsq̃, r̃d
0 for all pairs of Laurent seriesq̃=ews1/x+a+bx+ok=2

+` x̃kx
kd, r̃ =e−ws1/x−a+bx+ok=2

+` r̃kx
kd

with w,a,b,x̃k,r̃kPC); differently from the KdV case, the sufficiency of this condition has b
onjectured but not proved in Ref. 11.

)Electronic mail: carmor@mate.polimi.it
)
Electronic mail: livio.pizzocchero@mat.unimi.it
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The proofs in the original papers of Treves are based on a long and highly technical a
here a central role is played by the recurrence relations for some standard basis of co

unctionals. A simple alternative proof of the necessary condition for the KdV, and an analo
his result for the Boussinesq equation, were obtained by Dickey2 using the dressing method
he Lax operator. Another proof of necessity for the KdV was proposed in a paper of ours,7 where
e employed the invariance of the KdV conserved functionals under the(auto)-Bäcklund trans

ormation. The relation between Refs. 2 and 7 has been very recently discussed in Ref. 3
he extension of the Bäcklund method to the Boussinesq and the other GD hierarchies
een sketched.

In the present paper the Bäcklund invariance of the conserved functionals will be u
elation to the AKNS, to get a new proof of the Treves theorem for this equation. Using th
e will show that the AKNS conserved functionals vanish on other nontrivial pairs of La
eries, in particular for those of the formq̃=ews2/x2+a+bx+ok=2

+` x̃kx
kd, r̃ =e−ws1+bx3

ok=4
+` r̃kx

kd.
Both for the pairssq̃, r̃d considered by Treves and for the ones in the above variant, our

s very simple and conceptually similar to the argument of Ref. 7 for the KdV: in fact, we
hat anysq̃, r̃d as before is the Bäcklund transform of a pairsq,rd of holomorphic series(with no
egative powers ofx), on which every functional of polynomial type is zero for trivial reaso

In comparison with our previous analysis of the KdV case, the AKNS is a bit more di
egarding the precise definition of the Bäcklund transformation; in fact, even though this tr
ation for the AKNS is known in the literature,1,9 its usual formulation involves rational maps t
ould cause some troubles in the present framework; for this reason, in this paper we
ifferent presentation which is more implicit but involves only polynomial mappings.

Let us describe the organization of the paper. In the rest of this Introduction, we genera
ur present needs the language of differential algebras and formal variational calculus
mployed in Ref. 7; the AKNS equation and the space of its conserved functionals are de

ormally within this framework. In Sec. II we state precisely the Treves theorem for the A
Proposition 2.1) and our variant of it mentioned before(Proposition 2.2). In Sec. III we introduc
he Bäcklund transformation and state the invariance under it of the AKNS conserved func
n a way suitable for our purposes; in Sec. IV we use it to prove Propositions 2.1 and 2.2

Two Appendixes have been added to review the matrix Lax formalismà la Drinfeld–Sokolov
nd its relation to Bäcklund transformations, for certain classes of integrable systems an
ially for the AKNS; the aim is, essentially, to justify the slightly nonstandard presentation
äcklund machinery employed in this work.

All vector spaces considered in this paper are overC. As anticipated, hereafter we summa
ome concepts from differential algebra and from the formal variational calculu
elfand–Dickey,4 including their applications to the AKNS theory.

Differential algebras:By a differential algebra, we mean an associative algebra(commutative
r not) equipped with a derivation, i.e., with a linear map of the algebra into itself havin
eibnitz property with respect to the product. We do not require the algebra to possess a

his exists, one easily proves that it is annihilated by the derivation. A morphism of diffe
lgebras is an algebraic morphism respecting the derivations.

A differential algebra is typically written assQ ,]xd; the subscriptx attached to the derivatio
s also used to denote its action on the elementsq of the algebra, so]x: Q→Q, q°qx.

We writeQx for the image of]x; if q,pPQ andp=qx, sometimes we say thatq is a primitive
f p. The quotient vector space

E Q ª Q/Qx = hq + Qxuq P Qj s1.2d
s called thespace of integralsof Q. The corresponding quotient map is denoted with
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E : Q →E Q, q °E qª q + Qx, s1.3d

nd we calleq the integral ofq; of courseeqx=0 for eachq. Let S be any subset ofQ; we write

E S ª hs+ QxusP Sj ,E Q, s1.4d

nd note that the restriction of(1.3) is a mapS→eS ,s°es.
Sometimes, it is necessary to specify the dependence from the differential algebraQ of the

revious operations of integration: in this case we writeeQ for the map(1.3) or its restriction to
, ande.QS for the set(1.4).

A differential subalgebra of a differential algebrasQ ,]xd is a subalgebraP,Q closed unde

x; of course, the differential subalgebraP with the restricted map]x�P;]x is itself a differentia
lgebra. In this situation, one must distinguish between two kinds of integration, the fir

ntrinsic for the differential algebrasP ,]xd, and the second one relative toQ. In the first case, w
ntroduce as usual the quotient space and the quotient map

E P ª P/Px, E : P °E P, p °E pª p + Px; s1.5d

n the second case, we consider the space and the map

EQ
P ª hp + Qxup P Pj ,E Q, EQ

: P ° EQ
P, p ° EQ

pª p + Qx. s1.6d

ne easily checks the existence of a unique map

c: E P → EQ
P such thatcSE pD =EQ

p ∀ p P P. s1.7d

he mapc is linear and furthermore, it is injective if and only if

P ù Qx = Px. s1.8d

f condition (1.8) holds, we will say thatP is astrict differential subalgebraof Q. [Of course, fo
ny differential subalgebraP it is PùQx. Px; Eq. (1.8) means that any element ofP with a
rimitive in Q also has a primitive inP.]

Throughout the paper, the termideal is employed with the usual sense; adifferential idealof
differential algebra is an ideal closed under the derivation.

Gelfand–Dickey differential algebra in any numberg of generators:This is the commutativ
ifferential algebra

F ª Cfj1, . . .jg,j1,x, . . . ,jg,x, . . . g0, s1.9d

ade of complex polynomials in infinitely many indeterminatesjs,js,x,js,xx, . . . ss=1, . . . ,gd,
ithout free term(the absence of this is indicated by the subscript 0); F is equipped with th
nique derivation]x; ·x such that

sjsdx = js,x, sjs,xdx = js,xx, . . . . s1.10d

e write F ,G, etc., for the elements ofF. (For example,Fªj1,x
2 j2,xx, Gª3j1,xj2PF; FG

3j1,x
3 j2j2,xx.)
For the elements ofeF=F /Fx, which have the formf =eF sFPFd, the general denominatio
f “integrals” is of course available; however, in this case the namefunctionalsis more standard.
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The Gelfand–Dickey algebraF can be represented in terms of transformations on any
utative differential algebrasQ ,]xd, in the following way. Let us consider the Cartesian pro
gQ;Qg; then, anyFPF induces a map

Fs d: Qg → Q, sq1, . . . ,qgd ° Fsq1, . . . ,qgd, s1.11d

hereFsq1, . . . ,qgd is obtained from the expression of the polynomialF replacingjs with qs, js,x

ith qs,x, etc.
It is important to distinguish the elements ofF from the maps onQg: this is the reason wh

he symbol of the map in(1.11) contains parentheses.(In Ref. 7, for the same reason we used b
ymbols for the elements ofF, and nonbold notations for the maps onQ; in the present frame
ork, the proliferation of bold symbols would be excessive.) We note that

Fs d P PolsQg,Qd, s1.12d

here PolsX ,Yd are the polynomial maps7 between any two vector spacesX ,Y and Qg is re-
arded as a vector space with the product structure. PolsQg ,Qd is a commutative algebra with t
ointwise product, and a differential algebra with the unique derivation]x: Ps d° Pxs d such tha

PxsqdªPsqdx for all Ps d. The correspondence

F → PolsQg,Qd, F ° Fs d s1.13d

s a morphism of differential algebras. It also induces a linear map

E F → PolSQg,E QD, f ° fs d s1.14d

n the following way: if f =eF, then

fs d: Qg →E Q, sq1, . . . ,qgd ° fsq1, . . . ,qgd ªE Fsq1, . . . ,qgd. s1.15d

The maps(1.11) and (1.15) will be called therepresentationson Q of F and f, respectively
Vector fields and Lie derivatives:We consider again the Gelfand–Dickey differential alge

1.9). In this framework, by a vector field we simply mean a family

X = sX1, . . . ,Xgd P Fg s1.16d

this is represented as mapXs d=sX1s d , . . . ,Xgs ddPPolsQg ,Qgd on any commutative differenti
lgebraQ]. The Lie derivative onF induced byX is the unique derivation

LX: F → F such thatLX]x = ]xLX, LXjs = Xs ss= 1, . . . ,gd; s1.17d

he corresponding Lie derivative oneF is the unique map

LX: E F →E F such thatLXE =E LX; s1.18d

f course this map is linear. The set ofconserved functionalsof a vector fieldX is

ZX ª Hh P u E FuLXh = 0J; s1.19d

his is a vector subspace ofeF.
The AKNS theory and its conserved functionals (Ref. 8):This is a theory ing=2 components

or our purposes, it is necessary to formulate it in the language of formal variational calcu

e introduce the Gelfand–Dickey algebra
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F ª Cfj,h,jx,hx, . . . g0 s1.20d

ith generatorsj1;j ,j2;h. The AKNS vector field is

XAKNS ; Xª s 1
2jxx − j2h,− 1

2hxx + jh2d P F2. s1.21d

he space of conserved functionals

ZXAKNS
; Z s1.22d

s known to be of infinite dimension, a remarkable property placing this vector field with
ealm of integrable systems. In the Appendixes A and B we will review the Lax formalis
btain the conserved functionals of this vector field and of similar systems. This approach
asisshidi=1,2,. . . for Z, derived from the “fundamental invariants” of the Lax operator: the
lements are

h1 ª
1
2 E jh, h2 ª

1
4 E jxh, h3 ª − 1

8 E sj2h2 + jxhxd, h4 ª
1
16E s− 3h2jjx + jxhxxd.

s1.23d

I. THE TREVES THEOREM (AND SOME VARIANT OF IT ) FOR THE AKNS

As in the case of the KdV,10 this theorem concerns the representation of an integrable s
n a peculiar differential algebra. This is the commutative differential algebra of formal L
eries in one indeterminatex and complex coefficients, i.e.,

Q ª Hq = o
k=kmin

+`

uqkx
kuqk P C ∀ k,kmin = kminsqd P ZJ; s2.1d

he product is the usual Cauchy product of series, and the derivation is

]x: Q → Qx, q ° qx ª o
k=kmin

+`

kqkx
k−1. s2.2d

learly, we have

Qx = hq P uQuq−1 = 0j s2.3d

nd the mapeQ→C, eq°q−1 is a linear isomorphism. For this reason, from now on we mak
dentifications

E Q . C, E q . q−1 ∀ q P Q s2.4d

in Ref. 7, this was presented for simplicity as the verydefinition of e). Of course, the abov
escription ofeq as the “residue”q−1 suggests to interpret it as a loop integral inC around zero

We come to the Treves theorem forZAKNS;Z and for the differential algebra(2.1) and(2.2).
n our notations, this reads as follows.

Proposition 2.1 (Ref. 11): Let hPZ,eF, and consider its representation hs d: Q2→C. Then

hsq̃, r̃d = 0 ∀ q̃ = ewS1

x
+ a + bx + o

k=2

+`

x̃kx
kD, r̃ = e−wS1

x
− a + bx + o

k=2

+`

r̃kx
kD s2.5d

˜ ˜
w ,a ,b ,xk,rkPCd.
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As anticipated, our aim in this paper is to give a new proof of this result, based o
äcklund transformations. This technique will allow us to prove the following variant o
revious result.

Proposition 2.2: Let hPZ; then

hsq̃, r̃d = 0 ∀ q̃ = ewS 2

x2 + a + bx + o
k=2

+`

x̃kx
kD, r̃ = e−wS1 + bx3 + o

k=4

+`

r̃kx
kD s2.6d

w ,a ,b ,x̃k, r̃kPCd.
Both Propositions 2.1 and 2.2 are proved in Sec. IV. Hereafter, as a preliminary s

iscuss the AKNS Bäcklund transformation, in a formulation suitable for our purposes.

II. BÄCKLUND TRANSFORMATION FOR THE AKNS THEORY

Essentially, this is a transformation leaving invariant the AKNS conserved functionals.
ver, its description in the language of formal variational calculus requires some technical

ies introduced hereafter. To this purpose, we consider besidesFªCfj ,h ,jx,hx, . . .g0 a “copy” of
t, say

F̃ ª Cfj̃,h̃,j̃x,h̃x, . . . g0, s3.1d

ith the derivation such thatsj̃dx= j̃x, etc. Of course, there is a unique differential-algeb

somorphism ·˜: F→ F̃, F° F̃ sendingj,h into j̃,h̃. This also induces a linear isomorphism

˜: E F →E F̃, f =E F ° f̃ ªE F̃. s3.2d

e interpretF, F̃ as describing the “initial” and “final variables” for the “transformation” to
ntroduced. The latter is in fact defined implicitly in terms of an “auxiliary variable”n; its de-
cription mixes together the initial auxiliary and final variables, so we introduce a third diffe
lgebra

M ª Cfj,h,n,j̃,h̃,jx,hx,nx,j̃x,h̃x . . . g0, s3.3d

riting again]x for its derivation. Up to trivial identifications, we have

F,F̃ , M; s3.4d

oth F and F̃ are strict differential subalgebras ofM [in the sense of(1.8)], so

E F . EM

F, E F̃ . EM

F̃ ,EM. s3.5d

Definition 3.1: The AKNS Bäcklund idealIAKNS;I,M is the ideal ofM generated by th
lements

I1 ª jx − j̃x + nsj + j̃d, I2 ª hx − h̃x + nsh + h̃d, I3 ª nx + jh − j̃h̃. s3.6d

rom standard commutative algebra,

I =HUo
j=1

3

FjI jUFj P M ∀ jJ . s3.7d

n the language of formal variational calculus, the Bäcklund invariance of the AKNS con

unctionals can be expressed as follows.
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Proposition 3.2: Let hPZAKNS;Z,F, and define h˜ following (3.2). Then

h̃ − h PE I SE ; EM D . s3.8d

The above proposition is essentially known in the literature, even though it is not u
ormulated in the language of formal variational calculus. In any case, to make the pap
ontained we propose a proof in Appendix B.

In order to exemplify Eq.(3.8), let us consider the functionalshi in Eq. (1.23) si =1,2,3,4d
nd their tilded imagesh̃1=ej̃h̃ , . . .; it turns out that

h̃1 − h1 = −
1

2
E I3, h̃2 − h2 =

1

4
E s− hI1 + j̃I2 + nI3d,

h̃3 − h3 =
1

8
E ss− h̃n + h̃xdI1 + sjn + jxdI2 + sjh + j̃h̃ − n2dI3d, s3.9d

h̃4 − h4 =
1

16
E ssjh2 − j̃h2 − jhh̃ + 2j̃hh̃ + j̃h̃2 − hn2 + nh̃x − h̃xxdI1 + s− jj̃h + j̃2h − 2j̃2h̃ + j̃n2

+ njx + jnx + j̃nx + jxxdI2 + s− jhn + j̃hn + jh̃n − j̃h̃n + n3 + hjx + h̃jx − jhx − j̃hxdI3d,

e now present the consequences of the previous statements in terms of concrete di
lgebras. From now onsQ ,]xd is a commutative differential algebra; so, the generatorsI j in Eq.
3.6) induce maps

I js d: Q5 → Q, sq,r,v,q̃, r̃d ° I jsq,r,v,q̃, r̃d,

s3.10d
I1sq, . . . ,r̃d ª qx − q̃x + vsq + q̃d, I2sq, . . . ,r̃d ª rx − r̃x + vsr + r̃d, I3sq, . . . ,r̃d ª vx + qr − q̃r̃

here and in the sequelq̃, r̃ are simply names for certain elements ofQ, employed for obviou
easons).

Definition 3.3: LetQ2
ªQ3Q and consider the set2Q2

of all subsets ofQ2. The AKNS
äcklund transformation forQ is the map

BAKNSs d ; Bs d: Q2 → 2Q2
, sq,rd ° Bsq,rd,

s3.11d
Bsq,rd ª hsq̃, r̃d P uQ2u ∃ v P Q s.t. Ijsq,r,v,q̃, r̃d = 0 for j = 1,2,3j.

Proposition 3.4: Let hPZ and consider its representation hs d : Q2→C. For all sq,rdPQ2

nd sq̃, r̃dPBsq,rd, it is

hsq̃, r̃d = hsq,rd. s3.12d

Proof: From Proposition 3.2 we know thath̃−h=eI for someI in the Bäcklund idealI. So,
sing the representationIs d : Q5→Q we find

hsq̃, r̃d − hsq,rd =E Isq,r,v,q̃, r̃d ∀ sq,r,v,q̃, r̃d P Q5. s3.13d
n the other hand, by comparison with(3.7) we have
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Is d = o
j=1

3

Fjs dI js d, s3.14d

hereFjs d : Q5→Q are certain polynomial maps. In particular, letq̃, r̃ PBsq,rd; if v is as in
3.11), we haveI jsq,r ,v ,q̃, r̃d=0 implying Isq,r ,v ,q̃, r̃d=0, and Eq.(3.13) giveshsq̃, r̃d−hsq,rd
0. j

V. PROOFS OF PROPOSITIONS 2.1 AND 2.2

From now on,sQ , ·x,ed is the differential algebra of formal Laurent series described in Se
or convenience, we consider therein the differential subalgebra of “holomorphic series,”

Z ª Hq P uQuq = o
k=0

+`

qkx
kJ . s4.1d

rivially, we have
Lemma 4.1: Consider any hPeF and its representation hs d : Q2→C; then

hs d � Z2 = 0. s4.2d

Proof: Write h=eH. If q,r PZ, it is alsoHsq,rdPZ2, because this is a polynomial inq,r and
heir derivatives. Thus, the residuehsq,rd=eHsq,rd is zero. j

We consider the AKNS Bäcklund transformationBs d : Q2→2Q2
(see Definition 3.3); then,

ombining the previous lemma with the Bäcklund invariance of all the AKNS conserved
ionals (Proposition 3.4) we obtain the following.

Proposition 4.2: Let hPZAKNS;Z; then

hs d � BsZ2d = 0, BsZ2d ª ø
sq,rdPZ–2

Bsq,rd. s4.3d

e now fix the attention on the set of Laurent series appearing in the Treves theorem 2.

T ªHq̃, r̃ P Q2uq̃ = ewS1

x
+ a + bx + o

k=2

+`

x̃kx
kDJ,

r̃ = e−wHS1

x
− a + bx + o

k=2

+`

r̃kx
kD sw,a,b,x̃k,r̃k P CdJ . s4.4d

Lemma 4.3: (i) Let q˜,r̃ be as in Eq. (4.4). Then, there are uniquely determined series
orm

q = ewS− a + o
k=2

+`

xkx
kD, r = e−wSa + o

k=2

+`

rkx
kD, v = −

1

x
+ 2bx + o

k=2

+`

vkx
k, s4.5d

uch that

I jsq,r,v,q̃, r̃d = 0 s j = 1,2,3d. s4.6d

ii) Statement (i) implies

T , BsZ2d. s4.7d

Proof: (i) Let q, . . . ,r̃ be as in Eqs.(4.4) and (4.5), and set for brevityI j ; I jsq,r ,v ,q̃, r̃d.

irect computation gives
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I1 = ewo
k=1

+`

J1kx
k, I2 = e−wo

k=1

+`

J2kx
k, I3 = o

k=1

+`

I3kx
k, s4.8d

J11ª x2 − 3x̃2 + v2, J12ª 2x3 − 4x̃3 + 2b2 + v3, J13ª 3x4 − 5x̃4 + bs2x2 + 2x̃2 + v2d + v4,

s4.9d

J1k ª kxk+1 − sk + 2dx̃k+1 + bs2xk−1 + 2x̃k−1 + vk−1d + vk+1 + o
,=2

k−2

vk−,sx, + x̃,d sk ù 4d,

J21ª r2 − 3r̃2 + v2, J22ª 2r3 − 4r̃3 + 2b2 + v3, J23ª 3r4 − 5r̃4 + bs2r2 + 2r̃2 + v2d + v4,

s4.10d

J2k ª krk+1 − sk + 2dr̃k+1 + bs2rk−1 + 2r̃k−1 + vk−1d + vk+1 + o
,=2

k−2

vk−,sr, + r̃,d sk ù 4d,

I31ª 2v2 − r̃2 − x̃2, I32ª 3v3 − asr2 − x2 + r̃2 − x̃2d − r̃3 − x̃3 − b2,

s4.11d
I33ª 4v4 − asr3 − x3 + r̃3 − x̃3d − r̃4 − x̃4 − bsr̃2 + x̃2d,

I3k ª sk + 1dvk+1 − asrk − xk + r̃k − x̃kd − r̃k+1 − x̃k+1 − bsr̃k−1 + x̃k−1d

+ o
,=2

k−2

sxk−,r, − x̃k−,r̃,dsk ù 4d.

e must show that the equationsJ1k=0, J2k=0, I3k=0 for all kù1 have uniquely determine
olutions for the coefficientsxk,rk,vk skù2d.

The proof is recursive; fork=1,2,3, . . ., theequationI3k=0 determinesvk+1, and inserting th
esult intoJ2k=0, J1k=0 one determines, respectively,rk+1 andxk+1.

(ii ) Let sq̃, r̃dPT, and q,r ,v as in (i). It is clear thatsq,rdPZ2; Eq. (4.6) meanssq̃, r̃d
Bsq,rd. j

Proof of the Treves theorem (Proposition 2.1):Set together Eqs.(4.3) and (4.7). j

In a similar way we now prove Proposition 2.2, that concerns the set

S ªHq̃, r̃ P Q2uq̃ = ewS 2

x2 + a + bx + o
k=2

+`

x̃kx
kDJ,

r̃ = e−wHS1 + bx3 + o
k=4

+`

r̃kx
kD, sw,a,b,x̃k,r̃k P CdJ; s4.12d

verything relies on the following.
Lemma 4.4: (i) Let q˜ , r̃ be as in Eq. (4.12). Then, there are uniquely determined series

orm

q = ewo
k=2

+`

xkx
k, r = e−wS− 1 +o

k=3

+`

rkx
kD, v = −

2

x
+ ax + o

k=2

+`

vkx
k s4.13d

uch that Ijsq,r ,v ,q̃, r̃d=0 for j =1,2,3.
(ii) Statement (i) implies

2
S , BsZ d. s4.14d
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Proof: (i) Let q, . . . ,r̃ be as in Eqs.(4.12) and (4.13), andI j ; I jsq,r ,v ,q̃, r̃d. Then

I1 = ewo
k=0

+`

J1kx
k, I2 = e−wo

k=2

+`

J2kx
k, I3 = xo

k=0

+`

J3kx
k, s4.15d

J10ª 2v2 − 3b, J11ª 2v3 − 4x̃2 + a2, J12ª x3 + 2v4 + av2 − 5x̃3 + ab,

J13ª 2x4 + 2v5 + av3 + bv2 − 6x̃4 + asx2 + x̃2d, s4.16d

J1k ª sk − 1dxk+1 + 2vk+2 − sk + 3dx̃k+1 + avk + bvk−1 + asxk−1 + x̃k−1d + o
,=2

k−2

vk−,sx, + x̃,d sk ù 4d,

J22ª r3 − 5b, J23ª 2r4 − 6r̃4, J24ª 3r5 + asr3 + bd − 7r̃5,

J25ª 4r6 + v2r3 + bv2 − 8r̃6 + asr4 + r̃4d, s4.17d

J2k ª sk − 1drk+1 − sk + 3dr̃k+1 + bvk−3 + asrk−1 + r̃k−1d + o
,=3

k−2

vk−,r, + o
,=4

k−2

vk−,r̃, sk ù 6d,

J30ª 2v2 − 3b, J31ª 3v3 − x2 − x̃2 − 2r̃4, J32ª 4v4 − x3 − x̃3 − 2r̃5 − ab,

J33ª 5v5 − x4 − x̃4 − 2r̃6 − ar̃4 − b2, J34ª 6v6 − x5 − x̃5 − 2r̃7 − ar̃5 − br̃4 + x2r3 − x̃2b,

s4.18d

J3k ª sk + 2dvk+2 − xk+1 − x̃k+1 − 2r̃k+3 − ar̃k+1 − bx̃k−2 − br̃k + o
,=3

k−1

xk+1−,r, − o
,=4

k−1

x̃k+1−,r̃, sk ù 5d.

gain, we must show that the equationsJ1k=0, J2k=0, J3k=0 for all k have uniquely determine
olutions for the coefficientsxk,rk,vk.

In fact, from J10=0 andJ11=0 one uniquely determinesv2, v3; now, the equationJ30=0 is
utomatically fulfilled, andJ31=0 givesx2. At this point, we must determinevk+2, rk+1, andxk+1

or kù2, which is performed recursively in the following way. FromJ1k=0 and J3k=0 one
omputesvk+2 andxk+1; to find them, one must solve a linear system whose matrixs 2

k+2
k−1
−1

d has
eterminant −ksk+1dÞ0. Finally, fromJ2k=0 one getsrk+1.

(ii ) Let sq̃, r̃dPS, and q,r ,v as in (i). Then sq,rdPZ2, and statement(i) meanssq̃, r̃d
Bsq,rd. j

Proof of Proposition 2.2:Set together Eqs.(4.3) and (4.14). j

Remark:In any case, the following holds:

sq̃, r̃d P BsZ2d, q̃ = o
k=a

+`

q̃kx
k, q̃a Þ 0, r̃ = o

k=b

+`

r̃kx
k, r̃b Þ 0, minsa,bd , 0 ⇒ a + b = − 2,

s4.19d
q̃ar̃b = − minsa,bd.

n fact, we are assumingI j ; I jsq,r ,v ,q̃, r̃d=0 for some holomorphicq,r PZ andvPQ. To fix
+` k
he ideas, let us assume minsa,bd=a; then, fromI1=0 we easily inferv=ok=−1vkx with v−1=a.
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nserting these facts intoI3=0, we obtaina+b=−2 and q̃ar̃b=−a. If minsa,bd=b we procee
imilarly, using the equationsI2=0 andI3=0.

Of course, ifsq̃, r̃d are in the subsetsT or S we have, respectively,a=b=−1 or a=−2, b=0.
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PPENDIX A: MATRIX LAX OPERATORS: THE DRINFELD–SOKOLOV FORMULATION

Some more algebra:Consider any differential algebrasU ,]x; ·xd, possibly noncommutativ
hen, the algebra ofdifferential operators with coefficientsin U is the associative(and noncom
utative) algebra DiffsUd with generators

]x, U sU P Ud sA1d

nd defining relations

sA2d

ny DPDiff sUd has a representation

D = o
k=0

d

Dk]x
k sd P N,Dk P U ∀ kd, sA3d

hich is unique under the conditionDdÞ0 if dÞ0; the unique integerd determined in this wa
s called theorder of the differential operatorD. U can be identified with the subalgebra of DiffsUd

ade of zero order operators; ifU has unity 1, this is also the unity of DiffsUd (so, the invertible
ero order operators are just the invertible elements ofU).

For any vector spaceV, we introduce the vector space ofn3n matrices

MatnsVd = hV = sVabda,b=1,. . .,nuVab P V ∀ a,bj; sA4d

e often consider therein the supplementary subspaces DiagnsVd, OffnsVd made, respectively, b
he diagonal and off-diagonal matrices.

If sV ,]xd is a differential algebra, MatnsVd is a differential algebra when equipped with
sual “row by column” product and with the “term by term” derivationV°Vxª sVab,xd. Up to

rivial identifications, we haveeMatnsVd=MatnseVd and eV=seVabd. Of course, DiagnsVd is a
ifferential subalgebra of MatnsVd. If I is an ideal, or a differential(]x-closed) ideal inV, the sam
ccurs for MatnsId in MatnsVd.

Consider again a vector space, now denoted for convenience withW. We can build from it th
ector space of formal series in one indeterminatel,

Wsld ª HW= o
i=imin

+`

Wil
−iuimin = iminsWd P Z,Wi P W ∀ iJ; sA5d

e will often fix the attention on the subspaces,

Wsldø ª Ho
i=0

+`

Wil
−iJ, Wsld, ª Ho

i=1

+`

Wil
−iJ . sA6d

f W is a differential algebra with derivation]x; ·x, thenWsld is a differential algebra, with th
sual Cauchy product of series and the derivation]x: W°WxªoiWi,xl

−i. Of course,W can be
dentified with the differential subalgebra ofWsld made of seriesW with Wi =0 for i Þ0; Wsldø,
sld, are also differential subalgebras. IfW has unity 1, this is also the unity ofWsld; the subset
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1 +Wsld, =H1 + o
i=1

+`

Wil
−iJ sA7d

s a group with respect to the Cauchy product.
To conclude these preliminaries we point out that the notation[,], employed in the sequel f

atrices or differential operators, stands for the usual commutator.
Drinfeld–Sokolov theory:Let us consider a commutative differential algebrasF ,]xd; to fix the

deas, one can thinkF to be the algebra(1.9) with generatorsjs ss=1, . . . ,gd, but for the momen
his is not necessary. For a givenn, we construct from it the matrix differential algebra MatnsFd.
n the sequel, elements ofeF and MatnseFd will be called, respectively, thescalar and then

n matrix integrals, or functionalsof F.
For technical reasons appearing in the sequel, we need the direct sum of this algebra

3n matrices with complex entries, i.e.,

MatnsFd % MatnsCd, sA8d

hich is in an obvious way an associative algebra[the product beween elements of MatnsFd and
atnsCd is defined again row by column]; this algebra contains MatnsFd as an ideal. The deriv

ion ]x of MatnsFd is extended to the previous direct sum, prescribing that it annihilates MansCd;
n this way,(A8) is a differential algebra and MatnsFd a differential ideal of it. Of course the un
f (A8) is 1ªdiagns1, . . . ,1d.

The next step is to form the differential algebra of formal series

sMatnsFd % MatnsCddsld ª HN = o
i=imin

+`

Nil
−iuimin P Z,Ni P MatnsFd % MatnsCd ∀ iJ sA9d

which of course contains the differential ideal MatnsFdsld, made of series as above with coe
ientsNi PMatnsFd]. The ultimate step is the algebra

DnsFd ª Diff ssMatnsFd % MatnsCddsldd, sA10d

ade of differential operators with coefficients in the algebra(A9).
Definition A.1: A first order, n3n Lax operator is a differential operator of the form

L ; LA,S ª ]x − lA − S P DnsFd,

sA.11d
S P MatnsFd, A = diagsa1, . . . ,and P DiagnsCd, ai Þ 0 for all i ,ai Þ aj for i Þ j .

e will write LnsFd for the set of these operators.
The first result in the Drinfeld–Sokolov theory is a diagonalization theorem for these

ors.
Proposition A.2: Consider an operatorL=LA,SPLnsFd. Then, there is a pair of objects

U = 1 +o
i=1

+`

Uil
−i P 1 + MatnsFdsld,, sA12d

H = o
i=0

+`

Hil
−i P DiagnsFdsldø, sA13d

uch that

L = Us]x − lA − HdU−1; sA14d
oreover, the matrix functionals
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hL,i ; hi ªE Hi si = 0,1,2, . . .d sA15d

re uniquely determined byL.
Proof: See Sec. I of Ref. 5. The main point is that Eq.(A14) is equivalent toLU=Us]x

lA−Hd, and that the expansion in powers ofl of both sides in this equality gives rise
ecursion equations for the sequencessHid, sUid. j

Definition A.3: Any pairsU ,Hd as in Proposition A.2 will be called a diagonalizing pair
. The matrix functionalshL,i will be called the fundamental invariants ofL.

Remark:SupposesF ,]xd is a strict differential subalgebra of a commutative differential a
ra sM ,]xd [Eq. (1.8); recall thateF.eMF,eM]. Then, by the uniqueness statement of
revious proposition, the diagonalizations ofL as an element ofLnsFd, or as an element

nsMd, give rise to the same fundamental invariants which belong in any case to DiagnseFd.
The forthcoming proposition considers a situation of this kind; the result stated therein

es the origin of the term “invariant” for the functionalshi.
Proposition A.4: LetsM ,]xd be a commutative differential algebra containingF as a stric

ifferential subalgebra; further, letF̃ denote another strict differential subalgebra ofM.
Consider two operators

L = LA,S P LnsFd, L̃ = LA,S̃ P LnsF̃d sA16d

with the sameA) and their fundamental invariantshL,i ;hi PDiagnseFd, hL̃,i ; h̃i PDiagnseF̃d.
Let I denote an ideal ofM, and assume there is

V = 1 +o
i=1

+`

Vil
−i P 1 + MatnsMdsld, sA17d

uch that

L̃ − VLV−1 P MatnsIdsldø. sA18d

Then

h̃i − hi P DiagnSE ID si = 0,1,2, . . .d sA19d

where, in the last equation, e;eM).
In a few words, ifL ,L̃ are similar up to a series with coefficients in the ideal MatnsId, their

undamental invariants coincide up to elements of DiagnseId. This result is essential for o
urposes; since our language is slightly different from the one of Ref. 5, it is convenient to

he following.
Proof of Proposition A.4:We choose a diagonalizing pairsU ,Hd for L, so as to fulfill Eqs

A12)–(A14), and proceed in three steps.
Step 1: There are

W P 1 + MatnsMdsld,, J P MatnsIdsldø such thatL̃ = Ws]x − lA − H − JdW−1. sA20d

n fact, assumption(A18) meansL̃=VLV−1+F, whereFPMatnsIdsldø; from here and(A14) we
et

L̃ = VUs]x − lA − HdU−1V−1 + F = VUs]x − lA − H + U−1V−1FVUdU−1V−1; sA21d

his gives the thesis(A20), with WªVU and Jª−U−1FVU [the relationsWP1+MatnsMd

sld,, JPMatnsIdsldø are easily checked from the previous definitions recalling that 1
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MatnsMdsld, is a group, MatnsMdsldø a subalgebra and MatnsId an ideal].
Step 2: Consider the differential idealG of M generated byI (i.e., the smallest differenti

deal containingI). ThenL̃, as an element ofLnsMd, admits a diagonalizing pairsŨ ,H̃d with H̃
f the form

H̃ = H + G, G P DiagnsGdsldø. sA22d

o prove this, we write

Ũ = WZ, W as in step 1,Z = 1 +o
i=1

+`

Zil
−i P 1 + OffnsGdsld, to be found, sA23d

H̃ = H + G = o
i=0

+`

sHi + Gidl−i, Gi P DiagnsGd to be found sA24d

recall that Offn stands for the the off-diagonaln3n matrices). Due to these representations an

q. (A20) for L̃, the diagonalizing conditionL̃=Ũs]x−lA−H̃dŨ−1 is fulfilled if

s]x − lA − H − JdZ = Zs]x − lA − H − Gd. sA25d

ecalling that]xZ=Z]x+Zx and expanding the last equation in powers ofl, we see that(A25) is
ulfilled if

− Gi + fA,Zi+1g = Zi,x − Ji + o
k=1

i

sfZk,Hi−kg + ZkGi−k − Ji−kZkd si = 0,1,2, . . .d sA26d

intendingZ0,xª s1dx=0 andok=1
0

ª0]. We will show that the system(A26) can be solved recu
ively. To this purpose, we introduce the projectionsDn,On of MatnsMd onto the supplementa
ubspaces DiagnsMd, OffnsMd; furthermore, recalling thatA is diagonal with nonzero and
ifferent eigenvalues, we infer that adAª fA , ·g : OffnsMd→OffnsMd is a linear isomorphism
hese remarks yield for(A26) the solution

Gi = DnSJi − o
k=1

i

sZkGi−k − Ji−kZkdD , sA27d

Zi+1 = adA
−1SZix − OnsJid + o

k=1

i

fZk,Hi−kg + o
k=1

i

OnsZkGi−k − Ji−kZkdD si = 0,1,2, . . .d

note that fZk,Hi−kg is purely off-diagonal). From these equations, withi =0, one getsG0

DnsJ0d, Z1=−adA
−1OnsJ0d; subsequently, one uses recursively Eqs.(A27) to determine at eac

tepGi ,Zi+1. The fact that MatnsGd is a differential ideal and the structure of the above equa
lso make evident thatGi ,Zi+1 belong to MatnsGd for all i; by construction these matrices a
espectively, diagonal and off-diagonal as required.

Step 3: Conclusion of the proof. Let us intende;eM (recalling the remark oneF just before

he statement of this proposition, and the analogous one foreF̃). Equation(A22) implies

h̃i − hi =E H̃i −E Hi =E Gi P DiagnSE GD; sA28d
he thesis(A19) follows from here, and from the remark that
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E G =E I. sA29d

o prove Eq.(A29), we note that any element of the differential idealG has the form

G = o
,PL

F,I,
ss,d sL a finite set,F, P M,I, P I,s, P N ∀ , P Ld, sA30d

here ·ss,d indicates thes,th power of the derivation ·x. Now, standard integration by parts giv

E G =E I, I ª o
,PL

s− 1ds,F,
ss,dI, P I. sA31d

j

We now review some known relations between Lax operators, their diagonalization an
utionary problems. From now on, we work with the Gelfand–Dickey differential algebra,

F = Cfj1, . . . ,jg,j1,x, . . . ,jg,x, . . . g0 sA32d

see Eq.(1.9)]. Also, we are given a vector fieldX=sX1, . . . ,XgdPFg; as explained in Sec. I, the
re Lie derivative operatorsLX: F→F and LX: eF→eF [see Eqs.(1.17) and (1.18)]; these

nduce “componentwisely” mapsLX of MatnsFd or MatnseFd into itself. Trivially, LX can be
xtended to a map of MatnsFd % MatnsCd into itself, defining it to be zero on MatnsCd.

Again trivially, we extend the Lie derivative to a mapLX of fMatnsFd % MatnsCdgsld into
tself, settingLXsoiNil

−idªoisLXNidl−i; we finally defineLX: DnsFd→DnsFd by LXsokDk]x
kd

oksLXDkd]x
k.

Definition A.5: X is said to admit an n3n Lax formulation if there are an operatorL=LA,S
LnsFd,DnsFd and a zero-order operatorCPMatnsFdsld,DnsFd such that

LXL = fL,Cg. sA33d

Proposition A.6: If X is admits a Lax formulation as above, the fundamental invarianthL,i

hi si =0,1,2, . . .d are conserved matrix functionals for X,

LXhi = 0. sA34d

Proof: Reference 5, Sec. I. j

Of course, from here we get conserved scalar functionals taking all matrix elemenhi,ab

eF.

PPENDIX B: LAX FORMALISM AND BÄCKLUND TRANSFORMATIONS
OR THE AKNS THEORY

As in Sec. III, we consider the differential algebra,

F = Cfj,h,jx,hx, . . . g, sB1d

ith two generatorsj ,h, and the vector fieldXAKNS;X. This is known to admit a Lax formulatio
f the type(A33), with n=2; the matricesS, A of L, and the matrixC are given by

S ª S0 j

h 0
D, A ª S1 0

0 − 1
D, C ª

1

2
S− jh jx

− hx jh
D + lS + l2A. sB2d

his operator has a diagonalizing pairU=1+U1/l+U2/l2+U3/l3+¯, H=H0+H1/l+H2/l2

H3/l3+¯, where

U1 =
1S0 − j D, U2 =

1S 0 − jxD , sB3d

2 h 0 4 − hx 0
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U3 =
1

8
S 0 − jxx + j2h

hxx − jh2 0
D¯ ,

H0 = 0, H1 =
1

2
Sjh 0

0 − jh
D, H2 = −

1

4
Sjhx 0

0 hjx
D, H3 =

1

8
Sjhxx − j2h2 0

0 − hjxx + j2h2D ,

H4 ª
1

16
S− jhxxx+ jjxh

2 + 4j2hhx 0

0 − hjxxx+ hhxj
2 + 4h2jjx

D, . . . . sB4d

he fundamental invariantshiªeHi are conserved functionals forX; for all i, the diagonal ele
ents ofHi are opposite up to total derivatives, so that

hi ; hL,i = Shi 0

0 − hi
D . sB5d

or i =1,2,3,4, theconserved scalar functionalshi PeF are the ones appearing in Eq.(1.23).
Up to a rescaling of each element by a suitable constant, the sequenceshidi=1,2,. . . can be

dentified with the basis ofZAKNS;Z considered in Ref. 11.[The basis in Ref. 11 is not defin
ia the Lax formalism but, rather, by a precise formulation of the known bi-Hamiltonian rec
cheme for the AKNS;6 the fact that the functionalsshid fulfill this recursion scheme reflect
eneral feature of the Drinfeld–Sokolov approach: see again Ref. 5, Sec. I where a
onstruction is given for the bi-Hamiltonian structure of the evolution equations arising
atrix first order Lax operators.]

We come to the Bäcklund transformation. Let us recall the formalism of Sec. III; this inv

he “initial variables”j ,h generatingF, the “final variables”j̃,h̃ generatingF̃, and the “auxiliary
ariable” n generating with all of the previous ones in differential algebraM [see Eq.(3.3)]. Of

ourse, the “tilde” map̃: F→ F̃ induces componentwise a tilde map˜: MatnsFd→MatnsF̃d; the

nclusionsF ,F̃,M induce inclusions of the corresponding spaces of matrices, formal seriel
nd differential operators. In particular, we fix the attention on the Lax operators,

LA,S ; L P D2sFd , D2sMd, LA,S̃ ; L̃ P D2sF̃d , D2sMd sB6d

A,S as in Eq.(B2); as stipulated before,S̃ meanss 0
h̃

j̃
0
d].

Lemma B.1: Let

V ª 1 +
1

2l
S n j − j̃

h̃ − h − n
D . sB7d

hen

L̃ − VLV−1 P Mat2sIdsld,, sB8d

hereI is the Bäcklund ideal of Definition 3.1.
Proof: One finds by direct computation that

L̃V − VL = Vx − S̃V + VS − lfA,Vg = I, I ª
1

2l
S I3 I1

− I2 − I3
D , sB9d

here I j s j =1,2,3d are the generators(3.6) of the Bäcklund ideal. This impliesL̃−VLV−1=F,
hereFª IV−1PMat2sIdsld,. j

The previous lemma allows to give the following.
Proof of Proposition 3.2:The vector spaceZ is generated by the sequenceshid, so it suffices
o prove that
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h̃i − hi PE I si = 1,2,3, . . .d. sB10d

rom Eq.(B5) and its tilded analogue, we know that

Shi 0

0 − hi
D, Sh̃i 0

0 − h̃i

D sB11d

re the invariant matrix functionals ofL andL̃, respectively; by Proposition A.4 and Lemma B
hese differ by elements of Diag2seId, yielding the thesis. j

As an example, in Eq.(3.9) we have given explicit representations ofh̃i −hi as integrals o
lements ofI, for i =1,2,3,4;these representations have been computed specializing to th
he general argument employed to prove Proposition(A4). In particular, this has required t
pplication of the recursion relations(A27) up to i =4.
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ngular intricacies in hot gauge field theories
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It is argued that in hot quantum field theories, “hard thermal loops” leading order
calculations call for a definite sequence of angular averages and discontinuity(or
imaginary part prescription) operations, and run otherwise into incorrect results.
The 10 years old collinear singularity problem of hot QCD provides a dramatic
illustration of that fate. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1814418]

. INTRODUCTION

The intrinsic nonperturbative nature of nonzero temperature quantum field theories h
een recognized.1 Naive thermal perturbation theory can nevertheless be devised, both in
ary and real time formalisms,2 but then, it promptly appears that, under certain circumstance
riginal perturbative series must be reorganized. Such an example of reorganization is pro

he so-calledresummation program.3 This program, RP for short, is a resummation scheme o
eading order thermal fluctuations which, in the literature, are known under the spell o
hermal loops. Whenever one is calculating a physical process related to thermal Green’s f
hose external/internal legs aresoft, it is mandatory to trade the naive thermal perturbation th

or the RP. The softness alluded to above, refers to momenta on the order of the soft sgT,
hereT, the temperature, stands for the hard scale andg for any relevant(bare/renormalized) and
mall enough coupling constant.

The RP which has been set up in order to remedy an obvious lack of completeness of t
hermal perturbation theory, has produced interesting results, but has also met serious obs
n the infrared regime of the theories.4,5 Within the resummation program itself, the soluti
roposed so far,5–7 however interesting in their own respect, can hardly be organized in a sy
tic way and display too much dependences on the process under consideration.

In this paper, we point out some overlooked aspects concerning “the historical derivati
he famous RPcollinear singularity problem of hotQCD.5 The matter of the present paper ha
o with the proper sequence of two operations that are of the utmost importance in the

ional context of hot quantum field theories. These operations are an angular average, on
and, and a discontinuity or imaginary part prescription, on the other hand. Though illustra

he famous problem alluded to above, the point made here is relevant of a most universal
f hot quantum fields, because atnù3, the hot gauge fields effective vertices are all define
ngular averages. As several of our previous and ongoing calculations have displayed, i

he pertinence of the advocated “proper sequence” extends far beyond the historical deriv
e recalled shortly.

The paper is organized as follows. Section II is a short reminder of the collinear sing
roblem met in hot QCD, a more detailed introduction to the matter being given in Sec. II o
. In Sec. III, we demonstrate that illicit mathematical steps have been taken, plaguing eithe

)
Electronic mail: thierry.grandou@inln.cnrs.fr

4754022-2488/2004/45(12)/4754/10/$22.00 © 2004 American Institute of Physics
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wo distinct collinear problem historical derivations. Our conclusions are summarized in S
hereas an appendix gathers the important calculational details of Sec. III.

Throughout the paper, we will be using the convention of upper case letters for qua
enta and lower case ones for their components, writing, for example,P=sp0,pWd. Our conven

ions for labelling internal and external momenta can be read off Fig. 1.

I. THE COLLINEAR SINGULARITY PROBLEM OF HOT QCD

This 10 years old issue is the following. The soft real photon emission rate out of a
luon plasma in thermal equilibrium involves, in particular, the calculation of the quantity

PRsQd = i E d4P

s2pd4s1 − 2nFsp0dddiscPTrh!SRsPd!GmsPR,QR,− PA8d!SRsP8d!GmsPR,QR,− PA8dj .

s2.1d

he discontinuity is to be taken in the energy variablep0, by forming the difference ofR and
-indicedP-dependent quantities, and within standard notations, fermionic high-temperatu

HTL) self-energies, effective propagators, and vertices are, respectively, given by

!SasPd =
i

P” − SasPd + ieap0
, a = R,A, eR = − eA = e, s2.2d

SasPd = m2E dK̂

4p

K”
ˆ

K̂ · P + iea

, m2 = CF
g2T2

8
, s2.3d

!GmsPa,Qb,Pd8d = − iesgm + Gm
HTLsPa,Qb,Pd8dd, s2.4d

Gm
HTLsPa,Qb,Pd8d = m2E dK̂

4p

k̂mK”
ˆ

sK̂ · P + ieadsK̂ · P8 + iedd
, s2.5d

hereK̂ is the lightlike four vectors1,k̂d. As (2.4) is plugged into(2.1), four terms come abou
hree of them proportional to a collinear singularity. These singular terms are the two term
ne bare vertexgm, the otherGm

HTL, plus the term including two HTL vertices,Gm
HTL. Thanks to a

belian Ward identity peculiar to the high temperature limit, a partial cancellation of thes
inear singularities occurs, but out of the term including twoGm

HTL vertices, a collinear singulari

IG. 1. A graph denoted by(!, !; 1) in the text, with two internal effective propagators!SasPsP8dd, of Eq. (2.2), depicted
ith a blob, and one HTL vertex correctionGm

HTL of Eq. (2.5), the other bare,gm.
emains,
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− 2i
e2m2

q2 SE dK̂

4p

1

Q̂ · K̂ + ie
D E d4P

s2pd3dsP · Q̂ds1 − 2nFsp0ddfTrs!SAsPdQ”ˆ d − Trs!SRsP8dQ”
ˆ dg,

s2.6d

here, the soft photon being real,Q is the lightlike 4-vectorQ=qQ̂=qs1,q̂d, with q a real and
ositive number. In the literature, this result is ordinarily written in the form

Cst

«
E d4P

s2pd4dsQ̂ · Pds1 − 2nFsp0dd o
s=±1,V=P,P8

pS1 − s
v0

v
DbssVd, s2.7d

here the overall 1 /« comes from a dimensionally regularized evaluation of the factore
ngular integration appearing in(2.6), and wherebssVd is related to the effective fermion
ropagator usual parametrization,2

!SasPd =
i

2 o
s=±1

P”
ˆ

s
!Dssp0 + iea,pd s2.8d

ith Ps
ˆ =s1,sp̂d, the labels referring to the two dressed fermion propagating modes. One ha

!Dssp0 + iea,pd ; !Da
ssp0,pd = assp0,pd − ipeseadbssp0,pd, s2.9d

hereesxd is the distribution “sign ofx.”

II. IMPROPER TRADITIONAL DERIVATIONS

The historical derivation just reminded above, however, is plagued with erroneous ma
ions, which, following Ref. 5, are most easily described on the two simpler diagrams inc
ne bare vertexgm, the otherGm

HTL. TheR/A real time formalism conveys us to the expressi

PR
s!,!;1dsQd = − ie2m2E d4P

s2pd4s1 − 2nFsp0dd 3 discp0E dK̂

4p

Trs!SRsPdK”ˆ !SRsP8dK”
ˆ d

sK̂ · P + iedsK̂ · P8 + ied
, s3.1d

here the superscript(!, !; 1) on the left-hand side refers to a self-energy diagram involving
ffective propagators and one vertex HTL correction, as depicted in Fig. 1. The steps lea

he collinear singularity of(3.1) are as follows. In consistency with theR/A formalism, and th
tandard mathematical definition of a discontinuity(e is an infinitesimal parameter to be taken
ero in the end9), the discontinuity in the energy variablep0 is taken by writing

discp0

Trs!SRsPdK”ˆ !SRsP8dK”
ˆ d

sK̂ · P + iedsK̂ · P8 + ied
=

Trs!SRsPdK”ˆ !SRsP8dK”
ˆ d

sK̂ · P + iedsK̂ · P8 + ied
−

Trs!SAsPdK”ˆ !SRsP8dK”
ˆ d

sK̂ · P − iedsK̂ · P8 + ied
. s3.2d

losing thep0 integration contour in the upper half complexp0 plane, one selects a pole te
ontribution toPR

s!,!;1dsQd, which comes from the vertexGm
HTL and reads

− ie2m2E d4P

s2pd4s1 − 2nFsp0dd 3E dK̂

4p

− 2ipdsK̂ · Pd

K̂ · P8 + ie
Trs!SAsPdK”ˆ !SRsP8dK”

ˆ d. s3.3d

inceP8=P+Q, we have indeed, as a building block of(3.3), the expression

E dK̂

4p

− 2ipdsK̂ · Pd

K̂ ·Q + ie
Trs!SAsPdK”ˆ !SRsP8dK”

ˆ d. s3.4d
ere, it is traditionally claimed that the angular average develops a collinear singularity in a
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eighborhood ofK̂=Q̂, not balanced by the numerator, and whose “residue” is obtained by re

lacing everywhereK̂ by Q̂, except for the denominator. The result is then,

Cst

«

dsQ̂ · Pd
q

Trs!SAsPdQ”ˆ !SRsP8dQ”
ˆ d, s3.5d

here the first factor, singular at«=0, is obtained by using a dimensional regularization of
ngular integral, and where the constant,Cst, is independent ofP. Up to regular contributions th
e do not consider here, this singular piece of(3.4) translates, forPR

s!,!;1dsQd, into a singular resu
f

−
Csstd

«

e2m2

q
E d4P

s2pd3s1 − 2nFsp0dd 3 dsQ̂ · PdTrs!SAsPdQ”ˆ !SRsP8dQ”
ˆ d. s3.6d

he contribution of(3.6) to the soft photon emission rate being proportional to its imaginary
he emission rate is plagued with a collinear singularity[as recalled in Sec. II, this very contrib
ion cancels against a similar one inPR

s!,!;2dsQd; but an uncancelled singular piece remains wh
utatis mutandis, is derived along the very same steps as taken here, in the simpler an

llustrative case ofPR
s!,!;1dsQd].

The RP is known to be ill defined in the infrared sector of hot gauge theories, and the
amous divergent result is one of the most compelling arguments in favor of this wide
pinion. Several solutions have been proposed ever since, which, however, do not mee
eneral consensus. They display, in effect, too much dependences on the physical proce
onsideration, so that it seems reasonable to think of this, as an indication that things h
eached a satisfying enough state. Some decades ago, one may have written “Our task as math
maticians (…) is to assist physicists in their work by throwing mathematical light if things

oo unsystematic or too complicated.”10 This is why it matters to stress that this 10 years
ivergent and important result is incorrect, being derived on the basis of illicit mathematica
his can be seen as follows:

(i) Getting back to the building block expression(3.4), one can rewrite the trace as

Trs!SAsPdK”ˆ !SRsP8dK”
ˆ d = Trs!SAsPdK”ˆ !SRsP8dK”

ˆ d − Trs!SAsPdQ”ˆ !SRsP8dQ”
ˆ d + Trs!SAsPdQ”ˆ !SRsP8dQ”

ˆ d.

s3.7d

n the right-hand side of(3.7), the difference of the first two terms can be expressed as

o
s,s8=±1

!DA
s8sP8d!DR

ssPd sK̂ · P̂s8
8 fP̂s · sK̂ − Q̂dg + Q̂ · P̂sfP̂s8

8 · sK̂ − Q̂dgd, s3.8d

here the effective propagators representations(2.8) have been used. In this form, it is clear t
hese two terms pose no problem under the remaining angular integration of(3.4), and that th
nly potential trouble could come from the third term of(3.7), that is, from

Trs!SAsPdQ”ˆ !SRsP8dQ”
ˆ d 3E dK̂

4p

− 2ipdsK̂ · Pd

K̂ ·Q + ie
. s3.9d

s advertised after(3.4), a potentially singular behavior develops atK̂=Q̂. It has been taken ca
f by performing the angular integration atD=3+2« spatial dimensions,5 and the so far admitte
ingular counterpart of(3.4) is then obtained under the form(3.5).

As shown in the Appendix, though, a direct evaluation of(3.9) is doable, and makes it cle

hat the traditional result(3.5) is incorrect. In view of(A4), we have in effect
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E dK̂

4p

− 2ipdsK̂ · Pd

K̂ ·Q + ie
=

− iQs− P2d
2qp

E
0

2p dw

a + b sinw
=

− iQs− P2d
2qp

3 4aE
0

p/2 dw

a2 − b2 sin2 w

s3.10d

nd the integral appearing on the right-hand side of(3.10) is dependent on the relative magnitu

f coefficientsa2 andb2. Corresponding to the conditiona2=b2, that is toQ̂·P=0, a singularity i
btained, with, for(3.9), the resulting expression[see(A12)],

Trs!SAsPdQ”ˆ !SRsP8dQ”
ˆ d 3

− idsQ̂ · Pd
2q

− 4p2

P2 − ie
3 cothuh=0+, s3.11d

hereQsxd stands for the usual Heaviside step function.
Compared to the standard historical result(3.5), (3.11) presents a most interesting similar

ince, like the«−1 logarithmic singularity of(3.5), a singular piece of coth, ash→0, factors out
n total independence of the remaining integrations to be performed onp0 andpW .

However, as emphasized in the appendix, it appears that the terms which accompa
ingularities are not the same, and, most importantly, that the singularities themselves are
ame since, in particular, the logarithmic nature of(3.5) is not recovered.

(ii ) The traditional result(3.5) is also relevant of another, more important error, as be
ystematic one, rather peculiar to the context of hot gauge field theories. Passing from(3.1) to
3.2) in effect, the prescription of discontinuity inp0 is permuted with the angular integration
ˆ . Now, this permutation is an illicit mathematical step because, whatever the formalism
eal or imaginary time, the discontinuity of the integral is in order, and not the integral
iscontinuity. Since a discontinuity is defined through a limiting procedure, it is long know

ts permutability with an integration cannot be supposed to hold in general.
For the sake of a simpler and clear-cut illustration of our claim, we will focus on the

ient” piece of(3.1), the expression

discp0E dK̂

4p

1

K̂ · P + ie

1

K̂ · P8 + ie
. s3.12d

hat this “efficient” piece be relevant to the problem under consideration, and in particular t
o be compared to the improper sequence expression(3.4), is shown in the Appendix. Let us beg
ith recalling that the improper sequence of discontinuity and integral operations has produ
orrected, still singular result,

E dK̂

4p
discp0

1

K̂ · P + ie

1

K̂ · P8 + ie
=

2idsQ̂ · Pd
q

p2

P2 − ie
cothuh=0+. s3.13d

n the other hand, we have8

E dK̂

4p

1

K̂ · P + ie

1

K̂ · P8 + ie
=

1

2Q · P + ieq
ln

P82 + iep08

P2 + iep0
. s3.14d

ince 2Q·P=P82−P2, this result is symmetric under the exchangeP↔P8, as it should, and allow
o calculate the proper sequence of the discontinuity and integration operations. One find

discp0E dK̂

4p

1

K̂ · P + ie

1

K̂ · P8 + ie
=

ipesp0dQs− P2d
Q · P + ieq

. s3.15d

he differences between the(corrected) improper sequence result(3.13) and the above prop

equence one,(3.15), are of utmost importance in the calculational context of hot quantum field
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heories, because salient features emerge which reveal to be sound and general features,
eyond the present illustration, to any of the higher number of points HTL- vertices and
alculations.

(1) Staring at(3.14), one can observe how the angular average is able to reproduce all
orrect internal/external legsR/A specifications, theieq, iep0, andiep08, which are not manifest o
he left-hand side. The same property can be observed on the angular identites(4.9)–(4.11) derived
lsewhere.8 A first important difference is therefore that the relevantie prescriptions of interna
xternal lines are preserved within the proper sequence, not along the reversed imprope
alculations, it has been stressed that this drawback can only result into violent, st

nconsistencies.11

(2) A second essential difference is the sign distributionesp0d. In all of the real or imaginar
ime formalisms, and any possible resummation scheme,8 sign distributions have long been n
iced to be of paramount importance so as to preserveintegrable and nonintegrableinfrared
ingularity compensations.12 As observed here again, correct sign distributions are a natura
ome of the calculational operations proper sequence(3.15), not of the improper one,(3.13), (A7),
nd (A8). That is, the proper sequence of angular average and discontinuity operations c
ith the required, exact sign distributions and internal/external line prescriptions which, oth
re violated.

(3) The above two properties are not restricted to the soft photon emission rate pr
owever important it is. Now, focusing on that problem again, the following summary may
rder. As displayed through Eqs.(A7)–(A9), the improper sequence result is not a systemati

ingular result. When the result comes out regular, ata2.b2 that is atsQ̂·Pd2.0, it still differs

he proper sequence one, the shortcomings described above. AtQ̂·P=0, the improper sequen
esult comes out effectively plagued with a divergence which factors out any possible calc
t is involved in, in total independence of the remaining integrations to be performed onp0, pW . At
ariance with its original version, though, this divergence does not come out logarithmic,

n a canonically devised dimensional regularization scheme, set up atD=3+2« spatial dimen
ions.

At this stage, it is worth noticing that when the proper sequence result(3.15) is plugged into
he PR

s!,!;1dsQd calculation, then, the resulting contribution to the soft photon emission rate
ut regular(Ref. 14). In the same vein, it is interesting to stress also that the same prope

egularity has been derived in Ref. 8, concerning anyPR
sN,N8;1dsQd andPR

sN,N8;2dsQd contribution
hereNsN8d are the numbers of HTL self-energy insertions(2.3) along thePsP8d internal lines
he proper sequence of discontinuity and angular average was followed throughout, w
gain, the same overall factoring out mass singularity as(3.11), could be shown to appear alo

he improper, inverted sequence.
That makes the singularity so derived, definitely appear a fate of the improper sequ

iscontinuity and angular average operations.

V. CONCLUSION

Mathematically, the fact that the proper sequence of angular average and discontinuity
ions are inverted by the so far conventional use, accounts for a substantial difference be
iscontinuity is defined by a limiting procedure. The possibility of its permutation with an
ration, should accordingly never be taken for granteda priori. In this respect, it is worth noticin

hat the authors of Ref. 5(published version), while inverting the proper sequence of operati
ere conscious of the risks this manipulation possibly entailed.

Though technically more involved of a step, we conclude that the angular averages inh
he context of hot gauge field theories must definitely be performed in the first place,
articular, before that any discontinuity and/or imaginary part prescriptions be actually take
ets in, we think, the general character and related importance of the point made in the

aper.
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It is true that in the hot quantum field theories context, this is more of a trap as the form
n use are rather fuzzy about the distinction between discontinuity and imaginary part presc
hich, then, can usually be permuted with integrations. Up to a trivial factor of 2, in effec
ne is generally mistaken for the other, whereas their difference, and in particular the pre
f the discontinuity aspect over the imaginary part one, had been advocated in Ref. 13.

Ignoring that proper sequence may lead(and has led) to incorrect derivations and/or resu
ot only have the infrared singularity cancellation patterns long revealed to be particular
itive to the angular averages and discontinuity operations proper sequence, but, as notic
ppendix, regular terms also, are the more endangered by an improper sequence calculat

atter develops singularities.
Our point has been illustrated on the basis of the hot QCD collinear singularity proble

t seems reasonable to think that this 10 years old and important issue should now be
evisited within the proper sequence. Because of the complexity of the angular integration
nt to the contribution ofPR

s!,!;2dsQd (Ref. 8) it is a somewhat complicated task which could
eferred to a further publication.

However, it is certainly worth mentioning here, that we have been able to prove that the
eputed singular contributions of typePR

s!,!;1dsQd, come out regular, when taken within the corr
roper sequence of angular integration and discontinuity operations.14
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PPENDIX

n Eq. (3.10)

We proceed here to the direct calculation of(3.9), as alluded to in the main text, that is

E dK̂

4p
discp0

1

K̂ · P + ie

1

K̂ · P8 + ie
=E dK̂

4p

− 2ipdsK̂ · Pd

K̂ ·Q + ie
. sA1d

f p̂Þ q̂, the calculation is most easily carried out in the orthonormal basis of vectors

H p̂ ∧ q̂

sina
,
p̂ cosa − q̂

sina
,p̂J, cosa = p̂ · q̂. sA2d

e have then for(A1),

− i

2qp
E

0

2p

dwE
−1

+1

d cosu
dsp0/p − cosud

1 − cosu cosa + sinu sina sinw + ie

=
− iQs− P2d

2qp
E

0

2p dw

1 −
p0

p
cosa + sinFarccosSp0

p
DGsina sinw + ie

. sA3d

his integral reads

− iQs− P2d
2qp

E
0

2p dw

a + b sinw
sA4d
t
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a = 1 −Sp0

p
Dp̂ · q̂ + ie, b = hÎ−

P2

p2 h8Î1 − sp̂ · q̂d2, h,h8 = ± 1. sA5d

ote that because of the constraintQs−P2d, we have Resadù0.
Three cases are now to be considered.
(i) a2.b2. The result is then

E
0

2p dw

a + b sinw
=

2pesad
Îa2 − b2

sA6d

s given15 by formula 3.6151, and(A1) reads in this case as

sA1d =
− ipQs− P2d
ÎsQ · Pd2 + ie

. sA7d

ote that, relevant of this case, is also the situation where no such basis as(A2) can be devise
ecausep̂= q̂. Now, a direct evaluation of(A1) is then straightforward,

E dK̂

4p

− 2ipdsK̂ · Pd

K̂ ·Q + ie
=

ipQs− P2d
qsp0 − p − ied

=
ipQs− P2d

Q · P − ieup̂=q̂

sA8d

hich results also from(A7) in the limit p̂= q̂.
(ii ) a2,b2. The integral would be undefined at sin2 w=a2/b2, and would be given the meani

f

4a lim
h=0
HE

0

arcsinsa/ubud−h

+E
arcsinsa/ubud+h

p/2 J dw

a2 − b2 sinw
.

he result would then read

4a lim
h=0

esa2d
Îa2sb2 − a2dHArthS1 −

b2

Îa2sb2 − a2d
h + Osh2dD

− ArcthS1 +
b2

Îa2sb2 − a2d
h + Osh2dDJ = 0 sA9d

s given15 by formula 2.5621. This case however, is not really to be considered in the p

ituation where we havea2−b2=sQ̂·Pd2/p2+ ie, that is,Resa2−b2dù0.

(iii ) a2=b2. This condition corresponds toQ̂·P=0, and we have

E
0

2p dw

a + b sinw
=

4

a
E

0

p/2 dw

1 − sin2 w
= − 4

p2

P2 − ie
E

0

p/2 dw

1 − sin2 w
. sA10d

he integral does not exist, and it is noteworthy that, had we introduced a dimensional r
zation at D=3+2« spatial dimensions,5 then (A4) was multiplied by an overall factor
−P2/p2d«, and the measure dw, by a factor of sin2« w.16 The integral was then turned into

E
0

p/2

dw
sin2e

1 − sin2 w
sA11d

aking it clear that, contrarily to the results obtained,5 the dimensional regularization so int
uced is not able to take care of the divergence developing in a neighbourhood ofw=p /2. A
utoff, h=0+, may be introduced so as to supply the above integral with enough regulari

nd one gets for(A10) the result
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− 4p2

P2 − ie
lim
h=0+

E
0

p/2−h dw

1 − sin2 w
=

− 4p2

P2 − ie
lim
h=0+

coth. sA12d

learly, a canonically devised dimensional scheme, is not able to reproduce the historic
ithmic divergence.

n expression (3.12)

The expression(3.12) is “efficient” in the sense of relevance for the problem under co
ration, but this is obscured by the fact that an improper sequence of operations has been

hroughout the two historical derivations of the hot QCD collinear problem. Still, it is r
traightforward to see that(3.12) is the pertinent counterpart of the required comparison.

Relying again on the representations(2.8), we have

discp0E dK̂

4p

Trs!SAsPdK”ˆ !SRsP8dK”
ˆ d

sK̂ · P + iedsK̂ · P8 + ied
= 8o

s,s8

!DR
s8sP8dH!rR

ssPd E dK̂

4p

K̂ · P̂s

K̂ · P̂ + ie

K̂ · P̂s8
8

K̂ · P̂8 + ie

+ !DR
ssPddiscp0E dK̂

4p

K̂ · P̂s

K̂ · P̂ + ie

K̂ · P̂s8
8

K̂ · P̂8 + ie
J , sA13d

here, within standard notations,2

!rR
ssPd = discp0

!DR
ssPd.

n the right-hand side of(A13), it appears clearly that it is the second term, entailing the p
equence of discontinuity and integration, which compares with the improper sequence de
3.2) to (3.6). This second term can further be developed as

8o
s,s8

!DR
s8sP8d!DR

ssPddiscp0E dK̂

4pH ss8

pp8
+

s8

p8
S1 − s

p0

p
D 1

K̂ · P̂ + ie
+

s

p
S1 − s8

p08

p8
D 1

K̂ · P̂8 + ie

+ S1 − s
p0

p
DS1 − s8

p08

p8
D 1

sK̂ · P̂ + iedsK̂ · P̂8 + ied
J sA14d

hence the focus put on(3.12) as the “efficient” and simpler piece of the needed comparison
xpression(3.13), since, starting from it and permuting the discontinuity with the integration
lementary to recover a result equivalent(not equal) to (3.5).

Equivalent but nonequal, because of the incorrect steps plaguing the traditional derivat

n particular the factorization of a factor like Trs!SAsPdQ”ˆ !SRsP8dQ”
ˆ d. This simple, byproduct re

ark is enough of an argument to pin up the fact that not only the singular, but also the
tructure of the calculation is endangered by the improper sequence(this is of course so, becau
he improper sequence calculation generates an undefined integration).
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onformal Killing horizons
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For time dependent black hole space–times the event horizon cannot be describe
by a Killing horizon. In the case when the space–time admits a timelike conformal
Killing field, which becomes null on a boundary called the conformal stationary
limit surface, one can locally describe the expanding event horizon by using this
boundary, provided that it is a null geodesic hypersurface. In this case the boundary
is called a conformal Killing horizon and is shown to be null and geodesic if and
only if the twist of the conformal Killing trajectories on the hypersurface vanishes.
Moreover if the space–time is conformally related to a stationary asymptotically
flat black hole space–time, it is shown that this hypersurface is globally equivalent
to the event horizon, provided that the conformal factor goes to a constant at null
infinity. When the conformal stationary limit surface does not coincide with the
conformal Killing horizon, a generalization of the weak rigidity theorem which
establishes the conformal Killing property of the event horizon and the rigidity of
its rotation is obtained. A physical definition of surface gravity for conformal Kill-
ing horizons is given, which is then used to formulate a generalized zeroth law of
black hole physics. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1814417]

. INTRODUCTION

For more than 30 years, black hole physics has been one of the most active areas of
n both classical and quantum gravity. However almost all the research has been limited to
lack holes, represented in general by the Kerr–Newman solution,1 of which the Schwarzschil
eissner-Nordström, and Kerr solutions are special cases. All these exact solutions share
haracteristics: namely asymptotic flatness, and time independence which implies the exis
global timelike Killing vector field,K, satisfying

LKg = 0, s1d

hereL denotes the Lie derivative in the directionK andg is the metric of the space–time. Wh
hese black holes have been very useful for studying the physical effects like the classical t
he quantum effects like black hole evaporation, they do not represent a realistic model.

In a realistic situation, the black hole is embedded in a cosmological background
ounded by a local mass distribution and so it may cease to be time independent. More
pace–time becomes cosmological and nonflat at large distances from the black hole. One
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tronic mail: jsultana@odarragh.astro.utoronto.ca
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ignificant differences in the structure and properties of these black holes from the well-
solated black holes, where even the passage from the Schwarzschild black hole to the Ke
ole brings profound changes. In accordance with the strong rigidity theorem2 the event horizon o
static or stationary asymptotically flat black hole is represented by the Killing horizon,3 provided

hat the space–time is analytic, the fundamental matter fields obey well behaved hyperbol
ions and the stress-energy tensor satisfies the weak energy condition. The Killing ho
efined as the unionHfKg= øHifKg, whereHifKg is a connected component of the set of po
orming a null hypersurface on which a Killing fieldK is null and not identically vanishing. Th
orizon Killing field K either coincides with the stationary Killing field, in which case the Kil
orizon coincides with the static limit surfacesKuKd=0, or the space–time admits at least one a
illing field M such that4 fK ,Mg=0. The latter case corresponds to a rotating asymptoticall

lack hole in which the Killing horizonHfK̃g is generated by

K̃ = K + VHM , s2d

hereVH is the angular velocity of the Killing horizon which is constant onHfK̃g. Moreover,5 the

illing trajectories associated with the Killing fieldK̃ are null geodesics onHfK̃g and coincide
ith the generators of the horizon.

According to the strong rigidity theorem in the case of a time dependent black hole
ime the event horizon cannot be defined as a Killing horizon and hence an alternative de
f a black hole must be found. Once a definition of an event horizon is found, one can the
btain exact solutions that describe dynamical black hole space–times. In the next sec
ddress this problem by using the concepts of conformally stationary limit surfaces and co
illing horizons.6

If a space–timesM ,gd admits a conformal Killing vector fieldK satisfying

LKg = 2f g, s3d

heref is related to the divergence ofK by, 4f=−d†K, one can define aconformal stationar
imit surfaceas the hypersurfaceS0 on whichK is null, i.e., the normN;sKuKd=0. To see th
hysical significance of this hypersurface it is first necessary to define aconformal Killing ob-
erverin the regions whereK is timelike. This observer travels along a conformal Killing tra
ory with a four velocityu=e−cK, wheree2c=N, such thatsuuud=1 in a signature of −2. Th
unction f appearing in(3) is then equal tosKudcd, and hence is a measure of the rate of cha
f the scale along the conformal Killing trajectory. In the case of a Killing trajectory this fun

s zero implying thatN remains constant along the trajectory. As the conformal Killing obs
oves along the conformal Killing trajectory, he experiences a pure conformal change
etric g, in the sense that the metric can be written asg= fh, where f is related tof, and is a

unction of space–time position andh is a function of position which is constant on any confor
illing trajectory.7 When the conformal Killing congruence of timelike curves is irrotational,

he rotation or twistv= 1
2 * sK∧dKd vanishes, the observer concludes that the space–time icon-

ormally static. Otherwise in the case of a nonzerov, the space–time is seen asconformally
tationary. In the regions where the conformal Killing field turns from timelike to spacelike
n observer cannot be defined. This leads to the boundaryS0 for the existence of such observe
here the conformal Killing field is null. Thus the name “conformal stationary limit surface

For conformal Killing observers and sources the hypersurfaceS0 is an infinite frequency shi
urface. This can be seen by considering a conformal Killing source atS say, emitting photons
requencyms, and a conformal Killing observerO receiving the photons at a frequencym0. If the
hotons fromS to O travel along the null geodesicG with tangent vectork, then the frequenc
easured atO is proportional tosuukd, whereu is the four velocity of the observer. Also sinceG
s a null geodesic,sKukd is constant alongG, and hence it follows that the frequency shift obeys
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ms

m0
=ÎN0

Ns
. s4d

o it is clear from(4) that whenS lies onS0 the observed frequency is zero, while whenO lies on

0 the observed frequency is infinite for finite emitted frequencyms. This explains whyN=0 is a
urface of infinite frequency shift for the conformal Killing observers and sources.

If the conformal stationary limit surfaceS0 is itself a null surface then it is called aconforma
illing horizon. Dyer and Honig6 proved that the hypersurfaceN=0 is a null surface, if and on

f the rotation of the conformal Killing congruence has vanishing norm on the hypersurfac
vuvd=0. Moreover it was also shown that the conformal Killing trajectories are null pregeo
n S0 and therefore coincide with its null generators. Being a null geodesic hypersurfa
onformal Killing horizon acts as a one-way membrane, i.e., the future null cone lies entir
ne side of the null surface such that future directed timelike directions cross the null sur

he same sense. In this wayS0 satisfies the local conditions for it to constitute the event hor
f a dynamical black hole space–time.

Time-dependent space–times admitting conformal Killing horizons can be obtained by
ng a conformal transformation,g̃=V2g, to a stationary, asymptotically flat black hole space–
M ,gd which admits a Killing horizon,S0, generated by the Killing fieldK. Under a conforma
ransformation the Killing fieldK is mapped to a conformal Killing field, provided thatsKudVd

0. Also since conformal transformations preserve causal structure as well as null geode
ypersurfaceS0 in the manifoldsM ,g̃d, is still a null surface whose null geodesic generators
oincide with the conformal Killing trajectories ofK, i.e., it is a null geodesic hypersurface a
herefore a conformal Killing horizon. In this way the conformal stationary limit surface
onformal Killing horizon insM ,g̃d, are the images of the corresponding stationary limit su
nd Killing horizon in the space–timesM ,gd. Such space–times are asymptotically conform
at. However in general, there can be other space–times which are not asymptotically conf
at, and which admit a timelike conformal field that generates a conformal Killing horizon

In the next section we prove that the nullity of the conformal stationary limit surface re
stronger necessary and sufficient condition than the one obtained earlier by Dyer and6

oreover, in the case when the time dependent black hole space–time arises as a re
onformal transformation on a stationary asymptotically flat space–time containing a Killin
izon, we prove that the conformal Killing horizon is globally equivalent to the event ho
rovided that the conformal factor goes to a constant at null infinity. This is an extension
trong rigidity theorem2 which establishes the conformal Killing property of the event horizo
uch dynamic black hole space–times.

As discussed previously there are cases when the conformal stationary limit surface i
urface and hence coincides with the conformal Killing horizon. These kind of space–tim
onformally static. However there may be other cases where the conformal stationary limit

s not a null surface. In this case one must assume the existence of another conformal Kill
hich can be used with the above conformal Killing fieldK to construct a “mixed” conform

illing field K̃ which has vanishing twist on the hypersurfaceS̃0,sK̃uK̃d=0. In this case th

onformal stationary limit surfaceS0 and the conformal Killing horizonS̃0 do not coincide. Thi
ituation is analogous to the “mixed” Killing vector introduced in the Kerr space–tim
ishveshwara8 and Carter,3 where the stationary limit surface and the Killing horizon are s
ated by the ergosphere. This suggests that the so-called “weak rigidity theorem”9 which estab
ishes the Killing property of the horizon and the rigidity of its rotation for circular space–t
ould be extended to conformal Killing horizons. This is done in Sec. III.

In the last section a physical definition of surface gravity for conformal Killing hori
imilar to that for Killing horizons is given. This is then used to formulate a generalized zero

f black hole physics.
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I. CONFORMAL KILLING TRAJECTORIES

The necessary and sufficient condition for a conformal stationary limit surface to be
urface is given by the following theorem. Its proof is obtained in the framework of ex
alculus in order to make it easier and shorter. A concise introduction to the subject of e
ifferential forms is given in Willmore.10 We use the same symbolK to denote the conform
illing field and its associated one formgsKd.

Before proving the theorem we prove the following lemma.
Lemma 1: Let K be an arbitrary conformal Killing field with associated norm N and twiv.

hen

− dK =
1

N
f2 * sK ∧ vd + K ∧ dNg, s5d

nd

NsdKudKd = sdNudNd − 4svuvd − 4f2N, s6d

heref=−1
4d†K.

Proof: Using the definition of the twistv of the conformal Killing fieldK we have

− 2 * sK ∧ vd = 2iK * v = iKsK ∧ dKd.

ow

iKsK ∧ dKd = iKK ∧ dK − K ∧ iK dK = N dK − K ∧ iK dK,

here

iK dK = − diK K + LKK = − dN + 2fK.

ence

− 2 * sK ∧ vd = N dK + K ∧ dN,

hich then gives the first identity

− dK =
1

N
f2 * sK ∧ vd + K ∧ dNg.

hen using the above identity we can write

NsdKudKd =
1

N
f4s* sK ∧ vdu * sK ∧ vdd + 4sK ∧ dNu * sK ∧ vdd + sK ∧ dNuK ∧ dNdg.

ow

s* sK ∧ vdu * sK ∧ vdd = − sK ∧ vuK ∧ vd = − Nsvuvd,

ecausesKuvd=0. Moreover the cross termsK∧dNu * sK∧vdd=0 since it is proportional toK∧K.
inally

sK ∧ dNuK ∧ dNd = sKuKdsdNudNd − sKudNdsKudNd = NsdNudNd − 4f2N2,

ince for a conformal Killing fieldsKudNd=LKN=2fN. Hence this gives

NsdKudKd =
1

N
f− 4Nsvuvd + NsdNudNd − 4f2N2g,
rom which we get the second identity
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NsdKudKd = sdNudNd − 4svuvd − 4f2N.

Theorem 1 (condition for CSLS to be a CKH): If a space–timesM ,gd admits a timelik
onformal Killing field K andS0 denotes the surfacehN;sKuKd=0j, then the surfaceS0 is a null
urface (i.e., a conformal Killing horizon) if and only if11

v = 0, iK dK − 2fK Þ 0 on S0, s7d

herev denotes the rotation (twist) associated with the conformal Killing trajectories, andf is
he scalar function defined in (3).

Proof: Let S0 be a null surface such that dN is null on S0. Then the orthogonality of dN and
on S0 is evident from

sKudNd = LKN = sLKgdsK,Kd + 2sKufK,Kgd = 0,

here the Leibnitz rule for the Lie derivative has been used together with the fact that t
racketfK ,Kg=LKK=0, andLKg=2f g for the CKV K. Since two orthogonal null vectors a
roportional one must also haveK∧dN=0. Therefore from(5) which can be written in the for

2 * sK ∧ vd = − sN dK + K ∧ dNd,

hereN=0, it follows thatv=0 on S0. In addition

iK dK = LKK − diK K = 2fK − dN,

nd so dNÞ0 implies iK dK−2fKÞ0.
Conversely letv=0, iK dK−2fKÞ0 on S0. Then using(6), it follows that

sdNudNd = NsdKudKd − 4f2N = 0 onS0.

hen the assumptioniK dK−2fK=−dNÞ0 on S0, implies that dN is null on S0, which is there
ore a null surface.

Having obtained the condition for the conformal stationary limit surface to be a conf
illing horizon, one can easily show that the conformal Killing trajectories are null pregeo
n the conformal Killing horizon. This property can be proved if one takes into account th
onformal Killing horizon by definition is a null surface, and hence its generators are null g
ics. As mentioned in the above proof the conformal Killing fieldK is tangent onS0 to the
enerators, and so it follows that the conformal Killing trajectories on the conformal K
orizon coincide with its generators and are therefore nonaffinely parametrized null geodes

his reason the conformal Killing horizon is sometimes referred to as a geodesic null hyper
In the case when the time dependent black hole space–time admitting a conformal

orizon is conformally related to a static or stationary asymptotically flat black hole space–t
escribed in the introduction, then one can say more about the role played by conformal
orizons. We will show in the next theorem that in this case the conformal Killing horizon, b
atisfying the local conditions for it to constitute an event horizon, is also globally equivalen
vent horizonH+=]J−sJ+dùM of the black holeB=M −J−sJ+d, provided that the conform
actor tends to a constant at null infinity.

Theorem 2 (extension of the strong rigidity theorem):Consider a space–timesM ,g̃d which
s conformally related to an analytic black hole space–timesM ,gd admitting a Killing horizonS0,
uch that the conformal factor ing̃=V2g goes to a constant at null infinity. Then the confor
illing horizon S0 in sM ,g̃d is globally equivalent to the event horizon, provided that the st
nergy tensor satisfies the weak energy condition.

Proof: The proof of this theorem follows easily from the global definition of the event ho
nd the properties of conformal transformations. The event horizon by definition is the bo
f the setJ−sJ+d, which in turn is a union of terminal indecomposable past sets(TIPs). A TIP12 is
efined as the chronological past,I−sgd, of a future endless(or future inextendible, i.e., having

13 + 12
uture end point ) causal curveg. The TIPs are represented by the points onJ . Each TIP being
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past-set14 is unchanged if the metric is altered by the introduction of a finite conformal fa
nd hence the global definition of an event horizon is conformally invariant, provided th
onformal factor tends to a constant such that the structure of conformal infinity insM ,g̃d is
reserved. This implies that in the manifoldsM ,gd, the event horizon]J−sJ+d is a Killing horizon,
hile in the conformal manifoldsM ,g̃d it is a conformal Killing horizon.

The case when the conformal factor goes to infinity on some surfaceS outside the Killing
orizonS0, needs special attention. At first it seems that since in this case the surfaceS is blown
p to infinity in the conformal manifoldsM ,g̃d, the global definition]J−sJ+d of the event horizo
annot be used. However one can show that in this situation the usual definition of event

s still applicable and hence the event horizon is a conformal Killing horizon as in the cas
nite conformal transformation. This can be shown by considering one of the TIPS,I−fgg repre-
ented by the pointp on J+, and generated by the null geodesicg which intersects the surfaceS
t a finite affine parameterlS in the manifoldsM ,gd. By the properties of conformal transform

ions, g is still a null geodesic insM ,g̃d with an affine parameterl̃ related tol by

dl̃

dl
= cV2,

herec is a constant. From this it can be seen that the parameterlS in sM ,gd corresponds t

S=` in sM ,g̃d. This solves the problem for the case whenV goes to infinity on some surfa
utside the Killing horizon.

II. ROTATING CONFORMAL KILLING HORIZONS

As discussed in the Introduction, there may be space–times where the conformal st
imit surfacehN;sKuKd=0j is not a null surface and hence does not coincide with the confo
illing horizon. In this case besides the timelike conformal Killing fieldK, we consider anoth
pacelike conformal Killing fieldM which commutes withK and which can be used in combin

ion with it to construct a conformal Killing fieldK̃ that generates the conformal Killing horizo
his leads to a generalization of the weak rigidity theorem9 which establishes the conform
illing property of the event horizon for rotating black hole space–times, and the rigidity

otation. This is stated and proved after the following proposition.
Proposition 1: If K and M are two commuting conformal Killing fields with twistvK andvM,

espectively, and K˜ and V are defined as

K̃ = K + VM, V = −
W

X
,

here X=sMuMd and W=sKuMd, then the twist of the vector field K˜ is given by

vK̃ = fsMuvKd − VsKuvMdg
M

X
. s8d

Proof: From the definition ofK̃ it follows that

K̃ ∧ dK̃ = K ∧ dK + V2sM ∧ dMd + VsK ∧ dM + M ∧ dKd − K ∧ M ∧ dV.

Now since the two conformal Killing fields commute,fM ,Kg=LMK=0, one gets

dW= diM K = − iM dK + LMK = 2fMK − iM dK,
nd
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dX = diM M = − iM dM + LMM = 2fMM − iM dM ,

herefM is the scalar function associated with the conformal Killing fieldM and defined in(3).
herefore

dV = −
1

X
SdW−

W

X
dXD =

1

X
FiMSdK −

W

X
dMD − 2fMSK −

W

X
MDG . s9d

ubstituting for dV in the expression forK̃∧dK̃, gives

K̃ ∧ dK̃ =
1

X
fXsK ∧ dKd − WsM ∧ dKd − K ∧ M ∧ iM dKg +

W

X2fWsM ∧ dMd − XsK ∧ dMd

+ K ∧ M ∧ iM dMg

=
1

X
iMFsM ∧ K ∧ dKd +

W

X
sK ∧ M ∧ dMdG . s10d

sing the definitions ofvM andvK, which represent the twist associated withM andK, respec
ively, and the fact that *1=h, whereh is the volume form, we get

M ∧ K ∧ dK = 2sMuvKd * 1, K ∧ M ∧ dM = 2sKuvMd * 1.

fter substituting these in(10) and usingiM *1= * M, the identity in(8) is obtained by taking th
ual of both sides of(10).

As in the case of the weak rigidity theorem9 it is assumed that our space–time is circular o
ther words orthogonally transitive. This means that the surfaces of transitivity are orthog
family of surfaces of conjugate dimension. By Frobenius theorem15 this requires that

dK = a1 ∧ K + a2 ∧ M s11d

nd

dM = a3 ∧ K + a4 ∧ M , s12d

hereai si =1,2,3,4d, are arbitrary one-forms inL1T* . Then the above two equations imply t

dK ∧ K ∧ M = dM ∧ M ∧ K = 0.

ut M ∧K∧dK=2sMuvKdh and similarlyK∧M ∧dM =2sK uvMdh. This gives

sMuvKd = sKuvMd = 0.

herefore as a corollary to the above proposition we can say that for a circular spac
dmitting commuting, timelike, and spacelike conformal Killing fieldsK andM, respectively, th

ector fieldK̃ defined by

K̃ = K −
sKuMd
sMuMd

M ,

s hypersurface orthogonal, i.e.,vK̃=0.
Theorem 3 (generalized weak rigidity theorem):Consider a circular space–time admitti

ommuting timelike and spacelike conformal Killing fields K and M respectively, and letS̃0 be the

urfacehsK̃uK̃d=0j, where K̃=K+VM with V=−W/X=−sKuMd / sMuMd. ThenV is constant o
˜

0, K̃ is a conformal Killing field onS̃0, and S̃0 is a geodesic null hypersurface provided that

urfaceS̃0 is regular.
Proof: Using the commutativity of the conformal Killing fields,LKM =fK ,Mg=0, we can
rite
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dW= diK M = − iK dM + LKM = * sK ∧ * dMd + 2fKM ,

dX = diM M = − iM dM + LMM = * sM ∧ * dMd + 2fMM ,

here nowfK is the scalar field associated withK and defined by(3). Substituting this expressio
n (9) gives

dV = −
1

X
f* sK ∧ * dMd + V * sM ∧ * dMdg −

2

X
sfK + VfMdM .

aking the Hodge dual of both sides gives

*dV = −
1

X
fK̃ ∧ * dMg −

2

X
sfK + VfMd * M . s13d

rom the above definition ofK̃ it is easy to see thatsK̃uMd=0 andsK̃uK̃d=sK̃uKd. Applying iM to
13) we have

iM * dV =
1

X
fK̃ ∧ 2vMg −

2

X
sfK + VfMdiM * M =

1

X
fK̃ ∧ 2vMg,

inceiM * M =0. Applying nowiK to the above expression, we get

iKiM * dV =
1

X
fiKK̃ ∧ 2vM − K̃ ∧ 2iKvMg =

2

X
fsK̃uK̃dvM − sKuvMdK̃g.

ut sK̃uK̃d=0 on S̃0 and by the circularity conditionsKuvMd=0. Therefore it follows tha

KiM *dV=0 on S̃0, and hence it is clear that dV can be expressed as a combination of

onformal Killing fieldsK andM on S̃0, i.e., dV=aK+bM, wherea andb are two scalar field
o for any vector fieldY orthogonal to the conformal Killing fields one hasLYV= iY dV

asYuKd+bsYuMd=0 on S̃0.
Moreover we can show using the definition ofV that LKV=LMV=0. For example,

LKV = −
LKW

X
+

W

X2LKX. s14d

ut

LKW= LKsKuMd = sLKgdsK,Md + sKufK,Mgd = 2fKsKuMd,

nd

LKX = LKsMuMd = sLKgdsM,Md + 2sMufM,Mgd = 2fKsMuMd.

ubstituting these in(14) gives LKV=0. Similarly one can show thatLMV=0. From this we

onclude thatV is constant onS̃0, and thus the vector fieldK̃ is a conformal Killing field onS̃0.

s was shown above this field has vanishing twist onS̃0, and hence since we assume that

urfaceS̃0 is regular, i.e., dsK̃uK̃dÞ0, theorem 1 implies thatS̃0 is a null geodesic hypersurfac
The space between the conformal stationary limit surface and the conformal Killing h

rovides a generalization of Penrose’s ergosphere.

V. SURFACE GRAVITY

We define the surface gravity,k, for a space–time that admits a conformal Killing horizonS0
enerated by a conformal Killing fieldK, by the equation
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¹KK = kK, s15d

here the equality in the above equation applies only onS0. In this way the surface gravi
easures the extent to which the parametrization of the null geodesic congruence, repres

he conformal Killing trajectories onS0, is not affine. This is regarded as the proper definitio
urface gravity, because besides being a natural generalization of the surface gravity on
orizons, it also gives a physical interpretation tok. Using the conformal Killing equations(3)
hich can be written in the form

dN = − 2¹KK + 4fK, s16d

e can write an alternative expression for the surface gravity by substituting(15) in the above
quation, such that

dN = − 2kK + 4fK = − 2sk − 2fdK. s17d

hen f=0 the above expression reduces to the well-known expression for surface gra
illing horizons which relates the one-form dN with the Killing field K, both of which are
erpendicular to the Killing horizon.

An important difference between the properties of surface gravity on Killing horizons a
urface gravity on conformal Killing horizons, is that in the former case, the surface gravity
ach Killing trajectory on the Killing horizon is constant, while in the latter case it scales
own with f along the conformal Killing trajectories generating the conformal Killing hori
his can be shown by applying the Lie operator to both sides of(17), such that

LKdN = − 2LKfsk − 2fdKg. s18d

he left-hand side(LHS) of the above equation can be written as

LK dN = dLKN = 2dsfNd = 2N df + 2f dN,

here we have used the commutativity of the Lie derivative and exterior derivative when a
n scalars, together with the fact thatLKN=2fN for a conformal Killing fieldK. Considering th
ight-hand side(RHS) and usingLKK=2fK, we have

LKfsk − 2fdKg = 2fsk − 2fdK + KLKfsk − 2fdg.

herefore(18) becomes

2N df + 2f dN = − 4fsk − 2fdK − 2KLKfsk − 2fdg.

n the conformal Killing horizonS0, N=0 and from(17) dN=−2sk−2fdK. So

LKsk − 2fd = 0. s19d

rom this we conclude that in the conformal Killing case it is the combination,k−2f, which is
onstant along the null geodesic generators of the conformal Killing horizonS0. In the case whe
is a homothetic Killing field, i.e.,f is a constant, the situation is the same as in the Killing c

.e., the surface gravity is constant along the homothetic Killing trajectories on the horizo
ould also like to consider the variation ofk−2f from one generator ofS0 to another in analog

o the generalized Hawking–Lichnerowicz theorem in the case of Killing horizons, which i
nown as the zeroth law of black hole physics,16 and which states that the surface gravityk is
onstant over any connected component of the Killing horizon. This is discussed later on a
btain an explicit expression for the surface gravity on conformal Killing horizons.

At this point we should remark that our definition of surface gravity on conformal K
orizons is different than the one proposed earlier by Jacobson and Kang.17 They suggested

onformally invariant definition of surface gravityk1 defined by
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dN = − 2k1K. s20d

nlike our definition this conformally invariant definition of surface gravity has no phy
eaning attached to it. In our case the surface gravity as defined in(15) is not conformally

nvariant. To see this let us consider a conformal transformationg̃=V2g. Then in the conforma
anifold sM ,g̃d, (17) is written as

dÑ = − 2sk̃ − 2f̃dK̃. s21d

ut Ñ=V2N and hence onS0

dÑ = V2 dN + N dV2 = V2 dN.

lso K̃=V2K and from the definition of the scalar functionfsf= 1
4¹cK

cd, it follows that

f̃ = f + V−1sKudVd.

ence(21) gives

dN = − 2fk̃ − 2f − 2V−1sKudVdgK.

omparing this with the definition(17) we have

k̃ = k + 2V−1sKudVd, s22d

nd hence unlessV is a constant, the two surface gravities are different.
We now obtain an explicit expression for surface gravity on the conformal Killing horizoS0

y using the fact that the twistv associated with the conformal Killing fieldK vanishes onS0. For
his we use the identity,

sdKudKd * K = iKsdK ∧ * dKd = iK dK ∧ * dK + dK ∧ iK * dK. s23d

he first part of this identity follows from the fact that

sdKudKd = − * sdK ∧ * dKd,

hich implies that

sdKudKdK = − K ∧ * sdK ∧ * dKd,

uch that

sdKudKd * K = − * sK ∧ * sdK ∧ * dKdd = iKsdK ∧ * dKd.

ow using the definitions ofN andv, we have

iK dK = LKK − diK K = 2fK − dN s24d

nd

iK * dK = * sdK ∧ Kd = 2v, s25d

uch that(23) becomes

sdKudKd * K = 2fK ∧ * dK − dN ∧ * dK + 2 dK ∧ v.

hen using(17) and the fact thatv=0 on S0, this leads to

sdKudKd * K = 2sk − fdK ∧ * dK,
hich by (24) can also be written as
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sdKudKd * K = − 2sk − fd * iK dK = − 2sk − fds2f * K − * dNd.

inally using(17) we can write

sdKudKd * K = − 4sk − fd2 * K,

.e.,

sk − fd2 = f− 1
4sdKudKdgS0

. s26d

After having shown that the combinationsk−2fd is constant along the null generators of
onformal Killing horizon S0, we now show that under certain assumptions this functio
onstant everywhere onS0. In order to do this we first show that the quantitysk−2fd is confor-
ally invariant under a general conformal transformationg̃=V2g, which maps the conform
illing horizon S0 in sM ,gd, to another conformal Killing horizon insM ,g̃d. Thus letting
=k−2f, Eq. (17) gives

− 2h̃K̃ = dÑ = N dV2 + V2 dN.

ut N=0 on S0 and hence

− 2h̃K̃ = V2 dN = − 2hV2K = − 2hK̃.

enceh= h̃.
The conformal invariance ofh implies that if we start with a space–timesM ,gd, admitting a

illing horizon on whichh reduces to the surface gravityk, then by the zeroth law of black ho
hysics together with the conformal invariance ofh, we conclude thatk−2f is constant on th
onformal Killing horizonS0 in the space–timesM ,g̃d, provided that Einstein’s equations h
ith matter satisfying the dominant energy condition. Therefore in analogy to the Killing
−2f is not only constant along the null generators ofS0, but is constant over any connec
omponent ofS0. Moreover by introducing another assumption, we now show that the con
f k−2f on conformal Killing horizons is not only restricted to those cases in which the s

ime admitting the conformal Killing horizon is obtained via a conformal transformation
pace–time with a Killing horizon.

So considering a space–timesV,gd admitting a conformal Killing fieldK that generates
onformal Killing horizonH, we attempt to answer the following question: when does there
t least locally onH, a conformally related metricg̃=V2g such thatK is a Killing field with
espect tog̃. It is not difficult to show that this requires finding a functionV satisfying

sKudsln Vdd + f = 0, s27d

r in coordinate form

Kcsln Vd,c + f = 0,

heref is the scalar function defined in(3) and a comma denotes partial differentiation. Cle
his is always possible at pointspPH where the conformal Killing fieldK does not vanish. Th
roblems in solving(27) occur at homothetic fixed points18 of K on H, i.e., pointspPH where
=0, butfÞ0. A similar but more general question involving the algebra of conformal K
elds Csgd on the entire space–timesM ,gd rather than a single conformal Killing field on
ubmanifoldH of M, was considered first by Bilyalov19 and Defrise-Carter20 and recently by Ha
nd Steele.21 Later Capocci22 considered the case of a single conformal Killing fieldK in sM ,gd
ith a zero atpPM and gave sufficient conditions, for the existence of a conformally re
etric defined on a neighborhood ofp, with respect to whichK is a Killing field. Hence returnin

o our case, in order to achieve the Killing property ofK on H we can either apply the conditio

tated by Capocci onH or, maybe easier, assume that there are no fixed points onH. In each case
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he conformal Killing horizonH is mapped to a Killing horizon insV,g̃d on which the surfac
ravity is constant. Then the conformal invariance ofh guarantees again that the quan
−2f is constant on the conformal Killing horizonH in sV,gd. We have thus proved the followin
eneralized version of the zeroth law of black hole physics.

Theorem 4 (generalized zeroth law):If a space–time admits a conformal Killing horizonS0

enerated by a conformal vector field with no homothetic fixed points onS0, then the quantit
−2f is constant everywhere onS0, provided that Einstein’s equations hold with matter satisf

he dominant energy condition.
When f=0 it is clear that this theorem reduces to the well known zeroth law for K

orizons.

. CONCLUSION

In this work we have shown that conformal Killing horizons in time dependent black
pace–times can be used in general to describe locally the event horizon, both in the non
ase and in the rotating case. In the former case the conformally static limit surface coincid
he conformal Killing horizon, thus satisfying the necessary and sufficient conditions prese
heorem 1. In the latter case we have shown by generalizing the weak rigidity theorem,
onformal stationary limit surface and the conformal Killing horizon are two distinct sur
ith the space between them providing a generalization of Penrose’s ergosphere. In the p
ase when the black hole space–time admitting a conformal Killing horizon is the imag
onformal transformation applied to a stationary isolated black hole space–time, we have
hat the conformal Killing horizon is globally equivalent to the event horizon, provided th
onformal factor goes to a constant at null infinity. This is an extension of the strong r
heorem.

A physical definition of surface gravity,k, on conformal Killing horizons was also given a
ater used to obtain a generalization of the zeroth law. The constancy ofk−2f on the conforma
illing horizon, suggests that in general it isk−2f, and notk, to which the Hawking temperatu

s proportional, i.e.,T=sk−2fd /2p. This relation reduces to the usual one,T=k /2p, for station-
ry asymptotically flat black holes, where the event horizon is a Killing horizon.
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The Poincaré equation, a second-order partial differential equation describing wave
motions in a rotating spheroid of arbitrary eccentricity satisfying a certain set of the
boundary condition, is studied. A new polynomial as the general solution of the
Poincaré equation in spheroidal geometry is found for the first time. The paper
focuses on some unusual and intriguing mathematical properties of the new
Poincaré polynomial. The possible completeness of the set of eigenfunctions of the
Poincaré equation in the form of the new polynomial is also discussed. The new
Poincaré polynomial would provide a powerful basis for the mathematical analysis
in many important geophysical and astrophysical problems. ©2004 American In-
stitute of Physics.[DOI: 10.1063/1.1811786]

. INTRODUCTION

Many geophysical and astrophysical problems are concerned with the following cl
echanic problem: Wave motions in an incompressible and inviscid fluid contained in an

pheroidal cavity rotating with constant angular velocityV (for example, Poincaré, 1885; Cha
rasekhar, 1961; Greenspan, 1968; Zhang and Schubert, 2000). The spheroidal geometry of
lanet or a star is mainly caused by its rapid rotation. The envelope of the spheroidal cavity

n Fig. 1, is usually described by the equation

s2 +
z2

1 − e2 = 1, s1.1d

heress,f ,zd are cylindrical polar coordinates with the unit vectorsses,ef ,ezd , s=0 represent
he axis of rotation ande is the eccentricity of the oblate spheroid, 0,e,1. The limit e→0
orresponds to a special case for a sphere and the limite→1 gives a flatted spheroidal disk.

The effect of rapid rotation results in fluid motions in the form of azimuthally traveling w
r oscillations in an oblate spheroidal cavity. The pressure of the wave motion and oscilla
overned by the well-known Poincaré equation(Lyttleton, 1953; Greenspan, 1968; Zhanget al.,
001) which was derived more than a century ago by Poincaré(1885). Bryan(1889) discussed a

mplicit solution of the Poincaré equation using modified oblate spheroidal coordinates. It w

)
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ecognized by Greenspan(1968) that the general solution for the Poincaré equation in spheric
pheroidal geometry is a double polynomial in terms ofs andz. However, the explicit analytic
xpression for the double polynomial has not been found.

This paper presents the first explicit expression for the double polynomial as the g
olution of the Poincaré equation in a spheroid of arbitrary eccentricity. The paper focu
ome unusual and intriguing mathematical properties of the new Poincaré polynomial,
ossible completeness of the set of eigenfunctions of the Poincaré equation in the form
oincaré polynomial.

I. THE NEW POINCARÉ POLYNOMIAL

In the following analysis, we shall use both cylindrical polar coordinatesss,f ,zd and sphe
oidal polar coordinatessh ,f ,td which are related by

s2 = se2 + h2ds1 − t2d, z2 = h2t2. s2.1d

he envelope of a spheroidal cavity in spheroidal polar coordinates is simply given by

h = Î1 − e2. s2.2d

Either the pressureF or the flow velocity V can be employed to describe the Poinc
roblem in an oblate spheroid(Greenspan, 1968). The relationship betweenV andF is given by

V =
1

2s1 − s2d
ez 3 ¹ F −

îs

2s1 − s2d
¹ F +

î

2ss1 − s2d
sez · ¹ Fdez, s2.3d

hereî =Î−1 ands is the half frequency of a wave or an oscillation mode in a spheroid. Bo
ressureF and the velocityV can be expressed as

F = Fsh,tdeîs2st+mfd, or F = Fss,zdeîs2st+mfd, s2.4d

V = Vsh,tdeîs2st+mfd, or V = Vss,zdeîs2st+mfd, s2.5d

herem is the azimuthal wave number of a wave. In cylindrical polar coordinatesss,f ,zd, the
ressureF is governed by the Poincaré equation in the form(Greenspan, 1968)

S1

s

] F

] s
+

]2F

] s2 −
m2

s2 FD +
ss2 − 1d

s2

]2F

] z2 = 0 s2.6d

IG. 1. Geometry of an oblate spheroid and cylindrical polar coordinatesss,z,fd. The major and minor axes of the obl
pheroid area=1 andb=Î1−e2, respectively, with 0,e,1. The pressure of wave motions is denoted byF.
ubject to the boundary condition
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s1 − s2dz
] F

] z
− s2SÎ1 −

z2

1 − e2Ds1 − e2d
]2F

] s2 − s1 − e2dmsF = 0 s2.7d

n the envelope of the spheroidal cavity give by(1.1). In spheroidal polar coordinatessh ,f ,td,
he Poincaré equation has the more complicated form

Ctt

]2F

] t2 + Chh

]2F

] h2 + Ct

] F

] t
+ Ch

] F

] h
+ Cth

]2F

] t ] h
+ C0F = 0, s2.8d

here

Ctt =
v2

w4St2u2 +
ss2 − 1d

s2 h2v2D ,

Chh =
u2

w4Sh2v2 +
ss2 − 1d

s2 t2u2D ,

Ct =
t

w6f− 2w4 + u2v2s3h2 − t2e2dg +
ss2 − 1d

s2 S v2

tw6Dfw4 − h2w2s1 + t2d − 2h2t2su2 + e2v2dg,

Ch =
h

w6f2w4 + u2v2s3t2e2 − h2dg +
ss2 − 1d

s2 S u2

hw6Dfw4 − t2w2se2 − h2d − 2h2t2su2 + e2v2dg,

Cth = −
2thu2v2

s2w4 ,

C0 = −
m2

u2v2 ,

here

u = Îh2 + e2, v = Î1 − t2, w = Îh2 + e2t2.

he above equation is subject to the boundary condition

eh ·V = 0 at h = Î1 − e2, s2.9d

hereseh ,ef ,etd are the unit vectors for spheroidal polar coordinates. After solving the Po
quation for the pressureF, the flow velocityV can be readily obtained from(2.4).

There exist two different parities of solutions with respect to the equatorial plane,t=0 (or
=0), in a rotating spheroid. An equatorially symmetric solution(an even polynomial) is charac
erized by the symmetry property

sVt,Vf,Vh,Fdst,f,hd = s− Vt,Vf,Vh,Fds− t,f,hd, s2.10d

r

sVz,Vf,Vs,Fdsz,f,sd = s− Vz,Vf,Vs,Fds− z,f,sd, s2.11d

hile an equatorially antisymmetric solution(an odd polynomial) satisfies

sVt,Vf,Vh,Fdst,f,hd = sVt,− Vf,− Vh,− Fds− t,f,hd, s2.12d
r
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sVz,Vf,Vs,Fdsz,f,sd = sVz,− Vf,− Vs,− Fds− z,f,sd. s2.13d

ince the mathematical analyses for both the parities are nearly identical, we shall focus
quatorially symmetric(even) polynomial.

The Poincaré equation(2.6) [or (2.8)] together with the boundary condition(2.7) [or (2.9)]
efines an eigenvalue problem in spheroidal geometry. We find that the general explicit s

or (2.6) in cylindrical coordinates can be written as

Fss,zd = o
i=0

N

o
j=0

N−i

CijmNs2is1 − s2d jsm+2jz2i+d; s2.14d

hile in spheroidal polar coordinates the general solution is given by

Fsh,td = o
i=0

N

o
j=0

N−i

CijmNs2is1 − s2d jsuvdm+2jshtd2i+d, s2.15d

hereCijmN is defined by

CijmN = F − 1

s1 − s2e2dG i+j f2sm+ N + i + j + dd − 1g !!

2j+1f2si + dd − 1g !! sN − i − jd ! i ! j ! sm+ jd!
,

here the even polynomials are given byd=0, the odd polynomials correspond tod=1, andN is
ero or a positive integer taking

N = s1 − dd,s2 − dd,s3 − dd,…,

hich characterizes the spatial complexity of a polynomial. The polynomial given by(2.14) or
2.15) represents the first explicit general solution for the Poincaré equation in a sphe
rbitrary eccentricity.

The validity of polynomial(2.14) as solutions for the Poincaré equation can be verified
irect substitution of(2.14) into (2.6). For example, in the case of the even polynomials, we o
fter shifting indicesi and j by 1 in the resulting expression,

S1

s

] F

] s
+

]2F

] s2 −
m2

s2 FD +
ss2 − 1d

s2

]2F

] z2 = o
i=0

N−1

o
j=0

N−i−1

f4s j + 1ds j + m+ 1dCis j+1dmN

− Csi+1d jmNs2i + 1ds2i + 2dgFij

= o
i=0

N−1

o
j=0

N−i−1F s− 1di+j+1f2sm+ N + i + jd + 1g !!

2jsN − i − j − 1d ! s1 − s2e2dsi+jd G
3FijF s j + 1ds j + m+ 1d

s2i − 1d !! i ! s j + 1d ! sm+ j + 1d!

−
s2i + 1dsi + 1d

s2i + 1d !! si + 1d ! j ! sm+ jd!G ; 0 s2.16d

or all values ofN,m ands, whereFij is a function ofm,s ,s andz.
Three components of the velocityV can be readily derived from(2.3). In cylindrical coordi-

ates withV =sVs,Vf ,Vzd, we obtain

Vs =
− î

2 o
N

o
N−i

CijmNs2is1 − s2d j−1s2js + ms + mdsm+2j−1z2i+d, s2.17d

i=0 j=0
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Vf =
1

2o
i=0

N

o
j=0

N−i

CijmNs2is1 − s2d j−1s2j + m+ msdsm+2j−1z2i+d, s2.18d

Vz =
î

2o
i=0

N

o
j=0

N−i

CijmNs2i−1s1 − s2d js2i + ddsm+2jz2i−1+d. s2.19d

n spheroidal polar coordinates withV =sVh ,Vf ,Vtd, we obtain

Vh =
î

2w
o
i=0

N

o
j=0

N−i

CijmNs2i−1s1 − s2d j−1um+2j−1vm+2jh2i−1t2i+d

3f− h2ss2js + ms + md + s2i + ddu2s1 − s2dg, s2.20d

Vf =
1

2o
i=0

N

o
j=0

N−i

CijmNs2is1 − s2d j−1s2j + m+ msdsuvdm+2j−1shtd2i+d, s2.21d

Vt =
î

2w
o
i=0

N

o
j=0

N−i

CijmNs2i−1s1 − s2d j−1um+2jvm+2j−1h2it2i−1+d

3ft2ss2js + ms + md + s2i + ddv2s1 − s2dg. s2.22d

e shall refer to polynomials given by(2.17)–(2.19) or (2.20)–(2.22) as the Poincaré polynomi
hich represents the first general explicit solution for the flow velocity in a rotating spher
rbitrary eccentricity.

The eigenvalues (the half-frequency of a wave or an oscillation mode) can be determined b
ubstituting(2.14) into (2.7), which yields

o
n=0

FNssdCnz
2n+d = 0, s2.23d

hereCn are nonzero coefficients andFNssd is a polynomial ofs. Equation(2.23) implies tha

Nssd=0, i.e.,

FNssd = H s− 1dNf2sN + mdg ! s1 − ddss1 − e2ds1 − s2e2dN

N ! sN + md! J
− o

j=0

N−1+d

s− 1d j f2s2N + m− j + ddg!
f2sN − jd + dg ! j ! s2N + m− j + dd!

fs1 − e2ds2gN−js1 − s2e2d j

3hs1 − sdf2sN − jd + dg − mss1 − e2dj = 0. s2.24d

or a givene ,m andN, there exists2N+dd different eigenvalues ors2N+dd different polynomials
t this stage, it is convenient to introduce a triple index notation for the polynomial(eigenfunc

ion) and the eigenvalue by denoting

F → FNnm, V → VNnm, s → sNnm.

hile 0øN,` and 0øm,` , n has a finite rangen=1,2,3,… ,s2N+dd (which is the numbe
f the roots in(2.24) for a givenN). For example, whenN=1 andd=0 (even polynomials), (2.24)
ives

fs2m+ 3dsm+ 2d − 2msm+ 1de2gs1nm
2 − 2s2m+ 3ds1nm− m= 0. s2.25d
or each nonzero wave numberm ande, there exist two different eigenvalues
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s11m =
s2m+ 3d

sm+ 2ds2m+ 3d − 2msm+ 1de2H1 −F sm+ 2d2 − 1

s2m+ 3d
−

2m2sm+ 1de2

s2m+ 3d2 G1/2J , s2.26d

s12m =
s2m+ 3d

sm+ 2ds2m+ 3d − 2msm+ 1de2H1 +F sm+ 2d2 − 1

s2m+ 3d
−

2m2sm+ 1de2

s2m+ 3d2 G1/2J . s2.27d

he corresponding eigenvectors are given by(2.17)–(2.19) or (2.20)–(2.22). Several more ex
mples forsNnm with m=2 are presented in Tables I and II.

II. UNUSUAL PROPERTIES OF THE POINCARÉ POLYNOMIAL

There are a number of well-known general properties of the the Poincaré equation whi
iscussed in detail by Greenspan(1968). The most important are that(i) the eigenvaluesNmn is
eal and satisfies

− 1 , sNmn, 1, s3.1d

nd(ii ) any eigenvector-eigenvalue pairs,ssNmn,VNmnd andssN8m8n8 ,VN8m8n8d, are orthogonal, i.e

E
V

VNmn
+ ·VN8m8n8dV= 0, if sNmnÞ sN8m8n8, s3.2d

hereeV denotes the integral over the volume of the solution domain andVNmn
+ is the comple

ABLE I. Several examples ofsNmn for the odd polynomials withm=2 at two different eccentricities.

m,N,n ssNmn,e=0d ssNmn,e=0.75d

2, 0, 1 0.333 333 33 0.533 333 33

2, 1, 1 −0.381 668 34 −0.506 141 15

2, 1, 2 0.233 450 30 0.370 462 75

2, 1, 3 0.748 218 04 0.868 502 82

2, 2, 1 −0.653 999 82 −0.789 050 75

2, 2, 2 −0.254 996 76 −0.354 918 00

2, 2, 3 0.179 767 83 0.283 014 87

2, 2, 4 0.576 528 78 0.736 212 98

2, 2, 5 0.866 985 68 0.936 143 79

2, 3, 1 −0.780 643 60 −0.882 050 97

2, 3, 2 −0.512 288 56 −0.664 478 25

2, 3, 3 −0.192 054 27 −0.273 384 47

2, 3, 4 0.146 202 35 0.228 782 61

2, 3, 5 0.466 027 26 0.628 798 73

2, 3, 6 0.732 830 05 0.854 275 81

2, 3, 7 0.917 704 55 0.961 875 25

2, 4, 1 −0.848 974 15 −0.923 983 68

2, 4, 2 −0.658 613 53 −0.795 715 81

2, 4, 3 −0.421 330 28 −0.570 199 49

2, 4, 4 −0.154 159 53 −0.222 301 93

2, 4, 5 0.123 216 42 0.191 931 53

2, 4, 6 0.390 272 35 0.544 420 44

2, 4, 7 0.627 221 51 0.775 098 89

2, 4, 8 0.816 497 57 0.906 714 47

2, 4, 9 0.944 051 44 0.974 553 57
onjugate ofVNmn. It is of primary importance to note that the properties(3.1) and (3.2) are
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erived directly from the basic equations without reference to particular geometry of the p
r the detailed structure of an eigenfunction.

In the nonlinear theory of the wave problem, the following integral

E
V

VNmn
+ ·¹2VNmndV s3.3d

lays a key role in the higher-order problem. It can be readily shown that the integral(3.3) is
lways nonzero and negative in the geometries of an infinitely extended plane layer or a b
ylinder or an annulus for which the eigenfunctions are not in the form of a polynomi
pheroidal geometry, however, we have discovered an intriguing, unusual property of the P
olynomial that

E
V

VNmn
+ ·¹2VNmndV; 0, s3.4d

or all values ofe ,m,N, and s. It should be emphasized that(3.4) holds only for spheroida
eometry in which its eigenfunction is in the form of a polynomial. The mathematical pro
3.4) is rather complicated and lengthy, requiring the detailed structure of the Poincaré poly
ence we focus on the case of the even(equatorially symmetric) polynomials since the proof f

he odd polynomials is similar.
On the basis of explicit expressions(2.17)–(2.19) for the even polynomialsd=0d, it is

traightforward to carry out the relevant integration over the volume of the spheroid, which

E
V

VNmn
+ ·¹2VNmndV= D1ssdS1 + D2ssdS2 + D3ssdS3, s3.5d

ABLE II. Several examples ofsNmn for the even polynomials withm=2 at two different eccentricities.

m,N,n ssNmn,e=0d ssNmn,e=0.75d

2, 1, 1 −0.115 962 53 −0.120 732 39

2, 1, 2 0.615 962 53 0.779 555 92

2, 2, 1 −0.546 284 20 −0.691 729 37

2, 2, 2 −0.050 895 21 −0.051 845 64

2, 2, 3 0.442 124 48 0.610 969 67

2, 2, 4 0.821 721 59 0.911 631 56

2, 3, 1 −0.727 904 26 −0.845 899 01

2, 3, 2 −0.402 916 92 −0.545 179 59

2, 3, 3 −0.028 854 79 −0.029 163 32

2, 3, 4 0.344 837 69 0.495 420 97

2, 3, 5 0.667 945 80 0.808 631 90

2, 3, 6 0.896 892 48 0.951 531 70

2, 4, 1 −0.819 523 39 −0.906 553 47

2, 4, 2 −0.594 913 81 −0.742 402 07

2, 4, 3 −0.320 037 53 −0.447 935 81

2, 4, 4 −0.018 635 86 −0.018 765 14

2, 4, 5 0.282 672 06 0.414 244 83

2, 4, 6 0.557 170 13 0.715 761 49

2, 4, 7 0.780 489 42 0.884 989 71

2, 4, 8 0.932 778 97 0.969 185 23
hereDjssd , j =1,2,3 are a nonzero function ofs and
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S1 = o
i=0

N

o
k=1

N

o
j=0

N−i

o
l=0

N−k

s− 1di+j+k+lD2si+kds1 − D2d j+l

3
f2sm+ N + i + jd − 1g !!

f2sl + k + i + j + md − 1g !!

3
f2sm+ N + k + ld − 1g !! f2msm+ l + jd + 4jl g

s2i − 1d !! sN − i − jd ! i ! j ! sm+ jd!

3
s2i + 2k − 3d !! sl + j + m− 1d!

sk − 1d ! l ! s2k − 3d !! sl + md ! sN − k − ld!
, s3.6d

S2 = o
i=0

N

o
k=1

N

o
j=0

N−i

o
l=0

N−k

s− 1di+j+k+lD2si+kds1 − D2d j+l

3
f2sm+ N + i + jd − 1g !!

f2sl + k + i + j + md − 1g !!

3
f2sm+ N + k + ld − 1g !!

s2i − 1d !! sN − i − jd ! i ! j ! sm+ jd!

3
s2i + 2k − 3d !! sl + j + md!

sk − 1d ! l ! s2k − 3d !! sl + md ! sN − k − ld!
, s3.7d

S3 = o
i=1

N

o
k=2

N

o
j=0

N−i

o
l=0

N−k

s− 1di+j+k+lD2si+kds1 − D2d j+l

3
f2sm+ N + i + jd − 1g !!

f2sl + k + i + j + md − 1g !!

3
f2sm+ N + k + ld − 1g !!

s2i − 1d !! sN − i − jd ! si − 1d ! j ! sm+ jd!

3
s2i + 2k − 5d !! sl + j + md!

sk − 2d ! l ! s2k − 3d !! sl + md ! sN − k − ld!
, s3.8d

where

D2 =
s2s1 − e2d
s1 − s2e2d

.

e need to prove that

S1 = S2 = S3 ; 0

or all possible values ofe ,m,s andN.1. ForN=0 andN=1, we can easily carry out the dire
alculation. We shall only present the general proof forS3;0 because the proofs forS1;0 and

2;0 are rather similar.
First, we note that four indicessi , j ,k, ld in (3.8) are intimately entangled. In consequenc

irect summation of(3.8) is generally impossible. An essential step in establishingS3;0 for all N
s to introduce two additional indices, saya and b, by considering a new summation with

ndices
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PN
M = o

a=0

M

o
b=0

M−a

Za,b
M o

i=1

N−M

o
k=2

N−M

o
j=0

N−i−M

o
l=0

N−k−M

s− 1di+j+k+lD2si+k+2ads1 − D2d j+l+2b

3
f2sm+ N + i + j + a + bd − 1g !!

f2si + ad − 1d !! sN − i − j − Md ! si − 1d ! j ! sm+ j + bd!

3
f2sm+ N + k + l + a + bd − 1g !!

f2sk + ad − 3d !! sN − k − l − Md ! sk − 2d ! l ! sm+ l + bd!

3
sm+ j + l + bd ! f2si + k + ad − 5d !!

f2sm+ i + j + k + l + a + b + Md − 1g !!
, s3.9d

here coefficientsZi,j are generally nonzero and defined as

Z0,0
0 = 1;

Zi,0
M+1 = s− 1dM+1−i sM + 1d!

sM + 1 − id ! i!
2M+1;

Z0,i
M+1 = s− 2dM+1−i sM + 1d!

sM + 1 − id ! i!
; s3.10d

Zi,M+1−i
M+1 = 2i sM + 1d!

sM + 1 − id ! i!
;

Zi,j
M+1 = − 2Zi,j

M + 2Zi−1,j
M + Zi,j−1

M ; 1 ø i ø sM − 1d, 1 ø j ø sM − id.

he precise values for the coefficientsZi,j
M are in fact not required in the mathematical pro

learly S3 andPN
M are related by

S3 = PN
0 .

n order to decouple the entangled indices, we first establish an important recurrence relatio
orm

PN
0 =

1

sN − 1d
PN

1 =
1

sN − 1dsN − 2d
PN

2 = ¯. s3.11d

ote that the expression(3.9) can be decomposed into the three different summations

PN
M = Q1 + Q2 + Q3, s3.12d

here

Q1 =
− 1

N − 1 −M
o
a=0

M

o
b=0

M−a

Za,b
M o

i=1

N−M−1

o
j=0

N−i−M−1

o
k=2

N−M

o
l=0

N−k−M

s− 1di+j+k+lD2si+k+2a+1ds1 − D2d j+l+2b

3
f2sm+ N + i + j + a + bd + 1g !!

f2si + ad + 1d !! sN − i − j − M − 1d ! si − 1d ! j ! sm+ j + bd!

3
f2sm+ N + k + l + a + bd − 1g !!
f2sk + ad − 3d !! sN − k − l − Md ! sk − 2d ! l ! sm+ l + bd!
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3
sm+ j + l + bd ! f2si + k + ad − 3g !!

f2sm+ i + j + k + l + a + b + Md + 1g !!
, s3.13d

Q2 =
1

N − 1 −M
o
a=0

M

o
b=0

M−a

Za,b
M o

i=1

N−M−1

o
j=0

N−i−M−1

o
k=2

N−M

o
l=0

N−k−M

s− 1di+j+k+lD2si+k+2ads1 − D2d j+l+2b

3
f2sm+ N + i + j + a + bd − 1g !!

f2si + ad − 1d !! sN − i − j − M − 1d ! si − 1d ! j ! sm+ j + bd!

3
f2sm+ N + k + l + a + bd − 1g !!

f2sk + ad − 3d !! sN − k − l − Md ! sk − 2d ! l ! sm+ l + bd!

3
sm+ j + l + bd ! f2si + k + ad − 5g !!

f2sm+ i + j + k + l + a + b + Md − 1g !!
, s3.14d

Q3 =
− 1

N − 1 −M
o
a=0

M

o
b=0

M−a

Za,b
M o

i=1

N−M−1

o
j=0

N−i−M−1

o
k=2

N−M

o
l=0

N−k−M

s− 1di+j+k+lD2si+k+2ads1 − D2d j+l+2b+1

3
f2sm+ N + i + j + a + bd + 1g !!

f2si + ad − 1d !! sN − i − j − M − 1d ! si − 1d ! j ! sm+ j + b + 1d!

3
f2sm+ N + k + l + a + bd − 1g !!

f2sk + ad − 3d !! sN − k − l − Md ! sk − 2d ! l ! sm+ l + bd!

3
sm+ j + l + b + 1d ! f2si + k + ad − 5g !!

f2sm+ i + j + k + l + a + b + Md + 1g !!
. s3.15d

or the recurrence relation, we require the further rearrangement of the summation so
ndex sM +1d appears in each term. After splittingQ3 into two parts and combining them w
arious terms in(3.13)–(3.15), PN

M can be expressed in terms of the following three sums

PN
M = R1 + R2 + R3, s3.16d

here

R1 =
1

N − 1 −M
o
a=0

M

o
b=0

M−a

Za,b
M o

i=1

N−sM+1d

o
j=0

N−i−sM+1d

o
k=2

N−sM+1d

o
l=0

N−k−sM+1d

s− 1di+j+k+lD2si+k+2ads1 − D2d j+l+2bD4

3
2f2sm+ N + i + j + a + bd + 1g !!

f2si + ad + 1d !! fN − i − j − sM + 1dg ! si − 1d ! j ! sm+ j + bd!

3
f2sm+ N + k + l + a + bd + 1g !!

f2sk + ad − 1d !! fN − k − l − sM + 1dg ! sk − 2d ! l ! sm+ l + bd!

3
sm+ j + l + bd ! f2si + k + ad − 3g !!

, s3.17d

f2sm+ i + j + k + l + a + b + M + 1d + 1g !!
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R2 =
1

N − 1 −M
o
a=0

M

o
b=0

M−a

Za,b
M o

i=1

N−sM+1d

o
j=0

N−i−sM+1d

o
k=2

N−sM+1d

o
l=0

N−k−sM+1d

s− 1di+j+k+lD2si+k+2ads1 − D2d j+l+2sb+1d

3
f2sm+ N + i + j + a + bd + 1g!!

f2si + ad − 1d !! fN − i − j − sM + 1dg ! si − 1d ! j ! sm+ j + bd!

3
f2sm+ N + k + l + a + bd + 1g !!

f2sk + ad − 3d !! fN − k − l − sM + 1dg ! sk − 2d ! l ! sm+ l + b + 1d!

3
sm+ j + l + b + 1d ! f2si + k + ad − 5g !!

f2sm+ i + j + k + l + a + b + M + 1d + 1g !!
, s3.18d

R3 =
− 1

N − 1 −M
o
a=0

M

o
b=0

M−a

Za,b
M o

i=1

N−sM+1d

o
j=0

N−i−sM+1d

o
k=2

N−sM+1d

o
l=0

N−k−sM+1d

s− 1di+j+k+lD2si+k+2ads1 − D2d j+l+2b

3
2f2sm+ N + i + j + a + bd − 1g !!

f2si + ad − 1d !! fN − i − j − sM + 1dg ! si − 1d ! j ! sm+ j + bd!

3
f2sm+ N + k + l + a + bd − 1g !!

f2sk + ad − 3d !! fN − k − l − sM + 1dg ! sk − 2d ! l ! sm+ l + bd!

3
sm+ j + l + bd ! f2si + k + ad − 5g !!

f2sm+ i + j + k + l + a + b + M + 1d − 1g !!
. s3.19d

vidently, by shiftinga in R1 by 1, and shiftingb in R2 by 1, combining the resulting thr
ummations with the definition of(3.10), we obtain

PN
M =

1

N − sM + 1d o
a=0

M+1

o
b=0

M+1−a

Za,b
M+1

3 o
i=1

N−sM+1d

o
k=2

N−sM+1d

o
j=0

N−i−sM+1d

o
l=0

N−k−sM+1d

s− 1di+j+k+lD2si+k+2ads1 − D2d j+l+2b

3
f2sm+ N + i + j + a + bd − 1g !!

f2si + ad − 1d !! fN − i − j − sM + 1dg ! si − 1d ! j ! sm+ j + bd!

3
f2sm+ N + k + l + a + bd − 1g !!

f2sk + ad − 3d !! fN − k − l − sM + 1dg ! sk − 2d ! l ! sm+ l + bd!

3
sm+ j + l + bd ! f2si + k + ad − 5d !!

f2sm+ i + j + k + l + a + b + M + 1d − 1g !!
. s3.20d

omparing(3.20) to (3.9), we have found the relationship betweenPN
M andPN

M+1

PN
M+1 = fN − sM + 1dgPN

M . s3.21d

n other words, we have proved that

S3 = PN
0 =

1

sN − 1d
PN

1 =
1

sN − 1dsN − 2d
PN

2 = … =
1

sN − 1d!
PN

N−2. s3.22d

A remarkable property of the summation(3.20) is that, whenM =N−2, the indicessi , jd and
he indicessa ,bd become decoupled and, more significantly, the indicessk, ld are eliminated in th

ummation. It follows that the summation(3.20) at M =N−2 can be carried out explicitly
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PN
N−2 =Ho

a=0

N−2

o
b=0

N−2−a

Za,b
N−2D4sa+1ds1 − D2d2b f2sm+ N + a + bd + 3g !!

s2a + 1d !! sm+ bd! J
3Ho

i=1

2

o
j=0

2−i

D2is1 − D2d jF s− 1di+j

si − 1d ! j ! s2 − i − jd! GJ .

or any given parameters,PN
N−2 is identically zero because

o
i=1

2

o
j=0

2−i Fs2is1 − s2d js1 − e2di

s1 − s2e2di+j GF s− 1di+j

si − 1d ! j ! s2 − i − jd! G ; 0.

his implies, by the recurrence relation(3.22), thatS3;0.

V. COMPLETENESS OF THE POINCARÉ EIGENFUNCTION

A fundamental mathematical question is completeness of the set of eigenfunctions
oincaré equation given by the new Poincaré polynomials(2.17)–(2.19). If the Poincaré eigen

unction is complete, it would revolutionize the mathematical analysis in many geophysic
strophysical problems in which the effect of rotation is critically important and the re
eometry is spheroidal.

Nearly all the existing analyses for geophysical and astrophysical fluid dynamical probl
otating spherical or spheroidal systems employ the Legendre polynomial(for example, Chan
rasekhar, 1961; Zhang, 1992). A major disadvantage in using the Legendre polynomial is tha
otational effect couples all the orders of the Legendre polynomial together. This mak
athematical analysis using the Legendre polynomial in rotating systems rather complica
ndesirable coupling comes from the fact that the Legendre polynomial is not associated
ifferential operator in rotating systems. The Poincaré polynomials such as(2.17)–(2.19) would
eplace the Legendre polynomial to provide an extremely powerful basis for the mathe
nalysis in rotating spherical or spheroidal systems.

It is unfortunate, however, that we find the mathematical proof for the completeness of
f eigenfunctions of the Poincaré equation given by the new Poincaré polynomial(2.17)–(2.19) is

oo complicated to be tractable. We, therefore, look for numerical evidence indicating that t
oincaré eigenfunction given by(2.17)–(2.19) is complete and can be used to expand an arb
elocity distribution in rotating spheroidal systems. We consider the problem of fluid motion
otating spheroid driven by an external forceF, which is governed by the following two equatio
Greenspan, 1968)

] V

] t
+ 2ez 3 V + ¹ F = F, s4.1d

¹ ·V = 0, s4.2d

ubject to the boundary condition

eh ·V = 0 ath = Î1 − e2. s4.3d

enerally speaking, it is a difficult task to solve(4.1)–(4.3) because of spheroidal geome
owever, assuming that the Poincaré eigenfunction given by(2.17)–(2.19) is complete, we ca
xpress solutions for(4.1) and (4.2) in the form

V = o
m,N,n

ZNmnVNmne
îmf, s4.4d
here the eigenvectorVNmn are normalized such that
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E
V

uVNmnu2dV= 1. s4.5d

t follows that solutions of the problem defined by(4.1)–(4.3) in a spheroid is simply

V = o
m,N,n

î

2sNmn
SE

V

F ·VNmn
+ dVDVNmne

îmf. s4.6d

here are no difficulties to carry out the integral in(4.6) by using the explicit Poincaré polynom
ound in this paper. The discovery of the explicit Poincaré polynomial thus offers a highly
ive and efficient way to solve this rather difficult problem in a rotating spheroid of arb
ccentricity.

To test the completeness and the convergence of expansion(4.5), we consider a special ca
or a rotating fluid spherese=0d in which the flow motion is driven by

F = ez 3 F¹
] srCd

] r
− r¹2CG , s4.7d

herer is the position vector and

C = r l sinsnprdPl
mscosudeimf,

here Pl
mscosud is the standard Legendre polynomial. In this case, the exact solutio

4.1)–(4.3) with F given by(4.7) can be easily found and can be used to check the converge
xpansion(4.4). Our extensive calculations for various different cases strongly indicate th
ansion(4.4) always converges to the exact solution. Two typical examples withm=2 andn=2
sing the even and odd Poincaré polynomials are shown in Table III, in which the erroE is
efined by

E =
1

V
E

V

uV − VexactudV, s4.8d

hereV is given by the truncated expansion(4.4). There is clear numerical evidence sugges
he set of eigenfunctions given by the explicit Poincaré polynomial reported in this pa
omplete.

. SUMMARY

We have presented three significant new results on the classical Poincaré problem
aper. First, an explicit polynomial as the general solution for the classical Poincaré probl
pheroid of arbitrary eccentricity is found for the first time. Second, we have uncove

ntriguing integral property(3.4) that has important implications for the nonlinear wave theo
rotating spheroid. It may also have important mathematical significance in connection w

ABLE III. Numerical evidence for the completeness of the Poincaré polynomial.Nm denotes the largestN used in
xpansion(4.4), l =3 sl =4d uses the odd(even) Poincaré polynomial in the expansion.

Nm Esl =3d Esl =4d

5 0.0859 0.1594

6 0.0334 0.0572

7 0.0133 0.0192

8 0.0075 0.0105

9 0.0027 0.0031
n extremely complicated summation such as(3.20) vanishes identically and whether there exists
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simpler mathematical proof for(3.4). Thirdly, the possible completeness of the set of eigenf
ions given by the Poincaré polynomial opens an exciting new line in the research of
strophysical fluid dynamical problems in a rotating spheroid. We are able to provide nu
vidence indicating that the Poincaré eigenfunction given by the Poincaré polyn
2.17)–(2.19) is complete and can be used to expand an arbitrary velocity distribution in ro
pheroidal systems. However, a mathematical proof for the completeness of the Poincar
unction remains to be a challenging task.
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n approach to nonstandard quantum mechanics
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We use nonstandard analysis to formulate quantum mechanics in hyperfinite-
dimensional spaces. Self-adjoint operators on hyperfinite-dimensional spaces have
complete eigensets, and bound states and continuum states of a Hamiltonian ca
thus be treated on an equal footing. We show that the formalism extends the stan-
dard formulation of quantum mechanics. To this end we develop the Loeb-function
calculus in nonstandard hulls. The idea is to perform calculations in a hyperfinite-
dimensional space, but to interpret expectation values in the corresponding non-
standard hull. We further apply the framework to nonrelativistic quantum scattering
theory. For time-dependent scattering theory, we identify the starting time and the
finishing time of a scattering experiment, and we obtain a natural separation of time
scales on which the preparation process, the interaction process, and the detectio
process take place. For time-independent scattering theory, we derive rigorously
explicit formulas for the Møller wave operators and the S-matrix. ©2004
American Institute of Physics.[DOI: 10.1063/1.1812358]

. INTRODUCTION

Quantum mechanics is conventionally formulated in a complex Hilbert space,H. The possibl
tates of a quantum system are associated with unit vectors inH, and the observables are ass
ted with self-adjoint linear operators onH. A central role plays the Hamiltonian of the quant
ystem. The eigenvalues of the Hamiltonian are commonly interpreted as the energies o
tates of the system. Moreover, the values of the continuous part of the Hamiltonians spec

nterpreted as the energies of “continuum” or scattering states. The interpretation is ph
otivated, and we use the term “continuum state” in a physical sense in the following.
ound states can be identified with eigenvectors of the Hamiltonian, appropriate vectors
xist inH for continuum states. Continuum states can be treated in the conventional Hilber

ramework only approximately.1

The probably most prominent approach to solve this problem is the rigged-Hilbert
ormalism.2–4 Within the rigged Hilbert-space formalism, continuum states are associate
inear functionals on a dense subspaceM of H. The linear functionals belong to the dual sp

8 of M, which is a locally convex space and not a Hilbert space. In particular, we do no
scalar product at hand. The rigged-Hilbert-space formalism is thus more complicated t
ilbert-space formalism, and more efforts are required in mathematically rigorous applic
here exist further similar approaches to model continuum states, e.g., approaches that i

attices of Hilbert spaces or partial-inner-product spaces. These two approaches together
igged-Hilbert-space approach can be classified as “super-Hilbert-space” formalisms.2 The main
dea in common is to use linear functionals on(dense) subspaces ofH, and the mathematic
omplications are consequently of the same nature. If we look for an appropriate formalism

ncludes a scalar product, we still face a mathematical-modelling problem.

)
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This paper suggests an approach to nonstandard quantum mechanics. This means th
onstandard analysis(NSA) to construct a framework where quantum mechanics can be fo

ated without the drawbacks mentioned above. Work in this direction is done in Ref. 5. Ho
his paper presents another approach that focuses more on eigenvector expansions. Ei
xpansions are of great importance in practical applications since they simplify calcu
ithin the approach, we are able to treat bound and continuum states on the same footing

osing the scalar product. However, we require a basic knowledge of NSA for the construc
t is presented in Ref. 6(Ref. 7), for example. Nevertheless, a few remarks on NSA are ma
he following.

NSA has its origin in logics and provides an astonishing rich formalism. The author o
aper believes that we should rather speak of nonstandard methods than of NSA sin
uggests an application of nonstandard methods to analysis, but the term NSA is commo

n the literature in a general sense. In this sense, NSA can be applied to a wide range o
matical areas, e.g., real analysis, topology, measure theory, functional analysis, etc. NS
uces rigorously many interesting objects like infinitesimals, infinitely large numbers, and

ions that behave like Dirac’s delta distribution. The author of this paper believes that these
which are not available in standard mathematics — make NSA rather attractive for p

pplications.
The basic tool of NSA is the transfer principle. The transfer principle enables us to tr

ets and formulas from standard to nonstandard frameworks. Roughly speaking, every fo
standard framework is true if, and only if, the corresponding transferred formula is true

onstandard framework. For the application of the transfer principle we however have to
ate formulas in a rather formal way marked by logics. The formal language appears la
rom the viewpoint of the concrete application, but we need the language to ensure r
esults.

The paper is organized as follows. In Sec. II, the basic framework is introduced, and w
iscussing its relationship to the standard framework used in quantum mechanics. We con
iscussion in Sec. III where we derive the required nonstandard function calculus. We e

hen the final form of the approach to nonstandard quantum mechanics in Sec. IV. In Sec
pply the framework to nonrelativistic scattering theory. We discuss first the impact of t
roach on time-dependent scattering theory, and derive then explicit formulas within

ndependent scattering theory. Finally, we summarize the results and conclude in Sec. VI

I. NONSTANDARD EXTENSIONS

. Spatial and operational extensions

NSA basically introduces extensions of superstructures that contain for a given con
athematical objects of interest. Superstructures usually contain real numbers, complex n

unctions, etc. The extension of a superstructureV is actually an injective mapping ofV onto
nother superstructureW. We note that there exist different types of extensions, but for ap

ions of NSA polysaturated extensions are probably most convenient. For this reason, we
polysaturated extension.:V→W of a superstructureV that contains every standard mathem

al object we will consider in this paper. Roughly speaking, the extension allows us to switc
he “standard world”V to the “nonstandard world”W, in which we can use our standard ma
matical objects of interest more conveniently, as we will see. In particular,V contains a comple
ilbert spaceH and linear operators onH, which implies that appropriate counterparts are a
ble in the “nonstandard world”W. Moreover, for the sake of convenience we follow the com
ractice and drop the prefix. from many nonstandard objects when there is no ambiguity
xample, we writer +s instead ofr.+s for r ,sP.R. We obtain for our example a sensi
implification of notation since two hyper-real numbers can be added in the same manne
eal numbers.

As a consequence of polysaturation, there exists a hyperfinite-dimensional spaceH which
8 .
xternally containsH, i.e., h x:xPHj,H. For the sake of convenience we simply write
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,H,.H. We use this result as an avenue to a nonstandard framework for quantum me
eside the well-known advantages of NSA, which are sketched in Sec. I, this approa
nother important advantage: The transfer principle allows us to apply the results of linear

n finite-dimensional spaces to the hyperfinite-dimensional spaceH. We note that this idea
lready known in the literature for a long time.9,10

The main goal in the following is to show that the formulation of quantum mechanics
ppropriate hyperfinite-dimensional space yields an extension of the standard formulation o

um mechanics. We choose however a more general setting than outlined above, and ass
dense subspaceM of H. We will see in Sec. IV B that this approach is quite convenient w
e construct the hyperfinite dimensional spaceH in an example. However, by polysaturation th
xists a hyperfinite-dimensional spaceH which externally containsM, i.e.,M,H,.M,.H.

Proposition 1: Let H,.H be an internal Hilbert space that externally contains a d
ubspaceM of H, and letO denote the projection of.H onto H, then.x<O.x for all xPH.

Proof: AssumexPH. SinceM is dense inH the internal statements∃yPHdi.x−yi,1/n is
rue for all nPN. By the overflow principle there exists an infinitemP.N for which s∃y

Hdi.x−yi,1/m holds. Moreover, the(transferred) projection theorem states thati.x−O.xi
i.x−yi,1/m.1 h

Let us proceed with our discussion. As in proposition 1, letO denote the projection of.H
nto H. O can be defined(as usual) by an orthonormal basis ofH, as we show in the append
oreover, letA be a self-adjoint operator with domainDsAd, for which M,DsAd,H holds.
sing the transfer principle we define the restriction of.A to H by B=O.AO, and B.x
O.sAxd<.sAxd for all xPM. B can thus be seen as a nonstandard extension of the rest
f A to M. As shown in the Appendix,B is an internal hyperfinite-rank operator, and there e
n eigensystemhsli ,xidji=1

h for B, which yields the representation

s∀x,y P Hd kx,Byl = o
i=1

h

li kx,xilkxi,yl.

e note thath is the (nonstandard) dimension ofH.
Our construction shows that there exist self-adjoint hyperfinite-rank operators, which

xtensions of standard self-adjoint operators in a certain sense. The relation is howeve
eak at the moment since we do not know how the spectra and the function calculus o
perators are related. In particular, we may ask if nonstandard eigenvalues and nonstanda
ectors can be interpreted in a sensible way. To discuss these questions more thorou

ntroduce nonstandard hulls, which are important tools in NSA.8 From a physical point of view
he introduction of nonstandard hulls is motivated by the assumption that infinitesimally di
tates cannot be distinguished in a measurement.

The definition of the nonstandard hulloH of the hyperfinite-dimensional spaceH introduces
n equivalence relation on the set of finite nonstandard vectors, finsHd=hxPH : ixiP fins.Rdj. We
ote that fins.Rd is the set of finite hyper-reals. Two vectors are equivalent if their differenc

nfinitesimal norm. The nonstandard hulloH of the spaceH is given as the quotient

oH = finsHd/H0, H0 = hx P H:ixi < 0j,

ioxi = stsixid, kox,oyl = stskx,yld. s1d

H is a Hilbert space, andH is a closed subspace ofoH by proposition 1. Especially, reconsider
ur example above the equationB.x=O.sAxd<.sAxd yields Ax=osBxd for all xPM. We note
hat we adopt the notationoH for the nonstandard hull ofH as it is used in Refs. 9 and 10, inste

f the notationĤ that seems to be more common.6 The author of this paper believes that we g
more uniform notation since, for example, for the standard partor =stsrd of r P fins.Rd we could

ˆ .
lso writer, meaning an element of the nonstandard hull ofR.
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Furthermore, nonstandard hulls are defined also for finitely bounded nonstandard lin
rators. IfA is a bounded operator onH, thenB=O.AO is finitely bounded and its nonstand
ull is defined as

oBox = osBxd ∀ x P finsHd,

s2d
ioBi = stsiBid.

inceA is bounded we obtain.sAxd<O.AO.x for xPH. Thus,oB is a self-adjoint bounde
perator onoH, which extendsA, i.e., oBx=osB.xd=Ax for all xPH. We note that operation
onstandard extensions of this type are already discussed in Ref. 10. In particular, the rela
etween the spectral resolution of bounded self-adjoint operators and their nonstandard e

s investigated. However, we come back to these results in Sec. II B.

. Spectral properties of operator extensions

Hyperfinite-rank operators have convenient spectral properties, which are determined
ar algebra. If we consider a nonstandard extensionB of a self-adjoint operatorA as constructe

n Sec. II A then we may naturally ask how the eigenvalues and eigenvectors of the hype
ank operatorB are related to the spectral resolution ofA. Let us focus first on the eigenvalue

Lemma 1:Let B be a normal hyperfinite-rank operator, and letlPC. Assume that for eac
PN there exists anxnPH for which ixni<1 and ilxn−Bxni,1/n holds, then there exists
8PssBd, andl<l8.

Proof: As shown in the Appendix,B has an eigensystemhsli ,xidji=1
h . Fix ePR+, e,1, then

s∀n P Nds∃x P HdSixi . s1 − ed ∧ ilx − Bxi ø
1

n
D .

y the overspill principle there exists an infinitemP.N for which

s∃x0 P HdSix0i . s1 − ed ∧ ilx0 − Bx0i ø
1

m
D

s true. Assume that there exists ane8PR+ for which ul−l8uùe8 holds for alll8PssBd. Then,

iBx0 − lx0i2 = o
i=1

h

ul − liu2ukxi,x0lu2ùse8d2o
i=1

h

ukxi,x0lu2=se8d2 ix0i2.se8d2s1 − ed2

nd we obtain the contradictioniBx0−lx0i.e8s1−ed.1/m. There thus exists al8PssBd for
hich l<l8 holds. h

Proposition 2:

1) Let B be a nonstandard extension of a self-adjoint operatorA as constructed in Sec. II A, th
for eachlPssAd there exists al8PssBd for which l<l8 holds, i.e.,ssAd,oNSsssBdd.

2) Let B be a finitely bounded normal hyperfinite-rank operator, thenssoBd=ossBd.

Proof:

1) Let lPssAd, then for eachnPN there exists anxnPM for which ixni=1 and isl
−Adxni,1/n holds. SinceM is externally contained inH, we obtainisl−Bd.xniø1/n for
eachnPN, and by lemma 1 there exists al8PssBd with l<l8.

2) We note that this statement can be proved also with the help of lemma 1. Howev
statement is proved in a more general form in Ref. 8, and therefore we omit the proh

The first part of proposition 2 shows that the spectrum ofA is approximated well by th

igenvalues of its nonstandard extensionB. We can draw from this result a remarkable conclusion.
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et lPssAd, then there exists an eigenvaluel8<l of B. SinceB has a complete set of(normed)
igenvectors, there exists anxPH for which Bx=l8x holds. For eachyPM we obtain thus

kox,Ayl = okx,B.yl = stsl8dokx,.yl = lkox,yl . s3d

quations of this type can usually be formulated only as eigenfunctional equations in
ilbert-space formalisms. The treatment of continuum states is therefore more complicat

he treatment of bound states in these frameworks. In a hyperfinite-dimensional space
owever treat both types of states on an equal footing. We note that work in this direction
resented in Ref. 5 where the concept of ultraeigenvectors is introduced. The concept
imilar equations, but ultraeigenvectors are not necessarily eigenvectors of a nonstanda
ion. In particular, we generally do not obtain an eigenvector basis, which is simpler to
pplications as compared to projection-valued measures.

Moreover, if the operatorA is bounded in proposition 2 then the nonstandard hulloB of B is
bounded self-adjoint operator onoH. This case is extensively studied in Refs. 9 and 10

articular, the operatorA is then the restriction ofoB to H, and the projection-valued meas
ssociated withA can be retrieved with the help of the eigenvectors ofB. Unfortunately, most o

he self-adjoint operators occurring in applications are unbounded. Also, we do not know h
unction calculus ofA is related to the function calculus ofB, especially when we consid
oncontinuous functions. We therefore use a more general approach that is related to non

ntegration theory.

II. LOEB-FUNCTION CALCULUS

In our approach to nonstandard function calculus we introduce first projection-valued
easures that are closely related to Loeb measures. The relationship is analogous to the

hip of standard projection-valued measures to finite Borel measures. We use projection
oeb measures to prove a nonstandard spectral theorem and to establish the Loeb-functi

us. Finally, we use the results to introduce generalized nonstandard hulls, which we use in
or the further discussion.

. Projection-valued Loeb measures

Let B denote the set of Borel subsets ofR, and letP be a finite probability measure onB. The
ssociated probability spacesR ,B ,Pd transfers to a finitely additive internal probability spa

.R ,.B ,.Pd. To be more general, we replace.P by a finitely additive internal probabili
unction m, and consider the probability spaces.R ,.B ,md. An important result of nonstanda
easure theory is the construction of a Loeb(probability) space out ofs.R ,.B ,md,11 i.e., there
xists a standard(s-additive) probability spaces.R ,.BL ,mLd such that

1) .BL is a s-algebra with.B,.BL,Ps.Rd,
2) om=mL on .B.

The setsVP.BL are called Loeb measurable, andmL is called a Loeb measure. T
-algebra.BL is however related to the finitely additive internal probability functionm, i.e., we
hould rather write.BLsmd. To obtain a more general setting we introduce a smallers-algebra
et L denote the set of finitely additive internal probability functions on.B. The intersectio
=ùmPL

.BLsmd is a s-algebra, and contains the universally Loeb-measurable sets. For em
L the spaces.R ,A ,mLd is a standard probability space. Moreover,.B,A andom=mL on .B.

Let xV denote the characteristic function of a setVP.B. We may, for example, use t
igensystem of a normal hyperfinite-rank operatorB to define a finitely additive intern

rojection-valued probability function:
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EV = xVsBd = o
liPV

uxilkxiu = o
i=1

h

xVsliduxilkxiu sV P .Bd. s4d

e note thathEVj is the projection-valued. measure ofB. Generally, if we assume a finite
dditive internal projection-valued probability functionhEVjVP.B, e.g., a projection-valued.

easure that is associated with an internal normal operator, then we can define for each
ectorxPH, ixi=1, a probability functionmsxd on .B:

msxdsVd = iEVxi2 = kx,EVxl sV P .Bd. s5d

e denote the associated Loeb measure bymL
sxd. Moreover, we introduce complex-valued Lo

easures. Forx,yP finsHd let

msx,ydsVd = kx,EVyl sV P .Bd. s6d

ince EV is a projection,msx,yd can be decomposed into four finitely additive positive inte
unctions on.B by polarization,1

msx,yd = o
k=1

4

akn
skd, ak P .C.

f nskdÞ0 we can use the normalizationnskds.Rd=1 without any restriction. Each nonzeronskd can
e extended to an ordinary Loeb measurenL

skd. If msx,ydÞ0 we can thus construct a finite compl
alued Loeb measure,mL

sx,yd, that is the sum of up to four ordinary Loeb measures multiplie
ppropriate complex factors. For the sake of completeness we define furthermL

sx,yd=0 if msx,yd=0.
The family of nonstandard hullshoEVjVP.B is a family of projections onoH, andmL

sx,ydsVd
kox,oEV

oyl for all x,yP finsHd, VP.B. This result motivates us to extend the definition ofoEV

o all setsVPA. For VP.B we denote the range ofoEV by RsVd, which is a closed subspa
or VPA let .BV=hV8P.B :V8,Vj. We extendRsVd to A by

RsVd = clS ø
V8P.BV

RsV8dD , s7d

nd defineoEV as the projection ofoH onto RsVd. Using a statement in Ref. 12 on families
rojections we conclude forxPH, ixi=1,

kox,oEV
oxl = sup

V8P.BV

kox,oEV8
oxl = sup

V8P.BV

mL
sxdsV8d = mL

sxdsVd. s8d

Theorem 2: Let hEVjVP.B be a finitely additive internal projection-valued probability fu
ion, thenhoEVjVPA defines a projection-valued Loeb measure.

Proof: We show that the familyhoEVjVPA has the properties of a projection-valued meas

(a) AssumeV1,V2PA, and V1ùV2=x, then V18ùV28=x and RsV18d'RsV28d for all
V18P.BV1

, V28P.BV2
. Thus, RsV18d'RsV2d for all V18P.BV1

, RsV1d'RsV2d, and
oEV1

oEV2
=oEV2

oEV1
=0.

(b) Assume V1,V2PA, and V1,V2, then RsV1d,RsV2d, and oEV1

oEV2
=oEV2

oEV1
=oEV1

.12

(c) Assume VnPA, nPN, and VnùVm=x if nÞm. Let V=øn Vn, and let PN
=on=1

N oEVn
. PN is a projection sincePN is self-adjoint andPN

2 =PN by (a).1 For xPH,
ixi=1, we obtain by(b),

isoEV − PNdoxi2 = kox,soEV − PNdoxl=mL
sxdsVd − o

N

mL
sxdsVnd,
n=1
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lim
N→`

isoEV − PNdoxi2 = 0.

(d) Assume V1,V2PA. Using (c) we obtain oEV1ùV2
+oEV1\V2

=oEV1
, and using

(a), (b) we obtain oEV1

oEV2
=soEV1ùV2

+oEV1\V2
doEV2

=oEV1ùV2
=oEV2

soEV1ùV2

+oEV1\V2
d=oEV2

oEV1
.

. Spectral theorem

We have seen in Sec. III A that a projection-valued. measure extends to a projection-val
oeb measurehoEVjVPA on oH. We now use this result to formulate a nonstandard spe

heorem. We note that the theorem is obtained not by transfer of a standard spectral theo
ather an analog associated with Loeb integration theory.

We call a complex-valued functionf :.R→C A-measurable or Loeb measurable iff−1sVd
A for each Borel setV,C. We note that sts·d is A-measurable.11

Theorem 3: Let B be an internal self-adjoint operator on an internal Hilbert spaceH, let
oEVjVPA be the projection-valued Loeb measure associated with the projection-valued. measur
f B, and let f be a complex-valuedA-measurable function, thenfsBd=ef d oE is a norma
perator onoH, andssfsBdd,clsfsssBddd.

Proof: First we note that if two vectorsx,yP finsHd are approximately equal,x<y, then the
ssociated Loeb measures are equal,mL

sxd=mL
syd. Consequently, forx,yPoH the Loeb measu

x,oEVyl sVPAd is well defined, and we use the notationmL
sx,yd=kx,oEVyl in this proof. The

omain of f is given by

DsfsBdd = Hx P oH:E uf u2 dmL
sxd , `J . s9d

or nPN let Vn=hr P.R : ufsrduønj. Each Vn is measurable,VnPA. Let xPoH, and let xn
oEVn

x, thenxnPDsfsBdd for all nPN, andx=limn xn. Hence, clsDsfsBdd=oH. Let fsBd† denote
he adjoint of fsBd, and let z* denote the complex conjugate ofzPC. For xPDsfsBdd, y

DsfsBd†d we obtain

kx, fsBd†yl = kfsBdx,yl = ky, fsBdxl* = SE f dmL
sy,xdD*

=E f* dmL
sx,yd = kx, f*sBdyl, s10d

.e., fsBd†= f*sBd, DsfsBd†d=DsfsBdd, and fsBd is normal.
Let lPssfsBdd, and lete.o. SincefsBd is normal there exists anxPoH for which ixi=1 and

isfsBd − ldxi2 =E uf − lu2 dmL
sxd , e2

olds. Let Ve=hr P.R : ufsrd−lu,ej= f−1shr PR : ur −lu,ejd, then mL
sxdsVed.0, and thusoEVe

0. Moreover, there exists anVe8P.BVe
for which mL

sxdsVe8d.0 holds. Thus,EV
e8
Þ0 and

e8ùssBdÞx. ChoosevePVe8ùssBd, then ufsved−l u ,e, and thuslPclsfsssBddd. h

Corollary 1: Assume the conditions of theorem 3. IfB is additionally a hyperfinite-ran
perator, then

(1) ssfsBdd=clsfsssBddd,
(2) ssogsBdd=ogsssBdd for finitely boundedgP.BsRd.

Proof:

(1) Let lPssBd, and let x be a corresponding eigenvector, thenoEhlj
ox=ox, fsBdox

= fsldox, and fsldPssfsBdd. SincessfsBdd is closed we obtain clsfsssBddd,ssfsBdd.

The assertion follows now from theorem 3.
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(2) Let gP.BsRd be finitely bounded. SinceB is a hyperfinite-rank operator we obt
ssgsBdd=gsssBdd. Thus,ssogsBdd=ossgsBdd=ogsssBdd by proposition 2. h

If we consider in theorem 3 a real-valued functionf, then we obtain a self-adjoint opera
fsBd. For this operator, the standard spectral theorem yields the standard spectral repres

ince theorem 3 states an alternative nonstandard representation offsBd we clarify now the
elationship between both representations.

Theorem 4: Let B be an internal self-adjoint operator on an internal Hilbert spaceH, let f be
real-valuedA-measurable function, and letg be a Borel function, thengsfsBdd=sg+ fdsBd.

Proof: For a Borel setVPB let FV=oEf−1sVd. FV defines a projection-valued measure, and

P finsHd we obtain

m f,L
sxdsVd = mL

sxdsf−1sVdd = kox,oEf−1sVd
oxl = kox,FV

oxl.

et us assume first thatg is bounded, then we obtain forVPB,

E
V

g dm f,L
sxd =E

f−1sVd
g + f dmL

sxd.

e conclude thateg dF=eg+ f d oE. If we apply pointwise-convergence arguments the l
quation is valid for any Borel functiong. In particular, forg= id we obtainfsBd=ev dFv, which

s just the standard spectral representation. Sinceeg dF=gsev dFvd=gsfsBdd we obtain the state
ent of the theorem. h

We note that theorem 4 reveals the relationship between the standard and the non
pectral representation of the self-adjoint operatorfsBd: For each Borel setV we obtainFV :
xVsfsBdd=exV + f d oE=oEf−1sVd, and fsBd=ev dFv.

. Nonstandard hulls

As pointed out in Sec. II operational nonstandard hulls are well known for finitely bou
nternal operators. For infinite internal operators, however, ambiguities occur if we conside
ard parts: LetB be a hyperfinite-rank operator that has an infinite eigenvaluel, let x be the
orresponding normed eigenvector, and lety=x/l, thenoy=0 but osByd=oxÞ0. We see by thi
xample that for infinite internal operators an equation likeoBox=osBxd can generally not be tru
he definition of nonstandard hulls for infinite internal operators is thus not straightfo
evertheless, if we consider self-adjoint internal operators then we can use the Loeb-f
alculus for a sensible definition. The principal idea is to project those vectors out that ca
mbiguities. To arrive at a sensible definition we consider first finitely bounded internal ope
oreover, letBsRd be the set of complex-valued Borel functions onR.

Proposition 3:Let B be an internal self-adjoint operator on an internal Hilbert spaceH, let
oEVjVPA be the projection-valued Loeb measure associated with the projection-valued. measur
f B, and let f P.BsRd be finitely bounded, then

kox,ofsBdoyl = stSE fsvddkx,EvylD =E ofdmL
sx,yd sx,y P finsHdd. s11d

Proof: We assume first thatf is real valued. The generalization to complex-valued functiof
s straightforward.

For nP.N, kP.Z let Sk,n=hr P.R :k/nø fsrd, sk+1d /nj, and let In=hkP.Z :Sk,nÞxj.
ince f is finitely bounded In is hyperfinite. Moreover, .R=økPIn

Sk,n. Define fn

okPIn
sk/nd xSk,n

, thenfn↑ f, andufnsrd− fsrdu,1/n for all r P.R. Moreover,ofn↑ofsnPNd), and

E ofdmL
sx,yd=limE ofndmL

sx,yd sx,y P finsHdd

nPN
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= lim
nPN

o
kPIn

k

n
mL

sx,ydsSk,nd

= lim
nPN

o

o
kPIn

E k

n
xSk,nsvddkx,Evyl

=
oE fnsvddkx,Evyl sn P .N \ Nd

=
oE fsvddkx,Evyl

=okx, fsBdyl = kox,ofsBdoyl .

e note that we usefnsrd< fsrd for nP.N \Nin the calculation. h

We note that if the operatorB is finitely bounded in proposition 3 then the spectrum oB
onsists only of near-standard points,ssBd, fins.Rd, and thusoB=efins.Rd st doE. Moreover, the
ast equation provides a correct approach for an extended definition of nonstandard hulls

Definition 1:Let B be an internal self-adjoint operator on an internal Hilbert spaceH, and le
oEVjVPA be the projection-valued Loeb measure associated with the projection-valued. measur
f B. The nonstandard hull ofB is given by

oB =E
fins.Rd

st doE.

his definition avoids the ambiguities mentioned above since the critical vectors, i.e., the
elonging to the range ofoEfins.N\.Nd, are projected out. In particular, ifx is an eigenvector ofB

n definition 1, then0B0x=0 if x belongs to an infinite eigenvalue. We note that the state
∀xP finsHdd 0B0x=0sBxd holds for finitely bounded operators but not for infinite operator
efinition 1. Generally, we obtain forx,BxP finsHd rather

0Box = oEfins.Rd
osBxd. s12d

V. NONSTANDARD QUANTUM MECHANICS

. Operational extensions

We continue now our discussion started in Sec. II. In particular, we consider a dense suM
f a Hilbert spaceH, which is externally contained in a hyperfinite dimensional spaceH, and for
hich M,H,.M,.H holds. We note thatH,oH by proposition 1. We have seen in Sec

hat each bounded linear operator onH can be extended by a finitely bounded hyperfinite-
perator onH, and that the extension is based on nonstandard hulls. In Sec. III we have
ut the connection of nonstandard hulls to the Loeb-function calculus. In particular, we

ntroduced nonstandard hulls for infinite self-adjoint internal operators. Now we use these
o generally establish the extension of standard self-adjoint operators to self-adjoint hyp
ank operators.

Let A be a self-adjoint operator onH, thenA8=tan−1sAd is a bounded self-adjoint operator
. The hyperfinite-rank operatorB8=O .A8O is a nonstandard extension ofA8, i.e., oB8uH=A8.

.
e note thatO denotes the projection ofH onto H. Moreover, we note thatxs−p/2,p/2dsA8d
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xRsAd=1 and thatA=tansA8d. For r PR let tgsrd=tansr ·xs−p/2,p/2dsrdd. SinceoB8uH=A8 we ob-
ain tgsA8d=tgsoB8duDstgsA8dd. Since st+ tg=tg+st on fins.Rd we get further tgsoB8d=otgsB8d by
roposition 3 and theorem 4, and thusA=tgsA8d=ostgsB8dduDsAd.

Our construction shows that for any standard self-adjoint operatorA there exists a self-adjoi
yperfinite-rank operatorB whose nonstandard hull extendsA, i.e., A=oBuDsAd. In particular, we
btain ssAd,ssoBd=clsoNSsssBdd by corollary 1. For eachlPssAd there exists thus al8
ssBd for which l<l8 holds (cf. Sec. II B).

Definition 2: Let A be a self-adjoint operator on a Hilbert spaceH. Let H be an interna
ilbert space for whichH,oH holds and letB be an internal self-adjoint operator onH. B is
alled a nonstandard extension ofA if A= oBuDsAd.

We note that the nonstandard extension ofA is not unique. We discuss now how the funct
alculus ofA is related to the function calculus of its nonstandard extensions.

Proposition 4:Let A be a standard self-adjoint operator and letB be a nonstandard extens
f A. Then, for each real-valued Borel functiong there exists an internal functionf for which
sAdx= osfsBd.xd= ofsBdx holds for all xPDsgsAdd. In particular, fsBd is a nonstandard exte
ion of gsAd.

Proof: Let g be a real-valued Borel function and lethoEVjVPA be the projection-valued Loe
easure associated with the projection-valued. measure ofB. Since gsAd= ugsoBduDsgsAdd we

onclude from theorem 4 thatgsAdx=efins.Rdsg+stddoEx sxPDsgsAddd. Moreover, for x
DsgsAdd let mL

sxd be the Loeb measure for whichkx,oEVxl=mL
sxdsVd sVPAd holds. For eac

oeb measuremL
sxd there exists an internal functionfx for which ofx=g+st holds mL

sxd almos
verywhere,11 i.e., efins.Rdsofx−g+stod2dioExi2=0. FornPN let

fx,nsld: = H fxsld, ufxsldu ø n,

0, else,

hen eachfx,n is a finite internal function andgsAdx=gsoBdx=limn
ofx,nsBdx=limn

osfx,nsBd.xd.
ence, the internal sets

Vx,n = h f P .sCRd:i.sgsAdxd − fsBd.xi , 1/nj
re nonempty for eachxPDsgsAdd, nPN. We note thatVx,n,Vx,m for n.m. Moreover, fo

1, . . . ,xmPDsgsAdd we consider the Loeb measurenL=mL
sx1d+¯ +mL

sxmd. For nL there exists als
n internal functionf for which of =g+st holdsnL almost everywhere.11 In particular,of =g+st
oldsmL

sxkd almost everywhere for each 1økøm. If we definefn with the help off analogously a
e have definedfx,n with the help of fx then gsAdx=gsoBdxk=limn

ofnsBdxk=limn
osfnsBd.xkd for

ach 1økøm, and thusVx1,nù ¯ ùVxm,nÞx. The collection of internal setssVx,ndxPDsgsAdd,nPN

as thus the finite-intersection property, and by polysaturation there exists an intef
ùxPDsgsAdd,nPNVx,n. In particular, we obtaingsAdx=osfsBd.xd for all xPDsgsAdd.

Assume xPDsg2sAdd and let y=gsAdx, then .y< fsBd.x and .sg2sAdxd=.sgsAdyd
fsBd.y. Since fsBd.y is finite we obtainy=Py for the projectionP=oxfins.RdsfsBdd. Thus,y

osfsBd.xd=PosfsBd.xd=ofsBdx. Since gsAd is essentially self-adjoint onDsg2sAdd we obtain
sAd= uofsBduDsgsAdd. h

We note that the internal function in proposition 4 is not uniquely determined. In fact,B is
f hyperfinite rank we can even choose a. polynomial p for which psld= fsld holds for al
igenvaluesl of B, i.e., fsBd=psBd. We can also restrictf to be a. continuous function or a.

orel function in proposition 4. We note also that if in proposition 4 the functiong is bounded an
ontinuous(mL

sxd almost everywhere for allxPH) then we may simply choosef =.g.
Proposition 5:Let A be a standard self-adjoint operator and letB be a nonstandard extens

f A. Let sFVdVPB be the projection-valued measure associated withA and letsEVdVP.B be the
rojection-valued. measure associated withB, then for eachVPB there exists anV8P.B for
hich FVx=oEV8

x holds for allxPH.
o o sxd
Proof: Let xPDsAd, then FVx=xVsAdx=xVs Bdx= Est−1sVdx by theorem 4. LetmL be the
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oeb measure associated withkx,oEV8 xl sV8P.Bd. There exists anVx8P.B for which

L
sxdsst−1sVdDVx8d=0 holds11 sVDV8=sV \V8dø sV8 \Vdd. We get in particularoEVx8

x=oEst−1sVdx.
et

Gx,n = hV8 P .B:isEV8 − EVx8
d.xi , 1/nj.

he setsGx,n are internal andGx,n,Gx,m if n.m. Moreover, forx1, . . . ,xmPDsAd we consider th
oeb measure nL=mL

sx1d+¯ +mL
sxmd. For nL there exists also anV8P.B for which

Lsst−1sVdDV8d=0 holds, i.e.,oEV8
xk=oEst−1sVdxk for 1økøm. The collection of internal se

Gx,ndxPDsAd,nPN has thus the finite-intersection property, and by polysaturation there exi
8PùxPDsAd,nPNGx,n. In particular,oEV8x=oEst−1sVdx for all xPDsAd, which proves the asse

ion. h

Let us come back to the discussion at the beginning of this section. We have seen tha
elf-adjoint operatorA on H there exist self-adjoint hyperfinite-rank operators onH that extendA

n the sense of definition 2. Proposition 4 and proposition 5 provide further results that we
ow from a physical point of view.

1) If we want to model a standard measurement process we usually use a probabilit
sR ,B ,md. The measurem is related to a projection-valued measure of a self-adjoint ope
A and a normalized state vectorxPH. Proposition 5 suggests that we could also use.

probability spacesR ,.B ,md to model the measurement process. The. measurem is then
related to the projection-valued. measure of a self-adjoint hyperfinite-rank extensionB of A
and the normalized vectory=O.x/ iO.xi. We note thatO denotes the projection of.H onto
H and thatO.x<.x.

2) Proposition 4 tells us that the set of. Borel functions contains all functions that we nee
retrieve standard results. We note that we may restrict ourselves to any set that con
. polynomials, i.e., the. continuous functions, for example. In particular, for the t
evolution we simply obtain exps−iAtdx=osexps−iBtdyd=oexps−iBtdx stPRd. We note that w
useA, B, x, andy as in 1.

Following these two arguments we may formulate quantum mechanics in a hype
imensional Hilbert spaceH, which extends the standard formulation in a Hilbert spaceH.
owever, our results have a rather general nature so far. To demonstrate how a concret

ation can be achieved we discuss Schrödinger representations as an example in Sec. IV

. Schrödinger operators

The conventional Schrödinger representation of one-particle quantum mechanics is
ated in H=L2sRd. The momentum operatorp and the position operatorq are the closures
−1d/dx and multiplication byx on SsRd. SsRd is the space of functions of rapid decrease oR,
hich is a domain of essential self-adjointness forp andq. Moreover, Schrödinger Hamiltonia
re given byA=p2+Vsqd, for which Vs·d denotes a Borel function. We note that we res
urselves to the one-dimensional case and that the generalization to multidimensions is

orward, as we will see.
Let hunjn=o

` be the basis of Hermite functions, lethP.N \N be a fixed hypernatural numb
nd letH be the hyperfinite-dimensional space that has the basish.unjn=o

h . H externally contain
he spaceM of finite linear combinations ofhunjn=0

` , which is dense inH, andH,.M. The triple
M ,H ,Hd thus realizes the setting described in Sec. II A.

We derive now explicit nonstandard extensions of several self-adjoint operators onH. For
xample, letO=on=0

h u.unlk.unu be the projection from.H onto H associated with the Hermit
unction basish.unjn=0

h , then the hyperfinite-rank operatorP=O.pO has a well-known simp
. .

.
epresentation, and forxPM we obtain spxd=P x. Let sEVdVP B be the projection-valued
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measure associated withP. SinceP2.x is finite we obtainpx=osP.xd=oEfinsRd
osP.xd=oPx for

PM. In order to show thatP is a nonstandard extension ofp we prove thatpuM is essentiall
elf-adjoint.

Let xPS then there exists a sequencesxnd in M that converges tox with respect to th
opology ofS.1 In particular, limnix−xni=0 and limnipsx−xndi=0. LetGspuMd denote the graph
p restricted toM. spx,xd is thus contained in the closure ofGspuMd, i.e., GspuSd,clsGspuMdd

clsGspuSdd. Since puS is essentially self-adjoint we conclude thatpuM is also essentially se
djoint and thatp=oPuDspd. P is thus a nonstandard extension ofp. The following lemma gene
lizes our result.

Lemma 2:Let H be an internal Hilbert space and letM be a dense subset of a stand
ilbert spaceH for which M,H,.M,.H holds. LetA be a self-adjoint operator onH,
hich is essentially self-adjoint onM, and let O be the projection of.H onto H. Then, B
O.AO is a nonstandard extension ofA.

Proof: Let sFVdVP.B be the projection-valued. measure associated withB. Since

iB.xi2 =E
.R

v2dk.x,Fv
.xl

s finite for xPM we conclude that

E
uvu.n

uvudk.x,Fv
.xl , e

or any standarde.o and anynP.N \N. For a fixed standarde.o there exists by the underflo
rinciple annPN for which

E
uvu.n

uvudk.x,Fv
.xl , e

olds, and thus

kx,osB.xdl = stSE
.R

vdk.x,Fv
.xlD = lim

n→`
stSE

uvuøn

vdk.x,Fv
.xlD = kx,oBxl sx P Md.

oreover, by polarization we obtainky,osB.xdl=ky,oBxl for x,yPM. SinceosB.xd=AxPH we
et

iosB.xdi = sup
yPM1

uky,osB.xdlu = sup
yPM1

uky,oBxlu ø ioBxi ,

singM1=hyPM : iyi=1j. Since

iosB.xdi = ioBxi + ioF.R\fins.Rd
osB.xdi

e obtainoF.R\fins.Rd
osB.xd=0 andAx=osB.xd=oBx for xPM. SinceAuM is essentially sel

djoint we obtainA=oBuDsAd. h

With the help of lemma 2 we gain explicit nonstandard extensions of many self-a
perators onH. For example, sinceqnuS andpnuSsnPNd are essentially self-adjoint we conclude
he same manner as forp thatQsnd=O.qnO andPsnd=O.pnO are nonstandard extensions, resp
ively. Also, if for a real Borel functionV the operatorVsqduM is essentially self-adjoint, which
or example true ifV is bounded, thenW=O.VsqdO is a nonstandard extension ofVsqd. We note
hat the matrix elements ofW are given by explicit analytic expressions. Moreover, let us as
hat the Schrödinger operatorA=p2+Vsqd is essentially self-adjoint onM and thatM,DsVsqdd.
his requirement is fulfilled, for example, ifV is a bounded Borel function(cf. Wüst’s theorem13).

. 2 . s2d
sing lemma 2 we conclude thatB=Os p + VsqddO=P +W is a nonstandard extension ofA.
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ithout giving an explicit proof we note that we may even chooseVPL2+L` as in theorem X.1
f Ref. 13. Moreover, we note that in this example we simply may add the nonstandard ext
f p2 andVsqd to obtain a nonstandard extension ofA. However, this is generally not valid sin

or two internal self-adjoint operatorsB1 and B2 the sumoB1+oB2 is not necessarily define
lthoughosB1+B2d is always defined.

. APPLICATION IN SCATTERING THEORY

We apply in this section our nonstandard framework to nonrelativistic quantum sca
heory. First, we shortly review the concepts of conventional time-dependent scattering th
t is presented in Ref. 14. We show then how the concepts fit into the framework, and disc
hysical impact. We finally derive explicit expressions for the Møller wave operators a
-matrix.

. Time-dependent scattering theory

In quantum scattering theory the Hamiltonian of the quantum system is the sum of a
amiltonian and an interaction potential,A=A0+V. If we consider a statex that was prepared

he remote past then the corresponding free statex+ is given byx=W+x+= limt→−` eiAte−iA0tx+. W+

s a Møller wave operator. Prerequisite is however that limt→−` eiAte−iA0tx+ exists. Analogously, th
ree statex− that looks like x when it is detected in the far future is given byx=W−x−

limt→` eiAte−iA0tx−. We note that we use the convention of time-independent scattering
hat t→ 7` refers toW± (cf. Sec. 5.2, Ref. 14). The quantum system is complete ifW+sHd
W−sHd=Hac. Hac is the subspace ofH that is connected to the absolutely continuous part o
pectrum ofA.

Let us assume now an internal Hilbert spaceH, and self-adjoint hyperfinite-rank operatorB
ndB0 on H. We associateB0 with the free Hamiltonian of the quantum system. Analogous to
onventional theory we are interested in the limitsW±x=limt→±`soeiBtdsoe−iB0tdx sxPoHd. Since we
se NSA we can however give the terms “remote past” and “far future” a quantitative me
et Yt=eiBte−iB0t and let L±=hxP finsHd : limt→7`

osYtxdexistsj. We note that the spacesoL± are
losed subspaces ofoH on which the Møller operatorsW± are defined. We assume in the follow
hat the system is “reasonably” complete, i.e., thatW+sL+dùW−sL−d is a sensible set of physic
tates. This assumption is justified if we consider the nonstandard extension of a comple
ard quantum system.

Lemma 3: xPL± iff there exist infinite hyper-realsT±,x for which W±ox=osYtxd holds if t is
nfinite and 0, s7tdøT±,x.

Proof: We carry out only the proof forL−, since the proof forL+ is analogous. Letx
finsHd and assume that there exists an infiniteT−,x for which W−ox=osYtxd holds if t is infinite

nd 0, tøT−,x. Since osYtxdPoH there exists ayP finsHd for which oy=osYtxd holds. For a
standard) e.0 let

Ge = hT P f0,T−,xg:s∀t P fT,T−,xgdiy − Ytxi , ej.

inceTPGe if T is infinite andT−,xùT.0, and sinceGe is internal and nonempty there exist
nite TePGe. Hence,s∀t.oTediW

−ox−osYtxdiøe, and thusW−ox=limt→`
osYtxd.

Now assumeW−ox=limt→`
osYtxd. Since W−oxPoH there exists ayP finsHd for which oy

W−ox holds. For each(standard) e.0 there exists aTe for which s∀t.TediW−ox−osYtxdi,e
olds. LetTe8=maxhTe ,1 /ej, and letFt=hsP.R :sù tj for tP.R. The set

Ge,x = hT P FT
e8
:s∀t P fTe8,Tgdiy − Ytxi , ej

s nonempty and internal. By the overflow principleGe,x contains an infiniteTe,x, and by poly

aturation the set
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Gx = ù
e.0

fTe8,Te,xg

s nonempty, i.e., we can choose aT−,xPGx. T−,x is infinite sinceT−,x.Te8ù1/e for all e.0.
oreover, if t is infinite andtøT−,x we obtains∀e.0dtP fTe8 ,Te,xg, and thusoy=W−ox=osYtxd.h

Theorem 5: Assume thatoH contains a standard Hilbert spaceH, then there exist infinit
yper-realsT± for which W±ox=osYtxd holds if t is infinite, 0, s7tdøT±, xPL±, andoxPH.

Proof: Again, we carry out only the proof forL−, since the proof forL+ is analogous. Letx
L− and letT−,x be the infinite hyper-real determined by lemma 3. SinceYt is finitely bounded fo

ach tP.R we obtain osYtxd=osYtyd for all y<x. Thus, if t is infinite and 0, t,T−,x then
−oy=osYtyd for all y<x. For zPHùoL− we choose a representativexPL− for which ox=z

olds, and setT−,z8 =T−,x. For yPL− we obtain thenW−z=osYtyd if t is infinite, 0, t,T−,z8 , and
y=z. Let Gn,z=fn,T−,z8 g, then there exists an infiniteT−PùnPN,zPHGn,z by polysaturation. Sinc

−øT−,z8 for all zPH we obtain the assertion. h

We note that theorem 5 is valid also if we replaceH by any set of standard elements. T
rucial point is that we use the properties of polysaturation in our proof, which limits the s
ubsets ofL± for which common hyper-realsT± can be determined. However, if we accept tha
bserve only a standard set of states in a scattering experiment, then theorem 5 yields
sting result. Motivated by theorem 5, we may identify three phases of a scattering expe
he preparation of the system is done in the remote past at infinite timest for which −T+

t,0 holds. The scattering happens at finite timest, and the detection takes place in the
uture at timest for which 0, tøT− holds. −T+ andT− may be interpreted as starting time and
nishing time of the experiment, respectively.

Moreover, we naturally obtain a separation of time scales within our nonstandard mod
bserve the interacting system on a large time scale that is defined by the infinite time
−T+,T−g, whereas the interaction takes place on a small time scale that is defined by finite
P fins.Rd. The separation of time scales, which cannot be done in standard models in th
anner, is a nice example of the strength of NSA. We note however that our result does n

hat the preparation and the detection take place on the same time scale since the fractionT−/T+ is
ot necessarily finite.

. Time-independent scattering theory

We discuss time-independent scattering theory in the following on the basis of our res
ime-dependent scattering theory. In particular, we assume in this section the setting of th
nd thatH is hyperfinite-dimensional. As outlined in the discussion of theorem 5, we may a
specially two infinite hyper-realsT± that mark the starting and the finishing times of a scatte
xperiment. We introduce first a set of infinitesimals that is closely related toT±. Let T
minhT−,T+j, and let G=ht<0:t.0 andtT infinitej. G is nonempty since, for examp

t /ÎT:ot.0 andtP fins.R+dj,G. We note thatG is a set of infinitesimals that depends only

±, and that is thus fundamentally related to the scattering system. We assume for the re
ection thatePG, i.e., e<0, e.0, andet is infinite for tùminhT−,T+j. Moreover, we use in th
ollowing transferred integration theory.

Lemma 4:Let Y±=Y7T±/2, then

Y±u < E
0

.`

ds ee−esY7su s13d

f uPL± andouPH.
Proof: Let 0,oa,1, letT1=1/Îe, and letT2=a minhT+,T−j. SinceiYsi=1 for all sP.R we

btain

IE.T1
ds ee−esY7sI ø E.Îe

ds e−s = 1 −e−Îe < 0,

0 0

                                                                                                            



A

a

i

=

i

L

B

A

J. Math. Phys., Vol. 45, No. 12, December 2004 Nonstandard quantum mechanics 4805

                        
IE
T2

.`

ds ee−esY7sI ø e−eT2 < 0,

E
T1

.T2
ds ee−esY7s < E

0

.`

ds ee−esY7s.

ssumeuPL± andouPH. By theorem 5,Y7s u<Y±u for sP fT1,T2g, and thus

E
T1

.T2
ds ee−esY7su < se−Îe − e−eT2dY±u < Y±u.

h

Lemma 4 enables us to deduce an explicit formula for the operatorsW±=oY±. Let hl j ,xjj j=1
h be

n eigensystem of the free HamiltonianB0. If uPL± andouPH we obtain

Y±u < E
0

.`

dt ee−etY7tu = u 7 iE
0

.`

dt e−ete7iBtVe±iB0tusV = B − B0d

= u 7 io
j=1

h

ujE
0

.`

dt e−ete7isB−l jdtVxj suj = kxj,uld

= u ± io
j=1

h

uj
1

7 isB − l jd − e
Vxj = o

j=1

h

ujS1 +
1

l j − B ± ie
VDxj .

Theorem 6:

W±ou = osY±ud = oo
j=1

h

ujS1 +
1

l j − B ± ie
VDxj s14d

f uPL± andouPH.
Let fY+,B0g=Y+B0−B0Y

+, and let Tt=eiB0tfY+,B0ge−iB0t. We consider now the S-matrix,S
sY−d†Y+, for which kW−ou,W+ ovl=oku,Svl holds if uPL−, vPL+, andou,ovPH.

Lemma 5:

ku,sS− 1dvl < − iE
−.`

.
`

dt e−eutku,Ttvl s15d

f uPL−ùL+, vPL+, andou,ovPH.
Proof: If uPL−ùL+, vPL+, andou,ovPH we obtain by lemma 4,

ku,sS− 1dvl = ku,sY− − Y+d†Y+vl < E
0

.`

ee−esku,sYt − Y−td†Y+vl.

et 0,oa,1/2, letT1=1/Îe, and letT2=a minhT+,T−j, then

E
0

.`

dt ee−etku,sYt − Y−td†Y+vl < E
T1

.T2
dt ee−etku,sYt − Y−td†Y+vl.

y theorem 5, we obtain fortP fT1,T2g,

sYtd†Y+v < eiB0te−iBte−iBsT+/2−tdeiB0sT+/2−tdv = eiB0te−iBT+/2eiB0T+/2e−iB0tv = eiB0tY+e−iB0tv.
nalogously,
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sY−td†Y+v < e−iB0teiBte−iBsT+/2+tdeiB0sT+/2+tdv = e−iB0te−iBT+/2eiB0T+/2eiB0tv = e−iB0tY+eiB0tv.

et Zt=eiB0tY+e−iB0t, then

E
T1

.T2
dt ee−etku,sYt − Y−td†Y+vl < E

T1

.T2
dt ee−etku,sZt − Z−tdvl < E

0

.`

dt ee−etku,sZt − Z−tdvl.

e recognize that. sd/dtdZt=−iTt, and obtain by partial integration

E
0

.`

dt ee−etku,sZt − Z−tdvl = − iE
0

.`

dt e−etku,sTt + T−tdvl = − iE
−.`

.
`

dt e−eutku,Ttvl.

h

Let Tj ,k=kxj ,fY+,B0gxkl (the T-matrix). For uPL−ùL+, vPL+, andou,ovPH we obtain

ku,sS− 1dvl < − iE
−.`

.
`

dt e−eutku,Ttvl

= − i o
j ,k=1

h

uj
*vkTj ,kE

−.`

.
`

dt e−euteisl j−lkd suj
* = ku,xjl, vk = kxk,vld

= − i o
j ,k=1

h

uj
*vkTj ,kS 1

isl j − lkd + e
−

1

isl j − lkd − e
D

= − i o
j ,k=1

h

uj
*vkTj ,k

− 2e

− sl j − lkd2 − e2 = − 2pi o
j ,k=1

h

uj
*vkdesl j − lkdTj ,k.

e note that sincee is a positive infinitesimal the function

desxd =
1

p

e

x2 + e2 s16d

ehaves like Dirac’s delta distribution.5

Theorem 7:

kou,oSovl = o o
j ,k=1

h

sd j ,k − 2pidesl j − lkdTj ,kduj
*vk s17d

f uPL−ùL+, vPL+, andou,ovPH.

I. SUMMARY AND CONCLUSIONS

We have formulated in this paper an approach to nonstandard quantum mechanics,
ave introduced a mathematical framework that is based on NSA, and that can be appro
pplied to quantum mechanics. The principal step is the embedding of a dense subset of a
omplex Hilbert spaceH into a hyperfinite-dimensional spaceH. We have focused then
elf-adjoint operators onH, and have constructed appropriate extensions to self-a
yperfinite-rank operators onH. To obtain a sensible interpretation of expectation values we

ntroduced further nonstandard hulls. We have defined the nonstandard hulloH of the hyperfinite
imensional spaceH, which is a complex Hilbert space, and the nonstandard hulls of hyper
ank operators onH. The idea is to perform calculations inH, and to interpret expectation valu
n the nonstandard hulloH. To this end, we have developed the function calculus with resp
oeb-measurable functions by introducing projection-valued Loeb measures. Using pro

alued Loeb measures we have proved then a nonstandard spectral theorem. With the help of the
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pectral theorem we have shown how our nonstandard framework extends the standard fra
sed for quantum mechanics. As an example, we have applied our general results to Sch
epresentations of quantum mechanics.

Beside the mathematical results, which are rather interesting for their own, two imp
dvantages are obtained by this approach. First, we can use nonstandard objects like infin

nfinite numbers, or functions that behave like delta distributions in our framework. The ava
ty of these objects is a general advantage of NSA as compared to standard mathematics
ince we perform calculations in a hyperfinite-dimensional space we can apply the tran
ules of linear algebra. In particular, self-adjoint hyperfinite-rank operators have complete
igenvalues and eigenvectors. If we use this result to model the Hamiltonian of a quantum
e treat bound states and continuum states on the same footing. We note that this is also
f super-Hilbert space formalisms,2,3 but the present approach seems to be more convenie
hysical applications.

Moreover, we have applied the approach to nonrelativistic scattering theory. First w
xtended standard time-dependent scattering theory to our framework. If we observe a sta
f states in a scattering experiment, as stated in theorem 5, then the extension yields tw
ental times of a scattering experiment that can be interpreted as the starting time, −T+, and the

nishing time, T−, of the experiment. These times occur as infinite hyper-reals, and a
vailable in standard theories. Moreover, this result yields a natural separation of time sca
bserve the interacting system on a large time scale that is defined by the infinite time
−T+,T−g, whereas the interaction takes place on a small time scale that is defined by finite
P fins.Rd. In particular, the preparation of the system is done in the remote past at infinite
for which −T+ø t,0 holds, and the detection takes place in the far future at infinite timest for
hich 0, tøT− holds. We note however that this result does not state that the preparation
etection processes take place on the same time scale since the fractionT−/T+ is not necessari
nite. Furthermore, we have applied our results to time-independent scattering theory. Fo

ndependent scattering theory we have shown how concrete calculations work in the fram
nd we have derived explicit formulas for the Møller wave operators and for the S-matrix.

ormulas, which are well-known from standard physical text books, are proved rigorously.
From the author’s point of view, the application of nonstandard methods to nonrela

cattering theory is rather fruitful. In particular, this example demonstrates the main advan
he formalism mentioned above.

PPENDIX

The linear algebra in finite-dimensional subspaces ofH is well known from standard tex
ooks. We need the results however to obtain the linear algebra in hyperfinite-dimension
paces of.H in the following. For this purpose, we formulate the standard results in a wa
nables us to easily apply the transfer principle. However, although a presentation of nons

inear algebra should be available elsewhere, the author was not able to find an app
eference in the literature.

. Linear algebra in finite-dimensional subspaces

Let F be the set of finite-dimensional subspaces ofH. For FPF let ONBsFd be the set o
rthonormal bases inF. The dimensiond of F is the unique number of elements of eacB
ONBsFd, i.e.,

s∃d P Nds∀B P ONBsFdd, uBu = d. sA1d
We use here ONB as a function onF. Let d :H3H→ h0,1j be the function defined by
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dsx,yd = H1, x = y,

0, else.

he orthonormality of the bases can be expressed then as

s∀B P ONBsFdds∀x,y P Bd, kx,yl = dsx,yd,

nd basis-set expansions are given by

s∀B P ONBsFdds∀x P Fd, x = o
yPB

ky,xly.

e denote the set of finite-rank operators onH by

LF = hf P HH:f is linear andRsfd P Fj. sA2d

sfd denotes the range of the functionf. A finite-rank operatorA on H is called normal ifA†A
AA†, and we denote the set of normal finite-rank operators onH by

LFN = hA P LF:A†A = AA†j. sA3d

or APLF andBPONBsRsAdd we can express the action ofA on RsAd as follows:

s∀x P RsAdd, Ax= o
yPB

ky,Axly = o
y,y8PB

ky,Ay8lky8,xly.

f A is normal, thensky,Ay8ldy,y8PB is a normal matrix. Hence, there exists an eigensystem tha
e used to express the action ofA on RsAd, and we obtain

s∀A P LFNds∃B P ONBsRsAddds∃ f P CHds∀x P RsAdd,

Ax= o
yPB

fsydky,xly. sA4d

he sethfsydjyPB is the set of eigenvalues of the restriction ofA to RsAd.

. Linear algebra in hyperfinite-dimensional subspaces

We assume in the sequel a polysaturated extension of the basic superstructure. Then,.F is the
et of hyperfinite-dimensional subspaces of.H. The transferred relation.ONB acts on.F, and
y the transfer principle we obtain forFP.F,

s∃d P .Nds∀B P .ONBsFdd, uBu = d. sA5d

e note that the dimension d ofF is now a hypernatural number, which may be infinite.
rthonormality of the nonstandard bases is expressed by

s∀B P .ONBsFdds∀x,y P Bd, .kx,yl = .dsx,yd,

nd the nonstandard basis-set expansions are given by

s∀B P .ONBsFdds∀x P Fd, x = o
yPB

.ky,xly.

ote that.k· , ·l is the transferred scalar product, and thatoyPB may be a hyperfinite sum. T
.
nternal hyperfinite-rank operators onH are given by the set
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.LF = hf P .sHHd:f is linear andRsfd P .Fj. sA6d

normal linear operatorA on .H fulfills the condition A†A=AA†, and the set of norm
yperfinite-rank operators on.H is

.LFN = hA P .LF:A†A = AA†j. sA7d

or eachAP.LFN there exists an eigensystem, and we obtain

s∀A P .LFNds∃B P .ONBsRsAddds∃ f P .sCHdds∀x P RsAdd,

Ax= o
yPB

fsyd.ky,xly. sA8d

ince eachAP.LFN is internal, the range ofA, RsAd, is internal,.ONBsRsAdd is internal, and
achBP.ONBsRsAdd is internal. Moreover,f P.sCHd is internal, and the set of eigenvalu

fsBd, is thus internal too.
If we consider a standard eigensystemE then it is convenient to enumerate the elementE

hsl1,x1d , . . . ,sld,xddj, and dPN is the dimension. In the same manner we can denote a
tandard eigensystem, assuming dP.N.
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table quantum systems in anti–de Sitter space:
ausality, independence, and spectral properties a)
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If a state is passive for uniformly accelerated observers inn-dimensionalsnù2d
anti–de Sitter(Ads) space–time(i.e., cannot be used by them to operate aperpet-
uum mobile), they will (a) register a universal value of the Unruh temperature,(b)
discover a PCT symmetry, and(c) find that observables in complementary wedge-
shaped regions necessarily commute with each other in this state. The stability
properties of such a passive state induce a “geodesic causal structure” on AdS and
concommitant locality relations. It is shown that observables in these complemen-
tary wedge-shaped regions fulfill strong additional independence conditions. In
two-dimensional AdS these even suffice to enable the derivation of a nontrivial,
local, covariant net indexed by bounded space–time regions. All these results are
model-independent and hold in any theory which is compatible with a weak notion
of space–time localization. Examples are provided of models satisfying the hypoth-
eses of these theorems. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1804230]

. INTRODUCTION AND BASIC ASSUMPTIONS

Quantum field theory in anti–de Sitter space–time(AdS) has been studied for almost 40 ye
see, e.g., Refs. 1 and 20), primarily because it was found that AdS occurs as the ground
eometry in certain supergravity theories with gauged internal symmetry.6,35 But it has become th
bject of an extraordinary amount of attention since the AdS–CFT correspondence has e
We refer the interested reader to the SPIRES database, where a comprehensive list of a
his topic can be retrieved.) There is therefore motivation to clarify in a model-independent se
nd in a mathematically rigorous manner the universal properties of such theories, as im
enerally accepted and physically meaningful assumptions. This investigation has lea
esults which apparently have not been remarked in any form in the literature before.

AdS is a maximally symmetric and globally static solution of the vacuum Einstein equa
e consider here AdS of any dimensionnù2, except when explicitly stated otherwise. It

onveniently be described in terms of Cartesian coordinates in the ambient spaceRn+1 as the
uadric surface

AdSn = hux P Rn+1ux2 8 x0
2 − x1

2 − ¯ − xn−1
2 + xn

2 = R2j s1.1d

ith metricg=diags1,−1, . . . ,−1,1d in diagonal form. As the value of the radiusR is not relevan
or the results of this paper, we shall set it equal to 1 for convenience. The AdSn isometry group
s Os2,n−1d whose identity component will be denoted by SO0s2,n−1d. AdSn is a homogeneou
pace of the group SOs2,n−1d. It is not globally hyperbolic; indeed, it has closed timelike cu

)
Dedicated to Jacques Bros on the occasion of his seventieth birthday.
)Electronic mail: buchholz@theorie.physik.uni-goettingen.de
)
Electronic mail: sjs@math.ufl.edu
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nd has a timelike boundary at spatial infinity through which physical data can propaga
hough the covering space of AdSn eliminates the closed timelike curves, it still has a time
oundary at spatial infinity. We shall find some notable differences between the prope
uantum field theories on AdSn and those of theories on the covering space.

As some of our basic assumptions are motivated by physical considerations concerning
amilies of observables, we must collect some basic facts about observers in AdS.xO

AdSn be any point and letlstd, tPR, be any one-parameter subgroup of SO0s2,n−1d such tha
°lstdxO is an orthochronous curve.(Note that AdS is time orientable.) We interpret this curve a
he worldline of some observer. Among these observers will be those moving along a g
henceforth, geodesic observers) and those experiencing a constant acceleration(uniformly accel
rated observers). Points in a neighborhood ofxO will, in general, also give rise to orthochrono
urves under the action of the chosen subgroup of SO0s2,n−1d, and we denote byW the con
ected neighborhood ofxO in AdSn consisting of all such curves. Typically,W is the causa
ompletion of the originally specified worldline. We view the regionW as the maximal possib

ocalization for any laboratory within the purview of the given observer. The associated dy
re given byeitM=̇Uslstdd with suitable generatorM. Since we are choosing a fixed parametr
ion of the pertinent subgroups of SO0s2,n−1d, the proper time of the observer is obtained

escalingt with ssl̇s0dxOd2d1/2.
To become more precise, the geodesics of AdSn are conic sections by two-planes contain

he origin of the ambient spaceRn+1. So, one-parameter subgroups[see Appendix A for ou
otation concerning SO0s2,n−1d] lstd, tPR, of SO0s2,n−1d of the form ll0nstdl−1, tPR, for
omelPSO0s2,n−1d generate admissible geodesic worldlines in the sense just indicated.
orldlines are closed, timelike curves, whose causal completion is the entire space AdSn. Hence

he maximal laboratory localization regionW for such geodesic observers must be the e
pace–time, AdSn. For uniformly accelerated observers, the corresponding one-paramete
roups are of the formll01stdl−1, tPR, for somelPSO0s2,n−1d. Their laboratory region
alled AdS wedges, are described immediately below. The algebrasAsWd corresponding to an
uch wedge region as well as toW=AdSn are taken to be weakly closed.

We define a “wedge” in AdSn to be the causal completion of the worldline of a unifor
ccelerated observer in AdSn. To be concrete and in order to simplify the necessary computa
e consider the particular choice of region

WR = hux P AdSnux1 . ux0u,xn . 0j, s1.2d

n which the one-parameter subgroup of boostsl01std, tPR, in the 0–1 plane acts in an orth
hronous manner. For anyxOPWR, the curvet°l01stdxO is the worldline of a uniformly acce
rated observer for which the causal completion is preciselyWR. By the assumed SO0s2,n−1d
ovariance, all results concerning this wedge have natural extensions to all images ofWR under
O0s2,n−1d. We therefore define the set of AdSn wedges to be

W =̇ hlWRul P SO0s2,n − 1d. s1.3d

hese are maximal laboratory localizations for the uniformly accelerated observers.
We can now describe the four standing assumptions of this paper. A discussion o

hysical motivation is given in Ref. 12, so we shall only expand upon the less familiar on

i) There exists a strongly continuous, unitary, nontrivial representationU of the symmetr
group SO0s2,n−1d acting on a separable Hilbert spaceH. (It is sufficient here to consid
the subspace of “bosonic” states, so we shall not need to proceed to the covering g
the space–time symmetry group.)

ii ) On H act the global von Neumann algebra of observablesA=AsAdSnd, which contain
any observable measurable in AdSn, and an isotonous family of von Neumann algeb

hAsWdjWPW associated with the wedgesW. Furthermore, one has
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∨
WPW

AsWd = A. s1.4d

iii ) For each wedgeWPW andlPSO0s2,n−1d, one has the equality

UsldAsWdUsld−1 = AslWd. s1.5d

The weak additivity condition(1.4) is a generalization of the natural idea that all observa
re constructed out of local ones. But in contrast to Ref. 12, we do not assume that all obs
an be constructed out of observables with arbitrarily small localization region. This is b
here are nets of physical interest on curved space–times for which the condition(v) specified
elow holds but the algebrasAsOd associated with all bounded open regionsO are trivial.13,31

lso, there exist examples in which the algebraAsOd is nontrivial only for sufficiently larg
ounded regionsO.13 In both of these cases the assumption made in Ref. 12 is violated. W

herefore eliminated all assumptions referring to bounded regions.
We emphasize that we do not postulate from the outset any local commutation rela

he observables. For, in contrast to the case of globally hyperbolic space–times, the prin
instein causality does not provide any clues as to which observables in AdS should co
ith each other. Instead, we shallderivesuch commutation relations from stability propertie

he vacuum, which we now specify.
We shall assume that the statev determined byV is passive(cf. Ref. 29 and Sec. 5.4.4

ef. 5) for the dynamical systemsAsWd ,adUslstddd, for all geodesic and all uniformly accelera
bservers described earlier. We recall that passivity is an expression of the Second Law
odynamics. Since the vacuum is the most elementary system, all order parameters sho

harp values in this state. This is expressed by the weak mixing property

lim
T→`

1

T
E

0

T

svsAstdBd − vsAstddvsBdd dt = 0, s1.6d

or all A,BPA, whereAstd=̇eitMAe−itM. The restriction of the statev to AsWd is said to be centr
f vsABd=vsBAd, for all A,BPAsWd. If this holds, then eitherV is annihilated by most of th
bservables inAsWd or AsWd is a finite algebra(cf. Sec. 8.1 in Ref. 26). In quantum field theor

his is a physically pathological circumstance, which we shall exclude from consideration
These basic features of the vacuum can be summarized as follows.

iv) The vacuum vectorV is cyclic for A and determines a passive, weakly mixing and n
central statev for all geodesic and all uniformly accelerated observers.

The standing assumptions(i)–(iv) are model-independent and physically natural. In this p
e shall show that these assumptions entail that for geodesic observers the vacuumv is a ground
tate; uniformly accelerated observers in AdS will register a universal value of the Unru
erature; they will discover a PCT symmetry; and they will find that observables localiz
omplementary wedge-shaped regions must commute in the vacuum state. Not only
bservables commute in this sense, but the corresponding algebras manifest strong prop
tatistical independence, the nature of which will be studied in detail. We shall also see th
ssumptions imply that quantum theories on AdS obey a geodesic causal structure.

Related results appeared in Ref. 12, and we revisit some of those arguments here
etail than in that announcement. But our research in the intervening time has led not

urther results and a weakening of the assumptions, but also to a shift in our point of view
ow places emphasis on the locality and independence properties which can be derived
ssumptions. We establish independence properties going far beyond those announced in
nd we prove an additional locality property of such theories on proper AdSn which was no
bserved in Ref. 12. Moreover, we show that in two dimensions these suffice to cons
ontrivial, local, covariant net indexed by bounded space–time regions. We also expla

nown examples of quantum fields on AdS fit into our scheme.
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The primary lesson to be drawn from this paper is the observation that covariance a
ivity properties of states induce strong algebraic relations between the observables, which

nterpreted as manifestations of Einstein causality. In our research program, the theories
reated here serve as a theoretical laboratory to test this striking feature. But the insight g
his analysis goes beyond this class of field theoretical models to quantum fields on other
imes. Further, it seems to be of relevance in the discussion of causality problems appe
onlocal theories, such as string theory and quantum field theory on noncommutative spac

I. UNRUH EFFECT, PCT SYMMETRY, AND WEAK LOCALITY

We now enter into the analysis of the implications of our standing assumptions(i)–(iv) by
ppealing to a deep result of Pusz and Woronowicz for general quantum dynamical syste29 In

he present context this result says that the vacuum vectorV is, as a consequence of its passi
nd mixing properties, invariant under the dynamics of any of the observers discussed earl(Ref.
9, Theorem 1.1). In particular, this entails thatM01V=0 (and hence, by Lemma A.3,V is

nvariant under the entire groupUsSO0s2,n−1dd), andv is either(Ref. 29, Theorem 1.3) a ground
tate forM01 (which is excluded by Lemma A.1), or satisfies, for somea priori unknownbù0,
he Kubo–Martin–Schwinger(KMS) condition. In fact, our assumptions exclude the possibilit
=0. In the proof of Lemma 4.1 in Ref. 29 it is shown that ifb=0, then eitherv is a trace stat
n AsWRd or M01=0. In the second case, one would have the triviality of the representation
oost group and thus the triviality ofUsSO0s2,n−1dd, which is excluded by(i). The first case i
xcluded by assumption(iv). Therefore, for any pair of operatorsA,BPAsWRd there exists a
nalytic functionF in the strip hzPCu0, Imszd,bj with continuous boundary values at Imszd
0 and Imszd=b, which are given by

Fstd = vsABstdd, Fst + ibd = vsBstdAd, s2.1d

espectively, for alltPR and withBstd=̇eitM01Be−itM01. By the SO0s2,n−1d-covariance the sam
ssertions are valid for the action of the groupseitM0j , j =2, . . . ,n−1, on the suitable wedg
lgebras.

In Appendix C it is proven that this analyticity entails that the theories we are considerin
atisfy the Reeh–Schlieder property(cf. Lemma C.1). So the vacuum vectorV is cyclic for the
lgebraAsWd, given anyWPW, and, by the KMS property, it is also separating forAsWd (Ref.
, Corollary 5.3.9). Hence, the Tomita–Takesaki modular theory is applicable tosAsWd ,Vd, for
veryWPW (cf. Refs. 4 and 26). Let JWR

denote the modular conjugation andDWR

it the modula
nitaries associated to the pairsAsWRd ,Vd. Since the adjoint action of the strongly continu
nitary groupeitM01, tPR, leaves the algebraAsWRd invariant and satisfies the KMS condition,
ust haveDWR

it =e−btM01, for all tPR (Ref. 26, Theorem 9.2.16). Hence,JWR
is determined by th

quation

JWR
AV = e−sb/2dM01A*V, A P AsWRd. s2.2d

. Unruh temperature

The main task of this subsection is to determine the Unruh temperatureb−1 and specifi
roperties of the operatorJWR

. To this end we shall adapt methods employed in Ref. 3.
We show in Lemma B.1 that there exists a wedgeW0PW such thatlW0,WR for all l in a

eighborhood of the identity in SO0s2,n−1d. Therefore, for any j =2, . . . ,n−1 one ha

0jssdW0,WR for the boostsl0jssd in the 0−j plane for all sufficiently small parameterss. From
q. (A10) in Appendix A we have

eitM01eisM0j = eisscoshstdM0j+sinhstdM1jdeitM01. s2.3d
*
hus we get for any vectorFPH and operatorA PAsW0d:

                                                                                                            



W ities

A which
e ntial
f 6.2 in
R g
t perature

s icular
m

or
e variance
a r
g
P ta-
t d
s

f
U l

v ular
o

al
s d to
i

he
m

pair
s

W

B

e
u o
s

T
p .
(

O

4814 J. Math. Phys., Vol. 45, No. 12, December 2004 D. Buchholz and S. J. Summers

                        
kF,eitM01eisM0jA*e−isM0jVl = kF,eisscoshstdM0j+sinhstdM1jdeitM01A*Vl. s2.4d

e are now in the position of employing the argument given in Ref. 12 to yield the equal

JWR
eisM0j = eisscossb/2dM0j+i sinsb/2dM1jdJWR

. s2.5d

s pointed out in Ref. 12, the operator on the left-hand side of this equation is antiunitary,
ntails thatb is anintegermultiple of 2p, for otherwise the operator appearing in the expone

unction on the right-hand side would not be skew-adjoint. By using the proof of Theorem
ef. 3 withAsOd replaced byAsW0d, one sees that its only possible value isb=2p. Proceedin

o the proper time scale of the observer, we conclude that he is exposed to the Unruh tem

1/2pdssl̇01s0dxOd2d−1/2, in accordance with the value found in computations for some part
odels17,25 and also by more general considerations.7

For geodesic observers, Lemma A.1 is not applicable. In fact,v cannot be a KMS state f
itM0n on A, the laboratory observable algebra for geodesic observers. Indeed, since the co
ssumption(iii ) implies UsldAUsld−1=A, for all lPSO0s2,n−1d, if eitM0n were the modula
roup for V on A, then modular theory would necessitateUsldeitM0n=eitM0nUsld, for all l
SO0s2,n−1d (cf. Theorem 3.2.18 in Ref. 4). But this would only be possible if the represen

ion UsSO0s2,n−1dd were trivial, which is excluded by assumption(i). So v must be a groun
tate foreitM0n.

We have therefore established the following general facts:
Theorem 2.1:Let standing assumptions (i)–(iv) hold. ThenV is invariant under the action o

sSO0s2,n−1dd and each uniformly accelerated observer testingV in AdSn finds a universa

alue s1/2pdssl̇01s0dxOd2d−1/2 of the Unruh temperature which depends only on his partic
rbit. For geodesic observersv is a ground state; in particular, M0n is a positive operator.

This result is a consequence of the passivity ofv, and this vacuum state is the only norm
tate onA which is passive for all observers. In light of Theorem 2.1, it is physically justifie

dentify the operatorM0n with the global energy operator.
The resultb=2p and (Ref. 26, Theorem 9.2.16) permit us to completely determine t

odular unitaries corresponding to the pairsAsWd ,Vd, for all WPW.
Corollary 2.2: Given the standing assumptions (i)–(iv), the modular unitaries for the

AsWRd ,Vd are given by

DWR

it = e−i2ptM01, t P R. s2.6d

Covariance and the uniqueness of the modular objects yield similar results forDW
it , for all

PW.

. PCT symmetry

Having computed the modular unitaries and the value of the inverse temperatureb seen by th
niformly accelerated observers, let us return now to the analysis ofJWR

and clarify its relation t
pace–time reflections. Pluggingb=2p into Eq. (2.5), we see that for smalls:

JWR
eisM0j = e−isM0jJWR

, j = 2, . . . ,n − 1. s2.7d

his relation can be extended to arbitrarys by iteration, if one decomposeseisM0j into anm-fold
roductseiss/mdM0jdm for sufficiently largem. A similar argument withl0j replaced byl0n and Eq
A10) replaced by Eq.(A8) yields

JWR
eisM0n = e−isM0nJWR

. s2.8d
n the other hand, modular theory yields
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JWR
eisM01 = eisM01JWR

. s2.9d

ince these one-parameter subgroups generate SO0s2,n−1d, the intertwining properties ofJWR
ith all unitariesUsldPUsSO0s2,n−1dd are determined.

Lemma 2.3: Given standing assumptions (i)–(iv), one has

JWR
Usld = Usu01lu01dJWR

, s2.10d

or all lPSO0s2,n−1d, whereu01=diags−1,−1,1, . . . ,1d is the reflection which changes the s
f the0–1-coordinates of the points inAdSn (the reflection about the edge of the wedge WR).

Hence, if we defineUsu01ld=̇JWR
Usld, for anylPSO0s2,n−1d, the following partial analo

f the PCT-theorem can be proven.
Theorem 2.4: If standing assumptions (i)–(iv) hold, then the unitary representation

O0s2,n−1d extends to a representation ofSOs2,n−1d in which the reflectionu01 is implemente
y the antiunitary involution JWR

.
Proof: Note that SOs2,n−1d is the disjoint union ofu01SO0s2,n−1d and SO0s2,n−1d. Since

Usu01l1 · l2d = JWR
Usl1l2d = JWR

Usl1dUsl2d = Usu01l1dUsl2d s2.11d

nd

Usu01l1 · u01l2d = Usu01l1u01dUsl2d = JWR
Usl1dJWR

Usl2d = Usu01l1dUsu01l2d, s2.12d

or all l1,l2PSO0s2,n−1d, the assertion follows.
Theorem 2.4 is a purely group-theoretic statement which does not yet say anything ab

djoint action ofJWR
on the observables. Results of that type require an additional assumpti

ill appear in a later publication.

. Weak locality

In order to gain insight into the locality properties of the net, we consider the obser
hich are localized in the region

WR8=̇hux P AdSnu − x1 . ux0u,xn . 0j. s2.13d

hroughout this subsection we shall only consider AdSn of dimensionnù3. Since the regionsWR

ndWR8 are each one-half(on the same “side” of AdSn—see Fig. 1 above) of the regions obtaine
y intersecting opposite wedge-shaped regions in the ambient spaceRn+1 with AdSn, we call them
pposite wedges. In general, ifW=lWR, for somelPSO0s2,n−1d, thenW8=lWR8.

In Ref. 12 it was shown that fornù3 the earlier results entail that observables which
ocalized in complementary wedges are weakly local in the vacuum state. So we can sta

Theorem 2.5:Under the assumptions (i)–(iv) and for nù3, observables which are localiz
n

FIG. 1. Conjugate wedges in anti–de Sitter space and arrow of time.
n opposite wedges ofAdS are weakly local with respect to each other. Explicitly, for anyl
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SO0s2,n−1d and any A8PAslWR8d, BPAslWRd, one haskV ,A8BVl=kV ,BA8Vl.
This result is also valid for theories in the covering space of AdSn which satisfy(i)–(iv). A

imilar result was proven in Ref. 7 for two-point functions of quantum fields on the covering
f AdSn satisfying a different set of assumptions in the Wightman framework.

The uniqueness of the modular objects and the covariance assumption(iii ) give us a relatio
e shall use repeatedly in the following:

UsldJWUsld−1 = JlW, s2.14d

or all WPW and alllPSO0s2,n−1d. Hence, sinceAsWR8d=eipM12AsWRde−ipM12, Eq. (2.14) and
he observations made above imply

JWR8
= eipM12JWR

e−ipM12 = JWR
e−i2pM12 = JWR

. s2.15d

hus, the SO0s2,n−1d-covariance of the net entails

JW8 = JW, for everyWP W. s2.16d

f the algebrasAsWd andAsW8d commuted strongly with each other, it can be shown that(2.16)
ollows from modular theory. It is therefore of interest that(2.16) obtains when the algebras o
eakly commute.

We continue with some further locality results, which distinguish theories on proper AdS
hose on the covering space. We have chosen our wedge regionsWPW to be connected fo
hysical reasons, as previously explained. But the intersection of the(connected) wedgeW in the
mbient space

W = hux P Rn+1ux1 . ux0uj s2.17d

ith AdSn has two connected components, one of which isWR and the other is the conjuga
edge

W̃R8 = hx P uAdSnux1 . ux0u,− xn . 0j. s2.18d

One has the geometric relations

W̃R = u01W̃R8 = − WR and WR8 = − W̃R8 . s2.19d

oreover, it is easy to see that

eipM0nAsWRde−ipM0n = AsW̃R8d and eipM0nAsWR8de−ipM0n = AsW̃Rd. s2.20d

he rotation in the 0-n plane byp also reverses the orientation of the world linesl01stdxO (cf. Eq.

A5)), so that the world lines inW̃R8 run in the same direction as those ofWR8, while those inW̃R

ave the same orientation as those inWR. Explicitly, Corollary 2.2 implies that the modul
nitaries for the pairsAsWR8d ,Vd are given by

DWR8
it = ei2ptM01, t P R. s2.21d

ence, for alltPR, one has

D
W̃R

it
= eipM0nDWR8

it e−ipM0n = eipM0nei2ptM01e−ipM0n = e−i2ptM01 = DWR

it , s2.22d

y (A5). So, he−i2ptM01jtPR is the group of modular unitaries forsAsW̃Rd ,Vd, and we have th

elation
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JW̃R
AV = e−pM01A*V, for A P AsW̃Rd. s2.23d

oreover, we may appeal to(2.16) and the modular theory to find

JW̃R
A8V = epM01A8*V, for A8 P AsW̃R8d. s2.24d

rom Eqs.(2.14) and (2.8) follow the equalities:

JW̃R8
= eipM0nJWR

e−ipM0n = ei2pM0nJWR
= JWR

, s2.25d

here we have usedei2pM0n=1, valid in proper AdS but not in its covering space. Thus, by(2.16)
e have fornù3:

JWR8
= JWR

= JW̃R
= JW̃R8

. s2.26d

e can now prove thatAsW̃R8d andAsWRd are weakly local with respect to each other.
Theorem 2.6:Under the assumptions (i)–(iv) and for nù3, observables which are localiz

n WR are weakly local with respect to observables localized in W˜
R8. Explicitly, for any l

SO0s2,n−1d and any A8PAslW̃R8d, BPAslWRd, one haskV ,A8BVl=kV ,BA8Vl.
Proof: With the earlier preparations, one sees that for anyA8PAsW̃R8d andBPAsWRd, one

as

kV,A8*BVl = kV,B*A8Vl = kV,B*JWR
JWR

A8Vl = kV,Be−pM01epM01A8*Vl = kV,BA8*Vl.

s2.27d

Theorem 2.6 does not hold in the covering space of AdSn, since, in general,eipM0n andJWR
ill not commute in such theories. Indeed, in Refs. 7 and 21 can be found examples of a fr

heory on the covering space of AdSn for which it can be shown that assumptions(i)–(iv) are

atisfied, but the elements ofAsWRd and AsW̃R8d do not commute in the vacuum state—
ppendix E for further discussion. However, for theories on proper AdS, Theorem 2.6 is c

ent with a property of two-point functions observed in Ref. 7 and arrived at there by very di
eans and assumptions.

In Theorems 2.5 and 2.6 we see that the passivity of the vacuum state and the group
n SO0s2,n−1d have determined which regions in AdSn are to have(weakly) commensurab
bservables. In theories on AdS where the basic fields satisfy standardc-number commutatio
elations, it follows from this result that such observables actually commute in the usual(operator)
ense.33 Indeed, it follows then that

AsWR8d , AsWRd8 and AsWRd , AsW̃R8d8. s2.28d

But assumptions(i)–(iv) do not imply the strong locality relations(2.28) in general. Indeed
onsider a tempered Hermitian Fermi-type fieldf with anticommutator

fsxdfsyd + fsydfsxd = sWsx,yd + Wsy,xdd · 1, s2.29d

hereWsx,yd is taken to be any SO0s2,n−1d-invariant two-point function satisfying the spectr
ondition. [Specific examples are provided by two-point functions given in Ref. 21, Eq.(4.9).]
his anticommutator does not vanish whenx and y are in complementary wedges. The fieldf
enerates a CAR-algebra with a quasifree state fixed by the two-point function

vsfsxdfsydd = Wsx,yd. s2.30d

roceeding to the GNS representation with cyclic vectorV, we conclude from Refs. 7 and 21 t
his example satisfies all of our standing assumptions. SinceWsx,yd is symmetric whenx,y are in

omplementary wedges, the weak locality is explicit.
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As explained in Ref. 12, if(2.28) holds there are grounds to expect that the theory gener
annot have interaction. Theories which are weakly local but not strongly local escape th
ent. In the following sections we shall therefore continue to explore consequences of s
ssumptions(i)–(iv) when(2.28) does not hold, beginning with the nature of the independen

he algebrasAsW1d, AsW2d associated with suitable spacelike separated wedges. But, fir
ake some further observations.

Assumptions(i)–(iv) entail that each wedge algebraAsWd is a factor(cf. the proof of Theo
em 4.3). If wedge locality (2.28) held, then it would follow thatAsWdùAsW8d=C1, i.e., no
ontrivial observable can be localized in bothW andW8. It is therefore of physical interest th

his fact also follows directly from(i)–(iv) in the absence of(2.28).
Proposition 2.7: Let standing assumptions (i)–(iv) hold and let nù3. Then for any WPW,

ne hasAsWdùAsW8d=C1 and AsWd∨AsW8d=BsHd.
Proof: By covariance, it suffices to prove the assertion forW=WR. Let APAsWRdùAsWR8d

ndH0 be the closure inH of sAsWRdùAsWR8ddV. Sinceei2tpM01, respectively,e−i2tpM01, are the
odular unitaries corresponding tosAsWRd ,Vd, respectively,sAsWR8d ,Vd, then with D=e2pM01

ne has

JWR
D1/2AV = A*V, JWR8

D−1/2AV = A*V. s2.31d

ence, Eq.(2.26) entails that D1/2=D−1/2 on H0. Therefore, DAV=AV, which yields AV
DitAV=ei2tpM01AV, for all tPR. Hence, the mean ergodic theorem(see, e.g., Ref. 27) entails

hat AV=F0AV, whereF0 is the projection onto the subspace of vectors inH each left invarian
nderUsSO0s2,n−1dd, using Lemma A.3. Since the mixing property in condition(iii ) entails tha

he rank ofF0 is 1 and sinceV is separating forAsWRd, it follows that A is a multiple of the
dentity. But this entails

C1 = JWsAsWd ù AsW8ddJW = JWAsWdJW ù JWAsW8dJW = AsWd8 ù AsW8d8, s2.32d

sing (2.26), so thatAsWd∨AsW8d=BsHd, for everyWPW. h

Before we close this section, we have a final proposition to prove.
Proposition 2.8: Let standing assumptions (i)–(iv) hold, nù3 and W1,W2PW. If W2

±W1, thenAsW1dÞAsW2d.
Proof: Since two unequal wedgesW1,W2PW have unequal reflections about their ed

nless W2 coincides with W18 ,W̃1 or W̃18, Lemma 2.3 entailsJW1
ÞJW2

and, thus,AsW1d
AsW2d.

If AsW1d,AsW18d, then Theorem 2.5 entails that the restriction ofv to RsW1d is a trace

hich is excluded by assumptions(i) and (iii ). Similarly Theorem 2.6 yieldsAsW1dÞAsW̃18d. h

II. THE SCHLIEDER PROPERTY

Many versions of the notion of independence of algebras of observables in spacelike se
egions have emerged in algebraic quantum theory(see Ref. 34 for a review), and most ar
ogically independent of the usual notion of commensurability, which is that the algebras co
ith each other elementwise. In this section we shall prove that algebras associated with
pacelike separated wedgesW1,W2 satisfy an extended form of the algebraic independence
ition known as the Schlieder property, namely thatA1PAsW1d ,A2PAsW2d andA1A2=0 imply
ither A1=0 or A2=0. We shall say that two wedgesW1,W2 are properly spacelike separate
W1,W28 for all l in some neighborhood of the identity in SOs2,n−1d. Note thatW andW8 are
ot properly spacelike separated. Although in de Sitter and Minkowski spaces of dimenn
3 such properly spacelike separated wedges do not exist, we show in Appendix B that

lentiful in AdS.
The proof of an extended Schlieder property in AdSn, nù3, will be carried out in a series

teps.

Lemma 3.1: Let W1,W2PW be properly spacelike separated and let A1,kPAsW1d, A2,k
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AsW2d ,k=1, . . . ,n. If BPBsHd is such that

o
k=1

n

A1,kUsldBUsld−1A2,k = 0, s3.1d

or all l in some neighborhoodN,SO0s2,n−1d of the identity, then this equality holds for
PSO0s2,n−1d.

Proof: Choosing a smaller neighborhoodN, if necessary, it may be assumed that there e
WPW such thatW1,l0l1W andW2,l0l1W8 for l0,l1PN. Let s°lWssd be the group o
oosts inducing a positive timelike flow on the wedgeW (and hence a negative timelike flow
8). Settingl1ssd=̇l1lWssdl1

−1 for l1PN, it will first be shown thatBs=̇Usl1ssddBUsl1ssdd−1,
PR, satisfies the hypothesis of the lemma as well. Puttinglssd=̇l0l1lWssdl1

−1l0
−1, l0PN, and

icking arbitrary elementsX1, X2 in AsW1d, AsW2d, respectively, one has

o
k=1

n

kV,X1A1,kUsl0dBsUsl0d−1A2,kX2Vl

= o
k=1

n

kV,X1A1,kUslssddUsl0dBUsl0d−1Uslssdd−1A2,kX2Vl = 0 s3.2d

or sufficiently smallusu. Now s°Uslssdd is, after rescalings, the modular group correspondi
o sAsl0l1Wd ,Vd and, similarly, s°Uslssdd−1 is the modular group corresponding
Asl0l1W8d ,Vd. SinceAsW1d,Asl0l1Wd andAsW2d,Asl0l1W8d, it follows that

s° kV,X1A1,kUslssddUsl0dBUsl0d−1Uslssdd−1A2,kX2Vl s3.3d

xtends to an analytic function on a strip of the upper complex half plane for eachk=1, . . . ,n. By
he preceding result, the corresponding sum of functions thus has to vanish for allsPR. As X1, X2

ere arbitrary within the above limitations andV is cyclic for AsW1d andAsW2d, respectively
ne concludes thatok=1

n A1,kUsl0dBsUsl0d−1A2,k=0, sPR andl0PN.
Next, let l1, . . . ,lmPN. Settinglissd=̇lilWssdli

−1, i =1, . . . ,m, one deduces by induction
that also

Bs1,. . .,sm
=̇Uslmssmdd ¯ Usl1ss1ddBUsl1ss1dd−1

¯ Uslmssmdd−1 s3.4d

atisfies the hypothesis of the lemma fors1, . . . ,smPR. Indeed, the casem=1 has just bee
roven. By the induction hypothesis and the group property ofU, the assertion follows fo

1, . . . ,sm−1PR and smallusmu. The argument presented in the preceding paragraph then
hat the assertion holds for allsmPR.

But, according to Lemma A.2, the closure of the group generated byl0lWssdl0
−1, l0PN,

PR, is SO0s2,n−1d. Hence, taking into account thatU is a continuous representation, it follo
y (weak operator) continuity of l°UsldBUsld−1 that these operators satisfy the hypothes
he lemma as well, thereby completing its proof.

In the following, we shall say that the wedgeW1 is properly contained in the wedgeW2 and
hall write W1bW2 if there exists a neighborhoodN of the origin in SO0s2,n−1d such tha
W1,W2, for all lPN. Again, note that in de Sitter space and Minkowski space of dime
ù3 such pairs of wedges do not exist, but in AdS they are abundant(see Appendix B).

Lemma 3.2: Let W1, W2 be properly spacelike separated, let W be any wedge such that W1, W2

re properly contained in W and W8, respectively. If A1,k, A2,k,k=1, . . . ,n, are elements ofAsW1d
nd AsW2d, respectively, such thatok=1

n A1,kA2,k=0, one has

o
n

A1,kUsl1dB1Usl1d−1
¯ UslmdBmUslmd−1A2,k = 0, s3.5d
k=1
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or mPN and Bi PAsWd8, li PSO0s2,n−1d , i =1, . . . ,m.
Proof: The proof of the lemma proceeds by induction onm. Let N be a neighborhood of th

dentity in SO0s2,n−1d such thatl0
−1W1,W for l0PN. Then

Usl0d−1A1,kUsl0d P Asl0
−1W1d , AsWd = sJWAsWdJWd8. s3.6d

o A1,k andUsl0dB0Usl0d−1 commute for anyB0PJWAsWdJW and consequently

0 = Usl0dB0Usl0d−1o
k=1

n

A1,kA2,k = o
k=1

n

A1,kUsl0dB0Usl0d−1A2,k. s3.7d

y the preceding lemma, this equality extends to alll0PSO0s2,n−1d. Assuming now that th
tatement holds form, one has with the same choices ofB0 andl0 as in the preceding step

0 = o
k=1

n

Usl0dB0Usl0d−1A1,kUsl1dB1Usl1d−1
¯ UslmdBmUslmd−1A2,k

= o
k=1

n

A1,kUsl0dB0Usl0d−1Usl1dB1Usl1d−1
¯ UslmdBmUslmd−1A2,k, s3.8d

or Bi PJWAsWdJW, li PSO0s2,n−1d , i =1, . . . ,m. Taking into account thatU is a representatio
f SO0s2,n−1d, this implies(after an obvious redefinition ofl1, . . . ,lm):

o
k=1

n

A1,kUsl0dsB0Usl1dB1Usl1d−1
¯ UslmdBmUslmd−1dUsl0d−1A2,k = 0. s3.9d

pplying once more the preceding lemma, one concludes that

o
k=1

n

A1,kUsl0dB0Usl0d−1Usl1dB1Usl1d−1
¯ UslmdBmUslmd−1A2,k = 0, s3.10d

or Bi PJAsWdJ, li PSO0s2,n−1d , i =0,1, . . . ,m, completing the proof.
In the next step of our argument we make use of the relationJWUsldJW=Usulud, whereu is

he reflection about the edge ofW (cf. Lemma 2.3). Because of weak additivity, Proposition
nd the preceding relation we have

∨
l
UsldJWAsWdJWUsld−1 = JWs∨

l
UsldAsWdUsld−1dJW = JWBsHdJW = BsHd, s3.11d

howing thatBsHd is the weak operator closure of the algebra generated by the ope
sldJWBJWUsld−1, BPAsWd, lPSO0s2,n−1d. It therefore follows that for any collection
peratorsA1,k, A2,k as in the preceding lemma one has

o
k=1

n

A1,kBA2,k = 0, B P BsHd. s3.12d

aking into account thatBsHd contains in particular all operators of rank 1, we conclude tha
ny normal stateṽ on BsHd we have

o
k=1

n

ṽsA1,kdA2,k = 0 =o
k=1

n

A1,kṽsA2,kd. s3.13d

o we have established that properly spacelike separated wedge algebras manifest a stron
lgebraic independence which implies the Schlieder property.
Proposition 3.3: Let standing assumptions (i)–(iv) hold and let W1 and W2 be properly space-
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ike separated wedges. For any A1,kPAsW1d and A2,kPAsW2d ,k=1, . . . ,n, such tha

k=1
n A1,kA2,k=0, relation (3.13) must hold for all normal statesṽ on BsHd. In particular, if

1A2=0, then either A1=0 or A2=0.
If the algebrasAsW1d andAsW2d were mutually commuting, then the Schlieder proper

quivalent toC* -independence.32 However, in the noncommuting case, the Schlieder conditi
trictly weaker thanC* -independence,24 and it is an open question in our setting whe
*-independence holds ifAsW1d andAsW2d do not commute.

V. THE SPLIT PROPERTY

We shall next show that ifW1 is properly contained inW2, then there exists a type I factorM
uch thatAsW1d,M,AsW2d, as long as the multiplicity of the eigenvalues ofM0n does no
row too fast. Hence, with this additional assumption, the algebrasAsW1d andAsW2d8 manifest a
articularly strong form of statistical independence.

Since AdSn is periodic in the time variable andM0n is a positive operator, the spectrum ofM0n

s a subset ofN0=h0jøN. If the multiplicities of the eigenvalues ofM0n do not increase to
apidly, thene−gM0n is a trace class operator for anyg.0. In Appendix D we exhibit simpl
xamples, constructed from irreducible unitary positive energy representations of SO0s2,n−1d,
here this situation obtains. We formulate this assumption explicitly as condition(NC).

(NC). There exist constantsc0.0 and 0,k0,1 such that the spectral multiplicitiesmm of the
igenvaluesm of M0n are bounded bymmøec0mk0, mPN0.

It is particularly straightforward to establish the “split property” in the presence of con
NC). In fact, in Ref. 16, Theorem 3.2 it was shown that in conformally invariant theor
race-class condition on the exponentiated conformal Hamiltonian entails that suitable inc
re split. We indicate here a somewhat different and more explicit argument. To this end, w

he following lemma(Ref. 10, Lemma 2.3).
Lemma 4.1: Let Ustd=eitH, tPR, determine a strongly continuous one-parameter grou

nitary operators with positive generator H and invariant unit vectorVPH. Moreover, letA and
be von Neumann algebras satisfying

UstdAUstd−1 , B, s4.1d

or all utu,d and somed.0. Then there exists a continuous function f:R→R which decrease
lmost exponentially, i.e., supvufsvdueuvuk,`, for any 0,k,1, such that

kV,AB8Vl = kV,AfsHdB8Vl + kV,B8fsHdVl, s4.2d

or all APA and B8PB8.
We use this to establish the following general result.
Proposition 4.2: Let Ustd=eitH, tPR, be a strongly continuous one-parameter group of

ary operators with an (up to a phase) unique invariant unit vectorVPH and with a generato
having spectrum inN0 and spectral multiplicities bounded bymmøec0mk0, mPN0, for fixed

0.0 and 0,k0,1. Moreover, letA andB be type III factors withV cyclic and separating fo
oth and satisfying

UstdAUstd−1 , B, s4.3d

or all utu,d and somed.0. Then there exists a type I factorM such thatA,M,B.
Proof: Consider the algebraic tensor productA(B8 and two of its representations

a) sp ,H ,Vd with psA(B8d=̇AB8,
b) spp,H ^ H ,V ^ Vd with ppsA(B8d=̇A^ B8
n an obvious notation. By the preceding lemma, one has
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kV,psA ( B8dVl = kV,AB8Vl = kV,AfsHdB8Vl + kV,B8fsHdVl. s4.4d

et PV be the projection ontoCV,H and letV be the unitary flip onH ^ H:

VF ^ C=̇C ^ F, F,C P H. s4.5d

aking into account thatfsHd is a trace class operator onH, because of the assumptions on
pectrum ofH and the rapid decay off, one may conclude from(4.4) that

kV,psA ( B8dVl = trH^HsfVsfsHd ^ PVd + sPV ^ fsHddVgA ^ B8d, s4.6d

here the operator in square brackets is of trace class onH ^ H. Thus

kV,psA ( B8dVl = vpsppsA ( B8dd, s4.7d

herevp is some normal functional with respect to the representationpp. Since the left-hand sid
efines a state onA(B8, so does the right-hand side; hence,vp is, in fact, a state o

psA(B8d−=A^̄B8. Since A ,B8 are type III factors, so is their tensor product. Moreo
^ V is a cyclic and separating vector forA^B8, sinceV is cyclic and separating forA andB8.
encevp is represented by a vectorVpPH ^ H, and one has

kV,psA ( B8dVl = kVp,ppsA ( B8dVpl, A P A,B8 P B8. s4.8d

inceV is cyclic for psA ^ B8d, one concludes thatp is unitarily equivalent to some subrep
entation ofpp. But, due to the fact thatppsA ^ B8d is a factor of type III, any subrepresentat
f pp is equivalent topp; hence,p andpp are unitarily equivalent.

So letW:H ^ H→H be a unitary such that

AB8 = psA ( B8d = WppsA ( B8dW−1 = WA^ B8W−1. s4.9d

inceA ^ 1,BsHd ^ 1, s1^ B8d8, one concludes, after applying the adjoint action ofW to this
hain of inclusions,

A , WsBsHd ^ 1dW−1 , B9 = B, s4.10d

hereM=̇WsBsHd ^ 1dW−1 is a type I factor. h

We can now prove the following theorem for our immediate purposes.
Theorem 4.3: Let the assumptions (i)–(iv) and (NC) hold. Then for any wedges W1 and W2

uch that

eitM0nAsW1de−itM0n , AsW2d, s4.11d

or all sufficiently small tPR, there exists a typeI` factor M such thatAsW1d,M,AsW2d.
Remark:Of course, ifW1bW2, then(4.11) holds.
Proof: Our passivity and mixing assumptions entail thatAsWd is a type III1 factor, for all

PW (Ref. 29, Theorem 4.3). The theorem then follows at once from Proposition 4.2.
Note that in de Sitter space and Minkowski space of dimensionnù3 no inclusions of wedg

lgebras can be split. For Minkowski space this was observed in Ref. 8; in de Sitter spaceW1,W2

ntailsW1=W2.
The earlier results hold only for theories on proper AdS. If the covering space of A

onsidered, then condition(NC) must be replaced by the condition that the map

AsWd { A ° e−gM0nAV, s4.12d

s nuclear, for allg.0.9 The proof presented in Ref. 9 is formulated in terms of double

lgebras in Minkowski space but carries over to the present situation without difficulty.
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. LOCAL NETS ON TWO-DIMENSIONAL AdS

In this section we prove that standing assumptions(i)–(iv) and the spectral condition(NC)
ntail the existence of a nontrivial, covariant and local subnet in two-dimensional AdS
oteworthy that locality properties can be derived in these circumstances, and it would

nterest to see whether the same is also true in higher-dimensional AdS.
In two-dimensional AdS, the set of all wedge-shaped regions consists of two discon

ieceshlWRulPSO0s2,n−1dj and hlWLulPSO0s2,n−1dj, whereWL=WR8. The former(respec
ively, latter) will be denoted byWRsWLd and called the class of right wedges(left wedges). Note
hat WPWR if and only if W8PWL. We assume as before that

A = ∨
WPWR

AsWd, s5.1d

nd thatV is cyclic for A. Hence, once again, Proposition C.1 yields the cyclicity ofV for every
sWd, WPWR.

In AdS2 the edge of a wedge is a single point. For each pointaPAdS2 we shall denote byWa

he unique element ofWR whose edge isa. ThenWa8 is the unique element ofWL whose edge
. For a,bPAdS2 such thatWbbWa we define the open sets(double cones) Oa,b=WaùWb8.
orresponding toOa,b we define the von Neumann algebra

BsOa,bd = AsWad ù AsWbd8. s5.2d

ote thatOa,b,Oc,d if and only if Wa,Wc andWd,Wb. The isotony of the original net of wed
lgebras then implies

BsOa,bd , BsOc,dd, s5.3d

.e., the isotony of the nethBsOa,bdua,bPAdS2j. The covariance of the original net of wed
lgebras entails

UsldBsOa,bdUsld−1 = UsldsAsWad ù AsWbd8dUsld−1 = AslWad ù AslWbd8 = BslOa,bd

s5.4d

or all lPSOs2,n−1d.
In general, there is no reason for such relative commutants of wedge algebras to be no

ut in our setting they turn out to be very large algebras, having a denseGd set of cyclic vectors
Proposition 5.1: If conditions (i)–(iv) and (NC) hold in a theory on two-dimensional AdS

bbWa, thenBsOa,bd is a typeIII 1 factor.
Proof: If Wb is properly contained inWa, then from Theorem 4.3 one has the existence

ype I factorM such thatAsWbd,M,AsWad. From the proof of Theorem 2.1 in Ref. 18 th
xists a unitary mappingH→H ^ H such that UAsWbdU−1=AsWbd ^ 1 and UAsWadU−1

BsHd ^ AsWad. Using Takesaki’s commutant theorem for tensor products(cf. Ref. 26, Theorem
1.2.16) one therefore sees that

BsOa,bd = AsWad ù AsWbd8 = U−1ssBsHd ^ AsWadd ù sAsWbd8 ^ BsHdddU = U−1AsWbd8

^ AsWadU. s5.5d

ince AsWad and AsWbd are type III1 factors (cf. proof of Theorem 4.3), the algebr
sWbd8 ^ AsWad and, thus, alsoBsOa,bd is a type III1 factor (cf. Ref. 26, Corollary 11.2.17 an
ef. 15, Theorems 1.3.4 and 3.4.1).

We have seen previously that assumptions(i)–(iv) prescribe the sense in which “space
eparated” is to be understood in AdSn. Hence, the regionOa,b is spacelike separated fromOc,d if
here exists a wedgeW such thatOa,b,W and Oc,d,W8. Without loss of generality, we ma
ssume for concreteness thatWPWR, so thatWa,W,Wd. Then one finds that the local algeb

atisfy locality
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BsOa,bd = AsWad ù AsWbd8 , AsWd , AsWcd8 ∨ AsWdd = BsOc,dd8. s5.6d

e summarize these findings in the following theorem.
Theorem 5.2: If conditions (i)–(iv), (NC) and (5.1) hold in a theory on two-dimensional,

hen the above construction yields a nontrivial, covariant and local netO°BsOd based on
ouble conesO,AdS2, in which each algebraBsOd is a factor of typeIII 1.

One can similarly define a second nontrivial, covariant, and local net from a given
edge algebras based upon the wedges inWL. These two local nets coincide if the initial nets
edge algebras are local with respect to each other,AsW8d,AsWd8.

We wish to sketch some consequences of this construction. The weakly local, bu
onlocal net fixed by the fieldf given in Eq.(2.29) is also well-defined in two-dimensional Ad
s long as the two-point functionWsx,yd is suitably chosen. The preceding construction yi
any nontrivial observables localized in precompact subsets of AdS2 and associated with th

eld. In terms of the original, simply expressed field, these local observables are quite com
bjects. This suggests the possibility of constructing complex local objects from relatively
onlocal fields.

In Ref. 14 the existence of split inclusions of wedge algebras was replaced by a m
uclearity condition to employ the above construction in theories on two-dimensional Mink
pace. This modular nuclearity condition has been verified28 in a factorizingS-matrix model with
-matrix not equal to the identity. The basic field in that model has algebraic relations sim
hose of our fieldf. Since in some suitable sense quantum theories on AdS become c
heories on Minkowski space as the AdS radius becomes sufficiently large, one may exp
he model on AdS2 determined byf also describes physics which goes beyond that of gener
ree fields. These matters shall be further investigated elsewhere.

I. CONCLUSIONS AND FURTHER REMARKS

We have thus shown that stability properties of a state carrying the interpretatio
vacuum” imply a PCT theorem, the uniqueness of the Unruh temperature, as well as co
urability and independence properties of the observables in any quantum field theory o
uch implications exist also in other space–times, but they are of particular interest in the
dS, where the causal structure is such that it is not cleara priori how to define “mutuall
pacelike regions,” and therefore it is not clear which locality relations are physically mean
or is it sufficient to sidestep the issue by appealing to theories on the covering space of An. In

act, we have seen that observables in opposite wedgesW andW8 or in conjugate wedgesW and
˜ 8 necessarily commute with each other, either weakly or strongly. The former fact can
atural from the point of view of the covering space of AdSn, but the latter can certainly not
bserved in theories on the covering space. It is remarkable that locality properties can b
ined by stability assumptions. Indeed, we showed that in two-dimensional AdS these s
ssumptions and a weak growth condition on the eigenvalues ofM02 entail the existence of
ontrivial, covariant, local net indexed by bounded regions in AdS. It would be of inter
etermine if the same is true of theories on higher dimensional AdS.

It was conjectured by Bros, Epstein, and Moschella in Ref. 7 that the assumptions m
hat paper should follow from our standing assumptions. This would be an interesting m
ettle, since it would allow one to derive more detailed information about the analyticity pro
f the two-point function of quantum fields on AdS.
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PPENDIX A: UNITARY REPRESENTATIONS OF THE AdS GROUP

The algebraic properties of the strongly continuous unitary representation of SO0s2,n−1d
ssumed to exist in(i) are of crucial importance to us. As a convenience to the reader, we c

he relevant properties here. Many of the arguments in this section are adapted from Ref.
ny such representationU and a coordinate system on AdSn, we denote byMmn ,m ,n
0,1, . . . ,n, the corresponding self-adjoint generators. On a dense, invariant domain of a
ectors inH, they fulfill the following Lie-algebraic relations:

fMmn,Mrsg = − igmrMns + igmsMnr − ignsMmr + ignrMms, sA1d

here g=diags1,−1, . . . ,−1,1d, m ,n=0,1, . . . ,n. In particular, the operatorM01 generates th
ction of the boostsl01:

Usl01stdd = eitM01, t P R, sA2d

nd similarly for the operatorsM0j , j =2, . . . ,n−1. M0n is the generator of the time translatio
ny of the operatorsM0j , j =1, . . . ,n, may be taken to be the operatorM discussed in the Intro
uction (see Sec. I). If nù3, the operatorsMjk , j ,k=1, . . . ,n−1, are the generators of spa
otations, whereasMjn , j =2, . . . ,n−1 generate other subgroups of boosts obtained from the
entioned by temporal rotation. Ifn=2, thenM01 andM12 are generators of boosts and there

o spatial rotations.
The Lie-algebraic relations(A1) yield the equality

eisM0nM01e
−isM0n = cosssdM01 − sinssdM1n, sA3d

hich implies

eipM0nM01e
−ipM0n = − M01. sA4d

ence,M01 cannot be a positive operator onH. Since the representationUsSO0s2,n−1dd is
ontrivial, we may conclude the following lemma from the assumed SO0s2,n−1d-covariance.

Lemma A.1: The operators M0j , j =1, . . . ,n−1, cannot be positive onH and thusV cannot be
ground state for the group eitM0j.

The Lie-algebraic relations(A1) also imply the following group relations:

eisM0neitM01e−isM0n = eitscosssdM01−sinssdM1nd; sA5d

eisM0jeitM01e−isM0j = eitscoshssdM01−sinhssdM1jd, j = 2, . . . ,n − 1; sA6d

eisMj1eitM01e−isMj1 = eitscosssdM01−sinssdMj0d, j = 2, . . . ,n − 1; sA7d

eisM01eitM0ne−isM01 = eitscoshssdM0n−sinhssdM1nd. sA8d

f course, Eqs.(A6) and (A7) are vacuous ifn=2. We shall establish a few necessary tools
Lemma A.2: LetN,SO0s2,n−1d be any neighborhood of the identity inSO0s2,n−1d. Then

he closure UN in the strong operator topology of the group generated by the unit
sll01stdl−1d, tPR, lPN, contains UsSO0s2,n−1dd.

Proof: Consider firstnù3. From(A6) it follows that for all sufficiently smallusu and for al
PR, UN contains the operatoreitscoshssdM01−sinhssdM1jd for j =2, . . . ,n−1. With fixed s, the Trotte
roduct formula30 applied to the product of the one–parameter groupseitscoshssdM01−sinhssdM1jd and
it coshssdM01 −it sinhssdM1j
PUN implies that the rotationse , j =2, . . . ,n−1, are also contained inUN.
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imilarly, Eqs.(A5) and (A7) entail that the operatorseitM1n andeitM j0, j =2, . . . ,n−1, tPR, are
ontained inUN. Since the groupUsSO0s2,n−1dd is generated by these subgroups, the pro
omplete fornù3.

If n=2, then the same argument applied to(A5) entails that the groupeitM12, tPR, is con-
ained inUN. One may then apply the same reasoning to the equality

eisM12eitM01e−isM12 = eitscoshssdM01−sinhssdM02d sA9d

o conclude that also the groupeitM02, tPR, is contained inUN. The assertion now follows fo
=2.

Lemma A.3: LetCPH satisfy Usl01stddC=C, for all t PR. Then UsldC=C, for all l
SO0s2,n−1d.

Proof: Consider firstnù3. Using the equation

eisM01eitM0je−isM01 = eitscoshssdM0j+sinhssdM1jd, j = 2, . . . ,n − 1, sA10d

nd settingt=2re−usu, the continuity of the representationUsSO0s2,n−1dd implies that

lim
s→±`

eisM01ei2re−usuM0je−isM01 = eir sM0j±M1jd, sA11d

or j =2, . . . ,n−1, where the limit is the strong operator limit onH. But then, by hypothesis, o
as

lim
s→±`

ieisM01ei2re−usuM0je−isM01C − Ci = lim
s→±`

iei2re−usuM0jC − Ci = 0, sA12d

inceei2re−usuM0j converges strongly to the identity 1 onH as s→ ±`. These two equations th
mply

eir sM0j±M1jdC = C, sA13d

or all r PR and j =2, . . . ,n−1. Similarly, the equation

eisM01eitM1ne−isM01 = eitscoshssdM1n+sinhssdM0nd sA14d

ields

eir sM1n±M0ndC = C, sA15d

or all r PR. By using the Trotter product formula again and taking suitable limits, it is clea
M0jC=0=M1jC, for all j =0, . . . ,n. Equation(A1) then implies thatC is annihilated by all of th
eneratorsMmn, which yields the assertion fornù3.

If n=2, Eq.(A14) yields

eir sM12±M02dC = C, sA16d

or all r PR, and thusM12C=0=M02C. The assertion then follows forn=2.
We mention that Lemma A.3 is also stated(without explicit proof) as Lemma 5.4 in Ref. 7

PPENDIX B: WEDGE INCLUSIONS IN AdS

Here we give the proof of some useful geometric properties of the subregions of AdSn which
e have identified as the correct choice of wedges in AdSn. Indeed, we wish to show that for a
edgeWPW there exist wedgesW0PW which are properly contained inW, W0bW, respec

ively, such thatW08 is properly spacelike separated fromW, WbW0. In fact, such wedges are qu

bundant. These results are to be contrasted with the situation in de Sitter space, where de Sitter
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edges satisfyW1,W2 if and only if W1=W2.
11 In Minkowski space of dimensionnù3, two

edges form an inclusionW1,W2 only if W1 is a suitable translation ofW2. Hence, also in th
atter case there do not exist properly spacelike separated wedges.

It is convenient to use the following description ofWR:

WR = hux P AdSnue± ·x , 0,x ·e4 . 0j, sB1d

here e±=s±1,1,0, . . . ,0d and e4=s0, . . . ,0 ,1d. Consider the lightlike vectors f±

s±1,c,0 , . . . ,0 ,sd, wheres.0 andc2=1+s2, and the wedge they determine

W0=̇hux P AdSnux · f± , 0,x ·e4 . 0j. sB2d

he edge of this wedge is the spacelike submanifold

E1=̇hus0,ss1 + s2d1/2,s,cs1 + s2d1/2dus P Rn−2j, sB3d

hich is contained inWR.
Lemma B.1: With the earlier definitions, for any tPR there exists a neighborhoodN of the

dentity in SO0s2,n−1d such thatll01stdW0,WR for all lPN. Hence, for any wedge W2PW
here exist wedges W1,W3PW such that W1bW2 and W2 and W3 are properly spacelike sep
ated.

Proof: In order to show thatll01stdW0̄,WR for l in a neighborhood of the identity, it suffic

o show that the characteristic boundary ofll01stdW0̄ is contained in WR:ll01stdsE1

R+f±d,WR, i.e.,ll01stdsx+ l f ±dPWR, for all l ù0, xPE1. Sincel is to be in a neighborhood
he identity 1, considerl=1+M, where iMi,« and i ·i is the norm on thesn+1d3 sn+1d

atrices with real entries. Then one has

ll01stdsx + l f +d ·e± = s±sinhstd − coshstddss1 + s2d1/2 + ls±coshstd ± c sinhstd − sinhstd − c coshstdd

+ Ml01stdx ·e± + lMl01stdf+ ·e± ø s±sinhstd − coshstddss1 + s2d1/2 + iMiie±i

3hil01stdxi + lil01stdf+ij, sB4d

here use was made of the fact that

±coshstd ± c sinhstd − sinhstd − c coshstd = s71 + cds±sinhstd − coshstdd , 0. sB5d

But il01stdf±iø2 coshstd, il01stdxiøcoshstds1+c2+2s2d1/2s1+s2d1/2 and ie±i=Î2. In addition
sinhstd−coshstd,0, for all tPR+. Hence, if« is sufficiently small, there exists ad,0 (depend

ng on t) such that

ll01stdsx + l f +d ·e± ø d , 0, x P E1,l ù 0. sB6d

imilarly, one shows that

ll01stdsx + l f −d ·e± ø d , 0, x P E1,l ù 0, sB7d

or suitably small«.
SinceslWd8=lW8, for all lPSO0s2,n−1d andWPW, it is clear thatW2 andW38 are prop

rly spacelike separated if and only ifW2bW3. Thus, sinceW=hlWRulPSO0s2,n−1dj, the
emaining assertions follow at once. h

It is of interest to note that in AdSn, nù3, there exists a wedgeW2PW such thatW2̄,WR,
ut in any neighborhood of the identity of SO0s2,n−1d there exists somel such thatlW2úWR.

PPENDIX C: THE REEH–SCHLIEDER PROPERTY

We prove that the theories we are considering here must satisfy the Reeh–Schlieder

or the wedge algebras. LetWPW be a wedge, and letBsWd denote the *–algebra consisting of

                                                                                                            



a t
B ts a
w

P

W in
S
c

c ve

f
t

e
o

f
t

L e
C

a
P

P
s

b
a

A

repre-
s d-
i ock
s the
m sults
a efs.
1 er
c

4828 J. Math. Phys., Vol. 45, No. 12, December 2004 D. Buchholz and S. J. Summers

                        
ll BPAsWd for which there exists a neighborhoodNsBd of the identity in SO0s2,n−1d such tha
sld=̇UsldBUsld−1PAsWd, for all lPNsBd. Note that Lemma B.1 entails that there exis
edgeW0PW such thatAsW0d,BsWd.

Proposition C.1: Let assumptions (i)–(iv) obtain. ThenV is cyclic for AsWd, given any W
W.

Proof: (This proof is a straightforward adaptation of an argument given in Ref. 3.) Let
,W0PW and BsWd be as described earlier and letN be a neighborhood of the identity
O0s2,n−1d such thatl−1W0,W, for all lPN. By the covariance assumption(iii ), it suffices to
onsiderW=WR. Further, letCPH be orthogonal to the set of vectorsAsWdV.

SinceBsWd,AsWd, C is also orthogonal toBsWdV. From the definition ofBsWd and the
ontinuity of the representationU, it is clear that for anyBPBsWd andlPN as described abo

there exists an«.0 such thatBsll01stdl−1dPBsWd, for all utu,«. Therefore, one has

kC,Bsll01stdl−1dVl = 0, sC1d

or utu,«. Sincell01stdl−1W0,lW, one also hasBsll01stdl−1dPAslWd, for all tPR. Hence, by
he KMS property of the restriction ofv to AslWd, the function

t ° Bsll01stdl−1dV, t P R, sC2d

xtends analytically to a vector-valued function in the striphzPCu0, Imszd,b /2j with continu-
us boundary values. Therefore, one must have

kUsll01stdl−1d−1C,BVl = kC,Bsll01stdl−1dVl = 0, sC3d

or all tPR and BPBsWd. By iterating this argument, it follows that forl1, . . . ,lkPN and

1, . . . ,tkPR,

kUsl1l01st1dl1
−1d−1

¯ Uslkl01stkdlk
−1d−1C,BVl = 0. sC4d

emma A.2 then implies thatUsldC is orthogonal toBsWdV, for anylPSO0s2,n−1d, and henc
is orthogonal toUsld−1BsWdV=Bsl−1WdV.
Moreover, sinceBsWd is a *-algebra,B*UsldC is orthogonal toBsWdV, for any BPBsWd

nd lPSO0s2,n−1d. Hence, by induction, for anyl1, . . . ,lkPSO0s2,n−1d and B1, . . . ,Bk

BsWd one has

kC,B1sl1d ¯ BkslkdVl = 0. sC5d

utting these results together, it now follows thatC is orthogonal to
ølPSO0s2,n−1d UsldBsWdUsld−1dV. And sinceAsW0d,BsWd, one observes

s ∨
lPSO0s2,n−1d

BslWddV . s ∨
lPSO0s2,n−1d

AslW0ddV = AV, sC6d

y the assumption of weak additivity(1.4). Thus,C is orthogonal toAV. As V is cyclic forA, the
ssertion is proven.

PPENDIX D: MULTIPLICITY OF ENERGY LEVELS AND NUCLEARITY

In this appendix we wish to prove that given any irreducible unitary positive energy
entationU1 of the anti–de Sitter group SO0s2,n−1d on a Hilbert spaceH1, then the correspon

ng unitary representationU obtained by “second quantization” on the bosonic or fermionic F
paceH based uponH1 satisfies condition(NC). Hence the free field examples discussed in
ain text and Appendix E satisfy(NC). To verify this, we shall have need of some basic re
bout unitary representations of SO0s2,n−1d. We merely recall these and refer the reader to R
9–21 for details and proofs. We shall present the casen=4; the situation is similar for the oth

ases.
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Let SOs2d ^ SOs3d,SO0s2,3d be the maximal compact subgroup consisting of the “
otations” around AdS4 and the spatial rotations. RestrictingU1 to this compact group, the Hilbe
paceH1 decomposes into a direct sum of corresponding irreducible subspaces which are
y the energynPN and angular momentuml PN0. It has been shown in Ref. 19 that in t
ecomposition there appear only representations wherel ,n. Moreover, for givensn, ld, the num
er of these representations is bounded byl +1. Taking these facts into account, the multiplicitymn

f the eigenvaluen of the generator of the time rotations onH1 can be estimated bymn

ol=0
n−1s2l +1dsl +1dø2n3, nPN.
Next, let M04 be the generator of the time rotations on the Fock spaceH. The bound give

arlier entails by standard arguments in statistical mechanics that in the bosonic case th
ponding partition function satisfies, for anyg.0:

ln tr e−gM04 = − o
n

mn lns1 − e−gnd

ø o
n

2n3 e−gn

1 − e−g =
2

1 − e−g s− ]gd3 1

1 − e−g

ø
12e−g

s1 − e−gd5 ø
12 · 55

g5 . sD1d

enoting bymn the multiplicity of the eigenvaluen of M04, nPN0, we obtain the estimate

tr e−gM04 = o
n

mne
−gn ø e12·55/g5

, sD2d

hich implies

mn ø egn+12·55/g5
, sD3d

or all nPN0 andg.0. With the choiceg=5n−1/6, we conclude that

mn ø e17n5/6
, n P N0. sD4d

similar argument applies also to the fermionic case and in any number of space–time
ions. Hence we have the following result.

Proposition D.1: In any free boson or fermion model based upon an irreducible po
nergy representation of the anti–de Sitter group, condition (NC) holds.

PPENDIX E: EXAMPLES

In this appendix we shall discuss some examples of nets and states which fulfill s
ssumptions(i)–(iv), as well as the condition(NC). Because AdS is not globally hyperbolic,
tandard means of obtaining examples do not suffice. Free field models on AdS have b
ussed in a series of papers by Fronsdal20–23 and by Avis, Isham, and Storey.1 More recently, th
ightman functions of quantum field models on AdS satisfying certain general condition

een treated rigorously in Ref. 7. In addition, models of quantum field theories on AdS can
btainedvia holography31 (see also Ref. 2). We begin our discussion with the latter.

In an elegant paper31 Rehren has given rigorous mathematical meaning to the noti
olography, namely the correspondence between theories on AdSn and conformally invarian

heories on the boundaryCMn−1 of AdSn, compactifiedsn−1d-dimensional Minkowski space. H
hows that between the set of wedgesW in AdS and the set of(conformal images of) double cone

in the boundary there exists a canonical bijectiona which preserves inclusions and cau
omplements, and intertwines the actions of the anti–de Sitter group and of the conforma

which are isomorphic groups):
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aslsWdd = l̃sasWdd, a−1sl̃sCdd = lsa−1sCdd, sE1d

herel̃ is the restriction of the action oflPSO0s2,n−1d to the boundary. The double coneC

asWd is defined to be the intersection ofW with the boundary. Hence, given a nethÃsasWddj
ssociated with a(for example) free quantum field onCMn−1 and a vacuum stateṽ on this net, on
an define a nethAsWdj and statev on AdSn by

AsWd=̇ÃsasWdd, vsAd=̇ṽsAd, sE2d

or every APAsWd=ÃsasWdd. From the results in Ref. 31 it is easy to show that the resu
heory on AdSn fulfills our assumptions(i)–(iv), provided the underlying net onCMn−1 complies
ith the standard assumptions of conformal Minkowski space theories. In such theories o
as the equalityAsWd=As−Wd, for everyWPW. The CGMA and the modular stability con
ion, formulated in Ref. 11, both obtain in these models.

Using an irreducible representation of SO0s2,3d, Fronsdal21 defines Hermitian free fields o
he covering space of AdS4; only if the energy spectrum of the theory is contained inN0 does his
eld restrict to AdS proper. In this latter case, Fronsdal’s model satisfies assumptions(i)–(iv), as
ell as(NC)—see later and Appendix D. Moreover, the elements ofAsWd commute weakly wit

hose ofAsW̃8d. Yet if the energy spectrum is not a subset ofN0, this feature is no longer prese
onfirming our expectation that Theorem 2.6 cannot hold in general for fields not manifest
eriodicity in time required to enable them to be defined on AdS. We note that since

xamples the fields are invariant under the mapx°−x, one hasAsW̃8d=AsW8d=AsWd8.
In Ref. 1 Avis, Isham, and Storey use an embedding of(the covering space of) AdS into the

tatic Einstein universe to construct a free quantum field on AdS. Since the static Einstein u
s globally hyperbolic, one can rigorously construct free fields and the associated nets
lgebras in(subsets of) that space–time. And since the covering space of AdS can be confo
mbedded into the Einstein universe, one can define free massless, i.e., conformally in
elds on AdS. However, the matter is complicated by the fact that one must find suitable bo
onditions at spacelike infinity in AdS—we must refer the reader to Ref. 1 for details. Sin
esultant fields manifest the necessary periodicity in the time variable, they may be under
e defined on AdS. Inspection of the resulting representations then led them to construc
ous representations of “conformally coupled massive” free fields on AdS. From the cons
f their examples and the results in Ref. 7 it follows that standing assumptions(i)–(iv) hold. All of

heir examples are consistent with Theorem 2.6.
In Ref. 7 an axiomatic study is made of quantum fields on the covering space of AdS fr

oint of view of a suitable modification of the Wightman function approach to quantum
heory on Minkowski space. Explicit examples of two-point functions satisfying their assum
re given there, which include Fronsdal’s examples. A subclass of those two-point fu
estrict to AdS; it is of interest to note that such two-point functions are characterized by a
niformity property—cf. Sec.6 in Ref. 7. Using the results of Refs. 7 and 29 it is easy to sho

ree fields built upon those two-point functions satisfy our assumptions(i)–(iv); the elements of
ubclass also satisfy assumption(NC). The authors of Ref. 7 also observe that the locality prop
roven in Theorem 2.6 obtains only in those free field models which restrict to AdS prope(Ref.
, p. 509).
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We study the problem of constructing a probability density in 2N-dimensional
phase space which reproduces a given collection ofn joint probability distributions
as marginals. Only distributions authorized by quantum mechanics, i.e., depending
on a (complete) commuting set ofN variables, are considered. A diagrammatic or
graph theoretic formulation of the problem is developed. We then exactly determine
the set of “admissible” data, i.e., those types of data for which the problem always
admits solutions. This is done in the case where the joint distributions originate
from quantum mechanics as well as in the case where this constraint is not im-
posed. In particular, it is shown that a necessary(but not sufficient) condition for
the existence of solutions isnøN+1. When the data are admissible and the quan-
tum constraint is not imposed, the general solution for the phase space density is
determined explicitly. For admissible data of a quantum origin, the general solution
is given in certain(but not all) cases. In the remaining cases, only a subset of
solutions is obtained. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1807954]

. INTRODUCTION

In quantum theory, we usually assume that probability densities for eigenvalues of tw
ommuting observables cannot be measured by the same experimental setup. A related th
uestion is: Does there exist a joint probability distribution of the eigenvalues of two su
ervablesA and B which correctly reproduces the individual probabilities forA and for B as
arginals(i.e., on integration over the eigenvalues of the other observable). Perhaps surprisingl

he answer to this question is yes. More generally, for a system withN configuration spac
ariablesq1,q2, . . . ,qN, consider complete commuting sets(CCS) S1,S2, . . . ,Sn of observables
achSi consisting of some coordinate and some momentum variables(where Si and Sj must
ontain some mutually noncommuting observables to be considered distinct CCS). Is there a join
robability densityrsq1, . . . ,qN,p1, . . . ,pNd whose marginals reproduce the quantum probab
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ensities of the different CCS,S1,S2, . . . ,Sn? We shall prove that a necessary condition for th
e possible for arbitrary quantum states isnøN+1; this result is a precise no go theorem
imultaneous realization of more thansN+1d quantum marginals.

Actually, this no go theorem also has applications to the classical arena of joint
requency distributions in signal processing and joint position-wave number distributions in
rocessing. It is therefore useful to state the problem in a general setting encompass
lassical and quantum mechanics.

Consider the general problem of reconstructing a probability density overRM, given a set o
associated joint probability distributions over subspaces ofRM. In this general setting th

roblem can be stated as follows. Suppose first that a probability densityrsy1, . . . ,yMd is given and
efine the marginal distributions

sasYad =E dYa8rsy1, . . . ,yMd sa = 1, . . . ,nd, s1.1d

hereYaøYa8 is, for eacha, a partition ofhy1, . . . ,yMj. These joint distributions obey a set
ompatibility conditions. Indeed, letYab be the set of variables thatsasYad and sbsYbd have in
ommon and introduce the partitionsYa=YabøYab8 andYb=YabøYab9 . Then Eq.(1.1) implies

E dYab8 sasYab,Yab8 d =E dYab9 sbsYab,Yab9 d. s1.2d

onversely, suppose that a seths1, . . . ,snj of joint probability distributions is given, which sat
es the compatibility conditions(1.2). Is it always possible to find some probability densitr
hich reproduces them as marginals, in accordance with Eq.(1.1)? In the affirmative, how can w

reconstruct” suchr’s? It turns out that Eq.(1.2) is in general only necessary conditions for
xistence of a positive densityr, and our problem is precisely to solve the questions of exist
ultiplicity, and explicit determination of ther’s (if any).

Actually, we address these questions not in such a general setting, but in the cas
M =R2N is the phase space of some physical system with coordinatesyj identified with conjugat
anonical variableshqj ,pjj j=1

N and where all distributionssa depend on exactlyN variables

1, . . . ,xN restricted by the conditionxi =qi or pi si =1, . . . ,Nd. The reason for this choice lies in t
otivation of the problem within the context of quantum mechanics. Indeed, the functionssa just

ntroduced can then be understood as quantum probability distributions associated withn complete
ommuting sets of observables(CCS), selected among 2N possible choices(the 2N possible as
ignments of the variablesxi). By “quantumprobability distributions” is meant here a set
unctionssasx1, . . . ,xNd derived from a common wave functionkq1, . . . ,qNucl (in the Schrödinge
epresentation), in accordance with the formula

sasx1, . . . ,xNd = ukx1, . . . ,xNlcu2 sa = 1, . . . ,nd, s1.3d

r more generally, for a mixed quantum state described by the density operatorr̂,

sasx1, . . . ,xNd = kx1, . . . ,xNur̂ux1, . . . ,xNl sa = 1, . . . ,nd. s1.4d

The problem in this physical framework is directly related to the construction of “maxi
ealistic quantum mechanics,” a program initiated by Roy and Singh in 1995(Ref. 1) and inten
ively pursued since then.2–4 Without entering a detailed discussion of this relationship from
iewpoint of quantum physics(for which we refer the reader to Refs. 1–4), let us recall the mai
esults gained so far. In Ref. 2 it was shown that for anyNù2, a set ofn=N+1 quantum
robability distributions of the special form

hs1sq1,q2, . . . ,qNd,s2sp1,q2, . . . ,qNd,s3sp1,p2,q3, . . . ,qNd, . . . ,sN+1sp1,p2, . . . ,pNdj s1.5d

an be realized as a set of marginals of a common phase space probability

sq1, . . . ,qN,p1, . . . ,pNd. Further the “no go” conjecture was made that fornùN+2 (and for any
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hoice ofn distinct CCS), there exist setshs1, . . . ,snj of quantum probability distributions whic
annot be recovered as marginals of somer. The determination of the most general densir
eproducing the set(1.5), as well as the status of sets of CCS-distributions different from(1.5) and
ot necessarily of a quantum origin(i.e., mutually compatible but not necessarily construed
ording to Eq.(1.4)), were left as open questions. In Ref. 4, hereafter denoted by(I), complete
nswers to these questions were given in the special caseN=2 (see also Ref. 3 for a bri
ummary). In particular, the general positive solutionr of the equations

5E
dp1dp2rsq1,q2,p1,p2d = s1sq1,q2d,

E dq1dp2rsq1,q2,p1,p2d = s2sp1,q2d,

E dq1dq2rsq1,q2,p1,p2d = s3sp1,p2d,
6 s1.6d

as worked out for an arbitrary seths1,s2,s3j (quantum or not) and the “no go” conjecture stat
bove was proved forN=2. In fact, it was shown that a necessary and sufficient conditio
sø4d arbitrarily given compatiblesa’s to be marginals of a probability density in fo
imensional phase space isnø3 (“Three marginal theorem”). These results were obtained by fi
eriving certain correlation inequalities between thesa’s from the mere existence of a positive a
ormalizedr. Such inequalities, which are the analogs in phase space of the standard
qualities for spin variables,5 turn out to have an interest of their own in the context of quan
hysics, as discussed in Refs. 3 and 4.

The generalization of the study performed in(I) to the case of an arbitrary numbern of
CS-distributions of any species in a phase space of arbitrary dimension 2N, which is precisel

he aim of the present work, is not a straightforward task. It will be accomplished by means
ain tools: the Bell-type inequalities just mentioned(it turns out that no new correlation inequa

ies, proper to the 2N-dimensional case, are needed for the present purpose) and a specific dia
rammatic formulation of the problem which appears essential both for a concise expositio
nal statements and for their proof. In this way, we shall be able to treat the problem exhau
nd to give, in the general case, definite answers to the questions previously posed, in the
clear-cut theorem. This theorem will be stated at once in Sec. II(Theorem 1), after having

ntroduced a set of appropriate definitions. As a by-product, the theorem affords a proof of
o” conjecture for anyN (Theorem 2). On the positive side, it considerably extends early re
f Cohen and Zaparovanny6 for two marginals with non intersecting sets of variables by sim
eous realizability ofN+1 marginals which have intersecting sets of variables as well. The r
he paper(Secs. III–V) is almost entirely devoted to the(quite long!) proof of Theorem 1, and
herefore mainly technical. Our concluding comments are presented in Sec. VI.

I. DEFINITIONS AND RESULTS

In order to give our results a precise and unambiguous form, we introduce the fol
efinitions:

1) A CCS-distribution(CCS for Complete Commuting Set) in N dimensions is a probabili
distribution [Here and in the following, probability distributions are understood as po
normalized measures, with an absolutely continuous part and(possibly) Dirac measures]
ssx1, . . . ,xNd, with xj =qj or pj for each indexj .

The CCS-distributions can occur in 2N different types, each type corresponding to one ch
of the N-tuple of arguments.

2) An n-chain is a seths1, . . . ,snj of mutually compatibleCCS-distributions of distinct type

Here, the mutual compatibility conditions(1.2) read, for any pairhsasYad ,sbsYbdj, where
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Ya=hy1, . . . ,yr ,Yj, Yb=hy18 , . . . ,yr8 ,Yj andyj8 is the conjugate ofyj (yj8=qj or pj according a
yj =pj or qj),

E dy1 ¯ dyrsasy1, . . . ,yr,Yd =E dy18 ¯ dyr8sbsy18, . . . ,yr8,Yd. s2.1d

Thus, ann-chain is a possible candidate for a set ofn marginals, i.e., joint probabilit
distributions obtained from some phase space probability distributionfwe shall use som
times the notationrsq ,pdg rsq1, . . . ,qN,p1, . . . ,pNd by integrating over some of the arg
ments.

The type of ann-chain is defined by the types of its elements.
3) An n-chain is admissible if there exists at least one phase space probability distribr

reproducing all the CCS distributions of then-chain, namely such that

sasx1, . . . ,xNd =E dx18 ¯ dxN8rsq1, . . . ,qN,p1, . . . ,pNd sa = 1, . . . ,nd, s2.2d

where xi8 is the conjugate ofxi. Equation s2.2d imply s2.1d. Using the notationZa

=hx1, . . . ,xNj, Za8 =hx18 , . . . ,xN8 j, anddNZa8 =dx18¯dxN8 , s2.2d can be rewritten as

sasZad =E dNZa8rsq,pd sa = 1, . . . ,nd.

4) An n-chain is a quantumn-chain if there exists at least one quantum state described b
density operatorr̂ such that Eq.(1.4) holds.

Note that in that case the compatibility conditions(2.1) are automatically satisfied.
5) Two CCS-distributionssa andsb are contiguous if they differ by the assignment of only

variablexi (to qi andpi), namely

sasx1, . . . ,xi−1,qi,xi+1, . . . ,xNd andsbsx1, . . . ,xi−1,pi,xi+1, . . . ,xNd.

We call i the index of the pairhsa ,sbj.
6) To eachn-chain we associate a graph which is constructed as follows:

(a) To every CCS-distribution of the chain, associate a vertex characterized by the
tion of the variables of this distribution;

(b) Connect two vertices by a link if they correspond to contiguous CCS-distribution
call index of the link the index of the pair of contiguous CCS-distributions, and w
that the two vertices are contiguous.

As usual, there are connected and disconnected graphs, tree graphs and graphs with
graphG completely determines the type of the associatedn-chain, so that we can speak o
chain of typeG.

7) An n-chain and its associated graph are said to be proper if no two links have the sam

Since there are at mostN possible indices, a proper graph has at mostN links, and thus, if i
is connected, at mostsN+1d vertices. Furthermore, a graph with a loop cannot be pr
Therefore, a connected proper graph is necessarily a tree graph with at mostsN+1d vertices

8) A graphG is fully admissible if alln-chains of typeG are admissible.

A graphG is quantum admissible if all quantumn-chains of typeG are admissible.
Full admissibility entails quantum admissibility.
A graphG is nonadmissible if it is not quantum(anda fortiori not fully) admissible.

9) Let a nonconnected graphG be subgraph of a connected graphGc. We call insertions th
vertices ofGc which are not vertices ofG. Gc is calledG-simple if all its insertions have on

two legs.
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We are now in a position to give a complete characterization of the graphs, or equivale
he types ofn-chains, according to their(full, quantum or non) admissibility.

Theorem 1:

1) If a graph G is proper and connected, then it is fully admissible.
2) If G is proper but nonconnected, then

(a) if G is subgraph of a proper connected graph Gc, then

(i) if Gc is G-simple, G is fully admissible,
(ii) if G c is not G-simple, G is quantum, but not fully, admissible,

(b) if G is not subgraph of a proper connected graph Gc, then it is nonadmissible.

3) If G is nonproper, then it is nonadmissible.

his theorem is complemented by the explicit construction of all the phase space distribur
eproducing a given chain of typeG, a construction which is completed only in the case of
dmissibility, that is to say whenG is either connected and proper, or subgraph of a conne
roper andG-simple graphGc (see Sec. IV B). In the case of quantum admissibility, when
onnected graphGc is proper but notG-simple, the situation is not as favorable and the gen
xpression ofr is not known(see Sec. V B 2).

Remarks:

1) Given a graphG, a properGc, when there is one(case 2a), is in general not unique. It is
consequence of the theorem that either all the properGc’s areG-simple, or none of them i

Notice that this is a pure graph theoretic statement.
2) For N=2, the main result of Sec. IV of(I), which was derived from Bell-type correlati

inequalities, is the following: both in the classical and quantum cases, there exist 4
s1sq1,q2d, s2sp1,q2d, s3sq1,p2d, ands4sp1,p2d which cannot be reproduced as marginal
any probability distributionrsq ,pd. In the language of the present paper, this can b
phrased as:

This is the simplest case of part 3 of the above theorem, and actually it is the clue of its
An immediate corollary of Theorem 1 is
Theorem 2 (N+1 Marginal Theorem):
A necessary condition for all quantum n-chains of a given type to be admissible is nøN+1.
It suffices to use parts 2b and 3 of Theorem 1 and to note thatG cannot have more vertic

hanGc, and that a properGc has at mostN+1 vertices(see the remark after the above defini
of proper n-chains and graphs).

Notice that, in contradistinction with thethree marginal theorem of(I), the above theore
ives only a necessary condition. This is because only proper connected graphsGc are involved
hen N=2 and nøN+1, whereas nonproper connectedGc’s do appear as soon asNù3. Of
ourse, for proper connected graphsG for which n must beøN+1, part 1 of Theorem 1 guara

ees admissibility forNù3 also.
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Theorem 1 will be proved in Secs. III–V. In order to help understanding its content, w
n Figs. 1 and 2 examples of the various cases encountered.

II. NONPROPER GRAPHS

Consider a nonproper graphG. By definition, there exist at least two links with the same in
say 1) connecting a first pair of verticessV,V8d and a second pairsW,W8d. Then there necessar
xists a second index(say 2) such that the variablesx1 andx2 have in the four verticesV, V8, W,
ndW8 the assignments as shown in Fig. 3.

Quite generally, in a graphG (proper or not), a set of four vertices where a pair of variab
akes the four possible assignments will be called acritical quartet.

We now prove
Lemma 1: A graph G containing a critical quartet is nonadmissible.
Given ann-chain hsaja=1,. . .,n of type G in N dimensions and a partition of the set of indi

1, . . . ,Nj=JøK, let us introduce the distributions

s̃asXJd =E p
kPK

dxksasXJ,XKd.

ome of theses̃a’s may coincide. We callJ-reduced n8-chain the maximal set ofn8 distinct s̃a’s
n8ønd. Obviously, a necessary condition for then-chain to be admissible is that the associ
-reducedn8-chain be admissible. Now, consider a quantumn-chain constructed with a factoriz
ave function of the form

IG. 1. A nonconnected proper graphG which is not subgraph of any proper connected graphGc:G is nonadmissible. Tw
ossible(nonproper) Gc’s are shown: one with a loop, the other one a tree graph.

IG. 2. (a) A nonconnected proper graphG which is subgraph of a proper connectedG-simple graphGc:G is fully
dmissible.(b) A nonconnected proper graphG which is subgraph of a proper connected nonG-simple graphGc:G is

uantum but not fully admissible.
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Csq1, . . . ,qNd = C1sQJdC2sQKd. s3.1d

hoosing thenJ=h1,2j, to be the indices of a critical quartet, our results in(I) (see Remark 2 aft
heorem 1) immediately imply the nonadmissibility of theJ-reduced 4-chain. Hence, the non
issibility of then-chainsa itself, and Lemma 1 follows.

This establishes part 3 of Theorem 1, namely that a nonproper graphG is nonadmissible.

V. CONNECTED PROPER GRAPHS

Let G be a connected proper graph. We establish part 1 of Theorem 1 by associating
hain of typeG a particular phase space distributionr0 reproducing this chain. The expli
onstruction of such ar0 is described in Sec. IV A. In Sec. IV B, we derive the expression o
ost general phase space distribution reproducing the given chain.

. Particular solution

Let Cn=hs1, . . . ,snj be ann-chain of typeG. SinceG is a proper tree graph withsn−1d links,
here are exactlysN−n+1d variables which have the same assignments in all the distributionsa.
fter a possible renumbering of the indices of thexi’s, we can therefore assume that

asx1, . . . ,xn−1,xn, . . . ,xNd the assignment of each of the variablesxn, . . . ,xN is independent ofa.
hese variables, which will play a purely passive role, are henceforth denoted collectivelT,
hereasT8 will stand for the set of conjugate variableshxn8 , . . . ,xN8 j.

The solutionr0sq1, . . . ,qN,p1, . . . ,pNd of Eq. (2.2) is constructed as the product of “ver
unctions,” “propagators” and an arbitrary positive function ofT8. The former elements are d
ned by the following “Feynman rules:”

)

) for each linkl i of G carrying the indexi, by using the compatibility condition(2.1) for the
pair hsai ,sbij of contiguous CCS-distributions attached to this link, we define the integ
distribution

saibi
sx1, . . . ,xi−1,xi+1, . . . ,xNd =E dqisai

sx1, . . . ,xi−1,qi,xi+1, . . . ,xNd

=E dpisbi
sx1, . . . ,xi−1,pi,xi+1, . . . ,xNd. s4.1d

Then, to the linkl i we associate the propagator

Ãisx1, . . . ,xi−1,xi+1, . . . ,xNd

; 5 1

saibi
sx1, . . . ,xi−1,xi+1, . . . ,xNd

if sx1, . . . ,xi−1,xi+1, . . . ,xNd P Saibi
,

0 otherwise,
6 s4.2d

whereSaibi
is the sessentiald support ofsaibi

.

The support properties of thesa’s, sab’s, and r0, and the relations between them(due to
ompatibility and positivity) are not innocent in the forthcoming considerations, and we s

FIG. 3. Critical quartet in a nonproper graph.
ay attention to them. However, doing so leads to cumbersome technicalities which are in fact
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traightforward generalizations of those developed in the rigorous proof of Theorem 1 in(I) for
he caseN=2. Thus, in this Sec. IV, we shall ignore such inessential complications.

The functionr0 is then written as

r0 = Sp
a=1

n

sap
i=1

n−1

ÃiDz, s4.3d

herezsT8d is an arbitrary non-negative function inL1sRN−n+1,dN−n+1T8d with normalization

E dN−n+1T8zsT8d = 1. s4.4d

hat the expression(4.3) for r0 solves Eq.(2.2) results from the following property:

E dqir0
sndsq,pd = r0

sn−1dsq1, . . . ,qi−1,qi+1, . . . ,qN,p1, . . . ,pNd if xi = qi ,

E dqir0
sndsq,pd = r0

sn−1dsq1, . . . ,qN,p1, . . . ,pi−1,pi+1, . . . ,pNd if xi = pi , s4.5d

herer0
snd is the above definedr0 associated with then-chain Cn, andr0

sn−1d is the r0 similarly
ssociated with thesn−1d-chain Cn−1 obtained fromCn by removing the CCS-distributionŝ.
otice that the reduced chainCn−1 corresponds to the reduced graphGsn−1d obtained fromG by

emoving the one-leg vertexV̂ and the linkl̂. Hencer0
sn−1d=r0/ sŝv̄id.

Equation(5.5) holds because:(i) in r0
snd the variablexi appears only in the factorŝ, (ii ) the

ropagator of the linkl̂ is precisely the inverse of the integral ofŝ over xi.
Now, given anysa in the chainCn, corresponding to the vertexVa of G, one can start th

eductionGsnd→Gsn−1d of the tree graphGsnd;G at some arbitrarily chosen one-leg vertexV̂
Va, and repeat itsn−1d times in such a way that one is left with the graphGs1d consisting solel

f the vertexVa. To this “peeling process”Gsnd→Gsn−1d→¯→Gs1d of tree graphs is natural
ssociated, via Eqs.(4.5), a reductionr0;r0

snd→r0
sn−1d→¯→r0

s1d of functionsr0
smd, which even

ually produces

r0
s1dsx1, . . . ,xn−1,T,T8d =E dx18 ¯ dxn−18 r0 = sasx1, . . . ,xn−1,TdzsT8d, s4.6d

nd hence, by integrating overT8:

E dx18 ¯ dxN8r0 = sasx1, . . . ,xNd. s4.7d

otice that, although the order of the repeated integrations over thexi8’s is imposed by the steps
he peeling process, this order becomes obviously irrelevant in the above equation: Eq.(2.2) is
alid for r=r0 indeed.

Finally, to illustrate our Feynman rules, let us take as an example the graphGs5d of Fig. 4. The
s5d
istributionr0 associated with any 5-chain of typeG is
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r0sq,pd = s1sq1q2q3q4d
1

s12sq2q3q4d
s2sp1q2q3q4d

1

s23sp1q3q4d
s3sp1p2q3q4d

1

s24sp1q2q4d

3s4sp1q2p3q4d
1

s45sp1q2p3d
s5sp1q2p3p4d.

ere and in the sequel, we keep writing the propagators as 1/sab, although they are strictly give
y Eq. (4.2).

. General solution

Let us define then following positive measures, each one associated to a particular com

a of the n-chainCn:

dma = 5r0sq,pd
sasZad

dNZa8 if Za = sx1, . . . ,xNd P Sa,

0 otherwise,
6 s4.8d

here Sa denotes the(essential) support ofsa. Due to Eq.(4.7) thesesx1, . . . ,xNd-dependen
easures[notice also that thedma’s are continuous linear mappings ofL1sR2N,r0d

NqdNpd into
tself] are normalized for allsx1, . . . ,xNdPSa.

It is convenient to write the general solutionr we are looking for in the form

r = r0s1 + lhd. s4.9d

ere, the functionhsq ,pd will be chosen as to ensure Eq.(2.2), which results in the linea
quations

E dNZa8r0sq,pdhsq,pd = 0 sa = 1, . . . ,nd, s4.10d

hereas the real constantl is a normalization factor which will be useful to control the positi
f r. Thanks to definitions(4.8), Eq. (4.10) is equivalent to

E dmah = 0 sa = 1, . . . ,nd. s4.11d

e then observe that, for anya and any functiong in L1sR2N,r0d
NqdNpd

E dmaSE dmagD =E dmag, s4.12d

ince edmag does not depend any longer on the integration variablessx18 , . . . ,xN8 d and dma is
ormalized. That is, the linear operatorsPa :L1sR2N,r0d

NqdNpd→L1sR2N,r0d
NqdNpd defined by

Pag=edmag are projectors,

Pa
2 = Pa sa = 1, . . . ,nd. s4.13d

he sethPaj enjoys certain algebraic properties which are crucial for the construction

FIG. 4. A proper connected graph withN=4 andN=5.
eneral solutionh of Eq. (4.11).

                                                                                                            



( te

( at V
ese

T r
t

w
a y
a

I

B

w

w e of
E t
c

a

a
i

J. Math. Phys., Vol. 45, No. 12, December 2004 Marginal distributions in s2Nd-dimensional phase 4841

                        
Lemma 2:

a) The projectors Pa and Pb associated with any pairhVa ,Vbj of contiguous vertices commu

fPa,Pbg = 0. s4.14d

b) If Va, Vb, and Vg, are three vertices of the connected proper (tree) graph G such tha
belongs to the (unique) path connecting Vb to Vg, and is contiguous to at least one of th
two vertices, then

PgPaPb = PgPb. s4.15d

he proof is given in Appendix A. We stress that the contiguity ofVa with Vb or Vg is essential fo
he validity of Eq.(4.15).

Let us now introduce the central object of our construction, namely the operator

P = 1 − o
a=1

n

Pa + o
i=1

n−1

Pai
Pbi

, s4.16d

herePai
andPbi

denote the operatorsP associated with the two(contiguous) verticesVai
andVbi

ttached to the link with indexi. Thanks to Lemma 2, it is readily shown thatP is annihilated b
ll the projectorsPa:

PgP = 0 sg = 1, . . . ,nd. s4.17d

ndeed

PgP = Pg − o
a=1

n

PgPa + o
i=1

n−1

PgPai
Pbi

= − Pg o
a=1

aÞg

n

Pa + o
i=1

n−1

PgPai
Pbi

. s4.18d

ut, according to Eq.(4.15):

PgPai
Pbi

= PgPdi
, s4.19d

heredi =bi (resp.ai) if Vai
(resp.Vbi

) belongs to the path connectingVg to Vbi
(resp.Vai

). Hence

o
i=1

n−1

PgPai
Pbi

= Pg o
a=1

aÞg

n

Pa, s4.20d

hich entails Eq.(4.17) (the propertyPPg=0 sg=1, . . . ,nd, which also holds as a consequenc
q. (4.15), will not be used here). Note that Eq.(4.20) would not be valid if the graphG were no
onnected.

Furthermore,P is itself a projector:

P2 = P, s4.21d

s immediately deduced from

P2 = S1 − o
a=1

n

Pa + o
i=1

n−1

Pai
PbiDP

nd Eq.(4.17). This operator allows us to write down at once the general solution of Eq.(4.11),

.e.,
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Pah = 0 sa = 1, . . . ,nd, s4.22d

s

h = Pf , s4.23d

here f is an arbitrary function inL1sR2N,dNqdNpd. That Eq.(4.23) implies Eq.(4.22) is trivial
ue to Eq.(4.17). Conversely, any functionh satisfying Eq.(4.22) assumes the form(4.23): since

henh=Ph, it suffices to takef =h.
We now have to give the representation formula forh resulting from Eqs.(4.23) and(4.16) an

xplicit form in terms of the data of the problem, namely, the elements of the chainCn. For this
urpose, it is necessary to use appropriate notations. First, we denote byZa the collection o
rguments of the vertex functionsa, andZa8 the collection of the conjugate arguments(a notation
lready used in the definition(4.8)). Then

sPafdsZad =
1

sasZad E dNZa8r0sq,pdfsq,pd. s4.24d

econd, we denote bysai
sXi ,xid andsbi

sXi ,xi8d the vertex functions of the verticesVai
andVbi

,
here Xi =hx1, . . . ,xi−1,xi+1, . . . ,xNj. Accordingly, we writer0sXi ,Xi8 ,xi ,xi8d for r0sq ,pd, where

i8=hx18 , . . . ,xi−18 ,xi+18 , . . . ,xN8 j, and so on. With these notations

sPai
Pbi

fdsXid =E dN−1Xi8dxi8
r0sXi,Xi8,xi,xi8d

sai
sXi,xid

sPbi
fdsXi,xi8d, s4.25d

nd

sPbi
fdsXi,xi8d =E dN−1Xi8dxi

r0sXi,Xi8,xi,xi8d
sbi

sXi,xi8d
fsXi,Xi8,xi,xi8d. s4.26d

n the r.h.s. of Eq.(4.25), one observes that the integraledN−1Xi8r0 can be performed explicitly b
eans of the “peeling process” described in Sec. IV A,

E dN−1Xi8r0sXi,Xi8,xi,xi8d =
sai

sXi,xidsbi
sXi,xi8d

saiai
sXid

. s4.27d

his equation obtains by stopping the peeling process at the reduced graph made of
erticesVai

, Vbi
and the link between them. Here appears the propagator 1/saibi

with

saibi
sXid =E dxisai

sXi,xid =E dxi8sbi
sXi,xi8d. s4.28d

hen, inserting Eqs.(4.26) and (4.27) in Eq. (4.25), one gets, after simplifications,

sPai
Pbi

fdsXid =E dN−1Xi8dxidxi8
r0sXi,Xi8,xi,xi8d

saibi
sXid

fsXi,Xi8,xi,xi8d. s4.29d

inally, collecting Eqs.(4.23), (4.16), (4.24), and(4.29), we obtain the expression of the funct
we were looking for

hsq,pd = fsq,pd − o
a=1

n
1

sasZad E dNZa8r0sq,pdfsq,pd + o
i=1

n−1
1

saibi
sXid

E dN−1Xi8dxidxi8r0sq,pdfsq,pd.
s4.30d
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Equations(4.9) and(4.30) provide us with the general solutionr of the linear system(2.2). It
emains to enforce the positivity of this solution. Let us denote bym+ (resp. −m−) the (essential)
upremum(resp. infimum) of h. Because of Eq.(4.10), m+ and m− are strictly positive whenh
oes not vanish identically. Then, from Eq.(4.9), the conditionrù0 is equivalent to the conditio
n the parameterl

−
1

m+
ø l ø

1

m−
. s4.31d

e stress that the allowed intervalf−s1/m+d ,s1/m−dg is not zero as soon as the range of
rbitrary functionf is (essentially) bounded. Indeed, assuming thatAø f øB (almost) everywhere
ne finds from Eq.(4.30) that m± ønsB−Ad.

Equations(4.9), (4.30), and(4.31) for r constitute the generalization of the results in Se
f (I) (see Eqs.(5.8)–(5.10) there) to phase spaces of arbitrary dimension, in one case o
dmissibility (connected proper graphs).

. NONCONNECTED PROPER GRAPHS

Throughout this section, devoted to the proof of part 2 of Theorem 1, a vertex(or insertion)
ith only two legs will be calledsimple vertex.

. Nonproper Gc

Our purpose here is to establish part 2b of Theorem 1. To this end we first cons
articular connected graphGc such that the proper graphG is subgraph ofGc. By hypothesisGc

s not proper. We then show that this implies the existence of at least one critical quarte
raphG. According to Lemma 1, the statement 2b immediately follows.

Let G=økGk be the decomposition of a proper graphG into connected componentsGk’s.
achGk is a proper graph, hence a tree. We connectifyG recursively according to the followin
cheme. Assume we have already connectified the componentsG1, . . . ,Gk into a connecteddia-
ramGk. We defineGk+1 as follows. Let us call segment a linear chain of inserted simple ve
nd links, and define its length by the number of its links. We choose one of the shortest se
hich connectGk to the componentGr sr =k+1, . . .d. Among theGr’s we select one, sayGk+1,
hich minimizes the length of the attached segment. We callSk this segment. The diagramGk+1

s defined byGk+1=GkøGk+1øSk.
Note that:

1) In the above construction, two contiguous vertices of aG are not necessarily linked, so th
the diagramsG are not alwaysgraphsas defined in Sec. II. The advantage of this cons
tion is that theGk’s are trees.

2) The segmentSk is attached toGk+1 through a vertex ofG and attached toGk through eithe
a vertex ofG or an inserted vertex ofGk (as represented in Fig. 5). In the latter case, th
inserted vertex becomes nonsimple(if it was simple before).

3) There is in general some arbitrariness in the construction of theGk’s. First, the recursiv
process has to be initialized by the choice of one component asG1. Next, in the subseque
steps of the process, there is a possible arbitrariness in the choice ofGk+1 and its attache

FIG. 5. The diagramGk+1.
segment.
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Once this connectification process is completed, we end up with a connected tree diaGc

hich contains all the components ofG. If Gc is not a graph, we obtain a graphGc by adding links
etween all pairs of contiguous vertices which are still not linked inGc.

Gc andGc may coincide or not. In the latter case, it is important to notice thatGc andGc are
till either both proper or both nonproper. This follows from the fact that(i) when going fromGc

o Gc, a loop ofGc is created each time one adds a link,(ii ) a loop contains at least two pairs
inks carrying the same index.

Let us define the diagramsVk by

Vk = Gk ø Gk+1 ø Gk+2 ø ¯

hich satisfy the inclusion relations

V1 ; G , V2 , ¯ , Vc ; Gc , Gc.

Now, by hypothesisGc, and thus alsoVc=Gc, are nonproper, whereasV1=G is proper. This
mplies the existence of an integerk such thatVk,Vk+1 with Vk proper andVk+1 nonproper
rom the observation that

Vk+1 = Vk ø Sk,

e deduce that there exists at least one index, say 1, which is carried by just two links, ol1 in

k and a second onel18 in Vk. The link l18 may appear either inGk or in the componentsGk+1, . . .
f G, which leads us to distinguish three cases:

a) l18,Gk+1,
b) l18,Gk,
c) l18,Gk+2 or Gk+3 or ….

We now proceed with a few remarks which will be useful in the forthcoming argu
lthough not always explicitly refered to thereby:

1) All the end points(one leg vertices) of the Gk’s belong toG.
2) Any link of a Gk belongs to at least one linear chain with end vertices belonging toG.
3) On a segment, the indices of the links can be reordered at our convenience. This sh

kept in mind when constructing theGk’s.
4) Two links carrying the same index cannot be attached to a common vertex.

As a consequence of these last two remarks, since all theSk’s are shortest connecting chai
5) All segmentsSk are proper.
6) On a connected treeGk, the(unique) path joining two links carrying the same index conta

either two vertices ofG, or one vertex ofG and one inserted nonsimple vertex, or
inserted nonsimple vertices.

Case a:
Let V be any vertex ofGk belonging toG, andV8 be the vertex ofGk+1 where the segmentSk

ttaches. Figure 6 exhibits the relevant part ofVk+1, namely the linear chain joining the verticeV
ndV8, and the linear chain fromV8 to the link l18 in Gk+1. Moreover, in accordance with Rema
, we have attached the linkl1 to V8. We have also called 2 the index of the other link attache

FIG. 6. Case a.
8.
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According to Remarks 3 and 4, there is no link with index 2 inSk. Furthermore, sinc

køGk+1 is proper, no new link of index 1 or 2 can appear in the linear chain connectingV to W.
s a consequence, the verticesV, V8, W, andW8 constitute a critical quartet.

Case b:
The relevant part ofVk+1 is displayed in Fig. 7. Here,V is a vertex ofGk belonging toG, such

hat the(unique) path joining it toSk contains the linkl18.

The existence of the nonsimple verticesṼ8 andW̃8 results from Remark 6. They may possi
oincide with respectively the verticesV8 andW8 of G. As previously, no new index 1 or 2 c
ppear in the chain displayed in Fig. 7, which implies that the verticesV, V8, W, andW8 constitute
critical quartet.

Case c:
In that case, the relevant part ofVk+1 is made of two disconnected parts, as displayed in

. As previously, the nonsimple inserted vertexṼ may possibly coincide withV.

Let us denote byI the set of indices appearing(each only once) in the links betweenV andṼ,
y J the set of indices appearing in the segmentSk but the index 1, and byK all the remaining

ndices. We can assumeI ùJ=x (otherwise the configuration would also enter the case b). We
urther split the setsI, J, andK asI = I1ø I2, J=J1øJ2, K=K1øK2. Here,I1 andI2 are introduce
o separate the variables which have the same or different assignments in the verticesV on the one
and and in the verticesW andW8 on the other hand, and similarly for the splitting ofJ andK.
henh1,I1,I2,J1,J2,K1,K2j is a partition ofh1,2, . . . ,Nj, and the assignments of the variable

he verticesV, V8, W, andW8 of G, andṼ take the form

5
V = h1I1I2J1J2K1K2j,

Ṽ = h1I18I28J1J2K1K2j,

V8 = h18I18I28J 18J 28K1K2j,

W= h1I1I28J1J 28K1K28j,

W8 = h18I1I28J1J 28K1K28j.
6 s5.1d

n these formulas,I1,I2, . . . represent collections of variablesq and p. In accordance with ou
onvention(see Sec. II), I1 is written as a set of indices, namely those ofI1 but each one bein
rimed or not. As forI18, it is written as a set of the same indices, nonprimed(resp. primed) if
rimed (resp. nonprimed) in I1. Similarly for the other setsI2,I28 , . . ..

Let us define the distancedsU ,U8d between two verticesU andU8 as the number of variabl
ith different assignments inU andU8. Inspecting Eq.(5.1), one readily obtains

HdsṼ,V8d = 1 + j1 + j2,

dsṼ,Wd = i1 + j2 + k2,
J s5.2d

herej1=cardJ1, and so on. SinceSk is one of the shortest segments connectingGk to one of the
˜ ˜

FIG. 7. Case b.
omponentsGk+1,Gk+2, . . ., onemust havedsV,V8dødsV,Wd, which entails
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i1 + k2 ù 1.

his means that the setsI1 andK2 cannot be both empty. IfK2Þx, we choose the index 2 inK2,

o that the verticesV, V8, W, andW8 constitute a critical quartet. IfK2=x, I1 is not empty,Ṽ does

ot coincide withV, and thusṼ is a nonsimple inserted vertex, necessarily linked inGk to a vertex
ˆ of G as displayed in Fig. 8. Choosing now the index 2 inI1, one finds that the verticesV̂, V8, W,
ndW8 constitute a critical quartet.

. Proper Gc

WhenG is subgraph of aproper connected graphGc, the latter is a tree graph which can
ecomposed into the connected componentsGi of G and connecting segmentsSk, even whenGc

oes not coincide with the specific graphGc constructed in the previous Sec. V A. One need
istinguish two cases:

a) All the segmentsSk’s are disjoint. Then all insertions are simple andGc is G-simple.
b) At least two segments have one common vertex. This vertex is not a simple inserti

thusGc is not G-simple.

. G-simple G c

Here, as in Sec. IV, we establish part 2.a.i of Theorem 1 by associating to any chainC of type
a particular phase space distributionr0 reproducing this chain. We also give the general form

he r’s reproducing the chain.
The construction ofr0 proceeds through the “Feynman rules” of Sec. IV A, compleme

ith propagators associated with the segments ofGc. Let S be such a segment connecting
erticesVa andVb of G, and letr be its length. LetsasX,Yd andsbsX,Y8d be the correspondin
ertex functions ofC, whereX (resp.Y) denote the set of variables which have the same(resp. a
ifferent) assignment insa andsb. The compatibility ofsa andsb allows us to define

sabsXd ; E drYsasX,Yd =E drY8sbsX,Y8d. s5.3d

or different segmentsSl labelled by the indexl, we use the notationsalbl
sXld.

To the segmentSl we now associate the propagator

ÃlsXld = 5 1

salbl
sXld

if Xl P Salbl
,

0 otherwise,
6 s5.4d

hereSalbl
is the support ofsalbl

. This amounts to considerSl as a new kind of link(in the graph

FIG. 8. Case c.
c) which we callcomposite link. Then the functionr0 reads
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r0sq,pd = Sp
a=1

n

sasZadDSp
l=1

n−1

ÃlsXldDzsT8d, s5.5d

here the second product in the r.h.s. is performed on all links, namely the links ofG and the
omposite links ofGc. Note that, sinceGc is a connected tree, the total number of links issn
1d. As for the functionzsT8d, which is arbitrary but non-negative and normalized, it takes ca

he “passive” variablesT=hxn,xn+1, . . . ,xNj and their conjugateT8, as in Eq.(4.3).
The proof that ther0 of Eq. (5.5) solves Eq.(2.2) relies on the “peeling process” described

ec. IV A. Here, this process has to be extended to the case where the one-leg vertexV̂ introduced

here is attached to a composite link. LetŝsX,Yd be the vertex function ofC associated toV̂, where
(resp.Y) is the set of variables whose assignment does not change(resp. changes) through the

omposite link. Then Eqs.(4.5) become

E drYr0
smdsq,pd = r0

sm−1dsX,X8,Y8d, s5.6d

nd the rest of the proof is completely similar to that given in Sec. IV A.
The determination of the general solutionr of Eq. (2.2) is also carried out along the lin

ollowed in Sec. IV B, by using this time the extended peeling process. The definitions
easuresdma and of the projectorsPa (which now involve the functionr0 of Eq. (5.5)) are
nchanged. The Lemma 2 still holds, though with an extended acceptation of “contiguity
ertices Val

and Vbl
of G connected by a composite linkSl of Gc are declared contiguou

ctually, only minor changes are needed to generalize the proof given in Appendix A(essentially
he substitutionxi →Y). The operatorP is now defined as

P = 1 − o
a=1

n

Pa + o
l=1

n−1

Pal
Pbl

, s5.7d

here the last sum in the r.h.s. is a sum over all links ofGc, composite or not. Its properties(4.17)
nd(4.21) remain true and, withr written as in Eq.(4.9), one finds that the general solution foh

s given again by Eq.(4.23). A change then occurs in Eq.(4.27) when the two verticesVai
andVbi

here become two verticesVal
and Vbl

connected by a composite link. In this case Eq.(4.27)
ecomes

E dN−rlXl8r0sXl,Xl8,Yl,Yl8d =
sal

sXl,Yldsbl
sXl,Yl8d

salbl
sXld

. s5.8d

ne ends up with the following expression ofh, generalizing the representation formula(4.30)

hsq,pd = fsq,pd − o
a=1

n
1

sasZad E dNZa8r0sq,pdfsq,pd

+ o
l=1

n−1
1

salbl
sXld

E dN−rlXl8d
rlYld

rlYl8r0sq,pdfsq,pd. s5.9d

We remind the reader that, in this formula:

i) f is an arbitrary function inL1sR2N,r0d
NqdNpd;

ii ) the first sum in the r.h.s. is over all verticesVa of G; Za denotes the collection of argume

of the vertex functionsa andZa8 the collection of conjugate arguments;

                                                                                                            



(
as

2

e et
o ese
e ith
a
i he
g

G

s
{

C

w -
a atibility
c rized
f S-
d ensity
T

i

T on
w

4848 J. Math. Phys., Vol. 45, No. 12, December 2004 Auberson et al.

                        
iii ) the second sum is over all links(of length r l), that is the simple links ofG and the
composite links ofGc; the definition of the functionssalbl

occurring in the sum, as well
the meaning of the collections of variablesXl, Xl8, Yl, andYl8, are provided by Eq.(5.3),
which reduces to Eq.(4.28) in the case of a simple link of indexi.

. Non G-simple G c

Part 2.a.ii of Theorem 1 remains to be proven.
Consider first an arbitraryquantumchainC of type G. The CCS-distributions ofC are then

xpressed in terms of some density operatorr̂, in accordance with Eq.(1.4). But, in this case, a s
f CCS-distributions associated with the insertions ofGc can also be computed through th
quations. One thus obtains an extended chainCc of compatible CCS-distributions associated w
ll the vertices ofGc. SinceGc is proper, the chainCc admissible(irrespective of the fact thatGc

s not G-simple), which implies the admissibility ofC. Hence the quantum admissibility of t
raphG.

To prove thatG is not fully admissible, we show that there are(nonquantum) chains of type
which are not admissible.

We now use the following lemma, the proof of which is given in Appendix B.
Lemma 3:
In a 2k-dimensional phase space with kù3, there exist k-chains of compatible distribution

t1sp1,q2,q3, . . . ,qkd, t2sq1,p2,q3, . . . ,qkd, …, tksq1,q2, . . . ,qk−1,pkd} which are not admissible.
Let us construct a chainC of type G by assigning to each vertexVl

s jd of Gs jd s j =1, . . . ,kd the
CS-distributions

sl
s jdsq1, . . . ,qj−1,pj,qj+1, . . . ,qk,Xl

s jdd = t jsq1, . . . ,qj−1,pj,qj+1, . . . ,qkds̃l
s jdsXl

s jdd, s5.10d

hereXl
s jd denotes the set of variablesxi corresponding toJl

s jd and thes̃l
s jd’s are arbitrary prob

bility distributions depending on these variables, only subjected to the opposite comp
onditions.(That suchs̃l

s jd’s always exist is easy to see, e.g., by choosing completely facto
orms for them.) The elements of the chainC=hsl

s jdj j=1,. . .,k;l are evidently compatible CC
istributions. Let us pretend that these distributions are marginals of some phase space dr.
hen, by defining the reduced density

r̃sq1, . . . ,qk,p1, . . . ,pkd =E dqk+1dpk+1¯ dqNdpNrsq,pd s5.11d

n a 2k-dimensional phase space, one finds that

t j =E dN−kXl
s jdsl

s jd sany ld,

=E dp1 ¯ dpj−1dqjdpj+1¯ dpkr̃ s j = 1, . . . ,kd. s5.12d

his would mean that the reducedk-chainC̃=ht jj j=1,. . .,k is always admissible, in contradistincti

ith Lemma 3. We conclude that there exist chains of typeG which are not admissible.
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The two statements in part 2.a.ii of Theorem 1 are now established and the proof
heorem is complete.

Finally, we would like to obtain an explicit expression of all the phase space densr
olving Eq.(2.2) for a given quantum chainC of type G, by following again the method of Se
V. However, serious complications crop up in the final step of the procedure.

First, a particular solutionr0 is obtained by applying formula(4.3) to the extended chainCc.
lternatively, one can determine other particular solutionsr08 by using, instead ofCc, the chainsCc8
btained fromCc by removing all or some of thesimple insertions ofGc and applying th
rocedure of Sec. V B 1 involving composite links and their associated propagators. Whar0

s chosen, we keep writing the general solution in the formr=r0s1+lhd, as in Eq.(4.9).
Then a change appears in the determination of the functionh, because one does not have

equire the densityr to reproduce all the CCS-distributions of the chainCc (or Cc8), but only those
f the given chainC. This means thath should satisfy Eq.(4.22), where the indexa now refers to
he only elements of theinitial chain C. As a consequence, the form(4.16) of the appropriat
peratorP (to be used in Eq.(4.23)) is no longer valid, since the properties(4.17) and(4.21) hold
nly if the underlying graph isconnected. Notice that a similar difficulty already appeared w
ealing withG-simple graphsGc in the previous subsection. There, it was overcome by intro

ng composite links which eventually allowed us to remove the insertions ofGc. Unfortunately, no
uch device presents itself for nonG-simpleGc’s, and constructing the “good” projectorP in this
ase seems to be quite a difficult problem, which we leave unsolved here.

Of course, the projectorPc associated with the chainCc already provides us with a large cla
f solutions, but certainly not all the solutions.

I. CONCLUSIONS

We have investigated the extent to which it is possible to reproduce a given set o
robability distributionssasx1,x2, . . . ,xNd with xi =qi or pi, in arbitrary numbern and with arbi

rary position-momentum assignments of thexi’s, as marginals of some probability densityrsq ,pd
n 2N-dimensional phase space. We have been able to give a complete characterization
ets which can always be reproduced by arsq ,pd (admissible sets), irrespective of the function
orm of thesa’s provided they are compatible, and both for quantum probability distributionsa

nd for more general(classical) ones. This has been achieved by introducing a specific, pow
iagrammatic method and by relying on previous results3,4 obtained in the caseN=2 by means o
ell-type inequalities in phase space.

When both classical and quantum setshsaja=1,. . .,n are admissible, we have constructed
eneral solutionrsq ,pd of the problem. When only quantum sets are admissible, we hav
xplicit expression of a large class of solutions, which however is not exhaustive. Concern
ynamical aspect which is completely ignored in this paper, our results in the quantu
otivate the construction of realistic quantum mechanics reproducingsN+1d marginals at a

imes t and thus considerably improving on the de Broglie–Bohm mechanics,7 which reproduce
nly onesa (the position probability distributionssq ,td).

On the other hand, all cases of nonadmissibility have been identified. For quantumsa’s again
his may be viewed as a general contextuality theorem of the Gleason–Kochen–Speck8

hich also extends a previous result of this type due to Martin and Roy.9 At the same time, th
rovides a proof of a long-standing conjecture, the “sN+1d marginal theorem.”

From the mathematical standpoint, the parts of our main theorem(Theorem 1), pertaining to
he quantum case are essentially new statements concerning multidimensional Fourier tra
n L2sR2N,dNqdNpd. These statements vastly extend the results of Cohen and Zaparovan6 for
wo nonintersecting marginals to the case ofN+1 marginals containing overlapping variables

In classical image processing previous constructions of joint probability densities for p
nd wave number vectors which reproduce just two marginals(the position vector probabili
ensity and the wave number vector probability density) can now be extended to reproduceN
1 marginals whenever the admissibility conditions are obeyed. This has potential for new

10
ations in classical signal and image processing.
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In the quantum arena theN+1 marginal theorem proved here makes precise the exte
hich noncommuting CCS can be simultaneously realized extending theN=2 results of(I). Our

esults completely settle, at a formal level, the question of “maximal reality” raised and a
nvestigated in special cases.1–4 Their possible relevance for related fundamental problem
uantum theory(in particular for helping towards a clarification of the still controversial prob
f measurement) remains to be explored.

At a practical level, the theorem is intimately related to quantum entanglement. The
ibility of reproducing more thanN+1 marginals stems from allowing the most general entan
tates. This indicates a direction in which the present work can be extended and ap
uantum information theory. For example, for partially separable quantum states, one ma

heorems allowing positive phase space densities with more thanN+1 marginals agreeing wi
uantum probabilities. To make this point forcefully suppose thatq1,q2, . . . ,qN are coordinates o
particles and the quantum stater̂ is separable(i.e., completely separable),

r̂ = o
r

mr ^
i=1

N

r̂r
sid, s6.1d

heremr .0, ormr =1, andr̂r
sid is a density operator for theith particle. We demonstrate now th

he 2N quantum probability densities

ssx1,x2, . . . ,xNd = kx1, . . . ,xNur̂ux1, . . . ,xNl = o
r

mrp
i=1

N

kxiur̂r
siduxil s6.2d

btained by choosingxi =qi or pi, can all be reproduced as marginals of a single positive p
pace density,

rsq,pd = o
r

mrp
i=1

N

kqiur̂r
siduqilkpiur̂r

sidupil. s6.3d

s before, denoting byxi8 the variable conjugate toxi we obtain the 2N equations

E dx18 ¯ dxN8rsq,pd = o
r

mrp
i=1

N

kxiur̂r
siduxil = ssx1,x2, . . . ,xNd, s6.4d

hich are the desired marginal conditions. We have used the normalization conditions

E dxi8kxi8ur̂r
siduxi8l = 1. s6.5d

e therefore expect that partial separability will allow a number of marginals intermedia
ween N+1 and 2N to agree with quantum probabilities. We also expect that future work
emonstrate and exploit phase space Bell inequalities for generalN following from hypotheses o
arginal conditions or of quantum separability.
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PPENDIX A: PROOF OF LEMMA 2

. Commutation relation (4.14)

Consider two contiguous verticesVa and Vb of G connected by a linkl i with index i, and
enote bysasxi ,X,Td and sbsxi8 ,X,Td the corresponding distributions of the chainCn, whereX

hx1, . . . ,xi−1,xi+1, . . . ,xn−1j. By removing the linkl i, the proper tree graphG is broken in two
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onnected componentsGa andGb: G=Gaø l i øGb. To this splitting clearly corresponds a pa
ion hXa ,Xbj of the variablesX such that, amongX and their conjugateX8, all the variable
Xa ,Xa8 ,Xbj and only them appear in the vertices ofGa, whereas all the variableshXa ,Xb ,Xb8j and
nly them appear in the vertices ofGb. In parallel, the particular solutionr0 given in Eq.(4.3)

actorizes as

r0 =
rarb

sab

z, sA1d

here the functionra (the “r0/z ” of the subchain ofCn of type Ga) depends only o
xi ,Xa ,Xa8 ,Xbd, the functionrb depends only onsxi8 ,Xa ,Xb ,Xb8d, and

sabsX,Td =E dxisasxi,X,Td =E dxi8sbsxi8,X,Td.

he measuresdma anddmb as defined by Eq.(4.8) now take the form

5dma =
ra

sa

dXa8
1

sab

rbdXb8dxi8zdT8,

dmb = radXa8
1

sab

rb

sb

dXb8dxizdT8. 6 sA2d

ence, for anygsq ,pdPL1sR2N,r0d
NqdNpd:

PaPbg =
1

sab
E dxi8E dXa8

ra

sa
E dXb8rbE dT8zsPbgd.

he integrations overXa8, Xb8, andT8 can be performed explicitly sincePbg does not depend o
hese variables. Noticing that

E dXa8ra = sa, E dXb8rb = sb, sA3d

nd taking account of Eq.(4.4), we get

PaPbg =
1

sab
E dxi8sbsPbgd, sA4d

=
1

sab
E dxi8sb

1

sab
E dxidXa8dXb8dT8ra

rb

sb

zg. sA5d

incesb does not depend onxi, Xa8, andXb8, the factorssb and 1/sb in Eq. (A5) cancel each othe
his gives

PaPbg =
1

ssabd2 E dxidxi8dXa8dXb8dT8rarbzg. sA6d

he r.h.s. of this equation is symmetric ina↔b, which establishes Eq.(4.14).

. Relation (4.15)

Let Va, Vb, andVg be now three vertices ofG such thatVa belongs to the path connectingVg

o Vb and is contiguous toVb. Consider again the connected subgraphsGa and Gb defined in
ppendix A1 above, together with the partitionhXa ,Xbj of the variablesX, and distinguish inGa
he linear subgraphGag made of the verticesVa, Vg and the path connecting them. Denote byIa1
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he set of indices of the links ofGag and byIa2
the set of indices of the remaining links inGa. To

his splitting corresponds a further partitionhXa1
,Xa2

j of the variablesXa, as indicated in Fig. 9
With a factorization of the measuredmg analogous to those of Eq.(A2), we can write

PgPaPbg =E dXa1
dXa2

8 dXb8dxi8dT8
ra

sg

1

sab

rbzsPaPbgd. sA7d

ere, we can perform explicitly the integrations overxi8, Xb8, Xa2
8 , and T8, for PaPbg does no

epend on these variables. First

E dxi8dXb8rb =E dxi8sb = sab. sA8d

he left equality in Eq.(A8) results, as in Eq.(A3), from the “peeling process”(described in Se
V A ) corresponding to the reduction of the graphGb to the vertexVb. Similarly, the (partial)
eeling process corresponding to the reductionGa→Gag yields

E dXa2
8 ra = rag, sA9d

hererag is the “r0/z” of the subchain of typeGag. Thanks to Eqs.(A8), (A9), and (4.7), Eq.
A7) boils down to

PgPaPbg =E dXa1

rag

sg

sPaPbgd

r, by inserting the expression(A4) of PaPbg:

PgPaPbg =E dXa1

rag

sg
E dxi8

sb

sab

sPbgd. sA10d

n the other hand,

PgPbg =E dXa1
dXa2

8 dXb8dxi8dT8
r0

sg

zsPbgd, sA11d

here the integrations overXb8, Xa2
8 , andT8 can be performed explicitly sincePbg does not depen

n these variables. The integration overXb8 first produces, through the partial peeling proc
orresponding toG→ sGaø l i øVbd:

E dXb8r0 = ra

1

sab

sb. sA12d

hen Eqs.(A9) and (4.4) are used again for the integrations overXa2
8 and T8, respectively

ltogether, this reduces the expression(A11) to the r.h.s. of Eq.(A10). ThereforePgPaPbg
PgPbg, which establishes Eq.(4.15) in the case whereVa is contiguous toVb.

The proof of Eq.(4.15) in the case whereVa is contiguous toVg is completely similar.

FIG. 9. The path betweenVg andVb in G.
Q.E.D.
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PPENDIX B: PROOF OF LEMMA 3

We construct a particulark-chain of compatible distributionst j and we prove that there is
ositive phase space densityr reproducing these distributions as marginals. We taket j of the

orm:

t jsq1, . . . ,qj−1,pj,qj+1, . . . ,qkd = g jspjdt̄ jsq1, . . . ,qj−1,qj+1, . . . ,qkd s j = 1, . . . ,kd,

hereht̄1, . . . ,t̄kj is a k-chain of compatible, reduced distributions and theg jspjd’s are arbitrary
ormalized one variable distributions.

Let us look for a phase space densityr reproducing thet j’s. The t̄ j’s are given in terms of th
onfiguration space density

r̄sq1, . . . ,qkd ; E dkprsq1, . . . ,qk,p1, . . . ,pkd sB1d

s

t̄ jsq1, . . . ,qj−1,qj+1, . . . ,qkd =E dqjr̄sq1, . . . ,qkd. sB2d

e now choose thet̄ j’s as follows:

5 t̄1sq2, . . . ,qkd = p
r=2

k

Tr − p
r=2

k

Ur ,

t̄ jsq1, . . . ,qj−1,qj+1, . . . ,qkd = p
r=1

rÞ j

k

Tr + p
r=1

rÞ j

k

Ur , s j = 2, . . . ,kd,6 sB3d

here

HTr = 1
2fdsqr − 1d + dsqr + 1dg,

Ur = 1
2fdsqr − 1d − dsqr + 1dg,

Jsr = 1, . . . ,kd.

he t̄ j’s, which appear as sums of 2k−2 monomials of the form

1

2k−2 p
r=1

rÞ j

k

dsqr − «rd «r = ± 1,

re obviously positive and normalized. Furthermore,

E dqit̄ jsq1, . . . ,qj−1,qj+1, . . . ,qkd = p
r=1

rÞi,j

k

Tr si Þ jd.

he r.h.s. of this equation is symmetric ini ↔ j , which entails the compatibility of thet̄ j’s.
Clearly, the most generalpositiver̄ obeying Eqs.(B2) is the sum of 2k terms proportional t

r=1
k dsqr −«rd. Equivalently,r̄ can be written as a homogeneous polynomialPshTrj ,hUrjd of de-
reek which, for each indexr, is linear inTr andUr. Then, sinceedqjTj =1 andedqjUj =0, we can

¯
xpressedqjr as]P/]Tj, so that Eqs.(B2) and (B3) yield
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5
]P

]T1
= p

r=2

k

Tr − p
r=2

k

Ur ,

]P

]Tj
= p

r=1

rÞ j

k

Tr + p
r=1

rÞ j

k

Ur s j = 2, . . . ,kd. 6
he general solution of these equations is

P = p
r=1

k

Tr − T1p
r=2

k

Ur + o
j=2

k

Tj p
r=1

rÞ j

k

Ur + lp
r=1

k

Ur , sB4d

herel is an arbitrary real parameter.
Now, whatever the value ofl is, P, and thusr, are not positive. To show this, it is sufficie

o look at the coefficients of the two monomials

dsq1 + 1dp
r=2

k

dsqr − 1d anddsq1 − 1ddsq2 + 1ddsq3 + 1dp
r=4

k

dsqr − 1d

hich appear in Eq.(B4) if kù3. One finds −sk−1+ld /2k andsk−5+ld /2k, respectively, the su
f which is independent ofl and negative. Q.E.D
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he moduli space of three-qutrit states
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We study the invariant theory of trilinear forms over a three-dimensional complex
vector space, and apply it to investigate the behavior of pure entangled three-partite
qutrit states and their normal forms under local filtering operations(SLOCC). We
describe the orbit space of the SLOCC group SLs3,Cd33 both in its affine and
projective versions in terms of a very symmetric normal form parametrized by three
complex numbers. The parameters of the possible normal forms of a given state are
roots of an algebraic equation, which is proved to be solvable by radicals. The
structure of the sets of equivalent normal forms is related to the geometry of certain
regular complex polytopes. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1809255]

. INTRODUCTION

The invariant theory of trilinear forms over a three-dimensional complex vector space
ld subject with a long history, which, as we shall see, appears even longer if we take into
ertain indirect but highly relevant contributions.1–4 This question has been recently revived in
eld of Quantum Information Theory as the problem of classifying entanglement patte
hree-qutrit states.

Indeed, since the advent of quantum computation and quantum cryptography, entan
as been promoted to a resource that allows quantum physics to perform tasks that are c

mpossible. Quantum cryptography5,6 proved that this gap even exists with small systems of
ntangled qubits. Furthermore, it is expected that the study of higher dimensional system
ultipartite (e.g., 3-partite) states would lead to more applications. A seminal example i

o-called 3-qutrit Aharonov-state, which “is so elegant it had to be useful”: 7 Fitzi, Gisin, and
aurer7 found out that the classically impossible Byzantine agreement problem8 can be solve
sing 3-partite qutrit states. From a more fundamental point a view, the Aharonov state
ontrivial counterexamples of the conjectures on additivity of the relative entrop
ntanglement9 and of the output purity of quantum channels.10 Obviously, these results provide
trong motivation for studying 3-partite qutrit states. Furthermore, interesting families of h
imensional states are perfectly suited to address questions concerning local realism

nequalities(see, e.g., Ref. 11 for a study of three-qutrit correlations).
It is therefore of interest to find some classification scheme for three-qutrit states. A p

irection is to look for classes of equivalent states, in the sense that they are equivale
ocal unitary transformations12–14or local filtering operations(also called SLOCC operations).14–19

n the case of three qubits, especially the last classification proved to yield a lot of insigh(the

)Electronic mail: ebriand@univ-mlv.fr
)Electronic mail: luque@univ-mlv.fr
)Electronic mail: jyt@univ-mlv.fr
)
Electronic mail: frank.verstraete@mpq.mpg.de

4855022-2488/2004/45(12)/4855/13/$22.00 © 2004 American Institute of Physics
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lassification up to local unitaries has too many parameters left); the reason for that is that in t
losure of each generic orbit induced by SLOCC operations, there is a unique state(up to loca
nitary transformations) with maximal entanglement.14,17

In Ref. 19, a numerical method converging to such a maximally entangled state ha
escribed. It has been experimentally observed that, when applied to a three-qutrit st
ethod converged to a very special normal form. We shall provide a formal proof of this pr
nd then study in some detail the geometry of those normal forms. Precise statements of th
re summarized in the forthcoming section.

I. RESULTS

Let V=C3 and H=V^ V^ V regarded as a representation of the groupG=SLs3,Cd33. The
lements ofH will be interpreted either as three-qutrit states

ucl = o
i,j ,k=0

2

Aijkui, j ,kl s1d

r as trilinear forms

f = fsx,y,zd = o
i,j ,k=0

2

Aijkxiyjzk, s2d

hat is, we identify the basis stateui jkl with the monomialxiyjzk. If g=sgs1d ,gs2d ,gs3ddPG is a
riple of matrices, we definexi8=opgip

s1dxp, yj8=oq gjq
s2dyq, zk8=or gkr

s3dzr, and the coefficientsAijk8 by
he condition

o Aijk8 xi8yj8zk8 = o Aijkxiyjzk, s3d

he action ofG on H being defined by

g ·A = o Aijk8 xiyjzk, s4d

t has been shown by Vinberg20 that a generic state can be reduced to the normal form

Aijk8 = udi jk +
w − v

2
ei jk +

w + v
2

uei jku s5d

wheredi jk is the Kronecker symbol andei jk the completely antisymmetric tensor) by an appro
riate choice ofgPG.

Our first result is as follows.
Theorem II.1: When applied to a generic 3-qutrit state (1) the numerical algorithm of Re

onverges to a state which is a Vinberg normal form, generically in the same G-orbit asucl.
As proved in Refs. 14 and 19, the normal formuc8l is unique up to local unitary transform

ions. More precisely, we have the following.
Theorem II.2: A generic state has exactly648different normal forms. For special states, t

umber can be reduced to216, 72, 27or 1. Moreover, the coefficients u, v, w of the normal form
an be computed algebraically.

Theorem II.3: The coefficients of the normal forms are determined, up to a sign,
lgebraic equation of degree1296,which is explicitly solvable by radicals.

To form this equation, we need some notions of invariant theory.
A polynomial PsAd in the coefficientsAijk is an invariant of the action ofG on H if PsA8d

PsAd for all gPG. These invariants form a graded algebraR (any invariantP is a sum o
omogeneous invariants) and the first issue is to determine the dimension of the spaceRd of

omogeneous invariants of degreed. The Hilbert series
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hstd = o
dù0

dim Rdt
d s6d

s known20

hstd =
1

s1 − t6ds1 − t9ds1 − t12d
s7d

nd in fact, one can prove thatR is a polynomial algebra generated by three algebraically
endent invariants of respective degree 6, 9, and 12.

The modern way to prove this result is due to Vinberg, who obtained it from his not
eyl group of a graded Lie algebra, applied to aZ3-grading of the exceptional Lie algebraE6.

21

In Sec. III, we shall explain how it can be deduced from the work of Chanler.22 We prove tha
ertain invariantsI6, I9, and I12 introduced in Ref. 22 are indeed algebraic generators ofR and
xplain how to compute them from the numerical values of the coefficientsAijk, by expressin
hem in terms oftransvectants, that is, by means of certain differential polynomials in the forf,
ather than in terms of the classical symbolic notation. Given the values of the invariant
articular state, we show how to form and solve the system of algebraic equations determi
oefficients,u, v, w of the normal form.

Let a= I6, b= I12, andc= I18 (a certain polynomial in the fundamental invariants). Then, the
ymmetric functions ofu3, v3, andw3

c = u3 + v3 + w3, x = u3v3 + u3w3 + v3w3, l = 216u3v3w3 s8d

atisfy

c2 − 12x − a = 0,

c4 + lc − b = 0,

c6 − 5
2lc3 − 1

8l2 − c = 0. s9d

Theorem II.4: The system (9) has generically1296solutionssu,v ,wd, which can be obtaine
y solving a chain of algebraic equations of degree at most4. Only 648 of them give the corre
ign for I9. The number of solutions (with the correct sign for I9) can be reduced only to216, 72
7 or 1. Moreover, the isotropy groups of these degenerate orbits can be determined, a
onfiguration of the pointssu,v ,wd in C3 can be interpreted in terms of the geometry of reg
omplex polyhedra.

The details are given in Sec. VII.

II. THE FUNDAMENTAL INVARIANTS

In this section, we describe the fundamental invariants, as well as the other conco
btained by Chanler,22 in a form suitable for calculations, in particular for their numerical ev
tion (see also Refs. 23 and 24).

As already mentioned, we shall identify a three-qutrit stateuclPH with a trilinear form

fsx,y,zd = o
1øi,j ,kø3

Aijkxiyjzk s10d

n three ternary variables. To construct its fundamental invariants, we shall need the noti
ransvectant, which is defined by means of Cayley’s omega process(see, e.g., Ref. 25).

Let f1, f2, and f3 be three forms in a ternary variablex=sx1,x2,x3d. Their tensor productf1

^ f2 ^ f3 is identified with the polynomialf1sxs1ddf2sxs2ddf3sxs3dd in the three independent terna
ariablesxs1d, xs2d andxs3d. We use the “trace” notation of Olver26 to denote the multiplication ma
f1 ^ f2 ^ f3→ f1f2f3, that is,
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tr f1sxs1ddf2sxs2ddf3sxs3dd = f1sxdf2sxdf3sxd. s11d

ayley’s operatorVx is the differential operator

Vx =*
]

] x1
s1d

]

] x1
s2d

]

] x1
s3d

]

] x2
s1d

]

] x2
s2d

]

] x2
s3d

]

] x3
s1d

]

] x3
s2d

]

] x3
s3d
* . s12d

ow, we consider three independent ternary variablesx, y, andz together with the associated d
contravariant) variablesj=sj1,j2,j3d, h=sh1,h2,h3d, z=sz1,z2,z3d [that is,ji is the linear form
n thex space such thatjisxjd=di j].

A concomitantof f is, by definition, a polynomialF in the Aijk, x, y, z, j, h, z, such that i
=sg1,g2,g3dPSLs3,Cd3, then, withA8, x8, etc., as above,

FsA8;x8,y8,z8;j8,h8,z8d = FsA;x,y,z;j,h,zd. s13d

The algebra of concomitants admits only one generator of degree 1 in theAijk, which is the
orm f itself. Other concomitants can be deduced fromf and the three absolute invariantsPa

ojixi, Pb=oh jyj, andPg=ozkzk, using transvectants. IfF1, F2, andF3 are three 6-tuple forms
he independent ternary variablesx, y, z, j, h, and z, one defines for anysn1,n2,n3d

sm1,m2,m3dPN33N3 the multiple transvectant ofF1, F2, andF3 by

sF1,F2,F3dm1m2m3

n1n2n3 = tr Vx
n1Vy

n2Vz
n3Vj

m1Vh
m2Vz

m3p
i=1

3

Fisxsid,ysid,zsid;jsid,hsid,zsidd. s14d

or convenience, we will setsF1,F2,F3dn1n2n3=sF1,F2,F3d000
n1n2n3. The concomitants of degree

iven by Chanler22 can be obtained using these operations,

Qa = sf, f,PbPgd011, s15d

Qb = sf, f,PaPgd101, s16d

Qg = sf, f,PaPbd110. s17d

he invariantI6 is then

I6 = 1
96sQa,Qa,Qad011

200= 1
96sQb,Qb,Qbd101

020= 1
96sQg,Qg,Qgd110

002. s18d

here is an alternative expression using only the ground formf,

I6 =
1

1152
sf2, f2, f2d222. s19d

ow, in degree 3 the covariantsBa, Bb, andBg of Ref. 22 are

Ba = sf, f, fd011, s20d

Bb = sf, f, fd101, s21d

Bg = sf, f, fd110. s22d
he other concomitants found by Chanler can be written in a similar way,
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Cab = 1
4sf, f, fPbd110, s23d

Cba = 1
4sf, f, fPad110, s24d

Cag = 1
4sf, f, fPgd101, s25d

Cga = 1
4sf, f, fPad101, s26d

Cbg = 1
4sf, f, fPgd011, s27d

Cgb = 1
4sf, f, fPbd011, s28d

Da = − 2sfPb, fPg, fd111, s29d

Db = 2sfPa, fPg, fd111, s30d

Dg = − 2sfPa, fPb, fd111, s31d

Ea = sQa, f,Pad100, s32d

Eb = sQb, f,Pbd010, s33d

Eg = sQg, f,Pgd001, s34d

Ga = − 3
8sfPb, fPg, fd011+ 5

16sfPbPg, f, fd011, s35d

Gb = − 3
8sfPa, fPg, fd101+ 5

16sfPaPg, f, fd101, s36d

Gg = − 3
8sfPa, fPb, fd110+ 5

16sfPaPb, f, fd110, s37d

H = 1
2sfPa, fPb, fPgd111. s38d

ere, we have combined the concomitants of degrees 0, 1, and 2 into independent concom
egree 3. Next, we have chosen the scalar factors so that the syzygies given by Chanler22 hold in

he form

H + Ea − Eg + DbPb = 0, s39d

H + Eb − Ea + DgPg = 0, s40d

H + Eg − Eb + DaPa = 0, s41d

3Cab − BgPb = 0, s42d
3Cba − BgPa = 0, s43d
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3Cag − BbPg = 0, s44d

3Cga − BbPa = 0, s45d

3Cbg − BaPg = 0, s46d

3Cgb − BaPb = 0, s47d

6Ga − 3Qaf + BaPbPg = 0, s48d

6Gb − 3Qbf + BbPaPg = 0, s49d

6Gg − 3Qgf + BgPaPb = 0. s50d

ne can remark that a basis of the space of the concomitants of degree 3 found by Chanle
onstructed using only transvections and products from smaller degrees,

f3,Qaf,Qbf,Qgf,Ba,Bb,Bg,Da,Db,Dg,Ea. s51d

he knowledge of these concomitants allows one to construct the invariantsI9 and I12,

I9 = 1
576sEa,Eb,Ebd111

111, s52d

I12 =
1

124 416
sBaf,Baf,Bafd411. s53d

hese expressions, which can be easily implemented in any computer algebra system, w
onvenient to compute the specializations discussed in the sequel.

V. NORMAL FORM AND INVARIANTS

It will now be shown that a generic state can be reduced to the normal form

Aijk = udi jk +
w − v

2
ei jk +

w + v
2

uei jku, s54d

hereei jk is the alternating tensor, or, otherwise said, that the generic trilinear formfsx ,y ,zd is
quivalent to some

Nuvwsx,y,zd = usx1y1z1 + x2y2z2 + x3y3z3d + vsx1y3z2 + x2y1z3 + x3y2z1d

+ wsx1y2z3 + x2y3z1 + x3y1z2d. s55d

or such a state, the local density operators are all proportional to the identity. This pro
utomatically satistfied by the limiting state obtained from the numerical method of Ref. 1

mplies maximal entanglement as well. Since this algorithm amounts to an infinite seque
nvertible local filtering operations, the genericity of Vinberg’s normal form, together wit
reviously mentioned properties, implies convergence to a Vinberg normal form for a g

nput state, that is, our Theorem II.1(see also Refs. 27 and 28).
This normal form is in general not unique, and the relations between the variousNuvw in a

iven orbit is an interesting question, which will be addressed in the sequel.
Although, the validity of this normal form follows from Vinberg’s theory,21 it can also b

roved in other ways, some of them being particularly instructive. We shall detail one o
ossibilities, which will give us the opportunity to introduce some important polynomials, pl

role in the algebraic calculation of the normal form and in the geometric discussion of the orbits.
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The shortest possibility, although not the most elementary, relies on the results of Ref.
tarts with computing the invariants ofNuvw. We then use a few results of algebraic geom
hich can be found in Ref. 29. Let us denote byCk;Cksu,v ,wd sk=6,9,12d the values of theIk

n Nuvw. Direct calculation gives, denoting bympqr the monomial symmetric functions ofu,v ,w
sum of all distinct permutations of the monomialupvqwr),

C6 = ms6d − 10ms3,3d, s56d

C9 = su3 − v3dsu3 − w3dsv3 − w3d, s57d

C12 = ms12d + 4ms9,3d + 6ms6,6d + 228ms6,3,3d. s58d

t is easily checked by direct calculation that the Jacobian of these three functions is non
eneric values ofsu,v ,wd. Actually, its zero set consists of 12 planes, whose geometric si
ance will be discussed below.

Let us denote byw :H →
sI6,I9,I12d

C3, the map sending a trilinear form to its three invariants, so
C6,C9,C12d=wsNuvwd. Let S=hNuvwusu,v ,wdPC3j be the three-dimensional space of nor
orms. The nonvanishing of the Jacobian proves thatw induces a dominant mapping fromS to C3

that is, the direct image of any nonempty open subset ofS contains a nonempty open subse
3). Note that the independence ofC6,C9,C12 implies the independence ofI6,I9,I12. Now,
hanler22 has shown thatI6,I9,I12 separate the orbits in general position. This proves that the
f rational invariants ofG is freely generated byI6,I9,I12 (Ref. 29, Lemma 2.1). As a conse
uence,w is a rational quotient(Ref. 29, Sec. 2.4) for the action ofG on H (actually, this als

mplies thatw is a categorical quotient, by Ref. 29, Proposition 2.5 and Theorem 4.12, usin

uS is surjective, whence alsow).
There exists a nonempty open subsetY0 of C3 such that the fiber ofw over each of its poin

s the closure of an orbit(Ref. 29, Proposition 2.5). Let thenU0=w−1sY0d. This set cutsSsincewuS
s dominant. LetU1 be the union of all orbits having maximal dimension(a nonempty open se
he functiondimension of the orbitbeing lower semicontinuous). It is easy to see thatU1 intersect

(for instance atu=1, v=1, w=−1, whose orbit has dimension 24=dimG, as may be checked
irect calculation). Let S0=U1ùS, a dense open subset ofS. The setw−1wsS0d thus contains
ense open subsetU2 of H. One then checks thatU0ùU1ùU2 (a dense open subset, as

ntersection of dense open subsets of an irreducible space) is contained inGS. This provesGS
H, that is, the normal formNuvw is generic.

Let us remark that the above discussion also proves, thanks to Igusa’s theorem(Ref. 29
heorem 4.12) that CfHgG=CfI6,I9,I12g, that is, the algebra of invariants is freely generate
hanler’s invariants.

Is is also possible to give a direct proof of the normal form by using the same techniqu
ef. 22. Chanler’s method relies on the geometry of plane cubics, which will play a prom

ole in the sequel.

. THE FUNDAMENTAL CUBICS

The trilinear formfsx ,y ,zd can be encoded in three ways by a 333 matrix of linear form
Mxsxd, Mysyd, andMzszd, defined by

fsx,y,zd = tyMxsxdz = txMysydz = txMzszdy s59d

nd the classification of trilinear forms amounts to the classification of one of these matric
Mxsxd up to left and right multiplication by elements of SLs3,Cd and action of SLs3,Cd on the
ariablex.
The most immediate covariants off are the determinants of these matrices
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Xsxd = det Mxsxd = 1
6Ba, s60d

Ysyd = det Mysyd = 1
6Bb, s61d

Zszd = det Mzszd = 1
6Bg. s62d

hese are ternary cubic forms, and for genericf the equationsXsxd=0, etc., will define nonsin
ular cubics(elliptic curves) in P2. It is shown in Ref. 24 that whenever one of these curv
lliptic, so are the other two ones, and moreover, all three are projectively equivalent. A
ne can check by direct calculation that they have the same invariants. Whenf =Nuvw, these thre
ubics have even the same equation and are in the Hesse canonical form30

Xsxd = − fsx1
3 + x2

3 + x3
3d + cx1x2x3 = Ysxd = Zsxd, s63d

here we introduced, following the notation of Ref. 2,

f = uvw, c = u3 + v3 + w3. s64d

he Aronhold invariants of the cubics(63) are given by

64S= − fsc3 + s6fd3d, s65d

66T = s6fd6 + 20s6f3dc3 − 8c6. s66d

hese are of course invariants off. We recognize that 64S=−C12, and we introduce an invariantI18

uch thatC18= I18sNuvwd=66T. The three cubics have the same discriminant 64S3+T2, known to be
roportional to the hyperdeterminant off (see Refs. 31 and 32), which we normalize as

D = 27s64S3 + T2d. s67d

henD=C812
3 , whereC128 is the product of 12 linear forms

C128 = uvwsu + v + wds«u + v + wdsu + «v + wds«2u + «v + wdsu + «2v + wd

3 s«u + «v + wds«2u + v + wds«u + «2v + wds«2u + «2v + wd, s68d

here«=e2ip/3, so thatC128 =0 is the equation inP2 of the twelve lines containing 333 the nine
nflection points of the pencil of cubics,

u3 + v3 + w3 + 6m uvw = 0, s69d

btained fromX, Y, Z by treating the original variables as parameters. We note also th
acobian ofC6, C9, C12 is proportional toC812

2 .

I. SYMMETRIES OF THE NORMAL FORMS

In this section, we will prove Theorem II.2. That is, a genericf has 648 different normal form
the pointssu,v ,wd for which this number is reduced will be studied in Sec. VII].

To prove the theorem, we remark that the Hilbert series(7) is also the one of the ring
nvariants ofG25, the group number 25 in the classification of irreducible complex refle
roups of Shephard and Todd.4 This group, which we will denote for short byK, has order 648.

s one of the groups considered by Maschke2 in his determination of the invariants of the sy
etry group of the 27 lines of a general cubic surface inP3 (a group with 51 840 elements, whi

s related to the exceptional root systemE6). To defineK, we first have to introduce Maschk
roupH, a group of order 1296, which is generated by the matrices of the linear transform

3
n C given in Table I.
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This group contains in particular the permutation matrices, and simultaneous multiplica
«k, sinceE2=−B. The subgroupK is the one in which odd permutations can appear only w
inus sign. It is generated byA,C,D ,E.

Then, as proved by Maschke, the algebra of invariants ofK in C fu,v ,wg is precisely
fC6,C9,C12g.

Hence, we can conclude thatK is the symmetry group of the normal formsNuvw. There wa
nother, equally natural possibility leading to the same Hilbert series. The symmetry grouL of

he equianharmonic cubic surfaceS :z0
3+z1

3+z2
3+z3

3=0 acting on the homogeneous coordinate
fSg has as fundamental invariants the elementary symmetric functions of thezi

3, the first one
eing 0 by definition, so that the Hilbert series ofC fSgL coincides with(7). Moreover,L is also
f order 648, but it is known that it is not isomorphic toK.

Taking into account the results of Sec. IV, we see that

S= hNuvwusu,v,wd P C3j s70d

s what is usually called a Chevalley section of the action ofG on H, with Weyl groupK (see Ref
9, p. 174).

II. THE FORM PROBLEM

This section contains the proofs of Theorems II.3 and II.4. Klein(see Ref. 33) has introduce
nd investigated the notion of “Formenproblem” associated to a finite group action. This

ollowing: given the numerical values of the invariants, compute the coordinates of a point
orresponding orbit.

In our case, we shall see that the problem of finding the parameterssu,v ,wd of the norma
orm of a given genericf, given the values of the invariants, can be reduced to a chain of alg
quations of degree at most 4, hence sovable by radicals.

Let a= I6, b= I12 and c= I18 (we start with I18, becauseC18 is a symmetric function o
3,v3,w3, and at the end of the calculation, select the solutions which give the correct signC9,
hich is alternating).

What we have to do is to determine the elementary symmetric functionse1=c ,e2=x ,e3

f3 of u3,v3,w3. Let l=216f3. Then,

c4 + lc − b = 0, s71d

c6 − 5
2lc3 − 1

8l2 − c = 0. s72d

liminating l from these equations, we get a quartic equation forc2,

27c8 − 18bc4 − 8cc2 − b2 = 0. s73d

he discriminant(with respect toc) of this polynomial is proportional toD=b2sb3−c2d4. When it
s nonzero, we get eight values fore1, each of which determines univocallye2 ande3. Hence, we
btain eight cubic equations whose roots are the possible values ofu3,v3,w3. This gives eight set
hence 836=48 triples, each of which providing generically 27 values ofsu,v ,wd, in all 48
27=1296 triples corresponding to the given values ofa,b,c, among which exactly 1296

3

TABLE I. The generators ofH.

A B C D E

u8 v u u u 1/iÎ3su+v+wd
v8 w w «v «v 1/iÎ3su+«v+«2wd
w8 u v «2w «w 1/iÎ3su+«2v+«wd
648 give the correct sign forI9. The common discriminant of the eight cubics isd=a −3ab
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2c. Clearly, whendÞ0, we will have 648 triples. Ifd=0, one can check that the cubics can
ave a triple root, and that no root is zero. Hence, in this case, we obtain again 648 tripl

If D=0, we can haveb3=c2 or b=0. In the first case, settingb=q2,c=q3, the equatio
ecomes

sc2 − qd3sc2 + 2qd3 = 0. s74d

n this case, we get only four quartics forc2. If C9Þ0, we obtain 216 triples. IfC9=0 andb
a2/4, c=−a3/8 we obtain again 216 triples which form the centers of the edges of a co
olyhedron of type 2h4j3h3j3 in C3 (see Fig. 1), in the notation of Ref. 34. The vertices of t
olyhedron are the vertices of two reciprocal Hessian polyhedra(see Fig. 2) and its edges joi
ach vertex of one Hessian polyhedron to the eight closest vertices of the other one. In Fi
dges of the Hessian polyhedron, which are complex lines, are represented by real eq

riangles, so that the figure can as well be interpreted as a two-dimensional projectio
ix-dimensional Gosset polytope 221. If C9=0 andb=a2, c=a3, we obtain only 72 triples whic

FIG. 1. The polyhedron 2h4j3h3j3.
FIG. 2. The Hessian polyhedron.
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re the centers of the edges of a Hessian polyhedron and the vertices of a complex pol
ype 3h3j3h4j2 (see Fig. 3).

In the case whereb=0, we have to distinguish between the casescÞ0 andc=0. If cÞ0, we
nd 648 triples, whatever the value ofa. If c=0, we obtain 27 triples ifaÞ0, and only one ifa=0.

Indeed, forb=c=0, the c-equation reduces toc8=0, and all the cubics collapse to 12U3

aU=0. For aÞ0 we obtain precisely 27 triplessu,v ,wd which form the vertices of a Hessi
olyhedron inC3 (see Ref. 1).

From the results of Ref. 3 about the arrangement of 12 planes formed by the mirrors
seudoreflections ofK=G25, we can determine the structure of the stabilizers of the normal f
he only nontrivial cases are as follows:

i) the orbits with 216 elements, for which the stabilizer is the cyclic groupC3;
ii ) the orbits with 72 elements, for which it isC33C3;
iii ) the Hessian orbits with 27 elements, for which it is the groupG4 of the Shephard–Tod

classification.

These results can be regarded as a complete description of the moduli space of thr
tates. To see what this means, let us recall some definitions from geometric invariant th

It is well known that it in general, the orbits of a group action on an algebraic variety c
e regarded as the points of an algebraic variety. To remedy this situation, one has to
ertain degenerate orbits. It is then possible to construct acategorical quotientand amoduli space,
hich describe the geometry of sufficiently generic orbits, respectively, in the affine and pro
ituation.

The categorical quotient Y=H / /G is defined as the affine variety whose affine coordi
ing is the ring of polynomial invariantsR= CfHgG. The moduli space is the projective vari

=ProjsRd of which R is the homogeneous coordinate ring. It is the quotient of the setPsHdss of
emistablepoints by the action ofG (by definition, a point is semistable iff at least one of
lgebraic invariants is nonzero, see Ref. 29).

Now, since in our case the algebra of invariants is a polynomial algebra, we see t
ategorical quotient is just the affine spaceC3.

The moduli space is more interesting. The projective variety whose homogeneous co
ing is a polynomial algebra over generators of respective degreesd1, . . . ,dm is called aweighted
rojective spacePsd1, . . . ,dmd. Hence, by definition, our moduli spaceM is the weighted projec

ive spacePs6,9,12d.Ps2,3,4d. It is known that this space is isomorphic toPs1,2,3d,35 which
n turn can be embedded as a sextic surface inP6, the so-calleddel Pezzo surface F6 (see Ref. 36).
he del Pezzo surfaces are very interesting objects, known to be related to the exceptio

FIG. 3. The polyhedron 3h3j3h4j2.
ystems(see, e.g., Ref. 37).
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The above results can then be interpreted as a description of the singularities ofM, since one
an view it as the quotient of the projective planeP2 of the parameterssu:v :wd under the
rojective action ofG25. We have described this quotient as a 648-fold ramified coverinP2

M, and analyzed its ramification locus.

III. CONCLUSION

A problem of current interest in Quantum Information Theory has been connected to v
mportant mathematical works, scattered on a period of more than one century from Ref. 2
o Ref. 27 in 2000, in general independent of each other and apparently discussing d
ubjects. Relying on all these works, we have described the geometry of the normal fo
emistable orbits of three-qutrit states under the action of SLs3,Cd33, the group of local filterin
SLOCC) operations. From a physical point of view, our results can be expected to provide
tarting point for studying the richness of the entanglement of three qutrits and its differenc
hat of the simpler qubit systems. From a mathematical point of view, we have worked
nteresting example of a problem in invariant theory, using both classical algebraic and
eometric methods, found a surprising connection with the geometry of complex polytop
pplied Klein’s vision of Galois theory to the explicit solution of an algebraic equation of d
48.

Also, this example provides a good illustration of the ideas presented in Refs. 14 and
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Fundamental properties for the Tsallis relative entropy in both classical and quan-
tum systems are studied. As one of our main results, we give the parametric exten-
sion of the trace inequality between the quantum relative entropy and the minus of
the trace of the relative operator entropy given by Hiai and Petz. The monotonicity
of the quantum Tsallis relative entropy for the trace preserving completely positive
linear map is also shown without the assumption that the density operators are
invertible. The generalized Tsallis relative entropy is defined and its subadditivity is
shown by its joint convexity. Moreover, the generalized Peierls–Bogoliubov in-
equality is also proven. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1805729]

. INTRODUCTION

In the field of the statistical physics, Tsallis entropy was defined in Ref. 28 bySqsXd=
oxpsxdq lnq psxd with one parameterq as an extension of Shannon entropy, whereq-logarithm is
efined by lnqsxd;sx1−q−1d / s1−qd for any non-negative real numberq and x, and psxd;psX
xd is the probability distribution of the given random variableX. We easily find that the Tsall
ntropy SqsXd converges to the Shannon entropy −oxpsxdlog psxd as q→1, sinceq-logarithm
niformly converges to natural logarithm asq→1. Tsallis entropy plays an essential role
onextensive statistics, which is often called Tsallis statistics, so that many important resu
een published from the various points of view.29 As a matter of course, the Tsallis entropy and
elated topics are mainly studied in the field of statisitical physics. However the concept of e
s important not only in thermodynamical physics and statistical physics but also in inform
heory and analytical mathematics such as operator theory and probability theory. Recentl
ation theory has been in progress as quantum information theory19 with the help of the operat

heory5,12 and the quantum entropy theory.20 To study a certain entropic quantity is important
he development of information theory and the mathematical interest itself. In particul
elative entropy is fundamental in the sense that it produces the entropy and the mutual i
ion as special cases. Therefore in the present paper, we study properties of the Tsallis
ntropy in both the classical and quantum systems.

In the rest of this section, we will review several fundamental properties of the Tsallis r
ntropy, as giving short proofs for the convenience of the readers. See Refs. 7, 27, and 26
ioneering works of the Tsallis relative entropy and their applications in the classical syst

Definition 1.1:We supposeaj andbj are probability distributions satisfyingaj ù0, bj ù0, and

)Electronic mail: furuichi@ed.yama.tus.ac.jp
)Electronic mail: yanagi@yamaguchi-u.ac.jp
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j=1
n aj =o j=1

n bj =1. Then we define the Tsallis relative entropy betweenA=hajj andB=hbjj, for any
ù0 as

DqsAuBd ; − o
j=1

n

aj lnq
bj

aj
, s1d

hereq-logarithm function is defined by lnqsxd;sx1−q−1d / s1−qd for non-negative real numberx
ndq, and we make a convention 0 lnq `;0.

Note that limq→1 DqsAuBd=D1sAuBd;o j=1aj logsaj /bjd, which is known as relative entro
which is often called Kullback–Leibler information, divergence or cross entropy). For the Tsallis
elative entropy, the following proposition is known.

Proposition 1.2:

1) (Non-negativity) DqsAuBdù0.
2) (Symmetry) Dqsaps1d , . . . ,apsnd ubps1d , . . . ,bpsndd=Dqsa1, . . . ,anub1, . . . ,bnd.
3) (Possibility of extention) Dqsa1, . . . ,an,0ub1, . . . ,bn,0d=Dqsa1, . . . ,anub1, . . . ,bnd.
4) (Pseudoadditivity)

DqsAs1d 3 As2duBs1d 3 Bs2dd = DqsAs1duBs1dd + DqsAs2duBs2dd + sq − 1dDqsAs1duBs1ddDqsAs2duBs2dd,

where

As1d 3 As2d = haj
s1daj

s2duaj
s1d P As1d,aj

s2d P As2dj,

Bs1d 3 Bs2d = hbj
s1dbj

s2dubj
s1d P Bs1d,bj

s2d P Bs2dj.

5) (Joint convexity) For 0ølø1, any qù0 and the probability distributionsAsid=haj
sidj, Bsid

=hbj
sidj si =1,2d, we have

DqslAs1d + s1 − ldAs2dulBs1d + s1 − ldBs2dd ø lDqsAs1duBs1dd + s1 − ldDqsAs2duBs2dd.

6) (Strong additivity)

Dqsa1, . . . ,ai−1,ai1
,ai2

,ai+1, . . . ,anub1, . . . ,bi−1,bi1
,bi2

,bi+1, . . . ,bnd

= Dqsa1, . . . ,anub1, . . . ,bnd + bi
1−qai

qDqSai1

ai
,Uai2

ai
Ubi1

bi
,
bi2

bi
D ,

whereai =ai1
+ai2

, bi =bi1
+bi2

.

Proof: (1) follows from the convexity of the function −lnqsxd:

DqsAuBd ; − o
j=1

n

aj lnq
bj

aj
ù − lnqSo

j=1

n

aj
bj

aj
D = 0.

2) and (3) are trivial. (4) follows by the direct calculation.(5) follows from the generalize
og-sum inequality:7

o
i=1

n

ai lnqSbi

ai
D ø So

i=1

n

aiDlnq1o
i=1

n

bi

o
i=1

n

ai
2 , s2d

or non-negative numbersai ,bi si =1,2, . . . ,nd and anyqù0. We define the functionLq for q

0 to prove(6) as
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Lqsx,yd ; − x lnq
y

x

nd

ai1
= ais1 − sd, bi1

= bis1 − td,

ai2
= ais, bi2

= bit.

hen we have

Lqsx1x2,y1y2d = x2Lqsx1,y1d + x1Lqsx2,y2d + sq − 1dLqsx1,y1dLqsx2,y2d,

hich implies the claim with easy calculations. j

Remark 1.3:1. (1) of Proposition 1.2 implies

SqsAd ø lnq n,

ince we have

DqsAuUd = − nq−1sSqsAd − lnq nd,

or anyqù0 and two probability distributionsA=hajj andU=hujj, whereuj =1/n, s∀ jd, where the
sallis entropy is represented by

SqsAd ; − o
j=1

n

aj
q lnq aj .

2. (4) of Proposition 1.2 is reduced to the pseudoadditivity for the Tsallis entropy:

SqsAs1d 3 As2dd = SqsAs1dd + SqsAs2dd + s1 − qdSqsAs1ddSqsAs2dd. s3d

3. (5) of Proposition 1.2 recover the concavity for the Tsallis entropy, by settingBs1d

h1,0, . . . ,0j, Bs2d=h1,0, . . . ,0j.
4. (6) of Proposition 1.2 is reduced to the strong additivity for the Tsallis entropy:

Sqsa1, . . . ,ai−1,ai1
,ai2

,ai+1, . . . ,and = Sqsa1, . . . ,ai−1,ai,ai+1, . . . ,and + ai
qSqSai1

ai
,
ai2

ai
D .

We finally show the monotonicity for the Tsallis relative entropy. To this end, we intro
ome notations. We consider the transition probability matrixW: A→B, which can be identifie
o the matrix having the conditional probabilityWji as elements, whereA andB are alphabet se
finite sets) ando j=1

m Wji =1 for all i =1, . . . ,n. By A=hai
sindj andB=hbi

sindj, two distinct probability
istributions in the input systemA are denoted. Then the probability distributions in the ou
ystem B are represented byWA=haj

soutdj, WB=hbj
soutdj, where aj

soutd=oi=1
n ai

sindWji , bj
soutd

oi=1
n bi

sindWji , in terms ofW=hWjij si =1, . . . ,n; j =1, . . . ,md. Then we have the following.
Proposition 1.4:In the above notation, for anyqù0, we have

DqsWAuWBd ø DqsAuBd.
Proof: Applying the generalized log-sum inequality Eq.(2), we have
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DqsWAuWBd = − o
j=1

m

aj
soutd lnq

bj
soutd

aj
soutd = − o

j=1

m

o
i=1

n

ai
sindWji lnq

oi=1

n
bi

sindWji

oi=1

n
ai

sindWji

ø

− o
j=1

m

o
i=1

n

ai
sindWji lnq

bi
sindWji

ai
sindWji

= − o
i=1

n

ai
sind lnq

bi
sind

ai
sind = DqsAuBd.

j

We note that the above proposition is a special case of the monotonicity off divergence9 for
he convex functionf. Closing the introduction, we should also note here that the Tsallis en
an be derived by a simple transformation from Rényi entropy which was used before the
ne in the mathematical literature. See Ref. 4 on the details of Rényi entropy, in particular
84–191 of Ref. 4 for the relation to the structurala-entropy14 [or called the entropy of typeb
Ref. 10)], which is one of the nonextensive entropies including the Tsallis entropy.

I. QUANTUM TSALLIS RELATIVE ENTROPY AND ITS PROPERTIES

In Refs. 1 and 2, the quantum Tsallis relative entropy was defined by

Dqsrusd ;
1 − Trfrqs1−qg

1 − q
s4d

or two density operatorsr ands and 0øq,1, as one parameter extension of the definition o
uantum relative entropy by Umegaki30

Usrusd ; Trfrslog r − log sdg. s5d

ee Chap. II written by Rajagopal in Ref. 29, for the quantum version of Tsallis entropies an
pplications.

For the quantum Tsallis relative entropyDqsr usd and the quantum relative entropyUsr usd,
he following relations are known.

Proposition 2.1 [Ruskai–Stillinger24 (see also Ref. 21)]:For the strictly positive operato
ith a unit tracer ands, we have

1) Dqsr usdøUsr usdøD2−qsr usd for 0øq,1.
2) D2−qsr usdøUsr usdøDqsr usd for 1,qø2.

Note that both sides in both inequalities converge toUsr usd asq→1. We must extend th
efinition of the Tsallis relative entropy Eq.(4) for 0øqø2 and impose the invertibility on th
ensity operators ofD2−qsr usd for 0øq,1 and ofDqsr usd for 1,qø2.

Proof: Since we have for anyx.0 andt.0,

1 − x−t

t
ø log x ø

xt − 1

t
,

he following inequalities hold for anya,b,t.0:

aS1 − a−tbt

t
D ø a log

a

b
ø aSatb−t − 1

t
D . s6d
et r=oiliPi ands=o jm jQj be the spectral decompositions. SinceoiPi =o jQj = I, then we have
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TrFr1+ts−t − r

t
− rslog r − log sdG = o

i,j
TrFPiHr1+ts−t − r

t
− rslog r − log sdJQjG

= o
i,j

TrFPiS1

t
li

1+tm j
−t −

1

t
li − li log li + li log m jDQjG

= o
i,j
S1

t
li

1+tm j
−t −

1

t
li − li log li + li log m jDTrfPiQjg ù 0.

he last inequality in the above is due to the inequality of the right-hand side of Eq.(6). Thus we
ave

Trfrslog r − log sdg ø
1

t
Trfr1+ts−t − rg.

he left-hand side inequality is proven by a similar way. Thus setting 1−q= ts.0d in the above
e have(1) in Proposition 2.1. Also we have(2) in Proposition 2.1, by settingq−1=ts.0d. j

We next consider another relation on the quantum Tsallis relative entropy. In Ref. 1
elative operator entropy was defined by

Ssrusd ; r1/2 logsr−1/2sr−1/2dr1/2,

or two strictly positive operatorsr and s. If r and s are commutative, then we haveUsr usd
−TrfSsr usdg. For this relative operator entropy and the quantum relative entropyUsr usd, Hiai
nd Petz proved the following relation:

Usrusd ø − TrfSsrusdg, s7d

n Ref. 15(see also Ref. 16).
In our previous papers,32 we introduced the Tsallis relative operator entropyTqsr usd as a

arametric extension of the relative operator entropySsr usd such as

Tqsrusd ;
r1/2sr−1/2sr−1/2d1−qr1/2 − r

1 − q
,

or 0øq,1 and strictly positive operatorsr ands, in the sense that

lim
q→1

Tqsrusd = Ssrusd. s8d

ctually we should note that there is a slight difference between the two parametersq in the
resent paper andl in the previous paper,32 which is an extension of Ref. 13. Ifr and s are
ommutative, then we haveDqsr usd=−TrfTqsr usdg. Also we now have that

lim
q→1

Dqsrusd = Usrusd. s9d

hese relations, Eq.(7), Eq. (8), and Eq.(9) naturally lead us to show the following theorem a
arametric extension of Eq.(7).

Theorem 2.2: For 0øq,1 and any strictly positive operators with unit tracer and s, we
ave

Dqsrusd ø − TrfTqsrusdg. s10d

Proof: We denote thea-power mean]a by A]aB;A1/2sA−1/2BA−1/2daA1/2. From Theorem 3.

f Ref. 16, we have
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TrfeA]aeBg ø Trfes1−adA+aBg

or any aP f0,1g. SettingA=log r andB=log s, we have

Trfr]asg ø Trfelog r1−a+log sa
g.

ince the Golden–Thompson inequality TrfeA+BgøTrfeAeBg holds for any Hermitian operatorsA
ndB, we have

Trfelog r1−a+log sa
g ø Trfelog r1−a

elog sa
g = Trfr1−asag.

herefore

Trfr1/2sr−1/2sr−1/2dar1/2g ø Trfr1−asag

hich implies the theorem by takinga=1−q. j

Corollary 2.3 (Hiai–Petz15,16): For any strictly positive operators with unit tracer ands, we
ave

Trfrslog r − log sdg ø Trfr logsr1/2s−1r1/2dg. s11d

Proof: It follows by taking the limit asq→1 in both sides of Eq.(10). j

Thus the result proved by Hiai and Petz in Refs. 15 and 16 is recovered as a special
heorem 2.2.

For the quantum Tsallis relative entropyDqsr usd, (i) pseudoadditivity and(ii ) non-negativity
re shown in Ref. 1, moreover(iii ) joint convexity and(iv) monotonicity for projective mesur
ents, are shown in Ref. 2 Here we show the unitary invariance ofDqsr usd and the monotonicit
f that for the trace-preserving completely positive linear map.

Proposition 2.4:For 0øq,1 and any density operatorsr ands, the quantum relative entro

qsr usd has the following properties.

1) (Non-negativity) Dqsr usdù0.
2) (Pseudoadditivity) Dqsr1 ^ r2us1 ^ s2d=Dqsr1us1d+Dqsr2us2d+sq−1dDqsr1us1dDqsr2us2d.
3) (Joint convexity) Dqso jl jr j uo jl js jdøo jl jDqsr j us jd.
4) The quantum Tsallis relative entropy is invariant under the unitary transformationU:

DqsUrU * uUsU * d = Dqsrusd.

Proof: Since it holds thatfsq,x,yd;sx−xqy1−qd / s1−qd−sx−ydù0 for xù0, yù0, and 0
q,1, we haveDqsr usdùTrfr−sg, which implies(1), sincer ands are density operators.(See

roposition 3.16 of Ref. 21 on the so-called Klein inequality.)
(2) follows by the direct calculation.
(3) follows from the Lieb’s theorem that for any operatorZ and and 0ø tø1, the functiona

fsA,Bd;TrfZ* AtZB1−tg is joint concave with respect to two positive operatorsA andB.
(4) is obvious by the use of Stone–Weierstrass approximation theorem.(It also can be show

y the application of Theorem 2.5.) j

(1) of the above proposition follows from the generalized Peierls–Bogoliubov ineq
hich will be shown in the next section.

In Ref. 22, the monotonicity for more generalized relative entropy was shown und
ssumption of the invertibility of the density operators. Here we show the monotonicity f
uantum Tsallis relative entropy in the case of 0øq,1 without the assumption of the invertibil
f the density operators.

Theorem 2.5:For any trace-preserving completely positive linear mapF, any density opera
ors r ands and 0øq,1, we have
DqsFsrduFssdd ø Dqsrusd.
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Proof: We prove this theorem in a similar way as Ref. 18. To this end, we first prov
onotonicity ofDqsr usd for the partial trace TrB in the composite sysytemAB. Let rAB andsAB

e density operators in the composite systemAB. From Refs. 20 and 31, there exists unit
peratorsUj and the probabilitypj such that

rA
^

I

n
= o

j

pjsI ^ UjdrABsI ^ Ujd * ,

here n and I present the dimension and identity operator of the systemB, rA=TrBfrABg and
A=TrBfsABg. By the help of the joint concavity and the unitary invariance of the Tsallis re
ntropy, we thus have

DqSrA Û I

n
UsA

^
I

n
D ø o

j

pjDqssI ^ UjdrABsI ^ Ujd * usI ^ UjdsABsI ^ Ujd * d

= o
j

pjDqsrABusABd = DqsrABusABd.

ince

DqSrA Û I

n
UsA

^
I

n
D = DqsrAusAd,

e thus have

DqsTrBsrABduTrBssABdd ø DqsrABusABd. s12d

t is known25 (see also Refs. 8, 18, and 19) that every trace-preserving completely positive lin
apF has the following representation with some unitary operatorUAB on the total systemAB
nd the projection(pure state) PB on the subsystemB,

FsrAd = TrB UABsrA
^ PBdUAB* .

herefore we have the following result, by the result of Eq.(12) and the unitary invariance

qsr usd again,

DqsFsrAduFssAdd ø DqsUABsrA
^ PBdUAB* uUABssA

^ PBdUAB*d = DqsrA
^ PBusA

^ PBd

hich implies our claim, sinceDqsrA ^ PBusA ^ PBd=DqsrAusAd. j

Settings=s1/ndI in Theorem 2.5, we have the following corollary.
Corollary 2.6: For any trace-preserving completely positive linear unital mapF, any density

peratorr and 0øq,1, we have

HqsFsrdd ù Hqsrd,

hereHqsXd=sTrfXqg−1d / s1−qd represents the Tsallis entropy for density operatorX, which is
ften called the quantum Tsallis entropy.

We note that Theorem 2.5 for the fixeds, namely the monotonicity of the quantum Tsa
elative entropy in the case ofFssd=s, was proved in Ref. 3 to establish Clausius’ inequali

Remark 2.7:It is known19 (see also Ref. 23) that there is an equivalent relation between
onotonicity for the quantum relative entropy and the strong subadditivity for the quantu

ropy. However in our case, we have not yet found such a relation. Because the pseudoa
f the q-logarithm function,

lnq xy= lnq x + lnq y + s1 − qdlnq x lnq y,
isturbs us to derive the beautiful relation such as
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Dqspsx,ydupsxdpsydd = Sqspsxdd + Sqspsydd − Sqspsx,ydd

or the Tsallis relative entropyDqspsx,yd upsxdpsydd, the Tsallis entropySqspsxdd, Sqspsydd, and the
sallis joint entropySqspsx,ydd, even if our stage is in the classical system.

II. GENERALIZED TSALLIS RELATIVE ENTROPY

For any two positive operatorsA, B and any real numberqP f0,1d, we can define the gene
lized Tsallis relative entropy.

Definition 3.1:

DqsAiBd ;
TrfAg − TrfAqB1−qg

1 − q
.

To avoid the confusions of readers, we use the different symbolDqs·i ·d for the generalize
sallis relative entropy.

Since Lieb’s concavity theorem is available for any positive operatorsA andB, the genera
zed Tsallis relative entropy has a joint convexity,

DqSIo
j

l jAjIo
j

l jBD ø o
j

l jDqsAjiBjd, s13d

or the positive numberl j satisfyingo jl j =1 and any positive operatorsAj andBj. Then we hav
he subadditivity of the generalized Tsallis relative entropy betweenA1+A2 andB1+B2.

Theorem 3.2: For any positive operatorsA1, A2, B1, and B2, and 0øq,1, we have th
ubadditivity

DqsA1 + A2iB1 + B2d ø DqsA1iB1d + DqsA2iB2d. s14d

Proof: First we note that we have the following relation for any numbersa andb, and two
ositive operatorsA andB,

DqsaAibBd = aDqsAiBd − a lnq
b

a
TrfAqB1−qg. s15d

ow from Eq.(13), we have

Dqsl1X1 + l2X2il1Y1 + l2Y2d ø l1DqsX1iY1d + l2DqsX2iY2d

or any positive operatorsX1, X2, Y1, and Y2, and l1, l2 sl1+l2=1d. SettingAi =liXi and Bi

liYi for i =1,2 in theabove inequality, we have

DqsA1 + A2iB1 + B2d ø l1DqSIA1

l1
IB1

l1
D + l2DqSIA2

l2
IB2

l2
D .

hus we have our claim due to Eq.(15). j

As a famous inequality in statistical physics, the Peierls–Bogoliubov inequality17,6 is known.
inally, we prove the generalized Peierls–Bogoliubov inequality for the generalized Tsallis r
ntropy in the following.

Theorem 3.3:For any positive operatorsA andB, 0øq,1,

DqsAiBd ù
TrfAg − sTrfAgdqsTrfBgd1−q

1 − q
.

Proof: In general, we have the following Hölder’s inequality:
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uTrfXYgu ø TrfuXusg1/s TrfuYutg1/t, s16d

or any bounded linear operatorsX and Y satisfying TrfuXusg,` and TrfuYutg,` and for any
,s,` and 1, t,` satisfying s1/sd+s1/td=1. By setting X=Aq, Y=B1−q, and s=1/q, t
1/s1−qd in Eq. (16), we have

TrfAqB1−qg ø sTrfAgdqsTrfBgd1−q,

hich implies our claim. j

Note that Theorem 3.3 can be considered a noncommutative version of Eq.(2). If A andB are
ensity operators, then the non-negativity of the quantum Tsallis relative entropy follow
heorem 3.3.

V. CONCLUSION

As we have seen, the monotonicity of the quantum Tsallis relative entropy for the
reserving completely positive map was shown. Also the trace inequality between the
uantum relative entropy and the Tsallis relative operator entropy was shown. It is remarka
ur inequality recovers the famous inequality shown by Hiai–Petz asq→1.
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rystal bases and generalized Lascoux–Leclerc–Thibon
LLT ) algorithm for the quantum affine algebra

q„Cn
„1…
…

Jeong-Ah Kima) and Dong-Uy Shinb)

School of Mathematics, Korea Institute for Advanced Study, 207-43 Cheongryangri
2-dong, Dongdaemun-gu, Seoul 130-722, Korea

(Received 8 June 2004; accepted 26 August 2004; published 24 November 2004)

In this paper, we give a realization of crystal bases of the fundamental representa-
tions overUqsCn

s1dd in terms of Young diagramsk introduced by Premat. Further, we
give a generalized Lascoux–Leclerc–Thibon algorithm for computing the global
bases. ©2004 American Institute of Physics.[DOI: 10.1063/1.1811791]

. INTRODUCTION

In Refs. 11, 12, and 17, thecrystal basistheory orcanonical basistheory for the integrab
odules over quantum groupsUqsgd was developed by Kashiwara and Lusztig, independe
oughly speaking, crystal bases are the bases of representations ofUqsgd as the parameterq tends

o zero, and they give a structure of colored oriented graphs, called thecrystal graphs, which
eflect the combinatorial structure of integrable modules. Hence one of the important prob
he crystal basis theory is to give explicit realization of crystals.

The Fock space representations of affine Lie algebras play an important role in the
heory. In Ref. 5, Hayashi gave the Fock space representation ofUqsAn

s1dd and realized the fund
ental representations. From Hayashi’s results, Misra and Miwa gave an explicit characte
f the crystal basis for the basic representations ofUqsAn

s1dd using colored Young diagrams.18 In
ef. 4, this construction was generalized to all irreducible hight weight representationsVsld with
dominant integral weightl of UqsAn

s1dd. In Ref. 10, Kang, Misra, and Miwa gave the Fock sp
epresentation ofUqsCn

s1dd, UqsA2n
s2dd, andUqsDn+1

s2d d. Moreover, they realized all level one repres
ations VsLkd for UqsCn

s1dd, and they realized the level two representationsVs2L0d,
sL1d , . . . ,VsLnd [resp.,VsLnd] for UqsA2n

s2dd [resp.,UqsDn+1
s2d d].

In Ref. 6, Kang constructed the crystal graphsBsld of the basic representations usingreduced
roper Young wallsfor the classical quantum affine algebras exceptUqsCn

s1dd. The Cn
s1d case wa

ore difficult to deal with because the level 1 perfect crystal for this type is intrinsically of
. In Ref. 3, using the notion ofsplitting block, Hong, Kang and Lee overcame this difficulty. B
his realization is so complex and so difficult to deal with. In Ref. 19, Premat constructed th
pace representationFsLkd overUqsCn

s1dd using, two-dimensional object, colored Young diagr
nd she showed that the connected componentYsLkd in FsLkd containing the maximal vectorfk

f weight Lk is isomorphic toBsLkd. One of the main results in this paper is to give a chara
zation of YsLkd.

On the other hand, from crystal graphs, Kashiwara recovered the true bases ofUqsgd-modules
hich are calledglobal basesin a canonical way.12 But, in general, it is difficult to find globa
ases. In Ref. 13, Lascoux, Leclerc, and Thibon gave an algorithm, called LLT algorith
omputing the global bases of the basic representations overUqsAn

s1dd. Moreover, they gave
onjecture that there is a connection between the representation theory of the quantu

)Electronic mail: jakim@kias.re.kr
)
Electronic mail: shindong@kias.re.kr

4878022-2488/2004/45(12)/4878/18/$22.00 © 2004 American Institute of Physics
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lgebras and the Hecke algebras. This conjecture was proved by Ariki.1 There are several varian
f LLT algorithm using Young diagrams for the classical Lie algebras and Young walls for

ypesA2n−1
s2d , Bn

s1d, Dn
s1d, Dn+1

s2d , andC2
s1d.7–9,14–16In this paper, we give a generalized LLT algorit

sing colored Young diagrams introduced by Kang, Misra, Miwa,10 and Premat.19

I. THE FOCK SPACE REPRESENTATION FOR Uq„Cn
„1…
…

The basic concepts on quantum groups and crystal bases may be found in many arti
ooks(for example Refs. 2, 11, and 12). We refer the readers to these references. In this se
e mostly explain the Fock space representation forUqsCn

s1dd constructed by Premat.19

Let Uqsgd=UqsCn
s1dd be the quantum affine algebra of typeCn

s1d and I =h0,1, . . . ,nj be the
ndex set for simple roots ofUqsgd. Let P∨=s% iPIZhid % Zd and P=s% iPIZLid % Zd be the dua
eight lattice and the weight lattice, respectively. Moreover,ai si P Id, d, Li si P Id are the simpl

oots, null root, fundamental weights, respectively, andei, f i, Ki, qd are the generators ofUqsCn
s1dd.

urther,P+=s% iPIZù0Lid % Zd is the set of dominant weights, andẽi, f̃ i are the Kashiwara oper
ors.

A Young diagram Y kP I is a sequencehyljlPN of integers such that

sid yl ø yl+1 for all l P N, sii d yl = k for all l @ 0,

hereN is the set of positive integers. The empty Young diagramhk,k, . . .j k will be denoted b

k and we denote byZsLkd the set of all Young diagramsk. Define theFock spaceof weight Lk

y

FsLkd = %
YPZsLkd

QsqdY,

hereQ is the set of rational numbers.
The Young diagramY=hyljlPN k is represented by the regionhsx,yd uxPN ,yùyxj in the

ollowing coloredxy-plane

All Young diagrams of chargek contain the regionhsx,yd uxPN ,yùkj corresponding tofk.
ence for simplicity, when we represent a Young diagram, we remove this regionfk, and so th
mpty Young diagramfk is meaningful. We also define the map wt:FsLkd→P by

wtsYd = Lk − o
iPI

kiai ,

hereki is the number ofi-colored boxes inY that have been added to thefk.
Example 1.1:For n=2, a Young diagramY=h−3,−3,−2,0,1,1, . . .j 1 is represented as fo
ows:
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urther, we have

wtsYd = L1 − s3a0 + 6a1 + 3a2d.

Let Y=hyljlPNPZsLkd. If yl Þyl+1 for somel PN, the sitesl ,yl+1d [resp.,sl +1,yl+1−1d] is
alled aconcave(resp.,addable) corner of Y, and the sitesl ,yld is called aconvexor removable
orner of Y. Moreover, the sites0,y1d [resp.,s1,y1−1d] is also called aconcave(resp.,addable)
orner. Moreover, the sitesl ,yd with coloring i is called ani-colored corner. Note that the
efinition of addable(resp., convex) corner of Young diagramY k is similar to that of admissib
lot (resp., removable block) in Young walls.6

Example 1.2:The Young diagramY in Example 1.1 has a 0-colored addable corners3,−3d,
nd 1-colored addable cornerss1,−4d, s4,−1d, and (5, 0). Moreover, it has a 0-colored conv
removable) corner(4, 0), 1-colored convex(removable) cornerss2,−3d and s3,−2d.

Now, following Refs. 10 and 19, we define an action ofUqsgd on FsLkd. For sx,ydPN3Z,
e defineEsx,yd, Fsx,yd, Tsx,yd

± :FsLkd→FsLkd as follows:

Esx,ydsYd = HY ↗ sx,yd if sx,yd is a convex corner,

0 otherwise,
J

Fsx,ydsYd = HY ↙ sx,yd if sx,yd is an addable corner,

0 otherwise,
J

Tsx,yd
± sYd = 5qi

±Y if sx,yd is a i-colored concave corner,

qi
7Y if sx,yd is a i-colored convex corner,

Y otherwise.
6

ere,Y↗ sx,yd (resp.,Y↙ sx,yd) is the Young diagramk obtained by removing(resp., adding)
he sitesx,yd from Y (resp., toY).

Define the order. on N3Z as follows:sx,yd. sx8 ,y8d if and only if x+y.x8+y8. We define
inear operatorsEi, Fi, Ti

± si P Id andTd:FsLkd→FsLkd as follows:

Ei = o
sx,ydPN3Z

S p
sx8,y8d,sx,yd

Tsx8,y8d
− DEsx,yd,

Fi = o
sx,ydPN3Z

S p
sx8,y8d.sx,yd

Tsx8,y8d
+ DFsx,yd,

Ti
± = p

sx,ydPN3Z
Tsx,yd

± ,

nd for YPZsLkd, TdsYd=q−sthe number of 0-colored corners inYd. Here, the sitessx,yd and sx8 ,y8d are

-colored corners.
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Then we have
Theorem 1.3 (Refs. 10 and 19):(a) The Fock spaceFsLkd skP Id is a Uqsgd-module unde

he action of ei, f i, qhi and qd is given by that of Ei, Fi, Ti and Td, respectively.
(b) The Uqsgd-moduleFsLkd lies in the categoryOint, whereOint is the category of integrab

odules inRefs. 2, 11, and 12.
Corollary 1.4 (Refs. 10 and 19): There is a Uqsgd-module isomorphism from Uqsgdfk to the

rreducible highest weight module VsLkd with the highest weightLk.
Let A0=hf /gPQsqd u f ,gPQfqg ,gs0dÞ0j be the localization ofQfqg at q=0.
Theorem 1.5 (Refs. 10 and 19): Let LsFsLkdd=oYPFsLkdA0Y and BsFsLkdd=hY

qLsFsLkdd uYPZsLkdj. Then sLsFsLkdd ,BsFsLkddd is a crystal base for the integrab

qsgd-moduleFsLkd.
Now, we give a crystal structure onZsLkd. Let YPZsLkd andsx1,y1d. sx2,y2d. ¯ . sxi ,yid

e the i-colored convex or addable corners ofY. At first, to eachi-colored convex or addab
orner sxj ,yjd s j =1, . . . ,ld, we assign itsi-signaturesgnsxj ,yjd as 2 (resp.,1) if it is a convex
resp., addable) corner. From the sequencessgnsx1,y1d , . . . ,sgnsxl ,yldd of 1’s and2’s, cancel ou
very (1, 2)-pair to obtain a sequence of2’s followed by 1’s, reading from left to right. Thi
equence is called thei-signatureof Y.

We definef̃ iY to be the Young diagramk obtained fromY by adding thei-colored box to th

-colored addible corner corresponding to the left-most1 in the i-signature ofY. We definef̃ iY
0 if there is no1 in the i-signature ofY. We defineẽiY to be the Young diagramk obtained from
by removing thei-colored convex corner corresponding to the right-most − in thei-signature o

. We defineẽiY=0 if there is no − in thei-signature ofY.

Theorem 1.6 (Ref. 19):The operators e˜i and f̃i defined above coincide with the Kashiw
perators.

Using Theorem 1.3 and Theorem 1.6, it is easy to find all maximal vectors inZsLkd.
hat is, if the rightmost convex cornerCv of a maximal vectorY is a a-colored corner, by th
efinition of Kashiwara operators, there should exist aa-colored addable corner in the right ha
ide ofCv which must be the rightmost addable corner. Applying this argument to other c
orners, we can obtain a maximal vector. The following are maximal vectors consistint
olumnsstù1d:

s1.1d

In particular, consider the caseg=C2
s1d. Let asmd be the number of partitions ofm on

he set1
2Z.0=h 1

2 ,1 ,3
2 , . . . ,j, andbsmd be the number of partitions ofm+ 1

2 on the set12Z.0. Let
smd be the number of partitions ofm on the seth1,3,5, . . .jø h18 ,28 ,38 , . . .j such that 2k−1
s2k−1d8 skù1d. For instance, since

38 = 3 = 28 + 18 = 28 + 1 = 18 + 18 + 18 = 18 + 18 + 1 = 18 + 1 + 1 = 1 + 1 + 1,

e havecs3d=8.
Proposition 1.7: Letg=C2

s1d and let Lk sk=0,1,2d be a dominant integral weight. Then

ave
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FsLkd = Hs%mù0VsLk − mdd%asmdd % s%mù0VsLk − md − ak − a1d%bsmdd if k = 0,2,

%mù0VsLk − mdd%csmd if k = 1.
J

Proof: Since the proof is similar, we only check theFsL1d-case. By(1.1), the maximal vector
Mt stù1d with the least number of boxes among the maximal vectors consisting oft columns ar
s follows:

et Y be a maximal vector which is not the empty diagramf1. ThenY is obtained by attachin
ome maximal vectorsMt1

, . . . ,Mt2
. For instance, the maximal vector

s obtained by attachingM1, M2, andM4. We associatepj’s for Mtj
as follows:

pj = 5tj if tj is odd,

S tj

2
D8

if tj is even.6
hen spjd j=1

s forms a partition onh1,3,5, . . .jø h18 ,28 ,38 , . . .j and wtsYd=L1−so j=1
s pjdd. There-

ore, it is easy to see that the number of maximal vectors with weightL1−md is csmd. Conversely
or a given partitionspjd j=1

s of m on h1,3,5, . . .jø h18 ,28 ,38 , . . .j, we can find a unique Youn
iagramYPZsL1d 1 with wtsYd=L1−md, which is obtained by attaching maximal vectorsMtj

’s,
here

tj = Hpj if pj P h1,3,5, . . .j,

2qj if pj P h18,28,38 . . . j andpj = qj8.
J

h

Until now, we described the Fock space representationFsLkd and the crystal structure
sLkd given by Premat. But, she did not give explicit description of the crystal basisYsLkd of the

undamental representationUqsgdfk=VsLkd. In next section, we deal with it.

II. CHARACTERIZATION OF THE CRYSTAL BASIS Y„Lk…

Let Y be a Young diagramk. It is represented by some region in the followingxy-planes with

oloring.
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n the abovexy-planes, we denote byCi
+ the ith column ofxy-plane and we can find regions

i−1
+ with the same coloring asCi

+. Among these, we denote byCi−1
− the largest region. The shad

arts in abovexy-planes representC1
−, C2

−, andC3
−.

Now, consider 0-colored orn-colored corners in the first row. We write these sitessxi ,k−1d
ith i ù1 from left to right. Thensxi +1,k−1d andsxi ,k−2d are the sites of the same coloring.
xample, in Figs. 1 and 2, the third site and the seventh site in the first row aren-colored and
-colored corners, respectively. That is,x1=3 andx2=7. Also, both the fourth site in the first ro
nd the third site in the second row are 3-colored corners, and both the eighth site in the fi
nd the seventh site in the second row are 1-colored corners, and so on. LetUi si ù1d be the are
onsisting of sitessx,yd such thatx+yùxi +k. Then it is easy to see that there is an area whi
ymmetric to Ui with respect to the linel i =hsx,yd ux+y=xi +k−1j. That is, hsx,yd uxùxi ,x
y,xi +k−1j. We denote byLi this region. ForkÞ0, n, we denote byU0 (resp.,L0) the area
onsisting of cornerssx,yd such thatx+y.k (resp.,x+y,−k). For k=0, n, we also denote byU0

resp.,L0) the area consisting of cornerssx,yd such thatx+y.k (resp.,x+y,k). Notice that if we
et

l0 = Hhsx,ydux + y = 0j if k Þ n,

hsx,ydux + y = nj if k = n,
J

henU0 andL0 are symmetric to each other with respect to the linel0. Note that fork=0, n, U1

resp.,L1) is equal toU0 (resp.,L0). For instance, the shaded parts in Fig. 1 representU0, L0, and
n Fig. 2, the shaded parts representU1 andL1 for the Young diagram 2 ofC4

s1d.
Now, for eachYPZsld, we denote byYùUi (resp.,YùLi) for i =0,1, . . . ,n the set of al

ommon sites inY and Ui (resp.,Li) and denote byuYùLiu the diagram obtained by reflecti
ùLi with respect to the linel i. Finally, for the sitessx,ydPUi andsx8 ,y8dPLi, we say thatsx,yd
orresponds tosx8 ,y8d if sx,yd is symmetric tosx8 ,y8d with respect tol i.

FIG. 1. U0 andL0.
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Example 2.1:Let g=C4
s1d and let

e a Young diagram 0. Then

Now, we introduce some configuration conditions.
Definition 2.2: (a) Assume thatYPZsLkd has i-convex cornerssx1,y1dPUj and sx2,y2d

Lj corresponding to each other for somej =0,1,2, . . .. Ifthere is noi-concave corner betwe
x1,y1d and sx2,y2d, we say thatY satisfies theconfiguration condition(C1).

(b) Assume thatYPZsLkd has ani-convex cornersx1,y1dPUj and an i-addable corne
x2,y2dPLj corresponding to each other for somej =0,1,2, . . . . We saythat Y satisfies thecon-
guration condition(C2) unless there is anotheri-addable corner betweensx1,y1d andsx2,y2d, and
he i-signature of the diagramhsx,ydPYux2+y2,x+y,x1+y1j does not have1’s, i.e.,x=s·d or
2,2,2, …).

(c) Assume thatYPZsLkd hasi-addable cornerssx1,y1dPUj andsx2,y2dPLj correspondin
o each other for somej =0,1,2, . . .. We saythat Y satisfies theconfiguration condition(C3)
nless there is anotheri-addable corner betweensx1,y1d and sx2,y2d, and thei-signature of th
iagramhsx,ydPYux2+y2,x+y,x1+y1j is x=s·d.

From now on, for simplicity, we call thei-signature of the diagramhsx,ydPYux2+y2,x
y,x1+y1j the i-signature betweensx1,y1d and sx2,y2d.

Example 2.3:Let g=C3
s1d and let

e a Young diagram 0. The shaded partss1,−5d ands5,−1d represent the 2-colored convex corn
orresponding to each other. Since there is a 2-colored addable corners4,−2d between thes

FIG. 2. U1 andL1.
onvex corners,Y does not satisfy the configuration condition(C1).
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Let YPZsLkd be a Young diagramk. Let Cv be the maximal convex corner inY with respec
o the order. on N3Z and assume thatCv is a a-colored corner. Then we denote byCa the

aximal a-addable corner. Now, we defineŶ to be the Young diagramk obtained fromY by
emoving alla-colored convex corners betweenCv andCa in Y.

Example 2.4:(a) For g=C3
s1d andl=L0, let

here the shaded corner represents the maximal convex cornerCv. In this case, there is n

-addable corner and soŶ is the Young diagram 0 obtained by removing all 2-colored co
orners. That is,

(b) For g=C3
s1d andl=L1, let

here the shaded corner represents the maximal convex cornerCv. Since there existsCa in Y, Ŷ
s the Young diagram 1 obtained by removing the 2-colored convex cornerCv. That is,

Now, we are ready to give an explicit description of the crystal graphYsLkd.
Theorem 5: The crystal basisYsLkd of VsLkd=Uqsgdfk is realized as the set of You

iagrams YPZsLkd k satisfying the following conditions:

I) for each i=2,3, . . .,YùCi−1
− ,YùCi

+,
II ) for each i=0,1,2, . . .,uYùLiu,YùUi,

III ) if we set Y0=Y, Y1=Ŷ and Yk=Yk−1̂, every Yk satisfies configuration conditions(C1), (C2),
and (C3).

Remark 2.6: (a) In Theorem 2.5(I), we regardYùCi−1
− andYùCi

+ as only diagrams witho
oordinates, that is,(I) means that if we putYùCi−1

− andYùCi
+ on thexy-plane left-top adjuste

henYùCi−1
− is a subdiagram ofYùCi

+.

(b) If YPYsLkd is a Young diagramk, thenŶ also belongs toYsLkd.
Example 2.7:(a) Let g=C2

s1d and let
hen we have
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herefore,

Y ù U1 = # Y ù C2
+, Y ù C2

− # Y ù C3
+, andY ù C3

− £ Y ù C4
+.

(b) In Example 2.1, we have

herefore,YùU1¢ uYùL1u and soY does not belong toYsL0d.
(c) Let g=C4

s1d and let

e a Young diagram 0. ThenY does not satisfy the configuration condition(C2), which implies
¹YsL0d.

V. GENERALIZED LLT ALGORITHM

In this section, we give a generalized LLT algorithm, which is an algorithm for constru
he global basisGsLkd of the irreducible highest weight moduleVsLkd of level 1 overUqsgd. More
recisely, for a Young diagramY k in YsLkd, we give an algorithm of computing the correspo

ng global basis elementGsYd as a linear combination of Young diagramsk in ZsLkd.
We recall the notion of global basis. Consider aQ-algebra involution–ofUqsgd defined by

ei = ei, f i = f i, qh = q−h, q̄ = q−1 for i P I, h P P∨.

hen we have aQ-linear automorphism ofVsld given by

Pvl ° P̄vl for P P Uqsgd

ith the highest weight vectorvl of Vsld. Let A =Qfq,q−1g. Let UA
− be theA-subalgebra ofUqsgd

enerated byf i
snd si P I ,nPZù0d and setVsldA =UA

−vl. Let sLsld ,Bsldd be a crystal basis of th
rreducible highest weightUqsgd-moduleVsld with a dominant integral weightl. Then there is
niqueA-basisGsld=hGsbdPVsldA ùLsld ubPBsldj of VsldA such that

Gsbd¯ = Gsbd, Gsbd ; b modqLsld for all b P Bsld.

he basishGsbdj is called theglobal basisof Vsld corresponding to the crystal basisBsld (Ref.

2).
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Now, we are ready to describe the generalized LLT algorithm. At first, we consider the
f divided powersf i

srd on the Young diagramsk.
Lemma 3.1: Let Y be a Young diagram k, and write

f i
srdY = o

ZPZsLkd
wtsZd=wtsYd−rai

QY,ZsqdZ,

here QY,ZsqdPQsqd. Then we have QY,ZsqdPZfq,q−1g.
Proof: If ZPZsLkd satisfiesQY,ZsqdÞ0, we can find a unique sequence of Young diagramk,

=Y0,Y1, . . . ,Yr =Z such that

i) Yk+1=Yk↙ sxk+1,yk+1d for an i-colored addable cornersxk+1,yk+1d,
ii ) the sitesxk+1,yk+1d is smaller than the sitesxk,ykd.

or eachk, let QYk,Yk+1
sqd be the coefficient ofYk+1 in f iYk and let

QY,Z
+ sqd = p

k=0

r−1

QYk,Yk+1
sqd P Zfq,q−1g.

hen by induction onr, we can see that

QY,Zsqd = QY,Z
+ sqdqi

rsr−1d/2 P Zfq,q−1g. s3.1d

h

For Y in ZsLkd, we associate a sequenceiYi=s. . . ,y−1,y0,y1, . . .d, whereyi is the number o
itessx,yd in Y such thatx+y= i. For Y and Z in ZsLkd, consider the associated sequencesiYi
s. . . ,y−1,y0,y1, . . .d and iZi=s. . . ,z−1,z0,z1, . . .d. We defineY.Z if and only if there existsp
uch thatyi =zi for all i .p andyp.zp. Then we have

Proposition 3.2: Let YPYsLkd be a Young diagram k. Suppose that wtsŶd=wtsYd+rai. Then

fi
srdŶ = Y + o

wtsZd=wtsYd
Y.Z

QŶ,ZsqdZ,

here QŶ,ZsqdPZfq,q−1g.
Proof: Recall that Ŷ is obtained fromY by removing i-colored convex corners betwe

aximal convex cornerCv and the maximali-colored addable cornerCa. Then it is easy to see th

Ŷ,Zsqd=0 unlessYùZ andwtsYd=wtsZd. Further, there is a unique sequence of Young diag

, Ŷ=Y0,Y1, . . . ,Yr =Y such that

i) Yk+1=Yk↙ sxk+1,yk+1d for somei-colored addable cornersxk+1,yk+1d,
ii ) there is no addable corner located above the sitesxk,ykd with respect to the ordering. on

N3Z.

n this case, it is easy to see thatQYk,Yk+1
sqd=qi

−k and so

Q
Ŷ,Y

+ sqd = p
k=0

r−1

QYk,Yk+1
sqd = qi

−rsr−1d/2.

ˆ
herefore, by(3.1) QY,Ysqd=1. h
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Definition 3.3:Let YPYsLkd be a Young diagramk. Then we have the unique sequenc

oung diagramsk in YsLkd such thatY=Y0, Y1=Ŷ0, . . . ,Yk+1=Ŷk, . . . ,YN=ŶN−1=fk. Suppose tha

k=Ŷk−1 is obtained by removingrk-many ik-colored convex corners fromYk−1. We define

AsYd = f i1

sr1d
¯ f iN

srNdfk P VsLkdA . s3.2d

By definition,AsYd=AsYd. We write

AsYd = o
ZPZsLkd

AY,ZsqdZ,

hereAY,ZsqdPQsqd. Then we have
Proposition 3.4: Let YPYsLkd be a Young diagram k. Then for a Young diagram

ZsLkd k, we have

AsYd = Y + o
wtsZd=wtsYd

Y.Z

AY,ZsqdZ,

here AY,ZsqdPZuq,q−1u.
Proof: By Lemma 3.1 and Proposition 3.2, it is clear thatAY,ZsqdPZuq,q−1u andAY,Ysqd=1.

herefore, it suffices to show thatAY,Zsqd=0 unlessYùZ and wtsYd=wtsZd. Now, we use th
nduction onN. If N=1, it is just the Proposition 3.2. Suppose that

f i j+1

sr j+1d
¯ f iN

srNdfk = Yj+1 + o
Yj+1.Z

AYj+1,ZsqdZ.

hen

f i j

sr jdf i j+1

sr j+1d
¯ f iN

srNdfk = f i j

sr jdYj+1 + o
Yj+1.Z

AYj+1,Zsqdf i j

sri j
d
Z

= Yj + o
Yj.W

QYj,W
sqdW+ o

Yj+1.Z

AYj+1,Zsqdo
W

QZ,WsqdW.

Let iYj+1i=s. . . ,y−1,y0,y1, . . .d and iZi=s. . . ,z−1,z0,z1, . . .d and let p be the largest integ
uch thatyp.zp andyq=zq sq.pd. Let a be the coloring ofsx,yd such thatx+y=p. If i j is nota,

t is easy to see thatYj .W. If i j is a, by definition ofY, we can see thatYj andW are obtaine
y addingi j-manya’s to the addable cornerssx,yd such thatx+y.p. HenceYj .W. h

Let GsLkd=hGsYd uYPYsLkdj be a global basis ofVsLkdA. For YPYsLkd, let us write

GsYd = o
ZPZsLkd

GY,ZsqdZ P VsLkdA ù LsLkd,

here GY,ZsqdPA0. Since GsLkd is a A-basis of VsLkdA, it is easy to see thatGY,Zsqd
Qfq,q−1g. Further,GsYd;Y mod qLsFsLkdd implies (i) GY,ZsqdPQfqg, (ii ) GY,ZsqdPqQfqg

nlessY=Z, (iii ) GY,Ysqd=1.
On the other hand, sinceGsLkd and AsLkd are bothQsqd-basis ofVsLkd, there is a matri

=sHY,WsqddY,WPYsLkd such that

GsYd = o
WPYsLkd

HY,WsqdAsWd.

−1
inceGsYd=GsYd andAsWd=AsWd, HY,Wsqd=HY,Wsq d.
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Proposition 3.5 (cf. Ref. 8):

a) HY,Wsqd satisfies the following properties:

i) HY,WsqdPQfq,q−1g,
ii ) HY,Wsqd=0 unless YùW and wtsYd=wtsWd,
iii ) HY,Ysqd=1.

b) AsLkd=hAsYd uYPYsLkdj is an A-basis of VsLkdA.

Proof: The proof is the same as that of Proposition 7.12 in Ref. 17. h

By above proposition, for eachYPYsLkdl sløLkd, we have

AsYd = GsYd + o
ZPYsLkdl

Y.Z

gY,ZsqdGsZd, s3.3d

here gY,ZsqdPQfq,q−1g and gY,Zsqd=gY,Zsq−1d. If Y is the minimal element inYsLkdl, then
sYd=AsYd. Suppose thatY is not minimal andGsY8d are given forY8PYsLkdl such thatY8,Y.
hengY,Y8sqd are completely determined as follows:

1) if Y8 is the maximal one such thatY.Y8 andAY,Y8sqd=oi=−r8
r aiq

i, thengY,Y8sqd=oi=1
r8 aisqi

+q−id+a0;

2) if the coefficient ofY8 in AsYd−oY.Z.Y8gY,ZsqdGsZd is oi=−r8
r aiq

−i, thengY,Y8sqd=oi=1
r8 aisqi

+q−id+a0.

From the description of the algorithm, we have
Theorem 3.6: For a Young diagram YPYsLkdl sløLkd k, the corresponding global bas

lement GsYd is of the following form

GsYd = Y + o
ZPZsLkdl

Y.Z

GY,ZsqdZ, s3.4d

here GY,ZsqdPqZfqg for YÞZ.
Example 3.7:Let g=C4

s1d. In this case,q0=q4=q2 andq1=q2=q3=q. The following are the a
oung diagrams 0 with the weightL0−s2a0+3a1+2a2+3a3+a4d.

ow, Y1.Y2 and
oreover,
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nd soAsY1d=Y1+qLsL0d. Therefore,GsY1d=AsY1d.
Remark 3.8:Indeed, we have a Young diagramYPZsld such thatAsYdÞGsYd. But, in

eneral, it is composed of a lot of colored boxes.

. THE PROOF OF THE MAIN THEOREM

In this section, we give a proof of our main theorem. LetYsLkd be the set of Young diagram
satisfying the conditions of the Theorem 2.5.

By Corollary 1.4 and Theorem 1.5, it suffices to prove the following statements:

1) For all i P I we haveẽiYsLkd,YsLkdø h0j, f̃ iYsLkd,YsLkdø h0j.
2) If YPYsLkd and ẽiY=0 for all i P I, thenY=fk.

But, thanks to(1.1), it is easy to see that all maximal Young diagramsk exceptfk does no
atisfy the condition(II ). Hence(2) is proved. For(1), let yPYsLkd be a Young diagramk.

uppose thatf̃ iY does not belong toYsLkd. It means thatf̃ iY violates at least one of the conditio
I)–(III ).

Case I.suppose thatf̃ iY does not satisfy the condition(I). Then there exists ani-colored

onvex corner inCk
− for somek, wherei-colored box can be added to getf̃ iY such that

f̃ iY ù Ck
− £ f̃ iY ù Ck+1

+ .

oreover, sinceY satisfies the condition(I), there should exist thei-colored addable corner

k+1
+ of f̃ iY, which implies thatY hasi-colored addable corners in bothCk

− andCk+1
+ . But, by the

efinition of Kashiwara operators, it is a contradiction.

Case II.Suppose thatf̃ iY does not satisfy the condition(II ). ThenY has i-colored addabl

ornerssx,yd and sx8 ,y8d corresponding to each other, andY and f̃ iY have the following form:
y the condition(II ), we have the following possibilities forY:
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By the definition of Kashiwara operatorf̃ i, there should be a convexi-colored corner betwee
x,yd and sx8 ,y8d in Y. Hence, one of the following diagrams appears between the cornerssx,yd
nd sx8 ,y8d.

onsider the casesad. Then we have the following four cases:

or the case(a-i) and (a-ii), if Y hassi +1d-colored[resp.,si −1d-colored] convex corner andsi
1d-colored [resp.,si −1d-colored] addable corner, it contradicts to the configuration cond

C1). If Y has si +1d-colored [resp., si −1d-colored] convex corner andsi −1d-colored
si +1d-colored] addable corner, then we can check thatYt for some tù0 cannot satisfy th
onfiguration condition(C1) for the si −1d-color [si +1d-color]. In case(a-iii), it is easy to see th
does not satisfy the configuration condition(C1). In case(a-iv), thanks to the pattern of colorin

n xy-plane, we can check thatYt for somet cannot satisfy the configuration condition(C1). For
he remaining cases, we can give a proof by the similar method.

Case III.Suppose thatf̃ iY does not satisfy the condition(III ). Then there is a Young diagra

f̃ iYdl which does not satisfy one of the configuration conditions(C1), (C2), (C3). At first, con-
˜
ider the casel =0. That is, suppose thatf iY does not satisfy one of the configuration conditions
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C1), (C2) and(C3). At first, suppose thatf̃ iY violates the configuration condition(C1). If Cv of

f iY is a i-colored convex corner, thenY and f̃ iY have the following form:

y the definition of Kashiwara operatorf̃ i, it is easy to see that thei-signature betweeni-colored
onvex cornerCv and i-colored addable corner corresponding toCv in Y is x=s·d or

2, 2, 2, …). SinceY satisfies the configuration condition(C2), it is a contradiction. IfCv of f̃ iY

s asi +1d-colored orsi −1d-colored convex corner, thenY and f̃ iY have the following possibilitie

ere, the left hand side or the upside ofCv is i-colored. In any case, by the pattern of coloring
y-plane and the condition(II ) which Y should satisfy,Yt for somet can not satisfy the config
ation condition(C1). It is a contradiction. Similarly, for the remaining cases, we can see t
ontradicts to the fact thatYPYsLkd.

By the similar argument, iff̃ iY violates the configuration condition(C2), we can show thatY
oes not satisfy the configuration condition(C2) or (C3).

Finally, suppose thatf̃ iY violates the configuration condition(C3). If the addable corners

f iY which violate(C3) are i-colored corners, thenY and f̃ iY have the following form:

ote thati-signature ofY between above twoi-addable corners is(1). Hence, by the definition o

ashiwara operatorf̃ i, it is impossible.
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If the addable corners off̃ iY which violate(C3) aresi −1d-colored corners, thenY should be
ne of the following forms:

ere, the shaded parts represent the sites wherei-colored box will be added inf̃ iY. Consider th
rst case of(a). Then we have the following cases:

he cases(i) and(ii ) violate the configuration condition(C1). Further, for the case(iii ), we can se
hat Yt for somet has the form of(i) and(ii ). It is a contradiction. The case(b) is also proved b
he similar argument. Moreover, the case(c) cannot appear by the condition(I).
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ut, in this case,f̃ iY does not satisfy the configuration condition(C1), which is a contradiction

inally, if Cv is a si +1d or si −1d-colored corner,f̃ iY is one of the following forms:

n case(a), we have

hen Ŷ violates the configuration condition(C1) or (C2), which is a contradiction. For the ca
b), we have

oreover,Y does not satisfy the configuration condition(C1), which is a contradiction.

By the similar argument, we can see thats f̃ iYdl for all l satisfy the configuration conditio

C2) and (C3). Therefore,f̃ iY satisfies the condition(III ).
Similarly, we can see thatẽiY belongs toYsLkdø h0j. h
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armonic analysis of linear fields on the nilgeometric
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To analyze linear field equations on a locally homogeneous space–time by means o
separation of variables, it is necessary to set up appropriate harmonics according to
its symmetry group. In this paper, the harmonics are presented for a spatially
compactified Bianchi II cosmological model—thenilgeometric model. Based on
the group structure of the Bianchi II group(also known as the Heisenberg group)
and the compactified spatial topology, the irreducible differential regular represen-
tations and the multiplicity of each irreducible representation, as well as the explicit
form of the harmonics are all completely determined. They are also extended to
vector harmonics. It is demonstrated that the Klein–Gordon and Maxwell equations
actually reduce to systems of ODEs, with an asymptotic solution for a special
case. ©2004 American Institute of Physics.[DOI: 10.1063/1.1811373]

. INTRODUCTION

A basic strategy to analyze linear field equations on a given space–time, like linear pe
ion equations of Einstein’s equation, is to separate the equations using appropriate harmo
armonics for a given manifold are in general determined by the underlying symmetry
isometry group) and the topology of the manifold. The simplest example is that of a commu
roup acting on a flat manifold. If the manifold is compactified to, e.g., a torus, then functio

he manifold are expanded in the form of usual Fourier series. When the group is noncomm
owever, the harmonics become much more complicated. The most familiar example in h
eous cosmology is the SUs2d (Bianchi IX) case,2,6,8 where one needs to use the spherical
onics (and their generalization to vector and tensor harmonics if necessary) to separate fiel

ariables. A notable nontrivial example is theH23R (Bianchi III) case17,13 with compactified
hree-dimensional manifold. Since such a manifold is a direct product of two submanifo
losed hyperbolic plane and a circle, the harmonics are simply given by making products o
or the two lower dimensional manifolds. Note that the Bianchi III belongs to Class B.4 Separa
ions of variables regarding locally rotationally symmetric(LRS) Class A Bianchi types(and
ravitational perturbations) were discussed in Refs. 3 and 9 without compactification.

In this paper we consider thegeneric(i.e., non-LRS) Bianchi II modelwith compactification
he Bianchi II type is one of the class A types. The underlying symmetry group is the
imensional Heisenberg groupH1, which we refer to as the Bianchi II groupGII . The Bianchi II
omogeneous manifolds correspond to Thurston’s nilgeometry.20 We will refer to spatially com
actified Bianchi II space–times(i.e., ones obtained from Bianchi II spatially homogeneous sp

imes by compactifying the homogeneous spatial sections) as nilgeometric cosmological mode
to distinguish from the conventional open models).

By considering a compactified(spatial) manifold we have the following merits:(1) a compac
auchy surface makes it natural to view the field equations as an initial value problem in

)
Electronic mail: masayuki.tanimoto@aei.mpg.de
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ogical context,(2) a finite spatial volume is physically reasonable, and(3) functional analysis o
compact manifold is much easier and tractable than one on an open manifold, since we c
any complexities involved in continuous spectra and those for the convergence of in

remember the contrast between Fourier series analysis on the “compactified space”S1=R1/Z and
ourier analysis on the open spaceR).

We also mention that a motivation of considering compactified manifolds also come
ecent evidence that the spatial topology and global dynamical properties of solutions of Ei
quation are related in some ways. In particular, recent results1,5 suggest a very general picture
ow an appropriately conformally transformed spatial manifold evolves in time by the va
instein equation, depending upon its topology. This picture motivates us to study linear
ation equations for locally homogeneous solutions which have various spatial topologies

Fortunately, although it is not as trivial as the torus compactification of a flat manifol
ompactification of Bianchi II manifolds(or Bianchi II type space–times) is not very difficult. We
ill describe our compactification following Refs. 10, 15, and 16.

In this paper we explore detailed properties for the scalar and vector harmonics. W
emonstrate separation of variables for the Klein–Gordon scalar field equation and the sou
axwell equation. Although generalization to tensor harmonics is straightforward we leav
xplicit presentation to a subsequent paper as well as a study of linear perturbations. This

ntended to lay a solid basis for exploring those more complicated problems, or to be us
any applications on the nilgeometric space–time model like quantum field analysis.

Some of the mathematical background assumed in this paper and some related re
ained are the following. As well known(e.g., Ref. 32), the harmonics on a manifoldM on which

transformation groupG acts are naturally obtained through irreducible decomposition
epresentationT, called the regular representation, of G on L2sMd. Let gPG and let fsxd

L2sMd. The (right) regular representationsT,L2sMdd is given by the homomorphismT:g→Tg,
here Tg is the right translation mapTg: fsxd→ fsxgd.22 In fact, letting g,g8PG, we can se

gTg8fsxd=sTg8fdsxgd= fsxgg8d=Tgg8fsxd, showingT is a representation(homomorphism), TgTg8
Tgg8. This representation is howevernot irreducible in general. The appropriate harmonics oM
re naturally obtained through an irreducible decomposition ofsT,L2sMdd.

In our context, the transformation groupG is the Bianchi II groupGII , which acts onM̃

R3 from the left simply transitively, i.e., for arbitraryp,qPM̃ there exists a unique elemeng

G such thatgp=q. Thanks to this property, choosing an arbitrary fixed pointoPM̃, e.g., the

oordinate origin, one can identify the groupGII and the manifoldM̃, GII =M̃, by associatinggo

ith g. With this identification, the manifoldM̃ is also the groupGII , and therefore the right actio

f GII on M̃ is also naturally defined. We makeM̃ compact by identifying points by left action

discrete subgroupA,GII , M =A\M̃. The (right) regular representationsT,L2sA\M̃dd on this
pace is indeed well defined, since keeping in mind the fact that we can identify an a

unction onA\M̃ with an “automorphic function”fsxd on M̃ such thatfsxd= fsAxd, we can confirm
he consistencyTgfsAxd= fsAxgd= fsxgd=Tgfsxd. This shows the consistency of the fact that
hoose the “right” regular representation, i.e., since we want to define the(Killing ) symmetry o
he manifold with respect to the left action, and make a quotient by the left one, the r
epresentation on the quotient should be the right one for commutativity. The universal c

anifold sM̃ ,q̃s0dd with a standard left invariant metricq̃s0d naturally defines a left invaria

easure dm0;dmL on M̃, for which we can define the natural inner product onL2sM̃d. Since for
he Bianchi II group this measure is also right invariant dmL~dmR, i.e.,GII is unimodular, the righ

egular representationsT,L2sA\M̃dd with the inner product is unitary;eMufsxgdu2 dm0

eMufsxdu2dm0.
Our mode functions onM will be denoted asfl,m,n0

(or wl,m,n0
on the space–timeM 3R) for

eneric modes withmÞ0. The indexm labels inequivalent irreducible representations, while
`
ndex n0 labels ones in equivalent representations. For fixedm andn0, the functionshfljl=0 work
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s a set of basis functions for the irreducible representation space specified bym and n0. Each
inglefl spans the eigenspace of an operator denoted asL2, which is like a total angular mome
um operator.

For the purpose of separation of variables, the most important relations are those
ifferential representation, which is a linear transformation acting on the representation
panned by mode functions. Those relations are written in terms of group-invariant diffe
perators denoted asxI sI =1–3d. [See Eqs.(4.14) and (7.9).] Indeed, since group-invariant fie
quations like the Klein–Gordon equation can be written with no explicit coordinate depen

f it is written with the invariant operators, these relations are found to provide the key to se
he equations.

The formulas for the differential representation however do not provide complete inform
bout the representation. For example, they do not tell whether the representation specifim
oes exist insT,L2sMdd, or how many equivalent copies of a representation exist insT,L2sMdd. To
ee how the representationsT,L2sMdd is decomposed to irreducible representations we ne

nd all the appropriate mode functions onM. In this paper, the universal covering manifoldM̃
with a group invariant standard metric) is compactified to a circle bundle over the torus.
egular representationsT,L2sMdd is completely reducible, and as a result of finding of the m
unctions on the given topology ofM we find the following.

Theorem 1.1:Let M be the circle bundle over the torus with Euler class e=1 [see Eq. (2.15
or its fundamental group], and letsT,L2sMdd be the regular representation of the Bianch
roup GII . Then, it holds that

T = s %
mPZ\h0j

umuTmd % s %
k1,k2PZ

1k1,k2
d, s1.1d

here Tm is an infinite dimensional irreducible representation, 1k1,k2
is a one-dimensional irredu

ble representation, and the coefficientumu stands for the multiplicity in Tm. Z \ h0j represent
onzero integers.

(See Ref. 30, Secs. X and XI and references therein for some related mathematical)
his decomposition expresses the completeness of the harmonics we construct. In partic
ecomposition does not depend on the Teichmüller(or moduli) parameters ofM. From the Stone
on Neumann theorem,19,30 Tm is equivalent to a corresponding Schrödinger representation

Construction of vector(or tensor) harmonics is not difficult on the one hand. However
mportant point is to divide each irreducible space of vectors into subspaces such th
ubspace is invariant under the action of the operatorL2. This feature is necessary to obt
ecoupled systems of ODEs when the background space–time has an additional symm
efine three kinds of vector harmonics, two of which have this property.

The plan of the paper is as follows. In the next section we describe the background s
nd also account for some basic facts. Section III sets up some basic eigenvalues used
ode functions, based on the compactification of the spatial manifold. In Sec. IV we
lgebraic discussions to derive thex relations. Section V is devoted to construction of the m

unctions on the spatial manifold. In Sec. VI the mode functions constructed on the spatia
old are generalized to those on the space–time. While Secs. IV–VI deal with the generic
ec. VII deals with the exceptional modes, the Us1d-symmetric modes, which complete all p
ible (scalar) modes. The results so far are applied to the Klein–Gordon equation and the r
DEs are explicitly given, with an asymptotic solution for a special case, in Sec. VIII. In S
e develop the vector harmonics. Section X is devoted to an application to Maxwell’s eq
he final section is devoted to the conclusion.

This paper is a full account, with much generalizations and development, of the s
utlined in Sec. III of Ref. 13. Although most notations remain the same, one of the change

quotient by the left action is now writtenA\M̃ instead ofM̃ /A to make clear which action
sed. We employ the abstract index notation21 and use leading italic lettersa,b, . . . to denote
bstract indices for vectors and tensors in Secs. VIII–X. In the other sections however w

1 2
hem without abstract indices. We often drop the tensor product symbol and write, e.g.,ss d
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nstead ofs1 ^ s1. Beware that since vectors are also used as differential operators, prod
hem like sx1d2 can stand for second order derivatives likex1x1 or tensor products likex1 ^ x1,
epending upon the quantity considered.

I. THE BACKGROUND SOLUTION

Our background solution is specified by the following:(1) it is a solution of the vacuu
instein equation,(2) it is spatially locally homogeneous of Bianchi II type, and(3) its spatia
anifold is compact without boundary, in other words,closed. (An explicit topology will be

hosen later.)
A Bianchi type II solution is characterized by the fact that the solution(or the universal cove

f it) is invariant under the action of theBianchi II group GII , which is a three-dimension
ilpotent (e.g., Ref. 19) Lie group. The group multiplication is given by

sa,b,cdsa8,b8,c8d = sa + a8,b + b8,c + c8 + ab8d, s2.1d

or sa,b,cd ,sa8 ,b8 ,c8dPGII . (Note: To save space we try to express components of grou
ents in a row form as above, but a column form is also equally used when it is more conv)

Let M̃ =R3 be the simply connected open manifold with coordinatessx,y,zd. We can defin

he group action on this manifold identifying the group manifoldGII with M̃. The left action is
herefore expressed as

sa,b,cdsx,y,zd = sa + x,b + y,c + z+ ayd, s2.2d

here a=sa,b,cdPGII , and x=sx,y,zdPM̃s.GIId. Let jI sI =1,2,3d be the generators of t
ne-parameter subgroupssa,0 ,0d, s0,b,0d, and s0,0,cdPGII . It is easy to find that they a
xpressed

j1 =
]

] x
+ y

]

] z
, j2 =

]

] y
, j3 =

]

] z
. s2.3d

imilarly, the generators of the right actions and their dual one-forms are given by

x1 =
]

] x
, x2 =

]

] y
+ x

]

] z
, x3 =

]

] z
,

s1 = dx, s2 = dy, s3 = dz− x dy. s2.4d

hese vectorsxI and one-formssI sI =1–3d are called theinvariant vectors or one-formsof GII ,
ince they are left invariant;

LjI
xJ = fjI,xJg = 0 =LjI

sJ, I,J = 1 – 3, s2.5d

here LjI
is the Lie derivative with respect tojI. The invariant vectors satisfy the followi

ommutation relations:

fx1,x2g = x3, fx2,x3g = 0, fx3,x1g = 0. s2.6d

he vectorsjI sI =1,2,3d are Killing vectors for the metric of the formq̃= q̃IJsI ^ sJ with the

omponentsq̃IJ being constants. Riemannian manifoldsM̃ ,q̃d is calledhomogeneous, sinceGII

cts transitively on it as its isometry group.
A homogeneous metric is calledlocally rotationally symmetric (LRS)if it has a fourth inde

endent Killing vectorj4. Bianchi type II LRS metrics are given by the metrics of the f
sLRSd ˜ 1 2 2 2 ˜ 3 2
=q11sss d +ss d d+q33ss d , since such a metric has an additional Killing vector, given by
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j4 = − y
]

] x
+ x

]

] y
+

1

2
sx2 − y2d

]

] z
. s2.7d

his Killing vector generates the following one-parameter isometriessu=euj4 for the metricq̃sLRSd:

su : 1x

y

z
2 → 1 RuSx

y
D

z+ zu sx,yd
2 , s2.8d

heresx,y,zdPM̃, Ru is the rotation matrixRu= s cosu
sin u

−sin u
cosu

d, and

zusx,yd ; 1
2ssx2 − y2dcosu − 2xy sin udsin u. s2.9d

n LRS manifoldX=sM̃ ,q̃sLRSdd has as a result a four-dimensional isometry group IsomX. Let
som0 X be its identity component, i.e., the component connected to the identity. An elema

Isom0 X can be uniquely expressed as the compositesa1,a2,a3d +su for a choice o
a1,a2,a3dPGII andsu.

The one-parameter diffeomorphismsu plays an important role even when the metric is
RS. It forms a one-parameter subgroup of the automorphism group ofGII , which induces on th
otangent space a rotation of the invariant one-forms,

su* : 1s1

s2

s32 → 1RuSs1

s2D
s3 2 . s2.10d

he induced mapsu
* on the tangent space acts on the invariant vectorsxI the same way wit

eplacementRu→R−u above. The significance of the automorphisms of Bianchi groups wa
ully recognized by Jantzen.7 Mapssu* or su

* will be used in this paper in several contexts.
We can obtain the space–time metric for the conventional Bianchi cosmology assum

ll the components with respect to the invariant framesdt ,sId formed by the invariant one-form
nd the timelike basis dt are functions of timet only. The vacuum Bianchi II solutiong̃ was firs
btained by Taub.18 We write that metric in the following form using our invariant one-fo
2.4):

g̃ = − N2stddt2 + q1stdss1d2 + q2stdss2d2 + q3stdss3d2, s2.11d

here

N2 = 1 +b2t4p3, q1 = t2p1N2, q2 = t2p2N2, q3 = 16p3
2b2t2p3/N2. s2.12d

arameterspi si =1,2,3d andb are constants such thatb.0, p3Þ0, and

Spi = Spi
2 = 1. s2.13d

When p1=p2, the solution is LRS. Although there exist two possible such casessp1,p2,p3d
s0,0,1d (case I LRS) ands2/3,2/3,−1/3d (case II LRS), these two solutions represent equ

ent one-parameter solutions. In fact, we can check that the case I LRS solution withb=bI is
sometric to the case II LRS solution withb=bII =3−2/3bI

−1/3. When we are interested in an LR
olution, the case II LRS solution may be preferable, since the time coordinatet in this solution
pproaches the proper timet at future infinity. This will make comparisons with other models

he Bianchi type III17,13 more straightforward.
It is also worth pointing out that a solutiong̃ with sp1,p2,p3d is isometric to another solutio

8 with p1 andp2 swapped. In fact, it is at once using Eq.(2.10) to see thatg̃8 is the metric induce
y sp/2; g̃8=sp/2*g̃. We can therefore without loss of generality assume, e.g.,p1øp2.

˜ ˜
We denote the conventional solution described so far assM 3R ,gd, and call it theuniversal
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overing solution. On the other hand, our spatially closed solution, denotedsM 3R ,gd, is obtained
ntroducing a spatial compactification with it. We express the solution as

sM 3 R,gd = G \ sM̃ 3 R,g̃d, s2.14d

sing an appropriate discrete subgroupG of GII which acts spatially from the left on the solutio
he metricg here is the one induced fromg̃. (g andg̃ are therefore locally isometric to each oth)
hile there are infinitely many possible compactifications(i.e., spatial topologies), we for defi-

iteness specify the spatial manifoldM to be “the circle bundle over the 2-torus with Euler c
=1.” (See, e.g., Refs. 12 and 31. In general, a closed Bianchi II manifold is aSeifert fiber spac
ver a Euclidean orbifold.) The fundamental group can be represented in the standard nota

p1sMd = kg1,g2,g3;fg1,g2g = g3,fg1,g3g = 1,fg2,g3g = 1l, s2.15d

here the brackets stand for group commutators,fa,bg;aba−1b−1. The procedure for the actu
ompactification is described in the next section. The resulting spatially compactified gen
ion was first constructed and discussed in Ref. 15. Note that as a result of the compactifica
patial manifold specified byt=constant is nowlocally homogeneous(e.g., Ref. 12), and the
pace–time solution is said to bespatially locally homogeneous.

As shown in Ref. 15,G contains four free parameters[see Eq.(6.1)]. Our spatially close
olution(2.14) therefore forms asix parameter solution(since the universal cover has as we h
eentwo independent parameters,b and, e.g.,p3).

II. COMPACTIFICATION AND EIGENVALUES

To proceed, we need to describe the compactification of the spatial manifold and
efine some eigenvalues.

Let us first describe a canonical way of expressing the Bianchi type II locally homoge
anifold sM ,qd. Let q̃s0d be the standard metric given by

q̃s0d = ss1d2 + ss2d2 + ss3d2 s3.1d

nd let

N ; sM̃,e2aq̃s0dd s3.2d

e thestandard conformal manifold, with e2a being a constant conformal factor. Then,10 the
anifold sM ,qabd can be expressed as a quotient of the standard conformal manifold(with an
ppropriate choice of the factore2a),

sM,qd = A \ N, s3.3d

hereA is an appropriate discrete subgroup of the isometry group ofN, A, IsomN.
The subgroupA must be isomorphic to the fundamental groupp1sMd given by(2.15). (In fact,

M is a Haken manifold.31) This means thatA must be an embedding ofp1sMd into the isometr
roup IsomN. Let ai P IsomN si =1,2,3d be the image ofp1-generatorgi by such an embeddin
ollowing the procedure shown in Ref. 10, we find that it is possible to parametrize them

ollowing way:23

a1 = su,d,0d, a2 = s0,2pv,0d, a3 = s0,0,2puvd. s3.4d

ere, ai PGII , IsomN.24 We denoteA=ha1,a2,a3j. The three real parametersu, v, and d are
alled theTeichmüller parameters of geometric structurefor the locally homogeneous 3-manifo
M ,qd.

We construct the harmonics onsM ,qd by two steps; first we do a construction on a cove

anifold, denotedsM̄ ,q̄d, and then superpose appropriate subset of the harmonics to obtai
¯ ¯ ¯ ¯
n sM ,qd. The auxiliary manifoldsM ,qd is simply defined by removinga1 from A, i.e., sM ,qd
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Ā\N, whereĀ=ha2,a3j. Ā is a commutative subgroup ofA, and thereforeM̄ is homeomorphi
o the much tractable manifoldT23R. In fact, we can easily see that it is eachx=constant plan
n N that is compactified to a 2-torus.

Now, let us introduce some important operators. We define the “total angular momentu
perator

L2 ; sLx1
d2 + sLx2

d2, s3.5d

sing the Lie derivativesLx1
andLx2

. Note that when acting on a scalar, it becomes a simple

L2 = sx1d2 + sx2d2, s3.6d

hich also coincides with the LaplacianD0 with respect to the standard metricq̃s0d, up to squar
f x3,

D0 = L2 + sx3d2, s3.7d

hen acting on a scalar. Here,xI sI =1,2,3d are regarded as differential operators. It is q

mportant to recognize that operatorsxI are well defined not only on the universal coverM̃ but

lso on the compactified manifoldM =A\M̃. In other words, the induced vector fieldsp*xI on M

or the covering mapp :M̃→M =A\M̃ is well defined because of the invariance ofxI under the

ction ofA,GII . (For simplicity we do not explicitly writep* , and identifyp*xI andxI.) SinceĀ

s also a subgroup ofGII , xI are well defined onM̄, also. The globally defined invariant operat

I work as the fundamental derivative operators, since any group-invariant field equations
ndependent of coordinates when they are written withxI. This coordinate-free property of t
eld equations is necessary to be able to reduce the field equation to ordinary differentia
ions.

The operatorx3, called thefiber generator, has a special importance, since it commutes
ll the invariant operatorsxI. In other words,x3 is thecenterof the Bianchi II algebra. As a dire
onsequence of Schur’s lemma, such an operator must be diagonalized to obtain an irr
epresentation of the regular representation mentioned in the Introduction.

The operatorL2=sx1d2+sx2d2 commutes withx3, sincex3 is the center. We may therefore
ble to diagonalize our mode functions with respect to bothx3 and L2. Also, consider anoth
peratorj2=] /]y, which we can find commutes with bothL2 andx3, so we may diagonalize th

ode functions with respect toj2, also. This operator however isnot well defined onM, but onM̄.

his is the reason we consider the auxiliary manifoldM̄. The existence ofj2 is important to mak
t possible to perform separation of variables for the eigenvalue equation forL2 (see below).

Let im and in be eigenvalues for the operatorsx3 andj2,

x3f̄ = imf̄, j2f̄ = inf̄. s3.8d

he functionf̄ is supposed to be an appropriate mode function onM̄. Also, we definel by
2f̄=−l2f̄. The solution of these equations is given by

f̄ = Xsxdeimzeiny, s3.9d

here the functionXsxd is a solution of the following “harmonic oscillator Schrödinger equati

d2X

dx2 + sl2 − smx + nd2dX = 0. s3.10d

or f̄ to be well defined onM̄, it must be an automorphic function such thatf̄sĀxd=f̄sxd.25 From

his condition we find
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m = msmd = m/suvd, mP Z ,

n = nsnd = n/v, n P Z . s3.11d

e call m, m, n, andn, respectively, thefiber eigenvalue, fiber index, auxiliary eigenvalue, and
uxiliary index.We call l2 the total eigenvalue. The spectrum ofl2 is determined in the ne
ection.

V. IRREDUCIBLE DIFFERENTIAL REPRESENTATIONS

It is not difficult to determine the irreducible representations of the regular representa
heir differential form, i.e., the differential representations of the Bianchi II algebra. In fact,
e found that this procedure is similar to the one in determining quantum states of the ha
scillator, sinceL2 (or the scalar LaplacianD0) has essentially the same algebraic structure a
f the Hamiltonian of the oscillator.

As mentioned in the preceding section since the fiber generatorx3 must be a constant wh
cting on an irreducible subspace, the fiber indexmPZ is constant in this space. We theref
ssume thatm is fixed throughout this section. It may be helpful to bear in mind that as fo
orrespondence to quantum mechanics, the fiber eigenvaluem=m/uv corresponds to the Plan
onstanth, while x1 andx2 correspond, respectively, to the positionx and momentump operators
s in fx,pg= ih⇔ fx1,x2g=x3= im. Remember however that our representation space isL2sMd

nstead ofL2sRd.
In this section we deal with the genericmÞ0 case. The exceptionalm=0 case will be

iscussed in Sec. VII.
Let f be an eigenfunction onM for the operatorsx3 and L2, i.e., x3f= imf, and L2f=

l2f. It is helpful to introduce a symbol signifying the sign of the fiber eigenvalue, which a
s to discuss bothm_0 cases simultaneously; we define

§ ; signsmd = signsmd smÞ 0d. s4.1d

et us then define

A1 ;
1
Î2

sx1 + §ix2d, A2 ;
1
Î2

sx1 − §ix2d, A3 ; − §ix3. s4.2d

hen, we immediately find the following commutation relations:

fL2,A1g = §2iA1x3, fL2,A2g = − §2iA2x3. s4.3d

his means thatA1 and A2 are, respectively, araising and lowering operatorfor the tota
igenvaluel2. In fact, since

L2A1f = sfL2,A1g + A1L
2df = s§2iA1x3 + A1L

2df = − s2umu + l2dA1f, s4.4d

1f is an eigenfunction forl82=l2+2umu. Similarly, A2f is an eigenfunction forl82=l2−2umu.
Taking into account the fact thatA1 andA2 change the eigenvaluel2 by ±2umsmdu, we can

ithout loss of generality assume the form of spectrum as

l2 = umus2l + cmd, s4.5d

here

l = 0,1, . . . . s4.6d

he value forl =0, l2=l0
2;umucm, corresponds to the smallest one for givenm, which must exis

ecause minus the Laplacian −D0=−L2−sx3d2=−sL2+m2d can have only non-negative eigenv

es. We calll the spin index.

                                                                                                            



c e
v

w

U

B
a

T t
e

i

S

G

I

4904 J. Math. Phys., Vol. 45, No. 12, December 2004 Masayuki Tanimoto

                        
At this point we know the eigenmode is specified by the pair of integerssl ,md, so the
orresponding eigenfunction can be expressed with these labelsfl,m. As we remarked since th
alue ofm does not change in an irreducible space, we dropm and writefl for simplicity.

Let us write down the whole relations we have as

L2fl = − umus2l + cmdfl ,

A3fl = umufl ,

s4.7d
A1fl = alfl+1,

A2fl = blfl−1,

here we have introduced unknown constantsal andbl, which possibly depend onl.
Note the following identity that can be easily checked by a direct computation:

L2 = 2A1A2 − A3. s4.8d

sing Eqs.(4.7), this implies −umus2l +cmd=2al−1bl − umu, i.e.,

al−1bl = − umuSl +
cm − 1

2
D . s4.9d

ecause of the arbitrariness of constant multipliers for the eigenfunctionsfl, we may setal or bl

rbitrarily, but once it is set, the other is constrained from this relation. We take26

al = − Îumu, bl = ÎumuSl +
cm − 1

2
D . s4.10d

hese do satisfy Eq.(4.9). Then, since we definedl so thatl =0 gives, for givenmÞ0, the smalles
igenvalue of −L2, we should have

A2f0 = b0f−1 = ÎumuScm − 1

2
Df−1 = 0, s4.11d

mplying

cm = 1. s4.12d

o, now we have

al = − Îumu, bl = Îumu l . s4.13d

athering Eqs.(4.2), (4.7), and(4.13), we arrive at the following set of relations:

x1fl = −Îumu
2

sfl+1 − lfl−1d,

x2fl = §iÎumu
2

sfl+1 + lfl−1d,

s4.14d
x3fl = imfl ,

l = 0,1, . . . .
n particular,
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L2fl = − ll
2fl, ll

2 ; umus2l + 1d. s4.15d

Now, we have found the following. A “ground state”f0 is determined as a solution for the t
quations

A3f0 = umuf0, A2f0 = 0. s4.16d

ote that the functionf0 obtained this way is automatically an eigenfunction ofL2 as seen from
he identity (4.8). The excited statesfl are determined by successively multiplying the rai
perators−1/ÎumudA1, i.e.,

fl = S−
A1

Îumu
D l

f0. s4.17d

he space spanned by these functions,Lm
2 sMd;hol=0

` alflual PCjùL2sMd, gives an irreducibl
ubspace ofL2sMd. In other words, the restriction of the regular representationT to Lm

2 sMd,
enoted assTm,Lm

2 sMdd, gives an irreducible representation. The differential represen
dTm,Lm

2 sMdd is given by Eqs.(4.14), which will be repeatedly used to separate the field equa
or convenience, we call these relations thex relations.

. MODE FUNCTIONS ON THE COMPACTIFIED MANIFOLD

In this section we solve the eigenvalue equations for the mode functionsfl under the appro
riate automorphic conditions. As a result we find how many equivalent copies of the irred
epresentationTm are contained inT, in other words, the multiplicity ofTm is determined. Th
xplicit form of fl itself is also of great interest. In this section we continue to assumemÞ0.

One of the possible procedures to find the explicit form offl is to solve the equations(4.16)
o find f0 and compute successive differential operations in Eq.(4.17) to find generalfl. Another
rocedure is to directly solve the eigenvalue equationL2fl =−l2fl for general spin indexl. While
oth ways are possible, we take the latter, which provides a quicker way of identifyin
olutions with known functions.

As remarked in Sec. III, let us find the mode functions onM̄ first. Note that Eq.(3.10)
ecomes(attaching indexl to X)

d2Xl

dz2 + Sl +
1

2
−

z2

4
DXl = 0, s5.1d

f we define

z = §Î 2

umu
smx + nd. s5.2d

ndependent solutions to the above equation are given byDlszd andD−l−1sizd, whereDlszd is the
eber parabolic cylinder function. Whenl is zero or a positive integer,Dlszd can be expresse

sing the Hermite polynomialHlszd,

Dlszd = e−s1/4dz2
Hlszd. s5.3d

ur convention for the Hermite polynomial isHlszd=s−1dles1/2dz2
sdl /dzlde−s1/2dz2

.
Sincef0 must be annihilated byA2 the appropriate choice is found to beDlszd, i.e., we mus

ake Xl =const3Dlszd. In fact, the equationA2f̄0=0 together with the separation formf̄l

Xlsxdeinyeimz, implies sd/dz+s1/2dzdX0=0, with the solution beingX0=const3e−s1/4dz2
. This

oincides with the one claimed forl =0. [Conversely, as we will see, functionsfl constructe
sing theseXl can satisfy the desired relations(4.14) for all l, which justifies our choice.]

¯
The mode functions onM are therefore, attaching indicesm andn, given by
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f̄l,m,nsxd = ClDlS±Î 2

umu
smx + ndDeimzeiny, s5.4d

hereCl are constants andm andn are defined in Eqs.(3.11).
The constantsCl are determined by requiring that the functionsf̄l,m,nsxd obey thex relations

4.14). Using the widely known formulas

Dl8szd = − 1
2sDl+1szd − lDl−1szdd,

zDlszd = Dl+1szd + lDl−1szd, s5.5d

e can easily findCl+1=Cl, i.e., they are constants that do not depend onl;

Cl = C. s5.6d

Actually, this is the reason we choose Eqs.(4.13).] The constantC may be determined by
ormalization of the square integral onM. (See below.)

The mode functions onM are, as mentioned, expressed as an infinite sum of these eige

ions on M̄. Remember that they must be invariant under the action ofA=ha1,a2,a3j, and the

unctionsf̄l,m,n are already invariant underĀ=ha2,a3j. We therefore want to make a linear co
ination off̄l,m,n so that it is invariant undera1. Recalling the multiplication rule(2.2), we find the
ollowing transformation law[cf. Ref. 13, Eq.(3.15)]:

f̄l,m,nsa1xd = eisd/vdnf̄l,m,n+msxd. s5.7d

rom this we can see that the following functionfl,m,n0
, defined as an infinite sum, is actua

nvariant under the action ofa1 (cf. Ref. 13, Theorem 3.1), i.e., fl,m,n0
sa1xd=fl,m,n0

sxd for

fl,m,n0
sxd = o

k=−`

`

eidhn0k+mfksk−1d/2gjf̄l,m,n0+mksxd, s5.8d

herel =0,1, . . . ,̀ , umu=1,2, . . . ,̀ , n0=0,1, . . . ,umu−1. The sum is convergent at any poinx.
t is easy to see that since the functionsf̄l,m,nsxd satisfy the relations(4.14), so dofl,m,n0

sxd. These

unctions are therefore the right mode functions onM =A\M̃.
As a result of the compactification, the indexn0 for the mode functions onM is now bounde

y umu. umu is themultiplicity of the modes specified by the samel andm. Since for eachn0 the
unctionsfl,m span an irreducible subspace ofL2sMd, umu is also the multiplicity of the irreducib
epresentationTm contained inT.

We can summarize the results as follows.
Theorem 5.1:There existumu different sets of mode functionshflsxdjl=0

` that satisfy the rela
ions (4.14) on the compactified manifoldsM ,qabd=A\N (with M being the S1-bundle over th
-torus with Euler class e=1).

Let us discuss how the mode functions can be normalized. We define the inner pro
2sMd as

sf,gd ; E
M

fg* dm0, s5.9d

here g* is the complex conjugate ofg, dm0=s1∧s2∧s3=dx dy dz is the standard invaria
easure. We want to determine the square norm

Nl ; sfl,fld. s5.10d
e first observe the following.
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Lemma 5.2: The invariant operatorsxI sI =1–3d in L2sMd are anti-self-adjoint, xI
†=−xI.

Proof: Since

sxI f,gd =E
M

sxIsfg*d − fxIg
*ddm0 = II − sf,xIgd, s5.11d

e need to showII ;eM xIsfg*ddm0=0. In fact, when, e.g.,I =1, we can showI1

eM x1sfg*ds1∧s2∧s3=eM dsfg*s2∧s3d, which is from Stoke’s theoreme]M fg*s2∧s3=0.
ere, we have used the identity

df = sx1fds1 + sx2fds2 + sx3fds3, s5.12d

hich is valid for an arbitrary functionf on M, and also used the relation dss2∧s3d=0, which is
onfirmed from the definition(2.4). The other casesI =2,3 are thesame, since dss1∧s3d
dss1∧s2d=0. j

Remark:Operatorss1/idxI sI =1–3d are self-adjoint.
Corollary 5.3: In L2sMd, A1

†=−A2.
Proof: A1

†=2−1/2sx1+§ix2d†=2−1/2sx1
†−§ix2

†d=−2−1/2sx1−§ix2d=−A2. j

Returning to the issue ofNl, considerNl+1=sfl+1,fl+1d. When mÞ0, from Eqs.(4.7) and
orollary 5.3 we have

Nl+1 =
1

alal
* sA1fl,A1fld =

1

alal
* sfl,A1

†A1fld =
− 1

alal
* sfl,A2A1fld =

− 1

alal
* sfl,bl+1alfld =

− bl+1
*

al
Nl .

s5.13d

ubstituting our choice(4.13) of al andbl we have

Nl+1 = sl + 1dNl . s5.14d

aking N0=1 we conclude

Nl = l ! . s5.15d

ow, we have the following.
Theorem 5.4:Suppose thatfl are mode functions onsM ,qabd=A\N such that they satisfy th

elations (4.14). Multiplying the same constant normalization factor C to allfl, fl →Cfl, does
ot change those relations. By choosing C appropriately, we can make the normalization

sfl,m,n0
,fl8,m8,n08

d = l ! dll8dmm8dn0n08
s5.16d

old.
Proof: The orthogonality form andm8 is apparent from the fact thatmsmd is the eigenvalu

f the self-adjoint operators1/idx3. The orthogonality forn0 andn08 comes from the orthogonali

mong the mode functions onM̄:

sf̄l,m,n,f̄l,m,n8dM̄ ; E
M̄

f̄l,m,nf̄l,m,n8
* dm0 = 0 sn Þ n8d, s5.17d

hich is also apparent from the fact that the operators1/idj2, of which eigenvalues arensnd, is

elf-adjoint onL2sM̄d. Observing that whenn0Þn08, fl,m,n0
, andfl,m,n08

are linear combinations
¯ ¯
ifferent setshfl,m,njnPN1

and hfl,m,njnPN2
, N1ùN2=x, we can easily see
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E
M̄

fl,m,n0
fl,m,n08

* dm0 = 0 sn0 Þ n08d, s5.18d

hich in turn implies the orthogonality forn0 andn08 in L2sMd. The other part has already be
roven. j

Remark:The constantC does not depend onl, but can depend onm andn0, so we may write
=Cm,n0

.
Apparently, if we define

fl,m,n0

snd ;
1

Îl!
fl,m,n0

, s5.19d

hey become orthonormal to each other,

sfl,m,n0

snd ,fl8,m8,n08
snd d = dll8dmm8dn0n08

. s5.20d

s seen from Eqs.(5.13) and (4.9) this corresponds to choosing

al
snd = eiQlÎumusl + 1d, bl

snd = − e−iQlÎumul , s5.21d

hereQl is an arbitrary phase factor, which we may want to take zero,Ql =0. Substitutingal

al
snd andbl =bl

snd into Eqs.(4.7) we have another version ofx relations forfl,m,n0

snd , which have th
ost direct correspondence to the usual relations between the quantum states of the h
scillator. As mentioned however we employ the unnormalizedfl in this paper for the conv
ience of computation.

I. FURTHER TRANSFORMATION

The mode functionsfl,m,n0
sxd shown in the preceding section arenot well defined on th

eneral space–time solutionsM 3R ,gd=G \ sM̃ 3R ,g̃d, because of the factAÞG. Remember tha
,GII is a four-parameter embedding, whileA is a three-parameter one. This incompatib

eans that we cannot identify the coordinatesx in N with the spatial coordinatesx in sM̃
R ,g̃d.27 Although it is expected that an appropriate diffeomorphism can make the mode

ions well defined on the space–time, such a diffeomorphism can affect thex relations. In the
ollowing, we show by explicit computations that this is the case but a further renormali
akes the mode functions retain the originalx relations.

As shown in Ref. 15, the covering groupG can be parametrized as

G = hg1,g2,g3j = 51R−u Su

d
D

0
2,1R−u S 0

2pv
D

0
2,1 0

0

2puv
26 , s6.1d

heregi PGII , andu, u, d, andv are real parameters.28,29 Let sM ,qd=G \ sM̃ ,q̃abd be thespatial
ectionof the solution, whereq̃ is the spatial part ofg̃. For convenience of considering diffe

orphisms between the spatial universal coversM̃ ,q̃abd and the standard conformal manifoldN
sM̃ ,e2aq̃s0dd, let us distinguish the latter manifold(without metric structure) by denotingM̃8. This
istinction is meant to be helpful just to keep track of the direction of the diffeomorphism
onsider.

Let c be a diffeomorphism,

c : M̃ → M̃8 s6.2d
uch that
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G = c−1 + A + c. s6.3d

hen, the induced function offl,m,n0
sxd will be invariant underG, since so isfl,m,n0

sxd underA.
We can findc in IsomN, which is explicitly given by

c = b + su, s6.4d

herebPGII is

b = spv cosu sin u,u−1s− z−usu,dd + pdv sin u cosud,0d. s6.5d

e have, for simplicity, chosen the third component ofb as zero, though it can be an arbitr

onstant. The induced vectorsc*xI on M̃8 becomes a linear transformation ofxI, due to the
roperty that elements in IsomN are automorphisms ofGII . Note that when acting on the vect

I, the induced mapc* =b* +su
* becomes the same assu

* , sincexI are by definition invariant und
he induced mapb* for bPGII . Therefore from(the vector version of) Eq. (2.10), we have

c* :1x1

x2

x3
2 → 1c*x1

c*x2

c*x3
2 = 1R−u Sx1

x2
D

x3
2 . s6.6d

et fl
sssdsxd;sc*fldsxd=fl +csxd, where xPM̃. [Superscriptsssd stands for “spatial section.]

hen,

x1fl
sssd = x1sc*fld = sc*x1dfl + c = scosux1 + sin ux2dfl + c =Îumu

2
s− e−iufl+1 + eiulfl−1d + c

=Îumu
2

s− e−iufl+1
sssd + eiulfl−1

sssdd, s6.7d

here we have used the relations(4.14). Similarly, we obtain

x2fl
sssd = §iÎumu

2
se−iufl+1

sssd + eiulfl−1
sssdd, s6.8d

ndx3fl
sssd= imfl

sssd. These relations are different from the originalx relations(4.14) unlessu is a
ultiple of 2p.

However, it is possible to renormalizefl
sssd so that the originalx relations are recovered. It

traightforward to check that

wl = eiulfl
sssd s6.9d

ives such a renormalized function. Thus, we have found that the functionswl =eiulfl +c with fl

iven by Eq.(5.8) and c being Eq.(6.4), are served as the right mode functions on the sp
ection(and therefore on the space–time) that satisfy the relations(4.14). This provides a direc
roof of the following.

Theorem 6.1:There existumu different sets of time-independent mode functionshwl,msxdjl=0
` on

he spatially closed Bianchi II solutionsM 3R ,gd=G \ sM̃ 3R ,g̃d such that they satisfy the re
ions (4.14).

II. U„1…-SYMMETRIC MODES

Let us, for completeness, consider the modes with the fiber indexm being zero. We call thes
odes Us1d-symmetric, since they are constant along the Us1d s.S1d fibers.

Let f be an eigenfunction form=0, i.e.,x3f=s]f /]zd=0. This in turn implies thatx1 andx2
re commutative when acting onf,
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fx1,x2gf = 0, s7.1d

ince fx1,x2g=x3. Due to this property, the harmonics describing them=0 subspace ofL2sMd
ecome the usual Fourier expansion on a torus.(Thus, together with the results for the gen
odes we obtain Theorem 1.1.) In the following we explicitly determine the spectrum of
igenvalues for the operatorsx1 andx2 in terms of the space–time moduli parametersu, d, v, and
.

Let us first work on the 3-manifoldA\N (not on the space–time manifold) as we did for th
enericsmÞ0d case. Taking the form ofA into account, we label the mode functions with
ollowing equations:

sux1 + dx2df = 2pik1f,

vx2f = ik2f, s7.2d

here the eigenvaluesk1 and k2 are to be used as labels. Let us therefore write the soluti
hese equations asf=fk1,k2

s0d sxd=fk1,k2

s0d sx,yd, which is given by

fk1,k2

s0d = const3 esi/udf2pk1x+sk2/vds−dx+uydg. s7.3d

ince, recalling the rule(2.2),

fk1,k2

s0d sa1xd = fk1,k2

s0d sx + u,y + dd = fk1,k2

s0d sxde2pik1,

fk1,k2

s0d sa2xd = fk1,k2

s0d sx,y + 2pvd = fk1,k2

s0d sxde2pik2, s7.4d

e find

k1 P Z, k2 P Z , s7.5d

or fk1,k2

s0d to be well defined onM =A\M̃. The remaining conditionfk1,k2

s0d sa3xd=fk1,k2

s0d sxd is trivial.
Therefore from Eqs.(7.2) the x relations for the Us1d-symmetric modes are

x1fk1,k2

s0d = iK1sk1,k2dfk1,k2

s0d ,

x2fk1,k2

s0d = iK2sk2dfk1,k2

s0d , s7.6d

x3fk1,k2

s0d = 0,

here

K1sk1,k2d ;
1

u
S2pk1 −

d

v
k2D ,

K2sk2d ;
k2

v
. s7.7d

To extend the mode functions on the space–time manifoldG \ sM̃ 3R ,g̃d, we need to apply th
iffeomorphismc defined in Eq.(6.4) again, and as a result the spectrum of the eigenvalue
ltered.(Contrary to the generic case, any renormalizations of the resulting mode functions
ffect thex relations.)

s0d s0d
As in the preceding section, let us definewk1,k2
;fk1,k2

+c. Then, from Eq.(6.6), we have, e.g.,
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x1wk1,k2

s0d = sc*x1dfk1,k2

s0d + c = scosux1 + sin ux2dfk1,k2

s0d + c = iscosuK1 + sin uK2dwk1,k2

s0d . s7.8d

similar result is also obtained forx2wk1,k2

s0d . We write the final form of the relations as follow

x1wk1,k2

s0d = ik1sk1,k2dwk1,k2

s0d ,

x2wk1,k2

s0d = ik2sk1,k2dwk1,k2

s0d , s7.9d

x3wk1,k2

s0d = 0, k1 P Z, k2 P Z ,

here

k1sk1,k2d ; cosuK1sk1,k2d + sin uK2sk2d,

k2sk1,k2d ; − sin uK1sk1,k2d + cosuK2sk2d. s7.10d

ow, we have the following.
Theorem 7.1: There exist time-independent mode functionswk1,k2

s0d sxd, k1,k2PZ, on the spa

ially closed Bianchi II solutionsM 3R ,gd=G \ sM̃ 3R ,g̃d such that they satisfy the relatio
7.9).

III. APPLICATION TO THE KLEIN–GORDON EQUATION

As an example, let us consider the Klein–Gordon equation

sgab¹a¹b − mF
2 dF = 0, s8.1d

heremFù0 is the mass of the fieldF. ¹a is the covariant derivative operator associated with
pace–time metric gab. It is straightforward to see that this equation on our background c
xpressed, using the invariant operatorsxI, as

S − 1
Î− g

]

] t
SÎ− gN−2 ]

] t
D + Dq − mF

2 DF = 0, s8.2d

hereDq is the Laplacian with respect to the spatial metricqab,

Dq = q1
−1sx1d2 + q2

−1sx2d2 + q3
−1sx3d2, s8.3d

ndÎ−g;Î−detgab=4up3ubtN2.
Let us consider a generic irreducible component ofF, i.e., F=Fm,n0

, mÞ0. We can expan
his component as

Fst,xd = o
l=0

`

alstdwlsxd, s8.4d

herewl =wl,m,n0
are the mode functions mentioned in Theorem 6.1.

From the relations(4.14), we have

sx1d2wl =
umu
2

swl+2 − s2l + 1dwl + lsl − 1dwl−2d,

sx2d2wl = −
umu

swl+2 + s2l + 1dwl + lsl − 1dwl−2d, s8.5d

2
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sx3d2wl = − m2wl ,

rom which we immediately obtain the following wave equations foralstd:

äl +
1

t
ȧl + Zstdal = Ist;al−2,al+2d, s8.6d

here

Zstd ;
m2

16sp3d2b2s1 + b2t4p3d2t−2p3 + mF
2 s1 + b2t4p3d +

2l + 1

2
umust−2p1 + t−2p2d, s8.7d

ith the inhomogeneous termI being

Ist;al−2,al+2d ;
umu
2

st−2p1 − t−2p2dsal−2 + sl + 2dsl + 1dal+2d. s8.8d

In Ist ;al−2,al+2d, al−2 should be regarded zero whenl =0 and 1.]
Note that the inhomogeneous termI introduces couplings with the next neighboring mo

ith l ±2. The Eqs.(8.6) therefore comprise two systems of infinite number of equations, th
ith l5even and the one withl5odd, unless the background is LRS. When on the other han
ackground is LRS, each equation(8.6) for a givenl becomes closed itself, due to the vanish
f the inhomogeneous termI.

When the background is LRS, we can find futurest→`d asymptotic solutions.
Proposition 8.1: On the LRS Bianchi II vacuum solution with p1=p2=2/3 and p3=−1/3 , the

calar field equation (8.6) for a generic mode has the following fundamental solutions as→`:

yl
±std = t−2/3e±imTKGstds1 + os1dd, s8.9d

here

TKGstd ;
9

16b
t4/3 +

bmF
2

m2 t2/3 + S3b

4
−

8b3mF
4

27m4 Dlog t. s8.10d

he symbolos1d stands for a function such that limt→` os1d=0.
Proof: This result is a generalization of Theorem 3.4, Ref. 13, with finite massmF. As

mphasized there, it is an appropriate choice of new time variable that is essential to o
symptotic solution. In the present case an appropriate choiceTstd is given by

dT

dt
=

3

4b
t1/3 +

2bmF
2

3m2 t−1/3 + S3b

4
−

8b3mF
4

27m4 D1

t
. s8.11d

ollowing the procedure shown in the reference, one obtains the asymptotic solution(8.9). j

It is worth noticing that the asymptotic solution only depends on the fiber indexm and the
ther indexl does not affect them. See the final section for more discussion.

X. VECTOR HARMONICS

Let us discuss how we can construct the vector harmonics.
Fortunately, this is on the one hand a trivial issue as the invariant framehsI ,xIj is well defined

n the compactified manifoldM (and on the space–time manifoldM 3R). This means we ca
efine the componentsTI¯

J¯ of any type of tensorTa¯
b¯ with respect to this invariant frame

TI¯
J¯ = Ta¯

b¯xI
a
¯ sb

J
¯ . s9.1d

ll we must do is expand these components with respect to the scalar harmonicsfl,m,n0
andfk1,k2

s0d .
1 2 3 `
his procedure corresponds to using the set of one-formshflsa ,flsa ,flsa jl=0 as vector har-
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onics for givenmÞ0 andn0. (As for m=0, fl should of course be replaced byfk1,k2

s0d .) On the
pace–time manifold, we also need the timelike mode vectors, as well as the replacemenfl,m,n0

wl,m,n0
. We therefore can define the following harmonics(basis mode vectors):

sVl8
0da ; wlsdtda, sVl8

1da ; wlsa
1, sVl8

2da ; wlsa
2, sVl8

3da ; wlsa
3 s9.2d

or the one withwk1,k2

s0d instead ofwl for m=0). We call them thesimple vector harmonics.
The advantage of considering these harmonics is that they are apparently complete(since the

calar harmonics used are complete). However, this choice of harmonics does not reflect very
he group structure regarding the rotational automorphisms(2.10). A more natural and convenie
hoice can be obtained by using the “spherical bases”9 AI sI =1–3d defined in Eqs.(4.2), or their
uals such thatAI

a%a
J=dI

J;

%1 ;
1
Î2

ss1 − §is2d, %2 ;
1
Î2

ss1 + §is2d, %3 ; §is3. s9.3d

sing these we can set up new harmonics as

sVl
0da ; wlsdtda, sVl

1da ; wl+1%a
1, sVl

2da ; wl−1%a
2, sVl

3da ; wl%a
3. s9.4d

Whenm=0 we just use the same harmonics as the simple harmonics.) Beware thatwl±1 are use
o definesVl

1da and sVl
2da. The reason will become clear below. Because of this index corre

ence, we should think that the harmonicshsVl
IdajI=0

3 are defined forl ù−1 (not for l ù0). The basi
V−1

I da for l =−1 is nonzero only forI =1, and the others should simply be regarded as zero. W
hese harmonics thepolarized vector harmonicsor thestandard vector harmonics.

We can confirm that for givenm, the simple harmonics and the polarized harmonics spa
ame space of vector fields. This ensures the completeness of the polarized vector harm

Theorem 9.1:For given fiber index mPZ (and given auxiliary index n0), the linear span o
he simple harmonics

SpansV8md ; HUo
l=0

`

o
I=0

3

cI,lsVl8
IdaUcI,l P CJ smÞ 0d s9.5d

the m=0 case is defined similarly) and that of the polarized harmonics

SpansVmd ; HUo
l=−1

`

o
I=0

3

cI,lsVl
IdaUcI,l P CJ smÞ 0d s9.6d

the m=0 case is defined similarly) are the same,

SpansV8md = SpansVmd. s9.7d

Proof: This is trivial for them=0 case, since in this case the two kinds of harmonics ar
ame. So, we can assumemÞ0. From the definition(9.4), it is apparent that each basis one-fo

l
I of the polarized harmonics for givenm can be expressed as a linear combination of the si
armonics belonging to the samem. Conversely, each basis one-formVl8

I of the simple harmonic
or givenm can be expressed as a linear combination of the polarized harmonics with the sm
s

Vl8
0 = Vl

0,

Vl8
1 =

1
Î2

sVl−1
1 + Vl+1

2 d,

s9.8d
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Vl8
2 =

§i
Î2

sVl−1
1 − Vl+1

2 d,

Vl8
3 = Vl

3.

herefore the two sets are related by a regular linear transformation, which proves the ide
he two spans. j

The significance of the polarized harmonics is that for givenl (and as usual, givenm andn0),
he space spanned by them

SpansVld ; HUo
I=0

3

cIsVl
IdaUcI P CJ s9.9d

s invariant under the operation ofL2. To show this, let us start with observing the commuta
elations

fA1,A2g = A3, fA1,A3g = 0, fA2,A3g = 0, s9.10d

rom which one can immediately have

LAI
AJ = fAI,AJg = eIJ3A3, s9.11d

here eIJK is the unit skew symmetric symbol;e123= +1, eIJK=efIJKg. Then, noting the dualit

J
a%a

K=dJ
K, it is also easy to see

LAI
%J = − d3

JeIK3%
K. s9.12d

rom this equation and thex relations, as well as the identity

L2 = LA1
LA2

+ LA2
LA1

, s9.13d

ne obtains

L2swl%
Id = − ll

2wl%
I − 2Îumud3

I swl+1%
1 + lwl−1%

2d. s9.14d

his equation happens to be valid whenI =0, as well. Converting to our bases(9.4), we obtain the
ollowing statement.

Lemma 9.2: Let Vl
I sI =0–3d be the basis mode one-forms defined in Eqs. (9.4), and letL2 be
he second order Lie derivative operator defined in Eq. (3.5) . Then, it holds that
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L2Vl
0 = − ll

2Vl
0,

L2Vl
1 = − ll+1

2 Vl
1,

s9.15d
L2Vl

2 = − ll−1
2 Vl

2,

L2Vl
3 = − ll

2Vl
3 − 2ÎumusVl

1 + lVl
2d,

here−ll
2 is the eigenvalue ofL2 with respect to the mode functionwl, defined in Eq. (4.15).

Note that the right-hand sides of Eqs.(9.15) are linear combinations ofhVl
IjI=0

3 belonging to
iven l. This proves the invariance we claimed.

Theorem 9.3: The linear spanSpansVld, defined in Eq. (9.9), of the harmonicshVl
IjI=0

3 is
nvariant under the operation ofL2,

L2 SpansVld , SpansVld. s9.16d

Thanks to this property, if the background space–time is LRS and the field equation is
nt under the LRS-action induced bysu as well as the usual group action, the ODEs reduced

he field equation become all independent from the others. In other words, “eachl” decouples from
he others in case of LRS.(This property does not occur for the simple harmonics, since the
pan of them for a givenl is not L2 invariant.)

Before ending this section let us mention the approach taken in Ref. 13, Sec. III, whi
ased on the analogy of the spherically symmetric case11 or the Bianchi III hyperbolically sym
etric case.17 Let us denote the harmonics used in the reference with double primes likesVl9

Ida.

l9
0 and Vl9

3 are defined in the same way(up to constant multiplication factor) as the polarize
nes,

Vl9
0 = Vl

0, Vl9
3 = §mVl

3. s9.17d

l9
0 is called thetimelike basis one-form, while Vl9

3 is called thefiber basis one-form. Let us then
onsider the “plane field” spanned byx1 and x2, which is horizontal to the base manifold. T
orizontal plane field is invariant under the natural actions of the fibers generated byx3. We define
he “area two-form”« of this field by«ab=2s1

fagsfbg
2 (although the plane field is not integrable). We

efine thehorizontal gradient (HG) basis one-form(corresponding to the “even” one-form11,17) by
aking gradient of the scalar harmonics and subtracting the fiber part,

sVl9
1da = ]awl − sVl9

3da = sx1wldsa
1 + sx2wldsa

2 =Îumu
2

s− swl+1 − lwl−1dsa
1 + §iswl+1 + lwl−1dsa

2d.

s9.18d

nd, we define thedual horizontal gradient (DHG) basis one-form(corresponding to the “odd
ne-form) by taking the dual gradient associated with«,

sVl9
2da = i«a

b]bwl = issx2wldsa
1 − sx1wldsa

2d =Îumu
2

s− §swl+1 + lwl−1dsa
1 + iswl+1 − lwl−1dsa

2d.

s9.19d

o raise an index for«ab we use the(inverse of the) standard Bianchi II metrichs0dab=x1
ax1

b

x2
ax2

b+x3
ax3

b. It is clear that the harmonicsVl9;hsVl9
IdajI=0

3 are equivalent(i.e., their span is th
ame) to the polarized harmonicsVl ;hsVl

IdajI=0
3 for each l, since they are merely related to e

ther by a regular linear transformation, as seen from the relations

1 1 2 2 1 2
Vl9 = − ÎumusVl − lVl d, Vl9 = − §ÎumusVl + lVl d, s9.20d
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s well as(9.17). We call these harmonics themixed vector harmonics. This choice is particularl
onvenient for Maxwell’s equation, since the Us1d-gauge transformation,Aa→Aa+]af, does no
ffect the component for the DHG basis one-form(9.19). (As a result, this component its
ecomes gauge invariant. See the next section.)

. APPLICATION TO MAXWELL’S EQUATION

As an application let us consider the source-free Maxwell equation¹aFab=0. Since the elec
romagnetic fieldFab is given by (twice) the exterior derivative of the vector potentialAa; Fab

]aAb−]bAa, this equation can be dealt with by vector harmonics.
Let us consider the irreducible component belonging to givenmÞ0 andn0. For this compo

ent we can expand the vector potential as follows:

Aa = o
l=−1

`

o
I=0

3

gI
sldstdsVl9

Ida, s10.1d

here sVl9
Ida are the mixed vector harmonics. The four kinds of functions of timegI

sldstd sI
0–3d serve as the field variables.

The quantities we are interested in are the Us1d-gauge invariant variables, which can be ea
ound by inspecting components of the field strengthFab=]aAb−]bAa. We obtain the following
our independent Us1d-invariant variables:

Q1
sld = g1

sld − g3
sld, Q2

sld = g2
sld, P1

sld = ġ1
sld − g0

sld, P2
sld = ġ2

sld. s10.2d

lthough functionP3; ġ3−g0 is also invariant, it is found that it can be(consistently) solved with
he others, due to the constraint part of Maxwell’s equation 0=s]tda¹bFab, which can be written
sing the invariant operator, as

0 = N−1sq1
−1x1Ȧ1 + q2

−1x2Ȧ2 + q3
−1x3Ȧ3d − DqA0, s10.3d

hereA0;N−1s]tdaAa andAI ;xI
aAa sI =1–3d. LaplacianDq is given in Eq.(8.3). The evolution

quations 0=xI
a¹bFab sI =1–3d can similarly be written

0 = −N−1Ḟ0I + q1
−1x1F1I + q2

−1x2F2I + q3
−1x3F3I + N−1qI

−1q̇IF0I − s2Nd−1sq1
−1q̇1 + q2

−1q̇2 + q3
−1q̇3dF0I

+ sq1q2d−1q3dI
3F12 s10.4d

no sum for repeated indices), where F0I ;N−1s]tdaxI
bFab and FIJ;xI

axJ
bFab. After a rathe

engthy computation they become the following:

Q̇1
sld = P1

sld +
sq1

−1 + q2
−1dq3

2umu
ss2l + 1dP1

sld + §P2
sldd + IQ1

,

Q̇2
sld = P2

sld,

s10.5d

Ṗ1
sld = S Ṅ

N
−

1

2

q̇3

q3
DP1

sld − m2N2

q3
Q1

sld + IP1
,

Ṗ2
sld = S Ṅ

N
−

1

2

q̇3

q3
DP2

sld − m2N2

q3
Q2

sld −
m

2
N2sq1

−1 + q2
−1dsQ1

sld + §s2l + 1dQ2
sldd + IP2

,

here the inhomogeneous terms are
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IQ1
; −

sq1
−1 − q2

−1dq3

2umu
hsl + 2dsl + 1dsP1

sl+2d − §P2
sl+2dd + sP1

sl−2d + §P2
sl−2ddj,

IP1
;

N2

4
sq1

−1 − q2
−1dumuhsl + 2dsQ1

sl+2d + §s2l + 5dQ2
sl+2dd − l−1sQ1

sl−2d + §s2l − 3dQ2
sl−2ddj

−
1

4
S q̇1

q1
−

q̇2

q2
Dhsl + 2dsP1

sl+2d − §P2
sl+2dd + l−1sP1

sl−2d + §P2
sl−2ddj, s10.6d

IP2
;

N2

4
sq1

−1 − q2
−1dumuhsl + 2ds§Q1

sl+2d + s2l + 5dQ2
sl+2dd + l−1s§Q1

sl−2d + s2l − 3dQ2
sl−2ddj

−
1

4
S q̇1

q1
−

q̇2

q2
Dhsl + 2ds§P1

sl+2d − P2
sl+2dd − l−1s§P1

sl−2d + P2
sl−2ddj.

Again, we can see the same qualitative features in the Klein–Gordon equations; we h
ystems of infinite number of equations, the one withl =even and the one withl =odd, unless th
ackground is LRS. When the background is LRS, the couplings between model and the nex
eighborsl ±2 are cut off due to the vanishing of the inhomogeneous termsIQ1

, IP1
andIP2

and this
akes each system of four first-order equations(10.5) for given l closed itself. This is of course

esult of the invariance described in Theorem 9.3.

I. CONCLUSION

There are three main results about basic properties for the nilgeometric harmonics obt
his paper. They are(i) the irreducible decomposition of the regular representation(Theorem 1.1),
ii ) the explicit form of the mode functions, and(iii ) the differential representation formula, thx
elations[see Eqs.(4.14) and (7.6)]. The decomposition(i) represents the completeness of
armonics. As for the point(ii ), remember that we have two kinds of formula, the one for
anonical manifold and the one for the space–time manifold. The former is given in Eqs.(5.8) and
7.3), while the latter is obtained by the transformations explicitly given in Secs. VI and
emember also that thex relations are the most important for the purpose of separatio
ariables. We also have generalized the(scalar) harmonics to vector harmonics, and demonstr
eparation of variables for a scalar equation(the Klein–Gordon equation) and a vector equatio
the Maxwell equation).

As we have seen, when the fiber indexm is nonzero the ODEs reduced from a field equa
.g., the ones from the KG equation, become systems ofinfinite number ofsimultaneous equ
ions. In this sense, infinite number of different modes are coupled to each other. This is
f the fact that the corresponding irreducible representation is infinite dimensional. Wh
ackground is LRS however, the couplings between the modes are cut off and as a res
ingle reduced KG equation becomes closed itself. Although the Maxwell equations give
uch more complicated reduced equations because of the multiple components of the fi
ble, it has the same feature that the couplings between modes disappear when the back
RS. It is also apparent that the linear perturbation equations will have the same featur
hoose the tensor harmonics so as to possess the invariance underL2 like the vector harmonics d
cf. Theorem 9.3).

An interesting fact is that as shown in Sec. VIII, the future asymptotic solution of the LR
ave equation depends only on the fiber indexm and does not depend on the spin indexl. This

act seems to indicate a clue for analyzing the generic non-LRS cases, since it suggests
ouplings between the modes asymptotically disappear even when the background is non
east if the background is close enough to the LRS one. See Ref. 14 for the same(“fiber term
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ominated”) behavior of other models(Bianchi VIII and III). Detailed studies of the non-LR
ases, as well as linear perturbations of the nilgeometric model, will be reported elsewhere
asis of this work.

CKNOWLEDGMENTS

The author wishes to thank Vincent Moncrief for helpful discussions, especially at an
tage of this work. The author is also grateful to the organizers, including Akio Hosoy
atsuhiko Koike, and the participants of the5th Workshop on Singularity, Spacetime and Rel
hysicsheld at Keio University, Yokohama, December 19–21, 2003, for the kind invitation
any beneficial comments.

1Anderson, M., “On long-time evolution in general relativity and geometrization of 3-manifolds,” Commun. Math
222, 533–567(2001).

2Bonanos, S., “On the stability of the Taub universe,” Commun. Math. Phys.22, 190–222(1971).
3Bonanos, S., “Stability of homogeneous universes,” Commun. Math. Phys.26, 259–270(1972).
4Ellis, G. F. R. and MacCallum, M. A. H., “A class of homogeneous cosmological models,” Commun. Math. Ph12,
108–141(1969).

5Fischer, A. E. and Moncrief, V., “The reduced Einstein equations and the conformal volume collapse of 3-ma
Class. Quantum Grav.18, 4493–4515(2001), and references therein.

6Hu, B. L. and Regge, T., “Perturbations on the mixmaster universe,” Phys. Rev. Lett.29, 1616–1620(1972); Hu, B. L.,
“Separation of tensor equations in a homogeneous space by group theoretical methods,” J. Math. Phys.15, 1748–1755
(1974).

7Jantzen, R. T., “The dynamical degrees of freedom in spatially homogeneous cosmology,” Commun. Math. P64,
211–232(1978).

8Jantzen, R. T., “Tensor harmonics on the 3-sphere,” J. Math. Phys.19, 1163–1172(1978).
9Jantzen, R. T., “Gauge invariant perturbation theory in spatially homogeneous cosmology,” inEssays in General Rel
tivity: A Festschrift for Abraham Taub, edited by F. J. Tipler(Academic, New York, 1980), pp. 97–120.

0Koike, T., Tanimoto, M., and Hosoya, A., “Compact homogeneous universes,” J. Math. Phys.35, 4855–4888(1994).
1Regge, T. and Wheeler, J. A., “Stability of a Schwarzschild singularity,” Phys. Rev.108, 1063–1069(1957).
2Scott, P., “The geometry of 3-manifolds,” Bull. London Math. Soc.15, 401–487(1983).
3Tanimoto, M., “Linear prturbations of spatially locally homogeneous spacetimes,” Contemp. Math.37, Recent Advance
in Riemannian and Lorentzian Geometries, AMS (2002), pp. 171–185, gr-qc/0303087.

4Tanimoto, M., “Scalar fields on SLs̃2,Rd andH23R geometric space–times and linear perturbations,” Class. Qua
Grav. (to be published), gr-qc/0410061.

5Tanimoto, M., Koike, T., and Hosoya, A., “Dynamics of compact homogeneous universes,” J. Math. Phys.38, 350–368
(1997).

6Tanimoto, M., Koike, T., and Hosoya, A., “Hamiltonian structures for compact homogeneous universes,” J. Mat
38, 6560–6577(1997).

7Tanimoto, M., Moncrief, V., and Yasuno, K., “Perturbations of spatially closed Bianchi III spacetimes,” Class. Q
Grav. 20, 1879–1927(2003).

8Taub, A. H., “Empty space–times admitting a three-parameter group of motions,” Ann. Math.53, 472–490(1952).
9Taylor, M. E.,Noncommutative Harmonic Analysis, Mathematical Surveys and Monographs Vol. 22(American Math
ematical Society, Providence, RI, 1986).

0Thurston, W. P.,Three-Dimensional Geometry and Topology Vol. 1(Princeton University Press, Princeton, NJ, 199).
1Wald, R. M.,General Relativity(The University of Chicago Press, Chicago, 1984).
2The “left” regular representation can also be defined similarly. We take the “right” one for the reason explaine
3In Refs. 10, 15, and 16, the second component ofa1 was taken zero instead of the first component ofa2. It is howeve
not difficult to see that those two choices are equivalent(conjugate) to each other following the procedure shown in
same references. The present parametrization will be proved more convenient for our purpose.

4While IsomN is four-dimensional, the extra isometries are not necessary for us to representai, resulting inai PGII here
Remark however that to obtain this representation the fourth-dimensional isometries play an essential role, es
delete the first component ofa2.

5Like this, we consider any functions onM or M̄ as functions on the universal coverM̃ =R3. If fsAxd= fsxd holds we
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The Hughston–Jozsa–Wootters theorem shows that any finite ensemble of quantum
states can be prepared “at a distance,” and it has been used to demonstrate th
insecurity of all bit commitment protocols based on finite quantum systems without
superselection rules. In this paper, we prove a generalized HJW theorem for arbi-
trary ensembles of states on aC* -algebra. We then use this result to demonstrate the
insecurity of bit commitment protocols based on infinite quantum systems, and
quantum systems with Abelian superselection rules. ©2004 American Institute of
Physics.[DOI: 10.1063/1.1812827]

. INTRODUCTION

Recent work in quantum cryptography has focused on questions of which so
nformation-transfer protocols are secure from attempts at cheating by an intruder or by on
articipants. As early as 1984, the question was raised whether quantum theory would p
ecure bit commitment protocol, i.e., a protocol in which a bit of information is committed b
arty Alice to another party Bob, such that Alice cannot change her commitment, and su
ob cannot determine Alice’s commitment until given further information by Alice. An in
rotocol using pairs of polarized photons was proposed by Bennett and Brassard;2 however
ennett and Brassard showed that this protocol can be cheated by exploiting the nonloc

ations of the EPR-Bohm state.
A number of other quantum bit commitment protocols have been proposed in the inter

ears(see Refs. 3, 4, and 6 for reviews). Most of these protocols rely on the fact that a non-p
ensity operator corresponds to more than one ensemble of quantum states. In particu
ifferent ensembles on a composite system can induce the same density operator on
ystem. Thus, if Alice encodes her bits into these two ensembles, then Bob cannot p
etermine Alice’s commitment until she provides further information about the composite s

However, Lo and Chau15 and Mayers16,17show that, as a consequence of the Hughston–J
ootters(HJW) theorem, if a bit commitment protocol is concealing against Bob, then it i

inding against Alice.(Kent’s12 relativistic bit commitment protocol does not rely on the existe
f alternative decompositions of a density operator, and so its security is not challenged
ayers–Lo–Chau result.) That is, if the ensembles prepared in the protocol are indistinguis

o Bob (i.e., correspond to approximately the same local density operator), then Alice can “steer
etween these ensembles after the Commit stage of the protocol.

HJW Theorem:10 Let HA andHB be finite-dimensional Hilbert spaces, lethDiji=1
n be densit

perators onHB, and let x be a unit vector inHA ^ HB such thatTrAsPxd=oi=1
n liDi. Then there

re positive operatorshAiji=1
n in BsHAd ^ I such that

kAi
1/2xuBAi

1/2xl = liTrsDiBd, s1d

)
Electronic mail: hhalvors@princeton.edu

4920022-2488/2004/45(12)/4920/12/$22.00 © 2004 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.1812827
http://dx.doi.org/10.1063/1.1812827


f
m

t ave
c sitions.
F ed
H ore, the
H of
q eumann
f ols that
e on
N d
b

es on a
C
r t
i
t nt that
p of
t

I

rt
s lues
i
M nal
H

o
P ard
t
w at
i

i
s

s t
o on
a te
s

f
o

rt
s
t
A

J. Math. Phys., Vol. 45, No. 12, December 2004 Remote preparation of arbitrary ensembles 4921

                        
or all BP I ^ BsHBd.
Thus, the HJW theorem shows that anyfinite decomposition of TrAsPxd can be prepared fro

he statePx by a measurement operation onHA. However, all nonpure density operators h
ountably infinite convex decompositions, as well as uncountably infinite integral decompo
or the case of countably infinite decompositions, Cassinelliet al.7 have proved a generaliz
JW theorem, but their results do not cover the case of integral decompositions. What is m
JW theorem and its generalization by Cassinelliet al. apply only to a very narrow class
uantum systems—namely those whose observables are represented by type I von N

actors. Thus, these results do not directly establish the insecurity of bit commitment protoc
mploy systems with nontrivial superselection rules(represented by direct sums of type I v
eumann factors), or bit commitment protocols that employ infinite quantum systems(represente
y type II or type III von Neumann algebras).

In this paper, we prove a generalized HJW theorem for arbitrary ensembles of stat
*-algebra. We show first(in Sec. II) that each measure on the state space of aC* -algebraB gives

ise to a positive-operator-valued measure with range in the commutantB8 of B. (This first resul
s completely general, and does not impose any restrictions on theC* -algebraB.) We then show
hat whenB8 is a hyperfinite von Neumann algebra, there is a completely positive instrume
repares the relevant ensemble of states onB. In Sec. III we apply our results to the question

he security of bit commitment protocols.

I. GENERALIZED HJW THEOREM

Our first result(Theorem 1) shows that for anyC* -algebraB of operators acting on a Hilbe
paceH, a measure on the state space ofB gives rise to a corresponding POV measure with va

n the commutantB8=hAPBsHd : fA,Bg=0 for all BPBj. For the case thatB= I ^ Mn, where

n is theC* -algebra ofn3n matrices overC, our result yields an alternate proof of the origi
JW theorem.

Let K denote the compact convex set of states ofB with the weak* topology.[A net hvajaPA
f states of B converges in the weak* topology to a statev just in case, for eachB
B , limavasBd=vsBd. If B=Mn, then the weak* topology on states is equivalent to the stand

opology on density operators.] In this paper, we consider positive regular measures onsK ,Sd,
hereS is the Borels-algebra ofK. When we say thatm is a measure, it can be assumed thm

s positive and regular.
Definition (Ref. 1, p. 12):If m is a measure on the state spaceK, then the state

rm = msKd−1E x dmsxd, s2d

s called thebarycenterof m. Measuresm andn on K are said to beequivalentif they have the
ame barycenter.

Let K be the convex set of density operators onCn. If r is a density operator andm is a finitely
upported measure onK with barycenterr, then Hughstonet al. call m a r-ensemble. So, the se
f r-ensembles consists of those measures onK that have barycenterr, and that are supported
finite set. In this paper, we consider all measures with barycenterr, and not just those with fini

upport.
Notation: If x is a vector inH, we let vxsAd=kxuAxl, for all APBsHd. If B is a set o

perators onH, we letBx=hBx:BPBj, and we letfBxg denote the closed linear span ofBx.
Lemma 1 (Ref. 11, Proposition. 7.3.5): IfB is a C* -algebra of operators acting on the Hilbe

paceH andr is a positive linear functional onB such thatrøvxuB for some vector x inH, then
here is a positive operator H in the unit ball ofB8 such thatrsAd=vxsHAd=vH1/2xsAd, for all
PB.

*
Proof: Define a conjugate-bilinear functionalw on Bx by settingwsAx,Bxd=rsA Bd. Then,

                                                                                                            



T
= to
t ositive
o
=
S

f
f

R

m r
o

f

p
u
v nd
l

a

F

R

a
o

4922 J. Math. Phys., Vol. 45, No. 12, December 2004 Hans Halvorson

                        
uwsAx,Bxdu2 = ursA*Bdu2 ø rsA*AdrsB*Bd ø iAxi2iBxi2. s3d

he first inequality follows from the Cauchy–Schwartz inequality for the inner productkAuBlr

rsA*Bd on B. Thusw is positive and bounded by 1. It follows thatw has a unique extension
he subspacefBxg. Moreover, the Riesz representation theorem entails that there is a p
peratorH on fBxg such thatiHiø1 and wsAx,Bxd=kAxuHBxl. In particular,rsAd=kxuHAxl
vxsHAd for all APB. ExtendH to the entire Hilbert spaceH by setting it to zero onH * fBxg.
ince

kAxuHCBxl = rsA*CBd = rssC*Ad*Bd s4d

=kC*AxuHBxl = kAxuCHBxl s5d

or all C in B, it follows that fH ,Cg=0 on fBxg. Since fH ,Cg=0 on H * fBxg, it follows that
H ,Cg=0 on the entire Hilbert space. Therefore,HPB8. h

The following result is a special case of a theorem proved by Tomita25 in 1956(compare with
ef. 5, Lemma 4.1.21, Proposition 4.1.22).

Theorem 1: Let B be a C* -algebra acting on the Hilbert spaceH, and letm be a probability
easure on the state space ofB. If there is a unit vector x inH such thatvxuB is the barycente
f m, then there is a POV measureA with range inB8 such that

kAsSd1/2xuBAsSd1/2xl =E
S

vsBddmsvd, s6d

or all SPS and BPB.
Proof: Let S be a Borel subset of the state space ofB, and letrS=eSvdmsvd. ThenrS is a

ositive linear functional onB with rSøvxuB. By Lemma 1, there is a positive operatorAsSd in the
nit ball of B8 such thatrSsBd=vxsAsSdBd for all BPB, andAsSd=0 on H * fBxg. In order to
erify that S°AsSd is countably additive, suppose thathSi : i PNj are disjoint Borel subsets, a

et S=øi=1
` Sn. Then for fixedBPB,

o
i=1

`

xSi
svd · vsBd = xSsvd · vsBd, s7d

nd so the monotone convergence theorem entails that

o
i=1

` SE
Si

vsBddmsvdD =E
S

vsBddmsvd = kxuAsSdBxl. s8d

urthermore, countable additivity of the mapZ° kxuZBxl entails that

KxUSo
i=1

`

AsSidDBxL = o
i=1

`

kxuAsSidBxl. s9d

eplacingB with B*C, whereB,CPB, we have

KBxUo
i=1

`

AsSidCxL = kBxuAsSdCxl, s10d

nd thereforesoi=1
` AsSiddy=AsSdy, for all yP fBxg. SinceAsSd=0 on H * fBxg, it follows that

`

i=1AsSid=AsSd. h
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Thus, if m is a measure on the state space of Bob’s algebraB, Alice’s algebraA=B8 contains
he range of a POV measureA satisfying Eq.(6). But this does not yet yield the conclusion t
lice can prepare the ensemblem on Bob’s system—for that, we need to show that Alice ha

instrument” corresponding to the POV measureA.
Definition:9,19 Let sX,Sd be a Borel space. Acompletely positive (CP) instrumenton BsHd is

mapE :S3BsHd→BsHd such that

1) for fixed BPBsHd , Ef·gsBd is s-additive in the weak-operator topology;
2) for fixed SPS , EfSgs·d is a completely positive linear map such thatEfSgsIdø I.

Since the mapEfSgs·d ,sSPSd, is positive, it is automatically norm-continuous. If, in additi
each such map is weak-operator continuous on bounded sets, thenE is said to benormal. [A net
hAajaPA of bounded operators onH converges in the weak-operator topology to an operatorA just
n case limakxuAayl=kxuAyl for all vectorsx,y in H.] However, we do not require instruments
e normal, because continuous PV measures give rise to non-normal instruments,9,23 and a con

inuous ensemble of states onB will give rise to a continuous PV measure inB8.
Each instrumentE determines a unique POV measureA via the formula

AsSd ; EfSgsId sSP Sd. s11d

f Eq. (11) holds for an instrumentE and a POV measureA, then E and A are said to b
ompatible. For any given POV measureA, there are many instruments that are compatible
. In fact, if F is a CP projection ofBsHd with ransFd# ransAd8, then

EfSgsBd = AsSdFsBd sSP S,B P BsHdd s12d

s compatible withA. In particular, ifr is a state onBsHd, then

EfSgsBd = AsSdrsBd sSP S,B P BsHdd s13d

s compatible withA.
Thus, given a POV measureA with range in Alice’s algebraA=B8, we can easily find a

nstrumentE that is compatible withA. However, it does not follow that Alice can in any se
easureA with the instrumentE, becauseE may not be “local” to Alice’s system. In particular,

nstrument that is local to Alice’s system should not disturb the statistics of measurem
bservables in Bob’s algebraB=A8. In other words, for any stater on B, the equation

rsEfXgsBdd = rsBd s14d

hould hold for allBPB. But Eq. (14) holds for all statesr on B iff the CP mapEfXgs·d is the
dentity onB. Thus, we capture the locality requirement with the following definition.

Definition: An instrumentE is local to an algebraA just in caseEfSgsBd=EfSgsIdB, for all
PA8 andSPS.

Of course, ifA is a POV measure onN, there is a canonical instrumentEA that is compatibl
ith A and local to any algebra containing ransAd:

EAfSgsBd = o
nPS

An
1/2BAn

1/2 sS# N,B P BsHdd. s15d

e wish to extend this result to show that for each POV measureA with range in aC* -algebraA,
here is a CP instrumentEA that is compatible withA and local toA. In this paper, we prove th
esult for finite quantum systems(Theorem 2), and for infinite quantum systems that can
pproximated, in an appropriate sense, by finite quantum systems(Theorem 3). While our proo

or the finite case uses only elementary linear algebra, our proof for the infinite case is n
tructive(i.e., invokes the axiom of choice in the form of the Tychonoff product theorem), and

ses tools from the theory of operator algebras.
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We first show that if Alice has a finite quantum system, then she can perform a “max
isturbing” local operation—i.e., an operation that maps all her states to the maximally
tate.

Lemma 2: IfA is finite-dimensional C* -algebra on the Hilbert spaceH, then there is
ompletely positive projectionF from BsHd onto A8. In particular, F mapsA onto CI.

Proof (Compare with Ref. 11, Proposition 8.3.11, and Ref. 22):SinceA is finite-dimensiona
=Ši=1

m Mnsid for some positive integersns1d ,… ,nsmd. Consider the following statement:
(†) There is a projective unitary representationg°Wsgd of a finite groupG in A such tha

Wsgd :gPGj spansA.
We first show that(†) holds whenA=Mn. Let hu0l ,… , un−1lj be a basis forCn, and for eac

PZn3Zn let Wsgd be the unitary operator onCn defined by

Wsgdual = eig1aua + g2l sa = 1,…,nd. s16d

hen g°Wsgd is a projective representation ofZn3Zn with bicharacterjsg,hd=eig1h2; i.e.,
sgdWshd=eig1h2Wsg+hd. Furthermore,hWsgd :gPZn3Znj is an orthonormal basis forMn rela-

ive to the inner productkAuBl2=TrsA*Bd. Thus, we have established(†) for the case thatA
Mn. We now show that(†) holds whenA=Ši=1

m Mnsid. Indeed, let

G = Š
i=1

m

fZnsid 3 Znsidg, s17d

nd take the direct sum of the corresponding projective representations.
We now show that if(†) holds, then there is a CP projection fromBsHd onto A8. For each

PG, define an automorphismag of BsHd by

agsAd = Wsgd*AWsgd sB P BsHdd. s18d

henG=hag:gPGj is a finite group of automorphisms ofBsHd. If asAd=A for all aPG, then
Wsgd=WsgdA for all gPG, andAPA8. Thus,

FsAd = uGu−1 o
aPG

asAd sA P BsHdd s19d

s a CP projection fromBsHd onto A8. h

We are now prepared to prove a generalized HJW theorem, valid for all finite qu
ystems(i.e., systems whose algebra of observables is finite-dimensional). In particular, if the
*-algebraB8 is finite-dimensional, then the productF ^ A of the maximally disturbing operatio
(from Lemma 2) and the POV measureA (from Theorem 1) yields an instrument that prepa

he ensemblem on systemB.
Theorem 2 (Generalized HJW Theorem):Let B be a C* -algebra acting on the Hilbe

paceH, let x be a unit vector inH, and letm be a measure on the state space ofB such thatvxuB
s the barycenter ofm. If B8 is finite-dimensional, then there is a CP instrumentE on BsHd that is
ocal to B8 and

kxuEfSgsBdxl =E
S

vsBddmsvd, s20d

or all SPS and BPB.
Proof: By Lemma 2, there is a CP projectionF from BsHd ontoA8. Let E=F ^ A, whereA

s the POV measure defined in Theorem 1. That is,

EfSgsBd = FsBdAsSd, s21d
or all SPS andBPBsHd. h
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This generalized HJW theorem applies to bit commitment protocols that employ cont
nsembles on finite quantum systems(e.g., continuous measures on the Bloch sphere), and to finite
uantum systems with Abelian superselection rules(direct sums of matrix algebras). However, this
rst result leaves open the possibility of secure bit commitment protocols that employ
uantum systems. So, in the following subsection, we prove a more general HJW theor
lso applies to infinite quantum systems.

. HJW theorem for hyperfinite algebras

Definition:A von Neumann algebraR is said to behyperfinitejust in case there is an upwa
irected familyhRajaPA of finite-dimensionalC* -algebras such thatR is the weak-operator cl
ure oføaPARa.

As in the finite case, an observer with a hyperfinite von Neumann algebra can per
aximally disturbing measurement operation.

Lemma 3: IfR is a hyperfinite von Neumann algebra acting on the Hilbert spaceH, then
here is a completely positive projectionF from BsHd ontoR8. In particular, F mapsR ontoCI.

Notation:For an arbitrary operatorB in BsHd we write coRsBd− for the weak-operator clos
onvex hull ofhUBU* :UPR ,U unitaryj.

Proof (Compare with Ref. 11, Proposition. 8.3.11; Exercise 8.7.24, and Ref. 22):Let hRa:a
Aj be an increasing net of finite-dimensionalC* -algebras onH such that

søaPARad− = R, s22d

hereX− denotes the weak-operator closure ofX. By Lemma 2, for eachaPA there is a CP
rojectionFa from BsHd onto Ra8. Let

X = p
BPBsHd

coRsBd− s23d

e the product topological space, where each factor is equipped with the weak-operator to
or fixed BPBsHd , coRsBd− is weak-operator closed and bounded, and is therefore w
perator compact(Ref. 11, Theorem 5.1.3). Thus, the Tychonoff product theorem entails thatX is
ompact. LetM be the subset ofX consisting of mappingsF that are positive, linear, normalize
nd such that

FsR18BR28d = R18FsBdR28, s24d

or all R18 ,R28PR8 and for all BPBsHd. SinceM is closed inX,M is compact, andhFa:a
Aj has a limit pointFPM. Note that limaFa=F iff, for each fixedBPBsHd ,w-limaFasBd

FsBd. We claim thatFsBdPR8 for eachBPBsHd. Let APøaPARa; that is, there is anm
A such thatAPRm. Then,AFasBd=FasBdA, for all aùm. Since the mapsZ°AZ andZ°ZA

re weak-operator continuous,

Afw-lim
aùm

FasBdg = w-lim
aùm

fAFasBdg = w-lim
aùm

fFasBdAg s25d

=fw-lim
aùm

FasBdgA. s26d

inceFsBd=w-limaFasBd=w-limaùmFasBd, it follows thatAFsBd=FsBdA. SinceA was an arbi
rary element oføaPARa,FsBdP søaPARad8=R8. Therefore ransFd=R8. Finally, sinceF is an
8-bimodule mapping[i.e., Eq.(24) holds], F is idempotent and completely positive(Ref. 24
orollary 3.4). h

Again, a maximally disturbing operationF can be tensored with the POV measureA to yield
n instrument that prepares the ensemblem on Bob’s system.

Theorem 3 (Generalized HJW Theorem):Let B be a C* -algebra acting on the Hilbe

paceH, let x be a unit vector inH, and letm be a measure on the state space ofB such thatvxuB
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s the barycenter ofm. If B8 is hyperfinite, then there is a CP instrumentE on BsHd that is loca
o B8 and

kxuEfSgsBdxl =E
S

vsBddmsvd, s27d

or all SPS and BPB.
Proof: The proof is identical to the proof of Theorem 2, with Lemma 3 replacing Lemmah

II. APPLICATION TO BIT COMMITMENT

The Mayers–Lo–Chau theorem shows that whenA=Mn ^ I and B=A8, and when bits ar
ncoded in finite ensembles, thensA ,Bd cannot be used to implement a secure bit commitm
rotocol. The generalized HJW theorem allows us to extend this result to the case
s=B8d is an arbitrary hyperfinite von Neumann algebra, and to encodings that employ a
nsembles of states onB. In particular, the generalized HJW theorem entails that there can
ecure bit commitment protocol using infinite(hyperfinite) quantum systems, or quantum syste
ith Abelian superselection rules.

. Bit commitment with infinite quantum systems

The quantum bit commitment protocols that have been proposed to date employ finit
um systems. In this subsection, we describe a bit commitment protocol that employs con
nsembles of states on infinite qubit lattices. Since this protocol does not fall within the ra
alidity of the HJW theorem, it is immune to current no-go theorems against bit commi
owever, we show that this protocol can be cheated by exploiting the nonlocal correlation

infinitely entangled” EPR state(see Ref. 13).
Let u0,0l andu0,1l be orthogonal unit eigenvectors ofsx, and letu1,0l andu1,1l be orthogo

al unit eigenvectors ofsy. Then, heuristically, the states of a one-dimensional infinite qubit la
nclude vectors of the form

ib,sll=def ^ i=1
` ub,ssidl ssP sZ2dvd, s28d

ith b=0 or b=1. (We provide a rigorous definition of these states below.)
During the Commit stage of the protocol, Alice performs operations on a compositesA ,Bd

onsisting of two lattice systemsA andB, and she then sends systemB to Bob. During the Unve
tage, Alice makes measurements onA, and sends classical information to Bob, who then m
easurements onB.
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Let rb be the state that Bob receives. It is intuitively clear that if Alice follows the pro
onestly, thenr0=r1, and so Bob cannot cheat.(We prove this fact below.)

We now tighten up the mathematical description of the systems involved in the protoc
bservables of a one-dimensional qubit lattice are represented by theC* -algebraic infinite direc
roduct

A = ‹
iPN

Mnsid, s29d

herensid=2 for eachi PN. For eachi PN andAPM2, let

Asid = I ^ ¯ ^ I ^ A ^ I ¯ , s30d

hereA is in the ith position. If for eachi PN ,vi is a state ofM2, then there is a unique sta
^ i=1

` vi of A defined by

s^ i=1
` vidsAs jdd = v jsAd. s31d

urthermore,̂ i=1
` vi is pure iff eachvi is pure, and is a trace iff eachvi is a trace(Ref. 11

roposition 11.4.7). Thus, if huil : i PNj are unit vectors inC2, then ^ i=1
` uil can be used to deno

he corresponding pure state ofA. In particular, for anysP sZ2dv , ib, sll does in fact correspon
o a pure state ofA.

Let B be an isomorphic copy ofA. SinceA is a uniform limit of an increasing sequence
nite-dimensional algebras, it is nuclear; i.e., there is a unique norm on the algebraic
roductA(B whose completion is aC* -algebra. We denote thisC* -algebra byA ^ B. We now
stablish the existence of the ensembles described in the protocol, and we show that they

o the same quantum state(namely, the “maximally mixed” tracial state) on systemB.
Proposition 4: If m is the normalized Haar measure onsZ2dv, then there is a probabilit

easuremb on the state space ofA ^ B such that

mbshib,sllA ^ ib,sllB:sP Sjd = msSd, s32d

or every Borel subset S ofsZ2dv. Furthermore, ifrb is the barycenter ofmb, then rbuI ^B is the
racial state.

To establish the first part of Proposition 4, it will suffice to show that

s°
w

ib,sllA ^ ib,sllB s33d

s a continuous mapping ofsZ2dv into the state space ofA ^ B (with the weak* topology), for then
he induced measuremb=m +w−1 will satisfy Eq. (32).

Let G=oiPNsZ2 % Z2di be the direct sum of a countable number of copies ofZ2 % Z2. Elements
f G are sequences with values inZ2 % Z2 that differ from the identity(0, 0) in only finitely many
ositions. LetVs0,0d= I, Vs0,1d=sx,Vs1,0d=sy, andVs1,1d=sz, and, for anysPG, let

Ussd=defVss1d ^ Vss2d ^ Vss3d ^ ¯ P A. s34d

hen the sethUssd :sPGj is linearly dense inA. Let Hb denote the subgroup ofG generated b
hose sequencess with the property thatssid=s0,0d or ssid=sb,b% 1d for all i PN. Then
Ussd :sPHbj generates an Abelian subalgebra ofA, namely, the algebra generated by the

peratorVsb,b%1d at each lattice site.
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Lemma 5: IfC is the Abelian subalgebra ofA generated byhUssd :sPHbj, then the pure sta
pace ofC is homeomorphic tosZ2dv.

Proof: The AbelianC* -algebraC is isomorphic to theC* -algebraCsXd of continuous complex
alued functions onX, whereX is the pure state space ofC equipped with the weak* topology.
urthermore, ifCsXd and CsYd are isomorphic, thenX and Y are homeomorphic. Thus, ifC
CsYd, then the space of pure states ofC is homeomorphic toY. Now, C.‹i=1

` Ni, whereNi is
he Abelian algebra generated bysb. SinceNi is isomorphic toCsZ2d,

‹
i=1

`

Ni . ‹
i=1

`

CsZ2d . CssZ2dvd, s35d

heresZ2dv is equipped with the product topology(see Ref. 11, pp. 910–911; Proposition 11.4).
herefore the pure state space ofC is homeomorphic tosZ2dv. h

SinceC is isomorphic toCssZ2dvd, there is(by the Riesz representation theorem) a one-to-on
orrespondence between positive normalized measures onsZ2dv and states onC.

Lemma 6: Ifm is the Haar measure onsZ2dv, then the barycenter ofm is tuC, wheret is the
race onA.

Proof: Let ssCd denote the pure state space ofC, and letr=essCdvdmsvd be the barycenter
. To show thatr=t, it will suffice to show thatrsUssdd=0 wheneversPHb−hej. Indeed, ifs
e, then there is ani PN such thatssid=sb,b% 1d. Let s8 be the element of% i=1

` sZ2 % Z2di such
hat s8s jd=ss jd when j Þ i, and s8sid=sb% 1,bd. Then Uss8d*UssdUss8d=−Ussd. Since m is
ranslation-invariant,rsUssdd=−rsUssdd. ThereforersUssdd=0. h

Lemma 7: There is a completely positive projectionF from A onto C such thattsFsAdd
tsAd for all A in A.

Proof: For eachtPR, define an automorphismat of A by

atsBd = e−itAbBeitAb sB P Ad. s36d

inceAb is bounded, the mapt°atsBd is norm-continuous. Ifn is an invariant mean onR, then

FsBd =E
R

atsBddnstd sB P Ad s37d

s a positive linear map onA (Ref. 20, Lemma 7.4.4). (To show thatF is completely positive,
ill suffice to show that the range ofF is Abelian.) Clearly FsC1BC2d=C1FsBdC2 for all

1,C2PC, andBPA. In particular,FsCd=C for all CPC. To see that the image ofF lies in C,
et s be an element ofG=oiPNsZ2 % Z2di. If sPHb, then UssdPC and FsUssdd=Ussd. Suppos
hen thats¹Hb; that is, there is ani PN such that eitherssid=sb% 1,bd or ssid=s1,1d. (It will
uffice to consider the first case; the second case follows by symmetry.) Then

Ussd = Vss1d ^ ¯ ^ Vssi−1d ^ Vssid ^ Vssi+1d ^ ¯ , s38d

nd

FsUssdd = Vss1d ^ ¯ ^ Vssi−1d ^ Bi ^ Vssi+1d ^ ¯ , s39d

here

Bi =E
R

e−itPbfVsb%1,bdgeitPbdnstd = 0. s40d

hus,FsUssdd=0. SincehUssd :sPGj spansA, it follows that ransFd=C. To see thatt=t +F, note
hat every nonidentity element ofhUssd :sPGj is trace-free. IfsPHb, then FsUssdd=Ussd and
hereforetsFsUssddd=tsUssdd. If s¹Hb, thenFsUssdd=0 andtsUssdd=0. Sincet and t +F are

ontinuous linear functionals,t=t +F. h
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The mappingC=F ^ F is a CP projection fromA ^ B onto C ^ C, and its adjointC* is a
eak* continuous mapping from the state space ofC ^ C into the state space ofA ^ B. Let ssC

^ Cd denote the pure state space ofC ^ C, and letssA ^ Bd denote the pure state space oA
^ B. Using C* again to denote the restriction ofC* to ssC ^ Cd, and identifyingssC ^ Cd with
Z2dv3 sZ2dv, it follows thatC* is a continuous injection ofsZ2dv3 sZ2dv into ssA ^ Bd. Note tha

C*fss,sdg = ib,sllA ^ ib,sllB s41d

nd so the mapping

s°
w

ib,sllA ^ ib,sllB = sC* + Ddssd, s42d

hereDssd=ss,sd, is continuous, which establishes the first part of Proposition 4.
Now let rb denote the barycenter ofmb, and letnb=def m + sF*d−1 denote the measure onssBd

nduced byF* from the measurem on ssCd. Then for anyBPB,

rbsI ^ Bd =E
ssA^Bd

vsI ^ Bddmbsvd =E
ssBd

vsBddnbsvd s43d

=E
ssCd

vsFsBdddmsvd = tsFsBdd = tsBd. s44d

his establishes the second part of Proposition 4. Thus,m0 andm1 are the ensembles prepared
lice if she follows the protocol honestly.

Finally, we show that Alice can cheat by preparing an entangled state during the Comm
ather thanm0 or m1. In particular, if for eachi PN , ci =c is the Bohm-EPR state ofM2 ^ M2,
henv=def ^ i=1

` ci is a pure state of‹i=1
` sMnsid ^ Mnsidd=A ^ B.13 It is not difficult to see, then

hat if Alice performs a nonselective measurement ofAb [represented by the CP map in Eq.(36)]
henA ^ B is in statev, then the posterior state is the ensemblemb. Therefore, if Alice prepare
during the Commit stage, then she can unveil either 0 or 1.

. Bit commitment and superselection rules

It has recently been argued by Mayers, Kitaev, and Preskill,14,18 in response to a questi
aised by Popescu,21 that the no-go theorem for bit commitment extends to the case of qu
ystems with superselection rules. The generalized HJW theorem provides another rout
esult, at least for systems whose superselection rules are Abelian. In the case of Abelia
election rules,A=B8; that is, Alice can perform any operation that commutes with Bob’s
urement operations. And the generalized HJW theorem shows that an observer with algB8
an steer systemB into any ensemble consistent withvxuB. Thus, a bit commitment protocol
erfectly concealing against Bob only if it is not binding against Alice. However, the gener
JW theorem has nothing to say(directly) about Alice’s ability to cheat when both systems
overned by non-Abelian superselection rules(in which caseA,B8).

Mayerset al.14 claim that—HJW theorem aside—Alice can always steer Bob’s system in
tate of her choice by adding, if necessary, an appropriate ancilla to her system. Their arg
ased on a more general claim that restrictions imposed by superselection rules on a loca
an always be effectively removed by embedding the local system in a larger system(in particular
y adding an ancilla).

The formalism of elementary quantum mechanics imposes no restriction on adding a
owever, in the setting of algebraic quantum field theory, an observer can measure on
bservables that correspond to her space–time region. As a result, adding ancillae
ermitted—at least if “adding an ancilla” is interpreted to mean that Alice can measure o
bles that are not in her local observable algebraRsOAd. Thus, in this richer theoretical fram

ork, Alice is subject to further constraints on her ability to simulate any operation that commutes
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ith Bob’s measurement operations, and these constraints could—it seems theo
ossible—prevent Alice from cheating in a bit commitment protocol.(It would be interesting t
xplore connections between the formal conditionA,B8 and relativistic constraints of the s
xploited by Kent’s12 bit commitment protocol.)

. Limitations on the generalized HJW theorem

Let us say that a bit commitment protocol employs aquantum encodingjust in case Alice
ncodes her choice of a bit 0 or 1 in two ensemblesm0 or m1 of quantum states. Then, even in
ase of bit commitment schemes that employ quantum encodings, there is one further ass
f the generalized HJW theorem that is notprima facieguaranteed to hold in any bit commitm
rotocol: the assumption that the barycenter ofmb is avectorstate.(Let us call this latter assum
ion thevector state assumption.)

First, it is not difficult to find pairs ofC* -algebrassA ,Bd, and measuresmb on the state spa
f B such that the vector state assumption does not hold: e.g., letB=M2, and letmb be the
easure on the state space ofB that assigns12 to each of1

2sI +sbd and 1
2sI −sbd. (Of course, thi

rivial example could not be used to construct a secure bit commitment protocol, since Alic
ot perform any nontrivial measurements to verify her commitment to Bob.) However, the vecto
tate assumption does hold whenB has a separating vector inH.

Definition:A vectorx in the Hilbert spaceH is said to beseparatingfor theC* -algebraB just
n caseBx=0 only if B=0 for all BPB.

Proposition 8 (Ref. 11, Theorem 7.3.8): IfB is a C* -algebra acting on the Hilbert spaceH
nd if B has a separating vector x inH, then each state ofB is implemented by some vector inH.

Thus, if B has a separating vector in the Hilbert spaceH (and if A=B8), then any ensemb
f states onB corresponds to a statevxuB induced by a vectorx in H, and the generalized HJ

heorem entails that any two equivalent ensembles can be prepared at a distance(from a common
tate). For example,B= IA ^ BsHBd has a separating vector inHA ^ HB if and only if dimsHBd
dimsHAd.8 So, in the case of elementary quantum systems, by adding an ancilla, Ali

make her Hilbert space as large as Bob’s,” which ensures that their joint Hilbert spH
sHA8 ^ HAd ^ HB contains a vector representative of each of Bob’s states.

Nonetheless, there areC* -algebras that do not have—and could not have, in any fa
epresentation—a separating vector, e.g.,C* -algebras which contain an uncountable family
utually orthogonal projection operators. But ifB does not have a separating vector, then
JW theorem does not show that an observer with algebraB8 could perform operations th
repare any one of two equivalent measures on the state space ofB (from a common ancest
tate). Until the HJW theorem is generalized to cover such cases, there remains a sm
heoretically crucial, loophole in current proofs of the impossibility of secure bit commitme

V. CONCLUSION

We have shown, subject to a mild constraint(viz., that the systems involved are “hyperfinite),
hat any two equivalent measures on the state space of aC* -algebra can be prepared “a
istance.” This result generalizes the Hughston–Jozsa–Wootters theorem, and so can b
xtend the Mayers–Lo–Chau argument against the security of quantum bit commitment pr

However, the results proved to date—including the results in this paper—are not yet su
o rule out the security of any conceivable quantum bit commitment protocol. First, it rema
pen question whether an analog of the HJW theorem holds for any system whose observa
e represented by self-adjoint operators in some abstract(not necessarily nuclear) C* -algebra
econd, in order to invoke the HJW theorem in an argument against bit commitment, on
ake further physical assumptions—e.g., that the states on Bob’s system correspond t

tates of some larger systemS, and that Alice can perform any operation onS that commutes wit

ob’s measurement operations—that have yet to be justified in a fully general context.
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We study the structure of chaos in the relativistic problem of particles moving in
the field of two fixed black holes M1 and M2 by considering the asymptotic curves
of some simple unstable periodic orbits on a surface of section. These curves
consist of infinite arcs reaching the two black holes. Most orbits starting along these
curves(asymptotic orbits) escape, i.e., they fall into the black holes M1 (type I
orbits) and M2 (type II orbits). The number of the remaining orbits aftern iterations
(intersections with the surface of section) decreases exponentially withn. The
asymptotic curves intersect at infinite homoclinic and heteroclinic points. We study
in detail the forms of the asymptotic orbits with emphasis on the homoclinic and
heteroclinic orbits. The homoclinic and heteroclinic intersections are confined in
certain intervals along the asymptotic curves. Every homoclinic and heteroclinic
orbit is the limit of infinite more homoclinic and heteroclinic orbits. Between an
asymptotic orbit falling on the black hole M1 and another orbit falling on the black
hole M2 there are infinite homoclinic and heteroclinic orbits and infinite transitions
between type I and type II orbits. Therefore the orbits of type I and II form fractal
sets. The nonasymptotic curves falling on the black holes M1 and M2 also form
fractal sets. The black holes act as attractors and the areas on the surface of sectio
are not conserved despite the fact that the system is conservative. ©2004
American Institute of Physics.[DOI: 10.1063/1.1782672]

. INTRODUCTION

The relativistic system of two fixed black holes is important because it has a large de
haos, while the corresponding classical problem is completely ordered(integrable) and does no
ave any chaos at all.1,2 In the case of orbits of photons(null geodesics) and of particles(timelike
eodesics) with hyperbolic or parabolic energy almost all orbits either escape to infinity, or fa
black hole, while in the case of particles with elliptic energy many orbits fall on one of th

lack holes.
In the present paper we explore the structure of chaos by studying the forms of the asy

urves and of the corresponding asymptotic orbits. We study in detail a case with particula
f the energy and masses of the black holes, but this case is typical of most other cases

The basic characteristic feature of chaos is the existence of asymptotic manifolds inte
long homoclinic and heteroclinic orbits. On a surface of sectionx=0 (with ẋ.0) there are
symptotic curves intersecting along homoclinic and heteroclinic points. The asymptotic
re composed of infinite disjoint arcs reaching the black holes. The structure of these
iscussed in Sec. II.

Section III describes the main simple periodic orbits(i.e., periodic orbits of period 1) and the
ain homoclinic intersections of their asymptotic curves. Then Sec. IV describes in de

orms of the orbits starting on an asymptotic curve, i.e., the asymptotic orbits. Of special i
re the homoclinic and heteroclinic orbits connecting various periodic orbits to each other
re infinite homoclinic and heteroclinic points along an asymptotic curve. However, th
oclinic and heteroclinic points are confined in certain domains of the phase space, leavi

f the phase space without any such points.

4932022-2488/2004/45(12)/4932/25/$22.00 © 2004 American Institute of Physics
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As a consequence of the existence of heteroclinic orbits connecting periodic orbits aro1
nd M2 the sets of points along an asymptotic curve leading to one or the other black h

ractal.
In Sec. V we find the basins of attraction of nonperiodic and nonasymptotic orbits, lea

he black holes M1 and M2. These basins consist of compact domains and of infinite filam
ixed in a fractal way.

In Sec. VI we consider briefly what happens for other values of the masses of the blac
nd in Sec. VII we summarize our conclusions.

Finally, in an Appendix we consider theoretically the orbits very close to a black hol
xplain the forms of the asymptotic curves when they reach the black holes.

I. ASYMPTOTIC CURVES AND ASYMPTOTIC ORBITS

Our study consists mainly of an exhaustive numerical exploration of orbits of particles(time-
ike geodesics) in a number of cases, with a representative value of the energyE= Î0.5. We us
tandard numerical integration methods(fourth order Runge–Kutta), as in our previous pape
Refs. 1 and 2) and we checked the accuracy by requiring that any error in the energy conse
hould be less than 10−10. The energy we use is of the elliptic types0,E,1d, therefore there a
o escapes to infinity. The mass of the black hole M2 is always taken equal to M2=1, while M1

akes various values. In particular for M1=1.1, there are two simple(almost circular) orbits around

1 (orbits of typesa, a8), two simple orbits around M2 (orbits of typesb, b8) and an orbit like
yperbolic arc[orbit of type h, intersecting thez axis and reaching the curve of zero velo
CZV) at two symmetric points].2

These are the only simple periodic orbits, i.e., orbits intersecting thez axis at only one poin
erpendicularly(with x= ż=0 andẋ.0).

In most cases all simple periodic orbits are unstable. However, there is a small inte
alues of M1 (around M1=1.324), where the orbita8 is stable, and another small interval of val
f M1 (around M1=0.908) where the orbitb8 is stable.2

We study now in detail the asymptotic curves and the corresponding asymptotic orbi
he inner unstable periodic orbit of typea in the case M1=1.1. This orbit (O) has z0

2.504 568 37,ż0=0.
The eigenvalue of the inner orbita is l=32.330 01, the direction of the unstable eigenve

s dż/dz=0.0983 and the direction of the stable eigenvector is −0.0983.
We have calculated 23104 asymptotic orbits along the(upper) unstable eigenvector with

tep Dx=10−8. All these orbits approach asymptotically the periodic orbit O for negative
ending to −̀ , while for positive time they deviate further and further from O. The whole s
nitial conditions has a lengthDx=2310−4. In this interval the deviations of the eigenvector fr
he corresponding asymptotic curve are very small, namely smaller than 2310−7. The deviation
f thenth images of the 23104 points from the asymptotic curves are even smaller, by a factoln.

The first iterations of the original points reach a distance of order 23104l<6.5310−3 and
he second iterations reach a distance of order 2310−4l2<0.2. But the third iterations reach
arge distance and are appreciably curved(Fig. 1). The numbersm along the asymptotic curv

ark the third iterations of the initial points with distancem310−8 from the periodic orbit, wher
varies from 1 up to 20 000.

In Fig. 1 we see three arcs of the asymptotic curve. The first arc(1) starts at the periodic orb
O) towards largerz with ż small positive. This curve is continued withż,0, andz reaches
aximum nearz=4. Then it turns to smallerz until it reaches the black holez=1, with ż
−0.75(point M1

−). The point marked 6722 is the third intersection of an orbit with initial dist
310−8, along the unstable asymptotic curve from O, withm=6722. The orbits m
6723–9051 do not have a third image in Fig. 1, because these orbits fall into the blackz
1 before their third intersection with thez axis with ẋ.0. The same points in Fig. 2 are

ourth iterations of the original points withm=s6723/ld–s9051/ld<208–279. The orbits wit

nitial conditionsm=9052–11 014 in Fig. 1(m=280–340 in Fig. 2) form the second arc(2). This
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IG. 1. An unstable asymptotic curve from the unstable periodic orbit O(z0=2.504 568 37,ż0=0) on a surface of sectio
z, żd for M1=1.1, M2=1, E=Î0.5. The numberssmd indicate the third intersections of thez axis(with ẋ.0) by asymptotic
rbits starting close to O(at distancesm310−8 along the asymptotic curve). The first part of this curve(1) starts at O an
eaches the black holez=1. The second part(2) starts atz=1 and reaches the second black holez=−1. The third part(3)
tarts atz=−1 and continues beyond atm=20 000.
tic curve
nds
arcs
IG. 2. The fourth iterations of orbits starting close to the unstable periodic orbit O along the unstable asympto
t distancesm310−8. This curve consists of various arcs(1), (2),…,(9). The first arc starts at the periodic orbit O and e
t the black holez=1. The other arcs start and end at a black hole. The numbers mark the turning points of the(3),

6), and(8).
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rc starts at the point M1
+ (z=1, ż=0.75) and terminates at the point M2

− (z=−1, ż=−0.75). The
rbits of this arc have again a third intersection with thez axis sẋ.0d before falling into a blac
ole. This third intersection is between the black holes M1 and M2.

The orbits with initial conditionsm=11 015–13 342 in Fig. 1(or m=340–412 in Fig. 2) do
ot have a third intersection; all these orbits fall into the black holez=−1 before a third interse

ion with thez axis sẋ.0d. Finally, the orbits with initial conditionsm=13 343–20 000 have thi
terates withz,−1, i.e., below the black hole M2 [third arc (3)].

The asymptotic curve continues beyond the third iteration of the point withm=20 000 marke
n Fig. 1. The third iteration of the initial point withm=20 000 has the same position on the ph
pace with the fourth iteration of an initial point withm=20 000/l<615. Thus, the points of Fi
with m,615 belong to the arcs given in Fig. 1, and the points withm.615 belong to th

ontinuation of the unstable asymptotic curve.
Figure 2 contains nine successive arcs of the asymptotic curve from the periodic o

omposed of the fourth iterations of the pointm (with initial distance m310−8 along the
symptotic curve close to O). These arcs are separated by gaps inm, containing orbits that do n
ave fourth iterations. These arcs and gaps are as follows:

Arc s1d from m= 0sOd to m= 207 spoint M1
−d,

Gap fromm= 208 tom= 279,

Arc s2d from m= 280 spoint M1
+d to m= 340 sM2

−d,

Gap fromm= 341 tom= 412,

Arc s3d from m= 413 spoint M2
+d to m= 2054sM2

+d,

Gap fromm= 2055 tom= 2120,

Arc s4d from m= 2121spoint M2
−d to m= 2175sM1

+d,

Gap fromm= 2175 tom= 2240,

Arc s5d from m= 2241spoint M1
−d to m= 2748sM1

−d,

Gap fromm= 2749 tom= 9917,

Arc s6d from m= 9918spoint M1
+d to m= 9986sM1

+d,

Gap fromm= 9987 tom= 10 047,

Arc s7d from m= 10 048spoint M1
+d to m= 10 052sM2

−d,

Gap fromm= 10 053 tom= 10 107,

Arc s8d from m= 10 108spoint M2
−d to m= 10 185sM2

−d,

Gap fromm= 10 186 tom= 17 750,

Arc s9d from m= 17 751spoint M2
+d to m= 18 276sM2

+d.

We give this detailed information in order to show the various types of arcs. After the a(1)
hat starts at O and terminates at M1 all other arcs start and terminate at M1 or M2.

There are three types of arcs:(a) arcs starting at M1
− and terminating at the same point[arc

5)], (b) arcs starting at M2
+ and terminating at the same point[arcs(3) and(9)], and(c) arcs clos

o the diagonal M1
+, M2

−. These orbits are of four subtypes:(c1) starting at M1
+ and terminatin

t M2
− [arcs(2) and(7)], (c2) starting at M2

− and terminating at M1
+ [arc (4)], (c3) starting at M1

+

nd terminating at the same point[arc (6)], or (c4) starting at M2
− and terminating at the sam
oint [arc (8)].
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We notice also that certain intervals ofm along arcs, or intervals in gaps(intervals of escape)
re rather short while other intervals are quite long. The escape intervals up tom=20 000 are
iven in Table I.

Before the third iteration a total intervalSDm<4660 escape, and before the fourth iteratio
otal interval SDm=16 150 escape up tom=20 000. There remains 77% of the original se
ointsm after the third iteration and 19% after the fourth iteration.

After the fourth iteration only intervals summing up to less thanSDm=4000 remain. Furthe
ntervals escape before the fifth, sixth, etc., iterations. After the fifth iteration there remains
otal interval SDm=462, i.e., 2.3% and after the sixth iteration a total intervalSDm=52, i.e.
.26%. As the order of iteration increases, the remaining intervals become very small.

The remaining total interval after thenth iteration follows approximately the relation

lnsSDmd = a − bn s1d

with a=16.2758 andb=2.080 58, i.e.,SDm is reduced exponentially withn.
The splitting of the asymptotic curve into pieces separated by sets of orbits that fall in

of the two black holes is remarkable. It reminds us of the splitting of the asymptotic curve
potential with escapes, by sets of orbits that escape to infinity.3 In that case the separate arcs of
symptotic curves do not terminate abruptly but after infinite rotations around an “escape d
owever, in the present case the arcs of the asymptotic curve terminate abruptly at the bla

z= ±1, ż= ±0.75). A theoretical explanation of this effect is given in the Appendix.
Now the question arises whether there is a continuity between the orbits that fall into th

oles in Figs. 1 and 2 before and after a third or a fourth iteration.
This question is easy to answer. Consider two orbits markedm=6722 andm=9052 in Fig. 3

he orbitm=6722 has a third intersection with thez axissẋ.0d a little abovez=1, while the orbi
=6723 does not have a third intersection. The two orbits are so close that they ca

eparated in Fig. 3. Both orbits make a small angle with thez axis abovez=1 as they reach th
lack hole M1 (small positive, i.e., clockwise from the upperz axis for m=6722 and sma
egative, i.e., counterclockwise form=6723). The orbit m=6723 is slightly below the orbitm
6722 near the black holez=1 and reaches the black hole from the left of thez axis without a

ABLE I. Intervals of escaping orbits.

m Dm Into

(1) Escape-3 intervals(escaping before the third iteration)

6723–9051 2328 M1
11 015–13 342 2327 M2

(2) Escape-4 intervals(escaping before the fourth iteration)

208–279 71 M1

341–412 72 M2

2055–2120 65 M2
2176–2240 64 M1
2749–9917 7168 M1 (including the escape-3)

9987–10047 60 M1
10 053–10 107 54 M2
10 186–17 750 7564 M2 (including the escape-3)

18 277–18 330 53 M2
18 380–18 440 60 M1

19 080–20 000+ 920+ M1
hird intersection with thez axis. Thus, the continuity between the orbitsm=6722 andm=6723
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lose to the black hole is obvious. Asm increases fromm=6722 to m=9052 the orbits reach th
lack holez=1 from the left of thez axis making larger and larger negative angles with thez axis
ntil they reach an angle very close to −180°. The orbitm=9051 does not have a third intersect
ith the z axis, while the orbitz=9052 has a third intersection just belowz=1. Again the conti
uity between these orbits is obvious.

Similar results refer to the fourth and higher order intersections. The orbits betweenm=208
nd m=279 in Fig. 2 do not have a fourth intersection with thez axis sẋ.0d. These orbit
orrespond to the orbitsm=6723s=208ld andm=9051s=279ld that do not have third interse
ions. In Fig. 4 the orbitm=279 does not have a fourth intersection with thez axis(with ẋ.0) but
he orbit m=280 does have such a fourth intersection just belowz=1, and there is an obvio
ontinuity between the orbitsm=279 andm=280.

The orbitm=341 of Fig. 4 corresponds to the orbit withm=11 015 in Fig. 1. This orbit doe
ot have a fourth intersection with thez axis sẋ.0d, but reaches the black holez=−1 before th
ourth intersection. But the orbit withm=340 does have a fourth intersection with thez axis jus
above the black holez=−1. The continuity between the orbitsm=340 andm=341 is again
obvious.

II. PERIODIC ORBITS: HOMOCLINIC AND HETEROCLINIC INTERSECTIONS

The periodic orbits in a system of two fixed black holes have been studied by Contopo1,2

nd by Contopoulos and Papadaki.4

In the present case we consider the most simple periodic orbits in the case(M1=1.1, M2=1,
=Î0.5). There are two periodic orbits of period 1 around M1 [inner orbit sad and outer orb

a8d], two periodic orbits around M2 [inner orbitsbd and outer orbitsb8d], and the orbitshd, which
s like an arc of a hyperbola. The main periodic orbits starting at the points(z,x=0, ż=0) are given
n Table II, together with their absolutely larger eigenvaluesl (Fig. 5). The orbitssad, sa8d andsbd,
b8d can be described also in the opposite direction of rotation and then they are
¯¯ ¯¯

IG. 3. The orbits withm=6722 andm=9052 reach the black hole M1. The first orbit intersects thez axissẋ=0d for a third
ime above and very close to M1, while the second orbit intersects this axis below and very close to M1. The orbits with
723,m,9051 reach M1 from the left, without intersecting for a third time thez axis.
a,a8 ,b,b8d.
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The most important periodic orbits are the orbitssad, sād and sbd, sb̄d because all orbi
rossing them inwards fall into the black holes M1 and M2, respectively.1

The above periodic orbits have multiplicity 1, i.e., they have only one intersection withz
xis andẋ.0. The characteristic curve of the periodic orbith is given in Fig. 6. This curve give
as a function of M1 for M2=1 andE=Î0.5. For M1,1 the orbith hasz.0 and it is curve
pwards, and for M1→0 it tends to a straight line along thez axis above M1. For M1.1 the orbi
hasz,0 and it is curved downwards. As M1→` this orbit tends to a straight line along thz

xis below M2. The characteristics of the orbitssa,a8 ,b,b8d are given by Contopoulos.2

Besides the most simple periodic orbits above, there are several types of orbits of
ultiplicity. Such orbits are shown in Figs. 7(a)–7(c). The orbit of Fig. 7(a) makes a rotatio
round M1 and reaches the curve of zero velocity(CZV) with ż=0 at two symmetric points wit
espect to thez axis.

The orbits of Fig. 7(b) are of type(8). The upper one makes a rotation around M1 and then i
s elongated symmetrically to the left and to the right, without reaching the CZV. Similar
ower orbit makes a rotation around M2 and has two symmetric extensions to the left and to
ight above M2 without reaching the CZV.

IG. 4. The orbits withm=279, 290, 300 fall into M1 after a loop to the left and haveż.0 at their minimumx. The orbits
ith m=320, 330, 341 fall into M2 after a loop to the left and haveż,0 at their minimumx. The orbitm=310 hasż,0
t its minimumx, but reaches M1.

ABLE II. Positions and eigenvalues of simple periodic orbits.

zsẋ.0d zsẋ,0d l

(inner orbita) 2.504 568 37 0.207 983 90 32.330 0

(outer orbita8) 3.445 740 37 0.147 178 12 −34.642

(inner orbitb) −2.161 083 40 −0.306 298 55 47.561 4

(outer orbitb8) −3.762 971 63 −0.206 429 38 −60.913

(orbit h) −0.044 139 73 −0.044 139 73 10 384.3
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Finally, the orbit of Fig. 7(c) makes two rotations, one around M1 and one around M2, and ha
wo symmetric extensions to the left and to the right without reaching the CZV.

There are further periodic orbits that have more than one extension to the left and to th
rbits that make two, or more, rotations around M1, and/or M2, and even more complicat
eriodic orbits.1,2,4

IG. 5. The inner and outer periodic orbitssad, sa8d, sbd, andsb8d and the hyperbolic type periodic orbitshd. In all case

1=1.1, M2=1, E=Î0.5.

Î
FIG. 6. The characteristic of the orbith for M2=1, E= 0.5, while M1 varies for 0 to M1=4.
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FIG. 7. (a), (b), (c). Various periodic orbits that make a rotation around Mand/or M .
1 2
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We study now, the asymptotic curves of some of the main periodic orbits above and fin
omoclinic and heteroclinic intersections.

In Fig. 8 we give the stable and unstable asymptotic curves of the(unstable) inner periodic
rbit sad, marked O. We mark four main homoclinic points H1, H2, H3, H4, but there are infinitel
ore homoclinic points. The points H1, H2, H3, H4 are close to the periodic orbitsa8, h, b, andb8,

espectively. Namely they all haveż=0 andsm,zd given in Table III.
The points H1, H2, H3, H4 exist already in the arcs of the third iterations, given in Fig. 1

heir valuesm in Table III correspond to their fourth iterations.
In Fig. 9 we give one unstable asymptotic curve of the inner orbitsad [the curve startin

pwards and to the right from the pointsad] and the stable asymptotic curve of the orbitshd. The
nstable asymptotic curves of the orbitssad and shd are close to each other, but they do

ntersect themselves or each other. In the same way the stable asymptotic curves of the osad
nd shd do not intersect themselves or each other. But the unstable asymptotic curvesad

ntersects the stable asymptotic curve ofshd at infinite heteroclinic points. Thus, we have
nfinity of heteroclinic orbits near the pointm=311. These heteroclinic points are confined in
nterval betweenm* =307.643 390 andm* * =314.384 627(defined in the next section). In this
nterval we find infinite homoclinic orbits and heteroclinic orbits connectingsad with other simple
eriodic orbits.

In a similar way we have infinite homoclinic and heteroclinic points between the asym

IG. 8. The stable and unstable asymptotic curves of the orbit O[inner orbitsad for M1=1.1, M2=1, E=Î0.5] intersect a
n infinity of homoclinic points like H1, H2, H3, H4.

ABLE III. Positions of homoclinic points and of nearby periodic orbits.

msH1d=75 zsH1d=3.500 48 zsa8d=3.445 74

msH2d=311 zsH2d=−0.041 66 zshd=−0.044 14

msH3d=713 zsH3d=−2.3947 zsbd=−2.161 08

msH4d=576 zsH4d=−3.5195 zsb8d=−3.762 97
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urves of the orbitssad, sa8d, sbd, sb8d and so on. The homoclinic and heteroclinic points
onfined in some regions in an extended neighborhoods of the points O, H1, H2, H3, H4 of Fig. 8.
e will describe now the corresponding orbits in some detail.

V. THE FORMS OF ORBITS STARTING ALONG AN ASYMPTOTIC CURVE

We consider now the changes of the forms of the orbits as we vary the initial pointm along
he unstable asymptotic curve of the periodic orbitsad. In Fig. 4 we see orbits that fall into M1
type I orbits) like m=279, and orbits that fall into M2 (type II orbits), like m=341. All the orbits
f Fig. 4 start very close to each other forming three almost circular rotations clockwise

1 and then an oscillation to the left. Only the last oscillation to the left is substantially dif
or different orbits. Asm increases fromm=279 this last oscillation becomes thinner. Similarly

decreases fromm=341 the last oscillation also becomes thinner. The orbits of type I in F
p to m=300 haveż.0 at their minimumx along this last oscillation while the orbitsm
320–341 in this figure are of type II and haveż,0 at their minimumx. On the other hand, th
rbit m=310 is of type I but it hasż,0 at its minimumx and after this minimum it has a
scillation to the right before reaching M1.

Between the orbitsm=300 andm=320 there are many transitions between various typ
rbits. As m increases beyondm=300 the oscillation to the left becomes very thin and fom
m* <307.643 390 it becomes infinitely thin, i.e., the orbit is reflected along the same
aving ż=0 at its minimumz. This orbit reaches the inverse periodic orbitsād after infinite
otations counterclockwise around M1 (Fig. 10). Therefore this critical orbit is heteroclinic b
ween the orbitsad and the inverse orbitsād. We call it “first heteroclinic orbit.” The orbits clos
o m* with m,m* have ż.0 at their minimumx while the orbits withm.m* have ż,0 at this

inimum. All the orbits with 74.94,m,m* are of type I, i.e., they fall into the black hole M1.
The critical valuem=m* =307.643 390 is found as follows. All orbits havingm in the interva

80,m,306.7 fall into M1 after a fourth intersection of thez axis with ẋ.0 but before a fifth
ntersection. The orbitm=306.8 makes first three clockwise rotations around M1, then goes to th
eft reaching a minimumx near the CZV and then returns and makes a complete turn co
lockwise around M1 and is the first orbit with this accuracy(i.e., with so many decimals) that has
fifth intersection with thez axis just below M1.

The orbit withm0=307.613 makes two counterclockwise rotations(six intersections in total),
1=307.642 411 0 makes three counterclockwise rotations(seven intersections in total), m2

307.643 360 1 makes four counterclockwise rotations(eight intersections in total), m3

307.643 389 5 makes five counterclockwise rotations(nine intersections in total). The last orbi
Fig. 10) is very close to the “first” heteroclinic orbit.

The intervals between these successive orbits are equal toDm1=0.029 41,Dm2=0.000 949
m3=0.000 0294. Each successive interval is smaller by a factor close to the eigenvl
32.33 of the periodic orbitsād.

The reason is the following. The successive intersections of thesz, żd plane by the heteroclin
rbit m* connecting the orbitssad and sād approach the orbitsād by a factorl at each iteration
herel is the(larger) eigenvalue of the orbitsād. An orbit starting atm close tom* with m,m*,
as six, seven, etc., intersections with thesz, żd plane close to the corresponding intersection

he heteroclinic orbitm* at distancesd6smd, d7smd, etc., increasing by a factorl at each iteration
f now the initial differencesumi −m* u decrease by factorsl sumi −m* u<um0−m* u /lid, the cor-
esponding distances at the sixth intersectiond6smid decrease approximately by the same fac
d6smid=d6sm0d /lig. Then as the distancesd7smid, d8smid increase byl at each iteration we rea
he initial distanced6sm0d at thes6+id iterationfd6+ismid<d6sm0dg. If now them0 orbit escapes t
he black hole after its sixth intersection, the orbitmi escapes after itss6+id intersection.

As the successive intervalsumi −m* u decrease by a factorl, the intervalsumi −mi−1u also
ecrease by the same factor. Thus we can calculatem* as the limit of an infinite series beyo
2=307.643 360 1 by adding tom2 the sum
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IG. 9. The unstable asymptotic curve of the orbitsad (black) and the stable asymptotic curve of the orbitshd (gray)
ntersect at an infinity of heteroclinic points close to H2 sm=311d, but also close to O and some other points of this fig
he main homoclinic and heteroclinic points along the arc(2) of the unstable asymptotic curve of the orbitsad are confine
etween the pointsm* and m**.
IG. 10. The orbitm=307.643 390 is very close to a heteroclinic orbit joining the periodic orbitssad and sād. The
eteroclinic orbit is the limit of orbits starting above the periodic orbitsad and intersecting thez axis n times with ẋ.0

˙
heren=5,6,7,8,9, etc. This orbit hasz=0 at its minimumx.
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SDm=
0.000 029 4

1 −
1

32.33

= 0.000 030 3, s2d

ence the limiting value ofm is m* =307.643 360 1+0.000 030 3=307.643 390 4. All other
oclinic and heteroclinic orbits have been calculated in the same way.

If we proceed beyondm=m* we have orbits withż,0 at their minimumx. The orbits a little
eyondm=310 (Fig. 4) have also an oscillation to the right withż.0 at the maximumx. As m

ncreases beyondm=310 this oscillation becomes thinner and form very close to m̄
310.874 928 3(Fig. 11) the orbit hasż=0 at its maximumx. The orbit returns along the sam
ath and approaches the orbitsād after reaching a minimumx, following the maximumx with ż
0, and then making infinite counterclockwise rotations around M1. This orbit is a second he
roclinic orbit sa→ ād but of different form from the first heteroclinic orbit.

Between the first and the second heteroclinic orbits there are infinite heteroclinic orbi
ecting the periodic orbitsad with its opposite orbitsād. In fact, close to the first heteroclinic or
ut with m larger thanm*, there are orbits that make one rotation counterclockwise aroun1
fter their minimumx and then make an oscillation to the right. An orbit very close tm
307.797 852 2 after a counterclockwise rotation around M1 reaches a maximumx with ż=0 and

eturns along the same path making infinite counterclockwise rotations around M1. Therefore it is
gain a heteroclinic orbit connecting the orbitssad and sād.

Even closer to the first heteroclinic orbit there are orbits with two or more countercloc
otations around M1 after their minimumx, that have also an oscillation to the right reachin
aximumx with ż=0. All these orbits are heteroclinic betweensad and sād. The limit of these
eteroclinic orbits is the original heteroclinic orbitm*.

¯

IG. 11. The orbitm=310.874 928 3 is very close to a heteroclinic orbit joiningsad andsād that hassż=0d at its maximum
. This heteroclinic orbit is the limit of orbits havingn=6,7,8, . . .intersections with thez axis with ẋ.0. These orbit
aveż,0 at their minimumx.
Close to the second heteroclinic orbitm, but with smallerm, there are orbits that make some
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lockwise rotations around M1 before reaching M1. In particular an orbit close toma

310.850 054(Fig. 12) makes infinite clockwise rotations before reaching M1. This orbit is
omoclinic to the periodic orbitsad.

All the orbits between the homoclinic orbit nearma=310.850 054(Fig. 12) and the hetero
linic orbit nearm̄=310.874 928 3(Fig. 11) fall into M1. The progression of such orbits is see
ig. 13. The number of clockwise rotations around M1 is infinite for the homoclinic orbitma, but
sm increases beyondma the number of rotations decreases. The orbits of Fig. 13 make first
lockwise rotations around M1 and then they extend to the left and later to the right after a fo
ntersection with thez axis. After reaching a maximumx the orbit m=310.851 makes one a
ne-half clockwise rotations around M1 and then falls into M1. The orbit m=310.860 after it
aximumx makes about one clockwise rotation before falling into M1. The orbitsm=310.868
=310.873 both have only one extension to the left, after their maximumx, but the latter starts

orm a counterclockwise rotation around M1, as it approaches M1, and has one more intersect
ith thez axis. Asm increases further and approachesm̄ the number of counterclockwise rotatio
round M1 increases and tends to infinity.

Close to the heteroclinic orbits joiningsad andsād, with extra rotations around M1 before the
scillation to the right withż=0 at their maximumx, there are further homoclinic orbits from t
rbit sad to the same orbitsad for slightly smallerm. For example, there is a homoclinic or
aking an oscillation to the left withż,0 at its minimumx, then a counterclockwise rotati
round M1 and an oscillation to the right withż.0 at its maximumx, and then infinite clockwis
otations around M1. There is an infinity of homoclinic orbits withn counterclockwise rotation
round M1 after an oscillation to the left and before an oscillation to the right. The value ofm for
hese homoclinic orbits decreases with increasingn, and asn tends to infinity m→m*. The
alculation of these higher order orbits is difficult, because we reach the limit of double pr
ccuracy.

There are more heteroclinic orbits, connectingsad with sād, sa8d, sā8d, shd, sbd, sb8d, sb̄d, and
¯

IG. 12. The orbitm=310.850 054 is very close to a homoclinic orbit for the periodic orbitsad. It is the limit of orbits
aving an oscillation to the left withż,0 at their minimumx, then an oscillation to the right withż.0 at their maximum
and then maken=1,2,3,4. . . rotations clockwise around M1.
b8d.
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The most important among these heteroclinic orbits is the orbitm=m* * =314.384 627, tha

onnectssad with the inverse orbitsb̄d, around M2 (Fig. 14). This is the last heteroclinic orbit
n interval of values ofm aroundm=311, because all the orbits withm.m** up to m=559 reach
he black hole M2.

IG. 13. All the orbits between the homoclinic orbit close tom1=310.850 054 and the heteroclinic orbit close tom2

310.874 828 3 fall into M1. Their total number of intersections with thez axis (with ẋ.0) is shown in parentheses.
FIG. 14. The orbitm=314.384 627 is very close to a heteroclinic orbit connectingsad with sbd.

                                                                                                            



e
h
f

p
v have
p y double
p

rly
d

n
t nverse
o

a o

h ends
o ic
o ame
o

oclinic
o
M
M er
o m
t
M

r ic
o orbits
o

in
T -
i
z

the
l rt
a se
r
i
o
=
= s
a

.,
t or
c s an
i and
o

(
n

J. Math. Phys., Vol. 45, No. 12, December 2004 Chaos in the case of two fixed black holes 4947

                        
In the inner neighborhood ofm**, i.e., for small negativesm−m* * d, there are infinit
eteroclinic and homoclinic orbits and transitions from orbits falling into M1 (type I) and orbits

alling into M2 (type II). Such orbits make a number of clockwise rotations around M2 close to the

eriodic orbitsb̄d after reaching their minimumx, and then recede outwards from the orbitsb̄d in
arious directions. If we try to find accurately the transitions between these orbits we
roblems with accuracy, because we must go to decimal places beyond those secured b
recision.

However, if we calculate orbits with even smallerm then the main transitions are clea
efined.

As we have seen in Fig. 13 an intervalDm=m̄−ma of orbits falling into M1 is terminated o
he one side by an homoclinic orbit and on the other side by an orbit heteroclinic with the i
rbit sād. All the orbits between them are of type I.

In general an intervalDm of orbits of type I is terminated by a homoclinic orbitsa→ad and
heteroclinic orbitsa→ ād, while an intervalDm of orbits of type II is terminated by tw

eteroclinic orbitssa→bd andsa→ b̄d. However there are also cases where the orbits at the
f such an intervalDm are of the same type, e.g.,sa→ ād andsa→ ād. In this case the heteroclin
rbitssa→ ād at the ends of the intervalDm are different in form, although they approach the s
rbit sād.

Transitions between orbits of type I and type II occur near every homoclinic and heter
rbit. For example, while all the orbits close tom* =307.643 390(Fig. 10) with m,m* fall into

1 after a number of clockwise rotations around M1, the orbits withm.m* may fall either into

1, or M2. Such orbits withm.m* have ż,0 at their minimumx, but then they form a numb
f rotations counterclockwise around M1, close to the orbitsād, and later they recede away fro

his orbit. Some of them make a number of rotations around M2 and finally they fall into M1, or

2. Therefore the sets of orbits falling into M1 and M2 are fractal.
In Fig. 9 we see that along the diagonal part of the asymptotic curve[arc (2)], there is only a

elatively small part, betweenm* and m**, that contains infinite heteroclinic and homoclin
rbits and correspondingly infinite intervals of orbits of types I and II. On the other hand, all
n the diagonal abovem* are of type I and all orbits belowm** are of type II.

In Fig. 8 we see the heteroclinic points H1, H2, H3, H4 which have initial conditions given
able III. Up to now we have considered in detail the region close to H2 sm<311d. A character

stic feature of the orbits in this region is an oscillation to the left(Figs. 10–14) with ż equal to
ero or to a small negative near the minimumx.

If we come now to the orbits nearm=559 we see that they do not have this oscillation to
eft. In Fig. 15 we show two orbits close to the heteroclinic orbit fromsad to sbd. These orbits sta
symptotically at the orbitsad for t→−`. After the initial time t=0 they make three clockwi
otations around M1, and four counterclockwise rotations around M2. The first rotation around M2
s close to the orbitsb8d and the following three rotations are very close to the orbitsbd. Then the
rbit m=559.1297 makes one more rotation around M2 and falls into M2, while the orbit m
559.1298 makes one rotation clockwise around M1 and falls into M1. The orbit m=m* * *
559.1297 is very close to the heteroclinic orbit that reaches the orbitsbd after infinite oscillation
round M2 as t tends to infinity.

All the orbits with m betweenm* * =314.384 627 tom* * * = 559.1297 are of type II, i.e
hey fall into M2 (Fig. 16). It is remarkable that the orbits in this interval change fast only fm
lose tom** or m* ** while far from these limiting values they change slowly. Then there i
nterval of values ofm up to m* * * * <576 with several transitions between orbits of type I
f type II, followed by a large interval of orbits of type I, up to aboutm<726, and so on.

In general we find the following:

1) Between an asymptotic orbit of type I(falling into M1) and an orbit of type II(falling into
M2) there is always a homoclinic(or heteroclinic) orbit. The original point of this orbit o

the phase space is at the intersection of the asymptotic curves of the original periodic orbit
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IG. 15. The orbitm=m* * * =5 59.1297 is close to a heteroclinic orbit connectingsad and sbd. All orbits in the large
ntervalm* * =314.3846. . .,m,m* ** are of type II. But orbits withm.m* ** are either of type Ism=559.1298d or of
ype II.
IG. 16. All the orbits betweenm* * =314.384 628[heteroclinic tosb̄d], andm* * * =55 9.1297[heteroclinic tosbd] are of
˙
ype II. In parentheses we give the total numbers of intersections of thez axis (with x.0) after the initial points.
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sad and of the same, or another, periodic orbit. This orbit is homoclinic in the first cas
heteroclinic in the second case.

2) Near every homoclinic or heteroclinic orbit there are infinite intervals of orbits of types
II. The intervals of type I are terminated by homoclinic orbitsa→ad and heteroclinic orbit
sa→ ād. The intervals of type II are terminated by two heteroclinic orbits of typessa→bd
and sa→ b̄d.

If we reducem by a factorl we find the same orbits as above after one more iteration(orbits
f types I and II, and homoclinic and heteroclinic orbits). For example, the orbits close tom
311 considered above near their fourth intersection, are also represented by orbitsm
311/l<9.5 at their fifth intersection. Similar results appear form equal tom/l2, m/l3, etc.,
fter two, three, etc., more intersections with thez axis. Therefore very close to the periodic o
, along its unstable asymptotic curve, there are infinite transitions of types I and II orb

nfinite homoclinic and heteroclinic orbits connecting the orbitsad with itself, or with the periodi

rbits sād, sa8d, sā8d, shd, sbd, sb8d, sb̄d, sb̄8d.

. BASINS OF ATTRACTION AND CHAOS

If we exclude the periodic orbits and the small islands of stability around stable pe
rbits, all other orbits fall into the black holes M1 and M2. The basins of attraction of the two bla
oles on the surface of section are shown in Fig. 17. The black regions fall into M1 and the gra
egions fall into M2. Each basin consists of large compact regions of initial conditions falling
ne black hole, and of thin filaments that have a fractal structure.

The largest regions are called 0-iterations, because they fall into M1 or M2, before any
ntersection with thez axis (with ẋ.0). These regions are surrounded by elongated region
all into M1 or M2, after one intersection with thez axis. Furthermore, there are thin filaments

IG. 17. Basins of attraction of the black holes M1 and M2. We distinguish the orbits that fall into M1 (black), or M2 (gray)
efore an intersection with thez axis,(with ẋ.0) or after only one intersection. The white regions represent orbits th

nto M1, or M2 after more than one intersection.
, 1, 2 iterations, etc.
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In Figs. 18(a) and 18(b) we see some of the regions of 0 iteration and 1 iteration, in gr
etail. Near the homoclinic and heteroclinic, orbits pass thin filaments of arbitrarily high
hese filaments form fractal sets in the same way as the initial conditions of the asymptotic

hat lead to M1 or M2, close to the homoclinic and heteroclinic orbits.
The fact that many orbits fall into M1 or M2, produces a nonpreservation of areas on

urface of the section. In Fig. 19 we see the successive images of a small circle of rR
0.001 around the periodic orbit O. The first iteration produces an elongated ribbon like an
ith the same area as the circle[Fig. 19(a)]. (This ribbon is so thin that its thickness is
pparent in this figure.) The second, third, and fourth iterations[Fig. 19(b)] produce thinne
egions with the same area. However the fifth iteration produces a much longer ribb
onsists of three parts and reaches the black holes M1 and M2 [Fig. 19(c)]. This ribbon has an are
maller than the original circle. Therefore, the surface of section is not a “Poincaré sur
ection,” in which the areas are preserved.

The loss of areas and the very existence of basins of attraction characterizes dis
ystems. This seems strange because our problem is conservative. However, the exis
ingularities along the orbits of most initial conditions relaxes the consequences of the co
ive character of our system. The problem of two fixed black holes has many characterist
haotic scattering system. But in general chaotic scattering systems lead to escapes to
hile here most motions are led to the points M1 and M2 at a finite distance.

IG. 18. (a), (b). Details of Fig. 17: Orbits that fall into M1 (black), or M2 (gray), before a second intersection. The or
n the white regions fall into one of the black holes after the second iteration. The line in(a) is the arc(2) of the unstabl
symptotic curve of the orbit O, marked in(b).

IG. 19. (a), (b), (c). The images of a circle of radiusR=0.001 around O on the surface of sectionsz, źd at sad the first

teration,sbd the fourth iteration, andscd the fifth iteration.
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At this point we should emphasize a difference between the relativistic problem of two
lack holes and the corresponding classical problem of two fixed centers. In the second
hase space extends to infinity along the velocity axissżd, Therefore although we do not ha
scapes in coordinate space, we do have escapes in velocity space. But in the relativistic
ith elliptic energy we do not have escapes to infinity, neither in the coordinates nor
elocities.

We conclude that when the orbits in a conservative system are attracted to one o
ingular points, the system does not have some of the usual properties of generic cons
ystems, but has some(not all) of the properties of dissipative systems.

I. OTHER CASES

If we vary the mass M1 while keeping M2=1 and the energy constantsE=Î0.5d the position
f the periodic orbits and of the asymptotic curves change. As M1 increases the orbitssad andsa8d
pproach each other and for M1=M1 max=1.3257 they join and disappear.

For M1 close to the maximum M1 max the orbit sa8d is stable.2 The asymptotic curves of th
rbit sad starting at the point O surround the island of stability. The homoclinic point H1, beyond

he island, also approaches the orbit O.
As M1 increases beyond M1=1.1 the part(3) of the (upper) asymptotic curve of the orbitsad

Fig. 2) becomes shorter[Fig. 20(a)] and disappears for some value of M1 larger than M1=1.2. For
till larger M1 the branches(2) and(4) join each other and they no longer reach the point M2

− of
ig. 2 [Fig. 20(b)]. As M1 increases further the branches(2)–(4) disappear, and for even larger1

he branches(1) and (5) join each other and they do not reach the point M1
− [Fig. 21(a)].

The point H1 is the first homoclinic point on the right of the orbit O withż=0. At this poin
he curveU from O crosses the curveS outwards. The first image of H1 is the homoclinic poin
81, and between H1 and H81 the curveU crosses the curveS inwards at the point H1

−. The
ranches(1) and(5) in the case of Fig. 21(a) form an elongated lobeU on the right of O, reachin
point with maximum distance from O and terminating at the point H1

−. Between O and H1 there
s the unstable periodic pointa8.

For still larger M1 [Fig. 21(b)] the lobe becomes smaller. In this case between the pe
rbit O and the homoclinic point H1 there is an island of stability surrounding the periodic orba8
hich is stable in this case. This island consists of a set of closed invariant curves, surrou

our small secondary islands. As M1 increases further the points O and H1 approach each other a
he periodic orbits, the islands, and the asymptotic curves disappear for M1.1.3257.

The evolution of the lobe from H1 to H81 along the unstable asymptotic curve from

FIG. 20. The unstable asymptotic curve of the orbit O in the cases(a) M1=1.2 and(b) M1=1.24.
eriodic orbit O can be described as follows. For relatively large M1 [M1=1.325; Fig. 21(b)] this
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obe is rather short, but it becomes longer as M1 decreases[Fig. 21(a)]. For smaller M1 this lobe
s very long and reaches the black hole M1 at the point M1

−. For even smaller values of M1 there
s a second(separated) part of this lobe starting and ending at the point M1

+ [Fig. 20(b)] and
eaching a maximum distance from M1 close to the diagonal M1

+ M2
−. For smaller M1 this part o

he lobe terminates at the point M2
− and for still smaller M1 there is a third(separated) part of the

ame lobe starting at the point M2
+ and reaching a maximum distance from M2

+ along the averag
symptotic curve[average between the two arcs of the branch(3)] [Figs. 20(a) and 2].

When M1.M1 max there are no orbitssad and sa8d. In these cases the orbitssbd and sb8d in
ome sense take the place of the orbitssad and sa8d. Namely when both orbitssad and sbd are
resent the asymptotic curves of the orbitsbd (stable and unstable) are close to the asympto
urves of the orbitsad and when the asymptotic curves of the orbitsad disappear they are replac
y the asymptotic curves of the orbitsbd. An example is given in Fig. 22 for M1=1.326. This valu
f M1 is a little above the maximum value of M1 sM1 max=1.3257d beyond which the orbitssad
nd sa8d do not exist. This curve is qualitatively similar to the unstable asymptotic curve
rbit sad for M1=1.1 (Fig. 2) although there are quantitative differences. Because of this sim

he overall structure of the phase space giving the basins of attraction does not change ap
rom Fig. 17.

II. CONCLUSIONS

The main results of the present study are the following.
(1) The asymptotic curves of the main unstable periodic orbits in the case of two fixed

oles are composed of discontinuous arcs reaching one or two black holes. Some arcs
lack hole with the other, but there are also many arcs that start and terminate at the sam
ole. The limiting forms of these arcs close to the black hole are explained theoretically
ppendix.

(2) The orbits with initial conditions on the asymptotic curves are asymptotic orbits, i.e
end to the periodic orbitsad as t→−`. Most of these orbits fall into one or the other black h
owever, there are infinite doubly asymptotic orbits that tend to the same periodic orb(ho-
oclinic orbits) or to another periodic orbit(heteroclinic orbits) as t→`.

(3) There is a continuity of the orbits falling into a black hole before and aftern iterations(n
ntersections with a surface of sectionx=0 with ẋ.0).

(4) The asymptotic orbits are defined along an unstable asymptotic curve by their di
−8

IG. 21. The unstable and stable asymptotic curves close to the orbit O for(a) M1=1.322 and(b) M1=1.325. Some of th
ain homoclinic points are marked. In the second case some stable islands appear between O and H1. The orbit sa8d is
nstable for M1=1.322 and stable for M1=1.325.
310 from the periodic orbit(in our calculationsm varies from 1 to 20 000). At every itera-
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ion the distancem310−8 increases by a factor<l, wherel is the larger(absolutely) eigenvalue
f the periodic orbit. The measureSDm of orbits that have not reached a black hole aftn

terations decreases exponentially withn.
(5) There are five types of simple periodic orbits(orbits of period 1). Two of them surroun

he black hole M1sa,a8d, two surround the black hole M2sb,b8d, and oneshd is like an arc of a
yperbola between the orbitssad, sa8d andsbd, sb8d. The orbitssa,a8 ,b,b8d can be described al

n the inverse directionsā,ā8 ,b̄,b̄8d, while the orbith is the same with its inverse. The sets
rbits falling into one black hole(M1 or M2) as t→`, are limited by homoclinic or heteroclin
rbits asymptotic to the smaller periodic orbits around M1 [orbits sad, sād] and around M2 [orbits

bd, sb̄d].
(6) The distancesDm between asymptotic orbits falling into M1 (or M2 after n=1,2, etc.,

otations around M1 (or M2) decrease by a factor<l, wherel is the eigenvalue of the orbitsad
r sa8d in the first case, and of the orbitsbd or sb8d in the second case. The limit of such orbit

he homoclinic orbit connectingsad with sad or a heteroclinic orbit connectingsad with sa8d, sbd,
b8d, or the inverse orbitssād, sā8d, sb̄d, sb̄8d.

(7) There are infinite intervalsDm of orbits of type I(falling into M1) and of type II(falling
nto M2) close to every homoclinic or heteroclinic orbit. These intervals are limited by homo
r heteroclinic orbits between the inner periodic orbits around M1 and M2. The limiting orbits are

f typesa→a, a→ ā for intervals of type I and of typesa→b, a→ b̄ for intervals of type II
herefore the sets of orbits of types I and II are fractal.

(8) The homoclinic and heteroclinic orbits are confined in relatively small intervals alo
symptotic curve. Such an interval containing infinite homoclinic and heteroclinic orbits in F
arc (2)] is confined betweenm* <307.64 andm* * <314.38. On the other hand, all orbits in
arge interval 74.94,m,m* fall into M 1 and all orbits in the intervalm* * ,m,559.12 fall into

2.
(9) Similar intervals containing infinite homoclinic and heteroclinic orbits appear in othe

IG. 22. Parts of the unstable asymptotic curve of the orbitsbd for M1=1.326sM2=1,E=Î0.5d. This value of M1 is just
bove the maximum M1 max for the existence of the orbitssad and sa8d.
f the asymptotic curve. In particular if we take an intervalsm* / l ,m* * / ld close to the periodic
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rbit O we have the same transitions after one more iteration. Similar orbits appear in the i
m* / l2,m* * / l2d and so on. Therefore close to O there are infinite sets of homoclini
eteroclinic orbits.

(10) An exploration of the whole phase space gives the domains of escape into the blac

1 and M2 after some iterations beyond the initial points. There are large domains of orb
scape immediately into M1 and M2 and fractal regions with escapes into M1 or M2, after any
umber of iterations(0,1,2…). As most orbits fall into the black holes after a finite time
annot calculate a Lyapunov characteristic number. Nevertheless the fractal mixing of the
omains of escape gives another way to establish the chaotic behavior of the system of tw
oles.

(11) The areas on a surface of section are not preserved. Therefore the surface of sx
0 sẋ.0d is not a “Poincaré surface of section.” The black holes act as attractors despite

hat the system is conservative. Therefore the system of two fixed black holes has certa
rties of dissipative systems.

The last conclusion, together with the fact that the sets of orbits falling on the two black
re fractal, are the main results of the present study.
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PPENDIX: ORBITS VERY CLOSE TO A BLACK HOLE

The equations of motion in the case of two black holes are5,1

d

ds
sU2Q2ċ2d = E2ċ

]

]c
FU2QSU2 −

d1

E2DG ,

sA1d
d

ds
sU2Q2u̇2d = E2u̇

]

]u
FU2QSU2 −

d1

E2DG ,

herec and u are prolate spheroidal coordinates in the case of particles moving on a m
lane of a potentialU with

U =
1 + fsM1 + M2dcoshc + sM1 − M2dcosug

Q
sA2d

nd

Q = sinh2 c + sin2 u . 0, sA3d

is the value of the energy, which is assumed of the elliptic type, i.e., 0,E,1, ands is the
roper time, while the dot means a derivative with respect tos; d1=0 for photons andd1=1 for
articles.

The coordinatesx andz are

x = sinhc sinu, z= coshc cosu, sA4d

nd at the black hole M1 we havec=u=0. Along thez axis, above M1, we haveu=0, and below

1 we havec=0.
We consider now motions close to the black hole M1. Thenc andu are small quantities, an

o second order
x = cu,
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z− 1 = 1
2sc2 − u2d. sA5d

he largest term ofU is

U =
2M1

c2 + u2 . sA6d

he largest terms of the equations of motion(A1) are

d

ds
S ċ

c2 + u2D = −
3E2c

sc2 + u2d3 ,

sA7d
d

ds
S u̇

c2 + u2D = −
3E2u

sc2 + u2d3 .

ultiplying the first equation byu and the second equation byc and substracting we find

sc2 + u2dsuc̈ − cüd − 2suċ − cu̇dscċ + uu̇d = 0 sA8d

nd if we write

J = uċ − cu̇ sA9d

e derive

QJ̇− JQ̇= 0. sA10d

herefore,

J

Q
= c sconstantd. sA11d

his relation is written

d

ds
Sc

u
D

1 +Sc

u
D2 =

d

ds
tan−1Sc

u
D = c sA12d

nd integrating we derive

tan−1sc/ud = cs+ c8 sA13d

r

c = u tanscs+ c8d = uq, sA14d

heres is zero when a particle hits the black hole.
In order to complete the integration close to the black hole we take the second equati(A7)

nd find

ü −
2u̇2

u
− 2u̇qc= −

3E2

u3s1 + q2d2 . sA15d
he second member is large ifu is close to zero. Assuming
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u = asm sA16d

e find that the second member is −3E2s−3m/a3s1+q2d2, while the most important terms of t
rst member areasm−2fmsm−1d−2m2g. The first and second members are of the same ord
=0.5. Then we find

a4 =
4E2

s1 + q2d2 sA17d

nd

z− 1 =
1

2
u2sq2 − 1d =

1

2
a2ssq2 − 1d = ± ESq2 − 1

q2 + 1
Ds sA18d

hile

x = u2q. sA19d

hus the angle between the orbit and thez axis has a tangent equal to

x

sz− 1d
=

2q

q2 − 1
. sA20d

When the asymptotic curve reaches the black holez=1 [e.g., at the third intersection in Fig
or m nearm=6722(Fig. 3)], the tangent of the anglex/ sz−1d tends to zero, i.e.,q tends to zero
herefore, from Eq.(A18) we deriveż= ±E (andz̈=0). This is verified numerically forE=Î0.5 in
ig. 1 where the value ofż at m=6722 isz̈=−0.71 and very close to it the asymptotic curv
orizontal, i.e.,z̈=0. The same happens nearm=9052, where the tangent of the angle between
rbit and thez axis is close to 180°, i.e.,x/ uz−1u again tends to zero, henceq→0 andż= ±E, z̈
0.

1G. Contopoulos, Proc. R. Soc. London, Ser. A431,183 (1990).
2G. Contopoulos, Proc. R. Soc. London, Ser. A435, 551 (1991).
3G. Contopoulos and C. Polymilis, Physica D24, 328 (1987).
4G. Contopoulos and H. Papadaki, Celest. Mech. Dyn. Astron.55, 47 (1993).
5S. Chandrasekhar, Proc. R. Soc. London, Ser. A421, 227 (1989).
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We study the combinatorics of the contributions to the form factor of the group
UsNd in the largeN limit. This relates to questions about semiclassical contribu-
tions to the form factor of quantum systems described by the unitary ensemble.
© 2004 American Institute of Physics.[DOI: 10.1063/1.1814419]

. INTRODUCTION

The form factor associated to a self-adjoint operatorH is a real-valued function describi
tatistical properties of its spectrum. For sake of simplicity we assume thatH acts on finite
imensional Hilbert space and thus has eigenvaluesE1, . . . ,ENPR. Then we consider the Four

ransform of the measure

m: =
1

N
o
j ,k=1

N

dEj−Ek

nd obtain the form factor

Kstd: =E
R

exps− itEddmsEd =
1

N
utrsUstddu2,

ith the unitary time evolution Ustd : =exps−iHtd generated byH.
It is an empirical fact and a physical conjecture(see Bohigas, Giannoni, and Schmit8 and also

ef. 15) that most form factors encountered in physical quantum systems resemble the form
ssociated to a so-called random matrix ensemble(see Mehta18).

The simplest of these is the so-calledunitary ensembleon which we shall concentrate belo
his is given by the unitary group UsNd equipped with Haar probability measuremN. Its form

actor is defined as

KNstd: =
1

N
kutrsUtdu2lN st P Zd, s1.1d

ith the expectationkfl;kflN: =eUsNdfdmN of a continuous functionf :UsNd→C.
As the mapU° trsUtd is a class function on the unitary group, we can apply Weyl’s inte

ion formula

)Electronic mail: desposti@dm.unibo.it
)
Electronic mail: knauf@mi.uni-erlangen.de
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E
UsNd

fdmN =
1

N!
E

TN
fD2dnN s1.2d

o evaluate(1.1). In (1.2) f :UsNd→C is assumed to be a class function.TN#UsNd is a maxima
orus and may be identified with the subgroup of diagonal matrices. dnN denotes Haar measure
N. Finally for h: =diagsh1, . . . ,hNdPTn#UsNd

Dshd: = o
1ø j,køN

uhj − hku

s the modulus of Vandermonde’s determinant forh1, . . . ,hN. The combinatorial factorN! is the
rder of the symmetric groupSN making its appearance as the Weyl group, see, e.g., Fulto
arris.13

With these data, the form factor is evaluated,

KNstd = 5N, t = 0,

utu/N, 0 , utu ø N st P Zd,

1, N , utu.
s1.3d

his calculation is based on the eigenvaluesh1, . . . ,hN of the unitary matrix.[As theN eigenvalue
f UPUsNd have mean distance 2p /N, note that the natural argument of the form factor woul
/N instead oft. However, in order to simplify notation, we use the parametertPZ.]

In Ref. 6, Berry proposed a semiclassical evaluation of the form factor for quantum sy
ased on the periodic orbits of the principal symbol(Hamiltonian function) of the Hamiltonian
perator. For the different random matrix ensembles he derived in the range 0, t!N the leading
rder ofKNstd, which is linear int /N.

More precisely, semiclassical theory based on the Gutzwiller trace formula provides
etween spectral quantities of the quantum Hamiltonian and properties of the chaotic dyna

he corresponding classical system. In this approach the spectral two-point correlation f
nd its Fourier transform, namely the form factor, are calculated by approximating the den
tates using the trace formula. This formula expresses them by sums over contributions fro
f classical periodic trajectories.

If one includes only pairs of equal or time-reversed orbits(the so-called “diagonal approx
ation”) then the form factor agrees with random matrix theory, asymptotically close to the

long-range correlations).
A more systematic approach will require a complete control of all the other contributio

rst step towards an understanding of the “off-diagonal” contributions have been achieved
. But only recently, beginning with the article by Sieber and Richter,23 contributions involving
airs of periodic orbits were systematically considered in order to explain higher order te
/N.

In particular, for the geodesic flow on constant negative curvature, a particular family o
f periodic orbits have been presented in Refs. 23 and 22, which turned out to be relevan
rst correction to the diagonal approximation for the spectral form factor. These orbits pa
iven by trajectories which exhibit self-intersection with small intersection angles. This res
een generalized recently to more general uniformly hyperbolic dynamical systems.24

The combinatorics, however, turned out to be highly nontrivial. These combinatorial d
ies in handling high order corrections to the semiclassical expression of the form factor
lso in the context of quantum graphs, Refs. 16 and 17, where these off-diagonal contr
ave been explored up to the third order.3–5

In our opinion the complex combinatorics should first be studied in the simplest sit
ossible, that is, on the group level. Here the unitary ensemble is the simplest one, since
f the orthogonal or symplectic ensemble involves additional elements like the Brauer alge
ef. 12.
Now we collect the main points of the paper.
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We want to compare the form factorKNstd with the diagonal contribution

t

N
DN

maxstd with DN
maxstd: = o

i1,. . .,ik=1

N Kp
k=1

t

uUikik+1
u2L

N

s1.4d

note that only sum overone t-tuple of indices inDN
max, hence the namediagonal contribution).

The expectation values of products of matrix entries in(1.4) and(1.1) can be evaluated usi
he well-known formula(2.1), that is, by summing class functions on the symmetric groupSt.

So in Sec. II we introduce some notation concerning the symmetric group.
In Sec. III we discuss the relation between the class functionsV andN on St used in(2.1). As

tated in Proposition 3.3 they are mutual inverses in the group algebra ofSt.
As a simple by-product, this leads to a rederivation of Eq.(1.2) in the linear regimeut u øN

Remarks 3.6).
In Sec. IV we study the relation between a natural metric onSt and the joint operation on th

ssociated partition latticePt (Proposition 4.1).
Section V starts by a(partial) justification of our above definition(1.4), and an estimate of i

ontributions in terms of formula(2.1). Here the interplay between the partition lattice and cy
ermutation becomes essential(Proposition 5.4). Although Proposition 5.4 is a statement about
→` limit, we present evidence for our conjecture 5.8 which is a uniform inNù t version o
roposition 5.4.

In Sec. VI we first prove that only derangements(that is, fixed point free permutations) are
nvolved in the diagonal approximation(Proposition 6.2). Then we estimate the number of c
ributions toDN

max with a given power ofN (Proposition 6.3).
This leads us to our main result in Sec. VII: Assuming Conjecture 5.8, there exists a su

al I : =f« ,C−«g, f0,1g such that the diagonal approximation converges uniformly to the
actor if t /NP I (Theorem 7.1).

I. GENERALITIES ON THE SYMMETRIC GROUP

As already mentioned in the Introduction, the symmetric groupSt of permutations of the s
tg : =h1, . . . ,tj plays an important role in the analysis of the unitary ensemble.

We begin by introducing some notation, see Ref. 20 for more information. ForsPSt thecycle
engthof i P ftg is the smallestnPN with snsid= i. i is afixed pointof s if n=1. Thecycleof i is
iven by si ,ssid , . . . ,sn−1sidd, and can be interpreted as the group element ofSt which permute
he sksid in the prescribed order, leaving the other elements offtg fixed.

ePSt denotes the identity element.
Writing a group elementsPSt \ hej as a product of disjoint cycless=ss1d , . . . ,sskd, we some

imes omit the fixed points.
Two lattices are associated with the symmetric groupSt:

i) The partition lattice Pt of set partitions p=ha1, . . . ,akj, with atoms or blocks al # ftg
(al ùam=x for l Þm, al Þx and øl=1

k al =ftg). pPPt is calledfiner than qPPt (and q
coarserthanp, denoted bypdq) if every block ofp is contained in a block ofq. The mee
p∨q of p,qPPt is the unique finest element coarser thanp andq. We define the rankupu
of the partitionp=ha1, . . . ,akjPPt by upu : =k (note that this is called the corank in Ref.).

ii ) The dominance orderDt of number partitionsl=sl1, . . . ,lkdPDt of tPN (with ll

PN ,ll+1øll andol=1
k ll = t). The map

Pt → Dt, ha1, . . . ,akj ° sua1u, . . . ,uakud

induces an order relation and a rank function onDt.

See Ref. 1 for more information.
Each permutationsPSt partitionsftg into atoms belonging to the same cycle ofs. Thus we
ave a map
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St → Pt, s ° ŝ.

f the context is clear, we omit the hat. In particularus u : =k if s=ss1d , . . . ,sskd is the disjoint cycle
ecomposition ofs (including fixed points).

Examples 2.1: (1) s=s124ds3dPS4 and r=s142ds3dPS4 have the set partitionŝ= r̂
hh1,2,4j ,h3jjPP4 and number partitionfsg=frg=s3,1dPD4 (here fsg : =ha−1sa uaPStj de-
otes the conjugacy class ofsPSt).

(2) s=s12ds34dPS4 and r=s13ds24dPS4 have rank us u = ur u =2, whereas us∨r u
uhh1,2,3,4jj u =1.

The importance of the dominance orderDt for the symmetric group is obvious, as the e
ents ofDt naturally enumerate the conjugacy classes ofSt. Thus they also enumerate the ir
ucible representations and their characters,

xl:St → R sl P Dtd.

n the present context the importance of the partition latticePt comes from the following identit
Lemma 2.2: For all t,N,kPN andp1, . . . ,pkPSt,

o
si1,. . .,i tdPfNgt

p
l=1

k Sp
j=1

t

di j

ipls jdD = Nup1∨. . .∨pku.

rom now on our standing assumption relating the groupsSt and UsNd is tøN. Then the following
mportant formula can be found in Ref. 21, see also Ref. 10,

kUa1b1
¯ Uasbs

Ūa1b1
¯ Ūatbt

lN = dt
s o
s,pPSt

VNss−1pdp
k=1

t

dak

asskddbk

bpskd, s2.1d

here forNù t the class functionV;VN:St→R is given by

VN: = o
lPDt

xlsed
t ! flsNd

xl. s2.2d

fl is a polynomial inN of order t vanishing at certain integers,

flsNd: = o
sPSt

xlssdNusu

xlsed
= p

i=1

k
sN + li − id!

sN − id!
sl P Dtd s2.3d

see Appendix A of Ref. 21).
Recalling the correspondence between irreducible representations ofSt and conjugacy class

f St, i.e., ordered number partitionsl=sl1, . . . ,lkdPDt, l1ù ¯ ùlk, of t, by evaluating Frobe
ius’ formula the dimensionxlsed of the representation appearing in(2.2) equals

xlsed = t !

p
i, j

sli − l j + j − id

p
i

sli + k − id!
sl P Dtd,

ee Ref. 13, Eq.(4.11).

II. THE LINEAR REGIME OF THE FORM FACTOR

Next we decompose the form factorKNstd into a sum of products of the class functionsVN and
:s°Nusu on St. This will allow us to compare it with the diagonal contribution to be introdu
n Sec. V.
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As a side effect, we will rederive its concrete form(1.3) for ut u øN. Since KNs0d
N−1strs1Ndd2=N and KNs−td=KNstd, we effectively only need to consider the regime 0, tøN
hereKN is linear.

Evaluating trsUtd as oiPfNgtpk=1
t Uikik+1

in (1.1), we get a cyclic ordering of the subindic
iven by the circular permutation

t: = s1,2, . . . ,td P St.

onjugation ofsPSt by t will be denoted bys+: =t−1st.
Given tPN and the permutation groupSt, we denote by

Ct: = hs P Stuusu = 1j

he set ofcircular permutations. This subset is of cardinality

uCtu = st − 1d ! ,

nd everysPCt can be written in the forms=p−1tp, pPSt.
Lemma 3.1: The sets

Msf,f8d: = hsp,sd P St 3 Stuf = p−1s+,f8 = p−1sj sf,f8 P Std

re of size

uMsf,f8du = Ht, f8tf−1 P Ct,

0, otherwise,

nd form a partition of St3St.
Proof:

1) By definition of Msf ,f8d any given pair sp ,sdPSt3St lies in exactly one subs
Msf ,f8d#St3St, namely inMsp−1s+,p−1sd.

2) If sp ,sdPMsf ,f8d thenf8tf−1=p−1tpPCt. Then thet different

stlp,tlsd P St 3 St sl = 0, . . . ,t − 1d

are inMsf ,f8d, too. As thus there are exactlyCt3St=st−1d ! 3 t! pairssf ,f8dPSt3St with
cardinality of the corresponding atomsuMsf ,f8duù t, but St3St= t ! 3 t!, their cardinality
must be exactlyt. h

Proposition 3.2: For all tøNPN, the form factor(1.1) equals

KNstd =
t

N
· o

f,f8PSt

f8tf−1PCt

VNsf8dNufu s3.1d

=
t

N
· o

gPCt

o
fPSt

VNsgft−1dNufu. s3.2d
Proof: Using subindices(mod t),

                                                                                                            



s

I
w

f some
g

T product
a

F

s
e

K

a

m

(

4962 J. Math. Phys., Vol. 45, No. 12, December 2004 M. D. Esposti and A. Knauf

                        
kutrsUtdu2lN = o
i1,. . .,i t
j1,. . .,j t

kUi1i2
¯ Uiti1

Ūj1j2
¯ Ūjtj1

lN

= o
p,sPSt

VNsp−1sd · o
i1,. . .,i t
j1,. . .,j t

p
k=1

t

dik

jpskd · dik+1

jssk+1d = o
p,sPSt

VNsp−1sd ·Nup−1s+u, s3.3d

ince

o
i1,. . .,i t
j1,. . .,j t

p
k=1

t

dik

jpskd · dik+1

jssk+1d = o
i1,. . .,i t
j1,. . .,j t

p
k=1

t

dik

jpskd · ditskd

jstskd

= o
i1,. . .,i t
j1,. . .,j t

p
k=1

t

dik

jpskd · dik

js+skd = o
i1,. . .,i t
j1,. . .,j t

p
k=1

t

dik

jpskd · d jk

jp−1s+skd = o
j1,. . .,j t

p
k=1

t

d jk

jp−1s+skd.

n the last step of(3.3) we used Lemma 2.2. Equation(3.1) now follows from Lemma 3.1. In(3.1)
e can writef8=ft−1g for a uniquegPCt, This implies the second equation. h

To further evaluate these expressions for the form factor, we remind the reader o
eneral group theoretical notions.

Let G be a finite group with normalized counting measure, that is, the inner product

kf1, f2l: =
1

uGu ogPG

f1sgdf2sgd sf1, f2 P L2sGdd. s3.4d

he characters of the irreducible representations are orthonormal with respect to this inner
nd form a basis of the subspace of class functions.

On L2sGd we have the unitary operators of left and right translations, given by

Rhfsgd: = fsghd, Lhfsgd: = fshgd sg,h P Gd.

or irreducible charactersxm ,xl :G→C one has

kxl,Lgxml = kxl,Rgxml = dlm

xlsgd
xlsed

sg P Gd, s3.5d

ee Ref. 11, Eq.(31.16).
We now consider the group algebraKfStg of the symmetric group,K denoting a field, i.e., th

-vector spacehf :St→Kj, with multiplication of f ,gPKfStg given by

f * gsad: = o
sPSt

fssdgss−1ad = o
sPSt

fsas−1dgssd sa P Std

nd neutral element1ePKfStg.
More specifically we use the fieldK : =CsNd of rational functions and denote byNPKfStg the

onomial-valued function

Nsad: = Nuau sa P Std

which, like 1e, is a class function).
Proposition 3.3: V=N−1.

Proof: We have, using Eq.(2.3),
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Vsfd = o
lPDt

xlsfdxlsed
t ! flsNd

=
1

t! o
lPDt

xlsfdsxlsedd2

osPSt
xlssdNusu

.

hus (as us−1u = usu) we must prove that

o
lPDt

o
vPSt

xlsavdNuvu

o
sPSt

xlssdNusu
sxlsedd2 = t ! 1esad. s3.6d

n order to show that the left-hand side(lhs) is in fact independent ofN (if Nù t so that the
enominator does not vanish), for sPSt we sum over the conjugacy classfsg#St of s, using tha

rsr−1u = usu.
More specifically we claim the existence of a constantClsad such that for allsPSt,

o
s̃Pfsg

xlsas̃d = Clsad o
s̃Pfsg

xlss̃d. s3.7d

quivalently we show that

Llssd ; Llsa,sd: = o
rPSt

xlsarsr−1d

qualsClsad ·rlssd with rlssd : =orPSt
xlsrsr−1d= t ! xlssd.

Now for aPSt,

Llssd = o
rPSt

xlssr−1ardsd =
uStu

ufagu o
pPfag

xlspsd =
t!

ufagu o
pPfag

Lpxlssd.

l being a class function, we write it in the form

Ll = o
mPDt

dmxm s3.8d

nd determine the coefficients dm using the orthonormality relationkxl ,xml=dlm. By Eq. (3.5),

kLpxl,xml = dlm

xlspd
xlsed

hich leads to

dm = dlm

t!

ufaguxlsed o
pPfag

xlspd.

nserting this into(3.8) we see thatClsad in (3.7) equals

Clsad =
1

ufaguxlsed o
pPfag

xlspd.

sing

o
sPSt

xlsasdNusu = Clsado
sPSt

xlssdNusu,
he lhs of(3.6) equals
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1

ufagu olPDt

o
pPfag

xlspdxlsed =
1

ufagu o
pPfag

o
lPDt

xlspdxlsed

=
1

ufagu o
pPfag

1espd o
lPDt

sxlsedd2 =
1

ufagu
1esadt ! = 1esadt ! , s3.9d

sing the identity

o
lPDt

xlsed2 = t!

n (3.9), see Chap. 5.2 in Ref. 20 and 19. This proves(3.6). h

We redefine the inner product(3.4) on CfStg omitting the factor 1/uStu=1/t!,

kf1, f2l: = o
sPSt

f1ssdf2ssdsf1, f2:St → Cd. s3.10d

o the irreducible characters are now of normt!. Anyhow we are now more interested in
ollowing sets of functions.

Instead of considering the fieldCsNd of rational functions in the variableN we will now
pecialize the valueNPN, Nù t.

Define forsPSt the translates ofN,

q̂s P CfStg, q̂assd: = Nus−1au sa P Std.

imilarly we define the translates

Vs P CfStg, Vassd: = VNss−1ad sa P Std

f VN.
Lemma 3.4: For Nù t the q̂s, sPSt form a basis of the vector spaceCfStg, with dual basis

s, sPSt.
Proof: Considered as rational functions, fora ,bPSt the inner product equals

kVa,q̂bl = o
sPSt

VNss−1adNus−1bu = o
sPSt

VNsa−1sdNus−1bu = o
rPSt

VNsrdNur−1sa−1bdu = V * Nsa−1bd = da
b.

pecializing the value ofN, this duality relation is true as long as the rational functions
efined. By inspection of the definition(2.2) of VN [in particular of thefl defined in(2.3)] this is

he case as long asNù t. As the number of theVa and of theq̂b both equals dimsCfStgd= t!, these
re indeed bases. h

Corollary 5: For tøN

o
sPSt

VNsas−1dNusu = 1esad sa P Std.

Remarks 3.6:(1) Corollary 3.5 allows us to regain formula(1.3), i.e.,

KNstd =
t

N
for 0 , t ø N.

sing Proposition 3.2 we have

KNstd =
t

N o
gPCt

o
fPSt

VNsgft−1dNufu =
t

N o
gPCt

o
sPSt

VNssdNug−1stu =
t

N o
gPCt

1gstd =
t

N
.

(2) As VN:St→R is a class function, we can also use the notation
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VN:Dt → R, VNsfsgd: = VNssd.

hen we can calculateVN using Proposition 3.3. Some examples,

i) for t=1 we haveVNs1d=1/N;
ii ) for t=2 and denominatorD2: =NsN2−1d we have

VNs1,1d =
N

D2
, VNs2d = −

1

D2
,

iii ) for t=3 andD3: =N3sN2−1dsN2−4d we have

VNs1,1,1d =
N4 − 2N2

D3
, VNs2,1d = −

N3

D3
and VNs3d =

2N2

D3
.

(3) The largeN asymptotics ofVN:Dt→R for l=sl1, . . . ,lkd is given by

VNsld , s− 1dt−kNk−2tp
l=1

k

Cll
sN → `d s3.11d

ith the Catalan numberCl : = s 2l−2
l−1

d / l, see Ref. 21.

V. THE RANK FUNCTION AND THE JOIN OF PARTITIONS

It is useful to give a geometric meaning to our estimates. For this purpose we eq
ymmetric groupSt with the metric

d:St 3 St → h0,1, . . . ,tj, dss,gd = t − usg−1u.

he easiest way to visualize this metric is to consider thes t
2

d-regularCayley graphsSt ,Etd having
he symmetric group as its vertex set, and edge set

Et: = hsr,r8d P St 3 Stur−1r8 is a transpositionj.

Proposition 4.1:(1) dss ,gd is the distance between the verticess andg on the Cayley grap
St ,Etd. So in particular the metric d is invariant under the left and right self-actions of St.

(2) up∨su=minhupm−1uumdsj sp ,sPStd.
o in particular

dsp,sd ø t − up ∨ su.

s3d dsr,r8d ù uur ∨ su − ur8 ∨ suu sr,r8,s P Std.

roof:

1) For r : =sg−1 with disjoint cycle decompositionr=r1, . . . ,rk we havedss ,gd=dsr ,ed= t
−k=oi=1

k sl i −1d, l i being the length ofri. Exactly l −1 transpositions are needed to form
cycle of lengthl.

2) Let sc1, . . . ,cmd, ck# h1, . . . ,tj be the partition corresponding to the cycles ofp. We conside
the graphsV,Ed with vertex setV: =hc1, . . . ,cmj and edgeshci ,cjjPE for which there ar
elementsei Pci, ej Pcj which belong to the same cycle ofs. Choose for each connect
component ofsV,Ed a spanning tree and representativeshei ,ejj of its edges. Then by co
struction the productm0 of the transpositionssei ,ejd meetsm0ds, andupm0

−1u= up∨su. Any
mds can be written in the formm=rm0 with rds. As no cycles ofpm0

−1 can be joined b
right multiplication withr−1ds, the statement follows.

3) By symmetry of the metricd we assumeur∨suù ur8∨su and choosem0ds so tha
−1
ur8∨su= ur8m0 u. Then, again by part(2) of the proposition
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0 ø ur ∨ su − ur8 ∨ su ø urm0
−1u − ur8m0

−1u.

By part s1d of the proposition

urm0
−1u − ur8m0

−1u ø dsrm0
−1,r8m0

−1d = dsr,r8d

since multiplication by a transposition changes the number of cycles by one, and sind is
invariant under right multiplication. h

Remark 4.2:As the elementsr=s=s12ds34d, r8=s13ds24d of S4 show, in general the inequa
ty uur∨su− ur8∨suuø uuru− ur8uu doesnot hold. The reverse inequality is wrong.

. THE DIAGONAL CONTRIBUTION

We now define and study thediagonal approximationfor the unitary ensemble.
SettingfNg : =h1, . . . ,Nj, the diagonal contribution is defined by

DNstd: = o
iPfNgt

persidKp
k=0

t−1

uUikik+1
u2L , s5.1d

here persid denotes the period ofi. In fact [see(2.1)], only those terms of the form factor

KNstd = o
i,jPfNgt

Kp
k=0

t−1

Uikik+1
Ūjkjk+1L

an be nonzero for which the sets

misrd: = hk P ftguik = rj

ave equal multiplicity[umisrdu=misrd for all r P fNg].
In this case, if only multiplicitiesumisrduø1 occur fori, there is a unique permutations with

jsskd= ik (andp : =tst−1 with jpskd+1= ik+1), but in general we have

KNstd = o
i,jPfNgt

o
ks1d,ks2dPSsm;s1dd3¯3Ssm;sNdd

Vsssks1dd−1pks2dd.

s the dominant(in N) contributions are the ones withVsed, i.e.,s=tl for somel, we call the sum

DNstd = o
i,jPfNgt∃l with jk+l=ik

Kp
k=0

t−1

Uikik+1
Ūjkjk+1L s5.2d

= o
iPfNgt

persidKp
k=0

t−1

uUikik+1
u2L s5.3d

he diagonal contribution.
If umisrduø1, then only termsVsed occur in kpk=0

t−1 uUikik+1
u2l.

The number of all terms inoi1,. . .,i t
beingNt, for kut,

Ik: = hsi1, . . . ,i tdui l+k = i lj
s the set of terms with persi1, . . . ,i tduk. So the number of terms with persid, t equals
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o
r.1,r ut

uI t/rumsrd,

ith the Möbius m function. As uIku=Nk, this is only of orderNt/2 logstd and thus negligibl
ompared touI tu=Nt asN→`.

For these reasons, we just define and study a function similar to(5.1) but replacing the perio
y its maximal valuet. In fact for simplicity of notation we use the constant one instead,

DN
maxstd: = o

i1,. . .,i t
Kp

k=0

t−1

uUikik+1
u2L .

basic manipulation yields the following.
Proposition 5.1:

DN
maxstd = o

p,sPSt

VNsp−1sdNup∨s+u. s5.4d

Proof: Using (2.1),

DN
maxstd = o

iPfNgt
o

p,sPSt

VNsp−1sd ·p
k=0

t−1

dik

ipskd · dik+1

issk+1d = o
iPfNgt

o
p,sPSt

VNsp−1sd ·p
k=0

t−1

dik

ipskd · dik

it−1stskd.

s5.5d

emma(2.2) now gives the result. h

A first easy observation is that forbounded t,

DN
maxstd = 1 +Os1/N2d.

his follows by inserting(3.11) into (5.4).
Remark 5.2:In general for 0, tøN neither KNstd=s1/NdDNstd nor KNstd=st /NdDN

maxstd,
lthough both equations hold forN=1 andN=2. Already fort=3øN,

DNs3d =
3N3

D3
sN4 − 7N2 + 4N + 2d Þ 3 = NKNs3d

nd

DN
maxs3d =

N3

D3
sN4 − 3N2 − 6N + 8d Þ 1 = N

KNs3d
3

,

ith denominatorD3=N3sN2−1dsN2−4d.
So the diagonal approximation is not exact.
Remark 5.3:Note that we can also write25

DN
maxstd = trkMtlN,

hereM is the doubly stochastic matrix with elementsMi,j : = uUi,ju2. In Ref. 2 it has been show
hat if l1=1,l2, . . . ,lN are the eigenvalues ofM sul1uù ul2uù ¯ ù ulNud, then

kul julN → 0, j = 2, . . . ,N.

oreover, the expectation of the second eigenvaluekul2ul is of order 1/ÎN. This upper bound
ot helpful to show convergence of the trace to 1, namely this does not allow to bound e

ions of positive powerskul jutl. [For a generic random variableX with values in[0,1], like X

= ul2u the lower, respectively, upper bounds
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EsXdt ø EsXtd ø EsXd st P Nd,

ollowing from Jensen’s inequality(applied to the convex functionx°xt), respectively, convolu
ion inequality are optimal in general. This can be seen[for c=EsXdP f0,1g] by considering th
ases ofX distributionsdc, respectivelys1−cdd0+cd1. Even for an ac distribution like in our ca
he falloff in t is not exponential.]

This last remark forces us to investigate more carefully each single contribution to th
nal contribution. In particular, as we will see in the rest of the paper, the combinatorics b
ssential in order to bound uniformly the difference of the diagonal approximation to the

actor. This difference becomes large above the regimet=N. According to(3.11) the terms in th
um (5.4) have fluctuating sign,

signsVNsp−1sdd = s− 1ddsp,sd.

his makes it advisable to perform a partial summation before estimating terms in absolut
e thus rewrite the sum overp in (5.4) in the form of an inner product,

DN
maxstd = o

sPSt

kVN,p̂sl with p̂ssad: = Nusa−1∨s+u. s5.6d

Proposition 5.4: There exists a function Ct :St→ h0,1j such that

kVN,p̂slN = Nus∨s+u−tsCtssd + Os1/Ndd ss P Std.

Proof: For sPSt the symmetric group is partitioned into the sets

Bn: = ha P Stuua ∨ s+u = us+u − n sn = 0, . . . ,usu − 1d.

he metricd on St is then used to introduce forgPBn,

Bsgd: = Hua P ø
k=0

n

Bkuua ∨ s+u − ug ∨ s+u = dsa,gdJ .

bserve that by part(3) of Lemma 4.1 we always have

0 ø ua ∨ s+u − ug ∨ s+u ø dsa,gd. s5.7d

n particularg is the only element inBsgdùBsnd. This enables us to define forn=0, . . . ,usu−1,

Ctsgd: = 1 − o
aPBsgd\hgj

Ctsad sg P Bnd, s5.8d

nd the approximants

p̃s:St → R, p̃s: = o
gPSt

CtsgdNug∨s+u−tq̂g−1s ss P Std

f the functionsp̂s.

i) Next we prove thatCt only takes the values 0 and 1. This follows from the definition(5.8),
if we can show that eachg has exactly onepredecessorin

P: = ha P StuCtsad = 1j,

that is, uBsgdù Pu=1. This is done by induction inn, with

g P P ù Bn sn = 0, . . . ,usu − 1d

and noting thatPùB0=B0 fthe gPB0 are their own predecessors so thatCtsgd=1g.

ii ) For the induction step we use the directed graphsSt ,Ed with vertex setSt and edges
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sa,bd P E ⇔ dsa,bd = 1 anda P Bn,b P Bn−1 for somen P h1, . . . ,usu − 1j.

By the triangle inequality forgPBsnd the setBsgd contains allaPBk,0økøn for which
there exists a directed chain

g = cn,cn−1, . . . ,ck = a from g to a with cl P Bl andscl,cl−1d P E sl = k + 1, . . . ,nd.

Conversely all aPBsgd are of that form. Namely foraPBsgdùBk we know tha
dsa ,gd=n−k so that there existcn, . . . ,ckPSt with ck=g ,ck=a and dscl−1,cld=1. As
uucl−1∨s+u− ucl ∨s+uuødscl−1,cld=1 anducn∨s+u=n, uck∨s+u=k, we concludeucl ∨s+u= l so
that scl ,cl−1dPE.

iii ) This shows thataP P if there does not exist an edgesa ,bdPE, and thusuBsgdù Puù1 (as
every directed chain starting atg ends somewhere). To prove thatuBsgdù Pu=1, we need
more precise characterization of the predecessorsaP P. As there does not exist an edge
the form sa ,bd in E, for all neighborsbPS+ of a [i.e., dsa ,bd=1] we have ub∨s+u
ø ua∨s+u. In other words ifb differs from a by a transposition, and if two blocks ofŝ+
P Pt belong to the same block ofa∨s+, then they belong to the same block ofb∨s+.

iv) We model this by considering for givensPSt the directed multigraph

Ga = sVa,Ead

associated toaPSt. The vertex set of Gsad equals Va : =hŝ+,1, . . . ,ŝ+,mj, with
ŝ+,1, . . . ,ŝ+,m# fNg the blocks of the set partitionŝ+P Pt. The multiplicity of the directe
edgesŝ+,i ,ŝ+,jdPVa3Va is given by

Ea:Va 3 Va \ D → N0,Easŝ+,i,ŝ+,jd: = uhsu,vd P ŝ+,i 3 ŝ+,juasud = vj.

The in and out degrees of the blocksŝ+,i coincide, that isEa
+sŝ+,id=Ea

−sŝ+,id for

Ea
+sŝ+,id: = o

ŝ+,j

Easŝ+,i,ŝ+,jd, Ea
−sŝ+,id: = o

ŝ+,j

Easŝ+,i,ŝ+,jd.

Henceforth we omit the superscripts ± and simply refer to thedegreeEasŝ+,id=Ea
±sŝ+,id of

the block.
vd All ancestorsaP P have multigraphsGa which have two-connected components, tha

the number of connected components cannot be increased by reducing a single
Esŝ+,id by one. This can be seen by noticing that for everyaPSt the number of connecte
components ofGa equalsua∨s+u, and using that theaP P do not have neighborsb with
ub∨s+u= ua∨s+u+1.

vid To proveuBsgdù Pu=1, we assume thatas1d ,as2dPBsgdù P. So there exist directed cha
g=cn

sid ,cn−1
sid , . . . ,c

ksid
sid

=asid fwith scl
sid ,cl−1

sid dPEg from g to asid , i =1,2, and we are toshow

thatas1d=as2d. In each step the numberucl
s1d∨s+u= ucl

s2d∨s+u= l of connected components
the multigraphsGc

l
sid is reduced by one. That is, all connected components of the multi

Gg are broken into their two-connected subcomponents,

Easid ø Eg and Easidsŝ+,jd Þ 1 si = 1,2, j = 1, . . . ,md.

In fact this shows thatEas1d=Eas2d so that the multigraphs ofas1d andas2d coincide.
The multiplicity Egsŝ+,iŝ+,jd of a directed edge ofGa is reduced only ifEgsŝ+,i ,ŝ+,jd=1. So
not only Eas1dsŝ+,i ,ŝ+,jd=Eas2dsŝ+,i ,ŝ+,jd but the chains connectingg with as1d=as2d.

vii d We now know thatCtsad only takes the values 0 and 1, and thatp̃s=ogPP Nug∨s+u−tq̂g−1s.
This implies

kVN,p̃slN = o
gPP

Nug∨s+u−tkVN,q̂g−1slN = CtssdNus∨s+u−t.
It remains to show that
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kVN,p̂slN = kVN,p̃slN + OsNus∨s+u−t−1d.

But, denoting the unique predecessor ofbPSt by Psbd fthat ishPsbdj=Bsbdù Pg, we have

p̃ssb−1sd = o
gPP

Nug∨s+u−dsg,bd = NuPsbd∨s+u−dsPsbd,bd + o
gPP

gÞPsbd

Nug∨s+u−dsg,bd.

By definition of Bsgd the exponent of the first term equals

uPsbd ∨ s+u − dsPsbd,bd = ub ∨ s+u,

whereas the exponents of the second term are smaller:

ug ∨ s+u − dsg,bd , ub ∨ s+u

on the other hand,

p̂ssb−1sd = Nub∨s+u,

proving the claim. h

If sPSt consists of a single nontrivial cycle, the estimate of Proposition 5.4 can be re
y an identity(Proposition. 5.6 below).

We prepare this by a sum rule for the class functionN.
Lemma 5.5: For all kPN,

o
sPSk

Nusu = p
l=0

k−1

sN + ld. s5.9d

Proof: For k=1 both sides equalN. So assume the formula to hold fork−1, so that

o
s̃PSk,s̃skd=k

Nus̃u = Np
l=0

k−2

sN + ld. s5.10d

he group elementssPSk either havek as a fixed points or can uniquely be written in the for

s = sl,kds̃

ith l P h1, . . . ,k−1j and s̃skd=k. As in the second caseusu= us̃u−1,

o
l=1

k−1

o
s̃PSk,s̃skd=k

Nus̃u = sk − 1dp
l=0

k−2

sN + ld. s5.11d

dding the contributions(5.10) and (5.11) yields (5.9). h

We now decomposep̂s in the form

p̂s = o
gPSt

cgq̂g with cg: = kVg,p̂sl.

Proposition 5.6: For a cycles=si1+1, . . . ,ik+1dPSt [ands+=si1, . . . ,ikd]

p̂s = Sp
l=1

k−1

sN + ldD−1

o
g8ds+

q̂g8s. s5.12d

Proof: (i) We evaluate both sides onãPSt and write ã as ã=as to simplify expressions

hen
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p̂ssasd = Nua−1∨s+u and q̂g8ssasd = Nua−1g8u. s5.13d

(ii ) Next we writea as a product of disjoint cycleszj and note that

uzja
−1 ∨ s+u − uzja

−1g8u = ua−1 ∨ s+u − ua−1g8u

f zj ands+ are disjoint. We thus can reducea to a product of cycles intersectings+.
(iii ) So we assume that all cycleszj of a intersects+=si1, . . . ,ikd,

zj = sips1d,z̃1, . . . ,z̃2,ips2d,z̃3, . . . ,z̃2s−2,ipssd,z̃2s−1, . . . ,z̃2sd

ith z̃nP h1, . . . ,tj \ hi1, . . . ,ikj. Then

sipssd,ipss−1d, . . . ,ips1ddzj = sips1d,z̃1, . . . ,z̃2dsips2d,z̃3, . . . ,z̃4d ¯ sipssd,z̃2s−1, . . . ,z̃2sd

s a product of disjoint cycles intersecting the cycles+ only at ipsnd. Furthermore,

sipssd,ipss−1d, . . . ,ips1dd d s+

o that the map

g8 ° sipssd,ipss−1d, . . . ,ips1ddg8

imply permutes theg8 in og8ds+
q̂g8s. This allows to reduce to the case of simple intersect

(iv) We thus assume that the cycleszj in the decomposition ofa intersects+ exactly in one
oint, sayi j. Under this assumption, by Lemma 5.5 and(5.13)

Sp
l=1

k−1

sN + ldD−1

o
g8ds+

q̂g8ssasd = Sp
l=1

k−1

sN + ldD−1

Nua−1u−ko
gPSk

Nugu = Nua−1u−k+1 = Nua−1∨s+u = p̂ssasd,

roving the assertion. h

Corollary 5.7: For a cycles=si1, . . . ,ikdPSt of length k

kVN,p̂sl =5
1, k = 1 that is s = e,

0, 1, k , t

Sp
l=1

t−1

sN + ldD−1

, k = t.

s5.14d

Proof: This follows from Proposition 5.6 withkVN,q̂sl=de,s (Lemma 3.4), remarking tha
nly for k=1 or k= t there is ag8ds+ with g8s=e. h

This result and numerical experiments support the following conjecture(compare with Propo
ition 5.4).

Conjecture 5.8:There exists a constantC1ù1 such that for alltøNPN,

ukVN,p̂slNu ø C1N
us∨s+u−t ss P Std.

I. DERANGEMENTS AND CIRCULAR ORDER

We now show that, apart from the identity, only thederangements, that is the fixed-point fre
ermutations

Dt: = hs P Stusskd Þ k for all k P h1, . . . ,tjj

ontribute in the sum(5.6).
This will follow from a statement of independent interest.

skd
Proposition 6.1: For k=1, . . . ,t+1 denote by St the subgroup
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St
skd: = hs P St+1usskd = kj,

nd by Ik:St→St
skd the isomorphism induced by the injection

Ĩk:h1, . . . ,tj � h1, . . . ,t + 1j, Ĩksid = Hi , 1 ø i , k,

i + 1, i ù k.

hen fors= Ik+1ss̃d and

p̂s̃ = o
g̃PSt

cg̃ q̂g̃s̃,

e have

p̂s = o
g̃PSt

cg̃ q̂Iksg̃ds.

Proof: (i) For bPSt
skd,St+1, that isb= Iksb̃d with b̃PSt,

p̂ssbsd = NuIksb̃d∨s+u = NuIksb̃d∨sIk+1ss̃dd+u = NuIksb̃d∨Ikss̃+du = Nub̃∨s̃+u+1 = Np̂s̃sb̃s̃d

nd similarly

q̂Iksg̃dssbsd = NuIksg̃dsIksb̃dd−1u = NuIksg̃b̃−1du = Nug̃b̃−1u+1 = Nq̂g̃s̃sb̃s̃d.

(ii ) The other elements ofSt+1 can be uniquely written as a product of a transpositionsl ,kd
St+1 andb= Iksb̃dPSt

skd. In that case a similar argument leads to

p̂ssbsd = p̂s̃sb̃s̃d and q̂Iksg̃dssbsd = q̂g̃s̃sb̃s̃d.

(iii ) So in any case the proportionality factor does not depend ong̃. h

Proposition 6.2: For all tøNPN,

kVN,p̂sl = 0 for s P St \ Dt, s Þ e. s6.1d

Proof: Lemma 3.4 implies the formula

kVN,q̂sl = de
s.

o (6.1) is equivalent to show that for theses in the base decomposition

p̂s = o
gPSt

cgq̂gs

f p̂s the coefficientcs−1 equals zero. Theses have a fixed pointk+1 (mod t) which has th
dditional property thatk (mod t) is not a fixed point. Sos= Ik+1ss̃d with s̃PSt−1,s̃skdÞk. The
ase decompositionp̂s̃=og̃PSt−1

cg̃q̂g̃s̃ leads top̂s=og̃PSt−1
cg̃q̂Iksg̃ds, see Propostion 6.1.

Thus if theg̃PSt−1 term in (6.1) would be nonzero, it would be of the formkVN, p̂sl=cg̃ for
PSt−1 with Iksg̃d=s−1= Ik+1ss̃−1d or Ik+1ss̃d= Iksg̃−1d. But this would implys̃skd=k, contradicting

he assumption. h

It is known that

uDtu ,
uStu
e

as t → `.

o it could seem that we would only gain an unimportant factor 1/e by restricting the summatio

n (5.6) to the derangements(and the identity).
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This is not so, since we can use the structure of the derangements under thet action in ou
stimation.

For that purpose we now partition the derangementsDt by setting

Dtskd: = hs P Dtuus ∨ s+u = k sk = 1, . . . ,td.

o Dtskd=x for k. t /2, and we estimate the cardinalities of these sets.
Proposition 6.3: There exists a C2ù1 such that for all tPN

uDtskdu ø kC2
kst − k + 1d ! sk = 1, . . . ,bt/2cd.

Proof: Remark that the statement becomes trivial fork=1 so that in the proof we assum
ù2.

i) EachsPDtskd induces a set partition

Bssd ; B = sB1, . . . ,Bkd

of h1, . . . ,tj into the blocks ofs∨s+ which is unique if you assumeuBl+1uù uBlu and
minsBldøminsBl+1d if uBl+1u= uBlu. As eachBl contains at least one cycle ofs sor rathe
the block corresponding to the cycle in the partition ofsd, we haveuBluù2.

ii ) Next we consider the intersections

Cl,m: = Bl ù Bm
+ sl,mP h1, . . . ,kjd

with the atomsBm
+ : =tsBmd=h j +1u j PBmj of the shifted set partitionB+. We thus get a s

partition

Cssd ; C = sC1,1, . . . ,Ck,kd

of h1, . . . ,tj which is finer thanB andB+ but may contain empty atomsCl,m. However, a
s is a derangement, we know that ifCl,mssd is nonempty, it is a union of cycles ofs so tha
in any caseuCl,mssd u Þ1.

iii ) We now estimateuDtskdu by

uDtskdu ø o
b=sb1,. . .,bkd

Ysbd,

where 2øb1ø ¯ øbk,ol=1
k bl = t, and

Ysbd: = uhs P DtuuBlssdu=bl,l = 1, . . . ,kj.

iv) This quantity, in turn is estimated by

Ysbd ø o
c=sc1,1,. . .,ck,kd

Xscd p
l,m=1

k

cl,m ! , s6.2d

where nowcl,mP h0, . . . ,blj \ h1j with om=1
k cl,m=bl and

Xscd = uhB = sB1, . . . ,BkduuCl,mu = cl,mj.

HerehB1, . . . ,Bkj is an arbitrary set partition ofh1, . . . ,tj with enumeration fixed by deman
ng 2ø uB1uø . . .ø uBku and, again, minsBldøminsBl+1d if uBlu= uBl+1u. Denoting as before byCl,m

he intersectionBl ùBm
+ formula (6.2) follows by our above remark that allsPDt with Cl,mssd

Cl,m have a cycle partition finer thanC=sC1,1, . . . ,Ck,kd and there arecl,m! ways to permute th
etCl,m.

We bound Xscd by considering the directed multigraphG=Gscd with vertex set V

=h1, . . . ,kj andcl,m unlabeled directed edges from vertexl to m. Then
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Xscd ø XGscd, s6.3d

hereXGscd is the number of closed Euler trails onG. This can be seen as follows:

1) The length of any closed Euler trail equalsol,m=1
k cl,m= t.

2) Any closed directed Euler trail onG (shortly calledtrail from now on) is uniquely charac
terized by the sequencesv1, . . . ,vtd of verticesv j PV it visits. This is due to our assumptio
that the edges froml to m are unlabeled, and that the beginning of the closed trail is ma

3) A set partitionB=sB1, . . . ,Bkd of h1, . . . ,tj gives rise to a sequencesv1, . . . ,vtd of vertices
vi PV, wherevi : = j if i PBj. Using at-periodic notation withvt+1=v1, we have

uhi P h1, . . . ,tjusvi,vi+1d = sl,mdju = cl,m sl,mP h1, . . . ,kjd.

ThusB gives rise to a trail inGscd rooted atv1PV.

It may be remarked that we have equality in(6.3) if the vertices of the directed multigra
scd can be discerned by their outdegree, that isb1, ¯ ,bk. Then, given a Euler trail wit
equencesv1, . . . ,vtd, we define the partitionsB1, . . . ,Bkd by settingBj : =hi P h1, . . . ,tjuvi = jj.

i) To get an upper bound onXGscd we select a root vertexj PV and consider the Euler tra
in Gscd beginning atj . By the BEST formula their number equals

bj
RTjscd ·

p
l=1

k

sbl − 1d!

p
l,m=1

k

cl,m!

, s6.4d

whereTjscd is the number of directed spanning trees rooted atj . Equations6.4d is derived
from Theorem 13 in Chap. I of Ref. 9 by noting that, unlike here, Bollobas cons
directed multigraphs with labeled edges. Here thereduced out degree

bl
R: = o

m=1

k

cl,m
R with cl,m

R : = 1 if cl,m . 0 andcl,m
R : = 0 otherwise.

ii d The number of directed spanning trees rooted atj equals thesk−1d3 sk−1d minor of the
k3k degree matrix,

diagsb1
R, . . . ,bk

Rd − scl,m
R dl,m=1

k

obtained by deleting thej th row and thej th column. This number is known to be indep
dent of j , and we call itDscRd.
By this remark ands6.4d,

XGscd ø tDscRd
p
l=1

k

sbl − 1d!

p
l,m=1

k

cl,m!

, s6.5d

sinceo j=1
k bj

Røo j=1
k bj = t.
iii d From s6.2d and s6.5d we obtain the estimate
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Ysbd ø tp
l=1

k

sbl − 1d ! o
c=sc1,1,. . .,ck,kd

DscRd. s6.6d

A bound onDscRd only depending on the reduced out degreesb1
R, . . . ,bk

R can be found i
Ref. 14. We use it in the slightly weakened version,

DscRd ø
1

2p
l=1

k

bl
R,

and thus get froms6.6d

Ysbd ø
t

2pl=1

k
fbl

Rsbl − 1d!g ·oc
1. s6.7d

ivd The cardinalityoc 1 of number partitionsc=sc1,1, . . . ,ck,kd compatible with the numb
partition sb1, . . . ,bkd of t is calculated as follows:

o
c

1 = p
l=1

k UHscl,1, . . . ,cl,kducl,m Þ 1 ando
m=1

k

cl,m = blJU .

But

UHscl,1, . . . ,cl,kducl,m Þ 1 ando
m=1

k

cl,m = blJU
= o

U#h1,. . .,kj
UHscl,1, . . . ,cl,kducl,m ù 2 if m

P U andcl,m = 0 otherwise,o
mPU

cl,m = blJU
= o

r=1

minsk,bbl/2cd

o
uUu=r

Sbl − r − 1

r − 1
D

= o
r=1

minsk,bbl/2cd Sbl − r − 1

r − 1
DSk

r
D ,

so thats6.7d reduces to

Ysbd ø
t

2p
l=1

k Fbl
Rsbl − 1d ! o

r=1

minsk,bbl/2cd Sbl − r − 1

r − 1
DSk

r
DG . s6.8d

vd We bound the sums appearing ins6.8d, depending on the relative size ofk andbl. Remem
ber our assumptionkù2.

We setb̂: = bb/2c.
1) For all k,bù2 we have the estimate

o
r=1

minsk,b̂d Sb − r − 1

r − 1
DSk

r
Dø o

r=1

minsk,b−1d Sb − r − 1

r − 1
DSk

r
D ø o

r=1

minsk,b−1d Sb − 2

r − 1
DS k

k − r
D=Sk + b − 2

k − 1
D .

s6.9d

ˆ s kd s kd s k d
2) For all kùbù2 andr øb we use the inequalityr ø
b̂

ø bk/2c to show
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o
r=1

minsk,b̂d Sb − r − 1

r − 1
DSk

r
D ø So

r=1

b̂ Sb − r − 1

r − 1
DDSk

b̂
D=

gb−1 − S− 1

g
Db−1

Î5
Sk

b̂
D s6.10d

with the golden meang: =s1+Î5d /2, since the sum of the binomials equals the Fibon
numbers.

vi) The reduced out degreebl
R is bounded by

bl
R = o

m=1

k

cl,m
R ø minsk,b̂ld ø

2kb̂l

k + b̂l

. s6.11d

Instead of summings6.8d over the ensemble ofb=sb1, . . . ,bkd with 2øb1ø ¯ øbk and

ol=1
k bl = t, we shift thebl by 2 and set fork̃øk,

Yksb1, . . . ,bk̃;td: =
t

2
kk−k̃p

l=1

k̃

bl
Rsbl + 1d ! o

r=1

minsk,b̂ld Sbl − r + 1

r − 1
DSk

r
D ,

with b̂l : = bbl /2c+1 andbl
R is redefined as minsk,b̂ld. Then forbl ù0

YGsb1 + 2, . . . ,bk + 2d ø Yksb1, . . . ,bk;td s6.12d

and our aim is to find aCù1, independent ofk and t, such that the recursion

o
0øb1ø¯øbk̃+1

Pl=1
k̃+1bl=t−2k

sb1, . . . ,bk̃+1;td ø C o
0øb1ø¯øbk̃

Pl=1
k̃ bl=t−2k

Yksb1, . . . ,bk̃;td s6.13d

in k̃ holds true. Assumings6.13d, we obtain froms6.12d,

o
2øb1ø¯øbk

Pl=1
k bl=t

YGsb1, . . . ,bkd ø kescedk−1st − k + 1d ! ,

since

Ykst − 2k;td ø
t

2
kk−1minSk,b t

2
− kc + 1Dst − 2k + 1d ! Sk + t − 2k

k − 1
D

=
t

2

kk

k!
minSkb t

2
− kc + 1Dst − kd!økekst − k + 1d ! .

Using s6.9d and s6.13d follows from the recursion

o
l=0

b̂−1

l̂sl + 1d ! S o
r=1

minsk,l̂d Sl − r + 1

r − 1
DSk

r
DDb − lˆ sb − l + 1d ! Sk + b − l

k − 1
D

ø C ·ksb̂dsb + 1d ! Sk + b

k − 1
D ,

ˆ
with l = bl /2c+1. This is equivalent to the claim
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o
l=0

b̂−1

l̂sl + 1d ! S o
r=1

minsk,l̂d Sl − r + 1

r − 1
DSk

r
DDb − lˆ p

r=1

l
1

k + b − r + 1
ø Ckb̂. s6.14d

Depending on the relative size ofk andb, we estimate the lhs ofs6.14d in two ways.

(i) Using (6.9), we get the uppper bound for the lhs of(6.14),

o
l=0

b̂−1

l̂sl + 1d ! S k + l

k − 1
Db − lˆ p

r=1

l
1

k + b − r + 1
=ko

l=0

b̂−1

l̂b − lˆ p
r=1

l
k + r

k + b − r + 1
. s6.15d

We write the product ins6.15d in the form

p
r=1

l
k + r

k + b − r + 1
= expSo

r=1

l

gsrdD with gsrd: = lnS k + r

k + b − r + 1
D .

For r ø l øb−1ˆ not only gsrdø0 andgsrdùgsr −1d but alsosfor all real suchrd

g9srd =
1

sk + b − r + 1d2 −
1

sk + rd2 ø 0.

So or=1
l gsrdø lgfs1+ld /2gø lgsb̂/2d or

p
r=1

l
k + r

k + b − r + 1
ø ll with l: =

k +
b̂

2

k + b −
b̂

2
+ 1

. s6.16d

For køb we have the uniform boundlø
3
4.

Insertings6.16d in s6.15d and noting thatb− lˆ ø b̂ and l̂ ø sl /2d+1, we gets6.14d with

C: = o
l=0

` S l

2
+ 1DS3

4
Dl

= 10.

ii ) For kùb we insert(6.10) in the lhs of(6.14) which is thus bounded by

o
l=0

b̂−1

l̂sl + 1d ! glS k

l̂ − 1
Db − lˆ p

r=1

l
1

k + b − r + 1
=o

l=0

b̂−1

l̂b − lˆ glS k

l̂ − 1
Dp

r=1

l
r + 1

k + b − r + 1
.

By an argument similar to the one leading to(6.16),

o
l=0

b̂−1

l̂b − lˆ glS k

l̂ − 1
Dp

r=1

l
r + 1

k + b − r + 1
=o

l=0

b̂−1

l̂2b − lˆ p
r=1

bl/2c
g2sr + l̂d

sk + b − r + 1dsk + b − r − bl/2c + 1d

øo
l=0

b̂−1

l̂2b − lˆ p
r=1

bl/2c
g2

k + b − r + 1
ø b̂o

l=0

b̂−1

l̂2Sg

2
Dl

øb̂o
l=0

` S l2

4
+ l + 1DSg

2
Dl

=
1

s161 + 71Î5d , 80,

4
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ssumingkù4 and treatingk=2 andk=3 separately. h

II. THE ASYMPTOTIC ESTIMATE

Now we are ready to present our asymptotic result.
Theorem 7.1:Under the assumption of Conjecture 5.8 the form factor KN is approximated b

he diagonal contribution in the following sense.
For all «.0 uniformly in t/N P f« ,se/C2ds1−«dg

UKNstd −
t

N
DN

maxstdU→ 0 sN → `d.

Proof: As KNstd= t /N for the t-values under consideration,

DN
maxstd = o

sPSt

kVN,p̂sl

Eq. (5.6)], andkVN, p̂el=1 (Corollary 5.7), we need to show that

o
sPSt\hej

kVN,p̂sl → 0 sN → `d.

sing Proposition 6.2 this amounts to show

o
sPDt

kVN,p̂sl → 0 sN → `d,

hich is implied by the asymptotic vanishing of

o
k=1

bt/2c

o
sPDtskd

ukVN,p̂slu ø C1o
k=1

bt/2c
kC2

kst − k + 1d ! Nk−t,

sing Conjecture 5.8 and Proposition 6.3. Under our assumptions fort /N,

o
k=1

bt/2c
kC2

kst − k + 1d ! Nk−t ø tNo
k=1

bt/2c
C2

kS t − k + 1

Ne Dt−k+1

øN2o
k=1

bt/2c
C2

kS1 − «

C2
Dt−k+1

øN2C2
−1o

k=1

bt/2c
s1 − «dt−k+1

ø
N2

C2«
· s1 − «ddt/2e+1 ø

N2

C2«
s1 − «d«N/2 → 0,

roving the theorem.
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escription of noncommutative theories and matrix
odels by Wightman functions

William Gordon Ritter
Department of Physics, Harvard University, Cambridge, Massachusetts 02138
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One of the main open problems of mathematical physics is to consistently quantize
Yang–Mills gauge theory. If such a consistent quantization were to exist, it is
reasonable to expect a “Wightman reconstruction theorem,” by which a Hilbert
space and quantum field operators are recovered fromn-point functions. However,
the original version of the Wightman theorem is not equipped to deal with gauge
fields or fields taking values in a noncommutative space. This paper explores a
generalization of the Wightman construction which allows the fundamental fields to
take values in an arbitrary topological *-algebra. In particular, the construction
applies to fields valued in a Lie algebra representation, of the type required by
Yang–Mills theory. This appears to be the correct framework for a generalized
reconstruction theorem amenable to modern quantum theories such as gauge theo
ries and matrix models. We obtain the interesting result that a large class of quan-
tum theories are expected to arise as limits of matrix models, which may be related
to the well-known conjecture of Kazakov. Further, by considering deformations of
the associative algebra structure in the noncommutative target space, we define
certain one-parameter families of quantum field theories and conjecture a relation-
ship with deformation quantization. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1775874]

. INTRODUCTION

The Wightman axioms were formulated by Gårding and Wightman in the early 1950s,
ontrivial examples existed at that time, and consequently the axioms were not publish
964,1 at which time their publication had been motivated by the Haag–Ruelle scattering
he axioms are thoroughly discussed and many consequences are derived in the two
ooks(Refs. 2 and 3). We will also formulate the axioms below in Sec. I B by way of introduct

It is known that the Wightman axioms, in their original and unmodified form, describe o
mall subset of the mathematical models used in elementary particle physics. Thus, many
ave considered modifications of the axioms which allow newer and more exotic physical t

o be formulated as rigorous mathematics. If we wish to perturb the axioms slightly, one o
hange with clear-cut physical implications is to relax the requirement that the test function
e SsR4d. A large class of alternative test function spaces which still allow a formulation o
icroscopic causality condition were proposed and developed by Jaffe.4 The results of the prese
aper are a more radical modification, in which the test functions inSsR4d are replaced b

unctions into a noncommuting *-algebra.
There are at least two types of equivalent reformulations of the Wightman axioms. One

o Wightman, who wrote down a set of conditions governing a sequence of tempered distri

Wn P SsR4nd, n = 0,1, . . . ,

nd proved that, under these conditions, the distributionsWn arise as vacuum expectation val
f a unique quantum field theory satisfying the Wightman axioms, and conversely that the
ates hold in any Wightman field theory. This is what is known as theWightman reconstruction

4980022-2488/2004/45(12)/4980/23/$22.00 © 2004 American Institute of Physics
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heorem, and first appeared in the seminal paper.5 The part of this construction relevant to rep
entation theory is known in functional analysis as theGNS construction. A second reformulatio

n terms of the Schwinger functions, not directly used in the present work, was given by
alder and Schrader.6

Borchers reformulated Wightman’s reconstruction theorem in several important papers7,8 with
he result that a scalar boson quantum field theory is known to be characterized by a top
-algebraA (with unit element 1A) and a continuous positive formv on A, satisfying

vsaa*d ù 0, vs1Ad = 1, a P A. s1d

functional satisfying(1) is called a state.
Realistic models are generally described by tensor algebras, and the action of the stv is

omputed from vacuum expectation values of products of fields. Although there is rea
elieve the framework of states on tensor algebras could apply in general to a large
uantum field theories, previous formulations of the Wightman reconstruction theorem h
used on scalar boson quantum field theories.

The Borchers formulation has proven very useful for analysis of bosonic field theory
ontrivial manifold. Considerv a state on the Borchers algebra built from test functions
anifold M, and letfv be the corresponding field. Iffv satisfies the Klein–Gordon equation a

ffvsfd,fvsgdg = Esf ^ gd,

hereE is the difference between the fundamental solutions of the Klein–Gordon operat
alls v a state of the Klein–Gordon field over M. It turns out that only certain states, cal
adamard states, are compatible with the semiclassical Einstein equation. For further deta

efer the reader to Ref. 9 and the monograph.10

There are by now many known examples of a low-energy limit or compactification of
heory which are equivalent to a gauge theory with compact gauge group. It is also kno
xact quantum string amplitudes can be computed from various flavors of matrix mode
athematically rigorous description using constructive field theory is possible for these pr

oming from string theory, then a consistent generalization of the Wightman reconstructio
em which incorporates the structure of gauge theory and matrix models seems a useful fra
n which to formulate the result.

The purpose of the present paper is to extend the work of Wightman and Borchers to
atrix-valued fields of the type required by gauge theory and matrix models. We first deve
athematics, and then make contact with physical applications. The remainder of this intro

eviews the well-known Wightman procedure for commuting scalar fields; this serves to fix
ion and set the context for the later sections. Section II presents the main new idea of th

generalization of the Borchers construction, and considers some simple examples. Sect
oncerned with the application of these ideas to two-dimensional Yang–Mills theory. In Sec
ecall important recent work which applies matrix models to high energy physics and the
hat, in the same sense in which scalar quantum field theories are Wightman states, matrix
re described byfinite order states, and thus are special cases of the construction in Se
oreover, finite order states form a dense subset of the space of all states, and hence arbi

heories are given as limits of matrix models. The conclusion is that traditional const
uantum field theory, gauge theories, matrix models and certain hypothetical generaliza

hese may all be described within a unified algebraic framework.

. The Borchers construction

Let SsRdd denote the set of infinitely differentiable complex functionsfsxd on Rd for which

ifia,b ; sup
xPRd

uxaDbfsxdu , ` for all a,b,

b
hereD is the usual multi-index derivative. Let us also define the spaces
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S0 = C, Sn = SsRdnd, andSI = %
n=0

`

Sn.

he latter is a complete nuclear space under the direct sum topology. There is a natu
: ^kSsRnd→SsRknd given byisf1 ^ ¯ ^ fkd=p j=1

k f jsxjd, where eachxj PRd, and the image ofi
s dense.

EndowSI with the noncommutative multiplication

sf 3 gdl = o
i+h=l

f i 3 gh,

f i 3 ghsx1, . . . ,xi+hd = f isx1, . . . ,xidghsxi+1, . . . ,xi+hd, s2d

nd the involutionf* =sf0
* , f1

* , . . .d, where f0
* = f0 and for i ù1,

f i
*sx1, . . . ,xid = f isxi,xi−1, . . . ,x1d. s3d

he multiplication3 and the unit1=s1,0,0, . . .d makeSI into a unital *-algebra with no ze
ivisors. The center ofSI is hl1:lPCj, 1 is the only nonzero idempotent, and the set of inver
lements equals the center. This implies the triviality of the radical

radsSId = hg P SI:1 + f 3 g has inverse∀ fj.

An elementgPSI is calledpositiveif ∃f i such thatg=oi f i
* 3 f i. This induces a positive co

+ and a semiordering. We define the set of Hermitian elements,

SIh = hf P SI:f* = fj, s4d

hich is a real vector space and we haveSI=SIh+ iSIh. Also, SI+ is a convex cone wit
+ù s−SI+d=h0j. Moreover, we haveSIh=SI+−SI+, which follows by polarization.

. The Wightman axioms

Let S denote an appropriate space of test functions, often taken to beSsRdd.
Axiom 1: There exists a Hilbert spaceH and a dense domain D,H such that for every

S, an operatorwsfd exists, such that D,domswsfdd, wsfdD,D,

sc,wsfdxd = sws f̄dc,xd for all c,x P D

nd f→ sc ,wsfdxd is a continuous linear functional onS.
Axiom 2: Let fasxd= fsx−ad. There exists a strongly continuous unitary representationU of the

ranslation groupG, such that for all aPG, UsadD,D and

UsadwsfdU−1sadc = wsfadc

or all f PS ,cPD.
In standard constructive quantum field theory models, there is a canonical action of the

rthochronous Poincaré groupP+
↑ on Sn for all n, in other words, a representat

:P+
↑ →AutsSId. We mention the representationa because even in the generalized models t

ntroduced in Sec. II, invariance under a symmetry group is expressed in terms of represe
imilar to a. See also Sec. II C.

Axiom 3: There existsVPD such thatUsadV=V for all aPG, and the set of vectors of t
orm hV ,wsfdV ,wsf1dwsf2dV , . . .j spansH.
Further Wightman axioms will be discussed in Sec. I G.
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. States, the GNS construction, and axiom 1

Let SI8 be the space of continuous linear functionalsT:SI→C. For f PSI, denote the action o
by sT, fd. The spaceSI8 also has a natural involution; defineT* by

sT* , fd: = sT, f*d.

e say a functional isreal if T=T* , andpositive if sT,pdù0 for all pPSI+. The correspondin
paces are denotedSIh8 andSI8+.

The set of statesis

EsSId = hT P SI8+:sT,1d = 1j.

he left-kernelof a stateT is defined to be

LsTd: = hf P SI:sT, f* 3 fd = 0j. s5d

he left-kernel is so named because it is a left ideal in the Borchers algebra. Theright-kernel RsTd,
efined by the analogous relationsT, f 3 f*d=0, is a right ideal. These kernels arise in the qu

ization procedure discussed later; choice of the left-kernel amounts to the convention
esquilinear form is conjugate-linear in the first variable.

Theorem 1: Each state TPEsSId canonically defines a representation AT of SI in a Hilbert
paceHT such that the restriction ATuS1

satisfies axiom 1. Conversely, ifhfsfdj are a set of field
atisfying axiom 1, then everyVPD defines a continuous linear functional TV, by

sTV, f1 3 f2 3 ¯ 3 fnd = sV,fsf1dfsf2d ¯ fsfndVd, f i P S1.

f iVi=1, then TV is a state. The field ATV
is unitarily equivalent tohAV ,DV ,HVj where

DV = Linear Span ofV, fsfdV, fsf1dfsf2dV, etc.,

V is the closure of DV, and AVsfd=fsfduDV
.

Proof: As a full proof can be found elsewhere,2,7 we merely recall the central idea for co
enience, as it is used later.T defines a nondegenerate positive definite sesquilinear for
/LsTd by the relation

sffg,fggd = sT, f* 3 gd,ffg,fgg P SI/LsTd.

efineHT to be the completion of the pre-Hilbert spaceSI /LsTd, and define a representation oSI
n HT by ATsfdfgg=ff 3gg for f PS1 andgPSI. The rest of the proof is straightforward. h

. Translation invariant states satisfy axioms 1–3

Let aPRd. The mapaa defined by

aaf isx1, . . . ,xid = f isx1 − a, . . . ,xi − ad

s an element of AutsSId. A stateT is translation-invariantif sT,aafd=sT, fd holds for all f PSI, and
or all aPRd.

Theorem 2: Let T be a translation invariant state. Then ATsfd satisfies axioms1–3.
onversely, if the systemhAsfd ,D ,VPDj satisfies axioms1–3, then TV defined b

TV , fd=sV ,AsfdVd is translation invariant.

. Tensor products of states

Given two statesT1,T2PEsSId, let hAisfd ,Hi ,Di ,Vij be the associated GNS representati

hen the triple
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hA1sfd ^ I2 + I1 ^ A2sfd,H1 ^ H2,D1 3 D2j

atisfies axiom 1, and hence it corresponds to a new state,T1^sT2 which is the same as the vec
tateTV with V=V13V2. Let Pn,m denote the set of all ordered splittings ofn+m elements int
wo subsets, of respective sizesn andm. Let TnPSIn8, SmPSIm8 , thenTn^ sSm is given by

sTn^ sSmdsx1, . . . ,xn+md = o
Pn,m

Tnsxi1
, . . . ,xin

dSmsxj1
, . . . ,xjm

d.

or T,SPSI8, we definesT^ sSdn=oi+k=n Ti ^ sSk. This coincides with our previous definition of t
^ s-product. It is clearly associative and Abelian.

. Real scalar fields

Before discussing more complicated generalizations, we briefly indicate how the abo
truction can describe the salient properties of the quantum theory of a one-component re
eld. Since^kSsRnd is dense inSsRknd, every continuous form on the subspace has a un
ontinuous extension. By the classic Schwartz nuclear theorem, ifBsf1, . . . ,fkd is a separate
ontinuousk-linear functional onSsRn1d3 ¯ 3SsRnkd, there existsTPS8sRNd with

Bsf1, . . . ,fkd = Tsf1 ^ ¯ ^ fkd,

here N=oi ni. As a consequence, every statev on the Borchers algebra is represented b
amily of distributionsWnPS8sRdnd, in the sense that

vsf1 3 ¯ 3 fnd =E Wnsx1, . . . ,xndf1sx1d ¯ fnsxndddx1 ¯ ddxn. s6d

A rigorous proof is known that a scalar quantum field theory, when it exists, is comp
etermined by its Wightman functions. By relation(6), a statev on the Borchers algebra conta

he same information as a complete specification of then-point functions for all values ofn. If v
beys the Wightman axioms, then we have a quantum field theory andWn are related to vacuu
xpectation values of products of fields. They calculate observable quantities such as cr

ions and decay rates.

. Spectral condition, locality, and uniqueness of the vacuum

The remaining two essential properties of a quantum field theory(spectral condition an
ocality) are equivalent to kerv containing certain ideals. LetS1sCV+d denote the set of functio
n S1 that vanish on the forward light coneV+, and letF denote the Fourier transform. The spec
ondition is the statement that kerv. I1, where

I1 = HE ddaFsadaaf:f P SI, f0 = 0,Fsad P FfS1sCV+dgJ .

Space–time locality is the statement that kerv. I2, whereI2 is the smallest closed two-sid
deal inSI containing all elements of the formf 3g−g3 f wheref andg have spacelike-separa
upports.

Uniqueness of the vacuum also has a simple interpretation in terms of Wightman func
field theory is said to bereducibleif the algebra of field operators acts reducibly on the Hil

pace. A Wightman statev is said to bedecomposableif there exists a positive numberl,1 such
hat

v = lvs1d + s1 − ldvs2d s7d

ith Wightman statesvs1d and vs2d different from v. Indecomposability of the Wightman fun

ional is equivalent to uniqueness of the vacuum in an irreducible field theory.
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In Sec. II we will generalize the Wightman statev, and it is of interest to know whether(7)
lso leads to uniqueness of the vacuum in the general case.

I. NONCOMMUTATIVE TARGET SPACE PERSPECTIVE

The field algebra with multiplication and involution given by(2)–(3) admits a natural gene
lization to the noncommutative setting. This generalization has many applications in phy
f which come from interpreting elements of the Borchers algebra as gauge fields
-dimensional space–time. Fordø1, this gives rise to matrix models and matrix quantum
hanics. Fordù2, it is Yang–Mills theory. Of course, gauge symmetry is not essential fo
onstruction to work; it applies equally well to matrix-valued scalar field theory of the
onsidered by Kazakov.11 This framework is also suggestive of quantum field theory in which
arget manifold is a noncommutative space in the sense of Connes.

. Test functions valued in a noncommutative algebra

First we wish to argue that a correct description of gauge quantum field theory is pos
erms of test functions valued in a noncommutative algebra. Consider a pure gauge the
auge groupG and Lie algebrag=LiesGd. In a classical pure gauge theory, the fundamental fi
re g-valued one-forms, each determining a connection on a principalG-bundle. In a quantum
ersion of the same gauge theory, these classical fields would be promoted to operato
istributions with the same algebraic structure.

For concreteness, letSsR4d denote the Schwartz space of rapidly decreasing functions oR4.
n operator-valued distribution is a continuous map

SsR4d → OpsHd,

here we considerSsR4d to be endowed with the Schwartz topology,H is a Hilbert space, an
psHd denotes a suitable space of unbounded operators onH. In the example of a free real sca
oson,H is the usual bosonic Fock space, and OpsHd would be a class of operators large eno

o include all operators of the formfsfd, wheref is a quantum field andf is any test function. Th
perators OpsHd, in this example, have a common core including all smooth, compactly sup
ock states with finite particle number.

Let r :g→glsVd be a representation ofg on the representation spaceV. Let HV denote th
pace of all continuous linear functionals

f:SsR4d → OpsHd ^ V. s8d

lements ofHV are operator-valued distributions that transform in the representationV. The
epresentationr on V naturally defines a representationr̄ of g on HV by expanding

fsfd = o
i=1

n

Ai
f

^ vi
f

or Ai
f POpsHd ,vi

f PV, and defining

sr̄sgdfdsfd = o
i

Ai
f

^ srsgdvi
fd, g P g.

ne very useful choice forV is the adjoint representation, because field strength variablesFmnsxd
n Yang–-Mills theory transform in the adjoint. Other representations typically arise as
ummands of tensor powers of the adjoint and its complex conjugate representation. In all
xamples, it is useful to view the representation spaceV as living in some matrix algebra.

There is a natural transformation of categories by which the spaceHV defined above

aturally isomorphic to the spaceHV* of continuous maps
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SsR4d ^ V* → OpsHd. s9d

Let us exhibit the isomorphism between(8) and (9) explicitly. For concreteness, we will fi
ur attention on the special case ofV=g, the adjoint, but we stress that no part of the discus
epends on this in an essential way.

In terms off we may define a new map

f̃:SsR4d 3 g* → OpsHd s10d

y the formula

f̃sf,yd ; o
i=1

n

ysvi
fdAi

f, y P g* . s11d

quivalently, ifTa is a basis forg, andfsfd=fsfdaT
a, then foryPg* , f̃sf ,yad=fsfday

a.
The mapf̃ is multilinear, and therefore factors through to a map on the tensor pr

sR4d ^ g* . We have proved thatf→ f̃ gives an explicit isomorphismHV>HV* between the tw
paces(8) and (9).

Quantum field theory with test functions taking values ing* is most naturally described by
oncommutative version of the Borchers construction, and the latter mathematical struct
ccupy us for the rest of this section and, in some form or other, for the rest of the pap
ummarize the results of the preceding paragraphs in a lemma.

Lemma 1: The following structures are equivalent.

1) An operator-valued distribution which transforms in the adjoint representation of a
algebrag (i.e., a quantized Yang–Mills field).

2) An operator-valued distribution which acts ong* -valued test functions.

Let us see how this isomorphism works in practice. Suppose thatFmnsxd is an operator-value
istribution which transforms as a Lie algebra-valued two-form. An example of such an ob
quantized Yang–Mills field strength. The above construction tells us that fromFmnsxd, we can

onstruct a single operator-valued distributionF̃mn which acts on test functionsfsxd valued in the
ual of the Lie algebra. The duality betweeng and g* is given explicitly by the Killing form
sa,bd=trsabd, where the trace is taken in the adjoint representation. Therefore, the corre
ition is

F̃mnsfd = trsf ·Fmnd =E Ksfsxd,Fmnsxdd dx, s12d

here f ·Fmn is defined by

ff ·Fmngi j ; o
k
E fsxdiksFmnsxddkj dx.

he notation of(12) is the same as(10). This shows explicitly how operator-valued distributio
ct ong* -valued test functions.

Remark 1:This duality transformation transfers the dependence on the Lie algebra to t
unctions; however, if the original field also transforms as a section of an additional vector
, as is the case for the two-formFmnsxd which is a section ofE=∧2sRdd, the quantized fiel
perator(12) transforms in the tensor productE^ OH, whereOH is a trivial bundle with fibe
psHd. Additional complications to the theory presented above arise in the case of a no

ber bundle, in which the connection can be only locally described as ag-valued one-form. Th
auge fields in the present paper are all assumed to be sections of globally trivial p
undles.
Remark 2:One could imagine exotic quantum field theories in which the fields take values in
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he algebra of functions over a noncommutative geometry in the sense of Connes. The
onstructions define such a theory mathematically, but we do not know a direct physical in
ation.

For any manifoldS, let

A = AsS,Bd s13d

enote a vector space of test functions fromS to a possibly noncommutative star-algebraB with
roduct ·. For the quantum theories we construct, elements ofA will play the role of test func
ions. Invariance of the Schwartz space under the Fourier transform implies that tempere
utions can grow at most polynomially in momentum space. Thus, the choice of the test f
pace has important physical consequences.

If B is a normed algebra andS is equipped with an appropriate metric, then we may con
sS ,Bd to be the Schwartz space of rapidly decreasing functions. For example, one cou

ider a space–time which has nontrivial topology within some compact regionK, and outside tha
egion it is covered by a single chartc which is an isometry ontoRd minus a compact set. On su
space–time, one can demand that theB-norm of the function and of all its derivatives, expres

n chartc, fall off faster than any power of themodulus function, which measures the distance
point fromK in the ambient metric.

Alternatively, if S is any manifold, one can obtain the necessary analytic regularity by
ideration of continuous functions with compact support. For manifolds there is the add
omplication that one should integratedensitiesrather than functions, and so the test func
pace should properly beC0

`sS ,V1d, the space of smooth compactly supported sections of th
undleV1 of densities of order one. In this generalized situation, the terminologytest densityis
ore appropriate. In what follows, we will generally assume the existence of a Riem
etric, under which conditions a function onS determines a density. The constructions wh

ollow are already interesting forS=Rd. In the application of these ideas to two-dimensio
auge theory,S will denote a compact Riemann surface.

Since certain gauge theories are known to possess ultraviolet behavior which is more
han that of, say, scalar theory ind=2,3, it is of importance to recall a construction of Jaf4

iven a functiongstd ,tPR, such thatgst2d is entire and positive, Jaffe definesS̃g to be the spac
f all functions onRd which are infinitely differentiable and for which all the norms

ifspdin = sup
p;uauøn

gsnipi2duDafspdu, n = 1,2, . . . , s14d

re finite. Herea is a multi-index, andipi is an arbitrary Euclidean norm onRd. Finiteness of th
orms(14) means that test functions and all its derivatives decay at infinity faster than 1/gsnipi2d

or any positiven. S̃g does not depend on the choice of the Euclidean norm, but it does dep

he rate of growth ofgst2d at infinity. Define the topology onS̃g to be that generated by t

ountable family of norms(14). It is easy to see thatS̃g is Lorenz invariant. In addition, ifg
atisfies

gsnipi2d
gsn8ipi2d

is an integrable function for all n and suf ficiently large n8, s15d

hen the nuclear theorem holds.

Let us denote the Fourier transform ofS̃g by Sg. We think of S̃g as the space of test functio
n momentum space, soSg is the space of test functions inx space. The spacesSg can be used t
efine quantum field theories whose ultraviolet behavior is more singular than the trad
ightman field theories; see Ref. 4 for further details.

For our purposes, the important point is that for test functions valued in a normed star-

, a completely analogous construction exists. We modify(14) so that the complex modulus
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Dafspdu is replaced by theB-norm of the same expression,iDafspdiB. This defines test functio

pacesS̃g
B which can be used in the constructions which follow, and may be important for th

hich are singular in the UV.

. Generalizing the Borchers construction

We assume for convenience that the base field ofB is F=R or C. A is then naturally a left an
ight module overB, and of course also overF. Define

An = A^n, AI = C % %
n=1

`

An s16d

o be the free tensor algebra overA. Note that

An > AsSn,B^nd, s17d

n isomorphism of complete topological vector spaces, whereSn denotes then-fold Cartesian
roduct. AsB is defined to be an involutive algebra, we denote the involution by

t* :B → B.

his extends to give an involution onAn, defined by

f*sx1, . . . ,xnd: = t*
^nfsxn, . . . ,x1d. s18d

lso define a binary operation3 on AI as follows:

sfI 3 gIdn = o
i+j=n

f i ^ gj, fI = sf0, f1, . . .d, gI = sg0,g1, . . .d P AI . s19d

he operations(18) and(19) giveAI the structure of a unital involutive algebra, with unit given
=s1,0,0, . . .d. In analogy with the case for scalar fields,AI also has a coneAI+ of positive
lements, and a subsetAIh of Hermitian elements.

One could imagine an analogous construction in which the tensor product in(19) is replaced
ith multiplication inB. In such a framework,An would be replaced byAsSn,Bd, in contrast with

17). Interestingly,this modification is incompatible with the cluster propertyfor a large class o
auge theories, including allOsNd gauge theories withNù4. In fact, replacement of the tens
roduct (19) with the B-multiplication leads to a number of problems, all of which render
heory unphysical. So when considering the Wightman construction for gauge theories,es-
ential to use the tensor product in(19) rather than the matrix product.(The author would like t
hank H. Gottschalk for explaining this crucial point.)

The cross product provides a mapping from the state spaceEsAId to the bilinear forms tha
rise in quantum physics. Explicitly, any statev on AI determines a sesquilinear fromk,lv by the
elation

kf,glv = vsf* 3 gd, f,g P AI s20d

nd the sesquilinear forms(20) are of the type that arise in the construction of the Fock–Hi
pace for a quantum field theory. The left-kernelLsvd of the statev is precisely the set of allf
AI such thatkf , flv=0, and so the sesquilinear form(20) is positive semidefinite. It is a positi

efinite inner product onAI /Lsvd, and the completion

AI/Lsvd

orms the physical Hilbert spaceHphys.
Following the well-known GNS construction, a representation ofA on Hphys may now be
efined by
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wsfdfgg = ff 3 gg, f P A, g P AI , s21d

herefgg denotes the image ofg under the series of mapsAI→AI /Lsvd→Hphys.
For any vector spaceV, we letV8=Hom sV,Cd denote the dual. Note thatsV^nd8>sV8d^n for

large class of vector spaces including all nuclear spaces. The Wightman functions are e

Wn P An8 > A8sSn,Cd ^ B8^n.

o clarify this structure, and to make contact with physics notation, it is useful to expa
elevant objects in a basis, and to assume the presence of a nondegenerate inner producB, so
hat B8>B.

Accordingly, letsead denote a basis forB. For f PAn,

Wnsfd = o
a1¯an

b1¯bn

Sp
i=1

n

gaibiD Wn;a1,. . .,an
sfb1,. . .,bn

d, s22d

here gab=kea,ebl, and fb1,. . .,bn
PAsSn,Cd are components off with respect to the basisebi

^ ¯ ^ ebn
of B^n. If the basis is orthonormal, the formula simplifies and we have

Wnsfd = o
a1¯an

Wn;a1¯an
sfa1¯an

d. s23d

A Yang–Mills field is a g-valued one-form, and the associated field strength is a 2-
owever, the above formalism is most easily applied to the case of an algebra-valued sca
ortunately, there do exist examples of great relevance to modern physics in which it suf
onsider zero-forms. In Secs. III and IV, we present two such examples in detail, in eac
roviding a self-contained introduction for the reader’s convenience.

It is useful to see how(22) and (23) make contact with traditional physics notation. For
UsNd Yang–Mills theory on a genusg Riemann surface, explicit formulas are known. Nunes
chnitzer calculate via path integral techniques that

W2;a,bsx,yd ~ o
lPirreps

dimsld2−2g

exps 1
2l2AC2slddF sr,rddab

N2 dx,y
2 − spabsl + rd2 + mabn2dG ,

hereA=Area sSd, l is a coupling constant,l is the highest weight of an irrep,r is the half-sum
f positive roots,n=size of the Young tableau, andrab, mab are rational functions ofN.

Let us also illustrate the above formalism for the matrix model case, in whichS is a single
oint, andA=B=glnC. Choose the orthonormal basiseij , i, j =1, . . . ,n, whereeij is a matrix with
in thesi , jd position and zeros elsewhere. In our previous notation,a=si , jd, b=si8 , j8d, etc. The

implest nontrivial case involves two matrices, in which case the Wightman function is

W2;a,b = W2;i,j ,i8,j8 =E fdn2
MgMijMi8 j8e

−nTr SsMd.

et f PA2=sglnCd^2. Since Wightman functionals are linear, we lose no generality in assu
hat f is homogeneous, and thus writef =A^ B, for A,BPglnC. The Wightman functional eval
ted onf gives

W2sfd = o SAijBi8 j8E fdn2
MgMijMi8 j8e

−nTr SsMdD .

i,j ,i8,j8
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. Global symmetry and unitary implementation

In this picture, asymmetryof the quantum theory is defined to be anv-invariant represent
ion

a:G → AutsAId. s24d

ere, v-invariance means that for allfIPAI, we have vsagfId=vsfId. This implies tha

gsLsvdd#Lsvd, as is easily checked. Thus for eachg, ag is a well-defined automorphism of t
uotient algebraAI /Lsvd and extends naturally to the completionHphys.

Any such symmetry is unitarily implementable. In fact,

sagfI,aghId = vsagsfId* 3 agshIdd = vsagsfI
* 3 hIdd = vsfI

* 3 hId = sfI,hId.

e infer that for anygPG, ag defines a unitary operator onHphys, and denote this operator
sgd. Representations of the form(24) arise often in physics; Lorentz symmetry is an exam

If the field takes values in a normed *-algebraB, as we have assumed throughout the pre
aper, then any group representationT on B naturally lifts to a representation onAI. If B is a Lie
lgebra, one may consider, for example, the Adjoint representation of the corresponding Lie

n this case,Usgd is the quotient byLsvd of %nTsgd^n, and the field satisfies a simple covaria
elation under conjugation by the unitary group:

UsgdwsfdUsgd* = wsTsgdfd, s25d

s one may verify by applying each operator to an equivalence classfhIgPAI /Lsvd, and using th
roperty thatUsgd* =Usgd−1=Usg−1d. Interestingly,Usgd can be trivial even whenag is not. If

gsfId− fI=hI* 3hI for somehIPAI, then hIPLsvd⇒ fhIg=0 in Hphys. It follows that Usgd is the
dentity.

It is clear that the quantum mechanical ground state remains invariant underUsgd; thus, the
bove discussion applies to unbroken symmetry of the quantum theory. As such, it cannot
pontaneously broken symmetry.

. Representations of the canonical commutation relations

Let A denote the space of Schwartz functions formRd to a (noncommutative) untial normed
lgebrasB ,!d. Analogous constructions may be carried out forA=C0

`sRd,Bd. Choose a continu
us, nondegenerateB-valued bilinear formC on A3A. If we assume thatB is a *-algebra, the

t has a natural positive cone. In this situation, one may formulate the appropriate po
roperty forC. This property entails thatsf ,Cfd lies in the positive cone ofB, for all f. If B is a
atrix algebra, one could consider the massive free covarianceC=s−D+m2d−1 acting componen
ise on the matrices, but this is by no means the only imortant example.

Let CsA8d be a suitable space of well-behaved functions on the dual spaceA8. We define a
inear functionalk·l from CsA8d to B. By analogy with the standard Gaussian measures of bo
eld theory, which are denoteddfC, we denote our functional by

k·l ; E ·df̃C.

he functional is defined by the recursion relation for Gaussian integrals(also known as Wick’
heorem)

kfsf1d ¯ fsfndl = o
pPP2snd

p
hi,jjPp

kfsf idfsf jdl,

hereP2snd denotes the set of all partitions ofs1, . . . ,nd into two-element subsets. To compl

he definition, we specify the two-point function
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E fsfdfsgddf̃C = sf,Cgd.

e are now in a position to specify fields which satisfy the canonical commutation relatio
Definition 1: For any f PA and fPA8, fsfd may be considered as a linear coordin

unction of the variablefPA8 (according to the natural identification ofA with its double-dual).
his coordinate function defines an associated multiplication operatorFsfd acting onCsA8d.
xplicitly, sFsfdAdsfd;fsfdAsfd.

The functional derivative is defined as

sDcAdsfd = lim
e→0

Asf + ecd − Asfd
e

.

he case in whichc is a delta function arises so often in field theory that it has a special not

d

dfsxd
Asfd = DdsxdAsfd.

Definition 2: The following map is called thecanonically conjugate field operator:

Psgd = − iKg,
d

df
L ; − iE

Rd
gsxd

d

dfsxd
dx, g P A. s26d

he notation in(26) means that whenPsgd is applied to a functionalAsfd, the functional deriva
ive dAsfd /dfsxd is computedbeforethe integral with respect tox.

Consider the Hilbert space

H = L2sA8,B;df̃Cd

enerated by taking the completion of a space of functionsA:A8→B satisfying

E
A8

iAsfdi2df̃C , `.

enote byD the vector subspace ofH generated by arbitrary polynomials in the field. It is c
hat D is dense inH, and for all f PA ,Fsfd and Psfd are defined onD. Further, it holds tha

sfdD,D andPsfdD,D.
The following theorem is relevant to all quantum field theories withB-valued test function
Theorem 3: Definitions 1 and 2 specify operator-valued distributionsFsfd and Psgd which

are defined on a common dense domainD in the Hilbert spaceH=L2sA8 ,B ;df̃Cd, and which
atisfy the canonical commutation relations

fFsfd,Psgdg = isg, fdI

n the domainD, for all f ,gPA.
Proof: SinceB is an algebra, there is an exponential map

exp:B → Bvzb,

hereBvzb is the ring of formal power series with coefficients inB. This map is such that

a → expszad ; 1B + az+ 1
2sa ! adz2 + ¯ . s27d

n particular,eia is a well-defined formal power series for anyaPB. In fact, sinceB is a normed
lgebra, the power series(27) is absolutely convergent in the norm topology, although we wil
ake use of this.
For a test functionhPA, we calculate
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Psgdeifshd = − iE
Rd

gsxd
d

dfsxd
eifshddx= sg,hdeifshd.

lso,

PsgdFsfdeifshd = s− isg, fd + Fsfdsg,hddeifshd.

herefore,

fFsfd,Psgdgeifshd = isg, fdeifshd. s28d

elation(28) implies directly that the operator equation

fFsfd,Psgdg = isg, fdI s29d

olds when applied to powers of the fieldAsfd=fsfdn. This, together with the polarization ident

x1 ¯ xn =
1

2nn! o
e j=±1

e1 ¯ ense1x1 + ¯ + enxndn,

mplies that(29) holds on the space generated by polynomials in thef-field. h

We conclude that(29) defines a representation of the canonical commutation relations w
he desired properties.

. Axioms for nonpositive theories

A number of quantum field theory models are known which do not satisfy positivity
eneral properties of these models are summarized in the modified Wightman axioms of in
etric QFT.12 In particular, there are two replacements of the positivity axiom which immed
eneralize to the noncommutative algebraic framework outlined in the present work.

Albeverio et al.13 investigated Euclidean random fields as generalized white noise a
arked that the Wightman functionals belonging to those fields do not generally satisfy po
hose nonpositive Wightman functionals satisfy the following weaker condition, known
ilbert space structure condition.14

Axiom (Hilbert space structure condition): There exist seminorms pn on Sn such that

uWn+msfn
*

^ gmdu ø pnsfndpmsgmd for all f n P Sn, gm P Sm. s30d

This axiom needs no modification in order to apply to the general Borchers construc
ec. II B; thepn are simply reinterpreted as seminorms on the subspacesAn arising in the gradin
f the universal enveloping algebra.

A related condition known as the Krein structure condition15 is satisfied by the physical
mportant Gupta–Bleuler formalism for free QED, and has many attractive features from a
matical standpoint.

Axiom (Krein positivity): There exists a dense unital subalgebraA0 of the Borchers algebra
nd a mappinga :A0→A0, such that for all f,gPA0,

1) vsa2sfd* 3gd=vsf* 3gd;
2) vsasfd* 3 fdù0;
3) vsasfd* 3gd=vsf* 3asgdd; and
4) pasfd;vsasfd* 3 fd1/2 is continuous in the topology of the Borchers algebra.

In the original paper,15 it is shown that the Krein positivity condition is stronger than
ilbert space structure condition, is satisfied by free QED, and guarantees the existen

ajorizing Krein-type Hilbert space structure associated to the Wightman functions.
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It is easily seen that the Krein positivity condition may be applied to the generalized Bo
lgebra of Sec. II B, and a statev on that algebra, simply by interpreting the terminology wi

he new context.

II. CORRELATORS IN GAUGE THEORY

We would like to use the structure developed above to express quantities of interest in
heory. The difficulty with this outlook is that there are different possible choices for comple
f observables. It is known that Wilson loop functionals are a complete set of observab
ang–Mills theory in any dimension, but as functionals on the loop space, they cannot be
sed to generate a state on the generalized Borchers algebra. Fortunately, in some case
lete set of gauge-invariant correlation functions is available, and they possess a math
tructure which is convenient for our viewpoint in this paper.

. Complete sets of observables

In any number of dimensions, the Yang–Mills field strength is a Lie algebra valued two
special feature of two dimensions is that in this case the field strength is mapped to ag-valued

calar field by the Hodge star. This field is denotedjsxd, and defined by the relation

Fmnsxd = jsxdÎgsxd«mn.

he Yang–Mills action in two dimensions is

S=
1

8p2«
E

S

Tr F ∧ * F, s31d

ith the trace taken in the fundamental representation forg. In our convention, the gauge fieldA
s anti-Hermitian. In terms ofj the pure Yang–Mills action takes the form

E
S

dm Trsj2d

ith the appropriate coupling constant inserted. Here dm=Îgsxd d2x is the Riemannian volum
easure onS.

Field strength correlatorsare linear combinations of objects of the form

kjasx1djbsx2djcsx3d ¯ jdsxndl. s32d

erejsxd is a Lie algebra valued scalar field, andja,jb,etc., come from expanding the field w
espect to some fixed basis of the Lie algebra. For example, one could take the Gell-mann

a as a basis of SUs3d and writejsxd=jasxdta. Thus, (32) is not a gauge-invariant correlator.
ecomes gauge invariant only after insertingta,tb,tc,etc., summing over repeated indices,

aking the trace. The rest of this section will be devoted to describing a second type of co
hich are sometimes calledf-field correlators.

In two dimensions there are no propagating degrees of freedom(i.e., no gluons) so the only
egrees of freedom come from the topology of space–time or Wilson loops. Since there are
egrees of freedom, there is a very large group of local symmetries. YM2 is invariant under th
roup SDiffsSd of area preserving diffeomorphisms, which is a larger symmetry group than
auge invariance.

The following equivalent action is called the “first-order formalism” because Gaussian

ration overf gives back the original action(31),
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ZSs«d =E DA expS 1

8p2«
E

S

TrF ∧ * FD =E DA Df e−SsA,fd,

here

SsA,fd = −
i

4p2E
S

TrsfFd −
«

8p2E
S

dm Tr f2. s33d

eref is a Lie-algebra valued 0-form;(33) gives rise to the natural generalization,

I =E
S

fi trsfFd + Vsfddmg, s34d

hereV is any invariant function on the Lie algebrag. Thus, ordinary YM2 is one example of
eneral class of theories parametrized by invariant functions ong. It is natural to restrict to th
ing of invariant polynomials ong. For G=SUsNd, this ring is generated by trfk, so we may
escribe the general theory by coordinatestkW, in terms of which

V = o tkWp
j

str f jdkj .

he generalized Borchers formulation applies equally well to the general case(34) with arbitrary
sfd.

A complete set of physical observables for Yang–Mills theory in any dimension are W
oops. These are, in particular, interesting observables for Yang–Mills theory ind=2. However
auge invariant polynomials of the fieldf form another complete set of observables natu
uited to evaluation of the partition function. These observables include products of Trf2sxid at
arious pointsxi, and more generally, traces of any homogeneous invariant polynomial defi
he Lie algebrag. We will adopt this terminology, and refer to expectations of produc
r f2sxid as f-field correlators. This is in marked contrast tod=4 Yang–Mills where the onl
imension four gauge invariant operators are trsF∧ * Fd and trsF2d, with the latter a topologica

erm.
The most important property of expectation values of gauge-invariant observables

imensions is that they are almost topological. A sample calculation shows that

dK 1

8p2Trf2sxdL
«

=K 1

4p2Tr fsxddAfsxdL
«

= 0. s35d

he action

Stop = −
1

2
E i trsfFd

escribes a true topological field theory whose path integral is concentrated on flat conn
=0. The fieldf is sometimes denoted byB, in which case the Lagrangian is proportiona
rsBFd, and the terminologyBF theorywas introduced. In the small area limit(or theV→0 limit)
M2 reproduces the results of this topological field theory.

. The Hilbert space of YM 2

We consider quantization of YM2 on the cylinder with periodic spatial coordinate of periodL.
his model is well understood and we will make no attempt at exposition since several ex

eferences exist in the literature.16–19Our purpose here is to point out an unexpected mathem
elationship having to do with the space of class functions on a Lie group that is predicted

eneralized Wightman construction introduced earlier in the paper.
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The Hilbert space of this model is known to be the space ofL2 class functions onG with inner
roduct

kf1uf2l =E
G

dU f1
*sUdf2sUd, s36d

here dU is the Haar measure normalized to give volume one. For compact gauge grou
eter–Weyl theorem implies the decomposition ofL2sGd into unitary irreps,

L2sGd = %RR ^ R̄.

onsequently a natural basis for the Hilbert space of states is provided by the characte
rreducible unitary representations. This is known as the representation basis. The statesuRl have
ave functionsxRsUd defined by

kUuRl ; xRsUd ; TrRsUd. s37d

hile Eqs.(36) and(37) provide two different expressions for the inner product of YM2, a third
xpression for the same inner product can be derived from the generalized Borchers cons

n the special case of constant Wightman functions. The sesquilinear form is given by(28), and the
nner product of YM2 therefore comes from(20) after taking the quotient by zero-norm states,
ubsequently, taking the completion.

. The correlators of YM 2

The correlators of YM2 are determined by representation–theoretic invariants of the
roup such as Casimir operators, and by the integration measure defined by the Riemannia
n the Riemann surfaceS. Explicit expressions have been found by Nunes and Schnitzer,20 using

he Abelianization technique for path integrals developed by Blau and Thompson. In a pa
auge, the two-point function for 2D SUsNd Yang–Mills theory on a Riemann surface is

kjasxdjbsydl =
e4

ZSg

o
l

dimsld2−2g expS−
e2

2
AC2sldDF sr,rddab

N2 dx,y
2 − spabsl + rd2 + mabn2dG ,

s38d

herel is the highest weight which labels the irreducible representation of SUsNd, n is the tota
umber of boxes in the Young tableau defined byl, dimsld and C2sld denote, respectively, th
imension and quadratic Casimir,r is the half-sum of the positive roots,A is the area ofS, and

pab =5
− 1

NsN − 1d
if a Þ b,

1

N
if a = b,

mab = 5 1

NsN − 1d
if a Þ b,

0 if a = b.

ote that the dependence of(38) on the choice of gauge goes away after inserting the Lie alg
enerators and taking the trace.

In general, it is known that the gauge-invariants2pd-point functionkTr j2psxdl on a Rieman
urface of genusg takes thex-independent form

e4p

ZSg

o
,

dims,d2−2g expS−
e2

2
AC2s,dDo

i=1

p

f isrdC2is,d,

here f i are rational functions ofsr ,rd.
Remark 3:The physical Hilbert space of this quantum theory is a well-defined object, a
ow in principle know two ways to calculate it. As discussed previously, the Hilbert space of this
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odel is known to be the space ofL2 class functions onG with inner product(36). However, we
xpect to also recover the Hilbert space inner product from the state on the generalized B
lgebra that is determined by(38) and all higher-order correlators. Of course, the physical Hi
pace is recovered only after taking the quotient by the left kernel of this state, which pre
ifficulty. How can one see thatAI /Lsvd>L2sGd?

V. MATRIX MODELS AND FINITE ORDER STATES

Section IV A gives the definition of matrix states and finite order states. In Secs. IV
V C we recall the matrix models which have come to play a prominent role in high e
hysics in the last few years. Section IV D shows that, in the same sense in which scalar q
eld theories are Wightman states, matrix models are finite order states. Finally, Sec. IV E
ut that an argument due to Borchers generalizes to the noncommutative case, show
rbitrary states on the field algebra, which describe nontrivial quantum field theories, are l
atrix states.

. Matrix states and finite order states

Let TPEsAId be a state, and denote byIsTd the maximal two-sided ideal contained in
eft-kernelLsTd.

Definition 3: T is said to beof finite orderif the family of operatorshATsfd : f PAj contains
xactly N linearly independent elements for N,`, or equivalently if

dimsA/IsTd ù Ad = N.

n this situation, N is called the order of the state.
Definition 4: T is called amatrix stateif AI / IsTd is a finite-dimensional algebra.
Clearly, a matrix state is of finite order, but the converse may not hold. The termin

omes from the fact that any finite-dimensional *-algebra with unit is isomorphic to a star-
ubalgebra of the algebra ofn3n matrices, for some finiten. Let hn denote the *-algebra ofn
n Hermitian matrices.

. Hermitian matrix models

A Hermitian one-matrix integral(see Refs. 21 and 22 for a review) takes the form

Z =E fdn2
Mgexpsn Tr SsMdd, s39d

here SsMd is an arbitrary function. The model is said to besolvable if the integral can b
erformed explicitly, at least in the largen limit. We briefly indicate how this can be done

he simplest case. DiagonalizeM via the transformationM =O+xO where x is diagonal an
PUsnd. The corresponding measure can be written as

dn2
M = dfOgUsnd D2sxd p dxk,

hereDsxd=pi. jsxi −xjd is the Vandermonde determinant. The integrand does not dependO,
o integration overO produces a group volume factor. The remaining integral over the eigen
s Z=efpk=1

n dxkgexpsnSsxkddD2sxd. In the largen limit the corresponding saddle point equat
akes the form

1

n

] S

] xk
= S8sxkd +

1

no 1

xk − xj
= 0.
jÞk
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. Dijkgraaf–Vafa matrix models

For simplicity, we examine anUsNd gauge theory with an adjoint Higgs supermultipletF and
ree-level single-trace superpotential

WtreesFd = o
k=1

p+1
1

k
gk Tr Fk. s40d

ijkgraaf and Vafa23 have proposed a very simple recipe to calculate the exact quantum ef
uperpotentialWsSd for the glueball superfield,

S= −
tr WaWa

16Np2 ,

n the confining vacua of a large class ofN=1 supersymmetric Yang–Mills theories, whereWa is
he gauge field strength of theUsNd vector superfield. The superpotentialWsSd contains highly
ontrivial information about the nonperturbative dynamics of the theory. For example, it
sed to derive dynamical chiral symmetry breaking and calculate the tension of the ass
omain walls.

The theory(40) is geometrically engineered on the(local) Calabi–Yau three-manifold,

hu2 + v2 + y2 + Wtree8 sxd2 = fp−1sxdj , C4, s41d

here fp−1sxd, an ordersp−1d polynomial, is a complex deformation parameter, and as is
nown, the Seiberg–Witten curve is the same as the spectral curve of the associated matri

Dijkgraaf and Vafa have conjectured23 that the superpotentialWsSd is the sum of zero mo
entum planar diagrams of theN=1 theory under consideration. In our case, their ansatz fo
sNd theory is a holomorphic integral overn3n complex matricesf,

expsn2F/S2d =E
planar

dn2
sf/LdexpF−

n

S
Wtreesf,gpdG , s42d

rom which the superpotential can be deduced,

WsS,L2,gpd = − N]SFsS,gpd. s43d

ere,L is the complex mass scale governing the one-loop running of the gauge coupling c
see Ref. 24). For SUsNd gauge theory, the integral(42) must be restricted to traceless matrices
quivalently one must treatg1 as a Lagrange multiplier.

The parametern is introduced so that the planar diagrams can be extracted by takingn
` limit. The N dependence of the superpotential is then given explicitly by(43). The integra

42) involves complex matrices and couplingsgp, but the calculation is the same as for Hermi
atrices and real couplings. There is no ambiguity in the analytic continuation because we

o planar diagrams. This implies that standard matrix model techniques21 do apply. A nice math
matical description of holomorphic matrix integrals was given by Lazaroiu.25

. Matrix models as finite order Wightman states

The interesting point we wish to make in this section is that the aforementioned matrix m
arising in string theory, condensed matter, and other branches of physics) are well described b
he noncommutative Borchers construction with a finite order state, in the sense of Definiti
athematician might define the termmatrix modelto be a finite order state on the Borch

lgebraAI constructed from a zero-dimensional space–timeS and targetB given by some matri
lgebra.

In what follows, we consider a one-matrix model defined by an actionS. If S is zero-

imensional, compact and connected, it is a single point,o=hptj. From this we infer that
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A = MapsS,Bd > B = glnC, s44d

nd

Am = sglnCd^m, mù 1.

o avoid confusion with the field theory case, we will denote a finite order state byw. For A,B
A we may compute the inner product on the Borchers algebra(before taking the quotient by t

eft-kernel) to be

kA,Bl = wsA* 3 Bd = o
i,j ,k,l

AjiBklFsi, j ,k,ld, s45d

here

Fsi, j ,k,ld =E fdn2
MgMijMkle

−nTr SsMd

s the analog of a correlation function for the matrix model. The matrix model is said
olvableif the integrals of the formefdn2

Mg may be computed, at least in the largen limit where
addle point techniques apply.

Recall the definition of the Hermitian subspace of a *-algebra, Eq.(4). Clearly in the curren
xample,Ah is given byhn, the space ofn3n Hermitian matrices. The Wightman proced
onstructs an operator formulation for Hermitian matrix models, in whichHphys is the completio
f

AIh/Lswd ù AIh.

The generalized Wightman construction, in some sense, contains within it a mast
ormulation for matrix models.

Definition 5 (Master Field):A master field formulationof a matrix model is a choice
uantum mechanical Hilbert spaceH and a GNS representation onH such that, for arbitraryk, the
auge-invariant matrix model correlator

kTrsMkdl ; E fDMgTrsMkde−nTr SsMd

ay be calculated in terms of vacuum expectation values of products of field operators oH.
The definition is sufficiently general that there can be no question about existence of a

eld formulation for any matrix model; however, to discover one that is simple and useful re
subtle art. We will consider the natural basiseij for the spaceV of n3n matrices;eij is a matrix
ith 1 in the i , j th position and zeros elsewhere. For compactness, we will label a pair of i
y a=si , jd. Let

T = hsi, jd,s j ,idui, j = 1, . . . ,nj.

efine f PA2 by the formula

f = fabea ^ eb, fab = H1, sa,bd P T
0, otherwise,
here we use the convention that repeated indices are summed over. Then
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wsfd = o
sa,bdPT

wsea ^ ebd =E fDMgTrsM2de−nTrSsMd.

onsider the Hilbert space formalism defined above, and letfa be the operator onH=Hphys,
hich createsea out of the vacuum. DefineFab=sfad†fb. It follows that

wsfd = o
sa,bdPT

kea,eblH = o
sa,bdPT

kFablH.

his gives the following relation between the matrix model gauge-invariant correlator and
n the Hilbert space picture:

kTrsM2dl = o
T

kFablH. s46d

y generalizing this procedure, it is clear that vacuum expectations of certain products
perators inH give rise to all possible gauge-invariant expectations in the matrix model.

. Limits of matrix states

The classic result of Borchers7 that matrix states are dense in the space of all states o
orchers algebra generalizes to the noncommutative setting. The proof proceeds in two st
howing that matrix states are dense in the states of finite order, and then showing that t
re dense in the set of all states. As the results of this section are of a topological nat
ssume throughout thatB is a normed *-algebra and that the spaceA=AsS ,Bd introduced in Eq
13) is a Schwartz space of rapidly decreasing functions. The generalized Borchers alg
onsequently endowed with the Schwartz topology.

Given a sequence of Wightman distributions defined for fields valued in a noncomm
pace, and a state onB, Sec. II defines a state, which we now callT, on the generalized Borche
lgebra. The Hilbert spaceHT, field operatorAT, and cyclic vectorVT are then defined, as usu
y the GNS construction.

Theorem 4: Any finite-order state T on the generalized Borchers algebraAI is a limit of
atrix states.

Proof: Let hH ,w ,Vj be the Hilbert space, field operator, and cyclic vector given by
NS-type construction described in Sec. II. It is clear that ifT is of order N, there existN
istributionsti PA8 andN operatorsAi on H such that

wsfd = o
i=1

N

sti, fdAi

or all f PA. (Note that thisN no longer has anything to do with the gauge group.) Let Hn be the
ector space spanned by all vectors

hAi1
¯ AinV:i j = 1, . . . ,N,r = 0, . . . ,nj,

n is finite dimensional, soHn is closed andAiuHn
is bounded. LetEn:H→Hn be the associate

rthogonal projection. Also definebn as follows:

f→
bn

o
i=1

N

sti, fdEnAiEn.

husbn is a continuous homomorphism ofA into a finite-dimensional matrix algebra, which is
lgebra ofdsnd3dsnd matrices, wheredsnd=dim Hn. We remark that generically,dsnd will be an

ncreasing function ofn, and then→` limit resembles a “largen limit” of matrix models. Define
snd
pproximate statesT by
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sT snd,gd = kbnsgdlV

or anygPAI. By definition, a matrix state is an expectation in some fixed vector of a hom
hism into a finite-dimensional matrix algebra, so clearlyT snd are matrix states. Recall thatAk was
efined to be the image ofA^k in the universal enveloping algebraAI. Note thatT snd coincides
ith T on the spacesAk for køn, soT=limn→` T snd and the proof is complete. h

Theorem 5: States of finite order are dense in the set of all states on the generalized Bo
lgebra.

Proof: Let T be any state, and lethH ,w ,Vj be the Hilbert space, field operator, and cy
ector given by the GNS-type construction described in Sec. II. ChooseN arbitrary element

f j PA and letAN denote the subspace ofA generated by thef j. For arbitrarygPAN, we have

wsgd = o
j=1

M

Fjsgdwsf jd,

herehwsf jdj j=1,. . .,M is a minimal basis of the span ofhwsf idji=1,. . .,N and theFj areM continuous
inear functionals onAN. By the Hahn–Banach theorem, extend eachFj to a functionaltj defined
n all of A. Define

w8sgd = o
i=1

M

sti,gdwsf jd and T ff1, . . . ,fNgsgd = kw8sgdlV.

t is now clear that eachT ff1, . . . ,fNg is a state of orderM. This process defines a Cauchy
f¯g of finite-order states converging toT. h

If an explicit functionalSsad is known so that a finite order statew is given by Eq.(45), then
e sayw is defined by itsaction S, and call the associated quantum theory amatrix model.

Given a quantum theory(possibly with noncommutative target) defined in terms of its Wigh
an state, theorems 3–4 construct a sequence of matrix states which converge to the giv
s remarked in the proof of theorem 3, then→` limit considered in that theorem resembles

he level of dimensions of the relevant algebras, a largen limit of matrix models. It would b
xtremely interesting if there were a generic way to reformulate each of these matrix sta
atrix model with actionS. Such a formulation would allow us to choose our favorite ga

heory, and immediately write it as a limit of matrix models.
In fact, Kazakov in a famous paper11 completed a very similar construction. Kazakov con

rs the multicomponent scalar field theory in four dimensions,

S= NE d4x trss]mfd2 + Vsfdd, s47d

ith f a HermitianN3N matrix-valued field, and showed that the four-dimensional(4D) field
heory at finiteN is equivalent perturbatively, graph by graph of any topology, to a one-m

odel in the largen limit. The latter was conjectured to provide a nonperturbative definition o
D field theory. The noncommutative Wightman construction presented in this paper is n
uited to deal with matrix-valued field theories such as Kazakov’s(47), and theorems 3–4 imp
hat if (47) can be defined as a field theory(meaning that it determines a well-defined state on
eneralized Borchers algebra) then it is given by a limit for largen of a sequence ofn3n matrix
odels.

. CONCLUSIONS AND OPEN QUESTIONS

A classic result of mathematical physics is the reconstruction of the Hilbert space, v
ector, and field operators of a quantum field theory from a given set of distributions satisfy
ightman axioms.5 In the preceding sections, we have described the extension of Wight

onstruction to theories with gauge symmetry, including non-Abelian pure Yang–Mills mode

atrix models, and more generally to theories with fields or test functions valued in a noncom-
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utative algebra. Yang–Mills theory with an adjoint-valued Higgs field also fits within the
ramework. In every case involving quantized Yang–Mills fields, the Lie algebra depende
he fundamental fields can be transferred to the test function space.

In Sec. II C, we discuss the role of symmetry in the generalized Borchers construction.
ramework, it is straightforward to see that space–time and global symmetries are unitarily
entable. The role of the additional ambiguities arising from local gauge symmetry rem
ystery. In path integral quantization, this ambiguity is resolved through use of the Fa
opov determinant, but in the Borchers framework a similarly elegant handling of local
ymmetry is an unresolved issue. In an effort to shed light on this question, we have con
wo simple examples in which the space–time dependence of the fields plays a small r
ang–Mills theories and matrix models.

This construction provides a unified algebraic framework for formulating properties of a
lass of quantum field theories. Yang–Mills theory(including matrix models) and constructiv
eld theory models26 possess the following common structure:

1) A normed *-algebraB (not necessarily commutative), with the generalized Borchers alge
AI of functions intoB.

2) A functionalvPA8I, which is defined in terms of a sequence ofn-point functions and whic
satisfiesvsf* 3 fdù0s∀fd in theories with no gauge symmetry, or in gauge theories exp
to possess a positive–definite inner product. For nonpositive models such as Gupta
QED, the functionalv is postulated to satisfy axioms described in Sec. II E.

3) A symmetry groupG and a representationa :G→AutsAId, which isv-invariant in the sens
that vsagsfdd=vsfd for all f PAI andgPG.

4) A collection of idealsI1, . . . ,In of the algebraAI which are required to lie in the kernel ofv.
(Each ideal represents a physical property satisfied by then-point functions; in Wightma
QFT, n=2 and the two ideals represent locality and the positive light-cone spectral
tion.)

5) A Hilbert space Hphys defined to be the completion ofAI /Lsvd, with inner produc
vsf* 3gd and vacuum vectorV.

6) Field operators defined by the GNS construction, with vacuum expectation values e
the Wightman functions used to define the statev.

The discussion following theorem 5 outlines a new research direction, concerned w
uestion of how quantum field theories can be written as limits of matrix models. It would b

nteresting to have a deeper understanding of the issue raised by remark(3). Moreover, this
onstruction could be studied for fields which are sections of nontrivial principal fiber bund
uggested by remark(1).

A very interesting analytic question is to study carefully the UV divergences of various
heories, and to determine whether they can be correctly described by a noncommutative B

onstruction based on the noncommutative generalization of the Jaffe test function spS̃g
B

iscussed following(14).
There are possible connections between this work and deformation theory, which we e

n briefly here. If we consider continuous deformations of the product ·B in the noncommutativ
arget spaceB, with respect to a parameter«, then the constructions in this paper define continu
amilies of Wightman functionalsv« on algebrasAI« and associated quantum field theories w
ilbert space inner productsk,l«. Consider the quotient ofAIe by the ideal generated by
lementsf ^ g−g^ f −ff ,gg, for f ,g[Ae. This is the universal enveloping algebra, which
enoteUsed. If the Wightman stateve is well-defined on the quotient, define a new Hilbert sp
s the completion ofUsed / sLsvedùUsedd. Consider the deformation which multiplies the asso

ive algebra product(and hence the Lie bracket) in B by e. The Poincaré–Birkhoff–Witt theore
mplies an isomorphismUsed.SAe, whereSAe is the symmetric tensor algebra overAe. This

somorphism defines a family of multiplications onSAe, which take the form
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fp«g = fg +
1

2
«hf,gj + o

kù2
«kBksf,gd s48d

or some bilinear formsBk. This well-known construction is called deformation quantization in
irection of the Poisson bracket.

In general, given a quantum field theory into a noncommutative algebraB, one could conside
eforming the multiplication onB, and in certain cases, we expect that the« dependence mig

actor out of the Wightman functions and the Hilbert space inner product will scale in some
ay with respect to the deformation parameter«.
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We classify all irreducible, almost commutative geometries whose spectral action is
dynamically nondegenerate. Heavy use is made of Krajewski’s diagrammatic lan-
guage. The motivation for our definition of dynamical nondegeneracy stems from
particle physics where the fermion masses are nondegenerate. ©2004 American
Institute of Physics.[DOI: 10.1063/1.1811372]

. INTRODUCTION

Within noncommutative geometry pioneered by Connes,3–6 the almost commutative ones p
n interesting role. They are defined by spectral triplessA ,H ,Dd where the algebraAt has the

orm At=C`sMd ^ A with A a direct sum of matrix algebras andM a (compact Euclidean)
pace–time. For instance in the standard model of particle physics,A=H % C % M3sCd. It is im-
ortant to classify the almost commutative triples because of their applications to physics
ketch some of them.

Einstein’s derivation of general relativity from Riemannian geometry goes in two step
rst step sets up the kinematics: the equivalence principle uses general coordinate transfo
nd starts from the flat metric of special relativity to guess curved metrics. The secon
onstructs a dynamics for the set of all metrics by imposing covariance under general co
ransformations.

Connes generalizes Einstein’s derivation to noncommutative geometry.3,6 In this new settin
he metric is encoded in a Dirac operator and a coherent definition of the equivalence p
ecomes available: the fluctuations of the Dirac operator by algebra automorphisms prope

o the Hilbert space of spinors. Indeed in Riemannian geometry, the algebra is the comm
lgebra of functions on spacetime, the automorphisms are precisely the general coordina

ormations and fluctuating the flat Dirac operator leads to Dirac operators with curvatu
orsion. The second step is the spectral action which in the commutative i.e., Riemanni
eproduces the Einstein-Hilbert action plus a positive cosmological constant and a cu
quared term. The Euclidean spectral action is positive definite and its ground states

nterpreted as a regularization of the initial singularity.
A noncommutative space or geometry is defined by a spectral triple consisting of an

, a Hilbert spaceH and a Dirac operatorD. One important property of noncommutative geo
try is that it contains discrete spaces, commutative or not. They have finite dimensional a
nd Hilbert spaces. An almost commutative geometry is a tensor product of the infinite
ional commutative algebra consisting of space–time functions with a finite dimensional no
utative algebra, the internal space. The internal Dirac operator is simply an initial fer
ass matrix and the internal algebra automorphisms of the tensor product are gauge tra

)Also at: Université de Provence. Electronic mail: iochum@cpt.univ-mrs.fr
)Also at: Université de Provence. Electronic mail: schucker@cpt.univ-mrs.fr
)Also at: Université de Provence and Universität Kiel. Electronic mail: stephan@cpt.univ-mrs.fr
)
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ions. The internal fluctuations produce gauge bosons and Higgs scalars and the spectral
n almost commutative geometry produces—besides the gravitational action—the complet
ills–Higgs action. The Higgs scalar is therefore the internal metric and its dynamics is the
otential. The initial fermionic mass matrix in general is not a solution of the internal dyna

he internal Einstein equation. These solutions are the minima of the Higgs potential
nduces the spontaneous symmetry breaking. They yield the true fermionic mass matrix
ave to compute it. Let us remark that in the prior approach of noncommutative Yang

heories without gravity,7 the Dirac operator was not a dynamical variable. Consequently ther
o nuance between initial and true fermion masses.

Although only a small subset of all Yang–Mills–Higgs models can be described as an
ommutative geometry this subset is still infinite and difficult to assess. We propose to re
sing two constraints. The first is inspired by grand unified theories, in particular SOs10d: the
auge group of the standard model of electromagnetic, weak and strong forces is embed
simple group and the representation of one generation of quarks and leptons is embedde

rreducible representation. Therefore our first constraint is the following: take the internal a
imple and its spectral triple irreducible. As we will see the resulting fermion masses in the
tate are degenerate in flagrant contradiction to experiment. We therefore analyze internal
ith two and three simple summands and their irreducible spectral triples. Again, in most ca

ermion masses come out degenerate with a few exceptions. Our aim is to list these excep
ther words, our second constraint is to impose a nondegenerate fermionic mass spectru
round state, namely to restrict the analysis to dynamically nondegenerate spectral trip
athematical definitions of these constraints are given in Secs. II and IV.

I. IRREDUCIBILITY

A spectral triple is given bysA ,H ,Dd such that the real*-algebraA acts on the comple
ilbert spaceH, the Dirac operatorD on H is selfadjoint anda priori unbounded. These thr

tems satisfy certain constraints of geometrical significance.4–6 The commutative examples co
rom the triple [A=C`sMd, H=L2sM ,Sd, D= igm]m] associated to a compact Riemannian

anifold M. As the resolvent ofD is compact,sA ,H ,D=0d is never a spectral triple for infini
imensionalH. However, this degenerate situation can occur in finite cases, but is exclude
ur definition of irreducible spectral triples.

Definition 2.1:

i) A spectral triplesA ,H ,Dd is degenerateif the kernel ofD contains a nontrivial subspa
of the complex Hilbert spaceH invariant under the representationr on H of the rea
algebraA.

ii ) A nondegenerate spectral triplesA ,H ,Dd is reducibleif there is a proper subspaceH0,H
invariant under the algebrarsAd such thatsA ,H0,DuH0

d is a nondegenerate spectral trip
If the triple is real,S0-real and even, we require the subspaceH0 to be also invariant und
the real structureJ, the S0-real structuree and under the chiralityx such that the tripl
sA ,H0,DuH0

d is again real,S0-real and even.

Remark 2.2:

i) (A=C`sMd, H=L2sM ,Sd, D= igm]m) is never degenerate.
ii ) If sAi ,Hi ,Did are two spectral triples then( A1 ^ A2, H1 ^ H2, D1 ^ 1) is a spectral tripl

whose kernel ofD1 ^ 1 is infinite dimensional whenH2 is of infinite dimension.
iii ) A finite dimensional commutative triple is a collection of points. It is nondegenerate

points have finite distances. The converse is wrong,A=C % C % C with the triple given by
diagram 15 is a counterexample.
iv) A reducible triple is not necessarily decomposable into a direct sum. For example,
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A = C % C { sa,bd, rsa,bd =1Sa 0

0 ā
D 0 0 0

0 b 0 0

0 0 Sā 0

0 ā
D 0

0 0 0 ā

2 , s2.1d

D =1
0 M 0 0

M* 0 0 0

0 0 0 M̄
0 0 M*̄ 0

2, M=S1

0
D . s2.2d

Here and throughout, overbars and asterisks mean complex conjugation and adjoi
v) Our definition of irreducibility differs from the one in our favorite book.8 Indeed ever

spectral triple coming from a Riemannian spin manifold is irreducible in our case, e
the manifold is not connected, that is when the commutative spectral triple is a direc

vi) In our definition of reducibility, the Dirac operator is not supposed to leave the subspaH0
invariant. Our definition is adapted to the use we will make of spectral triples: the fl
tions under algebra automorphisms properly lifted to the Hilbert space promote the
operator to a dynamical variable and we are interested in its dynamics, the spectral3

Since we are mainly interested in finite or 0-dimensional triples, we only recall the defi
or this case and also restricting ourselves to the real andS0-real triples.5,6

Definition 2.3:A real, S0-real, finite spectral triple is given bysA ,H ,D ,J,e ,xd with a finite
imensional real algebraA, a faithful representationr of A on a finite dimensional comple
ilbert spaceH. Four additional operators are defined onH: the Dirac operatorD is self-adjoint

he real structureJ is antiunitary, and theS0-real structuree and the chiralityx are both unitar
nvolutions. These operators satisfy

i)

J2 = 1, fJ,Dg = fJ,xg = fe,xg = fe,Dg = 0, eJ = − Je, Dx = − xD,

fx,rsadg = fe,rsadg = frsad,JrsbdJ−1g = ffD,rsadg,JrsbdJ−1g = 0, ∀ a,b P A.

ii ) The chirality can be written as a finite sumx=oirsaidJrsbidJ−1. This condition is calle
orientability.

iii ) The intersection formùi j : = trsxrspidJrspjdJ−1d is nondegenerate, detù Þ0. The pi are
minimal rank projections inA. This condition is calledPoincaré duality.

With the help of the projectorss1±xd /2 ands1±ed /2, the Hilbert space is decomposed a

H = HL % HR % HL
c

% HR
c . s2.3d

he first two components correspond in physics to particles,e=1, the last two correspond
ntiparticles,e=−1. We use the convention where left-handed spinors have negative and
anded spinors have positive chirality.

If we denote byrL the restriction ofr to HL, etc., and byrR
c the restriction toHR

c , we will

lways write the representation in the following form:
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r: =1
rL 0 0 0

0 rR 0 0

0 0 rL
c̄ 0

0 0 0 rR
c̄
2 . s2.4d

ith respect to the decomposition(2.3) of H, D has the form

D =1
0 M 0 0

M* 0 0 0

0 0 0 M̄
0 0 M*̄ 0

2 . s2.5d

ote that theS0-reality of internal spaces is equivalent to the absence of Majorana–Weyl s
hese are possible in 0-dimensional spaces, but impossible in 4- ands1+3d-dimensional space

M.

II. KRAJEWSKI DIAGRAMS

Krajewski, Paschke and Sitarz have classified all finite, thus 0-dimensional, real s
riples.10,14 Let us summarize this classification for theS0-real case using Krajewski’s diagra
atic language.

. Conventions and multiplicity matrices

i) The algebra: it is a finite sum ofN simple algebras,A= % i=1
N Mn−i

sKid andKi =R ,C ,H where
H denotes the quaternions.

ii ) The representation: let us start with the easy case,K=R ,H in all components of th
algebra. The algebrasMnsRd and MnsHd only have one irreducible representation,
fundamental one onCsnd, wheresnd=n for K=R andsnd=2n for K=H. Thereforer is of the
form

rs% i=1
N aid: = s% i,j=1

N ai ^ 1mji
^ 1snjd

d % s% i,j=1
N 1snid

^ 1mji
^ ājd. s3.1d

The multiplicities mij are non-negative integers and we denote by 1n the n3n identity
matrix and set by convention 10: =0. At the same time the real structureJ permutes the tw
main summands and complex conjugates them, while theS0-real structure and the chiral
read

e = s% i,j=1
N 1snid

^ 1mij
^ 1snjd

d % s% i,j=1
N 1snid

^ s− 1d1mji
^ 1snjd

d, s3.2d

x = s% i,j=1
N 1snid

^ x ji1mji
^ 1snjd

d % s% i,j=1
N 1snid

^ x ji1mji
^ 1snjd

d, s3.3d

wherexi j = ±1 according to our previous convention on left-sright-d handed spinors.

We define themultiplicity matrix mPMNsZd such thatmi j : =xi jmij . There areN minimal
rojectors inA, each of the formpi =0% ¯ % 0% diags1s1d ,0 , . . . ,0d % 0% ¯ % 0. With respect t
he basispi / s1d, the matrix of the intersection form ism+mT.

If the algebra has summands withK=C, things get more complicated. IndeedMnsCd has two
onequivalent irreducible representations, the fundamental one and its complex conjugat

hange(3.1) into
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rs% i=1
N aid: = s% i,j=1;ai,a j

N aiai
^ 1mja j iai

^ 1snjd
d % s% i,j=1

N 1snid
^ 1mja j iai

^ aja j
d, s3.4d

hereai =1 whenai PMni
sKd, K=R ,H andai =1,2 whenai PMni

sCd, andai1: =ai, ai2: =aī.
Therefore the multiplicity matrix is an integer valued square matrix of size equal

umber of summands withK=R andH plus two times the number of summands withK=C and
ecomposes intoN2 submatrices of size 131, 232, 132, and 231. For exampleA=MnsCd

% MmsCd % MqsRd{ sa,b,cd has a 535 multiplicity matrix. Let us label its rows and colum
ith algebra elements:

m = 1maa mab mac

mba mbb mbc

mca mcb mcc
2

a
a
b
b

c

aā bb̄ c

.

f both entriesmi j and m ji of the multiplicity matrix are nonzero, then they must have the s
ign.

The nonvanishing entries within each submatrix 132 or 231, like mca or mac, must have th
ame sign, while the signs of the nonvanishing entries in each 232 submatrix, e.g.,maa or mab

ust be checkerboardlike,s + −
− +

d or s − +
+ −

d.
Thecontracted multiplicity matrixm̂ is theN3N matrix constructed fromm by replacing eac

f the previous submatrices inm by the sum of the entries of the submatrix.

i) Poincaré duality: The last condition to be satisfied by the multiplicity matrix reflect
Poincaré duality. With respect to the basispi / s1d introduced above,s1d=1 for K=R andC,
s1d=2 for K=H, the matrix of the intersection form ism̂+m̂T. Therefore we must hav
detsm̂+m̂TdÞ0.

ii ) The Dirac operator: The components of the(internal) Dirac operator are represented
horizontal or vertical lines connecting two nonvanishing entries of opposite signs
multiplicity matrix m and we will orient them from plus to minus. Each arrow represe
nonvanishing, complex submatrix in the Dirac operator: For instancemi j can be linked t
mik or mkj by

and these arrows represent, respectively, submatrices ofM in D of type M ^ 1snid
with M

a complexsnjd3 snkd matrix and 1snjd
^ M with M a complexsnid3 snkd matrix.

The requirement of nondegeneracy of a spectral triple means that every nonvanishing
he multiplicity matrixm is touched by at least one arrow.

Convention for the diagrams: We will see that(for sums of up to three simple algebr)
rreducibility implies that most entries ofm have an absolute value less than or equal to 2. S
ill use asimple arrowto connect plus 1 to minus 1 anddouble arrowsto connect plus 1 to minu
or plus 1 to minus 1(Fig. 1).

Our arrows always point from plus, that is right chirality, to minus, that is left chirality. F
iven algebra, every spectral triple is encoded in its multiplicity matrix which itself is encod

ts Krajewski diagram, a field of arrows. In our conventions, for particles,e=1, the column labe
FIG. 1. Types of arrows.
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f the multiplicity matrix indicates the representation, the row label indicates the multiplicit
ntiparticles, the row label of the multiplicity matrix indicates the representation, the colum

ndicates the multiplicity.
Every arrow comes with three algebras: Two algebras that localize its end points, let

hemright and left algebrasand a third algebra that localizes the arrow, let us call itcolor algebra.
or example, for the arrow

he left algebra isA j, the right algebra isAk and the color algebra isAi.
The circles in the diagrams only intend to guide the eye. A black disk on a double

ndicates that the coefficient of the multiplicity matrix is plus or minus one at this location
wo arrows are joined at this location.” For example the the following arrows

epresent respectively submatrices ofM of type

SM1

M2
D ^ 1snid

and sM1 M2 d ^ 1snid

ith M1, M2 of sizesnjd3 snkd or in the third case, a matrix of typesM1 ^ 1snid
1snjd

^ M2 d where
M1 andM2 are of sizesnjd3 snkd and snid3 sn,d.

According to these rules, we can omit the number ±1, ±2 under the arrows like in Fig. 2
hey are now redundant.

Let us give a few examples of the explicit form of the spectral triple associated to a
rajewski diagram.

Take the algebraA=H % M3sCd{ sa,bd with the first diagram of Fig. 2. Then the multiplic
atrix and its contraction are

m = 1− 1 1 0

0 0 0

0 0 0
2, m̂ = S− 1 1

0 0
D .

sing (2.4), its representation is, up to unitary equivalence
FIG. 2. Diagrams with complex conjugation.
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rLsa,bd = a ^ 12, rRsa,bd = b ^ 12, rL
csa,bd = 12 ^ a, rR

csa,bd = 13 ^ a.

he Hilbert space is

H = C4
% C6

% C4
% C6.

n its Dirac operator(2.5), M=M ^ 12, whereM is a nonvanishing complex 233 matrix.
Real structure,S0-real structure and chirality are given by(c.c. stands for complex conjug

ion)

J = S 0 110

110 0
D + c.c., e = S110 0

0 − 110
D, x =1

− 14 0 0 0

0 16 0 0

0 0 − 14 0

0 0 0 16

2 .

he first tensor factor ina^ 12 concerns particles, the second concerns antiparticles denotedc.
he antiparticle representation is read from the transposed multiplicity matrix.

The second diagram of Fig. 2 yields

m = 1− 1 2 0

0 0 0

0 0 0
2, m̂ = S− 1 2

0 0
D ,

nd its spectral triple reads

rLsa,bd = a ^ 12, rRsa,bd = Sb 0

0 b
D ^ 12,

rL
csa,bd = 12 ^ a, rR

csa,bd = S13 0

0 13
D ^ a,

M = sM1 M2 d ^ 12, M1 andM2 of size 23 3,

J = S 0 116

116 0
D + c.c., e = S116 0

0 − 116
D, x =1

− 14 0 0 0

0 112 0 0

0 0 − 14 0

0 0 0 112

2 .

n Krajewski’s notations, Eq.(3.1), we would have writtenrRsa,bd=b^ 12 ^ 12, the middle facto
howing the entry of multiplicity matrixm.

Finally, still for the same algebra, let us consider the third diagram of Fig. 2. It gives

m = 1− 1 1 0

1 0 0

0 0 0
2, m̂ = S− 1 1

1 0
D ,

rLsa,bd = a ^ 12, rRsa,bd = Sb ^ 12 0

0 a ^ 13
D ,

rL
csa,bd = 12 ^ a, rR

csa,bd = S13 ^ a 0 D ,

0 12 ^ b
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M = sM1 ^ 12 12 ^ M2 d, M1 andM2 of size 23 3.

In the three above examples all arrows have left algebraH, right algebraM3sCd, and colo
lgebraH. The numerous examples below should allow the reader to get familiar with the

ation between diagrams and triples.

. Multiplicity matrix and irreducibility

Our work is based on the following lemma indicating that a classification of irredu
pectral triples is possible.

Lemma 3.1:

i) The direct sum of multiplicity matrices is again a multiplicity matrix describing the d
sum of spectral triples.

ii) For a given algebra there is only a finite list of multiplicity matrices describing irreduc
triples.

Proof:

i) is obvious.
ii ) Given an algebraA, denote byS the set of multiplicity matricesmPMnsZd (n is determine

by A) associated to irreducible spectral triples. Define a partial order inMnsZd by mùn
whenmi j andni j have the same sign andumi j uù uni j u for all i , j =1, . . . ,n. The interest of thi
order is that for two different multiplicity matricesm ,n such thatmùn andnPS, m corre-
sponds to a reducible triple.
To prove that cardsSd,`, we first identifyMnsZd with Zn2

. We denote byheijiPh1,. . .,n2j the

canonical basis ofZn2
andS+: =SùNn2

. We now prove that cardsS+d,`, which is suffi-
cient.
Assume cardsS+d=`. Then there exists at least one direction(say alonge1) such tha
suphsmd1umPS+j=`. Suppose now that in each hyperplane defined byme1, mPN, all points
mPS+ remain uniformly bounded,mi ,B, i =2, . . . ,n2. This means that there exists an i
nite family of points in an hypertube parallel toe1. Necessarily, there exists an infin
subfamily hmkjkPN,S+ of points in the hypertube which are aligned:smkdi =smk+1di, ∀i Þ1
andsmkd1, smk+1d1. But this is impossible sincemkømk+1 cannot happen. As a consequen
there exists a second direction(say alonge2 after renumbering) where the intersection
successive hyperplanes alonge1 ande2 contain an infinite family of points ofS+. By induc-
tion, the same reasoning in each directionei implies that there exists an infinite familyhmkjk

of points inS+ with increasing vectors:smkdi , smk+1di, ∀i. Again this yields the contradictio
mkømk+1 andmk+1¹S+. h

V. FLUCTUATIONS AND DYNAMICAL NONDEGENERACY

The aim of this work is twofold. First, we work out all irreducible real,S0-real diagrams fo
lgebras with one, two, and three simple summands. Second, we give all associated spect

hat are dynamically nondegenerate. By this we mean the following. The spectrum of the(internal)
irac operatorD is always degenerate: all nonvanishing eigenvalues come in pairs of op
ign due to the chirality that anticommutes withD. All eigenvalues appear twice due to the r
tructure that commutes withD. There is a further degeneracy, twofold in the example ab

=M ^ 12, that comes from the first order axiom. Let us call itcolor degeneracy. It is absent i
nd only if the color algebras of all arrows are commutative. Of course, these three dege
urvive the fluctuations of the Dirac operator and the minimization of the Higgs potenti
ynamical nondegenerate we mean(see precise definition below) that no minimum of the Higg
otential has degeneracies other than the above three. The first two degeneracies survivequantum

uctuationsas well. We also want the color degeneracies to be protected from quantum fluctua-
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ions. A natural protection is unbroken gauge invariance, a requirement that we will includ
he definition of dynamical nondegeneracy.

Except for complex conjugation inMnsCd and permutations of identical summands in
lgebraA=A1 % A2 % . . . % AN, every algebra automorphisms is inner,ssad=uau−1 for a unitary
PUsAd. Therefore the connected component of the automorphism group is AusAde

UsAd / sUsAdùCentersAdd. Its lift to the Hilbert space5

Lssd = rsudJrsudJ−1

s multivalued.
ThefluctuationfD of the Dirac operatorD is given by a finite collectionf of real numbersr j

nd algebra automorphismss j PAutsAde such that

fD: = o
j

r jLss jdD Lss jd−1, r j P R, s j P AutsAde.

he fluctuated Dirac operatorfD is often denoted byw, the Higgs scalar, in the physics literatu
e consider only fluctuations with real coefficients sincefD must remain self-adjoint.

To avoid the multivaluedness in the fluctuations, we allow the entire unitary group view
(maximal) central extension of the automorphism group. We will come back to minimal c
xtensions in another work.

An almost commutative geometry is the tensor product of a finite noncommutative tripl
n infinite, commutative spectral triple. By Connes’ reconstruction theorem[6] we know that th

atter comes from a Riemannian spin manifold, which we will take to be any four-dimens
ompact, flat manifold like the flat 4-torus. The spectral action of this almost commutative s
riple reduced to the finite part is a functional on the vector space of all fluctuated, finite
perators,

Vs fDd = l trfs fDd4g −
m2

2
trfs fDd2g,

herel and m are positive constants.3,11 The spectral action is invariant under lifted autom
hisms and even under the unitary groupUsAd{u,

VsfrsudJrsudJ−1g fDfrsudJrsudJ−1g−1d = Vs fDd,

nd it is bounded from below. Our task is to find the minimaf̂D of this action, their spectra a
heir little groups

G,: = hsu P UsAdd,frsudJrsudJ−1g f̂DfrsudJrsudJ−1g−1 = f̂Dj.

Definition 4.1:The irreducible spectral triplesA ,H ,Dd is dynamically nondegenerateif all

inima f̂D of the actionVs fDd define a nondegenerate spectral triplesA ,H , f̂Dd and if the spectr
f all minima have no degeneracies other than the three kinematical degeneracies: le
article–antiparticle, and color. Of course in the massless case there is no left–right deg
e also suppose that the color degeneracies are protected by the little group. By this we m

ll eigenvectors off̂D corresponding to the same eigenvalue are in a common orbit of the
roup (and scalar multiplication and charge conjugation).

In physicists’ language this last requirement means noncommutative color groups are
en. It ensures that the corresponding mass degeneracies are protected from quantum co

. STATEMENT OF THE RESULT

The main result of this work is the following:
N
Theorem 5.1: The sum of simple algebras, A= % i=1Ai with N=1,2,3 admits a finite, real,
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0-real, irreducible and dynamically nondegenerate spectral triple if and only if it is in this lis
o a reordering of the summands:

N = 1 N = 2 N = 3

1 % 1 1 % 1 % C
void 1 % 1 % 1

2 % 1 % C
2 % 1 2 % 1 % 1

Here 1 is a shorthand forR or C and 2 for M2sRd, M2sCd, or H.
The color algebraC is any simple algebra and has two important constraints:

i) Its representations on corresponding left- and right-handed subspaces ofH are identical (up
to possibly different multiplicities).

ii ) The Dirac operatorD is invariant under UsCd,

rs1,1,wdDrs1,1,wd−1 = D, for all w P UsCd.

This implies that the unitaries ofC do not participate in the fluctuations and are theref
unbroken, i.e., elements of the little group.

Let us emphasize that although the four-dimensional space–time manifoldM used to defin
he almost commutative geometry does not show up in this result, it is an important ingred
he spectral action and its asymptotic behavior. In particular the dimension ofM is linked to the
rder of the polynomialV. Therefore our classification indeed concerns four-dimensional, a
ommutative geometries.

We give in Sec. IX A an example of a reducible triple which is dynamically nondegen
nd whose algebra is not in the above list.

I. ONE SIMPLE ALGEBRA

From the classification,10,14we know thatA=MnsCd are the only simple algebras to admit r
pectral triples. Up to permutation ofa and ā (complex conjugation inA), up to permutation o
articles and antiparticles(reflection of the diagram with respect to the main diagonal) and up to
ermutation of left- and right-handed particles(changing the direction of all arrows), all real
0-real and irreducible triples have Krajewski diagrams indicated in Fig. 3.

Indeed, a Krajewski diagram must contain at least one arrow which can be put in
ositionm= s −1 +1

0 0
d by use of the three above permutations. However, alone this arrow do

ulfill Poincaré duality,m̂+m̂T=0. There are four ways to add a second arrow. But Poincaré d
an only be satisfied if the two arrows are joined in one point. Adding a third arrow mak
orresponding spectral triples reducible.

The first diagram yields

rLsad = Sa 0D ^ 1n, rRsad = ā ^ 1n, rL
csad = 1n ^ Sa 0D, rR

csad = 1n ^ a,

FIG. 3. One algebra: all irreducible diagrams.
0 a 0 a
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M: = M ^ 1n: = SM1

M2
D ^ 1n, M1,M2 P MnsCd. s6.1d

eal structure,S0-real structure and chirality are

J = S 0 13n2

13n2 0
D + c.c., e = S13n2 0

0 − 13n2
D, x =1

− 12n2 0 0 0

0 + 1n2 0 0

0 0 − 12n2 0

0 0 0 + 1n2

2 .

et us write the fluctuations ofD as

fD: =1
0 fM 0 0

fM* 0 0 0

0 0 0 fM̄
0 0 fM*̄ 0

2 . s6.2d

ere

fM = fM ^ 1n = S fM1
fM1

D ^ 1n.

hen

fM1 = o
j

r jujM1uj
T, fM2 = o

j

r jujM2uj
T, so fM = o

j

r jSuj 0

0 uj
DSM1

M2
Duj

T s6.3d

nd

Vs fDd = l trf fD4g −
m2

2
trf fD2g = 4nSl trfs fM * fMd2g −

m2

2
trf fM * fMgD .

he matrix fM is of size 2n3n. Therefore the fluctuationfD has at leastn vanishing eigenvalue
ach still coming with itsn-fold color degeneracy and all triples withnù2 are dynamicall
egenerate sincefMfM* PM2nsCd has at leastn zero eigenvalues.

For n=1, all minima of the actionV are of the formu f̂M1u2+ u f̂M2u2=m2/4l. But the corre
ponding fluctuated Dirac operator has a nontrivial invariant subspace in its kernel and th

s degenerate. To make the subspace explicit apply a unitary change of basis to setfM2 to zero. In
very minimum the little group isZ2.

At this point, an overkill is instructive. We will show that the casenù2 also features dynam
al degeneracy in the nonzero eigenvalues.

In general, the set of all possible fluctuationsfD, i.e., the image under the fluctuations(6.3),
s difficult to describe. However, the actionV only depends on the positiven3n matrix C:

fM* fM and is a sum ofn2 polynomials of fourth order in the matrix elements ofC,

VsCd = 4nFo
i=1

n SlCii
2 −

m2

2
CiiD + o

iÞ j

luCij u2G . s6.4d

f C=sm2/4ld /1n is in this image then it is the unique minimum in terms of the variableC.
To compute the minima of the action, we now distinguish cases.
Case 1:At least one diagonal element of one of the two matrices is nonzero.
After a suitable renumbering of the basis of the Hilbert spaceH, we may assum
M1d11Þ0. With a first fluctuation,
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r1 =
1

2
, r2 =

1

2
, u1 = 1n, u2 = S1 0

0 − 1n−1
D ,

e obtain forfM a block diagonal matrix with 232 blocks. By means of the fluctuation

r1 =
1

2
, r2 =

1

2
, u1 = 1n, u2 = S1 0

0 i1n−1
D ,

e isolate the(1,1) elements ofM1 andM2 and with r1=r2=¯ =rn=1, u1=1n,

u2 = 10 1 0

1 0 0

0 0 1n−2
2, u3 =1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1n−3

2, u4 =1
0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1n−4

2, . . .

e distribute them over the entire diagonal obtaining

fM = SsM1d111n

sM2d111n
D .

hen C is a nonvanishing multiple of the identity and a suitable multiple of the abovefM is a

inimum. The spectrum of this minimumf̂D has an additional dynamical degeneracy and u

he sign,f̂D has one single eigenvalue. The little group isG,=Osnd. Note also thatf̂M1 and f̂M2

re proportional,f̂M1=a f̂M2, aPC, so there is a unitary change of basis in the Hilbert spaH
uch thatf̂M2=0 in the new basis and the spectral triplesMnsCd ,H , f̂Dd is degenerate.

Case 2:All diagonal elements ofM1 andM2 vanish butM1 andM2 are not both skewsym
etric.

After a suitable renumbering, we may assumesM1d12=b−g, sM1d21=b+g, sM1d11=sM1d22

0, with bÞ0. As in case 1 we can isolate this block. Fluctuating with

r1 = 1, u1 = 11/Î2 − 1/Î2 0

1/Î2 1/Î2 0

0 0 1n−2
2 ,

e obtains fM1d11=−b and conclude as in case 1.
Case 3: M1 andM2 are skewsymmetric and linearly dependent.
Thus M can be written asM =M1 ^ s 1

a
d, aPC and by a unitary change of basis, we m

ssumea=0 that isM2=0 without changing the representation(6.1). Then the spectral triple
egenerate. Let us nevertheless finish this case. By another unitary change of basis(or fluctuation),
f. Appendix A1, we set

M1=1S 0 − l1

l1 0
D

S 0 − l2

l2 0
D

�

0

2 ,

here the zero in the lower right corner concerns the casen odd. Let us suppose thatl1 is not
ero. By isolating the upper left block and by distributing it over the entire diagonal we ob

f ˆ 2
M1ii =l1 for all i. If n is even, we then have the minimumC=sm /4ld /1n for VsCd. Its spectrum
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s again completely degenerate with little groupG,=USpsn/2d. If n is odd the spectrum off̂D
ontains four vanishing eigenvalues, all others being of the same absolute valu

,=USpfsn−1d /2g3Us1d.
Case 4: M1 andM2 are skewsymmetric and linearly independent:
Then fM1 and fM2 vary independently over all skewsymmetric matrices(cf. Lemma 11.10).

or n=3 the minimization can be done by direct calculation. All minima are gauge equiva

f̂M =
m

Î6l1
0 1 0

− 1 0 0

0 0 0

0 0 1

0 0 0

− 1 0 0

2, Ĉ: = f̂M* f̂M =
m2

6l12 0 0

0 1 0

0 0 1
2 .

lthough the spectrum has a twofold dynamical degeneracy the little group is onlyG,=Us1d
diagseiu ,e−iu ,e−iud. For generaln, we were unable to compute a minimum explicitly, but we

how that its spectrum is dynamically degenerate. To alleviate notations let us rescale v
fD→ smÎ2md / fD. Then the spectral action reads forCi : = fMi

* fMi,

Vs fM1,
fM2d =

nm4

l
strfC1

2g − trfC1g + trfC2
2g − trfC2g + 2trfC1C2gd.

ll minima of this fourth order polynomial have vanishing partial derivatives with respect tofM1
*

nd fM2
* . These equations read

f̂M1 = 2f̂M1
f̂M1

* f̂M1 + f̂M1
f̂M2

* f̂M2 + f̂M2
f̂M2

* f̂M1, s6.5d

f̂M2 = 2f̂M2
f̂M2

* f̂M2 + f̂M2
f̂M1

* f̂M1 + f̂M1
f̂M1

* f̂M2. s6.6d

et us setX: =Ĉ1, Y: =Ĉ2, and Z: = f̂M1
* f̂M2. We multiply Eq. (6.5) from the left by f̂M1 and

ikewise for (6.6) to get

X = 2X2 + XY+ ZZ* , s6.7d

Y = 2Y2 + XY+ Z * Z. s6.8d

ubtracting(6.7) from its Hermitian conjugate, we have thatX and Y commute and subtractin
6.8) and (6.7) we get

2sX − YdsX + Y − 1
21nd = fZ * , Zg. s6.9d

ultiplying (6.6) from the left with f̂M1
* and multiplying the Hermitian conjugate of(6.5) from

he right with f̂M2, we have

Z = 2ZY+ ZX+ XZ,

Z = 2XZ+ YZ+ ZY. s6.10d

aking the difference, we find thatZ commutes withX+Y.

We are to show that the spectrum ofĈ= f̂M* f̂M =X+Y is degenerate: Let us suppose that

ondegenerate. Take an orthonormal basis of eigenvectors ofĈ. Then it is also an eigenbasis oZ

mplying thatfZ,Z* g=0 and by(6.9) the eigenvaluesxj andyj of X andY corresponding to thej th
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asis vector satisfy at least one of the equationsxj =yj, xj +yj =1/2. But as f̂M1 and f̂M2 are
kewsymmetric, each eigenvalue ofX and Y is doubly degenerate with the exception of
anishing eigenvalue ifn is odd. This contradicts the nondegeneracy ofX+Y.

The triple of the second diagram of Fig. 3 differs from the first only with respect to rep
ation and Dirac operator

rLsad = Sa 0

0 ā
D ^ 1n, rRsad = ā ^ 1n, rL

csad = 1n ^ Sa 0

0 ā
D, rR

csad = 1n ^ a,

M = SM1 ^ 1n

1n ^ M2
D, M1,M2 P MnsCd.

gain, nondegeneracy of the zero eigenvalue requiresn=1 and all minima, u f̂M1u2+ u f̂M2u2
m2/4l, have little groupZ2. But now all minima of the actionV are not gauge equivalent. Inde

hen f̂M1=ms4ld−1/2, f̂M2=0 and KersDd=SpanhHL2,HL2
c j. Thus the eigenvector in the image

1/2ds1−ed associated to the zero eigenvalue of the fluctuated Dirac operator, which is iHL2,
ransforms underrsudJrsudJ−1 as multiplication byu−2, while it transforms as multiplication byu2

hen f̂M2=ms4ld−1/2. According to our definition the triple is dynamically degenerate becau
oth cases, the eigenvectors define a one-dimensional complex subspace invariant undA and

ontained in the kernel of the fluctuated Dirac operatorf̂D.
The last two diagrams of Fig. 3 are treated as the first two and yield the same conclu

II. TWO SIMPLE ALGEBRAS

Again our starting point is the list, Fig. 4, all irreducible Krajewski diagrams up to the
entioned types of permutations and up to permutations of the two algebras and disregar
irect sum of two diagrams from Fig. 3.

Let k and, be the size of the matrices ofA1=MnsKd{a andA2=MmsKd{b. For example
=n for A1=MnsRd or MnsCd andk=2n for A1=MnsHd. The first diagram of Fig. 4 yields

rLsa,bd = a ^ 1k, rRsa,bd = b ^ 1k, rL
csa,bd = 1k ^ a, rR

csa,bd = 1, ^ a,
FIG. 4. Two algebras: all irreducible diagrams.
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M = M ^ 1k, M P Mk3,sCd.

M is nonzero and we may assumeM11Þ0. Except for thek-fold color degeneracy, we accept
ost one zero eigenvalue ofM * M. Therefore we must havek=, or k=,±1. We assume,øk.
et in (6.2)

fM = fM ^ 1k,
fM = o

j

r jujMv j
−1, uj P UsA1d, v j P UsA2d.

f kù2, ,.2 or k.2, ,ù2, we may isolate the upper 232 block by fluctuations: With the fir
uctuation,

r1 =
1

2
, r2 =

1

2
, u1 = 1k, v1 = 1,, u2S12 0

0 − 1k−2
D, v2S12 0

0 − 1,−2
D ,

e obtain forM a block diagonal type matrix. By means of the fluctuation

r1 =
1

2
, r2 =

1

2
, u1 = 1k, v1 = 1,, u2 = 1k, v2=S12 0

0 − 1,−2
D

e isolate the upper block. Ifk=,=2 this step is empty.
Now we may distinguish cases.
Case 1:A1=MnsRd or MnsCd, A2=MmsRd or MmsCd: like above, we isolateM11 and as in

ase 1 for one algebra we distributeM11 over the entire diagonal, obtaining thusfM* fM propor-
ional to the identity. The spectrum of the fluctuated Dirac operatorfD minimizing the actionV has
n ,-fold dynamical degeneracy.

Case 2:A1=MnsHd, A2=MmsHd, define the fluctuation

r1 =
1

2
, r2 =

1

4
, r3 =

1

4
, u1 = 1k, v1 = 1,, u2 = 1S 0 1

− 1 0
D 0

0 1k−2
2 ,

v2 = 1±S 0 1

− 1 0
D 0

0 1,−2
2, u3 = 1S0 i

i 0
D 0

0 1k−2
2, v3 = 1±S0 i

i 0
D 0

0 1,−2
2 ,

he upper block is proportional to 12. The plus signs in ± are used ifM11=M22. We distribute th
lock over the diagonal and get an,-fold dynamical degeneracy(recall that,øk).

Case 3:A1=MnsRd or MnsCd, A2=MmsHd. If M12=0 we fluctuate with

r1 = r2 =
1

4
, r3 =

1

2
, u1 = 1k, v1 = 1,, u2 = 1S1 0

0 − 1
D 0

0 1k−2
2, v2 = 1,,

u3 = 1S0 1

1 0
D 0

0 1k−2
2, v3 = 1− S0 − 1

1 0
D 0

0 1,−2
2 ,
nd obtain
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fM = 1SM11 0

0 − M11
D 0

0 0
2 .

f M12Þ0 we fluctuate with

r1 = r2 =
1

4
, r3 =

1

2
, u1 = 1k, v1 = 1,, u2 = S12 0

0 − 1k−2
D, v2 = 1,,

u3 = 1k, v3 = 1Se−iu 0

0 eiu D 0

0 − 1,−2
2 ,

ith u : = 1
2sArgsM11d−ArgsM12dd and obtain

fM = 1SeiuM11 e−iuM12

0 0
D 0

0 0
2 .

n both cases, we distribute the 232 block over the diagonal and achievefM* fM proportional to
he identity.

In all three cases,, must be one to avoid dynamical degeneracy.
The second diagram of Fig. 4 is treated in the same fashion. The last two diagrams o

ave no letter changing arrow, an arrow connecting ana to ab. They are treated as the triples w
ne simple algebra:Counting neutrinos, that is requiring at most one zero eigenvalue(up to a
ossible color degeneracy) yields A=C % C and degeneracy.

Finally using the permutations we get the list of all irreducible, dynamically nondege
riples with two algebras:

There are the commutative triples, that is the two-point spaces,A=C % C{ sa,bd,

rsa,bd =1
a 0 0 0

0 b 0 0

0 0 ā 0

0 0 0 ā
2, and inD, M P C. s7.1d

here is a second one with the same algebra,

rsa,bd =1
ā 0 0 0

0 b 0 0

0 0 ā 0

0 0 0 ā
2 . s7.2d

nd there are the real versions,A=C % R, R % C, andR % R.
The noncommutative triples haveA=M2sCd % C{ sa,bd with four irreducible triples,

rsa,bd =1
a ^ 12 0 0 0

0 b12 0 0

0 0 12 ^ ā 0

0 0 0 ¯
2, M = S0

m
D ^ 12, mP C, s7.3d
a
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rsa,bd =1
ā ^ 12 0 0 0

0 b12 0 0

0 0 12 ^ ā 0

0 0 0 ā
2, M = S0

m
D ^ 12, s7.4d

rsa,bd =1
a 0 0 0

0 b 0 0

0 0 b̄12 0

0 0 0 b̄
2, M = S0

m
D , s7.5d

rsa,bd =1
a 0 0 0

0 b̄ 0 0

0 0 b̄12 0

0 0 0 b̄
2, M = S0

m
D , s7.6d

n all four cases, all minimaf̂D are gauge equivalent to the Dirac operatorD with the absolut
alue ofm fixed in terms ofl andm and the little groups are

G, = Us1d 3 Us1d { SSeia 0

0 e−ib D,eibD .

n the two triples(7.3) and (7.4), the unitaries of the color algebra,M2sCd, are spontaneous
roken, they do not leave any minimum invariant, Us2dúG,. According to our definition thes

wo triples are dynamically degenerate.
Then there are diverse real versions: replace the complex 232 matricesM2sCd by quaternion

or by real matricesM2sRd and/or replaceC by R. For the real forms, of course, we have
omplex conjugations in the representations. We summarize the little groups(arrows mean grou
omomorphisms):

C % C .Us1d 3 Us1d →Us1d,

C % R .Us1d 3 Z2 →Us1d,

R % R .Z2 3 Z2 →Z2,

M2sCd % C .Us2d 3 Us1d →Us1d 3 Us1d,

M2sCd % R .Us2d 3 Z2 →Us1d 3 Z2,

H % C .SUs2d 3 Us1d →Us1d,

H % R .SUs2d 3 Z2 →Z2,

M2sRd % C .Os2d 3 Us1d →Z2 3 Z2,

M2sRd % R .Os2d 3 Z2 →Z2 3 Z2.

s7.7d

he triples(7.3) or its commutative version(7.1) and(7.4) or its commutative version(7.2), (7.5),
nd (7.6) are represented by the four diagrams of Fig. 5.

III. THREE SIMPLE ALGEBRAS

. Proof for N=3

So far, we found that all irreducible dynamically nondegenerate triples were associ

iagrams with letter changing arrows only, i.e., arrows connecting two different algebras. These
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rrows are stable under contraction of the multiplicity matrix. Therefore we start by const
ll irreducible contracted diagrams, Fig. 6. In other words we neglect the complex con
epresentations.

This list becomes exhaustive upon permutations of the three algebrasA1=MnsKd{a, A2

MmsKd{b, A3=MqsKd{c, upon permuting left and right, i.e., changing the directions o
wo or three arrows simultaneously, and upon permutations of particles and antiparticles i
ently in every connected component of the diagram.

Let k, ,, p be the sizes of the matricesa,b,c.
Diagram 1 yields the following:

rLsa,b,cd = Sa ^ 1k 0

0 b ^ 1,
D, rRsa,b,cd = Sb ^ 1k 0

0 c ^ 1,
D ,

rL
csa,b,cd = S1k ^ a 0

0 1, ^ b
D, rR

csa,b,cd = S1,^ a 0

0 1p ^ b
D ,

nd

M = SM1 ^ 1k 0

0 M2 ^ 1,
D, M1 P Mk3,sCd, M2 P M,3psCd.

he fluctuations,

fM1 = o
j

r jujM1v j
−1, uj P UsA1d, v j P UsA2d,

fM2 = o
j

r jv jM2wj
−1, wj P UsA3d,

roduce twodecoupledfields fM1 and fM2 as can be seen by applying the fluctuation,r1=1/2,

1=1k, v1=1,, w1=1p, r2=1/2, u2=1k, v2=1,, w2=−1p.
Since the arrowsM1 andM2 are disconnected, the action is a sum of an action infM1 and of

f f̂

FIG. 5. Two algebras: all diagrams with nondegenerate triples.
n action in M2. Proceeding as in the preceding section we find that a minimumM1 has minhk,,j
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igenvaluesms4ld−1/2 and uk−,u eigenvalues zerof̂M2 has minh, ,pj eigenvaluesms4ld−1/2 and
,−pu eigenvalues zero. All triples associated to the first diagram and therefore dyna
egenerate.

For the same reason, we can discard diagrams 2, 3, 4, 6, because they also have tw
ected horizontal arrows not vertically aligned.

Diagram 5 yields the following:

rLsa,b,cd = Sa ^ 1k 0 D, rRsa,b,cd = b ^ 1k,

FIG. 6. Three algebras: all irreducible diagrams before blow up.
0 b ^ 1p
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rL
csa,b,cd = S1k ^ a 0

0 1, ^ c
D, rR

csa,b,cd = 1, ^ a,

M = SM1 ^ 1k

1, ^ M2
D, M1 P Mk3,sCd, M2 P Mp3ksCd.

gain the fluctuations,

fM1 = o
j

r jujM1v j
−1, uj P UsA1d, v j P UsA2d,

fM2 = o
j

r jwjM2uj
−1, wj P UsA3d,

roduce two decoupled fieldsfM1 and fM2 but now the arrows are connected and consequ
he action does not decouple,

VsC1,C2d = 4kfl trsC1
2d − 1

2u2 trsC1dg + 4,fl trsC2
2d − 1

2m2 trsC2dg + 8l trsC1dtrsC2d,

hereCi : = fMi
* fMi. Let x1,x2, . . . ,x, be the eigenvalues ofC1 andy1,y2. . . ,yk be the eigenvalue

f C2. The action only depends on these variables and in its minimum allxi are equal or vanish an

ll yi are equal or vanish. The spectrum of the minimal Dirac operatorf̂D contains at most thre
onvanishing numbers,Îx, Îy, Îx+y implying that k and , are less than or equal to 2. T
ermionic mass matrixM is of sizesk2+,pd3 sk,d. To get at most one zero eigenvalue we m

equireuk2+,p−k,uø1 implying k=p=1. For,=1 the minimum is atu f̂M1u2+ u f̂M2u2=m2/4l, for

=2 the minimum is atf̂M1=0, u f̂M2u2=m2/4l. In both cases,f̂M1=0, the triple is degenerate
he sense that the Dirac operator has an invariant subspace in the kernel.

Diagram 7 falls in the same way.
Diagram 8 yields the representations

rLsa,b,cd = 1a ^ 1k 0 0

0 c ^ 1k 0

0 0 b ^ 1p
2, rRsa,b,cd = Sb ^ 1k 0

0 c ^ 1p
D ,

rL
csa,b,cd = 11k ^ a 0 0

0 1p ^ a 0

0 0 1, ^ c
2, rR

csa,b,cd = S1, ^ a 0

0 1p ^ c
D .

he possible complex conjugations in the representation will not be important in this diagra
ass matrix is

M = 1M1 ^ 1k 0

M2 ^ 1k 0

0 M3
*

^ 1p
2, M1 P Mk3,sCd, M2,M3 P Mp3,sCd.
he fluctuations are
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fM1 = o
j

r jujM1v j
−1, uj P UsA1d, v j P UsA2d,

fM2 = o
j

r jwjM2v j
−1, wj P UsA3d,

fM3 = o
j

r jwjM3v j
−1,

nd the action is, withCi : = fMi
* fMi,

VsC1,C2,C3d = 4kfl trsC1 + C2d2 − 1
2u2 trsC1 + C2dg + 4pfl trsC3d2 − 1

2m2 trsC3dg .

equiring at most one zero eigenvalue(up to a possible color degeneracy) implies k=1,
=p+1 or k=1, ,=p. In both casesfM1 and fM2 vary independently. The color group consist

he u’s andw’s. As they are spontaneously broken we must havek=p=1, leaving,=1 and,=2.
n the commutative case with no complex conjugations in the representation,fM3=b fM2 for a
omplex constantbÞ0. If ubuù1 the minimum is given by

u f̂M1u
2

=
s1 − ubu−2dm2

4l
, u f̂M2u

2
=

ubu−2m2

4l
, andu f̂M3u

2
=

m2

4l
.

ts mass spectrumh0,m /4l ,m /4lj is dynamically degenerate. Ifubuø1 the minimum is given b

u f̂M1u
2

= 0, u f̂M2u
2
=

1 + ubu2

1 + ubu4
m2

4l
, andu f̂M3u

2
=

ubu2s1 + ubu2d
1 + ubu4

m2

4l
.

he triple is degenerate because of the invariant subspace in the kernel of the Dirac opera

dditional complex conjugations in the representation,f̂M3 may decouple fromf̂M2 and the triple
ecomes dynamically degenerate as in diagram 1.

In the noncommutative casek=1, ,=2, p=1, M1 andM2 must be linearly independent. To g
nondegenerate triple for any choice ofA1 andA3=R or C andA2=M2sRd, M2sCd or H it is

ufficient to take the exampleM1=sm1,0d, M2=s0,m2d, M3=bM2. The minimum is given b
f̂M1

f̂M2
* =0 and

u f̂M1u
2

=
m2

4l
, u f̂M2u

2
=

1 + ubu2

1 + ubu4
m2

4l
, andu f̂M3u

2
= ubu2

1 + ubu2

1 + ubu4
m2

4l
,

ynamically nondegenerate forbÞ0 andubuÞ1.

Let us note a new phenomenon: the three eigenvalues of a minimumf̂D are tied together b
mass relation. Its origin is clear, when we add more and more irreducible components
ilbert space the number of possible fluctuations does not change, the number of compo

he Dirac operator increases. This phenomenon does not only occur for the particular choic
ass matricesM1, M2, andM3 above, but is generic for diagram 8. The little groups are the
s the last six in(7.7).

Diagram 9 yields the representations

rLsa,b,cd = 1a ^ 1k 0 0

0 a ^ 1p 0 2, rRsa,b,cd = 1b ^ 1k 0 0

0 a ^ 1, 0 2 ,
0 0 b ^ 1p 0 0 c ^ 1p
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rL
csa,b,cd = 11k ^ a 0 0

0 1k ^ c 0

0 0 1, ^ c
2, rR

csa,b,cd = 11, ^ a 0 0

0 1k ^ b 0

0 0 1p ^ c
2 ,

ith possible complex conjugations. The mass matrix is

M = 1M1 ^ 1k 0 0

0 1k ^ M2
* 0

0 0 M3 ^ 1p
2, M1 P Mk3,sCd, M2,M3 P M,3psCd.

The fluctuations are

fM1 = o
j

r jujM1v j
−1, uj P UsA1d, v j P UsA2d,

fM2 = o
j

r jujM2wj
−1, wj P UsA3d,

fM3 = o
j

r jv jM3wj
−1,

nd the actionVsC1,C2,C3d is equal to

4kfl trsC1d2 − 1
2m2 trsC1dg + 4kfl trsC2d2 − 1

2m2 trsC2dg + 4pfl trsC3d2 − 1
2m2 trsC3dg.

ounting neutrinos and imposing broken color to be commutative leaves only one case,k=,=p
1. We chooseM3=bM2 and get the minima at

u f̂M1u
2

=
m2

4l
, u f̂M2u

2
=

1 + ubu2

1 + ubu4
m2

4l
, u f̂M3u

2
= ubu2

1 + ubu2

1 + ubu4
m2

4l
,

o it is dynamically nondegenerate forbÞ0 andubuÞ1.
Diagram 10 yields the representations

rLsa,b,cd = 1a ^ 1k 0 0

0 a ^ 1k 0

0 0 b ^ 1p
2, rRsa,b,cd = Sb ^ 1k 0

0 c ^ 1p
D ,

rL
csa,b,cd = 11k ^ a 0 0

0 1k ^ a 0

0 0 1, ^ c
2, rR

csa,b,cd = S1, ^ a 0

0 1p ^ c
D ,

ith possible complex conjugations. The mass matrix is

M = 1M1 ^ 1k 0

M2 ^ 1k 0

0 M3 ^ 1p
2, M1,M2 P Mk3,sCd, M3 P M,3psCd.
he fluctuations are
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fM1 = o
j

r jujM1v j
−1, uj P UsA1d, v j P UsA2d,

fM2 = o
j

r jujM2v j
−1,

fM3 = o
j

r jv jM3wj
−1, wj P UsA3d,

nd the action is

VsC1,C2,C3d = 4kfl trsC1 + C2d2 − 1
2u2 trsC1 + C2dg + 4pFl trsC3d2 −

1

2
m2 trsC3dG .

eutrino counting impliesk=1, ,=2, p=1 or k=,=p=1. In both casesfM3 varies independent
f fM1 and fM2.

The commutative case has alwaysu f̂M1u2+ u f̂M2u2= u f̂M3u2=m2s4ld−1 and is dynamically dege
rate.

In the noncommutative casek=1, ,=2, p=1, M1 and M2 must be linearly independe
or A1 % A2=R % M2sCd, C % M2sRd, and C % M2sCd, lemma 11.6 decouplesfM1 and fM2

nd the triples are dynamically degenerate,f̂M1=sms4ld−1/2,0d, f̂M2=s0,ms4ld−1/2d,
f̂M3=s0,ms4ld−1/2dT. For A1 % A2=R % H andC % H we choose

rLsa,b,cd = 1a ^ 1k 0 0

0 ā ^ 1k 0

0 0 b ^ 1p
2, M1 = sm1,0d, M2 = s0,am1d.

ts minimum has the nondegenerate spectrumhs1+uau2d / s1+uau4d ,fuau2s1+uau2d / s1+uau4dg ,1 ,0j in
nits of m2/4l with one mass relation. Finally forA1 % A2=R % M2sCd we chooseM1=si ,1d and

M2=s1,0d to obtain the nondegenerate spectrumhs2±Î2d /3 ,1 ,0j in units of m2/4l.
Diagram 11 yields the representations

rLsa,b,cd = Sa ^ 1k 0

0 b ^ 1p
D, rRsa,b,cd = 1b ^ 1k 0 0

0 b ^ 1k 0

0 0 c ^ 1p
2 ,

rL
csa,b,cd = S1k ^ a 0

0 1, ^ c
D, rR

csa,b,cd = 11, ^ a 0 0

0 1, ^ a 0

0 0 1p ^ c
2 ,
ith possible complex conjugations. The mass matrix is
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M = SM1 ^ 1k M2 ^ 1k 0

0 0 M3 ^ 1p
D, M1,M2 P Mk3,sCd, M3 P M,3psCd.

he fluctuations are

fM1 = o
j

r jujM1v j
−1, uj P UsA1d, v j P UsA2d,

fM2 = o
j

r jujM2v j
−1,

fM3 = o
j

r jujM3wj
−1, wj P UsA3d,

nd then action is

VsC1,C2,C3d = 4kfl trsC1 + C2d2 − 1
2u2 trsC1 + C2dg + 4pfl trsC3d2 − 1

2m2 trsC3dg.

eutrino counting and imposing broken color to be commutative leaves only one possibk
,=p=1, which is treated as the casek=,=p=1 of diagram 10 with the same conclusi
egeneracy.

Diagram 12 yields the representations

rLsa,b,cd = Sa ^ 1k 0

0 b ^ 1p
D, rRsa,b,cd = 1b ^ 1k 0 0

0 a ^ 1, 0

0 0 c ^ 1p
2 ,

rL
csa,b,cd = S1k ^ a 0

0 1, ^ c
D, rR

csa,b,cd = 11, ^ a 0 0

0 1k ^ b 0

0 0 1, ^ c
2 ,

ith possible complex conjugations. The mass matrix is

M = SM1 ^ 1k 1k ^ M2 0

0 0 M3 ^ 1p
D, M1,M2 P Mk3,sCd, M3 P M,3psCd.

he fluctuations are

fM1 = o
j

r jujM1v j
−1, uj P UsA1d, v j P UsA2d,

fM2 = o
j

r jujM2v j
−1,

fM3 = o
j

r jv jM3wj
−1, wj P UsA3d.

he actionVsC1,C2,C3d equals

4kfl trsC1d2 − 1
2m2 trsC1dg + 4kfl trsC2d2 − 1

2m2 trsC2dg + 8l trsC1dtrsC2d + 4pfl trsC3d2

− 1
2m2 trsC3dg.

ince the neutrino count and imposing broken color to be commutative impliesk=,=p=1. Then
f f f f
M2=aM1 and we must distinguish two cases,M2=a M1 or M1 and M2 independent. Both
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ossibilities have a dynamically degenerate minimum,u f̂M1u2+ u f̂M2u2= u f̂M3u2=m2/4l.
Diagram 13 has aladder form, i.e., it consists of horizontal arrows, vertically aligned.

epresentations are

rLsa,b,cd = 1a ^ 1k 0 0

0 a ^ 1k 0

0 0 a ^ 1p
2, rRsa,b,cd = Sb ^ 1k 0

0 b ^ 1p
D ,

rL
csa,b,cd = 11k ^ a 0 0

0 1k ^ a 0

0 0 1k ^ c
2, rR

csa,b,cd = S1, ^ a 0

0 1, ^ c
D ,

ith possible complex conjugations here and there. The mass matrix is

M = 1M1 ^ 1k 0

M2 ^ 1k 0

0 M3 ^ 1p
2, M1,M2,M3 P Mk3,sCd.

he fluctuations are

fM1 = o
j

r jujM1v j
−1, uj P UsA1d, v j P UsA2d,

fM2 = o
j

r jujM2v j
−1,

fM3 = o
j

r jujM3v j
−1,

nd the action is

VsC1,C2,C3d = 4kfl trsC1 + C2d2 − 1
2m2 trsC1 + C2dg + 4pfl trsC3d2 − 1

2m2 trsC3dg.

he neutrino count impliesk=1,,=2 or k=,=1.
The casek=,=1 has the following possibilities.
Case 1:R % R % C, whereC is any simple color algebra. All possible triples are degenera

he sense that the Dirac operator has an invariant subspace in its kernel.
Case 2:R % C % C, all possible triples are degenerate.
Case 3:C % R % C{ sa,b,cd. The nondegenerate triples have

rLsa,b,cd = 1a 0 0

0 ā 0

0 0 ā ^ 1p
2, rRsa,b,cd = Sb 0

0 b ^ 1p
D .

he fluctuations respect the mass ratios:uM1u : uM2u : uM3u= u fM1u : u fM2u : u fM3u. If M1 and M2 are

ifferent from zero, the kernel of the Dirac operator,Cs−M2̄,M1̄,01,0;−M2,M1,0 ,0,0dT, is not
nvariant underaPC. If uM3u2Þ uM1u2+ uM2u2, the triple is dynamically nondegenerate.

Case 4:C % C % C{ sa,b,cd. The only not obviously degenerate triples have the repres

ions
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rLsa,b,cd = 1a 0 0

0 ā 0

0 0 ā ^ 1p
2, rRsa,b,cd = Sb 0

0 b ^ 1p
D . s8.1d

nd

rLsa,b,cd = 1a 0 0

0 ā 0

0 0 ā ^ 1p
2, rRsa,b,cd = Sb 0

0 b̄ ^ 1p
D . s8.2d

he fluctuations do not respect all mass ratios, in factfM1 and fM2 are independent variables a
nly the ratioM2/M3= fM2/ fM3= :1/b is invariant under fluctuations via(8.1). If ubuù1 the
inima are given by

u f̂M1u
2

=
s1 − ubu−2dm2

4l
, u f̂M2u

2
=

m2

ubu24l
, and u f̂M3u

2
=

m2

4l
.

ts mass spectrumh0,m /2Îl ,m /2Îl p timesj is dynamically degenerate. Ifubuø1 the minima ar
iven by

u f̂M1u
2

= 0, u f̂M2u
2

=
1 + pubu2

1 + pubu4
m2

4l
, and u f̂M3u

2
=

ubu2s1 + pubu2d
1 + pubu4

m2

4l
.

he triple is degenerate since there is an invariant subspace in the kernel of the Dirac oper
he representation(8.2) the computational are identical to the case above,(8.1), after permuting

M1 andM2 and after replacingM3 by M3̄.
In the casek=1, ,=2, the three submatricesM1, M2, M3 are linearly dependent overC. If M1

s proportional toM2 then bothM3 and s M1

M2
d have a zero eigenvalue. ThereforeM1 and M2 are

inearly independent overC andM3= :aM1+bM2 with complex coefficientsa andb.
Case 5:C % M2sCd % C{ sa,b,cd. By lemma 11.6,fM1 and fM2 vary independently inC2. For

he representations with

rLsa,b,cd = 1a 0 0

0 a 0

0 0 a ^ 1p
2, rRsa,b,cd = Sb 0

0 b ^ 1p
D , s8.3d

e getfM3= :a fM1+b fM2. For instance fora=0 we getf̂M1
f̂M2=0 as for diagram 8 and a simi

ass relation,

u f̂M1u
2

=
m2

4l
, u f̂M2u

2
=

s1 + pubu2d
1 + pubu4

m2

4l
, u f̂M3u

2
= ubu2

1 + pubu2

1 + pubu4
m2

4l
. s8.4d

or generala, we get the same relations withubu2 replaced byuau2+ ubu2. For the representatio
ith

rLsa,b,cd = 1a 0 0

0 ā 0

0 0 ā ^ 1p
2, rRsa,b,cd = Sb 0

0 b ^ 1p
D ,

nd aÞ0, all three doublets,fM1,
fM2, and fM3 vary independently. The minima,u f̂M1u2

u f̂M2u2= u f̂M3u2=m2/4l produce a dynamical degeneracy in this case. The other case,a=0 is
ynamically nondegenerate with the same mass relations as above, equations(8.4). All other

epresentations of this algebra are treated the same way and they either have a mass relation or are
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ynamically degenerate, which means a particularly simple mass relations.
Case 6:R % M2sCd % C. This case is identical to case 5 with representation(8.3)
Case 7:C % H % C{ sa,b,cd. For example, all triples with

rLsa,b,cd = 1a 0 0

0 ā 0

0 0 ā ^ 1p
2, rRsa,b,cd = Sb 0

0 b ^ 1p
D ,

M1=sm1,0d, M2=s0,m2d, andM3=s0,m3d have no mass relation. Indeed like in case 3, the
atios are stable under fluctuations:uM1u : uM2u : uM3u= u fM1u : u fM2u : u fM3u. Other triples behave lik
n case 5.

Case 8:R % H % C has the same examples without mass relations as in case 7.
Case 9:C % M2sRd % C. For representations(8.3) anda=0, we get minima with mass relati

8.4).
Case 10:R % M2sRd % C. Here we take a representation(8.3) with M1=sm1,0d, M2=s0,m2d,

ndM3=s0,bm2d and get again the mass relation(8.4).
Up to different multiplicities, we have the same conclusion for the diagrams 18, 17, 22

ermutingA1 andA2 we also have the same results for the other four ladders, diagrams 1
6, 21.

Diagram 15 yields the representations

rLsa,b,cd = Sa ^ 1k 0

0 a ^ 1p
D, rRsa,b,cd = 1b ^ 1k 0 0

0 a ^ 1, 0

0 0 b ^ 1p
2 ,

rL
csa,b,cd = S1k ^ a 0

0 1k ^ c
D, rR

csa,b,cd = 11, ^ a 0 0

0 1k ^ b 0

0 0 1, ^ c
2 ,

ith possible complex conjugations. The mass matrix is

M = SM1 ^ 1k 1k ^ M2 0

0 0 M3 ^ 1p
D, M1,M2,M3 P Mk3,sCd.

he fluctuations are

fM1 = o
j

r jujM1v j
−1, uj P UsA1d, v j P UsA2d,

fM2 = o
j

r jujM2v j
−1,

fM3 = o
j

r jujM3v j
−1.

eutrino counting and imposing broken color to be commutative impliesk=,=1. This case wit

1 and A2=R or C is treated as in diagram 13, case 3 yielding a nondegenerate triple w
ass relation. After replacingM3

* by M3, diagram 20 has identical computations.
Diagram 23 yields the representations

rLsa,b,cd = 1a ^ 1k 0 0

0 b ^ 1, 0 2, rRsa,b,cd = Sb ^ 1k 0

0 a ^ 1p
D ,
0 0 b ^ 1p
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rL
csa,b,cd = 11k ^ a 0 0

0 1, ^ b 0

0 0 1, ^ c
2, rR

csa,b,cd = S1, ^ a 0

0 1k ^ c
D ,

ith possible complex conjugations. The mass matrix is

M = 1M1 ^ 1k 0

1, ^ M2
* 0

0 M3
*

^ 1p
2, M1,M2,M3 P Mk3,sCd.

he fluctuations are

fM1 = o
j

r jujM1v j
−1, uj P UsA1d, v j P UsA2d,

fM2 = o
j

r jujM2v j
−1,

fM3 = o
j

r jujM3v j
−1.

eutrino counting impliesk=,=1. This model withA1 andA2=R or C is treated as in diagra
3, case 3 yielding a nondegenerate triple without mass relation. After replacingM3

* by M3,
iagram 24 has identical computations.

We must now extend our analysis to include the possibility of complex conjugate repre
ions. As in the case of two algebras, one shows that any diagram containing a connect
onent consisting of only letter unchanging arrows leads to degenerate spectra. Therefor

he class of irreducible and dynamically nondegenerate triples the leitmotiv of a Krajews
ram is still carried by its letter changing arrows. For three algebras there are two ad
iagrams, diagrams 25, 26, Fig. 7, that involve only letter changing arrows. Their con
iagrams resemble diagrams 4 and 9 of Fig. 6 except for the change of chirality in one arr

he computation of their triples is similar.
Note that without the presence of conjugate representations, this change violates the c

hat nonvanishing entries of the multiplicity matrix and its transposed must have the sam
igure 8 lists the contractions of all irreducible diagrams whose letter unchanging arro
onnected to at least one letter changing arrow. The blow up of the new symbols is given
.

All triples attached to the 11 diagrams of Fig. 8 are degenerate or dynamically degen

FIG. 7. Two blow ups, letter changing arrows only.
Diagram 27 with the first blow up yields
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FIG. 8. Irreducible diagrams with letter unchanging arrows.
FIG. 9. Blow ups with letter unchanging arrows.
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rLsa,b,cd = Sc ^ 1k 0

0 b ^ 1p
D, rRsa,b,cd = 1b ^ 1k 0 0

0 c̄ ^ 1k 0

0 0 a ^ 1p
2 ,

M = SM1 ^ 1k M2 ^ 1k 0

0 0 M3 ^ 1p
D ,

M1PMp3,sCd, M2PMp3psCd, M3PM,3ksCd. Counting neutrinos leads tok=,=1. To get a
andle onp we repeat the overkill from Sec. IV. in the worst caseM2 and consequentlyfM2 is
kewsymmetric andp is odd. By fluctuations we can obtain

fM2 =1S0 − 1

1 0
D

S0 − 1

1 0
D

�

0

2 = :SA 0

0 0
D .

ow fM1 fluctuates independently and we may obtain for its transposefM1
T=s0,¯ ,0 ,1d. We ge

fM1, fM2ds fM1, fM2d* =1p and the minimum of the action is dynamically degenerate ifpù1. The
ommutative casek=,=p=1 is obviously degenerate. For the second blow up the comput
re similar withfM2 now proportional to 1p from the start.

Diagram 28 is treated as diagram 27.
Diagram 29 hask=,=p=1 by neutrino count and admits only degenerate triples.
Diagrams 30, 31, 32, 34, 35, 36 havek=,=1 by neutrino count. As in the commutative c

f diagram 8, all their triples are degenerate.
Diagram 33 with the first of the six possible blow ups yields

rLsa,b,cd = 1a ^ 1k 0 0

0 a ^ 1p 0

0 0 b̄ ^ 1p

2 ,

rRsa,b,cd =1
b ^ 1k 0 0 0

0 b ^ 1p 0 0

0 0 b ^ 1p 0

0 0 0 b ^ 1p

2 ,

rL
csa,b,cd = 11k ^ a 0 0

0 1k ^ c 0

0 0 1, ^ c
2 ,

rR
csa,b,cd =1

1, ^ a 0 0 0

0 1, ^ c 0 0

0 0 1, ^ c 0 2 ,
0 0 0 1, ^ c
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M = 1M1 ^ 1k 0 0 0

0 M2 ^ 1p 0 0

0 M3 ^ 1p M4 ^ 1p M5 ^ 1p
2 ,

M1, M2PMk3,sCd, M3, M4, M5PM,3,sCd. Counting neutrinos and imposing broken color to
ommutative givesk=,=1. This case is degenerate: the kernel of the Dirac operator conta
nvariant subspace with elementss0,0,0,0,0,M5v ,−M4v ;0 ,0 ,0,0,0,M5w,−M4wdT, v, wPCp.

With the second blow up diagram 33 yields

rLsa,b,cd = 1a ^ 1k 0 0

0 a ^ 1p 0

0 0 b̄ ^ 1p

2 ,

rRsa,b,cd =1
b ^ 1k 0 0 0

0 b ^ 1p 0 0

0 0 b ^ 1p 0

0 0 0 b̄ ^ 1p

2 ,

rL
csa,b,cd = 11k ^ a 0 0

0 1k ^ c 0

0 0 1, ^ c
2 ,

rR
csa,b,cd =1

1, ^ a 0 0 0

0 1, ^ c 0 0

0 0 1, ^ c 0

0 0 0 1, ^ c̄
2 ,

M = 1M1 ^ 1k 0 0 0

0 M2 ^ 1p 0 0

0 M3 ^ 1p M4 ^ 1p 1k ^ M5
2 ,

M1, M2PMk3,sCd, M3, M4PM,3,sCd, M5PMp3psCd. Counting neutrinos and imposing brok
olor to be commutative givesk=,=p=1. In the notations of Corollary 11.4, the action read

Vsa,b,cd = 4lfuM1abu4 + uM2abu4 + 2uM2abu2uM3b
2u2 + suM3b

2u2 + uM4b
2u2 + uM5c

2u2d2g

− 2m2fuM1abu2 + uM2abu2 + suM3b
2u2 + uM4b

2u2 + uM5c
2u2dg.

ts minimum is degenerate,b̂=0.
The other blow ups as well as diagram 37 lead to the same conclusion, degenera

ompletes the proof of the theorem. h

We summarize the possible algebras withN=3 and the corresponding Krajewski diagram

ll their irreducible, dynamically nondegenerate triplets in a table.
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Algebra Diagrams

C % R % sC = 1d 14,16,19,21

C % R % C 13,17,18,22

1 % 1 % C 15,20,23,24

2 % 1 % sC = 1d 14,16,19,21

2 % 1 % C 13,17,18,22

C % C % 1 26

1 % 1 % 1 9

M2sRd % R % 1 10

H % 1 % 1 10

2 % 1 % 1 8

Note that relaxing the hypothesis of unbroken noncommutative color does not add any
o the list withN=1 and 2. It adds only few algebras to the list withN=3 coming from diagram
, 9, and 11. We were unable to treat some of their triples, in particular quaternionic one

. The standard model of electroweak and strong forces

Let us close this section by remarking that diagram 17 of Fig. 6 with flipped chirality and
lgebraA=C % H % M3sCd{ sb,a,cd, with representation

rLsad = Sa ^ 13 0

0 a
D, rRsbd = 1b13 0 0

0 b̄13 0

0 0 b̄
2 ,

rL
csb,cd = S12 ^ c 0

0 b̄12
D, rR

csb,cd = 1c 0 0

0 c 0

0 0 b̄
2 ,

nd with mass matrix

M =1S
mu

0
D ^ 13 S 0

md
D % 13 0

0 0 S 0

me
D 2

roduce the standard model of electromagnetic, weak and strong forces with one gene
uarks and leptons,u, d, n, ande. The neutrino is a massless Weyl spinor. The intersection
ritten with respect to the basis of projectors

p1 = s0,12,0d, p2 = s1,0,0d, p3 = 10,011 0 0

0 0 0

0 0 0
22
s
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ù = − 210 1 1

1 − 1 − 1

1 − 1 0
2 ,

nd nondegenerate. The color group U(3) is unbroken and its representations on correspon
eft- and right-handed fermions are identical. In physicists’ language this means that glu

assless and couple vertorially. Further details on the standard model as an almost com
eometry can be found in Refs. 2 and 13.

X. BEYOND IRREDUCIBLE TRIPLES

For the standard model, allowing reducible triples has two important physical conseq

i) Suppose we want to render the neutrino massive. Majorana masses are incompat
the axiom that the Dirac operator anticommutes with the chirality. Therefore we
increase the Hilbert space by adding a right-handed neutrino. Then the triple be
reducible, but worse Poincaré duality breaks down: the intersection form becomes

ù = − 210 1 1

1 − 2 − 1

1 − 1 0
2 ,

degenerate.
ii ) We may add more generations of quarks and leptons. Then the Cabibbo–Kob

Maskawa matrix makes its appearance. Now we may add right-handed neutrinos i
but no in all generations and give Dirac massses to the corresponding neutrinos
violating Poincaré duality.

So far we have no clue to why the standard model comes with three colors, with
enerations of quarks and with three generations of leptons. Note however that a
ancellations1 imply further constraints that are satisfied with three colors and with a num
uark generations equal to the number of lepton generations.

. A reducible triple with nondegenerate spectrum

The criterion of dynamical degeneracy loses its meaning in presence of reducible tr
llustrated by the following example:A=M3sCd % M2sCd{ sa,bd,

rsa,b,cd =1
a ^ 12 ^ 13 0 0 0

0 b ^ 13 ^ 13 0 0

0 0 13 ^ 12 ^ ā 0

0 0 0 ¯
2 ,
12 ^ 13 ^ a
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M = m11
Î 5

17
0

0
1
Î5

0 0
2 10 0

0 0

0 0
2 1

0 0

0 −
2
Î5

1 0
2

1
0 0

0 0

0
2
Î5
2 12Î 5

17
0

0
2
Î5

0 0
2 10 0

0 0

0 0
2 2 ^ 13.

he fluctuations of the Dirac operator generate an 18-dimensional complex vector space i
he spectral actionVs fDd must be minimized. We used a steepest descend method of Mathe

or this task and found an absolute minimum atf̂D=D with m=m /Î4l andVs f̂Dd=−s431/340d
sm4/ld. The spectrum of this minimumf̂D is nondegenerate: in units ofm /Î4l we have

1,4/5,5/17,20/17,s9+Î17d /10j. All six values of course appear six times with a positive

ix times with a negative sign in the spectrum off̂D. The little group of this minimum isG,

Us1d,Us3d3Us2d with generic elementseia13,eia12d. The spectrum of the minimum appe
ompletely rigid, i.e., there are many mass relations. Note however that the threefold co
eneracy is not protected by the little group in this example.

. CONCLUSION

Suppose we want to apply conventional, perturbative quantum field theory to the Yang–
iggs models coming from almost commutative geometries. Then after renormalization, f
asses are functions of energy and the color degeneracy is compatible with this energy
ence only if all noncommutative color groups are unbroken. Furthermore the renormaliza

ermion masses is incompatible with mass relations, in particular with the completely rigid
ble spectral triple of Sec. IX. In irreducible spectral triples, mass relations other than degen
nly appear starting withN=3. All triples without such mass relations come from ladder diag
nd have algebras1% 1% C or H % 1% C.

Let us suppose that also forNù4 the irreducible triples without mass relations have
racted multiplicity matrices of ladder type,

m̂ =1
a b 0 0

g d 0 0

r s 0 0

u j 0 0
2, N = 4.

Then detsm̂+m̂Td=srj−sud2 and irreducibility impliesa=b=g=d=0. For Nù5, all con-
racted multiplicity matricesm̂ of ladder type have detsm̂+m̂Td=0 leading us to the following.

Conjecture 10.1. The sum of N simple algebras, A=A1 % A2 % ¯ % AN admits a finite, rea,
0-real, irreducible and dynamically nondegenerate spectral triple free of mass relations

nly if it is in the list, up to a reordering of the summands:
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=1 N=2 N=3 N=4 Nù5

R % R R % R % C R % R % C1 % C2

R % C R % C % C R % C % C1 % C2

C % C C % C % C C % C % C1 % C2

M2sRd % R

oid M2sRd % C void

M2sCd % R

M2C % C

H % R H % R % C H % R % C1 % C2

H % C H % C % C H % C % C1 % C2

ere C, C1, and C2 are three arbitrary simple algebras. The color algebrasC for N=3 and C1

% C2 for N=4 have two constraints.

i) Their representations on corresponding left and right-handed subspaces ofH are identica
(up to possibly different multiplicities).

ii) The Dirac operatorD is invariant underUsCd or UsC1 % C2d,

rs1,1,wdD rs1,1,wd−1 = D, for all w P UsCd or UsC1 % C2d.

This implies that the unitaries ofC or C1 % C2 do not participate in the fluctuations and a
therefore unbroken, i.e., elements of the little group.

We must admit that our brute force proof by exhaustion is not suitable forN=4 and it seem
lready a formidable task to write down the list of all contracted irreducible diagrams.

Besides renormalizability, there are two other important items on the physicist’s shoppi
hich will further constrain the model building kit.

i) The electric charge of a massless particle must be zero.
ii ) The representation of the little group on the Hilbert space of fermions must be com

Recall that a unitary representation is called real if it is equal to its complex conjuga
seudoreal if it is unitarily equivalent to its complex conjugate. Otherwise the representa
omplex. For example, the fundamental representation of SUs2d is pseudoreal. An irreducibl
nitary representation of Us1d is complex if and only if its charge is nonzero.

Before we can examine these two criteria in the irreducible context, we must comp
inimal central extensions12,15that allow the lift of algebra automorphisms to the Hilbert spac

ermions to have at most a finite number of values. This calculation is under way.
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PPENDIX

Since this paper deals with matrices, let us briefly recall two standard results, one
ingular value decomposition of rectangular matrices and the second on the standard
kewsymmetric matrices.
We write Osnd : =UsMnsRdd, Usnd : =UsMnsCdd and Uspsnd : =UsMnsHdd.
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Lemma 11.1:
(i) Let MPMn3msCd. Then there exist UPUsnd, VPUsmd such that M=UDV where

PMn3msRd satisfies Dij =0 for i Þ j and D11ùD22ùDkk.Dk+1,k+1=¯ =Dqq=0 where k
ranksMd and q=minsn,md. The Dii

2 are the eigenvalues of M*M, the columns of U (respective,
d are the eigenvectors of MM* (respectively, M*M) arranged in the same order as the eigen
es Dii

2. In particular, when MPMn3msRd, we may assume UPOsnd, VPOsmd (Ref. 9, 7.3.5).
(ii) Let M PMnsCd be a skewsymmetric matrix. Then, there exists UPUsnd such that

UMUT = S%
i=1

p

mixD % 0¯ % 0 where x = S 0 1

− 1 0
D, mi P C* sA1d

nd the numbers of zeros equals n−2p (Ref.9 4.4, Problem 26).
For our purpose,M is thecomplexfermionic mass matrix. Then, in(i), the diagonal elemen

j j are the Dirac masses and the unitariesU and V are related to the Cabibbo–Kobayas
askawa matrix.

Definition 11.2:Let M PMsnd3smdsCd and

f P FK,K8: = hsr j,uj,v jd jPJ P R 3 UsMsndsKdd 3 UsMsmdsK8dduJ finitej,

hereK, K8 areR, C, or H wheresnd=n for K=R ,C andsnd=qn for K=H. Thefluctuationof M
s defined by

fM: = o
j

r jujMv j .

n the case thatC andH are involved, we assume of course thatC,H.
Note that for a givenM,

h fMuf P FR,Cj = h fMuf P FC,Rj = h fMuf P FC,Cj.

Lemma 11.3:Let SpanRsEd be the real vector space spanned by the set E. Then,

i) SpanRsOsndd=MnsRd.
ii ) SpanRsUsndd=MnsCd.
iii ) SpanRsUSpsndd=MnsHd.

Proof:

i) It is sufficient to prove that anya= ±aTPMnsRd is in SpanRsOsndd.
Whena=aT, there existsvPOsnd such thata=vdvT whered is a real diagonal matri

Since

d = o
i=1

n
dii

2
s2pi − 1nd +

dii

2
1n,

wherepi is the projection on theith vector basis, sod is in SpanRsOsndd and so isa.
When a=−aT, there existvPOsnd and a familyrkPR, køn/2 such that

a = v diags0, . . . ,0,r1b, . . . ,rkbdvT,

whereb= s 0 1
−1 0

d. Thus forr =oir i,

vTav = b1 diags1, . . . ,1,b,12 . . . ,12d + r2 diags1, . . . ,1,12,b,12 . . . ,12d + ¯

+ rks1, . . . ,1,12, . . . ,12,bd − diagsr, . . . ,r,sr − r1d12, . . . ,sr − rkd12d

is a real linear combination of matrices in Osnd by sid. SoaPSpanRsOsndd.

ii ) This follows by (i) since Osnd and iOsnd are included in Usnd.
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iii ) Let 1, e1, e2, e3 be the canonical basis ofH such thateiej =di j1−ei jkek and 1ei =ei1=ei. Since
MnsHd is anH-vector space,MnsHd=1MnsRd+e1MnsRd+e2MnsRd+e3MnsRd and the resu
follows from eiOsnd,USpsnd. h

Corollary 11.4: h fMuf PFK,K8j=hoiaiM biuai PMnsKd ,bi PMmsK8dj.
Remark 11.5:If K=K8, then for any 0ÞM PMn3msKd,

h fMuf P FK,Kj = Mn3msKd.

evertheless, we havea priori

h fMuf P FK,K8j ú ha M bua P MnsKd,b P MmsK8dj,

hile the converse inclusion is true by the previous corollary. Actually, forn=m=2 andK=K8
C, if M = s 1 0

0 0
d, RanksaMbdø1 for anya andb in MnsCd, but for the fluctuation

f = hr1 = r2 = 1,u1 = v1 = 12,u2 = v2 = s 0 1
1 0dj, s fMd = Ranks12d = 2

Lemma 11.6: Given a family of kR-linearly independent matrices Mi PMn3msRd ,
=1, . . . ,k, there exists a fluctuation fPFR,R such thatfMi =0 for all i Þ1 and fM1Þ0.

Proof: Let hcijiPh1,. . .,pj be the canonical basis of column vectors inRp. (We use abusively th
ame notation for differentp8s.) Remark first that the fluctuation defined for givenr1,r2

R , i ,kP h1, . . . ,nj and j , l P h1, . . . ,mj by

fM: = r1M + r2cick
TM clcj

T=r1M + r2Mklcicj
T

atisfiess fMdpq=r1Mpq for all pÞ i andqÞ j and s fMdi j =r1Mij +r2Mkl.
For anyM PMn3msRd let

WsMd: =1
M11

A
M1m

M21

A
Mnm

2 P Rnm.

iven a family of matricesM1, . . . ,MkPMn3msRd, let N be the matrix inMnm3ksRd defined by
he columnsWsMid,

N: = sWsM1duWsM2du ¯ uWsMkdd.

hus, if a fluctuationf PFR,R is defined simultaneously on allMi ’ s, N is transformed infsNd :
sWs fM1duWs fM2du¯ uWs fMkdd. By the previous remark, adding a multiple of a line ofN to a
ultiple of another one correspond precisely to a fluctuation. Using Gauss method, if theMi’s are

inearly independent(thuskønm), so are theWsMid’s and there exists a fluctuationf such that

fsNd = S 1k3k

0snm−kd3k
D

ince the rank ofN is k. This means that a second fluctuation given bygM : =c1c1
TMc1c1

T will give
fM1= fM1Þ0 while gfMi =0 for all i Þ1. h

Remark 11.7:This lemma is false when the matrices have complex entries: LetM1= s i
1

d and
M2s 1

0
d. ThenM1 and M2 areR- andC-linearly independent. Nevertheless,fM1=0 always yield

fM2=Im s fM1d=0. There only remains the following.

Lemma 11.8: Let M1PMn3msCd , i =1, . . . ,k be k matrices such that their real and imaginary
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arts are2k R-linearly independent matrices. Then there exists a fluctuation fPFR,R such tha
fMi Þ0 and fM1=0 for all i Þ1.

Proof: According to the previous lemma, there exists a fluctuationf PFR,R such tha
es fM1dÞ0 while Ims fM1d=Res fMid=Ims fMid=0 for all i Þ1, yielding the conclusion since re
nd imaginary extractions commute with fluctuations. h

Among the fluctuations, there are the symmetric ones in the following sense.
Definition 11.9: LetFC,C

T : =hsr j ,ujd jPJPR3UsnduJ finitej and define fluctuationsfTPFC,CT

n n3n square matrices by

fTM: = o
j

r jujMuj
T.

Lemma 11.10: Let M1, M2 be two skewsymmetric matricesin MnsCd. Then,

i) If the constraintsf
T
M1=0 for f PFC,CT always impliesf

T
M2=0, then M2 is C-colinear to M1.

ii ) If M2 is not colinear to M1, then there exists a fluctuation fTPFC,CT such thatf
T
M1=0 and

fTM2Þ0.

Proof: Note that(ii ) is a consequence of(i).
To prove(i), we may assume thatM1 has the form as in(A1).
s: = s 0 1

1 0
d and t : = s 1 0

0 −1
d are two unitaries satisfyingwxwT=−x for w=s,t. Define u=v % 1

% ¯ % 1PUsnd with v= % i=1
p vi PUs2pd wherev1P hs,tj. ThenM1+uM1u

T=0, so if M2 has the
orm s A B

C D
d, with APM2psCd, BPM2p,n−2psCd, CPMn−2p,2psCd, DPMn−2p,n−2psCd, then 0=M2

uM2u
T. We deduce 0=A+vAvT=B+vB=C+CvT=D+D. Thus choosing Vs= % i=1

p s and

t= % i=1
p t, we haves12p+vsdB+s12p+vtdB=0, soB=0 since 2 12p+vs+vt is invertible. Similarly

=D=0.
If Akl is the partition of A in 232 matrices, the constraintA+vAvT=0 implies

=Akl+ukAklul
T. WhenkÞ l, Akl is necessarily zero since we may choose independentlyuk andul

n hs,tj. Whenk= l, Akk=s ak

−gk

gk

bk
d wherea, b, andg are complex numbers, sinceA is skewsym

etric. If uk= t, 0=Akk+ukAkkuk=2s ak

0
0
bk

d and Akk=gkx. Thus M2= %k=1
p gkx% 0% ¯ % 0 and it

emains to prove thatgk=c mk for some constantc.
Define

uk: = s % 12 % ¯ % 12 % 1 % ¯ % 1,

vk: = 12 % ¯ % s % ¯ % 12 % 1 % ¯ % 1,

wk: =1
0 0 ¯ 0 12

0 12 0

A � A
0 12 0

12 0 ¯ 0 0
2 % 12 % ¯ % 12 % 1 % ¯ % 1,

hree unitaries where the perturbation invk is set at thekth entry. Then

0 = s2m1d−1sM1 − uM1u
Td − s2mkd−1wksM1 − vkM1vk

Tdwk
T

nd the same relation forM2 yields 0=2sg1m1
−1−gkmk

−1d, sogk=g1m1
−1mk andM2=sg1m1

−1dM1.h
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olden mean renormalization for a generalized Harper
quation: The Ketoja–Satija orchid
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We provide a rigorous analysis of the fluctuations of localized eigenstates in a
generalized Harper equation with golden mean flux and with next-nearest-neighbor
interactions. For next-nearest-neighbor interaction above a critical threshold, these
self-similar fluctuations are characterized by orbits of a renormalization operator on
a universal strange attractor, whose projection was dubbed the “orchid” by Ketoja
and Satija[Phys. Rev. Lett.75, 2762(1995)]. We show that the attractor is given
essentially by an embedding of a subshift of finite type, and give a description of its
periodic orbits. ©2004 American Institute of Physics.[DOI: 10.1063/1.1797532]

. INTRODUCTION

The discrete one-dimensional Schrödinger equation,

ci+1 + ci−1 + 2l cos„2psiv + fd…ci = Eci , s1.1d

nown as the Harper(or almost Mathieu) equation is a valuable tight binding model for
amiltonian of an electron in a one-dimensional lattice in a commensuratesvPQd or incommen
uratesv¹Qd potential. It may also be derived10 as the tight binding model for an electron i
wo-dimensional lattice in a transverse magnetic field in the limits of strong(weak) potential and
eak (resp., strong) field. In this setting the parametersv, f, andl represent, respectively, t
agnetic flux per unit cell, the wave-number of the plane wave in the transverse direction,

atio of the length of the unit cell in the direction of the vector potential and its length i
ransverse direction.

Much is known concerning the spectrum of(1.1). The pioneering work of Aubry and Andr1

ells us much about the transition from extended to localized states, with precise versions
esults and a summary appearing in Ref. 12. What concerns us here is that for Diophantinev there
s, for almost allf, a localized regimel.1 with a pure point spectrum with exponentia
ecaying eigenfunctions.(See Ref. 12 for a precise sufficient condition onf.) For a recent gener
eview of these and many other results on Schrödinger operators see Ref. 29.

At the critical pointl=1 there is self-similarity of the spectrum eigenfunctions which
een investigated from a renormalization standpoint by Ostlund and Pandit27 and several othe
roups(Refs. 6, 15, 16, 21, 22, 28, and 31). See Ref. 30 for a review. This critical behavio
eflected in the localized regimel.1. In the case when the fluxv=sÎ5−1d /2, the golden mea
t has been observed that the exponentially decaying eigenfunctions possess universal se
uctuations17 determined by the strong-coupling limitl→`. In Ref. 17, Ketoja and Satija expla
his phenomenon in terms of a universal fixed point of a renormalization operator derive

)Electronic mail: B.D.Mestel@stir.ac.uk
)
Electronic mail: andrew.osbaldestin@port.ac.uk

5042022-2488/2004/45(12)/5042/34/$22.00 © 2004 American Institute of Physics
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heir decimation scheme.15,16We have recently put their observations on a firm footing by ex
tly constructing a fixed point of the appropriate renormalization operator.24

In this paper we consider the generalized Harper equation,9

„1 + a coss2p„vsi + 1/2d + f……dci+1 + „1 + a coss2p„vsi − 1/2d + f…d…ci−1

+ 2l cos„2psiv + fd…ci = Eci , s1.2d

n which, in terms of the two-dimensional system, the additional parametera measures the nex
earest-neighbor interaction strength.(For earlier studies of the spectrum of this model see R
, 11, and 32.)

Han et al.9 give the phase diagram for this model, and in Ref. 20 an investigation o
ritical self-similarity that occurs whenaù1 andaùl is made using the decimation scheme.
onclusion is that the scaling in the “fat” critical phase appears to be governed by a
ttractor of a renormalization operator. As in the Harper equation itself, this critical beha
irrored in the localized phase,lù1 and lùa, where there again appear to be self-sim

uctuations in the exponentially decaying eigenfunctions. Ketoja and Satija17 report two types o
ehavior under decimation. First, for 0øa,1 the system appears to be in the universality cla

he original Harper equationsa=0d, renormalizing to the fixed point. More intriguingly, wh
ù1 the decimation/renormalization scheme appears to send the system to a universa
ttractor again determined by the strong-coupling limitl→`. A projection of this attractor ha
een dubbed an “orchid” in Ref. 17. Figure 1 shows the orchid.(It is a reflection in the origin o

hat shown in Ref. 17, as we have adopted a different sign convention.)
For certain values of the parametera the asymptotic orbit under renormalization is a perio

rbit, but generally orbits asymptotically appear to be dense on the attractor. It is this
ttractor that we specifically analyze in this paper.(A study of the generalized Harper equat
ith anisotropic next-nearest-neighbor interaction18 reveals that this richness is destroyed by

sotropy.) Our analysis combines subshifts of finite type together with dynamics of sign pai
ives a complete mathematical description of the strange set.

The outline of this paper is as follows. In Sec. II we review the decimation approach of

FIG. 1. The orchid.
nd Satija which leads to the key functional recurrence,
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tn+1sxd = tns− vxdtn−1sv2x + vd, s1.3d

hat is the mathematical interest of this paper.[Here v=sÎ5−1d /2.] We also recall our earlie
ork24 on the strong-coupling fixed point of this equation, and establish some preliminary
alization results. The zeros of the initial conditions for this recurrence are crucial in our an

n particular, the key to our understanding is their evolution under a simple piecewise
nterval map. The symmetry of the cosine potential in the generalized Harper equation l
ymmetry of these zeros, and in Sec. III we introduce “codes” which give a symbolic desc
f the dynamics of the zeros and establish a “partnering” criterion which enables us to inco

he symmetry. In Sec. IV we construct the orchid in terms of the codes and pairs of
ssuming the existence of a mapE that embeds the code space into a space of function pair
ain analytic work is in Sec. V, in which the existence of the mapE is established. We als

onstruct an abstract model space for a fundamental set, three copies of which comp
rchid. Having constructed the orchid, in Sec. VI we establish its attracting nature and its “s
ess,” while in Sec. VII we prove that all periodic orbits have period a multiple of three, th
roving a conjecture formulated in Ref. 17. Section VIII contains our concluding remarks.

I. RENORMALIZATION ANALYSIS

. Golden mean decimation

For completeness, in this section we recall the decimation approach to quasiperiodic
s developed by Ketoja and Satija(Refs. 14–20).

We restrict our attention to the portion of the localized phase,lù1, lùa, for which aù1,
here by the result of Hanet al.,9 the exponential decay of the eigenfunction is measured b
haracteristic exponent,

g = logSl

a
+ÎSl

a
D2

− 1D . s2.1d

riting

ci = e−gui uhi , s2.2d

ur generalized Harper equation(1.2) becomes, fori .0,

e−2g
„1 + a coss2p„vsi + 1/2d + f…d…hi+1 + „1 + a coss2p„vsi − 1/2d + f…d…hi−1

+ 2e−gl cos„2psiv + fd…hi = e−gEhi . s2.3d

e consider only the case when the fluxv=sÎ5−1d /2, the golden mean. In the decimat
cheme in this case, we consider only sites with indices separated by a Fibonacci numFn,
here we defineF0=0, F1=1, andFn=Fn−1+Fn−2 for n.1. In other words, we consider t
ecimationof (2.3) of the form

snsidhi+Fn+1
= hi+Fn

− tnsidhi . s2.4d

y writing (2.4) with n replaced byn−1 and n+1 and in each of the resulting expressi
eplacingi by i +Fn (and by using the defining property of the Fibonacci numbers), the functions

n andsn may be seen to obey the explicit recursions,

sn+1sid =
sn−1si + Fndsnsi + Fnd

, s2.5d

1 − snsid„tn−1si + Fnd + sn−1si + Fndtnsi + Fnd…
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tn+1sid =
tnsidstn−1si + Fnd + sn−1si + Fndtnsi + Fnd…

1 − snsid„tn−1si + Fnd + sn−1si + Fndtnsi + Fnd…
, s2.6d

or n.1. The initial conditions for these recursions are

s1sid = 1, s2.7d

t1sid = 0, s2.8d

s2sid =
e−gs1 + a cos„2p„si + 3/2dv + f…d…

E − 2l coss2pssi + 1dv + fdd
, s2.9d

t2sid =
1 + a coss2p„si + 1/2dv + f…d

e−g
„E − 2l coss2pssi + 1dv + f…d…

; s2.10d

iven by Eq.(2.4) with n=1 andn=2, respectively, referring to(2.3).
We now consider the strong-coupling limitl→`. We see from(2.1) that g→` and

e−g→a /2. We set«=lim E/l and see thats2sid, s3sid, snsid→0, while

t2sid → 1 + a coss2p„si + 1/2dv + f…d
a„«/2 − coss2p„si + 1dv + f…d…

, s2.11d

t3sid → t2sidt2si + F2d, s2.12d

tn+1sid → tnsidtn−1si + Fnd, s2.13d

or nù3. We thus have a single recurrence as our strong-coupling problem:

t1sid = 0, s2.14d

t2sid =
1 + a coss2p„si + 1/2dv + f…d
a„«/2 − coss2p„si + 1dv + f…d…

, s2.15d

t3sid = t2sidt2si + F2d, s2.16d

tn+1sid = tnsidtn−1si + Fnd, s2.17d

or nù3.
To analyze the scaling we now replace the discrete lattice indexi by the continuous variab

=s−vd−nhivj where h·j denotes the fractional part. Care must be taken when doing this
efinition of x depends on the indexn of the function. The result is that our recursion becom

tn+1sxd = tns− vxdtn−1sv2x + vd, s2.18d

or nù3, with initial conditions

t2sxd =
1 + a cos„2psv2x + v/2 + fd…
as«/2 − cos„2psv2x + v + fd…d

, s2.19d

t3sxd = t2s− vxdt2s− vx − 1d. s2.20d
e remark thatt2 is “normalized” in the sense that it satisfies the constraint
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E
−v−1

1

logut2sxdudx= 0, s2.21d

he significance of which will be made clear in Sec. VI A.
Henceforth, in all that follows, we shall consider these limiting equations at the “uppe

dge,” at which« /2= +1, and the phasef=0. (The lower band edge« /2=−1, f=1/2 may be
reated similarly.)

As in Refs. 27 and 17, writingunsxd= tn−1s−vxd, we obtain a first order iteration on pairs
unctionssun,tnd:

un+1sxd = tns− vxd, tn+1sxd = tns− vxduns− vx − 1d. s2.22d

e may thus express the recursion(2.18) in terms of a renormalization operator on pairssu,td:

sun+1,tn+1d = Rsun,tnd, s2.23d

here

Rsun,tndsxd = „tnsu0sxd…,tn„u0sxd…un„u1sxd…d, s2.24d

ndu0, u1 are the linear contractions,

u0sxd = − vx, u1sxd = − vx − 1. s2.25d

he initial conditions become

u2sxd = t2sxd =
1 + a cos„2psv2x + v/2d…
as1 − cos„2psv2x + vd…d

. s2.26d

he two linear mapsu0, u1 will be important in the theory which follows. They form an itera
unction system which we shall describe briefly in Sec. II D.

Associated with the multiplicative renormalization operatorR there is an additive linear o
ratorRa defined on function pairssU ,Td by

RasU,Tdsxd = „Ts− vxd,Ts− vxd + Us− vx − 1d…. s2.27d

he spectrum of this operator on a function space of analytic functions has been investig
ef. 24. We shall study further this operator below. In loose terms,Ra is the logarithm of th
ultiplicative renormalization operatorR, although the presence of zeros of the function pairsu,td

s an obstacle to this correspondence.
Note that the same renormalization equation,(2.18), appears in the analysis by Kuznetsoet

l.23 of the onset of a strange nonchaotic attractor in quasiperiodically forced nonlinear s
nd in the study by Feudelet al.7 of correlations on a strange nonchaotic attractor. We
ecently considered the problem of correlations in some detail.25 In this case piecewise-const
rbits of the recurrence are desired, as they are in an analysis of correlations in a barrier3

imilarly, piecewise-constant orbits of the additive recurrence arise in the study of th
imilarity of the autocorrelation of a quasiperiodically forced two-level system.8 We have given
etailed analysis of such orbits in Ref. 26.

. Function pair conventions

In what follows we shall be dealing extensively with pairs of functionssu,td. We therefore
ake the convention that operations on function pairs act coordinatewise. For example,
ultiply two pairs su1,t1dsu2,t2d=su1u2,t1t2d, and evaluate at a pointsx,x8d: su,tdsx,x8d
(usxd ,usx8d). It will also be convenient for the convention to apply to functions, for exam
xpsU ,Td=(expsUd ,expsTd), andusU ,Td u =suU u , uTud. Note that this is not the normisU ,Tdi of the
pair sU ,Td, but rather the function pair with valuesszUsxd u , uTsx8dzd at a pointsx,x8d.
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We make one further convention that will simplify notation. In general,u andt will not have
he same domains, but it will nevertheless be convenient to write expressions using th
ariablex. Thus we may writeusU ,Td u sxd=suUsxd u , uTsxdud, it being understood implicitly that th
ariablex is not the same for the two functions. These conventions should not cause con
nd we shall use them freely in what follows.

. The strong-coupling fixed point

In Ref. 17 the casea=0, i.e., the original Harper equation(1.1), for which the Lyapuno
xponentg=logulu, has the initial condition

u2sxd = t2sxd =
1

2s1 − cos„2psv2x + vd…d
. s2.28d

his initial condition has a single pole of order two atx=1 and the iteration ofR leads to a fixe
oint of R, the so-calledstrong-coupling fixed point, as we shall prove in Sec. VI B. The stron
oupling fixed point and its properties were studied in Ref. 24. It is given byusxd= tsu0sxdd,
sxd= t*sxd−2, wheret* is the unique, real analytic, entire function satisfying the equation

t*sxd = t*s− vxdt*sv2x + vd, s2.29d

or all xPC and such that(i) t*s1d=0; (ii ) t*8s1dÞ0; and(iii ) t*sxd.0 for xP s−v−1,1d. We refer
he reader to Ref. 24 for the proof of the existence oft* and of its properties.

The strong-coupling fixed point is relevant to the study of the orchid because of the d
ator in the initial condition(2.26). Its role is, however, simply to change the scale of the or
hich we construct in Sec. IV below.

. The iterated function system

For cP h0,1j, as in(2.25) above, letuc denote the affine function

ucsxd = − vx − c. s2.30d

hen we may viewuc as either a map ofR or C depending on the context.[Note that the notatio

0sxd=−vx, u1sxd=−vx−1 differs from that used in Ref. 24.]
The pair of mapsu0, u1 forms an iterated function system(IFS) on R or C with unique

ompact invariant set the intervalI =f−v−1,1g. We haveu0sId=f−v ,1g andu1sId=f−v−1,0g so tha
=u0sIdøu1sId.

The IFSu0, u1 considered here is related to the IFSf1, f2 considered in Refs. 24 and 2
heref1sxd=−vx, f2sxd=v2x+v and the invariant set is the intervalf−v ,1g. In fact f1=u0 and

2=u0+u1. We note the following facts about the IFSu0, u1.

i) u0 andu1 are both linear contractions onC with fixed points 0 and −v, respectively.
ii ) The intervalI is an attractor for the IFS. In particular, given any compact subsetK#C and

any open neighborhoodU of I in C there existsNPN such that for anykùN and any
choicei1, . . . ,ikP h0,1j we haveui1

+ ¯ +uik
sxdPU for any xPK.

Let us write I1=f−v−1,−vd and I0=s−v ,1g. Then we may define a mapG by Gsxd=uc
−1sxd

−v−1x−cv−1 for xP Ic, i.e.,

Gsxd = H− v−1x − v−1, − v−1 ø x , − v;

− v−1x, − v , x ø 1.
s2.31d

e do not define the value ofG at the point −v, but note thatGs−v−d=−v ,Gs−v+d=1. The
unction G is illustrated in Fig. 2.
We remark that the functionF : f−v ,1g→ f−v ,1g considered in Ref. 25, defined by
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Fsxd = Hf1
−1sxd, x P f− v,v2g;

f2
−1sxd, x P fv2,1g,

s2.32d

atisfiesF=G on f−v ,v2g andF=G2 on sv2,1g, whereFs−vd=Gs−v+d.
We shall see that, asymptotically, the orbit oft2 under the recursion(2.18) is determined sole

y the orbits of the zeros oft2 in I under the mapG, apart from a choice of sign.
The functionG is discontinuous onI. However, by identifying the points −v−1, −v and 1 in

we obtain a continuous map on the quotient topological space consisting of two circles jo
single common point.

. The multiplicative structure of R

In Ref. 25 the iteration(2.18) was studied for the case of piecewise constant functiotn
aking values ±1, and the periodic orbits were classified completely. This situation arises
enormalization of the correlation function of strange nonchaotic attractors with a golden
otation number. These periodic orbits of(2.18) are determined by the periodic orbits of the m

given by(2.32) above. This is essentially because the dynamics of piecewise constant fu
re governed by their discontinuity points, and the multiplicative nature of(2.18) relates an
iscontinuity oftn+1 at x with a discontinuity oftn at −vx or a discontinuity oftn−1 at v2x+v. We
efer the reader to Ref. 25 for details. However, such considerations apply also to the zetn
nd also to other singularities such as poles. In terms of the first-order renormalizationR it is the
apG (2.31) on I which is relevant. Indeed the following result is an immediate consequen

he definition ofR and of the mapG.
Proposition 2.1: Letsun+1,tn+1d=Rsun,tnd where un is defined onf−v−1,−vg and tn is defined

n f−v ,1g. Then, defining G0sxd=−v−1x and G1sxd=−v−1x−v−1,

i) un+1sxd=0 if and only if x=G0syd where yP f−v ,1g such that tnsyd=0;
ii ) tn+1sxd=0 if and only if x=G0syd where yP f−v ,1g such that tnsyd=0 or x=G1syd where

yP f−v−1,−vg such that unsyd=0.

Thus under iteration ofR, the zeros evolve under iteration of the mapsG0, G1, which, apart
rom the pointx=−v correspond to the mapG above.

The renormalization operatorR has the following multiplicative property which is the ana
f the linearity of the operatorRa. Let su1,t1d, su2,t2d be function pairs. Then, using our conv

FIG. 2. The functionG on the intervalI.
ion that binary operations are defined coordinatewise, we have

                                                                                                            



s ction
p

F

a
r
R

b

w

W ion
p

a

T
T ve
d ic
s
t

w

J. Math. Phys., Vol. 45, No. 12, December 2004 Golden mean renormalization for Harper equation 5049

                        
R„su1,t1dsu2,t2d… = Rsu1,t1dRsu2,t2d, s2.33d

o thatR respects the multiplication of function pairs. An analogous property holds for fun
air division. We shall use this property extensively in what follows.

. Properties of R and Ra

In this section we describe properties of the multiplicative renormalization operatorR and its
dditive versionRa. We shall construct projectionsP and Pa which commute withR and Ra,
espectively, and which “kill off” the unstable eigenvectors. We shall thus obtain operatorsRPand

aPa with spectral radius less than 1.
Recall that the multiplicative renormalization operatorR on a pair of functionssu,td is given

y

Rsu,tdsxd = st„u0sxd…,t„u0sxd…u„u1sxd…d, s2.34d

hereu0sxd=−vx andu1sxd=−vx−1. The additive versionRa of this operator is given by

RasU,Tdsxd = „Tsu0sxd…,T„u0sxd… + U„u1sxd…d. s2.35d

e shall adopt the convention that the multiplicative operatorR operates on lower-case funct
airs su,td, while the additive operatorRa operates on upper-case function pairssU ,Td.

For cPC and r .0 let Dsc,rd=hzPC : uz−cu , rj denote the open disk with centerc and
radiusr. Let V1=Dsc1,r1d, V0=Dsc0,r0d be the disks inC specified by

c0 = v2/2, r0 = v−1/2, c1 = − sv + 1/2d, r1 = 1/2, s2.36d

s illustrated in Fig. 3.
We have

f− v−1,− vg # V1, f− v,1g # V0, u0sV1d # V0, u0sV0d # V0, u1sV0d # V1. s2.37d

he convention we adopt is that the functionsu andU are defined onV1 and the functionst and
are defined onV0. Moreover we shall assume thatu and t are analytic on their respecti

omains, and thatU andT are analytic onV1 andV0, respectively, or, at worst, have logarithm
ingularities. Fori =0,1 letBi be the real Banach space of real-analytic functions onVi given by
he Taylor series

fszd = o
k=0

`

fk
sz− cidk

r i
k , s2.38d

FIG. 3. The domainsV0 andV1.
ith l1-norm
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ifii,1 = o
k=0

`

ufku , `. s2.39d

et F=B13B0 be the space of pairssu,td with uPB1 and tPB0. We equipF with the norm

isu,tdi = maxhiui1,1,iti0,1j. s2.40d

henF is a real Banach space of pairs of analytic functions. We note that, in view of(2.37), the
enormalization operatorsR andRa are both well defined onF. Indeed,Ra is a linear operator o
, and we now discuss its functional analytic properties.

The following result is similar to Theorem 3 of Ref. 24.
Proposition 2.2: The additive renormalization operator Ra is a bounded linear operator onF,

hich preserves, for each nù0, the subspaces of polynomial pairs of degree at most n. The
pectrum restricted to the subspace of polynomial pairs consists of the simple eigenvaluv−1,
1 , ±v , ±v2, . . ..

The proof is straightforward and is similar to those given in Ref. 24.
Of particular note is that the eigenvalues corresponding to linear function pairs arev−1, −1,

v, andv2. Indeed, the eigenfunction pairs corresponding to eigenvaluesv−1 and −1 are, respe
ively,

v0 =
1
Î5

sv,1d, v1 =
1
Î5

svx − v,x + vd, s2.41d

s can readily be checked by direct computation:Rav0=v−1v0, Rav1=−v1.
In Ref. 24 the strong-coupling fixed point was constructed using a singular function

inear operator that is a contraction to zero, i.e., its spectrum is contained inside the unit c
. Our approach to the construction of the orchid will be similar; it is therefore essential t
ff” the noncontracting eigenfunction pairs of the operatorRa. We do this by projecting down

he stable manifold of the origin, i.e., the codimension-2 subspace ofF spanned by the contracti
igenfunction pairs and the spectral subspace of 0. The construction of this projectionPa uses th

amily of linear functionals ofF defined as follows.
Definition: For nù0, let Dn:F→R be defined by

DnsU,Td =E
−v−1

−v

Usndsxddx+E
−v

1

Tsndsxddx. s2.42d

e note that forn=1,

D1sU,Td = Us− vd − Us− v−1d + Ts1d − Ts− vd, s2.43d

nd forn=0,

D0sU,Td =E
−v−1

−v

Usxddx+E
−v

1

Tsxddx. s2.44d

oreover, we remark that the linear functionalsDn may be defined for function pairssU ,Td with
ingularities inV13V0. Indeed this is certainly the case forD0 whenU andT have logarithmi
ingularities onI.

The significance of the linear functionalsDn is that they are eigenvectors of the adjo
peratorRa

* on the dual spaceF* . Indeed we have the following.
Proposition 2.3:

Dn„RasU,Td… = s− 1dnvn−1DnsU,Td. s2.45d
Proof: The proof is a straightforward calculation:
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Dn„RasU,Td… =E
−v−1

−v dn

dxnT„u0sxd…dx+E
−v

1 dn

dxnsT„u0sxd… + U„u1sxd…ddx

=s− vdnE
−v−1

−v

Tsnd
„u0sxd…dx+ s− vdnE

−v

1

Tsnd
„u0sxd… + Usnd

„u1sxd…dx

=s− vdn−1E
1

v2

Tsndsyddy+ s− vdn−1E
v2

−v

Tsndsyddy

+ s− vdn−1E
−v

−v−1

Usndsy8ddy8

=− s− vdn−1sE
−v

1

Tsndsyddy+E
−v−1

−v

Usndsy8ddy8d

= s− 1dnvn−1DnsU,Td, s2.46d

s required.[In the above integrals we have changed variables:y=u0sxd, y8=u1sxd.] h

Direct calculation also gives the following properties:

D0sv0d = 1, D0sv1d = 0, D1sv0d = 0, D1sv1d = 1. s2.47d

Definition: The operatorPa is defined by

PasU,Td = sU,Td − Re„D0sU,Td…v0 − Re„D1sU,Td…v1. s2.48d

e note that ifsU ,TdPF, thenD0sU ,Td, D1sU ,TdPR.
The following results are straightforward to verify.
Proposition 2.4: The operator Pa has the following properties:

i) ResD0(PasU ,Td)d=ResD1(PasU ,Td)d=0;
ii ) Pa

2=Pa;
iii ) PaRa=RaPa;
iv) Pav0=Pav1=0, and kv0,v1l is the null space of Pa.

From this proposition we may conclude thatPa is a projection which commutes withRa, and
hich “kills off” the noncontracting eigenfunction pairsv0 andv1.

Propositions 2.2 and 2.4 now give us the following result on the spectrum ofRaPa.
Proposition 2.5: The operator RaPa is a bounded operator, preserving, for each nù0, the

ubspaces of polynomial pairs of degree at most n. The spectrum restricted to these subspace
olynomial pairs consists of the simple eigenvalues±v , ±v2, . . ..

We remark that, in particular, the spectral radius ofRaPa on the 4-dimensional space of line
unction pairs isv.

. The multiplicative projection P

We now return to the multiplicative renormalization operatorR and define a projectionP that
s analogous toPa.

With the convention of Sec. II B, we note that forsU ,TdPF we have R(expsU ,Td)
exp(RasU ,Td). Moreover, provideduÞ0 on V1 and tÞ0 on V0 andusxd, tsxd.0 for realx in

heir respective domains, we have that the principal branch of the logarithm logsU ,Td is well
efined and real for real argument, andRa(logsu,td)=log Rsu,td. Thus it is the possibility of th

unctionsu and t changing sign that prevents a direct translation fromR to Ra.
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If logsu,td exists we may define the projectionPsu,td=expsPa(logsu,td)d. However, in an
vent we may defineP as follows.

Definition: The operatorP:F→F is defined by

Psu,td = su,tdexps− D0„logusu,tdu…v0 − D1„logusu,tdu…v1d. s2.49d

e note thatPsu,td=expsPa(logsu,td)d.
It is straightforward to show thatP has the properties of a projection operator.
Proposition 2.6: The operator P:F→F satisfies

i) P2=P;
ii ) PR=RP;
iii ) P(su1,t1dsu2,t2d)=Psu1,t1dPsu2,t2d for su1,t1d, su2,t2dPF;
iv) P expsU ,Td=exp PasU ,Td for sU ,TdPF.

e remark that the operatorRP may be used to construct the orchid numerically, although
ust be taken to preserve the symmetry of the zero set.

. Convergence of orbits with the same zero set

We are now in a position to prove that it is indeed the zero set of an initial conditionsu0,t0d
ogether with a choice of signss0

u,s0
t dP h−1, +1j2 which completely determines the asympt

uture of Psu0,t0d underR. Specifically we prove the following.
Proposition 2.7: Letsu0,t0dPF satisfy

i) u0Þ0 on V1;
ii ) t0Þ0 on V0;
iii ) u0sxd.0 for xPV1ùR;
iv) t0sxd.0 for xPV0ùR;
v) sd2/dx2d log su0,t0dsxdPF.

Then

sûn, t̂nd = RnPsu0,t0d → s1,1d, as n→ `. s2.50d

Sketch Proof:From the above we may writesÛ0,T̂0d=Pa logsu0,t0d with sÛ0,T̂0dPF. More-

ver, it can be shown thatsÛn,T̂nd=Ra
nsÛ0,T̂0d→ s0,0d asn→`. Then

sûn, t̂nd = RnPsu0,t0d = Rnexp„Palogsu0,t0d… = exp„Ra
nPalogsu0,t0d… = expsÛn,T̂nd → s1,1d,

asn → `. s2.51d

his completes the proof. h

From this result we may immediately deduce that the future ofsu0,t0d underR is determine
y the zero sets ofu0, t0 together with a choice of sign. For ifsu0

1,t0
1d, su0

2,t0
2d have the same ze

ets inV1 andV0, then we may find a choice of signsss0
u,s0

t dP h−1, +1j2 such that

ss0
u,s0

t dsu0
1,t0

1d/su0
2,t0

2d = Ss0
uu0

1

u0
2,s0

t t0
1

t0
2D s2.52d

once the removable singularities have been removed) satisfies the proposition above so that

RnPsu0
1,t0

1dRnss0
u,s0

t d
RnPsu0

2,t0
2d

→ s1,1d, asn → `, s2.53d
nd so
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uRnPsu0
1,t0

1du
uRnPsu0

2,t0
2du

→ s1,1d, asn → `. s2.54d

II. SHIFT SPACES AND PARTNERS

. Shift spaces

Let X be a metric space with metricd. We write XZ for the set of bi-infinite sequencesx
sxkdkPZ with xkPX. We denote bys :XZ→XZ the shift map defined forx=sxkdkPZPXZ by
sxdk=xk+1. If X is bounded then we may define a metric onXZ as follows:

dsx,x8d = o
k=−`

`

dsxk,xk8d2
−uku. s3.1d

ith respect to this metric the shift maps is a homeomorphism ofXZ. Of particular importanc
or us will be the case whenX=h0,1j with the metricdsx,x8d= ux−x8u with x, x8P h0,1j. We note
hat the spaceh0,1jZ, which is the full two-sided/bi-infinite shift space on the two symbols 0,
omeomorphic to a Cantor set.

We now denote byŜ the subshift of finite typeconsisting of bi-infinite sequencesc=sckdkPZ
atisfyingckck+1=0, i.e., sequences for which no two consecutive terms of the sequence ha

. ThenŜ inherits a topology fromh0,1jZ and moreover the shift maps restricts to a homeomo

hisms : Ŝ→ Ŝ. We shall henceforth refer to bi-infinite sequences inŜ ascodes.

Let S be the subset ofŜ obtained by removing all codesc which terminate in either all 0s

he block 01 repeated infinitely often. ThenS is invariant unders, but is not closed inŜ.

. The evaluation map

Definition: For nPZ, we define theevaluation mapat indexn, en: Ŝ→ I, to be the base −v
xpansion,

enscd = − o
k=n

`

cks− vdk−n. s3.2d

he evaluation map satisfies

en„sscd… = − o
k=n

`

ck+1s− vdk−n = − o
k8=n+1

`

ck8s− vdk8−sn+1d = en+1scd. s3.3d

riting e for the map of sequence spacese: Ŝ→ IZ given by escdn=enscd, the relation(3.3)
ecomes

e„sscd… = s„escd…. s3.4d

or eachnPZ, en is continuous and thus so ise. We note that the codes that have been de

rom Ŝ to form S are those for whichenscd=0 or 1 for somenPZ.
Of particular interest to us is the fact that the imageesSd is precisely the set of full orbits
he mapG which never take the values 0 or 1. Indeed,
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en„sscd… = en+1scd = − o
k=n+1

`

cks− vdk−sn+1d

= − v−1S− o
k=n+1

`

cks− vdk−nD=− v−1S− o
k=n

`

cks− vdk−n + cnD
= − v−1enscd − v−1cn = G„enscd…, s3.5d

incecn=c if and only if enscdP Ic.

. Partners

We now define a symmetry operation on bi-infinite codescPS which we call “partnering.
he partnering operation will be important in the construction of the orchid below.

The definition of the operation will be eased by introducing the symbolsA, B, C whereA
010,B=00, C=01 are groups of digits in the codec. We can write any codecPS uniquely in

erms of the symbolsA, B, C as given by the following lemma.
Lemma 3.1: LetcPS. Then c may be written uniquely in terms of the symbols A, B, C.

onversely, any bi-infinite sequence of symbols A, B, C corresponds to a uniquecPS once the
ocation of k=0 (which need not be the first digit of A, B, C) is known.

Proof: It is clear that any symbol sequence ofA, B, C gives a unique codecPS provided the
origin k=0 is known. It remains to show that any codecPS may be written in terms ofA, B, C.

Let cPS. We first of all consider the case whenc does not begin in only zeros. Since no
consecutive 1s occur in the code we may writec in terms of blocks of digits beginning with 0
Such a block will be one of two forms:(i) 010s00dm; or (ii ) 01s00dm. Heremù0 is an integer, an
or a group of digitsD, Dm means repeat the groupD m times. In case(i) we write the block a
Bm. In case(ii ) we write CBm. In the case whenc begins in all zeros thenc may be written a
`A. . . or B`C. . .. It is clear that the representation in terms of the symbolsA, B, C is unique.h

As an example we illustrate with the code

s3.6d

n which the “dot” above a digit indicates the location of the origink=0.
We are now able to define the partner operation via the following substitution rule

ymbolsA, B, C:

A → A, B → C, C → B. s3.7d

e denote the resulting partner of a codec=sckdkPZ by c̃=sc̃kdkPZ. So, for example, the cod
onsidered above

s3.8d

as partner

s3.9d

t is clear from the rule(3.7) that the partner operation is an involution:c̃̃=c. Moreover it is also

lear that it commutes with the shifts :S→S: ssc̃d=sscd̃. This is because the location ofk=0 is
reserved under partnering.

The codec corresponds to a full orbity=syndnPZ of the mapG by the evaluation mape, i.e.,
˜ ˜
=escd, whereyn=enscd.We may now ask how the orbitsy=escd andy=escd are related. In order
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o give the answer we define the following “sum map”S:S→ h−v−1,−v ,1jZ, the space of b
nfinite sequences taking values inh−v−1,−v ,1j. We defineS on a codecPS by defining its
ction on the symbolsA, B, C:

SsAd = 1s− v−1ds− vd, SsBd = SsCd = 1s− v−1d. s3.10d

e then defineS on the whole codec by writing c in terms ofA, B, C as in Lemma 3.1 an
pplyingS to each of the symbolsA, B, C separately. We note that sinceS preserves the numb
f symbols it commutes withs:

S„sscd… = s„Sscd…. s3.11d

urthermore, comparing(3.10) with (3.7) we see that the mapS is invariant under the partn
ap:Ssc̃d=Sscd for all cPS.

We have the following result which specifies precisely howy=escd and ỹ=esc̃d are related
nd explains our terminology “sum map.”

Proposition 3.1: Lety=escd and ỹ=esc̃d. Theny+ ỹ=Sscd, where the sum is to be calculat
ermwise.

Proof: For nPZ let Sn=yn+ ỹn. We write the codes ofc and c̃ in terms of the symbolsA, B,
. We note that

yn = − o
k=n

`

cks− vdk−n, ỹn = − o
k=n

`

c̃ks− vdk−n, s3.12d

nd thatyn, ỹnP f−v−1,1g for all nPZ. In particular they are bounded.
Let us first of all consider the case whencn starts a symbolA, B, or C. Then we have tw

ases.

i) Both cn and c̃n start anA=010. Then

Sn = yn + ỹn = − s− vd − s− vd3 o
k=n+3

`

cks− vdk−sn+3d − s− vd − s− vd3 o
k=n+3

`

c̃ks− vdk−sn+3d

= 2v − v3Sn+3. s3.13d

ii ) One ofcn, c̃n starts aB=00 and the other starts aC=01. Then we obtain

Sn = v + v2Sn+2. s3.14d

Now let

k2sxd = v + v2x, k3sxd = 2v − v3x. s3.15d

Both of these maps are contractions with fixed point 1, and we have

Sn = ki1
+ ¯ + ki,

sSn+i1+¯+i,
d, s3.16d

wherei1, . . . ,i,P h2,3j according to the sequence ofA, B, C in the codesc, c̃ starting atn.
Now

uSn − 1u = vi1+¯+i,uSn+i1+¯+i,
− 1u, s3.17d

and, sinceSk is bounded for allkPZ, it follows, taking,→`, thatSn=1.

We have therefore proved thatyn+ ỹn=1 providedn is at the start of a symbolA, B, or C.
Next we consider the case wherecn (and thereforec̃n) is the digit 1 ofA=010. Then we se
hat
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Sn = − 2 +v2Sn+2, s3.18d

herecn+2 starts anA, B, or C in c and c̃. ThusSn+2=1 and soSn=−2+v2=−v−1.
When cn (and again thereforec̃n) is the second digit 0 ofA=010 we have thatSn=−vSn+1

−v, sinceSn+1=1.
These last two cases show that the sums for a symbolA=010 are 1s−v−1ds−vd as in the

efinition of the mapS (3.10).
Finally, we consider the case whencn (respectively,c̃n) is the second digit of aB or C

respectively,C or B). We haveSn=−1−vSn+1=−1−v=−v−1. Thus, from this and the first ca
onsidered, the sums for the symbolsB=00 andC=01 are both 1s−v−1d as in the definition of th
apS (3.10), and the lemma is proved. h

For future use, we remark that(3.10) indicates that ify0+ ỹ0=1 thenc0 can only be at th
eginning of a symbolA, B or C.

We illustrate this result with an example. Let

s3.19d

e the bi-infinite sequence ofAB repeated which has the partner

s3.20d

heny and ỹ are the period-5 orbits ofG:

y = . . . ,
v

1 + v5,
− 1

1 + v5,
− v4

1 + v5,
v3

1 + v5,
− v2

1 + v5, . . . , s3.21d

ỹ = . . . ,
v − v4

1 + v5 ,
v3 − 1

1 + v5,
− sv2 + v4d

1 + v5 ,
v + v3

1 + v5 ,
− s1 + v2d

1 + v5 , . . . , s3.22d

ith period-5 sum

Sscd = Ssc̃d = . . . ,1,−v−1,− v,1,−v−1, . . . , s3.23d

s can easily be verified.

V. CONSTRUCTION OF THE ORCHID

In this section we describe the construction of the Ketoja–Satija orchidO. By the orchid we
ean the whole set in function-pair space, not just the projection onto the plane by an ev
t the origin of the function pair as in Fig. 1. We shall see that an uncountable dense subs
rchid consists essentially of three copies of the sequence spaceS and, together with a map th
cts on the signs of the functions, the shift maps on S provides a dynamical model for the act
f R on this dense subset ofO.

To construct the orchid we first define a mapE :S→F which essentially conjugatesR to the
hift maps on S. For cP h0,1j, let us define a map on sign pairskc: h−1, +1j2→ h−1, +1j2 by

kcssu,std = s− st,− s− 1dcsustd. s4.1d

he mapE :S→F is given by the following proposition.
Proposition 4.1: There exists a continuous mapE :S→F such that forcPS, Escd is a pair

u,tdPF such that

i) if c−1=0 then usxd=sy0−xdu1sxd, tsxd=sy0−xdt1sxd; otherwise
ii ) if c−1=1 then usxd=u1sxd, tsxd=sy0−xdt1sxd,

1 1 1
here y0=e0scd, and u , t are functions analytic on V1 and V0, respectively, satisfying usxd.0
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n s−v−1,−vd and t1sxd.0 on s−v ,1d. Furthermore, letssu,stdP h−1, +1j2 be a choice of sign
hen, using our convention that multiplication of pairs is defined coordinatewise, we have t
PS,

R„ssu,stdEscd… = kc0
ssu,stdE„sscd…. s4.2d

n essence the proposition says that the action ofR on a pairsu,td=ssu,stdEscd is the mapkc0
on

he pair of signsssu,std together with the shift map on the codec.
The proof of this proposition is in Sec. V.
We now return to the construction of the orchid itself. The orchid is constructed from a

and its partnerc̃. Indeed we may use the mapE to define one of the three fundamental sets
ake up the orchid.

Definition: The mapb :S→F is defined forcPS by

bscd = EscdEsc̃d, s4.3d

herec̃ is the partner ofc.
A projection to the plane of the closure of the image ofb is shown in Fig. 4.
We now define a new map on the sign pairs as follows.
Definition: For bP h0,1j let Lb: h−1, +1j2→ h−1, +1j2 be defined by

Lbssu,std = „st,s− 1dbsust
…. s4.4d

t is easy to check that the mapLb is invertible with inverseLb
−1ssu,std=(s−1dbsust ,su).

We then have the following theorem.
Theorem 4.1:The mapb :S→F satisfies the equation

R„ssu,stdbscd… = Lb0
ssu,stdb„sscd…, s4.5d

here b0=c0+ c̃0 mod 2.The mapb is continuous and two-to-one fromS to its imagebsSd#F.
Equation(4.5) follows immediately from(4.2), and we prove the other properties ofb in Sec

D. We now proceed to use the theorem to construct the orchid. The orchidO is made up of thre
˜ ˜

FIG. 4. A projection of the fundamental set cl(bsSd).
opies of the fundamental setbsSd as follows. Letc, c be partners and letb=c+c mod 2 be the
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i-infinite sequence giving the parities of the sumc+ c̃. Recall from Sec. III C that the partner co
is obtained fromc by writing c uniquely in terms of the lettersA, B, C. We shall need the set

ndices which begin anA, B, C in the code ofc.
Definition: We defineS={kPZ: the code ofc begins anA, B, C at indexk}.
The setS is important and we shall have to restrict the signsssu,std at indiceskPS. For

PS and ss0
u,s0

t dP h−1, +1j2 we define, fornPZ, ssn
u,sn

t d=ssn
uscd ,sn

t scdd by the condition

Lbn
ssn

u,sn
t d = ssn+1

u ,sn+1
t d, s4.6d

or all nPZ, where, as beforeb=c+ c̃ mod 2.
Definition (Ketoja–Satija orchid):The Ketoja–Satija orchidO is defined as

O = clhss0
u,s0

t dbscd:c P S and„sn
uscd,sn

t scd… P hs+ 1, + 1d,s+ 1,− 1d,s− 1,− 1dj for all n P Sj.

s4.7d

projection ofO is shown in Fig. 1, obtained by evaluatingbscd at the origin. Thus the orchid
iven by the closure of the image ofS under the mapb together with a restricted choice of sig
o that at the start of each block(sn

uscd ,sn
t scd) lies in the “permitted set”hs+1, +1d ,s+1,−1d ,

−1,−1dj. In fact the choice of signs in the definition ofO is not so restrictive as can be seen fr
he following lemma.

Lemma 4.1: Let nPS and let n8PS be the smallest integer in S greater than n. Then
sn

uscd ,sn
t scd)P hs+1, +1d ,s+1,−1d ,s−1,−1dj if and only if (sn8

u scd ,sn8
t scd)P hs+1, +1d ,s+1,−1d ,

−1,−1dj.
The setS is the set of indices that start a block consisting of anA, B, or C. Thus Lemma 4.

tates that if the sign pair(sn
uscd ,sn

t scd) is in the permitted seths+1, +1d ,s+1,−1d ,s−1,−1dj for
ndex n, the start of anA, B, or C, then(sn8

u scd ,sn8
t scd) will also be in the permitted set for ind

8, the start of the next block, and vice versa. It follows that condition(4.7) need only be satisfie
t the start of a single block, i.e., a single indexnPS, for it to hold throughoutS.

Proof of Lemma 4.1:Let nPS and suppose(sn
uscd ,sn

t scd)=s−1, +1d, i.e., not in the permitte
et at the start of a block and indexn. The block may be anA or a B/C and we consider the tw
ases separately.

Block A. Thenn8=n+3, andbn=an+ ãn=0, bn+1=0, bn+2=0, and(omitting the explicit de
endence onc) we havessn+1

u ,sn+1
t d=s+1,−1d, ssn+2

u ,sn+2
t d=s−1,−1d, ssn+3

u ,sn+3
t d=s−1, +1d, as re

uired.
Block B/C. Thenn8=n+2, andbn=an+ ãn=0, bn+1=1, so, in this case, we havessn+1

u ,sn+1
t d

s+1,−1d, ssn+2
u ,sn+2

t d=s−1, +1d, as required.
The converse statement that(sn8

u scd ,sn8
t scd)=s−1, +1d implies (sn

uscd ,sn
t scd)=s−1, +1d follows

mmediately from the invertibility of the mapsLb on h−1, +1j2. The lemma follows. h

The action of the blocksA, B/C on the sign pair(sn
uscd ,sn

t scd) is illustrated in Figs. 5 and
Figure 5 represents the action of the mapsLb on the sign pairs−1, +1d as a blockA or B/C

s traversed. The sign pairs−1, +1d is at the start of a block which we indicate by enclosing
air in a box. Although other sign pairs occur as the blocks are traversed, the sign pair re
−1, +1d at the start of each block.

FIG. 5. The fundamental transition diagram.
The transition diagram in Fig. 5 represents the fundamental setbsSd#F.
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The orchid transition diagram is illustrated in Fig. 6. Again, the sign pairs occurring
tart of blocks are enclosed in boxes. Note that the sign pairs−1, +1d that gives only the funda
ental setbsSd occurs as an intermediary as the blocks are traversed.

We thus have the following theorem.
Theorem 4.2:The setO is an invariant set for R, i.e., RsOd=O. The action of R onO is given

y

R„ss0
u,s0

t dbscd… = Lb0
ss0

u,s0
t db„sscd…, s4.8d

or cPS and ss0
u,s0

t dP h−1, +1j2.
This theorem gives a description of the dynamics onO in terms of the dynamics onS. In Sec

I we study the properties ofO. First, however, we must complete the construction of the mE.

. CONSTRUCTION OF THE MAP E
In this section we use the results of Sec. III above to construct the mapE :S→F as given by

roposition 4.1.
Let cPS. Our method for constructingEscd is as follows. We first consider the twic

ifferentiated additive operatorR2 given by

R2sU,Td = sv2Tu0,v
2Tu0 + v2Uu1d, s5.1d

nd construct a function pairE2scd such that

R2„E2scd… = E2„sscd…. s5.2d

he relationship betweenR2 andRa is the following:

RasU,Td9 = R2sU9,T9d, s5.3d

o thatR2 is the map induced byRa on the second derivative pairsU9 ,T9d. Having constructe

2scd, we then obtain a function pairEscd satisfying the relation

R„Escd… = kc0
s+ 1, + 1dE„sscd…, s5.4d

here, as in(4.1),

kc0
s+ 1, + 1d = „− 1,−s− 1dc0

…. s5.5d

he construction ofEscd from E2scd is somewhat involved, as indeed is the construction ofE2scd

FIG. 6. The orchid transition diagram.
tself.
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. Convergence proof preliminaries

Let cPS. For kPN0 definey−k=e−kscd, andd−k=y−k+v. We note thatd−kÞ0 for all cPS. It
ay, however, be arbitrarily small, thereby creating a “small divisor” problem that mu

ontrolled. We shall use the following lemma, which is fundamental to the convergence p
Lemma 5.1:

o
kù1

vk

ud−ku
, + `. s5.6d

o
kù1

kvk

ud−ku
, + `. s5.7d

o
kù1

vkulogud−kuu , + `. s5.8d

Proof: We prove (5.6); the proofs of the other inequalities are similar.
,k1,k2, ¯ ,ki ,¯ be the values ofk such thatud−ku ,1/2. Let us considerki. We deal with

he two cases d−ki
.0 and d−ki

,0 separately. If d−ki
.0, then for 1ø j , slogud−ki

u
log 1/2d / log v, we have

minhuy−ki+j − 1u,uy−ki+j + v−1uj , 1/2, s5.9d

o thatki −ki−1ù slogud−ki
u−log 1/2d / log v. On the other hand, ifd−ki

,0, then it is possible th

i−1+1=ki, and then for 2ø j , slogud−ki
u−log 1/2d / log v we have

minhuy−ki+j − 1u,uy−ki+j + v−1uj , 1/2, s5.10d

o that ki −ki−2ù slogud−ki
u−log 1/2d / log v. Otherwiseki −ki−1ù slogud−ki

u−log 1/2d / log v, as
efore. Anyway, we certainly haveki −ki−2ù slogud−ki

u−log 1/2d / log v for all i, so that

vki

ud−ki
u

ø 2vki−2. s5.11d

ow we estimate

o
kù1

vk

ud−ku
ø o

jÞki

v j

1/2
+

vk1

ud−k1
u
+

vk2

ud−k2
u
+ o

iù3
2vki−2 , + `, s5.12d

s required. h

. Construction of the function pair E2„c…

We now proceed to construct the mapE2 outlined above. LetcPS, let kPN0 and letH2
k,0 be

efined as

H2
k,0sxd =H„sy−k − xd−2,sy−k − xd−2

…, c−sk+1d = 0;

„0,sy−k − xd−2
…, c−sk+1d = 1.

s5.13d

hen a straightward calculation shows that forkù1,

R2H2
k,0 = H2

k−1,0+ H2
k,1, s5.14d
here
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H2
k,1sxd = 5s0,v2

„y−k − u1sxd…−2d, c−sk+1d = 0,c−k = 0;

„v2sy−k − u0sxd…−2,v2
„y−k − u0sxd…−2d, c−sk+1d = 0,c−k = 1;

s0,0d, c−sk+1d = 1,c−k = 0.

s5.15d

he idea here is that the singular part ofR2H2
k,0 is contained inH2

k−1,0, while H2
k,1 is nonsingular o

13V0.
Let us now define

H2
k,k = R2

k−1H2
k,1. s5.16d

hen a formal calculation from(5.14) gives

R2
kH2

k,0 = o
j=0

k

H2
j ,j . s5.17d

e wish to show that the serieso j=1
k H2

j ,j converges inF. To do this we shall show that

iH2
k,ki ø

Kvk

ud−ku
, s5.18d

or some constantK, and then invoke Lemma 5.1.
Let us introduce the following convention. For a finite sequence of indicesi1, . . . ,ik we shal

mplicitly assume thati j P h0,1j, j =1, . . . ,k, and thati ji j+1=0, j =1, . . . ,k−1, so that no tw
onsecutive 1s appear in the sequence. It is now straightforward to verify the following fo
or the kth iterate ofRa:

Ra
ksU,Td =S o

i1,. . .,ik
i1=1,ik=0

Uui1
¯ uik

+ o
i1,. . .,ik

ik=0,ik=0

Tui1
¯ uik

, o
i1,. . .,ik

i1=1

Uui1
¯ uik

+ o
i1,. . .,ik

i1=0

Tui1
¯ uikD .

s5.19d

imilarly, for R2 we have

R2
ksU,Td = v2kRa

ksU,Td. s5.20d

hus, combining(5.15) and (5.19), we have

H2
k,ksxd = sR2

k−1H2
k,1dsxd

=5
S o

i1,. . .,ik−1

i1=0,ik−1=0

v2k
„y−k − u1ui1

¯ uik−1
sxd…−2D ,

S o
i1,. . .,ik−1

i1=0

v2k
„y−k − u1ui1

¯ uik−1
sxd…−2D ,

c−sk+1d = 0 c−k = 0;

S o
i1,. . .,ik−1

ik−1=0

v2k
„y−k − u0ui1

¯ uik−1
sxd…−2,D

S o
i1,. . .,ik−1

v2k
„y−k − u0ui1

¯ uik−1
sxd…−2D , c−sk+1d = 0 c−k = 1;

s0,0d, c−sk+1d = 1 c−k = 0.

s5.21d
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sing the identity

v2k
„y−k − ui0

¯ uik−1
sxd…−2 = „uik−1

−1
¯ ui0

−1sy−kd − x…−2, s5.22d

e may rewrite this as

H2
k,ksxd = 5S o

j1,. . .,jk
j1=c̄−k,jk=0

„u jk
−1
¯ u j1

−1sy−kd − x…−2, o
j1,. . .,jk
j1=c̄−k

su jk
−1
¯ u j1

−1sy−kd − xd−2D , c−sk+1d = 0;

s0,0d, c−sk+1d = 1,

s5.23d

here we have used the notation

c̄ = H1, c = 0;

0, c = 1.
s5.24d

e now wish to bound the norm ofH2
k,k and to do so we make use of the following elemen

orm estimate.
Lemma 5.2: Let yPC. The l1-norm of the function fsxd=sy−xd−2 on the domain Dsc,rd is

ifi1 = suy − cu− rd−2 , + `, s5.25d

rovided r, uy−cu.
Proof: We have

fsxd = sy − xd−2 = „y − c − rsx − cd/r…−2 =
1

sy − cd2o
i=0

` S r

y − c
Di

si + 1dSx − c

r
Di

, s5.26d

o that

ifi1 =
1

uy − cu2oi=0

` S r

uy − cuD
i

si + 1d = suy − cu− rd−2 , + `, s5.27d

rovidedr , uy−cu. h

As a consequence of this estimate, we have the following lemma.
Lemma 5.3:

i) H2
k,1PF, so that the function pair H2

k,1 is analytic on V13V0 with bounded norm
iH2

k,1i, +`;
ii ) For kù1,

iH2
k,ki ø5

maxH o
j1,. . .,jk

j1=c̄−k,jk=0

„uu jk
−1
¯ u j1

−1sy−kd − c1u− r1…
−2,j

H o
j1,. . .,jk
j1=c̄−k

suu jk
−1
¯ u j1

−1sy−kd − c0u − r0d−2J ,
c−sk+1d = 0;

0, c−sk+1d = 1.

s5.28d

Proof:

i) It is trivial in the third case of(5.15) that H2
k,1PF. In the first case(c−sk+1d=0, c−k=0), we

have y−kP s−v ,1d. Thus u1
−1sy−kdP s−2/v ,−vd, which does not intersectV0. Thus

su1
−1sy−kd−xd−2 is analytic on V0, and thus has a boundedl1-norm. It follows tha
k,1 k,1
iH2 i, +` andH2 PF.
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Similarly, in the second case(c−sk+1d=0, c−k=1), we havey−kP s−v−1,−vd. Thusu0
−1sy−kd

P s1,2/vd, which does not intersectV0̄øV1̄, so that H2
k,1 is analytic onV13V0 and

iH2
k,1i, +`.

ii ) SinceR2F#F, all singularities ofH2
k,k=R2

k−1H2
k,1 lie outsideV0øV1 so the estimate fo

iH2
k,ki follows from Lemma 5.2 and(5.23).

Lemma 5.3 gives us a bound oniH2
k,ki, but we still need to bound the sums on the right-h

ides of(5.28).
In what follows we shall make use of the following lemma whose proof is elementary
Lemma 5.4: Let a, b.0. Then

o
i=0

`
1

sa + bid2 ø
a + b

a2b
. s5.29d

ur fundamental estimate is the following.
Lemma 5.5: There exists a constant K.0 such that

iH2
k,ki ø

Kvk

ud−ku
. s5.30d

Corollary 5.1: The seriesokù1 H2
k,k converges inF.

Proof: This follows immediately from Lemmas 5.5 and 5.1. h

In order to prove Lemma 5.5, we need to identify more precisely the singularities ofH2
k,k. In

articular, we have the following result, which follows from the properties of the golden me
roof is straightforward if somewhat lengthy, and is omitted.

Lemma 5.6: Let

A = hu jk
−1
¯ u j1

−1sy−kd: j1 = c̄−kj, s5.31d

B = hu jk
−1
¯ u j1

−1sy−kd: j1 = c̄−k, jk = 0j. s5.32d

hen we have the following cases.
Case (i) c−k=1 sd−k,0d; when kù1 is odd,

A = − v−kd−k + h1j ø hdi/ve + iv:i = 1, . . . ,Fk+1 − 1j, s5.33d

B = − v−kd−k + hdi/ve + iv:i = bu j /vuc, j = 1, . . . ,Fk − 1j ø hdi/ve − 1 + iv − v:i = bFk/vcj.

s5.34d

hen kù1 is even,

A = v−kd−k + hdi/ve + iv:i = 1 −Fk+1, . . . ,− 1j ø hdi/ve + 1 + iv:i = − Fk+1j, s5.35d

B = v−kd−k + hdi/ve + iv:i = d j /ve, j = 1 −Fk, . . . ,− 1j ø h− 1 −vj. s5.36d

Case (ii) c−k=0 sd−k.0d; when kù1 is odd,

A = − v−kd−k + hdi/ve + iv:i = 1 −Fk, . . . ,− 1j ø hdi/ve + 1 + iv:i = − Fkj, s5.37d

B = − v−kd−k + hdi/ve + iv:i = d j /ve, j = 1 −Fk−1, . . . ,− 1j ø h− 1 −vj. s5.38d

hen kù1 is even,

−k
A = v d−k + h1j ø hdi/ve + iv:i = 1, . . . ,Fk − 1j, s5.39d
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B = v−kd−k + hdi/ve + iv:i = b j /vc, j = 1, . . . ,Fk−1 − 1j ø hdi/ve − 1 + iv − v:i = bFk−1/vcj.

s5.40d

Proof of Lemma 5.5:Referring to Lemma 5.6, we see that for eachk, the setsA andB have
he same overall structure while differing in detail. In particular, we have that the element
inearly. To be more specific, we make the following observation. WritingA=hx0

0, . . . ,xNk
0

0 j, B

hx0
1, . . . ,xNk

1
1 j, for Nk

0, Nk
1PN with ux0

0u , ux1
0u , ¯ , uxNk

0
0 u, ux0

1u , ux1
1u , ¯ , uxNk

1
1 u, we have tha

here exists a constantC.0 (independent ofk) such that, fori =0, 1, xj
i ù1+Cj+s−vd−kd−k, j

0, . . . ,Nk
i for s−1dkd−k.0, while xj

i ø−v−1−Cj+s−vd−kd−k, j =0, . . . ,Nk
i for s−1dkd−k,0.

We now refer to(5.28) and observe that the sums are taken over the setsB andA, respectively
nd each term in the sum is of the formsuxj

i −ci u−r id−2, and, since −v−1øc1−r1øc1+r1=c0−r0

c0+r0ø1, we have that each sum in(5.28) is majorized by

o
j=0

`

sv−kud−ku + Cjd−2 ø
C + v−kud−ku
v−2kud−ku2C

by Lemma 5.4 s5.41d

=
vk

Cud−ku
+

v2k

ud−ku2
s5.42d

øK
vk

ud−ku
, s5.43d

or someK.0 (depending onc) sinceok=1
` vk/ ud−ku , +`. h

We are therefore able to define

E2scd = lim
k→`

R2
kH2

k,0 = H2
0,0+ G2scd, whereG2scd = o

jù1
H2

j ,j . s5.44d

he first part ofE2scd, i.e., H2
0,0, may contain singularities onV13V0. These singularities are

oles. We note that, by definition,H2
k,0scd=H2

k+1,0(sscd), so that

H2
k,1scd = H2

k+1,1
„sscd… s5.45d

nd

R2„H2
k,kscd… = R2„R2

k−1H2
k,1scd… = R2

kH2
k+1,1

„sscd… = H2
k+1,k+1

„sscd…. s5.46d

ence, by continuity ofR2,

R2G2scd = R2So
jù1

H2
j ,jscdD = o

jù1
H2

j+1,j+1ssscdd = G2„sscd… − H2
0,1scd. s5.47d

llowing for singularities we have

R2„E2scd… = R2H
0,0scd + R2G2scd = H2

0,0
„sscd… + G2„sscd… = E2„sscd…, s5.48d

hich is (5.2) as desired.

. Definition and outline construction of the function pair E„c…
The construction of the mapE from E2 is somewhat involved, and we only give an out

ere. To obtainEscd from E2scd one essentially has to integrate twice and then project ont

omplement of the subspace spanned by the linear eigenfunction pairsu0, u1, v0, v1 given below.
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owever, technical obstacles have prevented the direct implementation of this approach. It
oped that a simpler method can be found in the future. Our approach here is to obtaEscd
h0scdexp(K1scd), where logh0scd¹F, but K1scdPF.

K1scd is then constructed by the same method of forward iteration of initial conditions d
or negative time as was used in the construction ofE2scd, but making use of the spectral pro
rties ofRa restricted to spanhu0,u1,v0,v1j.

Let u0, u1, v0, v1 be eigenfunction pairs ofRa such that

Rasu0d = − vu0, Rasu1d = v2u1, Rasv0d = v−1v0, Rasv1d = − v1. s5.49d

ere

u0 = s1,−vd, u1 = s1 + 2vx,v2 − 2v2xd, s5.50d

ndv0, v1 are as defined above in Eq.(2.41). We define the integral operatorI by

IsU2,T2d = SE
c1

z E
c1

z8
U2sz8ddz8dz,E

c0

z E
c0

z8
T2sz8ddz8dzD . s5.51d

e denote byD the differentiation operator. Then we haveD2I=id.
We define the function pairsh0scd, H0scd, and H2

0scd by H0scd=log h0scd, H2
0scd=D2H0scd

hereh0scdPF is defined by

h0scdsxd = Hsy0 − x,y0 − xd, c−1 = 0;

s1,y0 − xd, c−1 = 1.
s5.52d

e note thatH2
0scd=H2

0,1scd as given in Sec. IV.B.
We now defineh1scd by the equation

Rsh0dscd = kc0
s+ 1, + 1dh0

„sscd…h1scd. s5.53d

he function pairh1scd is readily calculated as follows. We have three cases.
Case (i): c−1=0 andc0=0. Then

Rsh0dscdsxd = sy0 − u0sxd,„y0 − u0sxd…„y0 − u1sxd…d

= s− 1,− 1dsy1 − x,y1 − xdsv,v„y0 − u1sxd…d

=kc0
s+ 1, + 1dh0

„sscd…sxdh1scdsxd, s5.54d

here h1scdsxd=sv ,v(y0−u1sxd)d. In this calculation we have used the fact that ifc0=0 then
y0−u0sxd=u0sy1d−u0sxd=−vsy1−xd.

Similar calculations give, for the other cases, the following.
Case (ii): c−1=0 andc0=1: h1scdsxd=su0sxd−y0,v(u0sxd−y0)d.
Case (iii): c−1=1 andc0=0: h1scdsxd=sv ,vd.
We note the following result.
Lemma 5.7: Let us write h1scd=su1,t1d. Then we have u1sxd.0 for xP f−v−1,−vg=V1ùR

nd t1sxd.0 for xP f−v ,1g=V0ùR. Moreover u1sxdÞ0 for xPV1, and t1sxdÞ0 for xPV0.
Proof: We consider separately the three cases in the definition ofh1 above. Case(iii ) is clear

et us consider case(i). Thenu1sxd=v.0 and forxP f−v ,1g, t1sxd=v(y0−u1sxd).0 sincey0

s−v ,1d and u1sxdP f−v−1,−vd. In case(ii ) for xP f−v−1,−vg we haveu1sxd=u0sxd−y0.0
incey0P s−v−1,−vd and u0sxdP fv2,1g, while for xP f−v ,1g we havet1sxd=v(u0sxd−y0).0
incey0P s−v−1,−vd andu0sxdP f−v ,v2g. The second statement in the lemma follows from
act that bothu1 and t1 are linear with real roots. h

The importance of this lemma is that it implies that the logarithm ofh1scd is a function inF.
ndeed, we may defineH1scd=log h1scd and H2

1scd=D2H1scd and, we have, analogously to

bove results,
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RaH
0scd = H0

„sscd… + H1scd, R2H2
0scd = H2

0
„sscd… + H2

1scd. s5.55d

learly,H1scd, H2
1scdPF.

We now defineE :o→F by

Escd = h0scdexp„K1scd…, s5.56d

emanding thatK1 satisfiesH1scd+RaK
1scd=K1(sscd).

In Sec. II we constructed a function pairG2scdPF with R2G2scd=G2(sscd)−H2
0scd. Our task

s to constructK1scd from G2scd. Let us define, forkù0,

Lkscd = Ra
kPasH0ss−kscdd − IG2ss−kscddd − H0scd. s5.57d

henLkscdPF since the singularities ofRa
kPaH

0(s−kscd) and −H0scd cancel.
The proof thatLkscd converges inF depends on the following three technical lemmas,

roofs of which we omit.
Lemma 5.8: Lk+1scd−LkscdPker D2.
Lemma 5.9: RaH

0(s−sk+1dscd)−H0(s−kscd)−RaIG2(s
−sk+1dscd)+IG2(s

−kscd) has a norm
ounded by K1u logud−ku u+K2siG2(s

−kscd)i+iG2(s
−sk+1dscd)id for suitable constants K1, K2.0.

Lemma 5.10:

o
,ù1

v,iG2„s
−,scd…i , + `. s5.58d

e now indicate how these results imply the convergence ofLkscd to a function pairK1scdPF
atisfying the required functional equation.

SinceD2(Lk+1scd−Lkscd)=0 we have thatLk+1scd−Lkscd is in the span of the eigenfuncti
airsu0, u1, v0, v1 which span the four-dimensional kernel ofD2 in F. Now Pasv0d=Pasv1d=0, so
hat forH Pspanhu0,u1,v0,v1j, we havePasHdPspanhu0,u1j. Now Ra has spectrumh−v ,v2j on
panhu0,u1j. Since spanhu0,u1j is two-dimensional there exists a constantK3.0 such tha
Ra

kPaiøK3vk on the space spanhu0,u1,v0,v1j. Let «.0. We now estimate as follows. Form.n,

Lmscd − Lnscdi ø o
k=n

m−1

iLk+1scd − Lkscdi

ø o
k=n

m−1

K3vksK1ulogud−kuu + K2iG2„s
−kscd…i + K2iG2„s

−sk+1dscd…id ø «, s5.59d

or m, n sufficiently large by Lemmas 5.1 and 5.10. We conclude that(Lkscd) is a Cauchy sequen
nd converges inF to a function pairK1scd.

We must now show thatK1scd satisfies the required functional equation:

RaK
1scd + H1scd − K1

„sscd… = 0. s5.60d

efining

Fkscd = RaL
kscd + H1scd − Lk

„sscd…, s5.61d

e have thatFkscd→0 in F, since

Fkscd = Ra
kPa„Ras− IG2„s

−kscd… + H0
„s−kscd…d + IG2„s

−sk−1dscd… − H0
„s−sk−1dscd……,

Ras− IG2„s
−kscd… + H0

„s−kscd…d + IG2„s
−sk−1dscd… − H0

„s−sk−1dscd… P ker D2 s5.62d
nd
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iRas− IG2„s
−kscd… + H0

„s−kscd…d + IG2„s
−sk−1dscd… − H0

„s−sk−1dscd…iøK4ulogud−kuu

+ K5iG2„s
−kscd…i + K5iG2„s

−sk−1dscd…i, s5.63d

o thatiFkscdi→0 by the same argument as above. ThusK1scd satisfies(5.60).

. Properties of the maps E, b

In this section we consider briefly the properties of the mapsE, b. The following results ma
e readily proved.

Lemma 5.11: Letc, c8PS. Then Escd=Esc8d, if, and only if, c8=c. Furthermore, bscd
bsc8d, if, and only if,c8=c or c̃.

Lemma 5.12: The mapsE, b are continuous.
Proof: These results follow from the continuity of the evaluation mapsenscd. Indeed, letc

S. We first of all show thatG2 is continuous atc. We have

G2scd = o
jù1

H2
j ,jscd. s5.64d

et «.0 be given. Referring to the proof of Lemma 5.1, we have forc8 close toc thatk1 andk2

qual their values forc. Now let N.k2 be such that

o
k.N

Kvk

ud−ku
, «/4, s5.65d

hereK is given in Lemma 5.5. Then

Io
jù1

H2
j ,jsc8d − o

jù1
H2

j ,jscdI ø o
j=1

N

iH2
j ,jsc8d − H2

j ,jscdi + o
j.N

iH2
j ,jsc8di + o

j.N

iH2
j ,jscdi s5.66d

,o
j=1

N

iH2
j ,jsc8d − H2

j ,jscdi + «/4 + «/4 s5.67d

,«, s5.68d

rovidedc8 is taken sufficiently close toc so that the first sum is less than« /2.
HenceG2 is continuous atc, and it follows immediately thatE is continuous atc. h

In fact, more can be said. For if for a sequence of codesck, we haveEsckd→Escd for some
PS, thenck→c. To prove this, suppose the contrary. Then there is a sequenceck and c with
sck,cdù« for some«.0 but with Esckd→Escd. Then there isnPZ for which snsckd andsnscd
re in different intervalsI0 and I1 for k sufficiently large. Then, sinceEsckd→Escd, we have
sckd /Escd→ s1,1d, and thus, from the invertibility ofR at s1,1d and Eq.(4.2), we haveensckdn

enscd ask→`, so thatenscd=−v, contradicting the fact thatcPS.
Furthermore, we have the following lemma.
Lemma 5.13: The mapsE, b :S→F satisfy PE=E, Pb=b.
Proof: Clearly, we need only prove thatPE=E. By definition we have Escd

h0scdexp(K1scd) and

P„Escd… = P„h0scd…exp„PaK
1scd… = h0scdexps− D0„loguh0scdu…v0 − D1„loguh0scdu…v1dexp„PaK

1scd…,

s5.69d
o we need to show that
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PaK
1scd − D0„loguh0scdu…v0 − D1„loguh0scdu…v1 = K1scd. s5.70d

ow

PaK
1scd = lim

k→`
PaL

kscd = lim
k→`

Pa„Ra
kPasH0ss−kscd − IG2„s

−kscd…d − H0scd…

= lim
k→`

Ra
kPasH0

„s−kscd… − IG2„s
−kscd… − PaH

0scd

= lim
k→`

Lkscd + H0scd − PaH
0scd = K1scd + H0scd − PaH

0scd. s5.71d

owever, by definition, we have that

H0scd − PaH
0scd = Re„D0H

0scd…v0 + Re„D1H
0scd…v1, s5.72d

nd, since Re(H0scd)=loguh0scdu, we are done. h

. Construction of a model space for the fundamental set

In this section we outline the construction of a model space for the fundamental setbsSd. The
pace is obtained by quotientingS by the partnering operation,, and then completing in
ull-back metric.

The mapb :S→F is continuous but not injective. Indeed, recall from Lemma 5.11
scd=bsc8d, if, and only if, c8=c or c̃, so thatb is invariant under the partnering operation. If
ow defineS8 to be the topological quotient ofS with respect to the continuous involution,, i.e.,

n which we identifyc with its partnerc̃ to make a new topological space, thenb induces a ma
n S8 which we also denote byb. The mapb :S8→F is continuous and one-to-one onto its im

nsideF. Indeed, the mapb :S8→bsS8d is a homeomorphism.
The metricd on S induces a metric onS8 which we may also denote byd. SinceS is not

losed in Ŝ, the metricd on S is not complete and so neither isd on S8. Indeed there ar

bstructions to extendingE, and henceb, to the whole ofŜ. The spaceS8 is therefore a model o
nly a dense subset of the fundamental setbsSd.

However, by pulling back the metric onF to S8, we may completeS8 in this new metric an
btain a model space for the whole ofbsSd. We define a metric onS8 by pulling back the metri
n F (given by the Banach space structure), rather than by projecting down the metric onS to the
uotient. This results in the same topology onS8, but a different metric structure.

The spaceS8 is not complete as a metric space, but we may complete it in the sta

anner to obtainŜ8. The homeomorphismb (which is now trivially, by construction, an isomet)
xtends to an isometryb : Ŝ8→bsS8d̂=bsS8d, the closure of the imagebsS8d in F.

Now, sinces :S→S is a homeomorphism commuting with the partnering operation,
nduced maps :S8→S8 is also a homeomorphism. Moreover, we may extend the functionb0scd
o Ŝ8 so that we have the equation

R„bscd… = Lb0
s+ 1, + 1db„sscd…, s5.73d

or cP Ŝ8, where, as earlier,b0=c0+ c̃0 mod 2.

I. PROPERTIES OF THE ORCHID

In this section we discuss the properties of the orchid constructed in Sec. IV. In particu
ish to show that(restricting to a codimension-2 stable manifold) it is a strange attractor, and th

he function pair given by the generalized Harper equation(1.2) does indeed lie on the stab
anifold of the orchid. In fact, this is not strictly the case(as we shall see) for the presence of th
enominator in(2.26) leads to a scaled version of the orchidO. Of further interest is the period

rbit structure ofO which we shall discuss in the next section.
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The precise definition of a “strange attractor” is still not firmly established despite the
arity of the whole scientific community with the basic concept. However central ingredients
ollows:

i) the attractor should be closed;
ii ) the attractor should be indecomposable—this means that there should be a dense

forward, or both forward and backward time;
iii ) the periodic points should be dense in the attractor;
iv) the attractor should exhibit “sensitive dependence on initial conditions.”

We shall show that the orchid does indeed possess these four characteristics, although
n attractor for all function pairs inF.

We first of all discuss the initial conditions(2.26) given by the generalized Harper equat

. The generalized Harper equation orchid

We now prove that the initial condition derived from the generalized Harper equat
ttracted to the orchid under iteration ofR. Let u2, t2 be initial conditions for the operatorR given
y (2.26). Let us separate the numerator and denominator of(2.26) as follows, writing

u2
1sxd = t2

1sxd =
1 + a cos„2psv2x + v/2d…

a/2
, s6.1d

u2
2sxd = t2

2sxd =
1

2s1 − cos„2psv2x + vd…d
. s6.2d

hen from the multiplicative property(2.33) of R we have

sun,tnd = Rn−2su2,t2d = Rn−2su2
1,t2

1dRn−2su2
2,t2

2d, s6.3d

or nù3. We shall analyze the dynamics ofsun
1,tn

1d=Rn−2su2
1,t2

1d and sun
2,tn

2d=Rn−2su2
2,t2

2d sepa
ately. We first prove the following lemma.

Lemma 6.1: Psu2
1,t2

1d=su2
1,t2

1d, Psu2
2,t2

2d=su2
2,t2

2d.
Proof: Recall the definition ofP in Eq. (2.49). We prove the lemma by direct calculation us

2.43) and (2.44).
We first of all show thatD0(logusu2

j ,t2
j du)=0 for j =1, 2. Using the integral identity

E
a

a+2p/c

logu1 + b cosscx+ ddudx=
2p

c
logsubu/2d, s6.4d

or a, b, c, dPR with ubuù1, c.0, we have, settinga=−v−1, b=−1, c=2pv2, d=2pv,

D0„logusu2
2,t2

2du… =E
−v−1

1

− log 2 − logu1 − cos„2psv2x + vd…udx= − v−2log 2 −v−2logs1/2d = 0,

s6.5d

nd, settinga=−v−1, b=a, c=2pv2, d=2pv2/2, we have

D0„logusu2
1,t2

1du… =E
−v−1

1

− logsa/2d + logu1 + a cos„2psv2x + v/2d…udx

= − v−2logsa/2d + v−2logsa/2d = 0. s6.6d
econd, we note that
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D1„logusu2
j ,t2

j du… =E
−v−1

1 d

dx
logut2

j sxdudx= 0, s6.7d

or j =1, 2, sincet2
j is periodic with periodv−2. This calculation is complicated by the presenc

ogarithmic singularities both within the intervals−v−1,1d and at the endpoints −v−1 and 1. h

We note that the constraint(2.21) is simply the conditionD0slogusu2,t2dud=0.

. Convergence to a scaled orchid

We now study the zero set of the function pairsu2
1,t2

1d. The pattern of its zeros is the essen
ngredient that gives the fundamental setbsSd, three copies of which make up the orchid.

Looking at (6.1), we see that the zeros oft2
1 are given by the solutions of the equation

− a−1 = cos„2psv2x + v/2d…. s6.8d

he graph of cos(2psv2x+v /2d) in the range −v−1øxø1 is shown in Fig. 7.
For aù1 the locations of the solutions of(6.8) are determined by whether(a) 1øa,ac,

b) ac,a, or (c) a=ac, where

ac =
− 1

cosspvd
. 2.759. s6.9d

e shall see that[apart from a countable set of values of the parametera corresponding to zero
ith codes not inS, i.e., endings00d` or s01d`] each initial conditionsu2

1,t2
1d is asymptotic to th

rbit of a point in the orchidO given by s+1, +1dbscd for somecPS.
We have three cases, which we deal with in turn.
Case (a):1øa,ac. There are two zeros oft2

1 which we denotexL, xUP f0,1g with xL+xU

1 by the symmetry about 1/2. We writet2
1sxd=sxL−xdsxU−xdgsxd, where gsxd.0 for x

f−v−1,1g. Then, except for countably manyxL, there existscPS with c−1= c̃−1=0 ande0scd
xL and therefores+1, +1dbscd / su2

1,t2
1d satisfies the hypotheses of Proposition 2.7. Moreo

incexL+xU=1, we have that 0PS, whereS is the set defined in Sec. IV(see Proposition 3.1), and
ence thats+1, +1dbscdPO for some choice ofc with s+1, +1dbscd / su2

1,t2
1d satisfying the hy

otheses of Proposition 2.7.
Case (b):ac,a. In this caset2

1 has a zero,xL, in the intervalf−v /4 ,0d and another,xU8, in
−v−1,−v−1+v /4g. By the symmetry of the graph about −v−1/2 we have thatxL+xU8=−v−1. We
ow havet2

1sxd=sxL−xdsxU8−xdgsxd, wheregsxd.0 for xP f−v−1,1g. Again, except for countab
˜ 1 1

FIG. 7. The graph of cos(2psv2x+v /2d) in the range −v−1øxø1.
any xL, there existscPS with e0scd=xL and c−1=c−1=0, and so thats+1, +1dbscd / su2,t2d
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atisfies the hypotheses of Proposition 2.7. Now, sincexL+xU8=−v−1, we have, from Propositio
.1, that index 0 is the second digit of anA, B or C. However, sincec0=0, the casesA andC are
ot possible so that index 0 is the second digit of aB. Thus 1PS. Moreover, recalling from Se
V that b=c+ c̃ mod 2, as in Sec. IV, we haveb0=1 and thusLb0

s+1, +1d=L1s1,1d=s+1,−1d, and
PS, so referring back to Eq.(4.7) and Lemma 4.1, we see thats+1, +1dbscdPO.

Case (c):a=ac. In this caset2
1 has three zeros onf−v−1,1g, viz., −v−1, 0, 1, but these poin

ave codes ending ins00d` or s01d` which have been excluded.
In summary, for all but a countable number ofaù1, there existscPS such tha

+1, +1dbscd / su2
1,t2

1d satisfies the hypotheses of Proposition 2.7 and such thats+1, +1dbscdPO.
Let us now briefly consider the function pairsu2

2,t2
2d. We note thatu2

2 andt2
2 have double pole

t −v−1 and 1 and that both satisfyu2
2sxd, t2

2sxd.0 ons−v−1,1d. From the above considerations
ay conclude the following result which proves that a scaled version of the orchidO is the limit
f the initial conditions(2.26). We denote bysusc,tscd the strong-coupling fixed pointsu* ,t*d−2.

Proposition 6.1: The following limits hold as n→`:

i) Rn−2su2
1,t2

1d→O, the orchid defined in (4.7);
ii ) Rn−2su2

2,t2
2d→ susc,tscd;

iii ) Rn−2su2,t2d→ susc,tscdO.

. Strangeness of O
We now address the strangeness of the orchidO. In particular we wish to show that t

haracteristics(i)–(iv) above hold. Let us briefly discuss the notion of the “sensitive depen
n initial conditions.” This notion is one of the most varied in the literature. Indeed, it is s

imes taken to mean that given any pointp in the attractor the orbits ofp and those of all nearb
oints separate at a geometric rate. However a much weaker notion is also used, viz., th
ny pointp the orbit ofp and that of at least one other point in every neighborhood ofp separate
ot necessarily geometrically. In our case it is the latter notion which we adopt. For it is cle
ny two pointsss0

u,s0
t dbscd andss0

u,s0
t dbsc8d on the orchid for whiche0scd=e0sc8d andc−1=c−18 the

atio ss0
u,s0

t dbscd / (ss0
u,s0

t dbsc8d) satisfies the hypotheses of Proposition 2.7 and thusss0
u,s0

t dbscd
nd ss0

u,s0
t dbsc8d converge under the iteration ofR. Indeed, arbitrarily close to a po

s0
u,s0

t dbscdPO there are such pointsss0
u,s0

t dbsc8d and so the stronger definition given ab
annot hold. However, close by toss0

u,s0
t dbscd andss0

u,s0
t dbsc8d there will be points which diverg

nder iteration. In fact we have the following proposition.
Proposition 6.2: The orchidO satisfies the following:

i) O is closed;
ii ) There is a dense forward orbit inO;
iii ) The periodic points of R are dense inO;
iv) O has sensitive dependence on initial conditions in the following sense. There existsd.0

such that for all function pairs h1, h2PO and all «.0 there exists h18, h28PO with
ih18−h1i,«, ih28−h2i,« and n.0 such thatiRnsh18d−Rnsh28di.d.

Proof:

i) The orchidO is closed by definition.
ii ) The construction of a dense orbit for a shift space is a standard procedure. One

concatenates all finite permitted sequences in both forward and backward time(with ap-
propriate interpolation between sequences to ensure that the constructed sequenc
permitted). The adaptation of this method to the orchid is straightforward. We const
function with a dense orbit(in both forward and backward time) by concatenating thre
copies of each finite permitted sequence inS with appropriate interpolations between e
sequence to ensure first that the resulting bi-infinite sequence is a sequence inS, and
second, that each of the three parts of the orchid is visited for each of the finite seq

This can be achieved by ensuring that each of the three finite sequences corresponds to a

                                                                                                            



e
it

( d. For
ic

eriodic
r to
e to

(

irst,

(
(
(

i

(
(
(

=
ø

−
−

V

hat are
p

w ic with
p
o

p itten in
t may,
w
C e
c

i

5072 J. Math. Phys., Vol. 45, No. 12, December 2004 B. D. Mestel and A. H. Osbaldestin

                        
different permitted sign-pair choice at the start of theA, B, or C immediately preceding th
sequence. So constructed, the sequencec will give a function pairbscd with a dense orb
in the orchid underR.

iii ) Similarly, it is straightforward to show that the periodic points are dense in the orchi
given ssu,stdbscd in the orchid, one may approximatec arbitrarily closely by a period
orbit, by truncatingc in both forward and backward time at the start/end of anA, B, or C,
and then repeating the truncated string in forward and backward time to obtain a p
orbit in S with the same structure asc in the truncated part. By choosing the sign pai
correspond to that ofc one obtains a periodic orbit in the orchid that is arbitrarily clos
ssu,stdbscd.

iv) Choose c0PS such that 0 starts anA, B, C and let 0,d,minhibsc0d−s−1,
−1dbsc0di , ibsc0d−s+1,−1dbsc0di ,is+1,−1dbsc0d−s−1,−1dbsc0dij /3. Let h1, h2PO and
let «.0 be given. Our aim is to constructh18, h28 as in the statement of the proposition. F

let ĥ1=ss0
u,1,s0

t,1dbsc1d, ĥ2=ss0
u,2,s0

t,2dbsc2d be points of O such that iĥ1−h1i,« and

iĥ2−h2i,«. (This step is necessary sinceh1, h2 may be in the closure ofbsSd. Now let
d1.0 be such that for allcPS,

a) dsc,c1d,d1 implies iss0
u,1,s0

t,1dbscd−h1i,«;
b) dsc,c2d,d1 implies iss0

u,2,s0
t,2dbscd−h2i,«;

c) dsc,c0d,d1 implies ibscd−bsc0di,d.

Such ad1 exists by the continuity of the mapb.
Let m.0 be chosen sufficiently large so that for all codesc, dPS, ci =di for i =−m, . . . ,m

mplies dsc,dd,d1. We now constructc18, c28 with the following properties:

a) dsc18 ,c1d,d1, dsc28 ,c2d,d1;
b) d(s3msc18d ,c0),d1, d(s3msc28d ,c0),d1;
c) Defining ssi

u,1,si
t,1d, ssi

u,2,si
t,2d by Eq. (4.6) we requiress3m

u,1,s3m
t,1dÞ ss3m

u,2,s3m
t,2d.

It is clear that we can achieve these properties by definingsc18di =sc1di, sc28di =sc2di, i
−m, . . . ,m and sc18di =sc0di, sc28di =sc0di, i =2m, . . . ,4m and interpolating in the rangem+1ø i
2m−1 so that(c) is satisfied.

It is now clear that h18=ss0
u,1,s0

t,1dbsc18d, h28=ss0
u,2,s0

t,2dbsc28d satisfy iR3msh18d
ss3m

u,1,s3m
t,1dbsc0di,d, iR3msh28d−ss3m

u,2,s3m
t,2dbsc0di,d, so that, from the definition ofd, iR3msh18d

R3msh28di.d as required. h

II. PERIODIC ORBITS

In this section we discuss the periodic points in the orchid, focusing on the periods t
ermitted. In Ref. 17 the periods of several periodic orbits for the parameter value,

a =
1

ucoss2prdu
, s7.1d

ith rational r are calculated and the conjecture is made that such orbits are all period
eriod a multiple of three. Here we prove this fact, and, indeed, prove thatall periodic orbits ofR
n the orchid have period a multiple of three.

The periodic orbits ofS under the shift maps are simply the periodic sequencescPS. Such
eriodic sequences in code 0 1 are clearly also periodic with the same period when wr

erms of the symbolsA, B, C and vice versa. By choosing the start of the periodic code we
ithout loss of generality, assume that index 0 starts anA, B, or C. In terms of the symbolsA, B,
any periodic code is permitted other than the period-1 codes`BB`, `CC` and it is therefor

lear that any period greater than 2 can be achieved by suitable choice ofA, B, C.
Now let c be a periodic code of period,ù1. We note that the sequence. . . ,Escd ,E(sscd) , . . .,
s also of period, and vice versa. This is because the zero sets ofEscd are given bye0scd, and the
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equence . . . ,e0scd ,e0(sscd) , . . ., has the same period ,. However, the sequen
. . ,bscd ,b(sscd) , . . . mayhave period less than,. bscd=EscdEsc̃d, so if for somek,, it should
ccur thatskscd= c̃ and sksc̃d=c we haveb(skscd)=bscd. If this does occur we clearly ha
2kscd=c so that, sincec has period,, we havek=, /2 and so, is even. Indeed this phenomen
ccurs precisely when the sequencec0, . . . ,c,−1 is of the formc0, . . . ,ck−1, c̃0, . . . ,c̃k−1. For ex-
mple, the periodic sequence 0100001001 of period 10 when written in terms ofA,B,C is

BAC=ABÃB̃ giving period 5 for the sequence. . . ,bscd ,b(sscd) , . . .. Weshall refer to the redu
ion in the period due to this symmetry in the code asperiod halving.

We now consider a periodic pointp on the orchidO. Let p=ss0
u,s0

t dbscd for somec PS.
learly, from Eq.(4.5) a necessary condition forp to be periodic forR is thatc is periodic fors
n S. Let , be the period ofc. Then, as we saw above, the periodk of the sequenc
. . ,bscd ,b(sscd) , . . . is eitherk=,, or k=, /2 in the case of period halving. Recall from Sec.
hat under a symbolA the sign pairssu,std is the same after as before, while after aB or C the
ransitionss+1, +1d→ s+1,−1d→ s−1,−1d→ s+1, +1d occur. Thus we have two possibilities.

a) The number ofB andC (added together) in the sequencec0, . . . ,ck−1 is divisible by 3. Then
we havessk

u,sk
t d=ss0

u,s0
t d and the period ofp is preciselyk. We note that in this casek is a

multiple of 3 since the symbolA consists of 3 digits.
b) The number ofB andC (added together) in the sequencec0, . . . ,ck−1 is not divisible by 3

Then after the end of the sequencec0, . . . ,ck−1 the sign pairssk
u,sk

t dÞ ss0
u,s0

t d, and, because
the period-3 nature of the sign pair evolution we havess2k

u ,s2k
t dÞ ss0

u,s0
t d, but ss3k

u ,s3k
t d

=ss0
u,s0

t d. ThenR3kspd=ss3k
u ,s3k

t db(s3kscd)=p. We have therefore proved the following res

Theorem 7.1:Let p=ss0
u,s0

t dbscdPO. Then p is periodic of period m for R if and only ifc is
eriodic for s of period ,. The relationship between m and, is as follows. If period halving
ccurs set k=, /2, otherwise set k=,. If the number of BandC (added together) in the sequen

0, . . . ,ak−1 is divisible by3 then m=k, otherwise m=3k.
The conjecture concerning the periodic orbits in Ref. 17 is incorporated in the foll

mmediate consequence of this result.
Corollary 7.1: The periods of all periodic orbits inO are multiples of three.
As an illustration of these results we give the following examples.

1) In the period-10 example0100001001 above we have,=10, k=5 and c0, . . . ,c4=01000
=AB. Since the number ofB andC in this sequence is 1 we have thatm=335=15. Thus w
have a period-15 orbit.

2) Let c=000001=BBC. Then,=6, k=6, and since the number ofB and C is 3 we havem
=6. Thus we have a period-6 orbit.

III. DISCUSSION

In this paper we have constructed a model space in terms of bi-infinite codes for the
ental set(Fig. 4), three copies of which constitute the Ketoja–Satija orchid. We have show

he initial conditions for the generalized Harper equation converge to a scaled orchid(Fig. 1)
nder the golden mean renormalization transformation. The intriguing three-fold symmetry
rchid has been shown to stem from the dynamics on the sign pairs, as given by the tr
iagram(Fig. 6). Finally, we have analyzed the periods of the periodic orbits in the orchid.

The structure of the orchid depends crucially on the symmetries of the generalized
quation(1.2), and in particular on those of the cosine function. It is these symmetries that

he partnering operation on codes and the relation given by Proposition 3.1 on the zero
unction pairsbscd. If one destroys the symmetries, then, likewise, the orchid is destroyed
eplaced by a different strange set. Indeed, when calculating the orchid numerically, care
aken with round-off error in the zeros of the function pairs. Since the chaotic mapG governs th
ynamics of these zeros, round off error grows quickly leading to the violation of Propositi

nd nonconvergence to the orchid. Thus the universality class for the orchid is restricted to those
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uantum models displaying the same symmetries as the generalized Harper equation mo(1.2).
oreover, the existence of nonstable eigendirections for the operatorRa implies further condition
n a function pairsu,td to converge toO. These conditions are satisfied for the initial conditi
erived from the generalized Harper equation model, but it is clearly a moot point to what
ne should refer to the orchid as a renormalization strange “attractor.”

The ideas and techniques in this paper are likely to find application in other problems
eld. As first pointed out by Bondesonet al.,2 there is an equivalence between the transition to

ocalized state in quasiperiodic Schrödinger equations and the onset of a strange no
ttractor in quasiperiodically forced nonlinear systems. See also Ref. 19. Kuznetsovet al.23 have
iven a renormalization analysis of the onset of a strange nonchaotic attractor. We anticip
ur work in this paper will shed considerable light on this related problem, and in particu
xpect that the numerical results in Ref. 23 can be generalized and put on a rigorous fou
igorous renormalization analyses of correlations in strange nonchaotic attractors7 and in a qua
iperiodically forced two-level system8 have recently been completed.25,26

The existence of a strong coupling fixed point for the Harper equation in the case ofv
sÎa2+4−ad /2 satisfyingv2+av=1 (i.e., in continued fraction notationv=fa,a, . . .g), has re
ently been established,5 generalizing the results in Ref. 24. Preliminary work shows that for
uchv there exists an orchid, similar to that analyzed in this article, governing the fluctu
he case of more general irrationalv is the subject of current investigation.
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onodromy of the quantum 1:1:2 resonant swing spring
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We describe the qualitative features of the joint spectrum of the quantum 1:1:2
resonant swing spring. The monodromy of the classical analogue of this problem is
studied in Dullinet al. [Physica D190, 15–37(2004)]. Using symmetry arguments
and numerical calculations we compute its three-dimensional(3D) lattice of quan-
tum states and show that it possesses a codimension 2 defect characterized by
nontrivial 3D-monodromy matrix. The form of the monodromy matrix is obtained
from the lattice of quantum states and depends on the choice of an elementary cel
of the lattice. We compute the quantum monodromy matrix, that is the inverse
transpose of the classical monodromy matrix. Finally we show that the lattice of
quantum states for the 1:1:2 quantum swing spring can be obtained—preserving the
symmetries—from the regular 3D-cubic lattice by means of three “elementary
monodromy cuts.” ©2004 American Institute of Physics.
[DOI: 10.1063/1.1811788]

. INTRODUCTION

The swing spring is a simple mechanical system consisting of a spring of length, and spring
onstantk with one end attached at a fixed point(the origin of a Cartesian system) and with a
eight of massm attached at the other end. This system admits a Hamiltonian formulat
hich the phase space isR6 with coordinatesx,y,z,px,py,pz and symplectic form dx∧dpx

dy∧dpy+dz∧dpz. The Hamiltonian functionH is

sx,y,z,px,py,pzd °
1

2m
spx

2 + py
2 + pz

2d + mgz+
k

2
s, − Îx2 + y2 + z2d2. s1d

ote that, is the same as,0 in Refs. 11 and 17.
When the physical parameters are chosen so that 3gm=k,, which is equivalent to requirin

hat the frequencies of small oscillations of the swing spring near the stable equilibrium a
:1:2 resonance(the only resonance with cubic secular terms), the swing spring has some rema
ble features: energy exchange and precession of the swing plane.11,17 These characteristics ha
een widely studied(see Ref. 17 for a comprehensive bibliography), but the information hidden
his classical mechanical system has not been exhausted by these investigations. In
esonant swing spring is a model for molecules such as CO2 (a textbook example of a 1:1:2 Fer
esonance between stretching and doubly degenerate bending vibration states4,13), HCP,18 and a
hole class of CHX3 molecules which possess a Fermi resonance between the CH stretch
ending vibrational states.19

)Electronic mail: giacobbe@math.unipd.it
)Electronic mail: cushman@math.uu.nl
)Electronic mail: sadovski@univ-littoral.fr
)
Electronic mail: zhilin@univ-littoral.fr
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We define the integrable approximation of the swing spring system and discuss the r
nergies in which our approximating Hamiltonian gives data that can be considered reliable
riginal system. After explaining the origin of the continuous and discrete symmetries
pproximation, we define the quantum analogue of the system and proceed to analyze its
pectrum. As the classical swing spring is a three degree of freedom system, its spe
epresented by a three-dimensional(3D) lattice of points in the space of the values of quant
ctions and energy. The main purpose of this work is to show how the nontrivial monodro

he classical system2,3,5 manifests itself(1) as a defect of this lattice and(2) in the distribution o
uantum states with respect to quantum numbers which can be predicted from the the
uistermaat–Heckman.10

Fixing a global quantum number associated to the momentum corresponding to a
ymmetry, we first analyze the quantum lattice of two-dimensional(2D) slices of the swing sprin
uantum spectrum and find that the monodromy computed in such slices gives insufficien
ation to determine the monodromy of the full 3D quantum spectrum. We proceed w

nvestigation of the 3D quantum lattice by giving two methods to compute the quantum
romy matrix. The first method, presented in Ref. 26, requires the introduction of quantum

n the regularZ3 lattice. In order to preserve the discrete symmetries of the system, one m
hree elementary defects to obtain the quantum lattice. The second method obtains the
onodromy matrix directly by moving an elementary cell in the three-dimensional qu

attice.

I. CLASSICAL AND QUANTUM 1:1:2 SWING SPRING

The swing spring is a Hamiltonian system on(R6, dx∧dpx+dy∧dpy+dz∧dpz) with Hamil-
onianH given by (1). Despite it being a chaotic dynamical system,16 the motions of the swin
pring near the stable equilibrium located atp0=s0,0,−,−mg/k,0 ,0 ,0d have a clear quasipe
dic behavior when the parameters are chosen so that the characteristic oscillations of th
re tuned in 1:1:2 resonance.

To study this behavior we will begin by considering the Taylor expansion ofH aroundp0. The
uadratic part of the Taylor expansion ofH at p0 is

H2 =
1

2m
spx

2 + py
2 + pz

2d +
k

2
S gm

k, + gm
x2 +

gm

k, + gm
y2 + z2D .

o have a 1:1:2 harmonic oscillator as dominant term, the physical coefficients inH2 must satisfy
he condition 3gm=k,. Assuming this and making the change of coordinates

x °Î4 4

km
j, y °Î4 4

km
h, z°Î4 1

km
z, px °Î4 km

4
pj, py °Î4 km

4
ph, pz ° Î4kmpz,

e find that

H2 = 1
2"sj2 + pj

2 + h2 + ph
2 + 2z2 + 2pz

2d

nd the Taylor expansion ofH (1) aboutp0 up to sixth order terms becomes

Htrunc= H2 − 3
8"3/2zsh2 + j2d + 3

64"2sh2 + j2ds− 2z2 + h2 + j2d − 3
256"

5/2zsh2 + j2d„2z2 − 3sh2 + j2d…

− 3
1024"

3sh2 + j2d„2z4 − 6z2sh2 + j2d + sh2 + j2d2
…, s2d

here"=Îk3/ sg4m5d. To obtain(2) we have rescaledHtrunc to remove the factorg2m2/ s2kd and
ropped an additive constant. The original HamiltonianH (1), and thus the HamiltonianHtrunc (2),

as an SO(2) axial symmetry
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sj,h,z,pj,ph,pzd ° _Rt1 j

h

z
2,Rt1pj

ph

pz

2+ .

ere

Rt = 1cost − sin t 0

sin t cost 0

0 0 1
2

s a rotation about thez axis lifted to the full phase spaceR6. The momentum of this symmetry
he functionL=jph−hpj.

It is convenient to perform another coordinate change, namely

j °
1
Î2

sp2 + q1d, h °
1
Î2

sp1 + q2d, z ° q3, pj °
1
Î2

sp1 − q2d, ph °
1
Î2

sp2 − q1d, pz ° p3.

his brings the momentumL into diagonal form 1
2sq2

2+p2
2−q1

2−p1
2d and does not change t

uadratic partH2 of the HamiltonianHtrunc.
Bringing Htrunc into normal form with respect toH2 up to order 6, one obtains the Hamilton

nf
s6d. This is the polynomial Hamiltonian(as well as its truncationHnf

s3d to third order) whose
uantum spectrum we analyze in Secs. III–V.

. Lie symmetry of classical and quantum system

The sixth order normalized HamiltonianHnf
s6d defines a three degree of freedom system

wo integrals of motion:L, the momentum associated to the axial symmetry andN, the quadrati
art H2 of the normalized Hamiltonian, which is the same as the quadratic part of the o
amiltonianH. The flows of the Hamiltonian vector fields associated to these integrals com
nd define a 2-torus action that preservesHnf

s6d. ThusL andN together with the HamiltonianHnf
s6d

orm a completely integrable system.
Being S13SOs2d-invariant, the normalized HamiltonianHnf

s6d can be written as a polynom
n the generators of the ring ofS13SOs2d-invariant functions. The Molien generating functio20

A7) indicates that this ring is generated by five invariants, three quadratic and two cub
ppendix A 1. These invariants can be chosen to be

N = 1
2sq1

2 + p1
2 + q2

2 + p2
2 + 2q3

2 + 2p3
2d, s3ad

R= 1
2sq1

2 + p1
2 + q2

2 + p2
2d, s3bd

L = 1
2s− q1

2 − p1
2 + q2

2 + p2
2d, s3cd

S= sq1p2 + q2p1dq3 − sq1q2 − p1p2dp3, s3dd

T = sq1q2 − p1p2dq3 + sq1p2 + q2p1dp3, s3ed

nd they are subject to the relations(A9).

. Normalized system and its analysis
The normalized HamiltonianHtrunc (2) written in terms of the invariants(3) is
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Hnf
s6d = "N − 3

16"3/2S− 57
1024"

2NR+ 177
2048"

2R2 − 39
2048"

2L2 − 819
65 536"

5/2NS+ 2151
65 536"

5/2RS− 8025
4 194 304"

3N2R

+ 7623
2 097 152"

3NR2 + 6879
2 097 152"

3R3 − 6555
2 097 152"

3NL2 + 4803
4 194 304"

3RL2 − 1089
262 144"

3S2. s4d

ote that powers ofT higher than 1 should not appear in(4) since the invariants satisfy t
elation(A9). Furthermore,(4) does not include any power ofN higher than 1 because the sw
pring (1) contains a two degree of freedom harmonic oscillator as subsystem. Other
eatures ofHnf

s6d are related to the discrete symmetries described below.
In most of what follows, we describe the quantum spectrum of the HamiltonianS instead o

hat ofHnf
s6d. Of course,sS,L ,Nd is also a completely integrable system. At first order the differ

etween the HamiltonianS and(4) is given byH°−s16/3"3/2dsH−"Nd. This means that to fir
rder for any given value ofN the quantum spectra ofH andS coincide up to a translation a
ilation.

The energy-momentum map

EM: R6 → R3 sq,pd → „Ssq,pd,Lsq,pd,Nsq,pd…

s widely used in our analysis. Its imageU,R3 and the corresponding bifurcation diagram
escribed in Ref. 11 and Appendix A 3.Ureg,U is the set of regular values which repres
egular tori T3. Points of the boundary]U represent equilibria relative to theT2=S13SOs2d
ction. The main feature to note is thatU \Ureg also contains a thread of singular values insidU,
hich represent a special singular 3D fiber described in Appendix A 3.

It can be shown that the systemsHnf
s6d ,L ,Nd is qualitatively the same assS,L ,Nd for suffi-

iently small values ofN. In particular it has qualitatively the same energy-momentum map
orresponding 3D quantum lattice. The concrete estimate of the upper limit forN can be obtaine
rom the analysis of the slope ofSsRd at R=L=0 of Hnf=const. Specifically,udS/dRu should be
maller than the slope at the conical singular point of the reduced space, see Appendix
articular considering the terms of order"2 we obtainN,21219−2"−1.

. Discrete symmetries and a pseudosymmetry

The normalized HamiltonianHnf
s6d (4) is not a genericS13SOs2d-symmetric polynomial in th

nvariants, because(4) does not contain terms of odd degree inL or any power ofT. The reaso
or this is that the original Hamiltonian(1) has aZ23Z2 discrete symmetry group generated

T: sx,y,z,px,py,pzd ° sx,y,z,− px,− py,− pzd,

Ts: sx,y,z,px,py,pzd ° sy,x,z,− py,− px,− pzd,

sv: sx,y,z,px,py,pzd ° sy,x,z,py,px,pzd.

ote thatTs=T +sv=sv +T and that the square of each generator is the identity. This di
ymmetry survives truncation and normalization. It induces the following transformations

nvariants:

T: sN,R,L,S,Td ° sN,R,− L,S,− Td, s5ad

Ts: sN,R,L,S,Td ° sN,R,L,S,− Td, s5bd

sv: sN,R,L,S,Td ° sN,R,− L,S,Td. s5cd

rom (5) we see that the functionsT andL are not invariant of theZ23Z2 action. This explain
he absence of odd powers ofL andT in (4).
To analyze the model systemsS,L ,Nd we also consider the involution
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sj,h,z,pj,ph,pzd ° s− j,− h,− z,− pj,− ph,− pzd, s6ad

hich acts on the invariants as

sN,R,L,S,Td ° sN,R,L,− S,− Td. s6bd

s the transformation(6a) mapsS to −S, we call it a pseudosymmetry. We will exploit th
seudosymmetry below. In particular the image of the energy-momentum map ofsS,L ,Nd is
ymmetric with respect to(6b). Similarly, the corresponding 3D quantum lattice is symmetric
espect to the planeS=0.

. Classical integrals, quantum numbers, and joint quantum spectrum

Each of the functions in the integrable systemsS,L ,Nd can be quantized according to the ru

iscussed in Appendix B. The corresponding three quantum operatorsN̂, L̂, andŜ are self-adjoin
nd commute. Hence they can be simultaneously diagonalized. In Appendix B we give the

f the calculation of the joint quantum spectrum ofsŜ,L̂ ,N̂d and of the quantum analogue ofHnf
s6d.

e also explain the decomposition of the domain of the quantum operators that
s to numerically compute the quantum spectrum. To every common eigenspace one can
triple of real numbers and plot these triples inR3, generating a lattice of quantum sta

epresented as points in 3-space. This 3D lattice of points fits in the image of the c
nergy-momentum mapEM of the integrable systemsS,L ,Nd, a description of which is i
ppendix A 3. Similarly the quantum lattice for the swing springsHnf

s6d ,L ,Nd fits inside the
espectiveEM image.

Definition 1:The lattice of quantum states ofsĤ ,L̂ ,N̂d superimposed to the image of theEM
ap of the corresponding classical completely integrable systemsH ,L ,Nd is called thequantum
iagram. A polyad quantum numberis an injective integer labeling of the eigenvalues of

uantum operatorN̂. A local quantum numberis an injective integer labeling of the eigenspace
quantum operator associated to a local action variable for the completely integrable q

ystemsĤ ,L̂ ,N̂d. A local action variableis a function locally defined on phase space wh
amiltonian vector field has a 2p-periodic flow and Poisson commutes with the classical Ha

onianH and the momentaN andL.
The notion of polyad quantum number is well established in the theoretical chemist

olecular physics community.24 Both polyad and local quantum numbers label eigenspaces
arge dimension, that is, eigenvalues with high multiplicity. A choice of labeling of the poin
he quantum spectrum corresponding to the quantum numbers of a global action will be ref
sglobal quantum number. The definition of global quantum numbers, as opposed to the cho
quantum number, which is just a labeling of eigenspaces of a quantum spectrum, is at t

f the presentation to follow.
Since the systems with HamiltonianH=S andH=Hnf

s6d are qualitatively the same, we will u
=S which is easier to study analytically.

Lemma 1:The eigenstates of the quantum systemsŜ,L̂ ,N̂d can be labeled by three quant

umbers related to the three commuting operatorsŜ, N̂, andL̂:

i) The global quantum numbernN=0,1,2, . . . can bechosen to be the eigenvalue of

operatorN̂ and is the total number of quanta for the 1:1:2 resonance oscillator or thepolyad
quantum number. The total number of quantum states within onenN-polyad equals

NsnNd =Hs 1
2nN + 1d2 if nN is even,

s 1
2nN + 1d2 − 1

4 if nN is odd.
J

ii ) The global quantum numbernL can be chosen to be the eigenvalue of the operatorL̂ and is
the projection of the angular momentum on the axis of symmetry. For eachnN, the quantum

numbernL takessnN+1d different values

                                                                                                            



(

t t
a
n
+

stem is
" nce, the
g th
m ic
v
v efs. 10
a uantum
p

mplectic
f mo-
m cti-
c
r r.
T phic
p fer
b of
H
a ss,
a a
s ly in

e
m
a ine
L
b

F tum
n

J. Math. Phys., Vol. 45, No. 12, December 2004 Monodromy of the quantum 1:1:2 swing spring 5081

                        
nL = nN,nN − 2, . . . ,−nN + 2,−nN.

The total number of states for each fixed value ofnN andnL equals

NsnN,nLd = 1
2snN − unLud + 1.

iii ) A quantum numbernS labels the eigenspaces within the set of states with the samenL and
nN according to the energy of the system.

Instead of using the natural momentaN andL, one could use the momentum

Km = sm+ 1dN + sm− 1dL s7d

ogether withL. The number of states in a fixed quantum level of the operatorK̂m can be though
s a function ofnL. A computation shows that this function assigns to everynL in f−nKm

,0g the
atural numbersnL+nKm

d / sm+1d and to everynL in f0,nKm
/mg the natural numbers−nLm

nKm
d / sm+1d. The cases corresponding tom=0,1,2 areplotted in Fig. 1.

A classical formula states that the number of quantum states of a given quantum sy
-proportional to the symplectic area of the phase space in which the system is defined. He
raphs in Fig. 1 can also be obtained by first reducingR6 with respect to the circle action wi
omentumKm, which defines the manifoldMk, and then by plotting theL-dependent symplect

olume of the manifoldMk reduced with respect to the circle action with momentumL. These
olumes can be computed directly from the theorem of Duistermaat and Heckman, see R
nd 15. In Ref. 14 this theorem was applied to the analysis of a three-dimensional q
roblem with monodromy.

The theorem of Duistermaat and Heckman states that the cohomology class of the sy
orm of a symplecticallyTn-reduced space varies piecewise linearly with the values of the
entum map. To be more precise denote byMx the symplectic manifold obtained by symple

ally reducing a manifoldM with respect to theTn-action above the valuex in t*. Let a be a
egular value of the momentum map, letb be an element int*, and let t be a small real numbe
he manifoldMa+tb is diffeomorphic toMa. Both manifolds are base spaces of diffeomor
rincipalTn bundles. The symplectic forms ofMa andMa+tb define cohomology classes that dif
y the classtkb,cl, wherec is the Chern class of the torus bundle overMa, that is, an element
2sMad ^ t, andk,l is the pairing between the Lie algebrat and its dualt*. Observe thattkb,cl is
function linear int. Crossing the set of critical values of theTn-momentum map, the Chern cla
nd hence the slope of the linear function changes intokb,c8l. Since the volume form of
ymplectic manifold is an appropriate power of the symplectic form, it changes polynomialt.

In our case we are given aT2 action having the tuplesN,Ld for momentum map. Th
omentum polytope is the convex solid wedge with boundaries 0øN=L and 0øN=−L. In
ddition to this boundary, the set of critical values of theT2-momentum map also contains the l
=0. The fiber of theT2-momentum map over values in the setE+=hL.0,L,Nj is a 2-torus

IG. 1. The plot of the number of states in the slice having a fixednKm
quantum number as a function of the quan

umbernL.
undle over a 2-sphere with Chern classsvjN+vjLd /2; while that above values in the set
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−=hL,0,L.−Nj is a 2-torus bundle over a 2-sphere with Chern classsvjN−vjLd /2. Herev is
he standard volume form on the 2-sphere andjN,jL are the elements oft whose infinitesima
ction isXN andXL, respectively.

Starting from the symplectic manifoldR6 one can reduce with respect to the momentumKm to

btain the manifoldMk=Km
−1skd /S1. On Mk there is a(residual) circle action with momentumL̄.

he image of the(residual) momentum map is the intersection of the lineLm=hsm+1dN+sm
1dL=kj with the image of the momentum map of theT2 action.

We can now use the Duistermaat–Heckman theorem to compute the change in the(cohomol-

gy class of the) symplectic structure of theL̄-reduced manifoldsMk,l = L̄−1sld /S1, and plot it as
unction of l. The lineLm is spanned by the elementb=jN

* −sm+1d / sm−1djL
* . The cohomolog

lasskb,cl is v / sm+1d in the segmentLmùE+ and −mv / sm+1d in the segmentLmùE−. This
ives, as expected, the graphs in Fig. 1.

II. QUANTUM SPECTRUM: LATTICE OF QUANTUM STATES

Given a 3D quantum diagram, an important problem is to “smoothly” map it to the lattZ3

n R3. This can always be done locally by means of independent local quantum numb
ystems with nontrivial monodromy a global labeling of the eigenstates is impossible. To b
recise, a global labeling of the quantum states with three suitable global quantum numbe
uantum analogue of the classical problem of defining global action functions for a com

ntegrable system. This problem has been shown to have no solution in system
onodromy.21 The quantum numbersnN andnL area priori global, because they correspond
lobal classical actions. On the other hand, because of the nontrivial classical monodrom
wing spring system, the quantum numbernS can be only locally defined. In this section we sh
hat this last quantum number cannot be defined globally, and we analyze this phenomen

Informally speaking, we try to construct a third global quantum number for the qua
wing spring, which is independent ofnL and nN. Having three global quantum numbers co
ponds to defining a bijection of the given lattice to the standardZ3. Of course, many suc
ijections exist, but none of them can have the property of “"-smoothness,” which we define
ec. III B. We begin by describing the quantum lattice of the quantum swing spring and the

he idea of"-smoothness.

. Qualitative and quantitative description of the quantum lattice

One way of describing the 3D lattice of the quantum swing spring is to look at its p
lices, that is, the slices obtained by fixing a quantum number(nN or nKm

in our case). These plan
lices intersect the thread of classical singular values(see Appendix A 3) in one point, which w
efer to as asingularity of the quantum lattice.

To start with, we use the symmetries and the number of states discussed in Lemm
educe the qualitative aspects of the quantum spectrum of the swing spring. At the end
ection we give numerically computed pictures of the plane slices obtained by fixing the v
he polyad numbernN.

Let us now fix the polyad numbernN and then compute the joint spectrum of the operatoL̂

nd Ŝ. We recall that the quantum spectrum one computes in this way is that of the cl
ystem obtained from the original one by reducing it with respect to the circle action h
omentumN at the valuenN+2.

Lemma 2:For fixed polyad numbernN, the structure of the joint spectrum for the operatoL̂

nd Ŝ is invariant under the symmetriesnL→−nL and nS→−nS and it consists of four possib
rrangements in a neighborhood of the intersection of the symmetry axes. These arran
ave a modulo 4 periodicity,nN;nN8 mod 4, see Fig. 2.

From the symmetrysv and the pseudosymmetry discussed in Sec. II C, it follows th
nN,nL ,nSd is a point of the quantum diagram, then also the pointssnN, ±nL , ±nSd belong to the

uantum spectrum.
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Let us make the generic assumption that the spectrum ofŜ at fixednL has no degeneracie

hat is, the spectrum ofŜ at fixed polyad numbersnN and quantum numbernL is simple, and tha

he distances of consecutiveŜ-eigenvalues varies monotonically and slowly. In the rest of
rgument we simply fix such distance to be some positive constant, say 2, as we did in the

n Fig. 2.
By Lemma 1, the quantum numbersnN andnL are both even or both odd, and whennN is fixed

L changes in steps of two. For evennN, we have one central string of lattice points atnL=0 with
he maximum number of statesNsnN,nLd= 1

2nN+1 for givennN. This string is symmetric und
→−S. For nN=0 mod 4 it has the central node at(0,0) becauseNs0 mod 4,0d is odd. FornN

0 mod 2 the closest to(0,0) is a pair of nodess0, ±1d symmetric underS→−S. Patterns for th
ther values ofnN are deduced by a similar argument. The other symmetric distributions a
dmissible because they do not give the right rate of change of the number of quantum st

unction of nL.
Corollary 1: For sufficiently small polyad numbersnN, the quantum spectrum of t

-reduced normalized swing springsĤnf
s6d ,L̂d is qualitatively the same as the quantum spectru

Ŝ,L̂d in Lemma 2. Hence, the quantum diagrams of such systems are qualitatively the s
hose in Fig. 2.

Figure 3 and, respectively, Fig. 4 display the joint spectrum of the operatorsL̂ and the

amiltonian Ĥnf
s6d, respectively,Ĥnf

s3d, computed numerically for fixed polyad numbernN, and

FIG. 2. Joint eigenvalues of the operatorsL̂ and Ŝ near the origin.

IG. 3. Consecutive slices with fixednN polyad number for the normalized swing springsĤnf
s6d ,N̂,L̂d. The polyad quantum
umbernN/" is chosen to be about 1. Here" is 1/20.
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espectively,nK0
and nK2

. Note that, to preserve the qualitative structure of the approxim
ormalized system, one must choose a polyad number of the order of unity. With such
olyad number there are too few quantum states to perform the analysis we are presentin
tandard technique to increase the number of points in the quantum lattice(that is, states of th
uantum system) at a fixed energy level is to scale the variables by the numberÎ", where" is the

nverse of a natural number. This is equivalent to considering a Hilbert space of quantum s
he form un1,n2,n3l whereni is a "-multiple of a natural number.

In Sec. II D we gave a formula for the dependence onnL of the number of quantum sta
aving a fixednKm

quantum number. The results shown in Figs. 3 and 4 confirm the predi
ade in Fig. 1 and used in Lemma 1.

. Local mapping to the regular lattice

The effect of monodromy:Having described the plane slices and their relative positio
-space, we can proceed with a tentative definition of the missing quantum number. Let us

or the planar slices in Fig. 3. For every choice of quantum numbersnN andnL, that is, fixing the
igenspace associated to the quantum numbersnN andnL, one can assign a third quantum num

y enumerating the quantum states of the operatorŜ in the joint eigenspacesnN,nLd, beginning
ith 0. Though this seems to be a global choice of third quantum number, we can easily sh

t is not the case. As first suggested in Ref. 25, we can choose an elementary cell of the la
ransport it around the classical singularity, see Fig. 3(top left). After one tour around the sing
arity, we will come back with a different cell. This signifies that the third quantum number c
e globally chosen.

Furthermore, when one fixesnN andnL and draws the curves having fixed the third quan
umber proposed above, see Fig. 5, it is quite obvious that the curves above the classic

arity have a nonsmooth behavior, unlike those below. The closer" is to zero, the more obviou

IG. 4. Quantum diagrams obtained by fixing the quantum numbernKm
and plotting the quantum spectrum of the opera

ˆ and Ĥnf
s3d.

IG. 5. Numbering the eigenstates with fixednL in the natural way within onenN polyad of the systemsS,L ,Nd. The
urves connecting the eigenstates with the same label are not"-smooth atnL=0 andS.0. The classical singularity

=S=0 is shown by an empty circle.
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he discontinuity(or “kink” ) in the tangent to the level curve becomes. Of course if one
umbering from the top, one observes a nonsmooth behavior in the lines below the singula

his reason we introduce the following.
Definition 2:For a planar diagram, the choice of quantum numbers is"-smoothif the discrete

irectional derivatives of the level curves obtained by fixing one quantum number are con
f order ". By continuous of order" we mean that the difference of the discrete directi
erivatives computed at two consecutive points must be of order of". An "-smooth chartis a
hoice of "-smooth quantum numbers. An"-smooth atlasis a family of "-smoothcharts tha
overUreg,U,R3, the set of regular values in the image of the energy-momentum map.

The above definitions are void for a choice of" of order 1. In fact, such a choice give
uantum diagram with very few points, which makes every choice of quantum numbers"-smooth
n the other hand, the nonexistence of global action variables implies that somewhere t

urves have a nonsmooth behavior of order one, which becomes visible when" is sufficiently
mall, see Fig. 5.

The problem in numbering the quantum states is a consequence of a well-known obs
o existence of classical global action variables known asmonodromy.9 Monodromy is due to th
ontriviality of the covering ofUreg defined by the period lattices. When the fundamental gro

reg is Z, the monodromy can be written as a matrix, which is calledmonodromy matrix. The
nverse transpose of the monodromy matrix can be effectively computed by analyzing th
um spectrum corresponding to the classical completely integrable system.12,23 The way we pro
ose to do this is to use"-smooth charts as follows. Let us cover the quantum lattice inUreg (see
ig. 5) with two overlapping"-smooth charts: one obtained by numbering the points in
olumns starting from the bottom and the other obtained by numbering the points in the c
tarting from the top. Let us choose in the first chart anelementary cell, which is a quadrangle th
oes not contain any lattice point in its interior or on its sides, with a distinguished vertex
rdering of the sides adjacent to that vertex. Let us finally move the elementary cell in t
hart of the atlas following the level lines of the"-smooth variables. Choosing a path that wi
round the singular point and transporting our elementary cell along this path, one is force

he first region of chart overlap is reached, to identify the elementary cell with its corresp
epresentation in the second chart. Then one continues with the transport in the secon
eaching the second region of chart overlap, the elementary cell is identified with its repr

ion in the first chart and then is compared with the initial cell. This final cell isdifferentfrom the
riginal one.

Definition 3:Given an-dimensional quantum diagram admitting an"-smooth atlas, an initia
lementary cell defines a frame. The matrix expressing the change of frame from the
lementary cell and the final elementary cell is thequantum monodromy matrix. A quantum
onodromy matrix always belongs to SLsn,Zd.

In our example in Fig. 3, the sides of the final elementary cell, written with respect to the
f the initial elementary cell ascolumns, define the quantum monodromy matrixs 1 0

2 1
d.

In the same way, we can also compute the quantum monodromy matrix for other slice
D lattice. For theK0 andK2 slices in Fig. 4 we obtain the matricess 1 0

1 1
d and s 1 0

3 1
d, respectively

his shows that the 2D monodromy depends on the choice of the slices, and therefore w
tudy directly the 3D monodromy by transporting a 3D elementary cell.

In the problem under investigation, the mod 4 periodicity allows one to project four s
uent constantN slices of the lattice on the same plane, creating the regular grid in Fig. 6(left).

n this projected lattice we can draw elementary cells and move them around the singularit
rigin. Choosing the initial cell as in Fig. 6(right) and moving it around the origin of the projec

attice, being careful to move every vertex of the cell by the same number of steps, we find
ull monodromy matrix for the 3D lattice with that choice of initial elementary cell is

11 0 0

2 1 − 12 .
0 0 1
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V. HOW TO OBTAIN THE 1:1:2 QUANTUM LATTICE FROM THE SIMPLE CUBIC
ATTICE

. 2D lemma and applications

Rather than using an"-smooth atlas to compute the monodromy, one can introduce defe
egular lattices. The treatment we give here is inspired by Ref. 26.

Definition 4: Let sI1,I2d be coordinate functions onR2. Let k be an integer. Consider the
skI1: I2d=hsI1,I2dPR2ukI1.2uI2uj, which we call awedge. The set of pointsDskI1: I2d in the
omplement of the wedgeCskI1: I2d, after identifying the points with integral coordinates am
hose of the formsn,nk/2d=sn,−nk/2d wherenPZù0, is called adefect diagram.

The above prescription can be easily adapted to the wedgeCskI2: I1d=hsI1,I2d
R2ukI2.2uI1uj.

Given a defect diagram associated to a wedge, the lattice obtained by vertically slid
olumns of lattice points, thus physically performing the identification, is calleda reconstructe
iagram, which we denote byRskI1: I2d. The process of taking a given lattice, introducing a
nd inserting or removing a wedge, is calleddeconstruction of a diagram. The vertex of the wedg

s called adefect point. The defect point can be in any point of thehI1,I2j plane.
Computing monodromy using a deconstructed diagram is straightforward. If we pick a

lementary cell below a wedge(assuming thatk is positive) and translate it above the wedge,
nd up with a parallelogram whose two sides remain orthogonal to the symmetry axis
edge, whereas the two other sides, initially parallel to the symmetry axis, have now slopek. This
roves the following.

Lemma 3:The reconstructed diagramRskI1: I2d has nontrivial monodromy. Its quantu
onodromy matrix computed along a path winding counterclockwise around the origin

espect to the elementary cell with vertex ins0,−nd and with an ordered pair of sidess1=fs0,
nd ,s1,−ndg, s2=fs0,−nd ,s0,−n+1dg is s 1 0

k 1
d.

Remark 1:The monodromy matrix associated to a defect diagram depends solely on t
nd position of the defect introduced and on the choice of the ordered sides of the elemen

t does not depend either on the pathG one uses, or on the initial position of the vertex, nor on
oint whereG crosses the wedge. Also, the expression of the monodromy matrixM with respec

o an arbitrary choice of elementary cell, whose defining frameha1,a2j gives the matrixA
GLs2,Zd with columnsa1 anda2, corresponds to the matrixA−1MA.

It is straightforward to check that a clockwise rotation around the defect point chang
ign of k in the monodromy matrix while the monodromy matrix associated to the d
skI2: I1d is the matrixs 1

0
−k
1

d.
Lemma 4:Suppose that the pathG crosses a finite number of removed wedges in the o

1, . . . ,Cn. Then the monodromy matrix associated to this defect diagram computed alongG is the
atrix M =MCn

¯MC1
.

IG. 6. FournN slices can be projected to the same plane, making it possible to draw and move an elementary ce
ight, the choice of one such elementary cell. The numbers refer to the order of the sides.
Proof: Choose the initial elementary cell. After crossing the first elementary wedgeC1, we
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btain a cell which is formed by applying the matrixM1 to the frame defining the initial eleme
ary cell. By remark 1, crossing the second wedgeC2 produces a cell whose sides are identified
he columns of the matrixM2M1. This argument is repeated until the last wedge has been p
nd the lemma follows. h

It is now time to apply the ideas above to the planar quantum diagrams in Figs. 3 and
uantum diagrams in Fig. 3 have a nontrivial singularity atsnL ,nHd=s0,0d. Each of them can b
econstructed by introducing the two wedgesCsL :Hd andCs−L :Hd as shown in Fig. 7. To kee
he mod 4 period symmetries, one must choose a regular lattice with a step of 2 in theL direction
nd with order 2 period in theH direction. This is equivalent to placing the defect point not a
rigin of a regular lattice. The monodromy matrix computed using Lemma 3 is precisely t
btained using"-smooth charts in Figs. 3 and 4.

The two planar quantum diagrams in Fig. 4 can be treated in a similar way and g
econstructed diagrams in Fig. 8. From these diagrams we find that the quantum mon
atrix for slices with constant quantum numbernKm

is s 1
m+1

0
1

d.

. 3D lemma and applications

We now extend the idea of a defect diagram in order to deconstruct the 3D quantum d
f the swing spring. It is natural to define a defect of a three-dimensional regular latt
xtending a defect of a two-dimensional lattice trivially in one direction.

Definition 5:Let sI1,I2,I3d be coordinate functions onR3. A two-dimensional wedgeCskI1: I2d
an be trivially extended along the directionI3, meaning that all constantI3 slices intersect th
xtension in the same wedge. Such a 3D wedge istrivial in the I3 direction and is denoted b
skI1: I2: I3d.

The boundary of the 3D wedgeCskI1: I2: I3d consists of a roof made up of two half-plan
oined along theI3 axis, which is a “roof top.” The roof top is a singularity of the 3D quan
iagram calleddefect line.

Lemma 5:The reconstructed diagramRskI1: I2: I3d has nontrivial monodromy. Its quantu
onodromy matrix computed along a path winding counterclockwise in thehI1,I2j plane aroun

he positively oriented defect line, theI3 axis, with respect to the elementary cell with verte

IG. 7. Deconstruction of the diagrams obtained for constantnN slices of the swing spring quantum diagram. Gluing
ictures along the dashed vertical lines one obtains the diagrams in Fig. 3.
FIG. 8. DeconstructednK0
andnK2

slices.
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0,−n,0d and with sides s1=fs0,−n,0d ,s1,−n,0dg, s2=fs0,−n,0d ,s0,−n+1,0dg, s3=fs0,
n,0d ,s0,−n,1dg is the matrix

11 0 0

k 1 0

0 0 1
2 .

hen a path crosses a family of 3D wedges, the monodromy matrix along the path is obta
n Lemma 4.

Again, one must be careful when treating a defect with a different orientation. Let us c
ayDskI3: I1: I2d. A path winding counterclockwise in thehI3,I1j plane is a path which begins
he positive I3 axis and moves towards the positiveI1 axis. The monodromy matrix for th
lementary cell in lemma 5 along such path is the matrix

11 0 k

0 1 0

0 0 1
2 .

The diagrams in Fig. 7, which are obtained for fixed polyad numbernN, can be modified b
ntroducing auxiliary spacings along the vertical axisS as shown in Fig. 9. Though inessentia
he planar figures, this modification helps to deconstruct the 3D lattice of the quantum
pring up to any fixed polyad numberNmax into a regular cubic lattice with three 3D wedg
emoved, namely,CsL :H :Nd, Cs−L :H :Nd, andCs−N:L :Hds0,0,Nmaxd

, see Fig. 10. The roof tops
he first two 3D wedges lie on theN axis, which is the singular thread of the energy momen

IG. 9. Defect for constantnN slices of the joint spectrum of the quantum swing spring. The slices with nonzeronN mod 4
re obtained from thenN=0 mod 4 lattice by cutting out an additional region along the vertical axis. Dashed vertica
how identification of points on the border of the cutout regions.
FIG. 10. Three-dimensional model of the deconstructed joint spectrum of the quantum swing spring.
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ap EM of the classical swing spring. The roof top of the last 3D wedge lies on the lihL
0,N=Nmaxj. This last singular line should be pushed at infinity to obtain the quantum diagr

he swing spring.
The pictures in Fig. 7 account for the 2D wedges of the 3D wedgeCs±L :H :Nd; the cut along

he H axis shown in Fig. 9 corresponds to the 3D wedgeCs−N:L :Hds0,0,Nmaxd
. The deconstructio

f the swing spring quantum lattice resembles a table with four legs, labele
, hnH,0,nL,0j, B, hnH,0,nL.0j, C, hnH.0,nL.0j, andD, hnH.0,nL,0j as shown

n Fig. 10.

. CALCULATION OF MONODROMY USING SIMPLE CUBIC LATTICE WITH CUTS

In this section we use the deconstructed 3D quantum lattice of the swing spring
receding section to calculate the monodromy matrix associated to a path winding aro
efect line situated on the verticalN axis.

Let us start the path in the componentA of Fig. 10 and move counterclockwise around
efect line. Passing fromA to B, we cross the elementary wedgeCs−N:L :Hds0,0,Nmaxd

. In passing
rom B to C we cross the elementary wedgeCsL :H :Nd. In passing fromC to D we cross again th
lementary wedgeCs−N:L :Hds0,0,Nmaxd

. Returning to the componentA we cross the elementa
edgeCs−L :H :Nd. From Lemma 5 it follows that the quantum monodromy matrix of the q

um swing spring along the given path is

M = 11 0 0

1 1 0

0 0 1
211 0 1

0 1 0

0 0 1
211 0 0

1 1 0

0 0 1
211 0 1

0 1 0

0 0 1
2

−1

= 11 0 0

2 1 − 1

0 0 1
2 .

he matrixM above is expressed with respect to a frame determined by the initial unitary
lementary cell. This implies that with a different choice of elementary cell one would ob
ew quantum monodromy matrix related toM by conjugation in SLs3,Zd.

It is therefore natural to try to determine an initial elementary cell for which the monod
atrix assumes its simplest form. In the discussion above we choose an initial cell, labela in

able I, and then we compute the monodromy associated to this cell. We now take five d
ells in quadrantA of the lattice, namely,a ,b ,g ,d, andk, as shown in Table I. We denote
a1,a2,a3j the frame associated to the cella, the frames associated to the cellsb ,g ,d, andk, are
b1,b2,b3j, hc1,c2,c3j, hd1,d2,d3j, and hk1,k2,k3j, respectively. They are related to the fra
efininga by the matrix given in the second column of Table I.

Once we have embedded each elementary cell in the componentA of the deconstructe
iagram of Fig. 10 or in the projected diagram of Fig. 9, we can move it around the vertical
orresponding to the singular thread of the energy momentum map of the classical swing
nd compute the quantum monodromy matrix. From Table I we see that the monodromy m

he quantum diagram of the swing spring system takes the simplest possible form of a u
atrix with only one nonzero off-diagonal entry equal to 1, whenk is chosen as initial elementa

ell.
Observe that for 3D quantum diagrams the sign is not an invariant as it is for the 2D qu

iagrams, see Ref. 7. More specifically, the monodromy matrix of all 2D quantum diag
ssociated to a two degree of freedom completely integrable Hamiltonian system with
ymmetry, have the forms 1 0

k 1
d with k.0. Such matrices can be obtained by introducing the

efects we gave above. Another 2D defect obtained byaddinga solid wedge instead of subtract
t produces a minus sign in the monodromy matrixs 1

−k
0
1

d. The two matrices arenot conjugate in
Ls2,Zd. At the same time, when the dimension is bigger than 2 such sign can be chan
onjugation in SLs3,Zd. So, while the construction of defects by removing and adding

edges still exists in 3D, the monodromy matrix cannot distinguish them.
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I. COMPARISON OF CLASSICAL AND QUANTUM CALCULATIONS OF MONODROMY

We now recall how the classical monodromy matrix of the swing spring was computed
1. Define the momentaN1=sN+Ld /2 andN2=sN−Ld /2. Fixing the values of the momenta and
he energy, one specifies a 3-torus. It is possible to define a basis of the fundamental grou
orus by means of three paths generated as follows:gN1

=expstXN1
d, gN2

=expstXN2
d, and

gH = exp
t

2p
sTXH − Q1XN1

− Q2XN2
d.

ereQ1 andQ2 are the rotation numbers of the flow ofXH on the given 3-torus andT is its fully
educed period, see Ref. 11. Considering the initial choice of three paths as a frame, a
oving the paths around the singular thread with a continuous homotopy(imposed by the func

ionsT,Q1,Q2) one ends up with three final paths, or final frame. The matrix of change of f
s the classical monodromy matrix of the swing spring and is

11 0 0

0 1 02 .

ABLE I. Possible choices of elementary cells in the unit cell basis of the reconstructedEM lattice of quantum swin
pring.

Possible choices of elementary cells in theA quadrant of the initial 3D quantum diagram.
1 − 1 1
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Observe thatKm (7) andL are not the momenta of an effective 2-torus action. In factL is the
omentum of the −1:1:0oscillator; whileKm is the momentum of the 1:m:m+1 oscillator. Thu

he momentumKm+L is that of the 0:m+1:m+1 oscillator, whose flow is 2p / sm+1d periodic.
espite this noneffectiveness, one can show that the classical monodromy matrix with re

he framegL=−gN1
+gN2

, gKm
=gN1

+mgN2
, andgH is

11 0 0

0 1 1

0 0 1
2 .

Reducing with respect to the circle action with momentumKm one obtains a 2D system who
onodromy is represented by the matrixs 1 1

0 1
d. At first sight this does not seem to be in agreem

ith the quantum results computed whennKm
is held constant. However, one observes tha

oneffectiveness of theT2 action generated by the flows ofXKm
and XL implies that a basis o

ycles in the 2-tori of theKm-reduced space are not the cyclesg̃L and g̃H, where the tilde
epresent the projection ofgL andgN on the reduced space, but the cyclesg̃L / sm+1d andg̃H. With
espect to these cycles the monodromy matrix is the matrixs 1

0
m+1

1
d, which confirms our quantu

alculations.
Another interesting aspect of the 2D system, highlighted by reduction of the symmetr

iated to theKm momentum, is that the singular fiber of the energy momentum map of the re
ompletely integrable system is always a singly pinched torus. This does not contradict the
romy theorem in Refs. 6 and 27. In fact, the phase space of the 2D system obtainedKm

eduction isnot smooth, being singular precisely at the pinch point of the singular fiber
nergy momentum mapping. Consequently, this pinch point is not a focus–focus critical p

To find the relation between the quantum monodromy matrices and the classical mon
atrix we follow Appendix A 2 in Ref. 12 and choose the elementary cell whose sides in the
ith coordinatessN1,N2,Hd are given by the vectorse1=s1,0,Q1/Td, e2=s0,1,Q2/Td, and e3

s0,1/T,0d, where Q=sQ1+Q2d /2. Mapped ontosL ,H ,Nd-space these vectors becomef1

s1,Q1/T,1d, f2=s−1,Q2/T,1d, and f3=s0,1/T,0d. Computing the valuesQ1 andQ2 after com
leting a circuit, one finds that the cell is precisely the one calledg in Table I (up to exchangin

2 ande3). The quantum matrix associated to this cell is

11 0 0

0 1 0

1 − 1 1
2 ,

hich is precisely the inverse transpose of the classical monodromy matrix.

II. CONCLUSIONS

In this paper, we have analyzed the qualitative features of a model quantum system
egrees of freedom whose classical limit corresponds to an integrable approximation of
pring in 1:1:2 resonance.

Quantum monodromy is manifested in the joint spectrum of three commuting obser
ocally, this joint quantum spectrum can almost everywhere be interpreted as a regular la
uantum states. This reflects the existence of local action variables in the corresponding
ystem. Equivalently, the joint spectrum can be described globally as a regular lattice of q
tates with defects. Thus it is clear that quantum and classical monodromy are directly rela
tlas formed by different"-smooth local charts covers almost all the quantum lattice with
xception of regions containing nonregular values of the classical energy momentum map

um monodromy can be directly read from the joint spectrum by looking at the evolution
lementary cell of the quantum lattice along a closed path lying in"-smooth charts of an"-smooth

tlas of the lattice.
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Globally the 3D quantum lattice is interpreted as a regular lattice with 1D defects
onstruction of 1D defects for 3D lattices, which are characterized by the elementary mon
atrix, follows the recipe formulated for 2D lattices with point defects which are obtain

utting out a wedge from the regular lattice and gluing together the boundaries which hav
reated. For the 1:1:2 swing spring we have shown that the lattice of quantum states
econstructed from a regular cubic lattice by removing three solid wedges, two of which c
ine defect in the physical region while the third creates a line defect, which lies in a nonp
egion at infinity. The representation of the 3D quantum lattice of the swing spring by a
ubic lattice with wedges removed allows us to visualize clearly the transport of the elem
ell over the lattice. It also allows us to calculate the matrix of quantum monodromy fo
hoice of initial elementary cell in the lattice.

An important additional consequence of our analysis of the quantum swing spring is th
emonstration that 1D defects in the 3D lattice(or equivalently 1D subspaces of critical value

he 3D classical energy-momentum map) should be characterized by the complete 3D quan
lassical monodromy matrix. The analysis of two-dimensional slices isinsufficientto uncover th
ingularities of the full 3D quantum lattice. Therefore it is important to be able to understa
eometry of lattices of any dimension and be able to compute its quantum monodrom

ransformation of an elementary cell along a close path. Deconstruction/reconstruction of
eems to be an essential tool in the analysis of quantum lattices and in the computation
uantum monodromy. It is an open question whether 3D quantum lattices exist whose mon
annot be reproduced via the introduction of elementary defects. In 2D we know how to d
ose any quantum monodromy matrix into a product of elementary matrices. Therefore
efect of a 2D quantum lattice arises from a known set of elementary defects, see Ref. 8

Monodromy ofn-dimensional lattices is defined up to conjugation in SLsn,Zd. In particular, i
annot distinguish between two different defects obtained by removing or adding the same
art in a regular lattice. Whether the defect corresponding to adding a wedgelike regio
egular lattice can be realized by an integrable Hamiltonian system is an open question.
attice defects in 3D systems introduced here straightforwardly generalize to codimensio
ects in integrable Hamiltonian systems with arbitrary number of degrees of freedom. Co
ion 1 defects which correspond to fractional monodromy22 can also be treated with the sa
pproach. It is worth noting that the whole 3D quantum lattice of the quantum swing sprin
defect of codimension 2 which corresponds to integer monodromy, even though the 1:1:2

tudied in this paper has a 1:2 resonant subsystem with a fractional defect.1 In order to se
odimension 1 defects and fractional monodromy for 3D quantum lattices, we need to stud
omplicated examples of integrable Hamiltonian systems with higher order resonances.
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PPENDIX A: REDUCTION OF RESONANT OSCILLATOR SYSTEMS IN THREE
IMENSIONS WITH SO(2) SYMMETRY

Consider anm8 :m8 :m9 resonant 3-oscillator system with zero order Hamiltonian

H0 = m81
2sz1z̄1d + m81

2sz2z̄2d + m91
2sz3z̄3d sA1d

nd whose higher order terms Poisson commute withH0. Here the positive integer numbersm8
nd m9 are such that gcdsm8 ,m9d=1, andsz, z̄d are complex symplectic coordinates of the fo
q± ipd. The flow of H0 generates an oscillator symmetryS1 whose action on the six dynamic

¯ ¯ ¯
ariablessz1,z2,z3,z1,z2,z3d is given by the 636 diagonal matrix,
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Ut = diagseim8t,eim8t,eim9t,e−im8t,e−im8t,e−im9td = diagsu m8,u m8,u m9,u −m8,u −m8,u −m9d. sA2d

uppose that this system is invariant with respect to the additional Lie symmetry group S(2) of
otations in the planesz1,z2d, whose action is represented by the matrix

Us = diagFS coss sins

− sins coss
D,1,S coss sins

− sins coss
D,1G . sA3d

t can be seen that the two actions(A3) and (A2) commute, and that the full symmetry group
uch system is therefore a torusT2=S13SOs2d.

We study the case wherem8 :m9 is 1:2. The indices 1,2,3 of our coordinates here corres
o j, h, z in Sec. II A. In this appendix we give details of the reduction of theS13SOs2d
ymmetry of this system. It can be considered as a two-stage reduction. For example,
educe the 3-oscillator symmetry and then the SO(2) symmetry. We will do the two stages at on
ince theT2 action is not free, we usesingular reduction.3

We also consider certain discrete symmetries. It can be verified easily that the spati
etry of the spherical pendulum as well as that of the swing spring system11 is not just the plai
O(2) but the group SOs2d’Cs. HereCs=h1,svj is the group of reflections in a plane contain

he SO(2) symmetry axis. Explicitly

sv: sq1,q2,q3,p1,p2,p3d ° sq2,q1,q3,p2,p1,p3d, sA4ad

here by convention we takeq3 as the symmetry axis.
The Schönflis notation for such group isC`v. The total symmetry group of these system

Os2d’Cs3T and combines the above spatial group with the antisymplectic momentum re
ymmetry,

T: sq,p,zd → sq,− p,z̄d, sA4bd

hich is present in many other physical systems and is often calledtime reversal. So we will
onsider an additional discrete group of order four

h1,sv,T,Ts = T + svj

hich is isomorphic as an abstract group toZ23Z2.

. Generating function and integrity basis

By Molien’s theorem,20 the generating function for the invariants of theS13SOs2d action is
iven by the double integral,

gsld =
1

2p
E

0

2p 1

2p
E

0

2p 1

dets1 − lUtUsd
dt ds. sA5d

ere the formal variablel represents any of the dynamical variablessz, z̄d or, equivalently,sq,pd.
n the complex unimodular variables

u = expsitd andw = expsisd

he determinant in(A5) can be expressed as

dets1 − lUtUsd = sl − u2dSl −
1

u2Dsl − uwdSl −
1

wu
DSl −

u

w
DSl −

w

u
D .
he generating function(A5) can now be computed as a double Cauchy integral,
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gsld =
1

2pi
R

uuu=1

1

2pi
R

uwu=1

l2u3w dudw

Dsu,w;ld
, sA6d

here

Dsu,w;ld = sl − u2dSu2 −
1

l
Dsl − uwdSwu −

1

l
Dslw − udslu − wd.

ince the formal variablel is used to Taylor expandgsld at l=0, it can be arbitrarily small. Th
eans that when we integrate(A6) on u we should consider only four poles,

u = ± Îl, u =
l

w
, u = lw,

hich lie inside the unit circleuuu=1. Applying the Cauchy integral formula for each pole and
ntegrating the result onw in the similar way gives the Molien generating function,

gsld =
1 + l3

s1 − l2d3s1 − l3d
. sA7d

he function(A7) indicates not only the fact that the space of invariant polynomials is gen
y five polynomials, three quadratic and two cubic, but also that this ring is not freely gen
nd that the integrity basis of this ring has four principal(denominator) invariants and one cub
uxiliary (numerator) invariant. From(A2) we see that all invariants of the 1:1:2 oscillator ac
re built from monomialsz1z̄1, z2z̄2, z3z̄3, z1z̄2, z1

2z̄3, z2
2z̄3, z1z2z̄3 and their conjugates which shou

e further symmetrized with respect to the SO(2) action in(A3). The explicit choice of invarian
s

N = 1
2sz1z̄1 + z2z̄2 + 2z3z̄3d, R= 1

2sz1z̄1 + z2z̄2d, L = Jsz̄1z2d,

S= 1
2R„z3sz̄1

2 + z̄2
2d…, T = 1

2J„z3sz̄1
2 + z̄2

2d….

n the rotated coordinatesq1, q2, q3, p1, p2, p3 of Sec. II A these invariants equal those in(3).
omparing with Ref. 11 we find that

N = 1
2r1 + 1

2r2 + r3, R= 1
2r1 + 1

2r2, S= − r4, T = r5.

ote that coordinatesj, h, z in Ref. 11 correspond to our rotated coordinatesq1, q2, q3 in Sec
I A. ChoosingT to be the auxiliary invariant, we can represent the structure of the ring as

RfN,R,L,Sg • h1,Tj = RfN,R,L,Sg % RfN,R,L,SgT, sA8d

here the ringRfN,R,L ,Sg is freely generated bysN,R,L ,Sd.
A different way to reflect the structure of the ring(A8) is by specifying the relations(sygyzies)

etween its generators. Rewriting the function(A7) in the Hilbert form,

gsld =
1 − l6

s1 − l2d3s1 − l3d2 , sA7ad

e see that there is one such relation of degree 6. From our choice of invariants(3) we find

2Fn,l
1:1:2= T2 + S2 − sR− LdsR+ LdsN − Rd = 0, sA9ad

nd we can also verify that
N ù Rù uLu ù 0. sA9bd
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. Reduced space and Hamiltonian

From the preceding section it is obvious that theT2-reduced system(the doubly reduce
ystem in Ref. 11) can be described in terms of invariantssR,S,Td. The spaceL−1sldùN−1snd is to
e reduced by theT2-action generated by the flows ofXL and XN. Equation(A9a) defines th
educed phase spacePn,l

1:1:2, which is a surface of revolution about theR axis in the ambien
-space with coordinate functionssR,S,Td. The projection ofPn,l

1:1:2 on thehT=0j plane is show
n Fig. 11.

When n= l =0 or whenul u=n the spacePn,l
1:1:2 degenerates to a point; for alln. ul uÞ0 it is

iffeomorphic to a 2-sphere. Whenl =0 andn.0 the spacePn,0
1:1:2 is a sphere with one singu

oint atR=S=T=0 (a “turnip”). Since near this pointr2=T2+S2<nR2, the singularity is conica
as in the case of the 1:2 resonance).1

The reconstruction of theT2 orbit map L−1sldùN−1snd,TR3° Pn,l
1:1:2 can be described

ollows. The two pointsl = ±n lift to two relative equilibria which correspond to pure(and fast)
otation about axisq3 without swinging nor springing; of course the spring is stretched an
endulum is somewhat bent. All points ofPn,l

1:1:2 with 0, ul u,n lift to the regularT2 orbits of the
13SOs2d group with periods 2p in both directions. Same is true for all regular points ofPn,0

1:1:2,
hat is, all points withRÞ0. The singular point of this space(with S=R=0) goes to a speci
eriodic orbit inL−1s0dùN−1snd of periodp. It corresponds to pure swinging along theq3 axis.

The triple of Hamiltonian functionssR,S,Td generates the Poisson algebra of the(second)
educed system which defines the Poisson structure onPn,l

1:1:2. Using the functions defined in(3),
e compute this Poisson structure first in the original phase spaceTR3 (note thathz, z̄j=2i), take

A9a) into account and restrict toPn,l
1:1:2. This gives the structure

hR,Sj = 2T, hT,Rj = 2S, hS,Tj = 3R2 − 2nR− l2. sA10ad

he function(A9a) is the Casimir of this algebra and we can also see that

hca,cbj = o
c

«abc

]Fn,l
1:1:2

]cc
, wherec = sc1,c2,c3d = sR,S,Td. sA10bd

ntroducing a new set of functions

N = 1
4sN − uLud, N1 = 1

2R− 1
4sN + uLud, N2 = Sx−1, N3 = Tx−1, sA11ad

here

x = 2ÎR+ uLu andN2 = N1
2 + N2

2 + N3
2, sA11bd

eforms the Poisson algebra(A10) into a standard so(3) algebra with generatorssN1,N2,N3d and
asimir N. It follows that the singular map(A11) sends every reduced phase spacePn,l

1:1:2 to a
mooth sphereS2 of radius N (which is maximal whenl =0 and zero whenul u= lmax=n). The

1:1:2

IG. 11. Reduced phase spacePn,l
1:1:2 of the 1:1:2 resonant oscillator system with SO(2) symmetry. Shaded area bounded

bold line shows the projection of the singular spacePn,0
1:1:2 on the planehT=0j; other lines show boundaries of simi

rojections forl = 1
8n (dashed line), 1

4n, 1
2n, and 3

4n; note thatlmax=n.
onelike singularity ofPn,0 at n.0 is removed due to the singularity of this map atR=L=0.
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The doubly reduced system has one degree of freedom. Trajectories of this system
ound as intersectionshHn,l =hjù Pn,l of the constanth-level sets of the reduced HamiltonianHn,l

nd the phase spacePn,l. It is simpler to work on the spaceVn,l =Pn,l / sZ23Z2d obtained by
educing the discrete symmetries. This space is defined by

t + S2 = sR− l2dsn − Rd, wheren ù Rù ul u ù 0 andt = T2 ù 0

ith boundary]Vn,l given by

S2 = sR2 − l2dsn − Rd, n ù Rù ul u ù 0

nd studyhHn,lsR,Sd=hjùVn,l.
The lowest order approximation studied in Ref. 11 is sufficient for a qualitative descripti

sual, we use the rescaled and shifted energy functionHn,lsR,Sd=S.
Lemma A.1:The intersectionshS=hjùVn,l are of three kinds:

i) one regular point of]Vn,l;
ii ) a closed interval, whose endpoints are regular points of]Vn,l, that is, any point except poi

sR,Sd=0 of Vn,0;
iii ) a closed interval whose one endpoint is a regular point of]Vn,0 and the other is the singu

point sR,Sd=0.

Every sufficiently small generic deformation of the Hamiltonian functionS has three types
evel sets onVn,l.

Proof: The level sets of the Hamiltonian functionSare straight vertical lines in the plane w
oordinatessR,Sd. From (A9a) which defines]Vn,l whenT=0 we can see that these lines to
Vn,l at the points

Rc = 1
3sn + În2 + 3l2d, Sc = ± Îsn − RcdsRc

2 − l2d, sA12d

hereS reaches its maximum and minimum value. h

. Energy-momentum map

The imageU of the energy-momentum map,

EM: TR3 → U , R3: sq,pd → „Lsq,pd,Hsq,pd,Nsq,pd…,

s a three-dimensional domain inR3 with coordinatessl ,h,nd. In the first approximation withH
S, Eqs.(A12) and inequalitiesnù0, ul uøn define the boundary]U. It can be seen thatUù hn
0j is the point(0,0,0), while for anyn.0 the constantn slice of U has the same topology o
losed disc with two singular points on the boundary and one isolated singular point insi

IG. 12. Constantn.0 slice (left) of the image of the energy-momentum map(right) of the 1:1:2 resonant oscillat
ystem with HamiltonianHn,l =S.
ig. 12 (left).
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It can be seen that the whole domainU is a solid cone which has three curves of distinguis
ingular values: one is a thread insideU, then axis, the other two are lines that lie on the bound
U (the linesl = ±n, h=0), see Fig. 12(right).

Note that different slices ofU can be considered, see for example, the slice with constn
l in Fig. 13. All such slices have a topology of half-plane with one isolated singular point
nd one singular point on the boundary.

The fibers of the energy momentum map reconstruct as follows. The regular values sh
haded area in Fig. 12 lift to regular 3-tori. The points in the smooth part of the boundar
Þ0, N.0 lift to relative equilibriaT2, while singular points of the boundary withS=0, N.0 lift

o relative equilibriaS1. The points in the singular thread withN.0 andS=L=0 correspond to
pecial singular 3D fiberTn whose topology can be best represented using two partial red
aps, one with respect to the SO(2) symmetry, the other with respect to the oscillator symm

1. As illustrated in Fig. 14 the former gives a curled torus while the latter gives a pinched

PPENDIX B: DETAILS OF THE QUANTUM DESCRIPTION

Our quantum-mechanical investigation deals with the quantum system associated to t
ical system whose Hamiltonian is the swing spring Hamiltonian normalized to third or
rder. We use the quantum expression of the Hamiltonian expanded up to sixth orde
iscussing the range of energy levels at which our analysis is reasonable for applications

runcation at third order for the description of the 3D quantum lattice. In this section we exp
rite the expression of the operators associated to the four invariants appearing in the ex

f the Hamiltonian in a basis in which the operatorsN̂ and L̂ are diagonal.
In quantum mechanics one associates to a classical(polynomial) HamiltonianH its quantized

peratorĤ. The rule to obtainĤ follows straightforwardly from the following ansatz(here state
or 1D systems): the domain of the operator is the Hilbert space with basisunl snPNd; the

IG. 13. Constantn+ l slice of the image of the energy-momentum map of the 1:1:2 resonant oscillator syste
amiltonianHn,l =S.
FIG. 14. Partial reduction of the singular 3D fiber.
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peratorsa=s1/Î2dsq̂+ ip̂d and a†=s1/Î2dsq̂− ip̂d act on the basis vectors as follows:aunl
Înun−1l anda†unl=În+1un+1l. In this treatment, we express every polynomial inp, q using

he variabless1/Î2dsq+ ipd ands1/Î2dsq− ipd and hence we define its associated quantum o
or by replacing such variables with the operatorsa and a†, being careful to symmetrize t
xpressions(the variables of a polynomial commute,a anda† do not).

In our 3D case, the basis elements of the Hilbert space are denoted byun1,n2,n3l, while the
asic operators are calleda1, a1

†, a2, a2
†, a3, a3

†. With these notations, the classical polynom
1
2sq1

2+p1
2d becomes the quantum operator1

2sa1a1
†+a1

†a1d. This operator associates to the b
ector un1,n2,n3l the vectorsn1+1/2dun1,n2,n3l.

It follows that the quantizations of the functions playing a role in the completely integ
ystemsHnf

s6d ,L ,Nd are

N̂ = 1
2sa1a1

† + a1
†a1 + a2a2

† + a2
†a2 + 2a3a3

† + 2a3
†a3d, Ŝ= Î2isa1

†a2
†a3 − a1a2a3

†d,

R̂= 1
2sa1a1

† + a1
†a1 + a2a2

† + a2
†a2d, L̂ = 1

2s− a1a1
† − a1

†a1 + a2a2
† + a2

†a2d.

he action of these operators on the generic vectorv= un1,n2,n3l is

N̂v = sn1 + n2 + 2n3 + 2dv, L̂v = sn1 − n2dv, R̂v = sn1 + n2 + 1dv,

Ŝv = iÎ2sn1 + 1dsn2 + 1dn3v
+ − iÎ2n1n2sn3 + 1dv−,

herev−= un1−1,n2−1,n3+1l andv+= un1+1,n2+1,n3−1l.
To plot the two-dimensional quantum diagrams in Fig. 3, we fix an eigenspace for the o

ˆ , that is, we fix apolyad number, and then compute the joint spectrum of the operatorsL̂ andĤnf
s6d

n that eigenspace. The eigenspace associated to the eigenvaluem+2 is generated by all th
ectorsun1,n2,n3l such thatn1+n2+2n3=m. Observe that there are essentially two cases, de

ng on the parity ofm. If m is even, theN̂-eigenspace associated to the eigenvaluem+2 decom

oses in the direct sum of eigenspaces forL̂, Vh=Rhvh,k= uk,h+k, 1
2sm−h−2kdl uk=0, . . . ,12sm

hdj, whereh, the L̂-eigenvalue associated toVh, runs over all even numbers from −m to m. Here
hvh,kj stands for real span of the vectorsvh,k. The dimension ofVh is 1

2sm−hd+1. On eac

ubspaceVh the operatorL̂ is the scalar multiplication byh while Ŝ acts as the tridiagonal mat

Ŝvh,k = iÎsk + 1dsh + k + 1dsm− h − 2kdvh,k+1 − iÎksh + kdsm− h − 2k + 2dvh,k−1. sB1d

f m is odd, theN̂ eigenspace associated to the eigenvaluem+2 decomposes intoL̂ eigenspace

h=Rhuk,h+k, 1
2sm−h−2kdl uk=0, . . . ,12sm−hdj indexed by all odd numbers from −m to m. The

imension ofVh is 1
2sm−hd+1. The operatorĤ acts onVh according to(B1). These operators ha

een used to plot the quantum diagram of the swing spring.
To quantize the HamiltonianHnf

s6d (4) and model the swing spring system for higher en

evels one can push further the process described above. Since the operatorsN̂ and L̂ commute

ith all the other operators, there is no difficulty in defining the operatorsNR̂, L2̂, R2̂, NR2̂, NŜ,

ndS2̂. The only two noncommuting operators areR̂ andŜ, for this reasonRŜacts on the vecto

s 1
2sR̂Ŝ+ŜR̂d. The matrix of the quantum analog of the HamiltonianĤnf

s6d on the vector spaceVh

ith respect to the basisvh,k is pentadiagonal and depend on the physical variable", but we will
ot write here its expressions.

Another quantum diagram, displayed in Fig. 4, can be obtained by slicing the 3D qu
iagram by means of different momenta coming from theT2 symmetry. To work with momen

hat define an effective torus action, the authors of Ref. 11 use the functionsN1= 1
2sN−Ld, N2

1

2sN+Ld. In qi, pi variables
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N1 = 1
2sq1

2 + p1
2 + q3

2 + p3
2d, N2 = 1

2sq2
2 + p2

2 + q3
2 + p3

2d, Hnf
s3d = "sN1 + N2d − 3

16"3/2S.

he quantization of the functionsN1 andN2 is

N̂1 = 1
2sa1a1

† + a1
†a1 + a3a3

† + a3
†a3d, N̂2 = 1

2sa2a2
† + a2

†a2 + a3a3
† + a3

†a3d.

gain, one can restrict the analysis to the eigenspaces of the operatorN̂1 corresponding to th

igenvaluem+1. In this case, the eigenspace ofN̂1 is not finite dimensional, but it still can b
ecomposed into direct sum of subspaces,

Wh = HRhum,h,0l,um− 1,h − 1,1l, . . . ,um− h,0,hlj, whenh , m,

Rhum,h,0l,um− 1,h − 1,1l, . . . ,u0,h − m,mlj, whenh ù m.
J

ote that dimWh=h h+1, whenh,m
m+1, whenhùm. On each spaceWh, the operatorN̂2 acts as the multiplication b

+1; whereas the operatorĤnf
s3d acts as the tridiagonal matrix

Ĥnf
s3dvh,k = 3

16"3/2iÎ2sm− kdsh − kdsk + 1dvh,k+1 + "sm+ h + 2dvh,k

− 3
16"3/2iÎ2sm− k + 1dsh − k + 1dkvh,k−1. sB2d

erevh,k is the vectorum−k,h−k,kl. These operators are the ones used to numerically plot
right). The technique to obtain the slices with fixed quantum numbersnKm

is very similar to the
nes described above.
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Due to a computational mistake the polarization conditions(3.18), (3.19), for u0,± (or equiva
ently u0,±1) are incorrect. Indeed the correct relations are obtained by choosingf=f−, i.e., f
atisfies

]tf = Îu ¹ fu2 + 1.

hen Eq.(3.18) is correct(and formally the same but with this new choice off) whereas(3.19)
as to be replaced by

„P+s− ¹ fdu0,−1…st,xd = 0 ⇔ „P−s− ¹ fdu0,−1…st,xd = u0,−1st,xd.

his is then consistent with the corresponding negative phase factor exps−if /«d used throughou
he paper, i.e., instead of(3.20) we get

u0st,x,fst,xd/«d ª u0,+1e
if/« + u0,−1e

−if/«, u0,±1 = P±s± ¹ fdu0,±1.

lso we get thatv−s¹fd has to be replaced everywhere byv−s−¹fd [which indeed happens to
qual tov+s¹fd]. The only point where this flaw causes problems is where we have us
rthogonality ofu0,− andu0,+, which clearly is no longer valid. This implies that on the r.h.s
4.1) we get two additional mixed terms of the form

ku0,±st,xd,u0,7st,xdle7i2fst,xd/«.

owever, these terms can then be easily dealt with by using the same argument as given in
.1 for the zitterbewegungZk. The electric-potentialV« then also becomes an asymptotic exp
ion similar to the one given for the magnetic potentialA« in (4.20) and (4.21). With these
odifications all other results remain valid.

We also want to correct two cumbersome typos: In(4.12) the factor ± should be cancel
hereas an additional factor1

4 has to be included[similarly on the r.h.s. of(4.18)]. Also the secon
xpression in(2.18) is not as it should be, but rather has to be replaced byI4−P±sjd=P7sjd.

Finally we want to add one sentence of explanation the reader might consider help
emark 3.3, after(3.17): This clearly implies that we have to assume eitheru0,−s0,xd or u0,+s0,xd

o be identically zero, in order to proceed with an analogousone-phase ansatz(a fact which ha
lready been noted earlier).
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